## instruction book

Cedar Rapids Division | Collins Radio Company, Cedar Rapids, lowa

## Collins Amatemr Equipment Guarantee

The Collins Amateur Equipment describedherein is sold under the following guarantee:

Collins agrees to repair or replace, without charge, any equipment, parts, or accessories which are defective as to workmanship or materials and which are returned to Collins at its factory or its designated Service Agency, transportation prepaid, provided:
(a) Buyer presents properly executed Warranty Verification Certificate.
(b) Notice of the claimed defect is given Collins or an authorized Service Agency, or an authorized Distributor, in writing, within 180 days from the date of purchase and goods are returned in accordance with Collins instructions.
(c) Equipment, accessories, tubes, and batteries not manufactured by Collins or from Collins designs are subject to only such adjustments as Collins may obtain from the supplier thereof.
(d) Any failure due to use of equipment for purposes other than those contemplated in normal amateur operations or in violation of Collins applicable Instruction Book shall not be deemed a defect within the meaning of these provisions.

This Warranty is void with respect to equipment which is altered, modified or repaired by other than Collins or Collins Authorized Service Agencies. However, alteration or modification in accordance with Collins Service Bulletins shall not affect this Warranty.

Collins reserves the right to make any change in design or to make additions to, or improvements in, Collins products without imposing any obligations upon Collins to install them in previously manufactured Collins products.

No other warranties, expressed or implied, shall be applicable to said equipment, and the foregoing shall constitute the Buyer's sole right and remedy under the agreements contained in these paragraphs. In no event shall Collins have any liability for consequential damages, or for loss, damage or expense directly or indirectly arising from the use of the products, or any inability to use them either separately or in combination with other equipment or materials or from any other cause.

NOTICE: With each equipment or set of equipments purchased, the distributor should furnish a Warranty Verification Certificate. It is necessary that this certificate accompany the equipment when it is returned for warranty repairs. Be sure that you receive it from your distributor.

## Warranty Repairs

On the opposite page are listed the Service Agencies authorized to perform warranty repair on Collins Amateur Equipments.

[^0]Collins Radio Company Amateur Product Office Cedar Rapids, Iowa

INFORMATION NEEDED:
(A) Type number, name and serial number of equipment
(B) Date of delivery of equipment
(C) Date placed in service
(D) Number of hours of service
(E) Nature of trouble
(F) Cause of trouble if known
(G) Name of distributor from whom the equipment was purchased.

Equipment returned to the Service Agency or Collins for warranty repair must be accompanied with the Warranty Verification Certificate.

## Out-of-warranty Repair, Modifications, Addition of Accessories, Alignment, etc.

For information on service of this type write to the address shown below. If you wish to return your equipment for repairs, etc., without prior correspondence, be sure to include the following information attached to the equipment inside the packing carton:
(1) Complete instructions detailing work to be performed.
(2) Your return address.
(3) Method of shipment by which the equipment should be returned.
(4) Special instructions.

## DIRECT YOUR CORRESPONDENCE TO: <br> Collins Radio Company <br> Product Support Division <br> Cedar Rapids, Iowa

HOW TO ORDER REPLACEMENT PARTS:

When ordering replacement parts, please furnish the following information insofar as applicable:

## INFORMATION NEEDED:

(A) Quantity required
(B) Collins part number (9 or 10 digit number) and description
(C) Item or symbol number obtained from parts list or schematic
(D) Collins type number, name and serial number of principal equipment
(E) Unit subassembly number (where applicable)
instruction book

## 30L-1 <br> R-F Linear Amplifier

(C) Collins Radio Company 1961, 1962, 1964, 1965

## TABLE OF CONTENTS

Section Page
I INSTALLATION ..... 1-1
1.1 Unpacking ..... 1-1
1.2 Power Transformer Connections ..... 1-1
1.3 Cabling ..... 1-1
1.3.1 Traveling Station ..... 1-1
1.3 .2 Home Station ..... 1-1
1.3.3 KWM-1 Serial Numbers Above 861 ..... 1-5
1.3.4 KWM-1 Serial Numbers Below 861 ..... 1-5
1.4 Installation with Other Makes of Exciters ..... 1-5
II OPERATION ..... 2-1
2.1 Operation in Amateur Bands ..... 2-1
2.2 Operation with Other Makes of Exciters ..... 2-1
2.3 Operation Outside Amateur Bands ..... 2-1
UI PRINCIPLES OF OPERATION ..... 3-1
3.1 General ..... 3-1
3.2 Input Circuits ..... 3-1
3.3 Output Circuits ..... 3-1
$3.4 \quad$ Power Supply Circuits ..... 3-1
3.5 Safety Interlock Circuits. ..... 3-1
3.6 Power Control Circuits ..... 3-1
3.7 ALC Circuits ..... 3-1
3.8 Metering Circuits. ..... 3-2
IV MAINTENANCE ..... 4-1
4.1 General ..... 4-1
4.2 Removal of Cabinet and Covers ..... 4-1
4.3 Blower Lubrication ..... 4-1
4.4 Alignment of R-F Input Circuits ..... 4-1
4.5 Meter Lamp Replacement ..... 4-2
4.6 Tube Replacement ..... 4-2
4.7 Tune Meter Adjustment ..... 4-2
4.8 ALC Threshold Adjustment ..... 4-3
V SPECIFICATIONS ..... 5-1
VI PARTS LIST ..... 6-1
VII ILLUSTRATIONS ..... 7-1

## LIST OF ILLUSTRATIONS

Figure Page
1-1 Interconnections with KWM-2/2A Traveling Station (C724-06-5) ..... 1-0
1-2 Interconnections with KWM-2/2A Home Station (C724-04-5) ..... 1-2
1-3 Interconnections with KWM-1 (C724-05-5) ..... 1-3
1-4 Interconnections with S-Line (C724-07-5) ..... 1-4
2-1 $30 \mathrm{~L}-1$ Operating Controls (C724-08-P) ..... 2-0
3-1 30L-1 Block Diagram (C724-02-4) ..... 3-0
3-2 Control and Interlock Circuits (C724-03-4) ..... 3-2
4-1 Location of Adjustments (C724-10-P) ..... 4-1
6-1 R-F and Power Supply Compartments, Parts Location (C724-12-P) ..... 6-0
6-2 Input Circuitry, Parts Location (C724-11-P). ..... 6-3
7-1 Connector Assembly Instructions (C724-14-X) ..... 7-1
7-2 30L-1 Schematic Diagram (C724-01-6) ..... 7-3
LIST OF TABLES
Table Page
1-1 Equipment Furnished with 30L-1 ..... 1-1
2-1 Multimeter Scale Values ..... 2-1
4-1 Frequency Coverage Allowable by Realignment ..... 4-2


Figure 1-1. Interconnections with KWM-2/2A Traveling Station

## SECTION I INSTALLATION

### 1.1 UNPACKING.

Carefully lift the amplifier out of the packing material. Eramine for visible damage. If the amplifier has been damaged in shipment, save box and packing material, and notify the transportation company. Fill out and mall the equipment registration card.

Lift the amplifier cabinet lid. Loosen the ten screws in the $r$ - $f$ compartment cover, slide it forward, and lift off. Remove the packing material around the tubes. Replace the cover, and tighten screws. Lower the lid.
Check tuning controls and switches for freedom of action. Check the equipment included with the amplifier against table 1-1.

TABLE 1-1. EQUIPMENT FURNISHED WITH 30L-1

| QUANTITY | DESCRIPTION | FUNCTION | PART NUMBER |
| :--- | :--- | :--- | :--- |
| 2 | Shielded cables, 4 feet long, <br> with phono plug on each end | Alc and antenna relay cables | $426-2027-00$ |
| 1 | RG-58C/U cable, 4 feet long, <br> with phono plug on each end | R-f input cable | $426-5076-00$ |
| 6 | Fuses, 8-ampere | Spares | $264-4110-00$ |
| 1 | A-c power plug adapter | A-c power | $368-0138-00$ |
| 1 | UG-21D/U coaxial plug | R-f output connector | $357-9261-00$ |
| 1 | Number 6 Bristo wrench | Knob removal | $024-9730-00$ |
| 1 | Coaxial plug (Amphenol | Knob removal | Right-angle cable plug |
| 1 | type 82-835) | Instruction book | Log book |

### 1.2 POWER TRANSFORMER CONNECTIONS.

The $30 \mathrm{~L}-1$ is shipped with the transformer primary connected for 115 volts a-c. If 230-volt a-c operation is planned, the primary connections must be changed on terminal board TB1. Refer to figure 7-2. This board is located at the bottom of the power supply compartment. The a-c power cord is connected to this board. To obtain access, refer to paragraph 4.2.

## W ARNING

DO NOT BLOCK INTERLOCK SWITCHES. Dangerous voltages are present in this equipment. The high voltage is interlocked with the amplifier covers. Make no attempt to put the amplifier into service until all compartment covers are in place.

### 1.3 CABLING.

Interconnections with other station equipments are described in the following paragraphs. Assembly instructions for type $N$ connectors, such as the UG$21 \mathrm{D} / \mathrm{U}$, are shown in figure 7-1.

### 1.3.1 TRAVELING STATION.

The $30 \mathrm{~L}-1$ is particularly applicable to traveling station use in conjunction with portable transceivers such as the KWM-2/2A. Refer to figure 1-1. IN THIS SERVICE. MAKE SURE THE TRANSFORMFR PRIMARY IS CONNECTED FOR PROPER LINE VOLTAGE.

### 1.3.2 HOME STATION.

Connect to KWM-2/2A, KWM-1, or S-Line as shown in figures 1-2, 1-3, and 1-4.


Figure 1-2. Interconnections with KWM-2/2A Home Station


Figure 1-3. Interconnections with KWM-1


### 1.3.3 KWM-1 SERIAL NUMBERS ABOVE 861.

[18 KWM-1 models above serial number 861 are used with the $30 \mathrm{~L}-1$, it will be necessary to bring out alc and "ground-on-transmit" connections from the $516 \mathrm{~F}-1$ power cable plug, $\mathrm{P}-1$, as shown in figure 1-3. Make the alc connection to terminal 19, and the "ground-on-transmit' connectiontoterminal 20. Use a shlelded wire, and connect to $30 \mathrm{~L}-1 \mathrm{ALC}$ and ANT. RELAY jacks with phono plugs.

### 1.3.4 KWM-1 SERIAL NUMBERS BELOW 861.

II models below serial number 861 are used with the $30 L-1$, it is necessary to make connections inside the KWM-1 for alc and antenna relay control.
a. Use an ohmmeter to locate the feedthrough capacitor, C169, which is connected to pin 19 of J 5.
b. Connect a wire from this feedthrough capacitor to pin 7 of tube socket XV10.
c. Using an ohmmeter to trace the wiring, locate the feedthrough capacitor, C206, which is connected to terminal 20 of J 5 in KWM-1.
d. Connect a wire from terminal 8 of TB1 in KWM-1 to C206.
e. Make corresponding breakout connection to Pl terminal 19 with shielded wire, and connect to the 30L-1 ALC jack with a phono plug.

1. Refer to figure 1-3, Detail A. External to the KWM-1, connect a 10,000 -ohm, 5 -watt resistor and a
relay coil in series from $J 5$ terminal 20 to a ground on the rear of the KWM-1 chassis. Use a relay, such as Collins part number 972-1346-00, with a $10,000-$ ohm, 10-ma coil, and a set of normally open contacts.
g. Connect the normally open contacts through a piece of shielded wire and a phono plug to the 30L-1 ANT. RELAY jack.

## WARNING

BE CAREFUL to protect the operator from the $260-B+$ present on the relay coil and resistor connections. It is recommended that this circuitry be enclosed in a suitable shield box.

### 1.4 INSTALLATION WITH OTHER MAKES OF EXCITERS.

Connect the r-f output of the exciter to the RF INPUT jack on the $30 \mathrm{~L}-1$. Existing antenna switching equipment between receiver and exciter may be left intact. To transmit, a ground must be supplied to the ANT. RELAY jack on the 30L-1. This removes blocking bias from the 811A tubes and energizes the internal antenna relay. Due to the variety of circuits involved, specific instructions for use of alc can not be given. A detailed study of paragraph 3.7 will be helpful if it is desired to utilize the alc provisions in the $30 \mathrm{~L}-1$.


Figure 2-1. 30L-1 Operating Controls

## SECTION II OPERATION

### 2.1 OPERATION IN AMATEUR BANDS.

Table 2-1 shows normal and full-scale meter readings. If the exciter is a KWM-2/2A or S-line, set exciter BTAS ADJUST to produce an idling plate current of 50 ma. Tune and load according to exciter instruction book.
2. Connect the antenna for the band in use to the RF OUTPUT jack on the 30L-1. (When the ON-OFF switch is in the OFF position, the transfer relay in the $30 \mathrm{~L}-1$ connects the antenna to the exciter.)
b. Make sure the ON-OFF switch in the $30 \mathrm{~L}-1$ is in OFF position as shown in figure 2-1.
c. Tune and load the exciter into the antenna. If the metenna does not present a nearly 50 -ohm resistive laad, the exciter can be tuned and loaded into a 50 -ohm tammy load, such as the DL-1. When switched to the put of the 30L-1, the exciter will then remain in tune.
d. If using a Collins exciter, switch back to TUNE osition, and set MIC GAIN to off position.
e. Set the 30L-1 METER switch to the TUNE position.
L. Set BAND switch to same band as that of the neiter, LOADING control to 1 on the dial, and TUNING control to white area for the band in use. Press the 30L-1 ON-OFF switch to the ON asition.

Set MIC GAIN to about $3 / 4$ of full scale. (When sing exciters other than KWM-2/2A or S-Line types, net microphone gain or carrier insertion control to provide approximately 20 watts drive to the $30 \mathrm{~L}-1$.)

Immediately adjust TUNING control for multimet er dip.

1. Alternately adjust TUNING and LOADING controls
zero multimeter reading. The meter will indicate
mero at the dip when the amplifier is properly tuned and laded. Always make the TUNING adjustment for meter
as the last adjustment.
Switch the exciter to the desired sideband or to and reduce exciter MIC GAIN control to normal
operating level. The station is now ready to operate at rated power input.
2. Once the equipment has been tuned up on a given frequency, the $30 \mathrm{~L}-1$ may be switched in or out of the circuit at will by operating the ON-OFF switch. Output power from the amplifier is available instantly with no warm-up period required.

## CAUTION

nowns
DO NOT operate the $30 \mathrm{~L}-1$ into a load presenting a vswr greater than 2 to 1 . The equipment may not function properly and damage may result. DO NOT operate the amplifier in continuous key-down condition at full input for more than 30 seconds. The power supply may be damaged. DO NOT use the 30L-1 in FSK, AM, or FM service. DO NOT use slow-blow fuses, or fuses larger than the 8 -ampere type supplied.

### 2.2 OPERATION WITH OTHER MAKES OF EXCITERS.

Tune according to the procedure outlined in paragraph 2.1. If alc is not used, be careful not to overdrive either the exciter or the final amplifier. Normal plate current meter readings for the $30 \mathrm{~L}-1$ are from 300 to 350 ma on voice peaks. Actual plate current under these conditions will peak at approximately 600 to 700 ma. Be sure the exciter is capable of producing the required drive without excessive distortion. If not, the amplifier may be operated at reduced level.

### 2.3 OPERATION OUTSIDE AMATEUR BANDS.

Operation outside amateur bandlimits requires retuning of the 30L-1 input circuits. This is necessary to present the proper load impedance to the exciter. For procedure, refer to paragraph 4.4.

TABLE 2-1. MULTIMETER SCALE VALUES

| METER SWITCH SETTING | FULL-SCALE INDICATION | NORMAL INDICATION |
| :---: | :---: | :---: |
| Tune | Not applicable | Zero when $30 \mathrm{~L}-1$ is properly loaded |
| D. C. VOLTS | 2000 volts | 1800 volts (No modulation) <br> 1600 volts (At rated load) |
| D. C. AMPS | $1.0 \mathrm{amp}(1000 \mathrm{ma})$ | 600 ma (Key down CW) 300-350 ma (SSB voice peaks) 110 ma (Keyed, no excitation) |

## SECTION III

Principles of Operation


Figure 3-1. 30L-1 Block Diagram

## SECTION III PRINCIPLES OF OPERATION

GENERAL.
30L-1 is a portable r-f linear power amplifier, ading plate power and bias supplies. It is capable
1000 watts PEP input power in SSB or 1000 watts input in CW service with any exciter (such as the M-1, KWM-2/2A, or $32 \mathrm{~S}-1$ ) capable of 70 watts PEP It covers the amateur bands between 3.5 and 7 mc. In addition, the amplifier may be operated ilde the amateur bands over certain ranges of freney. These runges are specified in table 4-1. The er amplifier stage uses four 811A triodes connected a parallel with cathode drive.

### 2.2 INPUT CIRCUITS.

Werer to figures 3-1 and 7-2. Broadband pi-network
aits couple the exciting signal into the cathode cir-
of the power amplifier tubes. The tuned input
sits provide increased efficiency, reduced distor-
and a better impedance match for the exciter than
ally would be obtained with an untuned input. Thes adjustments are not required except for operaoutside the amateur bands.

## 23) OUTPUT CIRCUITS.

2 plate circuit of the power amplifier is tuned by a twork consisting of C32, L9, L10, and C33. citor C32 resonates the tank circuit at the fre$y$ in use. It is adjusted by the TUNING control front panel. The four-gang capacitor, C33, is 1 by the LOADING control to match the pik circuit to the impedance presented by the $a$ and feed system in use. Output from the plate
circuit is connected through the contacts of antenna - geover relay, K1, to the antenna when the control is are energized.

## 14 POWER SUPPLY CIRCUITS.

- d-c power supplies and one a-c filament supply - included in the 30L-1. The amplifier may be conad to a 115 -volt single-phase or to a 230 -volt, -wire, single-phase source. Where practical, the alt, three-wire comnection is recommended. transformer T1 has two primary windings. 1 windings are connected in parallel for 115 -volt thon, and in series for 230 -volt operation. The alt secondary winding provides filament power
-311A tubes through r-f choke L8. It also powers ot lamp in the meter. Another secondary wind-
plies voltage through surge resistor R9 to semitor rectifier CR20. This is a half-wave circuit ted to furnish blocking bias to the amplifier tubes
receive conditions and operating bias when witting. It also furnishes power for changeover - -K1. Voltage from the third secondary winding is
applied to two semiconductor rectifier strings connected in a full-wave voltage doubler configuration. These strings consist of CR1-CR8, C44-C51 in one string, and CR9-CR16, C52-C59 in the other. The parallel capacitors equalize the reverse voltages impressed across the diode junctions and protect against damage by transients. The output of this supply provides approximately 1600 volts d-c under load for the amplifier tube plates.


### 3.5 SAFETY INTERLOCK CIRCUITS.

The r-f and power supply compartment covers operate safety interlock switches for operator protection. Switches S5 and S7 are located in the power supply compartment. Switch $S 6$ is located in the r-f compartment. Cover removal closes these switches and shorts the high voltage to ground. This arrangement protects the operator from accidentally coming in contact with high-voltage $d-c$ which is present in either compartment.

## W ARNING

DO NOT BLOCK INTERLOCK SWITCHES. Contact with voltages in this equipment can be fatal. Be sure to disconnect the a-c power plug before removing any of the covers.

### 3.6 POWER CONTROL CIRCUITS.

Refer to figure 3-2. The front-panel ON-OFF switch breaks one side of the $a-c$ line in the OFF position. When operated to the ON position, a-c power is applied to the power transformer primaries and the tubecooling fan B1. Overload protection is provided by eight-ampere fuses F1 and F2. These are used for both 115 -volt a-c and 230 -volt a-c operation.

### 3.7 ALC CIRCUITS.

Automatic load control (alc) is a compressor circuit operating at radio frequencies. In the $30 \mathrm{~L}-1$, the grid-to-plate capacitances of the amplifier tubes in conjunction with capacitors C22, C23, C24, and C25 form capacitive voltage dividers. Under modulation, an r-f voltage is developed across these dividers and L3. It is coupled to the alc rectifier CR19 through capacitor C72. The r-f voltage is rectified and filtered to produce a negative d-c control voltage which is proportional to the modulation level. (The load resistor for CR19 must be provided by the exciter alc circuits.) This voltage is applied to the control grid of a lowlevel $r-f$ amplifier tube or tubes in the exciter. The time constants of these circuits have a fast


Figure 3-2. Control and Interlock Circuits
attack, slow-reIease characteristic. The alc threshold is controlled by the amount of reverse bias on CR19. This voltage is developed across R7 in the plate supply bleeder network, and varied by potentiometer R16. It is adjusted at the factory for optimum operation in conjunction with the internal alc circuits of exciters such as the KWM-1, KWM-2/2A, or 32S-1. Normally it will not need readjustment.

This system allows a high average level of modulation and optimum power output from the amplifier, within the rated limits of distortion.

### 3.8 METERING CIRCUITS.

One section of the METER switch, S3, selects the output voltage from a tuning and loading bridge circuit.

This circuit consists of the power amplifier tubes, CR17, CR18, and the associated load resistors and filter networks. The bridge is balanced when the plate circuit TUNING and LOADING controls are adjusted to present the proper load impedance to the power amplifier plates. The meter then will read zero.

The second section of the meter switch connects the meter to the plate supply through a four-megohm multiplier resistor to indicate the $\mathrm{d}-\mathrm{c}$ voltage output. It is read on the D.C. KILOVOLT scale.

The third section of the meter switch connects the meter, through R10, across shunt, R8. This indicates power amplifier plate current. It is read on the D.C. AMPS scale.

## SECTION IV MAINTENANCE

### 4.1 GENERAL.

Adjustment of the r-f input circuits requires the followles equipment:
a. R-f wattmeter and directional coupler, such as are facluded in the 312B-4 or 312B-5 Station Controls, or the 302C-3 Directional Wattmeter.
b. 50 -ohm, 500 -watt, nonreactive dummy load. (For abort tests where key-down conditions do not exceed 30 seconds, the DL-1 Dummy Load can be used when applicable.)

A fuse consisting of a number 30 wire in the centertap ground return of the filament winding of $T 1$ is limeluded to protect the PA tubes from excessive plate current. The fuse is connected between the two outer lugs of a terminal strip located near Rll in the power supply compartment (refer to tigure 6-1). Under some conditions, the amplifier may appear to function normally even though this fuse has blown; however, this causes hum to appear on the output signal. Check for shorts in the filament circuit.

### 4.2 REMOVAL OF CABINET AND COVERS.

a. Lift the cabinet lid, and remove the two Phillipshead screws located at the top-front edge of the cabinet. Remove the four feet and the Phillips-head screw located midway between the rear feet. Push the ampliher forward from the rear until the front panel projects from the cabinet about a half inch. Grasping the front panel at the edges, carefully slide the amplifier out of the cabinet, making sure the a-c power cord clears.
b. To remove the $\mathrm{r}-\mathrm{i}$ compartment upper cover, loosen the ten screws about three turns, slide the cover toward the front panel, and lift off.
c. To remove the power supply compartment upper cover, remove screws located about the edges of the cover.
d. To remove the bottom cover, remove two round Phillips-head screws from each end of the cover and three flat-head screws near the middle of the cover, and lift off.

### 4.3 BLOWER LUBRICATION.

Every 1000 hours of operation (or 6 months, whichever comes first), lubricate the blower motor bearings with three or four drops of sewing machine oil. Do not overlubricate.

### 4.4 ALIGNMENT OF R-F INPUT CIRCUITS.

a. Remove the amplifier from its cabinet as outlined in paragraph 4.2. Do not remove any of the covers. To align for amateur band coverage, proceed as follows:
b. Connect a directional wattmeter (312B-4/5 station control wattmeter, $302 \mathrm{C}-3$ directional wattmetur, or equivalent) between the exciter output and the RF INPUT jack, J2, on the $30 \mathrm{~L}-1$. Connect a 50 -ohm, 1000 -watt dummy load to R-F OUTPUT jack, J4.
c. Tune and load the $30 \mathrm{~L}-1$ at 28.5 mc . Position the $30 \mathrm{~L}-1$ METER switch to the TUNE position. d. Apply 30 watts of forward drive power to the 30L-1 (as monitored on the wattmeter installed in step b above.) When using the KWM-2/2A or S-Line


Figure 4-1. Location of Adjustments
equipment, this can be done by positioning the EMISSION switch to the LOCK KEY position and adjusting the MIC GAIN control to the desired level.
e. Tune L14 until minimum reflected power is indicated on the wattmeter installed in step b above, readjusting the exciter as necessary to maintain 30 watts of forward drive power. Continue adjusting L14 for minimum reflected power (the reflected power level should not exceed 3.3 watts). Refer to figure 4-1 for location of L14.
f. Repeat the above procedure at the middle frequency of each band, adjusting L15, L16, L17, and L18 when aligning the $21.0-, 14.0-, 7.0-$, and $3.5-\mathrm{mc}$ bands respectively.

For general coverage, use the same procedure as above, except set the exciter to a frequency which is in the middle of the desired band. Useful bandwidth at the new alignment frequencies is approximately the same as that for the amateur bands. Do not attempt alignment to place the new operating bands outside the ranges listed in table 4-1 for the BAND switch positions indicated. Also, do not attempt amateur band operation on a BAND switch position for which the tuned circuits have been realigned for out-of-band operation.

TABLE 4-1
FREQUENCY COVERAGE ALLOWABLE BY REALIGNMENT

| BAND SWITCH <br> SETTINGS | LOWER LIMIT <br> $(\mathrm{mc})$ | UPPER LIMIT <br> $(\mathrm{mc})$ |
| :---: | :---: | :---: |
| 3.5 | 3.4 | 6.0 |
| 7.0 | 6.0 | 9.5 |
| 14 | 9.5 | 16.0 |
| 21 | 16.0 | 22.0 |
| 28 | 22.0 | 30.0 |

### 4.5 METER LAMP REPLACEMENT.

To replace the meter lamp, remove the bracket to which the socket is fastened. It is held by a small machine screw located at the rear of the meter. Replace the lamp with a type 47 or equivalent.

### 4.6 TUBE REPLACEMENT.

The tubes may be replaced without removing the amplifier cabinet by removing the r-f compartment top cover and installing new tubes from the top. The following is an alternate method which provides better access to the tube sockets.

Remove the cabinet, r -f compartment top cover, and bottom cover as outlined in paragraph 4.2. Disconnect
plate connectors and remove old tubes. Install the upper pair of replacements from the top of the amplifier. Install the lower pair from the bottom. The locating pin on the base of each of the tubes should point away from the power supply compartment. Attach plate leads. making sure they clear other components. Replace covers and cabinet.

## WARNING

DO NOT BLOCK INTERLOCK SWITCHES. Dangerous voltages are present in this equipment. The high voltage is interlocked with the amplifier covers. Make no attempt to put the amplifier into service until the procedure outlined above has been completed.

### 4.7 TUNE METER ADJUSTMENT.

a. Make normal connections between the exciter and 30L-1.
b. Connect a 50 -ohm, 1000 -watt dummy load to RF OUTPUT jack J4.
c. Connect the vertical input of a wide-band oscilloscope across the dummy load.
d. Introduce a two-tone audio input signal (1200 and 1900 cps at approximately 15 mv ) to the exciter microphone input jack. If provisions are not available to measure the $15-\mathrm{mv}$ signal level, the circuit shown in figure 4-2 may be used. Here, both audio oscillators are set at 1 -volt rmis output, with one audio oscillator generating a 1200 cps tone and the other a 1900 cps tone.
e. Tune and load the $30 \mathrm{~L}-1$ at 14.3 mc .
f. Position the 30L-1 METER switch to the TUNE position, and decrease the drive level to zero (when using the KWM-2/2A or S-Line equipment, this can be done by positioning the MIC GAIN control completely counterclockwise).
g. Set up the exciter for uper sideband operation (when using the KWM-2/2A or S-Line equipment this can be done by positioning the function switch to the USB position).
h. Monitoring the output waveform on the oscilloscope, increase the exciter output (when using the KWM-2/2A or S -Line equipment this is done by turning the MIC GAIN control in the clockwise direction) until the $30 \mathrm{~L}-1$ output ceases to increase, or peaks on the oscilloscope indication begin to flatten.
i. Make sure that the exciter and $30 \mathrm{~L}-1$ are tuned properly by making fine adjustments to both units until maximum output, as monitored on the oscilloscope, is obtained without peak flattening. The output voltage across the dummy load should be not less than 450 volts peak to peak ( 160 volts rms).
j. Adjust the exciter for approximately 20 watts of drive (when using the KWM-2/2A or S-Line equipment, this can be done by positioning the function switch to the TUNE position and positioning the MIC GAIN control approximately $3 / 4$ fully clockwise). (An access hole is provided to adjust C18 through the top cover of the $30 \mathrm{~L}-1$ with the cabinet

41 raised. Refer to figure 6-2 for location of C18. C18 with an alignment tool to produce a baling of zero on the 30L-1 multimeter.

### 4.8 ALC THRESHOLD ADJUSTMENT.

a. Perform steps $\mathrm{a}, \mathrm{b}, \mathrm{d}$, and e of paragraph 4.7. Oult step c.

Disconnect alc cable between exciter and $30 \mathrm{~L}-1$. Using USB or LSB emission, increase drive until cated alc is about $4 \mathrm{db}(\mathrm{S}-4)$ on exciter meter. Reconnect alc cable, and adjust R16 with insulated -ing tool for a $3-\mathrm{db}$ (one S-unit) increase in alc.

Adjustments to tune meter and alc circuits should not be made unless the need has been clearly determined. If trouble is experienced, check PA tubes and exciter first. Improper adjustments can result in damage to amplifier and a distorted output signal. Do not attempt to make adjustments without proper test equipment.

## SECTION V SPECIFICATIONS

Size$6-9 / 16$ in. high, $14-3 / 4 \mathrm{in}$. wide, $13-3 / 4 \mathrm{in}$. deep(overall).
Weight 38 pounds.
Frequency range $3.5-29.7 \mathrm{mc}$, covering all amateur bands. By retuninginput coils as necessary, the following general-coverage bands may be covered:
FREQUENCY BAND TOTAL COVERAGE

| 3.5 mc | $3.4-6.0 \mathrm{mc}$ |
| :---: | :---: |
| 7.0 mc | $6.0-9.5 \mathrm{mc}$ |
| 14 mc | $9.5-16.0 \mathrm{mc}$ |
| 21 | mc |
| 28 | $16.0-22.0 \mathrm{mc}$ |
|  |  |ModeSSB or CW

Type of ServiceSSB - continuous voice modulation.CW - 50-percent duty cycle (continuous key-downconditions not to exceed 30 seconds duration).
Plate power input CW - 1000 watts.SSB - Nominal PEP input of 1000 watts with speech.Third order distortion products at this levelare at least 30 db down from signal.
Drive power requirements 70 watts.
Primary power requirements 230 volts a-c $\pm 10 \%$, 3 -wire, single phase, at 7.5amperes max, or 115 volts a-c $\pm 10 \%$ at 15 amperes$\max , 50-400 \mathrm{cps}$. Operation from a line frequencyother than $50-60$ cps requires an auxiliary $60-\mathrm{cps}$supply for fan motor.
Input impedance ..... 52 ohms.
Output impedance 52 ohms unbalanced with vswr not to exceed 2 to 1on the amateur bands.
Nalse level 40 db down from output signal with $1-\mathrm{kw}$ single-toneinput.
Harmonic output All harmonics at least 40 db down from output signal.
Vacuum tubes. Type 811A triodes (4).
Available accessoriesModel 351E-4 mounting plate (Collins part number522-1482-003). This plate can be used when installingthe $30 \mathrm{~L}-1$ in an airplane, boat, or similar locationrequiring a rigid mount. A luggage-type carrying caseis also available.


Figure 6-1. R-F and Power Supply Compartments, Parts Location

## SECTION VI PARTS LIST

30L-1 R-F Linear Amplifier

| ITEM | DESCRIPTION | COLLINS PART NUMBER |
| :---: | :---: | :---: |
|  | 30L-1 R-F LINEAR AMPLIFIER | 522-2375-00 |
| B1 | FAN, AXIAL: 4 blades; $115 \mathrm{va} \mathrm{c}, 60 \mathrm{cps}$, single phase, 3200 rpm ; cw rotation | 547-3702-00 |
| Cl | CAPACITOR, FIXED, CERAMIC: 10,000 uul $+100 \%-20 \%, 500 \mathrm{v}$ d-c; Sprague Electric of Wisconsin | 913-3013-00 |
| c2 | CAPACITOR, FLXED, CERAMIC: same as C1 | 913-3013-01) |
| CJ | CAPACITOR, FIXED, ELECTROLYTIC: 100 uf $-10 \%-100 \%, 45-\mathrm{v}$ d-c: Sprague Electric Co. part no. D33647 | 183-1567-00 |
| C4 | CAPACITOR, FIXED, CERAMIC: 10,000 uUf $\pm 20 \mathrm{~B}, 100 \mathrm{v} \mathrm{d}$-c; Centralab Division of Globe Union part no. DA134-048CB | 913-3922-00 |
| CS | CAPACITOR, FLXED, ELECTROLYTIC: same as C3 | 183-1567-00 |
| $\mathrm{C8}$ | CAPACITOR, FLXED, CERAMIC: same as C4 | 913-3922-00 |
| C7 | CAPACITOR, FLXED, ELECTROLYTIC: same as C3 | 183-1567-00 |
| C8 | CAPACITOR, FLXED, ELECTROLYTIC: same as C3 | 183-1567-00 |
| c) | CAPACITOR, FLXED, ELECTROLYTIC: same as C3 | 183-1567-00 |
| C10 | CAPACITOR, FLXED, ELECTROLYTIC: 10 uf $-10 \% .+100 \%, 250 \vee \mathrm{~d}$ - c ; Sprague Electric Co. part no. D34441 | 183-1563-00 |
| C 11 | CAPACIIOR, FLXED, CERAMIC: same as C1 | 913-3013-00 |
| C12 | CAPACITOR, FLXED, ELECTROLYTIC: same as C3 | 183-1567-00 |
| C13 | CAPACITOR, FLXED, MICA: 47 uui $\pm 5 \%, 500$ v d-c; Electro Motive part no. DM15E470-01J | 912-2792-00 |
| C14 | CAPACITOR, FIXED, MICA: 100 uuf $\ddagger 5 \%, 500 \mathrm{v}$ d-e: Electro Motive part no. DM15F101-01J | 912-2816-00 |
| C15 | CAPACITOR, FIXED, CERAMIC: same as C1 | 913-3013-00 |
| C16 | CAPACITOR, FEXED, CERAMIC: 0.005 uf $\pm 20 \%$, 3000 v d-c; Centralab | 913-4329-00 |
| C 17 | CAPACITOR, FLXED, CERAMIC: same as C1 | 913-3013-00 |
| C18 | CAPACITOR, VARIABLE, CERAMIC: 8. 0 uuf min 75.0 uui max, 350 v d-c; Erie Resistor Corp. part no. 557018 V2P034R | 917-1075-00 |
| C19 | CAPACITOR, FEXED, MICA: 270 uuf $\pm 5 \%, 500 \mathrm{v}$ d-c; Electro Motive part no. DM15F271-01J | 912-2846-00 |
| C20 | CAPACITOR, FLXED, CERAMIC: same as C1 | 913-3013-00 |
| C21 | CAPACITOR, FLXED, CERAMIC: same as C1 | 913-3013-00 |
| C 22 | C 1 PACITOR, FIXED, MICA: 220 uuf $\pm 5 \%, 500$ v d--ल; Elcwtro Motive part no. DM15F221-01J | 912-2840-00 |
| C23 | CAPACITOR, FIXED, MICA: same as C22 | 912-2840-00 |
| C24 | CAPACITOR, FEXED, MICA: same as C22 | 912-2840-00 |
| C25 | CAPACITOR, FIXED, MICA: same as C22 | 912-2840-00 |
| $\begin{aligned} & \text { C26 } \\ & \text { thru } \end{aligned}$ | CAPACITOR, FIXED, CERAMIC: same as C1 | 913-3013-00 |
| c30 |  |  |
| C31 | CAPACITOR, FIXED, CERAMIC: 1000 uuf $\pm 20 \mathrm{~s}$, 5000 v d-c: Centralab Division of Globe Union part no. 71590 | 913-0101-00 |
| C32 | CAPACITOR, VARIABLE AIR: 15 uff min 353.0 uuf max; E. F. Johnson part no. 154-2 | 920-0066-00 |
| C33 | CAPACITOR, VARIABLE AIR: 30,000 megohms, 14 uuf min 432 uuf max: Radio Condenser Co. part no. $\mathrm{CN}-817319$ | 921-0018-00 |
| C34 | CAPACITOR, FIXED, CERAMIC: same as C 16 | 913-4329-00 |
| C35 | CAPACITOR, FLXED, CERAMIC: 1000 uff $+80 \%$ -20\%, 500 v d-c; Erie Resistor Corp. part no. $327047 \times 5$ T0 1027 | 913-1292-00 |
| C36 <br> thre <br> C43 | CAPACITOR, FIXED, CERAMIC: same as C35 | 913-1292-00 |
| C44 | CAPACITOR, FIXED, CERAMIC: 1000 uuf $+100_{o}^{\circ}$ -20 , 500 v d-c; Erie Resistor Corp. part no. 851000 X5U0 1022 | 913-3009-00 |


| 1TEM | DESCRIPTION | COLLINS <br> PART NUMBER |
| :---: | :---: | :---: |
| C45 | CAPACITOR, FIXED, CERAMIC: same as C44 | 913-3009-00 |
| thry |  |  |
| C59 |  |  |
| C60 | CAPACITOR, FLXED, MICA: 82 uuf $\pm 5 \%, 500 \mathrm{v}$ d-c; Electro Motive part no. DM15E820-01J | 912-2810-00 |
| C61 | NOT USED |  |
| C 62 | CAPACITOR, FIXED, MICA: 510 uuf $\pm 5 \%, 300 \mathrm{v}$ d-c; Electro Motive Mfg. Co. part no. DM15 F510J03 | 912-2867-00 |
| C63 | CAPACITOR, FLXED, MICA: same as C22 | 812-2840-00 |
| C64 | CAPACITOR, FLXED, MICA: same as C22 | 912-2840-00 |
| C65 | CAPACITOR, FLXED, MICA: 180 uuf $\pm 5 \%, 500 \mathrm{v}$ d-c; Electro Motive part no. DM15F111-01J | 912-2834-00 |
| C66 | CAPACITOR, FIXED, MICA: 330 uuf $\pm 5 \%, 500 \mathrm{v}$ d-c; Electro Motive part no. DM15331-01J | 912-2852-00 |
| C67 | CAPACITOR, FIXED, MICA: same as C22 | 912-2840-00 |
| C68 | CAPACITOR, FIXED, MICA: 220 uuf $\pm 5 \%$, 500 v d-c; Electro Motive part no. DM15F221-01J | 912-2840-00 |
| C69 | CAPACITOR, FIXED, MICA: 150 Uuf $\pm 5 \%$, 500 v d-c; Electro Motive part no. DM15 F151-01J | 912-2828-00 |
| C70 | CAPACITOR, FIXED, MICA: same as C65 | 912-2834-00 |
| C71 | CAPACITOR, FIXED, CERAMIC: same as C35 | 913-1292-00 |
| C72 | CAPACITOR, FIXED, MICA: same as C13 | 912-2792-00 |
| C73 | CAPACITOR, FIXED, MICA: same as C14 | 912-2816-00 |
| C74 | CAPACITOR, FIXED, CERAMIC: same as C1 | 913-3013-00 |
| C75 | CAPACITOR, FTXED, MICA: same as C69 | 912-2828-00 |
| C76 | CAPACITOR, FIXED, MICA: same as C14 | 912-2816-00 |
| CR1 | SEMICONDUCTOR DEVICE, MODE: silicon; JEDEC type 1N1492 | 353-1661-00 |
| CR2 | SEMICONDUCTOR DEVICE, DIODE: same as | 353-1661-00 |
| tiru | CR1 |  |
| CR16 |  |  |
| CR17 | SEMICONDUCTOR DEVICE, DIODE: silicon; <br> JEDEC type 1N458 | 353-0205-00 |
| CR18 | SEMICONDUCTOR DEVICE, DIODE: same as CRI7 | 353-0205-00 |
| CR19 | SEMICONDUCTOR DEVICE, DIODE: same as CRI7 | 353-0205-00 |
| CR20 | SEMICONDUCTOR DEVICE, DIODE: silicon; JEDEC type 1 N540 | 353-1546-00 |
| DS 1 | LAMP: incandescent, prlot light bulb with miniature bayonet base, $6.3 \mathrm{v}, 0.15 \mathrm{amp}$ i 47 | 262-3240-00 |
| F1 | FUSE, CARTRIDGE: $8 \mathrm{amp}, 250 \mathrm{vd}-\mathrm{c}$; glass body ferrule type terminal; Littelfuse Inc. part no. 314008 | 264-4110-00 |
| F2 | FUSE, CARTRIDGE: same as F1 | 264-4110-00 |
| 11 | JACK, TIP: accommodates $1 / 8 \mathrm{in}$. plug: ceramic insulation brass contacts; Howard B. Jones Division of Cinch Mfg. Corp. part no. 201-11-01-018 | 360-0088-00 |
| J2 | JACK, TIP: same as J1 | 360-0088-00 |
| J3 | JACK, TIP: same as J1 | 360-0088-00 |
| J4 | CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, 1 mating end; stralght shape; 0.731 in . ls. by $1.000 \mathrm{in} . w$ by 1.000 in . h; Communication Electronic Nomenclature Subpane 1 part no. UG-85/U | 357-9003-00 |
| K 1 LI | RELAY, ARMATURE: dpdt; $2 \mathrm{C} ; 2 \mathrm{amp}, 175 \mathrm{w}$; 2-30 mc; 1-11/16 in. Ig by 1-9/16 in. h; Potter and Brumfield, Inc. part no. KRP2565-1 NOT USED | 970-2140-00 |
| L2 | NOT USED |  |
| L3 | COIL, RADIO FREQUENCY: single layer wound, solenoid, "21 or 22 AWG copper wire 39.0 uh, 0.80 ohms dc, 760 ma current; Electro Assemblies Inc. part no. 18-366 | 240-0189-00 |
| $\mathrm{L}^{4}$ | P/ O Z1 |  |
| 15 | P/OZ2 |  |
| $\mathrm{L}_{6}$ | NOT USED |  |
| 17 | NOT USED |  |
| L8 | COIL, RADIO FREQUENCY: single layer wound, no. 14 AWG, Formvar insulation; 7.5 uh; <br> Electro Assemblies Inc. part no. 18-401 | 240-1244-00 |
| L9 | COIL, RADIO FREQUENCY: single layer wound; 6. 5 turns no. 8 AWG | 547-3718-002 |

## SECTION VI

## Parts List

30L-1 R-F Linear Amplifier

| ITEM | DESCRIPTION | COLLINS <br> PART NTMBER |
| :---: | :---: | :---: |
| L 10 | COIL, RADIO FREQUENCY: single layer wound; | 547-3708-003 |
| LH | COIL, RADIO, FREQUENCY: 4 sections; 2.5 mh , | 240-0059-00 |
|  | Co., Inc. part no. 34103 |  |
| L12 | COIL, RADIO FREQUENCY: single layer wound, 44 uh at 2.5 mc inductance, 3.54 ohm d-c resistance, 1.6 amp current capacity; Ohmite Mfg. Co. part no. Z-14PBM17 | 240-0807-00 |
| L13 | COIL, RADIO FREQUENCY: single layer wound: 2. 2 uh. 1980 ma current; 0.20 ohm ; Electro Assemblies Inc. part no. 18-351 | 240-0174-00 |
| L14 | COIL, RADIO FREQUENCY: single layer wound; 2 turns | 547-3659-00 |
| L15 | COIL, RADIO FREQUENCY; single layer wound; 7 turns no. 22 AWG | 547-3660-003 |
| L16 | COIL., RADIO FREQUENCY: single layer wound; 9 turns no. 22 AWG | 547-3661-003 |
| L17 | COIL, RADIO FREQUENCY: single layer wound; 14 turns no. 22 AWG | 547-3662-003 |
| L18 | COIL, RADIO FREQUENCY: single layer wound; 9 turins no. 22 AWG | 547-3663-003 |
| L19 | COIL, RADIO FREQUENCY: 1.5 uh, 0.12 ohm d-c resistance $\pm 20 \%, 2600$ MA d-c current $9 / 32$ in. dia 15/16 in. Ig. two wire leads no. 21 \& no. 22; Electro Assemblies Inc. part no. 18-350 | 240-0173-00 |
| M 1 | METER, ELECTRICAL: 200-0-500 ua meter range, 190 ohms, $\pm 2 \%, 2-1 / 2 \mathrm{in}$. sq, molded thermosetting plastic; Sun Electric Corp. part no. 521 L | 458-0592-00 |
| 01 | KNOB, FLUTED, NO. 25: phenolic; $1.242 \mathrm{in}$. dia. | 544-0764-004 |
| O2 | KNOB, FLUTED, NO. 25: same as 01 | 544-0764-004 |
| O3 | KNOB, POINTER, NO. 25: phenolic; 15/16 in. dia. | 544-0779-004 |
| 04 | KNOB, POINTER, NO. 25: same as O3 | 544-0779-004 |
| 05 | KNOB, POINTER, NO. 25: same as O3 | 544-0779-004 |
| 06 | KNOB: aluminum; 1.500 in dia. | 547-3656-002 |
| 07 | KNOB: same as 06 | 547-3656-002 |
| O8 | KNOB: : tame as O | 547-3656-002 |
| R1 | RESISTOR, FIXED, COMPOSITION: 4700 ohms $\pm 10 \%, 1 / 2 w:$ Allen-Bradley typo EB | 745-1380-00 |
| R2 | RESISTOR, FIXED, WIRE-WOUND: 25,000 ohms $\pm 5$ \%, 26 w: Clarostat Mig. Co. Inc. part no. <br> CM23047 | 746-9155-00 |
| R3 | RESISTOR, FIXED, WIRE-WOUND: same as R2 | 746-9155-00 |
| R4 | RESISTOR, FDXED, WIRE-WOUND: same as R2 | 746-9155-00 |
| R5 | RESISTOR, FIXED, WLRE-WOUND: same as R2 | 746-9155-00 |
| R6 | RESISTOR, FLXED, WIRE-WOUND: same as R2 | 746-9155-00 |
| R7 | RESISTOR, FIXED, COMPOSITION: 1500 ohms $\pm 10 \%, 2 w$; Allen-Bradley type HB | 745-5659-00 |
| R8 | RESISTOR, FIXED, WIRE-WOUND: 1.0 ohm 41 , 5 w; OPTO Mechanisms, Inc. part no. 1550S1.0-1PCT | 747-97-16-00 |
| R9 | RESISTOR, FEXED, COMPOSITION: 47 ohms $\pm 10 \%, 12 \mathrm{w}$; Allen-Bradley type HB | 745-5596-00 |
| R10 | RESISTOR, FLXED, FLLM: 1780 ohms $\pm 1 \%$, 1/4 w; IRC type MDB | 705-7108-00 |
| R11 | RESISTOR, FLXED, FILM: $4,000,000$ ohms $\pm 1 \%$, 2 w ; IRC type MDH | 705-4260-00 |
| R12 | RESISTOR, FIXED, WIRE-WOUND: 2000 ohms $410 \%, 7 \mathrm{w}$ at $+40^{\circ} \mathrm{C}$ to 3.5 w at $+150^{\circ} \mathrm{C}$; IRC type PW7 | 710-9010-00 |
| R13 | RESISTOR, FIXED, WIRE-WOUND: same as R2 | 746-9155-00 |
| R14 | NOT USED | 745-5694-00 |
| R15. | RESISTOR, FIXED, COMPOSITION: 10,000 ohms $\pm 10 \mathrm{~F}, 2$ w; Allen-Bradley type HB | 745-5694-00 |
| R16 | RESISTOR, VARIABLE: composition; 5000 ohms $\pm 20$, 0.3 w; CTS Corp. part no. 376-0205-00 | 376-0205-00 |
| R17 | RESISTOR, FIXED, COMPOSITION: 10 ohms $\pm 10 \%, 2 w$; Allen-Bradley type HB | 745-5568-00 |


| ITEM | Dfscription | COLLINS PART NUMBER |
| :---: | :---: | :---: |
| R18 | RESISTOR, FIXED, COMPOSITION: same as R17 | 745-5568-00 |
| R19 | RESISTOR, FIXED, COMPOSITION: 39,000 ohms $\pm 104,1 / 2 w$ : Allen-Bradley type No. EB | 74.-1419-00 |
| R20 | RESISTOR, FIXED, COMPOSITION: same as R19 | 745-1419-00 |
| R2 1 | RESISTOR, FIXED, COMPOSITION: 47 ohms $\pm 10 \%, 1$ w; Allen-Bradley type GB | 745-3296-00 |
| R22 | RESISTOR, FIXED, COMPOSITION: same as R21 | 745-3296-00 |
| R23 | RESISTOR, FIXED, COMPOSITION: same as R21 | 745-3296-00 |
| R24 | RESISTOR, FIXED, COMPOSITION: same as R21 | 745-3296-00 |
| R25 | P/O ZI |  |
| R26 | P/O Z2 |  |
| R27 | NOT USED |  |
| R28 | RESISTOR, FLXED, COMPOSITION: 39 ohms $\pm 10 \%, 1 / 2 \mathrm{w}$; Allen-Bradley Type EB | 745-1293-00 |
| S1 | SWITCH, ROTARY: 2 circuit ( 2 pole), 18 position, 1 section, 2 moving, 12 fixed contacts; Oak Mfg. Co. part no. 214093 -LKI | 259-1385-00 |
| S2 | SWITCH, ROCKER: dpst; $20 \mathrm{amp}, 250 \mathrm{va} \mathrm{a}-\mathrm{c}$ non-inductive, $20 \mathrm{amp}, 125 \mathrm{vat-c}, 10 \mathrm{amp}, 250 \mathrm{v}$ a-c; McGill Mif. Ce. Inc. part no. 0811-113010109 | 286-6020-00 |
| S3 | SWITCH, ROTARY: 2 circuit ( 2 pole), 3 position, 1 section, 2 moving, 8 tixed contacts, Oak Mfg. Co. , part no. 215870-F1 | 259-1368-00 |
| S4 | SWITCH, ROTARY: 3 circuit ( 3 pole), 5 position, 1 section; Centralab Division of Globe Union Inc., part no. PA230-1005 | 259-1386-00 |
| T1 | TRANS FORMER, POWER, STEP-DOWN AND STEP-UP: $115 \mathrm{va} \mathrm{c}, 115 \mathrm{va} \mathrm{c}$ primaries, 50 to $60 \mathrm{cps} ; 1600 \mathrm{vd}-\mathrm{c}$ at $800 \mathrm{ma}, 120 \mathrm{va} \mathrm{c}$ at 20 ma, 6.3 va c at 16 amp secondaries; 4-7/16 in. by $5-1 / 4 \mathrm{in}$. by $5-3 / 8 \mathrm{in}$. ; Stancor Electronics, Inc. part no. 30175 | 662-0010-00 |
| TB1 | TERMINAL BOARD: phenolic, 5 solder lug terminals; $1 / 16 \mathrm{~m}$. by $3 / 8 \mathrm{in}$. by $1-7 / 8 \mathrm{in}$.; Cinch Mis. Corp part no. 1542 -A | 306-0550-00 |
| TB2 | TERMINAL BOARD: same as TBl | 306-0550-00 |
| TB3 | TERMINAL BOARD: phenolic; incls 4 solder lug terminals; $1 / 16 \mathrm{in}$. by $3 / 8 \mathrm{in}$. $1-1 / 2 \mathrm{in}$.; Cinch Mfg. Corp. part no. 1909 | 306-0838-00 |
| TB4 | TERMINAL BOARD: same as TBI | 306-0550-00 |
| TB5 | TERMINAL BOARD: phenolic; 3 terminals; solder lug type, $1-1 / 8 \mathrm{in}$. Ig. by $3 / 8 \mathrm{in}$. $w$ by 1/16 in. thk; Cinch Mtg. Corp. part no. 1520-A | 306-9033-00 |
| TB6 | TERMINAL BOARD: same as TBS | 306-9033-00 |
| V1 | EIIECTRON TUBE: glass envelope, triode; Radio Corp. of America part =0. \$11 | 256-0053-00 |
| $\begin{aligned} & \text { V2 } \\ & \text { thru } \end{aligned}$ | ELIECTRON TUBE: same as $\mathrm{V}_{1}$ | 256-0053-00 |
| V4 |  |  |
| XFl | FUSEHOLDER: $15 \mathrm{amp}-250 \mathrm{v}$; $11 / 16 \mathrm{in}$. w by $2-9 / 64 \mathrm{in} .1 \mathrm{~g}$ : Bussmann Fuse Divisitm of McGraw-Edison Co. part no. HKP-HJR-22 | 265-1019-00 |
| XF2 | FUSEHOLDER: same as XFI | 265-1019-00 |
| XV1 | SOCKET, ELECTRON TUBE: 5 amp 2000 vrms , $1-3 /: i \operatorname{in}$. w by $2-j / 32 \mathrm{in}$. h. ; Amphenol-Borg Electronics Corp. part no. 49-RSS4 | 220-1451-00 |
| $\begin{aligned} & X V 2 \\ & \text { thru } \\ & \text { XV4 } \end{aligned}$ | SOCKET, FLECTRON TUBE: same as XVI | 220-1451-00 |
| Z 1 72 | SUPPRFiSSOR, PARASITIC: 6 turns no. 16 AWG wire, 100 ohnis, 2 w resistor | $547-3654-002$ $547-3654-002$ |
| 22 | SUPPRESSOR, PARASITIC: same as Zl | 547-3654-002 |



Figure 6-2. Input Circuitry, Parts Location

# Connector Assembly Instructions 

## IMPROVED SERIES N



Place nut and gasket over cable and cut off jacket $92^{\prime \prime}$ from end.

Comb out braid and fold out. Cut off cable dielectric flush $1 / 8$ " from end of jacket.


Pull braid wires forward and taper toward center conductor. Place clamp over braid and push back against cable jacket.

Fold back braid wires as shown, trim to proper length and form over clamp as shown. Solder contact to center conductor.

Insert cable and parts into connector body. Make sure sharp edge of clamp seats properly in gasket. Tighten nut.

Figure 7-1. Connector Assembly Instructions

## NOTES:

I. UNLESS OTHERWISE INDICATED, ALL RESISTANCE VALUES ARE IN OHMS, ALL CAPACITANCE VALUES IN UUF, ALL INDUCTANCE VALUES ARE IN UH.
2. CRI THRU CRIG ARE ALL INI492.
3. AMPLIFIER SHIPPED WITH PRIMARIES CONNECTED FOR IISVAC. TO CONNECT FOF 230 VAC, REMOVE JUMPERS ON TBI, TERMINALS I TO 2 ANO 4 TO 5. ADO JUMPER FROM TERMINAL I GM GREEN POWER CORD WIRE MUST BE CONNECTED TO GROUND.
4. ALTEANATE TYPE FOR CRIT AND CRIB IS IN252.
5. HHGH VOLTAGE AND BIAS VOLTAGES ARE UNKEYED VALUES.


POWER SUPPLY

TES:
all resistance values are in Sin uUf, all inductance values

CONNECTED FOR IISVAC. TO CONNECT FOR 230 VAC , ALS : TO 2 ANO 4 TO 5. ADD JUMPER FROM ER CORD WIRE MUST BE CONNECTED TO GROUND. CRIB is in252.
s are unkeyed values.

P/O POWER AMPL



Figure 7-2. 30L-1 Schematic Diagram

COLLNS


[^0]:    If you should wish to return material or equipment direct to Collins under the guarantee, you should notify Collins, giving full particulars including the details listed below, insofar as applicable. If the item is thought to be defective, such notice must give full information as to nature of defect and identification (including part number if possible) of part considered defective. Upon receipt of such notice, Collins will promptly advise you respecting the return. Failure to secure our advice prior to the forwarding of the goods or failure to provide full particulars may cause unnecessary delay in handling of your returned merchandise.

