NOT TO BE PUBLISHED
The information given in this document is not to be communicated either directly, or indirectly, to the Press or to any person not holding an official position in His Majesty's Service.

WORKING INSTRUCTIONS

WIRELESS SET No. 19 MARK II
(As Manufactured in Canada and the U. S. A.)

Püblished by:
The Director of Signals Design, Army Engineering Design Branch, Department of Munitions and Supply, Ottawa, Canada.

Approved by:
The Chief of the Getheral Staff, Department of National Defence. Ottawa, Canada.
(Ref. N6. PC 90772C-195)

NOT TO BE PUBLISHED

The information given in this document is not to be communicated either directly, or indirectly, to the Press or to any person not holding an official position in His Majesty's Service.

WORKING INSTRUCTIONS

WIRELESS SET No. 19 MARK II

(As Manufactured in Canada and the U.S. A.)

Published by:
The Director of Signals Design, Army Engineering Design Branch, Department of Munitions and Supply, Ottawa, Canada.

Approved by:
The Chief of the General Staff, Department of National Defence, Ottawa, Canada.

For installation instructions refer to installation prints and other details in envelope packed with Installation Kit.
WIRELESS SET No. 19 MARK II
Contents
INTRODUCTION
CHAPTER I
GENERAL DESCRIPTION
Page
1.1 Purpose 1
1.2 Installation 2
1.3 The "A" Set 3
1.3.1 Frequency Range 3
1.3.2 Aerials 3
1.3.3 Receiver Circuit 4
1.3.4 Sender Circuit 4
1.3.5 Aerial Circuit 5
1.4 The "B" Set 6
1.5 The Intercommunication Amplifier 7
1.6 The Supply Unit 7
1.7 Current Drain 8
1.8 The Control Units and Junction Distribution Boxes 8
1.9 The Controls 9
CHAPTER II
WORKING INSTRUCTIONS
2.1 Preliminary 20
2.2 Tuning the " A " Set 21
2.2.1 Tuning and Netting of Receiver 21
2.2.2 Tuning of Sender 22
2.2.3 The "Flick" Dials 23
2.3 Tuning the "B" Set 25
2.4 The Control and Intercommunication System 26
2.5 Checking for Correct Operation 27

DIAGRAMS

Page
Fig. 1 Block-Diagram 77
Fig. 2 Schematic of Variometer 79
Fig. 3 Complete Schematic of Wireless Set, No. 19 Mk. II 81
Fig. 4 Schematic of Supply Unit 83
Fig. 5 Top Plan of Chassis 85
Fig. 6 Underneath Plan of Chassis 87
Fig. 7 Controls on Front Panel 89
Fig. 7A Flick Control 89
Fig. 8 Wiring Layout of Infantry Tank Mk. III Installa- tion 91
Fig. 9 Wiring Layout of U. S. Medium Tank M4 93
PHOTOGRAPHS

1. Front view of Set and Supply Unit 61
2. Front view with Guard and Waterproof Cover 63
3A. Inside view of Sender/Receiver (Top) 65
3B. Inside view of Sender/Receiver (Underneath) 67
3. Inside view of Variometer 69
4. Inside view of Supply Unit 71
5. Installation Equipment for Infantry Tank Mk. III. 73
6. Installation Equipment for U. S. Medium Tank M4 75

TABLES

Page

1. Overall Dimensions, Weights 1
2. Facilities of Complete Station 1
3. Aerials 3
4. Valves (Designations, Types, Functions and Circuit Details) 10
5. Controls and Adjustments 14
6. Control System on Infantry Tank Mk. III 28
7. Control System on U. S. Medium Tank M4 31
8. Normal Meter Readings 34
9. Parts and Component List 35
10. "Set and Standard" Kit 51
11. Interchangeability List 55
ABBREVIATIONS

A	" A^{\prime} " Set	MA	Milliampere
AE	Aerial	MC	Megacycles
AF	Audio Frequency		per second
AVC	Automatic Volume Control	MCW	Modulated Continuous Wave
B	"B" Set	MFD	Micro-farad
BFO	Beat Frequency Oscillator	$\begin{aligned} & \text { MMF } \\ & \text { OSC } \end{aligned}$	Micro-micro-farad Oscillator
CW	Continuous Wave	PA	Power Amplifier
DF	Direction Finding	RF	Radio Frequency
H	Henry	R/T	Radio Telephony
HF	High Frequency		(Speech)
HT	High Tension	S/R	Sender/Receiver
IC	Intercommunication	V	Volts
	Amplifier	W	Watts
LT	Low Tension		

INTRODUCTION

WIRELESS SET NO. 19, MARK II

(As Manufactured in Canada and the U. S. A.)

1. Although mechanically and electrically interchangeable in the major components, a number of modifications were considered essential, and were incorporated prior to manufacture both in Canada and the U. S. A. Primarily, these modifications were introduced in order to accommodate Canadian and U. S. A. manufacturing processes.
2. From the viewpoint of the operator, there should be no difference between the British and the Canadian Set. In order to assist operators to master quickly the operation of the Set, and, therefore, to derive the maximum of performance in the field, the operating instructions have been recorded in somewhat greater detail than in the British pamphlet.
3. In order to assist maintenance personnel, a table has been added (Table XI), in which the major modifications in Canadian and American Sets have been recorded.

CHAPTER I

GENERAL DESCRIPTION

1.1 PURPOSE

Wireless Set No. 19, Mk. II, has been designed to be used in Armoured Fighting Vehicles (A. F. V.), in various Wireless Trucks, and as a ground station.

The Set consists of an "A" Set (Sender-Receiver), a "B" Set (Sender-Receiver), an Intercommunication (I.C.)Amplifier, and a Supply Unit.

Table I shows weight and overall dimensions of Set and Supply Unit, Table II shows the facilities, purposes and ranges of the complete No. 19 Set, Mk. II.

TABLE I WEIGHTS AND DIMENSIONS

Unit	Weight in lb .	Dimensions in Inches		
		Length	Depth	Width
Sender/Receiver	401/2	$171 / 2$	81/4	121/4
Supply Unit	$281 / 2$	6	$81 / 4$	121/4
Carrier No. 1.	143/4			
Wireless Set comprising No. 19, Render, Receiver, and Carrier anly No. Unit and	861/4	27	10	131/4

TABLE II
FACILITIES PROVIDED BY A COMPLETE STATION No. 19, MK. II

Item	Panel Designation	Frequency Range Mc/s	Purpose	Type of Service	Range
A-Set	A	2-8	Communication: troop to base or troop to troop	R/T C. W. M. C. W.	10 miles R/T between vehicles in motion with 8^{\prime} rod aerial on each vehicle

(Table continued on next page)

TABLE II-Continued
FACILITIES PROVIDED BY A COMPLETE STATION No. 19, MK. II-Continued

Item	Panel Desig- nation	Frequency Range Mc/s	Purpose	Type of Service	Range
B-Set	B	$230-240$ Mc/s	Communi- cation be- tween ve- hicles only in a troop	R/T	1,000 yards between ve- hicles in motion with half-wave aerial sup- plied
Intercom- munication Amplifier	I-C	Speech only	Communica- tion among the crew	Speech	

The following valves are used:

Quantity	Designation	Type
6	6 K 7 G	R. F. Pentode
2	6 K 8 G	Triode-Hexode
2	$\times 6 \mathrm{~V} 6 \mathrm{G}$	Output Pentode
1	6B8G	Double Diode-Pentode
1	6H6 (ARDD5)	Double Diode
1	E-1148 (CV6)	Triode (low capacity)
1	EF50 (ARP 35)	R. F. Pentode
1	807 (ATS 25)	Beam Tetrode

1.2 INSTALLATION

A complete station is packed in two "Kits" : One is known as "Set and Standard Kit," the other one as "Installation Kit."

The Sender-Receiver ("A" and "B" Set, I.C. Amplifier), Supply Unit, Variometer and all other parts which are common to all installations, are packed in one box. This is called the "Set and Standard Kit," and it comprises all the items contained in the British "Set Kit" and "Standard Kit." (Table X.)

For every type of vehicle in which the No. 19 Set is used, a second separate kit, called the "Installation Kit," is provided, which contains all the parts necessary for the installation in a particular vehicle.

1.3 The "A" Set. (Figs. 1, 2, 3, 7, Tables III, IV, V.)

1.3.1 FREQUENCY RANGE

The Set covers the frequency Range from $2 \mathrm{Mc} / \mathrm{s}(150 \mathrm{M})$ to $8 \mathrm{Mc} / \mathrm{s}(37.5 \mathrm{M})$ in two bands. One band covers from $2 \mathrm{Mc} / \mathrm{s}(150 \mathrm{M})$ to $41 / 2 \mathrm{Mc} / \mathrm{s}(66.6 \mathrm{M})$ and the other from $41 / 2 \mathrm{Mc} / \mathrm{s}(66.6 \mathrm{M})$ to $8 \mathrm{Mc} / \mathrm{s}(37.5 \mathrm{M})$. The desired band is selected by switch S11A (See Fig. 7), which will be referred to as the Band-Change switch.

1.3.2 AERIALS

The " A " Set is designed primarily for use with 8^{\prime} or 12 ' rod aerials of the type supplied with the equipment. Where short range communication only is required under conditions in which the 8^{\prime} aerial would be regarded as too conspicuous, a single 4' section may be used.

Any of the usual types of elevated aerials can be used with the " A " Set, and the conditions governing the connection and tuning of the two most suitable types are set out in Table III.

TABLE III
AERIALS FOR "A" SET

Description of Aerial	Method of Coupling	Method of Tuning
Whip aerial. Three Ft. sections (Vertical)	Mounted on Aerial Base No. 8; connected to Variometer, which is connected to AE socket on panel.	Tuned for maximum reading of test meter by successive adjustments of Variometer and "P.A. Tuning."
Three-quarter wave end fed aerial (Horizontal)	Erected at the greatest possible elevation; connected to Variometer which is connected to AE socket on panel. The use of a proper Earth wilt greatly improve radiation.	Tuned as above. Length of wire to cover the appropriate frequency bands should be:

1.3.3 RECEIVER CIRCUIT (Fig 3)

The receiver is of the Superheterodyne type. The intermediate frequency (I.F.) is $465 \mathrm{Kc} / \mathrm{s}$.

The receiver comprises the following stages:

Stage	Valve		
		Type	Designation
(1)	Signal Frequency	6 K7G	V1A
(2)	Oscillator, Frequency Changer	6 K8G	V2A
(3)	I.F. Amplifier	6 K7G	V1B
(4)	I.F. Amplifier	6 K7G	V1C
(5)	Detector, A.V.C., Audio Amplifier	6 B8G	V3A
(6)	Heterodyne Oscillator		
	(Beat Frequency Oscillator, B.F.O.)	6 K8G	V2B

1.3.4 SENDER CIRCUIT (Fig. 3)

In order to eliminate separate adjustment of the sender, and to assure that always the same frequency is transmitted and received, the outputs of the receiver oscillator and the Het. Oscillator are mixed in Valve V.2.B to reconstitute a sender frequency equal to the frequency to which the receiver is tuned. This frequency is selected by the tuned buffer stage V.5.A. (ARP 35 or EF 50), and the output of this stage is applied to the grid of the Power Amplifier (P.A.) -stage V.4.A. (807). Bias for the P.A. stage is obtained by rectification from the output of V.5.A. in the diode V.6.A. (ARDD 5 or 6 H 6), and the input voltage and bias are held constant by bias applied to the grid of V.5.A. and obtained from the delayed diode rectifier V.6.A. (ARDD 5 or 6 H 6). The output of the Power Amplifier is coupled to the aerial by means of a low impedance line Aerial Feeder No. 1, connected to a suitable tapping on the tank coil, L.3.A. The aerial is inductively loaded to resonance by means of the Aerial Tuning Variometer L.l.A., which is located in all cases as near as possible to the base of the aerial.

The Sender comprises the following stages:

Stage	Valve		
		Type	Designation
(1)	Receiver Oscillator	6K8G	V2A
(2)	Heterodyne Oscillator and Mixer	6K8G	V2B
(3)	Buffer Stage	ARP35	V5A
(4)	Power Amplifier	or EF50	V4A
(5)	Modulator (on R.T.), A.F. Oscillator and Modulator (on M.C.W.)	6B8G	V3A
(6)	Grid Bias \& Automatic Drive Control	ARDD5 or 6H6	V6A

Table IV shows designation, type, function and circuit details of every valve.

1.3.5 AERIAL CIRCUIT (Fig. 2)

A tuned circuit consisting of L.3.A., C.3.A. (labeled "P.A. Tuning" on the panel) is used to tune the grid of V.l.A., when receiving, and the anode of V.4.A., when sending.

The aerial is tuned to resonance by the Variometer L.l.A. and this series resonance circuit is connected to a tap on the Tank Coil L.3.A. via a special feeder. The entire aerial circuit within the vehicle is fully screened to reduce interference from other electrical equipment within the vehicle.

The Variometer assembly includes a current transformer T.I.A. and a rectifier unit W.I.A., enabling the R.F. current to be measured in the aerial lead at the point where it leaves the Variometer. The D.C. current from the rectifier is fed back to the set over the aerial feeder and measured by the meter on the panel, when the meter switch S.8.A., is set to "AE." (See Fig. 2 and Photo 4.)

From the Variometer the aerial lead is taken to Aerial Base No. 8 (the type of feeder, etc., depends on the type of vehicle) into which one, two or three sections of the whip aerial (Aerial, Type F) are inserted.

NOTE: The Variometer supplied with No. 19 Set, Mk. II, is a Mk. II version. It includes an adjustment permitting
calibration of D.C. output of rectifier W.1.A. and a filter circuit for D.C. The Variometer is calibrated at the factory prior to shipment. It will retain its calibration in normal service, and the adjusted rheostat should not be touched.

However, should it become necessary to recalibrate at any time, this may be done by setting up a station with a Variometer which operates satisfactorily, and noting the Test Meter reading with switch to "AE" and set "in tune." The Variometer to be calibrated may then be inserted in place of the normal Variometer, tuned to give maximum output, and the meter adjustment rheostat (M) in Variometer rotated to give approximately the reading noted with previous Variometer. It will be as well to check the readings at low (say 2.5) and high (say 7.5) Mc/s. Refer to the tag enclosed with Variometer Mk. II.

1.4 THE "B" SET CIRCUIT (Fig. 3)

The "B" Set is a very high frequency (V.H.F.) SenderReceiver. It covers the frequency range from $230 \mathrm{Mc} / \mathrm{s}$ (1.3 M) to $240 \mathrm{Mc} / \mathrm{s}(1.2 \mathrm{M})$.

The Sender comprises the following stages:

Stage	Valve	
	Type	Designation
1. Audio Amplifier	6K7G	V1E
2. Audio Amplifier \& Modulator	6V6G	V8A
3. Master Oscillator \& Output Stage	E 1148	V7A
	or CV6	

The Receiver comprises the following stages:

Stage	Valve	
	Type	Designation
1. R.F. Stage	E 1148	V7A
2. Quench Frequency Oscillator	or CV6	
3. Audio Amplifier	6K7G	V1D
4. Audio Amplifier (Output)	6K7G	V1E

The output of the " B " Set is fed through a special feeder from the terminal marked "Aerial B" straight to the Aerial Base No. 9. No special tuning of the aerial circuit is necessary, as it is tuned, when tuning the master oscillator by operating "Tuning B" (C 25 A).

1.5 THE INTERCOMMUNICATION AMPLIFIER (Fig. 3)

The I.C. Amplifier provides communication for the crew within the vehicle. It is a two-stage amplifier, comprising the following stages:

Stage	Valve	
	Type	Designation
1. Pre-Amplifier	6K7G	V1F
2. A.F. Output	6V6G	V8B

1.6 THE SUPPLY UNIT (Fig. 4)

Supply Unit No. 1 consists of a Rotary Transformer, associated filter circuits, input and output plug mounts (PLIC, PLIB), ON-OFF switch (S 6 A), pilot lamp (P 1 A), fuses (F 1 A, F 1 B), etc.

The Rotary Transformer is a three commutator machine, operating from a nominal L.T. input of 12 volts. It provides two high voltage D.C. outputs, one of 275 volts and the other of 500 volts. These outputs are smoothed by filter circuits mentioned above. The L.T. input circuit to the Rotary Transformer is floating (i. e., ungrounded). It is opened and closed by a section of the OFF-ON Switch S 6 A.

The Low Tension (12 volts) circuit for the valve heaters, pilot lamps, and relay operation is carried from the input plug mount (PL 1 C) to the output plug mount (PL 1 B) through section of switch S 6 A . One side of this circuit (the negative) is grounded to the case of the Power-Supply Unit.

Since the L.T. Rotary Transformer circuit is floating, it may be operated across one 12 -volt section of a 24 -volt battery while the L.T. valve heater circuit is operated across the other section of the battery (grounded section).

Since the current drain of the L.T. Rotary Transformer, when sending on " A " Set, is higher than that of the valve heater circuit, it is essential that the 12 -volt tap from a 24 -volt battery be brought out and connected to the junction of positive L.T. Heater and negative L.T. Rotary Transformer.

IT IS IMPORTANT THAT THIS $12-$ VOLT TAP ON 24-VOLT BATTERY BE IN POSITION VHILE THE WIRELESS SET IS OPERATING. SHOULD IT GO OPEN WITH THE "A" SET SENDING, THE VALVE HEATERS WILL BE PERMANENTLY DAMAGED. FOR THIS REASON NO FUSE SHOULD BE USED IN THIS 12VOLT TAP.

1.7 CURRENT DRAIN

With a battery voltage of 12 volts, the current drain of the No. 19 Set is:

The control units and junction distribution boxes are installed within easy reach of every man who has to make use of the facilities provided by the No. 19 Set.

Junction distribution boxes are connected to the Intercommunication system only. Junction distribution No. 1 and 3 have a special buzzer operated by a push-button. The signal produced by this buzzer can be heard in the Commander's earphones and serves as emergency signal.

The type and number of control units depends on the vehicle in which the station is installed. The installation instructions supplied with every installation kit and vehicle contain detailed descriptions on how to install the whole station.

The control unit is connected to the set by a special connector. This connector carries all the leads for microphone, receiver, pressel switch, etc. The unit itself has one or sev-
eral drop-leads, with snatch-plugs for Microphone and Receiver Headgear. By means of a selector switch on the control unit the required facility may be selected. This arrangement enables the separate, independent use of every facility provided by the No. 19 Set.

Very soon, all existing control units will be replaced by Control Units Mark II. The special feature of this unit is the "Re-Broadcast" or "Re-Transmit" facility. It has, in addition to the selector switch, a second two-position switch. The positions are marked " N " and " R ." In the " N " position a Mark II unit works like a Mark I unit and provides the normal facilities.

In the " R " position (R for Re-Broadcast), the following additional possibilities are made available:
(1) "Receive" on "B" and "Send" on "A" Set. (Output of " B " modulates the " A " Sender.)
(2) "Send" or "Receive" on " A " and " B " simultaneously.
(3) "Receive" on " A " and "Send" on "B" Set. (Output of " A " modulates the " B " Sender.) (See switching charts on Tables VI and VII for operation and facilities in two particular installations.)
A vehicle equipped with a Mark II Control Unit can act as Relay Station, and, at the same time, enable the Commander of this vehicle to add his own speech to the rebroadcast.

1.9 'THE CONTROLS

The details, functions and operation of all the controls are shown on Table V. The positions may be seen on Photo 1 and Fig. 7.

TABLE IV
VALVE DESIGNATIONS, TYPES, FUNCTIONS AND CIRCUIT DETAILS

	Valve	Designation	Type	Function	Circuit and Intervalve Coupling Details
	V.1.A.	- 6K7G	R. F. Pentode	R. F. Amplifier	Tuned R. F. Transformer L.23A and L.23B to Grid of V.2.A.
	V.2.A	6K8G	Triode-Hexode	Oscillator-Mixer	Two-Circuit Tuned I. F. (465 kc.) Transformer L.8.A. to Grid of V.1.B.
	V.1.B.	6K7G	R. F. Pentode	I. F. Amplifier	Two-Circuit Tuned I. F. (465 kc.) Transformer L.8.B. to Grid of V.1.C.
	V.1.C.	6K7G	R. F. Pentode	I. F. Amplifier	Two-Circuit Tuned I. F. (465 kc.) Transformer L.9.A. to Diode Elements in V.3.A.
	V.3.A.	6B8G	Double Diode- R. F. Pentode	Demodulator, Bias Rectifier \& A. F. Output	Audio-Frequency Output Transformer T.2.A. to No. 19 Telephone Line in Vehicle Wiring.
	V.2.B.	6K8G	Triode-Hexode	Triode as Oscillator only	Heterodyne Oscillator for C. W. Reception tuned near 465 kc . and adjustable over a small Frequency Range to enable the Beat Tone to be varied.

(Table continued on next page)

TABLE IV-Continued
VALVE DESIGNATIONS, TYPES, FUNCTIONS AND CIRCUIT DETAILS—Continued

	Valve	Designation	Type	Function	Circuit and Intervalve Coupling Details
	V.2.A.	6K8G	Triodé-Hexode	Triode as Oscillator only	Oscillates as in Receiver and Output applied to Hexode Control Grid of V.2.B. for mixing with Output of Triode Oscillator V.2.B. now tuned to 465 kc .
	V.2.B.	6K8G	Triode-Hexode	Oscillator-Mixer	Produces Master Frequency by mixing Output of Receiver Oscillator and Heterodyne Oscillator. Tuned Anode coupled to Grid of V.5.A.-(L.7.A. or L.21.A, C.9.D.)
	V.5.A.	$\begin{gathered} \text { ARP } 35 \\ \text { EF } 50 \end{gathered}$	R. F. Pentode	R. F. Amplifier and Buffer	Coupled by Tuned Transformer L.4.A. or L.6.A. to V.4.A. and V.6.A.
	V.4.A.	807	Beam Tetrode	R. F. Power Amplifier	Coupled by Tuned Anode L.3.A. and C.3.A. and Low-Impedance Line, through Aerial Feeder No. 1 to Series Tuned Aerial. Grid modulated by V.3.A.

(Table continued on next page)

TABLE IV-Continued
vaLVE DESIGNATIONS, TYPES, FUNCTIONS AND CIRCUIT DETAILS—Continued

yGCNGS LGS ،V"	Valve	Designation	Type	Function	Circuit and Intervalve Coupling Details
	V.3.A.	8B8G	Double Diode- R. F. Pentode	Pentode only as Modulator	Anode Coupled to Grid of V.4.A. Through C.17.B and R.7.G.
	V.6.A.	$\begin{gathered} 6 \mathrm{H} 6 \\ \text { ARDD5 } \end{gathered}$	Double Diode	Twin Rectifier	One element supplies Standing Bias for V.4.A. the other element supplies A.D.C. Bias to V.4.A. to maintain constant drive over the Frequency Range.
	V.7.A.	$\begin{gathered} \text { E } 1148 \\ \text { C V } 6 \end{gathered}$	Low Capacity Triode	Super-Regenerative Detector	Resistance Coupled to L.F. Amplifier V.1.E.
	V.1.D.	6K7G	R. F. Pentode	Quench Oscillator	Oscillates at a frequency between 158 and 228 KC . determined by the Permeability Tuned Coil L.14.A. Frequency is adjusted by "Quench" Control on Set Panel.
	V.1.E.	6K7G	R. F. Pentode	A.F. Amplifier	Resistance coupled to output V alve V.8.A.
	V.8.A.	6V6G	Output Pentode	A.F. Output	Coupled by Transformer T.5.A. to B-Set Telephone Wiring.

(Table continued on next page)

TABLE IV-Concluded
VALVE DESIGNATIONS, TYPES, FUNCTIONS AND CIRCUIT DETAILS—Concluded

$\stackrel{\text { An }}{3}$	Valve	Designation	Type	Function	Circuit and Intervalve Coupling Details
	V.7.A.	$\begin{aligned} & \text { E } 1148 \\ & \text { CV6 } \end{aligned}$	Low Capacity Triode	Oscillator	Coupled to Aerial by tapped Coil L.11.A. and Resonant Feeder No. 2 and No. 3.
	V.1.E.	6K7G	R. F. Pentode	Modulator Preamplifier	Resistance coupled to Modulator V.8.A.
	V.8.A.	6V6G	Output Pentode	Modulator	Coupled by Transformer T.5.A. to Anode Circuit of V.7.A.
$\underset{y y y y}{\mid c}$	V.1.F.	6K7G	R. F. Pentode	Preamplifier	Resistance coupled to Output Valve V.8.B.
$\stackrel{y}{4}$	v.8.B.	6V6G	Output Pentode	A. F. Output	Coupled by Transformer T.6.A. to 1-C Telephone Line.

CONTROLS AND ADJUSTMENTS

Designation of Control	Coding on Circuit	Location	Sunction and Operation

(Table continued on next page)

TABLE V-Continued
CONTROLS AND ADJUSTMENTS—Continued

Designation of Control	Coding on Circuit	Location	Function and Operation

(Table continued on next page)

TABLE V-Continued
CONTROLS AND ADJUSTMENTS—Continued

(Table continued on next page)

TABLE V-Continued
CONTROLS AND ADJUSTMENTS—Continued

Designation of Control	Coding on Circuit	Location	Functions and Operations
"Gain B"	R.35.A.	Set Panel	Operates A 0.1 Megohm Potentiometer controlling the A.F. Gain only of B-Set.
"Quench"	L.14.A.	Set Panel	Permeability Tuned Adjustment of Quench Frequency of "B-Set" Receiver enabling this frequency to be adjusted to avoid interference between sets in a net due to beating of Quench Frequencies or their Harmonics.
"Off/On"	S.6.A.	Supply Unlt Panel	Connecting the Battery Voltage to the Motor Generator and the Valve Heaters.
"A, I-C., B"	S.1.A.	Control Unit No. 1 MK. I or No. 1 MK. II	Three-Position Switch enabling the Tank Commander to speak or listen on "A"-Set, I-C. or "B" Set. In the I.C. position Side-Tone may be heard from "A" and "B" Sets when the "Gain "A" and "Gain B" are fully clockwise. S10A and S9A have to be in the down position.

(Table continued on next page)

TABLE V-Continued
CONTROLS AND ADJUSTMENTS-Continued

Designation of Control	Coding on Circuit	Location	Functions and Operations
"A, I-C, B"	S.1.B.	Control Unit No. 2 MK. I	Three-Position Switch enabling the Loader-Operator to speak or listen on "A" Set, I.C. Amplifier or "B" Set. (See note at end of table.)
"A, I-C, B"	S.1.C.	Control Unit No. 3 and Control Unit ${ }^{1}$ No. 3A (Double Box)	Three-Position Switch permitting Commander to select facility over which he desires to talk and listen.
"A, I-C, B"	S.1.D.	*	Provides facilities as above for operator. (See note at end of table.)
"A, I-C, B"	S.1.C.	Control Unit No. 3B (Usually fitted in B-Vehicles).	Three-Position Switch permitting two operators to be simultaneously switched either to "A" Set, "B" Set or intercommunication.
"A, I-C, B"	S.1.D.	"	Three-Position Switch permitting third operator to select what facility he desires. (See note at end of table.)
"A, I-C, B"	S.1.D.	Control Unit No. 3C (Remote Control Box for Vehicles where Commander is in Turret and Wireless Sets in Hull.)	Three-Position Selector Switch permitting operator at set to connect a remote line going to Commander's Junction Box to any facility of Set A, I-C or B. It provides R/T only for remote line.

(Table continued on next page)

TABLE V-Concluded
CONTROLS AND ADJUSTMENTS-Concluded

Designation of Control	Coding on Circuit	Location	Function and Operation
"A, I-C, B"	S.1.D.	Control Unit No. 3C	Three-Position Selector Switch permitting operator at set to select A, I-C or B Set facilities for himself. (See note at end of table.)
"A, I-C, B"	S.1.F.	Control Unit No. 3A, MK. II	Three-Position Switch enabling the Commander to speak and listen on "A" Set, I.C. Amplifier and "B" Set.
"N.R."	S.14.A.	Control Unit No. 2, MK. II No. 3A, MK. II	Two-Position Switch providing normal or re-broadcast facilities.
$\begin{aligned} & " B-A, A, \& B, \\ & \text { "A, I-B } ", ~ B " \end{aligned}$	S.13.A.	Control Unit No. 2, MK. II No. 3A, MK. II	Three-Position Switch providing, in conjunction with S14A, normal or re-broadcast facilities.
Call Commander	S.3.A.	Junction Distribution No. 1 and No. 3	Push-Button Switch enables the driver to call the Commander when the latter is operating, either set. Pressing the switch produces a loud buzz in the Commander's Telephone.

NOTE: On Control Units Nos. 3, 3A, 3B, 3C a red light will come on if the "A" Set is left unattended by simultaneous operation of S.I.C. and S.I.D. to "B" Position.

CHAPTER II

OPERATING INSTRUCTIONS

(Photo 1, Fig. 1-7)

TABLE V

2.1 PRELIMINARY

A. Roll up waterproof covers and secure same on top of the set.
B. See that set, variometer, aerials, batteries, control units, headgear, etc., are properly connected according to the installation instructions supplied with every vehicle.
C. Put "OFF-ON B" (S9A) to "OFF." (If it is at "ON" you risk blowing valve V7A.)
D. Switch on power-supply "ON-OFF" switch, S6A on panel of Supply Unit.
E. Check H.T. and L.T. voltages by means of the Test Meter, operating the meter switch S8A (Table VIII gives the limits within which the meter readings should be). The valve heaters take about thirty seconds to warm up, and this interval should be permitted before sender or receiver are operated.
F. Switch S9A (OFF-ON B) to "ON B" and make sure that S10A (A ONLY-ALL) is on "ALL."
G. When the valves have warmed up, check that intercommunication between all members of the crew is satisfactory with the Control Units set to "I.C." Note that when both switches are set to " B " the warming lamp on the Control Unit will light up, indicating that A-Set is unattended.
H. Turn switch on Control Unit to "A." Turn "Gain A" (R13A) fully clockwise. Set dials of "Frequency Mc/s" (Ganged condensers C9A, B, C and D) and "P.A. Tuning" (C3A) to the same frequency. Rotate Variometer, and the signal or noise strength will indicate that receiver and aerial circuits are working properly.
I. Press Pressel-Switch on microphone, turn meter switch ($\mathrm{S} 8 \mathrm{A)} \mathrm{to} \mathrm{"AE"} \mathrm{and} \mathrm{note} \mathrm{that} \mathrm{a} \mathrm{reading} \mathrm{is} \mathrm{obtained}, \mathrm{show-}$
ing that the sender is operating. (See page . . . for tuning procedure.)
K. Turn switch on Control Unit to "B." Turn "GAIN B" clockwise as required. A rushing (quench noise) indicates that " B " set receiver is operating. This noise will disappear when the pressel-switch is pressed, indicating that the " B " set has been switched to "SEND."

WARNING: Utmost care should be taken when pressing the pressel-switch either on the " A " or the " B " set, as this puts the transmitter "on the air" and enables the enemy to obtain a D.F. bearing.

2.2 TUNING OF "A" SET

Under normal circumstances, several stations will work in a "GROUP" or "NET." Such a group consists of a number of sets tuned to the same frequency. One station, usually the set of the highest formation, is called the "ControlStation," the others are "Out-Stations." It is of utmost importance that all sets belonging to the same group are accurately tuned to the same frequency: the frequency of the control station.

Normally, a group will be given two frequencies to work on, the "blue" or normal and the "red" or spare frequency. The "Flick" mechanism permits tuning the set for working on either frequency, and to change quickly from one to the other.

By tuning and netting the receiver to the control station, the sender is automatically tuned to the same frequency.

To tune sender or receiver, proceed as follows:

2.2.1 TUNING AND NETTING OF RECEIVER

A. Turn "Flick" controls to "Tune."
B. Set Band-change switch S11A to the required frequency band.
C. Set both tuning dials to the frequency of the control station.
D. Rotate aerial variometer T1A until maximum signal strength or noise is heard in headgear. This is a check
that the aerial circuits are approximately in tune. If Transmission Selector Switch S7A is set to R/T and control station is strong, a sharp dip in reading of Meter (Switch S8A set to A.V.C.) will indicate that the set is tuned correctly.
E. Re-adjust "Frequency Mc" and "P.A. Tuning" dials until control station is heard clearly.
F. Press "NET" button and adjust "Frequency Mc" dial until the beat note frequency is zero. When netting on "M.C.W.," or while the other station is talking, the beat note will disappear, but the modulation can still be heard.
G. For C. W. reception, turn switch S7A to "C.W." and adjust beat note as desired by means of "HET TONE" control R14A.

2.2.2 TUNING OF SENDER

A. Turn the transmission selector switch S 7 A to the required position (R/T, C.W., or M.C.W.).
B. Set Test Meter Switch S8A to "AE."
C. R/T: When working on R / T, press the pressel-switch of the microphone and adjust Variometer and "P.A. Tuning" knob until meter indicates maximum output. It is necessary to re-adjust both controls successively several times before maximum meter reading is obtained. Log Variometer setting.
D. C.W.: When working on C.W. or M.C.W., plug morse key and plug assembly No. 9 into the "KEY" jack on the set panel. If no suitable platform is found on which to rest the key, it may be strapped to the thigh.
When sending it is nẹcessary for the plug to be pushed right home. The procedure to tune for maximum output is the same as for R/T. When working on C.W., however, it is necessary to press the key when tuning for maximum output. (If the key is not pressed, no aerial current will flow.) When receiving, the plug should be partially withdrawn. (If the key remains pushed in the set stays on "Send" and no reception is possible.) Pushing the plug in, switches the Set
to "Send" again. If the output circuits have been tuned for maximum output on R / T and the set is switched to C.W., and vice versa, it is necessary to retune them slightly, following the same procedure as before.

The Variometer needs re-adjusting whenever the frequency of the set or the length of the aerial is altered. When you set up for "Flick" working, note the Variometer settings for the two frequencies on the writing tablet at the right-hand end of the set, and in your log, so that you can re-set the Variometer quickly when changing frequency. There are two scales on the Variometer 0-100 and 200-100. The lower frequencies will have a setting on the lower scale ($0-100$), the lowest frequency near 10; high frequencies will have a setting on the higher scale (200-100), the highest near 110.

WARNING. The positions where you change from one scale to another are marked by red bands. Never use a setting covered by either of these bands. If you find a setting on or a little below either red band, say between 80 and 100 or between 180 and 200, always see if you can get better results at the top of the other range.

2.2.3 THE "FLICK" DIALS (Fig. 7a)

The "Flick" mechanisms fitted to the two main dials ("Frequency Mc" and "P.A. Tuning") enable the adjustments of these controls to be pre-set for two frequencies. An almost instantaneous change from one frequency to another is thus made possible.

Adjacent to each main tuning dial is an auxiliary control marked "FLICK," "SET," and "TUNE." In the "FLICK" position, two pre-determined tuning settings are indicated by spring-loaded followers, which drop into notches in two discs mounted on the condenser shaft. The coloured indicators above the dials indicate which of the two discs is engaged.

In the "FLICK" position, the slow motion drive is disengaged. With the "Flick" controls set to "TUNE," the "Flick" mechanism is disengaged and the slow motion drive functions in the normal manner.

To operate the "FLICK DIALS" proceed as follows:

1. Set Band-change switch ($\mathrm{S} \mid 1 \mathrm{~A}$) to desired Band.
2. Engage either the blue or the red disc of each dial.
3. Turn the auxiliary controls to "SET."
4. Slacken off the appropriate (blue or red) locking screws on the front of the dial knobs.
5. Tune the receiver, by operating both dials, to the control station (paragraph 2.2.1).
6. Tighten locking screws of "FREQUENCY Mcs" dial only.
7. Press the pressel-switch and rotate the Variometer dial for maximum aerial current. Log Variometer setting.
8. Re-adjust the "P.A. Tuning" dial for maximum aerial current and tighten locking screws.
9. Engage the other disc of each dial and repeat the entire process for the other frequency.

It is possible to fix both "flick" positions on the same band, or to have them on different bands. When setting the "Frequency Mc/s" control, care should be taken to read the correct dial. (According to the setting of the Band Change Switch.)

When changing from one "flick" position to another, the following procedure should be adopted:

1. "Flick" "Frequency Mc" Control.
2. "Flick" "P.A." Tuning Control.
3. Change Band Change Switch, when the new "flick" position is on another band.
4. Rotate Variometer until maximum output is indicated by the test meter. This setting will be greatly facilitated if the Variometer position has been logged previously.

WARNING: When netting, do not tighten any locking screws, before all controls are adjusted for zero beat on Receive and maximum aerial current on Send.

NOTE: After having netted and tuned, the meter switch S8A should be left in the "AE" position. The meter will then always show a reading when the set is switched to Send, thus giving the operator a possibility to check the operation.

2.3 TUNING AND NETTING THE "B" SET

(1) Put the "A ONLY-ALL" switch to "ALL" (if it is not already there).
(2) Put the "OFF-ON B" switch to "ON" (if not alread'y done).
(3) Turn the switch on the control unit to "B."
(4) Turn the knob "GAIN B" to the right as far as it will go.
(5) Put the "B TUNING" disc to the ordered setting.

NETTING.

(6) Control Station presses his pressel-switch and calls the group.
(7) During this call, out-stations adjust their "B TUNING" discs till they hear control, turn the knob "GAIN B" down till control can only just be heard, and adjust the tuning discs for the clearest possible signal. They may then turn "GAIN B" up, if necessary, to hear control comfortably.
(8) Out-stations answer in turn. During each answer, control tunes his " B " set to the out-station's signal as in (7), and notes the setting of his tuning disc. If this is more than one division different from the ordered frequency, the out-station is badly off net.
(9) Control station calls all out-stations one by one and tells them "O.K. off," if they have netted properly. If a station is badly off the net, he tells him to alter the setting of his tuning discs up or down, according to the notes made in (8) above, and to answer him again.

The "QUENCH" Adjuster. This should NEVER be touched except on orders from CONTROL.
(10) Sometimes a whistle interferes with the working of the group. If this happens, Control orders all out-stations to screw their quench adjusters right IN, and does so himself. He then orders all out-stations but one to switch their "B" sets off; call this one station "No. 1." If there is still a whistle, Control orders No. 1 to screw his adjuster slowly out again, and both listen. When the whistle pitch is too high to be heard, No. 1 stops screwing, and tells Control "O.K."
(11) Control tells another out-station (call him No. 2), by shouting or other means, to switch his " B " set on. If there is a whistle, No. 2 screws his adjuster slowly out. When he can no longer hear the whistle, he stops screwing and tells Control "O.K."
(12) The same drill is done again for the rest of the outstations. It should never be necessary to touch the "QUENCH" adjusters again until a new set joins the group.

2.4 CONTROL AND INTERCOMMUNICATION SYSTEM

The installation of the Control and Intercommunication System depends on the type of vehicle in use. The installation instructions and circuit diagrams are supplied with every Installation Kit and Vehicle.

To operate the intercommunication system, it is only necessary to turn the switch on the control unit to I-C, and to press the pressel-switch when talking. Make sure that S10A is on position "ALL."

Tables VI and VII show the facilities provided by installations in a Canadian Infantry Tank Mk. III and an U. S. Medium Tank M4. Figs. 8 and 9 show the wiring layout of these installations.

In the Infantry Tank, the Gunner's and Commander's headgears are connected to Control Unit No. 3 (Mk. I or Mk. II), and by means of a switch they select the facility they require. The Mark I unit has 2 switches only, S1C and S1D, by which the type of service is selected.

Control Unit No. 3, Mk. II has 3 switches, SIF, SI 3A and S14A. With S14A in position " N " (Normal), the facilities and operations are the same as on a Mk. I Unit.

With S14A in position " R " (Re-Broadcast) the facilities as outlined on Table VI are available. The operation of the control and intercommunication system in an U.S. Medium Tank M4 is very similar. Fig. 9 and Table VII show all the details.

2.5 CHECKING FOR CORRECT OPERATION

The following points should be checked when installing the set or after it has been out of operation for a long period:

1. Check that the operating voltages are correct, using the Test meter on the set panel. (See Table VIII for limits).
2. Check that the I-C, Amplifier works satisfactorily. (Switches on Control Units to I-C.)
3. Check that the side-tone of " A " and " B " sets can be heard when sending. (Switches on Control Units to " A " and " B " respectively.)
4. Check that the incoming signals on " A " and " B " Sets can be heard with the Control Unit switches set to "I.C."
5. Check that the lamp on Control Unit lights, when the A-Set is unattended. (Switches on Control Units to "B.")
6. Check that the aerial current and drive voltage are correct, using the Test meter on the panel. (See Table VIII for limits.)

WARNING: Testing the side-tone of the " A " or " B " Set in the field should be deleted, as this gives the enemy a chance to obtain a D.F. bearing on the vehicle.

TABLE VI
DETAILS OF CONTROL SYSTEM (CANADIAN INFANTRY TANK MK. III) (3-MAN VEHICLE)

Control Unit No. 3 MK. II (Commander, Gunner)			Speaking and Listening on A-Set	Speaking and Listening on B-Set 	Connected to Inter-communication System	Receiver Output Fed Into I-C to Provide Calling Signal	Remarks
Switch S14A in Position	Switch S13A in ${ }^{\circ}$ Position (Gunner)	Switch S1F in Position (Commander)					
N	A	I.C.	Gunner	-	Commander, Driver	B-Set	With switches set to "I-C," the side-tone
N	B	I.C.	-	Gunner	Commander, Driver	A-Set	sets serves as a monitor on incoming signals.
N	I.C.	I.C.	-	-	All	A-Set and B-Set	-
N	A	A	*Commander Gunner	-	Driver	B-Set	Commander and Gunner should never communicate over sidetone of A-Set. This speech is radiated and subject to enemy interception or D.F.

[^0](Table continued on next page)

TABLE VI-Continued
DETAILS OF CONTROL SYSTEM (CANADIAN INFANTRY TANK MK. III) (3-MAN VEHICLE) -Continued

Control Unit No. 3 MK. II (Commander, Gunner)			Speaking and Listening on A-Set	Speaking and Listening on B-Set	Connected to Inter-communication System	Receiver Output Fed Into I-C to Provide Calling Signal	Remarks
Switch S14A in Position	Switch S13A in Position (Gunner)	Switch S1F in Position (Commander)					
N	B	A	*Commander	Gunner	Driver	-	-
N	I.C.	A	*Commander	-	Driver Gunner	B-Set	-
N	A	B	Gunner	*Commander	Driver	-	-
N	B	B	-	Gunner, *Commander	Driver	A-Set	-
N	I.C.	B	-	*Commander	Driver	"A" Set	Warning Lamp on control unit No. 3 indicates "A" Set unattended. Commander and Gunner should never communicate over side-tone of BSet. This speech is radiated and subject to enemy interception or D.F.

[^1] (Table continued on next page)

TABLE VI-Concluded

DETAILS OF CONTROL SYSTEM (CANADIAN INFANTRY TANK MK. III) (3-MAN VEHICLE)—Concluded

[^2] Intercommunication System only, and cannot be used to speak over the " A " or " B " sets.

TABLE VII
DETAILS OF CONTROL SYSTEM (U. S. MEDIUM TANK M4) (5-MAN VEHICLE)

Control Unit No. 2 Mk. II (LoaderOperator)		$\|$Control Unit No. 1 Mk.II(Com- mander)	Speaking and Listening on A-Set	Speaking and Listening on B-Set	Connected to Inter-communication System	Receiver Output Fed Into I-C to Provide Calling Signal	Remarks
Switch S14A in Position	Switch S13A in Position	Switch S1F in Position					
N	I.C.	A	*Commander	-	LoaderOperator, Gunner, Driver, Fwd-Gunner	B-Set	With switches set to "I-C," the side-tone provided by "A" and/or " B " serves as a monitor on incoming signals.
N	I.C.	I.C.	-	-	All	$\begin{gathered} \text { A-Set and } \\ \text { B-Set } \end{gathered}$	
N	I.C.	B	-	*Commander	LoaderOperator, Gunner, Driver, Fwd-Gunner	A-Set	
N	A	A	*Commander \& LoaderOperator	-	Gunner, Driver, Fwd-Gunner	B-Set	Commander and Loader - Operator should never communicate over side-tone of "A" set, as this speech is radiated and subject to enemy interception or D.F.
N	A	I.C.	LoaderOperator	-	Commander, Gunner, Driver, Fwd-Gunner	B-Set	\}

* Driver can call Commander in case of emergency by means of buzzer signal operated by push-button on Junction Distribution No. 3. (Table continued on next page)

TABLE VII-Continued
DETAILS OF CONTROL SYSTEM (U. S. MEDIUM TANK M4) (5-MAN VEHICLE)—Continued

Control Unit No. 2 Mk. II (LoaderOperator)		Control Unit No. 1 Mk. II(Com- mander)	Speaking and Listening on A-Set	Speaking and Listening on B-Set	Connected to Inter-communication System	Receiver Output Fed Into I-C to Provide Calling Signal	Remarks
Switch S14A in Position	Switch S13A in Position	Switch S1F in Position					
N	A	B	LoaderOperator	*Commander	Gunner, Driver, Fwd-Gunner	-	
N	B	A	* Commander	LoaderOperator	Gunner, Driver, Fwd-Gunner	-	
N	B	I.C.	-	LoaderOperator	Commander, Gunner, Driver, Fwd-Gunner	A-Set	-
N	B	B	-	$\begin{gathered} \text { *Commander } \\ \text { and } \\ \text { Loader- } \\ \text { Operator } \end{gathered}$	Gunner, Driver, Fwd-Gunner	"A" Set	Warning lamp control unit No. 2 indicates "A"-Set unattended." Commander and Loader - Operator should never communicate over side-tone of B-Set. This speech is radiated and is subject to enemy interception or D.F.

[^3]DETAILS OF CONTROL SYSTEM (U. S. MEDIUM TANK M4) (5-MAN VEHICLE)—Concluded

TABLE VIII
NORMAL METER READINGS

Position of Switch S.8.A.	Meter Function	Normal Readings					Remarks
A E	Indicates Aerial Current	8.0 4.0	6.0 6.0	4.5 8.0	3.5	$\underset{3.0 \mathrm{~V}}{2.5 \mathrm{Mc} / \mathrm{s}}$	Measured on R / T operation using $0-15 \mathrm{~V}$ scale. These readings are extremely variable and no limits can be given. The given readings are merely typical of normal operations.
		Input					
A V C	Indicates Receiver Tuning	$\begin{gathered} 0 \\ 7.5 \end{gathered}$	100 6.0	$\begin{gathered} 1000 \\ 5.0 \end{gathered}$	$\begin{gathered} 10000 \\ 4.0 \end{gathered}$	100,000 MicroVolts 3.0 V Reading	
L. T.	Indicates L.T. Voltage Applied to Filaments	10.5 V to 15.0 V					L.T. voltage should be within these limits to assure operation. Voltages below 12 V will reduce output and performance.
H.T.1.	Indicates 275 V Supply	215 V to 315 V					These readings should be, obtained when the L.T. voltage at the Sender/Receiver Terminals (PL 1 B) is 12 volts.
H.T.2.	Indicates 500 V Supply	440 V to 500 V					
Drive	Indicates Drive Voltage	4.5 V to 7.0 V					

NOTE: Test Meter is correct if it indicates 11.4 V to 12.6 V (S .8 A in L.T. position) when the L.T. voltage is 12 volts at the Sender/Receiver Terminals.
(Table continued on next page)

COMPONENTS AND PARTS FOR WIRELESS SET NO. 19, MARK II

Circuit Ref.	Location	Pye Part No. P.C.	$\begin{aligned} & \text { N.E. Part } \\ & \text { No. P.C. } \end{aligned}$	Type No.	Valu		Rating	Used On
	Screen V1E Load V3A	70722	70722C	K5988-33C	${ }_{4}^{470000}$		1/4" W	S/R (B)
	Load V6A bneory	"	"	,	"	"	"	" (A)
	Filter V6A	"	"	"	"	"	"	" (A)
	Grid V5A	"	"	- "	"	"	"	" (A)
	Screen V1F \%ofermer	" 70732	70732C	'K5975-12B	" 220			" $/ R(1-C)$
	Cath. V1A	70732	70732C	K5975-12B	"		1/2" ${ }^{\text {\% }}$	S/R (A)
	Sec. T5A	"	"	"	"	"	"	" (B)
	Pri. T4B	"	"	"	"	"	"	" (1-C)
	Sec. T6A	"	"	"	"	"	"	" (1-C)
	HF Osc. V2A	"	"	"	"	"	"	" (A)
	Cath. V2A Cath. V1C	70730	${ }^{70730 \mathrm{C}}$	K5974-111B	270	10\%	1/2 W ${ }^{\text {W }}$	S/R (A)
	Screen V2A	70721	70721C	K5974-57B	47000	10\%	1 W	S/R (A)
	Screen V2B	"	"	" $\}$	use 2	"	"	" (A)
	P. Filt. V1A	70726	70726C	K5988-89B	2200	10\%	1/4. W	S/R (A)
	P. Filt. V2A	"	"	"	"	"	"	" (A)
	P. Filt. V1C P. Filt. V5A	"	"	"	"	"	"	". (A)
	P. Filt. V2B	"	"	"	"	"	"	" (A)
	Grid V2A	70729	70729C	K5988-57B	47000	10\%	1/4 W	S/R (A)
	Grid V2B Grid V3A	"	"	"	"	"	"	"" (A)
	Grid V1d	"	"	"	"	"	"	2." (A)
	Filt. V7A-V1E	"	"	"	"	"	"	" (B)

1. Items marked (*) have rating changed from English specification.
2. In U. S. sets a single 1 watt 22,000 ohm resistor is used instead of the two $1 / 2$ watt 47,000 ohm resistors in parallel (R4A and R4D).
3. Unless otherwise indicated read tolerances (\pm).

TABLE IX-Continued
COMPONENTS AND PARTS FOR WIRELESS SET NO. 19, MARK II-Continued

Circuit Ref.	Location	Pye Part No. P.C.	N.E. Part No. P.C.	Type No.	Value		Rating	Used On
Resistors:								
R 7A	Damp. Res. 1st I.F. Damp. Res. 2nd I.F.	70743	70743C	K5988-49C	100000	20\%	1/4 W	S/R (A)
C	Filt. 3rd I.F.	،	،	،	،	"	"	" (A)
	Grid. V4A	"	"	"	"	"	"	" (A)
G	Grid V4A	"	"	"	"	"	"	" (A)
H	Sec. T4A	"	"	"	"	"	"	" (B)
* J	Plate V1E	"	"	K5974-49C	"	"	1/2 W	" (B)
R7.1J	Screen V1A	"	"	"	"	"		S/R (A)
* K	Plate V1F	"	"	"	،	"	"	" (1-C)
L	Divider V2A	" ${ }^{\text {\% }}$	" ${ }^{\text {7 }}$	K-5988-49C	"	"'	1/4 W	" (A)
B	AVC Load V3A	70723	70723C	K5988-25C	1 Meg .	20\%	1/4. W	S/R (A)
R 8A	A VC Filt. V3A	،						" (A)
$\underset{\text { D }}{ }$	Grid V8A	"	"	"	"	"	"	" (B)
F	Grid V8B	"	"	""	" ${ }^{\prime}$	"	"	" (B)
R 9A	Cath. V1B	72988	72988C	K5988-97B	1000	10\%	1/4 W	S/R (A)
B	Cath. V1E Cath. V1F	"	"	-	"	"	"	" (B)
- D	Cath. V8A	"	"	K5974-97B	"	"	1/2 W	" (B)
E	Cath. V3A	"	"	K5988-97B	"	"	$1 / 4 \mathrm{~W}$	" (A)
R10A	Damp. Res. Variom	70735	70735C	Sheet 2	470	10%	$1 / 2 . \mathrm{W}$	Var. (A)
C	Meter Shunt			K5974-105B		"	"	S/R (A)
*R11 A	Cath. V3A	70713	70713C	K5974-85B	3300	10\%	1/2.W	S/R (A)
B	Plate V1D			K5988-85B	"	10\%	1/4 W	" (B)
*R12A	Screen V3A	70717	70717C	K5974-53B	68000	10\%	1/2 W	" (A)
R13A	Vol. Cont. 'A'	81256	81256C	Variable	1 Meg .			" (A)
R14A	Het. Cont. R ,	81258	81258C	"	6.0			" (A)
R15A	Divider V4A	70744	70744C	K5988*-41C	220000	20%	1/4 W	" (A)
B	Divider V4A	"	"	"	"	20\%	1/4 W	" (A)

1. Items marked (*) have rating changed from English specification. \quad 2. In U. S. sets R7A and R7B are deleted.
2. On some Canadian sets R9E is R10A, i.e., the value is 470 ohms instead of 1000 ohms.
3. On some Canadian, and all U. S. sets R10A is R27A, i.e., the value is 330 ohms instead of 470 ohms.
4. Fn some Canadian, and all U. S. sets R10A is R27A, i.e., the value is 330 ohms instead of 470 ohms.
5. For U. S. meter substitute R37H for R10C. In U. S. sets this is a $8 / 2$ watt resistor.
6. Unless otherwise indicated read tolerances (\ddagger).
(Table continued on next page)

TABLE IX—Continued
COMPONENTS AND PARTS FOR WIRELESS SET NO. 19, MARK II-Continued

Circuit Ref.	Location	Pye Part No. P.C.	N.E. Part No. P.C.	Type No.	Value Tol.		Rating	Used On
Resistors:								
R16A	Res. in L5A Screen V5A	89038	${ }^{89038 C}$	K5975-59A	$1 / 2 \mathrm{Ohms}$ 3900	5\%	1/2 W	" ${ }_{\text {" }} \mathrm{R}$ (A)
*R18A	Cath. V6A to S7	70727	70727C	K5974-39B	270000	10\%	$1 / 2 \mathrm{~W}$	S/R (A)
* B	Cath. V4A to HT 1	"	"،	K5988-39B	"			" (A)
R19A	Grid V7A	70728	70728C	K5988-51B	82000		$1 / 4.4$	S / R (A)
* B	Screen V1C			K 5974-51B			1/2 W	S/R (A)
R20A	Screen V4A Cath. V5A	72657	72657C	K5975-20B	100	10\%	1/2 ${ }_{\text {c/ }}$ W	S/R (A)
R21A	Filt. V3A	70724	70724C	K5988-63B	27000	10\%	1/4 W	S/R (A)
${ }_{\text {B }}$	Feedback 1 C	"	"	"،	"		، ${ }^{\text {a }}$	" (1-C)
R22A	Plate V4A	70733	70733C	Ceramic	47	10\%	² 2 W	S/R (A)
R23B	Ser. Grid V1E	70725	70725 C	K5988-65B	22000	10\%	$1 / 4.4$	S / R (B)
C	Pl. Filt. V1E	"	"	"	"		"	" (B)
D	Ser. Grid V1F Pl. Filt. V1F	"	"	"	"	"	"	"، (1-C)
R24A	Meter Ser. Res.	71901	71901C	K5974-23A	1.2 Meg	5\%	1/2 W	S / R (A)
R25A	Meter Ser. Res.	90459	90459C	K5976-23A	1.2 Meg.		1.0 W	S/R (A)
R26A	Meter Ser. Res.	72389	72389C		29000	2\%		
R27A	Damp. Res. Vario.				330	10\%	1/4 W	Var. (A)
R28A	Damp. Res. in Vario.	70740	70740C	Ceramic	27	10\%	1/2 W	
R29A	Cont. in Vario.	81264	81264C	Variable	20000			Var. (A)
R32A	Plate V1D	72658	72658 C	K5974-89B	15000	10\%	1/2 W	S/R (B)
R33A	Plate V1D	90474	90474C	K5974-63B	27000	10\%	$1 / 2 \mathrm{~W}$	S / R (B)

1. Items marked (*) have rating changed from English specification.
2. Unless otherwise indicated read tolerances (\pm)
(Table continued on next page)

COMPONENTS AND PARTS FOR WIRELESS SET NO. 19, MARK II-Continued

Circuit Ref.	Location	Pye Part No. P.C.	N.E. Part No. P.C.	Type No.	Valu	Tol.	Rating	Used On
Resistors:	Plate V1D			K5974-57B	47000	10\%		
*R34A	Screen V1D	70742	70742C	K5976-57B	47000	10\%	1.0 W	S/R (B)
* ${ }_{*}{ }^{\text {B }}$	Osc. Pl. V2A Osc. P1. V2B			"	"			" (A)
R35A	Vol. Cont. 'B'	81257	81257C	Variable	100000			S / R (B)
R36A	Feedback 'B'	70736	70736C	K5988-59B	39000	10\%	1/4 W	S/R (B)
R37A	Cath. V8A	70731	70731C	K5976-107B	390	10\%	1.0 W	S/R (B)
R37H	Meter Shunt				390	10\%	1.0 W 1.0	S/R (A)
R38A $*$ R39A	Fil. V7A	89034 70714	890314C	K5983-26A	56 820	5\%	1.0 W $1 / 2 \mathrm{~W}$	S/R (1-C)
${ }^{+} \mathrm{R}$ A	LF Osc. Grid V2A			K5988-99B		"	$1 / 4 \mathrm{~W}$	S/R (A)
R40A	Lamp Res. P/s	90460	90460 C	K5975-37B	${ }^{20}$	10\%	1/2 ${ }^{1 / 6}$	
	Lamp Res. Con. Unit 2 Lamp Res. Con. Unit 3		"	"	"	"	'"	Control U.
	Lamp Res. Con. Unit 3							Junction
R41A	Mic. Res. J/B \#1	90790	90790C		2	10\%		Dist.
		"	"		2	"		Junction
R $42{ }^{\text {B }}$	Mic. Res. Grid V2A	72648	72648C	K5988-73B	10000	10\%	1/4 W	S / R (A)
R42A	Grid V4A	"	"	K5988-73B	"	10	1/4	S/R (A)
C	Div. V2A V2B	"			"	"	,	\because (A)
R43A	PA Bias	81265	81265 C	Variable	100000			$"$ (A)
*R44A	Screen V1A	70745	70745C	K5976-59B	39000	10\%	1.0 W	" (A)
R45A	Screen V2A Screen V2B	72385	72385C	K5984-65B	22000	10\%	2.0 W	"، (A)

1. R33.1A is used with Canadian E1148 valves. If British valves are used, improved performance will be obtained if R33-1A is removed.
2. For U. S. meter substitute R 37 H for R10C. In U. S. sets this is a $1 / 2$ watt resistor. It may be replaced by the 1 watt resistor R 37 H .
3. Items marked (*) have rating changed from English specification.
4. Unless otherwise indicated read tolerances (\pm).
(Table continued on next page)

TABLE IX-Continued
COMPONENTS AND PARTS FOR WIRELESS SET NO. 19, MARK II-Continued

Circuit Ref.	Location	Pye Part No. P.C.	N.E. Part No. P.C.	Type No.	Value Tol.	Rating	Used On
Condensers: C 1 A C 2A C 3A C 4 A B D $\stackrel{F}{\mathrm{~F}}$ I 	Coup. Ant. 'A' Coup. V1A Osc. Coup V2A Grid V5A Grid V6A Grid V4A PA Tuning Screen V1A Cath. V1A Plate V1A Screen V2A Cath. V2A Plate V2A Cath. V1B Plate V1B Cath. V1C Plate V1C Screen V3A Cath. V3A Screen V1C Cath. V2B Plate V5A Cath. V5A Plate V2B Screen V2B Screen V1D Screen V1E Screen V1F	$\begin{gathered} 66109 \\ 6678 \\ 66 \\ 66 \\ 66 \\ 66 \\ 80179 \\ 68182 \\ 66 \end{gathered}$				2200 V 1000 V $"$ $"$ $"$ 400 V $"$	

1. British sets have . 0001 Mfd . instead of C2A.
2. Unless otherwise indicated read tolerances (\pm).

TABLE IX-Continued
COMPONENTS AND PARTS FOR WIRELESS SET NO. 19, MARK II-Continued

1. Items marked (*) have rating changed from English specification. \quad 2. Items marked ($\$$) are not separately demandable.
2. Unless otherwise indicated read tolerances (\pm).
(Table continued on next page)

TABLE IX-Continued
COMPONENTS AND PARTS FOR WIRELESS SET NO. 19, MARK II—Continued

[^4]TABLE IX—Continued
COMPONENTS AND PARTS FOR WIRELESS SET NO. 19, MARK II—Continued

1. C14B is not in all Canadian and U. S. sets.
2. Unless otherwise indicated read tolerances (\pm).
(Table continued on next page)

TABLE IX-Continued
COMPONENTS AND PARTS FOR WIRELESS SET NO. 19, MARK II—Continued

1. Some British and Canadian sets have a .000005 Mfd . condenser for C21A.
2. Unless otherwise indicated read tolerances (\pm).

TABLE IX-Continued
COMPONENTS AND PARTS FOR WIRELESS SET NO. 19, MARK II-Continued

Circuit Ref.	Location	Pye Part No. P.C.	N.E. Part No. P.C.	Type No.	Value Tol.	Rating	Used On
Condensers: C26A	R.F. Filter for Rect.	66758	66758C	Mica 17	. 001 Mfd . 25\%	1000	Variometer
C27A	Grid Coup. V7A	66152	66152C	Class D 20	. 00002 Mfd. 10%	1300	S/R (B)
$\begin{aligned} & \mathrm{C} 28 \mathrm{~A} \\ & \mathrm{C} 29 \mathrm{~A} \end{aligned}$	Feedback Quench V1D Output Quench to Gain Contr.	$\begin{aligned} & 66202 \\ & 68184 \end{aligned}$	$\begin{aligned} & 66202 \mathrm{C} \\ & 68184 \mathrm{C} \end{aligned}$	- Mica	$\begin{array}{lr} .0007 \mathrm{Mfd} . & 5 \% \\ .01 \mathrm{Mfd} & 15 \% \end{array}$	$\begin{gathered} 1000 \\ 600 \end{gathered}$	$\begin{array}{ll} " \quad & (\mathrm{~B}) \\ " \quad \text { (B) } \end{array}$
B	Plate V1E to Grid	"	"	"	" " 15%	"	" (B)
C	Plate V1F to Grid	"	"	"	" " 15%	"	" (1-C)
C30A	Quench Freq. Filt. Plate V1E	66747	66747C	"	. 001 Mfd . 15%	1000	" (B)
B	Quench Freq. Filt. Plate V1E	"	"	"	" " 15%	"	" (B)
C31A	Decoupling HT to V1D	67193	67193C	Plain Plate Elec.	$\underset{(\mathrm{Min})}{2.0 \mathrm{Mfd}-0+100 \%}$	350	" (B)
B	Decoupling HT to V1E	*	"			"	" (B)
C	Decoupling HT to V1F	"	"	"	" "	"	" (1-C)
C32A	Decoupling HT to Power Unit	67192	67192C	Plain Plate Elec.	$\text { 3.2 Mfd. } \begin{array}{r} 50 \% \\ -10 \% \end{array}$	275	Power Sưpply
C33A	RF Filter 500	68121	68121C	X4851 10	0.1 Mfd. 10%	1500	
B	Decoupling HT to V4A	"	"	"	" " 10%	"	S/R A)

[^5][^6]TABLE IX-Continued
COMPONENTS AND PARTS FOR WIRELESS SET NO. 19, MARK II-Continued

[^7](Table continued on next page)

TABLE IX—Continued
COMPONENTS AND PARTS FOR WIRELESS SET NO. 19, MARK II—Continued

Circuit Ref.	Description	$\begin{aligned} & \text { Pye Part } \\ & \text { No. P.C. } \end{aligned}$	N.E. Part No. P.C.	Type No.	Value Tol.	Rating	Used On
Fuses: F1A-C	Fuses-250 .MA.P.S.	90267	90267C	2		1	
Lamps:						1	Sonply U.
P1A	Lamp Pilot Lamp Pilot	${ }_{6}^{90615}$	90615 C	1		1	Supply U.
Induct-							
ances:	Aer. Vario.	75608	75608C				
L 2A	Choke on Var.	79115	79115 C				Var.
	Meter Choke		79115 C 191				
L2-1A			79115C				S/R Var.
L 3A	P.A. Tun. Coil	78465	78465 C				S/R (A)
	Drive Anode Tun. Ind. H.F.	78470	78470C				
*L 5A	L.F. Osc. Ind. (BO	78436	78436C				" "
* B	L.F. Osc. Coup.						
L 6A	Drive Anode Tun.	78471	78471C				" "
L 7A	Ind. L.F. ${ }_{\text {Sender }}$ F.C. Tun.	78472	78472C				" "
	Ind. L.F.						
L 8A	1st IF Trans. 2nd IF Trans.	77366	77366C			\%	"

1. Items marked (*) are not separately demandable.
(Table continued on next page)

TABLE IX-Continued COMPONENTS AND PARTS FOR WIRELESS SET NO. 19, MARK II—Continued

Circuit Ref.	Description	Pye Part No. P.C.	N.E. Part No. P.C.	Type No.	Value Tol.	Rating	Used On
Inductances:							
L 9A	3rd IF Trans.	77367	77367C				"
L10A	R.F. Choke-V1A Grid	79116	79116 C				" "
L11A	UHF Tun. Ind.	78432	78432 C				" (${ }_{\text {" }}$
L12A	UHF Aer. Choke	79125	79125 C				" "
L13A	UHF V7A Cath. Ch.	79114	79114C				
L15A	Quench Anod. V1D	78320	78320 C				"
L16A	LT Choke-P.S.	79112	79112C				P//S
L17A	LT Choke-500 V	78439	78439C				。
B	RF Choke-275 V						"
L19A	Relay Coil "A"	90611	90611 C				S/R (A)
	Relay Coil "B"						
L20A	Buzzer Coil	90788	90788C				J/B
L21A	Sender F.C. Anode Tun. Ind. LF	78473	78473C				S/R (A)
*L22A	RF Rec. Tun. In.	78468	78468C				"
	RF Rec. H.F. Coup.						
*L23A	RF Rec. Tun. In. RF Rec. H.F. Coup.	78469	78469C				
*L24A	RF Osc. Tun. Ind. HF	78466	78566C				" "
B	RF Osc. Coup.						
*L25A	RF Osc. T.I. LF	78467	78567C				"
	RF Osc. Coup.						
L26A	B Aerial Choke	79126	79126C				" (B)

1. Items marked (*) are not separately demandable.
(Table continued on next page)

TABLE IX-Continued
COMPONENTS AND PARTS FOR WIRELESS SET NO. 19, MARK II-Continued

Circuit Ref.	Description	Pye Part No. P.C.	N.E. Part No. P.C.	Type No.	Value Tol.	Rating	Used On
Transformers:							
T1A	Aer. Cur. Meter Tran.	77371	77371 C				Var.
T2A	Rec. Out, "A",	77369	77369 C				S/R (A)
T3A	Mic. Tran. "A",	77370	77370 C				"، "
T4A	". " "B"	77368	77368C				" "
*T5A $\}$	Out, " "B"	76332	76332 C				" (B)
*T6A $\}$	" " 1-C	"					" 1-C
T7A	Pow. Mic. Trans.	77374	77374C	1292			J/B 1
Switches:							Control U.
S 1A	6 Pole 3 Position Control Switch	83212	$83212 \mathrm{C}$				
		"	"				"
		"	"				"
: 2A	Presse1 Switch-	76355	76355C				
	Hand Mic.،	"	"				
	,	"	"				
S 3A	Press Button-	90610	90610C				Junction
S 4A	Press Button-Net	90618	90618C				S / R (A)
	Power Mic;	"	"				
S 5A	Relay-S/R-\#19 (A)	90611	${ }^{90611 C}$				"

1. Items marked (*) are not separately demandable.
(Table continued on next page)

TABLE IX—Continued
COMPONENTS AND PARTS FOR WIRELESS SET NO. 19, MARK II—Continued

(Table continued on next page)

TABLE IX-Concluded
COMPONENTS AND PARTS FOR WIRELESS SET NO. 19, MARK II—Concluded

1. Items marked (*) are not separately demandable.

TABLE X
SET AND STANDARD KIT
REF. NO. P. C. $75527 \mathrm{C}-191$

(b) Carried in Cases. Spare Parts, No. 5C.
(e) Four (4) only supplied in cases, spare parts, No. 5C. Remaining two (2) supplied with Wireless Set No. 19 Mk . II (Canadian) and Supply Unit No. 1.
(Table continued on next page)

TABLE X-Continued
SET AND STANDARD KIT-Continued
REF. NO. P. C. 75527C-191-Continued

$\begin{aligned} & \text { Item } \\ & \text { No. } \end{aligned}$	Pye Ref. No.	Cat. No.	Description			تّ
13	90266C Det. 3	ZA1957	Holders, No. 1 Caps (b)	-	2	2
14	R11950	ZA0937	Key and Plug Assemblies No. 9 (k) (b)	1	-	1
15	76338C	ZA2904	Microphone and Receiver Headgear Assemblies No. 1	2	1	3
			Plugs Single No. 26			
15A	90154C	ZA2814/1	Springs, Retaining 6 Point No. 4 (b)	-	3	3
15B	90521 C	ZA2815/1	Springs Retaining 12 Point No. 1	-	3	3
15C	90520C	ZA2816/1	Springs Retaining (b)	-	4	4
16	R11958-1		Satchels, Signals (L)	1	-	1
16A	90546C	ZA10297	Sockets 6 Point, No. 5 Clips, Spring	-	3	3
16B	90545 C	ZA10298	12 Point No. 1 Clips, Spring	-	4	4

(b) Carried in Cases. Spare Parts, No. 5C.
(k) Key and Plug Assembly, PC90691C-1 will be supplied instead of Key and Plug Assembly, R. 11950 until present stock is exhausted.
(L) Satchels Signals PC90107, ZA6292 will be supplied instead of R.11958-1 until present stock is exhausted.
(Table continued on next page)

TABLE X－Continued SET AND STANDARD KIT－Continued
REF．NO．P．C．75527C－191－Continued

Item No．	Pye Ref． No．	Cat． No．	Description				W゙す
			Valves，W．T．Type				
17 18	86170 C 86097 C	ZA3056 ZA3058	$\begin{aligned} & \text { A.R.D.D. } 5(6 \mathrm{H} 6) \\ & \text { A.R.P. } 35 \\ & \text { (EF-50) } \end{aligned}$	（c）	1	1	
19	86186 C	ZA3496	A．T．S． 25 （807）	（c）	1	1	2
20	$86187 \mathrm{C}-191$	ZA3055	E1148（CV6）	（c）	1	1	2
21	86183 C	ZA 5305	6B8G	（c）	1	1	2
22	86182 C	ZA5699	6K7G	（c）	6	6	12
23	86184 C	ZA5307	6K8G	（c）	2	2	4
24	86185 C	ZA5306	6V6G	（c）	2	2	4
25		ZA7400	Watches，Non－magnetic，W．T．	（a）	1	－	1
26	75464C	ZA3102	Wireless Sets，No．19－ Carriers No． 1		1	－	1
			Straps－				
27 28		ZA2987 ZA2988	No．$\frac{1}{2}$	（d）	1	二	1 1
29	76873C	ZA3104	Cases，Spare Valves		1	－	1
30 31	$\begin{aligned} & 76556 \mathrm{C} \\ & 76557 \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { ZA1868 } \\ & \text { ZA10024 } \end{aligned}$	Connectors，Pig－tail No． 1 No． 2	（b）	二	2	2

（a）Issued separately by Ordnance Corps．
（b）Carried in Cases．Spare Parts，No．5C．
（c）One－half quantity carried in Wireless Sets No． 19 Case，Sparo Valves．Remainder in Wireless Set No． 19 Mk．II（Canadian）．
（d）Normally issued fitted to Wireless Sets No．19，Carriers No． 1.

TABLE X-Concluded
SET AND STANDARD KIT-Concluded
REF. NO. P. C. 75527C-191-Concluded

Item No.	Pye Ref. No.	Cat. No.	Description			T
$\begin{aligned} & 32 \\ & 33 \end{aligned}$		$\begin{aligned} & \text { ZA2950 } \\ & \text { ZA2951 } \end{aligned}$	Covers, Protecting- No. 1 No. 2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	二	$\stackrel{1}{1}$
34	90816C	ZA2952	Covers, WaterproofNo. 1	1	-	1
35	76421C	ZA3141	Leads, AerialsNo. 1	1	-	1
36	90818	ZA10202	Pads, Mounting	4	-	4
37	32089	ZA10084	Screws, Clamping (b)	-	6	6
38	75450 C	ZA3108	Supply Units, No. 1	1	-	1
$\begin{aligned} & 39 \\ & 39 \mathrm{~A} \end{aligned}$	$\begin{gathered} 92049 \mathrm{C} \\ 76418 \mathrm{C}-191 \end{gathered}$	ZA10178	Wireless Sets, No. 19 Mk. II (Canadian) Aerial, Dummy	1	1	1
40	75608 C	ZA10214	Aerial Variometer, Mk. II	1	1	1
41	$\begin{aligned} & 90771 \\ & 69250 \mathrm{C} \end{aligned}$	ZA10207	Labels, Instruction Carton	1	二	1
43	${ }_{90653 \mathrm{C}}$		Grommets	$\frac{1}{2}$	-	1
43 A	90816C-191		Grommet, Blind (b)	3	3	6
45	90772C-195	ZA3109	Working Instructions	1	-	1

(b) Carried in Cases. Spare Parts, No. 5C.
(f) Issued tied to Aerial Variometer Mk. II to be detached and carried in cases, spare parts, No. 5C.
(g) Issued fitted to Wireless Set No. 19 Mk. II (Canadian).
(h) Issued fitted to Supply Unit No. 1.
(j) Will be included in Kits when available.

INTERCHANGEABILITY LIST
(British, Canadian and U. S. Manufacture)

Name or Designation	INTERCHANGEABLE		Remarks
	Mechanical	Electrical	
Main Tuning Condenser C9A, B, C, D	See Remarks	Yes	British condensers will mount in Canadian sets without change. To mount Canadian condenser in British chassis, two .180 inch holes must be drilled. P. A. tuning condensers are fully mutually interchangeable. The variable condenser housing as well as flick mechanism parts must be changed in all U. S. sets when substituting British or early production Canadian condensers. When substituting U. S. condensers in British and early Canadian receivers the housing as well as flick mechanism parts must be changed to U. S. types.
Tuning Condenser Dials	Yes	See Remarks	If a Canadian condenser is put in a British set, the dials should also be changed and vice versa.
Trimmer Condensers C10A, B, C, D, E, F C34A, C35A, B	See Remarks	See Remarks	$\mathrm{C} 10 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ and C35A are fully interchangeable. C34A requires two .120 inch holes if a Canadian or U. S. condenser is mounted in a British set. British condensers may be mounted in a Canadian or U. S. set without changes. In Canadian or U. S. sets, C35A is mounted on a bracket with C11A, and the complete assembly may be mounted in British sets. A British condenser C35B can be mounted in a Canadian or U. S. set.
Series Trimmer Condenser C11A	Yes	See Remarks	The British mica compression condenser ($230-800 \mathrm{mmf}$) has been replaced by an air trimmer ($7-140 \mathrm{mmf}$) in parallel with a fixed mica condenser. C12A (1780 mmf) in Canadian and U. S. sets.

(Table continued on next page)

TABLE XI-Continued
INTERCHANGEABILITY LIST-Continued (British, Canadian and U. S. Manufacture)-Continued

Name or Designation	INTERCHANGEABLE		Remarks
	Mechanical	Electrical	
Resistor Panel	Yes	Yes	Fully interchangeable.
R. F. Coils	Yes	Yes	Fully interchangeable.
Band-Change Switch S11A	Yes	Yes	Fully interchangeable.
Valve sockets for V2A, V2B	Yes	Yes	Fully interchangeable.
Tubular Paper Condensers	Yes	Yes	Fully interchangeable, although diameter of Canadian and U. S. units approximately $1 / 16$ inch greater than British.
Small Tubular Paper Condensers	Yes	Yes	Fully interchangeable, as Canadian and U. S. sets are equipped with mounting clips to mount British replacement units.
Mica Condensers	See Remarks	Yes	British condensers will mount in Canadian and U. S. sets without change. To mount Canadian or U. S. units in British sets one .120 inch hole should be drilled, if both mounting screws are considered necessary.

(Table continued on next page)

TABLE XI-Continued
INTERCHANGEABILITY LIST—Continued (British, Canadian and U. S. Manufacture)-Continued

Name or Designation	INTERCHANGEABLE		Remarks
	Mechanical	Electrical	
Electrolytic Condensers	See Remarks	Yes	To mount British condenser in Canadian or U. S. set, condenser should be taped to fit under clamp. To mount Canadian or U. S. in British set, clamp must be bent slightly (diameter of Canadian and U. S. units $3 / 32$ inch greater than British).
Relay Switches S5A, S5B	See Remarks	Yes	Different mounting screws; No. 4BA British, U. S. 6-40 threads on Canadian and U. S. relays, fully interchangeable if supplied with mounting screws. (Canadian or U. S. spares are supplied with same.)
Resistors	Yes	Yes	Resistors R4A, C, R6A, E, R7J, K, R9D, R11A, R12A, R18A, B, R19B, R34A, R37A, R39A, R44A, have been increased in power and are fully interchangeable.
Condenser C6A	Yes	Yes	Fully interchangeable.
Heterodyne Tone Control R14A	See Remarks	Yes	British control will mount in Canadian or U. S. set without change. To mount Canadian or U. S. control in British set, it is necessary to slot the mounting hole with a file.

(Table continued on next page)

TABLE XI-Continued
INTERCHANGEABILITY LIST—Continued
(British, Canadian and U. S. Manufacture)-Continued

Name or Designation	INTERCHANGEABLE		Remarks
	Mechanical	Electrical	
Heterodyne Oscillator Coil	Yes	Yes	Complete coil assembly fully interchangeable.
I. F. Transformers	Yes	Yes	Complete assembly fully interchangeable as a unit. No external shunting resistors required with U. S. Units. See note on transformer shield. In some U. S. sets, I. F. adjustment is made from the bottom of the transformer and in others from the side.
Microphone Transformer	Yes	Yes	Completely interchangeable.
"B" Set Tuning Condenser, C25A	Yes	Yes	Completely interchangeable.
Test Meter	See Remark	Yes	Mounting ring needed with U. S. meter in Canadian or British set.
Test Meter Resistors	Yes	Yes	R21C, R24A, R26A, are mounted on a bakelite panel and are fully interchangeable.

(Table continued on next page)

TABLE XI-Continued
INTERCHANGEABILITY LIST-Continued
(British, Canadian and U. S. Manufacture)-Continued

Name or Designation	INTERCHANGEABLE		Remarks
	Mechanical	Electrical	
P. A. Tuning Coil	Yes	Yes	Fully interchangeable.
Transformers T5A, T6A	Yes	Yes	Complete assembly fully interchangeable.
$\begin{gathered} \text { Transformer } \\ \text { T2A } \end{gathered}$	Yes	Yes	Fully interchangeable.
Switch S3B	Yes	Yes	Fully interchangeable.
Switch S8A	Yes	Yes	Uses U. S. threads on bushing, but fully interchangeable as switches are supplied with mounting nuts.
Switch S6A	See Remarks	Yes	British switch can be mounted in Canadian or U. S. set without change; to mount Canadian or U. S. switch in British set requires filing of a slot.
$\begin{gathered} \text { Switches S9A } \\ \& S 10 A \end{gathered}$	Yes	Yes	Fully interchangeable as mounting nuts are specified with switches.

(Table continued on next page)

TABLE XI-Concluded
INTERCHANGEABILITY LIST-Concluded (British, Canadian and U. S. Manufacture)-Concluded

Name or Designation	INTERCHANGEABLE		Remarks
	Mechanical	Electrical	
Fuse Holders	See Remarks	Yes	Fuses and fuse holders fully interchangeable. Fuse extractors are not interchangeable.
Valve Shields	See Remarks	Yes	Body and cap fully interchangeable as unit. British caps will not fit Canadian or U. S. bodies and vice versa.
Parts L2B, L10A, C1A, C2A, C36A	Yes	Yes	Are mounted on a bakelite panel on P. A. tuning condenser. All parts fully interchangeable.
Buzzer	Yes	Yes	Buzzer in junction distribution box No. 1 fully interchangeable.
Transformer T3A, T4A, B	Yes	Yes	Fully interchangeable.
Jack J1A	See Remarks	Yes	British jack can be mounted in Canadian or U. S. set without change; to mount Canadian or U. S. jack in British set requires drilling of two $.120^{\prime \prime}$ holes.
Valves ARDD5 or 6H6	Yes	Yes	6H6 (VT90) in U. S. sets fully interchangeable.
ARP35 or EF50	Yes	Yes	EF50 (VT250) in U. S. sets fully interchangeable.
ATS 25 or 807	Yes	Yes	807 (VT100) \& (VT100A) in U. S. sets fully interchangeable.
CV6 or E-1148	Yes	Yes	Canadian sets using an E-1148 valve have a resistor R33.1A (27,000 ohms) parallel with R33A (47,000 ohms). When using a CV6 valve disconnect R33.1A in order to obtain increased sensitivitv.

Рhoto 1-Front View of Set and Supply Unit

Рнотo 2-Front View with Guard and Waterproof Cover

Рhoto 3A-Inside View of Sender/Receiver (Top)

Photo 3B-Inside View of Sender/Recfiver (Underneath)

Рhoto 4-Inside View of Variometer

Рhoto 5-Inside View of Supply Unit

Photo 6-Installation Equipment for Infantry Tank MK111***

Рhoto 7-Installation Equipment for U. S. Medium Tank M. 4

Fig. 1-Block Diagram of Sender Receiver

NOTES-

1. Varlable Reslstance R29A is used to adjust reading of Test Meter when measurlng the Aerlal Current (see Note in Paragraph 1.3.5).
2. On some Canadian and U. S. sets R10A is R27A, I.e., the value is 330 ohms Instead of 470 ohms.

Fig. 2-Schematic of Variometer

```
230MH/240ME
1,3-1,2m
```


${ }^{\text {sosal }} 4$

${ }^{-} A^{-} \operatorname{set}$

Fig. 4 Schematic of Supply Unit

Fig. 5-Top Plan of Chassis

Fig. 6-Underneath Plan of Chassis

Fig. 7-Controls on Front Panel
Fig. 7A-Flice Control

Fig. 8-Wiring Layout of a Canadiån Infantry Tank MK111*** Installation

Fig. 9-Wiring Layout of a U. S. Medium Tank M-4

[^0]: * Driver can call Commander in case of emergency by means of buzzer signal operated by push-button on Junction Distribution No. 3 .

[^1]: * Driver can call Commander in case of emergency by means of buzzer signal operated by push-button on Junction Distribution No. 3.

[^2]: NOTE: If a Control Unit No. 3A is used instead of Control Unit No. 3, a third cord will, be found on the 3 A Unit. This cord is connected to the

[^3]: * Driver can call Commander in case of emergency by means of buzzer signal operated by push-button on Junction Distribution No. 3.

[^4]: 1. C11A and C35B are stocked in maintenance spares as one Assy. Per PC80128C-191 and the whole Assy. should be replaced when one part is defective.
 2. Items marked (*) have rating changed from English specification.
 3. Unless otherwise indicated read tolerances (\pm).
 (Table continued on next page)
[^5]: 1. Unless otherwise indicated read tolerances (土).
[^6]: (Table continued on next page)

[^7]: 1. C11A and C35B are stocked in maintenance spares as one Assy. Per PC80128C-191 and the whole Assy. should be replaced when one part is defective. 2. Items marked (*) have rating changed from English specification. 3 . Unless otherwise indicated read tolerances (\pm)
