
TRASMETTITORE SSB - G 4/225

G 4/225 SINGLE-SIDE BAND TRANSMITTER

Il trasmettitore G4/225 è particolarmente studiato per la trasmissione con il sistema a banda laterale unica SSB (Single Side Band). Oltre a questa possibilità, esso consente la trasmissione in CW (onda continua), DSB (Double Side Band, con portante attenuata) e AM (modulazione ad amplezza variabile).

CIRCUITO

Sezione SSB

La generazione della radiofrequenza modulata con soppressione di una banda e della portante è ottenuta alla frequenza fissa di 9 MHz per tutte le gamme.

Il sistema adottato è quello a sfasamento. Il segnale a bassa frequenza limitato alle frequenze telefoniche 300 ± 3400 Hz, è applicato all'entrata di una rete sfasatrice che dà due segnali di uguale ampiezza e sfasati tra loro di 90° .

I due segnali a bassa frequenza sono applicati a due modulatori bllanciati.

La frequenza portante è generata da un oscillatore del tipo «tuned-plate/tuned-grid» controllato a quarzo e accordato su 6 MHz. Anche la radiofrequenza passa in una rete sfasatrice che dà due segnali a 9 MHz sfasati tra loro di 90°; tali segnali sono applicati ognuno separatamente a ciascuno dei modulatori bilanciati.

Le uscite dei due modulatori sono sommate in un unico circuito accordato bllanciato verso massa. Ai secondario del circuito di accordo compare solo una banda laterale.

E' possibile scegliere la banda desiderata (inferiore LSB o superiore USB) rovesciando il senso degli sfasamenti.

Si noti: il funzionamento in DSB è ottenuto facendo funzionare solo un modulatore bilanciato. The G4/225 transmitter has been specially designed for single-side band transmission. In addition it can also be used for CW (continuous-wave) transmission, DSB (doubleside band) with attenuated carrier and AM (amplitude modulation).

CIRCUIT

The SSB (single-side hand) section

The modulated radio-frequency generated with suppression of the carrier and one side band is obtained at the fixed frequency of 9 Mc. for all bands.

The phase-shift method of SSB generation is used. The audio signal, limited to the telephonic frequencies 300-3400 cycles, is applied to the input of a phasing network which produces two output signals of equal amplitude and 90° out of phase with respect to one another.

The two audio signals are applied to a pair of balanced modulator.

The carrier frequency is generated by a tuned-plate/tuned-grid type oscillator with crystal control and tuned to 9 Mc. The RF also passes through a phasing network which gives to 9 Mc. output signals 90° out of plase; each of these signals is applied separately to each of the balanced modulators.

The two outputs of the modulators are summed on a single ground-balanced tuned circuit. A single side band will appear at the secondary of this circuit.

One can select the band desidered (upper or lower side band) by reversing the phase relationship.

It should be noted that double side band operation (DSB) is achieved by causing only one balanced modulator to operate.

Si ottengono in uscita, così, le sole bande laterali e si sopprime la portante.

La trasmissione fonica in AM (ampiezza variabile) può essere effettuata sbilanciando il modulatore nella condizione DSB in modo da avere in uscita anche la portante.

Naturalmente, per modulare al 100 % senza produrre saturazione si deve ridurre ad 1/4 la potenza della portante rispetto a quella dell'SSB (Single Side Band).

La trasmissione in CW si ottiene ripetendo le condizioni necessarie per l'AM, ma sbilanciando ulteriormente; in più è necessario, mandando nettamente in interdizione il 2º stadio a BF, escludere la possibilità di modulazione.

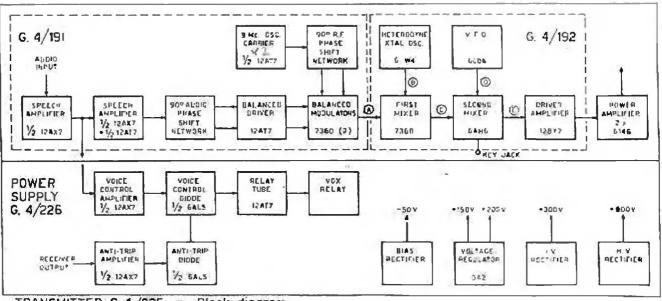
In queste condizioni la sezione del modulatore dà la portante in continuità; la manipolazione è ottenuta tenendo in permanenza interdetto il 2º miscelatore.

Il modulatore utilizza due valvole 7360 particolarmente adatte per realizzare modulatori bilanciati. Una caratteristica vantaggiosa consiste nel fatto che il flusso elettronico è unico per ogni coppia di valvole e quindi il bilanciamento non risente dell'invecchiamento delle valvole.

Altra nota di rilievo è che si possono usare due elettrodi separati per la radiofrequenza e la bassa frequenza; la radiofrequenza viene applicata alla grigila e la bassa frequenza

BANÜ	FROM S9 CEU	FROM HET, OSC.	OUTPUT	V.E.O.	DUTPUT	
	Ø	O	0	0	C	
00	4	INOPCOATINE	9.0 Mi		3.5 - 4.0 Ma	
40		31 5 MG	12 5 Mc		2,0 ~ 7,5 Me	
20		MUPPOARIVI	9 D ME		14 0-14 B MI	
15	4,0	25.0 M.	16.0 Mc	\$0-33	21.0 - 21.5 Mi	
10	P4 2	27.0 Ms	23.0 Me	Mc	20 0-26.5 M	
10		12,5 Mc	23,5 Ma		20,5-29.0 H	
10		33.0 Ht	24.0 ME		29.0-29.5 Ma	
10	· •	93 5 Mc	24. 1 Mc	+	59 5-30 AL	

By so doing one obtains only the side bands at the output and the carrier is suppressed. AM (amplitude modulation) sound transmission can be achieved by unbalancing the modulator in the DSB mode of operation to give also the carrier frequency in the output. Obviously, to attain 100% modulation without causing saturation one must reduce the carrier output to one quarter of that used for SSB (single side band) operation.


CW transmission is produced by setting up the same conditions as for AM transmission but with further umbalance; in addition it is necessary to completely cut out the second audio stage to eliminate any possibility of modulation occurring.

Under these conditions the modulator section provides the constant carrier. Keying is performed with the second mixer stage completely shut down at all times.

The modulator has two 7360 vacuum tubes highly suited for use as balanced modulators. One advantageous feature resides in the fact that there is a single electron flow for each pair of tubes so the balancing is not adversely affected by aging of the tubes. Another important fact to note is that two separate electrodes can be used for the RF and the audio frequencies; the RF is applied to the gridband the audio to one of the cathode current electron flow deflection plates, giving a well-defined separation between the

> Tabella che mostra come vengono ottonute, por ogni gamma di lavoro, le frequenzo d'uscita (lettoro A, B. C... si riforiscono allo schema a blocchi setto riportato).

> Table showing how the output frequencies are produced for each band of frequencies (letters A, B, C, etc. correspond to the block diagram shown below).

ad un placchetta di deflessione del flusso elettronico catodico, ottenendo così una forte separazione tra i due circuiti. Inoltre la bassa frequenza risulta chiusa su un circuito ad alta impedenza.

La tensione a radiofrequenza 9 MHz ottenuta precedentemente viene miscelata una prima volta con una frequenza fissa, ed una seconda volta con una frequenza regolabile da 5 a 5,5 MHz, ottenendo tutte le gamme volute (80, 40, 20, 15 e i 10 metri in quattro bande). Lo specchietto qui riportato dà le combinazioni volute di frequenza.

L'oscillatore a frequenza fissa è stabilizzato a quarzo ed utilizza un nuvistor tipo 6CW4. La sua alimentazione è pure stabilizzata,

I diversi quarzi escillane in « overtone » e lavorano in corrispondenza della frequenza di risonanza in serie.

Questo oscillatore e accoppialo alla griglia del 1º miscelatore (che è una 7360). Il condensatore d'accoppiamento è ridotto a 0,75 pF. Si ottiene così il vantaggio di rendere indipendente l'oscillatore dal carico con aumento della selettività (riduzione di armoniche) e della costanza dell'amplezza dell'oscillatore su tutte le frequenze.

Tale oscillatore funziona sulle gamme dei 40, 15 e 10 metri.

Si noti che la gamma dei 10 metri è spezzata in 4 parti in modo da mantenere la copertura su 1/2 MHz e coprire con continuità da 28 a 30 MHz. Per questo scopo sono usati quattro quarzi diversi.

1º Miscelatore

Il 1º miscelatore riceve le frequenze dell'oscillatore a quarzi e la frequenza di 9 MHz fornita dai modulatore.

Anche per questo stadlo si usa una 7360 con i vantaggi già clencati di separazione tra i circulti a diversa frequenza.

Un'altra particolarità di questo miscelatore ò di sfruttare la struttura bilanciata delle valvolo 7360 per eliminare una delle frequenze miscelate nel circuito d'uscita (in questo caso una delle frequenze dell'oscillatore a quarzi che vengono applicate alle griglia controllo). Si ottiene, in questo modo, una maggiore seletlività equivalente in uscita.

V.F.O. - Oscillatore a frequenza regolabile

L'oscillatore a frequenza regolabile copre le frequenze da 5 a 5,5 MHz ed è unico per tutte le gamme. In tal modo vienc eliminata ogni commutazione del circulto V.F.O. con garanzia per la stabilità della frequenza.

Molti accorgimenti sono stati attuati per oltenere una stabilità ottima di frequenza. L'oscillatore è un « Clapp » ed oscilla tra catodo e griglia-schermo. La capacità di accoppiamento con il circuito accordato è molto elevata rispetto a quella del circuito d'accordo (1000 pF rispetto a $80 \div 100$ pF). Il circuito accordato è del tipo ad alto rapporto L/C; la tensione di schermo e quella di placca sono stabilizzate a 150 volt con un tubo a gas OA2; la valvola oscillatrice two circuits. The audio circuit is also limited to a high-impedance circult.

The 9 Mc. RF voltage produced earlier in the circuit is first mixed with a fixed frequency and then a second time with a frequency adjustable between 5 Mc. and 5.5 Mc thereby providing all the desired bands (80, 40, 20, 15 and 10 meters in four bands). The table shown here gives all the desired frequency combinations.

The fixed frequency oscillator is crystal stabilized and makes use of a type 6CW4 nuvistor. Supply voltages to the oscillator are stabilized. The various crystals oscillate on their harmonics and produce outputs at the series-tuned resonant frequency.

This oscillator is coupled to the grid of the first mixer (wich is a 7360). The coupling condenser is kept at the low value of 0.75 mmF. This gives the advantage of making the oscillator circuit independent of its load with an increase in selectivity (reduction of harmonics) and the constant output of the oscillator at all frequencies.

This oscillator operates on the 10, 15 and 40meter bands. The 10-meter band is divided up into four parts to maintain coverage between 1/2 Mc. and to give continuous co-verage from 28 to 30 Mc. Four different crystals are used to achieve this.

1st mixer

Jet. The first mixer is fed the crystal oscillator's output frequency and the 9 Me. frequency supplied by the modulator.

A 7360 is used for this stage, too, giving the advantages already mentioned of keeping signals at different frequencies separate from each other.

Another feature of this mixer is its ability to take advantage of the 7360's balanced arrangement to eliminate one of the mixed frequencies from the output (in this case one of the crystal oscillator frequencies to the control grid). This set-up gives better equivalent selectivity in the output.

VFO - Variable frequency oscillator

The variable frequency oscillator covers the range of frequencies between 5 Mc. and 5.5 Mc. and is used for all bands. This does away with switching the VFO circuit and ensures added frequency stability.

Many special measures have been taken to ensure excellent frequency stability. The oscillator is a Clapp and it oscillates between its cathode and screen grid. Its coupling capacity with the tuned circuit is very high compared to that of the tuning circuit (1000 mmf compared to 80-100 mmf). The tuned circuit has a high L/C ratio. Screen and plate voltages are stabilized at 150 volts using an OA2 gasfilled voltage stabilizer tube. The oscillator tube used is a hi-mu pentode. Suitable temperature compensation is provided to ensure frequency stability during the warm-up period,

usata è un pentodo ad alta conduttanza mutua. Una opportuna compensazione termica garantisce la stabilità di frequenza durante il periodo di riscaldamento.

Il segnale uscente viene prelevato dal circuito di placca mediante un circuito a doppio accordo allo scopo di disturbare il meno possibile il circuito oscillante.

Il circuito inserito in placca è del tipo a dopplo accordo con accoppiamento sopra il limite critico, con banda passante superiore a 0,5 MHz; ed è atto a garantire la costanza dell'ampiezza in tutta la gamma del VFO. Il secondario è a bassa impedenza (si veda il secondo miscelatore).

2º Miscelatore

Il 2º miscelatore utilizza un pentodo con entrambi i segnali applicati alla griglia di controllo.

Per favorire il bllanciamento e la selettività del circuito di placca del 1º miscelatore, il suo secondario, di poche spire ed a bassa impedenza, è quasi a vuoto essendo chiuso sulla resistenza di griglia della 6AH6 ad alta impedenza.

Per questo anche il circuito del secondario del VFO è a bassa impedenza e i due circuiti sono in serie nel circuito di griglia.

Pilota

Lo stadio pilota è accordato in piacea con circuito a semplice accordo ed è accoppiato con la griglia al circuito di piacea del miscelatore.

Si ottiene in questo modo un circuito accordato sulla stessa frequenza sia in griglia che in placca. La scelta della 12BY7, valvola ad alta conduttanza mutua, ma avente anche un'accurata schermatura fra entrata ed uscita, assicura un forte guadagno a questo stadio ed un'ottima sicurezza contro possibili autoscillazioni. Queste, del resto, sono evitate anche con una opportuna sistemazione circuitale degli elementi che evita tutti i possibili accoppiamenti tra entrata ed uscita.

La tensione di griglia schermo è regolabile con un potenziometro. Si regola in tal modo con continuità il guadagno del pilota e di conseguenza il segnale che va in griglia del finale e la potenza di uscita.

Stadlo di uscita

Lo stadio di potenza funziona in classe B, dato che il segnale di grigila è già modulato ed è perciò necessario usare uno stadio amplificatore lineare. La classe B garantisce la linearità per un carico accordato; il guadagno di potenza è possibile con un buon rendimento che arriva anche al $50 \div 60 \%$ (limite teorico massimo 78,5 %).

La linearità è garantita finchè non scorre corrente di griglia; quindi l'eccitazione pilota deve arrivare fino a questo limite.

Pertanto la potenza di pilotaggio è ridotta praticamente a zero e la 12BY7A è più che sufficiente. Il pilotaggio ha un buon margine e permette di arrivare a qualche mA di corrente di griglia della valvola finale. The output signal is picked up from the plate circuit using a dauble tuned circuit to avoid as little as possible any interference with the oscillating circuit.

The plate circuit is of the double-tuned type with coupling above the critical limit and a band pass wider than 500 Kc., capable of providing constant amplitude throughout the VFO's range of frequencies. The secondary has low impedance (see description of the 2nd mixer).

Second mixer

The second mixer uses a pentode with both signals applied to the control grid,

To improve the first mixer's plate circuit balance and selectivity its secondary, consisting of only a few turns and having low impendance, operates almost at no-load, being connected with the high-impedance 6AH6's grid resistor.

For the same reason the secondary circuit of the VFO is also of the low-impedance type and the two circuits are in series with the grid circuit.

Driver

The driver stage has a tuned plate with a simple tuned circuit and its grid is coupled to the mixer plate circuit.

This gives both grid and plate circuits tuned to the same frequency. The choice of a 12BY7, a high mu tube having thorough shielding between input and output ensures high gain in this stage and adequate protection against motorboating and spurious oscillations. Proper location of circuit components further aid in preventing any such unwanted oscillations by avoiding any indirect coupling between input and output circuits.

The screen voltage is adjustable using a potentiometer control. Adjustement is thus provided stepless gain control in the drive circuit, thereby also controlling the drive's output to the final amplifier and hence the power output of the transmitter.

Output stage.

The power output stage operates in class B since the signal applied to the grid is already modulated making it necessary to use a linear amplifier stage. Class B ensures linear amplification for a tuned load; power gain can be attained with good efficiency reaching even 50-60 per cent (maximum theoretical limit = 78.5 per cent).

Linearity is ensured as long as grid current does not flow. The excitation provided by the driver therefore must not exceed this limit.

This makes the power of the drive reduced to practically zero and the 12BY7A is more than enough. The drive has a good margin for its operation and can even go as high Le griglie delle 6146 sono chiuse sul negativo tramite induttanze «choke» che garantiscono un'alta impedenza per la radiofrequenza ed una buona conduttanza per la componente continua in modo da impedire che la rettificazione per corrente di griglia alteri il negativo di polarizzazione delle valvole finali.

CIRCUITI AUSILIARI

Il trasmettitore è munito di altri circulti ausiliari che migliorano le possibilità di uso e facilitano la messa a punto; in particolare circulti di misura che permettono all'operatore di assicurarsi che le condizioni di funzionamento corrispondano alle prestazioni corrette dell'apparecchio.

Bassa Frequenza

Coi sistema di trasmissione SSB non ha alcun senso parlare di percentuale di modulazione in quanto la portante è soppressa. D'altra parte esiste un limite oltre il quale il segnale a bassa frequenza produce nello stadio modulatore una sensibile distorsione. Come indicatore del livello del segnale a bassa frequenza è usata una EM87 che prende il segnale dalla placca della 12AT7 modulatrico. La regolazione è fatta in modo da determinare la chiusura della traccia luminosa per un livello che garantisce la linearità dell'amplificatore di bassa frequenza e dei modulatore.

Stadio finale

Due resistenze tarate sono inserite nei circuiti di griglia e di placca delle vaivole finali 6146. Un milliamperometro può essere commutato su queste due resistenze in modo da poter leggero il valore medio della corrente di griglia e di quello di placca.

Circulto d'uscita RF

L'accordo del circuito di piacca e l'accopplamento con l'antenna sono regolati misurando direttamente la tensione a radiofrequenza presente al capi del carico. Un partitore con resistenze antinduttive è collegato all'antenna; un raddrizzatore fornisce la corrente continua per lo stesso strumento usato per la misura della corrente di griglia e di piacca.

Lo stadio finale può adattare carichi con impedenza compresa fra 50 e 100 ohm.

Si noti che lo strumento non è tarato in potenza, ma in tensione (in percentuale dei fondo scala); ciò è reso necessario dalla possibilità di adattare più carichi di uscita. as to produce several milliamps of grid current in the final output tube.

The 6146's grids are connected to negative through chokes offering a high impedance to radio frequencies and good conductance to the continuous component so as to prevent any rectification of grid current from changing the negative polarization of the final tubes.

AUXILIARY CIRCUITS

The transmitter is equipped with other auxillary circuits which improve its general flexibility and ald in tuning it and setting it up for operation; test circuits are provided so the operator can check to see that operating conditions correspond to the proper performance of the equipment.

Audio

When using the SSB system of transmission there is no sense in talking about percentage of modulation because the carrier is suppressed. On the other hand there is a limit beyond wich the audio signal produces an appreciable distortion in the modulator stage. An EM87 which picks the signal off the 12AT7 modulator's plate is used as an audio level indicator. Adjustement is made for closing of the luminous trace to give a level ensuring linearity of the audio amplifier and modulator.

Final stage

Two calibrated resistors are inserted in the grid and plate circuits of the final output stage, the 6146. A milliammeter can be connected across these resistors to read the average grid and plate currents.

RF output circuit

The plate circuit tuning and the antenna coupling are adjusted by direct measurement of the RF voltage available at the ends of the load. A voltage divider with non-inductive load is connected to the antenna; a rectifier provides the direct current for the same instrument used to measure the grid and plate currents.

The final stage can be adapted to loads having impedances ranging between 50 and 100 ohms.

It should be noted that the instrument is not calibrated to read power but instead voltage (in percentage of full scale); this is made necessary because of the possibility of adopting different output loads.

CARATTERISTICHE TECNICHE

GENERAL SPECIFICATIONS

Tipi di trasmissione:

- SSB: Fonia con banda laterale unica (superiore od inferiore) e portante soppressa;
- DSB: Fonia con doppia banda laterale e portante soppressa, oppure AM normale;
- CW: Telegrafia con portante ad onda continua manipolata;

Frequenze trasmesse:

- Gamme: 80, 40, 20, 15, 10 metri (la gamma 10 metri è divisa in 4 sottogamme);
- Coperture: 3.5-4 MHz; 7-7.5 MHz; 14-14,5 MHz; 21-21.6 MHz; 28-28,5 MHz; 28,6-29 MHz; 29-29,5 MHz; 29,5-30 MHz.
- Potenza d'allmentazione stadio finale: 160 W.

Potenza d'uscita RF:

- SSE 100 W (160-200 PEP)
- CW 100 W
- DSB 100 W
- AM 25 W

Sensibilità BF (microfono); 6 mV.

Impedenza ingresso BF: 0.5 Mf

- Soppressione della portante: > 50 dB
- Soppressione della banda indesiderata: > 40 dB (a 1 kHz)
- Prodotti di distorsione;

2º armonica < 40 dB 3º armonica < 40 dB

Ronzio e rumore dl fondo: - 40 dB

Battimenti indesiderati: < 50 dB

Valvole e raddrizzatori usati:

- G 4/225: 12AX7 12AT7 12AT7 EM87 -3 valv. 7360 - 6CW4 - 6CB6 - 6AH6 - 12BY7 - 6146 - 6146 - 2 diodi BA102 - 0A81.
- G 4/226: 12AX7 6AL5 12AT7 OA2 -1S1693 - 4 diodi 1S1694 - 4 diodi 1S1695 -4 diodi BY114.

Types of transmission:

- SSB: Single side band phone (upper or lower side band) with suppressed carrier.
- DSB: Double side band phone with suppressed carrier or standard AM (amplitude modulation) transmission.
- CW: Continuous-wave telegraphy.

Frequencies transmitted:

- Bands: 80, 40, 20, 15, and 10 meters (the 10-meter band is subdivided into four sectors).
- Coverage: 3.5-4 Mc.; 14-14.5 Mc., 21-21.5 Mc.; 28-28.5 Mc.; 28.5-29 Mc.; 29-29.5 Mc. and 29.5-30 Mc.

Power supplied: 160 W.

Power output (RF) :

- SSB: 100 waits (160-200 PEP peak envelope power);
- CW: 100 watts.
- DSB: 100 watts.
- AM: 25 watts.

Audio sensitivity (microphone); 6 mV.

Audio input impedance: 500,000 ohms.

Carrier suppression: greater than 50 db.

Unwanted band suppression: greater than 40 db at 1 Kc.

Distortion products:

- Second harmonic: less than 40 db.
- Third harmonic: less than 40 db.

Hum and background noise: less than 40 db.

Unwanted beats: less than 50 db.

Tubes and rectifiers used:

- G4/225: 12AX7, 12AT7, 12AT7, EM87, 3 ea. 7360, 6CW4, 6CB6, 6AH6, 12BY7, 6146, 6146, 2 ea. diodes BA102, OA81.
- G4/226: 12AX7, 6AL5, 12AT7, OA2, 1S1693, 4 ea. diodes 1S1694, 4 ca. diodes 1S1695, 4 ea. diodes BY114.

- Dispositivi ausiliari: circuiti «VOX» ed «ANTI-TRIP» per la commutazione automatica «Riceve-Trasmette» comandata «a voce» dal microfono, con possibilità di regolazione della soglia di entrata in funzione e del ritardo a passare in « stand-by ».
- Dispositivi antidisturbi: soppressione delle interferenze nella banda 'TV ottenuta con schermatura del Gruppo VFO e di tutto l'apparecchio; con filtri inseriti nel circuiti di collegamento con la rete, col tasto telegrafico e con lo strumento di misura; uscita RF con attacco coassiale schermato.
- Presa da usare per li collegamento d'antenna: Cat. N. 9/9100, standard.
- Alimentazione: con tensione alternata 50 -60 Hz, da 100 a 250 volt.

Potenza assorbita: circa 300 VA

Dimensioni: 2 mobili di cm 52 x 27 x 26

Pest: G 4/225 kg 10; G 4/226 kg 19.

Risposta a BF: 300 - 3.000 Hz.

- Impedenza d'antenna: 50 100 ohm, adattabile con circulto a « P greco ».
- Isoonda; dispositivo per il rapido controllo.
- Controllo della modulazione: con indicatore elettronico EM87 montato sul pannello.
- Stabilità di frequenza: A f (dopo il periodo di riscaldamento) < 100 Hz.

Fonia: modulazione fino al 100 %,

Grafia: con manipolazione sul circuito del 2º mixer del Gruppo pilota, e possibilità di funzionamento in «break-in»:

Quarzi implegatl: n. 7. e cioè:

N. 80.907 (9 MHz)

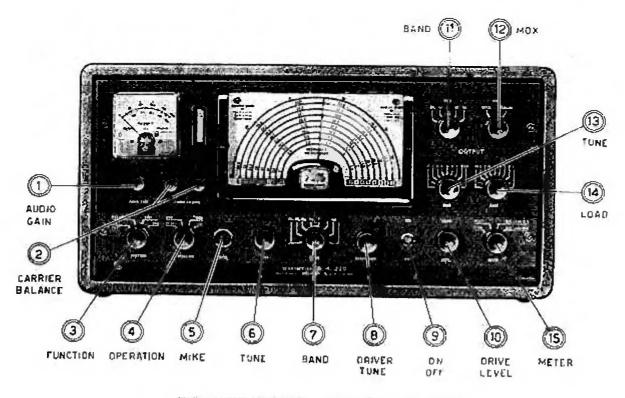
- N. 80.978 (21.5 MHz)
- N. 80.979 (25 MHz)
- N. 80.980 (32 MHz)
- N. 80.981 (32,5 MHz)
- N. 80.982 (33 MHz)
- N. 80.983 (33,5 MHz)

- Auxiliary devices: «VOX» and «ANTI-TRIP» circuits for automatic «Receiv-Trans.» switching operated by voice control on speaking into the microphone, with adjustable input threshold and time delay before switching back to «stand-by».
- Interference suppression devices: TV-band interference suppression provided by shielding the VFO unit and the whole of the equipment, by inserting filters in the circuits connected with the line, with the key and with the instruments. The RF output has a shielded coaxial fitting.
- Plug for antenna connection: Geloso Cat. No. 9/9100, standard.
- Operating voltages: 50 to 60-cycle AC (alternating current), from 100 to 250 volts.

Power consumed: approx. 300 watts.

Dimensions: two $52 \times 27 \times 26$ cm. cabinets.

- Weights: G 4/225 10 Kgs.; G 4/226 19 Kgs.
- Audio response: 300 to 3,000 cycles.
- Antenna impedance: 50-100 ohms, matchable with a «pi» circuit.
- Matched tuning with another station: quick check device.
- Percentage modulation indicator: EM67 electronic indicator mounted on front panel.
- Frequency stability: frequency change after warm-up: less than 100 cycles.


Modulation: up to 100 per cent.

CW operation: Keying the drive unit on second mixer. Possibility of « break-in ».

Crystals used: 7 ca., namely.

No. 80.907 (9 Mc.) No. 80.978 (21.5 Mc.) No. 80.979 (25 Mc.) No. 80.980 (32 Mc.) No. 89.981 (32.5 Mc.) No. 80.982 (33 Mc.) No. 80.983 (33.5 Mc.).

INSTALLAZIONE ED IMPIEGO

INSTALLATION AND OPERATION

DESCRIZIONE DEI COMANDI

- AUDIO-GAIN Regolatore di guadagno (volume) dell'amplificatore a bassa frequenza.
- 2) CARRIER BALANCE Bilanciamento portante. Ognuno dei due comandi aglsce su una valvola 7360 del modulatore e controlla la tensione continua di una piacchetta di deflessione rispetto all'altra che è a tensione fissa di circa 25 volt. Con questa regolazione si garantisce il bilanciamento dinamico di ciascuna valvola in modo da annullare il più possibile la portante in uscita dal modulatore quando l'apparecchio è in trasmissione SSB.
- FUNCTION E' un commutatore E 4 posizioni che sceglie il tipo di trasmissione voluta tra i 4 sistemi possibili: CW -DSB/AM - LSB(SSB) - USB(SSB).
- 4) OPERATION E' un commutatore a 4 posizioni, ognuna con le funzioni descritte qui di seguito;
 a) ST-BY (Stand-by): il trasmettitore viene alimentato regolarmente, compreso lo stadio finale. Non è però possibile alcuna trasmissione, poichè una tensione negativa di 50 volt blocca l'amplificatore a bassa frequenza ed il 2° miscelatore.

b) MOX: in questa posizione il trasmettitore è in condizione di trasmettere. Un relè, situato sull'alimentazione, viene

- 1. AUDIO-GAIN Gain (volume) control of the audio amplifier.
- 2. CARRIER BALANCE Both of the two controls affect the 7360 circuit in the modulator and control the DC voltage on one deflection plate with respect to the other set at about 25 volts. This control ensures dynamic balancing of each tube to cancel out as much as possible any carrier signal which may be in the modulator output when operating on single side band transmission.
- 3. FUNCTION Four-position selector switch used to choose the desired type of transmission from among the four possible systems: CW, DSB/AM, LSB(SSB), USB(SSB).
- OPERATION Four-position selector switch, each position serving the purposes described below;

a. ST-BY (Stand-by); The transmitter is fully powered, including the final stage. It is impossible to transmit or broadcast anything at all over the air because a negative voltage of -50 volts blocks the audio amplifier and second mixer.

b. MOX: In this position the transmitter is ready for broadcasting. A relay in the power circuit is kept actuated, keeping the circuit closed and enabling the chiuso permanentemente, e permette il passaggio manuale da una all'altra delle due condizioni: trasmette/riceve.

Tale passaggio può essere fatto passando in ST-BY (stand-by) o usando il commutatore «MOX»: RECEIV/TRANSM. (n. 12) posto a destra in alto del pannello frontale.

c) VOX: quando il commutatore è in questa posizione, la commutazione «riceve/trasmette» avviene automaticamente, senzà intervento manuale, col solo effetto della voce dell'operatore. Ciò è reso possibile da un collegamento tra il trasmettitore e l'alimentatore G. 4/226 che fornisce un segnale audio ad uno speciale circuito che fa chiudere il relè che provvede alle commutazioni necessarie per la trasmissione ad eccezione di quelle riguardanti il circuito d'antenna per il quale va provveduto a parte. (vedansi le particolarità dell'alimentatore).

d) CAL: questa posizione serve per fare il battimento zero con la stazione ricevuta.

Il trasmettitore è in funzione ed eroga la portante: il livello voluto viene stabilito agendo sul comando dell'amplificatore del pilota (drive level).

- 5) MIKE; presa per il microfono. Il circuito d'entrata è ad alta impedenza; può essere usato un microfono piezoelettrico, o un microfono dinamico ad alta impedenza.
- 6) TUNE: è il comando del condensatore d'accordo del GRUPPO VFO. Provvede alla copertura di 0,5 MHz nelle varie gamme, secondo l'indicazione leggibile sulla scala di sintonia.
- 7) BAND: è il commutatore di banda di tutti i circuiti che precedono lo stadio finale. Ha 8 posizioni ed effettua le commutazioni necessarie nei vari stadi per combinare la frequenza necessaria per alimentare lo stadio finale nella banda voluta.
- BRIVER TUNE: regola un condensatore variabile doppio che effettua l'accordo di placca del 2' miscelatore e del pilota.
- 9) ON-OFF: Interruttore generale. Interrompc un conduttore di rete.
- 10) DRIVE LEVEL: comanda un potenziometro di 22 K Ω che regola la tensione della griglia-schermo della valvola pilota, da 0 a 170 \pm 200 volt, e perciò l'amplificazione della valvola 12BY7 e quindi la potenza RF in uscita.
- OUTPUT; si riferisce ai 4 comandi 11, 12, 13 c 14 che riguardano lo stadio finale RF: BAND, MOX, TUNE, LOAD.
- BAND: seleziona la gamma voluta sull'accordo di placca. Ha 6 posizioni: 80, 40, 20, 15, 10 metri. Deve essere messo sulla stessa gamma in cui è posto il commutatore «BAND» n. 7 (del complesso pilota).

operator to switch manually from transmit (send) to receive and back.

The switch from transmit to receive or vice versa can be done shifting to ST-BY (stand-by) or by using the «MOX»: RECEIV/TRANSM. (No. 12) switch on the upper right-hand side of the front panel.

c. VOX: When the selector switch is in this position the receive-transmit switching takes place automatically, without requiring any manual operations, being controlled by the operator's voice. This is made possible by a connection between the transmitter and the G4/226 power supply which supplies an audio signal to a special circuit which closes a relay taking care of the necessary switching for operation of the transmitter (see power supply details).

d. CAL: This position is used to obtain zero beat with the station received. The transmitter is in operation and sends out the carrier: the desired level is achieved by adjusting the drive level.

- MIKE: Microphone plug. High-Impedance input circuit; a crystal microphone or a high-impedance dynamic microphone can be used.
- 6. TUNE: VFO unit tuning condenser. Covers 500 Kc. on the various bands in keeping with dial readings.
- 7. BAND: Band switch for all circuits preceding the final stage. Has eight positions and carries out the necessary switching in the various stages to produce the necessary input to the final stage in the correct band.
- 8. DRIVE TUNE: Adjusts the two-gang tuning condenser which tunes the plate circuits of the second mixer and the driver.
- 9. ON-OFF: Main switch. Breaks one of the line conductors.
- DRIVE LEVEL: This control operates a 22,000-ohm potentiometer, controlling the voltage between 0 and 170 to 200 volts on the drive tube screen grid, thereby controlling the gain of the 12BY7 tube and thus the RF power output.
 OUTPUT: Refer to the four controls for

graph 11 through 14 headed BAND, MOX, TUNE, and LOAD.

11. BAND: Chooses the desired band for tuning the plate circuit. Has five positions, 80, 40, 20, 15 and 10 meters. Must be set to the same band as the «BAND» selector switch in the driver unit (described in Par. 7 above).

- 12) MOX: effettua il comando manuale riceve/trasmette. Commutazioni: una via sposta l'antenna dal trasmettitore al ricevitore (a tale scopo è prevista una presa d'antenna per ll collegamento schermato col ricevitore): una seconda via mette in « Stand-By » il trasmettitore interdicendo il 2º miscelatore; una terza via serve a mettere in « Stand-By » il ricevitore quando il trasmettitore è in funzione (e quindi fa capo ai morsetti appositamente posti sul retro del trasmettitore per il collegamento « Stand-By » dei ricevitore).
- 13) TUNE: comanda il condensatore variabile che accorda il circuito di placca dello stadio finale.
- 14) LOAD; comanda il condensatore variabile che regola l'accoppiamento dell'antenna con lo stadio finale, e cioè adatta all'impedenza di antenna l'impedenza del circuito d'uscita a radiofrequenza.

Si noti: i comandi TUNE e LOAD sono interdipendenti e perciò devono essere regolati contemporaneamente per ottenere in ogni caso la condizione di risonanza sulla frequenza emessa dal complesso pilota, ed insieme il migliore accoppiamento con l'antenna.

15) METER: commuta lo strumento per effettuare le misure necessarie e volute. E' un commutatore a 4 posizioni:

a) GRID: misura la corrente media di grigila delle valvole finali, in milliampere (fondo scala 5 mA.);

b) PLATE: misura la corrente media di placca delle valvole finali, in milliamper (fondo scala 250 mA.);

c) REL. LOAD V1: (tensione relativa al capi del carico, portata 1): misura la tensione a radiofrequenza esistente ai capi dell'entrata del circuito di antenna.

d) REL. LOAD V.2 (portata 2): ha una funzione uguale alla precedente salvo che serve per le misure più accurate di azzeramento portante, essendo più alta la sensibilità dello strumento.

La costruzione dei trasmettitore è stata curata in modo da ridurre al minimo le difficoltà di messa a punto. Ciò è stato ottenuto eliminando od attenuando il più possibile tutte le frequenze spurie, semplificando la regolazione delle diverse funzioni dell'apparecchio e facilitando le misure e i rilevamenti delle grandezze più caratteristiche.

- 12. MOX: Carries out the manual switching from send to receive and vice versa. Switchings: One way shifts the antenna from the transmitter to the receiver (an antenna jack is provided for this purpose for shielded connection with the receiver; a second way puts the transmitter on «Stand-by» blocking the second mixer; a third way puts the receiver on «Stand-by» when the transmitter is in operation (being connected to the terminals on the back of the transmitter provided for «Stand-by» connection of the receiver).
- 13. TUNE: Operates the final stage plate tuning condenser.
- 14. LOAD: Controls the tuning condenser adjusting antenna coupling with the final stage, matching the antenna impedance with the impedance of the RF output circuit.

Note: The TUNE and LOAD controls affect one another and must be adjusted together for both resonance at the driver output frequency and best antenna coupling.

15. METER: Switches the meter to make the necessary readings and measurements. A four-position switch, it performs the following functions in each position:

a. GRID: Measures the average grid current of the final stage in milliamperes (5 ma. full scale).

b. PLATE: Measures the average plate current in the final stage tubes in milliamperes (250 ma. full scale).

c. REL. LOAD V1: (voltage across load, range 1): Measures the RF voltage across the input to the antenna circuit.

d. REL. LOAD V2: (range 2): Serves the same purpose as (c.) above but makes more accurate measurement of carrier zero since the meter is more sensitive in this position.

The transmitter has been designed to reduce adjustment and alignment difficulties to a minimum. This has been achieved by eliminating spurlous frequencies and reducing them to a minimum, by simplifying the operation of the various controls and by making it easy to take measurements of the most important parameters.

MESSA IN FUNZIONE

TRASMITTER OPERATION

1 - CARICO

Collegare alla presa d'antenna l'antenna stessa o un carico resistivo di 50 ± 100 ohm, che possa dissipare 100 watt. Può essere usata con ottimi risultati una lampada ad incandescenza della potenza di 100 watt, 110 volt (non usare lampade fatte per altre tensioni).

2 - POSIZIONE INIZIALE DEI COMANDI

- OPERATION: su «ST. BY» (stand-by);
- FUNCTION: su « CW » (tasto abbassato);
- AUDIO GAIN: su zero;
- DRIVE LEVEL: a zero;
- DRIVER TUNE: su qualsiast posizione;
- BAND SELECTOR: sulla gamma voluta:
- -- TUNE: sulla frequenza voluta, da leggersi sul quadrante di sintonia:

OUTPUT:

- BAND; sulla gamma voluta;
- TUNE: su posizione «10»;
- LOAD: su posizione «0»;
- MOX: su «TRANSM.»;
- METER: su « PLATE »:

Collegare il trasmettitore all'alimentatore G. 4/226 (sul quale saranno stati già adattati i due cambiotensioni secondo la tensione disponibile), ed azionare l'interruttore generale di accensione sul pannello del trasmettitore. Attendere qualche minuto, poi passare alle operazioni seguenti.

3 - TRASMISSIONE DI ONDE CONTINUE (CW. TELEGRAFIA)

- 3-1: mettere il commutatore « OPERATION » nella posizione « MOX »;
- 3-2: portare il potenziometro «DRIVE LE-VEL» a circa metà corsa;
- 3-3. regolare il comando « DRIVER TUNE » per la massime corrente di placca. Se essa supera i 125 mA. (metà scala) portarsi a questo limite diminuendo il « DRIVE LEVEL »;
- 3-4: portare Il commutatore « METER » su « REL. LOAD » VI;
- 3-5: regolare i comandi « OUTPUT TUNE » e « DRIVER TUNE » fino ad ottenere la massima lettura, aggiustando il carico col comando « OUTPUT LOAD »:
- 3-6: ripetere le operazioni per affinare la sintonia e la potenza di uscita;
- 3-7: controllare la corrente di griglia portando il comando «METER» su «GRID» e regolando i comandi « DRIVE LE-VEL.» e « DRIVER TUNE» fino ad avere una corrente massima di 0,5-1 mA.;
- 3-8: riportare il comando «METER» su «REL LOAD V1» ad affinare la sintonia agendo sui comandi «OUTPUT TUNE» ed «OUTPUT LOAD»;

1. LOAD

Connect the antenna or a resistive dummy load of 50 to 100 ohms able to dissipate 100 watts to the antenna terminals. A 100-watt, 110-volt light bulb can be used with excellent results (do not use light bulbs for other voltages).

2. STARTING POSITION OF CONTROLS

- OPERATION: on «ST. BY» (stand-by).
- FUNCTION: on « CW » (key depressed).
- AUDIO GAIN: on zero.
- DRIVER LEVEL: at zero.
- DRIVER TUNE: in any position.
- BAND SELECTOR: on the desired band.
- TUNE; on the desired frequency, to be read from the tuning dial.

OUTPUT:

- BAND; on the desired band.
- TUNE: on position «10».
- LOAD: on position «0».
- MOX: on «TRANSM.».
- METER: on « PLATE ».

Connect up the transmitter to the G 4/226 power supply (having made sure the voltage adapters have been set to corresponding values of AC main voltage) and turn on the main switch on the transmitter panel. Wait a few minutes and then proceed with the following operations.

3. CW TRANSMISSION

- 3-1. Set the « OPERATION » selector switch to the position « MOX ».
- 3-2. Set the "DRIVE LEVEL" potentiometer to about halfway through its travel.
- 3-3. Set the «DRIVER TUNE» control for maximum plate current. If plate current exceeds 125 ma. (half scale) reduce it to 125 ma. by turning down the «DRIVE LEVEL».
- 3-4. Set the « METER » selector switch to the position « REL. LOAD V1 ».
 3-5. Set the « OUTPUT TUNE » and « DRI-
- 3-5. Set the «OUTPUT TUNE» and «DRI-VER TUNE» controls, peaking them up for maximum reading, using the «OUT-PUT LOAD» control to adjust the load,
- 3-6. Go back over the operations a second time to peak up the tuning and output power.
- 3-7. Check the grid current by switching the « METER » control to the « GRID » position and adjusting the « DRIVE LEVEL » and « DRIVER TUNE » controls until a maximum current of 0.5 to 1 ma. is read.
- 3-8. Reset the «METER» control to «REL LOAD VI» and care the tuning by adjusting the «OUTPUT TUNE» and «OUTPUT LOAD» controls.

17

- 3-9: aprire il tasto (cloè interrompere il suo circuito);
- 3-10: iso-onda: nel caso si voglia trasmettere sulla identica frequenza del corrispondente basta mettere il controllo « DRI-VE LEVEL » a zero c regolare la sintonia « TUNE » (del VFO) fino ad avere nel ricevitore battimento zero rispetto alla frequenza del corrispondente.

Naturalmente prima di passare alla trasmissione occorre ripetere la procedura di accordo qui sopra indicata,

NOTA IMPORTANTE: Durante le operazioni di accordo del pilotaggio le placche delle valvole finali possono essere notevolmente fuori accordo e quindi la dissipazione interna delle valvole può essere eccessiva. E' quindi raccomandabile eseguire il più rapidamente possibile le operazioni 3-5 (vedi sopra).

- 4 TRASMISSIONE CON PORTANTE SOP-PRESSA (DSB)
- 4-1: ripetere le operazioni descritte per le trasmissioni in onde continue (CW) inserendo una spina jack con corto circuito qualora non si usi il tasto nella presa relativa;
- 4-2: spostare il commutatore « FUNCTION » sulla posizione « DSB-AM »;
- 4-3: mettere a zero il comando di volume « AUDIO-GAIN »:
- 4-4: mettere il commulatore « METER » sulla posizione « REL LOAD V2 » per avere la massima sensibilità dello strumento misuratore d'uscita. Regolare i due potenziometri « OARRIER BALAN-CE » fino ad ottenere la minima lettura dello strumento;
- 4-5: aumentare il livello della modulazione agendo sul comando « AUDIO-GAIN » in modo che le strisce luminose dell'indicatore di modulazione arrivino quasi a congiungersi nel picchi di modulazione. In queste condizioni si ottiene una trasmissione in DSB, quindi a portante soppressa con sola irradiazione di entrambe le bande laterali;

5 - TRASMISSIONE FONICA AD AMPIEZ-ZA VARIABILE (AM)

Mantenendo su « DSB-AM » la posizione del commutatore « FUNCTION » è possibile effettuare la trasmissione in modulazione d'ampiezza, cioè con portante modulata al massimo al 100 %.

Operare come segue:

- 5-1: ripetere le operazioni indicate per le trasmissioni con onde continue (CW).
- 5-2: portare a zero il comando «AUDIO GAIN»;
- 5-3: spostare il commutatore « FUNCTION » sulla posizione « DSB » e ruotare il comando « CARRIER BALANCE » di destra fino a che il misuratore d'uscita posto nella posizione « REL LOAD VI » se-

- 3-9. Open the key (that is, break its circuit).
- 3-10. Matching frequencies with another station: Whenever desiring to transmit on the same frequency as that of another station, set the « DRIVE LEVEL » control to zero and adjust the VFO's tuning « TUNE » until a zero beat is heard in the receiver on the same frequency as the other station.

Of course, before transmitting again one must go through the tuning procedure again as described above,

IMPORTANT NOTE! While tuning the driver, the output tube plates may be very much out of tune, resulting in excess internal dissipation within the output tubes. Steps 3-5 should be carried out as quickly as possible to avoid putting excess strain on the output tubes.

4. SUPPRESSED CARRIER TRANSMISSION (Double Side-Band)

- 4-1. Repeat the operations described above for CW operation.
- 4-2. Set the «FUNCTION» selector switch to «DSB-AM».
- 4-3. Set the «AUDIO-GAIN» volume control to zero.
- 4-4. Set the «METER» switch to «REL LOAD V2» to obtain maximum meter reading sensitivity for measuring the output. Adjust the two «CARRIER BALANCE» potentiometers for minimum meter reading.
- 4-5. Increase the level of modulation by adjusting the «AUDIO-GAIN» control until the modulation indicator luminous traces almost come to touch each other on modulation peaks, that is, with maximum inputs. Under these conditions one obtains DSB transmission with suppressed carrier, the two side-bands being both broad-

5. AM PHONE TRANSMISSION

cast.

Keeping the "FUNCTION» switch set to "DSB-AM» one can transmit on AM or amplitude modulation, with the carrier modulated up to a maximum of 100 per cent.

- To do so, make the following adjustments:
- 5-1. Repeat the operations described above for CW operation.
- 5-2. Set the «AUDIO GAIN» control to zero.
- 5-3. Shift the «FUNCTION» switch to «DSB» position and turn the «CAR-RIER BALANCE» control clockwise

gni la metà dell'indicazione trovata per la trasmissione CW;

- 5-4: aumentare l'« audio gain » in modo che le strisce luminose dell'indicatore di modulazione arrivino a circa metà corsa nel picchi di modulazione.
- 6 TRASMISSIONE FONICA « SSB » (A BANDA LATERALE UNICA)
- 6-1: ripetere tutte le operazioni già indicate per la trasmissione con onde continue CW:
- 6-2: scegllere la banda desiderata; USB (« Upper Side Band » cioè banda superiore), oppure LSB (« Lower Side Band », cioè banda inferiore);

SI NOTI: per le bande scritte in bianco sul selettore «BAND» dei VFO, vale la scritta pure in bianco dei commutatore «FUNCTION»; per le scritte in rosso, vale la scritta in rosso dello stesso commutatore. Cioè la posizione delle gamme nel circuito è diversa per gli 80 e i 20 metri, rispetto alle altre gamme;

- 6-3: mettere il commutatore « METER » nella posizione « REL. LOAD V2 » e agire sui comandi di «CARRIER BALANCE» fino ad ottenere lettura zero. In questa condizione la portante è soppressa.
- 6-4: aumentare il livello del volume BF mediante lo « AUDIO GAIN » finchè le strisce luminose dell'indicatore di modulazione siano accostate;
- 6-5: se si desidera trasmettere in «VOX» (cioò con controllo « a voce » della trasmissione) anzichè in «MOX» (con controllo manuale del commutatore «MOX». «RECEIV.-TRANSM.», procedere come segue:

- spostare il commutatore « OPERA-TION » sulla posizione « VOX », lasciando il comando « MOX » sulla posizione « TRANSM. »;

- collegare con un cavetto le prese-jack «VOX» sul retro del trasmettitore G. 4/225 e sul fronte dell'alimentatore G. 4/226.

Il livello di segnale che fa scattare il relè (sull'alimentatore) è regolato dal comando « VOX SENSITIVITY » posto sul G. 4/226.

Il comando « ANTI-TRIP » regola il livello del segnale in uscita dal ricevitore che blocca la trasmissione quando è in funzione il ricevitore.

Occorre, per mettere in funzione l'« ANTI-TRIP», collegare l'uscita del ricevitore ai morsetti « 1 » e « 2 » (il morsetto « 1 » è massa) della morsetticra a 10 morsetti posta sui retro del G. 4/226.

In queste condizioni il passaggio dalla trasmissione viene effettuato automaticamente dalla voce dell'operatore ad eccezione delle commutazioni d'antenna per le quali si potranno disporre dei circuiti soccorritori a mezzo relè comandati dai contatti che fanno capo alla morsettiera a 10 morsetti di cui sopra. until the output meter in « REL LOAD V1 » position shows half the reading given for CW operation.

5-4. Increase the audio galn until the luminous traces of the modulation indicator reach about half of their travel on modulation peaks.

6. SSB (single-side-band) PHONE TRANSMISSION

- 6-1. Repeat the operations described above for CW operation.
- 6-2. Choose the desired band, either USB (upper side band) or LSB (lower side band). NOTE: The bands written in white on

NOTE: The bands written in white on the VFO «BAND» selector are also valid for the bands written in white on the «FUNCTION» selector switch; those written in red on one are also valid for those in red on the other. This means that the positions for the 80 and 20-meter bands are different in the circuit than the positions of the other bands.

- 6-3. Set the «METER» switch to the position «REL LOAD V2» and adjust the «CARRIER BALANCE» controls for zero reading. When thus set up the carrier is suppressed.
- 6-4. Increase the audio level by turning the «AUDIO GAIN» control until the luminous traces of the modulation indicator come to touch.
- 8-5. If one wishes to transmit in the « VOX » condition, that is, with voice-controlled switching-on of the transmitter, instead of in « MOX » condition (with manual control of the « MOX » switch), proceed as follows:

— Siwtch the «OPERATION» switch to the position «VOX», leaving the «MOX» control in its «TRANSM» position.

— Use a cable to connect up the «VOX » plug on the back of the G 4/225 transmitter with the front panel of the G 4/226 power supply.

The signal level which makes the powersupply relay trip is adjustable by means of the control, «VOX SENSITIVITY» on the G 4/226.

The «ANTI-TRIP» control adjusts the receiver output signal level which blocks transmission when the receiver is in operation. In order to set the «ANTI-TRIP» in operation connect the receiver output to the terminals «1» and «2» (terminal 1 is ground) of the 10-terminal terminal board on the back of the G4/226. When thus set up the operator's voice automatically switches the equipment from receive to transmission.

G 4/225 - TABELLA DELLE TENSIONI INDICATE IN VOLT

Tutte le tensioni sono misurate rispetto alla massa, con voltmetro 20.000 chm/volt, col trasmettitore in funzione in CW e tasto abbassato. Gamma 80 metri, con carico fittizio di 50 Ohm e 100 W antenna.

VALVOLA	PIEDINI - PINS									
TUBE	1	2	3	4	5	6	7	Ê	9	
Modulatore SSB 4/191 12AX7 - Mike amplifier 12AT7 - 3* Audio e car-	+ 230	- 19	_	_	_	+ 157	a1	+1,1	AC 5.8	
rier oscillator 12AT7 - Balanced driver	+135* +112	-4.4*	+1.4	=	-	+ 295	_	+4.4 +1.3	AC 5.8 AC 5.8	
 •7360 - Balanced mod. (B) •7360 - Balanced mod. (A) EM87 - Modulation Indic. 	+3,4	+177 + 165	_	Ξ	AC5.8 AC5.8	+140	+230	+43	+23 +35	
Gruppo pilota 4/192 ••6CW4 - Crystal oscillator		_	_	_	_	_		nsione d jedini 1	li filame	
6CB6 - V.F.O. 7360 - 1ª Mixer 6AH6 - 2º Mixer 12BY7 - Driver	$-\frac{2}{+4}$	+180	AC 5.6	AC 5.6	AC 5.7 +287	$+103 + 160^{\circ} + 232^{\circ}$		+23	+23	
Stadio finale 6140 - RF final ampl.		AC 5.2	+ 178	-	- 45'	_	-	(var.)	Anodo	
Alimentatore G 4/226 12AX7 8AL6 12AT7 0A2	+ 175	Ξ	+3,5	AC 5.8 AC 5.8		+ 175		+-3.6 2.2	+730 (* AC 5,8	
NOTE - (*) Misurato con voltmetro ed : (**) Sulle valvole avere le segue	il punto sottoseg	nate, ir	sura.					1-		
7360 - Balanced mod. (A) 7360 - Balanced mod. (B) 6CW4 - Grystal oscillator:	+4.1	+102	-		AC 5.8 AC 5.8 95 vol	+167	+ 197 + 177	+23,5 +23,5	-1-21 +23	
Tensione al terminale posit Tensione al terminale posit Tensione al terminale posit Tonsione negativa = - 52 Tensione griglie schermo 6	ivo del ivo dei : V.	1º cond 2º cond	elettro	litico (i	aliment	atore b	assa ton	18.) = +	- 310 V.	

NORME DI TARATURA

ALIGNMENT AND ADJUSTMENT

Strumenti

- Carico d'antenna resistivo, di valore compreso tra 50 e 100 Ω e che possa dissipare fino a 100 W. Si può usare una resistenza a carbone od un wattmetro RF che abbia una portata massima di almeno 100 W.
- Generatore di R.F. con uscita di almeno
 1 V efficace, frequenza generata fino a
 30 35 MHz, impedenza d'uscita bassa
 (50 75 Ω) c condensatore di blocco della continua sull'entrata (100 pF).
- Voltmetro a valvola con scala max, almeno 100 V e con un probe che funzioni bene fino a 30 MHz con alta impedenza di ingresso (alta resistenza in parallelo ad una capacità di pochi pF).
- Oscilloscopio.
- Generatore di bassa frequenza.
- Millivoltmetro per bassa frequenza.
- Analizzatore panoramico con possibilità di esplorare fino a 9 MHz con larghezza di banda di esplorazione regolabile fra 3 KHz e almeno una decina di KHz.

Instruments Required

- 50 to 100-ohm resistive dummy load antenna capable of dissipating up to 100 W. A carbon resistor or an RF watt-meter having a maximum rating of at least 100 W can be used for this purpose.
- RF signal generator with at least 1-volt r.m.s. output: frequency generated up to 30-35 Mc.; low output impedance (50-75 ohms) and DC-isolating input condenser 100 mmf).
- Vacuum-tube voltmeter with at least 100volts full scale and with probe operating well up to 30 Mc. with high input impedance (high resistance in parallel with capacitance of only a few mmf).
- Oscilloscope.
- Audio frequency generator.
- Audio millivoltmeter.
- Panoramic analyzer able to operate up to 9 Mc. with sweep band width adjustable from 3 Kc. to at least 10 Kc.

MODULATORE G4/191

Come operazione preliminare aggiustare i negativi; con il puntale sulla griglia della 6146 ruotare il potenziometro di regolazione posto sul telaio dell'alimentatore fino ad avere -49 ± -50 V.

E' opportuno usare uno strumento ad alta resistenza, e cioè di almeno 20.000 Ω /Volt.

Taratura Oscillatore a 9 MHz

Collegare il voltmetro a valvola sul secondario della bobina di placca della 12AT7 oscillatrice (bobina EF): ruotare il nucleo) finchè si ha il massimo della tensione. Spostandosi da questa posizione, in un senso le oscillazioni cessano bruscamente, nell'altro senso si smorzano lentamente. Fare la taratura ruotando il nucleo dalla posizione di massima uscita leggermente verso il senso in cui le oscillazioni scendono di ampiezza più lentamente. Sul secondario si devono avere circa 2 V R.F.

Verificare anche la frequenza controllandola con un frequenzimetro collegato sul secondario di placca e regolando il trimmer di griglia, per battimento zero a 9 MHz.

Accordo di placca del modulatore

Collegare il voltmetro a valvola all'uscita del modulatore (cavetto schermato), regolare il

compensatore d'accordo (compensatore superiore del trasformatore 737) per la massina uscita.

Bassa frequenza

Passare in posizione LSB.

Collegare la presa «microfono» al generatore di bassa frequenza, aumentare l'«AU-DIO GAIN» al massimo. Collegare il millivoltmetro alla piacca del 3º stadio (primario del trasformatore di B.F.). Entrare con

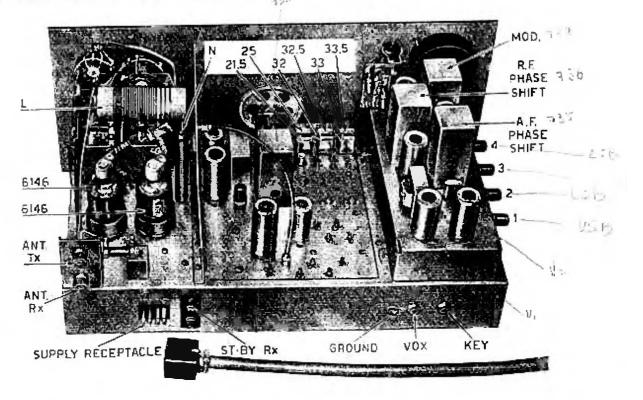
G4/191 MODULATOR

As a preliminary measure first adjust the negative voltages; set the voltmeter test probe on the grid of the 6146 and rotate the voltage adjustment control knob on the power supply chassis until the voltage reads -49 to -50 volts. It will be better to use a high-resistance voltmeter, at least 20,000 ohms per volt or a Vacmun-tube voltmeter.

Tuning the oscillator to 9 Mc.

Connect up the vacuum tube voltmeter to the secondary of the 12AT7 oscillator plate coll (coil EF); turn the slug to the position giving highest voltage reading. On turning the slug in either direction away from this position one will find that in one direction there is a sudden cut off of the oscillation while in the other the oscillation dampens out gradually. Make the final setting by turning the slug to the position of maximum voltage and shifting it slightly in the direction of gradual dampening. There should be about 2-volt RF on the secondary.

Check the frequency, too. using a BC221 connected to the plate coll secondary and adjusting the grid trimmer; for zero beat at 9 Mc.


Tuning the modulator plate circuit

Connect the vacuum-tube voltmeter to the modulator output (shielded cable); adjust the tuning trimmer (the upper trimmer) for maximum output.

Audio frequency

Shift to LSB position.

Plug the audio frequency generator into the microphone jack and turn the «AUDIO GAIN» up to maximum volume. Connect the millivoltmeter to the plate of the third stage

01

un segnale di ingresso di circa 5-10 mV e verificare che tra 300 Hz e 3400 Hz il livello si mantenga entro \mp 3 dB.

Collegare il millivoltmetro alla placca del « Balanced driver » che è collegato alla EM87. Entrare con un segnale a 1 KHz che dia al millivoltmetro circa 10 Volt. Regolare il potenziometro, posto sul circuito stampato dell'EM87, che regola la sensibilità in modo che le tracce luminose restino distanziate di 1 o 2 mm.

Bilanciamento del modulatore

Collegare all'uscita del modulatore (cavetto schermato) il probe del panoramico predisposto nella gamma 4,5 - 9,5 MH2 sulla frequenza di 9 MH2.

La larghezza di banda dello strumento si può predisporre su 14 KHz.

Metterst in OW.

Cercare, spostandosi con la massima demoltiplicazione, la portante in modo che risuiti al centro dello schermo.

Passare in LSB (scritta bianca) e modulare a 1 KHz; compariranno anche le bande laterali.

Portarsi nella posizione 3,5 KHz del comando α Sweep width selector » del panoramico per una visione più comoda.

Soppressione della portante

Agire sui comandi sotto elencati per ottenere la massima soppressione: sullo schermo si vedrà il picco in corrispondenza della portante che si riduce ad un minimo.

Comandi:

- i due potenziometri sul fronte « Carrier Balance »;
- il condensatore differenziale di bilanciamento del circuito di placca del modulatore (media N. 737).

Soppressione delle bande laterali

Per ottenere la riduzione al minimo della banda superiore agire sui seguenti comandi;

- bilanciamento dello sfasatore audio-frequenza;
- bilanciamento del pilota;

(Questi comandi sono i potenziometri posti lateralmente in numero di 4, quelli desiderati sono rispettivamente l'1 e il 3); per la soppressione della banda inferiore agire rispettivamente sul potenziometri 2 e 4.

GRUPPO V.F.O. 4/192

Collegare il BC221 all'uscita del trasformatore di placca della 6CB6.

Togliere il quarzo a 9 MHz.

Tarare a 5 MHz la bobina EK.

Tarare a 5.5 MHz Il compensatore.

Collegare il voltmetro a valvola sul secondarlo e controllare che la tensione in uscita si mantenga entro i 3 dB tra l'inizio ed il fondo scala.

Se quest'ultima misura non è soddisfacente occorre rifare la taratura della media N. 740. (the audio output transformer primary). Apply a 5 to 10 mv. Signal at the input and check to see that there is a \pm 3 db. gain at 300 and at 3400 cycles.

Connect the millivoltmeter to the plate of the «balanced driver» which is connected to the EM87. Apply a 1,000 cycle signal strong enough to give a 10 volt peak voltage on the millivoltmeter and adjust the pontentiometer on the EM87 printed circuit which adjusts the sensitivity until the illuminated traces remain about one or two millimeters apart. Set the panoramic analyzer to the 4.5 to 9.5 Me. band and tune it to 9 Mc. Connect the analyzer probe to the modulator output (shielded cable).

Modulator balancement

The panoramic analyzer sweep width can be set to 14 Kc.

Shift to CW.

Attempt by tuning with a maximum of decoupling to find the carrier so it will be located in the middle of the screen and shift to the « Log » position.

Shift to LSB and modulate at 1,000 cycles; the side-bands will also appear.

Shift the «sweep width selector» to the 3.5 Kc. position on the panoramic analyzer for better viewing.

Carrier suppression

To attain maximum carrier suppression adjust the three below-listed controls. The peak representing the carrier on the screen will be seen to change; set these controls for minimum peak height of the carrier.

- two potentiometers « Carrier Balance » on front panel.
- The differential balancing condenser in the modulator plate circuit (can No. 737).

Upper sideband suppression

Adjust the following controls to reduce the upper sideband to a minimum:

 Audio frequency phase-shifter balance control

V - Driver balance control

(These controls are the four potentiometers located at the side; those requiring adjustment are the No. 1 and No. 3).

For upper side band suppression adjust potentiometers No. 2 and No. 4.

VFO (VARIABLE-FREQUENCY OSCILLATOR) UNIT 4/192

Connect the BC221 to the 6CB6 plate circuit can output.

Take out the 9 Mc. crystal.

Tune coil EK to 5 Mc.

Tune the trimmer to 5.5 Mc.

Connect the vacuum-tube voltmeter to the secondary and check the output voltage to see that it remains within 3 db. of zero and full-scale.

If this reading is unsatisfactory it will be necessary to retune can No. 740. To do so Per questa operazione occorre staccare il collegamento tra la bobina EK e la griglia, entrare con un generatore sweep centrato su 5,25 MHz con larghezza di sweep di almeno 0,5 MHz.

Collegare il secondario ad un rettificatore ad alta impedenza collegato all'asse verticale di di un oscilloscopio il cui orizzontale è collegato alla uscita dello sweep.

Mandare in griglia anche un marker a 5,25 MHz usando il segnale di un generatore R.F. Regolare i due nuclei di taratura del trasformatore 740 per la massima piattezza: è presente una leggera sella dovuta a sovraccoppiamento. Spostare il marker a 5 e a 5,5 MHz e verificare che esso si trovi in punti simmetrici della curva rispetto al centro e di livello non inferiore a quello della sella.

OSCILLATORE A QUARZI

Collegare il voltmetro a valvola sulla 1ª griglia della 7360 del 1º mixer.

Le gamme su cui funziona l'oscillatore a quarzl sono sottoelencate con le frequenze relative del quarzo.

 10 m
 10 m
 10
 10
 15
 20
 40
 80

 33.5
 33
 32.5
 32
 25
 21,5

Regolare nuclei corrispondenti per la massima uscita leggendo la tensione a valle dei condensatore da 0.75 pF.

I' MIXER

Staccare il cavetto schermato dalla placchetta cui è collegato.

Collegare la calza del cavetto alla placchetta ed il lato caldo alla 1ª griglia tramite un condensatore da 100 pf, dopo aver staccato il collegamento all'oscillatore a quarzo.

Mettere il commutatore di gamma sugli 80 m o sul 20 m.

Togliere la 6CB6 per evitare la presenza dell'oscillazione del V.F.O.

Collegare il voltmetro a valvola al secondario del circuito di placca.

Ruotare il potenziometro di bilanciamento tutto in un senso (indifferentemente orario od antiorario).

Accordare la placea per la massima uscita con ll compensatore corrispondente.

Bilanciare le placchette, agendo sul potenziometro fino a che tra le due placchette ci sia differenza di potenziale zero.

Bilanciare il circuito di placca per il minimo di uscita agendo sul trimmer differenziale di placca.

Per un eventuale ritocco sbilanciare ancora le placchette agendo sul potenziometro e ripetere tutte le operazioni precedenti; indi bloccare il potenziometro con il cappuccetto. Per procedere nella taratura del 1º mixer rifare i collegamenti come da schema: collegare il lato caldo del cavetto alla placchetta N. 8 e la griglia al condensatore da 0,75 pF di accoppiamento all'oscillatore a quarzi. break the connection between the grid and coil EK and apply a sweep frequency at least 500 Kc. in width centered on 5,25 Mc. Connect the secondary to a high-impedance diode connected to the vertical input of an oscilloscope whose horizontal input is connected to the sweep output.

Insert a 5.25 Mc marker signal on the grid using an RF signal generator. Adjust the two tuning slugs to achieve maximum flatness; if a slight dip is present due to overcoupling shift the marker to 5 Mc. and to 5.5 and check to see that the output does not decrease at the bottom of the dip.

CRYSTAL OSCILLATOR

Connect the vacuum-tube voltmeter to the first grid (control grid) of the 7360 of the first mixer.

The crystal oscillator operates on the following bands corresponding to the crystal frequencies given:

10 m 10 m 10 m 10 m 15 m 20 m 40 m 80 m 33.5 Mc. 33 Mc. 32,5 Mc. 32 Mc. 25 Mc. 21,5 Mc.

Adjust the various slugs as explained for the maximum output. Read the RF voltage after the 0.75 mmF condenser.

FIRST MIXER

Disconnect the shielded cable from the plate to which it is connected.

Connect the shield of the cable to the plate and the hot side to the first grid through a 100 mmf condenser, removing the crystal oscillator connection.

Set the hand switch to either 80 meters or 20 meters.

Take the 6CB6 tube out of its socket to avoid any presence of VFO oscillation.

Connect the vacuum-tube voltmeter to the plate circuit secondary.

Turn the balancing potentiometer all the way in either direction (wether clockwise or counterclockwise makes no difference).

Tune the plate circuit for maximum output by adjusting the trimmer provided for this purpose.

Balance the 7360 plates adjusting the potentiometer for minimum plate voltage. Balance the plate circuit for minimum output adjusting the plate circuit differential trimmer. If a finer adjustment is desired, unbalance the 7360 plates again by shifting the position of the potentiometer and then repeat all the operations over again. Use the cap on the potentiometer to lock its setting in place.

To tune the first mixer replace the connections to correspond to the schematic diagram; connect the hot side of the cable to plate No. 8 and the grid to the 0.75 mmf condenser coupling to the crystal oscillator.

Tune for maximum output (read on a voltmeter connected to the 7360's plate circuit Accordare per la massima uscita (letta sul voltmetro collegato al secondario del circuito di placca della 7360) i trimmer corrispondenti sulle gamme:

40 - 15 - 10 - 10 - 10 - 10

Rimettere la 6CB6.

N.B. - Come alternativa si può staccare il collegamento di griglia, togliere il quarzo a 9 MHz ed entrare in griglia con un generatore R.F. a 9 MHz.

2º MIXER o STADIO PILOTA

Staccare un capo del fusibile da 1A del ponte che utilizza i diodi 1S1694 in modo da togliere la tensione di 200 V alla griglia schermo della 6146 e i 150 V stabilizzati a tutti gli oscillatori.

Passare in «Transm.» sul commutatore Mox. Staccare un capo del condensatore da 47 pF sulla griglia della 6AH6.

Collegare alla griglia della 6AH6 un generatore R.F., entrare con un segnale di circa 0.5 - 1 V.

Collegare il voltmetro a valvola al capo della resistenza da 1 K Ω collegata alla impedenza 17572 in griglia della 6146.

Entrare con la frequenza corrispondente alla massima frequenza per ogni gamma.

Ruotare il potenziometro «Drive level» tuttoin senso orario.

Ruotare il variabile «Driver tune» in modo che sia quasi tutto aperto.

Tarare a coppie i nuclei delle bobine corrispondenti ad ogni gamma (bobina di placca del mixer e del pilota). Sui 10 m basta tarare l'ultima gamma a 30 MHz.

Verificare per ogni gamma che il variabile « Driver tune » faccia l'accordo all'altro estremo di ogni gamma.

Spostare il voltmetro sulla griglia della 6146 e controllare che con il potenziometro « Drive level » al massimo e accordando per la massima uscita su tutte le gamme si abbiano aimeno 50 Volt di picco.

STADIO FINALE

La taratura della neutralizzazione si fa sulla gamma del 10 m. verificando che il segnale trasferito dalla griglia alla placca a valvole finali inattive sia minimo; una ulteriore verifica sui 20 m. confermerà la taratura.

Procedura di taratura della neutralizzazione:

- Togliere l'alimentazione alle placche e agli schermi delle finali, lasciando l'alimentazione dei filamenti.
- -- Collegare una resistenza di carlco di 50 🖸 non induttiva alla presa d'antenna.
- Collegare un voltmetro a valvola a R.F. sul carico.
- Accendere l'apparecchio.
- Accordare l'apparecchio per la massima uscita agendo sui tre comandi: driver tune, output tune e output load, con il drive level tutto ruotato in senso orario.

secondary) by adjusting the trimmers for the various bands:

40 - 15 - 10 - 10 - 10 - 10

Put the 6CB6 in its socket.

Note: An alternative method is to break the grid connection, remove the 9 Mc. crystal and apply a 9 Mc. RF signal to the grid using a signal generator.

SECOND MIXER OR DRIVER STAGE

Remove one end of the 1-Amp fuse from its connection in the link using the 1S1694 diodes so the 200-volt supply will be removed from the 6146 grid's shield together with the 150volt stabilized supply to all the oscillators. Switch the «MOX» switch to «Transm.». Disconnect one lead of the 47 mmf from the 6AH6 grid.

Connect an RF signal generator to the 6AH6 grid, applying a signal input of about 0.5 to 1 volt amplitude.

Connect the vacuum-tube voltmeter to the 1,000-ohm resistor lead connected to the 17572 impedance in the 6146 grid circuit.

Apply the top frequency for each band. Turn the « drive level » potentiometer full

clockwise.

Turn the «driver tune» tuning condenser so it is almost all the way open (minimum capacitance).

Tune the slugs of the coils for each band in pairs (mixer and driver plate coils). On 10 meters one need only tune the last band to 30 Mc.

Check to see that the « driver tune » variable condenser also tunes at the opposite end of every band.

Transfer the voltmeter lead to the 6146 grid and check for a least 50-volt peak voltage on all bands with the « drive level » potentiometer at its maximum setting and with each band tuned for maximum output.

OUTPUT STAGE

Neutralization adjustment is made on the 10meter band; check to see that there is a minimum transfer of the signal from grid to plate when power is cut off from the tube; an additional check on 20 meters verifies the setting of the neutralization adjustment.

Adjust the neutralization as follows:

- Cut off the voltage supply to the output stage plates and screens, leaving the filaments lit.
- Connect a 50-ohm non-inductive dummy load to the antenna output terminals.
- Connect an RF vacuum-tube voltmeter across the load.

- Turn on the equipment.

— Tune the equipment for maximum output adjusting three controls; driver tune, output tune and output load, iwth the drive level turned all the way clockwise.

- Regolare il condensatore di neutralizzazione per la minima lettura.
- Ripetere le due ultime operazioni finché l'uscita non scende ulteriormente.

A completamento di queste note si danno delle indicazioni utili per il ritocco dell'azzeramento delle bande laterali a mezzo di un ricevitore.

Si fa viva raccomandazione di non ritoccare le tarature se non strettamente necessario e preferibilmente rimandare l'apparecchio per una verifica.

Nel caso si debbano sostituire una od entrambe le 7360 del modulatore bilanciato o la 12AT7 del « Balanced driver » è opportuno rifare la taratura.

Non disponendo di un apparecchio analizzatore d'onda si può usare un ricevitore di tipo professionale con un filtro a quarzo che permetta di ridurre la selettività a bande moito strette, dell'ordine del chilocicio e meno; ad es. il ricevitore G 4/215 è provvisto di un tale filtro e nella posizione « Selectivity 4 » la selettività è sufficiente.

Oltre il ricevitore occorre un generatore di bassa frequenza.

Procedere nel seguente modo:

- accordare in CW il trasmettitore sugli 80 m (a metà scala) su un carico fittizio;
- passare in posizione « Stand-by »;
- il commutatore «Function» in USB;
- audio Gain a zero;
- attendere almeno 1/2 ora per avere un buon riscaldamento dell'apparecchio;
- passato il periodo di preriscaldamento mettere in Mox;
- azzerare la portante vedendo il minimo sullo strumento di uscita. (Si noti che è opportuno ricontrollare l'azzeramento della portante durante la taratura);
- mettere al massimo il controllo «Audio gain »;
- entrare con un segnale a l KHz di Intensità tale (qualche millivolt) da portare l'indicatore luminoso a 2/3 della sua corsa;
- regolare il pilotaggio (Drive level) per avere in uscita un 10 % dell'uscita massima.

Comandi dei ricevitore. - (I comandi non nominati possono essere in posizione qualunque perchè non influiscono).

- A.G.C. in ON.
- R.F. IF. Gain: tutto in senso orario.
- Audio Gain a zero.
- Commutatore del sistema di ricezione in USB o LSB indifferentemente.
- Band Selector sugli 80 m.
- Crystal Filter: Selectivity sul 4.
- Crystal Filter: Phasing sulla linea di riferimento,

- Adjust the neutralizing condenser for minimum reading.
- Repeat the last two operations over again until there is no further decrease in the output reading.

To complete this data we are also providing useful hints on adjustment of the zeroing of the sidebands using a receiver.

It is urgently recommended that the tuning be left untouched unless absolutely necessary, it being preferable to send the equipment back for a check-up.

If it becomes necessary to replace either or both of the balance modulator's 7360's or the balanced driver's 12AT7 it will be better to retune the set.

If a wave analyzer test set is not available a professional-type receiver with crystal filter can be used as such a filter makes it possible to reduce the selectivity to very narrow bands of 1,000 cycles or less; the Geloso G 4/215 receiver, for example, has such a filter and with the selectivity switch set to the position «Selectivity 4» there is adequate selectivity for this purpose.

Besides a receiver one also needs an audio signal generator,

Proceed as follows:

- Tune the transmitter with a dummy load on 80 meters (at midscale) operating on OW.
- Switch to « Stand-by » position.
- Set the «Function» switch to USB.
- Set audio gain to zero.
- Wait at least half an hour for the equipment to warm up thoroughly.
- Having completed the warm-up period, switch to « Mox ».
- Zero the carrier, looking for the dip in the output meter. (It will be well to recheck the zeroing of the carrier during tuning and adjustment).
- Set the "Audio gain" control to maxlmum.
- Apply a 1,000-cycle signal of great enough amplitude (several millivolts) to bring the luminous indicator to two-thirds of its full travel.
- Adjust the drive level to have an output equal to 10 per cent of maximum output.

Receiver controls. (Any controls not mentioned can be left in any position because they have no effect on the result).

- AGC in the ON position.
- RF IF Gain all the way clockwise.
- Audio gain to zero.
- Reception selector on either USB or LSB (Upper side band or lower side band). It makes no difference which.
- Band switch on 80 meters,
- Crystal filter: Selectivity on 4.
- Crystal filter: Phasing on the reference line.

- Agire sul «Tuning» per la massima lettura sull'« S-meter ».
- Ritoccare anche l'« Antenna trimmer » sempre per la massima lettura sull'« Smeter ».
- Raggiustare ii « Drive-level » sul trasmettitore per leggere S-9 sul ricevitore.
- Il commutatore «Function» del trasmettitore C 4/225 deve essere ora portato in «LSB».

In questa condizione il ricevitore, data la taratura fatta precedentemente, si trova sintonizzato sulla banda laterale soppressa, si noterà perciò una riduzione nell'indicazione dell'a S-meter ».

- Fare ora le regolazioni di annullamento della banda laterale superiore agendo alternativamente sul comandi sotto elencati, sempre per il minimo dell'S-meter.
 - a) Bilanciamento dello sfasatore bassa frequenza e del pilota bllanciato.
 Tali comandi sono raggruppati a coppie e distinti per l'USB e LSB, si trovano sul fianco dell'apparecchio, vedi figura.
 Regolare naturalmente, uno alla volta, quelli desiderati, cioè relativi alla LSB.
 - b) Bilanciamento dello sfasatore R.F.
 Tale sfasatore è contenuto nella madia.
 N. 736; le regulazioni agiscono sul trimmer dello sfasatore.

Tali regolazioni vanno fatte una alla volta e ripetute finchè non si ha un miglioramento nella soppressione totale.

Si noti che se si ottiene S2 o S3 come minimo, la soppressione è ottima.

Ripetere ora le operazioni descritte per la soppressione dell'aitra banda; naturalmente basta scambiare USB con LSB e viceversa nelle operazioni interessate lasciando invariate tutte le altre indicazioni.

I comandi di soppressione riguardano solo i due potenziometri di bassa frequenza che ora sono la coppia non regolata in precedenza.

Le regolazioni dello s'asatore R.F. non vanno più ritoccate perché l'aggiustamento ottimo trovato su una banda laterale vale anche per l'altra.

Se le regolazioni sono fatte con precisione, la soppressione della USB è dello stesso ordine di quella trovata per la LSB e viceversa. Per ottenere un risultato soddisfacente è necessario procedere con regolazioni molto fini per non oltrepassare i punti di minimo.

Nell'eventualità che lo sbilanciamento del comandi sia notevole, la ricerca della banda desiderata e di quella soppressa può essere causa di errori, che poi non permettono più di ottenere l'azzeramento voluto; questo può succedere se le ampieze delle due bande sono pressochè uguali, quindi accordando si

- Adjust the «Tuning» control for maximum reading on the «S-meter».
- Touch up the «Antenna trimmer» again to get maximum reading on the «S-meter».
- Also readjust the «Drive-level» on the transmitter to read S-9 on the receiver.
- The Geloso G4/225 transmitter « Function » switch must now be set to the « LSB » position.

Under these conditions the receiver will be tuned to the suppressed sideband due to the above adjustments; there will therefore be a drop in the reading of the «S-meter» as a result.

- Now make the adjustments for cancelling out the upper sideband, adjusting one and then the other of the controls listed below, still for minimum reading on the «S-meter».
 - a) Audio-frequency phase-shifter and balanced modulator balancing controls. These controls are situated in pairs sepparate for USB and LSB and are loccated on the side of the equipment. Refer to the figure. Naturally one should adjust the required ones. that is, the LSB ones, one at a time.
 - b) RF phase-shifter balancing controls. This phase-shifter is located in can No. 736; the adjustments are made by setting the phase-shifter's trimmers.

These adjustments are made one at a time and are to be readjust until no further improvement is noted in the total suppression. ement is noted in the total suppression.

It should be noted here that a minimum value of S2 or S3 represents very good suppression.

Repeat the above described operations for suppression of the other sideband; naturally one need only substitute LSB for USB and vice versa in making such adjustments, leaving all the other instruction unchanged.

The suppression controls involve only the two audio potentiometers which now are the pair which have not been adjusted up to now.

The RF phase-shifter adjustments need no further adjustment because the best setting for one sideband is also best for the other sideband.

If the adjustment are carried out accurately the suppression of the USB will be roughly equal to that found for the LSB. In order to obtain satisfactory results it is necessary to proceed with very fine and sensitive adjustments to avoid going beyond the dips or passing over them inadvertently.

If there should be a large imbalance of the controls the cause of errors may be due to failure to locate the desired sideband and distinguish it from the sideband to be suppressed, making it impossible to obtain the desired zeroing: this can happen when the amplitudes of the two sidebands are about equal so that two peaks are found on the S-meter trovano sull'S-meter due picchi dello stesso ordine di grandezza.

In questo caso è ancor meno consigliabile cercare un allineamento senza la strumentazione adatta.

E' in ogni modo possibile usare ancora il ricevitore se si segue una procedura preliminare che viene ora descritta e se si agisce con molta attenzione.

- Mettere il trasmettitore in CW con tasto chiuso (oppure in CAL).
- Accordare il ricevitore per la massima uscita sull'S-meter e aggiustare il livello per una lettura soddisfacente.
 Il filtro a cristallo deve sempre essere messo sulla posizione 4 ed il Phasing sul riferimento.
- Portare il trasmettitore in USB con audiogain a zero.
- Fare l'azzeramento di portante fin dove è possibile cercando il minimo sull'S-meter.
- L'azzeramento di livello della portante può essere migliorato ulteriormente regolando accuratamente il trimmer differenziale della media 737 (è il trimmer più vicino al telnio).
- Modulare con 1000 Hz come glå detto.
- Spostare la sintonia del ricevitore verso le frequenze alte fino a trovare un nuovo massimo in corrispondenza della banda desiderata USB.
 Si badi che la distanza tra la sintonia della portante e quella della banda desi-

della portante e quella della banda desiderata è di soli 1.000 Hz

 Procedere nel modo già detto per la soppressione delle bande laterali.

Se si dispone anche di un oscilloscopio che abbia ancora una risposta apprezzabile nella gamma degli 80 m. lo si può usare per avere un altro mezzo di controllo; basta far comparire l'inviluppo della frequenza di lavoro; si avrà la massima soppressione della portante quando il « ripple » sarà ridotto al minimo. La soppressione perfetta si avrebbe se la frequenza di uscita fosse unica, quindi dovrebbe avere come inviluppo una linea retta giving roughly the same amplitude when tuning.

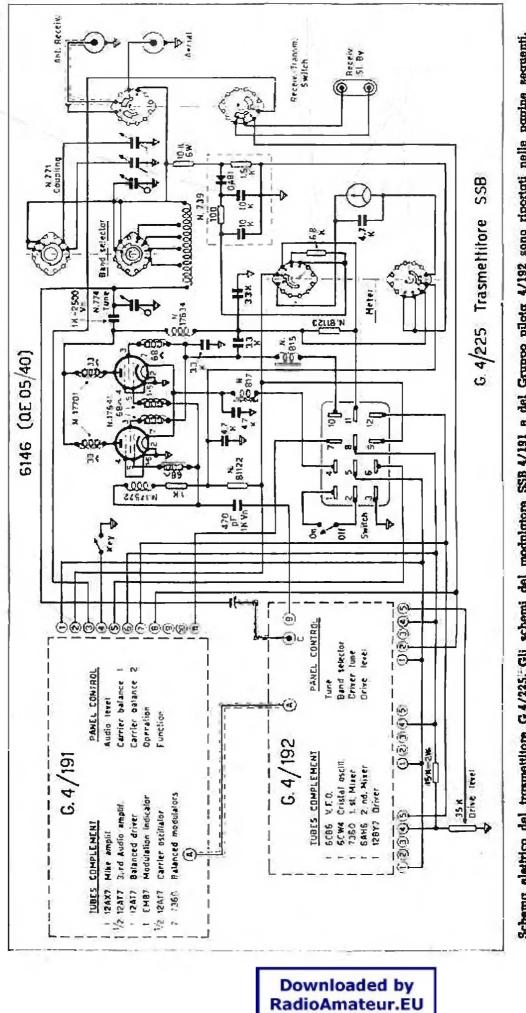
When this happens it is even less to be recommended that one attempt to align the set without suitable instruments.

The receiver can still be used in such a case but only if one follows a preliminary procedure described in the following and only if one proceeds with great caution.

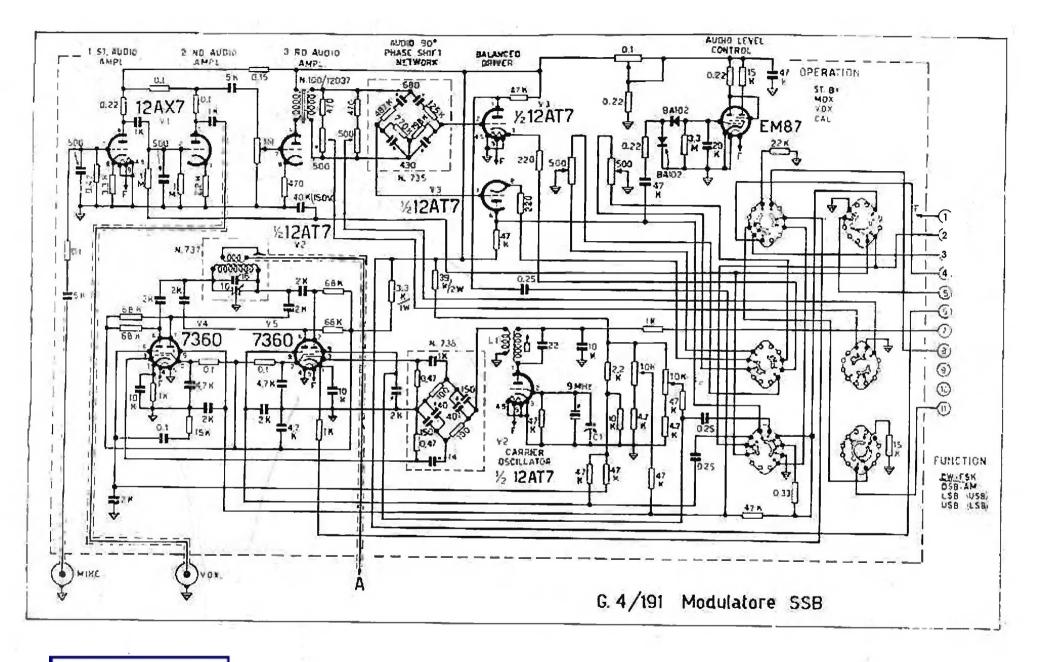
 Tune the receiver for a maximum output on the S-meter and adjust the level for a satisfactory reading.

The crystal filter must always remain set in position 4 and the phasing control should always be set to the reference mark.

- Switch the transmitter to USB audio gain zero.
- Zero the carrier as best possible looking for a minimum reading on the S-meter.
- Further improvement can be made in zeroing the carrier level by careful adjustment of the differential trimmer in can 737 (the trimmer nearest the chassis).
- Modulate with 1,000 cycles as previously described.
- Shift the tuning of the receiver towards higher frequencies until a new maximum is found corresponding to the desired USB band.

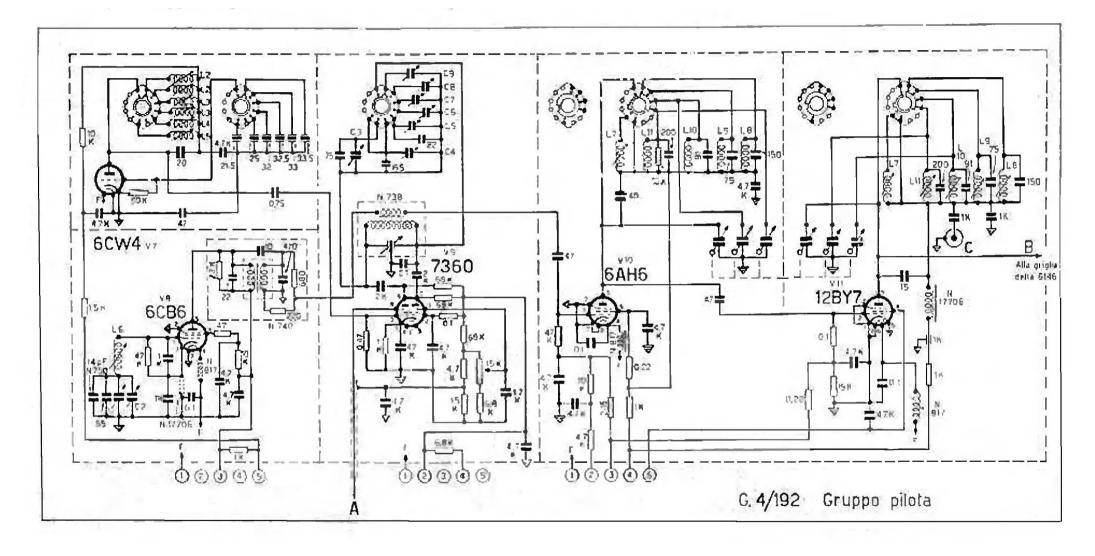

Remember that the distance between the tuning in of the carrier frequency and the deslred band is only 1.000 cycles.

 Proceed as previously described to suppress the sidebands.


If an oscilloscope capable of giving some response in the 80 meter hand is available it can be used as an additional check; one need only show the envelope of the operating frequency on the screen; maximum carrier suppression will be attained when the « ripple » is reduced to a minimum. There would be perfect suppression if the output frequency were to consist of a single frequency only, therefore it would have to have a straightline envelope.

ACCESSORI PER G 4/225 - G 4/226

- M 3 Microfono con Impugnatura in gomma e interruttore. Tipo discusiço ad alta impedenza, per diretto collegamento al trasmettilore. Sensibilità annidirezionale (diagramica « panoramico »). Con m 2,50 di cavo schermato e attacco N. 396.
- M 59 Microtono dinamico omnidirezionalo ad alta unpedenza, con internittore. Tipo per installazione stabile su base da tavelo 280/CR, oppure B 82, oppure base da pavimento B 92. Con m 2,50 di cavo schermato ed attacco N. 396.
- M 69 Microlono dinamico direzionale (« cardioide ») ad alta impedenza. Tipo a stilo. Usare lo schermo antisoffio fornito a corredo, e richtedere a parte il cavo N. 387 (m 2,50, con attacco N. 396). Da usare con base da tavolo B 76, oppure con le altre basi Gelese, interponendo lo snodo S 101.
- M 1110/396 Microlono piezoelettrico, con interruttore. De usare con la base de tavolo 672. Con m 2.50 .dl cavo schermato ed attacco N. 396.
- 9/9100 Spina coassialo per il collegamento del cavi d'antenna (@ max del cavo mm 8).



Schema elektico del trametitore G 4/225. Gli schemi del modulatore SSB 4/191 e del Gruppo pilota 4/192 sono riportati nelle payine seguenti.

Downloaded by RadioAmateur.EU

29

