# HANDBOOK MAINTENANCE INSTRUCTIONS

# RADIO TRANSMITTING SET AN/ART-13A

BEVISION

LATEST REVISED PAGES SUPERSEDE THE SAME PAGES OF PREVIOUS DATE

Insert revised pages into basic publication. Destroy superseded pages.

PUBLISHED UNDER AUTHORITY OF THE SECRETARY OF THE AIR FORCE
AND THE CHIEF OF THE BUREAU OF AERONAUTICS

Reproduction for non-military use of the information or illustrations contained in this publication is not permitted without specific approval of the issuing service (BuAer or AMC). The policy for use of Classified Publications is established for the Air Force in AFR 205-1 and for the Navy in Navy Regulations, Article 1509.

# —LIST OF REVISED PAGES ISSUED -

#### INSERT LATEST REVISED PAGES. DESTROY SUPERSEDED PAGES.

NOTE: The portion of the text affected by the current revision is indicated by a vertical line in the outer margins of the page.

| Page       | Date of Latest       |
|------------|----------------------|
| No.        | Revision             |
| <b>2-6</b> | 30 October 1950      |
| 2-6A       | 30 October 1950      |
| *7-11      | 13 April 1951        |
| 7-19       | 30 October 1950      |
| *7-20      | 13 April 1951        |
| *7-23      | 13 April 1951        |
| 7-27       | 24 January 1950      |
| 7-28       | 24 January 1950      |
| 7-29       | 1 May 1950           |
| 7-30       | 1 May 1950           |
| 7-31       | 1 May 1950           |
| 7-32       | 1 May 1950           |
| 7-34       | 24 January 1950      |
| 7-37       | 1 May 1950           |
| *7-38      | 13 April 1951        |
| 7-39       | 1 May 1950           |
| 7-40       | 1 May 1950           |
| 8-43-      | _8-4424 January 1950 |

\* The asterisk indicates pages revised, added or deleted by the current revision.

## ADDITIONAL COPIES OF THIS PUBLICATION MAY BE OBTAINED AS FOLLOWS:

USAF ACTIVITIES.—In accordance with Technical Order No. 00-5-2.

NAVY ACTIVITIES.—Submit request to nearest supply point listed below, using form NavAer-140: NAS, Alameda, Calif.; ASD, Orote, Guam; NAS, Jacksonville, Fla.; NAS, Norfolk, Va.; NASD, Oahu; NASD, Philadelphia, Pa.; NAS, San Diego, Calif.; NAS, Seattle, Wash.

For listing of available material and details of distribution see Naval Aeronautics Publications Index NavAer 00-500.

USAF

# TABLE OF CONTENTS

| Secti | ion                                                                                                                 | Page      |
|-------|---------------------------------------------------------------------------------------------------------------------|-----------|
|       | Safety Notice                                                                                                       | ix        |
|       | Special Notice                                                                                                      |           |
| I.    | GENERAL DESCRIPTION                                                                                                 | 1 1       |
| 1.    |                                                                                                                     |           |
|       | 1. Equipment Supplied                                                                                               |           |
|       | 2. Equipment Required but Not Supplied                                                                              |           |
|       | 3. General Description of Equipment                                                                                 |           |
|       | a. Transmitter                                                                                                      |           |
|       | b. Dynamotor Unit                                                                                                   |           |
|       | d. Control Panel                                                                                                    |           |
|       | e. Antenna Loading Unit                                                                                             |           |
|       | f. Antenna Shunt Capacitor                                                                                          |           |
|       | g. Accessories Supplied                                                                                             |           |
|       | b. Similar Equipment                                                                                                | 1-7       |
|       | 4. Interconnection of Radio Transmitting Set AN/ART-13A Radio Receiving Set AN/ARR-11 to Form Complete Rad AN/ARC-8 | io Set    |
|       | 5. Interchangeability of Major Units                                                                                | 1-7       |
|       | 6. Abbreviations                                                                                                    |           |
|       | 7. Symbol Designations                                                                                              |           |
| II.   | INSTALLATION AND ADJUSTMENT                                                                                         |           |
|       | 1. Uncrating                                                                                                        | 1-8-2-0   |
|       | a. Transmitter                                                                                                      |           |
|       | b. Dynamotor Crate                                                                                                  |           |
|       | c. Control Unit                                                                                                     |           |
|       | d. Antenna Loading Unit                                                                                             |           |
|       | e. Antenna Shunt Capacitor                                                                                          |           |
|       | 2. Preparation for Installation                                                                                     |           |
|       | a. Mechanical Inspectionb. Bench Test                                                                               |           |
|       | 3. Installation                                                                                                     |           |
|       | a. Transmitter                                                                                                      |           |
|       | b. Dynamotor Unit                                                                                                   |           |
|       | c. Antenna Loading Unit                                                                                             |           |
|       | d. Control Unit                                                                                                     |           |
|       | e. Control Panel                                                                                                    |           |
|       | f. Antenna Shunt Capacitor and Switch                                                                               |           |
|       | g. Oscillator O-17/ART-13A and Panel MX-128/ART-13                                                                  |           |
|       | 4. Inter-Unit Connections                                                                                           | 2-6       |
|       | 5. Inspection and Test after Installation                                                                           | 2-6       |
|       | 6. Adjustments                                                                                                      | 2-7       |
|       | a. Use of Calibration Tables                                                                                        |           |
|       | b. Procedures for Setting the Controls (for Manual or Au Operation)                                                 | 2-8       |
|       | c. Simplified Procedure for Setting the Controls                                                                    | 2-14      |
| III.  | <u>-</u>                                                                                                            |           |
|       | 1. Starting and Stopping the Equipment                                                                              | .2-15-3-1 |
|       | a. To Start                                                                                                         | .2-15-3-1 |
|       | <i>b.</i> To Stop                                                                                                   | .2-15-3-1 |

| Secti | ion                                                                                           | Page       |
|-------|-----------------------------------------------------------------------------------------------|------------|
|       | 2. Operation During Normal Use                                                                | 2-15-3-1   |
|       | 3. Corrective Measures If Normal Operation Is Not Obtained a. Fuse or Circuit Breaker Failure | 3-2<br>3-2 |
|       | b. Remote Control Unit or Cable Failure                                                       | 3-2        |
|       | c. Tube Failures                                                                              |            |
|       | d. Autotune Failure                                                                           | 3-2        |
|       | e. Antenna Loading Unit Failure                                                               |            |
|       | f. Vacuum Switch Failure                                                                      |            |
|       | g. Cold Weather Failure                                                                       | 3-2        |
| IV.   | THEORY OF OPERATION                                                                           | 4-1        |
|       | 1. Description of Operation                                                                   |            |
|       | a. General                                                                                    |            |
|       | b. Origin of Carrier Frequency                                                                |            |
|       | c. Modulation                                                                                 |            |
|       | d. First Audio Amplifier, Audio Driver, and Modulator                                         |            |
|       | e. MCW Oscillator                                                                             |            |
|       |                                                                                               |            |
|       | g. Antennasb. Sidetone Amplifier                                                              |            |
|       | i. Calibration Frequency Indicator ("CFI") Unit                                               |            |
|       | j. Generation                                                                                 |            |
|       | k. Output                                                                                     |            |
|       | •                                                                                             |            |
|       | 2. Detailed Analysis of Major Circuits                                                        |            |
|       | a. Power Control Circuits                                                                     |            |
|       | b. Filament Circuits                                                                          |            |
|       | c. High Voltage Circuits                                                                      |            |
|       | d. Emission Selection and Carrier Control                                                     |            |
|       | e. Audio Circuits                                                                             |            |
|       | g. Radio-Frequency Circuits                                                                   |            |
|       |                                                                                               |            |
|       | 3. The Autotune System                                                                        | 4-15       |
|       | a. Mechanical Characteristics                                                                 |            |
|       | b. Electrical Characteristics                                                                 |            |
|       | c. Operation Cycle of Autotune Mechanism                                                      |            |
| V.    | d. Functions Performed by the Autotune System                                                 |            |
| ٧.    |                                                                                               |            |
|       | 1. Inspections                                                                                |            |
|       | a. Pre-Flight Inspection                                                                      |            |
|       | b. Daily Inspection                                                                           |            |
|       | c. 100-Hour Inspection                                                                        |            |
|       | 2. Trouble Shooting in the Plane                                                              |            |
|       | a. Simplified Trouble Shooting on Installed Equipment                                         |            |
|       | b. Tube Checking and Replacement                                                              |            |
|       | 3. Trouble Shooting at Repair Station                                                         |            |
|       | a. Trouble Shooting Charts                                                                    | <b>5-9</b> |
|       | b. Removing and Servicing Major Assemblies—Obtaining to Parts                                 |            |
|       | 4. Maintenance of Autotune Mechanism                                                          | 5-30       |
|       | a. Lubrication.                                                                               |            |
|       | b. Synchronization Check                                                                      |            |
|       | c. Synchronization                                                                            |            |
|       | d. Autotune Positioning Mechanism                                                             |            |
|       | e. Checking and Adjusting Limit Switches                                                      |            |
|       | f. Replaceable Parts of Autotune Mechanism                                                    |            |
|       | g. Replacing Autorupe Parts                                                                   | 5-34       |

| Section                                                | Page         |
|--------------------------------------------------------|--------------|
| 5. Alignment of Radio-Frequency Circuits               | 5-35         |
| a. Low-Frequency Oscillator Alignment                  | 5-35         |
| b. High-Frequency Oscillator Alignment (Using "CFI"    | )5-36        |
| c. High-Frequency Oscillator Alignment (Using Ex       | cternal Fre- |
| quency Standard)                                       | <b>5-3</b> 8 |
| d. Frequency Multiplier Alignment                      | 5-38         |
| 6. Alignment of CFI Unit                               | 5-40         |
| a. General Calibration Instructions                    | 5-40         |
| b. Precision Calibration                               |              |
| c. Approximate Calibration                             | 5-41         |
| 7. Adjustment of MCW Oscillator                        | 5-42         |
| 8. Replacing and Adjusting Vacuum Contact S116         | 5-42         |
| VI. SUPPLEMENTARY DATA                                 | 5-44—6-0     |
| 1. Calibration Tables 6-9 and 6-10                     | 5-44—6-0     |
| 2. Tables of Approximate Control Settings (for Antenna | Tuning and   |
| Loading)—Table 6-11                                    | 5-44-6-0     |
| 3. General Specifications of Equipment                 | 5-446-0      |
| a. Range of Available Transmission Frequencies         |              |
| b. Frequency Stability                                 |              |
| c. Antenna Requirements                                | 6-1          |
| d. R-F Power Output                                    | 6-1          |
| e. Modulation                                          |              |
| f. Power Input Requirements                            |              |
| g. Dynamotor                                           |              |
| b. Tube Complement                                     |              |
| i. Audio Input Impedance                               |              |
| j. Overall Audio Frequency Response                    |              |
| k. Sidetone Output                                     |              |
| L Audio Input                                          |              |
| m. Noise Level                                         |              |
| n. Audio Distortion                                    |              |
| o. Sidetone Distortion                                 |              |
| p. Resistance Measurements of Autotune Motor           |              |
| VII. PARTS CATALOG                                     | 7-1          |
| VIII. DRAWINGS                                         | 8-1          |

# LIST OF TABLES

| Table        | Page                                                                          |
|--------------|-------------------------------------------------------------------------------|
| 1-1.         | Equipment Supplied 1-1                                                        |
| 1-2.         | Equipment Required but Not Supplied                                           |
| 1-3.         | Vacuum Tube Complement                                                        |
| 1-4.         | Power Input Requirements                                                      |
| 1-5.         | Required Antenna Characteristics                                              |
| 1-6.         | Interchangeability of Major Units 1-7                                         |
| 2-1.         | Use of Antenna Shunt Capacitor with Antennas of Different Lengths. 2-10       |
| 4-1.         | Frequency Range Covered by Positions of High Frequency Tuning Control "A"4-13 |
| 4-2.         | Function of Multi-Section Output Network Switch S1134-15                      |
| 5-1.         | Trouble Shooting on Installed Equipment                                       |
| 5-2.         | Trouble Shooting at Repair Station5-11                                        |
| 5-3.         | Voltage-to-Ground From Vacuum Tube Terminals5-26                              |
| 5-4.         | Voltage-to-Ground from Cable Connector Terminals5-27                          |
| 5-5.         | Resistance-to-Ground from Vacuum Tube Terminals5-28                           |
| 5-6.         | Resistance-to-Ground from Cable Connector Terminals5-29                       |
| <b>5-</b> 7. | Replaceable Autotune Parts5-33                                                |
| 6-1.         | Range of Available Transmission Frequencies in Low Frequency Range            |
| 6-2.         | Range of Available Transmission Frequencies in High Frequency Range5-44-6-0   |
| 6-3.         | R-F Power Output                                                              |
| 6-4.         | Power Input Requirements 6-1                                                  |
| 6-5.         | Dynamotor Characteristics and Resistance Measurements. 6-2                    |
| 6-6.         | Vacuum Tube Complement                                                        |
| 6-7.         | Sidetone Output                                                               |
| 6-8.         | Resistance Measurements of Autotune Motor                                     |
| 6-9.         | Calibration of Low Frequency Oscillator (200 KC to 600 KC) 6-4                |
|              | Calibration of High Frequency Oscillator (2000 KC to 18100 KC) 6-5            |
| 6-11.        | Tables of Approximate Dial Settings (for Antenna Tuning and Loading           |

# LIST OF ILLUSTRATIONS

| Figure       |                                                                               | Page |
|--------------|-------------------------------------------------------------------------------|------|
| 1-1.         | Radio Transmitting Set AN/ART-13A—Major Assemblies                            | 1-0  |
| 1-2.         | Radio Transmitter T-47A/ART-13                                                | 1-2  |
| 1-3.         | Radio Transmitter T-47A/ART-13—Units Removed                                  | 1-3  |
| 1-4.         | Dynamotor Unit DY-17/ART-13A                                                  | 1-4  |
| 1-5.         | Control Unit C-87/ART-13                                                      | 1-5  |
| 1-6.         | Control Panel C-405/A                                                         | 1-5  |
| 1-7.         | Antenna Loading Unit CU-32/ART-13A                                            | 1-6  |
| 1-8.         | Antenna Shunt Capacitor CU-24/ART-13                                          | 1-6  |
| 2-1.         | Tube Replacement Diagram                                                      | 2-1  |
| 2-2.         | Microphone Selector Switch and Sidetone Output Switch                         | 2-2  |
| 2-3.         | MCW-CFI Unit—Top View                                                         | 2-3  |
| 2-4.         | Transmitter with Mounting Base MT-284/ART-13 and Mounting Plate MT-283/ART-13 | 2-3  |
| 2-5.         | Dynamotor Unit DY-17/ART-13A with Mounting Plate MT-164/ART-13.               |      |
| 2-6.         | Antenna Loading Unit CU-32/ART-13A with Mounting Base MT-198/ART-13A          |      |
| 2-7.         | Control Unit C-87/ART-13 with Mounting Plate MT-163/ART-13                    | 2-6  |
| 2-8.         | Illustration Showing Setting of Control "B" to 1114.1                         | 2-7  |
| 2-9.         | Radio Transmitter T-47A/ART-13                                                | 2-8  |
| 2-10.        | Antenna Loading Unit CU-32/ART-13A                                            | 2-13 |
| 4-1.         | Radio Transmitting Set AN/ART-13A—Block Diagram                               | 4-2  |
| 4-2.         | Power Control Circuits                                                        | 4-2  |
| 4-3.         | Filament Circuits                                                             | 4-6  |
| 4-4.         | High Voltage Circuits                                                         | 4-6  |
| 4-5.         | Emission Selection and Carrier Control Circuits                               | 4-7  |
| 4-6.         | Speech Amplifier Circuits                                                     | 4-7  |
| <b>4-</b> 7. | Modulator Circuits                                                            | 4-8  |
| 4-8.         | Sidetone Amplifier Circuit                                                    | 4.9  |
| 4-9.         | MCW Oscillator Circuit                                                        | 4.9  |
| 4-10.        | CFI Oscillator Circuits                                                       | 4-10 |
| 4-11.        | Low Frequency R-F Circuits                                                    | 4-10 |
|              | High Frequency R-F Circuits                                                   |      |
|              | Power Amplifier and High Frequency Output Circuits                            |      |
|              | Autotune Mechanism—Mechanical Portion                                         |      |
| 4-15.        | Singleturn Autotune Unit—Left Side View                                       | 4-18 |
| 4-16.        | Singleturn Autotune Unit—Right Side View                                      | 4-18 |
|              | Multiturn Autotune Unit-Left Side View                                        |      |
| 4-18.        | Multiturn Autotune Unit-Right Side View                                       | 4-18 |
|              |                                                                               | 4.20 |

| Figure | e                                                                              | Page  |
|--------|--------------------------------------------------------------------------------|-------|
| 4-20.  | Electrical Portion of Autotune System                                          | 4-20  |
| 4-21.  | Sequence of Autotune Operation                                                 |       |
| 5-1.   | Tube Replacement Diagram                                                       |       |
| 5-2.   | Location of Brushes on Russell Dynamotor.                                      |       |
| 5±3.   | Location of Brushes on G.E. Dynamotor                                          |       |
| 5-4.   | Component Parts of Russell Dynamotor                                           |       |
| 5-5.   | Component Parts of G.E. Dynamotor                                              |       |
| 5-6.   | Radio Transmitter T-47A/ART-13 and Removable Units<br>Low Frequency Oscillator |       |
| 5-7.   | -                                                                              |       |
| 5-8.   | High Frequency Oscillator—Side View, Open                                      |       |
| 5-9.   | Frequency Multiplier                                                           |       |
|        | MCW-CFI Unit—Top View                                                          |       |
| 5-11.  | Keying Relay K102 and Vacuum Contact S116                                      |       |
| 6-1.   | Overall Audio Frequency Response Curve                                         |       |
| 8-1.   | Radio Transmitter T-47A/ART-13—Front View, Open                                | 8-2   |
| 8-2.   | Radio Transmitter T-47A/ART-13—Top View, Cover Removed                         | 8-3   |
| 8-3.   | Radio Transmitter T-47A/ART-13—Bottom View, Panel Removed                      | 8-4   |
| 8-4.   | Low Frequency Oscillator Unit (Oscillator O-17/ART-13A)—Top<br>View, Open      |       |
| 8-5.   | Low Frequency Oscillator Unit (Oscillator O-17/ART-13A)—Bottom View, Open.     |       |
| 8-6.   | High Frequency Oscillator—Side View, Open                                      | 8-7   |
| 8-7.   | Frequency Multiplier—Side View, Open                                           |       |
| 8-8.   | MCW-CFI Unit—Top View                                                          |       |
| 8-9.   | MCW-CFI Unit—Bottom View                                                       |       |
| 8-10.  | Audio Amplifier Unit-Top View                                                  | 8-11  |
|        | Audio Amplifier Unit—Bottom View                                               |       |
|        | Autotune Casting                                                               |       |
|        | Firewall Assembly—Top View                                                     |       |
|        | Firewall Assembly—Bottom View                                                  |       |
|        | Multi-Element Switch—Right Side View                                           |       |
|        | Multi-Element Switch—Left Side View                                            |       |
|        | Control Unit C-87/ART-13—Front View                                            |       |
|        | Control Unit C-87/ART-13—Rear View, Open                                       |       |
|        |                                                                                |       |
|        | Control Panel C-405/A—Front View                                               |       |
|        | Control Panel C-405/A—Rear View, Open                                          |       |
|        | Antenna Loading Unit CU-32/ART-13A—Front View                                  |       |
|        | Antenna Loading Unit CU-32/ART-13A—Rear View, Open                             |       |
|        | Antenna Shunt Capacitor CU-24/ART-13                                           |       |
| 8-24.  | Dynamotor Unit DY-17/ART-13A—Bottom View                                       | 8-21  |
| 8-25.  | Radio Transmitter T-47A/ART-13—Outline Dimensions                              | 8-22  |
| 8-26.  | Control Unit C-87/ART-13—Outline Dimensions                                    | 8-23  |
| 8-27.  | Antenna Loading Unit CU-32/ART-13A-Outline Dimensions                          | 8-24  |
| 8-28   | Mounting Base MT-108/ART-13A-Outline Dimensions                                | 2 2 5 |

| Figure   |                                                             | Page |
|----------|-------------------------------------------------------------|------|
| 8-29. Ar | ntenna Shunt Capacitor CU-24/ART-13—Outline Dimensions      | 8-26 |
| 8-30. Sw | vitch SA-46/ART-13—Outline Dimensions                       | 8-27 |
| 8-31. Dy | ynamotor Unit DY-17/ART-13A—Outline Dimensions              | 8-28 |
| 8-32. Co | ontrol Panel C-405/A—Outline Dimensions                     | 8-29 |
| 8-33. Pl | ugs for Radio Transmitting Set AN/ART-13A                   | 8-30 |
| 8-34. Ar | ntenna Loading Unit CU-32/ART-13A—Practical Wiring Diagram  | 8-31 |
| 8-35. Lo | w Frequency Oscillator Unit—Practical Wiring Diagram        | 8-32 |
| 8-36. M  | CW-CFI Unit—Practical Wiring Diagram                        | 8-33 |
| 8-37. Au | udio Amplifier—Practical Wiring Diagram                     | 8-34 |
| 8-38. Co | ontrol Unit—Practical Wiring Diagram                        | 8-35 |
| 8-39. Dy | ynamotor Unit DY-17/ART-13A—Practical Wiring Diagram        | 8-36 |
| 8-40. Co | ontrol Panel C-405/A—Practical Wiring Diagram8-37—          | 8-38 |
|          | adio Transmitter T-47A/ART-13—Practical Wiring Diagram8-39— | 8-40 |
| 8-42. Ra | adio Transmitting Set AN/ART-13A—Schematic Diagram8-41—     | 8-42 |
| 8-43. Ty | ypical Wiring Diagram for Radio Set AN/ARC-88-43—           | 8-44 |

# Destruction of Abandoned Materiel in the Combat Zone

In case it should become necessary to prevent the capture of this equipment and when ordered to do so, DESTROY IT SO THAT NO PART OF IT CAN BE SALVAGED, RECOGNIZED OR USED BY THE ENEMY. BURN ALL PAPERS AND BOOKS.

#### Means:-

- 1. Explosives, when provided.
- 2. Hammers, axes, sledges, machetes, or whatever heavy object is readily available.
- 3. Burning by means of incendiaries such as gasoline, oil, paper, or wood.
- 4. Grenades and shots from available arms.
- 5. Burying all debris or disposing of it in streams or other bodies of water, where possible and when time permits.

#### Procedure:-

- 1. Obliterate all identifying marks. Destroy nameplates and circuit labels.
- 2. Demolish all panels, castings, switch- and instrument-boards.
- 3. Destroy all controls, switches, relays, connections, and meters.
- Rip out all wiring and cut interconnections of electrical equipment. Smash gas, oil, and watercooling systems in gas-engine generators, etc.
- 5. Smash every electrical or mechanical part, whether rotating, moving, or fixed.
- 6. Break up all operating instruments such as keys, phones, microphones, etc.
- 7. Destroy all classes of carrying cases, straps, containers, etc.
- 8. Bury or scatter all debris.

**DESTROY EVERYTHING!** 



# Unsatisfactory Report

# For U. S. Army Air Force Personnel:

In the event of malfunctioning, unsatisfactory design, or unsatisfactory installation of any of the component units of this equipment, or if the material contained in this book is considered inadequate or erroneous, an Unsatisfactory Report, AAF Form No. 54, or a report in similar form, shall be submitted in accordance with the provisions of Army Air Force Regulation No. 15-54 listing:

- 1. Station and organization.
- 2. Nameplate data (type number or complete nomenclature if nameplate is not attached to the equipment).
- 3. Date and nature of failure.
- 4. Radio model and serial number.
- 5. Remedy used or proposed to prevent recurrence.
- 6. Handbook errors or inadequacies, if applicable.

# For U. S. Navy Personnel:

Report of failure of any part of this equipment during its guaranteed life shall be made on Form N. Aer. 4112, "Report of Unsatisfactory or Defective Material," or a report in similar form, and forwarded in accordance with the latest instructions of the Bureau of Aeronautics. In addition to other distribution required, one copy shall be furnished to the inspector of Naval Materiel (location to be specified) and the Bureau of Ships. Such reports of failure shall include:

- 1. Reporting activity.
- 2. Nameplate data.
- 3. Date placed in service.
- 4. Part which failed.
- 5. Nature and cause of failure.
- 6. Replacement needed (yes-no).
- 7. Remedy used or proposed to prevent recurrence.

#### For British Personnel:—

Form 1022 procedure shall be used when reporting failure of radio equipment.

# SAFETY NOTICE

This equipment employs high voltages which are dangerous and may be fatal if contacted by operating personnel. Extreme caution should be exercised when working with the equipment.

# SPECIAL NOTICE -

The contents of this book apply specifically to Radio Transmitting Set AN/ART-13A which is air borne equipment used by the U. S. Air Force. An earlier model of the same general type of equipment and installation was identified as Radio Transmitting Set AN/ART-13 and was also employed by the U. S. Navy as Navy Model ATC.

The major units, assemblies, most component parts, and most sub-assemblies of Air Force Models of Radio Transmitting Set AN/ART-13A and Navy Model ATC are electrically and mechanically interchangeable. However, it is to be noted that the low frequency transmission band coverage for Radio Transmitting Set AN/ART-13A is 200 KC to 600 KC and for Radio Transmitting Set AN/ART-13 or Navy Model ATC is 200 KC to 1500 KC. For this reason the separate antenna loading unit supplied with Radio Transmitting Set AN/ART-13A is not interchangeable with the loading units of Radio Transmitting Set AN/ART-13 or Navy Model ATC. High frequency transmission band coverage for all models is identical, namely 2000 KC to 18100 KC.

In addition, there are several circuit and mechanical refinements that have been incorporated into Radio Transmitting Set AN/ART-13A to improve performance and reliability. These circuit and mechanical differences will only assume importance when replacement of a component part or sub-assembly is required.

Installation differences will be found to exist between the Air Force and the Navy.

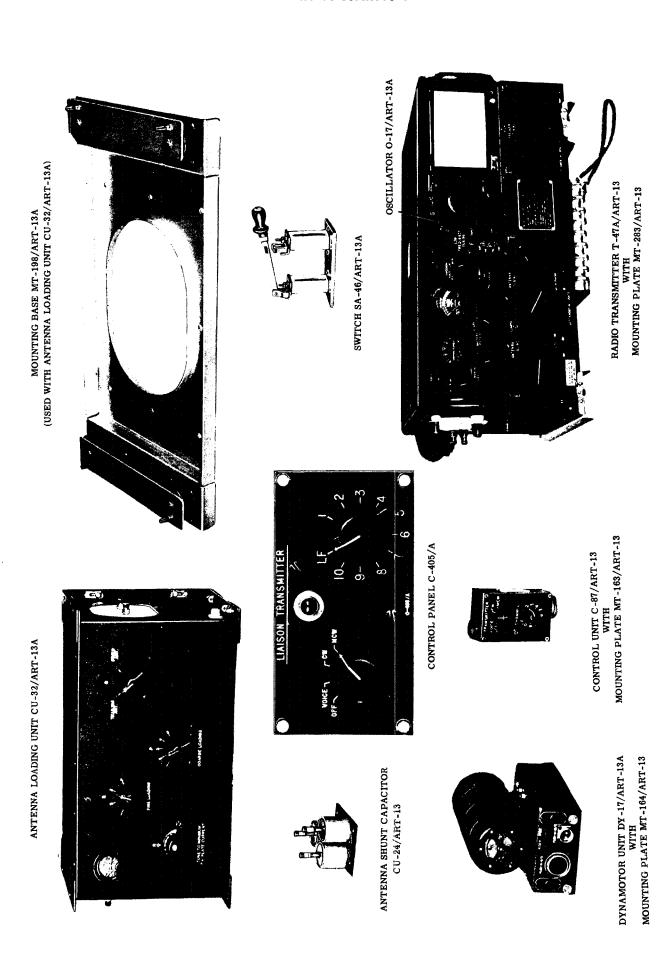



Figure 1-1. Radio Transmitting Set AN/ART-13A—Major Assemblies

# SECTION I GENERAL DESCRIPTION

# 1. EQUIPMENT SUPPLIED.

Radio Transmitting Set AN/ART-13A covered by these instructions consists of the transmitting unit, dynamotor power unit, antenna loading unit, antenna shunt capacitor unit, and remote control unit. The units, which constitute the equipment that is supplied, are shown in table 1-1 together with overall dimensions and weight of each item.

TABLE 1-1. EQUIPMENT SUPPLIED

| Quantity | Name of Unit                                                                                                                                                         | Overall Dimensions<br>(Inches)          | Weight<br>(Pounds) | Reference<br>Symbols                    |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------|-----------------------------------------|
| 1        | Radio Transmitter T-47A/ART-13 which includes the following items as issued:                                                                                         | 23-5/8 x 13-5/8 x 10-3/4                | 70.0               | 101 to 199                              |
|          | Audio Amplifier Unit                                                                                                                                                 |                                         |                    | 201 to 299                              |
|          | MCW-CFI Unit                                                                                                                                                         |                                         |                    | 2201 to 2299                            |
|          | Panel MX-128/ART-13                                                                                                                                                  |                                         |                    |                                         |
|          | Calibration Book                                                                                                                                                     |                                         |                    |                                         |
|          | Mounting Plate MT-283/ART-13                                                                                                                                         |                                         |                    |                                         |
| 1        | Mounting Base MT-284/ART-13 for mounting transmitter                                                                                                                 | 20-1/2 x 14-3/4 x 2-1/2                 | 2.94               | -                                       |
| 1        | Dynamotor Unit DY-17/ART-13A which includes dynamotor machine, control relays, barometric                                                                            |                                         |                    |                                         |
|          | switch and filters                                                                                                                                                   | $7-1/8 \times 11-7/8 \times 8-7/8$      | 28.0               | 2701 to 2799                            |
| 1        | Mounting Plate MT-164/ART-13 for mounting dynamotor unit                                                                                                             | $7-1/8 \times 11-5/32 \times 1-1/4$     | 1.13               |                                         |
| 1        | Control Unit C-87/ART-13                                                                                                                                             | $3-1/2 \times 6-5/32 \times 3-1/4$      | 1.44               | 601 to 699                              |
| 1        | Mounting Plate MT-163/ART-13 for mounting control unit                                                                                                               | $3-5/8 \times 5-1/4 \times 1/4$         | 0.11               |                                         |
| 1        | Control Panel C-405/A                                                                                                                                                | $2-1/2 \times 5 \times 2-5/8$           | Approx.<br>1.5     |                                         |
| 1        | Plug U-6/U female cable plug for remote control box, remote control end                                                                                              | 1-5/8 dia. x 2-5/32 lng.                | 0.20               | *************************************** |
| 1        | Plug U-7/U female power cable plug, transmitter end                                                                                                                  | 2 dia. x 2-5/16 lng.                    | 0.25               | <u> </u>                                |
| 1        | Plug U-8/U, male cable plug for remote control, transmitter end                                                                                                      | 1-3/4 dia. x $1-31/32$ lng.             | 0.19               |                                         |
| 1        | Plug U-9/U male power cable plug, dynamotor end                                                                                                                      | 2-1/8 dia. x 1-7/8 lng. x<br>2-3/4 wide |                    | Windowskie                              |
| 1        | Plug U-10/U female primary power input cable plug,<br>dynamotor end                                                                                                  | 1-5/6 dia. x 1-7/8 lng. x<br>1-7/8 wide |                    |                                         |
| 1        | Handbook of Operating Instructions The following two items are required when operation is desired between 2000 Kc. and 3000 Kc. with fixed antennas less than 55 ft. | 8-1/2 x 11                              |                    |                                         |
| 1        | Antenna Shunt Capacitor CU-24/ART-13                                                                                                                                 | 5 x 4-1/8 x 4                           | 1.59               | 1101 to 1199                            |
| 1        | Switch SA-46/ART-13A                                                                                                                                                 | 6-1/4 x 2 x 4                           |                    |                                         |
|          | The following items are required when operation is desired in the range of 200 Kc. to 600 Kc.                                                                        | ,                                       |                    |                                         |
| 1        | Oscillator O-17/ART-13A                                                                                                                                              | <del></del>                             |                    | 2601 to 2699                            |
| 1        | Mounting Base MT-198/ART-13A                                                                                                                                         | 22-1/2 x 10-11/16 x 2                   |                    |                                         |
| 1        | Antenna Loading Unit CU-32/ART-13A                                                                                                                                   | 23-1/2 x 13 x 12                        | 24.75              | 2501 to 2599                            |
| 1        | Plug U-11/U, male cable plug for antenna loading                                                                                                                     | 1-1/8 dia. x 1-29/32 lng.               | 0.12               |                                         |
|          | unit, transmitter end                                                                                                                                                |                                         |                    |                                         |
| 1        | Plug U-12/U, female cable plug for antenna loading unit, load unit end                                                                                               | 1-1/8 dia. x 2 x 1-15/32                | 0.12               |                                         |

# 2. EQUIPMENT REQUIRED BUT NOT SUPPLIED.

Items listed in table 1-2 are used to complete an installation but are not supplied with the equipment.

TABLE 1-2. EQUIPMENT REQUIRED BUT NOT SUPPLIED

| Quan-<br>tity | Name of Unit                                                                       | Required Characteristics                                       |
|---------------|------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 1             | Microphone T-17 or<br>T-30. (Microphone<br>T-30 requires cord<br>CD-318 or CD-508) | Carbon microphone with<br>40 to 100 ohms internal<br>impedance |

| Quan-<br>tity | Name of Unit                                                     | Required Characteristics                                             |
|---------------|------------------------------------------------------------------|----------------------------------------------------------------------|
| 1             | Key J-37                                                         |                                                                      |
| 1             | Headset HS-33 or<br>HS-38                                        | 300 ohm impedance                                                    |
| 1             | Antenna Equipment<br>AN/ARA-4<br>or Antenna Assembly<br>AS-315/A | Fixed and trailing wire type<br>antennas                             |
| 1             | All Cables and Wiring                                            | Open wiring. See fig. 8-43<br>all cable and wiring re-<br>quirements |

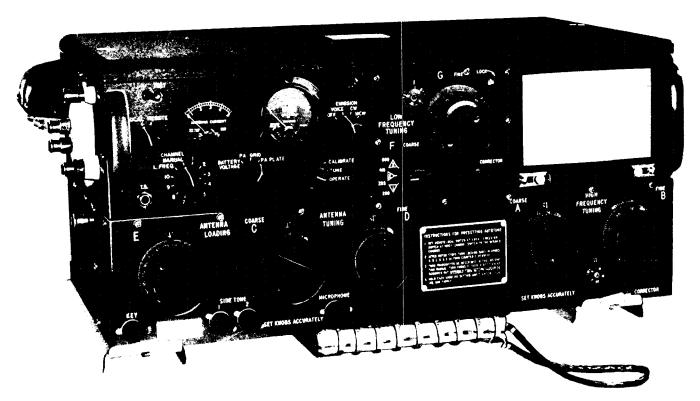



Figure 1-2. Radio Transmitter T-47A/ART-13

### 3. GENERAL DESCRIPTION OF EQUIPMENT.

Radio Transmitting Set AN/ART-13A is a medium power aircraft radio transmitter. It is designed to provide radio communication by voice, modulated continuous wave telegraphy (MCW), or continuous wave telegraphy (CW). Either a carbon or dynamic microphone may be used for voice emission. The audio system is capable of modulating the carrier (100 watts nominal) at least 90 percent for MCW or Voice emission. When operating with CW or MCW emission, entirely satisfactory performance will be obtained for keying speeds up to 30 words per minute. Transmission frequencies in the ranges 200 kc to 600 kc and 2000 kc to 18,100 kc may be selected. Shifting from one transmission frequency to another can be accomplished by the conventional method of "hand-positioning" the controls or by using the built-in automatic shifting mechanism known as the "Autotune." This automatic mechanism is also utilized to provide remote control of functions required to shift transmission frequency. Autotune operation is available for eleven preselected frequencies, one of which may be in the range 200 kc to 600 kc and the other ten in the range 2000 kc to 18,100 kc.

a. TRANSMITTER.—Sub-assembly type of construction has been used extensively in Radio Transmitter T-47A/ART-13. This type of construction greatly simplifies the removal of component parts without major disassembly of the unit. The MCW-CFI, the Audio Amplifier, and the Low Frequency Oscillator Unit are connected by multi-terminal plugs to facili-

tate removal for servicing (see fig. 1-3). Particular attention was given to accessibility of component parts so that replacement could be accomplished quickly and easily. Vacuum tubes are accessible by removal of the top cover of the transmitter case.

- (1) FREQUENCY RANGE.—Two bands of transmission frequencies are available with this equipment. Output may be obtained in the low frequency range of 200 kc to 600 kc (by using Oscillator O-17/ART-13A which is not a part of the transmitter but may be installed upon removal of Panel MX-128/ART-13) and in the high frequency range of 2000 kc to 18,100 kc.
- (a) LOW FREQUENCY RANGE.—When the transmitter is operated in the radio frequency range 200 kc to 600 kc, Antenna Loading Unit CU-32/ART-13A must be used to tune and deliver power to either a trailing wire antenna (approximately 200 ft. long) or a fixed aircraft antenna (from 17 to 65 ft. long).
- (b) HIGH FREQUENCY RANGE.—When the transmitter is operated in the radio frequency range 2000 kc to 18,100 kc the antenna tuning network, incorporated in the transmitter, is capable of tuning and delivering power into fixed aircraft antennas which are between 17 and 65 feet in length. For operation over the radio-frequency range 2000 kc to 3000 kc, Antenna Shunt Capacitor CU-24/ART-13 may be required, in addition to the antenna tuning network in the transmitter, to tune and deliver power to fixed aircraft antennas which are between 20 and 60 feet in length.

Instructions describing correct use of the Shunt Capacitor Unit, are given in section II of this manual and in the Calibration Book (T. O. No. 16-30ART13-9).

- (2) CHANGING TRANSMISSION FRE-QUENCY.—The transmission frequency of the transmitter may be changed by the conventional method of manually setting each individual control or it can be changed to any one of eleven predetermined frequencies by means of the entirely automatic tuning system known as the "Autotune."
- (a) AUTOMATIC TUNING.—The "Autotune" system has been incorporated in the transmitter to permit rapid change from one transmission frequency to another. It will operate to change frequency of transmission in less than 25 seconds at normal temperatures and battery voltage. This automatic tuning system is electrically controlled by means of mechanically repositioning adjustable elements such as switches, variable inductors and variable capacitors. The accuracy of repositioning is of a very high order and is not seriously affected by wear, humidity or temperature changes. No tools are necessary to change the settings for the eleven predetermined transmission frequencies. The eleven available automatic positions permit transmission on ten different frequencies in the
- range 2000 kc to 18,100 kc and one frequency in the range 200 kc to 600 kc. A detailed description of construction and operation of the Autotune is given in section IV of this manual.
- (b) MANUAL TUNING.—The transmission frequency may be changed manually if desired. This is accomplished by first setting the "CHANNEL SELECTOR SWITCH" to the "MANUAL" position. All control knobs can then be manually operated without disturbing the settings of the Autotune system.
- (3) AUDIO INPUT FOR VOICE EMISSION.— The audio input circuit incorporated in this equipment permits the use of either a carbon or dynamic type of microphone.
- (4) POWER OUTPUT.—The power delivered to the antenna varies with frequency and antenna characteristics. See section VI for typical values of power output.
- (a) The power output is automatically reduced to approximately one-half the full power output when an altitude between 20,000 and 25,000 feet is reached. This is accomplished by means of a pressure operated switch which reduces high voltage on the plate of the 813 power amplifier tube and the two 811 modulator

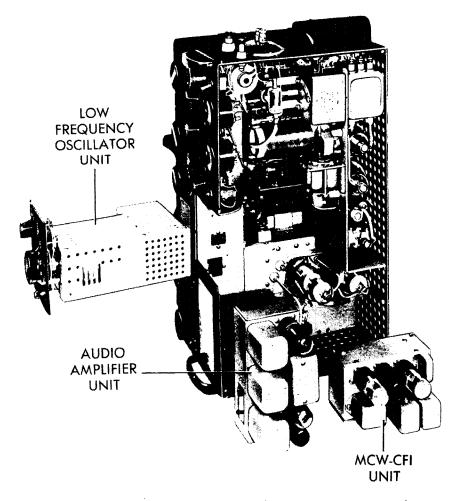



Figure 1-3. Radio Transmitter T-47A/ART-13 — Units Removed

Section I Paragraph 3

TABLE 1-3. VACUUM TUBE COMPLEMENT

| Symbol<br>Designation | Type<br>Number | Army-Navy<br>Specification | Circuit Function                                                                               |   |
|-----------------------|----------------|----------------------------|------------------------------------------------------------------------------------------------|---|
| V101                  | JAN-837        | JAN-1A                     | High Freq. Oscillator                                                                          | _ |
| V102                  | JAN-1625       | JAN-1A                     | 1st Multiplier                                                                                 |   |
| V103                  | JAN-1625       | JAN-1A                     | 2nd Multiplier                                                                                 |   |
| V104                  | JAN-813        | JAN-1A                     | Power Amplifier                                                                                |   |
| V105                  | JAN-811        | JAN-1A                     | Modulator                                                                                      |   |
| V106                  | JAN-811        | JAN-1A                     | Modulator                                                                                      |   |
| V201                  | JAN-12SJ7      | JAN-1A                     | 1st Audio Amplifier                                                                            |   |
| V202                  | JAN-6V6GT      | JAN-1A                     | Audio Driver                                                                                   |   |
| V203                  | JAN-6V6GT      | JAN-1A                     | Sidetone Amplifier                                                                             |   |
| V2201                 | *JAN-12SL7GT   | JAN-1A                     | \ 1st Section is 200 Kc Calibration Osc.  \[ \rightarrow \ 2nd Section is Frequency Tripler \] |   |
| V2202                 | †JAN-12SA7     | JAN-1A                     | Converter                                                                                      |   |
| V2203                 | *JAN-12SL7GT   | JAN-1A                     | \ 1st Section is Signal Detector \\ 2nd Section is MCW Audio Oscillator                        |   |
| V2601                 | JAN-1625       | JAN-1A                     | Low Freq. Oscillator                                                                           |   |

<sup>\*</sup>Types JAN-12SL7GT or JAN-12SL7 may be used interchangeably. †Types JAN-12SA7GT or JAN-12SA7 may be used interchangeably.

tubes. The transmitter will then operate without "flashover" up to an altitude of 40,000 feet above sea level. This "BAROMETRIC" switch reduces power output

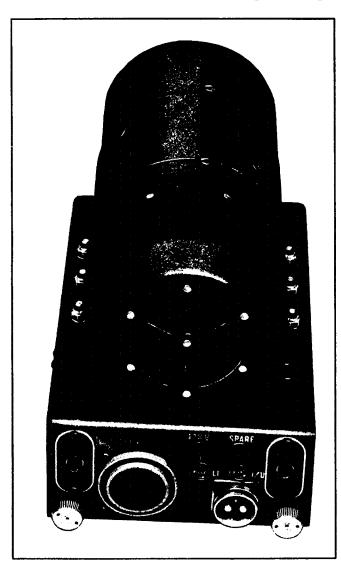



Figure 1-4. Dynamotor Unit DY-17/ART-13A

at altitudes above 20,000 to 25,000 ft. and permits full power output at altitudes below this value.

- (5) TUBE COMPLEMENT.—The complete vacuum tube complement for this equipment is given in table 1-3.
- b. DYNAMOTOR UNIT.—Dynamotor Unit DY-17/ART-13A is the power source used for operation of Radio Transmitter T-47A/ART-13. It contains the Dynamotor Machine, Barometric Switch, Control and Overload Relays, Filters and Fuse for overload protection of the 400 volt supply circuits. A 28 volt direct current power source is required for operation of the dynamotor machine as well as for the circuits in the transmitter. Voltages as low as 24 volts d-c may be used but reduction in power output and increased time required for Autotune operation will result.
- (1) The dynamotor machine employs an armature with dual windings and two commutators to give output voltages of 400 and 750 volts d-c. A barometric switch incorporated in the dynamotor unit chassis connects the two windings of the dynamotor in series at altitudes below 20,000 to 25,000 feet. At higher altitudes the series connection is broken. This arrangement provides either 1150 or 750 volts for the high voltage supply circuits of the transmitter, the voltage being automatically reduced from 1150 to 750 when equipment is operated at a high altitude.

TABLE 1-4. POWER INPUT REQUIREMENTS

|                          |           | Power Input (Watts) |                  |  |
|--------------------------|-----------|---------------------|------------------|--|
| Type of<br>Emission Used | Frequency | Full<br>Power       | Reduced<br>Power |  |
| CW                       | 3.0 Mc.   | 780                 | 700              |  |
| CW (Stand By)            | 3.0 Mc.   | 560                 | 560              |  |
| MCW                      | 3.0 Mc.   | 925                 | 760              |  |
| MCW (Stand By)           | 3.0 Mc.   | 560                 | 560              |  |
| Voice (90% Mod.)         | 3.0 Mc.   | 925                 | 760              |  |
| Voice (Stand By)         | 3.0 Mc.   | 250                 | 250              |  |

(2) Table 1-4 shows typical power input requirements for a supply voltage of 28 volts d-c. Data is shown for different types of emission and for full or

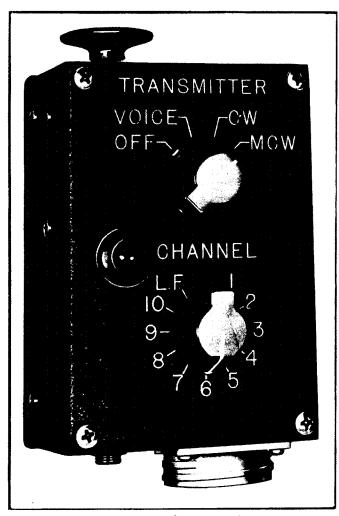



Figure 1-5. Control Unit C-87/ART-13

reduced power INPUT (reduced power INPUT being obtained by operation of barometric switch at altitudes above 20,000 to 25,000 feet). All measurements made with power amplifier loaded to rated P.A. plate current.

- c. CONTROL UNIT.—The control unit, whether box or panel, provides a means of operating the transmitter from a remote position. By means of two knobs located on the face of the control unit, the following may be controlled: the power supply may be turned on or off; the type of emission (CW, MCW or VOICE) may be selected; and any one of 11 preset transmission frequencies may be selected.
- (1) The pilot lamp on the control unit will operate when the emission selector switch is in any position other than the "OFF" position (providing Autotune System is at rest). The pilot lamp will light only when the remote position is in control. The pilot lamp on the transmitter performs the same function when the transmitter controls are being used. If Autotune is in process of changing the transmission frequency, the pilot lamp will remain off until the Autotune cycle is completed. Thus, the pilot lamp serves a dual purpose by indicating that the power supply has been connected to the equipment and to let the operator know

when the Autotune has completed the change from one transmission frequency to another so that the carrier is again ready to be keyed or voice modulated.

- (2) Control Unit C-87/ART-13 has a key located on it for keying the transmitter on "CW" or "MCW" and a jack for connection of a microphone for "VOICE" operation.
- d. CONTROL PANEL.—For installations having standardized control panels, Control Panel C-405/A replaces and performs all the functions (except key) of Control Unit C-87/ART-13. See figure 1-6.

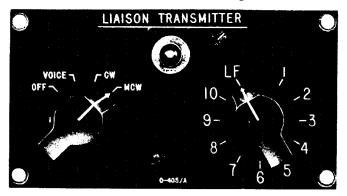



Figure 1-6. Control Panel C-405/A

e. ANTENNA LOADING UNIT.—Antenna Loading Unit CU-32/ART-13A is required to tune and deliver power to either a trailing wire or fixed aircraft antenna when the transmitter is operated in the 200 kc to 600 kc frequency range. This loading unit is designed to accommodate antennas whose characteristics are within the range shown in table 1-5.

TABLE 1-5.
REQUIRED ANTENNA CHARACTERISTICS

| Freq.<br>In<br>KC. | Effective<br>Resistance<br>In Ohms | Effective<br>Capacity<br>In Mmfd. | Freq.<br>In<br>KC. | Effective<br>Resistance<br>In Ohms | Effective<br>Capacity<br>In Mmfd. |
|--------------------|------------------------------------|-----------------------------------|--------------------|------------------------------------|-----------------------------------|
| 200<br>to          | 3 to 10                            | 85 to 175                         | 200<br>to          | 3 to 15                            | 300 to 450                        |
| 600                | J 13 10                            | 0,1017                            | 600                |                                    | 500.0470                          |

When transmission frequencies in the 200 kc to 600 kc range are selected, the antenna tuning and loading circuits, built into the transmitter, are not used and the output of the power amplifier is automatically connected to the loading circuits in the antenna loading unit.

- (1) Controls are provided on the front panel to permit adjustment of inductive reactance and coupling in order to tune and deliver power to the antenna. A radio frequency ammeter is used to indicate antenna current. Selection of either the trailing wire or fixed aircraft antenna is accomplished by means of a switch located on the front panel of the loading coil.
- (2) Terminal posts on both side panels facilitate connections to a fixed aircraft antenna, trailing wire antenna, ground (structure of aircraft), the high frequency antenna terminal of the transmitter, the low frequency terminal of the transmitter, and to a 28 volt supply source which is controlled by the output circuit

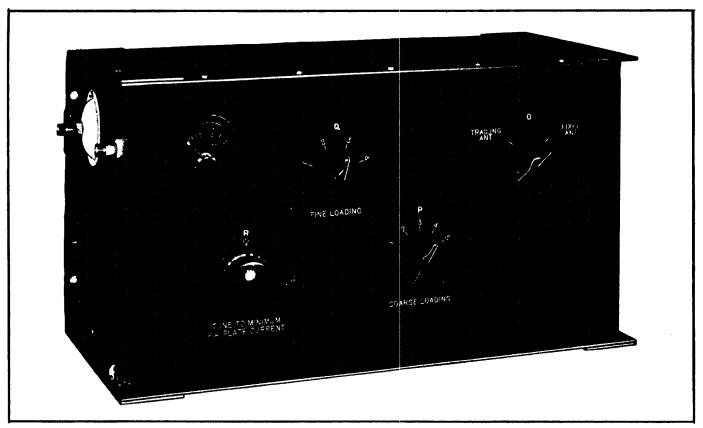



Figure 1-7. Antenna Loading Unit CU-32/ART-13A—Front View

selecting relay (K105) in the transmitter. The 28 volt d-c source is "keyed" by microphone or telegraph key and actuates a relay in the loading unit. This relay either connects the aircraft antenna to the high frequency antenna terminal of the transmitter or connects aircraft antenna to the circuits of the loading unit. Thus, automatic selection of the correct antenna tuning and loading system is accomplished for either high or low frequency operation when the transmitter controls are being set to the desired transmission frequency.

- (3) When both the trailing wire antenna and the fixed antenna are connected to the loading unit, only one or the other is actually in use for any transmission frequency. The idle antenna is, at all times, automatically connected to a terminal post on the exterior of the unit. This terminal (labelled "PLUG PL-259") may be connected to a disassociated receiver.
- (4) A mounting plate, type Mounting Base MT-198/ART-13A, is supplied for mounting the antenna loading unit to the aircraft structure.
- f. ANTENNA SHUNT CAPACITOR.—Antenna Shunt Capacitor CU-24/ART-13 is supplied for use with the transmitter. It is used whenever required (see section II, paragraph 6b(2)(jj), to properly tune and deliver power to fixed aircraft antennas (20 to 60 feet long) operating in 2000 kc to 3000 kc range of transmission frequencies. The shunt capacitor unit consists of three individual 25 micromicrofarad capacitors mounted on a plate which serves as a common connec-

tion to one terminal of each unit. The terminal at the top of each capacitor may be connected individually or collectively to the antenna system, thus providing capacitance values of 25, 50, or 75 micromicrofarads. Mounting holes are provided in the base of this unit to facilitate attachment to the aircraft structure.

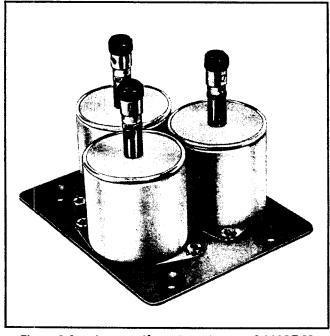



Figure 1-8. Antenna Shunt Capacitor CU-24/ART-13

# g. ACCESSORIES SUPPLIED.

Complete sets of Phillips and Bristo wrenches are supplied with the equipment. They are fastened beneath the cover of the transmitter. A calibration book is located in a holder on the transmitter.

b. SIMILAR EQUIPMENT.—Equipment similar to Radio Transmitting Set AN/ART-13 was purchased before procurement of the latter. This equipment, known as Radio Transmitting Set AN/ART-13, ATC, or ATC-1 Aircraft Radio Transmitter in its various models, is substantially the same as Radio Transmitting Set AN/ART-13A, especially after accomplishment of Technical Order modifications. See table 1-6 for details.

# 4. INTERCONNECTION OF RADIO TRANSMITTING SET AN/ART-13A WITH RADIO RECEIVING SET AN/ARR-11 TO FORM COMPLETE RADIO SET AN/ARC-8.

The complete Radio Set AN/ARC-8 includes the radio receiver. The receiving equipment is interconnected with the transmitting equipment so that they are co-ordinated for "break-in" operation. The radio receiver can be operated when the radio transmitter is either OFF or ON provided that neither the telegraph key nor microphone switch is depressed. It is impossi-

ble for the radio transmitter and receiver to be operative at the same time except for receiver calibration purposes when a "NORMAL-MONITOR" switch is used. When the keying relay in the radio transmitter is actuated, it causes the transmitter to function and at the same time it open-circuits the receiver screen voltage supply, disconnects the receiver antenna, and grounds the receiver antenna terminal. Only transmitter sidetone will then be heard in the headset. When keying relay opens, transmitter output ceases, receiver screen voltage supply is restored, antenna is reconnected and ground connection is removed. The receiver is then ready for operation.

Figure 8-43 illustrates the interconnection of the Radio Transmitting Set AN/ART-13A with Radio Receiving Set AN/ARR-11, Antenna Equipment AN/ARA-4, and terminal panel for the Aircraft's Interphone system. The equipment shown in this illustration constitutes the complete equipment of Radio Set AN/ARC-8. A detailed description of all cables (wire sizes and points of connection) and required plugs is given in the tabulation at the side of figure 8-43. The required plugs are shown in greater detail in figure 8-33.

### 5. INTERCHANGEABILITY OF MAJOR UNITS.

Although the contents of this book apply specifically to Radio Transmitting Set AN/ART-13A, the same

TABLE 1-6. INTERCHANGEABILITY OF MAJOR UNITS

| Name of Unit                              | Type Designation of USAF Item    | Type Designation of<br>Navy Item            | Interchangeability               |
|-------------------------------------------|----------------------------------|---------------------------------------------|----------------------------------|
| Radio Transmitting Set                    | AN/ART-13A                       | AN/ART-13, Navy ATC and<br>Navy ATC-1       | See individual components.       |
| Radio Transmitter                         | T-47A/ART-13                     | T-47/ART-13                                 | Electrical and mechanical        |
| Dynamotor Unit                            | DY-17/ART-13A                    | DY-11/ART-13 and<br>DY-12/ART-13            | Electrical and mechanical        |
| Control Unit                              | C-87/ART-13                      | C-87/ART-13                                 | Identical                        |
| Control Panel                             | C-405/A                          | None                                        | No Navy Equivalent               |
| Antenna Loading Unit (200 to 600 Kc.)     | CU-32/ART-13A                    | CU-25/ART-13 plus<br>SA-22/ART-13           | Electrical                       |
| Antenna Loading Coil (500 to<br>1500 Kc.) | None supplied                    | CU-26/ART-13                                | Item dropped by USAF             |
| Oscillator                                | O-17/ART-13A<br>(200 to 600 Kc.) | O-16/ART-13 (200 to 1500 Kc.)               | Electrical and mechanical        |
| Antenna Shunt Capacitor                   | CU-24/ART-13                     | CU-24/ART-13                                | Identical                        |
| Crystal Unit (200 Kc.)                    | CR-2B/U                          | CR-2B/U                                     | Identical                        |
| Mounting Plate (on transmitter)           | MT-283/ART-13                    | MT-283/ART-13                               | Identical                        |
| Mounting Base (on transmitter)            | MT-284/ART-13                    | MT-284/ART-13                               | Identical                        |
| Mounting Plate (for control unit)         | MT-163/ART-13                    | MT-163/ART-13                               | Identical                        |
| Mounting Plate (for dynamotor unit)       | MT-164/ART-13                    | MT-164/ART-13                               | Identical                        |
| Mounting Base (for loading unit)          | MT-198/ART-13A                   | None for load unit; FT-142 for SA-22/ART-13 | CU-25 and CU-26 mounted directly |
| Switch                                    | SA-46/ART-13A                    | None supplied                               | SA-46 can be used with either    |
| Plugs                                     | U-6/U — U-12/U                   | U-6/U — U-12/U                              | Identical                        |

general type of equipment is also employed by the Navy Bureau of Aeronautics as Radio Transmitting Set AN/ART-13. Major units of both equipments are electrically and mechanically interchangeable. Table 1-6 indicates, by name and designation numbers, each of the major assemblies of equivalent equipments used by the different services or of succeeding models of the same equipment. Interchangeability is indicated by the symbol X.

# 6. ABBREVIATIONS.

Abbreviations of certain radio terms and phrases are used on the control panels of the equipment and in the following sections of this handbook. These terms and their definitions are itemized as follows.

| Abbreviation   | Term                                         |
|----------------|----------------------------------------------|
| A-F            | Audio Frequency                              |
| CFI            | Calibration Frequency Indicator              |
| CW             | Continuous-Wave Type of Emission             |
| D.C. (or dc)   | Direct Current                               |
| 1st Multiplier | First Radio-Frequency Multiplier Stage       |
| GND            | Ground (Br. Earth)                           |
| H-F Oscillator | High Frequency Oscillator (1000 to 1510 Kc.) |
| L Frequency    | Low Frequency Band (200-600 Kc.)             |
| L-F Oscillator | Low Frequency Oscillator (200-600 Kc.)       |

| Abbreviation   | Term                                                                           |
|----------------|--------------------------------------------------------------------------------|
| Local          | Using the Controls on the Transmitter;<br>Not Controlled from a Remote Control |
|                | Unit                                                                           |
| MCW            | Modulated Continuous-Wave Type of                                              |
|                | Emission                                                                       |
| P.A.           | Power Amplifier                                                                |
| R-F            | Radio Frequency                                                                |
| Remote         | Use of Remote Controls (on Control Unit)                                       |
|                | to Operate the Transmitter                                                     |
| 2nd Multiplier | Second Radio-Frequency Multiplier Stage                                        |
|                | Voice Modulation of Radio-Frequency Car-<br>rier                               |
| T.S            | Throttle Switch                                                                |

### 7. SYMBOL DESIGNATIONS.

Electrical and mechanical component parts of Radio Transmitting Set AN/ART-13A equipment are identified in this manual by means of a symbol designation. These symbol designations appear in the text of the following sections, in illustrations, photographs, schematic circuit diagrams and in the parts list section. Thus a part shown in an illustration can be located in the parts list by means of the symbol designation. Complete descriptions of parts as well as the stock numbers and manufacturer's part numbers appear in the Table of Replaceable Parts (section VII) of this manual.

# SECTION III INSTALLATION AND ADJUSTMENT

# 1. UNCRATING.

Open packing crates as outlined below. Use care to avoid damage and search all packing material to be sure that small packages are not overlooked. All crates are marked with arrows to indicate the upright position. Cut and remove banding around crates.

- a. TRANSMITTER.—Keep in upright position and open the carton. Take off waterproof and foil bags. Lift the transmitter out.
- b. DYNAMOTOR CRATE.—Keep in upright position and remove cover of crate. Remove waterproof and foil bags. Remove two clamps holding dynamotor to base and lift out the dynamotor. Remove Kimpak wrapper.
- c. CONTROL UNIT.—Remove cover of crate. Lift out cardboard carton containing the unit. Remove unit from carton.
- d. ANTENNA LOADING UNIT.—Remove cover of crate. Remove foil and waterproof bags.
- e. ANTENNA SHUNT CAPACITOR.—Remove cover of crate. Lift out cardboard carton containing the unit. Remove unit from carton.

# 2. PREPARATION FOR INSTALLATION.

The equipment should be checked before installation to make sure that all parts are operating properly and that no damage occurred during shipment which might cause early failure in service.

# a. MECHANICAL INSPECTION.

# (1) TRANSMITTER.

- (a) Rotate all switches on the face of the transmitter to see that they operate freely and the knobs are fastened tightly to their shafts.
- (b) Inspect the terminals at the left end of the transmitter for proper spring action and broken parts.
- (c) Inspect the case and mountings for dents or bent portions which might interfere with operation.
- (d) Make sure the crystal is in the proper position and clamped securely in place. See Tube Placement Diagram, figure 2-1.
- (e) Make sure all tubes are mounted securely in the sockets and that tubes JAN-811, JAN-1625, and JAN-837 are locked properly. See Tube Placement Diagram, figure 2-1.

- (f) Make sure the plate connector caps on all tubes employing them are in the proper position and firm.
- (g) Remove the cover from the low frequency oscillator and check the tube for proper seating in the socket and firm and proper connection of the plate cap. Replace the cover.
- (b) Check the vacuum switch to be sure it is not broken.

# (2) DYNAMOTOR UNIT.

- (a) Check the fuse and spare fuse to see that they are not blown.
- (b) Remove the bottom plate and check all relays and stand off insulators for broken parts.
- (c) Check the relays by closing them by hand to see that they do not bind and are not bent.
- (d) Make sure all circuit elements are mounted securely. Replace the bottom cover.
- (e) Make sure the end cover mounting bolts are tight.

# (3) CONTROL UNIT.

- (a) Turn the switches to make sure they function properly and the knobs are not loose on the shafts.
- (b) Press the key to check the spring action and make sure the mechanism does not bind and stick.

(c) Remove the back plate and inspect the switches for broken parts. Replace the plate.

# (4) CONTROL PANEL.

- (a) Turn the switches to make sure they function properly and the knobs are not loose on the shafts.
  - (b) Inspect the switches for broken parts.

# (5) ANTENNA SHUNT CAPACITOR.

- (a) Inspect to see that no parts are bent or broken.
  - (b) Check spring action of all terminals.

# (6) ANTENNA LOADING UNIT.

- (a) Turn the switches to make sure they function properly and the knobs are not loose on the shafts.
- (b) Check all terminals for broken parts and spring action.
- (c) Remove the cover plate and inspect all switches for broken parts.
- (d) Rotate the variometer and make sure it does not bind.
  - (e) Make sure vacuum switch is not broken.
- (f) Make sure micalex terminal boards are not broken.

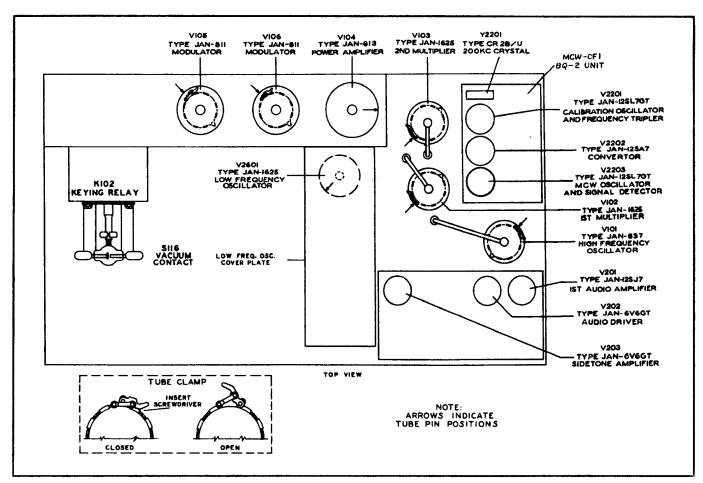



Figure 2-1. Tube Replacement Diagram

# Section II Paragraph 2

(g) Check all stand off insulators to see that none are broken and replace the cover.

### b. BENCH TEST.

(1) GENERAL.—Check the complete equipment for proper operation before installation in the aircraft. When numerous installations are to be made, it is recommended that a test bench be set up.

#### Note

Adjustment procedures for the equipment must be thoroughly understood before making any of the following tests. (See par. 6, this section.)

# (2) EQUIPMENT REQUIRED.

- (a) Complete mock-up including all necessary cables and plugs and one interphone jack box or panel with liaison position connected into the mock-up.
- (b) A 28-volt direct current power source with a capacity of 35 amperes per transmitter being tested.
  - (c) Suitable phantom antenna (Antenna A-58).
  - (d) Head Set HS-33.
- (e) Microphone T-17, or Microphone T-30 with Cord CD-318 or CD-508.
- (f) Means for checking continuity. This may be a continuity meter or just a battery and light bulb.
  - (g) Plug PL-55 with the terminals shorted.

# (3) TEST PROCEDURE.

- (a) Connect the components in the bench mock-up with Antenna A-58 connected to the "FIXED ANTENNA" terminal on the antenna loading unit.
- (b) Turn "EMISSION" switch to "VOICE" position and "CHANNEL" switch to position 1.
- (c) Set the antenna change-over switch on the antenna loading unit on "FIXED ANT." position and the switch on Antenna A-58 on position 4. Set and lock the transmitter controls on 2400 kc (control A on 1) on channel 1 in accordance with the operating instructions for CW operation and using the crystal frequency indicator. Check P.A. GRID meter reading to make certain the grid drive to the final amplifier tube is within limits.
- (d) Channel the autotune into channel 1 by moving "CHANNEL" switch to position 2 until the autotune motor starts and then back to position 1. Close "TEST" switch after cycling is completed. The P.A. PLATE reading should be very close to that obtained when the channel was set up.
- (e) Plug the shorted Plug PL-55 into T.S. jack and "KEY" jack in turn. Power should be delivered to the antenna in each case.
- (f) Lift the calibration chart on the face of the transmitter and make sure that microphone selector switch \$201 is in "CARBON" position. (See fig. 2-2.) Turn "EMISSION" switch to "VOICE," plug the microphone into "MICROPHONE" jack, and press the button. Power should be delivered to the antenna and the plate current should be slightly above that for

CW operation. Speak or whistle into the microphone. Plate current should rise near or higher than the MCW area on the meter with modulation.

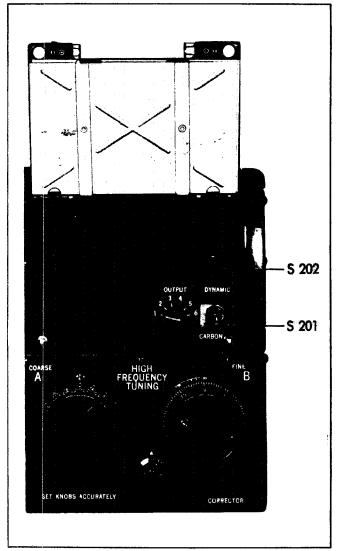



Figure 2-2. Microphone Selector Switch and Sidetone Output Switch

- (g) Place "EMISSION" switch on MCW position and close "TEST" switch. Power should be delivered to the antenna and the plate current meter should read 190 or higher. If this reading is not obtained, readjust the MCW control until a reading of 190 is secured. This adjustment, marked "R2201" in figure 2-3, is located inside the transmitter. See paragraph 7 in the MAINTENANCE section (V) which describes this adjustment.
- (b) Listen in the "SIDETONE 1" circuit and key the transmitter on CW, MCW, and modulate on "VOICE" position. The proper sidetone signal should be heard on all emission positions. Repeat with headset connected to the interphone jack box, control box or control panel installed as a part of the mock-up. Lift the calibration chart and set "OUTPUT" switch S202 on each position in turn. (See fig. 2-2.) The

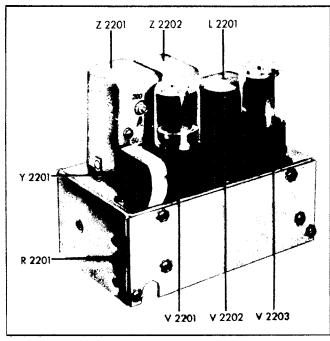
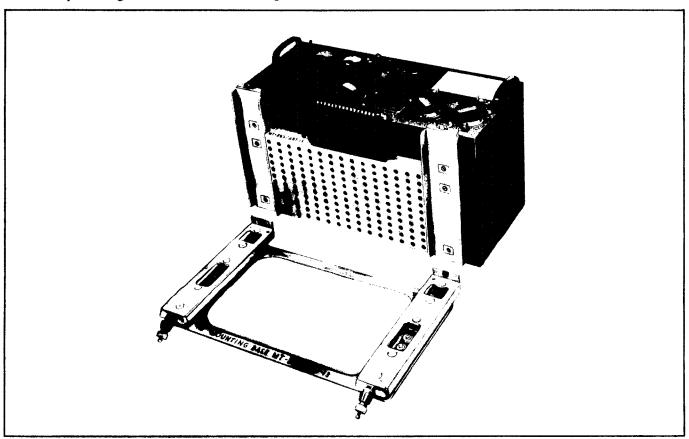



Figure 2-3. MCW-CFI Unit - Top View


proper sidetone signal should be heard on each position, being louder the higher the number of the switch position.

(i) Set up and lock the other channels of the autotune by loading the transmitter into the phantom

antenna, with controls A and B set as follows:

| Channel | A  | В   |
|---------|----|-----|
| 2       | 2  | 200 |
| 3       | 3  | 100 |
| 4       | 4  | 060 |
| 5       | 5  | 100 |
| 6       | 6  | 100 |
| 7       | 7  | 100 |
| 8       | 8  | 100 |
| 9       | 9  | 100 |
| 10      | 10 | 100 |

- (j) Set up the "L.FREQ." channel on 400 kc using the internal CFI.
- (k) Place "CHANNEL" switch on "MAN-UAL," power level switch on "TUNE," meter switch on "P.A. GRID," control B on 100, control C on 13, control A on 11, and close "TEST" switch. The meter should read in or slightly above the lightly shaded area under "P.A. GRID." Repeat with control A on position 12.
- (1) Connect all three sections of the antenna shunt capacitor between the "COND" post and ground, and tune the transmitter near 2300 kc. Disconnect the capacitors.
  - (m) Turn "EMISSION" switch to "OFF."
- (n) Change the phantom antenna lead from the "FIXED ANTENNA" terminal on antenna loading unit to the "TRAILING ANTENNA" terminal and set the switch to the "TRAILING ANT." position.



Mounting Plate MT-283/ART-13 and

# Section II Paragraphs 2-3

(o) Set "LOCAL-REMOTE" switch on "RE-MOTE" position, the emission switch on the remote control unit on "VOICE," and "CHANNEL" switch on position 1. Then place the emission switch on CW. Wait for the light on the control unit to come on.

#### Note

If a control panel is used in the mock-up, disregard the next two steps and check the operation from a microphone connected to the proper terminals for remote operation.

- (p) Press the key on the control unit. Power should be delivered to the antenna and the meter should read in the lightly shaded area marked CW. Meter readings should be very close to those obtained previously.
- (q) Check "VOICE" and MCW operation from the control unit by means of its emission switch and the microphone jack on it.
- (r) Select channels 2 to L.F. on the control unit in turn, closing the key each time the autotune completes cycling. Operation should be normal on each;

meter readings, plate and antenna, should be very close to those obtained previously.

(s) Disconnect the wires from the "ANT." and "LOAD COIL" posts and check continuity between the "RECEIVER" post and ground. They should be open with the key up and closed with the key down. Remove the input plug from the dynamotor unit and then check continuity between the "ANT" and "RECEIVER" posts. They should be connected.

# 3. INSTALLATION.

## a. TRANSMITTER.

(1) Mount the transmitter at a height convenient for operation of the controls. See figure 8-25 Transmitter Outline Dimensions with Mounting Base MT-284/ART-13 for ventilation provisions, clearances required for operation and removal, bonding, and mounting hole size and placement. The unit may be slid into position from the front or may be lowered on the mounting two inches forward of the final position and slid backwards into position. When the unit has been placed, tighten the two locking knobs on the

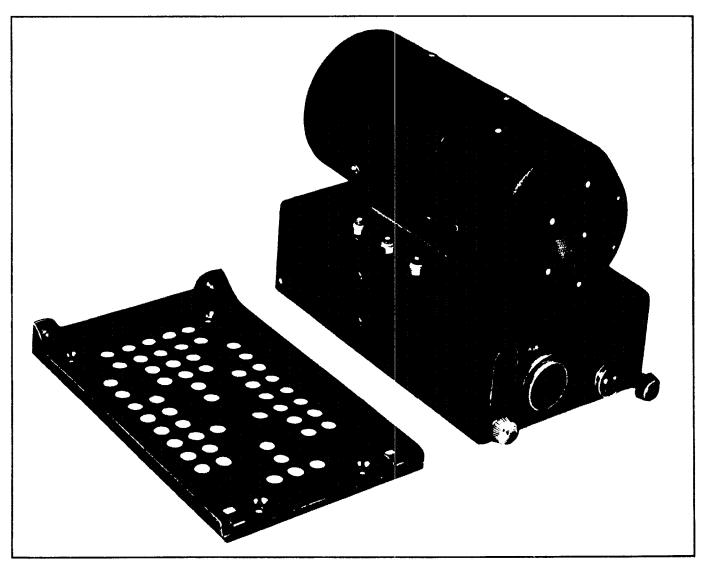



Figure 2-5. Dynamotor Unit DY-17/ART-13A with Mounting Plate MT-164/ART-13

front edge of the mounting by rotating them clockwise. Tie wire the locking knobs in position.

# b. DYNAMOTOR UNIT.

- (1) Locate the dynamotor unit in such a position that it will be possible to reach the "RESET" buttons and the "FUSE" on the front of the unit while in flight. Both ends must be at least three inches from a flat surface to provide sufficient ventilation.
- (2) See figure 8-31 Dynamotor Unit Outline Dimensions for plug clearances, bonding, and mounting hole positions and sizes.
- (3) To install the dynamotor unit on Mounting Plate MT-164/ART-13, set it on the mounting and

slide it backward until the holding pins are engaged, then tighten the two locking knobs on the front of the unit by turning them clockwise. Tie wire the locking knobs together.

# c. ANTENNA LOADING UNIT.

- (1) Mount Antenna Loading Unit at a height convenient for operation of controls and within easy reach of the transmitter. A clearance of at least 6 inches should be provided between electrical terminals on each side of this unit and surrounding objects.
- (2) See figure 8-27 for outline dimensions of Antenna Loading Unit CU-32/ART-13A and figure

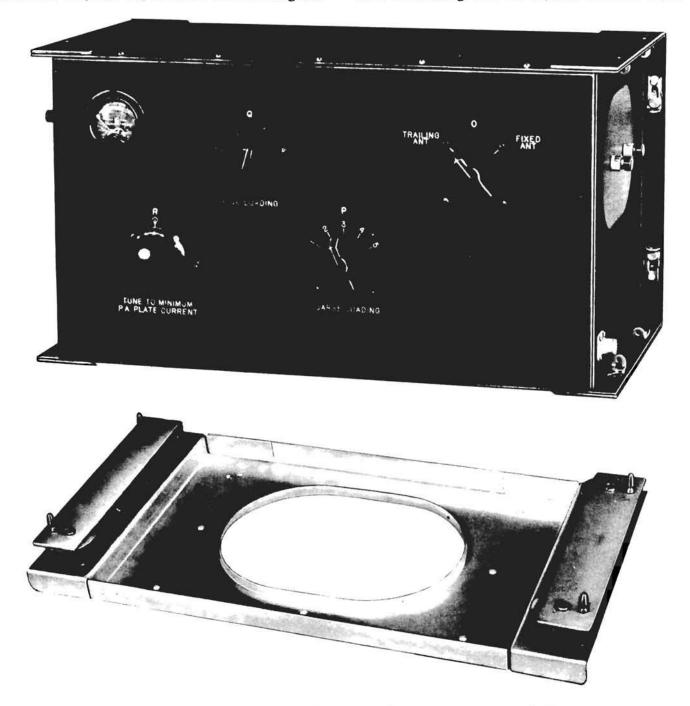



Figure 2-6. Antenna Loading Unit CU-32/ART-13A with Mounting Base MT-198/ART-13A

- 8-28 for outline dimensions of Mounting Base MT-198/ART-13A. Required clearances, mounting hole location and bonding instructions are also shown in these figures. The mounting base may be installed on top of, or hung upside down from, a flat surface. Shock mounts must be assembled differently when the loading unit is suspended from the mount. Instructions for proper assembly are shown in figure 8-28. The loading unit may be mounted on top of the mounting base on its top, bottom or back or it may be suspended from the mounting by its top, bottom or back.
- (3) Mounting Base MT-198/ART-13A is mounted to the structure of the aircraft by means of four 1/4" screws (see fig. 8-28 for location of holes).
- (4) After mounting base has been installed, place loading unit in position on mounting plate and secure by closing all four snap slides (one on each corner of the case). Tie wire the four snap slides.
- d. CONTROL UNIT.—Locate the control unit so that the controls are easily accessible to the operator. Mount it with the key upward leaving sufficient space for operation of the key.
- (1) See figure 8-26 (Control Unit Outline Dimensions) for plug clearances and mounting hole positions and sizes.
- (2) To mount the control unit on Mounting Plate MT-163/ART-13, place the unit on the mounting and tighten the four screws, one in each corner.
- e. CONTROL PANEL.—Install the panel in the rack. In racks with threaded holes, mount the panel with screws. In racks with smooth holes and a wire across the center, the panel needs a small adapter plate equipped with quick-release fasteners on each side. A half turn clockwise is all that is necessary to fasten the panel.

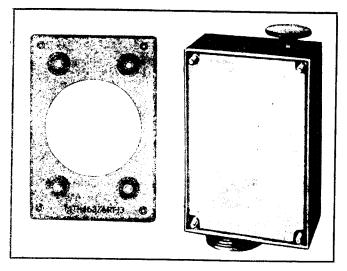



Figure 2-7. Control Unit C-87/ART-13 with Mounting Plate MT-163/ART-13

# f. ANTENNA SHUNT CAPACITOR AND SWITCH.

(1) Locate the unit as near the left end of the transmitter as possible. Place between the unit and the

- transmitter in such a position that vibration will not cause it to close. The total length of lead from the transmitter to the capacitor shall not exceed 12 inches.
- (2) See figures 8-29 and 8-30 for bonding and position and size of mounting holes.
- g. OSCILLATOR 0-17/ART-13A AND PANEL MX-128'ART-13.—One or the other of these units will always be installed in the transmitter. They are mechanically interchangeable and electrically always maintain the continuity of the filament string. To remove Panel MX-128/ART-13 and install Oscillator 0-17/ART-13A, proceed as follows:
  - (1) Remove the top cover and type 813 tube.
- (2) Remove the two screws holding the rear of the installed unit to the fire wall assembly.
- (3) Remove the seven screws around the front panel of the unit.
- (4) Disconnect the lead to the multiplier section as required.
  - (5) Lift straight up to remove.
- (6) Before any attempt is made to install new unit, make certain that the top screws of the autotune cover are loosened on each side of the oscillator panel.
- (7) Tilt the low frequency oscillator forward 15 to 20 degrees and install the lower lip of the oscillator panel behind the autotune cover.
- (8) Lower the oscillator from its tilted forward position to mate with the Jones plug. Force should not be used to mate these plugs.
- (9) When the oscillator is in place, replace and tighten the seven screws that hold the low frequency oscillator panel in place.
- (10) Tighten screws along top edge of autotune cover.
- (11) Replace and tighten screws that hold the back of oscillator unit.
- (12) Replace JAN-813 power amplifier tube and connect plate lead.
- (13) Connect one end of wire from standoff insulator (Ref. E-109-B, Figure 8-2) to terminal on right side of oscillator unit.
- (14) Replace cover on Transmitter T-47A/ART-13.

## 4. INTER-UNIT CONNECTIONS.

- a. Make up the inter-unit connections when installing the equipment. A drawing of a typical wiring diagram is shown in figure 8-43. Cut the wires to the proper length for the installation involved. Allow enough additional length for each cable so that the radius of any bend in a cable is never less than 8 inches and the cable is not tight enough to interfere with the action of the shock mounts or to damage the connectors. Figure 8-33 shows the dimensions of the plugs and outlines the method of connecting wires to the terminals.
- b. Tighten the locking rings on all plugs and tie wire them in place.

# 5. INSPECTION AND TEST AFTER INSTALLATION.

- a. Inspect the inter-connections to check them for conformity to the mock-up of the particular installation. Check the knobs on the front of the transmitter and dynamotor unit, the microphone selector switch under the chart, and all connector plug locking rings for tie wire.
- b. Set up the frequencies to be used in the flight test on the channels desired according to the procedure given in the "ADJUSTMENTS" section of this book.
- c. Set up one frequency in the range 200 to 600 kc and check it for proper operation.
- d. Follow the procedure outlined for DAILY IN-SPECTION in this Handbook of Maintenance Instructions.
- e. Turn on the receiver, make sure the "NORMAL-MONITOR" switch is in the "NORMAL" position,

and listen in the liaison position of the jack box. The receiver hiss should be heard with the key up; the proper transmitter sidetone signal should be heard with the key down. Set the output switch under the calibration chart on the position that gives the proper volume of sidetone signal when the transmitter is being operated.

f. Tune the receiver for CW operation on one of the frequencies set up on the transmitter. Set "NORMAL-MONITOR" switch in "MONITOR" position and close the transmitter key. The transmitter should be on CW. It should be possible to hear a beat note and to tune the beat note to zero by rotating the receiver dial. Release the transmitter key and return "NORM-AL-MONITOR" switch to "NORMAL" position.

g. Establish communication with the ground station on each frequency to be used in the flight test.

# 6. ADJUSTMENTS.

# WARNING

Operation of this equipment involves use of high voltages which are dangerous to life. Operating personnel must observe all safety precautions. Whenever the dynamotor is running, there is a potential of 1150 volts applied to the plate caps on top of the tubes.

# a. USE OF CALIBRATION TABLES.

- (1) The low-frequency and high-frequency oscillators are variable frequency master oscillators with no provision made for crystal control of the frequency of either oscillator. Therefore, a crystal controlled frequency standard has been incorporated in the equipment to be used for the calibration of the variable frequency oscillators.
- (2) Detailed oscillator calibration tables 6-9 and 6-10 are included in section VI, SUPPLEMENTARY DATA, of this book. Calibrating frequency "check points" have been indicated in the calibration tables by printing them in heavy black type. When checking the calibration, it is necessary to use the check point which is numerically nearest to the transmission frequency that is to be used. Heavy ruled lines that appear at intervals in the calibration tables, serve to indicate the direction of the nearest check point. For example for frequencies that appear above (or before) this dividing line, use first check point (heavy type) that is encountered by looking back to succeedingly lower frequencies. For frequencies that appear below (or after) the dividing line, use first check point (heavy type) that is encountered by looking ahead to succeedingly higher frequencies.
- (3) The check points are frequencies at which audio beat notes between the output of the low-frequency oscillator or the output of the high-frequency oscillator and the harmonics of the crystal controlled 50 kc output of CFI unit may be heard. These "beat notes" are used for setting the dial and the movable indicator mark is for adjusting the calibration of the oscillator. The frequency in the tables is given in kilocycles with the control positions in columns oppo-

site the frequency. The numbers in column B or G may be considered as combination numbers. For control G, the hundreds figures (the one or two figures in the third and fourth positions to the left of the decimal point as underlined in the following example: 724.6 or 1536.4) are set on the revolution counter near the control and the rest of the number is set on the dial. estimating the figure to the right of the decimal and setting it between divisions on the dial. For control B, the hundreds figures are set the same as for control G. the two figures immediately to the left of the decimal point (724.6 or 1536.4) are set on the dial and the figure to the right of the decimal point (724.6 or 1546.4) is set by means of a vernier. To obtain the settings given in the columns under B and G (B and G represent both dial designations and calibration table column heading), rotate the control until the revolution counter indicates the proper number of full revolutions and the dial indicates the fraction of a revolution. For accuracy in setting control B, a vernier scale has been provided. To use the vernier, set that part of the number to the left of the decimal point opposite the zero line on the vernier scale. Then note the line on the vernier scale that corresponds to the figure to the right of the decimal point and rotate the dial slightly in a clockwise direction until that line on the vernier is lined up with the first line on the dial that approaches it. For example, opposite 3410 kc the reading under B in the table is 1114.1. To obtain this setting of control B, rotate the dial until the revolution counter indicates that the control has been rotated 11 full revolutions from the zero setting (see fig. 2-8); then continue to rotate the control until 14 on the dial appears opposite the zero indicating mark, note

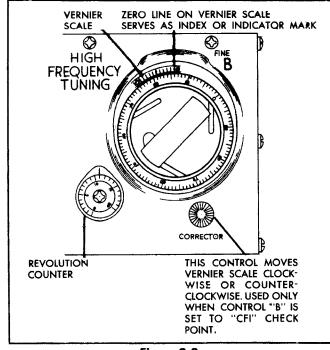



Figure 2-8.
Illustration Showing Setting of Control "B" to 1114.1
(Per Example in the Text)

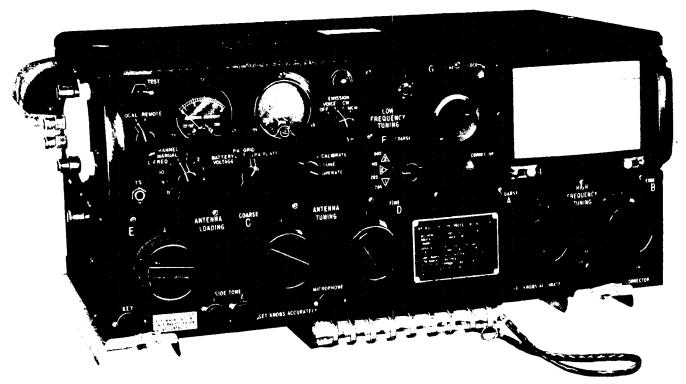



Figure 2-9. Radio Transmitter \( \textstyle \textstyle 47A/ART-13 \)

line 1 on the vernier scale and further rotate the dial until the first line (15) on the dial lines up with line 1 on the vernier.

- (4) The transmitter can be set to frequencies between those given in the table by the following method:
- (a) Find the two frequencies located on either side of the desired frequency.
- (b) Find the difference between the dial settings of control B or G for these two frequencies.
- (c) Multiply this difference by the decimal of a kilocycle in the desired frequency.
- (d) Add this product to the dial setting for the lower frequency in (a).
- (e) Example: It is desired to transmit on 3411.5 kilocycles.

| •         | Freq. | A | В      |               |
|-----------|-------|---|--------|---------------|
| Desired   | 3410  | 3 | 1114.1 |               |
| Frequency | 3411  | 3 | 1116.6 | Difference    |
| 3411.5    | 3412  | 3 | 1119.0 | Between       |
|           | 3413  | 3 | 1121.5 | Dial Settings |
|           |       |   |        | Is 2 4        |

Setting for desired frequency is obtained thus:

# b. PROCEDURES FOR SETTING THE CONTROLS (FOR MANUAL OR AUTOTUNE OPERATION.)

- (1) GENERAL.—The following procedures are for setting up the transmitter for "MANUAL" or autotune operation. If "MANUAL" operation is desired it is only necessary to set "CHANNEL" switch on "MANUAL" position and follow these instructions, except the locking bars should not be moved. "MANUAL" operation will not interfere with any of the channels set up for autotune operation if the locking bars are not loosened, nor will setting up any channel in accordance with the following procedure interfere with any other channel previously set up. Channeling the autotune with the locking bars loose will completely eliminate the settings previously set up for the channel that was cycled and may cause settings for some or all of the other channels to shift.
- (2) "CW" OPERATION INTO FIXED ANTENNA (2000 to 18100 KC).—The following procedure is to be used for setting up the transmitter for autotune operation on a desired frequency on any one of the 10 high-frequency channels.
- (a) Place the antenna selector switch on the antenna loading unit on "FIXED ANT." position.
- (b) Make certain that the microphone, key, and throttle switch (T.S.) jack circuits are open.
- (c) Place "LOCAL-REMOTE" switch in "LO-CAL" position.
- (d) Place "EMISSION" switch in "VOICE" position.

- (e) Check primary voltage by moving the meter switch to "BATTERY-VOLTAGE" position. Usable primary voltage is indicated when the meter needle is within the light shaded area under "BATTERY." A primary voltage of 28 volts will cause the meter needle to read at the top edge of this shaded area. A primary voltage of 24 volts will cause the meter needle to read at the lower edge of this shaded area.
- (f) Place "CHANNEL" switch in the position corresponding to the channel it is desired to set up. (If "MANUAL" operation is desired, place "CHANNEL" switch in "MANUAL" position.) If the autotune system begins to run, allow it to complete the cycle of operation before proceeding. The red pilot light on the front of the transmitter will light when the autotune cycle is completed, and the transmitter will be ready for tuning adjustments or operation.
- (g) Unlock all five controls by holding the dial and turning the locking bar 1/4 turn in a counter-clockwise direction. (If "MANUAL" operation is being used, the locking bars should not be loosened.)
- (h) Set control "C" on position 1. Check the position of the control against the indicator mark on the transmitter panel. The setting of this control is critical. The transmitter will not operate if control "C" is not set properly.
- (i) Find the desired frequency in the calibration table and note the nearest crystal check point marked in heavy black type.
- (j) Set control A to the position corresponding to the number in column A at this crystal check point. Check the position of the control against the indicator mark on the transmitter panel. The setting of this control is critical. The transmitter will not operate if control A is not set properly.
- (k) Set control B to the position corresponding to the number in column B at this crystal check point.
- (1) Set the power level switch to "CALI-BRATE" position and listen in the sidetone circuit for a beat note while rotating control B back and forth about the position given for the crystal check point. Set control B on the position that gives zero beat and turn the power level switch to "TUNE" position.
- (m) Set the movable indicator mark by means of the "CORRECTOR" knob near control B to the reading of control B found in column B at this crystal check point.
- (n) Refer to the calibration table and obtain the correct setting of control "B" for the desired operating frequency.
  - (o) Set control B to the reading obtained above.
- (p) Lock control A by first noting its reading, rotating dial counterclockwise one-quarter turn, or against the stop if the stop is within one-quarter turn, and then rotating it clockwise to, but not past the reading on which it had been set. Hold the knob and turn the locking bar clockwise until it is tight with a firm but not heavy pressure. Repeat this procedure for con-

- trol B. Further pressure on either control in a clockwise direction should not cause the dial to move beyond the original setting. If it does, unlock and repeat the locking procedure, making certain the original dial settings are used. (If "MANUAL" operation is being used, the locking bars should not be bothered.)
- (q) Place "EMISSION" switch on "CW" position.
- (r) Check the grid drive to the final amplifier by placing the meter switch on "P.A. GRID" position, closing "TEST" switch, and noting the reading on the meter. It should read in, or slightly above, the light-shaded area marked "P.A. GRID." If it does not, operation is not normal. Control A may not have been positioned accurately or there may be something wrong with the transmitter. Check the trouble before proceeding. See "Note" in paragraph 6b(2)(bb), this section.
- (s) Place the meter switch on "P.A. PLATE" position.
  - (t) Place control "D" on zero.
- (u) Hold "TEST" switch closed and rotate control "E" throughout its range, seeking a plate current dip indicating resonance of the circuit.

#### CAUTION

Do not move control "E" across the space between 100 and 200 or between 0 and 100 while "TEST" switch, microphone button, or key is closed. An internal switch will be damaged if this precaution is not followed.

- (v) If no resonance dip is found, set control C on the next higher position and rotate control E again, seeking a dip in plate current.
- (w) Repeat the instructions in paragraph (v), above, until the resonance dip is found or until control C is set on position 8 and resonance has not been found.

#### Note

If frequency of operation is below 3000 kc, see instructions in paragraph 6b(2)(jj), this section.

- (x) If resonance was found on position 1 to 7, inclusive, on control C, place the power level switch in "OPERATE" position.
- (y) Load the power amplifier by increasing the reading on control D in steps, re-resonating with control E each time. When control D had been rotated throughout its range, set control C on the next higher position, control D on zero and repeat. Continue this process until the resonance dip falls in the light-shaded area marked "CW" on the plate meter. Correct loading of the final amplifier tube, when a 28-volt primary voltage is used, is 100 on the plate meter. It may not be possible in all cases to load the amplifier tube exactly to this value, but any value of loading which is in the light-shaded area marked "CW" will be satisfactory.

#### Note

If the resonance dip causes the plate current to fall to a very low value, control C may be set to the next higher position without moving control D, always re-resonating with control E each time as before. Fine adjustment must still be made by means of control D. On antennas less than 55 feet in length and on frequencies below 3000 kc, it may not be possible to load the final amplifier to the light-shaded area marked "CW" before control E reaches zero. If this happens, set control E on zero and resonate with control D. This will give the best operation obtainable under these conditions.

- (z) If resonance was not found before control C was set on position 8, leave control C on position 8, set control E on zero, and seek the resonance dip in plate current by rotating control D throughout the range of 0 to 100.
- (aa) If resonance is not found, set control C on the next higher position, rotate control D again, seeking the resonance dip.
- (bb) Repeat paragraph (aa), above, until resonance is found or until control C has been tried on position 13 without finding a resonance dip.
- (cc) If the resonance dip was not found with control C on position 13, leave that control on position 13, place control D on 100, and seek the resonance dip with control E.
- (dd) When resonance is found, place the power level switch on "OPERATE" position.
- (ee) Load the power amplifier by increasing the reading on control E in steps, re-resonating with control D each time until the resonance dip falls in the light-shaded area marked "CW" on the meter.
- (ff) After proper loading of the final amplifier tube has been found using any of the above procedures, lock control C by noting its reading, rotating the dial counterclockwise about one-quarter turn, and then rotating it clockwise to, but not past the reading on which it had been set. Hold the knob and turn the locking bar clockwise, until tight, with a firm but not heavy pressure. Further pressure on the dial in a clockwise direction should not cause the dial to move beyond the original setting. If it does, unlock and repeat the locking procedure, making certain the original dial setting is used. Repeat this procedure with controls D and E. (If "MANUAL" operation is being used, the locking bars should not be bothered.)
- (gg) Check tuning and locking by holding "TEST" switch closed while placing a small force on each dial in turn in the clockwise direction. If all dials are locked properly, no detuning will result. (Do not use this test when in "MANUAL" position.)
- (bb) Repeat the above procedure for each highfrequency autotune channel it is desired to set up on the transmitter.

#### Note

The "P.A. GRID" meter reading, with control A on position No. 7, is usually at the lower edge of the light-shaded area. It is permissible for the grid meter reading for this particular setting (control A on No. 7) to be 50 on the meter scale and still be satisfactory. A lower meter reading is not satisfactory, and the transmitter should be repaired or aligned according to the instructions in section V of this handbook. If control A is not set accurately it is possible for some of the multiplier switches to be between contact positions; this results in loss of grid drive to the final amplifier tube, and burning of contacts. Set control A accurately.

(ii) When operating in the 2000-kc to 3000-kc range into a fixed antenna, care must be exercised to avoid operation on a harmonic of the desired frequency. This will be avoided in most cases by following the outlined procedure for tuning adjustment into a fixed antenna. However, for frequencies between 2000 kc and 3000 kc on antennas shorter than approximately 50 feet, the antenna may be too short for the tuning elements in the transmitter to resonate at the fundamental frequency. Therefore, the first resonance indicated by the tuning adjustment may be a harmonic of the desired frequency. To determine whether this is true, follow the tuning procedure outlined in paragraph (jj), below.

(jj) For operation into short antennas (less than 50 feet) at frequencies between 2000 kc and 3000 kc, it may be necessary to connect the antenna shunt capacitor to the "COND." post on the transmitter. This is accomplished by throwing the knife switch so the capacitors are connected to the transmitter. Table 2-1 may be used as a guide to determine whether or not use of the capacitor will be necessary and, if used, how

TABLE 2-1. USE OF ANTENNA SHUNT CAPACITOR WITH ANTENNAS OF DIFFERENT LENGTHS

| Length of Antenna<br>(in feet) | Frequency Range<br>(in kilocycles) | Antenna Shunt<br>Capacitor; No. of<br>Sections Necessary |
|--------------------------------|------------------------------------|----------------------------------------------------------|
| 60 to 65                       | 2000 to 18100                      | None                                                     |
| 53 to 60                       | 2000 to 2100                       | One                                                      |
| 53 to 60                       | 2100 to 18100                      | None                                                     |
| 45 to 53                       | 2000 to 2100                       | T₩o                                                      |
| 45 to 53                       | 2100 to 2200                       | One                                                      |
| 45 to 53                       | 2200 to 18100                      | None                                                     |
| 36 to 45                       | 2000 to 2100                       | Three                                                    |
| 36 to 45                       | 2100 to 2200                       | Two                                                      |
| 36 to 45                       | 2200 to 2400                       | Oné                                                      |
| 36 to 45                       | 2400 to 18100                      | None                                                     |
| 27 to 36                       | 2100 to 2200                       | Three                                                    |
| 27 to 36                       | 2200 to 2400                       | Two                                                      |
| 27 to 36                       | 2400 to 2700                       | One                                                      |
| 27 to 36                       | 2700 to 18100                      | None                                                     |
| 20 to 27                       | 2200 to 2400                       | Three                                                    |
| 20 to 27                       | 2400 to 2700                       | Two                                                      |
| 20 to 27                       | 2700 to 3000                       | One                                                      |
| 20 to 27                       | 3000 to 18100                      | None                                                     |

many sections are required for various frequencies and lengths of antenna.

To determine the length of the antenna, measure the total length of wire from the antenna terminal of the transmitter to the extreme end of the antenna (including the length of the lead inside the airplane). If the antenna is a "T," disregard the length of wire in the shorter branch at the top of the "T," or, if the two branches are equal, include the length of only one of them. The tuning procedure for the transmitter, when using the shunt capacitor, is identical to the procedure without shunt capacitors. The use of these antenna shunt capacitors reduces the power output from the transmitter when used on frequencies higher than those which require its use. For this reason, it should not be used unless necessary and only on those channels which require it. This obviously cannot be done if the transmitter is to be operated from a remote position, since no provisions have been made to automatically switch the shunt capacitor in or out. In this case the capacitor should be used only if it is desired to set a channel in the frequency range wherein the antenna cannot be resonated by the tuning elements in the transmitter itself, and it must be left in for all channels regardless of the reduction of power. Only the capacity necessary to tune the lowest frequency used should be connected. This can be done by connecting one, two, or three of the capacitors in parallel, according to the amount of capacity needed. Use the smallest number possible. To determine the lowest frequency that can be tuned with a given number for a particular antenna, proceed as follows:

- 1. Connect the circuit it is desired to check; that is, either no capacitor connected, one section connected, two sections connected, or three sections connected.
- 2. Place "LOCAL-REMOTE" switch to "LOCAL" position.
- 3. Place "EMISSION" switch on "VOICE" position.
- 4. Place "CHANNEL" switch on "MANU-AL" position.
- 5. Place the meter switch on "P.A. PLATE" position.
- 6. When the autotune motor stops and the pilot light comes on, set control A on position 2 and control B on 2000.
- 7. Tune and load the power amplifier according to instructions contained in paragraphs 6.b.(2)(q) thru (y).

| Control A | Control B |
|-----------|-----------|
| 2         | 1500      |
| 2         | 1000      |
| 2         | 500       |
| 1         | ,1500     |
| 1         | 1000      |
| 1         | 500       |
| 1         | 100       |

8. Attempt to repeat the above tuning and loading procedure with each of the following combinations of setting in turn.

The setting of control E for each successive trial will be lower than for the preceding trial. If one of the above combinations of controls A and B cannot be tuned without going to a "HIGHER" setting of control C than for the preceding combination, place control C on position 1, control D on zero, and control E on zero. Then rotate control B toward a higher reading, while holding "TEST" switch closed, until the plate current shows a resonance dip. Turn the transmitter off and look up the frequency in the calibration table corresponding to the combination of controls A and B found by this process. This installation of the transmitter, with sections of the antenna shunt capacitor (if used), with this length of fixed antenna wire in this type of airplane, cannot be tuned to any frequency below that obtained by this process. It may appear that proper operation is obtained by continuing the tuning procedure to "HIGHER" positions of control C, but this results in operation on a harmonic of the desired frequency and will result in complete lack of communication.

# (3) CW OPERATION INTO TRAILING ANTENNA (2000 KC TO 18,100 KC).

- (a) Set controls A and B on the desired frequency by following instructions in paragraphs 6.b.
  (2) (b) through (s).
- (b) Connect the "ANT." post on the transmitter to ground with a lead as short as possible.
  - (c) Place control D on zero.
- (d) Hold "TEST" switch closed and rotate control E throughout its range, seeking a plate current dip indicating resonance of the circuit.
- (e) If no resonance dip is found, set control C on the next higher position and rotate control E again, seeking a dip in plate current.
- (f) Repeat the instructions in paragraph (e), above, until the resonance dip is found or until control C is set on position 8.
- (g) If resonance was not found before control C was set on position 8, leave control C on position 8, set control E on zero, and seek resonance dip in plate current by rotating control D throughout the range of 0 to 100.
- (b) If resonance is not found, set control C on the next higher position, rotate D again, seeking the resonance dip.
- (i) Repeat paragraph (b), above until resonance is found or until Control C has been tried on position 13 without finding a resonance dip.
- (j) If the resonance dip was not found with control C on position 13, leave that control on position 13, place control D on 100, and seek the resonance dip with control E.

# CAUTION

Do not attempt to load the transmitter.

#### Note

The above procedure may be accomplished on the ground and controls C, D, and E locked in the positions found for each frequency on which trailing wire operation is desired. Then, during flight, it will be necessary to channel the autotune into the channel on which it is desired to operate; unlock controls C, D, and E and continue with the procedure that follows. Be sure "EMISSION" switch is on CW, power level switch is on "TUNE," and meter switch is on "P.A. PLATE."

- (k) When resonance is obtained, release the "TEST" key and remove the connection between the "ANT." post and ground and make certain the proper wire is fastened to that post.
- (1) Let out the trailing wire to a counter reading 10 higher than that shown in the following table of approximate antenna lengths for the desired frequency.
- (m) Hold the "TEST" switch closed and reel the wire in while watching the plate current meter for a resonance dip.
- (n) If no dip is found, let the wire out to a reading 20 higher than that indicated in the following table and repeat the reeling-in procedure.

|       | Counter Reading |          |          |  |
|-------|-----------------|----------|----------|--|
| KC    | 1/4 Wave        | 3/4 Wave | 5/4 Wave |  |
| 2000  | 101             |          |          |  |
| 3000  | 61              |          |          |  |
| 4000  | 46              | 150      |          |  |
| 5000  | 38              | 118      |          |  |
| 6000  |                 | 90       |          |  |
| 7000  |                 | 70       |          |  |
| 8000  |                 | 60       |          |  |
| 9000  |                 | 48       | 93       |  |
| 10000 |                 | 41       | 76       |  |
| 12000 |                 |          | 55       |  |
| 14000 |                 |          | 44       |  |
| 16000 |                 |          | 37       |  |
| 18000 |                 |          | 34       |  |

- (0) When resonance is found, adjust the length of the wire to correspond to minimum plate current and set power level switch on "OPERATE" position.
- (p) If resonance was found with control C on positions 1 to 7 inclusive, load the power amplifier by increasing the reading on control D in steps, re-resonating with control E each time. When control D has been rotated throughout its range, set control C on the next higher position, control D on zero, and repeat. Continue this process until the resonance dip falls in the light-shaded area marked "CW" on the plate meter.

## Note

If the resonance dip causes the plate current to fall to a very low value, control C may be set to the next higher position without moving control D, always re-resonating with control E each time as before. Fine adjustment must still be made by means of control D.

- (q) If resonance was found with control C on positions 8 to 13 inclusive, load the power amplifier by increasing the reading on control E in steps, re-resonating with control D each time until the resonance dip falls in the light-shaded area marked "CW" on the meter.
- (r) Lock controls C, D, and E. (If "MANUAL" operation is being used, the locking bars should not be loosened.)

### Note

This channel may be used on trailing wire again without unlocking the dials by cycling the autotune into the channel, placing the power level switch on "TUNE" position, adjusting the antenna length to the position corresponding to minimum plate current if frequency is below 10,000 kc and to maximum antenna current if frequency is above 10,000 kc, and returning the power level switch to "OPERATE" position. Be sure to use the same number of quarter wave lengths as in tuning up.

- (s) Trailing wire operation will increase the range of the equipment considerably in the frequency range 2000 to 6000 kc and somewhat in the frequency range above 6000 kc.
  - (4) CW OPERATION INTO FIXED OR TRAILING ANTENNA (200 KC TO 600 KC).

The following procedure is to be used for setting up the transmitter for autotune or manual operation on a desired frequency in the low frequency channel.

- (a) Place the antenna selector switch on the antenna loading unit in the position which selects the desired antenna.
- (b) Make certain that the microphone, key and throttle switch (T.S.) jack circuits are open.
- (c) Place "LOCAL-REMOTE" switch in "LOCAL" position.
- (d) Place "EMISSION" switch in "VOICE" position.
- (e) Place "CHANNEL" switch in "L. FREQ." position and wait until the autotune stops.
- (f) Unlock controls A and C, place control A on position 13 and control C on position 8, and lock them in place. (If "MANUAL" operation is being used, place control A on position 13 and control C on position 8 without unlocking them.)

## Note

If the low frequency autotune mechanism should fail, it is only necessary to switch to "MANUAL" and set control A to position 13 and control C to position 8, since low frequency operation is only a switching proced-

ure. It is possible to set the low frequency position on any of the 11 channels. It is only necessary to lock control A on position 13 and control C on position 8, on the channel it is desired to use as a substitute for the "L. FREQ." position.

- (g) Find the desired frequency in the calibration table and note the nearest crystal check point marked in heavy black type.
- (b) Set control F to the position corresponding to the number in column F at the crystal check point.
- (i) Unlock control G by turning the "LOCK" knob counterclockwise until loose. Then set control G to the position corresponding to the number in column G at the crystal check point.
- (j) Set the power level switch to "CALI-BRATE" position and listen in the sidetone circuit for a beat note while rotating control G back and forth about the position given for the crystal check point. Set control G on the position that gives zero beat and turn the power level switch to "TUNE" position.
- (k) Set the movable indicating mark by means of the "CORRECTOR" knob near control G to the reading of control G found in column G at the crystal check point.
- (1) Refer to the calibration table and obtain the correct setting of control G for the desired operating

frequency and set control G to that reading. Lock the dial.

- (m) Place "EMISSION" switch on "CW" position.
- (n) Check the grid drive to the final amplifier by placing the meter switch on "P.A. GRID" position, closing "TEST" switch, and noting the reading on the meter. It should read in, or slightly above, the lightshaded area marked "P.A. GRID" on the meter. If it does not, check the position of controls A and C.
- (0) Place the meter switch on "P.A. PLATE" position.

#### Note

In certain aircraft an auxiliary plate current meter is located adjacent to the antenna loading unit for convenience in tuning.

- (p) Place control P on the antenna loading unit on position 1.
  - (q) Place control Q on position 1.
  - (r) Unlock control R and place it on zero.
- (s) Hold "TEST" switch closed and rotate control R throughout its range, seeking a plate current dipindicating resonance of the circuit.
- (t) If no resonance was found, place control Q on the next higher position, hold "TEST" switch closed, and rotate control R again, seeking the dip in plate current.

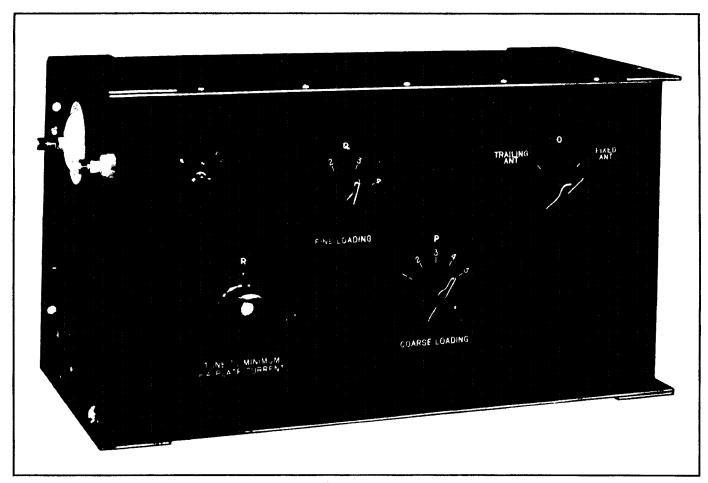



Figure 2-10. Antenna Loading Unit CU-32/ART-13A—Front View

# Section II Paragraph 6

- (u) Repeat paragraph (t) above until resonance is found or until control Q has been tried on all its positions.
- (v) If no resonance was found in paragraph (u) above, set control P on the next higher position, control Q on position 1 and repeat paragraphs (s), (t), and (u) above.
- (w) Repeat paragraph (v) above until resonance is found.
- (x) When resonance is found, lock control R in the position giving minimum plate current.
- (y) This completes the tuning procedure, as there is no provision for exact loading of the transmitter in the frequency range 200 to 600 kc. The plate current may read anywhere between 10 and 120 for normal operation.

# (5) VOICE OPERATION.

#### Note

Voice and MCW operation on fixed wire antennas in the 200 kc to 600 kc range is prohibited because the loading unit is not designed to withstand the high voltages generated with modulation under these conditions. Use CW only on "FIXED ANT." in the 200 kc to 600 kc range.

- (a) Adjust the transmitter for "CW" operation and place "EMISSION" switch on "VOICE" position. No further tuning adjustments are necessary.
- (b) Be sure the microphone selector switch under the tuning chart on the front panel of the transmitter is in the position corresponding to the type of microphone being used.
- (c) Press the button on the microphone or in its cord and hold it depressed while speaking. Release it to listen.

# Note

When the meter switch is in "P.A. PLATE" position, the meter indicates the sum of the power amplifier and modulator plate currents and will, therefore, read slightly higher on "VOICE" than on "CW." With normal modulation the plate current meter will read in the red area above the "CW" portion and may hit the meter peg with heavy modulation during normal operation.

# (6) "MCW" OPERATION.

#### Note

Voice and MCW operation on fixed wire antennas in the 200 kc to 600 kc range is prohibited because the loading unit is not designed to withstand the high voltages generated with modulation under these conditions. Use CW only on "FIXED ANT." in the 200 kc to 600 kc range.

(a) Adjust the transmitter for "CW" operation and place "EMISSION" switch on "MCW" position. No further adjustments are necessary.

(b) Key the transmitter for normal operation.

#### Note

The normal meter reading on "MCW" when the meter switch is in "P.A. PLATE" position, key down, will be in or slightly above the light-shaded area marked "MCW."

- (7) ADJUSTMENT OF SIDETONE LEVEL.
- (a) Lift the chart on the front panel of the transmitter.
- (b) Listen in the headphones while holding the "TEST" switch closed and adjust the "OUTPUT" control for proper volume of signal. Check the volume on each type of emission; "MCW," "CW," and "VOICE."
- (8) USE OF CHART ON FACE OF TRANS-MITTER.—After the transmitter has been set on the desired channels, enter the readings of controls A. B. C, D, and E, on the chart on the transmitter. Make these entries after the autotune has been channeled into each channel set up and after the operation has been checked. Set the indicating mark for control B with the zero line of the vernier directly above the dial and record the reading of the dial with the indicating mark in that position. This will enable the operator to check the settings even after the movable indicating mark has been adjusted to set up another channel. If the shunt capacitor is necessary on any of the frequencies set up, write the number of sections required following the number of channel in the left hand column. Record the settings of controls F, G, P, Q, and R on the lower line. Set the movable indicating mark on control G directly above the dial to obtain its reading, then record whether P, Q, and R are settings for fixed or trailing antenna in the left hand column in the same position used for indicating sections of the shunt capacitor in the upper lines. To minimize tuning in the air, leave controls P, Q, and R on the positions for fixed antenna operation and record the positions for trailing antenna on the chart or reverse the order if desired. If two frequencies in the range 200 to 600 kc are to be used, one may be set on the controls (F, G, P, Q, and R) and the other recorded on the chart. Which of the above methods is chosen for use of the chart for low frequency operation will depend on tactical consider-
- (9) PREPARATION FOR OPERATION.—This transmitter uses tubes which require at least 30 seconds to warm up before operation. If conditions permit, have the transmitter in readiness for operation by leaving the "EMISSION" switch in "VOICE" position during the entire flight. This is a "standby" condition and eliminates the 30 second delay waiting for the tubes to warm up.

# c. SIMPLIFIED PROCEDURE FOR SETTING THE CONTROLS.

(1) GENFRAL.—The following procedures are for setting the controls using the approximate dial settings following the calibration tables.

- (2) "CW" OPERATION INTO FIXED ANTENNA (2000 KC TO 18,100 KC).
- (a) Follow instructions in paragraphs 6b(2)(a) through (s), this section.
- (b) Set controls C, D, and E to the positions indicated in the table of approximate dial settings for the desired frequency. (Table 6-11 in this manual.)
  - (c) If control C is on position 7 or below:
- 1. Hold "TEST" switch closed and adjust control E to the position at resonance indicated by the dip in plate current.
- 2. Place the power level switch on "OPER-ATE" position.
- 3. If the plate current meter reading is above the area marked "CW," move control D a few divisions lower and readjust control E for minimum plate current. Repeat until the plate current reading is in the area marked "CW." If the plate current meter reading is below the area marked "CW," move control D a few divisions higher and readjust control E for minimum plate current. Repeat until the plate current reading is in the area marked "CW." Do not leave the controls on any position other than that at the resonance dip. Lock controls C, D, and E.
  - (d) If control C is on position 8 or above:
    - 1. Hold "TEST" switch closed and adjust

control D to the position at resonance indicated by the dip in plate current.

- 2. Place the power level switch on "OPER-ATE" position.
- 3. If the plate current meter reading is above the area marked "CW," move control E a few divisions lower and readjust control D for minimum plate current. Repeat until the plate current reading is in the area marked "CW." If the plate current meter reading is below the area marked "CW," move control E a few divisions higher and readjust control D for minimum plate current. Repeat until the plate current reading is in the area marked "CW." Do not leave the controls on any position other than that at the resonance dip. Lock controls C, D, and E.
  - (3) "CW" OPERATION INTO FIXED OR TRAILING ANTENNA (200 KC TO 600 KC).
- (a) Follow instructions in paragraphs 6b(4), steps (a) through (o).
- (b) Set controls P and Q on the positions indicated in the table of approximate dial settings for the frequency below the desired frequency. Be sure to use the column under the correct length of antenna.
- (c) Follow the instructions in the regular procedure starting with paragraphs 6b(4)(s), this section.

# SECTION III OPERATION

# WARNING

This equipment utilizes high voltages which are dangerous to life. Operating personnel must observe all safety regulations. Be sure to turn off the entire equipment before opening top cover of transmitter. High voltage (1150 volts) connections are made to the caps at the tops of some tubes.

#### 1. STARTING AND STOPPING THE EQUIPMENT.

- a. TO START.—Turn "EMISSION" switch to "VOICE" position.
- b. TO STOP.—Turn "EMISSION" switch to "OFF" position.

# 2. OPERATION DURING NORMAL USE.

- a. Check "LOCAL-REMOTE" switch to make sure it is in the proper position according to whether operation is from the transmitter panel or from the remote control unit.
- b. Place the emission switch on "VOICE" and "CHANNEL" switch on the position corresponding to the frequency on which transmission is desired. This may be found on the chart on the front panel of the transmitter.

c. When the red pilot light comes on (it will take about 25 seconds for the Autotune to seek the proper position), place the emission switch on the position corresponding to the type of emission desired, either "VOICE," "CW," or "MCW."

#### Note

Voice and MCW operation on fixed wire antennas in the 200 kc to 600 kc range is prohibited because the loading unit is not designed to withstand the high voltage generated with modulation under these conditions. Use CW only on "FIXED ANT." in the 200 kc to 600 kc range.

d. The transmitter is now ready for operation. Use either a key or a standard microphone as required by the type of emission chosen.

#### CAUTION

Under no circumstances should the transmitter be actually operating (key down or microphone pushbutton closed) when "EMISSION" switch is being operated. Such operation, especially at high altitudes, can cause an arc to occur and damage the contacts of relays.

# 3. CORRECTIVE MEASURES IF NORMAL OPERATION IS NOT OBTAINED.

#### a. FUSE OR CIRCUIT BREAKER FAILURE.

- (1) If Autotune does not run and tubes do not light, press the "TRANS. RESET" button on the front of the dynamotor unit.
- (2) If Autotune runs and tubes light but dynamotor does not start, press the "DYNA. RESET" button on the front of the dynamotor unit.
- (3) If Autotune runs, tubes light, and dynamotor starts but no transmission is obtained, first check the position of control C by unlocking the dial and rotating it back and forth through a small range while holding "TEST" switch closed. If this results in normal operation, lock control C near the proper number but in such a position that the transmitter will operate even if not exactly on the indicated position. If rotating control C does not result in normal operation, check the fuse on the front panel of the dynamotor unit and if it is blown, replace it with the SPARE fuse.

# b. REMOTE CONTROL UNIT OR CABLE FAILURE.

(1) Place "LOCAL-REMOTE" switch on the transmitter panel in "LOCAL" position and operate transmitter from its panel.

# c. TUBE FAILURES.

- (1) LOW FREQUENCY OSCILLATOR.—Replace with one of the multiplier tubes. This will provide low frequency operation only.
- (2) ONE MULTIPLIER TUBE.—Interchange with the low frequency oscillator tube. A tube with a good filament must be in the low frequency oscillator socket at all times. This will provide high frequency operation only.
- (3) TWO MULTIPLIER TUBES OR ONE MULTIPLIER TUBE AND THE LOW FREQUENCY OSCILLATOR TUBE.—Put the good tube in the first multiplier socket. Tubes with good filaments must be in the low frequency oscillator and the second multiplier sockets. This will provide operation in the frequency range 2000 to 6000 kc.
- (4) SPEECH AMPLIFIER.—Use "CW" operation. No sidetone signal will be available.
- (5) AUDIO DRIVER.—Interchange it with the sidetone amplifier. There must be a tube with a good filament in the sidetone socket. This will provide normal operation with the exception of a sidetone signal.
- (6) MODULATOR.—Use "CW" operation. The modulator tubes must have good filaments.
- (7) DETECTOR AND MCW AUDIO OSCILLA-TOR.—Interchange it with the crystal oscillator tube. If there is a tube with a good filament in the crystal oscillator socket, all operation will be normal except the "CFI" will be inoperative. If the tube in the crystal oscillator socket does not have a good filament, only "VOICE" and "CW" operation are possible.

- (8) ANY COMBINATION (INCLUDING ALL) OF CRYSTAL OSCILLATOR, MIXER, DETECTOR AND "MCW" AUDIO OSCILLATOR, SIDETONE AMPLIFIER.—There must be a tube with a good filament in the sidetone amplifier socket. "VOICE" and CW operation are available.
- (9) ANY COMBINATION (INCLUDING ALL) OF CRYSTAL OSCILLATOR, MIXER, DETECTOR AND MCW AUDIO OSCILLATOR, SPEECH AMPLIFIER, DRIVER, SIDETONE AMPLIFIER, MODULATORS.—There must be tubes with good filaments in the modulator sockets. CW operation is available.
- (10) HIGH FREQUENCY OSCILLATOR.—Interchange with the low frequency oscillator. The tube in the low frequency oscillator socket must have a good filament. It may be necessary to reset the frequency of operation since this interchange will cause the oscillator to shift from the original frequency. The tube must be replaced with the proper type as soon as possible. This interchange will provide high frequency operation only.
- d. AUTOTUNE FAILURE.—If the Autotune fails to position all dials properly, proceed as follows until proper positioning is obtained.
- (1) First turn all controls, that did not position properly, in the extreme counterclockwise direction by hand and then turn them clockwise until they stop.
- (2) If that fails, turn "CHANNEL" switch to "MANUAL" and set the controls on the proper position as indicated by the chart on the transmitter and re-resonate by adjusting the tuning control (either D or E) to the plate current dip.
- (3) If controls are tight and above procedure fails, loosen the locking bars and set the controls as for "MANUAL" position.
- e. ANTENNA LOADING UNIT FAILURE.—Connect the "ANT." post on the transmitter directly to the antenna lead-in. This will provide high frequency operation only.
- f. VACUUM SWITCH FAILURE.—Remove the wire from the "ANT." post and connect it to the "COND." post. Add a wire from the "RECEIVER" post on the transmitter to the antenna (either fixed or trailing) not being used for transmission. Be sure the trailing wire is reeled out. This operation may result in damage to the receiver especially if the same frequency is being used for transmission and reception. As a precaution, the wire may be disconnected from the antenna (A) post on the receiver during each transmission period.
- g. COLD WEATHER FAILURE.—On certain frequencies where Dial D tunes very sharply, difficulty may be experienced if those frequencies are set up in moderate ambient temperatures and subsequently operated at extremely cold temperatures, or vice versa. This is due to change of inductance with temperature. The condition will occur only in extremes of temperature and can be corrected by resetting Dial D.

# SECTION IV THEORY OF OPERATION

# 1. DESCRIPTION OF OPERATION.

a. GENERAL.—A detailed analysis of the theory and function of all parts of Radio Transmitting Set AN/ART-13A is presented in this section. Wherever units possess special mechanical as well as electrical characteristics, each is discussed individually and designated by an appropriate sub-title.

The complete equipment is designed to provide radio communication by voice, modulated continuous wave telegraphy, or continuous wave telegraphy over the frequency ranges 200 kc to 600 kc and 2000 kc to 18,100 kc. It functions as a medium power radio transmitting set intended primarily for aircraft use. A distinguishing feature of this equipment is the automatic tuning system known as the "Autotune." By means of the Autotune the manual functions that are performed, to change transmission frequency, can be made entirely automatic and any one of eleven preset transmission frequencies may be selected. Approximately 25 seconds is required for the Autotune to reset transmitter controls for operation on a new transmission frequency. Remote control of operations required to change the transmission frequency is also made possible with the aid of the Autotune system.

An understanding of the theory and performance of the circuits can be more easily obtained by first examining the contribution made by each major circuit and by following the signal path from origin to the antenna. This can be accomplished by a study of the block diagram, figure 4-1, and with the aid of the explanation in the following paragraphs.

- b. ORIGIN OF CARRIER FREQUENCY.—The carrier frequency of the transmitter is generated in either of two variable frequency oscillators depending upon the transmission frequency that is selected. The oscillator which covers the range 200 kc to 600 kc is known as the low frequency oscillator or "LFO Unit." Frequencies for the range 2000 kc to 18,100 kc are originated with the high frequency oscillator and associated frequency multiplier stages. The high frequency oscillator operates in the range 1000 kc to 1510 kc and the desired transmission frequency in the range 2000 kc to 18,100 kc is obtained by appropriate frequency multiplication.
- (1) HIGH FREQUENCY OSCILLATOR AND MULTIPLIER STAGES.—When transmission frequencies in 2000 kc to 18,100 kc range are required, the High Frequency Oscillator is used. Output of this oscillator is fed into the First Frequency Multiplier Stage where the frequency is doubled, tripled, or quadrupled as required. Further frequency multiplication is required to obtain frequencies above 6.0 mega-

cycles and a Second Frequency Multiplier Stage is provided for that purpose. The second multiplier acts only as a frequency tripler and is not used for the generation of transmission frequencies below 6.0 megacycles. Thus, for transmission frequencies in the range 2.0 to 6.0 megacycles the Second Frequency Multiplier is disconnected and the output of the First Frequency Multiplier is fed directly to the Power Amplifier Stage. For transmission frequencies in the range 6.0 to 18.1 megacycles, the Second Frequency Multiplier is connected into the system and the output of First Frequency Multiplier is fed to the Second Frequency Multiplier. Output of Second Frequency Multiplier is then coupled to Power Amplifier Stage.

- (2) LOW FREQUENCY OSCILLATOR.—When transmission frequencies in the 200 kc to 600 kc range are required, the Low Frequency Oscillator is used. Output of this oscillator is fed directly to the Power Amplifier Stage. The High Frequency Oscillator and both multiplier stages are not used.
- c. MODULATION.—The carrier frequency may be "keyed" for Continuous Wave (CW) or Tone Modulated Continuous Wave (MCW) emission. Voice modulation may also be accomplished. The three types of emission, CW, MCW, or VOICE are selected by means of a manually operated switch knob on the control panel of the transmitter or the control panel of the Control Unit.
- d. FIRST AUDIO AMPLIFIER, AUDIO DRIVER, AND MODULATOR.—When Voice is used, the input from either a carbon or dynamic microphone is coupled to the First Audio Amplifier Stage. Output of the amplifier is fed to the Audio Driver Stage which develops sufficient audio power to "drive" the Modulator Stage. The Modulator Stage is then coupled to the Power Amplifier to accomplish Voice modulation of the carrier.
- e. MCW OSCILLATOR.—A separate audio oscillator, known as the MCW Oscillator, is provided to generate approximately a 1000 cycle tone that is used for modulation of the carrier frequency when MCW emission is selected. The output of the MCW oscillator is coupled to the input of the First Audio Amplifier when transmitter is used for CW or MCW emission. This audible tone then passes through Audio Driver Stage, Modulator Stage, and to Power Amplifier to modulate the carrier. (NOTE: When using CW emission, modulator stage is not in operation thus preventing this audible tone from modulating the carrier.) Operation of the telegraph key will "key" the MCW Oscillator as well as the Carrier Oscillator (High or Low Frequency Oscillator) and the Power Amplifier Stage.

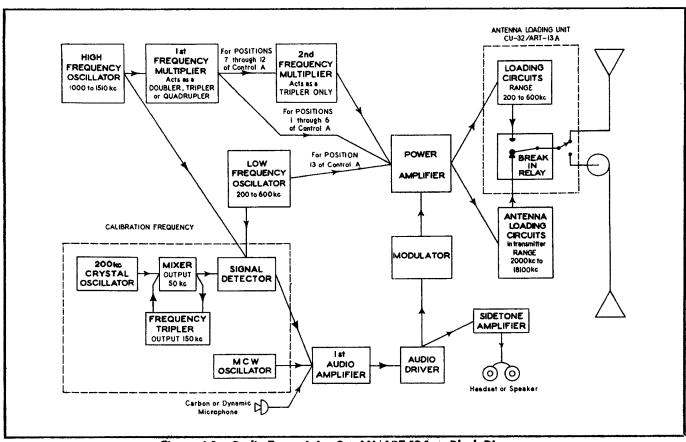



Figure 4-1. Radio Transmitting Set AN/ART-13A — Block Diagram

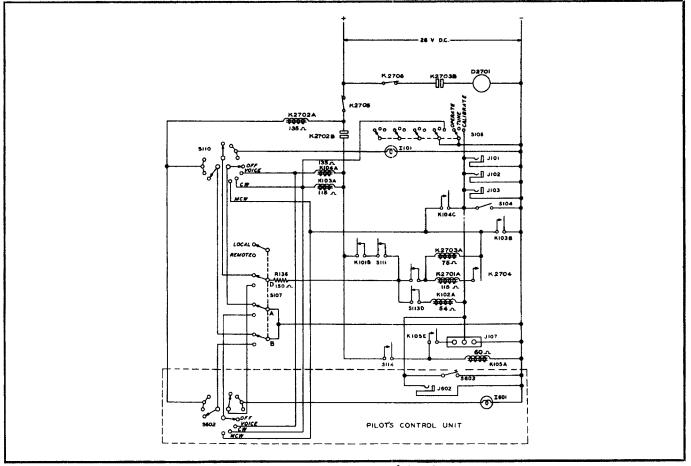



Figure 4-2. Power Control Circuits

f. POWER AMPLIFICATION AND ANTENNA COUPLING.—The Power Amplifier Stage provides for power amplification of the modulated carrier. Output of this stage is connected to an antenna loading circuit where power is delivered to the antenna. Two separate antenna loading circuits are provided. The loading circuits in Radio Transmitter T-47A/ART-13 are used for transmission frequencies in the range 2000 kc to 18,100 kc. A separate unit known as Antenna Loading Unit CU-32/ART-13A is equipped with the loading circuits for transmission frequencies in the range 200 kc to 600 kc. Separate output terminals on the transmitter are used to connect both the low frequency and high frequency output to two separate terminals on Antenna Loading Unit CU-32/ART-13A. The low frequency input connects to the loading circuits within the loading unit. Output from these circuits passes to a "break-in" relay also incorporated in the loading unit. This relay also handles the high frequency output of the transmitter. When transmitter is operated in the 2000 kc to 18,100 kc frequency range, the "break-in" relay in Antenna Loading Unit CU-32/ART-13A is not operated and its contacts provide a closed path for connection of high frequency terminal to the antenna directly. When transmitter is operated in 200 kc to 600 kc frequency range, the relay in Antenna Loading Unit CU-32/ART-13A is operated by the telegraph key or microphone switch. The antenna is then connected to the output of the low frequency loading circuits in the unit; thus permitting power to be delivered to antenna whenever the telegraph key or microphone switch is depressed. When the telegraph key or microphone switch is released, the relay reconnects the antenna to the high frequency antenna terminal of the transmitter. The high frequency antenna terminal of the transmitter is connected to the receiver antenna terminal whenever the telegraph key or microphone switch is released thus providing for "break-in" operation of an associated radio receiving set.

g. ANTENNAS.—The output of the Antenna Loading Unit may be connected to either a Trailing Wire or a Fixed Aircraft Antenna. Two separate antenna terminals are provided. A manually operated switch on the Loading Unit is used to select either antenna.

b. SIDETONE AMPLIFIER.—A portion of the output from the Audio Driver Stage is coupled to a separate audio amplifier known as the Sidetone Amplifier. Output from this amplifier is used to operate the headset or a speaker. The Sidetone Amplifier provides for monitoring the code or voice that modulates the carrier. It also provides a means of listening to the output of the CFI Unit that is used in checking calibration of the high or low frequency oscillators. This action is described more fully in the following paragraph.

i. CALIBRATION FREQUENCY INDICATOR ("CFI") UNIT.—This unit which is contained in the transmitter, consists of four major circuits which operate to provide a constant 50 kc signal (rich in harmonics) that is then mixed with output of either the

high or low frequency oscillator to produce an audible beat note. Calibration of the carrier frequency oscillator can then be checked at numerous points by "zero beating" the 50 kc standard against the carrier frequency oscillator. A beat note will be heard when the carrier frequency or its harmonics are approximately equal to some harmonic of the 50 kc standard.

j. GENERATION.—Generation of the 50 kc signal in the CFI Unit is accomplished by using a circuit known as a regenerative frequency divider. The circuit produces a 50 kc fundamental frequency and harmonic output voltages while using a 200 kc crystal as the controlling standard. The output of the 200 kc Crystal Controlled Oscillator and the 150 kc output of a Frequency Tripler Stage are both fed to a Mixer Stage. The difference frequency (50 kc) is present in the output of the Mixer Stage. A portion of this 50 kc signal is fed back to the Frequency Tripler Stage to provide the 150 kc output of that stage. It is the 50 kc signal that is obtained from the Mixer Stage that is used to "beat against" (or mix with) the carrier frequency oscillator of the transmitter and is introduced into the Signal Detector Stage in the CFI Unit to produce an audible beat note.

k. OUTPUT.—Output from the Signal Detector in the CFI Unit is coupled to the First Audio Amplifier. The audible beat note is further amplified in passing through the Audio Driver Stage and the Sidetone Amplifier to the headset.

# 2. DETAILED ANALYSIS OF MAJOR CIRCUITS.

Simplified schematic diagrams of the basic circuits of the equipment are presented in the following paragraphs. Each is accompanied by a discussion of the theory of operation or function of important parts and circuits.

CONTROL CIRCUITS.—Primary a. POWER power for application to the dynamotor is controlled by contactors located in Dynamotor Unit DY-17/ ART-13A. All relays and contactors in the equipment, except K2705, K2706, and K2704, operate from the 28-volt d-c power source. Relays K2705 and K2706 are thermal-operated overload relays which serve to protect the equipment from damage due to overloads. Relay K2704 is, in reality, a pressure-operated switch and requires no voltage for operation. This relay has been calibrated to operate when the atmospheric pressure has been reduced to a pressure corresponding to altitudes between 20,000 and 25,000 feet above sea level. Complete control of all power contactors is possible from either the transmitter or the remote position.

- (1) Figure 4-2 shows a simplified schematic of the power control circuits.
- (2) Relays K2705 and K2706 are normally closed and operate to break the primary circuits when an overload occurs. These relays may be returned to the normal position by pressing the "RESET" buttons located on the Dynamotor Unit. Primary overload relay K2705 is designated as TRANSMITTER RESET

and dynamotor overload relay K2706 as DYNA-MOTOR RESET. With the overload relays K2705 and K2706 in normally closed positions and the "LOCAL-REMOTE" switch, S107, in the "LOCAL" position, placing the "EMISSION" selector switch, \$110, in the "VOICE" position will complete the circuit necessary for the operation of the primary power contactor, K2702. The primary power contactor coil, K2702A, is energized by the circuit through LOCAL-REMOTE switch \$107, EMISSION selector switch S110, primary power contactor coil K2702A and the contacts of primary overload relay K2705. When the power control relay, K2702, has operated, the circuit necessary for the operation of the "voice" relay, K104, is completed through the contacts of primary overload relay K2705, primary power contactor contacts K2702B, "voice" relay coil K104A, the contacts of EMISSION selector switch \$110, and the contacts of LOCAL-REMOTE switch \$107. If the power level switch, S106, is in either the "TUNE" or "OPER-ATE" position, it is necessary to operate the TEST switch, \$104, or to complete the circuit through the throttle switch jack, J101, MICROPHONE jack J102, or KEY jack J103, before the dynamotor input relay, K2703A, will operate.

- (3) Operating the EMISSION selector switch, S110, to the CW position completes the circuit necessary for the operation of CW relay K103, through the contacts of LOCAL-REMOTE switch S107, EMISSION selector switch S110, and CW relay coil K103A. When the CW relay, K103, has operated, the coil of dynamotor input relay K2703 is energized through the contacts of CW relay K103B, dynamotor input relay coil K2703A, the contacts of safety interlock switch S117, the contacts of Autotune limit switch section S111, motor control relay contacts K101B, primary power contactor contacts K2702B, and the normally closed contacts of overload relay K2705.
- (4) If the EMISSION selector switch, S110, is operated to the MCW position, the primary power contactor K2702, is operated by the circuit through the normally closed contacts of overload relay K2705, the coil of primary power contactor K2702, the contacts of EMISSION selector switch S110, and the contacts of LOCAL-REMOTE switch S107. Dynamotor input relay K2703 is energized by the circuit through the normally closed contacts of primary overload relay K2705, motor control relay contacts K101B, the contacts of Autotune limit switch section S111, the contacts of safety interlock switch S117, dynamotor input relay coil K2703A, the contacts of EMISSION selector switch S110, and the contacts of LOCAL-REMOTE switch S107. The operation of dynamotor input relay K2703 closes the contacts of this relay and applies power to the motor section of dynamotor D2701 through the normally closed contacts of dynamotor overload relay K2706.
- (5) If the power level switch S106 is operated to the "CALIBRATE" position, CW relay K103 is oper-

- ated through the normally closed contacts of primary overload relay K2705, primary power contactor contacts K2702B, CW relay coil K103A and the contacts of power level switch S106. The dynamotor input relay, K2703, is operated by the circuit through the normally closed contacts of primary overload relay K2705, primary power contactor contacts K2702B, Autotune motor control relay contacts K101B, the contacts of Autotune limit switch section S111, the contacts of safety interlock switch S117, dynamotor input relay coil K2703A, and CW relay contacts K103B.
- (6) With LOCAL-REMOTE switch S107 in the local position the primary power contactor, K2702, and the transmitter panel pilot lamp, I101, will be energized when the EMISSION selector switch, S110, is in any position other than the "OFF" position. Primary power contactor K2702 will be operated by the circuit through the normally closed contacts of primary overload relay K2705, primary power contactor coil K2702A, the contacts of EMISSION selector switch S110, and the contacts of LOCAL-RE-MOTE switch \$107. The pilot lamp, I101, will be energized through the normally closed contacts of primary overload relay K2705, primary power contactor contacts K2702B, Autotune motor control relay contacts K101B, the contacts of Autotune limit switch section S111, the contacts of safety interlock switch S117, the pilot lamp series resistor, R136, the contacts of LOCAL-REMOTE switch S107 and the contacts of EMISSION selector switch S110.
- (7) When the LOCAL-REMOTE switch, S107, is placed in the "REMOTE" position, control of all power circuits is transferred from the transmitter panel controls to the controls located on the remote control unit.

#### Note

Operation of the control panel is identical to that of the control box described below except that there is no key or microphone jack on the panel.

(8) If the EMISSION selector switch, S602, is placed in the "VOICE" position, the primary power contactor, K2702, is energized by the circuit through the normally closed contacts of primary overload relay K2705, primary power contactor coil K2702A, the contacts of EMISSION selector switch S602, and the contacts of LOCAL-REMOTE switch S107. To complete the circuit necessary for the operation of the dynamotor input relay, K2703, the telegraph key, S603, must be operated or the microphone jack, J602, circuit must be completed. The "voice" relay, K104, is operated by the circuit through the normally closed contacts of primary overload relay K2705, primary power contactor contacts K2702B, "voice" relay coil K104A, the contacts of EMISSION selector switch S602, and the contacts of LOCAL-REMOTE switch S107. The dynamotor input relay, K2703, is operated by the circuit through the normally closed contacts of primary overload relay K2705, primary power contactor contacts K2702B, Autotune motor control relay contacts K101B, the contacts of Autotune limit switch section S111, the contacts of safety interlock switch S117, dynamotor input relay coil K2703, "voice" relay contacts K104C and telegraph key S602 or microphone jack J602.

- (9) When the EMISSION selector switch, S602, is operated to the CW position, the CW relay, K103, is operated by the circuit through the normally closed contacts of primary overload relay K2705, primary power contactor contacts K2702B, CW relay coil K103A, the contacts of EMISSION selector switch S602 and the contacts of LOCAL-REMOTE switch S107. The operation of CW relay K103 completes the circuit necessary for the operation of dynamotor input relay K2703. Dynamotor input relay K2703 is operated by the circuit through the normally closed contacts of primary overload relay K2705, primary power contactor contacts K2702B, Autotune motor control relay contacts K101B, the contacts of Autotune limit switch section S111, the contacts of safety interlock switch S117, dynamotor input relay coil K2703A and CW relay contacts K103B. The operation of the dynamotor input relay, K2703, applies power to the motor section of dynamotor D2701 through the normally closed contacts of dynamotor overload relay K2705 and dynamotor input relay contacts K2703B.
- (10) If the EMISSION selector switch, S602, is operated to the MCW position, primary power contactor K2702 is held operated and dynamotor input relay K2703 is energized through the normally closed contacts of primary overload relay K2705, primary power contactor contacts K2702B, Autotune motor control relay contacts K101B, the contacts of Autotune limit switch section S111, the contacts of safety interlock switch S117, dynamotor input relay coil K2703A, the contacts of EMISSION selector switch S602 and the contacts of LOCAL-REMOTE switch S107.
- (11) With LOCAL-REMOTE switch S107 in the "REMOTE" position the primary power contactor, K2702, and the pilot lamp, I601, are energized when EMISSION selector switch S602 is in any position other than the "OFF" position. Primary power contactor K2702 is energized through the normally closed contacts of primary overload relay K2705, primary power contactor coil K2702A, the contacts of EMISSION selector switch S602, and the contacts of LOCAL-REMOTE switch S107. The pilot lamp, I601, is energized by the circuit through the normally closed contacts of primary overload relay K2705, primary power contactor contacts K2702B, Autotune motor control relay contacts K101B, the contacts of Autotune limit switch section S111, the contacts of safety interlock switch \$117, pilot lamp series resistor R136, the contacts of LOCAL-REMOTE switch \$107 and the contacts of EMISSION selector switch S602.
- (12) The power change relay, K2701, operates when the pressure is reduced to a pressure correspond-

ing to altitudes between 20,000 and 25,000 feet above sea level by the operation of the pressure operated relay, K2704. If the transmitter is operating with VOICE emission, power change relay coil K2701A is energized by the circuit through the normally closed contacts of primary overload relay K2705, primary power contactor contacts K2702B, Autotune motor control relay contacts K101B, the contacts of Autotune limit switch section S111, the contacts of safety interlock switch S117, power change relay coil K2701A, the contacts of pressure operated relay K2704, the contacts of "voice" relay K104 and the closed circuit of MICROPHONE jack J102. If the transmitter is operating with CW emission and pressure operated relay K2704 has operated, the operating circuit for power change relay K2701 is through the normally closed contacts of primary overload relay K2705, primary power contactor contacts K2702B, Autotune motor control relay contacts K101B, the contacts of Autotune limit switch section S111, the contacts of safety interlock switch S117, power change relay coil K2701A, the contacts of pressure operated relay K2704 and CW relay contacts K103B. If the transmitter is operating with MCW emission, the energizing circuit for power change relay K2701 is through the normally closed contacts of primary overload relay K2705, primary power contactor contacts K2702B, Autotune motor control relay contacts K101B, the contacts of Autotune limit switch section S111, the contacts of safety interlock switch S117, power change relay coil K2701A, the contacts of pressure operated relay K2704, the contacts of EMISSION selector switch S110 or S602 and the contacts of LOCAL-REMOTE switch S107.

- b. FILAMENT CIRCUITS.—The filament power circuits of the transmitter are a combination of series and parallel connections. The filaments are supplied with power from the 28 volt d-c source. Figure 4-3 shows the filament connections in simplified form. All filament power is controlled by primary power contactor contacts K2702. The primary overload relay, K2705, operates to break the filament circuit when an overload occurs in the filament or associated circuits.
- c. HIGH VOLTAGE CIRCUITS.—Figure 4-4 shows, in simplified form, the high voltage circuits employed in the equipment.
- (1) The dynamotor employs an armature with dual windings and two commutators to give output voltages of 400 volts d-c and 750 volts d-c. To obtain the high voltage necessary for application to the power amplifier and modulator tubes, the 400 volt output is connected in series with the 750 volt output of the dynamotor. On the diagrams, figure 4-4 and figure 8-42, the low voltage section of the dynamotor is designated as G1 and the high voltage section is designated as G2. When the power change relay, K2701, is in the normal position the positive lead from low voltage dynamotor section G1 is connected to the negative lead of high voltage dynamotor section G2 through the contacts of power change relay

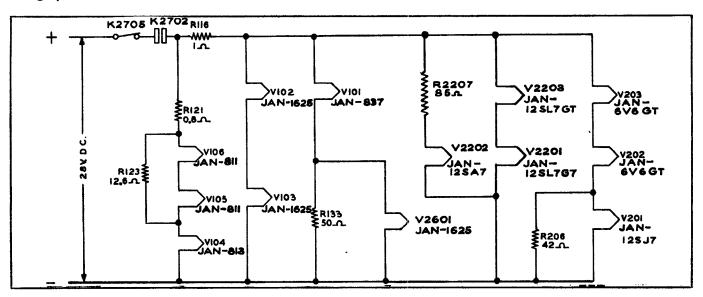



Figure 4-3. Filament Circuits

K2701, and milliammeter multiple resistor R2701B. The circuit necessary to energize the coil of power change relay K2701 is completed by the operation of the pressure-operated relay, K2704. When power change relay K2701 operates, the negative lead of high voltage dynamotor section G2 is disconnected from the positive lead of low voltage dynamotor section G1 and is grounded through milliammeter multiplier resistor R2701A and B and the contacts of power change relay K2701. Spark suppressing circuits have been incorporated in the output circuits of the dynamotor to suppress the sparks generated at the motor and generator brushes.

# d. EMISSION SELECTION AND CARRIER CONTROL.

(1) The "EMISSION" selector switch S110 is a combination transmitter "ON-OFF" switch and "EMISSION" selector switch. Operating "EMISSION" selector switch S110 to the "VOICE," "CW" or "MCW" position will operate the primary contactor K2702 (see fig. 4-5). (Note: Refer to paragraph 2a, this section for detailed explanation of the operation of primary power contactor K2702.) Selecting "VOICE" emission by the operation of "EMISSION" selector switch S110 operates "VOICE" relay K104. "VOICE" relay contacts K104B disconnect the output of the "MCW" oscillator tube, V2203, from the input to the speech amplifier. "VOICE" relay contacts K104C connect the coil of dynamotor input relay K2703 to the emission control circuits of throttle

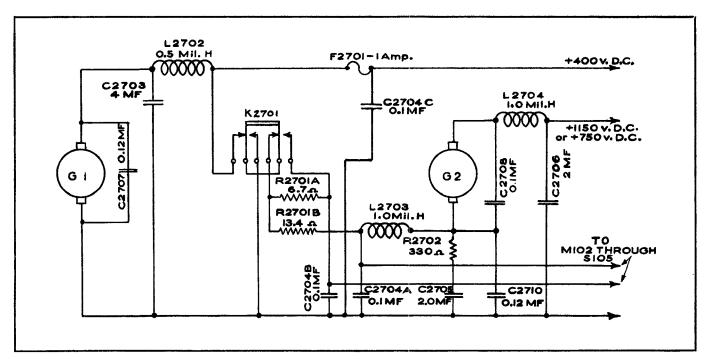



Figure 4-4. High Voltage Circuits

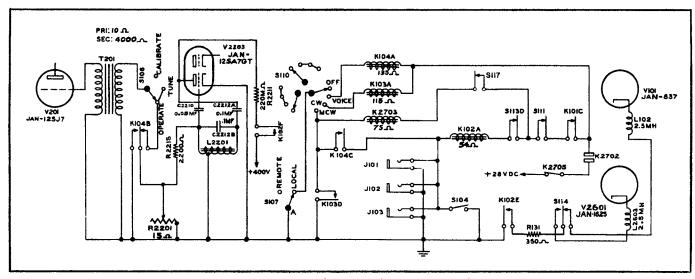



Figure 4-5. Emission Selection and Carrier Control Circuits

switch jack J101, "MICROPHONE" jack J102, "KEY" jack J103 and the "TEST" switch, S104. Selecting "CW" emission completes the circuit necessary for the operation of "CW" relay K103. "CW" relay contacts K103D complete the circuit necessary for the operation of dynamotor input relay K2703 which, in turn, applies primary power to the dynamotor, D2701. Selecting "MCW" emission operates dynamotor input relay K2703 directly.

(2) The r-f carrier is keyed by opening the cathode circuit of the oscillator and removing the screen voltage from the power amplifier. The keying relay, K102, has six sets of contacts. The contacts K102E complete the oscillator cathode circuit by grounding resistor R131. Keying relay contacts K102E and resistor R131 serve as a cathode return for both the h-f oscillator tube, V101, and the 1-f oscillator tube, V2601. The desired oscillator circuit is selected by

the operation of oscillator selecting switch S114 which operates in conjunction with Control A.

(3) The "MCW" oscillator tube, V2203, is in operation whenever keying relay K102 is in the operated position. The voltage developed across the resistor, R2201, is applied to the input of the 1st Audio Amplifier through "VOICE" relay contacts K104B, the contacts of power level switch, \$106 and the input transformer, T201. Keying relay contacts K102F apply plate voltage to MCW oscillator tube V2203. During periods of "CW" transmission the output of the "MCW" oscillator is fed through the First Audio Amplifier and Audio Driver to the sidetone amplifier and the keying may be monitored by listening to the output of the sidetone amplifier. When power level switch S106 is in the "CALIBRATE" position, the circuit from the output of the "MCW" oscillator to the input of the First Audio Amplifier is broken. Also, with the power level switch \$106 in the "CALIBRATE" posi-

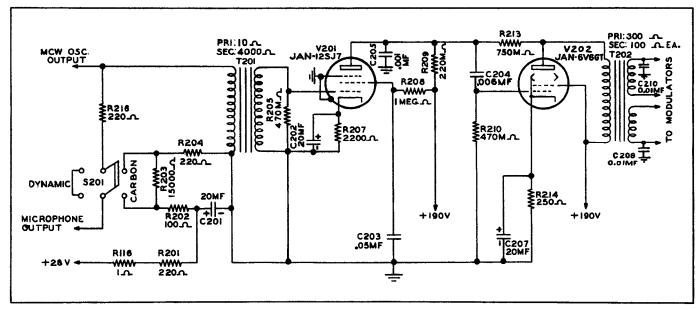



Figure 4-6. Speech Amplifier Circuits

# Section IV Paragraph 2

tion, voltage is removed from the screen grid of power amplifier tube V104 and this grid is connected back to the control grid of the same tube through a pair of contacts on switch \$106. This connection permits negative voltage on control grid to be applied to screen grid and thereby cuts off output from power amplifier stage. The keying relay, K102, may be operated by closing the circuits of the Throttle Switch jack, J101, the "MICROPHONE" jack, J102, or the "KEY" J103, or by operating the "TEST" switch, S104. Keying interlock switch \$113D is operated in conjunction with output network switch \$113, and breaks the energizing circuit to the coil of keying relay K102 when output network switch S113 is operated, thus removing excitation from the R-F circuits to prevent arcing at the switch contacts. The Autotune limit switch section, S111, and Autotune motor control relay contacts K101C are also connected in series with keying relay coil K102A so that when Autotune limit switch section \$111 or Autotune motor control relay K101 operates, the holding circuit for keying relay K102 will be broken and arcing at all switch contacts will be prevented.

- e. AUDIO CIRCUITS.—The audio system consists of a two stage speech amplifier, push-pull modulators, a sidetone amplifier, and an "MCW" audio tone oscillator, See simplified circuit in figure 4-6.
- (1) SPEECH AMPLIFIER.—Either of two types of microphones may be used with this equipment. The input to the speech amplifier has been designed so that by operating a switch, proper connections are made to the "MICROPHONE" jack J102, to match the output of either a carbon or dynamic type of microphone. The

microphone circuit selector switch, \$201, is located beneath the tuning chart on the front panel of the transmitter (see fig. 2-2). If microphone circuit selector switch \$201 is placed in the "CARBON" position, the bleeder composed of R201, R202, R203, and R204 connected between the positive terminal of the 28-v d-c power source and ground (Br. earth) provides the voltage necessary for the operation of the carbon type of microphone. The operation of microphone circuit selector switch S201 also connects limiting resistor R203 between "MICROPHONE" jack J102 and the input circuit of the speech amplifier to reduce the level of the output of the carbon microphone to the level of the output of a dynamic microphone. Thus, no audio gain control has been provided because the level of the input to the speech amplifier is the same when using a dynamic microphone as it is when using a carbon microphone. If microphone circuit selector switch S201 is placed in the "DY-NAMIC" position, the voltage is removed from the input circuit and the "MICROPHONE" Jack, J102, is connected in series with limiting resistor R216 and the primary of the input transformer T201. The two stage speech amplifier employs a Type JAN-12SJ7 1st Audio Amplifier tube, V201, and a Type JAN-6V6GT audio driver tube, V202. The output of the microphone is coupled by the input transformer, T201, to the grid of 1st Audio Amplifier tube V201. The output of 1st Audio Amplifier tube V201 is coupled to the grid of audio driver tube V202 by the capacitor C204. The output of audio driver tube V202 is coupled to the grids of the modulator tubes, V105 and V106, by driver transformer T202.

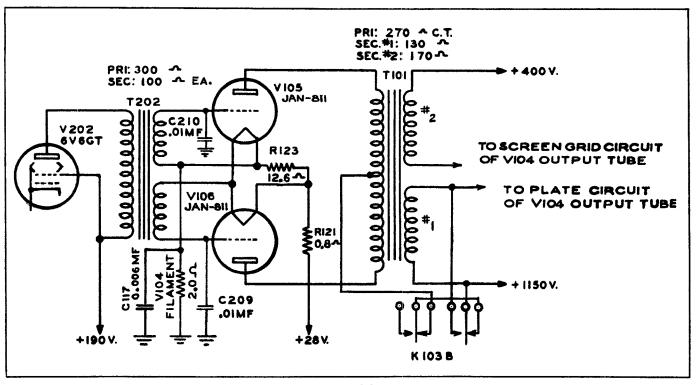



Figure 4-7. Modulator Circuit

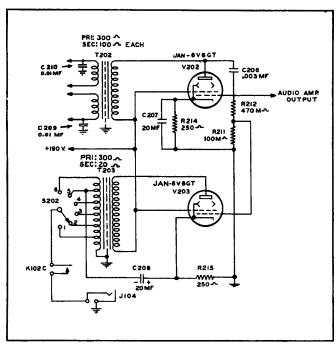



Figure 4-8. Sidetone Amplifier Circuit

- (2) MODULATOR.—The modulator employs two Type JAN-811 high mu triodes connected in push-pull, and operating Class B. The modulators are capable of modulating the carrier (100 watts nominal) at least 90% with full voltage applied to the power amplifier. While the JAN-811 is essentially a zero bias tube when used with plate voltages as high as 1150 volts d-c, it becomes necessary to apply some bias to the grid of the tube to keep the static plate current as low as practicable. In this application the bias is obtained from the 28-volt d-c supply by utilizing the average voltage drop through the filaments of the tubes to obtain equal voltage for application to the grids of both modulator tubes. The output of the modulators is coupled to the r-f circuit by modulation transformer T101 (see fig. 4-7). Both the screen and plate of the final amplifier tube, V104, are modulated. The full output voltage of the dynamotor 1150 volts d-c, is applied to the plates of the modulator tubes, V105 and V106. "CW" relay contacts K103B remove plate voltage from the modulators when "CW" emission is selected.
- (3) SIDETONE AMPLIFIER.—A sidetone amplifier is incorporated in the same unit as the two stage speech amplifier.

The amplifier employs a Type JAN-6V6GT beam pentode tube, V203. The output of the audio driver tube, V202, in addition to being applied to the primary of driver transformer T202, is applied to a voltage dividing system consisting of C206, R211 and R212. (See fig. 4-8). The grid of the sidetone amplifier tube, V203, is coupled to the junction of R211 and R212 and the voltage developed across resistor R211 drives the grid of V203 to provide sufficient output from the sidetone amplifier to operate headphones or speaker. The output of sidetone amplifier tube V203

is coupled to the "SIDETONE" jack, J104, by "SIDETONE" impedance matching transformer T203 through sidetone "OUTPUT" switch S202 and keying relay contacts K102C. The turns-ratio of "SIDETONE" impedance matching transformer T203 may be varied by operating the sidetone "OUTPUT" switch S202. The output of the sidetone amplifier is keyed by the operation of keying relay K102. The "SIDETONE" jack, J104, may be connected in parallel with auxiliary jack J105 by connecting a jumper between terminals 26 and 27 of cable connector J106. The necessary plate and screen voltages for the sidetone amplifier are obtained by tapping the bleeder system of the low voltage output of the dynamotor.

(4) "MCW" OSCILLATOR .- The "MCW" audio tone oscillator utilizes a Type JAN-12SL7GT dual triode tube, V2203. One triode section of this tube is used for the "MCW" audio oscillator and the other triode section is used in conjunction with the CFI Unit which is described in the next paragraph. The "MCW" oscillator is in operation whenever keying relay contacts K102F apply voltage to the plate of "MCW" oscillator tube, V2203, when keying relay K102 is operated (see fig. 4-9). The audio frequency output of the "MCW" oscillator is controlled by varying "MCW" output control resistor R2201. A screwdriver slot for varying resistor R2201 is accessible through a hole at the rear of the "MCW-CFI" Unit. The voltage developed across MCW output control resistor R2201 is coupled to the input of the speech amplifier through "VOICE" relay contacts K104B and the contacts of power level switch, S106. When "VOICE" emission has been selected, "VOICE" relay contacts K104B disconnect the output of the "MCW" oscillator tube, V2203, from the input circuit of the speech amplifier. During periods of "CW" transmission the "MCW" oscillator is keyed and the output is fed to the input of the speech amplifier. The output of the sidetone amplifier provides a means of monitoring the keying.

f. "CFI" CALIBRATION OSCILLATOR UNIT.—A regenerative frequency divider circuit is employed

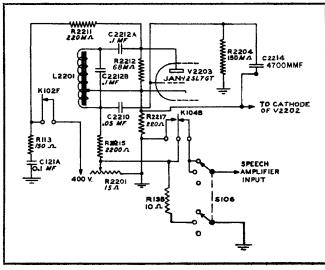



Figure 4-9. MCW Oscillator Circuit

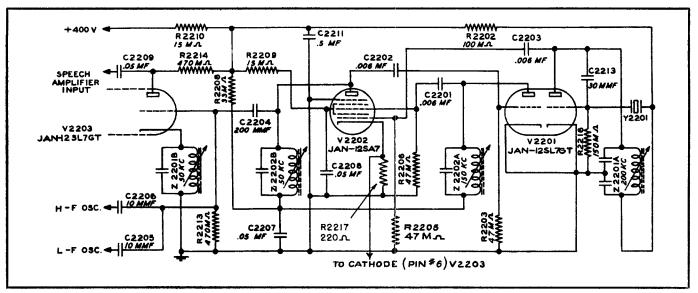



Figure 4-10. CFI Oscillator Circuits

in the "CFI" Unit to obtain a stable 50-kc fundamental frequency and harmonics that are used to check the frequency of the carrier oscillator of the transmitter. The circuit utilizes a 200-kc crystal as the controlling standard. A simplified schematic diagram of this oscillator is shown in figure 4-10. Both triode sections of a JAN-12SL7GT tube, V2201, a JAN-12SA7 pentagrid converter tube, V2202, and one section of another JAN-12SL7GT tube, V2203, are used in the calibration oscillator. Plate voltage is supplied to these tubes from the low voltage output section of the dynamotor and is applied when the power level switch S106 is operated to the "CALIBRATE" position. Operating power level switch \$106 to "TUNE" or "OPERATE" positions removes the plate voltage from the "CFI" tubes and disables the circuit.

(1) The application of plate voltage to the oscillator section of JAN-12SL7GT tube V2201, starts the 200-kc crystal oscillator. This produces a frequency of

200 kc, plus random tube and circuit noises, to appear on the injector grid of JAN-12SA7 mixer tube V2202. The random noises appearing on the plate of JAN-12SA7 excites frequency tripler section of JAN-12SL7GT tube V2201. Since the plate circuit of this section of JAN-12SL7GT tube V2201 is tuned to 150 kc, only the 150-kc components of the random noises are amplified. This 150-kc component of random noise is then impressed on control grid of JAN-12S7 mixer tube. Since the plate circuit of the JAN-12SA7 is tuned to 50 kc, the 50-kc difference frequency produced by the combination of a 200-kc voltage and a 150-kc voltage appearing in the JAN-12SA7 tube, is the frequency amplified. This 50-kc voltage continues to excite the second triode section of V2201, which because of its tuned 150-kc plate circuit, triples the frequency and sustains the 150-kc voltage on the JAN 12SA7 grid. The 50-kc voltage appearing on the JAN-12SA7 plate becomes the calibration frequency.

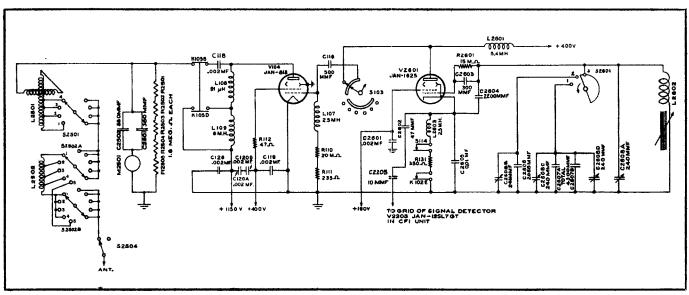



Figure 4-11. Low Frequency R-F Circuits

- (2) One triode section of the second JAN-12SL7GT tube, V2203, is employed as a signal detector. A portion of the 50-kc voltage appearing on the plate of JAN-12SA7 tube, V2202, is coupled to the grid of V2203 by capacitor C2204. Depending upon the transmission frequency selected, a portion of the output of the low frequency oscillator or the high frequency oscillator is coupled to the grid of V2203 by capacitor C2206 or C2205. The beat note that is generated in the signal detector is coupled to the input of the first amplifier by capacitor C2209.
- (3) When power level switch S106 is operated to the "CALIBRATE" position, the circuit from capacitor C2209 to the input of the first audio amplifier is completed and the output of the signal detector will be heard through the sidetone circuits of the transmitter.
- (4) The second triode section of V2203 is utilized as the "MCW" audio oscillator. A description of this circuit is given in paragraph 2e(4) entitled "MCW OSCILLATOR."
- (5) The inductor tuning screws that protrude through the sides of the shield cans containing tank circuits Z2201A, Z2201B, Z2202A and Z2202B should not be disturbed for any reason unless the alignment procedure is thoroughly understood. The alignment of these circuits is described in the Maintenance section of this manual.
- g. RADIO-FREQUENCY CIRCUITS.—Radio Transmitter T-47A/ART-13 employs two r-f systems. One system covers the frequency range 200 kc to 600 kc and the other system the frequency range 2000 kc to 18,100 kc. Separate oscillator tubes are employed for each frequency range. The same power amplifier tube serves both systems.
- (1) LOW-FREQUENCY R-F CIRCUITS.—The l-f oscillator employs a Type JAN-1625 beam pentode tube, V2601. This oscillator operates in the frequency range 200 kc to 600 kc. Frequency range is covered in three bands which have the following individual ranges:

200 kc to 285 kc 285 kc to 415 kc 415 kc to 600 kc

A combination of capacitive and inductive grid tuning is employed. The 1-f oscillator "COARSE" tuning switch, \$2601 (control "F"), varies the grid circuit capacity by increasing the number of padding capacitors connected in the circuit as the switch is rotated toward the lowest frequency position (see fig. 4-11). Trimmer capacitors have been connected in parallel with the padding capacitors to provide means of fine adjustment of grid circuit capacity. These trimming capacitors are of the ceramic type and the capacity of each may be varied by rotating one plate with respect to the other. In spite of the small physical size, this type of capacitor provides a means of varying the capacity over a wide range. With the end points of the frequency band set and the trimmer capacitors adjusted to give some overlap in each position of I-f

oscillator "COARSE" tuning switch \$2601, all fine frequency adjustments within the frequency range of each switch position are made by varying the inductance of the inductor L2602. The inductance of L2602 is altered by adjusting the position of the core, which is actuated by a tuning screw. The position of the tuning core within the inductor is determined by control G. When I-f operation is desired and the I-f (13) position of control A has been selected, the cathode circuit of the l-f oscillator tube, V2601 is coupled through the contacts of oscillator selecting switch S114 and bias resistor R131 to keying relay contacts K102E of keying relay K102. Operation of keying relay K102 completes the cathode circuit to ground. Screen voltage for 1-f oscillator tube V2601 is obtained by tapping the dynamotor low voltage output bleeder. The output of 1-f oscillator tube V2601 is coupled to the grid of the final amplifier tube, V104, by second multiplier range switch \$103 when control A is operated in the 1-f position. Selecting 1-f operation operates output circuit selecting relay K105 which connects the plate circuit of final amplifier tube V104 to the external loading circuits in Antenna Loading Unit CU-32/ART-13A. The h-f output network is completely removed from the circuit by the operation of output circuit selecting relay K105. Output circuit selecting relay contacts K105D remove the shorting connection across the plate choke, L109. Screen voltage for final amplifier tube V104 is obtained from the low voltage output of the dynamotor. The full voltage of the high voltage section of the dynamotor is applied to the plate of final amplifier tube V104. The external loading coil in addition to being an antenna loading coil is also the power amplifier plate tank circuit. A tapped inductor and variometer provides means of adjusting the power amplifier plate tank tuning.

(2) HIGH FREQUENCY R-F CIRCUITS.—The h-f oscillator employs a pentode Type JAN-837 tube, V101, in a variable frequency oscillator circuit. The oscillator operates within the frequency range 1000 kc to 1510 kc. This frequency range is covered in two bands, 1000 kc to 1200 kc, and 1200 kc to 1510 kc. The band of frequencies within which output is obtained, is dependent on the position of h-f oscillator range switch S101. Capacitors C101 and C135, (see fig. 4-12) are connected in the grid circuit of the h-f oscillator tube V101, by h-f oscillator range switch S101 which is operated by control A. Alternate positions of control A add or remove the padding capacitors C101 and C135. With control A in the 2.0-mc to 2.4-mc position h-f oscillator range switch S101 is closed, giving the maximum grid circuit capacitance and consequently the lowest frequency output. Therefore, when control A is in the 2.0-mc to 2.4-mc position, oscillator output is obtained in the frequency range 1000 kc to 1200 kc. When control A is rotated to the 2.4-mc to 3.0-mc position, h-f oscillator range switch \$101 is opened, removing capacitors C101 and C135 from the circuit, and oscillator output is obtained in the frequency range 1200 kc to 1510 kc. When control A is operated to the 3.0-mc to 3.6-mc

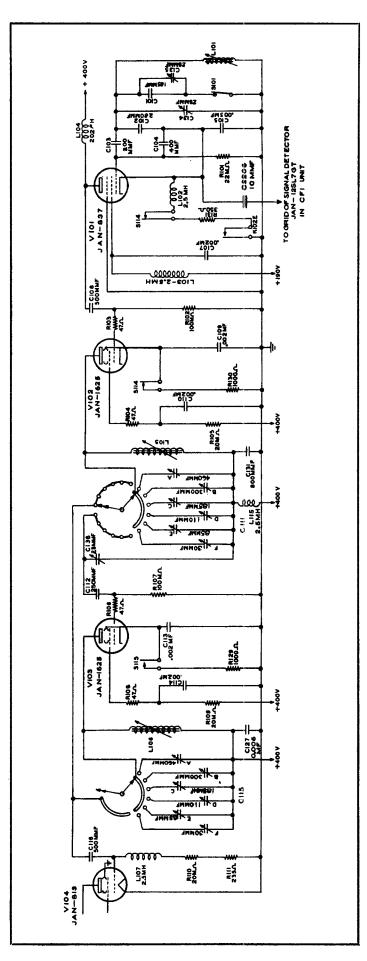



Figure 4-12. High Frequency R-F Circuits

position, h-f oscillator range switch \$101 is again operated to the closed position and oscillator output is obtained in the frequency range 1000 kc to 1200 kc. In the remaining nine h-f positions of control A, h-f oscillator range switch S101 is alternately opened and closed to give oscillator output as indicated above. Trimming capacitors C134 and C135 have been provided to aid in setting the end-points of the two frequency bands. When setting the h-f end of the 1000-kc to 1200-kc band, the grid capacity is trimmed using variable capacitor C135. When the h-f end of the 1200-kc to 1510-kc band is set, the grid tuning capacity is trimmed by using variable capacitor C134. Fine frequency adjustment within each band is made by varying the inductance of grid tuning inductor L101. The inductance of L101 is varied by adjusting the position of the tuning slug within the coil. The position of the tuning slug is determined by control B. Approximately 20 revolutions of control B will cover the entire frequency range of the band upon which the oscillator is operating, with some overlap on both ends of the band. A portion of the output of the h-f oscillator tube, V101, is fed to the grid of the CFI signal detector tube, V2203, to permit the calibration of h-f oscillator against the crystal oscillator circuit of CFI Unit. When h-f operation has been selected, rotating control A to any one of the twelve h-f positions will close the cathode circuit of h-f oscillator tube, V101, through cathode choke L102, the contacts of oscillator selecting switch \$114 and the cathode resistor R131, to keying relay contacts K102E. The operation of keying relay K102 complete the cathode circuit to ground. Screen voltage for h-f oscillator tube V101 is obtained by tapping the bleeder across the low voltage output of the dynamotor. The full voltage of the low voltage section of the dynamotor is applied to the plate of h-f oscillator tube V101.

(3) To obtain r-f output in the frequency range 2000 kc to 18,100 kc, the output of the h-f oscillator must be multiplied from two to twelve times. The frequency multiplier tubes, V102 and V103, are inoperative when I-f operation has been selected. The frequency multiplier stages employ Type JAN-1625 beam pentode tubes. The first multiplier tube may operate as a frequency doubler, tripler, or quadrupler. The second multiplier tube operates only as a frequency tripler. The number of times that the frequency of the output of the h-f oscillator tube, V101, is multiplied is dependent upon the position of first multiplier range switch S102 and second multiplier range switch S103. The position of the multiplier range switches is determined by control A. Twelve h-f positions and one l-f position of control A are available. The twelve h-f positions permit the selection of any output frequency within the frequency range 2000 kc to 18,100 kc, while the 1-f position permits the selection of any output frequency within the frequency range of 200 kc to 600 kc.

(4) The 13 positions of Control "A" and the frequency range covered by each is given in table 4-1.

(5) HIGH FREQUENCY TUNING CONTROL "A".

TABLE 4-1. FREQUENCY RANGE COVERED BY POSITIONS OF HIGH FREQUENCY TUNING CONTROL "A"

| Control "A" Position | Frequency Range  |
|----------------------|------------------|
| 1                    | 2.0 to 2.4 mc    |
| 2                    | 2.4 to 3.0 mc    |
| 3                    | 3.0 to 3.6 mc    |
| 4                    | 3.6 to 4.0 mc    |
| 5                    | 4.0 to 4.8 mc    |
| 6                    | 4.8 to 6.0 mc    |
| 7                    | 6.0 to 7.2 mc    |
| 8                    | 7.2 to 9.0 mc    |
| 9                    | 9.0 to 10.8 mc   |
| 10                   | 10.8 to 12.0 mc  |
| 11                   | 12.0 to 14.4 mc  |
| 12                   | 14.4 to 18.1 mc  |
| 13 (L.F.)            | 200 kc to 600 kc |

In the first six positions of Control "A," only the first frequency multiplier tube, V102, is in operation. First multiplier range switch S102 connects the output circuit of the first frequency multiplier tube, V102, to the input circuit of the final amplifier tube, V104. With Control "A" in position 1 or 2, first multiplier tube V102 is operating as a frequency doubler. With control "A" in position 3 or 4, first multiplier tube V102 is operating as a frequency tripler. With control "A" in position 5 or 6, first multiplier tube V102 is operating as a frequency quadrupler. First multiplier range switch S102 is a twelve-position switch and connects padding capacitors across the first multiplier tube V102 plate tuning inductor, L105. The capacity of the tank circuit is reduced as control "A" is rotated in a clockwise direction, thus increasing the frequency of the output of first multiplier tube V102 as control "A" is rotated through positions 1 through 6. When control "A" is rotated to position 7, the second multiplier tube, V103, is placed in operation. First multiplier range switch S102 acts to connect the output circuit of first multiplier tube V102 to the grid circuit of second multiplier tube V103 and breaks the circuit from the first multiplier tube V102 output circuit to the grid circuit of final amplifier tube V104. The second multiplier tube, V103, operates only as a frequency tripler. Control "A" when in position 7 to 12 inclusive, also operates second multiplier operating switch S115 to connect the cathode of second multiplier tube V103 through bias resistor R129 to ground. The first multiplier tube, V102 operates as a frequency doubler when control "A" is in position 7 or 8, as a frequency tripler when control "A" is in position 9 or 10, and as a frequency quadrupler when control "A" is in position 11 or 12. Second multiplier range switch section S103 connects the sections of padding capacitor C115 across the second multiplier tube V103 plate inductor, L106. Capacitors C111 and C115 are of the ceramic type and the capacity of each section may be adjusted by rotating one plate with respect to the other. The frequency multiplier stages are aligned by

# Section IV Paragraph 2

adjusting the capacity of C111 and C115 and the inductance of the plate tank inductors L105 and L106. The tuning slugs within inductors L105 and L106 are ganged with the tuning slug of L101, but may be adjusted in respect to each other and with respect to the tuning slug of L101, to obtain proper tracking within each frequency band. Plate and screen voltages for the frequency multiplier tubes, V102 and V103, are furnished by the low voltage section of the dynamotor. The voltage for application to the tube screens is dropped from the 400 volt output of the dynamotor to approximately 270 volts by dropping resistors R105 and R109.

(6) POWER AMPLIFIER AND OUTPUT NET-WORK.—The power amplifier stage employs a Type JAN-813 beam pentode tube and operates as a straight amplifier at all frequencies. When the transmitter is operating in the frequency range 200 kc to 600 kc, the output of the 1-f oscillator is capacitively coupled to the grid of the power amplifier (see fig. 4-13). When the transmitter is operating in the frequency range 2.0 mc to 6.0 mc the output of the first frequency multiplier tube, V102, is coupled to the grid of the power amplifier tube through first multiplier range switch S102 contacts and capacitor C116. When the transmitter is operating in the frequency range 6.0 mc to 18.1 mc the output of the second frequency multiplier tube, V103 is coupled to the grid of the final amplifier tube, V104, through second multiplier range switch contacts \$103 and capacitor C116. When I-f operation has been selected output circuit selecting relay K105 operates to connect the plate circuit of the final amplifier tube, V104, to external loading coil terminal J117.

With output circuit selecting relay K105 in the normal unoperated position the plate circuit of final amplifier tube V104 is connected to the output network that is incorporated in the transmitter proper. Voltage for the screen of power amplifier V104 is supplied by the low voltage section of the dynamotor. This voltage is applied through relay contacts K102F when the keying relay, K102, is operated. When the power level switch \$106 is in the "CALIBRATE" position, screen voltage for V104 is removed and screen is connected to the control grid circuit through resistor R-137. This connection permits negative voltage on control grid to be applied to screen grid and thereby cuts off output from the power amplifier stage. If power level switch is in the "TUNE" position, screen voltage on V104 is reduced through series resistor R-124 to protect the tube from overload when transmitter is tuned. Full screen voltage is applied to V104 when switch \$106 is in the "OPERATE" position.

(7) The operation of output circuit selecting relay K105 performs four functions, namely, (1) connects the output of the power amplifier to external loading coil terminal J117, (2) disconnects the antenna tuning and power amplifier plate tank circuit, (3) adds an additional r-f choke, in series with the power amplifier feed choke, L108, and (4) connects the positive 28 volt d-c lead to external relay connector J107 that connects to the "break-in" relay, K2501, in Antenna Loading Unit CU-32/ART-13A. When output control selecting relay K105 is in the normal or unoperated position, the output of the power amplifier tube is coupled to the plate tank and antenna coupling network in the transmitter proper through the capaci-

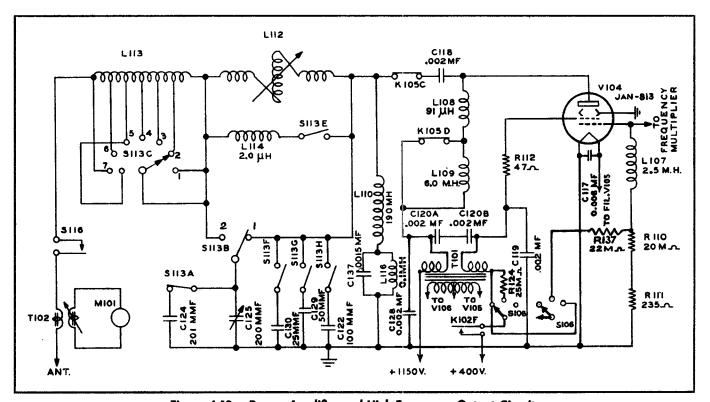



Figure 4-13. Power Amplifier and High Frequency Output Circuits

tor C118. The r-f choke, L109, is shorted out. Full output voltage of the high voltage section of the dynamotor is applied to the plate of final amplifier tube V104.

- (8) The output network is designed to operate as either a pi or L section. The multi-section output network switch, S113, connects the capacitors and inductors in the proper positions to permit matching the power amplifier plate circuit to most aircraft antennas at any frequency within the frequency range 2000 kc to 18,100 kc.
- (9) Table 4-2 will help the operator to better understand the operation of switch \$113.
- (10) The variometer, L112, is operated by control D. The variable capacitor C125 is operated by control E. These network controls, C, D, and E are connected to the Autotune system, but may be manually operated without disturbing the positions of the Autotune stop rings if the "CHANNEL" selector switch, \$108, is placed in the "MANUAL" position and the Autotune system allowed to operate. The network will tune and load to rated power with antennas 17 feet to 60 feet in length throughout the frequency range 3000 kc to 18,100 kc. If operation in the range 2000 kc to 3000 kc is desired, it may be necessary to connect Antenna Shunt Capacitor CU-24/ART-13 (fig. 1-8) across the network output to tune and deliver power to fixed aircraft antennas which are between 20 and 60 feet in length.

# 3. THE AUTOTUNE SYSTEM.

The Collins Autotune System is an electrically controlled means of mechanically repositioning adjustable elements such as tap switches, variable inductors, variable capacitors, etc. Any combination of these items such as are used in transmitting equipment can be tuned to any one of eleven pre-selected frequencies in a period of 25 seconds at normal room temperatures and with a normal supply voltage, by the use of the Autotune system. Provisions have also been made to permit manual tuning of the transmitter.

- a. MECHANICAL CHARACTERISTICS. The Autotune assembly consists of a group of positioning mechanisms, one of which is applied to each tuning element to perform the same function as a manual tuning knob. Each positioning mechanism provides precise angular setting of the tuning control to any one of eleven angular positions, each of which is readily adjustable. The settings for each frequency and for each control are entirely independent.
- (1) The positioning accuracy of the Autotune mechanism is of a very high order. Each setting is inherently independent of wear, backlash, alignment, supply voltage, etc. The accuracy of the settings is comparable to that of vernier manual controls. The parts are machined within close limits, and although operation is most precise, there are no delicate adjustments or fragile mechanisms. Permanently lubricated bearings are used in many places and the assembly is enclosed and protected from dust and corrosion.
- (2) Some of the controls which are operated by the Autotune mechanism only require a maximum change in position of one revolution (360°) or less but the "Fine High Frequency Tuning Control B" may require as many as 20 revolutions to reach a particular setting. Thus, the Autotune system provides two basic types of mechanisms; one known as the "Singleturn Unit" and the other as the "Multiturn Unit." Singleturn Units are used to operate controls that make one turn or less to reach final setting. The Multiturn Unit is used to operate control B only, since that control may require up to 20 revolutions to reach final setting.
- (3) IMPORTANT PARTS OF THE AUTO-TUNE SYSTEM.—The names, descriptions, and functions performed by important parts of the Autotune mechanism are given in the following tabulation. Numbers that appear in parenthesis after the part names refer to the parts in figure 4-14.
- (a) LINE SHAFT (1).—The line shaft extends the entire length of the Autotune casting and drives all

TABLE 4-2. FUNCTION OF MULTI-SECTION OUTPUT NETWORK SWITCH \$113

| Control "C"<br>Position | S113A* | S113B | S113C | S113D** | S113E  | S113F  | \$113G | S113 <b>H</b> |
|-------------------------|--------|-------|-------|---------|--------|--------|--------|---------------|
| 1                       |        | 1     | 1     |         | OPEN   | OPEN   | OPEN   | OPEN          |
| 2                       |        | 1     | 2     |         | OPEN   | OPEN   | OPEN   | OPEN          |
| 3                       |        | 1     | 3     |         | OPEN   | OPEN   | OPEN   | OPEN          |
| 4                       |        | 1     | 4     |         | OPEN   | OPEN   | OPEN   | OPEN          |
| 5                       |        | 1     | 5     |         | OPEN   | OPEN   | OPEN   | OPEN          |
| 6                       |        | 1     | 6     |         | OPEN   | OPEN   | OPEN   | OPEN          |
| 7                       |        | 1     | 7     |         | OPEN   | OPEN   | OPEN   | OPEN          |
| Ŕ                       |        | 2     | 7     |         | OPEN   | CLOSED | CLOSED | CLOSED        |
| 9                       |        | 2     | 7     |         | OPEN   | OPEN   | OPEN   | CLOSED        |
| 10                      |        | 2     | 7     |         | OPEN   | OPEN   | CLOSED | OPEN          |
| 11                      |        | 2     | 7     |         | OPEN   | CLOSED | OPEN   | OPEN          |
| 12                      |        | 2     | 7     |         | OPEN   | OPEN   | OPEN   | OPEN          |
| 13                      |        | 2     | 7     |         | CLOSED | OPEN   | CLOSED | OPEN          |

\*Operated by the rotation of C125. (Operated when Dial E reads in 0-100 range.)
\*\*Operated by Control "C." Switch is closed when Control C is set to any of its 13 positions. As Control is rotated between positions, S113D opens and disables keying relay K102 thus preventing arcing at other switch contacts.

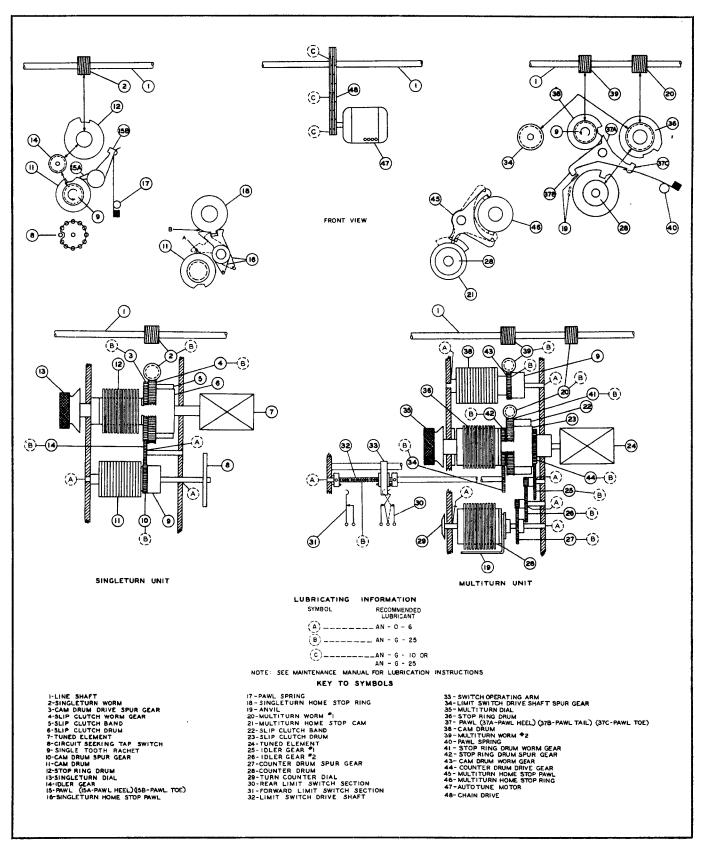



Figure 4-14. Autotune Mechanism — Mechanical Portion

the Autotune units. Power is applied to the shaft from the motor (47) by means of a chain drive (48).

- (b) SINGLETURN WORM (2).—The single-turn unit is driven by one worm on the line shaft (1).
- CAM DRUM DRIVE SPUR GEAR (3).— This gear is fastened directly to the slip clutch worm gear (4) and drives the cam drum spur gear (10) through the idler gear (14).
- (c) SLIP CLUTCH WORM GEAR (4).—This gear is fastened to the cam drum drive spur gear (3) and drives the stop-ring drum (12) through the slip clutch (6). This gear is driven by the singleturn worm (2).
- (d) SLIP CLUTCH BAND (5).—This band is driven directly from the slip clutch worm gear (4) and presses against the slip clutch drum (6).
- (e) SLIP CLUTCH DRUM (6).—The slip clutch drum, driven by the slip clutch band (5), is fastened to the stop-ring drum shaft.
- (f) TUNED ELEMENT (7).—The tuned element, such as a tap switch, a variable capacitor, or a variometer, is driven directly from the stop-ring drum shaft.
- (g) CIRCUIT SEEKING TAP SWITCH (8).— This switch is driven by the cam drum shaft and is phased so that the contacts are in synchronization with the cams of the cam drums (11) and (38).
- (b) SINGLE TOOTH RATCHET (9).—The single tooth ratchet, when engaged, drives the cam drum (11). These ratchets keep the cam drums of the various units synchronized.
- (i) CAM DRUM SPUR GEAR (10).—The cam drum spur gear is driven from the line shaft through gears (2), (3), (4), and (14). The spur gear drives the cam drum (11) through the single tooth ratchet (9).
- (j) CAM DRUM (11).—The cam drum consists of twelve cams mounted on a shaft with adjacent cam slots staggered 30 degrees. These cams are rigidly fastened to the drum. The single tooth ratchet (9) mounts on the shaft behind the drum and drives the drum.
- (k) STOP-RING DRUM (12).—The stop-ring drum assembly consists of 12 stop rings mounted on a shaft with spacers between the rings. The stop rings are free to rotate but the spacers are keyed to the shaft so that as one stop ring is rotated, movement of the ring will not affect the adjacent rings which may have been previously adjusted. A locking bar, on the dial, locks the stop rings when adjustment has been completed. The locking mechanism consists of a bar that drives a screw to apply pressure to the stack of stop rings and spacers, thereby, in effect, locking them.
- (1) SINGLETURN DIAL (13).—The singleturn dial is fastened to the stop-ring drum (12) and enables the operator to adjust the tuned element (7). The locking bar is located on the front of the dial.

- (m) IDLER GEAR (14).—The idler gear transmits power from the cam drum drive spur gear (3) to the cam drum spur gear (10).
- (n) PAWL HEEL (15A).—The pawl heel is held against the cam drum (11) by the pawl spring (17).
- (0) PAWL TOE (15B).—The pawl toe serves to position the tuned element (7) by dropping into the stop-ring slot and stopping the stop-ring drum (12) after the motor (47) reverses and pawl heel (15A) is in a cam drum slot.
- (p) SINGLETURN HOME STOP PAWL (16).

  —This pawl limits the rotation of the singleturn unit to one revolution. The pawl is located on the same shaft as the pawl (15) and is engaged by the singleturn home stop ring (18). Referring to the mechanical portion of the Autotune, the pawl as shown in solid lines limits the rotation of the stop-ring drum (12) in the counterclockwise direction. The pawl cannot pivot further because it bears against the stop-ring drum (12) at point "B." The pawl as shown in dotted lines limits the rotation of the cam drum (12) in a clockwise direction. The pawl cannot pivot further in this position because it bears on the cam drum (11) at point "A."
- (q) PAWL SPRING (17).—The pawl spring presses the pawl heel (15A) against the cam drum (11) and when the pawl heel (15A) drops into the cam drum slot, the pawl spring presses the pawl toe (15B) against the stop-ring drum (12).
- (r) SINGLETURN HOME STOP RING (18).

  —This ring, mounted with the other stop rings on the stop-ring drum (12), is rigidly fastened to the drum. The home stop pawl (16) engages with this ring to limit the rotation of the stop-ring drum (12) to one revolution.
- (s) ANVIL (19).—The anvil prevents the multiturn pawl tails (37B) from becoming engaged in the counter drum (28) ring slots until after the motor (47) reverses.
- (t) MULTITURN WORM NO. 1 (20).—This worm drives the stop-ring drum worm gear (41).
- (u) MULTITURN HOME STOP CAM (21).

  —This cam is mounted with the other cams on the counter drum (28). It actuates the home stop pawl (45) to limit the rotation of the stop-ring drum (36) to 20 revolutions.
- (v) SLIP CLUTCH BAND (22).—This band, driven by the worm gear (41) drives the stop-ring drum (36) through the slip clutch drum (23).
- (w) SLIP CLUTCH (23).—This clutch, similar to (6), is driven by the slip clutch band (22) and is fastened to the stop-ring drum shaft.
- (x) TUNED ELEMENT (24).—This frequency determining element is coupled directly to the stopring drum (36).

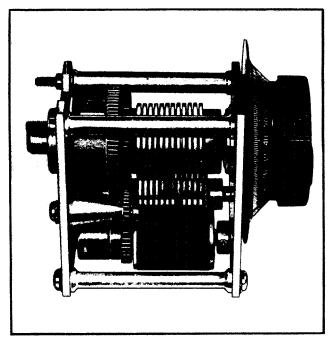



Figure 4-15. Singleturn Autotune Unit (Type 96J)— Left Side View

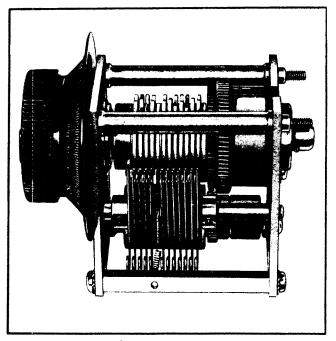



Figure 4-16. Singleturn Autotune Unit (Type 96J)— Right Side View

Singleturn Autotune Units Operate Controls "A", "C", "D", and "E".

Unit No. 564080 Is Used to Operate Control "A".

Unit No. 564060 Is Used to Operate Control "C".

Unit No. 564070 Is Used to Operate Control "D".

Unit No. 564050 Is Used to Operate Control "E".

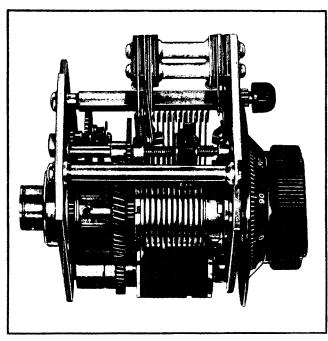



Figure 4-17. Multiturn Autotune Unit (Type 96K)— Left Side View

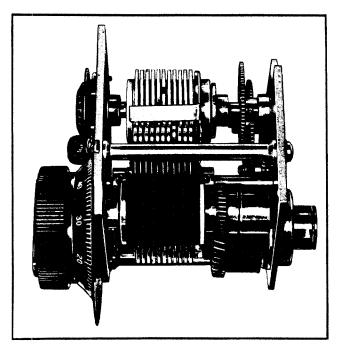



Figure 4-18. Multiturn Autotune Unit (Type 96K)—Right Side View

Multiturn Autotune Unit No. 564090 Is Used to Operate Control "B".

Replacement Parts for the Autotune Are Listed in Table 5-7, Section V

- IDLER GEAR NO. 1 (25).—This gear and gear (26) link the counter drum (28) to the slip clutch spur gear (44) which is fastened to the stopring drum (36).
- (y) IDLER GEAR NO. 2 (26).—This gear and idler gear No. 1 (25) link the counter drum (28) to the slip clutch spur gear (44).
- COUNTER DRUM SPUR GEAR (27).—This gear drives the counter drum (28).
- COUNTER DRUM (28).—This drum consists of eleven cams with spacers between them. Like the stop-ring drums (12) and (36), the spacers are keyed to the shaft so that movement of one cam will not disturb adjacent cams. A spring on the rear of the counter drum loads the stack of cams axially so that the rings will not turn too easily.
- (z) TURN COUNTER DIAL (29).—This dial, numbered from 0 to 20, indicates the number of turns the Multiturn unit has made.
- (aa) REAR LIMIT SWITCH SECTION (30).

  —This switch, actuated by the operating arm (33), is normally held in the operated position. During the first part of the Autotune cycle, this switch opens, disabling the keying and dynamotor input relays. As the Autotune cycle nears completion, the operating arm (33) recloses the switch, turning off the motor (47) by restoring the motor torque retainer resistor to the circuit and restoring the coil circuits of the keying and dynamotor input relays.
- (bb) FRONT LIMIT SWITCH SECTION (31).—This switch, normally closed, provides a holding circuit for the motor control relay. When the limit switch operating arm (33) opens the switch, the circuit seeking tap switch breaks the operating circuit of motor control relay K101, the unoperated position of which reverses the motor, thereby returning the limit switch operating arm to the original position, completing the cycle.
- (cc) LIMIT SWITCH DRIVE SHAFT (32).— This shaft is driven by the gear (34) from the line shaft (1). The screw thread on the shaft moves the switch operating arm forward or backward between the limit switch sections (30) and (31). On either end of the screw are cams which limit the travel of the switch operating arm (33).
- (dd) SWITCH OPERATING ARM (33).— This arm is driven by the threaded drive shaft (32) and controls limit switches (30) and (31).
- LIMIT SWITCH DRIVE SHAFT SPUR GEAR (34).—This gear, driven by the stop-ring drum spur gear (42) drives the limit switch drive shaft (32).
- (ee) MULTITURN DIAL (35).—This dial with locking bar enables the operator to adjust the stop-ring drum (36) to any desired operating frequency within the range of the equipment.
- (ff) STOP-RING DRUM (36).—Same as Stop-Ring Drum, item (12).

- (gg) PAWL HEEL (37A).—The pawl heel is held against the cam drum (38) by the pawl spring (40).
- (bb) PAWL TAIL (37B).—The pawl tail, when allowed to engage the counter drum (28) ring slot by the movement of the anvil (19) selects the revolution in which the tuned element (24) will be positioned.
- (ii) PAWL TOE (37C).—The pawl toe serves to position the tuned element (24) by dropping into the stop-ring slot and stopping the stop-ring drum (36).
- (kk) CAM DRUM (38).—Same as Cam Drum, item (11).
- (11) MULTITURN WORM NO. 2 (39).—This worm drives the cam drum (38) through the single tooth ratchet (9).
- (mm) PAWL SPRING (40).—This spring is similar to (17).
- (nn) STOP-RING DRUM WORM GEAR (41).—This gear, powered from the line shaft (1) by the worm (20), drives the stop-ring drum (36) through the slip clutch (23).
- (00) STOP-RING DRUM SPUR GEAR (42).

  —This gear is fastened to the stop-ring drum worm gear (41) and drives the limit switch drive shaft (32) through the gear (34).
- (pp) CAM DRUM WORM GEAR (43).—This gear, powered from the line shaft (1) by the worm (39) drives the cam drum (38) through the single tooth ratchet (9).
- (qq) COUNTER DRUM DRIVE GEAR (44).

  —This gear, fastened to the slip clutch drum (23) drives the counter drum (28) through the idler gears (25) and (26) and gear (27).
- (rr) MULTITURN HOME STOP PAWL (45).

  This pawl, actuated to either position shown by the home stop cam (21), engages the projection on the home stop ring (46) to limit the rotation of the stopring drum (36) to 20 revolutions. This pawl is mounted on the same shaft as the pawl (37).
- (ss) MULTITURN HOME STOP RING (46).

  —This ring is engaged by the pawl (45) and is mounted on the stop-ring drum (36). The dotted outlines of the home stop ring (46) and pawl (45) show the stop-ring drum (36) in the limit of rotation in the counterclockwise direction. The other position shows limit in the clockwise direction.
- (tt) AUTOTUNE MOTOR (47).—The Autotune motor is a d-c shunt wound reversible type and applies power to the line shaft (1) through the chain drive (48).
- (uu) CHAIN DRIVE (48).—The chain drive transmits power from the Autotune motor (47) to the line shaft (1) and consists of a driving pinion coupled to a driven sprocket by a chain.

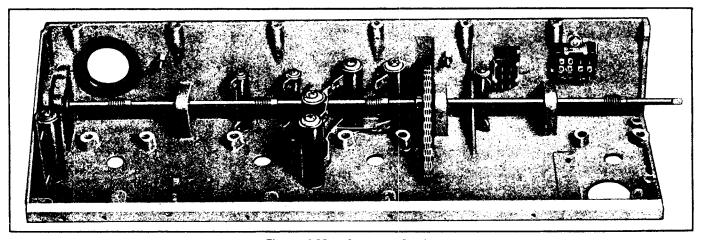



Figure 4-19. Autotune Casting
(See Table 5-7, Section V, for list of replaceable parts)

(See Table 5-7, section V, for list of replaceable parts.)

- b. ELECTRICAL CHARACTERISTICS.—The following electrical components are used in conjunction with the Autotune System as a source of motive power and for electrical control of the mechanical functions. Interconnection of these electrical parts is shown in figure 4-20.
- (1) AUTOTUNE MOTOR B101.—The Autotune motor operates from the 28 volt direct current power source and is controlled by the limit switches, S111 and S112, and motor control relay, K101.
- (2) MOTOR CONTROL RELAY K101.—K101 is energized through the contacts of the keying relay, K102, the "LOCAL-REMOTE" switch, S107, the "CHANNEL" selector switch, S108, and the circuit
- seeking tap switch S109, to ground (Br. Earth). The holding circuit for the relay is through contacts 5 and 6 of motor control relay K101 and the contacts of front limit switch section, S112. When operated, motor control relay K101 disables keying relay K102 and dynamotor input relay K2703 preparatory to the release of rear limit switch section S111.
- (3) KEYING RELAY K102.—When K102 is operated during periods of transmission, it prevents false operation of the Autotune System by opening the circuit to motor control relay K101. The energizing circuit is through the "EMISSION" control circuits; that is, the "TEST" switch, S104, the Throttle Switch Jack J101, the "MICROPHONE" Jack J102, or the "KEY" jack J103.
- (4) LOCAL-REMOTE SWITCH \$107.—This switch provides for selection of control either from the

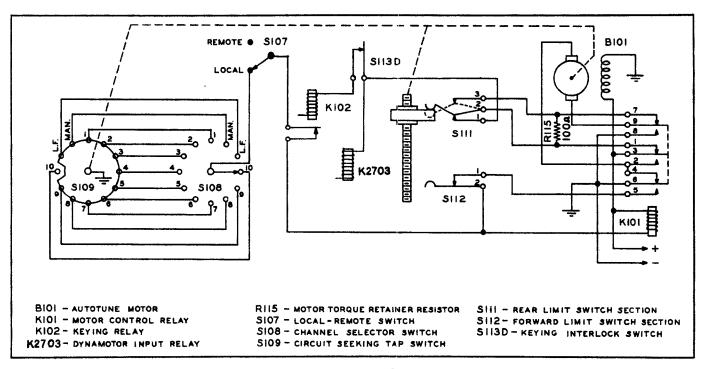



Figure 4-20. Electrical Portion of Autotune System

front panel of the transmitter or from the remote control unit. The switch is located on the transmitter panel and is designed for manual operation only.

- (5) CHANNEL SELECTING SWITCH S108.— This switch permits the selection of any one of ten high-frequency Autotune channels, one low-frequency channel and "MANUAL" tuning of the transmitter. It completes the circuit to ground (Br. Earth) necessary for the operation of the motor control relay K101.
- (6) CIRCUIT SEEKING TAP SWITCH \$109.— This switch is driven by the Autotune motor, B101, through a worm and spur gear arrangement. The circuit seeking tap switch, \$109, completes the circuit necessary for the operation of the motor control relay, K101. Of the 12 circuits connected to the circuit seeking tap switch, \$109, 11 are grounded (Br. Earthed) at all times. The operation of motor control relay K101 connects front limit switch section \$112 in the circuit, preventing seeking switch \$109 from finding the circuit selected by "CHANNEL" selecting switch \$108 until after the limit switch operating arm reaches and operates front limit switch section \$112.
- (7) REAR LIMIT SWITCH SECTION S111.—S111 is normally held in the operated position to complete the circuit necessary for the operation of keying relay, K102 and dynamotor input relay K2703. When released by the limit switch operating arm, contacts 2 and 3 of the rear limit switch section, S111, short motor torque retainer resistor R115 out of the circuit preparatory to the release of motor control relay K101. The return of the limit switch operating arm to the original position opens contacts 2 and 3 of rear limit switch S111, placing motor torque retainer resistor R115 again in the circuit, thereby stopping Autotune motor B101.
- (8) FRONT LIMIT SWITCH SECTION S112.— The normally closed contacts of S112 complete the holding circuit for motor control relay K101 through contacts 5 and 6 of K101. When the front limit switch section, S112, is operated by the switch operating arm, allowing circuit seeking tap switch S109 to find the circuit position selected by "CHANNEL" selecting switch S109, the operating circuit for motor control relay K101 is broken allowing K101 to release. The return of motor control relay K101 to the unoperated position reverses the direction of rotation of the Autotune motor, B101.
- (9) KEYING INTERLOCK SWITCH S113D.—This switch is operated by the "ANTENNA TUNING—COARSE," control C, and prevents the operation of the keying relay, K102, between settings of control C when "LOCAL-REMOTE" switch S107 is in the "LOCAL" position.
- c. OPERATION CYCLE OF AUTOTUNE MECH-ANISM.—The Autotune system consists of one Multiturn unit and several Singleturn units (see figs. 4-15, 4-16, 4-17, 4-18, and 4-19) which are driven by a reversible motor through a line shaft. The Multiturn unit may be set up to select any dial setting in a con-

tinuous range of 7200 angular degrees (20 turns or revolutions) of dial rotation.

#### Note

One revolution of the dial is equal to 360 angular degrees of rotation. The Singleturn units may be set up to select any dial setting from 0 to 360 degrees of rotation (a single turn or revolution).

- (1) The drawings of the electrical and mechanical portions of the Autotune, figure 4-20 and figure 4-14, should be referred to in connection with the following description of the operational sequence. The drawings show the Autotune mechanism in the rest position at the completion of the operation cycle.
- (2) The following sequence of operations, listed in order, represents the complete Autotune cycle:
- (a) The operator turns the CHANNEL selector switch \$108, to the channel desired.
- (b) This places a ground (Br. Earth) on the motor control relay, K101, through the circuit seeking tap switch, S109, the "CHANNEL" selector switch, S108, the "LOCAL-REMOTE" switch, S107, and the contacts of the keying relay, K102. With the keying relay, K102, in the normal or unoperated position, the motor control relay, K101, will operate and energize the Autotune motor, B101. The motor control relay, K101, is then kept energized by the circuit through contacts 5 and 6 and the limit switch section, S112. The operation of motor control relay, K101, disables the keying relay K102.
- (c) The motor, B101, drives the line shaft (1) in a forward direction causing all the cam drums and stop-ring drums to rotate in a counterclockwise direction and the multiturn unit counter drum to rotate in a clockwise direction.
- (d) The switch operating arm (33) moves out from the rear limit switch section, S111 and moves toward the forward limit switch section S112. Contacts No. 1 and No. 2 of the rear limit switch section, S111, open, keeping keying relay K102 and dynamotor input relay K2703 disabled when the motor control relay, K101, opens. Contacts No. 2 and No. 3 of the rear limit switch section short motor torque resistor R115 out of the circuit preparatory to the release of motor control relay K101.
- (e) The forward limit switch section, S112, opens and the motor continues to run until the open-segment of the circuit seeking tap switch, S109, is positioned opposite the contact upon which the channel selector switch has been set by the operator.
- (f) As the open segment of the seeking tap switch, S109, comes to the contact of the channel selected, the synchronized cam drums are at the position where the pawl heels (15 \(^{\text{A}}\) and 37A) of the channel selected have just dropped into their respective slots in the cam drums.
- (g) Since the holding circuit has been removed, the motor control relay, K101, opens, causing

the polarity of the voltage on the armature to be reversed. The motor reverses direction of rotation.

- (b) After the motor reverses, allowing the cam drums to fully engage their respective pawl heels, the switch operating arm moves toward the rear, allowing the forward limit switch section, S112, to reclose.
- (i) As the motor continues to run in a reverse direction, the stop-ring drum (12) of the singleturn unit rotates and when the slot on the stop ring of the channel selected is adjacent to pawl toe (15B) the pawl toe drops into the slot. The pawl toe stops the tuned element (7) at the predetermined position and the clutch slips until the Autotune cycle has been completed.
- (j) Also, as the motor runs in the reverse direction, the counter drum (28) of the multiturn unit reverses direction of rotation thereby rotating the anvil (19) out from under the pawl tail (37B) and when the slot of the cam on the counter drum, of the channel selected, is adjacent to the pawl tail (37B), the pawl tail drops into the slot and selects the revolution in which the tuned element (24) will be positioned.
- (k) As soon as the slot in the proper stop ring of the stop-ring drum (36) is adjacent to the pawl toe (37C) the pawl toe drops into the slot. This stops the tuned element (24) at the preselected position and the clutch (23) slips until the Autotune cycle has been completed.
- (1) As the motor continues in the reverse direction, the switch operating arm moves back against the rear limit switch section, S111, opening contacts No. 2 and No. 3 of S111.
- (m) Contacts No. 2 and No. 3 of the rear limit switch section upon opening remove the short across the motor torque retainer resistor, R115, which stops the motor by allowing just enough current to flow through the armature of motor B101, to provide a position retaining torque to the Autotune units.
- (n) The contacts No. 1 and No. 2 of the rear limit switch section, S111, close permitting the carrier to be turned on. The Autotune cycle is now complete. The carrier control circuits and Autotune control circuits are interlocked so that the Autotune will not operate when the carrier is on and the carrier cannot be turned on while the autotune system is in operation.
- d. FUNCTIONS PERFORMED BY THE AUTO-TUNE SYSTEM.—The entire Autotune System utilizes one multiturn Autotune mechanism and four singleturn Autotune mechanisms to automatically operate transmitter controls "A," "B," "C," "D," and "E." Control "B" requires the use of a multiturn mechanism as this dial may be rotated through 20 complete revolutions. Other controls are operated by the singleturn mechanisms.
- (1) Functions performed by each Autotune unit are described in the following paragraphs. Each of the five individual Autotune units are referred to by the same letter that is used to designate the control on the panel of the transmitter; for example, Autotune unit "A" is used to operate control "A" etc.

- (2) AUTOTUNE UNIT "A."—This unit is a singleturn mechanism that operates control knob "A" to accomplish the following:
  - (a) Selects high or low frequency oscillator.
  - (b) Selects high frequency oscillator range.
  - (c) Selects multiplier range.
- (d) Operates Autotune circuit seeking switch S109.

The above functions are performed by means of directly operated and cam operated switches which are located in the multiplier chassis and in the high frequency oscillator chassis. Range of first multiplier stage is controlled by the switch wafer nearest to Autotune Unit "A." Range of second multiplier stage is controlled by switch wafer farthest from Autotune Unit "A." A cam operated multi-contact switch selects either low or high frequency oscillator and actuates relay K105 to select correct output circuit for power amplifier stage. Another cam operated switch closes the cathode of the second multiplier stage when that stage is required. The one remaining cam is star shaped and is used to actuate a switch located in the adjacent high frequency oscillator casting; this switch being used to select desired high frequency oscillator

- (3) AUTOTUNE UNIT "B."—This unit is a multiturn mechanism that operates control knob "B" to accomplish the following:
  - (a) Fine tuning of high frequency oscillator.
  - (b) Fine tuning of both multiplier stages.

The above functions are performed by moving the tuning slugs in inductors L101, L105 and L106. These three inductors are located on the high frequency oscillator casting and are ganged so that they are all operated simultaneously by control knob "B" or Autotune unit "B."

- (4) AUTOTUNE UNIT "C."—This unit is a singleturn mechanism that operates control knob "C" to accomplish the following:
- (a) Coarse selection of inductance for antenna tuning circuits (in transmitter).
- (b) Coarse selection of capacity for antenna tuning circuits (in transmitter).

These functions are performed by operation of the multi-element network switch sections S113B, S113C, and S113E. The switch is operated directly by control "C" or Autotune Unit "C." In the first position of the switch all of the inductance L113 is in the circuit and when position seven is reached, the inductance L113 is completely shorted out. L113 remains shortened out in positions seven through 13. Between positions seven and eight, a switch operates to cut in ceramic padding capacitors, various combinations of which are used in positions eight through 13. In addition a small inductance L114 is connected across variometer L112 in position 13 by operation of one of the switch arms. A star cam on the same network switch shaft operates switch S113D that disables

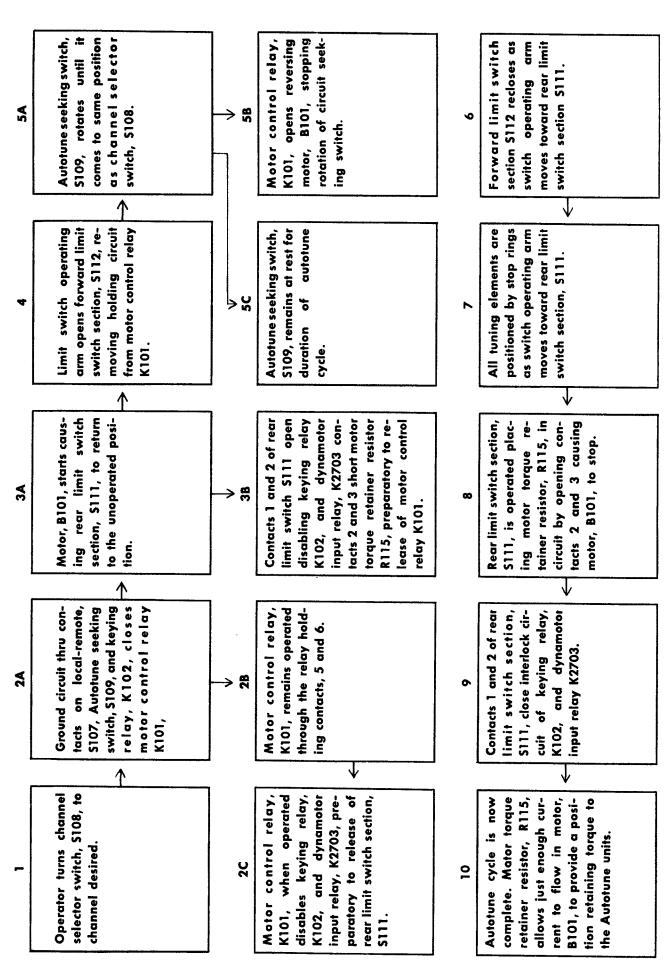



Figure 4-21. Sequence of Autotune Operation

the r-f portion of the complete transmitter by preventing the operation of keying relay K102 when control knob is between switch settings.

(5) AUTOTUNE UNIT "D."—This unit is a singleturn mechanism that operates control knob "D" to accomplish the following: operates variometer L112 to provide fine inductance tuning of the antenna circuit.

(6) AUTOTUNE UNIT "E."—This unit is a singleturn mechanism that operates control knob "E" to accomplish the following: operates variable capacitor C125 and switch section S113A to provide fine control of capacitance in the antenna loading circuits (in transmitter). Operation of switch section S113A connects a fixed capacitor C124 in parallel with variable capacitor C125 to extend the range.

# SECTION V MAINTENANCE

# IMPORTANT

Periodic inspections prescribed herein represent minimum requirements. If because of local conditions, peculiarities of equipment, or abnormal usage they are found insufficient to assure satisfactory operation of the equipment, local authorities should not hesitate to increase their scope of frequency.

#### 1. INSPECTIONS.

In order to insure dependable operation, the equipment must be briefly inspected before each flight. More thorough inspections are required daily and after an interval of 100 hours of operation. Detailed procedures for each type of inspection are presented in the following paragraphs.

- a. PRE-FLIGHT INSPECTION.—The radio transmitting equipment shall be given a rapid visual and operating inspection in accordance with the following:
- (1) Inspect antenna for proper security and tension. Check condition of shock links and antenna wire, cleaning if dirty and replacing if defective. Clean insulators and replace if cracked or chipped.
- (2) Make a visual check for proper security of all set components.
  - (3) Turn on the liaison receiver.
- (4) Place EMISSION switch on "VOICE" with LOCAL-REMOTE switch on "LOCAL."
- (5) Place CHANNEL switch on a position corresponding to one of the frequencies to be used on the mission.
- (6) When the cycle is completed, check the settings of controls "A," "B," "C," "D," and "E" against readings on the transmitter chart with the indicating mark on "B" previously set so that the zero line is directly above the dial.
- (7) Make sure the microphone selector switch is in the position corresponding to the type of microphone to be used.
- (8) Be sure the meter switch is on "P.A. PLATE" and the power level switch is on "OPERATE."

- (9) Place EMISSION switch on "CW" and close TEST switch. The plate current should read in the area marked "P.A. PLATE."
- (10) Place the meter switch on "P.A. GRID." The meter should read in the area marked "P.A. GRID." Release "TEST" switch and place the meter switch on "P.A. PLATE."
  - (11) Place "EMISSION" switch on "MCW."
- (12) Listen in the sidetone circuit and close "TEST" switch. The receiver hiss should stop and the sidetone signal should be heard. The plate current should be in or near the area marked "MCW." Release "TEST" switch.
- (13) Place "EMISSION" switch on "VOICE." Press the microphone button. The plate current should read about 20 or 30 higher than on "CW." Speak or whistle into the microphone. The plate current should read near the area marked "MCW," and may read full scale on loud signals.
- (14) Check the control settings, "P.A. GRID" current and "P.A. PLATE" current on "CW" for each of the other channels it is desired to use on the mission. Connect the proper number of sections of the shunt capacitor for the channels requiring them as indicated on the chart. (See par. 6.b.(2)(jj) of sec. II.)
- b. DAILY INSPECTION.—The radio transmitting equipment shall be given a thorough visual and operational inspection in accordance with the following:
- (1) Inspect as directed in paragraph 1.a.(1) and (2), this section. In addition check all interconnecting cables and wires. Be sure all cable plug locking rings are tight and tie wired in place.
- (2) Check the connections to the receiver, antenna, ground, and loading unit, making certain the spring connector terminals are making good contact with the wires.
  - (3) OPERATIONAL CHECK OF AUTOTUNE OPERATION.
- (a) Place the power level switch in "TUNE" position and "EMISSION" switch in "VOICE" position.
- (b) Beginning with channel 1, operate "CHAN-NEL" selector switch to each of the 10 high-frequency

channels that are tuned. As each autotune cycle is completed, check the positions of the controls against the original settings as shown on the chart with the indicating mark on control B previously set so that the zero line is directly above the dial.

- (c) Having checked the positioning of the high-frequency channels in use, operate "CHANNEL" switch to "L. FREQ." position.
- (d) When the autotune cycle has been completed, control A should come to rest on position 13 and control C on 8.
- (e) Assuming that autotune positions are correct for the tuned channels, operate "CHANNEL" switch to "MANUAL" position.
- (f) When the autotune cycle has been completed, check the operation of all controls. Each control should move freely to permit transmitter tuning without disturbing the positions of the autotune stop rings.
  - (4) CHECK OF POWER CONTROL, R-F AND AUDIO CIRCUITS.
- (a) Operate "LOCAL-REMOTE" switch to "LOCAL" position and "EMISSION" switch to "CW" position.
- (b) Rotate the meter switch to the "P.A. PLATE" position.
  - (c) Close "TEST" switch.
- (d) Check the power amplifier plate reading on the meter. The meter should indicate within the "CW" portion of the meter scale.
- (e) If the meter does not indicate a "P.A. PLATE" meter reading within the "CW" portion of the scale, some adjustment of the output loading may be necessary. Before attempting to readjust the output circuit for proper loading for the particular channel upon which the transmitter is operating, check the operation on the other tuned autotune channels by operating "CHANNEL" switch.
- (f) If all meter readings are off in the same direction, that is, if all readings are too high or if all readings are too low, check the battery voltage by operating the meter switch to "BATTERY-VOLT-AGE" position.
- (g) If the battery voltage is much higher or lower than the voltage was at the time the tuning adjustments were made and the autotune stop rings locked, the power amplifier plate meter reading will be somewhat different than the original reading. No adjustment of the output tuning controls should be attempted if the tuning adjustments were originally made with normal supply voltage.
- (b) Check the keying by operating the telegraph key and listening to the keyed signal in the headphones. The transmitter should key cleanly and without noticeable chirp at speeds up to thirty words per minute.
- (i) Release the telegraph key and operate "EMISSION" switch to "MCW" position.

- (j) Close "TEST" switch.
- (k) Check the "P.A. PLATE" meter reading on the meter. The meter should indicate within the "MCW" portion of the meter scale.
- (1) Release "TEST" switch and listen in the earphones.
- (m) Operate "EMISSION" switch to "VOICE" position.
- (n) Press the "PUSH-TO-TALK" button on the microphone and check the "P.A. PLATE" meter reading. It should read about 20 or 30 higher than on "CW."
- (0) Speak or whistle into the microphone and check the swing of the needle of the meter. The needle should swing up to the "MCW" portion of the meter scale, or slightly beyond, on voice peaks.
- (p) Check operation of the speech amplifier by listening to the sidetone amplifier output while speaking into the microphone.

When operation from the transmitter panel has been checked, the procedure outlined below should be followed to check remote operation:

- (q) Operate "LOCAL-REMOTE" switch to "REMOTE" position.
- (r) Operate the "EMISSION" selector switch on the remote control unit to "VOICE" position.
- (s) Following the procedure outlined for checking the autotune system from the transmitter panel, check operation and positioning of the dials when using remote "CHANNEL" switch. The position of the controls for a given autotune channel selected with the remote control unit should correspond to the position of the controls when the autotune channel is selected with the transmitter panel switch.
- (t) Using a microphone at the remote position, check the transmitter control by operating the "PUSH-TO-TALK" button on the microphone. Also check the condition of the audio lines from the control unit to the transmitter by speaking into the microphone and checking the kick of the needle of plate meter. Voice peak readings should correspond to reading obtained when checking the modulation at the transmitter panel.
- (u) Operate the "EMISSION" switch to "CW" position and momentarily operate the key on remote control unit. Check the keying by listening to the sidetone.
- (v) Operate the "EMISSION" switch to "MCW" position and check "P.A. PLATE" by observing plate meter. Check the keying by listening to the sidetone.
- (w) If the above checks reveal erratic or abnormal operation, the tubes should be carefully checked. Tube failure is probably the most common cause of transmitter failure. The most dependable method of checking the tubes and finding the defective tube is to replace the tubes, one at a time, with tubes known to be in good condition.

# Section V Paragraphs 1-2

- (x) In order to gain access to the tubes and other components, the transmitter cover must be removed. This can be done by inserting a coin or a screw driver in the holddown screws, making a half turn counterclockwise and lifting off the cover.
- c. 100-HOUR INSPECTION.—The radio transmitting equipment shall be given a thorough and searching visual and operating inspection in accordance with the following:
- (1) Inspect as directed in paragraph 1.b.(1) and (2) in this section. Remove and disassemble all plugs and inspect wires for breaks and loose wires at the plugs. Inspect all cables.
- (2) PREPARATION FOR INSPECTION.—Remove the transmitter, dynamotor unit, and antenna loading unit as follows:
- (a) To remove the transmitter loosen the wires from the five terminals on the left hand end of the transmitter and also remove the three electrical plugs. Remove the safety wire from and loosen the locking knobs located on the front edge of the transmitter by turning them counterclockwise. Slide the transmitter forward approximately two inches and lift off the mounting.
- (b) To remove the dynamotor, remove the two electrical plugs and remove the safety wire from the locking knobs. Loosen the knobs by turning counterclockwise until the clamps rotate a fraction of a turn and the base plate is released.
- (c) To remove the antenna loading unit, remove all wires and plugs. Loosen the four snap slides and remove the unit.
- (3) TRANSMITTER INSPECTION.—Remove the cover from the transmitter and inspect the interior for loose leads, corrosion, or other obvious defects. Clean out all dust and dirt, particularly around isolanite bushings, standoff feed through insulators, etc. Check all tubes for proper seating, and check plate leads and tube locking clamps for tightness. Inspect all relay contacts.
- (4) DYNAMOTOR INSPECTION.—Remove the dynamotor end covers, and using compressed air, blow out all carbon dust and copper dust from the commutator and surrounding surfaces. Inspect the brushes and commutators for wear and replace the brushes if they are shorter than 1/4 inch. Clean the commutators with carbon tetrachloride and a cloth. Smooth the commutators with 00 sandpaper if they are rough. No lubrication of the dynamotor bearings is necessary. The bearings are sealed for the life of the unit. Remove the bottom plate and inspect the relay contacts for pits and burrs. Remove the fuse cover and inspect the fuse for corrosion. Replace the end covers.
- (5) ANTENNA LOADING UNIT.—Remove all dust and dirt. Inspect switch contacts and remove any corrosion found.
- (6) REINSTALLATION.—Reinstall the transmitter, dynamotor unit, and antenna loading unit on

their mounts. Connect all electrical plugs and wires and replace all screws. Safety wire the transmitter and dynamotor units and all connecting plug locking rings. To prevent corona discharge from the antenna leads, do not allow any sharp ends of the leads to project from the binding post terminals. Make sure proper spacing is provided between all antenna wires and ground.

(7) Make operational check as directed in paragraph 1.b.(3) and (4) in this section.

#### 2. TROUBLE SHOOTING IN THE PLANE.

When symptoms of unsatisfactory operation are noted, certain observations and simple tests can usually be performed to quickly determine the approximate location and nature of the fault. By first looking for the most common causes of transmitter failure and then correcting those faults that only require repair or replacement of easily accessible items, the need for removing the equipment from the aircraft can be avoided. Therefore, the trouble-shooting procedure given in the following paragraphs and in table 5-1, may be performed while the equipment is installed in the plane and does not require any specialized knowledge of the internal circuits of the equipment. If it is found that the fault cannot be corrected by these simple procedures, the major unit in which the trouble is located may be removed so that more involved troubleshooting methods may be applied at the repair station. Trouble-shooting methods for faults of the type that can only be corrected at the repair station are given in paragraph 3 and table 5-2, this section.

- a. SIMPLIFIED TROUBLE SHOOTING ON IN-STALLED EQUIPMENT.—The more common causes of transmitter failure, that are most easily corrected, are as follows:
- (1) Loose connection at plug on one or more of the interconnecting cables or antenna leads.
- (2) No power available at the 28-volt d-c power lines in the plane, caused by loose connections or open circuit breaker in the power line.
  - (3) Blown fuse in the equipment.
  - (4) Faulty tubes.
  - (5) Worn brushes in the dynamotor.
- (6) Protective overload relays on the Dynamotor Power Unit have opened because of an overload somewhere in the equipment.

Whenever any of the above faults occur, peculiarities in the performance of the equipment will generally be noted. If these peculiarities or symptoms are recognized as being caused by a particular fault, the problem of locating the fault is immediately solved. Table 5-1 has been prepared to show the symptoms produced by these more common causes of failure. Location of the fault, as well as the remedy to be applied, is given in each instance.

Remedy

marked "DYNA-RESET." If dynamotor starts momen-

tarily and overload relay opens again, see Symptom No.

3. If dynamotor does not start, remove end cover and

# TABLE 5-1. TROUBLE SHOOTING ON INSTALLED EQUIPMENT

Faults That Prevent Operation of Entire Equipment

1a. If red indicator lamp is on, but dyna- 1a. Reset overload relay on dynamotor unit by pressing button

Probable Cause of Trouble

motor does not operate when EMIS-

SION switch is set to CW or MCW,

then overload relay on dynamotor

Symptoms

on.

1. Equipment will not

operate when turned

|                                                                                              | circuit occurs, disregard this cause.                                                                                                                                                                                                                       | U-11/U and check cause 3d.                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                              | 3c. Excessive current due to short circuit or defective part in Antenna Load Unit. NOTE: This condition cannot occur if control "A" is set to a position other than 13 (L.F.). Thus, if control "A" was set to any of the other 12 positions when the short | 3c. Turn off equipment. Set CALIBRATE-TUNE-OPERATE switch to TUNE position. Disconnect Plug U-11/U. Turn on equipment and press relay "RESET" buttons. Close TEST key. If short circuit is cleared fault is in Antenna Load Unit and replacement is required. If overload relay still opens it indicates that short circuit was not in the Antenna Load Unit. In that case, reconnect Plug U.11/U.cod cheek cause. 2d |
| lay "RESET" buttons are pressed, and then relays open circuit again when button is released. | 3b. Excessive current due to short circuit or defective part in Pilot's Control Unit.                                                                                                                                                                       | 3b. If short circuit only occurs when LOCAL REMOTE switch is in "REMOTE" position, then Pilot's Control Unit is at fault, and should be removed. NOTE: To turn equipment on when switch is in "REMOTE" position, use Control on Pilot's Control Unit. If overload relay also opens when switch is set to "LOCAL," fault is not in Pilot's Control Unit; see Cause 3c.                                                 |
| 3. Dynamotor or red indicator lamp only operates momentarily when overload re-               | 3a. Equipment is drawing excessive current due to a defective tube.                                                                                                                                                                                         | 3a. Turn off equipment. Remove cover of transmitter and check tubes as described in paragraph 2b that follows this table.                                                                                                                                                                                                                                                                                             |
| ment operates mo-<br>mentarily when<br>"RESET" buttons<br>are pressed, see<br>Symptom No. 3. | 2d. If trouble is not located in items mentioned above, the fault is probably in either the Dynamotor Power Unit or in the transmitter unit.                                                                                                                | 2d. Replace Dynamotor Power Unit. If replacement of this unit does not correct the fault, then Transmitter Unit should be replaced and defective transmitter is to be sent to repair station.                                                                                                                                                                                                                         |
| must be in CW or MCW position when this symptom is checked. If equip-                        | 2c. Broken wire or loose connections in interconnecting cables.                                                                                                                                                                                             | 2c. Examine all interconnecting cables for broken wires and loose connections at the plug terminals.                                                                                                                                                                                                                                                                                                                  |
| after overload relay "RESET" buttons on Dynamotor Unit have been pressed. EMISSION switch    | 2b. No power available at 28 volt D.C. power line to which equipment is connected.                                                                                                                                                                          | 2b. Note whether other equipment connected to same power line will operate. If other equipment operates, check for loose connection at points where AN/ART-13A equipment connects to the power line. Check circuit breakers in power line.                                                                                                                                                                            |
| 2. Red indicator light<br>or dynamotor will<br>not operate even                              | 2a. Loose connection at plugs U-10/U, U-9/U, U-8/U, U-7/U or U-6/U.                                                                                                                                                                                         | 2a. Check plug connections to be sure all are making good contact.                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                              | 1d. If red indicator lamp is on and dynamotor operates but no R-F output is obtained, see Symptom No. 4.                                                                                                                                                    | 1d. Remedy opposite Symptom No. 4 should be applied.                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                              | 1c. If red indicator lamp is off, and LO-CAL-REMOTE switch is in LOCAL position, then the transmitter overload relay (and possibly the dynamotor overload relay as well) may be open.                                                                       | 1c. Reset both overload relays on dynamotor unit by pressing buttons marked "TRAN. RESET" and "DYNA. RESET." If red indicator lamp turns on momentarily and then goes out again, see Symptom No. 3. If lamp does not turn on at all, see Symptom No. 2.                                                                                                                                                               |
|                                                                                              | 1b. If red indicator light is off, LOCAL-REMOTE switch may be set to "RE-MOTE" position. Transmitter cannot be turned on or off at transmitter panel when switch is in "REMOTE" position.                                                                   | 1b. Set LOCAL-REMOTE switch to "LOCAL" position. If transmitter still will not operate and red indicator light is still off, see Cause No. 1c.                                                                                                                                                                                                                                                                        |
|                                                                                              | then overload relay on dynamotor unit may be open, or dynamotor brushes may be worn out.                                                                                                                                                                    | 3. If dynamotor does not start, remove end cover and check brushes and commutator. Brushes that are worn down to 1/4" or less in length, should be replaced. Copper dust on commutator should be blown out with air stream. Commutator may be cleaned with carbon tetrachloride and a cloth; never use emery cloth. If dynamotor does not start, see Symptom No. 2.                                                   |

#### AN 16-30ART13-4

# TABLE 5-1. TROUBLE SHOOTING ON INSTALLED EQUIPMENT (Cont'd)

Faults That Prevent Operation of Entire Equipment (continued)

| Symptoms                                                                                                                                                                                                          | Probable Cause of Trouble                                                                                                                                                     | Remedy                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                   | 3d. Excessive current due to short circuit or defective part in Transmitter or Dynamotor Power Unit.                                                                          | 3d. Turn off equipment. Replace Dynamotor Power Unit. Turn on equipment. Close TEST key. If short circuit is cleared, the Dynamotor Unit, that was replaced, contained the short. If overload relay on new Dynamotor Unit still opens, the short circuit was not in the Dynamotor Unit but is in the Transmitter Unit. In that case Transmitter should be removed and sent to repair station.                                                                               |
| 4. No R-F power out-<br>put on any frequency<br>range. Transmitter<br>is not radiating a                                                                                                                          | 4a. Control "C" is set between two of the numbered positions.                                                                                                                 | 4a. Setting of Control "C" is critical. If it is set between positions, equipment will not operate. Set carefully so that numbered position lines up with index line.                                                                                                                                                                                                                                                                                                       |
| signal when tele-<br>graph key or micro-<br>phone switch is<br>closed. No voice or<br>tone is heard in<br>headset. Antenna<br>current is zero and<br>P.A. GRID current<br>is approximately<br>zero. Red indicator | 4b. Fuse in 400 volt plate and screen supply circuit may have blown. Fuse is located in retainer on front of Dynamotor Power Unit. Spare fuse is provided in adjacent holder. | 4b. Turn off equipment. Remove fuse and examine it. If fuse is O.K., replace it and see Cause 4c. If fuse is blown, check for faulty tube as described in paragraph 2b which follows the table. If fuse still blows after tubes are replaced then fault is due to short in Dynamotor Unit or Transmitter. To determine which is the cause, replace Dynamotor Unit. If fuse still blows, short is in Transmitter and that unit should be removed and sent to repair station. |
| light is on and dyna-<br>motor operates. IM-<br>PORTANT: CALI-<br>BRATE - TUNE -<br>OPERATE switch<br>must be in OPER-                                                                                            | 4c. If Antenna Shunt Capacitor is connected to the equipment and is in use, it may be short circuiting the R-F output.                                                        | 4c. Turn off equipment. Disconnect Antenna Shunt Capacitor from transmitter by opening switch in series with it. Operate transmitter at any frequency higher than 3000 KC. If R-F output still cannot be obtained, Shunt Capacitor was not causing the trouble. See 4d.                                                                                                                                                                                                     |
| ATE position to obtain full R-F power output.                                                                                                                                                                     | 4d. Faulty tube. Tubes V104, V103, V102, V101 or V2601 are most likely to be the cause.                                                                                       | 4d. Check tubes as described in paragraph 2b that follows this table.                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5. Pilor's Control Unit<br>will not turn equip-<br>ment on or off but<br>equipment can be<br>operated on and off                                                                                                  | 5a. LOCAL-REMOTE switch on transmitter is set to "LOCAL" position.                                                                                                            | 5a. Set LOCAL-REMOTE switch to "REMOTE" position when equipment is to be operated from Pilot's Control Unit. If transmitter still cannot be turned on at Pilot's Control Unit, see Cause 5b.                                                                                                                                                                                                                                                                                |
| by using Control on<br>the transmitter<br>panel.                                                                                                                                                                  | 5b. Loose connection at plugs U-6/U or U-8/U.                                                                                                                                 | 5b. Check connections at plugs to insure good contact. Also inspect interconnecting cable for broken wire. If fault is not found, see Cause 5c.                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                   | 5c. Fault is in either the Pilot's Control Unit or the Transmitter.                                                                                                           | 5c. Replace Pilot's Control Unit. If fault is not corrected by<br>this replacement, then the cause of the trouble is in the<br>transmitter and that unit should be removed and sent<br>to repair station.                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                   | Arcing or "FLASHOVER                                                                                                                                                          | " At High Altitude                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6. When equipment is operated at an altitude higher than 20,000 to 25,000                                                                                                                                         | 6a. Pressure operated switch in Dynamotor Unit should operate to reduce high voltage from 1150 to 750 volts at altitudes higher than 20,000 to                                | 6a. A faulty pressure operated switch can be detected by watching the action of the antenna current reading as the plane is gaining altitude. Use CW emission and hold telegraph key closed while making this observation. At                                                                                                                                                                                                                                               |

- 20,000 to 25,000 feet, arcing occurs. The arcing may be intermittent or continuous. Arcing may cause power supply circuits to be overloaded and overload relays on Dynamotor Power Unit will open.
- at altitudes higher than 20,000 to 25,000 feet. This switch may be defective.
- 6b. If equipment is used at altitudes higher than 40,000 feet, arcing is likely to occur.
- telegraph key closed while making this observation. At some altitude between 20,000 and 25,000 feet, the pressure switch should operate and a marked reduction of antenna current should be noted. If antenna current does not change, pressure operated switch may be assumed to be defective or out of adjustment and Dynamotor Unit should be removed from plane for repairs. If a prolonged flashover occurs, it may destroy parts of the equipment. A careful "Pre-flight" inspection should be made to determine if operation has been affected.
  - 6b. Radio Transmitting Set AN/ART-13A equipment is not designed for use at altitudes above 40,000 feet. If a prolonged flashover occurs it may destroy parts of the equipment. A careful "Pre-flight" inspection should be made to determine if operation has been affected.

# TABLE 5-1. TROUBLE SHOOTING ON INSTALLED EQUIPMENT (Cont'd)

Arcing or "FLASHOVER" At High Altitude (continued)

| Symptoms                                                                                                                                                             | Probable Cause of Trouble                                                                                                                                                                                                                         | Remedy                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                      | 6c. If pressure operated switch is working satisfactorily and equipment is not operated at an altitude above 40,000 feet but flashover still occurs; then the fault is probably caused by defective insulation or improper spacing between parts. | 6c. Turn off equipment. Examine the unit where arcing occurred. If the exact location where the arc occurred can be readily found, look for sharp pointed projections. "Flashover" occurs more readily between projecting points in the electric wiring. If remedy cannot be easily applied, remove complete unit from plane to be sent to repair station. |
| No                                                                                                                                                                   | R-F Output On One Frequency Range: Opera                                                                                                                                                                                                          | ation On Other Frequency Ranges Is O.K.                                                                                                                                                                                                                                                                                                                    |
| 7. No R-F output in 200 Kc to 600 Kc                                                                                                                                 | 7a. Control A or Control "C" is not set correctly.                                                                                                                                                                                                | 7a. The setting of these controls is critical. Be sure number is exactly in line with index mark.                                                                                                                                                                                                                                                          |
| low frequency range. Equipment operates satisfactorily on other frequency ranges. NOTE: If R-F output is not ob- tained on any fre- quency range, see Symptom No. 4. | 7b. CALIBRATE - TUNE - OPERATE switch is not in OPERATE position.                                                                                                                                                                                 | 7b. This switch must be in OPERATE position to obtain full R-F power output.                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                      | 7c. Loose connection at Plugs U-11/U and U-12/U or poor connection at load coil terminal on transmitter and terminals on Antenna Loading Unit.                                                                                                    | 7c. Turn off equipment and check for loose connections of broken leads.                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                      | 7d. Low frequency oscillator tube is faulty.                                                                                                                                                                                                      | 7d. The low frequency oscillator tube is a type JAN-1625 and is identified in this manual as V2601. This tube may require replacement. See paragraph 2b(3) this section for location and replacement instructions.                                                                                                                                         |
|                                                                                                                                                                      | 7e. If above causes do not apply, then fault is either in Antenna Load Unit or in the Transmitter.                                                                                                                                                | 7e. Turn off equipment. Replace Antenna Load Unit. If R-l output still cannot be obtained, the fault is in the trans mitter and that unit should be removed for repair.                                                                                                                                                                                    |
| 8. No R-F output in 6.0<br>Mc to 18.1 Mc fre-                                                                                                                        | 8a. Control "A" or Control "C" is set between numbered positions.                                                                                                                                                                                 | 8a. The setting of these controls is critical. Be sure number ed position is set exactly in line with index mark.                                                                                                                                                                                                                                          |
| quency range. Equipment operates satisfactorily on low quency range. NOTE: If R-F output is not obtained on any frequency                                            | 8b. CALIBRATE - TUNE - OPERATE switch is not in OPERATE position.                                                                                                                                                                                 | 8b. This switch must be in OPERATE position to obtain full R-F power output.                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                      | 8c. Loose connection at Antenna terminal of transmitter or terminals on Antenna Load Unit:                                                                                                                                                        | 8c. Turn off equipment and check for loose connections of broken leads.                                                                                                                                                                                                                                                                                    |
| range, see Symptom<br>No. 4.                                                                                                                                         | 8d. Tubes V101, V102, V103, or V104 may be faulty.                                                                                                                                                                                                | 8d. Obtain access to and check these tubes as described in paragraph 2b following this table.                                                                                                                                                                                                                                                              |
|                                                                                                                                                                      | 8e. If above causes do not apply, then fault is either in Antenna Load Unit or in transmitter.                                                                                                                                                    | 8e. Turn off equipment. Connect antenna lead-in directly to ANT. post on transmitter. If R-F output can now be obtained, Load Unit was at fault and replacement is required. If R-F output still cannot be obtained, the faul is in the transmitter and that unit should be removed fo repair.                                                             |
| 9. No R-F output in 2.0<br>Mc to 6.0 Mc fre-                                                                                                                         | 9a. See causes 8a, 8b, and 8c.                                                                                                                                                                                                                    | 9a. Use remedies 8a, 8b, and 8c.                                                                                                                                                                                                                                                                                                                           |
| quency range. Equip-<br>ment operates satis-<br>factorily in low                                                                                                     | 9b. Tubes V101, V102 or V104 may be faulty.                                                                                                                                                                                                       | 9b. Obtain access to and check these tubes as described in paragraph "B" following this table.                                                                                                                                                                                                                                                             |
| frequency range. NOTE: If R-F output is not obtained                                                                                                                 | 9c. If above causes do not apply then fault is either in Antenna Load Unit or in transmitter.                                                                                                                                                     | 9c. Turn off equipment. Connect Antenna lead-in directly to ANT. post on transmitter. If R-F output can now be obtained, Load Unit was at fault and replacement is required. If R-F output still cannot be obtained, the faul                                                                                                                              |

on any frequency

range, see Symptom

No. 4.

quired. If R-F output still cannot be obtained, the fault

is in the transmitter, and that unit should be removed

for repair.

# AN 16-30ART13-4

# TABLE 5-1. TROUBLE SHOOTING ON INSTALLED EQUIPMENT (Cont'd)

R-F Output Is Not Tone Modulated When MCW Emission Is Used

| Symptoms                                                                                                                                                                                                                         |                           | Probable Cause of Trouble                                                                                                                                                     |               | Remedy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| modulated and the                                                                                                                                                                                                                | •                         | MCW oscillator tube V2203 may be faulty.                                                                                                                                      | 10 <b>a</b> . | Obtain access to and check this tube as described in paragraph "B" following this table.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| emission is the same as that obtained for CW operation. It addition, sidetone will not be heard in the headphones NOTE: Check operation when VOICI emission is used. I VOICE modulation has also failed, refer to Symptom No. 11 | r 10b                     | Failure of a part in the MCW oscillator circuit.                                                                                                                              | 10b.          | Remove transmitter unit to repair station for further analysis. NOTE: If desired the small sub-assembly that contains the MCW oscillator may be replaced without removing the transmitter. This small chassis containing one JAN-12SA7 and two JAN-12SL7GT tubes is easily accessible from top of transmitter (see fig. 5-6). It is held in place by a screw at each side, going through the top. Since all connections are made by means of a plug, the chassis is disconnected by lifting straight up. |
|                                                                                                                                                                                                                                  |                           | R-F Output Is Not Voice Modulated                                                                                                                                             | Whe           | n Voice Emission Is Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ceived on associated                                                                                                                                                                                                             | ł                         | Microphone plug is loosely plugged in, making poor connection.                                                                                                                | 1 <b>1a.</b>  | Be sure microphone plug is pushed in as far as it will go.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| receiving set. Also no voice modulation is heard in the head phones connected to transmitter sidetone jacks. NOTE: I satisfactory VOICI                                                                                          | 11b<br>-<br>><br>f        | Carbon microphone is being used<br>and microphone switch \$201 (lo-<br>cated behind chart panel on trans-<br>mitter, see fig. 2-2) is in "DYNAM-<br>IC" position.             | 11b.          | Set microphone switch to "CARBON" position.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                  | 11c.                      | Dynamic microphone is being used and microphone switch is in "CAR-BON" position.                                                                                              | 11c.          | Set microphone switch to "DYNAMIC" position.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                  | , 11d<br>t                | If no VOICE output is heard in head-<br>phones, one or more of the follow-<br>ing tubes may be faulty: V201, V202,<br>or V203.                                                | 11 <b>d.</b>  | Obtain access to and check tubes as described in paragraph 2b following this table. If replacement of these tubes does not correct the trouble, the transmitter unit should be removed and sent to repair station.                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                  | 11e.                      | If VOICE output is heard in head-<br>phones but R-F output is not VOICE<br>modulated, then tubes V105 and<br>V106 may be faulty.                                              | 11 <b>e.</b>  | Obtain access to and check tubes as described in paragraph 2b following this table. If replacement of these tubes does not correct the trouble, the transmitter unit should be removed and sent to repair station.                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                  |                           | No Voice or Sidetone Heard In Headpho                                                                                                                                         | nes E         | But R-F Output Is Modulated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12. No signal is heard in headphones con nected to sidetone                                                                                                                                                                      | -                         | Headphone plug is loosely plugged in, making poor connection.                                                                                                                 | 1 2 a.        | Be sure headphone plug is pushed in as far as it will go                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                  | , 12b<br>s<br>-<br>-<br>f | The volume of the signal heard in headphones is controlled by "OUT-PUT" switch located behind chart on transmitter (see fig. 2-2). Volume level of output may be set too low. | 12b.          | To increase volume, turn OUTPUT switch toward higher numbered positions.                                                                                                                                                                                                                                                                                                                                                                                                                                 |

No. 4.

tained, see Symptom

# TABLE 5-1. TROUBLE SHOOTING ON INSTALLED EQUIPMENT (Cont'd)

No Voice or Sidetone Heard In Headphones But R-F Output Is Modulated (continued)

Probable Cause of Trouble Remedy Symptoms 12c. Sidetone Amplifier: ube V203 may 12c. Obtain access to and check tube as described in parabe faulty. graph 2b following this table. If replacement of this tube does not correct the trouble the transmitter unit should be removed and sent to repair station. NOTE: If desired, the small sub-assembly that contains the Sidetone Amplifier may be replaced without removing the transmitter. This small chassis containing one JAN-12SJ7 and two JAN-6V6GT tubes is easily accessible from top of transmitter (see fig. 5-6). It is held in place by a screw at each side, going through the top. Since all connections are made by means of a plug, the chassis is disconnected by lifting straight up.

Low R-F Output

- be indicated by the values of the following meter readings: P. A. GRID and P.A. PLATE. When R-Foutput, set EMIS-SION switch to CW position and select a quency above 3000 Kc.
- power output suddenly decreased, the reduction may be due to the normal action of a pressure operated switch in the power supply system.
- TUNE-OPERATE) may be in TUNE position.
- "C," "D," and "E" may not be set properly.
- obtained, power amplifier tube V104 may be defective or multiplier tubes V102 and V103 may be defective: P.A. PLATE meter reading should rise to at least 150 divisions when Control "D" is detuned from its correct (resonant) setting, provided that the P.A. GRID reading is between 40 and 140 divisions.

- 13. Low R-F output will 13a. If plane is gaining altitude when 13a. The pressure operated switch operates at altitudes between 20,000 and 25,000 feet to reduce high voltages at high altitudes and prevent "flashover." The reduced voltage on the power amplifier stage causes approximately 1/2 reduction of A-F power output.
  - checking for low 13b. Power level switch (CALIBRATE- 13b. Power level switch must be in OPERATE position for maximum R-F power output.
  - transmission fre- 13c. Antenna tuning and loading controls 13c. See instructions starting with paragraph 6b(4)(0) section II, for adjusting these controls to properly tune and load the antenna system. These instructions are also given in the Calibration Book.
    - 13d. If the following condition cannot be 13d. If P.A. PLATE and P.A. GRID readings are low, the V104 tube is probably the cause. Obtain access to and check tube as described in paragraph 2b following this table.

If P.A.PLATE reading is above 150 and P.A. GRID is below 40, then tube V102 or V103 is probably the cause. Obtain access to and check tubes as described in paragraph 2b following this table.

If P.A. PLATE reading is above 200, and P.A. GRID reading is not less than 40, then power amplifier tube V104 is "soft" or "gassy" and should be replaced.

If replacement of tubes does not increase power output the transmitter unit should be removed and sent to repair

# Excessive Distortion Occurs When Voice Emission is Used

- ably distorted when heard on headphones that are connected to a Radio Receiving Set.
- headset is connected to Sidetone jack on transmitter, the fault is probably in the speech amplifier section of the transmitter.
- in headphones connected to sidetone jack on transmitter, the distortion, in transmitter output, may be caused by tubes V104, V105, and V106.
- 14. VOICE is consider- 14a. If VOICE is also distorted when 14a. Obtain access to and check tubes V201, V202, and V203 as described in paragraph 2b following this table. If distortion is not eliminated by replacing tubes, the fault is in the transmitter and that unit should be removed and sent to repair station.
  - 14b. If voice is not distorted when heard 14b. Obtain access to and check tubes V104, V105, and V106 as described in paragraph 2b following this table. If distortion is still excessive after tubes are replaced, transmitter unit should be removed and sent to repair station.

#### AN 16-30ART13-4

#### TABLE 5-1. TROUBLE SHOOTING ON INSTALLED EQUIPMENT (Cont'd)

"Beat Note" Cannot Be Obtained When Calibrating Low or High Frequency Oscillators

Probable Cause of Trouble

#### Remedy

switch is not in CALIBRATE posi-Oscillator Unit. may be faulty. in the transmitter. It is probable that the fault is located in the MCW-CFI unit chassis (see fig. 5-6). This small chassis can be removed for replacement if desired. It is held in place by two screws that pass through the top of the chassis on

each side.

- 15a. CALIBRATE TUNE OPERATE 15a. This switch must be in the "CALIBRATE" position, otherwise the calibration oscillator will not operate.
- 15b. Defective Crystal in the Calibration 15b. Turn off equipment. Remove cover of transmitter and replace Crystal. See figure 8-8 for location of the crystal which is designated by the symbol Y2201.
- 15c. Tubes V2201, V2202, or V2203 15c. Obtain access to and check these tubes as described in paragraph 2b following this table.
- 15d. Defective part or loose connection 15d. If the above items have been checked and the calibrating "beat note" still cannot be obtained, the transmitter unit should be removed and sent to repair station.

# "Autotune" System Will Not Operate

- Selector switch is set to one of the 11 channels the autochanism will not operate to change the transmission frered indicator lamp on transmitter does not light LOCAL - REMOTE switch is in "LO-CAL" position, then Autotune mechanism is probably O.K. but there is a fault in the power supply; see Symptom No. 1.
- wrong position.
- 16. When CHANNEL 16a. LOCAL REMOTE switch is in 16a. This switch must be set to "LOCAL" when using controls on transmitter. If Pilot's Control Unit is used, set switch to "REMOTE".
  - microphone switch, or test switch is closed.
  - matic tuning me- 16b. Telegraph key, throttle switch, 16b. The Autotune mechanism will not operate when the transmitter is being keyed. Key must be open when Autotune operates to change frequency.
  - quency. NOTE: If 16c. Overload relay on Dynamotor 16c. Press RESET button labeled "TRANS. RESET," Power Unit has opened.
    - when 16d. If Autotune still will not operate the 16d. Remove transmitter unit and send to repair station. fault is probably in the mechanism or associated electrical Controls.

## Autotune Does Not Return Controls To Correct Settings

- ism operates but does not return the controls correctly to the positions for which it was originally set.
- When knobs were adjusted to final settings they were rotated in a counterclockwise direction.
- 17. Autotune mechan- 17a. Autotune was not set up properly. 17a. When a control knob is being set to a desired position, YOU MUST ALWAYS TURN THE KNOB CLOCK-WISE WHEN APPROACHING THE SETTING. If you accidentally rotate the knob past the setting, turn it back a half turn and again approach final setting by turning clockwise.

# TABLE 5-1. TROUBLE SHOOTING ON INSTALLED EQUIPMENT (Cont'd)

Autotune Does Not Return Controls To Correct Settings (continued)

| Symptoms | Probable Cause of Trouble                                                                                                                                                                     | Remedy                                                                                                                                                                                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 17b. If autotune motor runs continuously (more than 30 seconds) and does not stop, there is a fault in the                                                                                    | 17b. Transmitter unit should be removed and sent to repai station.                                                                                                                                                                                                               |
|          | electrical system of the mechanism.  If Autotune mechanism has returned                                                                                                                       | 17c. Be sure that all control knobs were correctly set originally by approaching final dial setting in CLOCI WISE direction, not counterclockwise. If Autotune st does not operate properly after rechecking the set-up, a move the transmitter unit and send to repair station. |
|          | some of the control knobs to their<br>correct settings but other knobs are<br>set incorrectly, the trouble may be<br>due to a broken spring in the mech-<br>anism or improper synchronization |                                                                                                                                                                                                                                                                                  |
|          | of all of the units.                                                                                                                                                                          |                                                                                                                                                                                                                                                                                  |

- Autotune motor can be heard running continuously, even after control knobs stop at final settings.
- 18. Autotune motor can 18a. Fault in electrical system of the Auto- 18a. Remove transmitter unit and send to repair station. be heard running tune mechanism.

#### b. TUBE CHECKING AND REPLACEMENT.

# WARNING

Be sure to turn off the entire equipment before attempting to remove cover of transmitter and replace tubes. This equipment utilizes high voltages which are dangerous to life. Operating personnel must observe all safety regulations.

- (1) All of the tubes used in this equipment are located in Radio Transmitter T-47A/ART-13 and are easily accessible when the top of that unit is removed. Before removing the top cover of the transmitter, be sure to turn off entire equipment by setting LOCAL-REMOTE switch to "LOCAL" position and then set EMISSION switch (on transmitter panel) to "OFF." Also, make certain that the KEY, MICRO-PHONE and THROTTLE switch are open.
- (2) REMOVING TOP COVER OF TRANS-MITTER.—One hold-down screw is used at each side of the top cover. To remove the cover, insert a coin or screw driver in each screw and make a half turn counterclockwise. The cover can now be lifted off.
- (3) LOCATING TUBES.—The position of each of the tubes used in this equipment is shown in the following illustration. All tubes, with exception of V2601 (Low Frequency Oscillator), are visible and readily accessible when transmitter cover is removed. The Low Frequency Oscillator tube V2601 can be reached by removing the cover of the Low Frequency Oscillator Unit. This unit is located directly behind control "G" and the cover contains numerous ventilation holes. To remove cover, take out screws around the rim of the cover.
- (4) REMOVING TUBES.—Tube clamps are used on some of the tubes in this equipment to prevent the

tube from coming out of the socket under vibration incident to normal service. The operation of the tube clamp is shown in the insert sketch on figure 5-1. To open clamp, insert screw driver as shown and gently pry open. The clamps on tubes V105 and V106 are accessible through the rear cover plate. Clamps on tubes V102 and V103 can best be reached from top of transmitter. Obtain access to clamp on V101 through side cover plate.

- (a) To replace tube V104 (which is a type JAN-813), orient the base pin with the slot in hole above socket and then press down firmly until tube pins are solidly engaged in the socket.
- (5) CHECKING TUBES.—Whenever tube failure is suspected, the most dependable method of checking the tube is to replace it with another tube known to be in good condition. To quickly determine which tubes require checking refer to table 5-2. If one or more of several tubes are the cause of faulty operation, each tube should be replaced and the new tube should remain in the equipment until all tubes have been replaced or until the faulty tube has been located.

#### 3. TROUBLE SHOOTING AT REPAIR STATION.

The information and instructions given in the following paragraphs should only be used after the fault has been traced to one of the major units (Transmitter, Control Unit, Dynamotor, or Loading Unit) by using the simplified trouble-shooting procedure given in paragraph 2 and table 5-1, this section.

a. TROUBLE-SHOOTING TABLE.—When trying to find the exact location of a fault, it is desirable to first make a preliminary examination and determine approximately which portion or circuit of the equipment is affected. The following table is designed to assist in locating the circuit or major sub-assembly

# Section V Paragraph 3

that contains the fault. Any tests, measurements, or observations that are recommended can be accomplished without major disassembly of the unit. After the offending circuit or subassembly has been located, it is necessary to know how to obtain access to or how to remove that item. This information is given in paragraphs of this section, starting with paragraph 3.b.

- (1) When using the following trouble-shooting table, it is understood that the faulty major unit has been connected into a mock-up at the repair station and that other major units and interconnecting cables in the mock-up are to be in perfect condition. It is also assumed that all tubes in the faulty unit have been checked by replacement.
- (2) A set of Phillips screw drivers and Allen setscrew wrenches are supplied with each equipment and are mounted in special clips on the inside of the transmitter cover. In addition to these tools, the ordinary tools such as common screw drivers, pliers, and soldering iron will be required to remove or replace parts.
- (3) A volt-ohmmeter will be required to measure operating voltages and to make continuity or resistance measurements. The instrument should be capable of measuring d-c voltages up to 1500 volts and should have an internal resistance of 20,000 ohms per volt (instruments with internal resistances of 1000 or 5000 ohms per volt may also be used, but readings will be correspondingly lower than the values shown in tables 5-1 through 5-4 in this manual, since these tables were prepared by using a 20,000 ohm per volt instrument). Use of a vacuum-tube-voltmeter is recommended when measuring voltages in grid circuits.
- (4) High voltage circuits should not be checked with a voltmeter unless other means cannot be used. This practice is advocated in the interest of safety.

# WARNING

When cover of transmitter is removed be sure to turn off power. High voltages (1150 volts) appear at plate connection caps on top of tubes. Avoid checking for loose connections or poor contacts while power is on. Check continuity of suspicious connection by using an ohmmeter.

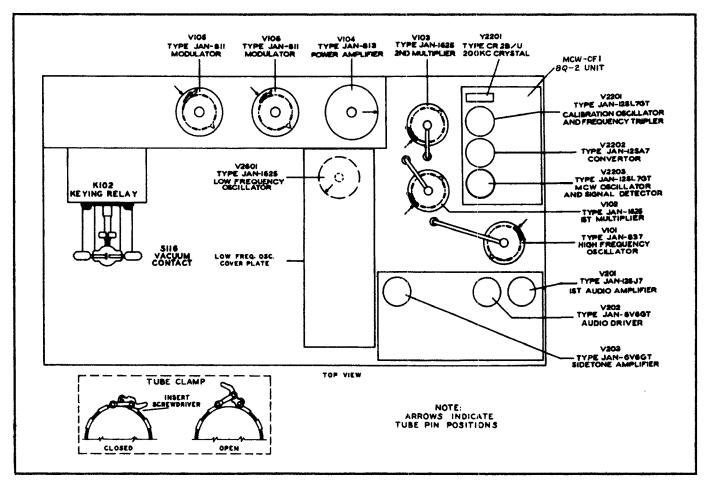



Figure 5-1. Tube Placement Diagram

### TABLE 5-2. TROUBLE SHOOTING AT REPAIR STATION

Faults In Transmitter Unit

| Symptoms                                                                                              | Probable Cause of Trouble                                                                                                                                                                    | Remedy                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                       | Transmitter Will                                                                                                                                                                             | Not Turn On                                                                                                                                                                                                                  |
| 1. Red indicator lamp<br>is off; dynamotor<br>will not operate<br>when EMISSION<br>switch is in CW or | 1a. Lamp may be burned out. Check lamp and then see 1b.                                                                                                                                      | 1a. Replace lamp. Red window in front of lamp is removed<br>by pulling forward on knurled ring that surrounds it.<br>Lamp has bayonet base and is removed by pushing in<br>and turning counterclockwise.                     |
| MCW position and<br>Autotune mechan-<br>ism does not oper-<br>ate when CHAN-                          | 1b. Poor contact on EMISSION switch S110 or on LOCAL-REMOTE switch S107.                                                                                                                     | <ol> <li>Check continuity of contacts on both switches. See simplified circuit, figure 4-2. See figure 8-2 for switch location.</li> </ol>                                                                                   |
| NEL switch is operated.                                                                               | 1c. Poor contact at plug U-7/U or receptacle J108.                                                                                                                                           | 1c. Check for loose connection at plug and receptacle.                                                                                                                                                                       |
| 2. Dynamotor does not operate when VOICE emission is used.                                            | 2a. If emission switch is in VOICE position dynamotor will only operate when microphone switch is closed. Microphone switch may be defective.                                                | 2a. Press microphone switch. If dynamotor does not run, close TEST switch. If dynamotor runs with TEST switch closed then poor connection at microphone switch or plug is causing trouble.                                   |
|                                                                                                       | 2b. Contacts No. 1 and No. 2 of VOICE<br>relay K104 are not closed. See fig-<br>ure 8-42 for contact numbers. See<br>simplified circuit figure 4-2.                                          | 2b. K104 is located at bottom of transmitter (see fig. 8-3). Remove bottom cover plate and check relay action and contacts. See circuit in figure 4-2. Check contacts of EMISSION switch S110.                               |
|                                                                                                       | 2c. Rear limit switch S111 on Autotune<br>mechanism is open or contacts No.<br>1 and No. 3 of autotune motor con-<br>trol relay K101 are not closed. See<br>figure 8-42 for contact numbers. | 2c. See figures 4-2 and 4-20. Remove panel around bottom<br>row of controls (see fig. 8-1). See figure 8-3 for location<br>of K101 and S111. Check contacts. Check action of re-<br>lay when autotune mechanism is operated. |
| 3. Dynamotor does not operate when CW emission is used.                                               | 3a. Contacts No. 4 and No. 5 of CW relay K103 may not be closing; see figure 8-42 for relay contact numbers.                                                                                 | 3a. K103 is located at bottom of transmitter (see fig. 8-3). Remove bottom cover plate and check relay action and contacts. See circuit in figure 4-2. Check contacts of EMISSION Switch S110 and LOCAL-REMOTE Switch S107.  |
|                                                                                                       | 3b. See 2c.                                                                                                                                                                                  | 3b. See 2c.                                                                                                                                                                                                                  |
| 4. Dynamotor does not operate when MCW emission is used.                                              | 4a. Poor contact on EMISSION switch S110 or LOCAL-REMOTE switch S107.                                                                                                                        | <ol> <li>Check continuity of both switches. See simplified circuit<br/>figure 4-2. See figure 8-2 for switch location.</li> </ol>                                                                                            |
|                                                                                                       | 4b. See 2c.                                                                                                                                                                                  | 4b. See 2c.                                                                                                                                                                                                                  |
| 5. Autotune mechan-<br>ism will not operate.<br>Dynamotor operates<br>and rest of equip-              | 5a. LOCAL-REMOTE switch must be<br>in local position when using<br>CHANNEL switch on transmitter.                                                                                            | 5a. Set switch to LOCAL position.                                                                                                                                                                                            |
| ment is O.K.                                                                                          | <ol> <li>Telegraph key, throttle switch, mic-<br/>rophone switch or test key are<br/>closed.</li> </ol>                                                                                      | <ol><li>Autotune will not operate when transmitter is being<br/>keyed.</li></ol>                                                                                                                                             |
|                                                                                                       | 5c. CALIBRATE - TUNE - OPERATE switch is in CALIBRATE position.                                                                                                                              | <ol> <li>Autotune mechanism will not operate when this switch<br/>is in CALIBRATE position. Set switch to OPERATE or<br/>TUNE positions as desired.</li> </ol>                                                               |
|                                                                                                       | <ol> <li>Poor contact at CHANNEL selector<br/>switch S108 or Autotune circuit<br/>seeking switch S109.</li> </ol>                                                                            | 5d. See circuit in figure 4-20. Remove panel around bottom<br>row of controls (see fig. 8-1). See figure 8-3 for location<br>of S109 and figure 8-2 for location of S108. Check con-<br>tacts.                               |
|                                                                                                       | <ol> <li>Poor contacts on Autotune Motor<br/>Control Relay K101 or on Auto-<br/>tune rear limit switch S111.</li> </ol>                                                                      | <ol> <li>See circuit in figure 4-20. Remove panel around bottom<br/>row of controls (see fig. 8-1). See figure 8-3 for location<br/>of K101 and S111. Check contacts.</li> </ol>                                             |

### TABLE 5-2. TROUBLE SHOOTING AT REPAIR STATION (Cont'd)

Faults In Transmitter Unit (Cont'd)

| Symptoms                                                                                                                         | Probable Cause of Trouble                                                                                                                                                                                                                                                                                      | Remedy                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                  | Transmitter Will Not T                                                                                                                                                                                                                                                                                         | urn On (continued)                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                  | 5f. Contacts No. 2 and No. 12 of Keying Relay K102 are not closed. (Numbers refer to plug on side of relay case).                                                                                                                                                                                              | 5f. These contacts must close when Relay is at rest or unoperated position. (See circuits in figs. 8-42 and 4-20.)                                                                                                                                                                                                             |
|                                                                                                                                  | 5g. Defective Autotune Motor B101.                                                                                                                                                                                                                                                                             | <ol> <li>Check continuity of Autotune Motor Windings. See<br/>motor circuit in upper left corner of figure 8-42.</li> </ol>                                                                                                                                                                                                    |
| 6. Tube filaments do not light. Dynamot-                                                                                         | 6a. Poor contact or broken wire at plug U-7/U or receptacle J108.                                                                                                                                                                                                                                              | 6a. Check for loose connection at plug or receptacle.                                                                                                                                                                                                                                                                          |
| or operates. Red in-<br>dicator light is on.<br>Autotune operates.                                                               | 6b. Loose connection at socket of tube or a defective tube.                                                                                                                                                                                                                                                    | 6b. See filament circuits in figure 4-3. Check for loose connection. Check tubes by replacement.                                                                                                                                                                                                                               |
| <ol> <li>No R-F output. Red<br/>indicator is on, dy-<br/>namotor operates,<br/>and Autotune mech-<br/>anism operates.</li> </ol> | 7a. See Symptom No. 10.                                                                                                                                                                                                                                                                                        | 7a. See Remedy No. 10.                                                                                                                                                                                                                                                                                                         |
| 8. Dynamotor overload<br>relay opens. Relay<br>will not stay closed<br>after DYNA. RESET<br>button is pushed; or<br>fuse blows.  | 8a. Short in high voltage circuits of<br>transmitter. Look for burnt, over-<br>heated, or smoking part.                                                                                                                                                                                                        | 8a. Disconnect plug U-7/U and refer to table 5-4 in this section. Measure resistance from J108 pins Nos. 1, 2, 9, and 10 to ground. If resistance is appreciably lower than value shown in table, a short is indicated. If short is on pin No. 1, see 8b. If short is on No. 2 or No. 9 see 8c. If short is on pin 10, see 8d. |
|                                                                                                                                  | 8b. Short from pin No. 1 of J108 to ground. (This is 400 volt Supply). Causes fuse on dynamotor to blow. May be caused by short at following points in transmitter:  (a) Power Amplifier Stage (b) L.F. Oscillator Unit (c) H.F. Oscillator Unit (d) Multiplier Unit (e) Audio Amplifier Unit (f) MCW-CFI Unit | from tube terminals to ground for tubes in each of these stages. See Resistances in table 5-3.                                                                                                                                                                                                                                 |
|                                                                                                                                  | 8c. Short from pins No. 2 or No. 9 of J108 to ground. This is circuit to meter reading P.A. PLATE current. Possible short in wiring to meter or at meter selector switch \$105.                                                                                                                                | Both are located on meter panel at front of transmitter.                                                                                                                                                                                                                                                                       |
|                                                                                                                                  | 8d. Short from pin No. 10 of J108 to ground. Caused by possible short in wiring and components associated with power amplifier (V104) plate circuit or Modulator (V105 and V106) plate circuits.                                                                                                               | from tube terminals (see table 5-3).                                                                                                                                                                                                                                                                                           |
| 9. Transmitter over-<br>load relay (On dyna-<br>motor unit) opens.                                                               | 9a. Short circuits in a relay armature winding, Autotune electrical circuit, or connecting wiring.                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                |
| Relay will not stay<br>closed after TRANS.<br>RESET button is<br>pushed.                                                         |                                                                                                                                                                                                                                                                                                                | If short only occurs when EMISSION switch is on VOICE, fault is probably in VOICE relay K104, associated wiring or EMISSION switch.                                                                                                                                                                                            |
|                                                                                                                                  |                                                                                                                                                                                                                                                                                                                | If short only occurs when TEST SWITCH or telegraph key is closed, fault is probably in KEYING relay K102 or associated wiring.                                                                                                                                                                                                 |
|                                                                                                                                  |                                                                                                                                                                                                                                                                                                                | If short occurs only when control A is in position 13 (L.F.), fault is probably in Output Circuit Selecting Relay K105, associated wiring or switch S114. (See figure 8-7 for location of S114 and figure 8-13 for location of K105.)                                                                                          |

### TABLE 5-2. TROUBLE SHOOTING AT REPAIR STATION (Cont'd)

| Symptoms                                                                                                                                                                                                              | Probable Cause of Trouble                                                                                                                                                                                                                                                                                                                                                     | Remedy                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                       | Transmitter Will Not Tu                                                                                                                                                                                                                                                                                                                                                       | rn On (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                               | Check Autotune electrical circuit (fig. 4-20) for shorts or mechanical binding that would stall motor (use autotune line shaft crank, supplied in spares, to see if shaft turns freely. See figure 8-6 to attach crank).                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                       | 9b. Short circuit in tube filament wiring. Look for burnt or smoking part.                                                                                                                                                                                                                                                                                                    | 9b. See tube filament circuit in figure 4-3. Remove all tubes and check wiring for shorts. Use table 5-3 in this section.                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                       | 9c. Short circuit in Autotune motor or associated switches and wiring.                                                                                                                                                                                                                                                                                                        | 9c. See figure 4-20 for autotune electrical system. Check motor switches and wiring for shorts.                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                       | No R-F Output On Any                                                                                                                                                                                                                                                                                                                                                          | Frequency Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| No R-F output on any frequency. Dynamotor operates; there is no overload; and Autotune mechanism operates O.K. CALIBRATE-TUNE-OPERATE switch is in OPERATE position. IMPORTANT:  —Be sure Control  "C" is set so that | 10a. Note whether Keying Relay (K102) operates when TEST key is closed. If it does not, fault is in 28 volt supply circuits to this relay. See figure 4-2. Note whether vacuum contact (S116) has a broken or cracked bulb. If continuous arcing occurs, glass bulb or seal of vacuum contact have been destroyed (see replacement procedure in paragraph 8 of this section). | 10a. Check contacts S113D of Multi-Element Switch (see fig. 8-16). These contacts must be closed when control "C" is set to any numbered position. Check for closed contacts on Rear Limit Switch S111 (on Autotune Unit at side of Control "B"), and if contacts No. 1 and No. 3 on Motor Control Relay K101 (see fig. 8-42) are closed. Check armature winding of Keying Relay K102 for continuity. (Armature is connected to plug terminals No. 14 and No. 15 of this relay.) |
| numbered position lines up exactly with index line. R-F output will not be obtained if this control is set between numbered positions.                                                                                | 10b. If P.A. GRID meter reading is normal and P.A. PLATE reading is much higher than normal, fault is in output network. Examine Vacuum Switch contact (S116). See figure 8-2 for location of this switch.                                                                                                                                                                    | 10b. Turn off equipment and check output network parts for shorted capacitors or poor contacts at Multi-Element Switch S113 and at Output Relay K105. If shunt capacitor unit is in use, check it for a short by replacing it with a unit that is known to be good. Be sure vacuum contact (S116) operates properly and that contacts are O.K.                                                                                                                                   |
|                                                                                                                                                                                                                       | 10c. If P.A. GRID meter reading is normal, but P.A. PLATE reading is zero or very low, the fault is in the plate or screen supply circuits of the Power Amplifier Tube V104 or is caused by having Control "C" set between numbered positions.                                                                                                                                | 10c. Check continuity of screen and plate supply circuits (see fig. 8-42) of V104. CAUTION: 1150 volts on plate and 400 volts on screen of this tube. Check for blown fuse in dynamotor.                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                       | 10d. If P.A. GRID meter reading is very<br>low or zero, fault is in Multiplier<br>stages or Oscillators. (High or Low<br>Frequency.)                                                                                                                                                                                                                                          | 10d. Check voltages at tube terminals of following tubes: V103, V102, V101, and V2601. (See voltages in table 5-1 in this section.) Check resistance from tube terminals to ground using table 5-3 in this section. Check for poor contacts at switches S103, S102, S115, S114, and S2601, S101 and plug contacts No. 3 and No. 9 of keying relay K102 (contacts of relay should connect these terminals when relay is in operated position).                                    |
|                                                                                                                                                                                                                       | No R-F Output On 200K                                                                                                                                                                                                                                                                                                                                                         | CC to 600KC Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1. No R-F output in<br>200KC to 600KC<br>low frequency range.                                                                                                                                                         | 11a. Control "A" is not set exactly to position 13 (L.F.).                                                                                                                                                                                                                                                                                                                    | 11a. The setting of this control is critical. Be sure No. 13 is exactly in line with index mark.                                                                                                                                                                                                                                                                                                                                                                                 |

- other frequency ranges.
- K2501 (in loading unit) is open in the transmitter.
- or wiring connecting it to grid of Power Amplifier Tube V104.
- low frequency range.

  Output is O.K. on 11b. 28 volt supply for operation of relay 11b. Check voltage on pin 3 of receptacle J107 at transmitter (should be 28 volts). If no voltage is found, check contacts on relay K105 and switch S114.
  - 11c. Fault in Low Frequency Oscillator 11c. Refer to figure 4-11. Check voltages on terminals of tube V2601 using table 5-1 in this section. Check resistance from tube terminals to ground using table 5-3 in this section. Check switch contacts on \$2601 and S103.

### AN 16-30ART13-4

### TABLE 5-2. TROUBLE SHOOTING AT REPAIR STATION (Cont'd)

Faults In Transmitter Unit (Cont'd)

|     | Symptoms                                                                                       | Probable Cause of Trouble                                                                                                                                                                                                                                                                                                     |         | Remedy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                | No R-F Output On 6.0M                                                                                                                                                                                                                                                                                                         | C to 1  | 8.1MC Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12. | No R-F output in 6.0MC to 18.1MC high frequency range. Output is O. K. on low frequency range. | 12a. Fault in Multiplier Unit or High<br>Frequency Oscillator Unit.                                                                                                                                                                                                                                                           | 12a.    | Check voltages on terminals of tubes V101, V102 and V103 using table 5-1 in this section. Check contacts on switches S114, S101, S102, and S103. Refer to simplified circuit shown in figure 4-12. Check resistance from tube terminals to ground using table 5-3 in this section.                                                                                                                                                                                                                                      |
|     |                                                                                                | No R-F Output On 2.0N                                                                                                                                                                                                                                                                                                         | IC to ( | 5.0MC Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13. | No R-F output in 2.0MC to 6.0MC high frequency range. Output is O. K. on low frequency range.  | 13a. Fault is in first stage (V102) of Multiplier Unit or in High Frequency Oscillator Unit.                                                                                                                                                                                                                                  | 13a.    | Check voltages on terminals of tubes V101 and V102 using table 5-1 in this section. Check contacts of switches S101, S102 and S114. Refer to simplified circuit shown in figure 4-12. Check resistance from tube terminals to ground using table 5-3 in this section.                                                                                                                                                                                                                                                   |
|     |                                                                                                | R-F Output Is Not Tone Modulate                                                                                                                                                                                                                                                                                               | d Wh    | en MCW Emission Is Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14. | Output is not tone modulated. VOICE emission is satisfac-                                      | 14a. Loose plug connection to MCW-CFI Unit Chassis.                                                                                                                                                                                                                                                                           | 14a.    | Remove MCW-CFI Unit Chassis and check plug connection that is located on the bottom (see fig. 8-9).                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | tory. NOTE: If<br>VOICE emission<br>was not modulated,<br>see Symptom No.                      | 14b. Fault at contacts of VOICE relay K104, or contacts of Calibrate-Tune-Operate Switch S106.                                                                                                                                                                                                                                | 14b.    | Check for continuity across contacts 5 and 6 of VOICE relay K104 (contacts should be closed, see figs. 4-9 and 8-42).                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 15.                                                                                            | 14c. Fault in MCW Oscillator circuit.                                                                                                                                                                                                                                                                                         | 14c.    | Remove MCW-CFI unit (use procedure described in paragraph $3b(4)(e)$ , this section). Make up an extension cable and plug so that unit can be connected to plug in transmitter. Measure voltages on terminals of tube V2203 using table 5-1 in this section. Check resistance from tube terminals to ground using table 5-3 in this section.                                                                                                                                                                            |
|     |                                                                                                | R-F Output Is Not Voice Modu                                                                                                                                                                                                                                                                                                  | lated   | On Voice Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 15. | Output is not voice modulated.                                                                 | 15a. If voice is heard through sidetone output jack, fault is in Audio Driver or Modulator stages.                                                                                                                                                                                                                            | 15a.    | Check for presence of audible signal in plate circuit of Audio Driver Tube V202, and grid circuits of both Modulator Tubes V105 and V106. (See figs. 4-6 and 4-7.) WARNING: Plates of modulator tubes operate at 1150 volts. Turn off power and check continuity of windings and transformer T101. Check connections from T101 to plate and screen of V104 (see fig. 8-42). The following contact positions should be found on CW relay K103 (see fig. 8-42): 6 and 7 are open. 7 and 8 are closed. 2 and 3 are closed. |
|     |                                                                                                | 15b. If voice is not heard through sidetone output jack, fault is in Speech Amplifier circuits of the Audio Amplifier Unit. Be sure microphone switch is in correct position for type of microphone that is used (CARBON or DYNAMIC). If switch is set to DYNAMIC, and carbon microphone is used, no output will be obtained. | 15b.    | Check for loose plug connection under Audio Amplifier Unit (see fig. 8-11). Remove Unit from transmitter (use procedure described in paragraph $3b(4)(d)$ , this section). Make up extension cable and plug so that unit can be connected to plug in transmitter. Measure voltages on terminals of tubes V201, V202, and V203 using table 5-1 in this section. Check resistance from tube terminals to ground using table 5-3 in this section.                                                                          |

| 1                                                                                        | TABLE 5-2. TROUBLE SHOOTING                                                                                                                                   | AT REPAIR STATION (Cont'd)                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                          | Faults In Transmitte                                                                                                                                          | r Unit (Cont'd)                                                                                                                                                                                                                                                                                                                                                     |
| Symptoms                                                                                 | Probable Cause of Trouble                                                                                                                                     | Remedy                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                          | No Sidetone In Headphor                                                                                                                                       | nes—R-F Output Is O.K.                                                                                                                                                                                                                                                                                                                                              |
| 16. Signal is not heard in headset connected to sidetone jack. Equipment operates        | 16a. Check setting of "OUTPUT" switch (located behind chart panel—see fig. 2-2).                                                                              |                                                                                                                                                                                                                                                                                                                                                                     |
| satisfactorily on<br>VOICE emission.                                                     | 16b. Fault is in sidetone Amplifier circuit. This circuit is in Audio Amplifier Unit Chassis.                                                                 | 16b. Remove Audio Amplifier Unit from transmitter (use procedure in paragraph 3b(4)(d), this section). Make up extension cable and plug so that unit can be connected to plug in transmitter. Measure voltages on terminals of tubes V202 and V203 using table 5-1 in this section. Check resistance from tube terminals to ground using table 5-3 in this section. |
|                                                                                          | 16c. Failure of contacts in Keying Relay K102. Contacts No. 6 and No. 8 on plug at side of relay case should be connected when relay is in operated position. | 16c. If contacts 6 and 8 are open, the audio signal cannot reach the sidetone jack (see circuit in fig. 4-8). Contacts should close when keying relay operates.                                                                                                                                                                                                     |
|                                                                                          | Low R-F O                                                                                                                                                     | utput                                                                                                                                                                                                                                                                                                                                                               |
| 17. Low R-F output P.A.<br>GRID or P.A.<br>PLATE meter read-<br>ings are abnormal.       | 17a. Be sure CALIBRATE - TUNE - OPERATE switch is in OPERATE position.                                                                                        | 17a. This switch must be in OPERATE position so that full screen voltage will be applied to power amplifier tube V104.                                                                                                                                                                                                                                              |
| NOTE: Antenna cur-<br>rent read on R-F Am-<br>meter is not an ac-<br>curate indicator of | 17b. Antenna tuning and loading controls may not be properly set.                                                                                             | 17b. Check settings of C, D, and E Controls by operating on a frequency above 3000 Kc and using adjustment procedure starting with paragraph 6b(4)(0) in section II.                                                                                                                                                                                                |
|                                                                                          | 17c. Antenna Shunt Capacitor Unit is connected to transmitter at all times.                                                                                   | 17c. If Shunt Capacitor Unit is not disconnected when frequencies above 3000 Kc are used, a reduction in R-F output will result. Capacitor Unit should only be used when required to tune and load antenna in 2000 to 3000 Kc range. (See par. 6b(2)(jj) in sec. II.)                                                                                               |
|                                                                                          | 17d. If following condition cannot be obtained, the fault is in the power                                                                                     | 17d. If both P.A. PLATE and P.A. GRID readings are low-                                                                                                                                                                                                                                                                                                             |

obtained, the fault is in the power amplifier or exciter circuits (oscillator or multiplier stages):

P.A. PLATE meter reading should rise to at least 150 divisions when control "D" is detuned from its correct (resonant) setting, provided that P.A. GRID reading is between 40 and 140.

NOTE: If P.A. PLATE reading is above 200 and P.A. GRID is not less than 40, then power amplifier tube V104 is causing trouble (it is "soft" or "gassy"). Replace it.

fault is likely to be in circuits associated with power amplifier tube V104. Check voltage from tube socket terminals to ground using table 5-1. WARNING: Plate connection at cap on top of tube V104 operates at 1150 volts. Turn off equipment and check resistance from tube terminals to ground using table 5-3.

If P.A. PLATE reading is above 150, and P.A. GRID is below 40, then fault is in multiplier or oscillator circuits. Check circuits associated with tubes V103, V102, V101 and V2601 by measuring voltages and resistance to ground using tables 5-1 and 5-3. Be sure tubes have been checked. Check for poor contacts at switches \$103, \$102, \$114, \$115, and \$101. If fault is not found, then tuned circuits may be out of alignment. Check alignment of multiplier and oscillator circuits as described in paragraph 5 of this section.

### Excessive Distortion of Voice Emission

- 18. Voice signal is considerably distorted when heard on liaison receiver.
- 18a. If voice sounds distorted when heard through sidetone jack of transmitter, fault is likely to be in speech amplifier circuits.

NOTE: Try using another microphone. Be sure microphone switch under chart panel is in correct position (see fig. 2-2).

18a. If replacing tubes V201, V202, and V203 does not correct the trouble, remove Audio Amplifier Unit chassis from the transmitter (use procedure in paragraph 3b(4)(d), this section). Make up extension cable and plug so that unit can be connected to plug in transmitter. Measure voltages and resistance to ground from all tube terminals using tables 5-1 and 5-3 in this section. Check for short in capacitors C209 and C210. (Refer to fig. 8-11 for location.)

### AN 16-30ART13-4

### TABLE 5-2. TROUBLE SHOOTING AT REPAIR STATION (Cont'd)

Faults In Transmitter Unit (Cont'd)

| Symptoms                                                                                   | Probable Cause of Trouble                                                                                                                                                                                                                   | Remedy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                            | Excessive Distortion of Voice                                                                                                                                                                                                               | Emission (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                            | 18b. If voice is not distorted when heard through sidetone jack on transmitter, the fault is likely to be in modulator and power amplifier circuits.                                                                                        | 18b. Try replacing both modulator tubes V105, V106 and power amplifier tube V104. Check condition of resistors R121 and R123. If no improvement is obtained, measure voltages and resistance to ground from tube terminals using tables 5-1 and 5-3. WARNING: Plate connection caps at top of these tubes operates at 1150 volts. Check contacts 6, 7, and 8 of CW relay K103 (see fig. 8-42). When emission switch is on VOICE, contacts 6 and 7 of K103 should be open and 7 and 8 should be closed. |
|                                                                                            | "Beat Note" Is Not Heard W                                                                                                                                                                                                                  | ben Attempting To Calibrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 19. When attempting to calibrate oscillators, using the CFI unit, a "beat note" cannot     | 19a. Be sure CALIBRATE - TUNE - OPERATE switch is in CALIBRATE position.                                                                                                                                                                    | 19a. CFI Unit will not operate if switch is not in CALI-<br>BRATE position.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| be obtained. It is assumed here that R-F output of transmitter                             | 19b. Defective Crystal in CFI Unit.                                                                                                                                                                                                         | 19b. Replace Crystal in CFI Unit. Be sure tubes V2201, V2202, and V2203 are all O.K.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| is O.K. and when<br>VOICE emission is<br>used, the signal can                              | 19c. Poor contact at CALIBRATE-<br>TUNE-OPERATE switch.                                                                                                                                                                                     | 19c. Refer to figures 4-10 and 8-42. Check contacts on switch S106.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| be heard through sidetone jack.                                                            | 19d. Poor contact at plug that connects<br>CFI Unit to transmitter chassis.                                                                                                                                                                 | 19d. Check for loose plug connection under CFI Unit Chassis (see fig. 8-9).                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                            | 19e. Fault in circuits of CFI Unit.                                                                                                                                                                                                         | 19e. Remove CFI Unit Chassis from transmitter (see procedure in paragraph 3b(4)(e), this section). Make up extension cable and plug so that unit can be connected to plug in transmitter. Measure voltages and resistance from tube terminals to ground using tables 5-1 and 5-3 in this section.                                                                                                                                                                                                      |
|                                                                                            | 19f. If no fault is found in the circuits after checking as described in 19e, it is probable that the alignment of the CFI Unit has been disturbed and realignment will be required.                                                        | 19f. Realign tuned circuits of the CFI Unit using procedure in paragraph 6 of this section.                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                            | Autotune System Wi                                                                                                                                                                                                                          | Il Not Operate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 20. Autotune mechan-<br>ism does not operate<br>when CHANNEL se-<br>lector switch is oper- | 20a. Be sure REMOTE-LOCAL switch is in LOCAL position.                                                                                                                                                                                      | 20a. This switch must be set to LOCAL when using Controls on the transmitter. If Pilot's Control Unit is used, set switch to RFMOTE.                                                                                                                                                                                                                                                                                                                                                                   |
| ated.                                                                                      | 20b. Telegraph Key, Throttle Switch,<br>Test Switch or Microphone Switch<br>is closed.                                                                                                                                                      | 20b. Autotune mechanism cannot operate when transmitter is being keyed. See circuit in Figure 4-20.                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                            | 20c. Faulty contact at CHANNEL Selector Switch S108, Circuit Seeking Switch S109, Rear Limit Switch S111, Motor Control Relay K101, or contacts No. 2 and No. 12 of Keying Relay K102. (Numbers refer to plug terminals on side K102 case.) | 20c. Check contacts at switch S108. Remove panel around bottom row of Controls (see fig. 8-1). See figure 8-3 for location of K101, S111, S109. Check contacts by referring to figure 4-2 or description of sequence of operation given in paragraph 3c of section IV (also see fig. 4-21).                                                                                                                                                                                                            |
|                                                                                            | 20d. Fault in Autotune motor.                                                                                                                                                                                                               | 20d. Determine whether motor will run when connected directly to a 28-volt D.C. source. See upper left corner of figure 8-42 for motor connections. Check motor brushes.                                                                                                                                                                                                                                                                                                                               |
|                                                                                            | 20e. Check for mechanical binding of Autotune line shaft that might cause motor to stall.                                                                                                                                                   | 20e. Attach Autotune line shaft crank at end of shaft that ex-<br>tends through right end of high frequency oscillator<br>casting (see fig. 8-6). Crank is supplied with spare parts.<br>Rotate line shaft to check for binding.                                                                                                                                                                                                                                                                       |

TABLE 5-2. TROUBLE SHOOTING AT REPAIR STATION (Cont'd)

| <br>Symptoms                                                                                                                     | Probable Cause of Trouble                                                                                                                                                                                                                             | Remedy                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| <br><u> </u>                                                                                                                     | Autotune Does Not Return Control                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| Autotune mechan-<br>ism operates but<br>does not return the<br>controls to the cor-<br>rect positions to<br>which it was origin- |                                                                                                                                                                                                                                                       | 21a. When Autotune is being set-up, be sure that Control knobs are ROTATED CLOCKWISE as final setting is approached. If you accidentally rotate knob past the setting, turn it back and again approach final setting by turning clockwise.                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| ally set.                                                                                                                        | 21b. Autotune mechanism runs for very<br>brief interval but does not set con-<br>trols correctly; caused by poor con-<br>tact at forward Limit Switch S112                                                                                            | 21b. When mechanism is at rest, contacts of Forward Limit<br>Switch S112 must be closed; check continuity. See fig-<br>ure 4-20.                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                  | or failure of contacts No. 5 and No. 6 to close on Motor Control Relay K101 (see fig. 8-42 for contact numbers).                                                                                                                                      | When Motor Control Relay K101 is operated, contacts No. 5 and No. 6 must be closed. (See fig. 8-42.) Check continuity.                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                                                                                                                                  | 21c. Autotune motor runs continuously.                                                                                                                                                                                                                | 21c. See symptom 22.                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|                                                                                                                                  | 21d. Autotune mechanism returns some control knobs to correct setting but one or more knobs are still set incorrectly; caused by broken pawl spring, sticking pawl on multi-turn head, or improper synchronization of Autotune units or improper syn- | 21d. Examine all five Autotune mechanisms for broken pawl springs (see figs. 4-15 to 4-18 inclusive and fig. 4-14). If broken spring is found, replace that particular mechanism entirely. (Complete mechanisms and their part numbers are shown in figs. 4-15 through 4-18.) Check for sticking pawls (fails to fully engage slot in cam).                                                                     |  |  |  |  |  |  |  |  |
|                                                                                                                                  | chronization of Circuit Seeking<br>Switch, \$109.                                                                                                                                                                                                     | Check synchronization of mechanisms and synchronization of Circuit Seeking Switch S109 as described in paragraphs $4b$ and $4d$ of this section.                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                  | Autotune Motor Run                                                                                                                                                                                                                                    | s Continuously                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| Motor can be heard<br>running continuous-<br>ly after control<br>knobs have stopped<br>tuning.                                   | 22a. Forward Limit Switch S112 fails to open when switch operating arm reaches maximum forward position. See figure 4-20.                                                                                                                             | 22a. Adjust Forward Limit Switch S112 as described in paragraph 4e of this section.                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| tumug.                                                                                                                           | 22b. Rear Limit Switch S111 fails to open when switch operating arm reaches home stop position. See figure 4-20.                                                                                                                                      | 22b. Adjust Rear Limit Switch \$111 as described in paragraph 4e of this section.                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|                                                                                                                                  | 22c. Contacts 5 and 6 of Motor Control<br>Relay K101 fail to open after for-<br>ward limit switch opens.                                                                                                                                              | 22c. Check for sticking contacts on relay K101.                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|                                                                                                                                  | Faults In Dynamo                                                                                                                                                                                                                                      | tor Unit                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                                                                                                                                  | WARNI                                                                                                                                                                                                                                                 | N G                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                  | High voltages (400, 750, a                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|                                                                                                                                  | in the dynamotor power un<br>running.                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|                                                                                                                                  | Dynamotor Will 1                                                                                                                                                                                                                                      | Not Operate                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Dynamotor does not operate when equipment is turned on.                                                                          | 23a. Transmitter Overload Relay K2705<br>or Primary Power Contactor Relay<br>K2702 is open.                                                                                                                                                           | 23a. Relay K2705 should be closed at all times. If overload occurs it will open. To re-close push button labeled TRANS. RESET.                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| NOTE: When EMIS-<br>SION switch is in<br>VOICE position dy-                                                                      |                                                                                                                                                                                                                                                       | Relay K2702 should close when transmitter is turned on. If it does not, see cause No. 25b.                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| namotor only operates when microphone switch, TEST switch, or throttle switch is closed.                                         | 23b. Dynamotor Overload Relay,<br>K2706, is open.                                                                                                                                                                                                     | 23b. Push DYNA. RESET button and attempt to close relay. If it closes momentarily and then opens again, there is an overload caused by a shorted part in the Dynamotor chassis or a defect in the Dynamotor Machine. Check for shorts in both the 28 volt input and the 400 and 1150 volt output circuits. See figure 8-42. Check resistance of dynamotor windings against table in paragraph 3g of section VI. |  |  |  |  |  |  |  |  |

### AN 16-30ART13-4

### TABLE 5-2. TROUBLE SHOOTING AT REPAIR STATION (Cont'd)

Faults In Dynamotos Unit (Cont'd)

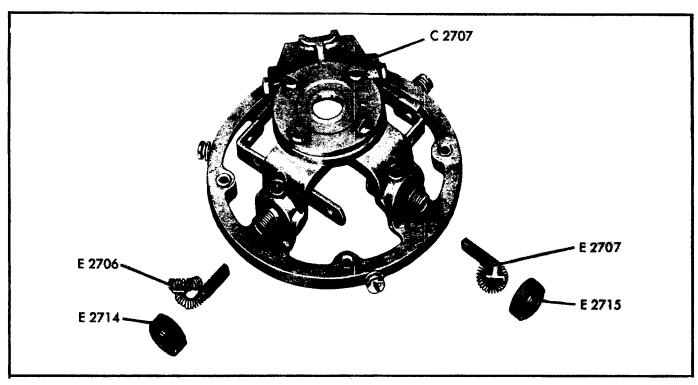
|     | Symptoms                                                                                             | Probable Cause of Trouble                                                                                  |         | Remedy                                                                                                                                                                                                                                                                                         |
|-----|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                      | Dynamotor Will Not Op                                                                                      | erate ( | continued)                                                                                                                                                                                                                                                                                     |
|     |                                                                                                      | 23c. Faulty contacts or defective Primary<br>Power Contactor Relay K2703.                                  | :       | Contacts on this relay should be closed if emission switch on transmitter is in CW or MCW position. See figure 8-24 for location of relay K2703. Check armature winding of relay for continuity.                                                                                               |
|     |                                                                                                      | 23d. Worn brushes or defective dynamotor.                                                                  |         | Remove end covers of dynamotor and inspect brushes. Brushes shorter than 1/4" should be replaced. Clean Commutator with Carbon Tetrachloride and a cloth (NEVER USE EMERY CLOTH). Check for 28 volts on input terminals of dynamotor. If power is available but unit will not run, replace it. |
|     |                                                                                                      | Transmitter Overload Relay Opens-                                                                          | -No F   | ault In Transmitter                                                                                                                                                                                                                                                                            |
| 24. | Overload relay<br>K2705 opens. When<br>TRANS. RESET but-                                             | 24a. Overload caused by short circuit in wiring from output of this relay to terminal on receptacle J2701. | 24a.    | Check wiring for shorts. See circuit in figure 8-42.                                                                                                                                                                                                                                           |
|     | ton is pushed, relay<br>may stay closed only<br>momentarily and im-<br>mediately opens<br>again.     | 24b. Defective relay.                                                                                      | 24b.    | If no short is found, replace relay.                                                                                                                                                                                                                                                           |
|     | Tra                                                                                                  | ansmitter Will Not Turn On—28 Volt Supply                                                                  | From    | Dynamotor to Transmitter Is Open                                                                                                                                                                                                                                                               |
| 25. | Equipment will not operate at all.                                                                   | 25a. Overload relay. Relay K2705 is open (no overload in transmitter).                                     |         | Push button labeled TRANS. RESET. If relay closes momentarily and then opens again, and overload exists, check for shorts in wiring from this relay to receptacle J2701. If relay does not close, replace it.                                                                                  |
|     |                                                                                                      | 25b. Primary Power Contactor Relay K2702 fails to close when equipment is turned on.                       |         | Check contacts of this relay (see fig. 8-24 for location). Check for voltage (28v) at relay armature. If voltage is available but relay doesn't work, replace it. If voltage is not available check circuit. (See fig. 4-2.)                                                                   |
|     |                                                                                                      | Fuse Blows-No Fault                                                                                        | In Tra  | ansmitter                                                                                                                                                                                                                                                                                      |
| 26. | Fuse on dynamotor unit blows but there is no short or overload in 400 volt circuits of transmitter.  | 26a. Short in wiring of dynamotor unit.                                                                    |         | Check for short in wiring from fuse to receptacle J2701. (See fig. 8-42.)                                                                                                                                                                                                                      |
|     |                                                                                                      | High Voltage Is Not Reduced At H                                                                           | gh Alt  | itudes—Causes "Flashover"                                                                                                                                                                                                                                                                      |
| 27. | 1150 volt supply is<br>not reduced to 750<br>volts at altitudes<br>above 20,000 to 25,-<br>000 feet. | 27a. Failure of Power Change Relay K2701.                                                                  |         | Check contacts of this relay (see fig. 8-24 for location). Check whether relay will operate when contacts of Pressure Operated Switch K2704 are shorted. (See fig. 8-42.)                                                                                                                      |
|     | ooo reet.                                                                                            | 27b. Failure of Pressure Operated (Barometric) Switch K2704.                                               |         | The contacts of this switch are normally open and will only close when pressure is reduced to correspond with altitude of approximately 25,000 feet. Failure of switch to close is cause of trouble.                                                                                           |
|     |                                                                                                      | Dynamotor Unit Is Not Supplying 400                                                                        | and 11  | 50 Volts To Transmitter                                                                                                                                                                                                                                                                        |
| 28. | Plate and screen voltage supply to transmitter is open.                                              | 28a. 400 volt supply may be open because of blown fuse.                                                    | 28a.    | See symptom No. 26. Check brushes and commutator on 400 volt output of dynamotor. Clean commutator with Carbon Tetrachloride and cloth; blow out dust (NEVER USE EMERY CLOTH.)                                                                                                                 |
|     |                                                                                                      | 28b. 1150 volt supply may be open because of poor contacts on Power Change Relay K2701.                    |         | Check continuity of relay contacts. See figure 8-24 for location of relay.                                                                                                                                                                                                                     |

### TABLE 5-2. TROUBLE SHOOTING AT REPAIR STATION (Cont'd)

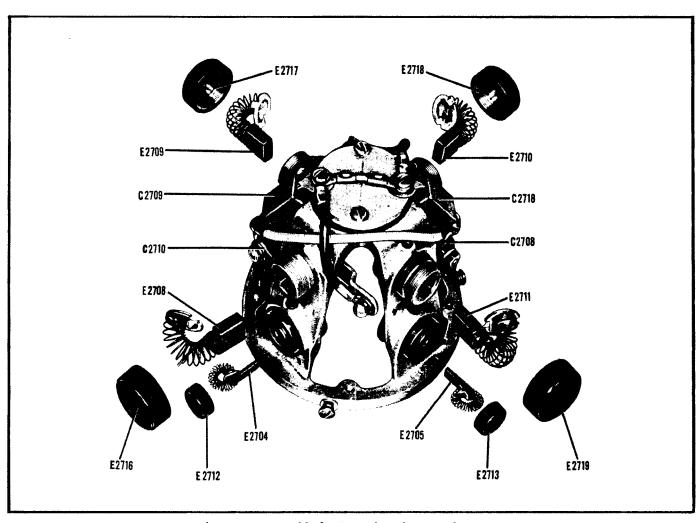
Faults in Dynamotor Unit (Cont'd)

| Symptoms                                                                                                                     | Probable Cause of Trouble                                                                                          | Remedy                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|                                                                                                                              | Dynamotor Unit Is Not Supplying 400 and 1                                                                          | 150 Volts To Transmitter (continued)                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                              | 28c. Worn brushes in high voltage output of dynamotor.                                                             | 28c. Check brushes and commutator. Clean commutator with Carbon Tetrachloride and cloth (NEVER USE EMERY CLOTH). Blow out dust.                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                              | 28d. Fault caused by open choke coil or resistor.                                                                  | 28d. Check all component parts, associated with high voltage circuits, for continuity.                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                              | Radio Frequency Interference ("Hash")—Caused by Dynamotor                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
| 29. Radio frequency interference causing noise in transmitter and associated equipment. (May also disturb other equipments.) | 29a. Caused by improper installation of dynamotor brushes.                                                         | When replacing brushes, note that each brush is numbered and that corresponding number is stamped on frame of dynamotor. Always use brush with corresponding number when replacing. Also it is very important that if brush is removed for inspection that it be replaced in same position. This is accomplished by having numbered (or marked) side of brush face the number (or mark) stamped on the frame of dynamotor. |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                              | Faults In Con                                                                                                      | trol Unit                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
| 30. Emission Control does not operate.                                                                                       | 30a. LOCAL-REMOTE switch on transmitter is in LOCAL position.                                                      | 30a. Set switch to REMOTE position.                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                              | 30b. Poor contact on EMISSION selector Switch S602.                                                                | 30b. Inspect switches in the control unit. Check continuity. See circuit in figure 8-42.                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |
| 3.1. CHANNEL Selector                                                                                                        | 31a. See 30a above.                                                                                                | 31a. See 30a above.                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
| does not operate.                                                                                                            | 31b. Poor contact on CHANNEL selector Switch S601.                                                                 | 31b. Inspect switches in the control unit. Check continuity. See circuit in figure 8-42.                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |
| 32. Red Indicator Light will not turn on.                                                                                    | 32a. Lamp burned out.                                                                                              | 32a. To replace bulb in the control box, remove red glass window by grasping knurled edge and pulling away from case. Lamp has bayonet base. The control panel has a screw type lamp and dimmer assembly. Replace the whole assembly.                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                              | 32b. See 30a above.                                                                                                | 32b. See 30a above.                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                              | 32c. Lamp should be off when Autotune mechanism is in motion.                                                      | 32c. Lamp should turn on as soon as Autotune mechanism completes the shift from one frequency to another.                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                              | Faults In Antenna Loa                                                                                              | d Unit                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |
| 33. No R-F output when transmitter is operated in 2000 Kc to 18,100 Kc range.                                                | 33a. Faulty contact in Vacuum Switch<br>S2504 which is in Antenna Load<br>Unit.                                    | 33a. Check vacuum switch S2504 for continuity. See circuit in upper left corner of figure 8-42.                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
| 10,100 IXC lange.                                                                                                            | 33b. Faulty contact in Antenna Selector Switch S2503.                                                              | 33b. Check contacts of Antenna selector switch S2503 located in Antenna Load Unit. See figure 8-22 for location of switch.                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
| 34. No R-F output when transmitter is operated in 200 Kc to                                                                  | 34a. Break-in Relay K2501 fails to oper-<br>ate. This relay should operate when<br>TEST switch or telegraph key is | 34a. Check for loose contact or connection at plug U-12/U and receptacle J2501.                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
| 600 Kc range.                                                                                                                | closed. Failure may be due to loose contact at Plug U-12/U or Receptacle J2501; or due to faulty Relay K2501.      | Check continuity of wiring to relay K2501 and coil of relay. If relay coil is open, replace entire relay.                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                              | 34b. See 33a.                                                                                                      | 34b. See 33a.                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                              | 34c. Poor contact at fine or coarse Loading Switches S2501 and S2502.                                              | 34c. Check for poor contacts by making continuity measurements with equipment turned off.                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                              | 34d. Open winding in Inductors L2501 and L2502.                                                                    | 34d. Check for continuity of Inductors.                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |

TABLE 5-2. TROUBLE SHOOTING AT REPAIR STATION (Cont'd)

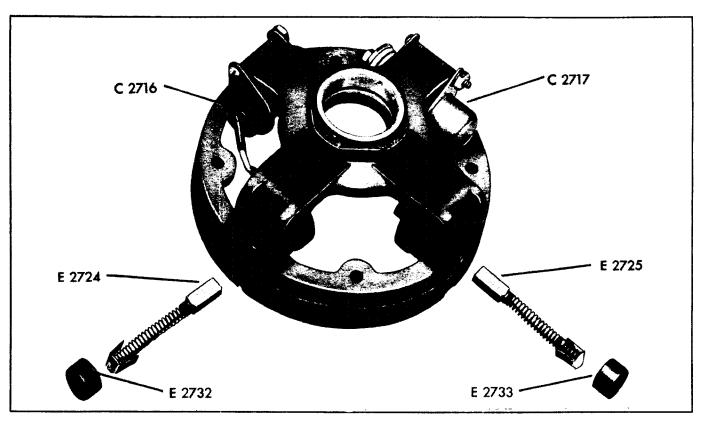

| Symptoms                                                                                                                          | Probable Cause of Trouble                                                                        | Remedy                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                                                                                                                   | Faults In Antenna Load                                                                           | Unit (continued)                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|                                                                                                                                   | 34e. Capacitors C2501 or C2502 are shorted.                                                      | 34e. Make continuity check of capacitors. If capacitors are very warm, a high resistance short may be indicated.                                                                        |  |  |  |  |  |  |  |  |
| 35. Short circuit in Load Unit causes overload relay on dynamotor to open up.                                                     | 35a. Short in 28 volt leads to Relay K2501.                                                      | 35a. Turn off equipment, check for short by making continuity measurements from the 28 volt leads to ground.                                                                            |  |  |  |  |  |  |  |  |
| 36. Meter on Load Unit<br>does not operate.<br>R-F output is O.K.                                                                 | 36a. Fault may be caused by loose connection or open in Capacitors C2501 or C2502.               | 36a. Check for break in wiring or loose connection. If meter is OK, check condition of capacitors C2501, C2502, and resistors R2501 through R2505.                                      |  |  |  |  |  |  |  |  |
|                                                                                                                                   | 36b. Defective meter.                                                                            | 36b. This thermocouple type R-F ammeter may be checked<br>by passing either AC or DC current through it (meter is<br>rated at 5 amperes). Current should not exceed rating<br>of meter. |  |  |  |  |  |  |  |  |
|                                                                                                                                   | Faults In Shunt Ca                                                                               | pacitor Unit                                                                                                                                                                            |  |  |  |  |  |  |  |  |
| 37. Shorted capacitor causes shorting of R-F output. P.A. PLATE meter reading is very high.                                       | 37a. Shorted capacitor section may get quite warm. Check capacitor by replacing with a new unit. | 37a. Replace capacitor sections as required.                                                                                                                                            |  |  |  |  |  |  |  |  |
| 38. Transmitter loading circuits cannot properly tune and load antennas 20 to 60 feet long in frequency range 2000 Kc to 3000 Kc. | 38a. Defective capacitor section or sections in antenna shunt capacitor.                         | 38a. Replace individual capacitor sections as required.                                                                                                                                 |  |  |  |  |  |  |  |  |

- b. REMOVING AND SERVICING MAJOR AS-SEMBLIES—OBTAINING ACCESS TO PARTS.— The procedures to be used in removing major assemblies and the methods of obtaining access to component parts are described in the following paragraphs. These procedures should be used, when required, in order to avoid unnecessary labor and to minimize the amount of disassembly required.
- (1) DISASSEMBLY OF PILOT'S CONTROL UNIT.—Remove mounting plate by means of four screws at each corner of case. Inner cover plate is then removed by taking out two screws at each side of case (screws are nearest to back mounting surface). All components are now readily accessible.
- (2) DISASSEMBLY OF CONTROL PANEL.— Remove the panel from the rack and disconnect the cable.
- (3) DISASSEMBLY and SERVICING THE DY-NAMOTOR UNIT.—If it is desired to obtain access to brushes and commutators of the dynamotor, this may be accomplished by removing the two end covers. These covers are held in place by 3 screws that are accessible on the rounded surface of the machine. Three sets of brushes are used in the dynamotor. The 28 volt and 750 volt commutators are located on the end of the dynamotor nearest the connector plugs. The 400 volt commutator is at the opposite end of the machine. The location and method of removal of the

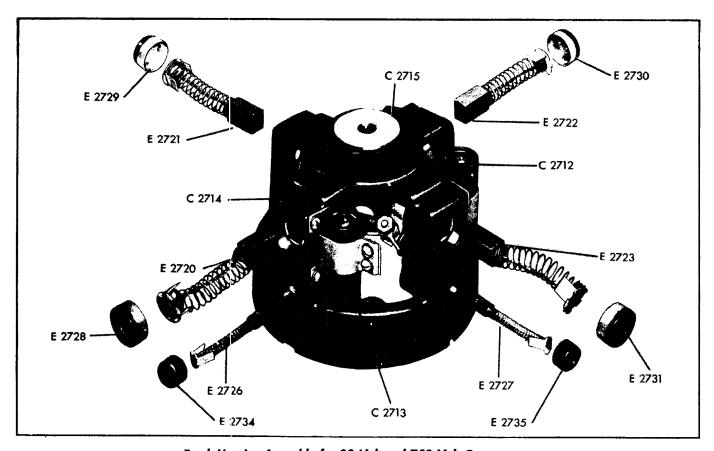

brushes is shown in figures 5-2 and 5-3. Disassembly of the dynamotor is illustrated in figures 5-4 and 5-5. Lubrication of either the RUSSELL or G.E. DYNA-MOTOR is not required.

When brushes are removed for inspection, it is extremely important that they be replaced in the same position (do not reverse). Brushes with numbers or POLARITY stamped on one surface should always be installed with the numbered surface, (or POLARITY SYMBOL) facing the corresponding number (or POLARITY SYMBOL) stamped on the frame of the dynamotor. Radio Frequency noise ("hash") may be caused by improper installation of brushes. New brushes may cause noise for a brief interval until they are "run-in." Brushes which are worn down to 1/4" in length should be replaced.

- (a) Copper dust on commutators may be removed by using a stream of compressed air to blow it out. Clean commutator with Carbon Tetrachloride and a cloth—Never use emery cloth.
- (b) ACCESS TO POWER CONTROL UNIT UNDER DYNAMOTOR.—To obtain access to the chassis under dynamotor, loosen two mounting plate clamp nuts on end near connector plugs. Remove unit from mounting plate. Loosen screws around bottom rim of chassis and remove bottom cover plate. All parts in the chassis are now accessible. See figures 8-24 and 8-39 for identification of parts.




Brush Housing Assembly for 400-Volt Commutator




Brush Housing Assembly for 28-Volt and 750-Volt Commutators

Figure 5-2. Location of Brushes on Russell Dynamotor



**Brush Housing Assembly for 400-Volt Commutator** 



Brush Housing Assembly for 28-Volt and 750-Volt Commutators

Figure 5-3. Location of Brushes on General Electric Dynamotor

- (c) REMOVING DYNAMOTOR.—Disconnect leads connecting dynamotor to power control chassis. Remove 3 nuts (on each side of dynamotor) that hold mounting bracket to chassis. Lift dynamotor and bracket off of chassis. Remove bracket by taking out screws holding it to dynamotor unit.
- (4) DISASSEMBLY OF ANTENNA LOADING UNIT.—Remove unit from mounting plate by releasing snap slides on corners of case. Lift unit off of mounting plate. To obtain access to interior of the case, note that top and back of case are formed from a single plate of metal. This combined back and top panel is removed by taking about 15 screws at edges of top surface and 13 screws at edges of back surface. Panel may now be lifted off and all components on interior of case are accessible. Refer to figures 8-22 and 8-34 for identification of parts in the Antenna Loading Unit.
- (5) DISASSEMBLY OF TRANSMITTER UNIT.—The transmitter unit contains three major assemblies that are equipped with multi-terminal plugs to permit removal without unsoldering any connections. These readily removable assemblies are the Low Frequency Oscillator, the Audio Amplifier, and the MCW-CFI Unit. Figure 5-6 shows the units removed from the equipment. Wrap-around sections and panels of the transmitter case may also be removed to facilitate access to internal parts. The location of the part to be checked or removed will determine the section of case that must be removed.
- (a) REMOVING WRAP-AROUND PANEL AT BOTTOM ROW OF CONTROLS—ACCESS TO

- AUTOTUNE MECHANISM AND MOTOR CONTROL RELAY K101.—To remove this panel (which is known as the Autotune front cover plate), take out 8 screws along top edge and 4 screws at each side. Pull panel forward over control knobs to remove it from the equipment. See figure 8-1 for identification of parts.
- (b) REMOVAL OF BOTTOM PANEL—ACCESS TO VOICE (K104) AND CW (K103) RELAYS.

  —To remove this panel take out 3 screws at back and front edges respectively (3 in each channel) and lift off. See figures 8-3 for identification of parts.
- (c) REMOVAL OF LOW FREQUENCY OS-CILLATOR UNIT.—Before attempting to remove this unit it should be noted that some components within the unit are accessible from the top by merely removing the top cover. This cover is held in place by screws around the rim. To remove the unit from the equipment see figures 8-4 and 8-5 which show the complete unit and then proceed as follows:
- 1. Remove the connector wire from the right-hand side of the unit.
- 2. Remove the seven screws that hold the low-frequency oscillator panel in place.
- 3. Loosen adjacent screws along the top edge of the Autotune front cover plate.
- 4. Remove the plate lead from the JAN-813 power amplifier tube, V104, and remove the tube from the socket by inserting a screw driver through a ventilating hole in the back of the transmitter and using it as a lever between the tube base and the socket. Lift the tube out.

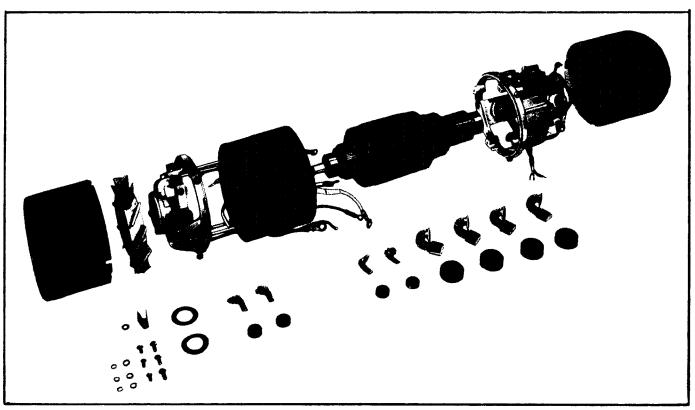



Figure 5-4. Component Parts of Russell Dynamotor

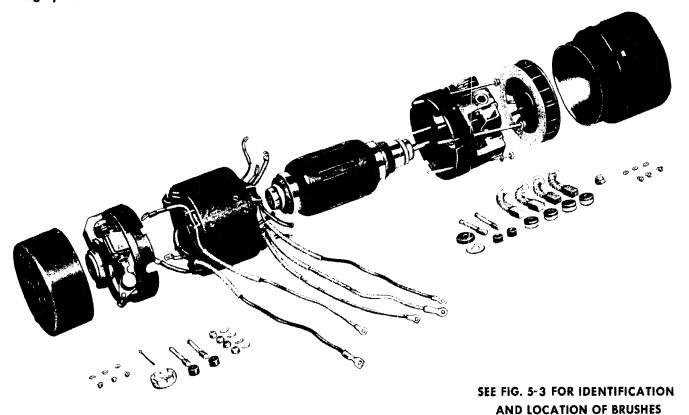



Figure 5-5. Component Parts of General Electric Dynamotor

- 5. Insert a screw driver through the ventilating holes at the back of the transmitter and remove the screws that hold the back of the unit.
- 6. The unit is now free of all retaining screws and wires and may be removed from the transmitter by raising the rear edge of the oscillator unit to free the front panel from the Autotune cover plate. Then raise the unit until the connector plug is free.
- (d) REMOVAL OF AUDIO AMPLIFIER UNIT.—This unit is shown in Figures 8-10 and 8-11. To remove the unit from the equipment, proceed as follows:
- 1. Loosen the two large screws that hold the unit to the main transmitter chassis.
- 2. Remove the plate cap from the high-frequency oscillator, V101, and remove the tube from the socket.
- 3. Raise the unit until the multi-terminal plug becomes disengaged from the receptacle.
- 4. Slide the unit backward until the cabinet studs are cleared and raise the audio amplifier unit upward.
- (e) REMOVAL OF MCW-CFI UNIT.—This unit is shown in Figures 8-8 and 8-9. To remove the unit from the equipment, proceed as follows:
- 1. Loosen the two large screws that hold the unit to the main transmitter chassis.
- 2. Raise the unit until the connector plug is disengaged.
- 3. Tip the unit toward the frequency multiplier tubes, V102 and V103, until the transformer clears the cabinet cover clamping bracket.

- 4. All circuit components are accessible from the bottom of the unit.
- (f) ACCESS TO HIGH FREQUENCY OS-CILLATOR AND MULTIPLIER PLATE TANK INDUCTORS.—Figure 8-6 shows the side view of this oscillator with all components readily accessible. To expose these parts, remove right side wrap-around panel of transmitter case by taking out the 7 screws in the rear and the 10 screws at the side of the case. An additional shield covers the section of the casting that houses the high frequency oscillator circuit components. If this inner shield is removed, all oscillator components will be exposed. Removal of this inner shield will necessitate oscillator recalibration. Do not remove the inner shield or make any adjustments of the h-f oscillator condensers or slug unless the calibration of this oscillator is thoroughly understood.
- (g) REMOVING ENTIRE HIGH FREQUEN-CY OSCILLATOR CASTING.—Figure 8-6 shows this complete casting after removal from the equipment. Removal of this casting is not recommended unless absolutely necessary. When removing the casting, the following procedure should be used:
- 1. Remove the plate cap from the high-frequency oscillator tube, V101, unlock the tube base clamp and remove the tube from the socket.
- 2. Remove the MCW-CFI and the Audio Amplifier Units as outlined in the preceding paragraphs.
- 3. Remove the two screws that hold J111, the MCW-CFI Unit connector plug receptacle, to the standoffs and unsolder the single wire that connects

the high frequency oscillator tube V101 cathode to terminal 1 on J111.

- 4. Remove the Autotune cover plate and wrap-around section of the transmitter cabinet.
- 5. Remove the locking bar and dial from Control "A" by turning the dial locking bar to the unlocked position, loosening the two No. 10 Bristo set screws in the dial, and turning both locking bar and dial counterclockwise until free. Remove the dial back plate.
- 6. The Autotune Singleturn Unit adjacent to the High-Frequency Oscillator Multiturn Unit must be removed so that the screws that hold the oscillator casting to the Autotune casting may be loosened. To remove this unit loosen the short screw that holds the lower edge of the unit to the Autotune casting and the two long screws that hold the upper edge of the unit to the casting and lift the unit carefully out of position.

### CAUTION

Care must be exercised not to move any of the Autotune mechanisms from the time the unit is loosened until the unit is again securely in place, otherwise the unit may be thrown out of synchronization.

7. When the Autotune Singleturn Unit has been removed, loosen the screws that hold the castings together in the front and top of the chassis.

- 8. To complete disconnecting the h-f oscillator, move the casting slightly to the right and unsolder the connections to the terminal strip on the inner side of the casting and the wires leading to the frequency multiplier plate tank inductors.
- 9. The h-f oscillator casting assembly may now be removed from the transmitter.
- (b) REMOVAL OF FREQUENCY MULTI-PLIER UNIT.—Figure 8-7 shows this unit after removal from the equipment. Some of the frequency multiplier circuit components are accessible from the bottom of the transmitter if the bottom cover plate is removed. To gain access to the remaining frequency multiplier circuit components, the multiplier unit must be removed from the assembly. The following procedure is recommended for the removal of the multiplier unit from the transmitter.
- 1. Remove the plate caps from the frequency multiplier tubes, V102, and V103, unlock the tube base clamps and remove the tubes from the sockets. Disconnect the Low Frequency Oscillator plate lead at the Oscillator end.
- 2. Remove the transmitter bottom cover plate and the Autotune cover plate.
- 3. Remove Autotune Unit "A" in the following manner: Turn the dial locking bar to the unlocked position and loosen the two No. 10 Bristo set screws

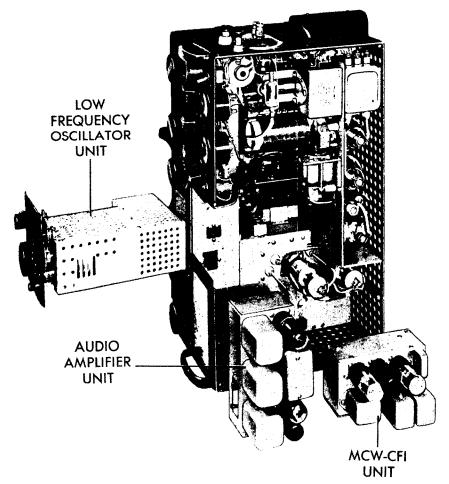



Figure 5-6. Radio Transmitter T-47A/ART-13 and Removable Units

## TABLE 5-3. VOLTAGE-TO-GROUND FROM VACUUM TUBE TERMINALS

### WARRING

In measuring voltages, extreme care should be exercised to prevent personal injury. Operating voltages in parts of this equipment are dangerous to human life. Be sure insulation of leads and test prods on voltmeter are rated high enough to protect personnel when used to measure voltages up to 1200 volts. Avoid high voltage measurements when other methods of circuit checking can be used.

1. USE 20,000 OHM/VOLT METER TO MEASURE ALL VOLTAGES.

SET POWER LEVEL SWITCH ON "OPERATE" POSITION TO MEASURE VOLTAGES ON ALL TUBES EXCEPT V2201, V2202, AND V2203. WHEN MEASURING VOLTAGES ON THESE THREE TUBES, SET SWITCH ON "CALIBRATE" POSITION.

3. SET EMISSION SELECTOR SWITCH ON MCW POSITION.

4. TUNE AND FULLY LOAD TRANSMITTER FOR OPERATION ON ANY FREQUENCY IN 6000 TO 7200 KC, FREQUENCY RANGE FOR MEASUREMENTS ON ALL TUBES EXCEPT V2601. WHEN MEASURING VOLTAGES ON TUBE V2601, TRANSMITTER SHOULD BE TUNED AND LOADED FOR OPERATION AT

5. HOLD TELEGRAPH KEY (OR "TEST SWITCH") CLOSED WHEN MAKING ALL MEASUREMENTS.

| V2202†JAN- V2203†JAN- V2601*<br>125A7 125L7GT JAN-1625 | Suppressor Grid No. 1 Heater 4.0 —2.6 O | i i               | Heater Plate No. 1 Shield 10.6 75 O | Flate No. 1 75 Cath. No. 1 | Flate No. 1 75 Cath. No. 1 0 Grid No. 2 | Cath. No. 1  Cath. No. 1  Grid No. 2  O  1 Plate No. 2  1 120 | Cath. No. 1  Grid No. 2  Grid No. 2  O  1 Plate No. 2  1 20  Cath. No. 2  Cath. No. 2  Cath. No. 2  Cath. No. 2 | Flate No. 1  Cath. No. 1  Grid No. 2  O  1 Plate No. 2  L20  Cath. No. 2  4.0  Heater  12.6 | Plate No. 1   Cath. No. 1   O   O   O   O   O   O   O   O   O |
|--------------------------------------------------------|-----------------------------------------|-------------------|-------------------------------------|----------------------------|-----------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| V2201†JAN- V2<br>12SL7GT                               | Grid No. 1 Su<br>—5.6                   | Plate No. 1<br>85 |                                     | Cath. No. 1<br>O           | Cath. No. 1<br>O<br>Grid No. 2<br>—20.4 | <del>   </del>                                                | 0                                                                                                               | 6                                                                                           | 6                                                             |
| 203 JAN- V2<br>6V6GT 1                                 | N.C.<br>O                               | Heater Pl. 23     |                                     | Plate Ca                   |                                         |                                                               |                                                                                                                 |                                                                                             |                                                               |
| V202 JAN- V203 JAN- V2201†JAN-<br>6V6GT 6V6GT 125L7GT  | N.C.                                    | Heater<br>18      |                                     | Plate<br>190               | Plate<br>190<br>Screen<br>200           | Plate<br>190<br>Screen<br>200<br>Grid<br>O                    | Plate 190 Screen 200 Grid O                                                                                     | Plate 190 Screen 200 Grid O N.C. O                                                          | Plate 190 Screen 200 Grid O N.C. O Heater 12 Cathode 8.5      |
| V201<br>JAN-12SJ7                                      | Shield<br>O                             | Heater<br>O       |                                     | Suppressor<br>O            | Suppressor<br>O<br>Grid                 | Suppressor O Grid O Cathode                                   | Suppressor O Grid O Cathode 1                                                                                   | Suppressor O Grid O Cathode 1 Screen 18 Heater                                              | Suppressor O Cathode 1 Screen 18 Heater 12 Plate 55           |
| V106<br>JAN-811                                        | Filament<br>23                          | N.C.              | -                                   | Grid<br>16                 |                                         |                                                               |                                                                                                                 |                                                                                             |                                                               |
| V105<br>JAN-811                                        | Filament<br>10                          | N.C.<br>O         | Grid                                | 10                         | 10<br>Filament<br>16                    | Filament 16                                                   | Filament 16                                                                                                     | 10<br>Filament<br>16                                                                        | Filament 16                                                   |
| V104<br>JAN-813                                        | Filament<br>10                          | N.C.<br>420       | Screen                              | 420                        | 420<br>Grid                             | Grid<br>-40<br>Beam Form.                                     | Grid<br>—40<br>Beam Form.<br>O                                                                                  | Grid —40 Beam Form. O. O. Filament                                                          | Grid —40 Beam Form. O.C. O.Eilament O.                        |
| V103<br>JAN-1625                                       | Heater<br>O                             | Shield<br>O       | Screen                              | 350                        | 350<br>Grid<br>—200                     |                                                               | •                                                                                                               |                                                                                             |                                                               |
| V102<br>JAN-1625                                       | Heater<br>13.5                          | Shield<br>O       | Screen                              | 300                        | 300<br>Grid<br>—50                      | 300<br>Grid<br>—50<br>N.C.                                    | 300<br>Grid<br>—50<br>N.C.<br>—50<br>Cathode                                                                    | 300 Grid —50 N.C. —50 Cathode 37 Heater 23.5                                                | 300 Grid —50 N.C. —50 Cathode 37 Heater 23.5                  |
| Vioi<br>JAN-837                                        | Heater<br>11                            | Shield<br>O       | Screen                              | 200                        | 200<br>Grid<br>—4.2                     | Grid<br>—4.2<br>Suppressor                                    | Grid —4.2 Suppressor O Cathode 14.5                                                                             | Grid —4.2 Suppressor O Cathode 14.5 Heater 23.5                                             | Grid —4.2 Suppressor O Cathode 14.5 Heater 23.5               |
| Tube Base<br>Terminal<br>Number                        | 1                                       | 2                 | 3                                   |                            | 4                                       | 4 2                                                           | 4 10 0                                                                                                          | 4 ~ ~ ~ ~                                                                                   | 4 1/2 0 1/2 80                                                |

N.C. Indicates that this socket terminal does not connect to an element of the tube but merely serves as terminal post. 15et Power Level Switch on "Calibrate" position when measuring voltages on tubes V2201, V2202 and V2203. \*Tune and load transmitter for operation on 400 KC before measuring voltages on tube V2601.

# TABLE 5-4. VOLTAGE-TO-GROUND FROM CABLE CONNECTOR TERMINALS

## WARNING

to human life. Be sure insulation of leads and test prods on voltmeter are rated high enough to protect personnel when used to measure voltages In measuring voltages, extreme care should be exercised to prevent personal injury. Operating voltages in parts of this equipment are dangerous up to 1200 volts. Avoid high voltage measurements when other methods of circuit checking can be used.

USE 20,000 OHM/VOLT METER TO MEASURE ALL VOLTAGES EXCEPT AS NOTED ON TERMINAL 27 OF J106 AND J601.

SET POWER LEVEL SWITCH ON "OPERATE" POSITION TO MEASURE ALL VOLTAGES EXCEPT THOSE ON J111 AND P2201. WHEN MEASURING VOLTAGES ON J111 AND P2201, SET SWITCH ON "CALIBRATE" POSITION. 'n

SET EMISSION SELECTOR SWITCH ON MCW POSITION. ÷

TUNE AND FULLY LOAD TRANSMITTER ON ANY FREQUENCY BETWEEN 6000 AND 7200 KC. FOR ALL MEASUREMENTS EXCEPT THOSE ON J107, J114, AND P2601. TO MEASURE VOLTAGES ON THESE ITEMS, TRANSMITTER SHOULD BE TUNED AND FULLY LOADED AT 400 KC. 4.

HOLD TELEGRAPH KEY (OR "TEST SWITCH") CLOSED WHEN MAKING MEASUREMENTS. ς.

| J2702          |      | 0   | 28   | 0    | I   | I   | ı   | 1    |     | ļ    | Ì    | -   | I   | I   | ı  | 1  | 1  | 1          |      | i  | l  | 1  | I  | 1  | I  | 1  | I  |    | 1    |
|----------------|------|-----|------|------|-----|-----|-----|------|-----|------|------|-----|-----|-----|----|----|----|------------|------|----|----|----|----|----|----|----|----|----|------|
| J116<br>P102   |      | 0   | 25   | 0    | 0   | 430 | 0   | 0    | 0   | 0    | 0    | 0   | 0   | 430 | 0  | 25 |    |            |      |    |    | 1  |    | -  |    |    |    |    |      |
| J115<br>P101   |      | 300 | 400  | 0    | 24  | 45  | 14  | 0    | 14  | 23.5 | 0    | 440 | 320 |     |    |    |    |            |      |    |    | 1  |    |    |    |    |    |    |      |
| J114*<br>P2601 |      | 0   | 11   | 440  | 210 | 32  | 0   |      | -   |      |      |     |     |     |    |    |    |            |      |    |    |    |    | İ  |    |    | ļ  |    |      |
| J112<br>P201   |      | 10  | 10.5 | 15.5 | 15. | 0   | 210 | 23.5 | 0   | 0    | 23.5 | 0   | 0   |     |    |    |    |            |      |    |    |    |    |    |    |    |    |    |      |
| J111†<br>P2201 | MCIV | 16  | 0    | 0    | 0   | 415 | 0   | 0    | 23  |      |      |     |     |     |    |    |    |            |      |    |    |    |    |    |    |    |    |    |      |
| J1<br>P2       | Cal. | 18  | 0    | 450  | 0   | 450 | 0   | 0    | 23  |      | ]    |     |     |     |    |    |    |            |      | -  | }  |    | 1  |    |    |    |    |    |      |
| J108<br>J2701  |      | 440 | 440  | 25   | 27  | 0   | 27  | 0.3  | 0.4 | 440  | 1150 |     |     |     |    |    |    |            |      | -  |    |    |    |    |    |    |    |    |      |
| J107*          |      | 0   | 0    | 25   | ı   | I   | ı   | 1    | 1   | i    | l    | ı   | ļ   | ı   | 1  | 1  |    | ı          |      | ı  | ı  | ı  | ı  | †  | ı  | 1  | 1  | ı  | I    |
| J106<br>J601   | Rem. | 0   | 0    | 0    | 0   | 0   | 0   | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 25 | 0  | 25 | 10.5       | Open | 56 | 0  | 23 | 0  | 0  | 0  | 0  | 0  | 0  | 30** |
| 1. S.          | Loc. | 0   | 0    | 0    | 0   | 0   | 0   | 0    | 0   | 0    | 0    | 0   | 0   | 0   | 25 | 0  | 25 | 0          | Key  | 56 | 0  | 23 | 0  | 0  | 0  | 0  | 0  | 0  | 30** |
| H.F.<br>Osc.   |      | 200 | 23.5 | 11   | 13  |     |     |      |     |      |      |     | -   | -   |    |    |    | ********** |      |    |    |    | -  |    |    |    | ]  |    |      |
| Term<br>No.    |      | 1   | 7    | 9    | 4   | ٠,  | 9   | 7    | 00  | 6    | 10   | 11  | 12  | 13  | 14 | 15 | 16 | 17         |      | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 56 | 27   |

†Set Power Level Switch on "Calibrate" position when measuring voltages on J111 and P2201.
\*Tune and load transmitter for operation on 400 KC before measuring voltages on J107, J114 and P2601.
\*\*Use 1000 ohm/volt A.C. meter for this measurement. If receiver disabling is used, voltage on terminals No. 26 and No. 27 of J106 and J601 are the same.

TABLE 5-5. RESISTANCE-TO-GROUND FROM VACUUM TUBE TERMINALS.

1. SET CONTROL "A" TO POSITION 7 (6.0 Mc TO 7.2 Mc)

2. SET EMISSION SWITCH TO MCW POSITION

| Tube<br>Bass | 1017   | V102    | V103    | V104   | V105   | V106  | 10% A   | V202      | V203<br>(6V6GT) | V2201†<br>(1281/GT) | V2202† | V2203†<br>(12SL7GT) | V2601**<br>(1625) |
|--------------|--------|---------|---------|--------|--------|-------|---------|-----------|-----------------|---------------------|--------|---------------------|-------------------|
| 1 еттипа:    | (/co)  | (6701)  | (701)   | (619)  | (1110) | (110) | (/fcmr) | (1200 (2) | (300.10)        | (== /===)           |        |                     |                   |
| -            | 4.0*   | 4.5*    | 0       | 0.3    | 0.2    | 0.4   | 0       | 0         | 0               | 33,000              | 330    | 470,000             | 0                 |
| 2            | 0      | Inf.    | Inf.    | 175    | Inf.   | Inf.  | 0       | 4.0       | 2.5             | Inf.                | 15     | Inf.                | Inf.              |
| 6            | 1250   | 20,000  | 20,000  | 200    | 06     | 85    | 0       | 1550      | 1530            | 0                   | 0      | 28                  | 1250              |
| 4            | 22,000 | 100,000 | 100,000 | 20,000 | 0.3    | 0.3   | 4,000   | 00£1      | 1280            | 33,000              | 0      | 150,000             | 15,000            |
| ~            | 0      | 100,000 | 100,000 | 0      |        | +     | 2,200   | 470,000   | 100,000         | Inf.                | 47,000 | 100,000             | Inf.              |
| 9            | Inf.   | 1,000   | 1,000   | 0      |        | ļ     | 1 Meg.  | 0         | Inf.            | 0                   | 330    | 330                 | Inf.              |
| 7            | 3      | 3       | 4.5     | 0      |        |       | 5       | \$        | 4.5             | 0                   | 0      | 15                  | 3                 |
| æ            |        |         |         |        |        |       | 160,000 | 250       | 250             | 15                  | 47,000 | 27                  |                   |
| Тор Сар      | 70     | 110     | 99      | 325    | 330    | 325   |         | 1         | 1               |                     |        |                     | 125               |

\*When making this measurement, CALIBRATE-TUNE-OPERATE switch must be in CALIBRATE position. \*\*Set Control "A" to position 13 (L.F.) before making measurements on tube V2601. †Remove MCW-CFI Unit from transmitter for these readings.

TABLE 5-6. RESISTANCE-TO-GROUND FROM CABLE CONNECTOR TERMINALS.

THESE MEASUREMENTS ARE TO BE MADE UNDER THE FOLLOWING CONDITIONS:

1. AUDIO AMPLIFIER UNIT, MCW-CFI UNIT AND LFO UNIT REMOVED FROM TRANSMITTER.

2. ALL PLUGS AND RECEPTACLES DISCONNECTED.

3. ALL TUBES IN PLACE.

4. EMISSION SWITCH SET TO MCW.

5. CHANNEL SWITCH SET TO NO. 1.

6. CONTROL "A" SET TO NO. 1.

7. LOCAL-REMOTE SWITCH SET TO LOCAL POSITION EXCEPT AS SPECIFIED FOR MEASUREMENTS ON J106.

8. MICROPHONE CIRCUIT SELECTING SWITCH SET TO "CARBON" POSITION.

|                                | 71          | l    |                                     |                 |             |      |              | ,     | ,      | 1 1           | 1    | ۱.   | ,    |      |    | 1    | ١,   |      | 1 1  |      | ١.   |      |                         |
|--------------------------------|-------------|------|-------------------------------------|-----------------|-------------|------|--------------|-------|--------|---------------|------|------|------|------|----|------|------|------|------|------|------|------|-------------------------|
|                                | P2601       |      | 0<br>7<br>Inf.                      |                 | Inf.        |      |              |       |        |               |      |      |      |      |    |      |      | -    |      |      |      |      |                         |
|                                | P2201       |      | Inf.<br>Inf.<br>Inf.                | Inf.<br>320,000 | 0           | 23   |              |       |        |               |      |      |      | İ    |    |      |      |      |      |      |      |      |                         |
|                                | P201        |      | Inf. Inf.<br>Inf. Inf.<br>Inf. Inf. | Inf.<br>2 to 16 | Inf.        | 0    | 325          | 0     | 6.5    |               |      |      |      | 1    |    |      |      |      |      |      |      |      | RATE                    |
|                                | P102        |      | Inf.<br>Inf.<br>Inf.                |                 | Inf.<br>Inf | Inf. | Inf.<br>Inf. | i     | Inf.   | To:           |      |      |      |      |    |      |      |      |      |      |      |      | O-OPERATE               |
|                                | P101        |      | 24,000<br>6,750<br>Inf.             | Inf.<br>Inf.    | Inf.        | Inf. | Inf.         | 7,000 | 26,000 |               |      |      |      |      |    |      | 1    | -    |      |      |      |      |                         |
|                                | J601        |      | Inf.<br>Inf.<br>Inf.                |                 | Inf.        | Inf. | Inf.         | Inf.  | Inf.   | Inf.          | Inf. | Inf. | 42   | Down | 0  | Inf. | Inf. | Inf. | Int. | Inf  | Inf. | Inf. | T-TUNE                  |
|                                | J2702       |      | O<br>Inf.                           |                 |             |      |              |       |        |               |      | -    |      |      |    |      | -    |      |      |      | I    |      | Ħ                       |
|                                | J2701       |      | 32<br>45<br>Inf.                    | ji o            | Inf.<br>Inf | Inf. | 40<br>150    |       |        |               |      |      |      |      |    |      |      |      |      |      |      |      | RATE                    |
| ż                              | J116        |      | Inf.<br>180<br>O                    | O<br>Inf.       | Inf.<br>Inf | Inf. | Inf.<br>Inf. | Inf.  | 0      | 6,750<br>Inf. | 0.2  | -    |      |      |    |      |      |      |      | -    |      |      | C-CALIBRATE             |
| POSITION.                      | JIIS        |      | Inf.<br>Inf.                        | Inf.<br>Inf.    | Inf.        | Inf. | Inf.         | Inf.  | Inf.   |               |      | I    |      |      |    |      | 1    |      |      |      |      |      | J                       |
| <u> </u>                       | J114        |      | O<br>5.5<br>6,750                   | 5,000<br>Inf.   | Inf.        |      |              |       |        |               |      |      |      |      |    |      |      |      |      |      |      |      | ANCE                    |
|                                | JII2        |      | Inf.<br>0.5<br>0.3                  | In fi           | 5,000       | 0    | Inf.         |       |        |               |      | -    |      |      |    |      |      |      |      |      |      |      | INF—INFINITE RESISTANCE |
|                                |             | 0    | Inf.<br>Inf.<br>Inf.                | j o             | 0;          | 3.0  |              |       |        |               |      |      |      |      |    |      |      |      |      |      |      |      | INITE                   |
|                                | IIII        | T    | Inf.<br>Inf.<br>Inf.                | j o             | 0           | 3.5  |              |       |        |               |      | 1    |      |      |    |      |      |      |      |      |      |      | IF—INF                  |
|                                |             | C    | Inf.<br>Inf.<br>6,500               | 0.5             | O           | 3.0  |              |       |        |               |      | -    |      |      |    |      |      |      |      |      |      |      | Z                       |
|                                | 901f        |      | 6,750<br>Inf.<br>13                 | 0 13            | 1.5<br>Inf  | Inf. | Int.<br>Inf. | 1     |        |               |      | I    |      |      |    |      |      |      |      |      |      |      | MOTE                    |
| •                              | 20          | L.F. | O<br>80<br>Inf.                     |                 |             | 1    |              |       |        |               |      |      |      |      |    |      |      |      |      |      |      |      | REM—REMOTE              |
| OMC                            | J107        | H.F. | O<br>80<br>Inf.                     |                 |             |      |              | Ī     |        |               |      |      |      |      | İ  |      |      |      |      |      |      |      | RE                      |
| 3E.1 1                         | <i>J106</i> | Rem. | Inf.                                | 00              | 00          | 0    | 00           | 0     | 180    | 150           | Inf. | 120  | 150  | 80   | 0  | Inf. | Inf. | 0,   | Int. | Inf  | Inf. | Inf. | OCAL                    |
| wii Cr                         | II          | Loc. | 180<br>O<br>O                       | 00              | 0           | 0    | 00           | 0     | Inf.   | 150           | 0    | 120  | Inf. | 78   | 0  | Inf. | 0    | Inf. | 101. | Inf. | Inf. | Inf. | TOC-TOCAL               |
| S NOIS                         | H.F.        | Osc. | Inf.<br>Inf.<br>Inf.                | <u>i</u>        |             |      |              |       |        |               |      |      |      |      |    |      |      |      |      |      |      |      | •                       |
| 4. EMISSION SWITCH SEL TO MCW. | Term.       | No.  | 1.2 %                               | 4 v             | 9           | - 00 | o 01         | 11    | 12     | c 4           | 15   | 91   | 17   | 18   | 19 | 20   | 2.1  | 22   | 23.  | 25   | 26   | 27   |                         |

### Section V Paragraphs 3-4

in the dial. Turn the dial and locking bar counterclockwise together until the bar comes free. Remove both the dial and the locking bar. Remove the dial back plate, loosen the two long screws on the top end of the unit and the short screw on the bottom end of the unit. Carefully lift the unit out.

### CAUTION

Care must be exercised not to move any of the Autotune mechanisms from the time the unit is loosened until the unit is again securely in place, otherwise the unit may be thrown out of synchronization.

- 4. When the Autotune Singleturn Unit has been removed, remove the screws holding the seeking switch, S109, to the Autotune casting and swing the switch out.
- 5. Heat and remove the wires leading to the multiplier coils at the rear of the High Frequency Oscillator Unit. Heat and remove the bus wire connected to coupling capacitor C116.
- 6. Remove the two screws just behind the second multiplier tube clamp shell and the two screws just in front of the first multiplier tube clamp shell. Remove the actuating arm of \$101.
- 7. The multiplier unit can now be pulled out sufficiently to remove the nut holding the ground wire lug on the side of the unit adjacent to the fire-wall assembly. Remove cable connector J115 from P101 in the multiplier unit.
- 8. The multiplier unit may now be lifted out of the transmitter.
- 9. In reassembling the transmitter it is essential that the shaft of seeking switch S109 be carefully centered with the cam drum shaft that drives it. This may be checked by referring to paragraph 4d(1), this section, except that the position of the switch and not the driving arm should be adjusted.
- (i) ACCESS TO PARTS IN FIRE-WALL AS-SEMBLY.—The majority of the component parts on this assembly are accessible from top or bottom of the transmitter. Figures 8-13, 8-14, 8-15, and 8-16 will identify and locate important parts of the fire-wall assembly and the multi-element switch. Also see figure 8-3 for similar information on other surrounding parts.

### 4. MAINTENANCE OF AUTOTUNE MECHANISM.

- a. LUBRICATION.—See figure 4-14 for locations of points to be lubricated as described below. The letters inside the dotted circles in this figure denote the type of lubricant to be used at that point. The letters A, B, and C are identified with lubricants they represent at the bottom of the figure.
- (1) Use AN-O-6 oil for all lubrication points except the open gears and pawls. The points to be lubricated with this oil include:
  - (a) All line shaft bearings.
  - (b) Autotune motor bearings.

- (c) Front and rear cam drum bearings on each of the autotune units.
  - (d) All idler gear bearings.
  - (e) Counter drum bearings.
  - (f) Limit switch driven shaft bearings.
- (2) AN-G-25 grease should be used on all gears. These gears include:
  - (a) All line shaft worms.
  - (b) Worm gears on all autotune units.
  - (c) Spur and idler gears on all autotune units.
  - (d) The screw on the limit switch drive shaft.
- (3) AN-G-10 or AN-G-25 grease should be used on the motor sprocket and chain assembly.
- (4) Each of the three lubricants may be applied with a camel's hair brush to the various lubrication points. Only very small amounts of oil or grease are required at most points. Be sure to remove any excess oil or grease after lubricating the autotune system.
- (5) It will not be necessary to remove the individual autotune units in order to lubricate the mechanism properly. The transmitter should be turned on its back and the autotune front panel removed for maximum access to the lubrication points.
- b. SYNCHRONIZATION CHECK.—In order for the autotune system to function properly, the five individual units must be carefully synchronized. If there is any reason to doubt the accuracy of the synchronization, it should be immediately checked. This may be done as follows:
- (1) Turn the equipment on its back so as to have maximum access to the units and remove the autotune front panel.

### Note

If the counter drum rings in the multi-turn unit "B" have been moved for any reason so that a pawl cannot fall in the slot of a given ring within the range of the counter drum rotation, the ring must be moved manually a quarter turn in either direction.

- (2) Place the crank (which is included in the spare parts) on the right end of the autotune line shaft, orient the crank hub in the slot, and fasten it with a  $4-40 \times 1/2''$  screw.
- (3) By means of the crank, turn the line shaft counterclockwise until all the cam drums are being driven. Continue to turn the crank counterclockwise until the stop-ring drum on the multi-turn unit has reached home stop and has ceased to turn.
- (4) After the stop-ring drum on the multi-turn unit has ceased to turn and only the cam drums are turning, pull the fork of the anvil (fig. 4-14) in a counterclockwise direction away from under the tails of the pawls so that they are free to fall to the surface of the counter drum. If at any time the line shaft should be turned clockwise, it will first be necessary to turn the line shaft again in the counterclockwise direction far enough to reach home stop before pulling

the anvil out from under the tails of the pawls; otherwise, as soon as the line shaft is turned counterclockwise, the anvil will be rotated up under the tails of the pawls.

(5) Continue to rotate the crank slowly until the No. 5 pawl on one of the units just drops into its cam slot.

### Note

Count from the front of the autotune unit to the back, omitting the first or manual pawl, to arrive at pawl No. 5.

- (6) Note the position of the crank arm by marking a line on the casting and then slowly turn the crank, noting the points at which the No. 5 pawls on all of the other units drop into the cam slots. All of the pawls should drop into place within a quarter turn ahead or behind the point where the No. 5 pawl on unit "A" engaged with its cam. All pawls should drop sharply with a "click."
- (7) Continue to rotate the crank counterclockwise until the No. 6 pawl on one of the units, just drops into its cam slot.
- (8) Note the position of the crank arm by marking a line on the casting and then slowly turn the crank, noting the points at which the No. 6 pawls on all of the other units drop into the cam slots and repeat the procedure outlined in step (6).
- (9) Repeat steps (7) and (8) above, checking operation of pawls No. 7, 8, 9, 10, 11, 12 (L. Freq.), manual, 1, 2, 3, and 4.

### c. SYNCHRONIZATION.

- (1) If the autotune system is found to be out of synchronism, the following procedure should be used to restore it:
- (2) Determine which units are not in synchronism with the multi-turn unit by use of the foregoing procedure. No adjustment is possible on the multiturn unit, therefore all other units should be synchronized with this unit.
  - (3) Repeat steps 4b(4), and (5) above.
- (4) If it has been found by means of the synchronization check that autotune unit "A" is not synchronized with autotune unit "B," it may be synchronized as follows:
- (a) Turn the line shaft counterclockwise until pawl No. 5 on unit "B" just drops into its slot in the cam drum. At this point the cam drum on unit "A" should be in a position so that the setscrews in the collar below the gear are accessible. In case one of the setscrews is inaccessible, tighten the accessible setscrew with a No. 6 Bristo wrench and continue to turn the line shaft counterclockwise until the inaccessible setscrew can be reached and loosened with the No. 6 Bristo wrench; after which it will be necessary to continue to turn the line shaft in a counterclockwise direction until pawl No. 5 on unit "B" again just drops into its slot in the cam drum. When this point is reached, the remaining setscrew in the collar on the

cam drum shaft in unit "A" should be loosened. In case the above conditions cannot be met, it will be necessary to choose some other pawl that will allow these conditions.

- (b) The cam drum in unit "A" is now free to be turned with the fingers until No. 5 pawl just drops into its slot in the cam drum.
- (c) Insert a 0.005-inch feeler gage between the cam drum washer, which is adjacent to the cam drum and the gear on the cam drum shaft in unit "A." Now insert a No. 6 wrench in the accessible setscrew, and force the collar tight against the gear and around clockwise so that all play is taken up before tightening the screw. Care must be used not to move the cam drum during this step.
- (d) Turn the line shaft counterclockwise noting the sequence in which the pawls on unit "A" fall with respect to the corresponding pawls on unit "B." If all the corresponding pawls on the two units fall within one-quarter turn of the line shaft, the two units are synchronized. The second setscrew in the collar on unit "A" cam drum shaft should now be tightened.
- (5) It is entirely possible, due to slight irregularities in the structure of the cam drums, that one or more corresponding pairs of pawls on the two units will not fall within the prescribed one-quarter turn tolerance or the synchronizing was not done with sufficient care, causing even No. 5 pawl on unit "A" to drop ahead or behind No. 5 pawl on unit "B" more than one-quarter turn.
- (a) If it is found necessary to correct the synchronization, turn the line shaft counterclockwise, noting the sequence in which the pawls fall. If some or all of the corresponding pawls fall farther apart from each other than the prescribed tolerance, pick out the pair that drops farthest apart and note which pawl drops first.
- (b) If the pawl on unit "A" drops first, note what part of a revolution the line shaft must be turned through before the corresponding pawl on unit "B" falls. Continue to crank the line shaft counterclockwise until the two setscrews on the collar below the cam drum on unit "A" are easily accessible. After loosening the setscrews, turn the line shaft counterclockwise through the required part of a turn deemed necessary to correct the error and tighten the setscrews. Repeat with more care if the pawls upon rechecking do not yet fall within the prescribed limits.
- (c) If the pawl on unit "B" drops first, note what part of a revolution the line shaft must be turned through before the corresponding pawl on unit "A" falls. Continue to crank the line shaft counterclockwise until the two setscrews on the collar below the cam drum on unit "A" are easily accessible. After loosening the setscrews, rest the hand on the frame of unit "A" and, placing the thumb firmly on the cam drum, rotate the cam drum slightly counterclockwise by the amount judged necessary to correct the error, then tighten the setscrews. Repeat with more care if

### Section V Paragraph 4

the pawls upon rechecking do not yet fall within the prescribed limits.

- (d) Check to make sure that both setscrews in the collar on unit "A" cam drum shaft are tight.
- (6) If it has been found by means of the synchronization check that autotune unit "D," "C," or "E" is not synchronized with unit "A" causing corresponding pawls on units "A," "D," "C," and "E" to drop more than one-quarter turn of the line shaft apart, it will be necessary to resynchronize the unit or units with unit "A" which are not within the one-quarter turn tolerance by the same procedure given for synchronizing unit "A" with unit "B" as outlined in steps (4) and (5) above.
- (7) It should be noted that when the autotune system has been synchronized correctly, corresponding pawls on units "A" and "B" drop within one-quarter turn of each other and the corresponding pawls on units "C," "D," and "E" drop within one-quarter turn of those on unit "A."

### d. AUTOTUNE POSITIONING MECHANISM.

- (1) The autotune positioning control mechanism consists of autotune seeking switch S109, which is of the open segment type, driven by an arm attached to the shaft of the cam drum on the single-turn autotune unit "A" and CHANNEL selector switch S108.
- (2) The seeking switch driving arm must be so adjusted that when, for instance, position No. 5 is selected by CHANNEL selector switch S108, the No. 5 pawl will drop on all autotune units and be in this position at the end of the autotune cycle. In addition, the driving arm pin must engage the driven arm completely, but the pin must not touch the frame of seeking switch S109 at any point of the 360-degree rotation. Finally, a "backup" distance of roughly from 5/64''  $\pm 1/64''$  must be maintained between the pin of the driving arm and its place of contact on the driven arm, after the cam drum to which the driving arm is attached is rotated by hand clockwise as far as it will go.
- (3) If there is reason to believe that the seeking switch driving arm is out of adjustment, the following procedure should be followed to check it:
- (a) Turn CHANNEL selector switch S108 to any position.
- (b) Turn EMISSION selector switch S110 to the VOICE position. If the autotune motor starts running, allow it to run until the autotune cycle is complete and the motor stops.

### Note

If the motor continues to run more than 30 seconds without coming to a stop, observe whether, due to misalignment of the seeking switch driving arm, seeking switch \$109 is not being driven before turning EMISSION selector switch \$110 to the OFF position. If the adjustment of the seeking switch driving arm appears to be correct, the trouble is probably misalignment of or foreign matter in

- motor control relay K101 or limit switch S111 and S112. A short in the seeking switch itself can cause this trouble as can a short in the wiring.
- (c) Turn EMISSION selector switch \$110 to the OFF position.
- (d) Connect a continuity checker from the number 1 contact of remote cable jack J106 to the ground connector on the transmitter. Operate LOCAL-RE-MOTE switch S107 to the REMOTE position.
- (e) Repeat steps in paragraph 4b(2) to (4) this section, inclusive.
- (f) Continue to rotate the crank slowly until the last pawl corresponding to the contact selected has just dropped into its cam slot.
- (g) Note the position of the crank arm by marking a line on the casting and then slowly turn the crank until the continuity is broken.
- (b) Observe the fraction of a revolution that the crank has turned. It should be within the limits of one-eighth to one full turn of the crank.
- (i) If the continuity is not broken within the limits of one-eighth to one full turn of the crank, the seeking switch driving arm must be adjusted.
- (j) Repeat steps (f), (g), and (b) for each contact of remote cable jack J106 up to and including number 11.
- (4) If it is determined in checking the driving arm of seeking switch S109, (see par. 4d(3) this section, that it is out of adjustment, it may be readjusted as follows:
- (a) If the switch shaft is not centered exactly with the cam drum shaft in front of it or if the mounting screws are loose, correct these conditions by recentering the switch shaft and tightening the screws.
- (b) Select a position, by turning the line shaft crank counterclockwise, that will place the setscrews in the hub of the seeking switch driving arm in an accessible position.
- (c) Loosen the setscrews with a No. 6 Bristo wrench.
- (d) Turn the seeking switch driving arm clockwise if the switch, as checked in paragraph 4d(3) this section, opened early, and counterclockwise if it opened late. The amount to turn the arm must be determined by trial and error, but will be very slight unless it has become loose enough to cause an entirely different pawl number to drop on the autotune units.
- (e) Tighten the setscrews, taking care that the pin completely engages the driven arm but does not come so close to the frame of the seeking switch as to permit it to touch at any point of the 360-degree rotation.
- (f) Recheck as outlined in paragraph 4d(3) this section, and repeat procedure until autotune seeking switch S109 is correctly adjusted.

### e. CHECKING AND ADJUSTING LIMIT SWITCHES.

- (1) The limit switch is composed of a front section (S112) and a rear section (S111) and is located on the right side of the multiturn or "B" autotune unit.
- (2) Rear limit switch section S111 should be adjusted so that it snaps between the limits of 3-1/4 to 9-1/4 turns of the line shaft crank counting clockwise from the time the switch snaps until the collar pin on the switch operating arm is engaged by the rear lead screw collar.
- (3) Add or remove shims from the rear end of front switch section S112 insulator stack until the foregoing conditions in previous paragraph can be met.

### Note

Do not attempt to bend the arms of the rear switch sections as such a procedure may destroy the snap action of the switch.

- (4) The front limit switch section should be adjusted so that it closes between the limits of 3-1/4 to 9-1/4 turns of the line shaft crank counting clockwise from the point, arrived at by turning the line shaft crank counterclockwise, which the collar pin on the switch operating arm is engaged by the front lead screw collar. A continuity checker connected across the switch contacts will facilitate noting the exact moment the switch makes the contact.
- (5) The main arm of the front switch section should follow the short arm for slightly less than 1/32 inch as the short arm is bent back until contact is

- broken. This assures adequate contact pressure necessary for reliable operation of the switch.
- (6) Using an ordinary telephone relay spring bender, bend the head of the long switch contact arm and the heel end of the short contact leaf until the foregoing conditions (steps (2) to (4) above) are met.
- (7) Make sure the leaves of the front and rear switch sections are in the clear and are not in danger of shorting on any part of the mechanism.
- f. REPLACEABLE PARTS OF AUTOTUNE MECHANISM.—When a failure occurs in any one or more of the five autotune units, the complete unit (as illustrated in figs. 4-15 through 4-18) should be replaced. Although one multiturn unit and four singleturn units are used, the singleturn units are not interchangeable.
- (1) No attempt should be made to replace internal parts of an autotune unit (with exception of limit switches S111 and S112 on multiturn unit "B"). The adjustments required to secure proper clearances, tensions, and alignment of the internal parts of a unit can only be performed with the aid of special fixtures and test equipment that are not available in the field. Therefore, only complete autotune units are supplied in the spare parts for this equipment.
- (2) Other parts of the autotune system such as motor, main or multiturn line shaft assemblies, line shaft bearings, control knobs, and limit switches, are replaceable. These replacement parts are shown in table 5-7 together with all of the complete singleturn and multiturn autotune units. Identification of parts

TABLE 5-7. REPLACEABLE AUTOTUNE PARTS

| Symbol<br>Designation | Quan. | Part Description                                                                                                                                                | Used<br>With      | Stewart-<br>Warner<br>Part No. | W. A. Sheaffer<br>Pen Co.<br>Part No.   |
|-----------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------|-----------------------------------------|
| E117                  | 1     | Multiturn Autotune Unit "B"                                                                                                                                     |                   | 564090                         |                                         |
| E118                  | 1     | Singleturn Autotune Unit "A"                                                                                                                                    |                   | 564080                         |                                         |
| E120                  | 1     | Singleturn Autotune Unit "C"                                                                                                                                    |                   | 564060                         |                                         |
| E119                  | 1     | Singleturn Autotune Unit "D"                                                                                                                                    |                   | 564070                         |                                         |
| E121                  | 1     | Singleturn Autotune Unit "E"                                                                                                                                    |                   | 564050                         | <del></del>                             |
| E139                  | 1     | Dial Knob for Unit "A"                                                                                                                                          | E118              |                                | 1069B-2                                 |
| E140                  | 1     | Dial Knob for Unit "B"                                                                                                                                          | E117              |                                | X-5524                                  |
| E141                  | 1     | Dial Knob for Unit "C"                                                                                                                                          | E120              |                                | 1072B-2                                 |
| E142                  | 1     | Dial Knob for Unit "D"                                                                                                                                          | E119              |                                | X-5586                                  |
| E143                  | 1     | Dial Knob for Unit "E"                                                                                                                                          | E121              |                                | X-5796                                  |
| O104                  | 5     | Dial Locking Bar                                                                                                                                                | E139 through E143 |                                | X-5525                                  |
| E146                  | 5     | Bar Stop Disc                                                                                                                                                   | E117 through E121 |                                | X-5620                                  |
| O101                  | 1     | Main Line Shaft Assembly (Includes shaft, thrust bearings, worm gears, sprocket, and taper groove pins; parts wired together, must be assembled in the field.)  |                   | 565480                         |                                         |
| O105                  | 1     | Multiturn Line Shaft Assembly (Includes shaft, thrust<br>bearings, worm gears, and taper groove pins; parts<br>wired together, must be assembled in the field.) | O101              | 565598                         | *************************************** |
| O106                  | 6     | Line Shaft Oilite Bearing                                                                                                                                       | O101, O105        | 564354                         | <del></del>                             |
| H107                  | 1     | Line Shaft Crank                                                                                                                                                | O105              | 565090                         |                                         |
| E144                  | 1     | Dial—Revolution Counter for Control "B"                                                                                                                         | E117              |                                | X-5527                                  |
| E145                  | 1     | Corrector Knob                                                                                                                                                  | E117              |                                | X-5531                                  |
| O103                  | 1     | Chain Drive                                                                                                                                                     | O102              | 564276                         |                                         |
| O102                  | 1     | Motor Sprocket (with set screws)                                                                                                                                | O103              | 564895                         |                                         |
| S112                  | 1     | Forward Limit Switch                                                                                                                                            | E117              | 564971                         | *************************************** |
| S111                  | 1     | Rear Limit Switch                                                                                                                                               | E117              | 565497                         |                                         |
| B101                  | 1     | Motor                                                                                                                                                           | E117 through E121 | 564666                         |                                         |
| K101                  | 1     | Relay-Motor Reversing                                                                                                                                           | B101              | 564532                         |                                         |

### Section V Paragraph 4

may be accomplished by referring to figures 8-12 and 4-16 through 4-18.

- g. REPLACING AUTOTUNE PARTS.—Since the autotune mechanism is necessarily complicated, it is recommended that only skilled and experienced personnel be permitted to repair it. The following procedures should be used to remove or replace the cover plate (front panel) and items shown as replaceable parts in the following table.
- (1) REMOVING AUTOTUNE FRONT COVER PLATE.—To remove this wrap-around panel at bottom row of controls, take out eight screws along top edge, four screws at each side, and five screws on bottom of case. Pull panel forward to clear control knobs.
- (2) REPLACING MOTOR.—Remove three mounting screws and unsolder wires to four motor terminals. Pivot motor as it is lifted out so as to free it from chain drive.
- (3) REPLACING AUTOTUNE UNIT "A".—Turn dial locking bar to unlocked position and loosen the two No. 10 Bristo setscrews in the dial. Turn dial and locking bar counterclockwise together until bar comes free. Remove both dial and locking bar. Remove the dial back plate, loosen the two long screws on the top end of the unit and the short screw on the bottom end of the unit. Lift the unit out.
- (4) REPLACING AUTOTUNE UNIT "C," "D," OR "E".—Remove four screws (holding jack strip), one on each of autotune units "C," "D," and "E," and one on the end of the jack strip. Pull the strip out as far as the wires will permit. Turn locking bar on autotune unit "C," "D," or "E" to unlocked position and loosen the two No. 10 Bristo setscrews in the dial. Turn dial and locking bar counterclockwise together until bar comes free. Remove dial, remove dial back plate, loosen the two long screws on the top end of the unit, and the short screw on the bottom of the rear plate. Lift the unit out.
- (5) REPLACING AUTOTUNE UNIT "B".—Remove the right end cover plate and the dial and back plate from unit "A." Next remove the No. 10 nut on the back end of the main tuning slug lead screw which is attached to the multiplier slug coupling yoke. Then remove the two mounting screws along the upper edge of the backplate of the multi-turn unit; also remove the single screw along the lower edge. Remove the two screws which hold the limit switch and carefully pull the switch away from the assembly. Carefully pull the assembly out of the casting being very careful not to damage the tuning slug on the lead screw. If the lead screw is turned even slightly the high frequency oscillator must be recalibrated and realigned.
- (6) SERVICING PARTS OF MAIN LINE SHAFT ASSEMBLY.—The following parts are associated with the main line shaft assembly:

Main line shaft

Singleturn worm (4 required)

Main line shaft thrust bearing Line shaft bearing (4 required) Chain drive

Line shaft sprocket

(a) In order to replace these parts it will be necessary to remove the entire line shaft assembly. Replacement of the entire assembly is recommended since the installation of an individual worm gear, sprocket, or line shaft entails a difficult drilling operation that is avoided when the entire assembly is replaced. Note that worm gears, sprocket, and bearing are held to the shaft by means of taper groove pins which cannot be used again if removed. The hub on each worm gear as well as the sprocket and thrust bearing would normally have to be drilled after the part was properly located on the shaft. Individual drilling of each worm gear makes these parts noninterchangeable. Thus it is obviously desirable to replace the entire assembly with pre-drilled and correctly located parts. The replacement main line shaft assembly included in the spares for this equipment, includes the above parts as well as a supply of taper groove pins to permanently assembly the parts to the shaft after installation. The worm gears, sprocket and bearing are temporarily wired to the shaft of the replacement assembly.

### **IMPORTANT**

Since each worm gear has been pre-drilled, it is not interchangeable with like gears on the replacement assembly. For this reason it is extremely important to be sure that each worm gear is suitably identified with its particular location on the shaft before the gears are removed to install the assembly. Use following procedure to replace the main line shaft assembly.

### **CAUTION**

When driving out the taper groove pins, in the old line shaft assembly, be very careful not to spring the line shaft.

- 1. Remove all singleturn autotune heads (heads "A," "C," "D," and "E").
- 2. Remove the taper groove pin from each of the worms and the sprocket. Before driving out a taper groove pin, be sure that the line shaft is well supported adjacent to the taper groove pin.
- 3. Remove the four screws from the thrust bearing retainer plate on the left end of the casting.
- 4. Slowly work the shaft off the left end of the casting removing each worm or the sprocket as it nears the end of the shaft.
- 5. Install the new line shaft assembly by reversing the above operations. Be sure each worm gear on new assembly is suitably identified with its particular location on the shaft before the retaining wire is removed so that the same gear will occupy the same position when reinstalled. Slide the gears on shaft so that sleeve end is away from thrust bearing assembly.

6. Use new taper groove pins supplied with replacement assembly to secure worm gears, sprocket, and thrust bearing to shaft. Use  $1/16'' \times 3/8''$  pins for worm gears and bearings, and use  $5/64'' \times 1/2''$  pin for sprocket.

### Note

Be very careful not to spring the shaft when installing taper groove pins. Before driving in the pin, be sure shaft is well supported adjacent to the point where pin is being installed.

- (7) REPLACING CHAIN DRIVE.—To replace the chain drive, the entire line shaft assembly must be removed. The procedure given in previous section for removal and reinstallation of line shaft should be used with the exception that the line shaft assembly need not be replaced. Be sure to use new taper groove pins when reinstalling the line shaft assembly.
- (8) REPLACING LINE SHAFT BEARING.—The Oilite type line shaft bearings are held in place by means of a press fit. A steel sleeve fits over these bearings. After removing the line shaft assembly, the defective bearing should be driven out gently by using a mallet and a rod or blunt end punch. The new bearing can then be gently driven into position being careful not to deform it.
- (9) REPLACING THRUST BEARING ON MAIN LINE SHAFT.—In replacing this bearing, it will not be necessary to remove the entire line shaft assembly. The following procedure is recommended:
- (a) Remove the four screws from the bearing retainer plate on the left end of casting.
- (b) Remove the taper groove pin from the line shaft sprocket.
- (c) Work the shaft end bearing out about an inch or more from the end of the casting.
- (d) Carefully block up the outside bearing collar and drive out the taper groove pin from the inside bearing collar.

### **CAUTION**

Be careful not to spring the line shaft when driving the taper groove pin out.

(e) Replace the inside collar on the shaft, slide the new bearings on the shaft and then slide the outside collar through the bearing into the inside collar. Insert a taper groove pin and gently drive it home.

### **CAUTION**

Be sure the outside collar is blocked up properly so that the line shaft will not be sprung.

- (f) Slide the shaft back to its original position and replace the bearing plate. Use a new taper groove pin in the line shaft sprocket.
  - (10) SERVICING THE MULTITURN LINE SHAFT ASSEMBLY.
- (a) The following parts are associated with the multiturn line shaft assembly:

Small multiturn worm
Large multiturn worm
Multiturn line shaft
Multiturn line shaft thrust bearings
Line shaft bearing (Oilite).

A complete replacement assembly including all these parts (except the Oilite bearing) is provided in the spare parts for the equipment.

(b) This shaft assembly may be serviced in the same general way as the main line shaft. The multiturn head must be removed before any work may be done on the shaft. The large worm requires a  $5/64'' \times 1/2''$  taper groove pin and the small worm and thrust bearing require  $1/16'' \times 3/8''$  taper groove pins.

### 5. ALIGNMENT OF RADIO FREQUENCY CIRCUITS.

- a. LOW-FREQUENCY OSCILLATOR ALIGN-MENT.—If low-frequency oscillator circuit components have been damaged or replaced, the grid circuit may require realignment. For realignment of the circuit, the following procedure should be followed:
- (1) Operate control "F" to position 3 (415 Kc to 600 Kc). See figure 8-25.
- (2) Rotate CHANNEL selector switch S108 to the L. FREQ. position.
- (3) Operate EMISSION selector switch S110 to the VOICE position.
- (4) When the autotune cycle has been completed, check the position of control "A." The control should stop in position 13. If the control stops in any position

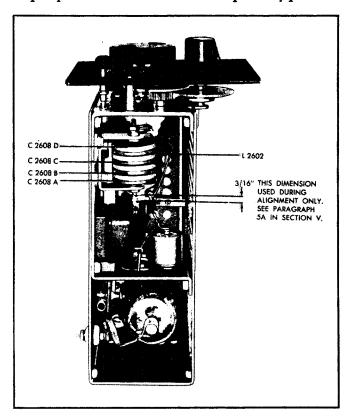



Figure 5-7. Low Frequency Oscillator

other than number 13, loosen the locking bar and manually operate control "A" to position 13.

- (5) Remove cover on top of L.F.O. unit by taking out screws around rim.
- (6) Turn control "G" counterclockwise until revolution counter dial reads zero and control "G" will not turn any further. Operate corrector knob so that index line is directly above the center of control "G" even though it no longer points to zero line on the control.
- (7) Measure the length of tuning slug that extends out of the rear end of inductor L2602. This dimension should be 3/16" (see dimension shown in figure 5-7). If the slug extends out by this amount, no change in slug position is required and the following steps No. 8, 9, and 10 may be omitted—proceed with step No. 11. If the slug is incorrectly set, proceed with step No. 8.
- (8) Examine dial drive mechanism and note small spur gear on same shaft that passes through panel from control knob "G." (This gear is labelled 02602 in figure 8-4.) Loosen two Bristo setscrews that hold this spur gear to main shaft.
- (9) Hold gear train in dial drive mechanism, so that it cannot rotate. Then rotate control "G" until tuning slug in inductor L2602 extends 3/16" out of the rear of the coil form (see dimensions shown in figure 5-7).
- (10) Retighten Bristo setscrews in small spur gear.
- (11) Loosen two setscrews in control knob "G" and holding the gear train stationary, set knob so that zero mark lines up with the index line. Then retighten setscrews in the knob.
- (12) Set control "G" to read exactly 1964.0 (this is dial setting shown in calibration table 6-9 for frequency of 600 Kc). Approach setting in a clockwise direction.
- (13) Replace shield cover on top of low frequency oscillator unit. Operate power level switch to CALIBRATE position.

### WARNING

Dynamotor is now operating and there is 1150 volts on caps at tops of tubes V104, V105, and V106. Extreme caution should be exercised to avoid contact with these points during remainder of alignment procedure.

- (14) Connect headphones to sidetone output jack.
- (15) While listening to sidetone output, adjust trimmer condenser C2608A (see fig. 5-7 and note that trimmer can be reached through slot in shield cover of LFO unit). Until zero beat is obtained between the output of the calibration oscillator in the CFI unit. These trimmer condensers are adjusted by changing the position of the small "pronged" metal lip that projects out from the side of the rounded edge of the capacitor.

- Using an insulated tool, merely push this lip to change the capacity of the condenser.
- (16) The alignment of band 3 is now complete. Rotate control "F" to band 2 (285 to 415 Kc).
- (17) Set control "G" to read exactly 1055.0 (this is dial setting shown in calibration table 6-9 for frequency 350 Kc). Approach setting in a clockwise direction.
- (18) While listening to sidetone output (in headphones), adjust capacitor C2608B (see fig. 5-7) until "zero beat" is obtained between output of low frequency oscillator and calibration oscillator in CFI unit.
- (19) The alignment of band 2 is now complete. Rotate control "F" to band 1 (200 to 285 Kc).
- (20) Set control "G" to read exactly 1216.8 (this is dial setting shown in calibration table 6-9 for frequency of 250 Kc). Approach setting in a clockwise direction.
- (21) Listen to sidetone output and obtain "zero beat" by adjusting either or both trimmer capacitors C2608C and C2608D (see fig. 5-7).
- (22) Alignment of band 1 is now complete. Check excitation over entire range on all three bands by rotating control "G" through 20 revolutions and observing P.A. GRID reading. The excitation should be nearly uniform over entire frequency range and P.A. GRID meter should read between 90 and 120.
- b. HIGH-FREQUENCY OSCILLATOR ALIGN-MENT (USING CFI).
- (1) If the high-frequency R-F circuits are to be realigned in the field, where no frequency measuring equipment is available, the calibration oscillator may be used to check the band end-point frequencies. However, if coils, transformer, cores, capacitors, etc., in the oscillator circuit require replacement, an accurate means of measuring frequency must be used together with a portable wave meter to check the harmonic output of the frequency multiplier.
- (2) For realignment when a frequency standard is not available, the following procedure should be followed:
- (a) With EMISSION selector switch S110 in the OFF position, remove the cover plate from the right-hand end of the transmitter cabinet. Remove the small plate on the bottom of the oscillator casting. This plate covers the holes provided for the adjustment of trimmer capacitors C134 and C135. H-F oscillator grid trimmer capacitors C134 and C135, H-F oscillator grid inductor L101 tuning slug adjustment, and frequency multiplier plate inductor L105 and L106 tuning slug adjustments are thus exposed.
- (b) Rotate CHANNEL selector switch S108 to the MANUAL position.
- (c) Operate EMISSION selector switch S110 to the VOICE position.
- (d) When the autotune cycle has been completed, operate control "A" to position 2.

- (e) Set the indicator mark over control "B" to midscale, using the CORRECTOR knob.
- (f) Refer to table 6-10 and obtain the dial setting of control "B" for output on 2400 Kc with control "A" in position 2. (Oscillator output on 1200 Kc.)
- (g) Rotate control "B" to the setting obtained from the table. Approach the setting in a clockwise direction.
- (b) Loosen the nut on the rear of the lead screw that holds the multiplier tuning slug yoke to the screw.
- (i) Connect earphones to SIDETONE output jack J104.
- (j) Operate power level switch \$106 to the CALIBRATE position, (applies 1150 volts d.c. to plates of V104, V105, and V106).
- (k) While listening to the SIDETONE output in the earphones, and keeping control "B" set at the position obtained from the table, adjust the position of the H-F oscillator grid inductor tuning slug by rotating the tuning slug screw with pliers, the jaws of which are padded to prevent marring the shaft, until zero beat is obtained between the output of the calibration oscillator and the output of the high-frequency oscillator.

### Note

Caution should be exercised in adjustment of the position of the tuning slug when no frequency standard is available. A fraction of a revolution in one direction or the other should realign the circuit.

- (1) When zero beat has been obtained, carefully tighten the nut on the end of the slug screw to prevent further displacement of the tuning slug.
- (m) Refer to table 6-10, and obtain the correct position of control "B" for output on 3000 Kc with control "A" in position 2. (Oscillator output on 1500 Kc.)
- (n) Rotate control "B" to the setting obtained from the table. Approach the setting in a clockwise direction.
- (o) Adjust trimming capacitor C134 (fig. 5-8) until zero beat is obtained between the output of the H-F oscillator and the output of the calibration oscillator.
- (p) Check several points in the band by obtaining control "B" settings from table 6-10 and listening to the beat note output of the SIDETONE amplifier.
- (q) If the setting of control "B" necessary to obtain exact zero beat, deviates more than 4 or 5 dial divisions from the setting given in the calibration table, repeat steps 5b(2)(f) through (p), preceding, until the dial settings necessary to obtain a given frequency correspond very closely to those given in the calibration table.
- (r) When alignment adjustments have been completed with control "A" in position 2, operate the control to position 1. Refer to table 6-10 opposite 2000 Kc (control "A" in position 1) and obtain the

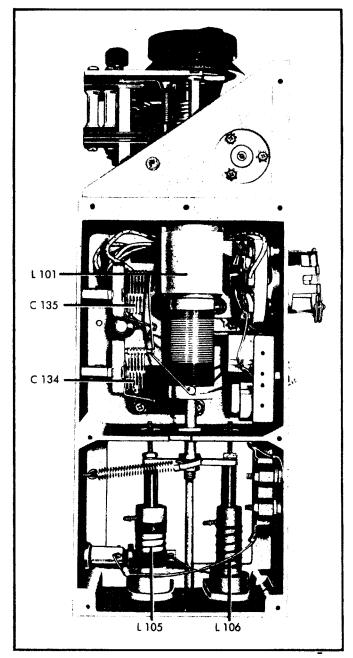



Figure 5-8. High Frequency Oscillator
— Side View, Open

dial setting for Control "B." (Oscillator output on 1000 Kc.)

(s) While listening to the SIDETONE output adjust trimming capacitor C135 (fig. 5-8) until zero beat between the high-frequency oscillator output and the calibration oscillator output is obtained.

### Note

Do not make any further adjustments of trimmer C134.

(t) Check several points within the frequency range of 2000 Kc to 2400 Kc by obtaining the dial setting of Control "B" from the table, listening to the SIDETONE output, and operating Control "B" about the setting obtained from the calibration table. The

settings should check with those given in the table within 4 or 5 dial divisions.

### Note

No adjustment of the high-frequency oscillator grid inductor slug should be made with Control "A" in position 1.

- (u) Return EMISSION selector switch S110 to the OFF position.
- c. HIGH-FREQUENCY OSCILLATOR ALIGN-MENT (USING EXTERNAL FREQUENCY STAND-ARD).—If oscillator circuit components have been replaced and an accurate frequency standard is available, the following procedure should be used for the alignment of the high-frequency oscillator circuit.
- (1) With EMISSION selector switch S110 in the OFF position, remove the cover plates from the right-hand end and bottom of the transmitter cabinet. H-F oscillator grid trimmer capacitors C134 and C135, H-F oscillator grid inductor L101 tuning slug adjustment, frequency multiplier plate inductors L105 and L106 tuning slug adjustments are exposed.
- (2) Rotate CHANNEL selector switch S108 to the MANUAL position.
- (3) Operate EMISSION selector switch S110 to the VOICE position.
- (4) When the autotune cycle has been completed, operate Control "A" to position 2.
- (5) Set the indicator mark over Control "B" to midscale, using the CORRECTOR knob.
- (6) Refer to table 6-10 and obtain the dial setting for an output frequency of 2400 Kc with Control "A" in position 2. (Oscillator output on 1200 Kc.)
- (7) Rotate Control "B" to the setting obtained from the table.
- (8) Loosen the nut on the rear of the lead screw that holds the multiplier tuning slug yoke to the screw.
- (9) Operate power level switch \$106 to the CAL-IBRATE position.
- -(10) Measure the output frequency of the oscillator and adjust the position of the tuning slug in L101 until the oscillator is exactly 1200 Kc.
- (11) When the correct position of the tuning slug has been found, tighten the locking nut to prevent any further displacement of the slug.
- (12) Refer to table 6-10 and obtain the setting of Control "B" necessary to obtain an output frequency of 3000 Kc with Control "A" in position 2. (Oscillator output on 1500 Kc.)
- (13) Rotate Control "B" to the setting obtained from the table.
- (14) Measure the output frequency of the oscillator and adjust capacitor trimmer C134 (fig. 5-8) until the frequency of the oscillator output is exactly 1500 Kc.
- (16) Check several points within the band by obtaining dial settings from the calibration tables, rotat-

ing Control "B" to these settings and measuring the frequencies.

### Note

Always keep in mind that with Control "A" in positions 1 or 2, the frequencies given in the calibration tables are always twice the output frequency of the oscillator. With the power level switch in the CALIBRATE position only, the oscillator is operating; therefore the output frequency to be measured will always be one-half the frequency that is given in the calibration tables.

- (16) If the dial setting of Control "B" necessary to obtain output on a selected frequency, deviates more than 4 or 5 dial divisions from the dial setting given in the calibration tables, repeat steps (6) through (15) until the actual dial setting of Control "B" necessary to obtain a given output frequency, corresponds very closely to the setting given in the table.
- (17) When alignment has been completed with Control "A" in position 2, operate the control to position 1.
- (18) Refer to table 6-10 and obtain the dial setting of Control "B" to obtain an output frequency of 2000 Kc with Control "A" in position 1. (Oscillator output on 1000 Kc.)
- (19) Adjust trimming capacitor C135 (fig. 5-8) until the oscillator output frequency is exactly 1000 Kc.

### Note

Do not make any adjustment of C134 or the core in inductor L101 with Control "A" in position 1.

- (20) Check several points within the band by comparing the actual dial settings necessary to obtain a given frequency with the dial settings given in the calibration tables for the same frequency. The settings should check within four or five dial divisions.
- (21) Return EMISSION selector switch S110 to the OFF position.
- d. FREQUENCY MULTIPLIER ALIGNMENT.— Having completed the alignment of the high-frequency oscillator circuit, complete the R-F circuit alignment by following the procedure outlined below for adjustment of the frequency multiplier circuits.
- (1) With the transmitter tipped up on the rear edge and the bottom cover removed, the frequency multiplier plate tank capacitors are exposed. The multiplier plate tank capacitors are located beneath the multiplier chassis (stacks of ceramic capacitor sections.) Capacitor section A of each capacitor (C111 and C115) is located nearest the right-hand side of the transmitter, as the transmitter is viewed from the bottom, with sections B, C, D, E, and F, in order in the stack. See figure 5-9.
  - (2) Operate Control "A" to position 6.
- (3) Rotate meter selector switch \$105 to the P.A. GRID position.

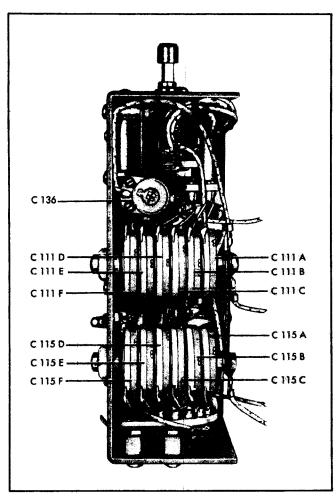



Figure 5-9. Frequency Multiplier

- (4) Rotate Control "B" until the dial reading is 1100.
- (5) Operate the power level switch to the TUNE position.
- (6) Operate EMISSION selector switch S110 to the CW position. (Applies 1150 volts d.c. plate potential.)

### WARNING

Use an insulated tool to adjust the capacitors. When the key is operated, the capacitor is at a potential of 400 volts above ground.

(7) Insert a shorted plug in KEY jack J103 and adjust section F (bottom of stack) of first multiplier padding capacitor C111 to the position that will give the maximum P.A. GRID meter reading on M102.

### Note

To vary the capacity of sections of C111 or C115, rotate the metal lip that protrudes between capacitor sections.

(8) Using a portable wavemeter check the output frequency of the first frequency multiplier stage to be sure that the plate circuit is tuned to the correct harmonic. The output should be on approximately 5478 Kc with Control "A" in position 6 and Control "B" tuned to a dial reading of 1100.

(9) When it has been ascertained that the multiplier output is on the correct harmonic, rotate Control "B" over the entire range and observe the meter reading for P.A. GRID.

### WARNING

When the key is operated, inductors L105 and L106 are at a potential of 400 volts above ground.

- (10) Take out dips in the meter reading by adjusting section F of first multiplier padding capacitor C111 for an average reading of the meter.
- (11) A drop at the extreme ends of the range is permissible, but if the meter needle still dips sharply at any other point, rotate Control "B" to a dial reading of 1100, loosen first multiplier inductance L105 tuning slug locking nut, and change slightly the position of the tuning slug. Tighten the slug locking nut.
- (12) Rotate Control "B" over the entire range and check the P.A. GRID current. Meter M102 should indicate a consistent value of grid current over the entire range. If the meter needle dips sharply at any point repeat steps (10) and (11).
- (13) Having completed the adjustment of the inductor slug and section F of C111, remove the key shorting plug and rotate Control "A" to position 5.
- (14) Rotate Control "B" to a dial reading of 1100.
- (15) Replace the key shorting plug, adjust section E of capacitor C111 to give a maximum P.A. GRID meter reading and check with a wavemeter for the current harmonic.

### Note

Do not make any further adjustments of the tuning slug in L105.

- (16) Rotate Control "B" through the entire range and check the excitation. If dips occur in the meter reading readjust padding capacitor C111E.
- (17) Remove the key shorting plug and operate Control "A" to position 4.
- (18) Replace the key shorting plug and adjust section "D" of C111 for maximum P.A. GRID meter reading.
- (19) Check the excitation over the band by operating Control "B" over the entire range. If dips in the meter reading occur readjust C111D.
- (20) Repeat steps (18) and (19) for positions 3, 2, and 1 of Control "A." Adjust capacitor sections C, B, and A for Control "A" positions 3, 2, and 1 respectively.
- (21) Having completed the alignment of the first frequency multiplier stage, remove the key shorting plug and operate Control "A" to position 12.
- (22) Rotate Control "B" to a dial reading of 1100.
- (23) Replace the key shorting plug and adjust section F of second multiplier padding capacitor C115 for maximum P.A. GRID meter reading.

### Section V Paragraphs 5-6

- (24) Using an insulated screw driver to reduce body capacity, adjust trimmer capacitor C136 for maximum P.A. GRID meter reading.
- (25) Check the output frequency of the second multiplier with a wavemeter. With Control "A" in position 12, and Control "B" tuned to a dial reading of 1100, the wavemeter should indicate approximately 16,434 Kc. A materially different reading indicates that a wrong harmonic has been chosen, necessitating a readjustment of padding capacitor C115F and trimmer capacitor C136.
- (26) Take out dips in the meter reading by adjusting section F of padding capacitor C115.
- (27) A drop at the extreme ends of the range is permissible, but if the meter needle still dips sharply at any other point, rotate Control "B" to a dial reading of 1100, loosen second multiplier inductance L106 tuning slug locking nut, and change the position of the tuning slug slightly. Tighten the slug locking nut.
- (28) Again rotate Control "B" over the entire range and check the excitation. If the meter dips sharply at any point repeat steps (24) through (28).
- (29) Having completed the adjustment of the inductor slug and section F or C115, remove the key shorting plug and rotate Control "A" to position 11.
- (30) Rotate Control "B" to a dial reading of 1100.
- (31) Replace the key shorting plug, adjust section E of capacitor C115 to the position which gives the maximum P.A. GRID meter reading, and check with a wavemeter for the correct harmonic.

### Note

Do not make any further adjustment of the tuning slug in L106 or trimmer capacitor C136.

- (32) Rotate Control "B" through the entire range and check the excitation. If dips occur in the meter reading readjust padding capacitor C115E.
- (33) Repeat steps (30), (31) and (32) with Control "A" in positions 10, 9, 8, and 7. Adjust capacitor sections D, C, B, and A for Control "A" position, 10, 9, 8, and 7 respectively.

The above procedure completes the alignment of the high-frequency R-F circuits of the transmitter.

### 6. ALIGNMENT OF CFI UNIT.

a. GENERAL CALIBRATION INSTRUCTIONS.—Because the inductor tuning adjustment screws are in a position difficult to reach when the unit is in place in the transmitter, and because of the proximity of exposed leads and plate caps carrying potentials of more than 400 volts, a short extension cable allowing the CFI Unit to be on the bench beside the transmitter is recommended. Because of the extremely small space between crystal holder and tubes, adjustments of the unit must be made with a very small "jeweler's" type screw driver having a shank at least 1-1/4 inches long.

- (1) Make sure that EMISSION selector switch S110 is in the OFF position.
- (2) Insert a coin or a screw driver in the slot of the transmitter cover hold-down screws, rotate the screws one-half revolution counterclockwise and lift off the cover.
- (3) Loosen the two large screws that hold the unit to the main transmitter chassis.
- (4) Raise the unit until the connector plug is disengaged and lift the unit out.
- (5) Connect an extension cable to CFI jack J111 in the transmitter and to unit plug P2201.
- (6) Connect a Vacuum Tube-Voltmeter between oscillator control grid (pin No. 4) of tube V2201 (JAN-12SL7GT) and chassis ground. Since the bottom of socket of V2201 is not easily accessible, it will be more convenient to make connection to control grid of V2201 by partially withdrawing tube from socket and connecting to tube pin at top of socket.
- (7) Turn LOCAL-REMOTE switch S107 to the LOCAL position.
- (8) Rotate CHANNEL selector switch S108 to the MANUAL position.
- (9) Turn EMISSION selector switch S110 to the VOICE position.
- (10) When the autotune cycle has been completed, rotate Control "C" to any dial reading, taking care to approach the chosen setting by turning clockwise through at least 20 or 30 degrees of rotation and to set the dial accurately.
  - (11) Rotate Control "A" to position 1.
- (12) Turn power level switch S106 to the CALI-BRATE position. (Applies 1150 volts d.c. to plates of V104, V105, and V106.)
- (13) It is now possible to make an approximate calibration or a precision calibration depending upon the instruments available to the repairman and the accuracy of some local frequency standard. No instruments (other than vacuum tube voltmeter previously mentioned) and no local frequency standard are required to make approximate calibration. The precision calibration requires the use of an Oscilloscope and an accurate standard frequency source such as a U.S. Bureau of Standards transmission or a local oscillator, that has just been accurately checked against the Bureau of Standards Transmission. The procedure for precision calibration is given in paragraph b that follows and the procedure for approximate calibration is given in paragraph 6c, following.

### U. S. BUREAU OF STANDARDS TRANSMISSIONS.

The U.S. Bureau of Standards transmits standard frequencies from its station WWV. This primary frequency standard is available throughout the United States and in many other parts of the world. Two standard-frequency transmissions are made day and night, one throughout the night and the other

throughout the day. The following schedule is maintained:

- 2.5 MC. from 2400 to 1400 \*GMT.
- 5.0 MC. Continuously day and night.
- 10.0 MC. Continuously day and night.
- 15.0 MC. Continuously.

\*Greenwich Mean Time

- b. PRECISION CALIBRATION.—Obtain a length of stranded, insulated wire about 6 feet long. Connect both ends of the wire to the vertical deflecting plates of an oscilloscope (scope should be equipped with vertical amplifier).
- (1) Extend the length of wire and twist it to form a "twisted-pair." Leave a loop at the far end of the lead so that the loop can be placed over a tube on the CFI unit.
- (2) Place loop of wire over tube V2201 on CFI unit.
- (3) Connect the output of a stable local 200 Kc oscillator to the horizontal deflecting plates of the oscilloscope. Local 200 Kc oscillator must have been checked recently against a U.S. Bureau of Standards transmission to insure frequency accuracy.
  - (4) Turn on oscilloscope.
- (5) Insert a small "jeweler's" type screw driver in the slot of inductor Z2201A tuning slug adjustment screw (see fig. 5-10) adjacent to which is stamped number "200." Rotate this screw and observe reading of vacuum tube voltmeter. As 200 Kc crystal oscillator circuit approaches resonance, the meter reading will increase. It will be noted that the tuning is very broad after the meter has reached its peak reading. Final adjustment of the tuning slug position is now made by observing pattern on oscilloscope screen.



Figure 5-10. MCW-CFI Unit — Top View

- (6) Continue to adjust tuning slug in inductor Z2201A until pattern on oscilloscope forms a staple ellipse or circular shape. When this occurs, the frequency of the 200 Kc crystal oscillator in the CFI unit is identically the same as the frequency of the local oscillator which was previously set to 200 Kc and accurately checked against a U.S. Bureau of Standards Transmission.
- (7) Turn transmitter on and off several times, noting whether the crystal oscillates positively (vacuum tube voltmeter reading rises to peak reading) as soon as transmitter is turned on. If necessary to improve crystal starting, slightly detune Z2201A tuning slug (marked "200").
- (8) Remove the "pick-up loop" of wire that is now around tube V2201 and place it around tube V2203. Output frequency of CFI unit (which must now be adjusted to 50 Kc) will be fed into oscilloscope.
- (9) Set local oscillator to 50 Kc and check its accuracy against U.S. Bureau of Standards Transmission. 50 Kc output of this oscillator will now be fed to oscilloscope.
- (10) Adjust tuning slugs in inductors Z2201B (marked "50"), Z2202A (marked "150"), and Z2202B (marked "50") until a stable circular or elliptical shaped figure appears on the oscilloscope screen. This will indicate that output of CFI unit has identically the same frequency as local oscillator which was previously standardized at 50 Kc. If a stable elliptical or circular figure cannot be obtained, try turning adjusting screw Z2202B three turns clockwise and turn adjusting screw Z2202A counterclockwise several turns; again try to obtain the desired figure on the oscilloscope. If the correct figure still cannot be obtained, turn adjusting screw Z2202B six turns counterclockwise and turn adjusting screw Z2202A several turns clockwise; additional fine adjustment of these two screws should make it possible to obtain correct image on oscilloscope screen. After the stable circular or elliptical figure is obtained, adjust Z2202A, Z2202B and Z2201B for maximum output (indicated by largest size of figure on oscilloscope screen).
- (11) A further check of the accuracy of the 50 Kc output of the CFI can now be made as follows:—Tune high frequency oscillator Control "B" until a beat note is heard in phones connected to sidetone jack on transmitter. Carefully note exact dial reading for "zero beat." Then rotate Control "B" until next (nearest) beat note is heard in phones. Again note exact dial reading for zero beat. Use Calibration Tables in section VI and find the frequencies for the two dial settings that were obtained above. The two frequencies should be approximately 100 Kc apart if the CFI output is 50 Kc.
- (12) Alignment of CFI unit is complete and its 50 Kc output will be quite accurate.
- c. APPROXIMATE CALIBRATION.—The procedure given in paragraph 6a(1) through (13), this section, must be carried out before proceeding with the following:

### Section V Paragraphs 6-7-8

- (1) Connect a pair of earphones to SIDETONE jack on transmitter.
- (2) Insert a small "jeweler's" type screw driver in the slot of inductor Z2201A tuning slug adjustment screw (see fig. 5-10) adjacent to which is stamped the number "200." Rotate the screw and observe the reading of the vacuum tube voltmeter. As the crystal oscillator circuit approaches resonance, the meter reading will increase. It will be noted that the tuning is very "broad" and that tuning slug for inductor Z2201A may be adjusted over a considerable range without appreciably changing the peak reading of the meter. Note the number of turns of the tuning slug that can be made without changing peak meter reading. By continuing to turn the tuning slug half this number of turns after the meter just approaches peak reading, it will be possible to set the tuning slug to the approximate center of the broad resonance peak. This adjustment must be made to set the tuning slug correctly.
- (3) The peak reading obtained on the meter in the previous operation indicates maximum crystal activity and proper operation of the crystal oscillator circuit. If a loud squeaking rush noise is heard in the headphones as soon as the crystal oscillator functions, adjust tuning slug (stamped "150") in inductor Z2202A until this noise disappears.
- (4) Quiet operation, arrived at by the foregoing checks and adjustments, indicates correct operation and calibration beat signals may be searched for by rotating Control "B."
- (5) Tune the h-f oscillator by rotating contro! "B" until two approximately equal level loud signals are heard.
- (6) Compare the zero beat dial settings of the two selected beat points with the calibration table check points to determine if the interval between the points is 100 Kc, (oscillator frequency is doubled on range 1 causing 50 Kc interval of CFI output to be recorded at 100 Kc).
- (7) If the interval is correct and the dial readings correspond reasonably (within 25 dial divisions) with the calibration table, tune Z2201B (farthest from crystal) marked "50," tune Z2202B (nearest crystal) marked "50," and tune Z2202A (marked "150") for maximum sidetone output. Recheck tuning in the same order. If interval is less than 100 Kc, see paragraph 6c (10), this section. If interval is greater than 100 Kc, see paragraph 6c(11), this section.
- (8) Recheck adjustment of Z2201A (marked "200") to determine the setting which is the midpoint of the range in which the vacuum tube voltmeter reading is a maximum.
- (9) Turn the transmitter on and off several times, noting whether the crystal oscillates positively (vacuum tube voltmeter rises to peak reading) as soon as the transmitter is turned on. Detune Z2201A (marked "200") slightly to improve crystal starting if necessary.
- (10) If less than a 100 Kc interval is obtained, rotate mixer tank Z2202B adjustment screw clockwise

- three turns, then rotate tripler tank Z2202A adjustment screw counterclockwise until harsh noises occur and disappear. Repeat steps (4) through (7).
- (11) If more than a 100 Kc interval is obtained, rotate mixer tank Z2202B adjustment screw counterclockwise three turns, then rotate tripler tank Z2202A adjustment screw clockwise until harsh noises occur and disappear. Repeat steps (4) to (7).
- (12) The unit can now be considered to be aligned and the calibration frequency accurate to within very close limits. Replacement in the transmitter completes the operation.

### 7. ADJUSTMENT OF MCW OSCILLATOR.

- a. The percentage of modulation of the r-f carrier when using MCW emission is proportional to the voltage that is developed across the resistor R2201. The percentage of modulation may be regulated by varying the resistance of R2201. The rheostat has been carefully adjusted at the factory and should not be tampered with unless it has been proven that adjustment is necessary.
- b. It is recommended that a laboratory source of power be used. The following procedure is recommended for the adjustment of rheostat R2201.
- (1) Remove the transmitter cabinet cover, the autotune cover plate, and the wrap-around section of the right-hand end of the transmitter cabinet.
- (2) Remove the snap button from the side of the chassis of the MCW-CFI unit. (See fig. 5-10).
- (3) Tune the transmitter into a phantom antenna (Antenna A-58 if available) on 2400 Kc. Load the power amplifier to exactly 100 on the P.A. PLATE meter in the transmitter when using CW transmission.
- (4) Place the EMISSION selector switch on the MCW position, and, while holding the TEST switch closed, adjust resistor R2201 until the plate meter reads 190.

### 8. REPLACING AND ADJUSTING VACUUM CONTACT 5116.

- a. The Vacuum Contact S116 is mounted on the front panel of Keying Relay K102 and is operated by that relay. Replacement of the vacuum contact will become necessary in event the glass bulb is cracked, contacts are badly burned, or a leak develops at seal where movable switch arm passes through base of tube. A leak at the seal or a crack in the glass bulb will permit arcing that eventually destroys internal contacts.
- b. Although the replacement of the vacuum contact is a relatively simple operation, the repairman is cautioned that proper adjustment during installation is of extreme importance if the switch is to operate at the proper time. Failure to properly adjust the sequence of the vacuum contact with contacts in keying relay may cause arcing that will immediately destroy a new vacuum contact after installation. The following replacement and adjustment procedure is recommended:

(1) Loosen the setscrews that hold the connecting wires to the fixed contact terminals (No. 3 in fig. 5-11), and remove the wire connector.

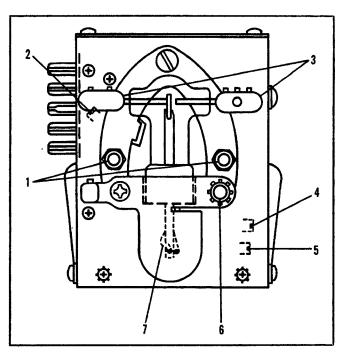



Figure 5-11. Keying Relay K102 and Vacuum Contact \$116

- (2) Loosen the stud (No. 6 in fig. 5-11) until the clamp around the base of the vacuum contact becomes loose enough to allow the removal of the glass vacuum tube. Remove the tube containing the switch by pulling glass tube straight up.
- (3) Note the split collar on end of glass operating arm that connects vacuum contact to relay case. Loosen setscrew in this collar so that collar is loose on its shaft.
- (4) Before attempting to install the new vacuum switch, note the manner in which the movable switch arm (extending out of bottom of glass bulb) engages the wire actuating arm (No. 7 in fig. 5-11). When installing the new switch, the arm of the switch must be securely engaged between the two wires that form the actuating arm (No. 7 in fig. 5-11). To prevent damage to the new switch, it is recommended that the two wires forming the actuating arm, be spread apart very slightly while the vacuum switch arm is being engaged. This may be accomplished by using a screw driver blade to spread the wires approximately 1/32".
- (5) Place rubber gasket in position and insert new vacuum switch in socket. Be sure movable switch arm is securely engaged in wires of operating arm No. 7.
- (6) Retighten stud (No. 6 in fig. 5-11) and reconnect wires to terminals labelled No. 3 in figure 5-11.
- (7) With relay in normal unoperated position, the vacuum contact (in glass bulb) should be closed and resting firmly against the fixed contact that is connected to RECEIVER terminal of transmitter. To se-

cure this adjustment, grasp split collar on operating arm and rotate slightly until switch is making desired contact; then tighten setscrew in the split collar while holding the collar here in the desired position.

- (8) The timing adjustment of the vacuum contact can now be made. Remove top cover of keying relay case by taking out two Phillips screws on the top surface.
- (9) Examine the interior of the relay and note double row of contacts near top. Also note that movable contact arms are all attached to a thick bakelite plate located in the center of the case. By using a thin tool, with a notch in one end, that is capable of straddling this bakelite plate, it is possible to grip the bakelite and operate the relay mechanically by pushing the plate from side to side. Note that as this bakelite plate is moved, all movable contact arms in the relay as well as the movable arm in the vacuum contact will also move.
- (10) With the relay in the normal "rest position," three internal relay contacts, on the side nearest the plug, are closed and the vacuum contacts (in external glass bulb) should now be resting firmly against the fixed contact that connects to the RECEIVER terminal on the side of transmitter case.
- (11) If vacuum contact is not set properly, loosen two studs (labelled No. 1 in fig. 5-11) that hold horseshoe shaped yoke to relay case.
- (12) Note adjustment screw (labelled No. 2 in fig. 5-11) that can be seen through hole on plug side of case. By rotating this screw, the position of the movable arm in the vacuum contact can be adjusted as desired.
- (13) After vacuum contact has been adjusted to correct position while relay is in rest position, the relay should then be operated mechanically (as described in step No. 9) and the action of the vacuum contact and the 5 normally open contacts on the interior of the relay case should be noted.
- (14) As the relay is operated mechanically, the correct sequence of contact make and break is as follows:

First: Three normally closed contacts in relay case will open.

Second: Movable arm of vacuum contact breaks connection to fixed contact that is connected to-RECEIVER post on transmitter.

### **IMPORTANT**

This contact must break AFTER the three normally closed contacts open up as described in first step.

Third: Movable arm of vacuum contact makes connection to opposite fixed contact that is connected to COND. post on transmitter case.

Fourth: The five normally open contacts in relay case will close.

### **IMPORTANT**

These five contacts must close AFTER vacuum contact has closed as described in third step.

(15) If above sequence is not obtained, further adjustments of screw labelled No. 2, in figure 5-11 is

required. By careful adjustment of vacuum contact movable arm position, using this adjustment screw, the desired sequence can be obtained.

(16) After adjustment has been completed, retighten two screws labelled No. 1-in figure 5-11.

### SECTION VI Supplementary data

### 1. CALIBRATION TABLES 6-9 AND 6-10.

The calibration tables have control settings for every kilocycle. The first column, headed Freq. is the frequency column, the other columns are headed with the letter identifying the control.

- a. The figures in heavy black type are crystal check points.
- b. The heavy black lines divide the frequency range between crystal check points in two equal parts. Always use the check point that appears between the same heavy lines that the desired frequency does. The note at the bottom of each page will aid in locating the proper check point.

### 2. TABLES OF APPROXIMATE CONTROL SETTINGS (FOR ANTENNA TUNING AND LOADING)—TABLE 6-11.

These tables show approximate dial settings for the various frequencies and for various lengths of antennas. The tables are repeated to show settings for the case using the antenna shunt capacitor. The spaces marked with three dots in column D are left blank because the setting of that control cannot be determined beforehand. All settings are approximate and the procedure outlined for ADJUSTMENTS must be followed to obtain the exact settings.

a. To determine which table to use, measure the length of the antenna taking the total length of wire from the antenna terminal of the transmitter to the extreme end of the antenna. If the antenna is a "T," disregard the length of wire in the shorter branch, or, if the two branches are equal, include the length of only one of them. To check the choice of table, tune up the set on one of the frequencies given in the table for the antenna length nearest that measured above. Choose a frequency which tunes on position 7 on control C. Compare the actual settings given in this table and also in the tables for the next shorter and the next longer antenna lengths. Of these three tables the one showing control settings closest to the actual control settings is the table to use for this particular installation. Record the type of airplane and a brief description of the antenna in the three lines above that table to identify it so that table may be readily recognized as the correct one for future use on any frequency.

b. The antenna cannot be tuned at any frequencies below those shown in the tables for the various lengths of antennas.

### 3. GENERAL SPECIFICATIONS OF EQUIPMENT.

a. RANGE OF AVAILABLE TRANSMISSION FREQUENCIES.

Low Frequency Range 200 Kc to 600 Kc.

Frequencies in this range are generated in the Low Frequency Oscillator Unit O-17/ART-13A. This range is divided into three bands with individual ranges as shown in table 6-1. Control "F" on the panel of transmitter is used to select the desired low frequency band.

TABLE 6-1. RANGE OF AVAILABLE TRANSMISSION FREQUENCIES IN LOW FREQUENCY RANGE

| Position of Control "F" | Frequency<br>Range |
|-------------------------|--------------------|
| 1                       | 200Kc to 285Kc     |
| 2                       | 285Kc to 415Kc     |
| 3                       | 415Kc to 600Kc     |

When transmission frequencies in the low frequency range are desired, control "A" must be set on position 13 (L.F.). Controls "F" and "G" on the panel of the low Frequency Oscillator Unit are then utilized to set the oscillator to the exact frequency.

High Frequency Range 2000 Kc to 18100 Kc.

Frequencies for this range are generated in the High Frequency Oscillator Unit which has a range of 1000 to 1510 Kc. Suitable frequency multiplication in either or both multiplier stages produces the desired high frequency range. The entire range is divided into 12 bands with individual ranges as shown in table 6-2.

TABLE 6-2. RANGE OF AVAILABLE TRANSMISSION FREQUENCIES IN HIGH FREQUENCY RANGE

| Position of<br>Control "A" | Frequency<br>Range |
|----------------------------|--------------------|
| 1                          | 2.0Mc to 2.4Mc     |
| 2                          | 2.4Mc to 3.0Mc     |
| 3                          | 3.0Mc to 3.6Mc     |
| 4                          | 3.6Mc to 4.0Mc     |
| 5                          | 4.0Mc to 4.8Mc     |
| 6                          | 4.8Mc to 6.0Mc     |
| 7                          | 6.0Mc to 7.2Mc     |
| 8                          | 7.2Mc to 9.0Mc     |
| 9                          | 9.0Mc to 10.8Mc    |
| 10                         | 10.8Mc to 12.0Mc   |
| 11                         | 12.0Mc to 14.4Mc   |
| 12                         | 14.4Mc to 18.1Mc   |

b. FREQUENCY STABILITY.—The deviation of the carrier frequency in this transmitter is less than 0.05% for a variation of 45°C in the ambient temperature.

### c. ANTENNA REQUIREMENTS.

- (1) HIGH FREQUENCY RANGE.—The output circuit incorporated in the Radio Transmitter T-47A/ ART-13 is capable of tuning and delivering power to fixed aircraft antennas between 17 and 65 feet in length, over the frequency range 3000 Kc to 18,100 Kc, without the use of external shunt capacitors. For operation in the frequency range 2000 Kc to 3000 Kc, and when using fixed antennas shorter than 50 feet, the separate Antenna Shunt Capacitor Unit CU-24/ ART-13 may also be required to properly tune and deliver power to the antenna (see par. 6b(2) ( jj), section II, and table contained therein). The antenna tuning and loading circuits in the transmitter are also capable of accommodating a 200 ft. trailing wire type of aircraft antenna. Trailing wire operation will increase the range of the equipment considerably in the 2000 Kc to 6000 Kc frequency range; small improvement will be noted in the 6000 Kc to 10,000 Kc range. No appreciable increase in range is indicated when using a trailing wire antenna for frequencies above 10,000 Kc.
- (2) LOW FREQUENCY RANGE.—When the transmitter is operated in the frequency range 200 Kc to 600 Kc, Antenna Loading Unit CU-32/ART-13A must be used to tune and deliver power to either fixed aircraft antennas (from 30 to 65 ft. long) or a trailing wire antenna (approximately 200 ft. long).

### d. R-F POWER OUTPUT.

- (1) Table 6-3 shows approximate values of radio frequency power output when the equipment is used with antennas described in the preceding paragraphs and under the following conditions:
  - 1. Type of emission—CW.
  - 2. Dynamotor input voltage—28 volts.

TABLE 6-3. R-F POWER OUTPUT

|                | Power Out | put Frequency  | Power Output |
|----------------|-----------|----------------|--------------|
| Frequency      | Watts     |                | Watts        |
| 200Kc          | 4.0       | 5.5Mc          | 90.0         |
| 300 <b>K</b> c | 7.5       | 7.0 <b>M</b> c | 90.0         |
| 400 <b>K</b> c | 11.0      | 9.0 <b>M</b> c | 90.0         |
| 500Kc          | 14.5      | 11.5Mc         | 90.0         |
| 600Kc          | 18.0      | 13.5Mc         | 90.0         |
| 2.0Mc          | 30.0      | 15.5Mc         | 75.0         |
| 3.0 <b>Mc</b>  | 60.0      | 18.1Mc         | 65.0         |
| 4.0Mc          | 80.0      |                |              |

### e. MODULATION.

(1) Class B modulation is employed in this equipment. The push-pull modulator tubes (V105 and

V106) are capable of modulating the full-power R-F carrier at least 90 percent with VOICE emission.

- f. POWER INPUT REQUIREMENTS.—Data in table 6-4 was computed under these conditions:
  - (1) Input Voltage-28 volts D.C.

### Note

Power sources should be capable of delivering 35 amperes.

(2) Transmitter tuned to 3.0 Mc and fully loaded to rated P.A. plate current.

TABLE 6-4. POWER INPUT REQUIREMENTS

| The of the       | Power I    | Power Input 1: W tts |  |  |  |  |  |
|------------------|------------|----------------------|--|--|--|--|--|
| Type of Emission | Full Power | *Reduced Power       |  |  |  |  |  |
| CW               | 780        | 700                  |  |  |  |  |  |
| CW (Stand By)    | 560        | 560                  |  |  |  |  |  |
| MCW              | 925        | 760                  |  |  |  |  |  |
| MCW (Stand By)   | 560        | 560                  |  |  |  |  |  |
| Voice            | 925        | 760                  |  |  |  |  |  |
| Voice (Stand By) | 250        | 250                  |  |  |  |  |  |

\*Reduced power input occurs when aircraft reaches altitudes higher than 20,000 to 25,000 feet and barometric switch operates to reduce high voltage from 1150 to 750 volts.

- g. DYNAMOTOR.—The dynamotor used with Radio Transmitting Set AN/ART-13A may have been manufactured by either Russell Electric Co. or General Electric Co. Both machines are electrically and mechanically interchangeable when used on Dynamotor Unit DY-17/ART-13A. The rating and resistance measurements on the windings of each machine is shown in table 6-7. Schematic diagrams for both machines are shown at the bottom of figure 8-42.
- b. TUBE COMPLEMENT.—The complete vacuum tube complement for this equipment is given in table 6-6.
- i. AUDIO INPUT IMPEDANCE.—The audio input circuit in the speech amplifier of this equipment is designed to match the output of either a carbon or dynamic microphone. A switch selects the proper input circuit that is to be used (switch is located behind chart panel on face of transmitter). When the switch is in the CARBON position the input circuit will match a carbon microphone of approximately 40 ohms internal resistance. When the switch is in the DY-NAMIC position, the input circuit will match a dynamic microphone of approximately 200 ohms internal resistance.
- j. OVERALL AUDIO FREQUENCY RESPONSE.

  —The following curve shows audio frequency response for either a carbon or dynamic microphone input.
- k. SIDETONE OUTPUT.—Measurements in table 6-7 were made with 28 volts applied to the dynamotor input circuit and with control A in position 2. The transmitter was tuned to 3.0 Mc. P.A. PLATE current was 150 ma. and P.A. GRID current was 12 ma.

TABLE 6-5. DYNAMOTOR CHARACTERISTICS AND RESISTANCE MEASUREMENTS

|                                           |                      |                                                    |                           |                            |                    | istance of Armat<br>ling Between Br |                     |
|-------------------------------------------|----------------------|----------------------------------------------------|---------------------------|----------------------------|--------------------|-------------------------------------|---------------------|
| Manufacturer<br>and Type                  | Rated<br>Input       | Rated<br>Output                                    | Shunt Field<br>Resistance | Series Field<br>Resistance | 27 Volt<br>Winding | 400 Volt<br>Winding                 | 750 Volt<br>Winding |
| Russell Dyna-<br>motor (Type<br>500D35WA) | 27 volts,<br>32 amps | 400 volts,<br>0.75 amps<br>750 volts,<br>0.35 amps | 28.5 ohms                 | 0.003 ohms                 | 0.09               | 25                                  | 74                  |
| G. E. Dyna-<br>motor (Model<br>5DY81AC1)  | 27 volts,<br>33 amps | 400 volts,<br>0.75 amps<br>750 volts,<br>0.35 amps | 40 ohms                   | 0.033 ohms                 | 0.07               | 20                                  | 100                 |

TABLE 6-6. VACUUM TUBE COMPLEMENT

| Symbol<br>Designation | Type<br>Number | Army-Navy<br>Specification | Circuit Function                                                          |
|-----------------------|----------------|----------------------------|---------------------------------------------------------------------------|
| V101                  | JAN-837        | JAN-1A                     | High Freq. Oscillator                                                     |
| V102                  | JAN-1625       | JAN-1A                     | 1st Multiplier                                                            |
| V103                  | JAN-1625       | JAN-1A                     | 2nd Multiplier                                                            |
| V104                  | JAN-813        | JAN-1A                     | Power Amplifier                                                           |
| V105                  | JAN-811        | JAN-1A                     | Modulator                                                                 |
| V106                  | JAN-811        | JAN-1A                     | Modulator                                                                 |
| V201                  | JAN-12SJ7      | JAN-1A                     | 1st Audio Amplifier                                                       |
| V202                  | JAN-6V6GT      | JAN-1A                     | Audio Driver                                                              |
| V203                  | JAN-6V6GT      | JAN-1A                     | Sidetone Amplifier                                                        |
| V2201                 | *JAN-12SL7GT   | JAN-1A                     | 1st Section is 200 Kc Calibration Oscillator                              |
| V2202                 | †JAN-12SA7     | JAN-1A                     | 2nd Section is Frequency Tripler Converter 1st Section is Signal Detector |
| V2203                 | *JAN-12SL7GT   | JAN-1A                     | 2nd Section is MCW Audio Oscillator                                       |
| V2601                 | JAN-1625       | JAN-1A                     | Low Freq. Oscillator                                                      |

<sup>\*</sup>Types JAN-12SL7GT or JAN-12SL7 may be used interchangeably. †Types JAN-12SA7GT or JAN-SA7 may be used interchangeably.

TABLE 6-7. SIDETONE OUTPUT

| Switch<br>Position | Output<br>(rms. volts) ± 25 % | Load Impedance<br>(obms) |
|--------------------|-------------------------------|--------------------------|
| 1                  | 0.7                           | 125                      |
| 2                  | 1.4                           | 125                      |
| 3                  | 2.5                           | 125                      |
| 4                  | 5.0                           | 125                      |
| 5                  | 10.0                          | 125                      |
| 6                  | 20.0                          | 2000                     |

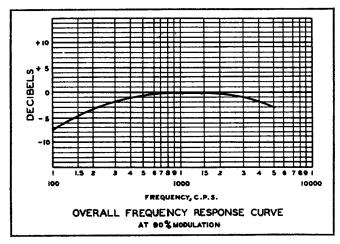



Figure 6-1. Overall Audio Frequency Response Curve

### ! AUDIO INPUT.

Input required for 90 percent modulation at 1000 c.p.s.—Reduced power (750 v on plates of P.A. and Mod. Tubes)—

Carbon input-1.13 v required.

Dynamic input-11.7 mv required.

Full Power (1160 v on plates of P.A. & Mod. Tubes)—

Carbon input—1.52 v required.

Dynamic input-16.0 mv required.

### m. NOISE LEVEL.

Below 100 percent modulation with input at 1000 cycles per second—Reduced Power (750 v on plates of P.A. & Mod. Tubes)—

Carbon input-(44 db).

Dynamic input—(43 db).

Full Power (1160 v on plates of P.A. & Mod. Tubes)— Carbon input—(44 db).

Dynamic input—(45 db).

### n. AUDIO DISTORTION.

Distortion with 90 percent modulation at 1000 cycles per second—Reduced Power (750 v on plates of P.A. & Mod. Tubes)—

Carbon input-6.5 percent distortion.

Dynamic input-6.5 percent distortion.

Full Power (1160 v on plates of P.A. & Mod. Tubes)— Carbon input—7.0 percent distortion.

Dynamic input-7.0 percent distortion.

### o. SIDETONE DISTORTION.

Distortion measured on output of SIDETONE at position 5 with 90 percent Modulation at 1000 cycles per second—

Reduced Power (750 v on plates of P.A. & Mod. Tubes)—

Carbon input-6.5 percent distortion.

Dynamic input—6.6 percent distortion.

Full Power (1160 v on plates of P.A. & Mod. Tubes)—

Carbon input-8.8 percent distortion.

Dynamic input-6.9 percent distortion.

p. RESISTANCE MEASUREMENTS OF AUTO-TUNE MOTOR.—The autotune Motor (B101) used in this equipment was manufactured by three different firms. These motors are all electrically and mechanically interchangeable. Their respective field and winding resistances are shown in the table 6-8. A schematic diagram of the Autotune Motor is shown on the left side of figure 8-42.

TABLE 6-8. RESISTANCE MEASUREMENTS OF AUTOTUNE MOTOR

| Manufacturer              | Shunt Field<br>Resistance<br>(F1 to F2) | Resistance of<br>Armature Wind-<br>ing Across<br>Diametrically<br>Opposite Bars | Resistance of Armature Wind- ing Between Adjacent Com- mutator Segment |      |  |
|---------------------------|-----------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|------|--|
| Emerson Elec-<br>tric Co. | 18.0 ohms                               | 1.35 ohms                                                                       | 0.3                                                                    | ohms |  |
| Fractional<br>Motors      | 21.0 ohms                               | 1.06 ohms                                                                       | 0.166                                                                  | ohms |  |
| Ohio Electric<br>Mfg. Co. | 26.0 ohms                               | 6.15 ohms                                                                       | 1.16                                                                   | ohms |  |

(Calibration Tables begin on following page.)



TABLE 6-9. CALIBRATION OF LOW FREQUENCY OSCILLATOR 200KC TO 600KC

| Frequency: 20 | JO-300 KC |
|---------------|-----------|
|---------------|-----------|

| Freq. | A        | F | G              | Freq.      | A        | F | G                | Freq.      | A        | F | G              |
|-------|----------|---|----------------|------------|----------|---|------------------|------------|----------|---|----------------|
|       | 13       | 1 | 189.2          | 234        | 13       | 1 | 890.2            | 269        | 13       | 1 | 1604.0         |
| 201   | 13       | 1 | 212.0          | 235        | 13       | 1 | 910.6            |            |          |   |                |
| 202   | 13       | 1 | 234.8          | 236        | 13       | 1 | 931.0            | 270        | 13       | 1 | 1624.5         |
| 203   | 13       | 1 | 256.8          | 237        | 13       | 1 | 951.3            | 271        | 13       | 1 | 1645.6         |
| 204   | 13       | 1 | 278.0          | 238        | 13       | 1 | 971.7            | 272        | 13       | 1 | 1666.0         |
| 205   | 13       | 1 | 299.8          | 239        | 13       | 1 | 992.0            | 273        | 13       | 1 | 1686.5         |
| 206   | 13       | 1 | 321.3          |            |          |   |                  | 274        | 13       | 1 | 1707.2         |
| 207   | 13       | 1 | 342.8          | 240        | 13       | 1 | 1012.4           | 275        | 13       | 1 | 1728.8         |
| 208   | 13       | 1 | 363.6          | 241        | 13       | 1 | 1032.8           | 276        | 13       | 1 | 1750.0         |
| 209   | 13       | 1 | 384.3          | 242        | 13       | 1 | 1053.3           | 277        | 13       | 1 | 1771.0         |
|       |          |   |                | 243        | 13       | 1 | 1073.7           | 278        | 13       | 1 | 1792.0         |
| 210   | 13       | 1 | 405.0          | 244        | 13       | 1 | 1094.2           | 279        | 13       | 1 | 1814.0         |
| 211   | 13       | 1 | 425.3          | 245        | 13       | 1 | 1114.6           |            |          |   |                |
| 212   | 13       | 1 | 445.6          | 246        | 13       | 1 | 1135.0           | 280        | 13       | 1 | 1836.0         |
| 213   | 13       | 1 | 466.5          | 247        | 13       | 1 | 1155.5           | 281        | 13       | 1 | 1858.0         |
| 214   | 13       | 1 | 486.7          | 248        | 13       | 1 | 1175.9           | 282        | 13       | 1 | 1880.0         |
| 215   | 13       | i | 508.1          | 249        | 13       | 1 | 1196.4           | 283        | 13       | 1 | 1902.2         |
| 216   | 13       | i | 527.5          | ١          |          | _ |                  | 284        | 13       | 1 | 1925.2         |
| 217   | 13       | i | 548.0          | 250        | 13       | 1 | 1216.8           | 285        | 13       | 1 | 1948.5         |
| 218   | 13       | 1 | 568.0          | 251        | 13       | 1 | 1237.1           |            |          | _ |                |
| 219   | 13       | 1 | 588.C          | 252        | 13       | 1 | 1257.4           | 285        | 13       | 2 | 118.8          |
|       |          |   | 000.0          | 253        | 13       | 1 | 1277.8           | 286        | 13       | 2 | 135.7          |
| 220   | 13       | 1 | 608.0          | 254        | 13       | 1 | 1298.1           | 287        | 13       | 2 | 152.2          |
| 221   | 13       | 1 | 628.1          | 255        | 13       | 1 | 1318.4           | 288        | 13       | 2 | 168.2          |
| 222   | 13       | 1 | 648.2          | 256        | 13       | 1 | 1338.7           | 289        | 13       | 2 | 184.2          |
| 223   | 13       | i | 668.2          | 257        | 13       | 1 | 1359.0           | 200        | 40       | _ | 200.0          |
| 223   | 13       | 1 | 688.3          | 258        | 13       | 1 | 1379.4           | 290        | 13       | 2 | 200.2          |
| 225   | 13       | 1 | 708.4          | 259        | 13       | 1 | 1399.7           | 291        | 13       | 2 | 215.5<br>231.0 |
| 226   | 13       | 1 | 728.5          | 260        | 13       | 1 | 1420.0           | 292        | 13       | _ |                |
| 227   | 13       | 1 | 748.6          | 261        | 13       | 1 | 1440.0           | 293        | 13       | 2 | 246.8          |
| 228   | 13       | 1 | 768.6          | 262        | 13       | 1 | 1460.9           | 294        | 13<br>13 | 2 | 261.8          |
| 229   | 13       | 1 | 788.7          | 1—         |          |   |                  | 295        | 13       | 2 | 276.5<br>291.4 |
| 223   | 13       | • | 100.7          | 263        | 13       | 1 | 1481.4           | 296<br>297 | 13       | 2 | 306.5          |
| 020   |          |   | 000.0          | 264        | 13<br>13 | 1 | 1501.8<br>1522.2 | 289        | 13       | 2 | 306.5          |
| 230   | 13<br>13 | 1 | 808.8<br>829.2 | 265<br>266 | 13       | 1 | 1542.7           | 299        | 13       | 2 | 336.2          |
| 231   | 13       | 1 | 829.2<br>849.5 | 267        | 13       | 1 | 1563.1           | 299        | 13       | - | 330.2          |
| 232   | 13       | 1 | 869.9          | 268        | 13       | 1 | 1583.6           | 300        | 13       | 2 | 350.8          |
| 233   | 13       |   | 009.9          | 200        | 13       |   | 1000.0           | 300        | 13       |   | 330.0          |

Use nearest check point shown in heavy type

### Frequency: 300-400 Kc

| Freq       | . A      | F | G     | Freq | . A | F | G      | Freq. | A  | F | G      |
|------------|----------|---|-------|------|-----|---|--------|-------|----|---|--------|
| 300        | 13       | 2 | 350.8 | 334  | 13  | 2 | 829.0  | 368   | 13 | 2 | 1309.2 |
| 301        | 13       | 2 | 365.7 | 335  | 13  | 2 | 843.0  | 369   | 13 | 2 | 1323.3 |
| 302        | 13       | 2 | 379.4 | 336  | 13  | 2 | 857.0  |       |    |   |        |
| 303        | 13       | 2 | 394.5 | 337  | 13  | 2 | 871.0  | 370   | 13 | 2 | 1337.5 |
| 304        | 13       | 2 | 408.7 | 338  | 13  | 2 | 885.0  | 371   | 13 | 2 | 1351.5 |
| 305        | 13       | 2 | 423.5 | 339  | 13  | 2 | 899.0  | 372   | 13 | 2 | 1365.6 |
| 306        | 13       | 2 | 438.7 |      |     |   |        | 373   | 13 | 2 | 1379.6 |
| 307        | 13       | 2 | 452.0 | 340  | 13  | 2 | 913.0  | 374   | 13 | 2 | 1393.6 |
| 308        | 13       | 2 | 466.0 | 341  | 13  | 2 | 927.2  | 375   | 13 | 2 | 1407.6 |
| 309        | 13       | 2 | 480.0 | 342  | 13  | 2 | 941.4  | 376   | 13 | 2 | 1421.7 |
|            |          | _ | 404.0 | 343  | 13  | 2 | 955.6  | 377   | 13 | 2 | 1435.7 |
| 310        | 13       | 2 | 494.0 | 344  | 13  | 2 | 969.8  | 378   | 13 | 2 | 1449.7 |
| 311<br>312 | 13<br>13 | 2 | 509.2 | 345  | 13  | 2 | 984.0  | 379   | 13 | 2 | 1463.7 |
|            |          |   | 522.4 | 346  | 13  | 2 | 998.2  | 380   | 13 | 2 | 1477.8 |
| 313        | 13       | 2 | 536.6 | 347  | 13  | 2 | 1012.4 | 381   | 13 | 2 | 1492.0 |
| 314        | 13       | 2 | 550.6 | 348  | 13  | 2 | 1026.6 | 382   | 13 | 2 | 1506.2 |
| 315        | 13       | 2 | 564.4 | 349  | 13  | 2 | 1040.8 | 383   | 13 | 2 | 1520.3 |
| 316        | 13       | 2 | 578.4 | 350  | 13  | 2 | 1055.0 | 384   | 13 | 2 | 1534.5 |
| 317        | 13       | 2 | 592.2 | 351  | 13  | 2 | 1069.1 | 385   | 13 | 2 | 1548.7 |
| 318        | 13       | 2 | 606.2 | 352  | 13  | 2 | 1083.2 | 386   | 13 | 2 | 1562.9 |
| 319        | 13       | 2 | 620.2 | 353  | 13  | 2 | 1083.2 | 387   | 13 | 2 | 1577.1 |
|            |          |   |       | 354  | 13  | 2 | 1111.4 |       | _  | _ |        |
| 320        | 13       | 2 | 634.2 | 355  | 13  | 2 | 1125.5 | 388   | 13 | 2 | 1591.2 |
| 321        | 13       | 2 | 648.1 | 356  | 13  | 2 | 1139.6 | 389   | 13 | 2 | 1605.4 |
| 322        | 13       | 2 | 662.0 | 357  | 13  | 2 | 1153.7 | l     |    | _ |        |
| 323        | 13       | 2 | 675.8 | 358  | 13  | 2 | 1167.8 | 390   | 13 | 2 | 1619.6 |
| 324        | 13       | 2 | 689.7 |      | 13  |   | 1181.9 | 391   | 13 | 2 | 1634.1 |
| 325        | 13       | 2 | 703.6 | 359  | 13  | 2 | 1101.9 | 392   | 13 | 2 | 1648.6 |
| 326        | 13       | 2 | 717.5 |      |     | _ | 44000  | 393   | 13 | 2 | 1663.2 |
| 327        | 13       | 2 | 731.4 | 360  | 13  | 2 | 1196.0 | 394   | 13 | 2 | 1677.7 |
| 328        | 13       | 2 | 745.2 | 361  | 13  | 2 | 1210.1 | 395   | 13 | 2 | 1692.2 |
| 329        | 13       | 2 | 759.1 | 362  | 13  | 2 | 1224.3 | 396   | 13 | 2 | 1706.7 |
|            |          |   |       | 363  | 13  | 2 | 1238.4 | 397   | 13 | 2 | 1721.2 |
| 330        | 13       | 2 | 773.0 | 364  | 13  | 2 | 1252.6 | 398   | 13 | 2 | 1735.7 |
| 331        | 13       | 2 | 786.4 | 365  | 13  | 2 | 1266.7 | 399   | 13 | 2 | 1750.3 |
| 332        | 13       | 2 | 801.0 | 366  | 13  | 2 | 1280.9 | l     |    |   |        |
| 333        | 13       | 2 | 815.0 | 367  | 13  | 2 | 1295.0 | 400   | 13 | 2 | 1764.8 |
|            |          |   |       |      |     |   |        | l     |    |   |        |

Use nearest check point shown in heavy type

Frequency: 400-500 Kc

|            |    |   |                  |                                              | <u> </u> |   |                |       |    |   |              |
|------------|----|---|------------------|----------------------------------------------|----------|---|----------------|-------|----|---|--------------|
| Freq       |    | F | $\boldsymbol{G}$ | Freq.                                        |          | F | G              | Freq. |    | F | $\mathbf{G}$ |
| 400        | 13 | 2 | 1764.8           | 433                                          | 13       | 3 | 320.4          | 468   | 13 | 3 | 662.6        |
| 401        | 13 | 2 | 1779.0           | 434                                          | 13       | 3 | 330.4          | 469   | 13 | 3 | 672.2        |
| 402        | 13 | 2 | 1793.7           | 435                                          | 13       | 3 | 340.6          | i     |    |   |              |
| 403        | 13 | 2 | 1809.0           | 436                                          | 13       | 3 | 350.8          | 470   | 13 | 3 | 681.8        |
| 404        | 13 | 2 | 1824.0           | 437                                          | 13       | 3 | 360.8          | 471   | 13 | 3 | 691.4        |
| 405        | 13 | 2 | 1839.4           | 438                                          | 13       | 3 | 370.6          | 472   | 13 | 3 | 701.0        |
| 406        | 13 | 2 | 1854.4           | 439                                          | 13       | 3 | 380,4          | 473   | 13 | 3 | 710.5        |
| 407        | 13 | 2 | 1869.4           |                                              |          |   |                | 474   | 13 | 3 | 720.1        |
| 408        | 13 | 2 | 1885.0           | 440                                          | 13       | 3 | 390.4          | 475   | 13 | 3 | 729.7        |
| 409        | 13 | 2 | 1900.2           | 441                                          | 13       | 3 | 400.3          | 476   | 13 | 3 | 739.3        |
|            |    | _ |                  | 442                                          | 13       | 3 | 410.1          | 477   | 13 | 3 | 748.9        |
| 410        | 13 | 2 | 1916.2           | 443                                          | 13       | 3 | 420.0          | 478   | 13 | 3 | 758.4        |
| 411        | 13 | 2 | 1932.2           | 444                                          | 13       | 3 | 429.8          | 479   | 13 | 3 | 768.0        |
| 412        | 13 | 2 | 1948.2           | 445                                          | 13       | 3 | 439.7          |       |    |   |              |
| 413        | 13 | 2 | 1964.4           | 446                                          | 13       | 3 | 449.6          | 480   | 13 | 3 | 777.6        |
| 414        | 13 | 2 | 1980.3           | 447                                          | 13       | 3 | 459.4          | 481   | 13 | 3 | 787.3        |
| 415        | 13 | 2 | 1997.0           | 448<br>449                                   | 13<br>13 | 3 | 469.3<br>479.1 | 482   | 13 | 3 | 796.9        |
| 415        | 13 | 3 | 127.2            | 449                                          | 13       | 3 | 479.1          | 483   | 13 | 3 | 806.6        |
| 415<br>416 | 13 | 3 | 138.6            | 450                                          | 13       | 3 | 489.0          | 484   | 13 | 3 | 816.2        |
| 417        | 13 | 3 | 150.2            | 451                                          | 13       | 3 | 498.7          | 485   | 13 | 3 | 825.9        |
| 418        | 13 | 3 | 161.3            | 452                                          | 13       | 3 | 508.4          | 486   | 13 | 3 | 835.6        |
| 419        | 13 | 3 | 172.2            | 453                                          | 13       | 3 | 518.0          | 487   | 13 | 3 | 845.2        |
| 419        | 13 | 3 | 172.2            | 454                                          | 13       | 3 | 527.7          | 488   | 13 | 3 | 854.9        |
| 420        | 13 | 3 | 183.0            | 455                                          | 13       | 3 | 537.4          | 489   | 13 | 3 | 864.5        |
| 421        | 13 | 3 | 193.8            | 456                                          | 13       | 3 | 547.1          |       |    |   |              |
| 422        | 13 | 3 | 205.0            | 457                                          | 13       | 3 | 556.8          | 490   | 13 | 3 | 874.2        |
| 423        | 13 | 3 | 215.6            | 458                                          | 13       | 3 | 566.4          | 491   | 13 | 3 | 884.0        |
| 424        | 13 | 3 | 226.6            | 459                                          | 13       | 3 | 576.1          | 492   | 13 | 3 | 893.7        |
| 425        | 13 | 3 | 237.2            | "                                            |          | · | 0.0.,          | 493   | 13 | 3 | 903.5        |
| 426        | 13 | 3 | 247.7            | 460                                          | 13       | 3 | 585.8          | 494   | 13 | 3 | 913.2        |
| 427        | 13 | 3 | 258.2            | 461                                          | 13       | 3 | 595.4          | 495   | 13 | 3 | 923.3        |
| 428        | 13 | 3 | 268.4            | 462                                          | 13       | 3 | 605.0          | 496   | 13 | 3 | 932.8        |
| 429        | 13 | 3 | 277.7            | 463                                          | 13       | 3 | 614.6          | 497   | 13 | 3 | 942.5        |
|            |    | - | =                | 464                                          | 13       | 3 | 624.2          | 498   | 13 | 3 | 952.3        |
| 430        | 13 | 3 | 289.2            | 465                                          | 13       | 3 | 633.8          | 499   | 13 | 3 | 962.0        |
| 431        | 13 | 3 | 299.6            | 466                                          | 13       | 3 | 643.4          |       |    |   |              |
| 432        | 13 | 3 | 310.2            | 467                                          | 13       | 3 | 653.0          | 500   | 13 | 3 | 971.8        |
|            |    |   |                  | <u>.                                    </u> |          | _ |                |       |    | _ |              |

Use nearest check point shown in heavy type

### Frequency: 500-600 Kc

| Freq.      | . <b>A</b> | F | G                | Freq.      | Α  | F | G      | Freq. | A        | F | G                |
|------------|------------|---|------------------|------------|----|---|--------|-------|----------|---|------------------|
| 500        | 13         | 3 | 971.8            | 534        | 13 | 3 | 1303.2 | 568   | 13       | 3 | 1634.3           |
| 501        | 13         | 3 | 981.6            | 535        | 13 | 3 | 1312.9 | 569   | 13       | 3 | 1644.0           |
| 502        | 13         | 3 | 991.3            | 536        | 13 | 3 | 1322.6 |       |          |   |                  |
| 503        | 13         | 3 | 1001.1           | 537        | 13 | 3 | 1332.3 | 570   | 13       | 3 | 1653.8           |
| 504        | 13         | 3 | 1010.9           | 538        | 13 | 3 | 1342.0 | 571   | 13       | 3 | 1663.8           |
| 505        | 13         | 3 | 1020.6           | 539        | 13 | 3 | 1351.7 | 572   | 13       | 3 | 1673.2           |
| 506        | 13         | 3 | 1030.4           |            |    |   |        | 573   | 13       | 3 | 1682.0           |
| 507        | 13         | 3 | 1040.2           | 540        | 13 | 3 | 1361.4 | 574   | 13       | 3 | 1692.8           |
| 508        | 13         | 3 | 1050.0           | 541        | 13 | 3 | 1371.1 | 575   | 13       | 3 | 1763.0           |
| 509        | 13         | 3 | 1059.7           | 542        | 13 | 3 | 1380.8 | 576   | 13       | 3 | 1713.0           |
| F40        | 13         | 3 | 1000 0           | 543        | 13 | 3 | 1390.4 | 577   | 13       | 3 | 1723.0           |
| 510        | 13         | 3 | 1069.5           | 544        | 13 | 3 | 1400.1 | 578   | 13       | 3 | 1733.4           |
| 511<br>512 | 13         | 3 | 1079.2<br>1089.0 | 545        | 13 | 3 | 1409.8 | 579   | 13       | 3 | 1743.4           |
|            |            |   |                  | 546        | 13 | 3 | 1419.5 | 580   | 13       | 3 | 1753.4           |
| 513        | 13         | 3 | 1098.8           | 547        | 13 | 3 | 1429.2 | 581   | 13       | 3 | 1763.4           |
| 514        | 13         | 3 | 1108.5           | 548        | 13 | 3 | 1438.8 | 582   | 13       | 3 | 1773.2           |
| 515        | 13         | 3 | 1118.2           | 549        | 13 | 3 | 1448.5 | 583   | 13       | 3 | 1783.2           |
| 516        | 13         | 3 | 1128.0           |            | 4. |   | 44500  | 584   | 13       | 3 | 1793.8           |
| 517        | 13         | 3 | 1137.7           | 550        | 13 | 3 | 1458.2 | 585   | 13       | 3 | 1804.0           |
| 518        | 13         | 3 | 1147.5           | 551        | 13 | 3 | 1467.9 | 586   | 13       | 3 | 1814.4           |
| 519        | 13         | 3 | 1157.3           | 552        | 13 | 3 | 1477.7 | 587   | 13       | 3 | 1824.8           |
|            |            |   | 4407.0           | 553        | 13 | 3 | 1487.4 | 1—    |          |   |                  |
| 520        | 13         | 3 | 1167.0           | 554        | 13 | 3 | 1497.1 | 588   | 13       | 3 | 1835.2           |
| 521        | 13         | 3 | 1176.8           | 555        | 13 | 3 | 1506.9 | 589   | 13       | 3 | 1845.9           |
| 522        | 13         | 3 | 1186.5           | 556        | 13 | 3 | 1516.6 |       |          | _ | 4050.0           |
| 523        | 13         | 3 | 1196.2           | 557        | 13 | 3 | 1526.3 | 590   | 13       | 3 | 1856.2           |
| 524        | 13         | 3 | 1206.0           | 558        | 13 | 3 | 1536.1 | 591   | 13       | 3 | 1866.4           |
| 525        | 13         | 3 | 1215.7           | 559        | 13 | 3 | 1545.9 | 592   | 13       | 3 | 1877.0           |
| 5:26       | 13         | 3 | 1225.5           | 560        | 13 | 3 | 1555.6 | 593   | 13       |   | 1887.5<br>1898.0 |
| 527        | 13         | _ | 1235.2           | 561        | 13 |   |        | 594   |          |   |                  |
| 528        | 13         | 3 | 1245.0           | 562        | 13 |   |        | 595   | 13       |   | 1909.0           |
| 529        | 13         | 3 | 1254.7           | ļ.——       |    |   |        | 596   | 13       |   | 1920.0           |
| E20        | 42         | 2 | 1004 5           | 563        | 13 |   |        | 597   | 13       |   | 1931.0           |
| 530        | 13<br>13   |   | 1264.5<br>1274.2 | 564        |    |   |        | 598   | 13<br>13 |   | 1942.0           |
| 531        |            |   | 1283.9           | 565<br>566 |    |   |        | 599   | 13       | 3 | 1953.0           |
| 532        |            |   |                  |            | 13 |   |        | 600   | 12       | 3 | 1964.0           |
| 533        | 13         | 3 | 1293.6           | 567        | 13 | 3 | 1024.3 | 000   | T2       | 3 | 1304.0           |
|            |            |   | <del></del>      | <u> </u>   |    |   |        | 1     |          |   |                  |

Use nearest check point shown in heavy type

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: 2 | :000-2100 K | c |
|--------------|-------------|---|
|--------------|-------------|---|

| Freq.        | A | В     | Freq.    | A | В     | Freq. | A | В     |
|--------------|---|-------|----------|---|-------|-------|---|-------|
| 2000         | 1 | 100.1 | 2034     | 1 | 225.4 | 2068  | 1 | 350.8 |
| 2001         | 1 | 103.8 | 2035     | 1 | 229.1 | 2069  | 1 | 354.5 |
| 2002         | 1 | 107.5 | 2036     | 1 | 232.7 | l     |   |       |
| 2003         | 1 | 111.2 | 2037     | 1 | 236.4 | 2070  | 1 | 358.1 |
| 2004         | 1 | 114.9 | 2038     | 1 | 240.1 | 2071  | 1 | 361.8 |
| 2005         | 1 | 118.6 | 2039     | 1 | 243.8 | 2072  | 1 | 365.5 |
| 2006         | 1 | 122.3 |          |   |       | 2073  | 1 | 369.2 |
| 2007         | 1 | 126.0 | 2040     | 1 | 247.4 | 2074  | 1 | 372.9 |
| 2008         | 1 | 129.7 | 2041     | 1 | 251.1 | 2075  | 1 | 376.6 |
| 2009         | 1 | 133.4 | 2042     | 1 | 254.8 | 2076  | 1 | 380.3 |
|              |   |       | 2043     | 1 | 258.5 | 2077  | 1 | 384.0 |
| 2010         | 1 | 137.1 | 2044     | 1 | 262.2 | 2078  | 1 | 387.7 |
| 2011         | 1 | 140.8 | 2045     | 1 | 265.9 | 2079  | 1 | 391.4 |
| 2012         | 1 | 144.5 | 2046     | 1 | 269.6 |       |   |       |
| 2013         | 1 | 148.2 | 2047     | 1 | 273.2 | 2080  | 1 | 395.1 |
| 2014         | 1 | 151.9 | 2048     | 1 | 276.9 | 2081  | 1 | 398.8 |
| 2015         | 1 | 155.6 | 2049     | 1 | 280.6 | 2082  | 1 | 402.5 |
| 2016         | 1 | 159.2 |          |   |       | 2083  | 1 | 406.2 |
| 2017         | 1 | 162.9 | 2050     | 1 | 284.3 | 2084  | 1 | 410.0 |
| 2018         | 1 | 166.6 | 2051     | 1 | 288.0 | 2085  | 1 | 413.7 |
| 2019         | 1 | 170.3 | 2052     | 1 | 291.7 | 2086  | 1 | 417.4 |
|              |   |       | 2053     | 1 | 295.4 | 2087  | 1 | 421.2 |
| 2020         | 1 | 174.0 | 2054     | 1 | 299.1 | 2088  | 1 | 424.9 |
| 2021         | 1 | 177.7 | 2055     | 1 | 302.8 | 2089  | 1 | 428.6 |
| 2022         | 1 | 181.3 | 2056     | 1 | 306.5 | ŀ     |   |       |
| 2023         | 1 | 185.0 | 2057     | 1 | 310.2 | 2090  | 1 | 432.3 |
| 2024         | 1 | 188.7 | 2058     | 1 | 313.9 | 2091  | 1 | 436.1 |
| 2025         | 1 | 192.3 | 2059     | 1 | 317.5 | 2092  | 1 | 439.8 |
| 2026         | 1 | 196.0 |          |   |       | 2093  | 1 | 443.5 |
| 2027         | 1 | 199.7 | 2060     | 1 | 321.2 | 2094  | 1 | 447.2 |
| 2028         | 1 | 203.4 | 2061     | 1 | 324.9 | 2095  | 1 | 451.0 |
| 2029         | 1 | 207.0 | 2062     | 1 | 328.6 | 2096  | 1 | 454.7 |
|              |   |       | 2063     | 1 | 332.3 | 2097  | 1 | 458.4 |
| 2030         | 1 | 210.7 | 2064     | 1 | 336.0 | 2098  | 1 | 462.1 |
| 2031         | 1 | 214.4 | 2065     | 1 | 339.7 | 2099  | 1 | 465.9 |
| 2032         | 1 | 218.0 | 2066     | 1 | 343.4 | 2100  | 1 | 469.6 |
| <b>20</b> 33 | 1 | 221.7 | 2067     | 1 | 347.1 | 2100  | 1 | 403.0 |
|              |   |       | <u> </u> |   |       | !     |   |       |

Use check point at 2000 or 2100 Kc, whichever is nearer

# Frequency: 2100-2200 Kc

|       |   |       | <u>r</u> | _ | В     | Freq.        | A | В              |
|-------|---|-------|----------|---|-------|--------------|---|----------------|
| Freq. | A |       | Freq.    | A | 596.4 | 2168         | 1 | 723.5          |
| 2100  | 1 | 469.6 | 2134     | 1 |       | 2169         | 1 | 727.2          |
| 2101  | 1 | 473.3 | 2135     | 1 | 600.1 | 2109         | ı | 121.2          |
| 2102  | 1 | 477.0 | 2136     | 1 | 603.9 |              |   | 731.0          |
| 2103  | 1 | 480.7 | 2137     | 1 | 607.6 | 2170<br>2171 | 1 | 731.0          |
| 2104  | 1 | 484.4 | 2138     | 1 | 611.4 | 2171         | i | 738.5          |
| 2105  | 1 | 488.2 | 2139     | 1 | 615.1 |              | 1 | 742.2          |
| 2106  | 1 | 491.9 |          | _ | 240.0 | 2173         | 1 | 746.0          |
| 2107  | 1 | 495.6 | 2140     | 1 | 618.8 |              | 1 | 749.7          |
| 2108  | 1 | 499.3 | 2141     | 1 | 622.6 | 2175         |   | 753.5          |
| 2109  | 1 | 503.0 | 2142     | 1 | 626.3 | 2176         | 1 | 753.5<br>757.2 |
|       |   |       | 2143     | 1 | 630.1 | 2177         | 1 | 757.2<br>761.0 |
| 2110  | 1 | 506.7 | 2144     | 1 | 633.8 | 2178         |   | 761.0<br>764.7 |
| 2111  | 1 | 510.5 | 2145     | 1 | 637.5 | 2179         | 1 | 704.7          |
| 2112  | 1 | 514.2 | 2146     | 1 | 641.3 |              |   | 700 5          |
| 2113  | 1 | 517.9 | 2147     | 1 | 645.0 | 2180         | 1 | 768.5          |
| 2114  | 1 | 521.7 | 2148     | 1 | 648.8 | 2181         | 1 | 772.2          |
| 2115  | 1 | 525.4 | 2149     | 1 | 652.5 | 2182         | 1 | 775.9          |
| 2116  | 1 | 529.2 |          |   |       | 2183         | 1 | 779.6          |
| 2117  | 1 | 532.9 | 2150     | 1 | 656.2 | 2184         | 1 | 783.3          |
| 2118  | 1 | 536.6 | 2151     | 1 | 660.0 | 2185         | 1 | 787.1          |
| 2119  | 1 | 540.4 | 2152     | 1 | 663.7 | 2186         | 1 | 790.8          |
|       |   |       | 2153     | 1 | 667.4 | 2187         | 1 | 794.5          |
| 2120  | 1 | 544.1 | 2154     | 1 | 671.2 | 2188         | 1 | 798.2          |
| 2121  | 1 | 547.9 | 2155     | 1 | 674.9 | 2189         | 1 | 802.0          |
| 2122  | 1 | 551.6 | 2156     | 1 | 678.6 | 1            | _ |                |
| 2123  | 1 | 555.3 | 2157     | 1 | 682.4 | 2190         | 1 | 805.7          |
| 2124  | 1 | 559.0 | 2158     | 1 | 686.1 | 2191         | 1 | 809.4          |
| 2125  | 1 | 562.8 | 2159     | 1 | 689.8 | 2192         | 1 | 813.1          |
| 2126  | 1 | 566.5 | 1        |   |       | 2193         | 1 | 816.9          |
| 2127  | 1 | 570.2 | 2160     | 1 | 693.6 | 2194         | 1 | 820.6          |
| 2128  | 1 | 574.0 | 2161     | 1 | 697.3 | 2195         | 1 | 824.3          |
| 2129  | 1 | 577.7 | 2162     | 1 | 701.1 | 2196         | 1 | 828.1          |
|       |   |       | 2163     | 1 | 704.8 | 2197         | 1 | 831.8          |
| 2130  | 1 | 581.4 | 2164     | 1 | 708.5 |              | 1 | 835.5          |
| 2131  | 1 | 585.2 | 2165     | 1 | 712.3 |              | 1 | 839.3          |
| 2132  | 1 | 588.9 | 2166     | 1 | 716.0 |              | _ | 042.5          |
| 2133  | 1 | 592.6 | 2167     | 1 | 719.8 | 2200         | 1 | 843.0          |
|       |   |       | 1        |   | _     | 1            |   |                |

Use check point at 2100 or 2200 Kc, whichever is nearer

Frequency: 2200-2300 Kc

| Freq. | A | В                 | Freq.        | A | В                | Freq.        | A | В                |
|-------|---|-------------------|--------------|---|------------------|--------------|---|------------------|
| 2200  | 1 | 843.0             | 2234         | 1 | 969.1            | 2268         | 1 | 1094.6           |
| 2201  | 1 | 846.7             | 2235         | 1 | 972.8            | 2269         | 1 | 1098.2           |
| 2202  | 1 | 850.4             | 2236         | 1 | 976.5            | 1            |   |                  |
| 2203  | 1 | 854.1             | 2237         | 1 | 980.2            | 2270         | 1 | 1101.9           |
| 2204  | 1 | 857.8             | 2238         | 1 | 983.9            | 2271         | 1 | 1105.6           |
| 2205  | 1 | 861.6             | 2239         | 1 | 987.6            | 2272         | 1 | 1109.3           |
| 2206. | 1 | 865.3             | l            |   |                  | 2273         | 1 | 1112.9           |
| 2207  | 1 | 869.0             | 2240         | 1 | 991.2            | 2274         | 1 | 1116.6           |
| 2208  | 1 | 872.7             | 2241         | 1 | 994.9            | 2275         | 1 | 1120.3           |
| 2209  | 1 | 876.4             | 2242         | 1 | 998.6            | 2276         | 1 | 1123.9           |
|       |   |                   | 2243         | 1 | 1002.3           | 2277         | 1 | 1127.6           |
| 2210  | 1 | 880.1.            | 2244         | 1 | 1006.0           | 2278         | 1 | 1131.3           |
| 2211  | 1 | 883.8             | 2245         | 1 | 1009.8           | 2279         | 1 | 1134.9           |
| 2212  | 1 | 887.5             | 2246         | 1 | 1013.5           | 1            |   |                  |
| 2213  | 1 | 891.3             | 2247         | 1 | 1017.2           | 2280         | 1 | 1138.6           |
| 2214  | 1 | 895.0             | 2248         | 1 | 1020.9           | 2281         | 1 | 1142.3           |
| 2215  | 1 | 898.7             | 2249         | 1 | 1024.6           | 2282         | 1 | 1145.9           |
| 2216  | 1 | 902.4             |              |   |                  | 2283         | 1 | 1149.6           |
| 2217  | 1 | 906.1             | 2250         | 1 | 1028.3           | 2284         | 1 | 1153.3           |
| 2218  | 1 | 909.8             | 2251         | 1 | 1032.0           | 2285         | 1 | 1156.9           |
| 2219  | 1 | 913.5             | 2252         | 1 | 1035.7           | 2286         | 1 | 1160.6           |
|       |   |                   | 2253         | 1 | 1039.4           | 2287         | 1 | 1164.2           |
| 2220  | 1 | 917.2             | 2254         | 1 | 1043.1           | 2288         | 1 | 1167.9           |
| 2221  | 1 | 921.0             | 2255         | 1 | 1046.8           | 2289         | 1 | 1171.6           |
| 2222  | 1 | 924.7             | 2256         | 1 | 1050.5           |              |   |                  |
| 2223  | 1 | 928.4             | 2257         | 1 | 1054.2           | 2290         | 1 | 1175.2           |
| 2224  | 1 | 932.1             | 2258         | 1 | 1057.9           | 2291         | 1 | 1178.9           |
| 2225  | 1 | 935.8             | 2259         | 1 | 1061.6           | 2292         | 1 | 1182.5           |
| 2226  | 1 | 939.5             |              |   |                  | 2293         | 1 | 1186.2           |
| 2227  | 1 | 943.2             | 2260         | 1 | 1065.3           | 2294         | 1 | 1189.9           |
| 2228  | 1 | 946.9             | 2261         | 1 | 1068.9           | 2295<br>2296 | 1 | 1193.5<br>1197.2 |
| 2229  | 1 | 950.6             | 2262         | 1 | 1072.6           | 2296         | 1 | 1200.8           |
| 0000  |   | 2542              | 2263         | 1 | 1076.3<br>1079.9 | 2297         | 1 | 1200.8           |
| 2230  | 1 | 954.3             | 2264         |   |                  | 2298         | 1 | 1204.5           |
| 2231  | 1 | 958.0             | 2265<br>2266 | 1 | 1083.6<br>1087.3 | 2299         | • | 1200.1           |
| 2232  | 1 | 961.7             | 2266         | 1 | 1097.3           | 2300         | 1 | 1211.8           |
| 2233  | 1 | 965. <del>4</del> | 2207         | • | 1050.9           | 2300         | - |                  |
|       |   |                   | <u> </u>     |   |                  |              |   |                  |

Use check point at 2200 or 2300 Kc, whichever is nearer

## Frequency: 2300-2400 Kc

|              |     |        |              | _ |                  |                                        |   |                  |
|--------------|-----|--------|--------------|---|------------------|----------------------------------------|---|------------------|
| Freq.        | A   | В      | Freq.        | Α | В                | Freq.                                  | A | В                |
| 2300         | 1   | 1211.8 | 2334         | 1 | 1336.2           | 2368                                   | 1 | 1460.6           |
| 2301         | 1   | 1215.4 | 2335         | 1 | 1339.8           | 2369                                   | 1 | 1464.2           |
| 2302         | 1   | 1219.1 | 2336         | 1 | 1343.5           |                                        |   |                  |
| 2303         | 1   | 1222.7 | 2337         | 1 | 1347.1           | 2370                                   | 1 | 1467.9           |
| 2304         | 1   | 1226.4 | 2338         | 1 | 1350.8           | 2371                                   | 1 | 1471.6           |
| 2305         | 1   | 1230.0 | 2339         | 1 | 1354.5           | 2372                                   | 1 | 1475.3           |
| 2306         | 1   | 1233.7 |              |   |                  | 2373                                   | 1 | 1479.0           |
| 2307         | 1   | 1237.3 | 2340         | 1 | 1358.1           | 2374                                   | 1 | 1482.7           |
| 2308         | 1   | 1241.0 | 2341         | 1 | 1361.8           | 2375                                   | 1 | 1486.4           |
| 2309         | 1   | 1244.6 | 2342         | 1 | 1365.4           | 2376                                   | 1 | 1490.0           |
|              |     |        | 2343         | 1 | 1369.1           | 2377                                   | 1 | 1493.7           |
| 2310         | 1   | 1248.3 | 2344         | 1 | 1372.7           | 2378                                   | 1 | 1497.4           |
| 2311         | 1   | 1252.0 | 2345         | 1 | 1376.4           | 2379                                   | 1 | 1501.1           |
| 2312         | 1   | 1255.6 | 2346         | 1 | 1380.0           | i                                      |   |                  |
| 2313         | 1   | 1259.3 | 2347         | 1 | 1383.7           | 2380                                   | 1 | 1504.8           |
| 2314         | 1   | 1262.9 | 2348         | 1 | 1387.3           | 2381                                   | 1 | 1508.5           |
| 2315         | 1   | 1266.6 | 2349         | 1 | 1391.0           | 2382                                   | 1 | 1512.2           |
| 2316         | 1   | 1270.2 |              |   |                  | 2383                                   | 1 | 1515.9           |
| 2317         | 1   | 1273.9 | 2350         | 1 | 1394.6           | 2384                                   | 1 | 1519.6           |
| 2318         | 1   | 1277.5 | 2351         | 1 | 1398.3           | 2385                                   | 1 | 1523.3           |
| 2319         | - 1 | 1281.2 | 2352         | 1 | 1402.0           | 2386                                   | 1 | 1527.0           |
|              |     |        | 2353         | 1 | 1405.7           | 2387                                   | 1 | 1530.7           |
| 2320         | 1   | 1284.8 | 2354         | 1 | 1409.3           | 2388                                   | 1 | 1534.3           |
| 2321         | 1   | 1288.5 | 2355         | 1 | 1413.0           | 2389                                   | 1 | 1538.0           |
| 2322         | 1   | 1292.2 | 2356         | 1 | 1416.7           | l                                      |   | 4=44 =           |
| 2323         | 1   | 1295.8 | 2357         | 1 | 1420.3           | 2390                                   | 1 | 1541.7           |
| 2324         | 1   | 1299.5 | 2358         | 1 | 1424.0           | 2391                                   | 1 | 1545.4<br>1549.1 |
| 2325         | 1   | 1303.2 |              | 1 | 1427.7           | 2392                                   | 1 | 1552.9           |
| 2326         | 1   | 1306.8 |              |   |                  | 2393                                   | 1 | 1556.6           |
| 2327         | 1   | 1310.5 |              | 1 | 1431.4           |                                        | 1 | 1560.3           |
| 2328         |     | 1314.2 |              | 1 | 1435.0<br>1438.7 |                                        | 1 | 1564.0           |
| 2329         | 1   | 1317.9 |              | 1 | 1442.3           |                                        | i | 1567.7           |
| 0000         |     | 1321.5 | 2363<br>2364 | 1 | 1446.0           |                                        | i | 1571.4           |
| 2330         | 1   | 1325.2 |              | 1 | 1449.6           |                                        | i | 1575.1           |
| 2331<br>2332 |     | 1325.2 |              | 1 | 1453.3           |                                        | • | ,0,0,1           |
| 2332         |     | 1332.5 |              | 1 | 1456.9           | 1                                      | 1 | 1578.9           |
| 2333         | '   | 1332.0 | 2307         |   | , 100.0          |                                        | - | _3.0.0           |
|              |     |        | _!           |   |                  | ــــــــــــــــــــــــــــــــــــــ |   |                  |

Use check point at 2300 or 2400 Kc, whichever is nearer

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: 2400—2500 Kc |           |       |              |   |                |              |   |       |  |  |  |  |
|-------------------------|-----------|-------|--------------|---|----------------|--------------|---|-------|--|--|--|--|
| Freq.                   | A         | В     | Freq.        | A | В              | Freq.        | A | В     |  |  |  |  |
| 2400                    | 2         | 60.0  | 2434         | 2 | 164.0          | 2468         | 2 | 267.4 |  |  |  |  |
| 2401                    | 2         | 63.1  | 2435         | 2 | 167.0          | 2469         | 2 | 270.4 |  |  |  |  |
| 2402                    | 2         | 66.1  | 2436         | 2 | 170.0          | 1            |   |       |  |  |  |  |
| 2403                    | 2         | 69.2  | 2437         | 2 | 173.1          | 2470         | 2 | 273.5 |  |  |  |  |
| 2404                    | 2         | 72.3  | 2438         | 2 | 176.1          | 2471         | 2 | 276.5 |  |  |  |  |
| 2405                    | 2         | 75.3  | 2439         | 2 | 179.1          | 2472         | 2 | 279.6 |  |  |  |  |
| 2406                    | 2         | 78.4  | 1            |   |                | 2473         | 2 | 282.6 |  |  |  |  |
| 2407                    | 2         | 81.5  | 2440         | 2 | 182.2          | 2474         | 2 | 285.7 |  |  |  |  |
| 2408                    | 2         | 84.5  | 2441         | 2 | 185.2          | 2475         | 2 | 288.7 |  |  |  |  |
| 2409                    | 2         | 87.6  | 2442         | 2 | 188.3          | 2476         | 2 | 291.7 |  |  |  |  |
|                         |           |       | 2443         | 2 | 191.3          | 2477         | 2 | 294.8 |  |  |  |  |
| 2410                    | 2         | 90.7  | 2444         | 2 | 194.3          | 2478         | 2 | 297.8 |  |  |  |  |
| 2411                    | 2         | 93.7  | 2445         | 2 | 197.4          | 2479         | 2 | 300.9 |  |  |  |  |
| 2412                    | 2         | 96.8  | 2446         | 2 | 200.4          |              |   |       |  |  |  |  |
| 2413                    | 2         | 99.9  | 2447         | 2 | 203.5          | 2480         | 2 | 303.9 |  |  |  |  |
| 2414                    | 2         | 102.9 | 2448         | 2 | 206.5          | 2481         | 2 | 307.0 |  |  |  |  |
| 2415                    | 2         | 106.0 | 2449         | 2 | 209.6          | 2482         | 2 | 310.0 |  |  |  |  |
| 2416                    | 2         | 109.1 |              |   |                | 2483         | 2 | 313.1 |  |  |  |  |
| 2417                    | 2         | 112.1 | 2450         | 2 | 212.6          | 2484         | 2 | 316.1 |  |  |  |  |
| 2418                    | 2         | 115.2 | 2451         | 2 | 215.6          | 2485         | 2 | 319.2 |  |  |  |  |
| 2419                    | 2         | 118.3 | 2452         | 2 | 218.7          | 2486         | 2 | 322.2 |  |  |  |  |
|                         | _         |       | 2453         | 2 | 221.7          | 2487         | 2 | 325.3 |  |  |  |  |
| 2420                    | 2         | 121.3 | 2454         | 2 | 224.7          | 2488         | 2 | 328.4 |  |  |  |  |
| 2421                    | 2         | 124.4 | 2455         | 2 | 227.8          | 2489         | 2 | 331.4 |  |  |  |  |
| 2422                    | 2         | 127.4 | 2456         | 2 | 230.8          |              |   |       |  |  |  |  |
| 2423                    | 2         | 130.5 | 2457         | 2 | 233.9          | 2490         | 2 | 334.5 |  |  |  |  |
| 2424                    | 2         | 133.5 | 2458         | 2 | 236.9          | 2491         | 2 | 337.5 |  |  |  |  |
| 2425                    | 2         | 136.6 | 2459         | 2 | 239.9          | 2492         | 2 | 340.6 |  |  |  |  |
| 2426                    | 2         | 139.6 | 0400         |   |                | 2493         | 2 | 343.7 |  |  |  |  |
| 2427<br>2428            | 2         | 142.7 | 2460         | 2 | 243.0          | 2494         | 2 | 346.8 |  |  |  |  |
| 2428                    | 2         | 145.7 | 2461         | 2 | 246.0          | 2495         | 2 | 349.8 |  |  |  |  |
| 2429                    | 2         | 148.8 | 2462<br>2463 | 2 | 249.1          | 2496         | 2 | 352.9 |  |  |  |  |
| 2430                    | 2         | 151.8 | 2464         | 2 | 252.1          | 2497         | 2 | 356.0 |  |  |  |  |
| 2430                    | 2         | 154.9 | 2465         | 2 | 255.2<br>258.2 | 2498<br>2499 | 2 | 359.0 |  |  |  |  |
| 2432                    | 2         | 157.9 | 2466         | 2 | 261.3          | 2499         | 2 | 362.1 |  |  |  |  |
| 2433                    | 2         | 160.9 | 2467         | 2 | 264.3          | 2500         | 2 | 365.2 |  |  |  |  |
| 2-133                   | <i>a.</i> | 100.9 | 2707         | 2 | 204.3          | 2344         | - | 303.2 |  |  |  |  |
|                         |           |       |              |   |                |              |   |       |  |  |  |  |

Use check point at 2400 or 2500 Kc, whichever is nearer

Frequency: 2500-2600 Kc Freq. В Freq. В Freq. В A A 2500 2 2 2 2 2 2 2 2 365.2 2534 2 469.5 2568 574.4 2501 368.2 2535 472.5 2569 577.5 2502 371.3 2536 475.6 2503 374.3 2537 2 478.6 2570 2 580.6 2504 2505 2 2 2 377.3 380.4 2538 2 481.7 2571 2572 583.7 586.8 2539 484.8 2506 383.4 2573 589.9 2507 2 386.5 487.8 2574 593.0 2508 2 389.5 2541 2 490.9 2575 596.1 2 2 2509 392.6 2542 494.0 2576 2 599.2 2 2 2 2 2543 497.2 2577 602.3 2510 2 395.6 2544 2 2 500.3 2578 605.4 2 2545 503.4 2511 398.7 2579 608.5 2512 401.8 2546 506.5 2 2513 404.8 2547 **509**.6 2580 2 2 2 2 2 2514 407.9 2548 512.7 2581 614.7 2582 2549 2 2515 411.0 515.8 617.8 2516 414.1 2583 620.9 2550 2517 417.2 518.9 2584 623.9 2518 2551 522.0 2585 627.0 420.2 2519 423.3 2552 525.1 2586 630.1 2 2553 528.2 2587 426.4 2520 2 2554 531.2 2588 636,3 2 2 2 2521 2 2 2 429.5 2555 534.3 2589 639.4 432,6 2522 2556 537.4 435.6 2557 2523 540.5 2590 642.5 2524 438.7 543.6 2591 645.6 2525 2 2 2 2 2 441.8 2559 2\* 546.6 2592 648.7 2526 444.9 2593 651.8 2527 448.0 2560 2 549 7 2594 654 9 2561 552.8 2595 658.0 2528 451.1 2529 2562 555.9 2596 661.1 454.2 2563 559.0 2597 2 664.1 2530 2 457.2 2564 562.1 2598 2 667.2 2 2 2565 2 2531 2 460.3 565.2 2599 670.3 2532 463.4 2566 568.2 2533 2567 571.3 2600 2 673.4 466.4

Use check point at 2500 or 2600 Kc, whichever is nearer

|       | Frequency: 2000—2700 Kc |       |       |   |       |       |   |       |  |  |  |  |  |
|-------|-------------------------|-------|-------|---|-------|-------|---|-------|--|--|--|--|--|
| Freq. | A                       | В     | Freq. | A | В.    | Freq. | A | В     |  |  |  |  |  |
| :2600 | 2                       | 673.4 | 2634  | 2 | 778.3 | 2668  | 2 | 883.1 |  |  |  |  |  |
| 2601  | 2                       | 676.5 | 2635  | 2 | 781.4 | 2669  | 2 | 886.1 |  |  |  |  |  |
| 2602  | 2                       | 679.6 | 2636  | 2 | 784.5 | 1     |   |       |  |  |  |  |  |
| 2603  | 2                       | 682.7 | 2637  | 2 | 787.6 | 2670  | 2 | 889.1 |  |  |  |  |  |
| 2604  | 2                       | 685.7 | 2638  | 2 | 790.7 | 2671  | 2 | 892.2 |  |  |  |  |  |
| 2605  | 2                       | 688.8 | 2639  | 2 | 793.8 | 2672  | 2 | 895.3 |  |  |  |  |  |
| 2606  | 2                       | 691.9 | l     |   |       | 2673  | 2 | 898.4 |  |  |  |  |  |
| 2607  | 2                       | 695.0 | 2640  | 2 | 796.9 | 2674  | 2 | 901.5 |  |  |  |  |  |
| 2608  | 2                       | 698.1 | 2641  | 2 | 800.0 | 2675  | 2 | 904.6 |  |  |  |  |  |
| 2609  | 2                       | 701.2 | 2642  | 2 | 803.1 | 2676  | 2 | 907.7 |  |  |  |  |  |
|       |                         |       | 2643  | 2 | 806.2 | 2677  | 2 | 910.8 |  |  |  |  |  |
| 2610  | 2                       | 704.2 | 2644  | 2 | 809.3 | 2678  | 2 | 913.8 |  |  |  |  |  |
| 2611  | 2                       | 707.3 | 2645  | 2 | 812.4 | 2679  | 2 | 916.9 |  |  |  |  |  |
| 2612  | 2                       | 710.4 | 2646  | 2 | 815.5 | ĺ     |   |       |  |  |  |  |  |
| 2613  | 2                       | 713.5 | 2647  | 2 | 818.6 | 2680  | 2 | 920.0 |  |  |  |  |  |
| 2614  | 2                       | 716.6 | 2648  | 2 | 821.7 | 2681  | 2 | 923.1 |  |  |  |  |  |
| 2615  | 2                       | 719.8 | 2649  | 2 | 824.9 | 2682  | 2 | 926.1 |  |  |  |  |  |
| 2616  | 2                       | 722.9 |       |   |       | 2683  | 2 | 929.2 |  |  |  |  |  |
| 2617  | 2                       | 726.0 | 2650  | 2 | 828.0 | 2684  | 2 | 932.3 |  |  |  |  |  |
| 2618  | 2                       | 729.1 | 2651  | 2 | 831.0 | 2685  | 2 | 935.3 |  |  |  |  |  |
| 2619  | 2                       | 732.2 | 2652  | 2 | 834.1 | 2686  | 2 | 938.4 |  |  |  |  |  |
|       |                         |       | 2653  | 2 | 837.2 | 2687  | 2 | 941.5 |  |  |  |  |  |
| 2620  | 2                       | 735.3 | 2654  | 2 | 840.3 | 2688  | 2 | 944.5 |  |  |  |  |  |
| 2621  | 2                       | 738.3 | 2655  | 2 | 843.4 | 2689  | 2 | 947.6 |  |  |  |  |  |
| 2622  | 2                       | 741.4 | 2656  | 2 | 846.4 |       |   |       |  |  |  |  |  |
| 2623  | 2                       | 744.5 | 2657  | 2 | 849.5 | 2690  | 2 | 950.7 |  |  |  |  |  |
| 2624  | 2                       | 747.5 | 2658  | 2 | 852.6 | 2691  | 2 | 953.7 |  |  |  |  |  |
| 2625  | 2                       | 750.6 | 2659  | 2 | 855.7 | 2692  | 2 | 956.8 |  |  |  |  |  |
| 2626  | 2                       | 753.7 |       |   |       | 2693  | 2 | 959.9 |  |  |  |  |  |
| 2627  | 2                       | 756.8 | 2660  | 2 | 858.8 | 2694  | 2 | 962.9 |  |  |  |  |  |
| 2628  | 2                       | 759.8 | 2661  | 2 | 861.8 | 2695  | 2 | 966.0 |  |  |  |  |  |
| 2629  | 2                       | 762.9 | 2662  | 2 | 864.8 | 2696  | 2 | 969.1 |  |  |  |  |  |
|       |                         |       | 2663  | 2 | 867.9 | 2697  | 2 | 972.2 |  |  |  |  |  |
|       |                         |       |       |   |       |       |   |       |  |  |  |  |  |

Frequency: 2600-2700 Kc

Use check point at 2600 or 2700 Kc, whichever is nearer

2

870.9 2698 2

2699 2

2700

874.0

880.0

975.2

978.3

766.0 2664

2665

2666 2 877.0

2667 2

769.1 772.1

775.2

2630

2631

2632

2633

2 2 2

| Frequency: | 2700- | -2800 | Kc |
|------------|-------|-------|----|

| Freq. | A | В      | Freq.        | A | В                | Freq.        | A | В                |
|-------|---|--------|--------------|---|------------------|--------------|---|------------------|
| 2700  | 2 | 981.4  | 2734         | 2 | 1085.2           | 2768         | 2 | 1188.4           |
| 2701  | 2 | 984.4  | 2735         | 2 | 1088.2           | 2769         | 2 | 1191.4           |
| 2702  | 2 | 987.5  | 2736         | 2 | 1091.3           |              |   |                  |
| 2703  | 2 | 990.5  | 2737         | 2 | 1094.3           | 2770         | 2 | 1194.4           |
| 2704  | 2 | 993.6  | 2738         | 2 | 1097.3           | 2771         | 2 | 1197.5           |
| 2705  | 2 | 996.7  | 2739         | 2 | 1100.4           | 2772         | 2 | 1200.5           |
| 2706  | 2 | 999.7  | 1            |   |                  | 2773         | 2 | 1203.6           |
| 2707  | 2 | 1002.8 | 2740         | 2 | 1103.4           | 2774         | 2 | 1206.6           |
| 2708  | 2 | 1005.8 | 2741         | 2 | 1106.5           | 2775         | 2 | 1209.7           |
| 2709  | 2 | 1008.9 | 2742         | 2 | 1109.5           | 2776         | 2 | 1212.7           |
|       |   |        | 2743         | 2 | 1112.6           | 2777         | 2 | 1215.8           |
| 2710  | 2 | 1012.0 | 2744         | 2 | 1115.6           | 2778         | 2 | 1218.8           |
| 2711  | 2 | 1015.0 | 2745         | 2 | 1118.6           | 2779         | 2 | 1221.9           |
| 2712  | 2 | 1018.1 | 2746         | 2 | 1121.7           | 1            |   |                  |
| 2713  | 2 | 1021.1 | 2747         | 2 | 1124.7           | 2780         | 2 | 1224.9           |
| 2714  | 2 | 1024.2 | 2748         | 2 | 1127.8           | 2781         | 2 | 1227.9           |
| 2715  | 2 | 1027.2 | 2749         | 2 | 1130.8           | 2782         | 2 | 1230.9           |
| 2716  | 2 | 1030.3 | 1            |   |                  | 2783         | 2 | 1234.0           |
| 2717  | 2 | 1033.3 | 2750         | 2 | 1133.8           | 2784         | 2 | 1237.0           |
| 2718  | 2 | 1036.4 | 2751         | 2 | 1136.9           | 2785         | 2 | 1240.0           |
| 2719  | 2 | 1039.4 | 2752         | 2 | 1139.9           | 2786         | 2 | 1243.0           |
|       | _ |        | 2753         | 2 | 1143.0           | 2787         | 2 | 1246.0           |
| 2720  | 2 | 1042.5 | 2754         | 2 | 1146.0           | 2788         | 2 | 1249.1           |
| 2721  | 2 | 1045.5 | 2755         | 2 | 1149.0           | 2789         | 2 | 1252.1           |
| 2722  | 2 | 1048.6 | 2756         | 2 | 1152.1           | l            | _ |                  |
| 2723  | 2 | 1051.6 | 2757         | 2 | 1155.1           | 2790         | 2 | 1255.1           |
| 2724  | 2 | 1054.7 | 2758         | 2 | 1158.1           | 2791         | 2 | 1258.1           |
| 2725  | 2 | 1057.7 | 2759         | 2 | 1161.2           | 2792         | 2 | 1261.1           |
| 2726  | 2 | 1060.8 |              | _ |                  | 2793         | 2 | 1264.2           |
| 2727  | 2 | 1063.8 | 2760         | 2 | 1164.2           | 2794         | 2 | 1267.2           |
| 2728  | 2 | 1066.9 | 2761         | 2 | 1167.2           | 2795         | 2 | 1270.2           |
| 2729  | 2 | 1069.9 | 2762         | 2 | 1170.3           | 2796         | 2 | 1273.2           |
| 2730  | 2 | 1073.0 | 2763<br>2764 | 2 | 1173.3           | 2797<br>2798 | 2 | 1276.2<br>1279.3 |
| 2730  | 2 | 1073.0 | 2765         | 2 | 1176.3<br>1179.3 | 2798         | 2 | 1282.3           |
| 2731  | 2 | 1079.1 | 2766         | 2 | 1179.3           | 2/99         | 2 | 1202.3           |
| 2732  | 2 | 1079.1 | 2767         | 2 | 1185.4           | 2800         | 2 | 1285.3           |
| 2133  | E | 1002.1 | 2'0'         | ~ | 1100.4           | 1 2200       | - | 4400.3           |
| -     |   |        | 1            |   |                  | <u> </u>     |   |                  |

Use check point at 2700 or 2800 Kc, whichever is nearer

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: | 2800-2900 | Kc |
|------------|-----------|----|
|            |           |    |

|       |   | <u> </u> |       |   |        |       |   |                    |
|-------|---|----------|-------|---|--------|-------|---|--------------------|
| Freq. | A | В        | Freq. | A | В      | Freq. | A | В                  |
| 2800  | 2 | 1285.3   | 2834  | 2 | 1388.4 | 2868  | 2 | 1491.9             |
| 2801  | 2 | 1288.3   | 2835  | 2 | 1391.4 | 2869  | 2 | 1495.0             |
| 2802  | 2 | 1291.4   | 2836  | 2 | 1394.5 | 1     |   |                    |
| 2803  | 2 | 1294.4   | 2837  | 2 | 1397.5 | 2870  | 2 | 1498.0             |
| 2804  | 2 | 1297.4   | 2838  | 2 | 1400.5 | 2871  | 2 | 1501.1             |
| 2805  | 2 | 1300.5   | 2839  | 2 | 1403.6 | 2872  | 2 | 1504.2             |
| 2806  | 2 | 1303.5   | 1     |   |        | 2873  | 2 | 1507.2             |
| 2807  | 2 | 1306.6   | 2840  | 2 | 1406.6 | 2874  | 2 | 1510.3             |
| 2808  | 2 | 1309.6   | 2841  | 2 | 1409.6 | 2875  | 2 | 1513. <del>4</del> |
| 2809  | 2 | 1312.6   | 2842  | 2 | 1412.7 | 2876  | 2 | 1516.4             |
|       |   |          | 2843  | 2 | 1415.7 | 2877  | 2 | 1519.5             |
| 2810  | 2 | 1315.7   | 2844  | 2 | 1418.8 | 2878  | 2 | 1522.5             |
| 2811  | 2 | 1318.7   | 2845  | 2 | 1421.8 | 2879  | 2 | 1525.6             |
| 2812  | 2 | 1321.7   | 2846  | 2 | 1424.9 | l     |   |                    |
| 2813  | 2 | 1324.8   | 2847  | 2 | 1427.9 | 2880  | 2 | 1528.7             |
| 2814  | 2 | 1327.8   | 2848  | 2 | 1431.0 | 2881  | 2 | 1531.7             |
| 2815  | 2 | 1330.8   | 2849  | 2 | 1434.0 | 2882  | 2 | 1534.8             |
| 2816  | 2 | 1333.8   |       |   |        | 2883  | 2 | 1537.9             |
| 2817  | 2 | 1336.9   | 2850  | 2 | 1437.1 | 2884  | 2 | 1540.9             |
| 2818  | 2 | 1339.9   | 2851  | 2 | 1440.1 | 2885  | 2 | 1544.0             |
| 2819  | 2 | 1342.9   | 2852  | 2 | 1443.2 | 2886  | 2 | 1547.0             |
|       |   |          | 2853  | 2 | 1446.2 | 2887  | 2 | 1550.1             |
| 2820  | 2 | 1346.0   | 2854  | 2 | 1449.3 | 2888  | 2 | 1553.2             |
| 2821  | 2 | 1349.0   | 2855  | 2 | 1452.4 | 2889  | 2 | 1556.2             |
| 2822  | 2 | 1352.0   | 2856  | 2 | 1455.4 | ļ     |   |                    |
| 2823  | 2 | 1355.1   | 2857  | 2 | 1458.5 | 2890  | 2 | 1559.3             |
| 2824  | 2 | 1358.1   | 2858  | 2 | 1461.5 | 2891  | 2 | 1562.4             |
| 2825  | 2 | 1361.1   | 2859  | 2 | 1464.6 | 2892  | 2 | 1565.4             |
| 2826  | 2 | 1364.2   | l     |   |        | 2893  | 2 | 1568.5             |
| 2827  | 2 | 1367.2   | 2860  | 2 | 1467.6 | 2894  | 2 | 1571.6             |
| 2828  | 2 | 1370.2   | 2861  | 2 | 1470.7 | 2895  | 2 | 1574.7             |
| 2829  | 2 | 1373.2   | 2862  | 2 | 1473.7 | 2896  | 2 | 1577.8             |
|       |   |          | 2863  | 2 | 1476.8 | 2897  | 2 | 1580.8             |
| 2830  | 2 | 1376.3   | 2864  | 2 | 1479.8 | 2898  | 2 | 1583.9             |
| 2831  | 2 | 1379.3   | 2865  | 2 | 1482.8 | 2899  | 2 | 1587.0             |
| 2832  | 2 | 1382.3   | 2866  | 2 | 1485.9 |       | _ |                    |
| 2833  | 2 | 1385.4   | 2867  | 2 | 1488.9 | 2900  | 2 | 1590.1             |
|       |   |          | 1     |   |        | 1     |   |                    |

Use check point a 2800 or 2900 Kc, whichever is nearer

### Frequency: 2900-3000 Kc

| Freq. | A | В      | Freq. | A | В               | Freq. | A | В      |
|-------|---|--------|-------|---|-----------------|-------|---|--------|
| 2900  | 2 | 1590.1 | 2934  | 2 | 1696.2          | 2968  | 2 | 1804.7 |
| 2901  | 2 | 1593.2 | 2935  | 2 | 1699.3          | 2969  | 2 | 1808.0 |
| 2902  | 2 | 1596.3 | 2936  | 2 | 1702.5          | ŀ     |   |        |
| 2903  | 2 | 1599.4 | 2937  | 2 | 1705.7          | 2970  | 2 | 1811.2 |
| 2904  | 2 | 1602.5 | 2938  | 2 | 1708.8          | 2971  | 2 | 1814.4 |
| 2905  | 2 | 1605.6 | 2939  | 2 | 1712.0          | 2972  | 2 | 1817.7 |
| 2906  | 2 | 1608.7 | l     |   |                 | 2973  | 2 | 1820.9 |
| 2907  | 2 | 1611.8 | 2940  | 2 | 1715.1          | 2974  | 2 | 1824.2 |
| 2908  | 2 | 1614.9 | 2941  | 2 | 1718.3          | 2975  | 2 | 1827.4 |
| 2909  | 2 | 1618.0 | 2942  | 2 | 1721.5          | 2976  | 2 | 1830.7 |
|       |   |        | 2943  | 2 | 1724.6          | 2977  | 2 | 1833.9 |
| 2910  | 2 | 1621.1 | 2944  | 2 | 1727.8          | 2978  | 2 | 1837.2 |
| 2911  | 2 | 1624.2 | 2945  | 2 | 1731.0          | 2979  | 2 | 1840.4 |
| 2912  | 2 | 1627.3 | 2946  | 2 | 173 <b>4</b> .1 | 1     | _ |        |
| 2913  | 2 | 1630.4 | 2947  | 2 | 1737.3          | 2980  | 2 | 1843.7 |
| 2914  | 2 | 1633.5 | 2948  | 2 | 1740.5          | 2981  | 2 | 1847.0 |
| 2915  | 2 | 1636.7 | 2949  | 2 | 1743.6          | 2982  | 2 | 1850.3 |
| 2916  | 2 | 1639.8 |       |   |                 | 2983  | 2 | 1853.6 |
| 2917  | 2 | 1642.9 | 2950  | 2 | 1746.8          | 2984  | 2 | 1856.9 |
| 2918  | 2 | 1646.0 | 2951  | 2 | 1750.0          | 2985  | 2 | 1860.2 |
| 2919  | 2 | 1649.1 | 2952  | 2 | 1753.2          | 2986  | 2 | 1863.5 |
|       |   |        | 2953  | 2 | 1756.4          | 2987  | 2 | 1866.8 |
| 2920  | 2 | 1652.3 | 2954  | 2 | 1759.6          | 2988  | 2 | 1870.1 |
| 2921  | 2 | 1655.4 | 2955  | 2 | 1762.8          | 2989  | 2 | 1873.5 |
| 2922  | 2 | 1658.5 | 2956  | 2 | 1766.0          |       |   |        |
| 2923  | 2 | 1661.7 | 2957  | 2 | 1769.3          | 2990  | 2 | 1876.8 |
| 2924  | 2 | 1664.8 | 2958  | 2 | 1772.5          | 2991  | 2 | 1880.1 |
| 2925  | 2 | 1667.9 | 2959  | 2 | 1775.7          | 2992  | 2 | 1883.4 |
| 2926  | 2 | 1671.0 | 1     |   |                 | 2993  | 2 | 1886.7 |
| 2927  | 2 | 1674.2 | 2960  | 2 | 1778.9          | 2994  | 2 | 1890.1 |
| 2928  | 2 | 1677.3 | 2961  | 2 | 1782.1          | 2995  | 2 | 1893.4 |
| 2929  | 2 | 1680.4 | 2962  | 2 | 1785.3          | 2996  | 2 | 1896.7 |
|       |   |        | 2963  | 2 | 1788.6          | 2997  | 2 | 1900.0 |
| 2930  | 2 | 1683.6 | 2964  | 2 | 1791.8          | 2998  | 2 | 1903.4 |
| 2931  | 2 | 1686.7 | 2965  | 2 | 1795.0          | 2999  | 2 | 1906.7 |
| 2932  | 2 | 1689.9 | 2966  | 2 | 1798.3          |       | _ |        |
| 2933  | 2 | 1693.0 | 2967  | 2 | 1801.5          | 3000  | 2 | 1910.0 |
|       |   |        | 1     |   |                 | l     |   |        |

Use check point at 2900 or 3000 Kc, whichever is nearer

Frequency: 3000-3100 Kc

| Freq. | A | В     | Freq.    | A | В     | Freq. | A  | В     |
|-------|---|-------|----------|---|-------|-------|----|-------|
| 3000  | 3 | 100.1 | 3034     | 3 | 183.8 | 3068  | 3  | 267.1 |
| 3001  | 3 | 102.6 | 3035     | 3 | 186.2 | 3069  | 3  | 269.6 |
| 3002  | 3 | 105.1 | 3036     | 3 | 188.7 |       |    |       |
| 3003  | 3 | 107.5 | 3037     | 3 | 191.1 | 3070  | 3  | 272.0 |
| 3004  | 3 | 110.0 | 3038     | 3 | 193.6 | 3071  | 3  | 274.5 |
| 3005  | 3 | 112.5 | 3039     | 3 | 196.0 | 3072  | 3  | 276.9 |
| 3006  | 3 | 114.9 |          |   |       | 3073  | 3  | 279.4 |
| 3007  | 3 | 117.4 | 3040     | 3 | 198.5 | 3074  | 3  | 281.8 |
| 3008  | 3 | 119.9 | 3041     | 3 | 200.9 | 3075  | 3  | 284.3 |
| 3009  | 3 | 122.3 | 3042     | 3 | 203.4 | 3076  | 3  | 286.8 |
|       |   |       | 3043     | 3 | 205.8 | 3077  | 3  | 289.2 |
| 3010  | 3 | 124.8 | 3044     | 3 | 208.3 | 3078  | 3  | 291.7 |
| 3011  | 3 | 127.3 | 3045     | 3 | 210.7 | 3079  | 3  | 294.1 |
| 3012  | 3 | 129.7 | 3046     | 3 | 213.2 |       |    |       |
| 3013  | 3 | 132.2 | 3047     | 3 | 215.6 | 3080  | 3  | 296.6 |
| 3014  | 3 | 134.7 | 3048     | 3 | 218.1 | 3081  | 3  | 299.1 |
| 3015  | 3 | 137.1 | 3049     | 3 | 220.5 | 3082  | 3  | 301.5 |
| 3016  | 3 | 139.6 | l        |   |       | 3083  | 3  | 304.0 |
| 3017  | 3 | 142.1 | 3050     | 3 | 223.0 | 3084  | 3  | 306.5 |
| 3018  | 3 | 144.5 | 3051     | 3 | 225.4 | 3085  | 3  | 308.9 |
| 3019  | 3 | 147.0 | 3052     | 3 | 227.9 | 3086  | 3  | 311.4 |
|       |   |       | 3053     | 3 | 230.3 | 3087  | 3  | 313.9 |
| 3020  | 3 | 149.4 | 3054     | 3 | 232.8 | 3088  | 3  | 316.3 |
| 3021  | 3 | 151.9 | 3055     | 3 | 235.2 | 3089  | 3  | 318.8 |
| 3022  | 3 | 154.3 | 3056     | 3 | 237.7 |       | _  |       |
| 3023  | 3 | 156.8 | 3057     | 3 | 240.1 | 3090  | 3  | 321.2 |
| 3024  | 3 | 159.3 | 3058     | 3 | 242.6 | 3091  | 3  | 323.7 |
| 3025  | 3 | 161.7 | 3059     | 3 | 245.0 | 3092  | 3  | 326.2 |
| 3026  | 3 | 164.2 |          | _ |       | 3093  | 3  | 328.6 |
| 3027  | 3 | 166.6 | 3060     | 3 | 247.5 | 3094  | 3  | 331.1 |
| 3028  | 3 | 169.1 | 3061     | 3 | 249.9 | 3095  | 3. | 333.5 |
| 3029  | 3 | 171.5 | 3062     | 3 | 252.4 | 3096  | 3  | 336.0 |
|       | _ |       | 3063     | 3 | 254.8 | 3097  | 3  | 338.5 |
| 3030  | 3 | 174.0 | 3064     | 3 | 257.3 | 3098  | 3  | 340.9 |
| 3031  | 3 | 176.4 | 3065     | 3 | 259.7 | 3099  | 3  | 343.4 |
| 3032  | 3 | 178.9 | 3066     | 3 | 262.2 | 3400  | ,  | 245.0 |
| 3033  | 3 | 181.3 | 3067     | 3 | 264.6 | 3100  | 3  | 345.8 |
|       |   |       | <u> </u> |   |       |       |    |       |

Use check point at 3000 or 3150 Kc, whichever is nearer

## Frequency: 3100-3200 Kc

| Freq. | A | В     | Freq.    | A | В             | Freq. | A | В     |
|-------|---|-------|----------|---|---------------|-------|---|-------|
| 3100  | 3 | 345.8 | 3134     | 3 | 429.8         | 3168  | 3 | 514.2 |
| 3101  | 3 | 348.3 | 3135     | 3 | 432.3         | 3169  | 3 | 516.7 |
| 3102  | 3 | 350.8 | 3136     | 3 | 434.8         | ŀ     |   |       |
| 3103  | 3 | 353.2 | 3137     | 3 | 437.3         | 3170  | 3 | 519.2 |
| 3104  | 3 | 355.7 | 3138     | 3 | 439.8         | 3171  | 3 | 521.7 |
| 3105  | 3 | 358.1 | 3139     | 3 | 442.3         | 3172  | 3 | 524.2 |
| 3106  | 3 | 360.6 |          |   |               | 3173  | 3 | 526.7 |
| 3107  | 3 | 363.1 | 3140     | 3 | 444.7         | 3174  | 3 | 529.2 |
| 3108  | 3 | 365.5 | 3141     | 3 | 447.2         | 3175  | 3 | 531.7 |
| 3109  | 3 | 368.0 | 3142     | 3 | 449.7         | 3176  | 3 | 534.1 |
|       |   |       | 3143     | 3 | 452.2         | 3177  | 3 | 536.6 |
| 3110  | 3 | 370.4 | 3144     | 3 | 454.7         | 3178  | 3 | 539.1 |
| 3111  | 3 | 372.9 | 3145     | 3 | 457.2         | 3179  | 3 | 541.6 |
| 3112  | 3 | 375.4 | 3146     | 3 | 459.6         |       | _ |       |
| 3113  | 3 | 377.8 | 3147     | 3 | 462.1         | 3180  | 3 | 544.1 |
| 3114  | 3 | 380.3 | 3148     | 3 | 464.6         | 3181  | 3 | 546.6 |
| 3115  | 3 | 382.8 | 3149     | 3 | <b>467.</b> 1 | 3182  | 3 | 549.1 |
| 3116  | 3 | 385.2 | 1        |   |               | 3183  | 3 | 551.6 |
| 3117  | 3 | 387.7 | 3150     | 3 | 469.6         | 3184  | 3 | 554.1 |
| 3118  | 3 | 390.1 | 3151     | 3 | 472.1         | 3185  | 3 | 556.6 |
| 3119  | 3 | 392.6 | 3152     | 3 | 474.5         | 3186  | 3 | 559.0 |
|       |   |       | 3153     | 3 | 477.0         | 3187  | 3 | 561.5 |
| 3120  | 3 | 395.1 | 3154     | 3 | 479.5         | 3188  | 3 | 564.0 |
| 3121  | 3 | 397.5 | 3155     | 3 | 482.0         | 3189  | 3 | 566.5 |
| 3122  | 3 | 400.0 | 3156     | 3 | 484.4         |       | _ |       |
| 3123  | 3 | 402.5 | 3157     | 3 | 486.9         | 3190  | 3 | 569.0 |
| 3124  | 3 | 405.0 | 3158     | 3 | 489.4         | 3191  | 3 | 571.5 |
| 3125  | 3 | 407.5 | 3159     | 3 | 491.9         | 3192  | 3 | 574.0 |
| 3126  | 3 | 410.0 | 1        |   |               | 3193  | 3 | 576.4 |
| 3127  | 3 | 412.5 | 3160     | 3 | 494.3         |       | 3 | 578.9 |
| 3128  | 3 | 414.9 | 3161     | 3 | 496.8         |       | 3 | 581.4 |
| 3129  | 3 | 417.4 | 3162     | 3 | 499.3         |       | 3 | 583.9 |
|       |   |       | 3163     | 3 | 501.8         |       | 3 | 586.4 |
| 3130  | 3 | 419.9 | 3164     | 3 | 504.2         |       | 3 | 588.9 |
| 3131  | 3 | 422.4 | 3165     | 3 | 506.7         |       | 3 | 591.4 |
| 3132  | 3 | 424.9 | 3166     | 3 | 509.2         | •     |   | 500.0 |
| 3133  | 3 | 427.4 | 3167     | 3 | 511.7         | 3200  | 3 | 593.9 |
|       |   |       | <u> </u> |   |               | ┸     |   |       |

Use check point at 3150 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: | 2200  | 2200  | V.  |
|------------|-------|-------|-----|
| rrequency: | 3200- | -3300 | R.C |

| Freq. | A | В     | Freq.    | A | В                      | Freq. | A  | В      |  |  |  |
|-------|---|-------|----------|---|------------------------|-------|----|--------|--|--|--|
| 3200  | 3 | 593.9 | 3234     | 3 | 678.6                  | 3268  | 3  | 763.5  |  |  |  |
| 3201  | 3 | 596.4 | 3235     | 3 | 681.1                  | 3269  | 3″ | 766.0  |  |  |  |
| 3202  | 3 | 598.9 | 3236     | 3 | 683.6                  | l     |    |        |  |  |  |
| 3203  | 3 | 601.4 | 3237     | 3 | 686.1                  | 3270  | 3  | 768.5  |  |  |  |
| 3204  | 3 | 603.9 | 3238     | 3 | 688.6                  | 3271  | 3  | 770.9  |  |  |  |
| 3205  | 3 | 606.4 | 3239     | 3 | 691.1                  | 3272  | 3  | 773.4  |  |  |  |
| 3206  | 3 | 608.9 | ļ.       |   |                        | 3273  | 3  | 775.9  |  |  |  |
| 3207  | 3 | 611.4 | 3240     | 3 | 693.6                  | 3274  | 3  | 778.4  |  |  |  |
| 3208  | 3 | 613.9 | 3241     | 3 | 696.1                  | 3275  | 3  | 780.9  |  |  |  |
| 3209  | 3 | 616.4 | 3242     | 3 | 698.6                  | 3276  | 3  | 783.3  |  |  |  |
|       |   |       | 3243     | 3 | 701.1                  | 3277  | 3  | 785.8  |  |  |  |
| 3210  | 3 | 618.8 | 3244     | 3 | 703.5                  | 3278  | 3  | 788.3  |  |  |  |
| 3211  | 3 | 621.3 | 3245     | 3 | 706.0                  | 3279  | 3  | 790.8  |  |  |  |
| 3212  | 3 | 623.8 | 3246     | 3 | 708.5                  | 1     |    |        |  |  |  |
| 3213  | 3 | 626.3 | 3247     | 3 | 711.0                  | 3280  | 3  | 793.3  |  |  |  |
| 3214  | 3 | 628.8 | 3248     | 3 | 713.5                  | 3281  | 3  | 795.7  |  |  |  |
| 3215  | 3 | 631.3 | 3249     | 3 | 716.0                  | 3282  | 3  | 1798.2 |  |  |  |
| 3216  | 3 | 633.8 |          |   |                        | 3283  | 3  | 800.7  |  |  |  |
| 3217  | 3 | 636.3 | 3250     | 3 | 718.5                  | 3284  | 3  | 803.2  |  |  |  |
| 3218  | 3 | 638.8 | 3251     | 3 | 721.0                  | 3285  | 3  | 805.7  |  |  |  |
| 3219  | 3 | 641.3 | 3252     | 3 | 723.5                  | 3286  | 3  | 808.2  |  |  |  |
|       |   |       | 3253     | 3 | 726.0                  | 3287  | 3  | 810.7  |  |  |  |
| 3220  | 3 | 643.8 | 3254     | 3 | 728.5                  | 3288  | 3  | 813.1  |  |  |  |
| 3221  | 3 | 646.3 | 3255     | 3 | 731.0                  | 3289  | 3  | 815.6  |  |  |  |
| 3222  | 3 | 648.8 | 3256     | 3 | 733.5                  |       |    |        |  |  |  |
| 3223  | 3 | 651.3 | 3257     | 3 | 736.0                  | 3290  | 3  | 818.1  |  |  |  |
| 3224  | 3 | 653.7 | 3258     | 3 | 738.5                  | 3291  | 3  | 820.6  |  |  |  |
| 3225  | 3 | 656.2 | 3259     | 3 | 741.0                  | 3292  | 3  | 823.1  |  |  |  |
| 3226  | 3 | 658.7 | l        |   |                        | 3293  | 3  | 825.6  |  |  |  |
| 3227  | 3 | 661.2 | 3260     | 3 | 7 <b>4</b> 3. <b>5</b> | 3294  | 3  | 828.1  |  |  |  |
| 3228  | 3 | 663.7 | 3261     | 3 | 746.0                  | 3295  | 3  | 830.6  |  |  |  |
| 3229  | 3 | 666.2 | 3262     | 3 | 748.5                  | 3296  | 3  | 833.0  |  |  |  |
|       |   |       | 3263     | 3 | 751.0                  | 3297  | 3  | 835.5  |  |  |  |
| 3230  | 3 | 668.7 | 3264     | 3 | 753.5                  | 3298  | 3  | 838.0  |  |  |  |
| 3231  | 3 | 671.2 | 3265     | 3 | 756.0                  | 3299  | 3  | 840.5  |  |  |  |
| 3232  | 3 | 673.7 | 3266     | 3 | 758.5                  | 1     | _  |        |  |  |  |
| 3233  | 3 | 676.2 | 3267     | 3 | 761.0                  | 3300  | 3  | 843.0  |  |  |  |
|       |   |       | <u> </u> |   |                        |       |    |        |  |  |  |
|       | _ |       |          |   |                        |       |    |        |  |  |  |

Use check point at 3150 or 3300 Kc, whichever is nearer

### Frequency: 3300-3400 Kc

| Freq.        | A | В     | Freq. | A | В      | Freq.        | A | В                |
|--------------|---|-------|-------|---|--------|--------------|---|------------------|
| 3300         | 3 | 843.0 | 3334  | 3 | 927.1  | 3368         | 3 | 1011.0           |
| 3301         | 3 | 845.5 | 3335  | 3 | 929.6  | 3369         | 3 | 1013.5           |
| 3302         | 3 | 848.0 | 3336  | 3 | 932.1  |              |   |                  |
| 3303         | 3 | 850.4 | 3337  | 3 | 934.6  | 3370         | 3 | 1015.9           |
| 3304         | 3 | 852.9 | 3338  | 3 | 937.0  | 3371         | 3 | 1018.4           |
| 3305         | 3 | 855.4 | 3339  | 3 | 939.5  | 3372         | 3 | 1020.9           |
| 3306         | 3 | 857.9 | l     |   |        | 3373         | 3 | 1023.3           |
| 3307         | 3 | 860.3 | 3340  | 3 | 942.0  | 3374         | 3 | 1025.8           |
| 3308         | 3 | 862.8 | 3341  | 3 | 944.4  | 3375         | 3 | 1028.3           |
| 3309         | 3 | 865.3 | 3342  | 3 | 946.9  | 3376         | 3 | 1030.7           |
|              |   |       | 3343  | 3 | 949.4  | 3377         | 3 | 1033.2           |
| 3310         | 3 | 867.8 | 3344  | 3 | 951.9  | 3378         | 3 | 1035.7           |
| 3311         | 3 | 870.2 | 3345  | 3 | 954.3  | 3379         | 3 | 1038.1           |
| 3312         | 3 | 872.7 | 3346  | 3 | 956.8  | l            |   |                  |
| 3313         | 3 | 875.2 | 3347  | 3 | 959.3  | 3380         | 3 | 1040.6           |
| 3314         | 3 | 877.7 | 3348  | 3 | 961.7  | 3381         | 3 | 1043.1           |
| 3315         | 3 | 880.1 | 3349  | 3 | 964.2  | 3382         | 3 | 1045.5           |
| 3316         | 3 | 882.6 | İ     |   |        | 3383         | 3 | 1048.0           |
| 3317         | 3 | 885.1 | 3350  | 3 | 966.6  | 3384         | 3 | 1050.5           |
| 3318         | 3 | 887.6 | 3351  | 3 | 969.1  | 3385         | 3 | 1052.9           |
| 3319         | 3 | 890.0 | 3352  | 3 | 971.6  | 3386         | 3 | 1055.4           |
|              |   |       | 3353  | 3 | 974.0  | 3387         | 3 | 1057.9           |
| 3320         | 3 | 892.5 | 3354  | 3 | 976.5  | 3388         | 3 | 1060.3           |
| 3321         | 3 | 895.0 | 3355  | 3 | 978.9  | 3389         | 3 | 1062.8           |
| 3322         | 3 | 897.4 | 3356  | 3 | 981.4  |              |   |                  |
| 3323         | 3 | 899.9 | 3357  | 3 | 983.9  | 3390         | 3 | 1065.3           |
| 3324         | 3 | 902.4 | 3358  | 3 | 986.3  | 3391         | 3 | 1067.7<br>1070.2 |
| 3325         | 3 | 904.9 | 3359  | 3 | 988.8  | 3392         | _ |                  |
| 3326         | 3 | 907.3 | 3360  | 3 | 991.2  | 3393<br>3394 | 3 | 1072.6<br>1075.0 |
| 3327         | 3 | 909.8 | 3360  | 3 | 991.2  | 3394         | 3 | 1075.0           |
| 3328         | 3 | 912.3 | 3362  | 3 | 993.7  | 3395         | 3 | 1077.5           |
| 3329         | 3 | 914.8 | 3363  | 3 | 998.6  | 3397         | 3 | 1079.9           |
| 2220         | 2 | 917.2 | 3364  | 3 | 1001.1 | 3397         | 3 | 1082.4           |
| 3330<br>3331 | 3 | 917.2 | 3365  | 3 | 1001.1 | 3399         | 3 | 1087.3           |
| 3332         | 3 | 919.7 | 3366  | 3 | 1003.0 | 3399         | 3 | 1007.3           |
| 3332         | 3 | 922.2 | 3367  | 3 | 1008.5 | 3400         | 3 | 1089.7           |
| 3333         | 3 | 324.7 | 3307  | 3 | 1000.5 | 3700         | 3 | 1009.7           |
|              |   |       | i .   |   |        |              |   |                  |

Use check point at 3300 or 3450 Kc, whichever is nearer

Frequency: 3400-3500 Kc

|       |   | <u> </u> |       |   |        |       |   |        |
|-------|---|----------|-------|---|--------|-------|---|--------|
| Freq. | A | В        | Freq. | A | В      | Freq. | A | В      |
| 3400  | 3 | 1089.7   | 3434  | 3 | 1172.8 | 3468  | 3 | 1255.6 |
| 3401  | 3 | 1092.1   | 3435  | 3 | 1175.2 | 3469  | 3 | 1258.0 |
| 3402  | 3 | 1094.6   | 3436  | 3 | 1177.7 | 1     |   |        |
| 3403  | 3 | 1097.0   | 3437  | 3 | 1180.1 | 3470  | 3 | 1260.5 |
| 3404  | 3 | 1099.5   | 3438  | 3 | 1182.5 | 3471  | 3 | 1262.9 |
| 3405  | 3 | 1101.9   | 3439  | 3 | 1185.0 | 3472  | 3 | 1265.4 |
| 3406  | 3 | 1104.4   | !     |   |        | 3473  | 3 | 1267.8 |
| 3407  | 3 | 1106.8   | 3440  | 3 | 1187.4 | 3474  | 3 | 1270.2 |
| 3408  | 3 | 1109.2   | 3441  | 3 | 1189.8 | 3475  | 3 | 1272.7 |
| 3409  | 3 | 1111.7   | 3442  | 3 | 1192.3 | 3476  | 3 | 1275.1 |
|       |   |          | 3443  | 3 | 1194.7 | 3477  | 3 | 1277.5 |
| 3410  | 3 | 1114.1   | 3444  | 3 | 1197.2 | 3478  | 3 | 1280.0 |
| 3411  | 3 | 1116.6   | 3445  | 3 | 1199.6 | 3479  | 3 | 1282.4 |
| 3412  | 3 | 1119.0   | 3446  | 3 | 1202.0 |       |   |        |
| 3413  | 3 | 1121.5   | 3447  | 3 | 1204.5 | 3480  | 3 | 1284.8 |
| 3414  | 3 | 1123.9   | 3448  | 3 | 1206.9 | 3481  | 3 | 1287.3 |
| 3415  | 3 | 1126.4   | 3449  | 3 | 1209.3 | 3482  | 3 | 1289.7 |
| 3416  | 3 | 1128.8   | i .   |   |        | 3483  | 3 | 1292.2 |
| 3417  | 3 | 1131.3   | 3450  | 3 | 1211.8 | 3484  | 3 | 1294.6 |
| 3418  | 3 | 1133.7   | 3451  | 3 | 1214.2 | 3485  | 3 | 1297.1 |
| 3419  | 3 | 1136.1   | 3452  | 3 | 1216.7 | 3486  | 3 | 1299.5 |
|       |   |          | 3453  | 3 | 1219.1 | 3487  | 3 | 1302.0 |
| 3420  | 3 | 1138.6   | 3454  | 3 | 1221.5 | 3488  | 3 | 1304.4 |
| 3421  | 3 | 1141.1   | 3455  | 3 | 1224.0 | 3489  | 3 | 1306.8 |
| 3422  | 3 | 1143.5   | 3456  | 3 | 1226.4 |       | _ |        |
| 3423  | 3 | 1145.9   | 3457  | 3 | 1228.8 | 3490  | 3 | 1309.3 |
| 3424  | 3 | 1148.4   | 3458  | 3 | 1231.3 | 3491  | 3 | 1311.7 |
| 3425  | 3 | 1150.8   | 3459  | 3 | 1233.7 | 3492  | 3 | 1314.2 |
| 3426  | 3 | 1153.3   |       | _ |        | 3493  | 3 | 1316.6 |
| 3427  | 3 | 1155.7   | 3460  | 3 | 1236.1 | 3494  | 3 | 1319.1 |
| 3428  | 3 | 1158.1   | 3461  | 3 | 1238.6 | 3495  | 3 | 1321.5 |
| 3429  | 3 | 1160.6   | 3462  | 3 | 1241.0 | 3496  | 3 | 1324.0 |
|       | _ |          | 3463  | 3 | 1243.4 | 3497  | 3 | 1326.4 |
| 3430  | 3 | 1163.0   | 3464  | 3 | 1245.9 | 3498  | 3 | 1328.8 |
| 3431  | 3 | 1165.5   | 3465  | 3 | 1248.3 | 3499  | 3 | 1331.3 |
| 3432  | 3 | 1167.9   | 3466  | 3 | 1250.7 |       | _ |        |
| 3433  | 3 | 1170.3   | 3467  | 3 | 1253.2 | 3500  | 3 | 1333.7 |
|       |   |          | l     |   |        |       |   |        |
|       |   |          |       |   | •      |       |   |        |

Use check point at 3450 Kc

### Frequency: 3500-3600 Kc

|       |     | <del></del> | ·     |   |                     |          |   |        |
|-------|-----|-------------|-------|---|---------------------|----------|---|--------|
| Freq. | A   | В           | Freq. | A | В                   | Freq.    | A | В      |
| 3500  | 3   | 1333.7      | 3534  | 3 | 1416.7              | 3568     | 3 | 1499.9 |
| 3501  | 3   | 1336.2      | 3535  | 3 | 1419.1              | 3569     | 3 | 1502.4 |
| 3502  | 3   | 1338.6      | 3536  | 3 | 1421.6              | i        |   |        |
| 3503  | 3   | 1341.0      | 3537  | 3 | 1424.0              | 3570     | 3 | 1504.8 |
| 3504  | 3   | 1343.5      | 3538  | 3 | 1426.5              | 3571     | 3 | 1507.3 |
| 3505  | 3   | 1345.9      | 3539  | 3 | 1428.9              | 3572     | 3 | 1509.7 |
| 3506  | 3   | 1348.4      |       |   |                     | 3573     | 3 | 1512.2 |
| 3507  | 3   | 1350.8      | 3540  | 3 | 1431.4              | 3574     | 3 | 1514.7 |
| 3508  | 3   | 1353.2      | 3541  | 3 | 1433.8              | 3575     | 3 | 1517.1 |
| 3509  | 3   | 1355.7      | 3542  | 3 | 1436.2              | 3576     | 3 | 1519.6 |
|       |     |             | 3543  | 3 | 1438.7              | 3577     | 3 | 1522.0 |
| 3510  | 3   | 1358.1      | 3544  | 3 | 1 <del>44</del> 1.1 | 3578     | 3 | 1524.5 |
| 3511  | 3   | 1360.6      | 3545  | 3 | 1443.5              | 3579     | 3 | 1527.0 |
| 3512  | 3   | 1363.0      | 3546  | 3 | 1446.0              |          |   |        |
| 3513  | 3   | 1365.4      | 3547  | 3 | 1448.4              | 3580     | 3 | 1529.4 |
| 3514  | 3   | 1367.9      | 3548  | 3 | 1450.8              | 3581     | 3 | 1531.9 |
| 3515  | 3   | 1370.3      | 3549  | 3 | 1453.3              | 3582     | 3 | 1534.3 |
| 3516  | 3   | 1372.7      |       |   |                     | 3583     | 3 | 1536.8 |
| 3517  | 3   | 1375.2      | 3550  | 3 | 1455.7              | 3584     | 3 | 1539.3 |
| 3518  | 3   | 1377.6      | 3551  | 3 | 1458.1              | 3585     | 3 | 1541.7 |
| 3519  | 3   | 1380.0      | 3552  | 3 | 1460.6              | 3586     | 3 | 1544.2 |
|       |     |             | 3553  | 3 | 1463.0              | 3587     | 3 | 1546.7 |
| 3520  | 3   | 1382.5      | 3554  | 3 | 1465.4              | 3588     | 3 | 1549.1 |
| 3521  | 3   | 1384.9      | 3555  | 3 | 1467.9              | 3589     | 3 | 1551.6 |
| 3522  | 3   | 1387.3      | 3556  | 3 | 1470.3              |          | _ |        |
| 3523  | 3   | 1389.8      | 3557  | 3 | 1472.8              | 3590     | 3 | 1554.1 |
| 3524  | 3   | 1392.2      | 3558  | 3 | 1475.3              | 3591     | 3 | 1556.6 |
| 3525  | 3 ° | 1394.6      | 3559  | 3 | 1477.7              | 3592     | 3 | 1559.1 |
| 3526  | 3   | 1397.1      |       | _ |                     | 3593     | 3 | 1561.5 |
| 3527  | 3   | 1399.5      | 3560  | 3 | 1480.2              | 3594     | 3 | 1564.0 |
| 3528  | 3   | 1402.0      | 3561  | 3 | 1482.6              | 3595     | 3 | 1566.5 |
| 3529  | 3   | 1404.4      | 3562  | 3 | 1485.1              | 3596     | 3 | 1569.0 |
|       |     |             | 3563  | 3 | 1487.6              | 3597     | 3 | 1571.4 |
| 3530  | 3   | 1406.9      | 3564  | 3 | 1490.0              | 3598     | 3 | 1573.9 |
| 3531  | 3   | 1409.3      | 3565  | 3 | 1492.5              | 3599     | 3 | 1576.4 |
| 3532  | 3   | 1411.8      | 3566  | 3 | 1495.0              |          | _ | 4550.0 |
| 3533  | 3   | 1414.2      | 3567  | 3 | 1497.4              | 3600     | 3 | 1578.9 |
|       |     |             | ]     |   |                     | <u> </u> |   |        |
|       |     | • • •       |       | - |                     | L * - L  |   |        |

Use check point at 3450 or 3600 Kc, whichever is nearer

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

|       | Frequency: 3600—3700 Kc |                   |       |   |       |       |   |       |  |  |  |  |
|-------|-------------------------|-------------------|-------|---|-------|-------|---|-------|--|--|--|--|
| Freq. | A                       | В                 | Freq. | A | В     | Freq. | Α | В     |  |  |  |  |
| 3600  | 4                       | 60.0              | 3634  | 4 | 129.5 | 3668  | 4 | 198.4 |  |  |  |  |
| 3601  | 4                       | 62.0              | 3635  | 4 | 131.5 | 3669  | 4 | 200.4 |  |  |  |  |
| 3602  | 4                       | 6 <del>4</del> .1 | 3636  | 4 | 133.5 |       |   |       |  |  |  |  |
| 3603  | 4                       | 66.1              | 3637  | 4 | 135.6 | 3670  | 4 | 202.5 |  |  |  |  |
| 3604  | 4                       | 68.2              | 3638  | 4 | 137.6 | 3671  | 4 | 204.5 |  |  |  |  |
| 3605  | 4                       | 70.2              | 3639  | 4 | 139.6 | 3672  | 4 | 206.5 |  |  |  |  |
| 3606  | 4                       | 72.3              |       |   |       | 3673  | 4 | 208.5 |  |  |  |  |
| 3607  | 4                       | 74.3              | 3640  | 4 | 141.7 | 3674  | 4 | 210.6 |  |  |  |  |
| 3608  | 4                       | 76.4              | 3641  | 4 | 143.7 | 3675  | 4 | 212.6 |  |  |  |  |
| 3609  | 4                       | 78.4              | 3642  | 4 | 145.7 | 3676  | 4 | 214.6 |  |  |  |  |
|       |                         |                   | 3643  | 4 | 147.7 | 3677  | 4 | 216.6 |  |  |  |  |
| 3610  | 4                       | 80.4              | 3644  | 4 | 149.8 | 3678  | 4 | 218.7 |  |  |  |  |
| 3611  | 4                       | 82.5              | 3645  | 4 | 151.8 | 3679  | 4 | 220.7 |  |  |  |  |
| 3612  | 4                       | 84.5              | 3646  | 4 | 153.8 |       |   |       |  |  |  |  |
| 3613  | 4                       | 86.€              | 3647  | 4 | 155.9 | 3680  | 4 | 222.7 |  |  |  |  |
| 3614  | 4                       | 88.6              | 3648  | 4 | 157.9 | 3681  | 4 | 224.7 |  |  |  |  |
| 3615  | 4                       | 90.7              | 3649  | 4 | 159 9 | 3682  | 4 | 226.8 |  |  |  |  |
| 3616  | 4                       | 92.7              |       |   |       | 3683  | 4 | 228.8 |  |  |  |  |
| 3617  | 4                       | 94.7              | 3650  | 4 | 161.9 | 3684  | 4 | 230.8 |  |  |  |  |
| 3618  | 4                       | 96.8              | 3651  | 4 | 164.0 | 3685  | 4 | 232.8 |  |  |  |  |
| 3619  | 4                       | 98.8              | 3652  | 4 | 166.0 | 3686  | 4 | 234.9 |  |  |  |  |
|       |                         |                   | 3653  | 4 | 168.0 | 3687  | 4 | 236.9 |  |  |  |  |
| 3620  | 4                       | 100.9             | 3654  | 4 | 170.0 | 3688  | 4 | 238.9 |  |  |  |  |
| 3621  | 4                       | 102.9             | 3655  | 4 | 172.1 | 3689  | 4 | 240.9 |  |  |  |  |
| 3622  | 4                       | 105.0             | 3656  | 4 | 174.1 | ł     |   |       |  |  |  |  |
| 3623  | 4                       | 107.0             | 3657  | 4 | 176.1 | 3690  | 4 | 243.0 |  |  |  |  |
| 3624  | 4                       | 109.1             | 3658  | 4 | 178.1 | 3691  | 4 | 245.0 |  |  |  |  |
| 3625  | 4                       | 111.1             | 3659  | 4 | 180.2 | 3692  | 4 | 247.0 |  |  |  |  |
| 3626  | 4                       | 113.1             |       |   |       | 3693  | 4 | 249.1 |  |  |  |  |
| 3627  | 4                       | 115.2             | 3660  | 4 | 182.2 | 3694  | 4 | 251.1 |  |  |  |  |
| 3628  | 4                       | 117.2             | 3661  | 4 | 184.2 | 3695  | 4 | 253.1 |  |  |  |  |
| 3629  | 4                       | 119.3             | 3662  | 4 | 186.2 | 3696  | 4 | 255.2 |  |  |  |  |
|       |                         |                   | 3663  | 4 | 188.3 | 3697  | 4 | 257.2 |  |  |  |  |
| 3630  | 4                       | 121.3             | 3664  | 4 | 190.3 | 3698  | 4 | 259.2 |  |  |  |  |
| 3631  | 4                       | 123.4             | 3665  | 4 | 192.3 | 3699  | 4 | 261.3 |  |  |  |  |
| 3632  | 4                       | 125.4             | 3666  | 4 | 194.3 | 1     |   |       |  |  |  |  |
| 3633  | 4                       | 127.4             | 3667  | 4 | 196.4 | 3700  | 4 | 263.3 |  |  |  |  |
|       |                         |                   | 1     |   |       | i     |   |       |  |  |  |  |

Use check point at 3600 or 3750 Kc, whichever is nearer

| Frequency: | 3700- | -3800 | Κc |
|------------|-------|-------|----|
|------------|-------|-------|----|

| Freq. | A | В     | Freq. | A | В     | Freq. | A | В     |
|-------|---|-------|-------|---|-------|-------|---|-------|
| 3700  | 4 | 263.3 | 3734  | 4 | 332.4 | 3768  | 4 | 401.8 |
| 3701  | 4 | 265.4 | 3735  | 4 | 334.5 | 3769  | 4 | 403.8 |
| 3702  | 4 | 267.4 | 3736  | 4 | 336.5 |       |   |       |
| 3703  | 4 | 269.4 | 3737  | 4 | 338.6 | 3770  | 4 | 405.9 |
| 3704  | 4 | 271.5 | 3738  | 4 | 340.6 | 3771  | 4 | 407.9 |
| 3705  | 4 | 273.5 | 3739  | 4 | 342.7 | 3772  | 4 | 410.0 |
| 3706  | 4 | 275.5 |       |   |       | 3773  | 4 | 412.0 |
| 3707  | 4 | 277.6 | 3740  | 4 | 344.7 | 3774  | 4 | 414.1 |
| 3708  | 4 | 279.6 | 3741  | 4 | 346.8 | 3775  | 4 | 416.1 |
| 3709  | 4 | 281.6 | 3742  | 4 | 348.8 | 3776  | 4 | 418.2 |
|       |   |       | 3743  | 4 | 350.8 | 3777  | 4 | 420.2 |
| 3710  | 4 | 283.6 | 3744  | 4 | 352.9 | 3778  | 4 | 422.3 |
| 3711  | 4 | 285.7 | 3745  | 4 | 354.9 | 3779  | 4 | 424.3 |
| 3712  | 4 | 287.7 | 3746  | 4 | 357.0 | l     |   |       |
| 3713  | 4 | 289.7 | 3747  | 4 | 359.0 | 3780  | 4 | 426.4 |
| 3714  | 4 | 291.7 | 3748  | 4 | 361.1 | 3781  | 4 | 428.4 |
| 3715  | 4 | 293.8 | 3749  | 4 | 363.1 | 3782  | 4 | 430.5 |
| 3716  | 4 | 295.8 | 1     |   |       | 3783  | 4 | 432.6 |
| 3717  | 4 | 297.8 | 3750  | 4 | 365.2 | 3784  | 4 | 434.6 |
| 3718  | 4 | 299.8 | 3751  | 4 | 367.2 | 3785  | 4 | 436.7 |
| 3719  | 4 | 301.9 | 3752  | 4 | 369.2 | 3786  | 4 | 438.7 |
|       |   |       | 3753  | 4 | 371.2 | 3787  | 4 | 440.8 |
| 3720  | 4 | 303.9 | 3754  | 4 | 373.3 | 3788  | 4 | 442.8 |
| 3721  | 4 | 305.9 | 3755  | 4 | 375.3 | 3789  | 4 | 444.9 |
| 3722  | 4 | 308.0 | 3756  | 4 | 377.3 |       |   |       |
| 3723  | 4 | 310.0 | 3757  | 4 | 379.4 | 3790  | 4 | 447.0 |
| 3724  | 4 | 312.1 | 3758  | 4 | 381.4 | 3791  | 4 | 449.0 |
| 3725  | 4 | 314.1 | 3759  | 4 | 383.4 | 3792  | 4 | 451.1 |
| 3726  | 4 | 316.1 |       |   |       | 3793  | 4 | 453.1 |
| 3727  | 4 | 318.2 | 3760  | 4 | 385.5 | 3794  | 4 | 455.2 |
| 3728  | 4 | 320.2 | 3761  | 4 | 387.5 | 3795  | 4 | 457.2 |
| 3729  | 4 | 322.2 | 3762  | 4 | 389.5 | 3796  | 4 | 459.3 |
|       |   |       | 3763  | 4 | 391.6 | 3797  | 4 | 461.3 |
| 3730  | 4 | 324.3 | 3764  | 4 | 393.6 | 3798  | 4 | 463.4 |
| 3731  | 4 | 326.3 | 3765  | 4 | 395.6 | 3799  | 4 | 465.4 |
| 3732  | 4 | 328.4 | 3766  | 4 | 397.7 |       |   |       |
| 3733  | 4 | 330.4 | 3767  | 4 | 399.7 | 3800  | 4 | 467.4 |
|       |   |       | 1     |   |       | ı     |   |       |
|       |   |       | 1     |   |       | 1     |   |       |

Use check point at 3750 Kc

Frequency: 3800-3900 Kc

| Freq. | A | В     | Freq. | A | В     | Freq. | A  | В     |
|-------|---|-------|-------|---|-------|-------|----|-------|
| 3800  | 4 | 467.4 | 3834  | 4 | 537.4 | 3868  | 4  | 607.4 |
| 3801  | 4 | 469.5 | 3835  | 4 | 539.4 | 3869  | 4  | 609.5 |
| 3802  | 4 | 471.5 | 3836  | 4 | 541.5 | l     |    |       |
| 3803  | 4 | 473.5 | 3837  | 4 | 543.6 | 3870  | 4  | 611.6 |
| 3804  | 4 | 475.6 | 3838  | 4 | 545.6 | 3871  | 4  | 613.6 |
| 3805  | 4 | 477.6 | 3839  | 4 | 547.7 | 3872  | 4  | 615.7 |
| 3806  | 4 | 479.7 |       |   |       | 3873  | 4  | 617.8 |
| 3807  | 4 | 481.7 | 3840  | 4 | 549.7 | 3874  | 4  | 619.8 |
| 3808  | 4 | 483.7 | 3841  | 4 | 551.8 | 3875  | 4  | 621.9 |
| 3809  | 4 | 485.8 | 3842  | 4 | 553.8 | 3876  | 4  | 623.9 |
|       |   |       | 3843  | 4 | 555.9 | 3877  | 4  | 626.0 |
| 3810  | 4 | 487.8 | 3844  | 4 | 557.9 | 3878  | 4  | 628.1 |
| 3811  | 4 | 489.9 | 3845  | 4 | 560.0 | 3879  | 4  | 630.1 |
| 3812  | 4 | 492.0 | 3846  | 4 | 562.1 | l     |    |       |
| 3813  | 4 | 494.0 | 3847  | 4 | 564.1 | 3880  | 4  | 632.2 |
| 3814  | 4 | 496.1 | 3848  | 4 | 566.2 | 3881  | 4  | 634.3 |
| 3815  | 4 | 498.2 | 3849  | 4 | 568.2 | 3882  | 4  | 636.3 |
| 3816  | 4 | 500.2 | l     |   |       | 3883  | 4  | 638.4 |
| 3817  | 4 | 502.3 | 3850  | 4 | 570.3 | 3884  | 4  | 640.4 |
| 3818  | 4 | 504.4 | 3851  | 4 | 572.3 | 3885  | 4  | 642.5 |
| 3819  | 4 | 506.5 | 3852  | 4 | 574.4 | 3886  | 4  | 644.6 |
|       |   |       | 3853  | 4 | 576.5 | 3887  | 4  | 646.6 |
| 3820  | 4 | 508.5 | 3854  | 4 | 578.5 | 3888  | 4  | 648.7 |
| 3821  | 4 | 510.6 | 3855  | 4 | 580.6 | 3889  | 4. | 650.7 |
| 3822  | 4 | 512.7 | 3856  | 4 | 582.6 | l     |    |       |
| 3823  | 4 | 514.8 | 3857  | 4 | 584.7 | 3890  | 4  | 652.8 |
| 3824  | 4 | 516.8 | 3858  | 4 | 586.8 | 3891  | 4  | 654.9 |
| 3825  | 4 | 518.9 | 3859  | 4 | 588.8 | 3892  | 4  | 656.9 |
| 3826  | 4 | 521.0 | l     |   |       | 3893  | 4  | 659.0 |
| 3827  | 4 | 523.0 | 3860  | 4 | 590.9 | 3894  | 4  | 661.1 |
| 3828  | 4 | 525.1 | 3861  | 4 | 593.0 | 3895  | 4  | 663.1 |
| 3829  | 4 | 527.1 | 3862  | 4 | 595.0 | 3896  | 4  | 665.2 |
|       |   |       | 3863  | 4 | 597.1 | 3897  | 4  | 667.2 |
| 3830  | 4 | 529.2 | 3864  | 4 | 599.2 | 3898  | 4  | 669.3 |
| 3831  | 4 | 531.2 | 3865  | 4 | 601.2 | 3899  | 4  | 671.4 |
| 3832  | 4 | 533.3 | 3866  | 4 | 603.3 |       | _  |       |
| 3833  | 4 | 535.3 | 3867  | 4 | 605.4 | 3900  | 4  | 673.4 |
|       |   |       |       |   |       | !     |    |       |
|       |   |       |       |   |       |       |    |       |

Use check point at 3750 or 3900 Kc, whichever is nearer

### Frequency: 3900-4000 Kc

|       |   | -     |       |   |       |       |   |       |
|-------|---|-------|-------|---|-------|-------|---|-------|
| Freq. | A | В     | Freq. | A | В     | Frequ | A | В     |
| 3900  | 4 | 673.4 | 3934  | 4 | 743.4 | 3968  | 4 | 813.4 |
| 3901  | 4 | 675.5 | 3935  | 4 | 745.5 | 3969  | 4 | 815.5 |
| 3902  | 4 | 677.5 | 3936  | 4 | 747.5 |       |   |       |
| 3903  | 4 | 679.6 | 3937  | 4 | 749.6 | 3970  | 4 | 817.6 |
| 3904  | 4 | 681.6 | 3938  | 4 | 751.6 | 3971  | 4 | 819.7 |
| 3905  | 4 | 683.7 | 3939  | 4 | 753.7 | 3972  | 4 | 821.7 |
| 3906  | 4 | 685.8 | İ     |   |       | 3973  | 4 | 823.8 |
| 3907  | 4 | 687.8 | 3940  | 4 | 755.7 | 3974  | 4 | 825.9 |
| 3908  | 4 | 689.9 | 3941  | 4 | 757.8 | 3975  | 4 | 828.0 |
| 3909  | 4 | 691.9 | 3942  | 4 | 759.8 | 3976  | 4 | 830.0 |
|       |   |       | 3943  | 4 | 761.9 | 3977  | 4 | 832.1 |
| 3910  | 4 | 694.0 | 3944  | 4 | 763.9 | 3978  | 4 | 834.1 |
| 3911  | 4 | 696.0 | 3945  | 4 | 766.0 | 3979  | 4 | 836.2 |
| 3912  | 4 | 698.1 | 3946  | 4 | 768.0 |       |   |       |
| 3913  | 4 | 700.1 | 3947  | 4 | 770.1 | 3980  | 4 | 838.2 |
| 3914  | 4 | 702.2 | 3948  | 4 | 772.1 | 3981  | 4 | 840.3 |
| 3915  | 4 | 704.2 | 3949  | 4 | 774.2 | 3982  | 4 | 842.3 |
| 3916  | 4 | 706.3 | 1     |   |       | 3983  | 4 | 844.4 |
| 3917  | 4 | 708.4 | 3950  | 4 | 776.3 | 3984  | 4 | 846.4 |
| 3918  | 4 | 710.4 | 3951  | 4 | 778.3 | 3985  | 4 | 848.5 |
| 3919  | 4 | 712.5 | 3952  | 4 | 780.4 | 3986  | 4 | 850.5 |
|       |   |       | 3953  | 4 | 782.4 | 3987  | 4 | 852.6 |
| 3920  | 4 | 714.6 | 3954  | 4 | 784.5 | 3988  | 4 | 854.7 |
| 3921  | 4 | 716.6 | 3955  | 4 | 786.6 | 3989  | 4 | 856.7 |
| 3922  | 4 | 718.7 | 3956  | 4 | 788.6 | l     |   |       |
| 3923  | 4 | 720.8 | 3957  | 4 | 790.7 | 3990  | 4 | 858.8 |
| 3924  | 4 | 722.9 | 3958  | 4 | 792.7 | 3991  | 4 | 860.8 |
| 3925  | 4 | 724.9 | 3959  | 4 | 794.8 | 3992  | 4 | 862.8 |
| 3926  | 4 | 727.0 | 1     | _ |       | 3993  | 4 | 864.8 |
| 3927  | 4 | 729.1 | 3960  | 4 | 796.9 | 3994  | 4 | 866.9 |
| 3928  | 4 | 731.1 | 3961  | 4 | 798.9 | 3995  | 4 | 868.9 |
| 3929  | 4 | 733.2 | 3962  | 4 | 801.0 | 3996  | 4 | 870.9 |
|       |   |       | 3963  | 4 | 803.1 | 3997  | 4 | 872.9 |
| 3930  | 4 | 735.3 | 3964  | 4 | 805.2 | 3998  | 4 | 875.0 |
| 3931  | 4 | 737.3 | 3965  | 4 | 807.2 | 3999  | 4 | 877.0 |
| 3932  | 4 | 739.4 | 3966  | 4 | 809.3 | 1     |   |       |
| 3933  | 4 | 741.4 | 3967  | 4 | 811.4 | 4000  | 4 | 879.0 |
|       |   |       | 1     |   |       |       |   |       |

Use check point at 3900 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

|       |   | Frequ | ency: | 40 | 00-410 | 00 Kc |   |       |
|-------|---|-------|-------|----|--------|-------|---|-------|
| Freq. | A | В     | Freq. | Α  | В      | Freq. | A | В     |
| 4000  | 5 | 100.1 | 4034  | 5  | 162.9  | 4068  | 5 | 225.4 |
| 4001  | 5 | 102.0 | 4035  | 5  | 164.8  | 4069  | 5 | 227.2 |
| 4002  | 5 | 103.8 | 4036  | 5  | 166.6  | l     |   |       |
| 4003  | 5 | 105.7 | 4037  | 5  | 168.5  | 4070  | 5 | 229.1 |
| 4004  | 5 | 107.5 | 4038  | 5  | 170.3  | 4071  | 5 | 230.9 |
| 4005  | 5 | 109.4 | 4039  | 5  | 172.1  | 4072  | 5 | 232.7 |
| 4006  | 5 | 111.2 |       |    |        | 4073  | 5 | 234.6 |
| 4007  | 5 | 113.1 | 4040  | 5  | 174.0  | 4074  | 5 | 236.4 |
| 4008  | 5 | 114.9 | 4041  | 5  | 175.8  | 4075  | 5 | 238.3 |
| 4009  | 5 | 116.8 | 4042  | 5  | 177.7  | 4076  | 5 | 240.1 |
|       |   |       | 4043  | 5  | 179.5  | 4077  | 5 | 241.9 |
| 4010  | 5 | 118.6 | 4044  | 5  | 181.3  | 4078  | 5 | 243.8 |
| 4011  | 5 | 120.5 | 4045  | 5  | 183.2  | 4079  | 5 | 245.6 |
| 4012  | 5 | 122.3 | 4046  | 5  | 185.0  | ļ     |   |       |
| 4013  | 5 | 124.2 | 4047  | 5  | 186.8  | 4080  | 5 | 247.4 |
| 4014  | 5 | 126.0 | 4048  | 5  | 188.7  | 4081  | 5 | 249.3 |
| 4015  | 5 | 127.9 | 4049  | 5  | 190,5  | 4082  | 5 | 251.1 |
| 4016  | 5 | 129.7 | 1     |    |        | 4083  | 5 | 253.0 |
| 4017  | 5 | 131.6 | 4050  | 5  | 192.3  | 4084  | 5 | 254.8 |
| 4018  | 5 | 133.4 | 4051  | 5  | 194.2  | 4085  | 5 | 256.7 |
| 4019  | 5 | 135.3 | 4052  | 5  | 196.0  | 4086  | 5 | 258.5 |
|       |   |       | 4053  | 5  | 197.8  | 4087  | 5 | 260.3 |
| 4020  | 5 | 137.1 | 4054  | 5  | 199.7  | 4088  | 5 | 262,2 |
| 4021  | 5 | 139.0 | 4055  | 5  | 201.5  | 4089  | 5 | 264.0 |
| 4022  | 5 | 140.8 | 4056  | 5  | 203.4  |       |   |       |
| 4023  | 5 | 142.7 | 4057  | 5  | 205.2  | 4090  | 5 | 265.9 |
| 4024  | 5 | 144.5 | 4058  | 5  | 207.0  | 4091  | 5 | 267.7 |
| 4025  | 5 | 146.4 | 4059  | 5  | 208.9  | 4092  | 5 | 269.6 |
| 4026  | 5 | 148.2 | 1     |    |        | 4093  | 5 | 271.4 |
| 4027  | 5 | 150.0 | 4060  | 5  | 210.7  | 4094  | 5 | 273.2 |
| 4028  | 5 | 151.9 | 4061  | 5  | 212.5  | 4095  | 5 | 275.1 |
| 4029  | 5 | 153.7 | 4062  | 5  | 214.4  | 4096  | 5 | 276.9 |
|       |   |       | 4063  | 5  | 216.2  | 4097  | 5 | 278.8 |
| 4030  | 5 | 155.6 | 4064  | 5  | 218.0  | 4098  | 5 | 280.6 |
| 4031  | 5 | 157.4 | 4065  | 5  | 219.9  | 4099  | 5 | 282.5 |
| 4032  | 5 | 159.2 | 4066  | 5  | 221.7  |       |   |       |
| 4033  | 5 | 161.1 | 4067  | 5  | 223.6  | 4100  | 5 | 284.3 |
|       |   |       | ļ     |    |        |       |   |       |

Use check point at 4000 Kc

| Franciancus | Λ | 100. | _4200 | V. |
|-------------|---|------|-------|----|

| Freq. | A | В     | Freq. | A | В     | Freq. | A | В     |  |  |  |
|-------|---|-------|-------|---|-------|-------|---|-------|--|--|--|
| 4100  | 5 | 284.3 | 4134  | 5 | 347.1 | 4168  | 5 | 410.0 |  |  |  |
| 4101  | 5 | 286.1 | 4135  | 5 | 348.9 | 4169  | 5 | 411.8 |  |  |  |
| 4102  | 5 | 288.0 | 4136  | 5 | 350.8 | 1     |   |       |  |  |  |
| 4103  | 5 | 289.8 | 4137  | 5 | 352.6 | 4170  | 5 | 413.7 |  |  |  |
| 4104  | 5 | 291.7 | 4138  | 5 | 354.5 | 4171  | 5 | 415.6 |  |  |  |
| 4105  | 5 | 293.5 | 4139  | 5 | 356.3 | 4172  | 5 | 417.4 |  |  |  |
| 4106  | 5 | 295.4 |       |   |       | 4173  | 5 | 419.3 |  |  |  |
| 4107  | 5 | 297.2 | 4140  | 5 | 358.1 | 4174  | 5 | 421.2 |  |  |  |
| 4108  | 5 | 299.1 | 4141  | 5 | 360.0 | 4175  | 5 | 423.0 |  |  |  |
| 4109  | 5 | 300.9 | 4142  | 5 | 361.8 | 4176  | 5 | 424.9 |  |  |  |
|       | _ |       | 4143  | 5 | 363.7 | 4177  | 5 | 426.7 |  |  |  |
| 4110  | 5 | 302.8 | 4144  | 5 | 365.5 | 4178  | 5 | 428.6 |  |  |  |
| 4111  | 5 | 304.6 | 4145  | 5 | 367.4 | 4179  | 5 | 430.5 |  |  |  |
| 4112  | 5 | 306.5 | 4146  | 5 | 369.2 | l     | _ |       |  |  |  |
| 4113  | 5 | 308.3 | 4147  | 5 | 371.1 | 4180  | 5 | 432.3 |  |  |  |
| 4114  | 5 | 310.2 | 4148  | 5 | 372.9 | 4181  | 5 | 434.2 |  |  |  |
| 4115  | 5 | 312.0 | 4149  | 5 | 374.8 | 4182  | 5 | 436.1 |  |  |  |
| 4116  | 5 | 313.9 |       | _ |       | 4183  | 5 | 437.9 |  |  |  |
| 4117  | 5 | 315.7 | 4150  | 5 | 376.6 | 4184  | 5 | 439.8 |  |  |  |
| 4118  | 5 | 317.5 | 4151  | 5 | 378.4 | 4185  | 5 | 441.7 |  |  |  |
| 4119  | 5 | 319.4 | 4152  | 5 | 380.3 | 4186  | 5 | 443.5 |  |  |  |
| 44.00 | _ | 204.0 | 4153  | 5 | 382.1 | 4187  | 5 | 445.4 |  |  |  |
| 4120  | 5 | 321.2 | 4154  | 5 | 384.0 | 4188  | 5 | 447.2 |  |  |  |
| 4121  | 5 | 323.1 | 4155  | 5 | 385.8 | 4189  | 5 | 449.1 |  |  |  |
| 4122  | 5 | 324.9 | 4156  | 5 | 387.7 |       | _ | 454.0 |  |  |  |
| 4123  | 5 | 326.8 | 4157  | 5 | 389.5 | 4190  | 5 | 451.0 |  |  |  |
| 4124  | 5 | 328.6 | 4158  | 5 | 391.4 | 4191  | 5 | 452.8 |  |  |  |
| 4125  | 5 | 330.5 | 4159  | 5 | 393.2 | 4192  | 5 | 454.7 |  |  |  |
| 4126  | 5 | 332.3 |       | _ |       | 4193  | 5 | 456.5 |  |  |  |
| 4127  | 5 | 334.2 | 4160  | 5 | 395.1 | 4194  | 5 | 458.4 |  |  |  |
| 4128  | 5 | 336.0 | 4161  | 5 | 396.9 | 4195  | 5 | 460.3 |  |  |  |
| 4129  | 5 | 337.8 | 4162  | 5 | 398.8 | 4196  | 5 | 462.1 |  |  |  |
|       |   |       | 4163  | 5 | 400.7 | 4197  | 5 | 464.0 |  |  |  |
| 4130  | 5 | 339.7 | 4164  | 5 | 402.5 | 4198  | 5 | 465.9 |  |  |  |
| 4131  | 5 | 341.5 | 4165  | 5 | 404.4 | 4199  | 5 | 467.7 |  |  |  |
| 4132  | 5 | 343.4 | 4166  | 5 | 406.2 |       |   |       |  |  |  |
| 4133  | 5 | 345.2 | 4167  | 5 | 408.1 | 4200  | 5 | 469.6 |  |  |  |
|       |   |       |       |   |       |       |   |       |  |  |  |
|       |   |       |       | _ |       |       |   |       |  |  |  |

Use check point at 4200 Kc

Frequency: 4200-4300 Kc

| Freq. | A | В     | Freq. | A | В     | Freq. | A | В     |
|-------|---|-------|-------|---|-------|-------|---|-------|
| 4200  | 5 | 469.6 | 4234  | 5 | 532.9 | 4268  | 5 | 596.4 |
| 4201  | 5 | 471.4 | 4235  | 5 | 534.8 | 4269  | 5 | 598.3 |
| 4202  | 5 | 473.3 | 4236  | 5 | 536.6 | 1     |   |       |
| 4203  | 5 | 475.2 | 4237  | 5 | 538.5 | 4270  | 5 | 600.1 |
| 4204  | 5 | 477.0 | 4238  | 5 | 540.4 | 4271  | 5 | 602.0 |
| 4205  | 5 | 478.9 | 4239  | 5 | 542.3 | 4272  | 5 | 603.9 |
| 4206  | 5 | 480.7 |       |   |       | 4273  | 5 | 605.7 |
| 4207  | 5 | 482.6 | 4240  | 5 | 544.1 | 4274  | 5 | 607.6 |
| 4208  | 5 | 484.4 | 4241  | 5 | 546.0 | 4275  | 5 | 609.5 |
| 4209  | 5 | 486.3 | 4242  | 5 | 547.9 | 4276  | 5 | 611.4 |
|       |   |       | 4243  | 5 | 549.7 | 4277  | 5 | 613.2 |
| 4210  | 5 | 488.2 | 4244  | 5 | 551.6 | 4278  | 5 | 615.1 |
| 4211  | 5 | 490.0 | 4245  | 5 | 553.4 | 4279  | 5 | 617.0 |
| 4212  | 5 | 491.9 | 4246  | 5 | 555.3 | l     |   |       |
| 4213  | 5 | 493.7 | 4247  | 5 | 557.2 | 4280  | 5 | 618.8 |
| 4214  | 5 | 495.6 | 4248  | 5 | 559.0 | 4281  | 5 | 620.7 |
| 4215  | 5 | 497.4 | 4249  | 5 | 560.9 | 4282  | 5 | 622.6 |
| 4216  | 5 | 499.3 | 1     |   |       | 4283  | 5 | 624.5 |
| 4217  | 5 | 501.1 | 4250  | 5 | 562.8 | 4284  | 5 | 626.3 |
| 4218  | 5 | 503.0 | 4251  | 5 | 564.6 | 4285  | 5 | 628.2 |
| 4219  | 5 | 504.9 | 4252  | 5 | 566.5 | 4286  | 5 | 630.1 |
|       |   |       | 4253  | 5 | 568.4 | 4287  | 5 | 631.9 |
| 4220  | 5 | 506.7 | 4254  | 5 | 570.2 | 4288  | 5 | 633.8 |
| 4221  | 5 | 508.6 | 4255  | 5 | 572.1 | 4289  | 5 | 635.7 |
| 4222  | 5 | 510.5 | 4256  | 5 | 574.0 |       |   |       |
| 4223  | 5 | 512.3 | 4257  | 5 | 575.8 | 4290  | 5 | 637.5 |
| 4224  | 5 | 514.2 | 4258  | 5 | 577.7 | 4291  | 5 | 639.4 |
| 4225  | 5 | 516.1 | 4259  | 5 | 579.6 | 4292  | 5 | 641.3 |
| 4226  | 5 | 517.9 |       |   |       | 4293  | 5 | 643.2 |
| 4227  | 5 | 519.8 | 4260  | 5 | 581.4 | 4294  | 5 | 645.0 |
| 4228  | 5 | 521.7 | 4261  | 5 | 583.3 | 4295  | 5 | 646.9 |
| 4229  | 5 | 523.6 | 4262  | 5 | 585.2 | 4296  | 5 | 648.8 |
|       |   |       | 4263  | 5 | 587.0 | 4297  | 5 | 650.6 |
| 4230  | 5 | 525.4 | 4264  | 5 | 588.9 | 4298  | 5 | 652.5 |
| 4231  | 5 | 527.3 | 4265  | 5 | 590.8 | 4299  | 5 | 654.4 |
| 4232  | 5 | 529.2 | 4266  | 5 | 592.6 | l     |   |       |
| 4233  | 5 | 531.0 | 4267  | 5 | 594.5 | 4300  | 5 | 656.2 |
|       |   |       | l     |   |       |       |   |       |
|       |   |       |       |   |       | •     |   |       |

Use check point at 4200 Kc

### Frequency: 4300-4400 Kc

| 656.2<br>658.1<br>660.0<br>661.8<br>663.7<br>665.6<br>667.4<br>669.3<br>671.2<br>673.0 | 4334<br>4335<br>4336<br>4337<br>4338<br>4339<br>4340<br>4341<br>4342 | 5<br>5<br>5<br>5<br>5<br>5<br>5        | 719.8<br>721.6<br>723.5<br>725.4<br>727.2<br>729.1 | 4368<br>4369<br>4370<br>4371<br>4372<br>4373                   | 5<br>5<br>5<br>5                                                         | 783.3<br>785.2<br>787.1<br>788.9<br>790.8                                    |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 660.0<br>661.8<br>663.7<br>665.6<br>667.4<br>669.3<br>671.2<br>673.0<br>674.9<br>676.8 | 4336<br>4337<br>4338<br>4339<br>4340<br>4341<br>4342                 | 5<br>5<br>5<br>5                       | 723.5<br>725.4<br>727.2<br>729.1                   | 4370<br>4371<br>4372                                           | 5<br>5<br>5                                                              | 787.1<br>788.9                                                               |
| 661.8<br>663.7<br>665.6<br>667.4<br>669.3<br>671.2<br>673.0<br>674.9<br>676.8          | 4337<br>4338<br>4339<br>4340<br>4341<br>4342                         | 5<br>5<br>5                            | 725.4<br>727.2<br>729.1                            | 4371<br>4372                                                   | 5<br>5                                                                   | 788.9                                                                        |
| 663.7<br>665.6<br>667.4<br>669.3<br>671.2<br>673.0<br>674.9<br>676.8                   | 4338<br>4339<br>4340<br>4341<br>4342                                 | 5<br>5<br>5                            | 727.2<br>729.1                                     | 4371<br>4372                                                   | 5<br>5                                                                   | 788.9                                                                        |
| 665.6<br>667.4<br>669.3<br>671.2<br>673.0<br>674.9<br>676.8                            | 4339<br>4340<br>4341<br>4342                                         | 5                                      | 729.1                                              | 4372                                                           | 5                                                                        |                                                                              |
| 667.4<br>669.3<br>671.2<br>673.0<br>674.9<br>676.8                                     | 4340<br>4341<br>4342                                                 | 5                                      |                                                    |                                                                |                                                                          | 790 R                                                                        |
| 669.3<br>671.2<br>673.0<br>674.9<br>676.8                                              | 4341<br>4342                                                         |                                        | 704.0                                              | 4373                                                           |                                                                          |                                                                              |
| 671.2<br>673.0<br>674.9<br>676.8                                                       | 4341<br>4342                                                         |                                        |                                                    |                                                                | 5                                                                        | 792.7                                                                        |
| 673.0<br>674.9<br>676.8                                                                | 4342                                                                 | 5                                      | 731.0                                              | 4374                                                           | 5                                                                        | 794.5                                                                        |
| 674.9<br>676.8                                                                         |                                                                      |                                        | 732.9                                              | 4375                                                           | 5                                                                        | 796.4                                                                        |
| 676.8                                                                                  |                                                                      | 5                                      | 734.7                                              | 4376                                                           | 5                                                                        | 798.2                                                                        |
| 676.8                                                                                  | 4343                                                                 | 5                                      | 736.6                                              | 4377                                                           | 5                                                                        | 800.1                                                                        |
|                                                                                        | 4344                                                                 | 5                                      | 738.5                                              | 4378                                                           | 5                                                                        | 802.0                                                                        |
|                                                                                        | 4345                                                                 | 5                                      | 740.4                                              | 4379                                                           | 5                                                                        | 803.8                                                                        |
| 678.6                                                                                  | 4346                                                                 | 5                                      | 742.2                                              |                                                                |                                                                          |                                                                              |
| 680.5                                                                                  | 4347                                                                 | 5                                      | 744.1                                              | 4380                                                           | 5                                                                        | 805.7                                                                        |
| 682.4                                                                                  | 4348                                                                 | 5                                      | 746.0                                              | 4381                                                           | 5                                                                        | 807.5                                                                        |
| 684.2                                                                                  | 4349                                                                 | 5                                      | 747.8                                              | 4382                                                           | 5                                                                        | 809.4                                                                        |
| 686.1                                                                                  | l                                                                    |                                        |                                                    | 4383                                                           | 5                                                                        | 811.3                                                                        |
| 688.0                                                                                  | 4350                                                                 | 5                                      | 749.7                                              | 4384                                                           | 5                                                                        | 813.1                                                                        |
| 689.8                                                                                  | 4351                                                                 | 5                                      | 751.6                                              | 4385                                                           | 5                                                                        | 815.0                                                                        |
| 691.7                                                                                  | 4352                                                                 | 5                                      | 753.5                                              | 4386                                                           | 5                                                                        | 816.9                                                                        |
|                                                                                        | 4353                                                                 | 5                                      | 755.3                                              | 4387                                                           | 5                                                                        | 818.7                                                                        |
| 693.6                                                                                  | 4354                                                                 | 5                                      | 757.2                                              | 4388                                                           | 5                                                                        | 820.6                                                                        |
| 695.5                                                                                  | 4355                                                                 | 5                                      | 759.1                                              | 4389                                                           | 5                                                                        | 822.5                                                                        |
| 697.3                                                                                  | 4356                                                                 | 5                                      | 761.0                                              | 1                                                              |                                                                          |                                                                              |
| 699.2                                                                                  | 4357                                                                 | 5                                      | 762.8                                              | 4390                                                           | 5                                                                        | 824.3                                                                        |
| 701.1                                                                                  | 4358                                                                 | 5                                      | 764.7                                              | 4391                                                           | 5                                                                        | 826.2                                                                        |
| 702.9                                                                                  | 4359                                                                 | 5                                      | 766.6                                              | 4392                                                           | 5                                                                        | 828.1                                                                        |
| 704.8                                                                                  | 1                                                                    |                                        |                                                    | 4393                                                           | 5                                                                        | 829.9                                                                        |
| 706.7                                                                                  | 4360                                                                 | 5                                      | 768.5                                              | 4394                                                           | 5                                                                        | 831.8                                                                        |
| 708.5                                                                                  | 4361                                                                 | 5                                      | 770.3                                              | 4395                                                           | 5                                                                        | 833.7                                                                        |
| 710.4                                                                                  | 4362                                                                 | 5                                      | 772.2                                              | 4396                                                           | 5                                                                        | 835.5                                                                        |
|                                                                                        | 4363                                                                 | 5                                      | 774.0                                              | 4397                                                           | 5                                                                        | 837.4                                                                        |
| 712.3                                                                                  | 4364                                                                 | 5                                      | 775.9                                              | 4398                                                           | 5                                                                        | 839.3                                                                        |
| 714.2                                                                                  | 4365                                                                 | 5                                      | 777.8                                              | 4399                                                           | 5                                                                        | 841.1                                                                        |
|                                                                                        | 4366                                                                 | 5                                      | 779.6                                              |                                                                |                                                                          |                                                                              |
| 716.0                                                                                  | 4367                                                                 | 5                                      | 781.5                                              | 4400                                                           | 5                                                                        | 843.0                                                                        |
|                                                                                        |                                                                      | 712.3 4364<br>714.2 4365<br>716.0 4366 | 712.3 4364 5<br>714.2 4365 5<br>716.0 4366 5       | 712.3 4364 5 775.9<br>714.2 4365 5 777.8<br>716.0 4366 5 779.6 | 712.3 4364 5 775.9 4398<br>714.2 4365 5 777.8 4399<br>716.0 4366 5 779.6 | 712.3 4364 5 775.9 4398 5<br>714.2 4365 5 777.8 4399 5<br>716.0 4366 5 779.6 |

Use check point at 4400 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: 4400—4500 Kc |   |       |       |   |       |       |   |        |  |  |  |
|-------------------------|---|-------|-------|---|-------|-------|---|--------|--|--|--|
| Freq.                   | A | В     | Freq. | A | В     | Freq. | Α | В      |  |  |  |
| 4400                    | 5 | 843.0 | 4434  | 5 | 906.1 | 4468  | 5 | 979.1  |  |  |  |
| 4401                    | 5 | 844.9 | 4435  | 5 | 908.0 | 4469  | 5 | 970.9  |  |  |  |
| 4402                    | 5 | 846.7 | 4436  | 5 | 909.8 | l     |   |        |  |  |  |
| 4403                    | 5 | 848.6 | 4437  | 5 | 911.7 | 4470  | 5 | 972.8  |  |  |  |
| 4404                    | 5 | 850.4 | 4438  | 5 | 913.5 | 4471  | 5 | 974.6  |  |  |  |
| 4405                    | 5 | 852.3 | 4439  | 5 | 915.4 | 4472  | 5 | 976.   |  |  |  |
| 4406                    | 5 | 854.1 | l     |   |       | 4473  | 5 | 978.3  |  |  |  |
| 4407                    | 5 | 856.0 | 4440  | 5 | 917.2 | 4474  | 5 | 980.2  |  |  |  |
| 4408                    | 5 | 857.8 | 4441  | 5 | 919.1 | 4475  | 5 | 982.0  |  |  |  |
| 4409                    | 5 | 859.7 | 4442  | 5 | 921.0 | 4476  | 5 | 983.9  |  |  |  |
|                         |   |       | 4443  | 5 | 922.8 | 4477  | 5 | 985.7  |  |  |  |
| 4410                    | 5 | 861.6 | 4444  | 5 | 924.7 | 4478  | 5 | 987.6  |  |  |  |
| 4411                    | 5 | 863.4 | 4445  | 5 | 926.5 | 4479  | 5 | 989.4  |  |  |  |
| 4412                    | 5 | 865.3 | 4446  | 5 | 928.4 | l     |   |        |  |  |  |
| 4413                    | 5 | 867.1 | 4447  | 5 | 930.2 | 4480  | 5 | 991.2  |  |  |  |
| 4414                    | 5 | 869.0 | 4448  | 5 | 932.1 | 4481  | 5 | 993.   |  |  |  |
| 4415                    | 5 | 870.8 | 4449  | 5 | 933.9 | 4482  | 5 | 994.9  |  |  |  |
| 4416                    | 5 | 872.7 | 1     |   |       | 4483  | 5 | 996.   |  |  |  |
| 4417                    | 5 | 874.6 | 4450  | 5 | 935.8 | 4484  | 5 | 998.6  |  |  |  |
| 4418                    | 5 | 876.4 | 4451  | 5 | 937.6 | 4485  | 5 | 1000.5 |  |  |  |
| 4419                    | 5 | 878.3 | 4452  | 5 | 939.5 | 4486  | 5 | 1002.3 |  |  |  |
|                         |   |       | 4453  | 5 | 941.4 | 4487  | 5 | 1004.2 |  |  |  |
| 4420                    | 5 | 880.1 | 4454  | 5 | 943.2 | 4488  | 5 | 1006.0 |  |  |  |
| 4421                    | 5 | 882.0 | 4455  | 5 | 945.1 | 4489  | 5 | 1007.9 |  |  |  |
| 4422                    | 5 | 883.8 | 4456  | 5 | 946.9 |       |   |        |  |  |  |
| 4423                    | 5 | 885.7 | 4457  | 5 | 948.8 | 4490  | 5 | 1009.  |  |  |  |
| 4424                    | 5 | 887.5 | 4458  | 5 | 950.6 | 4491  | 5 | 1011.0 |  |  |  |
| 4425                    | 5 | 889.4 | 4459  | 5 | 952.5 | 4492  | 5 | 1013.  |  |  |  |
| 4426                    | 5 | 891.3 |       |   |       | 4493  | 5 | 1015.  |  |  |  |
| 4427                    | 5 | 893.1 | 4460  | 5 | 954.3 | 4494  | 5 | 1017.  |  |  |  |
| 4428                    | 5 | 895.0 | 4461  | 5 | 956.2 | 4495  | 5 | 1019.  |  |  |  |
| 4429                    | 5 | 896.8 | 4462  | 5 | 958.0 | 4496  | 5 | 1020.9 |  |  |  |
|                         |   |       | 4463  | 5 | 959.9 | 4497  | 5 | 1022.  |  |  |  |
| 4430                    | 5 | 898.7 | 4464  | 5 | 961.7 | 4498  | 5 | 1024.0 |  |  |  |
| 4431                    | 5 | 900.5 | 4465  | 5 | 963.6 | 4499  | 5 | 1026.4 |  |  |  |
| 4432                    | 5 | 902.4 | 4466  | 5 | 965,4 | l     |   |        |  |  |  |
| 4433                    | 5 | 904.2 | 4467  | 5 | 967.3 | 4500  | 5 | 1028.3 |  |  |  |

Use check point at 4400 Kc

| Freq. | A | В      | Freq. | Α | В                | Freq.        | A      | В                |
|-------|---|--------|-------|---|------------------|--------------|--------|------------------|
| 4500  | 5 | 1028.3 | 4534  | 5 | 1090.9           | 4568         | 5      | 1153.3           |
| 4501  | 5 | 1030.1 | 4535  | 5 | 1092.7           | 4569         | 5      | 1155.1           |
| 4502  | 5 | 1032.0 | 4536  | 5 | 1094.6           |              |        |                  |
| 4503  | 5 | 1033.8 | 4537  | 5 | 1096.4           | 4570         | 5      | 1156.9           |
| 4504  | 5 | 1035.7 | 4538  | 5 | 1098.2           | 4571         | 5      | 1158.8           |
| 4505  | 5 | 1037.5 | 4539  | 5 | 1100.1           | 4572         | 5      | 1160.6           |
| 4506  | 5 | 1039.4 | l     |   |                  | 4573         | 5      | 1162.4           |
| 4507  | 5 | 1041.2 | 4540  | 5 | 1101.9           | 4574         | 5      | 1164.2           |
| 4508  | 5 | 1043.1 | 4541  | 5 | 1103.7           | 4575         | 5      | 1166.1           |
| 4509  | 5 | 1044.9 | 4542  | 5 | 1105.6           | 4576         | 5      | 1167.9           |
|       |   |        | 4543  | 5 | 1107.4           | 4577         | 5      | 1169.7           |
| 4510  | 5 | 1046.8 | 4544  | 5 | 1109.3           | 4578         | 5      | 1171.6           |
| 4511  | 5 | 1048.6 | 4545  | 5 | 1111.1           | 4579         | 5      | 1173.4           |
| 4512  | 5 | 1050.5 | 4546  | 5 | 1112.9           |              |        |                  |
| 4513  | 5 | 1052.3 | 4547  | 5 | 1114.8           | 4580         | 5      | 1175.2           |
| 4514  | 5 | 1054.2 | 4548  | 5 | 1116.6           | 4581         | 5      | 1177.1           |
| 4515  | 5 | 1056.0 | 4549  | 5 | 1118.4           | 4582         | 5      | 1178.9           |
| 4516  | 5 | 1057.9 | ł     |   |                  | 4583         | 5      | 1180.7           |
| 4517  | 5 | 1059.7 | 4550  | 5 | 1120.3           | 4584         | 5      | 1182.5           |
| 4518  | 5 | 1061.6 | 4551  | 5 | 1122.1           | 4585         | 5      | 1184.4           |
| 4519  | 5 | 1063.4 | 4552  | 5 | 1123.9           | 4586         | 5      | 1186.2           |
|       |   |        | 4553  | 5 | 1125.8           | 4587         | 5      | 1188.0           |
| 4520  | 5 | 1065.3 | 4554  | 5 | 1127.6           | 4588         | 5      | 1189.9           |
| 4521  | 5 | 1067.1 | 4555  | 5 | 1129.4           | 4589         | 5      | 1191.7           |
| 4522  | 5 | 1068.9 | 4556  | 5 | 1131.3           |              | _      |                  |
| 4523  | 5 | 1070.8 | 4557  | 5 | 1133.1           | 4590         | 5      | 1193.5           |
| 4524  | 5 | 1072.6 | 4558  | 5 | 1134.9           | 4591         | 5      | 1195.3           |
| 4525  | 5 | 1074.4 | 4559  | 5 | 1136.8           | 4592         | 5      | 1197.2           |
| 4526  | 5 | 1076.3 |       | _ |                  | 4593         | 5<br>5 | 1199.0           |
| 4527  | 5 | 1078.1 | 4560  | 5 | 1138.6           | 4594         |        | 1200.8<br>1202.6 |
| 4528  | 5 | 1079.9 | 4561  | 5 | 1140.4           | 4595<br>4596 | 5<br>5 | 1202.6           |
| 4529  | 5 | 1081.8 | 4562  | 5 | 1142.3           |              |        |                  |
|       | _ | 4000.0 | 4563  | 5 | 1144.1           | 4597         | 5      | 1206.3<br>1208.1 |
| 4530  | 5 | 1083.6 | 4564  | 5 | 1145.9           | 4598<br>4599 | 5<br>5 | 1210.0           |
| 4531  | 5 | 1085.4 | 4565  | 5 | 1147.8<br>1149.6 | 4099         | 9      | 1210.0           |
| 4532  | 5 | 1087.3 | 4566  | 5 |                  | 4600         | 5      | 1211.8           |
| 4533  | 5 | 1089.1 | 4567  | 5 | 1151.4           | 4000         | 3      | -411.0           |
|       |   |        |       |   |                  |              |        |                  |

Use check point at 4600 Kc

Frequency: 4600-4700 Kc

| Freq. | A  | В      | Freq. | Α | В      | Freq. | A | В      |
|-------|----|--------|-------|---|--------|-------|---|--------|
| 4600  | 5  | 1211.8 | 4634  | 5 | 1273.9 | 4668  | 5 | 1336.2 |
| 4601  | 5  | 1213.6 | 4635  | 5 | 1275.7 | 4669  | 5 | 1338.0 |
| 4602  | 5  | 1215.4 | 4636  | 5 | 1277.5 |       |   |        |
| 4603  | 5  | 1217.3 | 4637  | 5 | 1279.4 | 4670  | 5 | 1339.8 |
| 4804  | 5  | 1219.1 | 4638  | 5 | 1281.2 | 4671  | 5 | 1341.7 |
| 4605  | 5  | 1220.9 | 4639  | 5 | 1283.0 | 4672  | 5 | 1343.5 |
| 4606  | 5  | 1222.7 | İ     |   |        | 4673  | 5 | 1345.3 |
| 4607  | 5  | 1224.6 | 4640  | 5 | 1284.8 | 4674  | 5 | 1347.1 |
| 4608  | 5  | 1226.4 | 4641  | 5 | 1286.7 | 4675  | 5 | 1349.0 |
| 4609  | 5  | 1228.2 | 4642  | 5 | 1288.5 | 4676  | 5 | 1350.8 |
|       |    |        | 4643  | 5 | 1290.3 | 4677  | 5 | 1352.6 |
| 4610  | 5  | 1230.0 | 4644  | 5 | 1292.2 | 4678  | 5 | 1354.5 |
| 4611  | 5  | 1231.9 | 4645  | 5 | 1294.0 | 4679  | 5 | 1356.3 |
| 4612  | 5  | 1233.7 | 4646  | 5 | 1295.8 | l     |   |        |
| 4613  | 5  | 1235.5 | 4647  | 5 | 1297.7 | 4680  | 5 | 1358.1 |
| 4614  | 5  | 1237.3 | 4648  | 5 | 1299.5 | 4681  | 5 | 1359.9 |
| 4615  | 5  | 1239.2 | 4649  | 5 | 1301.3 | 4682  | 5 | 1361.8 |
| 4616  | 5  | 1241.0 | l     |   |        | 4683  | 5 | 1363.6 |
| 4617  | 5  | 1242.8 | 4650  | 5 | 1303.2 | 4684  | 5 | 1365.4 |
| 4618  | 5  | 1244.6 | 4651  | 5 | 1305.0 | 4685  | 5 | 1367.3 |
| 4619  | 5  | 1246.5 | 4652  | 5 | 1306.8 | 4686  | 5 | 1369.1 |
|       |    |        | 4653  | 5 | 1308.7 | 4687  | 5 | 1370.9 |
| 4620  | 5  | 1248.3 | 4654  | 5 | 1310.5 | 4688  | 5 | 1372.7 |
| 4621  | 5  | 1250.1 | 4655  | 5 | 1312.4 | 4689  | 5 | 1374.6 |
| 4622  | 5  | 1252.0 | 4656  | 5 | 1314.2 |       |   |        |
| 4623  | 5  | 1253.8 | 4657  | 5 | 1316.0 | 4690  | 5 | 1376.4 |
| 4624  | 5  | 1255.6 | 4658  | 5 | 1317.9 | 4691  | 5 | 1378.2 |
| 4625  | 5  | 1257.4 | 4659  | 5 | 1319.7 | 4692  | 5 | 1380.0 |
| 4626  | 5  | 1259.3 | l     |   |        | 4693  | 5 | 1381.9 |
| 4627  | 5  | 1261.1 | 4660  | 5 | 1321.5 | 4694  | 5 | 1383.7 |
| 4628  | 5  | 1262.9 | 4661  | 5 | 1323.4 | 4695  | 5 | 1385.5 |
| 4629  | 5  | 1264.7 | 4662  | 5 | 1325.2 | 4696  | 5 | 1387.3 |
|       |    |        | 4663  | 5 | 1327.0 | 4697  | 5 | 1389.2 |
| 4630  | 5  | 1266.6 | 4664  | 5 | 1328.8 | 4698  | 5 | 1391.0 |
| 4631  | E١ | 1268.4 | 4665  | 5 | 1330.7 | 4699  | 5 | 1392.8 |
| 4632  | 5  | 1270.2 | 4666  | 5 | 1332.5 | l     |   |        |
| 4633  | 5  | 1272.1 | 4667  | 5 | 1334.3 | 4700  | 5 | 1394.6 |

Use check point at 4600 Kc

## Frequency: 4700-4800 Kc

| Freq. | A  | В      | Freq. | A | В                   | Freq. | A | В      |
|-------|----|--------|-------|---|---------------------|-------|---|--------|
| 4700  | .5 | 1394.6 | 4734  | 5 | 1456.9              | 4768  | 5 | 1519.6 |
| 4701  | 5  | 1396.5 | 4735  | 5 | 1458.7              | 4769  | 5 | 1521.4 |
| 4702  | 5  | 1398.3 | 4736  | 5 | 1460.6              | l     |   |        |
| 4703  | 5  | 1400.1 | 4737  | 5 | 1462.4              | 4770  | 5 | 1523.3 |
| 4704  | 5  | 1402.0 | 4738  | 5 | 1464.2              | 4771  | 5 | 1525.1 |
| 4705  | 5  | 1403.8 | 4739  | 5 | 1466.0              | 4772  | 5 | 1527.0 |
| 4706  | 5  | 1405.7 |       |   |                     | 4773  | 5 | 1528.8 |
| 4707  | 5  | 1407.5 | 4740  | 5 | 1467.9              | 4774  | 5 | 1530.7 |
| 4708  | 5  | 1409.3 | 4741  | 5 | 1469.7              | 4775  | 5 | 1532.5 |
| 4709  | 5  | 1411.2 | 4742  | 5 | 1471.6              | 4776  | 5 | 1534.3 |
|       |    |        | 4743  | 5 | 1473.4              | 4777  | 5 | 1536.2 |
| 4710  | 5  | 1413.0 | 4744  | 5 | 1475.3              | 4778  | 5 | 1538.0 |
| 4711  | 5  | 1414.8 | 4745  | 5 | 1477.1              | 4779  | 5 | 1539.9 |
| 4712  | 5  | 1416.7 | 4746  | 5 | 1479.0              | l     |   |        |
| 4713  | 5  | 1418.5 | 4747  | 5 | 1480.8              | 4780  | 5 | 1541.7 |
| 4714  | 5  | 1420.3 | 4748  | 5 | 1482.7              | 4781  | 5 | 1543.6 |
| 4715  | 5  | 1422.2 | 4749  | 5 | 1484.5              | 4782  | 5 | 1545.4 |
| 4716  | 5  | 1424.0 |       |   |                     | 4783  | 5 | 1547.3 |
| 4717  | 5  | 1425.9 | 4750  | 5 | 1486.4              | 4784  | 5 | 1549.1 |
| 4718  | 5  | 1427.7 | 4751  | 5 | 1488.2              | 4785  | 5 | 1551.0 |
| 4719  | 5  | 1429.5 | 4752  | 5 | 1490.0              | 4786  | 5 | 1552.9 |
|       |    |        | 4753  | 5 | 1 <del>4</del> 91.9 | 4787  | 5 | 1554.7 |
| 4720  | 5  | 1431.4 | 4754  | 5 | 1493.7              | 4788  | 5 | 1556.6 |
| 4721  | 5  | 1433.2 | 4755  | 5 | 1495.6              | 4789  | 5 | 1558.4 |
| 4722  | 5  | 1435.0 | 4756  | 5 | 1497.4              | 1     |   |        |
| 4723  | 5  | 1436.8 | 4757  | 5 | 1499.3              | 4790  | 5 | 1560.3 |
| 4724  | 5  | 1438.7 | 4758  | 5 | 1501.1              | 4791  | 5 | 1562.1 |
| 4725  | 5  | 1440.5 | 4759  | 5 | 1503.0              | 4792  | 5 | 1564.0 |
| 4726  | 5  | 1442.3 | 1     |   |                     | 4793  | 5 | 1565.9 |
| 4727  | 5  | 1444.1 | 4760  | 5 | 1504.8              | 4794  | 5 | 1567.7 |
| 4728  | 5  | 1446.0 | 4761  | 5 | 1506.7              | 4795  | 5 | 1569.6 |
| 4729  | 5  | 1447.8 | 4762  | 5 | 1508.5              | 4796  | 5 | 1571.4 |
|       |    |        | 4763  | 5 | 1510.4              | 4797  | 5 | 1573.3 |
| 4730  | 5  | 1449.6 | 4764  | 5 | 1512.2              | 4798  | 5 | 1575.1 |
| 4731  | 5  | 1451.4 | 4765  | 5 | 1514.1              | 4799  | 5 | 1577.0 |
| 4732  | 5  | 1453.3 | 4766  | 5 | 1515.9              |       | _ |        |
| 4733  | 5  | 1455.1 | 4767  | 5 | 1517.7              | 4800  | 5 | 1578.9 |
|       |    |        | 1     |   |                     | 1     |   |        |
|       |    |        | ·     |   |                     | •     |   |        |

Use check point at 4800 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: | 4800-4900 | Kc |
|------------|-----------|----|
|            |           |    |

|                  |   |       | <u> </u> |   |       |       |   |       |
|------------------|---|-------|----------|---|-------|-------|---|-------|
| Freq.            | A | В     | Freq.    | A | В     | Freq. | A | В     |
| 4800             | 6 | 60.0  | 4834     | 6 | 112.1 | 4868  | 6 | 164.0 |
| 4801             | 6 | 61.5  | 4835     | 6 | 113.7 | 4869  | 6 | 165.5 |
| 4802             | 6 | 63.1  | 4836     | 6 | 115.2 |       |   |       |
| 4803             | 6 | 64.6  | 4837     | 6 | 116.7 | 4870  | 6 | 167.0 |
| 4804             | 6 | 66.1  | 4838     | 6 | 118.3 | 4871  | 6 | 168.5 |
| 4805             | 6 | 67.7  | 4839     | 6 | 119.8 | 4872  | 6 | 170.0 |
| 4806             | 6 | 69.2  | 1        |   |       | 4873  | 6 | 171.6 |
| 4807             | 6 | 70.7  | 4840     | 6 | 121.3 | 4874  | 6 | 173.1 |
| 4808             | 6 | 72.3  | 4841     | 6 | 122.8 | 4875  | 6 | 174.6 |
| 4809             | 6 | 73.8  | 4842     | 6 | 124.4 | 4876  | 6 | 176.1 |
|                  |   |       | 4843     | 6 | 125.9 | 4877  | 6 | 177.6 |
| 4810             | 6 | 75.3  | 4844     | 6 | 127.4 | 4878  | 6 | 179.1 |
| 4811             | 6 | 76.9  | 4845     | 6 | 128.9 | 4879  | 6 | 180.7 |
| 4812             | 6 | 78.4  | 4846     | 6 | 130.5 |       |   |       |
| 4813             | 6 | 79.9  | 4847     | 6 | 132.0 | 4880  | 6 | 182.2 |
| <del>4</del> 814 | 6 | 81.5  | 4848     | 6 | 133.5 | 4881  | 6 | 183.7 |
| 4815             | 6 | 83.0  | 4849     | 6 | 135.0 | 4882  | 6 | 185.2 |
| <del>4</del> 816 | 6 | 84.5  | 1        |   |       | 4883  | 6 | 186.7 |
| 4817             | 6 | 86.1  | 4850     | 6 | 136.6 | 4884  | 6 | 188.3 |
| 4818             | 6 | 87.6  | 4851     | 6 | 138.1 | 4885  | 6 | 189.8 |
| 4819             | 6 | 89.1  | 4852     | 6 | 139.6 | 4886  | 6 | 191.3 |
|                  |   |       | 4853     | 6 | 141.1 | 4887  | 6 | 192.8 |
| 4820             | 6 | 90.7  | 4854     | 6 | 142.7 | 4888  | 6 | 194.3 |
| 4821             | 6 | 92.2  | 4855     | 6 | 144.2 | 4889  | 6 | 195.9 |
| 4822             | 6 | 93.7  | 4856     | 6 | 145.7 | 1     |   |       |
| <b>482</b> 3     | 6 | 95.3  | 4857     | 6 | 147.2 | 4890  | 6 | 197.4 |
| 4824             | 6 | 96.8  | 4858     | 6 | 148.8 | 4891  | 6 | 198.9 |
| 4825             | 6 | 98.3  | 4859     | 6 | 150.3 | 4892  | 6 | 200.4 |
| 4826             | 6 | 99.9  |          |   |       | 4893  | 6 | 202.0 |
| 4827             | 6 | 101.4 | 4860     | 6 | 151.8 | 4894  | 6 | 203.5 |
| 4828             | 6 | 102.9 | 4861     | 6 | 153.3 | 4895  | 6 | 205.0 |
| 4829             | 6 | 104.5 | 4862     | 6 | 154.9 | 4896  | 5 | 206.5 |
|                  |   |       | 4863     | 6 | 156.4 | 4897  | 6 | 208.0 |
| 4830             | 6 | 106.0 | 4864     | 6 | 157.9 | 4898  | 6 | 209.6 |
| 4831             | 6 | 107.5 | 4865     | 6 | 159.4 | 4899  | 6 | 211.1 |
| 4832             | 6 | 109.1 | 4866     | 6 | 160.9 |       | _ |       |
| 4833             | 6 | 110.6 | 4867     | 6 | 162.4 | 4900  | 6 | 212.6 |
|                  |   |       |          |   |       |       |   |       |
|                  |   |       |          |   |       |       |   |       |

Use check point at 4800 Kc

#### Frequency: 4900-5000 Kc

| Frequency: 4900–5000 Kc |   |       |       |   |       |       |   |       |  |  |  |
|-------------------------|---|-------|-------|---|-------|-------|---|-------|--|--|--|
| Freq.                   | A | В     | Freq. | A | В     | Freq. | A | В     |  |  |  |
| 4900                    | 6 | 212.6 | 4934  | 6 | 264.3 | 4968  | 6 | 316.1 |  |  |  |
| 4901                    | 6 | 214.1 | 4935  | 6 | 265.9 | 4969  | 6 | 317.7 |  |  |  |
| 4902                    | 6 | 215.6 | 4936  | 6 | 267.4 |       |   |       |  |  |  |
| 4903                    | 6 | 217.2 | 4937  | 6 | 268.9 | 4970  | 6 | 319.2 |  |  |  |
| 4904                    | 6 | 218.7 | 4938  | 6 | 270.4 | 4971  | 6 | 320.7 |  |  |  |
| 4905                    | 6 | 220.2 | 4939  | 6 | 272.0 | 4972  | 6 | 322.2 |  |  |  |
| 4906                    | 6 | 221.7 | 1     |   |       | 4973  | 6 | 323.8 |  |  |  |
| 4907                    | 6 | 223.2 | 4940  | 6 | 273.5 | 4974  | 6 | 325.3 |  |  |  |
| 4908                    | 6 | 224.7 | 4941  | 6 | 275.0 | 4975  | 6 | 326.8 |  |  |  |
| 4909                    | 6 | 226.3 | 4942  | 6 | 276.5 | 4976  | 6 | 328.4 |  |  |  |
|                         |   |       | 4943  | 6 | 278.1 | 4977  | 6 | 329.9 |  |  |  |
| 4910                    | 6 | 227.8 | 4944  | 6 | 279.6 | 4978  | 6 | 331.4 |  |  |  |
| 4911                    | 6 | 229.3 | 4945  | 6 | 281.1 | 4979  | 6 | 333.0 |  |  |  |
| 4912                    | 6 | 230.8 | 4946  | 6 | 282.6 |       |   |       |  |  |  |
| 4913                    | 6 | 232.3 | 4947  | 6 | 284.1 | 4980  | 6 | 334.5 |  |  |  |
| 4914                    | 6 | 233.9 | 4948  | 6 | 285.7 | 4981  | 6 | 336.0 |  |  |  |
| 4915                    | 6 | 235.4 | 4949  | 6 | 287.2 | 4982  | 6 | 337.5 |  |  |  |
| 4916                    | 6 | 236.9 |       |   |       | 4983  | 6 | 339.1 |  |  |  |
| 4917                    | 6 | 238.4 | 4950  | 6 | 288.7 | 4984  | 6 | 340.6 |  |  |  |
| 4918                    | 6 | 239.9 | 4951  | 6 | 290.2 | 4985  | 6 | 342.2 |  |  |  |
| 4919                    | 6 | 241.4 | 4952  | 6 | 291.7 | 4986  | 6 | 343.7 |  |  |  |
|                         |   |       | 4953  | 6 | 293.3 | 4987  | 6 | 345.2 |  |  |  |
| 4920                    | 6 | 243.0 | 4954  | 6 | 294.8 | 4988  | 6 | 346.8 |  |  |  |
| 4921                    | 6 | 244.5 | 4955  | 6 | 296.3 | 4989  | 6 | 348.3 |  |  |  |
| 4922                    | 6 | 246.0 | 4956  | 6 | 297.8 | ł     |   |       |  |  |  |
| 4923                    | 6 | 247.5 | 4957  | 6 | 299.3 | 4990  | 6 | 349.8 |  |  |  |
| 4924                    | 6 | 249.1 | 4958  | 6 | 300.9 | 4991  | 6 | 351.4 |  |  |  |
| 4925                    | 6 | 250.6 | 4959  | 6 | 302.4 | 4992  | 6 | 352.9 |  |  |  |
| 4926                    | 6 | 252.1 |       |   |       | 4993  | 6 | 354.4 |  |  |  |
| 4927                    | 6 | 253.6 | 4960  | 6 | 303.9 | 4994  | 6 | 356.0 |  |  |  |
| 4928                    | 6 | 255.2 | 4961  | 6 | 305.4 | 4995  | 6 | 357.5 |  |  |  |
| 4929                    | 6 | 256.7 | 4962  | 6 | 307.0 | 4996  | 6 | 359.0 |  |  |  |
|                         | - |       | 4963  | 6 | 308.5 | 4997  | 6 | 360.6 |  |  |  |
| 4930                    | 6 | 258.2 | 4964  | 6 | 310.0 | 4998  | 6 | 362.1 |  |  |  |
| 4931                    | 6 | 259.8 | 4965  | 6 | 311.5 | 4999  | 6 | 363.6 |  |  |  |
| 4932                    | 6 | 261.3 | 4966  | 6 | 313.1 |       |   | - /   |  |  |  |
| 4933                    | 6 | 262.8 | 4967  | 6 | 314.6 | 5000  | 6 | 365.2 |  |  |  |
|                         |   |       | L     |   |       | J     |   |       |  |  |  |

Use check point at 5000 Kc

Frequency: 5000-5100 Kc

| Freq. | A | В     | Freq. | A | В     | Freq. | A | В     |
|-------|---|-------|-------|---|-------|-------|---|-------|
| 5000  | 6 | 365.2 | 5034  | 6 | 417.2 | 5068  | 6 | 469.5 |
| 5001  | 6 | 366.7 | 5035  | 6 | 418.7 | 5069  | 6 | 471.0 |
| 5002  | 6 | 368.2 | 5036  | 6 | 420.2 |       |   |       |
| 5003  | 6 | 369.7 | 5037  | 6 | 421.8 | 5070  | 6 | 472.5 |
| 5004  | 6 | 371.3 | 5038  | 6 | 423.3 | 5071  | 6 | 474.1 |
| 5005  | 6 | 372.8 | 5039  | 6 | 424.8 | 5072  | 6 | 475.6 |
| 5006  | 6 | 374.3 | İ     |   |       | 5073  | 6 | 477.1 |
| 5007  | 6 | 375.8 | 5040  | 6 | 426.4 | 5074  | 6 | 478.6 |
| 5008  | 6 | 377.3 | 5041  | 6 | 427.9 | 5075  | 6 | 480.2 |
| 5009  | 6 | 378.9 | 5042  | 6 | 429.5 | 5076  | 6 | 481.7 |
|       |   |       | 5043  | 6 | 431.0 | 5077  | 6 | 483.2 |
| 5010  | 6 | 380.4 | 5044  | 6 | 432.6 | 5078  | 6 | 484.8 |
| 5011  | 6 | 381.9 | 5045  | 6 | 434.1 | 5079  | 6 | 486.3 |
| 5012  | 6 | 383.4 | 5046  | 6 | 435.6 | l     |   |       |
| 5013  | 6 | 385.0 | 5047  | 6 | 437.2 | 5080  | 6 | 487.8 |
| 5014  | 6 | 386.5 | 5048  | 6 | 438.7 | 5081  | 6 | 489.4 |
| 5015  | 6 | 388.0 | 5049  | 6 | 440.3 | 5082  | 6 | 490.9 |
| 5016  | 6 | 389.5 |       |   |       | 5083  | 6 | 492.5 |
| 5017  | 6 | 391.1 | 5050  | 6 | 441.8 | 5084  | 6 | 494.0 |
| 5018  | 6 | 392.6 | 5051  | 6 | 443.4 | 5085  | 6 | 495.6 |
| 5019  | 6 | 394.1 | 5052  | 6 | 444.9 | 5086  | 6 | 497.2 |
|       |   |       | 5053  | 6 | 446.4 | 5087  | 6 | 498.7 |
| 5020  | 6 | 395.6 | 5054  | 6 | 448.0 | 5088  | 6 | 500.3 |
| 5021  | 6 | 397.2 | 5055  | 6 | 449.5 | 5089  | 6 | 501.8 |
| 5022  | 6 | 398.7 | 5056  | 6 | 451.1 |       |   |       |
| 5023  | 6 | 400.2 | 5057  | 6 | 452.6 | 5090  | 6 | 503.4 |
| 5024  | 6 | 401.8 | 5058  | 6 | 454.2 | 5091  | 6 | 504.9 |
| 5025  | 6 | 403.3 | 5059  | 6 | 455.7 | 5092  | 6 | 506.5 |
| 5026  | 6 | 404.8 |       | _ |       | 5093  | 6 | 508.0 |
| 5027  | 6 | 406.4 | 5060  | 6 | 457.2 | 5094  | 6 | 509.6 |
| 5028  | 6 | 407.9 | 5061  | 6 | 458.8 | 5095  | 6 | 511.1 |
| 5029  | 6 | 409.5 | 5062  | 6 | 460.3 | 5096  | 6 | 512.7 |
|       | _ |       | 5063  | 6 | 461.8 | 5097  | 6 | 514.3 |
| 5030  | 6 | 411.0 | 5064  | 6 | 463.4 | 5098  | 6 | 515.8 |
| 5031  | 6 | 412.5 | 5065  | 6 | 464.9 | 5099  | 6 | 517.4 |
| 5032  | 6 | 414.1 | 5066  | 6 | 466.4 | 5400  | _ | E40.0 |
| 5033  | 6 | 415.6 | 5067  | 6 | 467.9 | 5100  | 6 | 518.9 |
|       |   |       |       |   |       |       |   |       |
|       |   |       |       |   |       |       |   |       |

Use theck point at 5000 Kc

## Frequency: 5100-5200 Kc

| Freq.                    | A       | В              | Freq.         | A      | В              | Freq.    | A | В     |
|--------------------------|---------|----------------|---------------|--------|----------------|----------|---|-------|
| 5100                     | 6       | 518.9          | 5134          | 6      | 571.3          | 5168     | 6 | 623.9 |
| 5101                     | 6       | 520.5          | 5135          | 6      | 572.9          | 5169     | 6 | 625.5 |
| 5102                     | 6       | 522.0          | 5136          | 6      | 574.4          | l        |   |       |
| 5103                     | 6       | 523.5          | 5137          | 6      | 576.0          | 5170     | 6 | 627.0 |
| 5104                     | 6       | 525.1          | 5138          | 6      | <b>5</b> 77.5  | 5171     | 6 | 628.6 |
| 5105                     | 6       | 526.6          | 5139          | 6      | 579.0          | 5172     | 6 | 630.1 |
| 5106                     | 6       | 528.2          | l             |        |                | 5173     | 6 | 631.7 |
| 5107                     | 6       | 529.7          | 5140          | 6      | 560.6          | 5174     | 6 | 633.2 |
| 5108                     | 6       | 531.2          | 5141          | 6      | 582.1          | 5175     | 6 | 634.8 |
| 5109                     | 6       | 532.8          | 5142          | 6      | 583.7          | 5176     | 6 | 636.3 |
|                          |         |                | 5143          | 6      | 585.2          | 5177     | 6 | 637.9 |
| 5110                     | 6       | 53 <b>4</b> .3 | 5144          | 6      | 586.8          | 5178     | 6 | 639.4 |
| 5111                     | 6       | 535.9          | 5145          | 6      | 588.3          | 5179     | 6 | 641.0 |
| 5112                     | 6       | 537.4          | 5146          | 6      | 589.9          | 1        |   |       |
| 5113                     | 6       | 538.9          | 51 <b>4</b> 7 | 6      | 591.4          | 5180     | 6 | 642.5 |
| 5114                     | 6       | 540.5          | 5148          | 6      | 593.0          | 5181     | 6 | 644.0 |
| 5115                     | 6       | 542.0          | 5149          | 6      | 594.5          | 5182     | 6 | 645.6 |
| 5116                     | 6       | 543.6          |               |        |                | 5183     | 6 | 647.1 |
| 5117                     | 6       | 545.1          | 5150          | 6      | 596.1          | 5184     | 6 | 648.7 |
| 5118                     | 6       | 546.6          | 5151          | 6      | 597.6          | 5185     | 6 | 650.2 |
| 5119                     | 6       | 5 <b>4</b> 8.2 | 5152          | 6      | 599.2          | 5186     | 6 | 651.8 |
|                          | _       |                | 5153          | 6      | 600.7          | 5187     | 6 | 653.3 |
| 5120                     | 6       | 549.7          | 5154          | 6      | 602.3          | 5188     | 6 | 654.9 |
| 5121                     | 6       | 551.3          | 5155          | 6      | 603.8          | 5189     | 6 | 656.4 |
| 5122                     | 6       | 552.8<br>554.3 | 5156          | 6      | 605.4<br>606.9 | 5190     | 6 | 658.0 |
| 5123<br>5124             | -6<br>6 | 555.9          | 5157<br>5158  | 6<br>6 | 608.5          | 5190     | 6 | 659.5 |
| 512 <del>4</del><br>5125 | 6       | 557.4          | 5159          | 6      | 610.0          | 5192     | 6 | 661.1 |
| 5126                     | 6       | 559.0          | 3133          | o      | 010.0          | 5193     | 6 | 662.6 |
| 5127                     | 6       | 560.5          | 5160          | 6      | 611.6          | 5194     | 6 | 664.1 |
| 5128                     | 6       | 562.1          | 5161          | 6      | 613.1          | 5195     | 6 | 665.7 |
| 5129                     | 6       | 563.6          | 5162          | 6      | 614.7          | 5156     | 6 | 667.2 |
| 3125                     | ٠       | 303.0          | 5163          | 6      | 616.2          | 5197     | 6 | 668.8 |
| 5130                     | 6       | 565.2          | 5164          | 6      | 617.8          | 5198     | 6 | 670.3 |
| 5131                     | 6       | 566.7          | 5165          | 6      | 619.3          | 5199     | 6 | 671.9 |
| 5132                     | 6       | 568.2          | 5166          | 6      | 620.9          | 1 5.55   | • | 5     |
| 5133                     | 6       | 569.8          | 5167          | 6      | 622.4          | 5200     | 6 | 673.4 |
|                          | -       |                |               | -      |                |          | - |       |
|                          |         |                | -11-          |        | A == 6200      | <u> </u> |   |       |

Use check point at 5200 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Freq. | Α | В     | Freq. | A | В     | Freq. | A | В     |  |  |  |
|-------|---|-------|-------|---|-------|-------|---|-------|--|--|--|
| 5200  | 6 | 673.4 | 5234  | 6 | 726.0 | 5268  | 6 | 778.3 |  |  |  |
| 5201  | 6 | 675.0 | 5235  | 6 | 727.5 | 5269  | 6 | 779.9 |  |  |  |
| 5202  | 6 | 676.5 | 5236  | 6 | 729.1 | ł     |   |       |  |  |  |
| 5203  | 6 | 678.0 | 5237  | 6 | 730.6 | 5270  | 6 | 781.4 |  |  |  |
| 5204  | 6 | 679.6 | 5238  | 6 | 732.2 | 5271  | 6 | 783.0 |  |  |  |
| 5205  | 6 | 681.1 | 5239  | 6 | 733.7 | 5272  | 6 | 784.5 |  |  |  |
| 5206  | 6 | 682.7 | Ī     |   |       | 5273  | 6 | 786.0 |  |  |  |
| 5207  | 6 | 684.2 | 5240  | 6 | 735.3 | 5274  | 6 | 787.6 |  |  |  |
| 5208  | 6 | 685.7 | 5241  | 6 | 736.8 | 5275  | 6 | 789.1 |  |  |  |
| 5209  | 6 | 687.3 | 5242  | 6 | 738.3 | 5276  | 6 | 790.7 |  |  |  |
|       |   |       | 5243  | 6 | 739.9 | 5277  | 6 | 792.2 |  |  |  |
| 5210  | 6 | 688.8 | 5244  | 6 | 741.4 | 5278  | 6 | 793.8 |  |  |  |
| 5211  | 6 | 690.4 | 5245  | 6 | 742.9 | 5279  | 6 | 795.3 |  |  |  |
| 5212  | 6 | 691.9 | 5246  | 6 | 744.5 |       |   |       |  |  |  |
| 5213  | 6 | 693.5 | 5247  | 6 | 746.0 | 5280  | 6 | 796.9 |  |  |  |
| 5214  | 6 | 695.0 | 5248  | 6 | 747.5 | 5281  | 6 | 798.4 |  |  |  |
| 5215  | 6 | 696.5 | 5249  | 6 | 749.1 | 5282  | 6 | 800.0 |  |  |  |
| 5216  | 6 | 698.1 |       |   |       | 5283  | 6 | 801.5 |  |  |  |
| 5217  | 6 | 699.6 | 5250  | 6 | 750.6 | 5284  | 6 | 803.1 |  |  |  |
| 5218  | 6 | 701.2 | 5251  | 6 | 752.1 | 5285  | 6 | 804.6 |  |  |  |
| 5219  | 6 | 702.7 | 5252  | 6 | 753.7 | 5286  | 5 | 806.2 |  |  |  |
|       |   |       | 5253  | 6 | 755.2 | 5287  | 5 | 807.7 |  |  |  |
| 5220  | 6 | 704.2 | 5254  | 6 | 756.8 | 5288  | 6 | 809.3 |  |  |  |
| 5221  | 6 | 705.8 | 5255  | 6 | 758.3 | 5289  | 6 | 810.9 |  |  |  |
| 5222  | 6 | 707.3 | 5256  | 6 | 759.8 |       |   |       |  |  |  |
| 5223  | 6 | 708.9 | 5257  | 6 | 761.4 | 5290  | 6 | 812.4 |  |  |  |
| 5224  | 6 | 710.4 | 5258  | 6 | 762.9 | 5291  | 6 | 814.0 |  |  |  |
| 5225  | 6 | 712.0 | 5259  | 6 | 764.4 | 5292  | 6 | 815.5 |  |  |  |
| 5226  | 6 | 713.5 |       |   |       | 5293  | 6 | 817.1 |  |  |  |
| 5227  | 6 | 715.1 | 5260  | 6 | 766.0 | 5294  | 6 | 818.6 |  |  |  |
| 5228  | 6 | 716.6 | 5261  | 6 | 767.5 | 5295  | 6 | 820.2 |  |  |  |
| 5229  | 6 | 718.2 | 5262  | 6 | 769.1 | 5296  | 6 | 821.7 |  |  |  |
|       | _ |       | 5263  | 6 | 770.6 | 5297  | 6 | 823.3 |  |  |  |
| 5230  | 6 | 719.8 | 5264  | 6 | 772.1 | 5298  | 6 | 824.9 |  |  |  |
| 5231  | 6 | 721.3 | 5265  | 6 | 773.7 | 5299  | 6 | 826.4 |  |  |  |
| 5232  | 6 | 722.9 | 5266  | 6 | 775.2 |       |   |       |  |  |  |
| 5233  | 6 | 724.4 | 5267  | 6 | 776.8 | 5300  | 6 | 828.0 |  |  |  |
|       |   |       |       |   |       |       |   | _     |  |  |  |
|       |   |       |       |   |       |       |   |       |  |  |  |

Use check point at 5200 Kc

## Frequency: 5300-5400 Kc

| rrequency: 5300=5400 Kc |   |       |       |   |       |       |   |       |  |  |
|-------------------------|---|-------|-------|---|-------|-------|---|-------|--|--|
| Freq.                   | A | В     | Freq. | A | В     | Freq. | A | В     |  |  |
| 5300                    | 6 | 828.0 | 5334  | 6 | 0.088 | 5368  | 6 | 932.3 |  |  |
| 5301                    | 6 | 829.5 | 5335  | 6 | 881.5 | 5369  | 6 | 933.8 |  |  |
| 5302                    | 6 | 831.0 | 5336  | 6 | 883.1 |       |   |       |  |  |
| 5303                    | 6 | 832.6 | 5337  | 6 | 884.6 | 5370  | 6 | 935.3 |  |  |
| 5304                    | 6 | 834.1 | 5338  | 6 | 886.1 | 5371  | 6 | 936.9 |  |  |
| 5305                    | 6 | 835.7 | 5339  | 6 | 887.6 | 5372  | 6 | 938.4 |  |  |
| 5306                    | 6 | 837.2 |       |   |       | 5373  | 6 | 939.9 |  |  |
| 5307                    | 6 | 838.7 | 5340  | 6 | 889.1 | 5374  | 6 | 941.5 |  |  |
| 5308                    | 6 | 840.3 | 5341  | 6 | 890.7 | 5375  | 6 | 943.0 |  |  |
| <b>530</b> 9            | 6 | 841.8 | 5342  | 6 | 892.2 | 5376  | 6 | 944.5 |  |  |
|                         |   |       | 5343  | 6 | 893.8 | 5377  | 6 | 946.1 |  |  |
| 5310                    | 6 | 843.4 | 5344  | 6 | 895.3 | 5378  | 6 | 947.6 |  |  |
| 5311                    | 6 | 844.9 | 5345  | 6 | 896.9 | 5379  | 6 | 949.1 |  |  |
| 5312                    | 6 | 846.4 | 5346  | 6 | 898.4 | l     |   |       |  |  |
| 5313                    | 6 | 848.0 | 5347  | 6 | 899.9 | 5380  | 6 | 950.7 |  |  |
| 5314                    | 6 | 849.5 | 5348  | 6 | 901.5 | 5381  | 6 | 952.2 |  |  |
| 5315                    | 6 | 851.1 | 5349  | 6 | 903.0 | 5382  | 6 | 953.7 |  |  |
| 5316                    | 6 | 852.6 |       |   |       | 5383  | 6 | 955.3 |  |  |
| 5317                    | 6 | 854.1 | 5350  | 6 | 904.6 | 5384  | 6 | 956.8 |  |  |
| 5318                    | 6 | 855.7 | 5351  | 6 | 906.1 | 5385  | 6 | 958.3 |  |  |
| 5319                    | 6 | 857.2 | 5352  | 6 | 907.7 | 5386  | 6 | 959.9 |  |  |
|                         |   |       | 5353  | 6 | 909.2 | 5387  | 6 | 961.4 |  |  |
| 5320                    | 6 | 858.8 | 5354  | 6 | 910.8 | 5388  | 6 | 962.9 |  |  |
| 5321                    | 6 | 860.3 | 5355  | 6 | 912.3 | 5389  | 6 | 964.5 |  |  |
| 5322                    | 6 | 861.8 | 5356  | 6 | 913.8 | 1     |   |       |  |  |
| 5323                    | 6 | 863.3 | 5357  | 6 | 915.4 | 5390  | 6 | 966.0 |  |  |
| 5324                    | 6 | 864.8 | 5358  | 6 | 916.9 | 5391  | 6 | 967.5 |  |  |
| 5325                    | 6 | 866.4 | 5359  | 6 | 918.5 | 5392  | 6 | 969.1 |  |  |
| 5326                    | 6 | 867.9 | l     |   |       | 5393  | 6 | 970.6 |  |  |
| 5327                    | 6 | 869.4 | 5360  | 6 | 920.0 | 5394  | 6 | 972.2 |  |  |
| 5328                    | 6 | 870.9 | 5361  | 6 | 921.6 | 5395  | 6 | 973.7 |  |  |
| 5329                    | 6 | 872.4 | 5362  | 6 | 923.1 | 5396  | 6 | 975.2 |  |  |
|                         |   |       | 5363  | 6 | 924.6 | 5397  | 6 | 976.8 |  |  |
| 5330                    | 6 | 874.0 | 5364  | 6 | 926.1 | 5398  | 6 | 978.3 |  |  |
| 5331                    | 6 | 875.5 | 5365  | 6 | 927.7 | 5399  | 6 | 979.8 |  |  |
| 5332                    | 6 | 877.0 | 5366  | 6 | 929.2 | 1     |   |       |  |  |
| 5333                    | 6 | 878.5 | 5367  | 6 | 930.7 | 5400  | 6 | 981.4 |  |  |
|                         |   |       | I     |   |       | l     |   |       |  |  |

Use check point at 5400 Kc

Frequency: 5400-5500 Kc

| Freq. | A | В      | Freq. | A | В      | Freq. | A | В      |
|-------|---|--------|-------|---|--------|-------|---|--------|
| 5400  | 6 | 981.4  | 5434  | 6 | 1033.3 | 5468  | 6 | 1085.2 |
| 5401  | 6 | 982.9  | 5435  | 6 | 1034.9 | 5469  | 6 | 1086.7 |
| 5402  | 6 | 984.4  | 5436  | 6 | 1036.4 | 0.00  | Ū | 1000.1 |
| 5403  | 6 | 986.0  | 5437  | 6 | 1037.9 | 5470  | 6 | 1088.2 |
| 5404  | 6 | 987.5  | 5438  | 6 | 1039.4 | 5471  | 6 | 1089.7 |
| 5405  | 6 | 989.0  | 5439  | 6 | 1041.0 | 5472  | 6 | 1091.3 |
| 5406  | 6 | 990.5  |       |   |        | 5473  | 6 | 1092.8 |
| 5407  | 6 | 992.1  | 5440  | 6 | 1042.5 | 5474  | 6 | 1094.3 |
| 5408  | 6 | 993.6  | 5441  | 6 | 1044.0 | 5475  | 6 | 1095.8 |
| 5409  | 6 | 995.1  | 5442  | 6 | 1045.5 | 5476  | 6 | 1097.3 |
|       |   |        | 5443  | 6 | 1047.1 | 5477  | 6 | 1098.9 |
| 5410  | 6 | 996.7  | 5444  | 6 | 1048.6 | 5478  | 6 | 1100.4 |
| 5411  | 6 | 998.2  | 5445  | 6 | 1050.1 | 5479  | 6 | 1101.9 |
| 5412  | 6 | 999.7  | 5446  | 6 | 1051.6 |       |   |        |
| 5413  | 6 | 1001.3 | 5447  | 6 | 1053.2 | 5480  | 6 | 1103.4 |
| 5414  | 6 | 1002.8 | 5448  | 6 | 1054.7 | 5481  | 6 | 1105.0 |
| 5415  | 6 | 1004.3 | 5449  | 6 | 1056.2 | 5482  | 6 | 1106.5 |
| 5416  | 6 | 1005.8 |       |   |        | 5483  | 6 | 1108.0 |
| 5417  | 6 | 1007.4 | 5450  | 6 | 1057.7 | 5484  | 6 | 1109.5 |
| 5418  | 6 | 1008.9 | 5451  | 6 | 1059.3 | 5485  | 6 | 1111.0 |
| 5419  | 6 | 1010.4 | 5452  | 6 | 1060.8 | 5486  | 6 | 1112.6 |
|       |   |        | 5453  | 6 | 1062.3 | 5487  | 6 | 1114.1 |
| 5420  | 6 | 1012.0 | 5454  | 6 | 1063.8 | 5488  | 6 | 1115.6 |
| 5421  | 6 | 1013.5 | 5455  | 6 | 1065.4 | 5489  | 6 | 1117.1 |
| 5422  | 6 | 1015.0 | 5456  | 6 | 1066.9 | 1     |   |        |
| 5423  | 6 | 1016.5 | 5457  | 6 | 1068.4 | 5490  | 6 | 1118.6 |
| 5424  | 6 | 1018.1 | 5458  | 6 | 1069.9 | 5491  | 6 | 1120.2 |
| 5425  | 6 | 1019.6 | 5459  | 6 | 1071.5 | 5492  | 6 | 1121.7 |
| 5426  | 6 | 1021.1 |       |   |        | 5493  | 6 | 1123.2 |
| 5427  | 6 | 1022.6 | 5460  | 6 | 1073.0 | 5494  | 6 | 1124.7 |
| 5428  | 6 | 1024.2 | 5461  | 6 | 1074.5 | 5495  | 6 | 1126.2 |
| 5429  | 6 | 1025.7 | 5462  | 6 | 1076.0 | 5496  | 6 | 1127.8 |
|       |   |        | 5463  | 6 | 1077.5 | 5497  | 6 | 1129.3 |
| 5430  | 6 | 1027.2 | 5464  | 6 | 1079.1 | 5498  | 6 | 1130.8 |
| 5431  | 6 | 1028.7 | 5465  | 6 | 1080.6 | 5499  | 6 | 1132.3 |
| 5432  | 6 | 1030.3 | 5466  | 6 | 1082.1 |       |   |        |
| 5433  | 6 | 1031.8 | 5467  | 6 | 1083.6 | 5500  | 6 | 1133.8 |
|       |   |        |       |   |        |       |   |        |
|       |   | ·      |       |   |        |       |   |        |

Use check point at 5400 Kc

## Frequency: 5500-5600 Kc

| Freq.        | A  | В      | Freq.    | A | В                  | Freq. | A | В      |
|--------------|----|--------|----------|---|--------------------|-------|---|--------|
| 5500         | 6  | 1133.8 | 5534     | 6 | 1185.4             | 5568  | 6 | 1237.0 |
| 5501         | 6  | 1135.4 | 5535     | 6 | 1186.9             | 5569  | 6 | 1238.5 |
| 5502         | 6  | 1136.9 | 5536     | 6 | 1188.4             | 1     |   |        |
| 5503         | 6  | 1138.4 | 5537     | 6 | 1189.9             | 5570  | 6 | 1240.0 |
| 5504         | 6  | 1139.9 | 5538     | 6 | 1191. <del>4</del> | 5571  | 6 | 1241.5 |
| 5505         | 6  | 1141.4 | 5539     | 6 | 1192.9             | 5572  | 6 | 1243.0 |
| 5506         | 6  | 1143.0 | ĺ        |   |                    | 5573  | 6 | 1244.5 |
| 5507         | 6  | 1144.5 | 5540     | 6 | 1194.4             | 5574  | 6 | 1246.0 |
| 5508         | 6  | 1146.0 | 5541     | 6 | 1196.0             | 5575  | 6 | 1247.6 |
| 5509         | 6  | 1147.5 | 5542     | 6 | 1197.5             | 5576  | 6 | 1249.1 |
|              |    |        | 5543     | 6 | 1199.0             | 5577  | 6 | 1250.6 |
| 5510         | 6  | 1149.0 | 5544     | 6 | 1200.5             | 5578  | 6 | 1252.1 |
| 5511         | 6  | 1150.5 | 5545     | 6 | 1202.1             | 5579  | 6 | 1253.6 |
| 5512         | 6  | 1152.1 | 5546     | 6 | 1203.6             | 1     |   |        |
| 5513         | 6  | 1153.6 | 5547     | 6 | 1205.1             | 5580  | 6 | 1255.1 |
| 5514         | 6  | 1155.1 | 5548     | 6 | 1206.6             | 5581  | 6 | 1256.6 |
| 5515         | 6  | 1156.6 | 5549     | 6 | 1208.1             | 5582  | 6 | 1258.1 |
| 5516         | 6  | 1158.1 | 1        |   |                    | 5583  | 6 | 1259.6 |
| 5517         | 6  | 1159.7 | 5550     | 6 | 1209.7             | 5584  | 6 | 1261.1 |
| 5518         | 6  | 1161.2 | 5551     | 6 | 1211.2             | 5585  | 6 | 1262.7 |
| 5519         | 6  | 1162.7 | 5552     | 6 | 1212.7             | 5586  | 6 | 1264.2 |
|              |    |        | 5553     | 6 | 1214.2             | 5587  | 6 | 1265.7 |
| 5520         | 6  | 1164.2 | 5554     | 6 | 1215.8             | 5588  | 6 | 1267.2 |
| 5521         | 6  | 1165.7 | 5555     | 6 | 1217.3             | 5589  | 6 | 1268.7 |
| 5522         | 6  | 1167.2 | 5556     | 6 | 1218.8             | l     |   | •      |
| 5523         | 6  | 1168.8 | 5557     | 6 | 1220.3             | 5590  | 6 | 1270.2 |
| 5524         | 6  | 1170.3 | 5558     | 6 | 1221.9             | 5591  | 6 | 1271.7 |
| 5525         | 6  | 1171.8 | 5559     | 6 | 1223.4             | 5592  | 6 | 1273.2 |
| 5526         | 6  | 1173.3 | ł        |   |                    | 5593  | 6 | 1274.7 |
| 5527         | 6  | 1174.8 | 5560     | 6 | 1224.9             | 5594  | 6 | 1276.2 |
| 5528         | 6  | 1176.3 | 5561     | 6 | 1226.4             | 5595  | 6 | 1277.8 |
| 5529         | 13 | 1177.8 | 5562     | 6 | 1227.9             | 5596  | 6 | 1279.3 |
|              |    |        | 5563     | 6 | 1229.4             | 5597  | 6 | 1280.8 |
| 5530         | 13 | 1179.3 | 5564     | 6 | 1230.9             | 5598  | 6 | 1282.3 |
| 5531         | 15 | 1180.8 | 5565     | 6 | 1232.5             | 5599  | 6 | 1283.8 |
| 5532         | 13 | 1182.4 | 5566     | 6 | 1234.0             | l     | _ |        |
| <b>5</b> 533 | 6  | 1183.9 | 5567     | 6 | 1235.5             | 5600  | 6 | 1285.3 |
|              |    |        | <u> </u> |   |                    |       |   |        |
|              |    |        |          |   |                    |       |   |        |

Use check point at 5600 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: ! | 5600- | 5700 Kc |
|--------------|-------|---------|
|--------------|-------|---------|

| Freq. | A | В      | Freq. | A | В      | Freq. | A | В      |
|-------|---|--------|-------|---|--------|-------|---|--------|
| 5600  | 6 | 1285.3 | 5634  | 6 | 1336.9 | 5668  | 6 | 1388.4 |
| 5601  | 6 | 1286.8 | 5635  | 6 | 1338.4 | 5669  | 6 | 1389.9 |
| 5602  | 6 | 1288.3 | 5636  | 6 | 1339.9 | ł     |   |        |
| 5603  | 6 | 1289.9 | 5637  | 6 | 1341.4 | 5670  | 6 | 1391.4 |
| 5604  | 6 | 1291.4 | 5638  | 6 | 1342.9 | 5671  | 6 | 1393.0 |
| 5605  | 6 | 1292.9 | 5639  | 6 | 1344.4 | 5672  | 6 | 1394.5 |
| 5606  | 6 | 1294.4 |       |   |        | 5573  | 6 | 1396.0 |
| 5607  | 6 | 1295.9 | 5640  | 6 | 1346.0 | 5674  | 6 | 1397.5 |
| 5608  | 6 | 1297.4 | 5641  | 6 | 1347.5 | 5675  | 6 | 1399.0 |
| 5609  | 6 | 1299.0 | 5642  | 6 | 1349.0 | 5676  | 6 | 1400.5 |
|       |   |        | 5643  | 6 | 1350.5 | 5677  | 6 | 1402.1 |
| 5610  | 6 | 1300.5 | 5644  | 6 | 1352.0 | 5678  | 6 | 1403.6 |
| 5611  | 6 | 1302.0 | 5645  | 6 | 1353.5 | 5679  | 6 | 1405.1 |
| 5612  | 6 | 1303.5 | 5646  | 6 | 1355.1 |       |   |        |
| 5613  | 6 | 1305.0 | 5647  | 6 | 1356.6 | 5680  | 6 | 1406.6 |
| 5614  | 6 | 1306.6 | 5648  | 6 | 1358.1 | 5681  | 6 | 1408.1 |
| 5615  | 6 | 1308.1 | 5649  | 6 | 1359.6 | 5682  | 6 | 1409.6 |
| 5616  | 6 | 1309.6 | ļ     |   |        | 5683  | 6 | 1411.2 |
| 5617  | 6 | 1311.1 | 5650  | 6 | 1361.1 | 5684  | 6 | 1412.7 |
| 5618  | 6 | 1312.6 | 5651  | 6 | 1362.6 | 5685  | 6 | 1414.2 |
| 5619  | 6 | 1314.1 | 5652  | 6 | 1364.2 | 5686  | 6 | 1415.7 |
|       |   |        | 5653  | 6 | 1365.7 | 5687  | 6 | 1417.3 |
| 5620  | 6 | 1315.7 | 5654  | 6 | 1367.2 | 5688  | 6 | 1418.8 |
| 5621  | 6 | 1317.2 | 5655  | 6 | 1368.7 | 5689  | 6 | 1420.3 |
| 5622  | 6 | 1318.7 | 5656  | 6 | 1370.2 | ì     |   |        |
| 5623  | 6 | 1320.2 | 5657  | 6 | 1371.7 | 5690  | 6 | 1421.8 |
| 5624  | 6 | 1321.7 | 5658  | 6 | 1373.2 | 5691  | 6 | 1423.4 |
| 5625  | 6 | 1323.2 | 5659  | 6 | 1374.8 | 5692  | 6 | 1424.9 |
| 5626  | 6 | 1324.8 |       |   |        | 5693  | 6 | 1426.4 |
| 5627  | 6 | 1326.3 | 5660  | 6 | 1376.3 | 5694  | 6 | 1427.9 |
| 5628  | 6 | 1327.8 | 5661  | 6 | 1377.8 | 5695  | 6 | 1429.4 |
| 5629  | 6 | 1329.3 | 5662  | 6 | 1379.3 | 5696  | 6 | 1431.0 |
|       |   |        | 5663  | 6 | 1380.8 | 5697  | 6 | 1432.5 |
| 5630  | 6 | 1330.8 | 5664  | 6 | 1382.3 | 5698  | 6 | 1434.0 |
| 5631  | 6 | 1332.3 | 5665  | 6 | 1383.9 | 5699  | 6 | 1435.5 |
| 5632  | 6 | 1333.8 | 5666  | 6 | 1385.4 |       |   |        |
| 5633  | 6 | 1335.4 | 5667  | 6 | 1386.9 | 5700  | 6 | 1437.1 |
|       |   |        |       |   |        |       |   |        |
|       |   |        |       |   |        |       |   |        |

Use check point at 5600 Kc

# Frequency: 5700-5800 Kc

| Freq.         A         B         Freq.         A         B         Freq.         A         B         Freq.         A         B         Freq.         A         B         Freq.         A         B         Freq.         A         B         Freq.         A         B         Freq.         A         B         5768         6         1540.9         5768         6         1540.9         5769         6         1540.9         5769         6         1540.9         5769         6         1540.9         5769         6         1540.9         5769         6         1544.0         5760         6         1441.6         5737         6         1495.0         5777         6         1545.5         5772         6         1545.0         5771         6         1545.0         5772         6         1545.0         5772         6         1545.0         5772         6         1545.0         5773         6         1548.0         5774         6         1548.0         5774         6         1550.2         5775         6         1551.6         1551.0         5775         6         1551.2         5775         6         1551.2         57775         6         1551.2         57775                                                                                                                                    |       |   |        |      |   |        |       |   |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|--------|------|---|--------|-------|---|--------|
| 5701         6         1438.6         5735         6         1490.4         5769         6         1542.5           5702         6         1440.1         5736         6         1491.9         5733         6         1491.9         5737         6         1491.9         5770         6         1544.0         5737         6         1493.5         5770         6         1544.0         5760         6         1444.2         5738         6         1496.5         5771         6         1545.5         5772         6         1545.5         5772         6         1544.0         5760         6         1444.2         5739         6         1496.5         5772         6         1548.6         5773         6         1548.6         5773         6         1548.6         5773         6         1554.6         5746.6         1499.6         5775         6         1550.1         5745.6         1501.1         5776         6         1551.6         5745.6         1501.2         57777         6         1551.6         57777         6         1551.6         5775.7         6         1551.6         57777         6         1551.6         57777         6         1551.6         57777         6                                                                                                                      | Freq. | A | В      |      |   |        | Freq. | A | В      |
| 5702         6         1440.1         5736         6         1491.9         5703         6         1491.9         5703         6         1491.9         5704         6         1441.6         5737         6         1493.5         5770         6         1544.0         5736         6         1495.0         5771         6         1545.5         5772         6         1545.0         5772         6         1545.0         5772         6         1545.0         5772         6         1545.0         5772         6         1545.0         5772         6         1545.0         5772         6         1545.0         5772         6         1545.0         5774         6         1498.0         5775         6         1550.1         5775         6         1550.2         5775         6         1551.6         5750         6         1551.2         5742         6         1501.1         5776         6         1553.2         5777         6         1553.2         5777         6         1554.7         5776         6         1554.7         5776         6         1551.6         5777         6         1554.7         5777         6         1554.7         5778         6         1556.7         5777 <td>5700</td> <td>6</td> <td>1437.1</td> <td></td> <td></td> <td></td> <td>5768</td> <td>6</td> <td>1540.9</td> | 5700  | 6 | 1437.1 |      |   |        | 5768  | 6 | 1540.9 |
| 5703         6         1441.6         5737         6         1493.5         5770         6         1544.0           5704         6         1441.2         5738         6         1496.5         5771         6         1544.0           5705         6         1444.7         5739         6         1496.5         5772         6         1547.0           5706         6         1444.8         5740         6         1499.6         5775         6         1550.1           5709         6         1450.8         5741         6         1690.6         5775         6         1550.1           5709         6         1450.8         5742         6         1501.1         5776         6         1553.2           5710         6         1452.4         5744         6         1504.2         5778         6         1554.7           5711         6         1455.4         5746         6         1507.2         5779         6         1557.8           5711         6         1458.5         5746         6         1507.2         5779         6         1557.8           5712         6         1461.5         5754         6                                                                                                                                                                                                       | 5701  | 6 | 1438.6 |      |   | 1490.4 | 5769  | 6 | 1542.5 |
| 5704         6         1443.2         5738         6         1495.0         5771         6         1545.5           5706         6         1444.7         5739         6         1496.5         5772         6         1545.5           5706         6         1444.8         5740         6         1498.0         5774         6         1550.1           5708         6         1449.3         5741         6         1499.0         5775         6         1550.1           5709         6         1450.8         5742         6         1501.1         5776         6         1551.6           5701         6         1453.9         5743         6         1502.2         5777         6         1554.7           5711         6         1453.9         5744         6         1504.2         5778         6         1557.8           5711         6         1456.9         5747         6         1508.8         5780         6         1557.8           5713         6         1456.9         5747         6         1508.8         5780         6         1550.8           5713         6         1461.6         5754         6                                                                                                                                                                                                       | 5702  | 6 | 1440.1 | 5736 |   |        | l     |   |        |
| 5705         6         1444.7         5739         6         1496.5         5772         6         1547.0           5706         6         1446.2         5740         6         1498.0         5774         6         1550.1           5709         6         1447.8         5740         6         1498.0         5774         6         1550.1           5709         6         1449.3         5741         6         1499.6         5775         6         1551.6           5709         6         1450.8         5742         6         1501.1         5776         6         1553.2           5710         6         1453.9         5745         6         1505.7         5778         6         1557.8           5711         6         1455.9         5745         6         1507.2         5779         6         1557.8           5713         6         1456.9         5747         6         1508.8         5780         6         1557.8           5715         6         1461.5         5749         6         1511.8         5782         6         1563.9           5717         6         1466.1         5752         6                                                                                                                                                                                                       | 5703  | 6 | 1441.6 |      |   |        | 5770  | 6 | 1544.0 |
| 5706         6         1446.2         5740         6         1498.0         5773         6         1548.6           5707         6         1447.8         5740         6         1499.6         5774         6         1550.1         5775         6         1551.6         5760         6         1551.6         5776         6         1553.2         5776         6         1553.2         5777         6         1554.7         5776         6         1553.2         5777         6         1554.7         5776         6         1554.7         5776         6         1553.2         5777         6         1554.7         5777         6         1556.2         5777         6         1556.2         5777         6         1556.2         5779         6         1556.2         5779         6         1557.2         5779         6         1557.2         5779         6         1557.2         5779         6         1557.2         5779         6         1557.2         5779         6         1557.2         5779         6         1557.2         5779         6         1557.2         5779         6         1557.2         5781         6         1569.3         5781         6         1569.3                                                                                                                            | 5704  | 6 | 1443.2 |      |   |        | 5771  |   | 1545.5 |
| 5707         6         1447.8         5740         6         1498.0         5774         6         1550.1           5708         6         1449.3         5741         6         1498.0         5775         6         1550.1           5709         6         1450.8         5742         6         1501.1         5776         6         1553.2           5710         6         1452.4         5744         6         1504.2         5778         6         1554.7           5711         6         1453.9         5745         6         1505.7         5779         6         1557.8           5711         6         1456.9         5747         6         1508.8         5780         6         1557.8           5713         6         1458.5         5748         6         1500.3         5781         6         1560.2           5714         6         1458.5         5748         6         1510.3         5781         6         1560.3           5715         6         1461.5         5775         6         1511.8         5782         6         1560.9           5717         6         1461.5         5755         6                                                                                                                                                                                                       | 5705  |   | 1444.7 | 5739 | 6 | 1496.5 |       |   |        |
| 5708         6         1449.3         5741         6         1499.6         5775         6         1551.6           5709         6         1450.8         5742         6         1501.1         5776         6         1551.6           5709         6         1450.8         5742         6         1501.2         5777         6         1553.2           5711         6         1453.9         5745         6         1507.2         5777         6         1557.8           5712         6         1455.4         5746         6         1507.2         5779         6         1557.8           5713         6         1456.9         5747         6         1508.8         5780         6         1557.8           5715         6         1460.0         5749         6         1511.8         5782         6         1560.8           5717         6         1461.5         5754         6         1511.8         5782         6         1563.9           5717         6         1461.5         5754         6         1511.8         5782         6         1563.4           5718         6         1461.5         5755         6                                                                                                                                                                                                       |       |   |        | l    |   |        |       |   |        |
| 5709         6         1480.8         5742         6         1501.1         5776         6         1553.2           5710         6         1452.4         5743         6         1502.6         5777         6         1555.2           5711         6         1452.4         5744         6         1504.2         5778         6         1556.2           5711         6         1455.4         5746         6         1507.2         5779         6         1557.8           5712         6         1456.9         5747         6         1508.2         5780         6         1557.8           5713         6         1466.9         5749         6         1510.3         5781         6         1569.3           5715         6         1461.5         5749         6         1511.8         5782         6         1560.8           5717         6         1463.1         5750         6         1511.8         5782         6         1560.4           5719         6         1461.5         5751         6         1514.9         5785         6         1560.4           5719         6         1466.1         5752         6                                                                                                                                                                                                       | 5707  |   |        |      |   |        |       |   |        |
| 5710         6         1452.4         5743         6         1502.6         5777         6         1554.7           5711         6         1452.4         5744         6         1504.2         5778         6         1556.2           5711         6         1453.9         5745         6         1505.7         5779         6         1557.8           5713         6         1458.5         5746         6         1508.8         5780         6         1559.3           5714         6         1458.5         5748         6         1510.3         5781         6         1560.8           5716         6         1461.5         5779         6         1563.9         5782         6         1560.9           5716         6         1461.5         5750         6         1511.8         5782         6         1560.9           5718         6         1461.5         5750         6         1511.4         5785         6         1566.0           5719         6         1466.1         5752         6         1511.4         5785         6         1567.0           5719         6         1467.6         5754         6                                                                                                                                                                                                       |       |   |        |      |   |        |       |   |        |
| 5710         6         1452.4         5744         6         1504.2         5778         6         1556.2           5711         6         1453.9         5746         6         1507.2         5779         6         1557.8           5713         6         1456.9         5747         6         1508.8         5780         6         1559.3           5714         6         1456.9         5748         6         1501.3         5781         6         1560.8           5715         6         1468.0         5748         6         1511.8         5782         6         1560.8           5716         6         1463.1         5750         6         1513.4         5782         6         1560.8           5718         6         1464.6         5751         6         1514.9         5782         6         1560.8           5719         6         1466.1         5751         6         1514.9         5786         6         1567.0           5719         6         1466.1         5752         6         1514.9         5786         6         1567.1           5720         6         1469.2         5755         6                                                                                                                                                                                                       | 5709  | 6 | 1450.8 |      |   |        |       |   |        |
| 5711         6         1453.9         5745         6         1505.7         5779         6         1557.8           5712         6         1455.4         5746         6         1507.2         5779         6         1557.8           5713         6         1456.9         5747         6         1508.8         5780         6         1559.3           5715         6         1460.0         5749         6         1511.8         5782         6         1560.8           5716         6         1461.5         5750         6         1511.8         5782         6         1563.9           5717         6         1463.1         5750         6         1514.9         5784         6         1563.4           5718         6         1463.1         5750         6         1514.9         5785         6         1563.9           5719         6         1466.1         5751         6         1514.9         5786         6         1560.8           5719         6         1466.1         5752         6         1516.4         5786         6         1570.0           5720         6         1467.2         5755         6                                                                                                                                                                                                       |       | _ |        |      |   |        |       |   |        |
| 5712         6         1455.4         5746         6         1507.2         5713         6         1456.9         5747         6         1508.8         5780         6         1559.3           5714         6         1458.5         5748         6         1510.3         5781         6         1560.8           5716         6         1461.5         5749         6         1511.8         5782         6         1562.4           5716         6         1461.5         5750         6         1513.4         5784         6         1563.9           5718         6         1463.1         5750         6         1514.9         5785         6         1566.0           5719         6         1466.1         5751         6         1514.9         5785         6         1566.0           5719         6         1467.6         5751         6         1514.9         5786         6         1566.0           5720         6         1467.6         5754         6         1519.5         5788         6         1570.1           5721         6         1470.7         5756         6         1521.0         5789         6         1573.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                |       |   |        |      |   |        |       |   |        |
| 5713         6         1456.9         5747         6         1508.8         5780         6         1559.3           5714         6         1468.5         5748         6         1510.3         5781         6         1560.8           5715         6         1460.0         5749         6         1511.8         5782         6         1560.8           5716         6         1463.1         5750         6         1513.4         5784         6         1563.9           5718         6         1464.6         5751         6         1514.9         5786         6         1567.0           5719         6         1467.6         5752         6         1516.4         5786         6         1560.4           5720         6         1467.6         5754         6         1517.9         5786         6         1570.1           5721         6         1469.2         5755         6         1521.0         5789         6         1571.6           5723         6         1470.7         5756         6         1522.5         5789         6         1574.7           5723         6         1472.2         5757         6                                                                                                                                                                                                       |       |   |        |      |   |        | 5779  | 6 | 1557.8 |
| 5714         6         1458.5         5748         6         1510.3         5781         6         1560.8           5715         6         1460.0         5749         6         1511.8         5782         6         1560.8           5716         6         1461.5         5750         6         1513.4         5784         6         1563.9           5717         6         1463.1         5750         6         1514.9         5785         6         1567.0           5719         6         1466.1         5752         6         1514.9         5785         6         1567.0           5720         6         1467.6         5753         6         1517.9         5787         6         1567.0           5721         6         1469.2         5755         6         1521.0         5789         6         1571.6           5721         6         1470.7         5756         6         1522.5         5788         6         1571.5           5723         6         1470.2         5756         6         1522.5         5790         6         1574.7           5724         6         1470.2         5757         6                                                                                                                                                                                                       |       |   |        |      |   |        |       |   |        |
| 5715         6         1460.0         5749         6         1511.8         5782         6         1562.4           5716         6         1461.5         5750         6         1513.4         5784         6         1563.9           5719         6         1463.1         5750         6         1514.9         5785         6         1567.0           5719         6         1466.1         5752         6         1516.4         5786         6         1567.0           5720         6         1467.6         5753         6         1517.9         5787         6         1570.1           5721         6         1469.2         5755         6         1521.0         5789         6         1573.1           5722         6         1470.7         5756         6         1522.5         5789         6         1574.7           5723         6         1470.7         5756         6         1522.5         5791         6         1574.7           5724         6         1473.2         5759         6         1527.1         5792         6         1574.7           5726         6         1475.2         5759         6                                                                                                                                                                                                       |       |   |        |      |   |        |       |   |        |
| 5716         6         1461.5         5783         6         1563.9           5717         6         1463.1         5750         6         1513.4         5784         6         1566.0           5718         6         1466.6         5751         6         1514.9         5785         6         1567.0           5719         6         1467.6         5752         6         1517.9         5787         6         1570.1           5720         6         1467.6         5754         6         1517.9         5788         6         1571.6           5721         6         1469.2         5755         6         1521.0         5789         6         1571.6           5722         6         1470.7         5756         6         1522.5         5789         6         1573.1           5723         6         1472.2         5757         6         1522.5         5791         6         1574.7           5724         6         1473.7         5758         6         1527.1         5792         6         1574.7           5726         6         1476.8         7575         6         1527.1         5792         6                                                                                                                                                                                                       |       |   |        |      |   |        |       |   |        |
| 5717         6         1463.1         5750         6         1513.4         5784         6         1566.4           5718         6         1464.6         5751         6         1514.9         5785         6         1566.0           5719         6         1466.1         5752         6         1516.4         5786         6         1568.0           5720         6         1467.6         5754         6         1517.9         5787         6         1570.1           5721         6         1469.2         5755         6         1521.0         5789         6         1571.6           5723         6         1470.7         5756         6         1522.5         5751         6         1524.1         5790         6         1574.7           5724         6         1472.2         5757         6         1525.6         5791         6         1574.7           5723         6         1475.2         5759         6         1527.1         5792         6         1576.2           5723         6         1476.8         5761         6         1528.7         5794         6         1579.3           5723         6                                                                                                                                                                                                       |       |   |        | 5749 | 6 | 1511.8 |       |   |        |
| 5718         6         1464.6         5751         6         1514.9         5785         6         1567.0           5719         6         1466.1         5752         6         1516.4         5786         6         1567.0           5720         6         1467.6         5754         6         1517.9         5788         6         1571.6           5721         6         1469.2         5755         6         1521.0         5789         6         1571.1           5722         6         1470.7         5756         6         1522.5         5723         6         1472.2         5757         6         1522.5         5790         6         1574.7           5724         6         1475.2         5758         6         1522.5         5791         6         1574.7           5725         6         1476.2         5758         6         1522.5         5792         6         1574.7           5726         6         1476.8         5760         6         1528.7         5794         6         1590.3           5728         6         1479.8         5761         6         1530.2         5795         6         1580.4 <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>                                                                                               |       |   |        |      | _ |        |       |   |        |
| 5719         6         1466.1         5752         6         1516.4         5786         6         1568.5           5720         6         1467.6         5754         6         1517.9         5788         6         1570.1           5721         6         1469.2         5755         6         1521.0         5789         6         1573.1           5722         6         1470.7         5756         6         1522.5         5790         6         1574.7           5724         6         1473.7         5758         6         1525.6         5791         6         1574.2           5725         6         1476.2         5759         6         1527.1         5792         6         1574.7           5726         6         1476.8         5759         6         1527.1         5792         6         1577.8           5726         6         1476.8         5760         6         1528.7         5793         6         1580.8           5728         6         1479.8         5761         6         1530.2         5795         6         1580.8           5729         6         1481.3         5762         6                                                                                                                                                                                                       |       |   |        |      |   |        |       |   |        |
| 5720         6         1467.6         5753         6         1517.9         5787         6         1570.1           5720         6         1469.2         5756         6         1521.0         5789         6         1571.6           5722         6         1470.7         5756         6         1522.5         5723         6         1472.2         5767         6         1524.1         5790         6         1574.7           5723         6         1473.7         5758         6         1522.5         5791         6         1574.7           5726         6         1476.8         5759         6         1527.1         5792         6         1576.3           5727         6         1476.8         5760         6         1527.1         5792         6         1579.3           5728         6         1476.8         5760         6         1522.1         5792         6         1570.2           5728         6         1476.8         5760         6         1522.1         5793         6         1570.3           5728         6         1479.8         5760         6         1530.2         5795         6         1580.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                |       |   |        |      |   |        |       |   |        |
| 5720         6         1467.6         5754         6         1519.5         5788         6         1571.6           5721         6         1489.2         5755         6         1521.0         5789         6         1573.1           5722         6         1470.7         5756         6         1522.5         5759         6         1524.1         5790         6         1574.7           5724         6         1472.2         5758         6         1524.1         5790         6         1574.7           5725         6         1475.2         5759         6         1525.6         5791         6         1576.2           5725         6         1476.8         5760         6         1528.7         5794         6         1579.8           5728         6         1478.3         5760         6         1528.7         5794         6         1580.8           5729         6         1479.8         5761         6         1530.2         5795         6         1582.4           5729         6         1481.3         5762         6         1531.7         5796         6         1583.9           5730         6                                                                                                                                                                                                       | 5/19  | 6 | 1466.1 |      |   |        |       |   |        |
| 5721         6         1469.2         5755         6         1521.0         5789         6         1573.1           5722         6         1470.7         5756         6         1522.5         5723         6         1472.2         5757         6         1524.1         5790         6         1574.7           5724         6         1475.2         5758         6         1525.6         5791         6         1576.2           5725         6         1475.2         5759         6         1527.1         5792         6         1577.8           5726         6         1476.8         5760         6         1528.7         5794         6         1580.3           5728         6         1479.8         5761         6         1530.2         5795         6         1580.4           5729         6         1481.3         5762         6         1531.7         5796         6         1583.9           5730         6         1482.8         5762         6         1533.3         5797         6         1585.5           5731         6         1482.8         5765         6         1536.3         5799         6         1588.5 <td></td> <td>_</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>                                                                                              |       | _ |        |      | - |        |       |   |        |
| 5722         6         1470.7         5756         6         1522.5         5723         6         1472.2         5757         6         1524.1         5790         6         1574.7           5724         6         1473.7         5758         6         1525.6         5791         6         1576.2           5725         6         1475.2         5759         6         1527.1         5792         6         1577.8           5726         6         1476.8         5760         6         1528.7         5793         6         1579.3           5728         6         1479.8         5761         6         1530.2         5795         6         1580.4           5729         6         1481.3         5762         6         1531.7         5796         6         1583.9           5730         6         1482.8         5764         6         1533.3         5797         6         1587.0           5731         6         1482.8         5764         6         1536.3         5799         6         1587.0           5732         6         1485.9         5766         6         1537.9         5799         6         1588.5 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>                                                                                              |       | - |        |      |   |        |       | - |        |
| 5723         6         1472.2         5757         6         1524.1         5790         6         1574.7           5724         6         1473.7         5758         6         1525.6         5791         6         1576.2           5725         6         1475.2         5759         6         1527.1         5792         6         1577.8           5726         6         1476.8         5760         6         1528.7         5793         6         1590.8           5728         6         1479.8         5761         6         1530.2         5795         6         1580.8           5729         6         1481.3         5762         6         1531.7         5796         6         1583.9           5730         6         1482.8         5764         6         1534.8         5798         6         1587.0           5731         6         1484.3         5765         6         1536.3         5799         6         1588.5           5732         6         1485.9         5766         6         1537.9         5799         6         1588.5                                                                                                                                                                                                                                                                      |       |   |        |      |   |        | 5789  | 6 | 1573.1 |
| 5724         6         1473.7         5758         6         1525.6         5791         6         1576.2           5725         6         1476.8         5759         6         1527.1         5792         6         1577.8           5726         6         1478.3         5760         6         1528.7         5794         6         1599.3           5728         6         1479.8         5761         6         1530.2         5795         6         1582.4           5729         6         1481.3         5762         6         1531.7         5796         6         1583.9           5730         6         1482.8         5764         6         1534.8         5798         6         1587.0           5731         6         1484.3         5765         6         1536.3         5799         6         1588.5           5732         6         1485.9         5766         6         1537.9                                                                                                                                                                                                                                                                                                                                                                                                                                |       |   |        |      |   |        |       |   |        |
| 5725         6         1475.2         5759         6         1527.1         5792         6         1577.8           5726         6         1478.3         5760         6         1528.7         5794         6         1579.3           5728         6         1479.8         5761         6         1530.2         5795         6         1582.4           5729         6         1481.3         5762         6         1531.7         5796         6         1583.9           5730         6         1482.8         5764         6         1533.3         5797         6         1587.0           5731         6         1484.3         5765         6         1536.3         5799         6         1588.5           5732         6         1485.9         5766         6         1537.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |   |        |      |   |        |       |   |        |
| 5726         6         1476.8         5760         6         1528.7         5793         6         1579.3           5727         6         1478.3         5760         6         1528.7         5794         6         1580.8           5728         6         1479.8         5761         6         1530.2         5795         6         1582.4           5729         6         1481.3         5762         6         1531.7         5796         6         1583.9           5730         6         1482.8         5764         6         1534.8         5798         6         1587.0           5731         6         1485.9         5766         6         1536.3         5799         6         1588.5           5732         6         1485.9         5766         6         1537.9         6         1588.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |   |        |      |   |        |       |   |        |
| 5727         6         1478.3         5760         6         1528.7         5794         6         1500.8           5728         6         1479.8         5761         6         1530.2         5795         6         1582.4           5729         6         1481.3         5762         6         1531.7         5796         6         1583.9           5730         6         1482.8         5764         6         1534.8         5798         6         1587.0           5731         6         1484.3         5765         6         1536.3         5799         6         1588.5           5732         6         1485.9         5766         6         1537.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |   |        | 5759 | 6 | 1527.1 |       |   |        |
| 5728         6         1479.8         5761         6         1530.2         5795         6         1582.4           5729         6         1481.3         5762         6         1531.7         5796         6         1583.9           5730         6         1482.8         5764         6         1534.8         5798         6         1587.0           5731         6         1484.3         5765         6         1536.3         5799         6         1588.5           5732         6         1485.9         5766         6         1537.9         6         1588.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |   |        |      | _ |        |       |   |        |
| 5729         6         1481.3         5762         6         1531.7         5796         6         1583.9           5730         6         1482.8         5764         6         1533.3         5797         6         1585.5           5731         6         1484.3         5765         6         1536.3         5799         6         1587.0           5732         6         1485.9         5766         6         1537.9         5799         6         1588.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |   |        |      |   |        |       |   |        |
| 5730         6         1482.8         5764         6         1533.3         5797         6         1585.5           5731         6         1484.3         5765         6         1536.3         5799         6         1587.0           5732         6         1485.9         5766         6         1537.9         6         1588.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |   |        |      |   |        |       |   |        |
| 5730         6         1482.8         5764         6         1534.8         5798         6         1587.0           5731         6         1484.3         5765         6         1536.3         5799         6         1588.5           5732         6         1485.9         5766         6         1537.9         6         1588.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5729  | 6 | 1481.3 |      |   |        |       |   |        |
| 5731 6 1484.3 5765 6 1536.3 5799 6 1588.5 5732 6 1485.9 5766 6 1537.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | _ |        |      |   | ,      |       | - |        |
| 5732 6 1485.9 5766 6 1537.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |   |        |      |   |        |       |   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |   |        |      |   |        | 5799  | 6 | 1588.5 |
| 5733 6 1487.4 5767 6 1539.4 <b>5800 6 1590.1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |   |        |      | - |        |       |   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5733  | 6 | 1487.4 | 5767 | 6 | 1539.4 | 5800  | 6 | 1590.1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |   |        |      |   | - 1    |       |   |        |

Use check point at 5800 Kc

Frequency: 5800-5900 Kc

| Freq. | A | В      | Freq. | Α | В      | Freq. | A | В      |
|-------|---|--------|-------|---|--------|-------|---|--------|
| 5800  | 6 | 1590.1 | 5834  | 6 | 1642.9 | 5868  | 6 | 1696.2 |
| 5801  | 6 | 1591.6 | 5835  | 6 | 1644.5 | 5869  | 6 | 1697.8 |
| 5802  | 6 | 1593.2 | 5836  | 6 | 1646.0 | 1     |   |        |
| 5803  | 6 | 1594.7 | 5837  | 6 | 1647.6 | 5870  | 6 | 1699.3 |
| 5804  | 6 | 1596.3 | 5838  | 6 | 1649.1 | 5871  | 6 | 1700.9 |
| 5805  | 6 | 1597.8 | 5839  | 6 | 1650.7 | 5872  | 6 | 1702.5 |
| 5806  | 6 | 1599.4 | ł     |   |        | 5873  | 6 | 1704.1 |
| 5807  | 6 | 1600.9 | 5840  | 6 | 1652.3 | 5874  | 6 | 1705.7 |
| 5808  | 6 | 1602.5 | 5841  | 6 | 1653.8 | 5875  | 6 | 1707.2 |
| 5809  | 6 | 1604.0 | 5842  | 6 | 1655.4 | 5876  | 6 | 1708.8 |
|       |   |        | 5843  | 6 | 1657.0 | 5877  | 6 | 1710.4 |
| 5810  | 6 | 1605.6 | 5844  | 6 | 1658.5 | 5878  | 6 | 1712.0 |
| 5811  | 6 | 1607.1 | 5845  | 6 | 1660.1 | 5879  | 6 | 1713.5 |
| 5812  | 6 | 1608.7 | 5846  | 6 | 1661.7 |       |   |        |
| 5813  | 6 | 1610.2 | 5847  | 6 | 1663.2 | 5880  | 6 | 1715.1 |
| 5814  | 6 | 1611.8 | 5848  | 6 | 1664.8 | 5881  | 6 | 1716.7 |
| 5815  | 6 | 1613.3 | 5849  | 6 | 1666.3 | 5882  | 6 | 1718.3 |
| 5816  | 6 | 1614.9 | ł     |   |        | 5883  | 6 | 1719.9 |
| 5817  | 6 | 1616.4 | 5850  | 6 | 1667.9 | 5884  | 6 | 1721.5 |
| 5818  | 6 | 1618.0 | 5851  | 6 | 1669.5 | 5885  | 6 | 1723.0 |
| 5819  | 6 | 1619.5 | 5852  | 6 | 1671.0 | 5886  | 6 | 1724.6 |
|       |   |        | 5853  | 6 | 1672.6 | 5887  | 6 | 1726.2 |
| 5820  | 6 | 1621.1 | 5854  | 6 | 1674.2 | 5888  | 6 | 1727.8 |
| 5821  | 6 | 1622.6 | 5855  | 6 | 1675.7 | 5889  | 6 | 1729.4 |
| 5822  | 6 | 1624.2 | 5856  | 6 | 1677.3 |       |   |        |
| 5823  | 6 | 1625.7 | 5857  | 6 | 1678.9 | 5890  | 6 | 1731.0 |
| 5824  | 6 | 1627.3 | 5858  | 6 | 1680.4 | 5891  | 6 | 1732.5 |
| 5825  | 6 | 1628.9 | 5859  | 6 | 1682.0 | 5892  | 6 | 1734.1 |
| 5826  | 6 | 1630.4 |       |   |        | 5893  | 6 | 1735.7 |
| 5827  | 6 | 1632.0 | 5860  | 6 | 1683.6 | 5894  | 6 | 1737.3 |
| 5828  | 6 | 1633.5 | 5861  | 6 | 1685.1 | 5895  | 6 | 1738.9 |
| 5829  | 6 | 1635.1 | 5862  | 6 | 1686.7 | 5896  | 6 | 1740.5 |
|       |   | - 1    | 5863  | 6 | 1688.3 | 5897  | 6 | 1742.0 |
| 5830  | 6 | 1636.7 | 5864  | 6 | 1689.9 | 5898  | 6 | 1743.6 |
| 5831  | 6 | 1638.2 | 5865  | 6 | 1691.5 | 5899  | 6 | 1745.2 |
| 5832  | 6 | 1639.8 | 5866  | 6 | 1693.0 |       |   |        |
| 5833  | 6 | 1641.3 | 5867  | 6 | 1694.6 | 5900  | 6 | 1746.8 |
|       |   | I      |       |   |        |       |   |        |

Use check point at 5800 Ke

# Frequency: 5900-6000 Kc

| Freq.        | A      | В                | Freq.        | A      | В      | Freq. | A | В      |
|--------------|--------|------------------|--------------|--------|--------|-------|---|--------|
| 5900         | 6      | 1746.8           | 5934         | 6      | 1801.5 | 5968  | 6 | 1856.9 |
| 5901         | 6      | 1748.4           | 5935         | 6      | 1803.1 | 5969  | 6 | 1858.6 |
| 5902         | 6      | 1750.0           | 5936         | 6      | 1804.7 | l     |   |        |
| 5903         | 6      | 1751.6           | 5937         | 6      | 1806.3 | 5970  | 6 | 1860.2 |
| 5904         | 6      | 1753.2           | 5938         | 6      | 1808.0 | 5971  | 6 | 1861.9 |
| 5905         | 6      | 1754.8           | 5939         | 6      | 1809.6 | 5972  | 6 | 1863.5 |
| 5906         | 6      | 1756.4           | l            |        |        | 5973  | 6 | 1865.2 |
| 5907         | 6      | 1758.0           | 5940         | 6      | 1811.2 | 5974  | 6 | 1866.8 |
| 5908         | 6      | 1759.6           | 5941         | 6      | 1812.8 | 5975  | 6 | 1868.5 |
| 5909         | 6      | 1761.2           | 5942         | 6      | 1814.4 | 5976  | 6 | 1870.1 |
|              |        |                  | 5943         | 6      | 1816.1 | 5977  | 6 | 1871.8 |
| 5910         | 6      | 1762.8           | 5944         | 6      | 1817.7 | 5978  | 6 | 1873.5 |
| 5911         | 6      | 1764.4           | 5945         | 6      | 1819.3 | 5979  | 6 | 1875.1 |
| 5912         | 6      | 1766.0           | 5946         | 6      | 1820.9 |       |   |        |
| 5913         | 6      | 1767.7           | 5947         | 6      | 1822.6 | 5980  | 6 | 1876.8 |
| 5914         | 6      | 1769.3           | 5948         | 6      | 1824.2 | 5981  | 6 | 1878.4 |
| 5915         | 6      | 1770.9           | 5949         | 6      | 1825.8 | 5982  | 6 | 1880.1 |
| 5916         | 6      | 1772.5           |              | _      |        | 5983  | 6 | 1881.7 |
| 5917         | 6      | 1774.1           | 5950         | 6      | 1827.4 | 5984  | 6 | 1883.4 |
| 5918         | 6      | 1775.7           | 5951         | 6      | 1829.1 | 5985  | 6 | 1885.1 |
| 5919         | ь      | 1777.3           | 5952         | 6      | 1830.7 | 5986  | 6 | 1886.7 |
| 5920         | 6      | 4370.0           | 5953         | 6      | 1832.3 | 5987  | 6 | 1888.4 |
|              | 6      | 1778.9           | 5954         | 6      | 1833.9 | 5988  | 6 | 1890.1 |
| 5921         | 6      | 1780.5           | 5955         | 6      | 1835.6 | 5989  | 6 | 1891.7 |
| 5922         |        | 1782.1           | 5956         | 6      | 1837.2 |       | _ |        |
| 5923         | 6      | 1783.7           | 5957         | 6      | 1838.8 | 5990  | 6 | 1893.4 |
| 5924         | 6      | 1785.3           | 5958         | 6      | 1840.4 | 5991  | 6 | 1895.0 |
| 5925         | 6      | 1787.0           | 5959         | 6      | 1842.1 | 5992  | 6 | 1896.7 |
| 5926<br>5927 | 6<br>6 | 1788.6<br>1790.2 | 5000         |        |        | 5993  | 6 | 1898.4 |
| 5923         | 6      | 1790.2           | 5960<br>5961 | 6      | 1843.7 | 5994  | 6 | 1900.0 |
| 5929         | 6      | 1791.8           | 5962         | 6<br>6 | 1845.3 | 5995  | 6 | 1901.7 |
| 3929         | o      | 1/93.4           | 5963         |        | 1847.0 | 5996  | 6 | 1903.4 |
| 5930         | 6      | 1795.0           |              | 6      | 1848.6 | 5997  | 6 | 1905.0 |
| 5930<br>5931 | 6      | 1795.0           | 5964<br>5965 | 6      | 1850.3 | 5998  | 6 | 1906.7 |
| 5932         | 6      | 1798.3           | 5966         | 6      | 1852.0 | 5999  | 6 | 1908.3 |
| 5933         | 6      |                  |              | 6      | 1853.6 | ****  | _ | 4040.0 |
| 2933         | 0      | 1799.9           | 5967         | 6      | 1855.3 | 6000  | 6 | 1910.0 |
|              |        |                  |              |        |        |       |   |        |
|              |        |                  |              |        |        |       |   |        |

Use check point at 6000 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: 6000-6100 Kc |   |       |       |   |       |       |   |       |  |  |  |
|-------------------------|---|-------|-------|---|-------|-------|---|-------|--|--|--|
| Freq.                   | Α | В     | Freq. | Α | В     | Freq. | A | В     |  |  |  |
| 6000                    | 7 | 100.1 | 6034  | 7 | 142.0 | 6068  | 7 | 183.8 |  |  |  |
| 6001                    | 7 | 101.4 | 6035  | 7 | 143.3 | 6069  | 7 | 185.0 |  |  |  |
| 6002                    | 7 | 102.6 | 6036  | 7 | 144.5 | 1     |   |       |  |  |  |
| 6003                    | 7 | 103.8 | 6037  | 7 | 145.7 | 6070  | 7 | 186.2 |  |  |  |
| 6004                    | 7 | 105.1 | 6038  | 7 | 147.0 | 6071  | 7 | 187.4 |  |  |  |
| 6005                    | 7 | 106.3 | 6039  | 7 | 148.2 | 6072  | 7 | 188.7 |  |  |  |
| 6006                    | 7 | 107.5 | i     |   |       | 6073  | 7 | 189.9 |  |  |  |
| 6007                    | 7 | 108.8 | 6040  | 7 | 149.4 | 6074  | 7 | 191.1 |  |  |  |
| 6008                    | 7 | 110.0 | 6041  | 7 | 150.6 | 6075  | 7 | 192.3 |  |  |  |
| 6009                    | 7 | 111.2 | 6042  | 7 | 151.9 | 6076  | 7 | 193.6 |  |  |  |
|                         |   |       | 6043  | 7 | 153.1 | 6077  | 7 | 194.8 |  |  |  |
| 6010                    | 7 | 112.5 | 6044  | 7 | 154.3 | 6078  | 7 | 196.0 |  |  |  |
| 6011                    | 7 | 113.7 | 6045  | 7 | 155.6 | 6079  | 7 | 197.2 |  |  |  |
| 6012                    | 7 | 114.9 | 6046  | 7 | 156.8 |       |   |       |  |  |  |
| 6013                    | 7 | 116.2 | 6047  | 7 | 158.0 | 6080  | 7 | 198.5 |  |  |  |
| 6014                    | 7 | 117.4 | 6048  | 7 | 159.2 | 6081  | 7 | 199.7 |  |  |  |
| 6015                    | 7 | 118.6 | 6049  | 7 | 160.5 | 6082  | 7 | 200.9 |  |  |  |
| 6016                    | 7 | 119.9 | ŀ     |   |       | 6083  | 7 | 202.1 |  |  |  |
| 6017                    | 7 | 121.1 | 6050  | 7 | 161.7 | 6084  | 7 | 203.3 |  |  |  |
| 6018                    | 7 | 122.3 | 6051  | 7 | 162.9 | 6085  | 7 | 204.6 |  |  |  |
| 6019                    | 7 | 123.6 | 6052  | 7 | 164.1 | 6086  | 7 | 205.8 |  |  |  |
|                         |   |       | 6053  | 7 | 165.4 | 6087  | 7 | 207.0 |  |  |  |
| 6020                    | 7 | 124.8 | 6054  | 7 | 166.6 | 6088  | 7 | 208.2 |  |  |  |
| 6021                    | 7 | 126.0 | 6055  | 7 | 167.8 | 6089  | 7 | 209.5 |  |  |  |
| 6022                    | 7 | 127.3 | 6056  | 7 | 169.1 | 1     |   |       |  |  |  |
| 6023                    | 7 | 128.5 | 6057  | 7 | 170.3 | 6090  | 7 | 210.7 |  |  |  |
| 6024                    | 7 | 129.7 | 6058  | 7 | 171.5 | 6091  | 7 | 211.9 |  |  |  |
| 6025                    | 7 | 131.0 | 6059  | 7 | 172.7 | 6092  | 7 | 213.1 |  |  |  |
| 6026                    | 7 | 132.2 | 1     |   |       | 6093  | 7 | 214,4 |  |  |  |
| 6027                    | 7 | 133.4 | 6060  | 7 | 174.0 | 6094  | 7 | 215.6 |  |  |  |
| 6028                    | 7 | 134.7 | 6061  | 7 | 175.2 | 6095  | 7 | 216.8 |  |  |  |
| 6029                    | 7 | 135.9 | 6062  | 7 | 176.4 | 6096  | 7 | 218.0 |  |  |  |
|                         |   |       | 6063  | 7 | 177.6 | 6097  | 7 | 219.3 |  |  |  |
| 6030                    | 7 | 137.1 | 6064  | 7 | 178.9 | 6098  | 7 | 220.5 |  |  |  |
| 6031                    | 7 | 138.4 | 6065  | 7 | 180.1 | 6099  | 7 | 221.7 |  |  |  |
| 6032                    | 7 | 139.6 | 6066  | 7 | 181.3 | 1     |   |       |  |  |  |
| 6033                    | 7 | 140.8 | 6067  | 7 | 182.5 | 6100  | 7 | 222.9 |  |  |  |

Use check point at 6000 Kc

Frequency: 6100-6200 Kc

Freq. A B Freq. A B

| 6100 | 7 | 222.9 | 6134 | 7 | 264.6 | 6168 | 7 | 306.5 |
|------|---|-------|------|---|-------|------|---|-------|
| 6101 | 7 | 224.2 | 6135 | 7 | 265.9 | 6169 | 7 | 307.7 |
| 6102 | 7 | 225.4 | 6136 | 7 | 267.1 |      |   |       |
| 6103 | 7 | 226.6 | 6137 | 7 | 268.3 | 6170 | 7 | 308.9 |
| 6104 | 7 | 227.8 | 6138 | 7 | 269.6 | 6171 | 7 | 310.2 |
| 6105 | 7 | 229.1 | 6139 | 7 | 270.8 | 6172 | 7 | 311.4 |
| 6106 | 7 | 230.3 |      |   |       | 6173 | 7 | 312.6 |
| 6107 | 7 | 231.5 | 6140 | 7 | 272.0 | 6174 | 7 | 313.8 |
| 6108 | 7 | 232.7 | 6141 | 7 | 273.2 | 6175 | 7 | 315.1 |
| 6109 | 7 | 234.0 | 6142 | 7 | 274.5 | 6176 | 7 | 316.3 |
|      |   |       | 6143 | 7 | 275.7 | 6177 | 7 | 317.5 |
| 6110 | 7 | 235.2 | 6144 | 7 | 276.9 | 6178 | 7 | 318.8 |
| 6111 | 7 | 236.4 | 6145 | 7 | 278.2 | 6179 | 7 | 320.0 |
| 6112 | 7 | 237.6 | 6146 | 7 | 279.4 |      |   |       |
| 6113 | 7 | 238.9 | 6147 | 7 | 280.6 | 6180 | 7 | 321.2 |
| 6114 | 7 | 240.1 | 6148 | 7 | 281.8 | 6181 | 7 | 322.5 |
| 6115 | 7 | 241.3 | 6149 | 7 | 283.1 | 6182 | 7 | 323.7 |
| 6116 | 7 | 242.5 |      |   |       | 6183 | 7 | 324.9 |
| 6117 | 7 | 243.8 | 6150 | 7 | 284.3 | 6184 | 7 | 326.2 |
| 6118 | 7 | 245.0 | 6151 | 7 | 285.5 | 6185 | 7 | 327.4 |
| 6119 | 7 | 246.2 | 6152 | 7 | 286.8 | 6186 | 7 | 328.6 |
|      |   |       | 6153 | 7 | 288.0 | 6187 | 7 | 329.8 |
| 6120 | 7 | 247.4 | 6154 | 7 | 289.2 | 6188 | 7 | 331.1 |
| 6121 | 7 | 248.7 | 6155 | 7 | 290.5 | 6189 | 7 | 332.3 |
| 6122 | 7 | 249.9 | 6156 | 7 | 291.7 |      |   |       |
| 6123 | 7 | 251.1 | 6157 | 7 | 292.9 | 6190 | 7 | 333.5 |
| 6124 | 7 | 252.4 | 6158 | 7 | 294.2 | 6191 | 7 | 334.8 |
| 6125 | 7 | 253.6 | 6159 | 7 | 295.4 | 6192 | 7 | 336.0 |
| 6126 | 7 | 254.8 |      |   |       | 6193 | 7 | 337.2 |
| 6127 | 7 | 256.0 | 6160 | 7 | 296.6 | 6194 | 7 | 338.5 |
| 6128 | 7 | 257.3 | 6161 | 7 | 297.8 | 6195 | 7 | 339.7 |
| 6129 | 7 | 258.5 | 6162 | 7 | 299.1 | 6196 | 7 | 340.9 |
|      |   |       | 6163 | 7 | 300.3 | 6197 | 7 | 342.1 |
| 6130 | 7 | 259.7 | 6164 | 7 | 301.5 | 6198 | 7 | 343.4 |
| 6131 | 7 | 261.0 | 6165 | 7 | 302.8 | 6199 | 7 | 344.6 |
| 6132 | 7 | 262.2 | 6166 | 7 | 304.0 |      |   |       |
| 6133 | 7 | 263.4 | 6167 | 7 | 305.2 | 6200 | 7 | 345.8 |
|      |   |       |      |   | 1     |      |   |       |

Use check point at 6000 or 6300 Kc, whichever is nearer

Frequency: 6200-6300 Kc

| Freq. | Α | В     | Freq. | Α | В     | ir    |                  | ••            |
|-------|---|-------|-------|---|-------|-------|------------------|---------------|
|       |   |       |       |   | 1)    | Freq. | $\boldsymbol{A}$ | В             |
| 6200  | 7 | 345.8 | 6234  | 7 | 387.7 | 6268  | 7                | 429.9         |
| 6201  | 7 | 347.1 | 6235  | 7 | 388.9 | 6269  | 7                | 431.1         |
| 6202  | 7 | 348.3 | 6236  | 7 | 390.1 |       |                  |               |
| 6203  | 7 | 349.5 | 6237  | 7 | 391.4 | 6270  | 7                | 432.3         |
| 6204  | 7 | 350.8 | 6238  | 7 | 392.6 | 6271  | 7                | 433.6         |
| 6205  | 7 | 352.0 | 6239  | 7 | 393.8 | 6272  | 7                | 434.8         |
| 6206  | 7 | 353.2 |       |   |       | 6273  | 7                | 436.1         |
| 6207  | 7 | 354.4 | 6240  | 7 | 395.1 | 6274  | 7                | 437.3         |
| 6208  | 7 | 355.7 | 6241  | 7 | 396.3 | 6275  | 7                | 438.5         |
| 6209  | 7 | 356.9 | 6242  | 7 | 397.5 | 6276  | 7                | 439.8         |
|       |   |       | 6243  | 7 | 398.8 | 6277  | 7                | 441.0         |
| 6210  | 7 | 358.1 | 6244  | 7 | 400.0 | 6278  | 7                | 442.3         |
| 6211  | 7 | 359.4 | 6245  | 7 | 401.3 | 6279  | 7                | 443.5         |
| 6212  | 7 | 360.6 | 6246  | 7 | 402.5 | l     |                  |               |
| 6213  | 7 | 361.8 | 6247  | 7 | 403.8 | 6280  | 7                | 444.8         |
| 6214  | 7 | 363.1 | 6248  | 7 | 405.0 | 6281  | 7                | 446.0         |
| 6215  | 7 | 364.3 | 6249  | 7 | 406.2 | 6282  | 7                | 447.2         |
| 6216  | 7 | 365.5 |       |   |       | 6283  | 7                | 448.5         |
| 6217  | 7 | 366.8 | 6250  | 7 | 407.5 | 6284  | 7                | 449.7         |
| 6218  | 7 | 368.0 | 6251  | 7 | 408.7 | 6285  | 7                | 451.0         |
| 6219  | 7 | 369.2 | 6252  | 7 | 410.0 | 6286  | 7                | 452.2         |
|       |   |       | 6253  | 7 | 411.2 | 6287  | 7                | 453.4         |
| 6220  | 7 | 370.4 | 6254  | 7 | 412.5 | 6288  | 7                | 454.7         |
| 6221  | 7 | 371.7 | 6255  | 7 | 413.7 | 6289  | 7                | 455.9         |
| 6222  | 7 | 372.9 | 6256  | 7 | 414.9 |       |                  |               |
| 6223  | 7 | 374.1 | 6257  | 7 | 416.2 | 6290  | 7                | 457.2         |
| 6224  | 7 | 375.4 | 6258  | 7 | 417.4 | 6291  | 7                | 458.4         |
| 6225  | 7 | 376.6 | 6259  | 7 | 418.7 | 6292  | 7                | <b>4</b> 59.6 |
| 6226  | 7 | 377.8 |       |   |       | 6293  | 7                | 460.9         |
| 6227  | 7 | 379.1 | 6260  | 7 | 419.9 | 6294  | 7                | 462.1         |
| 6228  | 7 | 380.3 | 6261  | 7 | 421.2 | 6295  | 7                | 463.4         |
| 6229  | 7 | 381.5 | 6262  | 7 | 422.4 | 6296  | 7                | 464.6         |
|       |   |       | 6263  | 7 | 423.6 | 6297  | 7                | 465.9         |
| 6230  | 7 | 382.8 | 6264  | 7 | 424.9 | 6298  | 7                | 467.1         |
| 6231  | 7 | 384.0 | 6265  | 7 | 426.1 | 6299  | 7                | 468.3         |
| 6232  | 7 | 385.2 | 6266  | 7 | 427.4 |       |                  |               |
| 6233  | 7 | 386.4 | 6267  | 7 | 428.6 | 6300  | 7                | 469.6         |
|       |   | ]     |       |   |       |       |                  |               |

Use check point at 6300 Kc

Frequency: 6300-6400 Kc

| Freq. | Α | В     | Freq. | Α | В     | Freq. | Α | В              |  |  |  |
|-------|---|-------|-------|---|-------|-------|---|----------------|--|--|--|
| 6300  | 7 | 469.6 | 6334  | 7 | 511.7 | 6368  | 7 | 5 <b>54</b> .1 |  |  |  |
| 6301  | 7 | 470.8 | 6335  | 7 | 513.0 | 6369  | 7 | 555.3          |  |  |  |
| 6302  | 7 | 472.0 | 6336  | 7 | 514.2 |       |   |                |  |  |  |
| 6303  | 7 | 473.3 | 6337  | 7 | 515.4 | 6370  | 7 | 556.6          |  |  |  |
| 6304  | 7 | 474.5 | 6338  | 7 | 516.7 | 6371  | 7 | 557.8          |  |  |  |
| 6305  | 7 | 475.8 | 6339  | 7 | 517.9 | 6372  | 7 | 559.0          |  |  |  |
| 6306  | 7 | 477.0 | ł     |   |       | 6373  | 7 | 560.3          |  |  |  |
| 6307  | 7 | 478.2 | 6340  | 7 | 519.2 | 6374  | 7 | 561.5          |  |  |  |
| 6308  | 7 | 479.5 | 6341  | 7 | 520.4 | 6375  | 7 | 562.8          |  |  |  |
| 6309  | 7 | 480.7 | 6342  | 7 | 521.7 | 6376  | 7 | 564.0          |  |  |  |
|       |   |       | 6343  | 7 | 522.9 | 6377  | 7 | <b>565.</b> 3  |  |  |  |
| 6310  | 7 | 482.C | 6344  | 7 | 524.2 | 6378  | 7 | 566.5          |  |  |  |
| 6311  | 7 | 483.2 | 6345  | 7 | 525.4 | 6379  | 7 | 567.7          |  |  |  |
| 6312  | 7 | 484.4 | 6346  | 7 | 526.7 |       |   |                |  |  |  |
| 6313  | 7 | 485.7 | 6347  | 7 | 527.9 | 6380  | 7 | 569.0          |  |  |  |
| 6314  | 7 | 486.9 | 6348  | 7 | 529.2 | 6381  | 7 | 570.2          |  |  |  |
| 6315  | 7 | 488.1 | 6349  | 7 | 530.4 | 6382  | 7 | 571.5          |  |  |  |
| 6316  | 7 | 489.4 |       |   |       | 6383  | 7 | 572.7          |  |  |  |
| 6317  | 7 | 490.6 | 6350  | 7 | 531.7 | 6384  | 7 | 574.0          |  |  |  |
| 6318  | 7 | 491.9 | 6351  | 7 | 532.9 | 6385  | 7 | 575.2          |  |  |  |
| 6319  | 7 | 493.1 | 6352  | 7 | 534.2 | 6386  | 7 | 576.4          |  |  |  |
|       |   |       | 6353  | 7 | 535.4 | 6387  | 7 | 577.7          |  |  |  |
| 6320  | 7 | 494.3 | 6354  | 7 | 536.6 | 6388  | 7 | 578.9          |  |  |  |
| 6321  | 7 | 495.6 | 6355  | 7 | 537.9 | 6389  | 7 | 580.2          |  |  |  |
| 6322  | 7 | 496.8 | 6356  | 7 | 539.1 | 1     |   |                |  |  |  |
| 6323  | 7 | 498.1 | 6357  | 7 | 540.4 | 6390  | 7 | 581.4          |  |  |  |
| 6324  | 7 | 499.3 | 6358  | 7 | 541.6 | 6391  | 7 | 582.7          |  |  |  |
| 6325  | 7 | 500.5 | 6359  | 7 | 542.9 | 6392  | 7 | 583.9          |  |  |  |
| 6326  | 7 | 501.8 |       |   |       | 6393  | 7 | 585.2          |  |  |  |
| 6327  | 7 | 503.0 | 6360  | 7 | 544.1 | 6394  | 7 | 586.4          |  |  |  |
| 6328  | 7 | 504.2 | 6361  | 7 | 545.4 | 6395  | 7 | 587.7          |  |  |  |
| 6329  | 7 | 505.5 | 6362  | 7 | 546.6 | 6396  | 7 | 588.9          |  |  |  |
|       |   |       | 6363  | 7 | 547.9 | 6397  | 7 | 590.1          |  |  |  |
| 6330  | 7 | 506.7 | 6364  | 7 | 549.1 | 6398  | 7 | 591.4          |  |  |  |
| 6331  | 7 | 508.0 | 6365  | 7 | 550.3 | 6399  | 7 | 592.6          |  |  |  |
| 6332  | 7 | 509.2 | 6366  | 7 | 551.6 |       |   |                |  |  |  |
| 6333  | 7 | 510.5 | 6367  | 7 | 552.8 | 6400  | 7 | 593.9          |  |  |  |
|       |   |       |       |   |       |       |   |                |  |  |  |
|       | _ |       |       |   |       |       |   |                |  |  |  |

Use check point at 6300 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: 6400—6500 Kc |   |       |        |   |       |       |   |       |  |  |  |
|-------------------------|---|-------|--------|---|-------|-------|---|-------|--|--|--|
| Freq.                   | A | В     | Freq.  | A | В     | Freq. | A | В     |  |  |  |
| 6400                    | 7 | 593.9 | 6434   | 7 | 636.3 | 6468  | 7 | 678.6 |  |  |  |
| 6401                    | 7 | 595.1 | 6435   | 7 | 637.5 | 6469  | 7 | 679.9 |  |  |  |
| 6402                    | 7 | 596.4 | 6436   | 7 | 638.8 |       |   |       |  |  |  |
| 6403                    | 7 | 597.6 | 6437   | 7 | 640.0 | 6470  | 7 | 681.1 |  |  |  |
| 6404                    | 7 | 598.9 | 6438   | 7 | 641.3 | 6471  | 7 | 682.4 |  |  |  |
| 6405                    | 7 | 600.1 | 6439   | 7 | 642.5 | 6472  | 7 | 683.6 |  |  |  |
| 6406                    | 7 | 601.4 | l      |   |       | 6473  | 7 | 684.9 |  |  |  |
| 6407                    | 7 | 602.6 | 6440   | 7 | 643.8 | 6474  | 7 | 686.1 |  |  |  |
| 6408                    | 7 | 603.9 | 6441   | 7 | 645.0 | 6475  | 7 | 687.4 |  |  |  |
| 6409                    | 7 | 605.1 | 6442   | 7 | 646.3 | 6476  | 7 | 688.6 |  |  |  |
|                         |   |       | 6443   | 7 | 647.5 | 6477  | 7 | 689.8 |  |  |  |
| 6410                    | 7 | 606.4 | 6444   | 7 | 648.8 | 6478  | 7 | 691.Í |  |  |  |
| 6411                    | 7 | 607.6 | 6445   | 7 | 650.0 | 6479  | 7 | 692.3 |  |  |  |
| 6412                    | 7 | 608.9 | 6446   | 7 | 651.2 |       |   |       |  |  |  |
| 6413                    | 7 | 610.1 | 6447   | 7 | 652.5 | 6480  | 7 | 693.6 |  |  |  |
| 6414                    | 7 | 611.4 | 6448   | 7 | 653.7 | 6481  | 7 | 694.8 |  |  |  |
| 6415                    | 7 | 612.6 | 6449   | 7 | 655.0 | 6482  | 7 | 696.1 |  |  |  |
| 6416                    | 7 | 613.8 |        |   |       | 6483  | 7 | 697.3 |  |  |  |
| 6417                    | 7 | 615.1 | 6450   | 7 | 656.2 | 6484  | 7 | 698.6 |  |  |  |
| 6418                    | 7 | 616.3 | 6451   | 7 | 657.5 | 6485  | 7 | 699.8 |  |  |  |
| 6419                    | 7 | 617.6 | 6452   | 7 | 658.7 | 6486  | 7 | 701.1 |  |  |  |
|                         |   |       | 6453   | 7 | 660.0 | 6487  | 7 | 702.3 |  |  |  |
| 6420                    | 7 | 618.8 | 6454   | 7 | 661.2 | 6488  | 7 | 703.6 |  |  |  |
| 6421                    | 7 | 620.1 | 6455   | 7 | 662.5 | 6489  | 7 | 704.8 |  |  |  |
| 6422                    | 7 | 621.3 | 6456   | 7 | 663.7 |       |   |       |  |  |  |
| 6423                    | 7 | 622.6 | 6457   | 7 | 665.0 | 6490  | 7 | 706.0 |  |  |  |
| 6424                    | 7 | 623.8 | 6458   | 7 | 666.2 | 6491  | 7 | 707.3 |  |  |  |
| 6425                    | 7 | 625.1 | 6459   | 7 | 667.4 | 6492  | 7 | 708.5 |  |  |  |
| 6426                    | 7 | 626.3 |        |   |       | 6493  | 7 | 709.8 |  |  |  |
| 6427                    | 7 | 627.6 | 646Q   | 7 | 668.7 | 6494  | 7 | 711.0 |  |  |  |
| 6428                    | 7 | 628.8 | 6461 - | 7 | 669.9 | 6495  | 7 | 712.3 |  |  |  |
| 6429                    | 7 | 630.1 | 6462   | 7 | 671.2 | 6496  | 7 | 713.5 |  |  |  |
|                         |   |       | 6463   | 7 | 672.4 | 6497  | 7 | 714.8 |  |  |  |
| 6430                    | 7 | 631.3 | 6464   | 7 | 673.7 | 6498  | 7 | 716.0 |  |  |  |
| 6431                    | 7 | 632.5 | 6465   | 7 | 674.9 | 6499  | 7 | 717.3 |  |  |  |
| 6432                    | 7 | 633.8 | 6466   | 7 | 676.2 |       |   |       |  |  |  |
| 6433                    | 7 | 635.0 | 6467   | 7 | 677.4 | 6500  | 7 | 718.5 |  |  |  |
|                         |   | I     |        |   | - 1   |       |   |       |  |  |  |

Use check point at 6300 or 6600 Kc, whichever is nearer

| Freq | uency: | 650 | 1060 | 500 | Kc  |
|------|--------|-----|------|-----|-----|
| В    | Freq.  | Α   | В    | Fre | ea. |

| F     | A | В     | le .  |   |       | -     |   |        |
|-------|---|-------|-------|---|-------|-------|---|--------|
| Freq. |   | _     | Freq. | A | В     | Freq. | A | В      |
| 6500  | 7 | 718.5 | 6534  | 7 | 671.0 | 6568  | 7 | 803.2  |
| 6501  | 7 | 719.8 | 6535  | 7 | 762.2 | 6569  | 7 | 804.4  |
| 6502  | 7 | 721.0 | 6536  | 7 | 763.5 |       |   |        |
| 6503  | 7 | 722.2 | 6537  | 7 | 764.7 | 6570  | 7 | 805.7  |
| 6504  | 7 | 723.5 | 6538  | 7 | 766.0 | 6571  | 7 | 806.9  |
| 6505  | 7 | 724.7 | 6539  | 7 | 767.2 | 6572  | 7 | 808.2  |
| 6506  | 7 | 726.0 |       |   |       | 6573  | 7 | 809.4  |
| 6507  | 7 | 727.2 | 6540  | 7 | 768.5 | 6574  | 7 | 810.7  |
| 6508  | 7 | 728.5 | 6541  | 7 | 769.7 | 6575  | 7 | 811.9  |
| 6509  | 7 | 729.7 | 6542  | 7 | 770.9 | 6576  | 7 | 813.1  |
|       |   |       | 6543  | 7 | 772.2 | 6577  | 7 | 814.4  |
| 6510  | 7 | 731.0 | 6544  | 7 | 773.4 | 6578  | 7 | 815.6  |
| 6511  | 7 | 732.2 | 6545  | 7 | 774.7 | 6579  | 7 | 816.9  |
| 6512  | 7 | 733.5 | 6546  | 7 | 775.9 | l     |   |        |
| 6513  | 7 | 734.7 | 6547  | 7 | 777.1 | 6580  | 7 | 818.1  |
| 6514  | 7 | 736.0 | 6548  | 7 | 778.4 | 6581  | 7 | 819.4  |
| 6515  | 7 | 737.2 | 6549  | 7 | 779.6 | 6582  | 7 | 820.6  |
| 6516  | 7 | 738.5 |       |   |       | 6583  | 7 | 821.9  |
| 6517  | 7 | 739.7 | 6550  | 7 | 780.9 | 6584  | 7 | 823.1  |
| 6518  | 7 | 741.0 | 6551  | 7 | 782.1 | 6585  | 7 | 824.3  |
| 6519  | 7 | 742.2 | 6552  | 7 | 783.3 | 6586  | 7 | 825.6  |
|       |   |       | 6553  | 7 | 784.6 | 6587  | 7 | 826.8  |
| 6520  | 7 | 743.5 | 6554  | 7 | 785.8 | 6588  | 7 | 828.1  |
| 6521  | 7 | 744.7 | 6555  | 7 | 787.1 | 6589  | 7 | 829.3  |
| 6522  | 7 | 746.0 | 6556  | 7 | 788.3 |       |   |        |
| 6523  | 7 | 747.2 | 6557  | 7 | 789.6 | 6590  | 7 | 830.6  |
| 6524  | 7 | 748.5 | 6558  | 7 | 790.8 | 6591  | 7 | 831.8  |
| 6525  | 7 | 749.7 | 6559  | 7 | 792.0 | 6592  | 7 | 833.0  |
| 6526  | 7 | 751.0 |       | • |       | 6593  | 7 | 834.3  |
| 6527  | 7 | 752.2 | 6560  | 7 | 793.3 | 6594  | 7 | 835.5  |
| 6528  | 7 | 753.5 | 6561  | 7 | 794.5 | 6595  | 7 | 836.8  |
| 6529  | 7 | 754.7 | 6562  | 7 | 795.8 | 6596  | 7 | 838.0  |
|       | - |       | 6563  | 7 | 797.0 | 6597  | 7 | 839.3  |
| 6530  | 7 | 756.0 | 6564  | 7 | 798.2 | 6598  | 7 | 840.5  |
| 6531  | 7 | 757.2 | 6565  | 7 | 799.5 | 6599  | 7 | 841.8  |
| 6532  | 7 | 758.5 | 6566  | 7 | 800.7 | 5555  | • | 0,1,0  |
| 6533  | 7 | 759.7 | 6567  | 7 | 802.0 | 6600  | 7 | 843.0  |
| 5550  | ٠ |       | 555,  | • | 552.0 |       | • | J-10.0 |

Use check point at 6600 Kc

Frequency: 6600-6700 Kc

| Freq. | A | В     | Freq. | A | В     | Freq.  | A | В     |
|-------|---|-------|-------|---|-------|--------|---|-------|
| 6600  | 7 | 843.0 | 6634  | 7 | 885.1 | 6668   | 7 | 927.1 |
| 6601  | 7 | 844.2 | 6635  | 7 | 886.3 | 6669   | 7 | 928.4 |
| 6602  | 7 | 845.4 | 6636  | 7 | 887.5 | 1 0003 | • | 320.4 |
| 6603  | 7 | 846.7 | 6637  | 7 | 888.8 | 6670   | 7 | 929.6 |
| 6604  | 7 | 847.9 | 6638  | 7 | 890.0 | 6671   | 7 | 930.8 |
| 6605  | 7 | 849.2 | 6639  | 7 | 891.3 | 6672   | 7 | 932.1 |
| 6606  | 7 | 850.4 | 1     | • | 001.0 | 6673   | 7 | 933.3 |
| 6607  | 7 | 851.7 | 6640  | 7 | 892.5 | 6674   | 7 | 934.6 |
| 6608  | 7 | 852.9 | 6641  | 7 | 893.7 | 6675   | 7 | 935.8 |
| 6609  | 7 | 854.1 | 6642  | 7 | 895.0 | 6676   | 7 | 937.0 |
|       | - |       | 6643  | 7 | 896.2 | 6677   | 7 | 938.3 |
| 6610  | 7 | 855.4 | 6644  | 7 | 897.4 | 6678   | 7 | 939.5 |
| 6611  | 7 | 856.6 | 6645  | 7 | 898.7 | 6679   | 7 | 940.7 |
| 6612  | 7 | 857.8 | 6646  | 7 | 899.9 |        |   |       |
| 6613  | 7 | 859.1 | 6647  | 7 | 901.2 | 6680   | 7 | 942.0 |
| 6614  | 7 | 860.3 | 6648  | 7 | 902.4 | 6681   | 7 | 943.2 |
| 6615  | 7 | 861.6 | 6649  | 7 | 903.6 | 6682   | 7 | 944.4 |
| 6616  | 7 | 862.8 | 1     |   |       | 6683   | 7 | 945.7 |
| 6617  | 7 | 864.0 | 6650  | 7 | 904.9 | 6684   | 7 | 946.9 |
| 6618  | 7 | 865.3 | 6651  | 7 | 906.1 | 6685   | 7 | 948.2 |
| 6619  | 7 | 866.5 | 6652  | 7 | 907.3 | 6686   | 7 | 949.4 |
|       |   |       | 6653  | 7 | 908.6 | 6687   | 7 | 950.6 |
| 6620  | 7 | 867.7 | 6654  | 7 | 909.8 | 6688   | 7 | 951.9 |
| 6621  | 7 | 869.0 | 6655  | 7 | 911.1 | 6689   | 7 | 953.1 |
| 6622  | 7 | 870.2 | 6656  | 7 | 912.3 | l      |   |       |
| 6623  | 7 | 871.5 | 6657  | 7 | 913.5 | 6690   | 7 | 954.3 |
| 6624  | 7 | 872.7 | 6658  | 7 | 914.8 | 6691   | 7 | 955.6 |
| 6625  | 7 | 873.9 | 6659  | 7 | 916.0 | 6692   | 7 | 956.8 |
| 6626  | 7 | 875.2 |       |   |       | 6693   | 7 | 958.0 |
| 6627  | 7 | 876.4 | 6660  | 7 | 917.2 | 6694   | 7 | 959.3 |
| 6628  | 7 | 877.6 | 6661  | 7 | 918.5 | 6695   | 7 | 960.5 |
| 6629  | 7 | 878.9 | 6662  | 7 | 919.7 | 6696   | 7 | 961.7 |
|       |   |       | 6663  | 7 | 921.0 | 6697   | 7 | 963.0 |
| 6630  | 7 | 880.1 | 6664  | 7 | 922.2 | 6698   | 7 | 964.2 |
| 6631  | 7 | 881.4 | 6665  | 7 | 923.4 | 6699   | 7 | 965.4 |
| 6632  | 7 | 882.6 | 6666  | 7 | 924.7 |        |   |       |
| 6633  | 7 | 883.8 | 6667  | 7 | 925.9 | 6700   | 7 | 966.6 |
|       |   |       |       |   |       |        |   |       |

Use check point at 6600 Kc

### Frequency: 6700-6800 Kc

| Freq. | A | В      | Freq. | A  | В      | Freq. | A | В      |
|-------|---|--------|-------|----|--------|-------|---|--------|
| 6700  | 7 | 966.6  | 6734  | 7  | 1008.5 | 6768  | 7 | 1050.5 |
| 6701  | 7 | 967.9  | 6735  | 7  | 1009.8 | 6769  | 7 | 1051.7 |
| 6702  | 7 | 969.1  | 6736  | 7  | 1011.0 |       |   |        |
| 6703  | 7 | 970.3  | 6737  | 7  | 1012.2 | 6770  | 7 | 1052.9 |
| 6704  | 7 | 971.6  | 6738  | 7  | 1013.5 | 6771  | 7 | 1054.2 |
| 6705  | 7 | 972.8  | 6739  | 7  | 1014.7 | 6772  | 7 | 1055.4 |
| 6706  | 7 | 974.0  |       |    |        | 6773  | 7 | 1056.6 |
| 6707  | 7 | 975.3  | 6740  | 7  | 1015.9 | 6774  | 7 | 1057.9 |
| 6708  | 7 | 976.5  | 6741  | 7  | 1017.2 | 6775  | 7 | 1059.1 |
| 6709  | 7 | 977.7  | 6742  | 7  | 1018.4 | 6776  | 7 | 1060.3 |
|       |   |        | 6743  | 7  | 1019.6 | 6777  | 7 | 1061.6 |
| 6710  | 7 | 978.9  | 6744  | 7  | 1020.9 | 6778  | 7 | 1062.8 |
| 6711  | 7 | 980.2  | 6745  | 7  | 1022.1 | 6779  | 7 | 1064.0 |
| 6712  | 7 | 981.4  | 6746  | 7  | 1023.3 | l     |   |        |
| 6713  | 7 | 982.6  | 6747  | 7  | 1024.6 | 6780  | 7 | 1065.3 |
| 6714  | 7 | 983.9  | 6748  | 7  | 1025.8 | 6781  | 7 | 1066.5 |
| 6715  | 7 | 985.1  | 6749  | 7  | 1027.0 | 6782  | 7 | 1067.7 |
| 6716  | 7 | 986.3  |       |    |        | 6783  | 7 | 1068.9 |
| 6717  | 7 | 987.6  | 6750  | 7  | 1028.3 | 6784  | 7 | 1070.1 |
| 6718  | 7 | 988.8  | 6751  | 7  | 1029.5 | 6785  | 7 | 1071.4 |
| 6719  | 7 | 990.0  | 6752  | 7  | 1030.7 | 6786  | 7 | 1072.6 |
|       |   |        | 6753  | 7  | 1032.0 | 6787  | 7 | 1073.8 |
| 6720  | 7 | 991.2  | 6754  | 7  | 1033.2 | 6788  | 7 | 1075.0 |
| 6721  | 7 | 992.5  | 6755  | 7  | 1034.4 | 6789  | 7 | 1076.3 |
| 6722  | 7 | 993.7  | 6756  | 7  | 1035.7 |       |   |        |
| 6723  | 7 | 994.9  | 6757  | 7  | 1036.9 | 6790  | 7 | 1077.5 |
| 6724  | 7 | 996.2  | 6758  | 7  | 1038.1 | 6791  | 7 | 1078.7 |
| 6725  | 7 | 997.4  | 6759  | 7  | 1039.4 | 6792  | 7 | 1079.9 |
| 6726  | 7 | 998.6  | ļ     |    |        | 6793  | 7 | 1081.1 |
| 6727  | 7 | 999.9  | 6760  | 7  | 1040.6 | 6794  | 7 | 1082.4 |
| 6728  | 7 | 1001.1 | 6761  | .7 | 1041.8 | 6795  | 7 | 1083.6 |
| 6729  | 7 | 1002.3 | 6762  | 7  | 1043.1 | 6796  | 7 | 1084.8 |
|       |   |        | 6763  | 7  | 1044.3 | 6797  | 7 | 1086.0 |
| 6730  | 7 | 1003.6 | 6764  | 7  | 1045.5 | 6798  | 7 | 1087.3 |
| 6731  | 7 | 1004.8 | 6765  | 7  | 1046.8 | 6799  | 7 | 1088.5 |
| 6732  | 7 | 1006.0 | 6766  | 7  | 1048.0 | i     |   |        |
| 6733  | 7 | 1007.3 | 6767  | 7  | 1049.2 | 6800  | 7 | 1089.7 |
|       |   |        |       |    |        |       |   |        |
|       |   | • • •  |       |    |        |       |   |        |

Use check point at 6600 or 6900 Kc, whichever is nearer

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: | 6800-6900 Kc |  |
|------------|--------------|--|
|------------|--------------|--|

| Freq. | Α | В      | Freq. | A | В      | Freq. | A | В             |
|-------|---|--------|-------|---|--------|-------|---|---------------|
| 6800  | 7 | 1089.7 | 6834  | 7 | 1131.3 | 6868  | 7 | 1172.8        |
| 6801  | 7 | 1090.9 | 6835  | 7 | 1132.5 | 6869  | 7 | 1174.0        |
| 6802  | 7 | 1092.1 | 6836  | 7 | 1133.7 |       |   |               |
| 6803  | 7 | 1093.4 | 6837  | 7 | 1134.9 | 6870  | 7 | 1175.2        |
| 6804  | 7 | 1094.6 | 6838  | 7 | 1136.2 | 6871  | 7 | 1176.4        |
| 6805  | 7 | 1095.8 | 6839  | 7 | 1137.4 | 6872  | 7 | 1177.7        |
| 6806  | 7 | 1097.0 |       |   |        | 6873  | 7 | 1178.9        |
| 6807  | 7 | 1098.2 | 6840  | 7 | 1138.6 | 6874  | 7 | 1180.1        |
| 6808  | 7 | 1099.5 | 6841  | 7 | 1139.8 | 6875  | 7 | 1181.3        |
| 6809  | 7 | 1100.7 | 6842  | 7 | 1141.1 | 6876  | 7 | 1182.5        |
|       |   |        | 6843  | 7 | 1142.3 | 6877  | 7 | 1183.8        |
| 6810  | 7 | 1101.9 | 6844  | 7 | 1143.5 | 6878  | 7 | 1185.0        |
| 6811  | 7 | 1103.1 | 6845  | 7 | 1144.7 | 6879  | 7 | 1186.2        |
| 6812  | 7 | 1104.4 | 6846  | 7 | 1145.9 | ĺ     |   |               |
| 6813  | 7 | 1105.6 | 6847  | 7 | 1147.2 | 6880  | 7 | 1187.4        |
| 6814  | 7 | 1106.8 | 6848  | 7 | 1148.4 | 6881  | 7 | 1188.6        |
| 6815  | 7 | 1108.0 | 6849  | 7 | 1149.6 | 6882  | 7 | 1189.9        |
| 6816  | 7 | 1109.3 | 1     |   |        | 6883  | 7 | 1191.1        |
| 6817  | 7 | 1110.5 | 6850  | 7 | 1150.8 | 6884  | 7 | 1192.3        |
| 6818  | 7 | 1111.7 | 6851  | 7 | 1152.0 | 6885  | 7 | 1193.5        |
| 6819  | 7 | 1112.9 | 6852  | 7 | 1153.3 | 6886  | 7 | 1194.7        |
|       |   |        | 6853  | 7 | 1154.5 | 6887  | 7 | 1195.9        |
| 6820  | 7 | 1114.1 | 6854  | 7 | 1155.7 | 6888  | 7 | 1197.2        |
| 6821  | 7 | 1115.4 | 6855  | 7 | 1156.9 | 6889  | 7 | 1198.4        |
| 6822  | 7 | 1116.6 | 6856  | 7 | 1158.1 | ļ     |   |               |
| 6823  | 7 | 1117.8 | 6857  | 7 | 1159.4 | 6890  | 7 | 1199.6        |
| 6824  | 7 | 1119.0 | 6858  | 7 | 1160.6 | 6891  | 7 | 1200.8        |
| 6825  | 7 | 1120.3 | 6859  | 7 | 1161.8 | 6892  | 7 | 1202.0        |
| 6826  | 7 | 1121.5 | 1 .   |   |        | 6893  | 7 | 1203.3        |
| 6827  | 7 | 1122.7 | 6860  | 7 | 1163.0 | 6894  | 7 | 1204.5        |
| 6828  | 7 | 1123.9 | 6861  | 7 | 1164.2 | 6895  | 7 | 1205.7        |
| 6829  | 7 | 1125.2 | 6862  | 7 | 1165.5 | 6896  | 7 | 1206.9        |
|       |   |        | 6863  | 7 | 1166.7 | 6897  | 7 | 1208.1        |
| 6830  | 7 | 1126.4 | 6864  | 7 | 1167.9 | 6898  | 7 | 1209.3        |
| 6831  | 7 | 1127.6 | 6865  | 7 | 1169.1 | 6899  | 7 | 1210.6        |
| 6832  | 7 | 1128.8 | 6866  | 7 | 1170.3 | ł     |   |               |
| 6833  | 7 | 1130.0 | 6867  | 7 | 1171.6 | 6900  | 7 | <u>1211.8</u> |
|       |   |        | l     |   |        | L     |   |               |
|       | _ | _      |       | _ |        | _     | _ |               |

Use check point at 6900 Kc

### Frequency: 6900-7000 Kc

|       |   |        | ,     |   |        |       |   |        |
|-------|---|--------|-------|---|--------|-------|---|--------|
| Freq. | A | В      | Freq. | A | В      | Freq. | A | В      |
| 6900  | 7 | 1211.8 | 6934  | 7 | 1253.2 | 6968  | 7 | 1294.6 |
| 6901  | 7 | 1213.0 | 6935  | 7 | 1254.4 | 6969  | 7 | 1295.8 |
| 6902  | 7 | 1214.2 | 6936  | 7 | 1255.6 |       |   |        |
| 6903  | 7 | 1215.4 | 6937  | 7 | 1256.8 | 6970  | 7 | 1297.1 |
| 6904  | 7 | 1216.6 | 6938  | 7 | 1258.0 | 6971  | 7 | 1298.3 |
| 6905  | 7 | 1217.9 | 6939  | 7 | 1259.3 | 6972  | 7 | 1299.5 |
| 6906  | 7 | 1219.1 | l     |   |        | 6973  | 7 | 1300.7 |
| 6907  | 7 | 1220.3 | 6940  | 7 | 1260.5 | 6974  | 7 | 1302.0 |
| 6908  | 7 | 1221.5 | 6941  | 7 | 1261.7 | 6975  | 7 | 1303.2 |
| 6909  | 7 | 1222.7 | 6942  | 7 | 1262.9 | 6976  | 7 | 1304.4 |
|       |   |        | 6943  | 7 | 1264.1 | 6977  | 7 | 1305.6 |
| 6910  | 7 | 1224.0 | 6944  | 7 | 1265.4 | 6978  | 7 | 1306.8 |
| 6911  | 7 | 1225.2 | 6945  | 7 | 1266.6 | 6979  | 7 | 1308.1 |
| 6912  | 7 | 1226.4 | 6946  | 7 | 1267.8 | 1     |   |        |
| 6913  | 7 | 1227.6 | 6947  | 7 | 1269.0 | 6980  | 7 | 1309.3 |
| 6914  | 7 | 1228.8 | 6948  | 7 | 1270.2 | 6981  | 7 | 1310.5 |
| 6915  | 7 | 1230.0 | 6949  | 7 | 1271.4 | 6982  | 7 | 1311.7 |
| 6916  | 7 | 1231.3 | ł     |   |        | 6983  | 7 | 1313.0 |
| 6917  | 7 | 1232.5 | 6950  | 7 | 1272.7 | 6984  | 7 | 1314.2 |
| 6918  | 7 | 1233.7 | 6951  | 7 | 1273.9 | 6985  | 7 | 1315.4 |
| 6919  | 7 | 1234.9 | 6952  | 7 | 1275.1 | 6986  | 7 | 1316.6 |
|       |   |        | 6953  | 7 | 1276.3 | 6987  | 7 | 1317.9 |
| 6920  | 7 | 1236.1 | 6954  | 7 | 1277.5 | 6988  | 7 | 1319.1 |
| 6921  | 7 | 1237.3 | 6955  | 7 | 1278.8 | 6989  | 7 | 1320.3 |
| 6922  | 7 | 1238.6 | 6956  | 7 | 1280.0 | l     |   |        |
| 6923  | 7 | 1239.8 | 6957  | 7 | 1281.2 | 6990  | 7 | 1321.5 |
| 6924  | 7 | 1241.0 | 6958  | 7 | 1282.4 | 6991  | 7 | 1322.7 |
| 6925  | 7 | 1242.2 | 6959  | 7 | 1283.6 | 6992  | 7 | 1324.0 |
| 6926  | 7 | 1243.4 | l     |   |        | 6993  | 7 | 1325.2 |
| 6927  | 7 | 1244.6 | 6960  | 7 | 1284.8 | 6994  | 7 | 1326.4 |
| 6928  | 7 | 1245.9 | 6961  | 7 | 1286.1 | 6995  | 7 | 1327.6 |
| 6929  | 7 | 1247.1 | 6962  | 7 | 1287.3 | 6996  | 7 | 1328.8 |
|       |   |        | 6963  | 7 | 1288.5 | 6997  | 7 | 1330.1 |
| 6930  | 7 | 1248.3 | 6964  | 7 | 1289.7 | 6998  | 7 | 1331.3 |
| 6931  | 7 | 1249.5 | 6965  | 7 | 1291.0 | 6999  | 7 | 1332.5 |
| 6932  | 7 | 1250.7 | 6966  | 7 | 1292.2 |       | _ |        |
| 6933  | 7 | 1252.0 | 6967  | 7 | 1293.4 | 7000  | 7 | 1333.7 |
|       |   |        |       |   |        |       |   |        |

Use check point at 6900 Kc

Frequency: 7000-7100 Kc

| Freq. | A  | В      | Freq.    | Α | В      | Freq. | A   | В      |
|-------|----|--------|----------|---|--------|-------|-----|--------|
| 7000  | 7  | 1333.7 | 7034     | 7 | 1375.2 | 7068  | 7   | 1416.7 |
| 7001  | 7  | 1334.9 | 7035     | 7 | 1376.4 | 7069  | 7   | 1417.9 |
| 7002  | 7  | 1336.2 | 7036     | 7 | 1377.6 | l     |     |        |
| 7003  | 7, | 1337.4 | 7037     | 7 | 1378.8 | 7070  | 7   | 1419.1 |
| 7004  | 7  | 1338.6 | 7038     | 7 | 1380.0 | 7071  | 7   | 1420.3 |
| 7005  | 7  | 1339.8 | 7039     | 7 | 1381.2 | 7072  | 7   | 1421.6 |
| 7006  | 7  | 1341.0 | İ        |   |        | 7073  | 7   | 1422.8 |
| 7007  | 7  | 1342.3 | 7040     | 7 | 1382.5 | 7074  | 7   | 1424.0 |
| 7008  | 7  | 1343.5 | 7041     | 7 | 1383.7 | 7075  | 7   | 1425.2 |
| 7009  | 7  | 1344.7 | 7042     | 7 | 1384.9 | 7076  | 7   | 1426.5 |
|       |    |        | 7043     | 7 | 1386.1 | 7077  | 7   | 1427.7 |
| 7010  | 7  | 1345.9 | 7044     | 7 | 1387.3 | 7078  | 7   | 1428.9 |
| 7011  | 7  | 1347.1 | 7045     | 7 | 1388.6 | 7079  | 7   | 1430.1 |
| 7012  | 7  | 1348.4 | 7046     | 7 | 1389.8 | 1     |     |        |
| 7013  | 7  | 1349.6 | 7047     | 7 | 1391.0 | 7080  | 7   | 1431.4 |
| 7014  | 7  | 1350.8 | 7048     | 7 | 1392.2 | 7081  | 7   | 1432.6 |
| 7015  | 7  | 1352.0 | 7049     | 7 | 1393.4 | 7082  | 7   | 1433.8 |
| 7016  | 7  | 1353.2 |          |   |        | 7083  | 7   | 1435.0 |
| 7017  | 7  | 1354.5 | 7050     | 7 | 1394.6 | 7084  | 7   | 1436.2 |
| 7018  | 7  | 1355.7 | 7051     | 7 | 1395.9 | 7085  | 7   | 1437.4 |
| 7019  | 7  | 1356.9 | 7052     | 7 | 1397.1 | 7086  | 7   | 1438.7 |
|       |    |        | 7053     | 7 | 1398.3 | 7087  | 7   | 1439.9 |
| 7020  | 7  | 1358.1 | 7054     | 7 | 1399.5 | 7088  | 7 • | 1441.1 |
| 7021  | 7  | 1359.3 | 7055     | 7 | 1400.8 | 7089  | 7   | 1442.3 |
| 7022  | 7  | 1360.6 | 7056     | 7 | 1402.0 |       | _   |        |
| 7023  | 7  | 1361.8 | 7057     | 7 | 1403.2 | 7090  | 7   | 1443.5 |
| 7024  | 7  | 1363.0 | 7058     | 7 | 1404.4 | 7091  | 7   | 1444.7 |
| 7025  | 7  | 1364.2 | 7059     | 7 | 1405.7 | 7092  | 7   | 1446.0 |
| 7026  | 7  | 1365.4 |          | _ |        | 7093  | 7   | 1447.2 |
| 7027  | 7  | 1366.6 | 7060     | 7 | 1406.9 | 7094  | 7   | 1448.4 |
| 7028  | 7  | 1367.9 | 7061     | 7 | 1408.1 | 7095  | 7   | 1449.6 |
| 7029  | 7  | 1369.1 | 7062     | 7 | 1409.3 | 7096  | 7.  | 1450.8 |
|       | _  |        | 7063     | 7 | 1410.6 | 7097  | 7   | 1452.0 |
| 7030  | 7  | 1370.3 | 7064     | 7 | 1411.8 | 7098  | 7   | 1453.3 |
| 7031  | 7  | 1371.5 | 7065     | 7 | 1413.0 | 7099  | 7   | 1454.5 |
| 7032  | 7  | 1372.7 | 7066     | 7 | 1414.2 |       | _   |        |
| 7033  | 7  | 1373.9 | 7067     | 7 | 1415.4 | 7100  | 7   | 1455.7 |
|       |    |        | <u>L</u> |   |        |       |     |        |
|       |    |        |          |   | 000 V  |       | 1-  |        |

Use check point at 6900 or 7200 Kc, whichever is nearer

### Frequency: 7100—7200 Kc

| Freq. | A | В      | Freq.    | A | В      | Freq.   | A | B      |
|-------|---|--------|----------|---|--------|---------|---|--------|
| 7100  | 7 | 1455.7 | 7134     | 7 | 1497.4 | 7168    | 7 | 1539.3 |
| 7101  | 7 | 1456.9 | 7135     | 7 | 1498.7 | 7169    | 7 | 1540.5 |
| 7102  | 7 | 1458.1 | 7136     | 7 | 1499.9 |         |   |        |
| 7103  | 7 | 1459.3 | 7137     | 7 | 1501.1 | 7170    | 7 | 1541.7 |
| 7104  | 7 | 1460.6 | 7138     | 7 | 1502.4 | 7171    | 7 | 1543.0 |
| 7105  | 7 | 1461.8 | 7139     | 7 | 1503.6 | 7172    | 7 | 1544.2 |
| 7106  | 7 | 1463.0 |          |   |        | 7173    | 7 | 1545.4 |
| 7107  | 7 | 1464.2 | 7140     | 7 | 1504.8 | 7174    | 7 | 1546.7 |
| 7108  | 7 | 1465.4 | 7141     | 7 | 1506.1 | 7175    | 7 | 1547.9 |
| 7109  | 7 | 1466.6 | 7142     | 7 | 1507.3 | 7176    | 7 | 1549.1 |
|       |   |        | 7143     | 7 | 1508.5 | 7177    | 7 | 1550.4 |
| 7110  | 7 | 1467.9 | 7144     | 7 | 1509.8 | 7178    | 7 | 1551.6 |
| 7111  | 7 | 1469.1 | 7145     | 7 | 1511.0 | 7179    | 7 | 1552.9 |
| 7112  | 7 | 1470.3 | 7146     | 7 | 1512.2 |         |   |        |
| 7113  | 7 | 1471.6 | 7147     | 7 | 1513.4 | 7180    | 7 | 1554.1 |
| 7114  | 7 | 1472.8 | 7148     | 7 | 1514.7 | 7181    | 7 | 1555.3 |
| 7115  | 7 | 1474.0 | 7149     | 7 | 1515.9 | 7182    | 7 | 1556.6 |
| 7116  | 7 | 1475.3 |          |   |        | 7183    | 7 | 1557.8 |
| 7117  | 7 | 1476.5 | 7150     | 7 | 1517.1 | 7184    | 7 | 1559.1 |
| 7113  | 7 | 1477.7 | 7151     | 7 | 1518.4 | 7185    | 7 | 1560.3 |
| 7119  | 7 | 1479.0 | 7152     | 7 | 1519.6 | 7186    | 7 | 1561.5 |
|       |   |        | 7153     | 7 | 1520.8 | 7187    | 7 | 1562.8 |
| 7120  | 7 | 1480.2 | 7154     | 7 | 1522.1 | 7188    | 7 | 1564.0 |
| 7121  | 7 | 1481.4 | 7155     | 7 | 1523.3 | 7189    | 7 | 1565.2 |
| 7122  | 7 | 1482.7 | 7156     | 7 | 1524.5 |         |   |        |
| 7123  | 7 | 1483.9 | 7157     | 7 | 1525.7 | 7190    | 7 | 1566.5 |
| 7124  | 7 | 1485.1 | 7158     | 7 | 1527.0 | 7191    | 7 | 1567.7 |
| 7125  | 7 | 1486.4 | 7159     | 7 | 1528.2 | 7192    | 7 | 1569.0 |
| 7126  | 7 | 1487.6 |          |   |        | 7193    | 7 | 1570.2 |
| 7127  | 7 | 1488.8 | 7160     | 7 | 1529.4 | 7194    | 7 | 1571.4 |
| 7128  | 7 | 1490.0 | 7161     | 7 | 1530.7 | 7195    | 7 | 1572.7 |
| 7129  | 7 | 1491.3 | 7162     | 7 | 1531.9 | 7196    | 7 | 1573.9 |
|       | _ |        | 7163     | 7 | 1533.1 | 7197    | 7 | 1575.1 |
| 7130  | 7 | 1492.5 | 7164     | 7 | 1534.3 | 7198    | 7 | 1576.4 |
| 7131  | 7 | 1493.7 | 7165     | 7 | 1535.6 | 7199    | 7 | 1577.6 |
| 7132  | 7 | 1495.0 | 7166     | 7 | 1536.8 | 1       | _ | 4      |
| 7133  | 7 | 1496.2 | 7167     | 7 | 1538.0 | 7200    | 7 | 1578.9 |
|       |   |        | <u> </u> |   |        | <u></u> |   |        |

Use check point at 7200 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: | 72007300 | Κ¢ |
|------------|----------|----|
|------------|----------|----|

| 7290 8 7201 8 7202 8 7203 8 7204 8 7206 8 7206 8 7207 8 7208 8 7209 8                  | 6 60.0 61.0 62.0 63.1 64.1 65.1 66.1 67.2 68.2 69.2 70.2             | Freq. 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243              | A 8 8 8 8 8 8 8 8 8 8      | 94.7<br>95.8<br>96.8<br>97.8<br>98.8<br>99.9<br>100.9<br>101.9 | 7268<br>7269<br>7270<br>7271<br>7272<br>7273<br>7274<br>7275 | A 8 8 8 8 8 8 8 8          | B<br>129.5<br>130.5<br>131.5<br>132.5<br>133.5<br>134.5<br>135.6<br>136.6 |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|----------------------------------------------------------------|--------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------|
| 7201 8<br>7202 8<br>7203 8<br>7204 8<br>7205 8<br>7206 8<br>7207 8<br>7208 8<br>7209 8 | 61.0<br>62.0<br>63.1<br>64.1<br>65.1<br>66.1<br>67.2<br>68.2<br>69.2 | 7235<br>7236<br>7237<br>7238<br>7239<br>7240<br>7241<br>7242<br>7243 | 8<br>8<br>8<br>8<br>8<br>8 | 95.8<br>96.8<br>97.8<br>98.8<br>99.9<br>100.9<br>101.9         | 7269<br>7270<br>7271<br>7272<br>7273<br>7274<br>7275         | 8<br>8<br>8<br>8<br>8<br>8 | 130.5<br>131.5<br>132.5<br>133.5<br>134.5<br>135.6                        |
| 7202 8<br>7203 8<br>7204 8<br>7205 8<br>7206 8<br>7207 8<br>7208 8<br>7209 8           | 62.0<br>63.1<br>64.1<br>65.1<br>66.1<br>67.2<br>68.2<br>69.2<br>70.2 | 7236<br>7237<br>7238<br>7239<br>7240<br>7241<br>7242<br>7243         | 8<br>8<br>8<br>8<br>8      | 96.8<br>97.8<br>98.8<br>99.9<br>100.9<br>101.9                 | 7270<br>7271<br>7272<br>7273<br>7274<br>7275                 | 8<br>8<br>8<br>8<br>8      | 131.5<br>132.5<br>133.5<br>134.5<br>135.6                                 |
| 7203 8<br>7204 8<br>7205 8<br>7206 8<br>7207 8<br>7208 8<br>7209 8                     | 3 63.1<br>3 64.1<br>3 65.1<br>3 66.1<br>67.2<br>3 68.2<br>69.2       | 7237<br>7238<br>7239<br>7240<br>7241<br>7242<br>7243                 | 8<br>8<br>8<br>8<br>8      | 97.8<br>98.8<br>99.9<br>100.9<br>101.9                         | 7271<br>7272<br>7273<br>7274<br>7275                         | 8<br>8<br>8<br>8           | 132.5<br>133.5<br>134.5<br>135.6                                          |
| 7204 8<br>7205 8<br>7206 8<br>7207 8<br>7208 8<br>7209 8                               | 64.1<br>65.1<br>66.1<br>67.2<br>68.2<br>69.2<br>70.2                 | 7238<br>7239<br>7240<br>7241<br>7242<br>7243                         | 8<br>8<br>8<br>8           | 98.8<br>99.9<br>100.9<br>101.9                                 | 7271<br>7272<br>7273<br>7274<br>7275                         | 8<br>8<br>8<br>8           | 132.5<br>133.5<br>134.5<br>135.6                                          |
| 7205 8<br>7206 8<br>7207 8<br>7208 8<br>7209 8                                         | 65.1<br>66.1<br>67.2<br>68.2<br>69.2<br>70.2                         | 7239<br>7240<br>7241<br>7242<br>7243                                 | 8<br>8<br>8                | 99.9<br>100.9<br>101.9                                         | 7272<br>7273<br>7274<br>7275                                 | 8<br>8<br>8                | 133.5<br>134.5<br>135.6                                                   |
| 7206 8<br>7207 8<br>7208 8<br>7209 8                                                   | 66.1<br>67.2<br>68.2<br>69.2<br>70.2                                 | 7240<br>7241<br>7242<br>7243                                         | 8<br>8<br>8                | 100.9<br>101.9                                                 | 7273<br>7274<br>7275                                         | 8<br>8<br>8                | 134.5<br>135.6                                                            |
| 7207 8<br>7208 8<br>7209 8<br>7210 8                                                   | 67.2<br>68.2<br>69.2<br>70.2                                         | 7241<br>7242<br>7243                                                 | 8<br>8                     | 101.9                                                          | 7274<br>7275                                                 | 8<br>8                     | 135.6                                                                     |
| 7208 8<br>7209 8<br>7210 8                                                             | 68.2<br>69.2<br>70.2                                                 | 7241<br>7242<br>7243                                                 | 8<br>8                     | 101.9                                                          | 7275                                                         | 8                          |                                                                           |
| 7209 8<br>7210 8                                                                       | 69.2<br>70.2                                                         | 7242<br>7243                                                         | 8                          |                                                                |                                                              |                            | 136.6                                                                     |
| 7210 8                                                                                 | 3 70.2                                                               | 7243                                                                 | -                          | 102.9                                                          |                                                              |                            |                                                                           |
|                                                                                        |                                                                      |                                                                      |                            |                                                                | 7276                                                         | 8                          | 137.6                                                                     |
|                                                                                        |                                                                      |                                                                      | 8                          | 103.9                                                          | 7277                                                         | 8                          | 138.6                                                                     |
|                                                                                        | 710                                                                  | 7244                                                                 | 8                          | 105.0                                                          | 7278                                                         | 8                          | 139.6                                                                     |
| 7211 8                                                                                 |                                                                      | 7245                                                                 | 8                          | 106.0                                                          | 7279                                                         | 8                          | 140.6                                                                     |
| 7212 8                                                                                 |                                                                      | 7246                                                                 | 8                          | 107.0                                                          | l                                                            |                            |                                                                           |
| 7213 8                                                                                 | 73.3                                                                 | 7247                                                                 | 8                          | 108.0                                                          | 7280                                                         | 8                          | 141.7                                                                     |
| 7214 8                                                                                 |                                                                      | 7248                                                                 | 8                          | 109.1                                                          | 7281                                                         | 8                          | 142.7                                                                     |
| 7215 8                                                                                 | 75.3                                                                 | 7249                                                                 | 8                          | 110.1                                                          | 7282                                                         | 8                          | 143.7                                                                     |
| 7216 8                                                                                 | 76.4                                                                 |                                                                      |                            |                                                                | 7283                                                         | 8                          | 144.7                                                                     |
| 7217 8                                                                                 | 77.4                                                                 | 7250                                                                 | 8                          | 111.1                                                          | 7284                                                         | 8                          | 145.7                                                                     |
| 7218 8                                                                                 | 78.4                                                                 | 7251                                                                 | 8                          | 112.1                                                          | 7285                                                         | 8                          | 146.7                                                                     |
| 7219 8                                                                                 | 3 79.4                                                               | 7252                                                                 | 8                          | 113.1                                                          | 7286                                                         | 8                          | 147.8                                                                     |
|                                                                                        |                                                                      | 7253                                                                 | 8                          | 114.2                                                          | 7287                                                         | 8                          | 148.8                                                                     |
| 7220 8                                                                                 | 80.4                                                                 | 7254                                                                 | 8                          | 115.2                                                          | 7288                                                         | 8                          | 149.8                                                                     |
| 7221 8                                                                                 | 81.5                                                                 | 7255                                                                 | 8                          | 116.2                                                          | 7289                                                         | 8                          | 150.8                                                                     |
| 7222 8                                                                                 | 82.5                                                                 | 7256                                                                 | 8                          | 117.2                                                          | l                                                            |                            |                                                                           |
| 7223 8                                                                                 | 83.5                                                                 | 7257                                                                 | 8                          | 118.3                                                          | 7290                                                         | 8                          | 151.8                                                                     |
| 7224 8                                                                                 | 84.5                                                                 | 7258                                                                 | 8                          | 119.3                                                          | 7291                                                         | 8                          | 152.8                                                                     |
| 7225 8                                                                                 | 85.6                                                                 | 7259                                                                 | 8                          | 120.3                                                          | 7292                                                         | 8                          | 153.8                                                                     |
| 7226 8                                                                                 | 86.6                                                                 | 1                                                                    |                            |                                                                | 7293                                                         | 8                          | 154.9                                                                     |
| 7227                                                                                   | 87.6                                                                 | 7260                                                                 | 8                          | 121.3                                                          | 7294                                                         | 8                          | 155.9                                                                     |
|                                                                                        | 88.6                                                                 | 7261                                                                 | 8                          | 122.3                                                          | 7295                                                         | 8                          | 156.9                                                                     |
| 7229                                                                                   | 89.6                                                                 | 7262                                                                 | 8                          | 123.4                                                          | 7296                                                         | 8                          | 157.9                                                                     |
|                                                                                        |                                                                      | 7263                                                                 | 8                          | 124.4                                                          | 7297                                                         | 8                          | 158.9                                                                     |
| 7230                                                                                   | 8 90.7                                                               | 7264                                                                 | 8                          | 125.4                                                          | 7298                                                         | 8                          | 159.9                                                                     |
|                                                                                        | 91.7                                                                 | 7265                                                                 | 8                          | 126.4                                                          | 7299                                                         | 8                          | 160.9                                                                     |
|                                                                                        | 92.7                                                                 | 7266                                                                 | 8                          | 127.4                                                          |                                                              | _                          |                                                                           |
|                                                                                        | 8 93.7                                                               | 7267                                                                 | 8                          | 128.4                                                          | 7300                                                         | 8                          | 161.9                                                                     |

Use check point at 7200 Kc

## Frequency: 7300-7400 Kc

|       |   |       |       | - |       |       |   | <del></del> |
|-------|---|-------|-------|---|-------|-------|---|-------------|
| Freq. | A | В     | Freq. | A | В     | Freq. | A | В           |
| 7300  | 8 | 161.9 | 7334  | 8 | 196.4 | 7368  | 8 | 230.8       |
| 7301  | 8 | 163.0 | 7335  | 8 | 197.4 | 7369  | 8 | 231.8       |
| 7302  | 8 | 164.0 | 7336  | 8 | 198.4 | I     |   |             |
| 7303  | 8 | 165.0 | 7337  | 8 | 199.4 | 7370  | 8 | 232.8       |
| 7304  | 8 | 166.0 | 7338  | 8 | 200.4 | 7371  | 8 | 233.9       |
| 7305  | 8 | 167.0 | 7339  | 8 | 201.4 | 7372  | 8 | 234.9       |
| 7306  | 8 | 168.0 |       |   |       | 7373  | 8 | 235.9       |
| 7307  | 8 | 169.0 | 7340  | 8 | 202.5 | 7374  | 8 | 236.9       |
| 7308  | 8 | 170.0 | 7341  | 8 | 203.5 | 7375  | 8 | 237.9       |
| 7309  | 8 | 171.0 | 7342  | 8 | 204.5 | 7376  | 8 | 238.9       |
|       |   |       | 7343  | 8 | 205.5 | 7377  | 8 | 239.9       |
| 7310  | 8 | 172.1 | 7344  | 8 | 206.5 | 7378  | 8 | 240.9       |
| 7311  | 8 | 173.1 | 7345  | 8 | 207.5 | 7379  | 8 | 241.9       |
| 7312  | 8 | 174.1 | 7346  | 8 | 208.5 | 1     |   |             |
| 7313  | 8 | 175.1 | 7347  | 8 | 209.6 | 7380  | 8 | 243.0       |
| 7314  | 8 | 176.1 | 7348  | 8 | 210.6 | 7381  | 8 | 244.0       |
| 7315  | 8 | 177.1 | 7349  | 8 | 211.6 | 7382  | 8 | 245.0       |
| 7316  | 8 | 178.1 |       |   |       | 7383  | 8 | 246.0       |
| 7317  | 8 | 179.1 | 7350  | 8 | 212.6 | 7384  | 8 | 247.0       |
| 7318  | 8 | 180.2 | 7351  | 8 | 213.6 | 7385  | 8 | 248.1       |
| 7319  | 8 | 181.2 | 7352  | 8 | 214.6 | 7386  | 8 | 249.1       |
|       |   |       | 7353  | 8 | 215.6 | 7387  | 8 | 250.1       |
| 7320  | 8 | 182.2 | 7354  | 8 | 216.6 | 7388  | 8 | 251.1       |
| 7321  | 8 | 183.2 | 7355  | 8 | 217.7 | 7389  | 8 | 252.1       |
| 7322  | 8 | 184.2 | 7356  | 8 | 218.7 | l     |   |             |
| 7323  | 8 | 185.2 | 7357  | 8 | 219.7 | 7390  | 8 | 253.1       |
| 7324  | 8 | 186.2 | 7358  | 8 | 220.7 | 7391  | 8 | 254.2       |
| 7325  | 8 | 187.3 | 7359  | 8 | 221.7 | 7392  | 8 | 255.2       |
| 7326  | 8 | 188.3 | İ     |   |       | 7393  | 8 | 256.2       |
| 7327  | 8 | 189.3 | 7360  | 8 | 222.7 | 7394  | 8 | 257.2       |
| 7328  | 8 | 190.3 | 7361  | 8 | 223.7 | 7395  | 8 | 258.2       |
| 7329  | 8 | 191.3 | 7362  | 8 | 224.7 | 7396  | 8 | 259.2       |
|       |   |       | 7363  | 8 | 225.8 | 7397  | 8 | 260.3       |
| 7330  | 8 | 192.3 | 7364  | 8 | 226.8 | 7398  | 8 | 261.3       |
| 7331  | 8 | 193.3 | 7365  | 8 | 227.8 | 7399  | 8 | 262.3       |
| 7332  | 8 | 194.3 | 7366  | 8 | 228.8 |       |   |             |
| 7333  | 8 | 195.4 | 7367  | 8 | 229.8 | 7400  | 8 | 263.3       |
|       |   |       | ı     |   |       | ł     |   |             |

Use check point at 7200 or 7500 Kc, whichever is nearer

Frequency: 7400-7500 Kc

| Freq. | A | В     | Freq.    | A | В     | Freq.    | A | В     |
|-------|---|-------|----------|---|-------|----------|---|-------|
| 7400  | 8 | 263.3 | 7434     | 8 | 297.8 | 7468     | 8 | 332.4 |
| 7401  | 8 | 264.3 | 7435     | 8 | 298.8 | 7469     | 8 | 333.5 |
| 7402  | 8 | 265.4 | 7436     | 8 | 299.8 | į        |   |       |
| 7403  | 8 | 266.4 | 7437     | 8 | 300.9 | 7470     | 8 | 334.5 |
| 7404  | 8 | 267.4 | 7438     | 8 | 301.9 | 7471     | 8 | 335.5 |
| 7405  | 8 | 268.4 | 7439     | 8 | 302.9 | 7472     | 8 | 336.5 |
| 7406  | 8 | 269.4 | l        |   |       | 7473     | 8 | 337.5 |
| 7407  | 8 | 270.4 | 7440     | 8 | 303.9 | 7474     | 8 | 338.6 |
| 7408  | 8 | 271.5 | 7441     | 8 | 304.9 | 7475     | 8 | 339.6 |
| 7409  | 8 | 272.5 | 7442     | 8 | 305.9 | 7476     | 8 | 340.6 |
|       |   |       | 7443     | 8 | 307.0 | 7477     | 8 | 341.6 |
| 7410  | 8 | 273.5 | 7444     | 8 | 308.0 | 7478     | 8 | 342.7 |
| 7411  | 8 | 274.5 | 7445     | 8 | 309.0 | 7479     | 8 | 343.7 |
| 7412  | 8 | 275.5 | 7446     | 8 | 310.0 |          |   |       |
| 7413  | 8 | 276.5 | 7447     | 8 | 311.0 | 7480     | 8 | 344.7 |
| 7414  | 8 | 277.6 | 7448     | 8 | 312.1 | 7481     | 8 | 345.7 |
| 7415  | 8 | 278.6 | 7449     | 8 | 313.1 | 7482     | 8 | 346.8 |
| 7416  | 8 | 279.6 | 1        |   |       | 7483     | 8 | 347.8 |
| 7417  | 8 | 280.6 | 7450     | 8 | 314.1 | 7484     | 8 | 348.8 |
| 7418  | 8 | 281.6 | 7451     | 8 | 315.1 | 7485     | 8 | 349.8 |
| 7419  | 8 | 282.6 | 7452     | 8 | 316.1 | 7486     | 8 | 350.8 |
|       |   |       | 7453     | 8 | 317.2 | 7487     | 8 | 351.9 |
| 7420  | 8 | 283.6 | 7454     | 8 | 318.2 | 7488     | 8 | 352.9 |
| 7421  | 8 | 284.6 | 7455     | 8 | 319.2 | 7489     | 8 | 353.9 |
| 7422  | 8 | 285.7 | 7456     | 8 | 320.2 | 1        |   |       |
| 7423  | 8 | 286.7 | 7457     | 8 | 321.2 | 7490     | 8 | 354.9 |
| 7424  | 8 | 287.7 | 7458     | 8 | 322,2 | 7491     | 8 | 356.0 |
| 7425  | 8 | 288.7 | 7459     | 8 | 323.3 | 7492     | 8 | 357.0 |
| 7426  | 8 | 289.7 |          |   |       | 7493     | 8 | 358.0 |
| 7427  | 8 | 290.7 | 7460     | 8 | 324.3 | 7494     | 8 | 359.0 |
| 7428  | 8 | 291.7 | 7461     | 8 | 325.3 | 7495     | 8 | 360.0 |
| 7429  | 8 | 292.8 | 7462     | 8 | 326.3 | 7496     | 8 | 361.1 |
|       | _ |       | 7463     | 8 | 327.3 | 7497     | 8 | 362.1 |
| 7430  | 8 | 293.8 | 7464     | 8 | 328.4 | 7498     | 8 | 363.1 |
| 7431  | 8 | 294.8 | 7465     | 8 | 329.4 | 7499     | 8 | 364.1 |
| 7432  | 8 | 295.8 | 7466     | 8 | 330.4 |          | _ | 005 - |
| 7433  | 8 | 296.8 | 7467     | 8 | 331.4 | 7500     | 8 | 365.2 |
|       |   |       | <u> </u> |   |       | <u> </u> |   |       |
|       |   |       |          |   |       |          |   |       |

Use check point at 7500 Kc

#### Frequency: 7500-7600 Kc

| Freq. | A | В     | Freq.                                 | A | В             | Freq. | A | В                 |
|-------|---|-------|---------------------------------------|---|---------------|-------|---|-------------------|
| 7500  | 8 | 365.2 | 7534                                  | 8 | 399.7         | 7568  | 8 | 434.6             |
| 7501  | 8 | 366.2 | 7535                                  | 8 | 400.7         | 7569  | 8 | 435.6             |
| 7502  | 8 | 367.2 | 7536                                  | 8 | 401.8         | l     |   |                   |
| 7503  | 8 | 368.2 | 7537                                  | 8 | 402.8         | 7570  | 8 | 436.7             |
| 7504  | 8 | 369.2 | 7538                                  | 8 | 403.8         | 7571  | 8 | 437.7             |
| 7505  | 8 | 370.2 | 7539                                  | 8 | 404.8         | 7572  | 8 | 438.7             |
| 7506  | 8 | 371.3 | 1                                     |   |               | 7573  | 8 | 439.8             |
| 7507  | 8 | 372.3 | 7540                                  | 8 | 405.9         | 7574  | 8 | 440.8             |
| 7508  | 8 | 373.3 | 7541                                  | 8 | 406.9         | 7575  | 8 | <del>44</del> 1.8 |
| 7509  | 8 | 374.3 | 7542                                  | 8 | 407.9         | 7576  | 8 | 442.8             |
|       |   |       | 7543                                  | 8 | 408.9         | 7577  | 8 | 443.9             |
| 7510  | 8 | 375.3 | 7544                                  | 8 | 410.0         | 7578  | 8 | 444.9             |
| 7511  | 8 | 376.3 | 7545                                  | 8 | <b>4</b> 11.0 | 7579  | 8 | 445.9             |
| 7512  | 8 | 377.3 | 7546                                  | 8 | 412.0         | 1     |   |                   |
| 7513  | 8 | 378.4 | 7547                                  | 8 | 413.1         | 7580  | 8 | 447.0             |
| 7514  | 8 | 379.4 | 7548                                  | 8 | 414.1         | 7581  | 8 | 448.0             |
| 7515  | 8 | 380.4 | 7549                                  | 8 | 415.1         | 7582  | 8 | 449.0             |
| 7516  | 8 | 381.4 | l                                     |   |               | 7583  | 8 | 450.0             |
| 7517  | 8 | 382.4 | 7550                                  | 8 | 416.1         | 7584  | 8 | 451.1             |
| 7518  | 8 | 383.4 | 7551                                  | 8 | 417.2         | 7585  | 8 | 452.1             |
| 7519  | 8 | 384.5 | 7552                                  | 8 | 418.2         | 7586  | 8 | 453.1             |
|       |   |       | 7553                                  | 8 | 419.2         | 7587  | 8 | 454.2             |
| 7520  | 8 | 385.5 | 7554                                  | 8 | 420.2         | 7588  | 8 | 455.2             |
| 7521  | 8 | 386.5 | 7555                                  | 8 | 421.3         | 7589  | 8 | 456.2             |
| 7522  | 8 | 387.5 | 7556                                  | 8 | 422.3         |       |   |                   |
| 7523  | 8 | 388.5 | 7557                                  | 8 | 423.3         | 7590  | 8 | 457.2             |
| 7524  | 8 | 389.5 | 7558                                  | 8 | 424.31        | 7591  | 8 | 458.3             |
| 7525  | 8 | 390.5 | 7559                                  | 8 | 425.4         | 7592  | 8 | 459.3             |
| 7526  | 8 | 391.6 | l                                     |   |               | 7593  | 8 | 460.3             |
| 7527  | 8 | 392.6 | 7560                                  | 8 | 426.4         | 7594  | 8 | 461.3             |
| 7528  | 8 | 393.6 | 7561                                  | 8 | 427.4         | 7595  | 8 | 462.3             |
| 7529  | 8 | 394.6 | 7562                                  | 8 | 428.4         | 7596  | 8 | 463.4             |
|       |   |       | 7563                                  | 8 | 429.5         | 7597  | 8 | 464.4             |
| 7530  | 8 | 395.6 | 7564                                  | 8 | 430.5         | 7598  | 8 | 465.4             |
| 7531  | 8 | 396.6 | 7565                                  | 8 | 431.5         | 7599  | 8 | 466.4             |
| 7532  | 8 | 397.7 | 7566                                  | 8 | 432.6         |       |   |                   |
| 7533  | 8 | 398.7 | 7567                                  | 8 | 433.6         | 7600  | 8 | 467.4             |
|       |   |       | l                                     |   |               | l     |   |                   |
| -     |   |       | · · · · · · · · · · · · · · · · · · · |   |               |       |   |                   |

Use check point at 7500 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

|       | Frequency: 7600—7700 Kc |       |       |   |       |       |   |       |  |
|-------|-------------------------|-------|-------|---|-------|-------|---|-------|--|
| Freq. | A                       | В     | Freq. | A | В     | Freq. | A | В     |  |
| 7600  | 8                       | 467.4 | 7634  | 8 | 502.3 | 7668  | 8 | 537.4 |  |
| 7601  | 8                       | 468.5 | 7635  | 8 | 503.4 | 7669  | 8 | 538.4 |  |
| 7602  | 8                       | 469.5 | 7636  | 8 | 504.4 | 1     |   |       |  |
| 7603  | 8                       | 470.5 | 7637  | 8 | 505.4 | 7670  | 8 | 539.5 |  |
| 7604  | 8                       | 471.5 | 7638  | 8 | 506.5 | 7671  | 8 | 540.5 |  |
| 7605  | 8                       | 472.5 | 7639  | 8 | 507.5 | 7672  | 8 | 541.5 |  |
| 7606  | 8                       | 473.5 |       |   |       | 7673  | 8 | 542.5 |  |
| 7607  | 8                       | 474.6 | 7640  | 8 | 508.6 | 7674  | 8 | 543.6 |  |
| 7608  | 8                       | 475.6 | 7641  | 8 | 509.6 | 7675  | 8 | 544.6 |  |
| 7609  | 8                       | 476.6 | 7642  | 8 | 510.6 | 7676  | 8 | 545.6 |  |
|       |                         |       | 7643  | 8 | 511.7 | 7677  | 8 | 546.6 |  |
| 7610  | 8                       | 477.6 | 7644  | 8 | 512.7 | 7678  | 8 | 547.7 |  |
| 7611  | 8                       | 478.6 | 7645  | 8 | 513.7 | 7679  | 8 | 548.7 |  |
| 7612  | 8                       | 479.7 | 7646  | 8 | 514.8 | 1     |   |       |  |
| 7613  | 8                       | 480.7 | 7647  | 8 | 515.8 | 7680  | 8 | 549.7 |  |
| 7614  | 8                       | 481.7 | 7648  | 8 | 516.8 | 7681  | 8 | 550.7 |  |
| 7615  | 8                       | 482.7 | 7649  | 8 | 517.9 | 7682  | 8 | 551.8 |  |
| 7616  | 8                       | 483.7 |       |   | -     | 7683  | 8 | 552.8 |  |
| 7617  | 8                       | 484.8 | 7650  | 8 | 518.9 | 7684  | 8 | 553.8 |  |
| 7618  | 8                       | 485.8 | 7651  | 8 | 519.9 | 7685  | 8 | 554.9 |  |
| 7619  | 8                       | 486.8 | 7652  | 8 | 521.0 | 7686  | 8 | 555.9 |  |
|       |                         |       | 7653  | 8 | 522.0 | 7687  | 8 | 556.9 |  |
| 7620  | 8                       | 487.8 | 7654  | 8 | 523.0 | 7688  | 8 | 557.9 |  |
| 7621  | 8                       | 488.9 | 7655  | 8 | 524.1 | 7689  | 8 | 559.0 |  |
| 7622  | 8                       | 489.9 | 7656  | 8 | 525.1 |       |   |       |  |
| 7623  | 8                       | 490.9 | 7657  | 8 | 526.1 | 7690  | 8 | 560.0 |  |
| 7624  | 8                       | 492.0 | 7658  | 8 | 527.1 | 7691  | 8 | 561.0 |  |
| 7625  | 8                       | 493.0 | 7659  | 8 | 528.2 | 7692  | 8 | 562.1 |  |
| 7626  | 8                       | 494.0 |       |   |       | 7693  | 8 | 563.1 |  |
| 7627  | 8                       | 495.1 | 7660  | 8 | 529.2 | 7694  | 8 | 564.1 |  |
| 7628  | 8                       | 496.1 | 7661  | 8 | 530.2 | 7695  | 8 | 565.2 |  |
| 7629  | 8                       | 497.2 | 7662  | 8 | 531.2 | 7696  | 8 | 566.2 |  |
|       |                         | ĺ     | 7663  | 8 | 532.3 | 7697  | 8 | 567.2 |  |
| 7630  | 8                       | 498.2 | 7664  | 8 | 533.3 | 7698  | 8 | 568.2 |  |
| 7631  | 8                       | 499.2 | 7665  | 8 | 534.3 | 7699  | 8 | 569.3 |  |
| 7632  | 8                       | 500.3 | 7666  | 8 | 535.3 |       |   |       |  |
| 7633  | 8                       | 501.3 | 7667  | 8 | 536.4 | 7700  | 8 | 570.3 |  |
|       |                         |       |       |   |       |       |   |       |  |

Use check point at 7500 or 7500 Kc, whichever is nearer

|       |   | Frequ | ency: | 776 | 00-786 | 00 Kc |   |       |
|-------|---|-------|-------|-----|--------|-------|---|-------|
| Freq. | A | В     | Freq. | A   | В      | Freq. | A | В     |
| 7700  | 8 | 570.3 | 7734  | 8   | 605.4  | 7768  | 8 | 640.4 |
| 7701  | 8 | 571.3 | 7735  | 8   | 606.4  | 7769  | 8 | 641.5 |
| 7702  | 8 | 572.4 | 7736  | 8   | 607.4  |       |   |       |
| 7703  | 8 | 573.4 | 7737  | 8   | 608.5  | 7770  | 8 | 642.5 |
| 7704  | 8 | 574.4 | 7738  | 8   | 609.5  | 7771  | 8 | 643.5 |
| 7705  | 8 | 575.4 | 7739  | 8   | 610.5  | 7772  | 8 | 644.6 |
| 7706  | 8 | 576.5 | ł     |     |        | 7773  | 8 | 645.6 |
| 7707  | 8 | 577.5 | 7740  | 8   | 611.6  | 7774  | 8 | 646.6 |
| 7708  | 8 | 578.5 | 7741  | 8   | 612.6  | 7775  | 8 | 647.7 |
| 7709  | 8 | 579.6 | 7742  | 8   | 613.6  | 7776  | 8 | 648.7 |
|       |   |       | 7743  | 8   | 614.7  | 7777  | 8 | 649.7 |
| 7710  | 8 | 580.6 | 7744  | 8   | 615.7  | 7778  | 8 | 650.7 |
| 7711  | 8 | 581.6 | 7745  | 8   | 616.7  | 7779  | 8 | 651.8 |
| 7712  | 8 | 582.6 | 7746  | 8   | 617.8  |       |   |       |
| 7713  | 8 | 583.7 | 7747  | 8   | 618.8  | 7780  | 8 | 652.8 |
| 7714  | 8 | 584.7 | 7748  | 8   | 619.8  | 7781  | 8 | 653.8 |
| 7715  | 8 | 585.7 | 7749  | 8   | 620.9  | 7782  | 8 | 654.9 |
| 7716  | 8 | 586.8 |       |     |        | 7783  | 8 | 655.9 |
| 7717  | 8 | 587.8 | 7750  | 8   | 621.9  | 7784  | 8 | 656.9 |
| 7718  | 8 | 588.8 | 7751  | 8   | 622.9  | 7785  | 8 | 658.0 |
| 7719  | 8 | 589.9 | 7752  | 8   | 623.9  | 7786  | 8 | 659.0 |
|       |   |       | 7753  | 8   | 625.0  | 7787  | 8 | 660.0 |
| 7720  | 8 | 590.9 | 7754  | 8   | 626.0  | 7788  | 8 | 661.1 |
| 7721  | 8 | 591.9 | 7755  | 8   | 627.0  | 7789  | 8 | 662.1 |
| 7722  | 8 | 593.0 | 7756  | 8   | 628.1  | ```   | - |       |
| 7723  | 8 | 594.0 | 7757  | 8   | 629.1  | 7790  | 8 | 663.1 |
| 7724  | 8 | 595.0 | 7758  | 8   | 630.1  | 7791  | 8 | 664.1 |
| 7725  | 8 | 596.1 | 7759  | 8   | 631.2  | 7792  | 8 | 665.2 |
| 7726  | 8 | 597.1 |       |     |        | 7793  | 8 | 666.2 |
| 7727  | 8 | 598.1 | 7760  | 8   | 632.2  | 7794  | 8 | 667.2 |
| 7728  | 8 | 599.2 | 7761  | 8   | 633.2  | 7795  | 8 | 668.3 |
| 7729  | 8 | 600.2 | 7762  | 8   | 634.3  | 7796  | 8 | 669.3 |
|       | - | •     | 7763  | 8   | 635.3  | 7797  | 8 | 670.3 |
| 7730  | 8 | 601.2 | 7764  | 8   | 636.3  | 7798  | 8 | 671.4 |
| 7731  | 8 | 602.3 | 7765  | 8   | 637.3  | 7799  | 8 | 672.4 |
| 7732  | 8 | 603.3 | 7766  | 8   | 638.4  | 1     |   |       |
| 7733  | 8 | 604.3 | 7767  | 8   | 639.4  | 7800  | 8 | 673.4 |
|       |   |       | I     |     |        | i     |   |       |

Use theck point at 7800 Kc

| Frequency: 7800-7900 Kc |        |                |              |        |                |       |   |       |  |
|-------------------------|--------|----------------|--------------|--------|----------------|-------|---|-------|--|
| Freq.                   | A      | В              | Freq.        | A      | В              | Freq. | Α | В     |  |
| 7800                    | 8      | 673.4          | 7834         | 8      | 708.4          | 7868  | 8 | 743.4 |  |
| 7801                    | 8      | 674.4          | 7835         | 8      | 709.4          | 7869  | 8 | 744.5 |  |
| 7802                    | 8      | 675.5          | 7836         | 8      | 710.4          |       |   |       |  |
| 7803                    | 8      | 676.5          | 7837         | 8      | 711.5          | 7870  | 8 | 745.5 |  |
| 7804                    | 8      | 677.5          | 7838         | 8      | 712.5          | 7871  | 8 | 746.5 |  |
| 7805                    | 8      | 678.6          | 7839         | 8      | 713.5          | 7872  | 8 | 747.5 |  |
| 7806                    | 8      | 679.6          | ĺ            |        |                | 7873  | 8 | 748.6 |  |
| 7807                    | 8      | 680.6          | 7840         | 8      | 714.6          | 7874  | 8 | 749.6 |  |
| 7808                    | 8      | 681.6          | 7841         | 8      | 715.6          | 7875  | 8 | 750.6 |  |
| 7809                    | 8      | 682.7          | 7842         | 8      | 716.6          | 7876  | 8 | 751.6 |  |
|                         |        |                | 7843         | 8      | 717.7          | 7877  | 8 | 752.7 |  |
| 7810                    | 8      | 683.7          | 7844         | 8      | 718.7          | 7878  | 8 | 753.7 |  |
| 7811                    | 8      | 684.7          | 7845         | 8      | 719.8          | 7879  | 8 | 754.7 |  |
| 7812                    | 8      | 685.7          | 7846         | 8      | 720.8          | l     |   |       |  |
| 7813                    | 8      | 686.8          | 7847         | 8      | 721.8          | 7880  | 8 | 755.7 |  |
| 7814                    | 8      | 687.8          | 7848         | 8      | 722.9          | 7881  | 8 | 756.8 |  |
| 7815                    | 8      | 688.8          | 7849         | 8      | 723.9          | 7882  | 8 | 757.8 |  |
| 7816                    | 8      | 689.9          | •            |        |                | 7883  | 8 | 758.8 |  |
| 7817                    | 8      | 690.9          | 7850         | 8      | 724.9          | 7884  | 8 | 759.8 |  |
| 7818                    | 8      | 691.9          | 7851         | 8      | 726.0          | 7885  | 8 | 760.8 |  |
| 7819                    | 8      | 692.9          | 7852         | 8      | 727.0          | 7886  | 8 | 761.9 |  |
|                         |        |                | 7853         | 8      | 728.0          | 7887  | 8 | 762.9 |  |
| 7820                    | 8      | 694.0          | 7854         | 8      | 729.1          | 7888  | 8 | 763.9 |  |
| 7821                    | 8      | 695.0          | 7855         | 8      | 730.1          | 7889  | 8 | 764.9 |  |
| 7822                    | 8      | 696.0          | 7856         | 8      | 731.1          |       |   |       |  |
| 7823                    | 8      | 697.0          | 7857         | 8      | 732.2          | 7890  | 8 | 766.0 |  |
| 7824                    | 8      | 698.1          | 7858         | 8      | 733.2          | 7891  | 8 | 767.0 |  |
| 7825                    | 8      | 699.1          | 7859         | 8      | 734.2          | 7892  | 8 | 768.0 |  |
| 7826                    | 8      | 700.1          |              | _      |                | 7893  | 8 | 769.1 |  |
| 7827                    | 8      | 701.2          | 7860         | 8      | 735.3          | 7894  | 8 | 770.1 |  |
| 7828                    | 8      | 702.2          | 7861         | 8      | 736.3          | 7895  | 8 | 771.1 |  |
| 7829                    | 8      | 703.2          | 7862         | 8      | 737.3          | 7896  | 8 | 772.1 |  |
| 2000                    |        |                | 7863         | 8      | 738.3          | 7897  | 8 | 773.2 |  |
| 7830                    | 8      | 704.2          | 7864         | 8      | 739.4          | 7898  | 8 | 774.2 |  |
| 7831<br>7832            | 8<br>8 | 705.3          | 7865<br>7866 | 8<br>8 | 740.4          | 7899  | 8 | 775.2 |  |
| 7832<br>7833            | 8      | 706.3<br>707.3 | 7867         | 8      | 741.4<br>742.4 | 7900  | 8 | 776 2 |  |
| 1033                    | 0      | 107.3          | /80/         | 8      | /42.4          | /900  | 8 | 776.3 |  |
|                         |        |                | 1            |        |                |       |   |       |  |

Use check point at 7800 Kc

|       | Frequency: 7900—8000 Kc |       |       |   |       |              |   |       |  |
|-------|-------------------------|-------|-------|---|-------|--------------|---|-------|--|
| Freq. | A                       | В     | Freq. | A | В     | Freq.        | A | В     |  |
| 7900  | 8                       | 776.3 | 7934  | 8 | 811.4 | 7968         | 8 | 846.4 |  |
| 7901  | 8                       | 777.3 | 7935  | 8 | 812.4 | 7969         | 8 | 847.5 |  |
| 7902  | 8                       | 778.3 | 7936  | 8 | 813.4 | i            |   |       |  |
| 7903  | 8                       | 779.4 | 7937  | 8 | 814.5 | 7970         | 8 | 848.5 |  |
| 7904  | 8                       | 780.4 | 7938  | 8 | 815.5 | <b>79</b> 71 | 8 | 849.5 |  |
| 7905  | 8                       | 781.4 | 7939  | 8 | 816.6 | 7972         | 8 | 850.5 |  |
| 7906  | 8                       | 782.4 | l .   |   |       | 7973         | 8 | 851.6 |  |
| 7907  | 8                       | 783.5 | 7940  | 8 | 817.6 | 7974         | 8 | 852.6 |  |
| 7908  | 8                       | 784.5 | 7941  | 8 | 818.6 | 7975         | 8 | 853.6 |  |
| 7909  | 8                       | 785.5 | 7942  | 8 | 819.7 | 7976         | 8 | 854.7 |  |
|       |                         |       | 7943  | 8 | 820.7 | 7977         | 8 | 855.7 |  |
| 7910  | 8                       | 786.6 | 7944  | 8 | 821.7 | 7978         | 8 | 856.7 |  |
| 7911  | 8                       | 787.6 | 7945  | 8 | 822.8 | 7979         | 8 | 857.7 |  |
| 7912  | 8                       | 788.6 | 7946  | 8 | 823.8 | l            |   |       |  |
| 7913  | 8                       | 789.7 | 7947  | 8 | 824.9 | 7980         | 8 | 858.8 |  |
| 7914  | 8                       | 790.7 | 7948  | 8 | 825.9 | 7981         | 8 | 859.8 |  |
| 7915  | 8                       | 791.7 | 7949  | 8 | 826.9 | 7982         | 8 | 860.8 |  |
| 7916  | 8                       | 792.7 |       |   |       | 7983         | 8 | 861.8 |  |
| 7917  | 8                       | 793.8 | 7950  | 8 | 828.0 | 7984         | 8 | 862.8 |  |
| 7918  | 8                       | 794.8 | 7951  | 8 | 829.0 | 7985         | 8 | 863.8 |  |
| 7919  | 8                       | 795.8 | 7952  | 8 | 830.0 | 7986         | 8 | 864.8 |  |
|       |                         |       | 7953  | 8 | 831.0 | 7987         | 8 | 865.8 |  |
| 7920  | 8                       | 796.9 | 7954  | 8 | 832.1 | 7988         | 8 | 866.9 |  |
| 7921  | 8                       | 797.9 | 7955  | 8 | 833.1 | 7989         | 8 | 867.9 |  |
| 7922  | 8                       | 798.9 | 7956  | 8 | 834.1 | 1            |   |       |  |
| 7923  | 8                       | 800.0 | 7957  | 8 | 835.1 | 7990         | 8 | 868.9 |  |
| 7924  | 8                       | 801.0 | 7958  | 8 | 836.2 | 7991         | 8 | 869.9 |  |
| 7925  | 8                       | 802.0 | 7959  | 8 | 837.2 | 7992         | 8 | 870.9 |  |
| 7926  | 8                       | 803.1 |       |   |       | 7993         | 8 | 871.9 |  |
| 7927  | 8                       | 804.1 | 7960  | 8 | 838.2 | 7994         | 8 | 872.9 |  |
| 7928  | 8                       | 805.2 | 7961  | 8 | 839.3 | 7995         | 8 | 874.0 |  |
| 7929  | 8                       | 806.2 | 7962  | 8 | 840.3 | 7996         | 8 | 875.0 |  |
|       |                         |       | 7963  | 8 | 841.3 | 7997         | 8 | 876.0 |  |
| 7930  | 8                       | 807.2 | 7964  | 8 | 842.3 | 7998         | 8 | 877.0 |  |
| 7931  | 8                       | 808.3 | 7965  | 8 | 843.4 | 7999         | 8 | 878.0 |  |
| 7932  | 8                       | 809.3 | 7966  | 8 | 844.4 |              |   |       |  |
| 7933  | 8                       | 810.3 | 7967  | 8 | 845.4 | 8000         | 8 | 879.0 |  |

Use chesk point at 7800 or 8100 Kc, whichever is nearer

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: | 8000-8 | 100 | Kc |
|------------|--------|-----|----|
|------------|--------|-----|----|

| Freq. | A | В     | Freq. | A | В     | Freq. | A | В     |
|-------|---|-------|-------|---|-------|-------|---|-------|
| 8000  | 8 | 879.0 | 8034  | 8 | 913.8 | 8068  | 8 | 948.6 |
| 8001  | 8 | 880.0 | 8035  | 8 | 914.9 | 8069  | 8 | 949.6 |
| 8002  | 8 | 881.0 | 8036  | 8 | 915.9 | İ     |   |       |
| 8003  | 8 | 882.1 | 8037  | 8 | 916.9 | 8070  | 8 | 950.7 |
| 8004  | 8 | 883.1 | 8038  | 8 | 918.0 | 8071  | 8 | 951.7 |
| 8005  | 8 | 884.1 | 8039  | 8 | 919.0 | 8072  | 8 | 952.7 |
| 8006  | 8 | 885.1 |       |   |       | 8073  | 8 | 953.7 |
| 8007  | 8 | 886.1 | 8040  | 8 | 920.0 | 8074  | 8 | 954.8 |
| 8008  | 8 | 887.1 | 8041  | 8 | 921.0 | 8075  | 8 | 955.8 |
| 8009  | 8 | 888.1 | 8042  | 8 | 922.1 | 8076  | 8 | 956.8 |
|       |   |       | 8043  | 8 | 923.1 | 8077  | 8 | 957.8 |
| 8010  | 8 | 889.1 | 8044  | 8 | 924.1 | 8078  | 8 | 958.8 |
| 8011  | 8 | 890.2 | 8045  | 8 | 925.1 | 8079  | 8 | 959.9 |
| 8012  | 8 | 891.2 | 8046  | 8 | 926.1 |       |   |       |
| 8013  | 8 | 892.2 | 8047  | 8 | 927.2 | 8080  | 8 | 960.9 |
| 8014  | 8 | 893.3 | 8048  | 8 | 928.2 | 8081  | 8 | 961.9 |
| 8015  | 8 | 894,3 | 8049  | 8 | 929.2 | 8082  | 8 | 962.9 |
| 8016  | 8 | 895.3 |       |   |       | 8083  | 8 | 964.0 |
| 8017  | 8 | 896.3 | 8050  | 8 | 930.2 | 8084  | 8 | 965.0 |
| 8018  | 8 | 897.4 | 8051  | 8 | 931.3 | 8085  | 8 | 966.0 |
| 8019  | 8 | 898.4 | 8052  | 8 | 932.3 | 8086  | 8 | 967.0 |
|       |   |       | 8053  | 8 | 933.3 | 8087  | 8 | 968.1 |
| 8020  | 8 | 899.4 | 8054  | 8 | 934.3 | 8088  | 8 | 969.1 |
| 8021  | 8 | 900.5 | 8055  | 8 | 935.3 | 8089  | 8 | 970.1 |
| 8022  | 8 | 901.5 | 8056  | 8 | 936.4 | 1     |   |       |
| 8023  | 8 | 902.5 | 8057  | 8 | 937.4 | 8090  | 8 | 971.1 |
| 8024  | 8 | 903.6 | 8058  | 8 | 938.4 | 8091  | 8 | 972.2 |
| 8025  | 8 | 904.6 | 8059  | 8 | 939.4 | 8092  | 8 | 973.2 |
| 8026  | 8 | 905.6 |       | _ |       | 8093  | 8 | 974.2 |
| 8027  | 8 | 906.6 | 8060  | 8 | 940.4 | 8094  | 8 | 975.2 |
| 8028  | 8 | 907.7 | 8061  | 8 | 941.5 | 8095  | 8 | 976.2 |
| 8029  | 8 | 908.7 | 8062  | 8 | 942.5 | 8096  | 8 | 977.3 |
|       |   |       | 8063  | 8 | 943.5 | 8097  | 8 | 978.3 |
| 8030  | 8 | 909.7 | 8064  | 8 | 944.5 | 8098  | 8 | 979.3 |
| 8031  | 8 | 910.8 | 8065  | 8 | 945.6 | 8099  | 8 | 980.3 |
| 8032  | 8 | 911.8 | 8066  | 8 | 946.6 |       | _ |       |
| 8033  | 8 | 912.8 | 8067  | 8 | 947.6 | 8100  | 8 | 981.4 |
|       |   |       | l     |   |       | 1     |   |       |

Use check point at 8100 Kc

# Frequency: 8100-8200 Kc

|       |   | ·      |       |   |        |       |   |        |
|-------|---|--------|-------|---|--------|-------|---|--------|
| Freq. | A |        | Freq. | A | В      | Freq. | A | В      |
| 8100· | 8 | 981.4  | 8134  | 8 | 1016.0 | 8168  | 8 | 1050.6 |
| 8101  | 8 | 982.4  | 8135  | 8 | 1017.0 | 8169  | 8 | 1051.6 |
| 8102  | 8 | 983.4  | 8136  | 8 | 1018.1 | l     |   |        |
| 8103  | 8 | 984.4  | 8137  | 8 | 1019.1 | 8170  | 8 | 1052.6 |
| 8104  | 8 | 985.4  | 8138  | 8 | 1020.1 | 8171  | 8 | 1053.7 |
| 8105  | 8 | 986.5  | 8139  | 8 | 1021.1 | 8172  | 8 | 1054.7 |
| 8106  | 8 | 987.5  |       |   |        | 8173  | 8 | 1055.7 |
| 8107  | 8 | 988.5  | 8140  | 8 | 1022.1 | 8174  | 8 | 1056.7 |
| 8108  | 8 | 989.5  | 8141  | 8 | 1023.2 | 8175  | 8 | 1057.7 |
| 8109  | 8 | 990.5  | 8142  | 8 | 1024.2 | 8176  | 8 | 1058.7 |
|       |   |        | 8143  | 8 | 1025.2 | 8177  | 8 | 1059.8 |
| 8110  | 8 | 991.6  | 8144  | 8 | 1026.2 | 8178  | 8 | 1060.8 |
| 8111  | 8 | 992.6  | 8145  | 8 | 1027.2 | 8179  | 8 | 1061.8 |
| 8112  | 8 | 993.6  | 8146  | 8 | 1028.2 | l     |   |        |
| 8113  | 8 | 994.6  | 8147  | 8 | 1029.3 | 8180  | 8 | 1062.8 |
| 8114  | 8 | 995.6  | 8148  | 8 | 1030.3 | 8181  | 8 | 1063.8 |
| 8115  | 8 | 996.7  | 8149  | 8 | 1031.3 | 8182  | 8 | 1064.8 |
| 8116  | 8 | 997.7  |       |   |        | 8183  | 8 | 1065.9 |
| 8117  | 8 | 998.7  | 8150  | 8 | 1032.3 | 8184  | 8 | 1066.9 |
| 8118  | 8 | 999.7  | 8151  | 8 | 1033.3 | 8185  | 8 | 1067.9 |
| 8119  | 8 | 1000.7 | 8152  | 8 | 1034.3 | 8186  | 8 | 1068.9 |
|       |   |        | 8153  | 8 | 1035.4 | 8187  | 8 | 1069.9 |
| 8120  | 8 | 1001.8 | 8154  | 8 | 1036.4 | 8188  | 8 | 1070.9 |
| 8121  | 8 | 1002.8 | 8155  | 8 | 1037.4 | 8189  | 8 | 1072.0 |
| 8122  | 8 | 1003.8 | 8156  | 8 | 1038.4 | Į.    |   |        |
| 8123  | 8 | 1004.8 | 8157  | 8 | 1039.4 | 8190  | 8 | 1073.0 |
| 8124  | 8 | 1005.8 | 8158  | 8 | 1040.4 | 8191  | 8 | 1074.0 |
| 8125  | 8 | 1006.9 | 8159  | 8 | 1041.5 | 8192  | 8 | 1075.0 |
| 8126  | 8 | 1007.9 | 1     |   |        | 8193  | 8 | 1076.0 |
| 8127  | 8 | 1008.9 | 8160  | 8 | 1042.5 | 8194  | 8 | 1077.0 |
| 8128  | 8 | 1009.9 | 8161  | 8 | 1043.5 | 8195  | 8 | 1078.1 |
| 8129  | 8 | 1010.9 | 8162  | 8 | 1044.5 | 8196  | 8 | 1079.1 |
|       |   |        | 8163  | 8 | 1045.5 | 8197  | 8 | 1080.1 |
| 8130  | 8 | 1012.0 | 8164  | 8 | 1046.5 | 8198  | 8 | 1081.1 |
| 8131  | 8 | 1013.0 | 8165  | 8 | 1047.6 | 8199  | 8 | 1082.1 |
| 8132  | 8 | 1014.0 | 8166  | 8 | 1048.6 | l     |   |        |
| 8133  | 8 | 1015.0 | 8167  | 8 | 1049.6 | 8200  | 8 | 1083.1 |
|       |   |        | 1     |   |        | 1     |   |        |

Use check point at 8100 Kc

Frequency: 8200-8300 Kc

| Freq.        | A | В                | Freq.        | A | В                | Freq.    | A | В       |
|--------------|---|------------------|--------------|---|------------------|----------|---|---------|
| 8200         | 8 | 1083.1           | 8234         | 8 | 1117.6           | 8268     | 8 | 1152.1  |
| 8201         | 8 | 1084.1           | 8235         | 8 | 1118.6           | 8269     | 8 | 1153.1  |
| 8202         | 8 | 1085.2           | 8236         | 8 | 1119.7           | !        |   |         |
| 8203         | 8 | 1086.2           | 8237         | 8 | 1120.7           | 8270     | 8 | 1154.1  |
| 8204         | 8 | 1087.2           | 8238         | 8 | 1121.7           | 8271     | 8 | 1155.1  |
| 8205         | 8 | 1088.2           | 8239         | 8 | 1122.7           | 8272     | 8 | 1156.1  |
| 8206         | 8 | 1089.2           |              |   |                  | 8273     | 8 | 1157.1  |
| 8207         | 8 | 1090.2           | 8240         | 8 | 1123.7           | 8274     | 8 | 1158.1  |
| 8208         | 8 | 1091.3           | 8241         | 8 | 1124.7           | 8275     | 8 | 1159.2  |
| 8209         | 8 | 1092.3           | 8242         | 8 | 1125.7           | 8276     | 8 | 1160.2  |
|              |   |                  | 8243         | 8 | 1126.7           | 8277     | 8 | 1161.2  |
| 8210         | 8 | 1093.3           | 8244         | 8 | 1127.8           | 8278     | 8 | 1162.2  |
| 8211         | 8 | 1094.3           | 8245         | 8 | 1128.8           | 8279     | 8 | 1163.2  |
| 8212         | 8 | 1095.3           | 8246         | 8 | 1129.8           | l        |   |         |
| 8213         | 8 | 1096.3           | 8247         | 8 | 1130.8           | 8280     | 8 | 1164.2  |
| 8214         | 8 | 1097.3           | 8248         | 8 | 1131.8           | 8281     | 8 | 1165.2  |
| 8215         | 8 | 1098.4           | 8249         | 8 | 1132.8           | 8282     | 8 | 1166.2  |
| 8216         | 8 | 1099.4           |              |   |                  | 8283     | 8 | 1167.2  |
| 8217         | 8 | 1100.4           | 8250         | 8 | 1133.8           | 8284     | 8 | 1168.2  |
| 8218         | 8 | 1101.4           | 8251         | 8 | 1134.9           | 8285     | 8 | 1169.3  |
| 8219         | 8 | 1102.4           | 8252         | 8 | 1135.9           | 8286     | 8 | 1170.3  |
|              |   |                  | 8253         | 8 | 1136.9           | 8287     | 8 | 1171.3  |
| 8220         | 8 | 1103.4           | 8254         | 8 | 1137.9           | 8288     | 8 | 1172.3  |
| 8221         | 8 | 1104.5           | 8255         | 8 | 1138.9           | 8289     | 8 | 1173.3  |
| 8222         | 8 | 1105.5           | 8256         | 8 | 1139.9           |          |   |         |
| 8223         | 8 | 1106.5           | 8257         | 8 | 1140.9           | 8290     | 8 | 1174.3  |
| 8224         | 8 | 1107.5           | 8258         | 8 | 1141.9           | 8291     | 8 | 1175.3  |
| 8225         | 8 | 1108.5           | 8259         | 8 | 1143.0           | 8292     | 8 | 1176.3  |
| 8226         | 8 | 1109.5           |              |   |                  | 8293     | 8 | 1177.3  |
| 8227         | 8 | 1110.5           | 8260         | 8 | 1144.0           | 8294     | 8 | 1178.3  |
| 8228         | 8 | 1111.5           | 8261         | 8 | 1145.0           | 8295     | 8 | 1179.3  |
| 8229         | 8 | 1112.6           | 8262         | 8 | 1146.0           | 8296     | 8 | 1180.3  |
| 0000         | _ | 4440.0           | 8263         | 8 | 1147.0           | 8297     | 8 | 1181.3  |
| 8230         | 8 | 1113.6           | 8264         | 8 | 1148.0           | 8298     | 8 | 1182.4  |
| 8231<br>8232 | 8 | 1114.6<br>1115.6 | 8265<br>8266 | 8 | 1149.0<br>1150.0 | 8299     | ٥ | 1183.4  |
| 8232         | 8 | 1116.6           | 8267         | 8 | 1150.0           | 8300     | 8 | 1184.4  |
| 0233         | 8 | 1110.0           | 0207         | ۰ | 1101.1           | 0300     | 0 | 1 104.4 |
|              |   |                  | 1            |   |                  | <u> </u> |   |         |

Use check point at 8100 or 8400 Kc, whichever is nearer

### Frequency: 8300-8400 Kc

|       |   |        | 1_    |   |        | _     |   |         |
|-------|---|--------|-------|---|--------|-------|---|---------|
| Freq. | A | В      | Freq. | A | В      | Freq. | A | В       |
| 8300  | 8 | 1184.4 | 8334  | 8 | 1218.8 | 8368  | 8 | 1253.1  |
| 8301  | 8 | 1185.4 | 8335  | 8 | 1219.8 | 8369  | 8 | 1254.1  |
| 8302  | 8 | 1186.4 | 8336  | 8 | 1220.8 |       |   |         |
| 8303  | 8 | 1187.4 | 8337  | 8 | 1221.9 | 8370  | 8 | 1255.1  |
| 8304  | 8 | 1188.4 | 8338  | 8 | 1222.9 | 8371  | 8 | 1256.1  |
| 8305  | 8 | 1189.4 | 8339  | 8 | 1223.9 | 8372  | 8 | 1257.1  |
| 8306  | 8 | 1190.4 | 1     |   |        | 8373  | 8 | 1258.1  |
| 8307  | 8 | 1191.4 | 8340  | 8 | 1224.9 | 8374  | 8 | 1259.1  |
| 8308  | 8 | 1192.4 | 8341  | 8 | 1225.9 | 8375  | 8 | 1260.1  |
| 8309  | 8 | 1193.4 | 8342  | 8 | 1226.9 | 8376  | 8 | 1261.1  |
|       |   |        | 8343  | 8 | 1227.9 | 8377  | 8 | 1262.1  |
| 8310  | 8 | 1194.4 | 8344  | 8 | 1228.9 | 8378  | 8 | 1263.2  |
| 8311  | 8 | 1195.5 | 8345  | 8 | 1229.9 | 8379  | 8 | 1264.2  |
| 8312  | 8 | 1196.5 | 8346  | 8 | 1230.9 |       |   |         |
| 8313  | 8 | 1197.5 | 8347  | 8 | 1231.9 | 8380  | 8 | 1265.2  |
| 8314  | 8 | 1198.5 | 8348  | 8 | 1233.0 | 8381  | 8 | 1266.2  |
| 8315  | 8 | 1199.5 | 8349  | 8 | 1234.0 | 8382  | 8 | 1267.2  |
| 8316  | 8 | 1200.5 |       |   |        | 8383  | 8 | 1268.2  |
| 8317  | 8 | 1201.5 | 8350  | 8 | 1235.0 | 8384  | 8 | 1269.2  |
| 8318  | 8 | 1202.6 | 8351  | 8 | 1236.0 | 8385  | 8 | 1270.2  |
| 8319  | 8 | 1203.6 | 8352  | 8 | 1237.0 | 8386  | 8 | 1271.2  |
|       |   |        | 8353  | 8 | 1238.0 | 8387  | 8 | 1272.2  |
| 8320  | 8 | 1204.6 | 8354  | 8 | 1239.0 | 8388  | 8 | 1273.2  |
| 8321  | 8 | 1205.6 | 8355  | 8 | 1240.0 | 8389  | 8 | 1274.2  |
| 8322  | 8 | 1206.6 | 8356  | 8 | 1241.0 | ŀ     |   |         |
| 8323  | 8 | 1207.6 | 8357  | 8 | 1242.0 | 8390  | 8 | 1275.2  |
| 8324  | 8 | 1208.7 | 8358  | 8 | 1243.0 | 8391  | 8 | 1276.2  |
| 8325  | 8 | 1209.7 | 8359  | 8 | 1244.0 | 8392  | 8 | 1277.2  |
| 8326  | 8 | 1210.7 | 1     |   |        | 8393  | 8 | 1278.3  |
| 8327  | 8 | 1211.7 | 8360  | 8 | 1245.0 | 8394  | 8 | 1279.3  |
| 8328  | 8 | 1212.7 | 8361  | 8 | 1246.0 | 8395  | 8 | 1280.3  |
| 8329  | 8 | 1213.7 | 8362  | 8 | 1247.0 | 8396  | 8 | 1281.3  |
|       |   |        | 8363  | 8 | 1248.1 | 8397  | 8 | 1282.3  |
| 8330  | 8 | 1214.7 | 8364  | 8 | 1249.1 | 8398  | 8 | 1283.3  |
| 8331  | 8 | 1215.8 | 8365  | 8 | 1250.1 | 8399  | 8 | 1284.3  |
| 8332  | 8 | 1216.8 | 8366  | 8 | 1251.1 |       |   |         |
| 8333  | 8 | 1217.8 | 8367  | 8 | 1252.1 | 8400  | 8 | 1,285.3 |
|       |   |        | l     |   |        |       |   |         |
|       |   |        |       |   |        |       |   |         |

Use check point at 8400 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: | 8400-8500 | Kc |
|------------|-----------|----|
|------------|-----------|----|

| Freq.        | Α | В                | Freq.        | A      | В                | Freq. | A | В                |
|--------------|---|------------------|--------------|--------|------------------|-------|---|------------------|
| 8400         | 8 | 1285.3           | 8434         | 8      | 1319.7           | 8468  | 8 | 1354.0           |
| 8401         | 8 | 1286.3           | 8435         | 8      | 1320.7           | 8469  | 8 | 1355.1           |
| 8402         | 8 | 1287.3           | 8436         | 8      | 1321.7           | I     |   |                  |
| 8403         | 8 | 1288.3           | 8437         | 8      | 1322.7           | 8470  | 8 | 1356.1           |
| 8404         | 8 | 1289.3           | 8438         | 8      | 1323.7           | 8471  | 8 | 1357.1           |
| 8405         | 8 | 1290.4           | 8439         | 8      | 1324.8           | 8472  | 8 | 1358.1           |
| 8406         | 8 | 1291.4           |              |        |                  | 8473  | 8 | 1359.1           |
| 8407         | 8 | 1292.4           | 8440         | 8      | 1325.8           | 8474  | 8 | 1360.1           |
| 8408         | 8 | 1293.4           | 8441         | 8      | 1326.8           | 8475  | 8 | 1361.1           |
| 8409         | 8 | 1294.4           | 8442         | 8      | 1327.8           | 8476  | 8 | 1362.1           |
|              |   |                  | 8443         | 8      | 1328.8           | 8477  | 8 | 1363.1           |
| 8410         | 8 | 1295.4           | 8444         | 8      | 1329.8           | 8478  | 8 | 1364.2           |
| 8411         | 8 | 1296.4           | 8445         | 8      | 1330.8           | 8479  | 8 | 1365.2           |
| 8412         | 8 | 1297.4           | 8446         | 8      | 1331.8           | l     |   |                  |
| 8413         | 8 | 1298.5           | 8447         | 8      | 1332.8           | 8480  | 8 | 1366.2           |
| 8414         | 8 | 1299.5           | 8448         | 8      | 1333.8           | 8481  | 8 | 1367.2           |
| 8415         | 8 | 1300.5           | 8449         | 8      | 1334.9           | 8482  | 8 | 1368.2           |
| 8416         | 8 | 1301.5           | l            | _      |                  | 8483  | 8 | 1369.2           |
| 8417         | 8 | 1302.5           | 8450         | 8      | 1335.9           | 8484  | 8 | 1370.2           |
| 8418         | 8 | 1303.5           | 8451         | 8      | 1336.9           | 8485  | 8 | 1371.2           |
| 8419         | 8 | 1304.5           | 8452         | 8      | 1337.9           | 8486  | 8 | 1372.2           |
| 0400         |   | 400= =           | 8453         | 8      | 1338.9           | 8487  | 8 | 1373.2           |
| 8420         | 8 | 1305.5           | 8454         | 8      | 1339.9           | 8488  | 8 | 1374.3           |
| 8421         | 8 | 1306.6           | 8455         | 8      | 1340.9           | 8489  | 8 | 1375.3           |
| 8422         | 8 | 1307.6           | 8456         | 8      | 1341.9           | 8490  | 8 | 1076.0           |
| 8423<br>8424 | 8 | 1308.6<br>1309.6 | 8457<br>8458 | 8<br>8 | 1342.9<br>1343.9 | 8491  | 8 | 1376.3<br>1377.3 |
| 8425         | 8 | 1310.6           | 8459         | 8      | 1345.0           | 8492  | 8 | 1377.3           |
| 8426         | 8 | 1311.6           | 0409         | ٥      | 1345.0           | 8493  | 8 | 1379.3           |
| 8427         | 8 | 1312.6           | 8460         | 8      | 1346.0           | 8494  | 8 | 1380.3           |
| 8428         | 8 | 1313.6           | 8461         | 8      | 1347.0           | 8495  | 8 | 1381.3           |
| 8429         | 8 | 1314.6           | 8462         | 8      | 1348.0           | 8496  | 8 | 1382.3           |
| 0423         | ٥ | 1314.0           | 8463         | 8      | 1349.0           | 8497  | 8 | 1383.4           |
| 8430         | 8 | 1315.7           | 8464         | 8      | 1350.0           | 8498  | 8 | 1384.4           |
| 8431         | 8 | 1316.7           | 8465         | 8      | 1351.0           | 8499  | 8 | 1385.4           |
| 8432         | 8 | 1317.7           | 8466         | 8      | 1352.0           | 0,33  | , | 1000.7           |
| 8433         | 8 | 1317.7           | 8467         | 8      | 1353.0           | 8500  | 8 | 1386.4           |
| 3755         | o | 1510.7           | ا ""         | ٠      | .555.0           |       | ٠ | . 555. 1         |
|              | _ |                  |              |        |                  | i     |   |                  |

Use check point at 8400 Kc

## Frequency: 8500-8600 Kc

| E             | <u> </u> | В      | E             | A       | В                | Freq. | A | В      |
|---------------|----------|--------|---------------|---------|------------------|-------|---|--------|
| Freq.<br>8500 | A.<br>8  | 1386.4 | Freq.<br>8534 | A.<br>8 | 1420.8           | 8568  | 8 | 1455.4 |
|               | _        |        |               | -       | 1421.8           | 8569  | 8 | 1456.4 |
| 8501          | 8        | 1387.4 | 8535          | 8       |                  | 8569  | 8 | 1450.4 |
| 8502<br>8503  | 8        | 1388.4 | 8536          | 8       | 1422.8<br>1423.9 | 0670  | 8 | 1457.4 |
|               |          | 1389.4 | 8537          | 8       |                  | 8570  | 8 | 1458.5 |
| 8504          | 8        | 1390.4 | 8538          | 8       | 1424.9           | 8571  | _ |        |
| 8505          | 8        | 1391.4 | 8539          | 8       | 1425.9           | 8572  | 8 | 1459.5 |
| 8506          | 8        | 1392.5 |               |         |                  | 8573  | 8 | 1460.5 |
| 8507          | 8        | 1393.5 | 8540          | 8       | 1426.9           | 8574  | 8 | 1461.5 |
| 8508          | 8        | 1394.5 | 8541          | 8       | 1427.9           | 8575  | 8 | 1462.5 |
| 8509          | 8        | 1395.5 | 8542          | 8       | 1428.9           | 8576  | 8 | 1463.6 |
|               | _        |        | 8543          | 8       | 1430.0           | 8577  | 8 | 1464.6 |
| 8510          | 8        | 1396.5 | 8544          | 8       | 1431.0           | 8578  | 8 | 1465.6 |
| 8511          | 8        | 1397.5 | 8545          | 8       | 1432.0           | 8579  | 8 | 1466.6 |
| 8512          | 8        | 1398.5 | 8546          | 8       | 1433.0           | l     | _ |        |
| 8513          | 8        | 1399.5 | 8547          | 8       | 1434.0           | 8580  | 8 | 1467.6 |
| 8514          | 8        | 1400.5 | 8548          | 8       | 1435.0           | 8581  | 8 | 1468.7 |
| 8515          | 8        | 1401.5 | 8549          | 8       | 1436.0           | 8582  | 8 | 1469.7 |
| 8516          | 8        | 1402.6 |               |         |                  | 8583  | 8 | 1470.7 |
| 8517          | 8        | 1403.6 | 8550          | 8       | 1437.1           | 8584  | 8 | 1471.7 |
| 8518          | 8        | 1404.6 | 8551          | 8       | 1438.1           | 8585  | 8 | 1472.7 |
| 8519          | 8        | 1405.6 | 8552          | 8       | 1439.1           | 8586  | 8 | 1473.7 |
|               |          |        | 8553          | 8       | 1440.1           | 8587  | 8 | 1474.7 |
| 8520          | 8        | 1406.6 | 8554          | 8       | 1441.1           | 8588  | 8 | 1475.7 |
| 8521          | 8        | 1407.6 | 8555          | 8       | 1442.2           | 8589  | 8 | 1476.8 |
| 8522          | 8        | 1408.6 | 8556          | 8       | 1443.2           | •     |   |        |
| 8523          | 8        | 1409.6 | 8557          | 8       | 1444.2           | 8590  | 8 | 1477.8 |
| 8524          | 8        | 1410.7 | 8558          | 8       | 1445.2           | 8591  | 8 | 1478.8 |
| 8525          | 8        | 1411.7 | 8559          | 8       | 1446.2           | 8592  | 8 | 1479.8 |
| 8526          | 8        | 1412.7 | 1             |         |                  | 8593  | 8 | 1480.8 |
| 8527          | 8        | 1413.7 | 8560          | 8       | 1447.3           | 8594  | 8 | 1481.8 |
| 8528          | 8        | 1414.7 | 8561          | 8       | 1448.3           | 8595  | 8 | 1482.8 |
| 8529          | 8        | 1415.7 | 8562          | 8       | 1449.3           | 8596  | 8 | 1483.8 |
|               |          |        | 8563          | 8       | 1450.3           | 8597  | 8 | 1484.9 |
| 8530          | 8        | 1416.8 | 8564          | 8       | 1451.3           | 8598  | 8 | 1485.9 |
| 8531          | 8        | 1417.8 | 8565          | 8       | 1452.4           | 8599  | 8 | 1486.9 |
| 8532          | 8        | 1418.8 | 8566          | 8       | 1453.4           |       |   |        |
| 8533          | 8        | 1419.8 | 8567          | 8       | 1454.4           | 8600  | 8 | 1487.9 |
|               |          |        | l             |         |                  | l     |   |        |
|               |          |        |               |         |                  |       |   |        |

Use check point at 8400 or 8700 Kc, whichever is nearer

Frequency: 8600-8700 Kc

| Freq. | A | В      | Freq.            | Α | В      | Freq. | Α | В               |
|-------|---|--------|------------------|---|--------|-------|---|-----------------|
| 8600  | 8 | 1487.9 | 8634             | 8 | 1522.5 | 8668  | 8 | 1557.2          |
| 8601  | 8 | 1488.9 | 8635             | 8 | 1523.6 | 8669  | 8 | 1558.3          |
| 8602  | 8 | 1489.9 | 8636             | 8 | 1524.6 | 1     |   |                 |
| 8603  | 8 | 1490.9 | 8637             | 8 | 1525.6 | 8670  | 8 | 1559.3          |
| 8604  | 8 | 1491.9 | 8638             | 8 | 1526.6 | 8671  | 8 | 1560.3          |
| 8605  | 8 | 1493.0 | 8639             | 8 | 1527.7 | 8672  | 8 | 1 <b>5</b> 61.3 |
| 8606  | 8 | 1494.0 |                  |   |        | 8673  | 8 | 1562.4          |
| 8607  | 8 | 1495.0 | 8640             | 8 | 1528.7 | 8674  | 8 | 1563.4          |
| 8608  | 8 | 1496.0 | 8641             | 8 | 1529.7 | 8675  | 8 | 1564.4          |
| 8609  | 8 | 1497.0 | 8642             | 8 | 1530.7 | 8676  | 8 | 1565.4          |
|       |   |        | 8643             | 8 | 1531.7 | 8677  | 8 | 1566.5          |
| 8610  | 8 | 1498.0 | 864 <del>4</del> | 8 | 1532.8 | 8678  | 8 | 1567.5          |
| 8611  | 8 | 1499.0 | 8645             | 8 | 1533.8 | 8679  | 8 | 1568.5          |
| 8612  | 8 | 1500.1 | 8646             | 8 | 1534.8 |       |   |                 |
| 8613  | 8 | 1501.1 | 8647             | 8 | 1535.8 | 8680  | 8 | 1569.5          |
| 8614  | 8 | 1502.1 | 8648             | 8 | 1536.8 | 8681  | 8 | 1570.6          |
| 8615  | 8 | 1503.1 | 8649             | 8 | 1537.9 | 8682  | 8 | 1571.6          |
| 8616  | 8 | 1504.2 | l                |   |        | 8683  | 8 | 1572.6          |
| 8617  | 8 | 1505.2 | 8650             | 8 | 1538.9 | 8684  | 8 | 1573.7          |
| 8618  | 8 | 1506.2 | 8651             | 8 | 1539.9 | 8685  | 8 | 1574.7          |
| 8619  | 8 | 1507.2 | 8652             | 8 | 1540.9 | 8686  | 8 | 1575.7          |
|       |   |        | 8653             | 8 | 1541.9 | 8687  | 8 | 1576.7          |
| 8620  | 8 | 1508.2 | 8654             | 8 | 1543.0 | 8688  | 8 | 1577.8          |
| 8621  | 8 | 1509.3 | 8655             | 8 | 1544.0 | 8689  | 8 | 1578.8          |
| 8622  | 8 | 1510.3 | 8656             | 8 | 1545.0 |       |   |                 |
| 8623  | 8 | 1511.3 | 8657             | 8 | 1546.0 | 8690  | 8 | 1579.8          |
| 8624  | 8 | 1512.3 | 8658             | 8 | 1547.0 | 8691  | 8 | 1580.8          |
| 8625  | 8 | 1513.4 | 8659             | 8 | 1548.1 | 8692  | 8 | 1581.9          |
| 8626  | 8 | 1514.4 |                  |   |        | 8693  | 8 | 1582.9          |
| 8627  | 8 | 1515.4 | 8660             | 8 | 1549.1 | 8694  | 8 | 1583.9          |
| 8628  | 8 | 1516.4 | 8661             | 8 | 1550.1 | 8695  | 8 | 1584.9          |
| 8629  | 8 | 1517.4 | 8662             | 8 | 1551.1 | 8696  | 8 | 1586.0          |
|       |   |        | 8663             | 8 | 1552.1 | 8697  | 8 | 1587.0          |
| 8630  | 8 | 1518.5 | 8664             | 8 | 1553.2 | 8698  | 8 | 1588.0          |
| 8631  | 8 | 1519.5 | 8665             | 8 | 1554.2 | 8699  | 8 | 1589.1          |
| 8632  | 8 | 1520.5 | 8666             | 8 | 1555.2 | ۱     | _ |                 |
| 8633  | 8 | 1521.5 | 8667             | 8 | 1556.2 | 8700  | 8 | <b>1590.1</b>   |
|       |   |        |                  |   |        |       |   |                 |
|       |   |        |                  |   |        |       |   |                 |

Use check point at 8700 Kc

## Frequency: 8700-8800 Kc

| Freq. | A | В      | Freq.    | A | В      | Freq. | A | В                  |
|-------|---|--------|----------|---|--------|-------|---|--------------------|
| 8700  | 8 | 1590.1 | 8734     | 8 | 1625.2 | 8768  | 8 | 1660.6             |
| 8701  | 8 | 1591.1 | 8735     | 8 | 1626.3 | 8769  | 8 | 1661.7             |
| 8702  | 8 | 1592.1 | 8736     | 8 | 1627.3 | 1     |   |                    |
| 8703  | 8 | 1593.2 | 8737     | 8 | 1628.3 | 8770  | 8 | 1662.7             |
| 8704  | 8 | 1594.2 | 8738     | 8 | 1629.4 | 8771  | 8 | 1663.7             |
| 8705  | 8 | 1595.2 | 8739     | 8 | 1630.4 | 8772  | 8 | 1664.8             |
| 8706  | 8 | 1596.3 | 1        |   |        | 8773  | 8 | 1665.8             |
| 8707  | 8 | 1597.3 | 8740     | 8 | 1631.5 | 8774  | 8 | 1666.9             |
| 8708  | 8 | 1598.3 | 8741     | 8 | 1632.5 | 8775  | 8 | 1667.9             |
| 8709  | 8 | 1599.4 | 8742     | 8 | 1633.5 | 8776  | 8 | 1669.0             |
|       |   |        | 8743     | 8 | 1634.6 | 8777  | 8 | 1670.0             |
| 8710  | 8 | 1600.4 | 8744     | 8 | 1635.6 | 8778  | 8 | 1671.0             |
| 8711  | 8 | 1601.4 | 8745     | 8 | 1636.7 | 8779  | 8 | 1672.1             |
| 8712  | 8 | 1602.5 | 8746     | 8 | 1637.7 | l     |   |                    |
| 8713  | 8 | 1603.5 | 8747     | 8 | 1638.7 | 8780  | 8 | 1673.1             |
| 8714  | 8 | 1604.5 | 8748     | 8 | 1639.8 | 8781  | 8 | 1674.2             |
| 8715  | 8 | 1605.6 | 8749     | 8 | 1640.8 | 8782  | 8 | 1675.2             |
| 8716  | 8 | 1606.6 |          |   |        | 8783  | 8 | 16 <b>76.</b> 3    |
| 8717  | 8 | 1607.6 | 8750     | 8 | 1641.9 | 8784  | 8 | 1677.3             |
| 8718  | 8 | 1608.7 | 8751     | 8 | 1642.9 | 8785  | 8 | 1678.3             |
| 8719  | 8 | 1609.7 | 8752     | 8 | 1643.9 | 8786  | 8 | 1679. <del>4</del> |
|       |   |        | 8753     | 8 | 1645.0 | 8787  | 8 | 1680.4             |
| 8720  | 8 | 1610.7 | 8754     | 8 | 1646.0 | 8788  | 8 | 1681.5             |
| 8721  | 8 | 1611.8 | 8755     | 8 | 1647.1 | 8789  | 8 | 1682.5             |
| 8722  | 8 | 1612.8 | 8756     | 8 | 1648.1 |       | _ |                    |
| 8723  | 8 | 1613.8 | 8757     | 8 | 1649.1 | 8790  | 8 | 1683.6             |
| 8724  | 8 | 1614.9 | 8758     | 8 | 1650.2 | 8791  | 8 | 1684.6             |
| 8725  | 8 | 1615.9 | 8759     | 8 | 1651.2 | 8792  | 8 | 1685.7             |
| 8726  | 8 | 1616.9 |          | _ |        | 8793  | 8 | 1686.7             |
| 8727  | 8 | 1618.0 | 8760     | 8 | 1652.3 | 8794  | 8 | 1687.8             |
| 8728  | 8 | 1619.0 | 8761     | 8 | 1653.3 | 8795  | 8 | 1688.8             |
| 8729  | 8 | 1620.0 | 8762     | 8 | 1654.3 | 8796  | 8 | 1689.9             |
|       | _ |        | 8763     | 8 | 1655.4 | 8797  | 8 | 1690.9             |
| 8730  | 8 | 1621.1 | 8764     | 8 | 1656.4 | 8798  | 8 | 1692.0             |
| 8731  | 8 | 1622.1 | 8765     | 8 | 1657.5 | 8799  | 8 | 1693.0             |
| 8732  | 8 | 1623.1 | 8766     | 8 | 1658.5 |       | _ | 4004.4             |
| 8733  | 8 | 1624.2 | 8767     | 8 | 1659.6 | 8800  | 8 | 1694.1             |
|       |   |        | <u> </u> |   |        | l     |   |                    |

Use check point at 8700 .Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 1810OKC

|       | Frequency: 8800-8900 Kc |        |       |   |        |       |   |        |  |  |  |
|-------|-------------------------|--------|-------|---|--------|-------|---|--------|--|--|--|
| Freq. | A                       | В      | Freq. | A | В      | Freq. | A | В      |  |  |  |
| 8800  | 8                       | 1694.1 | 8834  | 8 | 1729.9 | 8868  | 8 | 1766.0 |  |  |  |
| 8801  | 8                       | 1695.1 | 8835  | 8 | 1731.0 | 8869  | 8 | 1767.1 |  |  |  |
| 8802  | 8                       | 1696.2 | 8836  | 8 | 1732.0 | l     |   |        |  |  |  |
| 8803  | 8                       | 1697.2 | 8837  | 8 | 1733.1 | 8870  | 8 | 1768.2 |  |  |  |
| 8804  | 8                       | 1698.3 | 8838  | 8 | 1734.1 | 8871  | 8 | 1769.3 |  |  |  |
| 8805  | 8                       | 1699.3 | 8839  | 8 | 1735.2 | 8872  | 8 | 1770.3 |  |  |  |
| 8806  | 8                       | 1700.4 | ļ.    |   |        | 8873  | 8 | 1771.4 |  |  |  |
| 8807  | 8                       | 1701.4 | 8840  | 8 | 1736.2 | 8874  | 8 | 1772.5 |  |  |  |
| 8808  | 8                       | 1702.5 | 8841  | 8 | 1737.3 | 8875  | 8 | 1773.5 |  |  |  |
| 8809  | 8                       | 1703.5 | 8842  | 8 | 1738.4 | 8876  | 8 | 1774.6 |  |  |  |
|       |                         |        | 8843  | 8 | 1739.4 | 8877  | 8 | 1775.7 |  |  |  |
| 8810  | 8                       | 1704.6 | 8844  | 8 | 1740.5 | 8878  | 8 | 1776.7 |  |  |  |
| 8811  | 8                       | 1705.7 | 8845  | 8 | 1741.5 | 8879  | 8 | 1777.8 |  |  |  |
| 8812  | 8                       | 1706.7 | 8846  | 8 | 1742.6 | l     |   |        |  |  |  |
| 8813  | 8                       | 1707.8 | 8847  | 8 | 1743.6 | 8880  | 8 | 1778.9 |  |  |  |
| 8814  | 8                       | 1708.8 | 8848  | 8 | 1744.7 | 8881  | 8 | 1780.0 |  |  |  |
| 8815  | 8                       | 1709.9 | 8849  | 8 | 1745.7 | 8882  | 8 | 1781.0 |  |  |  |
| 8816  | 8                       | 1710.9 |       |   |        | 8883  | 8 | 1782.1 |  |  |  |
| 8817  | 8                       | 1712.0 | 8850  | 8 | 1746.8 | 8884  | 8 | 1783.2 |  |  |  |
| 8818  | 8                       | 1713.0 | 8851  | 8 | 1747.9 | 8885  | 8 | 1784.3 |  |  |  |
| 8819  | 8                       | 1714.1 | 8852  | 8 | 1748.9 | 8886  | 8 | 1785.3 |  |  |  |
|       |                         |        | 8853  | 8 | 1750.0 | 8887  | 8 | 1786.4 |  |  |  |
| 8820  | 8                       | 1715.1 | 8854  | 8 | 1751.1 | 8888  | 8 | 1787.5 |  |  |  |
| 8821  | 8                       | 1716.2 | 8855  | 8 | 1752.1 | 8889  | 8 | 1788.6 |  |  |  |
| 8822  | 8                       | 1717.2 | 8856  | 8 | 1753.2 | i     |   |        |  |  |  |
| 8823  | 8                       | 1718.3 | 8857  | 8 | 1754.3 | 8890  | 8 | 1789.6 |  |  |  |
| 8824  | 8                       | 1719.3 | 8858  | 8 | 1755.4 | 8891  | 8 | 1790.7 |  |  |  |
| 8825  | 8                       | 1720.4 | 8859  | 8 | 1756.4 | 8892  | 8 | 1791.8 |  |  |  |
| 8826  | 8                       | 1721.5 | l     |   |        | 8893  | 8 | 1792.9 |  |  |  |
| 8827  | 8                       | 1722.5 | 8860  | 8 | 1757.5 | 8894  | 8 | 1794.0 |  |  |  |
| 8828  | 8                       | 1723.6 | 8861  | 8 | 1758.6 | 8895  | 8 | 1795.0 |  |  |  |
| 8829  | 8                       | 1724.6 | 8862  | 8 | 1759.6 | 8896  | 8 | 1796.1 |  |  |  |
|       |                         |        | 8863  | 8 | 1760.7 | 8897  | 8 | 1797.2 |  |  |  |
| 8830  | 8                       | 1725.7 | 8864  | 8 | 1761.8 | 8898  | 8 | 1798.3 |  |  |  |
| 8831  | 8                       | 1726.7 | 8865  | 8 | 1762.8 | 8899  | 8 | 1799.3 |  |  |  |
| 8832  | 8                       | 1727.8 | 8866  | 8 | 1763.9 |       |   |        |  |  |  |
| 8833  | 8                       | 1728.8 | 8867  | 8 | 1765.0 | 8900  | 8 | 1800.4 |  |  |  |

Use check point at 8700 or 9000 Kc, whichever is nearer

| Frequency:  | 2000_ | 0000  | K.  |
|-------------|-------|-------|-----|
| LLEGOGISCA: | 0700- | -7000 | V.C |

| Freq. | A | В      | Freq. | A | В      | Freq. | A | В      |
|-------|---|--------|-------|---|--------|-------|---|--------|
| 8900  | 8 | 1800.4 | 8934  | 8 | 1837.2 | 8968  | 8 | 1874.6 |
| 8901  | 8 | 1801.5 | 8935  | 8 | 1838.3 | 8969  | 8 | 1875.7 |
| 8902  | 8 | 1802.6 | 8936  | 8 | 1839.3 | 1     |   |        |
| 8903  | 8 | 1803.6 | 8937  | 8 | 1840.4 | 8970  | 8 | 1876.8 |
| 8904  | 8 | 1804.7 | 8938  | 8 | 1841.5 | 8971  | 8 | 1877.9 |
| 8905  | 8 | 1805.8 | 8939  | 8 | 1842.6 | 8972  | 8 | 1879.0 |
| 8906  | 8 | 1806.9 | l     |   |        | 8973  | 8 | 1880.1 |
| 8907  | 8 | 1808.0 | 8940  | 8 | 1843.7 | 8974  | 8 | 1881.2 |
| 8908  | 8 | 1809.0 | 8941  | 8 | 1844.8 | 8975  | 8 | 1882.3 |
| 8909  | 8 | 1810.1 | 8942  | 8 | 1845.9 | 8976  | 8 | 1883.4 |
|       |   |        | 8943  | 8 | 1847.0 | 8977  | 8 | 1884.5 |
| 8910  | 8 | 1811.2 | 8944  | 8 | 1848.1 | 8978  | 8 | 1885.6 |
| 8911  | 8 | 1812.3 | 8945  | 8 | 1849.2 | 8979  | 8 | 1886.7 |
| 8912  | 8 | 1813.3 | 8946  | 8 | 1850.3 |       |   |        |
| 8913  | 8 | 1814.4 | 8947  | 8 | 1851.4 | 8980  | 8 | 1887.8 |
| 8914  | 8 | 1815.5 | 8948  | 8 | 1852.5 | 8981  | 8 | 1888.9 |
| 8915  | 8 | 1816.6 | 8949  | 8 | 1853.6 | 8982  | 8 | 1890.1 |
| 8916  | 8 | 1817.7 |       |   |        | 8983  | 8 | 1891.2 |
| 8917  | 8 | 1818.8 | 8950  | 8 | 1854.7 | 8984  | 8 | 1892.3 |
| 8918  | 8 | 1819.8 | 8951  | 8 | 1855.8 | 8985  | 8 | 1893.4 |
| 8919  | 8 | 1820.9 | 8952  | 8 | 1856.9 | 8986  | 8 | 1894.5 |
|       |   |        | 8953  | 8 | 1858.0 | 8987  | 8 | 1895.6 |
| 8920  | 8 | 1822.0 | 8954  | 8 | 1859.1 | 8988  | 8 | 1896.7 |
| 8921  | 8 | 1823.1 | 8955  | 8 | 1860.2 | 8989  | 8 | 1897.8 |
| 8922  | 8 | 1824.2 | 8956  | 8 | 1861.3 |       | _ |        |
| 8923  | 8 | 1825.3 | 8957  | 8 | 1862.4 | 8990  | 8 | 1898 9 |
| 8924  | 8 | 1826.3 | 8958  | 8 | 1863.5 | 8991  | 8 | 1900.0 |
| 8925  | 8 | 1827.4 | 8959  | 8 | 1864.6 | 8992  | 8 | 1901.1 |
| 8926  | 8 | 1828.5 |       | _ |        | 8993  | 8 | 1902.2 |
| 8927  | 8 | 1829.6 | 8960  | 8 | 1865.7 | 8994  | 8 | 1903.4 |
| 8928  | 8 | 1830.7 | 8961  | 8 | 1866.8 | 8995  | 8 | 1904.5 |
| 8929  | 8 | 1831.8 | 8962  | 8 | 1867.9 | 8996  | 8 | 1905.6 |
|       |   |        | 8963  | 8 | 1869.0 | 8997  | 8 | 1906.7 |
| 8930  | 8 | 1832.8 | 8964  | 8 | 1870.1 | 8998  | 8 | 1907.8 |
| 8931  | 8 | 1833.9 | 8965  | 8 | 1871.2 | 8999  | 8 | 1908.9 |
| 8932  | 8 | 1835.0 | 8966  | 8 | 1872.3 | 1     |   |        |
| 8933  | 8 | 1836.1 | 8967  | 8 | 1873.5 | 9000  | 8 | 1910.0 |
|       |   |        |       |   |        | L     |   |        |
|       |   |        |       |   |        |       |   |        |

Use check point at 9000 Kc

Frequency: 9000-9100 Kc

| Freq. | A | В     | Freq. | A | В     | Freq. | A | В     |
|-------|---|-------|-------|---|-------|-------|---|-------|
| 9000  | 9 | 100.1 | 9034  | 9 | 128.1 | 9068  | 9 | 156.0 |
| 9001  | 9 | 101.0 | 9035  | 9 | 128.9 | 9069  | 9 | 156.8 |
| 9002  | 9 | 101.8 | 9036  | 9 | 129.7 | l     |   |       |
| 9003  | 9 | 102.6 | 9037  | 9 | 130.6 | 9070  | 9 | 157.6 |
| 9004  | 9 | 103.4 | 9038  | 9 | 131.4 | 9071  | 9 | 158.4 |
| 9005  | 9 | 104.3 | 9039  | 9 | 132.2 | 9072  | 9 | 159.2 |
| 9006  | 9 | 105.1 |       |   |       | 9073  | 9 | 160.1 |
| 9007  | 9 | 105.9 | 9040  | 9 | 133.0 | 9074  | 9 | 160.9 |
| 9008  | 9 | 106.7 | 9041  | 9 | 133.8 | 9075  | 9 | 161.7 |
| 9009  | 9 | 107.5 | 9042  | 9 | 134.7 | 9076  | 9 | 162.5 |
|       |   |       | 9043  | 9 | 135.5 | 9077  | 9 | 163.3 |
| 9010  | 9 | 108.4 | 9044  | 9 | 136.3 | 9078  | 9 | 164.2 |
| 9011  | 9 | 109.2 | 9045  | 9 | 137.1 | 9079  | 9 | 165.0 |
| 9012  | 9 | 110.0 | 9046  | 9 | 137.9 | l     |   |       |
| 9013  | 9 | 110.8 | 9047  | 9 | 138.8 | 9080  | 9 | 165.8 |
| 9014  | 9 | 111.6 | 9048  | 9 | 139.6 | 9081  | 9 | 166.6 |
| 9015  | 9 | 112.5 | 9049  | 9 | 140.4 | 9082  | 9 | 167.4 |
| 9016  | 9 | 113.3 | 1     |   |       | 9083  | 9 | 168.3 |
| 9017  | 9 | 114.1 | 9050  | 9 | 141.2 | 9084  | 9 | 169.1 |
| 9018  | 9 | 114.9 | 9051  | 9 | 142.0 | 9085  | 9 | 169.9 |
| 9019  | 9 | 115.8 | 9052  | 9 | 142.9 | 9086  | 9 | 170.7 |
|       |   |       | 9053  | 9 | 143.7 | 9087  | 9 | 171.5 |
| 9020  | 9 | 116.6 | 9054  | 9 | 144.5 | 9088  | 9 | 172.3 |
| 9021  | 9 | 117.4 | 9055  | 9 | 145.3 | 9089  | 9 | 173.2 |
| 9022  | 9 | 118.2 | 9056  | 9 | 146.1 |       |   |       |
| 9023  | 9 | 119.0 | 9057  | 9 | 147.0 | 9090  | 9 | 174.0 |
| 9024  | 9 | 119.9 | 9058  | 9 | 147.8 | 9091  | 9 | 174.8 |
| 9025  | 9 | 120.7 | 9059  | 9 | 148.6 | 9092  | 9 | 175.6 |
| 9026  | 9 | 121.5 | l     |   |       | 9093  | 9 | 176.4 |
| 9027  | 9 | 122.3 | 9060  | 9 | 149.4 | 9094  | 9 | 177.2 |
| 9028  | 9 | 123.2 | 9061  | 9 | 150.2 | 9095  | 9 | 178.1 |
| 9029  | 9 | 124.0 | 9062  | 9 | 151.1 | 9096  | 9 | 178.9 |
|       | _ |       | 9063  | 9 | 151.9 | 9097  | 9 | 179.7 |
| 9030  | 9 | 124.8 | 9064  | 9 | 152.7 | 9098  | 9 | 180.5 |
| 9031  | 9 | 125.6 | 9065  | 9 | 153.5 | 9099  | 9 | 181.3 |
| 9032  | 9 | 126.4 | 9066  | 9 | 154.3 |       |   |       |
| 9033  | 9 | 127.3 | 9067  | 9 | 155.1 | 9100  | 9 | 182.1 |
|       |   |       |       |   |       |       |   |       |
| _     |   |       |       |   |       |       | _ | -     |

Use check point at 9000 Kc

## Frequency: 9100-9200 Kc

| Freq.        | A | В     | Freq.        | A | В     | Freq. | A | В     |
|--------------|---|-------|--------------|---|-------|-------|---|-------|
| 9100         | 9 | 182.1 | 9134         | 9 | 209.9 | 9168  | 9 | 237.7 |
| 9101         | 9 | 183.0 | 9135         | 9 | 210.7 | 9169  | 9 | 238.5 |
| 9102         | 9 | 183.8 | 9136         | 9 | 211.5 | """   | • | 200.0 |
| 9103         | 9 | 184.6 | 9137         | 9 | 212.3 | 9170  | 9 | 239.3 |
| 9104         | 9 | 185.4 | 9138         | 9 | 213.2 | 9171  | 9 | 240.1 |
| 9105         | 9 | 186.2 | 9139         | 9 | 214.0 | 9172  | 9 | 240.9 |
| 9106         | 9 | 187.0 |              | - |       | 9173  | 9 | 241.7 |
| 9107         | 9 | 187.9 | 9140         | 9 | 214.8 | 9174  | 9 | 242.5 |
| 9108         | 9 | 188.7 | 9141         | 9 | 215.6 | 9175  | 9 | 243.4 |
| 9109         | 9 | 189.5 | 9142         | 9 | 216.4 | 9176  | 9 | 244.2 |
|              |   |       | 9143         | 9 | 217.2 | 9177  | 9 | 245.0 |
| 9110         | 9 | 190.3 | 9144         | 9 | 218.1 | 9178  | 9 | 245.8 |
| 9111         | 9 | 191.1 | 9145         | 9 | 218.9 | 9179  | 9 | 246.6 |
| 9112         | 9 | 191.9 | 9146         | 9 | 219.7 |       |   |       |
| 9113         | 9 | 192.8 | 9147         | 9 | 220.5 | 9180  | 9 | 247.4 |
| 9114         | 9 | 193.6 | 9148         | 9 | 221.3 | 9181  | 9 | 248.3 |
| 9115         | 9 | 194.4 | 9149         | 9 | 222.1 | 9182  | 9 | 249.1 |
| 9116         | 9 | 195.2 | l            |   |       | 9183  | 9 | 249.9 |
| 9117         | 9 | 196.0 | 9150         | 9 | 223.0 | 9184  | 9 | 250.7 |
| 9118         | 9 | 196.8 | 9151         | 9 | 223.8 | 9185  | 9 | 251.5 |
| 9119         | 9 | 197.6 | 9152         | 9 | 224.6 | 9186  | 9 | 252.4 |
|              |   |       | 9153         | 9 | 225.4 | 9187  | 9 | 253.2 |
| 9120         | 9 | 198.5 | 9154         | 9 | 226.2 | 9188  | 9 | 254.0 |
| 9121         | 9 | 199.3 | 9155         | 9 | 227.0 | 9189  | 9 | 254.8 |
| 9122         | 9 | 200.1 | 9156         | 9 | 227.9 |       | _ |       |
| 9123         | 9 | 200.9 | 9157         | 9 | 228.7 | 9190  | 9 | 255.6 |
| 9124         | 9 | 201.7 | 9158         | 9 | 229.5 | 9191  | 9 | 256.5 |
| 9125<br>9126 | _ | 202.5 | 9159         | 9 | 230.3 | 9192  | 9 | 257.3 |
|              | 9 | 203.4 | 04.00        | _ | 004.4 | 9193  | 9 | 258.1 |
| 9127         | - | 204.2 | 9160         | 9 | 231.1 | 9194  | 9 | 258.9 |
| 9128         | 9 | 205.0 | 9161         | 9 | 231.9 | 9195  | 9 | 259.7 |
| 9129         | 9 | 205.8 | 9162         | 9 | 232.8 | 9196  | 9 | 260.6 |
| 0120         |   | 000.0 | 9163<br>9164 | 9 | 233.6 | 9197  | 9 | 261.4 |
| 9130         | 9 | 206.6 |              | 9 | 234.4 | 9198  | 9 | 262.2 |
| 9131         | 9 | 207.4 | 9165         | 9 | 235.2 | 9199  | 9 | 263.0 |
| 9132         | 9 | 208.3 | 9166         | 9 | 236.0 |       | _ | 000.0 |
| 9133         | 9 | 209.1 | 9167         | 9 | 236.8 | 9200  | 9 | 263.8 |
|              |   |       | <u> </u>     |   |       |       |   |       |

Use check point at 9000 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

|       |   | Frequ | ency: | 926 | 00–930 | 00 Kc |   |       |
|-------|---|-------|-------|-----|--------|-------|---|-------|
| Freq. | A | В     | Freq. | A   | В      | Freq. | A | В     |
| 9200  | 9 | 263.8 | 9234  | 9   | 291.7  | 9268  | 9 | 319.6 |
| 9201  | 9 | 264.6 | 9235  | 9   | 292.5  | 9269  | 9 | 320.4 |
| 9202  | 9 | 265.5 | 9236  | 9   | 293.3  |       |   |       |
| 9203  | 9 | 266.3 | 9237  | 9   | 294.2  | 9270  | 9 | 321.2 |
| 9204  | 9 | 267.1 | 9238  | 9   | 295.0  | 9271  | 9 | 322.1 |
| 9205  | 9 | 267.9 | 9239  | 9   | 295.8  | 9272  | 9 | 322.9 |
| 9206  | 9 | 268.7 |       |     |        | 9273  | 9 | 323.7 |
| 9207  | 9 | 269.6 | 9240  | 9   | 296.6  | 9274  | 9 | 324.5 |
| 9208  | 9 | 270.4 | 9241  | 9   | 297.4  | 9275  | 9 | 325.3 |
| 9209  | 9 | 271.2 | 9242  | 9   | 298.3  | 9276  | 9 | 326.2 |
|       |   |       | 9243  | 9   | 299.1  | 9277  | 9 | 327.0 |
| 9210  | 9 | 272.0 | 9244  | 9   | 299.9  | 9278  | 9 | 327.8 |
| 9211  | 9 | 272.8 | 9245  | 9   | 300.7  | 9279  | 9 | 328.6 |
| 9212  | 9 | 273.7 | 9246  | 9   | 301.5  |       |   |       |
| 9213  | 9 | 274.5 | 9247  | 9   | 302.4  | 9280  | 9 | 329.4 |
| 9214  | 9 | 275.3 | 9248  | 9   | 303.2  | 9281  | 9 | 330.3 |
| 9215  | 9 | 276.1 | 9249  | 9   | 304.0  | 9282  | 9 | 331.1 |
| 9216  | 9 | 276.9 | l     |     |        | 9283  | 9 | 331.9 |
| 9217  | 9 | 277.8 | 9250  | 9   | 304.8  | 9284  | 9 | 332.7 |
| 9218  | 9 | 278.6 | 9251  | 9   | 305.6  | 9285  | 9 | 333.5 |
| 9219  | 9 | 279.4 | 9252  | 9   | 306.5  | 9286  | 9 | 334.4 |
|       |   |       | 9253  | 9   | 307.3  | 9287  | 9 | 335.2 |
| 9220  | 9 | 280.2 | 9254  | 9   | 308.1  | 9288  | 9 | 336.0 |
| 9221  | 9 | 281.0 | 9255  | 9   | 308.9  | 9289  | 9 | 336.8 |
| 9222  | 9 | 281.8 | 9256  | 9   | 309.7  | ]     |   |       |
| 9223  | 9 | 282.7 | 9257  | 9   | 310.6  | 9290  | 9 | 337.6 |
| 9224  | 9 | 283.5 | 9258  | 9   | 311.4  | 9291  | 9 | 338.5 |
| 9225  | 9 | 284.3 | 9259  | 9   | 312.2  | 9292  | 9 | 339.3 |
| 9226  | 9 | 285.1 | l     |     |        | 9293  | 9 | 340.1 |
| 9227  | 9 | 285.9 | 9260  | 9   | 313.0  | 9294  | 9 | 340.9 |
| 9228  | 9 | 286.8 | 9261  | 9   | 313.9  | 9295  | 9 | 341.7 |
| 9229  | 9 | 287.6 | 9262  | 9   | 314.7  | 9296  | 9 | 342.6 |
|       | - |       | 9263  | 9   | 315.5  | 9297  | 9 | 343.4 |
| 9230  | 9 | 288.4 | 9264  | 9   | 316.3  | 9298  | 9 | 344.2 |
| 9231  | 9 | 289.2 | 9265  | 9   | 317.1  | 9299  | 9 | 345.0 |
| 9232  | 9 | 290.0 | 9266  | 9   | 318.0  | 1     |   |       |
| 9233  | 9 | 290.9 | 9267  | 9   | 318.8  | 9300  | 9 | 345.8 |
|       |   |       |       |     |        |       |   |       |

Use check point at 9000 or 9450 Kc, whichever is nearer

| Frequency:    | 9300- | .9400 | Ke |
|---------------|-------|-------|----|
| i i adogiicy. | 7000- | -7444 | n. |

| Freq. | A | В     | Freq. | Α | В     | Freq. | A | В     |
|-------|---|-------|-------|---|-------|-------|---|-------|
| 9300  | 9 | 345.8 | 9334  | 9 | 373.7 | 9368  | 9 | 401.7 |
| 9301  | 9 | 346.7 | 9335  | 9 | 374.5 | 9369  | 9 | 402.5 |
| 9302  | 9 | 347.5 | 9336  | 9 | 375.4 |       |   |       |
| 9303  | 9 | 348.3 | 9337  | 9 | 376.2 | 9370  | 9 | 403.3 |
| 9304  | 9 | 349.1 | 9338  | 9 | 377.0 | 9371  | 9 | 404.2 |
| 9305  | 9 | 349.9 | 9339  | 9 | 377.8 | 9372  | 9 | 405.0 |
| 9306  | 9 | 350.8 | l     |   |       | 9373  | 9 | 405.8 |
| 9307  | 9 | 351.6 | 9340  | 9 | 378.6 | 9374  | 9 | 406.6 |
| 9308  | 9 | 352.4 | 9341  | 9 | 379.5 | 9375  | 9 | 407.5 |
| 9309  | 9 | 353.2 | 9342  | 9 | 380.3 | 9376  | 9 | 408.3 |
|       |   |       | 9343  | 9 | 381.1 | 9377  | 9 | 409.1 |
| 9310  | 9 | 354.0 | 9344  | 9 | 381.9 | 9378  | 9 | 410.0 |
| 9311  | 9 | 354.9 | 9345  | 9 | 382.7 | 9379  | 9 | 410.8 |
| 9312  | 9 | 355.7 | 9346  | 9 | 383.6 | l     |   |       |
| 9313  | 9 | 356.5 | 9347  | 9 | 384.4 | 9380  | 9 | 411.6 |
| 9314  | 9 | 357.3 | 9348  | 9 | 385.2 | 9381  | 9 | 412.4 |
| 9315  | 9 | 358.1 | 9349  | 9 | 386.0 | 9382  | 9 | 413.3 |
| 9316  | 9 | 359.0 | 1     |   |       | 9383  | 9 | 414.1 |
| 9317  | 9 | 359.8 | 9350  | 9 | 386.8 | 9384  | 9 | 414.9 |
| 9318  | 9 | 360.6 | 9351  | 9 | 387.7 | 9385  | 9 | 415.8 |
| 9319  | 9 | 361.4 | 9352  | 9 | 388.5 | 9386  | 9 | 416.6 |
|       |   |       | 9353  | 9 | 389.3 | 9387  | 9 | 417.4 |
| 9320  | 9 | 362.2 | 9354  | 9 | 390.1 | 9388  | 9 | 418.2 |
| 9321  | 9 | 363.1 | 9355  | 9 | 390.9 | 9389  | 9 | 419.1 |
| 9322  | 9 | 363.9 | 9356  | 9 | 391.8 | İ     |   |       |
| 9323  | 9 | 364.7 | 9357  | 9 | 392.6 | 9390  | 9 | 419.9 |
| 9324  | 9 | 365.5 | 9358  | 9 | 393.4 | 9391  | 9 | 420.7 |
| 9325  | 9 | 366.3 | 9359  | 9 | 394.2 | 9392  | 9 | 421.6 |
| 9326  | 9 | 367.2 | ł     |   |       | 9393  | 9 | 422.4 |
| 9327  | 9 | 368.0 | 9360  | 9 | 395.1 | 9394  | 9 | 423.2 |
| 9328  | 9 | 368.8 | 9361  | 9 | 395.9 | 9395  | 9 | 424.0 |
| 9329  | 9 | 369.6 | 9362  | 9 | 396.7 | 9396  | 9 | 424.9 |
|       |   |       | 9363  | 9 | 397.5 | 9397  | 9 | 425.7 |
| 9330  | 9 | 370.4 | 9364  | 9 | 398.4 | 9398  | 9 | 426.5 |
| 9331  | 9 | 371.3 | 9365  | 9 | 399.2 | 9399  | 9 | 427.4 |
| 9332  | 9 | 372.1 | 9366  | 9 | 400.0 |       |   |       |
| 9333  | 9 | 372.9 | 9367  | 9 | 400.8 | 9400  | 9 | 428.2 |
|       |   |       | 1     |   |       | l     |   |       |

Use check point at 9450 Kc

Frequency: 9400-9500 Kc

| Freq.         A         B         Freq.         A         B         Freq.         A         B         Freq.         A         B         Freq.         A         B         Freq.         A         B         Freq.         A         B         Freq.         A         B         484.4         9400         9430         9         485.3         9468.9         9485.3         9459.6         9470         9         485.3         9400         9         431.5         9438         9         459.6         9471         9         486.1         9472         9         486.1         9472         9         486.1         9472         9         487.7         9         487.7         9         473.3         9         486.1         9472         9         486.1         9472         9         487.7         9         487.7         9         487.7         9         487.7         9         487.7         9         487.7         9         487.7         9         497.2         9         487.6         9         497.2         9         487.6         9         497.2         9         487.7         9         497.2         9         487.6         9         499.2         9         499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |   |       |       |   |       |       |   |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|-------|-------|---|-------|-------|---|-------|
| 9401 9 429.0 9435 9 457.2 9469 9 485.3 9402 9 429.8 9436 9 458.8 9470 9 486.1 9403 9 430.7 9437 9 458.8 9470 9 486.9 9405 9 432.3 9439 9 460.5 9472 9 487.7 9406 9 433.5 9440 9 461.3 9474 9 488.6 9409 9 434.8 9441 9 462.1 9475 9 490.2 9409 9 435.6 9442 9 462.9 9476 9 491.0 9443 9 463.8 9477 9 491.0 9410 9 435.5 9442 9 462.9 9476 9 491.0 9410 9 435.6 9442 9 462.9 9476 9 491.0 9410 9 435.3 9445 9 465.4 9478 9 492.7 9411 9 439.3 9445 9 466.3 9478 9 492.7 9411 9 439.8 9445 9 466.3 9478 9 492.7 9411 9 439.8 9445 9 466.3 9483 9 496.8 9416 9 441.4 9417 9 442.3 9448 9 467.9 9481 9 495.6 9418 9 443.1 9451 9 467.1 9480 9 496.0 9418 9 443.1 9451 9 467.9 9481 9 495.6 9418 9 443.1 9451 9 467.9 9481 9 495.0 9483 9 496.8 9483 9 496.8 9483 9 496.8 9483 9 496.8 9483 9 9452 9 470.4 9485 9 498.5 9452 9 444.6 9456 9 472.1 9486 9 99.3 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 945 |      |   | _     | Freq. | A | В     | Freq. | A | В     |
| 9402 9 429.8 9436 9 458.0 9470 9 486.1 9404 9 431.5 9438 9 459.6 9471 9 486.9 9405 9 432.3 9439 9 460.5 9472 9 487.7 9406 9 434.0 9440 9 461.3 9474 9 489.4 9409 9 434.8 9441 9 462.1 9475 9 490.2 9443 9 463.8 9477 9 491.0 9443 9 463.8 9477 9 491.0 9443 9 463.8 9477 9 491.0 9411 9 437.3 9445 9 465.4 9479 9 493.5 9412 9 438.1 9446 9 466.3 9479 9 493.5 9412 9 438.1 9446 9 466.3 9479 9 493.5 9414 9 466.4 9479 9 493.5 9414 9 466.4 9479 9 493.5 9415 9 440.6 9448 9 467.1 9480 9 494.3 9416 9 466.3 9479 9 493.5 9416 9 441.4 9417 9 442.3 9450 9 468.7 9482 9 496.0 9418 9 443.1 9450 9 468.7 9482 9 496.0 9478 9 493.5 9418 9 443.1 9450 9 468.7 9482 9 496.0 9483 9 9450 9 443.1 9450 9 470.4 9485 9 498.3 9451 9 470.4 9485 9 498.3 9451 9 470.4 9485 9 498.3 9451 9 470.4 9485 9 498.3 9451 9 470.4 9485 9 499.3 9452 9 446.4 9456 9 472.1 9486 9 499.3 9452 9 446.4 9456 9 472.1 9487 9 500.1 9420 9 444.7 9455 9 472.1 9486 9 499.3 9452 9 446.4 9456 9 472.5 9488 9 500.9 9420 9 448.0 9458 9 475.4 9490 9 501.8 9426 9 448.7 9451 9 477.0 9489 9 501.8 9426 9 449.7 9451 9 477.0 9429 9 504.2 9462 9 448.0 9458 9 477.5 9490 9 505.6 9428 9 445.1 9461 9 477.8 9490 9 505.6 9428 9 445.1 9461 9 477.8 9490 9 505.6 9428 9 450.0 9450 9 477.8 9490 9 500.6 9432 9 453.0 9460 9 477.8 9490 9 505.6 9433 9 453.0 9460 9 477.8 9490 9 505.6 9433 9 453.0 9460 9 477.8 9490 9 505.6 9433 9 453.0 9460 9 477.8 9490 9 500.6 9433 9 453.0 9460 9 477.8 9490 9 500.6 9433 9 453.0 9460 9 477.8 9490 9 500.6 9433 9 453.0 9460 9 477.8 9490 9 500.6 9433 9 453.0 9460 9 477.8 9490 9 500.6 9433 9 453.0 9460 9 477.8 9490 9 500.6 9433 9 453.0 9460 9 477.8 9490 9 500.6 9433 9 453.0 9460 9 477.8 9490 9 500.6 9433 9 453.0 9460 9 477.8 9490 9 500.6 9433 9 453.0 9460 9 483.0 9490 9 500.6 9433 9 453.0 9466 9 483.0 9490 9 500.6 9433 9 453.0 9466 9 483.0 9490 9 500.6 9433 9 453.0 9466 9 483.0 9490 9 500.6 9433 9 453.0 9466 9 483.0 9490 9 500.6 9433 9 453.0 9466 9 483.0 9490 9 500.6 9433 9 453.0 9466 9 483.0 9490 9 500.6 9433 9 453.0 9466 9 483.0 9490 9 500.6 9433 9 453.0 9466 9 483.0 9490 9 500. |      | 9 | 428.2 | 9434  | 9 | 456.3 | 9468  | 9 | 484.4 |
| 9403 9 430.7 9437 9 488.8 9470 9 486.1 9404 9 431.5 9438 9 459.6 9471 9 486.9 9405 9 432.3 9439 9 460.5 9472 9 487.7 9406 9 432.3 9440 9 461.3 9474 9 488.6 9409 9 434.8 9441 9 462.1 9475 9 491.0 9443 9 462.9 9476 9 491.0 9443 9 462.8 9477 9 491.0 9443 9 463.8 9477 9 491.9 9411 9 437.3 9445 9 465.4 9479 9 493.5 9412 9 443.1 9446 9 466.3 9478 9 492.7 9413 9 438.6 9444 9 466.3 9478 9 492.7 9413 9 438.9 9447 9 467.1 9480 9 494.3 9446 9 466.3 9478 9 495.5 94414 9 441.4 9417 9 442.3 9449 9 466.7 9481 9 495.6 9417 9 443.1 945 9 444.4 9419 9 443.9 945 9 445.9 945 9 496.8 9491.0 9432 9 444.7 9450 9 472.1 9486 9 499.3 9452 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9500 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 9450 9 94 | 9401 | 9 | 429.0 | 9435  | 9 | 457.2 | 9469  | 9 | 485.3 |
| 9404 9 431.5 9438 9 459.6 9471 9 486.9 9406 9 433.2 9439 9 460.5 9472 9 487.7 9473 9 488.6 9407 9 433.0 9440 9 461.3 9474 9 488.6 9408 9 434.8 9441 9 462.1 9475 9 490.2 9476 9 491.0 9410 9 435.6 9442 9 462.9 9476 9 491.0 9411 9 437.3 9445 9 463.8 9477 9 491.9 9412 9 438.1 9446 9 466.3 9478 9 492.7 9412 9 438.1 9446 9 466.3 9478 9 492.7 9419 9413 9 438.1 9446 9 466.3 9478 9 492.7 9414 9 466.4 9478 9 492.7 9414 9 466.5 9478 9 492.7 9419 9 438.1 9446 9 466.3 9478 9 492.7 9419 9 438.1 9446 9 466.3 9480 9 493.5 9446 9 467.1 9480 9 493.5 9416 9 443.1 9446 9 466.3 9480 9 493.5 9416 9 441.4 9417 9 442.3 9448 9 467.9 9481 9 495.2 9481 9 496.8 9491 9 9481 9 9483 9 496.8 9418 9 441.4 9419 9 444.3 9450 9 470.4 9485 9 496.8 9481 9 9452 9 470.4 9485 9 496.8 9481 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 9 9452 | 9402 | 9 | 429.8 | 9436  | 9 | 458.0 | 1     |   |       |
| 9405         9         432.3         9439         9         460.5         9472         9         487.7           9406         9         433.2         9440         9         461.3         9474         9         488.6           9408         9         434.8         9441         9         462.1         9475         9         490.2           9409         9         436.5         9442         9         462.9         9476         9         491.0           9411         9         436.5         9444         9         466.4         9478         9         492.7           9411         9         438.1         9446         9         466.3         9477         9         491.0           9413         9         438.1         9446         9         466.3         9478         9         495.5           9412         9         438.1         9446         9         466.3         9478         9         492.7           9412         9         438.9         9447         9         467.1         9480         9         494.3           9416         9         440.4         9449         9         468.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |   |       |       | 9 |       | 9470  |   |       |
| 9406 9 433.2 9440 9 461.3 9474 9 489.4 9408 9 434.8 9441 9 462.1 9475 9 490.9 9 435.6 9442 9 462.9 9476 9 491.0 9443 9 463.8 9477 9 491.9 9411 9 435.3 9445 9 465.4 9479 9 493.5 9412 9 438.1 9446 9 466.3 9478 9 492.7 9413 9 438.8 9447 9 465.4 9479 9 493.5 9413 9 438.9 9447 9 467.1 9480 9 494.3 9415 9 440.6 9468.7 9481 9 496.0 9416 9 441.4 9417 9 442.3 9450 9 468.7 9482 9 496.0 9418 9 443.1 9450 9 468.7 9482 9 496.0 9483 9 496.8 9484 9 9450 9 443.1 9450 9 470.4 9455 9 498.5 9484 9 9450 9 443.1 9450 9 470.4 9455 9 498.5 9484 9 497.6 9483 9 443.1 9450 9 472.1 9486 9 499.3 9451 9 470.4 9455 9 498.5 9 498.3 9 470.1 9420 9 444.4 9450 9 448.6 9450 9 472.1 9486 9 499.3 9451 9 470.4 9455 9 498.5 9 498.3 9450 9 488.6 9474.5 9488 9 500.9 9450 9 446.4 946.6 9456 9 473.7 9489 9 501.8 9426 9 448.0 9458 9 475.4 9490 9 502.6 9426 9 448.7 9450 9 4450.9 9450 9 9450.9 9450 9 9450.9 9450 9 9450.9 9450 9 9450.9 9450 9 9450.9 9450 9 9450.9 9450 9 9450.9 9450 9 9450.9 9450 9 9450.9 9450 9 9450.9 9450 9 9450.9 9450 9 9450.9 9450 9 9450.9 9450 9 9450.9 9450 9 9450.9 9450 9 9450.9 9450 9 9450.9 9450.9 9450 9 9450.9 9450 9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 9450.9 94 |      |   |       |       |   | 459.6 |       |   |       |
| 9407         9         434.0         9440         9         461.3         9474         9         489.4           9408         9         434.8         9441         9         462.1         9476         9         490.2           9409         9         435.6         9442         9         462.9         9476         9         491.0           9410         9         436.5         9444         9         466.6         9478         9         491.9           9411         9         437.3         9445         9         465.4         9479         9         493.5           9413         9         438.1         9446         9         467.1         9480         9         493.5           9413         9         438.9         9447         9         467.1         9480         9         494.3           9415         9         438.9         9448         9         467.9         9481         9         496.0           9416         9         441.4         9         468.7         9482         9         496.8           9417         9         442.3         9451         9         477.4         9482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |   |       | 9439  | 9 | 460.5 |       |   |       |
| 9408 9 434.8 9441 9 462.1 9475 9 490.2 9409 9 435.6 9442 9 462.8 9476 9 491.9 9410 9 435.5 9444 9 463.8 9477 9 491.9 9411 9 435.5 9444 9 465.4 9478 9 492.7 9411 9 437.3 9445 9 465.4 9479 9 493.5 9413 9 438.9 9446 9 466.3 9478 9 492.7 9415 9 440.6 9449 9 467.1 9480 9 494.3 9416 9 441.4 9417 9 442.3 9450 9 468.7 9482 9 496.0 9418 9 443.1 9451 9 470.4 9485 9 496.8 9419 9 443.1 9451 9 470.4 9485 9 498.5 9419 9 443.9 9452 9 471.2 9486 9 499.3 9451 9 445.6 9452 9 471.2 9486 9 499.3 9451 9 445.6 9455 9 472.1 9487 9 500.1 9420 9 444.7 9456 9 472.9 9488 9 500.1 9420 9 444.0 9456 9 473.7 9489 9 501.8 9422 9 448.0 9456 9 473.7 9489 9 501.8 9426 9 448.9 9459 9 475.2 9481 9 950.6 9424 9 448.0 9458 9 475.2 9491 9 503.6 9428 9 445.5 9 9459 9 477.0 9492 9 504.2 9426 9 448.9 9459 9 477.0 9492 9 504.2 9426 9 448.0 9458 9 477.2 9486 9 950.1 9429 9 453.0 9460 9 477.8 9491 9 503.6 9428 9 451.4 9460 9 477.8 9491 9 505.9 9428 9 451.4 9461 9 477.8 9494 9 505.9 9428 9 453.2 9462 9 477.5 9495 9 506.7 9430 9 453.0 9464 9 481.1 9498 9 507.6 9431 9 453.0 9464 9 481.1 9498 9 509.2 9431 9 453.0 9466 9 482.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | - |       | l     |   |       |       |   |       |
| 9409 9 435.6 9442 9 462.9 9476 9 491.0 9430 9443 9 463.8 9477 9 491.9 9410 9 436.5 9444 9 464.6 9478 9 492.7 9411 9 437.3 9445 9 465.4 9479 9 493.5 9412 9 438.1 9446 9 466.3 9479 9 493.5 9414 9 438.9 9447 9 467.1 9480 9 494.3 9416 9 468.7 9481 9 495.2 9415 9 440.6 9449 9 468.7 9482 9 496.0 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 495.2 9481 9 9485 9 470.4 9485 9 498.5 9 470.4 9485 9 498.5 9 470.4 9485 9 498.5 9 472.1 9486 9 499.3 945.3 9 476.2 9489 9 500.1 9420 9 444.4 9456 9 472.4 9488 9 9450 9 9450 9 475.4 9490 9 502.6 9422 9 448.0 9458 9 475.4 9490 9 502.6 9422 9 448.9 9458 9 9459 9 477.0 9492 9 504.2 9426 9 449.7 9459 9 450.5 9460 9 477.8 9494 9 505.9 9428 9 451.4 9461 9 477.8 9494 9 505.9 9428 9 451.4 9461 9 477.8 9495 9 506.7 9429 9 453.0 9461 9 477.8 9495 9 507.6 9463 9 480.3 9497 9 508.4 9431 9 453.0 9464 9 481.1 9498 9 509.2 9431 9 453.8 9465 9 482.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9407 | - |       |       | _ |       |       | _ |       |
| 9410 9 436.5 9444 9 466.6 9478 9 492.7 9 491.9 9411 9 437.3 9445 9 465.4 9479 9 493.5 9412 9 438.1 9446 9 466.3 9418 9 492.7 9413 9 438.9 9447 9 467.1 9480 9 494.3 9416 9 441.4 9417 9 442.3 9450 9 468.7 9482 9 496.0 9418 9 443.1 9450 9 468.6 9484 9 497.6 9418 9 443.1 9451 9 472.1 9487 9 498.8 9487 9 9488 9 497.6 9482 9 496.0 9482 9 496.0 9481 9 9453 9 471.2 9486 9 493.3 9452 9 446.4 9456 9 472.1 9487 9 500.1 9420 9 444.7 9456 9 472.1 9487 9 500.1 9422 9 446.4 9456 9 472.1 9487 9 501.8 9422 9 446.4 9456 9 472.1 9487 9 502.6 9422 9 446.9 9458 9 477.2 9489 9 501.8 9428 9 448.0 9458 9 476.2 9491 9 503.4 9426 9 448.0 9458 9 476.2 9491 9 503.4 9426 9 448.0 9458 9 477.0 9492 9 503.4 9426 9 448.7 9450 9 477.8 9490 9 505.1 9428 9 451.4 9461 9 477.8 9490 9 505.9 9428 9 451.4 9461 9 477.8 9494 9 505.9 9428 9 451.4 9461 9 477.8 9494 9 505.9 9432 9 453.0 9462 9 479.5 9496 9 507.6 9463 9 480.3 9497 9 508.4 9431 9 453.8 9465 9 480.3 9497 9 508.4 9431 9 453.8 9466 9 481.1 9498 9 509.2 9431 9 453.8 9466 9 481.1 9498 9 509.2 9431 9 453.8 9466 9 482.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | - |       |       |   |       |       |   |       |
| 9410 9 436.5 9444 9 464.6 9478 9 492.7 9411 9 437.3 9445 9 465.4 9412 9 438.1 9446 9 466.3 9413 9 438.1 9446 9 466.3 9414 9 438.8 9447 9 467.1 9480 9 494.3 9414 9 439.8 9448 9 467.9 9481 9 495.2 9415 9 440.6 9449 9 468.7 9482 9 496.8 9417 9 442.3 9450 9 469.6 9484 9 497.6 9418 9 443.1 9451 9 470.4 9485 9 498.3 9419 9 443.1 9451 9 470.4 9485 9 498.3 9420 9 444.7 9454 9 472.1 9486 9 499.3 9420 9 444.7 9454 9 472.9 9486 9 950.1 9421 9 445.6 9459 9 472.1 9486 9 950.1 9422 9 446.4 9 9458 9 472.1 9423 9 446.8 9458 9 472.1 9424 9 448.0 9458 9 473.5 9425 9 448.0 9458 9 475.4 9426 9 449.7 9427 9 450.5 9460 9 477.8 9490 9 503.6 9428 9 451.4 9461 9 478.7 9429 9 452.2 9462 9 477.8 9490 9 505.1 9429 9 452.2 9462 9 477.8 9490 9 505.1 9429 9 452.2 9464 9 481.1 9430 9 453.0 9461 9 478.7 9496 9 507.6 9431 9 453.8 9465 9 480.3 9497 9 508.4 9431 9 453.8 9465 9 480.3 9499 9 507.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9409 | 9 | 435.6 |       | - |       |       |   |       |
| 9411         9         437.3         9445         9         465.4         9479         9         493.5           9412         9         438.1         9446         9         466.3         9480         9         494.3           9413         9         438.9         9447         9         467.1         9480         9         495.2           9415         9         440.6         9449         9         468.7         9482         9         496.0           9416         9         441.4         9470.4         9483         9         496.8           9418         9         442.3         9450         9         468.7         9482         9         496.8           9418         9         443.1         9451         9         470.4         9485         9         496.8           9419         9         443.1         9451         9         470.4         9485         9         498.5           9419         9         443.1         9451         9         470.4         9486         9         499.3           9420         9         444.7         9452         9         471.2         9486         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |   |       |       |   |       |       |   |       |
| 9412 9 438.1 9446 9 466.3<br>9413 9 438.9 9447 9 467.1 9480 9 494.3<br>9414 9 439.8 9448 9 467.9 9481 9 495.2<br>9415 9 440.6 9449 9 468.7 9482 9 496.0<br>9416 9 441.4<br>9417 9 442.3 9450 9 468.6 9484 9 497.6<br>9418 9 443.1 9451 9 470.4 9485 9 498.5<br>9419 9 443.1 9451 9 470.4 9485 9 498.5<br>9419 9 443.9 9452 9 471.2 9486 9 499.3<br>9420 9 444.7 9454 9 472.1 9487 9 500.1<br>9420 9 444.6 9456 9 472.1<br>9421 9 446.4 9456 9 472.5<br>9422 9 446.4 9456 9 473.7 9489 9 501.8<br>9423 9 447.2 9457 9 475.4 9490 9 502.6<br>9424 9 448.0 9458 9 475.4 9490 9 502.6<br>9425 9 448.0 9458 9 477.0 9491 9 504.2<br>9426 9 449.7<br>9427 9 445.0 9459 9 477.0 9492 9 504.2<br>9428 9 445.1 9461 9 477.8 9494 9 505.9<br>9429 9 452.2 9462 9 479.5 9496 9 507.6<br>9430 9 453.0 9461 9 477.8 9495 9 506.7<br>9431 9 453.0 9464 9 481.1 9498 9 509.2<br>9431 9 453.1 9466 9 482.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |   |       |       | _ |       |       |   |       |
| 9413         9         438.9         9447         9         467.1         9480         9         494.3           9414         9         439.8         9448         9         467.9         9481         9         496.0           9416         9         440.6         94949         9         468.7         9482         9         496.0           9416         9         441.4         9451         9         489.6         9483         9         496.8           9418         9         443.1         9451         9         470.4         9485         9         499.3           9420         9         443.9         9452         9         472.1         9486         9         499.3           9420         9         444.7         9453         9         472.1         9486         9         499.3           9421         9         444.7         9455         9         472.9         9488         9         500.1           9422         9         446.4         9456         9         473.7         9489         9         501.8           9423         9         448.0         9458         9         475.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | - |       |       |   |       | 9479  | 9 | 493.5 |
| 9414 9 439.8 9448 9 467.9 9481 9 495.2 9415 9 440.6 9449 9 468.7 9482 9 496.0 9416 9 441.4 9418 9 442.3 9450 9 468.6 9484 9 497.6 9418 9 443.1 9451 9 470.4 9485 9 498.5 9419 9 443.9 9452 9 471.2 9486 9 499.3 9420 9 444.7 9454 9 472.9 9488 9 500.9 9421 9 445.6 9455 9 473.7 9489 9 501.8 9422 9 446.4 9456 9 474.5 9423 9 447.2 9457 9 475.4 949.0 9424 9 448.0 9458 9 476.2 9491 9 503.4 9425 9 448.0 9458 9 476.2 9491 9 503.4 9426 9 449.7 9427 9 450.5 9460 9 477.8 9494 9 505.9 9428 9 451.4 9461 9 477.8 9494 9 505.9 9429 9 452.2 9462 9 479.5 9496 9 507.6 9430 9 453.0 9460 9 477.8 9496 9 507.6 9430 9 453.0 9460 9 477.8 9495 9 506.7 9431 9 453.0 9460 9 479.5 9496 9 507.6 9432 9 453.0 9460 9 481.1 9498 9 509.2 9431 9 453.8 9465 9 482.0 9499 9 510.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |   |       |       | - |       |       |   |       |
| 9415         9         440.6         9449         9         468.7         9482         9         496.0           9416         9         441.4         947         9483         9         496.8           9417         9         442.3         9450         9         469.6         9483         9         496.8           9418         9         443.1         9451         9         470.4         9485         9         498.5           9419         9         443.9         9452         9         471.2         9486         9         499.3           9420         9         444.7         9454         9         472.1         9487         9         500.1           9421         9         445.6         9455         9         473.7         9488         9         500.1           9422         9         446.4         9456         9         474.5         9489         9         501.8           9423         9         447.2         9457         9         475.4         9490         9         506.4           9424         9         448.0         9458         9         476.2         9491         9 <t< td=""><td></td><td>_</td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | _ |       |       | - |       |       | - |       |
| 9416         9         441.4         9417         9         442.3         9450         9         468.6         9484         9         497.6           9418         9         443.1         9451         9         470.4         9485         9         498.5           9419         9         443.1         9452         9         471.2         9486         9         499.3           9419         9         444.7         9453         9         472.1         9487         9         500.1           9421         9         446.6         9456         9         473.7         9489         9         500.9           9422         9         446.4         9456         9         473.7         9489         9         501.8           9423         9         447.2         9456         9         475.4         9490         9         502.6           9423         9         448.0         9458         9         476.2         9491         9         503.4           9426         9         448.0         9458         9         477.0         9492         9         500.4           9426         9         4481.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |   |       |       |   |       |       |   |       |
| 9417         9         442.3         9450         9         469.6         9484         9         497.6           9418         9         443.1         9451         9         470.4         9486         9         498.5           9419         9         443.1         9451         9         471.2         9486         9         499.3           9420         9         444.7         9454         9         472.1         9488         9         500.0           9422         9         446.6         9455         9         473.7         9489         9         501.8           9422         9         446.4         9456         9         475.4         9490         9         502.6           9423         9         448.0         9458         9         476.2         9491         9         503.4           9425         9         448.9         9459         9         477.0         9492         9         505.1           9427         9         448.9         9459         9         477.0         9492         9         505.1           9427         9         450.5         9460         9         477.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | _ |       | 9449  | 9 | 468.7 |       |   |       |
| 9418         9         443.1         9451         9         470.4         9485         9         498.5           9419         9         443.9         9452         9         471.2         9486         9         499.3           9420         9         444.7         9453         9         472.9         9488         9         500.1           9421         9         445.6         9455         9         473.7         9489         9         500.9           9422         9         446.4         9456         9         474.5         9490         9         501.8           9423         9         447.2         9457         9         475.4         9490         9         502.6           9424         9         448.9         9459         9         477.0         9491         9         503.4           9426         9         449.7         9460         9         477.8         9494         9         505.1           9428         9         451.4         9461         9         478.7         9495         9         506.7           9430         9         453.0         9462         9         479.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9416 |   |       | 1     |   |       |       |   |       |
| 9419         9         443.9         9452         9         471.2         9486         9         499.3           9420         9         444.7         9454         9         472.9         9488         9         500.1           9421         9         444.7         9456         9         472.9         9488         9         500.1           9421         9         445.6         9455         9         473.7         9489         9         501.8           9422         9         446.4         9456         9         475.4         9490         9         502.6           9424         9         448.0         9458         9         476.2         9491         9         503.4           9425         9         448.9         9459         9         477.0         9492         9         504.2           9426         9         449.7         9493         9         505.1         9493         9         505.1           9428         9         451.4         9461         9         477.8         9495         9         506.7           9429         9         452.2         9462         9         479.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |   |       |       |   |       |       |   |       |
| 9420 9 444.7 9453 9 472.1 9487 9 500.1 9420 9 444.6 9455 9 473.7 9489 9 501.8 9422 9 446.4 9456 9 474.5 9422 9 446.4 9456 9 475.4 9490 9 502.6 9422 9 448.0 9458 9 475.2 9491 9 503.4 9425 9 448.0 9458 9 476.2 9491 9 503.4 9425 9 448.7 9459 9 450.5 9458 9 477.0 9492 9 504.2 9426 9 449.7 9428 9 451.4 9461 9 477.8 9494 9 505.9 9428 9 451.4 9461 9 477.8 9494 9 505.9 9429 9 452.2 9462 9 479.5 9496 9 507.6 9463 9 482.8 9497 9 508.4 9431 9 453.0 9464 9 481.1 9498 9 509.2 9431 9 453.8 9465 9 482.8 9499 9 510.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |   |       |       |   |       |       |   |       |
| 9420         9         444.7         9454         9         472.9         9488         9         500.9           9421         9         445.6         9455         9         473.7         9489         9         501.8           9422         9         446.4         9456         9         474.5         9490         9         502.6           9423         9         447.2         9457         9         476.2         9491         9         503.4           9425         9         448.9         9459         9         477.0         9492         9         504.2           9426         9         449.7         9493         9         505.9         9493         9         505.9           9428         9         451.4         9461         9         478.7         9494         9         505.9           9429         9         452.2         9462         9         479.5         9496         9         507.6           9430         9         453.0         9464         9         481.1         9498         9         509.2           9431         9         453.8         9465         9         482.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9419 | 9 | 443.9 |       |   |       |       |   |       |
| 9421         9         445.6         9455         9         473.7         9489         9         501.8           9422         9         446.4         9456         9         475.4         9490         9         502.6           9423         9         447.2         9457         9         475.4         9490         9         503.4           9425         9         448.9         9459         9         477.0         9492         9         504.2           9426         9         449.7         9493         9         505.1         9493         9         505.1           9428         9         451.4         9461         9         478.7         9495         9         506.7           9429         9         452.2         9462         9         479.5         9496         9         506.7           9430         9         453.0         9462         9         479.5         9496         9         507.6           9431         9         453.0         9464         9         481.1         9498         9         509.2           9431         9         453.4         9466         9         482.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |   |       |       |   |       |       |   |       |
| 9422         9         446.4         9456         9         474.5         9423         9         447.2         9457         9         475.4         9490         9         502.6           9424         9         448.0         9458         9         476.2         9491         9         503.4           9425         9         448.9         9459         9         477.0         9492         9         504.2           9426         9         449.7         9493         9         505.1           9428         9         450.5         9460         9         477.8         9494         9         506.7           9429         9         451.4         9461         9         477.5         9495         9         506.7           9429         9         452.2         9462         9         479.5         9495         9         507.6           9430         9         453.0         9464         9         481.1         9498         9         509.2           9431         9         453.7         9466         9         482.0         9499         9         510.0           9432         9         4545.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |   |       |       |   |       |       |   |       |
| 9423         9         447.2         9457         9         475.4         9490         9         502.6           9424         9         448.0         9458         9         476.2         9491         9         503.4           9425         9         448.9         9459         9         477.0         9492         9         506.2           9426         9         449.7         9493         9         505.1           9427         9         450.5         9460         9         477.8         9494         9         506.9           9429         9         452.2         9462         9         479.5         9495         9         507.6           9430         9         453.0         9463         9         480.3         9497         9         508.4           9431         9         453.8         9465         9         481.1         9498         9         509.2           9431         9         453.7         9466         9         482.0         9499         9         510.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |   |       |       |   |       | 9489  | 9 | 501.8 |
| 9424         9         448.0         9458         9         476.2         9491         9         503.4           9425         9         448.9         9459         9         477.0         9492         9         504.2           9426         9         449.7         9493         9         505.1           9427         9         450.5         9460         9         478.7         9495         9         505.9           9428         9         451.4         9461         9         478.7         9495         9         506.7           9429         9         452.2         9462         9         479.5         9496         9         507.6           9430         9         453.0         9464         9         481.1         9498         9         509.2           9431         9         453.8         9465         9         482.0         9499         9         510.0           9432         9         454.7         9466         9         482.0         9499         9         510.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |   |       |       | _ |       |       |   |       |
| 9425         9         448.9         9459         9         477.0         9492         9         504.2           9426         9         449.7         9493         9         505.1           9427         9         450.5         9460         9         478.7         9495         9         505.9           9428         9         451.4         9461         9         478.7         9495         9         506.7           9429         9         452.2         9462         9         479.5         9496         9         507.6           9430         9         453.0         9464         9         481.1         9498         9         509.2           9431         9         453.8         9465         9         482.0         9499         9         510.0           9432         9         454.7         9466         9         482.0         9499         9         510.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |   |       |       |   |       |       |   |       |
| 9426         9         449.7         9450.5         9460         9         477.8         9494         9         505.1           9428         9         451.4         9461         9         478.7         9495         9         506.7           9429         9         452.2         9462         9         479.5         9496         9         507.6           9430         9         453.0         9463         9         480.3         9497         9         508.4           9431         9         453.0         9465         9         481.1         9498         9         509.2           9431         9         453.7         9466         9         482.0         9499         9         510.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |   |       |       | - |       |       |   |       |
| 9427         9         450.5         9460         9         477.8         9484         9         505.9           9428         9         451.4         9461         9         478.7         9495         9         506.7           9429         9         452.2         9462         9         479.5         9496         9         507.6           9430         9         453.0         9463         9         481.1         9498         9         509.2           9431         9         453.8         9465         9         482.0         9499         9         510.0           9432         9         454.7         9466         9         482.8         9499         9         510.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |   |       | 9459  | 9 | 477.0 |       |   |       |
| 9428         9         451.4         9461         9         478.7         9495         9         506.7           9429         9         452.2         9462         9         479.5         9496         9         507.6           9430         9         453.0         9464         9         481.1         9497         9         509.2           9431         9         453.8         9465         9         482.0         9499         9         510.0           9432         9         454.7         9466         9         482.8         9499         9         510.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | - |       | l     |   |       |       |   |       |
| 9429 9 452.2 9462 9 479.5 9496 9 507.6<br>9430 9 453.0 9464 9 481.1 9498 9 509.2<br>9431 9 453.8 9465 9 482.0 9499 9 510.0<br>9432 9 454.7 9466 9 482.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |   |       |       | - |       |       |   |       |
| 9430 9 453.0 9463 9 481.1 9498 9 509.2 9431 9 453.8 9465 9 482.0 9499 9 510.0 9432 9 4545.7 9466 9 482.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |   |       |       |   |       |       |   |       |
| 9430 9 453.0 9464 9 481.1 9498 9 509.2<br>9431 9 453.8 9465 9 482.0 9499 9 510.0<br>9432 9 454.7 9466 9 482.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9429 | 9 | 452.2 |       | - |       |       |   |       |
| 9431 9 453.8 9465 9 482.0 9499 9 510.0<br>9432 9 454.7 9466 9 482.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |   |       |       |   |       |       |   |       |
| 9432 9 454.7 9466 9 482.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | _ |       |       |   |       |       |   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | _ |       |       | - |       | 9499  | 9 | 510.0 |
| 9433 9 455.5 9467 9 483.6 9500 9 510.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |   |       |       |   |       |       | _ |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9433 | 9 | 455.5 | 9467  | 9 | 483.6 | 9500  | 9 | 510.9 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   |       | L     |   |       |       |   |       |

Use check point at 9450 Kc

# Frequency: 9500-9600 Kc

| Freq. | A   | В     | Freq.    | A | В     | Frea.    | A | В     |
|-------|-----|-------|----------|---|-------|----------|---|-------|
| 9500  | 9   | 510.9 | 9534     | 9 | 539.1 | 9568     | 9 | 567.3 |
| 9501  | 9   | 511.7 | 9535     | 9 | 540.0 | 9569     | 9 | 568.2 |
| 9502  | 9   | 512.5 | 9536     | 9 | 540.8 | ****     | • | ••••  |
| 9503  | 9   | 513.4 | 9537     | 9 | 541.6 | 9570     | 9 | 569.0 |
| 9504  | 9   | 514.2 | 9538     | 9 | 542.5 | 9571     | 9 | 569.8 |
| 9505  | 9   | 515.0 | 9539     | 9 | 543.3 | 9572     | 9 | 570.6 |
| 9506  | 9   | 515.9 |          |   |       | 9573     | 9 | 571.5 |
| 9507  | 9   | 516.7 | 9540     | 9 | 544,1 | 9574     | 9 | 572.3 |
| 9508  | 9   | 517.5 | 9541     | 9 | 544.9 | 9575     | 9 | 573.1 |
| 9509  | 9   | 518.4 | 9542     | 9 | 545.8 | 9576     | 9 | 574.0 |
|       |     |       | 9543     | 9 | 546.6 | 9577     | 9 | 574.8 |
| 9510  | 9   | 519.2 | 9544     | 9 | 547.4 | 9578     | 9 | 575.6 |
| 9511  | 9   | 520.0 | 9545     | 9 | 548.3 | 9579     | 9 | 576.4 |
| 9512  | 9   | 520.8 | 9546     | 9 | 549.1 |          |   |       |
| 9513  | 9   | 521.7 | 9547     | 9 | 549.9 | 9580     | 9 | 577.3 |
| 9514  | 9   | 522.5 | 9548     | 9 | 550.7 | 9581     | 9 | 578.1 |
| 9515  | 9   | 523.3 | 9549     | 9 | 551.6 | 9582     | 9 | 578.9 |
| 9516  | 9   | 524.2 |          |   |       | 9583     | 9 | 579.8 |
| 9517  | 9   | 525.0 | 9550     | 9 | 552.4 | 9584     | 9 | 580.6 |
| 9518  | 9   | 525.8 | 9551     | 9 | 553.2 | 9585     | 9 | 581.4 |
| 9519  | 9   | 526.7 | 9552     | 9 | 554.1 | 9586     | 9 | 582.2 |
|       |     |       | 9553     | 9 | 554.9 | 9587     | 9 | 583.1 |
| 9520  | 9   | 527.5 | 9554     | 9 | 555.7 | 9588     | 9 | 583.9 |
| 9521  | 9   | 528.3 | 9555     | 9 | 556.5 | 9589     | 9 | 584.7 |
| 9522  | 9   | 529.2 | 9556     | 9 | 557.4 | İ        |   |       |
| 9523  | 9   | 530.0 | 9557     | 9 | 558.2 | 9590     | 9 | 585.6 |
| 9524  | 9   | 530.8 | 9558     | 9 | 559.0 | 9591     | 9 | 586.4 |
| 9525  | 9   | 531.7 | 9559     | 9 | 559.9 | 9592     | 9 | 587.2 |
| 9526  | 9   | 532.5 |          |   |       | 9593     | 9 | 588.1 |
| 9527  | 9   | 533.3 | 9560     | 9 | 560.7 | 9594     | 9 | 588.9 |
| 9528  | 9   | 534.1 | 9561     | 9 | 561.5 | 9595     | 9 | 589.7 |
| 9529  | 9   | 535.0 | 9562     | 9 | 562.4 | 9596     | 9 | 590.6 |
|       |     |       | 9563     | 9 | 563.2 | 9597     | 9 | 591.4 |
| 9530  | • 9 | 535.8 | 9564     | 9 | 564.0 | 9598     | 9 | 592.2 |
| 9531  | 9   | 536.6 | 9565     | 9 | 564.8 | 9599     | 9 | 593.1 |
| 9532  | 9   | 537.5 | 9566     | 9 | 565.7 | 9600     | 9 | 593.9 |
| 9533  | 9   | 538.3 | 9567     | 9 | 566.5 | 9000     | 9 | 593.9 |
|       |     |       | <u> </u> |   |       | <u> </u> |   |       |

Use check point at 9450 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

|       |   | rioqe | ency: | YO | 00-970 | JU KC |   |       |
|-------|---|-------|-------|----|--------|-------|---|-------|
| Freq. | A | В     | Freq. | A  | В      | Freq. | A | В     |
| 9600  | 9 | 593.9 | 9634  | 9  | 622.2  | 9668  | 9 | 650.4 |
| 9601  | 9 | 594.7 | 9635  | 9  | 623.0  | 9669  | 9 | 651.2 |
| 9602  | 9 | 595.5 | 9636  | 9  | 623.8  |       |   |       |
| 9603  | 9 | 596.4 | 9637  | 9  | 624.6  | 9670  | 9 | 652.1 |
| 9604  | 9 | 597.2 | 9638  | 9. | 625.5  | 9671  | 9 | 652.9 |
| 9605  | 9 | 598.0 | 9639  | 9  | 626.3  | 9672  | 9 | 653.7 |
| 9606  | 9 | 598.9 | l     |    |        | 9673  | 9 | 654.6 |
| 9607  | 9 | 599.7 | 9640  | 9  | 627.1  | 9674  | 9 | 655.4 |
| 9608  | 9 | 600.5 | 9641  | 9  | 628.0  | 9675  | 9 | 656.2 |
| 9609  | 9 | 601.4 | 9642  | 9  | 628.8  | 9676  | 9 | 657.1 |
|       |   |       | 9643  | 9  | 629.6  | 9677  | 9 | 657.9 |
| 9610  | 9 | 602.2 | 9644  | 9  | 630.5  | 9678  | 9 | 658.7 |
| 9611  | 9 | 603.0 | 9645  | 9  | 631.3  | 9679  | 9 | 659.6 |
| 9612  | 9 | 603.9 | 9646  | 9  | 632.1  |       |   |       |
| 9613  | 9 | 604.7 | 9647  | 9  | 633.0  | 9680  | 9 | 660.4 |
| 9614  | 9 | 605.5 | 9648  | 9  | 633.8  | 9681  | 9 | 661.2 |
| 9615  | 9 | 606.4 | 9649  | 9  | 634.6  | 9682  | 9 | 662.0 |
| 9616  | 9 | 607.2 | ļ     |    |        | 9683  | 9 | 662.9 |
| 9617  | 9 | 608.0 | 9650  | 9  | 635.5  | 9684  | 9 | 663.7 |
| 9618  | 9 | 608.9 | 9651  | 9  | 636.3  | 9685  | 9 | 664.5 |
| 9619  | 9 | 609.7 | 9652  | 9  | 637.1  | 9686  | 9 | 665.4 |
|       |   |       | 9653  | 9  | 637.9  | 9687  | 9 | 666.2 |
| 9620  | 9 | 610.5 | 9654  | 9  | 638.8  | 9688  | 9 | 667.0 |
| 9621  | 9 | 611.3 | 9655  | 9  | 639.6  | 9689  | 9 | 667.9 |
| 9622  | 9 | 612.2 | 9656  | 9  | 640.4  |       |   |       |
| 9623  | 9 | 613.0 | 9657  | 9  | 641.3  | 9690  | 9 | 668.7 |
| 9624  | 9 | 613.8 | 9658  | 9  | 642.1  | 9691  | 9 | 669.5 |
| 9625  | 9 | 614.7 | 9659  | 9  | 642.9  | 9692  | 9 | 670.3 |
| 9626  | 9 | 615.5 | 1     |    |        | 9693  | 9 | 671.2 |
| 9627  | 9 | 616.3 | 9660  | 9  | 643.8  | 9694  | 9 | 672.0 |
| 9628  | 9 | 617.2 | 9661  | 9  | 644.6  | 9695  | 9 | 672.8 |
| 9629  | 9 | 618.0 | 9662  | 9  | 645.4  | 9696  | 9 | 673.7 |
|       |   |       | 9663  | 9  | 646.3  | 9697  | 9 | 674.5 |
| 9630  | 9 | 618.8 | 9664  | 9  | 647.1  | 9698  | 9 | 675.3 |
| 9631  | 9 | 619.7 | 9665  | 9  | 647.9  | 9699  | 9 | 676.2 |
| 9632  | 9 | 620.5 | 9666  | 9  | 648.7  |       |   |       |
| 9633  | 9 | 621.3 | 9667  | 9  | 649.6  | 9700  | 9 | 677.0 |

Use check point at 9450 or 9900 Kc, whichever is nearer

| Frequency:   | 9700-9800                               | Ke  |
|--------------|-----------------------------------------|-----|
| , i odoones. | ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 150 |

| Freq. | A | В     | Freq. | A | В     | Freq. | Α | В     |
|-------|---|-------|-------|---|-------|-------|---|-------|
| 9700  | 9 | 677.0 | 9734  | 9 | 705.2 | 9768  | 9 | 733.5 |
| 9701  | 9 | 677.8 | 9735  | 9 | 706.0 | 9769  | 9 | 734.3 |
| 9702  | 9 | 678.6 | 9736  | 9 | 706.9 |       |   |       |
| 9703  | 9 | 679.5 | 9737  | 9 | 707.7 | 9770  | 9 | 735.1 |
| 9704  | 9 | 680.3 | 9738  | 9 | 708.5 | 9771  | 9 | 736.0 |
| 9705  | 9 | 681.1 | 9739  | 9 | 709.4 | 9772  | 9 | 736.8 |
| 9706  | 9 | 682.0 |       |   |       | 9773  | 9 | 737.6 |
| 9707  | 9 | 682.8 | 9740  | 9 | 710.2 | 9774  | 9 | 738.5 |
| 9708  | 9 | 683.6 | 9741  | 9 | 711.0 | 9775  | 9 | 739.3 |
| 9709  | 9 | 684.5 | 9742  | 9 | 711.9 | 9776  | 9 | 740.1 |
|       |   |       | 9743  | 9 | 712.7 | 9777  | 9 | 741.0 |
| 9710  | 9 | 685.3 | 9744  | 9 | 713.5 | 9778  | 9 | 741.8 |
| 9711  | 9 | 686.1 | 9745  | 9 | 714.4 | 9779  | 9 | 742.6 |
| 9712  | 9 | 686.9 | 9746  | 9 | 715.2 |       |   |       |
| 9713  | 9 | 687.8 | 9747  | 9 | 716.0 | 9780  | 9 | 743.5 |
| 9714  | 9 | 688.6 | 9748  | 9 | 716.9 | 9781  | 9 | 744.3 |
| 9715  | 9 | 689.4 | 9749  | 9 | 717.7 | 9782  | 9 | 745.1 |
| 9716  | 9 | 690.3 |       |   |       | 9783  | 9 | 746.0 |
| 9717  | 9 | 691.1 | 9750  | 9 | 718.5 | 9784  | 9 | 746.8 |
| 9718  | 9 | 691.9 | 9751  | 9 | 719.3 | 9785  | 9 | 747.6 |
| 9719  | 9 | 692.8 | 9752  | 9 | 720.2 | 9786  | 9 | 748.5 |
|       |   |       | 9753  | 9 | 721.0 | 9787  | 9 | 749.3 |
| 9720  | 9 | 693.6 | 9754  | 9 | 721.8 | 9788  | 9 | 750.1 |
| 9721  | 9 | 694.4 | 9755  | 9 | 722.7 | 9789  | 9 | 751.0 |
| 9722  | 9 | 695.2 | 9756  | 9 | 723.5 | ŀ     |   |       |
| 9723  | 9 | 696.1 | 9757  | 9 | 724.3 | 9790  | 9 | 751.8 |
| 9724  | 9 | 696.9 | 9758  | 9 | 725.2 | 9791  | 9 | 752.6 |
| 9725  | 9 | 697.7 | 9759  | 9 | 726.0 | 9792  | 9 | 753.5 |
| 9726  | 9 | 698.6 | ŀ     |   |       | 9793  | 9 | 754.3 |
| 9727  | 9 | 699.4 | 9760  | 9 | 726.8 | 9794  | 9 | 755.1 |
| 9728  | 9 | 700.2 | 9761  | 9 | 727.7 | 9795  | 9 | 756.0 |
| 9729  | 9 | 701.1 | 9762  | 9 | 728.5 | 9796  | 9 | 756.8 |
|       |   |       | 9763  | 9 | 729.3 | 9797  | 9 | 757.6 |
| 9730  | 9 | 701.9 | 9764  | 9 | 730.1 | 9798  | 9 | 758.5 |
| 9731  | 9 | 702.7 | 9765  | 9 | 731.0 | 9799  | 9 | 759.3 |
| 9732  | 9 | 703.6 | 9766  | 9 | 731.8 |       |   |       |
| 9733  | 9 | 704.4 | 9767  | 9 | 732.6 | 9800  | 9 | 760.1 |
|       |   |       | 1 ^   |   |       |       |   |       |
|       |   |       |       |   |       |       |   |       |

Use chack point at 9900 Kc

Frequency: 9800-9900 Kc

| Freq. | A | В     | Freq. | A  | В     | Freq.       | A | В     |
|-------|---|-------|-------|----|-------|-------------|---|-------|
| 9800  | 9 | 760.1 | 9834  | 9  | 788.3 | 9868        | 9 | 816.5 |
| 9801  | 9 | 761.0 | 9835  | 9  | 789.1 | 9869        | 9 | 817.3 |
| 9802  | 9 | 761.8 | 9836  | 9  | 790.0 | i           |   |       |
| 9803  | 9 | 762.6 | 9837  | 9  | 790.8 | 9870        | 9 | 818.1 |
| 9804  | 9 | 763.5 | 9838  | 9• | 791.6 | 9871        | 9 | 818.9 |
| 9805  | 9 | 764.3 | 9839  | 9  | 792.4 | 9872        | 9 | 819.8 |
| 9806  | 9 | 765.1 | l     |    |       | 9873        | 9 | 820.6 |
| 9807  | 9 | 766.0 | 9840  | 9  | 793.3 | 9874        | 9 | 821.4 |
| 9808  | 9 | 766.8 | 9841  | 9  | 794.1 | 9875        | 9 | 822.3 |
| 9809  | 9 | 767.6 | 9842  | 9  | 794.9 | 9876        | 9 | 823.1 |
|       |   |       | 9843  | 9  | 795.7 | 9877        | 9 | 823.9 |
| 9810  | 9 | 768.5 | 9844  | 9  | 796.6 | 9878        | 9 | 824.7 |
| 9811  | 9 | 769.3 | 9845  | 9  | 797.4 | 9879        | 9 | 825.6 |
| 9812  | 9 | 770.1 | 9846  | 9  | 798.2 |             |   |       |
| 9813  | 9 | 770.9 | 9847  | 9  | 799.1 | 9880        | 9 | 826.4 |
| 9814  | 9 | 771.8 | 9848  | 9  | 799.9 | 9881        | 9 | 827.2 |
| 9815  | 9 | 772.6 | 9849  | 9  | 800.7 | 9882        | 9 | 828.1 |
| 9816  | 9 | 773.4 | j     |    |       | 9883        | 9 | 828.9 |
| 9817  | 9 | 774.2 | 9850  | 9  | 801.5 | 9884        | 9 | 829.7 |
| 9818  | 9 | 775.1 | 9851  | 9  | 802.4 | 9885        | 9 | 830.6 |
| 9819  | 9 | 775.9 | 9852  | 9  | 803.2 | 9886        | 9 | 831.4 |
|       |   |       | 9853  | 9  | 804.0 | 9887        | 9 | 832.2 |
| 9820  | 9 | 776.7 | 9854  | 9  | 804.8 | 9888        | 9 | 833.0 |
| 9821  | 9 | 777.5 | 9855  | 9  | 805.7 | 9889        | 9 | 833.9 |
| 9822  | 9 | 778.4 | 9856  | 9  | 806.5 | 1           |   |       |
| 9823  | 9 | 779.2 | 9857  | 9  | 807.3 | 9890        | 9 | 834.7 |
| 9824  | 9 | 780.0 | 9858  | 9  | 808.2 | 9891        | 9 | 835.5 |
| 9825  | 9 | 780.9 | 9859  | 9  | 809.0 | 9892        | 9 | 836.4 |
| 9826  | 9 | 781.7 | 1     |    |       | 9893        | 9 | 837.2 |
| 9827  | 9 | 782.5 | 9860  | 9  | 809.8 | 9894        | 9 | 838.0 |
| 9828  | 9 | 783.3 | 9861  | 9  | 810.6 | 9895        | 9 | 838.9 |
| 9829  | 9 | 784.2 | 9862  | 9  | 811.5 | 9896        | 9 | 839.7 |
|       |   |       | 9863  | 9  | 812.3 | 9897        | 9 | 840.5 |
| 9830  | 9 | 785.0 | 9864  | 9  | 813.1 | 9898        | 9 | 841.4 |
| 9831  | 9 | 785.8 | 9865  | 9  | 814.0 | 9899        | 9 | 842.2 |
| 9832  | 9 | 786.6 | 9866  | 9  | 814.8 |             |   |       |
| 9833  | 9 | 787.5 | 9867  | 9  | 815.6 | 9960        | 9 | 843.0 |
|       |   |       | ŀ     |    |       |             |   |       |
| -     |   |       |       |    |       | <del></del> |   |       |

Use check point at 9900 Kc

## Frequency: 9900-10000 Kc

| Freq. | A | В     | Freq. | A | В     | Freq. | A  | В     |
|-------|---|-------|-------|---|-------|-------|----|-------|
| 9900  | 9 | 843.0 | 9934  | 9 | 871.0 | 9968  | 9` | 899.1 |
| 9901  | 9 | 843.8 | 9935  | 9 | 871.9 | 9969  | 9  | 899.9 |
| 9902  | 9 | 844.7 | 9936  | 9 | 872.7 | ł     |    |       |
| 9903  | 9 | 845.5 | 9937  | 9 | 873.5 | 9970  | 9  | 900.7 |
| 9904  | 9 | 846.3 | 9938  | 9 | 874.3 | 9971  | 9  | 901.6 |
| 9905  | 9 | 847.1 | 9939  | 9 | 875.2 | 9972  | 9  | 902.4 |
| 9906  | 9 | 847.9 | l     |   |       | 9973  | 9  | 903.2 |
| 9907  | 9 | 848.8 | 9940  | 9 | 876.0 | 9974  | 9  | 904.0 |
| 9908  | 9 | 849.6 | 9941  | 9 | 876.8 | 9975  | 9  | 904.9 |
| 9909  | 9 | 850.4 | 9942  | 9 | 877.6 | 9976  | 9  | 905.7 |
|       |   |       | 9943  | 9 | 878.5 | 9977  | 9  | 906.5 |
| 9910  | 9 | 851.2 | 9944  | 9 | 879.3 | 9978  | 9  | 907.3 |
| 9911  | 9 | 852.1 | 9945  | 9 | 880.1 | 9979  | 9  | 908.2 |
| 9912  | 9 | 852.9 | 9946  | 9 | 880.9 |       |    |       |
| 9913  | 9 | 853.7 | 9947  | 9 | 881.8 | 9980  | 9  | 909.0 |
| 9914  | 9 | 854.5 | 9948  | 9 | 882.6 | 9981  | 9  | 909.8 |
| 9915  | 9 | 855.4 | 9949  | 9 | 883.4 | 9982  | 9  | 910.6 |
| 9916  | 9 | 856.2 |       |   |       | 9983  | 9  | 911.5 |
| 9917  | 9 | 857.0 | 9950  | 9 | 884.2 | 9984  | 9  | 912.3 |
| 9918  | 9 | 857.8 | 9951  | 9 | 885.1 | 9985  | 9  | 913.1 |
| 9919  | 9 | 858.7 | 9952  | 9 | 885.9 | 9986  | 9  | 913.9 |
|       |   |       | 9953  | 9 | 886.7 | 9987  | 9  | 914.8 |
| 9920  | 9 | 859.5 | 9954  | 9 | 887.5 | 9988  | 9  | 915.6 |
| 9921  | 9 | 860.3 | 9955  | 9 | 888.4 | 9989  | 9  | 916.4 |
| 9922  | 9 | 861.1 | 9956  | 9 | 889.2 | •     |    |       |
| 9923  | 9 | 862.0 | 9957  | 9 | 890.0 | 9990  | 9  | 917.2 |
| 9924  | 9 | 862.8 | 9958  | 9 | 890.8 | 9991  | 9  | 918.1 |
| 9925  | 9 | 863.6 | 9959  | 9 | 891.7 | 9992  | 9  | 918.9 |
| 9926  | 9 | 864.4 | İ     |   |       | 9993  | 9  | 919.7 |
| 9927  | 9 | 865.3 | 9960  | 9 | 892.5 | 9994  | 9  | 920.5 |
| 9928  | 9 | 866.1 | 9961  | 9 | 893.3 | 9995  | 9  | 921.4 |
| 9929  | 9 | 866.9 | 9962  | 9 | 894.1 | 9996  | 9  | 922.2 |
|       |   |       | 9963  | 9 | 895.0 | 9997  | 9  | 923.0 |
| 9930  | 9 | 867.7 | 9964  | 9 | 895.8 | 9998  | 9  | 923.8 |
| 9931  | 9 | 868.6 | 9965  | 9 | 896.6 | 9999  | 9  | 924.7 |
| 9932  | 9 | 869.4 | 9966  | 9 | 897.4 | 1     | •  |       |
| 9933  | 9 | 870.2 | 9967  | 9 | 898.3 | 10000 | 9  | 925.5 |
|       |   |       |       |   |       | l     |    |       |
|       |   |       |       |   |       |       |    |       |

Use check point at 9900 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: | 10000-10100 | Kc |
|------------|-------------|----|

| Freq. | Α | В     | Freq.    | A | В     | Freq.    | A | В      |
|-------|---|-------|----------|---|-------|----------|---|--------|
| 10000 | 9 | 925.5 | 10034    | 9 | 953.5 | 10068    | 9 | 981.4  |
| 10001 | 9 | 926.3 | 10035    | 9 | 954.3 | 10069    | 9 | 982.2  |
| 10002 | 9 | 927.1 | 10036    | 9 | 955.2 |          |   |        |
| 10003 | 9 | 928.0 | 10037    | 9 | 956.0 | 10070    | 9 | 983.0  |
| 10004 | 9 | 928.8 | 10038    | 9 | 956.8 | 10071    | 9 | 983.9  |
| 10005 | 9 | 929.6 | 10039    | 9 | 957.6 | 10072    | 9 | 984.7  |
| 10006 | 9 | 930.4 | ŀ        |   |       | 10073    | 9 | 985.5  |
| 10007 | 9 | 931.3 | 10040    | 9 | 958.4 | 10074    | 9 | 986.3  |
| 10008 | 9 | 932.1 | 10041    | 9 | 959.3 | 10075    | 9 | 987.1  |
| 10009 | 9 | 932.9 | 10042    | 9 | 960.1 | 10076    | 9 | 988.0  |
|       |   |       | 10043    | 9 | 960.9 | 10077    | 9 | 988.8  |
| 10010 | 9 | 933.7 | 10044    | 9 | 961.7 | 10078    | 9 | 989.6  |
| 10011 | 9 | 934.6 | 10045    | 9 | 962.5 | 10079    | 9 | 990.4  |
| 10012 | 9 | 935.4 | 10046    | 9 | 963.4 | l        |   |        |
| 10013 | 9 | 936.2 | 10047    | 9 | 964.2 | 10080    | 9 | 991.2  |
| 10014 | 9 | 937.0 | 10048    | 9 | 965.0 | 10081    | 9 | 992.1  |
| 10015 | 9 | 937.8 | 10049    | 9 | 965.8 | 10082    | 9 | 992.9  |
| 10016 | 9 | 938.7 |          |   |       | 10083    | 9 | 993.7  |
| 10017 | 9 | 939.5 | 10050    | 9 | 966.6 | 10084    | 9 | 994.5  |
| 10018 | 9 | 940.3 | 10051    | 9 | 967.5 | 10085    | 9 | 995.4  |
| 10019 | 9 | 941.1 | 10052    | 9 | 968.3 | 10086    | 9 | 996.2  |
|       |   |       | 10053    | 9 | 969.1 | 10087    | 9 | 997.0  |
| 10020 | 9 | 942.0 | 10054    | 9 | 969.9 | 10088    | 9 | 997.8  |
| 10021 | 9 | 942.8 | 10055    | 9 | 970.7 | 10089    | 9 | 998.6  |
| 10022 | 9 | 943.6 | 10056    | 9 | 971.6 | l        |   |        |
| 10023 | 9 | 944.4 | 10057    | 9 | 972.4 | 10090    | 9 | 999.5  |
| 10024 | 9 | 945.3 | 10058    | 9 | 973.2 | 10091    | 9 | 1000.3 |
| 10025 | 9 | 946.1 | 10059    | 9 | 974.0 | 10092    | 9 | 1001.1 |
| 10026 | 9 | 946.9 |          |   |       | 10093    | 9 | 1001.9 |
| 10027 | 9 | 947.7 | 10060    | 9 | 974.8 | 10094    | 9 | 1002.8 |
| 10028 | 9 | 948.6 | 10061    | 9 | 975.7 | 10095    | 9 | 1003.6 |
| 10029 | 9 | 949.4 | 10062    | 9 | 976.5 | 10096    | 9 | 1004.4 |
|       |   |       | 10063    | 9 | 977.3 | 10097    | 9 | 1005.2 |
| 10030 | 9 | 950.2 | 10064    | 9 | 978.1 | 10098    | 9 | 1006.0 |
| 10031 | 9 | 951.0 | 10065    | 9 | 978.9 | 10099    | 9 | 1006.9 |
| 10032 | 9 | 951.9 | 10066    | 9 | 979.8 | l        |   |        |
| 10033 | 9 | 952.7 | 10067    | 9 | 980.6 | 10100    | 9 | 1007.7 |
|       |   |       | <u> </u> |   | _     | <u> </u> |   |        |

Use check point at 9900 Kc

# Frequency: 10100-10200 Kc

| Freq. | A | В      | Freq. | Α | В        | Freq. | Α | В      |
|-------|---|--------|-------|---|----------|-------|---|--------|
| 10100 | 9 | 1007.7 | 10134 | 9 | 1035.7   | 10168 | 9 | 1063.6 |
| 10101 | 9 | 1008.5 | 10135 | 9 | 1036.5   | 10169 | 9 | 1064 4 |
| 10102 | 9 | 1009.3 | 10136 | 9 | 1037.3   |       |   |        |
| 10103 | 9 | 1010.2 | 10137 | 9 | 1038.1   | 10170 | 9 | 1065.3 |
| 10104 | 9 | 1011.0 | 10138 | 9 | 1038.9   | 10171 | 9 | 1066 1 |
| 10105 | 9 | 1011.8 | 10139 | 9 | 1039.8   | 10172 | 9 | 1066.9 |
| 10106 | 9 | 1012.6 | 1     |   |          | 10173 | 9 | 1067.7 |
| 10107 | 9 | 1013.5 | 10140 | 9 | 1040.6   | 10174 | 9 | 1068.5 |
| 10108 | 9 | 1014.3 | 10141 | 9 | 1041 . 4 | 10175 | 9 | 1069.3 |
| 10109 | 9 | 1015.1 | 10142 | 9 | 1042.2   | 10176 | 9 | 1070.1 |
|       |   |        | 10143 | 9 | 1043.1   | 10177 | 9 | 1071.0 |
| 10110 | 9 | 1015.9 | 10144 | 9 | 1043.9   | 10178 | 9 | 1071.8 |
| 10111 | 9 | 1016.7 | 10145 | 9 | 1044.7   | 10179 | 9 | 1072.6 |
| 10112 | 9 | 1017.6 | 10146 | 9 | 1045.5   | l     |   |        |
| 10113 | 9 | 1018.4 | 10147 | 9 | 1046.3   | 10180 | 9 | 1073.4 |
| 10114 | 9 | 1019.2 | 10148 | 9 | 1047.2   | 10181 | 9 | 1074.2 |
| 10115 | 9 | 1020.0 | 10149 | 9 | 1048.0   | 10182 | 9 | 1075.0 |
| 10116 | 9 | 1020.9 |       |   |          | 10183 | 9 | 1075.8 |
| 10117 | 9 | 1021.7 | 10150 | 9 | 1048.8   | 10184 | 9 | 1076.7 |
| 10118 | 9 | 1022.5 | 10151 | 9 | 1049.6   | 10185 | 9 | 1077.5 |
| 10119 | 9 | 1023 3 | 10152 | 9 | 1050.5   | 10186 | 9 | 1078.3 |
|       | _ |        | 10153 | 9 | 1051.3   | 10187 | 9 | 1079.1 |
| 10120 | 9 | 1024.1 | 10154 | 9 | 1052 1   | 10188 | 9 | 1079.9 |
| 10121 | 9 | 1025.0 | 10155 | 9 | 1052.9   | 10189 | 9 | 1080.7 |
| 10122 | 9 | 1025.8 | 10156 | 9 | 1053.7   |       |   |        |
| 10123 | 9 | 1026 6 | 10157 | 9 | 1054.6   | 10190 | 9 | 1081.5 |
| 10124 | 9 | 1027.4 | 10158 | 9 | 1055 · 4 | 10191 | 9 | 1082.4 |
| 10125 | 9 | 1028.3 | 10159 | 9 | 1056.2   | 10192 | 9 | 1083.2 |
| 10126 | 9 | 1029.1 |       |   |          | 10193 | 9 | 1084.0 |
| 10127 | 9 | 1029.9 | 10160 | 9 | 1057.0   | 10194 | 9 | 1084.8 |
| 10128 | 9 | 1030.7 | 10161 | 9 | 1057 9   | 10195 | 9 | 1085.6 |
| 10129 | 9 | 1031.5 | 10162 | 9 | 1058.7   | 10196 | 9 | 1086.4 |
|       |   |        | 10163 | 9 | 1059.5   | 10197 | 9 | 1087.2 |
| 10130 | 9 | 1032.4 | 10164 | 9 | 1060.3   | 10198 | 9 | 1088.1 |
| 10131 | 9 | 1033.2 | 10165 | 9 | 1061.1   | 10199 | 9 | 1088.9 |
| 10132 | 9 | 1034 0 | 10166 | 9 | 1062.0   |       |   |        |
| 10133 | 9 | 1034.8 | 10167 | 9 | 1062.8   | 10200 | 9 | 1089.7 |
|       |   |        |       |   |          |       |   |        |

Use check point at 9900 or 10350 Kc, whichever is nearer

Frequency: 10200-10300 Kc

| Freq. | A | В      | Freq.    | A | В      | Freq.    | A | В       |
|-------|---|--------|----------|---|--------|----------|---|---------|
| 10200 | 9 | 1089.7 | 10234    | 9 | 1117 4 | 10268    | 9 | 1145.1  |
| 10201 | 9 | 1090.5 | 10235    | 9 | 1118.2 | 10269    | 9 | 1145.9  |
| 10202 | 9 | 1091.3 | 10236    | 9 | 1119.0 |          |   |         |
| 10203 | 9 | 1092.1 | 10237    | 9 | 1119 9 | 10270    | 9 | 1146.7  |
| 10204 | 9 | 1092.9 | 10238    | 9 | 1120.7 | 10271    | 9 | 1147.6  |
| 10205 | 9 | 1093.8 | 10239    | 9 | 1121.5 | 10272    | 9 | 1148.4  |
| 10206 | 9 | 1094.6 |          |   |        | 10273    | 9 | 1149.2  |
| 10207 | 9 | 1095.4 | 10240    | 9 | 1122.3 | 10274    | 9 | 1150.0  |
| 10208 | 9 | 1096.2 | 10241    | 9 | 1123.1 | 10275    | 9 | 1150.8  |
| 10209 | 9 | 1097.0 | 10242    | 9 | 1123.9 | 10276    | 9 | 1151.6  |
|       |   |        | 10243    | 9 | 1124.7 | 10277    | 9 | 1152.4  |
| 10210 | 9 | 1097.8 | 10244    | 9 | 1125.6 | 10278    | 9 | 1153.3  |
| 10211 | 9 | 1098.6 | 10245    | 9 | 1126.4 | 10279    | 9 | 1154.1  |
| 10212 | 9 | 1099.5 | 10246    | 9 | 1127.2 | l        |   |         |
| 10213 | 9 | 1100.3 | 10247    | 9 | 1128.0 | 10280    | 9 | 1154.9  |
| 10214 | 9 | 1101.1 | 10248    | 9 | 1128.8 | 10281    | 9 | 1155.7  |
| 10215 | 9 | 1101.9 | 10249    | 9 | 1129.6 | 10282    | 9 | 1156.5  |
| 10216 | 9 | 1102.7 |          |   |        | 10283    | 9 | 1157.3  |
| 10217 | 9 | 1103.5 | 10250    | 9 | 1130.5 | 10284    | 9 | 1158.1  |
| 10218 | 9 | 1104.4 | 10251    | 9 | 1131.3 | 10285    | 9 | 1158.9  |
| 10219 | 9 | 1105.2 | 10252    | 9 | 1132.1 | 10286    | 9 | 1159.8  |
|       |   |        | 10253    | 9 | 1132.9 | 10287    | 9 | 1160.6  |
| 10220 | 9 | 1106.0 | 10254    | 9 | 1133.7 | 10288    | 9 | 1161.4  |
| 10221 | 9 | 1106.8 | 10255    | 9 | 1134.5 | 10289    | 9 | 1162.2  |
| 10222 | 9 | 1107.6 | 10256    | 9 | 1135.3 | ļ        |   |         |
| 10223 | 9 | 1108.4 | 10257    | 9 | 1136.2 | 10290    | 9 | 1163.0  |
| 10224 | 9 | 1109.2 | 10258    | 9 | 1137.0 | 10291    | 9 | 1163.8  |
| 10225 | 9 | 1110.1 | 10259    | 9 | 1137.8 | 10292    | 9 | 1164.6  |
| 10226 | 9 | 1110.9 |          |   |        | 10293    | 9 | 1165.5  |
| 10227 | 9 | 1111.7 | 10260    | 9 | 1138.6 | 10294    | 9 | 1166.3  |
| 10228 | 9 | 1112.5 | 10261    | 9 | 1139.4 | 10295    | 9 | 1167.1  |
| 10229 | 9 | 1113.3 | 10262    | 9 | 1140.2 | 10296    | 9 | 1167.9  |
|       |   |        | 10263    | 9 | 1141.0 | 10297    | 9 | 1168.7  |
| 10230 | 9 | 1114.1 | 10264    | 9 | 1141.9 | 10298    | 9 | 1169.5  |
| 10231 | 9 | 1115.0 | 10265    | 9 | 1142.7 | 10299    | 9 | 1170.3  |
| 10232 | 9 | 1115.8 | 10266    | 9 | 1143.5 |          |   |         |
| 10233 | 9 | 1116.6 | 10267    | 9 | 1144.3 | 10300    | 9 | 1171 .2 |
|       |   |        | <u> </u> |   |        | <u> </u> |   |         |

Use check point at 10350 Kc

## Frequency: 10300-10400 Kc

|       |   |          | ,.    |   |        |       |   |          |
|-------|---|----------|-------|---|--------|-------|---|----------|
| Freq. | А | В        | Freq. | A | В      | Freq. | A | В        |
| 10300 | 9 | 1171.2   | 10334 | 9 | 1198.8 | 10368 | 9 | 1226.4   |
| 10301 | 9 | 1172.0   | 10335 | 9 | 1199.6 | 10369 | 9 | 1227.2   |
| 10302 | 9 | 1172.8   | 10336 | 9 | 1200.4 | Ì     |   |          |
| 10303 | 9 | 1173.6   | 10337 | 9 | 1201.2 | 10370 | 9 | 1228.0   |
| 10304 | 9 | 1174 4   | 10338 | 9 | 1202.0 | 10371 | 9 | 1228.8   |
| 10305 | 9 | 1175.2   | 10339 | 9 | 1202.8 | 10372 | 9 | 1229.6   |
| 10306 | 9 | 1176.0   | l     |   |        | 10373 | 9 | 1230.4   |
| 10307 | 9 | 1176.8   | 10340 | 9 | 1203.7 | 10374 | 9 | 1231 .3  |
| 10308 | 9 | 1177.7   | 10341 | 9 | 1204 5 | 10375 | 9 | 1232 1   |
| 10309 | 9 | 1178.5   | 10342 | 9 | 1205.3 | 10376 | 9 | 1232.9   |
|       |   |          | 10343 | 9 | 1206.1 | 10377 | 9 | 1233.7   |
| 10310 | 9 | 1179.3   | 10344 | 9 | 1206.9 | 10378 | 9 | 1234 5   |
| 10311 | 9 | 1180.1   | 10345 | 9 | 1207.7 | 10379 | 9 | 1235.3   |
| 10312 | 9 | 1180.9   | 10346 | 9 | 1208.5 | 1     |   |          |
| 10313 | 9 | 1181 . 7 | 10347 | 9 | 1209.3 | 10380 | 9 | 1236 . 1 |
| 10314 | 9 | 1182.5   | 10348 | 9 | 1210.1 | 10381 | 9 | 1236.9   |
| 10315 | 9 | 1183.4   | 10349 | 9 | 1211.0 | 10382 | 9 | 1237.7   |
| 10316 | 9 | 1184.2   | ł     |   |        | 10383 | 9 | 1238.6   |
| 10317 | 9 | 1185.0   | 10350 | 9 | 1211.8 | 10384 | 9 | 1239.4   |
| 10318 | 9 | 1185.8   | 10351 | 9 | 1212.6 | 10385 | 9 | 1240.2   |
| 10319 | 9 | 1186.6   | 10352 | 9 | 1213.4 | 10386 | 9 | 1241.0   |
|       |   |          | 10353 | 9 | 1214.2 | 10387 | 9 | 1241.8   |
| 10320 | 9 | 1187.4   | 10354 | 9 | 1215.0 | 10388 | 9 | 1242.6   |
| 10321 | 9 | 1188.2   | 10355 | 9 | 1215.8 | 10389 | 9 | 1243.4   |
| 10322 | 9 | 1189.0   | 10356 | 9 | 1216.6 |       |   |          |
| 10323 | 9 | 1189.8   | 10357 | 9 | 1217.5 | 10390 | 9 | 1244.2   |
| 10324 | 9 | 1190.7   | 10358 | 9 | 1218.3 | 10391 | 9 | 1245.1   |
| 10325 | 9 | 1191.5   | 10359 | 9 | 1219.1 | 10392 | 9 | 1245.9   |
| 10326 | 9 | 1192.3   |       |   |        | 10393 | 9 | 1246.7   |
| 10327 | 9 | 1193.1   | 10360 | 9 | 1219.9 | 10394 | 9 | 1247.5   |
| 10328 | 9 | 1193.9   | 10361 | 9 | 1220.7 | 10395 | 9 | 1248.3   |
| 10329 | 9 | 1194.7   | 10362 | 9 | 1221.5 | 10396 | 9 | 1249.1   |
|       |   |          | 10363 | 9 | 1222.3 | 10397 | 9 | 1249.9   |
| 10330 | 9 | 1195.5   | 10364 | 9 | 1223.1 | 10398 | 9 | 1250.7   |
| 10331 | 9 | 1196.3   | 10365 | 9 | 1224.0 | 10399 | 9 | 1251.5   |
| 10332 | 9 | 1197.2   | 10366 | 9 | 1224.8 |       |   |          |
| 10333 | 9 | 1198.0   | 10367 | 9 | 1225.6 | 10400 | 9 | 1252.4   |
|       |   |          |       |   |        |       |   |          |
|       |   |          |       |   |        |       | _ |          |

Use check point at 10350 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: | 10400- | 10500 | Kc |
|------------|--------|-------|----|
|------------|--------|-------|----|

| Freq. | A | В      | Freq. | A | В      | Freq.   | A | В       |  |  |  |
|-------|---|--------|-------|---|--------|---------|---|---------|--|--|--|
| 10400 | 9 | 1252.4 | 10434 | 9 | 1280.0 | 10468   | 9 | 1307.7  |  |  |  |
| 10401 | 9 | 1253.2 | 10435 | 9 | 1280.8 | 10469   | 9 | 1308.5  |  |  |  |
| 10402 | 9 | 1254.0 | 10436 | 9 | 1281.6 |         |   |         |  |  |  |
| 10403 | 9 | 1254.8 | 10437 | 9 | 1282.4 | 10470   | 9 | 1309.3  |  |  |  |
| 10404 | 9 | 1255.6 | 10438 | 9 | 1283.2 | 10471   | 9 | 1310.1  |  |  |  |
| 10405 | 9 | 1256.4 | 10439 | 9 | 1284.0 | 10472   | 9 | 1310.9  |  |  |  |
| 10406 | 9 | 1257.2 | İ     |   |        | 10473   | 9 | 1311.7  |  |  |  |
| 10407 | 9 | 1258 0 | 10440 | 9 | 1284 8 | 10474   | 9 | 1312.6  |  |  |  |
| 10408 | 9 | 1258.9 | 10441 | 9 | 1285.7 | 10475   | 9 | 1313.4  |  |  |  |
| 10409 | 9 | 1259.7 | 10442 | 9 | 1286.5 | 10476   | 9 | 1314.2  |  |  |  |
|       |   |        | 10443 | 9 | 1287.3 | 10477   | 9 | 1315.0  |  |  |  |
| 10410 | 9 | 1260.5 | 10444 | 9 | 1288.1 | 10478   | 9 | 1315.8  |  |  |  |
| 10411 | 9 | 1261.3 | 10445 | 9 | 1288.9 | 10479   | 9 | 1316.6  |  |  |  |
| 10412 | 9 | 1262.1 | 10446 | 9 | 1289.7 | Ì       |   |         |  |  |  |
| 10413 | 9 | 1262.9 | 10447 | 9 | 1290.5 | 10480   | 9 | 1317 4  |  |  |  |
| 10414 | 9 | 1263.7 | 10448 | 9 | 1291.4 | 10481   | 9 | 1318.3  |  |  |  |
| 10415 | 9 | 1264.5 | 10449 | 9 | 1292.2 | 10482   | 9 | 1319.1  |  |  |  |
| 10416 | 9 | 1265.4 | l     |   |        | 10483   | 9 | 1319.9  |  |  |  |
| 10417 | 9 | 1266.2 | 10450 | 9 | 1293.0 | 10484   | 9 | 1320.7  |  |  |  |
| 10418 | 9 | 1267.0 | 10451 | 9 | 1293.8 | 10485   | 9 | 1321 5  |  |  |  |
| 10419 | 9 | 1267.8 | 10452 | 9 | 1294.6 | 10486   | 9 | 1322.3  |  |  |  |
|       |   |        | 10453 | 9 | 1295.4 | 10487   | 9 | 1323.1  |  |  |  |
| 10420 | 9 | 1268.6 | 10454 | 9 | 1296.3 | 10488   | 9 | 1324.0  |  |  |  |
| 10421 | 9 | 1269.4 | 10455 | 9 | 1297.1 | 10489   | 9 | 1324.8  |  |  |  |
| 10422 | 9 | 1270.2 | 10456 | 9 | 1297.9 | 1       |   |         |  |  |  |
| 10423 | 9 | 1271.0 | 10457 | 9 | 1298.7 | 10490   | 9 | 1325.6  |  |  |  |
| 10424 | 9 | 1271.8 | 10458 | 9 | 1299.5 | 10491   | 9 | 1326.4  |  |  |  |
| 10425 | 9 | 1272.7 | 10459 | 9 | 1300.3 | 10492   | 9 | 1327.2  |  |  |  |
| 10426 | 9 | 1273.5 | l     |   |        | 10493   | 9 | 1328.0  |  |  |  |
| 10427 | 9 | 1274.3 | 10460 |   | 1301.1 | 10494   | 9 | 1328.8  |  |  |  |
| 10428 | 9 | 1275.1 | 10461 | 9 | 1302.0 | 10495   | 9 | 1329.7  |  |  |  |
| 10429 | 9 | 1275.9 | 10462 |   | 1302.8 | 10496   | 9 | 1330.5  |  |  |  |
|       |   |        | 10463 | 9 | 1303.6 | 10497   | 9 | 1331 .3 |  |  |  |
| 10430 | 9 | 1276.7 | 10464 | _ | 1304.4 | 10498   | 9 | 1332.1  |  |  |  |
| 10431 | 9 | 1277.5 | 10465 | _ | 1305.2 | 10499   | 9 | 1332.9  |  |  |  |
| 10432 | 9 | 1278.3 | 10466 | - | 1306.0 |         |   | 4000 =  |  |  |  |
| 10433 | 9 | 1279.2 | 10467 | 9 | 1306.8 | 10500   | 9 | 1333.7  |  |  |  |
|       |   |        | 1     |   |        | <u></u> |   |         |  |  |  |

Use check point at 10350 Kc

# Frequency: 10500-10600 Kc

| Freq. | A | В      | Freq. | A | В      | Freq. | A | В      |  |  |  |
|-------|---|--------|-------|---|--------|-------|---|--------|--|--|--|
| 10500 | 9 | 1333.7 | 10534 | 9 | 1361.4 | 10568 | 9 | 1389.0 |  |  |  |
| 10501 | 9 | 1334.5 | 10535 | 9 | 1362.2 | 10569 | 9 | 1389 8 |  |  |  |
| 10502 | 9 | 1335.3 | 10536 | 9 | 1363.0 | l l   |   |        |  |  |  |
| 10503 | 9 | 1336.2 | 10537 | 9 | 1363.8 | 10570 | 9 | 1390.6 |  |  |  |
| 10504 | 9 | 1337.0 | 10538 | 9 | 1364.6 | 10571 | 9 | 1391 4 |  |  |  |
| 10505 | 9 | 1337.8 | 10539 | 9 | 1365 4 | 10572 | 9 | 1392.2 |  |  |  |
| 10506 | 9 | 1338.6 |       |   |        | 10573 | 9 | 1393.0 |  |  |  |
| 10507 | 9 | 1339.4 | 10540 | 9 | 1366.2 | 10574 | 9 | 1393.8 |  |  |  |
| 10508 | 9 | 1340.2 | 10541 | 9 | 1367.0 | 10575 | 9 | 1394.6 |  |  |  |
| 10509 | 9 | 1341.0 | 10542 | 9 | 1367.9 | 10576 | 9 | 1395.5 |  |  |  |
|       |   |        | 10543 | 9 | 1368.7 | 10577 | 9 | 1396.3 |  |  |  |
| 10510 | 9 | 1341.9 | 10544 | 9 | 1369 5 | 10578 | 9 | 1397.1 |  |  |  |
| 10511 | 9 | 1342.7 | 10545 | 9 | 1370.3 | 10579 | 9 | 1397.9 |  |  |  |
| 10512 | 9 | 1343.5 | 10546 | 9 | 1371.1 |       |   |        |  |  |  |
| 10513 | 9 | 1344.3 | 10547 | 9 | 1371.9 | 10580 | 9 | 1398.7 |  |  |  |
| 10514 | 9 | 1345.1 | 10548 | 9 | 1372.7 | 10581 | 9 | 1399.5 |  |  |  |
| 10515 | 9 | 1345.9 | 10549 | 9 | 1373.5 | 10582 | 9 | 1400.4 |  |  |  |
| 10516 | 9 | 1346.7 | 1     |   |        | 10583 | 9 | 1401.2 |  |  |  |
| 10517 | 9 | 1347.5 | 10550 | 9 | 1374.3 | 10584 | 9 | 1402.0 |  |  |  |
| 10518 | 9 | 1348.4 | 10551 | 9 | 1375.2 | 10585 | 9 | 1402.8 |  |  |  |
| 10519 | 9 | 1349.2 | 10552 | 9 | 1276.0 | 10586 | 9 | 1403.6 |  |  |  |
|       |   |        | 10553 | 9 | 1376.8 | 10587 | 9 | 1404.4 |  |  |  |
| 10520 | 9 | 1350.0 | 10554 | 9 | 1377.6 | 10588 | 9 | 1405.2 |  |  |  |
| 10521 | 9 | 1350.8 | 10555 | 9 | 1378.4 | 10589 | 9 | 1406.1 |  |  |  |
| 10522 | 9 | 1351.6 | 10556 | 9 | 1379.2 |       |   |        |  |  |  |
| 10523 | 9 | 1352.4 | 10557 | 9 | 1380.0 | 10590 | 9 | 1406.9 |  |  |  |
| 10524 | 9 | 1353.2 | 10558 | 9 | 1380.8 | 10591 | 9 | 1407.7 |  |  |  |
| 10525 | 9 | 1354.1 | 10559 | 9 | 1381.7 | 10592 | 9 | 1408 5 |  |  |  |
| 10526 | 9 | 1354.9 | 1     |   |        | 10593 | 9 | 1409.3 |  |  |  |
| 10527 | 9 | 1355.7 | 10560 | 9 | 1382.5 | 10594 | 9 | 1410.1 |  |  |  |
| 10528 | 9 | 1356.5 | 10561 | 9 | 1383.3 | 10595 | 9 | 1411.0 |  |  |  |
| 10529 | 9 | 1357.3 | 10562 | 9 | 1384.1 | 10596 | 9 | 1411 8 |  |  |  |
|       |   |        | 10563 | 9 | 1384.9 | 10597 | 9 | 1412.6 |  |  |  |
| 10530 | 9 | 1358.1 | 10564 | 9 | 1385.7 | 10598 | 9 | 1413.4 |  |  |  |
| 10531 | 9 | 1358.9 | 10565 | 9 | 1386.5 | 10599 | 9 | 1414.2 |  |  |  |
| 10532 | 9 | 1359.7 | 10566 | 9 | 1387 3 |       |   |        |  |  |  |
| 10533 | 9 | 1360.6 | 10567 | 9 | 1388.1 | 10600 | 9 | 1415.0 |  |  |  |
|       |   |        | l     |   |        | L     |   |        |  |  |  |

Use check point at 10350 or 10800 Kc, whichever is nearer

Frequency: 10600-10700 Kc

| Freq. | A | В               | Freq.          | A | В                | Freq.          | A | В                |
|-------|---|-----------------|----------------|---|------------------|----------------|---|------------------|
| 10600 | 9 | 1415.0          | 10634          | 9 | 1442.7           | 10668          | 9 | 1470.3           |
| 10601 | 9 | 1415.9          | 10635          | 9 | 1443.5           | 10669          | 9 | 1471 1           |
| 10602 | 9 | 1416.7          | 10636          | 9 | 1444.3           | l              |   |                  |
| 10603 | 9 | 1417.5          | 10637          | 9 | 1445.1           | 10670          | 9 | 1472.0           |
| 10604 | 9 | 1418.3          | 10638          | 9 | 1446.0           | 10671          | 9 | 1472.8           |
| 10605 | 9 | 1419.1          | 10639          | 9 | 1446.8           | 10672          | 9 | 1473.6           |
| 10606 | 9 | 1419.9          | l              |   |                  | 10673          | 9 | 1474.4           |
| 10607 | 9 | 1420.8          | 10640          | 9 | 1447.6           | 10674          | 9 | 1475.3           |
| 10608 | 9 | 1421.6          | 10641          | 9 | 1448.4           | 10675          | 9 | 1476.1           |
| 10609 | 9 | 1422.4          | 10642          | 9 | 1449.2           | 10676          | 9 | 1476.9           |
|       |   |                 | 10643          | 9 | 1450.0           | 10677          | 9 | 1477.7           |
| 10610 | 9 | 1423.2          | 10644          | 9 | 1450.8           | 10678          | 9 | 1478.5           |
| 10611 | 9 | 1424.0          | 10645          | 9 | 1451.6           | 10679          | 9 | 1479.4           |
| 10612 | 9 | 1424.8          | 10646          | 9 | 1452.4           |                |   |                  |
| 10613 | 9 | 1425.6          | 10647          | 9 | 1453.3           | 10680          | 9 | 1480.2           |
| 10614 | 9 | 1426 5          | 10648          | 9 | 1454.1           | 10681          | 9 | 1481.0           |
| 10615 | 9 | 1427.3          | 10649          | 9 | 1454.9           | 10682          | 9 | 1481.8           |
| 10616 | 9 | 1428 1          | l              |   |                  | 10683          | 9 | 1482.7           |
| 10617 | 9 | 1428.9          | 10650          | 9 | 1455.7           | 10684          | 9 | 1483.5           |
| 10618 | 9 | 1429.7          | 10651          | 9 | 1456.5           | 10685          | 9 | 1484.3           |
| 10619 | 9 | 1430.5          | 10652          | 9 | 1457.3           | 10686          | 9 | 1485.1           |
|       |   |                 | 10653          | 9 | 1458.1           | 10687          | 9 | 1485.9           |
| 10620 | 9 | 1431 . 4        | 10654          | 9 | 1458.9           | 10688          | 9 | 1486.8           |
| 10621 | 9 | 1432.2          | 10655          | 9 | 1459.7           | 10689          | 9 | 1487.6           |
| 10622 | 9 | 1433.0          | 10656          | 9 | 1460.6           | l              | _ |                  |
| 10623 | 9 | 1433.8          | 10657          | 9 | 1461.4           | 10690          | 9 | 1488.4           |
| 10624 | 9 | 1434.6          | 10658          | 9 | 1462.2           | 10691          | 9 | 1489.2           |
| 10625 | 9 | 1435.4          | 10659          | 9 | 1463.0           | 10692          | 9 | 1490.0           |
| 10626 | 9 | 1436.2          | 1              | _ |                  | 10693          | 9 | 1490.9           |
| 10627 | 9 | 1437.0          | 10660          | 9 | 1463.8           | 10694          | 9 | 1491.7           |
| 10628 | 9 | 1437.8          | 10661          | 9 | 1464.6           | 10695          | 9 | 1492.5           |
| 10629 | 9 | 1438.7          | 10662          | 9 | 1465.4           | 10696          | 9 | 1493.3<br>1494.2 |
|       | _ | 4400 =          | 10663          | 9 | 1466.2           | 10697<br>10698 | 9 | 1494.2           |
| 10630 |   | 1439.5          | 10664          | - | 1467.0           | 10698          | 9 | 1495.0           |
| 10631 | 9 | 1440.3          | 10665          |   | 1467.9           | 10099          | 9 | 1490.8           |
| 10632 |   | 1441.1          | 10666<br>10667 |   | 1468.7<br>1469.5 | 10700          | 9 | 1496.6           |
| 10633 | 9 | <b>144</b> 1 .9 | 10007          | 9 | 1409.5           | 10/00          | 3 | (730.0           |
|       |   |                 | <u> </u>       |   |                  | <u> </u>       |   |                  |
|       |   |                 |                |   |                  |                |   |                  |

Use check point at 10800 Kc

# Frequency: 10700-10800 Kc

| Freq. | A | В      | Freq.    | A | В        | Freq.                                  | A | В        |
|-------|---|--------|----------|---|----------|----------------------------------------|---|----------|
| 10700 | 9 | 1496.6 | 10734    | 9 | 1524.5   | 10768                                  | 9 | 1552.4   |
| 10701 | 9 | 1497.4 | 10735    | 9 | 1525.3   | 10769                                  | 9 | 1553.3   |
| 10702 | 9 | 1498.3 | 10736    | 9 | 1526.1   |                                        |   |          |
| 10703 | 9 | 1499.1 | 10737    | 9 | 1527.0   | 10770                                  | 9 | 1554.1   |
| 10704 | 9 | 1499.9 | 10738    | 9 | 1527.8   | 10771                                  | 9 | 1554.9   |
| 10705 | 9 | 1500.7 | 10739    | 9 | 1528.6   | 10772                                  | 9 | 1555.8   |
| 10706 | 9 | 1501.6 | l        |   |          | 10773                                  | 9 | 1556.6   |
| 10707 | 9 | 1502.4 | 10740    | 9 | 1529.4   | 10774                                  | 9 | 1557 4   |
| 10708 | 9 | 1503.2 | 10741    | 9 | 1530.2   | 10775                                  | 9 | 1558.2   |
| 10709 | 9 | 1504.0 | 10742    | 9 | 1531 . 1 | 10776                                  | 9 | 1559 . 1 |
|       |   |        | 10743    | 9 | 1531.9   | 10777                                  | 9 | 1559.9   |
| 10710 | 9 | 1504.8 | 10744    | 9 | 1532.7   | 10778                                  | 9 | 1560.7   |
| 10711 | 9 | 1505.7 | 10745    | 9 | 1533.5   | 10779                                  | 9 | 1561.5   |
| 10712 | 9 | 1506.5 | 10746    | 9 | 1534.3   | l                                      |   |          |
| 10713 | 9 | 1507.3 | 10747    | 9 | 1535 2   | 10780                                  | 9 | 1562.4   |
| 10714 | 9 | 1508.1 | 10748    | 9 | 1536.0   | 10781                                  | 9 | 1563.2   |
| 10715 | 9 | 1508.9 | 10749    | 9 | 1536.8   | 10782                                  | 9 | 1564.0   |
| 10716 | 9 | 1509.8 | j        |   |          | 10783                                  | g | 1564.8   |
| 10717 | 9 | 1510.6 | 10750    | 9 | 1537.6   | 10784                                  | 9 | 1565.7   |
| 10718 | 9 | 1511.4 | 10751    | 9 | 1538.4   | 10785                                  | 9 | 1566.5   |
| 10719 | 9 | 1512.2 | 10752    | 9 | 1539.3   | 10786                                  | 9 | 1567.3   |
|       |   |        | 10753    | 9 | 1540.1   | 10787                                  | 9 | 1568.1   |
| 10720 | 9 | 1513.0 | 10754    | 9 | 1540.9   | 10788                                  | 9 | 1569.0   |
| 10721 | 9 | 1513.9 | 10755    | 9 | 1541.7   | 10789                                  | 9 | 1569.8   |
| 10722 | 9 | 1514.7 | 10756    | 9 | 1542.5   | ı                                      |   |          |
| 10723 | 9 | 1515.5 | 10757    | 9 | 1543.4   | 10790                                  | 9 | 1570.6   |
| 10724 | 9 | 1516.3 | 10758    | 9 | 1544.2   | 10791                                  | 9 | 1571 .4  |
| 10725 | 9 | 1517.1 | 10759    | 9 | 1545.0   | 10792                                  | 9 | 1572.3   |
| 10726 | 9 | 1518.0 | 1        |   |          | 10793                                  | 9 | 1573.1   |
| 10727 | 9 | 1518.8 | 10760    | 9 | 1545.8   | 10794                                  | 9 | 1573.9   |
| 10728 | 9 | 1519.6 | 10761    | 9 | 1546.7   | 10795                                  | 9 | 1574.7   |
| 10729 | 9 | 1520.4 | 10762    | 9 | 1547.5   | 10796                                  | 9 | 1575.6   |
|       |   |        | 10763    | _ | 1548.3   | 10797                                  | 9 | 1576.4   |
| 10730 | 9 | 1521.2 | 10764    | - | 1549.1   | 10798                                  | 9 | 1577.2   |
| 10731 | 9 | 1522 1 | 10765    | - | 1550.0   | 10799                                  | 9 | 1578.0   |
| 10732 | 9 | 1522.9 | 10766    |   | 1550.8   | 10800                                  | 9 | 1578.9   |
| 10733 | 9 | 1523 7 | 10767    | 9 | 1551.6   | T0200                                  | 3 | T319.3   |
|       |   |        | <u> </u> |   |          | ــــــــــــــــــــــــــــــــــــــ |   |          |

Use check point at 10800 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: | 10800- | 10900 Kc |
|------------|--------|----------|
|            |        |          |

| Freq.          | A  | В            | Freq.          | A        | В              | Freq.          | Α        | В              |
|----------------|----|--------------|----------------|----------|----------------|----------------|----------|----------------|
| 10800          | 10 | 60.0         | 10834          | 10       | 83.2           | 10868          | 10       | 106.3          |
| 10801          | 10 | 60.7         | 10835          | 10       | 83.8           | 10869          | 10       | 107.0          |
| 10802          | 10 | 61.4         | 10836          | 10       | 84.5           |                |          |                |
| 10803          | 10 | 62.0         | 10837          | 10       | 85.2           | 10870          | 10       | 107.7          |
| 10804          | 10 | 62.7         | 10838          | 10       | 85.9           | 10871          | 10       | 108.4          |
| 10805          | 10 | 63.4         | 10839          | 10       | 86.6           | 10872          | 10       | 109.1          |
| 10806          | 10 | 64.1         |                |          |                | 10873          | 10       | 109.7          |
| 10807          | 10 | 64.8         | 10840          | 10       | 87.3           | 10874          | 10       | 110.4          |
| 10808          | 10 | 65.5         | 10841          | 10       | 87.9           | 10875          | 10       | 111.1          |
| 10809          | 10 | 66.1         | 10842          | 10       | 88.6           | 10876          | 10       | 111.8          |
|                |    |              | 10843          | 10       | 89.3           | 10877          | 10       | 112.5          |
| 10810          | 10 | 66.8         | 10844          | 10       | 90.0           | 10878          | 10       | 113.1          |
| 10811          | 10 | 67.5         | 10845          | 10       | 90.7           | 10879          | 10       | 113.8          |
| 10812          | 10 | 68.2         | 10846          | 10       | 91.3           | İ              |          |                |
| 10813          | 10 | 68.9         | 10847          | 10       | 92.0           | 10880          | 10       | 114 5          |
| 10814          | 10 | 69.5         | 10848          | 10       | 92.7           | 10881          | 10       | 115.2          |
| 10815          | 10 | 70.2         | 10849          | 10       | 93.4           | 10882          | 10       | 115.9          |
| 10816          | 10 | 70.9         |                |          |                | 10883          | 10       | 116.6          |
| 10817          | 10 | 71.6         | 10850          | 10       | 94.1           | 10884          | 10       | 117.2          |
| 10818          | 10 | 72.3         | 10851          | 10       | 94.7           | 10885          | 10       | 117.9          |
| 10819          | 10 | 72.9         | 10852          | 10       | 95.4           | 10886          | 10       | 118.6          |
|                |    |              | 10853          | 10       | 96.1           | 10887          | 10       | 119.3          |
| 10820          | 10 | 73.6         | 10854          | 10       | 96.8           | 10888          | 10       | 120.0          |
| 10821          | 10 | 74.3         | 10855          | 10       | 97.5           | 10889          | 10       | 120.6          |
| 10822          | 10 | 75.0         | 10856          | 10       | 98.2           |                |          |                |
| 10823          | 10 | 75.7         | 10857          | 10       | 98.8           | 10890          | 10       | 121.3          |
| 10824          | 10 | 76.4         | 10858          | 10       | 99.5           | 10891          | 10       | 122.0          |
| 10825          |    | 77.0         | 10859          | 10       | 100.2          | 10892          | 10       | 122.7<br>123.4 |
| 10826          |    | 77.7         | 10000          | 40       | 100.0          | 10893          | 10<br>10 | 124.0          |
| 10827          |    | 78.4         | 10860<br>10861 | 10<br>10 | 100.9<br>101.6 | 10894<br>10895 | 10       | 124.0          |
| 10828<br>10829 |    | 79.1<br>79.8 | 10862          | 10       | 102.2          | 10896          | 10       | 125.4          |
| 10029          | 10 | 19.0         | 10863          | 10       | 102.2          | 10897          | 10       | 126.1          |
| 10830          | 10 | 80.4         | 10864          | 10       | 103.6          | 10898          | 10       | 126.7          |
| 10831          | 10 | 81.1         | 10865          | 10       | 104.3          | 10899          | 10       | 127.4          |
| 10832          |    | 81.8         | 10866          | 10       | 105.0          | 1,0099         | 10       | 127.4          |
| 10833          |    | 82.5         | 10867          | 10       | 105.6          | 10900          | 10       | 128.1          |
| 10033          | 10 | 02.3         | 1000/          | 10       | 100.0          | 10300          | 10       | 120.1          |
|                |    |              | 1              |          |                | <u> </u>       |          |                |

Use check point at 10800 Kc

### Frequency: 10900-11000 Kc

| Freq. | A  | В     | Freq. | A  | В     | Freq. | A  | В     |  |  |  |
|-------|----|-------|-------|----|-------|-------|----|-------|--|--|--|
| 10900 | 10 | 128.1 | 10934 | 10 | 151.1 | 10968 | 10 | 174 1 |  |  |  |
| 10901 | 10 | 128.8 | 10935 | 10 | 151.8 | 10969 | 10 | 174.8 |  |  |  |
| 10902 | 10 | 129.4 | 10936 | 10 | 152.5 | İ     |    |       |  |  |  |
| 10903 | 10 | 130.1 | 10937 | 10 | 153.2 | 10970 | 10 | 175.4 |  |  |  |
| 10904 | 10 | 130.8 | 10938 | 10 | 153.8 | 10971 | 10 | 176.1 |  |  |  |
| 10905 | 10 | 131.5 | 10939 | 10 | 154.5 | 10972 | 10 | 176.8 |  |  |  |
| 10906 | 10 | 132.2 | ĺ     |    |       | 10973 | 10 | 177.5 |  |  |  |
| 10907 | 10 | 132.8 | 10940 | 10 | 155.2 | 10974 | 10 | 178.1 |  |  |  |
| 10908 | 10 | 133.5 | 10941 | 10 | 155.9 | 10975 | 10 | 178.8 |  |  |  |
| 10909 | 10 | 134.2 | 10942 | 10 | 156.5 | 10976 | 10 | 179.5 |  |  |  |
|       |    |       | 10943 | 10 | 157.2 | 10977 | 10 | 180.2 |  |  |  |
| 10910 | 10 | 134.9 | 10944 | 10 | 157.9 | 10978 | 10 | 180.8 |  |  |  |
| 10911 | 10 | 135.5 | 10945 | 10 | 158.6 | 10979 | 10 | 181.5 |  |  |  |
| 10912 | 10 | 136.2 | 10946 | 10 | 159.2 | l     |    |       |  |  |  |
| 10913 | 10 | 136.9 | 10947 | 10 | 159.9 | 10980 | 10 | 182.2 |  |  |  |
| 10914 | 10 | 137.6 | 10948 | 10 | 160.6 | 10981 | 10 | 182.9 |  |  |  |
| 10915 | 10 | 138.2 | 10949 | 10 | 161.3 | 10982 | 10 | 183.5 |  |  |  |
| 10916 | 10 | 138.9 |       |    |       | 10983 | 10 | 184.2 |  |  |  |
| 10917 | 10 | 139.6 | 10950 | 10 | 161.9 | 10984 | 10 | 184.9 |  |  |  |
| 10918 | 10 | 140.3 | 10951 | 10 | 162.6 | 10985 | 10 | 185.6 |  |  |  |
| 10919 | 10 | 141.0 | 10952 | 10 | 163.3 | 10986 | 10 | 186.2 |  |  |  |
|       |    |       | 10953 | 10 | 164.0 | 10987 | 10 | 186.9 |  |  |  |
| 10920 | 10 | 141.6 | 10954 | 10 | 164.6 | 10988 | 10 | 187.6 |  |  |  |
| 10921 | 10 | 142.3 | 10955 | 10 | 165.3 | 10989 | 10 | 188.3 |  |  |  |
| 10922 | 10 | 143.0 | 10956 | 10 | 166.0 | 1     |    |       |  |  |  |
| 10923 | 10 | 143.7 | 10957 | 10 | 166.7 | 10990 | 10 | 188.9 |  |  |  |
| 10924 | 10 | 144.3 | 10958 | 10 | 167.3 | 10991 | 10 | 189 6 |  |  |  |
| 10925 | 10 | 145.0 | 10959 | 10 | 168.0 | 10992 | 10 | 190.3 |  |  |  |
| 10926 | 10 | 145.7 | i     |    |       | 10993 | 10 | 191.0 |  |  |  |
| 10927 | 10 | 146.4 | 10960 | 10 | 168.7 | 10994 | 10 | 191 6 |  |  |  |
| 10928 | 10 | 147.0 | 10961 | 10 | 169.4 | 10995 | 10 | 192.3 |  |  |  |
| 10929 | 10 | 147.7 | 10962 | 10 | 170.0 | 10996 | 10 | 193.0 |  |  |  |
|       |    |       | 10963 | 10 | 170.7 | 10997 | 10 | 193.7 |  |  |  |
| 10930 | 10 | 148.4 | 10964 | 10 | 171 4 | 10998 | 10 | 194.3 |  |  |  |
| 10931 | 10 | 149.1 | 10965 | 10 | 172.1 | 10999 | 10 | 195.0 |  |  |  |
| 10932 | 10 | 149 8 | 10966 | 10 | 172.7 |       |    |       |  |  |  |
| 10933 | 10 | 150.4 | 10967 | 10 | 173.4 | 11000 | 10 | 195.7 |  |  |  |
|       |    |       | l     |    |       |       |    |       |  |  |  |

Use check point at 10800 Kc

Frequency: 11000-11100 Kc

|       |    |       | •        |    |        |       |    |        |
|-------|----|-------|----------|----|--------|-------|----|--------|
| Freq. | A  | В     | Freq.    | A  | В      | Freq. | A  | В      |
| 11000 | 10 | 195.7 | 11034    | 10 | 218.7  | 11068 | 10 | 241.6  |
| 11001 | 10 | 196.4 | 11035    | 10 | 219.3  | 11069 | 10 | 242.3  |
| 11002 | 10 | 197.1 | 11036    | 10 | 220.0  |       |    |        |
| 11003 | 10 | 197.7 | 11037    | 10 | 220.7  | 11070 | 10 | 243.0  |
| 11004 | 10 | 198.4 | 11038    | 10 | 221.4  | 11071 | 10 | 243.6  |
| 11005 | 10 | 199.1 | 11039    | 10 | 222.0  | 11072 | 10 | 244.3  |
| 11006 | 10 | 199.8 | Į.       |    |        | 11073 | 10 | 245.0  |
| 11007 | 10 | 200.4 | 11040    | 10 | 222.7  | 11074 | 10 | 245.7  |
| 11008 | 10 | 201.1 | 11041    | 10 | 223.4  | 11075 | 10 | 246.4  |
| 11009 | 10 | 201.8 | 11042    | 10 | 224.1  | 11076 | 10 | 247.0  |
|       |    | i     | 11043    | 10 | 224.7  | 11077 | 10 | 247.7  |
| 11010 | 10 | 202 5 | 11044    | 10 | 225.4  | 11078 | 10 | 248.4  |
| 11011 | 10 | 203.1 | 11045    | 10 | 226.1  | 11079 | 10 | 249.1  |
| 11012 | 10 | 203.8 | 11046    | 10 | 226.8  | l     |    |        |
| 11013 | 10 | 204 5 | 11047    | 10 | 227.4  | 11080 | 10 | 249.7  |
| 11014 | 10 | 205.2 | 11048    | 10 | 228.1  | 11081 | 10 | 250.4  |
| 11015 | 10 | 205.8 | 11049    | 10 | 228.8  | 11082 | 10 | 251 .1 |
| 11016 | 10 | 206.5 |          |    |        | 11083 | 10 | 251.8  |
| 11017 | 10 | 207.2 | 11050    | 10 | 229.5  | 11084 | 10 | 252 5  |
| 11018 | 10 | 207.9 | 11051    | 10 | 230 .1 | 11085 | 10 | 253 1  |
| 11019 | 10 | 208.5 | 11052    | 10 | 230.8  | 11086 | 10 | 253.8  |
|       |    |       | 11053    | 10 | 231 5  | 11087 | 10 | 254.5  |
| 11020 | 10 | 209.2 | 11054    | 10 | 232.2  | 11088 | 10 | 255.2  |
| 11021 | 10 | 209.9 | 11055    | 10 | 232.8  | 11089 | 10 | 255.9  |
| 11022 | 10 | 210.6 | 11056    | 10 | 233.5  |       |    |        |
| 11023 | 10 | 211.2 | 11057    | 10 | 234.2  | 11090 | 10 | 256.5  |
| 11024 | 10 | 211.9 | 11058    | 10 | 234.9  | 11091 | 10 | 257.2  |
| 11025 | 10 | 212.6 | 11059    | 10 | 235.5  | 11092 | 10 | 257.9  |
| 11026 | 10 | 213.3 | l        |    |        | 11093 | 10 | 258.6  |
| 11027 | 10 | 213.9 | 11060    | 10 | 236.2  | 11094 | 10 | 259.2  |
| 11028 | 10 | 214.6 | 11061    | 10 | 236.9  | 11095 | 10 | 259.9  |
| 11029 | 10 | 215.3 | 11062    | 10 | 237.6  | 11096 | 10 | 260.6  |
|       |    |       | 11063    | 10 | 238.2  | 11097 | 10 | 261.3  |
| 11030 | 10 | 216.0 | 11064    | 10 | 238.9  | 11098 | 10 | 262.0  |
| 11031 | 10 | 216.6 | 11065    | 10 | 239.6  | 11099 | 10 | 262.6  |
| 11032 | 10 | 217.3 | 11066    | 10 | 240.3  |       | 40 | 000 0  |
| 11033 | 10 | 218.0 | 11067    | 10 | 240.9  | 11100 | 10 | 263.3  |
|       |    |       | <u> </u> |    |        | L     |    |        |
|       |    |       |          |    |        |       |    |        |

Use check point at 10800 or 11250 Kc, whichever is nearer

## Frequency: 11100-11200 Kc

|                |          |                | ,.       |    |       |                |          |                |
|----------------|----------|----------------|----------|----|-------|----------------|----------|----------------|
| Freq.          | A        | В              | Freq.    | A  | В     | Freq.          | A        | В              |
| 11100          | 10       | 263.3          | 11134    | 10 | 286.3 | 11168          | 10       | 309.3          |
| 11101          | 10       | 264.0          | 11135    | 10 | 287.0 | 11169          | 10       | 310.0          |
| 11102          | 10       | 264.7          | 11136    | 10 | 287.7 | l              |          |                |
| 11103          | 10       | .265.4         | 11137    | 10 | 288.4 | 11170          | 10       | 310.7          |
| 11104          | 10       | 266.0          | 11138    | 10 | 289.0 | 11171          | 10       | 311.4          |
| 11105          | 10       | 266.7          | 11139    | 10 | 289.7 | 11172          | 10       | 312.1          |
| 11106          | 10       | 267 4          |          |    |       | 11173          | 10       | 312.7          |
| 11107          | 10       | 268.1          | 11140    | 10 | 290.4 | 11174          | 10       | 313.4          |
| 11108          | 10       | 268.7          | 11141    | 10 | 291.1 | 11175          | 10       | 314.1          |
| 11109          | 10       | 269 4          | 11142    | 10 | 291.7 | 11176          | 10       | 314.8          |
|                |          |                | 11143    | 10 | 292.4 | 11177          | 10       | 315.4          |
| 11110          | 10       | 270.1          | 11144    | 10 | 293.1 | 11178          | 10       | 316.1          |
| 11111          | 10       | 270.8          | 11145    | 10 | 293.8 | 11179          | 10       | 316.8          |
| 11112          | 10       | 271 .5         | 11146    | 10 | 294.4 | ŀ              |          |                |
| 11113          | 10       | 272.1          | 11147    | 10 | 295.1 | 11180          | 10       | 317.5          |
| 11114          | 10       | 272.8          | 11148    | 10 | 295.8 | 11181          | 10       | 318.2          |
| 11115          | 10       | 273.5          | 11149    | 10 | 296.5 | 11182          | 10       | 318.8          |
| 11116          | 10       | 274.2          |          |    |       | 11183          | 10       | 319.5          |
| 11117          | 10       | 274.9          | 11150    | 10 | 297.1 | 11184          | 10       | 320.2          |
| 11118          | 10       | 275.5          | 11151    | 10 | 297.8 | 11185          | 10       | 320.9          |
| 11119          | 10       | 276.2          | 11152    | 10 | 298.5 | 11186          | 10       | 321.6          |
|                |          |                | 11153    | 10 | 299.2 | 11187          | 10       | 322.2          |
| 11120          | 10       | 276.9          | 11154    | 10 | 299.8 | 11188          | 10       | 322.9          |
| 11121          | 10       | 277.6          | 11155    | 10 | 300.5 | 11189          | 10       | 323.6          |
| 11122          | 10       | 278.2          | 11156    | 10 | 301.2 |                |          |                |
| 11123          | 10       | 278.9          | 11157    | 10 | 301.9 | 11190          | 10       | 324.3          |
| 11124          | 10       | 279.6          | 11158    | 10 | 302.5 | 11191          | 10       | 325.0          |
| 11125          | 10       | 280.3          | 11159    | 10 | 303.2 | 11192          | 10       | 325.6          |
| 11126<br>11127 | 10<br>10 | 280 9<br>281 6 | 11160    | 10 | 303.9 | 11193<br>11194 | 10<br>10 | 326.3<br>327.0 |
| 11128          | 10       | 282.3          | 11161    | 10 | 304.6 | 11195          | 10       | 327.7          |
| 11129          | 10       | 283.0          | 11162    | 10 | 305.3 | 11196          | 10       | 328.4          |
| 11129          | 10       | 283.0          | 11163    | 10 | 305.9 | 11197          | 10       | 329.0          |
| 11130          | 10       | 283.6          | 11164    | 10 | 306.6 | 11197          | 10       | 329.7          |
| 11130          | 10       | 284.3          | 11165    | 10 | 307.3 | 11198          | 10       | 330.4          |
| 11132          | 10       | 285.0          | 11166    | 10 | 307.3 | 111199         | 10       | 330.4          |
| 11132          | 10       | 285.7          | 11167    | 10 | 308.0 | 11200          | 10       | 331.1          |
| 11133          | 10       | 200.7          | 1110/    | 10 | 300.7 | 11200          | IU       | 331.1          |
|                |          |                | <u> </u> |    |       | <u> </u>       |          |                |
|                |          |                |          | _  |       |                |          |                |

Use check point at 11250 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

|       |    |       | ,     |    |       |       |    |       |
|-------|----|-------|-------|----|-------|-------|----|-------|
| Freq. | A  | В     | Freq. | A  | В     | Freq. | A  | В     |
| 11200 | 10 | 331.1 | 11234 | 10 | 354.2 | 11268 | 10 | 377.3 |
| 11201 | 10 | 331.8 | 11235 | 10 | 354.9 | 11269 | 10 | 378.0 |
| 11202 | 10 | 332.4 | 11236 | 10 | 355.6 |       |    |       |
| 11203 | 10 | 333.1 | 11237 | 10 | 356.3 | 11270 | 10 | 378.7 |
| 11204 | 10 | 333.8 | 11238 | 10 | 357.0 | 11271 | 10 | 379.4 |
| 11205 | 10 | 334.5 | 11239 | 10 | 357.7 | 11272 | 10 | 380.1 |
| 11206 | 10 | 335.2 | l     |    |       | 11273 | 10 | 380.7 |
| 11207 | 10 | 335.8 | 11240 | 10 | 358.3 | 11274 | 10 | 381.4 |
| 11208 | 10 | 336.5 | 11241 | 10 | 359.0 | 11275 | 10 | 382.1 |
| 11209 | 10 | 337.2 | 11242 | 10 | 359.7 | 11276 | 10 | 382.8 |
|       |    |       | 11243 | 10 | 360.4 | 11277 | 10 | 383.4 |
| 11210 | 10 | 337.9 | 11244 | 10 | 361.1 | 11278 | 10 | 384 1 |
| 11211 | 10 | 338.6 | 11245 | 10 | 361.7 | 11279 | 10 | 384.8 |
| 11212 | 10 | 339.2 | 11246 | 10 | 362.4 |       |    |       |
| 11213 | 10 | 339.9 | 11247 | 10 | 363.1 | 11280 | 10 | 385.5 |
| 11214 | 10 | 340.6 | 11248 | 10 | 363.8 | 11281 | 10 | 386.1 |
| 11215 | 10 | 341.3 | 11249 | 10 | 364.5 | 11282 | 10 | 386.8 |
| 11216 | 10 | 342.0 | l     |    |       | 11283 | 10 | 387.5 |
| 11217 | 10 | 342.7 | 11250 | 10 | 365.2 | 11284 | 10 | 388.2 |
| 11218 | 10 | 343.3 | 11251 | 10 | 365 8 | 11285 | 10 | 388.8 |
| 11219 | 10 | 344.0 | 11252 | 10 | 366 5 | 11286 | 10 | 389.5 |
|       |    |       | 11253 | 10 | 367.2 | 11287 | 10 | 390.2 |
| 11220 | 10 | 344.7 | 11254 | 10 | 367.9 | 11288 | 10 | 390.9 |
| 11221 | 10 | 345.4 | 11255 | 10 | 368.5 | 11289 | 10 | 391.6 |
| 11222 | 10 | 346.1 | 11256 | 10 | 369.2 |       |    |       |
| 11223 | 10 | 346.7 | 11257 | 10 | 369.9 | 11290 | 10 | 392.2 |
| 11224 | 10 | 347.4 | 11258 | 10 | 370.6 | 11291 | 10 | 392.9 |
| 11225 | 10 | 348.1 | 11259 | 10 | 371.3 | 11292 | 10 | 393.6 |
| 11226 | 10 | 348.8 | l     |    |       | 11293 | 10 | 394.3 |
| 11227 | 10 | 349.5 | 11260 | 10 | 371.9 | 11294 | 10 | 394.9 |
| 11228 | 10 | 350.2 | 11261 | 10 | 372.6 | 11295 | 10 | 395.6 |
| 11229 | 10 | 350.8 | 11262 | 10 | 373.3 | 11296 | 10 | 396.3 |
|       |    |       | 11263 | 10 | 374.0 | 11297 | 10 | 397.0 |
| 11230 | 10 | 351.5 | 11264 | 10 | 374.6 | 11298 | 10 | 397.7 |
| 11231 | 10 | 352.2 | 11265 | 10 | 375.3 | 11299 | 10 | 398.4 |
| 11232 | 10 | 352.9 | 11266 | 10 | 376.0 |       |    |       |
| 11233 | 10 | 353.6 | 11267 | 10 | 376.7 | 11300 | 10 | 399.0 |
|       |    |       | L     |    |       | L     |    |       |
|       |    |       |       |    |       |       |    |       |

Use check point at 11250 Kc

### Frequency: 11300-11400 Kc

| Freq. | A  | В     | Freq. | A  | В     | Freq. | A  | В     |
|-------|----|-------|-------|----|-------|-------|----|-------|
| 11300 | 10 | 399.0 | 11334 | 10 | 422.3 | 11368 | 10 | 445.6 |
| 11301 | 10 | 399.7 | 11335 | 10 | 423.0 | 11369 | 10 | 446.3 |
| 11302 | 10 | 400.4 | 11336 | 10 | 423.6 |       |    |       |
| 11303 | 10 | 401.1 | 11337 | 10 | 424.3 | 11370 | 10 | 446.9 |
| 11304 | 10 | 401.8 | 11338 | 10 | 425.0 | 11371 | 10 | 447.6 |
| 11305 | 10 | 402.5 | 11339 | 10 | 425.7 | 11372 | 10 | 448.3 |
| 11306 | 10 | 403.1 | l     |    |       | 11373 | 10 | 449.0 |
| 11307 | 10 | 403.8 | 11340 | 10 | 426.4 | 11374 | 10 | 449.7 |
| 11308 | 10 | 404.5 | 11341 | 10 | 427.1 | 11375 | 10 | 450.4 |
| 11309 | 10 | 405.2 | 11342 | 10 | 427.7 | 11376 | 10 | 451.1 |
|       |    |       | 11343 | 10 | 428.4 | 11377 | 10 | 451.7 |
| 11310 | 10 | 405.9 | 11344 | 10 | 429.1 | 11378 | 10 | 452.4 |
| 11311 | 10 | 406.6 | 11345 | 10 | 429.8 | 11379 | 10 | 453.1 |
| 11312 | 10 | 407.2 | 11346 | 10 | 430.5 | 1     |    |       |
| 11313 | 10 | 407.9 | 11347 | 10 | 431.2 | 11380 | 10 | 453.8 |
| 11314 | 10 | 408.6 | 11348 | 10 | 431.9 | 11381 | 10 | 454.5 |
| 11315 | 10 | 409.3 | 11349 | 10 | 432.5 | 11382 | 10 | 455.2 |
| 11316 | 10 | 410.0 |       |    |       | 11383 | 10 | 455.9 |
| 11317 | 10 | 410.7 | 11350 | 10 | 433.2 | 11384 | 10 | 456.5 |
| 11318 | 10 | 411.3 | 11351 | 10 | 433.9 | 11385 | 10 | 457.2 |
| 11319 | 10 | 412.0 | 11352 | 10 | 434.6 | 11386 | 10 | 457.9 |
|       |    |       | 11353 | 10 | 435.3 | 11387 | 10 | 458.6 |
| 11320 | 10 | 412.7 | 11354 | 10 | 436.0 | 11388 | 10 | 459.3 |
| 11321 | 10 | 413.4 | 11355 | 10 | 436.7 | 11389 | 10 | 460.0 |
| 11322 | 10 | 414.1 | 11356 | 10 | 437.3 |       |    |       |
| 11323 | 10 | 414.8 | 11357 | 10 | 438.0 | 11390 | 10 | 460.6 |
| 11324 | 10 | 415.4 | 11358 | 10 | 438.7 | 11391 | 10 | 461.3 |
| 11325 | 10 | 416.1 | 11359 | 10 | 439.4 | 11392 | 10 | 462.0 |
| 11326 | 10 | 416.8 | l     |    |       | 11393 | 10 | 462.7 |
| 11327 | 10 | 417.5 | 11360 | 10 | 440.1 | 11394 | 10 | 463.4 |
| 11328 | 10 | 418.2 | 11361 | 10 | 440.8 | 11395 | 10 | 464.0 |
| 11329 | 10 | 418.9 | 11362 | 10 | 441.5 | 11396 | 10 | 464.7 |
|       |    |       | 11363 | 10 | 442.1 | 11397 | 10 | 465.4 |
| 11330 | 10 | 419.5 | 11364 | 10 | 442.8 | 11398 | 10 | 466 1 |
| 11331 | 10 | 420.2 | 11365 | 10 | 443.5 | 11399 | 10 | 466.7 |
| 11332 | 10 | 420.9 | 11366 | 10 | 444.2 |       |    |       |
| 11333 | 10 | 421.6 | 11367 | 10 | 444.9 | 11400 | 10 | 467.4 |
|       |    | Ì     |       |    |       |       |    |       |
|       |    |       |       |    |       |       | _  |       |

Use check point at 11250 Kc

Frequency: 11400-11500 Kc

| Freq. | A  | В       | Freq. | A  | В     | Freq. | A  | В     |
|-------|----|---------|-------|----|-------|-------|----|-------|
| 11400 | 10 | 467.4   | 11434 | 10 | 490.6 | 11468 | 10 | 514.1 |
| 11401 | 10 | 468 . 1 | 11435 | 10 | 491.3 | 11469 | 10 | 514.8 |
| 11402 | 10 | 468.8   | 11436 | 10 | 492.0 |       |    |       |
| 11403 | 10 | 469.5   | 11437 | 10 | 492.7 | 11470 | 10 | 515.5 |
| 11404 | 10 | 470.1   | 11438 | 10 | 493.3 | 11471 | 10 | 516.2 |
| 11405 | 10 | 470.8   | 11439 | 10 | 494.0 | 11472 | 10 | 516.8 |
| 11406 | 10 | 471.5   |       |    |       | 11473 | 10 | 517.5 |
| 11407 | 10 | 472.2   | 11440 | 10 | 494.7 | 11474 | 10 | 518.2 |
| 11408 | 10 | 472.9   | 11441 | 10 | 495.4 | 11475 | 10 | 518.9 |
| 11409 | 10 | 473.5   | 11442 | 10 | 496.1 | 11476 | 10 | 519.6 |
|       |    |         | 11443 | 10 | 496.8 | 11477 | 10 | 520.3 |
| 11410 | 10 | 474.2   | 11444 | 10 | 497.5 | 11478 | 10 | 521.0 |
| 11411 | 10 | 474.9   | 11445 | 10 | 498.2 | 11479 | 10 | 521.7 |
| 11412 | 10 | 475.6   | 11446 | 10 | 498.9 | !     |    |       |
| 11413 | 10 | 476.3   | 11447 | 10 | 499.6 | 11480 | 10 | 522.3 |
| 11414 | 10 | 476.9   | 11448 | 10 | 500.3 | 11481 | 10 | 523.0 |
| 11415 | 10 | 477.6   | 11449 | 10 | 501.0 | 11482 | 10 | 523.7 |
| 11416 | 10 | 478.3   |       |    |       | 11483 | 10 | 524.4 |
| 11417 | 10 | 479.0   | 11450 | 10 | 501.6 | 11484 | 10 | 525.1 |
| 11418 | 10 | 479.7   | 11451 | 10 | 502.3 | 11485 | 10 | 525.8 |
| 11419 | 10 | 480.3   | 11452 | 10 | 503.0 | 11486 | 10 | 526.4 |
|       |    |         | 11453 | 10 | 503.7 | 11487 | 10 | 527.1 |
| 11420 | 10 | 481.0   | 11454 | 10 | 504.4 | 11488 | 10 | 527.8 |
| 11421 | 10 | 481 .7  | 11455 | 10 | 505.1 | 11489 | 10 | 528.5 |
| 11422 | 10 | 482.4   | 11456 | 10 | 505.8 |       |    |       |
| 11423 | 10 | 483.1   | 11457 | 10 | 506.5 | 11490 | 10 | 529.2 |
| 11424 | 10 | 483.7   | 11458 | 10 | 507.2 | 11491 | 10 | 529.9 |
| 11425 | 10 | 484.4   | 11459 | 10 | 507.9 | 11492 | 10 | 530.6 |
| 11426 | 10 | 485.1   |       |    |       | 11493 | 10 | 531.2 |
| 11427 | 10 | 485.8   | 11460 | 10 | 508.6 | 11494 | 10 | 531.9 |
| 11428 | 10 | 486.5   | 11461 | 10 | 509.2 | 11495 | 10 | 532.6 |
| 11429 | 10 | 487.1   | 11462 | 10 | 509.9 | 11496 | 10 | 533.3 |
|       |    |         | 11463 | 10 | 510.6 | 11497 | 10 | 534.0 |
| 11430 | 10 | 487.8   | 11464 | 10 | 511.3 | 11498 | 10 | 534.7 |
| 11431 | 10 | 488.5   | 11465 | 10 | 512.0 | 11499 | 10 | 535.3 |
| 11432 | 10 | 489.2   | 11466 | 10 | 512.7 | l     |    |       |
| 11433 | 10 | 489.9   | 11467 | 10 | 513.4 | 11500 | 10 | 536.0 |
|       |    |         | I     |    |       | l     |    |       |
|       |    |         |       |    |       |       | _  |       |

Use check point at 11250 or 11700 Kc, whichever is nearer

### · Frequency: 11500—11600 Kc

|       |    | <b>-</b> |       |    |       |       |    |       |
|-------|----|----------|-------|----|-------|-------|----|-------|
| Freq. | A  | В        | Freq. | A  | В     | Freq. | A  | В     |
| 11500 | 10 | 536.0    | 11534 | 10 | 559.3 | 11568 | 10 | 582.6 |
| 11501 | 10 | 536.7    | 11535 | 10 | 560.0 | 11569 | 10 | 583.3 |
| 11502 | 10 | 537.4    | 11536 | 10 | 560.7 | 1     |    |       |
| 11503 | 10 | 538.1    | 11537 | 10 | 561.4 | 11570 | 10 | 584.0 |
| 11504 | 10 | 538.8    | 11538 | 10 | 562.1 | 11571 | 10 | 584 7 |
| 11505 | 10 | 539.5    | 11539 | 10 | 562.7 | 11572 | 10 | 585 4 |
| 11506 | 10 | 540.1    |       |    |       | 11573 | 10 | 586.1 |
| 11507 | 10 | 540.8    | 11540 | 10 | 563.4 | 11574 | 10 | 586.8 |
| 11508 | 10 | 541.5    | 11541 | 10 | 564.1 | 11575 | 10 | 587.5 |
| 11509 | 10 | 542.2    | 11542 | 10 | 564.8 | 11576 | 10 | 588.2 |
|       |    |          | 11543 | 10 | 565.5 | 11577 | 10 | 588.8 |
| 11510 | 10 | 542.9    | 11544 | 10 | 566.2 | 11578 | 10 | 589.5 |
| 11511 | 10 | 543.6    | 11545 | 10 | 566.9 | 11579 | 10 | 590.2 |
| 11512 | 10 | 544.2    | 11546 | 10 | 567.5 |       |    |       |
| 11513 | 10 | 544.9    | 11547 | 10 | 568.2 | 11580 | 10 | 590.9 |
| 11514 | 10 | 545.6    | 11548 | 10 | 568.9 | 11581 | 10 | 591.6 |
| 11515 | 10 | 546.3    | 11549 | 10 | 569.6 | 11582 | 10 | 592.3 |
| 11516 | 10 | 547.0    | l     |    |       | 11583 | 10 | 593.0 |
| 11517 | 10 | 547.7    | 11550 | 10 | 570.3 | 11584 | 10 | 593.7 |
| 11518 | 10 | 548.3    | 11551 | 10 | 571.0 | 11585 | 10 | 594.4 |
| 11519 | 10 | 549.0    | 11552 | 10 | 571.7 | 11586 | 10 | 595.0 |
|       |    |          | 11553 | 10 | 572.3 | 11587 | 10 | 595.7 |
| 11520 | 10 | 549.7    | 11554 | 10 | 573.0 | 11588 | 10 | 596.4 |
| 11521 | 10 | 550.4    | 11555 | 10 | 573.7 | 11589 | 10 | 597.1 |
| 11522 | 10 | 551.1    | 11556 | 10 | 574.4 |       |    |       |
| 11523 | 10 | 551.8    | 11557 | 10 | 575.1 | 11590 | 10 | 597.8 |
| 11524 | 10 | 552.5    | 11558 | 10 | 575.8 | 11591 | 10 | 598.5 |
| 11525 | 10 | 553.1    | 11559 | 10 | 576.5 | 11592 | 10 | 599.2 |
| 11526 | 10 | 553.8    |       |    |       | 11593 | 10 | 599.9 |
| 11527 | 10 | 554.5    | 11560 | 10 | 577.1 | 11594 | 10 | 600.6 |
| 11528 | 10 | 555.2    | 11561 | 10 | 577.8 | 11595 | 10 | 601.2 |
| 11529 | 10 | 555.9    | 11562 | 10 | 578.5 | 11596 | 10 | 601.9 |
|       |    |          | 11563 | 10 | 579.2 | 11597 | 10 | 602.6 |
| 11530 | 10 | 556.6    | 11564 | 10 | 579.9 | 11598 | 10 | 603.3 |
| 11531 | 10 | 557.3    | 11565 | 10 | 580.6 | 11599 | 10 | 604.0 |
| 11532 | 10 | 557.9    | 11566 | 10 | 581.3 |       |    |       |
| 11533 | 10 | 558.6    | 11567 | 10 | 582.0 | 11600 | 10 | 604.7 |
|       |    |          |       |    |       |       |    |       |
|       |    |          |       |    |       |       |    |       |

Use check point at 11700 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: 1 | 1600 - 1 | 1700 | Kc |
|--------------|----------|------|----|
|--------------|----------|------|----|

| Freq. | A  | В              | Freq.          | A        | В              | Freq.          | A        | В              |
|-------|----|----------------|----------------|----------|----------------|----------------|----------|----------------|
| 11600 | 10 | 604.7          | 11634          | 10       | 628.1          | 11668          | 10       | 651.4          |
| 11601 | 10 | 605.4          | 11635          | 10       | 628.8          | 11669          | 10       | 652.1          |
| 11602 | 10 | 606.1          | 11636          | 10       | 629.4          |                |          |                |
| 11603 | 10 | 606.8          | 11637          | 10       | 630.1          | 11670          | 10       | 652.8          |
| 11604 | 10 | 607.4          | 11638          | 10       | 630.8          | 11671          | 10       | 653.5          |
| 11605 | 10 | 608.1          | 11639          | 10       | 631.5          | 11672          | 10       | 654.2          |
| 11606 | 10 | 608.8          |                |          |                | 11673          | 10       | 654.9          |
| 11607 | 10 | 609.5          | 11640          | 10       | 632.2          | 11674          | 10       | 655.6          |
| 11608 | 10 | 610.2          | 11641          | 10       | 632.9          | 11675          | 10       | 656.2          |
| 11609 | 10 | 610.9          | 11642          | 10       | 633.6          | 11676          | 10       | 656.9          |
|       |    |                | 11643          | 10       | 634.3          | 11677          | 10       | 657.6          |
| 11610 | 10 | 611.6          | 11644          | 10       | 634.9          | 11678          | 10       | 658.3          |
| 11611 | 10 | 612.3          | 11645          | 10       | 635.6          | 11679          | 10       | 659.0          |
| 11612 | 10 | 612.9          | 11646          | 10       | 636.3          |                |          |                |
| 11613 | 10 | 613.6          | 11647          | 10       | 637.0          | 11680          | 10       | 659.7          |
| 11614 | 10 | 614.3          | 11648          | 10       | 637.7          | 11681          | 10       | 660.4          |
| 11615 | 10 | 615.0          | 11649          | 10       | 638.4          | 11682          | 10       | 661 . 1        |
| 11616 | 10 | 615.7          |                |          |                | 11683          | 10       | 661.7          |
| 11617 | 10 | 616.4          | 11650          | 10       | 639 . 1        | 11684          | 10       | 662 4          |
| 11618 | 10 | 617.1          | 11651          | 10       | 639.8          | 11685          | 10       | 663.1          |
| 11619 | 10 | 617.8          | 11652          | 10       | 640 . 4        | 11686          | 10       | 663.8          |
|       |    |                | 11653          | 10       | 641.1          | 11687          | 10       | 664 5          |
| 11620 | 10 | 618.4          | 11654          | 10       | 641.8          | 11688          | 10       | 665.2          |
| 11621 | 10 | 619.1          | 11655          | 10       | 642.5          | 11689          | 10       | 665.9          |
| 11622 | 10 | 619.8          | 11656          | 10       | 643.2          |                |          |                |
| 11623 | 10 | 620.5          | 11657          | 10       | 643.9          | 11690          | 10       | 666.6          |
| 11624 | 10 | 621.2          | 11658          | 10       | 644.6          | 11691          | 10       | 667.2          |
| 11625 | 10 | 621.9          | 11659          | 10       | 645.2          | 11692<br>11693 | 10<br>10 | 667.9<br>668.6 |
| 11626 | 10 | 622.6          |                |          |                | 11694          | 10       | 669.3          |
| 11627 | 10 | 623.3          | 11660          | 10       | 645.9          | 11694          | 10       | 670.0          |
| 11628 | 10 | 623.9          | 11661          | 10       | 646.6          | 11696          | 10       | 670.7          |
| 11629 | 10 | 624.6          | 11662          | 10       | 647.3          | 11697          | 10       | 671.4          |
| 44000 | 40 | COE 2          | 11663<br>11664 | 10<br>10 | 648.0<br>648.7 | 11698          | 10       | 672.0          |
| 11630 | 10 | 625.3          | 11665          | 10       | 649.4          | 11699          | 10       | 672.7          |
| 11631 | 10 | 626.0<br>626.7 | 11666          | 10       | 650.1          | 11000          | 10       | J12.7          |
| 11632 | 10 | 627.4          | 11667          | 10       | 650.7          | 11700          | 10       | 673.4          |
| 11633 | 10 | 027.4          | 11007          | 10       | 030.7          | 1 / 50         |          | J.J.4          |
|       |    |                | 1              |          |                | <u> </u>       |          |                |

Use check point at 11700 Kc

# Frequency: 11700—11800 Kc

| Freq. A B   Freq. A B   Freq. A B   T1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |    |       |       |    |       |          |    |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-------|-------|----|-------|----------|----|---------|
| 11701         10         674.1         11735         10         697.4         11769         10         720.8           11702         10         674.8         11736         10         698.1         1         11707         10         720.8         1           11703         10         675.5         11737         10         698.8         1         11770         10         722.2         1           11705         10         676.8         11739         10         700.1         11772         10         722.2         1           11706         10         678.2         11740         10         700.8         11774         10         722.2         1           11709         10         678.2         11741         10         700.8         117774         10         724.2           11709         10         679.6         11742         10         702.2         11776         10         724.9           11711         10         681.6         11744         10         703.6         117779         10         727.7           11712         10         681.6         117474         10         704.2         117779         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Freq. | A  | В     | Freq. | A. | В     | Freq.    | A  | В       |
| 11702         10         674.8         11736         10         698.1         117703         10         678.5         11737         10         698.8         11770         10         721.5           11704         10         676.2         11738         10         699.4         11771         10         722.2           11706         10         676.8         11773         10         698.4         11777         10         722.2           11706         10         677.5         11740         10         700.1         117772         10         722.9           11708         10         678.9         11741         10         701.5         117740         10         722.2         11776         10         722.5           11710         10         680.3         11744         10         702.2         11776         10         724.9           11711         10         681.6         11744         10         704.2         117779         10         725.6           11714         10         681.6         11744         10         704.2         11779         10         727.7           11712         10         681.6         11744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11700 | 10 | 673.4 | 11734 |    |       |          |    |         |
| 11703         10         675.5         11737         10         698.8         11770         10         721.5           11704         10         676.2         11733         10         699.4         11771         10         722.5           11706         10         676.8         11739         10         700.1         11771         10         722.3           11707         10         678.2         11740         10         700.8         11774         10         723.5           11709         10         679.6         11741         10         702.2         11776         10         724.9           11710         10         680.3         11744         10         702.2         11777         10         724.9           11711         10         681.0         11744         10         703.6         11778         10         727.7           11713         10         681.0         11744         10         704.2         11779         10         725.6           11714         10         683.0         11748         10         704.9         11779         10         727.7           11715         10         683.7         1174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11701 | 10 | 674.1 | 11735 | 10 | 697.4 | 11769    | 10 | 720 8   |
| 11704         10         676.2         11738         10         699.4         11771         10         722.2           11705         10         676.8         11739         10         700.1         11772         10         722.2           11706         10         677.5         11707         10         702.9         11774         10         702.8         11774         10         722.9           11709         10         679.6         11742         10         702.2         11776         10         724.9           11710         10         680.3         11744         10         702.2         11776         10         726.3           11711         10         681.6         11746         10         704.2         11777         10         726.3           11712         10         681.6         11746         10         704.2         11777         10         726.3           11713         10         682.3         11747         10         704.2         11779         10         727.7           11715         10         683.0         11748         10         706.3         11781         10         729.7           1171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11702 | 10 | 674.8 | 11736 | 10 |       |          |    |         |
| 11705         10         676.8         11739         10         700.1         11772         10         722.9           11706         10         677.5         11707         10         678.2         11740         10         700.8         11774         10         722.9           11709         10         678.9         11741         10         701.5         11775         10         724.2           11709         10         679.6         11742         10         702.2         11776         10         725.6           11711         10         681.3         11744         10         703.6         11777         10         726.3           11711         10         681.6         11746         10         704.2         11777         10         727.0           11713         10         682.3         11747         10         704.2         11778         10         727.7           11714         10         681.6         11748         10         704.9         11780         10         722.7           11714         10         683.7         11747         10         706.3         11781         10         722.1           1171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11703 | 10 | 675.5 | 11737 |    |       |          |    |         |
| 11706         10         677.5         11707         10         678.2         11740         10         700.8         11774         10         723.5           11707         10         678.2         11740         10         700.8         11774         10         724.9           11709         10         679.9         11741         10         702.2         11775         10         724.9           11710         10         680.3         11744         10         702.9         11777         10         726.3           11711         10         681.0         11745         10         704.2         11779         10         727.0           11713         10         682.3         11747         10         705.6         11779         10         727.0           11714         10         683.0         11748         10         704.2         11779         10         727.0           11715         10         683.7         11748         10         705.6         11780         10         729.7           11715         10         685.8         11750         10         707.7         11783         10         729.4           1172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11704 | 10 | 676.2 | 11738 |    |       |          |    |         |
| 11707         10         678.2         11740         10         700.8         11774         10         724.2           11708         10         678.9         11741         10         701.5         11775         10         724.2           11709         10         679.6         11742         10         702.2         11776         10         725.6           11710         10         680.3         11744         10         703.6         11777         10         726.3           11711         10         681.0         11745         10         704.2         11779         10         727.7           11714         10         683.0         11748         10         706.3         11780         10         729.7           11715         10         683.7         11749         10         707.0         11780         10         729.7           11718         10         685.8         11751         10         707.0         11784         10         731.1           11719         10         686.8         11751         10         707.7         11784         10         731.1           11719         10         686.8         1175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11705 | 10 | 676.8 | 11739 | 10 | 700.1 |          |    |         |
| 11708         10         678.9         11741         10         701.5         11775         10         724.9           11709         10         679.6         11742         10         702.2         11776         10         725.6           11710         10         680.0         11744         10         703.6         11777         10         726.3           11711         10         681.0         11745         10         704.2         11777         10         727.0           11712         10         681.6         11746         10         704.2         11779         10         727.7           11713         10         682.3         11747         10         705.6         11778         10         727.7           11715         10         683.3         11748         10         706.3         11781         10         729.7           11716         10         683.0         11748         10         706.3         11782         10         729.7           11716         10         685.0         11750         10         707.7         11783         10         729.7           117178         10         685.0         117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11706 | 10 |       |       |    |       |          |    |         |
| 11709         10         679.6         11742         10         702.2         11776         10         725.6           11710         10         680.3         11744         10         702.9         11777         10         725.6           11711         10         681.0         11744         10         704.2         117779         10         727.7           11712         10         681.6         11746         10         704.9         11779         10         727.7           11713         10         682.3         11747         10         706.6         11780         10         729.7           11716         10         683.0         11748         10         707.0         11781         10         729.1           11716         10         684.4         11750         10         707.7         11782         10         729.7           11718         10         685.0         11750         10         707.7         11784         10         730.4           11717         10         685.8         11751         10         709.7         11785         10         731.8           11720         10         687.1         117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11707 | 10 |       |       |    |       |          |    |         |
| 11710   10   680.3   11744   10   703.6   11778   10   727.0   11711   10   681.0   11745   10   704.2   11779   10   727.7   11712   10   681.6   11746   10   704.2   11779   10   727.7   11713   10   682.3   11747   10   705.6   11780   10   729.7   11715   10   683.7   11748   10   706.3   11781   10   729.7   11716   10   684.4   11717   10   685.8   11750   10   707.7   11783   10   729.7   11718   10   685.8   11751   10   708.4   11781   10   731.1   11719   10   686.4   11752   10   709.4   11785   10   731.5   11720   10   687.8   11755   10   709.8   11786   10   733.9   11725   10   689.9   11755   10   711.8   10   733.9   11725   10   689.9   11755   10   711.8   11729   10   689.5   11758   10   713.2   11729   10   689.5   11758   10   713.2   11729   10   691.9   11760   10   716.0   11795   10   738.7   11729   10   693.3   11762   10   716.0   11795   10   738.7   11731   10   694.0   11764   10   717.3   11799   10   730.4   11731   10   694.0   11764   10   717.3   11799   10   730.4   11731   10   694.5   11766   10   718.7   11799   10   730.4   11791   10   738.7   11731   10   694.0   11764   10   717.3   11799   10   730.4   11731   10   694.5   11766   10   718.7   11799   10   730.4   11731   10   694.5   11766   10   718.7   11799   10   740.7   11731   10   694.5   11766   10   718.7   11799   10   741.4   11732   10   695.3   11766   10   718.7   11799   10   741.4   11732   10   695.3   11766   10   718.7   11799   10   741.4   11732   10   695.3   11766   10   718.7   11799   10   741.4   11732   10   695.3   11766   10   718.7   11799   10   741.4   11732   10   695.3   11766   10   718.7   11799   10   741.4   11732   10   695.3   11766   10   718.7   11799   10   741.4   11732   10   696.5   11766   10   718.7   11799   10   741.4   11732   10   696.5   11766   10   718.7   11799   10   741.4   11732   10   696.5   11766   10   718.7   11799   10   741.4   11732   10   696.5   11766   10   718.7   11799   10   741.4   11732   10   696.5   11766   10   718.7   10   10   741.4 | 11708 | 10 |       |       |    |       |          |    |         |
| 11710         10         680.3         11744         10         703.6         11778         10         727.0           11711         10         681.0         11745         10         704.2         11779         10         727.7           11712         10         681.6         11746         10         704.9         11779         10         727.7           11713         10         682.3         11747         10         706.6         11780         10         728.4           11715         10         683.7         11749         10         707.0         11782         10         729.1           11716         10         683.0         11749         10         707.0         11782         10         729.1           11717         10         685.0         11750         10         707.0         11782         10         729.1           11719         10         685.8         11751         10         708.4         11785         10         731.8           11720         10         687.8         11755         10         709.4         11786         10         732.5           11722         10         689.2         1175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11709 | 10 | 679.6 | 11742 |    |       |          |    |         |
| 11711         10         681.0         11745         10         704.2         11779         10         727.7           11712         10         681.6         11746         10         704.9         11713         10         682.3         11747         10         705.6         11780         10         728.4           11714         10         683.0         11748         10         706.3         11781         10         729.1           11715         10         683.7         11749         10         707.0         11782         10         729.7           11716         10         685.0         11750         10         707.7         11783         10         730.4           11719         10         685.0         11750         10         707.7         11783         10         731.8           11719         10         686.4         11752         10         709.1         11786         10         732.5           11720         10         687.1         11753         10         709.1         11786         10         733.2           11721         10         688.5         11757         10         711.4         11789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |    |       | 11743 |    |       |          |    |         |
| 11712         10         681.6         11746         10         704.9         11713         10         682.3         11747         10         706.6         11780         10         728.4           11714         10         683.0         11748         10         706.3         11781         10         729.1           11715         10         683.7         11749         10         707.0         11782         10         729.7           11716         10         684.4         11717         10         685.0         11750         10         707.7         11783         10         730.4           11718         10         685.8         11751         10         708.4         11785         10         731.8         10         731.8           11720         10         687.1         11753         10         709.8         11786         10         732.5           11721         10         687.8         11755         10         709.8         11788         10         733.9           11721         10         688.5         11756         10         711.8         10         733.9           11721         10         689.2         117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11710 | 10 | 680.3 | 11744 | 10 | 703.6 | 11778    |    |         |
| 11713   10   682 3   11747   10   705 6   11780   10   728 4   11714   10   683 0   11748   10   706 3   11781   10   729 7   11715   10   683 4   11717   10   685 0   11750   10   707 7   11783   10   730 4   11719   10   685 8   11751   10   708 4   11785   10   731 1   11780   10   685 1   11752   10   709 1   11786   10   732 5   11720   10   686 1   11752   10   709 1   11786   10   733 2   11721   10   687 8   11755   10   711 8   11722   10   688 5   11755   10   711 8   11722   10   688 5   11755   10   711 8   11722   10   688 9 1   11755   10   711 8   11724   10   689 9   11755   10   711 8   11724   10   689 9   11755   10   711 8   11724   10   689 9   11758   10   713 2   11729   10   691 9   11760   10   715 3   11792   10   736 6   11726   10   691 9   11760   10   716 0   11794   10   738 7   11729   10   693 3   11762   10   716 0   11795   10   738 7   11793   10   694 0   11764   10   717 3   11798   10   730 7   11731   10   694 0   11764   10   718 7   11798   10   740 7   741 7   11732   10   695 3   11766   10   718 7   11799   10   741 4   11732   10   695 3   11766   10   718 7   11799   10   741 4   11732   10   695 3   11766   10   718 7   11799   10   741 4   11732   10   695 3   11766   10   718 7   11799   10   741 4   11732   10   695 3   11766   10   718 7   10   741 4   11732   10   695 3   11766   10   718 7   10   741 4   11732   10   695 3   11766   10   718 7   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4   10   741 4  | 11711 | 10 | 681.0 | 11745 | 10 | 704.2 | 11779    | 10 | 727.7   |
| 11714 10 683 0 11748 10 706 3 11781 10 729 1 11715 10 683 7 11749 10 707 0 11782 10 729 7 11716 10 684 4 1 11717 10 685 0 11750 10 707 7 11784 10 730 4 11718 10 685 8 11751 10 708 4 11785 10 731 8 11719 10 686 4 11752 10 709 1 11786 10 732 5 11720 10 687 8 11755 10 710 4 11788 10 733 9 11721 10 687 8 11755 10 711 1 11787 10 733 9 11722 10 688 5 11756 10 711 8 11723 10 689 2 11757 10 712 5 11790 10 735 9 11724 10 689 9 11758 10 713 2 11791 10 735 9 11725 10 691 9 11758 10 713 9 11792 10 736 6 11726 10 691 9 11760 10 714 6 11793 10 738 0 11728 10 692 6 11761 10 715 3 11794 10 738 0 11728 10 693 3 11762 10 716 0 11794 10 738 0 11728 10 694 0 11763 10 716 11799 10 730 740 7 11730 10 694 0 11764 10 717 3 11798 10 730 740 7 11731 10 694 7 11765 10 718 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11712 | 10 | 681.6 | 11746 | 10 | 704.9 | l .      |    |         |
| 11715         10         683.7         11749         10         707.0         11782         10         729.7           11716         10         685.0         11750         10         707.7         11783         10         730.4           11717         10         685.0         11750         10         707.7         11784         10         731.1           11719         10         685.8         11751         10         708.4         11785         10         733.2           11720         10         687.1         11752         10         709.1         11786         10         733.2           11721         10         687.1         11753         10         709.1         11786         10         733.9           11721         10         687.8         11755         10         711.4         117789         10         733.9           11722         10         688.5         11756         10         711.8         117790         10         735.3           11724         10         689.5         11757         10         712.5         11790         10         735.3           11726         10         691.2         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11713 | 10 | 682.3 | 11747 | 10 | 705.6 | 11780    |    |         |
| 11716         10         684         4           11717         10         685         0         11750         10         707.7         11784         10         731.4           11718         10         685.8         11751         10         708.4         11785         10         731.8           11719         10         686.4         11752         10         709.1         11786         10         733.2           11720         10         687.1         11754         10         710.4         11788         10         733.2           11721         10         687.8         11755         10         711.8         10         733.9           11722         10         688.5         11756         10         711.8         10         734.6           11724         10         689.9         11757         10         712.5         11790         10         735.3           11726         10         691.2         11760         10         713.2         11791         10         735.3           11729         10         691.9         11760         10         716.0         11795.3         11795.0         738.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11714 | 10 | 683.0 | 11748 | 10 | 706.3 | 11781    |    |         |
| 11717         10         685.0         11750         10         707.7         11784         10         731.1           11718         10         685.8         11751         10         708.4         11785         10         731.8           11719         10         686.4         11752         10         709.1         11786         10         732.5           11720         10         687.1         11753         10         709.8         11787         10         733.2           11721         10         687.8         11755         10         711.1         11789         10         733.9           11722         10         688.5         11756         10         711.8         11789         10         734.6           11723         10         689.2         11757         10         712.5         11790         10         735.3           11725         10         691.2         11758         10         713.2         11791         10         738.0           11729         10         691.2         11760         10         714.6         11793         10         738.7           11729         10         693.3         1176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11715 | 10 | 683.7 | 11749 | 10 | 707.0 | 11782    |    |         |
| 11718         10         685.8         11751         10         708.4         11785         10         731.8           11719         10         686.4         11752         10         709.1         11786         10         732.5           11720         10         687.8         11753         10         709.8         11787         10         733.2           11721         10         687.8         11755         10         711.1         11789         10         733.2           11722         10         689.8         11756         10         711.8         11789         10         734.6           11723         10         689.9         11757         10         712.5         11790         10         735.3           11726         10         699.5         11759         10         713.9         11791         10         735.9           11726         10         691.2         11793         10         737.3         11794         10         738.0           11729         10         693.3         11760         10         716.6         11793         10         739.4           11730         10         694.0         1176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11716 | 10 | 684.4 | ļ     |    |       | 11783    | 10 |         |
| 11719         10         686.4         11752         10         709.1         11786         10         732.5           11720         10         687.1         11753         10         709.8         11787         10         733.2           11721         10         687.8         11755         10         710.4         11788         10         733.9           11722         10         688.5         11756         10         711.8         11790         10         734.6           11724         10         689.9         11757         10         712.5         11790         10         735.9           11726         10         689.9         11758         10         713.2         11791         10         735.9           11726         10         691.2         11759         10         713.2         11792         10         736.6           11728         10         691.2         11760         10         714.6         11794         10         738.7           11728         10         692.6         11761         10         716.0         11795         10         739.4           11730         10         694.0         1176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11717 | 10 | 685.0 | 11750 | 10 | 707.7 | 11784    |    |         |
| 11720         10         687.1         11753         10         709.8         11787         10         733.2           11721         10         687.8         11755         10         711.1         11788         10         733.6           11722         10         688.5         11756         10         711.8         11799         10         734.6           11723         10         689.2         11757         10         712.5         11790         10         735.3           11724         10         689.9         11758         10         713.2         11790         10         735.9           11725         10         690.5         11759         10         713.2         11791         10         735.9           11726         10         691.9         11760         10         714.6         11792         10         738.7           11728         10         692.6         11761         10         715.3         11795         10         738.7           11729         10         693.3         11762         10         716.6         11795         10         739.4           11730         10         694.0         1176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11718 | 10 | 685.8 | 11751 | 10 | 708.4 |          |    |         |
| 11720         10         687.1         11754         10         710.4         11788         10         733.9           11721         10         687.8         11755         10         711.1         11789         10         734.6           11722         10         688.5         11756         10         711.8         11790         10         734.6           11723         10         689.2         11757         10         712.5         11790         10         735.9           11725         10         690.5         11759         10         713.9         11792         10         736.6           11726         10         691.2         11760         10         714.6         11793         10         738.0           11727         10         691.9         11760         10         716.3         11795         10         738.0           11729         10         693.3         11762         10         716.0         11796         10         739.4           11730         10         694.0         11763         10         716.6         11799         10         740.7           11731         10         695.3         1176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11719 | 10 | 686 4 | 11752 | 10 | 709.1 |          |    |         |
| 11721         10         687.8         11755         10         711.1         11789         10         734.6           11722         10         688.5         11756         10         711.8         11723         10         689.2         11757         10         712.5         11790         10         735.3           11724         10         689.9         11758         10         713.2         11791         10         735.9           11726         10         691.2         11759         10         713.9         11792         10         736.6           11727         10         691.9         11760         10         714.6         11793         10         738.0           11728         10         692.6         11761         10         716.0         11795         10         738.0           11729         10         693.3         11762         10         716.0         11796         10         739.4           11730         10         694.0         11764         10         717.3         11799         10         740.7           11731         10         695.3         11766         10         718.0         11799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |    |       | 11753 | 10 | 709.8 | 11787    |    |         |
| 11722         10         688.5         11756         10         711.8         11723         10         689.2         11757         10         712.5         11790         10         735.3           11724         10         689.9         11758         10         713.2         11791         10         735.9           11725         10         699.5         11759         10         713.2         11792         10         736.6           11726         10         691.2         11760         10         714.6         11793         10         737.3         3           11728         10         692.6         11761         10         716.0         11794         10         738.7         11795         10         739.4           11729         10         693.3         11762         10         716.0         11796         10         739.4           11730         10         694.0         11764         10         717.3         11798         10         740.7           11731         10         694.0         11765         10         718.0         11799         10         741.4           11732         10         695.3         1176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11720 | 10 | 687.1 | 11754 | 10 |       |          |    |         |
| 11723         10         689.2         11757         10         712.5         11790         10         735.9           11724         10         689.9         11758         10         713.2         11791         10         735.9           11725         10         690.5         11759         10         713.2         11792         10         736.6           11726         10         691.9         11760         10         714.6         11793         10         737.3           11728         10         692.6         11761         10         715.3         11795         10         738.7           11729         10         693.3         11762         10         716.0         11795         10         739.4           11730         10         694.0         11764         10         713.3         11798         10         740.7           11731         10         694.0         11765         10         713.3         11798         10         740.7           11731         10         695.3         11766         10         718.0         11799         10         741.4           11732         10         695.3         1176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11721 | 10 | 687.8 | 11755 | 10 | 711.1 | 11789    | 10 | 734.6   |
| 11724         10         689.9         11758         10         713.2         11791         10         735.9           11725         10         690.5         11759         10         713.2         11792         10         736.9           11726         10         691.2         11779         10         714.6         11793         10         737.3           11727         10         692.6         11760         10         716.3         117795         10         738.7           11729         10         693.3         11762         10         716.0         11796         10         739.4           11730         10         694.0         11768         10         718.0         11779         10         740.7           11731         10         694.7         11765         10         718.0         11799         10         741.4           11732         10         695.3         11766         10         718.7         11799         10         741.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11722 | 10 | 688.5 | 11756 |    |       | ļ        |    |         |
| 11725         10         690.5         11759         10         713.9         11792         10         736.6           11726         10         691.2         11727         10         691.9         11760         10         714.6         11793         10         737.3         11794         10         738.0         11794         10         738.0         11795         10         738.0         11795         10         738.0         11795         10         738.7         11795         10         738.7         11795         10         739.4         11796         10         739.4         11797         10         740.7         740.7         11798         10         740.7         11798         10         741.4         10         718.0         11799         10         741.4         10         718.0         11799         10         741.4         10         739.4         11799         10         740.7         11795         10         740.7         11795         10         740.7         11795         10         740.7         11795         10         740.7         11795         10         740.7         11795         10         740.7         11795         10         741.4         10 </td <td>11723</td> <td>10</td> <td>689.2</td> <td>11757</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11723 | 10 | 689.2 | 11757 |    |       |          |    |         |
| 11726 10 691 2<br>11727 10 691 9<br>11728 10 692 6<br>11729 10 693 3<br>11762 10 716 0<br>11763 10 716 0<br>11763 10 716 0<br>11763 10 716 0<br>11763 10 716 0<br>11764 10 716 0<br>11769 10 740 0<br>11761 10 718 0<br>11762 10 718 0<br>11763 10 718 0<br>11764 10 718 0<br>11769 10 740 0<br>11761 10 694 0<br>11762 10 718 0<br>11763 10 718 0<br>11764 10 718 0<br>11765 10 718 0<br>11769 10 741 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11724 | 10 | 689.9 | 11758 |    |       |          |    |         |
| 11727         10         691.9         11760         10         714.6         11794         10         738.0           11728         10         692.6         11761         10         715.3         11795         10         738.7           11729         10         693.3         11762         10         716.0         11796         10         739.4           11730         10         694.0         11764         10         717.3         11798         10         740.0           11731         10         694.7         11765         10         718.0         11799         10         741.4           11732         10         695.3         11766         10         718.7         10         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11725 | 10 | 690.5 | 11759 | 10 | 713.9 |          |    |         |
| 11728         10         692.6         11761         10         715.3         11795         10         738.7           11729         10         693.3         11762         10         716.0         11796         10         739.4           11730         10         694.0         11763         10         716.6         11797         10         740.0           11731         10         694.7         11765         10         718.0         11799         10         741.4           11732         10         695.3         11766         10         718.7         10         70.4         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0         70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11726 | 10 | 691.2 | 1     |    |       |          |    |         |
| 11729 10 693.3 11762 10 716.0 11796 10 739.4 11763 10 716.6 11797 10 740.7 11731 10 694.0 11765 10 718.0 11798 10 741.4 11732 10 695.3 11766 10 718.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11727 | 10 | 691.9 |       |    |       |          |    |         |
| 11763 10 716.6 11797 10 740.0<br>11730 10 694.0 11764 10 717.3 11798 10 740.7<br>11731 10 694.7 11765 10 718.0 11799 10 741.4<br>11732 10 695.3 11766 10 718.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11728 | 10 | 692.6 |       |    |       |          |    |         |
| 11730 10 694.0 11764 10 717.3 11798 10 740.7 11731 10 694.7 11765 10 718.0 11799 10 741.4 11732 10 695.3 11766 10 718.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11729 | 10 | 693.3 |       |    |       |          |    |         |
| 11731 10 694.7 11765 10 718.0 11799 10 741.4<br>11732 10 695.3 11766 10 718.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |    |       |       |    |       |          |    |         |
| 11732 10 695.3 11766 10 718.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |    |       |       |    |       |          |    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |    |       |       |    |       | 11799    | 10 | 741 . 4 |
| 11733 10 696.0 11767 10 719.4 11800 10 742.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |    |       |       |    |       |          |    | m10 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11733 | 10 | 696.0 | 11767 | 10 | 719.4 | 11800    | 10 | 742.1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |    |       | l     |    |       | <u> </u> |    |         |

Use check point at 11700 Kc

Frequency: 11800-11900 Kc

| Freq. | .A.  | В       | Freq. | A    | В       | Freq.  | A    | В     |
|-------|------|---------|-------|------|---------|--------|------|-------|
| 11800 | 10   | 742.1   | 11834 | 10   | 765.3   | 11868  |      | 788 6 |
| 11801 | 10   | 742 8   | 11835 | 10   | 766 0   | 11869  | 10   | 789 3 |
| 11802 | 10   | 743 4   | 11836 | 10   | 766.6   |        |      |       |
| 11803 | 10   | 744 1   | 11837 | 10   | 767.3   | 11870  | 10   | 790 0 |
| 11804 | 10   | 744 8   | 11838 | 10   | 768.0   | 11871  | 10   | 790.7 |
| 11805 | 10   | 745.5   | 11839 | 10   | 768.7   | 11872  | 10   | 791 4 |
| 11806 | 10   | 746.2   |       |      |         | 11873  | 10   | 792.1 |
| 11807 | 50   | 746 9   | 11840 | 10   | 769.4   | 11874  | 10   | 792 7 |
| 11808 | 10   | 747.5   | 11841 | 10   | 770.1   | 11875  | 10   | 793.4 |
| 11809 | 10   | 748.2   | 11842 | 10   | 770 8   | 11876  | 10   | 794.1 |
|       |      |         | 11843 | 10   | 771.5   | 11877  | 10   | 794.8 |
| 11810 | 10   | 748 9   | 11844 | 10   | 772 1   | 11878  | 10   | 795.5 |
| 11811 | 10   | 749.6   | 11845 | 10   | 772.8   | 11879  | 10   | 796.2 |
| 11812 | 10   | 750.3   | 11846 | 10   | 773.5   | l      |      |       |
| 11813 | 10   | 751.0   | 11847 | 10   | 774.2   | 11880  | 10   | 796.9 |
| 11814 | 10   | 751 . 6 | 11848 | 10   | 774.9   | 11881  | 10   | 797 6 |
| 11815 | 10   | 752.3   | 11849 | 10   | 775.6   | 11882  | 10   | 798 2 |
| 11816 | 10   | 753.0   |       |      |         | 11883  | 10   | 798.9 |
| 11817 | 10   | 753.7   | 11850 | 10   | 776.3   | 11884  | 10   | 799.6 |
| 11818 | 10   | 754.4   | 11851 | 10   | 776.9   | 11885  | 10   | 800.3 |
| 11819 | 10   | 755.0   | 11852 | 10   | 777.6   | 11886  | 10   | 801 0 |
|       |      |         | 11853 | 10   | 778 . 3 | 11887  | 10   | 801.7 |
| 11820 |      | 755.7   | 11854 | 10   | 779 . 0 | 11888  | 10   | 802 4 |
| 11821 | 10   | 756 4   | 11855 | 10   | 779.7   | 11889  | 10   | 803.1 |
| 11822 |      |         | 11856 |      | 780.4   |        |      |       |
| 11823 |      |         | 11857 |      | 781 . 1 | 11890  | 10   | 803 8 |
| 11824 |      |         | 11858 |      | 781 .8  | 11891  | 10   | 804 5 |
| 11825 |      |         | 11859 | 10   | 782.4   |        |      | 805.2 |
| 11826 |      |         |       |      |         | 11893  |      |       |
| 11827 |      |         |       |      |         | 11894  |      |       |
| 11828 |      |         |       |      |         |        |      |       |
| 11829 | 10   | 761.9   |       |      |         |        |      |       |
| 44000 |      |         | 11863 |      |         |        |      |       |
| 11830 |      |         |       |      |         |        |      |       |
| 11831 |      |         |       |      |         |        |      | 810.0 |
| 11832 |      |         |       |      |         |        | ) 10 | 810.7 |
| 11833 | 3 10 | 764.6   | 11867 | , 10 | / /0/.5 | 111900 | , 10 | 610.7 |
|       |      |         |       |      |         |        |      |       |
|       |      |         |       |      |         |        |      |       |

Use check point at 11700 Kc

# Frequency: 11900-12000 Kc

| Freq. | A  | В       | Freq.   | A                            | В              | Freq.    | A  | В     |  |  |  |  |  |
|-------|----|---------|---------|------------------------------|----------------|----------|----|-------|--|--|--|--|--|
| 11900 | 10 | 810.7   | 11934   | 10                           | 834.1          | 11968    | 10 | 857.4 |  |  |  |  |  |
| 11901 | 10 | 811.4   | 11935   | 10                           | 834.8          | 11969    | 10 | 858 1 |  |  |  |  |  |
| 11902 | 10 | 812.1   | 11936   | 10                           | 835.5          |          |    |       |  |  |  |  |  |
| 11903 | 10 | 812.8   | 11937   | 10                           | 836.2          | 11970    | 10 | 858.8 |  |  |  |  |  |
| 11904 | 10 | 813.4   | 11938   | 10                           | 836.9          | 11971    | 10 | 859 4 |  |  |  |  |  |
| 11905 | 10 | 814.1   | 11939   | 10                           | 837.5          | 11972    | 10 | 860 1 |  |  |  |  |  |
| 11906 | 10 | 814.8   |         |                              |                | 11973    | 10 | 860.8 |  |  |  |  |  |
| 11907 | 10 | 815.5   | 11940   | 10                           | 838.2          | 11974    | 10 | 861.5 |  |  |  |  |  |
| 11908 | 10 | 816.2   | 11941   | 10                           | 838.9          | 11975    | 10 | 862 1 |  |  |  |  |  |
| 11909 | 10 | 816.9   | 11942   | 10                           | 839.6          | 11976    | 10 | 862.8 |  |  |  |  |  |
|       |    |         | 11943   | 10                           | 840.3          | 11977    | 10 | 863.5 |  |  |  |  |  |
| 11910 | 10 | 817.6   | 11944   | 10                           | 841.0          | 11978    | 10 | 864.2 |  |  |  |  |  |
| 11911 | 10 | 818.3   | 11945   | 10                           | 841.6          | 11979    | 10 | 864.8 |  |  |  |  |  |
| 11912 | 10 | 819.0   | 11946   | 10                           | 842.3          | l        |    |       |  |  |  |  |  |
| 11913 | 10 | 819.7   | 11947   | 10                           | 843.0          | 11980    | 10 | 865.5 |  |  |  |  |  |
| 11914 | 10 | 820.4   | 11948   | 10                           | 843.7          | 11981    | 10 | 866.2 |  |  |  |  |  |
| 11915 | 10 | 821.1   | 11949   | 10                           | 844.4          | 11982    | 10 | 866.9 |  |  |  |  |  |
| 11916 | 10 | 821.7   | ŀ       |                              |                | 11983    | 10 | 867.5 |  |  |  |  |  |
| 11917 | 10 | 822.4   | 11950   | 10                           | 845 1          | 11984    | 10 | 868 2 |  |  |  |  |  |
| 11918 | 10 | 823.1   | 11951   | 10                           | 845.8          | 11985    | 10 | 868.9 |  |  |  |  |  |
| 11919 | 10 | 823.8   | 11952   | 10                           | 846.4          | 11986    | 10 | 869.6 |  |  |  |  |  |
|       |    |         | 11953   | 10                           | 847 . 1        | 11987    | 10 | 870.2 |  |  |  |  |  |
| 11920 | 10 | 824 . 5 | 11954   | 10                           | 847 8          | 11988    | 10 | 870.9 |  |  |  |  |  |
| 11921 | 10 | 825.2   | 11955   | 10                           | 848.5          | 11989    | 10 | 871.6 |  |  |  |  |  |
| 11922 | 10 | 825.9   | 11956   | 10                           | 849.2          |          |    |       |  |  |  |  |  |
| 11923 | 10 | 826.6   | 11957   | 10                           | 849.9          | 11990    | 10 | 872.3 |  |  |  |  |  |
| 11924 | 10 | 827.3   | 11958   | 10                           | 850.5          | 11991    | 10 | 872.9 |  |  |  |  |  |
| 11925 | 10 | 828.0   | 11959   | 10                           | 851.2          | 11992    | 10 | 873.6 |  |  |  |  |  |
| 11926 | 10 | 828.6   |         |                              |                | 11993    | 10 | 874.3 |  |  |  |  |  |
| 11927 | 10 | 829 3   | 11960   | 10                           | 851.9          | 11994    | 10 | 875.0 |  |  |  |  |  |
| 11928 | 10 | 830.0   | 11961   | 10                           | 852.6          | 11995    | 10 | 875.6 |  |  |  |  |  |
| 11929 | 10 | 830.7   | 11962   | 10                           | 853.3          | 11996    | 10 | 876.3 |  |  |  |  |  |
|       |    |         | 11963   | 10                           | 854.0          | 11997    | 10 | 877.0 |  |  |  |  |  |
| 11930 | 10 | 831 . 4 | 11964   | 10                           | 854.7          | 11998    | 10 | 877.7 |  |  |  |  |  |
| 11931 | 10 | 832 1   | 11965   | 10                           | 855.3<br>856.0 | 11999    | 10 | 878.3 |  |  |  |  |  |
| 11932 | 10 | 832.8   | 11966   | 10                           | 856.0<br>856.7 | 12000    | 10 | 879.0 |  |  |  |  |  |
| 11933 | 10 | 833 . 4 | 11967   | 10                           | 530.7          | 12000    | 10 | 0/9.0 |  |  |  |  |  |
|       |    |         |         |                              |                | <u> </u> |    |       |  |  |  |  |  |
|       |    | Use     | check s | lise shock point at 11700 Kc |                |          |    |       |  |  |  |  |  |

Use check point at 11700 K

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| 12000         11         100.1         12034         11         121.1         12068         11         14           12001         11         100.8         12035         11         121.7         12069         11         14           12002         11         101.4         12036         11         122.3         12007         11         14           12004         11         102.0         12037         11         123.6         12071         11         14           12005         11         103.2         12038         11         123.6         12071         11         14           12006         11         103.8         12007         11         14         12072         11         14           12008         11         104.5         12040         11         124.8         12072         11         14           12008         11         105.7         12041         11         125.4         12075         11         14           12010         11         106.3         12044         11         126.0         12076         11         14           12011         11         106.9         12044         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frequency: 12000—12100 Kc |  |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|--|--|--|--|--|
| 12001   11   100.8   12035   11   121.7   12069   11   14   12002   11   101.4   12036   11   122.3   12003   11   102.0   12037   11   123.0   12070   11   14   12004   11   102.6   12038   11   123.6   12071   11   14   12005   11   103.8   12007   11   104.5   12008   11   124.2   12072   11   14   12008   11   105.1   12040   11   126.4   12075   11   14   12008   11   105.7   12042   11   126.0   12076   11   14   12009   11   106.3   12044   11   127.3   12076   11   14   12011   11   106.9   12045   11   127.3   12078   11   14   12012   11   107.5   12046   11   127.9   12079   11   14   12014   11   108.8   12046   11   128.5   12014   11   108.8   12046   11   129.1   12080   11   15   12016   11   10.0   12017   11   10.6   12049   11   130.4   12082   11   15   12016   11   110.6   12016   11   110.6   12017   11   10.6   12018   11   11.2   12018   11   131.6   12084   11   12018   11   15   12018   11   15   12018   11   11.2   12018   11   131.6   12085   11   15   12019   11   111.9   12052   11   131.6   12085   11   15   12019   11   111.9   12052   11   131.6   12086   11   15   12019   11   111.9   12052   11   131.6   12086   11   15   12019   11   111.9   12052   11   131.2   12086   11   15   12018   11   15   12019   11   111.9   12052   11   131.2   12086   11   15   12018   11   15   12019   11   111.9   12052   11   131.2   12086   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018 | 3                         |  |  |  |  |  |  |  |  |  |  |  |
| 12002 11 101.4 12036 11 122.3 12003 11 102.0 12037 11 123.0 12070 11 14 1204 11 102.6 12038 11 123.6 12071 11 14 12005 11 103.2 12039 11 124.2 12072 11 14 12006 11 103.8 12007 11 104.5 12040 11 124.8 12074 11 14 12008 11 105.1 12041 11 125.4 12076 11 14 12009 11 105.7 12042 11 126.0 12076 11 14 12010 11 106.3 12044 11 127.3 12076 11 14 12011 11 106.9 12045 11 127.9 12079 11 12012 11 107.5 12046 11 128.5 12013 11 108.2 12046 11 128.5 12014 11 108.8 12048 11 129.7 12080 11 14 12016 11 109.4 12049 11 130.4 12082 11 15 12016 11 110.6 12050 11 131.0 12084 11 15 12018 11 111.2 12051 11 131.0 12084 11 15 12018 11 111.2 12051 11 131.0 12084 11 15 12018 11 111.2 12051 11 131.0 12084 11 15 12018 11 111.2 12051 11 131.0 12084 11 15 12018 11 111.2 12051 11 131.0 12085 11 15 12019 11 111.9 12052 11 131.0 12085 11 15 12019 11 111.9 12052 11 131.0 12085 11 15 12019 11 111.9 12052 11 131.0 12085 11 15 12019 11 111.9 12052 11 131.0 12085 11 15 12019 11 111.9 12052 11 131.0 12085 11 15 12019 11 111.9 12052 11 131.0 12085 11 15 12019 11 111.9 12052 11 131.0 12085 11 15 12019 11 111.9 12052 11 132.2 12086 11 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.1                       |  |  |  |  |  |  |  |  |  |  |  |
| 12003   11   102 0   12037   11   123 0   12070   11   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.7                       |  |  |  |  |  |  |  |  |  |  |  |
| 12004 11 102 6 12038 11 123 6 12071 11 14 12005 11 103 2 12039 11 124 2 12072 11 14 12006 11 103 8 12007 11 104 5 12007 11 124 8 12074 11 14 12008 11 105 1 12041 11 125 4 12075 11 14 12009 11 105 7 12042 11 126 0 12076 11 14 12009 11 106 3 12044 11 127 3 12078 11 14 12010 11 106 3 12044 11 127 3 12078 11 14 12011 11 106 9 12045 11 127 9 12077 11 14 12012 11 107 5 12046 11 128 5 12013 11 108 8 12048 11 129 1 12080 11 14 12015 11 108 8 12048 11 129 1 12080 11 14 12016 11 108 8 12048 11 129 1 12080 11 14 12016 11 110 0 1 12017 11 106 12017 11 130 4 12082 11 15 12018 11 110 0 12017 11 110 6 12050 11 131 0 12084 11 15 12018 11 111 12 12018 11 11 12018 11 111 12 12018 11 11 12018 11 111 12 12018 11 130 1 12084 11 15 12018 11 111 12 12018 11 11 12018 11 111 12 12018 11 131 0 12084 11 15 12019 11 111 19 12050 11 131 131 0 12086 11 15 12019 11 111 19 12050 11 131 13 12 12086 11 15 12019 11 111 19 12050 11 13 13 1 2 12086 11 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |  |  |  |  |  |  |  |  |  |  |  |
| 12005   11   103.2   12039   11   124.2   12072   11   14   12006   11   103.8   12007   11   104.5   12040   11   124.8   12073   11   14   12008   11   105.1   12041   11   125.4   12075   11   14   12009   11   105.7   12042   11   126.0   12076   11   14   12009   11   105.7   12042   11   126.0   12076   11   14   12010   11   106.3   12044   11   127.3   12076   11   14   12011   11   106.9   12045   11   127.3   12078   11   14   12012   11   107.5   12046   11   127.9   12079   11   14   12012   11   108.2   12047   11   128.5   12013   11   108.2   12046   11   129.1   12080   11   15   12016   11   109.4   12049   11   130.4   12082   11   15   12016   11   110.6   12054   11   131.0   12084   11   15   12018   11   15   12018   11   15   12018   11   11   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   11   15   12018   | 3.3                       |  |  |  |  |  |  |  |  |  |  |  |
| 12006 11 103 8 1 12040 11 124 8 12073 11 14 12008 11 105 1 12041 11 125 4 12076 11 14 12009 11 105 7 12042 11 126 0 12076 11 14 12043 11 126 7 12076 11 14 12010 11 106 9 12045 11 126 7 12077 11 14 12011 11 106 9 12045 11 127 9 12079 11 14 12012 11 107 5 12046 11 128 5 12013 11 108 2 12047 11 129 1 12080 11 14 12014 11 108 8 12048 11 129 7 12081 11 15 12016 11 109 4 12049 11 130 4 12082 11 15 12016 11 110 6 12050 11 131 0 12084 11 15 12018 11 111 2 12018 11 115 12018 11 111 2 12018 11 111 2 12018 11 111 2 12018 11 11 130 4 12084 11 15 12018 11 111 2 12018 11 111 2 12018 11 11 130 4 12085 11 15 12018 11 111 2 12018 11 11 130 4 12085 11 15 12018 11 111 2 12018 11 11 130 4 12085 11 15 12018 11 111 2 12018 11 131 0 12085 11 15 12018 11 111 2 12051 11 131 0 12085 11 15 12019 11 111 19 12052 11 131 0 12085 11 15 12019 11 111 19 12052 11 132 2 12086 11 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.9                       |  |  |  |  |  |  |  |  |  |  |  |
| 12007         11         104.5         12040         11         124.8         12074         11         14         12074         11         14         12074         11         14         12075         11         14         12075         11         14         12075         11         14         12075         11         14         12075         11         14         12076         11         14         12076         11         14         12076         11         14         12077         11         14         12077         11         14         12077         11         14         12077         11         14         12078         11         12078         11         12078         11         14         12079         11         14         12079         11         14         12079         11         14         12079         11         14         12079         11         14         12079         11         14         12079         11         14         12080         11         14         12080         11         14         12080         11         14         12080         11         14         12080         11         14         12080         11 <t< td=""><td>4.5</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.5                       |  |  |  |  |  |  |  |  |  |  |  |
| 12008         11         105.1         12041         11         125.4         12075         11         14           12009         11         105.7         12042         11         126.0         12076         11         14           12010         11         106.3         12043         11         126.7         12077         11         14           12011         11         106.9         12045         11         127.9         12079         11         14           12012         11         107.5         12046         11         128.5         12079         11         14           12013         11         108.2         12047         11         129.1         12080         11         14           12015         11         108.8         12048         11         129.1         12080         11         14           12015         11         10.9.4         12049         11         130.4         12082         11         15           12016         11         110.6         12050         11         131.0         12084         11         15           12019         11         111.9         12050         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.1                       |  |  |  |  |  |  |  |  |  |  |  |
| 12009 11 105.7 12042 11 126.0 12076 11 14 12010 11 106.3 12044 11 127.3 12078 11 14 12011 11 106.9 12045 11 127.3 12079 11 14 12012 11 107.5 12046 11 128.5 12013 11 108.2 12047 11 129.1 12080 11 14 12014 11 108.8 12048 11 129.7 12081 11 15 12015 11 109.4 12049 11 130.4 12082 11 15 12016 11 110.6 12049 11 130.4 12082 11 15 12018 11 110.6 12017 11 110.6 12018 11 131.0 12084 11 15 12018 11 111.2 12018 11 131.0 12084 11 15 12018 11 111.2 12018 11 131.0 12085 11 15 12018 11 111.2 12018 11 131.0 12085 11 15 12019 11 111.9 12052 11 132.2 12086 11 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.7                       |  |  |  |  |  |  |  |  |  |  |  |
| 12010 11 106.3 12043 11 126.7 12077 11 14 12011 11 106.9 12044 11 127.3 12078 11 14 12011 11 106.9 12045 11 127.9 12079 11 14 12012 11 107.5 12046 11 128.5 12013 11 108.2 12047 11 129.1 12080 11 14 12014 11 108.8 12048 11 129.7 12081 11 15 12015 11 109.4 12048 11 129.7 12081 11 15 12016 11 110.0 12017 11 110.6 12050 11 131.0 12084 11 15 12018 11 111.2 12018 11 111.2 12018 11 111.2 12018 11 131.0 12084 11 15 12018 11 111.2 12051 11 131.0 12085 11 15 12019 11 111.9 12052 11 132.2 12086 11 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.4                       |  |  |  |  |  |  |  |  |  |  |  |
| 12010         11         106.3         12044         11         127.3         12078         11         14           12011         11         106.9         12045         11         127.9         12079         11         14           12012         11         107.5         12046         11         128.5         12080         11         14           12013         11         108.2         12047         11         129.1         12080         11         14           12015         11         109.4         12048         11         129.7         12081         11         15           12016         11         110.0         12049         11         130.4         12082         11         15           12017         11         110.6         12050         11         131.0         12084         11         15           12018         11         110.6         12050         11         131.0         12084         11         15           12018         11         111.9         12051         11         131.0         12084         11         15           12019         11         111.9         12051         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.0                       |  |  |  |  |  |  |  |  |  |  |  |
| 12011 11 106.9 12045 11 127.9 12079 11 14 12012 11 107.5 12046 11 128.5 12013 11 108.2 12047 11 129.1 12080 11 14 12014 11 108.8 12048 11 129.7 12081 11 15 12015 11 10.0 12016 11 110.0 12017 11 110.6 12050 11 131.0 12084 11 15 12018 11 111.2 12018 11 111.2 12018 11 131.0 12084 11 15 12018 11 111.2 12051 11 131.0 12084 11 15 12018 11 111.2 12051 11 131.0 12085 11 15 12019 11 111.9 12052 11 132.2 12086 11 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.6                       |  |  |  |  |  |  |  |  |  |  |  |
| 12012 11 107.5 12046 11 128.5 12013 11 108.2 12014 11 108.8 12048 11 129.1 12080 11 14 12014 11 108.8 12015 11 109.4 12049 11 130.4 12082 11 15 12016 11 110.0 12017 11 110.6 12050 11 131.0 12084 11 15 12018 11 111.2 12018 11 131.0 12084 11 15 12018 11 111.2 12051 11 131.0 12085 11 15 12019 11 111.9 12052 11 132.2 12086 11 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.2                       |  |  |  |  |  |  |  |  |  |  |  |
| 12013         11         108.2         12047         11         129.1         12080         11         14           12014         11         108.8         12048         11         129.7         12081         11         15           12015         11         109.4         12049         11         130.4         12082         11         15           12016         11         110.0         12050         11         131.0         12083         11         15           12018         11         111.2         12050         11         131.0         12084         11         15           12018         11         111.9         12052         11         132.2         12086         11         15           12019         11         111.9         12052         11         132.2         12086         11         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.8                       |  |  |  |  |  |  |  |  |  |  |  |
| 12014         11         108.8         12048         11         129.7         12081         11         15           12015         11         109.4         12049         11         130.4         12082         11         15           12016         11         110.0         12050         11         131.0         12084         11         15           12017         11         110.6         12050         11         131.0         12084         11         15           12018         11         111.2         12051         11         131.0         12085         11         15           12019         11         111.9         12052         11         132.2         12086         11         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |  |  |  |  |  |  |  |  |  |  |  |
| 12015 11 109.4 12049 11 130.4 12082 11 15<br>12016 11 110.0 12050 11 131.0 12083 11 15<br>12017 11 110.6 12050 11 131.0 12084 11 15<br>12018 11 111.2 12051 11 131.6 12085 11 15<br>12019 11 111.9 12052 11 132.2 12086 11 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.4                       |  |  |  |  |  |  |  |  |  |  |  |
| 12016 11 110.0 12050 11 131.0 12083 11 15<br>12017 11 110.6 12050 11 131.0 12084 11 15<br>12018 11 111.2 12051 11 131.6 12085 11 15<br>12019 11 111.9 12052 11 132.2 12086 11 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                       |  |  |  |  |  |  |  |  |  |  |  |
| 12017 11 110.6 12050 11 131.0 12084 11 15<br>12018 11 111.2 12051 11 131.6 12085 11 15<br>12019 11 111.9 12052 11 132.2 12086 11 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6                       |  |  |  |  |  |  |  |  |  |  |  |
| 12018 11 111.2 12051 11 131.6 12085 11 15<br>12019 11 111.9 12052 11 132.2 12086 11 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.3                       |  |  |  |  |  |  |  |  |  |  |  |
| 12019 11 111.9 12052 11 132.2 12086 11 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.9                       |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5                       |  |  |  |  |  |  |  |  |  |  |  |
| 10052 11 120 0 140007 14 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.1                       |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.7                       |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.3                       |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.9                       |  |  |  |  |  |  |  |  |  |  |  |
| 12022 11 113.7 12056 11 134.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.6                       |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.2                       |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.8                       |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.4                       |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.0                       |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.6                       |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.2                       |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.9                       |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5                       |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1                       |  |  |  |  |  |  |  |  |  |  |  |
| 12032 11 119.9 12066 11 140.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |  |  |  |  |  |  |  |  |  |  |  |
| 12033 11 120.5 12067 11 141.4 12100 11 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.7                       |  |  |  |  |  |  |  |  |  |  |  |

Use check point at 12000 Kc

| Frequency: | 12100. | 12200 | Ke |
|------------|--------|-------|----|

|       |    |       | ,     |    |       |       |    |        |
|-------|----|-------|-------|----|-------|-------|----|--------|
| Freq. | A  | В     | Freq. | A  | В     | Freq. | A  | В      |
| 12100 | 11 | 161.7 | 12134 | 11 | 182.5 | 12168 | 11 | 203.4  |
| 12101 | 11 | 162.3 | 12135 | 11 | 183.2 | 12169 | 11 | 204.0  |
| 12102 | 11 | 162.9 | 12136 | 11 | 183.8 |       |    |        |
| 12103 | 11 | 163.5 | 12137 | 11 | 184.4 | 12170 | 11 | 204.6  |
| 12104 | 11 | 164.2 | 12138 | 11 | 185.0 | 12171 | 11 | 205.2  |
| 12105 | 11 | 164.8 | 12139 | 11 | 185.6 | 12172 | 11 | 205.8  |
| 12106 | 11 | 165.4 | i     |    |       | 12173 | 11 | 206.4  |
| 12107 | 11 | 166.0 | 12140 | 11 | 186.2 | 12174 | 11 | 207.0  |
| 12108 | 11 | 166.6 | 12141 | 11 | 186 8 | 12175 | 11 | 207.6  |
| 12109 | 11 | 167.2 | 12142 | 11 | 187 4 | 12176 | 11 | 208.3  |
|       |    |       | 12143 | 11 | 188.1 | 12177 | 11 | 208.9  |
| 12110 | 11 | 167.8 | 12144 | 11 | 188.7 | 12178 | 11 | 209.5  |
| 12111 | 11 | 168.5 | 12145 | 11 | 189.3 | 12179 | 11 | 210.1  |
| 12112 | 11 | 169.1 | 12146 | 11 | 189.9 |       |    |        |
| 12113 | 11 | 169.7 | 12147 | 11 | 190.5 | 12180 | 11 | 210.7  |
| 12114 | 11 | 170.3 | 12148 | 11 | 191.1 | 12181 | 11 | 211 .3 |
| 12115 | 11 | 170.9 | 12149 | 11 | 191.7 | 12182 | 11 | 211.9  |
| 12116 | 11 | 171.5 |       |    |       | 12183 | 11 | 212.5  |
| 12117 | 11 | 172.1 | 12150 | 11 | 192.3 | 12184 | 11 | 213.1  |
| 12118 | 11 | 172.8 | 12151 | 11 | 193.0 | 12185 | 11 | 213.8  |
| 12119 | 11 | 173.4 | 12152 | 11 | 193.6 | 12186 | 11 | 214.4  |
|       |    |       | 12153 | 11 | 194.2 | 12187 | 11 | 215.0  |
| 12120 | 11 | 174.0 | 12154 | 11 | 194.8 | 12188 | 11 | 215.6  |
| 12121 | 11 | 174.6 | 12155 | 11 | 195.4 | 12189 | 11 | 216.2  |
| 12122 | 11 | 175.2 | 12156 | 11 | 196.0 |       |    |        |
| 12123 | 11 | 175.8 | 12157 | 11 | 196.6 | 12190 | 11 | 216.8  |
| 12124 | 11 | 176.4 | 12158 | 11 | 197.2 | 12191 | 11 | 217.4  |
| 12125 | 11 | 177.0 | 12159 | 11 | 197.8 | 12192 | 11 | 218.0  |
| 12126 | 11 | 177.7 |       |    |       | 12193 | 11 | 218.7  |
| 12127 | 11 | 178.3 | 12160 | 11 | 198.5 | 12194 | 11 | 219.3  |
| 12128 | 11 | 178.9 | 12161 | 11 | 199.1 | 12195 | 11 | 219.9  |
| 12129 | 11 | 179.5 | 12162 | 11 | 199.7 | 12196 | 11 | 220.5  |
| •     |    | 1     | 12163 | 11 | 200.3 | 12197 | 11 | 221.1  |
| 12130 | 11 | 180.1 | 12164 | 11 | 200.9 | 12198 | 11 | 221.7  |
| 12131 | 11 | 180.7 | 12165 | 11 | 201.5 | 12199 | 11 | 222.3  |
| 12132 | 11 | 181.3 | 12166 | 11 | 202.1 |       |    |        |
| 12133 | 11 | 181.9 | 12167 | 11 | 202.7 | 12200 | 11 | 222.9  |
|       |    |       |       |    |       |       |    |        |
|       |    |       |       |    |       |       |    |        |

Use check point at 12000 Kc

Frequency: 12200-12300 Kc

| Freq.  | Α  | В     | Freq. | A  | В     | Freq. | A  | В             |
|--------|----|-------|-------|----|-------|-------|----|---------------|
| 12:200 | 11 | 222.9 | 12234 | 11 | 243.8 | 12268 | 11 | 264.6         |
| 12:201 | 11 | 223.6 | 12235 | 11 | 244.4 | 12269 | 11 | 265.3         |
| 12:202 | 11 | 224.2 | 12236 | 11 | 245.0 | l     |    |               |
| 12:203 | 11 | 224.8 | 12237 | 11 | 245.6 | 12270 | 11 | 265.9         |
| 12:204 | 11 | 225.4 | 12238 | 11 | 246.2 | 12271 | 11 | 266.5         |
| 12205  | 11 | 226.0 | 12239 | 11 | 246.8 | 12272 | 11 | 267 1         |
| 12206  | 11 | 226.6 | İ     |    |       | 12273 | 11 | 267.7         |
| 12207  | 11 | 227.2 | 12240 | 11 | 247.4 | 12274 | 11 | 268.3         |
| 12:208 | 11 | 227.8 | 12241 | 11 | 248.1 | 12275 | 11 | 268.9         |
| 12209  | 11 | 228.5 | 12242 | 11 | 248.7 | 12276 | 11 | 269.6         |
|        |    |       | 12243 | 11 | 249.3 | 12277 | 11 | 270.2         |
| 12210  | 11 | 229.1 | 12244 | 11 | 249.9 | 12278 | 11 | 270.8         |
| 12211  | 11 | 229.7 | 12245 | 11 | 250.5 | 12279 | 11 | 271.4         |
| 12212  | 11 | 230.3 | 12246 | 11 | 251.1 |       |    |               |
| 12213  | 11 | 230.9 | 12247 | 11 | 251.7 | 12280 | 11 | 272.0         |
| 12214  | 11 | 231.5 | 12248 | 11 | 252.4 | 12281 | 11 | 272.6         |
| 12215  | 11 | 232.1 | 12249 | 11 | 253.0 | 12282 | 11 | 273.2         |
| 12216  | 11 | 232.7 |       |    |       | 12283 | 11 | 273.9         |
| 12217  | 11 | 233.4 | 12250 | 11 | 253.6 | 12284 | 11 | 274.5         |
| 12218  | 11 | 234.0 | 12251 | 11 | 254.2 | 12285 | 11 | 275.1         |
| 12219  | 11 | 234.6 | 12252 | 11 | 254.8 | 12286 | 11 | 275.7         |
|        |    |       | 12253 | 11 | 255.4 | 12287 | 11 | 276.3         |
| 12220  | 11 | 235.2 | 12254 | 11 | 256.0 | 12288 | 11 | 276.9         |
| 12221  | 11 | 235.8 | 12255 | 11 | 256.7 | 12289 | 11 | 277.5         |
| 12222  | 11 | 236.4 | 12256 | 11 | 257.3 |       |    |               |
| 12223  | 11 | 237.0 | 12257 | 11 | 257.9 | 12290 | 11 | 278.2         |
| 12224  | 11 | 237.6 | 12258 | 11 | 258.5 | 12291 | 11 | 278.8         |
| 12225  | 11 | 238.3 | 12259 | 11 | 259.1 | 12292 | 11 | 279.4         |
| 12226  | 11 | 238.9 |       |    |       | 12293 | 11 | 280.0         |
| 12227  | 11 | 239.5 | 12260 | 11 | 259.7 | 12294 | 11 | 280.6         |
| 12228  | 11 | 240.1 | 12261 | 11 | 260.3 | 12295 | 11 | 281.2         |
| 12229  | 11 | 240.7 | 12262 | 11 | 261.0 | 12296 | 11 | 281.8         |
|        |    |       | 12263 | 11 | 261.6 | 12297 | 11 | 282. <b>5</b> |
| 12230  | 11 | 241.3 | 12264 | 11 | 262.2 | 12298 | 11 | 283.1         |
| 12231  | 11 | 241.9 | 12265 | 11 | 262.8 | 12299 | 11 | 283.7         |
| 12232  | 11 | 242.5 | 12266 | 11 | 263.4 |       |    |               |
| 12233  | 11 | 243.2 | 12267 | 11 | 264.0 | 12300 | 11 | 284.3         |
|        |    |       | l     |    |       |       |    |               |
|        |    | _     |       |    |       |       |    |               |

Use check point at 12000 Kc

Frequency: 12300-12400 Kc

|   | Freq.  | A  | В     | Freq. | Α  | В     | Freq. | A  | В     |
|---|--------|----|-------|-------|----|-------|-------|----|-------|
|   | 12300  | 11 | 284.3 | 12334 | 11 | 305.2 | 12368 | 11 | 326.2 |
|   | 12301  | 11 | 284.9 | 12335 | 11 | 305.8 | 12369 | 11 | 326.8 |
|   | 12302  | 11 | 285.5 | 12336 | 11 | 306.5 | !     |    |       |
|   | 12303  | 11 | 286.1 | 12337 | 11 | 307.1 | 12370 | 11 | 327.4 |
|   | 12304  | 11 | 286.8 | 12338 | 11 | 307.7 | 12371 | 11 | 328.0 |
|   | 12305  | 11 | 287.4 | 12339 | 11 | 308.3 | 12372 | 11 | 328.6 |
|   | 12306  | 11 | 288.0 | l     |    |       | 12373 | 11 | 329.2 |
|   | 12307  | 11 | 288.6 | 12340 | 11 | 308.9 | 12374 | 11 | 329.9 |
|   | 12308  | 11 | 289.2 | 12341 | 11 | 309 5 | 12375 | 11 | 330.5 |
|   | 12309  | 11 | 289.8 | 12342 | 11 | 310.2 | 12376 | 11 | 331.1 |
|   |        |    |       | 12343 | 11 | 310.8 | 12377 | 11 | 331.7 |
|   | 12310  | 11 | 290.5 | 12344 | 11 | 311.4 | 12378 | 11 | 332.3 |
|   | 12311  | 11 | 291 1 | 12345 | 11 | 312.0 | 12379 | 11 | 332.9 |
|   | 12312  | 11 | 291 7 | 12346 | 11 | 312.6 |       |    |       |
|   | 12313  | 11 | 292 3 | 12347 | 11 | 313.2 | 12380 | 11 | 333.5 |
|   | 12314  | 11 | 292 9 | 12348 | 11 | 313.9 | 12381 | 11 | 334.2 |
|   | 12315  | 11 | 293.5 | 12349 | 11 | 314.5 | 12382 | 11 | 334.8 |
|   | 12316  | 11 | 294.2 |       |    |       | 12383 | 11 | 335.4 |
|   | 12317  | 11 | 294.8 | 12350 | 11 | 315 1 | 12384 | 11 | 336.0 |
|   | 12318  | 11 | 295.4 | 12351 | 11 | 315.7 | 12385 | 11 | 336.6 |
|   | 12:319 | 11 | 296.0 | 12352 | 11 | 316.3 | 12386 | 11 | 337.2 |
|   |        |    |       | 12353 | 11 | 316.9 | 12387 | 11 | 337 8 |
|   | 12:320 | 11 | 296.6 | 12354 | 11 | 317.5 | 12388 | 11 | 338.5 |
|   | 12:321 | 11 | 297.2 | 12355 | 11 | 318 2 | 12389 | 11 | 339.1 |
|   | 12322  | 11 | 297.8 | 12356 | 11 | 318.8 | İ     |    |       |
|   | 12323  | 11 | 298.5 | 12357 | 11 | 319.4 | 12390 | 11 | 339.7 |
|   | 12324  | 11 | 299.1 | 12358 | 11 | 320.0 | 12391 | 11 | 340.3 |
|   | 12:325 | 11 | 299.7 | 12359 | 11 | 320.6 | 12392 | 11 | 340 9 |
|   | 12326  | 11 | 300.3 |       |    |       | 12393 | 11 | 341.5 |
|   | 12327  | 11 | 300.9 | 12360 | 11 | 321.2 | 12394 | 11 | 342.2 |
|   | 12328  | 11 | 301.5 | 12361 | 11 | 321 9 | 12395 | 11 | 342 8 |
|   | 12329  | 11 | 302.2 | 12362 | 11 | 322.5 | 12396 | 11 | 343.4 |
|   |        |    |       | 12363 | 11 | 323.1 | 12397 | 11 | 344.0 |
|   | 12330  | 11 | 302 8 | 12364 | 11 | 323.7 | 12398 | 11 | 344.6 |
|   | 12331  | 11 | 303.4 | 12365 | 11 | 324.3 | 12399 | 11 | 345.2 |
|   | 12332  | 11 | 304.0 | 12366 | 11 | 324.9 |       |    |       |
|   | 12333  | 11 | 304.6 | 12367 | 11 | 325.5 | 12400 | 11 | 345.8 |
| - |        |    |       |       |    |       |       |    |       |

Use check point at 12600 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency; 12400—12500 Kc |    |        |       |    |        |       |    |         |  |  |  |
|---------------------------|----|--------|-------|----|--------|-------|----|---------|--|--|--|
| Freq.                     | A  | В      | Freq. | A  | В      | Freq. | A  | В       |  |  |  |
| 12400                     | 11 | 345.8  | 12434 | 11 | 366.8  | 12468 | 11 | 387.7   |  |  |  |
| 12401                     | 11 | 346.5  | 12435 | 11 | 367.4  | 12469 | 11 | 388.3   |  |  |  |
| 12402                     | 11 | 347.1  | 12436 | 11 | 368.0  |       |    |         |  |  |  |
| 12403                     | 11 | 347 7  | 12437 | 11 | 368.6  | 12470 | 11 | 388.9   |  |  |  |
| 12404                     | 11 | 348.3  | 12438 | 11 | 369.2  | 12471 | 11 | 389.5   |  |  |  |
| 12405                     | 11 | 348.9  | 12439 | 11 | 369.8  | 12472 | 11 | 390.1   |  |  |  |
| 12406                     | 11 | 349.5  |       |    |        | 12473 | 11 | 390.8   |  |  |  |
| 12407                     | 11 | 350.1  | 12440 | 11 | 370.4  | 12474 | 11 | 391.4   |  |  |  |
| 12408                     | 11 | 350.8  | 12441 | 11 | 371.1  | 12475 | 11 | 392.0   |  |  |  |
| 12409                     | 11 | 351.4  | 12442 | 11 | 371.7  | 12476 | 11 | 392.6   |  |  |  |
|                           |    |        | 12443 | 11 | 372.3  | 12477 | 11 | 393.2   |  |  |  |
| 12410                     | 11 | 352.0  | 12444 | 11 | 372.9  | 12478 | 11 | 393.8   |  |  |  |
| 12411                     | 11 | 352 6  | 12445 | 11 | 373.5  | 12479 | 11 | 394.4   |  |  |  |
| 12412                     | 11 | 353.2  | 12446 | 11 | 374.1  |       |    |         |  |  |  |
| 12413                     | 11 | 353.8  | 12447 | 11 | 374.8  | 12480 | 11 | 395 . 1 |  |  |  |
| 12414                     | 11 | 354.5  | 12448 | 11 | 375.4  | 12481 | 11 | 395.7   |  |  |  |
| 12415                     | 11 | 355.1  | 12449 | 11 | 376.0  | 12482 | 11 | 396.3   |  |  |  |
| 12416                     | 11 | 355.7  |       |    |        | 12483 | 11 | 396.9   |  |  |  |
| 12417                     | 11 | 356.3  | 12450 | 11 | 376.6  | 12484 | 11 | 397.5   |  |  |  |
| 12418                     | 11 | 356.9  | 12451 | 11 | 377.2  | 12485 | 11 | 398.2   |  |  |  |
| 12419                     | 11 | 357.5  | 12452 | 11 | 377.8  | 12486 | 11 | 398.8   |  |  |  |
|                           |    |        | 12453 | 11 | 378.4  | 12487 | 11 | 399.4   |  |  |  |
| 12420                     | 11 | 358.1  | 12454 | 11 | 379.1  | 12488 | 11 | 400.0   |  |  |  |
| 12421                     | 11 | 358.8  | 12455 | 11 | 379.7  | 12489 | 11 | 400.7   |  |  |  |
| 12422                     | 11 | 359 4  | 12456 | 11 | 380.3  | 1     |    |         |  |  |  |
| 12423                     | 11 | 360.0  | 12457 | 11 | 380.9  | 12490 | 11 | 401.3   |  |  |  |
| 12424                     | 11 | 360.6  | 12458 | 11 | 381.5  | 12491 | 11 | 401.9   |  |  |  |
| 12425                     | 11 | 361.2  | 12459 | 11 | 382.1  | 12492 | 11 | 402.5   |  |  |  |
| 12426                     | 11 | 361.8  |       |    |        | 12493 | 11 | 403.1   |  |  |  |
| 12427                     | 11 | 362.4  | 12460 | 11 | 382.8  | 12494 | 11 | 403.8   |  |  |  |
| 12428                     | 11 | 363.1  | 12461 | 11 | 383.4  | 12495 | 11 | 404.4   |  |  |  |
| 12429                     | 11 | 363.7  | 12462 | 11 | 384.0  | 12496 | 11 | 405.0   |  |  |  |
|                           |    |        | 12463 | 11 | 384.6  | 12497 | 11 | 405.6   |  |  |  |
| 12430                     | 11 | 3641.3 | 12464 | 11 | 385 :2 | 12498 | 11 | 406.2   |  |  |  |
| 12431                     | 11 | 364.9  | 12465 | 11 | 385.8  | 12499 | 11 | 406.9   |  |  |  |
| 12432                     | 11 | 365.5  | 12466 | 11 | 386.4  |       |    |         |  |  |  |
| 12433                     | 11 | 366.1  | 12467 | 11 | 387.1  | 12500 | 11 | 407.5   |  |  |  |
|                           |    |        | l     |    |        | i     |    |         |  |  |  |

Use check point at 12600 Kc

### Frequency: 12500-12600 Kc

| 11040011Cy. 12300—12000 RC |    |       |       |    |       |       |    |         |  |  |  |
|----------------------------|----|-------|-------|----|-------|-------|----|---------|--|--|--|
| Freq.                      | A  | В     | Freq. | A  | В     | Freq. | A  | В       |  |  |  |
| 12500                      | 11 | 407.5 | 12534 | 11 | 428.6 | 12568 | 11 | 449.7   |  |  |  |
| 12501                      | 11 | 408.1 | 12535 | 11 | 429.2 | 12569 | 11 | 450.3   |  |  |  |
| 12502                      | 11 | 408.7 | 12536 | 11 | 429.9 |       |    |         |  |  |  |
| 12503                      | 11 | 409.4 | 12537 | 11 | 430.5 | 12570 | 11 | 451.0   |  |  |  |
| 12504                      | 11 | 410.0 | 12538 | 11 | 431.1 | 12571 | 11 | 451.6   |  |  |  |
| 12505                      | 11 | 410.6 | 12539 | 11 | 431.7 | 12572 | 11 | 452.2   |  |  |  |
| 12506                      | 11 | 411.2 |       |    |       | 12573 | 11 | 452.8   |  |  |  |
| 12507                      | 11 | 411.8 | 12540 | 11 | 432.3 | 12574 | 11 | 453 . 4 |  |  |  |
| 12508                      | 11 | 412.5 | 12541 | 11 | 433.0 | 12575 | 11 | 454 . 1 |  |  |  |
| 12509                      | 11 | 413.1 | 12542 | 11 | 433.6 | 12576 | 11 | 454 7   |  |  |  |
|                            |    |       | 12543 | 11 | 434.2 | 12577 | 11 | 455.3   |  |  |  |
| 12510                      | 11 | 413.7 | 12544 | 11 | 434 8 | 12578 | 11 | 455.9   |  |  |  |
| 12511                      | 11 | 414.3 | 12545 | 11 | 435.4 | 12579 | 11 | 456.5   |  |  |  |
| 12512                      | 11 | 414.9 | 12546 | 11 | 436.1 |       |    |         |  |  |  |
| 12513                      | 11 | 415.6 | 12547 | 11 | 436.7 | 12580 | 11 | 457.2   |  |  |  |
| 12514                      | 11 | 416.2 | 12548 | 11 | 437.3 | 12581 | 11 | 457.8   |  |  |  |
| 12515                      | 11 | 416.8 | 12549 | 11 | 437.9 | 12582 | 11 | 458 4   |  |  |  |
| 12516                      | 11 | 417.4 | 1     |    |       | 12583 | 11 | 459.0   |  |  |  |
| 12517                      | 11 | 418.0 | 12550 | 11 | 438.5 | 12584 | 11 | 459.6   |  |  |  |
| 12518                      | 11 | 418.7 | 12551 | 11 | 439.2 | 12585 | 11 | 460.3   |  |  |  |
| 12519                      | 11 | 419.3 | 12552 | 11 | 439.8 | 12586 | 11 | 460.9   |  |  |  |
|                            |    |       | 12553 | 11 | 440.4 | 12587 | 11 | 461.5   |  |  |  |
| 12520                      | 11 | 419.9 | 12554 | 11 | 441 0 | 12588 | 11 | 462.1   |  |  |  |
| 12521                      | 11 | 420.5 | 12555 | 11 | 441.7 | 12589 | 11 | 462.8   |  |  |  |
| 12522                      | 11 | 421.2 | 12556 | 11 | 442.3 |       |    |         |  |  |  |
| 12523                      | 11 | 421 8 | 12557 | 11 | 442.9 | 12590 | 11 | 463.4   |  |  |  |
| 12524                      | 11 | 422.4 | 12558 | 11 | 443.5 | 12591 | 11 | 464.u   |  |  |  |
| 12525                      | 11 | 423.0 | 12559 | 11 | 444.1 | 12592 | 11 | 464.6   |  |  |  |
| 12526                      | 11 | 423.6 | l     |    |       | 12593 | 11 | 465.2   |  |  |  |
| 12527                      | 11 | 424.3 | 12560 | 11 | 444.8 | 12594 | 11 | 465.9   |  |  |  |
| 12528                      | 11 | 424.9 | 12561 | 11 | 445.4 | 12595 | 11 | 466.5   |  |  |  |
| 12529                      | 11 | 425.5 | 12562 | 11 | 446.0 | 12596 | 11 | 467.1   |  |  |  |
|                            |    |       | 12563 | 11 | 446.6 | 12597 | 11 | 467.7   |  |  |  |
| 12530                      | 11 | 426.1 | 12564 | 11 | 447.2 | 12598 | 11 | 46B.3   |  |  |  |
| 12531                      | 11 | 426.7 | 12565 | 11 | 447.9 | 12599 | 11 | 469.0   |  |  |  |
| 12532                      | 11 | 427.4 | 12566 | 11 | 448.5 | I     |    |         |  |  |  |
| 12533                      | 11 | 428.0 | 12567 | 11 | 449.1 | 12600 | 11 | 469.6   |  |  |  |
|                            |    |       |       |    |       | 1     |    |         |  |  |  |

Use check point at 12600 Kc

Frequency: 12600-12700 Kc

| Freq. | A   | В     | Freq.    | A    | В        | Freq. | A  | В               |
|-------|-----|-------|----------|------|----------|-------|----|-----------------|
| 12600 | 111 | 469.6 | 12634    | 11   | 490.6    | 12668 | 11 | 511.7           |
| 12601 | 11  | 470.2 | 12635    | 11   | 491.2    | 12669 | 11 | 512.3           |
| 12602 | 11  | 470 8 | 12636    | 11   | 491.9    |       |    |                 |
| 12603 | 11  | 471.4 | 12637    | 11   | 492.5    | 12670 | 11 | 513.0           |
| 12604 | 11  | 472 1 | 12638    | 11   | 493.1    | 12671 | 11 | 513.6           |
| 12605 | 11  | 472.7 | 12639    | 11   | 493.7    | 12672 | 11 | 514.2           |
| 12606 | 11  | 473.3 | ļ        |      |          | 12673 | 11 | 514.8           |
| 12607 | 11  | 473.9 | 12640    | 11   | 494.3    | 12674 | 11 | 515.4           |
| 12608 | 11  | 474.5 | 12641    | 11   | 495.0    | 12675 | 11 | 516.1           |
| 12609 | 11  | 475.2 | 12642    | 11   | 495.6    | 12676 | 11 | 516.7           |
|       |     |       | 12643    | 11   | 496.2    | 12677 | 11 | 517.3           |
| 12610 | 11  | 475.8 | 12644    | 11   | 496.8    | 12678 | 11 | 517.9           |
| 12611 | 11  | 476 4 | 12645    | 11   | 497.4    | 12679 | 11 | 518.6           |
| 12612 | 11  | 477.0 | 12646    | 11   | 498.1    |       |    |                 |
| 12613 | 11  | 477.6 | 12647    | 11   | 498.7    | 12680 | 11 | 519.2           |
| 12614 | 11  | 478.2 | 12648    | 11   | 499.3    | 12681 | 11 | 519.8           |
| 12615 | 11  | 478.9 | 12649    | 11   | 499.9    | 12682 | 11 | 520.4           |
| 12616 | 11  | 479.5 |          |      |          | 12683 | 11 | 521.1           |
| 12617 | 11  | 480 1 | 12650    | 11   | 500.5    | 12684 | 11 | 521.7           |
| 12618 | 11  | 480 7 | 12651    | 11   | 501 1    | 12685 | 11 | 522.3           |
| 12619 | 11  | 481.3 | 12652    | 11   | 501.8    | 12686 | 11 | 522.9           |
|       |     |       | 12653    | 11   | 502.4    | 12687 | 11 | <b>52</b> 3 . 6 |
| 12620 | 11  | 482.0 | 12654    | 11   | 503.0    | 12688 | 11 | 524.2           |
| 12621 | 11  | 482.6 | 12655    | 11   | 503.6    | 12689 | 11 | 524.8           |
| 12622 | 11  | 483.2 | 12656    | 11   | 504.2    |       |    |                 |
| 12623 | 11  | 483.8 | 12657    | 11   | 504.9    | 12690 | 11 | 525.4           |
| 12624 | 11  | 484.4 | 12658    | 11   | 505.5    | 12691 | 11 | 526.0           |
| 12625 | 11  | 485.1 | 12659    | 11   | 506.1    | 12692 | 11 | 526.7           |
| 12626 | 11  | 485.7 |          |      |          | 12693 | 11 | 527.3           |
| 12627 | 11  | 486.3 | 12660    | 11   | 506.7    | 12694 | 11 | 527.9           |
| 12628 | 11  | 486.9 | 12661    | 11   | 507.3    | 12695 | 11 | 528.5           |
| 12629 | 11  | 487.5 | 12662    | 11   | 508.0    | 12696 | 11 | 529.2           |
|       |     |       | 12663    | 11   | 508.6    | 12697 | 11 | 529.8           |
| 12630 | 11  | 488.2 | 12664    | 11   | 509.2    | 12698 | 11 | 530.4           |
| 12631 | 11  | 488.8 | 12665    | 11   | 509.8    | 12699 | 11 | 531.0           |
| 12632 | 11  | 489.4 | 12666    | 11   | 510.5    |       |    |                 |
| 12633 | 11  | 490.0 | 12667    | 11   | 511.1    | 12700 | 11 | 531.7           |
|       |     | Use   | check po | oint | ut 12600 | ) Ke  |    |                 |

# Frequency: 12700-12800 Kc

| Freq. | A  | В     | Freq. | A  | В      | Freq.  | A  | В            |  |  |  |
|-------|----|-------|-------|----|--------|--------|----|--------------|--|--|--|
| 12700 | 11 | 531.7 | 12734 | 11 | 552.8  | 12768  | 11 | 574.0        |  |  |  |
| 12701 | 11 | 532.3 | 12735 | 11 | 553.4  | 12769  | 11 | 574.6        |  |  |  |
| 12702 | 11 | 532.9 | 12736 | 11 | 554.1  | 1      |    |              |  |  |  |
| 12703 | 11 | 533.5 | 12737 | 11 | 554.7  | 12770  | 11 | 575.2        |  |  |  |
| 12704 | 11 | 534.1 | 12738 | 11 | 555.3  | 12771  | 11 | 575.8        |  |  |  |
| 12705 | 11 | 534.8 | 12739 | 11 | 555.9  | 12772  | 11 | 576.4        |  |  |  |
| 12706 | 11 | 535.4 |       |    |        | 12773  | 11 | 577.1        |  |  |  |
| 12707 | 11 | 536.0 | 12740 | 11 | 556.6  | 12774  | 11 | 577.7        |  |  |  |
| 12708 | 11 | 536.6 | 12741 | 11 | 557.2  | 12775  | 11 | 578.3        |  |  |  |
| 12709 | 11 | 537.3 | 12742 | 11 | 557.8  | 12776  | 11 | 578.9        |  |  |  |
|       |    |       | 12743 | 11 | 558.4  | 12777  | 11 | 579.6        |  |  |  |
| 12710 | 11 | 537.9 | 12744 | 11 | 559.0  | 12778  | 11 | 580.2        |  |  |  |
| 12711 | 11 | 538.5 | 12745 | 11 | 559.7  | 12779  | 11 | 580 8        |  |  |  |
| 12712 | 11 | 539 1 | 12746 | 11 | 560 3. | l      |    |              |  |  |  |
| 12713 | 11 | 539 8 | 12747 | 11 | 560.9  | 12780  | 11 | 581 4        |  |  |  |
| 12714 | 11 | 540.4 | 12748 | 11 | 561.5  | 12781  | 11 | 582.0        |  |  |  |
| 12715 | 11 | 541 0 | 12749 | 11 | 562.1  | 12782  | 11 | 582.7        |  |  |  |
| 12716 | 11 | 541.6 |       |    |        | 12783  | 11 | 583 3        |  |  |  |
| 12717 | 11 | 542.3 | 12750 | 11 | 562.8  | 12784  | 11 | 583.9        |  |  |  |
| 12718 | 11 | 542.9 | 12751 | 11 | 563.4  | 12785  | 11 | 584.5        |  |  |  |
| 12719 | 11 | 543.5 | 12752 | 11 | 564.0  | 12786  | 11 | 585.2        |  |  |  |
|       |    |       | 12753 | 11 | 564.6  | 12787  | 11 | 585.8        |  |  |  |
| 12720 | 11 | 544.1 | 12754 | 11 | 565.3  | 12788  | 11 | 586.4        |  |  |  |
| 12721 | 11 | 544.7 | 12755 | 11 | 565.9  | 127,89 | 11 | 587.0        |  |  |  |
| 12722 | 11 | 545.4 | 12756 | 11 | 566.5  |        |    |              |  |  |  |
| 12723 | 11 | 546.0 | 12757 | 11 | 567.1  | 12790  | 11 | <b>587.7</b> |  |  |  |
| 12724 | 11 | 546.6 | 12758 | 11 | 567.7  | 12791  | 11 | 588.3        |  |  |  |
| 12725 | 11 | 547.2 | 12759 | 11 | 568.4  | 12792  | 11 | 588.9        |  |  |  |
| 12726 | 11 | 547.9 |       |    |        | 12793  | 11 | 589.5        |  |  |  |
| 12727 | 11 | 548.5 | 12760 | 11 | 569.0  | 12794  | 11 | 590.2        |  |  |  |
| 12728 | 11 | 549.1 | 12761 | 11 | 569.6  | 12795  | 11 | 590.8        |  |  |  |
| 12729 | 11 | 549.7 | 12762 | 11 | 570.2  | 12796  | 11 | 591 4        |  |  |  |
|       |    |       | 12763 | 11 | 570.9  | 12797  | 11 | 592 0        |  |  |  |
| 12730 | 11 | 550.3 | 12764 | 11 | 571.5  | 12798  | 11 | 592.6        |  |  |  |
| 12731 | 11 | 551.0 | 12765 | 11 | 572.1  | 12799  | 11 | 593.3        |  |  |  |
| 12732 | 11 | 551.6 | 12766 | 11 | 572.7  |        |    |              |  |  |  |
| 12733 | 11 | 552.2 | 12767 | 11 | 573.3  | 12800  | 11 | 593.9        |  |  |  |
|       |    |       |       |    |        |        |    |              |  |  |  |
|       |    |       |       |    |        |        |    |              |  |  |  |

Use check point at 12600 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

|       | 1  | Freque | ncy: 1 | 280 | 129   |       |      |       |       |      |
|-------|----|--------|--------|-----|-------|-------|------|-------|-------|------|
| Freq. | A  | В      | Freq.  | A   | В     | Freq. | A    | В     | Freq  | . А  |
| 12800 | 11 | 593.9  | 12834  | 11  | 615.1 | 12868 | 11   | 636.3 | 13000 | 11   |
| 12801 | 11 | 594.5  | 12835  | 11  | 615.7 | 12869 | 11   | 636.9 | 13001 | 11   |
| 12802 | 11 | 595.1  | 12836  | 11  | 616.3 | ŀ     |      |       | 13002 | 11   |
| 12803 | 11 | 595.8  | 12837  | 11  | 617.0 | 12870 | 11   | 637.5 | 13003 | 3 11 |
| 12804 | 11 | 596.4  | 12838  | 11  | 617.6 | 12871 | 11   | 638.2 | 13004 | 11   |
| 12805 | 11 | 597.0  | 12839  | 11  | 618.2 | 12872 | 11   | 638.8 | 13005 | 11   |
| 12806 | 11 | 597.6  | l      |     |       | 12873 | 11   | 639 4 | 13006 | 11   |
| 12807 | 11 | 598.3  | 12840  | 11  | 618.8 | 12874 | 11   | 640.0 | 13007 | 11   |
| 12808 | 11 | 598.9  | 12841  | 11  | 619.5 | 12875 | 11   | 640.7 | 13008 | 11   |
| 12809 | 11 | 599.5  | 12842  | 11  | 620.1 | 12876 | 11   | 641.3 | 13009 | 11   |
|       |    |        | 12843  | 11  | 620.7 | 12877 | 11   | 641.9 |       |      |
| 12810 | 11 | 600.1  | 12844  | 11  | 621.3 | 12878 | 11   | 642.5 | 13010 | 11   |
| 12811 | 11 | 600.8  | 12845  | 11  | 622.0 | 12879 | 11   | 643.2 | 13011 | 11   |
| 12812 | 11 | 601.4  | 12846  | 11  | 622.6 |       |      |       | 13012 | 11   |
| 12813 | 11 | 602.0  | 12847  | 11  | 623.2 | 12880 | - 11 | 643.8 | 13013 | 11   |
| 12814 | 11 | 602.6  | 12848  | 11  | 623.8 | 12881 | 11   | 644.4 | 13014 | 11   |
| 12815 | 11 | 603.2  | 12849  | 11  | 624.5 | 12882 | 11   | 645.0 | 13015 | 11   |
| 12816 | 11 | 603.9  | l      |     |       | 12883 | 11   | 645.6 | 13016 | 11   |
| 12817 | 11 | 604.5  | 12850  | 11  | 625.1 | 12884 | 11   | 646.3 | 13017 | 11   |
| 12818 | 11 | 605.1  | 12851  | 11  | 625.7 | 12885 | 11   | 646.9 | 13018 | 11   |
| 12819 | 11 | 605.7  | 12852  | 11  | 626.3 | 12886 | 11   | 647.5 | 13019 | 11   |
|       |    |        | 12853  | 11  | 626.9 | 12887 | 11   | 648.1 |       |      |
| 12820 | 11 | 606.4  | 12854  | 11  | 627.6 | 12888 | 11   | 648.8 | 13020 | 11   |
| 12821 | 11 | 607.0  | 12855  | 11  | 628.2 | 12889 | 11   | 649.4 | 13021 | 11   |
| 12822 | 11 | 607.6  | 12856  | 11  | 628.8 | l     |      |       | 13022 | 11   |
| 12823 | 11 | 608.2  | 12857  | 11  | 629.4 | 12890 | 11   | 650.0 | 13023 | 11   |
| 12824 | 11 | 608.9  | 12858  | 11  | 630.1 | 12891 | 11   | 650.6 | 13024 | - 11 |
| 12825 | 11 | 609.5  | 12859  | 11  | 630.7 | 12892 | 11   | 651.3 | 13025 | 11   |
| 12826 | 11 | 610.1  | 1      |     |       | 12893 | 11   | 651.9 | 13026 | 11   |
| 12827 | 11 | 610.7  | 12860  | 11  | 631.3 | 12894 | 11   | 652.5 | 13027 | 11   |
| 12828 | 11 | 611.4  | 12861  | 11  | 631.9 | 12895 | 11   | 653.1 | 13028 |      |
| 12829 | 11 | 612.0  | 12862  | 11  | 632.6 | 12896 | 11   | 653.7 | 13029 | 11   |
|       |    |        | 12863  | 11  | 633.2 | 12897 | 11   | 654.4 |       |      |
| 12830 | 11 | 612.6  | 12864  | 11  | 633.8 | 12898 | 11   | 655.0 | 13030 |      |
| 12831 | 11 | 613.2  | 12865  | 11  | 634.4 | 12899 | 11   | ð55.6 | 13031 | 11   |
| 12832 | 11 | 613.9  | 12866  | 11  | 635.0 | l     |      |       | 13032 |      |
| 12833 | 11 | 614.5  | 12867  | 11  | 635.7 | 12900 | 11   | 656.2 | 13033 | - 11 |
|       |    |        |        |     |       |       |      |       |       |      |

Use check point at 12600 Ke

Frequency: 12900-13000 Kc

| Freq. | A   | В     | Freq.    | A  | В     | Freq. | A  | В       |  |  |  |
|-------|-----|-------|----------|----|-------|-------|----|---------|--|--|--|
| 12900 | 11  | 656.2 | 12934    | 11 | 677.4 | 12968 | 11 | 698.6   |  |  |  |
| 12901 | 11  | 656.9 | 12935    | 11 | 678.0 | 12969 | 11 | 699.2   |  |  |  |
| 12902 | 11  | 657.5 | 12936    | 11 | 678.6 |       |    |         |  |  |  |
| 12903 | 11  | 658.1 | 12937    | 11 | 679.3 | 12970 | 11 | 699.8   |  |  |  |
| 12904 | 11  | 658.7 | 12938    | 11 | 679.9 | 12971 | 11 | 700 4   |  |  |  |
| 12905 | 11  | 659.4 | 12939    | 11 | 680.5 | 12972 | 11 | 701 .1  |  |  |  |
| 12906 | 11  | 660.0 |          |    |       | 12973 | 11 | 701 . 7 |  |  |  |
| 12907 | 11  | 660.6 | 12940    | 11 | 681 1 | 12974 | 11 | 702.3   |  |  |  |
| 12908 | 11  | 661.2 | 12941    | 11 | 681.8 | 12975 | 11 | 702.9   |  |  |  |
| 12909 | 11  | 661.8 | 12942    | 11 | 682.4 | 12976 | 11 | 703.6   |  |  |  |
|       |     |       | 12943    | 11 | 683.0 | 12977 | 11 | 704.2   |  |  |  |
| 12910 | 11  | 662.5 | 12944    | 11 | 683.6 | 12978 | 11 | 704.8   |  |  |  |
| 12911 | 11  | 663.1 | 12945    | 11 | 684.2 | 12979 | 11 | 705.4   |  |  |  |
| 12912 | 11  | 663.7 | 12946    | 11 | 684.9 |       |    |         |  |  |  |
| 12913 | 11  | 664.3 | 12947    | 11 | 685.5 | 12980 | 11 | 706.0   |  |  |  |
| 12914 | 11  | 665.0 | 12948    | 11 | 686.1 | 12981 | 11 | 706.7   |  |  |  |
| 12915 | 11  | 665.6 | 12949    | 11 | 686.7 | 12982 | 11 | 707.3   |  |  |  |
| 12916 | 11  | 666.2 |          |    |       | 12983 | 11 | 707.9   |  |  |  |
| 12917 | 11  | 666.8 | 12950    | 11 | 687.4 | 12984 | 11 | 708.5   |  |  |  |
| 12918 | 11  | 667.4 | 12951    | 11 | 688.0 | 12895 | 11 | 709.2   |  |  |  |
| 12919 | 11  | 668.1 | 12952    | 11 | 688.6 | 12986 | 11 | 709.8   |  |  |  |
|       |     |       | 12953    | 11 | 689.2 | 12987 | 11 | 710.4   |  |  |  |
| 12920 | 11  | 668.7 | 12954    | 11 | 689.8 | 12988 | 11 | 711.0   |  |  |  |
| 12921 | 11  | 669.3 | 12955    | 11 | 690.5 | 12989 | 11 | 711.7   |  |  |  |
| 12922 | 11  | 669.9 | 12956    | 11 | 691 1 | l     |    |         |  |  |  |
| 12923 | 11  | 670.6 | 12957    | 11 | 691.7 | 12990 | 11 | 712.3   |  |  |  |
| 12924 | 11  | 671.2 | 12958    | 11 | 692.3 | 12991 | 11 | 712.9   |  |  |  |
| 12925 | 11  | 671.8 | 12959    | 11 | 693.0 | 12992 | 11 | 713.5   |  |  |  |
| 12926 | 11  | 672.4 |          |    |       | 12993 | 11 | 714.2   |  |  |  |
| 12927 | 11  | 673.0 | 12960    | 11 | 693.6 | 12994 | 11 | 714.8   |  |  |  |
| 12928 | 11  | 673.7 | 12961    | 11 | 694.2 | 12995 | 11 | 715.4   |  |  |  |
| 12929 | 11  | 674.3 | 12962    | 11 | 694.8 | 12996 | 11 | 716.0   |  |  |  |
|       |     |       | 12963    | 11 | 695.5 | 12997 | 11 | 716.6   |  |  |  |
| 12930 | 11, | 674.9 | 12964    | 11 | 696.1 | 12998 | 11 | 717.3   |  |  |  |
| 12931 | 11  | 675.5 | 12965    | 11 | 696.7 | 12999 | 11 | 717.9   |  |  |  |
| 12932 | 11  | 676.2 | 12966    | 11 | 697.3 |       |    | 740 5   |  |  |  |
| 12933 | 11  | 676.8 | 12967    | 11 | 697.9 | 13000 | 11 | 718.5   |  |  |  |
|       |     |       | <u> </u> |    |       |       |    |         |  |  |  |

Use check point at 13200 Kc

Frequency: 13000-13100 Kc

| Freq. | A  | В              | Freq.          | A        | В              | Freq.          | A        | В              |
|-------|----|----------------|----------------|----------|----------------|----------------|----------|----------------|
| 13000 | 11 | 718.5          | 13034          | 11       | 739.7          | 13068          | 11       | 761 . <b>0</b> |
| 13001 | 11 | 719.1          | 13035          | 11       | 740.4          | 13069          | 11       | 761.6          |
| 13002 | 11 | 719.8          | 13036          | 11       | 741.0          |                |          |                |
| 13003 | 11 | 720.4          | 13037          | 11       | 741.6          | 13070          | 11       | 762.2          |
| 13004 | 11 | 721.0          | 13038          | 11       | 742.2          | 13071          | 11       | 762.8          |
| 13005 | 11 | 721.6          | 13039          | 11       | 742.8          | 13072          | 11       | 763.5          |
| 13006 | 11 | 722.3          |                |          |                | 13073          | 11       | 764.1          |
| 13007 | 11 | 722.9          | 13040          | 11       | 743.5          | 13074          | 11       | 764.7          |
| 13008 | 11 | 723.5          | 13041          | 11       | 744.1          | 13075          | 11       | 765.3          |
| 13009 | 11 | 724.1          | 13042          | 11       | 744.7          | 13076          | 11       | 766.0          |
|       |    |                | 13043          | 11       | 745.3          | 13077          | 11       | 766.6          |
| 13010 | 11 | 724.7          | 13044          | 11       | 746.0          | 13078          | 11       | 767.2          |
| 13011 | 11 | 725 4          | 13045          | 11       | 746.6          | 13079          | 11       | 767.8          |
| 13012 | 11 | 726.0          | 13046          | 11       | 747.2          |                |          |                |
| 13013 | 11 | 726.6          | 13047          | 11       | 747.8          | 13080          | 11       | 768.5          |
| 13014 | 11 | 727.2          | 13048          | 11       | 748.5          | 13081          | 11       | 769 . 1        |
| 13015 | 11 | 727.9          | 13049          | 11       | 749.1          | 13082          | 11       | 769.7          |
| 13016 | 11 | 728.5          |                |          |                | 13083          | 11       | 770.3          |
| 13017 | 11 | 729.1          | 13050          | 11       | 749.7          | 13084          | 11       | 770.9          |
| 13018 | 11 | 729.7          | 13051          | 11       | 750.3          | 13085          | 11       | 771.6          |
| 13019 | 11 | 730.4          | 13052          | 11       | 751.0          | 13086          | 11       | 772.2          |
|       |    |                | 13053          | 11       | 751.6          | 13087          | 11       | 772.8          |
| 13020 | 11 | 731.0          | 13054          | 11       | 752.2          | 13088          | 11       | 773.4          |
| 13021 | 11 | 731.6          | 13055          | 11       | 752.8          | 13089          | 11       | 774.0          |
| 13022 | 11 | 732.2          | 13056          | 11       | 753.5          |                |          |                |
| 13023 | 11 | 732.9          | 13057          | 11       | 754 .1         | 13090          | 11       | 774.7          |
| 13024 | 11 | 733.5          | 13058          | 11       | 754.7          | 13091          | 11       | 775.3          |
| 13025 | 11 | 734.1          | 13059          | 11       | 755.3          | 13092          | 11       | 775.9          |
| 13026 | 11 | 734.7          |                |          |                | 13093          | 11       | 776.5          |
| 13027 | 11 | 735.4          | 13060          | 11       | 756.0          | 13094          | 11       | 777.1          |
| 13028 | 11 | 736.0          | 13061          | 11       | 756.6          | 13095          | 11       | 777.8          |
| 13029 | 11 | 736.6          | 13062          | 11       | 757.2          | 13096          | 11       | 778.4          |
| +1000 | 11 | 777.0          | 13063<br>13064 | 11       | 757.8          | 13097<br>13098 | 11<br>11 | 779.0<br>779.6 |
| 13030 | 11 | 737.2          | 13065          | 11<br>11 | 758.5<br>759.1 | 13098          | 11       | 780.2          |
| 13031 | 11 | 737.9<br>738.5 | 13066          | 11       | 759.1<br>759.7 | 13099          | "        | 100.2          |
| 13033 | 11 | 739.1          | 13067          | 11       | 760.3          | 13100          | 11       | 780.9          |
| 13033 | 11 | (33.1          | 13007          | "        | 100.3          | 13100          | • • •    | 100.9          |
|       |    |                |                |          |                | l              |          |                |

Use check point at 13200 Kc

Frequency: 13100-13200 Kc

|       |    |       |       |    | -     |       |    |         |
|-------|----|-------|-------|----|-------|-------|----|---------|
| Freq. | A  | В     | Freq. | A  | В     | Freq. | A  | В       |
| 13100 | 11 | 780.9 | 13134 | 11 | 802.0 | 13168 | 11 | 823 1   |
| 13101 | 11 | 781.5 | 13135 | 11 | 802.6 | 13169 | 11 | 823.7   |
| 13102 | 11 | 782.1 | 13136 | 11 | 803.2 |       |    |         |
| 13103 | 11 | 782.7 | 13137 | 11 | 803.8 | 13170 | 11 | 824.3   |
| 13104 | 11 | 783.3 | 13138 | 11 | 804.4 | 13171 | 11 | 825.0   |
| 13105 | 11 | 784.0 | 13139 | 11 | 805.1 | 13172 | 11 | 825.6   |
| 13106 | 11 | 784.6 |       |    |       | 13173 | 11 | 826.2   |
| 13107 | 11 | 785.2 | 13140 | 11 | 805.7 | 13174 | 11 | 826.8   |
| 13108 | 11 | 785.8 | 13141 | 11 | 806.3 | 13175 | 11 | 827.5   |
| 13109 | 11 | 786.4 | 13142 | 11 | 806.9 | 13176 | 11 | 828.1   |
|       |    |       | 13143 | 11 | 807.5 | 13177 | 11 | 828.7   |
| 13110 | 11 | 787.1 | 13144 | 11 | 808.2 | 13178 | 11 | 829.3   |
| 13111 | 11 | 787.7 | 13145 | 11 | 808.8 | 13179 | 11 | 829.9   |
| 13112 | 11 | 788.3 | 13146 | 11 | 809.4 |       |    |         |
| 13113 | 11 | 788.9 | 13147 | 11 | 810.0 | 13180 | 11 | 830.6   |
| 13114 | 11 | 789.6 | 13148 | 11 | 810.7 | 13181 | 11 | 831 .2  |
| 13115 | 11 | 790.2 | 13149 | 11 | 811.3 | 13182 | 11 | 831 . 8 |
| 13116 | 11 | 790.8 |       |    |       | 13183 | 11 | 832 4   |
| 13117 | 11 | 791.4 | 13150 | 11 | 811.9 | 13184 | 11 | 833.0   |
| 13118 | 11 | 792.0 | 13151 | 11 | 812.5 | 13185 | 11 | 833.7   |
| 13119 | 11 | 792.7 | 13152 | 11 | 813.1 | 13186 | 11 | 834.3   |
|       |    |       | 13153 | 11 | 813.8 | 13187 | 11 | 834.9   |
| 13120 | 11 | 793.3 | 13154 | 11 | 814.4 | 13188 | 11 | 835.5   |
| 13121 | 11 | 793.9 | 13155 | 11 | 815.0 | 13189 | 11 | 836.2   |
| 13122 | 11 | 794.5 | 13156 | 11 | 815.6 |       |    |         |
| 13123 | 11 | 795.1 | 13157 | 11 | 816.3 | 13190 | 11 | 836.8   |
| 13124 | 11 | 795.8 | 13158 | 11 | 816.9 | 13191 | 11 | 837.4   |
| 13125 | 11 | 796.4 | 13159 | 11 | 817.5 | 13192 | 11 | 838.0   |
| 13126 | 11 | 797.0 |       |    |       | 13193 | 11 | 838 6   |
| 13127 | 11 | 797.6 | 13160 | 11 | 818.1 | 13194 | 11 | 839.3   |
| 13128 | 11 | 798.2 | 13161 | 11 | 818.7 | 13195 | 11 | 839.9   |
| 13129 | 11 | 798.9 | 13162 | 11 | 819.4 | 13196 | 11 | 840.5   |
|       |    |       | 13163 | 11 | 820.0 | 13197 | 11 | 841 - 1 |
| 13130 | 11 | 799.5 | 13164 | 11 | 820.6 | 13198 | 11 | 841.8   |
| 13131 | 11 | 800.1 | 13165 | 11 | 821 2 | 13199 | 11 | 842.4   |
| 13132 | 11 | 800.7 | 13166 | 11 | 821.9 |       |    |         |
| 13133 | 11 | 801.3 | 13167 | 11 | 822.5 | 13200 | 11 | 843.0   |
|       |    |       |       |    |       | l     |    |         |
|       |    |       |       |    |       |       |    |         |

Use check point at 13200 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 1810OKC

| Frequency: 13200-13300 Kc |     |       |       |    |         |       |    |       |  |  |  |
|---------------------------|-----|-------|-------|----|---------|-------|----|-------|--|--|--|
| Freq.                     | A   | В     | Freq. | A  | В       | Freq. | A  | В     |  |  |  |
| 13200                     | 11  | 843.0 | 13234 | 11 | 864.0   | 13268 | 11 | 885.1 |  |  |  |
| 13201                     | 11  | 843.6 | 13235 | 11 | 864.7   | 13269 | 11 | 885.7 |  |  |  |
| 13202                     | 11  | 844.2 | 13236 | 11 | 865.3   |       |    |       |  |  |  |
| 13203                     | 11  | 844.9 | 13237 | 11 | 865.9   | 13270 | 11 | 886.3 |  |  |  |
| 13204                     | 11  | 845.5 | 13238 | 11 | 866.5   | 13271 | 11 | 886.9 |  |  |  |
| 13205                     | 11  | 846.1 | 13239 | 11 | 867.1   | 13272 | 11 | 887.5 |  |  |  |
| 13206                     | 11  | 846.7 | l     |    |         | 13273 | 11 | 888.2 |  |  |  |
| 13207                     | 11  | 847.3 | 13240 | 11 | 867.7   | 13274 | 11 | 888.8 |  |  |  |
| 13208                     | 11  | 848.0 | 13241 | 11 | 868.4   | 13275 | 11 | 889.4 |  |  |  |
| 13209                     | 11  | 848.6 | 13242 | 11 | 869.0   | 13276 | 11 | 890.0 |  |  |  |
|                           |     |       | 13243 | 11 | 869.6   | 13277 | 11 | 890.6 |  |  |  |
| 13210                     | 11  | 849.2 | 13244 | 11 | 870.2   | 13278 | 11 | 891.3 |  |  |  |
| 13211                     | 11  | 849.8 | 13245 | 11 | 870.8   | 13279 | 11 | 891.9 |  |  |  |
| 13212                     | 11  | 850.4 | 13246 | 11 | 871.5   |       |    |       |  |  |  |
| 13213                     | 11  | 851.0 | 13247 | 11 | 872 . 1 | 13280 | 11 | 892.5 |  |  |  |
| 13214                     | 11  | 851.7 | 13248 | 11 | 872.7   | 13281 | 11 | 893 1 |  |  |  |
| 13215                     | 11  | 852.3 | 13249 | 11 | 873.3   | 13282 | 11 | 893 7 |  |  |  |
| 13216                     | 11. | 852.9 | l     |    |         | 13283 | 11 | 894.3 |  |  |  |
| 13217                     | 11  | 853.5 | 13250 | 11 | 873.9   | 13284 | 11 | 895.0 |  |  |  |
| 13218                     | 11  | 854.1 | 13251 | 11 | 874.6   | 13285 | 11 | 895.6 |  |  |  |
| 13219                     | 11  | 854.8 | 13252 | 11 | 875.2   | 13286 | 11 | 896.2 |  |  |  |
|                           |     |       | 13253 | 11 | 875 8   | 13287 | 11 | 896.8 |  |  |  |
| 13220                     | 11  | 855.4 | 13254 | 11 | 876.4   | 13288 | 11 | 897.4 |  |  |  |
| 13221                     | 11  | 856.0 | 13255 | 11 | 877.0   | 13289 | 11 | 898.1 |  |  |  |
| 13222                     | 11  | 856.6 | 13256 | 11 | 877.6   | l     |    |       |  |  |  |
| 13223                     | 11  | 857.2 | 13257 | 11 | 878.3   | 13290 | 11 | 898.7 |  |  |  |
| 13224                     | 11  | 857.8 | 13258 | 11 | 878.9   | 13291 | 11 | 899.3 |  |  |  |
| 13225                     | 11  | 858.5 | 13259 | 11 | 879.5   | 13292 | 11 | 899.9 |  |  |  |
| 13226                     | 11  | 859.1 |       |    |         | 13293 | 11 | 900.5 |  |  |  |
| 13227                     | 11  | 859.7 | 13260 | 11 | 880.1   | 13294 | 11 | 901.2 |  |  |  |
| 13228                     | 11  | 860.3 | 13261 | 11 | 880.7   | 13295 | 11 | 901.8 |  |  |  |
| 13229                     | 11  | 860.9 | 13262 | 11 | 881.4   | 13296 | 11 | 902.4 |  |  |  |
|                           |     |       | 13263 | 11 | 882.0   | 13297 | 11 | 903.0 |  |  |  |
| 13230                     | 11  | 861.6 | 13264 | 11 | 882.6   | 13298 | 11 | 903.6 |  |  |  |
| 13231                     | 11  | 862.2 | 13265 | 11 | 883.2   | 13299 | 11 | 904.2 |  |  |  |
| 13232                     | 11  | 862.8 | 13266 | 11 | 883.8   |       |    |       |  |  |  |
| 13233                     | 11  | 863.4 | 13267 | 11 | 884.5   | 13300 | 11 | 904.9 |  |  |  |
|                           |     |       |       |    |         |       |    |       |  |  |  |

Use check point at 13200 Kc

### Frequency: 13300-13400 Kc

| Freq. | A  | В     | Freq.              | A  | В      | Freq.  | A  | В      |  |  |  |
|-------|----|-------|--------------------|----|--------|--------|----|--------|--|--|--|
| 13300 | 11 | 904.9 | 13334              | 11 | 925.9  | 13368  | 11 | 946.9  |  |  |  |
| 13301 | 11 | 905.5 | 13335              | 11 | 926.5  | 13369  | 11 | 947.5  |  |  |  |
| 13302 | 11 | 906.1 | 13336              | 11 | 927.1  | l      |    |        |  |  |  |
| 13303 | 11 | 906.7 | 13337              | 11 | 927.8  | 13370  | 11 | 948.2  |  |  |  |
| 13304 | 11 | 907.3 | 13338              | 11 | 928.4  | 13371  | 11 | 948.8  |  |  |  |
| 13305 | 11 | 908.0 | 13339              | 11 | 929.0  | 13372  | 11 | 949.4  |  |  |  |
| 13306 | 11 | 908.6 | l                  |    |        | 13373  | 11 | 950.0  |  |  |  |
| 13307 | 11 | 909.2 | 13340              | 11 | 929.6  | 13374  | 11 | 950.6  |  |  |  |
| 13308 | 11 | 909.8 | 13341              | 11 | 930.2  | 13375  | 11 | 951.2  |  |  |  |
| 13309 | 11 | 910.4 | 13342              | 11 | 930.8  | 13376  | 11 | 951.9  |  |  |  |
|       |    |       | 13343              | 11 | 931.5  | 13377  | 11 | 952.5  |  |  |  |
| 13310 | 11 | 911.1 | 13344              | 11 | 932.1  | 13378  | 11 | 953 .1 |  |  |  |
| 13311 | 11 | 911.7 | 13345              | 11 | 932.7  | 13379  | 11 | 953.7  |  |  |  |
| 13312 | 11 | 912.3 | 13346              | 11 | 933.3  | l      |    |        |  |  |  |
| 13313 | 11 | 912.9 | 13347              | 11 | 933.9  | 13380  | 11 | 954.3  |  |  |  |
| 13314 | 11 | 913.5 | 13348              | 11 | 934.6  | 13381. | 11 | 955.0  |  |  |  |
| 13315 | 11 | 914.1 | 133 <del>4</del> 9 | 11 | 935.2  | 13382  | 11 | 955 6  |  |  |  |
| 13316 | 11 | 914.8 |                    |    |        | 13383  | 11 | 856.2  |  |  |  |
| 13317 | 11 | 915.4 | 13350              | 11 | 935.8  | 13384  | 11 | 956.8  |  |  |  |
| 13318 | 11 | 916.0 | 13351              | 11 | 936.4  | 13385  | 11 | 957.4  |  |  |  |
| 13319 | 11 | 916.6 | 13352              | 11 | 937.0  | 13386  | 11 | 958.0  |  |  |  |
|       |    |       | 13353              | 11 | 937.6  | 13387  | 11 | 958 6  |  |  |  |
| 13320 | 11 | 917.2 | 13354              | 11 | 938.3  | 13388  | 11 | 959 3  |  |  |  |
| 13321 | 11 | 917.9 | 13355              | 11 | 938.9  | 13389  | 11 | 959.9  |  |  |  |
| 13322 | 11 | 918.5 | 13356              | 11 | 939.5  |        |    |        |  |  |  |
| 13323 | 11 | 919.1 | 13357              | 11 | 940.1  | 13390  | 11 | 960.5  |  |  |  |
| 13324 | 11 | 919.7 | 13358              | 11 | 940.7  | 13391  | 11 | 961.1  |  |  |  |
| 13325 | 11 | 920.3 | 13359              | 11 | 941 .4 | 13392  | 11 | 961.7  |  |  |  |
| 13326 | 11 | 921.0 |                    |    |        | 13393  | 11 | 962.3  |  |  |  |
| 13327 | 11 | 921.6 | 13360              | 11 | 942.0  | 13394  | 11 | 963.0  |  |  |  |
| 13328 | 11 | 922.2 | 13361              | 11 | 942.6  | 13395  | 11 | 963.6  |  |  |  |
| 13329 | 11 | 922.8 | 13362              | 11 | 943.2  | 13396  | 11 | 964.2  |  |  |  |
|       |    | į     | 13363              | 11 | 943.8  | 13397  | 11 | 964.8  |  |  |  |
| 13330 | 11 | 923.4 | 13364              | 11 | 944.4  | 13398  | 11 | 965.4  |  |  |  |
| 13331 | 11 | 924.0 | 13365              | 11 | 945.1  | 13399  | 11 | 966.0  |  |  |  |
| 13332 | 11 | 924.7 | 13366              | 11 | 945.7  |        |    |        |  |  |  |
| 13333 | 11 | 925.3 | 13367              | 11 | 946.3  | 13400  | 11 | 966.6  |  |  |  |
|       |    |       |                    |    |        |        |    |        |  |  |  |

Use check point at 13200 Kc

Frequency: 13400-13500 Kc

| Freq. | A   | В     | Freq. | A  | В      | Freq. | A  | В      |
|-------|-----|-------|-------|----|--------|-------|----|--------|
| 13400 | 11  | 966.6 | 13434 | 11 | 987.6  | 13468 | 11 | 1008.5 |
| 13401 | 11  | 967.3 | 13435 | 11 | 988.2  | 13469 | 11 | 1009.1 |
| 13402 | 11  | 967.9 | 13436 | 11 | 988.8  | ļ     |    |        |
| 13403 | 11  | 968.5 | 13437 | 11 | 989.4  | 13470 | 11 | 1009.8 |
| 13404 | 11  | 969.1 | 13438 | 11 | 990.0  | 13471 | 11 | 1010.4 |
| 13405 | 11  | 969.7 | 13439 | 11 | 990.6  | 13472 | 11 | 1011.0 |
| 13406 | 11  | 970.3 | İ     |    |        | 13473 | 11 | 1011.6 |
| 13407 | 11  | 970.9 | 13440 | 11 | 991.2  | 13474 | 11 | 1012.2 |
| 13408 | 11  | 971.6 | 13441 | 11 | 991.9  | 13475 | 11 | 1012.8 |
| 13409 | 11  | 972.2 | 13442 | 11 | 992.5  | 13476 | 11 | 1013.5 |
|       |     |       | 13443 | 11 | 993.1  | 13477 | 11 | 1014.1 |
| 13410 | 11  | 972.8 | 13444 | 11 | 993.7  | 13478 | 11 | 1014.7 |
| 13411 | 11  | 973.4 | 13445 | 11 | 994.3  | 13479 | 11 | 1015.3 |
| 13412 | 11: | 974.0 | 13446 | 11 | 994.9  |       |    |        |
| 13413 | 11  | 974.6 | 13447 | 11 | 995.6  | 13480 | 11 | 1015.9 |
| 13414 | 11  | 975.3 | 13448 | 11 | 996.2  | 13481 | 11 | 1016.5 |
| 13415 | 11  | 975.9 | 13449 | 11 | 996.8  | 13482 | 11 | 1017.2 |
| 13416 | 11  | 976.5 |       |    |        | 13483 | 11 | 1017.8 |
| 13417 | 11  | 977.1 | 13450 | 11 | 997.4  | 13484 | 11 | 1018.4 |
| 13418 | 11  | 977.7 | 13451 | 11 | 998.0  | 13485 | 11 | 1019.0 |
| 13419 | 11  | 978.3 | 13452 | 11 | 998.6  | 13486 | 11 | 1019.6 |
|       |     |       | 13453 | 11 | 999.3  | 13487 | 11 | 1020.2 |
| 13420 | 11  | 978.9 | 13454 | 11 | 999.9  | 13488 | 11 | 1020.9 |
| 13421 | 11  | 979.6 | 13455 | 11 | 1000.5 | 13489 | 11 | 1021.5 |
| 13422 | 11  | 980.2 | 13456 | 11 | 1001.1 |       |    |        |
| 13423 | 11  | 980.8 | 13457 | 11 | 1001.7 | 13490 | 11 | 1022.1 |
| 13424 | 11  | 981.4 | 13458 | 11 | 1002.3 | 13491 | 11 | 1022.7 |
| 13425 | 11  | 982.0 | 13459 | 11 | 1003.0 | 13492 | 11 | 1023.3 |
| 13426 | 11  | 982.6 |       |    |        | 13493 | 11 | 1023.9 |
| 13427 | 11  | 983.2 | 13460 | 11 | 1003.6 | 13494 | 11 | 1024.6 |
| 13428 | 11  | 983.9 | 13461 | 11 | 1004.2 | 13495 | 11 | 1025.2 |
| 13429 | 11  | 984.5 | 13462 | 11 | 1004.8 | 13496 | 11 | 1025.8 |
|       |     |       | 13463 | 11 | 1005.4 | 13497 | 11 | 1026.4 |
| 13430 | 11  | 985.1 | 13464 | 11 | 1006.0 | 13498 | 11 | 1027.0 |
| 13431 | 11  | 985.7 | 13465 | 11 | 1006.7 | 13499 | 11 | 1027.6 |
| 13432 | 11  | 986.3 | 13466 | 11 | 1007.3 |       |    | 4000 - |
| 13433 | 11  | 986.9 | 13467 | 11 | 1007.9 | 13500 | 11 | 1028.3 |
|       |     |       |       |    |        | L     |    |        |

Use check point at 13200 Kc

# Frequency: 13500—13600 Kc

| Freq. | A  | В      | Freq. | A  | В      | Freq. | A  | В      |
|-------|----|--------|-------|----|--------|-------|----|--------|
| 13500 | 11 | 1028.3 | 13534 | 11 | 1049.2 | 13568 | 11 | 1070.1 |
| 13501 | 11 | 1028.9 | 13535 | 11 | 1049.8 | 13569 | 11 | 1070.8 |
| 13502 | 11 | 1029.5 | 13536 | 11 | 1050.5 | l     |    |        |
| 13503 | 11 | 1030.1 | 13537 | 11 | 1051.1 | 13570 | 11 | 1071.4 |
| 13504 | 11 | 1030.7 | 13538 | 11 | 1051.7 | 13571 | 11 | 1072.0 |
| 13505 | 11 | 1031.3 | 13539 | 11 | 1052.3 | 13572 | 11 | 1072.6 |
| 13506 | 11 | 1032.0 |       |    |        | 13573 | 11 | 1073.2 |
| 13507 | 11 | 1032.6 | 13540 | 11 | 1052.9 | 13574 | 11 | 1073.8 |
| 13508 | 11 | 1033.2 | 13541 | 11 | 1053.5 | 13575 | 11 | 1074.4 |
| 13509 | 11 | 1033.8 | 13542 | 11 | 1054.2 | 13576 | 11 | 1075.0 |
|       |    |        | 13543 | 11 | 1054.8 | 13577 | 11 | 1075.6 |
| 13510 | 11 | 1034.4 | 13544 | 11 | 1055.4 | 13578 | 11 | 1076.3 |
| 13511 | 11 | 1035.0 | 13545 | 11 | 1056.0 | 13579 | 11 | 1076.9 |
| 13512 | 11 | 1035.7 | 13546 | 11 | 1056.6 |       |    |        |
| 13513 | 11 | 1036.3 | 13547 | 11 | 1057.2 | 13580 | 11 | 1077.5 |
| 13514 | 11 | 1036.9 | 13548 | 11 | 1057.9 | 13581 | 11 | 1078.1 |
| 13515 | 11 | 1037.5 | 13549 | 11 | 1058.5 | 13582 | 11 | 1078.7 |
| 13516 | 11 | 1038.1 | ł     |    |        | 13583 | 11 | 1079.3 |
| 13517 | 11 | 1038.7 | 13550 | 11 | 1059.1 | 13584 | 11 | 1079.9 |
| 13518 | 11 | 1039.4 | 13551 | 11 | 1059.7 | 13585 | 11 | 1080.5 |
| 13519 | 11 | 1040.0 | 13552 | 11 | 1060.3 | 13586 | 11 | 1081.1 |
|       |    |        | 13553 | 11 | 1060 9 | 13587 | 11 | 1081.8 |
| 13520 | 11 | 1040.6 | 13554 | 11 | 1061.6 | 13588 | 11 | 1082.4 |
| 13521 | 11 | 1041.2 | 13555 | 11 | 1062.2 | 13589 | 11 | 1083.0 |
| 13522 | 11 | 1041.8 | 13556 | 11 | 1062.8 |       |    |        |
| 13523 | 11 | 1042.4 | 13557 | 11 | 1063.4 | 13590 | 11 | 1083.6 |
| 13524 | 11 | 1043.1 | 13558 | 11 | 1064.0 | 13591 | 11 | 1084.2 |
| 13525 | 11 | 1043.7 | 13559 | 11 | 1064.6 | 13592 | 11 | 1084.8 |
| 13526 | 11 | 1044.3 |       |    |        | 13593 | 11 | 1085.4 |
| 13527 | 11 | 1044.9 | 13560 | 11 | 1065.3 | 13594 | 11 | 1086.0 |
| 13528 | 11 | 1045.5 | 13561 | 11 | 1065.9 | 13595 | 11 | 1086.6 |
| 13529 | 11 | 1046.1 | 13562 | 11 | 1066.5 | 13596 | 11 | 1087.2 |
|       |    |        | 13563 | 11 | 1067.1 | 13597 | 11 | 1087.9 |
| 13530 | 11 | 1046.8 | 13564 | 11 | 1067.7 | 13598 | 11 | 1088.5 |
| 13531 | 11 | 1047.4 | 13565 | 11 | 1068.3 | 13599 | 11 | 1089.1 |
| 13532 | 11 | 1048.0 | 13566 | 11 | 1068.9 | 40000 |    | 4000 = |
| 13533 | 11 | 1048.6 | 13567 | 11 | 1069.5 | 13600 | 11 | 1089.7 |
|       |    |        | L     |    |        |       |    |        |
|       |    |        |       |    |        |       |    |        |

Use check point at 13800 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

|       | Frequency: 13600—13700 Kc |        |       |    |        |       |    |        |  |  |  |
|-------|---------------------------|--------|-------|----|--------|-------|----|--------|--|--|--|
| Freq. | A                         | В      | Freq. | A  | В      | Freq. | A  | В      |  |  |  |
| 13600 | 11                        | 1089.7 | 13634 | 11 | 1110.5 | 13668 | 11 | 1131.3 |  |  |  |
| 13601 | 11                        | 1090.3 | 13635 | 11 | 1111.1 | 13669 | 11 | 1131.9 |  |  |  |
| 13602 | 11                        | 1090.9 | 13636 | 11 | 1111.7 |       |    |        |  |  |  |
| 13603 | 11                        | 1091.5 | 13637 | 11 | 1112.3 | 13670 | 11 | 1132.5 |  |  |  |
| 13604 | 11                        | 1092.1 | 13638 | 11 | 1112.9 | 13671 | 11 | 1133.1 |  |  |  |
| 13605 | 11                        | 1092.7 | 13639 | 11 | 1113.5 | 13672 | 11 | 1133.7 |  |  |  |
| 13606 | 11                        | 1093.4 |       |    |        | 13673 | 11 | 1134.3 |  |  |  |
| 13607 | 11                        | 1094.0 | 13640 | 11 | 1114.1 | 13674 | 11 | 1134.9 |  |  |  |
| 13608 | 11                        | 1094.6 | 13641 | 11 | 1114.8 | 13675 | 11 | 1135.6 |  |  |  |
| 13609 | 11                        | 1095.2 | 13642 | 11 | 1115.4 | 13676 | 11 | 1136.2 |  |  |  |
|       |                           |        | 13643 | 11 | 1116.0 | 13677 | 11 | 1136.8 |  |  |  |
| 13610 | 11                        | 1095.8 | 13644 | 11 | 1116.6 | 13678 | 11 | 1137.4 |  |  |  |
| 13611 | 11                        | 1096.4 | 13645 | 11 | 1117.2 | 13679 | 11 | 1138.0 |  |  |  |
| 13612 | 11                        | 1097.0 | 13646 | 11 | 1117.8 | ł     |    |        |  |  |  |
| 13613 | 11                        | 1097.6 | 13647 | 11 | 1118.4 | 13680 | 11 | 1138.6 |  |  |  |
| 13614 | 11                        | 1098.2 | 13648 | 11 | 1119.0 | 13681 | 11 | 1139.2 |  |  |  |
| 13615 | 11                        | 1098.9 | 13649 | 11 | 1119.6 | 13682 | 11 | 1139.8 |  |  |  |
| 13616 | 11                        | 1099.5 | l     |    |        | 13683 | 11 | 1140.4 |  |  |  |
| 13617 | 11                        | 1100.1 | 13650 | 11 | 1120.3 | 13684 | 11 | 1141.1 |  |  |  |
| 13618 | 11                        | 1100.7 | 13651 | 11 | 1120.9 | 13685 | 11 | 1141.7 |  |  |  |
| 13619 | 11                        | 1101.3 | 13652 | 11 | 1121.5 | 13686 | 11 | 1142.3 |  |  |  |
|       |                           |        | 13653 | 11 | 1122.1 | 13687 | 11 | 1142.9 |  |  |  |
| 13620 | 11                        | 1101.9 | 13654 | 11 | 1122.7 | 13688 | 11 | 1143.5 |  |  |  |
| 13621 | 11                        | 1102.5 | 13655 | 11 | 1123.3 | 13689 | 11 | 1144.1 |  |  |  |
| 13622 | 11                        | 1103.1 | 13656 | 11 | 1123.9 | 1     |    |        |  |  |  |
| 13623 | 11                        | 1103.7 | 13657 | 11 | 1124.5 | 13690 | 11 | 1144.7 |  |  |  |
| 13624 | 11                        | 1104.4 | 13658 | 11 | 1125.2 | 13691 | 11 | 1145.3 |  |  |  |
| 13625 | 11                        | 1105.0 | 13659 | 11 | 1125.8 | 13692 | 11 | 1145.9 |  |  |  |
| 13626 | 11                        | 1105.6 |       |    |        | 13693 | 11 | 1146.5 |  |  |  |
| 13627 | 11                        | 1106.2 | 13660 | 11 | 1126.4 | 13694 | 11 | 1147.2 |  |  |  |
| 13628 | 11                        | 1106.8 | 13661 | 11 | 1127.0 | 13695 | 11 | 1147.8 |  |  |  |
| 13629 | 11                        | 1107.4 | 13662 | 11 | 1127.6 | 13696 | 11 | 1148.4 |  |  |  |
|       |                           |        | 13663 | 11 | 1128.2 | 13697 | 11 | 1149.0 |  |  |  |
| 13630 | 11                        | 1108.0 | 13664 | 11 | 1128.8 | 13698 | 11 | 1149.6 |  |  |  |
| 13631 | 11                        | 1108.6 | 13665 | 11 | 1129.4 | 13699 | 11 | 1150.2 |  |  |  |
| 13632 | 11                        | 1109.2 | 13666 | 11 | 1130.0 |       |    |        |  |  |  |
| 13633 | 11                        | 1109.9 | 13667 | 11 | 1130.7 | 13700 | 11 | 1150.8 |  |  |  |
|       |                           |        | ļ     |    |        |       |    |        |  |  |  |

Use check point at 13800 Kc

## Frequency: 13700-13800 Kc

| Freq.          | A        | В                | Freq. | A  | В      | Freq. | A  | В      |
|----------------|----------|------------------|-------|----|--------|-------|----|--------|
| 13700          | 11       | 1150.8           | 13734 | 11 | 1171.6 | 13768 | 11 | 1192.3 |
| 13701          | 11       | 1151.4           | 13735 | 11 | 1172.2 | 13769 | 11 | 1192.9 |
| 13702          | 11       | 1152.0           | 13736 | 11 | 1172.8 |       |    |        |
| 13703          | 11       | 1152.6           | 13737 | 11 | 1173.4 | 13770 | 11 | 1193.5 |
| 13704          | 11       | 1153.3           | 13738 | 11 | 1174.0 | 13771 | 11 | 1194.1 |
| 13705          | 11       | 1153.9           | 13739 | 11 | 1174.6 | 13772 | 11 | 1194.7 |
| 13706          | 11       | 1154.5           | l     |    |        | 13773 | 11 | 1195.3 |
| 13707          | 11       | 1155.1           | 13740 | 11 | 1175.2 | 13774 | 11 | 1195.9 |
| 13708          | 11       | 1155.7           | 13741 | 11 | 1175.8 | 13775 | 11 | 1196.6 |
| 13709          | 11       | 1156.3           | 13742 | 11 | 1176.4 | 13776 | 11 | 1197.2 |
|                |          |                  | 13743 | 11 | 1177.1 | 13777 | 11 | 1197.8 |
| 13710          | 11       | 1156.9           | 13744 | 11 | 1177.7 | 13778 | 11 | 1198.4 |
| 13711          | 11       | 1157.5           | 13745 | 11 | 1178.3 | 13779 | 11 | 1199.0 |
| 13712          | 11       | 1158.1           | 13746 | 11 | 1178.9 | İ     |    |        |
| 13713          | 11       | 1158.8           | 13747 | 11 | 1179.5 | 13780 | 11 | 1199.6 |
| 13714          | 11       | 1159.4           | 13748 | 11 | 1180.1 | 13781 | 11 | 1200.2 |
| 13715          | 11       | 1160.0           | 13749 | 11 | 1180.7 | 13782 | 11 | 1200.8 |
| 13716          | 11       | 1160.6           | l     |    |        | 13783 | 11 | 1201.4 |
| 13717          | 11       | 1161.2           | 13750 | 11 | 1181.3 | 13784 | 11 | 1202.0 |
| 13718          | 11       | 1161.8           | 13751 | 11 | 1181.9 | 13785 | 11 | 1202.6 |
| 13719          | 11       | 1162.4           | 13752 | 11 | 1182.5 | 13786 | 11 | 1203.3 |
|                |          |                  | 13753 | 11 | 1183.1 | 13787 | 11 | 1203.9 |
| 13720          | 11       | 1163.0           | 13754 | 11 | 1183.8 | 13788 | 11 | 1204.5 |
| 13721          | 11       | 1163.6           | 13755 | 11 | 1184.4 | 13789 | 11 | 1205.1 |
| 13722          | 11       | 1164.2           | 13756 | 11 | 1185.0 | l     |    |        |
| 13723          | 11       | 1164.9           | 13757 | 11 | 1185.6 | 13790 | 11 | 1205.7 |
| 13724          | 11       | 1165.5           | 13758 | 11 | 1186.2 | 13791 | 11 | 1206.3 |
| 13725          | 11       | 1166.1           | 13759 | 11 | 1186.8 | 13792 | 11 | 1206.9 |
| 13726          | 11       | 1166.7           |       |    |        | 13793 | 11 | 1207.5 |
| 13727          | 11       | 1167.3           | 13760 | 11 | 1187.4 | 13794 | 11 | 1208.1 |
| 13728          | 11       | 1167.9           | 13761 | 11 | 1188.0 | 13795 | 11 | 1208.7 |
| 13729          | 11       | 1168.5           | 13762 | 11 | 1188.6 | 13796 | 11 | 1209.3 |
| 12720          |          |                  | 13763 | 11 | 1189.2 | 13797 | 11 | 1210.0 |
| 13730          | 11<br>11 | 1169.1           | 13764 | 11 | 1189.9 | 13798 | 11 | 1210.6 |
| 13731<br>13732 |          | 1169.7           | 13765 | 11 | 1190.5 | 13799 | 11 | 1211.2 |
| 13732          | 11<br>11 | 1170.3<br>1171.0 | 13766 | 11 | 1191.1 | ***** |    | 4044.0 |
| 13/33          | П        | 11/1.0           | 13767 | 11 | 1191.7 | 13800 | 11 | 1211.8 |
|                |          |                  |       |    |        |       |    |        |

Use check point at 13800 Kc

## Frequency: 13800-13900 Kc

| Freq. | A  | В      | Freq. | A  | В      | Frea. | A  | В      |
|-------|----|--------|-------|----|--------|-------|----|--------|
| 13800 | 11 | 1211.8 | 13834 | 11 | 1232.5 | 13868 | 11 | 1253.2 |
| 13801 | 11 | 1212.4 | 13835 | 11 | 1233.1 | 13869 | 11 | 1253.8 |
| 13802 | 11 | 1213.0 | 13836 | 11 | 1233.7 |       |    |        |
| 13803 | 11 | 1213.6 | 13837 | 11 | 1234.3 | 13870 | 11 | 1254.4 |
| 13804 | 11 | 1214.2 | 13838 | 11 | 1234.9 | 13871 | 11 | 1255.0 |
| 13805 | 11 | 1214.8 | 13839 | 11 | 1235.5 | 13872 | 11 | 1255.6 |
| 13806 | 11 | 1215.4 | ł     |    |        | 13873 | 11 | 1256.2 |
| 13807 | 11 | 1216.0 | 13840 | 11 | 1236.1 | 13874 | 11 | 1256.8 |
| 13808 | 11 | 1216.6 | 13841 | 11 | 1236.7 | 13875 | 11 | 1257.4 |
| 13809 | 11 | 1217.3 | 13842 | 11 | 1237.3 | 13876 | 11 | 1258.0 |
|       |    |        | 13843 | 11 | 1238.0 | 13877 | 11 | 1258.7 |
| 13810 | 11 | 1217.9 | 13844 | 11 | 1238.6 | 13878 | 11 | 1259.3 |
| 13811 | 11 | 1218.5 | 13845 | 11 | 1239.2 | 13879 | 11 | 1259.9 |
| 13812 | 11 | 1219.1 | 13846 | 11 | 1239.8 | l     |    |        |
| 13813 | 11 | 1219.7 | 13847 | 11 | 1240.4 | 13880 | 11 | 1260.5 |
| 13814 | 11 | 1220.3 | 13848 | 11 | 1241.0 | 13881 | 11 | 1261.1 |
| 13815 | 11 | 1220.9 | 13849 | 11 | 1241.6 | 13882 | 11 | 1261.7 |
| 13816 | 11 | 1221.5 |       |    |        | 13883 | 11 | 1262.3 |
| 13817 | 11 | 1222.1 | 13850 | 11 | 1242.2 | 13884 | 11 | 1262.9 |
| 13818 | 11 | 1222.7 | 13851 | 11 | 1242.8 | 13885 | 11 | 1263.5 |
| 13819 | 11 | 1223.3 | 13852 | 11 | 1243.4 | 13886 | 11 | 1264.1 |
|       |    |        | 13853 | 11 | 1244.0 | 13887 | 11 | 1264.7 |
| 13820 | 11 | 1224.0 | 13854 | 11 | 1244.6 | 13888 | 11 | 1265.4 |
| 13821 | 11 | 1224.6 | 13855 | 11 | 1245.3 | 13889 | 11 | 1266.0 |
| 13822 | 11 | 1225.2 | 13856 | 11 | 1245.9 |       |    |        |
| 13823 | 11 | 1225.8 | 13857 | 11 | 1246.5 | 13890 | 11 | 1266.6 |
| 13824 | 11 | 1226.4 | 13858 | 11 | 1247.1 | 13891 | 11 | 1267.2 |
| 13825 | 11 | 1227.0 | 13859 | 11 | 1247.7 | 13892 | 11 | 1267.8 |
| 13826 | 11 | 1227.6 |       |    |        | 13893 | 11 | 1268.4 |
| 13827 | 11 | 1228.2 | 13860 | 11 | 1248.3 | 13894 | 11 | 1269.0 |
| 13828 | 11 | 1228.8 | 13861 | 11 | 1248.9 | 13895 | 11 | 1269.6 |
| 13829 | 11 | 1229.4 | 13862 | 11 | 1249.5 | 13896 | 11 | 1270.2 |
| 12020 |    | 40000  | 13863 | 11 | 1250.1 | 13897 | 11 | 1270.8 |
| 13830 | 11 | 1230.0 | 13864 | 11 | 1250.7 | 13898 | 11 | 1271.4 |
| 13831 | 11 | 1230.6 | 13865 | 11 | 1251.3 | 13899 | 11 | 1272.1 |
| 13832 | 11 | 1231.3 | 13866 | 11 | 1252.0 |       |    |        |
| 13833 | 11 | 1231.9 | 13867 | 11 | 1252.6 | 13900 | 11 | 1272.7 |
|       |    |        |       |    |        | L     |    |        |

Use check point at 13800 Kc

### Frequency: 13900-14000 Kc

| Freq.          | A   | В      | Freq.          | A        | В                | Freq. | A   | В      |
|----------------|-----|--------|----------------|----------|------------------|-------|-----|--------|
| 13900          | 11  | 1272.7 | 13934          | 11       | 1293.4           | 13968 | 11  | 1314.2 |
| 13901          | 11  | 1273.3 | 13935          | 11       | 1294.0           | 13969 | 11  | 1314.8 |
| 13902          | 11  | 1273.9 | 13936          | 11       | 1294.6           |       | • • | 1011.0 |
| 13903          | 11  | 1274.5 | 13937          | 11       | 1295.2           | 13970 | 11  | 1315.4 |
| 13904          | 11  | 1275.1 | 13938          | 11       | 1295.8           | 13971 | 11  | 1316.0 |
| 13905          | 11  | 1275.7 | 13939          | 11       | 1296.5           | 13972 | 11  | 1316.6 |
| 13906          | 11  | 1276.3 |                |          |                  | 13973 | 11  | 1317.2 |
| 13907          | 11  | 1276.9 | 13940          | 11       | 1297.1           | 13974 | 11  | 1317.9 |
| 13908          | 11  | 1277.5 | 13941          | 11       | 1297.7           | 13975 | 11  | 1318.5 |
| 13909          | 11  | 1278.1 | 13942          | 11       | 1298.3           | 13976 | 11  | 1319.1 |
|                |     | i      | 13943          | 11       | 1298.9           | 13977 | 11  | 1319.7 |
| 13910          | 11  | 1278.8 | 13944          | 11       | 1299.5           | 13978 | 11  | 1320.3 |
| 13911          | 11  | 1279.4 | 13945          | 11       | 1300.1           | 13979 | 11  | 1320.9 |
| 13912          | 11  | 1280.0 | 13946          | 11       | 1300.7           | l     |     |        |
| 13913          | 11  | 1280.6 | 13947          | 11       | 1301.3           | 13980 | 11  | 1321.5 |
| 13914          | 11  | 1281.2 | 13948          | 11       | 1302.0           | 13981 | 11  | 1322.1 |
| 13915          | 11  | 1281.8 | 13949          | 11       | 1302.6           | 13982 | 11  | 1322.7 |
| 13916          | 11  | 1282.4 |                |          |                  | 13983 | 11  | 1323.4 |
| 13917          | 11  | 1283.0 | 13950          | 11       | 1303.2           | 13984 | 11  | 1324.0 |
| 13918          | 11  | 1283.6 | 13951          | 11       | 1303.8           | 13985 | 11  | 1324.6 |
| 13919          | 11  | 1284.2 | 13952          | 11       | 1304.4           | 13986 | 11  | 1325.2 |
|                |     |        | 13953          | 11       | 1305.0           | 13987 | 11  | 1325.8 |
| 13920          | 11  | 1284.8 | 13954          | 11       | 1305.6           | 13988 | 11  | 1326.4 |
| 13921          | 11  | 1285.5 | 13955          | 11       | 1306.2           | 13989 | 11  | 1327.0 |
| 13922          | 11  | 1286.1 | 13956          | 11       | 1306.8           |       |     |        |
| 13923          | 1,1 | 1286.7 | 13957          | 11       | 1307.5           | 13990 | 11  | 1327.6 |
| 13924          | 11  | 1287.3 | 13958          | 11       | 1308.1           | 13991 | 11  | 1328.2 |
| 13925          | 11  | 1287.9 | 13959          | 11       | 1308 7           | 13992 | 11  | 1328.8 |
| 13926          | 11  | 1288.5 |                |          |                  | 13993 | 11  | 1329.5 |
| 13927          | 11  | 1289.1 | 13960          | 11       | 1309.3           | 13994 | 11  | 1330.1 |
| 13928<br>13929 | 11  | 1289.7 | 13961          | 11       | 1309.9           | 13995 | 11  | 1330.7 |
| 13929          | 11  | 1290.3 | 13962          | 11       | 1310.5           | 13996 | 11  | 1331.3 |
| 13930          | 11  | 1291.0 | 13963<br>13964 | 11<br>11 | 1311.1           | 13997 | 11  | 1331.9 |
| 13930          | 11  | 1291.0 | 13964          | 11       | 1311.7           | 13998 | 11  | 1332.5 |
| 13932          | 11  | 1291.0 | 13966          | 11       | 1312.4<br>1313.0 | 13999 | 11  | 1333.1 |
| 13933          | 11  | 1292.2 | 13967          | 11       | 1313.6           | 14000 | 11  | 1333.7 |
| 10300          | • • | 1232.0 | 1350/          | 11       | 1313.0           | 14000 | 11  | 1333./ |
|                |     |        |                |          |                  |       |     |        |

Use check point at 13800 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 1810OKC

| Frequency: | 14000- | 14100 Kc |
|------------|--------|----------|
|------------|--------|----------|

|        |    |        | •     |    |        |       |    |        |
|--------|----|--------|-------|----|--------|-------|----|--------|
| Freq.  | A  | В      | Freq. | A  | В      | Freq. | A  | В      |
| 14000  | 11 | 1333.7 | 14034 | 11 | 1354.5 | 14068 | 11 | 1375.2 |
| 14001  | 11 | 1334.3 | 14035 | 11 | 1355.1 | 14069 | 11 | 1375.8 |
| 14002  | 11 | 1334.9 | 14036 | 11 | 1355.7 | ł     |    |        |
| 14003  | 11 | 1335.6 | 14037 | 11 | 1356.3 | 14070 | 11 | 1376.4 |
| 14004  | 11 | 1336.2 | 14038 | 11 | 1356.9 | 14071 | 11 | 1377.0 |
| 14005  | 11 | 1336.8 | 14039 | 11 | 1357.5 | 14072 | 11 | 1377.6 |
| 14006  | 11 | 1337.4 | l     |    |        | 14073 | 11 | 1378.2 |
| 14007  | 11 | 1338.0 | 14040 | 11 | 1358.1 | 14074 | 11 | 1378.8 |
| 14008  | 11 | 1338.6 | 14041 | 11 | 1358.7 | 14075 | 11 | 1379.4 |
| 14009  | 11 | 1339.2 | 14042 | 11 | 1359.3 | 14076 | 11 | 1380.0 |
|        |    |        | 14043 | 11 | 1359.9 | 14077 | 11 | 1380.6 |
| 14010  | 11 | 1339.8 | 14044 | 11 | 1360.6 | 14078 | 11 | 1381.2 |
| 14011  | 11 | 1340.4 | 14045 | 11 | 1361.2 | 14079 | 11 | 1381.9 |
| 14012  | 11 | 1341.0 | 14046 | 11 | 1361.8 | ŀ     |    |        |
| 14013  | 11 | 1341.7 | 14047 | 11 | 1362.4 | 14080 | 11 | 1382.5 |
| 14014  | 11 | 1342.3 | 14048 | 11 | 1363.0 | 14081 | 11 | 1383.1 |
| 14015  | 11 | 1342.9 | 14049 | 11 | 1363.6 | 14082 | 11 | 1383.7 |
| 14016  | 11 | 1343.5 |       |    |        | 14083 | 11 | 1384.3 |
| 14017  | 11 | 1344.1 | 14050 | 11 | 1364.2 | 14084 | 11 | 1384.9 |
| 14018  | 11 | 1344.7 | 14051 | 11 | 1364.8 | 14085 | 11 | 1385.5 |
| 14019  | 11 | 1345.3 | 14052 | 11 | 1365.4 | 14086 | 11 | 1386.1 |
|        |    |        | 14053 | 11 | 1366.0 | 14087 | 11 | 1386.7 |
| 14020  |    | 1345.9 | 14054 | 11 | 1366.6 | 14088 | 11 | 1387.3 |
| 14021  | 11 | 1346.5 | 14055 | 11 | 1367.3 | 14089 | 11 | 1387.9 |
| 14022  | 11 | 1347.1 | 14056 | 11 | 1367.9 |       |    |        |
| 14023  | 11 | 1347.8 | 14057 | 11 | 1368.5 | 14090 | 11 | 1388.6 |
| 14024  | 11 | 1348.4 | 14058 | 11 | 1369.1 | 14091 | 11 | 1389.2 |
| 14025  | 11 | 1349.0 | 14059 | 11 | 1369.7 | 14092 | 11 | 1389.8 |
| 14026  | 11 | 1349.6 |       |    |        | 14093 | 11 | 1390.4 |
| 14027  | 11 | 1350.2 | 14060 | 11 | 1370.3 | 14094 | 11 | 1391.0 |
| 14028  | 11 | 1350.8 | 14061 | 11 | 1370.9 | 14095 | 11 | 1391.6 |
| 14029  | 11 | 1351.4 | 14062 | 11 | 1371.5 | 14096 | 11 | 1392.2 |
| 4 4000 |    | 4000   | 14063 | 11 | 1372.1 | 14097 | 11 | 1392.8 |
| 14030  | 11 | 1352.0 | 14064 | 11 | 1372.7 | 14098 | 11 | 1393.4 |
| 14031  | 11 | 1352.6 | 14065 | 11 | 1373.3 | 14099 | 11 | 1394.0 |
| 14032  | 11 | 1353.2 | 14066 | 11 | 1373.9 |       |    | 4204.6 |
| 14033  | 11 | 1353.9 | 14067 | 11 | 1374.6 | 14100 | 11 | 1394.6 |
|        |    |        |       |    |        |       |    |        |
|        |    |        |       |    |        |       |    |        |

Use check point at 13800 Kc

## Frequency: 14100-14200 Kc

| Freq. | A  | В      | Freq. | A  | В      | Freq. | A  | В                   |
|-------|----|--------|-------|----|--------|-------|----|---------------------|
| 14100 | 11 | 1394.6 | 14134 | 11 | 1415.4 | 14168 | 11 | 1436.2              |
| 14101 | 11 | 1395.3 | 14135 | 11 | 1416.1 | 14169 | 11 | 1436.8              |
| 14102 | 11 | 1395.9 | 14136 | 11 | 1416.7 |       |    |                     |
| 14103 | 11 | 1396.5 | 14137 | 11 | 1417.3 | 14170 | 11 | 1437.4              |
| 14104 | 11 | 1397.1 | 14138 | 11 | 1417.9 | 14171 | 11 | 1438.1              |
| 14105 | 11 | 1397.7 | 14139 | 11 | 1418.5 | 14172 | 11 | 1438.7              |
| 14106 | 11 | 1398.3 |       |    |        | 14173 | 11 | 1439.3              |
| 14107 | 11 | 1398.9 | 14140 | 11 | 1419.1 | 14174 | 11 | 1439.9              |
| 14108 | 11 | 1399.5 | 14141 | 11 | 1419.7 | 14175 | 11 | 1440.5              |
| 14109 | 11 | 1400.1 | 14142 | 11 | 1420.3 | 14176 | 11 | 1 <del>44</del> 1.1 |
|       |    |        | 14143 | 11 | 1421.0 | 14177 | 11 | 1441.7              |
| 14110 | 11 | 1400.8 | 14144 | 11 | 1421.6 | 14178 | 11 | 1442.3              |
| 14111 | 11 | 1401.4 | 14145 | 11 | 1422.2 | 14179 | 11 | 1442.9              |
| 14112 | 11 | 1402.0 | 14146 | 11 | 1422.8 | i     |    |                     |
| 14113 | 11 | 1402.6 | 14147 | 11 | 1423.4 | 14180 | 11 | 1443.5              |
| 14114 | 11 | 1403.2 | 14148 | 11 | 1424.0 | 14181 | 11 | 1 <del>444</del> .1 |
| 14115 | 11 | 1403.8 | 14149 | 11 | 1424.6 | 14182 | 11 | 1444.7              |
| 14116 | 11 | 1404.4 | l     |    |        | 14183 | 11 | 1445.4              |
| 14117 | 11 | 1405.0 | 14150 | 11 | 1425.2 | 14184 | 11 | 1446.0              |
| 14118 | 11 | 1405.7 | 14151 | 11 | 1425.9 | 14185 | 11 | 1446.6              |
| 14119 | 11 | 1406.3 | 14152 | 11 | 1426.5 | 14186 | 11 | 1447.2              |
|       |    |        | 14153 | 11 | 1427.1 | 14187 | 11 | 1447.8              |
| 14120 | 11 | 1406.9 | 14154 | 11 | 1427.7 | 14188 | 11 | 1448.4              |
| 14121 | 11 | 1407.5 | 14155 | 11 | 1428.3 | 14189 | 11 | 1449.0              |
| 14122 | 11 | 1406.1 | 14156 | 11 | 1428.9 |       |    |                     |
| 14123 | 11 | 1408.7 | 14157 | 11 | 1429.5 | 14190 | 11 | 1449.6              |
| 14124 | 11 | 1409.3 | 14158 | 11 | 1430.1 | 14191 | 11 | 1450.2              |
| 14125 | 11 | 1409.9 | 14159 | 11 | 1430.7 | 14192 | 11 | 1450.8              |
| 14126 | 11 | 1410.6 |       |    |        | 14193 | 11 | 1451.4              |
| 14127 | 11 | 1411.2 | 14160 | 11 | 1431.4 | 14194 | 11 | 1452.0              |
| 14128 | 11 | 1411.8 | 14161 | 11 | 1432.0 | 14195 | 11 | 1452.7              |
| 14129 | 11 | 1412.4 | 14162 | 11 | 1432.6 | 14196 | 11 | 1453.3              |
|       |    |        | 14163 | 11 | 1433.2 | 14197 | 11 | 1453.9              |
| 14130 | 11 | 1413.0 | 14164 | 11 | 1433.8 | 14198 | 11 | 1454.5              |
| 14131 | 11 | 1413.6 | 14165 | 11 | 1434.4 | 14199 | 11 | 1455.1              |
| 14132 | 11 | 1414.2 | 14166 | 11 | 1435.0 | 4400- |    | 4455 -              |
| 14133 | 11 | 1414.8 | 14167 | 11 | 1435.6 | 14200 | 11 | 1455.7              |
|       |    |        | I     |    |        | l     |    |                     |

Use check point at 14400 Kc

Frequency: 14200-14300 Kc

| Freq.   | A  | В      | Freq. | A  | В      | Freq.  | A   | В      |
|---------|----|--------|-------|----|--------|--------|-----|--------|
| •       | 11 | 1455.7 | 14234 | 11 | 1476.5 | 14268  | 11  | 1497.4 |
|         | 11 | 1456.3 | 14235 | 11 | 1477.1 | 14269  | 11  | 1498.1 |
|         | 11 | 1456.9 | 14236 | 11 | 1477.7 | 11200  | • • | 1430.1 |
|         | 11 | 1457.5 | 14237 | 11 | 1478.3 | 14270  | 11  | 1498.7 |
|         | 11 | 1458.1 | 14238 | 11 | 1479.0 | 14271  | 11  | 1499.3 |
|         | 11 | 1458.7 | 14239 | 11 | 1479.6 | 14272  | 11  | 1499.9 |
| 14206   | 11 | 1459.3 |       |    |        | 14273  | 11  | 1500.5 |
| 14207   | 11 | 1460.0 | 14240 | 11 | 1480.2 | 14274  | 11  | 1501.1 |
| 14208   | 11 | 1460.6 | 14241 | 11 | 1480.8 | 14275  | 11  | 1501.8 |
| 14209   | 11 | 1461.2 | 14242 | 11 | 1481.4 | 14276  | 11  | 1502.4 |
|         |    |        | 14243 | 11 | 1482.0 | 14277  | 11  | 1503.0 |
| 14210   | 11 | 1461.8 | 14244 | 11 | 1482.7 | 14278  | 11  | 1503.6 |
| 14211   | 11 | 1462.4 | 14245 | 11 | 1483.3 | 14279  | 11  | 1504.2 |
| 14212   | 11 | 1463.0 | 14246 | 11 | 1483.9 | ł      |     |        |
| 14213   | 11 | 1463.6 | 14247 | 11 | 1484.5 | 14280  | 11  | 1504.8 |
| 14214   | 11 | 1464.2 | 14248 | 11 | 1485.1 | 14281  | 11  | 1505.5 |
| 14215   | 11 | 1464.8 | 14249 | 11 | 1485.7 | 14282  | 11  | 1506.1 |
|         | 11 | 1465.4 |       |    |        | 14283  | 11  | 1506.7 |
| 14217   | 11 | 1466.0 | 14250 | 11 | 1486.4 | 14284  | 11  | 1507.3 |
|         | 11 | 1466.6 | 14251 | 11 | 1487.0 | 14285  | 11  | 1507.9 |
| 14219   | 11 | 1467.3 | 14252 | 11 | 1487.6 | 14286  | 11  | 1508.5 |
|         |    |        | 14253 | 11 | 1488.2 | 14287  | 11  | 1509.1 |
|         | 11 | 1467.9 | 14254 | 11 | 1488.8 | 14288  | 11  | 1509.8 |
|         | 11 | 1468.5 | 14255 | 11 | 1489.4 | 14289  | 11  | 1510.4 |
|         | 11 | 1469.1 | 14256 | 11 | 1490.0 |        |     |        |
|         | 11 | 1469.7 | 14257 | 11 | 1490.7 | 14290  | 11  | 1511.0 |
|         | 11 | 1470.3 | 14258 | 11 | 1491.3 | 14291  | 11  | 1511.6 |
|         | 11 | 1470.9 | 14259 | 11 | 1491.9 | 14292  | 11  | 1512.2 |
|         | 11 | 1471.6 |       |    |        | 14293  | 11  | 1512.8 |
|         | 11 | 1472.2 | 14260 | 11 | 1492.5 | 14294  | 11  | 1513.4 |
|         | 11 | 1472.8 | 14261 | 11 | 1493.1 | 14295  | 11  | 1514.1 |
| 14229 1 | 11 | 1473.4 | 14262 | 11 | 1493.7 | 14296  | 11  | 1514.7 |
| 44000   |    | 4474.0 | 14263 | 11 | 1494.4 | 14297  | 11  | 1515.3 |
|         | 11 | 1474.0 | 14264 | 11 | 1495.0 | 14298  | 11  | 1515.9 |
|         | 11 | 1474.6 | 14265 | 11 | 1495.6 | 14299  | 11  | 1516.5 |
|         | 11 | 1475.3 | 14266 | 11 | 1496.2 | 4 4000 |     | 4547.4 |
| 14233 1 | 11 | 1475.9 | 14267 | 11 | 1496.8 | 14300  | 11  | 1517.1 |
|         |    |        |       |    |        |        |     |        |

Use check point at 14400 Kc

### Frequency: 14300-14400 Kc

| Freq. | A  | В       | Freq. | A  | В      | Freq.    | A  | В              |
|-------|----|---------|-------|----|--------|----------|----|----------------|
| 14300 | 11 | 1517.1  | 14334 | 11 | 1538.0 | 14368    | 11 | 1559.1         |
| 14301 | 11 | 1517.7  | 14335 | 11 | 1538.6 | 14369    | 11 | 1559.7         |
| 14302 | 11 | 1518.4  | 14336 | 11 | 1539.3 |          |    |                |
| 14303 | 11 | 1519.0  | 14337 | 11 | 1539.9 | 14370    | 11 | 1560.3         |
| 14304 | 11 | 1519.6  | 14338 | 11 | 1540.5 | 14371    | 11 | 1560.9         |
| 14305 | 11 | 1520.2  | 14339 | 11 | 1541.1 | 14372    | 11 | 1561.5         |
| 14306 | 11 | 1520.8  |       |    |        | 14373    | 11 | 1562.1         |
| 14307 | 11 | 1521.4  | 14340 | 11 | 1541.7 | 14374    | 11 | 1562.8         |
| 14308 | 11 | 1522.1  | 14341 | 11 | 1542.3 | 14375    | 11 | 1563.4         |
| 14309 | 11 | 1522.7  | 14342 | 11 | 1543.0 | 14376    | 11 | 1564.0         |
|       |    |         | 14343 | 11 | 1543.6 | 14377    | 11 | 1564.6         |
| 14310 | 11 | 1523.3  | 14344 | 11 | 1544.2 | 14378    | 11 | 1565.2         |
| 14311 | 11 | 1523.9  | 14345 | 11 | 1544.8 | 14379    | 11 | 1565.9         |
| 14312 | 11 | 1524.5  | 14346 | 11 | 1545.4 |          |    |                |
| 14313 | 11 | 1525.1  | 14347 | 11 | 1546.1 | 14380    | 11 | 1566.5         |
| 14314 | 11 | 1525.7  | 14348 | 11 | 1546.7 | 14381    | 11 | 1567.1         |
| 14315 | 11 | 1526.4  | 14349 | 11 | 1547.3 | 14382    | 11 | 1567. <b>7</b> |
| 14316 | 11 | 1527.0  |       |    |        | 14383    | 11 | 1568.3         |
| 14317 | 11 | 1527.6  | 14350 | 11 | 1547.9 | 14384    | 11 | 1569.0         |
| 14318 | 11 | 1528.2  | 14351 | 11 | 1548.5 | 14385    | 11 | 1569.6         |
| 14319 | 11 | 1528.8  | 14352 | 11 | 1549.1 | 14386    | 11 | 1570.2         |
|       |    |         | 14353 | 11 | 1549.8 | 14387    | 11 | 1570.8         |
| 14320 | 11 | 1529.4  | 14354 | 11 | 1550.4 | 14388    | 11 | 1571.4         |
| 14321 | 11 | 1530.0  | 14355 | 11 | 1551.0 | 14389    | 11 | 1572.1         |
| 14322 | 11 | 1530.7  | 14356 | 11 | 1551.6 | ł        |    |                |
| 14323 | 11 | 1531.3  | 14357 | 11 | 1552.2 | 14390    | 11 | 1572.7         |
| 14324 | 11 | 1531.9  | 14358 | 11 | 1552.9 | 14391    | 11 | 1573.3         |
| 14325 | 11 | 1532.5  | 14359 | 11 | 1553.5 | 14392    | 11 | 1573.9         |
| 14326 | 11 | 1533.1° |       |    |        | 14393    | 11 | 1574.5         |
| 14327 | 11 | 1533.7  | 14360 | 11 | 1554.1 | 14394    | 11 | 1575.1         |
| 14328 | 11 | 1534.3  | 14361 | 11 | 1554.7 | 14395    | 11 | 1575.8         |
| 14329 | 11 | 1535.0  | 14362 | 11 | 1555.3 | 14396    | 11 | 1576.4         |
|       |    |         | 14363 | 11 | 1556.0 | 14397    | 11 | 1577.0         |
| 14330 | 11 | 1535.6  | 14364 | 11 | 1556.6 | 14398    | 11 | 1577.6         |
| 14331 | 11 | 1536.2  | 14365 | 11 | 1557.2 | 14399    | 11 | 1578.2         |
| 14332 | 11 | 1536.8  | 14366 | 11 | 1557.8 | ١        |    |                |
| 14333 | 11 | 1537.4  | 14367 | 11 | 1558.4 | 14400    | 11 | 1578.9         |
|       |    |         |       |    |        | <u> </u> |    |                |
|       |    |         |       |    |        |          |    |                |

Use check point at 14400 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: | 14400— | 14500 | Kc |
|------------|--------|-------|----|
|------------|--------|-------|----|

| Freq. | A  | В    | Freq.    | A   | В    | Freq. | A  | В      |
|-------|----|------|----------|-----|------|-------|----|--------|
| 14400 | 12 | 60.0 | 14434    | 12  | 77.4 | 14468 | 12 | 94.7   |
| 14401 | 12 | 60.5 | 14435    | 12  | 77.9 | 14469 | 12 | 95.3   |
| 14402 | 12 | 61.0 | 14436    | 12  | 78.4 |       |    |        |
| 14403 | 12 | 61.5 | 14437    | 12  | 78.9 | 14470 | 12 | 95.8   |
| 14404 | 12 | 62.0 | 14438    | 12  | 79.4 | 14471 | 12 | 96.3   |
| 14405 | 12 | 62.6 | 14439    | 12  | 79.9 | 14472 | 12 | 96.8   |
| 14406 | 12 | 63.1 |          |     |      | 14473 | 12 | 97.3   |
| 14407 | 12 | 63.6 | 14440    | 12  | 80.4 | 14474 | 12 | 97.8   |
| 14408 | 12 | 64.1 | 14441    | 12  | 81.0 | 14475 | 12 | 98.3   |
| 14409 | 12 | 64.6 | 14442    | 12  | 81.5 | 14476 | 12 | 98.8   |
|       |    | i    | 14443    | 12  | 82.0 | 14477 | 12 | 99.3   |
| 14410 | 12 | 65.1 | 14444    | 12  | 82.5 | 14478 | 12 | 99.9   |
| 14411 | 12 | 65.6 | 14445    | 12  | 83.0 | 14479 | 12 | 100.4  |
| 14412 | 12 | 66.1 | 14446    | 12  | 83.5 |       |    |        |
| 14413 | 12 | 66.6 | 14447    | 12  | 84.0 | 14480 | 12 | 100 9  |
| 14414 | 12 | 67.2 | 14448    | 12  | 84.5 | 14481 | 12 | 101 .4 |
| 14415 | 12 | 67.7 | 14449    | 12  | 85.0 | 14482 | 12 | 101.9  |
| 14416 | 12 | 68.2 |          |     |      | 14483 | 12 | 102.4  |
| 14417 | 12 | 68.7 | 14450    | 12  | 85.6 | 14484 | 12 | 102.9  |
| 14418 | 12 | 69.2 | 14451    | 12  | 86.1 | 14485 | 12 | 103.4  |
| 14419 | 12 | 69.7 | 14452    | 12  | 86.6 | 14486 | 12 | 103.9  |
|       |    |      | 14453    | 12  | 87.1 | 14487 | 12 | 104.5  |
| 14420 | 12 | 70.2 | 14454    | 12  | 87.6 | 14488 | 12 | 105.0  |
| 14421 | 12 | 70.7 | 14455    | 12  | 88.1 | 14489 | 12 | 105.5  |
| 14422 | 12 | 71.2 | 14456    | 12  | 88.6 |       |    |        |
| 14423 | 12 | 71.8 | 14457    | 12  | 89.1 | 14490 | 12 | 106.0  |
| 14424 | 12 | 72.3 | 14458    | 12  | 89.6 | 14491 | 12 | 106.5  |
| 14425 | 12 | 72.8 | 14459    | 12  | 90.1 | 14492 | 12 | 107.0  |
| 14426 | 12 | 73.3 |          |     |      | 14493 | 12 | 107.5  |
| 14427 | 12 | 73.8 | 14460    | 12  | 90.7 | 14494 | 12 | 108.0  |
| 14428 | 12 | 74.3 | 14461    | 112 | 91.2 | 14495 | 12 | 108.5  |
| 14429 | 12 | 74.8 | 14462    | 12  | 91.7 | 14496 | 12 | 109.1  |
|       |    |      | 14463    | 12  | 92.2 | 14497 | 12 | 109.6  |
| 14430 |    | 75.3 | 14464    | 12  | 92.7 | 14498 | 12 | 110.1  |
| 14431 | 12 | 75.8 | 14465    | 12  | 93.2 | 14499 | 12 | 110.6  |
| 14432 |    | 76.4 | 14466    |     | 93.7 |       |    |        |
| 14433 | 12 | 76.9 | 14467    | 12  | 94.2 | 14500 | 12 | 111.1  |
|       |    |      | <u> </u> |     |      |       |    |        |

Use check point at 14400 Kc

## Frequency: 14500-14600 Kc

| rrequency: 14300=14000 Kc |    |        |       |    |         |       |    |       |  |  |  |
|---------------------------|----|--------|-------|----|---------|-------|----|-------|--|--|--|
| Freq.                     | A  | В      | Freq. | A  | В       | Freq. | A  | В     |  |  |  |
| 14500                     | 12 | 111.1  | 14534 | 12 | 128.4   | 14568 | 12 | 145.7 |  |  |  |
| 14501                     | 12 | 111.6  | 14535 | 12 | 128.9   | 14569 | 12 | 146.2 |  |  |  |
| 14502                     | 12 | 112.1  | 14536 | 12 | 129.5   |       |    |       |  |  |  |
| 14503                     | 12 | 112.6  | 14537 | 12 | 130.0   | 14570 | 12 | 146.7 |  |  |  |
| 14504                     | 12 | 113.1  | 14538 | 12 | 130.5   | 14571 | 12 | 147.2 |  |  |  |
| 14505                     | 12 | 113.7  | 14539 | 12 | 131.0   | 14572 | 12 | 147.8 |  |  |  |
| 14506                     | 12 | 114.2  |       |    |         | 14573 | 12 | 148.3 |  |  |  |
| 14507                     | 12 | 114 7  | 14540 | 12 | 131.5   | 14574 | 12 | 148.8 |  |  |  |
| 14508                     | 12 | 115.2  | 14541 | 12 | 132.0   | 14575 | 12 | 149.3 |  |  |  |
| 14509                     | 12 | 115.7  | 14542 | 12 | 132.5   | 14576 | 12 | 149.8 |  |  |  |
|                           |    |        | 14543 | 12 | 133.0   | 14577 | 12 | 150.3 |  |  |  |
| 14510                     | 12 | 116.2  | 14544 | 12 | 133.5   | 14578 | 12 | 150.8 |  |  |  |
| 14511                     | 12 | 116.7  | 14545 | 12 | 134.0   | 14579 | 12 | 151.3 |  |  |  |
| 14512                     | 12 | 117.2  | 14546 | 12 | 134.5   | l     |    |       |  |  |  |
| 14513                     | 12 | 117 7  | 14547 | 12 | 135.0   | 14580 | 12 | 151.8 |  |  |  |
| 14514                     | 12 | 118.3  | 14548 | 12 | 135.6   | 14581 | 12 | 152.3 |  |  |  |
| 14515                     | 12 | 118.8  | 14549 | 12 | 136.1   | 14582 | 12 | 152.8 |  |  |  |
| 14516                     | 12 | 119.3  |       |    |         | 14583 | 12 | 153.3 |  |  |  |
| 14517                     | 12 | 119.8  | 14550 | 12 | 136.6   | 14584 | 12 | 153.8 |  |  |  |
| 14518                     | 12 | 120.3  | 14551 | 12 | 137.1   | 14585 | 12 | 154.4 |  |  |  |
| 14519                     | 12 | 120.8  | 14552 | 12 | 137.6   | 14586 | 12 | 154.9 |  |  |  |
|                           |    |        | 14553 |    | 138.1   | 14587 | 12 | 155.4 |  |  |  |
| 14520                     | 12 | 121 3  | 14554 |    | 138.6   | 14588 | 12 | 155.9 |  |  |  |
| 14521                     | 12 | 121 .8 | 14555 | 12 | 139.1   | 14589 | 12 | 156.4 |  |  |  |
| 14522                     | 12 | 122.3  | 14556 |    | 139.6   | i     |    |       |  |  |  |
| 14523                     | 12 | 122.8  | 14557 |    | 140.1   | 14590 | 12 | 156.9 |  |  |  |
| 14524                     | 12 | 123.4  | 14558 |    |         | 14591 | 12 | 157.4 |  |  |  |
| 14525                     |    | 123.9  | 14559 | 12 | 141 - 1 | 14592 | 12 | 157.9 |  |  |  |
| 14526                     |    | 124.4  | 1     |    |         | 14593 | 12 | 158.4 |  |  |  |
| 14527                     |    | 124.9  | 14560 |    |         | 14594 | 12 | 158.9 |  |  |  |
| 14528                     |    |        | 14561 |    |         | 14595 |    | 159 4 |  |  |  |
| 14529                     | 12 | 125.9  | 14562 |    |         | 14596 |    | 159.9 |  |  |  |
|                           |    |        | 14563 |    |         | 14597 |    |       |  |  |  |
| 14530                     |    |        | 14564 |    |         | 14598 |    |       |  |  |  |
| 14531                     | 12 | 126.9  | 14565 |    |         | 14599 | 12 | 161.4 |  |  |  |
| 14532                     |    |        | 14566 |    |         |       |    |       |  |  |  |
| 14533                     | 12 | 127.9  | 14567 | 12 | 145.2   | 14600 | 12 | 161.9 |  |  |  |
|                           |    |        | 1     |    |         |       |    |       |  |  |  |

Use check point at 14400 Kc

Frequency: 14600-14700 Kc

| Freq. | A   | В     | Freq. | A  | В     | Freq. | A  | В     |
|-------|-----|-------|-------|----|-------|-------|----|-------|
| 14600 | 12  | 161.9 | 14634 | 12 | 179 1 | 14668 | 12 | 196.4 |
| 14601 | 12  | 162.4 | 14635 | 12 | 179 7 | 14669 | 12 | 196.9 |
| 14602 | 12  | 163.0 | 14636 | 12 | 180.2 | ı     |    |       |
| 14603 | 12  | 163.5 | 14637 | 12 | 180.7 | 14670 | 12 | 197.4 |
| 14604 | 12  | 164.0 | 14638 | 12 | 181.2 | 14671 | 12 | 197.9 |
| 14605 | 12  | 164.5 | 14639 | 12 | 181.7 | 14672 | 12 | 198.4 |
| 14606 | 12  | 165.0 |       |    |       | 14673 | 12 | 198.9 |
| 14607 | 12  | 165.5 | 14640 | 12 | 182.2 | 14674 | 12 | 199.4 |
| 14608 | 12  | 166.0 | 14641 | 12 | 182.7 | 14675 | 12 | 199.9 |
| 14609 | 12  | 166.5 | 14642 | 12 | 183.2 | 14676 | 12 | 200.4 |
|       |     |       | 14643 | 12 | 183.7 | 14677 | 12 | 200.9 |
| 14610 | 12. | 167.0 | 14644 | 12 | 184.2 | 14678 | 12 | 201.4 |
| 14611 | 12  | 167.5 | 14645 | 12 | 184.7 | 14679 | 12 | 202.0 |
| 14612 | 12  | 168.0 | 14646 | 12 | 185.2 | l     |    |       |
| 14613 | 12  | 168.5 | 14647 | 12 | 185.7 | 14680 | 12 | 202.5 |
| 14614 | 12  | 169.0 | 14648 | 12 | 186.2 | 14681 | 12 | 203.0 |
| 14615 | 12  | 169.5 | 14649 | 12 | 186.7 | 14682 | 12 | 203.5 |
| 14616 | 12  | 170.0 | l     |    |       | 14683 | 12 | 204.0 |
| 14617 | 12  | 170.5 | 14650 | 12 | 187.3 | 14684 | 12 | 204 5 |
| 14618 | 12  | 171.0 | 14651 | 12 | 187.8 | 14685 | 12 | 205.0 |
| 14619 | 12  | 171.6 | 14652 | 12 | 188.3 | 14686 | 12 | 205.5 |
|       |     |       | 14653 | 12 | 188.8 | 14687 | 12 | 206.0 |
| 14620 | 12  | 172.1 | 14654 | 12 | 189.3 | 14688 | 12 | 206.5 |
| 14621 | 12  | 172.6 | 14655 | 12 | 189.8 | 14689 | 12 | 207.0 |
| 14622 | 12  | 173.1 | 14656 | 12 | 190.3 |       |    |       |
| 14623 | 12  | 173.6 | 14657 | 12 | 190.8 | 14690 | 12 | 207.5 |
| 14624 | 12  | 174.1 | 14658 | 12 | 191.3 | 14691 | 12 | 208.0 |
| 14625 | 12  | 174.6 | 14659 | 12 | 191.8 | 14692 | 12 | 208.₺ |
| 14626 | 12  | 175.1 | l     |    |       | 14693 | 12 | 209 1 |
| 14627 | 12  | 175.6 | 14660 | 12 | 192.3 | 14694 | 12 | 209.6 |
| 14628 | 12  | 176.1 | 14661 | 12 | 192.8 | 14695 | 12 | 210.1 |
| 14629 | 12  | 176.6 | 14662 | 12 | 193.3 | 14696 | 12 | 210.6 |
|       |     |       | 14663 | 12 | 193.8 | 14697 | 12 | 211.1 |
| 14630 | 12  | 177.1 | 14664 | 12 | 194.3 | 14698 | 12 | 211.6 |
| 14631 | 12  | 177.6 | 14665 | 12 | 194.9 | 14699 | 12 | 212.1 |
| 14632 | 12  | 178.1 | 14666 | 12 | 195.4 |       |    |       |
| 14633 | 12  | 178.6 | 14667 | 12 | 195.9 | 14700 | 12 | 212.6 |
|       |     |       | l     |    |       |       |    |       |
|       |     |       |       |    |       |       |    |       |

Use check point at 14400 Kc

## Frequency: 14700-14800 Kc

| Freq.  | A  | В     | Freq.          | A        | В              | Freq.          | A        | B              |
|--------|----|-------|----------------|----------|----------------|----------------|----------|----------------|
| 14700  | 12 | 212.6 | 14734          | 12       | 229.8          | 14768          | 12       | 247.0          |
| 14701  | 12 | 213.1 | 14735          | 12       | 230.3          | 14769          | 12       | 247.5          |
| 14702  | 12 | 213.6 | 14736          | 12       | 230.8          | ļ              |          |                |
| 14703  | 12 | 214.1 | 14737          | 12       | 231.3          | 14770          | 12       | 248.1          |
| 14704  | 12 | 214.6 | 14738          | 12       | 231 .8         | 14771          | 12       | 248.6          |
| 14705  | 12 | 215.1 | 14739          | 12       | 232.3          | 14772          | 12       | 249.1          |
| 14706  | 12 | 215.6 |                |          |                | 14773          | 12       | 249.6          |
| 14707  | 12 | 216.1 | 14740          | 12       | 232.8          | 14774          | 12       | 250 1          |
| 14708  | 12 | 216.6 | 14741          | 12       | 233.3          | 14775          | 12       | 250.6          |
| 14709  | 12 | 217.2 | 14742          | 12       | 233.9          | 14776          | 12       | 251 1          |
|        |    |       | 14743          | 12       | 234.4          | 14777          | 12       | 251.6          |
| 14710  | 12 | 217 7 | 14744          | 12       | 234.9          | 14778          | 12       | 252 1          |
| 14711  | 12 | 218.2 | 14745          | 12       | 235.4          | 14779          | 12       | 252.6          |
| 14712  | 12 | 218.7 | 14746          | 12       | 235.9          |                |          |                |
| 14713  | 12 | 219.2 | 14747          | 12       | 236.4          | 14780          | 12       | 253.1          |
| 14714  | 12 | 219.7 | 14748          | 12       | 236.9          | 14781          | 12       | 253.6          |
| 14715  | 12 | 220.2 | 14749          | 12       | 237.4          | 14782          | 12       | 254.2          |
| 14716  | 12 | 220.7 | 44750          | 40       | 007.0          | 14783          | 12       | 254.7          |
| 14717  | 12 | 221.2 | 14750          | 12       | 237.9          | 14784<br>14785 | 12<br>12 | 255.2<br>255.7 |
| 14718  | 12 | 221 7 | 14751          | 12<br>12 | 238.4<br>238.9 | 14786          | 12       | 256.2          |
| 14719  | 12 | 222.2 | 14752<br>14753 | 12       | 239.4          | 14787          | 12       | 256.7          |
| 1.4700 | 40 | 000 7 | 14754          | 12       | -              | 14788          | 12       | 257.2          |
| 14720  | 12 | 222.7 |                | 12       | 239.9          | 14789          | 12       | 257.7          |
| 14721  | 12 | 223 2 | 14755          |          | 240.4          | 14/89          | 12       | 207.7          |
| 14722  | 12 | 223.7 | 14756          | 12       | 240.9          | 4.4700         | 40       | 050.0          |
| 14723  | 12 | 224.2 | 14757          | 12       | 241.4          | 14790          | 12       | 258.2          |
| 14724  | 12 | 224.7 | 14758          | 12       | 241.9          | 14791          | 12       | 258.7          |
| 14725  | 12 | 225.3 | 14759          | 12       | 242.5          | 14792          | 12       | 259.2          |
| 14726  | 12 | 225.8 |                |          |                | 14793          | 12       | 259.8          |
| 14727  | 12 | 226.3 | 14760          | 12       | 243.0          | 14794          | 12       | 260.3          |
| 14728  | 12 | 226.8 | 14761          | 12       | 243.5          | 14795          | 12       | 260.8          |
| 14729  | 12 | 227.3 | 14762          | 12       | 244.0          | 14796          | 12       | 261.3          |
|        |    |       | 14763          | 12       | 244.5          | 14797          | 12       | 261.8          |
| 14730  | 12 | 227.8 | 14764          | 12       | 245.0          | 14798          | 12       | 262.3          |
| 14731  | 12 | 228.3 | 14765          | 12       | 245.5          | 14799          | 12       | 262.8          |
| 14732  | 12 | 228.8 | 14766          | 12       | 246.0          |                |          |                |
| 14733  | 12 | 229.3 | 14767          | 12       | 246.5          | 14800          | 12       | 263.3          |
|        |    |       |                |          |                |                |          |                |
|        |    |       |                |          |                |                |          |                |

Use check point at 15000 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Fraguency: | 14800-1 | 4900 Kc |
|------------|---------|---------|
|            |         |         |

| Freq. | A        | В       | Freq.   | A  | В     | Freq.   | A  | В              |
|-------|----------|---------|---------|----|-------|---------|----|----------------|
| 14800 | 12       | 263.3   | 14834   | 12 | 280.6 | 14868   | 12 | 297.8          |
| 14801 | 12       | 263.8   | 14835   | 12 | 281 1 | 14869   | 12 | 298.3          |
| 14802 | 12       | 264.3   | 14836   | 12 | 281.6 |         |    |                |
| 14803 | 12       | 264.8   | 14837   | 12 | 282.1 | 14870   | 12 | 298.8          |
| 14804 | 12       | 265.4   | 14838   | 12 | 282.6 | 14871   | 12 | 299.3          |
| 14805 | 12       | 265.9   | 14839   | 12 | 283.1 | 14872   | 12 | 299.8          |
| 14806 | 12       | 266.4   |         |    |       | 14873   | 12 | 300.4          |
| 14807 | 12       | 266.9   | 14840   | 12 | 283.6 | 14874   | 12 | 300.9          |
| 14808 | 12       | 267.4   | 14841   | 12 | 284.1 | 14875   | 12 | 301.4          |
| 14809 | 12       | 267.9   | 14842   | 12 | 284.6 | 14876   | 12 | 301.9          |
|       |          |         | 14843   | 12 | 285.2 | 14877   | 12 | 302.4          |
| 14810 | 12       | 268.4   | 14844   | 12 | 285.7 | 14878   | 12 | 302.9          |
| 14811 | 12       | 268.9   | 14845   | 12 | 286.2 | 14879   | 12 | 303 4          |
| 14812 | 12       | 269.4   | 14846   | 12 | 286.7 |         |    |                |
| 14813 | 12       | 269.9   | 14847   | 12 | 287.2 | 14880   | 12 | 303.9          |
| 14814 | 12       | 270.4   | 14848   | 12 | 287.7 | 14881   | 12 | 304.4          |
| 14815 | 12       | 271.0   | 14849   | 12 | 288.2 | 14882   | 12 | 304.9          |
| 14816 | 12       | 271.5   |         |    |       | 14883   | 12 | 305.4          |
| 14817 | 12       | 272.0   | 14850   | 12 | 288.7 | 14884   | 12 | 305.9          |
| 14818 | 12       | 272.5   | 14851   | 12 | 289.2 | 14885   | 12 | 306.4          |
| 14819 | 12       | 273.0   | 14852   | 12 | 289.7 | 14886   | 12 | 307.0          |
|       |          |         | 14853   | 12 | 290.2 | 14887   | 12 | 307.5          |
| 14820 | 12       | 273.5   | 14854   | 12 | 290.7 | 14888   | 12 | 308.0<br>308.5 |
| 14821 | 12       | 274.0   | 14855   | 12 | 291.2 | 14889   | 12 | 308.5          |
| 14822 | 12       | 274.5   | 14856   | 12 | 291.7 | 14890   | 12 | 309.0          |
| 14823 | 12       | 275.0   | 14857   | 12 | 292.2 | 14891   | 12 | 309.5          |
| 14824 | 12       | 275.5   | 14858   | 12 | 292.8 | 14892   | 12 | 310.0          |
| 14825 | 12       | 276.0   | 14859   | 12 | 293.3 | 14893   | 12 | 310.5          |
| 14826 | 12       | 276.5   | 14860   | 12 | 293.8 | 14894   | 12 | 311.0          |
| 14827 | 12       | 277.0   | 14860   | 12 | 294.3 | 14895   | 12 | 311.5          |
| 14828 | 12       | 277.6   | 14862   | 12 | 294.8 | 14896   | 12 | 312.1          |
| 14829 | 12       | 278 . 1 | 14863   | 12 | 295.3 | 14897   | 12 | 312.6          |
| 44000 | 40       | 278.6   | 14864   | 12 | 295.8 | 14898   | 12 | 313.1          |
| 14830 | 12       | 278.0   | 14865   | 12 | 296.3 | 14899   | 12 | 313.6          |
| 14831 | 12       | 279.1   | 14866   | 12 | 296.8 | 17033   | 12 | 3,0.0          |
| 14832 | 12<br>12 | 279.6   | 14867   | 12 | 297.3 | 14900   | 12 | 314.1          |
| 14833 | 12       | 280.1   | 1400/   | 12 | 231.3 | 1 17500 | .2 | 317.1          |
|       |          |         | <u></u> |    |       | L       |    |                |

Use check point at 15000 Kc

### Frequency: 14900-15000 Kc

| · · · · · · · · · · · · · · · · · · · |    |       |       |    |        |                |          |                |  |  |
|---------------------------------------|----|-------|-------|----|--------|----------------|----------|----------------|--|--|
| Freq.                                 | A  | В     | Freq. | A  | В      | Freq.          | A        | В              |  |  |
| 14900                                 | 12 | 314.1 | 14934 | 12 | 331.4  | 14968          | 12       | 348.8          |  |  |
| 14901                                 | 12 | 314.6 | 14935 | 12 | 331.9  | 14969          | 12       | 349.3          |  |  |
| 14902                                 | 12 | 315.1 | 14936 | 12 | 332.4  |                |          |                |  |  |
| 14903                                 | 12 | 315.6 | 14937 | 12 | 333.0  | 14970          | 12       | 349.8          |  |  |
| 14904                                 | 12 | 316.1 | 14938 | 12 | 333.5  | 14971          | 12       | 350.3          |  |  |
| 14905                                 | 12 | 316.6 | 14939 | 12 | 334.0  | 14972          | 12       | 350.8          |  |  |
| 14906                                 | 12 | 317.2 |       |    |        | 14973          | 12       | 351 4          |  |  |
| 14907                                 | 12 | 317.7 | 14940 | 12 | 334.5  | 14974          | 12       | 351.9          |  |  |
| 14908                                 | 12 | 318.2 | 14941 | 12 | 335.0  | 14975          | 12       | 352 4          |  |  |
| 14909                                 | 12 | 318.7 | 14942 | 12 | 335.5  | 14976          | 12       | 352.9          |  |  |
|                                       |    |       | 14943 | 12 | 336.0  | 14977          | 12       | 353 4          |  |  |
| 14910                                 | 12 | 319.2 | 14944 | 12 | 336.5  | 14978          | 12       | 353.9          |  |  |
| 14911                                 | 12 | 319.7 | 14945 | 12 | 337.0  | 14979          | 12       | 354.4          |  |  |
| 14912                                 | 12 | 320.2 | 14946 | 12 | 337.5  |                |          |                |  |  |
| 14913                                 | 12 | 320.7 | 14947 | 12 | 338.1  | 14980          | 12       | 354.9          |  |  |
| 14914                                 | 12 | 321.2 | 14948 | 12 | 338.6  | 14981          | 12       | 355 4          |  |  |
| 14915                                 | 12 | 321.7 | 14949 | 12 | 339.1  | 14982          | 12       | 356.0          |  |  |
| 14916                                 | 12 | 322.2 | l     |    |        | 14983          | 12       | 356.5          |  |  |
| 14917                                 | 12 | 322.8 | 14950 | 12 | 339.6  | 14984          | 12       | 357.0          |  |  |
| 14918                                 | 12 | 323.3 | 14951 | 12 | 340.1  | 14985          | 12       | 357.5          |  |  |
| 14919                                 | 12 | 323.8 | 14952 | 12 | 340.6  | 14986          | 12       | 358.0          |  |  |
|                                       |    |       | 14953 | 12 | 341 .1 | 14987          | 12       | 358.5          |  |  |
| 14920                                 | 12 | 324 3 | 14954 | 12 | 341.6  | 14988          | 12       | 359.0          |  |  |
| 14921                                 | 12 | 324.8 | 14955 | 12 | 342.2  | 14989          | 12       | 359.5          |  |  |
| 14922                                 | 12 | 325 3 | 14956 | 12 | 342.7  |                | 40       | 200 0          |  |  |
| 14923                                 | 12 | 325.8 | 14957 | 12 | 343.2  | 14990          | 12       | 360.0<br>360.6 |  |  |
| 14924                                 | 12 | 326.3 | 14958 | 12 | 343.7  | 14991          | 12<br>12 | 361.1          |  |  |
| 14925                                 | 12 | 326.8 | 14959 | 12 | 344.2  | 14992<br>14993 | 12       | 361.6          |  |  |
| 14926                                 | 12 | 327.3 |       |    |        |                |          | 362.1          |  |  |
| 14927                                 | 12 | 327.9 | 14960 | 12 | 344.7  | 14994          | 12       |                |  |  |
| 14928                                 | 12 | 328.4 | 14961 | 12 | 345.2  | 14995          | 12       | 362.6<br>363.1 |  |  |
| 14929                                 | 12 | 328.9 | 14962 | 12 | 345.7  | 14996          | 12       |                |  |  |
|                                       |    |       | 14963 | 12 | 346.2  | 14997          | 12       | 363.6<br>364.1 |  |  |
| 14930                                 | 12 | 329.4 | 14964 |    | 346.8  | 14998          | 12       |                |  |  |
| 14931                                 | 12 | 329.9 | 14965 | 12 | 347.3  | 14999          | 12       | 364.6          |  |  |
| 14932                                 | 12 | 330.4 | 14966 | 12 | 347.8  |                |          | 205.0          |  |  |
| 14933                                 | 12 | 330.9 | 14967 | 12 | 348.3  | 15000          | 12       | 365.2          |  |  |
|                                       |    |       | l     |    |        | <u> </u>       |          |                |  |  |

Use check point at 15000 Kc

Frequency: 15000-15100 Kc

| _ |       |    |       |       |    |       |       |    |       |
|---|-------|----|-------|-------|----|-------|-------|----|-------|
|   | Freq. | A  | В     | Freq. | A. | В     | Freq. | A  | В     |
| : | 15000 | 12 | 365.2 | 15034 | 12 | 382.4 | 15068 | 12 | 399.7 |
|   | 15001 | 12 | 365.7 | 15035 | 12 | 382.9 | 15069 | 12 | 400.2 |
| • | 15002 | 12 | 366.2 | 15036 | 12 | 383.4 | l     |    |       |
| • | 15003 | 12 | 366.7 | 15037 | 12 | 383.9 | 15070 | 12 | 400.7 |
| • | 15004 | 12 | 367.2 | 15938 | 12 | 384.5 | 15071 | 12 | 401.3 |
|   | 15005 | 12 | 367.7 | 15039 | 12 | 385.0 | 15072 | 12 | 401.8 |
|   | 15006 | 12 | 368.2 | 1     |    |       | 15073 | 12 | 402.3 |
|   | 15007 | 12 | 368.7 | 15040 | 12 | 385.5 | 15074 | 12 | 402.8 |
|   | 15008 | 12 | 369.2 | 15041 | 12 | 386.0 | 15075 | 12 | 403.3 |
| • | 15009 | 12 | 369.7 | 15042 | 12 | 386.5 | 15076 | 12 | 403.B |
|   |       |    |       | 15043 | 12 | 387.0 | 15077 | 12 | 404.3 |
|   | 15010 | 12 | 370.2 | 15044 | 12 | 387.5 | 15078 | 12 | 404.8 |
|   | 15011 | 12 | 370.7 | 15045 | 12 | 388.0 | 15079 | 12 | 405.4 |
|   | 15012 | 12 | 371.3 | 15046 | 12 | 388.5 |       |    |       |
|   | 15013 | 12 | 371.8 | 15047 | 12 | 389.0 | 15080 | 12 | 405.9 |
|   | 15014 | 12 | 372.3 | 15048 | 12 | 389.5 | 15081 | 12 | 406.4 |
|   | 15015 | 12 | 372.8 | 15049 | 12 | 390.0 | 15082 | 12 | 406.9 |
|   | 15016 | 12 | 373.3 | i     |    |       | 15083 | 12 | 407.4 |
| 1 | 15017 | 12 | 373.8 | 15050 | 12 | 390.5 | 15084 | 12 | 407.9 |
|   | 15018 | 12 | 374.3 | 15051 | 12 | 391.1 | 15085 | 12 | 408.4 |
| 1 | 15019 | 12 | 374.8 | 15052 | 12 | 391.6 | 15086 | 12 | 408.9 |
|   |       |    |       | 15053 | 12 | 392.1 | 15087 | 12 | 409.5 |
|   | 5020  | 12 | 375.3 | 15054 | 12 | 392.6 | 15088 | 12 | 410.0 |
| 1 | 15021 | 12 | 375.8 | 15055 | 12 | 393.1 | 15089 | 12 | 410.5 |
|   | 5022  | 12 | 376.3 | 15056 | 12 | 393.6 |       |    |       |
| 1 | 5023  | 12 | 376.8 | 15057 | 12 | 394.1 | 15090 | 12 | 411.0 |
|   | 5024  | 12 | 377.3 | 15058 | 12 | 394.6 | 15091 | 12 | 411.5 |
|   | 5025  | 12 | 377.9 | 15059 | 12 | 395.1 | 15092 | 12 | 412.0 |
| 1 | 5026  | 12 | 378.4 |       |    |       | 15093 | 12 | 412.5 |
| 1 | 15027 | 12 | 378.9 | 15060 | 12 | 395.6 | 15094 | 12 | 413.1 |
| 1 | 15028 | 12 | 379.4 | 15061 | 12 | 396.1 | 15095 | 12 | 413.6 |
| 1 | 15029 | 12 | 379.9 | 15062 | 12 | 396.6 | 15096 | 12 | 414.1 |
|   |       |    |       | 15063 | 12 | 397.2 | 15097 | 12 | 414.6 |
| 1 | 15030 | 12 | 380.4 | 15064 | 12 | 397.7 | 15098 | 12 | 415.1 |
| 1 | 15031 | 12 | 380.9 | 15065 | 12 | 398.2 | 15099 | 12 | 415.6 |
| 1 | 15032 | 12 | 381.4 | 15066 | 12 | 398.7 | Ī     |    |       |
| 1 | 15033 | 12 | 381.9 | 15067 | 12 | 399.2 | 15100 | 12 | 416.1 |
|   |       |    |       | Ī     |    |       | Ī     |    |       |
| _ |       |    |       |       |    |       |       |    |       |

Use check point at 15000 Kc

### Frequency: 15100-15200 Kc

| Freq. | A  | В     | Freq.    | A  | В       | Freq.          | A        | В              |  |  |
|-------|----|-------|----------|----|---------|----------------|----------|----------------|--|--|
| 15100 | 12 | 416.1 | 15134    | 12 | 433.6   | 15168          | 12       | 451 1          |  |  |
| 15101 | 12 | 416.6 | 15135    | 12 | 434.1   | 15169          | 12       | 451.6          |  |  |
| 15102 | 12 | 417.2 | 15136    | 12 | 434.6   |                |          |                |  |  |
| 15103 | 12 | 417.7 | 15137    | 12 | 435.1   | 15170          | 12       | 452.1          |  |  |
| 15104 | 12 | 418.2 | 15138    | 12 | 435.6   | 15171          | 12       | 452.6          |  |  |
| 15105 | 12 | 418.7 | 15139    | 12 | 436.2   | 15172          | 12       | 453.1          |  |  |
| 15106 | 12 | 419.2 |          |    |         | 15173          | 12       | 453.6          |  |  |
| 15107 | 12 | 419.7 | 15140    | 12 | 436.7   | 15174          | 12       | 454.2          |  |  |
| 15108 | 12 | 420.2 | 15141    | 12 | 437.2   | 15175          | 12       | 454.7          |  |  |
| 15109 | 12 | 420.7 | 15142    | 12 | 437.7   | 15176          | 12       | 455.2          |  |  |
|       |    |       | 15143    | 12 | 438.2   | 15177          | 12       | 455.7          |  |  |
| 15110 | 12 | 421.3 | 15144    | 12 | 438.7   | 15178          | 12       | 456.2          |  |  |
| 15111 | 12 | 421.8 | 15145    | 12 | 439.2   | 15179          | 12       | 456.7          |  |  |
| 15112 | 12 | 422.3 | 15146    | 12 | 439.8   | 1              |          |                |  |  |
| 15113 | 12 | 422.8 | 15147    | 12 | 440.3   | 15180          | 12       | 457.2          |  |  |
| 15114 | 12 | 423.3 | 15148    | 12 | 440.8   | 15181          | 12       | 457.7          |  |  |
| 15115 | 12 | 423.8 | 15149    | 12 | 441.3   | 15182          | 12       | 458.3          |  |  |
| 15116 | 12 | 424.3 | 1        |    |         | 15183          | 12       | 458.8          |  |  |
| 15117 | 12 | 424.8 | 15150    | 12 | 441 . 8 | 15184          | 12       | 459.3          |  |  |
| 15118 | 12 | 425.4 | 15151    | 12 | 442.3   | 15185          | 12       | 459.8          |  |  |
| 15119 | 12 | 425.9 | 15152    | 12 | 442.8   | 15186          | 12       | 460.3          |  |  |
|       |    |       | 15153    | 12 | 443.4   | 15187          | 12       | 460.8          |  |  |
| 15120 | 12 | 426.4 | 15154    | 12 | 443.9   | 15188          | 12       | 461.3          |  |  |
| 15121 | 12 | 426.9 | 15155    | 12 | 444 4   | 15189          | 12       | 461.8          |  |  |
| 15122 | 12 | 427 4 | 15156    | 12 | 444.9   |                |          | 400.0          |  |  |
| 15123 | 12 | 427.9 | 15157    | 12 | 445.4   | 15190          |          | 462.3<br>462.8 |  |  |
| 15124 | 12 |       | 15158    | 12 | 445.9   | 15191          | 12<br>12 | 463.4          |  |  |
| 15125 |    |       | 15159    | 12 | 446.4   | 15192          | 12       | 463.9          |  |  |
| 15126 |    |       | 1        | 40 | 447 0   | 15193<br>15194 | 12       | 464.4          |  |  |
| 15127 |    |       | 15160    | 12 | 447.0   |                |          | 464.9          |  |  |
| 15128 |    |       | 15161    | 12 | 447.5   | 15195          |          | 465.4          |  |  |
| 15129 | 12 | 431.0 | 15162    | 12 | 448.0   | 15196          |          |                |  |  |
|       |    |       | 15163    | 12 | 448.5   | 15197          |          | 465.9<br>466.4 |  |  |
| 15130 |    |       | 15164    | 12 | 449.0   | 15198          |          | 466.9          |  |  |
| 15131 | 12 |       | 15165    |    | 449.5   | 15199          | 12       | 400.9          |  |  |
| 15132 |    |       | 15166    |    | 450.0   | 15000          | 40       | 467.4          |  |  |
| 15133 | 12 | 433.1 | 15167    | 12 | 450.6   | 15200          | 12       | 467.4          |  |  |
|       |    |       | <u> </u> |    |         |                |          |                |  |  |
|       |    |       |          |    |         |                |          |                |  |  |

Use check point at 15000 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: | 15200- | 15300 Kc |
|------------|--------|----------|
|------------|--------|----------|

| rrequency: 13200—13000 Kt |    |        |       |    |         |       |    |       |  |  |  |
|---------------------------|----|--------|-------|----|---------|-------|----|-------|--|--|--|
| Freq.                     | A  | В      | Freq. | A  | В       | Freq. | A  | В     |  |  |  |
| 15200                     | 12 | 467.4  | 15234 | 12 | 484.8   | 15268 | 12 | 502.3 |  |  |  |
| 15201                     | 12 | 467.9  | 15235 | 12 | 485.3   | 15269 | 12 | 502.9 |  |  |  |
| 15202                     | 12 | 468.5  | 15236 | 12 | 485.8   |       |    |       |  |  |  |
| 15203                     | 12 | 469.0  | 15237 | 12 | 486.3   | 15270 | 12 | 503.4 |  |  |  |
| 15204                     | 12 | 469.5  | 15238 | 12 | 486.8   | 15271 | 12 | 503.9 |  |  |  |
| 15205                     | 12 | 470.0  | 15239 | 12 | 487.3   | 15272 | 12 | 504.4 |  |  |  |
| 15206                     | 12 | 470.5  | ١.    |    |         | 15273 | 12 | 504.9 |  |  |  |
| 15207                     | 12 | 471.0  | 15240 | 12 | 487 . 8 | 15274 | 12 | 505 4 |  |  |  |
| 15208                     | 12 | 471 .5 | 15241 | 12 | 488.3   | 15275 | 12 | 506.0 |  |  |  |
| 15209                     | 12 | 472.0  | 15242 | 12 | 488.9   | 15276 | 12 | 506.5 |  |  |  |
|                           |    |        | 15243 | 12 | 489.4   | 15277 | 12 | 507.0 |  |  |  |
| 15210                     | 12 | 472.5  | 15244 | 12 | 489.9   | 15278 | 12 | 507.5 |  |  |  |
| 15211                     | 12 | 473.0  | 15245 | 12 | 490.4   | 15279 | 12 | 508.0 |  |  |  |
| 15212                     | 12 | 473.5  | 15246 | 12 | 490.9   |       |    |       |  |  |  |
| 15213                     | 12 | 474.1  | 15247 | 12 | 491.4   | 15280 | 12 | 508.6 |  |  |  |
| 15214                     | 12 | 474.6  | 15248 | 12 | 492.0   | 15281 | 12 | 509.1 |  |  |  |
| 15215                     | 12 | 475.1  | 15249 | 12 | 492.5   | 15282 | 12 | 509.6 |  |  |  |
| 15216                     | 12 | 475.6  | l     |    |         | 15283 | 12 | 510.1 |  |  |  |
| 15217                     | 12 | 476.1  | 15250 | 12 | 493.0   | 15284 | 12 | 510.6 |  |  |  |
| 15218                     | 12 | 476.6  | 15251 | 12 | 493.5   | 15285 | 12 | 511.1 |  |  |  |
| 15219                     | 12 | 477 1  | 15252 | 12 | 494.0   | 15286 | 12 | 511.7 |  |  |  |
|                           |    |        | 15253 | 12 | 494 6   | 15287 | 12 | 512.2 |  |  |  |
| 15220                     | 12 | 477.6  | 15254 | 12 | 495 1   | 15288 | 12 | 512.7 |  |  |  |
| 15221                     | 12 | 478.1  | 15255 | 12 | 495.6   | 15289 | 12 | 513.2 |  |  |  |
| 15222                     | 12 | 478.6  | 15256 | 12 | 496.1   |       |    |       |  |  |  |
| 15223                     | 12 | 479.2  | 15257 | 12 | 496.6   | 15290 | 12 | 513.7 |  |  |  |
| 15224                     | 12 | 479.7  | 15258 | 12 | 497.2   | 15291 | 12 | 514.3 |  |  |  |
| 15225                     | 12 | 480.2  | 15259 | 12 | 497.7   | 15292 | 12 | 514.8 |  |  |  |
| 15226                     | 12 | 480.7  | 1     |    |         | 15293 | 12 | 515.3 |  |  |  |
| 15227                     | 12 | 481.2  | 15260 |    | 498.2   | 15294 | 12 | 515.8 |  |  |  |
| 15228                     | 12 | 481.7  | 15261 | 12 | 498.7   | 15295 | 12 | 516.3 |  |  |  |
| 15229                     | 12 | 482.2  | 15262 | 12 | 499.2   | 15296 | 12 | 516.8 |  |  |  |
|                           |    |        | 15263 | 12 | 499.7   | 15297 | 12 | 517 4 |  |  |  |
| 15230                     | 12 | 482.7  | 15264 |    | 500.3   | 15298 | 12 | 517.9 |  |  |  |
| 15231                     | 12 | 483.2  | 15265 |    | 500.8   | 15299 | 12 | 518.4 |  |  |  |
| 15232                     | 12 | 483.7  | 15266 |    | 501.3   |       |    |       |  |  |  |
| 15233                     | 12 | 484.3  | 15267 | 12 | 501.8   | 15300 | 12 | 518.9 |  |  |  |
|                           |    |        | 1     |    |         |       | _  |       |  |  |  |
|                           | _  |        |       | _  |         |       |    |       |  |  |  |

Use check point at 15000 Kc

# Frequency: 15300-15400 Kc

| Freq. | A  | В              | Freq. | A  | В     | Freq.    | A  | В     |
|-------|----|----------------|-------|----|-------|----------|----|-------|
| 15300 | 12 | 518.9          | 15334 | 12 | 536.4 | 15368    | 12 | 553.8 |
| 15300 | 12 | 518.9          | 15335 | 12 | 536.9 | 15369    | 12 | 554.3 |
| 15301 | 12 | 519.4<br>519.9 | 15336 | 12 | 537.4 | "        |    |       |
| 15302 | 12 | 520.5          | 15337 | 12 | 537.9 | 15370    | 12 | 554.9 |
| 15303 | 12 | 521.0          | 15338 | 12 | 538.4 | 15371    | 12 | 555.4 |
| 15305 | 12 | 521.5          | 15339 | 12 | 538.9 | 15372    | 12 | 555.9 |
| 15306 | 12 | 522.0          |       |    |       | 15373    | 12 | 556.4 |
| 15307 | 12 | 522.5          | 15340 | 12 | 539.5 | 15374    | 12 | 556.9 |
| 15308 | 12 | 523.0          | 15341 | 12 | 540.0 | 15375    | 12 | 557.4 |
| 15309 | 12 | 523.5          | 15342 | 12 | 540.5 | 15376    | 12 | 557.9 |
| 10003 | -  | 020.0          | 15343 | 12 | 541.0 | 15377    | 12 | 558.5 |
| 15310 | 12 | 524.1          | 15344 | 12 | 541.5 | 15378    | 12 | 559.0 |
| 15311 | 12 | 524.6          | 15345 | 12 | 542.0 | 15379    | 12 | 559.5 |
| 15312 | 12 | 525.1          | 15346 | 12 | 542.5 |          |    |       |
| 15313 | 12 | 525.6          | 15347 | 12 | 543.0 | 15380    | 12 | 560.0 |
| 15314 | 12 | 526.1          | 15348 | 12 | 543.6 | 15381    | 12 | 560.5 |
| 15315 | 12 | 526.6          | 15349 | 12 | 544.1 | 15382    | 12 | 561.0 |
| 15316 | 12 | 527.1          | l     |    |       | 15383    | 12 | 561.5 |
| 15317 | 12 | 527.6          | 15350 | 12 | 544.6 | 15384    | 12 | 562.1 |
| 15318 | 12 | 528.2          | 15351 | 12 | 545.1 | 15385    | 12 | 562.6 |
| 15319 | 12 | 528.7          | 15352 | 12 | 545.6 | 15386    | 12 | 563.1 |
|       |    |                | 15353 | 12 | 546.1 | 15387    | 12 | 563.6 |
| 15320 | 12 | 529.2          | 15354 | 12 | 546.6 | 15388    | 12 | 564.1 |
| 15321 | 12 | 529.7          | 15355 | 12 | 547.2 | 15389    | 12 | 564.6 |
| 15322 | 12 | 530.2          | 15356 | 12 | 547.7 |          |    |       |
| 15323 | 12 | •530.7         | 15357 | 12 | 548.2 | 15390    | 12 | 565.2 |
| 15324 | 12 | 531.2          | 15358 | 12 | 548.7 | 15391    | 12 | 565.7 |
| 15325 | 12 | 531.8          | 15359 | 12 | 549.2 | 15392    | 12 | 566.2 |
| 15326 | 12 | 532 3          |       |    |       | 15393    | 12 | 566.7 |
| 15327 | 12 | 532.8          | 15360 | 12 | 549.7 | 15394    | 12 | 567.2 |
| 15328 | 12 | 533.3          | 15361 | 12 | 550.2 | 15395    | 12 | 567.7 |
| 15329 | 12 | 533.8          | 15362 | 12 | 550.7 | 15396    | 12 | 568.2 |
|       |    |                | 15363 | 12 | 551.3 | 15397    | 12 | 568.8 |
| 15330 | 12 | 534.3          | 15364 | 12 | 551.8 | 15398    | 12 | 569.3 |
| 15331 | 12 | 534.8          | 15365 | 12 | 552.3 | 15399    | 12 | 569.8 |
| 15332 | 12 | 535.3          | 15366 | 12 | 552.8 |          |    |       |
| 15333 | 12 | 535.9          | 15367 | 12 | 553.3 | 15400    | 12 | 570.3 |
|       |    |                |       |    |       | <u> </u> |    |       |

Use check point at 15600 Kc

Frequency: 15400-15500 Kc

|       | 17040007, 10 100 1000 100 |         |       |    |                |       |    |       |  |  |  |
|-------|---------------------------|---------|-------|----|----------------|-------|----|-------|--|--|--|
| Freq. | A                         | В       | Freq. | Α  | В              | Freq. | A  | В     |  |  |  |
| 15400 | 12                        | 570.3   | 15434 | 12 | 587.8          | 15468 | 12 | 605.4 |  |  |  |
| 15401 | 12                        | 570.8   | 15435 | 12 | 588.3          | 15469 | 12 | 605.9 |  |  |  |
| 15402 | 12                        | 571.3   | 15436 | 12 | 588.8          |       |    |       |  |  |  |
| 15403 | 12                        | 571.8   | 15437 | 12 | 589.4          | 15470 | 12 | 606.4 |  |  |  |
| 15404 | 12                        | 572.4   | 15438 | 12 | 589.9          | 15471 | 12 | 606.9 |  |  |  |
| 15405 | 12                        | 572.9   | 15439 | 12 | 590.4          | 15472 | 12 | 607.4 |  |  |  |
| 15406 | 12                        | 573.4   |       |    |                | 15473 | 12 | 608.0 |  |  |  |
| 15407 | 12                        | 573.9   | 15440 | 12 | 590.9          | 15474 | 12 | 608.5 |  |  |  |
| 15408 | 12                        | 574.4   | 15441 | 12 | 591.4          | 15475 | 12 | 609.0 |  |  |  |
| 15409 | 12                        | 574.9   | 15442 | 12 | 591.9          | 15476 | 12 | 609.5 |  |  |  |
|       |                           |         | 15443 | 12 | 592.5          | 15477 | 12 | 610.0 |  |  |  |
| 15410 | 12                        | 575.4   | 15444 | 12 | 593.0          | 15478 | 12 | 610.5 |  |  |  |
| 15411 | 12                        | 576.0   | 15445 | 12 | 593.5          | 15479 | 12 | 611.1 |  |  |  |
| 15412 | 12                        | 576.5   | 15446 | 12 | 594.0          |       |    |       |  |  |  |
| 15413 | 12                        | 577.0   | 15447 | 12 | 594.5          | 15480 | 12 | 611.6 |  |  |  |
| 15414 | 12                        | 577.5   | 15448 | 12 | 595.0          | 15481 | 12 | 612.1 |  |  |  |
| 15415 | 12                        | 578.0   | 15449 | 12 | 595.6          | 15482 | 12 | 612.6 |  |  |  |
| 15416 | 12                        | 578.5   | 1     |    |                | 15483 | 12 | 613.1 |  |  |  |
| 15417 | 12                        | 579.0   | 15450 | 12 | 596.1          | 15484 | 12 | 613.6 |  |  |  |
| 15418 | 12                        | 579.6   | 15451 | 12 | 596.6          | 15485 | 12 | 614.2 |  |  |  |
| 15419 | 12                        | 580.1   | 15452 | 12 | 597.1          | 15486 | 12 | 614.7 |  |  |  |
|       |                           |         | 15453 | 12 | 597.6          | 15487 | 12 | 615.2 |  |  |  |
| 15420 | 12                        | 580.6   | 15454 | 12 | 598.1          | 15488 | 12 | 615.7 |  |  |  |
| 15421 | 12                        | 581 . 1 | 15455 | 12 | 598.7          | 15489 | 12 | 616.2 |  |  |  |
| 15422 | 12                        | 581.6   | 15456 | 12 | 599.2          | l     |    |       |  |  |  |
| 15423 | 12                        | 582.1   | 15457 | 12 | 5 <b>9</b> 9.7 | 15490 | 12 | 616.7 |  |  |  |
| 15424 | 12                        | 582.6   | 15458 | 12 | 600.2          | 15491 | 12 | 617.2 |  |  |  |
| 15425 | 12                        | 583.2   | 15459 | 12 | 600.7          | 15492 | 12 | 617.8 |  |  |  |
| 15426 | 12                        | 583.7   |       |    |                | 15493 | 12 | 618.3 |  |  |  |
| 15427 | 12                        | 584.2   | 15460 | 12 | 601.2          | 15494 | 12 | 618.8 |  |  |  |
| 15428 | 12                        | 584.7   | 15461 | 12 | 601.8          | 15495 | 12 | 619.3 |  |  |  |
| 15429 | 12                        | 585.2   | 15462 | 12 | 602.3          | 15496 | 12 | 619.8 |  |  |  |
|       |                           |         | 15463 | 12 | 602.8          | 15497 | 12 | 620.3 |  |  |  |
| 15430 | 12                        | 585.7   | 15464 | 12 | 603.3          | 15498 | 12 | 620.9 |  |  |  |
| 15431 | 12                        | 586.3   | 15465 | 12 | 603.8          | 15499 | 12 | 621.4 |  |  |  |
| 15432 | 12                        | 586.8   | 15466 | 12 | 604.3          | l     |    |       |  |  |  |
| 15433 | 12                        | 587.3   | 15467 | 12 | 604.9          | 15500 | 12 | 621.9 |  |  |  |
|       |                           |         | l     |    |                |       |    |       |  |  |  |

Use check point at 15600 Kc

### Frequency: 15500-15600 Kc

| Freq. | Α  | В                  | Freq.    | A  | В     | Freq. | A  | В      |
|-------|----|--------------------|----------|----|-------|-------|----|--------|
| 15500 | 12 | 621.9              | 15534    | 12 | 639 4 | 15568 | 12 | 656.9  |
| 15501 | 12 | 622.4              | 15535    | 12 | 639.9 | 15569 | 12 | 657.4  |
| 15502 | 12 | 622.9              | 15536    | 12 | 640.4 |       |    |        |
| 15503 | 12 | 623.4              | 15537    | 12 | 641.0 | 15570 | 12 | 658.0  |
| 15504 | 12 | 623.9              | 15538    | 12 | 641.5 | 15571 | 12 | 658.5  |
| 15505 | 12 | 624.5              | 15539    | 12 | 642.0 | 15572 | 12 | 659.0  |
| 15506 | 12 | 625.0              | l        |    |       | 15573 | 12 | 659.5  |
| 15507 | 12 | 625.5              | 15540    | 12 | 642.5 | 15574 | 12 | 660.0  |
| 15508 | 12 | 626.0              | 15541    | 12 | 643.0 | 15575 | 12 | 660.5  |
| 15509 | 12 | 626.5              | 15542    | 12 | 643.5 | 15576 | 12 | 661.1  |
|       |    |                    | 15543    | 12 | 644.0 | 15577 | 12 | 661.6  |
| 15510 | 12 | 627.0              | 15544    | 12 | 644.6 | 15578 | 12 | 662.1  |
| 15511 | 12 | 627.6              | 15545    | 12 | 645.1 | 15579 | 12 | 662.6  |
| 15512 | 12 | 628.1              | 15546    | 12 | 645.6 |       |    |        |
| 15513 | 12 | 628.6              | 15547    | 12 | 646.1 | 15580 | 12 | 663.1  |
| 15514 | 12 | 629.1              | 15548    | 12 | 646.6 | 15581 | 12 | 663.6  |
| 15515 | 12 | <b>629</b> .6      | 15549    | 12 | 647.1 | 15582 | 12 | 664.1  |
| 15516 | 12 | 630 1              | <u> </u> |    |       | 15583 | 12 | 664.7  |
| 15517 | 12 | 630.6              | 15550    | 12 | 647.7 | 15584 | 12 | 665.2  |
| 15518 | 12 | 631.2              | 15551    | 12 | 648.2 | 15585 | 12 | 665.7  |
| 15519 | 12 | 631.7              | 15552    | 12 | 648.7 | 15586 | 12 | 666.2  |
|       |    |                    | 15553    | 12 | 649.2 | 15587 | 12 | 666.7  |
| 15520 | 12 | 632.2              | 15554    | 12 | 649 7 | 15588 | 12 | 667.2  |
| 15521 | 12 | 632.7              | 15555    | 12 | 650.2 | 15589 | 12 | 667.8  |
| 15522 | 12 | 633.2              | 15556    | 12 | 650.7 |       |    |        |
| 15523 | 12 | 633.7              | 15557    | 12 | 651.3 | 15590 | 12 | 668.3  |
| 15524 | 12 | 634.3              | 15558    | 12 | 651.8 | 15591 | 12 | 668.8  |
| 15525 | 12 | 634.8              | 15559    | 12 | 652.3 | 15592 | 12 | 669.3  |
| 15526 | 12 | 635.3              | l        |    |       | 15593 | 12 | 669.8  |
| 15527 | 12 | 635.8              | 15560    | 12 | 652.8 | 15594 | 12 | 670.3  |
| 15528 | 12 | 636.3              | 15561    | 12 | 653.3 | 15595 | 12 | 670.8  |
| 15529 | 12 | 636.8              | 15562    | 12 | 653.8 | 15596 | 12 | 671 .4 |
|       |    |                    | 15563    | 12 | 654.4 | 15597 | 12 | 671.9  |
| 15530 | 12 | 637.3              | 15564    | 12 | 654.9 | 15598 | 12 | 672.4  |
| 15531 | 12 | 637.9              | 15565    | 12 | 655.4 | 15599 | 12 | 672.9  |
| 15532 | 12 | 638 <sub>.</sub> 4 | 15566    | 12 | 655.9 | 1     |    |        |
| 15533 | 12 | <b>638</b> .9      | 15567    | 12 | 656.4 | 15600 | 12 | 673.4  |
|       |    |                    |          |    |       |       |    |        |

Use check point at 15600 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: | 15600-15700 Kc |
|------------|----------------|
|------------|----------------|

|       |    | <u> </u> |       |    |         |       |    |         |
|-------|----|----------|-------|----|---------|-------|----|---------|
| Freq. | A  | В        | Freq. | A  | В       | Freq. | A  | В       |
| 15600 | 12 | 673.4    | 15634 | 12 | 690.9   | 15668 | 12 | 708.4   |
| 15601 | 12 | 673.9    | 15635 | 12 | 691.4   | 15669 | 12 | 708.9   |
| 15602 | 12 | 674.4    | 15636 | 12 | 691.9   |       |    |         |
| 15603 | 12 | 675.0    | 15637 | 12 | 692.4   | 15670 | 12 | 709.4   |
| 15604 | 12 | 675.5    | 15638 | 12 | 692.9   | 15671 | 12 | 709.9   |
| 15605 | 12 | 676.0    | 15639 | 12 | 693.5   | 15672 | 12 | 710.4   |
| 15606 | 12 | 676.5    |       |    |         | 15673 | 12 | 711.0   |
| 15607 | 12 | 677.0    | 15640 | 12 | 694.0   | 15674 | 12 | 711.5   |
| 15608 | 12 | 677.5    | 15641 | 12 | 694.5   | 15675 | 12 | 712.0   |
| 15609 | 12 | 678.0    | 15642 | 12 | 695.0   | 15676 | 12 | 712.5   |
|       |    |          | 15643 | 12 | 695.5   | 15677 | 12 | 713.0   |
| 15610 | 12 | 678.6    | 15644 | 12 | 696.0   | 15678 | 12 | 713.5   |
| 15611 | 12 | 679.1    | 15645 | 12 | 696.5   | 15679 | 12 | 714.1   |
| 15612 | 12 | 679 6    | 15646 | 12 | 697.0   | 1     |    |         |
| 15613 | 12 | 680.1    | 15647 | 12 | 697.6   | 15680 | 12 | 714.6   |
| 15614 | 12 | 680.6    | 15648 | 12 | 698.1   | 15681 | 12 | 715.1   |
| 15615 | 12 | 681.1    | 15649 | 12 | 698.6   | 15682 | 12 | 715.6   |
| 15616 | 12 | 681.6    | l     |    |         | 15683 | 12 | 716.1   |
| 15617 | 12 | 682.2    | 15650 | 12 | 699 . 1 | 15684 | 12 | 716.6   |
| 15618 | 12 | 682.7    | 15651 | 12 | 699.6   | 15685 | 12 | 717.2   |
| 15619 | 12 | 683.2    | 15652 | 12 | 700.1   | 15686 | 12 | 717.7   |
|       |    |          | 15653 | 12 | 700.6   | 15687 | 12 | 718.2   |
| 15620 | 12 | 683.7    | 15654 | 12 | 701.2   | 15688 | 12 | 718.7   |
| 15621 | 12 | 684.2    | 15655 | 12 | 701.7   | 15689 | 12 | 719.2   |
| 15622 | 12 | 684.7    | 15656 | 12 | 702.2   | ĺ     |    |         |
| 15623 | 12 | 685.2    | 15657 | 12 | 702.7   | 15690 | 12 | 719.8   |
| 15624 | 12 | 685.7    | 15658 | 12 | 703.2   | 15691 | 12 | 720.3   |
| 15625 | 12 | 686.3    | 15659 | 12 | 703.7   | 15692 | 12 | 720.8   |
| 15626 | 12 | 686.8    | l     |    |         | 15693 | 12 | 721 . 3 |
| 15627 | 12 | 687.3    | 15660 | 12 | 704.2   | 15694 | 12 | 721.8   |
| 15628 | 12 | 687.8    | 15661 | 12 | 704.8   | 15695 | 12 | 722.3   |
| 15629 | 12 | 688.3    | 15662 | 12 | 705.3   | 15696 | 12 | 722.9   |
|       |    |          | 15663 | 12 | 705.8   | 15697 | 12 | 723.4   |
| 15630 | 12 | 688.8    | 15664 | 12 | 706.3   | 15698 | 12 | 723.9   |
| 15631 | 12 | 689.3    | 15665 | 12 | 706.8   | 15699 | 12 | 724.4   |
| 15632 | 12 | 689.9    | 15666 | 12 | 707.3   |       |    |         |
| 15633 | 12 | 690.4    | 15667 | 12 | 707.9   | 15700 | 12 | 724.9   |
|       |    |          |       |    |         | 1     |    |         |

Use check point at 15600 Kc

### Frequency: 15700-15800 Kc

|       | - 1 | Freque        | ncy: 1 | 570 | 0158          | 100 Kc |      |                 |
|-------|-----|---------------|--------|-----|---------------|--------|------|-----------------|
| Freq. | A   | В             | Freq.  | A   | В             | Freq.  | A    | В               |
| 15700 | 12  | 724.9         | 15734  | 12  | 742.4         | 15768  | 12   | 759.8           |
| 15701 | 12  | 725.4         | 15735  | 12  | 742.9         | 15769  | 12   | 760.3           |
| 15702 | 12  | 726.0         | 15736  | 12  | 743.4         |        |      |                 |
| 15703 | 12  | 726.5         | 15737  | 12  | 744.0         | 15770  | 12   | 760.8           |
| 15704 | 12  | 727.0         | 15738  | 12  | 744 5         | 15771  | 12   | 761.4           |
| 15705 | 12  | 727.5         | 15739  | 12  | 745.0         | 15772  | 12   | 761.9           |
| 15706 | 12  | 728.0         |        |     |               | 15773  | 12   | 762.4           |
| 15707 | 12  | 728.5         | 15740  | 12  | 745.5         | 15774  | 12   | 762.9           |
| 15708 | 12  | 729.1         | 15741  | 12  | 746.0         | 15775  | · 12 | 763.4           |
| 15709 | 12  | 729.6         | 15742  | 12  | 746.5         | 15776  | 12   | 763.9           |
|       |     |               | 15743  | 12  | 747.0         | 15777  | 12   | 764.4           |
| 15710 | 12  | 730.1         | 15744  | 12  | 747.5         | 15778  | 12   | 764.9           |
| 15711 | 12  | 730.6         | 15745  | 12  | 748.1         | 15779  | 12   | 765.4           |
| 15712 | 12  | 731.1         | 15746  | 12  | 748.6         |        |      |                 |
| 15713 | 12  | 731.6         | 15747  | 12  | 749.1         | 15780  | 12   | 766.0           |
| 15714 | 12  | 732.2         | 15748  | 12  | 749 6         | 15781  | 12   | 766 . 5         |
| 15715 | 12  | 732.7         | 15749  | 12  | 750.1         | 15782  | 12   | 767 0           |
| 15716 | 12  | 733.2         |        |     |               | 15783  | 12   | 767.5           |
| 15717 | 12  | 733.7         | 15750  | 12  | 750.6         | 15784  | 12   | 763.0           |
| 15718 | 12  | 734.2         | 15751  | 12  | 751.1         | 15785  | 12   | 768.5           |
| 15719 | 12  | 734.7         | 15752  | 12  | 751.6         | 15786  | 12   | 769.1           |
|       |     |               | 15753  | 12  | 752.1         | 15787  | 12   | 769 6           |
| 15720 | 12  | 735.3         | 15754  | 12  | 752.7         | 15788  | 12   | 770.1           |
| 15721 | 12  | 735.8         | 15755  | 12  | 753 2         | 15789  | 12   | 770.6           |
| 15722 | 12  | 736.3         | 15756  | 12  | 753.7         | l      |      |                 |
| 15723 | 12  | 736.8         | 15757  | 12  | 754.2         | 15790  | 12   | <b>7</b> 71 . 1 |
| 15724 | 12  | 737.3         | 15758  | 12  | 754.7         | 15791  | 12   | 771.6           |
| 15725 | 12  | 737 . 8       | 15759  | 12  | 755.2         | 15792  | 12   | 772.1           |
| 15726 | 12  | 738.3         | i      |     |               | 15793  | 12   | 772.7           |
| 15727 | 12  | 738.8         | 15760  | 12  | 755.7         | 15794  | 12   | 773.2           |
| 15728 | 12  | 739.4         | 15761  | 12  | 756 2         | 15795  | 12   | 773.7           |
| 15729 | 12  | 73 <b>9</b> 9 | 15762  | 12  | 756.8         | 15796  | 12   | 774.2           |
|       |     |               | 15763  | 12  | 757.3         | 15797  | 12   | 774.7           |
| 15730 | 12  | 740.4         | 15764  | 12  | 757.8         | 15798  | 12   | 775.2           |
| 15731 | 12  | 740 9         | 15765  | 12  | 758.3         | 15799  | 12   | 775.7           |
| 15732 | 12  | 741 4         | 15766  | 12  | 758 8         |        |      |                 |
| 15733 | 12  | 741.9         | 15767  | 12  | <b>75</b> 9.3 | 15800  | 12   | 776 3           |

Use check point at 15600 Kc

Frequency: 15800-15900 Kc

| Freq. | A  | В     | Freq.    | A  | В     | Freq.    | A  | В     |
|-------|----|-------|----------|----|-------|----------|----|-------|
| 15800 | 12 | 776.3 | 15834    | 12 | 793.8 | 15868    | 12 | 811.4 |
| 15801 | 12 | 776.8 | 15835    | 12 | 794.3 | 15869    | 12 | 811.9 |
| 15802 | 12 | 777.3 | 15836    | 12 | 794.8 |          |    | ν.    |
| 15803 | 12 | 777.8 | 15837    | 12 | 795.3 | 15870    | 12 | 812.4 |
| 15804 | 12 | 778.3 | 15838    | 12 | 795.8 | 15871    | 12 | 812.9 |
| 15805 | 12 | 778.8 | 15839    | 12 | 796.3 | 15872    | 12 | 813.4 |
| 15806 | 12 | 779.4 |          |    |       | 15873    | 12 | 814.0 |
| 15807 | 12 | 779.9 | 15840    | 12 | 796.9 | 15874    | 12 | 814.5 |
| 15808 | 12 | 780.4 | 15841    | 12 | 797 4 | 15875    | 12 | 815.0 |
| 15809 | 12 | 780.9 | 15842    | 12 | 797 9 | 15876    | 12 | 815.5 |
|       |    |       | 15843    | 12 | 798 4 | 15877    | 12 | 816.0 |
| 15810 | 12 | 781.4 | 15844    | 12 | 798.9 | 15878    | 12 | 816.6 |
| 15811 | 12 | 781.9 | 15845    | 12 | 799.5 | 15879    | 12 | 817.1 |
| 15812 | 12 | 782.4 | 15846    | 12 | 800.0 |          |    |       |
| 15813 | 12 | 783.0 | 15847    | 12 | 800.5 | 15880    | 12 | 817.6 |
| 15814 | 12 | 783.5 | 15848    | 12 | 801.0 | 15881    | 12 | 818.1 |
| 15815 | 12 | 784.0 | 15849    | 12 | 801.5 | 15882    | 12 | 818 6 |
| 15816 | 12 | 784 5 |          |    |       | 15883    | 12 | 819.1 |
| 15817 | 12 | 785.0 | 15850    | 12 | 802.0 | 15884    | 12 | 819.7 |
| 15813 | 12 | 785.5 | 15851    | 12 | 802.6 | 15885    | 12 | 820.2 |
| 15819 | 12 | 786.0 | 15852    | 12 | 803.1 | 15886    | 12 | 820.7 |
|       |    |       | 15853    | 12 | 803.6 | 15887    | 12 | 821 2 |
| 15820 | 12 | 786.6 | 15854    | 12 | 804.1 | 15888    | 12 | 821.7 |
| 15821 | 12 | 787.1 | 15855    | 12 | 804.6 | 15889    | 12 | 822.3 |
| 15822 | 12 | 787.6 | 15856    | 12 | 805.2 |          |    |       |
| 15823 | 12 | 788.1 | 15857    | 12 | 805.7 | 15890    | 12 | 822.8 |
| 15824 | 12 | 788.6 | 15858    | 12 | 806.2 | 15891    | 12 | 823.3 |
| 15825 | 12 | 789 1 | 15859    | 12 | 806.7 | 15892    | 12 | 823.8 |
| 15826 | 12 | 789.7 |          | _  |       | 15893    | 12 | 824.3 |
| 15827 | 12 | 790.2 | 15860    | 12 | 807.2 | 15894    | 12 | 824 9 |
| 15828 | 12 | 790.7 | 15861    | 12 | 807.7 | 15895    | 12 | 825.4 |
| 15829 | 12 | 791.2 | 15862    | 12 | 808.3 | 15896    | 12 | 825.9 |
|       |    |       | 15863    | 12 | 8.808 | 15897    | 12 | 826.4 |
| 15830 | 12 | 791.7 | 15864    | 12 | 809.3 | 15898    | 12 | 826.9 |
| 15831 | 12 | 792.2 | 15865    | 12 | 809.8 | 15899    | 12 | 827.4 |
| 15832 | 12 | 792.7 | 15866    | 12 | 810.3 |          |    |       |
| 15833 | 12 | 793.3 | 15867    | 12 | 810.9 | 15900    | 12 | 828.0 |
|       |    |       | <u> </u> |    |       | <u> </u> |    |       |
|       |    |       |          |    |       |          |    |       |

Use check point at 15600 Kc

### Frequency: 15900-16000 Kc

| Freq. | Α  | В     | Freq. | A  | В     | Freq. | A  | В     |
|-------|----|-------|-------|----|-------|-------|----|-------|
| 15900 | 12 | 828.0 | 15934 | 12 | 845.4 | 15968 | 12 | 862.8 |
| 15901 | 12 | 828.5 | 15935 | 12 | 845.9 | 15969 | 12 | 863.3 |
| 15902 | 12 | 829.0 | 15936 | 12 | 846.4 | l     |    |       |
| 15903 | 12 | 829.5 | 15937 | 12 | 847.0 | 15970 | 12 | 863.8 |
| 15904 | 12 | 830.0 | 15938 | 12 | 847.5 | 15971 | 12 | 864.3 |
| 15905 | 12 | 830.5 | 15939 | 12 | 848.0 | 15972 | 12 | 864.8 |
| 15906 | 12 | 831.0 |       |    |       | 15973 | 12 | 865.3 |
| 15907 | 12 | 831.6 | 15940 | 12 | 848.5 | 15974 | 12 | 865.8 |
| 15903 | 12 | 832.1 | 15941 | 12 | 849.0 | 15975 | 12 | 866.4 |
| 15909 | 12 | 832.6 | 15942 | 12 | 849.5 | 15976 | 12 | 866.9 |
|       |    |       | 15943 | 12 | 850 0 | 15977 | 12 | 867.4 |
| 15910 | 12 | 833.1 | 15944 | 12 | 850.5 | 15978 | 12 | 867.9 |
| 15911 | 12 | 833.6 | 15945 | 12 | 851.1 | 15979 | 12 | 868.4 |
| 15912 | 12 | 834.1 | 15846 | 12 | 851.6 | ľ     |    |       |
| 15913 | 12 | 834.6 | 15947 | 12 | 852.1 | 15980 | 12 | 868.9 |
| 15914 | 12 | 835.1 | 15948 | 12 | 852.6 | 15981 | 12 | 869.4 |
| 15915 | 12 | 835.7 | 15949 | 12 | 853.1 | 15982 | 12 | 869.9 |
| 15916 | 12 | 836.2 |       |    |       | 15983 | 12 | 870.4 |
| 15917 | 12 | 836.7 | 15950 | 12 | 853.6 | 15984 | 12 | 870.9 |
| 15918 | 12 | 837.2 | 15951 | 12 | 854.1 | 15985 | 12 | 871.4 |
| 15919 | 12 | 837.7 | 15952 | 12 | 854.7 | 15986 | 12 | 871.9 |
|       |    | 1     | 15953 | 12 | 855.2 | 15987 | 12 | 872.4 |
| 15920 | 12 | 838.2 | 15954 | 12 | 855.7 | 15988 | 12 | 872.9 |
| 15921 | 12 | 838.7 | 15955 | 12 | 856.2 | 15989 | 12 | 873.4 |
| 15922 | 12 | 839.3 | 15956 | 12 | 856.7 |       |    |       |
| 15923 | 12 | 839.8 | 15957 | 12 | 857.2 | 15990 | 12 | 874.0 |
| 15924 | 12 | 840.3 | 15958 | 12 | 857.7 | 15991 | 12 | 874.5 |
| 15925 | 12 | 840.8 | 15959 | 12 | 858.2 | 15992 | 12 | 875.0 |
| 15926 | 12 | 841.3 |       |    |       | 15993 | 12 | 875.5 |
| 15927 | 12 | 841.8 | 15960 | 12 | 858 8 | 15994 | 12 | 876.0 |
| 15928 | 12 | 842.3 | 15961 | 12 | 859.3 | 15995 | 12 | 876.5 |
| 15929 | 12 | 842.8 | 15962 | 12 | 859.8 | 15996 | 12 | 877 0 |
|       |    |       | 15963 | 12 | 860.3 | 15997 | 12 | 877.5 |
| 15930 | 12 | 843.4 | 15964 | 12 | 860.8 | 15998 | 12 | 878.0 |
| 15931 | 12 | 843.9 | 15965 | 12 | 861.3 | 15999 | 12 | 878.5 |
| 15932 | 12 | 844.4 | 15966 | 12 | 861.8 | ***** | 40 | 0-0   |
| 15933 | 12 | 844.9 | 15967 | 12 | 862.3 | 16000 | 12 | 879.0 |
|       |    |       |       |    |       |       |    |       |

Use check point at 16200 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: | 1 | 6 | C | X | Ю | <b>)</b> — | 1 | ó | 1 | 0 | Ю | K | c |
|------------|---|---|---|---|---|------------|---|---|---|---|---|---|---|
|------------|---|---|---|---|---|------------|---|---|---|---|---|---|---|

|       |    |               |       | _  |       | -     |    |       |
|-------|----|---------------|-------|----|-------|-------|----|-------|
| Freq. | A  | В             | Freq. | A  | В     | Freq. | A  | В     |
| 16000 | 12 | 879.0         | 16034 | 12 | 896.3 | 16068 | 12 | 913.8 |
| 16001 | 12 | 879.5         | 16035 | 12 | 896.9 | 16069 | 12 | 914.4 |
| 16002 | 12 | 880.0         | 16036 | 12 | 897.4 |       |    |       |
| 16003 | 12 | 880.5         | 16037 | 12 | 897.9 | 16070 | 12 | 914.9 |
| 16004 | 12 | 881.0         | 16038 | 12 | 898.4 | 16071 | 12 | 915.4 |
| 16005 | 12 | 881.5         | 16039 | 12 | 898.9 | 16072 | 12 | 915.9 |
| 16006 | 12 | 882.1         | l     |    |       | 16073 | 12 | 916.4 |
| 16007 | 12 | 882.6         | 16040 | 12 | 899 4 | 16074 | 12 | 916.9 |
| 16008 | 12 | 883.1         | 16041 | 12 | 899.9 | 16075 | 12 | 917.4 |
| 16009 | 12 | 883.6         | 16042 | 12 | 900.5 | 16076 | 12 | 918.0 |
|       |    |               | 16043 | 12 | 901.0 | 16077 | 12 | 918.5 |
| 16010 | 12 | <b>884</b> .1 | 16044 | 12 | 901.5 | 16078 | 12 | 919.0 |
| 16011 | 12 | 884.6         | 16045 | 12 | 902.0 | 16079 | 12 | 919.5 |
| 16012 | 12 | 885.1         | 16046 | 12 | 902.5 |       |    |       |
| 16013 | 12 | 885.6         | 16047 | 12 | 903.0 | 16080 | 12 | 920.0 |
| 16014 | 12 | 886.1         | 16048 | 12 | 903.6 | 16081 | 12 | 920.5 |
| 16015 | 12 | 886.6         | 16049 | 12 | 904.1 | 16082 | 12 | 921.0 |
| 16016 | 12 | 887.1         | l     |    |       | 16083 | 12 | 921.6 |
| 16017 | 12 | 887.6         | 16050 | 12 | 904.6 | 16084 | 12 | 922.1 |
| 16018 | 12 | 888.1         | 16051 | 12 | 905.1 | 16085 | 12 | 922.6 |
| 16019 | 12 | 888.6         | 16052 | 12 | 905.6 | 16086 | 12 | 923.1 |
|       |    |               | 16053 | 12 | 906.1 | 16087 | 12 | 923.6 |
| 16020 | 12 | 889.1         | 16054 | 12 | 906.6 | 16088 | 12 | 924.1 |
| 16021 | 12 | 889.7         | 16055 | 12 | 907.2 | 16089 | 12 | 924.6 |
| 16022 | 12 | 890.2         | 16056 | 12 | 907.7 |       |    |       |
| 16023 | 12 | 890.7         | 16057 | 12 | 908.2 | 16090 | 12 | 925.1 |
| 16024 | 12 | 891.2         | 16058 | 12 | 908.7 | 16091 | 12 | 925.6 |
| 16025 | 12 | 891.7         | 16059 | 12 | 909.2 | 16092 | 12 | 926.1 |
| 16026 | 12 | 892.2         | l     |    |       | 16093 | 12 | 926.7 |
| 16027 | 12 | 892.7         | 16060 | 12 | 909.7 | 16094 | 12 | 927.2 |
| 16028 | 12 | 893.3         | 16061 | 12 | 910.2 | 16095 | 12 | 927.7 |
| 16029 | 12 | 893.8         | 16062 | 12 | 910.8 | 16096 | 12 | 928.2 |
|       |    |               | 16063 | 12 | 911.3 | 16097 | 12 | 928.7 |
| 16030 | 12 | 894.3         | 16064 | 12 | 911.8 | 16098 | 12 | 929.2 |
| 16031 | 12 | 894.8         | 16065 | 12 | 912.3 | 16099 | 12 | 929.7 |
| 16032 | 12 | 895.3         | 16066 | 12 | 912.8 |       |    |       |
| 16033 | 12 | 895.8         | 16067 | 12 | 913.3 | 16100 | 12 | 930.2 |
|       |    |               |       |    |       |       |    |       |

Use check point at 16200 Kc

### Frequency: 16100-16200 Kc

|       |    |       | ,.    |    |       |       |    |        |
|-------|----|-------|-------|----|-------|-------|----|--------|
| Freq. | A  | В     | Freq. | A  | В     | Freq. | A  | В      |
| 16100 | 12 | 930.2 | 16134 | 12 | 947.6 | 16168 | 12 | 965 0  |
| 16101 | 12 | 930.7 | 16135 | 12 | 948.1 | 16169 | 12 | 965.5  |
| 16102 | 12 | 931.3 | 16136 | 12 | 948.6 |       |    |        |
| 16103 | 12 | 931.8 | 16137 | 12 | 949.1 | 16170 | 12 | 966.0  |
| 16104 | 12 | 932.3 | 16138 | 12 | 949.6 | 16171 | 12 | 966.5  |
| 16105 | 12 | 932.8 | 16139 | 12 | 950.1 | 16172 | 12 | 967.0  |
| 16106 | 12 | 933.3 |       |    |       | 16173 | 12 | 967.5  |
| 16107 | 12 | 933.8 | 16140 | 12 | 950.7 | 16174 | 12 | 968.1  |
| 16108 | 12 | 934.3 | 16141 | 12 | 951.2 | 16175 | 12 | 968.6  |
| 16109 | 12 | 934.8 | 16142 | 12 | 951.7 | 16176 | 12 | 969.1  |
|       |    |       | 16143 | 12 | 952.2 | 16177 | 12 | 969.6  |
| 16110 | 12 | 935.3 | 16144 | 12 | 952.7 | 16178 | 12 | 970.1  |
| 16111 | 12 | 935.9 | 16145 | 12 | 953.2 | 16179 | 12 | 970.6  |
| 16112 | 12 | 936.4 | 16146 | 12 | 953.7 |       |    |        |
| 16113 | 12 | 936.9 | 16147 | 12 | 954.2 | 16180 | 12 | 971 .1 |
| 16114 | 12 | 937.4 | 16148 | 12 | 954.8 | 16181 | 12 | 971.6  |
| 16115 | 12 | 937.9 | 16149 | 12 | 955.3 | 16182 | 12 | 972.2  |
| 16116 | 12 | 938.4 | 1     |    |       | 16183 | 12 | 972.7  |
| 16117 | 12 | 938.9 | 16150 | 12 | 955.8 | 16184 | 12 | 973.2  |
| 16118 | 12 | 939.4 | 16151 | 12 | 956.3 | 16185 | 12 | 973.7  |
| 16119 | 12 | 939.9 | 16152 | 12 | 956.8 | 16186 | 12 | 974.2  |
|       |    |       | 16153 | 12 | 957.3 | 16187 | 12 | 974.7  |
| 16120 | 12 | 940.4 | 16154 | 12 | 957.8 | 16188 | 12 | 975.2  |
| 16121 | 12 | 941.0 | 16155 | 12 | 958.3 | 16189 | 12 | 975.7  |
| 16122 | 12 | 941.5 | 16156 | 12 | 958.8 | İ     |    |        |
| 16123 | 12 | 942.0 | 16157 | 12 | 959.4 | 16190 | 12 | 976.2  |
| 16124 | 12 | 942.5 | 16158 | 12 | 959.9 | 16191 | 12 | 976.8  |
| 16125 | 12 | 943.0 | 16159 | 12 | 960.4 | 16192 | 12 | 977.3  |
| 16126 | 12 | 943.5 |       |    |       | 16193 | 12 | 977.8  |
| 16127 | 12 | 944.0 | 16160 | 12 | 960.9 | 16194 | 12 | 978.3  |
| 16128 | 12 | 944.5 | 16161 | 12 | 961.4 | 16195 | 12 | 978.8  |
| 16129 | 12 | 945.0 | 16162 | 12 | 961.9 | 16196 | 12 | 979.3  |
|       |    |       | 16163 | 12 | 962.4 | 16197 | 12 | 979.8  |
| 16130 | 12 | 945.6 | 16164 | 12 | 962.9 | 16198 | 12 | 980.3  |
| 16131 | 12 | 946.1 | 16165 | 12 | 963.5 | 16199 | 12 | 980.8  |
| 16132 | 12 | 946.6 | 16166 | 12 | 964.0 |       |    |        |
| 16133 | 12 | 947.1 | 16167 | 12 | 964.5 | 16200 | 12 | 981 .4 |
|       |    |       | 1     |    |       | ł     |    |        |

Use check point at 16200 Kc

Frequency: 16200-16300 Kc

| Freq.          | A        | В              | Freq.          | A        | В                | Freq.          | A        | В                |
|----------------|----------|----------------|----------------|----------|------------------|----------------|----------|------------------|
| 16200          | 12       | 981.4          | 16234          | 12       | 998.7            | 16268          | 12       | 1016.0           |
| 16201          | 12       | 981.9          | 16235          | 12       | 999.2            | 16269          | 12       | 1016.5           |
| 16202          | 12       | 982.4          | 16236          | 12       | 999.7            |                |          |                  |
| 16203          | 12       | 982.9          | 16237          | 12       | 1000.2           | 16270          | 12       | 1017.0           |
| 16204          | 12       | 983.4          | 16238          | 12       | 1000.7           | 16271          | 12       | 1017.6           |
| 16205          | 12       | 983.9          | 16239          | 12       | 1001.3           | 16272          | 12       | 1018.1           |
| 16206          | 12       | 984.4          |                |          |                  | 16273          | 12       | 1018.6           |
| 16207          | 12       | 984.9          | 16240          | 12       | 1001.8           | 16274          | 12       | 1019.1           |
| 16208          | 12       | 985.4          | 16241          | 12       | 1002.3           | 16275          | 12       | 1019.6           |
| 16209          | 12       | 986.0          | 16242          | 12       | 1002.8           | 16276          | 12       | 1020.1           |
|                |          |                | 16243          | 12       | 1003.3           | 16277          | 12       | 1020.6           |
| 16210          | 12       | 986.5          | 16244          | 12       | 1003.8           | 16278          | 12       | 1021.1           |
| 16211          | 12       | 987.0          | 16245          | 12       | 1004.3           | 16279          | 12       | 1021.6           |
| 16212          | 12       | 987.5          | 16246          | 12       | 1004.8           |                |          |                  |
| 16213          | 12       | 988.0          | 16247          | 12       | 1005.3           | 16280          | 12       | 1022.1           |
| 16214          | 12       | 988.5          | 16248          | 12       | 1005.8           | 16281          | 12       | 1022.6           |
| 16215          | 12       | 989.0          | 16249          | 12       | 1006.4           | 16282          | 12       | 1023.2           |
| 16216          | 12       | 989.5          |                |          |                  | 16283          | 12       | 1023.7           |
| 16217          | 12       | 990.0          | 16250          | 12       | 1006.7           | 16284          | 12       | 1024.2           |
| 16218          | 12       | 990.5          | 16251          | 12       | 1007.4           | 16285          | 12       | 1024.7           |
| 16219          | 12       | 991.1          | 16252          | 12       | 1007.9           | 16286          | 12       | 1025.2           |
|                |          |                | 16253          | 12       | 1008.4           | 16287          | 12       | 1025.7           |
| 16220          | 12       | 991.6          | 16254          | 12       | 1008.9           | 16288          | 12       | 1026.2           |
| 16221          | 12       | 992.1          | 16255          | 12       | 1009.4           | 16289          | 12       | 1026.7           |
| 16222          | 12       | 992.6          | 16256          | 12       | 1009.9           |                |          |                  |
| 16223          | 12       | 993.1          | 16257          | 12       | 1010.4           | 16290          | 12       | 1027.2           |
| 16224          | 12       | 993.6          | 16258          | 12       | 1010.9           | 16291          | 12       | 1027.7           |
| 16225          | 12       | 994.1          | 16259          | 12       | 1011.5           | 16292          | 12       | 1028.2           |
| 16226          | 12       | 994.6          | 40000          |          | 4040.0           | 16293          | 12<br>12 | 1028.7<br>1029.3 |
| 16227          | 12       | 995.1          | 16260<br>16261 | 12<br>12 | 1012.0<br>1012.5 | 16294<br>16295 | 12       | 1029.3           |
| 16228          | 12<br>12 | 995.6          |                | 12       | 1012.5           | 16295          | 12       | 1030.3           |
| 16229          | 12       | 996.2          | 16262          |          |                  | 16290          | 12       | 1030.3           |
| 40000          | 12       | 200            | 16263<br>16264 | 12<br>12 | 1013.5<br>1014.0 | 16297          | 12       | 1030.8           |
| 16230          | 12       | 996.7<br>997.2 | 16265          | 12       | 1014.5           | 16298          | 12       | 1031.8           |
| 16231<br>16232 | 12       | 997.2          | 16266          | 12       | 1015.0           | 10299          | 12       | 1031.0           |
| 16232          | 12       | 997.9          | 16267          | 12       | 1015.5           | 16300          | 12       | 1032.3           |
| 10233          | 12       | 990.2          | 10207          | 12       | 1015.5           | 10000          | 12       | 1002.3           |
|                |          |                | L              |          |                  | <u> </u>       |          |                  |
|                |          |                |                |          |                  |                |          |                  |

Use check point at 16200 Kc

### Frequency: 16300-16400 Kc

| Freq. | A  | В      | Freq.    | A  | В      | Freq.     | A  | В      |
|-------|----|--------|----------|----|--------|-----------|----|--------|
| 16300 | 12 | 1032.3 | 16334    | 12 | 1049.6 | 16368     | 12 | 1066.9 |
| 16301 | 12 | 1032.8 | 16335    | 12 | 1050.1 | 16369     | 12 | 1067.4 |
| 16302 | 12 | 1033.3 | 16336    | 12 | 1050.6 | , , , , , |    |        |
| 16303 | 12 | 1033.8 | 16337    | 12 | 1051.1 | 16370     | 12 | 1067.9 |
| 16304 | 12 | 1034.3 | 16338    | 12 | 1051.6 | 16371     | 12 | 1068.4 |
| 16305 | 12 | 1034.9 | 16339    | 12 | 1052.1 | 16372     | 12 | 1068.9 |
| 16306 | 12 | 1035.4 |          |    |        | 16373     | 12 | 1069.4 |
| 16307 | 12 | 1035.9 | 16340    | 12 | 1052.6 | 16374     | 12 | 1069.9 |
| 16308 | 12 | 1036.4 | 16341    | 12 | 1053.2 | 16375     | 12 | 1070.4 |
| 16309 | 12 | 1036.9 | 16342    | 12 | 1053.7 | 16376     | 12 | 1070.9 |
|       |    |        | 16343    | 12 | 1054.2 | 16377     | 12 | 1071.5 |
| 16310 | 12 | 1037.4 | 16344    | 12 | 1054.7 | 16378     | 12 | 1072.0 |
| 16311 | 12 | 1037.9 | 16345    | 12 | 1055.2 | 16379     | 12 | 1072.5 |
| 16312 | 12 | 1038.4 | 16346    | 12 | 1055.7 | 1         |    |        |
| 16313 | 12 | 1038.9 | 16347    | 12 | 1056.2 | 16380     | 12 | 1073.0 |
| 16314 | 12 | 1039.4 | 16348    | 12 | 1056.7 | 16381     | 12 | 1073.5 |
| 16315 | 12 | 1039.9 | 16349    | 12 | 1057.2 | 16382     | 12 | 1074.0 |
| 16316 | 12 | 1040.4 | l        |    |        | 16383     | 12 | 1074.5 |
| 16317 | 12 | 1041.0 | 16350    | 12 | 1057.7 | 16384     | 12 | 1075.0 |
| 16318 | 12 | 1041.5 | 16351    | 12 | 1058.2 | 16385     | 12 | 1075.5 |
| 16319 | 12 | 1042.0 | 16352    | 12 | 1058.7 | 16386     | 12 | 1076.0 |
|       |    |        | 16353    | 12 | 1059.3 | 16387     | 12 | 1076.5 |
| 16320 | 12 | 1042.5 | 16354    | 12 | 1059.8 | 16388     | 12 | 1077.0 |
| 16321 | 12 | 1043.0 | 16355    | 12 | 1060.3 | 16389     | 12 | 1077.5 |
| 16322 | 12 | 1043.5 | 16356    | 12 | 1060.8 | 1         |    |        |
| 16323 | 12 | 1044.0 | 16357    | 12 | 1061.3 | 16390     | 12 | 1078.1 |
| 16324 | 12 | 1044.5 | 16358    |    | 1061.8 | 16391     | 12 | 1078.6 |
| 16325 | 12 | 1045.0 | 16359    | 12 | 1062.3 | 16392     | 12 | 1079.1 |
| 16326 | 12 | 1045.5 | l        |    |        | 16393     | 12 | 1079.6 |
| 16327 | 12 | 1046.0 | 16360    |    | 1062.8 | 16394     | 12 | 1080.1 |
| 16328 | 12 | 1046.5 | 16361    | 12 | 1063.3 | 16395     | 12 | 1080.6 |
| 16329 | 12 | 1047.1 | 16362    | 12 | 1063.8 | 16396     | 12 | 1081.1 |
|       |    |        | 16363    |    | 1064.3 | 16397     | 12 | 1081.6 |
| 16330 | 12 | 1047.6 | 16364    |    | 1064.8 | 16398     | 12 | 1082.1 |
| 16331 | 12 | 1048.1 | 16365    |    | 1065,4 | 16399     | 12 | 1082.6 |
| 16332 | 12 | 1048.6 | 16366    |    | 1065.9 | 1         |    | 10001  |
| 16333 | 12 | 1049.1 | 16367    | 12 | 1066.4 | 16400     | 12 | 1083.1 |
|       |    |        | <u> </u> |    |        | <u> </u>  |    |        |

Use check point at 16200 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: | 16400-16500 Kc |
|------------|----------------|
|            |                |

| Freq.              | A  | В      | Freq. | A  | В      | Freq. | A  | В      |
|--------------------|----|--------|-------|----|--------|-------|----|--------|
| 16400              | 12 | 1083.1 | 16434 | 12 | 1100.4 | 16468 | 12 | 1117.6 |
| 16401              | 12 | 1083.6 | 16435 | 12 | 1100.9 | 16469 | 12 | 1118.1 |
| 16402              | 12 | 1084.1 | 16436 | 12 | 1101.4 |       |    |        |
| 16403              | 12 | 1084.7 | 16437 | 12 | 1101.9 | 16470 | 12 | 1118.6 |
| 16404              | 12 | 1085.2 | 16438 | 12 | 1102.4 | 16471 | 12 | 1119.1 |
| 16405              | 12 | 1085.7 | 16439 | 12 | 1102.9 | 16472 | 12 | 1119.7 |
| 16406              | 12 | 1086.2 |       |    |        | 16473 | 12 | 1120.2 |
| 1 <del>64</del> 07 | 12 | 1086.7 | 16440 | 12 | 1103.4 | 16474 | 12 | 1120.7 |
| 16408              | 12 | 1087.2 | 16441 | 12 | 1103.9 | 16475 | 12 | 1121.2 |
| 16409              | 12 | 1087.7 | 16442 | 12 | 1104.5 | 16476 | 12 | 1121.7 |
|                    |    |        | 16443 | 12 | 1105.0 | 16477 | 12 | 1122.2 |
| 16410              | 12 | 1088.2 | 16444 | 12 | 1105.5 | 16478 | 12 | 1122.7 |
| 16411              | 12 | 1088.7 | 16445 | 12 | 1106.0 | 16479 | 12 | 1123.2 |
| 16412              | 12 | 1089.2 | 16446 | 12 | 1106.5 |       |    |        |
| 16413              | 12 | 1089.7 | 16447 | 12 | 1107.0 | 16480 | 12 | 1123.7 |
| 16414              | 12 | 1090.2 | 16448 | 12 | 1107.5 | 16481 | 12 | 1124.2 |
| 16415              | 12 | 1090.7 | 16449 | 12 | 1108.0 | 16482 | 12 | 1124.7 |
| 1 <b>64</b> 16     | 12 | 1091.3 | İ     |    |        | 16483 | 12 | 1125.2 |
| 16417              | 12 | 1091.8 | 16450 | 12 | 1108.5 | 16484 | 12 | 1125.7 |
| 16418              | 12 | 1092.3 | 16451 | 12 | 1109.0 | 16485 | 12 | 1126.2 |
| 16419              | 12 | 1092.8 | 16452 | 12 | 1109.5 | 16486 | 12 | 1126,7 |
|                    |    |        | 16453 | 12 | 1110.0 | 16487 | 12 | 1127.3 |
| 16420              | 12 | 1093.3 | 16454 | 12 | 1110.5 | 16488 | 12 | 1127.8 |
| 16421              | 12 | 1093.8 | 16455 | 12 | 1111.0 | 16489 | 12 | 1128.3 |
| 16422              | 12 | 1094.3 | 16456 | 12 | 1111.5 | l     |    |        |
| 16423              | 12 | 1094.8 | 16457 | 12 | 1112.1 | 16490 | 12 | 1128.8 |
| 16424              | 12 | 1095.3 | 16458 | 12 | 1112.6 | 16491 | 12 | 1129.3 |
| 16425              | 12 | 1095.8 | 16459 | 12 | 1113.1 | 16492 | 12 | 1129.8 |
| 16426              | 12 | 1096.3 |       |    |        | 16493 | 12 | 1130.3 |
| 16427              | 12 | 1096.8 | 16460 | 12 | 1113.6 | 16494 | 12 | 1130.8 |
| 16428              |    | 1097.3 | 16461 | 12 | 1114.1 | 16495 | 12 | 1131.3 |
| 16429              | 12 | 1097.9 | 16462 | 12 | 1114.6 | 16496 | 12 | 1131.8 |
|                    |    |        | 16463 | 12 | 1115.1 | 16497 | 12 | 1132.3 |
| 16430              |    | 1098.4 | 16464 | 12 | 1115.6 | 16498 | 12 | 1132.8 |
| 16431              | 12 | 1098.9 | 16465 | 12 | 1116.1 | 16499 | 12 | 1133.3 |
| 16432              | 12 | 1099.4 | 16466 | 12 | 1116.6 | I     |    |        |
| 16433              | 12 | 1099,9 | 16467 | 12 | 1117.1 | 16500 | 12 | 1133.8 |
|                    |    |        | L     |    |        | L     |    |        |
|                    |    |        |       |    |        |       |    |        |

Use check point at 16200 Kc

### Frequency: 16500-16600 Kc

| Freq.          | A  | В      | Freq.    | Α  | В      | Freq.    | A  | В      |
|----------------|----|--------|----------|----|--------|----------|----|--------|
| 16500          | 12 | 1133.8 | 16534    | 12 | 1151.1 | 16568    | 12 | 1168.2 |
| 16501          | 12 | 1134.3 | 16535    | 12 | 1151.6 | 16569    | 12 | 1168.8 |
| 16502          | 12 | 1134.9 | 16536    | 12 | 1152.1 |          |    |        |
| 16503          | 12 | 1135.4 | 16537    | 12 | 1152.6 | 16570    | 12 | 1169.3 |
| 16504          | 12 | 1135.9 | 16538    | 12 | 1153.1 | 16571    | 12 | 1169.8 |
| 16505          | 12 | 1136.4 | 16539    | 12 | 1153.6 | 16572    | 12 | 1170.3 |
| 16506          | 12 | 1136.9 |          |    |        | 16573    | 12 | 1170.8 |
| 16507          | 12 | 1137.4 | 16540    | 12 | 1154.1 | 16574    | 12 | 1171.3 |
| 16508          | 12 | 1137.9 | 16541    | 12 | 1154.6 | 16575    | 12 | 1171.8 |
| 16509          | 12 | 1138.4 | 16542    | 12 | 1155.1 | 16576    | 12 | 1172.3 |
|                |    |        | 16543    | 12 | 1155.6 | 16577    | 12 | 1172.8 |
| 16510          | 12 | 1138.9 | 16544    | 12 | 1156.1 | 16578    | 12 | 1173.3 |
| 16511          | 12 | 1139.4 | 16545    | 12 | 1156.6 | 16579    | 12 | 1173.8 |
| 16512          | 12 | 1139.9 | 16546    | 12 | 1157.1 |          |    |        |
| 16513          | 12 | 1140.4 | 16547    | 12 | 1157.6 | 16580    | 12 | 1174.3 |
| 16514          | 12 | 1140.9 | 16548    | 12 | 1158.1 | 16581    | 12 | 1174.8 |
| 16515          | 12 | 1141.4 | 16549    | 12 | 1158.7 | 16582    | 12 | 1175.3 |
| 16516          | 12 | 1141.9 | ì        |    |        | 16583    | 12 | 1175.8 |
| 16517          | 12 | 1142.4 | 16550    | 12 | 1159.2 | 16584    | 12 | 1176.3 |
| 16518          | 12 | 1143.0 | 16551    | 12 | 1159.7 | 16585    | 12 | 1176.8 |
| 16519          | 12 | 1143.5 | 16552    | 12 | 1160.2 | 16586    | 12 | 1177.3 |
|                |    |        | 16553    | 12 | 1160.7 | 16587    | 12 | 1177.8 |
| 16520          | 12 | 1144.0 | 16554    | 12 | 1161.2 | 16588    | 12 | 1178.3 |
| 16521          | 12 | 1144.5 | 16555    | 12 | 1161.7 | 16589    | 12 | 1178.8 |
| 16522          | 12 | 1145.0 | 16556    | 12 | 1162.2 |          |    |        |
| 16523          | 12 | 1145.5 | 16557    | 12 | 1162.7 | 16590    | 12 | 1179.3 |
| 16524          | 12 | 1146.0 | 16558    | 12 | 1163.2 | 16591    | 12 | 1179.8 |
| 1 <b>65</b> 25 | 12 | 1146.5 | 16559    | 12 | 1163.7 | 16592    | 12 | 1180.3 |
| 16526          | 12 | 1147.0 |          |    |        | 16593    | 12 | 1180.8 |
| 16527          | 12 | 1147.5 | 16560    | 12 | 1164.2 | 16594    | 12 | 1181.3 |
| 16528          | 12 | 1148.0 | 16561    | 12 | 1164.7 | 16595    | 12 | 1181.8 |
| 16529          | 12 | 1148.5 | 16562    | 12 | 1165.2 | 16596    | 12 | 1182.4 |
|                |    |        | 16563    | 12 | 1165.7 | 16597    | 12 | 1182.9 |
| 16530          | 12 | 1149.0 | 16564    | 12 | 1166.2 | 16598    | 12 | 1183.4 |
| 16531          | 12 | 1149.5 | 16565    | 12 | 1166.7 | 16599    | 12 | 1183.9 |
| 16532          | 12 | 1150.0 | 16566    | 12 | 1167.2 |          |    |        |
| 16533          | 12 | 1150.5 | 16567    | 12 | 1167.7 | 16600    | 12 | 1184.4 |
|                |    |        | <u> </u> |    |        | <u> </u> |    |        |

Use check point at 16800 Kc

Frequency: 16600-16700 Kc

| Freq. | A  | В      | Freq. | A  | В      | Freq. | A  | B      |
|-------|----|--------|-------|----|--------|-------|----|--------|
| 16600 | 12 | 1184.4 | 16634 | 12 | 1201.5 | 16668 | 12 | 1218.8 |
| 16601 | 12 | 1184.9 | 16635 | 12 | 1202.1 | 16669 | 12 | 1219.3 |
| 16602 | 12 | 1185.4 | 16636 | 12 | 1202.6 |       |    |        |
| 16603 | 12 | 1185.9 | 16637 | 12 | 1203.1 | 16670 | 12 | 1219.8 |
| 16604 | 12 | 1186.4 | 16638 | 12 | 1203.6 | 16671 | 12 | 1220.3 |
| 16605 | 12 | 1186.9 | 16639 | 12 | 1204.1 | 16672 | 12 | 1220.8 |
| 16606 | 12 | 1187.4 |       |    |        | 16673 | 12 | 1221.3 |
| 16607 | 12 | 1187.9 | 16640 | 12 | 1204.6 | 16674 | 12 | 1221.9 |
| 16608 | 12 | 1188.4 | 16641 | 12 | 1205.1 | 16675 | 12 | 1222.4 |
| 16609 | 12 | 1188.9 | 16642 | 12 | 1205.6 | 16676 | 12 | 1222.9 |
|       |    |        | 16643 | 12 | 1206.1 | 16677 | 12 | 1223.4 |
| 16610 | 12 | 1189.4 | 16644 | 12 | 1206.6 | 16678 | 12 | 1223.9 |
| 16611 | 12 | 1189.9 | 16645 | 12 | 1207.1 | 16679 | 12 | 1224.4 |
| 16612 | 12 | 1190.4 | 16646 | 12 | 1207.6 |       |    |        |
| 16613 | 12 | 1190.9 | 16647 | 12 | 1208.1 | 16680 | 12 | 1224,9 |
| 16614 | 12 | 1191.4 | 16648 | 12 | 1208.7 | 16681 | 12 | 1225.4 |
| 16615 | 12 | 1191.9 | 16649 | 12 | 1209.2 | 16682 | 12 | 1225.9 |
| 16616 | 12 | 1192.4 |       |    |        | 16683 | 12 | 1226.4 |
| 16617 | 12 | 1192.9 | 16650 | 12 | 1209.7 | 16634 | 12 | 1226.9 |
| 16618 | 12 | 1193.4 | 16651 | 12 | 1210.2 | 16685 | 12 | 1227.4 |
| 16619 | 12 | 1193.9 | 16652 | 12 | 1210.7 | 16686 | 12 | 1227.9 |
|       |    |        | 16653 | 12 | 1211.2 | 16687 | 12 | 1228.4 |
| 16620 | 12 | 1194.4 | 16654 | 12 | 1211.7 | 16688 | 12 | 1228.9 |
| 16621 | 12 | 1194.9 | 16655 | 12 | 1212.2 | 16689 | 12 | 1229.4 |
| 16622 | 12 | 1195.5 | 16656 | 12 | 1212.7 |       |    |        |
| 16623 | 12 | 1196.0 | 16657 | 12 | 1213.2 | 16690 | 12 | 1229.9 |
| 16624 | 12 | 1196.5 | 16658 | 12 | 1213.7 | 16691 | 12 | 1230.4 |
| 16625 | 12 | 1197.0 | 16659 | 12 | 1214.2 | 16692 | 12 | 1230.9 |
| 16626 | 12 | 1197.5 | l     |    |        | 16693 | 12 | 1231.4 |
| 16627 | 12 | 1198.0 | 16660 | 12 | 1214.7 | 16694 | 12 | 1231.9 |
| 16628 | 12 | 1198.5 | 16661 | 12 | 1215.3 | 16695 | 12 | 1232.5 |
| 16629 | 12 | 1199.0 | 16662 | 12 | 1215.8 | 16696 | 12 | 1233.0 |
|       |    |        | 16663 | 12 | 1216.3 | 16697 | 12 | 1233.5 |
| 16630 | 12 | 1199.5 | 16664 | 12 | 1216.8 | 16698 | 12 | 1234.0 |
| 16631 | 12 | 1200.0 | 16665 | 12 | 1217.3 | 16699 | 12 | 1234.5 |
| 16632 | 12 | 1200.5 | 16666 | 12 | 1217.8 |       |    |        |
| 16633 | 12 | 1201.0 | 16667 | 12 | 1218.3 | 16700 | 12 | 1235.0 |
|       |    |        |       |    |        |       |    |        |
|       |    |        |       |    |        |       |    |        |

Use check point at 16800 Kc

### Frequency: 16700-16800 Kc

| Freq. | Α   | В      | Freq. | Α  | В      | Freq. | A  | В      |
|-------|-----|--------|-------|----|--------|-------|----|--------|
| 16700 | 12  | 1235.0 | 16734 | 12 | 1252.1 | 16768 | 12 | 1269.2 |
| 16701 | 12  | 1235.5 | 16735 | 12 | 1252.6 | 16769 | 12 | 1269.7 |
| 16702 | 12  | 1236.0 | 16736 | 12 | 1253.1 |       |    |        |
| 16703 | 12  | 1236.5 | 16737 | 12 | 1253.6 | 16770 | 12 | 1270.2 |
| 16704 | 12  | 1237.0 | 16738 | 12 | 1254.1 | 16771 | 12 | 1270.7 |
| 16705 | 12  | 1237.5 | 16739 | 12 | 1254.6 | 16772 | 12 | 1271.2 |
| 16706 | 12  | 1238.0 | l     |    |        | 16773 | 12 | 1271.7 |
| 16707 | 12  | 1238.5 | 16740 | 12 | 1255.1 | 16774 | 12 | 1272.2 |
| 16708 | 12  | 1239.0 | 16741 | 12 | 1255.6 | 16775 | 12 | 1272.7 |
| 16709 | 12  | 1239.5 | 16742 | 12 | 1256.1 | 16776 | 12 | 1273.2 |
|       |     |        | 16743 | 12 | 1256.6 | 16777 | 12 | 1273.7 |
| 16710 | 12  | 1240.0 | 16744 | 12 | 1257.1 | 16778 | 12 | 1274.2 |
| 16711 | 12  | 1240.5 | 16745 | 12 | 1257.6 | 16779 | 12 | 1274.7 |
| 16712 | 12  | 1241.0 | 16746 | 12 | 1258.1 | ľ     |    |        |
| 16713 | 12  | 1241.5 | 16747 | 12 | 1258.6 | 16780 | 12 | 1275.2 |
| 16714 | 12  | 1242.0 | 16748 | 12 | 1259.1 | 16781 | 12 | 1275.7 |
| 16715 | 12  | 1242.5 | 16749 | 12 | 1259.6 | 16782 | 12 | 1276.2 |
| 16716 | 12  | 1243.0 |       |    |        | 16783 | 12 | 1276.7 |
| 16717 | 12  | 1243.5 | 16750 | 12 | 1260.1 | 16784 | 12 | 1277.2 |
| 16718 | 12  | 1244.0 | 16751 | 12 | 1260.6 | 16785 | 12 | 1277.8 |
| 16719 | - 2 | 1244.5 | 16752 | 12 | 1261.1 | 16786 | 12 | 1278.3 |
|       |     |        | 16753 | 12 | 1261.6 | 16787 | 12 | 1278.8 |
| 16720 | 12  | 1245.0 | 16754 | 12 | 1262.1 | 16788 | 12 | 1279.3 |
| 16721 | 12  | 1245.5 | 16755 | 12 | 1262.7 | 16789 | 12 | 1279.8 |
| 16722 | 12  | 1246.0 | 16756 | 12 | 1263.2 | l     |    |        |
| 16723 | 12  | 1246.5 | 16757 | 12 | 1263.7 | 16790 | 12 | 1280.3 |
| 16724 | 12  | 1247.0 | 16758 | 12 | 1264.2 | 16791 | 12 | 1280.8 |
| 16725 | 12  | 1247.6 | 16759 | 12 | 1264.7 | 16792 | 12 | 1281.3 |
| 16726 | 12  | 1248.1 |       |    |        | 16793 | 12 | 1281.8 |
| 16727 | 12  | 1248.6 | 16760 | 12 | 1265.2 | 16794 | 12 | 1282.3 |
| 16728 | 12  | 1249.1 | 16761 | 12 | 1265.7 | 16795 | 12 | 1282.8 |
| 16729 | 12  | 1249.6 | 16762 | 12 | 1266.2 | 16796 | 12 | 1283.3 |
|       |     |        | 16763 | 12 | 1266.7 | 16797 | 12 | 1283.8 |
| 16730 | 12  | 1250.1 | 16764 | 12 | 1267.2 | 16798 | 12 | 1284.3 |
| 16731 | 12  | 1250.6 | 16765 | 12 | 1267.7 | 16799 | 12 | 1284.8 |
| 16732 | 12  | 1251.1 | 16766 | 12 | 1268.2 |       |    |        |
| 16733 | 12  | 1251.6 | 16767 | 12 | 1268.7 | 16800 | 12 | 1285.3 |
|       |     |        |       |    |        |       |    |        |
|       |     |        |       |    |        |       |    |        |

Use check point at 16800 Kc

### TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: 16800—16900 Kc |    |        |       |    |        |       |    |        |  |  |  |
|---------------------------|----|--------|-------|----|--------|-------|----|--------|--|--|--|
| Freq.                     | A  | В      | Freq. | A  | В      | Freq. | A  | В      |  |  |  |
| 16800                     | 12 | 1285.3 | 16834 | 12 | 1302.5 | 16868 | 12 | 1319.7 |  |  |  |
| 16801                     | 12 | 1285.8 | 16835 | 12 | 1303.0 | 16869 | 12 | 1320.2 |  |  |  |
| 16802                     | 12 | 1286.3 | 16836 | 12 | 1303.5 |       |    |        |  |  |  |
| 16803                     | 12 | 1286.8 | 16837 | 12 | 1304.0 | 16870 | 12 | 1320.7 |  |  |  |
| 16804                     | 12 | 1287.3 | 16838 | 12 | 1304.5 | 16871 | 12 | 1321.2 |  |  |  |
| 16805                     | 12 | 1287.8 | 16839 | 12 | 1305.0 | 16872 | 12 | 1321.7 |  |  |  |
| 16806                     | 12 | 1288.3 |       |    |        | 16873 | 12 | 1322.2 |  |  |  |
| 16807                     | 12 | 1288.8 | 16840 | 12 | 1305.5 | 16874 | 12 | 1322.7 |  |  |  |
| 16808                     | 12 | 1289.3 | 16841 | 12 | 1306.0 | 16875 | 12 | 1323.2 |  |  |  |
| 16809                     | 12 | 1289.9 | 16842 | 12 | 1306.6 | 16876 | 12 | 1323.7 |  |  |  |
|                           |    |        | 16843 | 12 | 1307.1 | 16877 | 12 | 1324.2 |  |  |  |
| 16810                     | 12 | 1290.4 | 16844 | 12 | 1307.6 | 16878 | 12 | 1324.8 |  |  |  |
| 16811                     | 12 | 1290.9 | 16845 | 12 | 1308.1 | 16879 | 12 | 1325.3 |  |  |  |
| 16812                     | 12 | 1291.4 | 16846 | 12 | 1308.6 |       |    |        |  |  |  |
| 16813                     | 12 | 1291.9 | 16847 | 12 | 1309.1 | 16880 | 12 | 1325.8 |  |  |  |
| 16814                     | 12 | 1292.4 | 16848 | 12 | 1309.6 | 16881 | 12 | 1326.3 |  |  |  |
| 16815                     | 12 | 1292.9 | 16849 | 12 | 1310.1 | 16882 | 12 | 1326.8 |  |  |  |
| 16816                     | 12 | 1293.4 | l     |    |        | 16883 | 12 | 1327.3 |  |  |  |
| 16817                     | 12 | 1293.9 | 16850 | 12 | 1310.6 | 16884 | 12 | 1327.8 |  |  |  |
| 16818                     | 12 | 1294.4 | 16851 | 12 | 1311.1 | 16885 | 12 | 1328.3 |  |  |  |
| 16819                     | 12 | 1294.9 | 16852 | 12 | 1311.6 | 16886 | 12 | 1328.8 |  |  |  |
|                           |    |        | 16853 | 12 | 1312.1 | 16887 | 12 | 1329.3 |  |  |  |
| 16820                     | 12 | 1295.4 | 16854 | 12 | 1312.6 | 16888 | 12 | 1329.8 |  |  |  |
| 16821                     | 12 | 1295.9 | 16855 | 12 | 1313.1 | 16889 | 12 | 1330.3 |  |  |  |
| 16822                     | 12 | 1296.4 | 16856 | 12 | 1313.6 |       |    |        |  |  |  |
| 16823                     | 12 | 1296.9 | 16857 | 12 | 1314.1 | 16890 | 12 | 1330.8 |  |  |  |
| 16824                     | 12 | 1297.4 | 16858 | 12 | 1314.6 | 16891 | 12 | 1331.3 |  |  |  |
| 16825                     | 12 | 1298.0 | 16859 | 12 | 1315.2 | 16892 | 12 | 1331.8 |  |  |  |
| 16826                     | 12 | 1298.5 |       |    |        | 16893 | 12 | 1332.3 |  |  |  |
| 16827                     | 12 | 1299.0 | 16860 | 12 | 1315.7 | 16894 | 12 | 1332.8 |  |  |  |
| 16828                     | 12 | 1299.5 | 16861 | 12 | 1316.2 | 16895 | 12 | 1333.3 |  |  |  |
| 16829                     | 12 | 1300.0 | 16862 | 12 | 1316.7 | 16896 | 12 | 1333.8 |  |  |  |
|                           |    |        | 16863 | 12 | 1317.2 | 16897 | 12 | 1334.3 |  |  |  |
| 16830                     | 12 | 1300.5 | 16864 | 12 | 1317.7 | 16898 | 12 | 1334.9 |  |  |  |
| 16831                     | 12 | 1301.0 | 16865 | 12 | 1318.2 | 16899 | 12 | 1335.4 |  |  |  |
| 16832                     | 12 | 1301.5 | 16866 | 12 | 1318.7 | 1     |    |        |  |  |  |
| 16833                     | 12 | 1302.0 | 16867 | 12 | 1319.2 | 16900 | 12 | 1335.9 |  |  |  |
|                           |    |        | I     |    |        | 1     |    |        |  |  |  |

Use check point at 16800 Kc

### Frequency: 16900-17000 Kc

| Freq. | A  | В      | Freq. | A  | В      | Freq. | A  | В      |
|-------|----|--------|-------|----|--------|-------|----|--------|
| 16900 | 12 | 1335.9 | 16934 | 12 | 1353.0 | 16968 | 12 | 1370.2 |
| 16901 | 12 | 1336.4 | 16935 | 12 | 1353.5 | 16969 | 12 | 1370.7 |
| 16902 | 12 | 1336.9 | 16936 | 12 | 1354.0 |       |    |        |
| 16903 | 12 | 1337.4 | 16937 | 12 | 1354.6 | 16970 | 12 | 1371.2 |
| 16904 | 12 | 1337.9 | 16938 | 12 | 1355.1 | 16971 | 12 | 1371.7 |
| 16905 | 12 | 1338.4 | 16939 | 12 | 1355.6 | 16972 | 12 | 1372.2 |
| 16906 | 12 | 1338.9 |       |    |        | 16973 | 12 | 1372.7 |
| 16907 | 12 | 1339.4 | 16940 | 12 | 1356.1 | 16974 | 12 | 1373.2 |
| 16908 | 12 | 1339.9 | 16941 | 12 | 1356.6 | 16975 | 12 | 1373.8 |
| 16909 | 12 | 1340.4 | 16942 | 12 | 1357.1 | 16976 | 12 | 1374.3 |
|       |    |        | 16943 | 12 | 1357.6 | 16977 | 12 | 1374.8 |
| 16910 | 12 | 1340.9 | 16944 | 12 | 1358.1 | 16978 | 12 | 1375.3 |
| 16911 | 12 | 1341.4 | 16945 | 12 | 1358.6 | 16979 | 12 | 1375.8 |
| 16912 | 12 | 1341.9 | 16946 | 12 | 1359.1 |       |    |        |
| 16913 | 12 | 1342.4 | 16947 | 12 | 1359.6 | 16980 | 12 | 1376.3 |
| 16914 | 12 | 1342.9 | 16948 | 12 | 1360.1 | 16981 | 12 | 1376.8 |
| 16915 | 12 | 1343.4 | 16949 | 12 | 1360.6 | 16982 | 12 | 1377.3 |
| 16916 | 12 | 1343.9 | l     |    |        | 16983 | 12 | 1377.8 |
| 16917 | 12 | 1344.4 | 16950 | 12 | 1361.1 | 16984 | 12 | 1378.3 |
| 16918 | 12 | 1345.0 | 16951 | 12 | 1361.6 | 16985 | 12 | 1378.8 |
| 16919 | 12 | 1345.5 | 16952 | 12 | 1362.1 | 16986 | 12 | 1379.3 |
|       |    |        | 16953 | 12 | 1362.6 | 16987 | 12 | 1379.8 |
| 16920 | 12 | 1346.0 | 16954 | 12 | 1363.1 | 16988 | 12 | 1380.3 |
| 16921 | 12 | 1346.5 | 16955 | 12 | 1363.6 | 16989 | 12 | 1380.8 |
| 16922 | 12 | 1347.0 | 16956 | 12 | 1364.2 |       |    |        |
| 16923 | 12 | 1347.5 | 16957 | 12 | 1364.7 | 16990 | 12 | 1381.3 |
| 16924 | 12 | 1348.0 | 16958 | 12 | 1365.2 | 16991 | 12 | 1381.8 |
| 16925 | 12 | 1348.5 | 16959 | 12 | 1365.7 | 16992 | 12 | 1382.3 |
| 16926 | 12 | 1349.0 |       |    |        | 16993 | 12 | 1382.8 |
| 16927 | 12 | 1349.5 | 16960 | 12 | 1366.2 | 16994 | 12 | 1383.4 |
| 16928 | 12 | 1350.0 | 16961 | 12 | 1366.7 | 16995 | 12 | 1383.9 |
| 16929 | 12 | 1350.5 | 16962 | 12 | 1367.2 | 16996 | 12 | 1384.4 |
|       |    |        | 16963 | 12 | 1367.7 | 16997 | 12 | 1384.9 |
| 16930 | 12 | 1351.0 | 16964 | 12 | 1368.2 | 16998 | 12 | 1385.4 |
| 16931 | 12 | 1351.5 | 16965 | 12 | 1368.7 | 16999 | 12 | 1385.9 |
| 16932 | 12 | 1352.0 | 16966 | 12 | 1369.2 | i     |    |        |
| 16933 | 12 | 1352.5 | 16967 | 12 | 1369.7 | 17000 | 12 | 1386.4 |
|       |    |        | l     |    |        |       |    |        |

Use check point at 16800 Kc

Frequency: 17000-17100 Kc

| Freq. A   | В        | Freq. | A  | В      | Freq. | A  | В                   |
|-----------|----------|-------|----|--------|-------|----|---------------------|
| 17000 12  | 1386.4   | 17034 | 12 | 1403.6 | 17068 | 12 | 1420.8              |
| 17001 12  | 1386.9   | 17035 | 12 | 1404.1 | 17069 | 12 | 1421.3              |
| 17002 12  | 1387.4   | 17036 | 12 | 1404.6 |       |    |                     |
| 17003 12  | 1387.9   | 17037 | 12 | 1405.1 | 17070 | 12 | 1421.8              |
| 17004 12  | 1388.4   | 17038 | 12 | 1405.6 | 17071 | 12 | 1422.3              |
| 17005 12  | 1388.9   | 17039 | 12 | 1406.1 | 17072 | 12 | 1422.8              |
| 17006 12  | 1389.4   |       |    |        | 17073 | 12 | 1423.4              |
| 17007 12  |          | 17040 | 12 | 1406.6 | 17074 | 12 | 1423.9              |
| 17008 12  |          | 17041 | 12 | 1407.1 | 17075 | 12 | 1424.4              |
| 17009 12  | 1390.9   | 17042 | 12 | 1407.6 | 17076 | 12 | 1424.9              |
|           |          | 17043 | 12 | 1408.1 | 17077 | 12 | 1425.4              |
| 17010 12  |          | 17044 | 12 | 1408.6 | 17078 | 12 | 1425.9              |
| 17011 12  |          | 17045 | 12 | 1409.1 | 17079 | 12 | 1426.4              |
| 17012 12  |          | 17046 | 12 | 1409.6 |       |    |                     |
| 17013 12  |          | 17047 | 12 | 1410.2 | 17080 | 12 | 1426.9              |
| 17014 12  |          | 17048 | 12 | 1410.7 | 17081 | 12 | 1 <del>4</del> 27.4 |
| 17015 12  |          | 17049 | 12 | 1411.2 | 17082 | 12 | 1427.9              |
| 17016 12  |          | 1     |    |        | 17083 | 12 | 1428.4              |
| 17017 12  |          | 17050 | 12 | 1411.7 | 17084 | 12 | 1428.9              |
| 17018 12  |          | 17051 | 12 | 1412.2 | 17085 | 12 | 1429.4              |
| 17019 12  | 1396.0   | 17052 | 12 | 1412.7 | 17086 | 12 | 1430.0              |
|           |          | 17053 | 12 | 1413.2 | 17087 | 12 | 1430.5              |
| 17020 12  |          | 17054 | 12 | 1413.7 | 17088 | 12 | 1431.0              |
| 17021 12  |          | 17055 | 12 | 1414.2 | 17089 | 12 | 1431.5              |
| 17022 12  |          | 17056 | 12 | 1414.7 | l     |    |                     |
| 17023 12  |          | 17057 | 12 | 1415.2 | 17090 | 12 | 1432.0              |
| 17024 12  |          | 17058 | 12 | 1415.7 | 17091 | 12 | 1432.5              |
| 17025 12  |          | 17059 | 12 | 1416.2 | 17092 | 12 | 1433.0              |
| 17'026 12 |          | Ì     |    |        | 17093 | 12 | 1433.5              |
| 17027 12  |          | 17060 | 12 | 1416.8 | 17094 | 12 |                     |
| 17028 1   |          | 17061 | 12 | 1417.3 | 17095 | 12 |                     |
| 17029 1   | 2 1401.0 | 17062 | 12 |        | 17096 |    |                     |
|           |          | 17063 | 12 | 1418.3 | 17097 | 12 |                     |
| 17030 1   |          | 17064 | 12 |        | 17098 | 12 |                     |
| 17031 1   |          | 17065 | 12 |        | 17099 | 12 | 1436.6              |
| 17032 1   |          | 17066 |    |        |       |    |                     |
| 17033 1   | 2 1403.1 | 17067 | 12 | 1420.3 | 17100 | 12 | 1437.1              |
|           |          | I     |    |        |       |    |                     |
|           |          |       |    |        |       |    |                     |

Use check point at 16800 Kc

### Frequency: 17100-17200 Kc

| Freq.  | A  | В                | Freq.          | A.       | В                | Freq.    | A        | В                |
|--------|----|------------------|----------------|----------|------------------|----------|----------|------------------|
| 17100  | 12 | 1437.1           | 17134          | 12       | 1454.4           | 17168    | 12       | 1471.7           |
| 17101  | 12 | 1437.6           | 17135          | 12       | 1454.9           | 17169    | 12       | 1472.2           |
| 17102  | 12 | 1438.1           | 17136          | 12       | 1455.4           |          |          |                  |
| 17103  | 12 | 1438.6           | 17137          | 12       | 1455.9           | 17170    | 12       | 1472.7           |
| 17104  | 12 | 1439.1           | 17138          | 12       | 1456.4           | 17171    | 12       | 1473.2           |
| 17105  | 12 | 1439.6           | 17139          | 12       | 1456.9           | 17172    | 12       | 1473.7           |
| 17106  | 12 | 1440.1           |                |          |                  | 17173    | 12       | 1474.2           |
| 17107  | 12 | 1440.6           | 17140          | 12       | 1457.4           | 17174    | 12       | 1474.7           |
| 17,108 | 12 | 1441.1           | 17141          | 12       | 1458.0           | 17175    | 12       | 1475.2           |
| 17109  | 12 | 1441.6           | 17142          | 12       | 1458.5           | 17176    | 12       | 1475.7           |
|        |    |                  | 17143          | 12       | 1459.0           | 17177    | 12       | 1476.2           |
| 17110  | 12 | 1442.2           | 17144          | 12       | 1459.5           | 17178    | 12       | 1476.8           |
| 17111  | 12 | 1442.7           | 17145          | 12       | 1460.0           | 17179    | 12       | 1477.3           |
| 17112  | 12 | 1443.2           | 17146          | 12       | 1460.5           |          |          |                  |
| 17113  | 12 | 1443.7           | 17147          | 12       | 1461.0           | 17180    | 12       | 1477.8           |
| 17114  | 12 | 1444.2           | 17148          | 12       | 1461.5           | 17181    | 12       | 1478.3           |
| 17115  | 12 | 1444.7           | 17149          | 12       | 1462.0           | 17182    | 12       | 1478.8           |
| 17116  | 12 | 1445.2           |                |          |                  | 17183    | 12       | 1479.3           |
| 17117  | 12 | 1445.7           | 17150          | 12       | 1462.5           | 17184    | 12       | 1479.8           |
| 17118  | 12 | 1446.2           | 17151          | 12       | 1463.1           | 17185    | 12       | 1480.3           |
| 17119  | 12 | 1446.7           | 17152          | 12       | 1463.6           | 17186    | 12       | 1480.8           |
|        |    |                  | 17153          | 12       | 1464.1           | 17187    | 12<br>12 | 1481.3<br>1481.8 |
| 17120  | 12 | 1447.3           | 17154          | 12       | 1464.6           | 17188    | 12       | 1482.3           |
| 17121  | 12 | 1447.8           | 17155          | 12       | 1465.1<br>1465.6 | 17189    | 12       | 1462.3           |
| 17122  | 12 | 1448.3           | 17156<br>17157 | 12       | 1466.1           | 17190    | 12       | 1482.8           |
| 17123  | 12 | 1448.8<br>1449.3 | 17158          | 12       | 1466.6           | 17191    | 12       | 1483.3           |
| 17124  | 12 | 1449.8           | 17159          | 12       | 1467.1           | 17192    | 12       | 1483.8           |
| 17125  | 12 |                  | 17159          | 12       | 1407.1           | 17193    | 12       | 1484.3           |
| 17126  | 12 | 1450.3           | 17160          | 12       | 1467.6           | 17194    | 12       | 1484.9           |
| 17127  | 12 | 1450.8           | 17160          | 12       | 1468.1           | 17195    | 12       | 1485.4           |
| 17128  | 12 | 1451.3           |                |          | 1468.7           | 17196    | 12       | 1485.9           |
| 17129  | 12 | 1,451.8          | 17162          | 12<br>12 | 1469.2           | 17190    | 12       | 1486.4           |
|        |    |                  | 17163          |          |                  | 17198    | 12       | 1486.9           |
| 17130  | 12 | 1452.4           | 17164          | 12       | 1469.7           |          | 12       | 1485.9           |
| 17131  | 12 | 1452.9           | 17165          |          | 1470.2           | 17199    | 12       | 1487.4           |
| 17132  | 12 | 1453.4           | 17166          | 12       | 1470.7           | 17000    | 40       | 1487.9           |
| 17133  | 12 | 1453.9           | 17167          | 12       | 1471.2           | 17200    | 12       | 1487.9           |
|        |    |                  | <u> </u>       |          |                  | <u> </u> |          |                  |

Use check point at 17400 Kc

### TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: | 17200-1 | 17300 | Kc |
|------------|---------|-------|----|
|------------|---------|-------|----|

| 17200         12         1487.9         17234         12         1505.2         17268         12         1522.5           17201         12         1488.4         17235         12         1506.7         17269         12         1523.1           17202         12         1488.9         17236         12         1506.7         17270         12         1523.5           17204         12         1489.9         17238         12         1507.2         17271         12         1524.6           17206         12         1490.9         17238         12         1507.2         17271         12         1524.6           17207         12         1491.4         17240         12         1508.2         17274         12         1525.6           17209         12         1491.9         17241         12         1508.8         17275         12         1526.6           17210         12         1493.0         17244         12         1509.8         17276         12         1526.6           17211         12         1493.5         17244         12         1510.8         17277         12         1526.1           17212         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Freq. | A  | В      | Freq. | A  | В      | Freq.   | A   | В      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|--------|-------|----|--------|---------|-----|--------|
| 17202         12         1488.9         17236         12         1506.2         17270         12         1523.6           17203         12         1489.9         17237         12         1506.7         17271         12         1523.6           17204         12         1489.9         17238         12         1507.2         17271         12         1524.1           17206         12         1490.9         17238         12         1507.7         17272         12         1524.6           17206         12         1490.9         17241         12         1508.2         17274         12         1526.6           17209         12         1493.0         17241         12         1508.8         17276         12         1526.6           17211         12         1493.0         17244         12         1509.8         17277         12         1526.6           17211         12         1493.0         17244         12         1510.3         17278         12         1528.2           17213         12         1494.0         17246         12         1511.3         17279         12         1528.2           17214         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17200 | 12 | 1487.9 | 17234 | 12 | 1505.2 | 17268   | 12  | 1522.5 |
| 17203         12         1489.4         17237         12         1506.7         17270         12         1523.6           17204         12         1489.9         17238         12         1507.2         17271         12         1524.6           17206         12         1490.4         17239         12         1507.7         17272         12         1524.6           17207         12         1491.4         17240         12         1508.2         17273         12         1525.1           17207         12         1491.9         17241         12         1508.2         17275         12         1525.6           17209         12         1493.0         17241         12         1508.8         17277         12         1526.6           17210         12         1493.0         17244         12         1508.8         17277         12         1527.7           17211         12         1493.0         17244         12         1510.3         17277         12         1528.2           17211         12         1493.0         17246         12         1511.3         17279         12         1528.2           17212         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17201 | 12 | 1488.4 | 17235 | 12 | 1505.7 | 17269   | 12  | 1523.1 |
| 17204         12         1489.9         17238         12         1507.2         17271         12         1524.1           17205         12         1490.4         17239         12         1507.7         17272         12         1524.1           17206         12         1490.9         17241         12         1508.2         17274         12         1525.1           17207         12         1491.4         17240         12         1508.2         17275         12         1525.6           17209         12         1492.5         17241         12         1508.8         17275         12         1526.1           17210         12         1493.5         17243         12         1509.8         17277         12         1527.7           17211         12         1493.5         17245         12         1510.8         17279         12         1527.7           17211         12         1493.0         17245         12         1510.8         17279         12         1528.2           17212         12         1494.0         17245         12         1510.8         17279         12         1528.2           17215         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17202 | 12 | 1488.9 | 17236 | 12 | 1506.2 |         |     |        |
| 17205         12         1490.4         17239         12         1507.7         17272         12         1524.6           17206         12         1490.9         17240         12         1508.2         17273         12         1524.6           17207         12         1491.4         17240         12         1508.2         17274         12         1525.6           17209         12         1492.5         17242         12         1509.3         17276         12         1526.6           17210         12         1493.0         17244         12         1510.3         17277         12         1527.7           17211         12         1493.0         17246         12         1510.3         17278         12         1522.2           17212         12         1494.0         17246         12         1511.3         17279         12         1528.2           17213         12         1494.5         17247         12         1511.8         17280         12         1528.2           17216         12         1496.5         17249         12         1512.8         17281         12         1529.2           17216         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17203 | 12 | 1489.4 | 17237 | 12 | 1506.7 | 17270   | 12  | 1523.6 |
| 17206   12   1490.9   17240   12   1508.2   17273   12   1525.1   17209   12   1491.9   17241   12   1508.8   17276   12   1526.6   17209   12   1492.5   17242   12   1509.8   17276   12   1526.6   17243   12   1509.8   17276   12   1526.6   17243   12   1509.8   17277   12   1526.6   17211   12   1493.0   17244   12   1510.3   17279   12   1527.1   17211   12   1494.0   17246   12   1510.8   17279   12   1528.2   17213   12   1494.0   17246   12   1511.3   17281   12   1529.2   17215   12   1495.0   17248   12   1512.8   17280   12   1529.2   17215   12   1495.0   17248   12   1512.8   17280   12   1529.2   17215   12   1495.0   17248   12   1512.8   17281   12   1529.2   17215   12   1495.0   17248   12   1513.4   17281   12   1529.2   17215   12   1495.0   17248   12   1513.4   17281   12   1529.2   17217   12   1496.0   17250   12   1513.4   17281   12   1530.2   17218   12   1497.0   17251   12   1513.4   17286   12   1530.2   17219   12   1497.0   17251   12   1513.4   17286   12   1531.7   17252   12   1514.4   17286   12   1531.7   17225   12   1499.0   17256   12   1514.4   17286   12   1531.7   17222   12   1499.0   17256   12   1515.4   17289   12   1533.3   17222   12   1500.1   17256   12   1516.4   17229   12   1533.8   17224   12   1500.1   17258   12   1517.9   17299   12   1533.8   17226   12   1500.6   17257   12   1517.9   17291   12   1534.3   17226   12   1500.6   17257   12   1519.0   17295   12   1536.8   17228   12   1502.1   17261   12   1519.0   17295   12   1536.8   17232   12   1503.1   17264   12   1500.0   17297   12   1536.8   17233   12   1504.2   17266   12   1501.5   17299   12   1538.4   17233   12   1504.2   17266   12   1501.5   17299   12   1538.8   17233   12   1504.2   17266   12   1501.5   17299   12   1538.8   17233   12   1504.2   17266   12   1501.5   17299   12   1538.8   17233   12   1504.2   17266   12   1501.5   17299   12   1538.8   17233   12   1504.2   17266   12   1501.5   17299   12   1538.8   17233   12   1504.2   17266   12   1501.5   17299   12   1538.8  | 17204 | 12 | 1489.9 | 17238 | 12 | 1507.2 | 17271   | 12  | 1524.1 |
| 17207         12         1491.4         17240         12         1508.2         17274         12         1525.6           17208         12         1491.9         17241         12         1508.8         17276         12         1526.6           17209         12         1492.5         17242         12         1509.8         17276         12         1526.6           17209         12         1493.0         17244         12         1510.3         17277         12         1527.7           17211         12         1493.5         17245         12         1510.3         17278         12         1522.2           17213         12         1494.5         17247         12         1511.8         17280         12         1528.2           17214         12         1495.0         17248         12         1511.8         17280         12         1528.7           17215         12         1495.0         17247         12         1511.8         17280         12         1528.7           17216         12         1495.0         17247         12         1511.8         17280         12         1528.7           17217         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17205 | 12 | 1490.4 | 17239 | 12 | 1507.7 | 17272   |     |        |
| 17208         12         1491.9         17241         12         1508.8         17275         12         1526.1           17209         12         1492.5         17242         12         1509.3         17276         12         1526.1           17210         12         1493.5         17243         12         1509.8         17277         12         1527.7           17211         12         1493.5         17245         12         1510.8         17279         12         1527.7           17212         12         1494.0         17246         12         1511.3         17279         12         1528.2           17214         12         1494.5         17247         12         1511.8         17280         12         1528.2           17215         12         1495.5         17249         12         1512.8         17281         12         1529.2           17216         12         1495.5         17249         12         1512.8         17281         12         1529.2           17217         12         1496.0         17250         12         1513.4         17281         12         1530.2           17218         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17206 | 12 | 1490.9 |       |    |        |         |     |        |
| 17209         12         1492.5         17242         12         1509.3         17276         12         1526.6           17210         12         1493.0         17244         12         1510.3         17278         12         1527.7           17211         12         1493.5         17246         12         1510.3         17279         12         1527.7           17212         12         1494.0         17246         12         1511.3         17279         12         1528.2           17214         12         1495.5         17247         12         1511.8         17280         12         1528.2           17215         12         1495.5         17248         12         1512.8         17281         12         1529.2           17216         12         1495.5         17248         12         1512.8         17281         12         1529.7           17216         12         1496.5         17250         12         1513.4         17281         12         1530.7           17218         12         1497.5         17250         12         1513.4         17284         12         1530.7           17220         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17207 | 12 | 1491.4 | 17240 |    | 1508.2 |         |     |        |
| 17210   12   1493.0   17243   12   1509.8   17277   12   1527.1   17211   12   1493.5   17244   12   1510.3   17278   12   1527.5   17212   12   1494.5   17245   12   1511.3   17279   12   1528.2   17213   12   1494.5   17246   12   1511.3   17281   12   1528.7   17214   12   1495.0   17248   12   1512.8   17280   12   1528.7   17215   12   1495.0   17248   12   1512.8   17282   12   1529.7   17216   12   1496.0   17217   12   1496.5   17250   12   1513.4   17286   12   1530.2   17218   12   1497.0   17251   12   1513.4   17286   12   1530.2   17219   12   1497.0   17251   12   1513.9   17285   12   1531.7   17251   12   1498.0   17252   12   1514.4   17286   12   1531.7   17252   12   1498.0   17254   12   1515.4   17286   12   1532.3   17222   12   1498.0   17254   12   1516.4   17288   12   1532.3   17222   12   1499.0   17256   12   1516.9   17293   12   1533.8   17224   12   1500.1   17258   12   1517.9   17291   12   1534.3   17226   12   1500.6   17257   12   1517.9   17291   12   1534.3   17228   12   1501.6   17260   12   1518.5   17295   12   1536.3   17228   12   1502.1   17261   12   1519.0   17295   12   1536.3   17229   12   1502.1   17261   12   1519.0   17295   12   1536.3   17232   12   1503.1   17263   12   1500.5   17263   12   1500.5   17296   12   1536.8   17233   12   1503.1   17263   12   1500.5   17298   12   1537.9   17231   12   1503.6   17265   12   1501.5   17299   12   1534.8   17231   12   1503.6   17265   12   1501.5   17299   12   1536.8   17231   12   1503.6   17265   12   1501.5   17299   12   1538.8   17233   12   1503.6   17265   12   1501.5   17299   12   1538.8   17233   12   1504.6   17265   12   1501.5   17299   12   1538.8   17233   12   1504.6   17265   12   1501.5   17299   12   1538.8   17233   12   1504.6   17265   12   1501.5   17299   12   1538.8   17233   12   1504.6   17265   12   1501.5   17299   12   1538.8   17233   12   1504.6   17265   12   1501.5   17299   12   1538.4   17232   12   1504.6   17265   12   1501.5   17299   12   1538.4   17232   12   1504.6  | 17208 |    |        |       |    |        |         |     |        |
| 17210         12         1493.0         17244         12         1510.3         17278         12         1527.7           17211         12         1493.5         17246         12         1510.8         17279         12         1528.2           17212         12         1494.0         17246         12         1511.3         17279         12         1528.2           17214         12         1494.5         17247         12         1511.8         17280         12         1528.7           17215         12         1495.0         17249         12         1512.8         17281         12         1529.2           17216         12         1496.0         17250         12         1513.4         17283         12         1530.2           17217         12         1496.0         17251         12         1513.4         17283         12         1530.7           17218         12         1497.0         17251         12         1513.4         17285         12         1531.2           17220         12         1497.0         17253         12         1514.4         17286         12         1531.2           17220         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17209 | 12 | 1492.5 |       |    |        |         |     |        |
| 17211   12   1493.5   17245   12   1510.8   17279   12   1528.2     17212   12   1494.0   17246   12   1511.3     17213   12   1494.5   17247   12   1511.8     17214   12   1495.0   17248   12   1512.3     17215   12   1495.5   17249   12   1512.8     17216   12   1496.0   17248   12   1512.8     17217   12   1496.5   17250   12   1513.4     17218   12   1497.0   17251   12   1513.4     17218   12   1497.0   17251   12   1513.4     17219   12   1497.5   17252   12   1514.4     17220   12   1498.0   17252   12   1514.4     17221   12   1498.0   17253   12   1514.4     17221   12   1498.0   17254   12   1515.4     17222   12   1498.0   17255   12   1515.4     17222   12   1499.0   17256   12   1516.4     17223   12   1499.6   17257   12   1516.9     17224   12   1500.1   17258   12   1517.9     17225   12   1500.6   17259   12   1517.9     17226   12   1501.6   17259   12   1518.5     17228   12   1502.1     17229   12   1502.1     17229   12   1502.1     17229   12   1502.1     17229   12   1502.3     17230   12   1503.1   17261   12   1519.5     17230   12   1503.1   17263   12   1502.5     17231   12   1503.1   17266   12   1510.5     17232   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17231   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17232   12   1504.2   17266   12   1520.5     17232   12   150 |       |    |        |       |    |        |         | . – |        |
| 17212         12         1494.0         17246         12         1511.3         17213         12         1494.5         17247         12         1511.8         17280         12         1528.7           17214         12         1495.0         17248         12         1512.8         17281         12         1529.2           17216         12         1495.5         17249         12         1512.8         17282         12         1529.7           17216         12         1496.5         17250         12         1513.4         17284         12         1530.7           17218         12         1497.5         17250         12         1513.4         17285         12         1530.7           17218         12         1497.5         17252         12         1514.4         17286         12         1531.7           17220         12         1498.0         17254         12         1514.9         17286         12         1531.7           17221         12         1498.0         17255         12         1515.4         17288         12         1532.8           17222         12         1499.0         17256         12         1516.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17210 | 12 |        |       |    |        |         |     |        |
| 17213         12         1494.5         17247         12         1511.8         17280         12         1528.7           17214         12         1495.0         17248         12         1512.3         17281         12         1529.7           17215         12         1496.5         17249         12         1512.8         17281         12         1529.7           17217         12         1496.5         17250         12         1513.4         17284         12         1530.2           17218         12         1497.0         17251         12         1513.9         17285         12         1531.2           17219         12         1497.0         17251         12         1513.9         17286         12         1531.2           17219         12         1497.0         17252         12         1514.4         17286         12         1531.2           17219         12         1498.0         17253         12         1514.9         17287         12         1532.3           17221         12         1498.0         17255         12         1516.4         17288         12         1533.8           172221         12 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>17279</td><td>12</td><td>1528.2</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |    |        |       |    |        | 17279   | 12  | 1528.2 |
| 17214         12         1495.0         17248         12         1512.3         17281         12         1529.2           17215         12         1496.0         17249         12         1512.8         17282         12         1529.2           17216         12         1496.0         17250         12         1513.4         17284         12         1530.2           17218         12         1497.0         17251         12         1513.9         17285         12         1531.2           17219         12         1497.5         17252         12         1514.4         17286         12         1531.2           17220         12         1498.5         17253         12         1514.4         17286         12         1531.3           17221         12         1498.5         17255         12         1515.4         17287         12         1532.3           17222         12         1499.6         17255         12         1515.9         17289         12         1533.3           17222         12         1499.6         17257         12         1516.4         17290         12         1533.3           17225         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |    |        |       |    |        | Ì       |     |        |
| 17215         12         1495.5         17249         12         1512.8         17282         12         1529.7           17216         12         1496.5         17250         12         1513.4         17283         12         1530.2           17217         12         1496.5         17250         12         1513.4         17285         12         1530.7           17218         12         1497.5         17252         12         1514.4         17286         12         1531.7           17220         12         1498.0         17253         12         1514.9         17288         12         1532.8           17221         12         1498.0         17255         12         1515.4         17289         12         1532.8           17221         12         1498.0         17255         12         1515.9         17289         12         1532.8           17222         12         1499.0         17256         12         1516.4         17289         12         1533.3           17222         12         1500.1         17256         12         1516.4         17290         12         1533.3           17225         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |    |        |       |    |        |         |     |        |
| 17216         12         1496.0         17250         12         1513.4         17283         12         1530.2           17217         12         1497.0         17251         12         1513.4         17285         12         1530.2           17218         12         1497.0         17251         12         1513.9         17286         12         1531.2           17219         12         1497.5         17252         12         1514.4         17286         12         1531.7           17220         12         1498.0         17254         12         1515.4         17289         12         1532.3           17222         12         1499.0         17256         12         1516.4         17289         12         1533.3           17223         12         1499.0         17256         12         1516.9         17289         12         1533.3           17224         12         1500.1         17257         12         1516.9         17291         12         1533.3           17224         12         1500.1         17258         12         1517.9         17291         12         1533.8           17226         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | -  |        |       |    |        |         |     |        |
| 17217         12         1496.5         17250         12         1513.4         17284         12         1530.7           17218         12         1497.0         17251         12         1513.9         17285         12         1531.2           17219         12         1497.5         17252         12         1514.4         17286         12         1531.7           17220         12         1498.0         17254         12         1515.4         17287         12         1532.3           17221         12         1498.5         17255         12         1515.9         17289         12         1533.8           17222         12         1499.6         17256         12         1516.9         17289         12         1533.3           17224         12         1500.1         17258         12         1517.4         17290         12         1533.3           17225         12         1500.6         17257         12         1516.4         17290         12         1533.3           17224         12         1500.6         17258         12         1517.4         17291         12         1533.8           17225         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |    |        | 17249 | 12 | 1512.8 |         |     |        |
| 17218         12         1497.0         17251         12         1513.9         17285         12         1531.2           17219         12         1497.5         17252         12         1514.4         17286         12         1531.2           17220         12         1498.0         17253         12         1514.9         17287         12         1532.3           17221         12         1498.5         17255         12         1515.9         17288         12         1532.8           17222         12         1499.6         17256         12         1516.4         17289         12         1533.3           17223         12         1500.1         17257         12         1516.9         17290         12         1533.3           17225         12         1500.6         17257         12         1517.9         17290         12         1533.8           17226         12         1501.1         17269         12         1517.9         17291         12         1534.8           17227         1         1501.6         17260         12         1518.5         17294         12         1536.3           17229         12         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |    |        |       |    |        |         |     |        |
| 17219 12 1497.5 17252 12 1514.4 17286 12 1531.7 17253 12 1514.9 17287 12 1532.8 17221 12 1498.0 17254 12 1515.4 17288 12 1532.8 17221 12 1498.5 17255 12 1515.9 17289 12 1533.3 17222 12 1499.0 17256 12 1516.4 17223 12 1499.6 17257 12 1516.9 17290 12 1533.8 17224 12 1500.1 17258 12 1517.4 17291 12 1534.8 17225 12 1500.6 17259 12 1517.9 17292 12 1534.8 17226 12 1501.6 17259 12 1517.9 17292 12 1534.8 17227 12 1501.6 17260 12 1518.5 17294 12 1535.8 17228 12 1502.1 17261 12 1519.5 17295 12 1536.8 17229 12 1503.1 17263 12 1500.0 17297 12 1536.8 17230 12 1503.1 17264 12 1500.5 17298 12 1537.9 17231 12 1503.2 17266 12 1521.5 17299 12 1538.4 17232 12 1504.2 17266 12 1521.5 17299 12 1538.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |    |        |       |    |        |         |     |        |
| 17220         12         1498.0         17253         12         1514.9         17287         12         1532.3           17221         12         1498.0         17254         12         1515.4         17288         12         1532.8           17221         12         1498.5         17255         12         1516.9         17289         12         1533.8           17222         12         1499.6         17257         12         1516.9         17290         12         1533.8           17224         12         1500.1         17258         12         1517.4         17291         12         1534.3           17226         12         1500.1         17259         12         1517.9         17292         12         1534.3           17226         12         1501.1         17260         12         1518.5         17292         12         1534.8           17227         12         1501.6         17260         12         1518.5         17293         12         1535.3           17228         12         1502.1         17261         12         1519.0         17295         12         1536.3           17229         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |    |        |       |    |        |         |     |        |
| 17220         12         1498.0         17254         12         1515.4         17288         12         1532.8           17221         12         1498.5         17255         12         1516.9         17289         12         1533.3           17222         12         1499.6         17256         12         1516.9         17289         12         1533.3           17223         12         1499.6         17257         12         1516.9         17290         12         1533.8           17224         12         1500.1         17258         12         1517.4         17291         12         1534.3           17226         12         1500.6         17259         12         1517.9         17292         12         1534.8           17227         12         1501.6         17260         12         1518.5         17294         12         1535.8           17228         12         1502.6         17261         12         1519.0         17295         12         1536.3           17229         12         1502.6         17262         12         1519.5         17296         12         1536.8           17230         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17219 | 12 | 1497.5 |       |    |        |         |     |        |
| 17221         12         1498.5         17255         12         1515.9         17289         12         1533.3           17222         12         1499.6         17256         12         1516.4         17290         12         1533.8           17223         12         1499.6         17257         12         1516.9         17290         12         1533.8           17225         12         1500.1         17259         12         1517.9         17291         12         1534.3           17226         12         1501.1         17293         12         1534.8         17293         12         1535.8           17227         12         1501.6         17260         12         1518.5         17294         12         1535.3           17228         12         1502.6         17261         12         1519.0         17295         12         1536.3           17229         12         1502.6         17262         12         1519.5         17296         12         1536.8           17230         12         1503.1         17264         12         1520.5         17297         12         1537.9           17231         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |    |        |       |    |        |         |     |        |
| 17222 12 1499.0 17256 12 1516.4 17223 12 1499.6 17257 12 1516.9 17290 12 1533.8 17224 12 1500.1 17258 12 1517.4 17291 12 1534.3 17225 12 1500.6 17259 12 1517.9 17292 12 1534.8 17226 12 1501.6 17250 12 1517.9 17292 12 1534.8 17227 12 1501.6 17260 12 1518.5 17294 12 1535.3 17228 12 1502.1 17261 12 1519.0 17295 12 1536.8 17229 12 1502.6 17262 12 1519.0 17296 12 1536.8 17263 12 1503.1 17264 12 1520.5 17296 12 1537.4 17231 12 1503.6 17265 12 1521.5 17298 12 1534.4 17232 12 1503.6 17265 12 1521.5 17299 12 1538.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |    |        |       |    |        |         |     |        |
| 17223         12         1499.6         17257         12         1516.9         17290         12         1533.8           17224         12         1500.1         17258         12         1517.4         17291         12         1534.3           17225         12         1500.6         17259         12         1517.9         17292         12         1534.3           17226         12         1501.6         17260         12         1518.5         17293         12         1535.8           17228         12         1502.6         17260         12         1518.5         17294         12         1536.3           17229         12         1502.6         17262         12         1519.0         17295         12         1536.3           17229         12         1503.6         17262         12         1519.5         17296         12         1536.8           17230         12         1503.1         17262         12         1520.5         17296         12         1537.4           17231         12         1503.5         17264         12         1520.5         17298         12         1537.4           17231         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |    |        |       |    |        | 17289   | 12  | 1533.3 |
| 17224 12 1500.1 17258 12 1517.4 17291 12 1534.3 17225 12 1500.6 17259 12 1517.9 17292 12 1534.8 17226 12 1501.1 17227 12 1501.6 17260 12 1518.5 17294 12 1535.8 17228 12 1502.6 17262 12 1519.0 17295 12 1536.3 17229 12 1502.6 17262 12 1519.5 17296 12 1536.8 17263 12 1520.0 17297 12 1537.4 17230 12 1503.1 17264 12 1520.5 17298 12 1537.4 17231 12 1503.6 17265 12 1521.5 17298 12 1538.4 17232 12 1504.2 17266 12 1521.5 17299 12 1538.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |    |        |       |    |        |         |     |        |
| 17225         12         1500.6         17259         12         1517.9         17292         12         1534.8           17226         12         1501.1         17293         12         1535.3         17293         12         1535.8           17227         12         1501.6         17260         12         1519.5         17294         12         1535.8           17229         12         1502.6         17261         12         1519.5         17295         12         1536.3           17229         12         1502.6         17262         12         1519.5         17296         12         1536.8           17230         12         1503.1         17264         12         1520.5         17297         12         1537.9           17231         12         1503.2         12         1521.5         17299         12         1538.4           17232         12         1504.2         17266         12         1521.5         17299         12         1538.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |    |        |       |    |        | ,,,     |     |        |
| 17226         12         1501.1         17260         12         1518.5         17293         12         1535.3           17227         12         1501.6         17260         12         1518.5         17294         12         1535.8           17228         12         1502.1         17261         12         1519.0         17295         12         1536.8           17229         12         1502.0         17296         12         1536.8         17263         12         1520.0         17297         12         1537.4           17230         12         1503.1         17264         12         1520.5         17298         12         1537.9           17231         12         1504.6         17265         12         1521.5         17299         12         1538.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |    |        |       |    |        |         |     |        |
| 17227         12         1501.6         17260         12         1518.5         17294         12         1535.8           17228         12         1502.1         17261         12         1519.0         17295         12         1536.3           17229         12         1502.6         17262         12         1519.5         17295         12         1536.8           17230         12         1503.1         17264         12         1520.0         17297         12         1537.9           17231         12         1503.6         17265         12         1521.0         17299         12         1538.4           17232         12         1504.2         17266         12         1521.5         17299         12         1538.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |    |        | 17259 | 12 | 1517.9 |         |     |        |
| 17228         12         1502.1         17261         12         1519.0         17295         12         1536.3           17229         12         1502.6         17262         12         1519.5         17296         12         1536.8           17230         12         1503.1         17263         12         1520.0         17297         12         1537.4           17231         12         1503.6         17265         12         1521.5         17299         12         1538.4           17232         12         1504.2         17266         12         1521.5         17299         12         1538.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |    |        |       |    |        |         |     |        |
| 17229 12 1502.6 17262 12 1519.5 17296 12 1536.8 17263 12 1520.0 17297 12 1537.4 17230 12 1503.1 17263 12 1520.5 17298 12 1537.9 17231 12 1503.6 17265 12 1521.5 17298 12 1538.4 17232 12 1504.2 17266 12 1521.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |    |        |       |    |        |         |     |        |
| 17230 12 1503.1 17263 12 1520.0 17297 12 1537.4 17230 12 1503.6 17265 12 1521.0 17299 12 1538.4 17232 12 1504.2 17266 12 1521.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |    |        |       |    |        |         |     |        |
| 17230 12 1503.1 17264 12 1520.5 17298 12 1537.9<br>17231 12 1503.6 17265 12 1521.0 17299 12 1538.4<br>17232 12 1504.2 17266 12 1521.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17229 | 12 | 1502.6 |       |    |        |         |     |        |
| 17231 12 1503.6 17265 12 1521.0 17299 12 1538.4 17232 12 1504.2 17266 12 1521.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |    |        |       |    |        |         |     |        |
| 17232 12 1504.2 17266 12 1521.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |    |        |       |    |        |         |     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |    |        |       |    |        | 17299   | 12  | 1538.4 |
| 17233 12 1504.7   17267 12 1522.0   17300 12 1538.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |    |        |       |    |        |         |     | .=== - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17233 | 12 | 1504.7 | 17267 | 12 | 1522.0 | 17300   | 12  | 1538.9 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |    |        | L     |    |        | <u></u> |     |        |

Use check point at 17400 Kc

### Frequency: 17300-17400 Kc

| Frequency: 17300-17400 AC |    |        |          |    |        |       |    |                  |  |  |  |
|---------------------------|----|--------|----------|----|--------|-------|----|------------------|--|--|--|
| Freq.                     | A  | В      | Freq.    | A  | В      | Freq. | A  | В                |  |  |  |
| 17300                     | 12 | 1538.9 | 17334    | 12 | 1556.2 | 17368 | 12 | 1573.7           |  |  |  |
| 17301                     | 12 | 1539.4 | 17335    | 12 | 1556.7 | 17369 | 12 | 1574.2           |  |  |  |
| 17302                     | 12 | 1539.9 | 17336    | 12 | 1557.2 |       |    |                  |  |  |  |
| 17303                     | 12 | 1540.4 | 17337    | 12 | 1557.8 | 17370 | 12 | 1574.7           |  |  |  |
| 17304                     | 12 | 1540.9 | 17338    | 12 | 1558.3 | 17371 | 12 | 1575.2           |  |  |  |
| 17305                     | 12 | 1541.4 | 17339    | 12 | 1558.8 | 17372 | 12 | 1575.7           |  |  |  |
| 17306                     | 12 | 1541.9 |          |    |        | 17373 | 12 | 1576.2           |  |  |  |
| 17307                     | 12 | 1542.5 | 17340    | 12 | 1559.3 | 17374 | 12 | 1576.7           |  |  |  |
| 17308                     | 12 | 1543.0 | 17341    | 12 | 1559.8 | 17375 | 12 | 1577.2           |  |  |  |
| 17309                     | 12 | 1543.5 | 17342    | 12 | 1560.3 | 17376 | 12 | 1577.8           |  |  |  |
|                           |    |        | 17343    | 12 | 1560.8 | 17377 | 12 | 1578.3           |  |  |  |
| 17310                     | 12 | 1544.0 | 17344    | 12 | 1561.3 | 17378 | 12 | 1578.8           |  |  |  |
| 17311                     | 12 | 1544.5 | 17345    | 12 | 1561.8 | 17379 | 12 | 1579.3           |  |  |  |
| 17312                     | 12 | 1545.0 | 17346    | 12 | 1562.4 |       | _  |                  |  |  |  |
| 17313                     | 12 | 1545.5 | 17347    | 12 | 1562.9 | 17380 | 12 | 1579.8           |  |  |  |
| 17314                     | 12 | 1546.0 | 17348    | 12 | 1563.4 | 17381 | 12 | 1580.3           |  |  |  |
| 17315                     | 12 | 1546.5 | 17349    | 12 | 1563.9 | 17382 | 12 | 1580.8           |  |  |  |
| 17316                     | 12 | 1547.0 |          |    |        | 17383 | 12 | 1581.4           |  |  |  |
| 17317                     | 12 | 1547.6 | 17350    | 12 | 1564.4 | 17384 | 12 | 1581.9           |  |  |  |
| 17318                     | 12 | 1548.1 | 17351    | 12 | 1564.9 | 17385 | 12 | 1582.4           |  |  |  |
| 17319                     | 12 | 1548.6 | 17352    | 12 | 1565.4 | 17386 | 12 | 1582.9           |  |  |  |
|                           |    |        | 17353    | 12 | 1566.0 | 17387 | 12 | 1583.4<br>1583.9 |  |  |  |
| 17320                     | 12 | 1549.1 | 17354    | 12 | 1566.5 | 17388 | 12 |                  |  |  |  |
| 17321                     | 12 | 1549.6 | 17355    | 12 | 1567.0 | 17389 | 12 | 1584.4           |  |  |  |
| 17322                     | 12 | 1550.1 | 17356    | 12 | 1567.5 |       |    | 4504.0           |  |  |  |
| 17323                     | 12 | 1550.6 | 17357    | 12 | 1568.0 | 17390 | 12 | 1584.9           |  |  |  |
| 17324                     | 12 | 1551.1 | 17358    | 12 | 1568.5 | 17391 | 12 | 1585.5           |  |  |  |
| 17325                     | 12 | 1551.6 | 17359    | 12 | 1569.0 | 17392 | 12 | 1586.0           |  |  |  |
| 17326                     | 12 | 1552.1 |          |    |        | 17393 | 12 | 1586.5           |  |  |  |
| 17327                     | 12 | 1552.7 | 17360    | 12 | 1569.5 | 17394 | 12 | 1587.0           |  |  |  |
| 17328                     | 12 | 1553.2 | 17361    | 12 | 1570.1 | 17395 | 12 | 1587.5           |  |  |  |
| 17329                     | 12 | 1553.7 | 17362    | 12 | 1570.6 | 17396 | 12 | 1588.0           |  |  |  |
|                           |    |        | 17363    | 12 | 1571.1 | 17397 | 12 | 1588.5           |  |  |  |
| 17330                     | 12 | 1554.2 | 17364    | 12 | 1571.6 | 17398 | 12 | 1589.1           |  |  |  |
| 17331                     | 12 | 1554.7 | 17365    | 12 | 1572.1 | 17399 | 12 | 1589.6           |  |  |  |
| 17332                     | 12 | 1555.2 | 17366    | 12 | 1572.6 |       |    |                  |  |  |  |
| 17333                     | 12 | 1555.7 | 17367    | 12 | 1573.1 | 17400 | 12 | 1590.1           |  |  |  |
|                           |    |        | <u> </u> |    |        |       |    |                  |  |  |  |

Use check point at 17400 Kc

Frequency: 17400-17500 Kc

| Freq.             | A   | В      | Freq.              | A  | В      | Freq.     | A  | В      |
|-------------------|-----|--------|--------------------|----|--------|-----------|----|--------|
| 17400             | 12  | 1590.1 | 17434              | 12 | 1607.6 | 17468     | 12 | 1625.2 |
| 17401             | 12. | 1590.6 | 17435              | 12 | 1608.2 | 17469     | 12 | 1625.7 |
| 17402             | 12  | 1591.1 | 17436              | 12 | 1608.7 |           |    |        |
| 17403             | 12  | 1591.6 | 17437              | 12 | 1609.2 | 17470     | 12 | 1626.3 |
| 17404             | 12  | 1592.1 | 17438              | 12 | 1609.7 | 17471     | 12 | 1626.8 |
| 17405             | 12  | 1592.7 | 17439              | 12 | 1610.2 | 17472     | 12 | 1627.3 |
| 17406             | 12  | 1593.2 |                    |    |        | 17473     | 12 | 1627.8 |
| 17407             | 12  | 1593.7 | 17 <del>44</del> 0 | 12 | 1610.7 | 17474     | 12 | 1628.3 |
| 17408             | 12  | 1594.2 | 17441              | 12 | 1611.2 | 17475     | 12 | 1628.9 |
| 17409             | 12  | 1594.7 | 17442              | 12 | 1611.8 | 17476     | 12 | 1629.4 |
|                   |     |        | 17443              | 12 | 1612.3 | 17477     | 12 | 1629.9 |
| 17410             | 12  | 1595.2 | 17444              | 12 | 1612.8 | 17478     | 12 | 1630.4 |
| 17411             | 12  | 1595.8 | 17445              | 12 | 1613.3 | 17479     | 12 | 1630.9 |
| 17412             | 12  | 1596.3 | 17 <del>44</del> 6 | 12 | 1613.8 |           |    |        |
| 17413             | 12  | 1596.8 | 17447              | 12 | 1614.3 | 17480     | 12 | 1631.5 |
| 1741 <del>4</del> | 12  | 1597.3 | 17448              | 12 | 1614.9 | 17481     | 12 | 1632.0 |
| 17415             | 12  | 1597.8 | 17449              | 12 | 1615.4 | 17482     | 12 | 1632.5 |
| 17416             | 12  | 1598.3 |                    |    |        | 17483     | 12 | 1633.0 |
| 17417             | 12  | 1598.9 | 17450              | 12 | 1615.9 | 17484     | 12 | 1633.5 |
| 17418             | 12  | 1599.4 | 17451              | 12 | 1616.4 | 17485     | 12 | 1634.1 |
| 17419             | 12  | 1599.9 | 17452              | 12 | 1616.9 | 17486     | 12 | 1634.6 |
|                   |     |        | 17453              | 12 | 1617.4 | 17487     | 12 | 1635.1 |
| 17420             | 12  | 1600.4 | 17454              | 12 | 1618.0 | 17488     | 12 | 1635.6 |
| 17421             | 12  | 1600.9 | 17455              | 12 | 1618.5 | 17489     | 12 | 1636.1 |
| 17422             | 12  | 1601.4 | 17456              | 12 | 1619.0 |           |    |        |
| 17423             |     | 1602.0 | 17457              | 12 | 1619.5 | 17490     | 12 | 1636.7 |
| 17424             |     | 1602.5 | 17458              | 12 | 1620.0 | 17491     | 12 | 1637.2 |
| 17425             |     | 1603.0 | 17459              | 12 | 1620.5 | 17492     | 12 | 1637.7 |
| 17426             |     | 1603.5 |                    |    |        | 17493     | 12 | 1638.2 |
| 17427             |     | 1604.0 | 17460              | 12 | 1621.1 | 17494     | 12 | 1638.7 |
| 17428             |     | 1604.5 | 17461              | 12 | 1621.6 | 17495     | 12 | 1639.3 |
| 17429             | 12  | 1605.1 | 17462              | 12 | 1622.1 | 17496     | 12 | 1639.8 |
|                   |     |        | 17463              | 12 | 1622.6 | 17497     | 12 | 1640.3 |
| 17430             |     | 1605.6 | 17464              | 12 | 1623.1 | 17498     | 12 | 1640.8 |
| 17431             | 12  | 1606.1 | 17465              | 12 | 1623.7 | 17499     | 12 | 1641.3 |
| 17432             |     | 1606.6 | 17466              | 12 | 1624.2 |           |    |        |
| 17433             | 12  | 1607.1 | 17467              | 12 | 1624.7 | 17500     | 12 | 1641.9 |
|                   |     |        | <u> </u>           |    |        | <u>L.</u> |    |        |

Use check point at 17400 Kc

### Frequency: 17500-17600 Kc

| Prequency: 17300—17800 Kc |          |                  |                |          |                  |                |          |                    |  |  |  |
|---------------------------|----------|------------------|----------------|----------|------------------|----------------|----------|--------------------|--|--|--|
| Freq.                     | A        | В                | Freq.          | A        | В                | Freq.          | A        | В                  |  |  |  |
| 17500                     | 12       | 1641.9           | 17534          | 12       | 1659.6           | 17568          | 12       | 1677.3             |  |  |  |
| 17501                     | 12       | 1642.4           | 17535          | 12       | 1660.1           | 17569          | 12       | 1677.8             |  |  |  |
| 17502                     | 12       | 1642.9           | 17536          | 12       | 1660.6           |                |          |                    |  |  |  |
| 17503                     | 12       | 1643.4           | 17537          | 12       | 1661.1           | 17570          | 12       | 1678.3             |  |  |  |
| 17504                     | 12       | 1643.9           | 17538          | 12       | 1661.7           | 17571          | 12       | 1678.9             |  |  |  |
| 17505                     | 12       | 1644.5           | 17539          | 12       | 1662.2           | 17572          | 12       | 1679. <del>4</del> |  |  |  |
| 17506                     | 12       | 1645.0           |                |          |                  | 17573          | 12       | 1679.9             |  |  |  |
| 17507                     | 12       | 1645.5           | 17540          | 12       | 1662.7           | 17574          | 12       | 1680.4             |  |  |  |
| 17508                     | 12       | 1646.0           | 17541          | 12       | 1663.2           | 17575          | 12       | 1681.0             |  |  |  |
| 17509                     | 12       | 1646.5           | 17542          | 12       | 1663.7           | 17576          | 12       | 1681.5             |  |  |  |
|                           |          |                  | 17543          | 12       | 1664.3           | 17577          | 12       | 1682.0             |  |  |  |
| 17510                     | 12       | 1647.1           | 17544          | 12       | 1664.8           | 17578          | 12       | 1682.5             |  |  |  |
| 17511                     | 12       | 1647.6           | 17545          | 12       | 1665.3           | 17579          | 12       | 1683.0             |  |  |  |
| 17512                     | 12       | 1648.1           | 17546          | 12       | 1665.8           | l              |          |                    |  |  |  |
| 17513                     | 12       | 1648.6           | 17547          | 12       | 1666.3           | 17580          | 12       | 1683.6             |  |  |  |
| 17514                     | 12       | 1649.1           | 17548          | 12       | 1666.9           | 17581          | 12       |                    |  |  |  |
| 17515                     | 12       | 1649.7           | 17549          | 12       | 1667.4           | 17582          | 12       | 1684.6             |  |  |  |
| 17516                     | 12       | 1650.2           |                |          |                  | 17583          | 12       | 1685.1             |  |  |  |
| 17517                     | 12       | 1650.7           | 17550          | 12       | 1667.9<br>1668.4 | 17584<br>17585 | 12<br>12 | 1685.7<br>1686.2   |  |  |  |
| 17518                     | 12       | 1651.2           | 17551          | 12<br>12 | 1669.0           |                | 12       | 1686.7             |  |  |  |
| 17519                     | 12       | 1651.7           | 17552          | 12       | 1669.5           | 17586<br>17587 | 12       | 1687.2             |  |  |  |
|                           |          | 4050.0           | 17553          | 12       |                  | 17588          | 12       | 1687.8             |  |  |  |
| 17520                     | 12       | 1652.3           | 17554          |          | 1670.0           | 17589          | 12       | 1688.3             |  |  |  |
| 17521                     | 12       | 1652.8           | 17555          | 12<br>12 | 1670.5<br>1671.0 | 1/369          | 12       | 1000.3             |  |  |  |
| 17522                     | 12       | 1653.3           | 17556          |          | 1671.6           | 17590          | 12       | 1688.8             |  |  |  |
| 17523                     | 12       | 1653.8           | 17557          | 12       |                  | 17590          | 12       | 1689.3             |  |  |  |
| 17524                     | 12       | 1654.3           | 17558<br>17559 | 12<br>12 | 1672.1<br>1672.6 | 17592          | 12       | 1689.9             |  |  |  |
| 17525                     | 12       | 1654.9           | 17009          | 12       | 10/2.0           | 17593          | 12       | 1690.4             |  |  |  |
| 17526                     | 12<br>12 | 1655.4<br>1655.9 | 17560          | 12       | 1673.1           | 17593          | 12       | 1690.9             |  |  |  |
| 17527                     |          |                  |                | 12       | 1673.1           | 17595          | 12       | 1691.4             |  |  |  |
| 17528                     | 12       | 1656.4           | 17561          |          |                  | 17596          | 12       | 1692.0             |  |  |  |
| 17529                     | 12       | 1657.0           | 17562          | 12       | 1674.2           | 17596          | 12       | 1692.5             |  |  |  |
| 47000                     |          | 4057.5           | 17563          | 12       | 1674.7           | 17598          | 12       | 1693.0             |  |  |  |
| 17530                     | 12       | 1657.5           | 17564          | 12       | 1675.2           | 17598          | 12       | 1693.6             |  |  |  |
| 17531                     | 12       | 1658.0           | 17565          | 12       | 1675.7           | 17599          | 12       | 1093.0             |  |  |  |
| 17532                     | 12       | 1658.5           | 17566          | 12       | 1676.3           | 17600          | 10       | 1694.1             |  |  |  |
| 17533                     | 12       | 1659.0           | 17567          | 12       | 1676. <b>8</b>   | 17600          | 12       | 1094.1             |  |  |  |
|                           |          |                  | <u> </u>       |          |                  | l              |          |                    |  |  |  |

Use check point at 17400 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Frequency: 17 | 500-1 | 17700 | Κc |
|---------------|-------|-------|----|
|---------------|-------|-------|----|

|          |        | 1             |       |    |        |        |      |        |
|----------|--------|---------------|-------|----|--------|--------|------|--------|
| Freq. A  | . В    |               | Freq. | A  | В      | Freq.  | A    | В      |
| 17600 12 | 169    | 4.1           | 17634 | 12 | 1712.0 | 17668  | 12   | 1729.9 |
| 17601 12 | 169    | 4.6           | 17635 | 12 | 1712.5 | 17669  | 12   | 1730.4 |
| 17602 12 | 169    | 5.1           | 17636 | 12 | 1713.0 | Ì      |      |        |
| 17603 12 | 169    | 5.7           | 17637 | 12 | 1713.5 | 17670  | 12   | 1731.0 |
| 17604 12 | 169    | 6.2           | 17638 | 12 | 1714.1 | 17671  | 12   | 1731.5 |
| 17605 1  | 2 169  | 6.7           | 17639 | 12 | 1714.6 | 17672  | 12   | 1732.0 |
| 17606 12 | 2 169  | 7.2           |       |    |        | 17673  | 12   | 1732.5 |
| 17607 1  | 2 .169 | 7.8           | 17640 | 12 | 1715.1 | 17674  | 12   | 1733.1 |
| 17608 1  | 2 169  | 8.3           | 17641 | 12 | 1715.6 | 17675  |      | 1733.6 |
| 17609 1  | 2 169  | 8.8           | 17642 | 12 | 1716.2 | 17676  |      | 1734.1 |
|          |        | ı             | 17643 | 12 | 1716.7 | 17677  |      | 1734.7 |
| 17610 1  |        | 9.3           | 17644 | 12 | 1717.2 |        |      | 1735.2 |
| 17611 1  |        | 9.9           | 17645 | 12 | 1717.8 |        | 12   | 1735.7 |
| 17612 1  | 2 170  | 0.4           | 17646 | 12 | 1718.3 | 1      |      |        |
| 17613 1  | 2 170  | 00.9          | 17647 | 12 | 1718.8 |        |      | 1736.2 |
| 17614 1  | 2 170  | 01.4          | 17648 | 12 | 1719.3 |        |      | 1736.8 |
| 17615 1  | 2 17   | 02.0          | 17649 | 12 | 1719.9 |        |      | 1737.3 |
| 17616 1  | 2 17   | 02.5          | [     |    |        | 17683  |      | 1737.8 |
| 17617 1  | 2 17   | 03.0          | 17650 | 12 | 1720.4 |        |      |        |
| 17618 1  | 2 17   | 03.5          | 17651 | 12 | 1720.9 |        |      |        |
| 17619 1  | 2 17   | 04.1          | 17652 | 12 | 1721.5 |        |      |        |
|          |        |               | 17653 | 12 | 1722.0 |        |      |        |
| 17620    | 2 17   | 04.6          | 17654 |    | 1722.5 |        |      |        |
| 17621    | 12 17  | 05.1          | 17655 |    | 1723.0 |        | 12   | 1741.0 |
| 17622    | 12 17  | 05.7          | 17656 |    |        | 1      |      |        |
| 17623    | 12 17  | 06.2          | 17657 |    |        |        | -    |        |
| 17624    | 12 17  | 06.7          | 17658 |    |        |        |      |        |
|          |        | 07.2          | 17659 | 12 | 1725.2 |        |      |        |
|          |        | 07.8          | 1     |    |        | 1769   |      |        |
|          |        | 08.3          | 17660 |    |        |        |      |        |
| 17628    |        | <b>708</b> .8 | 17661 |    |        |        |      |        |
| 17629    | 12 17  | 709.3         | 17662 |    |        |        |      |        |
|          |        |               | 17663 |    |        |        |      |        |
| 17630    |        | 09.9          | 17664 |    |        |        |      |        |
| 17631    |        | 110.4         | 17665 |    |        |        | 9 12 | 1746.3 |
| 17632    |        | 710.9         | 17666 |    |        |        | ,    | 17460  |
| 17633    | 12 17  | 711.4         | 17667 | 12 | 1729.  | 4 1770 | 0 12 | 1746.8 |
|          |        |               | l     |    |        |        |      |        |
|          |        | _             |       |    |        |        |      |        |

Use check point at 17400 Kc

### Frequency: 17700-17800 Kc

| Freq. A              | _  | В      | Frea. | Ā   | В        | Freq.  | Α    | В      |
|----------------------|----|--------|-------|-----|----------|--------|------|--------|
|                      |    | 1746.8 | 17734 | 12  | 1765.0   | 17768  | 12   | 1783.2 |
|                      |    | 1747.3 | 17735 | 12  | 1765.5   | 17769  | 12   | 1783.7 |
| 17701 12<br>17702 12 | _  | 1747.9 | 17736 | 12  | 1766.0   | ١      |      |        |
| 17703 12             | _  | 1748.4 | 17737 | 12  | 1766.6   | 17770  | 12   | 1784.3 |
| 17704 13             | _  | 1748.9 | 17738 | 12  | 1767.1   | 17771  | 12   | 1784.8 |
| 17705 1              |    | 1749.5 | 17739 | 12  | 1767.7   | 17772  | 12   | 1785.3 |
| 17706 1              |    | 1750.0 |       |     |          | 17773  | 12   | 1785.9 |
| 17707 1              | _  | 1750.5 | 17740 | 12  | 1768.2   | 17774  | 12   | 1786.4 |
| 17708 1              | _  | 1751.1 | 17741 | 12  | 1768.7   | 17775  | 12   | 1787.0 |
|                      | 2  | 1751.6 | 17742 | 12  | 1769.3   | 17776  | 12   | 1787.5 |
| 17700                | -  |        | 17743 | 12  | 1769.8   | 17777  | 12   | 1788.0 |
| 17710 1              | 2  | 1752.1 | 17744 | 12  | 1770.3   | 17778  | 12   | 1788.6 |
| 17711 1              | 2  | 1752.7 | 17745 | 12  | 1770.9   | 17779  | 12   | 1789.1 |
| 17712 1              | 2  | 1753.2 | 17746 | 12  | 1771.4   | i      |      |        |
| 17713 1              | 2  | 1753.8 | 17747 | 12  |          | 17780  | 12   | 1789.6 |
| 17714 1              | 2  | 1754.3 | 17748 |     |          | 17781  | 12   | 1790.2 |
|                      | 2  | 1754.8 | 17749 | 12  | 1773.0   | 17782  | 12   | 1790.7 |
| 17716 1              | 12 | 1755.4 | i     |     |          | 17783  |      | 1791.3 |
| 17717 1              | 12 | 1755.9 | 17750 | 12  |          |        |      | 1791.8 |
| 17718 1              | 12 | 1756.4 | 17751 | 12  |          | 17785  |      | 1792.3 |
| 17719                | 12 | 1757.0 | 17752 | 12  |          |        |      | 1792.9 |
|                      |    |        | 17753 |     |          | 17787  |      | 1793.4 |
| 17720                | 12 | 1757.5 | 17754 |     |          |        |      | 1794.0 |
| 17721                | 12 | 1758.0 | 17755 |     |          |        | 12   | 1794.5 |
| 17722                | 12 | 1758.6 | 17756 |     |          |        |      |        |
| 17723                | 12 | 1759.1 | 17757 |     |          |        |      |        |
| 17724                | 12 | 1759.6 | 17758 |     |          |        |      |        |
| 17725                | 12 | 1760.2 | 17759 | 12  | 2 1778.3 |        |      |        |
| 17726                | 12 | 1760.7 | 1     |     |          | 17793  |      |        |
| 17727                | 12 | 1761.2 | 1776  |     |          |        |      |        |
| 17728                | 12 | 1761.8 | 1776  |     |          |        |      |        |
| 17729                | 12 | 1762.3 |       |     |          |        |      |        |
|                      |    |        | 1776  |     |          |        |      |        |
| 17730                | 12 |        |       |     |          |        |      |        |
| 17731                | 12 |        |       |     |          |        | 9 12 | 1799.9 |
| 17732                | 12 |        |       |     | 2 1782.  |        |      | 4000 4 |
| 17733                | 12 | 1764.4 | 1776  | 7 1 | 2 1782.  | 5 1780 | 0 12 | 1800.4 |
|                      |    |        |       |     |          |        |      |        |
|                      |    |        |       |     |          |        |      |        |

Use check point at 18000 Kc

Frequency: 17800-17900 Kc

| • | Freq. | A  | В      | Freq. | A   | В      | Freq.    | A  | В      |
|---|-------|----|--------|-------|-----|--------|----------|----|--------|
|   | 17800 | 12 | 1800.4 | 17834 | 12  | 1818.8 | 17868    | 12 | 1837.2 |
|   | 17801 | 12 | 1801.0 | 17835 | 12  | 1819.3 | 17869    | 12 | 1837.7 |
|   | 17802 | 12 | 1801.5 | 17836 | 12  | 1819.8 |          |    |        |
|   | 17803 | 12 | 1802.0 | 17837 | 12  | 1820.4 | 17870    | 12 | 1838.3 |
|   | 17804 | 12 | 1802.6 | 17838 | 12  | 1820.9 | 17871    | 12 | 1838.8 |
|   | 17805 | 12 | 1803.1 | 17839 | 12  | 1821.5 | 17872    | 12 | 1839.3 |
|   | 17806 | 12 | 1803.6 |       |     |        | 17873    | 12 | 1839.9 |
|   | 17807 | 12 | 1804.2 | 17840 | 12  | 1822.0 | 17874    | 12 | 1840.4 |
|   | 17808 | 12 | 1804.7 | 17841 | 12  | 1822.6 | 17875    | 12 | 1841.0 |
|   | 17809 | 12 | 1805.3 | 17842 | 12  | 1823.1 | 17876    | 12 | 1841.5 |
|   |       |    |        | 17843 | 12  | 1823.6 | 17877    | 12 | 1842.1 |
|   | 17810 | 12 | 1805.8 | 17844 | 12  | 1824.2 | 17878    | 12 | 1842.6 |
|   | 17811 | 12 | 1806.3 | 17845 | 12* | 1824.7 | 17879    | 12 | 1843.1 |
|   | 17812 | 12 | 1806.9 | 17846 | 12  | 1825.3 |          |    |        |
|   | 17813 | 12 | 1807.4 | 17847 | 12  | 1825.8 | 17880    | 12 | 1843.7 |
|   | 17814 | 12 | 1808.0 | 17848 | 12  | 1826.3 | 17881    | 12 | 1844.2 |
|   | 17815 | 12 | 1808.5 | 17849 | 12  | 1826.9 | 17882    | 12 | 1844.8 |
|   | 17816 | 12 | 1809.0 | 1     |     |        | 17883    | 12 | 1845.3 |
|   | 17817 | 12 | 1809.6 | 17850 | 12  | 1827.4 | 17884    | 12 | 1845.9 |
|   | 17818 | 12 | 1810.1 | 17851 | 12  | 1828.0 | 17885    | 12 | 1846.4 |
|   | 17819 | 12 | 1810.6 | 17852 | 12  | 1828.5 | 17886    | 12 | 1847.0 |
|   |       |    |        | 17853 | 12  | 1829.1 | 17887    | 12 | 1847.5 |
|   | 17820 | 12 | 1811.2 | 17854 | 12  | 1829.6 | 17888    | 12 | 1848.1 |
|   | 17821 | 12 | 1811.7 | 17855 | 12  | 1830.1 | 17889    | 12 | 1848.6 |
|   | 17822 | 12 | 1812.3 | 17856 | 12  | 1830.7 | l .      |    |        |
|   | 17823 | 12 | 1812.8 | 17857 | 12  | 1831.2 | 17890    |    | 1849.2 |
|   | 17824 | 12 | 1813.3 | 17858 |     | 1831.8 | 17891    | 12 | 1849.7 |
|   | 17825 | 12 | 1813.9 | 17859 | 12  | 1832.3 | 17892    |    | 1850.3 |
|   | 17826 | 12 | 1814.4 |       |     |        | 17893    |    | 1850.8 |
|   | 17827 | 12 | 1815.0 | 17860 |     | 1832.8 | 17894    |    | 1851.4 |
|   | 17828 | 12 | 1815.5 | 17861 | 12  | 1833.4 | 17895    |    |        |
|   | 17829 | 12 | 1816.1 | 17862 |     | 1833.9 | 17896    |    |        |
|   |       |    |        | 17863 |     |        | 17897    |    |        |
|   | 17830 |    |        | 17864 |     |        | 17898    |    |        |
|   | 17831 | 12 |        | 17865 |     |        | 17899    | 12 | 1854.2 |
|   | 17832 | 12 | 1817.7 | 17866 |     |        | 1        |    |        |
|   | 17833 | 12 | 1818.2 | 17867 | 12  | 1836.6 | 17900    | 12 | 1854.7 |
|   |       |    |        | l     |     |        | <u> </u> |    |        |
|   |       |    |        |       |     |        |          |    |        |

Use check point at 18000 Kc

### Frequency: 17900-18000 Kc

| • | Freq.    | A  | В      | Freq.    | A  | В      | Freq. | A  | В      |
|---|----------|----|--------|----------|----|--------|-------|----|--------|
|   | 17900    | 12 | 1854.7 | 17934    | 12 | 1873.5 | 17968 | 12 | 1892.3 |
|   | 17901    | 12 | 1855.3 | 17935    | 12 | 1874.0 | 17969 | 12 | 1892.8 |
|   | 17902    | 12 | 1855.8 | 17936    | 12 | 1874.6 |       |    |        |
|   | 17903    | 12 | 1856.4 | 17937    | 12 | 1875.1 | 17970 | 12 | 1893.4 |
|   | 17904    | 12 | 1856.9 | 17938    | 12 | 1875.7 | 17971 | 12 | 1893.9 |
|   | 17905    | 12 | 1857.5 | 17939    | 12 | 1876.2 | 17972 | 12 | 1894.5 |
|   | 17906    | 12 | 1858.0 |          |    |        | 17973 | 12 | 1895.0 |
|   | 17907    | 12 | 1858.6 | 17940    | 12 | 1876.8 | 17974 | 12 | 1895.6 |
|   | 17908    | 12 | 1859.1 | 17941    | 12 | 1877.3 | 17975 | 12 | 1896.2 |
|   | 17909    | 12 | 1859.7 | 17942    | 12 | 1877.9 | 17976 | 12 | 1896.7 |
|   |          |    |        | 17943    | 12 | 1878.4 | 17977 | 12 | 1897.3 |
|   | 17910    | 12 | 1860.2 | 17944    | 12 | 1879.0 | 17978 | 12 | 1897.8 |
|   | 17911    | 12 | 1860.8 | 17945    | 12 | 1879.5 | 17979 | 12 | 1898.4 |
|   | 17912    | 12 | 1861.3 | 17946    | 12 | 1880.1 |       |    |        |
|   | 17913    | 12 | 1861.9 | 17947    | 12 | 1880.6 | 17980 | 12 | 1898.9 |
|   | 17914    | 12 | 1862.4 | 17948    | 12 | 1881.2 | 17981 | 12 | 1899.5 |
|   | 17915    | 12 | 1863.0 | 17949    | 12 | 1881.7 | 17982 | 12 | 1900.0 |
|   | 17916    | 12 | 1863.5 | i        |    |        | 17983 | 12 | 1900.6 |
|   | 17917    | 12 | 1864.1 | 17950    | 12 | 1882.3 | 17984 | 12 | 1901.1 |
|   | 17918    | 12 | 1864.6 | 17951    | 12 | 1882.9 | 17985 | 12 | 1901.7 |
|   | 17919    | 12 | 1865.2 | 17952    | 12 | 1883.4 | 17986 | 12 | 1902.2 |
|   |          |    |        | 17953    | 12 | 1884.0 | 17987 | 12 | 1902.8 |
|   | 17920    | 12 | 1865.7 | 17954    | 12 | 1884.5 | 17988 | 12 | 1903.4 |
|   | 17921    | 12 | 1866.3 | 17955    | 12 | 1885.1 | 17989 | 12 | 1903.9 |
|   | 17922    | 12 | 1866.8 | 17956    | 12 | 1885.6 | 1     |    |        |
|   | 17923    | 12 | 1867.4 | 17957    | 12 | 1886.2 | 17990 |    | 1904.5 |
|   | 17924    | 12 | 1867.9 | 17958    | 12 | 1886.7 | 17991 | 12 | 1905.0 |
|   | 17925    | 12 | 1868.5 | 17959    | 12 | 1887.4 | 17992 |    | 1905.6 |
|   | 17926    | 12 | 1869.0 | 1        |    |        | 17993 | 12 | 1906.1 |
|   | 17927    |    | 1869.6 | 17960    | 12 | 1887.8 | 17994 |    | 1906.7 |
|   | 17928    |    | 1870.1 | 17961    | 12 | 1888.4 | 17995 | 12 | 1907.2 |
|   | 17929    |    | 1870.7 | 17962    | 12 | 1888.9 | 17996 | 12 | 1907.8 |
|   | 11323    |    |        | 17963    | 12 | 1889.5 | 17997 | 12 | 1908.3 |
|   | 17930    | 12 | 1871.2 | 17964    |    | 1890.1 | 17998 |    |        |
|   | 17931    |    |        | 17965    |    |        | 17999 | 12 | 1909.4 |
|   | 17932    |    |        |          |    | 1891.2 | 1     |    |        |
|   | 17933    |    |        |          |    |        | 18000 | 12 | 1910.0 |
|   | ,,,,,,,, |    |        |          |    |        | 1     |    |        |
|   |          |    |        | <u> </u> |    |        |       |    |        |

Use check point at 18000 Kc

TABLE 6-10. CALIBRATION OF HIGH FREQUENCY OSCILLATOR 2000KC TO 18100KC

| Freq. | A   | В      | Freq. | A  | В                | Freq. | A  | В      |
|-------|-----|--------|-------|----|------------------|-------|----|--------|
| 18000 | 12  | 1910.0 | 18034 | 12 | 1929.1           | 18068 | 12 | 1948.3 |
| 18001 | 12  | 1910.6 | 18035 | 12 | 1929.7           | 18069 | 12 | 1948.8 |
| 18002 | 12  | 1911.1 | 18036 | 12 | 1930.2           |       |    |        |
| 18003 | 12  | 1911.7 | 18037 | 12 | 1930.8           | 18070 | 12 | 1949.4 |
| 18004 | 12  | 1912.2 | 18038 | 12 | 1931.4           | 18071 | 12 | 1950.0 |
| 18005 | 12  | 1912.8 | 18039 | 12 | 1931.9           | 18072 | 12 | 1950.5 |
| 18006 | 12  | 1913.4 |       |    |                  | 18073 | 12 | 1951.1 |
| 18007 | 12  | 1913.9 | 18040 | 12 | 1932.5           | 18074 | 12 | 1951.7 |
| 18008 | 12  | 1914.5 | 18041 | 12 | 1933.0           | 18075 | 12 | 1952.3 |
| 18009 | 12  | 1915.1 | 18042 | 12 | 1933.6           | 18076 | 12 | 1952.8 |
|       |     |        | 18043 | 12 | 1934.2           | 18077 | 12 | 1953.4 |
| 18010 | 12  | 1915.6 | 18044 | 12 | 1934.7           | 18078 | 12 | 1954.0 |
| 18011 | 12  | 1916.2 | 18045 | 12 | 1935.3           | 18079 | 12 | 1954.5 |
| 18012 | 12  | 1916.7 | 18046 | 12 | 1935.9           |       |    |        |
| 18013 | 12  | 1917.3 | 18047 | 12 | 1936.4           | 18080 | 12 | 1955.1 |
| 18014 | 12  | 1917.9 | 18048 | 12 | 1937.0           | 18081 | 12 | 1955.7 |
| 18015 | 12  | 1918.4 | 18049 | 12 | 1937.5           | 18082 | 12 | 1956.2 |
| 18016 | 12  | 1919.0 |       |    |                  | 18083 | 12 | 1956.8 |
| 18017 | 12  | 1919.6 | 18050 | 12 | 1938.1           | 18084 | 12 | 1957.4 |
| 13018 | 12  | 1920.1 | 18051 | 12 | 1938.7           | 18085 | 12 | 1957.9 |
| 18019 | 12  | 1920.7 | 18052 | 12 | 1939.2           | 18086 | 12 | 1958.5 |
|       |     |        | 18053 | 12 | 1939.8           | 18087 | 12 | 1959.1 |
| 18020 | 12  | 1921.2 | 18054 | 12 | 1940.3           | 18088 | 12 | 1959.7 |
| 18021 | 12  | 1921.8 | 18055 | 12 | 1940.9           | 18089 | 12 | 1960.2 |
| 18022 | 12  | 1922.4 | 18056 | 12 | 1941.5           |       |    |        |
| 18023 | 12  | 1922.9 | 18057 | 12 | 1942.0           | 18090 | 12 | 1960.8 |
| 18024 | 12  |        | 18058 | 12 | 1942.6           | 18091 | 12 | 1961.4 |
| 18025 | 12  | 1924.1 | 18059 | 12 | 1943.2           | 18092 | 12 | 1961.9 |
| 18026 | 12  | 1924.6 |       |    |                  | 18093 | 12 | 1962.5 |
| 18027 | 12  | 1925.2 | 18060 | 12 | 1943.7           | 18094 | 12 | 1963.1 |
| 18028 | 12  | 1925.7 | 18061 | 12 | 1944.3           | 18095 | 12 | 1963.6 |
| 18029 | 12  | 1926.3 | 18062 | 12 | 1944.9           | 18096 | 12 | 1964.2 |
| 40000 | 4.0 | 4000.0 | 18063 | 12 | 1945.4           | 18097 | 12 | 1964.8 |
| 18030 | 12  | 1926.9 | 18064 | 12 | 1946.0           | 18098 | 12 | 1965.3 |
| 18031 | 12  | 1927.4 | 18065 | 12 | 1946.6           | 18099 | 12 | 1965.9 |
| 18032 | 12  | 1928.0 | 18066 | 12 | 1947.1<br>1947.7 | 18100 | 12 | 1966.5 |
| 18033 | 12  | 1928.5 | 18067 | 12 | 1347.7           | 10100 | 14 | 1300.3 |
|       |     |        |       |    |                  |       |    |        |

TABLE 6-11. TABLES OF APPROXIMATE DIAL SETTINGS (FOR ANTENNA TUNING AND LOADING)

| 20           | Ft. A      | ntenn  | a          | 22.5         | 5 Ft. A                | ntenn                                 | a         | 3            | 0 Ft.                | Antenn   | a        | 32.          | 5 Ft. A  | ntenr   | ıa           |
|--------------|------------|--------|------------|--------------|------------------------|---------------------------------------|-----------|--------------|----------------------|----------|----------|--------------|----------|---------|--------------|
| Airp         | lane an    | d Ante | nna        | Airpl        | ane and                | l Anten                               | ina       | Air          | plane c              | and Anto | enna     | Airpl        | ane an   | d Ante  | nna          |
|              |            |        |            |              |                        | · · · · · · · · · · · · · · · · · · · |           |              |                      |          |          |              |          |         |              |
| Ante         | nna Lo     | ading  | Unit       | Anter        | ına Loa                | ding U                                | nit       | An           | tenna L              | oading   | Unit     | Antei        | ına Loc  | iding U | Jnit         |
| KC           |            | P      | Q          | KC           | P                      |                                       | Q         | K            |                      | P        | Q        | KC           | F        | , ,     | $\mathbf{Q}$ |
| 210          |            | 1      | 1          | 208          | 1                      |                                       | 1         | 20           | -                    | 1        | 1        | 200          | 1        |         | 1            |
| 250          |            | 2      | 2          | 250          | 2                      |                                       | 2         | 25           |                      | 2        | 3        | 250          | 2        |         | 3            |
| 300          |            | 3      | 2          | 300          | 3                      |                                       | 2         | 30           | -                    | 3        | 4        | 300          | 3        |         | 4            |
| 400          |            | 4      | 3          | 400          | 4                      |                                       | 3         | 40           | -                    | 4        | 4        | 400          | 5        |         | 1            |
| 500          |            | 5      | 1          | 500          | 5                      |                                       | 1         | 50           | -                    | 5        | 1        | 500          | 5        |         | 2            |
| 600          | )          | 5      | 2          | 600          | 5                      |                                       | 2         | 60           | -                    | 5        | 2        | 600          | 5        |         | 2            |
|              | Trans      |        | _          |              | Transm                 |                                       | _         | ***          |                      | smitter  | -        |              | Transm   |         | _            |
| KC           | C          | D      | E          | KC           | C                      | D                                     | E         | KC           | C                    | D        | E        | KC           | C        | D       | E            |
| 3000         | 1-2        |        | 70         | 2800         | 1-2                    |                                       | 70        | 2500         | 1-2<br>3-4           |          | 20       | 2450         | 1-2<br>3 |         | 26<br>65     |
| 3500         | 2-3        |        | 115        | 3000<br>3500 | 1-2<br>2-3             |                                       | 70<br>120 | 3000<br>3500 | 3 <del>-4</del><br>4 |          | 70<br>95 | 3000<br>3500 | ა<br>4–5 |         | 100          |
| 4000<br>5000 | 3-4<br>4-5 | 70     | 130<br>150 | 4000         | 2-3<br>3-4             | • • •                                 | 130       | 4000         | 4-5                  |          | 120      | 4000         | 4-5<br>5 | • • •   | 120          |
| 6000         | 4-5<br>5-6 | 45     | 170        | 5000         | 3– <del>4</del><br>4–5 | 90                                    | 150       | 5000         | 5-6                  | • • •    | 145      | 5000         | 56       |         | 150          |
| 8000         | 5–6<br>6–7 | 30     | 185        | 6000         | 4-5<br>5-6             | 60                                    | 160       | 6000         | 5-0<br>6-7           |          | 165      | 6000         | 6-7      |         | 165          |
| 10000        | 7          | 75     | 190        | 8000         | 6-7                    | 40                                    | 185       | 8000         | 7                    | <br>95   | 180      | 8000         | 7        | 100     | 200          |
| 11000        | 7          | 90     | 200        | 10000        | 7                      | 80                                    | 200       | 8500         | 7                    | 100      | 200      | 9000         | 10       | 42      | 160          |
| 11300        | 7          | 100    | 200        | 10500        | 11                     | 77                                    | 200       | 9000         | 10                   | 48       | 130      | 10000        | 10       | 46      | 185          |
| 11500        | 11         | 85     | 200        | 11000        | 11                     | 64                                    | 66        | 10000        | 10                   | 50       | 170      | 11000        | 10       | 54      | 200          |
| 12000        | 11         | 75     | 30         | 12000        | 11                     | 65                                    | 150       | 11000        | 10                   | 55       | 200      | 12000        | 10       | 65      | 200          |
| 13000        | 11         | 75     | 140        | 13000        | 11                     | 68                                    | 165       | 12000        | 10                   | 63       | 200      | 13000        | 10       | 75      | 200          |
| 14000        | 11         | 80     | 164        | 14000        | 11                     | 75                                    | 180       | 14000        | 10                   | 82       | 200      | 14000        | 10       | 82      | 200          |
| 15000        | 11         | 85     | 170        | 15000        | 11                     | 80                                    | 180       | 15000        | 10                   | 92       | 200      | 14600        | 10       | 88      | 200          |
| 16000        | 12         | 75     | 190        | 16000        | 12                     | 75                                    | 200       | 15600        | 10                   | 98       | 200      | 16000        | 11       | 100     | 188          |
| 18000        | 12         | 85     | 200        | 17000        | 13                     | 60                                    | 175       | 16000        | 11                   | 90       | 200      | 16200        | 11       | 100     | 200          |
|              |            |        |            | 18000        | 13                     | 65                                    | 185       | 16600        | 11                   | 93       | 200      | 16500        | 13       | 69      | 160          |
|              |            |        |            |              |                        |                                       |           | 17000        | 13                   | 4.5      | 188      | 17000        | 13       | 70      | 170          |
|              |            |        |            | 1            |                        |                                       |           | 18000        | 13                   | 70       | 188      | 18000        | 13       | 75      | 180          |

This Table for Use Without Shunt Capacitor

This Table for Use Without Shunt Capacitor

| 4                                                                                     | 5 Ft. /                                                                         | Intenn                         | a                                                                                                | 27.5 Ft. Antenna                                                                     |                                                                                                           |                                                            |                                                                                                               |  |  |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
| Air                                                                                   | olane a                                                                         | nd Ant                         | enna                                                                                             | Airp                                                                                 | lane ar                                                                                                   | d Ante                                                     | nna                                                                                                           |  |  |  |
| Anti<br>K C<br>207<br>250<br>300<br>400                                               | )<br>)                                                                          | oading<br>P<br>1<br>2<br>3     | Unit<br>Q<br>1<br>2<br>3<br>4                                                                    | KC<br>204<br>250<br>300<br>400                                                       |                                                                                                           | ading l<br>P<br>1<br>2<br>3                                | Unit<br>Q<br>1<br>2<br>3                                                                                      |  |  |  |
| 500                                                                                   |                                                                                 | 5                              | 1                                                                                                | 500 5                                                                                |                                                                                                           |                                                            | 1                                                                                                             |  |  |  |
| 600                                                                                   | )                                                                               | 5                              | 2                                                                                                | 600                                                                                  |                                                                                                           | 5                                                          | 2                                                                                                             |  |  |  |
| KC 2700 3000 3500 4000 5000 6000 8000 9800 11000 112000 14000 15000 16000 17000 18000 | 1-2<br>2-3<br>3-4<br>4-5<br>5-6<br>6-7<br>7<br>10<br>10<br>10<br>10<br>11<br>13 | 80 70 100 65 65 70 85 95 35 55 | E<br>10<br>60<br>100<br>125<br>150<br>160<br>55<br>150<br>170<br>180<br>190<br>200<br>190<br>195 | KC 2600 3000 3500 4000 5000 8000 9100 9500 10000 11000 12000 15500 16500 17000 18000 | Transi<br>C<br>1<br>2<br>3-4<br>4-5<br>6<br>6-7<br>7<br>7<br>10<br>10<br>10<br>10<br>10<br>11<br>11<br>13 | 70<br>100<br>57<br>55<br>60<br>65<br>80<br>100<br>95<br>45 | E<br>0<br>75<br>110<br>130<br>150<br>165<br>190<br>200<br>80<br>110<br>175<br>185<br>195<br>200<br>190<br>190 |  |  |  |

This Table for Use Without Shunt Capacitor

| 3              | 5 Ft.   | Antenn    | a          | 40    | Ft. Ar  | tenn     | 2          |
|----------------|---------|-----------|------------|-------|---------|----------|------------|
| Air            | plane o | ind Anto  | enna       | Airpl | ane and | d Ante   | nna        |
| Ant            |         | oading    | Unit<br>O  | Anter | ına Loa |          | Init<br>Q  |
| 200            |         | 1         | 1          | 200   | 1       |          | 2          |
| 250            |         | 2         | 4          | 250   | 3       |          | 1          |
| 300            |         | 3         | 4          | 300   | 4       |          | 1          |
| 400            |         | 5         | 1          | 400   | 5       |          | 1          |
| 500            | )       | 5         | 2          | 500   | 5       | ı        | 2          |
| 600            | )       | 5         | 3          | 600   | 5       |          | 3          |
|                | Tran    | smitter   |            |       | Transm  | itter    |            |
| KC             | C       | D         | E          | KC    | C       | Ď        | E          |
| 2400           | 1-2     |           | 0          | 2300  | 1-2     |          | 3          |
| 3000           | 3-4     |           | 70         | 2500  | 2~3     |          | 10         |
| 3.500          | 4–5     |           | 100        | 3000  | 3-4     |          | 60         |
| 4000           | 5–6     |           | 120        | 3500  | 4-5     |          | 95         |
| 5000           | 6–7     |           | 145        | 4000  | 5-6     |          | 120        |
| 6000           | 7       |           | 160        | 5000  | 67      |          | 150        |
| 7000           | 7       |           | 180        | 6000  | 7       |          | 170        |
| 7600           | 7       | 100       | 200        | 6800  | 7       | 100      | 200        |
| 8000           | 8       | 75        | 40         | 7000  | 8       | 60       | 50         |
| 9000           | 8       | 85        | 62         | 8000  | 8       | 70       | 121        |
| 10000          | 8       | 100       | 100        | 9000  | 8<br>8  | 83<br>97 | 111<br>121 |
| 10400          | 8<br>11 | 100<br>52 | 126<br>200 | 10500 | 8       | 100      | 140        |
| 11000<br>12000 | 11      | 52<br>62  | 200        | 11000 | 10      | 60       | 200        |
| 14000          | 11      | 77        | 200        | 12000 | 10      | 70       | 200        |
| 15000          | 11      | 86        | 200        | 14000 | 10      | 88       | 200        |
| 15700          | 11      | 100       | 190        | 14500 | 10      | 100      | 200        |
| 16000          | 13      | 66        | 152        | 15000 | 12      | 76       | 200        |
| 17000          | 13      | 84        | 142        | 16000 | 12      | 84       | 200        |
| 18000          | 13      | 100       | 154        | 17000 | 12      | 100      | 141        |
|                |         |           |            | 18000 | 12      | 100      | 146        |

This Table for Use Without Shunt Capacitor

TABLE 6-11. TABLES OF APPROXIMATE DIAL SETTINGS (FOR ANTENNA TUNING AND LOADING)

|                             | ane ar   | nd Anto    | enna       | Airple         | ane and      | Ante      | nna       |
|-----------------------------|----------|------------|------------|----------------|--------------|-----------|-----------|
|                             | nna La   |            |            |                |              |           |           |
|                             | nna Lo   |            |            | 1              |              |           |           |
|                             |          | ading<br>P | Unit<br>Q  | Anten<br>KC    | ına Loa<br>P | ding U    | Jnit<br>Q |
| 200                         |          | 1          | 3          | 200            | 2            |           | 1         |
| 250                         |          | 3          | 2          | 250            | 3            |           | 2         |
| 300                         |          | 4          | 1          | 300            | 4            |           | 2         |
| 400                         |          | 5          | 1          | 400            | 5            |           | 1         |
| 500                         |          | 5          | 2          | 500            | 5            |           | 2         |
| 600                         |          | 5          | 3          | 600            | 5            |           | 3         |
|                             | Trans    | mitta-     |            | ٠              | Transm       |           |           |
| KC                          | C        | D          | E          | KC             | C            | D         | E         |
| 2200                        | 1~2      |            | 0          | 2100           | 1-2          |           | 0         |
| 2500                        | 2-3      |            | 20         | 2500           | 3-4          |           | 19        |
| 3000                        | 4-5      |            | 62         | 3000           | 4–5          |           | 55        |
| 3500                        | 5–6      |            | 90         | 3500           | 5-6          |           | 95        |
| 4000                        | 6        |            | 120        | 4000           | 6~7          |           | 120       |
| 5000                        | 7        |            | 155        | 5000           | 7            |           | 160       |
| 6000                        | 7        | 100        | 175        | 5500           | 7            | 100       | 180       |
| 6100                        | 7        | 100        | 185        | 6000           | 8            | 38        | 90        |
| 7000                        | 8        | 59         | 106        | 7000           | 8            | 48        | 148       |
| 8000                        | 8        | 69         | 129        | 8000           | 8            | 65        | 152       |
| 9000                        | 8        | 85         | 106        | 9000           | 8            | 85        | 148       |
| 9800                        | 8        | 100        | 90         | 10000          | 8            | 92        | 142       |
| 10000                       | 10       | 53         | 200        | 11000          | 11           | 53        | 200       |
| 11000                       | 10       | 64         | 200        | 12000          | 11           | 72        | 200       |
| 12000                       | 10       | 73         | 200        | 13000          | 11           | 82        | 200       |
| 13000<br>13740              | 10<br>10 | 83         | 200<br>182 | 14000<br>15000 | 11           | 100<br>98 | 0<br>135  |
| 137 <del>4</del> 0<br>14000 | 12       | 100<br>70  | 200        | 16000          | 11<br>13     | 98<br>69  | 136       |
| 15000                       | 12       | 70<br>82   | 92         | 17000          | 13           | 71        | 164       |
| 16000                       | 12       | 85         | 125        | 18000          | 13           | 68        | 184       |
| 17000                       | 12       | 87         | 164        | ,,,,,,,,,      | 13           | 00        | 104       |
| 18000                       | 12       | 86         | 195        |                |              |           |           |

This Table for Use Without Shunt Capacitor

| Ante  | nna Le | oading l | Unit | Anten    | na Loa | ding U | <br>Init |
|-------|--------|----------|------|----------|--------|--------|----------|
| KC    |        | P        | Q    | KC       | P      | , ,    | Q        |
| 200   |        | 2        | 1    | 200      | 2      |        | 2        |
| 250   |        | 3        | 3    | 250      | 3      |        | 3        |
| 300   |        | 4        | 2    | 300      | 4      |        | 2        |
| 400   |        | 5        | 1    | 400      | 5      |        | 1        |
| 500   |        | 5        | 2    | 500      | 5      |        | 2        |
| 600   |        | 5        | 3    | 600      | 5      |        | 3        |
|       |        | mitter   |      |          | Transm |        | _        |
| KC    | С      | D        | E    | KC       | C      | D      | E        |
| 2000  | 1–2    |          | 0    | 2000     | 1-2    |        | 0        |
| 2500  | 3–4    |          | 15   | 2500     | 3–4    |        | 15       |
| 3000  | 4–5    |          | 45   | 3000     | 5-6    |        | 55       |
| 3500  | 5–6    |          | 100  | 3500     | 67     |        | 90       |
| 4000  | 67     |          | 130  | 4000     | 7      |        | 125      |
| 5000  | 7      | 100      | 168  | 4800     | 7      | 100    | •178     |
| 5170  | 7      | 100      | 181  | 5000     | 8      | 4      | 60       |
| 6000  | 8      | 35       | 126  | 6000     | 8      | 22     | 155      |
| 7000  | 8      | 51       | 152  | 7000     | 8      | 44     | 170      |
| 8000  | 8      | 64       | 160  | 8000     | 8      | 63     | 164      |
| 9000  | 8      | 81       | 136  | 9000     | 8      | 80     | 150      |
| 9700  | 8      | 100      | 106  | 9700     | 8      | 100    | 120      |
| 10000 | 9      | 68       | 195  | 10000    | 9      | 74     | 186      |
| 11000 | 9      | 87       | 171  | 10880    | 9      | 100    | 123      |
| 11500 | 9      | 100      | 165  | 11000    | 10     | 78     | 181      |
| 12000 | 10     | 90       | 161  | 11350    | 10     | 89     | (        |
| 12200 | 10     | 100      | 82   | 12000    | 11     | 75     | 190      |
| 13000 | 12     | 62       | 133  | 13000    | 12     | 49     | 197      |
| 14000 | 12     | 63       | 183  | 15000    | 12     | 71     | 200      |
| 15000 | 12     | 68       | 200  | 17000    | 12     | 85     | 200      |
| 16000 | 13     | 45       | 169  | 18000    | 12     | 94     | 200      |
| 17000 | 13     | 62       | 177  |          |        |        |          |
| 18000 | 13     | 72       | 185  | <u> </u> |        |        |          |

60 Ft. Antenna

Airplane and Antenna

27.5 Ft. Antenna
Airplane and Antenna

55 Ft. Antenna

Airplane and Antenna

25 Ft. Antenna

Airplane and Antenna

|        | with T                                                | nna                                                                         | Airpl                                                                                                                                                                                       | ane and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i Anten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|-------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| of Shi | with T                                                |                                                                             |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| of Shi | with T                                                |                                                                             |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                       | hree                                                                        | Trans                                                                                                                                                                                       | mitter t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vith Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | ınt Cat<br>D                                          | acitor<br>E                                                                 | Sections<br>KC                                                                                                                                                                              | of Shu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt Cape<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | acitor<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1      | D                                                     | ٥ ا                                                                         | 2100                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3–4    |                                                       | ŏ                                                                           | 2500                                                                                                                                                                                        | 2-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                       | 30                                                                          | 3000                                                                                                                                                                                        | 4–5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                       |                                                                             | 3500                                                                                                                                                                                        | 5~6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6      |                                                       | 65                                                                          | 4000                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6–7    |                                                       | 102                                                                         | 5000                                                                                                                                                                                        | 6-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7      | 50                                                    | 118                                                                         | 6000                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7      | 72                                                    | 146                                                                         | 7000                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7      | 90                                                    | 168                                                                         | 8000                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7      | 100                                                   | 174                                                                         | 10000                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10     | 94                                                    | 200                                                                         | 10400                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10     | 100                                                   | 200                                                                         |                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11     | 75                                                    | 0                                                                           | 11000                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11     | 75                                                    | 80                                                                          |                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11     | 80                                                    |                                                                             |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11     |                                                       |                                                                             |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11     | -                                                     | 200                                                                         |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                       |                                                                             |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                       |                                                                             |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13     | 100                                                   | 200                                                                         |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                       |                                                                             |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                       |                                                                             | 1/000                                                                                                                                                                                       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                       |                                                                             |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 6-7<br>7<br>7<br>7<br>7<br>10<br>10<br>11<br>11<br>11 | 5-6 6 7 50 7 72 7 90 7 100 10 94 10 100 11 75 11 80 11 86 11 92 13 66 13 84 | 5-6 52<br>6 65<br>6-7 102<br>7 50 118<br>7 72 146<br>7 90 168<br>7 100 174<br>10 94 200<br>10 100 200<br>11 75 0<br>11 75 0<br>11 75 80<br>11 86 180<br>11 92 200<br>13 66 185<br>13 66 185 | 5-6          52         3500           6          65         4000           6-7          102         5000           7         50         118         6000           7         72         146         7000           7         90         168         8000           7         100         174         10000           10         94         200         10400           10         100         200         10450           11         75         80         12000           11         80         142         13000           11         86         180         14000           13         66         185         14500           13         84         190         15000 | 5-6          52         3500         5-6           6          65         4000         6           6-7          102         5000         6-7           7         50         118         6000         7           7         72         146         7000         7           7         90         168         8000         7           7         100         174         10000         7           10         94         200         10400         7           10         100         200         10450         10           11         75         0         11000         10           11         75         80         12000         10           11         80         142         13000         10           11         92         200         14100         10           13         66         185         14500         13           13         100         200         16000         13           13         100         200         16000         13           17000         13         17000 | 5-6          52         3500         5-6            6          65         4000         6            6-7          102         5000         6-7            7         50         118         6000         7         48           7         72         146         7000         7         65           7         90         168         8000         7         76           7         100         174         10000         7         94           10         94         200         10400         7         10         10         73           11         75         0         11000         10         76         76           11         75         80         12000         10         82         82           11         80         142         13000         10         82           11         92         200         14100         10         100           13         66         185         14500         13         0           13         84         190         15000         13 |

This Table for Use With Shunt Capacitor

This Table for Use With Shunt Capacitor

TABLE 6-11. TABLES OF APPROXIMATE DIAL SETTINGS (FOR ANTENNA TUNING AND LOADING)

| ) Pt. A  | ntenn                                                         | a                                                                                                                                                                                                    | 32.                                                                                                                                                                                                               | 5 Ft. A                           | ntenn                                                | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 Ft. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ntenn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a                                                                             |
|----------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| lane at  | nd Ante                                                       | nna                                                                                                                                                                                                  | Airpl                                                                                                                                                                                                             | lane an                           | d Anter                                              | na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | Airp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lane ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ıd Ante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nna                                                                           |
|          |                                                               |                                                                                                                                                                                                      |                                                                                                                                                                                                                   |                                   |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |
|          |                                                               |                                                                                                                                                                                                      | <b> </b>                                                                                                                                                                                                          |                                   |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |
| s of Shi | unt Ca                                                        | pacitor                                                                                                                                                                                              | Tran<br>Sections                                                                                                                                                                                                  | smitter<br>of Shu                 | with T                                               | wo<br>acitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |
| _        | D                                                             |                                                                                                                                                                                                      | KC                                                                                                                                                                                                                | C                                 | D                                                    | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | KC'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                             |
|          |                                                               |                                                                                                                                                                                                      | 2100                                                                                                                                                                                                              |                                   |                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | 2050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                             |
| 2-3      | • • •                                                         | 30                                                                                                                                                                                                   | 2500                                                                                                                                                                                                              | 3-4                               |                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33                                                                            |
| 4–5      | • • •                                                         |                                                                                                                                                                                                      | 3000                                                                                                                                                                                                              | 4–5                               |                                                      | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70                                                                            |
| 5-6      | • • •                                                         | 64                                                                                                                                                                                                   | 3500                                                                                                                                                                                                              | 5-6                               |                                                      | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | 3500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111                                                                           |
| 6        | • • •                                                         | 80                                                                                                                                                                                                   | 4000                                                                                                                                                                                                              | 6-7                               |                                                      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 132                                                                           |
| 6–7      |                                                               | 121                                                                                                                                                                                                  | 5000                                                                                                                                                                                                              | 7                                 |                                                      | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 160                                                                           |
| 7        | 54                                                            | 138                                                                                                                                                                                                  | 6000                                                                                                                                                                                                              | 7                                 | 55                                                   | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180                                                                           |
| 7        |                                                               | 152                                                                                                                                                                                                  | 7000                                                                                                                                                                                                              | 7                                 | 70                                                   | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 5900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                                                                           |
| 7        | 81                                                            | 186                                                                                                                                                                                                  | 7790                                                                                                                                                                                                              | 7                                 | 90                                                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42                                                                            |
| 7        | 100                                                           | 200                                                                                                                                                                                                  | 8000                                                                                                                                                                                                              | 9                                 | 64                                                   | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 138                                                                           |
| 10       | 50                                                            | 88                                                                                                                                                                                                   | 9000                                                                                                                                                                                                              | 9                                 | 69                                                   | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 158                                                                           |
| 10       | 52                                                            | 138                                                                                                                                                                                                  | 10000                                                                                                                                                                                                             | 9                                 | 74                                                   | 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 165                                                                           |
| 10       | 55                                                            | 165                                                                                                                                                                                                  | 11000                                                                                                                                                                                                             | 9                                 | 81                                                   | 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170                                                                           |
| 10       | 66                                                            | 200                                                                                                                                                                                                  | 12000                                                                                                                                                                                                             | 9                                 | 90                                                   | 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 173                                                                           |
| 10       | 76                                                            | 200                                                                                                                                                                                                  | 12500                                                                                                                                                                                                             | 9                                 | 100                                                  | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150                                                                           |
| 10       | 85                                                            | 200                                                                                                                                                                                                  | 13000                                                                                                                                                                                                             | 10                                | 86                                                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 12200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 173                                                                           |
| 10       | 89                                                            | 200                                                                                                                                                                                                  | 14000                                                                                                                                                                                                             | 10                                | 95                                                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 13000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                           |
| 10       | 93                                                            | 200                                                                                                                                                                                                  | 14100                                                                                                                                                                                                             | 10                                | 100                                                  | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 14000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 158                                                                           |
| 11       | 89                                                            | 200                                                                                                                                                                                                  | 15000                                                                                                                                                                                                             | 11                                | 94                                                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                                                           |
| 11       | 93                                                            | 200                                                                                                                                                                                                  | 15300                                                                                                                                                                                                             | 11                                | 100                                                  | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75                                                                            |
| 13       | 41                                                            | 200                                                                                                                                                                                                  | 16000                                                                                                                                                                                                             | 13                                | 60                                                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 143                                                                           |
| 13       | 58                                                            | 200                                                                                                                                                                                                  | 17000                                                                                                                                                                                                             | 13                                | 86                                                   | 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 174                                                                           |
| 13       | 76                                                            | 200                                                                                                                                                                                                  | 18000                                                                                                                                                                                                             | 13                                | 100                                                  | 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                                                                           |
| 13       | 91                                                            | 200                                                                                                                                                                                                  |                                                                                                                                                                                                                   |                                   |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AUU                                                                           |
|          | s of Sh: C 1 2-3 4-5 5-6 6-7 7 7 7 10 10 10 10 10 11 11 11 13 | s of Shunt Caj<br>C D<br>1<br>2-3<br>4-5<br>5-6<br>6 -7<br>7 54<br>7 71<br>7 81<br>7 100<br>10 50<br>10 55<br>10 66<br>10 76<br>10 85<br>10 89<br>11 89<br>11 93<br>11 89<br>11 93<br>13 41<br>13 58 | C D E 1 0 2-3 30 4-5 48 5-6 64 6 80 6-7 121 7 54 138 7 71 152 7 81 186 7 100 200 10 50 88 10 52 138 10 55 165 10 66 200 10 76 200 10 85 200 10 93 200 11 89 200 11 93 200 11 93 200 11 93 200 13 41 200 13 58 200 | s of Shunt Capacitor C D E K KC 1 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | s of Shunt Capacitor         Capacitors         Sections of Shunt Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor         Capacitor | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Se of Shunt Capacitor C D E KC C D E E 1 0 2100 1-2 0 0 2-3 30 2500 3-4 10 4-5 48 3000 4-5 44 5-6 64 3500 5-6 70 6 80 4000 6-7 90 6-7 121 5000 7 124 7 54 138 6000 7 55 144 7 71 152 7000 7 70 173 7 81 186 7790 7 90 200 7 100 200 8000 9 64 60 10 50 88 9000 9 69 112 10 55 165 11000 9 74 169 10 55 165 11000 9 74 169 10 66 200 12000 9 90 179 10 76 200 12000 9 90 179 10 76 200 12000 9 90 179 10 76 200 12000 9 90 179 10 76 200 12000 9 90 179 10 85 200 14000 10 95 200 10 93 200 14000 10 95 200 11 99 200 14000 10 95 200 11 99 200 15000 11 94 200 11 99 200 15000 11 94 200 11 99 200 15000 11 94 200 11 99 30 16500 11 90 200 13 60 200 13 60 200 13 86 164 | Smitter with Three sof Shunt Capacitor C D E C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C D E C C D E C D E C D E C C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D | Smitter with Three sof Shunt Capacitor C D E C D E C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C C D E C D E C C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E C D E | Smitter with Three of Shunt Capacitor C D E C D E C D E C D E C D E C D E D E |

| Air  |          | ntonn<br>nd Ante                       |     |                  | Ft. Ai<br>lane an |             | -           |       |          | ng Anten<br>Airpiane |
|------|----------|----------------------------------------|-----|------------------|-------------------|-------------|-------------|-------|----------|----------------------|
|      |          |                                        |     |                  |                   |             |             | Ante  | nna Load | ling Unit            |
|      |          |                                        |     | l                |                   |             |             | KC    | P        | (                    |
|      |          |                                        |     |                  |                   |             |             | 200   | 3        | :                    |
|      |          |                                        |     | 1                |                   |             |             | 250   | 4        | :                    |
|      |          |                                        |     |                  |                   |             |             | 300   | 5        | ,                    |
| ~    |          |                                        | _   |                  |                   |             |             | 400   | 5        | ;                    |
| L Ta | ismitter | with 1                                 | wo  | Tran<br>Sections | smitter           | with T      | wo          | 500   | 5        | ;                    |
| KC   | C        | $\stackrel{um}{D} \stackrel{Cu}{}_{l}$ | E   | KC               | or Sna<br>C       | т Сар<br>D  | acitor<br>E | 600   | 5        | 3                    |
| 2150 | 1        |                                        | -0  | 2100             | 1-2               |             | _0          | There | are no   | approximat           |
| 2500 | 2-3      |                                        | 22  | 2500             | 3-4               |             | 25          |       |          | with trailin         |
| 3000 | 4-5      |                                        | 60  | 3000             | 4–5               |             | 66          |       |          | quency rang          |
| 3500 | 5-6      |                                        | 85  | 3500             | .56               |             | 100         |       | ,        |                      |
| 4000 | 6-7      |                                        | 110 | 4000             | 6~7               |             | 120         |       |          |                      |
| 5000 | 7        | 32                                     | 128 | 5000             | 7                 | 38          | 144         |       |          |                      |
| 6000 | 7        | 56                                     | 156 | 6000             | 7                 | 60          | 179         |       |          |                      |
| 7000 | 7        | 75                                     | 184 | 6500             | 7                 | 71          | 200         |       |          |                      |
| 7435 | 7        | 95                                     | 200 | 7000             | 9                 | 47          | 94          |       |          |                      |
| 7500 | 9        | 58                                     | 49  | 8000             | 9                 | 56          | 148         |       |          |                      |
| 8000 | 9        | 60                                     | 112 | 9000             | 9                 | <b>6</b> 6. | 162         |       |          |                      |
| 9000 | 9        | 67                                     | 142 | 10000            | 9                 | 72          | 174         |       |          |                      |
| 0000 | 9        | 72                                     | 160 | 11000            | 9                 | 80          | 177         |       |          |                      |
| 1000 | 9        | 80                                     | 176 | 12000            | 9                 | 91          | 178         |       |          |                      |
| 2000 | 9        | 88                                     | 178 | 12600            | 9                 | 100         | 179         |       |          |                      |
| 3000 | 9        | 100                                    | 181 | 13000            | 10                | 85          | 200         |       |          |                      |
| 4000 | 10       | 90                                     | 200 | 14000            | 10                | 100         | 180         |       |          |                      |
| 4600 | 10       | 100                                    | 200 | 14190            | 10                | 100         | 192         |       |          |                      |
| 5000 | 13       | 0                                      | 178 | 14500            | 12                | 75          | 200         |       |          |                      |
| 6000 | 13       | 70                                     | 156 | 15000            | 12                | 80          | 200         |       |          |                      |
| 7000 | 13       | 90                                     | 130 | 16000            | 12                | 88          | 150         |       |          |                      |
| 7700 | 13       | 100                                    | 146 | 17000            | 12                | 94          | 108         |       |          |                      |
|      |          |                                        |     | 18000            | 12                | 100         | 157         |       |          |                      |

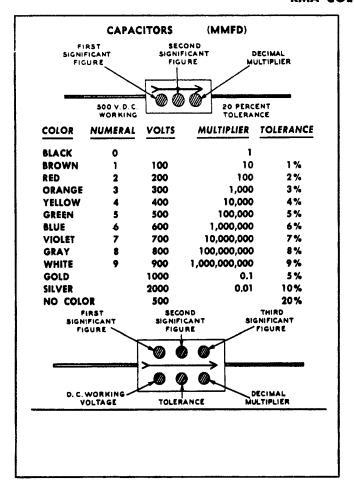
This Table for Use With Shunt Capacitor

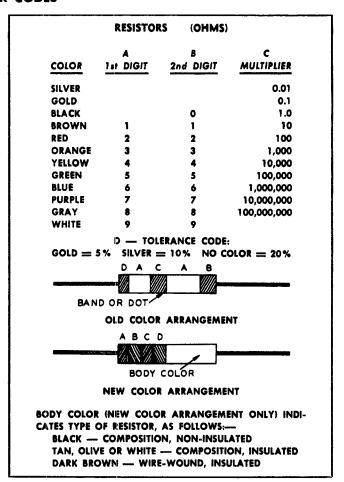
### SECTION VII PARTS CATALOG

### Introduction

### Table of Parts

The parts listed in this table do not constitute a complete electrical and mechanical breakdown of the equipment. The table lists all electrical parts together with such operative mechanical parts as are subject to loss or failure, with the exception of structural and minor parts such as standard bolts, screws, nuts, and the like. In some instances, individual detail parts of a sub-assembly may not be listed as separate items, since replacement of such items is impractical.


### Ordering of Spare Parts


Each Service using this list has established certain depots and service groups for the storage and issue of spare parts to its organizations requiring them. The regulations of each Service should be studied to determine the method and source for requisitioning spare parts. The information in this list, as to manufacturer's or contractor's name, type, model, or drawing number, is not to be interpreted as authorization to field agencies to attempt to purchase identical or comparable spare parts directly from the manufacturer or a wholesale or retail store except under emergency conditions as covered by existing regulations of the Service concerned.

U. S. Army Personnel: This table is for information only and is not to be used as a basis for requisitioning parts. Authorities for obtaining maintenance items are as follows: 1. For using organizations: applicable Service publications of the 00-30 series of AF Technical Orders. 2. For higher maintenance and supply echelons: applicable Service publications of the 16-55 series of AF Technical Orders.



### RMA COLOR CODES





### INSTRUCTIONS FOR USE OF TABLE OF PARTS.

Each major unit is assigned a set of symbol numbers (101 to 199, 201 to 299), etc., so that on all drawings, or photographs and in all references in the text of the components of a major unit, the unit to which the component belongs will be instantly recognized because it belongs to a particular symbol number group. The symbol numbers assigned to the major units are as follows:

### 101 to 199 TRANSMITTER.

Transmitter as here designated as LESS C.F.I. unit, L.F.O. unit and Audio Amplifier.

201 to 299 Audio Amplifier.

601 to 699 Pilot's Control Unit.

1101 to 1199 Antenna Capacitor Unit.

2201 to 2299 C.F.I. Unit.

2501 to 2599 Antenna Loading Coil.

2601 to 2699 L.F.O. Unit.

2701 to 2799 Dynamotor Unit.

Each symbol number is prefixed by a letter to indicate the general classification of the part. A few of these classifications are as follows:

| C—Capacitors               | K-Relays       |
|----------------------------|----------------|
| E-Miscellaneous electrical | L-Inductors    |
| parts                      | R-Resistors    |
| H—Hardware                 | T—Transformers |

AS AN EXAMPLE—CM-201 is a capacitor used in the audio amplifier.

The last column contains the prime contractor's part number. The first listed number is that of Stewart-Warner Corporation and the following number that of General Electric Company.

### **DECIMAL EQUIVALENTS FOR WIRE GAGES**

| No. of<br>Wire<br>Gage | AWG<br>(American) | SWG<br>(British) | No. of<br>Wire<br>Gage | AWG<br>(American) | SWG<br>(British) |
|------------------------|-------------------|------------------|------------------------|-------------------|------------------|
| 000000                 |                   | .464             | 18                     | .040303           | .048             |
| 00000                  |                   | .432             | 19                     | .03589            | .040             |
| 0000                   | .460              | .400             | 20                     | .031961           | .036             |
| 000                    | .40964            | .372             | 21                     | .028462           | .032             |
| 00                     | .3648             | .348             | 22                     | .025347           | .028             |
| 0                      | .32486            | .324             | 23                     | .022571           | .024             |
| 1                      | .2893             | .300             | 24                     | .0201             | .022             |
| 2                      | .25763            | .276             | 25                     | .0179             | .020             |
| 3                      | .22942            | .252             | 26                     | .01594            | .018             |
| 4                      | .20431            | .232             | 27                     | .014195           | .0164            |
| 5                      | .18194            | .212             | 28                     | .012641           | .0149            |
| 6                      | .16202            | .192             | 29                     | .011257           | .0136            |
| 7                      | .14428            | .176             | 30                     | .010025           | .0124            |
| 8                      | .12849            | .160             | 31                     | .008928           | .0116            |
| 9                      | .11443            | .144             | 32                     | .00795            | .0108            |
| 10                     | .10189            | .128             | 33                     | .00708            | .0100            |
| 11                     | .090742           | .116             | 34                     | .006304           | .0092            |
| 12                     | .080808           | .104             | 35                     | .005614           | .0084            |
| 13                     | .071961           | .092             | 36                     | .005              | .0076            |
| 14                     | .064084           | .080             | 37                     | .004453           | .0068            |
| 15                     | .057068           | .072             | 38                     | .003965           | .0060            |
| 16                     | .05082            | .064             | 39                     | .003531           | .0052            |
| 17                     | .045257           | .056             | 40                     | .003144           | .0048            |

### TABLE OF PARTS

| Function   Atry Stock Number   Name of Part and Description   Function   Afr. and Description   B-101   3N 3100 AO5-9   Number   Name of Part and Description   Functional Muss.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MODEL: R/           | MODEL: RADIO TRANSMITTING SET AN ART-13A                      | SET AN ART-13A                                                                                                                                                                                                                                                                                      | MAJOR ASSEMBLY:                                          | MAJOR ASSEMBLY: RADIO TRANSMITTER T-47A ART-13                                            | <b>TER T-47A ART-13</b>             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------|
| MOTOR: D.C.; 28 volt; 1/20 H.P. compiete with brushes, Autotuae drive Francisco brush caps and filter capacitors, reversible.  2C6900-47A/11 CAPACITOR: Supplied as an assembly with C:102, C:103, 1000-1200 Kc. band C:104; ceranic; 185 micromicroflards ±1%; 1000 volts and capacitor and with min. capacity to mounting face marked by a red don C:104; ceranic; 280 micromicroflards; in network with and 1200-1310 Kc. C:104; ceranic; 280 micromicroflards; in network with and 1200-1310 Kc. C:103 and C:104; ceranic; 200 micromicroflards; in network with c:102 and C:103 and C:104; ceranic; 200 micromicroflards; in network with c:102 c:102 and C:103 and C:104; ceranic; 200 micromicroflards; in network with c:102 c:102 and C:103 ceranic; 200 micromicroflards; in network with c:102 c:102 and C:103 tecranic; 413 micromicroflards; 187 km as a second c:102 and C:103 tecranic; 413 micromicroflards; 187 km as a second c:102 and C:103 tecranic; 413 micromicroflards; 187 km as a second c:102 and C:103 tecranic; 413 micromicroflards; 187 km as a second c:102 and C:103 tecranic; 413 micromicroflards; 187 km as a second c:102 and C:103 tecranic; 413 micromicroflards; 187 km as a second c:102 and C:103 tecranic; 413 micromicroflards; 187 km; 418 km as a second c:103 and as a second c:103 and as a second c:103 tecranic; 413 micromicroflards; 187 km as a second c:102 and c:103 tecranic; 413 micromicroflards; 187 km as a second c:102 and c:103 tecranic; 413 micromicroflards; 187 km as a second c:103 micromicroflards; 187 km as a second c:103 micromicroflards; 187 km as a second c:103 micromicroflards; 187 km as a second c:103 micromicroflards; 187 km as a second c:103 micromicroflards; 197 km as a second c:103 micromicroflards; 197 km as a second c:103 micromicroflards; 197 km as a second c:103 micromicroflards; 197 km as a second c:104 micromicroflards; 197 km as a second c:104 micromicroflards; 197 km as a second c:104 micromicroflards; 197 km as a second c:104 micromicroflards; 197 km as a second c:104 micromicroflards; 197 km as a seco | Reference<br>Symbol | Army Stock Number<br>Navy Stock Number<br>British Ref. Number | Name of Part and Description                                                                                                                                                                                                                                                                        | Function                                                 | Mfr. and Desig.<br>or Standard Type                                                       | Cont. or Govt.<br>Dwg. or Spec. No. |
| 2C6900-47A/11 CAPACITOR: Supplied as an assembly with C-10.2, C-10.3, 1000-1200 Kc. band C-10.4; ceranic; 185 micromicroflards ± 1.8; 1000 volts D.C. test; 5/8" x 0.863" dia; axial mounting hole tapped for No. 6-32 machine screw; two-solder lug terminals; terminal and into min. capacity to mounting face marked by a red dor  2C6900-47A/11 CAPACITOR: Supplied as an assembly with C-10.1, C-10.3. 1000-1200 Kc. band C-103 and C-104 total capacity 41.3 micromicroflards ± 1.8.  CL03 and C-104 total capacity 41.3 micromicroflards ± 1.8.  CL02 and C-104 total capacity 41.3 micromicroflards ± 1.8.  CL02 and C-104 total capacity 41.3 micromicroflards ± 1.8.  CL02 and C-104 total capacity 41.3 micromicroflards ± 1.8.  CAPACITOR: Supplied as an assembly with C-101, C-102, Same as C-102  C-102 and C-104 total capacity 41.3 micromicroflards ± 1.8.  CAPACITOR: Fixed mics; 500 micromicroflards ± 1.8.  CAPACITOR: Fixed mics; 500 micromicroflards ± 1.8.  CAPACITOR: Fixed mics; 500 micromicroflards ± 1.8.  CAPACITOR: Fixed mics; 500 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 500 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 500 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 500 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 500 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 500 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 500 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 500 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 500 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 2000 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 2000 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 2000 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 2000 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 2000 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 2000 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 2000 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 2000 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 2000 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 2000 micromicroflards ± 20.8.  CAPACITOR: Fixed mics; 2000 | B-101               |                                                               | 1 44                                                                                                                                                                                                                                                                                                | Autotune drive                                           | Fractional Mtrs.<br>F-803<br>Emerson Elec.<br>D26BV-166-0212<br>Ohio Elec. Mfg.<br>C-4732 | Stewart-Warner<br>564666            |
| 2C6900-47A/11 CAPACITOR: Supplied as an assembly with C-101, C-103. 1000-1200 Kc. band C-104; ceramic; 280 micronicrofarads in network with mol 1200-1510 Kc. C-104; and C-104 total capacity 413.micronicrofarads in network with C-102, C-104; ceramic; 200 micronicrofarads in network with C-102 and C-104 total capacity 413 micronicrofarads in network with C-102 and C-104 total capacity 413 micronicrofarads in network with C-103; ceramic; 300 micronicrofarads in network with C-103; ceramic; 300 micronicrofarads in network with C-103; ceramic; 300 micronicrofarads ±1%. V-101 cathode by-pass 5p 1200 volts DCW; 1-5/8″ x 1-1/8″ x 23/64″; two mount: capacitor ing holes 0.144″ dia, 1.312″ between mig/c; two solder lug terminals each with a 0.180″ dia. hole.  CAPACITOR: Fixed; mica; 5000 micromicrofarads ±20%; V-101 filament by-pass 5p 1200 volts DCW; 1-5/8″ x 1-1/8″ x 23/64″; two mounting holes 0.144″ dia, 1.312″ between mig/c; two solder lug terminals each with a 0.180″ dia. hole.  CAPACITOR: Fixed; mica; 5000 micromicrofarads ±20%; V-101 filament by-pass 5p 600 volts DCW; 1-5/8″ x 1-1/8″ x 23/64″; two mounting pass capacitor holes 0.144″ dia, 1.312″ between mig/c; two solder lug terminals each with a 0.180″ dia. hole.  CAPACITOR: Fixed; mica; 5000 micromicrofarads ±20%; V-101 screen grid by-1200 volts DCW; 1-5/8″ x 1-1/8″ x 23/64″; two mounting pass capacitor holes 0.144″ between mig/c; two solder lug terminals each with a 0.180″ dia. hole.  CAPACITOR: Fixed; mica; 500 micromicrofarads ±10%; V-101 grid coupling 5750 volts DCW; two solder lug terminals each with a 0.180″ dia. hole.  CAPACITOR: Fixed; mica; 500 micromicrofarads ±10%; V-101 grid coupling 5750 volts DCW; two solder lug terminals each with a 0.180″ dia. hole.  CAPACITOR: Fixed; mica; 500 micromicrofarads ±10%; V-101 grid coupling 5750 volts DCW; two solder lug terminals each with a 0.180″ dia. hole.  CAPACITOR: Fixed; mica; 500 micromicrofarads ±10%; V-101 grid coupling 5750 volts DCW; two solder lug terminals each with a 0.180″ dia. hole.  CAPACITOR: Fixed | C-101               |                                                               | APACITOR: Supplied as an assembly with C-102, C-103, C-104; ceramic; 185 micromicrofarads $\pm 1\%$ ; 1000 volts D.C. test; $5/8$ " x 0.863" dia; axial mounting hole tapped for No. 6-32 machine screw; two-solder lug terminals; terminal with min. capacity to mounting face marked by a red dor | 1000-1200 Kc. band<br>tank capacitor                     | Centralab<br>843-003                                                                      | Stewart-Warner<br>564605            |
| 2C6900-47A/11 CAPACITOR: Supplied as an assembly with C-101, C-102, Game as C-102 C-104; eferanci; 200 micromicrofarads; in network with C-102 and C-104 total capacity 413 micromicrofarads ± 1%.  CAPACITOR: Supplied as an assembly with C-101, C-102, Same as C-102 and C-103 inclaim assembly with C-101, C-102, Same as C-102 and C-103 inclaim assembly with C-101, C-102, Same as C-102 and C-103 inclaim assembly with C-101, C-102, Same as C-102 and C-103 inclaim assembly with C-101, C-102, Same as C-102 and C-103 inclaim assembly with C-101, C-102, Same as C-102 and C-103 inclaim assembly with C-101, C-102, Same as C-102 and C-103 inclaim assembly with C-101, C-102, Same as C-102 and C-103 inclaim assembly with C-101, C-102, Same as C-102 and C-103 inclaim assembly with C-101, C-102, Same as C-102 and C-103 inclaim assembly with C-103 inclaim assembly with C-101, C-102, Same as C-102 and C-103 inclaim assembly with C-103 inclaim assembly with C-103 inclaim assembly with C-104, Same as C-102 and C-103 inclaim assembly with C-103 inclaim assembly with C-103 inclaim assembly with C-103, Same as C-102 and C-103 inclaim assembly with C-103, Same as C-102 and C-103 inclaim assembly with C-103, Same as C-102 and C-103 inclaim assembly with C-103 inclaim assembly with C-104, Same as C-102 and C-103 inclaim assembly with C-104, Same and Same as C-102 and C-102 and C-103 inclaim assembly with C-104, Same as C-102 and C-102 and C-103 inclaim assembly condition of C-103 inclaim and C-103 inclaim assembly as C-103 inclaim assembly condition and Same and Same and Same and Same and Same and Same as C-102 and C-102 and C-102 inclaim and C-103 inclaim assembly condition of C-103 inclaim and Same and Same as C-102 inclaim assembly and Same as C-102 inclaim assembly and Same as C-102 inclaim as C-102 inclaim assembly and Same as C-102 inclaim assembly and Same as C-102 inclaim as C-102 inclaim assembly and Same as C-102 inclaim as C-102 inclaim assembly and Same as C-102 inclaim as C-102 inclaim as C-102 inclaim as C-102 inclaim as C- | C·102               |                                                               | APACITOR: Supplied as an assembly with C-101, C-103. C-104; ceramic; 280 micromicrofarads; in network with C-103 and C-104 total capacity 413.micromicrofarads ±1%.                                                                                                                                 | 1000-1200 Kc. band and 1200-1510 Kc. band tank capacitor | Centralab<br>843-003                                                                      | Stewart-Warner<br>564605            |
| 2C6900-47A/11 CAPACITOR: Supplied as an assembly with C-101, C-102, Same as C-102 C-103; ceramic; 400 micronicrofarads; in network with C-102 and C-103 total capacity 413 micromicrofarads ± 1%.  3DA5-74.2 CAPACITOR: Fixed; mica; 5000 micromicrofarads ± 5%; V-101 cathode by-pass 5p 1200 volts DCW; 1-5/8" x 1-1/8" x 23/64"; two mountring holes 0.144" dia, 1.312" between mtg/c; two solder lug terminals each with a 0.180" dia. hole.  3DA6-39.1 CAPACITOR: Fixed; mica; 6000 micromicrofarads ± 20%; V-101 filament by-pass 5p 600 volts DCW; 1-5/8" x 1-1/8" x 23/64"; two mounting holes 0.144" dia, 1.312" between mtg/c; two solder lug terminals each with a 0.180" dia. hole.  3DA2-34.3 CAPACITOR: Fixed; mica; 2000 micromicrofarads ± 20%; V-101 screen grid by- 1200 volts DCW; 1-5/8" x 1-1/8" x 23/64"; two mounting pass capacitor holes 0.144" dia, 1.312" between mtg/c; two solder lug terminals each with a 0.180" dia. hole.  3D9500-32 CAPACITOR: Fixed; mica; 500 micromicrofarads ± 10%; V-102 grid coupling 5a 750 volts DCW; two solder lug terminals each with a 0.180" dia. hole.  750 volts DCW; two solder lug terminals each with a 0.147" capacitor dia. hole, 1-3/4" between mtg/c; two 0.200" x 0.144" mounting holes, 23/32" between mtg/c; two 0.200" x 0.144"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-103               |                                                               | APACITOR: Supplied as an assembly with C-101, C-102, C-104; céramic; 200 micromicrofarads; in network with C-102 and C-104 total capacity 413 micromicrofarads ±1%.                                                                                                                                 | Same as C-102                                            | Centralab<br>843-003                                                                      | Stewart-Warner<br>564605            |
| 3DA5-74.2 CAPACITOR: Fixed; mica; 5000 micromicrofarads ±5%; V-101 cathode by-pass Sp 1200 volts DCW; 1-5/8" x 1-1/8" x 23/64"; two mountring holes 0.144" dia., 1.312" between mtg/c; two solder lug terminals each with a 0.180" dia. hole.  CAPACITOR: Fixed; mica; 6000 micromicrofarads ±20%; V-101 filament by-pass Sa 600 volts DCW; 1-5/8" x 1-1/8" x 23/64"; two mounting capacitor holes 0.144" dia. 1.312" between mtg/c; two solder lug terminals each with a 0.180" dia. hole.  CAPACITOR: Fixed; mica; 2000 micromicrofarads ±20%; V-101 screen grid by-1200 volts DCW; 1-5/8" x 1-1/8" x 23/64"; two mounting pass capacitor holes 0.144" dia., 1.312" between mtg/c; two solder lug terminals each with a 0.180" dia. hole.  CAPACITOR: Fixed; mica; 2000 micromicrofarads ±10%; V-102 grid coupling Sa 750 volts DCW; two solder lug terminals each with a 0.180" dia. hole.  CAPACITOR: Fixed; mica; 500 micromicrofarads ±10%; V-102 grid coupling dia. hole, 1-3/4" between mtg/c; two 0.200" x 0.144" capacitor mounting holes, 23/32" between mtg/c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C-104               |                                                               | APACITOR: Supplied as an assembly with C-101, C-102, C-103; ceramic; 400 micromicrofarads; in network with C-102 and C-103 total capacity 413 micromicrofarads ±1%.                                                                                                                                 | Same as C-102                                            | Centralab<br>843-003                                                                      | Stewart-Warner<br>564605            |
| 3DA6-39.1 CAPACITOR: Fixed; mica; 6000 micromicrofarads ±20%; V-101 filament by-pass Sa 600 volts DCW; 1-5/8" x 1-1/8" x 23/64"; two mounting holes 0.144" dia. 1.312" between mtg/c; two solder lug terminals each with a 0.180" dia. hole.  CAPACITOR: Fixed; mica; 2000 micromicrofarads ±20%; V-101 screen grid by- JA 1200 volts DCW; 1-5/8" x 1-1/8" x 23/64"; two mounting pass capacitor holes 0.144" dia., 1.312" between mtg/c; two solder lug terminals each with a 0.180" dia. hole.  CAPACITOR: Fixed; mica; 500 micromicrofarads ±10%; V-102 grid coupling Sa 750 volts DCW; two solder lug terminals each with a 0.147" capacitor dia. hole, 1-3/4" between mtg/c; two 0.200" x 0.144" mounting holes, 23/32" between mtg/c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-105               |                                                               | APACITOR: Fixed; mica; 5000 micromicrofarads ±5%; 1200 volts DCW; 1-5/8" x 1-1/8" x 23/64"; two mounting holes 0.144" dia., 1.312" between mtg/c; two solder lug terminals each with a 0.180" dia. hole.                                                                                            | V-101 cathode by-pass<br>capacitor                       | Sprague Elec. M 1690, M 1689 Sangamo Elec. HLW-2250-5 Cornell-Dubilier                    | Stewart-Warner<br>\$64608           |
| 3DA2-34.3 CAPACITOR: Fixed; mica; 2000 micromicrofarads ±20%; V-101 screen grid by- JA 1200 volts DCW; 1-5/8" x 1-1/8" x 23/64"; two mounting pass capacitor holes 0.144" dia., 1.312" between mtg/c; two solder lug terminals each with a 0.180" dia. hole.  3D9500-32 CAPACITOR: Fixed; mica; 500 micromicrofarads ±10%; V-102 grid coupling Sa 750 volts DCW; two solder lug terminals each with a 0.147" capacitor dia. hole, 1-3/4" between mtg/c; two 0.200" x 0.144" mounting holes, 23/32" between mtg/c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C-106               |                                                               | APACITOR: Fixed; mica; 6000 micromicrofarads ±20%; 6000 volts DCW; 1-5/8" x 1-1/8" x 23/64"; two mounting holes 0.144" dia. 1.312" between mtg/c; two solder lug terminals each with a 0.180" dia. hole.                                                                                            | V-101 filament by-pass<br>capacitor                      | Sangamo Elec.<br>HLS-1260-B20<br>Sprague Elec.<br>M-1692<br>Cornell-Dubilier<br>4LS-12060 | Stewart-Warner<br>564606            |
| 3D9500-32 CAPACITOR: Fixed; mica; 500 micromicrofarads ±10%; V-102 grid coupling Sa 750 volts DCW; two solder lug terminals each with a 0.147" capacitor dia. hole, 1-3/4" between mtg/c; two 0.200" x 0.144" mounting holes, 23/32" between mtg/c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C-107               |                                                               | APACITOR: Fixed; mica; 2000 micromicrofarads $\pm 20\%$ ; 1200 volts DCW; 1-5/8" x 1-1/8" x 23/64"; two mounting holes 0.144" dia., 1.312" between mtg/c; two solder lug terminals each with a 0.180" dia. hole.                                                                                    | V-101 screen grid by-<br>pass capacitor                  | JAN Type<br>CM458202M                                                                     |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C-108               |                                                               | CAPACITOR: Fixed; mica; 500 micromicrofarads ±10%; 750 volts DCW; two solder lug terminals each with a 0.147" dia. hole, 1-3/4" between mtg/c; two 0.200" x 0.144" mounting holes, 23/32" between mtg/c.                                                                                            | V-102 grid coupling<br>capacitor                         | Sangamo Elec.<br>BEW-15350-B10                                                            | Stewart-Warner<br>564525            |

| MODEL: R            | MODEL: RADIO TRANSMITTING                                     | IG SET AN/ART-13A                                                                                                                                                                                                                                        | MAJOR ASSEMBLY                          | MAJOR ASSEMBLY: RADIO TRANSMITTER T-47A/ART-13                                                     | TER T-47A/ART-13                    |
|---------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------|
| Reference<br>Symbol | Army Stock Number<br>Navy Stock Number<br>British Ref. Number | Name of Part and Description                                                                                                                                                                                                                             | Function                                | Mfr. and Desig.<br>or Standard Type                                                                | Cont. or Govt.<br>Dwg. or Spec. No. |
| C-109               | 3DA2-110.2                                                    | CAPACITOR: Fixed; mica; 2000 micromicrofarads ±20%; 750 volts DCW; overall dimensions of case 2-1/4" x 1" x 3/8"; two solder lug terminals each with a 0.147" dia. hole, 1-3/4" between mtg/c; two 0.200" x 0.144" mounting holes, 23/32" between mtg/c. | V-102 cathode by-pass<br>capacitor      | Sangamo Elec.<br>BEW-15220-B20                                                                     | Stewart-Warner<br>564522            |
| C-110               | 3DA2-110.2                                                    | CAPACITOR: Same as C-109.                                                                                                                                                                                                                                | V-102 screen grid by-<br>pass capacitor |                                                                                                    |                                     |
| C111                | 3D9460V                                                       | CAPACITOR ASSEMBLY: Six variable, ceramic capacitors; A-400-460, B-240-300, C-125-185, D-60-110, E-35-85, F-10-30, micromicrofarads; all mounted on a No. 6-32 threaded rod.                                                                             | V-102 plate padding<br>capacitor        | Centralab<br>826-006                                                                               | Stewart-Warner<br>564635            |
| C-112               | 3D9250-67                                                     | CAPACITOR: Fixed; mica; 250 micromicrofarads ±10%; 750 volts DCW; case dimensions overall 2-1/4" x 1" x 3/8"; two solder lug terminals each with a 0.147" dia. hole, 1-3/4" between mtg/c; two 0.200" x 0.144" mounting holes.                           | V-103 grid coupling capacitor           | Sangamo Elec.<br>BEW-15325-B10                                                                     | Stewart-Warner<br>564524            |
| C-113               | 3DA2-110.2                                                    | CAPACITOR: Same as C-109.                                                                                                                                                                                                                                | V-103 cathode by-pass capacitor         |                                                                                                    |                                     |
| C-114               | 3DA2-110.2                                                    | CAPACITOR: Same as C-109.                                                                                                                                                                                                                                | V-103 screen grid by-<br>pass capacitor |                                                                                                    |                                     |
| C-115               | 3D9460V                                                       | CAPACITOR: Same as C-111.                                                                                                                                                                                                                                | V-103 plate padding capacitors          |                                                                                                    |                                     |
| C-116               | 3D9500-32                                                     | CAPACITOR: Same as C-108.                                                                                                                                                                                                                                | V-104 grid coupling capacitor           |                                                                                                    |                                     |
| C117                | 3 <b>DA6-</b> 39.1                                            | CAPACITOR: Same as C-106.                                                                                                                                                                                                                                | V-104 filament by-pass capacitor        |                                                                                                    |                                     |
| C-118               | 3DA2-9.2                                                      | CAPACITOR: Fixed; mica; 2000 micromicrofarads ±20%; 3500 volts DCW; test voltage 7500 volts D.C., case dimensions 1-25/32" x 1-11/32" x 3/4"; two No. 6-32 tapped holes through body, 1-1/4" between mtg/c, for terminals and mounting.                  | V-104 plate coupling<br>capacitor       | Sangamo Elec.<br>A2L-7220-B20<br>Solar Mfg. Co.<br>XMBW 3.5-22-20<br>Cornell-Dubilier<br>9SL-72020 | Siewart-Warner<br>564626            |
| C-119               |                                                               | CAPACITOR: Same as C-107.                                                                                                                                                                                                                                | V-104 screen filter capacitor           |                                                                                                    |                                     |
| C-120-A             | 3DA2-120.2                                                    | CAPACITOR: Fixed; mica; 2000 micromicrofarads $\pm 20\%$ ; 2500 volts DCW; test voltage 5000 volts D.C.; molded case; dimensions 1-5/8" x 1-1/8" x 29/64"; two 0.144" diamounting holes through case 1.312" between mtg/c; solder lug terminals.         | V-104 plate supply<br>filter            | AWS Type<br>CM50B202M                                                                              |                                     |
| C-120-B             | 3DA2-120.2                                                    | CAPACITOR: Same as C-120-A.                                                                                                                                                                                                                              | V-104 plate supply filter               |                                                                                                    |                                     |

| Stewart-Warner<br>\$64402                                                                                                                                                                                                                                                                                                                                                                                 | Stewart-Warner<br>564187                                                                                                                                                                                                                                           | Stewart-Warner<br>564186                                                                                                                                                                                                                                                                                               | Stewart-Warner<br>564230<br>Stewart-Warner<br>564645                                                                                                                                              | Stewart-Warner<br>564401                                                                                                                                                | Stewart-Warner<br>564523                                                                                                                                                                                                                                       |                                                                       | Stewart-Warner<br>564185                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Micamold 306-231 Sprague P-2947 Solar Mfg. Co. 3XDMRTW61-20                                                                                                                                                                                                                                                                                                                                               | Centralab<br>850-003                                                                                                                                                                                                                                               | Centralab<br>850-003                                                                                                                                                                                                                                                                                                   | General Inst. 314-R Hammond A-410-19-0 General Inst. 314-S Hammond Inst. Co. A-410-20-0                                                                                                           | Micamold 324 Sprague P-2948 Solar Mfg. Co. KLMRAW6-2-20 General Elec. Cat. No. 25F764                                                                                   | Sprague Elec. BEW-15250 Sangamo Elec. BEW-15260-B20                                                                                                                                                                                                            |                                                                       | Centralab<br>850-001                                                                                                |
| Keying filter<br>Keying filter<br>Keying filter                                                                                                                                                                                                                                                                                                                                                           | V-104 plate tank padding capacitor V-104 plate tank padding capacitor                                                                                                                                                                                              | V-104 plate tank padding capacitor V-104 plate tank padding capacitor V-104 plate tank padding capacitor V-104 plate tank capacitor                                                                                                                                                                                    | Part of C-125<br>antenna network<br>capacitor                                                                                                                                                     | 450 volt supply filter                                                                                                                                                  | V-103 plate supply filter                                                                                                                                                                                                                                      | V-104 plate supply<br>filter<br>V-104 plate tank<br>padding capacitor | V-104 plate tank<br>padding capacitor                                                                               |
| CAPACITOR: Fixed; paper; 3 section also consisting of C-121-B and C-121-C; each section 100,000 micromicrofarads ±20%; 600 volts DCW; metal case acting as a common ground 1-13/16" x 1" x 3/4"; oil filled; two mounting feet each with a 3/16" dia. hole 2-1/8" between mtg/c; solder lug terminals.  CAPACITOR: See C-121-A.  CAPACITOR See C-121-A.  CAPACITOR ASSEMBLY: Consisting of two capacitors | CAPACITOR: Silver ceramic; 50 micromicrofarads ±10%; 3/4" x 49/64" dia.; tapped No. 6-32 axial terminal hole at each end.  CAPACITOR: Same as C-122-A.  CAPACITOR ASSEMBLY: Consisting of three identical capacitors C-124-A. C-124-B. C-124-C. total capacity 201 | micromicrofarads.  CAPACITOR: Silver ceramic; 67 micromicrofarads ±5%; 3/4" x 49/64" dia.; tapped axial terminal hole at each end.  CAPACITOR: Same as C-124-A.  CAPACITOR: Same as C-124-A.  CAPACITOR: Same as C-124-A.  CAPACITOR ASSEMBLY: Variable; consisting of rotor (C-125-A) senerate from stator (C-125-B). | CAPACITOR, ROTOR: Complete with counterweight, cam, ball bearing, bearing retainer plug and nut, splined coupler, end shaft and contact ring.  CAPACITOR, STATOR: Complete with E-129 insulators. | CAPACITOR: Fixed; paper; 2 microfarads ±20%; 600 volts DCW; test voltage 1200 volts D.C.; oil filled; metal case 2-3/4" x 1-13/16" x 1-1/16"; two solder lug terminals. | CAPACITOR: Fixed; mica; 6000 micromicrofarads $\pm 20\%$ ; 750 volts DCW; test voltage 1500 volts D.C.; molded case; dimensions 1.13/64" x 1" x 3/8"; two terminal lugs each with a 0.147" dia. hole; two 0.200" x 0.144" mounting slots 23/32" between mtg/c. | CAPACITOR: Same as C-118. CAPACITOR: Same as C-122-A.                 | CAPACITOR: Silver ceramic; 25 micromicrofarads ±10%; 3/4" x 49/64" dia.; tapped No. 6-32 terminal hole at each end. |
| 3DA100-116.4                                                                                                                                                                                                                                                                                                                                                                                              | 3D9050-100<br>3D9050-100                                                                                                                                                                                                                                           | 3D9067<br>3D9067<br>3D9067                                                                                                                                                                                                                                                                                             | 2C6900-47A/13<br>2C6900-47A/12                                                                                                                                                                    | 3 <b>DB2-</b> 37                                                                                                                                                        | 3 <b>DA6-</b> 21.1                                                                                                                                                                                                                                             | 3DA2-9.2<br>3D9050-100                                                | 3D9025-53                                                                                                           |
| C-121-A C-121-B C-121-C C-121-C                                                                                                                                                                                                                                                                                                                                                                           | C-122-A<br>C-122-B<br>C-124                                                                                                                                                                                                                                        | C-124-A<br>C-124-B<br>C-124-C<br>C-125                                                                                                                                                                                                                                                                                 | C-125-A                                                                                                                                                                                           | C-126                                                                                                                                                                   | C-127                                                                                                                                                                                                                                                          | C-128<br>C-129                                                        | C-130                                                                                                               |

| MODEL: R.           | MODEL: RADIO TRANSMITTING                                     | NG SET AN/ART-13A                                                                                                                                                                                                                                                         | MAJOR ASSEMBLY                                  | MAJOR ASSEMBLY: RADIO TRANSMITTER T-47A/ART-13               | TER T-47A/ART-13                    |
|---------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------|
| Reference<br>Symbol | Army Stock Number<br>Navy Stock Number<br>British Ref. Number | Name of Part and Descráption                                                                                                                                                                                                                                              | Function                                        | Mfr. and Desig.<br>or Standard Type                          | Cont. or Govt.<br>Dwg. or Spec. No. |
| C-131               | 3D9800-15                                                     | CAPACITOR: Fixed; mica; 800 micromicrofarads ±5%; 750 volts DCW; test voltage 1500 volts D.C.; molded case; dimensions 1-13/64" x 1" x 3/8"; two lug terminals each with 0.147" dia. hole, 1-3/4" between mtg/c; two 0.200" x 0.144" mounting slots 23/32" between mtg/c. | V-102 plate supply<br>filter                    | Sangamo Elec.<br>BEW-15380-B.5<br>Cornell-Dubilier<br>140-LS | Stewart-Warner<br>564614            |
| C-132               | **                                                            | CAPACITOR: 4000 micromicrofarads ±20%; 300 volts DCW; used only on Emerson motor D26BV-166-0212; mica; molded bakelite case.                                                                                                                                              | Autotune motor spark<br>suppressor capacitor    | Emerson Elec.<br>96580-A                                     |                                     |
| C-133               | **                                                            | CAPACITOR: Same as C-132.                                                                                                                                                                                                                                                 | Autotune motor spark suppressor capacitor       |                                                              |                                     |
| C-134               | 3D9028V-3                                                     | CAPACITOR: Variable, air dielectric; 28-4.5 micromicrofarads; 1-23/32" x 1-7/32" x 15/16", two tapped No. 4-40 mounting holes, 21/32" between mtg/c.                                                                                                                      | V-101 grid tank<br>padding capacitor            | Oak Mfg. 944-AT F. W. Sickles Hammerlund Mfg. Co. APC-25 "C" | Stewart-Warner<br>564516            |
| C-135               | 3D9028V-3                                                     | CAPACITOR: Same as C-134.                                                                                                                                                                                                                                                 | V-101 grid tank<br>padding capacitor            |                                                              |                                     |
| C-136               | 3D9013V-2                                                     | CAPACITOR: Variable; ceramic; 3-13 micromicrofarads; 27/32" x 41/64" x 5/16"; two 0.120" mounting holes, 0.437" between mtg/c.                                                                                                                                            | V-103 grid trimming<br>capacitor                | Centralab<br>822-009                                         | Stewart-Warner<br>565634            |
| C-137               | 3K3015221                                                     | CAPACITOR: Fixed; mica; 1500 micromicrofarads ±10%; 500 volts DCW; test voltage 1000 volts D.C.; molded case; max. dimensions 53/64" x 53/64" x 9/32"; wire leads 1-3/8" long.                                                                                            | V-104 plate tank<br>filter capacitor            | AWS Type<br>CM30B152K                                        |                                     |
| C-138               | 3DA100-375                                                    | CAPACITOR: Fixed; paper; 100,000 micromicrofarads ±20%; 600 volts DCW; test voltage 1200 volts D.C.; metal case; liquid impregnated; hermetically sealed; single No. 6-32 tapped hole mounting; one solder lug terminal.                                                  | V-103 screen grid<br>supply filter<br>capacitor | P. R. Mallory Co.<br>B-205985<br>J. E. Fast Co.<br>A8066-DU  | Stewart-Warner<br>564755            |
| C-139               | #                                                             | CAPACITOR: 3500 micromicrofarads; 500 volts DCW; used only on Ohio motors.                                                                                                                                                                                                | Autotune motor, brush filter capacitor          | Cornell-Dubilier<br>1WS.0035                                 |                                     |
| C-140               | *                                                             | CAPACITOR: Same as C-139.                                                                                                                                                                                                                                                 | Autotune motor,<br>brush filter,<br>capacitor   |                                                              |                                     |
| C-141               | #                                                             | CAPACITOR: Mica; molded; 2000 micronicrofarads; 500 volts DCW; used only on Fractional motors.                                                                                                                                                                            | Autotune motor,<br>brush filter,<br>capacitor   | Fractional Mtrs.<br>CD801                                    |                                     |
| C-142               | #                                                             | CAPACITOR: Same as C-141.                                                                                                                                                                                                                                                 |                                                 |                                                              |                                     |
| C-145               | 3D415                                                         | CAPACITOR: CA-415; fixed; 2 section; 2 microfarads each section; ±10%; 100 vdcw; 3-3/8" x 1-3/4" x 1".                                                                                                                                                                    | Autotune motor<br>filter                        |                                                              | 71-515<br>SC-D-3403                 |
| C-146               | 3DA10-27                                                      | CAPACITOR: fixed; 10,000 micromicrofarads; ±10%; 300 vdcw.                                                                                                                                                                                                                | Autotune motor filter                           | CM35B103K                                                    | JAN-C-5                             |
| C-147               | 3DA10-27                                                      | CAPACITOR: Same as C-146.                                                                                                                                                                                                                                                 |                                                 |                                                              |                                     |

| JAN-C-25                                                                                       | Stewart-Warner<br>564667                      | Stewart-Warner 565547                           | Stewart-Warner<br>565548                             | Stewart-Warner<br>564021                                                                                                                     | Stewart-Warner<br>564488                                                                            | Stewart-Warner<br>564487                                                          | Stewart-Warner<br>564403                                                                                                 | Stewart-Warner<br>564485                                                                              | Stewart-Warner<br>564882                                                  | Stewart-Warner<br>564331                                           | Stewart-Warner<br>564784                                              | Stewart-Warner<br>564486                                          |
|------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|
| CP25AIEF104M                                                                                   | Emerson Elec.<br>94718-A<br>Stackpole MP-1355 | Ohio Motor Co.<br>D-5699                        | Fractional Mtr.<br>FF811                             | Drake Mfg. Co.<br>No. 80<br>Dial Lite Co.<br>DVT:90SAD RED                                                                                   | Centralab X-86<br>Gen. Ceramic<br>D-350<br>Amer. Lava<br>S-1173-A                                   | Gen. Ceramic<br>D-2623<br>Centralab X-600                                         | Centralab K.109<br>Gen. Ceramic<br>D-328<br>Amer. Lava<br>S-8556                                                         | Centralab X-91K<br>Amer. Lava<br>E-1000 tap No. 6-32                                                  | Centralab X-88<br>Gen. Ceramic<br>D-431<br>Amer. Lava<br>S-1174-A         | Centralab X-601<br>Gen. Ceramic<br>D-2622<br>Amer. Lava<br>S-13193 | Centralab X-414<br>Oak 27429-H1C<br>Gen. Ceramic<br>D-2399            | Centralab X-87<br>Gen. Ceramic<br>D-349<br>Amer. Lava<br>S-1173-B |
| Autotune motor<br>filter.                                                                      | Brush for Emerson<br>autotune motor           | Brush for Ohio autotune motor                   | Brush for Fractional autotune motor                  | Transmitter pilot<br>light                                                                                                                   | Feed-through insulator<br>used in multiplier<br>unit. Also RE-<br>CEIVER terminal                   | Feed-through insulator<br>used in multiplier<br>unit. Also RE-<br>CEIVER terminal | Insulator for mounting<br>C-118                                                                                          | K-105 relay lead<br>supports                                                                          | Used with E-106-B on<br>LOAD COIL terminal                                | Used with E-106-A on<br>LOAD COIL                                  | VARIOMETER terminals, C-115 mounting                                  | Feed-through insulator<br>in multiplier unit                      |
| CAPACITOR: fixed; paper; 100,000 micromicrofarads; A ±20%; 600 vdcw. CAPACITOR: Same as C-148. | only on Emerson motors.                       | BRUSH: Four required; used only on Ohio motors. | BRUSH: Two required; used only on Fractional motors. | RECEPTACLE, PILOT LIGHT: Complete with ruby jewel T and miniature bayonet socket; 3/8" I.D., 2-1/4" x 15/16" dia.; two solder lug terminals. | FEED-THROUGH: Ceramic; female; 3/8" h.; 1/2" dia. at F top; 5/8" dia. at bottom; used with E-103-B. | FEED-THROUGH: Ceramic; male; 5/8" x 5/8" dia.; keyed; Fused with E-103-A.         | STAND-OFF: Ceramic; conical 3/4" h.; 3/8" dia. top; 1/2" I dia. hottom; tapped No. 6-32 axial mounting hole at each end. | STAND-OFF: Ceramic; cylindrical 1" x 1/2" dia.; tapped F<br>No. 6-32 axial mounting hole at each end. | FEED-THROUGH: Ceramic; female; 1/2" h.; top dia. 3/4"; Ubottom dia. 7/8". | FEED-THROUGH: Ceramic; male; keyed; 7/8" x 7/8" max. tdia.         | FEED-THROUGH: Ceramic; bushing; 5/8" dia. x 3/16" \this, L.D. 0.145". | FEED-THROUGH: Ceramic; male; 5/8" x 5/8" dia. max. F              |
| 3DA-100-84.3<br>3DA-100-84.3                                                                   | 3H525S                                        | 3H525-17                                        | 3H525-18                                             | 2ZK 5991-7                                                                                                                                   | 3G1350-24                                                                                           | 3G100-40.2                                                                        | 3G1000-6.1                                                                                                               | 3G1250-16.5                                                                                           | 3G1000·4.1                                                                | 3G100-56.1                                                         | 3G12503.13                                                            | 3G1250-10.11                                                      |
| C-148                                                                                          | E-101-A                                       | E-101-B                                         | E-101-C                                              | E-102                                                                                                                                        | E-103-A                                                                                             | E-103-B                                                                           | E-104                                                                                                                    | E-105                                                                                                 | E-106-A                                                                   | E-106-B                                                            | E-107                                                                 | E 109-B                                                           |

| MODEL: R            | RADIO TRANSMITTING                                            | NG SET AN/ART-13A                                                                                                                                     | MAJOR ASSEMBLY                               | ASSEMBLY: RADIO TRANSMITTER T-47A/ART-13                                     | TER T-47A/ART-13                    |
|---------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|-------------------------------------|
| Reference<br>Symbol | Army Stock Number<br>Navy Stock Number<br>British Ref. Number | Name of Part and Description                                                                                                                          | Function                                     | Mfr. and Desig.<br>or Standard Type                                          | Cont. or Govt.<br>Dwg. or Spec. No. |
| E-110               | 3G1000-30                                                     | FEED-THROUGH: Ceramic; approx. 3-3/4" x 3-3/16" x 21/32"; bowl shape; two 0.173" dia. binding post holes at center; three 0.130" dia. mounting holes. | Antenna insulator for<br>J-109 binding posts | Centralab X-567<br>Gen. Ceramic<br>D-2662                                    | Stewart-Warner<br>564879            |
| E-111               | 2Z6050-6                                                      | LEAD ASSEMBLY: Flexible; complete with plate clip.                                                                                                    | 837 plate load                               |                                                                              | Stewart-Warner<br>564566            |
| E-112               | 2Z6050-7                                                      | LEAD ASSEMBLY: Flexible; complete with plate clip.                                                                                                    | Plate leads to 1625<br>tubes                 |                                                                              | Stewart-Warner<br>564565            |
| E-113               | 2Z6050-4                                                      | LEAD ASSEMBLY: Flexible; complete with plate clip and bracket; 4-3/16" long.                                                                          | 811 plate lead                               |                                                                              | Stewart-Warner 564730               |
| E-114               | 2Z6050-5                                                      | LEAD ASSEMBLY: Flexible; complete with clip and bracket; 2-3/16" long.                                                                                | 811 plate lead                               |                                                                              | Stewart-Warner<br>564726            |
| E-115               | 2Z6050-8                                                      | LEAD ASSEMBLY: Flexible; complete with plate clip and solder lug.                                                                                     | Flexible lead from L-108 to 813 tube plate.  | Hunter Pres. St1.                                                            | Stewart-Warner<br>564623            |
| E-116               | 2Z6050-9                                                      | LEAD ASSEMBLY: Flexible; complete with terminals.                                                                                                     | Flexible lead to 811 tube                    | Hunter Pres. St1.                                                            | Stewart-Warner 564735               |
| E-117               | 2Z3766-9                                                      | AUTOTUNE HEAD: Multiturn unit; complete with knobs, revolution counter and locking device.                                                            | Control "B"                                  | Sheaffer Pen<br>96K-1<br>Collins Radio<br>96K-1<br>Gen. Instrument<br>W320-5 | Stewart-Warner<br>564080            |
| E-118               | 2Z3766-8                                                      | AUTOTUNE HEAD: Singleturn unit; complete with knob and locking device.                                                                                | Control "A"                                  | Sheaffer Pen<br>96J-4<br>Collins Radio<br>96J-4<br>Gen. Instrument<br>W320-4 | Stewart-Warner<br>564080            |
| E-119               | 2Z3766-7                                                      | AUTOTUNE HEAD: Singleturn unit; complete with knob and locking device.                                                                                | Control "D"                                  | Gen. Instrument<br>W320-1<br>Collins Radio<br>96J-1<br>Sheaffer Pen<br>96J-1 | Stewart-Warner<br>564070            |
| E-120               | 2Z3766-11                                                     | AUTOTUNE HEAD: Singleturn unit; complete with knob and locking device.                                                                                | Control "C"                                  | Collins Radio<br>96J-2<br>Sheaffer Pen<br>96J-2<br>Gen. Instrument<br>W320-2 | Stewart-Warner<br>564060            |

| Stewart-Warner<br>564050                                                           | Stewart-Warner<br>564434                                                                  | Stewart-Warner 564307                                            | Stewart-Warner 564073                                           | Stewart-Warner 564418                                           | Stewart-Warner 564753                                                                                                            | Stewart-Warner 564115                                       | Stewart-Warner 564356                                                                     | Stewart-Warner 564313                   | Stewart-Warner<br>564398                                             |                           |                                       |                                    |                                          | Stewart-Warner 564125                              | Stewart-Warner 564171                                                                   | Stewart-Warner 564162                                                                | Stewart-Warner 564108                                                     | Stewart-Warner 565678       | Stewart-Warner<br>565680   | Stewart-Warner 565674       | Stewart-Warner<br>565676   |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|---------------------------|---------------------------------------|------------------------------------|------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|
| Collins Radio<br>96J-3<br>Sheaffer Pen<br>96J-3<br>Gen. Instrument                 | Crown Cork Spec.<br>NGA-1208B                                                             | Lavelle Rubber<br>11-427                                         | Atlantic India Rubber<br>Co. 54-9                               | Canfield Rubber<br>1975                                         | Chicago Die Mld.                                                                                                                 |                                                             | H. B. Jones 4-1-W1                                                                        | Hartford Steel Ball<br>Company          | Ferrocart Inc.<br>S-614-70BR<br>Stackpole<br>C-9263                  |                           | Emerson Elec. Co. 96254.A             | Ohio Elec. Co.<br>D3689            | Fractional Mtr.<br>FF825                 |                                                    |                                                                                         |                                                                                      |                                                                           | Sheaffer Pen Co.<br>1069B-2 | Sheaffer Pen Co.<br>X-5524 | Sheaffer Pen Co.<br>1072B-2 | Sheaffer Pen Co.<br>X-5586 |
| Control "E"                                                                        | For X-101, X-102,<br>X-103, X-105 and<br>X-106                                            |                                                                  |                                                                 |                                                                 | Various switch knobs                                                                                                             | Part of switch S-113-A                                      | H.F.O. terminal board                                                                     | C-125 stator insulator                  | Tuning slug for L-105                                                | Tuning slug for L-106     | Brush holder cap                      | Brush holder cap                   | Brush holder cap                         | Part of switch S-113                               | Part of switch S-113                                                                    | Part of switch S-113                                                                 | Part of switch S-113                                                      | Control "A"                 | Control "B"                | Control "C"                 | Control "D"                |
| AUTOTUNE HEAD: Singleturn unit; complete with knob Control "E" and locking device. | CLAMP, TUBE: Stainless steel; two 17/64" x 11/64" mounting slots; 1.25/32" between mtg/c. | GROMMET: Rubber; O.D. 2"; I.D. 1-7/32"; to fit 1-1/2" dia. hole. | GROMMET: Rubber; O.D. 11/32"; I.D. 1/8"; to fit 1/4" dia. hole. | GROMMET: Rubber; O.D. 9/16"; I.D. 9/32"; to fit 3/8" dia. hole. | KNOB: Complete with H-2601 set screw; black bakelite; overall dimensions $1-1/8^n \times 3/4^n \times 11/16^n$ ; same as E-2605. | CONTACT ARM ASSEMBLY: Complete with spring, collar and pin. | ERMINAL: Bakelite; $1-13/16^{\pi} \times 3/8^{\pi} \times 1/8^{\pi}$ ; four ng terminals. | artz or pyrex glass; 0.625" dia. 0.751" | IRON CORE: 1·1/2" x 0.312"; No. 6-32 brass mounting stud<br>1" long. | IRON CORE: Same as E-130. | CAP, BRUSH HOLDER: For Emerson motor. | CAP, BRUSH HOLDER: For Ohio motor. | CAP, BRUSH HOLDER: For Fractional motor. | ROTOR ASSEMBLY: Steel shaft with 11 bakelite cams. | FRONT PLATE: Mycalex or equivalent; $4.160^{\circ}$ x $3.1/8^{\circ}$ x $1/8^{\circ}$ . | CONTACT ASSEMBLY: Consisting of five rocker arm contacts and mycalex mounting board. | CONTACT ASSEMBLY: Consisting of six leaf contact arms and mounting board. | DIAL: Knob.                 | DIAL: Knob.                | DIAL: Knob.                 | DIAL: Knob.                |
| 2Z3766-10                                                                          | 2Z2636-83                                                                                 | 624875.5                                                         | 6Z4914                                                          | 6Z4876-3                                                        | 2Z5843.12                                                                                                                        | #                                                           | 2Z9404.152                                                                                | #                                       | 2Z3262-6                                                             | 2Z3262-6                  | *                                     | #                                  | #                                        | #                                                  | #                                                                                       | #                                                                                    | #                                                                         | 2Z3724.30                   | 2Z3720-4                   | 2 <b>Z</b> 372 <b>4</b> .31 | 2 <b>Z</b> 3718-53         |
| E-121                                                                              | E-122                                                                                     | E-123                                                            | E-124                                                           | E-125                                                           | E-126                                                                                                                            | E-127                                                       | E-128                                                                                     | E-129                                   | E-130                                                                | E-131                     | E-132                                 | E-133                              | E-134                                    | E-135                                              | E-136                                                                                   | E-137                                                                                | E-138                                                                     | E-139                       | E-140                      | E-141                       | E-142                      |

| SOUTH RADIO INVIDENTION |                                                               |                                                                                                                  |                                               |                                                                |                                     |
|-------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|-------------------------------------|
| Reference               | Army Stock Number<br>Navy Stock Number<br>British Ref. Number | Name of Part and Description                                                                                     | Function                                      | Mfr. and Desig.<br>or Standard Type                            | Cont. or Govt.<br>Dwg. or Spec. No. |
| E-143                   | 2Z3766-1                                                      |                                                                                                                  | Control "E"                                   | Sheaffer Pen Co.<br>X.5796                                     | Stewart-Warner<br>565672            |
| E-144                   | *                                                             | DIAL: Revolution counter.                                                                                        | For Control "B"                               | Sheaffer Pen Co.<br>X-5527                                     |                                     |
| E-145                   | *                                                             | KNOB.                                                                                                            | For CORRECTOR on control "B"                  | Sheaffer Pen Co.<br>X-5531                                     |                                     |
| E-146                   | #                                                             | DISC, LOCKING ASSEMBLY.                                                                                          |                                               | Sheaffer Pen Co.<br>X-5620                                     |                                     |
| H-101                   | 6R55231                                                       | O: Multiple spline; 6 flutes; for No. 8                                                                          | Socket screw, wrench                          | Supplies Inc.                                                  | Stewart-Warner<br>564259            |
| H-102                   | 6RK55230-10                                                   | WRENCH, BRISTO: Multiple spline; 6 flutes for No. 10 Rrieto set screw.                                           | Socket screw, wrench                          | Supplies Inc.                                                  | Stewart-Warner<br>564260            |
| H-103                   | 6RK55232                                                      | O: Multiple spline; 6 flutes; for No. 4                                                                          | Socket screw, wrench                          | Supplies Inc.<br>Bristol Mfg. Co.                              | Stewart-Warner<br>564257            |
| H-104                   | 6R55230                                                       | O: Multiple spline; 6 flutes; for No. 6                                                                          | Socket screw, wrench                          | Supplies Inc.                                                  | Stewart-Warner<br>564258            |
| H-105                   | 6R18338-1                                                     | Bristo set screw. SCREW DRIVER, PHILLIPS: L shape; No. 1 Phillips head on each end; $3 \cdot 1/4^n \times 1^n$ . | Phillips screw driver                         | Apex Mach.<br>No. 721 Spec.<br>Rosenberg Bros.<br>No. 1 Offset | Stewart-Warner<br>564261            |
| H-106                   | 6R18338                                                       | SCREW DRIVER, PHILLIPS: L shape; No. 2 Phillips head on each end; 4" x 1-5/16".                                  | Phillips screw driver                         | Apex Mach.<br>No. 722 Spec.<br>Rosenberg Bros.<br>No. 2 Offset | Stewart-Warner<br>564262            |
| H-107                   | 2C6900-47/C9                                                  | CRANK: $1.7/16'' \times 1.3/8'' \times 1/2''$ ; steel.                                                           | For checking and adjusting Autotune mechanism |                                                                | Stewart-Warner<br>565090            |
| H-108                   | 6R57512                                                       | WRENCH: Approx. 2-3/4" x 1/2" x 0.075"; bent at 30° angle,                                                       | C-125 adjusting wrench                        | Gen. Eng. & Mfg.<br>Job No. 2729                               | Stewart-Warner<br>564274            |
| H-109                   | 6R57511                                                       | wren. WRENCH: Approx. $3-1/8'' \times 0.828'' \times 0.060''$ ; bent at $20^{\circ}$                             | C-125 rotor adjusting wrench                  |                                                                | Stewart-Warner<br>564287            |
| H-110                   |                                                               | angle; steet. SHOCK MOUNT: Left; complete with knob assembly and                                                 | Used on transmitter                           |                                                                | Stewart-Warner 564920               |
| H-111                   |                                                               | latch. SHOCK MOUNT: Right; complete with knob assembly and                                                       | Used on transmitter                           |                                                                | Stewart-Warner<br>564910            |
| <b>I</b> -101           | 2Z5938                                                        | LAMP: Bayonet base 3/8" dia.; clear glass; overall dimen-                                                        | Indicating lamp                               | General Elec.<br>3-1/4 Cat. No. 313                            | Stewart-Warner<br>564022            |

| J-101            | 2Z5534A             | JACK: Phone; midget size; single circuit; to fit plug with 1/4" barrel; two solder lug terminals.                                                                                                                        | Jack for throttle switch<br>plug                      | Natl. Fab. Prod.<br>JK 34-A<br>Mallory<br>B-116849       | Stewart-Warner<br>564692 |
|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--------------------------|
| J-102            | 2Z5533A             | JACK: Phone; midget; three circuit; to fit plug with 3/16" barrel; overall dimensions 1-3/16" x 29/32" dia.; 3 solder lug terminals.                                                                                     | Jack for microphone<br>plug                           | Natl. Fab. Prod.<br>JK-33A<br>Mallory SC1A               | Stewart-Warner<br>564023 |
| J-103 、<br>J-104 | 2Z5534A<br>2Z5534A  | JACK: Same as J-101.<br>JACK: Same as J-101.                                                                                                                                                                             | Jack for key plug<br>Jack for Side Tone<br>No. 1 plug |                                                          |                          |
| J-105            | 2Z5534A             | JACK: Same as J·101.                                                                                                                                                                                                     | Jack for Side Tone<br>No. 2 plug                      |                                                          |                          |
| J-106            | 2Z8697.4            | CONNECTOR: Female; 27 pin; wall mounting type by four 0.169" dia. holes; all contacts rated 10 amperes; overall dimensions $1.5/16'' \times 1.5/16'' \times 1.5/64''$ thk.                                               | Connector to pilot's control box cable                | Cannon Elec. Dev.<br>RNK-27-31SL-3, 4                    | Stewart-Warner<br>564764 |
| J-107            | 2Z8673.46           | CONNECTOR: Female; 3 pin; wall mounting type by four 0.144" dia. holes; two contacts rated 10 amperes; overall dimensions 1-5/16" x 1-5/16" x 1-9/64" thk.                                                               | 28 volt supply con-<br>nector to loading<br>coil.     | Cannon Elec. Dev.<br>RWK-C3-31SL-3, 4                    | Stewart-Warner<br>564763 |
| J-108            | 2 <b>Z</b> 7120.13  | CONNECTOR: Male; 10 pin; wall mounting type by four 0.144" dia. holes; two contacts rated 15 amperes; 8 contacts rated 10 amperes; screw-on lock; overall dimensions 1.7/8" x 1.7/8" x 29/32" thk.                       | Connector to power<br>unit cable                      | Cannon Elec. Dev.<br>FK-10-32S-3, 5                      | Stewart-Warner<br>564762 |
| J-109            | 3 <b>Z</b> 741-13.1 | POST, BINDING: Push type; accommodates a 0.110" dia. wire; overall dimensions 1.13/32" x 1/2" dia.; black bakelite cap; supplied with keying pin.                                                                        | Binding post marked "ANT"                             | H. H. Eby Co.<br>7247                                    | Stewart-Warner<br>564296 |
| J-110            |                     | POST, BINDING: Push type; accommodates a 0.110" dia. wire; 2-1/16" x 1/2" dia.; black bakelite cap; keyed.                                                                                                               | Binding post marked "RECEIVER"                        | H. H. Eby Co. 7310                                       | Stewart-Warner 564297    |
| J-111            | 2Z8639.15           | CONNECTOR: Female; 8 terminal; terminal numbers on both sides of connector; molded case; dimensions 1-1/4" x 11/16" x 1/2"; two mounting feet with a 0.146" hole 1" between mtg/c; solder lug terminals.                 | Connector for C.F.I. unit                             | H. B. Jones<br>S-308-AB<br>A. W. Franklin<br>40A7        | Stewart-Warner<br>564806 |
| J-112            | <b>2Z</b> 7403-3    | CONNECTOR: Female; 12 terminal; terminal numbers on both sides of connector; molded case; dimensions 1-1/4" x 15/16" x 1/2"; two mounting feer each with a 0.146" dia. hole, 1-1/4" between mtg/c; solder lug terminals. | Connector for audio<br>amplifier unit                 | H. B. Jones<br>S-312-AB-W1<br>A. W. Franklin<br>40A4     | Stewart-Warner<br>564677 |
| J-113            | 3Z737-32            | POST, BINDING: Push type; accommodates a 0.110" dia. wire; black bakelite cap; 13/16" x 1/2" dia.; keying pin.                                                                                                           | Binding post marked<br>"GROUND"                       | H. H. Eby Co.<br>62KD<br>Soreng-Mangold<br>10,000 series | Stewart-Warner<br>564228 |
| J-114            | 2Z8639-16           | CONNECTOR: Female; 6 terminals; terminal numbers on both sides of connector; molded case 1" x 11/16" x 9/16"; two mounting feet each with a 0.146" dia. hole, 1" between mtg/c; solder lug terminals.                    | Connector to L.F.O.<br>unit                           | H. B. Jones<br>S-306-AB-W1<br>A. W. Franklin<br>S-306 AB | Stewart-Warner<br>564678 |
| J-115            | 2Z3032-6            | CONNECTOR: Male; octal; 12 pins; pins numbered; molded body; overall dimensions $1-1/32'' \times 1-3/32''$ dia.                                                                                                          | Male connector to<br>multiplier unit                  | Amer. Phenolic 70-12                                     | Stewart-Warner<br>564804 |
| J-116            | 2 <b>Z</b> 8685     | CONNECTOR: Female; 15 terminals; terminal numbers on both sides of connector; molded case 1-5/8" x 1" x 1/2"; two mounting feet each with a 0.146" dia. hole 1-3/8" between mtg/c; solder lug terminals.                 | Connector to keying<br>relay K·102                    | H. B. Jones<br>S-315-AB<br>A. W. Franklin<br>40A6        | Stewart-Warner<br>564805 |
| J-117            | 3Z741-13            | POST, BINDING: Push type; accommodates a 0.110" dia. wire; 2-3/8" x 1/2" dia; black bakelite cap; keyed.                                                                                                                 | Binding post marked "LOAD COIL"                       | H. H. Eby Co.<br>7311                                    | Stewart-Warner<br>564295 |

| MODEL: RJ           | MODEL: RADIO TRANSMITTING SET                                 | IG SET AN/ART-13A                                                                                                                                                                                                                                                                                                                                                        | MAJOR ASSEMBLY                    | MAJOR ASSEMBLY: RADIO TRANSMITTER T-47A/ART-13                                                                                     | IER T-47A/ART-13                    |
|---------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Reference<br>Symbol | Army Stock Number<br>Navy Stock Number<br>British Ref. Number | Name of Part and Description                                                                                                                                                                                                                                                                                                                                             | Function                          | Mfr. and Desig.<br>or Standard Type                                                                                                | Cont. or Govt.<br>Dwg. or Spec. No. |
| J-118               | 3Z741-13.1                                                    | POST, BINDING: Same as J-109.                                                                                                                                                                                                                                                                                                                                            | Binding post marked "COND"        |                                                                                                                                    |                                     |
| K-101               | 2Z7592-41                                                     | RELAY: 3 pole double throw; contacts rated 15 amperes, 28 volts; continuous non-inductive load; nominal coil voltage 28 volts D.C.; coil resistance 130 ohms min.; overall dimensions 2-11/32" x 1-3/4" x 1-11/16"; base has four 0.152" dia. mounting holes, 1.375" between mtg/c; solder lug terminals.                                                                | Motor reversing relay             | Leach Relay Co. 2069 Graybar Elec. Guardian Elec. G-36458 G.M. Laboratories                                                        | Stewart-Warner<br>564532            |
| K-102               | 2Z7595-7                                                      | RELAY: Three S.P.S.T., contacts normally open; one S.P.S.T., contacts normally closed; two S.P.D.T., and one S.P.D.T. vacuum switch; nominal coil voltage 28 volts D.C.; coil resistance 2 coils each 27 ohms in series; all contacts rated 28 volts, 8 amperes continuous non-inductive load; complete with vacuum switch S-116.                                        | Keying relay                      | R.B.M. Mfg. Co. No. 30,000 Guardian Elec. G-36456 Potter & Brumfield Mfg. Co. KVS-630 John W. Clark 78CCA Struthers-Dunn 78CC A101 | Stewart-Warner<br>564699            |
| K-103               | 2Z7592-42                                                     | RELAY: 2 P.D.T.; one auxiliary pole normally open; coil voltage 28 volts D.C. nominal; coil resistance 115 ohms min.; main contacts rated 12 amperes, 28 volts D.C. continuous non-inductive load; auxiliary contacts 8 amperes, 28 volts D.C. continuous non-inductive load; overall dimensions 3-5/32" x 1-3/4" x 1-13/16"; base has 4 tapped No. 8-32 mounting holes. | C.W. emission relay               | Allied Control HRX-9-D-35 Leach Relay Co. 1067-ABFW Guardian Elec. G-36459 G.E. No. CR2791D105F3                                   | Stewart-Warner<br>564651            |
| K-104               | 2Z7589-85                                                     | RELAY: 2 P.D.T.; coil voltage nominal 28 volts D.C.; coil resistance 135 ohms min.; contacts rated 12 amperes 28 volts D.C. continuous non-inductive load; overall dimensions 2-3/4" x 1-5/8" x 1-9/16"; base has four No. 8-32 tapped mounting holes 2.375" x 0.625" between mtg/c; solder lug terminals.                                                               | Voice emission relay              | Leach Relay Co.<br>1087-W<br>Graybar Elec.<br>HRX-1<br>Guardian Elec.<br>G-36457                                                   | Stewart-Warner<br>564533            |
| K-105               | 2Z7592-45                                                     | RELAY: 6-1/32" x 3-1/8" x 1-31/32"; two coils in series, each 30 ohms resistance; two tapped No. 8-32 mounting holes, 0.937" between mtg/c.                                                                                                                                                                                                                              | Output circuit<br>selecting relay | R.B.M. Mfg. Co.<br>30200<br>Guardian Elec.<br>G-36427-E                                                                            | Stewart-Warner<br>564930            |
| L-101               | 2C6900-47/C2                                                  | COII.: Oscillator; complete with tuning slug; operated by "B" dial; ceramic coil form 3-7/8" x 1-3/8" dia.; rust-proofed iron core slug 1-1/2" x 0.682"; two terminal pins.                                                                                                                                                                                              | H.F. oscillator coil              | Aladdin Radio<br>49-155<br>F. W. Sickles                                                                                           | Stewart-Warner<br>564444            |

| Stewart-Warner<br>564609                                                                                                                                                                                                             | Stewart-Warner<br>564520                              | Stewart-Warner<br>564620                                                                                                                           | Stewart-Warner<br>564620                                                                                                                           | Stewart-Warner<br>564637                                                                                                                            | Stewart-Warner<br>564628                                                                                                                                                                          | Stewart-Warner<br>564527                                                                                                                         | Stewart-Warner<br>564627                                        | Stewart-Warner<br>564770                                               | Stewart-Warner<br>564190                                                                                                                                                   | Stewart-Warner<br>564182                                                                                                                                                                                          |                                    | Stewart-Warner<br>564633                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E. I. Guthman<br>30-521<br>National Co.<br>R-100U                                                                                                                                                                                    | E. I. Guthman<br>30-5218<br>Standard Winding<br>A-546 | Stewart-Warner<br>564625<br>General-Electric<br>ML-7470068G-1                                                                                      | Stewart-Warner<br>564620<br>General-Electric<br>ML-7470067G-1                                                                                      | National Co. Inc.<br>R-100<br>E. I. Guthman<br>30-5222                                                                                              | Stewart-Warner<br>564628<br>General-Electric<br>ML-7891579-1                                                                                                                                      | Standard Winding A 554 E. I. Guthman 30-5219                                                                                                     | Stewart-Warner<br>564627<br>General-Electric<br>ML-7890826-1    | Centralab<br>40.001<br>Hammerlund                                      | Soreng-Mangold<br>11603B                                                                                                                                                   | Stewart-Warner<br>564182<br>General-Electric<br>ML-7891326-1                                                                                                                                                      |                                    | Standard Windg. A-545-1 E. I. Guthman 30-5220 National Co. R-300U                                                                                                                                                                                     |
| H.F. oscillator<br>cathode R.F. choke<br>H.F. oscillator screen                                                                                                                                                                      | grid R.F. choke H.F. oscillator plate feed choke      | V-102 plate tuning coil                                                                                                                            | V-103 plate tuning coil                                                                                                                            | P.A. grid feed choke                                                                                                                                | P.A. plate feed choke                                                                                                                                                                             | P.A. plate feed choke                                                                                                                            | Output network static<br>drain choke                            | P.A. plate tank inductor control "D"                                   | Antenna loading<br>inductor                                                                                                                                                | P.A. plate tank<br>padding inductor                                                                                                                                                                               | 1st multiplier plate<br>feed choke | H.F. noise filter choke                                                                                                                                                                                                                               |
| COIL, CHOKE R.F.: 4 pie universal winding; No. 36 S.S.E. wire; dimensions 1-15/16" x 1/2" dia.; 2.5 millihenries inductance at 1000 C.P.S. in air, single mounting hole tapped for No. 6-32 screw; terminals, two brass cotter pins. | ersal wound; inductance<br>microhenries; 15/16" x     | COIL, R.F.; 9 turns No. 24 D.E. copper wire; bakelite coil form; 1-9/16" x 7/8" dia.; two No. 4-40 screw terminals; three No. 6-32 mounting holes. | COIL, R.F.: 28 turns No. 24 D.E. copper wire; bakelite coil form; 1-7/8" x 7/8" dia.; two No. 4-40 screw terminals; three No. 6-32 mounting holes. | COIL, CHOKE R.F.: 4 pie, universal winding; inductance 2.5 millihenries in air at 1000 C.P.S.; resonance 2400 Kc; dimensions 2" x 1/2"; wire leads. | COIL, CHOKE R.F.: 175 turns; single layer; ceramic coil lorm; 5-5/8" x 1-7/16" dia.; inductance 91 microhenries in air at 1000 C.P.S.; two No. 6-32 tapped holes for mounting; two terminal pins. | to pie universal winding; inductance 6 at 1000 C.P.S. No. 30 S.S.E. wire; overall 1, 16" dia.; single No. 6-32 tapped mount-older lug terminals. | S.E. wire; inductance 16"; single No. 6-32 band type terminals. | VARIOMETER: Furnished complete (rotor and stator coils) with coupling. | COII.: Antenna loading; 43 turns No. 14 tinned copper wire; 5 taps; ceramic core 4-5/16" x 2-1/2" dia.; four No. 8-32 tapped mounting holes in base; solder lug terminals. | COII: Padding inductor; single layer; 15 turns No. 16 tinned copper wire; inductance 2 microhenries; ceramic coil form 1-5/8" x 3/4" dia.; two mounting holes in each end tapped for No. 6-32 screws; wire leads. | COIL, CHOKE R.F.: Same as L-102.   | COIL, CHOKE R.F.: Three pie universal winding; No. 32 S.S.E. wire; inductance 1.0 millihenry ±10% in air at 1000 C.P.S.; overall dimensions 1-15/16" x 1/2" dia.; ceramic core; single No. 6-32 tapped mounting hole; two brass cotter pin terminals. |
| 3C326-100.1                                                                                                                                                                                                                          | 3C3 <b>57-18</b>                                      | 2C6900-47/C3                                                                                                                                       | 2C6900-47/C4                                                                                                                                       | 3C326-100                                                                                                                                           | 3C357-27                                                                                                                                                                                          | 3C57-20                                                                                                                                          | 3C357-22                                                        | 3C2527                                                                 | 2C6900-47/C13                                                                                                                                                              | 2C6900-47/C12                                                                                                                                                                                                     | 3C326-100.1                        | 3C326-300.1                                                                                                                                                                                                                                           |
| L102                                                                                                                                                                                                                                 | L-104                                                 | L-105                                                                                                                                              | L186                                                                                                                                               | L-107                                                                                                                                               | L-108                                                                                                                                                                                             | L-109                                                                                                                                            | L-110                                                           | L-112                                                                  | L-113                                                                                                                                                                      | L-114                                                                                                                                                                                                             | L-115                              | L-116                                                                                                                                                                                                                                                 |

| MODEL: R            | ADIO TRANSMITTI                                               | MODEL: RADIO TRANSMITTING SET AN/ART-13A                                                                                                                                                                                                                                                                    | MAJOR ASSEMBLY                          | MAJOR ASSEMBLY: RADIO TRANSMITTER T-47A/ART-13                                | ER T-47A/ART-13                     |
|---------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|-------------------------------------|
| Reference<br>Symbol | Army Stock Number<br>Navy Stock Number<br>British Ref. Number | Name of Part and Description                                                                                                                                                                                                                                                                                | Function                                | Mfr. and Desig.<br>or Standard Type                                           | Cont. or Govt.<br>Dwg. or Spec. No. |
| L-117               | 3C326-300.1                                                   | COIL, CHOKE R.F.: Same as L-116.                                                                                                                                                                                                                                                                            | Screen grid filter for multiplier tubes |                                                                               |                                     |
| M-101               | 3F1005-43                                                     | METER: Antenna current; internal thermocouple; R.F.; frequency range 0-20 Mc; 0-0.25 ampere; expanded scale characteristics; 0-5 scale; 20 times normal scale; moulded phenolic case 1.980" x 2.210" dia.; flange 2.695" dia.; furnished with three No. 4-40 mounting bolts; two No. 1/4-28 terminal bolts. | Antenna current<br>ammeter              | Weston Electric<br>507TH-MA250-<br>MASC-0-5<br>General-Electric<br>8DW52AAR84 | Stewart-Warner<br>564749            |
| M-102               | 3F6299-2                                                      | METER: D.C. milliammeter; 0-1 milliamperes ±2%; resistance 42 ohms ±20%; special scale marked P.A. PLATE, P.A. GRID, BATTERY; moulded phenolic case 1.980" x 2.210" dia.; flange 2.695" dia.; furnished with three No. 4-40 mounting bolts; two No. 1/4-28 terminal bolts.                                  | Voltage and current<br>indicating meter | General-Electric<br>8DW 51ADK 84<br>Weston<br>506MALMADGSC-<br>0-200          | Stewart-Warner<br>564751            |
| O-101               | 2C6900-47A/1                                                  | MAIN LINE-SHAFT ASSEMBLY: Includes shaft, thrust bearings, worm gears, sprocket and taper groove pins; parts wired together, must be assembled in the field.                                                                                                                                                | Main line shaft                         | Stewart-Warner<br>565480<br>General Electric<br>M-7472216                     | Stewart-Warner<br>565480            |
| O-102               | 2C6900-47A/4                                                  | SPROCKET, MOTOR: With one No. H-112 set screw, stainless steel; 0.901" dia. x 3/8" thick.                                                                                                                                                                                                                   | B-101 motor sprocket                    | Link Belt Co.,<br>ES-15730, ES-12379,<br>Morse Chain Co.<br>DB-17118          | Stewart-Warner<br>564895            |
| O-103               | 2C6900-47A/9                                                  | CHAIN, AUTOTUNE DRIVE: Stainless steel or monel metal.                                                                                                                                                                                                                                                      | Connects B-101 to<br>main line-shaft    | Link Belt Co.<br>ES-12381<br>Morse Chain Co.<br>18-170S                       | Stewart-Warner<br>564276            |
| 0.104               | **                                                            | DIAL, LOCKING BAR.                                                                                                                                                                                                                                                                                          | One multiturn, Auto-<br>tune head       | Sheaffer Pen<br>X 5525                                                        | Stewart-Warner<br>564644            |
| O-10\$              | 2C6900-47A/8                                                  | MULTITURN LINE-SHAFT ASSEMBLY: Includes shaft, thrust bearings, worm gears and taper groove pins; parts wired together, must be assembled in the field.                                                                                                                                                     | In multiturn, Autotune<br>head          | Stewart-Warner<br>565598<br>General Electric                                  | Stewart-Warner<br>565598            |
| O-106               | *                                                             | BEARING: Oilite, 0.375" x 0.314" dia.; I.D. 0.189".                                                                                                                                                                                                                                                         | LINE-SHAFT bearing.                     | Chrysler Corp. A-339-2 Industrial Sprg. 63-H2                                 | Stewart-Warner<br>564354            |
| P-101               | 2Z3073-4                                                      | CONNECTOR: Octal; female; 12 terminal; black bakelite with moulded-in mounting plate; overall dimensions 1-7/8" x 1-9/32" x 13/16"; two 5/32" dia. mounting holes 1-1/2" between mtg/c; solder lug terminals.                                                                                               | Multiplier unit con-<br>necting plug    | American Phenolic<br>MIP-12M                                                  | Stewart-Warner<br>564519            |
| <b>P</b> -102       | ™k                                                            | CONNECTOR: Male; 15 terminals; molded case; 1-5/8" x 1/2"; two mounting feet each with a 0.146" dia. hole; 1-3/8" between mtg/c.                                                                                                                                                                            | Part of keying relay<br>K-102           |                                                                               |                                     |

|                                                                                                                         |                                                                                                                          |                                                                                                                     |                                             | Stewart-Warner<br>564439                                                                                                                                                                                                                             |                                 |                                                   |                           |                          | Stewart-Warner<br>564743                                                                                                                                                                                                                                   |                                        | Stewart-Warner<br>564435                                                                                                                                                                                                |                          | Stewart-Warner<br>564517                                                                                                                                                                                                                                     | Stewart-Warner<br>564679                                                                                                                                                                                                                                                               | Stewart-Warner<br>564518                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------|---------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JAN Type<br>RC31BF223K                                                                                                  | JAN Type<br>RC31BF104K                                                                                                   | JAN Type<br>RC30BF470M                                                                                              |                                             | Federal Elec. 169<br>Ward-Leonard<br>2" T-20,000-219                                                                                                                                                                                                 |                                 |                                                   |                           |                          | I.R.C. WW-3<br>Shall Cross Mfg.<br>183 A                                                                                                                                                                                                                   |                                        | Federal Elec. 134<br>I.R.C. AB<br>Ohmite 18763                                                                                                                                                                          |                          | Federal Elec. 162<br>Ward-Leonard 2"<br>T-100-219<br>Lectrohm Inc. 25                                                                                                                                                                                        | Federal Elec. 166<br>Ward-Leonard 1-3/4<br>Z-50-236<br>Ohmite Mfg. 18764<br>I.R.C. AB                                                                                                                                                                                                  | Federal Elec. 163 Ward-Leonard 2" T-5000-219 Lectrohm Inc. 2S Ohmite Mfg. Co. 18761                                                                                                                                                                                                           |
| H.F. oscillator grid                                                                                                    | V-102 grid resistor                                                                                                      | V.102 grid parasitic<br>suppressor                                                                                  | V-102 screen grid para-<br>sitic suppressor | V-102 screen grid<br>circuit                                                                                                                                                                                                                         | V-103 grid parasitic suppressor | V-103 grid circuit V-103 screen grid              | V-103 screen grid circuit | V-104 grid circuit       | V-104 grid metering resistor                                                                                                                                                                                                                               | V-104 screen grid parasitic suppressor | K-102 relay filter                                                                                                                                                                                                      | K-102 relay filter       | K-101 relay spark<br>suppressor                                                                                                                                                                                                                              | Filament voltage dropping resistor                                                                                                                                                                                                                                                     | 400 volt supply,<br>bleeder resistor                                                                                                                                                                                                                                                          |
| RESISTOR: Fixed; carbon; 22,000 ohms ±10%; 1 watt; insulated; max. dimensions 1.280" x 0.310"; 1-1/2" axial wire leads. | RESISTOR: Fixed; carbon; 100,000 ohms ±10%; 1 watt; insulated; max. dimensions 1.280" x 0.310"; 1-1/2" axial wire leads. | RESISTOR: Fixed; carbon; 47 ohms ±20%; 1 watt; insulated; max. dimensions 0.718" x 0.280"; 1-1/2" axial wire leads. | RESISTOR: Same as R-103.                    | RESISTOR: Fixed; wire wound; 20,000 ohms ±10%; 13.5 watts in open air; max. voltage 520 volts; max. current 26 milliamperes; brown vitreous enameled; overall dimensions 2" x 1.7/32" x 11/16"; two radial lug terminals each with a 1/8" dia. hole. | RESISTOR: Same as R-103.        | RESISTOR: Same as R-102. RESISTOR: Same as R-103. | RESISTOR: Same as R-105.  | RESISTOR: Same as R-105. | RESISTOR: Fixed; wire wound; 235 ohms ±2%; 1 watt; max. voltage 15.3 volts; 65.2 milliamperes; ceramic form; wound non-inductively with enameled 0.0014" dia. wire; body dimensions 9/16" x 9/16" dia.; 9/64" radial hole for mounting radial solder lugs. | RESISTOR: Same as R-103.               | RESISTOR: Fixed; wire wound; 150 ohms ±20%; 10 watts; max. voltage 38 volts; max. current 258 milliamperes; brown vitreous enameled; 3/16" dia. axial mounting hole; two radial solder lugs each with a 1/8" dia. hole. | RESISTOR: Same as R-113. | RESISTOR: Fixed, wire wound; 100 ohms ±10%; 25 watts; max. voltage 50 volts; max. current 500 milliamperes; brown vitreous enameled; overall dimensions 2" x 1-7/32" x 11/16"; 5/16" axial mounting hole; two radial solder lugs each with a 1/8" dia. hole. | RESISTOR: Fixed; wire wound; 1 ohm ±10%; 10 watts; max. voltage 3 volts; max. current 3.150 milliamperes; brown vireous enameled; overall dimensions 1.3/4" x 11/16" x 3/8"; 3/16" axial mounting hole; radial solder lug terminals each with a 1/8" dia. hole; 1.7/16" between mtg/c. | RESISTOR: Fixed; wire wound; 5000 ohms ±10%; 25 watts; max. voltage 350 volts; max. current 70 milliamperes; brown vitreous enameled; overall dimensions 2" x 1-7/32" x 11/16"; 5/16" axial mounting hole; two radial solder lug terminals each with a 1/8" dia. hole, 1-7/32" between mtg/c. |
| 3RC31BF223K                                                                                                             | 3RC31BF104K                                                                                                              | 3RC30BF470M                                                                                                         | 3RC30BF470M                                 | 3Z6620-102                                                                                                                                                                                                                                           | 3RC30BF470M                     | 3RC31BF104K<br>3RC30BF470M                        | 3Z6620-102                | 326620-102               | 3Z6023E5                                                                                                                                                                                                                                                   | 3RC30BF470M                            | 3Z6015-65                                                                                                                                                                                                               | 3Z6015-65                | 3Z6010-60                                                                                                                                                                                                                                                    | 3Z5991-48                                                                                                                                                                                                                                                                              | 3 <b>Z</b> 6500-103                                                                                                                                                                                                                                                                           |
| R-101                                                                                                                   | R-102                                                                                                                    | R-103                                                                                                               | R-104                                       | R-105                                                                                                                                                                                                                                                | R-106                           | R-107<br>R-108                                    | R-109                     | R-110                    | R-111                                                                                                                                                                                                                                                      | R-112                                  | R-113                                                                                                                                                                                                                   | R-114                    | R-115                                                                                                                                                                                                                                                        | R-116                                                                                                                                                                                                                                                                                  | R-117                                                                                                                                                                                                                                                                                         |

| MODEL: RA           | MODEL: RADIO TRANSMITTING                                     | NG SET AN/ART-13A                                                                                                                                                                                                                                                                                   | MAJOR ASSEMBLY                              | MAJOR ASSEMBLY: RADIO TRANSMITTER T-47A/ART-13                                             | ER T-47A/ART-13                     |
|---------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------|
| Reference<br>Symbol | Army Stock Number<br>Navy Stock Number<br>British Ref. Number | Name of Part and Description                                                                                                                                                                                                                                                                        | Function                                    | Mfr. and Desig.<br>or Standard Type                                                        | Cont. or Govt.<br>Dwg. or Spec. No. |
| R-118               | 3Z6500-103                                                    | RESISTOR: Same as R-117.                                                                                                                                                                                                                                                                            | 400 volt supply,<br>bleeder resistor        |                                                                                            |                                     |
| R-119               | 3Z6500-103                                                    | RESISTOR: Same as R-117.                                                                                                                                                                                                                                                                            | 400 volt supply,<br>bleeder resistor        |                                                                                            |                                     |
| R-120               | 3Z6500-103                                                    | RESISTOR: Same as R-117.                                                                                                                                                                                                                                                                            | 400 volt supply,<br>bleeder resistor        |                                                                                            |                                     |
| R-121               | 3Z5988-2                                                      | RESISTOR: Fixed; wire wound; 0.8 ohms ±10%; 50 watts; max. voltage 6.32 volts; max. current 7900 milliamperes; brown vitreous enameled; overall dimensions 4" x 1-7/32" x 11/16"; 5/16" axial mounting hole; two radial solder lug terminals each with a 1/8" dia. hole 3-17/32" between            | Filament, voltage<br>dropping, resistor     | Federal Elec. 170 Ward-Leonard 4" T.O. 8-219 Ohmite Mfg. Co. 18769 I.R.C. Special D        | Stewart-Warner<br>564440            |
| R-123               | 3Z6001B2-29                                                   | RESISTOR: Fixed; wire wound; 12.6 ohms ±10%; 25 watts; max. voltage 17.75 volts; max. current 1408 milliamperes; brown vitreous enameled; overall dimensions 2" x 1-7/32" x 11/16"; 5/16" axial mounting hole; two radial solder lug terminals; each with a 1/8" dia. hole, 1-17/32" between mtg/c. | Modulator tubes<br>filament shunt           | Federal Elec. 167 Ward-Leonard 2" T-12.6-219 Ohmite Mfg. Co. 18767 I.R.C. D.G.             | Stewart-Warner<br>564437            |
| R-124               | 3 <b>Z</b> 6625-103                                           | RESISTOR: Fixed; wire wound; 25,000 ohms ±10%; 11 watts; max. voltage 53 volts; max. current 24 milliamperes; brown virteous enameled; overall dimensions 2" x 1-7/32" x 11/16"; 5/16" axial mounting hole; two radial solder lug terminals, each with a 1/8" dia. hole, 1-17/32" between mrg/c.    | V-104 screen, voltage<br>dropping, resistor | Federal Elec. 168<br>Ward-Leonard 2"<br>T-25000-219<br>I.R.C. D.G.                         | Stewart-Warner<br>564438            |
| R-128               | 3Z6400-61                                                     | RESISTOR: Fixed; wire wound; 4000 ohms ±2%: 1 watt; max. voltage 63.2 volts; max. current 15.8 milliamperes; 0.014" dia. enameled wire wound non-inductively; ceramic form 9/16" × 9/16" dia.; 9/64" dia. axial mounting hole; two radial solder lue terminals.                                     | M-102 meter<br>multiplier                   | I.R.C. WW-3<br>Shall Cross Mfg.<br>183A                                                    | Stewart-Warner<br>564744            |
| R-129               | 3Z6100-6                                                      | RESISTOR: Fixed; wire wound; 1000 ohms ±10%; 10 watts; max. voltage 100 volts; max. current 100 milliamperes; brown vitreous enameled; overall dimensions 1-3/4" x 11/16" x 3/8"; 3/16" axial mounting hole; two radial solder lug terminals each with a 1/8" dia. hole, 1-7/16" between mtg/c.     | V-103 cathode biasing resistor              | Federal Elec. 164 Ward-Leonard 1-3/4" T-1000-236 Ohmite Mfg. 19095 Lectrohm Inc. 1-3/4" EX | Stewart-Warner<br>564521            |
| R-130               | 3Z6100-6                                                      | RESISTOR: Same as R-129.                                                                                                                                                                                                                                                                            | V-102 cathode biasing resistor              |                                                                                            |                                     |
| R-131               | 3Z6035-17                                                     | RESISTOR: Fixed; wire wound; 350 ohms ±10%; 10 watts; max. voltage 59 volts; max. current 169 milliamperes; brown vitreous enameled; overall dimensions 1.3/4" x 11/16" x 3/8"; 3/16" axial mounting hole; two radial solder lug terminals each with a 1/8" dia. hole; 1.7/16" between mtg/c.       | Oscillator cathode<br>resistor              | Federal Elec. 133 Ward-Leonard 1-3/4" T-350-236 Ohmite Mfg. Co. 18762 I.R.C. AB.           | Stewart-Warner<br>564436            |

| Stewart-Warner<br>564742                                                                                                                                                                                                                                          | Stewart-Warner<br>564681                                                                                                                                                                                                                                                                           | Stewart-Warner<br>564389                                                                                                                                                   | Stewart-Warner<br>564388                                                                                                                                                   |                                        |                                                                                                                              | General Electric<br>ML-7894058-1                                          | Stewart-Warner<br>564445                                                                                  | Stewart-Warner<br>564447                                                                                                                                                | Stewart-Warner<br>564530                                                                                                                                                           | Stewart-Warner<br>564540                                                                                                                                                           | Stewart-Warner<br>564741                                                                                                                                                                 | Stewart-Warner<br>564747                                                                                                                                                      | Stewart-Warner<br>564746                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L.R.C. WW-3<br>Shall Cross 183 A                                                                                                                                                                                                                                  | Federal Elec. 165 Ward-Leonard 1-3/4" Z-50-236 Lectrohm Inc. 1-3/4 EX                                                                                                                                                                                                                              | I.R.C. BW1/2<br>Speer S1-1/2<br>Stackpole CM1/2                                                                                                                            | I.R.C. BW1/2<br>Speer S1-1/2<br>Stackpole CM1/2                                                                                                                            |                                        | JAN Type<br>RC31BF223M                                                                                                       | General Electric<br>ML-7894058-1                                          | Stewart-Warner<br>564445                                                                                  | Stewart-Warner<br>564447                                                                                                                                                | Centralab Z-6723 P. R. Mallory C-160015, TCM-18                                                                                                                                    | Centralab Z-6722<br>P. R. Mallory<br>C-160014, TCM-18                                                                                                                              | Cutler-Hammer 8817                                                                                                                                                                       | Centralab 7373 P. R. Mallory RMC-1-GANG Oak Mfg. Co. 25636-H1C                                                                                                                | Centralab 6418 P. R. Mallory RMC-2-GANG Oak Mfg. Co. 25638-H2C                                                                                                      |
| M-102 meter multiply-<br>ing resistor                                                                                                                                                                                                                             | V-101 filament, voltage dropping resistor                                                                                                                                                                                                                                                          | Radio amplifier input<br>terminating                                                                                                                                       | MCW oscillator<br>cathode                                                                                                                                                  | I-101, voltage drop-<br>ping, resistor | V-104 grid resistor,<br>TUNE position                                                                                        | High frequency oscillator band switch                                     | Part of S-101                                                                                             | Part of S-101                                                                                                                                                           | 1st multiplier plate<br>tank capacitor<br>selecting switch                                                                                                                         | 2nd multiplier plate<br>tank capacitor<br>selecting switch                                                                                                                         | TEST switch                                                                                                                                                                              | Metered circuit<br>selector switch                                                                                                                                            | CALIBRATE-TUNE-<br>OPERATE switch                                                                                                                                   |
| RESISTOR: Fixed; wire wound; 50,000 ohms ±2%; 0.8 watt; max. voltage 200 volts; max. current 4.0 milliamperes; 0.0014" dia. enameled wire wound non-inductively; ceramic form 9/16" x 9/16" dia.; 9/64" dia. axial mounting hole; two axial solder lug terminals. | RESISTOR: Fixed; wire wound; 50 ohms ±10%; 10 watts; max. voltage 22 volts; max. current 447 milliamperes; brown vitreous enameled; overall dimensions 1-3/4" x 11/16" x 3/8"; 3/16" dia. axial mounting hole; two radial solder lug terminals, each with a 1/8" dia. hole, 1-7/16" between mtg/c. | RESISTOR: Fixed, carbon or wire wound; 75 ohms ±10%; 1/2 watt; insulated; max. inductance 4.0 microhenries; max. dimensions 0.655" x 0.249" dia.; 1-1/2" axial wire leads. | RESISTOR: Fixed, carbon or wire wound; 10 ohms ±10%; 1/2 watt; max. inductance 4.0 microhenries; max. dimensions 0.655" x 0.249" dia.; insulated; 1-1/2" axial wire leads. | RESISTOR: Same as R-113.               | RESISTOR: Fixed; carbon; 22,000 ohms $\pm 20\%$ ; 1 watt; max. dimensions 1.280" x 0.310" dia.; two 1-1/2" axial wire leads. | SWITCH: Consists of two parts S-101A and S-101B, operated by control "A". | SWITCH: Moving arm assembly; 1-11/16" x 5/16" x 1/4"; two 0.140" dia. mounting holes, 1/4" between mtg/c. | SWITCH: Stator assembly; bakelite insulating block with beryllium copper contact arm 1-7/16" x 1" approx. 1/4"; two tapped No. 6-32 mounting holes, 3/4" between mtg/c. | SWITCH: Rotary; rotor separate from stator; stator has 18 contacts, ceramic base; rotor has 5 spring contacts, ceramic base, held on shaft by a "C" clip; operated by control "A." | SWITCH: Rotary; rotor separate from stator; stator has 18 contacts; ceramic base, rotor has 4 spring contacts, ceramic base, held on shaft by a "C" clip; operated by control "A." | SWITCH: Toggle, single pole; normally open; must be held "ON" to maintain contact; rated 40 amperes; body dimensions 1-1/8" x 21/32" x 5/8"; single hole mounting; solder lug terminals. | SWITCH: Rotary; 3 position; two circuit; non-shorting; single deck; ceramic; overall dimensions 1.950" max. x 1-5/8" x 1-17/32"; single hole mounting by 3/8-32 threaded hub. | SWITCH: Rotary; 3 position; 5 circuit; shorting; two deck; ceramic; overall dimensions 1.950" max. x 1-5/8" x 2-3/16"; single hole mounting by 3/8-32 threaded hub. |
| 37.6650-130                                                                                                                                                                                                                                                       | 3 <b>Z</b> 6005-64                                                                                                                                                                                                                                                                                 | 3Z6007E5-18                                                                                                                                                                | 3Z6001-3                                                                                                                                                                   | 3Z6015-65                              | 3RC31BF223M                                                                                                                  |                                                                           | 3Z8101/1                                                                                                  | 3 <b>Z</b> 8101/2                                                                                                                                                       | 3Z9903A-20.3                                                                                                                                                                       | 3Z990A-20.2                                                                                                                                                                        | 3 <b>Z</b> 9849.83                                                                                                                                                                       | 3Z9825-62.173                                                                                                                                                                 | 3Z9825-62.177                                                                                                                                                       |
| R-132                                                                                                                                                                                                                                                             | R-133                                                                                                                                                                                                                                                                                              | R-134                                                                                                                                                                      | R-135                                                                                                                                                                      | R-136                                  | R-137                                                                                                                        | S-101                                                                     | S-101A                                                                                                    | S-101B                                                                                                                                                                  | <b>S</b> -102                                                                                                                                                                      | S-103                                                                                                                                                                              | S-104                                                                                                                                                                                    | S-105                                                                                                                                                                         | S-106                                                                                                                                                               |

| MODEL: R  | MODEL: RADIO TRANSMITTING           | SET AN/ART-13A                                                                                                                                                                                                                                             | MAJOR ASSEMBLY:                                                 | MAJOR ASSEMBLY; RADIO TRANSMITTER T-47A/ART-13                             | ER T-47A/ART-13                     |
|-----------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|
| Reference | Army Stock Number Navy Stock Number | Name of Dart and Description                                                                                                                                                                                                                               | Function                                                        | Mfr. and Desig.<br>or Standard Type                                        | Cont. or Govt.<br>Dwg. or Spec. No. |
| S-107     |                                     | SWITCH: Rotary; 2 position; single deck; shorting; ceramic; overall dimensions 1.950" max. x 1-5/8" x 1-17/32"; single hole mounting by 3/8-32 threaded hub.                                                                                               | LOCAL-REMOTE switch                                             | Centralab 7374 P. R. Mallory RMC-1-GANG Oak Mfg. Co. 25635-H1C             | Stewart-Warner<br>564739            |
| S-108     | 3Z9825-62.172 S'                    | SWITCH: Rotary; 12 position; single deck; single circuit; non-shorting; ceramic; overall dimensions 1.950" max. x 1.7/32"; single hole mounting by 3/8-32 threaded hub.                                                                                    | CHANNEL selector<br>switch                                      | P. R. Mallory<br>DWG. B-116833<br>Oak Mfg. Co.<br>25633-H1C                | Stewart-Warner<br>564748            |
| S-109     | 3Z9825-62.180 S                     | SWITCH: Rotary; 12 position; single circuit; one deck; no stop; 2-1/16" x 1-7/8" x 1-5/16"; two tapped No. 6-32 mounting holes, 1-3/4" between mtg/c.                                                                                                      | Autotune motor<br>control                                       | Oak Mfg. Co.<br>27291-DH1                                                  | Stewart-Warner<br>564807            |
| S-110     | 3 <b>Z</b> 9825-62.174 S            | SWITCH: Rotary; 4 position; double deck; 3 circuit; shorting; ceramic; overall dimensions 1-7/8" x 1-5/8" x 2-3/16"; single hole mounting by a 3/8-32 threaded hub.                                                                                        | EMISSION selector<br>switch                                     | Centralab 7361<br>Oak Mfg. Co.<br>27131-H2C<br>P. R. Mallory<br>RMC-2-GANG | Stewart-Warner<br>564016            |
| S-111     | 3Z9589-1 S                          | SWITCH: Toggle action leaf switch; S.P.D.T.; dimensions 1-5/16" x 3/8" x 3/8"; two mounting holes 0.128" dia.; 0.375" between mtg/c; 3 solder lug terminals.                                                                                               | Rear motor control<br>switch on multiturn<br>Autotune Head      | Guardian Elec.<br>CXA-1043<br>Sheaffer Pen Co.                             | Stewart-Warner<br>564971            |
| S-112     | 3Z9589                              | SWITCH: Leaf switch; S.P.S.T.; approx. 1-7/8" x 3/8" x 9/32"; two 0.128" mounting holes, 0.375" between mtg/c, two solder lug terminals.                                                                                                                   | Front motor control<br>switch on multiturn<br>Autotune Head     | Sheaffer Pen Co.<br>Aero Switch Co.                                        | Stewart-Warner<br>565497            |
| S-113     | 3Z9903A-45 S                        | SWITCH AND COIL ASSEMBLY: Complete with L-113, L-114, C-122, C-129, C-124, C-130, S-113A, S-113B, S-113C, S-113D, S-113E, S-113F, S-113G and S-113H; all parts assembled on mounting bracket and wired; operated by control C.                             | Antenna loading<br>assembly                                     | Soreng-Mangold A-11000A General Inst. W321-1 J. P. Seeburg Co. 186P-1      | Stewart-Warner<br>564150            |
| S-113D    | <b>**</b>                           | SWITCH: S.P.S.T. leaf switch complete with bracket; 1-31/32" x 1-1/32" x 3/8"; two solder lug terminals; supplied as part of S-113.                                                                                                                        | Keying relay inter-<br>locking switch                           |                                                                            | Stewart-Warner<br>564177            |
| S-114     | S                                   | SWITCH: Leaf type; consisting of S.P.D.T., S.P.S.T. normally open, S.P.S.T. normally closed; body dimensions 2-1/8" x 1-1/16" x 3/8"; mounting bracket has two No. 6-32 tapped holes, 0.406" between mtg/c; solder lug terminals; operated by control "A." | Low frequency, high<br>frequency oscillator<br>selecting switch | Guardian Elec.<br>CXA-827<br>Aero Switch Co.                               | Stewart-Warner<br>564529            |
| S-115     | 2C6900-47A/14 S                     | SWITCH: Leaf type; S.P.S.T. normally open; two 0.128" diamounting holes 0.375" between mtg/c; solder lug terminals; operated by control "A."                                                                                                               | 2nd multiplier cathode<br>grounding switch                      | Guardian Elec.<br>CXA-825<br>Aero Switch Co.                               | Stewart-Warner<br>564531            |

|                                                                                                         | Stewart-Warner<br>564647                                                                                                                                                                                                                                                                                                                                                                                            | Stewart-Warner<br>564890                                                                                                                                                                                                                 |                                |                                  |                                  |                      |                          |                      | Stewart-Warner<br>564528                                                                                                                           |                        |                        | Stewart-Warner<br>564404                                                                                            | Stewart-Warner<br>564432                                                                                                    |                        |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------|----------------------------------|----------------------|--------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------|
| JAN-S-57;<br>Army Navy<br>Type 1S21                                                                     | Chicago Trans.<br>8800-B-O<br>Standard Trans.<br>124A16<br>General Elec.<br>M-7472230                                                                                                                                                                                                                                                                                                                               | Stewart-Warner<br>564890<br>ML-7470010-1                                                                                                                                                                                                 | JAN Type 837                   | JAN Type 1625                    |                                  | JAN Type 813         | JAN Type 811             |                      | Ucinite 115166 National Fab. 42C1D E. F. Johnson Co. 227N-BC                                                                                       |                        |                        | E. F. Johnson Co.<br>237N-BC<br>Ucinite Co. 115175                                                                  | E. F. Johnson Co.<br>224N-BC<br>Ucinite Co. 115158                                                                          |                        |
| Keying switch                                                                                           | Modulation trans-<br>former                                                                                                                                                                                                                                                                                                                                                                                         | Antenna ammeter<br>coupling transformer                                                                                                                                                                                                  | High frequency oscillator tube | 1st frequency<br>multiplier tube | 2nd frequency<br>multiplier tube | Power amplifier tube | Modulator tube           | Modulator tube       | Socket for V-101'tube                                                                                                                              | Socket for V-102 tube  | Socket for V-103 tube  | Socket for V-104 tube                                                                                               | Socket for V-105 tube                                                                                                       | Socket for V-106 tube  |
| SWITCH: Vacuum; S.P.D.T.; part of relay K-102; 2-29/32" x 2-1/4" x 13/16"; set screw locking terminals. | TRANSFORMER, AUDIO: Modulation; 3 windings; pri. winding center tapped; D.C. resistance pri. (terminals 1-3) 270 ohms, D.C. resistance sec. No. 1 (terminals 4-5) 130 ohms; D.C. resistance sec. No. 2 (terminals 6-7) 170 ohms; hermetically sealed; case dimensions 4.362" x 3.55/64" x 3"; standoff porcelain insulated terminals with No. 8-32 bolts; four 0.218 mounting holes, 3-3/4" x 2-1/4" between mtg/c. | TRANSFORMER, R.F.: Meter coupling; iron core; single turn primary; single turn secondary; ceramic form, max. dimensions 2-5/32" x 2" dia.; secondary has flexible leads with lug terminals; single axial tapped No. 8-32 mounting holes. | TUBE: Beam Pentode.            | TUBE: Beam Pentode.              | TUBE: Same as V-102.             | TUBE: Beam Pentode.  | TUBE: Transmitting tube. | TUBE: Same as V-105. | SOCKET: Tube; 7 terminals; ceramic; 2-5/16" x 1-13/16" x 9/16"; 2 mounting slots in 11/64" x 17/64"; 1-25/32" between mtg/c, solder lug terminals. | SOCKET: Same as X-101. | SOCKET: Same as X-101. | SOCKET: Tube; 7 terminals; ceramic; 2.5/8" x 2.5/8" x 9/16"; four 11/64" dia. mounting holes, 1-7/8" between mtg/c. | SOCKET: Tube; 4 terminals; ceramic; 2-5/16" x 1-11/16" x 9/16"; two mounting slots 11/64" x 17/64"; 1-25/32" between mtg/c. | SOCKET: Same as X-105. |
| 3Z9847-4.5                                                                                              | 2Z9634.38                                                                                                                                                                                                                                                                                                                                                                                                           | 2C6900-47/C1                                                                                                                                                                                                                             | 2]837                          | 2J1625                           | 2J1625                           | 2]813                | 2]811                    | 2]811                | 2Z8677.20                                                                                                                                          | 2Z8677.20              | 2Z8677.20              | 2 <b>Z86</b> 77.19                                                                                                  | 2Z8762                                                                                                                      | 2Z8762                 |
| 8-116                                                                                                   | T-101                                                                                                                                                                                                                                                                                                                                                                                                               | T-102                                                                                                                                                                                                                                    | V.101                          | V-102                            | V.103                            | V-104                | V-105                    | V-106                | X-101                                                                                                                                              | X-102                  | X-103                  | X-104                                                                                                               | X-105                                                                                                                       | X-106                  |

| MODEL: R            | ADIO TRANSMITTIN                                              | MODEL: RADIO TRANSMITTING SET AN/ART-13A                                                                                                                                                                                                              |                                                 | MAJOR ASSEMBLY: AUDIO AMPLIFIER                                              | AUDIO AMPLIFIER                     |
|---------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------|
| Reference<br>Symbol | Army Stock Number<br>Navy Stock Number<br>British Ref. Number | Name of Part and Description                                                                                                                                                                                                                          | Function                                        | Mfr. and Desig.<br>or Standard Type                                          | Cont. or Govt.<br>Dwg. or Spec. No. |
| A-201               | 2C254                                                         | AUDIO AMPLIFIER ASSEMBLY: Furnished as a complete unit minus tubes.                                                                                                                                                                                   | Audio amplifier<br>section                      | Stewart-Warner<br>564250<br>General Flec.<br>ML-7765416-1                    | Stewart-Warner<br>564250            |
| C-201               | 3DB20-19                                                      | CAPACITOR: Electrolytic; 20 microfarads $-10\% + 65\%$ ; 50 volts DCW; sealed case $1\cdot13/16''$ x $1''$ x $3/4''$ ; two mounting feet each with $3/16''$ dia. holes spaced $2\cdot1/8''$ between mtg/c; 2 solder lug terminals spaced $1''$ apart. | Microphone filter                               | P. R. Mallory 95117<br>Cornell-Dubilier<br>AVI-10051<br>Sprague Elec. S 4979 | Stewart-Warner<br>564088            |
| C-202               | 3DA50-161                                                     | CAPACITOR: Same as C-201.                                                                                                                                                                                                                             | Audio amplifier<br>cathode by-pass              |                                                                              |                                     |
| C-203               |                                                               | CAPACITOR: Fixed; paper; 50,000 micromicrofarads ±20%; 600 volts DCW; liquid filled; hermetically sealed; tubular metal container 1-1/4" x 5/8" dia.; 1-3/4" axial wire leads; single mounting bracket with 2-5/32" holes.                            | Audio amplifier screen<br>by-pass               | Cornell-Dubilier<br>MC-8G06<br>John E. Fast<br>Sprague Elec. Co.<br>TYC-GS5  | Stewart-Warner<br>564086            |
| C-204               | 3DA6-21                                                       | CAPACITOR: Fixed; mica; 6000 micromicrofarads ±10%; 750 volts DCW; case 1-13/64" x 1" x 3/8"; two solder lug terminals each with a 0.149" dia. hole spaced 1-3/4" between mtg/c; 2 mounting holes 23/32" between mtg/c.                               | Audio driver grid<br>coupling                   | Sangamo Elec. Co.<br>BEW 15260-B10<br>Cornell-Dubilier<br>140LS              | Stewart-Warner<br>564083            |
| C-205               | 3DA1-104                                                      | CAPACITOR: Fixed; mica; 1000 micromicrofarads ±10%; 750 volts DCW; case 1.13/64" x 3/8"; 2 solder lug terminals each with a 0.147" dia. hole spaced 1.3/4" between mtg/c; two mounting holes 23/32" between mtg/c.                                    | Audio amplifier plate<br>decoupling             | Sangamo Elec. Co.<br>BEW 15210-B10<br>Cornell-Dubilier<br>140LS              | Stewart-Warner<br>564081            |
| C-206               | 3DA3-58                                                       | CAPACITOR: Fixed; mica; 3,000 micromicrofarads ±10%; 750 volts DCW; case 1-13/64" x 3/8"; two solder lug terminals each with a 0.147" dia. hole spaced 1-3/4" between mtg/c; two mounting holes 23/32" between mtg/c.                                 | Audio driver output<br>coupling                 | Sangamo Elec.<br>BEW-15230 B10<br>Cornell-Dubilier 140                       | Stewart-Warner<br>564082            |
| C-207               | 3DA50-161                                                     | CAPACITOR: Same as C-201.                                                                                                                                                                                                                             | Audio driver cathode<br>by-pass                 |                                                                              |                                     |
| C-208               | 3DA50-161                                                     | CAPACITOR: Same as C-201.                                                                                                                                                                                                                             | Sidetone Amplifier cathode coupling             |                                                                              |                                     |
| C-209               | 3DA10-159                                                     | CAPACITOR: Fixed; paper; 10,000 micromicrofarads -20 % +60 %; 400 volts DCW; oil impregnated; molded; 53/64" x 53/64" x 11/32"; 1-1/4" wire leads.                                                                                                    | Modulator Grid radio<br>frequency by-pass       | AWS Type<br>CN35A103                                                         |                                     |
| C-210               | 3DA10-159                                                     | CAPACITOR: Same as C-209.                                                                                                                                                                                                                             | Modulator Grid radio<br>frequency by-pass       |                                                                              |                                     |
| E-201               | 2Z9406.133                                                    | RESISTOR-BOARD: Less resistors; less mounting stand-off; with solder lug terminals; 1-7/8" x 7/8" x 1/8"; bakelite.                                                                                                                                   | Resistor Board for<br>R201, R202, R203,<br>R204 | H. B. Jones 6-1                                                              | Stewart-Warner<br>564054            |

| Stewart-Warner<br>564053                                                                     | Stewart-Warner<br>564011                                                                        | Stewart-Warner 564073                                                                                                                | Stewart-Warner<br>564044                                                                                                                                                      |                                      | Stewart-Warner<br>564048                                                     |                           | Stewart-Warner<br>564042                                                                                              | Stewart-Warner<br>564043                                                       | Stewart-Warner<br>564051                                                                                                                             | Stewart-Warner<br>564097                              | Stewart-Warner<br>564012                   | Stewart-Warner<br>564027                   | Stewart-Warner<br>564094                      | Stewart-Warner<br>564084                                                          |                                                                                                                       |                                                                                                                       |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| H. B. Jones 10-1                                                                             | Dunwell Screw<br>Lincoln Mfg. 10388<br>Selflock Co.                                             | Aluminum Goods<br>04407                                                                                                              | Lincoln Mfg.<br>10390<br>Dunwell Scr. Prod.                                                                                                                                   |                                      | Lincoln Mfg.<br>10392<br>Dunwell Scr. Prod.                                  |                           | Stewart Die Cast.<br>564042<br>Dunwell Scr. Prod.                                                                     | Stewart Die Cast.<br>564043<br>Dunwell Scr. Prod.                              | Crescent Tool<br>& Die Co.                                                                                                                           | Supplies Inc.<br>Bristol Co.                          | Patton McGuyer<br>1013<br>Elastic Stop Nut | Pheoll Mfg.<br>United Bolt Co.             | United Bolt Co.<br>Lincoln Mfg. Co.           | H. B. Jones<br>P-312-AB<br>A. W. Franklin Co.                                     | JAN Type<br>RC30BF221J                                                                                                | JAN Type<br>RC30BF101J                                                                                                |
| Resistor Board for<br>R208, R209, R210,<br>R211, R212                                        | Knob for S-202<br>switch                                                                        | Cover for the four electrolytic condensers                                                                                           | Electrolytic condenser<br>mounting post                                                                                                                                       | Electrolytic condenser mounting post | Resistor board<br>mounting                                                   | Resistor board mounting   | P.201 connector<br>mounting                                                                                           | P-201 connector<br>mounting                                                    | Switch mounting<br>bracket                                                                                                                           | For S-202 switch knob                                 | Used on switch<br>bracket H-208            | S-202 rotary switch mounting               | S-201 toggle switch mounting nut              | Audio amplifier unit<br>connecting plug                                           | Microphone current<br>limiting                                                                                        | Microphone current<br>limiting                                                                                        |
| RESISTOR-BOARD: Less resistors; with solder lug terminals; 1-5/8" x 1-1/4" x 1/8"; bakelite. | KNOB: Brass 3/8" x 7/16" dia.; screw driver slot for turning; 2 tapped No. 6-40 mounting holes. | GROMMET: Same as E-124; two used. COVER: Aluminum; 2.636" x 2-5/8" x 1-9/16"; two 0.156" mounting holes spaced 2.125" between mtg/c. | STAND-OFF: Aluminum; 2.625 x 1/4" x 1/4"; single, tapped No. 6-32 mounting hole at each end, 11/32" deep; two tapped No. 6-32 condenser mounting holes 1.1/32" between mtg/c. | STAND-OFF: Same as H-202.            | STAND-OFF: Aluminum; 7/16" x 1/4" hex; axial, tapped No. 6-32 mounting hole. | STAND-OFF: Same as H-204. | STAND-OFF: Aluminum; 1/2" x 1/2" x 3/8"; one tapped No. 6-32, plug, mounting hole; one tapped No. 8-32 mounting hole. | STAND-OFF: Aluminum; 1.781" x 5/8" x 1/4"; two tapped No. 6-32 mounting holes. | BRACKET: Steel; 3-11/32" x 3/4" x 5/8"; two tapped No. 6-32 mounting holes on one end; two 0.218 mounting holes for two H-210 nuts on the other end. | SCREW: No. 6-40 x 1/8" cup point set screw; two used. | NUT: Special No. 6-32 stop nut; two used.  | NUT: 3/8-32 thread; hexagon; 1/2" x 3/32". | NUT: 15/32-32 thread; hexagon; 9/16" x 3/32". | CONNECTOR: Male; 12 prongs; molded case; case dimensions 1-1/4" x 15/16" x 7/16". | RESISTOR: Fixed; carbon; 220 ohms ±5%; 1 watt; 1-1/2" axial leads; insulated; maximum dimensions 0.718" x 0.280" dia. | RESISTOR: Fixed; carbon; 100 ohms ±5%; 1 watt; 1-1/2" axial leads; insulated; maximum dimensions 0.718" x 0.280" dia. |
| 2Z9410.93                                                                                    | 2Z\$786.36                                                                                      | 6Z4914<br>#                                                                                                                          | **:                                                                                                                                                                           | #                                    | *                                                                            | #                         | *                                                                                                                     | *                                                                              | *                                                                                                                                                    | *                                                     | *                                          | #                                          | *                                             | 2 <b>Z</b> 7122.10                                                                | 3RC30BF221J                                                                                                           | 3RC30BF101J                                                                                                           |
| E-202                                                                                        | E-203                                                                                           | E-204<br>H-201                                                                                                                       | H-202                                                                                                                                                                         | H-203                                | H-204                                                                        | H-205                     | H-206                                                                                                                 | H-207                                                                          | H-208                                                                                                                                                | H-209                                                 | H-210                                      | H-2111                                     | H-212                                         | P-201                                                                             | R-201                                                                                                                 | R-202                                                                                                                 |

|                     |                                                               | available as spare parts and are listed for reference purposes only.                                                                                                                                                                                                                | ice purposes only.                  |                                                                                               |                                     |
|---------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------|
| MODEL:              | MODEL: RADIO TRANSMITTING                                     | NG SET AN/ART-13A                                                                                                                                                                                                                                                                   |                                     | MAJOR ASSEMBLY: AUDIO AMPLIFIER                                                               | AUDIO AMPLIFIER                     |
| Reference<br>Symbol | Army Stock Number<br>Navy Stock Number<br>British Ref. Number | Name of Part and Description                                                                                                                                                                                                                                                        | Function                            | Mfr. and Desig.<br>or Standard Type                                                           | Cont. or Govt.<br>Dwg. or Spec. No. |
| R-203               | 3RC21BF153J                                                   | RESISTOR: Fixed; carbon; 15,000 ohms ±5%; 1/2 watt; 1-1/2" axial leads; insulated; maximum dimensions 0.718" x 0.280" dia.                                                                                                                                                          | Microphone output<br>coupling       | JAN Type<br>RC21BF153J                                                                        |                                     |
| R-204               | 3RC30BF221J                                                   | RESISTOR: Same as R-201.                                                                                                                                                                                                                                                            | T-201 primary terminating resistor  |                                                                                               |                                     |
| R-205               | 3RC21BF474K                                                   | RESISTOR: Fixed; carbon; insulated; 470,000 ohms ±10%; 1/2 watt; 1-1/2" axial leads; max. dimensions 0.655" x 0.249" dia.                                                                                                                                                           | Audio amplifier grid                | JAN Type<br>RC21BF474K                                                                        |                                     |
| R-206               | 3Z6004B2                                                      | WESISTOR: Fixed; 42 ohms ±10%; 10 watts in open air; wire wound; virreous enameled; max. current 490 milliamperes; max. voltage 20.6 volts; two solder lugs each with a 1/8" dia. hole on 1-7/16" mtg/c; overall dimensions 1-3/4" x 11/16" x 3/8"; 3/16" dia. axial mounting hole. | Audio amplińer<br>filament current  | Obmite Mfg. Co. 10 W. Browndevil Federal Electric 126 Ward-Leonard 1-3/4" 7.42 I.R.C., AB-3-B | Stewart-Warner<br>564380            |
| R-207               | 3ZK6220-30                                                    | RESISTOR: Fixed; carbon or wire wound; 2,200 ohms ±10%; 1 watt; insulated; 1/2" axial leads; max. inductance 8.0 microhenries; dimensions 1.280" x 0.310" dia.                                                                                                                      | Audio amplifier<br>cathode          | I.R.C. BW-1<br>A. Bradley<br>GB1                                                              | Stewart-Warner<br>564063            |
| R-208               |                                                               | RESISTOR: Fixed; carbon; 1 megohm ±10%; 1/2 watt; finsulated; 1-1/2" axial leads; max. dimensions 0.655" x 0.249" dia.                                                                                                                                                              | Audio amplifier<br>screen           | JAN Type<br>RC21BF105K                                                                        |                                     |
| R-209               | 3RC21BF224K                                                   | RESISTOR: Fixed; carbon; 220,000 ohms $\pm 10\%$ ; 1/2 watt; 1-1/2" axial leads; max. dimensions 0.655" x 0.249" dia.                                                                                                                                                               | Audio amplifier<br>plate            | JAN Type<br>RC21BF224K                                                                        |                                     |
| R-210               | 3RC21BF474K                                                   | RESISTOR: Same as R-205.                                                                                                                                                                                                                                                            | Audio driver grid                   |                                                                                               |                                     |
| R-211               | 3RC21BF104J                                                   | RESISTOR: Fixed; carbon; 100,000 ohms ±5%; 1/2 watt; S insulated; 1-1/2" axial leads; max. dimensions 0.655" x 0.249" dia.                                                                                                                                                          | Sidetone amplifier grid             | JAN Type<br>RC21BF104J                                                                        |                                     |
| R-212               | 3RC21BF474J                                                   | RESISTOR: Fixed; carbon; 470,000 ohms ±5%; 1/2 watt; S insulated; 1-1/2" axial leads; max. dimensions 0.655" x 0.249" dia.                                                                                                                                                          | Sidetone amplifier grid<br>coupling | JAN Type<br>21BF474J                                                                          |                                     |
| R-213               |                                                               | RESISTOR: Fixed; carbon or wire wound; 750,000 ohms ±5%; 1/2 watt; insulated; 1.1/2" axial leads; max. dimensions 0.655" x 0.249" dia.                                                                                                                                              | Audio driver plate<br>decoupling    | I.R.C. BT 1/2 A. Bradley EB Speer S1-1/2 Stackpole CM-1/2 Erie 524                            | Stewart-Warner<br>564069            |
| R-214               | 3Z6025-76                                                     | RESISTOR: Fixed; carbon or wire wound; 250 ohms ±10%; A 1 watt; insulated; 1-1/2" axial leads; max. inductance 8.0 microhenries; max. dimensions 1.280" x 0.310" dia.                                                                                                               | Audio driver cathode                | I.R.C. BW1<br>A. Bradley<br>GB-1                                                              | Stewart-Warner<br>564062            |

|                               | Stewart-Warner<br>564059                                                                                                                                              | Stewart-Warner<br>564087                                                                                                                    | Stewart-Warner<br>564089                                                                                                                   | Stewart-Warner<br>564394                                                                                                                                                                                                                                                                                                 | Stewart-Warner<br>564392                                                                                                                                                                                                                                                                                                               | Stewart-Warner<br>564393                                                                                                                                                                                                                                                                                                                                                  |                             |                        |                      | Stewart-Warner<br>564085                                                                                |                        |                        |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|----------------------|---------------------------------------------------------------------------------------------------------|------------------------|------------------------|
|                               | I.R.C. BW 1/2<br>A. Bradley<br>GB-1/2                                                                                                                                 | Cutler-Hammer<br>8363 DP-DT<br>Arrow-Hart &<br>Hageman Co.<br>20905-JD-GH<br>General-Electric<br>K-7890670 P-1                              | Mallory 3116<br>B-116839<br>Chgo. Tel. Sup.<br>Oak<br>Mossman                                                                              | Stancor<br>Chicago Trans.<br>10160-0<br>General-Electric<br>M-7472065                                                                                                                                                                                                                                                    | Stancor<br>Chicago Tranf.<br>10170-0<br>General-Electric<br>M-7472064                                                                                                                                                                                                                                                                  | Stancor<br>Chicago Transf.<br>10180-0<br>General-Electric<br>M-7472063                                                                                                                                                                                                                                                                                                    | JAN Type<br>12SJ7           | JAN Type 6V6GT         |                      | Amer. Phenolic<br>88-8M                                                                                 |                        |                        |
| Sidetone amplifier<br>cathode | T-201 primary current<br>limiting                                                                                                                                     | Microphone circuit<br>selector switch                                                                                                       | Sidetone amplifier output control switch                                                                                                   | Audio amplifier<br>input coupling                                                                                                                                                                                                                                                                                        | Audio driver output<br>coupling                                                                                                                                                                                                                                                                                                        | Sidetone amplifier<br>output coupling                                                                                                                                                                                                                                                                                                                                     | Audio pre-amplifier<br>tube | Audio driver tube      | Sidetone amplifier   | Socket for V-202 tube                                                                                   | Socket for V-202 tube  | Socket for V-203 tube  |
| RESISTOR: Same as R-214.      | RESISTOR: Fixed; carbon or wire wound; 220 ohms ±10%; 1/2 watt; insulated; 1-1/2" axial leads; max. inductance 4.0 microhenries; max. dimensions 0.655" x 0.249" dia. | SWITCH: Toggle; D.P.D.T.; 1 ampere 250 volts D.C., or 3 ampere 125 volts D.C.; single hole mounting; overall dimensions 1-9/16" x 5/8" thk. | SWITCH: Rotary; 6 position; 1 pole; shorting type; silver plated contacts; overall dimensions 1-1 4" dia. x 1-9/16"; single hole mounting. | TRANSFORMER, AUDIO: Input; two windings; D.C. resistance primary 10 ohms, secondary 4,000 ohms; max. D.C. current primary one milliampere; shielded; max. case dimensions 2-3/4" x 2-3/32" x 1-25/32"; hermetically sealed; 300-4000 C.P.S.; four 6-32 mounting studs; three solder lug terminals; electrostatic shield. | TRANSFORMER, AUDIO: Interstage driver; 3 windings; D.C. resistance primary max. 300 ohms; D.C. resistance each secondary max. 100 ohms; max. D.C. current primary 30 milliamperes 300-4,000 C.P.S.; max. dimensions 2-3/4" x 2-3/32" x 1-25/32"; four No. 6-32 mounting studs; 6 solder lug terminals; electrostatic shield; shielded. | TRANSFORMER, AUDIO: Sidetone output; two windings; five taps on secondary; D.C. resistance primary 300 ohms; secondary max. 20 ohms; max. primary current 30 milliamperes D.C.; shielded; 300-4,000 C.P.S.; max. case dimensions 2-3/4" x 2-3/32" x 1-25/32"; four No. 6-32 mounting studs; eight solder lug terminals; secondary grounded to case; electrostatic shield. | TUBE: Pentode amplifier.    | TUBE: Beam power tube. | TUBE: Same as V-202. | SOCKET: octal; 8 prongs; black bakelite; mounting plate has two 5/32" dia. holes, 1.312" between mtg/c. | SOCKET: Same as X-201. | SOCKET: Same as X-201. |
| 3Z6025-76                     |                                                                                                                                                                       | 329857.40                                                                                                                                   | 3Z9825-55.66                                                                                                                               | 2Z9631.93                                                                                                                                                                                                                                                                                                                | 2 <b>Z</b> 9636.78                                                                                                                                                                                                                                                                                                                     | 2Z932.327                                                                                                                                                                                                                                                                                                                                                                 | 2J12SJ7                     | 2J6V6GT                | 2J6V6GT              | 2Z8678.187                                                                                              | 2Z8678.187             | 2Z8678.187             |
| R-215                         | R-216                                                                                                                                                                 | S-201                                                                                                                                       | S-202                                                                                                                                      | T-201                                                                                                                                                                                                                                                                                                                    | T-202                                                                                                                                                                                                                                                                                                                                  | T-203                                                                                                                                                                                                                                                                                                                                                                     | V-201                       | V-202                  | V-203                | X-201                                                                                                   | X-202                  | X-203                  |

| MODEL: RJ           | MODEL: RADIO TRANSMITTING                                     | NG SET AN/ART-13A                                                                                                                                                                                        | MAJOR ASSE                                           | MAJOR ASSEMBLY: CONTROL UNIT C-87/ART-13A                            | IIT C-87/ART-13A                    |
|---------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------|
| Reference<br>Symbol | Army Stock Number<br>Navy Stock Number<br>British Ref. Number | Name of Part and Description                                                                                                                                                                             | Function                                             | Mfr. and Desig.<br>or Standard Type                                  | Cont. or Gout.<br>Dwg. or Spec. No. |
| E-601               | 2ZK5991-7                                                     | RECEPTACLE: Ruby jewel lens; 3/8" I.D. miniature bayonet socket; two solder lug terminals; overall dimensions 2-1/4" x 15/16" dia. Same as E-102.                                                        | Pilor's control box<br>pilot light<br>receptacle     | Drake Mfg.<br>Cat. No. 80<br>Dial Lite Co.<br>DVT-90SAD RED          | Stewart-Warner<br>564021            |
| E-602               | 2 <b>Z</b> 5843.12                                            | KNOB: Same as E-126.                                                                                                                                                                                     | Channel selector switch knob                         |                                                                      |                                     |
| E-603               | <b>2Z58</b> 43.12                                             | KNOB: Same as E-126.                                                                                                                                                                                     | Emission selector switch knob                        |                                                                      |                                     |
| I-601               | 2Z5938                                                        | LAMP: Bayonet base; 3/8" dia.; clear glass; overall dimensions 1-1/8" x 7/16" dia. Same as I-101.                                                                                                        | Indicator lamp—<br>pilot's control box               | General-Electric<br>3-1/4 Cat. No. 313                               | Stewart-Warner<br>564022            |
| J-601               | 2Z8697.3                                                      | PLUG: Male; 27 contacts; wall mounting by four 0.144" dia. holes; 1.259" between mtg/c; all contacts rated 10 amperes; overall dimensions 1.5/8" x 1.5/8" x 29/32" thk; threads for locking female plug. | Pilor's control box<br>connecting plug<br>receptacle | Cannon Elec.<br>NK-27-32S-3                                          | Stewart-Warner<br>564020            |
| J-602               | 2Z5533A                                                       | JACK: Midget; 3 circuit; 3 solder lug terminals; overall dimensions 1-3/16" x 29/32" dia.; to fit plug with 3/16" barrel. Same as J-102.                                                                 | Pilot's microphone<br>cord plug receptacle           | National Fab.<br>JK-33A<br>Mallory SC1A                              | Stewart-Warner<br>564023            |
| S-601               | 3Z9825-62.178                                                 | SWITCH: Rotary; one deck; ceramic insulation; 11 position; single hole mounting; overall dimension 1-7/8" x 1-5/8" x 1-21/32".                                                                           | Pilot's channel<br>selector switch                   | Oak Mfg. Co.<br>27130-H1C<br>Centralab 6414<br>Mallory<br>RMC-1-GANG | Stewart-Warner<br>564015            |
| S-602               | 329825-62.174                                                 | SWITCH: Rotary; two deck; ceramic insulation; 4 position; single hole mounting; 3 circuit; overall dimensions 1-7/8" x 1-5/8" x 2-5/16" thk. Same as S-110.                                              | Pilot's emission<br>selector switch                  | Centralab 7361<br>Oak Mfg. Co.<br>27131-H2C                          | Stewart-Warner<br>564016            |
| S-603               | 3Z3602-6                                                      | SWITCH: Telegraph key; plunger type; chassis mounting; overall dimensions 2-59/64" x 1-13/32" x 1-5/16"; two threaded mounting holes No. 4-40, 1-1/2" between mtg/c; solder lug terminals.               | Pilot's telegraph key                                | Guardian Elec.<br>G-36455                                            | Stewart-Warner<br>564019            |
|                     |                                                               |                                                                                                                                                                                                          |                                                      | CONTROL                                                              | L PANEL C-405/A                     |
| E2801               |                                                               | KNOB: bar; black plastic; for 1/4" dia. shaft; two 8-32 set screws; marked with white arrow; 1-1/4" long x 11/16" high.                                                                                  | Channel selector<br>switch knob                      | Telephonics Corp.<br>35025                                           | 47A40527                            |
| E2802               |                                                               | SOCKET: lamp; screw base; 7/16" mtg. hole; accommodates 319, 320 or 321 G.E. lamp.                                                                                                                       | Receptacle for indi-<br>cator lamp                   | Birdwell and McAlister<br>17L9A                                      |                                     |
| E2803               |                                                               | KNOB: Same as E2801.                                                                                                                                                                                     | Emission selector<br>switch knob                     |                                                                      |                                     |

| 49C12551-2                                                                                                                                                                                                                                                 |                                                                                                                   |                                                                                          | 47B40536                         | CU-24/ART-13A     | Stewart-Warner<br>564004                                                                                                                                                                                                                 |                            |                            | Stewart-Warner<br>564003                                  | MAJOR ASSEMBLY: M.C.WC.F.I. | Stewart-Warner<br>564400                                                                                                                 |                                                                                                                                                                 |                                      |                                 | Stewart-Warner<br>564646                                                                                                                 |                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|-----------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                            | G.E. No. 321                                                                                                      | Oak Mfg. Co.<br>34941-H1C                                                                | Oak Mfg. Co.<br>34942-H2C        | NA CAPACITOR UNIT | Solar Mfg.<br>XYAW10-425-10<br>Aerovox<br>1860-201<br>General-Electric<br>29 F 15                                                                                                                                                        |                            |                            | Stewart-Warner<br>564003<br>General-Electric<br>K-7891085 | MAJOR ASSEME                | Stewart-Warner<br>564400<br>General-Electric<br>ML-7765405-1                                                                             | JAN Type<br>CN35A602                                                                                                                                            |                                      |                                 | Sickles SD-3069 J. E. Fast Cornell-Dubilier 2RS                                                                                          | AWS Type<br>CM20B100K                                                                                                                      |
| For adapting control panel to fit redesigned rack in airplane                                                                                                                                                                                              | Indicator lamp                                                                                                    | Channel selector switch                                                                  | Emission selector<br>switch      | ASSEMBLY: ANTENNA | Antenna shunt<br>capacitor                                                                                                                                                                                                               | Antenna shunt capacitor    | Antenna shunt capacitor    | Mounting plate for C-1101, C-1102, C-1103                 |                             | Crystal frequency standard and M.C.W. oscillator                                                                                         | Calib. osc. tripler<br>plate coupling                                                                                                                           | Calib. osc. tripler<br>grid coupling | Calib. osc. mixer grid coupling | Calib. ośc. det.<br>grid coupling                                                                                                        | Calib. osc. input<br>to H.F.O.                                                                                                             |
| ADAPTER: 2-5/8" long, 1" wide, .064" thick; aluminum plate with two each .180" dia. holes 2-1/4" apart for bolting to the control panel and two each quarter-turn fasteners for installing the adapted panel in the rack; two each are required per panel. | ncandescent; 28-volt; 15/16" long x 0.562" dia; 0.035 es; bulb T-1-3/4; filament C-21; special screw base to 102. | otary; single-pole; 11-position; 1 section; ceramic 8" hole for mounting; same as \$601. | ions; ceramic<br>ride; 3/8" dia. | MAJOR             | CAPACITOR: Fixed; sulphur; 25 micromicrofarads 10%; test voltage 10,000 volts peak; overall dimensions 3-5/8" x 2-13/16" x 2"; two 0.193" dia. mounting holes 2-7/16" between mtg/c; one push type binding post terminal; case grounded. | CAPACITOR: Same as C-1101. | CAPACITOR: Same as C-1101. | PLATE MOUNTING: Aluminum; 5" x 4-1/8" x 1/16".            |                             | M.C.WC.F.I.: Furnished as a complete assembly less tubes and crystal; overall dimensions 5-7/8" x 3-3/8" x 5"; single plug-in connector. | CAPACITOR: Fixed; oil impregnated paper; 6,000 micromicrofarads +60% -20%; 600 volts DCW; max. dimensions 53/64" x 53/64" x 11/32"; moulded; 1-1/4" wire leads. | CAPACITOR: Same as C-2201.           | CAPACITOR: Same as C-2201.      | CAPACITOR: Fixed; silver mica; 200 micromicrofarads; ±5%; 500 volts DCW; 1-1/16" x 9/16" x 3/16"; color of case, red; 1-1/4" wire leads. | CAPACITOR: Fixed; mica; 10 micromicrofarads ±10%; 500 volts DCW; moulded case; max. dimensions 51/64" x 15/32" x 7/32"; 1-1/8" wire leads. |
|                                                                                                                                                                                                                                                            |                                                                                                                   |                                                                                          |                                  |                   | 3D9025-52                                                                                                                                                                                                                                | 3D9025-52                  | 3D9025-52                  | 妆                                                         |                             | 3F2448-2                                                                                                                                 | 3DA6-77                                                                                                                                                         | 3DA6-77                              | 3DA6-77                         | 3K2520143                                                                                                                                | 3K2010021                                                                                                                                  |
| E2804                                                                                                                                                                                                                                                      | 12801                                                                                                             | \$2801                                                                                   | \$2802                           |                   | C-1101                                                                                                                                                                                                                                   | C-1102                     | C-1103                     | H-1101                                                    |                             | A-2201                                                                                                                                   | C-2201                                                                                                                                                          | C-2202                               | C-2203                          | C-2204                                                                                                                                   | C-2205                                                                                                                                     |

### PARTS (Cont'd) 0 TABLE

| MODEL: RA | MODEL: RADIO TRANSMITTING              | IG SET AN/ART-13A                                                                                                                                                                                                                                                                            |                                                                           | MAJOR ASSEN                                                                   | MAJOR ASSEMBLY: M.C.WC.F.I. |
|-----------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------|
| Reference | Army Stock Number<br>Navy Stock Number |                                                                                                                                                                                                                                                                                              |                                                                           | Mfr. and Desig.                                                               | Cont. or Govt.              |
| Symbol    | British Ref. Number                    | Name of Part and Description                                                                                                                                                                                                                                                                 | Function                                                                  | or Standard Type                                                              | Dwg. or Spec. No.           |
| C-2206    | 3K2010021                              | CAPACITOR: Same as C-2205.                                                                                                                                                                                                                                                                   | Calib. osc. input to L.F.O.                                               |                                                                               |                             |
| C-2207    | 3DA50-99.1                             | CAPACITOR: Fixed; paper; 50,000 micromicrofarads $\pm 10\%$ ; 600 volts DCW; liquid impregnated; hermetically sealed; metal container 1-1/2" x 5/8" dia.; axial terminal lugs 7/32" long; single mounting bracket with two 5/32" dia. holes.                                                 | Calib. osc. plate<br>decoupling capacitor                                 | Solar Mfg. Co.<br>CN-35A 103<br>Micamold<br>Cornell-Dubilier<br>MC8B55        | Stewart-Warner<br>564569    |
| C-2208    | 3DA50-99.1                             | CAPACITOR: Same as C-2207.                                                                                                                                                                                                                                                                   | Calib. osc. mixer screen decoupling                                       |                                                                               |                             |
| C-2209    | 3DA50-99.1                             | CAPACITOR: Same as C.2207.                                                                                                                                                                                                                                                                   | Calif. osc. output<br>coupling                                            |                                                                               |                             |
| C-2210    | 3DA50-99.1                             | CAPACITOR: Same as C-2207.                                                                                                                                                                                                                                                                   | Audio osc. grid tank                                                      |                                                                               |                             |
| C-2211    | 3DA500-30                              | CAPACITOR: Fixed; paper; 500,000 micromicrofarads ±20%; 600 volts DCW; metal case 1-13/16" x 1" x 7/8"; two mounting feet each with a 3/16" dia. hole, 2-1/8" between mtg/c; two solder lug terminals.                                                                                       | High voltage supply<br>filter                                             | Solar<br>XDMRW 65-20<br>Cornell-Dubilier<br>DYR 6050<br>J. E. Fast            | Stewart-Warner<br>564589    |
| C-2212-A  | 3DA100-133.3                           | CAPACITOR: Fixed; paper; two identical sections C-2212-A, C-2212-B; each 100,000 micromicrofarads ±10%; 600 volts DCW; oil impregnated; both inclosed in metal case 1-13/16" x 13/16" two mounting feet each with a 3/16" dia. hole; 3 solder lug terminals, center one common and marked C. | Audio osc. plate<br>blocking                                              | J. E. Fast A8085<br>Sprague Spec.<br>P 13000<br>J. E. Fast                    | Stewart-Warner<br>564588    |
| C-2212-B  | 3DA100-133.3                           | CAPACITOR: Same as C-2212-A.                                                                                                                                                                                                                                                                 | Audio osc. tank<br>tuning                                                 |                                                                               |                             |
| C-2213    | 3K2030030                              | CAPACITOR: Fixed; silver mica; 30 micromicrofarads ±5%; 500 volts DCW; case color, red; max. dimensions 51/64" x 15/32" x 7/32"; 1-1/8" wire leads.                                                                                                                                          | Osc. feedback                                                             | JAN Type<br>CM20C300J                                                         |                             |
| C-2214    | 3K3547224                              | CAPACITOR: Fixed; mica; 4,700 micromicrofarads ±20%; 500 volts DCW; max. dimensions 53/64" x 53/64" x 11/32"; 1-1/8" wire leads.                                                                                                                                                             | V-2203 audio grid<br>capacitor                                            | JAN Type<br>CM35B472M                                                         |                             |
| E-2201    | 2Z9430-3                               | TERMINAL BOARD: With mounting brackets and solder lug terminals; minus resistors and capacitors; bakelite; 4-5/8" x 1-1/4" x 1/8".                                                                                                                                                           | Supports resistors<br>R-2202, R-2215 and<br>capacitors C-2201,<br>C-2206. | Cinch Mfg. 7414<br>Anchor Radio                                               | Stewart-Warner<br>564581    |
| H-2201    | *                                      | SPRING: Crystal hold-down spring; spring copper or brass; two 0.142" dia. mtg. holes.                                                                                                                                                                                                        | Crystal holder                                                            | Wallace Barnes                                                                | Stewart-Warner<br>564659    |
| L-2201    | 3C317-32                               | COII, AUDIO OSC, REACTOR: Single winding; one tap; metal case, 2-3/8" x 1-11/16" x 1-3/8" hermetically sealed; two 3/16" dia. mounting holes 2.0" between mtg/c; three solder lug terminals.                                                                                                 | Audio osc. grid tank<br>inductor                                          | Chicago Transf.<br>8660-A-0<br>Stancor 12405<br>General-Electric<br>M-7472242 | Stewart-Warner<br>564652    |

| Stewart-Warner<br>564568                                                                                                        | Stewart-Warner<br>564567                                                                                                                                                                                                                                                                            |                                                                                                                            |                                                                                                                          |                                                                                                                           |                                                                                                                          |                              | Stewart-Warner<br>564591                                                                                                                                                                                                                                                                                                       |                                                                                                                          |                                                                                                                             | Stewart-Warner<br>564590                                                                                                                                                             |                                                                                                                                           |                                                           |                                                                                                                                          |                           |                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------|
| H. B. Jones<br>P-308-AB.W1                                                                                                      | Wirt Co.<br>2912,807                                                                                                                                                                                                                                                                                | JAN Type<br>RC21BF104K                                                                                                     | JAN Type<br>RC21BF473K                                                                                                   | JAN Type<br>RC21BF154K                                                                                                    | JAN Type<br>RC21BF473K                                                                                                   |                              | Federal Elec.<br>127<br>Ward-Leonard<br>134" Z 85<br>Ohmite 19167                                                                                                                                                                                                                                                              | JAN Type<br>RC21BF333K                                                                                                   | JAN Type<br>RC31BF153K                                                                                                      | Federal Elec.<br>128<br>Ward-Leonard<br>134" Z 15,000                                                                                                                                | JAN Type<br>RC31BF224K                                                                                                                    | JAN Type<br>3RC21BF683K                                   | JAN Type<br>RC21BF474K                                                                                                                   |                           | JAN Type<br>RC21BF222J                                                                                                  |
| Unit connecting plug                                                                                                            | Audio osc. output<br>control                                                                                                                                                                                                                                                                        | Calib. osc. plate<br>decoupling                                                                                            | Calib. osc. tripler<br>grid                                                                                              | Audio osc. grid<br>coupling                                                                                               | Calib. osc. mixer<br>inject. grid                                                                                        | Calib. osc. mixer cont. grid | Calib. osc. mixer<br>filament dropping                                                                                                                                                                                                                                                                                         | Calib. osc. plate<br>decoupling                                                                                          | Calib. osc. screen<br>dropping                                                                                              | Calib. osc. H.V.<br>dropping resistor                                                                                                                                                | Audio osc. high<br>voltage dropping                                                                                                       | Audio osc. (V2203)<br>high voltage<br>bleeder             | Calib. osc. det. grid                                                                                                                    | Calib. osc. det.          | Audio osc. output<br>loading                                                                                            |
| CONNECTOR Male: 8 prong; molded case; 11/4" x 14" x 14" x 14"; two mounting feet each with a 0.146" dia, hole; prongs numbered. | RHEOSTAT: Wire wound; 2 to 15 ohms; min. tolerance ±2 ohms; max. tolerance ±3 ohms; overall dimensions 11/4, x 1/2 x 3/2, 1/3 x 1/4 x 1/4 screw driver adjustment slot; single solder lug terminal; one end of element grounded to frame; mounting plate has two 0.136" dia holes 1" between mtg/c. | RESISTOR: Fixed; 100,000 ohms ±10%; ½ watt; carbon; insulated; max. dimensions 0.655" x 0.249" dia.; 1½" axial wire leads. | RESISTOR: Fixed; 47,000 ohms ±10%; ½ watt; carbon; insulated; max. dimensions 0.655" x 0.249" dia. 1½" axial wire leads. | RESISTOR: Fixed; 150,000 ohms ±10%; ½ watt; carbon; insulated; max. dimensions 0.655" x 0.249" dia. 1½" axial wire leads. | RESISTOR: Fixed; 47,000 ohms ±10%; ½ watt; carbon; insulated; max. dimensions 0.655" x 0.249" dia. 1½" axial wire leads. | RESISTOR: Same as R-2205.    | RESISTOR: Fixed; wire wound; 85 ohms ±2.5%; 10 watts in open air; max. voltage 29.1 volts; max. current 343 milliamperes; vitreous enameled; two solder lug terminals each with a 1/8" dia. hole 1-17/16" between mtg/c; 1\frac{3}{4}" dia. axial opening through resistor; overall dimensions 13\frac{7}{4}" x 3\frac{3}{8}". | RESISTOR: Fixed; 33,000 ohms ±10%; ½ watt; carbon; insulated; max. dimensions 0.655" x 0.249" dia; 1½" axial wire leads. | RESISTOR: Fixed; 15,000 ohms ±10%; 1 watt; carbon; insulated; max. dimensions 1.280" x 0.310" dia.; 11/5" axial wire leads. | RESISTOR: Fixed; 15,000 ohms ±10%; rating 4 watts in open air (10 watt size); wire wound; vitreous enameled; two solder lug terminals; ¼" dia. axial mounting hole through resistor. | RESISTOR: Fixed; 220,000 ohms ±10%; ½ watt; carbon; insulated; max. dimensions 0.655" x 0.249" dis.; 1½" axial wire leads. Same as R-209. | RESISTOR: Fixed; composition; 68,000 ohms ±10%; 1/2 watt. | RESISTOR: Fixed; 470,000 ohms ±10%; ½ watt; carbon; insulated; max. dimensions 0.655" x 0.249" dia; 1½" axial wire leads. Same as R-205. | RESISTOR: Same as R-2213. | RESISTOR: Fixed; 2,200 ohms ±5%; ½ watt; carbon; insulated; max. dimensions 0.655" x 0.249" dia.; 1½" axial wire leads. |
| 2Z7228.4                                                                                                                        | 3Z7015-7                                                                                                                                                                                                                                                                                            | 3RC21BF104K                                                                                                                | 3RC21BF473K                                                                                                              | 3RC21BF154K                                                                                                               | 3RC21BF473K                                                                                                              | 3RC21BF473K                  | 3Z4885                                                                                                                                                                                                                                                                                                                         | 3RC21BF333K                                                                                                              | 3RC31BF153K                                                                                                                 | 3Z5550.19                                                                                                                                                                            | 3RC31BF224K                                                                                                                               | 3RC21BF683K                                               | 3RC21BF474K                                                                                                                              | 3RC21BF474K               | 3RC21BF222J                                                                                                             |
| P-2201                                                                                                                          | R-2201                                                                                                                                                                                                                                                                                              | R-2202                                                                                                                     | R-2203                                                                                                                   | R-2204                                                                                                                    | R-2205                                                                                                                   | R-2206                       | R-2207                                                                                                                                                                                                                                                                                                                         | R-2208                                                                                                                   | R-2209                                                                                                                      | <b>R</b> -2210                                                                                                                                                                       | R-2211                                                                                                                                    | R-2212                                                    | R-2213                                                                                                                                   | R-2214                    | R-2215                                                                                                                  |

NOTE: Parts listed which are indicated by a # sign in column 2 are not available as spare parts and are listed for reference purposes only.

| MODEL: RA           | MODEL: RADIO TRANSMITTING SET                                 | NG SET AN/ART-13A                                                                                                                                                                                                                                                                                                            |                                       | MAJOR ASSEM                                         | MAJOR ASSEMBLY: M.C.WC.F.I.         |
|---------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------|-------------------------------------|
| Reference<br>Symbol | Army Stock Number<br>Navy Stock Number<br>British Ref. Number | Name of Part and Description                                                                                                                                                                                                                                                                                                 | Function                              | Mfr. and Desig.<br>or Standard Type                 | Cont. or Govt.<br>Dwg. or Spec. No. |
| R-2216              | 3RC21BF154K                                                   | RESISTOR: Same as R-2204.                                                                                                                                                                                                                                                                                                    | Calib. osc. grid<br>resistor          |                                                     |                                     |
| R-2217              | 3RC30BF221J                                                   | RESISTOR: Same as R-201.                                                                                                                                                                                                                                                                                                     | V-2202 and V-2203 biasing resistor    |                                                     |                                     |
| V-2201              | 2J12SL7GT                                                     | TUBE: Dual triode; 12SL7GT.                                                                                                                                                                                                                                                                                                  | Calib. osc. crystal<br>osc., tripler  | JAN Type<br>12SL7GT                                 |                                     |
| V-2202              | 2J12SA7                                                       | TUBE: Pentode converter; 12SA7.                                                                                                                                                                                                                                                                                              | Calib. osc., mixer                    | JAN Type<br>12SA7                                   |                                     |
| V-2203              | 2J12 <b>SL</b> 7GT                                            | TUBE: Same as V-2201.                                                                                                                                                                                                                                                                                                        | Calib. osc. det.,<br>audio osc.       |                                                     |                                     |
| X-2201              | 2Z8678.187                                                    | SOCKET: Tube; octal; 8 contacts; black bakelite; 1-5/8" x 1-3/16" x 13/16"; mounting plate with two 5/32" dia. holes, 1.312" between mtg/c. Same as X-201.                                                                                                                                                                   | Socket for V-2201<br>tube             | Amer. Phenolic<br>88-8M                             | Stewart-Warner<br>564085            |
| X-2202              | 2Z8678.187                                                    | SOCKET: Same as X-2201.                                                                                                                                                                                                                                                                                                      | Socket for V-2202 tube                |                                                     |                                     |
| X-2203              | 2Z8678.187                                                    | SOCKET: Same as X-2201.                                                                                                                                                                                                                                                                                                      | Socket for V-2203 tube                |                                                     |                                     |
| X-2204              | 2Z8672.8                                                      | SOCKET: Crystal; two terminals; phenolic material; $13/16^n \times 35/64^n \times 5/16^n$ solder lug terminals.                                                                                                                                                                                                              | Socket for Y-2201<br>crystal          | Cinch 9816<br>Cannon Elec. Co.<br>WK-C3-32S         | Stewart-Warner<br>564657            |
| Y-2201              |                                                               | CRYSTAL: 200 Kc; two prongs; plug in type; 1-1/8" x 1-1/16" x 7/16".                                                                                                                                                                                                                                                         | Calib. osc. frequency control         | Supplied by the government                          | Sig C Spec<br>71-3021               |
| Z-2201-A            | 3C323-114B                                                    | COIL: Iron core tuned; complete with two, 250 micromicrofarads, silver mica capacitors; tuning range 190-210 Kc; shielded; can size 2-17/32" x 1-9/16" x 1-1/8"; two mounting studs; two wire leads, one 4-1/2" red, one 5-1/2" black with orange tracer; Z-2201-B also assembled in this can.                               | Calib. osc. crystal<br>osc. grid tank | Aladdin Radio<br>49-159<br>F. W. Sickles<br>30-5345 | Stewart-Warner<br>564654            |
| Z-2201-B            | 3C323-114B                                                    | COIL: Iron core tuned; complete with a 1500 micromicrofarad silver mica capacitor; tuning range 47 to 53 Kc; shielded; can size 2-17/32" x 1-9/16" x 1-1/8"; two No. 6-32 mounting studs; two wire leads, one 3" blue with white tracer, one 5-1/2" orange with green and white tracer; Z-2201-A also assembled in this can. | Calib. osc. det.<br>cathode tank      | Aladdin Radio<br>49-159<br>F. W. Sickles<br>30-5345 | Stewart-Warner<br>564654            |
| Z-2202-A            | 3C323-114A                                                    | COIL: Iron core tuned; complete with a 1,000 micromicrofarad, silver mica capacitor; tuning range 142-158 Kc; shielded; can size 2-17/32" x 1-9/16" x 1-1/8"; two mounting studs; one 4-1/2" wire lead orange; one 7" wire lead red with green tracer, which is common with Z-2202-B and is also assembled in this can.      | Calib. osc. tripler<br>plate tank     | Aladdin Radio<br>49-160<br>E. I. Guthman<br>30-5346 | Stewart-Warner<br>564655            |

| 3C35-114A         | farad silver mica capacitor, tuning range 47-53 Kc; shielded; can size 2-17/32" x 1-9/16" x 1-1/8"; two mounting studes; one 4-1/2" wire lead black with orange tracer; one 7" wire lead of with green tracer, which is common with Z-2202-A and is also assembled in this can. | Calib. osc. mixer tank                                                    | Aladdin Radio<br>49-160<br>E. I. Guthman<br>30-5346          | Stewart-Warner<br>564655 |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------|
|                   | MAJOR                                                                                                                                                                                                                                                                           | ASSEMBLY: LOW FRI                                                         | FREQUENCY OSCILLATOR                                         | OR 0-17/ART-13A          |
| 2C2710-17         | LOW FREQUENCY OSCILLATOR: Furnished as a complete unit.                                                                                                                                                                                                                         | 200-600 Kc oscillator<br>unit                                             | Stewart-Warner<br>564900<br>General-Electric<br>ML-7662998-1 | Stewart-Warner<br>564900 |
| 3DA2-110.2        | CAPACITOR: Fixed; mica; 2,000 micromicrofarads ±20%; 750 volts DCW; two solder lug terminals; 2-1/4" x 1" x 3/8"; two mounting holes 23/32" between mtg./c. Same as C-109.                                                                                                      | JAN-1625 screen grid<br>by-pass                                           | Sangamo Electric<br>BEW-15220-B20                            | Stewart-Warner<br>564522 |
| 3K2047024         | CAPACITOR: Fixed; mica; 47 micromicrofarads ±20%; 500 volts DCW; molded; max. dimensions 51/64" x 15/32" x 7/32"; 1-1/8" wire leads.                                                                                                                                            | JAN-1625 cathode<br>coupling capacitor                                    | JAN Type<br>CM20B470M                                        |                          |
| 3D9300-19         | CAPACITOR: Fixed, ceramic, 300 micromicrofarads ±2%; working voltage 500 volts rms. at 1.5 mc., tubular ceramic 1.8" x 0.280" dia.; two wire terminals 1.6" long.                                                                                                               | JAN-1625 grid<br>coupling capacitor                                       | JAN Type<br>CC45HG301G                                       |                          |
| 3DA2.200-5        | CAPACITOR: Fixed; ceramic; 2,200 micromicrofarads $\pm 1\%$ ; overall dimensions 1-11/16" x 15/16" dia.; single No. 6-32 mounting bolt; one terminal grounded to metal case.                                                                                                    | Tank, fixed, padding,<br>capacitor used on all<br>three bands             | Erie<br>Centralab                                            | Stewart-Warner<br>565084 |
| 3K6010362         | CAPACITOR: Fixed; mica: 10,000 micromicrofarads ±5%; 2500 volts DCW; 1-25/32" x 1-11/32" x 3/4"; two No. 6-32 tapped holes for terminals and mounting.                                                                                                                          | JAN-1625 cathode<br>by-pass                                               | JAN Type<br>CM60F103J                                        |                          |
| 3DA6.365          | CAPACITOR: Fixed; ceramic; 2,065 micromicrofarads ±1%; overall dimensions 1-17/32" x 15/16" dia.; one terminal grounded; supplied with C-2607-A and C-2607-B as an assembly.                                                                                                    | Tank, fixed, padding,<br>capacitor, 285-415<br>Kc and 200-285 Kc<br>bands | Centralab<br>Erie                                            | Stewart-Warner<br>565030 |
| 3DA6.365          | CAPACITOR: Fixed; ceramic; with C.2607-B total capacity 4,300 micromicrofarads ±1%: 1-17/32" x 15/16" dia.; one terminal grounded, supplied with C.2606 and C.2607-B as an assembly.                                                                                            | Tank, fixed, padding,<br>capacitor, 200-285<br>Kc. band                   | Centralab<br>Erie                                            | Stewart-Warner<br>565030 |
| 3DA6.36 <b>5</b>  | CAPACITOR: Fixed; ceramic; with C.2607-A total capacity 4,300 micromicrofarads ±1%; 1-17/32" x 15/16" dia., one terminal grounded; supplied with C.2606 and C.2607-A as an assembly.                                                                                            | Tank, fixed, padding,<br>capacitor, 200-285<br>Kc. band                   | Centralab<br>Erie                                            | Stewart-Warner<br>565030 |
| 3D924V.4          | CAPACITOR: Variable; ceramic; 55-240 micromicrofarads; supplied with C-2608-B, C-2608-C and C-2608-D as an assembly.                                                                                                                                                            | Tank, variable, padding, capacitor 415-600 Kc. band                       | Centralab<br>Erie                                            | Stewart-Warner<br>565027 |
| 3D92 <b>4V</b> -4 | CAPACITOR: Same as C-2608-A.                                                                                                                                                                                                                                                    | Tank, variable, padding, capacitor 285-415 Kc. band                       | Centralab<br>Erie                                            |                          |
| 3D924V-4          | CAPACITOR: Same as C-2608-A.                                                                                                                                                                                                                                                    | Tank, variable, padding, capacitor 200-<br>285 Kc. band                   | Centralab<br>Erie                                            |                          |
| 3D924V-4          | CAPACITOR: Same as C-2608-A.                                                                                                                                                                                                                                                    | Tank, variable, padding, capacitor, 200-<br>285 Kc. band                  | Centralab<br>Erie                                            |                          |

NOTE: Parts listed which are indicated by a # sign in column 2 are not available as spare parts and are listed for reference purposes only.

| 2.30 3 | MODEL: RA           | MODEL: RADIO TRANSMITTING SET                                 | AN/ART-13A                                                                                                                         | ASSEMBLY: LOW FR                                           | MAJOR ASSEMBLY: LOW FREQUENCY OSCILLATOR O-17/ART-13A        | R 0-17/ART-13A                      |
|--------|---------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------|
| 33     | Reference<br>Symbol | Army Stock Number<br>Navy Stock Number<br>British Ref. Number | Name of Part and Description                                                                                                       | Function                                                   | Mfr. and Desig.<br>or Standard Type                          | Cont. or Gost.<br>Dwg. or Spec. No. |
|        | E-2601              | 6L71002-2                                                     | WASHER: Open snap on type; dia. 5/16" x 0.20" thick; stainless steel; I.D. 0.124".                                                 | Used in assembling<br>gear trains                          | New Arts Spec. 306                                           | Stewart-Warner<br>565065            |
|        | E-2602              | 2 <b>Z</b> 3766                                               | DIAL KNOB: Complete with two H-2601 set screws; O-100 counterclockwise; black bakelite; max. dimensions 2-3/8" dia. x 0.887 thick. | Control G                                                  | Stewart-Warner<br>564987<br>General Electric<br>ML-7893064-1 | Stewart-Warner<br>564987            |
|        | E-2603              | 2 <b>Z</b> 9403.48                                            | RESISTOR BOARD: Bakelite; 2-1/4" x 15/16" x 3/32"; complete with solder lugs; less resistor and capacitor.                         | Mounting board for<br>R-2601 and C-2603                    | H. B. Jones 3-1                                              | Stewart-Warner<br>565075            |
|        | E-2604              | 2 <b>Z</b> 5822-124                                           | KNOB: Complete with two H-2602 set screws; zinc die casting; black finish; 3/8" x 1/2" dia.                                        | CORRECTOR and<br>LOCK knob                                 | Stewart-Warner<br>564989<br>General Electric<br>ML-7104261-1 | Stewart-Warner<br>564989            |
|        | E-2605              | 2 <b>Z</b> 5843.12                                            | KNOB: Complete with H-2601 set screw; for switch S-2601; black bakelite; overall dimensions 1-1/8" x 3/4" x 11/16".                | Control F                                                  | Stewart-Warner<br>564753<br>General Electric<br>ML-7891557-1 | Stewart-Warner<br>564753            |
|        | E-2606              | 2Z3714-39                                                     | DIAL: Complete with shield and two H-2603 set screws; 0-20 range.                                                                  | Revolution Counter for<br>knob G                           | Stewart-Warner<br>564974<br>General Electric<br>K-7893060    | Stewart-Warner<br>564974            |
|        | E-2607              | *                                                             | PLATE CLIP AND LEAD: Consists of grid clip copper braid and solder lug.                                                            | Connects plate to<br>output post                           | Stewart-Warner<br>564983<br>General Electric<br>K-7101830    | Stewart-Warner<br>564983            |
|        | E-2608              | 3G100-4.1                                                     | STAND-OFF: Ceramic; 1/2" x 3/8" dia.; No. 6-32 threaded axial mounting holes at each end.                                          | L-2601 terminal post                                       | JAN Type<br>NS4W0104                                         |                                     |
|        | E-2609              | 3G1250-3.13                                                   | BUSHING: Ceramic; 5/8" dia. x 3/16" thick. Same as E-107.                                                                          | Part of FEED.<br>THROUGH for<br>plate and cathode<br>leads | Centralab X-414<br>General Ceramics<br>D-2399                | Stewart-Warner<br>564784            |
| Rev    | E-2610              | ·3t                                                           | SPACER: Bakelite; 1-3/4" x 5/8" x 5/16".                                                                                           | Mounting spacer for<br>C-2605 capacitor                    | MiCarta Fab. Co.<br>Aerovox<br>Cornell-Dubilier              | Stewart-Warner<br>565072            |
| ised   | E-2611              | 2 <b>Z</b> 2642.63                                            | CLAMP, TUBE: 1-17/32" O.D. x 1-1/32" high; 2 mtg ears; 1-7/8" between mtg/c.                                                       | For X-2601                                                 | Collins Radio                                                | Air Force<br>47B47219               |
| 1 May  | H-2601              | *                                                             | SCREW: No. 8-36 x 1/4; dial set screw; 6 flutes; multiple spline; cup point.                                                       | Dial knob mounting screw                                   | Bristol Co.<br>J. Larrabee Co.                               | Stewart-Warner 564018               |
| 1950   | H-2602              | *                                                             | SCREW: No. 6-40 x 1/8"; knob set screw; multiple spline; 4 flutes; cup. point.                                                     | Knob mounting screw                                        | Bristol Co.<br>Cambria Merc.<br>Supplies Inc.                | Stewart-Warner<br>564097            |

| H-2603  | *#               | SCREW: No. 4-48 x 1/8; knob set screw; multiple spline; 6 flutes; cup point.                                                                                                                     | Knob mounting screw                       | Bristol Co.<br>Supplies Inc.                                 | Stewart-Warner<br>564978 |
|---------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|--------------------------|
| H-2604  | **               | BRACKET: Aluminum; U shape; complete with two No. 6-32 lock nuts.                                                                                                                                | C-2608-A-B-C-D capacitor mounting bracket | Stewart-Warner<br>General Electric<br>K-7101887              | Stewart-Warner<br>565025 |
| H-2605  | ***              | "V" SPRING WASHER: Spring steel; O.D. 5/16"; I.D. 0.133".                                                                                                                                        | Gear mounting                             | Shakeproof Inc.<br>3502-5V                                   | Stewart-Warner<br>564954 |
| H-2606  | **:              | SHAFT: Brass; 1-3/4" x 0.203" dia.                                                                                                                                                               | Switch gear mounting<br>shaft             | Stewart-Warner<br>General Electric<br>K-7101876              | Stewart-Warner<br>564967 |
| H-2607  | #                | PLATE: 1-7/32" dia.; three 0.098 dia. mounting holes; steel.                                                                                                                                     | Front, bearing mount-<br>ing plate        | Stewart-Warner<br>General Electric<br>K-7893027              | Stewart-Warner<br>565034 |
| H-2608  | 74:              | ROD, GUIDE: Steel; 4.669" x 0.187" dia. axial mounting hole at each end tapped No. 6-32.                                                                                                         | Guide rod                                 | Stewart-Warner<br>General Electric<br>K-7892979              | Stewart-Warner<br>565013 |
| L-2601  | 3C357-19         | COIL, R-F CHOKE: 4 pie; universal winding; ceramic form; 5.4 millihenries; No. 36 nylon enamel wire; 1-3/8" x 7/8" dia.; single No. 6-32 threaded mounting hole.                                 | JAN 1625 plate<br>supply choke            | E. I. Guthman C.<br>30-5256<br>Oak Mfg. Co.                  | Stewart-Warner<br>565070 |
| L-2602  | 3C323-114C       | COIL: Oscillator; iron core tuned; 50 turns No. 26 D.E. wire; ceramic coil form 2.772 x 1.5" max. dia.; operated by Control G; three tapped No. 6-32 mounting holes.                             | Low frequency oscilla-<br>tor coil        | Aladdin Radio 49-158                                         | Stewart-Warner<br>565035 |
| L-2603  | 3C326-100.1      | COIL, R-F CHOKE: 4 pie; universal winding; ceramic form; 2.5 millihenries; No. 36 S.S.E. wire; 1-15/16" x 1/2" dia; single No. 6-32 threaded mounting hole; cotter pin terminals. Same as L-102. | JAN 1625 cathode<br>R-F choke             | E. I. Guthman<br>30-5221<br>National Co. R-100S              | Stewart-Warner<br>504609 |
| 0-2601  | 2C6900-47A/7     | GEAR AND BUSHING: Aluminum; 1.082" dia. x 25/64" I.D. 0.187"; two No. 6-40 tapped set screw mounting holes, 90° apart.                                                                           | S-2601 switch gears                       | Stewart-Warner<br>564955<br>General Electric<br>ML-7101884-1 | Stewart-Warner<br>564955 |
| 0.2602  | 2C6900-47A/5     | DISC, LOCKING ASSEMBLY: O.D. 1-3/4"; I.D. 0.189"; brass; 0.625" thick; two No. 6-40 tapped set screw mounting holes, 90° apart.                                                                  | Control G locking<br>disc                 | Stewart-Warner<br>564961<br>General Electric<br>ML-7893319   | Stewart-Warner<br>564961 |
| 0-2603  | 2C6900-47A/2     | GEAR, ASSEMBLY: Aluminum gear; brass hub; O.D. 1.917"; 0.921" thick; mounted by E-2601 split washer.                                                                                             | REVOLUTION<br>COUNTER coup-<br>ling gear  | Stewart-Warner<br>564942<br>General Electric<br>ML-7101883   | Stewart-Warner<br>564942 |
| 0-2604  | 2C2600-47A/6     | GEAR, PINION: Brass; O.D. 0.667"; I.D. 0.156" 13/32" thick.                                                                                                                                      | REVOLUTION<br>COUNTER coup-<br>ling gear  | Stewart-Warner<br>564966<br>General Electric<br>7472561      | Stewart-Warner<br>564966 |
| 0.2605  | 2C6900-47A/10    | LOCKING ARM ASSEMBLY: Consists of stationary bracket, pinion and bakelite button.                                                                                                                | Operated by LOCK knob                     | Stewart-Warner<br>564948<br>General Electric<br>ML-7101868-1 | Stewart-Warner<br>564948 |
| O-2605A | <b>2Z</b> 380-70 | ARM ASSEMBLY: Consists of moving bracket and bakelite button.                                                                                                                                    | Operated by LOCK knob                     |                                                              | Air Force<br>47B47255    |

NOTE: Parts listed which are indicated by a # sign in column 2 are not available as spare parts and are listed for reference purposes only.

| MODEL:              | MODEL: RADIO TRANSMITTING SET                                 | AN/ART-13A                                                                                                                                                                                                                    | ASSEMBLY: LOW FRE                      | MAJOR ASSEMBLY: LOW FREQUENCY OSCILLATOR O-17/ART-13A                          | R 0-17/ART-13A                      |
|---------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------|-------------------------------------|
| Reference<br>Symbol | Army Stock Number<br>Navy Stock Number<br>British Ref. Number | Name of Part and Description                                                                                                                                                                                                  | Function                               | Mfr. and Desig.<br>or Standard Type                                            | Cont. or Govt.<br>Dwg. or Spec. No. |
| 0-2606              | 2C6900-47A/3                                                  | GEAR AND STOP ASSEMBLY: O.D. 1.917"; I.D. 0.125"; 0.921" thick; aluminum gear; brass hub; steel stop.                                                                                                                         | REVOLUTION<br>COUNTER gear<br>and stop | Stewart-Warner<br>564945<br>General Electric<br>M-7101875-1                    | Stewart-Warner<br>564945            |
| 0-2607              | 3H320-106                                                     | BEARING ASSEMBLY: Complete with bearing, spring and retainer; O.D. 1-7/32" x 0.687" thick. AF Stock No. 3300-336089386.                                                                                                       | Back bearing assembly                  | Stewart-Warner<br>564975<br>General Electric<br>K-7894125 G1                   | Stewart-Warner<br>564975            |
| P-2601              | 2Z7227-2                                                      | CONNECTOR: Male; 6 prong; molded case $1'' \times 5/8'' \times 1/2''$ ; two mounting brackets each with a 0.146" dia. hole, 1" between mtg/c.                                                                                 | L.F.O. connector to transmitter        | H. B. Jones P.306-AB                                                           | Stewart-Warner<br>564984            |
| R-27.31             | 3RC31BF153K                                                   | RESISTOR: Fixed; carbon; 15,000 ohms ±10%; 1 watt; insulated; max. dimensions 1.280" x 0.310" dia, 1-1/2" axial wire leads.                                                                                                   | V-2601 grid leak<br>resistor           | JAN Type<br>RC31BF153K                                                         |                                     |
| S-2601              | 3Z9825-62.175                                                 | SWITCH: Rotary; 3 positions; single deck; single circuit; ceramic insulation; overall dimensions 1-7/8" x 1-5/8" x 1-19/32"; single hole mounting on 3/8-32" threaded hub.                                                    | Low frequency band<br>selector switch  | Centralab 7356<br>Oak 27817-H1C                                                | Stewart-Warner<br>565063            |
| V-2601              | 2]1625                                                        | TUBE: Type JAN 1625, transmitter beam power amplifier.                                                                                                                                                                        | Low frequency oscilla-<br>tor tube     | JAN Type<br>1625                                                               |                                     |
| X-2601              | <b>2Z8</b> 677.20                                             | SOCKET: Tube; 7 terminal; ceramic insulation 2-5/16" x 1-13/16" x 9/16"; two mounting slots 11/64" x 17/64", 1-25/32" between mtg/c.                                                                                          | Socket for V-2601<br>tube              | National Fab. 42C1D<br>Ucinite 115166<br>E. F. Johnson<br>227 N-BC             | Stewart-Warner<br>564528            |
|                     |                                                               |                                                                                                                                                                                                                               | MAJOR ASS                              | ASSEMBLY: DYNAMOTOR                                                            | R DY-17/ART-13A                     |
| C-2701              | 3DB2E25-1                                                     | CAPACITOR: Fixed; paper; 2.25 microfarads +20% —10%; 100 volts DCW; metal case 1-1/2" x 1-13/16" x 7/8" thick; two solder lug terminals spaced 1" apart; two mounting feet each with a 3/16" dia. hole, 2-1/8" between mtg/c. | Dynamotor input<br>filter              | Sprague P2908 Solar Mfg. Co. XDDHRTW1-225- 1020 Cornell-Dubilier GC 146        | Stewart-Warner<br>564927            |
| C-5200              | 3DB2E5-3                                                      | CAPACITOR: Fixed; paper; 2.5 microfarads ±20%; 100 volts DCW; metal case 2" x 2" x 1"; two solder lug terminals; two mounting feet with 3/16" dia. holes, 2-3/8" between mtg/c.                                               | Dynamotor input<br>filter              | Sprague P2907<br>Solar Mfg. Co.<br>XDHRW1-25-20<br>Cornell-Dubilier<br>HC 4106 | Stewart-Warner<br>564926            |
| C 52403             | 3DB4-166                                                      | CAPACITOR: Fixed; paper; 4 microfarads ±20%; 600 volts DCW; oil impregnation; metal case 3-1/4" x 2-1/2" x 1-3/16"; two solder lug terminals spaced 1" apart.                                                                 | Low voltage B supply<br>filter         | Condenser Prod.<br>AOC-4-6<br>Solar Mfg. Co.<br>XLCW6-4-20                     | Stewart-Warner<br>564903            |

| Stewart-Warner<br>564402                                                                                                                                                                                                                                                                                                           |                                       |                              | Stewart-Warner<br>564401                                                                                                                                                       | Stewart-Warner<br>564904                                                                                                                                          | Stewart-Warner<br>565681                                                                                                                                                                                              | Stewart-Warner<br>565682  |                                                                                                                                                             | Stewart-Warner<br>565684                               |                                                                                              |                                                      |                                                  |                                                                                               |                                                                                                                               |                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Sprague P 2947 Solar Mfg. Co. 3XDMRTW61-20 Micamold 306-231                                                                                                                                                                                                                                                                        |                                       |                              | Cornell-Dubilier KC-3020-13G Micamold 324 Sprague P 2948 Solar Mfg. Co. KLMRAW6-2-20 General-Electric 25F764                                                                   | Condenser Prod. AOC-4-6 Solar Mfg. Co. KLMW 15-2-20                                                                                                               | Russell Electric<br>14909                                                                                                                                                                                             | Russell Electric<br>14908 | JAN Type<br>CM40B103M                                                                                                                                       | Russell Electric<br>14910                              | General-Electric<br>K-8701807AB-G1                                                           | General-Electric<br>K-8701807AB-G2                   | General-Electric<br>K-8701807AB-G3               | General-Electric<br>K-8701807AB-G4                                                            | General-Electric<br>K-8701807AA-G1                                                                                            | General-Electric<br>K-8701807AC-G1                                                                                          |
| Voltmeter multiplier<br>resistor by-pass                                                                                                                                                                                                                                                                                           | Voltmeter multiplier resistor by-pass | By-pass from fuse to ground  | Low voltage B supply<br>to dynamotor, filter                                                                                                                                   | High voltage B supply<br>filter                                                                                                                                   | M.V. brush filter                                                                                                                                                                                                     | H. V. brush filter        | L. V. brush filter                                                                                                                                          | H.V. negative brush,<br>to ground, filter<br>capacitor | L.V. brush filter                                                                            | L.V. brush filter                                    | H.V. positive brush, to ground, filter capacitor | H.V. negative brush,<br>to ground, filter<br>capacitor                                        | M.V. brush filter<br>capacitor                                                                                                | Positive input, to<br>ground, filter<br>capacitor                                                                           |
| CAPACITOR: Fixed; paper; triple section consisting of three identical capacitors C-2704-A, C-2704-B and C-2704-C; each 100,000 micromicrofarads ±20%; oil filled; 600 volts DCW; all three enclosed in a metal case 1-3/16" x 1" x 3/4"; solder lug terminals; two mounting feet each with a 3/16" dia, hole 2-1/8" between mtg/c. | CAPACITOR: Same as C-2704-A.          | CAPACITOR: Same as C-2704-A. | CAPACITOR: Fixed; paper; 2 microfarads ±20%; 600 volts DCW; oil filled; metal case 2-3/4" x 1-13/16" x 1-1/16" thick; two solder lug terminals spaced 1" apart. Same as C-126. | CAPACITOR: Fixed; paper; 2 microfarads ±20%; 1500 volts DCW; oil filled; metal case 4" x 2-1/2" x 1-1/4" thick; two No. 10-32 terminal bolts spaced 1-1/8" apart. | CAPACITOR ASSEMBLY: Supplied with two mounting brackets; fixed; acetate; 120,000 micromicrofarads; 600 volts DCW; oil filled; 2-1/8" x 3/4" dia.; No. 8-32 mounting stud at each end; used only on Russell Dynamotor. | ads;<br>1-32<br>yna-      | CAPACITOR: Fixed; mica; 10;000 micromicrofarads; 500 volts DCW; molded; 1" x 5/8" x 5/16"; lug terminals for No. 10 screws; used only on Russell Dynamotor. | mounting<br>No. 8-32                                   | CAPACITOR: 400,000 micromicrofarads; 200 volts DCW. Used only on General Electric dynamotor. | micromicrofarads; 200 volts DCW. Electric dynamotor. | ,600 volts DCW.                                  | CAPACITOR: 80,000 micromicrofarads; 1,000 volts DCW. Used only on General-Electric dynamotor. | CAPACITOR: 120,000 micromicrofarads; 1,000 volts DCW complete with mounting bracket. Used only on General-Electric dynamotor. | CAPACITOR: 400,000 micromicrofarads, 200 volts DCW complete with mounting bracket. Used only on General-Electric dynamotor. |
| 3DA100-116.4                                                                                                                                                                                                                                                                                                                       |                                       |                              | 3DB2-37                                                                                                                                                                        | 3DB2.15020-2                                                                                                                                                      | 3DA120-1                                                                                                                                                                                                              | 3DA100-376                | 3K4010324                                                                                                                                                   | 3DA120-2                                               | 3DA400-32                                                                                    | 3DA400-31                                            | 3DA64                                            | 3DA80-7                                                                                       |                                                                                                                               | 3DA400-33                                                                                                                   |
| C-2704-A                                                                                                                                                                                                                                                                                                                           | C-2704-B                              | C-2704-C                     | C-2705                                                                                                                                                                         | C-2706                                                                                                                                                            | C-2707                                                                                                                                                                                                                | C-2708                    | C-2709                                                                                                                                                      | C-2710                                                 | C-2712                                                                                       | C-2713                                               | C-2714                                           | C-2715                                                                                        | C-2716                                                                                                                        | C-2717                                                                                                                      |

NOTE: Parts listed which are indicated by a # sign in column 2 are not available as spare parts and are listed for reference purposes only.

| MODEL: R                   | ADIO TRANSMITTI                                               | MODEL: RADIO TRANSMITTING SET AN ART-13A                                                                                                                                                                                                                                                                                                             | MAJOR ASS                                                   | EMBLY: DYNAMOTO                                         | MAJOR ASSEMBLY: DYNAMOTOR DY-17/ART-13A |
|----------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|
| Reference<br>Symbol        | Army Stock Number<br>Navy Stock Number<br>British Ref. Number | Name of Part and Description                                                                                                                                                                                                                                                                                                                         | Function                                                    | Mfr. and Desig.<br>or Standard Type                     | Cont. or Govt.<br>Dwg. or Spec. No.     |
| C-2718                     | 3DA150-15                                                     | CAPACITOR: Fixed; acetate; 150,000 micromicrofarads -20%, +0%; 100 vdcw.                                                                                                                                                                                                                                                                             | L.V. brush filter                                           | Russell Electric<br>15397                               |                                         |
| D-2701                     |                                                               | DYNAMOTOR: Input rating 27 volts DC, 31-1/2 amperes; low voltage output rating 400 volts DC, 750 milliamperes; high voltage output rating 750 volts DC, 350 milliamperes; dimensions 10-7/8" x 5" dia; ventilating screens at each end; input leads, A+ white, A- black; low voltage output put +red-black, -black; high voltage output, +red-black. | Power supply                                                | Russell Elec.<br>14875<br>General-Electric<br>M-7471876 | Stewart-Warner<br>564801                |
| E-2701                     | 3Z3285-3                                                      | FUSE HOLDER: Complete with mounting nuts and bakelite cap; overall dimensions 2-13/32" x 13/16"; solder lug terminals.                                                                                                                                                                                                                               | 400 volt fuse holder                                        | Bussman Mfg. Co.<br>HCM-L                               | Stewart-Warner<br>564682                |
| E-2702                     | 2Z9403.6                                                      | TERMINAL BOARD: Bakelite; 2-1/16" x 7/8" x 1/2"; four 0.156" dia. mounting holes 1.750" x 0.437" between mtg/c; complete with terminal links and terminal screws.                                                                                                                                                                                    | Terminal board                                              | H. B. Jones<br>3-141                                    | Stewart-Warner<br>564769                |
| E-2704                     | 3H1535-17/B5                                                  | BRUSH: Carbon 3/4" x 0.273" x 0.085"; overall length 1-17/32"; used only on Russell dynamotor.                                                                                                                                                                                                                                                       | H.V. dynamotor brush                                        | Russell Elec.<br>15313                                  | Stewart-Warner<br>565552                |
| E-2705                     | 3H1535-17/B5                                                  | BRUSH: Same as E-2704.                                                                                                                                                                                                                                                                                                                               | H.V. dynamotor brush                                        | Russell Elec.<br>15313                                  |                                         |
| E-2706                     | 3H1535-17/B6                                                  | BRUSH: 3/4" x 0.273" x 0.109"; overall length 1-25/32"; used only on Russell dynamotor.                                                                                                                                                                                                                                                              | M.V. dynamotor brush                                        | Russell Elec.<br>15312                                  | Stewart-Warner<br>565567                |
| E-2707                     | 3H1535-17/B6                                                  | BRUSH: Same as E-2706.                                                                                                                                                                                                                                                                                                                               | M.V. dynamotor brush                                        | Russell Elec.<br>15312                                  |                                         |
| E-2708                     | 3H1535-17/B7                                                  | BRUSH: Carbon 3/4" x 0.619" x 0.260"; overall length 1-11/16"; used only on Russell dynamotor.                                                                                                                                                                                                                                                       | L.V. dynamotor brush                                        | Russell Elec.<br>15311                                  | Stewart-Warner 565551                   |
| E-2709                     | 3H1535-17/B7                                                  | BRUSH: Same as E-2708.                                                                                                                                                                                                                                                                                                                               | L.V. dynamotor brush                                        | Russell Elec.<br>15311                                  |                                         |
| E-2710                     | 3H1535-17/B7                                                  | BRUSH: Otherwise same as E-2708.                                                                                                                                                                                                                                                                                                                     | L.V. dynamotor brush                                        | Russell Elec.<br>15311                                  |                                         |
| E-2711                     | 3H1535-17/B7                                                  | BRUSH: Otherwise same as E-2708.                                                                                                                                                                                                                                                                                                                     | L.V. dynamotor brush                                        | Russell Elec.                                           |                                         |
| E-2712                     | 3H2575-218E/C1                                                | CAP, BRUSH HOLDER: 9/32" thk. x 11/16" dia. bakelite cover; used only on Russell dynamotor.                                                                                                                                                                                                                                                          | H.V. brush holder                                           | Russell Elec.<br>12813                                  | Stewart-Warner<br>565686                |
| E-2715<br>E-2714<br>E-2715 | 3H2575-218E/C1<br>3H2575-218E/C1<br>3H2575-218E/C1            | CAP, BRUSH HOLDER: Same as E-2712. CAP, BRUSH HOLDER: Same as E-2712. CAP, BRUSH HOLDER: Same as E-2712.                                                                                                                                                                                                                                             | H.V. brush holder<br>M.V. brush holder<br>M.V. brush holder |                                                         |                                         |
| E-2716                     | 3H1535-17/C1                                                  | CAP, BRUSH HOLDER: 1/2" thk. x 1-3/16" dia. bakelite cover; used only on Russell dynamotor.                                                                                                                                                                                                                                                          | L.V. brush holder                                           | Russell Elec.<br>15308                                  | Stewart-Warder<br>565687                |
| E-2717<br>E-2718           | 3H1535-17/C1<br>3H1535-17/C1                                  | CAP, BRUSH HOLDER: Same as E-2716.<br>CAP, BRUSH HOLDER: Same as E-2716.                                                                                                                                                                                                                                                                             | L.V. brush holder<br>L.V. brush holder                      |                                                         |                                         |

|                                                                         |                                                                      |                                   |                        |                        |            |                                  |                                    |                                    |                                    |                                               |                                    |                                    |                                    | Stewart-Warner 564767                                                                                          |                      | Stewart-Warner<br>564906                                                             | Stewart-Warner<br>564922                                                      | Stewart-Warner 564913            | Stewart-Warner<br>564774                                  | Stewart-Warner<br>564775                                  | Stewart-Warner<br>565008                                                                                                                                         | Stewart-Warner<br>565007                                                                                                                                                    |
|-------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|------------------------|------------------------|------------|----------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------------------|------------------------------------|------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General-Electric<br>K-5868922AC2                                        |                                                                      | General-Electric<br>K-5868926ABB  |                        |                        |            | General-Electric<br>K-8701214AA1 |                                    |                                    |                                    | General-Electric<br>5861373AA1                |                                    |                                    |                                    | Littlefuse Inc.<br>1091-1 ampere 4AB                                                                           |                      | Stewart-Warner<br>564906<br>General-Electric<br>K-7101037                            | Stewart-Warner<br>564922<br>General-Electric<br>K-7101892                     | Master Prod. Co.<br>Oak Mfg. Co. | Stewart-Warner<br>564774<br>General-Electric<br>K-7891731 | Stewart-Warner<br>564775<br>General-Electric<br>K-7891729 | Cannon Elec.<br>RFK-10-31SL3                                                                                                                                     | Cannov Elec.<br>GK-C3-32S4                                                                                                                                                  |
| L.V. brush holder<br>L.V. brush                                         | L.V. brush<br>L.V. brush<br>L.V. brush                               | M.V. brush                        | M.V. brush             | H.V. brush             | H.V. brush | L.V. brush holder, cap           | L.V. brush holder, cap             | L.V. brush holder, cap             | L.V. brush holder, cap             | M.V. brush holder, cap                        | M.V. brush holder, cap             | H.V. brush holder, cap             | H.V. brush holder, cap             | Low voltage output fuse                                                                                        | Spare fuse           | Power unit mounting<br>lock                                                          | Latch for H-2701                                                              | Used on H-2701                   | C-2706 capacitor<br>mounting bracket                      | C-2703 and C-2705<br>capacitor mounting<br>bracket        | B supply to trans-<br>mitter connector                                                                                                                           | Primary power<br>connector                                                                                                                                                  |
| CAP, BRUSH HOLDER: Same as E-2716.<br>BRUSH: Used only on GE dynamotor. | BRUSH: Same as E-2720. BRUSH: Same as E-2720. BRUSH: Same as E-2720. | BRUSH: Used only on GE dynamotor. | BRUSH: Same as E-2724. | BRUSH: Same as E-2724. |            | E dynamotor.                     | CAP, BRUSH HOLDER: Same as E-2728. | CAP, BRUSH HOLDER: Same as E-2728. | CAP, BRUSH HOLDER: Same as E-2728. | CAP, BRUSH HOLDER: Used only on GE dynamotor. | CAP, BRUSH HOLDER: Same as E-2732. | CAP, BRUSH HOLDER: Same as E-2732. | CAP, BRUSH HOLDER: Same as E-2732. | FUSE: Aircraft type; bakelite; enclosed cartridge fuse; antivibration; 1 ampere; 250 volt; 1-1/4" x 9/32" dia. | FUSE: Same as F-270, | LATCH SCREW & KNOB ASSEMBLY: Steel screw, brass knob; approx. 1-3/4" overall length. | LATCH: Aluminum bronze; max. dia536" x 13/32" thk., 1/4-20 tapped screw hole. | C WASHER: Stainless steel.       | CLAMP: Capacitor mounting; steel.                         | CLAMP: Capacitor mounting; steel.                         | CONNECTOR: Female; 10 contact; wall mounting; two 15 ampere contacts; eight 10 ampere contacts; 2-1/8" x 2-1/8" x 1-5/64" thk.; four 0.169" dia. mounting holes. | CONNECTOR: Female; three contact; wall mounting; two 60 ampere contacts; one 15 ampere contact; 1-1/4" x 1-1/32" thk; screw type connection; four 0.120" diamounting holes. |
| 3H1535-17/C1<br>3H525GE-6                                               | 3H525GE-6<br>3H525GE-6<br>3H525GE-6                                  | 3H525GE-5                         | 3H525GE-5              | 3H525GE-5              | 3H525GE-5  | 3H683-13                         | 3H683-13                           | 3H683-13                           | 3H683-13                           | 3H683-14                                      | 3H683-14                           | 3H683-14                           | 3H683-14                           | 3Z2601.32                                                                                                      | 3Z2601.32            | *                                                                                    | *:                                                                            | *                                | *                                                         | *                                                         | 2Z8680-7                                                                                                                                                         | 2Z8673.47                                                                                                                                                                   |
| E-2719<br>E-2720                                                        | E-2721<br>E-2722<br>E-2723                                           | E-2724                            | E-2725                 | E-2726                 | E-2727     | E-2728                           | E-2729                             | E-2730                             | E-2731                             | E-2732                                        | E-2733                             | E-2734                             | E-2735                             | F-2701                                                                                                         | F-2702               | H-2701                                                                               | H-2702                                                                        | H-2703                           | H-2704                                                    | H-2705                                                    | J-2701                                                                                                                                                           | J-2702                                                                                                                                                                      |

NOTE: Parts listed which are indicated by a # sign in column 2 are not available as spare parts and are listed for reference purposes only.

| MODEL: R            | MODEL: RADIO TRANSMITTING                                     | NG SET AN/ART-13A                                                                                                                                                                                                                                                                                                                                               | MAJOR ASS                            | MAJOR ASSEMBLY: DYNAMOTOR DY-17/ART-13A                                        | R DY-17/ART-13A                     |
|---------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------|-------------------------------------|
| Reference<br>Symbol | Army Stock Number<br>Navy Stock Number<br>British Ref. Number | Name of Part and Description                                                                                                                                                                                                                                                                                                                                    | Function                             | Mfr. and Desig.<br>or Standard Type                                            | Cont. or Govt.<br>Dwg. or Spec. No. |
| K-2701              | 2Z7589-86                                                     | RELAY: Two pole; double throw; contacts rated 12 amperes 28 volts D.C. non-inductive load; nominal coil voltage 28 volts D.C.; coil resistance 115 ohms min.; outside dimensions 3-1/32" x 2-1/16" x 1-3/4".                                                                                                                                                    | Power change relay                   | Leach Relay Co.<br>1067-2W<br>Guardian Elec.<br>G-36470<br>Allied Ctrl. HRX1   | Stewart-Warner<br>564536            |
| K-2702              | 2Z7586-83                                                     | RELAY: One pole normally open; double break; contacts rated 25 amperes 28 volts D.C. non-inductive load; nominal coil voltage 28 volts D.C.; coil resistance 135 ohms min; outside dimensions 3-1/16" x 1-45/64" x 1-7/8"; four solder lug terminals; two mounting feet each with two holes threaded for No. 8-32 machine screws 2.375" x 0.695" between mtg/c. | Primary power<br>contactor           | Leach Relay Co.<br>1091<br>Guardian Elec.<br>36471<br>Allied Control<br>BOX 45 | Stewart-Warner<br>564535            |
| K-2703              | 2Z7586-82                                                     | RELAY: Solving type; single pole normally open; double break; contacts rated 100 amperes 28 volts D.C. non-inductive load; nominal coil voltage 28 volts D.C.; coil resistance 75 ohms min; outside dimensions 3-3/16" x 2-7/32" x 2-1/4"; No. 8-32 brass screw coil terminals.                                                                                 | Dynamotor input<br>relay             | R.B.M. Mfg. Co.<br>RBM No. 17280<br>Guardian Elec.<br>G-36469                  | Stewart-Warner<br>\$64534           |
| K-2704              | 329586-1                                                      | BAROMETRIC SWITCH: Single circuit, normally open; snap action (toggle) switch; operated by bellows responding to changes in atmospheric pressure; range 20,000 to 25,000 feet; overall dimensions $3-13/16^{n} \times 3-3/8^{n} \times 2-1/8^{n}$ .                                                                                                             | Altitude voltage<br>control          | General-Electric<br>K-7890854-1<br>Air Communications<br>23M                   | Stewart-Warner<br>564916            |
| K-2705              | 3H900-10-12                                                   | RELAY: Overload; nominal rating 10 amperes; push-button will expose a fluorescent phosphorescent band and a red band when relay has tripped; bakelite case 2-1/16" x 1-33/64" x 3/4"; two mounting holes tapped for No. 6-32 screw, 1.812" between mtg/c; two terminal lugs each with a No. 8-32 brass R.H. screw.                                              | Transmitter overload<br>relay        | Square D Co.<br>9310 type 10A                                                  | Stewart-Warner<br>565023            |
| K-2706              | 3H900-35-13                                                   | RELAY: Overload; nominal rating 35 amperes; push-button reset; button will expose a fluorescent phosphorescent band and a red band when relay has tripped; bakelite case 2-1/16" x 1-33/64" x 3/4"; two mounting holes tapped for No. 6-32 screw, 1.812" between mtg/c; two terminal lugs each with a No. 8-32 brass R.H. screw.                                | Dynamotor overload<br>relay          | Square D Co.<br>9310 type 35A                                                  | Stewart-Warner<br>565024            |
| L-2701              | 3C323-12G                                                     | COIL: Choke; radio frequency; 15-3/4 turns of No. 9 A.W.C. copper wire with nylon or equivalent insulation; inductance 5.5 microhenries 20% at 1000 cycles; helical type coil; terminal lugs to fit No. 10 screw; iron core; core dimensions approx. 2-1/2" x 7/8" dia. single No. 8-32 mounting bolt.                                                          | Dynamotor input<br>filter choke      | J. E. Fast A8084                                                               | Stewart-Warner<br>564997            |
| L-2702              | 3C1075-2                                                      | COII.: Choke; radio frequency; 3 pie universal winding on ceramic form; No. 29 S.S.E. or No. 29 S.C.E. wire; inductance in air 500 microhenries 10 % at 1000 cycles; overall dimensions 1-15/16" x 5/8" dia.; single hole for mounting tapped for No. 6-32 screw.                                                                                               | Low voltage B supply<br>filter choke | E. I. Guthman Co.<br>30-5281<br>Standard Wind.<br>A-545-2                      | Stewart-Warner<br>564917            |

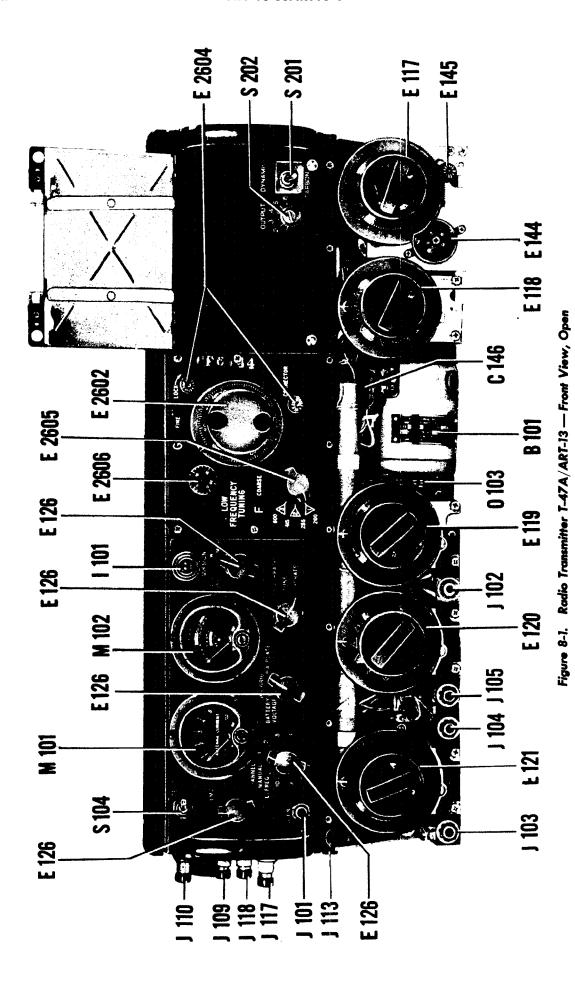
| Stewart-Warner<br>564633                                                                                                                                                                                                                                   |                              | Stewart-Warner<br>564921                                                                                                                                                                                                                                                        | Stewart-Warner<br>564921                          | Stewart-Warner<br>564766                                                                                                                                            | IIT CU-32/ART-13A    |                                    |                                                                                                                                                                                            | Ste-vart-Warner<br>565274                                                                                           |                                                                                                     | Stewart-Warner<br>565365                                         | Stewart-Warner<br>565105                                                                                           | Stewart-Warner<br>565580                                                                                                            |                                                                     | Stewart-Warner<br>564882                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| E. I. Guthman Co.<br>30-5220-2<br>National Co. Inc.<br>R-300-S<br>Standard Winding<br>A-545-1                                                                                                                                                              |                              | Federal Elec. Co.<br>Type No. 231<br>Ohmite No. 15626                                                                                                                                                                                                                           | Federal Elec. Co.<br>Type No. 231<br>Ohmite 15626 | I.R.C. BT·1                                                                                                                                                         | ANTENNA LOADING UNIT | JAN Type<br>CM70B361G              | AN Type<br>CM70B561G                                                                                                                                                                       | H. B. Jones<br>No. 6-1 Spec.                                                                                        | JAN Type<br>NS4W0106                                                                                | Stewart-Warner<br>563365<br>General-Electric<br>ML-7461439-5     | Stewart-Warner<br>565105<br>General-Electric<br>ML-7102419-1                                                       | Stewart-Warner<br>56580<br>General-Electric<br>ML-7104208-1                                                                         |                                                                     | Centralab<br>X-88W                                                                      |
| Low voltage B return<br>to dynamotor filter                                                                                                                                                                                                                | High voltage B supply filter | Voltmeter multiplier                                                                                                                                                                                                                                                            | Voltmeter multiplier                              | Low voltage B return<br>to dynamotor filter                                                                                                                         | ASSEMBLY:            | M-2501 meter coupling<br>capacitor | M-2501 meter coupling capacitor                                                                                                                                                            | Mounting board for resistors R-2501 through R-2505                                                                  | Resistor board<br>mounting supports                                                                 | Insulated coupling<br>between variometer<br>and knob             | ANTENNA posts                                                                                                      | H.F. INPUT terminal                                                                                                                 |                                                                     | Female insulator<br>used with binding<br>post J-2502                                    |
| COII.: Choke; radio frequency; 3 pie universal winding; No. 32 S.S.E. wire; ceramic form; inductance in air 1.0 millihenry ±10% at 1000 cycles; overall dimensions 1-15/16" x 1/2" dia; single hole for mounting tapped for No. 6-32 screw. Same as L-116. | COIL: Same as L-2703.        | RESISTOR: 6.7 ohms ±5%; this is one section of a 20.1 ohm tapped resistor; 5 watts in open air (10 watt size); wire wound; vitreous enameled; overall dimensions 1.3/4" x 11/16" x 3/8"; three solder lug terminals each with a 1/8" dia. hole; 3/16" dia. axial mounting hole. | RESISTOR: 13.4 ohms ±5%; see R-2701-A.            | RESISTOR: 330 ohms ±20%; 1 watt; carbon or wire wound; insulated; 1.280" x 0.310" dia. max.; 1-1/2" axial wire leads; max. inductance microhenries. Same as R-2217. | MAJOR                |                                    | CAPACITOR: Fixed; mica; 560 micromicrofarads ±2%; 5,000 volts DCW; 3-9/64" x 2-1/4" x 1-17/64"; molded; two 0.180" dia. mounting holes 2.625" between mtg/c; two No. 10-32 terminal studs. | BOARD, TERMINAL: Less resistors R-2501 through R-2505; bakelite, 4-3/4" x 1-7/8" x 1/8"; complete with 6 terminals. | STAND-OFF, INSULATOR: Ceramic, 3/4" x 3/8" dia.; 1 tapped No. 6-32 axial mounting hole at each end. | COUPLING: Ceramic ring; two metal hubs each with two set screws. | FEED-THROUGH ASSEMBLY: Antenna, consisting of a 9" x 6" x 1/8" mycalex plate, and binding posts J-2506 and J-2507. | FEED-THROUGH ASSEMBLY: Supplied with binding post J-2503; ceramic; 3-1/8" dia. x 1" thk., three 0.154" dia. mtg. holes; bowl shape. | FEED-THROUGH, INSULATOR ASSEMBLY: Consists of E2506-A and E-2506-B. | FEED-THROUGH, INSULATOR: Ceramic; female; 1/2" high; top diam. 3/4", bottom diam. 7/8". |
| 3C326-300.1                                                                                                                                                                                                                                                | 3C326-300.1                  | 3 <b>Z</b> 6002-34                                                                                                                                                                                                                                                              | 3 <b>Z</b> 6002-34                                | 3Z6033-21                                                                                                                                                           |                      | 3K7036123                          | 3K7056123                                                                                                                                                                                  | 2Z9406.132                                                                                                          | 3G1250-12.19                                                                                        | 3Z3269-34                                                        | 2Z9402.215                                                                                                         | 3G1905-2                                                                                                                            |                                                                     | 3G1000-4.1                                                                              |
| L-2703                                                                                                                                                                                                                                                     | L-2704                       | R-2701-A                                                                                                                                                                                                                                                                        | R-2701-B                                          | R-2702                                                                                                                                                              |                      | C-2501                             | C-2502                                                                                                                                                                                     | E-2501                                                                                                              | E-2502                                                                                              | E-2503                                                           | E-2504                                                                                                             | E-2505                                                                                                                              | E-2506                                                              | E-2506-A                                                                                |

NOTE: Parts listed which are indicated by a # sign in column 2 are not available as spare parts and are listed for reference purposes only.

MAJOR ASSEMBLY: ANTENNA LOADING UNIT CU-32/ART-13A Cont. or Govt. Dwg. or Spec. No. Stewart-Warner 565236 Stewart-Warner 565114 Stewart-Warner 565245 Stewart-Warner Stewart-Warner Stewart-Warner 565290 Stewart-Warner Stewart-Warner Stewart-Warner 564331 Stewart-Warner AN3195-1 565185 565141 565308 Mfr. and Desig. or Standard Type Amer. Lava Corp. Amer. Lava Corp. ML-7891557-2 ML-7461554-2 Centralab General-Electric Stewart-Warner 565240 General-Electric Stewart-Warner Stewart-Warner NS4Ü1108 7101296-1 Isolantite 565308 Used on L-2501 knob between S-2504 and conductor support Male insulator used with binding Insulator between S-2504 and relay K-2501 S-2503 support post Knob for S-2503 control "D" L-2502 mounting Knob for L-2501 control "R" L-2502 mounting Knob for S-2502 control "P" Function Knob for S-2501 control "Q" Connecting rod relay K-2501 post J-2502 mechanism H.V. INPUT insulators insulators Lock knob STAND-OFF: Ceramic; 5-7/8" x 1/2" x 1/2"; one axial tapped No. 8-32 and two radial 0.173" mounting holes on one end; two radial 0.196" mounting holes on other end; part of STAND-OFF: Ceramic; 6-1/4" x 1/2" x 1/2"; axial, tapped No. 8-32 mounting hole on one end; 0.150" radial hole, 1/4" from other end. KNOB: Black composition, brass shaft; 1-3/8" x 5/8" dia.; STAND-OFF: Ceramic; 1" x 3/8" x 3/8"; axial, tapped No. 8-32 mounting hole at each end; part of L-2501. SHAFT ASSEMBLY: Supplied with spring; 4-27/32" long; × STAND-OFF: Ceramic; 3-15/32" x 1/2" x 1/2"; one axial tapped No. 10-24 mounting hole on one end; one 0.196" radial mounting hole 5/16" from other end; 4 used; part of STAND-OFF: Ceramic; 1-5/8" x 3/8" x 3/8"; one axial tapped No. 8-32 mounting hole on one end; one 0.196" radial mounting hole 7/32" from other end; part of L-2502. RING: Ceramic; O.D. 2"; I.D. 1-1/4"; 1/4" thk.; two 0.154" dia. mounting holes; two tapped No. 6-32 mounting holes. KNOB: Complete with two set screws, less dial; 1" thk. x 2" dia.; bakelite, black. SNAP SLIDE: Stainless steel; 144" long x 14" wide x 1/2" high; consists of 1 latch, 1 latch guide, rivet, 1 washer. FEED.THROUGH, INSULATOR: Ceramic; male; 7/8" x 7/8" KNOB: Complete with two set screws; bakelite 2-1/4" 13/16" x 11/16"; black finish with white arrow. Name of Part and Description bakelite rod between end pieces. shaft threaded No. 10-24 thread. SET AN/ART-13A KNOB: Same as E-2508. KNOB: Same as E-2508. relay K-2501. max. diam. MODEL: RADIO TRANSMITTING Army Stock Number Navy Stock Number British Ref. Number 3G1100-104,4 3G1200-32.3 3G1100-74.1 3G110026.3 3G1100-100 2Z5822-125 3G100-56.1 2Z8609-11 2Z5786.37 2**Z**5786.37 2Z5786.37 E-2506-B Reference Symbol E-2517 E-2509 E-2511 E-2516 E-2519 E-2520 E-2508 E-2510 E-2512 E-2513 E-2514 E-2515 E-2518

|                                                                              |                                                                                                                                        |                      | Stewart-Warner<br>565275                   | Stewart-Warner<br>565303                        | Stewart-Warner<br>565325                                                                                                                                                 |                     |                               | · · · · · · · · · · · · · · · · · · · | Signal Corps<br>SO-239                                                 | Stewart-Warner<br>565371                                                                            |                                | Stewart-Warner<br>565100                                                                                                                                                                                           | Stewart-Warner<br>565200                                      | Stewart-Warner<br>565140                                                                                                                      |                                                         | Stewart-Warner<br>565302                                                                      | Stewart-Warner<br>565227                            |                                                                                                                   |                                  |                                  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------|---------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|
| Stewart-Warner<br>565575                                                     | Stewart-Warner<br>565601                                                                                                               | JAN type<br>NS4U1008 |                                            | Stewart-Warner<br>565303<br>General-Electric    | Cannon Elec.<br>WK-C3-32S-3                                                                                                                                              |                     |                               | ;                                     | Amer. Phenolic<br>83-1R                                                | Н. Н. Еву 63К                                                                                       |                                | R.B.M. Mfg. Co.<br>30300                                                                                                                                                                                           | Stewart-Warner<br>565200<br>General-Electric<br>ML-7767107-1G | Stewart-Warner<br>565140<br>General-Electric<br>ML-7767115-1                                                                                  | JAN type<br>MR25B005RLAA                                | Chgo. Thrift Co.                                                                              | Stewart-Wamer<br>565227<br>General Electric         | JAN Type<br>RC31BF185K                                                                                            |                                  |                                  |
|                                                                              |                                                                                                                                        |                      | Variometer speed reducer                   | Used with insulated couplers                    | 28 volt connection for<br>K-2501 relay                                                                                                                                   | L.F. INPUT terminal |                               |                                       |                                                                        | Antenna post                                                                                        |                                | Antenna load<br>connecting relay                                                                                                                                                                                   | Antenna loading                                               | Antenna Ioading                                                                                                                               | Antenna loading<br>meter                                | Variometer dial                                                                               | Part of disa.<br>mechanism                          | Capacitor discharging network                                                                                     | Capacitor discharging<br>network | Capacitor discharging<br>network |
| STAND-OFF: 1-5/8" x 1/2" x 1/2"; 2 axial tapped 8-32 mtg. holes at each end. | STAND-OFF: ceramic; 2-1/16" x $1/2$ " x $1/2$ "; 8-32 axial tapped hole at one end; 0.196" radial hole approx. $1/4$ " from other end. | STAND-OFF: ceramic.  | VERNIER MECHANISM: 1-11/64" x 2-9/16" dia. | COUPLER: $2'' \times 1/2'' \times 13/32''$ thk. | CONNECTOR: Male; three contacts; wall mounting; two No. 3 10 contacts; one No. 16 contact; four 0.120" mounting holes, 0.729" between mtg/c; screw cable connector lock. | as J-117.           | POST, BINDING: Same as J-110. | POST, BINDING: Same as J-113.         | CONNECTOR: Female; 1" x 1-1/16" thk.; four 0.120" dia. mounting holes. | POST, BINDING: Push type; black bakelite cap; keyed pin; 1-3/16" x 1/2" dia.; supplied with E-2504. | POST, BINDING: Same as J.2506. | RELAY: Supplied with S-2504, E-2512 and E-2514; two coils connected in series used; nominal voltage 28 volts; coil resistance 26.1 ohms; approx. 5" wide x 8" high x 2-1/2" thk.; switch description under S-2504. | of rotor stator and 16" dia.; bakelite coil                   | COII., R.F.: Single winding; three taps, bank wound; 240 turns; mica tubing; supplied with support insulators; approx. 7" x 4-1/4" x 5" bigh. | METER: Ammeter, thermo R.F., 0-5 amperes, 2-1/2" round. | DIAL: Aluminum; 2-1/2" dia.; one half of dial calibrated 0-100; six 1/8" dia. mounting boles. | DISC ASSEMBLY: Semi-circular; 3" dia. x 1/4" thick. | RESISTOR: Fixed; carbon; 1 watt; 1.8 megohms ±10%; max. dimensions 1.280" x 0.310" dia.; 1-1/2" axial wire leads. | RESISTOR: Same as R-2501.        | RESISTOR: Same as R-2501.        |
| 3G1450-16.1                                                                  | 3G1100-33                                                                                                                              | 3G1450-16            | #                                          | ***                                             | 2Z8673.42                                                                                                                                                                | 3Z741-13            | 3Z741-13.2                    | 3 <b>Z</b> 737-32                     | 2 <b>Z</b> 8799-239                                                    | *                                                                                                   | #                              | 2Z7598-52                                                                                                                                                                                                          | <b>2Z9629-</b> 37                                             | 3C1075-3                                                                                                                                      | 3F1005-51                                               | *                                                                                             | *                                                   | 3RC21BF185K                                                                                                       | 3RC21BF185K                      | 3RC21BF185K                      |
| E-2521                                                                       | E-2522                                                                                                                                 | E-2523               | H-2501                                     | H-2502                                          | J-2501                                                                                                                                                                   | <b>J-2502</b>       | J-2503                        | J-2504                                | J-2505                                                                 | J-2506                                                                                              | <b>J-2507</b>                  | K-2501                                                                                                                                                                                                             | L-2501                                                        | L-2502                                                                                                                                        | M-2501                                                  | N-2501                                                                                        | O-2502                                              | R-2501                                                                                                            | R-2502                           | R-2503                           |

NOTE: Parts listed which are indicated by a # sign in column 2 are not available as spare parts and are listed for reference purposes only.


| Reference         Army Stock           Symbol         British Ref.           R-2504         3RC21BF18:           R-2505         3RC21BF18:           S-2501         3Z9826-54.2 | Army Stock Number<br>Navy Stock Number<br>British Ref. Number<br>3RC21BF185K |                                                                                                                                                                           |                                                   |                                                          |                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|-------------------------------------|
|                                                                                                                                                                                 | IBF185K<br>IBF185K                                                           | Name of Part and Description                                                                                                                                              | Function                                          | Myr. and Desig.<br>or Standard Type                      | Cont. or Govt.<br>Dwg. or Spec. No. |
|                                                                                                                                                                                 | 1BF185K                                                                      | RESISTOR: Same as R-2501.                                                                                                                                                 | Capacitor discharging network                     |                                                          |                                     |
|                                                                                                                                                                                 |                                                                              | RÉSISTOR: Same as R-2501.                                                                                                                                                 | Capacitor discharging network                     |                                                          |                                     |
|                                                                                                                                                                                 | :6-54.2                                                                      | SWITCH: Two bank; four position; switch body approx. 5-31/32" x 2-3/4" dia.; thread tapped No. 6-32 mounting bushings; operated by control "Q."                           | Variometer switch                                 | Centralab<br>Ucinite<br>General Electric<br>ML-747223-1  | Stewart-Warner<br>565250            |
| S-2502 3Z9826-54.1                                                                                                                                                              | 6-54.1                                                                       | SWITCH: Two bank; five position; switch body approx. 6-25/64" x 3-7/8" dia.; four tapped No. 6-32 mounting bushings; operated by control "P."                             | Antenna load coil<br>switch                       | Centralab<br>Ucinite<br>General Electric<br>ML-7472073-1 | Stewart-Warner<br>565370            |
| S-2503 3Z9826-54                                                                                                                                                                | 6-54                                                                         | SWITCH: Four bank; two position; switch body approx. 9-1/2" x 3-7/8" dia.; four tappel No. 6-32 mounting bushings; ceramic support post in rear; operated by control "O." | Antenna switch                                    | Centralab<br>Ucinite<br>General Electric<br>ML-7663336-1 | Stewart-Warner<br>565450            |
| S-2504 2Z7598-52/1                                                                                                                                                              | 8-52/1                                                                       | SWITCH: Vacuum; S.P.D.T.; 4" x 3-1/2" x 1-1/2"; less Antenna load connectholder, cap and sphere; glass envelope.                                                          | Antenna load connecting switch                    | General Electric<br>K-7104031                            | Stewart-Warner<br>565198            |
|                                                                                                                                                                                 |                                                                              |                                                                                                                                                                           | MAJC                                              | MAJOR ASSEMBLY: PANEL MX-128/ART-13                      | L MX-128/ART-1                      |
| P-402 2Z7227-2                                                                                                                                                                  | 7-2                                                                          | CONNECTOR: Same as P.2601.                                                                                                                                                | Low frequency oscillator connector to transmitter |                                                          | -                                   |
| R-402* 3Z6002H8-6                                                                                                                                                               | 2H8-6                                                                        | RESISTOR: Fixed; wire wound; 28 ohms ±10%; 10 watts.                                                                                                                      | Filament substitute<br>resistor                   | Stewart-Warner<br>565705                                 | Stewart-Warner<br>565705            |

| MAJOR ASSEMBLY: MOUNTING MT-198/ART-13A | isolator U. S. Rubber<br>6200P (30 Durometer)                                                                                                                            |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | MOUNT, VIBRATION: 6 lb. load rating; 2-1/4" x 2-1/4" x Vibration isolator 1-1/16" high; 4 mtg holes 0.196" diam. on 1-3/4" x 1-3/4" centers. AF Stock No. 6600-574865-4. |

\*Sometimes supplied as two resistors in series.

A-2901

SECTION VIII DRAWINGS



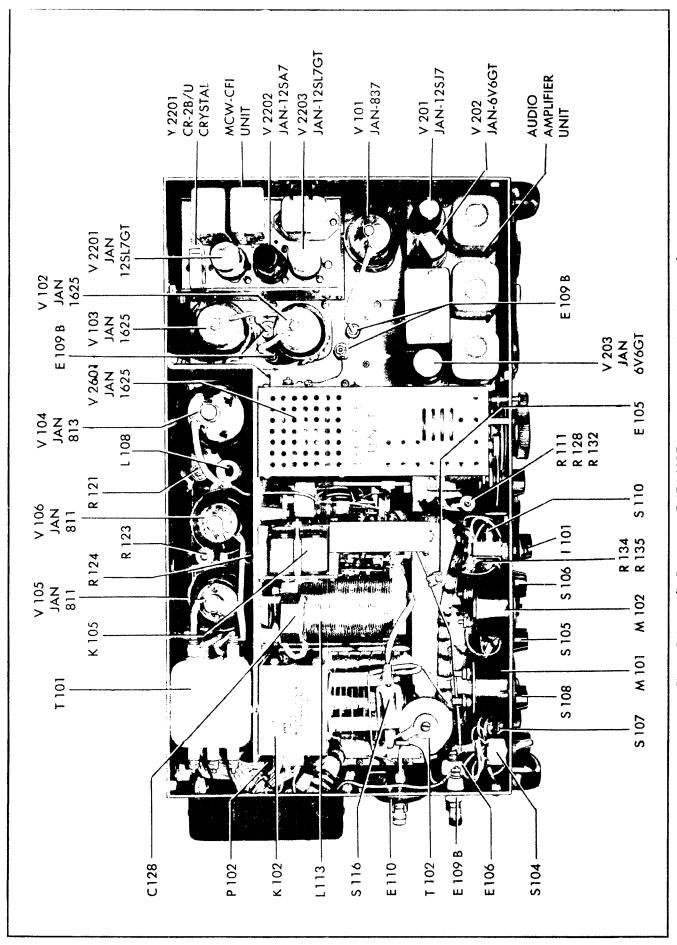



Figure 8-2. Radio Transmitter T-47A/ART-13 --- Top View, Cover Removed

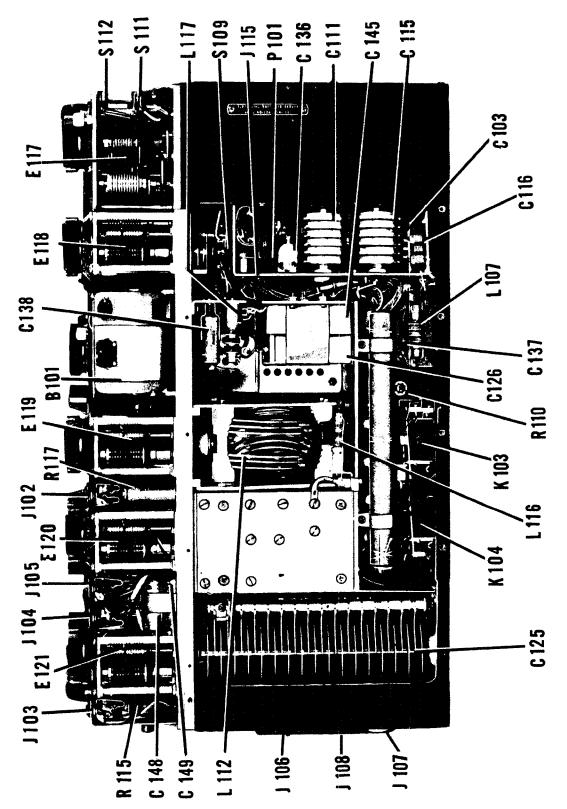



Figure 8-3. Radio Transmitter T-47A/ART-13 — Bottom View, Panel Removed

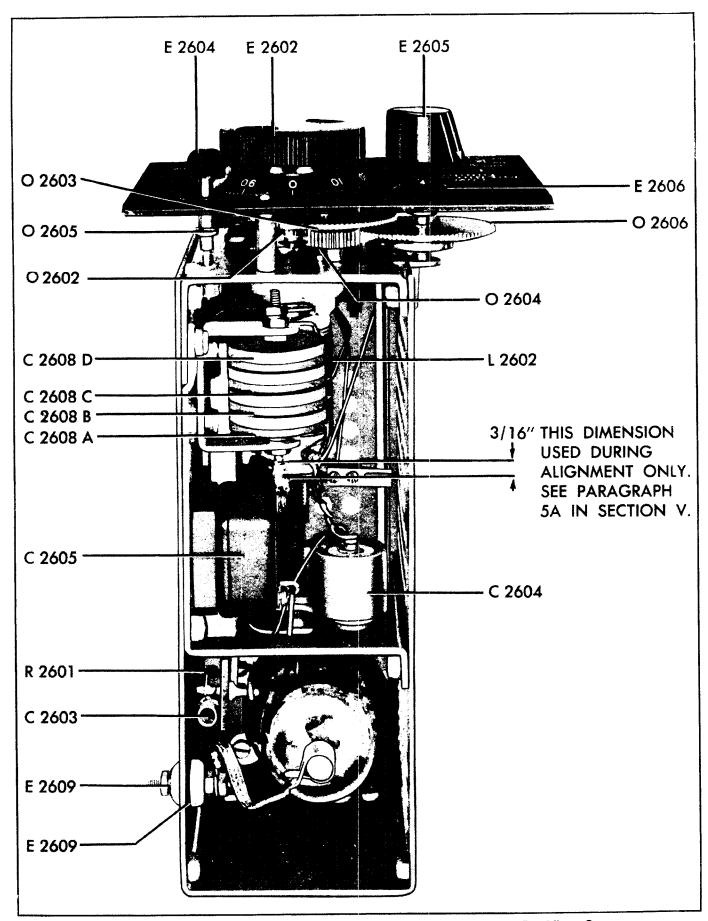



Figure 8-4. Low Frequency Oscillator Unit (Oscillator 0-17/ART-13A) -- Top View, Open

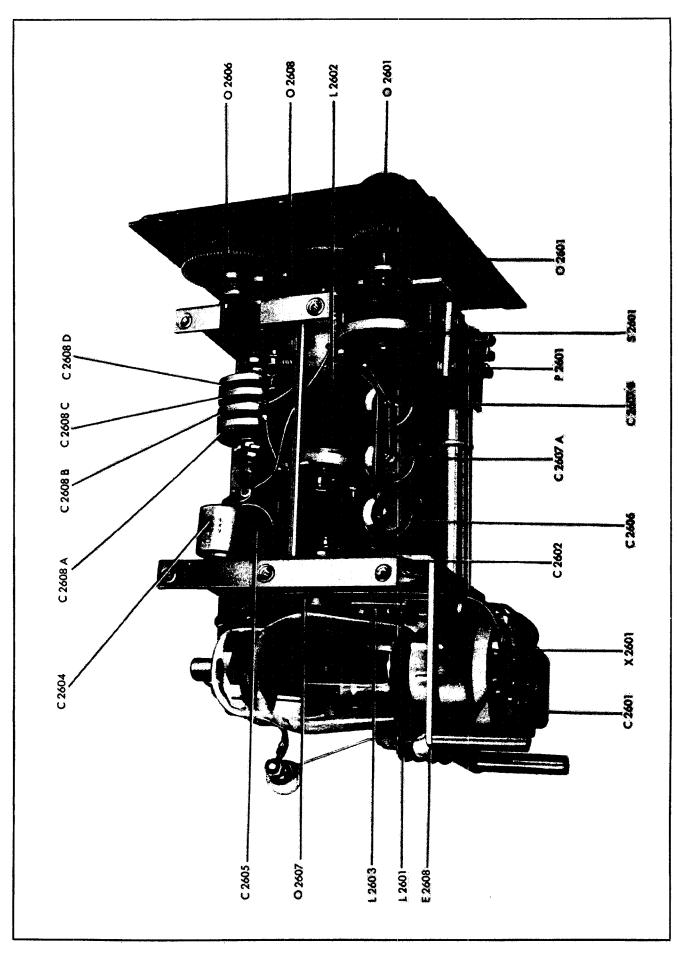



Figure 8-5. Low Frequency Oscillator Unit (Oscillator 0-17/ART-13A) --- Bothom View, Open

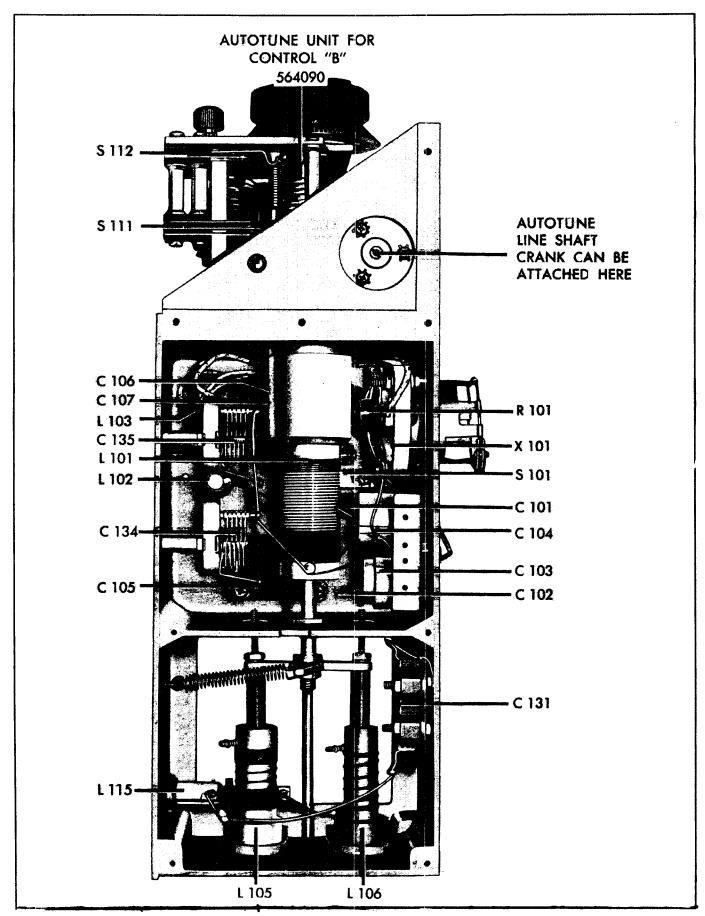



Figure 8-6. High Frequency Oscillator — Side View, Open

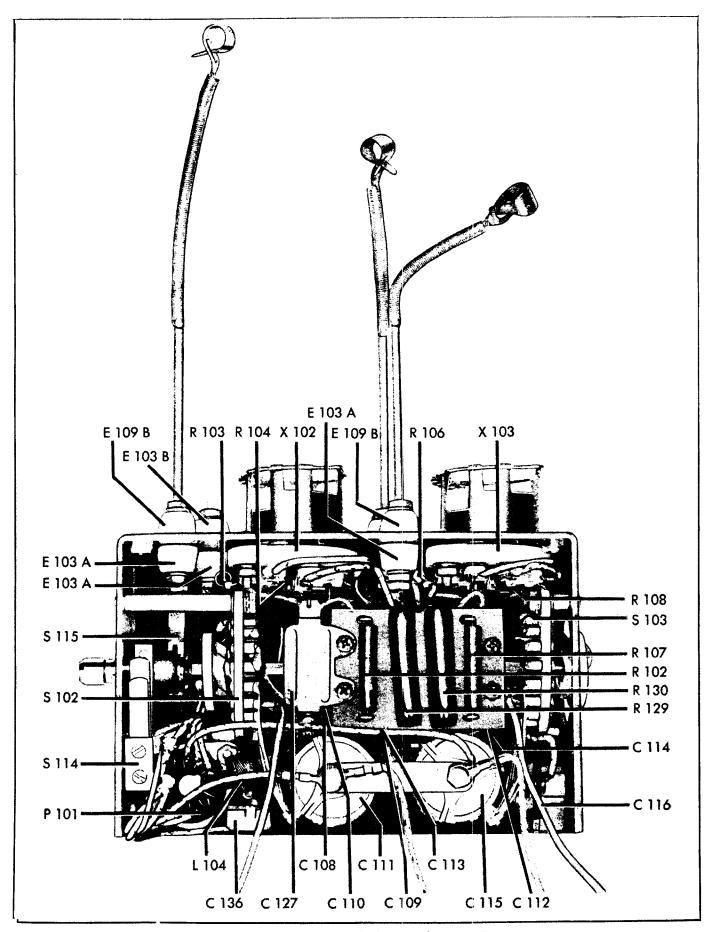



Figure 8-7. Frequency Multiplier -- Side View, Open



Figure 8-8. MCW-CFI Unit — Top View

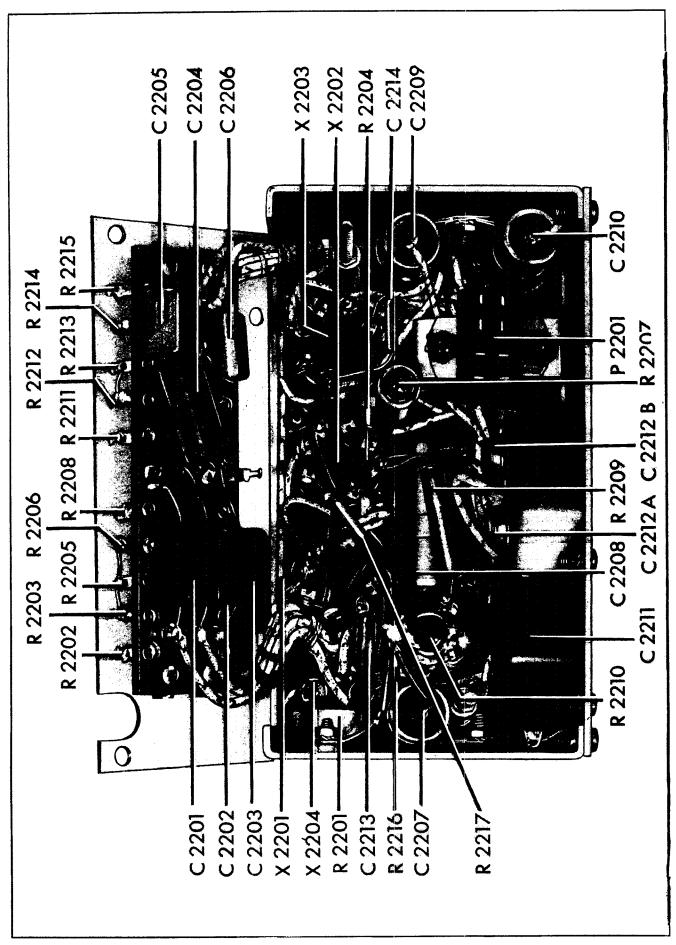



Figure 8-9. MCW-CFI Unit --- Bottom View

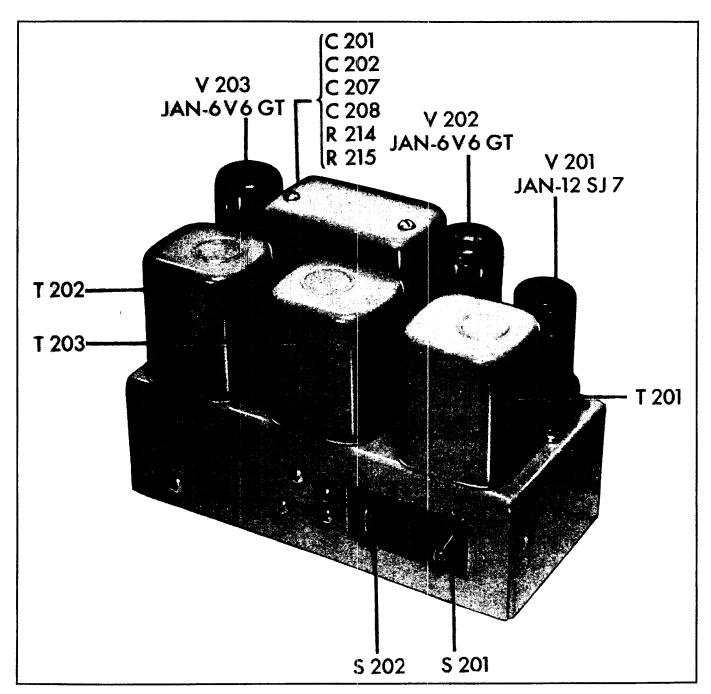



Figure 8-10. Audio Amplifier Unit --- Top View

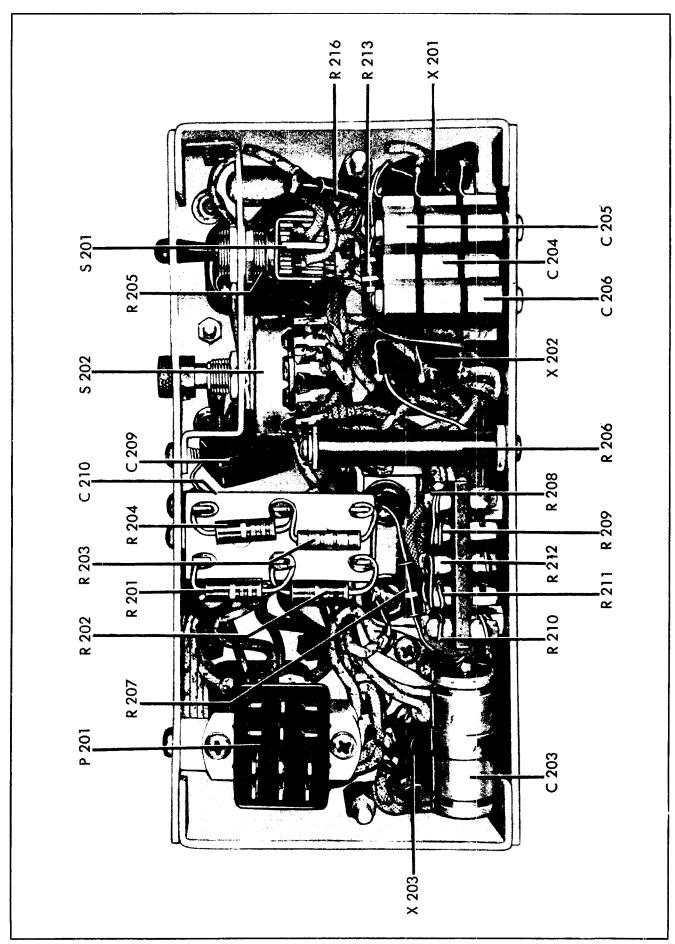
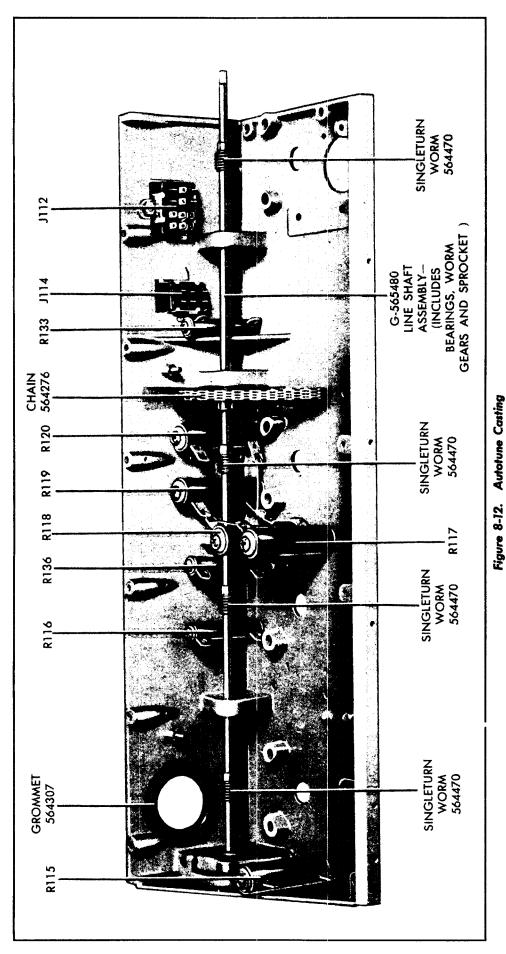




Figure 8-11. Audio Amplifier Unit -- Bottom View



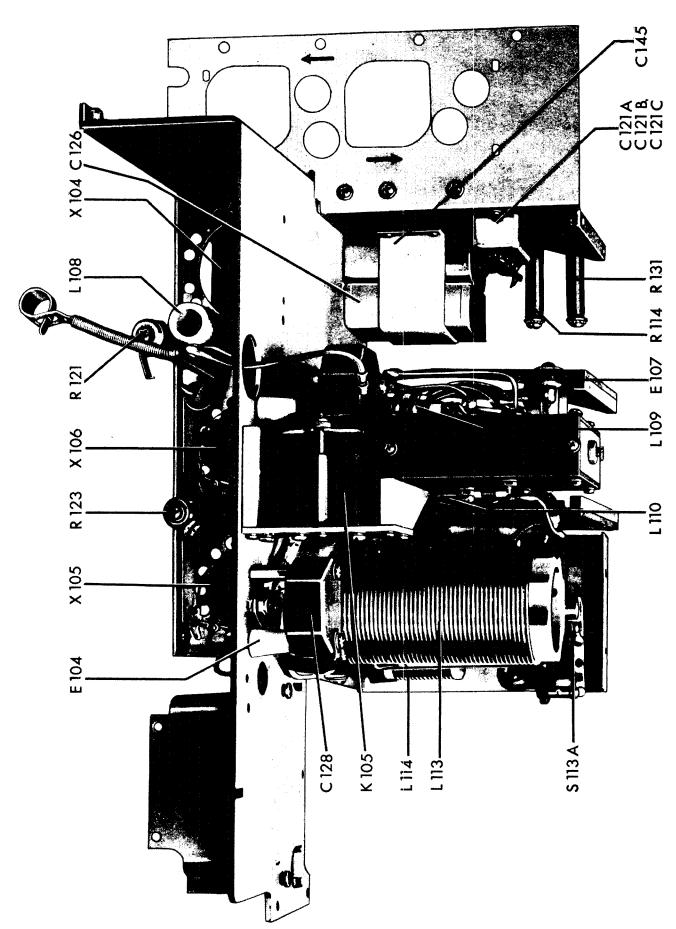
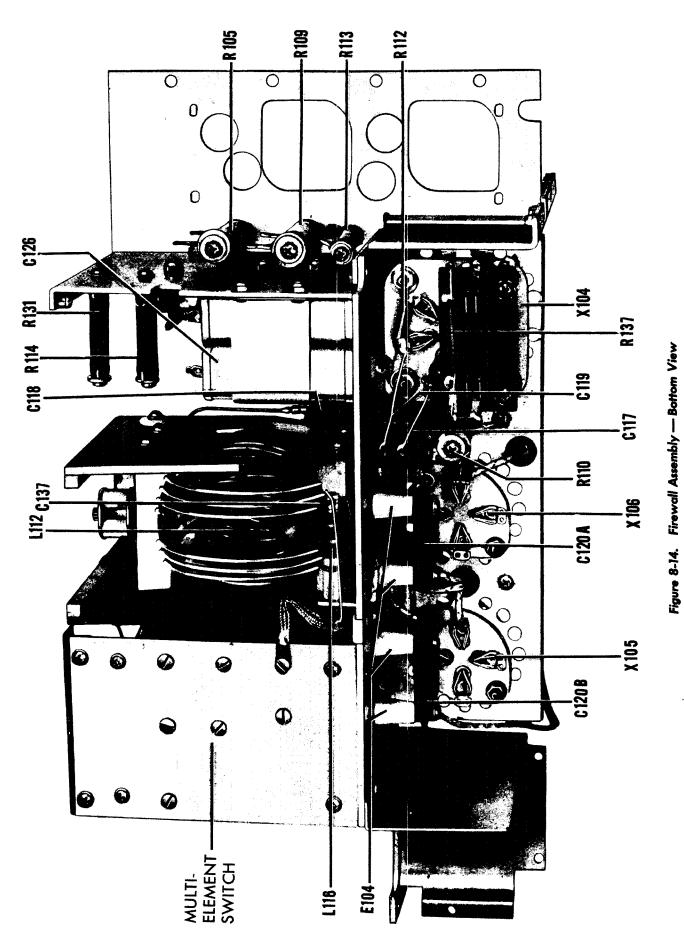




Figure 8-13. Firewall Assembly — Top View



8-15

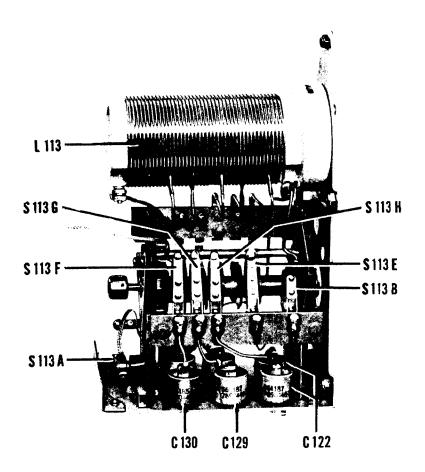
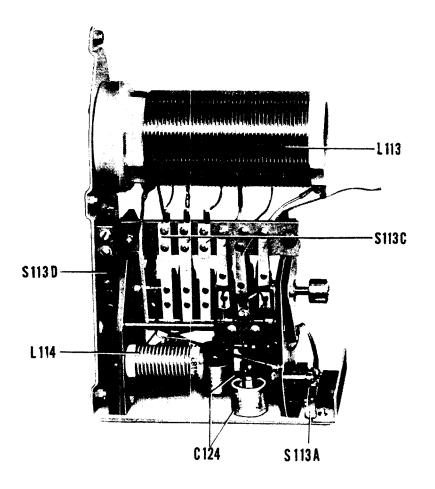
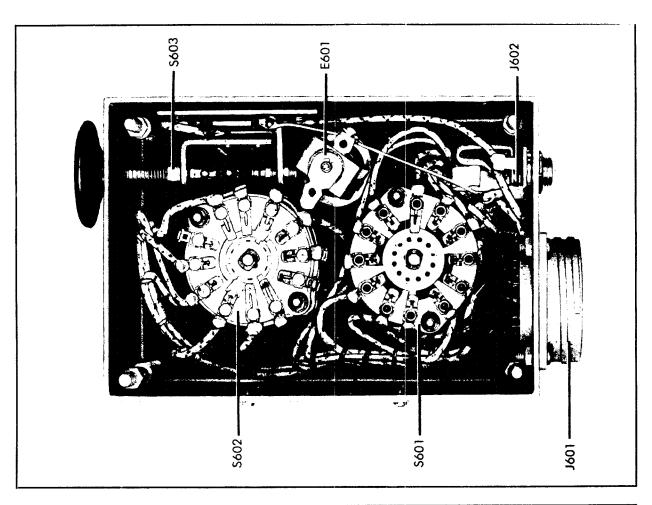
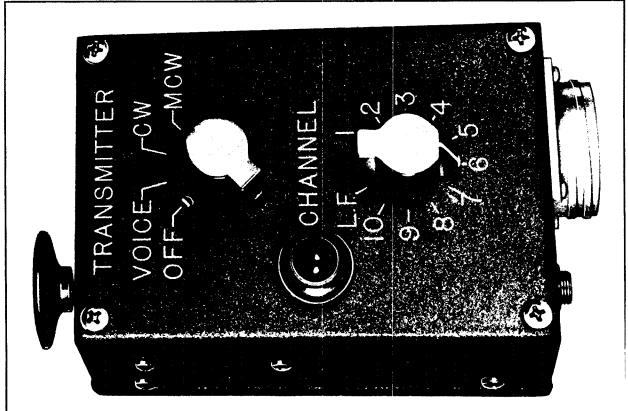






Figure 8-15. Multi-Element Switch — Right Side View









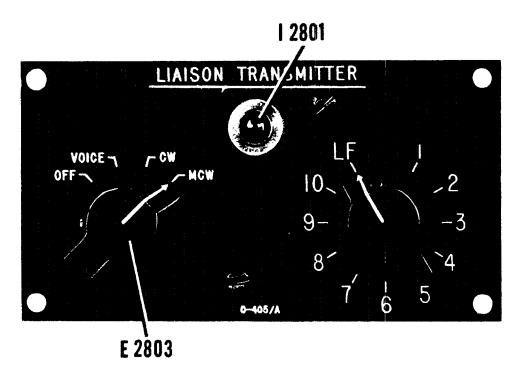



Figure 8-19. Control Panel C-405/A — Front View

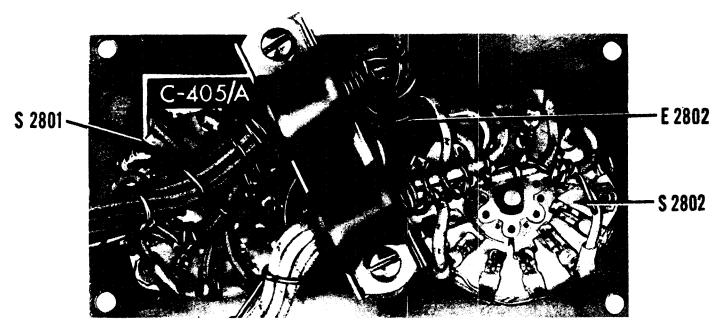



Figure 8-20. Control Panel C-405/A -- Rear View, Open

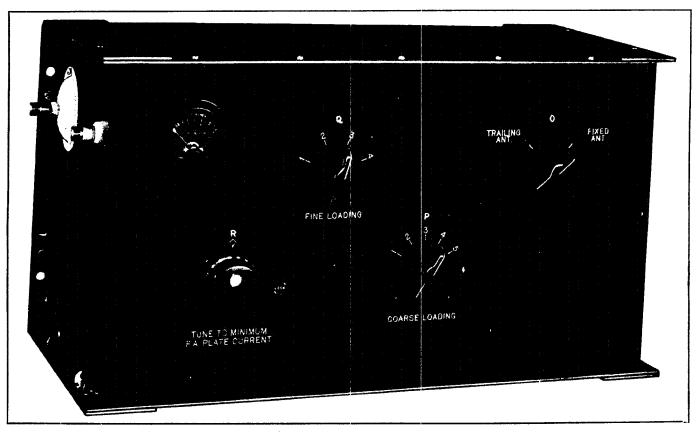



Figure 8-21. Antenna Loading Unit CU-32/ART-13A — Front View

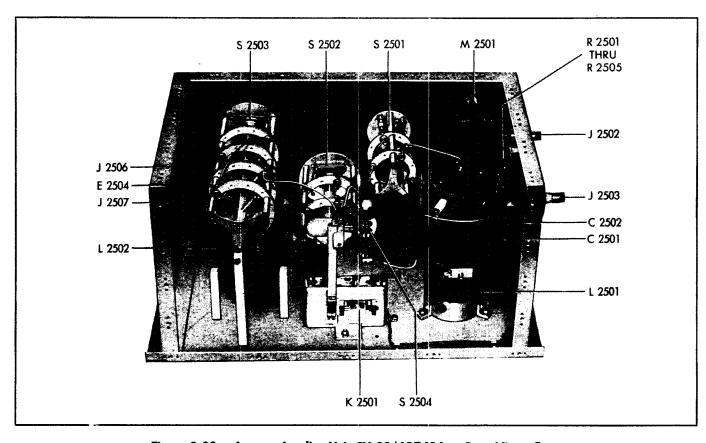



Figure 8-22. Antenna Loading Unit CU-32/ART-13A — Rear View, Open

Figure 8-23. Antenna Shunt Capacitor CU-24/ART-13A

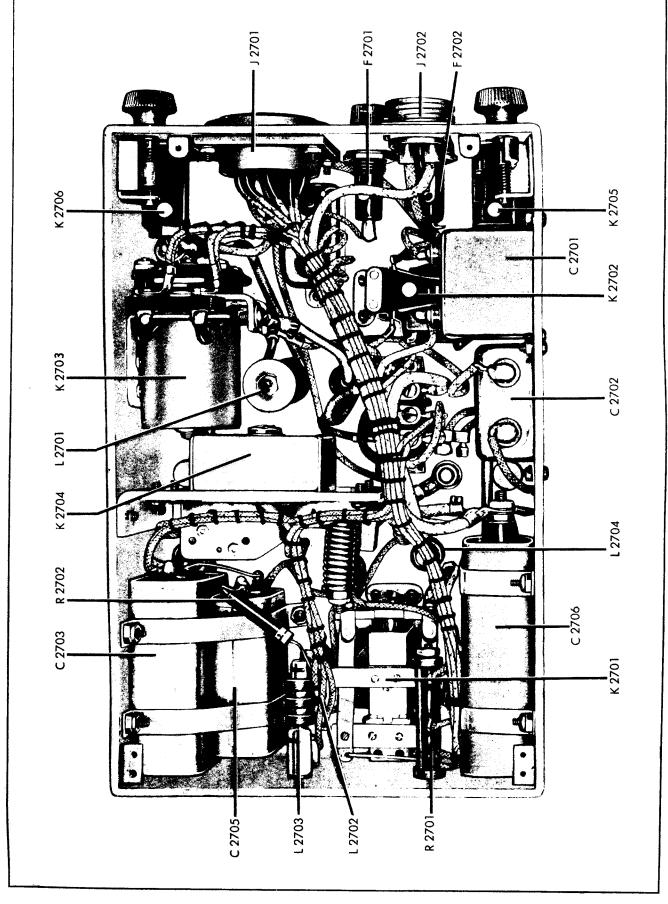



Figure 8-24. Dynamotor Unit DY-17/ART-13A — Bottom View

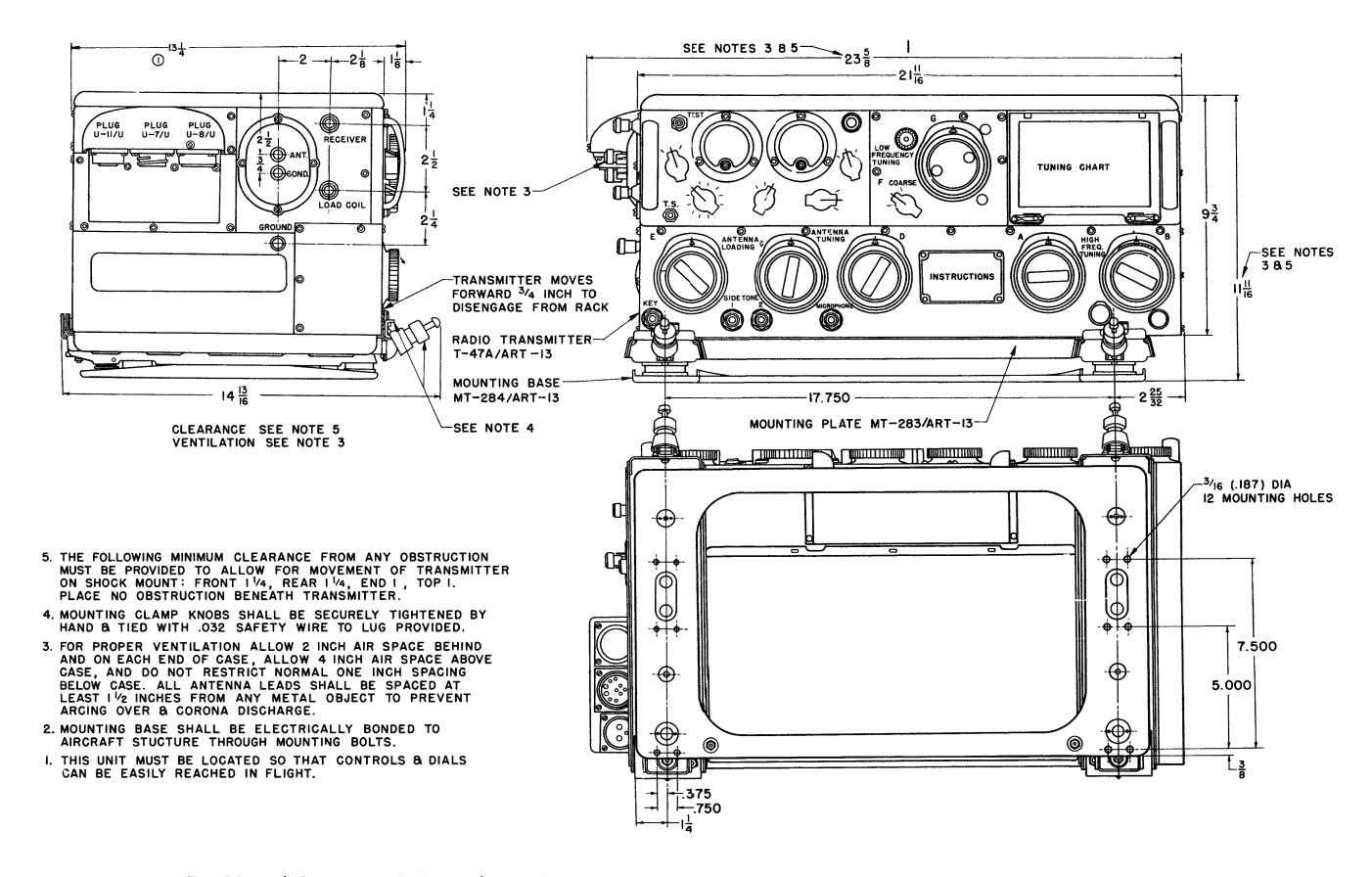



Figure 8-25. Radio Transmitter T-47A/ART-13 — Outline Dimensions

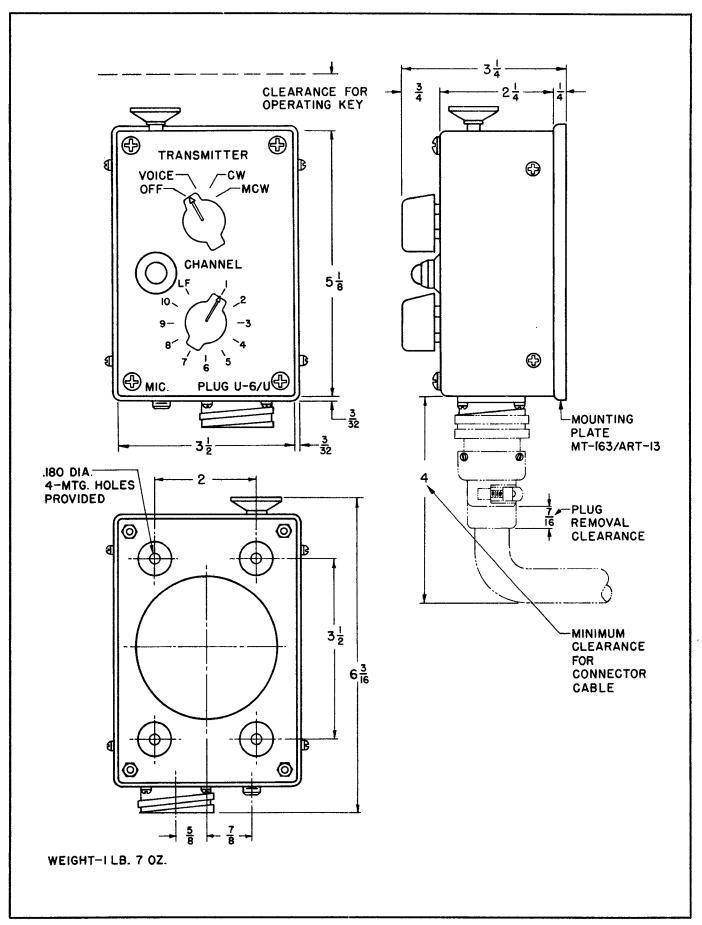
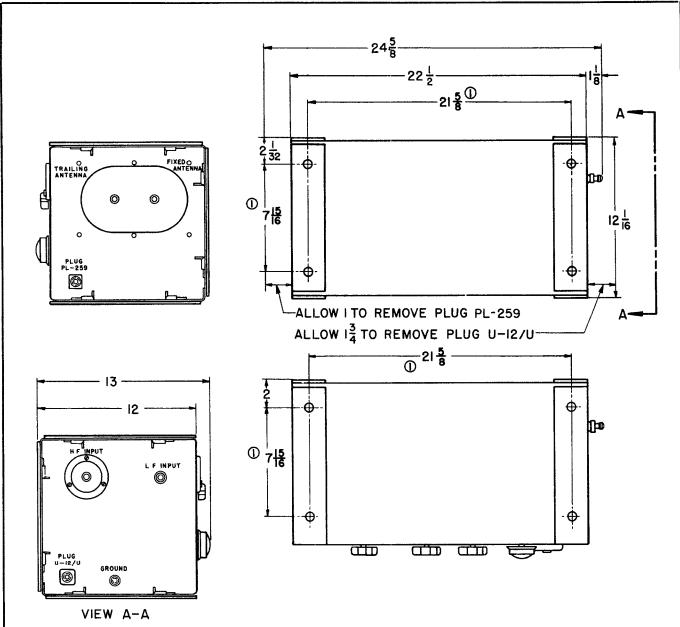




Figure 8-26. Control Unit C-87/ART-13 — Outline Dimensions



- I. GOVERNMENT FURNISHED SHOCK MOUNTING MUST BE INSTALLED IN A HORIZONTAL PLANE. HOWEVER, IT MAY BE INVERTED WITH THE ANTENNA LOADING UNIT SUSPENDED FROM IT. ANTENNA LOADING UNIT MAY BE ATTACHED TO MOUNTING ON ANY ONE OF ITS THREE SIDES AND IS DESIGNED FOR OPERATION IN ANY POSITION.
- 2. ADD I-I/2 TO OVER-ALL HEIGHT WHEN ANTENNA LOADING UNIT IS ATTACHED TO SHOCK MOUNT.
- 3. LEADS TO FIXED ANTENNA, TRAILING ANTENNA, AND HF INPUT MUST HAVE AT LEAST 1-1/2 CLEARANCE FROM ALL OTHER METALLIC OBJECTS. LEAD TO LF INPUT MUST HAVE AT LEAST 3/4 CLEARANCE.
- 4. GROUND CONNECTORS SHALL BE TO AIRCRAFT STRUCTURE. CONTACT SURFACES TO BE CLEAN, FREE FROM PAINT ETC. LENGTHS OF LEADS TO BE A MINIMUM BUT OF SUFFICIENT LENGTH TO ALLOW UNIT FREE MOVEMENT ON SHOCK MOUNT.
- FOR MOUNTING SEE FIGURE 8-28.

Figure 8-27. Antenna Loading Unit CU-32/ART-13A — Outline Dimensions

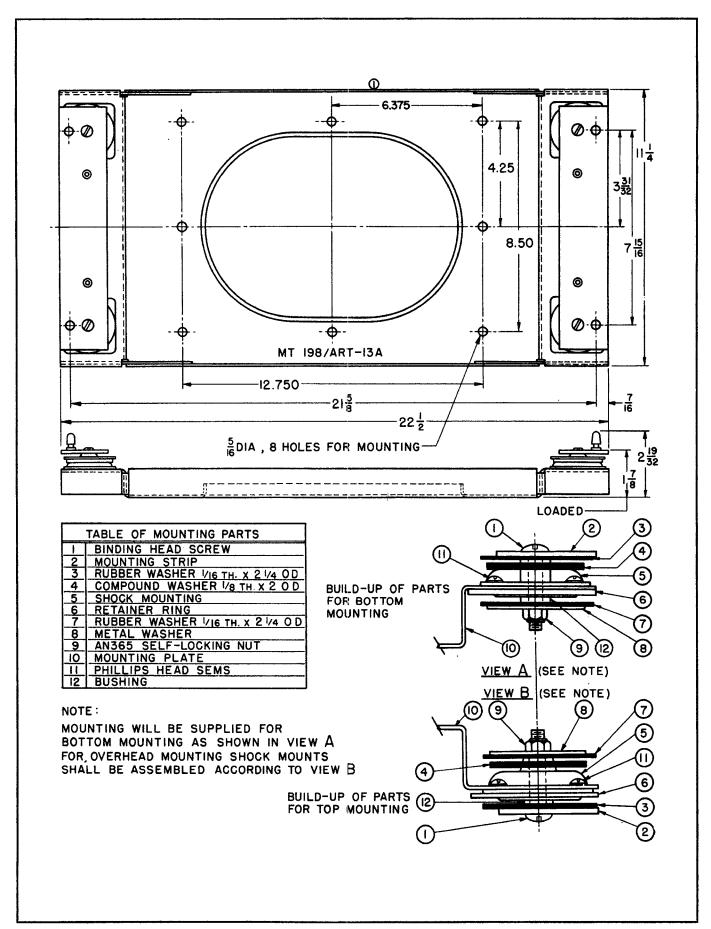



Figure 8-28. Mounting Base MT-198/ART-13A — Outline Dimensions

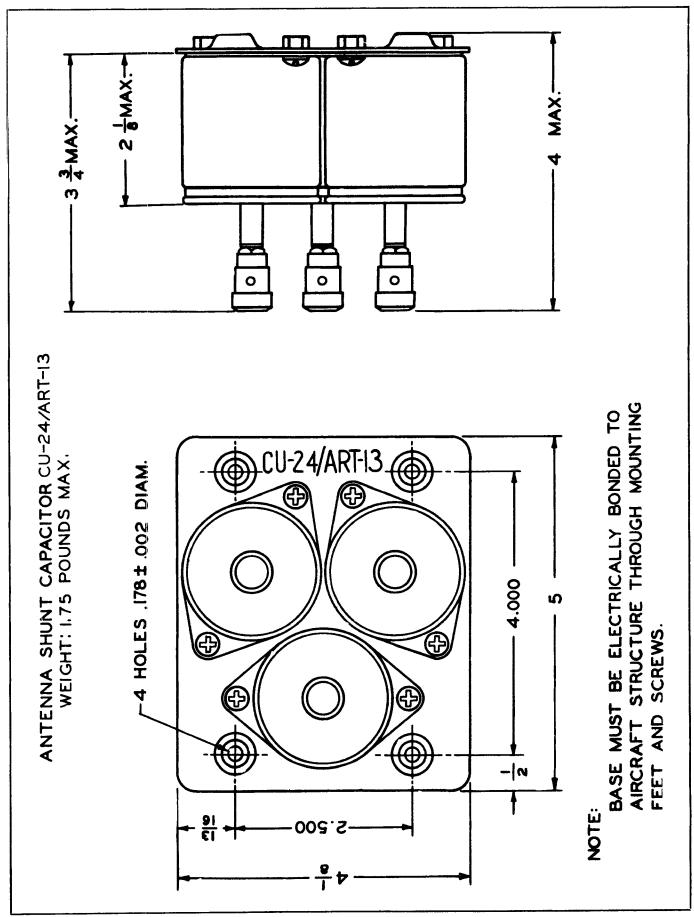



Figure 8-29. Antenna Shunt Capacitor CU-24/ART-13 — Outline Dimensions

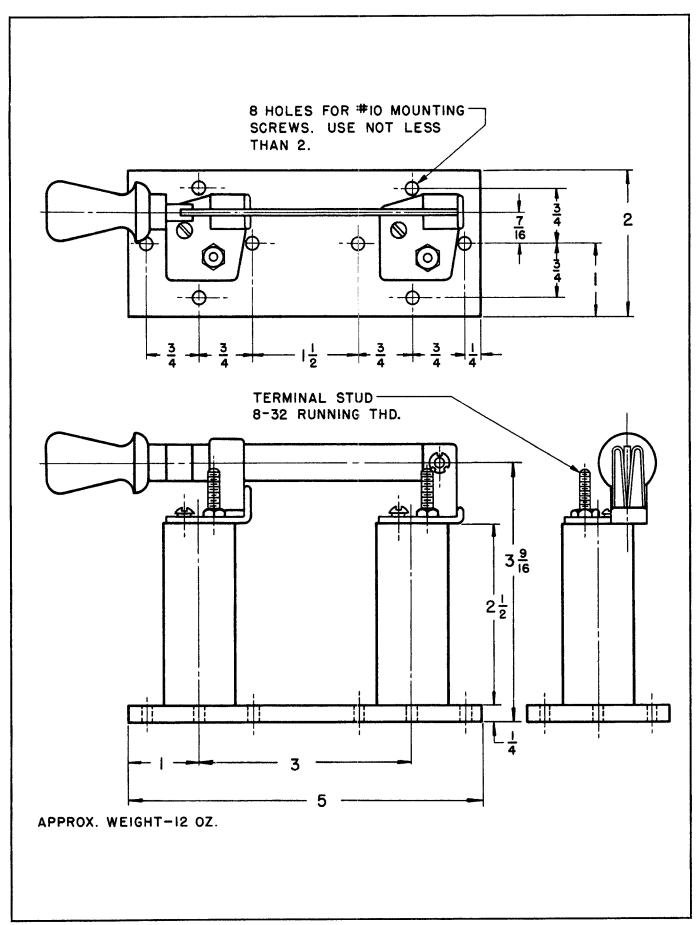



Figure 8-30. Switch SA-46/ART-13 — Outline Dimensions

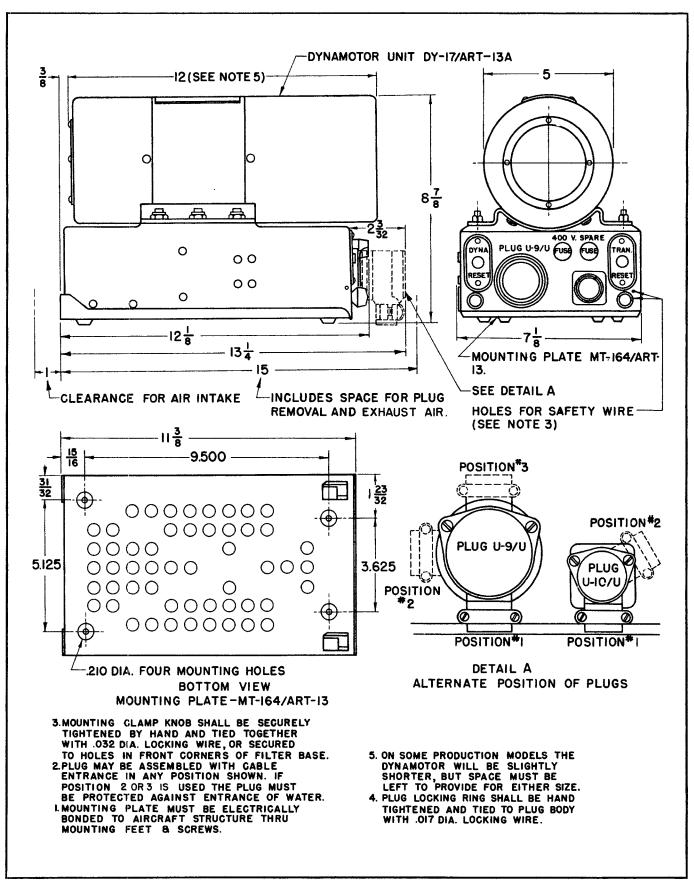



Figure 8-31. Dynamotor Unit DY-17/ART-13A — Outline Dimensions

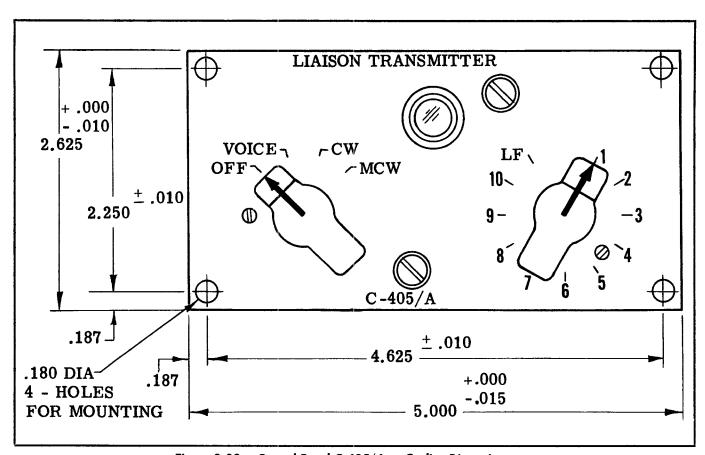
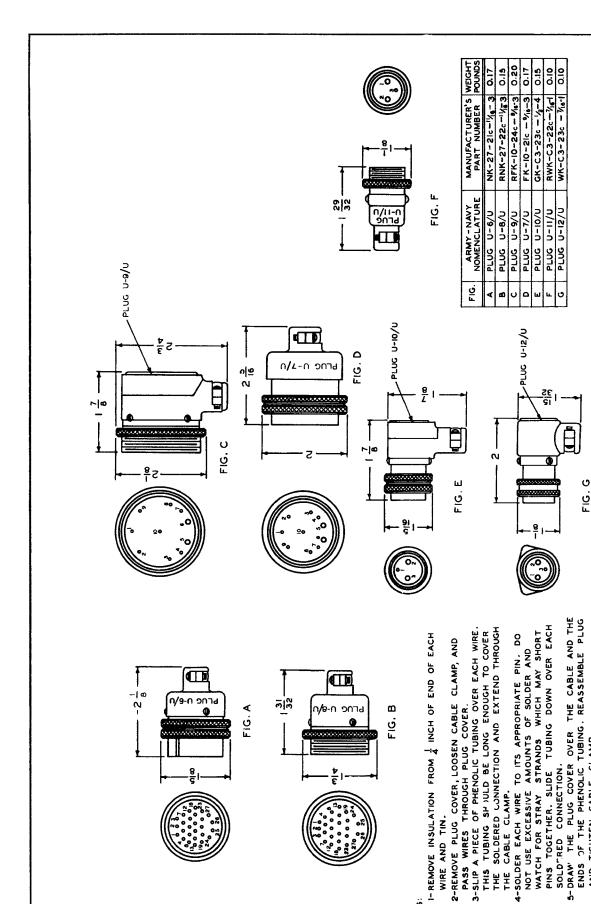
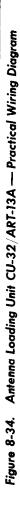
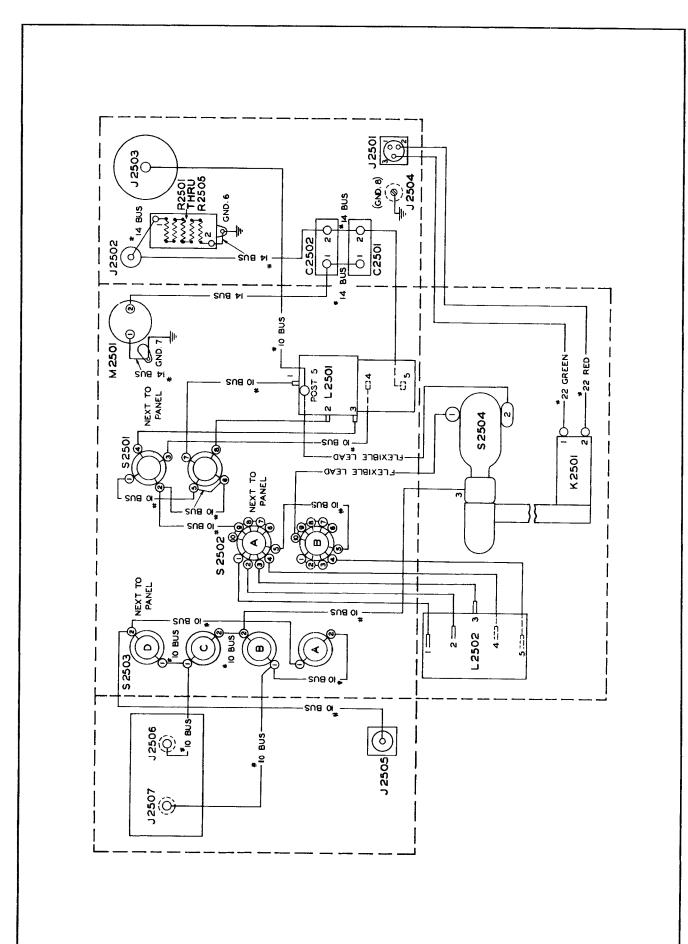



Figure 8-32. Control Panel C-405/A — Outline Dimensions



Figure 8-33. Plugs for Radio Transmitting Set AN/ART-13A

6-THE RIGHT ANGLE PLUG COVERS MAY BE ASSEMBLED TO THE PLUG BODY IN OTHER POSITIONS THAN THOSE SHOWN, TO SUIT INSTALLATION.

AND TIGHTEN CABLE CLAMP.

NOTES:





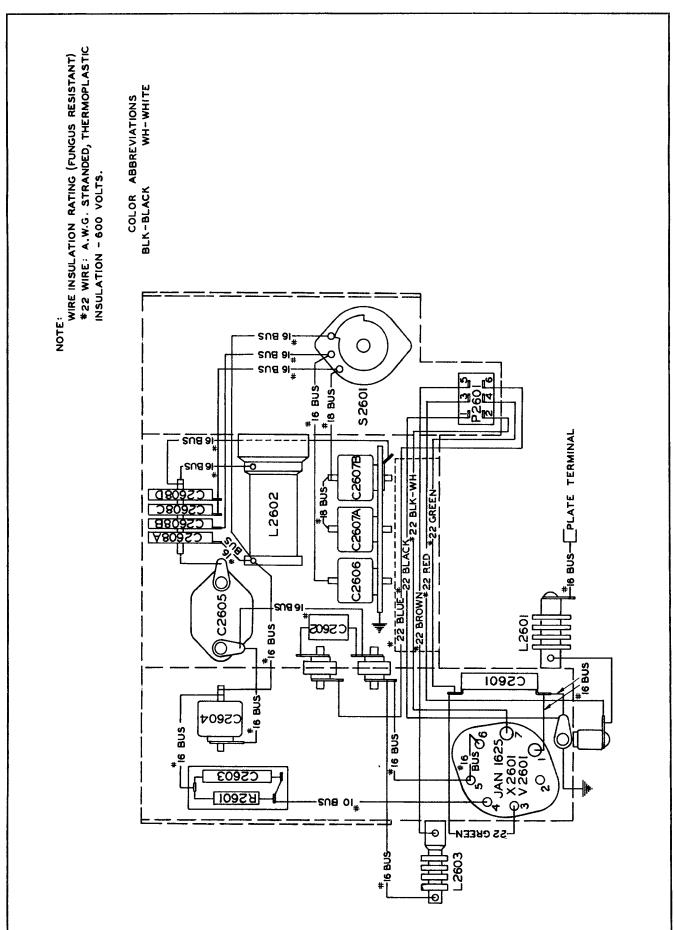
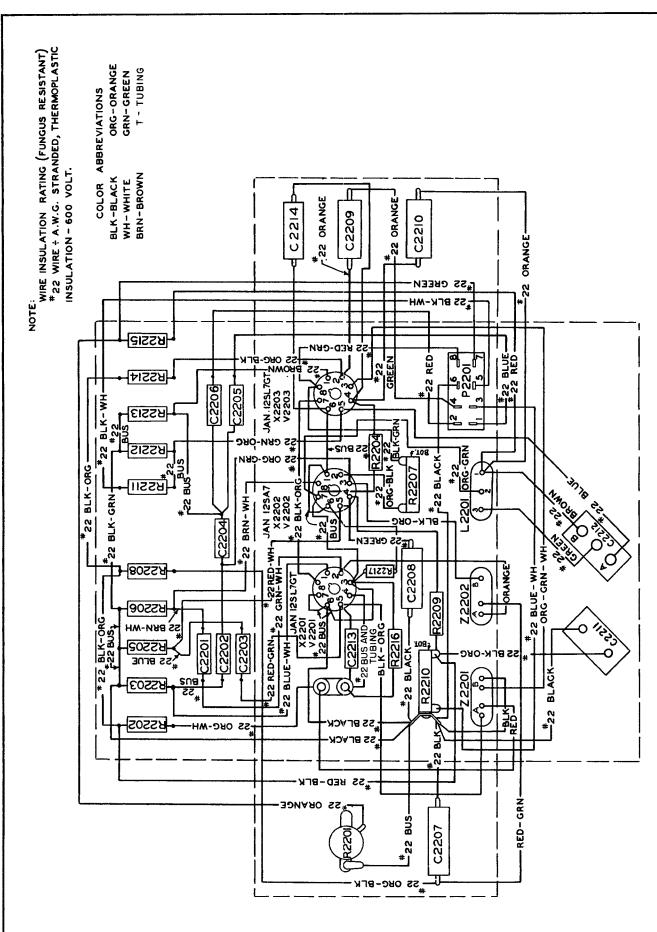




Figure 8-35. Low Frequency Oscillator Unit -- Practical Wiring Diagram



MCW-CFI Unit — Practical Wiring Diagram

Figure 8-36.



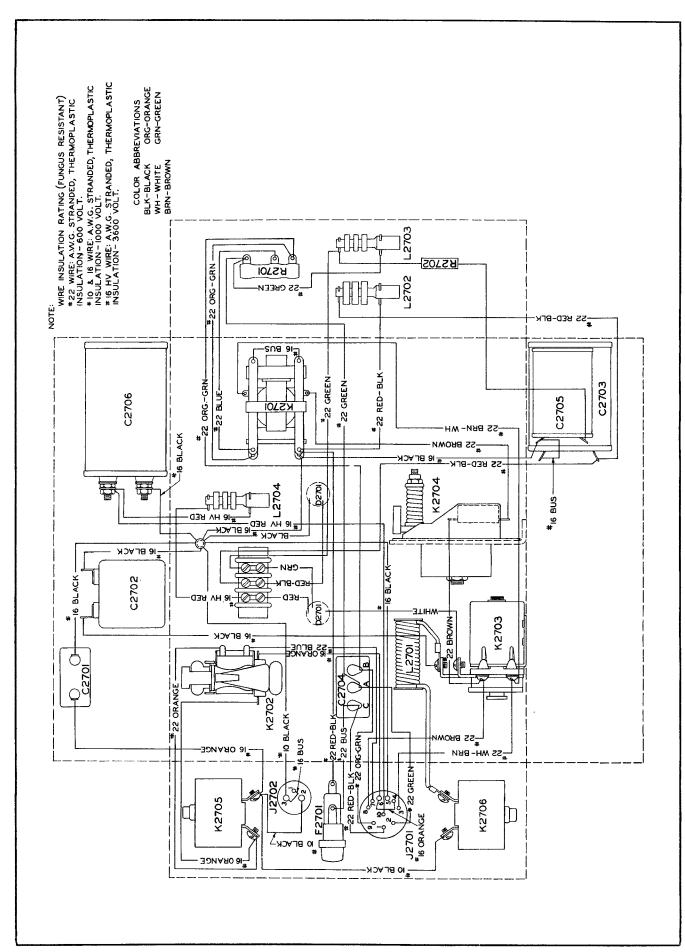



Figure 8-39. Dynamotor Unit DY-17/ART-13A — Practical Wiring Diagram

AN 16-30ART13-4

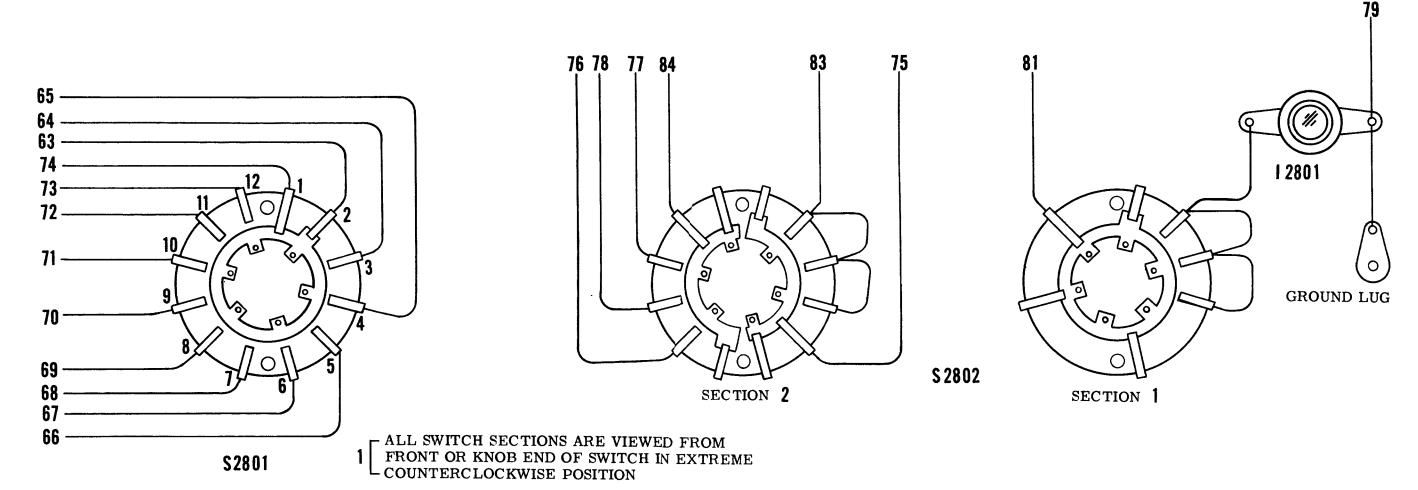



Figure 8-40. Control Panel C-405/A — Practical Wiring Diagram

Section VIII

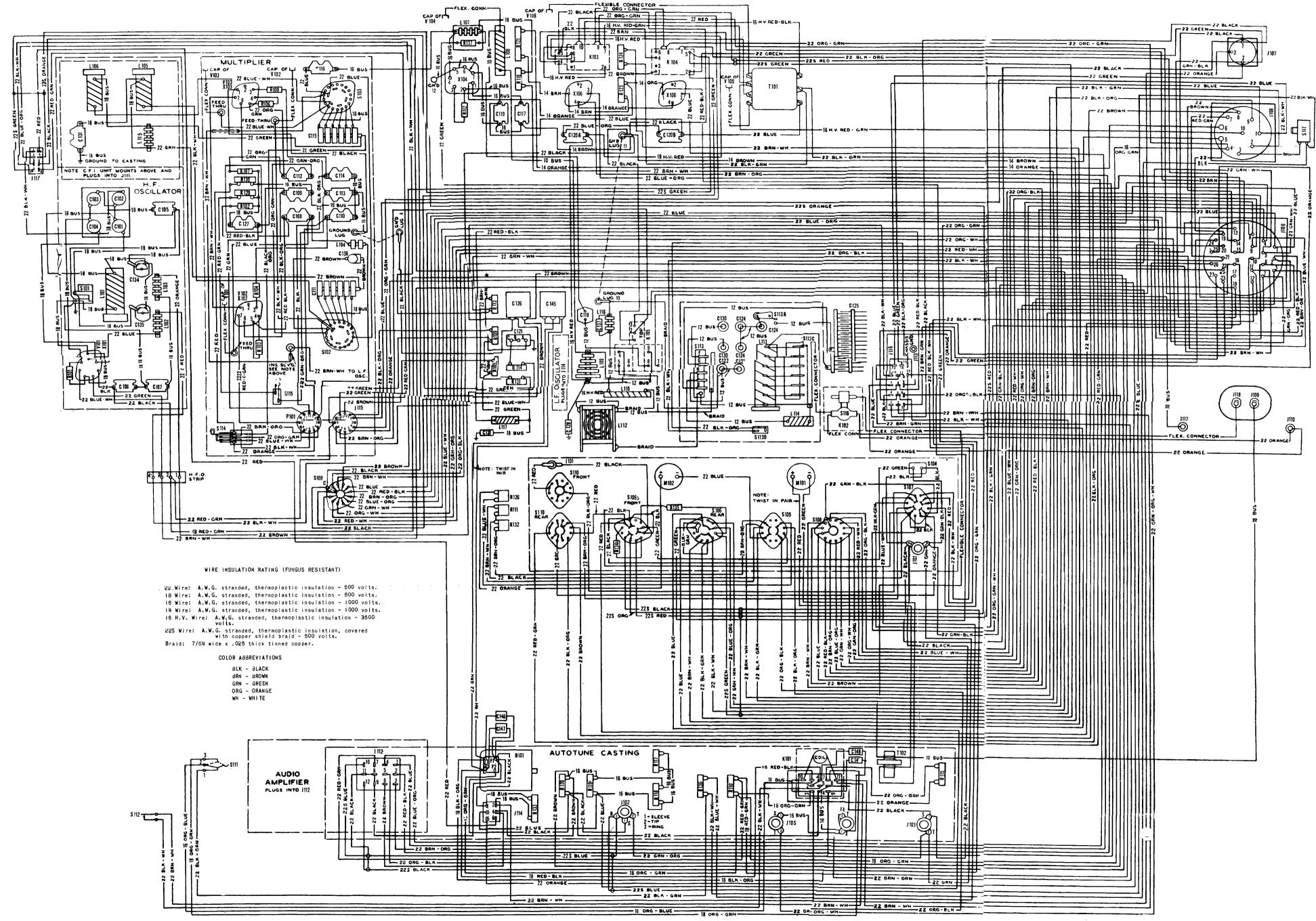



Figure 8-41. Radio Transmitter T-47A/ART-13 — Practical Wiring Diagram

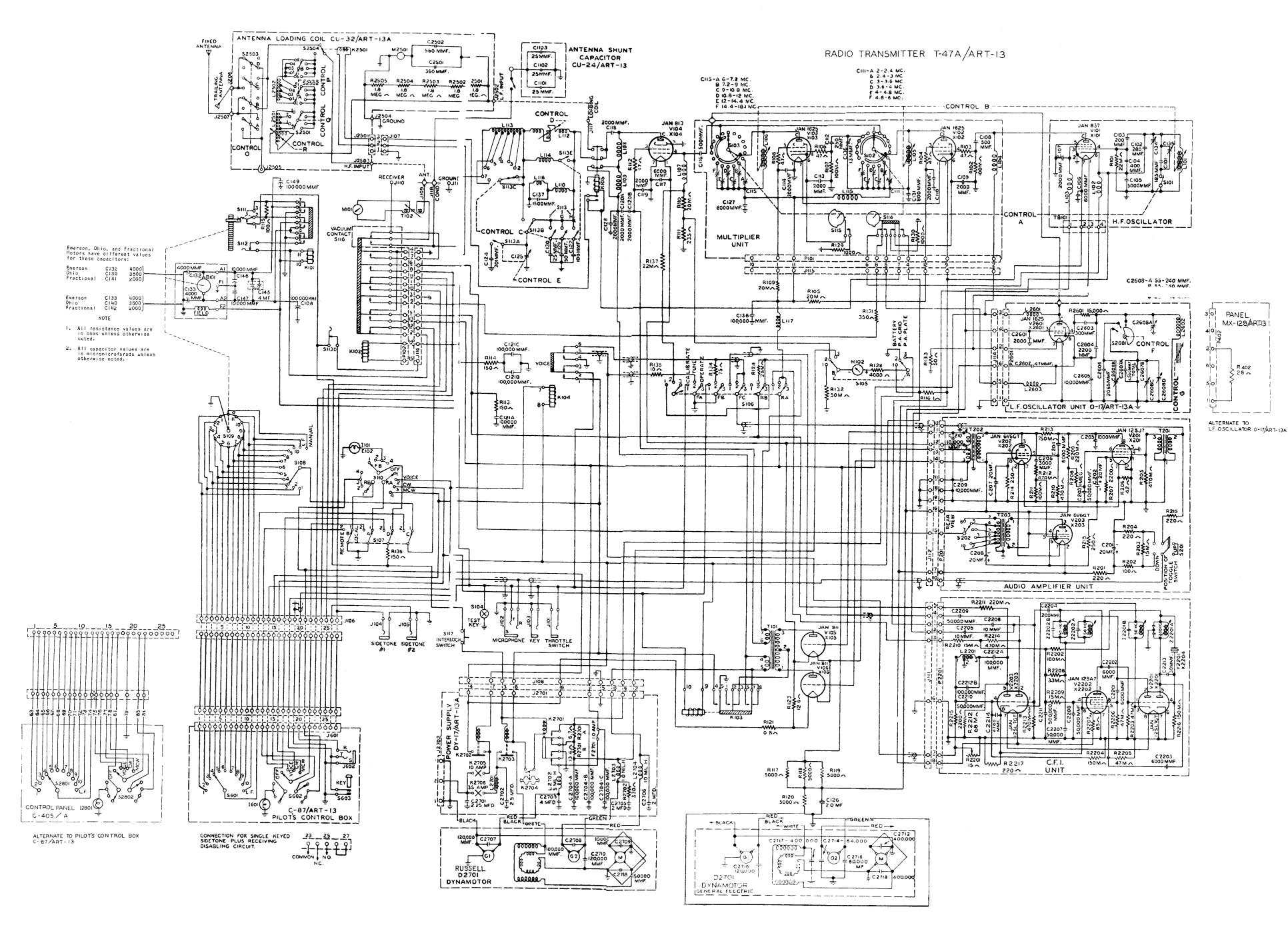
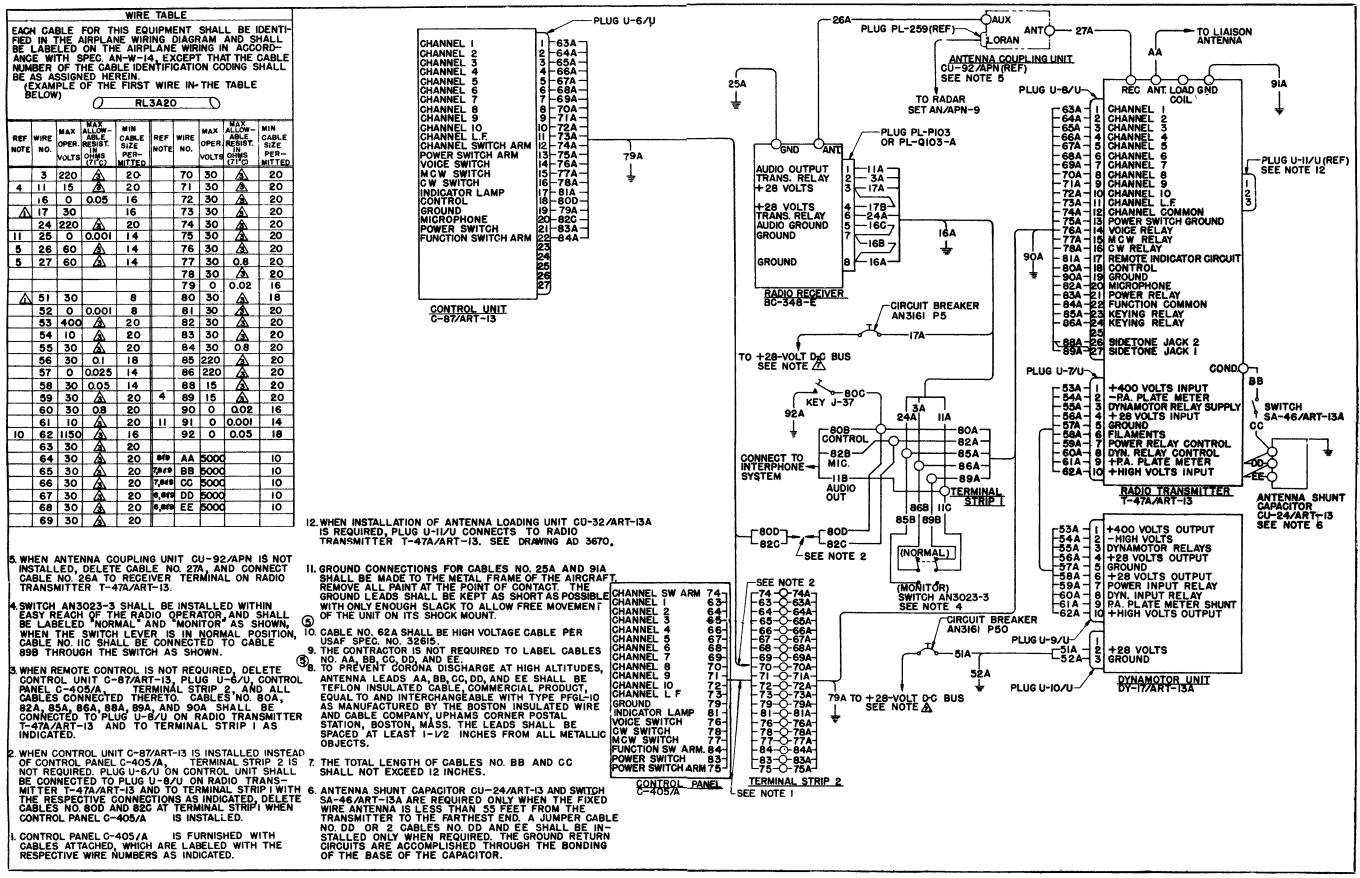




Figure 8-42. Radio Transmitting Set AN/ART-13A — Schematic Diagram

