Operating \&Tuning Procedure

$\mathcal{A d j u s t}$ the three mains voltage selectors at rear of chassis to appropriate voltage. Connect mains lead to A.C.supply (Green is earth). Plug in Aerial or Dummy load to $\mathcal{A E R I A L s o c k e t ~ (s i t u a t e d ~ a t ~ r e a r ~ o f ~ P . A . ~ s c r e e n i n g ~ b o x - r e m o v e ~ c a b i n e t ~ b a c k ~ p a n e l) . ~}$

To put the \mathcal{T} ransmitter into operation, the following procedure should be carried out:

1. Turn the $\mathcal{T R} \mathcal{A N S} \mathcal{M I T} / \mathcal{R E C E I} \mathcal{V}$ E witch to RECEIVE.
 applied to the Rectifier valves.
2. S witch $\mathcal{M A} \mathcal{N} \mathcal{N}$ switch to $O \mathcal{N}$. This applies mains to the heater transformer and should cause all valve heaters to light.
3. Switch the $\mathcal{P H O} \mathcal{N E}$ - CW switch to $\mathcal{P H} O \mathcal{N E}$; adjust the $\mathcal{V F O} \mathcal{B A N} \mathcal{N D S}$ WITCH and final R.F. amplifier Gand switch to the band of operation.
4. Adjust the oscillator $(\mathcal{V F O})$ to the desired frequency, as indicated on the frequency calibrated dial.
Set VFO switch to required band, also P.A. Gandswitch.
\mathcal{N} ote: On the $10-80$ m modelthere are two 80 metre positions best aerial loading on this band. The 10-160 m modelfas one 80 m position only and this is fixed to provide a suitable match into a 50-80 ofm load or Aerial \mathcal{T} uning Unit.
5. Turn the drive control(R10) half-way up.
6. $\mathcal{T} u r n$ the modulator gain control to minimum.
7. Turn the meter switch to read P.A. PLATE mA.
8. Turn the aerialcoupling condenser to maximum capacity corresponding to a dial setting of ' 10 'for loose aerial coupling.
9. During the procedure listed above, the valve heaters will have warmed up sufficiently and plate voltage may now be applied. Turn the $\mathcal{T} \mathcal{N A S} \mathcal{M I T} /$ RECEI VE switch to $\mathcal{T R A N S} \mathcal{M I T}$. Watch the meter and rapidly adjust the final R.f. amplifier tuning condenser for lowest possible plate current.
10. S witch the meter to read GRID $m \mathcal{A}$ and adjust the P.A. grid condenser (C20A) for maximum reading on meter. The adjust the $\mathcal{D R I V E}$ control(R10) for reading on the meter, 2.8 to 3 mA .
11. Return the meter switch to P.A. plate $m \mathcal{A}$ position and adjust aerialcoupling controlfor an increase in P.A. plate current. Rapidly re-adjust $\mathcal{P} . \mathcal{A}$. TUNN $\mathcal{N} \mathcal{N} G$ for minimum plate current. Repeat this operation until plate current dip occurs at approximately $110, m \mathcal{A}$-the normalloading of the final R.f. amplifier. It should be realised that low plate current indicates loose aerial coupling and therefore low R.f.output. On the 80 metre band it may be possible to obtain a dip in the place current at two different settings of the P.A. tuning control; one near a dial reading of $7-10$ and the other near the reading $0-2$. IN the latter position the final is doubling to 40 metres and this position should be avoided.
12. Re-check the grid current as indicated under para. 11. Nowre-adjust the P.A. tuning controlfor minimum dip coincides with $110 \mathrm{~m} \mathcal{A}$ indicated on the meter. The P.A. tuning control should be operated rapidly to keep the 6146
from drawing excessive plate current for a long period of time; a condition which migft damage the tube. After the adjustments for tuning the final R.f. amplifier and ae rial coupling have been comple ted, modulation may be applied.
13. Turn the meterswitch to $\% \mathcal{M O D}$ position and speaking into the micropfone in a normal voice level at a distance of 3 "to 6 "gradually increase $\mathcal{M O} \mathcal{D} \mathcal{G A} \mathcal{N}$ controluntil the meter reads $80-100 \%$ modulation on voice peaks. After modulation adjustments fiave been completed the transmitter is ready for operation.

C.W. Operation

The final R.f. amplifier tuning and aerial coupling procedure for C.W. is identic al to the one just outline d for $\mathcal{P H O} \mathcal{N} \mathcal{E}$ operation but the modulator gain control sfould be kept at zero. The PHO $\mathcal{N} \mathcal{E}-\mathcal{C} . \mathcal{W}$. switch should be brought into the C.W. position. Plug into appropriate socket at rear of chassis - transmission may then be started by pressing the key. When standing by, the $\mathcal{T R} \mathcal{A N S} \mathcal{M I T} / \mathcal{R E C E I V E}$ switch should be turned to $\mathcal{R E C E I V E}$. For C.W. operation the meter may be switched to read P.A. plate current offering a check of the tuning condition of the final R.f. amplifier, or it may be switched to read GRID current to avoid excessive stress on the meter itself.

Reception

The change-over from transmit to receive is accomplished by operating the $\mathcal{T R A N S} \operatorname{MIT} / \mathcal{R E C E I V E}$ switch. The co-ax socket adjacent to the aerial socket should be connected to the Receiver aerial terminal.

Rx Mute

This socket at the rear of chassis may be used for muting a receiver (e.g. by breaking $\mathcal{H} . \mathcal{T}$. to R.F. or I.F. stages in the receiver). In the transmitter, the "Rx Mute" socket is connected with the Send/Receive switch, which, when in the "Receive" position, provides a sforting line across the two "Rx Mute" terminals.

Zero $\mathcal{B e}$ at Frequency $\mathcal{A d j u s t m e n t}$

In order to adjust the transmit frequency exactly to a frequency of another station,
 transmitter may now be adjusted to 'zero beat'with the signal being received. After tuning has been accomplished the switch is returned to the $\mathcal{N} O \mathcal{R N A L}$ position. After a minor change of frequency, perfect tuning of the final R.F. amplifier may be obtained by re-adjusting the P.A. tuning condenser.

Should it not be possible to obtain sufficient drive on 14,21 or $28 \mathrm{Mc} / \mathrm{s}$ after adjustment to P.A. GRID and $\mathcal{D R I V E}$ controlfas been made, it may be necessary to adjust the dust iron cores in L.5 6, as indicated in the Signal Shifter le aflet. L. 5 should be adjusted for maximum P.A. grid current on $21 \mathcal{M c} /$ s and L. 6 for maximum grid current on $28 \mathfrak{M c} /$ s. Should it Ge necessary to adjust the Signal Shifter to correct calibration, instructions should be followed as indicated in the VFO leaflet.

Harmonic Filter

When the transmitter has been aligned according to the above instructions, the harmonic filter may now be adjusted. This filter is tune able over the 40-70 Mc/s range and is suitable only when feeding a low impedance 50-100 ofms. If it is required to use an aerial with a figh impedance feed, eg. Long wire or windom, it is advisable to employ an Aerial \mathcal{T} uning $\mathcal{Z l n i t}$ coupled to the transmitter with a short length of co-axialcable. The farmonic filter should be adjusted for minimum radiated power at the frequency of the $\mathcal{T e l e v i s i o n ~ T r a n s m i t t e r ~ (4 0 - 7 0 ~ M c / s ~ b a n d) ~ r e c e i v e d ~ l o c a l l y . ~ T h i s ~ c a n ~ b e s t ~ b e ~}$ checked by a receiver at the television frequency connected to an aerial by a receiver at the television frequency connected to an aerial a few yards from the transmitting aerial.

"VANGUARD" 160 METRE OPERATION

1. Turn V.F.O. wave change switch to 80 .
2. Turn switch on right of V.F.O. switch by means of screwdriver to 160 m position.
3. Put Power switch at rear to 10 watt position (up).
4. Put P.A. Band S witch to 160.
5. Tune as for other bands.
$\mathcal{A d j u s t}$ P.A. grid current to approx. 2.5 mA .
Load serial to 36 mA P.A. current.
(i.e. 275 v at $36 \mathrm{~mA}=9.9 \mathrm{w}$).
6. Adjust Mod. Gain Controlfor peaks to 50% mod. on meter (this is equal to 100% mod. with 10 watts input).

Note:
(I) It is possible to double frequency in the P.A. to 80 metres. Under these conditions a 'dip'in anode current will occur with the P.A. Tune Control around 0-1degrees. Resonance for 160 metres will be between 6 and 9 degrees.
(II) Should an aerial system with a very low impedance feed be employed, to may be necessary to connect an additional 1000 pf . Ceramic condenser across the aerial socket outside the P.A. screening 6ox or in the A.T.U. when one is used.

To assist in correctly matching an aerial system for 160 metres to the $\mathcal{P} . \mathcal{A} . P_{i}$ circuit, a tap is provided on the 160 metre P.A. Coil. This can be contacted instead of the end of the coil thus providing a smaller inductance in circuit. Under this condition the P.A. Tune Control should have a resonant point Getween 8 and 10 degrees.

The 160 metre V.F.O. is set up for $1900 \mathrm{kc} / \mathrm{s}$ to correspond with 50° on the outer scale. It will be found that the dial reading for $1800 \mathrm{kc} / \mathrm{s}$ is approx. 10° and $2000 \mathrm{kc} / \mathrm{s}$ is at approx. 90°.

GELOS O V.F.O. 4/102 \& 4/102V

The 4/102 and 4/102-VV.F.O. Units are designed to drive a pair of 807's or 6146's in parallel. The difference between the two units is in the five output inductances. With the 4/102-V a grid trimmer of 25 pf . maximum capacity is required to be connected between P.A. grid and chassis in order to resonate the output inductances according to 6and of operation. The 4/102 does not require this trimmer. These units may also be used to drive a single 807 or 6146 . The $4 / 102$ requires a 25 pf.trimmer between $\mathcal{P} . \mathcal{A}$. grid and chassis, also the 4/102-V must have this trimmer plus a 22 pf . silver mica condenser in parallel.

The unit employs three tubes - a 6J5GT "Clapp" oscillator, a 6AU6 6uffer-multiplier for the 10,25 and 20 metres 6 and and the driver has an inductance for each frequency range, adjustable to the centre of the frequency band in use. The r.f. output may be adjusted by varying the voltage applied to the screen of the driver valve. Installation must be within the main chassis for the transmitter close to the P.A. stage. Output connection to grid should not exceed 3 ".

$\underline{\mathcal{E E C H} \mathcal{H} I C A \perp \mathcal{D A T A}}($ Extracts from Geloso Instructions)

Power supply: $400 \mathcal{V}$. at $50-70 \mathrm{~mA} 6.3 \mathcal{V} .1 .5 \mathcal{A}$.

Frequency Ranges: 80-40-20-15 and 10 meter 6ands.
R.F. Power Output: sufficient to drive two 807's or equivalent tube types, connected in paralleloperating at a plate voltage of 600 volts and a screengrid voltage of 225 volts. Under these operating conditions a grid current of 8 mA may be obtained through a grid bias resistor of 12,500 ofms.

It is necessary to insert between the ground and the R.F. output drive tube grids a 25 pf . variable condenser (trimmer) of low minimum capacity for tuning R.F. output stage grid circuit.

If only one 807 or equivalent is to drive with same voltage Rg will be of 25,000 ofm and the grid current value of approximately $4 \mathrm{~m} \mathcal{A}$; the variable condenser ground-grid must be shunted by another approximately 15 pf fixed capacity.

Valve Line-up: 6J5GT-6AUG-6L6G.

Physical Dimensions: Chassis 5 " $\chi 5 \frac{112}{} " \chi 2 \frac{1 / 4}{4}$ deep. Dial escutche on $81 / 4$ " $\chi 5$ ".

$\mathcal{A L I} \mathcal{G N} \mathcal{N} \mathcal{M E N} \mathcal{N T}$

The unit is supplied already calibrated. To put to use, just a little "touching up"is required in order to line it up to top performance.

With the aid of the calibrated dial $\mathfrak{N o . ~} 1640$ which indicates with precision the various frequencies, utilising agoodr.f.signalgenerator, it is possible to proceed to an eventual realignment following the instructions contained in the table given below.

Before calibration attempts are started, it is necessary that the exciter unit and the tuning dial are definitely mounted and fastened in place on the chassis in such a way that the indicator of the dial coincides exactly with the "zero" of the centesimallogging scale if the variable tuning condenser is tuned to minimum capacity (mechanical stop), the dial indicator may pass the 100 degree indication by several degrees.

Realignment may become necessary after the replacement of any one of the tubes. It should be noted that for the alignment of the buffer and driver stages the same previously calibrated "Clapp" oscillator may be used. For this purpose those frequencies are selected on the dial which are indicated in the table given below; the coilcores are adjusted for maximum output which will correspond to the point of maximum reading of a milli-ampere meter inserted into the grid circuit of the final r.f. power amplifier of the transmitter.

$\mathcal{A l i g n m e n t ~ p o i n t s ~ f o r ~} 6 \mathcal{A L U}$ and $6 \mathscr{L 6 G}$		
Band m.	$\begin{gathered} 6 \mathcal{A U 6} \\ \mathfrak{M c} / \mathrm{s} \end{gathered}$	Drive r \mathcal{M}_{c} / s
80	Aperiodic	$L 7=3.8$
40	Aperiodic	$\mathcal{L 8}=7.15$
20		$\mathcal{L 9}=14.1$
15	$\mathcal{L 5}=21.2$	$\mathcal{L 1 0}=21.150$
10	$\underline{L 6}=28.6$	L11 $=28.2$

Oscillator tuning points		
$\begin{gathered} \text { Band } \\ m . \end{gathered}$	Inductances $\mathcal{M c} / s$.	$\begin{gathered} \text { Trimmer } \\ \mathcal{M c} / s . \end{gathered}$
$80(3.5-4 \mathrm{Mc} / \mathrm{s})$	$\mathcal{L 1}=3.5$	C1 $=4$
40(7-7.45 Mc/s)	$\mathcal{L 2}=7$	$C 2=7.45$
20(14-14.4 Mc/s)	$\mathcal{L 3}=14$	C3 $=14.4$

Band	Clapp O s cill.	$\mathcal{B u f f e r ~ P l a t e ~}$	Driver Plate	PA Plate
80	3.5-4 Mc/s	$\mathcal{A p e r i o d i c ~} \mathcal{A m p}$.	$3.5: 4 \mathrm{Mc} / \mathrm{s}$	3.5-4
40	$7.0-7.45 \mathrm{Mc} / \mathrm{s}$	Amplifier	$7: 7.45 \mathrm{Mc} / \mathrm{s}$	7-7.45
20	$3.5-3.6 \mathrm{Mc} / \mathrm{s}$	D6 [r 7:7.2 $\mathrm{Mc}^{\text {/s }}$	D6 [r 14:14.4	14-14.4
15	$3.5-3.6 \mathrm{Mc} / \mathrm{s}$	D6 fr 7:7.2 $\mathrm{Mc}^{\text {/ }} \mathrm{s}$	Trpl 21:21.6	21-21.6
10	$7.0-7.45 \mathrm{Mc} / \mathrm{s}$	D6¢r 14:14.9 Mc/s		

Voltage Me asurements		
Valve		Voltage
695	\{ Plate \{ Grid \{ Cathode	$\begin{gathered} 170 \\ 10^{*} \\ 0.3 \end{gathered}$
6 A ${ }^{\text {d }} 6$	\{ Plate \{ Screen \{ Grid	$\begin{aligned} & 230 \\ & 230 \\ & 11.5^{*} \end{aligned}$
616	\{ Plate \{ Screen \{ Grid	$\begin{gathered} 390 \\ 200 \phi \\ 16^{*} \end{gathered}$
*Varies with \mathcal{B} and and frequency фVariable $0-275$ volts		

Service Sheet

The following table of voltages have been observed during the testing of this Transmitter using an $\mathcal{A v o}$ type Model 40 and can be used as aguidance in tracing faults. When using a meter with a figher internal resistance, recordings for valves 6 and 7 may be considerably higher. The readings were taken under normal $\mathcal{A} . \mathcal{M}$. loading conditions.

	Anode	Screen	Cathode
$\mathcal{V} 1$	$150 \mathcal{V}$	-	-
$\mathcal{V} 2$	$240 \mathcal{V}$	$240 \mathcal{V}$	-
$\mathcal{V} 3$	$370-410 \mathcal{V}$	$370-410 \mathcal{V}$	-
$\mathcal{V} 4$	$470 \mathcal{V}$	$155 \mathcal{V}$	$150 \mathcal{V}^{*}$
$\mathcal{V} 5$	$150 \mathcal{V}$		
$\mathcal{V} 6$	$20-40 \mathcal{V} \phi$	$15-30 \mathcal{V} \phi$	0.5
$\mathcal{V} 7 a$	$45 \mathcal{V} \phi$		$2 \mathcal{V}$
$\mathcal{V} 76$	$125 \mathcal{V}$		$125 \mathcal{V} \xi$
$\mathcal{V} 8$	420	350	28
$\mathcal{V} 9$	420	350	28
$\mathcal{V} 10$			480
$\mathcal{V} 11$	1		440

${ }^{*}$ C.W. Key up position
ϕ Will read higher with meter of higher O.P.V.
$\xi_{1} \mathcal{V}$ across R29

Due to the low internal resistance of the meter supplied it has been found that plate current meter readings may not be absolutely accurate due to varying thickness of connecting wire between the meter shunt and the meter itself. To check the correct value for the meter shunt, the P.A. plate tuning should momentarily be tune d off resonance. When observing the plate current meter off resonance the reading should be approximately $150 \mathrm{~m} / \mathrm{a}$. Should the reading $\mathcal{N} O \mathcal{T}$ be within 5% of this, the meter shunt should be adjusted accordingly.

160 Metre P.A. Coil

On some models it was found that the 160 metre P.A. Coil when situated in the Transmitter has a neutral resonant frequency approximating $28 \mathcal{M c} / \mathrm{s}$ which causes a "suck-out"effect when operating the Transmitter on the 10 metre Gand. This effect can be checked by removing the coil and measuring the output into a load or by me asuring ae rialcurrent. To alleviate this effect as many as 10 turns may have to be removed from the Coil.

Lack of Drive on 10 or 15 Metres

$\mathcal{A} n$ effect has been observed on some Transmitters which has caused lowdrive on 10 or 15 metres. This can be cured by fitting a 1000 pf ceramic condenser from the feed through condenser (C60) to chassis. This should be located inside the bottom screening cover.

I.V.I.Precaution

When adjusting the output inductances of the V.F.O. Unit (L7 to 11) the P.A. grid trimmer should be set to almost maximum (with main dial at the low frequency end of each 6and). The appropriate V.F.O. output inductance should be adjusted for maximum grid drive with the P.A.grid condenser in the position just described.

Key Click Filter

The recommended type of key clickfilter for cathode keying is as follows:

Insert between the 6146 cathode and live key connector socket (terminal 3 of J5) a $3 \mathcal{H y}$. 200 Ma choke.

When an L17 type of choke is not employed it is important that a choke with suitable D.C. rating be used and with a D.C. resistance not exceeding 75 ofms.

Across terminals 3 and 4 of 95 wire a 22 ofm resistor and 2 mfd condenser in series.

Alternative Keying Arrangement

Satisfactory tests have been carried out in which blocked grid keying has been used. This produces a "softer"type of Keying characteristic compared with cathode keying. It is necessary to provide a negative 120 volts supply and this can be obtained from a suitable speaker transformer with the low impedance winding connected across the $6 \mathcal{V}$
heater supply. The output of the transformer should be fed to a small metal rectifier and 250 mfd electrolytic condenser. Positive of the supply should be connected to the chassis. Connect the negative supply to a 100 Kresistor.

Remove earth connection from the junction of R17 and switch $S 4$.
Remove R12 and C22. connect pins 1, 4 and 6 of $\mathcal{V} 4$ direct to chassis.
Remove connections to C54.
Remove connections from'earthy'end of R15 and re-connect to R15 to chassis.
Remove earthy end of $R 7$ from chassis and extend the wire of $R 7$ to $C 54$ (inside screening 6ox).
Connect outside of C 54 to $\mathcal{S} 4$ and $S 5$ as shown on circuit diagram below.

The Geloso V.F.O. Model 4/104

Recently, the Italian firm Geloso introduced a V.F.O. Unit to their large range of equipment for the radio amateur. This Ulnit, known as the model 4/104 "S ignal Shifter", was designed primarily to replace the model 4/104. Model 4/102 is still in current production. The main difference between these two models is that the model 4/102 is designed to drive a pair of 807's or similar valves in parallel, whereas the model 4/104 will drive a single 807 or 6146.

The Circuit

The Unit consists of a pentode oscillator-buffer-doubler (6CL6) and a tetrode driver (5763 or QV03-12). The oscillator uses a "Clapp" circuit operating on a fundamental frequency in the 80 metre band for output on the 80, 40, 20 and 15 metres, and in the 40 metre Gand for output on the 11 and 10 metre Gand.

The actual coverage is:
3.5 to $4.0 \mathrm{Mc} / \mathrm{s}$ for the 80 metre band;
3.5 to $3.65 \mathrm{Mc} / \mathrm{s}$ for the 40,20 and 15 metre Gand;
6.74 to $7.425 \mathrm{Mc} / \mathrm{s}$ for the 11 and 10 metre 6and.

Oscillator-tuning is accomplisfed by means of a three-gang variable condenser. One section of it is used for 80 metres, one for 40,20 and 15 metres, and one for 11 and 10 metre operation. The signalgenerated by the oscillator section of the 6CL6 is electroncoupled to the amplifier-doubler section of this same tube, which operates as an untuned amplifier for 80-metre operation, and as a doubler for operation on the other Gands.

The 6CL6 is followed by the 5763 which amplifies for 80 and 40 metre operation, doubles for 20 metre operation, triples for the 15 metre operation and doubles for 11 and 10 metres.

The adjustment of the output from the 5763 valve is controlled by regulating the screen voltage by means of a potentiometer.
C.W. Keying may be affected in the cathode circuit of the 5763. The key is connected across a resistance which places the cathode at a potential 85-100 volts positive. This 'blocks'the valve in the key up condition. Under the key down condition the function of the valve is restored to normal, that is, the cathode is returned to Earth potential. It is important that the 5763 valve heater be fed with an individual 6.3 v supply.

Alignment of the V.F.O.

$\mathcal{A l l}$ units are tested and aligned before le aving the factory, so that only slight "touching up" should be necessary.
$\mathcal{B e}$ fore attempting alignment of the V.F.O. the position of the pointer must be checked. With the gang condenser vanes fully in mesh, the pointer should be set to the 'O'mark of the centigrade logging scale. Alignment of the oscillator should be carried out with the aid of frequency meter with 100 and $1000 \mathrm{Kc} / \mathrm{s}$ crystalcheck points or with any other reliable frequency checking apparatus.

Oscillator \mathcal{T} uning Points		
Band	Coil	Trimmer
$\begin{gathered} 80 \\ (3.5-4 \mathcal{M c} / s) \end{gathered}$	L2 at 3.4 Mc/s	C2 at $4 \mathrm{Mc} / \mathrm{s}$
$\begin{gathered} 20 \\ (14-14.6 \mathrm{Mc} / \mathrm{s}) \end{gathered}$	L1 at $14 \mathfrak{M c} / \mathrm{s}$	C1 at $14.5 \mathrm{Mc} / \mathrm{s}$
$\begin{gathered} 10 \\ (2 s-29.7 \mathcal{M c} / s) \end{gathered}$	$\mathcal{L 3}$ at $28 \mathcal{M c} / \mathrm{s}$	C3 at 29.7 Mc/s

It suffices to establish alignment on the 80, 20 and 10 Gands.

The entire procedure may have to be repeated several times on each band to obtain satisfactory tracking with a maximum tolerance of a $1 / 2$ degree on the centigrade logging scale.

$\mathcal{B u f f e r}$ and Driver Tuning Points		
Band	6CL6 Anode	5763 anode
80 m	Aperiodic	L10 at $3650 \mathrm{kc} / \mathrm{s}$
40 m	-	L9 at $7100 \mathrm{kc} / \mathrm{s}$
20 m	L5 at $14,250 \mathrm{kc} / \mathrm{s}$	L8 at $14200 \mathrm{kc} / \mathrm{s}$
15 m	-	L 7 at $21200 \mathrm{kc} / \mathrm{s}$
11 m	-	-
10 m	L4 at $28600 \mathrm{kc} / \mathrm{s}$	L6 at $28600 \mathrm{kc} / \mathrm{s}$

Inductances LA to L10 should be adjusted at the frequency given in the above table, for maximum grid current in the stage following the 5763 valve.

Frequency Ranges

3.5 to $4.0 \mathrm{Mc} / \mathrm{s}, 7.0$ to $7.3 \mathrm{Mc} / \mathrm{s}$
14.0 to $14.6 \mathrm{Mc} / \mathrm{s}, 21.0$ to $21.0 \mathrm{Mc} / \mathrm{s}$
26.96 to $28 \mathrm{Mc} / \mathrm{s}, 28.0$ to $29.7 \mathrm{Mc} / \mathrm{s}$

Power Requirements

$275 v$ at 60 mA .
6.3 volts at 0.75 amps .
6.3 volts at 0.65 amps.

The connection to the grid of the valve following the $4 / 104$ Unit must be kept as short as possible and unsfielded. A 25 pf.trimmer for resonating each output inductance (L6 - L10) should be connected betweengrid of the valve and chassis. This trimmer sfould have a very low minimum capacity. It is possible to obtain 3.5 mA drive through $22 \mathcal{K}$ grid resistor, on all bands.

Physical Dimensions

Chass is $5^{1 / 8} \times 4^{3} / 4 \times 2^{3} / 16$ deep

The size of the chassis is the same as for the 4/101 and 4/102; also positioning of the spindles is the same, thus making the units interchangeable.

The dial and escutcheon assembly (Cat $\mathcal{N}(1646)$ is also the same size as others, that is, approximate $\begin{array}{lll}y & 1 / 4 " \chi & \text { ". }\end{array}$
\mathcal{A} circuit diagram and connecting details are supplied with every $\mathcal{U n i t}$.

Price

```
Model4/104 less dial, escutche on and valves E5.17.6
Dial, escutcfieon, lamp, folder, etc E2.7.6
6CL6 20% 5763 20%.
or
Unit with Dial, etc less Valves E4.5.0 deposit
    And 4 montfly payments of £1.2.0
```


Note

If telegraphy operation is not contemplated, the valve heaters may be wired in parallel. There is no objection to raising the $\mathcal{H} . \mathcal{T}$. supply volts to approx. $310 v$ to obtain more drive (phone or C.W.).
K.W. "VANGUARD" PARIS LISTScrews

4 off
30 off

Nuts
6 off $2 \mathcal{B A}$
65 off $4 \mathcal{B A}$
35 off $6 \mathcal{B A}$
11 off for Ceramic
Conds.

Solder Tags
3 off $6 \mathcal{B A}$
12 off $4 \mathcal{B A}$

5
2
6
2
2
2
2
1
1

Valves
1
1
2
1
1
2
1
1
1

Screens and Brackets

1	P.A.Side Bracket
1	Top Bracket
1	Side Bracket (Steel)
1	Bottom Screen
1	Bottom Screen plate
1	Condenser Clip
1	Condenser Bracket (C20a)
3	Feet for P.A.cond.
1	Mains filter side
1	Mains filter palte
1	Cabinet
1	Cabinet Back
1	Setof Cabinet screws and $\mathcal{P} . \mathcal{K}$.s

6146 (QVO6-20)
$6{ }^{2} 6 G$
$6 L 6 G$
6 A 16
6 g 5 GT
GZ32
VR150
6 BR7
$12 \mathcal{A X} 7$
P.A. Side Bracket

Top Bracket
Side Bracket (Steel)
Bottom Screen
Bottom Screen plate
Condenser Clip
Condenser Bracket (C2Oa)
Feet for $\mathcal{P} . \mathfrak{A}$. cond.
Mains filter side
Mains filter palte
Cabine ${ }^{\text {t }}$
Cabinet Back
Set of Cabine t screws and P.K.'
Tag-board
Tag-strips $(2 \times 2$ way, 2×4 way, 1×5 way $)$
Buskes for $1 / 4$ " spindle
Octal V. Holders
$\mathcal{B} 9 \mathcal{A} \mathcal{V} . \mathcal{H}$.
B 9AS Screens
Couplings for spindles
1/4"Spindles (1@2", 1 @ 3")
Circuit diagram
Set of instructions

路

See Signal Shifter 4/102 circuit diagram
See Signal Sfifter 4/102 circuit diagram
15 Kofms $3 / 4$ w carbon
2.2 Kofms $3 / 4$ warbon
2×15 Kofms in parallel - 6oth 2 w
3.3 Kofms 2 wearbon (2×6.8 Kofms in parallelmay be supplied

22 Kofms 2 wcarbon
30 Kofms 3 w wire wound potentiometer
22 Kofms 2 wcarbon
33 Kohms 1 wcarbon
27 Kohms 2 wcarbon
68 Kofms 1 wcarbon
68 Kofms 1 wcarbon
Meter sfunt
470 ofms $1 / 2$ warbon 2
33 Kofms $1 / 2$ w carbon 2
100 ofms $1 / 2$ warbon
100 Kofms $1 / 2$ warbon
1 Mofms $1 / 2$ w carbon
1000 ofms $1 / 2$ carbon
2.2 Mofms $1 / 2$ warbon

470 Koms $1 / 2$ warbon
1 mofm Patentionmeter Log track
4.7 Kofms 1/2 w carbon

470 Kofms 1/2 wcarbon
470 Kofms ½ wcarbon
2.2 Kofms $1 / 2$ w carbon 2

100 Kofms $1 / 2$ wcarbon $\pm 2 \%$
100 Kohms $1 / 2$ wcarbon $\pm 2 \%$
220 Kofms $1 / 2$ wcarbon
220 Kofms 1/2 wcarbon
47 Kofms $1 / 2$ wcarbon
47 Kohms $1 / 2$ w carbon
470 ofms 2 warbon $\{\mathcal{R} 36$ and $\mathcal{R} 37$ in parallel, may be replaced
470 ofms 2 wcarbon $\left\{\begin{array}{l}\text { by } 250 \text { ofms } 3 \text { wire wound }\end{array}\right.$
22 Kofms 1 wcarbon
47 Kofms 1 wcarbon
4.7 Kofms 5 w wire wound

33 ofms 2 wcarbon
100 Kofms 1 wcarbon

1000 pfceramic

1000 pf ceramic
$2 \times 500 \mathrm{pf}$ gang

100 pf ceramic
. 1 uf tubular

300 pf sitver mica
300 pf sifver mica
.01 uf tubular
.01 uf tubular
R.f.choke
$3 \mathcal{H y} 200 \mathrm{~m} / a$
$3 \mathcal{H y} 120 \mathrm{~m} / a$

Mains chokes

Meter switch
\mathcal{N} ormal/test switch
Phone C.W. switch

Mic.Socket

See Signal Sfifter 4/1-2 circuit diagram
15 pf . max airspaced trimmer
3×1000 pf ceramic (one fromeacf cathode connection to chassis)
2×1800 pf (in parallel)ceramic disc 1000 v.w.
1800 ceramic disc 4000 v. w.
.01 uf 500 v.w. tubular
1800 pf ceramic disc 4000 v.w.
200 pf airspaced variable

50 pf airspaced trimmer

25 uf 25 v. w. electrolytic (or 25 uf 12 v.w.)

25 uf 25 v. w. electricalytic
.005 uf 600 v. w. tubular
.005 uf 600 v. w. tubular
8 uf 450 v. w. electrolytic
suf 450 v. w. electrolytic
2×32 uf 450 v. w. electrolytic (wired in series)
2×32 uf 450 v. w. electrolytic (wired in series)
32 uf 450 v.w.electrolytic
8 uf 500 velectrolytic
470 pf silver mica 500 v.w. (1000 pf may be supplied)
470 pf silver mica 500 v.w. (1000 pf may be supplied)
500 pf feed through ceramics
500 pf feed through ceramics
91 pf feed through ceramics (colour spots purple and white)

Mains \mathcal{T} ransformer $\mathcal{A l l}$ L.T.'s
$\mathfrak{M a i n s} \mathcal{T}$ ransformer $\mathcal{H} . \mathcal{T}$. Mod
$\mathcal{M a i n s}$ Iransformer \mathcal{H}. T. R.f.
Modulation Transformer
See Signal Shifter circuit diagram

Pi Coil (including S 2)

Harmonic rejector inductance
Parasitic stopper 5 turns

Send-Receive switch

Mains on/off switch

Receiver Ant. Socket

Receiver Control socket and plug
Key socket and plug
Fuse Holder and $2 \mathcal{A}$ fuse
Meter Rectifier
M1
Meter

Miscellaneous
4/102 V.F.O.
1
3
3
1 3/4" Knob
1 Plain Knob
8 Pointer Khobs
1 Chassis
1 Front Panel
1 Set of screens and brackets
1 Length 6 ft 3 core cable
$30^{\prime \prime} \quad 1.5 \mathrm{~mm} \mathrm{sleeving}$
Wire $7 / 36 \quad$ P.V.C. 12 ft
Wire $14 / 36$ P.V.C. 12 ft
Wire 18 s.w.g.T.C. 2 ft straight length
Screened cable single 6"

1	Lampholder
1	Bulb 6 v
1	Valve Top Cap (6146)
11	$3 / 8$ "Rubber $\operatorname{Brushes}$
8	Washers 4BA
$10^{\prime \prime}$	3/8 dia P.V.C. sleeve
6	Screws 2 B.A. $1 / 2 "$ C. \mathcal{H}.
65	Screws $4 \mathcal{B A} 11 / 2 "$ C. \mathcal{H}.
5	Screws $4 \mathcal{B A} 1 / 4 "$ C.S.
30	Screws $6 \mathcal{B A} 3 / \mathbf{S}^{\prime \prime}$ C.H.

