Handbook of Preliminary Instructions

for
NAVY MODEL
RAX-1
Aircraft Radio Equipment

NOTICE. -This document contains information affecting the national defense of the United States within the meaning of the Espionage Act, 50 U. S. C., 31 and 32, as amended. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.

Published by authority of The Chief of the Bureau of Aeronautics
 THIS PUBLICATION MAY BE USED BY PERSONNEL RENDERING SERVICE TO THE UNITED STATES OR ITS ALLIES

Navy Regulations, Article 76, contains the following statements relating to the handling of restricted matter:

Par. (9) (a). Restricted matter may be disclosed to persons of the Military or Naval Establishinents in accordance with special instructions issued by the originator or other competent authority, or in the absence of special instructions, as determined by the local administrative head charged with custody of the subject matter.
(b) Restricted matter may be disclosed to persons of discretion in the Government service when it appears to be in the public interest.
(c) Restricted matter may be disclosed, under special circumstances, to persons not in the Government service when it appears to be in the public interest.

The Bureau of Aeronautics Aviation Circular Letter No. 31-44 contains the following paragraph relative to the use of technical aeronautics publications:

Par. 8. Distribution to All Interested Personnel.-In connection with the distribution of aeronautical publications within any activity, it should be borne in mind by the officers responsible for such distribution that technical publications are issued specifically for use not only by officer personnel, but more particularly by responsible civilian and enlisted personnel working with or servicing equipment to which the information applies.

These instructions permit the issue of restricted publications to civilian contract and other accredited schools engaged in training personnel for Government work, to civilian concerns contracting for overhaul and repair of aircraft or aircraft accessories and to similar commercial organizations.

LIST OF REVISED PAGES ISSUED
NOTE.-A heavy black vertical line to the left of the text on revised pages indicates the extent of the revision. This line is omitted where more than 50 percent of the page is involved.

ADDITIONAL COPIES OF THIS PUBLICATION MAY BE OBTAINED AS FOLLOWS:

AAF ACTIVITIES.-Submit requisitions to the Commanding General, Fairfield Air Service Command, Patterson Field, Fairfield, Ohio, Attention: Publications Distribution Branch, in accordance with AAF Regulation No. 5-9. Also, for details of Technical Order distribution, see T. O. No. 00-25-3.
NAVY ACTIVITIES.-Submit requests to Chief, Bu'Aer, Navy Department, Washington, D. C., Attn.: Publications Section on order form NAVAER-140. For complete listing of available material and details of distribution see Naval Aeronautic Publications Index, NavAer 00-500.

TABLE OF CONTENTS

Page
I. GENERAL DESCRIPTION 1
A. Major Units 1
B. Vacuum Tubes 2
C. Dimensions and Weights. 2
D. Power Drain 3
II. DETAIL DESCRIPTION. 3
A. Mechanical Features 3
B. Electrical Circuits 5
III. INSTALLATION 13
A. Location 13
B. Receiver Units 13
C. Junction Box 13
D. Cables 14
E. Connections 14
F. Adjustment of Antenna Trimmers. 14
IV. OPERATION AND ADJUSTMENTS. 14
A. Operation 15
B. Adjustments 16
V. MAINTENANCE 17
VI. LOCATION AND CORRECTION
TROUBLES 18
List of Major Units. 26
Table VI—Parts List by Symbol Designations. 27
Operating Spare Parts List. 73

LIST OF CURVES

GUARANTEE

The equipment; including all parts and spare parts, except vacuum tubes, is guaranteed for a service period of ONE YEAR with the understanding that, as a condition of this contract, all items found to be defective as to design, material, workmanship, or manufacture will be replaced without delay and at no expense to the Government; provided that such guarantee and agreement will not obligate the contractor to make replacement of defective material unless the failure, exclusive of normal expected shelf life deterioration, occurs within a period of TWO YEARS from the date of delivery of the equipment to and acceptance by the Government, and provided further, that if any part or parts (except vacuum tubes) fail or are found defective to the extent of ten per cent (10%) or more of the total number of similar units furnished under the contract (exclusive of spares), such part or parts, whether supplied in the equipment or as spares, will be conclusively presumed to be of defective design, and as a condition of contract subject to one hundred per cent (100%) replacement by suitable redesigned units.

Failure due to poor workmanship while not necessarily indicating poor design, will be considered in the same category as failure due to poor design. Re-designed replacements which will assure proper operation of the equipment will be supplied promptly, transportation paid, to the Naval activity using such equipment, upon receipt of proper notice and without cost to the Government.

All such defective parts will be subject to ultimate return to the contractor. In view of the fact that normal activities of the Naval Service may result in the use of equipment in such remote portions of the world or under such conditions as to preclude the return of the defective items or unit prior to replacement without jeopardizing the integrity of Naval communications, the exigencies of the Service therefore may necessitate expeditious repair of such item or unit in order to prevent extended interruption of communications. In such cases the return of a defective item or unit for examination by the contractor prior to replacement will not be required. The report of a responsible authority, including details of the
conditions surrounding the failure will be acceptable for effective adjustment under the provisions of this contractual guarantee.

The above period of TWO YEARS and the service period of ONE YEAR will not include any portion of the time that the equipment fails to give satisfactory performance due to defective items and the necessity for replacement thereof. All replacement parts will be guaranteed to give ONE YEAR of satisfactory service.

The design of this equipment is such that the vacuum tubes will operate within their published ratings at all times and in such a manner that a tube life of 2000 hours of service may be expected. Vacuum tubes of the normal 50-watt envelope size and larger are guaranteed for 1000 hours of service life, in accordance with the provisions of Section V of Specifications RE-13A-600B.

All smaller tubes, i.e., tubes not subject to the abovementioned 1000 -hour service life guarantee, are covered by a manufacturer's warranty regarding freedom from defects of design, material, and workmanship.

Batteries, rubber and material normally consumed during operation are warranted good and free from defects.

SAFETY PRECAUTIONS

Operation of this equipment involves the use of high voltages which are dangerous to life. Operating personnel must at all times observe all safety regulations. Do not change tubes or make adjustments inside equipment with high voltage supply on. Do not depend upon door switches or interlocks for protection but always shut down motor-generators or other power equipment. Under certain conditions dangerous potentials may exist in circuits with power controls in the off position due to charges retained by capacitors, etc. To avoid casualties always discharge and ground circuits prior to touching them.

The attention of officers and operating personel is directed to Bureau of Ships circular letter No. 5a of 3 October 1934, or subsequent revisions thereof on the subject of "RadioSafety Precautions to Be Observed."

I. GENERAL DESCRIPTION

The Model RAX-1 Aircraft Radio Receiving Equipment is designed for reception of radio signals in the frequency range from 200 to 27,000 kilocycles and is intended primarily for installation in aircraft. The equipment operates from a 24 -volt storage battery, normally floating across an engine-driven battery-charging generator, the output of which varies from 22 to 29 volts.

A. MAJOR UNITS

1. (a) Radio Receiver Unit No. 1, Navy Type CG46115, Frequency Range: 200 to 1500 kc (4 bandṣ) complete with one set of vacuum tubes.
(b) Radio Receiver Unit No. 2, Navy Type CG46116, Frequency Range: 1500 to 9000 kc (4 bands) complete with one set of vacuum tubes.

RESTRICTED

NAVAER 08-5Q-245
(c) Radio Receiver Unit No. 3, Navy Type CG46117, Frequency Range: 7000 to $27,000 \mathrm{kc}$ (5 bands) complete with one set of vacuum tubes.
(d) Three Radio Receiver Dynamotors, one for each Radio Receiver Unit and mounted integrally therewith. The dynamotors are identical and completely interchangeable.

Rating: 28.0 Volts Primary-166.0 Volts Secondary-. 090 A - 32° to $+65^{\circ}$ C Ambient Cont., Ball Bearing, Totally Enclosed.
2. Three Receiver Racks, Navy Type CG-46128, G-E Drawing P-7763086G1

Each of these racks provide shock mounting for one of the three radio receivers. Each rack has "A" and "B" jacks, a mixing switch, a receptacle for external audio and power cable, and a ground post.
3. One Junction Box, Navy Type CG-68028, G-E Drawing P-7763087.

This unit has two " A " jacks, two " B " jacks for interconnecting with the ICS and Sidetone circuits, three receptacles for audio and power to each radio receiver, and a power input receptacle for incoming power.
4. Cables and Plugs-G-E Drawing M-7465 168P2 and P3.

Seven plugs are provided for terminating the three radio receivers to junction box cables, and for the junction box end of the power cable. A ferrule and nut connects the power cable to the airplane supply.

The cable is four-conductor shielded thermoil-covered and is supplied in bulk.

5. Slip Covers

Each radio receiver unit is provided with an airplane cloth slip cover, G-E Drawing K-7876914, having a flap in the front which may be opened to afford access to the controls.

ACCESSORIES AND PARTS
 TO BE SUPPLIED BY THE NAVY

Airplane Primary Power Supply, including Junction Box, Antennas and Supports on Airplane.

Radio Helmets and Head Telephones, with Cords and Plugs.
Airplane Interphone System complete, including Microphones with Cords and Plugs, Radio Direction Finding Equipment.

B. VACUUM TUBES

1. Warning:

Radio Receiver Units should not be operated with-
out a full complement of tubes in their proper sockets. Failure to observe this rule may result in damage to some of the tubes.

2. Tube Complement

The following tubes are used in this radio receiving equipment.
(a) Receiver Unit No. 1, Navy Type CG-46115: 1-Type-T-2 as Glow Tube Antenna Circuit Protector

1-Type-12SK7 as R-f Amplifier
1-Type-12K8 as Converter
1-Type-12SK7 as First I-f Amplifier
1-Type-12SK7 as Second I-7 Amplifier
1-Type-12A6 as Audia Amplifier
1-Type-12SR7 as Beat Oscillator and Detector
(b) Receiver Unit No. 2, Navy Type CG-46116:

1-Type-T-2 as Glow Tube Antenna Circuit
Protector
1-Type-12SK7 as First R-f Amplifier
1-Type-12SK7 as Second R-f Amplifier
1-Type-12K8 as Converter
1-Type-12SK7 as First I-f Amplifier
1-Type-12SK7 as Second I-f Amplifier
1-Type-12SK7 as Third I-f Amplifier
1-Type-12A6 as Audio Amplifier
1-Type-12SR7 as Beat Oscillator and Detector
(c) Receiver Unit No. 3, Navy Type CG-46117

1-Type-T-2 as Glow Tube Antenna Circuit
Protector
1-Type-12SK7 as First R-f Amplifier
1-Type-12SK7 as Second R-f Amplifier
1-Type-12K8 as Converter
1-Type-12SK7 as First I-f Amplifier
1-Type-12SK7 as Second I-f Amplifier
1-Type-12SK7 as Third 1-f Amplifier
1-Type-12A6 as Audio Amplifier
1-Type-12SR7 as Beat Oscillator and Detector

C. DIMENSIONS AND WEIGHTS

The outline dimensions of the equipment will be found on outline drawing WW-7350950.

1. The over-all dimensions and weight of each radio receiver unit alone are:

Height- $71 / 2$ in.
Width- $71 / 2 \mathrm{in}$.
Length- 17 in .
Weight-Radio Receiver Unit No. 1, Navy Type CG-46115-21.6 lbs.

Radio Receiver Unit No. 2, Navy Type CG-46116 -22.2 lbs.

Radio Receiver Unit No. 3, Navy Type CG-46117 -22.5 lbs.
2. The over-all dimensions and weight of each Receiver Rack Navy Type CG-46128 are:

$$
\begin{aligned}
& \text { Height- } 33 / 8 \mathrm{in} . \\
& \text { Width- } 71 / 2 \mathrm{in} . \\
& \text { Length- } 165 / 8 \mathrm{in} . \\
& \text { Weight- } 2.8 \mathrm{lb} .
\end{aligned}
$$

3. The over-all dimensions and weight of the Junction Box, Navy Type CG-68028 are:

Height-2 in.
Width-4in.
Length—5 7/16 in.
Weight- 1 lb .
4. The over-all dimensions and weight of each cable plug are:

Diameter-1 5/16 in.
Length-2 5/16in.
Weight (one)-. 12 lb .

$$
\text { Weight (7)—. } 84 \mathrm{lb} .
$$

5. The size and weight of the cable is:

Diameter- $1 / 2$ inch
Weight-. 15 lb . per foot
6. Slip Covers (3)

Weight-. 14 lb .
Total-. 42 lb .
The total weight of the complete equipment (less cable) is 76.96 lb .

D. POWER DRAIN

At the normal rated voltage of 28 volts, the current drain of the individual Radio Receiver Units is:
Radio Receiver Unit No. 1............ 1.38 amperes
Radio Receiver Unit No. 2............. 65 amperes
Radio Receiver Unit No. 3..........1. 75 amperes

Total \qquad . 4.78 amperes
The total current drain at the maximum rated voltage of 29 volts is 4.9 amperes.

II. DETAIL DESCRIPTION

A. MECHANICAL FEATURES

1. Radio Receiver Units and Dynamotors

a. General Construction

Externally, the three radio receiver units are identical in appearance with the exception of Radio Receiver Unit No. 1 which has the ground binding post mounted -in the lower left-hand portion of the panel instead of the upper left-hand portion, as in Radio Receiver Units No. 2 and 3. Internally, the units differ only where it is necessary because of the requirements of their different frequency ranges.

Each radio receiver consists of a metal cabinet completely enclosing the radio receiver chassis, and having a base plate equipped with runners, which position and support the radio receiver in the rack. The radio receivers are interchangeable with respect to position on the mounting rack.

The top covers of the radio receivers are held in place with two Dzus fasteners. By loosening these two fasteners and removing the top cover, all tubes are made accessible for replacement. A tube extractor is provided 'for removing the tubes.

The bottom of the receiver cabinet is enclosed bỳ a cover held in place by screws around its periphery. When access to the bottom of the chassis is required, the radio receiver must be removed from the rack and inverted. With the bottom and top covers off, the radio receiver can be laid on' a table on either side, top, or bottom without in any way damaging parts.

Each receiver dynamotor is located at the rear of its respective unit outside of the cabinet housing the radio receiver proper. Each dynamotor is mounted on rubber to provide shockproofing and noise reduction. All necessary connections from the dynamotor to the radio receiver proper are made by a plug and socket arrangement under the dynamotor base. The dynamotor is secured to the receiver cabinet by means of two snap slides, which may be safely-wired in position. No tools other than pliers for removing safety wire are required for changing dynamotors.

All of the radio receivers use "unit construction" for the r-f systems. Each r-f stage, consisting of the necessary band switch section, tuning inductors and trimmer condensers, is assembled in a single unit and enclosed in an individual shield. Three such units are used in the $200 / 1500 \mathrm{kc}$ radio receiver and four such units in each of the other two radio receivers. The band switch shaft is removable through the rear of the cabinet, after removing the dynamotor. After the band switch shaft has been removed, any one of the r-f units may be individually removed from the radio receiver by unsoldering the connections on the bottom and taking out the mounting screws. All of the connections to the r-f units are made at terminals on the base except the lead which connects to the stator of the tuning capacitor. This lead runs directly from the band switch to the stator terminal through a hole in the base of the unit and must be unsoldered at the stator terminal when removing an r-f unit. With the unit removed from the
chassis and the shield taken off, all parts are readily accessible for inspection or servicing.

With the r-f unats assembled to the chassis, the individual shields over each of the units may be removed (after the dynamotor and band switch shaft have been removed) and the component parts inspected without further disassembly.

The under side of the chassis contains the main tuning capacitor and the majority of the small resistors and capacitors required for filtering, by-passing, etc. These small components are, in so far as possible, mounted on terminal boards, and are readily accessible after removing the shield plate which is necessary in Radio Receivers No. 2 and No. 3.

A small compartment in the rear of the radio receiver, outside the main enclosure, houses the fuse, a spare fuse, and a Bristol setscrew wrench.

b. Controls

The front panel of each radio receiver is provided with the following controls and connections:
(1) A tuning control is located at the center bottom of each radio receiver unit. These controls are knurled knobs equipped with handles for rapid cranking across the band. Each radio receiver has a dial, directly calibrated in megacycles, which is masked by a shutter in such a way that only the dial scale in use is visible for a given setting of the band switch. The frequency range covered by the band in use is indicated on the shutter. The dial scale and shutter are observed through a protective window of noninflammable, transparent material.
(2) The band switch control knob is located in the center of the dial and is directly connected to the shutter mentioned above. Suitable stops prevent rotation of this knob beyond the limits of its travel. To further aid in identifying each band, the band switch knob points to a number indicating which band is operative, in addition to the frequency range indication on the shutter.
(3) A spring type binding post for the antenna connection is located in the upper right-hand portion of the panel.
(4) An antenna trimmer capacitor knob is located in the lower left-hand portion of the panel. This knob is equipped with a pointer.
(5) A ground connector, consisting of a spring type binding post, is located in the upper left-hand corner of the panel in Radio Receiver Units No. 2 and No. 3 and in the lower left-hand corner of the panel in Radio Receiver Unit No. 1.
(6) The volume control knob is located in the lower right section of the panel. This knob is cylindrical, with a knurled circumference, and has a reference arrow engraved on its face.
(7) The AVC-Manual switch is located in the center right-hand portion of the panel, directly above the volume control knob.
(8) The CW-OFF-MCW switch is located in the center left-hand portion of the panel.
(9) The telephone jack is mounted in the lower right-hand portion of the panel, directly under the volume control knob.

c. Tuning Mechanism

The tuning knob shaft carries a 12 -tooth pinion which drives a 144 -tooth split gear on a countershaft. On the front end of the countershaft is a 36-tooth gear driving a 162 -tooth split gear on which the dial is mounted. The dial rotates 320 degrees for 48 turns of the tuning knob.

On the rear end of the countershaft mentioned above is a 12 -tooth pinion which drives a 96 -tooth split gear on the tuning condenser shaft. The mesh of these latter gears is adjustable by jack sccrews at the ends of the condenser. Forty-eight turns of the tuning knob produces 180 -degree rotation of the condenser.

A roller is mounted on the rear of the dial drive gear which engages with stop blocks on a sliding lock plate at the extreme ends of its travel. This stop plate is moved down by the roller, and a finger at the bottom of the plate is moved into position to stop rotation of the tuning shaft by interfering with a key on a collar carried on the tuning shaft. This locking action takes place during the last turn of the tuning knob in each direction. This last turn is beyond the 48 turns of the knob for rotating the tuning condenser so that the total number of turns of the tuning knob is 50 from one stop to the other.

d. Band Switch Drive

The band switch is driven through a 12 -tooth pinion on the knob shaft to a 28-tooth gear on the band switch shaft. The knob rotates $\mathbf{7 0}$ degrees between positions, and the switch, 30 degrees. The switch rotates in the opposite sense from the knob. The knob shaft also carries the shutter which masks all scales on the tuning dial except the one in use. An index plate on the switch shaft positions. the switch at each of its operating points.

The band switch shaft is secured to the rear of the indexing plate by means of a setscrew. If this setscrew is loosened, the shaft may be removed through a

RESTRICTED
 NAVAER 08-5Q-245

hole in the rear of the receiver case. The shaft, switch wafer, and coupling are so keyed that it is impossible to insert the shaft in the wrong way.

All gears in the tuning and band switch drive are cut 48 pitch 20 degree involute. Shafts are stainless steel running in brass bearings. Gears are of aluminum alloy with stainless steel hubs.

2. Receiver Mounting

a. Radio Receiver Rack, Navy Type CG-46128

The upper portion of these units consists of a framework of aluminum structural members firmly fastened together into a rigid and light-weight assembly. This assembly is supported on shock mountings which are attached to each corner of the receiver rack. The center studs of the form rubber shock absorbers are secured to four mounting feet by means of snap slides. The mounting bases are provided with holes so that they may be secured to the mounting surface. The receiver rack is provided with guides for the receiver unit which insure accurate positioning of the unit. The receiver rack has an electrical connecting receptacle at the rear for engagement with the corresponding plug on the radio receiver.

Each radio receiver can be easily removed from its rack, by unfastening the two wing nut clamps at the bottom front of the receiver unit and sliding the unit forward. The radio receiver must be moved approximately one inch forward in order to free the plug, after which it may be lifted from the rack without further forward motion, if desired. When installing the radio receiver on the rack, it is placed in the guides and pushed back, engaging the coupling plug at the rear. Then the two clamps at the front are hooked over the studs on the radio receiver and the wing nuts tightened. The action of these clamps is to press the receiver unit both down against the guides and back against the stop, holding it securely in place.

The receiver rack has a small compartment at the front containing an " A " jack, " B " jack, three-position switch, a power receptacle, and a ground post. Power and audio leads connect the plug at the rear of the mounting to these components. The leads are run in an aluminum tube. A cover is provided which can be removed for inspection when the rack is inverted. The three-position switch serves to connect the output of the radio receiver to either the " A " or " B " jack, or in the center position to isolate both jacks. Audio and power connections are completed through a cable receptacle on the rear of the front support. An external cable runs from this receptacle to the Junction Box, Navy Type CG-68028.

A binding post is provided on the rear of the front rack support for grounding the rack and radio receiver assembly.

The receiver unit connection plugs are such that the power cable can be directly connected to any radio receiver when it is removed from the rack for testing or servicing. Since the fuse is mounted on the radio receiver unit itself, it is still effective in protecting the equipment when operated in this way.

3. Junction Box, Navy Type CG-68028

The Junction Box Navy Type CG-68028 serves as a distributing point from which power is sent to each radio receiver, and audio circuits of the radio receivers are interconnected with the ICS and Sidetone circuits. It contains a power receptacle through which power is introduced from the plane distribution system and three receptacles through which power and audio wires connect to each radio receiver. Two of these receptacles are located at each end of the box.

Four jacks, two "A" and two "B", are located in the lower surface of the box and through which Sidetone and ICS connections are made.

The junction box, Navy Type CG-68028, has a mounting plate which is attached to the mounting surface and the box is secured to the plate with four nonremovable thumbscrews in the covers of the box. These thumscrews can be safely wired to adjacent fillister head screws to prevent unscrewing under vibration.

An equipment nameplate is attached to the front of the Junction Box.

4. Cables and Plugs

A cable is required to connect each radio receiver to the Junction Box, Navy Type CG-68028, and another to connect the Junction Box to the airplane power supply. All of the plugs are identical and all cables are made of the same material. The cable contains two heavy conductors for the power and two smaller conductors for the audio. The audio wires are not used in the power cable. Any of these plugs will fit directly to the radio receivers when the receivers are removed from the rack.

B. ELECTRICAL CIRCUITS

1. Radio Receiver Units

a. General

This radio receiving equipment is designed to permit operation of all three receiver units either simultaneously from a common antenna, or individually from separate antennas. A number of details in the radio receivers are influenced by the necessity for simultaneous
operation from a common antenna. Foremost among these is the choice of local oscillator frequency on the various frequency bands with respect to the signal frequency. The oscillator frequencies are so chosen that nowhere, except in the 7.9 to 9.0 megacycle portion of the overlap range between Radio Receiver No. 2 and Radio Receiver No. 3, does the local oscillator frequency of one radio receiver fall within the tuning range of one of the other radio receivers. This is accomplished by operating the local oscillator at a frequency higher than that of the incoming signal on the lowest frequency band of each radio receiver, and at a frequency lower than that of the incoming signal on the highest frequency band of each radio receiver. On intermediate bands and in the extreme frequency bands of the range, considerations of image-frequency rejection and frequency stability govern the choice.

The antenna circuits of the radio receiver units are designed for series operation. Specifically, the proper connection is:

Unit No. 3-"A" post to antenna
Unit No. 2-"A" post to Unit No. 3 " G " post
Unit No. 1-"A" post to Unit No. 2 " G post
Unit No. 1-"G" post not connected
It is essential that the radio receivers be connected in this order, since the capacitance to ground of the antenna circuit of each radio receiver has a definite tuning effect upon the antenna circuit of each of the other two radio receivers. With this connection, signal currents of all frequencies, from the lowest to the highest, pass through the antenna coil of Radio Receiver Unit No. 3, the highest frequency receiver. Those frequencies lying within the range of that radio receiver find a direct path to ground through capacitor, C396, in Radio Receiver Unit No. 3. However, the middle and lowerfrequency signal currents flow through the antenna coil of Radio Receiver Unit No. 2. The middle-frequency signal currents largely take the path to ground through capacitor, C201, in Radio Receiver Unit No. 2; while the lowest-frequency signal currents flow on through the antenna coil of Radio Receiver Unit No. 1.

When the radio receiver units are operated from separate antennas, the antennas should be connected to the respective " A " posts, and the " G " posts should be grounded.

The output circuits of the radio receiver units are likewise designed to permit operation either singly, or in parallel with substantially the same performance. This requires that the output impedance of each radio receiver unit be substantially higher than the loads (headphone) impedance; so that the radio receivers do not act as loads upon one another. This requirement is met
by the use of a pentode type tube as an audio amplifier. A second limitation imposed by the parallel operation is that an audio-filter circuit does not appear in the output circuit of one radio receiver unit and not in the others. Under this condition, connection of the output circuits in parallel would alter the frequency characteristics of all the radio receiver units. This requirement is met by connecting the necessary filter circuit in series with the cathode of the a-f amplifier tube in each radio receiver unit, where it is isolated from the output circuit by the internal impedance of the tube.

b. Radio Receiver Unit No. 1, Type CG-46115

Reference is made in the following description to Schematic Diagram W-7350826.

Radio Receiver Unit No. 1 is a recerver of the superheterodyne type having one r-f (radio-frequency) amplifier stage, a frequency converter stage, two i-f (intermediate-frequency) amplifier stages, a diode detector stage, and an a-f (audio-frequency) amplifier stage. In addition, there are a separate AVC detector and a beat oscillator; these two additional functions being performed by the same tube which contains the main diode detector.

This radio receiver unit tunes from 200 kc to 1500 kic in four bands, as listed below in Column I. The intermediate frequency is 160 kc , and the local oscillator frequency thus varies over the ranges listed below in Column II.

	COLUMN I	COLUMN II
	Signal	Focal Oscillator
Frequency	Frequency	

(1) Antenna Circuit

The proper antenna transformer, T101, T102, T103, or T104 is selected by multiple-circuit band switch, S101A, B. C. The secondary winding of the transformer is tuned by the first sction C109A of the gang tuning capacitor and by antenna trimmer capacitor C 197 , by means of which the tuning may be compensated for by change in the capacitance of the antenna.

Since on Band No. 4 the oscillator operates at a frequency lower than that of the received signal, it is necessary to include on that band padding capacitor, C 117 , in the circuit.

As a protection again high r-f voltages, a glow lamp, V107, is connected from the antenna post to ground. This lamp has very high impedance (hence no harmful effect upon the circuit) for voltages up to about

75 volts; above that point it becomes conducting, and thus acts to limit the input voltage.

Also connected between the antenna post and ground is a series tuned i-f wave trap, Z101, consisting of reactor, L 107 , fixed capacitor, C 119 , and variable capacitor, C194. When adjusted to resonance at the intermediate frequency of the radio receiver (160 kc), this trap serves to attenuate greatly the unwanted i-f signals reaching the grid of the r-f amplifier tube.

(2) R-f Amplifier Stage.

The r-f amplifier tube, V101, a Type-12SK7 pentode, amplifies the signal and transmits it to the control grid of the converter tube, V102, through one of the r-f transformers (T105, T106, T107, or T108). As in the antenna circuit, a padding capacitor, C 193 , is used in series with the secondary of Band No. 4 transformer, T108.

The proper transformer for a desired signal frequency is selected by means of multiple-circuit switch (S105A, B, C, D), which is ganged with the antenna band switch (S101A, B, C). One section of this switch (S 105 C) is used to alter the bias voltage in the cathode circuit of the r-f amplifier tube in order to obtain approximately the same over-all receiver sensitivity on each band. Three fixed resistors, R109, R111, and R154, are involved in this switching circuit. In addition, when in the Band No. 4 position, variable resistor, R110, is included in the circuit. This resistor is mounted concentrically with the shaft of gang tuning capacitor, C109, and is coupled to it. Resistor, R110, serves to maintain the sensitivity substantially constant over the range of Band No. 4.

A series resonant i-f wave trap, $Z 102$, consisting of fixed inductor, L106, and variable capacitor, C121, is connected from the plate of the r-f amplifier tube to ground.
(3) Converter Stage

The converter tube, V102, a Type-12K8 triode-hexode, converts the frequency of the signal to 160 kc , amplifies it, and transmits it through the first i-f transformer, T109, to the control grid of the first i-f amplifier tube, V103.

The band switch (S106A, B, C, D) ganged with the antenna and r-f band switches, selects from the four oscillator coils (T110, T111, T112, and T113) the proper one for a desired frequency. A tuned plate oscillator circuit is used, with tickler feedback and shunt plate feed. Series padding capacitors (C147, C149, and C148) are used on the three lower frequency bands.

A common temperature-compensating capacitor, C 132 , is connected in parallel with tuning capacitor, C109C.

The converter tube has two cathode-bias resistors, R130 and R168. The extra bias resistor provides reserve gain to be drawn upon in the event of a cumulation of minor losses of sensitivity resulting in too low a sensitivity. If one of the resistors, R130, is shortcircuited, the gain is increased about 50 per cent; if the other resistor, $\mathrm{R168}$, is short-circuited, the gain is increased about 100 per cent. One resistor must always be left in the circuit.

(4) First I-f Amplifier Stage

The first i-f amplifier tube, V103, a Type12SK7 pentode, amplifies the i-f signal and transmits it through the second i-f transformer, T114, to the control grid of the second i-f amplifier tube, V104. The low potential side of the secondary winding of the second i-f transformer is grounded through resistor, R162, and by-passed by capacitor, C 170 ; in the presence of a signal of such magnitude as to cause grid current to flow in the grid circuit of the second i-f amplifier tube, V104, the grid bias on the amplifier tube is automatically increased, thus reducing its gain.

(5) Second I-f Amplifier Stage

The second i-f amplifier tube, V104, a Type12SK7 pentode, further amplifies the i-f signal and transmits it through the third i-f transformer, T116, to the main detector diode (terminal 5, V106).

(6) Main Detector Stage

The i-f.signal is rectified by tne main diode detector (terminal 5, V106) one diode of a Type12SR7 duo-diode triode, the rectified voltage appearing across load resistor, R165. The a-f component of the rectified votalge is coupled through capacitor, C 176 , to the volume control potentiometer, R152B. When the AVCMAN switch, S102C, is in the AVC position, the arm of this potentiometer is connected to the control grid of the a-f amplifier tube, V105, and the volume is controlled by the potentiometer setting. When the AVCMAN switch, S102C, is in the MAN position, the grid of the a-f amplifier is connected to the high potential side of the potentiometer, and the full output of the detector is delivered to the a-f amplifier regardless of the position of the potentiometer.

(7) A-f Amplifier Stage

The a-f signal is amplified by the a-f amplifier tube, V105, a Type-12A6 pentode, and transmitted through output transformer, T117, to the headphone jack, J101, and to the headphone circuit in pówer plug, P101. The cathode circuit of the amplifier includes a tapped reactor, L109, tuned by fixed capacitor, C173, to a frequency of approximately 150 cycles, and shunted by resistor, R178. The function of the tuned circuit is to

RESTRICTED

NAVAER 08-5Q-245
reduce the amplification at a frequency of 150 cycles, by means of a negative feedback, so as to make the amplification at that frequency equal to that at 90 cycles. The shunting resistor, R178, prevents the negative feedback from being excessive.

(8) AVC Detector Stage

The output of the second i-f amplifier tube is also rectified by the AVC detector diode (terminal 4, V106) one diode of the Type-12SR7 duo-diode triode tube. Since load resistor R159, for this diode returns to ground instead of to the diode cathode, rectification is delayed by the amount of the voltage drop in resistor, R126, in the cathode circuit of the duo-diode triode. This resistor is by-passed, for i-f currents, by capacitor, C144. Full AVC voltage is applied to the r-f amplifier tube control grid and suppressor grid, and to the first i-f amplifier tube control grid.

(9) Beat Oscillator Stage

ror reception of $C W$ signals, the triode section of Type-12SR7 duo-diode triode tube, V106, is used as an oscillator. The oscillator circuit is contained within the same shields as the second i-f transformer, T114. This oscillator operates normally at 80 kc ; it is ordinarily tuned off to 79.5 or 80.5 kc so that the audio frequency signal produced when its second harmonic is heterodyned with the i-f signal is about 1000 cycles. The coupling between the oscillator circuit and the i-f transformer is chiefly inductive.
(10) Manual Volume Control Circuit

The cathodes of the tubes whose grids are connected to the AVC circuit (V101 and V103) return to ground through variable resistor, R152A. When the AVC-MAN switch, S102A, is in the MAN position, this resistor operates to control the bias on these two tubes, thus controlling the r-f and i-f gain. In the AVC position, the variable resistor is short-circuited. Manual gain control resistor R152A, being ganged with the audio volume control potentiometer, R152B, the output of the radio receiver is controlled by a single knob, whatever the position of the AVC-MAN switch.

In order to avoid ovcrloading of the i-f amplifier when receiving strong signals in the MAN position, with the volume turned up unnecessarily high, the grids of the controlled tubes are left connected to the AVC circuit even in the MAN position. Thus, excessively strong signals, instead of causing overload, produce an AVC voltage which reduces the amplifier gain to a safe point. In the MCW position, higher delay voltage is used for MAN than for AVC, to insure that full output of the radio receiver may be obtained. The change in delay is effected by switching in resistor, R128, in
parallel with the one already in the circuit (R134) to increase the current bled into delay resistor, R126. In the CW position, full output is easily obtained, and the delay therefore being unimportant, is left unchanged.
(11) Power Supply

The filaments of the vacuum tubes are connected in series pairs, and the pairs connected in parallel across the 28 -volt filament supply. This connection is made when MCW-OFF-CW switch, S103A, is placed in either the MCW or the CW position. This, at the same time, connects the primary winding of dynamotor, D101, to the 28 -volt power supply.

The screen grid voltage for the r-f amplifier tube and the first i-f amplifier tube is supplied from a voltage divider (R157 and R166).

c. Radio Receiver Unit No. 2, Type CG-46116

Reference is made in the following description to Schematic Drawing WW-7350184.

Radio Receiver Unit No. 2 is a receiver of the superheterodyne type having two r-f amplifier stages, a frequency converter stage, three i-f amplifier stages, a diode detector stage, and an a-f amplifier stage. In addition, there is a separate AVC detector and beat oscillator, these two additional functions being performed by the same tube which contains the main diode detector.

This radio receiver unit tunes from 1.5 mc to 9.0 mc in four bands as listed below in Column I. The intermediate frequency is 915 kc , and the local oscillator frequency thus varies over the ranges listed below in Column II.

	COLUMN I	COLUMN II
	Signal Frequency	Local Oscillator Frequency
Band No. 1	$1.5-2.4 \mathrm{mc}$	$2.415-3.315 \mathrm{mc}$
Band No. 2	$2.4-3.8 \mathrm{mc}$	$3.315-4.715 \mathrm{mc}$
Band No. 3	$3.8-6.0 \mathrm{mc}$	$4.715-6.915 \mathrm{mc}$
Band No. 4	$6.0-9.0 \mathrm{mc}$	$5.085-8.085 \mathrm{mc}$

(1) Antenna Circuit

The proper antenna transformer, T201, T202, T203, or T204 is selected by the multiple-circuit band switch (S201A, B, C, D). The secondary winding of the transformer is tuned by the first section, C208A, of the gang capacitor, and by the antenna trimmer capacitor, C209, by means of which the tuning may be compensated for changes in the capacitance of the antenna.

Since on Band No. 4 the oscillator operates at a frequency lower than that of the received signal, it is necessary on that band to include padding capacitor, C291, in the circuit (T204).

As a protection against high r-f voltages, a glow lamp, V209, is connected from the antenna post to ground. This lamp has very high impedance (and hence no harmful effect upon the circuit) for voltages up to about 75 volts; above that point it becomes conducting, and thus acts to limit the input voltage.

(2) First R-f Amplifier Stage

The first r-f amplifier tube, V201, a Type12SK7 pentode, amplifies the signal and transmits it to the control grid of the second r-f amplifier tube, V202, through one of the first r-f transformers (T205, T206, T207, or T208). As in the antenna circuit, a series padding capacitor, C297, is used in the secondary circuit of the Band No. 4 transformer (T208).

The proper transformer for a desired signal frequency is selected by means of a multiple-circuit switch (S202A, B, C, D) which is ganged with antenna band switch, S201. A series resonant i-f wave trap is connected from the plate of the first i-f amplifier tube to ground.

(3) Second R-f Amplifier Stage

The second r-f amplifier tube, V202, a Type12SK7 pentode, amplifies the signal and transmits it to the control grid of converter tube, V203, through one of the second r-f transformers, T219, T220, T221, or T222. As in the antenna and first r-f circuits, a series padding capacitor, C298, is used in the secondary circuit of Band No. 4 transformer, T222.

The proper transformer for a desired signal frequency, is selected by means of multiple-circuit switch, S203A, B, C, D, which is ganged with the antenna and first r-f band switches, S201 and S202. One section of switch, S203D, is used to alter amount of resistance in the cathode of the second r-f amplifier tube, so as to make the radio receiver sensitivity approximately constant from band to band.

(4) Converter Stage

The converter tube, V203, a Type-12K8 triode-hexode, converts the frequency of the signal to 915 kc , amplifies it and transmits it through the first i-f transformer, T209, to the control grid of the first i-f amplifier tube, Y204.

Band switch, S204A, B, C, D, ganged with the antenna and the first and second r-f band switches, selects from oscillator coils, .T210, T211, T212, and T213, the proper one for a desired frequency. A tunedplate oscillator circuit is used, with tickler feedback and shunt plate feed. Series padding capacitors, C288, C289, and C290 are used on the three lower frequency bands.

A common temperature compensating capacitor, C238, is connected in parallel with tuning capacitor, C208D.
(5) First I-f Amplifier Stage

The first i-f amplifier tube, V204, a Type12SK7 pentode, amplifies the i-f signal and transmits it through second i-f transformer, T215, to the grid of the second i-f amplifier tube, V205. An auxiliary cathode resistor, R253, is provided, which may be connected in parallel with the regular bias resistor, R220, in order to increase the radio receiver sensitivity approximately 100 per cent.

(6) Second I-f Amplifier Stage

The second i-f amplifier tube, V205, a Type12SK7 pentode, amplifies the i-f signal and transmits it through the third i-f transformer, T214, to the grid of the third i-f amplifier tube, V-206.

(7) Third I-f Amplifier Stage

The third i-f amplifier tube, V206, a Type12SK7 pentode, further amplifies the i-f signal and transmits it through fourth i-f transformer, T216, to the main detector diode (terminal 5, V208).
(8) Main Detector Stage

The i-f signal is rectified by the main diode detector (terminal 5, V208), one diode of a Type12SR7 duo-diode triode tube, the rectified voltage appearing across load register, R237. The a-f component of the rectified voltage is coupled through a capacitor, C275, to the volume control potentiometer, R228B. When the AVC-MAN switch, S205B, is in the AVC position, the arm of this potentiometer is connected to the control grid of the a-f amplifier, V207, and volume is controlled by the potentiometer setting: When the AVC-MAN switch, $\mathbf{S 2 0 5 B}$, is in the MAN position, the grid of the a-f amplifier tube is connected to the high potential side of the potentiometer, and the full output of the detector is delivered to the a-f amplifier regardless of the position of the potentiometer.
(9) A-f Amplifier Stage

The a-f signal is amplified by the a-f amplifier tube, V207, a Type-12A6 pentode, and transmitted through the output transformer, T217, to the headphone jack, J201, and to the headphone circuit in the power plug, P201. The cathode circuit of the amplifier includes a tapped reactor, L210, tuned by two fixed capacitors, C218 and C244, to a frequency of approximately 5200 cycles. The function of the tuned circuit is to reduce the amplification at frequencies above $\mathbf{4 5 0 0}$ cycles, by means of negative feedback, to 20 db less than obtained at 400 cycles.

RESTRICTED
 NAVAER 08-5Q-245

(10) AVC Detector Stage

The output of the third i-f amplifier tube is also rectified by the AVC detector diode (terminal 4, V208), one diode of the Type-12SR7 duo-diode triode tube. Since the load register, R233, for this diode returns to ground instead of to the diode cathode, rectification is delayed by the amount of the voltage drop in resistor, R218, in the cathode circuit of the duo-diode triode. This resistor is by-passed, for i-f currents, by capacitor, C255.

(11) Beat Oscillator Stage

For reception of CW signals, the triode section of the Type-12SR7 duo-diode triode tube, V208, is used as an oscillator. The oscillator circuit is contained in the same shield with the third i-f transformer, T214. This oscillator operates at 457.5 kc , its second harmonic being heterodyned with the i-f signal to produce an a-f signal. The coupling between the oscillator circuit and the i-f transformer is inductive and capacitive. The oscillator strength and the coupling are such that the oscillator signal at the detector, in the absence of any received signal, is not quite suffcient to operate the AVC. This provides the maximum sensitivity to CW signals.

When the MCW-OFF-CW switch, S207B, is thrown from the CW position to the MCW position, the beat oscillator tube is disconnected from the plate supply and a compensating resistor, R219, is substituted for it, maintaining the same current in the cathode resistor, R218.

(12) Manual Volume Control Circuit

The cathodes of the tubes whose grids are connected to the AVC circuit (V201, V202, V204, and V205) return to ground through variable resistor, R228A. When the AVC-MAN switch, S205C, is in the MAN position, this resistor operates to control the bias of these four tubes, thus controlling the r-f and i-f gain. In the AVC position, the variable resistor is shortcircuited. The manual gain control resistor, R228A, being ganged with the audio volume control potentiometer, R 228 B , the output of the radio receiver is controlled by a single knob, whatever the position of the AVC-MAN switch.

In order to avoid overloading of the i-f amplifier when receiving strong signals in the MAN position, with the volume turned up unnecessarily high, the grids of the controlled tubes are left connected to the AVC circuit even in the MAN position. Thus excessively strong signals, instead of causing overload, produce an AVC voltage which reduces the amplifier gain to a safe point. Higher delay voltage is used for MAN control than for AVC, to insure that full output of the radio receiver may be obtained. The change in delay
is effected by switching in an additional resistor, R247, in the cathode circuit of the beat oscillator tube, by means of a section of the MVC-AVC switch, S205D. Another section, S205A, simultaneously switches out an equal resistance from the plate supply circuit of the beat oscillator tube, thus maintaining constant plate-cathode voltage on this tube, and avoiding a shift in beat frequency when switching from MVC to AVC.

(13) Power Supply

The filaments of the vacuum tubes are connected in series pairs, and the pairs connected in parallel across the 28 -volt filament supply. This connection is made when the MCW-OFF-CW switch, S207A, is placed in either the MCW or the CW position. This at the same time connects the dynamotor, D201, primary windi.ig to the 28 -volt supply.

The screen grid voltage for the two r-f amplifier tubes and the first two i-f amplifier tubes is supplied from a voltage divider (R226, R252, and R246).

d. Radio Receiver Unit No. 3, Type CG-46117

Reference is made in the following description to Schematic Drawing WW-7350185.

Radio Receiver Unit No. 3 is a receiver of the superheterodyne type having two r-f amplifier stages, a frequency converter stage, three i-f amplifier stages, a diode detector stage, and an a-f amplifier stage. In addition, there are a separate AVC detector and a beat oscillator, these two additional functions being performed by the same tube which contains the main diode detector.

This radio receiver tunes from 7.0 megacycles to 27.0 megacycles in five bands, as listed below in Column I. The intermediate frequency is 2275 kilocycles, and the local oscillator frequency thus varies over the ranges listed below in Column II.

(1) Antenna Circuit

The proper antenna transformer (T301, T302A, T302B, T304, or T305) is selected by multiple-circuit band switch, S301A, B, C. The secondary winding of the transformer is tuned by the first section (C309A) of the gang capacitor, and by antenna trimmer capacitor, C310, by means of which the tuning may be compensated for changes in the capacitance of the antenna.

Since on Bands No. 3, No. 4, and No. 5 the oscillator operates at a frequency lower than that of the received signal, it is necessary on Bands No. 3 and No. 4 to include padding capacitors, C397 and C398, in the circuit. The padding capacitor is not necessary on Band No. 5 because of the very high ratio of the radio-frequency to the intermediate-frequency, and the short tuning range.

As a protection against high r-f voltages, a glow lamp, V309, is connected from the antenna post to ground. This lamp has very high impedance (and hence no harmful effect upon the circuit) for voltages up to about 75 volts; above that point it becomes conducting, and thus acts to limit the input voltage.

(2) First R-f Amplifier Stage

The first r-f amplifier tube, V301, a Type12SK7 pentode, amplifies the signal and transmits it to the control grid of the second r-f amplifier tube, V308, through one of the first r-f transformers (T306, T307A, T307B, T309, or T310). As in the antenna circuit, series padding capacitors are used on Bands No. 3 and No. 4 (T307B and T309). On Band No. 5 a single tuned circuit is used, instead of a transformer coupling (T310).

The proper transformer for a desired frequency is selected by means of multiple-circuit switch, S305A, B, C, which is ganged with antenna band switch, S301.

Another section of the same switch (S305D) is used to short-circuit part of the bias resistance, R345, in the cathode circuit of the second r-f amplifier tube, V308, on Bands No. 2, No. 3, No. 4, and No. 5, in order to make the sensitivity approximately the same on all bands.

(3) Second R-f Amplifier Stage

The second r-f amplifier tube, V308, a Type12SK7 pentode, amplifies the signal and transmits it to the control grid of converter tube, V302, through one of the second r-f transformers (T324, T325A, T325B, T327, or T328). As in the antenna and first r-f circuits, series padding capacitors, C399 and C400, are used on Band No. 3 and Band No. 4 transformers, T325B and T327. The Band No. 5 coil is a single tuned circuit (T328). The proper transformer for a desired signal frequency is selected by means of multiple-circuit switch, S306A, B, and C, which is ganged with the antenna and first r-f band switches, S301 and S305. One section of the switch, S 306 D , is used to short-circuit variable resistor, R308, which is connected in the cathode circuit of the second r-f amplifier tube. This resistor, which is shortcircuited on Bands No. 1, No. 2, and No. 5, is mounted concentrically with the gang capacitor shaft and connected thereto, and serves to maintain approximately constant receiver sensitivity over the band.
(4) Converter Stage

The converter tube, V302, a Type-12K8 triode-hexode, converts the frequency of the signal to 2275 kc , amplifies it and transmits it through the first i-f transformer, T311, to the control grid of the first i-f amplifier tube, V303.

The band switch, S307A, B, C, D, ganged with the antenna and the first and second r-f band switches, selects from oscillator coils, T314, T315, T316, T317, and T318, the proper one for a desired frequency. A tuned-plate oscillator circuit is used, with tickler feedback, and shunt plate feed through resistor, R314, and choke, L312. Series padding capacitors, C391 and C392, are used on Bands No. 1 and No. 2 (T314 and T315). A common temperature compensating capacitor, C346, compensates all coils; in addition, on Band No. 5 (T318), another compensating capacitor, C354, is employed.

The inductance of the oscillator coils is adjustable by means of concentric brass slugs; however, these slugs should not be moved before it is certain that readjustment is necessary, since their adjustment affects both the scale calibration and tracking and can most easily be made at the factory.

(5) First I-f Amplifier Stage

The first i-f amplifier tube, V303, a Type12SK7 pentode, amplifies the i-f signal and transmits it through the second i-f transformer, T319, to the grid of the second i-f amplifier tube, V304.
(6) Second I-f Amplifier Stage

The second i-f amplifier tube, V304, a Type12SK7 pentode, amplifies the i-f signal and transmits it through the third i-f transformer, T312, to the grid of the third i-f amplifier tube, V305. The cathode circuit of the second i-f amplifier tube, V304, contains two resistors, R340 and R343. Should a cumulation of effects result in an appreciable loss of sensitivity in the radio receiver, an increase in sensitivity of approximately two to one can be obtained by short-circuiting one of these resistors (R340).

(7) Third I-f Amplifier Stage

The third i-f amplifier tube, V305, a Type12SK7 pentode, further amplifies the i-f signal and transmits it through the fourth i-f transformer, T321, to the main detector diode (terminal 4, V307).
(8) Main Detector Stage

The i-f signal is rectified by the main diode detector (terminal 4, V307), one diode of a Type12SR7 duo-diode triode, the rectified voltage appearing across load resistor, R334. The a-f component of the

RESTRICTED
 NAVAER 08-5Q-245

rectified voltage is coupled through capacitor, C377, to the volume control potentiometer, R326B. When the AVC-MAN switch, S302B, is in the AVC position, the arm of this potentiometer is connected to the control grid of the a-f amplifier tube, V306, and volume is controlled by the potentiometer setting. When the AVC-MAN switch, S302B, is in the MAN position, the grid of the a-f amplifier tube is connected to the high potential side of the potentiometer, and the full output of the detector is delivered to the a-f amplifier regardless of the position of the potentiometer.

(9) A-f Amplifier Stage

The a-f signal is amplified by the a-f amplifier tube, V306, a Type-12A6 pentode, and transmitted through output transformer, T322, to the headphone jack, J301, and to the headphone circuit in the power plug, P301. The cathode circuit of the amplifier includes a tapped reactor, L315, tuned by two fixed capacitors, C417 and C420, to a frequency of approximately 5200 cycles. The function of the tuned circuit is to reduce the amplification at frequencies above 4500 cycles, by means of negative feedback, to 20 db less than obtained at 400 cycles.

(10) AVC Detector Stage

The output of the third i-f amplifier tube is also rectified by the AVC detector diode (terminal 5, V307), one diode of the Type-12SR7 duo-diode triode tube. Since load resistor, R330, for this diode returns to ground instead of to the diode cathode, rectification is delayed by the amount of the voltage drop in resistor, R325, in the cathode circuit of the duo-diode triode. This resistor is by-passed, for i-f currents, by capacitor, C375.

(11) Beat Oscillator Stage

For reception of $C W$ signals, the triode section of the Type-12SR7 duo-diode triode tube, V307, is used as an oscillator. The oscillator circuit is contained in the same shield with the third i-f transformer, T312. This oscillator operates at 1137.5 kc , its second harmonic being heterodyned with the i-f signal to produce an a-f signal. The coupling between the oscillator circuit and the transformer is inductive and capacitive. The oscillator strength and the coupling are such that the oscillator signal at the detector, in the absence of any received signal, is not quite sufficient to operate the AVC. This provides the maximum sensitivity to CW signals.

When the MCW-OFF-CW switch, S303B, is thrown from the $C W$ position to the MCW position, the beat oscillator tube is disconnected from the plate supply and a compensating resistor, R321 or R310, is substituted for it, maintaining the proper current in the cathode resistor, R325.
(12) Manual Volume Control Circuit

The cathodes of the tubes whose grids are connected to the AVC circuit (V301, V308, V303, and V304) return to ground through a variable resistor, R326A. When the AVC-MAN switch, S302C, is in the MAN position, this resistor operates to control the bias on these four tubes, thus controlling the r-f and i-f gain. In the AVC position, the variable resistor is shortcircuited. The manual gain control resistor, R326A, being ganged with the audio-volume control potentiometer, R326B, the output of the receiver is controlled by a single knob, whatever the position of the AVCMAN switch.

In order to avoid overloading of the i-f amplifier when receiving strong signals in the MAN position, with the volume control turned up unnecessarily high, the grids of the controlled tubes are left connected to the AVC circuit. Thus, excessively strong signals, instead of causing overload, produce an AVC voltage which reduces the amplifier gain to a safe point. Higher delay voltage is used for MAN than for AVC, to insure that full output of the receiver may be obtained. The change in delay is effected by switching compensators, R321 and R310, thus changing the current in the cathode resistor, R325. In the CW position, full output is easily obtained and the delay, therefore, being unimportant, is left unchanged.

(13) Power Supply

The filaments of the vacuum tubes are connected in series pairs, and the pairs connected in parallel across the 28 -volt filament supply. This connection is made when the MCW-OFF-CW switch, S303A, is placed in either the MCW or the CW position. This, at the same time, connects the dynamotor, D301, primary winding to the 28 -volt supply.

The screen grid voltage for the two r-f amplifier tubes and the first two i-f amplifier tubes, is supplied from a voltage divider, R328, R344, and R342.

2. Receiver Rack, Type CG-46128

Reference is made in the following description to Schematic Diagram P-7763365.

The indivdual receiver racks are wired with a plug in the rear so that any radio receiver used can be plugged into a triple mounting receiver rack (RAX), or into the individual receiver rack (RAX-1). Each individual receiver rack is also equipped with a small front panel on which is mounted a three-position switch S604 and telephone jacks "A" and "B," J609 and J610. This allows the operator to switch the output of each radio receiver to the "A" or B " jack and also enables him to plug into the " A " or " B " jack at each radio receiver. If
the operator wishes to listen to a particular radio receiver without putting the receiver output into the line connecting to the " A " or " B " position, he then plugs into the jack on the receiver panel and throws the threeposition switch to the middle position.

Directly in back of the front panel, attached to each receiver rack, is the plug which connects power from the junction box, Navy Type CG-68028, to each radio receiver and also connects jack " A " and " B " to the junction box.
3. Junction Box, Navy Type CG-68028 (See Schematic Diagram P-7763365)

The junction box, Navy Type CG-68028, is arranged to connect to the interphone and also to the 28 -volt supply.

The junction box is equipped with two " A " position jacks and two " B " position jacks and with four receptacles. The power supply cable from the battery plugs into P501 receptacle, and the cable from each radio receiver plugs into the remaining receptacles. Transfer switches are provided on the individual receiver racks.

III. INSTALLATION

A. LOCATION

Where sufficient space permits, the three radio receivers on their mounting racks should be located in front of the operator's position, so the controls on all radio receivers are within easy reach and view of each operator. A convenient arrangement would be to mount the radio receivers side by side on a shelf above the operating table, so that the operating panels are at about eye level. The front edge of the mounting feet should be flush with the front of the shelf for ease in manipulating the tuning controls. The mounting shelf should be horizontal and flat and of sufficient strength to support the weight /of the assembly during take off and flight maneuvers 'without excessive deflection.

Where sufficient space for the arrangement described above is not available, the radio receiver may be located in a number of ways. Only general instructions can be given for alternative arrangements. The radio receivers may be placed one over the other by using suitable mounting shelves. In any case general precautions given below should be observed.

The individual radio receivers, on their mountings, should be arranged as near each other and to the transmitters or lead-in as possible, to reduce the length of antenna connections to a minimum. Space for free riding must be provided around each unit as indicated on drawing W-7350950. If the radio receivers are placed side by side a space of two inches between them will be required, as they cannot be expected to vibrate in synchronism at all times. More space is desirable, especially above the receivers, if available, for convenience in placing slip covers, removing radio receivers from the mounting, and replacing tubes.

The junction box, Navy Type CG-68028, should be located for convenience in connecting to each receiver, the power supply, the I.C.S. system, and Sidetone connections. It need not necessarily be easily accessible to the operators, unless it is desired to use the phone jacks
on it instead of those in the interphone system. The cables from the junction box, Navy Type CG-68028, to each radio receiver should in general be not more than five feet long and the power cable not more than ten feet long.

The cables should be as short as possible to keep the voltage drop to a minimum. Operation will be obtained on wider voltage variations but some impairment in performance-will be found.

It is desirable to attach the power cable to the plane power supply as close to the battery as possible, to reduce the amount of noise picked up from other devices on the power lines.

B. RECEIVER UNITS

With the slip covers removed, the radio receivers should be removed from the mounting racks by loosening the wing nuts and links at the front of each radio receiver, and pulling the radio receivers straight forward to disengage the plugs at the rear. Remove the four mounting feet from the racks by disengaging the snap slides on each foot. Attach the mounting feet to the shelf as indicated on Drawing W-7350950. The mounting racks should be replaced and safety wired.

A ground wire should be run from the post at the left front of each mounting rack to the nearest available ground. If the supporting surface is well grounded to the plane structure this ground wire should attach to it near the ground post. The wire may be insulated or bare stranded wire about No. 18 and enough slack allowed to permit free riding on the shock mounting. If the mounting surface is not well grounded, ground strips of ample size should be run from the anchor point of the ground wire to the nearest available true ground. These strips should preferably be tinned copper about 0.010 inch thick by 1 inch wide.

C. JUNCTION BOX NAVY TYPE CG-68028

The junction box should be removed from its mounting plate by unscrewing the four thumbscrews on the
front surface, and the plate mounted as indicated on Drawing M-7465393. The box should then be replaced and the thumbscrews safety wired.

D. CABLES

The cable lengths should be determined and the cables made up as shown on M-7465168. One power cable, Part 2 on M-7465168, and three cables, Part 3, are required for the entire installation. Cables must have sufficient slack to allow the radio receivers to ride freely on their mountings.

The cables should be plugged up and safety wired. Note that the cables must be plugged into the receiver racks before the radio receivers are placed on the racks, as the receptacles are not accessible after the radio receivers are in place. The cables may be bonded to ground as required, making sure that the last bond is at least 18 inches from the receiver mounting and that proper slack for free riding is provided.
Place the radio receivers on the racks and safety wire the wing nuts in place. If slip covers are to be used they may now be put in place, slipping the rear of the cover over the back of each radio receiver and drawing it down over the units and snapping the elastic band at the front under the clamps. For operation the front flaps of the slip covers are folded back on top of the radio receivers and secured in place by the snap fasteners provided. Care should be taken not to put the covers on wrong side out. The hems along the sides at the bottom are to be on the outside of the covers.

E. CONNECTIONS

Warning

This radio receiving equipment should be connected only to a 24 -volt battery, the negative terminal of which is grounded. The negative supply terminal is connected, within each radio receiver unit, to the radio receiver chassis.

The supply voltage should remain inside the limits of 29 volts maximum and 22 volts minimum. Operation at voltages higher than 29 volts will decrease the life of the tubes and may result in other damage to the radio receiver equipment, and at voltages below 22 volts, proper operation cannot be expected.

1. Cables

When connecting the power cable to the 24 -volt battery, connect the white lead to positive and the black lead to negative.

The power cable plug should be inserted into the receptacle on the junction box, Navy Type CG-68028, and the clamp ring safety wired to prevent loosening. Sidetone and I.C.S. cords may be plugged into the " A " and " B " jacks, if desired.

2. Antenna and Ground Connections

Connections between the " A " (antenna) and " G " (ground) binding posts on the front panels should be made using lengths of stranded rubber-covered wire about No. 18 in size. These wires should be supported well away from ground on intermediate stand-off insulators, if their length requires such support. The antenna connection, to the Type CG-46117 Radio Receiver, should be made with stranded rubber-covered wire supported well away from ground on stand-off insulators: Sufficient slack must be left in all wires to permit free riding. No connection to the " G " (ground) post is required on the Type CG-46115 Radio Receiver when the three radio receivers are connected in series. The post marked " G " on this receiver is for use only when it is to be used by itself directly on an antenna.

Care should be taken to connect the radio receivers in series as shown on W-7350950, that is with Radio Receiver CG-46117 next to the antenna, then Radio Receiver CG-46116 and Radio Receiver CG-46115 next to ground. Any other connections will result in serious loss of performance.

Connect the antenna to the antenna post of Radio Receiver Unit No. 3, and interconnect the receiver units as shown on Outline Drawing W-7350950. Do not ground the " G " post on Radio Receiver Unit No. 1.

When any one of these receiver units is to be used alone, that is, with no other receiver units connected to the antenna, then its " G " post should be grounded.

F. ADJUSTMENT OF ANTENNA TRIMMERS

The antenna trimmer should.be adjusted on each radio receiver unit with a signal which falls near the high frequency end of any one of the bands in that particular unit on which the trimmer is being adjusted.

IV. OPERATION AND ADJUSTMENTS

Warning

1. The maximum voltage present in this radio receiving equipment is 180 volts. d.c. It is not possible to come in contact with any wires or terminals carrying this voltage when the radio receiver is completely assembled; however, removal of either the top or bottom cover
exposes terminals carrying high potential. Ordinary servicing and test operations are easily carried out without danger, but when, in the course of servicing or testing, it is necessary to reach into the chassis, the power should be disconnected from the radio receiver with an external switch, or by removing the power plug.
2. It should especially be noted that in Radio Receiver Unit No. 3; Type CG-46117, when the band switch is set on Band No. 5, the second and third stator sections of the gang capacitor carry the full plate voltage of the radio receiver. For this reason, whenever it is necessary to connect a signal generator to one of these circuits, connection should be made through a capacitor of 0.006 mmfd .

A. OPERATION

1. Radio Receiver Units

The power to each radio receiver unit is controlled by the MCW-OFF-CW switch on its front panel. When the MCW-OFF-CW switch is in the OFF position, the receiver power, both filament and high voltage, is off. When the șwitch is in either the MCW or CW position, the receiver power is on.

After turning on the power, about 7 seconds will be required before the tubes have heated sufficiently to produce any sound in the headphones, and about an additional 15 seconds to reach operating sensitivity.

Any frequency within the range of a receiver unit may be selected by means of two operations: first, set the band selector switch to the band which includes the desired frequency; second, operate the tuning control until the dial scale shows the desired frequency under the index line.

The receiver sensitivity for weak signals will be maximum when the volume control is at maximum, regardless of whether the "AVC-MAN" control is in the "AVC" or "MANUAL" position. Ordinarily, the "AVC" position should be used for radio-telephone signals to avoid fading of signals. "MANUAL" should be used for CW reception since, on "AVC," the time constant of the AVC circuit would cause the receiver sensitivity to vary during the keying.

For MCW or radio telephone reception, the "CW-OFF-MCW" switch should be in the "MCW" position. For $C W$ reception it should be in the "CW" position, under which condition a heterodyne oscillator is switched on to make the CW signal audible.

The antenna trimmer, marked "ANT," need not be adjusted during the operation of the radio receiver, unless the antenna is changed, in which case it may be retuned on any signal, preferably at the high-frequency end of a band.

The absolute sensitvity of each radio receiver unit is approximately twice the required absolute sensitivity. The large number of slightly variable factors affecting the receiver sensitivity make this desirable, in order that even after long use, tube replacements, handling, and exposure to extreme temperatures, humidity and vibra-
tion, the full required sensitivity may be obtained. For this reason it will rarely be found necessary to turn the volume control to "MAX," except for convenience in locating a signal.

The simultaneous operation of three superheterodyne radio receivers from a common antenna and a common power supply makes possible a large number of spurious signals. By careful design, the amplitude of most of these signals has been held to a value which makes them inoffensive, if not inaudible. Some of these signals occur at frequencies where they cannot be received by the same radio receiving equipment which produces them although they lie within the tuning range of the equipment. In this class are the strongest of the signals, the fundamental frequencies of the high-frequency oscillators. The only frequency range where these can be received is in the overlap range between Radio Receiver Unit No. 2 and Radio Receiver Unit No. 3 (7.0 to 9.0 mc). As Radio Receiver Unit No. 2 is tuned from 7.915 mc to 9.0 mc , the high-frequency oscillator of that unit will be tuned from 7.0 to 8.085 mc . All signals of this type have amplitudes less than 200 microvolts and usually less than 75 microvolts.

Harmonics of the high-frequency oscillator in Radio Receiver Unit No. 1 may be received in Radio Receiver Units No. 2 and No. 3, and harmonics of the highfrequency oscillator in Radio Receiver Unit No. 2 may be received in Radio Receiver Unit No. 3. The strongest of these harmonics will be found to range from 1 to 5 microvolts, the strength decreasing with higher order harmonics.

The beat oscillator frequency in Radio Receiver Unit No. 1 is 80 kc , so that the lowest harmonic to be in tuning range of the Radio Receiving Equipment is the third, at 240 kc . That, and the next few higher harmonics are noticeable, but not strong enough to bother.

The beat oscillator frequency in Radio Receiver Unit No. 2 is 457.5 kc . The fundamental and the second harmonic are detectable in Radio Receiver Unit No. 1, but not large enough to cause serious interference. The next few higher harmonics are audible in Radio Receiver Unit No. 2, but their amplitude is very small. Harmonics of high enough order to be tuned by Radio Receiver Unit No. 3 are inaudible.

The beat oscillator frequency in Radio Receiver Unit No. 3 is 1137.5 kc . The fundamental and all the audible harmonics fall in the range of Radio Receiver Unit No. 2; however, all are very small in amplitude.

In addition to the beat oscillator signals, which are heard only when the interfering radio receiver is on CW, it is possible to obtain Radio Receiver Unit No. 2 i-f signals in Radio Receiver Unit No. 1 and Radio

Receiver Unit No. 3 i-f signals in Radio Receiver Unit No. 2. For example, when Radio Receiver Unit No. 2 is tuned to any signal, a small amount of the 915 kc i-f voltage produced reaches Radio Receiver Unit No. 1. Again, this effect has been minimized by the most careful design.

2. Junction Box, Navy Type CG-68028

The junction box mounted on the receiver rack gives great operating flexibility to this radio receiving equipment. Individual switches for the receiver units permit each receiver headphone circuit to be connected to either of two external circuics plugged into the junction box. Thus all three radio receivers may be connected to circuit "A," and circuit "B" left clear for interphone; or two radio receivers may be connected to circuit " A "; and the third to " B " along with interphone or transmitter sidetone. Any receiver may be entirely disconnected from the external circuits by throwing its switch to the middle (OFF) position; in this condition the radio receiver can still be used by plugging headphones into the jack on the front panel of the receiver unit.

It must be remembered that when a radio receiver unit is connected to a circuit already carrying signals, either from another radio receiver, interphone, or sidetone, those signals will also be audible at the headphone jack on the radio receiver itself.

Even in cases where two of the radio receivers are connected to one circuit and the other to the second circuit, it is possible for one operator to guard all three receivers by plugging split headphones into the " A " and "B" circuits.

When a receiver is standing by, in an operative condition but not in use, the power drain will be minimized by setting the controls to MAN, volume at MIN.

B. ADJUSTMENTS

The following instructions apply to all three receivers, although there are slight individual differences. Where reference is made to a specific component, such as a trimmer capacitor, the symbol number for that component is given for each receiver.

1. Tuning Adjustments

a. Beat Oscillator

The beat oscillator frequency is adjustable by means of the trimmer capacitors (C141, C250B, C342A) to any frequency within about 10 kc of the nominal intermediate frequenç. The correct method of adjusting this is as follows: With the radio receiver on "MCW," tune in a modulated signal from a signal generator at any frequency, tuning carefùlly for maximum output.

Remove modulation from the signal generator, and switch the radio receiver to "CW." Adjust the B.F.O. trimmer until the beat note is of a desirable frequency. The beat oscillator can be set on either side of the signal, and ordinarily it is immaterial which side is chosen. However, there may be occasions where an interfering signal is known to be present on a particular side of a wanted signal, in which case it would be desirable to tune the beat oscillator on the other side of the wanted signal. The procedure for this adjustment would be, first, to do as instructed above, using a signal which falls in the same band of the radio receiver as the particular wanted signal. Having made this adjustment, tune the receiver slowly in the direction of the unwanted signal. If the beat note increases in frequency, the adjustment is correct; if it decreases, the radio receiver should be retuned to the signal generator frequency, and the beat oscillator trimmer turned in the direction which causes a decrease in the beat frequency until the frequency passes through zero and again reaches the desired value.

b. I-f Amplifier

For best alignment of the i-f transformers a visual equipment is recommended. Realignment should not be undertaken without first making sure that it is necessary. Unless the selectivity of the radio receiver deviates appreciably from the figures given in the test data, the i-f amplifier should be left alone.

If realignment is necessary, and visual alignment equipment is available, the procedure is as follows:

Set the radio receiver controls to "MCW-MAN" and connect the cathode ray oscilloscope vertical deflection plates, respectively, to the radio receiver chassis and to the high potential end of the audio detector load resistor (Radio Receiver No. 1: junction of R165, C176; Radio Receiver No. 2, junction of R237, C275; Radio Receiver No. 3, junction of R334, C377). Apply the i-f signal from the visual alignment signal generator to the control grid (pin 4) of the third i-f amplifier. Ascertain that the mean frequency of the signal generator output is equal to the nominal i-f ($160 \mathrm{kc} ; 915 \mathrm{kc} ; 2.275 \mathrm{mc}$) and the sweep width approximately 100 kc . Adjust the trimmers of the fourth i-f transformer to give the maximum height of picture obtainable with tracking of the two curves.

Transfer the signal input leads to the grid of the second i-f amplifier and reduce the signal input, if necessary, to avoid overload. Adjust the trimmers in the third transformer to obtain the maximum height with tracking of the two curves.

The procedure followed on the third i-f transformer should now be reppeated on the second i-f transformer, the signal being applied to the grid of the first
i-f ampliter. When the alignment up to this point is satisfactory, change the input to the top cap grid of the converter and again follow the same procedure to align the first i-f transformer.

Once a stage has been aligned and the signal input moved to the next preceding stage, it should not be necessary to readjust any of the aligned stages.

If visual type aligning equipment is not available, a signal generator may be used. With a modulated signal, using an output meter, align each trimmer for maximum output at the nominal intermediate frequency, starting with the signal generator connected to the grid of the last i-f amplifier tube. In Radio Receiver Units No. 1 and No. 2, after aligning the diode transformer, it will be necessary to check the symmetry of the selectivity curve at the $6 \cdot \mathrm{db}$ attenuation points, which should be spaced the same number of cycles from the nominal intermediate frequency. This check is necessary on these transformers because their coupling is greater than critical, and a simple alignment for maximum output does not necessarily result in a symmetrical curve.

c. R-f Amplifier and Oscillator

If the tuning dial scale reads the correct frequency on all bands, the oscillator trimmers should not be touched. If it reads correctly on some bands, but not on others, readjustment of the trimmers on the bands reading incorrectly will probably correct the readings. This adjustment should be made about 5 turns of the crank from the high-frequency end of the calibrated band. Inability to obtain tracking of the dial with the correct frequency throughout a band indicates a defect in the
oscillator coil or the oscillator padding capacitor or gang condenser.

When the oscillator is tracking the dial correctly on all bands, the r-f trimmers may be adjusted for maximum output, after tuning the radio receiver carefully to a modulated signal falling about 5 crank turns from the high-frequency end of the band. CAUTION: See Warning Paragraph heading Section VI on Operation and Adjustments.

d. I-f Trap

The i-f trap should be adjusted by applying a signal at the intermediate frequency to the antenna terminal and adjusting the trap trimmer for minimum output.

On Radio Receiver Unit No. 2, the wave trap adjusting screw must not run too far in, or the iron core may touch the coil terminal, causing a short circuit on the high voltage. The trap should tune with at least $3 / 16 \mathrm{in}$. of the screw projecting out of the top plate of the coil box.

e. A-f Trap

In Radio Receiver Units No. 2 and No. 3, a parallel resonant circuit is used in series with the cathode of the a-f amplifier tube to produce the desired sharp cutoff of high frequencies. This trap (L210, L315) is preferably adjusted with the three receiver output circuits connected, in parallel, to a 300 -ohm load. In that case, each trap should be adjusted to make the output at 4500 cycles, 20 db below that at 400 cycles. With this adjustment, the attenuation should go through a maximum at approximately 6000 cycles.

V. MAINTENANCE

INSPECTION

The Navy Model RAX-1 Radio Receiving Equipment should be given a flight inspection before every radio flight, according to the following routine:

Flight Inspection.

1. Examine tubes in each radio receiver unit. Be sure that each tube is in the socket market for that type and that all control grid clips are attached. Pusb each tube all the way into its socket.
2. Inspect all snapslides and see that each radio receiver unit is secured to the rack.
3. Check operation of switch controls, and be sure that radio receiver is operating. Listen for noise with volume control advanced to maximum. Receiver hiss should be plainly audible.
4. Check'radio receiver input alignment by tuning in a weak signal and varying the position of the antenna
trimmer to make sure that the input circuit is tuned to resonance, or by adjusting the trimmer for maximum noise with no signal.
5. Turn up the engine past the speed at which the charging generasor cuts in and check the ignition and generator noise.
6. Check telephone cord and telephone plug for open or intermittent contacts. Check telephone receivers, High-impedance phones cannot be used with the Navy Model RAX-1 Radio Receiving Equipment.
7. Measure supply voltage with the airplane engine running at least 1500 r.p.m.
-DO NOT ALLOW RADIO RECEIVING EQUIPMENT TO BE OPERATED IF THIS VOLTAGE IS LESS THAN 22 VOLTS OR MORE THAN 29 VOLTS.

NOTE:
Never operate the Radio Receiving Equipment on the ground longer than is necessary to complete this inspection. Never leave the airplane without turning the Radio Receiver Power Switch to "OFF."

Service Inspection

The following sarvice inspection should be made after every 15 hours of service.

1. Check airplane battery with hydrometer.
2. Check operation of voltage regulator of charging generator, adjusting it to assure consistent operation of generator at approximately 28 volts.
3. Check bonding of cables and contacts between antenna and ground wires and their respective binding posts on the Radio Receiver.
4. Clean all antenna insulaturs, particularly those which are exposed to the engine exhaust, and check contacts on the lead-in insulators.
5. Lubrication
a. Dynamotor

NOTE ON DYNAMOTOR LUBRICATION: If the Radio Receiver is operating satisfactorily with dynamotor noise at a suitably low.level, the Dynamotor Unit should be left alone. When this machine is in proper condition, manipulation of the brushes or commutators is apt to do more harm than good. The dynamotor may require lubrication about every 500 hours of operation, with a light ball bearing grease. Access to the bearings is obtained by removing the end covers held by screws and then removing the circular plates on the end of the bearing housing. Do not put much lubricant in these bearings. Do not use vaseline, or any other lubricant not prepared especially for ball bearings, or the armature will stick. Use Navy Aero Spec. M-372, Air Corps GL 375, or Lubrico M-6 grease in dynamotor ball bearings, applying enough to cover the bearings. If rough turning or excessive looseness is noticed after the bearings are cleaned and greased, replacement should be made.

Never allow oil or grease to get on the commutators. Remove dirt, grease, or oil from the commutator with a clean dry cloth. DO NOT USE EMERY ON A

COMMUTATOR. In time the commutator will become covered with a dark or semitransparent film which is not a cause of noise and should be preserved thereon. The only parts besides bearings that are apt to require replacement during the life of the machine are the brushes. Removal of the end covers gives access to the brushes. Remove old brushes by unscrewing brush caps and draw worn brushes, out of the holders. Be sure that the new brush is installed in the same relative position as the original brush. Proper brush seating is essential for satisfactory operation.

NEW BRUSHES ON EITHER HIGH- OR LOW-VOLTAGE COMMUTATORS MUST BE SEATED BY OPERATING THE MACHINE AT LEAST 10 HOURS AT NORMAL LOAD BEFORE PLACING MACHINE IN SERVICE. A dynamotor with new brushes may be noisy and inefficient in operation until brushes are properly run in.

b. Tuning Mechanism

All shafts of the tuning mechanism are lubricated with low, cold test instrument oil which has been treated to have free flowing properties at $-32^{\circ} \mathrm{C}\left(-25.6^{\circ} \mathrm{F}\right)$. In addition, a rust preventative and an oxidation inhibitor have been added. A suitable oil for this application is General Electric oil D6B5, but any instrument oil having similar properties may be used.

The tuning knob has a small friction brake running on the inside to prevent creeping under vibration. This brake should be lubricated with flake graphite such as Dixons "Microfyne" to avoid sticky operation. The graphite may be blown in through the setscrew holes or the knob may be removed for access to the brake shoes.

c. Plugs

Plugs and receptacles should be treated with a suitable antisieze compound to prevent the plug and receptacle from freezing together.

6. Slip Covers

Waterproof slip covers are supplied for all the Receiver Units with each Model RAX-1 Equipment. It is of vital importance that these units be protected from water and oil spray when not in use, by means of these covers.

VI. LOCATION AND CORRECTION OF TROUBLES

A. TEST DATA

The following data will be found useful in tracing trouble when a radio receiver unit fails to operate properly.

1. Chassis Voltages

Table I gives socket voltages to ground measured with a 200 ohm per volt meter. The power supply voltage is 28 volts, and no signal is applied. The standard conditions for the panel controls are: MCW, MAN, volume MAX, Band No. 1, low-frequency end.

RESTRICTED
 NAVAER 08-5Q-245

TABLE 1
a. Radio Receiver Unit No. 1, Type CG-46115

Socket	Controls	Terminals							
		1	2	3	4	5	6	7	8
X101	Standard	0	27	0		4.8	87	13.5	152
X101	Band No. 2	0				6			
X101	Band No. 3	0				4.8			
X101	Vol. MIN	0				37.5			
X101	Band No. 4	0				0			
X102	Standard	0	13.5	15.5	91		57	0	6.6
X103	Standard	0	27	0		4.3	85	13.5	153
X104	Standard	0	13.5	0		2.6	83	0	150
X105	Standard	0	13.5	135	153	0		27	7.6
X106	Standard	0		31.3			0	0	13.5
X106	AVC	0		14.5					
X106	CW	0		17.5			40		

b. Radio Receiver Unit No. 2, Type CG-46116

Socket	Controls	Terminals							
		1	2	3	4	5	6	7	8
X201	Standard	0	27	0		3.1	92	13.5	135
X201	Vol. MIN	0				24			
X202	Standard	0	13.5	0		6.4	92	0	140
X202	Band No. 2	0				8.2			
X202	Band No. 3	0				4.9			
X202	Band No. 4	0				2.9			
X203	Standard	0	0	148	85		65	13.5	3.2
X204	Standard	0	27	0		5	90	13.5	124
X205	Standard	0	27	13.5		3.4	100	13.5	132
- 206	Standard	0	13.5	5.2		5.2	122	0	142
X207	Standard	0	13.5	135	150	0		27	6.8
X208	Standard	0		37.5			0	0	13.5
X208	AVC	0		14.5			0		
X208	CW	0		37.5			110		

c. Radio Receiver Unit No. 3, Type CG-46117

Socket	Controls	Terminals							
		1	2	3	4	5	6	7	8
X301	Standard	0	27	0		2.5	92	13.5	132
X301	Vol. MIN	0				25			
X302	Standard	0	0	150	95	4	80	13.5	4.1
X303	Standard	0	27	0		4.2	92	13.5	145
X304	Standard	0	27	0		6.1	92	13.5	145
X305	Standard	0	13.5	0		3.5	106	0	145
X306	Standard	0	13.5	135	150	0		27	6.8
X307	Standard	0	29	39	24.5		0	0	13.5
X307	AVC	0	16	16	13.5		0		
X307	CW	0	15.5	25	12		88		
X308	Standard	0	13.5	0		6	97	0	145
X308	Band No. 2	0				2.6			
X308	Band No. 3	0				2.7			

2. Chassis Resistances (Socket Terminals to Ground)

Table II gives resistances measured from socket terminals to ground. The standard conditions for the
panel controls are MCW, MAN, volume MAX, Band No. 1, low-frequency end; power disconnected, and dynamotor removed.

RESTRICTED

NAVAER 08-5Q-245
TABLE II
a. Radio Receiver Unit No. 1, Type CG-46115

Socket	Controls	Terminals							
		1	2	3	4	5	6	7	8
X101	Standard	0	9.5	1.5 meg .	1.5 meg .	1,200	17,000	9.5	18,000
X101	Band No. 2	0				2,200			
X101	Band No. 3	0				1,200			
X101	Vol. MIN	0				7,000			
X101	Band No. 4	0.				0			
X101	Band No. 4 (H.F. End)	0				4,500			
X102	Standard	0	9.5	18,000	29,000	150,000	80,000	0	800
X103	Standard	0	9.5	0	2.4 meg.	1,000	17,000	9.5	18,000
X104	Standard	0	9.5	0	1.5 meg .	330	53,000	0	18,000
X105	Standard	0	9.5	18,000	17,000	800,000		9.5	410
X106	Standard	0	230,000	9,000	400,000	470,000	INF	0	9.5
X106	AVC	0		9,500			INF		
X106	CW	0		9,500			35,000		

b. Radio Receiver Unit No. 2, Type CG-46116

Socket	Controls	Terminals								
		1	2	3	4	5	6	7	8	Cap
X201	Standard	0	9	1.5 meg .	2.5 meg .	300	21,000	11	23,000	
X201	Vol. MIN	0				6,500				
X202	Standard	0	11	0	2.5 meg .	1,500	21,000	0	23,000	
X202	Band No. 2	0				3,300				
X202	Band No. 3	0				800				
X202	Band No. 4	0				300				
X203	Standard	0	0	21,000	31,000	51,000	58,000	11	330	1 meg
X204	Standard	0	9	0	1.5 meg .	1,200	25,000	11	25,000	
X205	Standard	0	9	11	1.5 meg .	300	20,000	11	23,000	
X206	Standard	0	11	510	1.5	510	31,000	0	22,000	
X207	Standard	0	11	22,000	21,000	800,000		9	420	
X208	Standard	0	220,000	29,000	470,000	350,000	INF	0	11	
X208	AVC	0		13,000			INF			
X208	CW	0		39,000			65,000			

c. Radio Receiver Unit No. 3, Type CG-46117

Socket	Controls	Terminals								
		1	2	3	4	5	6	7	8	Cap
X301	Standard	0	9	1.5 meg .	2 meg .	220	16,000	11	16,000	
X301	Vol. MIN	0				6,500				
X302	Standard	0	0	16,000	23,000	68,000	27,000	11	330	470,000
X303	Standard	0	9	0	1.5 meg .	560	15,000	11	14,000	
X304	Standard	0	9	0	1.5 meg .	1,400	15,000	11	14,000	
X305	Standard	0	11	0	INF	330	33,000	0	14,000	
X306	Standard	0	11	15,000	14,000	800,000		9	420	
X307	Standard	0	150,000	8,200	440,000	470,000	INF	0	11	
X307	AVC	0		8,200						
X307	CW	0		9,100			52,000			
X308	Standard	0	11	0	2 meg .	1,220	15,000	0	16,000	
X308	Band No. 2	0				220				
X308	Band No. 3	0				225				
X308	Band No. 4 (H. F. End)	0				2,700				

RESTRICTED
 NAVAER 08-5Q-245

3. Miscellaneous Chassis Tests

In addition to the voltages and resistance tabulated above, there are a number of voltages which cannot be checked with an ordinary voltmeter on account of the effect of the meter and leads on the circuit. For example, the grid-cathode voltage of the oscillators is an important indication of the proper operation of the oscillators, but readings must be taken by a special method to be dependable. Table III gives voltages in such

TABLE III

a. Radio Receiver Unit No. 1, Type CG-46115
(1) High-frequency oscillator grid-to-cathode test (terminal 5 to terminal 8, Socket X102)

```
CURRENT IN MICROAMPERES
(through \(1 / 2\) megohm)
```


Low-frequency End High-frequency End

Band No. 1	10	14
Band No. 2	12.5	17
Band No. 3	27	24.5
Band No. 4	11	17.5

(2) Beat oscillator grid-to-cathode test (terminal 2 to terminal 3, Socket X106): 10.5 microamperes through $1 / 2$ megohm
(3) Main diode detector output test (across R165) with receiver on CW: 20 microamperes through $1 / 2$ megohm
b. Radio Receiver Unit No. 2, Type CG-46116
(1) High-frequency oscillator grid-to-cathode test (terminal 5 to terminal 8, Socket X)

CURRENT IN MICROAMPERES
 (through $1 / 2$ megohm)

Low-frequency End High-frequency End

Band No. 1	11	11.5
Band No. 2	9.5	11.5
Band No. 3	9.5	12.5
Band No. 4	10	17

(2) Beat oscillator grid-to-cathode test (terminal 2 to terminal 3, Socket X208); 15 microamperes through $1 / 2$ megohm
parts of the circuit, read by using a microammeter in series with a 0.5 -megohm, $1 / 2$-watt resistor (whence the current in microamperes is equal to twice the voltage). One side of the microammeter is connected to the circuit point which has no oscillator or signal voltage on it, and the 0.5 -megohm resistor is used as a probe for making the other connection. It is essential that there be not more than an inch or two of wire from the resistor to the point in the circuit to which it connects.
(3) Main diode detector output test (across R237) with radio receiver on CW: 18 microamperes through $1 / 2$ megohm
c. Radio Receiver Unit No. 3, Type CG-46117
(1) High-frequency oscillator grid-to-cathode test (terminal 5 to terminal 8, Socket X302)

CURRENT IN MICROAMPERES
(through $1 / 2$ megohm)
Low-frequency End High-frequency End

Band No. 1	7	9.5
Band No. 2	9	10.5
Band No. 3	9	9.8
Band No. 4	6.6	11.5
Band No. 5	7	9.3

(2) Beat oscillator grid-to-cathode test (terminal 2 to terminal 3, Socket X307) : 8 microamperes through $1 / 2$ megohm
(3) Main diode detector output test (across R334) with radio receiver on CW: 10 microamperes through $1 / 2$ megohm.

4. Stage Sensitivities

Table IV gives the signal voltage required at each grid to produce 1.73 volts rms output into a $300-\mathrm{ohm}$ load, the radio receiver being set on MCW, MAN, volume MAX. The signal used is a 400 -cycle a-f signal; or an i-f signal modulated 30 per cent at 400 cycles; or an r-f signal modulated 30 per cent at 400 cycles, whichever applies. For the readings marked with a (*) the gain control is retarded to a point where the noise output when the modulation is removed from the signal is 0.86 volts.

RESTRICTED
 NAVAER 08-5Q-245

TABLE IV
STAGE SENSITIVITIES
a. Radio Receiver Unit No. 1, Type CG-46115

b. Radio Receiver Unit No. 2, Type CG-46116

MICROVOLTS

Stage	$\begin{aligned} & A-f \\ & V 207 \end{aligned}$	$\begin{gathered} I-f 3 \\ V 206 \end{gathered}$	$\begin{aligned} & I-f 2 \\ & V 205 \end{aligned}$	$\begin{aligned} & I-f 1 \\ & V 204 \end{aligned}$	Conv. V203	$\begin{aligned} & R-f 2 \\ & V 202 \end{aligned}$	$\begin{aligned} & R-f 1 \\ & V 202 \end{aligned}$	ANT.
Freq. Signal	Pin 5	Pin 4	Pin 4	Pin 4	Cap	Pin 4	Pin 4	
400 cycles	0.72	X	X	X	X	\mathbf{X}	X	X
915 kc	X	0.118 V	6900	585	93	X	X	X
1.55 mc	X	X	X	X	130	29	10.5	5*
2.35 mc	X	X	X	X	130	27	9.8	2.7*
2.45 mc	X	X	X	X	135	100	15	3.5
3.7 mc	X	X	X	X	130	95	15	2.4
3.9 mc	\mathbf{X}	X	X	X	150	80	18	3.7
5.9 mc	X	X	X	X	130	62	20	3.2
6.1 mc	X	X	X	X	140	40	18	2.9
8.8 mc	X	X	X	X	150	35	20	2.2

c. Radio Receiver Unit No. 3, Type CG-46117

Stage	$\begin{gathered} A-f \\ V 306 \end{gathered}$	$\begin{aligned} & I-f 3 \\ & V 305 \end{aligned}$	$\begin{gathered} \text { I-f } 2 \\ V 304 \end{gathered}$	$\begin{array}{r} I-f 1 \\ V 303 \end{array}$	$\begin{aligned} & \text { Conv. } \\ & \text { V302 } \end{aligned}$	$\begin{gathered} R-f 2 \\ V 308 \end{gathered}$	$\begin{aligned} & R-f 1 \\ & V 301 \end{aligned}$	ANT.
Freq. Signal	Pin 5	Pin 4	Pin 4	Pin 4	Cap	Pin 4	Pin 4	
400 cycles	0.72V	X	X	X	X	X	X	\mathbf{X}
2.275 mc	X	0.104 V	5700	350	75	X	X	X
7.2 mc	X	X	X	X	100	25	7.5*	0.7*
9.8 mc	X	X	\mathbf{X}	X	100	25	7.5*	0.7*
10.2 mc	X	X	X	X	100	17	4.3*	1.6*
12.8 mc	X	X	X	X	100	17	4.3*	1.6*
13.3 mc	X	X	X	X	80	22	6.0*	1.4*
17.2 mc	X	X	X	X	87	52	7.2*	2.4*
17.8 mc	X	X	X	X	80	14	5.5*	2*
22.2 mc	X	X	X	X	88	36	7.6	2.9*
22.8 mc	X	X	X	X	96	23	7.6*	1.9*
26.7 mc	X	X	\mathbf{X}	X	88	19	6.5*	3.6*

5. Other Data

Drawing K-7883550 shows the base connections of the vacuum tubes used in this radio receiving equipment.

Drawings K-7883551 to K-7883577 inclusive, show
other characteristics useful in checking performance and analyzing troubles.
6. Color Codes

RESTRICTED

In addition to the Part Numbers stamped on each component, all fixed resistors and mica capacitors are marked with the standard RMA color code. This code consists of three colors, the first signifying the first digit; the second, the second digit; and the third, the numbers of zeros between the second digit and the decimal point. Capacitance values are given in micromicrofarads, and resistances in ohms. The color code is given in Table V.

TABLE V
Resistor and Capacitor Color Code

Color	Digit
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Gray	8
White	9

On capacitors, the colors are read from left to right when the capacitor is placed in such a position that the colored dots appear at the top.

On resistors, the colors appear as bands; they are read starting at the end of the resistor body and reading toward the center. Resistors carry an additional band of gold or silver paint, silver indicating 10 per cent tolerance; gold 5 per cent tolerance.

Examples:

A capacitor with a red dot, a black dot, and a brown dot: $\mathbf{2 0 0} \mathbf{~ m m f}$.

A capacitor with a brown dot and two black dots: 10 mmf .

A resistor with three red bands and a silver band: 2200 ohms 10 per cent tolerance.

A resistor with a brown band, a black band, a green band, and a gold band: 1 megohm (1,000,000 ohms), 5 per cent tolerance.

Some resistors are marked in accordance with a body-end-dot coloring system instead of the three bands; the colors are read in that order and the same color code applies.

7. Operating Difficulties and Possible Causes

The following general principle should be remembered and constantly followed in connection with this radio receiving equipment: WHEN LOOKING FOR TROUBLE IN A RADIO SET ALWAYS EXAMINE ALL THE SIMPLE CAUSES OF FAILURE FIRST. Whenever the radio receiving equipment fails to work
properly, first determine in what unit the trouble lies by replacing the units one at a time with similar units known to be in good operating condition. This method of analysis, applied down to the individual cables will always locate the defective unit without ambiguity. The remedies suggested below should be applied to a unit only after this unit has been definitely shown to be defective by the method outlined above and removed from the rec̣eiver rack for testing alone.

a. Radio Receiver Operative but Noisy

Probably the most common cause of poor radio reception in all airplane installations of high sensitivity radio receivers is electrical "noise" of both local and atmospheric origin. Operators of the radio receiver should learn by experience to identify those "noises" in the telephone receivers which indicate faults in the apparatus or installation. Such identification by ear will greatly facilitate the correction of the fault. The following outline may be used as a guide.
(1) Atmospherics (static), external man-made interference should be identified on the ground, engine not running. Static will be heard at low frequencies at all seasons of the year and most times of day. The general static level grows progressively lower with increasing frequency. The radio receiver cannot be adequately tested or inspected in ground locations where power-line interference, motor interference, and the like are excessive. Disconnecting the antenna at the radio receiver binding post will generally give a satisfactory test, since, if the noise encountered is static or power-line interference, it will greatly diminish or disappear when the antenna is disconnected.
(2) Dynamotor noise should be identified on the ground, engine not running; usually related to the speed of the machine and can not be identified by switching the power on and off at the "MCW-OFF-CW" switch.
(3) Intermittent contact in phone cord, plug, or contacts to telephone receivers should be identified on ground, engine not running.
(4) Loose band or terminal plug on any radio receiver should be identified on ground, engine not running.
(5) Ignition noise should be identified on ground, engine running, by varying the speed of the engine and by switching from one magneto to the other.
(6) Generator noise should be identified on ground, engine running, by advancing the throttle to the point at which generator cut in. If it originates in the generator itself, it will be characteristic "machine noise"; if in the voltage regulator, it will probably be
intermittent and appear only above a certain critical engine speed (usually 800 to 1000 rpm). Noise originating in the generator or voltage regulator can be distinguished from ignition noise by the fact that generator and voltage regulator noise is usually suppressed by opening the airplane main line switch.
(7) Vacuum tube noise should be identified on gigund, engine running; usually a crackling or ringing solind. It will sometimes appear under sustained vibration and never be heard at all when the radio receiver set box is jarred intermittently by hand.
(8) Intermittent contact in an internal circuit of the radio receiver may be identified with the engine running or by jarring the radio receiver by hand. Disconnecting the antenna and vibrating the radio receiver is not necessarily a test because noises of this character may be increased to audibility by a strong incoming signal.

With regard to (1) on page 36, it should be noted that it is not an uncommon occurrence for manmade interference to be received with destructive force when flying over certain areas, and to be of such nature that it is easily confused with generator or dynamotor noise on the airplane itself. If "machine" noises are suddenly heard in flight they may possibly be identified solely with a particular ground area. Also it should be remembered that when flying through mist, rain, or snow, a noise is sometimes heard which sounds like a machine noise; it is produced by the impact of the charged particles on the receiving antenna and airplane, and is irremediable.

With regard to (2) on page 36 , the interruption of current in the commutators of the dynamotor machine sets up radio frequency oscillations in the connecting cables, which oscillations enter the radio receiver by way of the antenna (never through the conductors of the cables themselves; this fact may be verified by disconnecting the antenna at the radio receiver binding post). The transmission of the dynamotor noise to the radio receiver is related to the condition of bonding of the cables, particularly at high frequencies. A dirty commutator will produce more noise than a clean one, but complete suppression can never be obtained if the, shielded cables are not thoroughly bonded and grounded. This fact should be remembered when making bench installations of the radio receiver for test purposes. When this noise occurs in an airplane installation the bonding of the cables to the airplane should be checked for poor contacts. If the noise persists, the commutators of the machine may be cleaned with a clean dry cloth while the machine is turning over. All grit and dust produced by this cleaning process must be carefully removed from brush holders and commu-
tator. Never use emery on a commutator. A trace of oil or grease on a commutator may cause more trouble than a dirt deposit. The low-voltage commutator is more apt to produce noise than the high-voltage commutator. Under normal operating conditions the commutators of these enclosed machines should not require cleaning oftener than about every 500 hours. If the dynamotor is noisy or inefficient and the cause of the trouble cannot be located elsewhere the commutator may be cleaned as described above.

Trouble (3) mentioned on page 36, is a very common, but easily remedied cause of complete interruption of service, because of the severe wear to which these items are subjected.

With regard to (6) on page 37, generator and voltage regulator noise is frequently a more elusive fault than ignition interference. A temporary remedy, if the generator becomes noisy in the air, is to open its field while receiving, but this is not a cure, and should not be permanently tolerated. Complete shielding will not always cure voltage-regulator interference. For best results the voltage-regulator output should be electrically filtered. A method of doing this, which is effective in many installations, is to connect a condenser of $1 / 2 \mathrm{mfd}$ capacity between the positive generator field terminal and ground, and a second condenser of $1 / 2 \mathrm{mfd}$ between the positive 28 -volt output terminal and ground. To be effective this must be done at the generator using the shortest possible leads. If the voltage regulator is misadjusted so that its armature vibrates continuously no amount of filtering will completely eliminate the resultant noise. The spring tension on the voltage regulator relay contacts should be so adjusted that they open and close without vibration as the generator passes through its operating speed range.

With regard to (7) on page 37, an intermittent contact inside a tube is sometimes the first indication that its useful life is over. Noises originating in the tubes are greatly accentuated by the presence of a strong incoming radio signal, particularly an unmodulated signal, and this may be used as a means of identifying such a noise. The faulty tube must be isolated by replacing the tubes one by one with new ones and observing when the disturbance vanishes.

If the trouble is due to (8) mentioned on page 37 the radio receiver must be dismounted and inspected internally for loose connections. The most likely location of a loose contact is in one of the band switch wafers. If this is the case, the trouble will probably appear on only one band, although if one of the common contacts is involved, all bands might be affected. If the trouble is confined to one band, the circuit may be isolated by connecting a signal generator first to the
antenna, then to the first r-f amplifier tube grid, then to the second r-f amplifier tube grid, and then to the converter grid (top cap): Disappearance of the noise at any of these points will locate the loose contact in the preceding circuit. If the noise is worse with r-f signal applied to the converter grid than with i-f signal applied, the loose contact may be in the local oscillator circuit.

b. Receiver Dead, No Sounds

If the dynamotor does not run, check the fuse. If it is blown, replace it and before replacing the dynamotor, check the resistance to ground from terminal No. 2 of the dynamotor terminal board. It should exceed 30,000 ohms after the filter capacitors have charged, with the power off. If dynamotor runs, check chassis voltages, starting at output stage of radio receiver and working toward the antenna. If trouble is traced to a particular tube, test the tube and substitute a known good tube for it. A defective socket contact may cause a good tube to be inoperative in the set.
c. Strong Signals Overload Receiver on AVC and on MAN at High-volume Control Settings

This is an indication of inoperative AVC. If the recovery time is very long, after application of a strong signal, look for an open circuit in the AVC line or in a grid circuit. If the recovery appears to be practically instantaneous, a short circuit on the AVC line is indicated. Check grid-to-ground resistances.
d. Receiver Sensitivity Either Too High or Too Low on Some Bands

Check the chassis voltages, particularly cathode voltages. Defective contacts in the wafer which switches cathode resistors to maintain uniform band-to-band sensitivity (S105C, S203D, S305D, S306D) is indicated. For low sensitivity, check r-f and antenna circuit alignment.

e. Receiver Sensitivity Extremely Low on Any or All Bands

A defective band switch contact in an t-f circuit is indicated. If resetting the band switch sometimes returns the sensitivity to normal, this diagnosis is even more certain. To determine which circuit is at fault, test sensitivity at converter grid, second r-f amplifier grid, and first r-f amplifier grid. An open circuit in one of the switches may of ten be located by checking resistance from each stator section of the gang capacitor, to ground (on Radio Receiver Units No. 2 and No. 3) or to the AVC line (on Radio Receiver Unit No. 1). Reference to the schematic diagrams will show that on some bands the presence of a series padding capacitor will prevent this
check from being carried out. In those cases it is necessary to remove the suspected coil box from the chassis for test.
f. Receiver Normal on MCW but Insensitive on CW

Check beat oscillator frequency; check beat oscillator strength as described in Section VI on Operation and Adjustments.
g. Receiver Oscillates on MCW

NOTE:
Oscillation on MCW may be identified by the appearance of a heteredoyne beat note, or by "motorboating" (intermittent blocking).

Replace all tubes. Check all nuts and screws on chassis ànd coil boxes, particularly those screws holding ground terminals.

Check chassis voltages and resistances. (Allowance must be made for some voltage changes due to the oscillation, when making this check.) These checks will locate a short-circuited filter or by-pass capacitor. To locate an open-circuited by-pass capacitor try shunting, in turn, each by-pass capacitor in the radio receiver with another capacitor of approximately the same capacitance.

Connect a microammeter and 0.5 -megohm resistor across the diode load resistor (R165, R237, R334), with the radio receiver on MCW, no signal. If it is oscillating, there should be several volts across the diode load resistor. Ground in turn the antenna, the first r-f amplifier tube grid, the second r-f amplifier tube grid, etc. This may localize the trouble in a particular stage.

b. General

A general procedure, applicable to any symptoms of trouble is: first, check all chassis resistance; second, check all chassis voltages; third, check all stage sensitivities. In most cases the trouble will be localized before this routine is completed.

When it is necessary to remove any of the shields from the inside of a chassis, it is essential that they be replaced, and all screws fastened securely, using lockwashers, when the radio receiver unit is reassembled. Failure to do this may result in enormous increases in the amplitude of some of the spurious signals.

In removing r-f or oscillator coil boxes from the radio receiver units, the procedure should be as follows:
(1) Disconnect all wires on the base of the coil box.
(2) Kemove dynamotor, then band switch shaft.
(3) Remove two screws from top of coil box shield.

RESTRICTED
 NAVAER 08-5Q-245

(4) Remove two nuts from bottom of coil box shield.
(5) Remove four screws from bottom corners of coil box base.
(6) Holding soldering iron on stator terminal of gang capacitor, where lead joins from coil box, lift coil box from set.

When replacing the coil box, reverse the above procedure, being particularly careful when inserting the lead in the gang capacitor stator terminal not to bend it in such a way as to short-circuit to the capacitor frame.

When short-circuit trouble is indicated in a coil box, it is well to inspect the air trimmer capacitors in the box for metal particles between the plates.

LIST OF MAJOR UNITS
Navy
Type
Number

CG-46115	Receiver $(200-1500 \mathrm{Kc})$	101 to 199 Receiver $(1500-9000 \mathrm{Kc})$
CG46116		1201 to 299
CG-46117	Receiver $(7000-27,000 \mathrm{Kc})$	301 to 399
CG-46128	Receiver Rack	601 to 699
CG-62028	Junction Box	501 to 599
None	Cable M7465168P2 \& 3	701 to 799

table VI
PARTS LIST BY SMMBOL DBSIGITATIONS
MRAVY MODEL RAX－1 AIRQRAFI RADIO RECETVING EQUIPMRNT RADIO RECEIVER 200－1500 KC，NAVY TYPE CG－46115

SNBOL DESIGNAT		FOSCLİN	ITESCRI PTI ON	NAVY TYPE DESIG：	ITAVY DWG．OR SPEC．NOMBER	π	宦	$\begin{gathered} \text { MFR. } \\ \text { DSSIG. } \end{gathered}$	$\begin{aligned} & \text { CONTRACTOR'S } \\ & \text { DRAWING } \\ & \text { AND } \\ & \text { PART NUMBER } \end{aligned}$
CAPACITORS									
Cl01	－	Not Usied	－	－－	－		－		－
C102	－	Band 4，Antenna Trimming Capacitor	Variable， 50 mmfd ，terminal on left	－	－	－	2	Type APC（modified）	M－7464331－P2
C103	－	Band 3，Antenna Trimming Capacitor	Variable， 50 mmfd ，terminal on right	－	－	－	2	Type APC（modified）	M－7464331－P9
C104	－	Band 2，Antenne Trimming Capacitor	Same as $\mathrm{ClO2}$	－	－	－	－	－	－
C105	－	Band I，Antenns Triming Capacitor	Same as Cl03	－	－	－	－	－	－
－6106	－	Converter AVC Filter Capacitor	Paper， $0.05 \mathrm{mPd} \pm 10 \%, 400$ volts	－	RE 13A 488C	－	1	－	K－7876779－P4
＊ 6107	－	R－f AVC Filter Capacitor	Paper， 0.01 mPd $\pm 10 \%, 600$ volts d－c working	－	RE 13A 488C	－	1	－	K－7876779－P1
＊ 6108	－	Antenna Padding Capacitor	Mica， 0.00005 med $\pm 10 \%, 500$ volts d－c working	CD－48895－D10	RE 13A 389K	－	1	Cat．No．5RS	M－7463969－P8
C109	－	variable Tuntig gang Capacitor	Variable， 320.8 mmfd（apprax） 3 sections	－	－	－	3	Model No． 3003	TT－7660270－G3
C109	A	Converter Tuning Capacitor	Included in Cl09	－	－	－	－	－	－
C109	B	R－f Tuning Capacitor	Included in Cl09	－	－	－	－	－－	－
Cl09	c	R－P Oscillator Tuning Capacitor	Included in Cl09	－	－	－	－	－	－
＊Cllo	－	Bend 4，Antenna Coupling Capacitor	Mica， 0.00001 mfd $\pm 10 \%, 500$ volts d－c working	CD－48710－D10	RE 13A 389K	－	1	Cat．No．5RS	M－7463969－P3
－0111	－	R－f Screen By－pass Capacitor	$\begin{aligned} & \text { Mica, } 0.006 \mathrm{mPd} \pm 10 \%, 300 \text { volts } \\ & \text { d-c working } \end{aligned}$	CD－48847－B10	RE 48A 143E	－	1	Cat．No．1WLS	P－7762455－P27
－ 0112	－	R－f Plate By－pass Capacitor	Same as Cl06	－	－	－	－	－	－
C113	－	Band 3，R－P Triming Capacitor	Same as ClO3	－	，－	－	－	－	－
C114	－	Band 2，R－f Trimming Capacitor	Same as ClO2	－	－	－	－	－	－．
cil5	－	Band 1，R－f Triming Capacitor	Same as Cl03	－	－	－	－	－	－
cll6	－	Band 4，R－f Trimming Capacitor	Same as Cl02	－	－	－	－	${ }^{-}$	－
＊ 6117	－	Band 4，Antenna－Series Padding Capacitor	Mica， 2350 mmPd t5\％， 250 volts d－c working	－	－	－	4	Type＂moulded silver cap＂	K－7877485－P3
＊ 6118	－	R－f Padding Capacitor	Same as Cl08	CD－48895－m10	－	－	－	－	

Δ Symbol part designation，if any．

T Style or other applicable dealgnation，if any．

TABLE VI (CONT'D)

PARTS LIST BY SMMBOL DRSIGNATIONS
FOR
IIAVY MODKL RAX-1 AIRCRAFI RADIO RECEIVING EQUIPMENT
RADIO RECEIVER 200-1500 KC, NAVY TYPE CG-46115

SYMBOL dEsIGNAT		FUNCTION	DESCRIPTION	NAVY TYPE DESIG.	NAVY DWG. OR SPEC. NUMBER	π	宝	$\begin{gathered} \text { MFR. } \\ \text { DESIG. } \end{gathered}$	$\begin{aligned} & \hline \text { CONTRACTOR'S } \\ & \text { DRAWING } \\ & \text { AND } \\ & \text { PART NUMBER } \\ & \hline \end{aligned}$
CAPACITORS (CONT'D)									
*C119	-	$\begin{aligned} & \text { Antenna Wave Trap } \\ & \text { Capacitor } \end{aligned}$	Mica, $0.00007 \mathrm{mPd} \pm 10 \%, 500$ volts d-c working. (Included with Wave Trap 2l01)	CD-48839-D10	RE 13A 389K	-	1	Cat. No. 5RS	M-7463969-P9
*C120	-	Band 1, R-f Padding Capacitor	Same as Cll9	CD-48839-D10	-	-	-	-	-
Cl21	-	R-P Wave Trap Capacitor	Same as ClO2. (Included with Wave Trap Z102).	-	-	-	-	${ }^{-}$	-
* 6122	-	Band 1, Antenna Coupling Capacitor	Mica, $0.00025 \mathrm{mfd} \pm 10 \%, 500$ volts d-c working	CD-48711-D10	RE 13A 389K	-	1	Cat. No. 5RS	M-7463969-P5
*C123	-	R-f Suppressor By-pass Capacitor	Same as Clll	CD-48847-B10	-	-	-	-	-
* $\mathrm{Cl24}$	-	Band 1, R-f Primary Loading Capacitor	Mica, $0.00015 \mathrm{mPd}+10 \%, 500$ volts d-c working	CD-48689-D10	RE 13A 389K	-	1	Cat. No: 5RS	M-7463969-P11
*C125	-	R-f Cathode By-pass Capacitor	Same as Cl06	-	-	-	-	-	-
*C126	-	Band 1, Antanna Tuning Capacitor	Same as Cl08	CD-48895-D10	-	-	-	-	-
Cl27	-	Band 4, R-f Oscillator Trimming Capacitor	Same as ClO2	-	-	-	-	-	-
C128	-	Not Used	-	-	-	-	-	-	-
Cl29	-	Band 3, R-P Oscillator Trimming Capacitor	Same as CIO3	-	-	-	-	-	-
Cl30	-	Not Used	-	-	-	-	-	-	-
Cl31	-	Band 2, R-P Oscillator Trimining Capacitor	Same as ClO2	-	-	-	-	-	-
*Cl32	-	R-f Oscillator Temperature Compensating Capacitor	Ceramican, $15 \mathrm{mmpd} \pm 5 \%, 500$ volts d-c working, temperature coefficient, $0.000680 \mathrm{~mm} / \mathrm{mm} / \mathrm{m} / \mathrm{deg} \mathrm{C}$	-	-	-	5	$\begin{aligned} & \text { Type N680K } \\ & \text { (mod1f1ed) } \end{aligned}$	K-7877141-P2
C133	-	Band 1, R-f Oscillator Trimming Capacitor	Same as $\mathrm{ClO3}$	-	-	-	-	-	, -
*C134	-	R-f Oscillator Plate Blocking Capacitor	Mica, $500 \mathrm{mmPd} \pm 10 \%, 2500$ volts d-c working	-	RE 13A 389K	-	4	Type "moulded silver cap"	K-7877485-P15
*C135	-	```R-f Oscillator Padding Capacitor```	Mica, 30 mprd $\pm 5 \%, 250$ volts d-c working	-	RE 13A 389K	-	4	Type "moulded silver cap"	K-7877485-P20
*C136	-	R-f Oscillator Temperature Compensating Capacitor	Same as C132	-	-	-	-	-	-
C137	-	Not Used	-		-	-	-	-	-

Δ Symbol part designation, if any.

* Style or other applicable designation, if any.
* SPARE PARTS FURNI SHRD. Refer to Table III for quantities.

TABLS VI (CONT'D)

PARTS LIST BY SDBOL DRSIGTATIORS

HAVY MODKL RAX-I AIRCRAFP RADIO RRCETVINO BOUIPAEATI
RADIO RECEIVER 200-1500 KC, HAVI TYPE CO-46115

[^0]Style or other applicable designation, if any.

* SPARE PARTS FURNISHRD. Refer to Table III for quantities.

TABLE VI (CONT'D)

PARTS LIST BY SBBBL DESIORATIONS
POR
TAVY MODECI RAX-1 AIRCRAFP RADIO RECEIVIHG EQUIPMEATY RADIO RBCETVER 200-1500 KC, RAVY TYPB CG-46115

$\begin{gathered} \text { SYMBOL } \\ \text { DSSIGNATION } \\ \Delta \\ \hline \end{gathered}$	PUNCTION	DRSCRIPTION	RAVY TYPE DRSIG.	HAVY DNG. OR SPRC. RUJBERR	T	¢	$\begin{aligned} & \text { MFR. } \\ & \text { DRSTG. } \end{aligned}$	$\begin{aligned} & \text { COATRACTOR'8 } \\ & \text { DRAWING } \\ & \text { AIDD } \\ & \text { PART NTOBER } \\ & \hline \end{aligned}$

CAPACITORS (CONT'D).

Same as Cl07 Same as Clll	CD-48847-810	-	-	-	-	-
Electrolytic, 3-16 mPd $+75 \%,-10 \%$, 250 volts d-c. Three separate sections.	-	RE 13A 549A	-	1	-	E-7876911
Included in Cl60	-	-	-	-	-	-
Included in Cl60	-	-	-	-	-	-
Included in Cl60	-	-	-	-	-	-
Same as Cl08	CD-48895-D10	-	-	-	-	-
Same as Cl47	-	-	-	-	-	-
M1ca, $650 \mathrm{mmPd} \pm 5 \%, 250$ volts d-c working	-	RE 13A 389\%	-	4	Type "moulded silver cap"	K-7877485-P30
Same as Clll	CD-48847-B10	-	-	-	. -	-
Mica, 370 mmpd $45 \%, 250$ volts d-c working	-	RE 13A 3898	-	4	Type ${ }^{\text {moulded }}$ silver cap"	1-7877485-P40
Mica, 900 mprid t5\%, 250 volts d-c working	-	RE 13A 389E	-	4	Type moulded silver cap"	K-7877485-P41
Same as Clll	CD-48847-B10	-	-	-	-	-
Same as Clll	CD-48847-B10	-	-	-	-	-
Same as Cl06	-	-	-	-	-	
Same as Clll	-	-	-	-	-	-
Mica, $0.0004 \mathrm{mfd} \pm 10 \%, 500$ volts d-c working	CD-481015-D10	RE 13A 3896	-	2	Cat. Ho. 5RS	M-7463969-P15
Mica, 0.0005 med $\pm 10 \$_{3} 500$ volts d-c working	CD-48691-Dl0	RS 13A 389x	-	1	Cat. Ho. 5RS	M-7463969-P16
Paper, 0.5 mfd -3\%, +10\%, 600 volts d-c working	-	RE 13A 488C	-	1	Cat. Ho. DRR-6050	M-7464514-P4

Δ Symbol part designation, if any.
π Style or other applicable designation, if any.
T Style or other applicable designation, if any.

- SPARB PARTS FURNISHRD. Refer to Table III for quantities.

TABLE VI (CONT'D)
PARTS LIST BY SMBBOL DESIGNATIONS
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUI PMENT RADIO RECEIVER 200-1500 KC, NAVY TYPE CG-46115

. SYMBOL DESIGNATION Δ	FUNCTI ON	DESCRIPTION	NAVY TYPE DESIG.	NAVY DWG. OR SPEC. NUMBER	π	家	$\begin{gathered} \text { MFR. } \\ \text { DBSIG. } \end{gathered}$	CONTRACTOR'S DRAWING AND PART NONBER

CAPACITORS (CONT'D)

C174	-	Not Used	-	-	-	-	-	-	-
C175	-	Not Used	-	-	-	-	-	-	-
* C176	-	Audio Grid Blocking Capacitor	Paper, $0.25 \mathrm{mfd}-3 \dot{\%},+10 \%, 600$ volts d-c working	-	RE 13A 488C	-	1	Cat. No. DYR-6025	M-7464514-P3
* 6177	-	Audio Cathode By-pass Capacitor	```Electrolytic, 50 mPd +100%, -10%, 25 volts```	-	RE 13A 549A	-	1	-	K-7877210-P1
* 6178	-	Audio Plate Filter Capacitor	Mica, $0.004 \mathrm{mfd}+10 \%, 300$ volts d-c working	-	RE 13A 389K	-	1	Cat. No. 1wLS	P-7762455-P25
* C179	-	Power Supply Filter Capacitor	Same as Clll	CD-48847-B10	-	-	-	-	-
*C180	-	Power Supply Filter Capacitor	Mica, $0.0025 \mathrm{mpd} \pm 10 \%, 500$ volts d-c working	-	RE 13A 389K	-	1	Cat. No. 1RS	M-7464527-P23
Cl81	-	Not Used		-	-	-	-	-	-
C182		Not Used	3 0180	-	-	-	-	-	-
*C183	-	Power Input Filter Capacitor	Same as Cl80	-	-	-	-	-	-
*C184	-	Power Input Filter Capacitor	$\begin{aligned} & \text { Electrolytic, } 25 \mathrm{mfd}+100 \%,-10 \%, \\ & 50 \text { volts } \end{aligned}$	-	RE 13A 549A	-	1	-	K-7877443
C185 to C190	-	Not Used	-	-	- -	-	-	-	-
$\begin{aligned} & \text { Cl90 } \\ & \text { Incl. } \end{aligned}$									
*C191	-	Band 3, R-f Primary Loading Capacitor	Mica, $0.0001 \mathrm{mPd} \pm 10 \%, 500$ volts d-c working	CD-48674-D10	RE 13A 389K	-	1	Cat. No. 5RS	M-7463969-P10
*C192	-	Band 2, R-f Primary Loading Capacitor	Same as Clal	CD-48674-D10	-	-	-	-	-
*C193	-	Band 4, R-f Series Padding Capacitor	Same as Cll7	-	-	-	-	-	-
C194	-	Antenne Wave Trap Trimming Capacitor	Same as ClO2. (Included with Wave Trap 2101)	-	-	-	-	-	-
*C195	-	Band 2; Antanna Padding Capacitor	Same as Cl22	CD-48711-D10	-	-	-	-	-
*C196	-	Band 2, R-f Padding Capacitor	Same as Cl22	CD-48711-D10	-	-	-	-	-
0197	-	Antenna Trimming Capacitor	Variable, 25 mmPd	-	-	-	2	APC Type B	P-7761345-P13
*C198	-	Bend 1, R-f Coupling Capacitor	Same as Cl22		-	-	-		
*C199	-	Beand l, Antenna Primary Loading Capacitor	Same as Cl24	CD-48689-D10	-	-	-	-	-

Δ Symbol part designations, if any.

π Style or other applicable designation, if any.

- SPARE PARTS FURNISHRD. Refer to Table III for quantities.

TABLS VI (CONT'D)

PARTS LIST BY SMMBOL DESIGIATIONS
FOR
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUI PMENE RADIO RECEIVER 200-1500 KC, RAVY TYPE CG-46115

Δ Symbol part designation, if any.
Style or other applicable designation, if any.

- APARE PARTS FORNISHED. Refer to Table III fon quantities.
table vi (CONT'D)
PARTS LIST BY SYMBOL DESIGNATIONS NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUIPNENT RADIO RECEIVER 200-1500 KC, NAVY TYPE CG-46115

SYMBOL DESIGNAT		FUNCTION	DESCRIPTION	NAVY TYPE DESIG.	NAVY DNG. OR SPEC. NOMBER	π	压	$\begin{gathered} \text { MFR. } \\ \text { DESIG. } \end{gathered}$	CONTRACTOR'S DRAWING AND PART NUMBER
R-F CHOKE COILS AND INDUCTORS (CONT' D)									
*L109	-	Audio Pilter Reactor	Tested at $0.0075 \mathrm{amp} \mathrm{d}-\mathrm{c}, 60$ cycles, 2.48 henries, $\pm 10 \%$	-	-	-	6	Cat. No. 679794	K-7879066
PLUGS									
P101	\therefore	Power Plug	4 contacts	-	-	-	12	```Cat. No. CK-C4-323 Var. No. l (modi- f1ed)```	K-7876934-P1
RESISTORS AND RHEOSTATS									
$\begin{array}{r} \text { R101 } \\ \text { *R102 } \end{array}$	-	```Not Used R-f Grid AVC Filter Resistor```	Composition, 100,000 ohms $\pm 10 \%$, 1/2 watt	CBZ-63360	RE 13A 3729	-	8	Type KB	P-7763599-P86
*R103	-	Converter Grid Blas Resistor	Composition, 1.0 megohm $\pm 10 \%$, 1/2 watt	CBZ-63360	RE 13A 3729	-	8	Type EB	P-7763599-P98
R104 R105	-	Not Used	Composition, 750 ohms $\pm 5 \%, 1 / 2$ watt	CBZ-63355	RE 13A 372 C	-	$\overline{8}$	Type KB	P-7763599-P156
*R106	-	R-f Suppressor Resistor	Composition, 22,000 ohms $\pm 10 \%$, 1/2 watt	CBZ-63360	RE 13A 3729	-	8	Type E8	P-7763599-P78
*R107	-	Band 4, Antenna AVC Filter Resistor	Composition, 12,000 ohms $\pm 10 \%$, 1/2 watt	CBZ-63360	RE 13A 3729	-	8	Type EB	P-7763599-P75
*R108	-	Band 4, R-f Grid Return Resistor	Same as Rl 107	CBZ-63360	-	-	-	-	-
*R109	-	R-f Gain Equalizing Resistor	Composition, 1000 ohms $\pm 10 \%$, 1/2 watt	CBZ-63360	RE 13A 372G	-	8	Type EB	P-7763599-P62
*R110	-	Band 4, R-f Gain Equalizing Potentiometer	Total resistance, 5000 ohms $\pm 15 \%$, from terminals 2 to 4	-	-	-	8	$\begin{gathered} \text { Bradleyometer } \\ \text { Type J } \end{gathered}$	M-7464322-P1
*R111	-	```R-f Gain Equalizing Resistor```	```Composition, 1200 ohms +10%, 1/2 watt```	CBZ-63360	RE 13A 3729	-	8	Type EB	P-7763599-P63
$\begin{gathered} \text { Rll2 } \\ \text { to } \\ \text { R125 } \end{gathered}$	-	Not Used	-	-	-	-	-	-	-
$\begin{aligned} & \text { Incl. } \\ & { }^{\text {RR126 }} \end{aligned}$	-	BFO Cathode Resistor	Composition, 10,000 ohms $\pm 5 \%$, 1/2 watt	CBZ-63355	RE 13A 372G	-	8	Type KB	P-776359.9-P183
*R127	-	BPO Plate Resistor	Composition, 330,000 ohms $+5 \%$, 1/2 watt	CBZ-63355	RE 13A 3729	-	8	Type KB	P-7763599-P219
*R128	-	AVC Diode Delay Resistor	Composition, 68,000 ohms $\pm 5 \%$, 1/2 watt	CBZ-63355	RE 13A. 372 G	-	8	Type EB	P-7763.599-P203

Δ Symbol part designation, if any.
π Style or other applicable designation, if any.

PARTS LIST BY SMMBOL DESIGNATIONS
POR
NAVY MODEI RAX-1 AIRCRAFT RADTO RECEIVING EQUIPNEETT
RADIO RECEIVER 200-1500 KC, NAVY TYPE CG-46115

$\begin{aligned} & \text { SYMBOL } \\ & \text { DBSIGNAT] } \end{aligned}$		FUNCTI ON	DESCRI PTI ON	NAVY TYPE DESIG.	NAVY DNG. OR SPEC. NOMBER	T	$\dot{8}$	$\begin{aligned} & \text { MFR. } \\ & \text { DBSIG. } \end{aligned}$	CONTRACTOR'S DRAWING AND PART NOMBER
RESISTORS AND RHEOSTATS (CONT'D)									
*R129	-	BFO Grid Resistor	Composition, 220,000 ohms $\pm 10 \%$, 1/2 watt	CBZ-6336C	RE 13A 3720	-	8	Type KB	P-7763599-P90
*R130	-	Converter Cathode Resistor	Composition, 390 ohms $\pm 10 \%, 1 / 2$ watt	CBZ-63360	RE 13A 372G	-	8	Type 区B	P-7763599-P57
*R131	-	R-f Oscillator Plate Resistor	Composition, 62,000 ohms $\pm 5 \%$, $1 / 2$ watt	CBZ-63355	RE 13A 3726	-	8	Type KB	P-7763599-P202
*R132	-	Converter Screen Resistor	Same as Rl07	CBZ-63360	-	-	-	-	-
*R133	-	R-f Oscillator Grid Resistor	Composition, 150,000 ohms $\pm 10 \%$, 1/2 watt	CBZ-63360	RE 13A 3720	-	8	Type FB	P-7763599-P88
*R134	-	AVC Diode Delay Resistor	Same as Rl02	CBZ-63360	-	-	-	-	-
$\begin{gathered} \text { Rl35 } \\ \text { to } \end{gathered}$	-	Not Used	-	-	-	-	-	-	-
R150									
Incl.									
*R151	-	Converter Plate Filter Resistor	Same as R105	CBZ-63355	-	-	-	-	-
*R152	-	Volume Control Gans ${ }^{3}$ Potentiameter	2 rheostats mounted in tandem, consists of Rl52A and Rl52B	-	-	-	8	Bradleyometer Type JJ	M-7464321-P1
R152	A	MVC Potentiometer	20,000 ohms $\pm 10 \%$. Included in R152	-	-	-	-	-	-
R152	B	AVC Potentiometer	800,000 ohms $\pm 10 \%$. Included in Rl52	-	-	-	-	-	-
R153	-	Not Used	68,00	- -	-	-	-	-	-
*R154	-	R-f Cathode Blas Resistor	Composition, 68,000 ohms 55%, 1 watt	CBZ-63291	RE 13A 3720	-	8	Type GB	P-7763600-P203
*R155	-	AVC Filter Resistor	Samie as Rl03	CBZ-63360	-	-	-	-	
R156 $*$ R157	-	Not Used Screen Supply Bleeder		CBZ-63288	RE 13A 3720	-	8	Type GB	P-7763600-P76
*R157	-	Screen Supply Bleeder Resistor	Composition, 15,000 ohms $\pm 10 \%$, 1 watt	CBZ-63288	RE 13A 3720	-	8	Type GB	P-7763600-P76
*R158	-	1st I-f Cathode Resistor	Same as R109	CBZ-63360	-	-	-	-	-
*R159	-	AVC DIode Load Resistor	Composition, 470,000 ohms $\pm 10 \%$, 1/2 watt	CBZ-63360	RE 13A 3729	-	8	Type EB	P-7763599-P94
*R160	-	lat I-f Plate Pilter Resistor	Same as R105	CBZ-63355	-	-	-	-	, -
*R161	-	2nd I-f Screen Resistor	Composition, 39,000 ohms $\pm 10 \%$, 1/2 watt	CBZ-63355	RE 13A 3720	-	8	Thpe EB	P-7763599-P81
*R162	-	2nd I-f Grid Filter Resistor	Composition,. 1.5 megohm $\pm 10 \%$, $1 / 2$ watt	CBZ-63360	RE 13A 3729	-	8	Type B	P-7763599-P100
*R163	-	2nd I-f Plate Filter Resistor	Same as Rl05	CBZ-63355	-	-	-	-	
*R164	-	Audio Diode Filter Resistor	Composition, 47,000 ohms $\pm 10 \%$, 1/2 watt	CBZ-63360	RE 13A 3720	-	8	Type FB	P-7763599-P82

Δ Symbol part designation, if any.
T Style or other applicable designation, if any.

- SPARE PARTS FURNISHKD. Refer to Table III for quantities.

TABLE VI（CONT＇D）

PARTS LIST BY SYMBOL DRSIGNATIONS
NAVY MODEI RAX－1 AIRCRAFI RADIO RECEIVING EQUIPMKNT RADIO RECEIVER 200－1500 KC，NAVY TYPE CG－46115

SYMBOL DESIGNATI ON	FUNCTION	DRSCRIPTION	NAVY TYPE DESIG．	NAVY DNG：OR SPEC．NUMBER	π	宦	$\begin{gathered} \text { MFR. } \\ \text { DRSIG. } \end{gathered}$	CONTRACTIOR＇S DRAWING AND PART NUNBER

RESISTORS AND RHEOSTATS（CONT＇D）

＊R165	－	Audio Diode Load Resistor	Composition，330，000 ahms $\pm 10 \%$ ， $1 / 2$ watt	CBZ－63360	RE 13A 3729	－	8	Type KB	P－7763599－P92
＊R166	－	Screen Supply Bleeder Resistor	Composition，30，000 ohms $\pm 5 \%$ ， 1 watt	CBZ－63291	RE 13A 3720	－	8	Type KB	P－7763600－P194
＊R167	－	lst I－f Grid Filter Resistor	Same as Rl03	CBZ－63360	－	－	－	－	－
＊R168	－	Converter Cathode Resistor	Composition， 510 ohms $\pm 5 \%, 1 / 2$ watt	CBZ－63355	RE 13A 3729	－	8	Type KB	P－7763599－P152
＊R169		2nd I－f Cathode Resistor	Composition， 330 ohms $\pm 10 \%, 1 / 2$ watt	CBZ－63360	RE 13A 3720	－	8	Type KB	P－7763599－P56
＊R170	－	Audio Diode Filter Resistor	Same as R164	CBZ－63360	－	－	－	－	－
$\begin{gathered} \text { R171 } \\ \text { to } \end{gathered}$	－	Not Used	－	－	－	－	－	－	－
R176									
Incl.									
$\begin{array}{r} \text { *R177 } \\ * \\ * R 178 \end{array}$	－	Audio Cathode Resistor Audio Cathode Filter Resistor	Composition， 390 ohms $\pm 5 \%, 1$ watt Same as Rl68	$\left\lvert\, \begin{aligned} & \text { CBZ-63291 } \\ & \text { CBZ-63355 } \end{aligned}\right.$	RE 13A 3720	－	8	Type GB	P-7763600-P149

3101	－	Antenna Band Switch	Rotary tap switch，4－position， 3－bank	－	－	－	9	Type RMC	M－7464376－P3
3201	A	Antenna Band Switch	Included in Slol	－	－	－	－	－	－
3101	B	Antenna Band Switch	Included in 3101	－	－	－	－	－	－
S101	C	Antenna Band Switch	Included in Slol	－	－	－	－	${ }^{-}$	－
3102	－	AVC－MVC Switch	Rotary tap switch，2－position， 3－bank	－	－	－	9	Type RMO	M－7464292－P2
3102	A	AVC－MVC Switch	Included in 8102	－	－	－	－	－	－
Sl02	C	AVC－MVC Switch	Included in 8102	－	－	－	－	－	－
3102	D	AVC－MVC Switch	Included in 8102	－	－	－	－	${ }^{-}$	－
3103	－	CW－Off－MCW Switch	Rotary tap switch，3－position， 2－bank	－	－	－	9	Type RMC	M－7464292－P1
S103	A	CW－Off－MCW Switch	Included in 8103	－	－	－	－	－	－
3103	B	CW－Off－MCW Switch	Included in Sl03	－	－	－	－	－	－
Sl04	－	Not Used	－	－	－	－	－	${ }^{-}$	－${ }^{-}$
S204	－	R－f Band Switch	Rotary tap awitch，4－position， 4－bank	－	－	－	9	Type RMC	M－7464376－P3
3205	A	R－f Band Switch	Included in 3105	－	－	－	－	－	－
S105	B	R－f Band Switch	Included in S105	－	－	－	－	－	－

TABLE VI (CONT'D)

PARTS LIST BY SYMBOL DESIGNATIONS
 FOR

NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUIPMENV
RADIO RECEIVER 200-1500 KC, NAVY TYPE CG-46115

	FUNCTION	DESCRIPTI ON	NAVY TYPE DESIG.	NAVY DWG. OR SPEC. NUMBER	π	宦	$\begin{gathered} \text { MFR. } \\ \text { DBSIG. } \end{gathered}$	$\begin{aligned} & \text { CONTRACTOR'S } \\ & \text { DRAWING } \\ & \text { AND } \\ & \text { PART NUMBER } \end{aligned}$

SWITCHES (CONT'D)

S105	C	R-f. Band Switch
S105	D	R-f Band Switch
S106	-	R-f Oscillator Band Switch ${ }^{-}$
S106	A	R-f Oscillator Band Switch
S106	B	R-P Oscillator Band Switch
S106	C	R-f Oscillator Band Switch
S106	D	R-f Oscillator Band Switch

Included in Sl05
Included in Sl05
Rotary tap switch, 4-position,
4-bank
Included in slo6
Included in slo6
Included in Sl06
Included in Sl06

\triangle Symbol part designation, if any.
π Style or other applicable designation, if any.

* SPARE PARTS FURNISHED. Refer to Table III for quantities.

TABLE VI (CONT'D).
PARTS LIST BY SYMBOL DESIGNATIONS
FOR
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUI PMENT
RADIO RECEIVER 200-1500 KC, NAVY TYPE CG-46115

[^1]π Style or other applicable designation, if any.

* SPARE PARTS FURNISHKD. Refer to Table III for quantities.

PARTS LIST BY SYMBOL DESIGNATIONS
NAVY MODEL RAX-1 AIRCRAFP RADIO RECEIVING EQUIPMENTT
RADIO RECEIVER 200-1500 KC, NAVY TYPE CG-46115

SYMBOL DESIGNAT		FUNCTION	DESCRIPTION	NAVY TYPE DESIG.	NAVY DWG. OR SPEC. NOMBER	π	安	$\begin{gathered} \text { MFR. } \\ \text { DRSIG. } \end{gathered}$	CONTRACTOR's draking AND PART NOMBER
TRANSPORMERS (CONT' ${ }^{\text {d }}$)									
T109	-	1st I-f Transformer	Primary, 420 turns (apprax) ES wire, Universal wound, 1.715 millihenries (approx) Secandary, 420 turns (approx) E\$ wire, Universal wound, $1.715 \mathrm{milli}-$ henries (apprax). Mutual inductance 42.0 microhenries	-	-	-	4	-	K-7763100-61
T110	-	Band 1, Oscillator Transformer	Primary, 61 1/2 turns E wire, 0.1192 millihenries (approx) Secondary, 126 turns per section, E wire, 767.7 microhenries (approx). Mutual inductance 123.2 microhenries (approx)	-	- -	- - -	4 4	-	K-7877358-P1 K-7877359-P1
Tlll	-	Band 2, Oscillator Transformer	Primary, 61 1/2 turns Ewire, 0.1192 millihenries (apprax) Secondary, 94 turns per section, Ewire, 513.4 microhenries (approx). Mutual inductance 105.8 microhenries (approx)	-	-	-	4	-	K-7877359-P1
T112	-	Band 3, Oscillator Transformer	Primary, $411 / 2$ turns E wire, 0.0433 millihenries (approx) Secondary, 67 3/4 turns per section Ewire, 192.6 microhenries. Mutual inductance 36.8 microhenries	-	-	-	4	-	K-7877360-P1
T113	-	Band 4, Oscillator Transformer	Primary, 59 1/2 turns E wire, 0.0604 millihenries (approx) Secondary, $481 / 4$ turns E wire Secondary, 64 l/4 turns E wire, 113.9 microhenries (approx). Mutual inductance 26.5 microhenries (approx)	-	-	$-$	4	-	K-7877361-P1
T114	-	BFO - 2nd I-f Transformer	BFO, 219 turns (approx), ES wire, Universal wound, 5.7 millihencies Primary, 394 turns (approx) ES wire, Universal wound, 1.969 millihenries Secondary, 232 turns ES wire, 646.7 microhenries. Mutual inductance 21.0 microhenr1es (approx)	-	-	-	4	-	T-7661130-01
T115	-	Not Used		-	-	-	-	-	-

Δ Symbol part designation, if any
π Style or other applicable designation, ir any.

* SPARE PARTS FURNIShED. Refer to Table III for quantities.

table VI (CONT'D)

PARTS LIST BY SMMBOL DESIGNATIONS
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUIPMENT
RADIO RECEIVER 200-1500 KC, NAVY TYPE CG-46115

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SYMBOL dESIGNAT \& \(\triangle\) \& FUNCTION \& DESCRIPTION \& NAVY TYPE
DESIG. \& NAVY DWG. OR SPEC. NUMBER \& \(\pi\) \& \[
\dot{\dot{E}}
\] \& MFR. DESIG. \& ```
CONTRACTOR'S
DRAWING
AND
PART NUMBER
``` \\
\hline \multicolumn{10}{|c|}{TRANSFORMERS (CONT D)} \\
\hline T116 \& - \& \begin{tabular}{l}
3rd I-f Transformer \\
Output Transformer
\end{tabular} \& \begin{tabular}{l}
Primary, 278 turns (approx) ES wire, Universal wound, 1.08 millihenries Secondary, 278 turns (approx) ES wire, Universal wound, 1.08 millihenries. Mutual inductance 20.0 microhenrif \\
Turns ratio \(\frac{N P}{N S}=5.1-60\) cycles to 3000 cycleş. Primary D.C. - . 013 amp
\end{tabular} \& \(\square^{-}\) \&  \& -
-
- \& 4

6 \& Cat. No. 67G919 \& K-7763102-Gl
K-7877947 <br>
\hline \multicolumn{10}{|c|}{Vacuum tubes} <br>

\hline | *V101 |
| :--- |
| *V102 |
| *V103 |
| *V104 |
| *V105 |
| *V106 |
| *V107 | \& -

- 
- 
- 
- 
- 
- 
- \& | R-f Amplifier Tube Converter Tube lst I-f Amplifier Tube 2nd I-f Amplifier Tube Audio Amplifier Tube |
| :--- |
| BFO 2nd Detector Tube |
| Input Voltage Limiter Tube | \& ```

Triple - grid supercontrol amplifier
Triode-hexode converter
Same as VlOl
Same as VlOl
Beam power amplifier, small wafer
octal, 7-pin
Duplex-diode triode, small wafer
octal, 8-pin
Neon lamp

``` & \[
\begin{aligned}
& \text { CRC-12SK7 } \\
& \text { CRC-12 SK8 } \\
& \text { CRC-12SK7 } \\
& \text { CRC-12SK6 } \\
& \text { CRC-12SR7 }
\end{aligned}
\] & \begin{tabular}{l}
RE 13A 600 RE 13A 600D \\
-- \\
RE 13A 600D \\
ŔE 13A 600D
\end{tabular} & -
-
-
-
-
-
- & \[
\begin{array}{r}
10 \\
10 \\
- \\
- \\
10 \\
10 \\
6
\end{array}
\] & RCA Type 12SK7
RCA Type l2K8
-
RCA T'ype 12A6
RCA Type 12SR7
Cat. No. CD-1010-CL & \\
\hline \multicolumn{10}{|c|}{VAC'JUM TUBE SOCEETS} \\
\hline \[
\begin{aligned}
& \text { X101 } \\
& \text { X102 } \\
& \text { X103 } \\
& \text { X104 } \\
& \text { X105 } \\
& \text { X106 }
\end{aligned}
\] & -
-
-
-
-
- & \begin{tabular}{l}
R-f Tube Socket \\
Converter Tube Socket lst I-f Tube Socket 2nd I-f Tube Socket Audio Tube Socket BFO 2nd Detector Tube Socket
\end{tabular} & \begin{tabular}{l}
Ceramic, 8-pin \\
Same as XlOl \end{tabular} & \[
\begin{aligned}
& \mathrm{CPH}-49373 \\
& \mathrm{CPH}-49373
\end{aligned}
\] & - & - & 11
-
-
-
- & \[
\begin{aligned}
& \text { Amphenol, Type ss-8 } \\
& \text { (modified) } \\
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\mathrm{K}-7874006-\mathrm{Pl}
\] \\
\hline \multicolumn{10}{|c|}{WAVE TRAPS} \\
\hline 2101 & - & \begin{tabular}{l}
Wave Trap \\
Wave Trap
\end{tabular} & \begin{tabular}{l}
Consists of capacitors; Cll9, Cl94 and coil, Ll07 enclosed in aluminum can, l l/4-1n. so by \(23 / 4 \mathrm{in}\). \\
Consists of capacitor, Cl 21 and coil, Ll06 enclosed in aluminum can, \(1 \mathrm{l} / 4 \mathrm{in}\). sq by \(23 / 4 \mathrm{in}\).
\end{tabular} & & & -
- & 4
4 & - & \[
\begin{aligned}
& \text { P-7763184-G1 } \\
& \text { P-7763185-G1 }
\end{aligned}
\] \\
\hline
\end{tabular}
\(\Delta\) Symbol part designation, if any.
Style or other applicable designation, if any
* SPARE PARTS FURNISHED. Refer to Table III for quantities.

PARTS LIST BY SYMBOL DESSGIATIONS
NAVY MODEL RAX-1 AIRCRAPT RADIO RECEIVING EQUIPMRNT
RADIO RECEIVER 1500-9000 KC, NAVY TYPE CG-46116

table VI (CONT'D)
PARTS LIST BY SYMBOL DESIGNATIONS
FOR
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUIPMENT
RADIO RECEIVER 1500-9000 KC, NAVY TYPE CG-46116
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SYMBOL DESIGNATION
\(\square\)
\[
\Delta
\] & FUNCTION & DESCRIPTION & NAVY TYPE DESIG. & NAVY DWG. OR SPEC. NUMBER & \(\pi\) & \[
\dot{\tilde{|c|}}
\] & \[
\begin{gathered}
\text { MFR. } \\
\text { DESIG. }
\end{gathered}
\] & \begin{tabular}{l}
CONTRACTOR'S \\
DRAWING AND PART NUMBER
\end{tabular} \\
\hline
\end{tabular}

CAPACITORS (CONT'D)

\footnotetext{
\(\Delta\) Symbol part designation, if any.
}
\(\pi\) Style or other applicable designation, if any
- SPARE PARTS FURNISHRD. Refer to Table III for quantities.

TABLE VI (CONT'D)
PARTS LIST BY SYMBOL DESIGNATIONS
NAVY MODEL RAX-1 AIRCRAFT RADIO RECETVING EQUI PMENI RADIO RECEIVER 1500-9000 KC, NAVY TYPE CG-46116
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SYMBOL DESIGNAT & ON & FUNCTION & DESCRIPTION & NAVY TYPE DESIG. & NAVY DWG. OR SPEC. NOMBER & \(\pi\) & 安 & \[
\begin{gathered}
\text { MFR. } \\
\text { DESIG. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CONYRACTOR'S } \\
& \text { DRAWING } \\
& \text { AND } \\
& \text { PART NUMBER. }
\end{aligned}
\] \\
\hline \multicolumn{10}{|c|}{CAPACITORS (CONT'D)} \\
\hline C239 & - & Band 1, Oscillator Trimming Capacitor & Same as Cl03 & - & - & - & - & - & - \\
\hline - \(\mathrm{C240}\) & - & BFO Plate Filter Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline C241 & - & Band 2, Oscillator Trimming Capacitor & Same as Cl02 & - & - & - & - & - & - \\
\hline *C242 & - & Filament By-pass Capacitor & Same as C 220 & CD-48848-B10 & - & - & - & - & - \\
\hline C243 & - & Band 3, Oscillator Trimming Capacitor & Same as ClO 3 & - & - & - & - & - & - \\
\hline * 6244 & - & Audio Cathode Filter Capacitor & Same as \(\mathbf{C 2 1 8}\) & - & - & - & - & - & - \\
\hline C245 & - & Band 4, Oscillator Trimming Capacitor & Same as Cl02 & - & - & - & - & - & - \\
\hline * 6246 & - & ```
R-f Oscillator Padding
 Capacitor
``` & Mica, 40 mmPd +58, 250 volts d-c working & - & RE 13A 389K & - & 4 & Type \({ }^{n}\) moulded silver cap" & K-7877485-P21 \\
\hline * 6247 & - & Power Supply Pilter Capacitor & Same as Cl06 & - & - & - & - & - & - \\
\hline * 6248 & - & BFO Plate Blocking Capacitor & Same as Cl72 & CD-48691-D10 & - & - & - & - & - \\
\hline * \(\mathbf{C 2 4 9}\) & - & BFO Grid Blocking Capacitor & Same as Cl40 & - & - & - & - & - & - \\
\hline \[
\mathrm{C} 250
\] & - & Dual Trimming Capacitor & Variable, double unit, 40 mmPd & - & - & - & 2 & Type APC & P-7762985-Pl \\
\hline \[
\mathbf{C 2 5 0}
\] & A & 2nd I-P Plate Tuning Capacitor & Included in C 250 & - & - & - & - & - & - \\
\hline \(\mathrm{C250}\) & B & & & - & & - & - & & \\
\hline * 6251 & - & BFO Padding Capacitor & ```
M1ca, 230 mmfd \pm0.5%, 250 volts
    d-c working
``` & - & RE 13A 389K & - & 4 & Type "moulded silver cap" & \[
\mathrm{K}-7877485-\mathrm{P} 32
\] \\
\hline * 0252 & - & BFO Compensating Capacitor & Same as Cl32. & - & - & - & - & - & - \\
\hline * 6253 & - & lstI-f Screen By-pass Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline - 6254 & - & 2nd R-f Band 3, Primary Loading Capacitor & Mica, 0.00002 mfd \(+10 \%, 500\) volts d-c working & CD-48783-D10 & RE 13A 389K & - & 1 & Cat. No. 5RS & M-7463969-P4 \\
\hline * \(\mathbf{C 2 5 5}\) & - & BFO Cathode By-pass Capacitor & Same as \(\mathbf{C 2 2 0}\) & CD-48848-B10 & - & - & - & - & - \\
\hline * 0256 & - & Dual Electrolytic Capacitor & Electrolytic, 2 sections, \(12-12 \mathrm{mfd}\) +100\%, -10\%, 50 volts d-c working & - & RE 13A 549A & - & 1 & - & K-7878242-P1 \\
\hline * 6257 & - & 2nd I-P Plate Tuning Capacitor & Same as Cl34 & - & - & - & - & - & - \\
\hline * 6258 & - & 3rd I-f Grid Tuning Capacitor & Same as Cl34 & - & - & - & - & - & - \\
\hline * 6259 & - & AVC Filter Capacitor & Same as ClO7 & - . & - & - & - & - & - \\
\hline
\end{tabular}
\(\Delta\) Symbol part designation, if any.
T Style or other applicable designation, if any.
- SPARB PARTS FURIISHED. Refer to Table III for quantities.
table vi (CONT'D)
PARTS LIST BY SYMBOL DESIGNATIONS
FOR
NAVY MODEL RAX-1 AIRCRAFI RADIO RECEIVING EQOIPMENT
RADIO RECEIVER 1500-9000 KC, NAVY TYPE CG-46116
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SYMBOL DESIGNAT & & FUNCTION & DESCRIPTION & NAVY TYPE DESIG. & NAVY DWG. OR SPEC. NUMBER & i & \(\dot{\dot{F}}\) & \[
\begin{aligned}
& \text { MFR. } \\
& \text { DESIG. }
\end{aligned}
\] & \begin{tabular}{l}
CONTRACTOR'S \\
DRAWING AND PART NUMBER
\end{tabular} \\
\hline \multicolumn{10}{|c|}{CAPACITORS (CONT'D)} \\
\hline * C260 & - & ```
lst I-f Cathode By-pass
 Capacitor
``` & Same as C220 & CD-48848-B10 & - & - & - & . - & - \\
\hline * \(\mathbf{C 2 6 1}\) & - & Screen Supply By-pass Capacitor & Same as Cl06 & - & - & - & - & - - & - \\
\hline * C 262 & - & Power Supply Filter Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline *C263 & - & Power Supply Filter Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline * \(\mathrm{C264}\) & - & Electrolytic Capacitor & Same as Cl 60 & - & - & - & - & - & - \\
\hline C264 & A & Power Supply Filter Capacitor & Included in \(\mathbf{C 2 6 4}\) & - & - & - & - & - & - \\
\hline c264 & B & Power Supply Filter Capacitor & Included in \(\mathbf{C 2 6 4}\) & - & - & - & - & - & - \\
\hline C264 & C & Power Supply Filter Capacitor & Included in 6264 & - & - & - & - & - & - \\
\hline *C265 & - & 2nd I-f Cathode By-pass Capacitor & Same as \(\mathbf{C 2 2 0}\) & CD-48848-B10 & - & - & - & - & - \\
\hline * 2666 & - & Power Supply Filter Capacitor & Same as Clll & CD-48847-B10 & - & - & \(-6\) & - & - \\
\hline * C 267 & - & 2nd I-f Grid Filter Capacitor & Same as \(\mathbf{C 2 2 0}\) & CD-48848-B10 & - & - & - & - & - \\
\hline * \(\mathrm{C268}\) & - & 3rd I-f Grid Tuning Capacitor. & Same as Cl34 & - & - & - & - & - & - \\
\hline * \(\mathbf{C 2 6 9}\) & - & 2nd I-f Plate Tuning Capacitor & Mica, \(560 \mathrm{mmfd}+5 \%, 250\) volts d-c working & - & RE 13A 389K & - & 4 & Type "moulded silver cap" & K-78877485-P29 \\
\hline * \(\mathbf{C 2 7 0}\) & - & 2nd I-f Plate Filter Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline * 6271 & - & 3rd I-f Screen By-pass Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline * \(\mathrm{C272}\) & - & Band 2, list R-f Coupling Capacitor & Same as Cllo & CD-48710-D10 & - & - & - & - & - \\
\hline * 0273 & - & 3rd I-f Amplifier Cathode By-pass Capacitor & Same as \(\mathbf{C 2 2 0}\) & CD-48848-B10 & - & - & - & - & - - \\
\hline * \(\mathbf{C 2 7 4}\) & - & Power Input Filter Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - . & - \\
\hline * 2275 & - & Audio Grid Blocking Capacitor & Same as \(\mathbf{C 2 2 0}\) & CD-48848-B10 & - & - & - & - & - \\
\hline *C276 & - & Diode Filter Capacitor & Mica, \(0.0002 \mathrm{mfd} \pm 10 \%, 500\) volts d-c working & CD-48675-D10 & RE 13A 389K & - & 1 & Cat. No. 5RS & M-7463969-Pl 2 \\
\hline
\end{tabular}

\footnotetext{
\(\Delta\) Symbol part designation, if any
}
- Style or other applicable designation, if any
* SPARE PARTS FURNISHED. Refer to Table III for quantities.

TABLE VI (CONT'D)
PARTS LIST BY SYMBOL DESIGNATIONS
FOR
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUIPMENT RADIO RECEIVER 1500-9000 KC, NAVY TYPE CG-46116
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { SYMBOL } \\
\text { DESIGNATION } \\
\square \Delta \Delta
\end{gathered}
\] & FUNCTION & DESCRIPTION & NAVY TYPE DESIG. & NAVY DWG. OR SPEC. NUMBER & \(\pi\) & 官 & \[
\begin{gathered}
\text { MFR. } \\
\text { DESIG. }
\end{gathered}
\] & \begin{tabular}{l}
CONTRACTOR'S \\
DRAWING AND PART NUMBER
\end{tabular} \\
\hline
\end{tabular}

CAPACITORS (CONT'D)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline *C277 & - & AVC Diode Blocking Capacitor & Same as Cligl & CD-48674-D10 & - & - & - & - & - \\
\hline *C278 & - & 3rd I-f Plate Tuning Capacitor & Mica, \(525 \mathrm{mmfd} \pm 5\), 250 volts d-c working & - & RE 13A 389K & - & 4 & - & K-7877485-P18 \\
\hline * 6279 & - & Audio Diode Tuning Capacitor & Mica, \(215 \mathrm{mmfd} \pm 5 \%, 250\) volts d-c working & - & RE 13A 389K & - & 1 & Type "moulded silver cap" & K-7877485-P25 \\
\hline *C280 & - & Audio Diode Filter Capacitor & Mica, \(0.0003 \mathrm{mfd} \pm 10 \%, 500\) volts
d-c working & CD-481014-D10 & RE 13A 389K & - & 1 & Cat. No. 5RS & M-7463969-P14 \\
\hline *C281 & - & 3rd I-f Plate Filter Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline * \(\mathrm{C282}\) & - & Audio Plate. Filter Capacitor & Mica, \(0.0025 \mathrm{mfd} \pm 10 \%, 500\) volts d- - working & CD-481089-B10 & RE 13A 389K & - & 1 & Cat. No. 1WLS & P-7762455-P23 \\
\hline * \({ }^{\text {c283 }}\) & - & Antenna Coupling Capacitor & Same as Cillo & CD-48710-D10 & - & - & - & - & - \\
\hline *C284 & - & lst R-f Cathode By-pass Capacitor & Same as C2弓O & CD-48848-B10 & - & - & - & - & - \\
\hline *C285 & - & 2nd R-f Coupling Capacitor & Same as Cllo & CD-48710-D10 & - & - & - & - & - \\
\hline *C286 & - & Band 2, Antenna Primary Loading Capacitor & Same as Cl08 & CD-48895-D10 & - & - & - & - & - \\
\hline *C287 & - & 2nd R-f Primary Loading Capacitor & Same as Cligl & CD-48674-D10 & - & - & - & - & - \\
\hline *C288 & - & Band 1, Oscillator Series Padding Capacitor & Mica, \(612 \mathrm{mmfd} \pm 0.75 \%, 250\) volts d-c working & - & RE 13A 389K & - & 4 & Type "moulded silver cap" & K-7877485-P12 \\
\hline * \(\mathbf{C 2 8 9}\) & - & Band 2, Oscillator Series Padding Capacitor & Same as Cl42 & - & - & - & - & - & - \\
\hline * \(\mathbf{C 2 9 0}\) & - & Band 3, Oscillator Padding Capacitor & Mica, \(1197 \mathrm{mmfd} \pm 1.5 \%, 250\) volts d-c working & - & RE 13A 389K & - & 4 & Type "moulded silver cap" & K-7877485-P7 \\
\hline *C291 & - & Band 4, Antenna Series Padding Capacitor & Mica, \(2390 \mathrm{mmfd} \pm 5 \%, 250\) volts d-c working & - & RE 13A 389K & - & 4 & Type "moulded silver cap" & K-7877485-P6 \\
\hline *C292 & - & lst I-f Grid Filter Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline * \(\mathrm{C293}\) & - & 2nd I-f Cathode By-pass Capacitor & Same as \(\mathbf{C 2 2 0}\) & CD-48848-B10 & - & - & - & - & - \\
\hline C294 & - & Not Used & & & & & - & & \\
\hline *C295 & - & lst R-f Primary Loading Capacitor & Same as Cl91 & CD-48674-D10 & - & _ & - & - & - \\
\hline * 0296 & - & I-f Trap Tuning Capacitor & Same as Cllo & CD-48710-D10 & & - & - & & \\
\hline *C297 & - & Band 4, lst R-f Padding Capacitor & Same as C 291 &  & & - & - & - & \\
\hline
\end{tabular}
\(\Delta\) Symbol part designation, if any.
\(\pi\) Style or other applicable designation, if any.
* SPARE PARTS FURNISHED. Refer to Table Ill for quantities.

\section*{tabLe vi (CONT'D)}

\section*{PARTS LIST BY SYMBOL DESIGNATIONS}

FOR
NAVY MODEL RAX-1 AIRCRAFI RADIO RECEIVING EQUIPMINYI RADIO RECEIVER 1500-9000 KC, NAVY TYPE CG-46116
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline STMBOL DESSIGIAT & & - PONCTION & DESCRI PTI ON & NAVY TYPE DESTG: & RAVY DNG. OR SPEC. IUNBER & \(\pi\) & 宝 & MFR. DESIG. & \begin{tabular}{l}
CONTRACTOR'S \\
DRAWING AND PART NOMBER
\end{tabular} \\
\hline \multicolumn{10}{|c|}{CAPACITORS (CONT' \({ }^{\text {d }}\) )} \\
\hline * 6298 & - & Band 4, 2nd R-f Padding Capacitor & Same as C291 & - - & - & - & - & - & - \\
\hline * C299 & - & Band 2, 2nd R-P Primary Loading Capacitor & Same as 6254 & - & - & - & - & - & - \\
\hline *Cl201 & - & Band 3, Antenna Primary Loading Capacitor & Same as Cl08 & CD-48895-D10 & - & - & - & - & - \\
\hline *C1202 & - & Band 4, Antenna Primary Loading Capacitor & Sams as Cl22 & CD-48711-D10 & - & - & - & - & - \\
\hline *C1203 & - & Power Input Filter Capacitor & Same as C2zo & CD-48848-B10 & - & - & - & - & - \\
\hline *C1204 & - & Audio Diode Filter Capacitor & Same as Cl91 & CD-48674-D10 & - & - & - & - & - \\
\hline *C1205 & - & BFO Plate By-pass Capacitor & Same as Clil & CD-48847-B10 & - & - & - & - & - \\
\hline *C1206 & - & 1st I-f Amplifier Screen By-pass Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline \multicolumn{10}{|c|}{DYNAMOTORS} \\
\hline D201 & - & Dynamotor & Same as DiOl & - & - & - & - & - & - \\
\hline \multicolumn{10}{|c|}{FUSES} \\
\hline *F201 & - & Power Input Fuse & Same as Flol & - & - & - & - & - & - \\
\hline \multicolumn{10}{|c|}{JACSS} \\
\hline J201 & - & Phone Jack & Same as J101 & - & - & - & - & - & - \\
\hline \multicolumn{10}{|c|}{PLUGS} \\
\hline P201 & - & Power Plug & Same as P101 & - & - & - & - & - & - \\
\hline \multicolumn{10}{|c|}{CHOKE COILS AND REACTORS} \\
\hline \[
\begin{gathered}
\text { L201 } \\
\text { to } \\
\text { L204 }
\end{gathered}
\] & - & Not Used & - & - & - & - & - & - & - \\
\hline Incl. & - & Power Supply R-f Choke Coil & Same as Ll03 & -. & - & - & - & - & - \\
\hline
\end{tabular}
\(\Delta\) Symbol part designation, if any.
\(\pi\) Style or other applicable designation, if any.
* SPARE PARTS FURNISHED. Refer to Table III for quantities.

PARTS LIST BY SYMBOL DESIGNATIONS

\section*{NAVY MODEL RAX-1 AIRCRAFI RADIO RECEIVING EQUIPNENT}

RADIO RECEIVER 1500-9000 KC, NAVY TYPE CG-46116

\(\Delta\) Symbol part designation, if any.
\(\pi\) Style or other applicable designation, if any.
* SPARE PARTS FURNISHIED. Refer to Table III for quantities.

TABLS VI (CONT'D)
PARTS LIST EY SMBOL DRSTGIATIONS
POR
LAVY MODES RAX-1 AIRCRAFT RADIO RECETVING BRUIPMOHTY
RADIO REOETVER 1500-9000 EC, RAVY TYPE OG-46116
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { SXBar } \\
& \text { Dissiorat }
\end{aligned}
\] & & Fixcyios & EPSCRIPTION & ravy typr pesta. & RAVY DNO. OR SPEC. SWIBER & T & 官 & \[
\begin{aligned}
& \text { MPR. } \\
& \text { DRSTG: }
\end{aligned}
\] & ```
CONTRACTOR'S
    dPAWING
        AFD
PART NWBER
``` \\
\hline \multicolumn{10}{|c|}{RRSTSTORS AND REREOSTATS (CONTT'D)} \\
\hline *216 & - & R-F Oscillator Grid Resistor & Composition, 5l,000 ohms 45\%, 1/2 vatt & CB2-63355 & RE 13A 3720 & - & 8 & Type B & P-7763599-8200 \\
\hline * 217 & - & lst I-F Grid Filter Resistor & Composition, 47,000 obms \(45 \%\), 1/2 uatt & CBZ-63355 & RE 13A 3720 & - & 8 & Type EB & P-7763599-P199 \\
\hline *R218 & - & BPO Cathode Resistor & Composition, 15,000 abms \(45 \%\), 1/2 vatt & CB2-63355 & RE 13A 3720 & - & 8 & Type ri & P-7763599-Pi87 \\
\hline *R219 & - & MCW Voltage Equalizing Resistor & Composition, 120,000 abms t5\%, 1/2 watt & CBZ-63355 & RE 13A 3720 & - & 8 & Type B & P-7763599-P20S \\
\hline - 2220 & - & 1st I-f Cathode Resistor & Same as R209 & CB2-63355 & - & - & - & - & - \\
\hline *R221 & - & AVC Filter Resistor & Same as Rl64. & CB2-63355 & - & - & - & - & \\
\hline -R222 & - & BPO Plate Resistor & Same as R214 & CBZ-63355 & RR 13A 3720 & - & \(\overline{-}\) & Type 18 & P-7763599-P214 \\
\hline * 223 & - & BPO Grid Resistor & \begin{tabular}{l}
Composition, 200,000 okme \(45 \%\), \\
- 2/4 yatt
\end{tabular} & CBZ-63355 & R8 13A 3720 & - & 8 & Type BB & P-7763599-P214 \\
\hline -R224 & & and I-f Cathode Resistor & - same as z207 & & - & - & - & - & - \\
\hline *R22 & - & AVC Filter Resistor & Same as R103 & CBZ-63360 & RE 13 - 3720 & - & \(-\) & Trpe OB & P-7763600-P184 \\
\hline *226 & - & Screen Supply Bleeder Resistor & Composition; 11,000 obme \(45 \%\), 1 vatt & CBZ-6329] & RE 13A 3720 & - & 8 & Type OB & P-7763600-P184 \\
\hline - R227 & - & bpo Plate Filter Resistor & Same as R205 & CBZ-63360 & & - & & & \\
\hline -R228 & - & Volume Control Gans Poteritiometer & 2 pheostats mounted in tandem. Consists of R228A and R228B & ce & - & - & 8 & \[
\begin{aligned}
& \text { Bradleyomete: } \\
& \text { Type JJ }
\end{aligned}
\] & \[
\mathrm{n}-7464321-\mathrm{P} 2
\] \\
\hline R228 & A & IVC Section of Potent1ometer & Totial resistance 6250 ohms \(\pm 10 \%\). Included in R228. & - & - & - & - & - & - \\
\hline R228 & B & AVC Section of Potentiometer & Totel resistance 800,000 arma \(\pm 10 \%\). Included in R228. & - & - & - & - & - & - - \\
\hline *R229 & - & and I-5 Plate Filter Resistor & Same as R205 & 082-63360 & - & - & - & - & - \\
\hline *230 & - & Converter Plate Damping Resistor & Composition, 82,000 abms 45\%, 1/2 vatt & CBE2-63355 & RE 13A 3720 & - & 8 & Type BB & P-7763599-P205 \\
\hline *R231 & - & - lst I-f Grid Damping Resistor & Same as R230 & CB2-63355 & - & - & - & - & - \\
\hline -R232 & - & 3rd I-f Cathode Resistor & Same as R168 470,000 atme \(+5 \%\) & CB2-63355 & & - & \[
\overline{8}
\] & & \\
\hline - 2333 & - & AVC Diode Loed Resistos. & Composition, 470,000 ahms \(45 \%\), 1/2 vatt & CB2-63355 & RE 13A 3720 & - & 8 & Type BB & P-7763599-P283 \\
\hline -R234 & - & BPO Voltage Bqualizing Resiator & Composition, 24,000 obme 5 5, 1/2 watt & CBZ-63355 & RE 13A 3720 & - & 8 & Iype 『 & P-T763599-P192 \\
\hline *2335 & - & 3rd I-5 Plate Filter Resistor & Same as R203 & CB2-63360 & - & - & - & - & -' \\
\hline *236 & - & Diode Filter Resistor & Same as R214 & CB2-63355 & - & - & - & - & \\
\hline
\end{tabular}
\(\Delta\) Symbol part designation, if any.
Style or other applicable designation, if any.
- SPARR PARTS IURIISERED. Refer to rable III for quantities.

RADIO RECEIVER 1500－9000 EC，HAVY TYPB CO－46116
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SYMBOL designat & & PUNCTION & DESCRIPTI ON & INAFY TYPE DRSTG． & TAVY DNG．OR SPEC．NimBER & T & \(\dot{8}\) & \[
\begin{aligned}
& \text { MR. } \\
& \text { Disarg. }
\end{aligned}
\] & COIRRAGYOR！ 8
ERANINO
AID
PART FWBER \\
\hline \multicolumn{10}{|c|}{RESISTORS AND PREOSTATS（COITT＇D）} \\
\hline ＊237 & － & Diode Load Resistor & Composition，300，000 ohms 45\％， \(1 / 2\) watt & CBZ－63355 & RE 13A 3720 & － & 8 & Tjpe 8 & P－7763599－P218 \\
\hline ＊R238 & － & Diode Filter Resistor & Same as Rl07 & CBZ－63360 & － & － & － & － & － \\
\hline －R239 & － & lat R－f Cathode Resistor & Same as R207 & CBL－63355 & － & － & － & － & － \\
\hline ＊R240 & － & 2nd I－f Grid Damping Resistor & Same as R230 & CB2－63355 & － & － & － & － & － \\
\hline ＊R241 & － & 3rd I－f Screan Resistor & Same as R215 & CBZ－63355 & － & － & － & － & － \\
\hline ＊242 & － & 3rd I－f Grid Damping Resistor & Same as R216 & CBZ－63355 & － & － & － & － & － \\
\hline ＊243 & － & Band 1，2nd R－f Gain Equalizing Resistor & Composition， 2000 orms \(55 \%, 1 / 2\) vatt & CBZ－63355 & RR 13A 3720 & － & 8 & Type PR & P－7763599－P166 \\
\hline ＊244 & － & MVC Blas Bleeder Resistor & Same as R230 & CB2－63355 & － & － & － & － & － \\
\hline ＊ 245 & － & 2nd I－f Grid Filter Resistor & Same as R217 & CBZ－63355 & － & － & － & － & － \\
\hline ＊R246 & － & Screen Supply Bleeder Resistor & Composition， 33,000 abms \(\boldsymbol{4}\) \％， 1 vatt & CBZ－63291 & RE 13A 3720 & － & 8 & Type CB & P－T763600－P195 \\
\hline －R247 & － & BFO Cathode Resistor & Same as R234 & CBZ－63355 & － & － & － & － & － \\
\hline ＊R248 & － & lat I－f Plate Filter Resistor & Same as R168 & CB2－63355 & － & － & － & － & － \\
\hline ＊R249 & － & 2nd I－f Plate Damping Resistor & Same as R214 & CB2－63355 & \(\bullet\) & － & － & － & － \\
\hline ＊ R 250 & － & lst I－f Screen Pilter Resistor & Composition， 5600 ohms \(\pm 10 \%\) ； 1／2 watt & CBZ－63360 & RE 13A 3720 & － & 8 & Type 8 B & P－7763599－P7 \\
\hline ＊R251 & － & lat I－f Plate Damping Resistor & Same as R230 & CB2－63355 & － & － & － & － & － \\
\hline ＊R252 & － & Screen Supply Bleeder Resistor & Same as R226 & CBZ－63291 & － & － & － & － & － \\
\hline ＊R253 & － & lat I－P Cathode Resistor & Same as R168 & CBZ－63355 & － & － & － & － & － \\
\hline
\end{tabular}

SWITGHRS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Same as S101 & － & － & － & － & － & － \\
\hline Included in 8201 & － & － & － & － & － & \\
\hline Included in 3201 & － & － & － & － & － & \\
\hline Included in 3201 & － & － & － & － & － & \\
\hline Included in 3201 & － & － & － & － & － & \\
\hline Same as 3101 & － & － & － & － & － & \\
\hline Included in 3202 & － & － & － & － & － & \\
\hline Incluted in 3202
Included in 3202 & － & － & － & － & － & \\
\hline
\end{tabular}

C lst R－I Band Switch
Symbol part designation，if any
\(\pi\) Style or other applicable designation，if any
－SPARE PARTS FURNISHED．Refer to Table III for quantities．

TABLE VI (CONT'D)
PARTS LIST BY SNBBOL DESTGNATIONS
NAVY MODEL RAX-I AIRCRAFT RADIO RECEIVIIG EQUIPMRNT RADIO RECEIVER 1500-9000 KC, NAVY TYPE CG-4611.6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { SYMBOL } \\
& \text { DESIGTATI }
\end{aligned}
\] & & FUNCTION & DESCRIPTION & ITAVY TYPE DESIG. & ITAVY DNG. OR SPEC. NOMBRER & \(\pi\) & 官 & MIFR. DESIG. & \[
\begin{aligned}
& \hline \text { CONITRACTOR'S } \\
& \text { DRAWING } \\
& \text { AND } \\
& \text { PART NONBER }
\end{aligned}
\] \\
\hline \multicolumn{10}{|c|}{SWITCHRS (CONT'D)} \\
\hline S202 & D & Ist R-f Band Switch & Included in S202 & - & - & - & - & - & - \\
\hline S203 & & 2nd R-P Band Switich & Same as 3101 & - & - & - & - & - & - \\
\hline 5203 & A & 2nd R-P Band Svitch & Included in 5203 & - & - - & - & - & - & - \\
\hline 5203 & B & 2nd R-P Band Switch & Included in 3203 & - & - & - & - & - & - \\
\hline S203 & C & 2nd R-P Band Sritch & Included in 3203 & - & - & - & - & - & - \\
\hline S203 & D & 2nd R-F Band Switch & Included in 3203 & - & - & - & - & - & - - \\
\hline 5204 & - & R-P Oscillator Band Switch & Rotary tap switch, 4-position, 4-bank & - & - & - & 9 & - & M-7464376-P6 \\
\hline 5204 & A & R-P Oscillator Band Switch & Included in 3204 & - & - & - & - & - & - . \\
\hline S204 & B & R-P Oscillator Band Switch & Included in 3204 & - & - & - & - & - & - \\
\hline S204 & c & R-P Oscillator Band Switch & Included in 3204 & - & - & - & - & - & - \\
\hline 5204 & D & R-1 Oacillator Band Switch & Included in 3204 & - & - & - & - & - & - \\
\hline S205 & - & AVC-SVC 8xitch & Same as 3102 & - & - & - & - & - & - \\
\hline S205 & A & AVC-MVC Sultch. & Included in 3205 & - & - & - & - & - & - \\
\hline 5205 & B & AVC-MVC Switch & Included in 3205 & - & - & - & - & - & - \\
\hline S205 & C & AVC-MVC Switch & Included in 3205 & - & - & - & - & - & - \\
\hline 8206 & - & Not Used & & - & - & - & - & - & - \\
\hline 5207 & - & CW-MCW Switch & Same as Cl03 & - & - & - & - & - & - \\
\hline S207 & A & CW-MCW Switch & Included in 5207 & - & - & - & - & - & - \\
\hline S207 & B & CW-MCW Switch & Included in S207 & - & - & - & - & - & - \\
\hline \multicolumn{10}{|c|}{- TRANSPORMERS} \\
\hline T201 & - & Band 1, Antenne Transformer & ```
Primary, 20 turns, ES wire Universal
 wound, 11.9 microhenries (approx)
Secondary, 70 1/2 turns E wire, 37.9
 microhenries (approx)
Mutual inductance 4.6 microhenries.
``` & - & - & - & 4 & - & K-7877362-P1 \\
\hline T202 & - & Band 2, Antenne Transformer & \begin{tabular}{l}
Primary, 69 1/2 turns ES wire, Oniversal wound, 99.8 microhenries (approx) \\
Secondary, 52 1/2 turne F wire, 15.8 microhenries (approx) \\
Mutual inductance 8.3 miorohenries (approx)
\end{tabular} & - & - & - & 4 & - & K-7877363-Pl \\
\hline T203 & - & Band 3, Antenns Transformer & \begin{tabular}{l}
Primary, \(481 / 2\) turns ES wire, Oniversal wound, 48.8 micropenries (approx) \\
Secondary, 30 1/2 turns E wire, 6.1 microhenries (approx) \\
Mutual inductance 3.7 microhenries.
\end{tabular} & - & - & - & 4 & - & K-7877364-P1 \\
\hline
\end{tabular}

T Style or other applicable designation, if any.
tABLE VI (CONT'D)
PARTS LIST BY SMBBOL DESIGNATIONS
FOR
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING ERUI PIGENI
RADIO RECEIVER 1500-9000 KC, NAVY TYPE CG-46116
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SDBOL DESSGNAI & [0] & FUNCTI ON & DESCRIPTION & NAVY TYPE DESIG. & INAVY DWG. OR SPEC. NONBER & \(\pi\) & 宾 & MPR. DESIG. &  \\
\hline \multicolumn{10}{|c|}{TRANSPORMERS (CONT'D)} \\
\hline T204 & - & Band 4, Antenna Transformer & \begin{tabular}{l}
Primary, 29 1/2 turns ES wire, Universal wound, 24.6 microhenries (approx) \\
Secondary, 3.0 microhenries (approx) Mutual inductance 2.1 microhenries
\end{tabular} & - & - & - & 4 & - & K-7877365-P1 \\
\hline T205 & - & 1st R-f Band 1 Transformer & \begin{tabular}{l}
Primary, 138 1/2 turns ES wire, Universal wound, 479.3 microhenries (approx) \\
Secondary, 72 1/2 turns E wire, 40.5 microhenries (approx) \\
Mutual inductance 27.5 microhenries
\end{tabular} & - & - & - & 4 & - & K-7877366-P1 \\
\hline T206 & - & 1st R-f Band 3 Transformer & \begin{tabular}{l}
Primary, 68 l/2 turns ES wire, Universal wound, 99.5 microhenries (approx) \\
Secondary, 49 1/2 turns E wire, 15.6 microhenri:s (approx) \\
Mutual inductance 6.8 microhenries (approx)
\end{tabular} & - & - & - & 4 & - & K-7877367-P1 \\
\hline T207 & - & 1st R-P Band 3 Transformer & \begin{tabular}{l}
Primary, \(491 / 2\) turns ES wire, Universal wound, 50.8 microhenries (approx) \\
Secondary, 29 1/2 turns E wire, 6.0 microhenries (approx) Mutual inductance 3.6 microhenries (approx)
\end{tabular} & - & - & - & 4 & - & K-7877368-P1 \\
\hline T208 & - & 1st R-f Band 4 Transformer & \begin{tabular}{l}
Primary, \(351 / 2\) turns ES wire, Universal wound, 32.8 microhenries (approx) \\
Secandary, 16 1/2 turns E wire, 2.9 microhenries (approx) Mutual inductance 2.4 microhenries (approx)
\end{tabular} & - & - & - & 4 & - & K-7877369-Pl \\
\hline T209 & - & 1st I-f Transformer & Primary, 66 turns ES wire Secondary, 66 turns ES wire, 35.0 microhenries (approx) & - & - & & 4 & - & P-7763103-G1 \\
\hline
\end{tabular}
\(\Delta\) Symbol part designation, if any.
T Style or other applicable designation, if any.
- SPARE PARTS FURNISHED. 'Refer to Table III for quantities.
tabls VI (CONT'D)
PARTS LIST BY SMNBOL DBSTGNATIONS
NAVY MODEL RAX-I AIRCRAFT RADIO RECEIVING EQUIPNIRNI RADIO RECEIVER 1500-9000 KC, NAVY TYPE CG-46116


NAVY MODSL RAX-1 AIRCRAFI RADIO RECEIVING ERUI FMRNI RADIO RECEIVER 1500-9000 KC, NAVY TYPE CG-46116
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SYMBOL designat & & PUNCTION & DESCRIPTION & NAVY TYPE DRSIG. & NAVY DNG. OR SPEC. NOMBER & \(\pi\) & \(\dot{\text { ¢ }}\) & \[
\begin{gathered}
\text { MPR. } \\
\text { DBSTG. }
\end{gathered}
\] & ```
CONTRACTOR'S
    dRANING
        ANDD
PART NUMBER
``` \\
\hline \multicolumn{10}{|c|}{TRANSPORMERS (CONT'D)} \\
\hline T219 & & Band 1, 2nd R-f Transformer & \begin{tabular}{l}
Primary, 170 1/2 turns ES wire, Universal wound, 723.6 microhenries (approx) \\
Secandary, 73 l/2 turns E wire, 40.8 microhenries (approx) \\
Mutual inductance 34.2 microhenries
\end{tabular} & - & - & - & 4 & - & E-7877370-P1 \\
\hline T220 & & Band 2, 2nd R-f Transformer & \begin{tabular}{l}
(approx) \\
Primary, 68 l/2 turns Es wire, Universal wound, 100 microhenries (approx) \\
Secondary, 49 1/2 turns E wire, 15.7 microhenries (approx) Mutual inductance 7.5 microhenries (approx)
\end{tabular} & - & - & - & 4 & - & L-7877371-P1 \\
\hline T221 & - & Band 3, 2nd R-f Transformer & \begin{tabular}{l}
Primary, 49 l/2 turns ES wire, Universal wound, 50.0 microhenries (approx) \\
Secondary, 30 1/2 turns E wire; 6.1 microhenries (approx) \\
Mutual inductance 3.7 microhenries (approx)
\end{tabular} & -

- & \begin{tabular}{c}
- \\
\\
- \\
\hline
\end{tabular} & - & 4

4 & \(\begin{array}{r}- \\ \hline-\end{array}\) & E-7877372-P1
K-7877373-P1 \\
\hline T222 & & Band 4, 2nd R-f Transformer & \begin{tabular}{l}
Primary, 35 1/2 turns ES wire, Universal wound, 35.0 microhenries (approx) \\
Secondary, 16 3/4 turns E wire, 3.0 microhenries (approx) Mutual inductance 2.4 microhenries (apprax)
\end{tabular} & - & - & - & 4 & - & K-78773T3-P1 \\
\hline \multicolumn{10}{|c|}{VACOUN TUBES} \\
\hline *V201 & - & 1st R-f Amplifier Tube & Same as V10l & CRC-12SK7 & - & - & - & - & - \\
\hline *V202 & - & 2nd R-f Amplifier Tube & Same as V101 & CRC-12SK7 & - & - & - & - & - \\
\hline *V203 & - & Converter Tube & Same as V102 & CRC-12SK8 & - & - & - & - & - \\
\hline *V204 & - & lst I-f Amplifier Tube & Same as Vlol & CRC-12SK7 & - & - & - & - & - \\
\hline *V205 & - & 2nd I-f Amplifier Tube & Same as V10l & CRC-12SK7 & - & - & - & - & - \\
\hline *V206 & - & 3rd I-f Amplifier Tube & Same as V101 & CRC-12SK7 & - & - & - & - & - \\
\hline *V207 & - & Audio Amplifier Tube & Same as V105 & CRC-12A6 & - & - & - & - & - \\
\hline *V208 & - & BFO - 2nd Detector Tube & Same as Vl06 & CRC-12SR7 & - & - & - & - & - \\
\hline
\end{tabular}
\(\Delta\) Symbol part designation, if any.
\(\pi\) Style or other applicable designation, if any.
* SPARE PARTS FURNISHED. Refer to Table III for quantities.

TABLE VI (CONT'D)
PARTS LIST BY SHOBOL DESIGNATIONS
MAVY MODTK RAX-1 AIRCRAFT RADIO RECETVING BOUIPMENT AVY MODEI RAX-1 AIRCRAFT RADIO RECEIVING EQUIPNEN
RADTO RECKIVER 1500-9000 RC, NAVY TYPE CG-46116
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { SXIBOT } \\
& \text { DBSIORAT }
\end{aligned}
\] & Os & FUNCIION & MRSCRIPTIO & NAVY TYPE DESIG. & NAVY DNG. OR SPEC. NUIBER & \(\pi\) & 官 & MPR. besia. & \[
\begin{aligned}
& \text { CONTRACTOR'S } \\
& \text { DRAWING } \\
& \text { AND } \\
& \text { PART NUNBKR: }
\end{aligned}
\] \\
\hline \multicolumn{10}{|c|}{VACUOM TUBES (CONT'D)} \\
\hline *V209 & - & Input Voltage Limtter Glow Tube & Same as v107 & - & - & - & - & - & - \\
\hline \multicolumn{10}{|c|}{VACUOM TUBE SOCKEV'S} \\
\hline 2201 & - & 18t R-f Tube Sooket & Same as XIOl & CPR-49373 & - & - & - & - & - \\
\hline \(\underline{202}\) & - & 2nd R-f Tube Socket & Same as XI 01 & CPH-49373 & - & - & - & - & - \\
\hline 2203 & - & Converter Tube Socket & Same as XlOl & CPH-49373 & - & - & - & - & - \\
\hline 2204 & - & lst I-f Tube Socket & Same as zlOl & CPE-49373 & - & - & - & - & - \\
\hline 2205 & - & 2nd I-f Tube Sockot & Same as zlol & 'CPH-49373 & - & - & - & - & -- \\
\hline 2206 & - & 3rd I-f Tube Socket & Same as xiol & CPH-49373 & - & - & - & - & - \\
\hline \(\pm 207\) & - & Audio Tube Socket & Same as XlOl & CPH-49373 & & - & & - & - \\
\hline 2208 & - & BPO - 2nd Detectior & Same as zlOl . & CPE-49373 & - & - & - & - & - \\
\hline
\end{tabular}
\(\Delta\) symbol part designation, if any.
\(\pi\) Style or other applicable designation, if any.
- SPARE PARTS FURNISHRD. Refer to Table III for quantities.

PARTS LIST BY SYBBOL DESIGNATIONS
HAVY MODKL RAI-1 AIRCRAFI RADIO RBGEIVING EROIFNKSTY
RADIO RECEIVER 7000-27,000 KC, NAVY TYPE CO-46117
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { SEDBOL } \\
& \text { DESIORATI }
\end{aligned}
\] & & FUSCTION & DESCRIPTION & HAVY TYPB DESIG. & INAVI DNG. OR SPRC. HOMBER & \(\pi\) & 官 & \[
\begin{gathered}
\text { MrR. } \\
\text { DESIG. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CONTIRACPOR'S } \\
& \text { DRAWIMG } \\
& \text { AFD } \\
& \text { PART IUNBRRR }
\end{aligned}
\] \\
\hline \multicolumn{10}{|c|}{CAPACITORS} \\
\hline \[
\begin{aligned}
& \text { C301 } \\
& \text { C302 }
\end{aligned}
\] & - & \begin{tabular}{l}
Hot Used \\
Bend 1, Antenns Trimming Capacitor
\end{tabular} & Same as ClO2 & - & - & - & - & - & - \\
\hline 0303 & - & Band 2, Antenne Trimming Capacitor & Same as Cl03 & - & - & - & - & - & - \\
\hline C304 & - & Band 3, Antenne Trimming Capacitor & Same as ClO2 & - & - & - & - & - - & - \\
\hline \(C 305\) & - & Band 4, Antenne Trimming Capacitor & Same as Cl02 & - & - & - & - & - & - \\
\hline 0306 & - & Band 5, Antenne Trimming Capacitor & Same as ClO3 & - & - & - & - & - & - \\
\hline - 6307 & - & 1st R-f Cathode By-pass Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline \(C 308\) & - & Mot Used & & - & - & - & \(\overline{-}\) & Model & \\
\hline 6309 & - & Tuning Capacitor & Variable, 102 mmp (apprax) 4 section & - & - & - & 3 & Model No. 3004 & TT-7660270-G1 \\
\hline \(C 309\) & A & Tuning Capacitor & Included in 6309 & - & - & \(=\) & - & - & - \\
\hline 6309 & B & Tuning Capacitor & Included in 6309 & - & - & - & - & - & - \\
\hline 6309 & C & Tuning Capacitor. & Included in 6309 & - & - & - & - & - & - \\
\hline C309 & D & Tuning Capacitor & Included in C 309 & - - & - & - & - & & \\
\hline 0310 & & Antenis Triming Capacitor & Variable, 16 minid & CD-48847-810 & - & - & 2 & APC Type B & P-7761345-P15 \\
\hline * 0311 & - & lat I-f Plate Filter Capacitor & Same as Clll & CD-48847-B10 & - & - & - & & - \\
\hline * 6312 & - & lat R-F Screen By-pass Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline *C313 & - & lat R-F Plate Filter Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline 0314 & - & Band 1, lst R-P Triming Capacitor & Same as ClO2 & - & - & - & - & - & - \\
\hline 0315 & - & Band 2, lat R-f Trimming Capacitor & Same as ClO3 & - & - & - & - & - & - \\
\hline 0316 & - & Band 3, lat R-f Trimming Capacitor & Same as ClO2 & - & - & - & - & - . & - \\
\hline 0317 & \(\sim\) & Band 4, lst R-f Triming Capacitor & Same as Cl02 & - & - & - & - & - & \(\cdots\) \\
\hline 0318 & - & Band 5, lat R-f Trimming Capacitor & Same as ClO3 & - & - & - & - & - & - \\
\hline -0319 & - & Padding Capacitor (lat R-P Tuning Capacitor) & Same as C135 & - & - & - & - & - & - \\
\hline
\end{tabular}

\section*{\(\Delta\) Symbol part designation, if any.}

F Style or other applicable designation, if any.
- SPARE PARTS FURIISBED. Refer to Table III for quantities.

TABLE VI (CONT'D)
PARTS LIST BY SYMBOL DESIGNATIONS
FOR
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUIPNGKNT RADIO RECEIVER 7000-27,000 KC, NAVY TYPE CG-46117
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SYYBOI designa
\(\qquad\) & - \({ }^{\text {a }}\) & FUNCTION & DESCRIPTION & NAVY TYPB DESIG. & NAVY DWG. OR SPEC. NOMBER & \(\pi\) & 安 & \[
\begin{gathered}
\text { MRR. } \\
\text { DESIG. }
\end{gathered}
\] & \begin{tabular}{l}
CONTRACTOR'S DRAWING AND \\
PART MOBBER
\end{tabular} \\
\hline \multicolumn{10}{|c|}{CAPACITORS (CONT'D)} \\
\hline 0320 & - & Not Used & & - & - & - & - & - & - \\
\hline * 0321 & A & Filter Capacitor & Same as C256 & - & - & - & - & - & - \\
\hline C321 & A & Manual Volume Control By-pass Capacitor & Included in C 321 & - & - & - & - & - & - \\
\hline C321 & B & Power Input Filter Capacitor & Included in C 321 & - & - & - & - & - & - \\
\hline *C322 & - & 2nd R-f Cathode By-pass Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline *C323 & - & 2nd R-1 Screen By-pass Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline *C324 & - & Antenna Padding Capacitor & Same as C110 & - & - & - & - & - & \\
\hline C325 & - & Band 1, 2nd R-P Trimming Capacitor & Same as ClO2 & - & - & - & - & - & - \\
\hline 0326 & - & Band 2, 2nd R-P Trimming Capacitor & Same as Cl03 & - & - & - & - & - & - \\
\hline C327 & - & Band 3, 2nd R-P Trimming Capacitor & Same as Cl02 & - & - & - & - & - & - \\
\hline C328 & - & Band 4, and R-P Trimming Capacitor & Same as c102 & - & - & - & - & - & - \\
\hline 0329 & - & Band 5, and R-P Trimming Capacitor & Same as C103 & - & - & - & - & - & - \\
\hline *C330 & - & Converter Grid Blocking Capacitor & Same as C171 & CD-481015-D10 & - & - & - & - & - \\
\hline *C331 & - & Padding Capacitor (2nd R-f Tuning Capacitor) & Same as C 319 & - & - & - & - & - & - \\
\hline C332 & - & & & & & - & - & & \\
\hline *C333 & & 2nd R-f Plate Filter Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline *C334 & - & Converter Cathode By-pass Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline *C335 & - & Converter Screen By-pass Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline *C336 & - & Converter Oscililator Grid Blocking Capacitor & M1ca, \(25 \mathrm{mmPd} \pm 5 \%, 250\) volts d working & - & RE 13A 389x & - & 4 & Type "moulded silver cap" & K-7877485-P14 \\
\hline *C337 & - & Converter Oscillator Plate Blocking Capacitor & Same as C134 & - & & - & & - & \\
\hline *C338 & - & Converter Plate Tuning Capacitor & Mice, 300 mmfd \(\pm 5 \%, 250\) volts d-c working, included with 9311 & - & RE 13A 389K & - & 4 & Type "moulded silver cap" & 区-7877485-P27 \\
\hline
\end{tabular}
\(\Delta\) Symbol part designation, if any.
Style or other applicable designation, if any.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { SYBBOL } \\
& \text { DESIGNAT }
\end{aligned}
\] & & FUNCTION & DESCRIPTION & MAVY TYPE DESIG. & NAVY DNG.•OR SFEC. NOXBER & T & 突 & \[
\begin{gathered}
\text { MRR. } \\
\text { DESIG. }
\end{gathered}
\] & ```
CONPRACTOR'S
 DRAWIDG
 AND
PART IUNEBFR
``` \\
\hline \multicolumn{10}{|c|}{CAPACITORS (CONT'D)} \\
\hline *C339 & - & \[
\begin{aligned}
& \text { lst I-f Grid Tuning } \\
& \text { Capacitor }
\end{aligned}
\] & Same as C338, included with T311 & - & - & - & - & - & - \\
\hline *C340 & - & Beat Oscillator Plate Blocking Capacitor & Same as Cl34, included with T312 & - & - & - & - & - & - \\
\hline *C341 & - & Beat Oscillator Grid Blocking Capacitor & Same as C336, included with T312 & - & - & - & - & - & - \\
\hline 0342 & - & I-P Tuning Capacitor & Same as C250, included with T3l2 & - & - & - & - & - & - \\
\hline C342 & A & Beat Oscillator Tuning Capacitor & Included with 6342 & - & - & - & - & - & - \\
\hline C342 & B & 3rd I-P Plate Tuning Capacitor & Included with C 342 & - & - & - & - & - & - \\
\hline -C343 & - & Beat Oscillator Tuning. Capacitor & Mica, \(200 \mathrm{mmfd} \pm 0.5 \%, 250\) volts d-c working, included with T312 & - & RE 13A 389K & - & 4 & - & K-7877485-P42 \\
\hline * C344 & - & Beat Oscillator Temperature Compensating Capacitor & Ceramicon, \(30 \mathrm{mmfd} \pm 5 \%, 500\) volts d-c working, temperature coefficient \(0.000680 \mathrm{mmp} / \mathrm{mmp} /\) deg \(C\), included with \(T 312\) & - & - & - & 5 & \[
\begin{aligned}
& \text { Type N680K (modi- } \\
& \text { fled) }
\end{aligned}
\] & K-7877141-P5 \\
\hline *C345 & - & lst I-f AVC Filter Capacitor & Same as Clll, included with T311. & CD-48847-D10 & - & - & - & - & - \\
\hline *C346 & - & R-P Oscillator Temperature Compensating Capacitor & ```
Ceramicon, 26 mmpd +5%, 500 volts
    d-c working, temperature
    coefficient 0.000680 mmp/mmp/
    deg C
``` & - & - & - & 5 & \[
\begin{aligned}
& \text { Type N680K (modi- } \\
& \text { fled) }
\end{aligned}
\] & L-7877141-P4 \\
\hline C347 & - & Band 1, R-f Oscillator Trimming Capacitor & Same as Cl02 & - & - & - & - & - & - \\
\hline *C348 & - & Band 2, R-P Oscillator Padding Capacitor & Same as C 246 & - & - & - & - & - & - \\
\hline 6349 & - & Band 2, R-P Oscillator Trimming Capacitor & Same as ClO3 & - & - & - & - & - & - \\
\hline * 0350 & - & Band 5, R-f Oscillator Padding Capacitor & Mica, 70 mmpd \(\pm 2 \%, 250\) volts d-c working & - & RE 13A 389K & - & 4 & Type "moulded silver cap" & x-7877485-P16 \\
\hline C351 & - & Band 3, R-P Oscillator Trimming Capacitor & Same as ClO2 & - & - & - & - & & - \\
\hline * 0352 & - & Band 4, R-P Oscillator Padding Capacitor & Same as C336 & - & - & - & - & - & - \\
\hline 0353 & - & Band 4, R-P Oscillator Capacitor & Same as ClO2 & - & - & - & - & - & - \\
\hline
\end{tabular}
\(\Delta\) Symbol part designation, if anj.
T Style or other applicable designation, if any.
* SPARE PARTS FURNISHED. Refer to Table III for quantities.

TABLE VI (CONT'D)
PARTS LIST BY SGABOL DESIGNATIONS
FOR
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUIPMENT
RADIO RECEIVER 7000-27,000 KC, NAVY TYPE CG-46117
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SYMBOL
DESIGNAT & \(\triangle\) & FUNCTION & DESCRIPTION & NAVY TYPE DESIG. & NAVY DWG. OR SPEC. NOMBER & \(\pi\) & 官 & \[
\begin{gathered}
\text { MFR. } \\
\text { DESIG. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CONTRACTOR'S } \\
& \text { DRAWING } \\
& \text { AND } \\
& \text { PART NOMBER. }
\end{aligned}
\] \\
\hline \multicolumn{10}{|c|}{CAPACITORS (CONT'D)} \\
\hline *C354 & - & Band 5, R-f 0scillator
Temperature Compensating
Capacitor & Ceramicon, \(5 \mathrm{mmfd} \pm 10 \%, 500\) volts d-c working, temperature coefficient, \(0.000680 \mathrm{mmf} / \mathrm{mm} /\) / deg \(C\) & - & - & - & 5 & \[
\begin{aligned}
& \text { Type N680K (modi- } \\
& \text { fled) }
\end{aligned}
\] & K-7877141-P1 \\
\hline 0355 & - & Band 5, R-P Oscillator Trimming Capacitor & Same as Cl03 & - & - & - & - & - & - \\
\hline C356 & - & Not Used & & - & - & - & - & - & - \\
\hline C357 & - & Not Used & & - & - & - & - & - & - \\
\hline *C358 & - & 2nd R-f Grid Blocking Capacitor & Same as Clil & CD-481015-D10 & - & - & - & - & - \\
\hline * 6359 & - & 1st I-f Filament By-pass Capacitor & Same as \(\mathbf{C 2 2 0}\) & CD-48848-B10 & - & - & - & - & - \\
\hline * 6360 & - & ```
lst I-P Plate By-pass
 Capacitor
``` & Same as Clll. & CD-48847-B10 & - & - & - & - & - \\
\hline *C361 & - & and I-f Grid Tuning Capacitor & Same as C338, included with T319 & - & - & - & - & - & - \\
\hline *C362 & - & lat I-f Plate Tuning Capacitor & Same as C338, included with T319 & - & - & - & - & - & - \\
\hline -C363 & - & AvC Filter Capacitor & Same as C220 & CD-48848-B10 & - & - & - & - . & - \\
\hline - 0364 & - & 1st R-P Suppressor By-pass Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline *C365 & - & 1st I-f Cathode By-pass Capacitor & Same as Clil & CD-48847-B10 & - & - & - & - & - \\
\hline 0366 & - & Not Used & - & - - \({ }^{-}\) & - & - & - & - & - \\
\hline *C367 & - & Power Supply Filter Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline * 6368 & - & Power Supply Filter Capacitor & Same as Cl60 & - & - & - & - & - & - \\
\hline . 0368 & A & Pover Supply Filter Capacitor & Included in 0368 & - & - & - & - & - & - \\
\hline 0368 & B & Power Supply Filter Capacitor & Included in 6368 & - & - & - & - & - & - \\
\hline \(C 368\) & C & Pover Supply Filter Capacitor & Included in 6368 & - & - & - & - & - & - \\
\hline C369
\(+C 370\) & - & Not Used & Same as C220 & & - & - & - & - & - \\
\hline *C370 & - & Pover Input Filter Capacitor & Same as C220 & CD-48848-B10 & - & - & - & - & - \\
\hline * 0371 & - & Cathode By-pass Capacitor & Same as C220 & CD-48848-B10 & - & - & - & - & - \\
\hline
\end{tabular}
\(\Delta\) Symbol part designation, if any.
\(\Delta\) Symbol part designation, if any.
Ttyle or other applicable desigation, if any.
T Style or other applicable desigation, if any.
- spari parts FURNISHED. Refer to Table III for quantities.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SYOBOL DESIGNAT & & FUNCTION & DESCRIPTION & NAVY TYPE DESIG. & NAVY DWG. OR SPEC. NOMBER & \(\pi\) & 安 & \[
\begin{gathered}
\text { MFR. } \\
\text { DESIG. }
\end{gathered}
\] & CONTRACTOR'S DRAWING AND PART NOMBER \\
\hline \multicolumn{10}{|c|}{CAPACITORS (CONT'D)} \\
\hline * 6372 & - & 2nd I-P Screen By-pass Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline - 0373 & - & 3rd I-f Cathode By-pass Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline *C374 & - & Audio Cathode By-pass Capacitor & Same as Cl77 & CD-48847-B10 & - & - & - & - & - \\
\hline * 0375 & - & BFO Cathode By-pass Capacitor & Same as C22C & CD-48848-B10 & - & - & - & - & - \\
\hline * 0376 & - & 3rd I-f Screen By-pass Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline - 0377 & - & Audio Coupling Capacitor & Same as C220 & CD-48848-B10 & 2 \(3^{-3} 3808\) & - & 4 & - - & -- \\
\hline - 6378 & - & Audio Diode Filter Capacitor & Mice, 350 mmed \(\pm 10 \%, 250\) volts d-c working, included with T321 & - & RE 13A 389K & - & 4 & Type "moulded silver cap" & K-7877435-P43 \\
\hline * 6379 & - & Audio Diode Filter Capacitor & Same as C378, included with T321 & - & - & - & - & - & - \\
\hline * 0380 & - & 2nd I-f Plate By-pass Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline * 3881 & - & 2nd I-f Plate Tuning Capacitor & Mica, \(400 \mathrm{mmPd} \pm 5 \%, 2.50\) volts d-c working, included with T312 & - & RE 13A 389K & - & 4 & Type "moulded silver cap" & K-7877485-P28 \\
\hline * 0382 & - & 3rd I-P Grid Tuning Capacitor & Same as C338, included with T312 & - & - & - & - &  & - \\
\hline * 6383 & - & AVC Diode Blocking Capacitor & Same as Cl08 & - & - & - & - & - & - \\
\hline - 6384 & - & 3rd I-f Plate Tuning Capacitor & Mica, \(175 \mathrm{mmfd} \pm 5 \%, 250\) volts d-c working, included with T321 & - & RE 13A 389K & - & 4 & Type "moulded silver cap" & K-7877485-P24 \\
\hline * 0385 & - & 3rd I-f Plate Filter Capacitor & Same as Clil & CD-48847-B10 & - & - & - &  & - \\
\hline *C386 & - & Audio Dlode Tuning Capacitor & Same as C150, included with T321 & - & - & - & - & - & - \\
\hline * 0387 & - & Plate By-pass Capacitor & ```
M1ca, 0.004 mfd +10%, 300 volts
    d-c working
``` & - & RE 13A 389K & - & 1 & Cat. No. 1RS & M-7464527-P25 \\
\hline * 6388 & - & \begin{tabular}{l}
Filament By-pass \\
Capacitor (BFO Detector Tube)
\end{tabular} & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline * 6389 & - & Diode Output Filter Capacitor & Same as Cigl & CD-48674-D10 & - & - & - & - & - \\
\hline * 0390 & - & 3rd I-f Filament By-pass Capacitor & Same as Clll & CD-48847-B10 & - & - & - & - & - \\
\hline
\end{tabular}
\(\Delta\) Symbol part designation, if any.
Style or other applicable designation, if any.
- SPARE Parts furnishikd. Refer to table ifl for quantities.
table vi (Cont'd)
PARTS LIST BY SYMBOL DESIGNATIONS
FOR
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING RQUIPMENY
RADIO RECEIVER 7000=27,000 KC, NAVY TYPE CG-46117
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { SYMBOL } \\
& \text { DESIGNAT }
\end{aligned}
\] & & FUNCTION & DESCRIPTION & NAVY TYPE DESIG. & NAVY DWG. OR SPEC. NOXBRR & \(\pi\) & 安 & \[
\begin{gathered}
\text { MFR. } \\
\text { DESIG. }
\end{gathered}
\] & CONTRACTOR'S DRAWING AND PART. NODBKR \\
\hline \multicolumn{10}{|c|}{CAPACITORS (CONT'D)} \\
\hline *C391 & - & Band 1, R-P Oscillator Series Padding Capacitor & \[
\begin{aligned}
& \text { M1ce, } 690 \text { mmfd } \pm 0.5 \%, 250 \text { volts } \mathrm{d}-\mathrm{c} \\
& \text { working }
\end{aligned}
\] & - & RE 13A 389K & - & 4 & \[
\begin{aligned}
& \text { Type "moulded } \\
& \text { silver cap" }
\end{aligned}
\] & K-7877485-P11 \\
\hline * 0392 & - & Band 2, R-P Oscillator Series Padding Capacitor & \[
\underset{\substack{\text { Mce, } 1325 \mathrm{mmfd} \\ \text { working }}}{ } \pm .5 \%, 250 \text { volts } \mathrm{d}-\mathrm{c}
\] & - & RE 13A 389K & - & 4 & Type "moulded silver cap" & K-7877485-P8 \\
\hline * 6393 & - & 2nd I-P Cathode By-pass Capacitor & Same as̀ Clll & CD-48847-B10 & - & - & - & -11vor cap & - \\
\hline C394 & - & Not Used & & - - & - & - & - & - & - \\
\hline *C395 & - & 2nd I-f AVC Filter Capacitor & Same as Clll, included with T319 & CD-48847-B10 & - & - & - & - & - \\
\hline * 0396 & - & Antenne Ground Return Capacitor & Same as Cl08 & CD-48895-D10 & - & - & - & - & - \\
\hline * 0397 & - & Band 3, Antenna Series Padding Capacitor & Mics, 1720 mmfd \(\pm 18,250\) volts d-c working & - & RE 13A 389\% & - & 4 & Type "moulded silver cap" & \(\mathbf{K - 7 8 7 7 4 8 5 - P 5 ~}\) \\
\hline * C398 & - & Band 4, Antenna Series Padding Capacitor & Mica, \(2450 \mathrm{mmPd} \pm 18,250\) volts d-c working & - & RE 13A 389K & - & 4 & Type "moulded silver cap" & K-7877485-P2 \\
\hline *C399 & - & Band 3, 2nd R-f Series Padding Capacitor & Same as C3.97 & - & - & - & - & - & - \\
\hline * 0400 & - & Band 4, 2nd R-P Series Padding Capacitor & Mica, \(2600 \mathrm{mmfd} \pm 1 \%, 250\) volts d-c working & - & RE 13A 389K & - & 4 & Type "moulded silver cap" & - K-7877485-P1 \\
\hline * 0401 & - & Band 3, 1st R-P Series Padding Capacitor & Same as C397 & - & - & - & - & - & - \\
\hline * 0402 & - & Band 4, 1st R-f Series Padding Capacitor & Same as C400 & - & - & - & - & - & - \\
\hline * 6403 & - & lst R-f Grid Blocking Capacitor & Same as Cl71 & - & - & - & - & - & - \\
\hline C404 & & Not Used & & - & - & - & - & - & - \\
\hline * 6405 & - & Band 2, Antenna Paddine Capacitor & Same as C246 & - & - & - & - & - & - \\
\hline * 0406 & - & Band 4, Antenna Padding Capacitor & Same as C140 & - & - & - & - & - & - \\
\hline * 0407 & - & Band 5, Antenna Padding Capacitor & Mica, \(120 \mathrm{mmPd} \pm 5 \%, 250\) volts d-c working & - & RE 13A 389K & - & 4 & \[
\begin{aligned}
& \text { Type "moulded } \\
& \text { silver cap" }
\end{aligned}
\] & K-7877485-P23 \\
\hline * 0408 & - & Band 2, lat R-f Padding Capacitor & Same as C246 & - & - & - & - & - & - \\
\hline - 6409 & - & Band 4, lat R-f Padding Capacitor & Same as C319 & - & - & - & - & - & - \\
\hline * 0410 & - & Band 5, lst R-f Padding Capacitor & Mica, \(75 \mathrm{mmfd} \pm 5 \%, 250\) volts d-c working & - & RE 13A 389K & - & 4 & Type "moulded silver cap" & K-7877485-P22 \\
\hline
\end{tabular}
\(\Delta\) Symbol part designation, if any.
- Style or other applicable designation, if any.
- SPARE PARTS FURNISBIED. Refer to Table III for quantities.

PARTS LIST BY SYMBOL DESIGNATIONS
NAYY MODRI RAX 1 FOR
NAVY MODRL PAX-1 ATRCRAFT RADIO RECEIVING BQUIPQGET
RADIO RECEIVER 7000-27,000 KC, NAVY TYPE CG-46117

TABLE VI (CONT'D)
PARTS LIST BY SYMBOL DESIGNATIONS FOR
NAVY MODEL RAX-1 AIRCRAFP RADIO RECEIVING EQUIPYENT
RADIO RECEIVER 7000-27,000 KC, NAVY TYPE CG-46117
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { SYBOL } \\
& \text { DESTORAT }
\end{aligned}
\] & 0N & PUNCTION & DESCRIPTION & NAVY TYPE DESIG. & NAVY DWG. OR SPEC. NOMBER & \(\pi\) & \(\dot{\text { E }}\) & \[
\begin{gathered}
\text { MFR. } \\
\text { DESIG. }
\end{gathered}
\] & \begin{tabular}{l}
CONTRACTOR'S \\
DRAWING AND PART NOMBER
\end{tabular} \\
\hline \multicolumn{10}{|c|}{R-F CHOKE COILS AED REACTORS (CONT'D)} \\
\hline *L306 & - & Power Supply R-P Choke Coil & \multirow[t]{11}{*}{```
Same as LiO3
Same as L104
Same as L105
Consists of 200 turns ES wire,
 Universal wound, 2 crosses per
 turn, on 1/4-1n. compound coil
 form, 1300 microhenries (approx)
Same as Llo8
Same as L210
```} & - & - & - & - & - & - \\
\hline *L307 & - & Power Supply Reactor & & - & - & - & - & - & - \\
\hline *L308 & - & Power Input R-f Choke Coil & & - & - & - & - & - & - \\
\hline 1309 & - & Not Used & & - & - & - & - & - & - \\
\hline 1310 & \(-\) & Not Used & & - & - & - & - & - & - \\
\hline L311 & - & Not Used & & - & - & - & - & - & \\
\hline *L312 & & R-f Oscillator Plate Choke Coil & &  & - & - & \[
4
\] & - & K-7877552-P1 \\
\hline & & & & & & & & & \\
\hline L313 & - & Not Used & & - & - & - & - & - & - \\
\hline -L314 & & Power Input R-f Choke Coil & & - & - & - & - & - & - \\
\hline \multirow[t]{2}{*}{-L315} & & Audio Cathode Filter Reactor & & & & - & & - & - \\
\hline & \multicolumn{9}{|c|}{PLJGS} \\
\hline P301 & - & Power Plug & Same as PlOl & - & - & - & - & - & - \\
\hline \multicolumn{10}{|c|}{RESISTORS} \\
\hline R301 & - & Not Used & - & - - & - & - & - & - & - \\
\hline *R302 & - & lst R-1 Cathode Resistor & Composition, 220 ohms \(\pm 10 \%\), 1/2 watt \% & CBZ-63360 & RE 13A 372G & - & 8 & Type EB & P-7763599-P54 \\
\hline *R303 & - & Converter Plate Filter & 1/2 watt & CBZ-63360 & - & - & - &  & - \\
\hline & & Resistor & & & & & & & \\
\hline *R304 & - & 1st R-f Screen Filter Resistor & Same as R109 & CBZ-63360 & - & - & - & - - & - \\
\hline - R305 & - & lat R-f Plate Filter Resistor & Same as R205 & CBZ-63360 & - & - & - & - & - \\
\hline *R306 & - & 2nd R-f Grid Resistor & Same as R159 & CBE-63360 & - & - & - & - & - \\
\hline *R307 & - & 2nd R-P Cathode Bias Resistor & Same as R302 & - & - & - & - & - & - \\
\hline *R308 & - & 2nd R-f Gain Equalizing Potentiometer & Total resistance, 2500 ohms \(\pm 10 \%\) & - & - & - & 8 & Bradleyometer Type J & M-7464322-P2 \\
\hline *R309 & - & 2nd R-P Screen Resistor & Same as Rl09 & CBZ-63360 & - & - & - & - & - \\
\hline *R310 & - & AVC Diode Delay Resistor & Composition, 47,000 ohms \(\pm 10 \%\), 1 watt & CBZ-63288 & RE 13A 372G & - & 8 & Type GB & P-7763600-P82 \\
\hline
\end{tabular}

\footnotetext{
\(\Delta\) Symbol part designation, if any-
}

Style or other applicable designation, if any.
* SPARE PARTS FURNISHED. Refer to Table III for quantities.
table VI (CONT'D)
PARTS LIST BY SYMBOL DESIGNATIONS
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVIIG EQUIPMERT
RADIO RECEIVER 7000-27,000 KC, NAVY TYPE CG-46117
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SYMBOL DESIGNAT & & PUNCTION & DESCRIPTION & NAVY TYPE DESIG. & NAVY DWG. OR SPEC. NOMBER & \(\pi\) & 寅 & \[
\begin{gathered}
\text { MFR. } \\
\text { DESIG. }
\end{gathered}
\] & CONTRACTOR'S DRAWIMG AND PART NOBEER \\
\hline \multicolumn{10}{|c|}{RESISTORS (CONT'D)} \\
\hline *R311 & - & 2nd R-f Plate Filter Resistor & Same as R205 & CBZ-63360 & - & - & - & - & - \\
\hline *R312 & - & Converter Grid Resistor & Same as R R164 & CBZ-63360 & - & - & - & - & - \\
\hline *R313 & - & Converter Cathode Resistor & Same as R169 & CBZ-63360 & - & - & - & - & - \\
\hline - R 314 & - & R-P Oscillator Plate Resistor & Same as R107 & CBZ-63360 & - & - & - & - & - \\
\hline *R315 & - & Converter Screen Resistor & Composition, 8200 ohms \(\pm 5 \%, 1\) watt & CBZ-63291 & RE 13A 3720 & - & 8 & Type GB & P-7763600-P181 \\
\hline * R 316 & - & ```
R-P Oscillator Grid
    Resistor
``` & Same as Rl28 & CBE-63360 & - & - & . & - & - \\
\hline *R317 & - & lst I-f AVC Filter Resistor & Same as R164, included with T3ll & CBZ-63360 & - & - & - & - & - \\
\hline R318 & - & Not Used & & - & - & - & - & - & - \\
\hline R319 & - & Not Used & Same 0177 - & CR2-63291 & - & - & - & - & - \\
\hline * R320 & - & Audio Cathode Resistor & Same as R177 & CBZ-63291 & - & - & - & - & - \\
\hline *R321 & - & AVC Diode Relay Resistor & Same as R230 & CBZ-63355 & - & - & - & - & - \\
\hline *R322 & - & AVC Filter Resistor & Same as R103 560 ohms \(+10 \%\), 1/2 ystt & CBZ-63360 & RE 13A 3720 & - & - & Trpe RB & P-7763599-P59 \\
\hline \[
\begin{aligned}
& \text { *R323 } \\
& \text { *R324 }
\end{aligned}
\] & & 1st I-f Cathode Resistor Oathode Delay Resistor & Composition, 560 ohms \(\pm 10 \%, 1 / 2\) watt Composition, 9100 ohms \(+5 \%\), 1 watt & CBZ-63360
CBZ-63355 & \(\begin{array}{lll}\text { RE } & 13 A & 3720 \\ \text { RE } & 13 \mathrm{~A} & 3720\end{array}\) & - & 8 & Type RB & \[
\begin{aligned}
& \text { P-7763599-P59 } \\
& \text { P-7763599-P182 }
\end{aligned}
\] \\
\hline \[
\begin{array}{r}
\text { R324 } \\
\text { R325 }
\end{array}
\] & & Oathode Delay Resistor Not Used & Composition, 9100 ohms \(\pm 5 \%, 1\) watt & CBZ-63355 & RE 13A 3720 & - & 8 & Type RB & P-7763599-P182 \\
\hline -R326 & - & Volume Control Gang Potentiometer & Same as R228 & - & - & - & - & - & - \\
\hline R326 & A & MVC Section of Potentiometer & Same as R228A except included in R326 & - & - & - & - & - & - \\
\hline R326 & B & AVC Section of Potentiometer & Same as R228 except included in R326 & - & - & - & - & - & - \\
\hline R327 & - & Not Used & & & & - & \(\overline{-}\) & - & \\
\hline *R328 & - & Screen Supply Bleeder Resistor & Composition, 2700 ohms \(\pm 5 \%^{\prime}, 1\) watt & CBZ-63291 & RE 13A 372 C & - & 8 & Type GB & P-7763600-P169 \\
\hline *R329 & - & 3rd I-f Cathode Resistor & Same as R169 & CBZ-63360 & - & - & - & - & - \\
\hline * R 330 & - & AVC Diode Load Resistor & Same as R159 & CBZ-63360 & - & - & - & - & - \\
\hline *R331 & - & lst R-f Grid Resistor & Same as R159 & CBZ-63360 & - 13A 3720 & - & \(\bar{\square}\) & - & \\
\hline *R332 & - & 3rd I-P Screen Resistor & Composition, 18,000 ohms \(\pm 10 \%\), 1/2 watt & CBZ-63360 & RE 13A 3720 & - & 8 & Type RB & P-7763599-P77 \\
\hline *R333 & - & I-f Plate Filter Resistor & Same as R203 & CBZ-63360 & - & - & - & - & - \\
\hline *R334 & - & Audio Diode Load Resistor & Same as R165 & CBZ-63360 & - & - & - & - & - \\
\hline R335 & - & Not Used & & & - & - & - & - & - \\
\hline *R336 & - & Audio Diode Filter Resistor & Same as R216, included with T321 & CBZ-63355 & - & - & - & - & - \\
\hline
\end{tabular}
\(\Delta\) Symbol part designation, if any.
T Style or other applicable designation, if any.
- SPAFB PARTS FURNISEIKD. Refer to Table III for quantities.

TABLE VI (CONT'D)
PARTS LIST EY SYMBOL DESIGNATIONS
FOR
VAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUIPMKNT RADIO RECEIVER 7000-27,000 KC, NAVY TYPE CG-46117
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SINBOL dESIGNAT & & FUNCTION & DESCRIPTION & NAVY TYPE DESIG. & NAVY DNG. OR SPEC. NOLABER & T & 安 & \[
\begin{gathered}
\text { MrR. } \\
\text { DESIG. }
\end{gathered}
\] & CONTRACTOR'S DRAWINC AID PART NOMGER \\
\hline \multicolumn{10}{|c|}{RESISTORS (CONT'D)} \\
\hline *R337 & - & 3rd I-f Plate Filter Resistor & Same as R203 & CBZ-63360 & - & - & - & - & - \\
\hline *R338 & - & BFO Plate Resistor & Same as R107 & CBZ-63360 & - & - & - & - & - \\
\hline *R339 & - & BFO Grid Resistor & Composition, 150,000 ohms \(\pm 5 \%\), 1/2 watt, included with T312 & CB2-63355 & RE 13A 3720 & - & 8 & Type 区B & P-7763599-P21: \\
\hline *R340 & - & 2nd I-f Cathode Resistor & Same as R109 & CBZ-63360 & - & - & - & - & - \\
\hline *R341 & - & and I-f Grid Filter Resistor & Same as R164, included with T319 & CBZ-63360 & & - & - & - & - \\
\hline *R342 & - & Screen Supply Bleeder Resistor & Composition, 33,000 ohms \(\pm 10 \%\), 1 watt & CBZ-63288 & RE 13A 3720 & - & 8 & Type GB & P-7763600-P80 \\
\hline *R343 & - & 2nd I-f Cathode Resistor & Same as R130 . & CBZ-63360 & & - & \(-\) & - & \\
\hline *R344 & - & Screen Supply Bleeder Resistor & Composition, 2700 ohms \(\pm 10 \%, 1\) watt & CBZ-63288 & RE 13A 3720 & - & 8 & Type GB & P-7763600-P67 \\
\hline *R345 & - & Band 1, and R-f Gain Equalizing Resistor & Samfe as R109 & CBZ-63360 & - & - & - & - & - \\
\hline *R346 & - & MVC Bias Bleeder Resistor & Composition, 68,000 ohms \(\pm 10 \%\), 1/2 watt & CBZ-63360 & RE 13A 3720 & - & 8 & Type EB & P-7763599-P84 \\
\hline *R347 & - & Audio Diode Filter Resistor & Same as R234 & CB2-63355 & - . & - & - & - & - - \\
\hline *R348 & - & BFO Plate Filter Resistor & Same as R205 & CBZ-63360 & - & - & - & - & - \\
\hline *R349 & - & lst I-f Cathode Resistor & Same as Rl09 & CBZ-63360 & - & - & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 3301 & - & Antenna Band Switch & Rotary tap switch, 5 position, 3 bank & - & - & - & 9 & TJPe RMC & M-7464376-P4 \\
\hline 3301 & A & Antenne Band Switch & Included in 3301 & - & - & - & - & - & - \\
\hline 3301 & B & Antenna Band Switch & Included in 3301 & - & - & - & - & - & - \\
\hline 8301 & C & Antenne Band Switch & Included in 3301 & - & - & - & - & - & - \\
\hline 5302 & - & AVC-MVC Switch & Same as 3102 & - & - & - & - & - & - \\
\hline 3302 & A & AVC-NVC Switch & Included in 3302 & - & - & - & - & - & - \\
\hline 3302 & B & AVC-MVC Switch & Included in 3302 & - & - & - & - & - & - \\
\hline S302 & C & AVC-MVC Switch. & Included in 3302 & - & - & - & - & - & - \\
\hline 3303 & - & CW-Off-MCW Switch & Same as S103 & - & - & - & - & - & - \\
\hline 3303 & A & CW-Off-MCW Switch & Included in S303 & - & - & - & - & - & \\
\hline 3303 & B & CW-Off-MCW Switch & Included in 5303 & - & - & - & - & - & \\
\hline 3304 & - & Not Used & Same es 3301 & - & & - & - & - & \\
\hline 5305
\(\mathbf{S 3 0 5}\) & A & lat R-P Band Switch
lat R-f Band Switch & \begin{tabular}{l}
Same as 3301 \\
Included in S 305
\end{tabular} & - & - & - & - & - & - \\
\hline
\end{tabular}
- SPARE PARTS FURNISHIED. Refer to Table III for quantities.

TABLS VI（CONT＇D）

\section*{PARTS LIST BY SYMBOL DESIGNATIONS}

NAVY MODEL RAX－1 AIRCRAFT RADIO RECEIVING EQUIPNKANT RADIO RECEIVER 7000－27，000 KC，NAVY TY PE CG－46117
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SYMBOL DESIGNAT & ON & FUNCTION & DESCRIPTION & NAVY TYPB DESIG． & NAVY DWG．OR SPEC．NOMBERR & \(\pi\) & 尷 & \[
\begin{gathered}
\text { MFR. } \\
\text { DESIG. }
\end{gathered}
\] & CONTRACTOR＇S DRAWING AND PART NUMBERR \\
\hline & \multicolumn{10}{|c|}{SWITCEES（CONT＇D）} \\
\hline & \begin{tabular}{l}
5305 \\
3305 \\
3306 \\
3306 \\
S306 \\
S307 \\
\(S 307\) \\
5307 \\
\(S 307\) \\
5307 \\
5308
\end{tabular} & B & \begin{tabular}{l}
lst R－f Band Switch lst R－f Band Switch 2nd R－f Band Switch 2nd R－f Band Switch 2nd R－f Band Switch R－f Oscillator Band Switch \\
R－f Oscillator Band Switch R－f Oscillator Band Switch R－f Oscillator Band Switch R－f Oscillator Band Switch Selecting Switch
\end{tabular} & ```
Included in 3305
Included in 8305
Same as 3301
Included in 3306
Included in 3306
Rotary tap switch, 5 position,
 4 bank
Included in S 307
Included in 3307
Included in 3307
Included in S307
Rotary tap switch, 3 position,
 single bank
``` & － & -
-
-
-
-
-
- &  & \[
\begin{aligned}
& - \\
& - \\
& - \\
& - \\
& 9 \\
& - \\
& - \\
& - \\
& \hline-
\end{aligned}
\] & Type RMC & -
-
-
M－7464376－P2
-
-
-
M－7463887－P4 \\
\hline \multirow[t]{6}{*}{\[
\begin{aligned}
& \text { 忍 } \\
& \text { 品 } \\
& \text { 呙 }
\end{aligned}
\]} & \multicolumn{10}{|c|}{TRANSFORMERS} \\
\hline & T301
T302 & -
-
- & \begin{tabular}{l}
Band 1，Antenna Trans－ former \\
Antenna Transformer
\end{tabular} & \begin{tabular}{l}
Primary， \(111 / 2\) turns ES wire，close wound， 2.1 microhenries（approx） \\
Secondary， 20 1／4 turns E wire， 2.9 microhenries（approx） \\
Mutual inductance 0.5 microhenries （approx） \\
Primary， \(51 / 2\) turns ES wire，close wound； 3 l／2 turns ES wire， 0.7 microhenries（approx）， 0.4 microhenries（approx） \\
Secondary， 9 3／4 turns E wire； 8 1／4 turns E wire； 1.1 micro－ henries（approx）； 0.9 micro－ henries（approx）
\end{tabular} & -
- & － & － & 4
4 & － & K－7877378
K－7877379 \\
\hline & T302 & A & Band 2，Antenna Trans－ former & Included in T302 & － & － & － & － & － & － \\
\hline & T302 & B & Band 3，Antenna Trans－ former & Included in T302 & － & － & － & － & － & － \\
\hline & T303 & － & Not Used & & － & － & － & － & －－ & － \\
\hline & T304 & － & Band 4，Antenna Trans－ former & \begin{tabular}{l}
Primary， \(31 / 2\) turns ES wire，close wound， \(0.4 \mathrm{microhenries} \mathrm{(approx)}\) \\
Secondary， 5 turns E wire， 0.4 microhenries（approx）
\end{tabular} & － & － & － & 4 & － & K－7877380 \\
\hline
\end{tabular}

\footnotetext{
\(\Delta\) Symbol part designation，if any．
}
\(\pi\) Style or other applicable designation，if any．

\section*{TABLE VI (CONT'D)}

PARTS LIST BY SYMBOL DESIGNATIONS
FOR
NAVY MODEL RAX-I AIRCRAFT RADIO RECEIVING EQUIPMENT
RADIO RECEIVER 7000-27,000 KC, NAVY TYPE CG-46117


\footnotetext{
Style or other applicable designation, if any.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SYOBOL DESIGNAT & ON & FUNCTION & DESCRIPTION & NAVY TYPE DESIG． & NAVY DWG．OR SPEC．NOXBER & \(\pi\) & \[
\dot{\text { ⿷匚⿳丨コ丨卜丿 }}
\] & \[
\begin{aligned}
& \text { MPR. } \\
& \text { DESIG. }
\end{aligned}
\] & \begin{tabular}{l}
CONTRACTOR＇S \\
DRAWING AND \\
PART NUMBER
\end{tabular} \\
\hline \multicolumn{10}{|c|}{TRANSFORMERS（CONT＇D）} \\
\hline \[
\begin{aligned}
& \text { T313 } \\
& \text { T314 }
\end{aligned}
\] & － & \begin{tabular}{l}
Not Used \\
Band 1，R－f Oscillator Transformer
\end{tabular} & Primary， 5 1／2 turns EDS wire，close wound， 0.9 microhenries（approx） Secondary， 11 1／2 turns E wire， 2.0 microhenries（approx） & － & － &  & \[
\overline{4}
\] & － & K-7877390 \\
\hline T315 & － & Band 2，R－f Oscillator Transformer & \begin{tabular}{l}
Primany， 5 1／8 turns EDS wire， 0.9 microhenries．（approx） \\
Secondary， \(71 / 4\) turns \(E\) wire， 0.9 microhenries（approx）
\end{tabular} & － & \(-\) & － & 4 & － & K－7877391 \\
\hline T316 & － & Band 3，R－P Oscillator Transformer & \begin{tabular}{l}
Primary， 5 turns EDS wire，close wound， 0.7 microhenries（approx） \\
Secondary， \(85 / 6\) turns \(E\) wire， 1.3 microhenries（approx）
\end{tabular} & － & － & － & 4 & － & K－7877392 \\
\hline T317 & － & Band 4，R－P Oscillator Trans former & \begin{tabular}{l}
Primary， \(61 / 4\) turns ES wire，close tension wound， 0.7 microhenries． （approx） \\
Secondary， \(63 / 4\) turns \(E\) wire， 0.5 microhenries（apprax）
\end{tabular} & － & － & － & 4 & － & K－7877393 \\
\hline T318 & － & Band 5，R－P Oscillator Transformer & \begin{tabular}{l}
Primary， \(51 / 4\) turns EDS wire，close tension wound， 0,5 microhenries （approx） \\
Secondary， \(41 / 4\) turns E wire， 0.2 microhenries（approx）
\end{tabular} & － & － & － & 4 & － & K－7877394 \\
\hline T319 & － & 2nd I－f Transformer & Primary， 36 turns ES wire Secondary， 36 turns ES wire Includes C361，C362，C395，R341 & － & － & － & 4 & － & K－7763108－G1 \\
\hline T320 & & Not Used &  & － & － &  &  & － &  \\
\hline T321 & － & 4th I－f Transformer & \begin{tabular}{l}
Primary， 45 turns ES wire， 17.7 microhenries \(\pm 1 \%\) \\
Secondary， 60 turns ES wire， 28.9 microhenries \(\pm 1 \%\) \\
Includes C378，C379，C384，C386， R336
\end{tabular} & － & － & \[
\div
\] & & － & P-7763110-G1 \\
\hline \[
\begin{array}{r}
\text { T322 } \\
\text { T323 }
\end{array}
\] & － & Output Transformers Not Used & Same as Tll7－ & － & － & － & － & － & － \\
\hline
\end{tabular}

\section*{\(\Delta\) Symbol part designation，if any．}
\(\pi\) Style or other applicable designation，if any
＊SPARE PARTS FURNISBED＇．Refer to Table III for quantities．
tabls vi (CONT'D)
PARTS LIST EY SYCBOL DESIGMATIOMS
POR
ravy model rax-l atrcrapt radio receiving gaolprarsi
RADIO RECEIVER 7000-27,000 KC, NAVY TYPE CG-46117
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { SDGBOL } \\
& \text { DESIOMARIOI } \\
& \qquad \begin{array}{|c}
\Delta
\end{array}
\end{aligned}
\] & PUSCTIOM & DBSCRIPTION & \[
\begin{aligned}
& \text { HAVY TYPE } \\
& \text { DESIG. }
\end{aligned}
\] & HAVY DNG. OR SFRC. HOMPRR & T & 安 & \[
\begin{gathered}
\text { MRR. } \\
\text { DESIG. }
\end{gathered}
\] & \begin{tabular}{l}
CONTRACTOR'S DRAWING AFID \\
PART NUMGBRR
\end{tabular} \\
\hline
\end{tabular}


\section*{\(\Delta\) syebol part dosienation, if anj.}
- SPARE PARTS FURMIARSD. Rofor to Table III for quantitios.
table Vi (cont'd)
parts list by symbol designations FOR
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUIPXIENT
RADIO RECEIVER 7000-27,000 KC, NAVY TYPB CG-46117
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { SYMBOL } \\
& \text { DESIGNAT: }
\end{aligned}
\] & & FUNCTION & DESCRIPTION & NAVY TYPE DESIG. & NAVY DWG. OR SPEC. NOKMRER & \(\pi\) & 官 & \[
\begin{gathered}
\text { MRR. } \\
\text { DESIG. }
\end{gathered}
\] & CONTRACTOR'S DRAWING AND PART NOHBERR \\
\hline \multicolumn{10}{|c|}{VACUOM TUBE SOCKETS} \\
\hline \(\times 301\) & - & 1st R-1 Tube Socket & Same as X101 & CPH-49373 & - & - & - & - - & - \\
\hline \(\times 302\) & - & Converter Tube Socket & Same as X101 & CPH-49373 & - & - & - & - & - \\
\hline \(\times 303\) & - & 1st I-f Tube, Socket & Same as X101 & CPH-49373 & - & - & - & - & - \\
\hline \(\times 304\) & - & 2nd I-P Tube Socket & Same as X101 & CPH-49373 & - & - & - & - & - \\
\hline \(\times 305\) & - & 3rd I-f Tube Socket & Sque as X101 & CPH-49373 & - & - & - & - & - \\
\hline \(\times 306\) & - & Audio Tube Socket & Same as X101 & CPH-49373 & - & - & - & - & - \\
\hline \(\times 307\) & - & and R-f Detector Tube Socket & Same as X101 & CPH-49373 & - & - & - & - & - \\
\hline \(\times 308\) & - & 2nd R-f Tube Socket & Same as X101 & CPH-49373 & - & - & - & - & - \\
\hline
\end{tabular}

\footnotetext{
\(\Delta\) Symbol part designation, if any.
\(\pi\) Style or other applicable designation, if ans.
}
table vi (CONT'D)
PARTS LIST BY SYYBOL DESIGNATIONS
POR
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING BQUIPMUEST
JUNCTION BOX, NAVY TYPE CG-62028
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SYOBOL DESIGNAT & & FUNCTION & DESCRIPTION & NAVY TYPE DESIG. & NAVY DNG. OR SPEC. NOMBER & T & 蕆 & \[
\begin{aligned}
& \text { MPR. } \\
& \text { DRSIG. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { COFTRACTOR'S } \\
& \text { DRAWING } \\
& \text { AND } \\
& \text { PART FOBERR }
\end{aligned}
\] \\
\hline \multicolumn{10}{|c|}{JACKS AITD RECEPTACLES} \\
\hline J501 & - & Phone Jack & Same as J101 & - & - & - & - & - & \\
\hline J502 & - & Phone Jack & Same as Jl0l & - & - & - & - & - & - \\
\hline J503 & - & Phone Jack & Same as Jlol & - & - & - & - & - & - \\
\hline J504 & - & Phone Jack & Same as JlOl & - & - & - & - & - & - \\
\hline J505 & - & Power Receptacle & Same as Plol & - & - & - & - & - & - \\
\hline J506 & - & Power Receptacle & Same as Plol & - & - & - & - & - & - \\
\hline J507 & - & Power Receptacle & Same as Plol & - & - & - & - & - & - \\
\hline J508 & - & Power Receptacle & Same as Plol & - & - & - & - & - & - \\
\hline
\end{tabular}
\(\Delta\) Symbol part designation, if anj.
\(\pi\) Style or other applicable designation, if any.

PARTS LIST BY SGABOL DESIGNATIONS
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUIPRIENT
RECEIVER RACK, NAVY TYPE CG-46128


\section*{\(\Delta\) Symbol part designation, if any.}
\(\pi\) Style or other applicable designation, if any.
tabis VI (CONT'D)
PARTS LIST BY SMBBOL DESIGNATIONS
NAVY MODEL RAX-1 ADPCRARI
NAVY MODEL RAX-1 AIPCRATT RADIO REGEIVING BQUIPMENTT


\footnotetext{
\(\Delta\) Symbol part designation, if any.
T Style or other applicable designation, if any.
}

RESTRICTED
NAVAER 08-5Q-245

OPERATING SPARE PARTS
FOR
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUI PMENT
\begin{tabular}{l|l|l}
\hline \begin{tabular}{c} 
Navy Type \\
Number
\end{tabular} & \multicolumn{1}{c|}{ Major Units } & \begin{tabular}{c} 
Symbol \\
Group
\end{tabular} \\
\hline CG-46115 & Receiver (200-1500. kc) & 101 to 199 \\
CG-46116 & Receiver (1500-9000 kc) & 201 to 299 \\
CG-46117 & Receiver (7000-27,000 kc) & 1201 to 1299 \\
CG-46128 & Receiver Rack & 301 to 399 \\
CG-62028 & Junction Box & 601 to 699 \\
None & Cable M-7465168-P2 and 3 & 501 to 599 \\
\hline
\end{tabular}

\section*{RESTRICTED}

NAVY MODEI RAX-1 AIRCRAFI RADIO RECEIVING EQUIPMENT
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { SMBBOL } \\
\text { NO. }
\end{gathered}
\] & RNVELOPE NO. OR BOX LETTER & QUANTITY & G.E. DRAKING AND PART NUMBER & DESCRIPTION \\
\hline Cl06 & 2 & 1 & K-787677.9-P4 & Paper, 0.05 mid \(\pm 10 \%, 400\) volts d-c working \\
\hline Cl07 & 3 & 1 & K-7876779-P1 & Paper, \(0.01 \mathrm{mfd} \pm 10 \%, 600\) volts d-c working \\
\hline C108 & 4 & 1. & M-7463969-P8 & M1ca, \(0.00005 \mathrm{mfd} \pm 10 \%, 500\) volts d-c working \\
\hline Cllo & 5 & 1 & M-7463969-P3 & Mica, \(0.00001 \mathrm{mfd} \pm 10 \%\), 500 volts d-c working \\
\hline Clll & 6 & 1 & P-7762455-P27 & Mica, \(0.006 \mathrm{mfd} \pm 10 \%, 300\) volts d-c working \\
\hline Cl12 & 2 & - & Same as Cl06 & M1ca, \(0.006 \mathrm{med} \pm 10\), 300 volts d-c working \\
\hline Cll 7 & 7 & 1 & K-7877485-P3 & Mica, 2350 mmfd \(\pm 5 \%\), 250 volts d-c working \\
\hline Cll8 & 4 & - & Same as Cl08 & \\
\hline Cll9 & 1 & 1 & M-7463969-P9 & Mica, 0.00007 mfd +10\%, 500 volts d-c working \\
\hline Cl20 & 1 & - & Same as Cll9 & \\
\hline Cl22 & 8 & 1 & M-7463969-P5 & M1ca, 0.000025 mfd +10\%, 500 volts d-c working \\
\hline Cl23 & 6 & - & Same as Clll & \\
\hline Cl24 & 9 & 1 & M-7463969-P11 & Mica, \(0.00015 \mathrm{mfd} \pm 10 \%, 500\) volts d-c working \\
\hline Cl25 & 2 & - & Same as 6106 & \\
\hline Cl26 & 4 & - & Same as Cl08 & \\
\hline Cl32 & 10 & 1 & K-7877141.-P2 & Ceramic, 15 mmfd \(+5 \%, 500\) volts d-c working \\
\hline C134 & 11 & 1 & K-7877485-P15 & Mica, \(500 \mathrm{mmfd} \pm 10 \%, 250\) volts d-c working \\
\hline Cl35 & 12 & 1 & K-7877485-P20 & Mica, \(30 \mathrm{mmfd} \pm 5 \%, 250\) volts d-c working \\
\hline C136 & 10 & - & Same as Cl32 & \\
\hline C138 & 2 & - & Same as Cl06 & - \\
\hline C139 & 11 & - & Same as Cl34 & - - \\
\hline C140 & 13 & 1 & K-7877485-P17 & Mica, \(50 \mathrm{mmfd} \pm 5 \%, 250\) volts d-c working. \\
\hline C142 & 14 & 1 & K-7877485-P10 & Mica, \(730 \mathrm{mmfd} \pm 0.9 \%\), 250 volts d-c working \\
\hline C144 & 2 & - & Same as Cl06 & M1a, 730 . \\
\hline C145 & 2 & - & Same as Cl06 & - \\
\hline C146 & 13 & - & Same as Cl40 & - \\
\hline C147 & 15 & 1 & K-7877485-P13 & Mica, \(600 \mathrm{mmfd} \pm 0.5 \%, 250\) volts d-c working \\
\hline C148 & 16 & 1 & K-7877485-P9 & Mica, \(1100 \mathrm{mmfd} \pm 0.5 \%, 250\) volts d-c working \\
\hline C149 & 15 & - & Same as Cl47 & \\
\hline Cl50 & 17 & 1 & K-7877485-P37 & Mica, \(100 \mathrm{mmfd} \pm 5 \%, 250\) volts d-c working \\
\hline Cl51 & 2 & - & Same as Cl06 & , 100 (\%) \\
\hline Cl52 & 18 & 1 & K-7877485-P39 & Mica, 375 mmfd \(\pm 5 \%, 250\) volts d-c working \\
\hline C153 & 18 & - & Same as Cl52 & 促 \\
\hline Cl54 & 6 & - & Same as Clll & - \\
\hline Cl55 & 6 & - & Same as Clll & - \\
\hline Cl57 & 3 & - & Same as \(\mathrm{ClO7}\) & - \\
\hline C159 & 6 & - & Same as Clll & - - \\
\hline C160 & A & 1 & K-7876911 & Electrolytic, 3-16 mfd +75\%, -10\%, 250 volts d working. Three separate sections. \\
\hline Cl61 & 4 & - & Same as Cl08 & Woring. \\
\hline Cl62 & 15 & - & Same as Cl47 & - \\
\hline C163 & 19 & 1 & K-7877485-P30 & Mica, \(650 \mathrm{mmfd} \pm 5 \%, 250\) volts d-c working \\
\hline Cl64 & 6 & - & Same as Clll & - \\
\hline C165 & 20 & 1 & K-7877485-P40 & Mica, 370 mmfd \(\pm 5 \%, 250\) volts d-c working \\
\hline Cl66 & 21 & 1 & K-7877485-P41 & Mica, \(900 \mathrm{mmfd} \pm 5 \%, 250\) volts d-c working \\
\hline C167 & 6 & - & Same as Clll & , \(\pm\), \\
\hline Cl68 & 6 & - & Same as Clll & - \\
\hline Cl69 & 2 & - & Same as Cl06 & - \\
\hline Cl70 & 6 & - & Same as Clll & - \\
\hline Cl71 & 22 & 1 & M-7463969-P15 & Mica, \(0.0004 \mathrm{mfd} \pm 10 \%\), 500 volts d-c working \\
\hline Cl 72 & 23 & 1 & M-7463969-P16 & Mica, \(0.0005 \mathrm{mfd} \pm 10 \%\), 500 volts d-c working \\
\hline Cl73 & B & 1 & M-7464514-P4 & - Paper, \(0.5 \mathrm{mfd}+10 \%,-3 \%, 600\) volts d-c working \\
\hline Cl76 & C & 1 & M-7464514-P3 & Paper, \(0.25 \mathrm{mfd}+10 \%,-3 \%, 600\) volts d-c working \\
\hline \(\mathrm{Cl77}\) & D & 1 & \(\mathrm{K}-7877210-\mathrm{Pl}\) & Electrolytic, \(50 \mathrm{mfd}+100 \%\), \(-10 \%\), 25 volts d-c working \\
\hline \(C 178\)
\(C 179\) & 24
6 & 1 & P-7762455-P25 & Mica, \(0.004 \mathrm{mfd} \pm 10 \%, 300\) volts d-c working \\
\hline Cl79 & 6 & - & Same as Clll & \\
\hline C180 & 25 & 1 & M-7464527-P23 & Mica, \(0.0025 \mathrm{mfd} \pm 10 \%, 500\) volts \(\mathrm{d}-\mathrm{c}\) working \\
\hline C183 & 25 & - & Same as Cl80 & \\
\hline Cl84 & E & 1 & K-7877443 & Electrolytic, \(25 \mathrm{mfd}+100 \%,-10 \%, 50\) volts d-c working \\
\hline Cl91 & 26 & 1 & M-7463969-P10 & Mica, 0.0001 mfd +10\%, 500 volts d-c working \\
\hline
\end{tabular}

RESTRICTED
NAVAER 08-5Q-245
OPERATINO SPARE PARTS (CONT'D)
FOR
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING BCOI PMENT


\section*{OPERATING SPARE PARTS (CONT'D)}

FOR
NAVY MODEI RAX-1 AIRCRAFT RADIO RECEIVING EQUIPMENT
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { SYMBOL } \\
\text { NO. }
\end{gathered}
\] & ENVELOPE NO. OR BOX LETTER & QUANTITY & G.E. DRAWING AND PART NUMBER & DESCRIPTION \\
\hline C275 & 28 & - & Same as \(\mathbf{C 2 2 0}\) & - - \\
\hline C276 & 35 & 1 & M-7463969-P12 & Mica, \(0.0002 \mathrm{mfd} \pm 10 \%\), 500 volts d-c working \\
\hline C277 & 26 & - & Same as Cl91 & \\
\hline C278 & 36 & 1 & K-7877485-P18 & Mica, 525 mmfd \(\pm 5 \%, 250\) volts d-c working \\
\hline C 279 & 37 & 1 & K-7877485-P25 & Mica, 215 mmfd \(\pm 5 \%, 250\) volts d-c working \\
\hline C280 & 38 & 1 & M-7463969-P14 & Mica, 0.0003 mf d \(+10 \%, 500\) volts \(\mathrm{d}-\mathrm{c}\) working \\
\hline c281 & 6 & - & Same as Clll &  \\
\hline C282 & 39 & 1 & P-7762455-P23 & Mica, \(0.0025 \mathrm{mfd} \pm 10 \%\), 500 volts d-c working \\
\hline C283 & 5 & - & Same as Cllo & \\
\hline C284 & 28 & - & Same as 6220 & - \\
\hline C285 & 5 & - & Same as Cllo & - \\
\hline C286 & 4 & - & Same as Cl08 & - \\
\hline C287 & 26 & - & Same as Cl91 & - - \\
\hline C288 & 40 & 1 & \[
\mathrm{K}-7877485-\mathrm{Pl2}
\] & Mica, \(612 \mathrm{mmfd} \pm 0.75 \%, 250\) volts d-c working \\
\hline C289 & 14 & - & Same as Cl42 & \[
-
\] \\
\hline C290 & 41 & 1 & K-7877485-P7 & Mica, 1195 .mmfd \(\pm 1.5 \%, 250\) volts d-c working \\
\hline C291 & 42 & 1 & K-7877485-P6 & Mica, 2390 mmfd \(\pm 5 \%, 250\) volts d-c working \\
\hline C 292 & 6 & - & Same as Clll &  \\
\hline C 293 & 28 & - & Same as 6220 & _ - \\
\hline C 295 & 26 & - & Same as Cl91 & - \\
\hline C 296 & 5 & - & Same as Cllo & - \\
\hline C 297 & 42 & - & Same as 6291 & - \\
\hline C298 & 42 & - & Same as 6291 & - \\
\hline C299 & 33 & - & Same as 6254 & - \\
\hline C307 & 6 & - & Same as Clil & - \\
\hline C311 & 6 & - & Same as Clll & - \\
\hline C312 & 6 & - & Same as Clll & - \\
\hline C313 & 6 & - & Same as Clll & - \\
\hline C319 & 12 & - & Same as Cl35 & - \\
\hline C321 & F & - & Same as 0256 & - \\
\hline C322 & 6 & - & Same as Clll & - \\
\hline C323 & 6 & - & Same as Clll & - \\
\hline C324 & 5 & - & Same as Cllo & - \\
\hline 6330 & 22 & - & Same as Cl7l & - \\
\hline C331 & 12 & - & Same as Cl35 & - \\
\hline C333 & 6 & - & Same as Clll & - \\
\hline C334 & 6 & - & Same as Clll & - \\
\hline C335 & 6 & - & Same as Clll &  \\
\hline \(C 336\) & 43 & 1 & K-7877485-P14 & M1ca, \(25 \mathrm{mmfd} \pm 5 \%, 250\) volts d-c working \\
\hline C337 & 11 & - & Same as Cl34 &  \\
\hline C338 & 44 & 1 & K-7877485-P27 & Mica, \(300 \mathrm{mmfd} \pm 5 \%, 250\) volts d-c working \\
\hline C339 & 44 & - & Same as 6338 & M1ca, 300 mfd \(\pm \nless 2\), volts d-c working \\
\hline C340 & 11 & - & Same as Cl34 & - \\
\hline C341 & 43 & - & Same as C336 & - - \\
\hline C343 & 45 & 1 & K-7877485-P42 & Mica, \(200 \mathrm{mmfd} \pm 0.5 \%, 250\) volts d-c working \\
\hline C344 & 46 & 1 & K-7877141-P5 & Ceramic, \(30 \mathrm{mmf}{ }^{\text {d }}+5 \%\), 500 volts \(\mathrm{d}-\mathrm{c}\) working \\
\hline \(C 345\)
\(C 346\) & 6 & 1 & Same as Clll &  \\
\hline \(C 346\)
\(C 348\) & 47 & 1 & K-7877141-P4 & Ceramic, 26 imfd \(\pm 5 \%, .500\) volts d-c working \\
\hline C348 & 31 & - & Same as C246 &  \\
\hline \(C 350\)
\(C 352\) & 48 & 1 & \(\mathrm{K}-7877485-\mathrm{Pl} 16\)
Same as C 336 & Mica, 70 mmfd \(\pm 2.5 \%, 250\) volts d-c working \\
\hline C354 & 49 & 1 & K-7877141-P1 & Ceramic, 5 mmfd +10\%, 500 volts d-c working \\
\hline C358 & 22 & \(\square\) & Same as Cl71 & \\
\hline C359 & 28 & - & Same as \({ }^{\text {c }} \mathbf{C 2} 2\) & - \\
\hline C360 & 6 & - & Same as Clll & - \\
\hline C361 & 44 & - & Same as 6338 & - \\
\hline C362 & 44 & - & Same as 0338 & - \\
\hline C363 & 28 & - & Same as C 220 & - \\
\hline C364 & 6 & \% & Same as Clll & - \\
\hline C365 & 6 & & Same as Clll & - \\
\hline \(C 367\)
\(C 368\) & 6 & - & Same as Clll &  \\
\hline C368 & A & - & Same as C160 & - \\
\hline
\end{tabular}

\section*{RESTRICTED}

\section*{NAVAER 08-5Q-245}

OPERATING SPARE PARTS (CONT'D)
FOR
NAVY MODEI RAX-1 AIRCRAFT RADIO RECEIVING EQUIPNENT
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { SMMBOL } \\
\text { NO. }
\end{gathered}
\] & ENVELOPE NO. OR BOX LETTER & QUANTITY & G.E. DRAWING AND PART NUMBER & DESCRIPTION \\
\hline C370 & 28 & - & Same as C220 & - \\
\hline C371 & 28 & - & Same as C220 & - \\
\hline 0372 & 6 & - & Same as Clll & - \\
\hline 0373 & 6 & - & Same as Clll & - \\
\hline 0374 & D & - & Same as Cl77 & - \\
\hline 0375 & 28 & - & Same as C220 & - \\
\hline 0376 & 6 & - & Same as Clil & \\
\hline 0377 & 28 & - & Same as C 220 & \\
\hline 0378 & 50 & 1 & K-7877485-P43 & Mica, \(350 \mathrm{mmfd} \pm 10 \%, 250\) volts d-c working \\
\hline 6379 & 50 & - & Same as 6378 & - - \\
\hline C380 & 6 & - & Same as Clll & \\
\hline C381
C382 & 51 & 1 & K-7877485-P28 & M1ca, \(400 \mathrm{mmPd} \pm 5 \%, 250\) volts d-c working \\
\hline \(C 382\)
\(C 383\) & 44 & - & Same as C338
Same as Cl08 & H1 \\
\hline 0384 & 52 & 1 & K-7877485-P24 & M1ca, \(175 \mathrm{mmfd} \pm 5 \%, 250\) volts d-e working \\
\hline C385 & 6 & - & Same as Clll & \\
\hline C386 & 17 & - & Same as Cl50 &  \\
\hline C387 & 53 & 1 & K-7464527-P25 & M1ca, \(0.004 \mathrm{mfd} \pm 10 \%, 300\) volts d-c working \\
\hline C388 & 6 & - & Same as Clll & - - \\
\hline C389 & 26 & - & Same as Cligl & - \\
\hline 0390 & 6 & - & Same as Clll & - 690 - \\
\hline \(C 391\) & 54 & 1 & K-7877485-P11 & Mica, \(690 \mathrm{mmfd} \pm 0.5 \%, 250\) volts d-c working \\
\hline 0392 & 55 & , & K-7877485-P8 & Mica, \(1325 \mathrm{mmfd} \pm 0.5 \%\), 250 volts d-c working \\
\hline C393 & 6 & - & Same as Clll & \\
\hline C395 & 6 & - & Same as Clll & \\
\hline C396 & 4 & - & Same as Cl08 & - - \\
\hline C397 & 56 & 1 & K-7877485-P5 & M1ca, 1720 mmfd \(\pm 1 \%, 250\) volts d-c working \\
\hline 0398 & 57 & 1 & K-7877485-P2 & Mica, \(2450 \mathrm{mmfd} \mp 1 \neq 250\) volts \(d-c\) working \\
\hline \(C 399\)
\(C 400\) & 57
58 & - & Same as C397 &  \\
\hline C400
\(C 401\) & 58
56 & 1 & \[
\begin{aligned}
& \text { K-7877485-P1 } \\
& \text { Same as C397 }
\end{aligned}
\] & Mica, \(2600 \mathrm{mmPd} \pm 1 \%, 250\) volts d-c working \\
\hline C402 & 58 & - & Sáme as C400 & - \\
\hline C403 & 22 & - & Same as Cl71 & - \\
\hline C405 & 31 & - & Same as C246 & - \\
\hline C406 & 13 & - & Same as Cl40 & - \(220{ }^{-}\)- \({ }^{-1}\) \\
\hline C407 & 59 & 1 & K-7877485-P23 & Maca, \(120 \mathrm{mmPd} \pm 5 \%, 250\) volts d-c working \\
\hline C408 & 31 & - & Same as \(\mathbf{C 2 4 6}\) & M1 - \\
\hline \(C 409\)
\(C 410\) & 12 & - & Same as Cl35 & M1c8, 75 mmed \(+58,250\) volts d-c morking \\
\hline \(C 410\)
\(C 411\) & 60
31 & 1 & \begin{tabular}{l}
K-7877485-P22 \\
Same as C 246
\end{tabular} & Mica, \(75 \mathrm{mmPd} \pm 5 \%, 250\) volts d-c working \\
\hline 0412 & 12 & - & Same as Cl35 & - \\
\hline C413 & 60 & - & Same as C410 & - \\
\hline C414 & 2 & - & Same as Cl06 & -10 - \\
\hline 0415 & 61 & 1 & K-7877485-P19 & Mica, \(10 \mathrm{mmfd} \pm 5 \%, 250\) volts d-c working \\
\hline 0416 & 61 & - & Same as C415 &  \\
\hline \(C 417\)
\(C 418\) & 27 & - & Same as C218 & - \\
\hline \(C 418\)
\(C 419\) & 28 & - & Same as C 220
Same as C 220 & - \\
\hline C420 & 27 & - & Same as C 218 & - \\
\hline C422 & 28 & - & Same as C220 & - \\
\hline Cl201 & 4 & - & Same as Cl08 & - \\
\hline Cl202 & 8 & - & Same as Cl22 & - \\
\hline \(\mathrm{Cl203}\) & 28 & - & Same as C220 & \\
\hline Cl204 & 26 & - & Same as Cl91 & - \\
\hline Cl205 & 6 & - & Same as Clll & - \\
\hline C1206 & 6 & - & Same as Clll & 4 - - \\
\hline Fl01 & 62 & 12 & K-7881566 & 4 amp "Littelfuse Laboratory" \\
\hline F2O1 & . 62 & - & Same as Flol & \\
\hline F301 & 62 & - & Same as Flol & - \\
\hline L203 & \(G\) & 1 & - \(\mathbf{K}\)-7877090 & 350 turns of NO. 28 AWG, DSR copper wire Universal wound with 2 crosses per turn on a 3/8-in diam No. 2008-B comp. form. Inductance: 2 microhenries 45 \\
\hline
\end{tabular}

RESTRICTED
NAVAER 08-5Q-245
OPERATING SPARE PARTS (CONT'D)
FOR
NAVY MODEC RAX-1 AIRCRAFP RADIO RECEIVING EQUIPMENTT
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Symbol } \\
\text { NO. }
\end{gathered}
\] & RUVELOPE NO. OR BOX LETHTER & QUANTITTY & G.E. DRAWING AND PART NOMBER & DESCRIPTION \\
\hline L104 & H & 1 & K-7877075 & 0.5 hanry, \(u .082\) amp \(d-c, 42\) ohms d-c res. (Cat. No. 67G302) \\
\hline L105 & J & 1 & K-7877089 & 28 turns of No. 14 AWG double cotton covered copper wire. Seven layers Pyramid wound on a 3/8-in. diam No. 2008-B comp. form. Inductance Approx 8.4 microhenries \\
\hline L108 & E & 1 & M-7464808-G1 & 50 turns of \(0.025-\mathrm{in}\). bire \(0.033-\mathrm{in}\). DCG copper wire Universal wound with 2 crosses per turn on a 1/2-1n. diam Isolantite form \\
\hline L109 & L & 1 & к-7879066 & 2.48 henries, \(+10 \%, 0.0075 \mathrm{amp} \mathrm{d}-\mathrm{c}, 60\) cycles (Cat. No. 67Ğ794) \\
\hline L205 & G & - & Same as Ll03 & \\
\hline L206 & H & - & Same as Ll04 & \\
\hline L207 & J & - & Same as Ll05 & \\
\hline L208 & K & - & Same as Ll08 &  \\
\hline L210 & M & 1 & P-7763160-G1 & 1350 turns of \(0.0063-\mathrm{in}\). diam bare \(0.009-\mathrm{in}\). diam ES copper wire Universal wound on a \(0.560-\mathrm{in}\). diam No. 2029-B comp. form, tap at 675 turns (Crowley Type Al slug) \\
\hline L211 & K & - & Same as Ll08 & \\
\hline L306 & G & - & game as Ll03 & - \\
\hline L307 & H & - & Same as Ll04 & - \\
\hline L308 & J & - & Same as Ll05 & 200 (tot) No. \(36^{-}\)- \({ }^{\text {cosen }}\) \\
\hline L312 & N & 1 & K-7877552 & 200 turns (total) No. 36 ES copper wire 2 crosses per turn ( 3 sections), Universal wound on a 1/4-1n. diam No. 1841-B comp. form \\
\hline L314 & K & - & Same as L108 & - - \\
\hline L315 & M & - & Same as L210 & 100,000 - \\
\hline R102 & 63 & 1 & P-7763599-P86 & 100,000 ohms \(+10 \%, 1 / 2\) watt \\
\hline R103 & 64 & 1 & P-7763599-P98 & 1.0 megohm \(+10 \%, 1 / 2\) watt \\
\hline R105 & 65 & 1 & P-7763599-P156 & 750 ohms \(\pm 5 \overline{\text { \% }}\), \(1 / 2\) watt \\
\hline R106 & 66 & 1 & P-7763599-P78 & 22,000 ohms \(\pm 10 \%, 1 / 2 . w a t t\) \\
\hline R107 & 67 & 1 & P-7763599-P75 & 12,000 ohms \(\pm 10 \%, 1 / 2\) watt \\
\hline R108 & 67 & - & Same as R107 & - \\
\hline R109 & 68 & 1 & P-7763599-P62 & 1000 ohms \(\pm 10 \%, 1 / 2\) watt \\
\hline Rll0 & P & & M-7464322-P1 & Bradleyometer, 5000 ohms \(\pm 15 \%\) \\
\hline Rlll & 69 & & P-7763599-P63 & 1200 ohms \(\pm 10 \%, 1 / 2\) watt \\
\hline R126 & 70 & 1 & P-7763599-P183 & 10,000 ohms \(\pm 5 \%, 1 / 2\) watt \\
\hline R127 & 71 & 1 & P-7763599-P219 & 330,000 ohms \(\pm 5 \%, 1 / 2\) watt \\
\hline R128 & 72 & 1 & P-7763599-P203 & 68,000 ohms \(\pm 5 \%, 1 / 2\) watt \\
\hline R129 & 73 & 1 & P-7763599 -P90 & 220,000 ohms \(\pm 10 \%, 1 / 2\) watt \\
\hline R130 & 74 & 1 & P-7763599-P57 & 390 ohmis \(\pm 10 \%\), \(1 / 2\) watt \\
\hline R131 & 75 & 1 & P-7763599-P202 & 62,000 ohms \(\pm 5 \%, 1 / 2\) watt \\
\hline R132 & 67 & - & Same as R107 & \\
\hline R133 & 76 & 1 & P-7763599-P88 & 150,000 ohms \(\pm 10 \%, 1 / 2\) watt \\
\hline R134 & 63 & - & Same as R102 & - - \\
\hline R151 & 65 & - & Same as R105 & - \({ }^{-}\)- \\
\hline R152 & Q & 1 & M-7464321-P1 & Bradleyometer, 20,000 ohms \(\pm 10 \%\) (panel)
800,000 ohms \(\pm 10 \%\) (rear) \\
\hline R154 & 77 & 1 & P-7763600-P203 & 68,000 ohms \(\pm 5 \%, 1\) watt \\
\hline R155 & 64 & - & Same as R103 & ,00 - \\
\hline R157 & 78 & 1 & P-7763600-P76 & 15,000 ohms \(\pm 10 \%\), 1 watt \\
\hline R158 & 68 & - & Same as R107 & \\
\hline R159 & 79 & 1 & P-7763599-P94 & 470,000 ohms \(\pm 10 \%, 1 / 2\) watt \\
\hline R160 & 65 & - & Same as R105 & 39,000 - \\
\hline R161 & 80 & 1 & P-7763599-P81 & 39,000 ohms \(\pm 10 \%, 1 / 2\) watt \\
\hline R162 & 81 & 1 & P-7763599-P100 & 1.5 megohms \(\pm 10 \%, 1 / 2\) watt \\
\hline R163 & 65 & - & Same as R105 & 47,000 - \\
\hline R164 & 82 & 1 & P-7763599-P82 & 47,000 ohms \(\pm 10 \%, 1 / 2\) watt \\
\hline R165 & 83 & 1 & P-7763599-P92 & 330,000 ohms \(\pm 10 \%, 1 / 2\) watt \\
\hline R166 & 84 & 1 & P-7763600-P194 & 30,000 ohms \(\pm 5 \%, 1\) watt \\
\hline R167 & 64 & - & Same as R103 & - - \\
\hline
\end{tabular}

RESTRICTED
NAVAER 08-5Q-245
OPERATING SPARE PARTS (CONT'D)
FOR
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUIPMENT
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { SYNBOL } \\
\text { NO. }
\end{gathered}
\] & EIVELOPE NO. OR BOX LETYTIER & QUANTITY & G.R. DRAWING AND PART NOMBER & DESCRIPTION \\
\hline R168 & 85 & 1 & P-7763599-P152 & 510 ohms \(\pm 5 \%, 1 / 2\) watt \\
\hline R169 & 86 & 1 & P-7763599-P. 56 & 330 ohms \(\pm 10 \%\), 1/2 watt \\
\hline R170 & 82 & - & Same as R164 & \\
\hline R177 & 87 & 1 & P-7763600-P149 & 390 opms \(\pm 5 \%, 1\) watt \\
\hline R178 & 85 & - & Same as R168 & \\
\hline R202 & 64 & - & Same as R103 & - - \\
\hline R203 & 88 & 1 & P-7763599-P61 & 820 ohms \(\pm 10 \%\), \(1 / 2\) watt \\
\hline R204 & 89 & 1 & P-7763599-P154 & 620 ohms \(\pm 58,1 / 2\) watt \\
\hline R205 & 90 & 1 & P-7763599-P66 & 2200 ohms \(\pm 108,1 / 2\) watt \\
\hline R206 & 64 & - & Same as R103 & - \\
\hline R207 & 91 & 1 & P-7763599-P146 & 300 ohms \(\pm 5 \%, 1 / 2\) watt \\
\hline R208 & 92 & 1 & P-7763599-P170 & 3000 ohms \(+5 \%, 1 / 2\) watt \\
\hline R209 & 93 & 1 & P-7763599-P161 & 1200 ohms \(+5 \%, 1 / 2\) watt \\
\hline R210 & 87 & - & Same as Rl77 & - \\
\hline R211 & 90 & - & Same as R205 & - \\
\hline R212 & 64 & - & Same as R103 & 330 - \\
\hline R213 & 94 & 1 & P-7763599-P147 & 330 ohms \(\pm 5 \%, 1 / 2\) watt \\
\hline R214 & 95 & 1 & P-7763599-P197 & 39,000 ohms \(+58,1 / 2\) watt \\
\hline R215 & 96 & 1 & P-7763599-P185 & 12,000 ohms \(+58,1 / 2\) watt \\
\hline R216 & 97 & 1 & P-7763599-P200 & 51,000 ohms \(\pm 5 \%, 1 / 2\) watt \\
\hline R217 & 98 & 1 & P-7763599-P199 & 47,000 ohms \(+5 \%, 1 / 2\) watt \\
\hline R218 & 99 & 1 & P-7763599-P187 & 15,000 ohms \(\pm 5 \%, 1 / 2\) watt \\
\hline R219 & 100 & 1 & P-7763599-P209 & -120,000 ohms \(\pm 5 \%, 1 / 2\) watt \\
\hline R220 & 93 & - & Same as R209 & 120, \\
\hline R221 & 82 & - & Same as R164 & - \\
\hline R222 & 95 & - & Same as R214 & - - \\
\hline R223 & 101 & 1 & P-7763599-P214 & 200,000 Qhms \(\pm 5 \%, 1 / 2\) watt \\
\hline R224 & 91 & - & Same as R207 & - \\
\hline R225 & 64 & - & Same as R103 & - - \\
\hline R226 & 102 & 1 & P-7763600-P184 & 11,000 ohms \(45 \%, 1\) watt \\
\hline R227 & 90 & - & Same as R205 & - \\
\hline R228 & R & 1 & M-7464321-P2 & \[
\begin{aligned}
& \text { Bradleyometer, } 6250 \text { ohms }+10 \% \text { (panel) } \\
& 800,000 \text { ohms } \pm 10 \$ \text { (rear) }
\end{aligned}
\] \\
\hline R229 & 90 & - & Same as R205 & - \\
\hline R230 & 103 & 1 & P-7763599-P205 & 82,000 ohms \(\pm 5 \%, 1 / 2\) watt \\
\hline R231 & 103 & - & Same as R230 & - \\
\hline R232 & 85 & - & Same as R168 & - \\
\hline R233 & 104 & 1 & P-7763599-P223 & 470,000 ohms \(\pm 5 \%, 1 / 2\) watt \\
\hline R234 & 105 & 1 & P-7763599-P192 & 24,000 ohms \(+5 \%, 1 / 2\) watt \\
\hline R235 & 103 & - & Same as R203 & - \\
\hline R236 & 95 & - & Same as R214 & 300,000 - \\
\hline R237 & 106 & 1 & P-7763599-P218 & 300,000 ohms \(\pm 5 \%, 1 / 2\) watt \\
\hline R238 & 67 & - & Same as R107 & \\
\hline R239 & 91 & - & Same as R207 & - \\
\hline R240 & 103 & - & Same as R230 & - \\
\hline R241 & 96 & - & Same as R215 & \\
\hline R242 & 97 & - & Same as R216 & - \\
\hline R243 & 107 & 1 & P-7763599-P166 & 2000 ohms \(55 \%, 1 / 2\) watt \\
\hline R244 & 103 & - & Same as R230 & - \\
\hline R245 & 98 & - & Same as R217 & - \\
\hline R246 & 108 & 1 & P-7763600-P195 & 33,000 ohms \(\pm 5 \%, 1\) watt \\
\hline R247 & 105 & - & Same as R234 & \\
\hline R248 & 85 & - & Same as Rl68 & - \\
\hline R249 & 95 & - & Same as R214 & 600 - \\
\hline R250 & 109 & 1 & P-7763599-P71 & 5600 ohms \(\pm 10 \%, 1 / 2\) watt \\
\hline R251 & 103 & - & Same as R230 & - \\
\hline R252 & 102 & - & Same as R226 & - \\
\hline R253 & 85 & - & Same as Rl68 & - - \\
\hline R302 & 110 & 1 & P-7763599-P54 & 220 ohms \(\pm 10 \%, 1 / 2\) watt \\
\hline R303 & 89 & - & Same as R205 & - \\
\hline R304 & 68 & - & Same as Rl09 & - \\
\hline R305 & 89 & - & Same as R205 & - \\
\hline
\end{tabular}

\section*{RESTRICTED \\ NAVAER 08-5Q-245}

OPERATING SPARE PARTS (CONT'D)
FOR
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUIPMENT
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { SYMBOL } \\
\text { NO. }
\end{gathered}
\] & ENVELOPE NO. OR BOX LETTER & QUANTITY & G.E. DRAWING AND PART NUMBER & DESCRIPTION \\
\hline R306 & 79 & - & Same as R159 & - \\
\hline R307 & 110 & - & Same as R302 & - - \\
\hline R308 & S & 1 & M-7464322-P2 & Bradleyometer, 2500 ohms \(\pm 10 \%\) \\
\hline R309 & 68 & - & Same as Rl09 & \\
\hline R310 & 111 & 1 & P-7763600-P32 & 47,000 ohms \(\pm 10 \%\), 1 watt \\
\hline R311 & 90 & - & Same as R205 & - - \\
\hline R312 & 7982 & - &  & 4 \\
\hline R313 & 86 & - & Same as R169 & - \\
\hline R314 & 67 & - & Same as Rl07 & - \\
\hline R315 & 112 & 1 & P-7763600-P181 & 8200 ohms \(\pm 5 \%\), 1 watt \\
\hline R316 & 72 & - & Same as Rl28 & - \\
\hline R317 & 82 & - & Same as R164 & - \\
\hline R320 & 87 & - & Same as Rl77 & - \\
\hline R321 & 103 & - & Same as R230 & - \\
\hline R322 & 64 & - & Same as Rl03 & - 60 \\
\hline R323 & 113 & 1 & P-7763599-P59 & 560 ohms \(\pm 10 \%, 1 / 2\) watt \\
\hline R324 & 114 & 1 & P-7763599-P182 & 9100 ohms \(\pm 5 \%, 1 / 2\) watt \\
\hline R326 & R & - & Same as R228 &  \\
\hline R328 & 121 & 1 & P-7763600-P169 & 2700 ohms \(\pm 5 \%\), 1 watt \\
\hline R329 & 86 & - & Same as Ri69 &  \\
\hline R330 & 79 & - & Same as R159 &  \\
\hline R331 & 79 & - & Same as Rl59 &  \\
\hline R332 & 115 & 1 & P-7763599-P77 & 18,000 ohms \(\pm 10 \%, 1 / 2\) watt \\
\hline R333 & 88 & - & Same as R203 & - - \\
\hline R334 & 83 & - & Same as R165 & - \\
\hline R336 & 97 & - & Same as R216 & - \\
\hline R337 & 88 & - & Same as R203 & - \\
\hline R338 & 67 & - & Same as Rl07 & , \\
\hline R339 & 116 & 1 & P-7763599-P211 & 150,000 ohms \(\pm 5 \%, 1 / 2\) watt \\
\hline R340 & 68 & - & Same as Rl09 &  \\
\hline R341 & 82 & - & Same as R R 64 &  \\
\hline R342 & 117 & 1 & P-7763600-P80 & 33,000 ohms \(\pm 10 \%, 1\) watt \\
\hline R343 & 74 & - & Same as R130 & - \\
\hline R344 & 118 & 1 & P-7763600-P67 & 2700 ohms \(\pm 10 \%, 1\) watt \\
\hline R345 & 68 & - & Same as Rl09 & - \\
\hline R346 & 119 & 1 & P-7763599-P84 & 68,000 ohms \(\pm 10 \%, 1 / 2\) watt . \\
\hline R347 & 105 & - & Same as R234 &  \\
\hline R348 & 90 & - & Same as R205 & - - \\
\hline R349 & 68 & - & Same as R109 & - - \\
\hline Tll7 & T & 1 & K-7877947 & Cat. No. 676919 \\
\hline T217 & T & - & Same as Tll7 & - \\
\hline T322 & 'T & - & Same as Tll7 & - \\
\hline V101 & - & 13 & - & Type 12sk7 \\
\hline V102 & - & 3 & - & Type 12K8 \\
\hline V103 & - & - & Same as Vlol & - \\
\hline V104 & - & - & Same as VlOl & - - \\
\hline V105 & - & 3 & - & Type 12A6 \\
\hline V106 & - & 3 & - & Type l2SR7 \\
\hline V107 & 120 & 3 & - & Lamp Type No. CD-1010-CL \\
\hline V201 & - & - & Same as VlOl & - \\
\hline V202 & - & - & Same as V101 & - - \\
\hline V203 & - & - & Same as Vloz & - \\
\hline V204 & - . & - & Same as Vlol & - \\
\hline V205 & - & - & Same as Vlol & - \\
\hline V206 & - & - & Same as VlOl. & - \\
\hline V207 & - & - & Same as V105 & - \\
\hline V208 & - & - & Same as V106 & - \\
\hline V209 & - & - & Same as V107 & - \\
\hline V301 & - & - & Same as Vlol & . - \\
\hline V302 & - & - & Same as Vl02 & - \\
\hline V303 & - & - & Same as VlOl & - \\
\hline V304 & - & - & Same as VlOl & - \\
\hline
\end{tabular}

\section*{RESTRICTED \\ NAVAER 08-5Q-245}

\section*{OPERATING SPARE PARTS (CONT'D)}

FOR
NAVY MODEL RAX-1 AIRCRAFT RADIO RECEIVING EQUIPMENT
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { SYMBOL } \\
\text { NO. }
\end{gathered}
\] & \[
\begin{array}{|c}
\hline \text { ENVELOPE NO. } \\
\text { OR BOX } \\
\text { LETTER }
\end{array}
\] & QUANTITY & G.E. DRAWIIVG AND PART NOMBER & DESCRIPTION \\
\hline v305 & - & - & Same as V101 & - \\
\hline v306 & - & - & Same as V105 & - \\
\hline v307 & - & - & Same as V106 & - \\
\hline v308 & - & - & Same as V101 & \\
\hline v309 & - & - & Same as V107 & - \(6000^{-}\)- \\
\hline & 121 & 4 & K-7878415 & Grid Clip Type No. 6000 Cinch Mrg. Co. \\
\hline - & U & 1 & ML-7762748-G4 & Dynamotor mounting \\
\hline - & - & 1 & K-7878738 & Plug (for use in operating receivers when detached from mounting racks, servicing, testing, etc.) \\
\hline \multirow[t]{2}{*}{-} & 122 & \[
\begin{aligned}
& 3 \text { sets } \\
& (6)
\end{aligned}
\] & K-7880785-P1 & \(\mathrm{H}-\mathrm{v}\) dynamotor brushes \\
\hline & 123 & \begin{tabular}{l}
\[
3 \text { sets }
\] \\
(6)
\end{tabular} & K-7880786-P1 & L-v dynamotor brushes \\
\hline
\end{tabular}

\section*{RESTRICTED}

NAVAER 08-5Q-245



\section*{RESTRICTED}

NAVAER 08-5Q-245


RESTRICTED
NAVAER 08-5Q-245


RESTRICTED
NAVAER 08-5Q-245



RESTRICTED
NAVAER 08-5Q-245



RESTRICTED
NAVAER 08-5Q-245



RESTRICTED



\section*{RESTRICTED}

NAVAER 08-5Q-245


RESTRICTED
NAVAER 08-5Q-245


RESTRICTED
NAVAER 08-5Q-245

AVC Curve


RESTRICTED
NAVAER 08-5Q-245


K-7883571

RESTRICTED


RESTRICTED
NAVAER 08-5Q-245


N



I-f and Image Rejection

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{RESISTORS} & \multicolumn{2}{|r|}{TU日ES} \\
\hline R102 & O.1 MEGOHM & \(1 / 2\) watt & V101 & \\
\hline R103 & 1.0 MEGOHM & & V102 & 12 KB CONVERTER \\
\hline R 105 & 750 OHMS & & V102
\(\vee 103\) & 12K8 CONVERTER \\
\hline R 106 & 22,000 & & \(\checkmark 104\) & 12 SK7 i.f.AMMP \\
\hline R107 & 12,000 & , & v105 & 12 126 OUTPUT \\
\hline R 108 & 12,000 & 13 Watt & \[
\text { v } 106
\] & I2SR7 B.F.O.AND 2 ND. DE1 \\
\hline R 109
R 110 & & 12 WATT
M-7464322 PI & viot & \[
C D-1010-C L
\] \\
\hline R 110 & 5,00 OHMS & M-7464322 PI & & \\
\hline R1II &  & 1/2 WATT & & \\
\hline R 126 & 10000 & V/2 WATT & & \\
\hline R 127 & 330,000 & A & & \\
\hline R 128 & 68,000 & & & \\
\hline R 129 & 220000 & & & TUBE SOCKETS \\
\hline R 130 & 390 & & \(\times 101\) & \\
\hline R 131 & 62,000 & & X 102 & K7874006 \\
\hline R 132 & 12,000 OHMS & & \(\times 101\)
\(\times 102\)
\(\times 103\) & \\
\hline R 133
R 134 & .15MEGOHMS & 1/2 WATT & [ & K K 7874006 \\
\hline R 134 & .IOMEGOHMS & \(1 / 2\) WATT & + & K 7874006 \\
\hline \[
\begin{aligned}
& \text { R151 } \\
& \text { R } 152 \text { A }
\end{aligned}
\] & \[
\begin{aligned}
& 750 \text { OHMS } \\
& 20,000 \text { OHMS }
\end{aligned}
\] & \[
\begin{aligned}
& V / 2 \text { WATT } \\
& M-7464321 \mathrm{PI}
\end{aligned}
\] & X \(\times 106\) & K 7874006 \\
\hline R 152 B & 800,000 OHMS & & & \\
\hline R 154 & 68,000 OHMS' & 1 WATT & & \\
\hline R 155 & 1 MEGOHM & 1/2 WATT & & \\
\hline R 157 & 15,000 OHMS & 1 WATT & & \\
\hline R 158 & 1,000 OHMS & 1/2 WATT & & \\
\hline R 159 & . 47 MEGOHMS & & 2101 &  \\
\hline R 160 & 750 OHMS & & 2102 & \\
\hline R 161 & 39,000 OHMS & & & \\
\hline R 162 & 1.5 MEGOHMS & & & \\
\hline R 163 & 750 OHMS & & & \\
\hline R 164 & 47,000 OHMS & & & \\
\hline R 165 & . 33 MEGOHMS & & & \\
\hline R 167 & - 1.0 MEGOHMS & & & \\
\hline R 168 & 510 OHMS & & & \\
\hline R 169 & 330 OHMS & 1/2 WATT & & \\
\hline R 177 & 390 OHMS & 1 WATT & & \\
\hline R 178 & 510 OHMS & I/2 WATT & & \\
\hline R 166 & 30,000 OHMS & 1 WATT & & \\
\hline R 170 & 47,000 OHms. & \(1 / 2\) WATT & & \\
\hline \multicolumn{5}{|c|}{SWITCHES} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{ll}\text { SIOIA,B,C } & M 7464376 \\ \text { SIO2A,G,D } & M 7464292\end{array}\)}} & P3 & & \\
\hline & & P2 & & \\
\hline \multicolumn{2}{|l|}{SIO3A,B M7464292} & & & \\
\hline SI05A, & B,C,D M7464376 & P3 & & \\
\hline SI06A, & B,C,D M7464376 & PI & & \\
\hline
\end{tabular}

* TII7 K-7877947 USED ON

Schematic Diagram, Type CG-46115 Receiver Unit No. 1


\section*{RESTRICTED}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{RESISTORS} \\
\hline R202 & 1 MEGOHM & \(\sqrt{2}\) WATT \\
\hline R 203 & 820 OHMS & \\
\hline R204 & 620 OHMS & \\
\hline R 205 & 2200 OHMS & \\
\hline R206 & 1 MEGOHM & \\
\hline R207 & 300 OHMS & \\
\hline R208 & 3000 & \\
\hline \(R 209\) & 1200 & \(1 / 2\) WATt \\
\hline R210 & 390 & 1 WATT \\
\hline R211 & 2200 OHMS & \(\sqrt{2}\) WATT \\
\hline R2 12 & 1 MEGOHM & , \\
\hline R213 & \(330{ }^{\text {O HMS }}\) & \\
\hline R214 & 39,000 1 & \\
\hline R2 15 & 12000 & \\
\hline R2 16 & 51,000 & \\
\hline R2 17 & 47,000 & \\
\hline R2189 & 15,000 & V/ WATT \\
\hline R220 & 1200 & \(\sqrt{2}\) WATT \\
\hline R221 & 47,000 & 4 \\
\hline & & \\
\hline R224 & 2306000 & \\
\hline R225 & I MEGOHM & 1/2 WATT \\
\hline R251 & 82,000 OHMS & \(1 / 2\) WATT \\
\hline R252 & 11000 OHMS & 1 Watt \\
\hline R253 & 510 OHMS & 1/2 WATT \\
\hline \[
\begin{aligned}
& \text { R227 } \\
& \text { R228 A }
\end{aligned}
\] & \[
\begin{aligned}
& 2,200 \\
& 6250
\end{aligned}
\] & \(1 / 2\) WATT M 7464321 P2 \\
\hline R2288 & 800,000 & M 746432 P2 \\
\hline R 229 & 2200 & \(1 / 2\) WATT \\
\hline R 230 & 82,000 & , \\
\hline R231 & 82,000 & \\
\hline R232 & 510 & \\
\hline R233 & 479000 & \\
\hline R234 & 24000 & \\
\hline R 235 & 820 & \\
\hline R 236 & 39000 & \\
\hline R237 & 300,000 & \\
\hline R239 & 300 & \\
\hline R240 & 82,000 & \\
\hline R241 & 12,000 & \\
\hline R 242 & 51.000 & \\
\hline R244 & 82,000 & \(\dagger\) \\
\hline R245 & 47000 & \(1 / 2\) WATT \\
\hline R246 & 33,000 & 1 WATT \\
\hline R247 & 24000 OHMS & 1/2 WATT \\
\hline R248 & 510 OHMS & 1/2 WATT \\
\hline R243 & 2000
12000
OHMS & Y2 WATT \\
\hline R249 & 39,000 OHMS & V2 WATT \\
\hline R250 & 5600 OHMS & 1/2 WATT \\
\hline & SWITCHES & \\
\hline S2OIAEC-D & - M7464376 P3 & \\
\hline S202A-B-C & CD W7464376 P3 & \\
\hline S204ABCD &  & \\
\hline S204A \({ }^{\text {a }}\) & -0 MT464376 P6 & \\
\hline S205AB-G & C0 M7464292 P2 & \\
\hline S207A-8 & M7464292 PI & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & TRANSFORMERS \\
\hline & T201 & K 7877362 \\
\hline & T202 & K 7877363 \\
\hline & \(T 203\) & K 7877364 \\
\hline & T204 & K 7877365 \\
\hline & T205 & K 7877366 \\
\hline & 7206 & K 7877367 \\
\hline & T207 & K 7877368 \\
\hline & T208 & K 7877369 \\
\hline & T209 & P77631036-1 \\
\hline & \(T 210\) & K 7877374 \\
\hline & T212 & K 7877376 \\
\hline & T213 & K 7877377 \\
\hline & T214 & P 776310561 \\
\hline & T215 & P77631046-1 \\
\hline & T216 & P 7763106 -1 \\
\hline * & T217 & K 7878236 \\
\hline & T219 & K 7877370 \\
\hline & T220 & K 7877371 \\
\hline & T221 & K 7877372 \\
\hline & T222 & K7877373 \\
\hline & T211 & K 7877375 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{* T217}} & K-7877947 USED ON NAVY MODEL RAX-I. \\
\hline & & tuees \\
\hline & V201 & 12 SK7 \\
\hline & V202 & 12 SK7 \\
\hline & \(\checkmark 203\) & 12 l \\
\hline & \(\checkmark 204\) & 12SK7 \\
\hline & \(\checkmark 205\) & 12 SK7 \\
\hline & \(\checkmark 206\) & 12 SK7 \\
\hline & V207 & 12 A 6 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\(V 208\)
V 209}} & \(128 n 7\) \\
\hline & & CO-io:O-CL \\
\hline & & \\
\hline \multicolumn{3}{|r|}{\multirow[b]{2}{*}{TUBE SOCKETS}} \\
\hline & & \\
\hline & \(\times 201\) & K 7874006 \\
\hline \multicolumn{3}{|r|}{\(\times 2021\)} \\
\hline \multicolumn{3}{|c|}{\multirow[t]{2}{*}{X203}} \\
\hline & & \\
\hline \multicolumn{3}{|c|}{X205} \\
\hline \multicolumn{3}{|c|}{\(\times 206\)} \\
\hline \multicolumn{3}{|r|}{\(\times 207\)} \\
\hline \multicolumn{3}{|r|}{X 208 K 7.874006} \\
\hline
\end{tabular}



TRANSFORMERS

\begin{tabular}{|c|c|}
\hline & TUBE 80CKETS \\
\hline 'X301 & K7874006 \\
\hline \(\times 302\) & \\
\hline \(\times 303\) & \\
\hline \(\times 304\) & \\
\hline \(\times 305\) & \\
\hline \(\times 306\) & \\
\hline \(\times 307\) & \\
\hline \(\times 308\) & K 7874006 \\
\hline
\end{tabular}

TUBES
\begin{tabular}{ll}
\(V 301\) & \(128 K 7\) \\
\(V 301\) & \(12 K 8\) \\
\(V 302\) & \(12 K 87\) \\
\(V 303\) & \(128 K 7\) \\
\(V 304\) & \(128 K 7\) \\
\(V 305\) & \(128 K 7\) \\
\(V 306\) & \(12 A 6\) \\
\(V 307\) & \(128 R 7\) \\
\(V 308\) & \(128 K 7\) \\
\(V 309\) & \(C D-1010-G L\)
\end{tabular}

Schematic Diagram, Type CG-46117 Receiver Unit No. 3


\section*{RESTRICTED}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{CAPACITORS} \\
\hline \multirow[t]{2}{*}{CIO6 CIO7 cI09A} & . 05 MFD & 400 V . & \\
\hline & \multirow[t]{2}{*}{. 01 MFD} & \multicolumn{2}{|l|}{600V.} \\
\hline & & TT-76 & , \\
\hline CiO9C & \(\triangle\) 3208MMF & d TUNING & G CAPACITOR \\
\hline Clll & . 006 MFD & 300 v & \\
\hline C112 & .05 MFD & 400 V . & \\
\hline C119 & 70 MMFD & 500 V . in & NCUDED IN 210 \\
\hline C 121 & 50 MMFD & TRIMMER & INCLUDED IN 2102 \\
\hline C123 & . 006 MFD & 300 V . & \\
\hline \({ }_{C} \mathrm{Cl} 135\) & 5500 MFD & 400 V & \\
\hline C135 & 30 MMMFD & 250 v . & \\
\hline C139 & . 05 MFD & 400V & \\
\hline \[
\begin{aligned}
& \text { C139 } \\
& \text { C140 }
\end{aligned}
\] & 50 MMFD & 250 V & INCLUDED IN TII4 \\
\hline C141 & 75 MMFD & TRIMMER & \\
\hline C. 142 & 730 MMFD & 250 V . & INCLUDES IN TII4 \\
\hline C144 & . 05 MFD & 400 V . & \\
\hline  & 50.05 MFD & \(400 v\) & \\
\hline C151 & . 05 MFD & 400 V . & \\
\hline C 152 & 375 MMFD & 250 V . & INCLUDED \({ }^{\text {IN }}\) TIO9 \\
\hline C153 & 375MMFD & 250 V & INCUDED IN TIO9 \\
\hline C155 & . 006 MFD & 300 & \\
\hline C157 & . 01 MFD & 600 V . & \\
\hline C 159 & OO6MFD & 300 & \\
\hline c 1608 & 16 MFD & 250 V & \\
\hline C 1600 & 16 MFD & 250 V & \\
\hline C 161 & 50MMFD & 500 V . & INCLUDED IN TII6 \\
\hline C 162 & 600 MMFD & 250 V & NNCLUDED IN T116 \\
\hline C 164 & . 006 MFD & 300 V . & \\
\hline C 165 & 370 MMFD & 250 V . & INCLUDED IN TII4 \\
\hline C 166 & 900MMFD & 250V. & INCLUDED IN TII \\
\hline C 167 & . 006 MFD & 300 & \\
\hline C 168 & . 056 MFD & 400V. & \\
\hline C 170 & . 006 MFD & 300 V . & \\
\hline C171 & 400 MMFD & 500 V. & INCLUDED IN TII6. \\
\hline C172 & 500 MMFD & 500 V . & \\
\hline C176 & . 25 MFD & 600 V . & \\
\hline C177 & 50 MFD & 25 V . & \\
\hline C178 & .004MFD & 300 V . & \\
\hline C179 & .006MFD & 300 V . & \\
\hline C180 & . 0025 MFD & 500 V . & \\
\hline C183 & . 0025 MFD & 500 V & \\
\hline C184 & 25 MFD & 50 & \\
\hline C194 & 50 MMFD & TRIMMER & R INCLUDED IN ZIOI \\
\hline Cl36 & 15 MMFD & CERAMIC & \\
\hline
\end{tabular}
DIOI DYNAMOTOR
FIOI \(\frac{\text { FUSE }}{4 \text { AMPERES }}\)
PHONE JACK
JIOI M-7461865 GI
\begin{tabular}{|c|c|}
\hline & CHOKES \\
\hline 4103
4104 & \[
\begin{aligned}
& K-7877090 \\
& k-7877075
\end{aligned}
\] \\
\hline Li05 & K-7877089 \\
\hline 4106 & INCLUDED IN 2102 \\
\hline Lios & M-7464808 G-1 \\
\hline L109 & K-7879066 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{PIOI} & \multicolumn{2}{|l|}{POWER PLUG} \\
\hline & K-7876934 PI & \\
\hline & \multicolumn{2}{|l|}{RESISTORS} \\
\hline R105 & 750 OHMS & \(1 / 2\) WATT \\
\hline & 22,000 OHMS & \(1 / 2\) WATT \\
\hline R110 & 5,000 OHMS & M-7464322 PI \\
\hline R126 & 10,000 OHMS & \\
\hline R127
R128 & 683000 OHMS & \(1 / 2\) WATT INCLUDED IN TII4 \\
\hline R129 & 220,000 OHMS & 1/2 WATT INCLUDED IN TII4 \\
\hline R130 & 390 OHMS & \(1 / 2\) WATT \\
\hline R131
R132 & 62,000 OHMS & \(1 / 2\) WATT \\
\hline R132
R133 & 12000
.15 MEGOHMS & \(1 / 2\) WATT
\(1 / 2\) WATT \\
\hline R134 & 0.1 MEGOHMS & \(1 / 2\) WATT \\
\hline R151 & 750 OHMS & 1/2 WATT \\
\hline R152A
R1528 & \(\left.\begin{array}{l}20000 \\ 800000 \text { OHMS }\end{array}\right\}\) & M-7464321 PI \\
\hline R154 & 68,000 OHMS & 1 WATT \\
\hline R155 & 1 MEGOHM & 1/2 WATT \\
\hline R157 & 15000 OHMS & 1 WATT \\
\hline R158 & 1000 OHMS & \(1 / 2\) WATT \\
\hline R159 & . 77 MEGOHMS & \(1 / 2\) WATT \\
\hline R160
R161 & 750 OHMS & \(1 / 2\) WATT \\
\hline R162 & 1.5 MEGOHMS & \(1 / 2\) WATT \\
\hline R163 & 750 OHMS & \(1 / 2\) WATT \\
\hline R164 & 47000 OHMS & \(1 / 2\) WATT INCLUDEDINTII6 \\
\hline R165 & 33 M MEGOHMS & \(1 /\) WATT \\
\hline R167 & 1 MEGOHM & 1/2 WATT \\
\hline R168 & 510 OHMS & \(1 / 2\) WATT \\
\hline R170 & 330 OHMS & 12 WATT \\
\hline R170 & 37,000 OHMS & \(1 / 2\) WATT \\
\hline R178 & 510 OHMS & \(1 / 2\) WATT \\
\hline & SWITCHES & \\
\hline \[
\begin{aligned}
& \text { SIO2A, } \\
& \text { SIO3A, }
\end{aligned}
\] & \[
M-7464292
\] & \[
\begin{aligned}
& \text { P2 } \\
& \mathbf{p l}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{TRANSFORMERS} \\
\hline TIO9 & P-7763100 & GI \\
\hline T114 & T-7661130 & GI \\
\hline T116 & \[
\begin{aligned}
& \text { P-7763102 } \\
& K-7878235
\end{aligned}
\] & GI \\
\hline
\end{tabular}
TUBES



Connection Diagram，R－f Units，Type CG－46115 Radio Receiver No． 1

\section*{Connection Diagram, R-f Units, Type CG-46115 Radio Receiver No. 1}


Connection Diagram, R-f Units, Type CG-46115 Radio Receiver No. 1
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{CONNECTIONS} \\
\hline WIRE
SIZE & DESCRIPTION \\
\hline GMEARKKED & UNIT PIECE OF APPARATUS \\
\hline D8 & .040" DIA. COPPER WIRE TINNED \\
\hline H0 & *22 AWG MPREGNATED DOUQLE CELULOSE ACETATE BRAID IINSULATION WHITE WITH ORANGE TRACER, G.E. SPEC. K-7875044 P.I \\
\hline HBK & * 22 AWG, IMPREGNATED DOVBLE CELLULOSE ACETATE BRAID INSULATION WHITE WITH BLACK TRACER, G.E. SPEC. K-7875044 P. 2 \\
\hline HBR & \#22 AWG, IMPREGNATED DOUBLE CELLULOSE ACETATE BRAID IUSULATION WHITEE WITH EROWN TRACER, GE. SPEC. K-7875044 P3 \\
\hline HR & - 22 AWG IMPREGNATED DOIELE CELLULOSE ACETAFE ORAID INSULATION WHITE WITH RED TRACER, G.E. SPEC. K-7875044 P. 4 \\
\hline HG & *22 AWG, IMPREGVATED DOUQLE CEILULOSE ACETATE BRAID INSULATION WHITE WITH GREEN TRACER, G.E SPEC, K-7875044 P. 5 \\
\hline HEL & * 22 ANG, IMPREGNATED DOVELE CELLULOSE ACETATE BRAID INSULATION, WHITE WITH BLUE TRAC G.E. SPEC, \(K\)-7875044 P. 6 \\
\hline HREK & \# 22 ANG, IMPREGNATED DOUBLE CELULOSE ACETATE BRAID INSULATION WHITE WITH ONE RED AND ONE
BLACK TRACER, G.E. SPEC. K-7875044 P.B \\
\hline
\end{tabular}

NOTE:

\begin{tabular}{|c|c|}
\hline & TRANSFORMERS \\
\hline TIOI & K-7877350 \\
\hline T102 & k-7877351 \\
\hline T103 & K-7877352 \\
\hline T104 & k-7877353 \\
\hline T105 & K-7877354 \\
\hline & K-7877356 \\
\hline T108 & K-7877357 \\
\hline T110 & k-7877358 \\
\hline Till & K-7877359 \\
\hline TH2 & K-7877360 \\
\hline
\end{tabular}


Connection Diagram, Type CG-461 16 Receiver Unit No. 2

\section*{RESTRICTED}

NAVAER 08-5Q-245




Connection Diagram, R-f Units, Type CG-46116 Radio Receiver No. 2


\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{CONNECTIONS} \\
\hline \[
\begin{aligned}
& \text { WIRE } \\
& \text { SIZ }
\end{aligned}
\] & description \\
\hline UNMARKED & UNIT PIECE OF APPARATUS \\
\hline D8 & .040" DIA. COPPER WIRE TINNED \\
\hline DC & . 061 " DIA. COPPER WIRE TINNED \\
\hline HBK & * 22 AWG, IMPREGNATED DOUBLE CELLULOSE ACETATE BRAID INSULATION, WHITE WITH BLACK TRACER. G.E. SPEC. K-78'75044 PT-2 \\
\hline CBL & * 16 AWG, STRANDED I/64" RUBBER INSULATION BLUE LAGOUERED BRAID O.D. -. \(135^{\text {" G.E. SPEC. }}\) K-7872345 PT-6 \\
\hline
\end{tabular}


Connection Diagram, Type CG-46117 Receiver Unit No. 3


Connection Diagram, Type CG-46117 Receiver Unit No. 3

\begin{tabular}{|c|c|c|c|}
\hline NOTE \# I & THIS CONNECTION ACROSS EITHER & MAY BE R340 OR & R343. \\
\hline NOTE 2 & THIS CONNECTION ACROSS EITHER & MAY 8 E R349 OR & R323: \\
\hline NOTE \# 3 & IN MODEL RAX-I, R REPLACED BY Rל̉2 & 325 is & \\
\hline
\end{tabular}

Connection Diagram, Type CG-46117 Receiver Unit No. 3


Connection Diagram, R-f Units, Type CG-46117 Radio Receiver No. 3

Connection Diagram, R-f Units, Type CG-46117 Radio Receiver No. 3



Connection Diagram, R-f Units, Type CG-46117 Radio Receiver No. 3


\begin{tabular}{|c|c|}
\hline CONNECTION & DESCRIPTION \\
\hline CBK & *16 AWG, STRANDED, \(1 / 6^{\prime \prime}\) RUBBER INSULATION, BLACK LAC. BRAID, \(0.0-135\) ' G.E. DWG. K-7872345 'P2 \\
\hline DB & .040"DIA. COPPER WIRE TINNED \\
\hline DC & 061 "DIA. COPPER WIRE TINNED \\
\hline HBK & \#22 AWG, WHITE WITH BLACK TRACER, G.E. OWG. K-7875044 P2 \\
\hline HBL & *22AWG, WHITE WITH BLUE TRACER,G.E.DWG.K-7875044 P6 \\
\hline HBR & * 22 AWG, WHITE WITH BROWN TRACER, G.E. DWG.K-7875044 P3 \\
\hline HG & * 22 AWG, WHITE WITH GREEN TRACER, G.E. DWG.K-7875044 P5 \\
\hline HR & *22AWG, WHITE WITH RED TRACER. G.E.DWG.K-7875044P4 \\
\hline \[
\begin{gathered}
" M " \\
\text { OR } \\
\text { UNMARKED } \\
\hline
\end{gathered}
\] & UNIT PIECE OF APPARATUS \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline WIRE & DESCRIPTION \\
\hline CBL & \# 16 AWG, STRANDED, \(1 / 64^{\prime \prime}\) RUBBER INSULATION, BLUE LAC. BRAID, O.D-. \(135^{\prime \prime}\) G.E. SPEC. K-7872345 PT-' 6 \\
\hline CO & * 16 AWG STRANDED \(1 / 64\) " RUBBER INSULATION, ORANGE LAC. BRAID, O.Q-. \(135^{\text {G G.E. SPEC. }}\) K-7872345 PT-I \\
\hline COG & * 16 AWG, STRANDED \(1 / 64\) "RUBBER INSULATION ORANGE'GREEN LAC. BRAID, O.D-.135 G.E.SPEC.
\[
K-7872345 \text { PT-10 }
\] \\
\hline CG & \# 16 AWG, STRANDED, V64"RUBBER INSULATION,
GREEN LAC. BRAID, O.D. \(-.135{ }^{\prime \prime}\) G.E. SPEC.
K-7872345 PT-5 \\
\hline D8 & .040" DIA. COPPER WIRE TINNED \\
\hline HBK & *22 AWG, CELLULOSE ACETATE BRAID INSULATION, WHITE WITH BLACK TRACER, G.E. SPEC. K-7875044 PT-2 \\
\hline HBR & \# 22 AWG, CELLULOSE ACETATE BRAD INSULATION, WHTE WITH BROWN TRACER, G.E. SPEC. K-7875044 PT- 3 \\
\hline HOBK & *22AWG, CELLULOSE ACETATE BRAID INSULATION, WHITE WITH ONE ORANGE AND ONE BLACK TRACER. G.E. SPEC. K-7875044 PT- 7 \\
\hline HR & \#22 AWG, CELLULOSE ACETATE BRAID INSULATION, WHITE WITH RED TRACER, G.E. SPEC. K-7875044 PT-4 \\
\hline
\end{tabular}


Outline Drawing, Type CG-68028 Junction Box

M-7465393


Connection Diagram, Type CG-68028 Junction Box


BOTTOM VIEW OF OCTAL TUBE SHOWING TERMINAL NUMBERS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline TERMINAL NO. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & GAP. \\
\hline \multicolumn{10}{|l|}{TUBE TYPE} \\
\hline 12 SK7 & SHELL & HEATER & \[
\begin{aligned}
& \text { SUP. } \\
& \text { ORID. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CONTROL } \\
& \text { GRID }
\end{aligned}
\] & CATHODE & \[
\begin{array}{|l|}
\hline \text { SCREEN } \\
\text { GRID }
\end{array}
\] & HEATER & PLATE & \\
\hline 12 K 8 & SHELL & HEATER & MIXER PLATE & SCREEN
GRID & \[
\begin{aligned}
& \text { OSC. } \\
& \text { GRID. }
\end{aligned}
\] & PLATE & HEATER & CAT HODE & \[
\begin{aligned}
& \text { CONTROU } \\
& \text { GRID }
\end{aligned}
\] \\
\hline 12SR7 & SHELL & GRID & CATHODE & \[
\begin{aligned}
& \text { DIODE } \\
& \text { PLATE }
\end{aligned}
\] & \[
\begin{aligned}
& \text { DIODE } \\
& \text { PLATE }
\end{aligned}
\] & TRIODE PLATE & HEATER & HEATER & \\
\hline 12 A6 & SHELL & HEATER & Plate & \[
\begin{array}{|l}
\hline \text { SGREEN } \\
\text { GRID }
\end{array}
\] & \[
\begin{aligned}
& \text { GONTROL } \\
& \text { GRID }
\end{aligned}
\] & & |HEATER & |CATHODE & \\
\hline
\end{tabular}

Base Connections of Tube Types Used in Navy Model RAX-1 Radio Receiving Equipment









Connection Diagram, Type CG-46116 Receiver Unit No. 2



Schematic Diagram of Single Receiver Mounting and External Connections
P-7763365
```


[^0]: Δ Symbol part designation, if any.

[^1]: Δ Symbol part designation, if any.

