||II

 Hin HARRIS

 Hin HARRIS}

FROM HARRIS TO YOU - This warranty is extended to the original buyer and applies to all Harris Corporation, RF Communications Group equipment purchased and employed for the service normally intended, except those products specifically excluded.

WHAT WE WILL DO - If your Harris Corporatiorr, RF Communications Group equipment purchased from us for use outside the United States fails in normad use because of a defect in workmanship or materials within one year from the date of shipment, we will repais. of replace (at our option) the equipment or part without charge to you, at our factory. If the product was purchased for use in the United States, we will repair or replace (at our option) the equipment or part without charge to you at our Authorized Repair Center or factory.
\therefore WHAT YOU.MUST DO - You must notify $\mathrm{Y}_{\boldsymbol{q}} \mathrm{S}_{\mathrm{E}}$ promptly of a defect within one year from date of shipment. Assuming theft Harris concurs that the complaint is valideand is unable to correct the problem without having the equipment shipped to Harris:

- Customers with equipment purchased for use ditidide the United States will be supplied with information for the return of the defective equipment or part to our factory in Rochester, NY, U.S.A., for repair or replacement. You must prepay all transportation, insurance, duty and customs charges. We will pay for return to you of the repaired/replaced equipment or part, C.I.F. destination; you must pay any duty, taxes - or customs charges.

48
2.- Customers with equipment purchased for use in the United States must obtain a Return Authorization Number, properly pack, insure, prepay the shipping charges and ship the defective equipment or part to our factory or"to the Authorized Warrantzy Repair Center indicated by us.

Harris Corporation	Telephone: (716) 244-5830
RF Communications Group	Telex: 240313
Customer Service	
	Cable: RFCOM UR

SERVICE WARRANTY - Any repair service performed by Harris under this limited warranty is warranted to be free from defects in material or workmanship for sixty days from date of repair. All terms and exclusions of this limited warranty apply to the service warranty.

IMPORTANT - Customers who purchased equipment for use in the United States must obtain a Return Authorization Number before shipping the defective equipment to us. Failure to obtain a Return Authorization Number before shipment may result in a delay in the repair/replacement and return of your equipment.

[^0]
RF-590 RECEIVER

Copyright © 1988
By Harris Corporation
All Rights Reserved

in HARRIS

Of HARRIS
 RF COMMUNICATIONS

Equipment manufactured by Harris Corporation, RF Communications Division meets stringent quality and safety standards. However, high voltages are present in many radio products, and only a skilled technician should attempt to remove outer covers and make adjustments or repairs. All personnel who operate and maintain the equipment should be familiar with this page as a safety preparedness measure. Although this procedure is reproduced as a service to the personnel involved with this equipment, Harris Corporation assumes no liability regarding any injuries incurred during the operation and repair of such equipment, or the administration of this suggested procedure.

ELECTRICAL SHOCK: EMERGENCY PROCEDURE

The victim will appear unconscious and may not be breathing. If the victim is still in contact with the voltage source, disconnect the power source in a manner safe to you, or remove the victim from the source with an insulated aid (wooden pole or rope). Next, determine if the victim is breathing and has a pulse. If there is a pulse but no breathing, administer artificial respiration. If there is no pu!se and no breathing, perform CPR (if you have been trained to do so). If you have not been trained to perform CPR, administer artificial respiration anyway. Never give fluids to an unconscious person.

For more information about these and other life-saving techniques, contact your Red Cross chapter for training. "When Breathing Stops" reproduced with permission from an American Red Cross Poster.

HARRRIS
 RF COMMUNICATIONS

TABLE OF CONTENTS

Paragraph Page
SECTION 1 - INTRODUCTION
1.1 Introduction 1-1
1.2 General Description $1-1$
1.3 RF-590 Receiver Features 1-2
1.4 Compatibility 1-3
1.5 Customer Options 1-3
1.6 Specialized Requirements $1-5$
SECTION 2-INSTALLATION
2.1 Introduction 2-1
2.2 Unpacking and Inspection 2-1
2.3 Ancillary Kit 2-1
2.4 Site Selection 2-2
2.4.1 Antennas 2-2
2.5 Initial Setup and Adjustments 2-3
2.5.1 Connecting Memory Backup Battery 2-3
2.5.2 Adjusting Front Panel Display Brightness 2-5
2.5.3 USB, LSB and Optional ISB Line Audio Output Level Adjust 2-5
2.6 Power Requirements 2-5
$2.7 \quad$ Mechanical Installation 2-5
2.8 Input/Output Connections 2-5
2.9 RF-590 Functional Checkout Procedure 2-13
2.9.1 Receive Mode Test 2-13
2.9.1.1 Frequency Entry 2-13
2.9.1.2 Tune Rate 2-13
2.9.1.3 Mode Selection 2-14
2.9.1.4 Bandwidth Selection 2-14
2.9.1.5 AGC Selection 2-14
2.9.1.6 BFO Selection $2 \cdot 14$
2.9.1.7 RF Gain 2-15
2.9.1. \quad AF Gain 2-15
2.9.1.9 Channelized Reception 2-15
2.9.1.10 Speaker On/Off 2-15
2.9.1.11 Local/Remote Switch 2-16
2.9.1.12 Meter Switch 2-16
2.9.1.13 Squelch Control 2-16
2.9.2 Program Mode 2-16
2.9.2.1 Load Memory Function 2-16
2.9.2.2 Recall Memory Function 2-17
2.9.2.3 Program Group Function 2-17
2.9.3 Scan Mode Test 2-18
2.9.3.1 Channel Scan 2-18
2.9.3.2 Group Scan 2-19
2.9.4 Self-Test (BITE) 2-19

HARARIS rF COMMUNICATIONS

TABLE OF CONTENTS (Cont.)

Paragraph Page
SECTION 3 - OPERATION
3.1 Introduction 3-1
3.2 Operational Controls and I/O Connections 3-1
3.3 Power Up Default Conditions 3-1
3.4 Local/Remote Selection 3-1
3.5 Test Function 3-1
3.6 Operational Modes 3-2
3.6.1 Receive Function 3-2
3.6.1.1 Frequency Entry 3-2
3.6.1.1.1 Entering a Complete Frequency 3-2
3.6.1.1.2 Tune Rate Cursor Movements 3-5
3.6.1.1.3 TUNE Knob Operation 3.5
3.6.1.1.4 Partial Frequency Entry 3-5
3.6.1.2 Channel Entry 3-5
3.6.1.2.1 Entering a New Channel 3.5
3.6.1.2.2 Tune Knob Operation in Channel Entry 3-6
3.6.1.3 BFO Entry 3-6
3.6.1.4 Automatic Gain Control (AGC) and RF Gain Control 3-6
3.6.1.4.1 AGC Time Constant Selection 3-6
3.6.1.4.2 Manual Gain Control 3-6
3.6.1.5 Demodulation Mode Selection 3.6
3.6.1.6 Bandwidth Selection 3-7
3.6.1.7 Meter Monitoring Selection 3-7
3.6.1.8 Audio Output Selection and Control 3.7
3.6.1.8.1 Internal Speaker and Headphone Output 3.8
3.6.1.8.2 External Speaker Output 3.8
3.6.1.8.3 Line Audio Outputs 3-8
3.6.1.9 Squelch Control 3-8
3.7 Program Function 3-8
3.7.1 Programming Channels 3-8
3.7.2 Programming Groups 3-9
3.7.3 Program Function - Effect on Receiver Operation 3-10
3.8 Scan Function 3-10
3.8.1 Dwell Selection in Scan Function 3-10
3.8.2 Channel Scan 3-10
3.8.3 Group Scan 3-10
3.8.4 Additional Scan Details 3.11
3.9 Auxiliary Channel 3-11

fin HARRIS
 RF COMMUNICATIONS

TABLE OF CONTENTS (Cont.)

Paragraphs Page
SECTION 4 - TECHNICAL DESCRIPTION
4.1 Introduction 4-1
4.2 Receiver Operation 4-1
4.2.1 Receiver Signal Path $4-1$
4.2.1.1 Input Filter Assembly A1 4-2
4.2.1.2 First Converter Assembly A2 42
4.2.1.3 Second Converter Assembly A3 4-6
4.2.1.4 IF Filter Assembly A4 46
4.2.1.5 IF/Audio Assembly A5 4-6
4.2.1.5.1 IF/Audio Motherboard A5A1 4-6
4.2.1.5.2 AGC Board A5A2 47
4.2.1.6 Audio Amplifier A23 4.7
4.2.1.7 ISB IF/Audio Assem bly A18 4.7
4.2.1.8 Meter Board A13A3 4.7
4.2.2 Frequency Synthesizer 48
4.2.2.1 Frequency Synthesizer - Basic Operation $4-9$
4.2.2.2 Reference Generator Assembly A12 and Frequency Standard Assembly A21 4-9
4.2.2.3 PLLV Assembly A10 4-10
4.2.2.4 PLL IV Assembly A9 4-10
4.2.2.5 PLL III Assembly A8 410
4.2.2.6 PLL II Assembly A7 410
4.2.2.7 PLL I Assembly A6 $4-14$
4.2.2.8 BFO Assembly A11 4-14
4.2.2.9 Frequency Synthesizer Tuning Example 4-14
4.3 Additional Theory 415
4.3.1 Conversion Between dBm and Vrms $4-15$
4.3.2 PLL Frequency Resolution Reduction Techniques 4-17
4.3.3 Phase Locked Loops (PLL) 417
4.3.3.1 Basic Phase Locked Loop 4-19
4.3.3.2 PLL Programmable Counters 4-19
4.3.3.3 PLL Prescaling Operation 4-20
4.3.4 Charge Pumps 423
4.3.4.1 Phase Detector Outputs 4-23
4.3.4.2 Charge Pump Operation 4-24
SECTION 5 - MAINTENANCE
5.1 Introduction 5-1
$5.2 \quad$ PWB Repairs 5-1
5.3 MOSFET Replacement 5-1
5.4 CMOS Handling and Replacement 5-2
5.5 Built-In Test Equipment (BITE) Self Diagnostics 5-3
5.5.1 Continuous Self-Test Monitoring 5-7

H) HARRIS
 RF COMMUNICATIONS

TABLE OF CONTENTS (Cont.)

Paragraph Page
5.5.2 Self Diagnostic Operation 5-8
5.5.2.1 Lamp Test 5-8
5.5.2.2 ROM Test (Assembly A14) 5-8
5.5.2.3 RAM Test (Assembly A14) 5-8
5.5.2.4 I/O Port Tests 5-8
5.5.2.5 Serial Data Test 5-8
5.5.2.6 Reference Generator Test (Assembly A12) 5-9
5.5.2.7 A/D Converter Tests 5-9
5.5.2.8 Phase Locked Loop (PLL) Tests 5-9
5.5.2.9 Input Filter Test (Assembly A1) 5-9
5.5.2.10 First Converter Test (Assembly A2) 5-10
5.5.2.11 Second Converter Test (Assembly A3) $5-10$
5.5.2.12 IF Filter Test (Assembly A4) 5-10
5.5.2.13 IF Audio Test (Assembly A5) 5-11
5.5.2.14 ISB Test (Assembly A18, If Installed) 5-12
5.5.2.15 LCU Test (Assembly A17) 5-13
5.5.3 Self Diagnostics Sequence Summary 5-13
5.6 Receiver Performance Test Procedures 5-16
5.6.1 Sensitivity Test 5-17
5.6.2 Audio Output Level and Distortion Test 5-19
5.6.2.1 Line Output Check 5-19
5.6.2.2 Headphone Output Check 5-20
5.6.2.3 Speaker Output Check 5-21
5.6.3 AGC Range 5-22
5.6.4 IF Filter Selectivity 5-23
5.7 Component Data Sheets 5-24
A1 INPUT FILTER ASSEMBLY
A2 FIRST CONVERTER ASSEMBLY
A3 SECOND CONVERTER ASSEMBLY
A4 IF FILTER ASSEMBLY
A5 IF/AUDIO ASSEMBLY AND AGC ASSEMBLY
A6 PLL I ASSEMBLY
A7 PLL II ASSEMBLY
A8 PLL III ASSEMBLY
A9 PLL IV ASSEMBLY

OD HARRIS RF COMMUNICATIONS

TABLE OF CONTENTS (Cont.)

Paragraph Page
A10 PLL V ASSEMBLY
A11 BFO ASSEMBLY
A12/A21 REFERENCE GENERATOR ASSEMBLY AND FREQUENCY STANDARD ASSEMBLY
A13 FRONT PANEL ASSEMBLY
A14 CONTROL BOARD ASSEMBLY
A15 POWER SUPPLY ASSEMBLY
A16 CHASSIS ASSEMBLY
A23 AUDIO AMPLIFIER ASSEMBLY
LIST OF FIGURES
FigureFrontispiece RF-590 Receiver
2-1 Typical Doublet Antenna Installation 2-4
2-2 RF-590 Desk Mount Dimensions 2-6
2-3 RF-590 Rack Mounting Details 2-7
2-4 RF-590 Rear Panel 2-8
2-5 RF-590 Functional Test Setup 2-12
3-1 RF-590 Front Panel Control 3-3
4-1 RF-590 Receiver Signal Path Block Diagram 4-3
42 RF-590 Receiver Gain Distribution 45
4-3 RF-590 Frequency Synthesizer Block Diagram 4.11
44 Frequency Synthesizer Tuning Example $4-13$
4.5 Resolution Reduction Example 4-18
46 Basic Phase Locked Loop 4-19
47 Programmable Phase Lock Loop 4-20
4-8 Phase Lock Loop Prescaling Technique 4-20
49 Prescaling Technique Example 421
410 Basic Charge Pump Circuit $4-23$
5-1 Sensitivity Test Setup 5-17
5-2 Line Audio Test Setup 5-20
5-3 Phone Audio Test Setup 5-21
5-4 Speaker Audio Test Setup 5-21

Th HARRIS RF COMMUNICATIONS

LIST OF FIGURES (Cont.)

Figure5-5 AGC Range Test Setup5-22
5.6 IF Filter Selectivity Test Setup 5.23
LIST OF TABLES
Table Page
1-1 RF-590 Optional Equipment 1-3
2-1 Ancillary Kit (P/N 10073-0021) 2-1
2.2 Calculation of Doublet Antenna Element Lengths 2-3
2-3 RF-590 Local Interface Terminal Board TB1 2-9
2-4 RF-590 Local Control Interface Connector J7 2-9
2.5 RF-590 Remote Control Interface Connectors J8 and J9 2-11
2-6 Typical Filter Complement 2-14
2-7 Programmed Channels 2-15
4.1 Conversion of dBm to Vrms across 50 ohms 4-15
4-2 Prescaling Technique Example 4-21
5-1 Fault Code Listing 5-5
5-2 BFO Tuning Range 5-8
5-3 AM and SSB Test Results and Fault Locations 5-11
$5 \cdot 4$ Self Diagnostics Sequence Summary 5-13
5-5 RF-590 Test Procedures 5-16
5-6 Sensitivity Test Reports 5-18
5-7 Audio Output Level and Distortion Test Report 5-20
5-8 IF Filter Response Test Report 5-24

7 HARRIS
 RF COMMUNICATIONS

RF-590 HF-SSB SYNTHESIZED RECEIVER SPECIFICATIONS

Frequency Range	10 kHz to 29.999999 MHz
Frequency Resolution	1 Hz increments standard
Tuning	Continuous with seven selectable tuning rates and keypad entry.
Tuning Time	Tuning time between any two frequencies is less than 20 milliseconds.
Frequency Stability-Internal	± 1 part in 10^{6} per day - Standard TCXO
	± 1 part in 10^{8} per day - Optional OVEN

H HARRIS
 RF COMMUNICATIONS

Intermodulation	In Band: $\mathbf{- 5 0 \mathrm { dB }}$ or better for two $100 \mathrm{mv}(-7 \mathrm{dBm})$ signals within the IF passband. Out of Band: -50 dB or better for two 0 dBm signals separated 30 kHz or more.
Cross Modulation	-20 dB or better for $500 \mathrm{mV} \mathrm{30} \mathrm{\%}$ modulated interfering signals removed 20 kHz or greater from the desired signal of 10 uV .
Reciprocal Mixing	The apparent noise appearing at the receiver input when in a 3 kHz bandwidth, caused by a 0 dBm signal 100 kHz off tune, is less than $1.0 \mathrm{uV}(-107 \mathrm{dBm})$.
Quieting	Ultimate ($\mathrm{S}+\mathrm{N}$)/N: 50 dB
Spurious Responses	Image and IF: -100 dB
	Spurious: Internal -123 dBm equivalent or less; external -80 dB.

AGC Range Less than 3 dB audio output variation for 1 uVrms to 1 Vrms RF signal range. (Threshold internally adjustable from . 5 uV Vms to 5 uVrms .)
AGC Time Constants Attack time <20 milliseconds.
Decay time: Front panel selectable as follows:
Slow, 4 ± 1 second
Medium, 200 ± 50 milliseconds
Fast, less than 30 milliseconds
Manual RF Gain
Front panel control, 125 dB range.
AGC I/O Separate AGC inputs/outputs are provided on the rear panel.
Audio Outputs
Phone: $+10 \mathrm{dBm} / 600$ ohms/1\% distortion
Line Output: -16 to $+10 \mathrm{dBm} / 600$ ohms $/ 1 \%$ distortion
Speaker Internal: $2.0 \mathrm{~W} / 8$ ohms $/ 5 \%$ distortion Speaker External: $2.0 \mathrm{~W} / 8$ ohms $/ 5 \%$ distortion
Hum and Noise: Less than -50 dB
Pass Band Ripple: 3 dB maximum
IF Outputs Filtered or unfiltered 455 kHz second IF.
Built-In Test Diagnostics
Fault isolation to replaceable module level, with front panel alphanumeric indication.
Power Requirements $\quad 100,120,220$, or 240 Vac selectable; $47-420 \mathrm{~Hz}, 75$ watts typically.
Temperature Operating: -10 to $+55^{\circ} \mathrm{C}$
Nonoperating: $-62^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$
Humidity 0 to 95%
Size Rackmount and desk mount capability. $5.25 \mathrm{H} \times 19 \mathrm{~W} \times 20.5 \mathrm{D}$ inches maximum $(13.3 \mathrm{H} \times 48.3 \mathrm{~W} \times 52.1 \mathrm{D}, \mathrm{cm})$

Weight 40 pounds (18.1 kg)

Remote Control
(Optional, Internal Module)

A microprocessor based system capable of accepting asynchronous serial data in accordance with any one of the following formats:
MIL-STD-188C, EIA Standard RS-232-C, or RS-422.
Remote Control Functions: Frequency, Channel Select, IF BW, Mode, AGC-TC, BFO, Fault-BITE Status, Scan Select, RF/IF Gain, and Channel Load.

Of HARRIS
 RF COMMUNICATIONS

ABOUT THIS MANUAL

This manual is divided into five major sections indicated by blue tabs with section 5 further divided into subsections indicated by white tabs. The blue tabs indicate the introduction, installation, operation, technical description, and maintenance sections, while the white tabs indicate the detailed repair information for each assembly.

RF-590 RECEIVER

 IMSTRUMTIOM MANOUAL

RF-590 Receiver

0 HARRIS RF COMMUNICATIONS

SECTION 1

INTRODUCTION

1.1 INTRODUCTION

This manual contains information necessary to install, operate, maintain, and repair the RF-590 HF-SSB Synthesized Receiver. This manual is subdivided into the five following sections.

- Section 1: Introduction. Contains an introduction to the RF-590. Includes RF-590 basic description, feature highlights, optional auxiliary equipment, etc.
- Section 2: Installation. Includes site selection, power requirements, mechanical installation, interconnect requirements, initial setup and power on, and a functional checkout.
- Section 3: Operation. Includes general operating instructions, control, and indicator descriptions.
- Section 4: Technical Description. Contains general receiver characteristics, receiver block diagram, AGC-gain distribution chart, and signal path and synthesizer functional descriptions.
- Section 5: Maintenance. Contains general repair techniques, component handling techniques, self-test (BITE) descriptions and error code listings, receiver performance test procedures, and component data sheets.

Also included, as subsections, are all subassembly and main chassis descriptions, schematics, parts lists, component location details, and subassembly test procedures.

1.2 GENERAL DESCRIPTION

The RF-590 is a high performance synthesized communications receiver designed to tune AM, CW, FM, USB, LSB, and ISB (optional) signals from 10 kHz to 30 MHz (in 1 Hz increments) utilizing digital tuning techniques. Up to 100 channels of frequency, detection mode, filter bandwidth, AGC mode, and BFO offset can be stored in memory, and recalled individually, or scanned sequentially or in groups. The receiver contains a comprehensive built-in test equipment (BITE) network which allows extensive microprocessor controlled self-testing to isolate faults at the modular level.

Manual tuning and channel selection is activated via a front panel touch pad or tuning knob. Operating parameters such as detection mode and filter bandwidth (typically: CW -. $3 \mathrm{kHz}, 1 \mathrm{kHz}$; AM -3 kHz , $6 \mathrm{kHz}, 16 \mathrm{kHz}$; USB/LSB-3 kHz; FM-16 kHz.) and AGC mode (slow, medium, fast, off) are pushbutton selectable. Receiver operating parameters and self-testing results are displayed on two front panel

OU HARRIS
 RF COMMUNICATIONS

numeric and alphanumeric displays. Full remote control capability is accomplished with an optional remote control system compatible with MIL-STD-188C, EIA Standard RS-232-C, or RS-422 formats.

The rear panel contains BNC 50 ohm connectors for the following inputs/outputs: RF antenna input, filtered 455 kHz IF output, unfiltered 455 kHz DSB output, ISB output, 1,5 or 10 MHz frequency standard input, and frequency standard output. Additionally, other connectors allow access to 600 ohm line audio outputs, AGC input or output, speaker mute, local control lines, and other functions (see table 2-2 and 2-3).

The receiver is entirely modular in design to facilitate maintenance. The unit may be rack mounted with the following considerations.

- Dimension $-5.25 \mathrm{H} \times 19.0 \mathrm{~W} \times 20.5 \mathrm{D}$ inches maximum ($13.3 \mathrm{H} \times 48.3 \mathrm{~W} \times 52.1 \mathrm{D}, \mathrm{cm}$)
- Weight -40 pounds (18.1 kg)
- Power requirements $-115 / 230 \mathrm{Vac}, 47-420 \mathrm{~Hz}, 75$ watts typically, 85 watts maximum (with all options)

Note that a complete listing of all RF-590 specifications may be found at the beginning of this manual.

1.3 RF-590 RECEIVER FEATURES

The RF-590 is a modern high performance HF-SSB receiver utilizing the latest device technology and circuit techniques. The use of a microprocessor as the central control unit allows a cost effective design offering many versatile features. These features include:

- Synthesized digital tuning and readout in 1 Hz steps from 10 kHz to 30 MHz .
- Keyboard control
- Continuous single knob tuning
- Full remote control by digital asynchronous commands with a wide variety of standards and rates.
- Built-in test equipment (BITE) fault isolation to replaceable module level.
- Preset channel memory - Up to 100 front panel programmable channels can be stored in a nonvolatile memory. Frequency and mode are stored in memory for instant recall.
- Channel scanning - Automatically searches preprogrammed channels, with a selectable dwell time.

OH HARRIS
 RF COMMUNICATIONS

- Synthesized variable BFO $- \pm 9.99 \mathrm{kHz}$ in 10 Hz steps.
- Diversity capability - With external RF-575 Diversity Combiner.
- Multimode operation - Including USB, LSB, CW, AM, and FM. (ISB and FSK optional).
- Squelch - Syllabic rate (AM, SSB, CW) or noise operated (FM), operated from a common front panel control.
- Plug in subassemblies - All subassemblies can be replaced using common hand tools.

1.4 COMPATIBILITY

The RF-590 HF Receiver is compatible with the following RF products.

- RF-551A Preselector (requires a RF-553-01 option)
- RF-575 Quad Diversity Combiner
- RF-130, RF-1130, and RF-745 Transmitters

1.5 CUSTOMER OPTIONS

Table 1-1 is a list of RF-590 optional equipment.
Table 1-1. RF-590 Optional Equipment

Number	Name	Part No.	Description	Publication No.
RF-518	Earphones	724.0075	For reduction of ambient noise levels or to utilize private listening.	None
RF-553-01	Remote Control Interface	10073-6910	Permits the RF-590 to remotely control the RF-551A Preselector.	SU-10073-6911 (supplement)
RF-567	High Impedance RF Input Transformer	1920-1450	Improves reception when untuned antennas are used.	1920-1452 (Instruction Sheet)
RF-575	Diversity Combiner	7634-0000	Selects audio from the receiver with the strongest signal.	7634-1030
RF-592	Remote Control	10073-6210	Provides complete remote control of Frequency, Mode IF/BW,	SU-10073-0017 (supplement)

HARRIS
 RF COMMUNICATIONS

Table 1-1. RF-590 Optional Equipment (Cont.)

Number	Name	Part No.	Description	Publication No.
RF-592 (Cont.)			AGC Speed, BFO, BITE/Fault Status, Scan, RF/IF Gain Control, Channel Select and Channel Load.	
RF-593	High Stability Frequency Option	759-3906	1 MHz frequency standard with proportional temperature control. 1 part in 10^{8} stability.	$\begin{aligned} & \text { 10073-0020 } \\ & \text { A12/A21 section } \end{aligned}$
RF-594-01	Rack Mount	10073-0055	Includes slides and related hardware for rack mounting applications.	10073-0020 (installation section)
RF-594-02	Desk Top Case	10073-0045	Enclosed case for desk top installation.	10073-0020 (installation section)
RF-594-03	Stack Mount	10073-0035	Includes hardware for standard stack mounting applications.	10073-0020 (installation section)
RF-595-01	ISB Option	10073-6310	Allows simultaneous operation in USB and LSB modes.	SU-10073-0018 (supplement)
RF-595-02	Delay Compensated ISB Option	10073-6360	Delay compensated filtering for critical data communications. Provides less than $500 \mathrm{u} / \mathrm{sec}$. differential time delay from 400 Hz to 2900 Hz . Offers less than 2 dB ripple in the 300 Hz to 3 kHz passband.	SU-10073-0022 (supplement)
RF-596-01	Half Octave Filter	10073-6410	Offers filtering protection from 2 to 30 MHz in 8 half-octave band filters. Also, for frequencies below 2 MHz , Low Pass filtering is provided.	SU-10073-0019-1 (supplement)
RF-596-02	Digital Tuned Bandpass Filter	10073-6510	Provides over 20 dB of selectivity at $\pm 10 \%$ of tuned frequency. Reduces interference from close transmitters.	SU-10073-0019-2 (supplement)

HARRIS
 RF COMMUNICATIONS

Table 1-1. RF-590 Optional Equipment (Cont.)

Number	Name	Part No.	Description	Publication No.
RF-597	Noise Blanker	$10073-6800$	The Noise Blanker removes impulse type noise from received signals. Adjusts automatically to received signal level changes.	$10073-6808$ (supplement)
RF-598	4ISB Option	$10141-5010$	Provides simultaneous operation on four independent sidebands. Permits operation of two receivers from a common antenna. At the same time, it provides isolation between receivers. Receiver	RF-651-002
RF-651-04	Multicoupler (2 port)	Receiver Multicoupler (4 port)	RF-651-004	Same RF-651-002, but with 4 ports.
RF-651-08	Receiver Multicoupler (8 port)	RF-651-008	Same as RF-651-002, but with 8 ports.	$7733-000$

1.6 SPECIALIZED REQUIREMENTS

Harris/RF Communications Group Systems Division specializes in translating exacting customer needs into complete systems packages. No job is too small or too large. Contact the following for specialized requirements.

[^1]
If HARRIS
 RF COMMUNICATIONS

SECTION 2

INSTALLATION

2.1 INTRODUCTION

The following paragraphs provide unpacking and inspection information, equipment installation and mounting instructions, site selection, interconnection data, and receiver functional test procedures.

2.2 UNPACKING AND INSPECTION

Carefully open the shipping carton and check the contents against the packing list secured to the outside of the container. Inspect all items for signs of damage. Immediately notify the carrier if any damage is discovered. Save all packing material for possible reshipment.

2.3 ANCILLARY KIT

Items that are supplied in the RF-590 Ancillary Kit, (part no. 10073-0021) are listed in table 2-1.
Table 2-1. Ancillary Kit (P/N 10073-0021)

Quantity	Part No.	Description
5	F03-0002-019	Fuse, 1 amp, slow blow
5	F03-0002-022	Fuse, 1-1/2 amp, slow blow
1	W-0023	Cord, Line, 6 feet
1	Z80-0001-000	Tool, Tuning

The following connectors are available to mate to the rear panel connectors ($\mathrm{J} 7, \mathrm{~J} 8$, and J 9).

J22-0001-001	Connector, Type D, 25 pin
J22-0010-000	Connector, Type D, 37 pin
J55-0015-825	Shell, D Connector*
J55-0015-837	Shell, D Connector*

*Note: The two D connector shells are provided with various sized grommets to accommodate different sized cables.

80 HARRIS
 RF COMMUNICATIONS

2.4 SITE SELECTION

The RF-590 provides specified performance in any environment within the temperature range of $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ and up to 95 percent humidity. Consider the following factors when determining the operating location for the RF-590.

- Avoid sites which will subject the receiver to conditions exceeding those mentioned above. If this is not possible, provide an environmentally controlled site (adequate ventilation, temperature control, etc.) to maintain the stated operating limits.
- Avoid nearby obstructions such as hills, trees, buildings, and power lines which absorb and reflect radio signals. In particular, avoid obstructions that are in a direct line with the desired directions of reception.
- Some antennas, especially the doublet, are directional and should be oriented for maximum signal gain. Therefore allow enough land area around the site to orient the antenna as necessary.
- Reception is generally best at the top of a hill, over level ground, or over water.

Once the operating site has been chosen, consider the following factors when positioning the RF-590 at the site.

- Ease of operation and visibility of controls
- Relation to other units
- Power, control, and output interfaces
- Environmental considerations for unit and operator (temperature control, adequate ventilation, etc.).

WARNING

Always operate the RF-590 with a heavy gauge ground strap connected from a solid earth ground to the RF-590 rear panel ground lug (provided for this purpose). Failure to do so could result in serious injury or death to the operator if the receiver should ever fail in such a manner as to make the chassis electrically hot.

2.4.1 Antennas

Maximum receiver sensitivity is achieved when the antenna input impedance presented at antenna input connector, J 1 , is 50 ohms. The use of coaxial cables, such as type RG-58/U terminated with a BNC connector, prevents feed-line noise pickup and provides the proper impedance match.

8 HARRIS RF COMMUNICATIONS

Doublet antenna kits, such as the RF-334 and SB-AD, are available from Harris Corporation/RF Communications. Three basic types of antennas, the horizontal doublet, the inverted V , and the slant wire can be constructed with these kits. Figure 2-1 shows these three antenna types used in typical installations. Each type of doublet antenna has two legs of equal length, one connected to the center conductor of the coaxial cable and the other connected to the shield. The two legs have a combined electrical length of onehalf wavelength (one-quarter wavelength for each leg).

The inverted V and slant wire doublets are useful if the antenna site prohibits the use of the two supports required for a horizontal doublet, or if the supports cannot be located so that the doublet is perpendicular to the direction of the desired transmitted signal. All doublet antennas are directional and provide best response to signals received from directions perpendicular to their lengths. The length of each element of a doublet can be determined from one of the formulas given in table 2-2.

Table 2-2. Calculation of Doublet Antenna Element Lengths

Antenna Type	Length of Each Element (Feet)	Length of Each Element (Meters)
Doublet, horizontal, or slanted	$\frac{234}{\mathrm{f}(\mathrm{MHz})}$	$\frac{71.3}{\mathrm{f}(\mathrm{MHz})}$
Inverted V doublet	$\cdot \frac{245}{\mathrm{f}(\mathrm{MHz})}$	$\frac{74.5}{\mathrm{f}(\mathrm{MHz})}$

2.5 INITIAL SETUP AND ADJUSTMENTS

The advanced design of the RF-590 Receiver minimizes initial setup and adjustment procedures. The initial setup and adjustment should include:

- Connecting memory backup battery
- Adjusting front panel display brightness
- Adjusting LSB and USB audio output levels

CAUTION

Do not short out the memory backup battery terminals. This could result in severe circuit damage.

2.5.1 Connecting Memory Backup Battery

A ni-cad battery is used to keep the RAM memory alive when power is removed from the receiver. The backup battery is located on the A14 Control Board assembly. The backup battery jumper must be

Figure 2-1. Typical Doublet Antenna Installation

HARRIS
 RF COMMUNICATIONS

inserted between E1 and E2 on the A14 Control Board assembly to activate the keep alive circuit. See subsection A14 for location of the assembly and the jumper.

2.5.2 Adjusting Front Panel Display Brightness

Potentiometer R29 on Front Panel Driver Board assembly A13A2 is used to adjust the brightness of the vacuum fluorescent displays. R29 can be accessed by removing the top chassis cover or tilting the front panel assembly forward. R29 can be adjusted with a small screwdriver and is identified in subsection A13.

2.5.3 USB, LSB and Optional ISB Line Audio Output Level Adjust

USB and LSB line audio output levels are adjustable from the front panel. Adjustment potentiometers are accessed through holes located next to the USB and LSB meter select pushbutton switches on the front panel.
Line audio output range is -16 to +10 dBm into 600 ohms.

2.6 POWER REQUIREMENTS

The RF-590 requires $100,120,220$, or $240 \mathrm{Vac}, 47$ to 420 Hz single phase power at 75 watts, nominally. Ac power selection is normally factory set to 120 Vac . To select a different range, first turn the front panel power switch off, then remove the ac power cord at the rear panel. Slide the plastic cover out of the way to expose the fuseholder and remove the fuse by pulling on the lever labeled FUSE PULL. Grasp the small PC card (located to the left of the fuseholder) with needlenose pliers and pull the card straight out. This card will be labeled with the numbers $100,120,220$, and 240 Vac . For 220 V or 240 V operation, the fuse must be replaced with a 1.0 amp fuse (P / N F03-0002-019). Orient this card so that the desired range faces the fuseholder, and is the only number visible once the card has been reinserted. Reinsert the fuse and reconnect the power cord to the radio and the ac source. Tum the power on.

2.7 MECHANICAL INSTALLATION

The RF-590 may be desk mounted (RF-594-02 option), see figure 2-2, stack mounted (RF-594-03 option) or rack mounted (RF-594-01 option) into a standard 19 -inch equipment rack. See figure 2-3 for rack mounting information. Note that two different mounting brackets are supplied for rack mounting. PN 10073-1010 fits the left side of the RF-590 and PN 10073-1014 fits the right side. The detail drawing in figure 2-3 shows the left side bracket.

2.8 INPUT/OUTPUT CONNECTIONS

The RF-590 is a complete receiver independent of all other equipment. It requires only the appropriate power and antenna connections. All other input/output connectors are used to expand and integrate features of the receiver or the system. RF-590 input and output connectors are shown and their uses explained in figure 2-4.

All RF type connectors are standard BNC, 50 ohm connections. Table 2-3 details the RF-590 local control functions available at TB1. Table 2-4 details the RF-590 local control functions available at J7. (Note that all of the TB1 inputs/outputs also appear at J7). Table 2-5 details the RF-590 remote control connectors J8 (RS-232) and J9 (RS-422).

8 HARRIS

Figure 2-2. RF-590 Desk Mount Dimensions

8 HARRIS

RF COMMUNICATIONS

Figure 2-3. RF-590 Rack Mounting Details

Figure 2-4. RF-590 Rear Panel

Table 2-3. RF-590 Local Interface Terminal Board TB1

Pin	Function
TB-1	GND
TB-2	USB AGC Dump
TB-3	USB AGC In
TB-4	Combined AGC
TB-5	ISB AGC Out
TB-6	ISB AGC Dump
TB-7	ISB AGC In
TB-8	Fault
TB-9	USB Line Audio
TB-10	USB Line Audio CT
TB-11	USB Line Audio
TB-12	USB AGC Out
TB-13	ISB Line Audio
TB-14	ISB Line Audio CT
TB-15	ISB Line Audio
TB-16	EXT Mute

Table 2-4. RF-590 Local Control Interface Connector J7

Connector and Pin	Function
$J 7-1$	Remote Out 1
$J 7-2$	GND
$J 7-3$	Scan Step
$J 7-4$	Remote Out 0
$J 7-5$	Stop Scan
$J 7-6$	Spare (To Control Board)
$J 7-7$	Ext. Mute

Table 2-4. RF-590 Local Control Interface Connector J7 (Cont.)

Connector and Pin	Function
J7-8	ISB Line Audio
J7-9	ISB Line Audio CT
J7-10	ISB Line Audio
J7-11	USB AGC Out
J7-12	USB Line Audio
J7-13	USB Line Audio CT
J7-14	USB Line Audio
J7-15	Ext. Audio In
J7-16	Ext. Speaker GND
J7-17	Ext. Speaker Out
J7-18	Ext. Speaker Out
J7-19	Ext. Speaker GND
J7-20	Strobe 2
J7-21	Spare (To Control Board)
J7-22	Remote Out 2
J7-23	Strobe 1
J7-24	Clock
J7-25	Data
J7-26	Fault
J7-27	ISB AGC In
J7-28	ISB AGC Dump
J7-29	ISB AGC Out
J7-30	Combined AGC
J7-31	USB AGC In
J7-32	USB AGC Dump
J7-33	GND

80 HARRIS
 RF COMMUNICATIONS

Table 2-4. RF-590 Local Control Interface Connector J7 (Cont.)

Connector and Pin	Function
$J 7-34$	Ext. Speaker GND
$J 7-35$	Ext. Speaker Out
$J 7-36$	Ext. Speaker Out
$J 7-37$	Ext. Speaker GND

Table 2-5. RF-590 Remote Control Interface Connectors J8 and J9

Connector and Pin	Function
J8-1	Shield
J8-2	Tx Data 232/188C
J8-3	Rx Data 232/188C
J8-4	FSK Data Out -
J8-5	FSK Data In +
J8-6	ID0
J8-7	RS-232 Sig. GND
J8-8	ID1
J8-9	ID4
J8-10	Baud Rate 1
J8-11	Baud Rate 2
J8-12	N/C
J8-13	N/C
J8-14	Spare
J8-16	ID3
J8-19	ID2
	ID5
IDND	

7 HARRIS
 RF COMMUNICATIONS

Table 2-5. RF-590 Remote Control Interface Connectors J8 and J9 (Cont.)

Connector and Pin	Function
$J 8-20$	Spare
$J 8-21$	Spare
$J 8-22$	Baud Rate 3
$J 8-23$	Baud Rate 0
$J 8-24$.	N/C
$J 8-25$	N/C
$J 9-3$	Bus Req.
$J 9-4$	RS-422 Out +
$J 9-6$	RS-422 In +
$J 9-19$	GND
$J 9-20$	RS-422 In -
$J 9-21$	Bus Available
$J 9-37$	RS-422 Out -

All other J9 pins are spares with no internal connections.

Figure 2-5. RF-590 Functional Test Setup

0 HARRIS
 RF COMMUNICATIONS

2.9 RF-590 FUNCTIONAL CHECKOUT PROCEDURE

The following is a local control functional test to determine the satisfactory operation of the RF-590. The following equipment (or equivalent) is required.

- HP-8640B Signal Generator
- HP-5383A Frequency Counter

The following paragraphs briefly describe RF-590 operation. The operator may find it useful to read section 3, Operation, prior to or concurrently with this procedure. Connect the above equipment as shown in figure 2-5.

2.9.1 Receive Mode Test

Apply the ac power and check that the receiver (under test) powers up with RCV (Receive), FREQUENCY, and TUNE LEDs lit.

Set the receiver to the following initial conditions:

Mode:	USB
RF Gain:	Fully clockwise (cw)
AGC:	MED
Speaker:	On

Connect the signal generator to the receiver's antenna input and set the generator for a level of -24 dBm (14.1 mVrms).

2.9.1.1 Frequency Entry

Press the FREQUENCY button and enter a frequency of 12.345678 MHz via the keypad. Press ENTER. Set the signal generator to a frequency 1 kHz above the receiver tuned frequency (12.346678) and note the 1 kHz audible output tone. Connect the frequency counter to the line audio output and verify the audio frequency is 1 kHz .

2.9.1.2 Tune Rate

Press TUNE RATE successively until the cursor is beneath the 1 kHz digit. Rotate the Tuning knob and use the signal generator to verify a tune range of $100 \mathrm{kHz} \pm 20$ percent per revolution.

Press TUNE RATE to place the cursor beneath the 100 Hz digit and use the signal generator to verify a 10 kHz per revolution ± 20 percent tune range.

gh HARRIS
 RF COMMUNICATIONS

Press TUNE RATE to place the cursor beneath the 10 Hz digit and use the signal generator to verify a 1 kHz per revolution ± 20 percent tune range.

2.9.1.3 Mode Selection

Press the MODE button under the alphanumeric display and check that USB, LSB, CW, AM, and FM are selectable as modes. Keeping the button pressed causes the display to scroll through the valid modes. Release the button and the receiver is placed into the selected mode.

2.9.1.4 Bandwidth Selection

Press the BW button under the alphanumeric display and check that the bandwidth display scrolls through the filter selections that are valid for the selected mode. (Note that filter bandwidths are customer specified, and will vary depending on the requirements. A typical filter complement for different modes is shown in table 2-6).

Table 2-6. Typical Filter Complement

Mode	Bandwidth
USB	2.8 kHz
LSB	2.8 kHz
CW	0.3 kHz
CW	1.0 kHz
AM	3.0 kHz
AM	6.8 kHz
AM	16.0 kHz
FM	16.0 kHz

2.9.1.5 AGC Selection

Press the AGC button beneath the alphanumeric display and check that the AGC speed selection scrolls from SLOW, MEDIUM, FAST, or DATA.

2.9.1.6 BFO Selection

Select the USB mode, and press the BFO button to enable BFO entries. Check that the BFO LED lights and that keypad selections (followed by pressing ENTER) cause the BFO offset frequency to appear in the BFO display field.

Check that the Tuning knob varies the BFO selection when the TUNE LED is lit.

8 HARRIS
 RF COMMUNICATIONS

With the signal generator set for a frequency of 12.346678 and the receiver set at $\mathbf{1 2 . 3 4 5 6 7 8}$, USB mode, tune the BFO via the Tuning knob to -1 kHz and check that a zero beat is obtained.

Return the BFO frequency to 0.00 kHz .

2.9.1.7 RF Gain

Press the AGC ON/OFF button under the alphanumeric display to select AGC OFF. Check that the AGC display changes to OFF and that the RF GAIN knob adjusts the gain. Push RF meter button to ensure that reading increases.

2.9.1.8 AF Gain

Rotate the AF GAIN knob and check that the volume is adjustable.

2.9.1.9 Channelized Reception

NOTE

Proceed to paragraph 2.9.2.1, Load Memory Function, and perform the steps listed there. Return to 2.9.1.9 after the four channels have been programmed.

With the receiver in the Receive mode (RCV LED lit), press the CHANNEL button. (CHANNEL LED should light.) Select each channel number (followed by ENTER) listed in table 2-7. Check that the receiver front panel updates to number listed. Using the signal generator, check that the receiver has in fact tuned to the frequency listed.

Table 2.7. Programmed Channels

Channel	Frequency MHz	AGC	Mode	Bandwidth kHz
01	01.111111	SLO	USB	2.8
02	02.222222	MED	LSB	2.8
03	03.333333	FST	CW	1.0
04	04.444444	MED	CW	1.0

With the TUNE and CHANNEL LEDs lit, rotate the Tuning knob. Check that channels $1-4$ are selected.

2.9.1.10 Speaker On/Off

Check that the SPKR (SPEAKER ON/OFF) button alternately enables and disables the speaker.

8 HARRIS

RF COMMUNICATIONS

2.9.1.11 Local/Remote Switch

The following test applies only if the remote option is installed in the receiver. If not, the REMOTE button will have no effect. With the receiver under local control, press the REMOTE button and check that the REMOTE LED lights and that it is no longer possible to change receiver parameters via the front panel. Make sure that by pressing the REMOTE button a second time, the receiver is placed back under local control.

2.9.1.12 Meter Switch

Set the receiver in the following conditions:

Frequency:	12.345678 MHz
Mode:	USB
AGC:	MED
RF Gain:	Fully clockwise (cw)
AF Gain:	As desired

Set the signal generator to a frequency of 12.346678 MHz and a level of $-24 \mathrm{dBm}(14.1 \mathrm{mVrms})$.

Press the USB/RF pushbutton under the meter. The meter indication should be approximately 14 mVrms .

Press the USB/AF pushbutton under the meter. The meter indication should be approximately 0 dBm .

Note that in the standard receiver, LSB and USB signals will be routed through the USB switch positions, and the ISB-LSB switch position will be inactive. If the ISB option has been installed, the USB positions select USB information and the ISB-LSB positions select LSB information.

2.9.1.13 Squelch Control

Set receiver as in paragraph 2.9.1.12. Verify receiver squelch action as the squelch control is varied.
A reduction in speaker audio output should be noted.

2.9.2 Program Mode

2.9.2.1 Load Memory Function

The channel programming memory allows up to 100 channels to be stored. Press the PROGRAM button to place the receiver in the Program mode, and check that the PROGRAM and CHANNEL LEDs light. Perform the following steps:
a. Enter 01 via the keyboard.

TH HARRIS RF COMMUNICATIONS

b. Press FREQUENCY and enter 01.111111 MHz via the keyboard. Press ENTER.
c. Select AGC-SLO, MODE-USB.
d. Press LOAD.
e. Press CHANNEL and enter 02 via the keyboard.
f. Press FREQUENCY and enter 02.222222 MHz via the keyboard. Press ENTER.
g. Select AGC-MED, MODE-LSB.
h. Press LOAD.
i. Press CHANNEL and enter 03.
j. Push FREQUENCY and enter 03.333333 MHz . Press ENTER.
k. Select AGC-FAST, MODE-CW, BW- 1.0 kHz .
I. Press LOAD.
m. Press CHANNEL and enter 04.
n. Press FREQUENCY and enter 04.444444 MHz . Press ENTER.
o. Select AGC-MED, MODE-CW, BW-1.0 kHz.
p. Press LOAD.
q. Press RECEIVE to leave the Program mode.

Perform the steps in paragraph 2.9.1.9, Channelized Reception, to check that the channels were in fact programmed.

2.9.2.2 Recall Memory Function

Place the receiver in the Program mode. Enter 02 via the keyboard and press RECALL. The display should update to 02.222222 MHz , CHANNEL-02, AGC-MED, MODE-LSB.

2.9.2.3 Program Group Function

Group programming of channels allows the preprogramming of up to 10 channel groups (20 channels per group maximum). Channels may be programmed in any order and any channel can appear in more than one group.

8 HARRIS
 RF COMMUNICATIONS

To program a group, place the receiver in the Program mode and perform the following steps:
a. Press GROUP.
b. Enter 1 digit via the keyboard in response to the prompt GROUP NUMBER?. Press ENTER.
c. Enter 03 via the keyboard in response to the prompt CHANNEL NUMBER?, and press ENTER and LOAD. The display will respond with 03 OK.
d. Enter 02, followed by ENTER and LOAD.
e. Enter 01, followed by ENTER and LOAD.
f. Exit programming by pushing RECEIVE.
g. Proceed to 2.9.3. Verification of Group programming will be done during the Group scan test.

2.9.3 Scan Mode Test

The following two scan modes are available on the RF-590.

- Channel scan
- Group scan

Channel scan allows the automatic sequential scanning of up to 100 preprogrammed channels. Group scan allows scanning of up to ten groups (20 channels per group, maximum). Follow the steps in paragraph 2.9.3.1 to perform a Channel scan and the steps in 2.9.3.2 to perform a Group scan.

2.9.3.1 Channel Scan

a. With the receiver in RECEIVE MODE, press SCAN. SCAN LED should light.
b. Press CHANNEL in response to GROUP or CHANNEL SCAN?.
c. Enter 01 followed by ENTER in response to FIRST CHANNEL?.
d. Enter 04 followed by ENTER in response to LAST CHANNEL?. The receiver should commence to automatically scan channels 1-4. Press SCAN; verify that the scanning stops. Verify that pressing SCAN again restarts scanning. Verify that pushing the DWELL button affects the dwell speed accordingly.

8 HARRIS
 RF COMMUNICATIONS

2.9.3.2 Group Scan

a. Push the RECEIVE button, then SCAN.
b. Press GROUP in response to the GROUP or CHANNEL SCAN? prompt.
c. Enter 1 digit via the keyboard, then ENTER. The receiver should now scan channels 3, 2,1 in that order.

2.9.4 Self-Test (BITE)

Press the TEST button to begin the receiver's self-diagnostics. The receiver will perform an automatic self-test, approximately 5 seconds in length. During this time, all front panel display segments and LEDs should light, and stay lit until the message - - - TEST PASSED - - - appears in the left hand display.

In the event of a failure, a receiver fault code will be displayed. If this occurs, consult the maintenance section of this manual, table 5-1, which lists the fault codes by assembly number.

SECTION 3

OPERATION

3.1 INTRODUCTION

This section completely covers all operational aspects of the RF-590. All operational controls and procedures are detailed and explained. Section 2 (Installation) and 5 (Maintenance) are referenced in this section regarding I/O connections and BITE TEST failure codes.

3.2 OPERATIONAL CONTROLS AND I/O CONNECTIONS

All operating controls are located on the RF-590 front panel, as shown and described in figure 3-1. Detailed operational procedures for front panel control are given in paragraphs 3.6 through 3.9.

All interfacing connections are located on the RF-590 rear panel (except for headphones). Rear panel connector locations are shown in figure 2-4, and connector pinouts are listed in tables 2-3, 2-4, and 2-5.

3.3 POWER UP DEFAULT CONDITIONS

Radio power up always places the receiver in the Receive mode of operation that existed at power off, either Local or Remote. (If no Remote option has been installed, the receiver will always power up in the Local Receive mode.) The display will show the last frequency, AGC, bandwidth, etc. that was in use by the receiver at power off.

3.4 LOCAL/REMOTE SELECTION

Local/Remote selection is accomplished with a single alternate action pushbutton. If the LED indicator is off, depressing the Remote button will place the receiver in the Remote mode, assuming that the Remote option is installed.

3.5 TEST FUNCTION

The Test function is entered by pressing the TEST button on the receiver front panel. The receiver immediately enters a self-test mode and performs the following checks.

- Processor EPROM validity
- Processor RAM memory validity
- Synthesizer lock tests
- RF signal path checks

8 HARRIS rF COMMUNICATIONS

- IF signal path checks
- Remote option tests (if installed)

When the tests are complete the alphanumeric display is used to inform the operator of test results by displaying the failed module code number or the message TEST PASSED.

A complete table of failed module code numbers, as well as a comprehensive description of this Built In Test Equipment (BITE) may be found in the maintenance section of this manual.

3.6 OPERATIONAL MODES

The RF-590 Receiver can be selected to function in four basic ways:

- Receive
- Scan
- Program
- Test

3.6.1 Receive Function

The Receive function is entered by pressing the RECEIVE button on the receiver front panel. The receiver will tune to the parameters that were used in the previous Receive function, and will show those parameters on the front panel display. The Receive LED will also light. The radio is now under manual control and the following conditions apply.

3.6.1.1 Frequency Entry

3.6.1.1.1 Entering a Complete Frequency

Pressing the FREQUENCY button causes subsequent digit entries to begin at the 10 MHz position and proceed to the right as the frequency is entered. All changed digits are dimmed to half brilliance. Pressing the ENTER button causes the receiver to tune to the new frequency and the digits are returned to full brilliance. In general, if the FREQUENCY button is pressed before keypad entries, the digits start in the 10 MHz position. If the FREQUENCY button is not pressed before keypad entries, then the digits are entered starting at the position of the cursor (underline).

SINGIE STEP Of SCROLLS the CURSor (under. LINE) POSITION FOR FREQUENCY TUNING. 15. FREOUENCY DISPLAY displays frequency being used, programmed, or SCANNED. 16. FREQUENCY PUSHBUTTON AND INDICATOR PLACES RECEIVER IN FREQUENCY MODE. FREDUENCY and other operating parameters are entereo diRECTLY, USING EITHER THE KEY PAD OR TUNING kNOB. LED INDICATES WHEN IN FREDUENCY MODE. 17. CHANNEL PUSHBUTTON AND INDHCATOG places receiver in channel mode. freouency AND OPERATING PARAMETERS MAY BE PREPRO. GRAMMEO FOR 100 CHANNELS. CHANNEL IS SELECTED EITHER BY KEY PAD OR TUNING KNOB. LED INDICATES WHEN IN CHANNEL MODE.	

pushbutton is used to select oh program one of ten groups of channels while scanning. DISPLAY SHOWS GROUP NUMBER.	
FO PUSHBUTTON, DISPLAY, AND INDICATOA	
PUSHBUTTON ALLOWS ENTRY OF BFO FREDUENCY IN 10 HZ STEPS WITH EITHEA THE MAIN TUNING KNOB OR KEY PAD. BFO SIGN IS CHANGED BY REPRESSING bFO bution. led to the right of the PUSHBUTTON INDICATES WHEN BFD ADJUSTMENTS afe enabled.	
ALLOWS SELECTION OF REMOTE OR LOCAL CONTROL. LED ILLUMINATES IN REMOTE MODE.	
13. FAULT INDICATOR	
INOICATES SYNTHESIZER OUT OF LOCK, POWERSUPPLY FAULT, RF INPUT OVERLOAD OR BITE	

[^2]
LOUDSPEAKER LINE LEVEL ADJUS

SEPARATE SCREWORIVER ADJUSTMENTS ALLOW
ADJUSTMENT OF USB ANO LSB LIME LEVELS.

METER

DISPLAYS RF SIGNAL STRENGTH (MICROVOLTS OR
MILLIVOLTS RMS) OR LINE AUDIO OUTPUT LEVEL
(OBM/ 600 OHMS).

Od HARRIS
RF COMMUNICATION:

0 HARRIS
 RF COMMUNICATIONS

3.6.1.1.2 Tune Rate Cursor Movements

Pressing the TUNE RATE button causes the cursor to move one place to the right. When held down, the cursor moves to the right at one step each half second. Release the button and the movement stops. If the cursor goes off the end it reappears in the most significant position. Note that the cursor does not move with digit entries. Only the TUNE RATE button changes the cursor position. The cursor may be considered as a starting point for frequency entries.

3.6.1.1.3 TUNE Knob Operation

If the LED adjacent to the TUNE knob is not lit, press TUNE, which will enable the TUNE knob and light the LED. The knob is now used to select the digits at and to the left of the cursor. The frequency tuning stops at minimum and maximum frequencies and will not roll around to the opposite end of the range (e.g., it stays at 29.999999 despite efforts to increase it). Press TUNE a second time and the tune LED goes off and further rotation has no effect (Tune knob disabled).

NOTE

The tune knob rate is fixed at 100 changes per revolution for frequency and 25 per revolution for channels. The knob cannot be used in the 10 MHz position.

3.6.1.1.4 Partial Frequency Entry

Partial frequency entries simply start at the cursor position and enter to the right when keyed entry is used. Selected digits are dimmed to half brilliance until the ENTER button is pressed. Note again that the cursor position does not move, so multiple entries can be made from the same starting point. It is therefore easy to change from 17.2053 to 17.2018 and back to 17.2053 again.

Pressing the FREQUENCY button will clear any pending (dimmed) digits entered in error, and restore the cursor to the 10 MHz position.

3.6.1.2 Channel Entry

3.6.1.2.1 Entering a New Channel

Pressing the CHANNEL button causes the CHANNEL LED to light indicating channelized operation. Digits are entered first in the tens position, then in the ones position. Digits selected are dimmed to half brilliance until the ENTER button is pushed, at which time the receiver tunes to the new channel and the digits return to full brilliance.

RH HARRIS
 RF COMMUNICATIONS

3.6.1.2.2 Tune Knob Operation in Channel Entry

To operate the TUNE knob in the channel field, press CHANNEL and then activate the TUNE knob. (CHANNEL and TUNE LEDs will light.) Rotation of the TUNE knob will cause the receiver to automatically select a new operating channel.

3.6.1.3 BFO Entry

The BFO offset range is -9.99 kHz to +9.99 kHz . Pressing the BFO button causes subsequent keypad or tune knob entries to be made in the BFO section of the alphanumeric display. Keypad BFO entries are still terminated by the ENTER button. Enable the TUNE knob to allow BFO change by knob rotation. The knob selects up to +9.99 and stops or down to -9.99 and stops. There is no roll around in the tune knob function. The cursor is not relevant in BFO operation. The plus (+) or minus (-) sign is changed by alternate presses of the BFO button when BFO operation has been selected.

3.6.1.4 Automatic Gain Control (AGC) and RF GAIN Control

Two basic modes of RF gain control are possible:

- Automatic Gain Control (AGC) - with selectable time constants.
- Manual RF Gain - variable using the front panel RF GAIN Control.

Additionally, there are four choices for AGC speed.

3.6.1.4.1 AGC Time Constant Selection

The AGC ON/OFF pushbutton turns the AGC ON or OFF. When turned on, the last used AGC speed is enabled until changed.

Automatic Gain Control (AGC) time constant selection is accomplished by the AGC button. Pressing this button will scroll the AGC portion of the alphanumeric display through the possible AGC speeds: slow, medium, fast, and data. Releasing the button causes the receiver to operate using the selected AGC speed.

3.6.1.4.2 Manual GAIN Control

The RF GAIN control is always active and may override the AGC if so desired. It provides up to approximately 125 dB of gain reduction.

3.6.1.5 Demodulation Mode Selection

Pressing and holding down the MODE button causes the receiver to scroll through the available modes (AM, CW, LSB, USB, or FM) in the alphanumeric display. While the modes are scrolling they are displayed

7 HARRIS RF COMMUNICATIONS

at half brilliance. Release of the button causes the receiver to operate in the selected mode and the display returns to full brilliance. When the mode change has been completed the BW display changes to the bandwidth that was last used for that mode.

3.6.1.6 Bandwidth Selection

Pressing and holding the BW button causes the receiver to scroll through the bandwidth selections that are available and valid for the selected mode. Release of the button causes the receiver to switch to the selected bandwidth. Bandwidths used are normally customer specified, and usually only CW or AM will have more than one filter.

NOTE

After any Receive function parameter (MODE, BW, AGC, BFO, or FREQUENCY) is changed by release of a scrolling button, depression of ENTER or rotation of the TUNE knob, the new RECEIVE set up is stored and would be reused upon later entry into the Receive function from some other function, such as SCAN. Note that such a parameter change will also cause the previously dis played CHANNEL number to be blanked, since the new setups no longer correspond to that channel's setup parameters.

3.6.1.7 Meter Monitoring Selection

A meter on the front panel of the RF-590 monitors the RF and AF signal levels. Pushbutton switches allow the operator to monitor the LSB (in the ISB mode) RF signal strength, USB RF signal strength, USB line audio output level, and LSB (in the ISB mode) line audio output level. The meter scale is calibrated in $u V r m s$ or $m V r m s$ for $R F$ signals (1 uV to 100 mV) and dBm for AF signals (-15 dBm to $+10 \mathrm{dBm},+4 \mathrm{dBm}$ center scale). In ISB mode, the meter switches also select USB or LSB input to loudspeaker and headphones.

3.6.1.8 Audio Output Selection and Control

The RF-590 provides the four following audio output sources:

- Internal Speaker
- Headphone
- External Speaker
- Line Audio

OH HARRIS
 RF COMMUNICATIONS

3.6.1.8.1 Internal Speaker and Headphone Output

A front panel speaker capable of delivering 2.0 watts of audio power is provided in the RF-590. A front panel 600 ohm Headphone Output jack compatible with a PL-55 type connector is also provided.

The AF GAIN Control adjusts the speaker and headphone volume level. This control has no effect upon the Line Audio Output.

Use of the headphone jack automatically disables the speaker. Speaker disabling is also provided by the speaker ON/OFF switch.

3.6.1.8.2 External Speaker Output

A rear panel output (listed in table 2-3) allows connection of an external 8 ohm speaker. This external speaker is controlled in the same manner as the internal speaker (paragraph 3.6.1.8.1), and will deliver 2.0 watts of audio power.

3.6.1.8.3 Line Audio Outputs

The 600 ohm line audio outputs for USB and ISB (LSB) audio signals are provided on the RF-590 rear panel (listed in tables 2-3 and 2-4). All outputs are balanced, with an ungrounded center tap.

Line audio output levels are continuously variable via front panel screwdriver adjustments. Either output (USB or ISB) is independently adjustable from -16 dBm to +10 dBm (600 ohm). Line audio level monitoring is provided by a front panel meter and meter select switches (see paragraph 3.6.1.7 and figure 3-1).

3.6.1.9 Squelch Control

Front panel SQUELCH control adjusts a threshold for carrier activated squelch (FM mode) or voice activated squelch (all other modes). The SQUELCH control is continuously variable.

3.7 PROGRAM FUNCTION

The RF-590 program function aliows an operator to store up to 100 channels of frequency, modulation mode, filter bandwidth, AGC mode, and BFO offset.

3.7.1 Programming Channels

The program function is entered by pushing the PROGRAM button on the receiver front panel. The CHANNEL LED will light, indicating that the receiver is set up to accept channel programming. To program channels in the RF-590, proceed with the following steps.

OHARRIS
 RF COMMUNICATIONS

a. Select the desired two digit channel number.
b. Press the FREQUENCY pushbutton, and enter the desired frequency. (Note that for both steps a and b, the digits will dim to half brilliance once entered.)
c. Press ENTER. (Digits will return to full brilliance.)
d. Select desired AGC speed, modulation mode, filter bandwidth, and/or BFO offset. (Only BFO offset entry must be terminated by ENTER button.)
e. Press LOAD button once all parameters (steps a through d) have been selected.
f. Push CHANNEL button and repeat steps a through e to program the next channel.
g. Press RECEIVE or any other function button to get out of the program function.

Programmed channels are stored in battery back-up CMOS RAM. At power up, the microprocessor checks the validity of the RAM. If the RAM fails the validity check the channels are defaulted to 10.000000 MHz , AGC-fast, Mode-USB, and BFO-0.00 kHz.

3.7.2 Programming Groups

In addition to incremental channel scan, the receiver has the capability of scanning predefined subsets of channels organized as groups (zero to nine). Each of these ten groups may have between zero and twenty channels in it. Any channel may be assigned to any group and the same channel can be assigned to several groups if desired.

To program these groups the operator should:
a. Press PROGRAM and then GROUP. The receiver responds by prompting GROUP NUMBER?.
b. Select the single digit group number via the keypad. Press ENTER. The receiver responds by clearing the group of previous channels and prompts CHANNEL NUMBER?.
c. Select a two digit channel number. Press ENTER and LOAD. (Channel numbers will appear at half brilliance until the ENTER button is pushed. The receiver responds with the channel number followed by OK when the LOAD button is pushed.)
d. Select the next two digit channel number. Press ENTER and LOAD. Channels are entered in this fashion, until all the desired channels in this group (up to 20) have been entered.
e. Press GROUP to select another Group to program. The receiver responds again with the prompt GROUP NUMBER?.

HARRIS
 rf COMMUNICATIONS

f. Repeat steps b through e for up to nine more groups.
g. Press RECEIVE or any other function button to get out of the Program function.

Since the operator can manually scan through a group in the Scan function using the Tune knob, no special provision has been provided for reviewing the groups in the Program function. Also, the RECALL button has no effect in Group programming.

3.7.3 Program Function - Effect on Receiver Operation

In general, the receiver operating frequency is changed only in Receive or Scan. Entries made in Program function do not change the frequency of operation. Because Program function does affect the front panel display, return to the Receive function from the Program function will restore the display to the true parameters that are presently in use.

3.8 SCAN FUNCTION

The Scan function of the receiver is entered by pressing the SCAN button. The message prompt GROUP OR CHANNEL SCAN?, then appears in the alphanumeric display field. The operator responds by pressing either the GROUP button for group scan or the CHANNEL button for sequential channel scan.

3.8.1 Dwell Selection in Scan Function

Dwell time per channel is a front panel scroll function that is selected for scan operation. It is not preprogrammed with channels or groups. There are ten internal dwell selections. They are $0.1,0.2,0.4$, $0.5,0.8,1.0,2.0,4.0,5.0$, and 8.0 seconds. Additionally, the scroll includes the selection of EXT for external channel change timing. Note that the dwell times scroll is from minimum to maximum and back down to minimum without rolling around.

3.8.2 Channel Scan

If the operator presses the CHANNEL button after entering the Scan function, the receiver prompts FIRST CHANNEL?. The operator responds by selecting 2 digit channel number at the keypad followed by ENTER. The receiver responds by prompting LAST CHANNEL? and the operator selects another channel at the keypad and presses ENTER. The keypad selections are the lower and upper limits on an incremental Channel Scan. If the last limits used (displayed with the prompt) are desired, the number need not be reentered. Pressing ENTER alone will reuse the previous SCAN channels.

3.8.3 Group Scan

If the operator pressed GROUP after entering Scan mode, the receiver responds by prompting GROUP NUMBER?. The operator selects a group by pressing a digit followed by ENTER. (The number of the last group scanned or programmed will apprear with the prompt. To reuse this group number, press ENTER alone.) The receiver automatically scans the channels in the indicated group in the same order that they were entered using the dwell selected at the front panel. If the group has not been programmed, the receiver responds by displaying ANOTHER GROUP? and the operator should select an alternate group.

TH HARRIS RF COMMUNICATIONS

3.8.4 Additional Scan Details

The scan may be stopped by:

- Pressing the SCAN button while scanning (a second push will restart it).
- Pressing TUNE to stop automatic Scan and press CHANNEL to allow Manual scan via the TUNE knob (CHANNEL and TUNE LEDs will be on).
- Providing an external Stop Scan signal (see table 2-4).

3.9 AUXILIARY CHANNEL

Operators will frequently have a preferred (most widely used) frequency or channel. The receiver provides a method to instantly call up this favorite setting while tuned to some other frequency in the Receive function. To program this auxiliary channel, update the display to the desired frequency, modulation mode, etc (while in the Receive function) and press LOAD. To use the auxiliary channel, simply press RECALL at any time while in the Receive function. The receiver will tune to the auxiliary channel and will update the displays accordingly.

The auxiliary channel information is also stored in the battery backup RAM, so the favorite channel data is stored during power off.

8 HARRIS
 RF COMMUNICATIONS

SECTION 4

TECHNICAL DESCRIPTION

4.1 INTRODUCTION

The information in this section is in the following two broad categories:

- A general overview of RF-590 Receiver operation
- Specific electronic theory about circuits and/or concepts utilized in the RF:590

Included in the general receiver overview are the following items:

- Receiver signal path simplified block diagrams
- Receiver gain distribution chart
- Frequency synthesizer simplified block diagram
- Synthesizer operation example using a desired radio tune frequency

Included in the electronic theory section are the following items:

- Conversion between dBm and volts rms chart
- Discussion about the "heart" of the RF-590 frequency synthesizer, the phase-locked loop, and its many variations
- VCO frequency resolution reduction techniques

Many of these items appear in other sections of this manual and are discussed as necessary. For example, there are more extensive block diagrams provided with circuit descriptions, schematics, parts lists, and test procedures in each subassembly section describing a particular RF-590 assembly. However, items such as the dBm to Vrms conversion chart appear nowhere else in the text.

4.2 RECEIVER OPERATION

4.2.1 Receiver Signal Path

The information presented in this section details the signal processing in the receiver signal path from antenna RF input to audio output. The RF input range is from 10 kHz to 30 MHz . A dual conversion type receiver is employed, with the first intermediate frequency (IF) of 40.455 MHz and a second intermediate frequency (IF) of 455 kHz .

80 HARRIS
 RF COMMUNICATIONS

A variable first local oscillator (LO No. 1) of 40.465 to 70.455 MHz is employed for the first conversion to 40.455 MHz while a fixed second local oscillator (LO No. 2) at 40.000 MHz is employed for the second conversion to 455 kHz .

The RF signal path contains the following assemblies:

- Input Filter Assembly A1
- First Converter Assembly A2
- Second Converter Assembly A3
- IF Filter Assembly A4
- IF/Audio Assembly A5A1 and AGC Assembly A5A2
- Audio Amplifier Assembly A23

Additionally, Meter Board Assembly A13A3 provides monitoring capabilities, and ISB IF/Audio Assembly A18 provides ISB operation capabilities. Note that the A18 assembly is optional.

The following brief circuit descriptions follow figure 4-1, Simplified Receiver Block Diagram. A Receiver Gain Distribution Chart, figure 4-2, has also been included.

4.2.1.1 Input Filter Assembly A1

The antenna input to the receiver is applied to Input Filter Assembly A1. This assembly contains low pass filtering to provide more than 100 dB of rejection to undesired signals at input frequencies greater than 30 MHz.

Insertion loss is less than $1 / 2 \mathrm{~dB}$, with a VSWR less than 2:1. Receiver input overload protection circuitry (up to 70 Vrms overload), muting, Built-In Test Equipment (BITE) detection, and BITE signal generation functions are also included.

4.2.1.2 First Converter Assembly A2

First Converter Assembly A2 accepts the 10 kHz to 30 MHz output from the A1 assembly and subtractively mixes with the first LO (40.465 to 70.455 MHz) to produce a first IF of 40.455 MHz . (Note that sideband inversion occurs during the mixing process.) Extensive filtering is utilized at 40.455 MHz before the first IF is directed to second Converter Assembly A3. Input signal levels of typically -120 to +10 dBm are gain controlled by an AGC signal which provides up to 20 dB of gain reduction. Typical conversion loss through the assembly is 0 dB .

A BITE detector operating at 40.455 MHz monitors the operation of the assembly.
OU HARRIS
RF COMMUNICATIONS

\% HARRIS RF COMMUNICATIONS

4.2.1.3 Second Converter Assembly A3

Second Converter Assembly A3 converts the first IF of 40.455 M Hz to a second IF of 455 kHz through subtractive mixing with the second LO frequency of 40.000000 MHz .

Filtering occurs at both IF frequencies. Overall module gain is approximately 16 dB and gain reduction of up to 20 dB is controlled by an AGC voltage.

A BITE detector operating at 455 kHz monitors the operation of the assembly.

4.2.1.4 IF Filter Assembly A4

IF Filter Assembly A4 accepts the second IF from the A3 assembly and provides the selection of one of eight filters for signal processing. (ISB operation requires selection of two filters.) The main signal frequency selectivity is determined by these filters. Module gain is +10 dB . An unfiltered 455 kHz signal output is tapped off and applied to a rear panel RF-590 connector for external demodulation or monitoring purposes. Two main signal outputs are fed off this board. The two signal outputs are:

- The normal 455 kHz second IF to the A5A1 IF/Audio assembly, (for AM, CW, FM, USB, or LSB operation).
- ISB output to the optional A18 ISB IF/Audio assembly (for ISB operation).

4.2.1.5 IF/Audio Assembly A5

IF/Audio Assembly A5 consists of the following two subassemblies:

- IF/Audio Motherboard A5A1
- AGC Board A5A2

4.2.1.5.1 IF/Audio Motherboard A5A1

The IF/Audio Motherboard A5A1 provides most of the receiver gain utilizing a cascaded 455 kHz second IF AGC controlled amplifier chain with a maximum gain of 80 dB . This amplifier works in conjunction with AGC controlled amplifiers on the A2 and A3 assemblies to provide a constant -34 dBm second IF output to the signal demodulators over an RF input range of -120 dBm to +10 dBm .

Additionally, the assembly contains circuits for the following functions:

- Signal demodulation (AM, FM, and Product Detection for USB, LSB, or CW signals)
- Audio amplification and control

80 HARRIS
 RF COMMUNICATIONS

- Squelch control
- BITE detection

Signal outputs include:

- Speaker audio output (to speaker Audio Amplifier Assembly A23)
- Headphones (+10 dBm (maximum)/ 600 ohms)
- Line output (-16 dBm to $+10 \mathrm{dBm} / 600$ ohms, rear panel)
- Filtered 455 kHz IF output (50 ohm, rear panel)

Note that audio outputs (speaker and headphone) and line output are independently adjustable.

4.2.1.5.2 AGC Board A5A2

AGC Board A5A2 contains AGC (Automatic Gain Control) voltage generation and shaping circuitry for slow, medium, or fast AGC decay speeds. BITE detection circuitry is also provided. Outputs include AGC control voltages to $A 2, A 3$, and A5A1 assemblies and a rear panel AGC output. Figure 42 (receiver gain distribution) shows the effectiveness of the AGC circuits in providing a constant -34 dBm input to the A5A1 signal demodulators.

4.2.1.6 Audio Amplifier A23

Audio Amplifier Assembly A23 receives demodulated audio from the A5A1 assembly. Amplifiers on this assembly provide enough power gain to drive the 8 ohm front panel speaker or an external 8 ohm speaker to a minimum of 2.5 watts at full audio.

4.2.1.7 ISB IF/Audio Assembly A18

ISB IF/Audio Assembly A18 is an option purchased when independent sideband operation (simultaneous LSB and USB) is required. A18 operation is virtually identical to A5 operation, except that the A18 assembly contains only one demodulator circuit (the ISB product detector). A 455 kHz ISB IF output, an ISB line audio output, and an ISB AGC voltage output are provided on the RF-590 rear panel.

4.2.1.8 Meter Board A13A3

Meter Board A13A3 contains the circuitry and switches required to monitor selected RF and AF signals. The following signals may be monitored on the front panel meter via front panel switch controls:

- USB-RF
- USB-AF

80 HARRIS RF COMMUNICATIONS

- LSB-RF
- LSB-AF
(Note that in ISB operation, the ISB channel is monitored in the LSB switch mode.)
Meter drive signals originate on IF/Audio Assembly A5. (ISB signals originate on ISB IF/Audio Assembly A18.) The meter itself is calibrated in microvolts rms or $m V r m s$ for $R F$ signal strength and $d B m / 600$ ohms for AF line level.

4.2.2 Frequency Synthesizer

The information presented in this section shows the signal processing required to cause the receiver to tune anywhere in the RF input range of 10 kHz to 30 MHz with a 1 Hz resolution.

The main function of the entire synthesizer is to provide a variable output frequency that functions as the first Local Oscillator injection for the first Converter A2 mixer. This first LO must have the following characteristics:
a. Tune exactly 40.455000 MHz higher in frequency than the desired RF input signal. This requires a range of 40.465 MHz to 70.455 MHz .
b. Respond to changes in the receiver's tuning controls to allow a 1 Hz resolution over the approximately $30,000,000 \mathrm{~Hz}$ tuning range.
c. Perform a. and b. within a tuning time of less than 20 milliseconds.

The Frequency Synthesizer consists of the following assemblies:

- PLL I Assembly A6
- PLL II Assembly A7
- PLL III Assembly A8
- PLLIV Assembly A9
- PLL V Assembly A10
- Reference Generator Assembly A12
- Frequency Standard Assembly A21

HARRIS
 RF COMMUNICATIONS

Reference Generator Assembly A12 also provides the 40.000000 MHz second LO injection for the A3 assembly's signal conversion of the 40.455 MHz frist IF to a 455 kHz second IF.

BFO Assembly A11 is also a frequency synthesizer covering a much smaller frequency range $\mathbf{4} 45 \mathrm{kHz}$ to 465 kHz). The BFO assembly is required to accomplish product detection.

Note that figure $4-3$ shows a complete frequency synthesizer simplified block diagram and figure $4-4$ shows how to compute the intermediate frequencies produced by the synthesizer assemblies for any given receiver tune frequency. Other information which may be helpful (towards the end of this section) is the discussion of programmable divide by N phase locked loops and frequency resolution reduction techniques. Also, all these assemblies are discussed in detail in their respective subsections.

4.2.2.1 Frequency Synthesizer - Basic Operation

The frequency synthesizer must be able to tune 40.465000 MHz to 70.455000 MHz with 1 Hz resolution. In order to do this, three main phase locked loop voltage controlled oscillators with programmable divide by N counters are utilized.

The frequency of each of these VCOs is a function of their associated programmable counter factor, N . N is a function of the values of the receiver's tuning positions ($10 \mathrm{MHz}, 1 \mathrm{MHz}, \ldots 1 \mathrm{~Hz}$). Each of the programmable counters are wired to accept only a segment of the receiver's tuning positions. For example, the A7 assembly receives tune data relating to the $10 \mathrm{MHz}, 1 \mathrm{MHz}$, and 100 kHz position's value. The A8 assembly receives tune data relating to the 10 kHz and 1 kHz values, and the A 10 assembly receives tune data relating to the $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 1 Hz values. (Note that this data is in the form of a serial data code generated by the receiver's Control Board Assembly A14).

If the values of the input tune data change (for any of these three assemblies), the programmable counter's divide by N factor changes. Since the programmable counter is in the VCO feedback path to a phase comparator, the phase comparator issues an error command to force the VCO to tune in the direction required to make the feedback signal equal to the reference signal at the phase comparator's inputs. The net result (for each of the three assemblies) is that the VCO output frequency is a unique frequency corresponding to exactly one value of the tune data at the input to the programmable counter, and hence to the receiver tune frequency.

The outputs of the A7, A8, and A10 assemblies undergo further processing in the synthesizer chain before they are combined in the A6 assembly. The result of the combination of these three unique frequencies is a single unique frequency directly relating to the settings of all the receiver's tune positions. Furthermore, it is controllable to 1 Hz resolution, and is used as the first LO injection for the First Converter Assembly A2 mixer to tune the radio.

4.2.2.2 Reference Generator Assembly A12 and Frequency Standard Assembly A21

Frequency Standard Assembly A21 is the key to the RF-590 frequency stability and accuracy. Three stability options are available: $1 \times 10^{-6}, 1 \times 10^{-7}$, and 1×10^{-8} per day at either $1 \mathrm{MHz}, 5 \mathrm{MHz}$, or 10 MHz .

OHARRIS
 RF COMMUNICATIONS

The standard output phase locks a 40 MHz VCXO on the A12 assembly. Phase lock loop (PLL) references on all other assemblies are derived from this A12 VCXO. The A12 also provides 40 MHz to the A3 assembly for signal path conversion to the second IF of 455 kHz .

4.2.2.3 PLL V Assembly A10

The A10 assembly is a programmable divide by N PLL that provides the $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 100 Hz tuning increments in the LO 1 output signal. The A10 output is from 50 to 60 kHz in 10 Hz controllable steps. The output frequency is $10\left(6000-X_{3} X_{2} X_{1}\right) \mathrm{Hz}$, where $X_{3} X_{2} X_{1}$ is the value of the $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 1 Hz receiver tune positions, respectively.

4.2.2.4 PLL IV Assembly A9

The A9 assembly is a translational type phase locked loop which converts the low frequency A10 output of 50 to 60 kHz in 10 Hz increments into 40.05 to 40.06 MHz in 10 Hz increments. The A9 assembly provides the intermediate signal processing required before the A10 output can be combined with the PLL III A8 10 kHz and 1 kHz tuning increments. The A9 output may be computed from the formula $40,000,000+10\left(6000-X_{3} X_{2} X_{1}\right) \mathrm{Hz}$, where $X_{3} X_{2} X_{1}$ is the value of the $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 1 Hz receiver tune positions, respectively.

4.2.2.5 PLL III Assembly A8

The A8 assembly is a programmable divide by N and translation PLL which performs the following two functions:

- Generation of the 10 kHz and 1 kHz tuning increments for LO 1 output
- Combination of these increments with the $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 1 Hz tuning increments provided by the A9 assembly

The A8 output frequency can be determined by the following formula. Given that $X_{3} X_{2} X_{1}$ are the values of the receiver's $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 1 Hz tuning positions and that $X_{5} X_{4}$ are the values of the 10 kHz and 1 kHz tuning positions, A 8 frequency $=\left[40,000,000+10\left(6000-\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1}\right)\right]-\left[10,000\left(361+\mathrm{X}_{5} \mathrm{X}_{4}\right]\right.$ Hz . Note that the $A 8$ output frequency range is 35.45 MHz to 36.45 MHz .

4.2.2.6 PLL II Assembly A7

The A7 assembly is a programmable divide by N PLL which provides the $10 \mathrm{MHz}, 1 \mathrm{MHz}$, and 100 kHz tuning increments in the LO 1 output. The A10 output is from 44.1 MHz to 74.0 MHz in 100 kHz controllable steps.

The A7 output frequency is $100,000\left(441+X_{8} X_{7} X_{6}\right)$, where $X_{8} X_{7} X_{6}$ is the value of the $10 \mathrm{MHz}, 1 \mathrm{MHz}$, and 100 kHz receiver tuning positions, respectively.
TU HARRIS
RF COMMUNICATIO

OH HARRIS RF COMMUNICATIONS

590-85

Figure 4-4. Frequency Synthesizer Tuning Example

did HARRIS
 RF COMMUNICATIONS

4.2.2.7 PLL I Assembly A6

The A6 assembly is a translation type PLL which combines the 10 MHz through 1 Hz tuning increments for the LO 1 output from assemblies A7, A8, A9, and A10. The output signal will be the first LO injection signal. It will be variable from 40.465 kHz to 70.455 MHz in 1 Hz controllable steps. Given a receive tune frequency of $X_{8} X_{7} X_{6} X_{5} X_{4} X_{3} X_{2} X_{1} H z$ where X_{8} to X_{1} are the values of the 10 MHz to 1 Hz receiver tuning positions, the A6 (and LO 1) output frequency is:

$$
F A 6=F A 7-\frac{1}{10} F A 8 \mathrm{~Hz}
$$

where

$$
\begin{aligned}
& \text { FA7 }=\left(441+X_{8} X_{7} X_{6}\right) 100,000 \mathrm{~Hz} \\
& \text { FA8 }=\left[40,000,000+10\left(6000-X_{3} X_{2} X_{1}\right)\right]-\left[10,000\left(361+X_{5} X_{4}\right)\right] \mathrm{Hz}
\end{aligned}
$$

This signal will always be tuned exactly 40.455 MHz above the receiver tune frequency.

4.2.2.8 BFO Assembly A11

The A11 assembly is a programmable divide by N PLL which provides the BFO offset injection signal required on IF/Audio Motherboard Assembly A5A1 for proper CW or SB reception. The BFO output at $455 \mathrm{kHz} \pm 10 \mathrm{kHz}$ mixes with the 455 kHz second IF signal at the product detector and provides an audio offset of up to 10 kHz . The A11 output frequency may be determined from the following formula where $X_{A} X_{B} X_{C}$ is the \pm value of the $1 \mathrm{kHz}, 100 \mathrm{~Hz}$, and 10 Hz BFO offset tuning positions:

$$
\text { FA11 }=10\left(45,500-X_{A} X_{B} X_{C}\right) H z
$$

4.2.2.9 Frequency Synthesizer Tuning Example

The output frequencies of the A10, A9, A8, A7 and A6 assemblies at any given receiver tune frequency can be determined from the example shown in figure 4-4. Assume a receiver frequency $f_{0}=21,328,604$ Hz and that $X_{8} X_{7} X_{6} X_{5} x_{4} x_{3} x_{2} X_{1}$ represent the values of the 10 MHz through 1 Hz positions.

Start at the A10 assembly, then move on to the A9, A8, A7, and A6 in that order.
The answer can always be checked since the following formula must always be true.
$\mathrm{F}_{\mathrm{LO} 1}=\mathrm{f}_{\mathrm{O}}+40.455 \mathrm{MHz}$
Here,
$\mathrm{f}_{\mathrm{o}}=21.328,604 \mathrm{MHz}$
therefore,
$F_{\text {LO } 1}=21.328,604 \mathrm{MHz}+40.455 \mathrm{MHz}$
$=61.783,604 \mathrm{MHz}$ (which agrees with the result of figure 4-4)

HARRIS
 RF COMMUNICATIONS

4.3 ADDITIONAL THEORY

4.3.1 Conversion Between dBm and Vrms

Power levels in this manual are stated in dBm , or decibels with respect to 1 milliwatt. For example, +6 dBm means 6 dB more than (above) 1 mW , or 4 mW . Similarly, -6 dBm is 6 dB less than (below) 1 mW , or $0.25 \mathrm{~mW}(250 \mathrm{uW})$. Notice that every value of dBm corresponds to a particular amount of power. If the impedance in which this power is dissipated is known, the corresponding voltage and current can be determined. Table $4-1$ lists 50 ohm voltage equivalents for many dBm power levels. Note that for negative values of dBm , voltages are read in either of the two left-hand columns. For positive values of dBm , voltages are read in the right-hand column. For instance, -6 dBm is $0.112 \mathrm{~V}(112 \mathrm{mV})$, across 50 ohms, while +6 dBm is 0.446 V . Similarly, -20 dBm equals 22.4 mV , while +20 dBm equals 2.24 volts (across 50 ohms).

Table 4-1. Conversion of dBm to Vrms across 50 ohms
($0 \mathrm{dBm}=1 \mathrm{mWatt}$)

(Negative dBm)		dBm	(Positive dBm)
Volts	Millivolts		Volts
. 224	224	0	. 224
. 199	199	1	. 251
. 178	178	2	. 282
. 158	158	3	. 316
. 141	141	4	. 354
. 126	126	5	. 398
. 112	112	6	. 446
	99.9	7	. 501
	89.0	8	. 562
	79.3	9	. 630
	70.7	10	. 707
	63.0	11	. 793
	56.2	12	. 890
	50.1	13	. 999
	44.6	14	1.12
	39.8	15	1.26

Hil HARRIS RF COMMUNICATIONS

Table 41. Conversion of dBm to Vrms across 50 ohms (Cont.)
($0 \mathrm{dBm}=1 \mathrm{mWatt}$)

(Negative dBm)		dBm	(Positive dBm)
Volts	Millivolts		Volts
	35.4	16	1.41
	31.6	17	1.58
	28.2	18	1.78
	25.1	19	1.99
	22.4	20	2.24
	19.9	21	2.51
	17.8	22	2.82
	15.8	23	3.16
	14.1	24	3.54
	12.6	25	3.98
	12.0	25.41	4.17
	11.2	26	4.46
	10.0	27	5.01
	8.90	28	5.62
	7.93	29	6.30
	7.07	30	7.07
	3.98	35	12.6
	2.24	40	22.4
	1.26	45	39.8
	0.707	50	70.7

7 HARRIS
 RF COMMUNICATIONS

4.3.2 PLL Frequency Resolution Reduction Techniques

Use of a single frequency source to provide the variable first local oscillator signal in a radio such as the RF-590 would be virtually impossible (given the resolution requirements desired). This would require that the LO tune over the entire range (40.465000 MHz to 70.455000 MHz) with a resolution of 1 Hz or a total of $30,000,000$ discrete 1 Hz steps. By using three sources, each with a much lower resolution requirement and combining their outputs, the net one part per $30,000,000$ resolution can still be obtained.

Assume that a total of $30,000,0001 \mathrm{~Hz}$ increments must be tuned. Allow each of the three sources to, produce an output response proportional to only a segment of the $30,000,000$ necessary frequencies. The following three examples show how the three sources produce an output response.

- Let source no. 1 respond to changes in the $10 \mathrm{MHz}, 1 \mathrm{MHz}$, and/or . 1 MHz positions. Since these would be a maximum of 300.1 MHz possible changes between 00.0 MHz and 29.9 MHz , the resolution of source no. 1 would be one part per 300 .
- Let source no. 2 respond to changes in the 10 kHz and/or 1 kHz position. There would be a maximum of 1001 kHz changes between 00 kHz and 99 kHz (for a resolution of 1 part per 100).
- Let source no. 3 respond to changes in the $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and/or 1 Hz positions. There would be a maximum of 10001 Hz changes between 000 Hz and 999 Hz (for a resolution of one part per 1000).

Combining the three source outputs in a nonlinear device such as a mixer would yield the desired frequency range and 1 Hz resolution required. Figure $4-5$ illustrates this.

Note that the sources used in this example would actually be voltage controlled oscillators (VCO) whose actual output frequency would be controlled by a programmable divide by N counter.

The RF-590 essentially uses this concept, except that the source frequencies run at a much higher frequency than those shown. There are three VCOs which respond to the tuning segments shown. (10 MHz , 1 MHz , and 100 kHz increment changes occur on the A7 assembly, the 10 kHz and 1 kHz increment changes occur on the A8 assembly, and the $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 1 Hz increment changes occur on the A10 assembly.)

4.3.3 Phase Locked Loops (PLL)

The basic phase locked loop (PLL) consists of four components: a phase detector (or comparator), a low pass filter, a voltage controlled oscillator (VCO), and a divider (counter). The counter component may be either a fixed divisor or programmable. The RF-590 utilizes both types.

8 HARRIS

TOTAL TUNING RANGE

FROM 00, $000,000 \mathrm{HZ}$
TO 29,999,999 HZ

Figure 4-5. Resolution Reduction Example

HARRIS
 RF COMMUNICATIONS

4.3.3.1 Basic Phase Locked Loop

Figure 4-6 shows the four basic components of a phase locked loop. PLL operation involves comparing the frequency and phase of an incoming reference signal to the output of the voltage controlled oscillator (VCO). If the two signals differ in frequency and/or phase, an error voltage is generated by the phase detector and applied to the VCO. This causes it to correct in the direction required for decreasing the frequency/phase difference. The correction procedure continues until lock is achieved, after which the VCO will track the incoming reference signal.

Figure 4-6. Basic Phase Locked Loop

4.3.3.2 PLL Programmable Counters

Dividing a VCO output by two before applying it to the phase detector results in an error voltage that drives the VCO to twice the reference frequency. A divide-by-three action results in an error voltage that drives the $V C O$ to three times the reference frequency. From this, the following relationship can be given, $\mathrm{f}_{\mathrm{VCO}}=\mathrm{N}\left(\mathrm{F}_{\text {REF }}\right)$.

An example of the basic phase lock loop technique, using numbers, will provide an understanding of its actual operation. Referring to figure 4-7, the desired frequency is obtained by programming the variable divider through selectable inputs. Assuming the VCO is locked at the desired frequency of 1 MHz , this signal enters the input of the (in this case) divide-by-100 counter (divider). The counter emits a pulse at its output each time 100 pulses enter its input. Therefore, dividing the 1 MHz input by 100 results in an output of 10 kHz . This 10 kHz signal is compared to the reference frequency of 10 kHz indicating a locked situation. If the divider's output had been less than 10 kHz , the phase detector would have produced pulses to drive the VCO to a higher frequency. Similarly, if the divider's output had been greater than 10 kHz , the VCO would have been driven to a lower frequency. Note that the phase lock loop's output is dependent upon the selectable inputs of the variable divider. The RF- 590 provides this input to the $\div \mathrm{N}$ counter in the form of a serial data command word. The coding of this word determines the divisor ratio of the counter, and is supplied (under microprocessor control) from the information supplied by the RF-590 frequency select controls.

0 HARRIS
 RF COMMUNICATIONS

590-39(1)
Figure 4-7. Programmable Phase Lock Loop

4.3.3.3 PLL Prescaling Operation

A variation of the basic PLL which involves division of the feedback VCO signal prior to application to the $\div N$ counter is shown in figure 4-8. The total divider portion of the PLL now consists of two programmable counters and a two modulus prescaler.

$690-40$

Figure 4-8. Phase Lock Loop Prescaling Technique

80 HARRIS
 RF COMMUNICATIONS

The two modulus prescaler begins operation by dividing the VCO output by the higher of its two possible divisors, $P+1$. The programmable $\div \mathrm{N}$ counter counts the number of pulses from the prescaler. The swallow counter controls the number of times that the prescaler will be allowed to divide by ($P+1$). (To be precise, A times.) After the swallow counter reaches A counts, it instructs the prescaler to change its division ratio to P. (Note that the RF- 590 uses this scheme on the A7 and A10 assemblies, where the prescaler is a $\div 10 / \div 11$ counter, and the swallow counter is a counter internal to the \div NIC.)

In operation, the prescaler divides by $P+1, A$ times. For every $P+1$ pulse from the prescaler, both the A counter and Np counter are decreased by 1 . The prescaler divides by $P+1$ until counter A reaches its zero state. At this point, the modulus of the prescaler changes to P. The prescaler then divides by P until the remaining count, ($\mathrm{Np}-\mathrm{A}$) in the Np counter, decreases to zero. At this time, the Np output emits a pulse while the A and $N p$ counters reset. The cycle then repeats.

An example of the two modulus prescaling technique is given in figure 4-9 and table 4-2. For illustrative purposes, a VCO output of 50.7 MHz is desired.

590-59
Figure 4-9. Prescaling Technique Example
Table 42. Prescaling Technique Example

Input Pulses	Prescaler Counts	Swallow Counter	Programmable Counter
0	0	7	50
11	11	6	49
22	11	5	48
33	11	4	47

1 HARRIS
 RF COMMUNICATIONS

Table 4-2. Prescaling Technique Example (Cont.)

Input Pulses	Prescaler Counts	Swallow Counter	Programmable Counter
44	11	3	46
55	11	2	45
66	11	1	44
77	11	0	43
87	10	0	41
107	10	0	40

477	10	0	3
487	10	0	2
497	10	0	1
507	10	0	0

507 input pulses $=1$ output pulse
Selected into the programmable counter are the two most significant digits, 5 and 0 . Selected into the swallow counter is the least significant digit, 7. Under locked conditions, the divider has an input (fVCO) of 50.7 MHz , and an output of 100 kHz .

To produce a 100 kHz signal from the 50.7 MHz fVCO signal, a divisor ratio of $(50.7 \div 100)$ or 507 is required. Table $4-2$ shows a count sequence of 507 input pulses resulting in 1 output pulse. Similarly, a 50.7 MHz input results in a 100 kHz output.

The programmable $\div N$ counter emits a pulse every time it counts 50 input pulses. With the swallow counter set to seven, the prescaler divides by 11 , seven times, and then switches to dividing by 10 . At this point, the $\div \mathrm{N}$ counter needs 43 input pulses before emitting an output pulse. The prescaler will now divide by 10,43 times, to finish the count sequence. With seven counts of $11(7 \times 11=77)$ and 43 counts of 10 $(43 \times 10=430)$, one pulse emits from the programmable counter every $(77+430)$ or 507 input pulses.

8id HARRIS
 RF COMMUNICATIONS

4.3.4 Charge Pumps

The basic circuit employed in the RF-590 which converts the PLL phase comparator complementary pulse output error signals into an analog dc VCO control voltage is the charge pump. The three basic components of a charge pump circuit are a current source, a current sink, and an output filter. Figure $4-10$ shows a typical charge pump circuit.

590-60(1)

Figure 4-10. Basic Charge Pump Circuit

4.3.4.1 Phase Detector Outputs

The phase detector compares the phase and/or frequency of two inputs ($\mathrm{f}_{\mathrm{VCO}}$ and $\mathrm{f}_{\mathrm{REF}}$) and issues an output error signal at one of its two outputs (0_{V} or \emptyset_{R}) whenever the inputs are not equal. The pulse widths of these output signals are directly proportional to the phase error of the two input signals.

If the frequency $f_{V C O}$ is greater than ${ }^{f} R E F$ or if the phase of ${ }^{f} V C O$ is leading, then error information is provided by 0_{V} pulsing low. O_{R} remains essentially high (this is the situation shown in figure 4-10).

If the frequency $f_{V C O}$ is less than $f_{R E F}$ or if the phase of $f_{V C O}$ is lagging, then error information is provided by \emptyset_{R} pulsing low. \emptyset_{V} remains essentially high.

OH HARRIS
 RF COMMUNICATIONS

If the frequency of $f_{V C O}=f_{R E F}$ and both are in phase, then both \emptyset_{V} and \emptyset_{R} remain high, except for a small minimum time period when both pulse low in phase. (This time period is too small to affect the charge pump's lead-lag filter network Cf-Rf however, and is ignored.)

4.3.4.2 Charge Pump Operation

The charge pump circuit functions as a current source/current sink network to lead-lag filter network CfRf. 02 - 03 function as a current source to dump charge into the filter network, while $\mathrm{Q1}$ functions as a current sink to pull charge out of the network. The net result is that the output voltage across the network rises when Cf charges and falls when Cf discharges.

Assume that $\mathrm{f}_{\mathrm{VCO}}>\mathrm{f}_{\mathrm{REF}}$ as shown in figure $4-10$. Output D_{R} remains high, holding Q 3 off. Output \emptyset_{V} pulses low, turning $\mathrm{Q1}$ on. This provides a low impedance discharge path to ground for Cf. As Cf discharges, the charge pump output voltage (VCO control voltage) decreases, causing $\mathrm{f}_{\mathrm{V} C O}$ to decrease.

Now assume that $\mathrm{f}_{\mathrm{VCO}}<\mathrm{f}_{\mathrm{REF}} .{\emptyset_{V}}_{\mathrm{V}}$ remains high, holding Q 1 off. $\boldsymbol{0}_{\mathrm{R}}$ pulses low, turning on Q 3 , and allowing Q 2 to turn on and dump charge into Cf . This causes the VCO control voltage to increase, causing ${ }^{\mathrm{f}} \mathrm{VCO}$ to increase.

8 HARRIS
 RF COMMUNICATIONS

SECTION 5

MAINTENANCE

5.1 INTRODUCTION

Section 5 contains information concerning general RF-590 repair, Built-In Test Equipment (BITE) description and fault code chart, overall receiver performance tests, and component data.

5.2 PWB REPAIRS

The following general rules and techniques are useful in servicing RF-590 printed circuit boards.

- When replacing components on printed wiring boards (PWB), clip the mounting leads with a suitable pair of diagonal cutters and remove the component. This is especially helpful on multilead components such as the dual inline and circular type integrated circuits. The individual leads are then removed from the PWB with a low wattage iron.
- Before removing an integrated circuit from a PWB, note orientation of the pin locating tab and make sure the replacement component is reinstalled in exactly the same way.
- Because of the double sided construction used on many of the PWBs in the RF-590, a component lead may be soldered to printed circuit areas on the top and bottom of the PWB. Consequently, when a component lead is removed, the replacement component should be resoldered top and bottom as applicable.
- Overheating a printed circuit conductor may cause it to pull loose from the board material. Apply only the minimum amount of heat necessary for component removal or replacement. The use of a soldering iron in the 25 to 35 watt range is recommended.
- A desoldering tool (solder-sucker) is very convenient (and minimizes board damage) when removing multilead components which cannot be cut loose with diagonal cutters. Components of this type include special PWB transformers mounted on solderable leads and double balanced mixers, both used extensively in the various assemblies.
- A convenient device to use in place of a solder-sucker is a roll of Solder-Wick, manufactured by Solder Removal Co., Covina, California. This flux-saturated copper braid is often more effective than a solder-sucker for removing solder from PWBs.

5.3 MOSFET REPLACEMENT

When handling and replacing Metal-Oxide Substrate Field-Effect Transistor (MOSFET) devices, the following three (3) steps should be performed.

8 HARRIS
 RF COMMUNICATIONS

a. Remove new MOSFET from package. The four leads will be connected together with a small ferrule or wire to prevent static voltage differences from developing between the gate and substrate terminals. If the ferrule is present, wrap several turns of small solid wire around the leads and then remove the ferrule.
b. Position the four leads and carefully install the MOSFET on the PWB.
c. Remove the jumper(s) only after the leads have been soldered.

5.4 CMOS HANDLING AND REPLACEMENT

All Complementary Offset Symmetry Metal-Oxide Semiconductor (CMOS) devices have diode input protection against adverse electrical environments such as static electricity.

Although the devices contain circuitry to protect inputs against damage due to high voltages or electrical fields, precautions should be taken to avoid application of any voltage higher than maximum rated voltages.

Unfortunately, severe electrical conditions can develop during the process of handling. For example, static voltages generated by a person walking across a common waxed floor have been measured in the 4 to 15 kV range. This depends to a great extent upon the humidity, surface conditions, friction, and other factors. These static voltages are potentially disastrous when discharged into a CMOS input, considering the energy stored in the human body at these voltage levels.

Present CMOS gate protection structures can generally protect against overvoltages. However, these same structures will break down under severe conditions such as described above. The following are some suggested handling procedures for CMOS devices, many of which apply to most semiconductors.

- All CMOS devices should be stored or transported in materials that are conductive. CMOS devices must never be inserted into conventional plastic packing material or plastic trays.
- Avoid contact with the leads of the device. The component should always be handled very carefully by the ends or the side opposite the leads.
- Avoid contact between printed wiring board circuits or component leads and synthetic clothing while handling static sensitive devices or assemblies containing them.
- Do not insert or remove CMOS devices when power is applied. Check all power supplies to be used for testing CMOS devices to be certain that the voltage and polarity are correct, and that no transients are present.

HARPIS
 RF COMMUNICATIONS

- Use only soldering irons and tools that are properly grounded. Ungrounded soldering tips will destroy these devices. Never use soldering guns.

NOTE

When replacing CMOS devices in a PWB, it is recommended that the same procedures for replacing MOSFET devices be followed.

5.5 BUILT-IN TEST EQUIPMENT (BITE) SELF DIAGNOSTICS

The RF-590 has the capability of extensive self-testing in the event of a failure. The general types of tests and the assemblies affected are as follows:
a. Control circuits tests

- Control Board A14
- Driver Board A13A2
- Display Boards A13A4 and A13A5
- Remote Control Board A17
b. Frequency Synthesizer tests
- Reference Generator A12 and Frequency Standard A21
- BFO Assembly A11
- PLLV Assembly A10
- PLL IV Assembly A9
- PLL III Assembly A8
- PLL II Assembly A7
- PLL I Assembly A6

HARRIS
 RF COMMUNICATIONS

c. Signal Path tests

- Input Filter Assembly A1
- First Converter Assembly A2
- Second Converter Assembly A3
- IF Filter Assembly A4
- IF/Audio Assembly A5A1
- AGC Assembly A5A2
d. Power Supply tests
- Power Supply Assembly A15

Most of these tests can be automatically performed by momentarily pressing the TEST button located on the receiver's front panel. Once the TEST button has been pressed, all receiver front panel controls (except AF GAIN, SPEAKER, and AUDIO LINE LEVEL) become inoperative, and the signal overload relay located on the A1 assembly deenergizes to prevent any possible spurious radiation of test signals during BITE diagnostics.

The normal length of the self-test is approximately 5 seconds. All tests are performed sequentially in their order of importance.

If it is determined that a fault exists in a particular assembly, that assembly number and the corresponding fault code number defining the type of failure will be displayed on the receiver's front panel alphanumeric display. (See table 5-1 for a listing of assembly numbers and fault codes). For example, if the reception of LSB signals became difficult (due to unknown reasons), initiate self-test by pressing TEST. The display, Assy 04 FAULT ' 02 ', would probably be shown. Table 5-1 indicates that this would be a fault due to IF Filter Assembly A4 LSB Filter.
If no faults were found during the self testing, the front panel will display .-.-TEST PASSED...

NOTE

A fault indication may be displayed at initial turn on and will remain on until the frequency standard stabilizes.

When interpreting Built-In Test (BIT) fault indications, do not overlook the possibility that the fault condition at the indicated module may be caused by a failure or marginal condition in an associated module.

TH HARRIS RF COMMUNICATIONS

Table 5-1. Fault Code Listing

Table 5-1. Fault Code Listing (Cont.)

Assembly Number	Fault Code	Description
A5 (Cont.)	4	Product Detector
	5	FM Detector
A6	1	PLLI Out-of-Lock
A7	1	Serial Data
	2	PLL II Out-of-Lock
A8	1	Serial Data
	2	PLL III Out-of-Lock
A9	1	PLL IV Out-of-Lock
A10	1	Serial Data
	2	PLL V Out-of-Lock
A11	1	Serial Data
	2	BFO PLL Out-of-Lock
A12	1	1 MHz Reference
	2	800 kHz Reference
	3	40 MHz PLL Out-of-Lock
A13	No Fault Codes (Converter Module)	
A14	1	PROM Failure
	2	8155 RAM Failure
	3	CMOS RAM Failure
	4	Serial Data
	5	8155 Output Port Failure

of HARRIS RF COMMUNICATIONS

Table 5-1. Fault Code Listing (Cont.)

Assembly Number	Fault Code	Description
A14 (Cont.)	6	8255 Output Port Failure
	7	A/D Conversion Timing Test
	8,9	A/D Converter Result Test
	No Fault Codes (Linear Power Supply)	
A17	1	LCU PROM
	2	LCU Communication
	3	LCU Interface
A18	1	A18 Peak Detector or A4 Output Failure
	2	A18 AGC Level Test
	3	A18 Line Audio Detector

5.5.1 Continuous Self-Test Monitoring

Certain critical circuits which may adversely affect receiver operation or even cause physical damage if they malfunction, are continuously monitored by the self diagnostics. These circuits are as follows:
a. Power Supply A15. All power lines distributed to the receiver are continuously monitored for acceptable voltage limits.
b. RF Input or Antenna Overload. The signal presented to the receiver from the antenna is constantly monitored so that signal path shut down circuits will protect the receiver from an input signal greater than approximately 1.5 Vrms .
c. All Synthesizer Phase Lock Loops (PLL). These PLLs are continually monitored for a locked condition, indicating that the receive frequency stability is assured.

Any of the above mentioned items will cause a front panel FAULT LED to illuminate. Additionally, the RF signal overload would result in a front panel display of ANTENNA OVERLOAD.

80 HARRIS
 RF COMMUNICATIONS

5.5.2 Self Diagnostic Operation

The RF- 590 self diagnostic tests are a series of sequential tests and measurements used to verify the proper operation of the RF-590. They are described in the following paragraphs. It may be necessary to consult the specific circuit schematics under discussion. These schematics are in the assembly subsections.

5.5.2.1 Lamp Test

The first test performed is a lamp test. All LEDs and segments of the 10 character and 20 character displays located on the front panel are lit. This condition is maintained for approximately 4 seconds for the operator to examine all front panel indicators and while the remainder of the receiver testing is being accomplished.

5.5.2.2 ROM Test (Assembly A14)

ROM test of Control Board Assembly A14 is the next test performed. U5, U6, and U19 contain all the firmware used to control the main receiver functions and are tested to determine that the information they contain is correct. If any of these are found to have a problem, the corresponding fault message will be displayed on the front panel. If at any time this fault is displayed, factory replacements should be obtained. These devices are factory programmed and cannot be repaired in the field.

5.5.2.3 RAM Test (Assembly A14)

The next test to be performed is the RAM test. This test will determine the read/write capability of the 2 K CMOS RAM (U8) and 256 byte RAM of the 8155 (U7) located on Control Board Assembly A14. If it is determined that a fault exists, then the appropriate fault message will be displayed on the front panel.

5.5.2.4 I/O Port Tests

Parallel output ports of the A14 assembly are tested next. Output bit patterns are written to U7 and U9 ports, and then read back by the microprocessor to check the data bus path to these devices. If the bit pattern read back is not the same as written, a fault is noted.

5.5.2.5 Serial Data Test

The operation of the parallel-in/serial-out shift registers (U17, U18) on the Control Board and the capability of all synthesizers to accept serial data from the Control Board will now be tested. If a synthesizer fails to receive data correctly, then that assembly will be identified as having failed. If all synthesizers fail then it will be assumed that the Control Board is the faulty assembly.

The synthesizer PLLs are first loaded with all zeros and tested. They are then loaded with 00000000 00000000001 binary. The one (1) bit will set the serial check line (SW1) of the PLLs to logic 1.
This bit is then tested for all PLLs. If a fault occurs, the appropriate fault message will be displayed on the front panel.

HARRIS
 RF COMMUNICATIONS

5.5.2.6 Reference Generator Test (Assembly A12)

Reference Generator Assembly A12 will be tested next. The 40 MHz lock bit is read and tested for a lock condition ($0=$ lock). If detected as being out of lock, the proper fault code and assembly number will be displayed on the front panel.

The 1 MHz and 800 kHz detect lines are now read and if a logic 1 is read (indicating a fault), the appropriate fault code and the appropriate assembly number are displayed on the front panel.

5.5.2.7 A/D Converter Tests

The analog-to-digital converter used in the remaining BITE tests is now tested. A conversion is made to confirm that a result is available in approximately 100 microseconds (as indicated by the end-of-conversion output line). Readings are also obtained from two A / D channels tied to the +5 V and ground reference points, respectively. The conversion result bounds are checked. Failure of any of these three tests causes an A14 fault to be indicated.

5.5.2.8 Phase Locked Loop (PLL) Tests

The BFO PLL, PLLI, PLL II, PLL III, PLL IV, and PLL V are now tested to ensure that they can be tuned over their entire range. This testing is done in three steps. These three steps are shown in table 5-2.

Table 5-2. BFO Tuning Range

Range	Receiver Frequency	BFO Frequency
LOW	$00,000.000 \mathrm{kHz}$	9.99 kHz
MID	$15,050.500 \mathrm{kHz}$	0.00 kHz
HIGH	$29,999.999 \mathrm{kHz}$	-9.99 kHz

At each frequency, all PLLs are tested to determine the status of their respective lock lines. They are tested in order starting with PLL V and finishing with BFO PLL. If a fault occurs as a result of these tests, the appropriate fault code and assembly number are displayed on the front panel.

5.5.2.9 Input Filter Test (Assembly A1)

Input Filter Assembly A1 will be tested next. This is done by testing the relay, the BITE oscillator, and front end filter.

First the input is tested for an overload condition. If an overload exists, then the test is terminated and an antenna overload message is displayed. If no overload exists, testing is continued.

IT HARRIS
 RF COMMUNICATIONS

The antenna relay is tested by energizing the relay, passing dc through it, and sampling the A1 dc detector to ensure that the signal path is complete. Sampling the A1 detector output (as well as the A2, A3, and A5 detector outputs) is done by an analog to digital converter (A/D) located on Control Board Assembly A14.

If this test fails, there will not be an immediate fault. The result is saved for future use during this test. The relay is then turned off using the relay control line and the BITE detector level is again tested. If a signal is still present, then the problem is in the relay or its associated control circuitry. If this is the case, a fault is reported indicating a relay failure.

If a fault condition is not detected, an RF test of the A1 assembly is performed by removing the dc relay test signal and activating the 100 kHz BITE oscillator. The BITE oscillator signal level at the output of the A1 assembly is -20 dBm . The A1 RF detector level is measured. If it is found that the output level is too low then the results of the relay test are checked. If the relay test also failed, then the fault is in the front end filter or the detector line to the A14 assembly. If the relay test passed, then the fault is in either the BITE oscillator or the RF detector. If the RF test is passed and the relay test failed, then the fault is either the relay or the dc detector.

5.5.2.10 First Converter Test (Assembly A2)

After the A1 assembly has been found to be operating correctly, First Converter Assembly A2 is tested. It should be pointed out that the BITE oscillator was left activated from the previous test and will be used as a signal source during the testing of this assembly. The AGC is set to OFF, the RF GAIN is set to maximum and the receiver is tuned to 100 kHz . The A2 DET line is now read by the A/D converter and the results tested to ensure the level is correct. If a fault occurs as a result of this test, the A2 assembly will be flagged as the faulty module and the appropriate fault code will be displayed.

5.5.2.11 Second Converter Test (Assembly A3)

If the First Converter is operating correctly then the Second Converter module is tested. AGC, RF GAIN, and BITE oscillator are in the same state as used in the testing of the First Converter. Since all conditions are set up, it is only necessary to measure the A3 detector level using the A/D converter and to verify the correct level. If the level is incorrect, the appropriate fault information will be displayed.

5.5.2.12 IF Filter Test (Assembly A4)

After it has been determined that the Second Converter is operating satisfactorily, IF Filter Assembly A4 can be tested. FSK filters will not be tested because of the wide variety of center frequencies and shifts available. The BITE test oscillator located on the A 1 assembly will be disabled at this time. A signal generated by the first LO (via signal leakage through the First Converter A2 mixer) will be used. (The first LO signal is used to obtain better frequency accuracy for some of the narrow bandwidth filters that may be present in IF Filter Assembly A4.)

0 HARRIS RF COMMUNICATIONS

First the 16 kHz bypass path is tested to verify that a signal can be passed through the filter assembly amplifiers to the peak detector located on the input of IF/Audio Assembly A5. The 16 kHz bypass is selected and the level of the peak detector is read by the A/D converter. The results of this test are stored until after the USB filter is tested since, at this time, there could be a problem in either the A4 bypass circuitry or a problem in the A5 input peak detector.

To pinpoint any possible problem, the receiver will now be tuned to set the first LO to 40.454 MHz . This will generate a 1 kHz USB tone. USB filter (BW2) will be selected and the peak detector output read using the A / D converter. If a fault exists, then the results of the 16 kHz bypass test will be examined to pinpoint the fault. If the USB filter test passed but the bypass test indicated a fault, then the bypass path is flagged as the faulty circuit. If the USB filter test failed and the bypass path test passed, then the USB filter is identified as the faulty circuit. If both of these tests failed, then the fault is identified as being either the A5 peak detector or the A4 filter amplifiers and their associated circuitry. If the test results indicate that both are operating correctly, then testing the remaining filters installed in the A4 assembly continues.

The LSB filter (BW1) is tested by tuning the first LO to a frequency of 40.456 MHz and enabling the A4 LSB filter slot. A 1 kHz LSB tone is generated, detected by the A5 input peak detector, and measured by the $A 14 A / D$ converter. If a fault exists, the LSB filter is identified as the faulty circuit.

Next the CW filter slot (BW3) is tested. The first LO is tuned to 40.455 MHz and the CW filter slot is enabled. The level of the peak detector is read by the A/D converter. If the level monitored indicates that a problem exists, then the CW filter (BW3) is identified as being the faulty circuit.

The CW filter slot (BW4) is now tested. The same procedure is used to test this filter as was used to test BW3 CW filter. If a problem exists, then this CW filter (BW4) is identified as being the faulty circuit.

Filter slots 5, 6, and 7 may have a variety of filters installed. The only types of filters allowed in these slots are AM, FM, CW, or FSK. Since FSK filters will not be tested and AM, FM, and CW can all be tested at the same frequency, we only need to determine if a filter is present and whether or not it is an FSK type. Testing is identical to that of the CW filters, BW3, and BW4. If a problem exists in any of these filters, the appropriate fault message is displayed.

NOTE

The eight pole dip switch (S2) located on the A14 assembly must be set correctly for the above test to be performed correctly. This switch is set at the factory (based on the filter configuration of the A4 assembly) and should not be altered.

5.5.2.13 IF Audio Test (Assembly A5)

IF/Audio Assembly A5 is now tested to determine that the SSB, AM, and FM detectors are operating correctly. The A4 filter is set to select the 16 kHz bypass path. The AGC speed is set to MEDIUM, the mode is set to USB, and the A1 assembly BITE test oscillator is enabled.

8 HARRIS
 RF COMMUNICATIONS

The receiver is first tuned to 104.000 kHz . Since the BITE oscillator has a frequency of 100 kHz , a 4 kHz USB tone will result. The second IF AMP GAIN is tested by measuring the AGC voltage through the A/D converter. If the level is incorrect, an AGC fault is displayed on the front panel of the receiver. If this level is satisfactory, then the product detector is tested. The BITE test oscillator is disabled and the receiver is tuned to 4 kHz . The results of this test are stored since there could be a problem in either the line audio circuits or the USB product detector (if a fault indication is detected).

The AM test is now performed. With the receiver tuned to 4 kHz , the receiver mode is set to AM. The 16 kHz bypass is again used for this test. To simulate an $A M$ signal, the receiver will be tuned repetitively from 4 kHz to 100 kHz using LO No. 2 leakage as a signal source. The line audio level is measured to verify that the AM detector is operational. The results of this test and those of the SSB test are compared to determine where possible faults may have occurred. Table $5-3$ shows the results of this test and that of the SSB test.

Table 5-3. AM and SSB Test Results and Fault Locations

AM and SSB Test Results	Fault Location
If AM passed and SSB passed	no fault
If AM passed and SSB failed	product detector fault
If AM failed and SSB passed	AM detector fault
If AM failed and SSB failed	line audio fault

The next test concerned with the A5 assembly is the FM detector test. The receiver is set to FM mode and tuned to a frequency of 5 kHz . The receiver will then be tuned from +5 kHz to -5 kHz repetitively to simulate a FM signal using LO No. 1 leakage as a signal source. The line audio will be read through the A/D converter. If a problem exists, the appropriate fault message is displayed on the front panel of the receiver.

5.5.2.14 ISB Test (Assembly A18, If Installed)

ISB option assembly A18 (if installed) is now tested to determine that the IF Peak Detector, ISB AGC, and ISB Line Audio Detector are operating correctly.

Filter Assembly A4 is first set to select the LSB filter. Next, the receiver mode is set to ISB and the RF GAIN is set to maximum. The 100 kHz bite oscillator located on Input Filter Assembly A1 is now activated and the receiver is tuned to 95 kHz (resulting in a LSB frequency of 5 kHz).

Now the ISB Peak Detector level is sampled to determine whether an inband ISB signal has been found (level greater than 1 volt $d \mathrm{c}$). If this level is not found, the frequency of the receiver is increased 200 Hz and the detector level is checked again. This process is repeated until the correct level is found or until the receiver frequency is greater than 115 kHz .

8 HARRIS
 RF COMMUNICATIONS

If the frequency is greater than 115 kHz , the no inband tone was found so it is assumed that the input peak detector has failed or the signal path between Filter Assembly A4 and the A18 ISB Assembly has been interrupted. If this is true, the fault code for the A18 Peak Detector will be displayed on the receiver front panel and no further testing of the assembly will take place.

If the inband tone was found; the frequency is increased by 1.5 kHz , placing the tone in the center of the LSB filter.

Once the receiver is tuned, the peak detector, AGC detector, and line audio detector levels are measured to verify their operation. If any of these are found to be at an improper level, the appropriate fault code will be displayed on the receiver front panel and all further receiver testing is aborted.

If the three levels are found to be correct, then the assembly is considered to be functioning correctly.

5.5.2.15 LCU Test (Assembly A17)

The last thing to be tested during self-test is Remote Control Assembly A17. The information used to control these tests is contained within the remote control assembly firmware. If it is determined that the remote control assembly is installed, the remote control assembly will test the UART, the LCU ROM (U7), and the RS-422 interface. If any of these are found to be at fault, then the corresponding fault information is displayed on the front panel. The LCU also reports, to the remote site, any self-test pass/fail conditions that may occur as a result of the TEST function being performed.

Upon completion of the self-test, if no fault has occurred, a --- TEST PASSED --- message is displayed indicating to the operator that the radio is operating satisfactorily.

5.5.3 Self Diagnostics Sequence Summary

The RF- 590 self diagnostics are done in the order of assembly importance. If a fault is discovered during testing, this failure must be corrected before the remaining tests are attempted.

The order of testing from the first to last test is shown in table 5-4.

Table 5-4. Self Diagnostics Sequence Summary

1. ROM Test - Assembly A14
2. RAM Test - Assembly A14
3. Output Port Test - Assembly A14
3.18155 Ports B, C
$3.2 \quad 8255$ Port A

80 HARRIS
 RF COMMUNICATIONS

Table 5-4. Self Diagnostics Sequence Summary (Cont.)
4. Serial Data Tests
4.1 Assembly A14
4.2 Assembly A11
4.3 Assembly A7
4.4 Assembly A10
4.5 Assembly A8
5. Reference Generator Tests - Assembly A12
5.1 40 MHz Phase locked loop
5.2 1 MHz Reference
$5.3 \quad 800 \mathrm{kHz}$ Reference
6. Phase Locked Loops
6.1 Assembly A10-PLL V
6.2 Assembly A9 - PLL IV
6.3 Assembly A8 - PLL III
6.4 Assembly A7-PLL II
6.5 Assembly A6-PLL I
6.6 Assembly A11 - BFO PLL
7. A/D Converter Test - Assembly A14
7.1 Conversion Timing Test
$7.2+5$ Reference Measurement
7.3 Gnd Reference Measurement
8. Input Filter Test - Assembly A1
8.1 Antenna overload test
8.2 Dc signal test
8.2.1 Relay closed
8.2.2 Relay open

8 HARRIS
 RF COMMUNICATIONS

Table 5-4. Self Diagnostics Sequence Summary (Cont.)
8.3 RF signal test

NOTE
If both tests 8.2.1 and 8.3 fail then it is assumed that the filter is faulty.
9. First Converter Test - Assembly A2
10. Second Converter Test - Assembly A3
11. IF Filter Tests - Assembly A4
$11.1 \quad 16 \mathrm{kHz}$ Bypass Test
11.2 USB Filter Test

NOTE

If both tests 11.1 and 11.2 fail then it is assumed that either the IF amplifier or the A5 assembly peak detector is faulty.
11.3 LSB Filter Test
11.4 CW Filter Test
11.5 CW Filter Test
11.6 Special Filter 5 Test
11.7 Special Filter 6 Test
11.8 Special Filter 7 Test

NOTE

Tests 11.6, 11.7, and 11.8 are done only if filters are installed and if they are not FSK filters.
12. IF/Audio Test - Assembly A5
12.1 AGC Test
12.2 SSB Noise Test
12.3 SSB Signal Test

Hi HARRIS RF COMMUNICATIONS

Table 5-4. Self Diagnostics Sequence Summary (Cont.)

12.4 AM Noise Test 12.5 AM Signal Test NOTE If both test 12.3 and 12.5 fail then it is assumed that the line audio detector is faulty. 12.6 FM Noise Test 12.7 FM Signal Test
13. ISB Test - Assembly A18 (If Installed) 13.1 Peak Detector 13.2 AGC Test 13.3 Line Audio Detector
14. Remote (LCU) Test - Assembly A17 (If Installed) 14.1 PROM Test 14.2 Communications Test 14.3 Interface Test

5.6 RECEIVER PERFORMANCE TEST PROCEDURES

Table 5-5 shows tests used to verify RF-590 operation.
Table 5-5. RF-590 Test Procedures

Test	Paragraph
Local Control Function Test	2.7
Sensitivity	5.6 .1

80 HARRIS
 RF COMMUNICATIONS

Table 5-5. RF-590 Test Procedures (Cont.)

Test	Paragraph
Audio Output Level and	5.6 .2
Distortion	5.6 .3
AGC Range	5.6 .4
Ultimate Quieting	5.6 .5
IF Filter Selectivity	

5.6.1 Sensitivity Test

The following test equipment is required to perform this test.

- HP-8640B Signal Generator
- HP-331A Audio Distortion Analyzer
- 600 Ohm Feedthrough Termination

The following steps describe the sensitivity test procedure.
a. Connect equipment as shown in figure 5-1.

590-44(1)
Figure 5-1. Sensitivity Test Setup
b. Initially set receiver's AGC to OFF and RF GAIN to maximum.
c. Perform steps d through f for each of the modes and bandwidths listed in table 5-6.
d. Set generator for a minimum RF output.
e. Adjust audio distortion analyzer sensitivity for a convenient reference indication.

80 HARRIS
 RF COMMUNICATIONS

f. Adjust generator output until the audio output rises 10 dB above the reference noted in step e. Record the signal generator output level in table 5-6. Note that this value must be no greater than the maximum allowable $10 \mathrm{~dB} \underline{\mathrm{~S}+\mathrm{N}}$ sensitivity listed.

N

NOTE

Generator frequencies may be varied within the passband range to obtain a peak audio output in the channel being tested.

NOTE

In AM mode, it will be necessary to set the signal generator for 50 percent modulation at the modulation frequency indicated. Increase carrier power until a 10 dB difference above the reference level is obtained between modulation OFF and modulation ON.

NOTE

In FM mode, set the generator for 4.7 kHz deviation at the modulation frequency indicated. Increase carrier power until a 17 dB difference is obtained on the audio voltmeter between modulation OFF and modulation ON.

Table 5-6. Sensitivity Test Reports

Mode	$\begin{aligned} & \text { BW } \\ & \text { kHz } \end{aligned}$	Radio Frequency MHz	Generator Frequency MHz	Modulation Frequency kHz	*Maximum $10 \mathrm{~dB} \frac{\mathrm{~S}+\mathrm{N}}{\mathrm{N}}$ Sensitivity uVrms	Measured $10 \mathrm{~dB} \frac{\mathrm{~S}+\mathrm{N}}{\mathrm{N}}$ Sensitivity uVrms
LSB	3.2	$\begin{array}{r} \hline 2.000000 \\ 16.000000 \\ 29.999999 \end{array}$	$\begin{array}{r} 1.999000 \\ 15.999000 \\ 29.999000 \end{array}$	-	$\begin{aligned} & .35 \\ & .35 \\ & .35 \end{aligned}$	
USB	3.2	$\begin{array}{r} 2.000000 \\ 16.000000 \\ 29.999999 \end{array}$	$\begin{array}{r} 2.001000 \\ 16.001000 \\ 30.001000 \end{array}$	-	$\begin{aligned} & .35 \\ & .35 \\ & .35 \end{aligned}$	
CW	. 3	$\begin{array}{r} 2.000000 \\ 16.000000 \\ 29.999999 \end{array}$	$\begin{array}{r} 2.000150 \\ 16.000150 \\ 30.000150 \end{array}$	-	$\begin{aligned} & .15 \\ & .15 \\ & .15 \end{aligned}$	
CW	1.0	$\begin{array}{r} 2.000000 \\ 16.000000 \\ 29.999999 \end{array}$	$\begin{array}{r} 2.000500 \\ 16.000500 \\ 30.000500 \end{array}$	-	$\begin{aligned} & .25 \\ & .25 \\ & .25 \end{aligned}$	-

8 HARRIS RF COMMUNICATIONS

Table 5-6. Sensitivity Test Reports (Cont.)

Mode	$\begin{aligned} & \mathrm{BW} \\ & \mathrm{kHz} \end{aligned}$	Radio Frequency MHz	Generator Frequency MHz	Modulation Frequency kHz	*Maximum $10 \mathrm{~dB} \frac{\mathrm{~S}+\mathrm{N}}{\mathrm{~N}}$ Sensitivity uVrms	Measured $10 \mathrm{~dB} \frac{\mathrm{~S}+\mathrm{N}}{\mathrm{~N}}$ Sensitivity uVrms
AM	3.2	$\begin{array}{r} 2.000000 \\ 16.000000 \\ 29.999999 \end{array}$	$\begin{array}{r} 2.000000 \\ 16.000000 \\ 29.999999 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.25 \\ & 1.25 \end{aligned}$	
AM	6.0	$\begin{array}{r} 2.000000 \\ 16.000000 \\ 29.999999 \end{array}$	$\begin{array}{r} 2.000000 \\ 16.000000 \\ 29.999999 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	
FM	16.0	$\begin{array}{r} 2.000000 \\ 16.000000 \\ 29.999999 \end{array}$	$\begin{array}{r} 2.000000 \\ 16.000000 \\ 29.999999 \end{array}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	

* $=$ These numbers double when the RF-596-02 Preselector option is installed.

5.6.2 Audio Output Level and Distortion Test

The following test equipment is required to perform this test.

- HP-8640B Signal Generator
- HP-331A Distortion Analyzer
- 600 Ohm Feedthrough Termination
- 8 Ohm 5 Watt Termination

Use the following procedures to check line output, headphone output, and speaker output.

5.6.2.1 Line Output Check

To check the line input proceed as follows:
a. Set signal generator to $-20 \mathrm{dBm}, 2.001500 \mathrm{MHz}$. Set receiver to $2.000000 \mathrm{MHz}, \mathrm{AGC}$ to MEDIUM, Mode to USB, and RF GAIN to maximum.
b. Connect equipment as shown in figure 5-2.

8 HARRIS
 RF COMMUNICATIONS

590-42(1)

Figure 5-2. Line Audio Test Setup
c. Measure line audio output level. Level must be adjustable from $-16 \mathrm{dBm}(.123 \mathrm{Vrms})$ to $+10 \mathrm{dBm}(2.45 \mathrm{Vrms})(.1 \mathrm{~mW}$ to 10 mW$)$. Record range in table 5-7.

Table 5-7. Audio Output Level and Distortion Test Report

Test	Output Level Measured Vrms	Output Level Limits Vrms	Distortion Measured dBc	Distortion Limits dBc
Line Audio		.123 to 2.45 Minimum	-40	
Headphone Audio		2.45 Minimum	-40 Speaker Audio	

d. Set line audio level to 2.45 Vrms. Measure total harmonic distortion (THD). THD must be at least -40 dBc (1% maximum). Record in table 5-7.
e. Reset line audio level to $.775 \mathrm{Vrms}(0 \mathrm{dBm})$. Check that the RF-590 front panel meter indicates $0 \mathrm{dBm} \pm 2 \mathrm{~dB}$.

5.6.2.2 Headphone Output Check

To check the headphone output proceed as follows:
a. Set signal generator to $-20 \mathrm{dBm}, 2.001500 \mathrm{MHz}$. Set receiver to $2.000000 \mathrm{MHz}, \mathrm{AGC}$ to MEDIUM, Mode to USB, and RF GAIN to maximum.
b. Connect equipment as shown in figure 5-3.

OH HARRIS
 RF COMMUNICATIONS

590-43(2)

Figure 5-3. Phone Audio Test Setup
c. Set speaker to OFF. Adjust AF GAIN control for maximum output. Headphone output level must be 2.45 Vrms (10 mV) minimum. Record in table 5-7.
d. Measure Total Harmonic Distortion at 2.45 Vrms output. THD must be at least -40 dBc (1\% maximum). Record in table 5-7.
e. Readjust AF GAIN to minimum.

5.6.2.3 Speaker Output Check

To check speaker output proceed as follows:
a. Set signal generator to $-20 \mathrm{dBm}, 2.00150 \mathrm{MHz}$. Set receiver to $2.000000 \mathrm{MHz}, A G C$ to MEDIUM, Mode to USB, and RF GAIN to maximum.
b. Connect equipment as shown in figure 5-4.

590-50(2)

Figure 5-4. Speaker Audio Test Setup

NOTE

It will be necessary to disconnect the audio lines to the speaker and connect them to the 8 ohm load to perform this test.

8 HARRIS
 RF COMMUNICATIONS

c. Set speaker to ON, and adjust AF GAIN to maximum. Speaker audio output level must be 4.0 Vrms (2.0 W) minimum. Record in table 5-7.
d. Measure total harmonic distortion (THD) at 4.0 Vrms output. THD must be at least -26 dBc (5% maximum). Record in table 5-7.
e. Set speaker to OFF, AF GAIN to minimum. Disconnect 8 ohm load and reconnect speaker.

5.6.3 AGC Range

The following test equipment is required to perform this test.

- HP-8640B Signal Generator
- HP-331A Audio Distortion Meter
- 600 Ohm Feedthrough Termination

Use the following procedures to perform the AGC range test.
a. Connect equipment as shown in figure 5-5.

$590-44(2)$

Figure 5-5. AGC Range Test Setup
b. Set signal generator to 10.001500 MHz and RF output level at 2 uVrms .
c. Set AGC to MEDIUM, RF GAIN to maximum, Mode to USB, Receive Frequency to 10.000000 MHz, BFO to 0.00 kHz , and Line Audio Output to 0 dBm .
d. Set a convenient reference level on the distortion analyzer, and then increase signal generator output to 1 Vrms . The audio output level should not increase by more than 3 dB . Record level change below.

Total Audio Output Level Change: \qquad $d B(3 d B$ maximum) (RF input level 2 uVrms to 1 Vrms)

80 HARRIS
 RF COMMUNICATIONS

5.6.4 IF Filter Selectivity

The following test equipment is required for this test:

- HP-8640B Signal Generator
- Boonton Model 91-H RF Millivoltmeter with $\mathbf{5 0}$ ohm adapter.
- HP-5383A Frequency Counter

Use the following procedures to verify filter IF response.
a. Initially set receiver to $10.000,000 \mathrm{MHz}$, AGC to $O F F$, BFO to 0.00 kHz , and MODE to USB. Connect equipment as shown in figure 5-6.

Figure 5-6. IF Filter Selectivity Test Setup
b. Set signal generator frequency f_{o} to 10.0015 MHz . Adjust generator output to set a convenient millivoltmeter reference level in the generator's -110 dB range (i.e., below the receiver's AGC threshold).
c. Vary the generator frequency $\pm 10 \mathrm{kHz}$ and note the IF output -3 dB roll-off frequencies. (Note that only one major, distinct peaked response should occur for any selected filter. However there may be some passband ripple.) Calculate the -3 dB bandwidth as the difference between these frequencies. Record in table 5-8.
d. Note the passband ripple as the difference in IF output maxima and minima values between the -3 dB frequencies. Check $(\sqrt{ })$ table $5-9$ if ripple $\leqslant 3 \mathrm{~dB}$.
e. Repeat steps b through d for the generator frequencies (f_{0}), IF filter modes, and BWs listed in table 5-8.

Table 5-8. IF Filter Response Test Report

Generator Reference Level Frequency $\mathbf{f}_{\mathbf{o}}$ MHz	Mode	Filter Bandwidth, kHz		Passband Ripple	
				Maximum dB	Measured dB
		(Minimum)	Measured		
10.00150	USB	2.8		3	
9.99850	LSB	2.8		3	
10.0000	CW	. 30		3	
10.0000	CW	1.0		3	
10.0000	AM	3.2		3	
10.0000	AM	6.8		3	
10.0000	AM	16		3	

5.7 COMPONENT DATA SHEETS

This section contains any applicable data sheets for the RF-590. They can be used for reference purposes and are listed alphabetically.

HA HARRIS
 RF COMMUNICATIONS

ADC0817 8-Bit μ P Compatible A/D Converters with 16-Channel Multiplexer

Duatin-Line Package

General Description

The ADC0816, ADC0817 data acquisition component is a monolithic CMOS device with an 8 -bit analog-to-digital converter, 16-channel multiplexer and microprocessor compatible control logic. The9-bit AD converter uses successive approximation as the conversion technique. The converter features a high impedance chopper stabilized comparator, a 256R voltage divider with analog switch tree and a successive approximation register. The 16 -channel multiplexer can directly access any one of 16 -singleended analog signals, and provides the logic for additional channel expansion. Signal conditioning of any analog input signal is eased by direct access to the multiplexer output, and to the input of the 8 -bit ADD converter.

Block Diagram

OD HARRIS RF COMMUNICATIONS

Am26LS31

Quad High Speed Differential Line Driver

FUNCTIONAL DESCRIPTION
The Am26LS31 is a quad differential line driver, designed for digital date transmission over balanced lines. The Am26LS31 meets all the requirements of EIA standard RS-422 and federal standard 1020. Is is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines.

The circuit provides an enable and disable function common to all four drivers. The Am26LS31 features 3 -state outputs and logical OR-ed complementary enable inputs. The inputs are all LS compatible and are all one unit load.
The Am26LS31 is constructed using advanced low-power Schottky processing.

CONNECTION DIAGRAM

 (Top View)

LOGIC DIAGRAM

HARRIS
 RF COMMUNICATIONS

Am26LS33

FUNCTIONAL DESCRIPTION

The Am26LS32 is a quad line receiver designed to meet the requirements of RS-422 and RS-423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.
The Am26LS32 features an input sensitivity of 200 mV over the input voltage range of $\pm 7 \mathrm{~V}$.
The Am26LS33 features an input sensitivity of 500 mV over the input voltage range of $\pm 15 \mathrm{~V}$.
The Am26LS32 and Am26LS33 provide an enable and disable function common to all four receivers. Both parts feature 3state outputs with 8 mA sink capability and incorporate a fail safe input-output relationship which keeps the outputs high when the inputs are open.
The Am26LS32 and Am26LS33 are constructed using Adyanced Low-Power Schottky processing.

CONNECTION DIAGRAM Top View

LOGIC DIAGRAM

80 HARRIS
 RF COMMUNICATIONS

CA555E

Timer

The RCA-CA555 and CA555C are highly suable timers for use in precision timing and oscillator applications. As timers, these monolithic integrated circuits are capable of producing accurate time delays for periods ranging from microseconds through hours. These devices are also useful for astable oscitlator operation and can maintain an aceurateIy controlied free-running frequency and duty cycle with only two external resistors and one capacitor.

The circuits of the CA555 and CA555C may be triggered by the falling edge of the waveform signal, and the output of these circuits can source or sink up to a 200 -millismpere current or drive TTL circuits.

Fig. 1 - Functionel diagram of the CA555 series.

Fig. 2 - Sehemetic diagrem of the CA555 and CA555C.

2. MINI-DIP platic packeop TO. 5 nyle pecluap whit formm trede

ย. TOE sifle meckep

CH HARRIS
 RF COMMUNICATIONS

CD4028A Types
 COS/MOS
 BCD-to-Decimal Decoder

The RCACD4028A types are BCD-todecimal or binary-to-octal decoders consisting of pulse-shaping circuits on all 4 inputs. decoding-logic gates, and 10 output buffers. A BCD code applied to the four inputs, A to D. results in a high level at the selected one of 10 decimal decoded outputs. Similarly, a 3-bit binary code applied to inputs A through C is decoded in octal code at output 0 to 7. A hightevel signal at the D input inhibits octal decoding and causes outputs

0 through 7 to go low. If unused, the D input must be connected to VSS. High drive capability is provided at all outputs to enhance de and dynamic performance in high fan-out applications.
These types are supplied in 16 -lead hermetic dual-in-line ceramic packages (D and F suffixes). 16 -lead dual-in-line plastic package (E suffix), and in chip form (H sutfix).

table I - tauth table

OH HARRIS
 RF COMMUNICATIONS

CD4053B

COS/MOS Analog
 Multiplexers/Demultiplexers

RCA.CD4051B, CD4052B, and CD4053B analog multiplexers/demultiplexers are digitally controlled analog switches having low ON impedance and very low OFF leakage current. Control of analog signals up to 20 V peak-to-peak can be achieved by digital signal amplitudes of 4.5 to 20 V (if $V_{D D} \cdot V_{S S}=3 \mathrm{~V}$, a $V_{D D} \cdot V_{E E}$ of up to 13 V can be controlied; for VDD.VEE level differences above 13 V , a VDD. V_{SS} of at least 4.5 V is required). For example, if $V_{D D}=+5 \mathrm{~V} . V_{S S}=0$, and $V_{E E}=-13.5 \mathrm{~V}$. analog signals from -13.5 V to +4.5 V can be controlled by digital inputs of 0 to 5 V . These multiplexer circuits dissipate extremely low quiescent power over the full $V_{D D} \cdot V_{S S}$ and VDD-VEE supply-voltage ranges, independent of the logic state of the control signals. When a logic " 1 " is present at the inhibit input terminal all channels are off.

CD4071B

COS/MOS QUAD 2-INPUT OR GATE

The RCA-CD40718, CD40728, and CD4075B OR gates provide the system designer with direct implementation of the positive-logic OR function and supplement the existing family of COS/MOS gates. The CD4071. CD4072, and CD4075 types are supplied in 14 -lead dual-in-line ceramic packages (D and F suffixes). 14-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

CD4094B

COS/MOS

8-Stage Shift-and-Store

Bus Register

High-Voltage Types (20-Volt Rating)
The RCA-CD40948 is an 8-stage serial shift register hoving a storage latch associated with each stege for strobing data from the serial input to perallel buffered 3 state outputs. The perallel outputs may be connected directly to common bus lines. Date is shifted on positive clock transitions. The data in asch shift register stage is transferred to the storage register when the STROBE input is high. Dats in the storape register appears at the outputs whenever the OUTPUT ENABLE signal is high.
Two serial outputs are available for cascading a number of CD40048 devices. Data is wailable at the O_{S} wrial output terminal on positive clock edges to allow for high-speed operation in cascaded systems in which the clock rise time is fast. The same serial infor. mation, available at the $\mathrm{O}^{\prime} \mathrm{s}$ terminal on the next negative clock edge, provides a means for casceding CD40948 devices when the elock rise time is slow.

OH HARRIS
 RF COMMUNICATIONS

CD4098B Types

COS/MOS Dual Monostable

Multivibrator

High-Voltage Types (20-Volt Rating)

The RCA.CD4098B dual monostable multivibrator provides stable retriggerable/reset table one-shot operation for any fixed-voltage timing application.

An external resistor ($R X$) and an exiernal capacitor (CX_{X}) control the timing for the circuit. Adjustment of $R X$ and $C X$ provides a wide range of output pulse widths from the 0 and $\overline{0}$ terminals. The time delay from trigger input to output transition (trigger propagation delay) and the time delay from reset input to output transition (reset propagation delay) are independent of R_{X} and Cx.

Leading-edge-triggering (+TR) and trailing edge-triggering ($-T R$) inputs are provided for triggering from either edge of an input pulse.

In normal operation the circuit triggers lextends the output pulse one period) on the application of each new trigger pulse. For operation in the non-retriggerable mode, $\overline{\bar{O}}$ is connected to -TR when leading-edge trig. gering ($+T R$) is used or Q is connected to +TR when trailing-edge triggering ($-T R$) is used.
The time period (T) for this multivibrator can be approximated by: $T_{X}=1 / 2 R_{x} C_{x}$ for $C_{X} \geqslant$ $0.01 \mu \mathrm{~F}$.

Fig. 14 - Wevetorms for serup time and strobe pu/se wiath.

DG211
 Quad Monolithic SPST CMOS Analog Switch

The DG211 is a 4 -channel single pole single throw analog switch which employs CMOS technology to insure low and nearly constant ON resistance over the entire analog signal range. The switch will conduct current in either direction with no offset voltage in the ON condition, and block voltages up to 30 V peak-to-peak in the OFF condition. The ON-OFF state of each switch is controlled by a driver. With a logic " 0 " at the input to the driver (0 V to 0.8 V) the switch will be ON, and a logic " 1 " (2.4 V to 15 V) will turn the switch OFF. The input can thus be directly interfaced with TTL, DTL, RTL, CMOS and certain PMOS circuits. Switch action is break-before-make. Logic inputs can directly connect to op-amp output swings.

PIN CONFIGURATION

SWITCH OPEN FOR LOGIC " "' INPUT (POSITIVE LOGIC)

QH HARRIS RF COMMUNICATIONS

HM-6516

2K x 8 CMOS RAM

Description

The HM-6516 is a CMOS 2048×8 Static Random Access Memory. Extremely low power operation is achieved by the use of complementary MOS design techniques. This low power is further enhanced by the use of synchronous circuit techniques that keep the active (operating) power low, and also give fast access times.

The HM-6516 is ideally suited for use in microprocessor based systems. The byte wide organization simplifies the memory array design, and keeps coperating power down to a minimum because only one device is enabled at a time. The address latches allow very simple interfacing to recent generation microprocessors which employ a multiplexed address/data bus, such as the 8085 . The convenient output enable control also simplifies multiplexed bes interfacing by allowing the data outputs to be controlled independant of the chip enable.

Logic Symbol

Pinout
TOP VIEW

A Address input
DO Data Input/Output
Chip Enable
G Output Enable Write Enable

Functional Diagram

MLI Imes montivi cone
nctive now
TMAE STATE OUPGERS
cooges latemes amo caved
Occoostas:

HARRIS
 RF COMMUNICATIONS

LM211 Voltage Comparator

General Description

The LM111 and LM211 are voltage comparators that have input currents nearly a thousand times lower than devices like the LM106 or LM710. They are also designed to operate over a wider range of supply voltages: from standard $\pm 15 \mathrm{~V}$ op amp supplies down to the single 5 V supply used for IC logic. Their output is compatible with RTL, DTL and TTL as well as MOS circuits. Further, they can drive lamps or relays, switching voltages up to 50 V at currents as high as 50 mA . Outstanding characteristics include:

- Operates from single 5V supply
- Inout current: 150 nA max. over temperature
- Offet current: 20 nA max. over temperature
- Differential input voltage range: $\pm 30 \mathrm{~V}$
- Power consumption: $\mathbf{1 3 5} \mathrm{mW}$ at $\pm 15 \mathrm{~V}$

Both the inputs and the outputs of the LM111 or the LM211 can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs ean be wire OR'ed.

LM324
 Low Power Quad Operational Amplifiers

General Description

The LM124 series consists of four independent, high grin, internalty frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voluages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM124 series can be directly operated off of the standard +5 V oc power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the odditional ± 15 Voc power supplies.

Connection Diagram

Schematic Diagram (Each Amplifier)

LM339

Low Power Low Offset Voltage Quad Comparators General Description
The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mV max for all four comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voitage.
Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO: MOS clock timers; multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic- where the low power drain of the LM339 is a distinct advantage over standard comparators.

LM383/LM383A 8 Watt Audio Power Amplifier

General Description

The LM383 is a high power amplifier. High current capability (3.5A) enables the device to drive low impedance loads with low distortion. The LM383 is current limited and thermally protected. High voltage protection is available (LM383A) which enables the amplifier to withstand 40 V transients on its supply. The LM383 comes in a 5 -pin TO-220 package.

Equivalent Schematic

Connection Diagram

TO.220 Plastlc Package

HARRIS
 RF COMMUNICATIONS

LM1458

Dual Operational Amplifier/Buffer

general description

The LM1558 and the LM1458 are general purpose dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent. Features include:

- No frequency compensation required

Short-circuit protection

- Wide common-mode and differential voltage sanges
- Low-power consumption
- 8-lead TO. 5 and 8-lead mini DIP
- No latch up when input common mode range is exceeded

8 HARRIS
 RF COMMUNICATIONS

MC1357

FIGURE 1 - CIRCUIT SCHEMATIC

- A Direct Replacerment for in ULN2111A
- Greatly Simplified FM Demodulator Alignment

MC1458

- Excelient Performance at VCC $=8.0 \mathrm{Vdc}$

DUAL OPERATIONAL AMPLIFIERS
. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- No Frequency Compensation Required
- Short-Circuir Protection
- Wide Common-Mode and Differential Voltage Ranges
- Low.Power Consumption
- No Latch Up
- Low Noise Selections Offered - N Suffix

0 HARRIS
 RF COMMUNICATIONS

MC1488

QUAD LINE DRIVER

The MC1488 is a monolithic quad line driver designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. RS-232C.

Fentures:

- Current Limited Output $\pm 10 \mathrm{~mA}$ typ
- Power-Off Source impedance 300 Ohms min
- Simple Slew Rate Control with External Capacitor
- Flexible Operating Supply Range
- Compatible with All Motorola MDTL and MTTL Logic Families

PIN CONNECTIONS

H HARRIS RF COMMUNICATIONS

MC1733

DIFFERENTIAL VIDEO AMPLIFIER

. . a wideband amplifier with differential input and differential out put. Gain is fixed at 10,100 , or 400 without external components or, with the addition of one external resistor, gain becomes adjustable from 10 to 400.

- Bandwidth - 120 MHz typical © $A_{v d}=10$
- Rise Time - 2.5 ns typical © $A_{\text {vd }}=10$
- Propagation Delay Time - 3.6 ns typical @ $A_{\mathrm{vd}}=10$

80 HARRIS
 RF COMMUNICATIONS

MC12013

TWO-MODULUS PRESCALER

These devices are two-modulus prescalers which will divide by 5 and 6, 8 and 9, and 10 and 11, respectively. A MECL-to-TTL translator is provided to interface directly with the MC12014 Counter Control Logic. In addition, there is a buffered clock input and MECL bias voltage source.

LOGIC DIAGRAM

$\begin{aligned} \text { VCCO } & =\operatorname{pin} 1 \\ V C C & =\operatorname{pin} 16\end{aligned}$
$V C C=\operatorname{pin} 16$

$V_{E E}=\operatorname{pin} 8$
$\div 10$ for one or all
E1 thru ES nigh
$\div 11$ for all
E1 thru E5 low
Tie unused gate inputs low.

Pull down resistors reouired on
Pins 2, 3 when nor connected
to transiator.
Basic ic Cepability $\div 10 / 11$

MC14094B

8-STAGE SHIFT/STORE REGISTER WITH THREE-STATE OUTPUTS

The MC14094B combines an 8 -stage shift register with a data latch for each stage and a three-state output from each latch.

Data is shifted on the positive clock transition and is shifted from the seventh stage to two serial outputs. The OS output data is for use in high-speed cascaded systems. The Q'S output data is shitted on the following negative clock transition for use in low-speed cascaded systems.

Data from each stage of the shift register is latched on the negative transition of the strobe inpus. Date propagates through the latch while strobe is high.

Outputs of the eight data latches are controlled by three-state buffers which are placed in the high-impedance state by a logic Low on Output Enable.

- Three-State Outputs
- Capable of Driving Two Low-Power TTL Losds, One Low-Power Schortky TTL Lasd or Two HTTL Losds Over the Rated Temperature Range
- Input Diode Protection
- Data Latch
- Dual Outputs for Data Out on Both Positive and Negative Clock Transitions
- Useful for Serial-to-Parallel Data Conversion
- Three-State Bus Compatible
- Pin.for-Pin Compatible with CD4094B

\sim		16
Deta	Output	
	Ensole	
Clock	O5	14
01	08	13
02	07	12
03	08	11
04	$0 \cdot 5$	10
$\mathrm{V}_{\text {SS }}$	Os	

Cloek	Output Enable	Strobe	Dote	Poralied Outints		Serial Outmut	
				01	ON_{N}	$0_{5}{ }^{*}$	O's
Γ	0	X	x	35	35	07	No Che.
I	0	\times	x	35	15	No Chg.	07
-	1	0	\times	No Cng.	No Cring.	07	No Cring.
Γ	1	1	0	0	$\mathrm{anc}_{\mathrm{n}-1}$	07	No Che.
Γ	1	1	1	1	$\mathrm{a}_{\mathrm{N}-1}$	07	No Chg.
(1	1	1	No Chg.	No Cris.	No Che.	07
$3 S=\text { Three-Stere }$ $\mathrm{X}=\mathrm{Don't}$ Care -At the positive clock edge, information in the 7th shift repiner stage is tranaferred to 08 and Qs .							

of HARRIS
 RF COMMUNICATIONS

8 HARRIS
 RF COMMUNICATIONS

MC145156

SERIAL INPUT PLL FREQUENCY SYNTHESIZER

The MC145156 is one of a family of LSI PLL frequency synthesizer parts from Motorola CMOS. The family includes devices having serial, parailel and 4 -bit data bus programmable inputs. Options include singleor dual-modulus capability, transmit/receive offsets, choice of phase detector types and choice of reference divider integer values.
The MC145156 is programmed by a clocked, serial input, 19-bit data stream. The device features consist of a reference oscillator, selectablereference divider, digital-phase detector, 10 -bit programmable divide-by- N counter, 7 -bit programmable + A counter and the necessary shift register and latch circuitry for accepting the serial input data. When combined with a loop fitter and VCO, the MC145156 can provide all the remaining functions for a PLL frequency synthesizer operating up to the device's frequency limit. For higher VCO frequency operation, a down mixer or a dual modulus prescaler can be used between the VCO and MC145156.

- General Purpose Applications -

CATV TV Tuning

AM/FM Radios Scanning Receivers

Two-Way Radios Amateur Radio

- Low Power Drain
- 3.0 to 9.0 Vdc Supply Range
- $>30 \mathrm{MHz}$ Typical Input Capability @ 5 Vdc
- 8 User Selectable Reference Divider Values - 8, 64, 128, 256 , 640, 1000, 1024, 2048
- On- or Off-Chip Reference Oscillator Operation with Buffered Output
- Lock Detect Signal
- Two Open-Drain Switch Outputs
- Dual Modulus/Serial Programming
- +N Range $=3$ to 1023
- "Linearized" Digital Phase Detector Enhances Transfer Function Linearity

CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

SERIAL INPUT PLL FREQUENCY SYNTHESIZER

L SUFFIX
CERAMIC PACKAGE CASE 72901

P SUFFIX
PLASTIC PACKAGE CASE 738-02

PIN ASSIGNMENT

MM74C02 Quad 2-Input NOR Gate

These logic gates employ complementary MOS (CMOS) to achleve wide power supply operating range, low power consumption, high noise immunity and symmetric controlled rise and fall times. With features such as this the 54 C 74 C logic family is close to ideal for use in digital systems.

All inputs are protected irom damage due to static discharge by diode clamps to V_{Cc} and GND.

Mm5ACO2/MMn74CO2

MM74C14 Hex Schmitt Trigger

The MM54C14/MM74C14 Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N and P-channel enhancement transistors. The positive and negative going threshold voltages, V_{T+} and $V_{T_{-}}$, show low variation with respect to temperature (typ. $0.0005 \mathrm{~V} /{ }^{\circ} \mathrm{C}$ at $\mathrm{V}_{C C}=10 \mathrm{~V}$), and hystere$\mathrm{sts}, \mathrm{V}_{T_{+}}-\mathrm{V}_{\mathrm{T}_{-}} \geqslant 0.2 \mathrm{~V}_{\mathrm{CC}}$ is guaranteed.
All inputs are protected from damage due to static discharge by diode clamps to V_{CC} and $G N D$.

80 HARRIS
 RF COMMUNICATIONS

MM74C373
 Octal Latch

General Description

The MM54C373/MM74C373, MM54C374/MM74C374 are integrated, complementary MOS (CMOS), 8-blt storage elements with TRI-STATE* outputs. These outputs have been specially designed to drive highly capacitive loads, such as one might find when driving a bus, and to have a fan-out of 1 when driving standard TTL. When a high logic level is applied to the OUTPUT DISABLE input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.
The MM54C373/MM74C373 is an 8bit latch. When LATCH ENABLE is high, the Q outputs will follow the D Inputs. When LATCH ENABLE goes low, data at the D inputs, which meets the set-up and hold time requirements, will be retained at the outputs until LATCH ENABLE returns high again.

Connection Diagram

80 HARRIS

RF COMMUNICATIONS

NE-SA594

VACUUM FLUORESCENT DISPLAY DRIVER

Abstract

DESCRIPTION The NE/SA594 is a display driver interface for vacuum fluorescent displays. The device is comprised of 8 drivers and a bias network and is capable of driving the digits and/or segments of most vacuum fluorescent displays.

The inputs are designed to be compatible with TTL, DTL, NMOS, PMOS or CMOS output circuitry. There is an active pull-down circuit on each output so that display ghosting is minimized and no external components are required for most fluorescent display applications.

N, f PACKAGE

NE-5534

single and dual low noise operational amplifien

DESCRIPTION

The 5533/5534 are dual and single highperformance low noise operational amplifiers. Compared to other operational amplifiers, such as TLO83, they show better noise performance, improved output drive capability and considerably higher small-signal and power bandwidths.

This makes the devices especially suitable for application in high quality and professional audio equipment, in instrumentation and control circuits and telephone channel amplifiers. The op amps are internally compensated for gain equal to. or higher than, three. The frequency response can be optimized with an external compensation capacitor for various applications (unity gain amplifier, capacitive load, slew-rate, low overshoot, etc.)

D,N,FE PACKAGE

EQUIVALENT SCHEMATIC

8 HARRIS
 RF COMMUNICATIONS

SN74LS42

4-LINE-TO-10-LINE DECODERS (1-0F-10)

description

These monolithic decimal decoders consist of eight inverters and ten four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Fult decoding of valid input logic ensures that all outputs remain off for all invalid input conditions.
The '42A, 'L42, and 'LS42 BCD-to-decimal decoders, the '43A and 'L43 excess-3-to-decimal decoders, and the ' $44 A$ and ' 44 excess-3-gray-todecimal decoders festure inputs and outputs that are compatible for use with most TTL and other siturated low-level logic circuits. D-c noise margins are typically one volt.

ALL TYPES decimal output									
0	1	2	3	4	5	6	7	8	9
L	H	H	H	H	H	H	H	H	H
H	1	H	H	H	H	H	H	H	H
H	H	L	H	H	H	H	H	H	H
H	H	H	L	H	H	H	H	H	H
H	H	H	H	L	H	H	H	H	H
H	H	H	H	H	L	H	H	H	H
H	H	H	H	H	H	L	H	H	H
H	H	H	H	H	H	H	L	H	H
H	H	H	H	H	H	H	H	1	H
H	H	H	H	H	H	H	H	H	L
H	H	H	H	H	H	H	H	H	H
H	H	H	H	H	H	H	H	H	H
H	H	H	H	H	H	H	H	H	H
H	H	H	H	H	H	H	H	H	H
H	H	H	H	H	H	H	H	H	H
H	H	H	H	H	H	H	H	H	H

80 HARRIS
 RF COMMUNICATIONS

SN74LS74N

DUAL D-TYPE POSITIVEEDGE.TRIGGERED FLIP-FLOOS WITH PRESET AND CLEAR

IMPUTS				OUTPUTS	
PAESET	Clean	Clock	0	0	$\bar{\square}$
L	H	x	x	H	L
H	L	x	x	L	H
L	L	x	X	H^{*}	H^{*}
H	H	t	H	H	L
H	H	1	L	L	H
H	H	1	\times	0_{0}	\square_{0}

SN74L90

DECADE, DIVIDE-BY-TWELVE, AND BINARY COUNTER

description

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the '90A, 'L90, and 'LS90, divide-by-six for the '92A and 'LS92, and divide-by-eight for the '93A, 'L93, and 'LS93.

All of these counters have a gated zero reset and the '90A. 'L90, and 'LS90 also have gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade, divide-by-twelve, or four-bit binary) of these counters, the B input is connected to the O_{A} output. The input count pulses are applied to input A and the outputs are as described in the appropriate function table. A symmetrical divide-by-ten count can be obtained from the '90A, 'L90, or 'LS90 counters by connecting the O_{D} output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output O_{A}.

thee Mese El				
COUNT	$0_{\text {a }}$	0_{0}	a_{c}	O_{8}
0	L	\downarrow	L	L
1		L	L	H
2		L	H	1
3		1	H	H
4		H	L	L
5		1	\llcorner	L
6	H	L	1	H
7		L	H	L
8		L	H	\cdots
9	H	H	1	1

-90A. 'L.0. 'LSOO

MEEET INPUTS				OUTPUT	
Rel1	$\mathrm{A}_{\text {(12) }}$	$\mathrm{A}_{\text {elal }}$	${ }^{\text {ne(2) }}$		$0_{c} a_{c} a_{B}$
M	H	L	X	-	$L L$
H	H	x	\downarrow		L L
x	x	H	H	H	L L H
x	L	x	1		COUNT
1	x	1	\times		COUNT
L	\times	\times			COUNT
X	L	1	\underline{x}		COUNT

NOTES: A. Output Q_{A} is connected to input B for BCD count
B. Ourout O_{D} is connected ro input A for bi-quinery count.
C. Output $Q_{\text {a }}$ is connected to input B.
D. $H=$ nigh lovel, $L=$ low level, $X=$ irrelevant

SN74LS122

RETRIGGERABLE MONOSTABLE MULTIVIBRATORS WITH CLEAR

imputs						OUTHUTS	
CLEAR		1	12	${ }^{1}$	${ }^{2}$	0	6
L			x	\times	x	1	H
x		H	H	\times	x	1	H
x		\times	\times	\downarrow	x	1	H
x		x	x	x	t	1	$\stackrel{ }{+}$
H		L	x.	\dagger	H	Ω	$\underline{\sim}$
H		L	\times	H	1	Ω	บ
H			6	+	H	Ω	บ
H		\mathbf{x}	L	H	t	Ω	บ
H		H	+	H	N	Ω	บ
H			\downarrow	H	H	Ω	บ
H		1	H	H	H	Ω	บ
\dagger			\times	H	H	Ω	บ
+			1	H	H	Ω	บ

NOTES: 1. An external timing cepecitor mey be connecred between $\mathrm{C}_{\text {ext }}$ and $\mathrm{R}_{\text {ext }} \mathrm{C}_{\text {ext }}$ (poditive).
2. For aceurate repeareble pula widthe, connect en external
 relstor between $\mathrm{R}_{\text {oxt }} / \mathrm{C}_{\text {oxt }}$ and $V_{\text {cc }}$ with $\mathrm{N}_{1 \mathrm{n}}$ open-eircuited.

sngent22 (J.w) SN74122 (J, N)
SNEAL122 (H, T) SN74L122 (J, N) SNEALS122 (J. W) SN74LS122 (J, N)
$\cdot 122 \ldots R_{\text {int }}=10 \mathrm{k} \Omega$ NOM
-L122... R R int $=20 \mathrm{k} \Omega$ NOM
'LS122 . . . R int $=10 \mathrm{k} \Omega$ NOM

SN74LS138

DECODER/DEMULIPLEXER

description

These Schottiky-clamped TTL MSI circuits are designed to be used in high-performance memorydecoding or data-routing applications requiring very short propegation delay times. In high-performance memory systems these decoders can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fastenable circuit the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory This means that the effective system delay introduced by the Schottky-clamped systern decoder is negligible.

The 'LS138 and 'S138 decode one-ofeight lines dependent on the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24 -line decoder can be implemented without external inverters and a 32 -line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

INPUTS					OUTPUTS							
ENABLE		SELECT										
61	G2*	c	B	A	Yo	V1	Y2	Y3	Y4	Y6	Y6	Y7
X	H	x	X	X	H	H	H	H	H	H	H	H
L	X	X	X	x	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	H	H	L	H	H	H		H	H
H	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	H	L	H	H
H	L	H	H	L	H	H	H	H	H	H	1	H
H	L	H	H	H	H	H	H	H	H	H	H	L
- G2	G2A	02										

7 HARRIS
 RF COMMUNICATIONS

SN74165

PARALLEL-LOAD 8-BT SHIFT REGISTERS

- Complementary Outputs
- Direct Overriding Load (Data) Inputs
- Gated Clock Inputs
- Parallel-to-Serial Data Conversion

TYPICAL MAXIMUM TYPICAL
TYPE CLOCK FREQUENCY POWER DISSIPATION

26 MHz

210 mW
'LS166
35 MHz
105 mW

description

The '165 and 'LS 165 are 8-bit serial shift registers that shift the data in the direction of Q_{A} toward O_{H} when clocked. Parallel-in access to each stage is made available by eight individual direct data inputs
 that are enabled by low level at the shift/load input. These registers also feature gated clock inputs and complementary outputs from the eighth bit. All inputs are diode-clamped to minimize transmissior-line effects, thereby simplifying system design.

Clocking is accomplished through a 2 -input positive-NOR gate, permitting one input to be used as a clock-inhibit function. Holding either of the clock inputs high inhibits clocking and holding either clock input low with the shif/load input high enables the other clock input. The clock-inhibit input should be changed to the high level only while the clock input is high. Paralled loading is inhibited as long as the shift/load input is high. Data at the parallel inputs are loaded directly into the register on a high-to-low transition of the shift/load input independently of the levels of the clock, clock inhibit, or serial inputs.

INPUTS					INTERNAL OUTPUTS		OUTPUT 0_{H}
$\begin{aligned} & \text { SHIFT/ } \\ & \text { LOAD } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { CLOCK } \\ \text { INHIBIT } \\ \hline \end{array}$	CLOCK	SERIAL	PARALLEL			
		clock	SEniAL	A...H	$\mathbf{O A}_{\text {A }}$	0_{8}	
L	X	X	X	a...h	-	b	n
H	L	L	X	\mathbf{x}	$Q_{\text {AO }}$	0_{80}	O_{HO}
H	L	+	H	x	H	$Q_{A n}$	O_{G}
H	L	\uparrow	L	x	t	$Q_{A n}$	$0_{\text {Gn }}$
H	H	X	\mathbf{x}	X	$Q_{\text {AO }}$	O_{80}	O_{HO}

'LS165

EOUIVALENT OF EACH INPUT Porglad ingurs. enviel ment: $\mathrm{A}_{\mathrm{ma}}-24 \mathrm{kn} \mathrm{MOM}$ stiftheod: $\mathrm{nem}_{\mathrm{ma}}-5.7 \mathrm{kn} \mathrm{NOM}$	TYPICAL OF BOTH OUTPUTS

8 HARRIS
 RF COMMUNICATIONS

If HARRIS RF COMMUNICATIONS

SN74LS168A

SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

Programmable Look-Ahead Up/Down Binary/Decade Counters

- Fully Synchronous Operation for Counting and Programming
- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Fully Independent Clock Circuit

TYPE	TYPICAL MAXIMUM CLOCK FREQUENCY		TYPICAL POWER DISSIPATION
	COUNTING UP	COUNTING DONN	
LS1e8A, LSI6AA -5168, 's160	35 MHz 70 MHz	36 MHz 55 MHz	100 mW 500 mW

description

These synctronous presettable counters teature an internal carry look-ahead for cascading in high-speed counting applications. The 'LS168A and 'S168 are decade counters and the 'LS169A and S169 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed thy the countenable inputs and internal gating. This mode of operation helps eliminate the output counting spikes that are normally associated with asynchronous (ripple-clock) counters. A buffered clock input triggers the four master-slave flip-flops on the rising (positive-going) edge of the elock waveform.

These counters are fully programmable; that is, the outputs may each be preset to either level. The load input circuitry allows loading with the carry-enable output of cascaded counters. As loading is synchronous, setting up a low level at the load input disables the counter and causes the outputs to sgree with the data inputs after the next clock pulse.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional geting. Instrumental in accomplishing this function are two countenable inputs and a carry output. Both count enable inputs (\bar{P} and \bar{f}) must be low to count. The direction of the count is determined by the level of the up/down input. When the input is high, the counter counts up; when low, it counts down. Input T is fed forward to enable the carry output. The carry output thus enabled will produce a low-tevel output pulse with a duration approximately equal to the high portion of the Q_{A} output when counting up and approximately equal to the low portion of the Q_{A} output when counting down. This low-level overflow carry pulse can be used to enable successive cascaded stages. Transitions at the enable \bar{P} of \bar{T} inputs are allowed regardiess of the level of the clock input. All inputs are diode-clamped to minimize transmission-line effects.

These counters feature a fully independent clock circuit. Changes at control inputs (enable $\overline{\mathrm{P}}$, enabie $\overline{\mathrm{T}}$, load, up/down) that will modity the operating mode have no effect until clocking occurs. The function of the counter (whether ensbled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable satup and hold times.

H HARRIS

SN74LS244

OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS

These octal buffers and line drivers are designed epecifically to improve both the performanct and density of threestate memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The designer has a choice of selected combinations of imverting and noninverting outpubs, symmetrical \mathbf{G} (sctivelow output control) inputs, and complementary G and \mathbf{E} inputs. These devices feature high fan-out, improved fan-in, and $400-\mathrm{mV}$ noise-margin. The SN74LS' and SN74S' can be used to drive terminated lines down to 133 ohms.

OD HARRIS
 RF COMMUNICATIONS

SW7415245
 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

dewcription

These octal bus transcesivers are designed for seynchronous wo-way communication berween data buces. The control function implementation minimizes external timing requiremens.

The device allows date transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic loval at the direction control (DIR) input. The enable input (\bar{G}) can be ued to dissble the devices so that the buses ere effectively isclated.

$\begin{gathered} \text { EMABLE } \\ 8 \end{gathered}$	DIRECTION CONTROL DIR	OPEAATION
L	L	B dates to A bus
L	H	A dites to li bus
H	X	Inctation

SN74LS373, SN74LS374
 OCTAL D-TYPE TRAMSPARENT LATCHES AND EDGE-TRIGGERED FLIP-FLOPS

'LE973. 8373
FUNCTION TABLE

OUTPUT	ENASLE	O	OUTHUT
CONTROL	O		
L	H	H	H
L	H	L	L
L	L	X	O_{0}
H	X	X	Z

'L8374, 8374
FUNCTION TABLE

OUTHUT	CLOCR	D	OUTMUT
CONTHOL	CLO	H	H
L	T	L	L
L	L	X	O_{0}
H	X	X	2

These 8-bit registers feature totem-pole three-state outputs designed specifically for driving highly-capacitive or relatively tow-impedance loads. The high-impedance third state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are partioularly attractive for implementing buffer registers, $1 / 0$ ports, bidirectional bus drivers, and working registers.
The eight latches of the 'LS373 and 'S373 are transparent D-type latches meaning that while the enabie (G) is high the Q outputs will follow the data (D) inputs. When the enable is taken low the output will be latched at the level of the data that was setup.

SAY-1

Super High Level (+23 dBm LO) DOUBLE-BALANCED MIXERS

SAY SERIES

DESCRIPTION — High-level RF input capability coupled with ultra-low distortion, octaves of bandwidth, and reasonably good conversion loss make the SAY series obvious choices for applications in ECM receivers, spectrum analyzers, and field radios.
Housed in a miniature RFI shielded metal enciosure, these tiny units occupy a volume of only 0.128 cubic inches. The SAY series mixers are constructed to meet the requirements of MIL-M-28837/1A. Internally every unit is encapsulated with silicone rubber in order to withstand high shock, vibration, and acceleration environments.
These mixers offer two-tone, third order intermodulation products that are typically 70 dB below the desired IF level (each tone is set at 0 dBm and the LO drive is at +23 dBm). (each tone is set at 1 dBm and the conversion compression point occurs at an RF level of +20 dBm .

CONNECTIONS
rop view

Letter M over pin 2
Letter m over pin bead pial
Blue

BOTTOM VIEW

SBL-1

Standard Level (+7 dBm LO)
 DOUBLE-BALANCED MIXERS

CONNECTIONS

LETTER M OVER PIN 2
(BLUE BEAD PIN 1 SBL-IX ONLY)
MCL

TOP VIEW

BOTTOM VIEW

SRA-1
Standard Level (+7dBm LO) DOUBLE-BALANCED MIXERS

DESCRIPTION - Having a volume of only .128 cu . inches, the SRA series covers a very broad frequency range from 500 Hz to 2000 MHz . These rugged units provide low conversion loss, 6 dB , high isolation, 40 dB , and exceptional unit to unit matched performance.
Packaged within an RFI shielded metal enclosure and hermetically sealed header, these high performance units have their pins oriented on a 0.2 inch grid.
Only well matched hot-carrier diodes and ruggedly constructed transmission line transformers are used. Internally, every component is bonded to the header and case with silicone rubber to provide super reliable protection against shock, vibration and acceleration.

CONNECTIONS

TOP VIEW

Letter M over pin 2 Blue bead pin 1

TL072

LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

description

The JFET-input operational amplifiers of the TLO71 series are designed as low-noise versions of the TLO81 series amplifiers with low input bias and offset currents and fast slew rate. The low harmonic distortion and low noise make the TLO71 series ideally suited as amplifiers for high-fidelity and audio preamplifier applications. Each amplifier features JFET-inputs (for high input impedance) coupled with bipolar output stages all integrated on a single monolithic chip.

HO HARRIS
 RF COMMUNICATIONS

11C44

Phase/Frequency Detector

GENERAL DESCRIPTION - The 11C44 contains a Phase/Frequency Detector, a Phase Detector, a Charge Pump, and an Amplifier The Phase/Frequency Detector accepts TTL signals representing a Reference Frequency (RF) and a Variable Frequency (VF), compares the relative timing of their negative going transitions, and generates either an UP (U1) or a DOWN (D1) signal whose duration is equal to the RF-VF timing difference. When the RF and VF signals have the same frequency, the Phase Detector outputs U2 and D2 provide binary signals whose duty cycles are proportional to the phase angle between RF and VF. The Charge Pump can be driven from U1 and D1 or U2 and D2, and has three possible output states representing CHARGE, DISCHARGE, and HOLD instructions when applied to an integrator. The Amplifier is a Darlington transistor with grounded emitter and uncommitted collector and base. The $11 \mathrm{C44}$ thus contains several of the functional elements used in phase-locked loop applications

FUNCTIONS

RF - Reference Frequency Input
VF - Variable Frequency Input
U1, D1 - Phase/Frequency Detector Outputs
U2, D2 - Phase Detector Outputs

PU, PD - Charge Pump Inputs
UF, DF - Charge Pump Outputs
A - Amplifier Input
B - Amplifier Output

LOGIC DIAGRAM AND SCHEMATIC

\% HARRIS
 RF COMMUNICATIONS

enhanced programmable communications interface (EPCI)

DESCRIPTION

The Signetics 2661 EPCl is a universal synchronous/asynchronous data communications controlle. chip that is an enhanced pin compatible version of the 2651. It interfaces directly to most 8-bit microprocessors and may be used in a polled or interrupt driven system environment. The 2661 accepts programmed instructions from the microprocessor while supporting many serial data communications disciplines synchronous and asynchronous - in the full or half-duplex mode. Special support for BISYNC is provided.
The EPCI serializes parallel data characters received from the microprocessor for transmission. Simultaneously, it can receive serial data and convert it into parallel data characters for input to the microcomputer.

The 2661 contains a baud rate generator which can be programmed to either accept an external clock or to generate internal transmit or receive clocks. Sixteen different baud rates can be selected under program control when operating in the internal clock mode. Each version of the EPCI ($-1,-2,-3$) has a different set of baud rates.

The EPCI is constructed using Signetics n-channel silicon gate depletion load technology and is packaged in a 28-pin DIP.

PIN DESIGNATION

PIN NO.	SYMBOL	NAME AND FUNCTION	TYPE
27.28,1.			
2.5-8	$\mathrm{D}_{0}-\mathrm{D}_{7}$	8-bit data bus	$1 / 0$
21	RESET	Reset	1
12,10	$A_{0}-A_{1}$	Internal register select lines	1
13	$\overline{\mathbf{R}} / \mathbf{W}$	Read or write command	1
11	$\overline{C E}$	Chip enable input	1
22	$\overline{\text { DSR }}$	Data set ready	1
24	DTR	Data terminal ready	0
23	ATS	Request to send	0
17	CTS	Clear to send	1
16	$\overline{\text { DCD }}$	Data carrier delected	1
18	TXEMT/ $\overline{\text { DSCHG }}$	Transmitter empty or data set change	0
9	$\overline{\mathrm{TXC}}$ / XSYNC	Transmitter clock/external SYNC	1/0
25	$\overline{\mathrm{RXC}} / \mathrm{BKDET}$	Receiver clock / break detect	1/0
19	TxD	Transmitter data	0
3	RxD	Peceiver data	1
15	$\overline{\text { TXRDY }}$	Transmitter ready	\bigcirc
14	$\overline{R \times R D Y}$	Receiver ready	0
20	BRCLK	Baud rate generator clock	1
26	$V_{\text {CC }}$	+5V supply	1
4	GND	Ground	1

2716

$16 \mathrm{~K}(2 \mathrm{~K} \times 8)$ UV ERASABLE PROM

- Fast Access Time
- 350 ns Max. 2716.1
- 390 ns Max. 2716-2
- 450 ns Max. 2716
- 650 ns Max. 2716-6
- Single +5 V Power Supply
- Low Power Dissipation
- 525 mW Max. Active Power
- 132 mW Max. Standby Power
- Pin Compatible to Intel ${ }^{\star} 2732$ EPROM
- Simple Programming Requirements
- Single Location Programming
- Programs with One 50 ms Pulse
- Inputs and Outputs TTL Compatible during Read and Program
- Completely Static

The Intel ${ }^{(6)} 2716$ is a 16,384 -bit ultraviolet erasable and electrically programmable read-only memory (EPROM). The 2716 operates from a single 5 -volt power supply, has a static standby mode, and features fast single address location program. ming.
The 2716, with its single 5 -volt supply and with an access time up to 350 ns , is ideal for use with the newer high performance +5 V microprocessors such as Intel's 8085 and 8086 . The 2716 is also the first EPROM with a static standby mode which reduces the power dissipation without increasing access time. The maximum active power dissipation is 525 mW while the maximum standby power dissipation is only 132 mW , a 75% savings.

PIN NAMES

MODE SELECTION

Pins MODE	$\overline{C E}$ /pam (18)	$\begin{gathered} \overline{O E} \\ 120, \end{gathered}$	Vpe 121)	vcc (2a)	OUTMTS (811, 1317)
Ausd	$v_{\text {IL }}$	$v_{\text {IL }}$	+5	+5	Pout
Stencor	$V_{\text {IH }}$	Donit core	+5	+5	Mipn 2
Provem	Pulsed $V_{11} 10 V_{10}$	$\mathrm{vim}_{\text {I }}$	+25	+ 5	Din
Propem Verity	$v_{1 L}$	$V_{\text {IL }}$	+25	+5	Oout
Propem innitit	$v_{1 L}$	$V_{1 /}$	*25	+5	Miph 2

BLOCK DIAGRAM

of HARRIS
 RF COMMUNICATIONS

2732
32K (4K x 8) UV ERASABLE PROM

- Fast Access Time:
- 450 ns Max. 2732
- 550 ns Max. $2732 \cdot 6$
- Single $+5 \mathrm{~V} \pm 5 \%$ Power Supply
- Output Enable for MCS-85™ ${ }^{\text {™ }}$ and MCS-86 ${ }^{\text {™ }}$ Compatibility
- Low Power Dissipation: 150 mA Max. Active Current 30 mA Max. Standby Current
- Pin Compatible to Intel 2716 EPROM
- Completely Static
- Simple Programming Requirements
- Single Location Programming
- Programs with One 50ms Pulse
- Three-State Output for Direct Bus Interface

The Intel 2732 is a 32.768 -bit ultraviolet erasable and electrically programmable read-only memory EPROM. The 2732 operates from a single 5 -volt power supply, has a standby mode, and features an output enable control.

An important 2732 feature is the separate output control. Output Enable $\overline{\mathrm{OE}}$, from the Chip Enable control $\overline{\mathrm{CE}}$, The $\overline{\mathrm{OE}}$ control eliminates bus contention in multiple bus microprocessor systems.

The 2732 has a standby mode which reduces the power dissipation without increasing access time. The maximum active current is 150 mA , while the maximum standby current is only 30 mA , an 80% savings. The standby mode is achieved by applying a TTL-high signal to the $\overline{C E}$ input.

PIN CONFIGURATION

PIN NAMES

$A_{0}-A_{11}$	ADORESSES
$\overline{C E}$	CHIP ENABLE
$\overline{\sigma E}$	OUTPUT ENABLE
$O_{0}-O_{7}$	OUTPUTS

MODE SELECTION

	$\overline{\mathrm{CE}}$ (18)	$\delta E / N_{p}$ (20)	$\begin{aligned} & v_{c c} \\ & (24) \end{aligned}$	OUTPUTS (9.11.13-17)
Read	V_{12}	$\mathrm{V}_{\text {IL }}$	+5	Dout
Standby	$V_{\text {IH }}$	Don't Care	+5	High Z
Program	$v_{\text {IL }}$	VPP	+5	Din
Program Verity	$V_{\text {IL }}$	$V_{\text {IL }}$	+5	Dout
Program Inhibit	$V_{\text {IH }}$	$V_{\text {Pp }}$	+5	High 2

BLOCK DIAGRAM

HARRIS
 RF COMMUNICATIONS

8035

SINGLE COMPONENT 8-BIT MICROCOMPUTER

*8048 Mask Programmable ROM
 *8748 User Programmable/Erasable EPROM *8035 External ROM or EPROM

- 8-Bit CPU, ROM, RAM, I/O in Single Package
- Interchangeable ROM and EPROM Versions
- Single 5V Supply
$2.5 \mu \mathrm{sec}$ and $5.0 \mu \mathrm{sec}$ Cycle Versions All Instructions 1 or 2 Cycles.
- $1 \mathrm{~K} \times 8$ ROM/EPROM
64×8 RAM
27 I/O Lines
- Interval Timer/Event Counter
- Easily Expandable Memory and I/O
- Compatible with $\mathbf{8 0 0 0}$ Series Peripherals
- Single Level Interrupt
- Over 90 Instructions: 70\% Single Byte

The Intelब 8048/8748/8035 is a totally self-sufficient 8 -bit parallel computer fabricated on a single silicon chip using Intel's N -channel silicon gate MOS process.
The 8048 contains a $1 K \times 8$ program memory, a 64×8 RAM data memory, 27 I/O lines, and an 8 -bit timer/counter in addition to on board oscillator and clock circuits. For systems that require extra capability, the 8048 can be expanded using standard memories and 8000 series peripherals. The 8035 is the equivalent of an 8048 without program memory.

This microprocessor is designed to be an efficient controller as well as an arithmetic processor. The 8048 has extensive bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memory results from an instruction set consisting mostly of single byte instructions and no instructions over two bytes in length.

PIN CONFIGURATION

LOGIC SYMBOL

BLOCK DIAGRAM

PIN DESCRIPTION

Designation	Pin \#	Function	Designation	Pin \#	Function
$V_{\text {SS }}$	20	Circuit GND potential	$\overline{\overline{R D}}$	8	Output strobe activated during a
$V_{\text {DO }}$	26	Programming power supply; +25V during program, +5 V during operation for both ROM and PROM.			BUS read. Can be used to enable data onto the BUS from an external device.
		Low power standby pin in 8048 ROM version.			Used as a Read Strobe to External Data Memory. (Active low)
$V_{c c}$	40	Main power supply; +5 V during operation and programming.	RESET	4	Input which is used to initialize the processor. Also used during PROM
PROG	25	Program pulse (+25 V) input pin during 8748 programming.			programming verification, and power down. (Active low)
		Output strobe for 8243 I/O expander.	$\overline{W R}$	10	Output strobe during a BUS write. (Active low)(Non TTL $V_{1 H}$)
P10-P17 Port 1 P20-P27 Port 2	27-34	8 -bit quasi-bidirectional port.			Used as write strobe to External Data Memory.
	21.24	8-bit quasi-bidirectional port.	ALE	11	Address Latch Enable. This signal
	35-38	P20-P23 contain the four high order program counter bits during an external program memory fetch and serve as a 4-bit I/O expander bus for 8243			occurs once during each cycle and is useful as a clock output. The negative edge of ALE strobes address into external data and program memory.
$\begin{aligned} & \mathrm{DB}_{0}-\mathrm{DB}_{7} \\ & \mathrm{BUS} \end{aligned}$	12-19	True bidirectional port which can be written or read synchronously using the $\overline{R D}, \overline{W R}$ strobes. The port can also be statically latched. Contains the 8 low order program counter bits during an external program memory fetch, and receives the addressed instruction under the control of PSEN. Also contains the address and data during an external RAM data store instruction, under control of ALE, $\overline{R D}$, and $\overline{W R}$.	PSEN	9	Program Store Enable. This output occurs only during a fetch to external program memory. (Active low)
			$\overline{\text { SS }}$	5	Single step input can be used in conjunction with ALE to "single step" the processor through each instruction. (Active low)
			EA	7	External Access input which forces all program memory fetches to reference external memory. Useful for emulation and debug, and
T0	1	Input pin testable using the conditional transfer instructions JTO			essential for testing and program verification. (Active high)
		and JNTO. TO can be designated as a clock output using ENTO CLK instruction. TO is also used during programming.	XTAL1 XTAL2	2 3	One side of crystal input for internal oscillator. Also input for external source. (Not TTL Compatible) Other side of crystal input.
T1	39	Input pin testable using the JT1. and JNT 1 instructions. Can be designated the timer/counter input using the STRT CNT instruction.			
$\overline{\text { INT }}$	6	Interrupt input. Initiates an interrupt if interrupt is enabled. Interrupt is disabled after a reset. Also testable with conditional jump instruction. (Active low)			

8085A/8085A-2 SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSORS

- Single $+5 V$ Power Supply
- 100\% Software Compatible with 8080A
- $1.3 \mu \mathrm{~s}$ Instruction Cycle (8085A); $0.8 \mu \mathrm{~s}$ (8085A-2)
- On-Chip Clock Generator (with External Crystal, LC or RC Network)
- On-Chip System Controller; Advanced Cycle Status Information Avallable for Large System Control

Four Vectored Interrupt Inputs (One is
non-Maskable) Plus an 8080A-
compatible interrupt
Serial In/Serial Out Port
Decimal, Binary and Double Precision
Arithmetic
Direct Addressing Capability to 64k
Bytes of Memory

The Intele 8085A is a complete 8 bit paraliel Central Processing Unit (CPU). Its instruction set is 100% software compatible with the 8080A microprocessor, and it is designed to improve the present 8080A's performance by higher system speed. Its high level of system integration allows a minimum system of three IC's (8085A (CPU). 8156 (RAM/IO) and 8355/8755A (ROM/PROM/IO)] while maintaining total system expandability. The 8085A-2 is a faster version of the 8085A.
The 8085A incorporates all of the features that the 8224 (clock generator) and 8228 (system controlier) provided for the 8080A, thereby offering a high level of system integration.
The 8085A uses a multiplexed data bus. The address is split between the 8 bit address bus and the 8 bit data bus. The on-chip address latches of $8155 / 8156 / 8355 / 8755 A$ memory products allow a direct interface with the 8085A.

Flgure 1. 8085A CPU Functional Block Diagram

8155/8156/8155-2/8156-2

 2048 BIT STATIC MOS RAM WITH I/O PORTS AND TIMER256 Word x 8 Bits
Single +5V Power Supply
Completely Static Operation
- Internal Address Latch
- 2 Programmable 8 Bit I/O Ports

- 1 Programmable 6-Bit I/O Port
* Programmable 14-Bit Binary Counter/ Timer
Compatible with 8085A and 8088 CPU
- Multiplexed Address and Data Bus
40 Pin DIP

The 8155 and 89156 are RAM and $1 / O$ chips to be used in the $8085 A$ and 8088 microprocessor systems. The RAM portion is designed with 2048 static cells organized as 256×8. They have a maximum access time of 400 ns to permit use with no wait states in 8085A CPU. The 8155-2 and 8156-2 have maximum access times of 330 ns for use with the 8085A-2 and the full speed 5 MHz 8088 CPU .
The $1 / O$ portion consists of three general purpose $1 / O$ ports. One of the three ports can be programmed to be status pins, thus allowing the other two ports to operate in handshaka mode.
A 14-bit programmable counter/timer is jalso included on chip to provide either a square wave or terminal count pulse for the CPU system depending on timer mode.

PIN CONFIGURATION

BLOCK DIAGRAM

8155/8155-2 = $\overline{C E}, 8156: 8156.2=C E$

id HARRIS

RF COMMUNICATIONS

8155/8156 PIN FUNCTIONS

Symbol	Eunction
RESET tinput !	Pulse provided by the 8085A to initialize the system coonnect to 8085A RESET OUT . Input high on this line resets the chip and initializes the three I/O ports to input mode. The width of RESET pulse should typically be two 8085A clock cycle times.
$A D_{0-7}$ (input)	3-state Address/Data lines that interface with the CPU lower 8-bit Address/Data Bus. The 8-bit address is latched into the address lateh inside the 8155/56 on the falling edge of ALE. The address can be either for the memory section or the $1 / O$ section depending on the $10 / \bar{M}$ input. The 8 -bit data is either written into the chip or read from the chip. depending on the $\overline{W R}$ or $\overline{R D}$ input signal.
CE or $\overline{\mathbf{C E}}$ (input)	Chip Enable: On the 8155, this pin is $\overline{C E}$ and is ACTIVE LOW. On the 8156, this pin is CE and is ACTIVE HIGH.
RO (input)	Read control: Input low on this line with the Chip Enable active enables and $A D_{0-7}$ buffers. If $10 / \bar{M}$ pin is low, the RAM content will be read out to the AD bus. Otherwise the content of the setected I/O port or command/ status registers will be read to the AD bus.
$\overline{W R}$ input,	Write control: Input low on this line with the Chip Enable active causes the data on the Address/Data bus to be written to the RAM or I/O ports and command/status register depending on $10 / \bar{M}$.

Symbol	Eunction
ALE input	Address Latch Enable: This control signal latches both the address on the $A D_{0-7}$ lines and the state of the Chip Enable and $10 / \bar{M}$ into the chip at the falling edge of ALE.
$10 / \bar{M}$ (input)	Selects memory if low and I/O and command/status registers if high.
PAO-718) (input/output)	These 8 pins are general purpose $1 / 0$ pins. The in/out direction is selected by programming the command register.
PBo-718, (input/output)	These 8 pins are general purpose I/O pins. The in/out direction is selected by programming the command register.
PCo-5161 (input/output)	These 6 pins can function as either input port, output port, or as control signals for PA and PB. Programming is done through the command register. When PC_{0-5} are used as control signals, they will provide the following: PCo - A INTR (Port A interrupt) $P C_{1}-A B F$ (Port A Buffer Full) $\mathrm{PC}_{2}-\overline{\mathrm{A} S T B}$ (Port A Strobe) PC_{3} - B INTR (Port B Interrupt) $\mathrm{PC}_{4}-\overline{\mathbf{B}} \overline{\mathrm{BF}}$ (Port B Buffer Full) PCs - B STB (Port B Strobe)
TIMER IN (input)	Input to the counter-timer.
TIMER OUT coutput,	Timer output. This output can be either a square wave or a pulse depending on the timer mode.
Vcc	+5 volt supply.
Vss	Ground Reference.

8 HARRIS

RF COMMUNICATIONS

8255A/8255A-5

PROGRAMMABLE PERIPHERAL INTERFACE

- MCS. $85^{\text {TM }}$ Compatible 8255A. 5
- 24 Programmable I/O Pins.
- Completely TTL Compatible
- Fully Compatible with Intel Microprocessor Families
- Improved Timing Characteristics
- Direct Bit Set/Reset Capability Easing Control Application Interface
- 40-Pin Dual In-Line Package
- Reduces System Package Count
- Improved DC Driving Capability

The intel 8255A is a general purpose programmable I / O device designed for use with intel microprocessors. It has 24 I/O pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. In the first mode (MODE 0), each group of 12 IIO pins may be programmed in sets of 4 to be input or output. In MODE 1, the second mode, each group may be programmed to have 8 lines of input or output. Of the remaining 4 pins, 3 are used for handshaking and interrupt control signals. The third mode of operation (MODE 2) is a bidirectional bus mode which uses 8 lines for a bidirectional bus, and 5 lines, borrowing one from the other group, for handshaking.

PIN CONFIGURATION

PIN NAMES

0, -0,	data Bus iel oinectiomall
atset	RESET INWUT
E	CMIF SELECT
W6	MEAD INUT
Wh	WRTTE IWMT
4.41	POAT ADOAESS
PA7Pa	Pont a chtit
Molme	mont Eimity
PCTMC	POMT C Iatil
$V_{\text {oc }}$	s vals
0×0	901Ts

8255A BLOCK DIAGRAM

H HARRIS
 RF COMMUNICATIONS

TABLE OF CONTENTS

Paragraph Page
1
2 Interface Connections 1
3 Circuit Description 2
3.1 Low Pass Filter (LPF) Circuit 2
3.2 Protection Circuits 2
3.2.1 Transient Protection 2
3.2.2 Steady State Protection 3
3.3 Mute Circuitry 3
$3.4 \quad$ BITE Circuitry 3
3.4.1 BITE Signal Generation 4
3.4.2 BITE Detection 4
3.4.2.1 Relay K1 Test Circuits 4
3.4.2.2 A1 Signal Path Test Circuits 4
4 Maintenance 5
4.1 BITE Oscillator Adjustments/Test 5
4.2 Overload Adjustments/Test 6
5 Parts List 6
6 Schematic Diagram 6
LIST OF FIGURES
Figure Page
Input Filter Assembly A1 Functional Block Diagram
Typical A1 LPF Characteristic 2 5

A1 BITE Oscillator Test Setup

A1 BITE Oscillator Test Setup
A1 Overload Adjustment Test Setup
A1 Overload Adjustment Test Setup 6 6
2
2
10
4 Input Filter Assembly A1 Component Location Diagram (10073-5100) 11
Input Filter Assembly A1 Schematic Diagram (10073-5101, Rev. F) 5
LIST OF TABLES

Table

Table

Table Page Page Page

1

1

1 A1 Input Filter Assembly Interface Connections A1 Input Filter Assembly Interface Connections A1 Input Filter Assembly Interface Connections 1 1 1
2
2
2 7 7 7LSTOFTABLES

HARRIS RF COMMUNICATIONS

Input Filter Assembly A1 Functional Block Diagram

80 HARRIS rf COMMUNICATIONS

1. GENERAL DESCRIPTION

Input Filter Assembly A1 performs two primary functions:
a. RF signal filtering above the desired receiver input range of 10 kHz to 30 MHz . Specifically, the first IF signal at 40.455 MHz , and the image band at 80.920 to 110.910 MHz .
b. Protection from high level input signals (1.5 to 70 Vrms) which could damage receiver front end circuits.

Additionally, BITE signal generation, A1 BITE detection, and receiver muting also occur on the A1 Assembly.

RF input signals arrive at J 1 from rear panel connector J 1 , Antenna Input. RF output signals feed from J 3 to First Converter Assembly A2. Total module gain from input to output is nominally 0 dB .

2. INTERFACE CONNECTIONS

Table 1 details the various input/output connections and any relevant data.
Table 1. A1 Input Filter Assembly Interface Connections

Connector	Function	Characteristics
J1	RF INPUT	$10 \mathrm{kHz}-30 \mathrm{MHz}, \mathrm{Zo}=50$ ohms
J2-1	Power	-15 Vdc at 20 mA
J2-2	Power	+15 Vdc at 200 mA
J2-3	External Mute	Same as Internal Mute
J2-4	Internal Mute	$+5 \mathrm{Vdc}=$ relay contacts open, $0 \mathrm{Vdc}=$ relay contacts closed
J2-5	$\overline{\text { Relay Test }}$	Relay Test Line, $0 \mathrm{Vdc}=+7.5 \mathrm{Vdc}$ applied to K 1 contacts $+5 \mathrm{Vdc}=0 \mathrm{Vdc}$ applied to K 1 contacts
J2-6	Bite Oscillator Enable	Bite Oscillator Enable Line, $\quad+5 \mathrm{Vdc}=$ oscillator on $0 \mathrm{Vdc}=$ oscillator off
J2-7	Antenna Overload Output	3.5 Vdc output for 1.5-70 Vrms input
J2-8	Index	
J2-9	BITE Detector Output	BITE signal test: 2.5 Vdc nominally for ac or dc BITE tests
J2-10	GND	
J3	RF Output	$10 \mathrm{kHz}-30 \mathrm{MHz}, \mathrm{Zo}=50 \mathrm{ohms}$

Of HARRIS
 RF COMMUNICATIONS

3. CIRCUIT DESCRIPTION

3.1 Low Pass Filter (LPF) Circuit

The LPF was designed for a passband of 10 kHz to 30 MHz , a total insertion loss of less than $1 / 2 \mathrm{~dB}$ (nominally), and an SWR of 1.1:1.

The LPF image rejection desired of $>100 \mathrm{~dB}$ is required since the RF-590 image band of 80.920 MHz to 110.910 MHz encompasses U.S. TV channels 5, 6, and the FM band. To accomplish this, a ninth order Elliptic function filter is cascaded with a fifth order Chebishev function filter. The first null of the Elliptic filter was chosen at the first IF (40.455 MHz), and the Chebishev filter is used to flatten out the stop band characteristics of the Elliptic filter. See figure 1 for a typical A1 LPF characteristic. The -3 dB cutoff frequency is approximately 31.5 MHz .

Figure 1. Typical A1 LPF Characteristic

3.2 Protection Circuits

Two protection circuits are employed on the A1 assembly and respond to the two possible types of overload conditions: transient and steady state.

3.2.1 Transient Protection

Upon initial application of an overload condition, a transient signal may pass through the LPF before relay K1 can deenergize. This transient is clamped at a maximum level of 8 Vpp by CR1-CR4 and CR24-CR27 before leaving the assembly. This allows temporary protection until the relay control circuits can activate

5 HARRIS RF COMMUNICATIONS

in the presence of a steady state signal. Also, certain types of overloads are basically transient in nature, and it may not be desirable to disturb the signal path by deenergizing K1.

3.2.2 Steady State Protection

Under no RF input conditions at J1, CR5-CR8, R40, and CR9-CR12, R5 bias U1A (-) input to nominally 0 Vdc . This value is less than the positive potential set by R7, Overload Adjust, at U1A (+), so U1A output at pin 8 will be high (+15 Vdc). Consequently, CR14 is reverse biased, and R10 supplies base current to Q 3 , turning Q 3 and relay K1 on.

When an RF signal is received at J 1 , a portion is tapped off by voltage divider network $\mathrm{C} 3-\mathrm{C} 9$ and detected by the diode string CR5-CR12. This raises the potential at U1A (-). When this level exceeds the trip point set by R 7 (corresponding to approximately 1.5 Vrms ac at J 1), U1A output swings low (-15 Vdc) and forward biases CR14. This removes base drive to $\mathrm{Q} 3 . \mathrm{Q} 3$ turns off and the relay deenergizes, breaking the RF signal path into the receiver. Hysteresis around U1A holds the relay deenergized until the RF input drops at least 10 dB .

Under overload conditions, the low output at U1A causes U1B output to swing high (+15 Vdc). This forward biases CR29. Voltage divider/clamp network R18, R21, R37, and CR22 provide a TTL logic high signal ($\approx 4 \mathrm{Vdc}$) to detection circuitry on Control Board A14. This in turn causes the RF-590 front panel display to read out the message ANTENNA OVERLOAD. This disables all front panel controls until the overload condition is removed, at which time the overload message is removed and normal operation is resumed.

3.3 Mute Circuitry

Two receiver mute inputs are provided on the A1 board; Internal Mute and External Mute. Both cause RF signal path muting when a high TTL level ($\approx 5 \mathrm{Vdc}$) signal is present at their inputs. This causes U1C output to swing low (-15 Vdc), which forward biases CR20 and removes base drive to Q 3 . Q3 turns off, deenergizing K1 and disrupting the RF signal path into the receiver. This +5 Vdc is generated on the control board (A14) whenever the external Mute line on J7-7 (rear panel) is grounded.

Internal Muting occurs as part of the receiver BITE routine. External Muting is accessed via the rear panel terminal strip TB1, pin 16, and/or connector J7, pin 7. External Muting is an option to be exercised by the operator, depending upon system requirements.

3.4 BITE Circuitry

Bite test signal generation occurs on the A 1 assembly. This test signal is adjusted to $-20 \mathrm{dBm}, 100 \mathrm{kHz}$ at J3. It is fed through the A1 assembly and on to assemblies A2-A5 for testing purposes. Various amplitude sample and detection circuits throughout the signal path monitor critical signal stages to check for proper operation. BITE testing is completely under software control and is initiated by pressing the RF-590 front panel TEST switch (see the Maintenance section of this manual).

OH HARRIS
 RF COMMUNICATIONS

3.4.1 BITE Signal Generation

The BITE test signal is generated by 100 kHz oscillator U2 and its associated components. U2 output is applied to the LPF side of relay K1 only when K1 is deenergized via software control. This prevents U2 output signals from reaching the antenna. The 100 kHz injection at U 2 , pin 3 , is a 15 Vpp square wave. The BITE test signal is set while monitoring J 3 . R25 sets the operating frequency to 100 kHz and R 28 sets the output amplitude to -18 dBm .

Oscillator U2 is enabled by Q 2 and Q 4 , which in turn are controlled via system software. $\mathrm{A}+5 \mathrm{Vdc}$ level at J2-6 enables U2.

3.4.2 BITE Detection

Two BITE tests are enacted on the A1 assembly.

- K1 relay check
- A1 signal path level check

Both tests are under BITE software control and commence upon initiating RF-590 front panel TEST control. The tests are done sequentially, and the resulting output signal at J2-9 is ultimately applied to Control Board Assembly A14. An error code will be displayed on the RF-590 front panel display if either test fails.

3.4.2.1 Relay K1 Test Circuits

During normal operating conditions, K1 will be energized, Internal Mute line will be low, and Relay Test line will be high (consequently, holding Q 1 on, and applying 0 Vdc to TP1 and relay K1). When the BITE routine begins, Relay Test goes low, turning off Q 1 and applying $\approx 7.5 \mathrm{Vdc}$ to TP 1 and the relay contacts. This signal is passed through the relay and the low pass filter (LPF), and is detected by Dc BITE Detector U1D. U1D output, which had previously been low (-15 Vdc) will now swing high (+15 Vdc) and forward bias CR21. This provides a nominal 2.5 Vdc level at J2, $\operatorname{pin} 9, \mathrm{BITE} /$ Relay Out. This signal is fed to an A/D converter on the A14 Control Board, which then feeds other A14 circuits that determine if this signal has sufficient amplitude to ensure that no dc losses are present in relay K1 or the LPF.

Next, Internal Mute goes high, which turns Q 3 and K 1 off. Since the 7.5 Vdc signal at TP1 can no longer pass through the relay, U1D output will swing low and present $\approx 0 \mathrm{Vdc}$ at BITE/Relay Out. Control Board A14 circuitry will interpret this as an indication that the relay did deenergize, and will proceed to the next test, A1 Signal Path.

3.4.2.2 A1 Signal Path Test Circuits

Upon successful completion of relay K1 testing, the A1 signal path is checked using a 100 kHz test signal generated by BITE Oscillator U2. The oscillator is enabled when the BITE Oscillator Enable line is pulled high (under software control) turning on Q 4 and Q 2 . This applies +15 Vdc to oscillator U2. U2 output is

Of HARRIS
 RF COMMUNICATIONS

applied to the input of the LPF (relay K1 is deenergized during this test) and is detected by Ac BITE Detector U3. If no faults occur in the signal path, U3 will produce a nominal output voltage of 2.5 Vdc at J2, pin 9, BITE/RELAY OUT. This is sampled by the A/D Converter on Control Board A14, and if the level is sufficient (indicating no ac losses on the A1 assembly), BITE testing would continue throughout the RF chain of the receiver. (Note that it is this same 100 kHz signal which is used to test circuits on the A2A5 assemblies.)

4. MAINTENANCE

The following adjustments should not be performed as routine maintenance procedures, but should be used only when a failure indicates a definite requirement. All tests should be performed with all assembly connections in normal contact, unless otherwise specified.

NOTE

J3 plugs directly into the A2 assembly through the chassis. Therefore it will be necessary to remove the A1 assembly from the chassis to gain access to J 3 .

4.1 BITE Oscillator Adjustments/Test

a. Connect equipment as shown in figure 2.

590-15(2)
Figure 2. A1 BITE Oscillator Test Setup
b. Adjust R25 for 100.0 kHz and R28 for -18 dBm at J3 RF output.
c. Disconnect all equipment and fully reconnect the A1 module to RF-590. Initiate RF-590 BITE Test. The receiver must pass 01 testing.

OH HARRIS RF COMMUNICATIONS

4.2 Overload Adjustments/Test

a. Connect equipment as shown in figure 3.

Figure 3. A1 Overload Adjustment Test Setup
b. Set RF-590 controls as follows:

Frequency: $\quad 10.000000 \mathrm{MHz}$
Mode: USB
AGC: Medium
RF Gain: Fully clockwise (cw)
c. Set signal generator to $10.000 \mathrm{MHz}, 1.5 \mathrm{Vrms}$.
d. Adjust R7 until J2-7 Antenna Overload switches to approximately 5 Vdc.
e. Disconnect all equipment.

5. PARTS LIST

Table 2 is a comprehensive parts list of all replaceable components in Input Filter Assembly A1. When ordering parts from the factory, include a full description of the part. Use figure 4, the Input Filter Assembly A1 Component location diagram to identify parts.

6. SCHEMATIC DIAGRAM

Figure 5 is the Input Filter Assembly A1 schematic diagram.

81 HARRIS RF COMMUNICATIONS

Table 2. Input Filter Assembly A1 Parts List (PL 10073-5100)

Ref. Desig.	Part Number	Description
	10073-5100	PWB, INPUT FILTER
C1	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C2	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C3	CM04ED300J03	CAP 30PF 5\% 500V MICA
C4	CM04ED300J03	CAP 30PF 5\% 500V MICA
C5	CM04ED300J03	CAP 30PF 5\% 500V MICA
C6	CM04ED300J03	CAP 30PF 5\% 500V MICA
C7	CM04ED750J03	CAP 75PF 5\% 500V MICA
C8	CM04ED750J03	CAP 75PF 5\% 500V MICA
C9	CM04ED750J03	CAP 75PF 5\% 500V MICA
C10	CM04CD120J03	CAP 12PF 5\% 500V MICA
C11	CM04CD050D03	CAP 5PF +-.5PF 500V MICA
C12	CM04FD151J03	CAP 150PF 5\% 500V MICA
C13	CM04ED430J03	CAP 43PF 5\% 500V MICA
C14	CM04ED510J03	CAP 51PF 5\% 500V MICA
C15	CM04ED750J03	CAP 75PF 5\% 500V MICA
C16	CM04ED470J03	CAP 47PF 5\% 500V MICA
C17	CM04FD131J03	CAP 130PF 5\% 500V MICA
C18	CM04ED300J03	CAP 30PF 5\% 500V MICA
C19	CM04ED620J03	CAP 62PF 5\% 500V MICA
C20	CM04ED680J03	CAP 68PF 5\% 500V MICA
C21	CM04FD151J03	CAP 150PF 5\% 500V MICA
C22	CM04ED680J03	CAP 68PF 5\% 500V MICA
C23	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C26	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C27	CK05BX472M	CAP 4700PF 20\% 100V CER
C28	CM04FD151J03	CAP 150PF 5\% 500V MICA
C29	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C30	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C31	M39014/02-1320	CAP . 47UF 10\% 50V CER-R
C32	M39014/02-1310	CAP . 1 UF 10\% 100V CER-R
C33	CM06FD 122.03	CAP 1200PF 5\% 500V MICA
C35	M39014/02-1320	CAP . 47UF 10\% 50V CER-R
C36	M39014/01-1535	CAP . 01 UF 20\% 100V CER CAP IUF 10\% 100 V CER-R
C37	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C39	M39014/02-1310	CAP . IUF 10\% 100V CER-R
C40	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C41	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C43	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C44	C26-0025-339	CAP 3.3UF 20\% 25V TANT
C45	C26-0025-339	CAP 3.3UF 20\% 25V TANT
C46	M39014/01-1535	CAP .01UF 20\% 100V CER
C47	M39014/01-1535	CAP .01UF 20\% 100V CER

8 HARRIS
 RF COMMUNICATIONS

Table 2. Input Filter Assembly A1 Parts List (PL 10073-5100) (Cont.)

Ref. Desig.	Part Number	Description
C48 C50 CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8 CR9 CR10 CR11 CR12 CR13 CR14 CR15 CR16 CR17 CR18 CR19 CR20 CR21 CR22 CR23 CR24 CR25 CR26 CR27 CR28 CR29 $J 1$ $J 2$ 13	M39014/02-1310 CM04FD151J03 D02-0003-001 D02-0003-001 D02-0003-001 D02-0003-001 1N4454 1N4454 1N4454 1N4454 1N4454 1N4454 1N4454 iN4454 1N5245B 1N4454 1N4007 1 N4454 1N4454 1N4454 1N4454 1N4454 1N4454 1N5230A 1N5230A D02-0003-001 D02-0003-001 D02-0003-001 1N4454 1N4454 J-0031 J46-0032-010 J90-0014-001 K-0118 10073-5111 10073-5112 10073-5113 10073-5114 10073-5114 10073-5114 10073-7029 MS75085-13 MS75085-13 M575085-13	CAP .IUF 10\% 100V CER-R CAP 150PF 5\% 500V MICA DIODE 2.5A 50V RECT FR DIODE 200 mA 75 V SW DIODE 200 mA 75 V SW DIODE 200mA 75V SW DIODE 200 mA 75 V SW DIODE 200 mA 75 V SW DIODE 200 mA 75 V SW DIODE 200mA 75V SW DIODE 200 mA 75 V SW DIODE 15V 5\% .5W ZENER DIODE 200 mA 75 V SW DIODE 1A 1000V RECT GP DIODE 200 mA 75 V SW DIODE 200 mA 75 V SW DIODE 200mA 75V SW DIODE 200 mA 75 V SW DIODE 200 mA 75 V SW DIODE 200mA 75 V SW DIODE 4.7V 10\% .5W ZENER DIODE 4.7V 10\% .5W ZENER DIODE 2.5A 50V RECT FR DIODE 200 mA 75 V SW DIODE 200 mA 75 V SW CONN SMB VERT PCB F HDR 10 PIN 0.100 SR CONN SMB VERT PCB MT M RLY,12VDC,DPDT,ENC,PC MNT inductor inductor inductor inductor inductor inductor INDUCTOR, FILTER CHOKE COIL 330UH 10\% FXD RF COIL 330UH 10\% FXD RF COIL 330UH 10\% FXD RF

7 HARRIS
 RF COMMUNICATIONS

Table 2. Input Filter Assembly A1 Parts List (PL 10073-5100) (Cont.)

Ref. Desig.	Part Number	Description
L12 L13 L14 Q1 Q2 Q3 Q4 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38	MS75085-13 MS75085-13 MS75085-13 2N2222 2N2907 2N2222 2N2222 R65-0003-103 R65-0003-104 R65-0003-103 R65-0003-104 RN55D1053F R65-0003-472 R30-0008-501 R65-0003-103 R65-0003-103 R65-0003-512 R65-0003-302 R65-0003-330 RN55D1002F RN55D1002F R65-0003-472 R65-0003-512 R65-0003-472 R65-0003-103 R65-0003-133 R65-0003-122 R65-0003-472 R65-0003-104 R65-0003-103 R65-0003-513 R-2228 R65-0003-102 R65-0003-203 R-2229 R65-0003-103 R65-0003-103 R65-0003-102 R65-0003-472 RN55D1740F R65-0003-104 R65-0003-103 R65-0003-103 R65-0003-102 R65-0003-102	COIL 330UH 10\% FXD RF COIL 330UH 10\% FXD RF COIL 330UH 10\% FXD RF XSTR SS/GP NPN TO-18 XSTR SS/GP PNP TO-18 XSTR SS/GP NPN TO-18 XSTR SS/GP NPN TO-18 RES 10K 5\% 1/4W CAR FILM RES 100K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 100K 5\% 1/4W CAR FILM RES,105K 1\% 1/8W MET FLM RES 4.7K 5\% 1/4W CAR FILM RES,VAR,PCB 500 20\% RES 10K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 5.1K 5\% 1/4W CAR FILM RES 3.0K 5\% 1/4W CAR FILM RES 33 5\% 1/4W CAR FILM RES,10.0K 1\% 1/8W MET FLM RES, 10.0K 1\% 1/8W MET FLM RES $4.7 \mathrm{~K} 5 \% 1 / 4$ W CAR FILM RES 5.1K 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES $13 \mathrm{~K} 5 \%$ 1/4W CAR FILM RES 1.2K 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES 100K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 51K 5\% 1/4W CAR FILM RES,VAR,PCB 10K . 5 20\% RES 1.0K 5\% 1/4W CAR FILM RES 20K 5\% 1/4W CAR FILM RES,VAR,PCB 20K . 5 20\% RES 10K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 1.0K 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES, 174.0 1\% 1/8W MET FLM RES 100K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 1.OK 5\% 1/4W CAR FILM RES 1.OK 5\% 1/4W CAR FILM

Hid HARRIS
 RF COMMUNICATIONS

Table 2. Input Filter Assembly A1 Parts List (PL 10073-5100) (Cont.)

Ref. Desig.	Part Number	Description
R39		
R40	R65-0003-394	RES 390K 5\% 1/4W CAR FILM
R41	RN55D8062F	RES,80.6K 1\% 1/8W MET FLM
R42	R65-0004-472	RES 4.7K 5\% 1/2W CAR FILM
R43	R65-0003-104	RES 100K 5\% 1/4W CAR FILM
R44	R65-0003-513	RES 51K 5\% 1/4W CAR FILM
R45	R65-0003-302	RES 3.0K 5\% 1/4W CAR FILM
R46	R65-0003-104	RES 100K 5\% 1/4W CAR FILM
R47	RN55D1003F	RES,100K 1\% 1/8W MET FLM
R50	R65-0003-472	RES 4.7K 5\% 1/4W CAR FILM
R51	R65-0003-203	RES 20K 5\% 1/4W CAR FILM
R52	R65-0003-203	RES 20K 5\% 1/4W CAR FILM
TP1	R65-0003-124	RES 120K 5\% 1/4W CAR FILM
TP2	J-0071	TP PWB BRN TOP ACCS .080"
TP3	J-0066	TP PWB RED TOP ACCS .080"
TP4	J-0069	TP PWB ORN TOP ACCS .080"
TP5	J-0070	TP PWB YEL TOP ACCS .080"
U1	J-0068	TP PWB GRN TOP ACCS .080"
U2	$130-0003-000$	IC 324 OP AMP PLASTIC
U3	I20-0005-000	IC LM111H COMPARATOR

Figure 4. Input Filter Assembly A1 Component Location Diagram (10073-5100, Rev. J)
NOTE: UNLESS OTHERWISE SPECLIFIED:

6. RELAY KI IS SHONM ENEROIzED.
7. VOLTAOE LEVEL SPECIFIEO FOQ NO RF InPut.
B. Voltage level specified during al bite test.

OH HARRIS
RF COMMUNICATIONS

80 HARRIS RF COMMUNICATIONS

TABLE OF CONTENTS

Paragraph Page
1 General Description 1
2 Interface Connections 1
3 Circuit Description 1
3.1 Mixer/Postmixer IF Amplifiers 1
3.2 BITE Detection Circuit 2
3.3 LO No. 1 Amplifier 2
4 Maintenance 2
4.1 LO No. 1 Amplifier Test 3
4.2 Postmixer IF Amplifier Adjustments/Test 3
4.3 AGC Test 4
4.4 BITE Test/Alignment 5
5 Parts List 6
6 Schematic Diagram 6
LIST OF FIGURES
Figure Page
First Converter Assembly A2 Functional Block Diagram
1 A2 Postmixer IF Amplifier Test Setup 3
A2 AGC Test Setup 4
3 A2 BITE Test Setup 5
4 First Converter Assembly A2 Component Location Diagram (10073-5200) 9
5 First Converter Assembly A2 Schematic Diagram (10073-5201, Rev. G) 11
LIST OF TABLES
Table1 First Converter A2 Interface Connections1
2 A2 AGC - Gain Reduction Data 5
3 First Converter Assembly A2 Parts List (PL 10073-5200) 6

HR HARRIS RF COMMUNICATIONS

First Converter Assembly A2 Functional Block Diagram

7 HARRIS RF COMMUNICATIONS

1. GENERAL DESCRIPTION

First Converter Assembly A2 converts the Input Radio Frequency (RF) range of 10 kHz to 30 MHz to an Intermediate Frequency (IF) of 40.455 MHz at mixer U1. (Sideband inversion occurs during the mixing process.) This IF signal is then split in power and fed to two identical automatic gain controlled (AGC) First IF Amplifier (postmixer) stages. After the amplified signals are recombined, they are filtered through a 16 kHz wide, 40.455 MHz crystal filter and directed to Second Converter Assembly A3. Typical RF input to IF output gain is 0 dB . The IF signal is also monitored by the Built In Test Equipment (BITE) detection circuit which monitors the operation of the First Converter Assembly.

2. INTERFACE CONNECTIONS

Table 1 details the various input/output connections and other relevant data.
Table 1. First Converter A2 Interface Connections

Connector	Function	Characteristics
J1	RF INPUT	$10 \mathrm{kHz}-30 \mathrm{MHz},-120 /+10 \mathrm{dBm} \mathrm{Zo}=50$ ohms
J2	IF Output	$40.455 \mathrm{MHz} \pm 8 \mathrm{kHz},-120 / 9 \mathrm{dBm}$ (under AGC control), $\mathrm{Zo}=50 \mathrm{ohm} \mathrm{s}$
J3	LO No. 1 Injection	$40.465-70.455 \mathrm{MHz}, 0 \mathrm{dBm}$
J4-1	AGC Input	$0 \mathrm{Vdc} \rightarrow-6 \mathrm{Vdc}$ produces $0 \rightarrow-20 \mathrm{~dB}$ gain reduction
J4-2	Power	+15 Vdc at 400 mA
J4-3	Index Pin	
J4-4	Ground	
J4-5	Bite Output	Approximately . 75 Vdc for -20 dBm J 1 input at 100 kHz

3. CIRCUIT DESCRIPTION

3.1 Mixer/Postmixer IF Amplifiers

RF input signals from 10 kHz to 30 MHz are applied to doubly balanced, diode - ring type mixer U2 at pin 1 , through a 2 dB pad. U 1 is a very high level mixer requiring +23 dBm at its $L O$ port, pin 8 , from the LO No. 1 Amplifier (paragraph 3.3). Conversion loss is typically 6 dB .

IF output from U1 (pins 3,4) is applied to a broadband 50 ohm power splitter comprised of $\mathrm{T} 1, \mathrm{C} 1, \mathrm{C} 2$, C45, and R4.

8 HARRIS
 RF COMMUNICATIONS

Q1 and Q2 are identically grounded gate FET amplifier stages, so only one stage (Q1) shall be discussed. Q1 is biased by R5 to typically $1-2$ volts at its source. The drain load impedance is set at 1400 ohms by C46, C16, and L6 (L6 is adjusted for resonance at 40.455 MHz). Nominal stage power gain is +12 dB .

CR1 provides gain reduction by reducing the drain load on 01 upon application of a negative AGC voltage at R7. Typically, -20 dB of gain reduction is possible.

Q1 and Q2 outputs are recombined in a broadband 50 ohm combiner consisting of T2, C19, C20, and R9. The 40.455 MHz IF output is then filtered in crystal filter FL-1, whose -3 dB bandwidth is $\pm 8 \mathrm{kHz}$ and whose loss is approximately -5 dB .

The filtered IF output is directed to Second Converter Assembly A3 via J2, and to the BITE detection circuit (paragraph 3.2).

3.2 BITE Detection Circuit

The 40.455 MHz IF output is applied to buffer stage Q7, a source follower. Q7 output feeds tuned amplifier Q3, which amplifies the signal to the required detection level. This signal is then rectified and filtered by CR3, CR4, and C25. CR6 limits the detection voltage to approximately 5 Vdc to protect the following A / D converter inputs. An RF input level of -20 dBm at J 1 results in approximately .5 Vdc at BITE Output, J4, pin 5.

3.3 LO No. 1 Amplifier

LO No. 1 injection of 0 dBm (nominally) is supplied by PLL1 Assembly A6 to LO No. 1 input, J3, and then to common base amplifier driver Q4. The LO frequency range is $40.465-70.455 \mathrm{MHz}$. 04 is biased to approximately 50 mA of emitter current via R14-R16, and provides approximately 10 dB of voltage gain from TP3 to TP4.

T3 and T4 provide an impedance stepdown to the base of power amplifier 06. R29-C40-R26 stabilize Q 6 and provide a flat output ($\pm 1 \mathrm{~dB}$) from Q 6 over the LO frequency range. T5 supplies nominally +26 dBm and impedance matching to a 50 ohm, -3 dB pad consisting of R1, R2, and R3. This pad then supplies a solid 50 ohm termination and +23 dBm level to the LO port of mixer U 1 .

05 and associated circuitry provides base current to Q 6 , resulting in a Q 6 collector current of approximately 300 mA . Diode CR5 provides thermal stabilization to $\mathbf{Q 5}$ base current. Resistor pair R23 and R24 form a sense circuit for Q 6 collector current. As Q 6 collector current increases, the voltage at the emitter of $\mathbf{Q 5}$ decreases, thereby reducing the base-emitter voltage of 05 . This in turn reduces Q 5 base and emitter current, and also 06 base and collector current.

4. MAINTENANCE

The following adjustments should not be performed as routine maintenance procedures, but only when a failure indicates a definite need. All tests are performed with all assembly connections in normal contact except those specified.

8 HARRIS RF COMMUNICATIONS

NOTE

J 1 plugs directly into the A1 assembly through the chassis.
Therefore it will be necessary to remove the A1 assembly from the chassis to gain access to J . Leave all other connections to A2 connected unless otherwise specified.

4.1 LO No. 1 Amplifier Test

a. Set RF-590 controls as follows:

Frequency:	10.000000 MHz
Mode:	USB

AGC: OFF

RF Gain: Fully clockwise (cw)
b. Monitor A2 TP1 with an oscilloscope and frequency counter (each capable of measuring signals to 100 MHz). Signal at TP1 should be approximately 7.5 Vpp at 50.455000 MHz .

4.2 Postmixer IF Amplifier Adjustments/Test

a. Set RF-590 controls as follows:

Frequency: $\quad 10.000000 \mathrm{MHz}$
Mode: USB

AGC: OFF

RF Gain: Fully clockwise (cw)
b. Connect equipment as shown in figure 1.

Figure 1. A2 Postmixer IF Amplifier Test Setup

if HARRIS
 RF COMMUNICATIONS

c. Apply a $0 \mathrm{dBm}, 10.000000 \mathrm{MHz}$ test signal to RF input J 1 . Monitoring IF output J 2 with a spectrum analyzer at 40.455 MHz , adjust L 6 and L 7 for maximum output. Output must be $0 \mathrm{dBm} \pm 2 \mathrm{~dB}$, indicating an overall module gain of 0 dB .

4.3 AGC Test

a. Set RF-590 controls as follows:

Frequency: $\quad 10.000000 \mathrm{MHz}$
Mode: USB
AGC: OFF
RF Gain: Fully clockwise (cw)
b. Connect equipment as shown in figure 2.

590-18(B)

Figure 2. A2 AGC Test Setup
c. Adjust signal generator to approximately 0 dBm at 10.000000 MHz . Monitor IF output J 2 on spectrum analyzer. IF output must be $0 \mathrm{dBm} \pm 2 \mathrm{~dB}$.
d. Slowly turn RF-590 RF Gain Control counterclockwise (ccw). An AGC voltage range of 0 to -10 Vdc should result in an IF output gain reduction range of approximately 0 to -30 dB . Intermediate levels are given in table 2.

Table 2. A2 AGC - Gain Reduction Data

AGC Voltage, Volts	Gain Reduction, $-\mathbf{d B}$
0	0
-1	9
-2	17
-3	21
-4	23
-5	25
-6	27
-7	28
-8	29
-9	30
-10	31

4.4 BITE Test/Alignment

a. Set RF-590 controls as follows:

Frequency: $\quad 10.000000 \mathrm{MHz}$

Mode: USB

AGC: OFF

RF Gain: Fully clockwise (cw)
b. Connect equipment as shown in figure 3.

590-19(1)
Figure 3. A2 BITE Test Setup

HARRIS RF COMMUNICATIONS

c. Set signal generator to $10.000000 \mathrm{MHz},-20 \mathrm{dBm}$. Adjust L 8 for a peak indication on the DVM. DVM should indicate approximately .75 Vdc .
d. Disconnect all equipment and reconnect A2 to RF-590. Initiate RF-590 BITE test. The receiver must pass 02 testing.

5. PARTS LIST

Table 3 is a comprehensive parts list of all replaceable components in First Converter Assembly A2. When ordering parts from the factory, include a full description of the part. Use figure 4, First Converter Assembly A2 Component Location diagram to identify parts.

6. SCHEMATIC DIAGRAM

Figure 5 is the First Converter Assembly A2 Schematic Diagram

Table 3. First Converter Assembly A2 Parts List (PL 10073-5200)

Ref. Desig.	Part Number	Description
C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24	$\begin{aligned} & \text { 10073-5200 } \\ & \text { E70-0002-002 } \\ & \text { E70-0001-007 } \\ & \text { E70-0011-001 } \\ & \text { CM04ED330J03 } \\ & \text { CM04ED330J03 } \\ & \text { M39014/01-1535 } \\ & \text { C26-0025-100 } \\ & \text { C26-0025-100 } \\ & \text { M39014/01-1535 } \\ & \text { CM04CD150J03 } \\ & \text { CM04CD150J03 } \\ & \text { M39014/01-1535 } \\ & \text { CM04ED330J03 } \\ & \text { CM04ED330J03 } \\ & \text { M39014/01-1535 } \end{aligned}$	PWB, FIRST CONVERTER PAD MNT XSTR TO-5 INSL BEO TO-5 X. 015 THK INSL XSTR UNVERSAL HOLE CAP 33PF 5\% 500V MICA CAP 33PF 5\% 500V MICA CAP .01UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP .OIUF 20\% 100V CER CAP .01UF 20\% 100V CER CAP 10UF $20 \% 25 V$ TANT CAP 10UF 20\% 25V TANT CAP .01UF 20\% 100V CER CAP .O1UF 20\% 100V CER CAP .O1UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP 15PF 5\% 500V MICA CAP 15PF 5\% 500V MICA CAP .O1UF 20\% 100V CER CAP 33PF 5\% 500V MICA CAP 33PF 5\% 500V MICA CAP .01UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP .O1UF 20\% 100V CER CAP . O1UF 20\% 100V CER

Hid HARRIS RF COMMUNICATIONS

Table 3. First Converter Assembly A2 Parts List (PL 10073-5200) (Cont.)

Ref. Desig.	Part Number	Description
C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47 C48 C49 C50 C51 C52 CR1 CR2 CR3 CR4 CR5 CR6 FL1 J1 J2 L3 L4 L1 L1 L3 L4	M39014/01-1535 CM04CD050D03 M39014/02-1310 C26-0025-339 M39014/01-1535 M39014/01-1535 M39014/02-1310 M39014/01-1535 CM04ED390J03 M39014/01-1535 M39014/01-1535 M39014/01-1535 M39014/02-1310 M39014/01-1535 C26-0025-339 M39014/02-1310 M39014/01-1535 M39014/02-1310 C26-0025-339 M39014/01-1535 CM04CD050D03 CM04ED510J03 CM04ED510J03 C26-0025-339 M39014/01-1535 M39014/01-1535 M39014/01-1535 M39014/01-1535 D12-0007-001 D12-0007-001 1N4454 1N4454 1N3064 1N5231B 10073-7000 1-0031 J-0031 J-0031 J46-0032-005 MS14046-4 MS14046-4 MS14046-4 MS 14046-4 L08-0001-001 L11-0004-005	CAP .01UF 20\% 100V CER CAP 5PF + -.5PF 500V MICA CAP .IUF 10\% 100V CER-R CAP 3.3UF 20\% 25V TANT CAP .O1UF 20\% 100V CER CAP . O1UF 20\% 100V CER CAP . IUF 10\% 100V CER-R CAP . O1UF 20\% 100V CER CAP 39PF 5\% 500V MICA CAP .O1UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP . O1UF 20\% 100V CER CAP . 1UF 10\% 100V CER-R CAP . O1UF 20\% 100V CER CAP 3.3UF 20\% 25V TANT CAP . IUF 10\% 100V CER-R CAP . O1UF 20\% 100V CER CAP . IUF 10\% 100V CER-R CAP 3.3UF 20\% 25V TANT CAP .O1UF 20\% 100V CER CAP 5PF + -. 5PF 500V MICA CAP 51PF 5\% 500V MICA CAP 51PF 5\% 500V MICA CAP 3.3UF 20\% 25V TANT CAP .01UF 20\% 100V CER DIODE IW 75V PINSW DIODE $1 W$ 75V PIN SW DIODE 200 mA 75 V SW DIODE 200mA 75V SW DIODE 75mA 75V SW DIODE 5.1V 5\% .5W ZENER FILTER, 40.455 MHZ CONN SMB VERT PCB F CONN SMB VERT PCB F CONN SMB VERT PCB F HDR 5 PIN 0.100" SR COIL 10UH 10\% FXD RF COIL 10UH 10\% FXD RF COIL 10UH 10\% FXDRF COIL 10UH 10\% FXD RF CHOKE W B 50 MHZ INDUCT SH VAR .198-.242UH

0 HARRIS
 RF COMMUNICATIONS

Table 3. First Converter Assembly A2 Parts List (PL 10073-5200) (Cont.)

Ref. Desig.	Part Number	Description
L7	L11-0004-005	INDUCT SH VAR .198-.242UH
18	L11-0004-013	INDUCT SH VAR .900-1.1 UH
L9	MS90538-12	COIL 100UH 5\% FXDRF
L10	MS75084-12	COIL 10UH 10\% FXDRF
Q1	Q35-0004-001	XSTR JFET U431
Q2	Q35-0004-001	XSTR JFET U431
Q3	Q35-0001-001	XSTR JFET J310
Q4	2N3866	XSTR SS/RF NPN TO-39
Q5	2N4037	XSTR SS/RF NPN TO-39
Q6	Q25-0014-000	XSTR RFPWR
Q7	Q35-0001-001	XSTR JFET 1310
R1	R65-0003-301	RES 3005% 1/4W CAR FILM
R2	R65-0003-301	RES 3005% 1/4W CAR FILM
R3	RCR20G 180JM	RES, 18 5\% 1/2W CAR COMP
R4	R65-0003-510	RES 51 5\% 1/4W CAR FILM
R5	R65-0003-910	RES 915% 1/4W CAR FILM
R6	R65-0003-910	RES 915\% 1/4W CAR FILM
R7	R65-0003-222	RES 2.2K 5\% 1/4W CAR FILM
R8	R65-0003-222	RES $2.2 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM
R9	R65-0003-510	RES 515\% 1/4W CAR FILM
R10	R65-0003-104	RES 100K 5\% 1/4W CAR FILM
R11	R65-0003-181	RES 180 5\% 1/4W CAR FILM
R12	R65-0003-224	RES 220K 5\% 1/4W CAR FILM
R13	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R14	R65-0003-100	RES 105% 1/4W CAR FILM
R15	R65-0003-102	RES 2.7K 5\% 1/4WCARFILM
R16	R65-0003-272	RES 27 5\% 1/4W CAR FILM
R18	R65-0003-221	RES 2205\% 1/4W CAR FILM
R19	R65-0003-680	RES 68 5\% 1/4W CAR FILM
R20	R65-0003-101	RES 1005% 1/4W CAR FILM
R21	R65-0003-681	RES 6805% 1/4W CAR FILM
R22	R65-0003-272	RES $2.7 \mathrm{~K} 5 \% 1 / 4 W$ CAR FILM
R23	RCR32G100JM	RES, 10 5\% 1W CAR COMP
R24	RCR32G100JM	RES, 10 5\% 1W CAR COMP
R25	R65-0003-301	RES 3005% 1/4W CAR FILM
R26	R65-0003-101	RES 1005% 1/4W CAR FILM
R27	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R28	R65-0003-181	RES 1805\% 1/4W CAR FILM
R29	R65-0003-101	RES 100 5\% 1/4W CAR FILM
R30	R65-0003-431	RES 430 5\% 1/4W CAR FILM
R31	R65-0003-120	RES 125% 1/4W CAR FILM
R32 T1	R65-0003-431 $10073-7013$	RES $4305 \% 1 / 4 W$ CAR FILM TRANSFORMER ASSY
T2	10073-7013	TRANSFORMER ASSY

of HARRIS RF COMMUNICATIONS

Table 3. First Converter Assembly A2 Parts List (PL 10073-5200)

Ref. Desig.	Part Number	Description
T3	$10073-7005$	TRANSFORMER, RF, FIXED
T4	$10073-7005$	TRANSFORMER, RF, FIXED
T5	$10073-7010$	TRANSFORMER, RF, FIXED
TP1	J-0071	TP PWB BRN TOP ACCS .080"
TP2	J-0066	TP PWB RED TOP ACCS .080"
TP3	J-0069	TP PWB ORN TOP ACCS .080"
TP4	J-0070	TP PWB YEL TOP ACCS .080"
U1	I51-0003-002	MIXER DB 500MW 500MHZ

Figure 4. First Converter Assembly A2 Component Location Diagram (10073-5200, Rev. F)
Bid HARRIS RF COMMUNICATIONS

80 HARRIS
 RF COMMUNICATIONS

TABLE OF CONTENTS

Paragraph Page
1 12Interface ConnectionsCircuit Description1
3.1 IF Amplifiers and Mixer1
3.2 BITE Detection Circuit 2
3.3 LO No. 1 Amplifier 2
4 Maintenance 2
4.1 LO No. 1 Amplifier Test 2
4.2 IF Amplifiers and Mixer Adjustments/Test 3
4.3 AGC Test 3
4.4 BITE Test 5
5 Parts List 5
6 Schematic Diagram 5
LIST OF FIGURES
Figure
Page
Second Converter Assembly A3 Functional Block Diagram
1 A3 IF Amplifier Test Setup 3
2 A3 AGC Test Setup 4
3 A3 BITE Test Setup 5Second Converter Assembly A3 Component Location Diagram (10073-5300)8
5 Second Converter Assembly A3 Schematic Diagram (10073-5301, Rev. D) 9
LIST OF TABLES
Table Page
1 Second Converter A3 Interface Connections 1
2 A3 AGC - Gain Reduction Data 4
3 Second Converter Assembly A3 Parts List (PL 10073-5300) 6

8 HARRIS RF COMMUNICATIONS

590-20(1)

Second Converter Assembly A3 Functional Block Diagram

OH HARRIS
 RF COMMUNICATIONS

1. GENERAL DESCRIPTION

Second Converter Assembly A3 converts the first IF of 40.455 (from First Converter Assembly A2) to a second IF of 455 kHz . Overall module gain from J1 to J 3 is approximately $14 \pm 2 \mathrm{~dB}$.

Input 40.455 MHz first IF signals are applied through an automatic gain controlled amplifier, a 40.455 $\mathrm{MHz}, 16 \mathrm{kHz}$ wide crystal filter, and on to a fixed gain stage. At this point the signal is down converted to 455 kHz , filtered, and fed out to IF Filter Assembly A4. The second IF signal is also monitored by the BITE detection circuit which monitors the operation of the Second Converter Assembly.

2. INTERFACE CONNECTIONS

Table 1 details the various input/output connections and any relevant data.
Table 1. Second Converter A3 Interface Connections

Connector	Function	Characteristics
J 1	First IF Input	$40.455 \mathrm{MHz},-120 /-9 \mathrm{dBm}$ (under AGC control), $\mathrm{Zo}=50 \mathrm{ohms}$
J 2	Second LO Input	$40.000 \mathrm{MHz}, 0 \mathrm{dBm}, \mathrm{Zo}=50$ ohms
J 3	Second IF Output	$455 \mathrm{kHz},-107 /-15 \mathrm{dBm}$ (under AGC control),
		$\mathrm{Zo}=50$ ohms
J4-1	AGC Input	0 to -6 Vdc produces a 0 to -20 dB gain reduction
J4-2	Power	+15 Vdc at 60 mA
J4-3	Index pin	
J4-4	Ground	
J4-5	BITE Output	$2.25-3 \mathrm{Vdc}$ for -20 dBm input at J1

3. CIRCUIT DESCRIPTION

3.1 IF Amplifiers and Mixer

First IF input signals from First Converter Assembly A2 are received at J 1 and fed to grounded gate FET amplifier Q1. C1 and L4 perform an impedance transformation of 50 ohms to Q 1 's source impedance for optimum power gain. C2 and R1 form a bypassed bias resistor network. L1, C25, and C5 provide impedance transformation for Q1's drain load of 2200 ohms to $\mathrm{FL}-1$'s input impedance of 50 ohms. This yields an overall stage gain of 13 dB .

80 HARRIS
 RF COMMUNICATIONS

CR1 provides gain reduction by reducing Q1's drain load upon application of a negative AGC voltage at R2 (AGC input). Typically -20 dB of gain reduction is possible.

Filtering is applied at FL-1, a 40.455 MHz crystal filter whose -3 dB bandwidth is $\pm 8 \mathrm{kHz}$. Typical insertion loss is -3.5 dB . $\mathrm{FL}-1$ output is applied to grounded gate FET amplifier Q2. Q2 and its associated components perform identically to amplifier Q1, except that no AGC is applied. This fixed gain stage also has an overall gain of 13 dB .

U1 is a low LO level diode ring mixer that converts the 40.455 MHz first IF to the 455 kHz second IF. A LO drive level of $+7 \mathrm{dBm}(50 \mathrm{ohm})$ at 40.000000 MHz is supplied by Q 3 (paragraph 3.3). U1 typically has 6 dB of conversion loss.

Components C10-C12, L6-L8, and R5 form a diplexer with a cutoff frequency of 4 MHz to terminate all undesired mixer products (especially LO leakage) into 50 ohms. This allows only 455 kHz to pass out of J 3 to IF Filter Assembly A4 and ultimately to the high gain second IF amplifiers on IF/Audio Assembly A5.

3.2 BITE Detection Circuit

The 455 kHz second IF signal is also applied to common emitter amplifier Q4. Bias circuitry R7, R8, and R11 bias Q 4 to 10 mA of collector current. R9, R10, and C16 set the voltage gain to allow BITE to operate when the signal at J 1 is at -20 dBm . The dc detection voltage produced by detector network CR2, CR4, and C17 under these conditions is approximately 2.25 to 3 Vdc at J4-5, BITE Detector output.

3.3 LO No. 1 Amplifier

Common emitter amplifier Q 3 receives a $40.000000 \mathrm{MHz}, 0 \mathrm{dBm}$ drive signal from Reference Generator Assembly A12 at J2. R14, R15, CR3, and R17 bias Q 3 to 23 mA of collector current. R16-C21 and R18 comprise emitter and collector to base feedback networks. These networks simultaneously set the stage gain to +10 dB and the input and output impedances to 50 ohms. $\mathrm{A}+10 \mathrm{dBm}$ signal is fed to $-3 \mathrm{~dB}, 50$ ohm pad R19-R21. This applies a +7 dBm LO level to mixer U1.

4. MAINTENANCE

The following adjustments should not be performed as routine maintenance procedures, but only when a failure indicates a definite need. All tests should be performed with all assembly connections in normal contact unless otherwise specified.

4.1 LO No. 1 Amplifier Test

a. Set RF-590 controls as follows:

Frequency: $\quad 10.000000 \mathrm{MHz}$
Mode: USB

If HARRIS
 RF COMMUNICATIONS

AGC: OFF
RF Gain: Fully clockwise (cw)
b. Monitor TP4 with an oscilloscope and frequency counter. Signal at TP4 would be 40.000000 MHz at approximately 1.3 Vpp .

4.2 IF Amplifiers and Mixer Adjustments/Test

a. Remove the ribbon cable connecting the AGC assembly to the IF/Audio Amp Assembly A5A1.
b. Set RF-590 controls as follows:

Frequency: $\quad 10.000000 \mathrm{MHz}$
Mode: USB
AGC: OFF
RF Gain: Fully clockwise (cw)
c. Connect equipment as shown in figure 1.

590-21(B)

Figure 1. A3 IF Amplifier Test Setup
d. Apply a $-70 \mathrm{dBm}, 10.0015 \mathrm{MHz}$ signal at J1. Monitor second IF output J3 at 455 kHz on the spectrum analyzer. Adjust L1 and L2 for maximum output. Output must be -55 dBm $\pm 2 \mathrm{~dB}$, indicating approximately 15 dB of module gain.

4.3 AGC Test

a. Set RF-590 controls as follows:

Frequency: $\quad 10.000000 \mathrm{MHz}$
Mode: USB

8 HARRIS
 RF COMMUNICATIONS

AGC: OFF
RF Gain: Fully clockwise (cw)
b. Connect equipment as shown in figure 2.

Figure 2. A3 AGC Test Setup
c. Adjust Signal Generator to $-30 \mathrm{dBm}, 10.0015 \mathrm{MHz}$. Monitor second IF output J 3 on spectrum analyzer. IF output must be $-15 \mathrm{dBm} \pm 3 \mathrm{~dB}$.
d. Slowly adjust RF-590 RF gain control counterclockwise (ccw). An AGC voltage range of 0 to -6 Vdc should result in an IF output gain reduction of approximately 0 to -20 dB . Intermediate levels are given in table 2. Reset RF gain control fully clockwise (cw).

Table 2. A3 AGC - Gain Reduction Data

AGC Voltage, Volts	Gain Reduction, -dB
0	0
-1	18
-2	32
-3	40
-4	45
-5	49
-6	52
-7	54
-8	56
-9	58

7 HARRIS RF COMMUNICATIONS

4.4 BITE Test

a. Set RF-590 controls as follows:

Frequency: $\quad 10.000000 \mathrm{MHz}$
Mode: USB

AGC: OFF
RF Gain: Fully clockwise (cw)
b. Connect equipment as shown in figure 3.

590-23(B)
Figure 3. A3 BITE Test Setup
c. Set signal generator to -20 dBm at 40.455 MHz . BITE output voltage must be approximately 2.25-3 Vdc.
d. Disconnect all equipment and reconnect A3 to RF-590. Initiate RF-590 BITE test. The receiver must pass 03 testing.

5. PARTS LIST

Table 3 is a comprehensive parts list of all replaceable components in Second Converter Assembly A3. Wh n ordering parts from the factory, include a full description of the part. Use figure 4, the Second Converter Assembly component location diagram to identify parts.

6. SCHEMATIC DIAGRAM

Figure 5 is the Second Converter Assembly schematic diagram.

in HARRIS RF COMMUNICATIONS

Table 3. Second Converter Assembly A3 Parts List (PL 10073-5300)

Ref. Desig.	Part Number	Description
C1 $C 2$ $C 3$ $C 4$ $C 5$ $C 6$ $C 7$ $C 8$ $C 9$ $C 10$ $C 11$ $C 12$ $C 13$ $C 14$ $C 15$ $C 16$ $C 17$ $C 18$ $C 19$ $C 20$ $C 21$ $C 22$ $C 23$ $C 24$ $C 25$ $C 26$ $C R 1$ $C R 2$ $C R 3$ $C R 4$ FL1 L1 J2 J3 J4 $L 1$ L2 L3 $L 4$ $L 5$ $L 6$ $L 7$ $L 8$	10073-5300 E70-0002-002 CM04FD11103 CK05BX103M CK05BX103M CK05BX103M CM04CD120J03 CM04FD111J03 CK05BX103M CK05BX103M CM04CD120J03 CM04FA391J03 CM04FA391J03 CM06FD182J03 M39014/02-1320 M39014/02-1310 M39014/02-1320 M39014/02-1320 M39014/02-1310 CK05BX103M CK05BX103M CK05BX103M CK05BX103M CK05BX103M M39014/02-1320 CM04CD070D03 CM04CD070D03 CK05BX103M D12-0007-001 1N4454 1N4454 1N4454 10073-7001 J-0031 J-0031 J-0031 J46-0032-005 L11-0004-011 L11-0004-011 MS14046-6 MS18130-3 MS18130-3 MS18130-8 MS18130-15 MS18130-15	PWB, 2ND CONVERTER PAD MNT XSTR TO-5 CAP 110PF 5\% 500V MICA CAP .01UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP 12PF 5\% 500V MICA CAP 110PF 5\% 500V MICA CAP .01UF 20\% 100V CER CAP .O1UF $20 \% 100 \mathrm{~V}$ CER CAP 12PF 5\% 500V MICA CAP 390PF 5\% 100V MICA CAP 390PF 5\% 100V MICA CAP 1800PF 5\% 500V MICA CAP .47UF 10\% 50V CER-R CAP . IUF 10\% 100V CER-R CAP . 47UF 10\% 50V CER-R CAP . 47UF 10\% 50V CER-R CAP . IUF 10% 100V CER-R CAP .O1UF 20\% 100V CER CAP .OIUF 20\% 100V CER CAP .01UF 20\% 100V CER CAP .O1UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP .47UF 10\% 50V CER-R CAP 7PF $+-.5 P F 500 \mathrm{~V}$ MICA CAP 7PF + . 5 PF 500V MICA CAP .01UF 20\% 100V CER DIODE IW 75V PINSW DIODE 200 mA 75 V SW DIODE 200 mA 75 V SW DIODE 200mA 75V SW FILTER CONN SMB VERT PCB F CONN SMB VERT PCB F CONN SMB VERT PCB F HDR 5 PIN 0.100" SR INDUCT SH VAR .612-.748UH INDUCT SH VAR .612-.748UH COIL 15UH 10\% FXD RF COIL . $33 \mathrm{UH} 10 \%$ FXD RF COIL . 33UH 10\% FXD RF COIL 1.0UH 10\% FXD RF COIL 3.9UH 10\% FXD RF COIL 3.9UH 10\% FXD RF

HARRIS
 RF COMMUNICATIONS

Table 3. Second Converter Assembly A3 Parts List (PL 10073-5300) (Cont.)

Ref. Desig.	Part Number	Description
L9	MS14046-6	COIL 15UH 10\% FXD RF
L10	MS90539-15	COIL 1000UH 5\% FXD RF
Q1	Q35-0001-001	XSTR JFET J310
Q2	Q35-0001-001	XSTR JFET J310
Q3	2N5109	XSTR RFPWR NPN TO-39
Q4	2N2222	XSTR SS/GP NPN TO-18
R1	R65-0003-181	RES 180 5\% 1/4W CAR FILM
R2	R65-0003-472	RES 4.7K 5\% 1/4W CAR FILM
R3	R65-0003-181	RES 1805\% 1/4W CAR FILM
R4	R65-0003-101	RES 1005\% 1/4W CAR FILM
R5	R65-0003-510	RES 515% 1/4W CAR FILM
R6	R65-0003-101	RES 1005\% 1/4W CAR FILM
R7	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R8	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R9	R65-0003-561	RES 5605% 1/4W CAR FILM
R10	R65-0003-270	RES 27 5\% 1/4W CAR FILM
R11	R65-0003-431	RES 4305% 1/4W CAR FILM
R12	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R13	R65-0003-101	RES 100 5\% 1/4W CAR FILM
R14	R65-0003-242	RES $2.4 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM
R15	R65-0003-471	RES 470 5\% 1/4W CAR FILM
R16	R65-0003-399	RES 3.9 5\% 1/4W CAR FILM
R17	R65-0003-101	RES 100 5\% 1/4W CAR FILM
R18	R65-0003-681	RES 6805% RES $3005 \% 1 / 4 W$ CAR FILM R
R19 R20	R65-0003-301	RES RES Res
R21	R65-0003-301	RES 3005\% 1/4W CAR FILM
TP1	J-0071	TP PWB BRN TOP ACCS .080"
TP2	J-0066	TP PWB RED TOP ACCS .080"
TP3	J-0069	TP PWB ORN TOP ACCS .080"
TP4	J-0070	TP PWB YEL TOP ACCS .080"
TP5	J-0068 151-0003-001	TP PWB GRN TOP ACCS .080" MIXER DB 50 mW 500 MHZ
U1	151-0003-001	MIXERDB 50 mW 500 MHZ

70 HARRIS

Figure 4. Second Converter Assembly A3 Component Location Diagram (10073-5300, Rev. F)
OD HARRRIS
OF COMMUNICATION

H0 HARRIS
 RF COMMUNICATIONS

TABLE OF CONTENTS

Paragraph
Page
1 1
Interface Connections2
3
Circuit Description 3
Input/Output Amplifiers 3
Filter Selection 3
ISB Operation 4
Maintenance 4
Input/Output Amplifier Test/Adjustment 5
.
4.2 Filter Selection Test 6
5 Parts List 6
6 Schematic Diagrams 6

LIST OF FIGURES

Figure Page
IF Filter Assembly A4 Functional Block Diagram
A4 I/O Amplifiers Test Setup5
IF Filter Assembly A4 Component Location Diagram (10073-5570) 11
IF Filter Assembly A4 Schematic Diagram (10073-5571, Rev. B) 13
2
LIST OF TABLES
Table Page
1 Typical RF-590 Filter Complement 1
2 IF Filter Assembly A4 Interface Connections 2
A4 Filter Selection 4
4
IF Filter Assembly A4 Parts List (PL 10073-5570) 6

8 HARRIS

RF COMMUNICATIONS

IF Filter Assembly A4 Functional Block Diagram

HA HARRIS
 RF COMMUNICATIONS

1. GENERAL DESCRIPTION

IF Filter Assembly A4 contains provisions for automatically selecting one of seven bandpass filters or one filter bypass function, which is a resistive pad. The main signal frequency selectivity is determined by these filters. Actual filter bandwidths which may be employed are customer specified and depend upon operational modes desired (see note below). Table 1 shows a typical filter complement in the RF-590. Automatic filter selection is accomplished via flexible programmable logic circuitry on Control Board Assembly A14.

NOTE

Filter positions FL1 and FL2 must be reserved for LSB and USB (respectively) if ISB operation is desired. (ISB operation requires the simultaneous selection of two filters). WBP Pad is an R.C. filter pad network and is used for standard AM 16 kHz bandwidth and FM 16 kHz bandwidth operation.

Table 1. Typical RF-590 Filter Complement

Mode of Operation	Filter Selected	Specified Bandwidth
LSB	FL1	2.8 kHz
USB	FL2	2.8 kHz
CW	FL3	.3 kHz
CW	FL4	1.0 kHz
AM	FL5	3.2 kHz
AM	FL6	6.8 kHz
Optional	FL7	--
FM or AM	WBP Pad	16 kHz (Bypass)

Input signals at 455 kHz (nominally) arrive at J2 from Second Converter Assembly A3. Three A4 signal outputs are derived.

- Filtered Second IF output at J4. This output is fed to IF/Audio Assembly A5, and is chosen whenever SSB, AM, or FM detection is required.

H HARRIS
 RF COMMUNICATIONS

- ISB output at J3. This output is fed to ISB IF/Audio Assembly A18 and is used whenever Independent Sideband (ISB) reception of LSB and USB signals is simultaneously required. Under these conditions, J3 carries the LSB signal to the A18 Assembly while J4 routes the USB signal to the A5 Assembly. Note that ISB IF/Audio Assembly A18 is an optional assembly, and ISB operation is not possible unless the RF-590 is equipped with it.
- Unfiltered second IF output at J2. This output is fed to RF-590 rear panel connector J3, and is provided as a convenience whenever external signal processing of the wideband signal (present at J 1) is required.

Overall assembly gain is set by R10 to nominally be 10 dB at J 4 in the USB mode of operation. This also sets the ISB output (when used) to 10 dB , and the unfiltered second IF output to approximately 4 dB .

2. INTERFACE CONNECTIONS

Table 2 details the various input/output connections and other relevant data.
Table 2. IF Filter Assembly A4 Interface Connections

Connector	Function	Characteristics
J1	Unfiltered second IF input	$455 \mathrm{kHz},-107 /-15 \mathrm{dBm}, \mathrm{Zo}=50 \mathrm{ohms}$
J2	Unfiltered second IF output	$455 \mathrm{kHz},-103 /-11 \mathrm{dBm}, \mathrm{Zo}=50$ ohms
J3	ISB output	$455 \mathrm{kHz},-97 /-5 \mathrm{dBm}, \mathrm{Zo}=50$ ohms
J4	Filtered second IF output	$455 \mathrm{kHz},-97 /-5 \mathrm{dBm}, \mathrm{Zo}=50$ ohms
J5-1	Spare	
J5-2	D3	*
J5-3	DO	*
J5-4	D2	*
J5-5	Index pin	
J5-6	D1	*
J5-7	Ground	
J5-8	Power	+8.5 V at 8 mA
J5-9	Power	-15 V at 30 mA
J5-10	Power	+15 V at 100 mA
* Filter select line: $0=$ ground, $1=+5 \mathrm{~V}$		

7 HARRIS
 RF COMMUNICATIONS

3. CIRCUIT DESCRIPTION

3.1 Input/Output Amplifiers

Unfiltered second IF signals at J1 are applied to second IF amplifier U3. U3 provides +27 dB (nominal) of gain at each of two outputs, adjustable by R10. The output at pin 8 drives the selected filter input, and is adjusted by R10 for a nominal assembly gain of 10 dB with the USB filter selected.

The second U3 output at pin 7 is applied through 50 ohm matching network R 75 and R 77 to J2. This unfiltered 455 kHz IF output is then routed to RF-590 rear panel connector J2. Output level under AGC action at this port is typically $-103 /-11 \mathrm{dBm}$ into 50 ohms.

Output source follower FET amplifier Q6 matches the high impedance filter outputs (5 K ohms) to the low impedance IF/Audio Assembly A5 input (50 ohms). Q6 may normally receive signals from any of the filters, depending upon the filter selected. However, when the ISB option is used, diode logic steers only USB information to 06 , while LSB information is steered to $O 5$ (see paragraph 3.2).

Output amplifier Q5 is essentially identical to Q6, except that it is used only when the ISB option is used, and then will only carry ISB (LSB) information. ISB signals would then pass through J3 ISB output to ISB IF/Audio Assembly A18. Q5 is turned off by Q4 when the radio is not in the ISB mode (see paragraph 3.2).

3.2 Filter Selection

Automatic filter selection control originates on Control Assembly A14 in response to operator entries via the front panel controls. Control line inputs DO-D3 carry BCD control signals to BCD to decimal decoder U1. U1 outputs (as a function of control line inputs) are shown in table 3. U1 outputs are normally low (0 volts) until they are selected, and then switch high (5 volts).

U1 outputs, in turn, selectively drive switches AR1-AR3. These switches then select the appropriate filter by putting -15 Vdc on the associated filter control line, while holding all other lines at +15 Vdc .

As an example, consider the selection of FL3. U1 filter select control lines would be D0=1, D1 = 1, $D 2=0$, and $D 3=0$. This would cause only $U 1$, pin 15 , to switch high (+5 Vdc); all other outputs would remain low. This 5 volt level causes switch AR1-A, pin $13,(-)$ input to exceed the 2 volt level at AR1-A, pin $12(+)$, which forces the output, pin 14 , to swing to -15 Vdc . Note that at this time, all other switch outputs would be at +15 Vdc .

The - 15 Vdc potential at AR1-A, pin 14, now forward biases CR 12 and CR15, while reverse biasing CR13 and CR14. Any signal present at amplifier U3 output would now be allowed to only pass through FL3 to buffer amplifier Q6. Diodes associated with all other filters would prevent any signal from passing through these filters.

7 HARRIS RF COMMUNICATIONS

Table 3. A4 Filter Selection

Filter Position Chosen	Mode	Control Line Inputs				Selected Output Pin No.	Output Amplifier Used
		$\begin{aligned} & \text { U1-10 } \\ & \text { D0 } \end{aligned}$	$\begin{array}{\|l} \text { U1-13 } \\ \text { D1 } \\ \hline \end{array}$	U1-12 D2	$\begin{aligned} & \text { U1-11 } \\ & \text { D3 } \end{aligned}$		
FL1	LSB	0	1	0	0	2	Q6
FL2	USB	0	0	0	0	3	Q6
* FL1, FL2	ISB	1	0	0	0	14	Q5 and Q6
* FL1, FL2	ISB/LSB	1	0	0	1	5	Q5 and Q6
FL3	CW	1	1	0	0	15	Q6
FL4	CW	0	0	1	0	1	Q6
FL5	AM	1	0	1	0	6	Q6
FL6	AM	0	1	1	0	7	Q6
FL7	Optional	1	1	1	0	4	Q6
WBP Pad	Bypass	0	0	0	1	9	Q6

*Software Dependent
If some other filter is selected, $\cup 1$, pin 15 , would now switch low (0 Vdc). This triggers AR1-A, pin 14, to swing to +15 Vdc . This level reverse biases CR12 and CR15 (preventing any signal from passing through FL3), while forward biasing CR13 and CR14 (which would short out any signal that did appear there).

3.2.1 ISB Operation

During ISB operation, U1, pin 14, is selected, allowing AR2-A and AR3-A to switch to -15 Vdc via OR Gates P/O U2. Control lines for FL1 and FL2 are then -15 Vdc , enabling FL1 and FL2. This places both USB and LSB filters in the circuit. The control line to R 59 and R 60 goes to +15 Vdc , which reverse biases CR5 and CR7, effectively steering FL1 (LSB) signals to Q5 (ISB output) and FL2 (USB) signals to Q6. Also, Q4 is selected via AR1-D which activates Q5 by applying +15 Vdc on Q5's drain.

Note that under normal LSB operation, the control line to R59 and R60 would be at -15 V . CR5 and CR7 would be forward biased and LSB signals would flow to Q6. All other operating modes except ISB would cause Q4 to turn Q5 off.

4. MAINTENANCE

The following adjustment should not be performed as a routine maintenance procedure. It should be performed under the following two conditions:

HARRIS
 RF COMMUNICATIONS

- A failure indicating a definite problem
- Installation of new or different sideband filters. If the new filters have a loss which is different than the loss of the filters supplied with the RF-590, then R 10 should be readjusted according to paragraph 4.1.

All tests are performed with all assembly connections in normal contact unless otherwise specified.

4.1 Input/Output Amplifier Test/Adjustment

a. Verify that the proper filters are installed in the A4 Assembly.
b. Remove the ribbon cable connecting the AGC Assembly A5A2 to the IF/Audio Amp assembly A5A1.
c. Set RF-590 controls as follows:

Frequency: $\quad 10.000000 \mathrm{MHz}$

Mode: USB

AGC: OFF
RF Gain: Fully clockwise (cw)
d. Connect equipment as shown in figure 1.

Figure 1. A4 I/O Amplifiers Test Setup
e. Apply a $-70 \mathrm{dBm}, 10.0015$ signal to J1, Antenna Input. Monitoring A4J4, adjust R 10 for -44 dBm signal level.
f. Monitor J2 (unfiltered IF output) with a spectrum analyzer. Signal level should be approximately -50 dBm .
g. Place RF-590 to ISB mode of operation (if option is installed). Change signal generator frequency to 9.9985 MHz . Monitor A4J3 (ISB output) with spectrum analyzer. Signal level should be the same as step e.
h. Disconnect test equipment and reconnect A4 to RF-590.

8 HARRIS RF COMMUNICATIONS

4.2 Filter Selection Test
a. Selection of filters via the front panel consists of verifying that only the proper filter control line goes to -15 Vdc when the desired filter is selected. All other lines must stay at +15 Vdc (except in the case of ISB mode, where both control lines FL1 and FL2 go to -15 Vdc).
b. Initiate RF-590 BITE test. The receiver must pass 04 testing.

5. PARTS LIST

Table 4 is a comprehensive parts list of all replaceable components in IF Filter Assembly A4. When ordering parts from the factory, include a full description of the part. Use figure 2, the IF Filter Assembly component location diagram to identify parts.

6. SCHEMATIC DIAGRAMS

Figure 3 is the IF Filter Assembly schematic diagram.
Table 4. IF Filter Assembly A4 Parts List (PL 10073-5570)

Ref. Desig.	Part Number	Description
AR1-AR3 C6 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31, C32 C33	10073-5570 130-0003-000 M39014/02-1320 M39014/02-1320 M39014/01-1535 M39014/01-1535 M39014/02-1320 CM04FC271103 CM04FC271103 M39014/02-1320 M39014/01-1535 M39014/01-1535 CM04FC271J03 CM04FC271103 M39014/02-1320 M39014/01-1535 M39014/01-1535 CM04FD181J03 CM04FD181J03 M39014/02-1320 M39014/01-1535 M39014/01-1535 CM04FD111J03 CM04FD111103 M39014/02-1320 M39014/01-1535 CM04FA361J03	PWB, IF FILTER IC 324 OP AMP PLASTIC CAP .47UF 10\% 50V CER-R CAP .47UF 10\% 50V CER-R CAP . O1UF 20\% 100V CER CAP .O1UF 20\% 100V CER CAP .47UF 10\% 50V CER-R CAP 270PF 5\% 300V MICA CAP 270PF 5\% 300V MICA CAP .47UF 10\% 50V CER-R CAP . O1UF 20\% 100V CER CAP . O1UF 20\% 100V CER CAP 270PF 5\% 300V MICA CAP 270PF 5\% 300V MICA CAP .47UF 10\% 50V CER-R CAP . O1UF 20\% 100V CER CAP . O1UF 20\% 100V CER CAP 180PF 5\% 500V MICA CAP 180PF 5\% 500V MICA CAP .47UF 10\% 50V CER-R CAP .O1UF 20\% 100V CER CAP . O1UF 20\% 100V CER CAP 110PF 5\% 500V MICA CAP 110PF 5\% 500V MICA CAP .47UF 10\% 50V CER-R CAP . O1UF 20\% 100V CER CAP 360PF 5\% 100V MICA

HARRIS
 RF COMMUNICATIONS

Table 4. IF Filter Assembly A4 Parts List (PL 10073-5570) (Cont.)

Ref. Desig.	Part Number	Description
C34	CM04FA361103	CAP 360PF 5\% 100V MICA
C35	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C36	M39014/01-1535	CAP . O1UF 20\% 100V CER
C37	M39014/01-1535	CAP .01UF 20\% 100V CER
C38	CM06FD751103	CAP 750PF 5\% 500V MICA
C39	CM06FD751103	CAP 750PF 5\% 500V MICA
C40	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C41	M39014/01-1535	CAP .01UF 20\% 100V CER
C42	M39014/01-1535	CAP .01UF 20\% 100V CER
C43	CM06FD122,03	CAP 1200PF 5\% 500V MICA
C44	CM06FD122J03	CAP 1200PF 5\% 500V MICA
C45	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C46	M39014/01-1535	CAP . 01 UF 20\% 100V CER
C47	M39014/01-1535	CAP .01UF 20\% 100V CER
C48	M39014/01-1535	CAP .01UF 20\% 100V CER
C49	M39014/01-1535	CAP . O1UF 20\% 100V CER
C50	M39014/01-1535	CAP .01UF 20\% 100V CER
C51	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C52	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C53	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C54	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C55	C26-0016-330	CAP 33UF 20\% 16V TANT
C56	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C57	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C58	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C59 C60	M39014/02-1320	CAP -47UF 10\% 50V CER-R
C61	M39014/02-1320	CAP . $47 \mathrm{UF} 10 \% 50 \mathrm{~V}$ CER-R CAP .47UF 10\% 50V CER-R
C62	C26-0025-470	CAP 47UF 20\% 25V TANT
C63	C26-0025-470	CAP 47UF 20\% 25V TANT
CR1	1N4454	DIODE 200mA 75V SW
CR2	1N4454	DIODE 200mA 75V SW
CR3	1N4454	DIODE 200 mA 75 V SW
CR4	1N4454	DIODE 200 mA 75 V SW
CR5	1N4454	DIODE 200 mA 75 V SW
CR6	1N4454	DIODE 200mA 75V SW
CR7	1N4454	DIODE 200mA 75V SW
CR8	1N4454	DIODE 200 mA 75 V SW
CR9	1N4454	DIODE 200mA 75V SW
CR10	1N4454	DIODE 200 mA 75 V SW
CR11	1 N4454	DIODE 200 mA 75 V SW
CR12	1 N4454	DIODE 200mA 75V SW
CR13	1 N4454	DIODE 200mA 75V SW
CR14	1N4454	DIODE 200 mA 75 V SW
CR15	1N4454	DIODE 200mA 75V SW

8 HARRIS
 RF COMMUNICATIONS

Table 4. IF Filter Assembly A4 Parts List (PL 10073-5570) (Cont.)

Ref. Desig.	Part Number	Description
CR16	1N4454	DIODE 200 mA 75 V SW
CR17	1N4454	DIODE 200mA 75 V SW
CR18	1N4454	DIODE 200 mA 75 V SW
CR19	1N4454	DIODE 200 mA 75 V SW
CR20	1N4454	DIODE 200 mA 75 V SW
CR21	1N4454	DIODE 200 mA 75 V SW
CR22	1N4454	DIODE 200 mA 75 V SW
CR23	1N4454	DIODE 200 mA 75 V SW
CR24	1N4454	DIODE 200 mA 75 V SW
CR25	1N4454	DIODE 200mA 75 V SW
CR26	1N4454	DIODE 200mA 75 V SW
CR27	1N4454	DIODE 200 mA 75 V SW
CR28	1N4454	DIODE 200 mA 75 V SW
CR29	1N4454	DIODE 200mA 75 V SW
CR30	1N4454	DIODE 200 mA 75 V SW
CR31	1 N4454	DIODE 200 mA 75 V SW
CR32	1N4454	DIODE 200mA 75V SW
CR33	1N4454	DIODE 200 mA 75 V SW
CR34	1N4454	DIODE 200mA 75 V SW
CR35	1N4454	DIODE 200mA 75V SW
CR39	1N4454	DIODE 200 mA 75 V SW
FL1	10073-7301	FILTER, MECH, 455 KHZ USB
FL2	10073-7300	FILTER,MECH 455 KHZ LSB
FL3	10073-7302	FILTER
FL4	10073-7303	FILTER
FL5	10073-7304	FILTER
FL6	10073-7305	FILTER
J1	J-0031	CONN SMB VERT PCB F
J2	J-0031	CONN SMB VERT PCB F
J3	J-0031	CONN SMB VERT PCB F
14 15	J-0031	CONN SMB VERT 10 PIN $0.100^{\prime \prime}$ SR
J5 L4	J46-0032-010 MS75085-13	HDR 10 PIN 0.100" SR COIL 330UH 10\% FXD RF
L. 5	MS75085-13	COIL 330UH 10\% FXD RF
L6	10073-7033	INDUCTOR, 10MH
L7	10073-7033	INDUCTOR, 10 MH
L8	MS75085-13	COIL 330UH 10\% FXD RF
L9	MS75085-13	COIL 330UH 10\% FXD RF
Q4	2N2222	XSTR SS/GP NPN TO-18
Q5	Q35-0001-001	XSTR JFET 310 XSTR JFET J310
Q6	Q35-0001-001	XSTR JFET J310
R1	R65-0003-103	RES RES 10K
R2 R3	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R4	R65-0003-103	RES 10K 5\% 1/4W CAR FILM

8 HARRIS
 RF COMMUNICATIONS

Table 4. IF Filter Assembly A4 Parts List (PL 10073-5570) (Cont.)

Ref. Desig.	Part Number	Description
R5	R65-0003-104	RES 100K 5\% 1/4W CAR FILM
R6	R65-0003-104	RES 100K 5\% 1/4W CAR FILM
R7	R65-0003-104	RES 100K 5\% 1/4W CAR FILM
R8	R65-0003-104	RES 100K 5\% 1/4W CAR FILM
R10	R-2205	RES,VAR,PCB 500.5 20\%
R17	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R21	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R22	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R23	RNC55H5111FM	RES,5110 1\% 0.1W MET FLM
R24	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R25	R65-0003-512	RES $5.1 \mathrm{~K} 5 \% 1 / 4 W$ CAR FILM
R26	RNC55H5111FM	RES,5110 1\% 0.1W MET FLM
R27	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R28	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R29	RNC55H5111FM	RES,5110 1\% 0.1W MET FLM
R30	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R31	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R32	RNC55H5111FM	RES,5110 1\% 0.1W MET FLM
R33	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R34	R65-0003-512	RES 5.1K 5% 1/4W CAR FILM
R35	RNC55H5111FM	RES,5110 1\% 0.1W MET FLM
R36	R65-0003-512	RES 5.1K 5% 1/4W CAR FILM
R37	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R38	RNC55H5111FM	RES,5110 1\% 0.1W MET FLM
R39	R65-0003-512	RES $5.1 \mathrm{~K} 5 \%$ RES 5.1K $5 \% 1 / 4 \mathrm{~W}$ CAR FILM R
R40	R65-0003-512 RNC55H5111FM	RES,5110 1\% 0.1W MET FLM
R42	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R43	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R44	RNC55H5111FM	RES,5110 1\% 0.1W MET FLM
R45	R65-0003-822	RES 8.2K 5\% 1/4W CAR FILM
R46	R65-0003-822	RES 8.2K 5\% 1/4W CAR FILM
R47	R65-0003-912	RES 9.1K 5\% 1/4W CAR FILM
R48	R65-0003-101	RES 1005% 1/4W CAR FILM
R49	R65-0003-101	RES 1005% 1/4W CAR FILM
R50	R65-0003-101	RES 1005% 1/4W CAR FILM
R51	R65-0003-101	RES 1005% 1/4W CAR FILM
R52	R65-0003-101	RES 1005% 1/4W CAR FILM
R53	R65-0003-101	RES 1005% 1/4W CAR FILM
R54	R65-0003-101	RES 100 5\% 1/4W CAR FILM RES 1005\% 1/4W CAR FILM
R55 R56	R65-0003-101	$\begin{array}{llll}\text { RES } & 100 & 5 \% & 1 / 4 W \text { CAR FILM } \\ \text { RES } & 100 & 5 \% & 1 / 4 W \text { CAR FILM }\end{array}$
R57	R65-0003-153	RES 15K 5\% 1/4W CAR FILM
R58	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R59	R65-0003-333	RES 33K 5\% 1/4W CAR FILM

on HARRIS RF COMMUNICATIONS

Table 4. IF Filter Assembly A4 Parts List (PL 10073-5570) (Cont.)

Ref. Desig.	Part Number	Description
R60 R61 R62 R63 R64 R65 R66 R67 R68 R69 R70 R71 R72 R73 R74 R75 R76 R77 TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 U1 U2 U3 VR1	R65-0003-333 R65-0003-102 R65-0003-153 R65-0003-103 R65-0003-101 R65-0003-104 R65-0003-101 R65-0003-101 R65-0003-104 R65-0003-101 R65-0003-272 R65-0003-510 R65-0003-510 R65-0003-511 R65-0003-511 R65-0003-102 R65-0003-681 R65-0003-510 J-0071 $J-0066$ $J-0069$ $J-0070$ $J-0068$ $J-0072$ $J-0073$ J-0074 $101-0000-200$ $101-0000-023$ $150-0002-000$ $1 N 5231 B$	RES 33K 5\% 1/4W CAR FILM RES 1.OK 5\% 1/4W CAR FILM RES 15K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 1005% 1/4W CAR FILM RES 100K 5\% 1/4W CAR FILM RES 1005% 1/4W CAR FILM RES 1005% 1/4W CAR FILM RES 100K 5\% 1/4W CAR FILM RES 100 5\% 1/4W CAR FILM RES $2.7 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM RES 51 5\% 1/4W CAR FILM RES 515% 1/4W CAR FILM RES 510 5\% 1/4W CAR FILM RES 510 5\% 1/4W CAR FILM RES $1.0 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM RES 680 5\% 1/4W CAR FILM RES 51 5\% 1/4W CAR FILM TP PWB BRN TOP ACCS .080" TP PWB RED TOP ACCS .080" TP PWB ORN TOP ACCS .080" TP PWB YEL TOP ACCS .080" TP PWB GRN TOP ACCS .080" TP PWB BLU TOP ACCS .080" TP PWB VIO TOP ACCS .080" TP PWB GRA TOP ACCS .080" IC 4028B PLASTIC CMOS IC 4071B PLASTIC CMOS IC 733 VIDEO AMP PLASTIC DIODE 5.1V 5\% .5W ZENER

8 HARRIS

Figure 2. IF Filter Assembly A4 Component Location Diagram (10073-5570, Rev. D)
80 HARRIS

8 HARRIS RF COMMUNICATIONS

TABLE OF CONTENTS

Paragraph Page
1 Introduction 1
2 A5A1 Motherboard Assembly - General Description 13A5A1 Circuit Descriptions5
3.1
3.2 Demodulator Circuits 65
3.2.1 AM and AGC Detectors 6
3.2.2 Product Detector 6
3.2.3 FM Detector 6
3.3 Audio Selection 6
3.4 Audio Output Circuitry 7
3.4.1 $\quad 600$ Ohm Line Audio 7
3.4.2 Speaker and Headphone Audio 8
3.5 Squelch Circuitry 8
3.5.1 Squelch Enabling 9
3.5.1.1 Squelch Selection 9
3.5.1.2 Squelch Threshold Enabling 9
3.5.2 Voice Squelch Operations 10
3.5.3 FM Squelch Operation 10
3.5.4 Miscellaneous Squelch Circuits 11
4 Maintenance 11
4.1 Second IF Chain Alignment 11
4.2 FM Detector Alignment 12
5 Parts List 13
6 Schematic Diagram 13
7 A5A2 AGC Assembly General Description 31
8 Circuit Descriptions 32
8.1 AGC Operation 32
8.2 AGC Amplifiers 33
8.3 AGC Combination and Control Circuits 34
8.4 AGC Outputs 34
8.4.1 Shaping Circuitry 34
8.4.1.1 IF AGC Shaping 35
8.4.1.2 RF AGC Shaping 35
8.4.2 AGC Output Monitor Lines 36
9 Maintenance 36
9.1 AGC Alignment 36
10 Parts List 37
11 Schematic Diagram 37

80 HARRIS
 RF COMMUNICATIONS

LIST OF FIGURES

Figure Page
IF/Audio Motherboard Assembly A5A1 Functional Block Diagram
Second IF Chain Alignment
Second IF Chain Alignment 11 11
1
FM Detector Alignment 12
$3 \quad$ IF/Audio Motherboard Assembly A5A1 Component Location Diagram (10073-
5410)21
4 IF/Audio Motherboard A5A 1 Schematic Diagram (10073-5411, Rev. J) 23
IF/Audio AGC Assembly A5A2 Functional Block Diagram
5 AGC Operation 33
6 AGC Assembly Alignment 36IF/Audio AGC Assembly A5A2 Component Location Diagram (10073-5450)40
IF/Audio AGC Assembly A5A2 Schematic Diagram (10073-5451, Rev. D) 41
LIST OF TABLES
Table Page
A5A1 IF/Audio Assembly Interface Connections2
Audio Select Data 7
IF/Audio Motherboard Assembly A5A1 Maintenance Parts List (PL 10073. 5410) 13AGC Assembly A5A2 Interface Connections31
5 IF/Audio AGC Assembly A5A2 Maintenance Parts List (PL 10073-5450) 39

8 HARRIS
 RF COMMUNICATIONS

1. INTRODUCTION

IF/Audio Assembly A5 (10073-5400) consists of the following two PWBs:

- IF/Audio Motherboard A5A1 (10073-5410)
- AGC Board A5A2 (10073-5450)

2. A5A1 MOTHERBOARD ASSEMBLY - GENERAL DESCRIPTION

The A5A1 assembly provides most of the receiver gain utilizing a cascaded 455 kHz , second IF AGC controlled amplifier chain. The total gain range of this stage is 80 dB . This stage works in conjunction with amplifiers on the $A 2, A 3$, and $A 4$ assemblies to provide a nominal -7 dBm output over an RF input level range of -120 to +10 dBm . Additionally, the assembly contains circuits for the following functions.
a. Signal demodulation selection:

- $A M$
- FM
- Product detection (for CW, USB, and LSB)
b. Audio amplification and control, including the following audio outputs:
- Headphone ($+10 \mathrm{dBm} / 600$ ohms)
- Line (-16 dBm to $+10 \mathrm{dBm}, 600$ ohms)
c. Squelch control:
- Voice operated (CW, AM, SB)
- Carrier operated (FM)
d. Signal monitoring:
- Line level (via RF-590 front panel metering)
- BITE detection (line audio level and second IF input level)

Table 1 details the various input/output connections and other relevant data.

80 HARRIS

RF COMMUNICATIONS

Table 1. A5A1 IF/Audio Assembly Interface Connections

Connector	Function	Characteristics
J1	IF Input	$455 \mathrm{kHz},-97 /-5 \mathrm{dBm}, 50$ ohms
J2	BFO Input	$455 \mathrm{kHz} \pm 10 \mathrm{kHz}, 0 \mathrm{dBm}, 50$ ohms
J3	BFO Output	$455 \mathrm{kHz} \pm 10 \mathrm{kHz}, 0 \mathrm{dBm}, 50$ ohms
J4	Filtered IF Output	$455 \mathrm{kHz},-7 \mathrm{dBm}$ (under AGC control), 50 ohms
J5-1	Spare	
J5-2	Spare	
J5-3	Power	$-15 \mathrm{Vdc}, \approx 50 \mathrm{~mA}$
J5-4	Index Key	
J5-5	Power	+15 Vdc, $\approx 130 \mathrm{~mA}$
J5-6	RF AGC	See A5A2
J6-1	Ground	
J6-2	RF Gain	See A5A2
J6-3	Special Data	See A5A2
J6-4	AGC Off	See A5A2
J6-5	Audio Select C	See table 2
J6-6	Internal Mute	+5 Vdc $=$ Mute
J6-7	Audio Select B	see table 2
J6-8	AGC Fast	See A5A2
J6-9	Audio Select A	see table 2
J6-10	AGC Medium	see A5A2
J6-11	External Mute	$+5 \mathrm{Vdc}=$ Mute
J6-12	Line Audio Out	-16/+10 dBm, 600 ohms
J6-13	Line Audio Ground	
J6-14	Line Audio Det. BITE	
J6-15	BITE IF DET	
J6-16	AGC BITE	

RF COMMUNICATIONS

Table 1. A5A1 IF/Audio Assembly Interface Connections (Cont.)

Connector	Function	Characteristics
J7-1	Volume Potentiometer - Top	
J7-2	Index Key	
J7-3	Volume Potentiometer - Ground	
J7-4	Volume Potentiometer - Wiper	
J8-1	USB Line Level Adj.	Oto -15 Vdc
J8-2	Headphones Audio	+10 dBm/600 ohms, maximum
J8-3	USB Meter - RF	See A5A2
J8-4	Spare	
J8-5	Spare	
J8-6	Spare	
J8-7	Index Key	
J8-8	Squelch Wiper	0 to +5 Vdc
J8-9	USB Meter Audio	
J8-10	Speaker on/off	$+5 \mathrm{Vdc}=$ speaker on
J9-1	Special Data	See A5A2
J9-2	Power, +15 V	See A5A2
J9-3	Power, -15V	See A5A2
J9-4	Index Key	
J9-5	RF Gain	See A5A2
J9-6	AGC Off	See A5A2
J9-7	AGC Fast	See A5A2
J9-8	AGC Med	See A5A2
J9-9	ISB AGC	See A5A2
J9-10	ISB Audio In	See A5A2

01 HARRIS
 RF COMMUNICATION8

Table 1. A5A1 IF/Audio Assembly Interface Connections (Cont.)

Connector	Function	Characteristics
J10-1	AGC Out	See A5A2
J10-2	Comb. AGC Out	See A5A2
J10-3	600 ohm Line Audio	-16/+10 dBm
J10-4	AGC In	See A5A2
J10-5	600 ohm Line Audio	Center Tap
J10-6	AGC Dump	See A5A2
J10-7	600 ohm Line Audio	$-16 /+10 \mathrm{dBm}$
J10-8	Ground	
J10-9	External Audio In	Typically 50 mVrms
J10-10	Spare	
J11-1	ISB AGC	See A5A2
J11-2	AGC Med	See A5A2
J11-3	AGC BITE	See A5A2
J11-4	IF AGC In	0 to -3 Vdc
J11-5	Spare	
J11-6	AGC Fast	See A5A2
J11-7	Special Data	See A5A2
J11-8	AGC Off	See A5A2
J11-9	Spare	
J11-10	Spare	
J11-11	Power, +15 V	
J11-12	RF Gain	
J11-13	USB Meter RF	See A5A2
J11-14	AGC Det. Out	Typically -1 Vdc

H0 HARRIS
 RF COMMUNICATIONS

Table 1. A5A1 IF/Audio Assembly Interface Connections (Cont.)

Connector	Function	
$J 11-15$	RF AGC	Characteristics
$J 11-16$	AGC Dump	See A5A2
$J 11-17$	Spare	
$J 11-18$	AGC In	See A5A2
$J 11-19$	AGC Out	See A5A2
$J 11-20$	Comb AGC	See A5A2
$J 12-1$	Index Key	
$J 12-2$	Audio Ground	
$J 12-3$	Audio Output	

3. A5A1 CIRCUIT DESCRIPTIONS

$3.1 \quad 455$ kHz Second IF Amplifier Chain

Low level signals at 455 kHz from IF Filter Assembly A4 enter the A5A1 assembly at coax connector J 1 . At this point, it goes to both the input of the IF amplifier and the input BITE detector. The BITE detector consists of Q 6 and its associated components. Q 6 is an amplifier with 26 dB of gain that feeds a diode detector consisting of CR4, CR5, R32, and C27. CR6 is a 4.7 volt Zener diode that protects the BITE circuitry against overvoltage. This detector serves to check the output of the IF Filter board and the input to the IF/AF board.

Q1 is a grounded gate FET amplifier that is the input stage to the IF strip amplifier, and has approximately 20 dB of gain. $\mathrm{Q} 2, \mathrm{Q} 3$, and Q 4 are common emitter amplifiers with an overall gain of $46 \mathrm{~dB} \pm 6 \mathrm{~dB}$. This 12 dB gain adjustment is available at R8, and allows the user to trim the overall gain of the IF strip to its desired value.

Receiver Automatic Gain Control (AGC) of the IF strip is accomplished through the use of PIN diodes CR1, CR2, and CR3. A negative voltage applied to the IF AGC IN line, J11-4, forward biases the PIN diodes and decreases the gain of the IF strip by decreasing the load impedance of each stage. Normal receiver operation requires 80 dB of available gain reduction in the strip, which is accomplished with approximately -3.0 volts on the IF AGC line.

L3, L4, C17, C18, and C19 form a bandpass filter which is adjusted during alignment to be centered at 455 kHz . This filter has approximately 9 dB of insertion loss for an overall gain to TP1 of 56 dB . The output of this filter drives Q , (an emitter follower that buffers the rest of the IF strip) and $\mathrm{Q8}$ (a dual gate MOSFET that is the input to the product detector).

70 HARRIS
 hF COMMUNICATIONS

Q5 serves as a buffer to provide inputs to U 12 (FM demodulator) and Q 9 (IF output gain stage). Q 9 is a common emitter amplifier that has 30 dB of gain to provide the high level IF output, and drive amplifier Q11. Q10 is an emitter follower that buffers the high level IF output, nominally -7 dBm . Resistor R60 serves to set the IF output impedance at 50 ohms to J4. This output is then routed to rear panel connector J 4 and is referred to as the filtered IF output. Overall IF strip gain to the IF output is nominally 80 dB . 011 is a common emitter amplifier with 11 dB of gain that drives Q12 (the AGC detector) and Q13 (AM detector).

3.2 Demodulator Circuits

The A5A1 assembly contains four detector circuits whose inputs are derived from the 455 kHz IF chain. The AM, FM, and product detectors all feed audio select circuit U3. The AGC detector output is routed to AGC Assembly A5A2, where it is used as part of the feedback loop that controls the gain characteristics of the receiver.

3.2.1 $A M$ and $A G C$ Detectors

Q12 and Q13 serve as the AGC detector and AM detector, respectively. Both of these detectors are temperature compensated and provide envelope detection to their respective outputs. The output of the AM detector is ac coupled and attenuated by R85, C65, and R86. The AGC detector output is dc coupled and goes to the A5A2 AGC PWB by way of J11-14.

3.2.2 Product Detector

Sideband signals are demodulated using a mixer as a product detector. The 455 kHz input to the mixer RF port is buffered through dual gate MOSFET Q8. LO input is $455 \mathrm{kHz}, \pm 10 \mathrm{kHz}, 0 \mathrm{dBm}$, and is supplied by BFO Assembly A11 at J2. Q7 provides 10 dB of gain to 50 ohm matching network R39, R40, R41, which in turn provides 7 dBm of LO drive to M 1 . LO leakage back into the IF chain is prevented by the 40 dB LO to RF isolation of M1 as well as the high reverse isolation of buffer Q8. Sideband inversion occurs in the mixing process. This produces an audio signal whose bandwidth is determined by the particular A4 filter selected, but may be translated in frequency by $\pm 10 \mathrm{kHz}$. Typical audio output level of 2.5 mV mms at the M1 IF port is boosted to approximately 150 mV 4 ms by amplifier U1.

3.2.3 FM Detector

FM demodulation is accomplished by quadrature detector U2. IF input from Q 5 is fed to pin 4, and maximum recovered audio occurs at pin 1 when tuned circuit L7-C55 is peaked for resonance at 455 kHz , the second IF center frequency.

3.3 Audio Selection

U3 is a CMOS analog switch that provides audio selection and muting functions. The IC is configured as three SPDT switches. In the receiver, these switches are connected in series to allow selection between the three demodulator outputs along with the audio output of the ISB board. Actual signal selection is con-

80 HARRIS
 RF COMMUNICATIONS

trolled by the receiver microprocessor on Control Board Assembly A14. Table 2 lists the control logic required at the audio select inputs (pins 9,10 , and 11) which allow the desired demodulator output to pass to the audio select outputs (pins 5,15 , and 4).

Table 2. Audio Select Data

Function Selected	Input Lines				
	A	B	C		
AM	0	0	0		
ISB	1	0	1		
FM	0	1	0		
SB	1	0	0		
(Product Detector)					
				\quad	+5 Vdc $=1$
:---					
0 Vdc $=0$					

There is also an inhibit input that allows complete muting of the inputs. This function is controlled by the internal mute and external mute lines at U3, pin 6. A logic 1 causes muting. The CD4053 IC has a limited supply voltage range. To provide true bipolar signal operation, it was provided with regulated ± 5 volt supplies (VR1, VR2). This also makes the logic levels compatible with the TTL control logic from the receiver control processor.

3.4 Audio Output Circuitry

There are two different audio paths in the receiver, both derived from different switched outputs of audio select U3. U3 pins, 5 and 15 , provide audio for the 600 ohm line audio output, while U3, pin 4, provides audio for the speaker and headphone outputs.

3.4.1 600 Ohm Line Audio

The 600 ohm line audio output at J 10 (pins 3,5 , and 7) is driving long lines. This output is the secondary of transformer T2 and along with the center tap it is available at both the rear panel terminal strip TB1 and D connector J7.

The input to the 600 ohm line out amplifier is from the audio selection IC, U3 (pins 5 and 15). Any of the three demodulators (AM, FM, and Product Detector) is capable of being output. The gain of the output amplifier is adjusted by a 20 turn trim potentiometer at the front panel meter. The output level in dBm 600 ohms may be read from the meter to ease adjustment.

fin HARRIS
 RF COMMUNICATIONS

The output amplifier is a FET input, low noise, wideband op amp (U5A) with a complementary current buffer Q15 and Q16. Gain control is accomplished by varying the gate bias on FET Q14. Q14 is configured as a voltage variable resistor and acts as the shunt leg in the amplifier feedback network. Total gain control range is 30 dB from -20 dBm to +10 dBm . The two endpoints can be set independently. The minimum gain is controlled by resistor R90 which is in parallel with Q14. The maximum gain is set by the minimum on resistance of Q14.

The current buffer output stage of this amplifier is formed by $Q 15$ and $Q 16$, a class AB complementary amplifier. The 600 ohm output impedance is set by resistor R96 whose 180 ohm value is transformed to 600 ohms by the $1.82: 1$ ratio of T2.

The line level is monitored at the top of R96, and a buffered single ended line output to the processor is available at J6-12. The output of this buffer (U9A) also drives the precision half-wave detector (U9C) that provides the USB AF meter and line audio detector BITE outputs. This circuit is a precision wideband, temperature compensated detector that provides meter drive through R101. The value of R101 is chosen so that the meter reads calibrated line output level in dBm 600 ohms. R169 provides a discharge path for C68 when the meter is not in circuit. There is also a buffered version of the peak detector output available for the line audio detector BITE line to the processor. A 4.7 volt Zener diode (CR17) provides overvoltage protection for the BITE circuitry.

3.4.2 Speaker and Headphone Audio

The second audio signal path in the receiver involves the local audio. It consists of the front panel, external speaker, and the headphones. The local audio output of audio select IC, U3 (pin 4) provides the signal input for the top of the volume potentiometer and the squelch circuitry. This point is also where the external audio is injected during an external mute. An external mute signal at U3, pin 6, inhibits the audio select chip and closes an analog switch that is connected to the external audio input.

The signal connection to the front panel volume potentiometer is through a shielded cable to protect the low level signal from external interference. The wiper of the volume potentiometer is returned to the A5A1 assembly through this same cable and is routed to an analog switch (U4B) that functions as a squelch gate. This gate is paralleled with resistor R107 that sets the depth of squelch by forming an attenuator with R110. Depth of squelch is 25 dB .

The output of the squelch gate is fed into the input of U5B, a low noise, wideband op amp that serves as the headphone amplifier. This stage has 50 dB of gain and is ac coupled into the headphone output. A series resistor R113 sets the 600 ohm output impedance. The output of this amplifier is also attenuated through R111 and R112 and fed into an analog gate (U4C) that provides a speaker on/off function. The output of this gate is then routed through J12, pin 3, to the speaker audio amplifier located on Audio Assembly A23.

3.5 Squelch Circuitry

The receiver has two separate mutually exclusive squelch circuits. The first is a noise squelch that operates only when the FM mode is chosen. The other type is a syllabic rate voice squelch which operates in all

8 HARRIS
 RF COMMUNICATIONS

other modes of operation. Both types use the variable squelch signal provided by the front panel Squelch control to establish a squelch threshold. Both control the squelch gate analog switch, (U4B), which mutes audio to headphone audio and speaker audio amplifier circuits. Note that the $\mathbf{6 0 0}$ ohm line audio is not squelch controlled, and that squelch action may also be accomplished at the squelch gate by signals provided automatically during receiver self-test (BITE).

3.5.1 Squelch Enabling

Two enabling schemes are used to allow the squeich circuits to function. The first selectively activates either the FM noise squelch or the voice squelch, but not both. The second allows the actual variable threshold signal from the front panel Squelch control to reach the squelch circuits.

3.5.1.1 Squelch Selection

The logic signal from the B input of audio select circuit U3 is a logic 1 (5 volts) only when the FM mode is chosen. This signal may be used to selectively activate FM squelch/deactivate voice squelch, or vice versa.

FM squelch selection occurs when U3, pin 10, is a logic 1 . This turns Q 20 on, providing a low impedance to ground for R144. This allows the audio at U7, pin 12 (derived from FM detector U2) to pass through amplifier $\mathrm{U7}$ and be processed by the rest of the FM squelch circuitry. Simultaneously, the same logic signal from U 3 turns Q 21 and then Q 24 on. This shorts out the voice squelch signal (derived from audio supplied by the other detectors) at U8, pin 6 . This action disables the voice squelch.

Voice squeich selection occurs when U 3 , pin 10, is a logic 0 . Q 21 and Q 24 turn off, and the voice squelch derived signal at U8, pin 6, is no longer shorted out. Simultaneously, Q20 turns off removing the ground return at R144, and FM squelch derived signals are prevented from passing through U7.

3.5.1.2 Squelch Threshold Enabling

A variable dc voltage provided by the front panel Squelch control wiper arm functions as the squelch threshold signal to both squelch circuits. This level must first exceed the potential Ve at $\mathrm{U8}$ (pin $2,27 \mathrm{mV}$) before it is applied to the squelch circuits. This action is the electronic equivalent of a hardwired mechanical switch that would provide a squelch off function. This causes no squelching action to occur for the first few degrees of the squelch control rotation.

Once Ve is exceeded, U8, pin 1 , switches from -15 Vdc to +15 Vdc , reverse biases CR31 and CR34, and allows the squelch control wiper voltage to feed through R153 (to the FM squelch circuits) and R156 (to the voice squelch circuits). When the threshold is below $\mathrm{Ve}, \mathrm{U} 8$ (pin 1) is at -15 Vdc . This forward biases the diodes and shorts out the squelch threshold inputs to the two squelch circuits. Note that despite this threshold value being applied to both squelch circuits simultaneously, only the squelch circuit enabled at the time will process it to cause squelch gating.

8 HARRIS
 RF COMMUNICATIONS

3.5.2 Voice Squelch Operation

The voice squelch in the receiver operates on the principle that the human voice has characteristic modulation in the 5 Hz to 15 Hz range.

The local audio is tapped off at the top of the volume potentiometer and run into a compressor comprising U6A, Q18, and Q19. The action of the compressor enables the squelch to operate on low level signals below the AGC threshold of the receiver. It also cancels any difference there may be in the level of recovered audio between the various detectors in the signal path.

The output of the compressor is fed into a precision temperature compensated, half-wave detector, U6B. This detector contains a limiting circuit that reduces its slew rate, and correspondingly reduces its ability to reproduce transient peaks greater than the nominal level of the highest frequency of interest. The output of this detector is run into a 15 Hz low pass filter (U7B) to separate out the syllabic rate component of the signal envelope. The output of the low pass filter is ac coupled to provide some highpass character istic and reject frequencies below 5 Hz . The ac coupled low pass output is then fed into a precision temperature compensated, full-wave rectifier/integrator (U7C). The output of this detector is integrated to provide a desirable transient response, and offer additional rejection of higher frequency information. This integrated output is then compared against the variable threshold from the squelch control at U8C, pins 5 and 6 . The output of this comparator charges and discharges an RC network that controls the squelch open and close timing.

The time constants chosen (determined by R140, R141, and C82) will cause U8, pin 14, to switch within 50 m seconds of detected voice. This applies +15 Vdc at squelch gate U 4 , pin 9 , which allows audio at pin 11 to pass through the gate headphone amplifier U5B. Similarly, the time constants will allow U8, pin 14, to remain at +15 Vdc for three seconds after voice activity stops. This allows the squelch gate to stay open, and allows normal interruptions of the human speech pattern to occur without annoying squelching activity between words, sentences, etc.

3.5.3 FM Squelch Operation

When the receiver is set to FM mode the voice squelch is disabled, and the FM noise squelch enabled. The input to the FM squelch is the attenuated output of the FM detector U2. This input goes into an amplifier (U7, pin 12) that also provides the enable function (at pin 13). After being amplified, the FM audio is fed into a bandpass filter (U6C) that is centered at 7 kHz . This filter was designed to reject signal information while amplifying any accompanying noise. The noise output of this filter is then detected by CR28 and CR29 and compared against the variable threshold at U6 pins 9 and 10 to make the squelch decision. Once the detected squelch signal exceeds the squelch threshold, U6, pin 8 , swings to +15 Vdc and closes the squelch gate at $\mathrm{U} 4, \operatorname{pin} 9$. Audio will now pass through to succeeding audio stages.

The threshold that the detected noise level is compared against is not the same threshold that the voice squelch uses, although it is generated from the same control. The operation of the two squelches is opposite in the sense that the voice squelch operates from the increasing presence of a signal (voice), and the FM squelch operates from the decreasing presence of a signal (as the signal strength increases, the

HARRIS RF COMMUNICATIONS

signal to noise ratio increases and the detected noise level will decrease). Both of these thresholds must operate from the same control potentiometer with a logical increase in squelch threshold with CW rotation. This necessitates inverting the sense and offsetting the level of the FM squelch threshold voltage. It is this altered threshold that is used to open and close the squelch gate in FM squelch.

3.5.4 Miscellaneous Squelch Circuits

There is one additional circuit on the A5A1 board that is capable of squelching the audio. A discrete one shot with a duration of approximately 500 mseconds is triggered off the falling edge of the internal mute line. This serves to mute the receiver audio during the BITE sequence so that the operator does not hear the various signals that are injected into the signal path by the processor controlled BITE operation. This one shot consists of Q22 and Q23 and their associated components.

4. MAINTENANCE

The following adjustments should not be performed as routine maintenance procedures, but only when a failure indicates a definite need. All tests are performed with all assembly connections in normal contact, unless otherwise specified.

4.1 Second IF Chain Alignment

Perform the following procedure to align the second IF chain.
a. Disconnect the ribbon cable connecting the AGC Assembly A5A2 to the IF/Audio Assembly A5A1 at A5A1J11.
b. Connect equipment as shown in figure 1.

590-81(B)

Figure 1. Second IF Chain Alignment
c. Set RF-590 controls as follows:

- Frequency to 10.000000 MHz .
- Mode to USB
- USB meter button to USB/RF
- AGC to OFF
- RF Gain to fully clockwise (cw)

8 HARRIS
 RF COMMUNICATIONS

d. Set signal generator to $10.0015 \mathrm{MHz},-70 \mathrm{dBm}$ RF output.
e. Disconnect the coax from A4J4 on the IF/Filter Assembly A4. Connect the RF millivoltmeter, with 50 ohm adapter, to A4J4 and verify that the level is -44 dBm . (If the level at A4J4 is not -44 dBm , alignment is required ahead of IF/Audio Assembly A5.) Disconnect RF millivoltmeter and reconnect coax to A4J4.
f. Connect RF millivoltmeter with 50 ohm adapter to RF-590 rear panel connector J4, Filtered IF output.
g. Set signal generator RF output to 0.5 uVrms .
h. Monitoring the Boonton 92C, adjust A5A1L3 and A5A1L4 for maximum output indication on an RF millivoltmeter. (Adjustments may be some what interactive, so repeat as necessary.)
i. Adjust A5A1R8 for $-7 \mathrm{dBm}(100 \mathrm{mVrms})$ output indication on the RF millivol tmeter.
j. Turn RF-590 power off. Reconnect ribbon cable to A5A1. Test is complete.

4.2 FM Detector Alignment

Perform the following procedure to align the FM detector.
a. Connect equipment as shown in figure 2. Set signal generator to $10.000000 \mathrm{MHz}, 10 \mathrm{uV}$, 4.7 kHz FM deviation, and 1 kHz modulation.

Figure 2. FM Detector Alignment
b. Set RF-590 controls as follows:

- Frequency to 10.000000 MHz
- Mode to FM
- AGC to MEDIUM
- RF Gain to fully clockwise (cw)
- Meter to USB Audio
c. Adjust L7 for maximum audio output at TB1. (More than one setting may produce a peaked response choose the setting which gives the most response.)

The audio output level should be $0 \mathrm{dBm}, \pm 4 \mathrm{~dB}$. (This assumes that the USB audio control located to the left of the meter had been previously set to 0 dBm for USB operation).

80 HARRIS
 RF COMMUNICATIONS

d. Activate receiver BITE self-test. Receiver must pass all tests associated with the A5A1 assembly. Test is complete.

5. PARTS LIST

Table 3 is a comprehensive parts list of all replaceable components in IF/Audio Motherboard Assembly A5A1. When ordering parts from the factory, include a full description of the part. Use figure 3, IF/Audio Motherboard Assembly A5A1 Component Location Diagram to identify parts.

6. SCHEMATIC DIAGRAM

Figure 4 is the IF/Audio Motherboard A5A1 schematic diagram.
Table 3. IF/Audio Motherboard Assembly A5A1 Maintenance Parts List (PL 10073-5410)

Ref. Desig.	Part Number	Description
$\begin{aligned} & \text { C1 } \\ & \text { C2-C4 } \\ & \text { C5 } \\ & \text { C6-C8 } \\ & \text { C9 } \\ & \text { C10 } \\ & \text { C11 } \\ & \text { C12 } \\ & \text { C13 } \\ & \text { C14 } \\ & \text { C15 } \\ & \text { C16 } \\ & \text { C17 } \\ & \text { C18 } \\ & \text { C19 } \\ & \text { C20 } \\ & \text { C21 } \\ & \text { C22 } \\ & \text { C23 } \\ & \text { C24 } \\ & \text { C25 } \\ & \text { C26 } \\ & \text { C27 } \\ & \text { C28 } \\ & \text { C29 } \\ & \text { C30 } \\ & \text { C31 } \\ & \text { C32 } \\ & \text { C33 } \end{aligned}$	10073-5410 M39014/02-1310 M39014/02-1320 M39014/02-1310 M39014/02-1320 M39014/02-1310 M39014/02-1320 M39014/02-1320 C26-0025-220 M39014/02-1310 M39014/02-1320 M39014/02-1320 CM04FD181J03 CM06FD112J03 CM04ED680J03 CM06FD122J03 M39014/02-1310 M39014/02-1320 M39014/02-1320 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1320 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1320 M39014/02-1310 M39014/02-1320 CK05BX102M	PWB ASSEMBLY CAP .IUF 10\% 100V CER-R CAP . 47UF 10\% 50V CER-R CAP . 1UF 10% 100V CER-R CAP . 47 UF 10\% 50V CER-R CAP . 1UF 10\% 100V CER-R CAP . 47UF 10\% 50V CER-R CAP . 47 UF 10% 50V CER-R CAP 22UF 20\% 25V TANT CAP .1UF 10\% 100 V CER-R CAP .47UF 10\% 50V CER-R CAP .47UF 10\% 50V CER-R CAP 180PF 5\% 500V MICA CAP 1100PF 5\% 500V MICA CAP 68PF $5 \% 500 \mathrm{~V}$ MICA CAP 1200PF 5\% 500V MICA CAP .1UF 10\% 100V CER-R CAP . 47UF 10\% 50V CER-R CAP . 47UF 10\% 50V CER-R CAP .IUF 10\% 100V CER-R CAP . IUF 10\% 100V CER-R CAP .1UF 10\% 100V CER-R CAP .47UF 10\% 50V CER-R CAP .IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP . IUF 10\% 100V CER-R CAP .47UF 10\% 50V CER-R CAP .IUF 10\% 100V CER-R CAP .47UF 10\% 50V CER-R CAP 1000PF 20\% 200V CER

8 HARRIS RF COMMUNICATIONS

Table 3. IF/Audio Motherboard Assembly A5A1 Maintenance Parts List (PL 10073-5410) (Cont.)

Ref. Desig.	Part Number	Description
C34	M39014/02-1310	CAP . IUF 10\% 100V CER-R
C35	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C36	CK05BX102M	CAP 1000PF 20\% 200V CER
C37	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C38	M39014/02-1320	CAP . 47 UF 10\% 50V CER-R
C39	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C40	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C41	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C42	M39014/02-1310	CAP . IUF 10\% 100V CER-R
C43	M39014/02-1310	CAP . 1 UF 10\% 100V CER-R
C44	C26-0025-339	CAP 3.3UF 20\% 25V TANT
C45	CK05BX472M	CAP 4700PF 20\% 100V CER
C46	M39014/02-1310	CAP . IUF 10\% 100V CER-R
C47	M39014/02-1320	CAP . 47 UF 10\% 50V CER-R
C48	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C49	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C50	M39014/02-1310	CAP . IUF 10\% 100V CER-R
C51	C26-0025-339	CAP 3.3UF 20\% 25V TANT
C52	CK05BX102M	CAP 1000PF 20\% 200V CER
C53	C26-0025-339	CAP 3.3UF 20\% 25V TANT
C54	M39014/02-1310	CAP . IUF 10\% 100V CER-R
C55	CM06FD362J03	CAP 75PF 5\% 500V MICA
C56 C57	CM04ED750J03 M39014/02-1320	
C58	C26-0025-339	CAP 3.3UF 20\% 25V TANT
C59	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C60	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C61	M39014/02-1310	CAP . IUF 10\% 100V CER-R
C62	M39014/02-1310	CAP . 1 UF 10\% 100V CER-R
C63	C26-0025-339	CAP 3.3UF 20\% 25V TANT
C64	M39014/01-1535	CAP . 01 UF 20\% 100V CER
C65	C26-0025-339	CAP 3.3UF 20\% 25V TANT
C66	CK05BX332M	CAP 3300PF 20\% 100V CER
C67	C26-0025-339 C26-0025-339	CAP 3.3 UF $20 \% 25 V$ TANT CAP 3.3 UF $20 \% 25 \mathrm{~V}$ TANT
C69	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C70	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C71	C26-0025-339	CAP 3.3UF 20\% 25V TANT
C72	C26-0035-100	CAP 10UF 20\% 35V TANT
C73	C26-0025-339	CAP 3.3UF 20\% 25V TANT
C74	M39014/02-1310	CAP . 1 UF 10\% 100V CER-R
C75	M39014/02-1302	CAP .022UF 20\% 100V CER
C76	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C77	C26-0025-339 M $39014 / 02-1316$	CAP 3.3UF 20\% 25V TANT CAP 22UF 20% 50V CER
C79	M39014/02-1316	CAP .22UF 20\% 50V CER

8 HARRIS RF COMMUNICATIONS

Table 3. IF/Audio Motherboard Assembly A5A1 Maintenance Parts List (PL 10073-5410) (Cont.)

Ref. Desig.	Part Number	Description
C80	M39014/02-1316	CAP .22UF 20\% 50V CER
C81	C26-0025-479	CAP 4.7UF 20\% 25V TANT
C82	C26-0035-100	CAP 10UF 20\% 35V TANT
C83	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C84	CK05BX821K	CAP 820PF 10\% 200V CER
C85	CK05BX821K	CAP 820PF 10\% 200V CER
C86	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C87	C26-0025-339	CAP 3.3UF 20\% 25V TANT
C88	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C89	C26-0025-339	CAP 3.3UF 20\% 25V TANT
C90	C26-0035-159	CAP 1.5UF 20\% 35V TANT
C91	C26-0025-470	CAP 47UF 20\% 25V TANT
C92	C26-0025-470	CAP 47UF 20\% 25V TANT
C93	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C94	CK05BX221M	CAP 220PF 20\% 200V CER
C95	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C96	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C97	M39014/02-1320	CAP . 47 UF 10\% 50V CER-R
C98	M39014/02-1310	CAP .1UF 10\% 100V CER-R
CR1	10073-5412	DIODE PIN
CR2	10073-5412	DIODE PIN
CR3	10073-5412	DIODE PIN
CR4	1N4454	DIODE 200mA 75V SW
CR5	1N4454	DIODE 200mA 75 V SW
CR6	1N4732	DIODE 4.7V 10\% 1W ZENER
CR7	1N4454	DIODE 200mA 75 V SW
CR8	1 N4454	DIODE 200mA 75 V SW
CR9	1 N4454	DIODE 200 mA 75 V SW
CR10	1 N4454	DIODE 200mA 75 V SW
CR11	1N4454	DIODE 200 mA 75 V SW
CR12	1N4454	DIODE 200mA 75 V SW
CR13	1N4454	DIODE 200 mA 75 V SW
CR14	1 N4454	DIODE 200 mA 75 V SW
CR15	1N4454	DIODE 200 mA 75 V SW
CR16	1N4454	DIODE 200mA 75 V SW
CR17	1 N4732	DIODE 4.7V 10\% 1W ZENER
CR18	1N4454	DIODE 200 mA 75 V SW
CR19	1N4454	DIODE 200 mA 75 V SW
CR21	1N4454	DIODE 200 mA 75 V SW
CR22	1N4454	DIODE 200mA 75V SW
CR23	1N4454	DIODE 200 mA 75V SW
CR24	1N4454	DIODE 200mA 75 V SW
CR25 CR26	1N4454 1N4454	DIODE 200 mA 75 V SW
CR27	1N4454	DIIODE 200 mA 75 V SW

fid HARRIS
 RF COMMUNICATIONS

Table 3. IF/Audio Motherboard Assembly A5A1 Maintenance Parts List (PL 10073-5410) (Cont.)

Ref. Desig.	Part Number	Description
CR28 CR29 CR30 CR31 CR32 CR32 CR33 CR34 J1 12 13 14 J4 15 J6 J7 18 19 J10 J11 J12 JMP1 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 M1 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14	1N4454 1N4454 1 N4454 1N4454 1N4454 1N4454 1N4454 J-0031 J90-0014-001 J-0031 J-0031 J46-0022-006 J46-0013-016 J46-0022-004 J46-0032-010 J46-0032-010 J-0870 J46-0013-020 J46-0022-003 MP-1142 MS75085-19 MS75085-19 L11-0004-037 L11-0004-037 MS75085-19 MS75085-11 L11-0004-031 MS75085-19 MS75085-19 MS75085-19 151-0003-001 Q35-0001-001 2N2222A 2N2222A 2N2222A 2N2222A 2N2222A 2N2222A Q03-0187-000 2N2222A 2N2222A 2N2222A 2N2907A 2N2222A 2N4091	DIODE 200mA 75V SW DIODE 200 mA 75 V SW CONN SMB VERT PCB F CONN SMB VERT PCB MT M CONN SMB VERT PCB F CONN SMB VERT PCB F HDR 6 PIN 0.100" SR LKG HDR 16 PIN $0.100^{\prime \prime}$ DR SHRD HDR 4 PIN 0.100" SR LKG HDR 10 PIN 0.100" SR HDR 10 PIN 0.100" SR CONN, 10 PIN HDR 20 PIN 0.100" DR SHRD HDR 3 PIN 0.100" SR LKG CIRCUIT JUMPER COIL 1000UH 10\% FXD RF COIL 1000UH 10\% FXD RF INDUCT SH VAR 90.0-110 UH INDUCT SH VAR 90.0-110 UH COIL 1000UH 10\% FXD RF COIL 220UH 10\% FXD RF INDUCT SH VAR 29.7-36.3UH COIL 1000UH 10\% FXD RF COIL 1000UH 10\% FXD RF COIL 1000UH 10\% FXD RF MIXER DB 50 mW 500 MHZ XSTR JFET J310 XSTR SS/GP NPN TO-18 XSTR MOSFET XSTR SS/GP NPN TO-18 XSTR SS/GP NPN TO-18 XSTR SS/GP NPN TO-18 XSTR SS/GP PNP TO-18 XSTR SS/GP NPN TO-18 XSTR JFET N-CH TO-18

80 HARRIS
 RF COMMUNICATIONS

Table 3. IF/Audio Motherboard Assembly A5A1 Maintenance Parts List (PL 10073-5410) (Cont.)

Ref. Desig.	Part Number	Description
Q15	2N2222A	XSTR SS/GP NPN TO-18
Q16	2N2907A	XSTR SS/GP PNP TO-18
Q17	2N2222A	XSTR SS/GP NPN TO-18
Q18	Q05-0002-000	XSTR JFET
Q19	2N2907A	XSTR SS/GP PNP TO-18
Q20	2N2222A	XSTR SS/GP NPN TO-18
Q21	2N2222A	XSTR SS/GP NPN TO-18
Q22	2N2222A	XSTR SS/GP NPN TO-18
Q23	2N2907A	XSTR SS/GP PNP TO-18
Q24	2N2907A	XSTR SS/GP PNP TO-18
R1	R65-0003-181	RES 1805% 1/4W CAR FILM
R2	R65-0003-561	RES 560 5\% 1/4W CAR FILM
R3	R65-0003-101	RES 1005% 1/4W CAR FILM
R4	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R5	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R6	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R7	R65-0003-200	RES 20 5\% 1/4W CAR FILM
R8	R40-0008-101	RES, VAR , 100
R9	R65-0003-431	RES 4305% 1/4W CAR FILM
R10	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R11	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R12	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R13	R65-0003-221	RES 2205% 1/4W CAR FILM
R14	R65-0003-390	RES 395\% 1/4W CAR FILM
R15	R65-0003-431	RES $4305 \% 1 / 4 W$ CAR FILM
R16	R65-0003-101	RES 1005% 1/4W CAR FILM
R17	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R18	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R19	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R20	R65-0003-561	RES 5605% 1/4W CAR FILM
R21	R65-0003-101	RES 1005% 1/4W CAR FILM
R22	R65-0003-361	RES 3605% 1/4W CAR FILM
R23	R65-0003-203	RES 20K 5\% 1/4W CAR FILM
R24	R65-0003-203	RES 20K 5\% 1/4W CAR FILM
R25	R65-0003-271	RES 2705% 1/4W CAR FILM
R26	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R27	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R28	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R29	R65-0003-561	RES 5605% 1/4W CAR FILM
R30	R65-0003-270	RES $275 \% 1 / 4 W$ CAR FILM
R31	R65-0003-431	RES 4305% 1/4W CAR FILM
R32	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R33	R65-0003-221	RES 2205\% 1/4W CAR FILM
R34	R65-0003-431	RES 4305% 1/4W CAR FILM
R35	R65-0003-101	RES 1005% 1/4W CAR FILM

访 HARRIS
 RF COMMUNICATIONS

Table 3. IF/Audio Motherboard Assembly A5A1 Maintenance Parts List (PL 10073-5410)
(Cont.)

Ref. Desig.	Part Number	Description
R36	R65-0003-242	RES $2.4 \mathrm{~K} 5 \%$ 1/4W CAR FILM
R37	R65-0003-120	RES $125 \% 1 / 4 W$ CAR FILM
R38	R65-0003-101	RES 1005\% 1/4W CAR FILM
R39	R65-0003-301	RES 3005\% 1/4W CAR FILM
R40	R65-0003-180	RES 185\% 1/4W CAR FILM
R41	R65-0003-301	RES 3005\% 1/4W CAR FILM
R42	R65-0003-510	RES 51 5\% 1/4W CAR FILM
R43	R65-0003-102	RES 1.0K $5 \% 1 / 4 W$ CAR FILM
R44	R65-0003-183	RES 18K 5\% 1/4W CAR FILM
R45	R65-0003-201	RES 2005% 1/4W CAR FILM
R46	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R47	R65-0003-201	RES 2005% 1/4W CAR FILM
R48	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R49	R65-0003-221	RES 2205% 1/4W CAR FILM
R50	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R51	R65-0003-562	RES 5.6K 5\% 1/4W CAR FILM
R52	R65-0003-201	RES 2005% 1/4W CAR FILM
R53	R65-0003-561	RES 560 5\% 1/4W CAR FILM
R54	R65-0003-100	RES 10 5\% 1/4W CAR FILM
R55	R65-0003-431	RES $43 \mathrm{~K} 5 \% 1 / 4$ W CAR FILM
R56	R65-0003-433	RES RES $20 \mathrm{~K} 5 \%$ RES
R57 R58	R65-0003-203	RES RES RES 105% 1/4W CAR FILM
R59	R65-0003-331	RES 3305% 1/4W CAR FILM
R60	R65-0003-510	RES 515\% 1/4W CAR FILM
R70	R65-0003-271	RES 270 5\% 1/4W CAR FILM
R71	R65-0003-242	RES 2.4K 5\% 1/4W CAR FILM
R72	R65-0003-562	RES 5.6K 5\% 1/4W CAR FILM
R73	R65-0003-751	RES $7505 \% 1 / 4 W$ CAR FILM
R74	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R75	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R76	R65-0003-561	RES 560 5\% 1/4W CAR FILM
R77	R65-0003-161	RES 160 5\% 1/4W CAR FILM
R78	R65-0003-561	RES 560 5\% 1/4W CAR FILM
R79	R65-0003-122	RES 1.2K 5\% 1/4W CAR FILM
R80	R65-0003-473	RES 1005% 1/4W CAR FILM
R81 R82	R65-0003-101	$\begin{array}{ll}\text { RES } \\ \text { RES } & 100 \\ \text { RES }\end{array}$
R83	R65-0003-273	RES 27K 5\% 1/4W CAR FILM
R84	R65-0003-102	RES 1.OK 5\% 1/4W CAR FILM
R85	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R86	R65-0003-681	RES $6805 \% 1 / 4 W$ CAR FILM
R87	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R88	R65-0003-473	RES $47 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM
R89	R65-0003-104	RES 100K 5\% 1/4W CAR FILM

HA HARRIS RF COMMUNICATIONS

Table 3. IF/Audio Motherboard Assembly A5A1 Maintenance Parts List (PL 10073-5410) (Cont.)

Ref. Desig.	Part Number	Description
R90	R65-0003-203	RES 20K 5\% 1/4W CAR FILM
R 92	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R93	R65-0003-910	RES 915% 1/4W CAR FILM
R94	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R95	R65-0003-910	RES $915 \% 1 / 4 W$ CAR FILM
R96	R65-0003-181	RES 1805\% 1/4W CAR FILM
R97	R65-0003-621	RES 6205% 1/4W CAR FILM
R98	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R99	R65-0003-152	RES 1.5K 5\% 1/4W CAR FILM
R100	R65-0003-244	RES $240 \mathrm{~K} 5 \% 1 / 4 W$ CAR FILM
R101	R65-0003-273	RES $27 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM
R102	R65-0003-203	RES 20K 5\% 1/4W CAR FILM
R103	R65-0003-203	RES 20K 5\% 1/4W CAR FILM
R104	R65-0003-203	RES 20K 5\% 1/4W CAR FILM
R105	R65-0003-473	RES 47K 5\% 1/4W CAR FILM
R106	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R107	R65-0003-184	RES 180K 5\% 1/4W CAR FILM
R108	R65-0003-470	RES $475 \% 1 / 4 W$ CAR FILM
R109	R65-0003-153	RES 15K 5\% 1/4W CAR FILM
R110	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R111	R65-0003-303	RES 30K 5\% 1/4W CAR FILM
R112	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R113	R65-0003-561	RES 560 5\% 1/4W CAR FILM
R114	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R115	R65-0003-473	RES 47K 5\% 1/4W CAR FILM
R116	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R117	R65-0003-334	RES 330K 5\% 1/4W CAR FILM
R118	R65-0003-124	RES 120K 5\% 1/4W CAR FILM RES 51K 5\% 1/4W CAR FILM
R119	R65-0003-513	RES 2.2K 5\% 1/4W CAR FILM
R120 R121	R65-0003-222	RES 2.0K 5\% 1/4W CAR FILM
R122	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R123	R65-0003-105	RES 1.0M 5\% 1/4W CAR FILM
R125	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R126	R65-0003-513	RES 51K 5\% 1/4W CAR FILM
R127	R65-0003-393	RES 39K 5% 1/4W CAR FILM
R128	R65-0003-511	RES 510 5\% 1/4W CAR FILM
R129-R131	R65-0003-393	RES 39K 5\% 1/4W CAR FILM
R132-R135	R65-0003-103	RES 10K 5\% 1/4W CAR FILM RES 5.1K 5\% 1/4W CAR FILM
R136 R137	R65-0003-512	RES $100 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM
R138	R65-0003-473	RES $47 \mathrm{~K} 5 \% 1 / 4 W$ CAR FILM
R140	R65-0003-132	RES 1.3K 5\% 1/4W CAR FILM
R141	R65-0003-244	RES 240K 5\% 1/4W CAR FILM
R142, R143	R65-0003-473	RES 47K 5\% 1/4W CAR FILM

8 HARRIS
 RF COMMUNICATIONS

Table 3. IF/Audio Motherboard Assembly A5A1 Maintenance Parts List (PL 10073-5410) (Cont.)

Ref. Desig.	Part Number	Description
R144 R145 R146 R147 R148 R149 R150 R151 R152 R153 R154 R155 R156 R157 R158 R159 R161 R162 R163 R164 R165 R166-R168 R169 R170 R171 R172 T1 T2 TP1 TP2 TP3 TP4 TP5 TP7 TP8 TP9 TP10 TP11 TP12 U1 U2 U3 U4	R65-0003-302 R65-0003-104 R65-0003-392 R65-0003-244 R65-0003-184 R65-0003-272 R65-0003-203 R65-0003-623 R65-0003-754 R65-0003-563 R65-0003-153 R65-0003-270 R65-0003-513 R65-0003-203 R65-0003-103 R65-0003-202 R65-0003-471 R65-0003-101 R65-0003-104 R65-0003-511 R65-0003-473 R65-0003-302 D40-0004-004 R65-0003-273 R65-0003-511 $10073-7026$ T60-0004-001 $J-0071$ $J-0066$ $J-0069$ $J-0070$ $J-0068$ $J-073$ $J-0074$ $J-0065$ $J-0067$ $J-0071$ $J-0066$ $130-0036-001$ $160-0003-001$ $101-0000-252$ $106-0002-001$ $130-0035-000$ $130-0003-000$ $112-0010-005$ $112-0005-005$	RES 3.0K 5\% 1/4W CAR FILM RES 100K 5\% 1/4W CAR FILM RES 3.9K 5\% 1/4W CAR FILM RES 240K 5\% 1/4W CAR FILM RES 180K 5\% 1/4W CAR FILM RES 2.7K 5\% 1/4W CAR FILM RES 20K 5\% 1/4W CAR FILM RES $62 \mathrm{~K} 5 \%$ 1/4W CAR FILM RES 750K 5\% 1/4W CAR FILM RES 56K 5\% 1/4W CAR FILM RES $15 \mathrm{~K} 5 \% 1 / 4$ W CAR FILM RES $275 \% 1 / 4$ W CAR FILM RES 51K 5\% 1/4W CAR FILM RES 20K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 2.0K 5\% 1/4W CAR FILM RES 470 5\% 1/4W CAR FILM RES 1005% 1/4W CAR FILM RES 100K 5\% 1/4W CAR FILM RES 510 5\% 1/4W CAR FILM RES 47K 5\% 1/4W CAR FILM RES 3.0K 5\% 1/4W CAR FILM THERM,2K, 5\% RES 27K 5\% 1/4W CAR FILM RES 510 5\% 1/4W CAR FILM TRANSFORMER, RF, FIXED TRANSFORMER TP PWB BRN TOP ACCS .080" TP PWB RED TOP ACCS .080" TP PWB ORN TOP ACCS .080" TP PWB YEL TOP ACCS .080" TP PWB GRN TOP ACCS .080" TP PWB VIO TOP ACCS .080" TP PWB GRA TOP ACCS . 080° TP PWB WHT TOP ACCS . $080^{\prime \prime}$ TP PWB BLK TOP ACCS .080" TP PWB BRN TOP ACCS .080" TP PWB RED TOP ACCS .080" IC 5534 OP AMP PLASTIC IC FM IF AMP IC 4053B PLASTIC CMOS IC DG211 PLASTIC CMOS IC 072 OP AMP PLASTIC IC 324 OP AMP PLASTIC IC VR 79L05A -5V. 10A 4\% IC VR 78L05 + 5V.10A 10

6 HARRIS
 RF COMMUNICATIONS

Figure 3. IF/Audio Motherboard Assembly A5A1 Component Location Diagram (10073-5410, Rev. E)

2. ALL RESISTOR VALUES ARE IN OHMS. I/aw, 15\%
4. पEMpob part vo call

80 HARRIS
RF COMMUNICATION

hf COMMUNRCATION

80 HARRIS RF COMMUNICATIONS

Figure 4. IF/Audio Motherboard A5A1 Schematic Diagram (10073-5411, Rev. J) (Sheet 4 of 4)

590-56(B)

IF/Audio AGC Assembly A5A2 Functional Block Diagram

OD HARRIS
 RF COMMUNICATIONS

7. A5A2 AGC ASSEMBLY GENERAL DESCRIPTION

AGC Assembly A5A2 contains circuits that automatically control receiver gain over a 120 dB dynamic range. RF input levels at the antenna input from 1 uVrms to 1 Vrms will produce no more than a 3 dB change in audio output level.

Shaping circuitry on the A5A2 assembly provides the following automatic gain control characteristics:

- Attack time - fixed: less than 20 mseconds
- Decay time - selectable: fast, less than 30 mseconds; medium, 200 ± 50 mseconds; slow, 4 ± 1 second

Signal monitoring circuits include the following:

- RF signal strength via RF-590 front panel metering
- BITE detection of the AGC output level

Receiver gain control may also be accomplished when any of the following signals are present:

- RF Gain (Local manual control from the RF-590 front panel.)
- External AGC (A rear panel input for remote control of the gain controlling circuits.)
- ISB AGC (Used when the ISB option is installed in the receiver. In this case, the stronger of the two received sideband signals will control receiver gain.)

Additionally, AGC output and combined AGC output (when ISB operation is utilized) signals are available at the receiver rear panel.

The A5A2 assembly is mounted to the A5A1 assembly, and signals flow from A5A2P1 to A5A1J9 and J11. Once these signals arrive at the A5A1 assembly, they are directed to various other connectors on the A5A1 assembly and then routed to other assemblies in the radio. Table 4 details the input/output connections and any relevant data.

Table 4. AGC Assembly A5A2 Interface Connections

Connector	Function	Characteristics
P1-1	ISB AGC	
P1-2	MED AGC	$+5 \mathrm{Vdc}=$ Selected
P1-3	AGC BITE	Typically 1.5 Vdc during BITE Test

80 HARRIS
 RF COMMUNICATIONS

Table 4. AGC Assembly A5A2 Interface Connections (Cont.)

Connector	Function	Characteristics
P1-4	IF AGC	0 to -3 Vdc
P1-5	Power	-15 Vdc
P1-6	FAST AGC	$+5 \mathrm{Vdc}=$ Selected
P1-7	Spare	
P1-8	AGC ON/OFF	$+5 \mathrm{Vdc}=\mathrm{AGC}$ OFF
P1-9	Spare	
P1-10	Spare	
P1-11	Power	+15 Vdc
P1-12	RF Gain	0 to +12 Vdc
P1-13	USB RF Meter Output	
P1-14	AGC Detector	Typically -1 Vdc
P1-15	RF AGC Output	Typically 0 to -6 Vdc
P1-16	AGC Dump	$+5 \mathrm{Vdc}=\mathrm{AGC}$ off
P1-17	Ground	
P1-18	External AGC	Typically 0 to +6 Vdc
P1-19	AGC Output	Typically 0 to -6 Vdc
P1-20	Combined AGC Output	

8. CIRCUIT DESCRIPTIONS

8.1 AGC Operation

Figure 5 is a simplified block diagram which shows the relationship of the AGC assembly to the rest of the radio.

The AGC circuitry in the receiver maintains a constant peak level at the A5A1 IF output. The strength of the IF output is a function of the received RF signal strength at the antenna as well as the gain of all the stages preceding the IF output. If the gain of the receiver could be decreased in proportion to the increasing strength of a received signal (and vice versa), then a constant IF output and audio output will be maintained.

8 HARRIS RF COMMUNICATIONS

590-83

Figure 5. AGC Operation

The RF-590 AGC circuits accomplish this by sampling the IF output signal, converting it into a dc signal whose amplitude is a function of signal strength and comparing it to a reference signal. Any difference in amplitude between these two signals will cause an error signal to develop. This error signal is fed back to PIN diode attenuator circuits throughout the radio, and causes the diodes to alter the impedance of the output stages of selected amplifier stages. In so doing, they have modified the stage gain. Therefore, for large RF input signals (and IF output signals) there will be a large error voltage generated, a large change in amplifier output impedance, and a large decrease in receiver gain. The converse is true for small RF input signals, although there is an AGC threshold limit at which low level RF signals will not cause gain reduction.

8.2 AGC Amplifiers

The circuits which produce the actual AGC voltage consist of the four sections of U1. U1A is a noninverting buffer which amplifies the detected AGC signal provided by the A5A1 assembly. Section U1B is the AGC loop error amplifier which generates the AGC error voltage that controls the receiver gain. This differential amplifier has a gain of 10 for inputs greather than the error reference, and a gain of 0 for inputs below the error reference. The error reference signal is set by potentiometer R5 at the noninverting input of the amplifier.

8 HARRIS
 RF COMMUNICATIONS

The decay time of the AGC voltage is set by the discharge time constant of C 3 . The discharge rate is a function of the shunt resistance of C 3 , and is altered by adding or removing resistance via Q 1 and Q 2 . When Q1 and Q2 are off, only R11 is the discharge path (corresponding to slow AGC speed). Turning Q2 on, shunts R11 with R10 (decreasing the total shunt resistance, etc). These decay speeds are front panel selectable.

Shorting C3 out via a low resistance to ground through Q3 disables the AGC entirely. This will happen in response to the AGC off command from the front panel (so that manual gain control may be used) or to the rear panel AGC dump signal.

U1D is strictly a noninverting buffer stage which presents C3 with a high impedance input so that charge will not leak off and alter the AGC time constants.

8.3 AGC Combination and Control Circuits

The receiver is designed to have a great deal of flexibility in controlling the receiver gain. The first method, as discussed above, is the receiver Automatic Gain Control (AGC). Also available from the front panel is an RF GAIN control, and from the rear panel connector there is an external AGC control.

The different gain controls are combined together using quad op amp U3. The combination is implemented using an analog OR gate that passes the largest of the four inputs on the gain control bus (TP5). The fourth input is an internal adjustment, potentiometer R19, that can be used to reduce the receiver gain, and thereby increase the AGC threshold.

None of these four inputs are ever disabled, so take care when using the receiver so that the gain control bus is not overridden by an undesired input. The best example of this is the front panel RF GAIN control. The RF GAIN control is supplied by the processor and is selected either from the front panel or the remote controller. It is the output of a digital to analog converter and is under direct processor control. (The converter output has a low pass filter to remove processor noise and to eliminate any ripple on the gain control voltage that would produce undesired modulation in the signal path.)

For proper operation of the AGC circuitry, the RF GAIN control should be at its maximum position to ensure full receiver sensitivity.

The output of the IF gain combiner U3 provides the input to the IF AGC shaping circuitry. It is also compared to the ISB AGC input for control of the RF AGC. The larger of the two AGC levels will then be the input to the RF AGC shaping circuitry. This will ensure that the gain of the input RF amplifiers will be at the correct level to avoid overload by the greater of the two sidebands when ISB operation is used. The IF strip AGC circuits will then control their own gain as required.

8.4 AGC Outputs

8.4.1 Shaping Circuitry

As previously mentioned, the AGC action maintains a constant level at the IF output. This is accomplished by supplying an increasing linear AGC voltage to the PIN diode attenuators in the signal path (in response

8 HARRIS
 RF COMMUNICATIONS

to a logarithmic increase in RF signal strength). The RF AGC and IF AGC shaping circuitry provides a means to control the response of the PIN diodes to accomplish this.

Temperature compensation for the PIN diodes is provided by summing a temperature dependent offset voltage into the input of each shaping network. The temperature coefficient of gain of each gain controlled stage can be maintained at an acceptable minimum.

Note that two AGC shaping networks are required, since it is desirable to have RF AGC reduction (A2, A3 assemblies) begin at a higher RF input level than IF AGC reduction (A5A1 assembly). IF AGC reduction typically begins at RF signal levels on the order of .5 uVrms , while RF AGC reduction begins approximately 50 dB above this threshold.

8.4.1.1 IF AGC Shaping

The shaping and compensation circuitry for the IF strip on the A5A2 assembly consists of op amp U4A and its associated circuitry. Q4 serves as a current buffer and is included within the circuits feedback network. R30 acts to limit the maximum output current and protect Q4. Potentiometer R28 provides an adjustment in the shaping circuitry to compensate for variations between individual PIN diodes so that the meter indication of signal strength is calibrated in each receiver. The input to this circuit at TP5 is the AGC voltage which increases from 0 to 6 volts as the receiver gain decreases by 120 dB . The IF strip provides 80 dB of the necessary attenuation, and this requires approximately -2 volts on the IF AGC output. There is one gain breakpoint caused by CR10, and this occurs at the point when the AGC in the RF amplifiers begins (approximately 50 dB above AGC threshold). Temperature compensation is provided by CR11, R25, and R24. R24 sets the diode offset and R25 sets the offset temperature coefficient.

8.4.1.2 RF AGC Shaping

The shaping circuitry for the RF AGC consists of op amp sections U2B, U2C, and their associated components. U2B is used to implement the necessary temperature compensation, along with the RF AGC threshold. The RF AGC threshold is set so that AGC action to the RF amplifiers in the receiver does not begin until 50 dB above AGC threshold. This was done to ensure that the S / N ratio of the receiver would increase linearly to at least 50 dB before the noise figure of the receiver input was degraded by RF AGC action. The RF threshold circuit subtracts 2.5 volts from the AGC input voltage to shaping circuit U2C. Temperature compensation for the RF AGC is provided by CR17 and R37. R37 sets the diode offset and temperature coefficient gain. The operation of U2B is noninverting.

U2C performs the shaping for the RF AGC. There are two breakpoints in the nonlinear approximation set by CR18 and CR19. These diodes are reverse biased by resistor pairs R42 and R43, and R40 and R41 respectively. When the diodes become forward biased by the increasing input, they conduct and increase the circuit gain by lowering the input impedance of the inverting amplifier. Potentiometer R45 provides adjustment of the shaping circuit gain to compensate for individual PIN diode variations. Q5 acts as a current buffer and is included in the amplifier feedback network. R47 provides current limiting protection for Q5.

80 HARRIS
 RF COMMUNICATIONS

The input to the shaping circuit is the receiver AGC voltage minus 2.5 volts. The input can be found at TP4. (The receiver AGC voltage is available at TP5). The output of the shaping circuit is a negative voltage that increases to approximately -8 volts (maximum) at full gain reduction, and is available at TP6. RF AGC action provides typically 40 dB of attenuation at maximum AGC voltages, with 20 dB occurring in the A 2 assembly and 20 dB occurring in the A 3 assembly.

8.4.2 AGC Output Monitor Lines

There are four output monitor lines from the AGC assembly; the AGC OUT line, the AGC BITE line, the USB Meter RF line, and the Comb AGC OUT line. The first is the buffered AGC voltage which goes to the rear panel. The second is the AGC voltage divided by three which goes to the processor BITE circuitry. It has a 4.7 volt Zener diode on its output to protect the BITE circuitry against overvoltage. The USB Meter RF line goes to the front panel meter to provide signal strength information. The AGC voltage is calibrated to provide a linear 6.0 volt rise for an increase of 120 dB of signal strength above AGC threshold. The meter itself is a 100 uA meter, so R49 (a 62 K resistor) provides the proper meter drive.

The Comb AGC OUT line is the output of the IF AGC and ISB AGC combiner. This line monitors the AGC control voltage going to the RF AGC shaping circuitry.

9. MAINTENANCE

The following adjustments should not be performed as routine maintenance procedures, but only when a failure indicates a definite need. All tests are performed with all assembly connections in normal contact, unless otherwise specified. It is further assumed that all other circuits in the RF path are operational and properly aligned.

9.1 AGC Alignment

Perform the following procedure to align the AGC assembly.
a. Remove the ribbon cable connecting the AGC Assembly A5A2 to the IF/Audio Amp Assembly A5A1.
b. Connect equipment as shown in figure 6. Set generator to 10.0015 MHz and RF output to OFF. Set spectrum analyzer to the second IF frequency (455 kHz).

Figure 6. AGC Assembly Alignment

H HARRIS
 RF COMMUNICATIONS

c. Turn on the receiver and set controls as follows:

- Frequency to 10.000000 MHz
- Mode to USB
- USB meter button to USB/RF
- RF GAIN to fully clockwise (cw)
- \quad AGC to OFF
d. Rotate R19 fully counterclockwise (ccw) and measure TP5 (should be 0 Vdc).
e. Turn the receiver off and reconnect the ribbon cable between the AGC Assembly A5A2 and the IF/Audio Amp Assembly A5A 1.
f. Turn on the receiver and set $A G C$ to MED and generator output to -60 dBm . Adjust A5A2R5 for -7 dBm at second IF output.
g. Decrease signal generator to 10 uV rms. Adjust A5A2R28 for a 10 uVrms reading on the RF-590 front panel meter.
h. Increase signal generator to 10 mV rms. Adjust A5A2R45 for a 10 mVrms reading on the front panel meter.
i. Note that the second IF output remains at a constant -7 dBm level between the two RF input extremes in steps g . and h .
j. Initiate the receiver BITE self-test. The receiver must not fail at 05-01, the AGC test. Test is complete.

10. PARTS LIST

Table 5 is a comprehsive parts list of all replaceable components in IF/Audio AGC Assembly A5A2. When ordering parts from the factory, include a full description of the part. Use figure 7, IF/Audio AGC Assembly A5A2 Component Location Diagram to identify parts.

11. SCHEMATIC DIAGRAM

Figure 8 is the IF/Audio AGC Assembly A5A2 schematic diagram.

7 HARRIS
 RF COMMUNICATIONS

Table 5. IF/Audio AGC Assembly A5A2 Maintenance Parts List (PL 10073-5450)

Ref. Desig.	Part Number	Description
	10073-5450	PWB, IF/AUDIO AGC
C1	C26-0025-100	CAP 10UF 20\% 25V TANT
C2	C26-0025-100	CAP 10UF 20\% 25V TANT
C3	C25-0003-209	CAP 22UF 10\% 25V TANT
C4	M39014/02-1310	CAP . 1 UF 10\% 100V CER-R
C5	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C6	M39014/02-1310	CAP . IUF 10\% 100V CER-R
CR1	1N4454	DIODE 200 mA 75 V SW
CR2	1N4454	DIODE 200mA 75V SW
CR3	1N4454	DIODE 200mA 75V SW
CR4	1N4454	DIODE 200 mA 75 V SW
CR5	1 N4454	DIODE 200mA 75 V SW
CR6	1N4454	DIODE 200 mA 75 V SW
CR7	1 N4454	DIODE 200mA 75V SW
CR8	1N4454	DIIODE 200mA 75V SW
CR9	1N4454	DIODE 200mA 75V SW
CR10	1N4454	DIODE 200 mA 75 V SW
CR11	1N4454	DIODE 200mA 75V SW
CR12	1N4454	DIODE 200mA 75V SW
CR13	1 N4454	DIODE 200 mA 75 V SW
CR14	1 N4454	DIODE 200mA 75V SW
CR15	1N4454	DIODE 200 mA 75 V SW
CR16	1N4454	DIODE 200mA 75 V SW
CR17	1N4454	DIODE 200 mA 75 V SW
CR18	1N4454	DIODE 200 mA 75 V SW
CR19	1N4454 1N4454	DIODE 200 mA 75 V SW
CR20	1N4454 1N4732	DIODE 4.7V 10\% 1W ZENER
P1	10073-7072	RIBBON CABLE, 20 COND
Q1	2N2222A	XSTR SS/GP NPN TO-18
Q2	2N2222A	XSTR SS/GP NPN TO-18
Q3	2N2222A	XSTR SS/GP NPN TO-18
Q4	2N2907A	XSTR SS/GP PNP TO-18
Q5	2N2907A	XSTR SS/GP PNP TO-18
R1	R65-0003-432	RES 4.3K 5\% 1/4W CAR FILM
R2	R65-0003-432	RES 4.3K 5\% 1/4W CAR FILM
R3	R65-0003-223	RES 22K 5\% 1/4W CAR FILM
R4	R65-0003-432	RES 4.3K 5\% 1/4W CAR FILM
R5	R30-0008-203	RES, VAR, PCB 20K 1/2W 10\%
R6	R65-0003-433	RES 43K 5\% 1/4W CAR FILM RES 47K 5\% 1/4W CAR FILM
R7	R65-0003-473	RES 430 5\% 1/4W CAR FILM
R88	R65-0003-431	RES RES $47 \mathrm{~K} 5 \%$ RES
R10	R65-0003-203	RES 20K 5\% 1/4W CAR FILM
R11	R65-0003-474	RES 470K 5\% 1/4W CAR FILM

8 HARRIS
 RF COMMUNICATIONS

Table 5. IF/Audio AGC Assembly A5A2 Maintenance Parts List (PL 10073-5450) (Cont.)

Ref. Desig.	Part Number	Description
R12	R65-0003-242	RES 2.4K 5\% 1/4W CAR FILM
R13	R65-0003-100	RES 105\% 1/4W CAR FILM
R14	R65-0003-473	RES $47 \mathrm{~K} 5 \% 1 / 4 W$ CAR FILM
R15	R65-0003-473	RES 47K 5\% 1/4W CAR FILM
R16	R65-0003-473	RES 47K 5\% 1/4W CAR FILM
R17	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R18	R65-0003-203	RES 20K 5% 1/4W CAR FILM
R19	R-2226	RES, VAR,PCB 2K. 5 20\%
R20	R65-0003-512	RES 5.1K 5% 1/4W CAR FILM
R21	R65-0003-184	RES 180K 5\% 1/4W CAR FILM
R22	R65-0003-683	RES 68K 5\% 1/4W CAR FILM
R23	R65-0003-822	RES 8.2K 5\% 1/4W CAR FILM
R24	R65-0003-393	RES 39K 5\% 1/4W CAR FILM
R25	R65-0003-751	RES 7505% 1/4W CAR FILM
R26	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R27	R65-0003-681	RES 6805% 1/4W CAR FILM
R28	R-2205	RES,VAR,PCB 500.5 20\%
R29	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R30	R65-0003-301	RES 300 5\% 1/4W CAR FILM RES 51K 5\% 1/4W CAR FILM
R31 R32	R65-0003-513	RES $24 \mathrm{~K} 5 \% 1 / 4$ W CAR FILM
R33	R65-0003-302	RES 3.0K 5\% 1/4W CAR FILM
R34	R65-0003-751	RES 7505% 1/4W CAR FILM
R35	R65-0003-104	RES 100K 5\% 1/4W CAR FILM
R36	R65-0003-104	RES 100K 5\% 1/4W CAR FILM
R37	R65-0003-104	RES 100K 5\% 1/4W CAR FILM
R38	R65-0003-153	RES 15K 5\% 1/4W CAR FILM
R39	R65-0003-203	RES 20K 5\% 1/4W CAR FILM
R40	R65-0003-133	RES 13K 5\% 1/4W CAR FILM
R41	R65-0003-363	RES 36K 5\% 1/4W CAR FILM
R42	R65-0003-114	RES 110K 5\% 1/4W CAR FILM
R43	R65-0003-223	RES 22K 5\% 1/4W CAR FILM
R44	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R45	R-2228	RES,VAR, PCB 10 K .5 20\% RES 1 OK $5 \% 1 / 4 W$ CAR FILM
R46 R47	R65-0003-102	RES 1.0 K RES $3005 \% 1 / 4 W$ W CAR FILM
R48	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R49	R65-0003-623	RES 62K 5\% 1/4W CAR FILM
R50	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R51	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R52	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
TP1	J-0071	TP PWB BRN TOP ACCS .080"
TP2	J-0066	TP PWB RED TOP ACCS .080"
TP3	J-0069	TP PWB ORN TOP ACCS .080" TP PWB YEL TOP ACCS 080
TP4	J-0070	TP PWB YEL IOP ACCS . 080

8 HARRIS

RF COMMUNICATIONS

Table 5. IF/Audio AGC Assembly A5A2 Maintenance Parts List (PL 10073-5450) (Cont.)

Ref. Desig.	Part Number	Description
TP5	$1-0068$	TP PWB GRN TOP ACCS .080"
TP6	J-0072	TP PWB BLU TOP ACCS .080"
U1	$130-0003-000$	IC 324 OP AMP PLASTIC
U2	$130-0003-000$	IC 324 OP AMP PLASTIC
U3	$130-0003-000$	IC 324 OP AMP PLASTIC
U4	I30-0003-000	IC 324 OP AMP PLASTIC
VR1	$112-0010-005$	IC VR 79L05A -5V.10A 4\%

Figure 7. IF/Audio AGC Assembly A5A2 Component Location Diagram (10073-5450, Rev. D)

60 HARRAS
hF COMMUNICATIONS

Figure 8. IF/Audio AGC Assembly A5A2
Schematic Diagram (10073-5451, Rov. D)

HARRIS
 RF COMMUNICATIONS

TABLE OF CONTENTS

LIST OF FIGURES

Figure		Page
	PLL I Assembly A6 Functional Block Diagram	
1	VCO Adjustment	
2	PLL I Assembly A6 and PLL 1 Motherboard Assembly A6A1 Component location Diagram (PL 10073-4110)	10
3	PLL I Assembly A6 PLL 1 Motherboard Assembly A6A1 Schematic Diagram (10073-4111, Rev. E)	11
4	VCO Board A6A2 Component Location Diagram (10073-4120-01)	17
5	VCO Board A6A2 Schematic Diagram (10073-4121, Rev. H) . ${ }^{\text {a }}$	20
6	Mixer Board A6A3 Component Location Diagram Mixer Board A6A3 Schematic Diagram (10073-4131, Rev. C) .	21
8	Phase Detector Board A6A4 Component Location Diagram (10073-4160-01).	25
9	Phase Detector Board A6A4 Schematic Diagram (10073-4161, Rev. D)	27

LIST OF TABLES

Table		Page
	PLL I Assembly A6 Interface Connections	2
2	VCO Frequency Range	7
3	PLL I Assembly Maintenance Parts List (PL 10073-4100-01)	8
4	PLL I Assembly A6A1 Maintenance Parts List (PL 10073-4110)	8
5	VCO Board A6A2 Maintenance Parts List (PL 10073-4120-01)	
6	Mixer Board A6A3 Maintenance Parts List (PL 10073-4130) . .	23
	Phase Detector Board Maintenance Parts List (PL 10073-4160-01)	23

PLL I Assembly A6 Functional Block Diagram

8 HARRIS RF COMMUNICATIONS

1. GENERAL DESCRIPTION

PLL I Assembly A6 is a translation type phase lock loop which performs the following primary functions.

- Combination of the $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}, 100 \mathrm{kHz}, 1 \mathrm{MHz}$, and 10 MHz tuning increments information
- Frequency translation of these increments to the required Local Oscillator (LO) no. 1 range of 40.465 to 70.455 MHz

Coarse tuning increments ($100 \mathrm{kHz}, 1 \mathrm{MHz}$, and 10 MHz) arrive from the $A 7$ assembly are combined with the fine tuning increments ($1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}$, and 10 kHz) from the A8 assembly. Occurring simultaneously with this combination function is frequency translation to the Local Oscillator no. 1 range. This signal is then applied to First Converter Assembly A2, where it functions as the first local oscillator injection for A2 Mixer M1. This signal which is continuously variable in 1 Hz steps allows the RF- 590 to tune from 10 kHz to 30 MHz , constantly maintaining a first intermediate frequency (IF) of 40.455 MHz (IF no. $1=$ LO no. 1 - Radio tune frequency).

PLL I Assembly A6 consists of the following four separate subassemblies.

- Motherboard Assembly A6A1
- VCO Assembly A6A2
- Mixer Assembly A6A3
- Phase Comparator Assembly A6A4

The A6A2, A6A3, and A6A4 subassemblies are separate printed circuit boards which are mounted to the A6A1 motherboard. All three subassemblies are independently shielded from each other and other circuitry on the motherboard by separate shield cans which completely surround each subassembly.

Plug-in mating connectors connect each subassembly to the others. Signals which originate or terminate off the A 6 assembly are connected via coax cables and connectors or through the one main plug-in type control connector, J1.

2. INTERFACE CONNECTIONS

Table 1 details the input/output connections and other relevant data for all signals which originate or terminate off the A6 assembly. (A6 subassembly interconnections are not shown.)

OHARRIS RF COMMUNICATIONS

Table 1. PLL I Assembly A6 Interface Connections

Connector	Function	Characteristic
A6A1J1-1	+24 Volts	Approximately 20 mA
-2	Index	
-3	Ground	
-4	+5 Volts Unregulated	Approximately 200 mA
-5	Lock Detector Output	$0 \mathrm{~V}=\mathrm{PLL}$ locked, $+5 \mathrm{~V}=\mathrm{PLL}$ unlocked
-6	+15 Volts	Approximately 25 mA
A6A1P2	PLL II Tracking Reference	+3.5 to +19 Vdc
A6A2P1	LO no. 1	$0 \mathrm{dBm}, 40.465$ to 70.455 MHz (PLL I Output)
A6A3P1	PLL II Output	+4 dBm, 44.1 to 74.0 MHz
A6A4P1	PLL III Output	$-2 \mathrm{dBm}, 35.45$ to 36.45 MHz
A6A1P1	Switch	+4 V at tune frequency $<2 \mathrm{MHz}$ 0 V at tune frequency $\geqslant 2 \mathrm{MHz}$

3. A6 FREQUENCY GENERATION SCHEME

A PLL intermediate frequency (IF) signal in the range of 3.545 MHz to 3.645 MHz is produced at the output of mixer A6A3U1. This IF signal is a result of the subtractive mixing of the 44.1 to 74.0 MHz PLL II output with a VCO signal from VCO Assembly A6A2 in the range of 40.465 MHz to 70.455 MHz .

This IF signal is converted to TTL levels and divided down to a 354.5 kHz to 365.4 kHz range, and applied to one port of Phase Comparator A6A4U2. The second port of A6A4U2 is the reference signal, a variable 354.5 kHz to 365.4 kHz signal derived from PLL III Assembly A8. Any difference in frequency or phase between these two signals produces an error output from the phase comparator which forces the VCO to change its operating frequency. As the VCO frequency changes, the IF output at mixer A6A3U1 must also change. Eventually the IF derived signal will equal the reference frequency at the Phase Comparator inputs and the Phase Comparator will stop the VCO at the frequency which produced the correct IF.

Since the instantaneous frequencies of the PLL II output and the PLL III output represent the values of the $10 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}, 10 \mathrm{kHz}, 1 \mathrm{kHz}, 100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 1 Hz receiver tuning positions respectively, the instantaneous frequency of the $V C O$ will be a unique frequency representing all these values. The VCO output is applied to a mixer in the receivers front end at the A2 assembly and functions as that mixer's LO signal. A change in any of the 10 MHz to 1 Hz tuning positions will cause the LO to change to the frequency required to tune the receiver, producing a constant receiver first intermediate frequency of 40.455 MHz.

8 HARRIS

RF COMMUNICATIONS

Given the receiver tune frequency $f_{0}=X_{8} X_{7}, X_{6} X_{5} X_{4}, X_{3} X_{2} X_{1} H z$ where X_{8} through X_{1} represent the values of the 10 MHz through 1 Hz tuning positions, the A6 output frequency can be determined by the following formula:
$F A 6=F A 7-\frac{1}{10} F A 8, H z$
where

$$
\begin{aligned}
& \text { FA7 }=\left(441+X_{8} X_{7} X_{6}\right)(100,000), H z \\
& \text { FA8 }=\left[40,000,000+10\left(6000-X_{3} X_{2} X_{1}\right)\right]-\left[10,000\left(361+X_{5} X_{4}\right)\right], H z
\end{aligned}
$$

Example: $\quad f_{0}=14,682,156 \mathrm{~Hz}$

$$
\begin{aligned}
\text { FA7 }= & (441+146)(100,000)=58,700,000 \mathrm{~Hz} \\
\text { FA8 }= & {[40,000,000+10(6000-156)]-[10,000(361+82)]=40,058,440-} \\
& 4,430,000=35,628,440 \mathrm{~Hz} \\
\text { FA6 }= & 58,700,000-\frac{1}{10}(35,628,440)=55,137,156 \mathrm{~Hz}
\end{aligned}
$$

Note that $F A 6-f_{0}=40,455,000 \mathrm{~Hz}$. This relationship will be true for all receiver tune frequencies, since 40.455 MHz was chosen as the receiver's first IF.

4. CIRCUIT DESCRIPTIONS

4.1 Mixer Assembly A6A3 Operation

A variable 44.1 to $74.0 \mathrm{MHz},+4 \mathrm{dBm}$ signal containing $100 \mathrm{kHz}, 1 \mathrm{MHz}$, and 10 MHz tuning information from PLL II Assembly A7 enters the A6A3 assembly at P 1 and is applied to pin 8 of mixer U1. A VCO derived signal from the A6A2 assembly is fed through -10 dB attenuator network R1-R3 to pin 1 of the mixer. The resultant IF output is a signal in the range of 3.545 to 3.645 MHz at $U 1$, pins 3 and 4 .

This signal is attenuated by -6 dB network R4-R6 and then applied to a low pass filter network to remove all undersirable mixer products. Amplifier stage Q 1 boosts this signal to approximately 300 mVrms for application to Phase Comparator Assembly A6A4.

4.2 Phase Detector Assembly A6A4 Operation

The IF signal from A6A3 assembly is converted to TTL levels by high gain limiter stage Q5 and Q6 and divided down to the 354.5 kHz to 364.5 kHz range by divide by 10 counter U3. This signal is then applied to the IF port of phase comparator U2.

The reference port of $U 2$ is derived from the PLL III output, and is also in the 354.5 kHz to 364.5 kHz range after division by divide by 10 counters U 1 and U 4 .

8 HARRIS
 RF COMMUNICATIONS

When these two signals are equal in frequency and phase, the phase comparator outputs at U2, pins 2 and 13 , are at +5 Vdc . All transistors in charge pump network $\mathrm{Q} 1, \mathrm{Q} 2$, and Q 3 are biased off. The voltage across C21 is constant, and this will bias transistor A6A2O2 on the VCO assembly to produce a constant voltage drop across A6A2R9, at A6A2TP1. Consequently, the VCO on the A6A2 assembly is held at a constant frequency.

Assume that the A8 PLL III output increases in frequency due to decreasing the values of any of the 10 kHz through 1 Hz receiver tuning positions. Since the reference signal at the reference port of the Phase Comparator (pin 1) will suddenly be higher in frequency than the IF derived signal at the IF port, U1 produces an error command to lower the VCO frequency and thereby increase the IF feedback signal. This command is in the form of negative pulses at U2, pin 13. The pulse width of this signal is proportional to the difference in frequency and/or phase between the two Phase Comparator inputs. When these negative pulses occur, O 2 is forced on and a charge is drawn out of C21. This causes A6A2O2 to conduct less, and the level of the VCO control voltage at A6A2TP1 will fall. As it decreases, the VCO frequency decreases, causing a corresponding increase in IF frequency at mixer A6A3U1's output. As the IF feedback signal at the Phase Comparator's input approaches the reference frequency, the output pulses at U2, pin 13, get narrower until they are essentially at a 5 Vdc level again. At this point, the two Phase Comparator inputs are equal in frequency, $\mathbf{0} 2$ is turned off, and the voltage across $\mathbf{C 2 1}$ is constant (but at a new lower value). Consequently, the VCO control voltage is also constant, but at a new lower value, as is the VCO output frequency.

Note that the same sequence of events would have occurred if the A7 PLL II output frequency had decreased due to a decrease in the 10 MHz to 100 kHz receiver tuning positions.

Assume that the A7 PLL II output frequency increases due to increasing the 10 MHz to 100 kHz receiver tuning values. The instantaneous frequency at mixer A6A3U1's output will increase, causing a corresponding increase at the IF input port of the Phase Comparator. This signal will be greater in frequency than the reference signal and consequently U1 issues an error command to raise the VCO frequency in order to lower the mixer's output frequency. This time the negative pulses appear at pin 2 of the Phase Comparator. Q1 is forced on, and in so doing, turns Q 3 on. Q 3 begins pumping a charge into C 21 , raising its voltage. This turns A6A2O1 on harder and a rising voltage occurs at A6A2TP1, the VCO control voltage. This voltage forces the VCO frequency to increase. Mixer A6A3U1's output (IF) frequency therefore decreases and continues to do so until the two signals at the Phase Comparator inputs are again equal. At that time, the output pulses at U 2 , pin 2, are essentially at $5 \mathrm{Vdc}, \mathrm{Q} 1$ and Q 2 turn off, and the VCO control voltage stops at a new higher value (as does the VCO frequency).

Note that the same sequence of events would have occurred if the A8 PLL III output decreased in frequency due to increasing any of the values of the receiver's 10 kHz through 1 kHz tuning positions.

4.3 VCO/Loop Filter A6A2 Operation

A charge pump circuit on the A6A4 assembly converts the Phase Comparator's pulse outputs into an analog dc voltage and applies it to terminal E2 of VCO/Loop Filter Assembly A6A2. Q2 generates the actual VCO control voltage across R9 at TP1, and applies the signal through a low pass filter (LPF) network to the varactor diode string in the VCO. The LPF removes any noise transients on the VCO control voltage

8 HARRIS RF COMMUNICATIONS

line which could shift the VCO frequency. The VCO is a. JFET Hartley Oscillator stage (Q1) whose frequency shifts as the varactor diodes capacitance changes in response to changes in VCO control voltage. A VCO control voltage range at TP1 of approximately 3.5 Vdc to 19.0 Vdc shifts the VCO frequency from 40.455 MHz to 70.455 MHz .

The VCO output is fed to two separate amplifier stages. The first, $\mathrm{Q4}$, boosts the signal to 0 dBm and routes the signal through P1 to First Converter Assembly A2, where it functions as the first LO injection for mixer A2U1. The second stage is on the A6A1 motherboard and consists of transistors A6A1O3 and A6A1Q4. This signal is simply referred to as the VCO output, and is boasted to approximately -6 dBm prior to application to mixer A6A3U1 on the mixer assembly; the VCO feedback loop is therefore completed.

4.3.1 Other VCO Control Circuits

There are two other circuits which can cause the VCO control voltage to change. They are the PLL II Tracking Reference/Clamp circuit (motherboard transistors A6A1Q1 and A6A102) and the 2 MHz switch circuit (VCO/Loop Filter transistor A6A2O3).

4.3.1.1 PLL II Tracking Reference/Clamp Circuit

The PLL || tracking reference/clamp circuit forces the PLL I VCO to track the PLL || VCO. In so doing, it shortens the receiver tuning time. It also prevents the PLL II VCO from running to the wrong side of the frequency conversion in the mixing process, which could cause failure or the loop to falsely lock up.

For example, assume that the PLL II output is at 74 MHz and the VCO output is at 70.455 MHz (the highest frequency it would normally operate at). The IF frequency produced at the A6A3U1 mixer output would then be $(74-70.455) \mathrm{MHz}=3.545 \mathrm{MHz}$, which is in the normal PLL IF range.

Assume that the VCO exceeds its upper frequency bound, and is now at 77.545 MHz . The IF output at A6A3U1 would again be $3.545 \mathrm{MHz}(77.545 \mathrm{MHz}-74 \mathrm{MHz}=3.545 \mathrm{MHz}$), and the Phase Comparator would lock, holding the VCO at the wrong frequency.

The potential problem is eliminated by forcing the A6A2 VCO to track the A7 PLL II VCO. The PLL II VCO does not have a mixer in its feedback path, and therefore does not have this problem. It does, however, contain a VCO circuit which is almost identical to the A6A2 VCO (with respect to control voltage levels and operational frequency). When the PLL I VCO control voltage changes from 3.5 to 19.0 Vdc , its frequency changes from 40.455 MHz to 70.455 MHz . When the PLL II VCO control voltage changes from 3.5 to 19.0 Vdc , its frequency changes from 44.1 to 74 MHz . Furthermore, whenever the PLL II control voltage and VCO frequency change, the PLL I control voltage and VCO frequency will always change by almost the same amount.

Knowing that the VCO control voltage levels of both VCOs should always be approximately the same, we could monitor both and know if the PLL I VCO frequency is incorrect, since if it is it would have a different control voltage level than the PLL II VCO.

If HARRIS RF COMMUNICATIONS

The A6A1 Tracking Reference/Clamp circuit does this monitoring function, as well as forcing the PLLI VCO back to the correct control voltage range, if necessary. The PLL II tracking reference signal at A6A1P2 is the actual value of the instantaneous A7 control voltage and is applied to the input of the circuit. The clamp's output is PLL I VCO control voltage at the PLL I VCO input. So long as the two control voltages remain within approximately $\pm 1.5 \mathrm{Vdc}$ of each other (due to the diode drops of CR1, CR2, and Q1 or CR3, CR4, and Q2), Q1 and Q2 are nonconducting, and the PLL I control voltage is in an acceptable range of $\pm 1.5 \mathrm{Vdc}$ from the PLL II control voltage.

Assume that the PLL I control voltage took off, driving the VCO higher in frequency. As soon as the control voltage level exceeded the PLL II control voltage plus $1.5 \mathrm{Vdc}, \mathrm{Q} 2$ turns on, forcing the PLL I control voltage to stop. Simultaneously, the PLL I Phase Comparator would be reacting to this sudden increase in frequency and eventually would pull the control voltage back down to the correct level, at which time Q2 would turn off.

The Tracking Reference/Clamp circuit will act as a "quick reaction" method of holding the PLL I VCO to approximately the correct value until the Phase Comparator can react in the event of a VCO "run away" condition. (Note that Q1 would perform the controlling function if the PLL I control voltage dropped 1.5 Vdc below the PLL II control voltage.)

4.3.1.2 2 MHz Switch Circuit

At receiver tune frequencies less than approximately 2 MHz , the VCO control voltage required to drive the VCO is so low that the charge pump circuit on Phase Comparator Assembly A6A4 enters a nonlinear region of operation in an attempt to produce it. In order to correct this (at frequencies less than 2 MHz), the PLL Frequency Synthesizer A7U2 on the PLL II assembly outputs a 5 Vdc level to A6A1P1. This level occurs at A6A2E3 and turns Q3 on. Q3, which is connected across the control voltage input at Q2's base reduces the control voltage level by switching R7 into the circuit. The net result is that the charge pump on the A6A4 assembly must now force its output to increase the dc level at E2 in order to produce the proper VCO control voltage level at TP1. In so doing, the charge pump pulls itself out of its nonlinear region. At tune frequencies greater than $2 \mathrm{MHz}, \mathrm{Q} 3$ is off, and the charge pump functions norm ally. Note that this same scheme is used on the A7 assembly.

4.4 BITE Circuits

Lock detector A6A404 on Phase Detector Assembly A6A4 monitors the status of the Phase Comparators outputs, A6A4U2 pins 2 and 13. If either output pulses low and remains low for a period exceeding the time constants of A6A4R 10 and A6A4C4, A6A4O4 turns on and outputs a 5 Vdc signal at (ultimately) connector A6A1J1, pin 5, Lock Detector Output. This immediately flags BITE monitoring circuits on Control Assembly A14 and a front panel fault light indicator will light.

5. MAINTENANCE

The following adjustments should not be made as part of a routine maintenance procedure but rather only when a failure indicates a definite need. All tests are performed with all connections in normal contact, unless otherwise specified.

HARRIS
 RF COMMUNICATIONS

5.1 VCO Tracking Adjustment

Perform the following procedures to adjust the VCO.
a. Connect equipment as shown in figure 1.

Figure 1. VCO Adjustment
b. Set the RF- 590 to 29.900000 MHz . Note the VCO control voltage level at A6A2TP1 (should be approximately $16-19.0 \mathrm{Vdc}$).
c. Monitor the PLL II tracking reference from A7 to A6A1E2 with the DVM. The level should be the same as that noted in step b. If not, adjust PLL II Assembly A7C15 until the PLL II tracking reference is equal to the PLL I VCO control voltage at A6A2TP1.
d. Tune the radio to each of the frequencies listed in table 2. At each frequency, the PLL II tracking reference and the PLL I VCO control voltage should agree within $\pm .5 \mathrm{Vdc}$. The LO no. 1 output should be $0 \mathrm{dBm} \pm 3 \mathrm{~dB}$ at the frequencies indicated.
e. Check that the switch input at A6A1E1 does change to approximately $4 \pm .5 \mathrm{Vdc}$ when the receiver is tuned below 2 MHz .

Table 2. VCO Frequency Range

Receiver Tune Frequency (MHz)	LO No. 1 Output Frequency (MHz)	Approximate PLL I VCO Control Voltage (Vdc)
29.900000	70.355000	17.75 ± 1.25
20.000000	60.455000	12.5 ± 1.0
10.000000	50.455000	7.5 ± 1.0
0.000000	40.455000	3.0 ± 1.0

8 HARRIS
 RF COMMUNICATIONS

f. Fully reconnect the A6 assembly to the RF-590 and initiate BITE self-test. The Receiver should not fail at any test concerning the A6 assembly. The test is now complete.

Tables 3 through 7 and figures 2 through 9 are the A6 assembly parts lists, component location drawings, and schematics.

Table 3. PLL I Assembly Maintenance Parts List (PL 10073-4100-01)

Ref. Desig.	Part Number	Description
A6	$10073-7089$	CABLE, COAX ASSY
A6A1	$10073-4100-01$	PLL ASSEMBLY
A6A2	$10073-4110$	PWB ASSY, PLL 1 MOTHER BD
A6A3	$10073-4120-01$	PWB ASSY, VCO
A6A4	$10073-4130$	PWB ASSY, MIXER
	$10073-4160-01$	PWB ASSY, PHASE DETECTOR

Table 4. PLL I Assembly A6A1 Maintenance Parts List (PL 10073-4110)

Ref. Desig.	Part Number	
		Description
	$10073-4110$	PWB, PLL 1 MOTHER BD
	J46-0003-001	HEADER, 1 PIN
	$10073-7088$	CABLE, COAX ASSY
	E70-0002-002	PAD MNT XSTR TO-5
C1	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C3	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C4	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C5	C26-0025-100	CAP 10UF 20\% 25V TANT
C6	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C7	M39014/01-1535	CAP .01UF 20\% 100V CER
C8	M39014/01-1535	CAP .01UF 20\% 100V CER
C9	M39014/01-1535	CAP .O1UF 20\% 100V CER
C10	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C11	M39014/01-1535	CAP .01UF 20\% 100V CER
C12	M39014/01-1535	CAP .01UF 20\% 100V CER
C13	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C14	M39014/01-1535	CAP .01UF 20\% 100V CER
C15	CM04ED390J03	CAP 39PF 5\% 500V MICA
C16	M39014/01-1535	CAP .01UF 20\% 100V CER
C17	M39014/01-1535	CAP .01UF 20\% 100V CER
C20	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C21	C26-0025-100	CAP 10UF 20\% 25V TANT
C22	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C23	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C24	C26-0016-151	CAP 150UF 20\% 16V TANT
C25	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C26	M39014/02-1310	CAP .1UF 10\% 100V CER-R

8 HARRIS
 RF COMMUNICATIONS

Table 4. PLLI Assembly A6A1 Maintenance Parts List (PL 10073-4110) (Cont.)

Ref. Desig.	Part Number	Description
C27	C26-0035-100	CAP 10UF 20\% 35V TANT
C28	10073-7035	CAP,FEED-THRU 100
C29	10073-7035	CAP,FEED-THRU 100
C30	10073-7035	CAP,FEED-THRU 100
C31	10073-7035	CAP,FEED-THRU 100
CR1	1N3064	DIODE 75 mA 75 V SW
CR2	1N3064	DIODE 75 mA 75 V SW
CR3	1N3064	DIODE 75 mA 75 V SW
CR4	1N3064	DIODE 75mA 75V SW HDR 6 PIN 0.100 " SR
J1	J46-0032-006	HDR 6 PIN 0.100 SR CHOKE WB 50 MHZ
L1	L08-0001-001	CHOKE W B 50 MHZ
L2	L08-0001-00 MS14046-9	COIL 27UH 10\% FXD RF
Q1	2N2222	XSTR SS/GP NPN TO-18
Q2	2N2907	XSTR SS/GP PNP TO-18
Q3	Q35-0003-000	XSTR U310 JFET HIGH GM
Q4	2N5109	XSTR RFPWR NPN TO-39
R1	R65-0003-473	RES $47 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM RES 100K 5\% 1/4W CAR FILM
R2	R65-0003-104	RES 100K 5\% 1/4W CAR FIL
R3	R65-0003-104	RES 100K 5\% 1/4W CAR
R4	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R5	R65-0003-221	RES 2205% 1/4W CAR FILM
R6	R65-0003-221	RES 2205% 1/4W CAR FILM
R7	R65-0003-101	RES 1005% 1/4W CAR FILM
R8	R65-0003-101	RES 100 5\% 1/4W CAR FILM
R9 R10	R65-0003-151	$\begin{aligned} & \text { RES } 1505 \% \text { 1/4W CAR FILM } \\ & \text { RES } 475 \% ~ 1 / 4 W \text { CAR FILM } \end{aligned}$
R10 R11	R65-0003-470 R65-0003-242	RES $2.4 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM
R12	R65-0003-152	RES $1.5 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM
R13	R65-0003-101	RES 100 5\% 1/4W CAR FILM
R14	R65-0003-121	RES 1205\% 1/4W CAR FILM
R15	R65-0003-100	RES 105% 1/4W CAR FILM
R16	R65-0003-471	RES 470 5\% 1/4W CAR FILM
T1	10073-7014	TRANSFORMER, RF, FIXED
T2	10073-7014	TRANSFORMER, RF, FIXED ICVR 7805 + 5V 15 A 4\%
VR1 VR2	111-0001-001 1N4737	ICVR $7805+5 \mathrm{l}$ DIODE 7.5 V 10\% 1W ZENER
VR2	1N4737	DIODE 7.5 V 10\% IW ZENER

Figure 2. PLL I Assembly A6 and PLL I Motherboard Assembly A6A1
RO HARRIS
COMMUNICATIO

81 HARRIS RF COMMUNICATIONS

Table 5. VCO Board A6A2 Parts List (PL 10073-4120-01)

Ref. Desig.	Part Number	Description
		PWB, VCO CABLE, COAX ASSY CAP 10UF 20\% 25V TANT CAP . 1UF 10\% 100V CER-R CAP . 1UF 10\% 100V CER-R CAP . IUF 10\% 100V CER-R CAP 10UF 20% 25VTANT CAP 1000PF 20\% 200V CER CAP 3.3UF 20\% 25VTANT CAP . 01 UF 20\% 100V CER CAP 1000PF 5\% 50V FILM CAP . IUF 10\% 100V CER-R CAP . 1UF 10\% 100V CER-R CAP 10UF 20\% 35VTANT CAP 1000PF 20\% 200V CER CAP 2.2UF 20\% 35V TANT CAP 470PF 2% 500V MICA CAP 430PF 2% 500V MICA CAP 680PF 2\% 300V MICA CAP 1500PF 5\% 50V FILM CAP 1200PF 5\% 50V FILM CAP 1800PF 5\% 50V FILM CAP 1200PF 5\% 50V FILM CAP 1000PF 5\% 50V FILM CAP 680PF 2% 300V MICA CAP 820PF 2\% 300V MICA CAP 1000PF 5\% 50V FILM CAP . O1UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP . 1 UF $10 \% 100 \mathrm{~V}$ CER-R CAP 1000PF 20\% 200V CER VARACTOR 26.0-32.0pF

8 HARRIS
 RF COMMUNICATIONS

Table 5. VCO Board A6A2 Parts List (PL 10073-4120-01) (Cont.)

Ref. Desig.	Part Number	Description
CR15	1N6263	DIODE .40W 60V HOT CARR
E1	J42-0008-001	CONTACT, SOCKET
E2	J42-0008-001	CONTACT, SOCKET
E3	J42-0008-001	CONTACT, SOCKET
E4	142-0008-001	CONTACT, SOCKET
E5	J42-0008-001	CONTACT, SOCKET
E6	J42-0008-001	CONTACT, SOCKET
E7	J42-0008-001	CONTACT, SOCKET
E8	E36-0026-001	TERM TUR BRS . 178 L
E9	E36-0026-001	TERM TUR BRS . 178 L
E10	E36-0026-001	TERM TUR BRS . 178 L
E11	E36-0026-001	TERM TUR BRS . 178 L
JMP1	MP-1142	CIRCUIT JUMPER
L1	MS75084-11	COIL 8.2UH 10\% FXD RF
L2	10073-7042	INDUCTOR, 2.4MH
L3	10073-7042	INDUCTOR, 2.4MH
L4	10073-7042	INDUCTOR, 2.4 MH
Q1	Q35-0003-000	XSTR U310 JFET HIGH GM
Q2	2N5088	XSTR SS/GP
Q3	2N2222	XSTR SS/GP NPN TO-18
Q4	Q35-0003-000	XSTR U310 JFET HIGH GM RES 1005\% 1/4W CAR FILM
R1	R65-0003-101	RES 1005\% 1/4W CAR FILM
R2	R65-0003-470	RES 47 5\% 1/4W CAR FILM
R3	R65-0003-513	RES 51K 5\% 1/4W CAR FILM
R4	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R5	R65-0003-101	RES 1005% 1/4W CAR FILM RES 220 K 5\% 1/4W CAR FILM
R6	R65-0003-224	RES 220K 5\% 1/4W CAR FILM RES 68K 5\% 1/4W CAR FILM
R7	R65-0003-683	RES $22 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM
R9	R65-0003-202	RES 2.0K 5\% 1/4W CAR FILM
R10	RN55D4641F	RES,4640 1\% 1/8W MET FLM
R11	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R12	RN55D4750F	RES,475.0 1% 1/8W MET FLM
R13	R65-0003-270	RES 275% 1/4W CAR FILM
R14	R65-0003-151	RES $1505 \% 1 / 4 W$ CAR FILM
R1.5	R65-0003-101	RES $1005 \% 1 / 4 W$ CAR FILM
T1	10073-7002	TRANSFORMER, RF, FIXED
T2	10073-7014	TRANSFORMER, RF, FIXED
TP1 VR1	$\left\lvert\, \begin{aligned} & \mathrm{J}-0071 \\ & 112-0006-012 \end{aligned}\right.$	TP PWB BRN TOP ACCS .080" IC VR 78L12A + 12V.10A 4\%
VR1	112-0006-012	ICVR 7aL12A + 12V.10A 4

7 HARRIS
 RF COMMUNICATIONS

Figure 4. VCO Board A6A2 Component Location Diagram (10073-4120-01, Rev. G)
OD HARRIS
RF COMMUNICATION

H HARRIS RF COMMUNICATIONS

Table 6. Mixer Board A6A3 Maintenance Parts List (PL 10073-4130)

Ref. Desig.	Part Number	Description
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 L1 L2 L3 L4 Q1 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 U1	$\begin{aligned} & 10073-4130 \\ & 10073-7087 \\ & \text { E70-0002-005 } \\ & \text { CM04FD151J03 } \\ & \text { CM04FD151J03 } \\ & \text { CM04ED330J03 } \\ & \text { CM04FC271J03 } \\ & \text { CM04FC301J03 } \\ & \text { CM04FD151J03 } \\ & \text { CM04FC271J03 } \\ & \text { CM04FC271J03 } \\ & \text { CM04FD121J03 } \\ & \text { CM04FD111J03 } \\ & \text { CM04FD121103 } \\ & \text { M39014/02-1310 } \\ & \text { MS18130-9 } \\ & \text { MS18130-9 } \\ & \text { MS18130-8 } \\ & \text { MS75085-7 } \\ & 2 N 2369 \\ & \text { R65-0002-101 } \\ & \text { R65-0002-750 } \\ & \text { R65-0002-101 } \\ & \text { R65-0002-151 } \\ & \text { R65-0002-390 } \\ & \text { R65-0002-151 } \\ & \text { R65-0002-560 } \\ & \text { R65-0002-103 } \\ & \text { R65-0002-201 } \\ & \text { R65-0002-472 } \\ & \text { R65-0002-100 } \\ & \text { R65-0002-471 } \\ & 151-0003-003 \end{aligned}$	PWB, MIXER CABLE, COAX ASSY PAD MNT XSTR TO-18 CAP 150PF 5\% 500V MICA CAP 150PF 5\% 500V MICA CAP 33PF 5\% 500V MICA CAP 270PF 5\% 300V MICA CAP 300PF 5\% 300V MICA CAP 150PF 5\% 500V MICA CAP 270PF 5\% 300V MICA CAP 270PF 5\% 300V MICA CAP 120PF 5\% 500V MICA CAP 110PF 5\% 500V MICA CAP 120PF 5\% 500V MICA CAP . IUF 10\% 100 V CER-R CAP . IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP . 1UF 10\% 100V CER-R COIL 1.2 UH 10\% FXD RF COIL 1.2UH 10\% FXD RF COIL 1.0 UH 10\% FXD RF COIL 100UH 10\% FXD RF XSTR SS/RF NPN RES 1005% 1/8W CAR FILM RES $755 \% 1 / 8 W$ CAR FILM RES $1005 \% 1 / 8 W$ CAR FILM RES 1505% 1/8W CAR FILM RES 39 5\% 1/8W CAR FILM RES $1505 \% 1 / 8$ W CAR FILM RES 565% 1/8W CAR FILM RES 10K 5\% 1/8W CAR FILM RES 2005% 1/8W CAR FILM RES 4.7K 5\% 1/8W CAR FILM RES 105% 1/8W CAR FILM RES 470 5\% 1/8W CAR FILM MIXER DB 50 mW 500 MHZ

8 HARRIS

RF COMMUNICATIONS

Figure 6. Mixer Board A6A3 Component Location Diagram (10073-4130, Rev. B)

81 HARRIS
 RF COMMUNICATIONS

Table 7. Phase Detector Board Maintenance Parts List (PL 10073-4160)

Ref. Desig.	Part Number	Description
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 CR1 CR2 CR3 CR4 L1 L2 Q1 Q2 Q3 Q4 Q5 Q6 $R 1$ $R 2$ $R 3$ $R 4$ $R 5$ $R 6$	10073-4160-01 E70-0002-002 CM04ED330J03 CM04ED270J03 M39014/02-1310 C26-0035-109 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/01-1535 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1310 C25-0003-411 C26-0025-100 C26-0035-100 M39014/02-1310 C26-0035-220 M39014/02-1310 C26-0035-229 CM04ED200J03 1N3064 IN3064 1N3064 1N3064 L08-0001-001 MS75084-14 2N3866 2N3866 2N5160 $2 N 2907$ Q-0153 2N2369 R65-0003-680 RN55D4990F RN55D2002F RN55D4990F R65-0002-332 RN55D1821F	PWB, PHASE DETECTOR PAD MNT XSTR TO-5 CAP 33PF 5\% 500V MICA CAP 27PF 5\% 500V MICA CAP . 1UF 10\% 100V CER-R CAP 1.OUF 20\% 35V TANT CAP .IUF 10\% 100V CER-R CAP . IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP .01UF 20\% 100V CER CAP .IUF 10\% 100V CER-R CAP 150UF 10\% 15V TANT CAP 10UF 20\% 25V TANT CAP 10UF 20\% 35V TANT CAP .IUF 10\% 100V CER-R CAP 22UF 20\% 35V TANT CAP . IUF 10\% 100V CER-R CAP 2.2UF 20\% 35V TANT CAP $20 \mathrm{PF} 5 \% 500 \mathrm{~V}$ MICA DIODE 75 mA 75 V SW DIODE 75mA 75V SW DIODE 75mA 75V SW DIODE 75mA 75V SW CHOKE WB 50 MHZ COIL 15.0UH 10\% FXD RF XSTR SS/RF NPN TO-39 XSTR SS/RF NPN TO-39 XSTR RFPWR PNP XSTR SS/GP PNP TO-18 XSTR SS/RF PNP XSTR SS/RF NPN RES 68 5\% 1/4W CAR FILM RES,499.0 1\% 1/8W MET FLM RES,20.0K 1\% 1/8W MET FLM RES,499.0 1\% 1/8W MET FLM RES 3.3K 5\% 1/8W CAR FILM RES, 1820 1\% 1/8W MET FLM

8 HARRIS RF COMMUNICATIONS

Table 7. Phase Detector Board Maintenance Parts List (PL 10073-4160-01) (Cont.)

Ref. Desig.	Part Number	Description
R7	R65-0002-332	RES 3.3K 5\% 1/8W CAR FILM
R8	RN55D4990F	RES,499.0 1\% 1/8W MET FLM
R9	R65-0002-221	RES 220 5\% 1/8W CAR FILM
R10	R65-0003-472	RES 4.7K 5\% 1/4W CAR FILM
R11	R65-0002-472	RES 4.7K 5\% 1/8W CAR FILM
R12	R65-0002-472	RES 4.7K 5\% 1/8W CAR FILM
R13	R65-0002-472	RES 4.7K 5\% 1/8W CAR FILM
R14	R65-0002-391	RES 3905% 1/8W CAR FILM
R15	R65-0003-241	RES 2405% 1/4W CAR FILM
R16	R65-0003-472	RES 4.7K 5\% 1/4W CAR FILM
R17	R65-0003-332	RES 3.3K 5\% 1/4W CAR FILM
R18	R65-0002-270	RES $275 \% 1 / 8 W$ CAR FILM
R19	R65-0003-331	RES 3305% RES 5.6 K 5% R 1/4W CAR FILM
R20	R65-0003-562	RES $5.6 \mathrm{~K} 5 \%$ RES 1.0 K R
R22	R65-0002-101	RES 1005% 1/8W CAR FILM
R23	RN55D4990F	RES,499.0 1\% 1/8W MET FLM
U1	165-0004-001	IC 12013 PLASTIC ECL
U2	IC-0430	IC MC4044 CERAMIC CMOS
U3	105-0000-090	IC 74LS90 PLASTIC TTL
U4	105-0000-090	IC 74LS90 PLASTIC TTL

8 HARRIS RF COMMUNICATIONS

Figure 8. Phase Detector Board A6A4 Component Location Diagram (10073-4 160-01, Rev. G)
RX HARFIS
RF COMMUNICATION
OU HARRIS
RF COMMUNICATIONS

Figure 9. Phase Detector Board A6A4 Schematic

[^3]
8 HARRIS
 RF COMMUNICATIONS

TABLE OF CONTENTS

Page 1 1 1 2
Circuit Description 2 2
Divide By N Counter 3
Phase Comparator and Charge Pump Operation 3
VCO Operation and Control 4
3.5
Noise Reduction Techniques
Noise Reduction Techniques 4 4
3.6
BITE Circuits
BITE Circuits 4 4
Maintenance 5
4.2
VCO Frequency Adjustment 6
5
Tracking
Parts List 6
Schematic Diagram
Schematic Diagram 6 6
Paragraph1 General Description$\begin{array}{ll}2 & \text { Interface Connections } \\ 3 & \text { Circuit Description . }\end{array}$
3.1
3.2
3.3
3.4
LIST OF FIGURES
Figure
PLL II Assembly A7 Functional Block Diagram VCO Adjustment 5
PLL II Assembly A7 Component Location Diagram (10073-4200) 11
PLL II Assembly A7 Schematic Diagram (10073-4201, Rev. H) 13
LIST OF TABLES
Page
Table
1 PLL II Assembly Interface Connections 1 5
PLL II Assembly A7 Parts List (PL 10073-4200) 6

of HARRIS RF COMMUNICATIONS

PLL II Assembly A7 Functional Block Diagram

7 HARRIS
 RF COMMUNICATIONS

1. GENERAL DESCRIPTION

PLL II Assembly A7 is a single phase locked loop synthesizer that ultimately provides the $100 \mathrm{kHz}, 1 \mathrm{MHz}$, and 10 MHz tuning increments selected at the RF-590 front panel frequency selection controls.

Frequency select input data is applied to the assembly in serial data form under Control Board Assembly A14 microprocessor control. The A7 output to PLL I Assembly A6 is a variable 44.1 to 74.0 MHz signal in 100 kHz controllable steps. The net results of A7 operation (after further translation in the synthesizer chain) provide the course tuning increments ($100 \mathrm{kHz}, 1 \mathrm{MHz}$, and 10 MHz) for LO No. 1 output.

2. INTERFACE CONNECTIONS

Table 1 details the various input/output connections and other relevant data.
Table 1. PLL II Assembly Interface Connections

Connector	Function	Characteristics
J1-1	+15 Volts	Approximately 25 mA
J1-2	5 Volts Unregulated	Approximately 240 mA
J1-3	+24 Volts	Approximately 20 mA
J1-4	Ground	
J1-5	Lock Detector Output	$5 \mathrm{Vdc}=$ unlocked; $0 \mathrm{Vdc}=$ locked
J1-6	Enable	+ going pulse = Enabled
J1-7	Serial Data Check	P/O BITE Test, $+5 \mathrm{Vdc}=\mathrm{ok}$
J1-8	Key	
J1-9	Clock	TTL, 750 kHz
J1-10	Data	Serial TTL
J2	PLLII (A7) Output	+4 dBm/50 ohm s, 44.1 to 74.0 MHz
J3	PLL II Tracking Reference	3.5 to 19 Vdc
J4	800 kHz Reference Input	TTL
J5	Switch Output	+4 V for $<2 \mathrm{MHz}$ tune frequency 0 V for $\geqslant 2 \mathrm{MHz}$ tune frequency

HARRIS
 RF COMMUNICATIONS

3. CIRCUIT DESCRIPTION

NOTE

A7 operation is similar (in operation) to that of the general \div NPLL and charge pump circuits described in section 4. A review of section 4 at this point would aid in the understanding of $A 7$ operation.

3.1 Reference Generation

The 800 kHz from Reference Generator Assembly A12 enters PLL II Assembly A7 at J4. This signal is applied via buffer U3 to a divide by 8 counter internal to U 2 to produce a 100 kHz reference signal. Since this has been derived ultimately from the RF-590 crystal frequency standard via the A12 assembly, stable and accurate A7 operation is assured.

3.2 Divide By N Counter

Since the A7 assembly requires a variable 44.1 to 74.0 MHz output frequency, a programmable counter has been designed into the VCO feedback path to the phase comparator. This counter consists of dual modulus $\div 10 / \div$ prescaler $U 1$ and a programmable counter internal to U 2 . Together U 1 and the programmable portion of U 2 create a total division range of $N=441$ to $N=740$, where N is a function of the values of the receiver $10 \mathrm{MHz}, 1 \mathrm{MHz}$, and 100 kHz tuning positions.

The output of the divide by N counter will always attempt to equal the 100 kHz reference frequency at the Phase Comparator inputs, despite changes in the divide by N factor due to changing the $10 \mathrm{MHz}, 1 \mathrm{MHz}$, and/or 100 kHz receiver tuning increments. The VCO frequency will change to accomplish this, in response to command signals generated by the Phase Comparator. The VCO frequency will always equal (N) (Reference frequency), or (N) $(100 \mathrm{kHz})=44.1 \mathrm{MHz}$ to 74.0 MHz . The exact value of N is determined by the $10 \mathrm{MHz}, 1 \mathrm{MHz}$, and/or 100 kHz receiver tuning positions. This front panel selection causes Control Assembly A14 to generate a serial data code containing information pertaining to the values of the increments chosen. This code is applied synchronously with the 750 kHz system clock to U 2 whenever the U 2 enable line is gated open by A14. In general, $N=(441+X X X)$, where $X X X$ is the value of the $10 \mathrm{MHz}, 1 \mathrm{MHz}$, and 100 kHz positions chosen at the receiver front panel frequency controls.

For example, tuning the RF-590 to 15.789000 MHz would make $\mathrm{N}=(441+157)=598$. The VCO frequency will be $(\mathbb{N})($ Reference $)=(598)(100 \mathrm{kHz})=59.8 \mathrm{MHz}$.

Tuning the radio to 24.705000 MHz would result in a VCO output frequency of $(441+247)(100 \mathrm{kHz})=$ 68.8 MHz . Note that increasing the receiver tune frequency caused an increase in the A7 output frequency. The opposite will also be true.

8 HARRIS
 RF COMMUNICATIONS

3.3 Phase Comparator and Charge Pump Operation

Phase comparison of the 100 kHz reference and the 100 kHz divide by N counter's VCO derived signal is accomplished by a phase comparator internal to U2. When these two signals are equal in frequency and phase, the buffered Phase Comparator outputs at TP2 and TP3 are essentially 5 Vdc . This 5 volt level holds the charge pump transistors $\mathrm{Q} 9, \mathrm{Q} 10$, and consequently, Q 8 off. The voltage across C 51 will be at some constant value forcing buffers Q 7 and Q11 to develop a constant voltage at TP1. This VCO control voltage holds the VCO frequency constant (somewhere between 44.1 MHz and 74.0 MHz).

Assume that the VCO feedback signal at the divide by N counter output is suddenly less than the reference frequency, which is what happens at the instant the divide by N factor is increased. Since the two Phase Comparator inputs are no longer equal, the Phase Comparator will output a series of negative pulses at TP3. (The pulse width of these pulses is a function of the difference in phase/frequency between the two inputs.) Q 10 turns on, and its decreasing collector voltage turns Q 8 on. O 8 will start to pump charge into C51, raising its voltage. Buffer stage Q 7 and Q 11 will produce a corresponding increase at TP1 which forces the VCO to increase in frequency. The increasing VCO signal produces a corresponding frequency increase at the divide by N counter output, driving it towards the reference signal at 100 kHz . As the divide by N counter output approaches the reference frequency, the pulses at TP3 get narrower, until they are at an essentially constant +5 Vdc level. Q 10 and Q 8 turn off, the voltage rise across C 51 stops at a new higher level producing a stabilization of the VCO control voltage and the VCO frequency at a new higher value.

Assume that the VCO feedback signal is suddenly greater than the reference frequency, which is what occurs at the instant the divide by N factor is decreased. The Phase Comparator outputs a series of negative pulses at TP2. Q9 turns on, and starts drawing charge out of C51, dropping its voltage. A corresponding decrease in the VCO control voltage occurs, producing a decreasing VCO frequency. This causes the fed back VCO divide by N counter output to decrease, driving it towards the 100 kHz reference. As the divide by N counter output approaches the reference, the negative pulses at TP2 become narrower, until they are essentially at a 5 Vdc level. 09 turns off, and stops any further decrease in the C 51 voltage, the VCO control voltage, and therefore the VCO frequency. The VCO now rests at a new, lower frequency.

Note that the VCO control voltage at $\mathrm{Q7}$ and Q 11 is sent to two places. They are the LPF and VCO on the A7 assembly, and the buffer stage, U5. This second output is referred to as the Tracking Reference, and is routed through J3 for use on PLL I Assembly A6. It allows the A6 VCO to properly track the A7 VCO.

$3.4 \quad$ VCO Operation and Control

A charge pump circuit consisting of Q8-Q10 and associated components converts the two Phase Comparator pulse outputs into an analog dc control voltage. Buffer stages $\mathrm{Q7}$ and Q 11 apply the VCO control voltage through a low pass filter (LPF) network to the varactor diode string in the VCO. The VCO itself is a JFET (05) Hartley oscillator stage whose frequency shifts as the capacitance of the varactor diodes change in response to changes in VCO control voltage. A VCO control voltage range of approximately 3.5 Vdc to 17.5 Vdc shifts the VCO from 44.1 MHz to 74.0 MHz .

If HARRIS RF COMMUNICATIONS

The VCO output is fed to two separate amplifier stages. The first, Q 4 and Q 2 , is a 20 dB amplifier which applies the VCO signal to the $\div 10 / \div 11$ prescaler, U1. It is this signal which completes the feedback loop to the phase comparator. The second amplifier stage, Q 3 and Q 1 , boosts the level to approximately 4 dBm and is called the PLL II output. This signal contains the $10 \mathrm{MHz}, 1 \mathrm{MHz}$, and 100 kHz tuning increments information, and is fed to PLL I Assembly A6 for further processing.

3.5 Noise Reduction Techniques

The noise characteristics of the VCO output are enhanced by the following two methods:

- Use of a sharp cut off LPF network to filter noise off the VCO control voltage. This stage is located between the charge pump buffer stage Q11 and the VCO input.
- Use of a circuit to linearize charge pump operation at receiver tune frequencies less than 2 MHz . Lower receiver tune frequencies require less VCO control voltage than higher receiver tune frequencies. At tune frequencies less than 2 MHz , the VCO control voltage required is so low that the charge pump enters a nonlinear mode of operation in an attempt to produce the output across C51 that is required. In order to correct this, at frequencies less than 2 MHz , U2 outputs a 5 Vdc level which turns Q12 on. Q12, which is connected across the LPF input, reduces the control voltage level. The net result is that the charge pump is now "tricked" into forcing its output to increase the voltage across C51 required to produce the required VCO control voltage. In so doing, it pulls itself out of it's nonlinear region. At frequencies greater than $2 \mathrm{MHz}, \mathrm{Q} 12$ is off and the charge pump functions normally. Note that this switch output from U 2 is routed through J 5 to the A 6 assembly for similar purposes.

3.6 BITE Circuits

The A7 assembly contains two circuits for self-test evaluation.

- Lock detector $\mathbf{Q} 6$ whose output is 0 Vdc whenever the PLL is tracking properly. This line is constantly monitored by the A14 assembly. A front panel fault light will appear if the loop ever unlocks.
- Serial data check that verifies the tuning data from the A14 assembly has been received and properly translated into the correct divide by N factor. A serial data word is sent on the data line (J 1 pin 10) and the $U 6$ serial data check line is read back to the A 14 assembly (J1 pin 7). If the word has been received and properly decoded, this line will pulse to +5 Vdc. The serial data check occurs automatically, but only when the receiver BITE selftest is actuated.

4. MAINTENANCE

The following adjustments should not be performed as a routine maintenance procedure, but only when a failure indicates a definite need. All tests performed with all connections in normal contact, unless otherwise specified.

H HARRIS
 RF COMMUNICATIONS

4.1 VCO Frequency Adjustment

a. Connect equipment as shown in figure 1.

Figure 1. VCO Adjustment
b. Set RF-590 frequency to 29.900000 MHz .
c. Adjust C 15 for 19.0 Vdc at TP1. PLL 11 output at J2 should be $74.0 \mathrm{MHz}, 4 \mathrm{dBm} \pm 3 \mathrm{~dB}$. Check the receiver tune frequency against PLL II output frequencies listed in table 2. (Output should remain at $+4 \mathrm{dBm} \pm 3 \mathrm{~dB}$).

Table 2. VCO Frequency Range

Receiver Tune Frequency, MHz	PLL II Output Frequency, MHz	Approximate TP1 VoItage, Vdc
29.900000	74.000000	19.0
15.000000	59.100000	10.0
00.000000	44.100000	3.5

d. Check that the Tracking Reference Signal (J3) agrees within $\pm .1 \mathrm{Vdc}$ to the control voltage at TP1 for the ranges listed in table 2.
e. Check that the switch output (J5) changes to approximately 4 Vdc when the receiver is tuned below 2.000000 MHz .
f. Fully reconnect the A7 assembly to the RF-590 and initiate BITE test. Receiver should not fail at any test concerning the A7 assembly. These tests have verified the proper operation of the A7 assembly. Proceed to paragraph 4.2, Tracking Adjustment.

HARRIS
 RF COMMUNICATIONS

4.2 Tracking Adjustment

a. Perform VCO adjustment found in paragraph 4.1.
b. Tune the RF-590 to 29.999999 MHz :
c. Measure the VCO control voltage at TP1 on PLL I VCO Assembly A6A2. (Note that TP1 is located under the VCO assembly cover.) This voltage should be 16 to 19.0 Vdc on a properly aligned A6 assembly.
d. Measure PLL II Assembly A7 VCO control voltage at TP1, and adjust C15 for a voltage equal to that of the A6 PLL I VCO control voltage (step c).
e. Tune the receiver to 20 MHz , then 10 MHz , and then 0 MHz , measur ing the VCO control voltages on both assemblies at each frequency. The two voltages should track each other at all times, and differ by no more than $\pm .5 \mathrm{Vdc}$. Test is complete.

5. PARTS LIST

Table 3 is a comprehensive parts list of all replaceable components in PLL II Assembly A7. When ordering parts from the factory, include a full description of the part. Use figure 2, PLL II Assembly A7 Component Location Diagram to identify parts.

6. SCHEMATIC DIAGRAM

Figure 3 is the PLL II Assembly A7 schematic diagram.
Table 3. PLL II Assembly A7 Parts List (PL 10073-4200)

Ref. Desig.	Part Number	Description
$\begin{aligned} & C 1 \\ & C 2 \\ & C 3 \\ & C 4-C 6 \\ & C 7 \\ & C 8 \\ & C 9 \\ & C 10 \\ & C 11 \\ & C 12 \\ & C 13 \\ & C 14 \\ & C 15 \\ & C 16 \\ & \hline \end{aligned}$	10073-4200 E70-0002-002 M39014/01-1535 M39014/02-1310 M39014/02-1310 M39014/01-1535 M39014/02-1310 M39014/01-1535 C26-0025-100 M39014/02-1310 M39014/02-1310 C26-0025-100 M39014/02-1310 M39014/01-1535 C85-0001-002 CK05BX102M	PWB, PLL 2 PAD MNT XSTR TO-5 CAP . O1UF 20\% 100V CER CAP .1UF 10\% 100V CER-R CAP .1UF 10\% 100V CER-R CAP .01UF 20\% 100V CER CAP .1UF 10\% 100V CER-R CAP .01UF 20\% 100V CER CAP 10UF 20\% 25V TANT CAP .1UF 10\% 100V CER-R CAP . IUF 10\% 100 V CER-R CAP 10UF 20\% 25V TANT CAP .1UF 10\% 100V CER-R CAP .01UF 20\% 100V CER CAP 1.0-10PF 250 V CAP 1000PF 20\% 200V CER

HA HARRIS RF COMMUNICATIONS

Table 3. PLL II Assembly A7 Parts List (PL 10073-4200) (Cont.)

Ref. Desig.	Part Number	Description
C17 $C 18$ $C 19$ $C 20$ $C 21$ $C 22$ $C 23$ $C 24$ $C 25$ $C 28$ $C 29$ $C 30$ $C 31$ $C 32$ $C 33$ $C 34$ $C 35$ $C 36$ $C 38$ $C 39$ $C 40$ $C 41$ $C 43$ $C 44$ $C 45$ $C 46$ $C 51$ $C 52$ $C 53$ $C 54$ $C 55$ $C 56$ $C 57$ $C 58$ $C 60$ $C 61$ $C 62$ $C 63$ $C 64$ $C 82$ $C 83$ $C R 1$ $C R 2$ $C R 3$ $C R 4$ C	CK05BX102M C26-0025-100 M39014/02-1310 C26-0025-100 M39014/02-1310 M39014/02-1310 C26-0025-100 M39014/02-1310 M39014/01-1535 M39014/02-1310 M39014/01-1535 M39014/01-1535 CK05BX102M M39014/01-1535 M39014/02-1310 M39014/01-1535 M39014/02-1310 M39014/02-1310 CM06FD472J03 C-0912 C-0912 M39014/02-1310 M39014/02-1310 CM06FD242j03 CM06FD432103 C25-0001-301 M39014/02-1310 6628-0660 M39014/02-1310 C26-0035-470 C-8212 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1310 C26-0025-100 M39014/02-1310 M39014/02-1310 M39014/02-1310 CM04ED390J03 M39014/01-1535 $10073-7118$ $10073-7118$ $10073-7118$ $10073-7118$	CAP 1000PF 20\% 200V CER CAP 10UF 20\% 25V TANT CAP . 1 UF 10% 100V CER-R CAP 10UF 20\% 25V TANT CAP . IUF 10\% 100V CER-R CAP . 1UF 10\% 100V CER-R CAP 10UF 20\% 25V TANT CAP . 1UF 10\% 100V CER-R CAP . O1UF 20\% 100V CER CAP . 1 UF 10\% 100V CER-R CAP .O1UF 20\% 100V CER CAP . O1UF 20\% 100V CER CAP 1000PF 20\% 200V CER CAP .01UF 20\% 100V CER CAP .1UF 10\% 100V CER-R CAP .01UF 20\% 100V CER CAP .IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP 4700PF 5\% 500V MICA CAPACITOR CAPACITOR CAP . IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP 2400PF 5\% 500V MICA CAP 4300PF 5\% 500V MICA CAP 1.0UF 20\% 20V TANT CAP .IUF 10\% 100V CER-R CAP 5600PF 5\% 300V MICA CAP .IUF 10\% 100V CER-R CAP 47UF 20\% 35V TANT CAP 470UF 50V ELEC CAP .IUF 10\% 100V CER-R CAP . IUF 10\% 100V CER-R CAP . IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP 10UF 20\% 25V TANT CAP .IUF 10\% 100V CER-R CAP . IUF 10\% 100V CER-R CAP . IUF 10\% 100V CER-R CAP 39PF 5\% 500V MICA CAP .O1UF 20\% 100V CER DIODE, HYPERABRUPT DIODE, HYPERABRUPT DIODE, HYPERABRUPT DIODE, HYPERABRUPT

80 HARRIS
 RF COMMUNICATIONS

Table 3. PLL II Assembly A7 Parts List (PL 10073-4200) (Cont.)

Ref. Desig.	Part Number	Description
CR5 CR6 CR7 CR8 CR9 CR10 CR11 CR12 CR13 CR14 CR15 J1 J2 13 14 L1 L2 L3 L4 L5 L6 L7 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11	10073-7118 10073-7118 10073-7118 $10073-7118$ $10073-7118$ $10073-7118$ $10073-7118$ $10073-7118$ 1N6263 1N3064 1N3064 J46-0032-010 J-0031 J-0031 J-0031 MS75084-3 MS75084-11 LO8-0001-001 L08-0001-001 MS75089-21 MS7508-21 L08-0001-001 2N5109 Q35-0003-000 Q35-0003-000 2N3563 Q35-0003-000 2N2907 Q60-0003-000 2N2907 2N2222 2N2222 2N5088 2N2222 R65-0003-470 R65-0003-471 R65-0003-242 R65-0003-470 R65-0003-100 R65-0003-152 R65-0003-201 R65-0003-270 R65-0003-513 R65-0003-201 R65-0003-510	DIODE, HYPERABRUPT DIODE. 40 W 60V HOT CARR DIODE 75mA 75V SW DIODE 75mA 75V SW HDR 10 PIN 0.100 SR CONN SMB VERT PCB F CONN SMB VERT PCB F CONN SMB VERT PCB F COIL 1.8UH 10\% FXD RF COIL 8.2UH 10\% FXD RF CHOKE WB 50 MHZ CHOKE WB 50 MHZ COIL RF 680UF 5\% COIL RF 680UF 5\% CHOKE WB 50 MHZ XSTR RFPWR NPN TO-39 XSTR U310 JFET HIGH GM XSTR U310 JFET HIGH GM XSTR SS/RF XSTR U310 JFET HIGH GM XSTR SS/GP PNP TO-18 XSTR MOSFET XSTR SS/GP PNP TO-18 XSTR SS/GP NPN TO-18 XSTR SS/GP NPN TO-18 XSTR SS/GP XSTR SS/GP NPN TO-18 RES 47 5\% 1/4W CAR FILM RES 470 5\% 1/4W CAR FILM RES 2.4K 5\% 1/4W CAR FILM RES 475% 1/4W CAR FILM RES 105% 1/4W CAR FILM RES 1.5K 5\% 1/4W CAR FILM RES 2005% 1/4W CAR FILM RES 275% 1/4W CAR FILM RES 51K 5\% 1/4W CAR FILM RES 200 5\% 1/4W CAR FILM RES 51 5\% 1/4W CAR FILM

HARRIS
 RF COMMUNICATIONS

Table 3. PLL II Assembly A7 Parts List (PL 10073-4200) (Cont.)

Ref. Desig.	Part Number	Description
R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 T1 T2 T3 TP1 TP2 TP3 TP4 TP5 $U 1$	R65-0003-472 R65-0003-151 R65-0003-680 R65-0003-101 R65-0003-152 R65-0003-100 R65-0003-151 R65-0003-470 R65-0003-513 R65-0003-102 R65-0003-103 R65-0003-102 R65-0003-201 R65-0003-103 R65-0003-472 R65-0003-103 R65-0003-472 R65-0003-479 R65-0003-279 RN55D6810F RN55D6810F RN55D1501F RN55D2001F RN55D6810F RN55D6810F RN55D1212F R65-0003-121 R65-0003-101 R65-0003-182 R65-0003-102 R65-0003-103 R65-0003-223 R65-0003-473 R65-0003-472 R65-0003-102 R65-0003-103 $10073-7014$ $10073-7014$ $10073-7002$ $J-0071$ J-0066 $J-0069$ $J-0070$ J-0068 165-0004-001	RES 4.7K 5\% 1/4W CAR FILM RES 1505% 1/4W CAR FILM RES $685 \% 1 / 4 W$ CAR FILM RES $1005 \% 1 / 4$ W CAR FILM RES 1.5K 5\% 1/4W CAR FILM RES 105% 1/4W CAR FILM RES $1505 \% 1 / 4$ W CAR FILM RES $475 \% 1 / 4$ W CAR FILM RES 51K 5\% 1/4W CAR FILM RES 1.0K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 1.0K 5\% 1/4W CAR FILM RES 200 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES $4.75 \% 1 / 4 W$ CAR FILM RES $2.75 \% 1 /$ WW CAR FILMRES, $681.01 \% 1 / 8 W$ MET FLM RES,681.0 1\% 1/8W MET FLM RES, 1500 1\% 1/8W MET FLM RES,2000 $1 \% 1 / 8 W$ MET FLMRES, $681.01 \% 1 / 8 W$ MET FLMRES, $681.01 \% 1 / 8 W$ MET FLM RES, 12.1 K 1% $1 / 8 W$ MET FLM RES 1205% 1/4W CAR FILM RES 100 5\% 1/4W CAR FILM RES 1.0K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 22K 5\% 1/4W CAR FILMRES 47K 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM TRANSFORMER, RF, FIXED TRANSFORMER, RF, FIXED TRANSFORMER, RF, FIXEDTP PWB BRN TOP ACS TP PWB RED TOP ACCS .080"TP PWB ORN TOP ACCS .080"TP PWB YEL TOP ACCC. $080^{\prime \prime}$TP PWB GRN TOP ACCS $080^{" \prime}$ IC 12013 PLASTIC ECL

HORRIS
 RF COMMUNICATIONS

Table 3. PLL II Assembly A7 Parts List (PL 10073-4200) (Cont.)

Ref. Desig.	Part Number	Description
U2	$170-0002-001$	IC MC145156 PLASTIC CMOS
U3	$101-0000-019$	IC 4050B PLASTIC CMOS
U4	$105-0000-000$	IC 74LS00 PLASTIC TTL
U5	$130-0018-000$	IC 1458 OP AMP PLASTIC
VR1	$112-0006-012$	IC VR 78L12A + 12V.10A 4\%
VR2	$111-0001-001$	IC VR 7805 +5V 1.5A 4\%
VR3	1N5236A	DIODE 7.5V 10\% .5W ZENER

Figure 2. PLL II Assembly A7 Component Location Diagram (10073-4200, Rev. C)
RF COMMUNICATION

8 HARRIS RF COMMUNICATIONS

TABLE OF CONTENTS

Paragraph Page
1 General Description 1
2 Interface Connections 1
3 A8 Frequency Generation Scheme 2
4 Circuit Descriptions 3
4.1 PLL IF Generation 3
4.2 Divide By N Counter 3
4.3 Phase Comparator and Charge Pump Operation 4
4.4 VCO Operation and Control 4
4.5 BITE Test Circuits 5
5
Maintenance 5
5.1 VCO Alignment 5
6
Parts List 6
7 Schematic Diagram 7
LIST OF FIGURES
Figure Page
PLL III Assembly A8 Functional Block Diagram
1 2
A8 VCO Alignment 6
PLL III Assembly A8 Component Location Diagram (10073-4300) 11
3 PLL III Assembly A8 Schematic Diagram (10073-4301, Rev. F) 13
LIST OF TABLES LISt OF TAbLES

Table

Table

Table

Table

Table

Table

Page

Page

Page
1
1
1 2 2 2
PLL III Assembly Interface Connections
PLL III Assembly Interface Connections
PLL III Assembly Interface Connections 1 1 1
PLL III Output Range
PLL III Output Range
PLL III Output Range 6 6 6
PLL III Assembly A8 Parts List (PL 10073-4300)
PLL III Assembly A8 Parts List (PL 10073-4300)
PLL III Assembly A8 Parts List (PL 10073-4300) 7 7 7
$\underset{\text { ALSEMBLY }}{\text { PLI }}$

81 HARRIS
 RF COMMUNICATIONS

1. GENERAL DESCRIPTION

PLL III is a programmable translation loop which performs the following primary functions.

- Generation of 1 kHz and 10 kHz tuning increments as chosen by the RF-590 front panel controls
- Combination of these increments with information containing the $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 100 Hz tuning increments

Frequency select input data for 1 kHz and 10 kHz tuning increments is applied to the A 8 assembly in serial data format from the Control Board Assembly microprocessor. The $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 100 Hz tuning increments information is supplied via PLL IV Assembly A9 in the frequency range of 40.06 to 40.05 MHz . A8 output to PLL I Assembly A6 contains $1 \mathrm{~Hz}, 10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}$, and 10 kHz tuning information in the frequency range of 35.45 to 36.45 MHz .

2. INTERFACE CONNECTIONS

Table 1 details the input/output connections and other relevant data.
Table 1. PLL III Assembly Interface Connections

Connector	Function	Characteristics
J1	PLL III Output	35.45 to $36.45 \mathrm{MHz}, \approx-2 \mathrm{dBm}$
J2	800 kHz Reference Input	TTL
J3	PLLIV Output	40.05 to $40.06 \mathrm{MHz}, \approx-6 \mathrm{dBm}$
J4-1	+15 Volts	$\approx 60 \mathrm{~mA}$
J4-2	+5 Volts Unregulated	$\approx 30 \mathrm{~mA}$
J4-3	Spare	
J4-4	Ground	
J4-5	Lock Detector Output	$0 \mathrm{Vdc}=\mathrm{PLL}$ locked; $+5 \mathrm{Vdc}=\mathrm{PLL}$ unlocked
J4-6	Enable	+ going pulse $=$ enabled
J4-7	Serial Data Check	P/O BITE Test, $+5 \mathrm{Vdc}=0 \mathrm{k}$
J4-8	Key	
J4-9	Clock	750 kHz , TTL
J4-10	Data	Serial TTL

7 HARRIS
 RF COMMUNICATIONS

3. A8 FREQUENCY GENERATION SCHEME

A PLL intermediate frequency (IF) range of 3.61 MHz to 4.61 MHz is produced at the IF output of mixer U1. The instantaneous IF frequency is a consequence of the subtractive mixing of the following two signals:

- 40.050 to 40.060 MHz PLL IV (RF port)
- $\quad 35.45$ to 36.45 MHz VCO (LO port

This IF signal will change in frequency to satisfy the requirement that the divide by N counter output will always try to equal the reference 10.000 kHz signal at the inputs to the Phase Comparator, P / O U3. When these two signals are not equal, the Phase Comparator produces an error command to drive the VCO frequency in the direction required to make them equal. If the divide by N output exceeds the reference 10.0000 kHz , the VCO will rise in frequency. If the divide by N output is less than the reference, the VCO will decrease in frequency.

The VCO output frequency then is dependent upon the following two events:
a. The division factor of the divide by N counter. $N=(361+X X)$, where $X X$ is the value of the 10 kHz and 1 kHz receiver tuning positions, respectively.
b. The PLL IV output frequency. This is dependent upon the value of the $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 1 Hz tuning positions (section A9, PLL IV Assembly).

To illustrate this, assume that the receiver is tuned to a frequency of $X_{8} x_{7} X_{6} x_{5} X_{4} x_{3} x_{2} X_{1} H z$, where the X_{s} represent the values of the $1,10,100 \mathrm{~Hz}$ etc, tuning positions.

Example 1: Assume that the $X_{3} X_{2} X_{1}$ value decreases.
a. As $X_{3} X_{2} X_{1}$ decreases the PLL IV output (RF) increases.
b. $R F-L O=I F$ increases.
c. The divide by N output frequency ($=1 F \div N$) increases. Since this will now exceed the 10.000 kHz reference frequency, the Phase Comparator output forces the VCO frequency (LO) to increase.
d. Now, RF - LO = IF decreases. The IF will decrease until the divide by N output again equals the reference.

Example 2: Assume that the $X_{5} X_{4}$ value decreases.
a. As $X_{5} X_{4}$ decreases, the divide by N factor $\left(N=361+X_{5} X_{4}\right)$ decreases.

in HARRIS
 RF COMMUNICATIONS

b. The divide by N output frequency, equal to $I F \div N$, increases. Since this now exceeds the 10.000 kHz reference at the Phase Comparator inputs, the Phase Comparator output forces the VCO (LO) frequency to increase.
c. $\quad R F-L O=I F$ decreases.
d. IF $\div N$ decreases, and continues to do so until equal to the reference.

The converse of both of these cases is true for $X_{3} X_{2} X_{1}$ and/or $X_{5} X_{4}$ increasing.
The A8 PLL III Output Frequency may be calculated from the following equation; given the receiver tune frequency is $X_{8} X_{7}, X_{6} X_{5} X_{4}, X_{3} X_{2} X_{1} H z$:

$$
F A 8=\left[40,000,000+10\left(6000-X_{3} X_{2} X_{1}\right)\right]-\left[10,000\left(361+X_{5} X_{4}\right)\right], \mathrm{Hz}
$$

4. CIRCUIT DESCRIPTIONS

NOTE

A8 operation is similar to the general PLL and charge pump circuits described in section 4. A review of section 4 at this time would help in understanding A8 operation.

4.1 PLL IF Generation

PLL output at a -6 dBm level is applied to 10 dB gain stage Q 13 and Q14. This output is attenuated by 50 ohm matching network R39, R40, and R44 and presents a -6 dBm signal ranging from 40.050 MHz to 40.060 MHz to the RF port of mixer U 1 .

U1 LO injection is supplied by the VCO via amplifier stage Q 9 and Q 10 at a +7 dBm level. This signal ranges from 35.45 to 36.45 MHz .

U1 IF output is approximately -12 dBm (in the 3.61 to 4.61 MHz range). The 6 dB attenuator network, R41-R43, feeds a low pass filter which removes all mixer products except the desired IF range. Amplifier stage Q11 and Q12 provide a TTL level signal to a divide by N counter internal to U3 at pin 10 .

4.2 Divide by N Counter

Since the A8 assembly requires a variable output frequency dependent upon the 1 kHz and 10 kHz tuning positions a divide by N programmable counter has been incorporated into the VCO feedback loop. The front panel selection of a tune frequency from 00 kHz to 99 kHz causes Control Assembly A14 to generate a serial data code containing information pertaining to the values choses. This code is applied synchronously with the 750 kHz system clock to U3, whenever the U3 enable line is gated open by A14.

TH HARRIS
 RF COMMUNICATIONS

$N=(361+X X)$ where $X X$ is the value of the 10 kHz and 1 kHz tuning positions. The divide by N counter output will always attempt to equal the 10.000 kHz reference frequency at the Phase Comparator inputs.

4.3 Phase Comparator and Charge Pump Operation

A 10.000 kHz Reference signal is applied to one port of the Phase Comparator. This signal has been divided down from the 800 kHz TTL reference supplied by the A10 assembly. Divide by 10 circuit U4 feeds 80 kHz to the divide by 8 circuit internal to U3.

The second input to the Phase Comparator is the divide by N counter output. When these two signals are equal in frequency and phase, the outputs at Buffer stage U5 (TP2 and TP3) is essentially a +5 Vdc level. This level holds Q4, Q5, and consequently Q3 off. The voltage across CB is constant. Q 2 is biased to produce a constant voltage across R12, and the dc level (VCO control) at TP1 is constant. This holds the VCO at a constant frequency.

Assuming that the divide by N output exceeds the reference 10.000 kHz , the Phase Comparator output at TP3 pulses low (the pulse width being a function of the amount of difference between the two signals). 05 turns on, and its falling collector voltage turns Q 3 on, allowing Q 3 to pump charge into $\mathrm{C8}$. C 8 voltage increases, causing Q 2 to conduct more current and develop a large voltage across R12. The VCO control voltage increases and forces the VCO to tune higher in frequency. This will lower the IF frequency, and divide by N counter output will decrease. As the divide by N counter output approaches the reference, the pulse widths will get narrower until a 5 Vdc level will again occur at TP3. At this point, Q 5 turns off, Q 3 stops pumping charge into CB , the VCO control voltage stops at a new higher level, and the VCO has been tuned to a higher frequency.

Assuming that the divide by N counter output is less than the reference. The Phase Comparator output at TP2 will pulse low. Q4 turns on and draws charge out of C8. O2 conducts less current, and the VCO voltage drops, driving the VCO frequency down. The IF feedback signal frequency will increase, and consequently the divide by N counter output will increase. As this output approaches the reference frequency, TP2 pulses will get narrower until Q 4 is turned off. The voltage across C 8 halts at a lower value (as does the VCO control voltage level). This holds the VCO at a new lower frequency.

4.4 VCO Operation and Control

A charge pump circuit consisting of $\mathrm{Q} 3, \mathrm{Q4}$,Q (and associated components) in conjunction with filter network C8, C9, and R14 convert the two phase comparator pulse outputs into an analog dc control voltage. Buffer amplifier Q 2 applies a VCO control voltage to the varactor diode string in the VCO. Changing diode capacitance fine tunes JFET Hartley oscillator stage Q6. The total VCO frequency range is 35.45 to 36.45 MHz . A control voltage range of approximately 6.5 to 7.5 Vdc will tune the oscillator from 35.45 MHz to 36.45 MHz .

Clamp circuit 07, Q8 and CR2-CR5 monitors the VCO control voltage level, and will prevent the control voltage from exceeding the approximate range of 5.5 to 8.5 Vdc . This "window" is necessary to prevent the VCO from ever running to the wrong side of the frequency conversion during the mixing process. This could cause the receiver to falsely lock at the wrong frequency, or not lock at all. For example, as-

HARRIS
 RF COMMUNICATIONS

sume that the control voltage could rise high enough to force the VCO to 41 MHz . Combination of the 40.05 to 40.06 MHz signal at mixer U1 would produce a loop IF in the 1 MHz region instead of the required 3.61 to 4.61 MHz range. The clamp circuit would prevent this; however, since CR4, CR5, and Q8 would conduct to clamp the level at 8.5 volts and prevent the VCO from "running away".

The VCO output is fed through amplifier stage Q 9 and Q 10 to function as a +7 dBm LO injection for U 1 , and to Q1, where a - 2 dBm signal is passed through J1 to PLL I Assembly A6.

4.5 BITE Test Circuits

The A10 assembly contains two circuits for self-test evaluation. The circuits are:

- Lock detector Q15 whose output is 0 Vdc whenever the PLL is tracking properly. This line is constantly monitored by the A14 assembly. A front panel fault light will appear if the loop ever unlocks.
- Serial data check that verifies that the tuning data from the A14 assembly has been received and properly translated into the correct divide by N factor. A serial data word is sent on the data line (J 4 pin 10) and the U3 serial data check line is read back to the A14 assembly (J4 pin 7). If the word has been received and properly decoded, this line will pulse to +5 Vdc. The serial data check occurs automatically, but only when the receiver BITE self-test is actuated.

5. MAINTENANCE

The following adjustments should not be made as part of a routine maintenance procedure, but rather only when a failure indicates a definite need. All tests should be performed with all connections in normal contact, unless otherwise specified.

5.1 VCO Alignment

Perform the following procedure to align the VCO:
a. Connect equipment as shown in figure 1.
b. Set receiver frequency to 00.050500 MHz .
c. Monitor U1, pin 8, with an oscilloscope and adjust T3 for a maximum signal (should be approximately 1.2 Vpp).
d. Monitor U1 RF input at R44 with oscilloscope and adjust T4 for a maximum signal (should be approximately 1 Vpp).
e. Monitor J 1 with spectrum analyzer at approximately 35 MHz . Adjust T2 for a maximum output (approximately -2 dBm).

In HARRIS
 RF COMMUNICATIONS

Figure 1. A8 VCO Alignment
f. Monitor TP1 with DVM. Adjust C11 for 7.0 Vdc. PLL III output vs receiver tune frequency should agree with table 2.

Table 2. PLL III Output Range

Receiver Tune Frequency, MHz	PLL III Output Frequency, MHz	Approximate TP1 VoItage, Vdc
00.000000	36.450000	7.9
00.050500	35.944950	7.0
00.099999	35.450010	6.5

g. Fully reconnect the A8 assembly to the RF-590 and initiate BITE self-test. No failures should occur indicating an A8 fault.

6. PARTS LIST

Table 3 is a comprehensive parts list of all replaceable components in PLL III Assembly A8. When ordering parts from the factory, include a full description of the part. Use figure 2, PLL III Assembly A8 Component Location Diagram.

80 HARRIS
 RF COMMUNICATIONS

7. SCHEMATIC DIAGRAM

Figure 3 is the PLL III Assembly A8 schematic diagram.
Table 3. PLL III Assembly A8 Parts List (PL 10073-4300)

Ref. Desig.	Part Number	Description
C1 C2 C3 C4 C5 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36 C37	10073-4300 E70-0002-002 M39014/02-1310 M39014/01-1535 M39014/01-1535 CM04ED560J03 M39014/01-1535 C26-0025-100 M39014/02-1310 M39014/02-1318 M39014/02-1543 C26-0025-339 C84-0003-008 M39014/02-1310 M39014/02-1310 CK05BX102M M39014/01-1535 M39014/02-1310 M39014/02-1310 M39014/01-1535 CK05BX102M C26-0025-100 M39014/01-1535 C26-0025-100 M39014/02-1310 CM04ED470J03 M39014/02-1310 M39014/02-1310 M39014/01-1535 M39014/01-1535 C26-0016-151 M39014/01-1535 M39014/01-1535 C26-0025-339 M39014/02-1310 CM04ED470J03 M39014/01-1535 C26-0025-100 M39014/02-1310	PWB, PLL 3 PAD MNT XSTR TO-5 CAP .IUF 10\% 100V CER-R CAP .01UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP 56PF 5\% 500V MICA CAP .01UF 20\% 100V CER CAP 10UF 20\% 25V TANT CAP . 1UF 10\% 100V CER-R CAP .33UF 10\% 50V CER CAP .027UF 10\% 50V CER CAP 3.3UF 20\% 25V TANT CAP 3-15PF 200V CER CAP .1UF 10\% 100V CER-R CAP .1UF 10\% 100 V CER-R CAP 1000PF 20\% 200V CER CAP . 01 L F 20% 100V CER CAP .IUF 10\% 100V CER-R CAP . IUF 10\% 100V CER-R CAP . O1UF 20\% 100V CER CAP 1000PF 20\% 200V CER CAP 10UF 20\% 25V TANT CAP .01UF 20\% 100V CER CAP 10UF 20\% 25V TANT CAP . IUF 10\% 100V CER-R CAP 47PF 5\% 500V MICA CAP . 1UF 10% 100V CER-R CAP .IUF 10\% 100V CER-R CAP .01UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP 150UF 20\% 16V TANT CAP .01UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP 3.3UF 20\% 25V TANT CAP . IUF 10\% 100V CER-R CAP 47PF 5\% 500V MICA CAP .01UF 20\% 100V CER CAP 10UF 20\% 25V TANT CAP . 1UF 10\% 100V CER-R

HARRIS RF COMMUNICATIONS

Table 3. PLL III Assembly A8 Parts List (PL 10073-4300) (Cont.)

Ref. Desig.	Part Number	Description
C38	M39014/02-1310	CAP . 1 UF 10\% 100V CER-R
C39	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C40	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C41	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C42	CM04FD151J03	CAP 150PF 5\% 500V MICA
C43	CM04FD151103	CAP 150PF 5\% 500V MICA
C44	CM04FC271J03	CAP 270PF 5\% 300V MICA
C45	CM04FC301J03	CAP 300PF 5\% 300V MICA
C46	CM04FC271J03	CAP 270PF 5\% 300V MICA
C47	CM04FC271J03	CAP 270PF 5\% 300V MICA
C48	CM04FD111103	CAP 110PF 5\% 500V MICA
C49	CM04CD120103	CAP 12PF 5\% 500V MICA
C50	M39014/02-1310	CAP . 1 UF 10\% 100V CER-R
C51	CM04ED330J03	CAP 33PF 5\% 500V MICA
C52	CM04FD151103	CAP 150PF 5\% 500V MICA
C53	CM04CD120」03	CAP 12PF 5\% 500V MICA
C54	M39014/01-1535	CAP .01UF 20\% 100V CER
C55	M39014/01-1535	CAP .01UF 20\% 100V CER
C56	CM04ED470J03	CAP 47PF 5\% 500V MICA
C57	M39014/01-1535	CAP .01UF 20\% 100V CER
C58	CM04ED390J03	CAP 39PF 5\% 500V MICA
C59	M39014/01-1535	CAP . O1UF 20\% 100V CER
C60	M39014/01-1535	CAP .01UF 20\% 100V CER
C61	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C62	C26-0025-470	CAP 47UF 20\% 25V TANT
C63	C26-0025-470	CAP 47UF 20\% 25V TANT
C64	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C65	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C66	M39014/02-1310	CAP .IUF 10\% 100V CER-R CAP . IUF 10\% 100V CER-R
C67	M39014/02-1310	CAP .IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R
C68 C69	M39014/02-1310 C25-0001-301	CAP 1.OUF 20\% 20V TANT
C70	M39014/01-1535	CAP . 01 UF 20\% 100V CER
C71	M39014/01-1535	CAP .01UF 20\% 100V CER
C72	M39014/01-1535	CAP .01UF 20\% 100V CER
CR1	1 N6263	DIODE, HOT CARRIER
CR2	1 N3064	DIODE 75mA 75 V SW
CR3	1N3064	DIODE 75 mA 75 V SW
CR4	1 N3064	DIODE 75mA 75V SW
CR5	1 N3064	DIODE 75mA 75 V SW
CR6	1 N3064	DIODE 75mA 75 V SW
CR7	10073-7118	DIODE, SILICON, HYPERABRUPT
CR8	10073-7118	DIODE, SILICON, HYPERABRUPT
CR9 CR10	$10073-7118$ $10073-7118$	DIODE, SILICON, HYPERABRUPT DIODE, SILICON, HYPERABRUPT
CR10	10073-7118	DIODE, SILICON, HYPERABRUPT

8 HARRIS
 RF COMMUNICATIONS

Table 3. PLL III Assembly A8 Parts List (PL 10073-4300) (Cont.)

Ref. Desig.	Part Number	Description
CR11 CR12 CR13 CR14 CR15 CR16 J1 J2 J3 J4 L1 L2 L3 L4 L5 L6 L7 L8 L9 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 R1 R2 R3 R4 R5 R7 R8 R9 R9 R10 R11 R12	10073-7118 10073-7118 10073-7118 10073-7118 10073-7118 10073-7118 J-0031 J-0031 J-0031 J46-0032-010 MS75084-13 MS75083-6 MS75084-6 MS75083-6 LO8-0001-001 MS18130-9 MS18130-9 MS18130-8 L08-0001-001 Q35-0003-000 Q05-0001-000 2N2907 2N2222 2N2222 Q35-0003-000 2N2222 2N2907 Q35-0003-000 2N5109 Q-0153 2N2369 2N2369 Q35-0003-000 2N2907 R65-0003-101 R65-0003-470 R65-0003-513 R65-0003-101 R65-0003-102 R65-0003-201 R65-0003-202 RN55D1501F RN55D1501F RN55D1002F R65-0003-202	DIODE, SILIGON, HYPERABRUPT DIODE, SILICON, HYPERABRUPT CONN SMB VERT PCB F CONN SMB VERT PCB F CONN SMB VERT PCB F HDR 10 PIN 0.100 SR COIL 12UH 10\% FXD RF COIL . 27 UH 10\% FXD RF COIL 3.3UH 10\% FXD RF COIL . 27 UH 10\% FXD RF CHOKE WB 50 MHZ COIL 1.2 UH 10\% FXD RF COIL 1.2 UH 10\% FXD RF COIL 1.0UH 10\% FXD RF CHOKE WB 50 MHZ XSTR U310 JFET HIGH GM XSTR JFET N-CH XSTR SS/GP PNP TO-18 XSTR SS/GP NPN TO-18 XSTR SS/GP NPN TO-18 XSTR U310 JFET HIGH GM XSTR SS/GP NPN TO-18 XSTR SS/GP PNP TO-18 XSTR U310 JFET HIGH GM XSTR RFPWR NPN TO-39 XSTR SS/RF PN4258 XSTR SS/RF NPN XSTR SS/RF NPN XSTR U310 JFET HIGH GM XSTR SS/GP PNP TO-18 RES $1005 \% 1 / 4 W$ CAR FILM RES 47 5\% 1/4W CAR FILM RES 51K 5\% 1/4W CAR FILM RES $1005 \% 1 / 4 W$ CAR FILM RES 1.0K 5\% 1/4W CAR FILM RES 200 5\% 1/4W CAR FILM RES 2.0K 5\% 1/4W CAR FILM RES, 1500 1\% 1/8W MET FLM RES, 1500 1\% 1/8W MET FLM RES, 10.0K 1\% 1/8W MET FLM RES 2.0K 5\% 1/4W CAR FILM

8 HARRIS
 RF COMMUNICATIONS

Table 3. PLL III Assembly A8 Parts List (PL 10073-4300) (Cont.)

Ref. Desig.	Part Number	Description
R13	RN55D3321F	RES, 3320 1\% 1/8W MET FLM
R14	RN55D1621F	RES, 1620 1\% 1/8W MET FLM
R15	RN55D2211F	RES, 2210 1\% 1/8W MET FLM
R16	RN55D2211F	RES, 2210 1\% 1/8W MET FLM
R17	R65-0003-330	RES 33 5\% 1/4W CAR FILM
R18	R65-0003-121	RES 1205\% 1/4W CAR FILM
R19	R65-0003-360	RES $365 \% 1 / 4 W$ CAR FILM
R20	R65-0003-201	RES 2005% 1/4W CAR FILM
R21	R65-0003-392	RES 3.9K 5\% 1/4W CAR FILM
R22	R65-0003-392	RES 3.9K 5\% 1/4W CAR FILM
R23	R65-0003-470	RES 47 5\% 1/4W CAR FILM
R24	R65-0003-242	RES 2.4K 5\% 1/4W CAR FILM
R25	R65-0003-681	RES 6805% 1/4W CAR FILM
R26	R65-0003-182	RES 1.8K 5\% 1/4W CAR FILM
R27	R65-0003-471	RES 470 5\% 1/4W CAR FILM
R28	R65-0003-330	RES 335\% 1/4W CAR FILM
R29	R65-0003-101	RES 1005% 1/4W CAR FILM
R30	R65-0003-271	RES 270 5\% 1/4W CAR FILM
R31	R65-0003-820	RES $825 \% 1 / 4 W$ CAR FILM
R32	R65-0003-391	RES 3905% 1/4W CAR FILM
R33	R65-0003-561	RES 5605% 1/4W CAR FILM
R34	R65-0003-330	RES 335\% 1/4W CAR FILM
R35	R65-0003-103	RES 10K 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM
R36 R37	R65-0003-472	RES $4.7 \mathrm{~K} 5 \%$ RES 4705% RES $1 / 4 W$ CAR FILM
R39	R65-0003-750	RES 75 5\% 1/4W CAR FILM
R40	R65-0003-101	RES 1005% 1/4W CAR FILM
R41	R65-0003-101	RES 100 5\% 1/4W CAR FILM
R42	R65-0003-101	RES 100 5\% 1/4W CAR FILM
R43	R65-0003-750	RES 75 5\% 1/4W CAR FILM
R44	R65-0003-101	RES 1005% 1/4W CAR FILM
R45	R65-0003-101	
R46	R65-0003-111	RES 1105\% 1/4W CAR FILM
R47	R65-0003-471	RES 470 5\% 1/4W CAR FILM
R48	R65-0003-470	RES $475 \% 1 / 4 W$ CAR FILM
R49	R65-0003-242	RES 2.4K 5\% 1/4W CAR FILM
R50	R65-0003-182	RES 1.8K 5\% 1/4W CAR FILM
R51	R65-0003-681	RES 680 5\% 1/4W CAR FILM
R52	R65-0003-201	RES $4.7 \mathrm{~K} 5 \%$ 1/4W CAR FILM
R53 R54	R65-0003-472	RES $4.7 \mathrm{~K} 5 \%$ RES 4.7 K
R55	R65-0003-472	RES 4.7K 5\% 1/4W CAR FILM
R56	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R58	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R59	R65-0003-101	RES 100 5\% 1/4W CAR FILM

8 HARRIS
 RF COMMUNICATIONS

Table 3. PLL III Assembly A8 Parts List (PL 10073-4300) (Cont.)

Ref. Desig.	Part Number	Description
R60	R65-0003-560	RES 56 5\% 1/4W CAR FILM
T1	$10073-7004$	TRANSFORMER, RF, FIXED
T2	$10073-7011$	TRANSFORMER, RF, VARIABLE
T3	$10073-7011$	TRANSFORMER, RF, VARIABLE
T4	$10073-7011$	TRANSFORMER, RF, VARIABLE
TP1	J-0071	TP PWB BRN TOP ACCS .080"
TP2	J-0066	TP PWB RED TOP ACCS .080"
TP3	J-0069	TP PWB ORN TOP ACCS .080"
TP4	J-0070	TP PWB YEL TOP ACCS .080"
TP5	J-0068	TP PWB GRN TOP ACCS .080"
TP6	$151-0003-003$	TP PWB BLU TOP ACCS .080"
U1	MIXER DB 50mW 500MHZ	
U2	$170-0000-019$	IC 4050B PLASTIC CMOS
U3	$105-0002-001$	IC MC145156 PLASTIC CMOS
U4	$105-0000-000$	IC 74LS90 PLASTIC TTL
U5	IC 74LS00 PLASTIC TTL	
VR1	$112-0005-012$	IC VR 78L12 + 12V .10A 10
VR2	$11-0001-001$	IC VR 7805 + 5V 1.5A 4\%
VR3	$1 N 5236 A$	DIODE 7.5V 10\% .5W ZENER
VR4	1N5236A	DIODE 7.5V 10\% .5W ZENER

Figure 2. PLL III Assembly A8 Component Location Diagram (10073-4300, Rev. D)

8 HARRIS
 RF COMMUNICATIONS

TABLE OF CONTENTS

Paragraph Page
1 1
General Description2333.13.34
Interface Connections 1
1
1
Circuit Description
Circuit Description
1
1
PLL IF Generation
2
2
Phase Comparator and Charge Pump Circuits
Phase Comparator and Charge Pump Circuits
3
3
VCO Operation and Control
3
3
BITE Test Circuits
3
3
Maintenance
Maintenance
3
3
X2 Multiplier, LO Amplifier, and RF Amplifier Alignment
X2 Multiplier, LO Amplifier, and RF Amplifier Alignment
4
4
VCO Alignment
VCO Alignment 5
Parts List 5
LIST OF FIGURES
Page
Figure
PLL IV Assembly A9 Functional Block Diagram X2 Multiplier, LO, and RF Amplifier Alignment 4
VCXO Alignment 4
PLL IV Assembly A9 Component Location Diagram (10073-4400) 9
4 PLL IV Assembly A9 Schematic Diagram (10073-4401, Rev. C) 11
LIST OF TABLES
Page Table 1
PLL IV Assembly Interface Connections 5
PLL IV Assembly A9 Parts List (PL 10073-4400) 5

8 HARRIS RF COMMUNICATIONS

PLL IV Assembly A9 Functional Block Diagram

1. GENERAL DESCRIPTION

PLL IV Assembly A9 is a translation type phase lock loop which converts the low frequency variable PLL V output at 50 to 60 kHz (in 10 Hz steps) into a higher frequency signal at 40.05 to 40.06 MHz . During translation, the 10 Hz step size is preserved. This conversion process is an intermediate step leading toward the $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 100 Hz tuning increments in the RF-590 LO no. 1 frequency range of 40.465 to 70.455 MHz.

2. INTERFACE CONNECTIONS

Table 1 details the input/output connections and other relevant data.
Table 1. PLL IV Assembly Interface Connections

Connector	Function	Characteristics
J1-1	Gnd	
J1-2	Lock Detector Output	$0 \mathrm{~V}=$ Locked, $+5 \mathrm{~V}=$ Unlocked, P/O BITE Test
J1-3	+5 Volts Unregulated	Approximately 50 mA
J1-4	Key	
J1-5	+15V	Approximately 60 mA
J1-6	-15V	Approximately 6 mA
J2	40 MHz Reference	$40.000000 \mathrm{MHz}, 0 \mathrm{dBm}$
J3	PLL IV Output	40.050 to $40.060 \mathrm{MHz},-6 \mathrm{dBm}$
J4	PLL V Output	50.0 to 60.0 kHz , TTL

3. CIRCUIT DESCRIPTION

3.1 PLL IF Generation

A PLL intermediate frequency (IF) signal in the range of 50 kHz to 60 kHz is produced at the output of mixer U3. This IF signal is a result of the mixing of the 40.000000 MHz reference from A12 with a VCXO derived signal in the range of 40.050 to 40.060 MHz .

This IF signal is then compared against the PLL V output (a signal also in the range of 50 to 60 kHz) at Phase Comparator U1. If there is any difference in phase or frequency between the IF and the PLLV output signals, U1 produces an error output which forces the VCXO to shift in frequency. The new IF
produced will be equal to the A10 output frequency. The net result is that the VCXO derived frequency always equals the reference plus the A10 output frequency (even as the A10 output changes frequencies). As the A10 output changes from 50 to 60 kHz in 10 Hz increments, the A9 output will change from 40.050 MHz to 40.060 MHz (also in 10 Hz increments).

The actual value of the PLL IV output frequency can be determined by the following formula. $\mathrm{F}=$ [40.000,000 + $10(6000-X X X)] \mathrm{Hz}$, where XXX is the value of the $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 1 Hz receiver tune positions, respectively.

The 40.000000 MHz reference signal from the A12 assembly enters A9 at $\mathrm{J} 2(0 \mathrm{dBm})$ and is applied to 6 dB gain amplifier stage Q10. The signal is attenuated to -4 dBm by 50 ohm matching network R28, R29, and R30, and applied to the RF port of mixer U3 at pin 1.

U3 LO injection at pin 8 is a 40.05 MHz to 40.06 MHz signal derived from the VCXO, and amplified to a +7 dBm level by LO amplifier stage Q 7 and $\mathrm{Q8}$.

U3 mixing action produces a 30 mVrms IF signal at pins 3 and 4 (in 50 to 60 kHz range). The -6 dB matching network R31, R32, and R34 couples this signal to a low pass filter network which removes all undesired mixer products except the IF signal. High gain amplifier U2 boosts this signal to a TTL level prior to application to one side of phase comparator U 1 .

3.2 Phase Comparator and Charge Pump Circuits

Phase Comparator U1 compares the IF signal with PLL V output signals in the range of 50 to 60 kHz . When these two signals are equal in frequency and phase, U1 outputs at TP2 and TP3 are essentially 5 Vdc . All transistors in the charge pump circuit ($\mathrm{O} 2, \mathrm{Q}, \mathrm{Q} 5$) are turned off. The voltage across C 19 is constant and Q 1 is biased on producing a constant VCXO control voltage across R4. This holds the VCXO frequency constant.

Assume that PLL V output increases in frequency. The PLL V output frequency at U1, pin 1, will be higher than the IF signal frequency at pin 3 . The U1 output at TP3 pulses low, turning Q 5 on. Consequently, Q 2 turns on as the Q 5 collector voltage drops; Q 2 pumps charge into C 19 , causing Q 1 to conduct more current with a proportionate increase in voltage across R4. This rising control voltage forces the VCXO to increase in frequency, producing a corresponding increase in the IF frequency. As this new IF signal approaches the PLL V output frequency, the phase comparator output pulse width becomes narrower, until it is essentially a constant 5 Vdc . O 5 and Q 2 turn off, the voltage rise in C 19 stops at a new higher level, and the VCXO frequency stabilizes. The two phase comparator inputs are again equal.

Assume that the PLL V output decreases in frequency. This time the U1 output at TP2 will pulse low (the pulse width being a function of the difference in frequency at the inputs.) Q 3 turns on and C19 now has a low impedance discharge path to ground. As the C19 voltage drops, Q 1 conduction decreases, and the voltage across R4 decreases. This forces the VCXO to decrease in frequency which causes a corresponding decrease in the IF frequency. As the two U1 inputs become equal, the negative pulses at TP2 become narrower, until an essentially 5 Vdc level exists. Q 3 turns off, holding the C 19 voltage and consequently the R4 voltage at a new lower level. The VCXO stops decreasing and also rests at a new lower frequency.

0 HARRIS
 RF COMMUNICATIONS

3.3 VCO Operation and Control

A change pump circuit consisting of $\mathrm{Q} 2, \mathrm{Q}, \mathrm{Q}$, , and associated components in conjunction with filter network C19-R6 convert the two phase comparator pulse outputs into an analog dc control voltage. Buffer amplifier Q1 applies this control voltage to varactor diodes CR1 and CR2 in the VCXO circuit. As the capacitance of these diodes changes due to control voltage fluctuations, JFET Hartley oscillator stage Q6 shifts in frequency. This oscillator stage is crystal controlled by Y1 and operates at 20.025 to 20.030 MHz , which is one-half the desired output frequency range. Therefore X 2 multiplier stage Q 4 is used to produce the desired VCXO range of 40.050 to 40.060 MHz . A control voltage of approximately 5 Vdc will tune the VCXO to produce 40.050 MHz at $J 3$, while a control voltage of 10 Vdc will tune it to 40.060 MHz .

VCXO output is applied through an attenuator network to J 3 at a level of -6 dBm and on to PLL III Assembly A8. It is also applied to 10 dB amplifier stage Q 7 and $\mathrm{Q8}$ which function as a local oscillator (LO) amplifier for U3. This stage provides a +7 dBm LO injection to U 3 , pin 8 , to complete the feedback loop.

4. BITE TEST CIRCUITS

Lock detector Q9 monitors the status of phase comparator U1 outputs atTP2 and TP3. If either output pulses low and remains low for a period exceeding the time constants of C57 and R38, the appropriate diode will conduct. Q9 will turn on and the voltage across R41 will increase from 0 to +5 Vdc indicating an out of lock condition. This immediately flags BITE monitoring circuits on Control Assembly A14. A front panel fault light indicator will turn on.

5. MAINTENANCE

The following adjustments should not be performed as a routine maintenance procedure, but only when a failure indicates a definite need. All tests should be performed with all connections in normal contact, unless otherwise specified.

5.1 X2 Multiplier, LO Amplifier, and RF Amplifier Alignment

Perform the following procedure to align the X2 Multiplier, LO, and RF amplifiers:
a. Connect equipment as shown in figure 1.
b. Set receiver to 00.000500 MHz .
c. Monitoring TP1, adjust C23 for 7.5 Vdc .
d. Monitoring J 3 , adjust T 5 and T3 for maximum output level at approximately 40.055 MHz . Level should be $-6 \mathrm{dBm} \pm 3 \mathrm{~dB}$.
e. Monitoring mixer U3 LO input at pin 8, adjust L10 and T4 for maximum level at approximately 40.455 MHz . Level should be approximately $1.25 \mathrm{Vpp} \pm .5$ volts.

HARRIS
 RF COMMUNICATIONS

Figure 1. X2 Multiplier, LO, and RF Amplifier Alignment
f. Monitoring mixer U3 RF input at R28, adjust T2 for a maximum level at $\mathbf{4 0 . 0 0 0} \mathrm{MHz}$. Level should be $.75 \mathrm{Vpp} \pm .5$ volts. Test is complete.

5.2 VCXO Alignment

Perform the following procedure to align the VCXO:
a. Connect equipment as shown in figure 2.

Figure 2. VCXO Alignment
b. Set receiver to 00.000500 MHz . Adjust C 23 for 7.5 Vdc .
c. Check that the PLL IV output frequency (as a function of the receiver tune frequency) agrees with table 2.

8 HARRIS
 RF COMMUNICATIONS

Table 2. VCXO Alignment

Receiver Tune Frequency, MHz	PLL IV Output Frequency, MHz	Approximate TP1 Voltage, Vdc
00.000000	40.060	10.0
00.000500	40.055	7.5
00.000999	40.050	5.0

d. Fully reconnect the A9 assembly to the RF-590. Initiate BITE self-test. Receiver must pass all tests associated with A9 assembly. Test is complete.

6. PARTS LIST

Table 3 is a comprehensive parts list of all replaceable components in PLL IV Assembly A9. When ordering parts from the factory, include a full description of the part. Use figure 3, PLL IV Assembly A9 Component Location Diagram to identify parts.

7. SCHEMATIC DIAGRAM

Figure 4 is the PLLIV Assembly A9 schematic diagram.
Table 3. PLL IV Assembly A9 Parts List (PL 10073-4400)

Ref. Desig.	Part Number	Description
C $C 2$ $C 2$ $C 3$ $C 4$ $C 5$ $C 5$ $C 6$ $C 7$ $C 8$ $C 9$ $C 10$ $C 11$ $C 12$ $C 13$ $C 14$ $C 15$ $C 16$	10073-4400 E70-0002-002 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1310 C26-0025-100 CK05BX102M CK05BX102M CM06FD102J03 C26-0025-100 M39014/02-1310 M39014/02-1310 M39014/01-1535 M39014/02-1310 M39014/02-1310 C26-0025-100 C26-0025-100	PWB, PLL 4 PAD MNT XSTR TO-5 CAP .IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP . 1UF $10 \% 100 \mathrm{~V}$ CER-R CAP 10UF 20% 25V TANT CAP 1000PF 20\% 200V CER CAP 1000PF 20\% 200V CER CAP 1000PF 5\% 500V MICA CAP 10UF 20\% 25V TANT CAP . 1UF 10\% 100V CER-R CAP .1UF 10\% 100 V CER-R CAP . 01 UF 20\% 100V CER CAP . 1 UF 10\% 100 V CER-R CAP . 1UF $10 \% 100 \mathrm{~V}$ CER-R CAP 10UF 20\% 25V TANT CAP 10UF 20\% 25V TANT

g HARRIS RF COMMUNICATIONS

Table 3. PLL IV Assembly A9 Parts List (PL 10073-4400) (Cont.)

Ref. Desig.	Part Number	Description
C17 C18 C19 C20 C21 C22 $C 23$ $C 24$ $C 25$ $C 26$ $C 27$ $C 28$ $C 29$ $C 30$ $C 31$ $C 32$ $C 33$ $C 34$ $C 35$ $C 36$ $C 37$ $C 38$ $C 39$ $C 40$ $C 41$ $C 42$ $C 43$ $C 44$ $C 45$ $C 46$ $C 47$ $C 48$ $C 49$ $C 50$ $C 51$ $C 52$ $C 53$ $C 54$ $C 61$ $C 55$ $C 56$ $C 57$ $C 59$ $C 60$ C	M39014/01-1535 C26-0025-339 C25-0003-004 C26-0025-100 CM04ED680J03 M39014/01-1535 C85-0001-002 M39014/02-1310 M39014/01-1535 M39014/01-1535 CM04ED470J03 M39014/01-1535 M39014/02-1320 CK05BX102M M39014/01-1535 CM04CD010D03 CM04ED470J03 M39014/02-1310 CM04ED510J03 M39014/01-1535 M39014/01-1535 M39014/01-1535 M39014/02-1310 M39014/01-1535 M39014/01-1535 C26-0025-100 CM04ED300J03 CM04ED330J03 M39014/01-1535 M39014/01-1535 M39014/02-1310 M39014/02-1310 M39014/01-1535 C-0912 C-0911 CM06FD272J03 CM06FD272J03 CM06FD272J03 C-0912 C-0912 C25-0001-301 CM04ED270J03 M39014/01-1535 M39014/01-1535 $10073-7118$	CAP .01UF 20\% 100V CER CAP 3.3UF 20\% 25V TANT CAP 0.33UF 10\% 50V TANT CAP 10UF 20\% 25V TANT CAP 68PF 5\% 500V MICA CAP .01UF 20\% 100V CER CAP 1.0-10PF 250V CAP .1UF 10\% 100V CER-R CAP . O1UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP 47PF 5\% 500V MICA CAP .O1UF 20\% 100V CER CAP . 47UF 10\% 50V CER-R CAP 1000PF 20\% 200V CER CAP .O1UF 20\% 100V CER CAP 1PF + -. 5PF 500V MICA CAP 47PF 5\% 500V MICA CAP .IUF 10\% 100V CER-R CAP 51PF 5\% 500V MICA CAP .01UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP . IUF 10\% 100 V CER-R CAP .01UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP 10UF 20\% 25V TANT CAP 30PF 5\% 500V MICA CAP 33PF 5\% 500V MICA CAP .01UF 20\% 100V CER CAP .O1UF 20\% 100V CER CAP .IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP .O1UF 20\% 100V CER CAPACITOR 200V . 01MFD TUBE CAP 2700PF 5\% 500V MICA CAP 2700PF 5\% 500V MICA CAP 2700PF 5\% 500V MICA CAPACITOR CAPACITOR CAP 1.OUF 20\% 20V TANT CAP 27PF 5\% 500V MICA CAP . O1UF 20\% 100V CER CAP .O1UF 20\% 100V CER DIODE, SILICON, HYPERABRUPT

8 HARRIS RF COMMUNICATIONS

Table 3. PLL IV Assembly A9 Parts List (PL 10073-4400) (Cont.)

Ref. Desig.	Part Number	Description
CR2	10073-7118	DIODE, SILICON, HYPERABRUPT
CR4	1N3064	DIODE 75mA 75V SW
CR5	1N3064	DIODE 75 mA 75 V SW
CR6	1N3064	DIODE 75mA 75V SW
J1	J46-0032-006	HDR 6 PIN 0.100" SR
J2	J-0031	CONN SMB VERT PCB F
13	J-0031	CONN SMB VERT PCB F
J4	J-0031	CONN SMB VERT PCB F
L1	L08-0001-001	CHOKE W B 50 MHZ
L2	L08-0001-001	CHOKE W B 50 MHZ
L3	MS 14046-9	COIL 27UH 10\% FXD RF
L4	MS75084-17	COIL 27.0UH 10\% FXD RF
L5	MS75084-3	COIL 1.8UH 10\% FXD RF
L6	MS75084-17	COIL 27.0UH 10\% FXD RF
L7	MS75084-6	COIL 3.3UH 10\% FXD RF
L8	MS90538-8	COIL 68UH 5\% FXDRF
L9	MS90538-8	COIL 68UH 5\% FXDRF
L10	10073-7011	TRANSFORMER, RF, VARIABLE
Q1	Q05-0001-000	XSTR JFET N-CH
Q2	2N2907	XSTR SS/GP PNP TO-18
Q3	2N2222	XSTR SS/GP NPN TO-18
Q4	2N2369	XSTR SS/RF NPN
Q5	2N2222	XSTR SS/GP NPN TO-18
Q6	Q35-0003-000	XSTR U310 JFET HIGH GM
Q7	2N5109 Q35-0003-000	XSTR RFPWR NPN XSTR U310 JFET HIGH GM
Q9	2N2907	XSTR SS/GP PNP TO-18
Q10	Q35-0003-000	XSTR U310 JFET HIGH GM
R1	R65-0003-201	RES 200 5\% 1/4W CAR FILM
R2	R65-0003-201	RES 2005\% 1/4W CAR FILM
R3	R65-0003-472	RES 4.7K 5\% 1/4W CAR FILM
R4	R65-0003-332	RES 3.3K 5\% 1/4W CAR FILM
R5	R65-0003-201	RES 200 5\% 1/4W CAR FILM
R6	RN55D1211F	RES, 1210 1\% 1/8W MET FLM
R7	RN55D6810F	RES,681.0 1\% 1/8W MET FLM RES $1205 \% 1 / 4 W$ CAR FILM
R8	R65-0003-121	RES 1205% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM
R9 R10	RN55D3321F	RES,3320 1\% 1/8W MET FLM
R11	R65-0003-201	RES 2005% 1/4W CAR FILM
R12	R65-0003-101	RES 1005% 1/4W CAR FILM
R13	RN55D6810F	RES,681.0 1\% 1/8W MET FLM
R14	RN55D6810F	RES,681.0 1\% 1/8W MET FLM
R15	RN55D6810F	RES,681.0 1\% 1/8W MET FLM
R16 R17	$\begin{aligned} & \text { R65-0003-911 } \\ & \text { R65-0003-101 } \end{aligned}$	RES 910 5\% 1/4W CAR FILM RES 1005% 1/4W CAR FILM

7 HARRIS
 RF COMMUNICATIONS

Table 3. PLL IV Assembly A9 Parts List (PL 10073-4400) (Cont.)

Ref. Desig.	Part Number	Description
$\begin{aligned} & \text { R18 } \\ & \text { R19 } \\ & \text { R20 } \\ & \text { R21 } \\ & \text { R22 } \\ & \text { R23 } \\ & \text { R24 } \\ & \text { R25 } \\ & \text { R26 } \\ & \text { R27 } \\ & \text { R28 } \\ & \text { R29 } \\ & \text { R30 } \\ & \text { R31 } \\ & \text { R32 } \\ & \text { R33 } \\ & \text { R34 } \\ & \text { R35 } \\ & \text { R36 } \\ & \text { R37 } \\ & \text { R38 } \\ & \text { R39 } \\ & \text { R40 } \\ & \text { R41 } \\ & \text { R42 } \\ & \text { R43 } \\ & \text { U1 } \\ & \text { TP2 } \\ & \text { U3 } \\ & \text { VR1 } \\ & \text { VR2 } \\ & \text { Y1 } \end{aligned}$	R65-0003-101 R65-0003-470 R65-0003-470 R65-0003-201 R65-0003-242 R65-0003-182 R65-0003-511 R65-0003-471 R65-0003-390 R65-0003-121 R65-0003-101 R65-0003-750 R65-0003-101 R65-0003-101 R65-0003-101 R65-0003-510 R65-0003-750 RN55D1001F R65-0003-102 R65-0003-470 $R 65-0003-472$ $R 65-0003-472$ $R 65-0003-472$ $R 65-0003-103$ $R 65-0003-471$ $R 65-0003-101$ $10073-7008$ $10073-7012$ $10073-7015$ $10073-7011$ $10073-7011$ $J-0071$ $J-0066$ $J-0069$ $J-0070$ $J-0068$ IC-0430 $120-0005-001$ $151-0003-003$ $1 N 5236$ $111-0001-001$ $10073-7039$	RES 100 5\% 1/4W CAR FILM RES 475% 1/4W CAR FILM RES 475% 1/4W CAR FILM RES 2005\% 1/4W CAR FILM RES $2.4 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM RES $1.8 \mathrm{~K} 5 \% 1 / 4 W$ CAR FILM RES 510 5\% 1/4W CAR FILM RES 4705% 1/4W CAR FILM RES $395 \% 1 / 4 W$ CAR FILM RES $1205 \% \quad 1 / 4 W$ CAR FILM RES $1005 \% 1 / 4 W$ CAR FILM RES 75 5\% 1/4W CAR FILM RES 1005% 1/4W CAR FILM RES 1005% 1/4W CAR FILM RES 1005% 1/4W CAR FILM RES 51 5\% 1/4W CAR FILM RES 75 5\% 1/4W CAR FILM RES, 1000 1\% 1/8W MET FLM RES $1.0 \mathrm{~K} 5 \%$ 1/4W CAR FILM RES $475 \% 1 / 4 W$ CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 470 5\% 1/4W CAR FILM RES 1005% 1/4W CAR FILM TRANSFORMER, RF, FIXED TRANSFORMER, RF, VARIABLE TRANSFORMER, RF, VARIABLE TRANSFORMER, RF, VARIABLE TRANSFORMER, RF, VARIABLE TP PWB BRN TOP ACCS .080" TP PWB RED TOP ACCS .080" TP PWB ORN TOP ACCS .080" TP PWB YEL TOP ACCS .080" TP PWB GRN TOP ACCS .080" IC MC4044 CERAMIC CMOS IC LM211H COMPARATOR MIXER DB 50 mW 500 MHZ DIODE 7.5V 20\% .5W ZENER IC VR $7805+5 \mathrm{~V} 1.5 A 4 \%$ CRYSTAL, 20.0275 MHZ

Figure 3. PLL IV Assembly A9 Component Location Diagram (10073-4400, Rev. E)

OD HARRIS RF COMMUNICATIONS

TABLE OF CONTENTS

Paragraph Page
1 General Description 1
2 Interface Connections 1
3 Circuit Description 2
3.1 Reference Generation 2
3.2 Divide by Counter 2
3.3 Phase Comparator and Charge Pump Operation 3
3.4 VCO Operation and Control 3
3.5 BITE Circuits 4
4 Maintenance 4
4.1 VCO Frequency Adjustment 4
5 Parts List 5
6 Schematic Diagram 5
LIST OF FIGURES
Figure Page
PLL V Assembly A10 Functional Block Diagram
4
PLL V VCO Adjustment
PLL V VCO Adjustment
8
PLL V Assembly A10 Component Location Diagram (10073-4500)
LIST OF TABLES
Table Page Pag
1 PLL V Assembly Interface Connections 1
9
PLL V Assembly A10 Schematic Diagram (10073-4501, Rev. E) 32
VCO Frequency Range 5
3 PLL V Assembly A 10 Parts List (PL 10073-4500) 5

HARRIS

PLL V Assembly A10 Functional Block Diagram

HARRIS
 RF COMMUNICATIONS

1. GENERAL DESCRIPTION

PLL V Assembly A10 is a single phase locked loop synthesizer that ultimately provides the $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 100 Hz tuning increments as chosen by the RF-590 front panel frequency selection controls.

Frequency select input data is applied to the assembly in serial data form under Control Board Assembly A14 microprocessor control. A10 output to PLL IV Assembly A9 is a variable 50 to 60 kHz signal in 10 Hz controllable steps. Since 1000 frequency steps are possible, the net results of A10 operation (after further translation to 1 Hz increments in the synthesizer chain) are $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 100 Hz tuning increments in the LO no. 1 output.

2. INTERFACE CONNECTIONS

Table 1 details the various input/output connections and other relevant data.
Table 1. PLL V Assembly Interface Connections

Connector	Function	Characteristics
J1-1	+15 Volts	Approximately 25 mA
J1-2	+5 Volts unregulated	Approximately 240 mA
J1-3	Spare	
J1-4	Ground	
J1-5	Lock Detector Output	$+5 \mathrm{Vdc}=$ unlocked, $0 \mathrm{Vdc}=$ locked, P/O BITE Test
J1-6	Enable	+ going pulse $=$ Enabled
J1-7	Serial Data Check	P/O BITE Test, $+5 \mathrm{Vdc}=0 \mathrm{k}$
J1-8	Key	
J1-9	Clock	TTL, 750 kHz
J1-10	Data	Serial TTL
J2	800 kHz Reference Output	TTL
J3	800 kHz Reference Output	TTL
J4	800 kHz Reference Input	TTL
J5	PLL-V Output	TTL, $50-60 \mathrm{kHz}$

8 HARRIS RF COMMUNICATIONS

3. CIRCUIT DESCRIPTION

NOTE

A10 operation is similar in operation to the general divide by N PLL and charge pump circuits described in section 4. A review of section 4 at this point would aid in the understanding of A10 operation.

3.1 Reference Generation

800 kHz from Reference Generator Assembly A12 enters PLL V Assembly A10 at J4. This signal is buffered via TTL NAND GATES in U9 and directed through J 2 and J 3 to the A 7 and A 8 assemblies. It is also routed to divide by 10 counter U4 where it is divided down to 80 kHz . This 80 kHz signal is applied via buffer U 7 to a divide by 8 counter internal to U 6 to produce a 10 kHz reference signal. Since this has been derived ultimately from the RF-590 crystal frequency standard via the A. 12 assembly, stable and accurate A10 operation is assured.

3.2 Divide by Counter

Since the A10 assembly requires a variable 50 to 60 kHz output frequency, a programmable counter has been designed into the VCO feedback path to the Phase Comparator. This counter consists of dual modulus $\div 10 / \div 11$ prescaler U 5 and a programmable divide by N counter internal to U 6 . Together U 5 and the programmable portion of $U 6$ create a total division range of $N=5001$ to $N=6000$, where N is a function of the setting of the receiver 1,10 , and 100 Hz tuning positions.

The output of the divide by N counter will always attempt to equal the 10.000 kHz reference frequency at the Phase Comparator inputs, despite changes in the divide by N factor due to changing the 1,10 , and/or 100 Hz receiver tuning increments. The VCO frequency will change to accomplish this (in response to command signals generated by the Phase Comparator). The VCO frequency will always equal (N) (reference frequency), or $(\mathrm{N})(10.000 \mathrm{kHz})=50.01 \mathrm{MHz}$ to 60.00 MHz . Division of this range by 1000 will result in the required A 10 output range of 50.01 kHz to 60.00 kHz .

The exact value of N is determined by the value of the 1,10 , and/or 100 Hz receiver tuning positions. This front panel selection causes control assembly A14 to generate a serial data code containing information pertaining to the values of the increments chosen. (This code is applied synchronously with the 750 kHz system clock to $U 6$ whenever the U6 enable line is gated open by A14.) In general, $N=(6000-X X X)$, where $X X X$ is the value of the 100,10 , and 1 Hz positions chosen at the receiver front panel frequency controls.

For example, tuning the RF-590 to 10.401475 MHz would make $\mathrm{N}=(6000-475)=5525$. The VCO frequency will be $(\mathrm{N})($ reference $)=(5525)(10.000 \mathrm{kHz})=55.25 \mathrm{MHz}$. The VCO output is then divided by 1000 to produce the A 10 output at 55.25 kHz .

8 HARRIS RF COMMUNICATIONS

The actual frequency of the A10 output may therefore be calculated from the following formula. $\mathrm{F}=$ $10(6000-X X X) \mathrm{Hz}$, where $X X X$ is the value of the receiver $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 1 Hz tuning increments, respectively.

3.3 Phase Comparator and Charge Pump Operation

Phase comparison of the 10 kHz reference and the 10 kHz VCO derived signal at the divide by N counter output is accomplished by a Phase Comparator internal to U6. When these two signals are equal in frequency and phase, the Phase Comparator outputs at TP2 and TP3 are essentially 5 Vdc. U8 functions as a buffer for the Phase Comparator to the input of the charge pump circuit, consisting of $\mathrm{Q} 5, \mathrm{Q6}$, and $\mathrm{Q7}$. This 5 volt level holds Q 6 and Q 7 off. Consequently, Q 5 is also off and the voltage across C 24 is at some constant level. This biases Q 4 to some specific source current, and the voltage across R16 at TP1 is constant. This VCO control voltage holds the VCO frequency constant, somewhere between 50 and 60 MHz .

Assume that the VCO derived feedback signal at the divide by N counter output is suddenly less than the reference frequency. This is what will happen at the instant the divide by N factor is increased. Since the two Phase Comparator inputs are no longer equal, the Phase Comparator will output a series of negative pulses at TP3. 07 will turn on, forcing Q 5 on. O 5 will start to pump charge into C24, causing 04 to conduct more current as the voltage across C24 increases. This produces a higher dc level at TP1. The VCO frequency will increase in response to it until the signals at the Phase Comparator inputs are again equal. As the VCO derived signal is approaching the reference frequency, the output pulse width at TP3 will get smaller until the signal is essentially +5 Vdc again. Q 7 and Q 5 will turn off. The voltage at C 24 will rest at this new higher dc value causing the VCO frequency to also rest at its new higher value.

Assume that the VCO feedback signal at the divide by N counter output is suddenly greater than the reference signal (meaning that the divide by N factor has just decreased). The two Phase Comparator inputs are again unequal, but now the Phase Comparator will output the negative pulses at TP2. 06 will turn on, drawing charge out of C24, and causing the VCO control voltage to drop. Consequently, the VCO will shift lower in frequency, and the VCO derived signal at the Phase Comparator input will again approach the reference frequency. The output pulses will become very narrow, approaching 5 Vdc .06 will turn off, and equilibrium at the new lower VCO frequency will be obtained.

$3.4 \quad$ VCO Operation and Control

A charge pump circuit consisting of $\mathrm{Q} 5, \mathrm{Q}, \mathrm{Q}$, , and associated components in conjunction with filters C24 and C25 convert the two Phase Comparator pulse outputs into an analog dc control voltage. Buffer amplifier 04 applies this control voltage to the varactor diode string in the VCO. The VCO itself is a JFET (O3) Hartley oscillator stage whose frequency shifts as the capacitance of the varactor diodes changes with changes in control voltage. A net control voltage change of 5 Vdc to 10 Vdc produces a net VCO frequency shift of 50 MHz to 60 MHz . Note also that the 10 volt limit corresponds to $N=6000$ while the 5 volt limit corresponds to $\mathrm{N}=5001$.

The VCO output is fed through 10 dB attenuator network R10-R11 to a +20 dB gain amplifier stage consisting of Q1, Q2, and associated components. This output is split and sent to divide by N circuit U5 and

U 6 and to a divide by 1000 divider chain consisting of $\mathrm{U} 1, \mathrm{U} 2$, and U 3 . This divider output is therefore at a frequency range of 50.01 to 60 kHz (in 10 Hz increments) and is the PLL V output. This output is fed through J5 to PLL IV Assembly A9 where further signal processing occurs.

3.5 BITE Circuits

The A10 assembly contains two circuits for self-test evaluation.

- Lock detector $\mathbf{Q 8}$ whose output is 0 Vdc whenever the PLL is tracking properly. This line is constantly monitored by the A14 assembly. It will cause a front panel fault light to appear if the loop ever unlocks.
- Serial Data check that verifies the tuning data from the A14 assembly has been received and properly translated into the correct divide by N factor. A serial data word is sent on the data line (J 1 pin 10) and the U6 serial data check line is read back to the A14 assembly (J 1 pin 7). If the word has been received and properly decoded, this line will pulse to +5 Vdc . The serial data check occurs automatically, but only when the receiver BITE self-test is actuated.

4. MAINTENANCE

The following adjustments should not be performed as a routine maintenance procedure, but only when a failure indicates a definite need. All tests should be performed with all connections in normal contact, unless otherwise specified.

4.1 VCO Frequency Adjustment

a. Connect equipment as shown in figure 1.

Figure 1. PLL V VCO Adjustment

8 HARRIS
 RF COMMUNICATIONS

b. Set RF-590 frequency to 00.000500 MHz .
c. Adjust C20 for 7.5 Vdc at TP1. PLL V output vs. receiver tune frequency should agree with table 2. The output waveform should always be a TTL signal.

Table 2. VCO Frequency Range

Receiver Tune Frequency, MHz	PLL V Output Frequency, kHz	Approximate TP1 Voltage, Vdc
00.000500	55.00	7.5
00.000000	60.00	10.0
00.000999	50.01	5.0

d. Fully reconnect the A10 assembly to RF-590. Initiate BITE self-test. Receiver must pass all tests associated with assembly A10. Test is complete.

5. PARTS LIST

Table 3 is a comprehensive parts list of all replaceable components in PLL V Assembly A10. When ordering parts from the factory, include a full description of the part. Use figure 2, PLLV Assembly A10 Component Parts Location Diagram to identify parts.

6. SCHEMATIC DIAGRAM

Figure 3 is the PLL V Assembly A10 schematic diagram.
Table 3. PLL V Assembly A10 Parts List (PL 10073-4500)

Ref. Desig.	Part Number	Description
C1	$10073-4500$	PWB, PLL 5
C2	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C3	C26-0025-470	CAP 47UF 20\% 25V TANT
C4	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C5	M39014/01-1535	CAP .01UF 20\% 100V CER
C6	CK05BX102M	CAP 1000PF 20\% 200V CER
C7	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C8	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C9	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C10	M39014/01-1535	CAP .01UF 20\% 100V CER
C11	M39014/01-1535	CAP .01UF 20\% 100V CER
C12	M39014/01-1535	CAP .01UF 20\% 100V CER
C13	M39014/01-1535	CAP .01UF 20\% 100V CER
C14	CK05BX102M	CAP 1000PF 20\% 200V CER

8 HARRIS
 RF COMMUNICATIONS

Table 3. PLL V Assembly A10 Parts List (PL 10073-4500) (Cont.)

Ref. Desig.	Part Number	Description	
C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36 C37 C38 C39 C40 C41 C43 CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8 CR9 CR10 CR11 CR12 11 J2 13 14 J5	M39014/02-1310 M39014/02-1310 C26-0025-680 M39014/02-1310 M39014/01-1535 C84-0003-008 CK05BX102M CK05BX102M C26-0025-100 C25-0003-004 M39014/01-1546 C26-0025-470 M39014/02-1310 C26-0035-109 C26-0016-151 M39014/02-1310 C26-0025-100 M39014/02-1310 M39014/02-1310 M39014/02-1310 C26-0035-109 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1310 C26-0025-470 $10073-7118$ $1 N 6263$ $1 N 3064$ $10073-7118$ $10073-7118$ $J 46-0032-010$ $J-0031$ J J $J-0031$ $J-0031$	CAP .IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP 68UF 20\% 25V TANT CAP . 1UF 10\% 100V CER-R CAP . O1UF 20\% 100V CER CAP 3-15PF 200V CER CAP 1000PF 20\% 200V CER CAP 1000PF 20\% 200V CER CAP 10UF 20\% 25V TANT CAP 0.33UF 10\% 50V TANT CAP FXD CER 039UF CAP 47UF 20\% 25V TANT CAP . IUF 10\% 100V CER-R CAP 1.OUF 20\% 35V TANT CAP 150UF 20\% 16V TANT CAP . IUF 10\% 100V CER-R CAP 10UF 20\% 25V TANT CAP .IUF 10\% 100V CER-R CAP . IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP 1.OUF 20\% 35V TANT CAP .IUF 10\% 100V CER-R CAP 47UF 20\% 25V TANT DIODE, SILICON, HYPERABRUPT DIODE, HOT CARRIER DIODE 75mA 75V SW DIODE, SILICON, HYPERABRUPT DIODE, SILICON, HYPERABRUPT HDR 10 PIN 0.100" SR CONN SMB VERT PCB F	"

Table 3. PLL V Assembly A10 Parts List (PL 10073-4500) (Cont.)

Ref. Desig.	Part Number	Description
L1 L2 L3 L4 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 R1 R2 R3 R4 R5 R6 R7 R8 R R9 R10 R1 R1 R12 R13 R14 R15 R16 R17 R18 R19 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 T1 TP1	MS14046-9 MS75084-3 MS75084-10 L08-0001-001 Q35-0003-000 2N2369 Q35-0003-000 Q05-0001-000 2N2907 2N2222 2N2222 2N2907 R65-0003-201 R65-0003-102 R65-0003-513 R65-0003-270 R65-0003-201 R65-0003-472 R65-0003-152 R65-0003-100 R65-0003-151 R65-0003-101 R65-0003-201 R65-0003-101 R65-0003-470 R65-0003-513 R65-0003-102 R65-0003-272 RN55D3651F R65-0003-470 R65-0003-470 RN55D6810F RN55D6810F RN55D9091F RN55D3321F RN55D6810F RN55D6810F R65-0003-472 R65-0003-472 R65-0003-103 R65-0003-472 R65-0003-102 R65-0003-103 10073-7002 」-0071	COIL 27UH 10\% FXD RF COIL 1.8UH 10\% FXD RF COIL 6.8UH 10\% FXD RF CHOKE WB 50 MHZ XSTR U310 JFET HIGH GM XSTR SS/RF NPN XSTR U310 JFET HIGH GM XSTR JFET N-CH XSTR SS/GP PNP TO-18 XSTR SS/GP NPN TO-18 XSTR SS/GP NPN TO-18 XSTR SS/GP PNP TO-18 RES 2005% 1/4W CAR FILM RES $1.0 \mathrm{~K} 5 \% 1 / 4$ W CAR FILM RES 51K 5\% 1/4W CAR FILM RES $275 \% 1 / 4 W$ CAR FILM RES 200 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES 1.5K 5\% 1/4W CAR FILM RES 105% 1/4W CAR FILM RES 1505% 1/4W CAR FILM RES 1005% 1/4W CAR FILM RES 2005% 1/4W CAR FILM RES 1005% 1/4W CAR FILM RES $475 \% 1 / 4$ W CAR FILM RES 51K 5\% 1/4W CAR FILM RES 1.0K 5\% 1/4W CAR FILM RES 2.7K 5\% 1/4W CAR FILM RES, 3650 1\% 1/8W MET FLM RES 47 5\% 1/4W CAR FILM RES 475% 1/4W CAR FILM RES,681.0 1\% 1/8W MET FLM RES,681.0 1\% 1/8W MET FLM RES,9090 1\% 1/8W MET FLM RES, 3320 1\% 1/8W MET FLM RES,681.0 1\% 1/8W MET FLM RES,681.0 1\% 1/8W MET FLM RES 4.7K 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES 1.0K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM TRANSFORMER, RF, FIXED TP PWB BRN TOP ACCS .080"

7 HARRIS

RF COMMUNICATIONS

Table 3. PLL V Assembly A10 Parts List (PL 10073-4500) (Cont.)

Ref. Desig.	Part Number	Description
TP2	$J-0066$	TP PWB RED TOP ACCS .080"
TP3	$J-0069$	TP PWB ORN TOP ACCS .080"
TP4	J-0070	TP PWB YEL TOP ACCS .080"
TP5	TP PWB GRN TOP ACCS .080"	
U1	$165-0004-001$	IC 12013 PLASTIC ECL
U2	$105-0000-090$	IC 74LS90 PLASTIC TTL
U3	$105-0000-090$	IC 74LS90 PLASTIC TTL
U4	$105-0000-090$	IC 74LS90 PLASTIC TTL
U5	$165-0004-001$	IC 12013 PLASTIC ECL
U6	$170-0002-001$	IC MC145156 PLASTIC CMOS
U7	$101-0000-019$	IC 4050B PLASTIC CMOS
U8	$105-0000-000$	IC 74LS00 PLASTIC TTL
U9	$105-0000-000$	IC 74LS00 PLASTIC TTL
VR1	$111-0001-001$	IC VR 7805 + 5V 1.5A 4\%

Figure 2. PLL V Assembly A10 Component Location Diagram (10073-4500, Rev. C)
IJ HARRIS
RF COMMUNICATION

8 HARRIS
 RF COMMUNICATIONS

TABLE OF CONTENTS

Paragraph Page
1 General Description 1
2 Interface Connections 1
3 Circuit Description 2
3.1 Reference Generation 2
3.2 Divide by N Counter 2
3.3 Phase Comparator and Charge Pump Operation 3
3.4 VCO Operation and Control 3
3.5 BITE Circuits 4
4 Maintenance 4
4.1 VCO Adjustment 4
5 Parts List 5
6 Schematic Diagram 5
LIST OF FIGURES
Figure Page
BFO Assembly A11 Functional Block Diagram
1 BFO VCO Alignment 4
BFO Assembly A11 Component Location Diagram (10073-4600) 9
BFO Assembly A11 Schematic Diagram (10073-4601, Rev. F) 11
LIST OF TABLES
Table Page
1 A11 BFO Synthesizer Interface Connections 1
BFO Frequency Offset 5
BFO Assembly A11 Parts List (PL 10073-4600) 6

8 HARRIS RF COMMUNICATIONS

BFO Assembly A11 Functional Block Diagram

80 HARRIS

RF COMMUNICATIONS

1. GENERAL DESCRIPTION

The A11 BFO Synthesizer Assembly is a single phase locked loop synthesizer that provides the BFO offset injection required for proper CW or SB reception. The BFO range is $\pm 10 \mathrm{kHz}$ around 455 kHz . It is selected via RF-590 BFO selection controls in 10 Hz increments.

Frequency select input data is applied to the A11 assembly in serial data form under Control Board Assembly A14 microprocessor control. A11 output is applied to IF/Audio Assembly A5 where it mixes with the second IF of 455 kHz to permit proper CW and SB demodulation.

2. INTERFACE CONNECTIONS

Table 1 lists the various input/output connections and other relevant data.
Table 1. A11 BFO Synthesizer Interface Connections

Connector	Function	Characteristics
J1	1 MHz Reference Output	TTL
J2	1 MHz Reference input	TTL
J3	BFO Output	$455 \mathrm{kHz} \pm 10 \mathrm{kHz}, 0 \mathrm{dBm}$
J4-1	+15V	Approximately 20 mA
J4-2	+5.0 V Unregulated	Approximately 200 mA
J4-3	BFO Disable	+5V = BFO Disabled
J4-4	GND	
J4-5	Lock Detector Output	P/O BITE, +5 V = Unlocked, OV = Locked
J4-6	Enable	+ going pulse = Enabled
J4-7	Serial Data Check	P/O BITE Testing, $+5 \mathrm{Vdc}=0 \mathrm{k}$
J4-8	Key	
J4-9	Clock	TTL, 750 kHz
J4-10	Data	TTL

HARRIS
 RF COMMUNICATIONS

3. CIRCUIT DESCRIPTION

NOTE

A11 operation is similar to the general divide by N PLL and charge pump circuits described in section 4. Reviewing section 4 at this point would aid in understanding A11 operation.

3.1 Reference Generation

A 1 MHz signal from Reference Generator Assembly A12 enters the A11 BFO synthesizer at J2. This signal is buffered by TTL NAND gates in $\mathrm{U4}$ and directed to $\mathrm{J1}$, a spare 1 MHz output. It is also routed to a divide by 1000 counter (internal to U6) via buffer stage $U 7$ to produce a 1 kHz reference signal. Since this has been ultimately derived from the RF-590 crystal frequency standard via the A12 assembly, stable and accurate A11 operation is assured.

3.2 Divide by N Counter

Since the A11 assembly requires a variable output frequency ($455 \mathrm{kHz} \pm 10 \mathrm{kHz}$), a programmable counter has been incorporated into the VCO feedback path to the phase comparator. This counter consists of dual modulus $\div 100 / \div 101$ prescaler network U5 and U3 and a programmable counter internal to U6. Together this circuit creates a total division range of $N=44,500$ to $N=46,500$, where N is a function of the receiver BFO offset tune positions.

The output of the divide by N counter will always attempt to equal the 1 kHz reference frequency at the phase comparator inputs (despite changes in the divide by N factor due to changing the $1 \mathrm{kHz}, 100 \mathrm{~Hz}$, and/or 10 Hz BFO offset tuning positions). To accomplish this, VCO frequency will change in response to command signals generated by the phase comparator output. The VCO frequency will always equal (N) (reference frequency) or $(\mathrm{N})(1000 \mathrm{~Hz})=44.50 \mathrm{MHz}$ to 46.50 MHz .

Selection of a BFO offset frequency from the front panel causes Control Assembly A14 to generate a serial data code containing information about the frequency chosen. This code is applied synchronously with the 750 kHz system clock to U6 whenever the U6 enable line is gated open by A14.

The value of N may be found from the formula, $N=(45,500-X X X)$, where $X X X$ is the \pm value of the $1 \mathrm{kHz}, 100 \mathrm{~Hz}$, and 10 Hz BFO offset tuning positions. For example, tuning the BFO offset to +5.00 kHz would make $N=45,500-(+500)=45,000$. The VCO frequency would be (N) (reference) $=(45,000)$ $(1000)=45.00 \mathrm{MHz}$. There is a divide by 100 counter at the VCO output, so the BFO output at J3 would be 450 kHz . Note that as the selected BFO offset frequency increases the BFO output frequency must decrease.

In summary, the BFO output frequency may be calculated from the following formula, $F=10(45,500-$ $X X X) \mathrm{Hz}$, where $\pm X X X$ represents the value of the $1 \mathrm{kHz}, 100 \mathrm{~Hz}$, and 10 Hz BFO offset tune frequency.

8 HARRIS
 RF COMMUNICATIONS

3.3 Phase Comparator and Charge Pump Operation

Phase comparison of the 1 kHz reference and the 1 kHz VCO derived signal at the divide by N counter output is accomplished by a phase comparator internal to U6.

When these two signals are equal in frequency and phase, the phase comparator outputs at TP4 and TP5 are essentially 5 Vdc . U8 buffers this level to the charge pump circuit where +5 Vdc on the Q 6 and Q 7 emitters holds both transistors off. Q 5 is also off, and the voltage at TP1 (across C24) is constant. This level holds the VCO frequency constant between 44.5 MHz and 46.5 MHz .

Assume that the division ratio of U3, U5, and U6 is changed so that the VCO derived feedback signal is less than the 1 kHz reference. (This will happen if the divide by N factor increases.) The phase comparator will output a series of negative going pulses at TP4 whose pulse widths are a function of the difference in frequency. Q7 will turn on during these negative periods, and its collector voltage drops. This permits Q 5 to turn on and pump charge into C 24 . This causes the C 24 voltage to increase, which in turn causes an increase in the VCO frequency. The VCO frequency increases until the signals at the U6 phase comparator inputs are equal. At this time, the phase comparator output error pulse width will have decreased to an extremely small value. TP4 is essentially at $5 \mathrm{Vdc}, \mathrm{Q} 5$ and Q 7 turn off, and no further increase in the voltage across C 24 will occur. The VCO will therefore rest at a new higher frequency.

Assume that the division ratio changes so the VCO derived feedback signal is greater than the 1 kHz reference. U6 will pulse low at TP5, causing Q 6 to turn on. C 24 will start to discharge through Q 6 to ground, and its voltage drops. This causes the VCO to decrease in frequency until the inputs at the phase comparator are equal. Again, the output error pulse width will have decreased to an extremely small value. TP5 will be at essentially 5 Vdc , Q 6 will turn off, the C 24 voltage will no longer decrease, and the VCO frequency will rest at this new lower value.

3.4 VCO Operation and Control

Buffer stage U8 applies the phase comparator outputs to a charge pump circuit consisting of Q5, Q6, Q7, and associated components followed by filters C24 and C25. This stage converts the two phase comparator pulse outputs into an analog dc control voltage. This control voltage is then applied to the varactor diode string in the VCO. It controls the operating frequency of JFET Hartley oscillator stage Q3. A net control voltage change of 6.5 Vdc to 8.5 Vdc produces a VCO frequency range of 44.500 MHz to 46.500 MHz .

The VCO output is fed through - 10 dB attenuator network R10-R11 and to 20 dB gain amplifier stage, Q1 and Q2. The signal is then split and sent to the divide by N circuit U3, U5, and U6 (to complete the feedback loop) and to divide by 100 chain U1 and U2. U2 TLL output at 455 to 465 kHz is applied through buffer stage Q12 to a low pass filter (LPF) network. LPF output is a $455 \mathrm{kHz} \pm 10 \mathrm{kHz}, 0 \mathrm{dBm}$ sine wave and is fed through J3 to IF/Audio Assembly A5 to become the BFO injection frequency.

BFO disabling occurs whenever the receiver is in any mode other than LSB, USB, ISB, or CW modes. This occurs in response to a +5 Vdc command by the A 14 assembly at J 4 , pin 3. This signal disables the VCO

80 HARRIS RF COMMUNICATIONS

by turning Q 10 on. This turns $\mathrm{Q4}$ on. $\mathbf{Q 4}$ then removes base drive to $\mathrm{Q9}$. Q 9 turns off and removes the supply voltage from oscillator stage Q3. Also, Q10's on state forward biases diodes CR14 and CR15, which shorts out the signals at the U 1 and U 5 inputs.

3.5 BITE Circuits

The A11 assembly contains two circuits for self-test evaluation.

- Lock detector 08 whose output is 0 Vdc whenever the PLL is tracking properly. This line is constantly monitored by Control Assembly A14. A front panel fault light will appear if the loop ever unlocks.
- Serial data check that verifies that the tuning data from the A14 assembly has been received and properly translated into the correct divide by N factor. A serial data word is sent by the A14 assembly on the BFO tuning data line (J 4 pin 10) and the U6 SW1 output is read at $\mathrm{J} 4, \mathrm{pin} 7$. If the word has been received and properly decoded, this line will pulse to +5 Vdc . The serial data check test occurs automatically, but only when the receiver BITE self-test is actuated.

4. MAINTENANCE

The following adjustments should not be performed as a routine maintenance procedure, but only when a failure indicates a definite need. A11 tests should be performed with all connections in normal contact, unless otherwise specified.

4.1 VCO Adjustment

Perform this procedure to align the VCO.
a. Connect equipment as shown in figure 1.

Figure 1. BFO VCO Alignment

H HARRIS
 RF COMMUNICATIONS

NOTE

A11J3 mates with A5A1J2 through a hole in the chassis. It will be necessary to remove the A 5 assembly to gain access to A11J3.
b. Set RF-590 controls as follows:

- Frequency to 10.000000 MHz
- MODE to USB
- BFO to 0.00 kHz
c. Monitor TP1 with a digital voltmeter. Adjust C20 for 7.0 Vdc .
d. Check that the BFO output frequency (as a function of the front panel BFO settings) agree with table 2. (BFO output amplitude should always be $0 \mathrm{dBm} \pm 2 \mathrm{~dB}$.)

Table 2. BFO Frequency Offset

BFO Offset Frequency Selected	BFO Output Frequency	Approximate Voltage at TP1
0.00 kHz	455.00 kHz	7.0
+9.99 kHz	445.01 kHz	6.0
-9.99 kHz	464.99 kHz	8.0

e. Fully reconnect the A11 assembly to the RF-590. Initiate BITE self-test. Receiver must pass all tests associated with the A11 assembly. Test is complete.

5. PARTS LIST

Table 3 is a comprehensive parts list of all replaceable components in BFO Assembly A11. When ordering parts from the factory, include a full description of the part. Use figure 2, BFO Assembly A11 Component Location Diagram to identify parts.

6. SCHEMATIC DIAGRAM

Figure 3 is the BFO Assembly A11 schematic diagram.

Table 3. BFO Assembly A11 Parts List (PL 10073-4600)

Ref. Desig.	Part Number	Description
	10073-4600 M39014/02-1310 C26-0025-470 M39014/02-1310 M39014/01-1535 CK05BX102M M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/01-1535 M39014/01-1535 M39014/01-1535 M39014/01-1535 CK05BX102M M39014/02-1310 M39014/02-1310 C26-0025-680 M39014/02-1310 C84-0003-004 CK05BX102M CK05BX102M C26-0025-680 C25-0003-107 C25-0003-004 C26-0025-100 M39014/02-1310 C25-0001-301 C26-0016-151 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1310 C25-0001-301 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1310 6628-0660	PWB CAP .IUF 10\% 100V CER-R CAP 47UF 20\% 25V TANT CAP .IUF 10\% 100V CER-R CAP . O1UF 20\% 100V CER CAP 1000PF 20\% 200V CER CAP .IUF 10\% 100V CER-R CAP . IUF 10\% 100V CER-R CAP . 1UF 10\% 100V CER-R CAP .O1UF 20\% 100V CER CAP 1000PF 20\% 200V CER CAP .IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP . IUF 10\% 100V CER-R CAP . 1 UF 10\% 100V CER-R CAP . O1UF 20\% 100V CER CAP 9-35PF 200V CER CAP 1000PF 20\% 200V CER CAP 1000PF 20\% 200V CER CAP 68UF 20\% 25V TANT CAP 1.0UF 10\% 35V TANT CAP 0.33UF 10\% 50V TANT CAP 10UF 20% 25V TANT CAP . IUF 10\% 100V CER-R CAP 1.0UF 20\% 20V TANT CAP 150UF 20\% 16V TANT CAP .IUF 10\% 100V CER-R CAP 10UF 20\% 25V TANT CAP . IUF 10\% 100 V CER-R CAP .1 UF 10\% 100V CER-R CAP $1.0 U F 20 \% ~ 20 V$ TANT

of HARRIS
 RF COMMUNICATIONS

Table 3. BFO Assembly A11 Parts List (PL 10073-4600) (Cont.)

Ref. Desig.	Part Number	Description
C45 C46 C47 C48 C49 C50 C51 C52 CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8 CR9 CR10 CR11 CR12 CR13 CR14 J1 J2 J3 J4 L1 L2 L3 L4 L5 Q1 Q2 Q3 Q4 Q5 R2	CM06FD272J03 CM06FD751J03 C-2503 6628-0660 CM06FD272J03 M39014/02-1310 M39014/01-1535 M39014/01-1535 10073-7118 1N6263 1N3064 1N3064 1N3064 J-0031 J-0031 J-0031 J46-0032-010 MS14046-9 MS75084-3 MS75084-10 L08-0001-001 MS 14046-7 Q35-0003-000 2N2369 Q35-0003-000 2N2907 2N2907 2N2222 2N2222 2N2907 2N2907 2N2222 2N5088 2N2222 R65-0003-201 R65-0003-102	CAP 2700PF 5\% 500V MICA CAP 750PF 5\% 500V MICA CAP 820PF 2\% 300V MICA CAP 5600PF 5\% 300V MICA CAP 2700PF 5\% 500V MICA CAP .1UF 10\% 100V CER-R CAP .01UF 20\% 100V CER CAP .01UF 20\% 100V CER DIODE, SILICON, HYPERABRUPT DIODE, HOT CARRIER DIODE 75mA 75V SW DIODE 75mA 75V SW DIODE 75mA 75V SW CONN SMB VERT PCB F CONN SMB VERT PCB F CONN SMB VERT PCB F HDR 10 PIN 0.100" SR COIL 27UH 10\% FXD RF COIL $1.8 \mathrm{UH} 10 \%$ FXD RF COIL 6.8UH 10\% FXD RF CHOKE W B 50 MHZ COIL 18UH 10\% FXD RF XSTR U310 JFET HIGH GM XSTR SS/RF NPN XSTR U310 JFET HIGH GM XSTR SS/GP PNP TO-18 XSTR SS/GP PNP TO-18 XSTR SS/GP NPN TO-18 XSTR SS/GP NPN TO-18 XSTR SS/GP PNP TO-18 XSTR SS/GP PNP TO-18 XSTR SS/GP NPN TO-18 XSTR SS/GP XSTR SS/GP NPN TO-18 RES 200 5\% 1/4W CAR FILM RES 1.OK 5\% 1/4W CAR FILM

3 HARRIS
 RF COMMUNICATIONS

Table 3. BFO Assembly A11 Parts List (PL 10073-4600) (Cont.)

Ref. Desig.	Part Number	Description
R3	R65-0003-513	RES $51 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM
R4	R65-0003-270	RES 27 5\% 1/4W CAR FILM
R5	R65-0003-201	RES 2005\% 1/4W CAR FILM
R6	R65-0003-472	RES 4.7K 5\% 1/4W CAR FILM
R7	R65-0003-152	RES 1.5K 5\% 1/4W CAR FILM
R8	R65-0003-100	RES 105\% 1/4W CAR FILM
R9	R65-0003-151	RES 1505% 1/4W CAR FILM
R10	R65-0003-101	RES 1005% 1/4W CAR FILM
R11	R65-0003-201	RES 2005% 1/4W CAR FILM
R12	R65-0003-101	RES 1005% 1/4W CAR FILM
R13	R65-0003-270	RES 27 5\% 1/4W CAR FILM
R14	R65-0003-513	RES 51K 5\% 1/4W CAR FILM
R15	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R16	R65-0003-562	RES 5.6K 5\% 1/4W CAR FILM
R17	RN55D5621F	RES,5620 1\% 1/8W MET FLM
R18	R65-0003-562	RES 5.6K 5\% 1/4W CAR FILM
R19	R65-0003-561	$\text { RFS } 68101 \% 1 / 8 W \text { MET FLM }$
R20	RN55D6810F RN55D6810F	RES,681.0 RES,681.0 RES
R22	RN55D9091F	RES,9090 1\% 1/8W MET FLM
R23	RN55D3321F	RES,3320 1\% 1/8W MET FLM
R24	RN55D6810F	RES,681.0 1\% 1/8W MET FLM
R25	RN55D6810F	RES,681.0 1\% 1/8W MET FLM
R26	R65-0003-472	RES 4.7K 5\% 1/4W CAR FILM
R27	R65-0003-472	RES 4.7K 5\% 1/4W CAR FILM
R28	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R29	R65-0003-472	RES 4.7K 5\% 1/4W CAR FILM
R30	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R31	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R32	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R33	R65-0003-222	RES $2.2 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM
R34	R65-0003-472	RES 27K 5\% 1/4W CAR FILM
R35 R36	R65-0003-273	RES RES 10 K R
R37	R65-0003-472	RES 4.7K 5\% 1/4W CAR FILM
R38	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R39	R65-0003-151	RES 150 5\% 1/4W CAR FILM
R40	R65-0003-750	RES $755 \% 1 / 4 W$ CAR FILM
R41	R65-0003-103	RES 10K $5 \% 1 / 4 W$ CAR FILM
T1	10073-7003	TRANSFORMER, RF, FIXED
TP1 TP2	J-0071	TP PWB BRN TOP ACCS $.080^{\prime \prime}$ TP PWB RED TOP ACCS 080
TP2	J-0066	TP PWB RED TOP ACCS .080" TP PWB ORN TOP ACCS . $080^{\prime \prime}$
TP3 TP4	J-0069	TP PWB ORN TOP ACCS .080"
TP5	J-0068	TP PWB GRN TOP ACCS .080"

8 HARRIS
 RF COMMUNICATIONS

Table 3. BFO Assembly A11 Parts List (PL 10073-4600) (Cont.)

Ref. Desig.	Part Number	Description
TP6	J-0072	TP PWB BLU TOP ACCS .080"
U1	$165-0004-001$	IC 12013 PLASTIC ECL
U2	$105-0000-090$	IC 74LS90 PLASTIC TTL
U3	$105-0000-168$	IC 74LS168 PLASTIC TTL
U4	$105-0000-000$	IC 74LS00 PLASTIC TTL
U5	$165-0004-001$	IC 12013 PLASTIC ECL
U6	$170-0002-001$	IC MC145156 PLASTIC CMOS
U7	$101-0000-019$	IC 4050B PLASTIC CMOS
U8	$105-0000-000$	IC 74LS00 PLASTIC TTL
VR1	$111-0001-001$	IC VR 7805 + 5V 1.5A 4\%

Figure 2. BFO Assembly A11 Component Location Diagram (10073-4600, Rev. C)
8 HARRIS RF COM

7 HARRIS
 RF COMMUNICATIONS

TABLE OF CONTENTS

7) HARRIS
 RF COMMUNICATIONS

LIST OF FIGURES

Figure
Page
1
RF-590 Front Panel A13 (Front View) 1
RF-590 Front Panel Assembly A13 (Rear View)
RF-590 Front Panel Assembly A13 (Rear View) 2 2
Front Panel Switchboard A13A1 Component Location Diagram (10073-2100) 8
Front Panel Switchboard A13A1 Schematic Diagram (10073-2101, Rev. D) 9
Front Panel Driver Board A13A2 Functional Block Diagram
Driver Board A13A2 Component Location Diagram (10073-2200) 22
Driver Board A13A2 Schematic Diagram (10073-2201, Rev. K) 23
Front Panel Meter Board A13A3 Functional Block Diagram
Front Panel Meter Board A13A3 Component Location Diagram (10073-2300) 33
Front Panel Meter Board A13A3 Schematic Diagram (10073-2301, Rev. D) 35
Alphanumeric Display Segment Location 38
Alphanumeric Display Board A13A4 Component Location Diagram (10073-2300) 40
Alphanumeric Display Board A13A4 Schematic Diagram (10073-2401, Rev. B) 41
Numeric Display Segment Location 43
Numeric Display Board A13A5 Component Location Diagram (10073-2500) 44
Numeric Display Board A13A5 Schematic Diagram (10073-2501, Rev. B) 45
Converter Assembly A13A6 Component Location Diagram (10073-2250) 47
Converter Board Assembly A13A6A1 Component Location Diagram (10073- 2260) 49
Converter Assembly A13A6 and Converter Board Assembly A13A6A1 Schematic Diagram (10073-2251, Rev. F). 51
LIST OF TABLES
Table Page 3
A13A1 Switchboard Interface Connections 4
A13A1 Switchboard LED Indicators 6
Front Panel Switchboard A13A1 Parts List (PL 10073-2700) 7
A13A2 Driver Board Interface Connections 13
Converter Voltages 19
Driver Board A13A2 Parts List (PL 10073-2200) 20
A13A3 Interface Connections 29
Front Panel Meter Board A13A3 Parts List (PL 10073-2300) 32
A13A4 Interface Connections 37
Alphanumeric Display Board A 41
Numeric Display Assembly A13A5 Parts List (PL 10073-2500) 43
Converter Assembly A13A6 Parts List (PL 10073-2250) 46
Converter Board Assembly A13A6A1 Parts List (PL 10073-2260) 48

合 HARRIS RF COMMUNICATIONS

1. FRONT PANEL ASSEMBLY A13

The RF-590 Front Panel Assembly A13 contains control circuits which permit all operator-receiver local interface functions such as tuning, channel selection, AF gain, system status indications, etc.

All operator controls (AF Gain, Squelch, Keypad, Tuning knob, etc) are accessed from the front of the assembly. Figure 3-1 of the Operations section details the location and functions of these controls, and figure 1 is a photograph of the front panel (included for reference).

Figure 1. RF-590 Front Panel A13 (Front View)
Six major interface assemblies are mounted to the rear of the Front Panel Assembly. They are shown in figure 2. These assemblies are described in section 2 through 7 and listed below.

- Switch Board A13A1
- Driver Board A13A2
- Meter Board A13A3
- Display Board (Alphanumeric) A13A4

H) HARRIS

- Display Board (Numeric) A13A5
- Converter Assembly A13A6

Figure 2. RF-590 Front Panel Assembly A13 (Rear View)
The Front Panel Assembly is normally secured to the RF-590 chassis by four front panel captive screws. Loosening these screws allows the entire assembly to pivot down on hinges (located at two corners). This permits access to any of the items listed above as well as to Control Board Assembly A14 which is mounted behind the front panel.

Table 1 is the Front Panel Assembly A13 parts list.

80 HARRIS
 RF COMMUNICATIONS

Table 1. Front Panel Assembly A13 Parts List (PL 10073-2000)

Ref. Desig.	Part Number	Description
	10073-2605	FRONT PANEL,RF-590
	10073-2021	FILTER, POLARIZED DISPLAY
	10073-2020	FILTER, POLARIZED DISPLAY
	10073-2018	BRACKET, PIVOT RIGHT
	10073-2019	BRACKET, PIVOT LEFT
	Z03-0001-004	HDL ALUM BLK 10-32X4.001N
	Z03-0004-002	FER ALUM BLK . 221 I.D.
	10073-2506	KNOB
	MP-1481	KNOB PLASTIC . 713 DIA
A1	10073-2700	PWB ASSY,SWITCH\&LED
A2	10073-2200	PWB ASSY, FRONT PANEL
A3	10073-2300	METER PWB ASSY
A4	10073-2400	PWB ASSY,DISPLAY
A5	10073-2500	PWB ASSY,DISPLAY
A6	10073-2250	CONVERTER MDL ASSY
G1	10073-2075	OPTICAL ENCODER PANEL MT
J1	J62-0001-007	JACK FONE CLOSED CKT
LS1	10073-2081	SPEAKER
M1	10073-2311	
P1 P2	J46-0016-014	CONN,FEMALE,3CIR
P3	MP-0648	HOUSING, CONN, 5 CIRCUIT
P4	J40-0002-003	HOUSING, CONN, 3 CIRCUIT
P5	J40-0002-002	HOUSING, CONN, 2 PIN
P6	MP-0647	HOUSING, CONN, 6 CIRCUIT
R1	10073-2071	POT
R2	10073-2073	RES,VAR,5K,10\%,LIN.TAPER
R3	10073-2072	RES,VAR,5K,10\%,MOD.LOG

did HARRIS RF COMMUNICATIONS

2. FRONT PANEL SWITCHBOARD A13A1

2.1 General Description

Front Panel Switchboard A13A1 consists of all RF-590 front panel pushbutton switches excluding the four-position meter select switch. It also includes all the discrete LED displays on the receiver front panel. Signals generated by switch closures are routed for processing to Control Board Assembly A14 via Front Panel Driver Board A13A2. The discrete LED displays are also driven from Front Panel Driver Board A13A2.

2.2 Interface Connections

Table 2 lists Front Panel Switchboard A13A1 interface connections.
Table 2. A13A1 Switchboard Interface Connections

Connector	Description
$J 1$ to/from A13A2	
$J 1-1$	Gnd
-2	Scan LED
-3	Test LED
-4	Program LED
-5	COL 7
-6	Receive LED
7	BFO LED
-8	Fault LED
-9	PB3
-10	Remote LED
-11	TWA
-12	TWB
-13	COL 2
-14	COL 0
-15	Tune Enable LED
-16	PB2
-17	COL 3
-18	N/C
-19	COL 5
-20	PB1
-21	N/C
-22	N/C
-23	COL 1
-24	Frequency LED
-26	N/C
	COL 6

80 HARRIS RF COMMUNICATIONS

Table 2. A13A1 Switchboard Interface Connections (Cont.)

Connector	Description
$J 1-27$	PBO
-28	COL 4
-29	Channel LED
30	+5 V
J2 to/from Panel	
coder	
$\mathrm{J} 2-1$	Gnd
-2	TWB
-3	Key
-4	TWA
-5	+5V
J 3 to/from A13A3	
$\mathrm{J}-1$	N/C
-2	N/C
-3	Speaker on/off
-4	Speaker on/off

2.3 Functional Description

2.3.1 Switch Matrix

The pushbutton switches on the RF-590 Receiver front panel are arranged in a matrix of eight columns by four rows. The eight column signals (COL 0 through COL 7) are inputs from Front Panel Driver Board A13A2 while the four row signals are outputs to the Driver board. The microprocessor on the Control board detects switch activity by enabling all the column outputs while reading back the row inputs (PBOPB3) looking for a connection between any row and any column. If a closure is detected, it enables the column lines selectively while reading back the row lines again to determine the exact location of the switch closure. The microprocessor then performs the activity indicated by the closure, including display update.

2.3.2 LED Circuits

The discrete LEDs on the Switchboard are driven directly from the front panel driver board. (See the description for Driver Board A13A2). Table 3 provides a listing of LED display by reference designator and function:

Table 3. A13A1 Switchboard LED Indicators

Indicator	Function	Description
DS1	Frequency	Indicates frequency display field will be modified by any tuning knob or keypad activity.
DS2	Fault	Indicates BITE, Power Supply, PLL Synthesizer faults, or Antenna Overhead faults.
DS3	Test	Indicates Test mode of operation.
DS4	Scan	Indicates receiver is in Scan mode of operation.
DS5	Receive	Indicates the RF-590 is in the standard Receive mode of operation.
DS6	BFO	Indicates BFO display field will be modified by any tuning knob or keypad activity.
DS8	Program	Indicates Receiver is in Channel or Group programming mode.
DS10	Remote	Indicates Receiver is under Remote control.
DS11	Tune	Indicates the tuning knob is enabled. If off, tuning knob rotation has no effect on the receiver.
DS12	Channel	Indicates the channel display field will be modified by any keypad or tuning knob activity.

2.4 Maintenance

The advanced design of the A13A1 assembly eliminates the need for regular maintenance. However, when replacing components on this assembly, observe the following caution.

CAUTION

Cleaning fluids normally used to remove flux will damage switches used on this assembly. Cleaning of the A13A1 assembly is not recommended.

Table 4 is the Front Panel Switchboard A13A1 parts list. Figures 3 and 4 are the Front Panel Switchboard A13A1 component location diagram and schematic diagram.

7 HARRIS
 RF COMMUNICATIONS

Table 4. Front Panel Switchboard A13A1 Parts List (PL 10073-2700)

Ref. Desig.	Part Number	Description
DS1 DS2 DS3 DS4 DS5 DS6 DS8 DS10 DS11 D512 DS14 12 13 S1- 56 S9. 516 S17, 518 S19 S20-529 S30 S31 S32 S33	$10073-2700$ $10073-2050$ $10073-2051$ $10073-2052$ $10073-2053$ $10073-2054$ $10073-2055$ $10073-2056$ $10073-2057$ $1073-2058$ $10073-2059$ $10073-2060$ $10073-2061$ $10073-2062$ $10073-263$ $1073-2064$ $10073-2065$ $10073-2066$ $10073-2067$ $10073-2068$ $10033-2069$ $10073-2022$ N21-0002-000 N21-0001-000 N21-0002-000 N21-0002-000 N21-0002-000 N21-0002-000 N21-0002-000 N21-0002-000 N21-0002-000 N21-0002-000 N21-0002-000 J46-0033-006 J46-0033-005 S05-0004-001 S05-0004-001 S05-0004-002 S05-0004-001 S05-0004-002 S05-0004-001 S05-0004-001 S05-0004-001 S05-0005-001	PWB, FRONT PANEL BUTTON,SW,O,CUSTOM MOLD BUTTON,SW, 1,CUSTOM MOLD BUTTON,SW,2,CUSTOM MOLD BUTTON,SW,3,CUSTOM MOLD BUTTON,SW,4,CUSTOM MOLD BUTTON,SW,5,CUSTOM MOLD BUTTON,SW,6,CUSTOM MOLD BUTTON,SW,7,CUSTOM MOLD BUTTON,SW,8,CUSTOM MOLD BUTTON,SW,9,CUSTOM MOLD BUTTON,SW,TUNE,CUSTOM MLD SW BTN ENTR BUTTON,TEST BUTTON,SW, RECALL,CSTM MLD BUTTON,SW,LOAD,CSTM MOLD SW BTN PROG BUTTON,SCAN BUTTON SPK ON/OFF BUTTON RCV BUTTON,SW,CUSTOM MOLD SHIELD SWITCH LED GRN T-1 2.0MCD LED RED T-1 2.5 MCD LED GRN T-1 2.0MCD HDR 6 PIN $0.100^{\prime \prime}$ RT ANG HDR 5 PIN 0.100" RT ANG SWITCH

Figure 3. Front Panel Switchboard A13A1 Component Location Diagram (10073-2700, Rev. C)
Id HARRIS
RF COMMUNICATION

welbe!a \%ola puonount

8 HARRIS RF COMMUNICATIONS

3. FRONT PANEL DRIVER BOARD A13A2

3.1 General Description

The RF-590 Front Panel Driver Board serves four basic functions, all associated with controlling the front panel of the receiver. It generates the drive signals for the vacuum fluorescent displays, drives the discrete LED displays, generates signals indicating Tune Knob rotation and routes the signals to the Front Panel Switchboard associated with detecting pushbutton activity.

The Driver Board controls the vacuum fluorescent displays by providing filament voltages, display segment information, and digit select information to them. The filament voltages are generated in Display Converter Assembly A13A6 and routed to the display connectors. The Driver Board mutiplexes the VF Displays by providing information for the segments to be lit within a character while enabling that character. This is done at a rapid rate to give the appearance of continuous illumination. (See sections 5 and 6 for drawings showing the display segment location.) The information to be displayed is provided to the Driver Board (A13A2) by the Control Board (A14) in serial fashion using the signals DATA, CLK, and DISP STR ON J1P1 pins 2, 4, and 14 respectively.

The discrete LED displays of the Front Panel are lit by the Driver Board using information provided by the Control Board.

Rotating the tune knob generates two pulsing signals which are squared up by the Driver Board, A13A2, and routed to the Control Board for service.

Driver Board A13A2 outputs eight column strobes to the switches in the front panel and inputs four row lines from the switches. The row lines are routed to the Control board where a switch closure is detected as a connection from a column to a row.

3.2 Interface Connections

Table 5 summarizes the A13A2 interface connections.
Table 5. A13A2 Driver Board Interface Connections

Connector	Name	Description
J1 to/from A14		
J1-1	TWHL INT	Tune Knob Interrupt to Control Board
-2	Data	Serial Display Data from Control Board
-3	DIR	Tune Knob Direction to Control Board
-4	CLK	Clock for display Data from Control Board
-5	TWHL RESET	Interrupt Reset from Control Board
-6	-15 V	
-7	+5 V	
-8	BITE IN	Power Supply Fault Indicator

ON HARRIS
 RF COMMUNICATIONS

Table 5. A13A2 Driver Board Interface Connections (Cont.)

Connector	Name	
J1-9	PB3	Description
-10	KYBSTR	Switch row readback to Control Board
-11	Seyboard Strobe from Control Board	
-12	Fault	Switch Row readback to Control Board
-13	Output to Rear Panel (via Control Board)	
-14	PB1	Switch Row readback to Control Board
-15	DISP STR	Display Strobe from Control Board
-16	PB0	
-17	N/C	
-18	N/C	
-19	GND	
-20	N/C	
J2 to/from A13A1 readback to Control Board		
J2-1		
-2	GND	
-3	Scan LED	
-4	Test LED	
-5	Program LED	
-6	COL 7	
-7	Receive LED	
-8	BFO LED	
-9	Fault LED	
-10	PB3	
-11	Remote LED	
-12	TWA	
-13	TWB	
-14	COL 2	
-15	COL 0	
-16	Tune LED	
-17	PB2	
-18	COL 3	
-20	N/C	
-22	COL 5	
-23	PB1	
-24	N/C	
-26	N/C	
-27	COL 1	

OHARRIS RF COMMUNICATIONS

Table 5. A13A2 Driver Board Interface Connections (Cont.)

Connector	Name	
J2-29	Channel LED	
-30	+5V	
J3 to/from A13A4		
J3-1	a Segment	
-2	b Segment	
-3	c Segment	
-4	d Segment	
-5	m Segment	
-5	n Segment	
-6	e Segment	
-7	f Segment	
-8	J Segment	
-9	k Segment	
-10	G Segment	
-11	h Segment	
-12	Decimal Point	
-13	Comma	
-14	N/C	
-15	G1 Digit	
-16	p Segment	
-17	r Segment	
-18	G2 Digit	
-19	G3 Digit	
-20	G20 Digit	
-21	G4 Digit	
-22	G5 Digit	
-23	G6 Digit	
-24	G19 Digit	
-25	G7 Digit	
-26	G8 Digit	
-27	G9 Digit	
-28	G18 Digit	
-30	G10 Digit	
-32	G11 Digit	
-33	G12 Digit	
-34	G17 Digit	
35	G13 Digit	
-36	G14 Digit	
-37	N/	

Of HARRIS RF COMMUNICATIONS

Table 5. A13A2 Driver Board Interface Connections (Cont.)

Connector	Name	Description
J3-38	G15 Digit	
-39	Filament	
. 40	Filament	
J4 to/from A13A5		
J4-1	G11 10 MHz Digit	
-2	G10 1 MHz Digit	
-3	G9 100 kHz Digit	
-4	G31/2 Segments	
-5	G7 1 kHz Digit	
-6	G8 10 kHz Digit	
-7	Filament	
-8	Decimal Point	
-9	G5 10 Hz Digit	
-10	G6 100 Hz Digit	
-11	N/C	
-12	Comma	
-13	G4 1 Hz Digit	
-14	c Segment	
-15	G2 CH10 Digit	
-16	G1 CH1 Digit	
-17	b Segment	
-18	a Segment	
-19	g Segment	
-20	Filament	
-21	Underline Segments	
-22	d Segment	
-23	e Segment	
-24	f Segment	

3.3 Circuit Description

3.3.1 Microprocessor Operation

The heart of Front Panel Driver Board A13A2 operation is the 8035 microprocessor (U12). The execution of the software program stored in the 2716 type EPROM (U16) causes the microprocessor to perform the display update functions as described in paragraph 2. To execute the program, the microprocessor must continuously get instructions from U16 and process them. To accomplish this, the microprocessor (at the start of an instruction cycle) outputs the address of the instruction to be obtained into its address/data bus at pins U12-12 to U12-19. The address latch (U13) latches it to the EPROM. The EPROM (U16) outputs

OH HARRIS RF COMMUNICATIONS

the instruction to the data bus which is read by the microprocessor and executed. The microprocessor uses the Address Latch Eanble, active high (ALE) signal to indicate the presence of a valid address on the bus. The Program Store Enable (PSEN) signal is used to enable the EPROM to output the obtained instruction while the $\overline{\mathrm{RD}}$ (read) and $\overline{\mathrm{WR}}$ (write) signals are used to read from and write to other external devices. The $\overline{\mathrm{RD}}$ signal is used to read display data sent by Control Board A14 from the shift registers U14 and U 15 while the $\overline{W R}$ signal is used to write the display information to the VF display segment latches U8, U9, and U23. These functions are explained in greater detail below.

3.3.2 Display Data Input

Front Panel Driver Board A13A2 at power up lights all LEDS and all segments of the vacuum fluorescent displays. After completion of the power on self-test, the display is updated to the last receive setting used before power off using display data provided by Control Board A14. The Control board provides the information for all display updates to the Driver board in serial fashion via J1-2. This information is clocked into serial shift registers U 14 and U 15 to be read in parallel by microprocessor U12. The clock signal is 750 kHz and is provided by the Control board at $\mathrm{J1}-4$ and routed to the shift registers at pin 3 . When the shift registers have been loaded with display data, the Control board generates an interrupt to the Driver board microprocessor (U12) using the signal display strobe at J1-14. The display strobe pulse serves to trigger monostable U24, which in turn generates the interrupt, causing the microprocessor to read the display data from the shift registers U14 and U15. U18 provides buffering of the display data onto the microprocessor data bus. The act of reading the shift registers causes resetting of the interrupt by the microprocessor read control line at U24-3 which is the reset in to the monostable.

3.3.3 Vacuum Fluorescent Display Drive

Display data read in from the Control board is converted by microprocessor U12 into formats required for driving the VF displays. The displays are driven in multiplexed fashion so that only one character is driven at a given instant. Each character in the VF displays has a unique address which is output by the microprocessor to the bus and latched into the address latch (U13) during a display character update. The address is decoded by U 10 or U 11 into a character enable pulse. During the output instruction, the segment information for the character to be lit is latched into U23 for seven segment characters or into U8 and U9 for 14 segment characters. Each character is enabled for approximately 640 microseconds after which, the microprocessor processes the next character in a similar manner.

3.3.4 LED Drive

The discrete LEDs on the front panel are driven from the parallel ports on microprocessor U12. These outputs are buffered by U 19 and U20 and are routed to the switchboard via J2. An LED is lit by an active low output. The information to be written to the LEDs originates in Control Board A14 and is input to the Driver board in the manner described in paragraph 3.3.2.

HARRIS
 RF COMMUNICATIONS

3.3.5 Tuning Knob

Rotating the front panel tuning knob causes two pulsing signals to be generated which are 90 degrees out of phase. These are input to the Driver board at J2-11 and J2-12. The pulses are squared by Schmitt Trigger Inverters (U28) and used to generate an interrupt to the Control board via U22. The interrupt (active high) is output at $\mathrm{J} 1-1$ while J 1.3 provides direction of rotation information to Control Board A14. When the Control board receives Tuning knob interrupts indicating rotation, it outputs new display information to the Driver board as described in paragraph 3.3.2, so that the indicated display field is increased or decreased.

3.3.6 Pushbutton Circuitry

The Driver board serves primarily to route the signals associated with detection of pushbutton activity to and from the Control and Switchboards. The switches are arranged in a matrix of eight columns by four rows. Switch activity is detected by sensing a closure between a column line to a row line. The column outputs are written serially from the Control board to the Driver board via P3-2, clocked via $\mathrm{J} 1-4$, and latched into shift register U21 by the signal KYB STR (keyboard strobe) at $\mathrm{J} 1-10$. The parallel outputs of the shift register are routed to the Switchboard via J2 signals COL 0 through COL 7. The rows are routed back to the Control board as signals PB 0 to PB 3 (see J1-9, 11, 13, and 15).

3.4 Maintenance

3.4.1 Adjustments

The only adjustment on the Front Panel Driver Board is the VF display brightness adjust potentiometer located at the top center of the PWB. Turn clockwise for brighter displays (single turn potentiometer).

3.4.2 Troubleshooting

To make a quick assessment of Driver Board functions, the four test points should be checked with an oscilloscope.

- TP1 - Microprocessor Write Line. Should be active low pulses repeated approximately every 600 to 700 microseconds.
- TP2 - Character Strobe to U10. Active high pulse every 600 to 700 microseconds indicates display is being updated.
- TP3 - Character Strobe to U11. Same as TP2. Also indicates display being updated. Both signals are required.
- TP5 - Interrupt to microprocessor from Control board. Active low approximately 50u seconds pulse every 1 second, (faster with Tuning Knob Rotating).

80 HARRIS
 RF COMMUNICATIONS

If the above signals are incorrect, more fundamental checks are indicated. Perform the checks in the following order.
a. Verify +5 V at J1-7 and -15 V at J1-6.
b. Verify display converter voltages at E7-E12 of Driver PWB and integrity of connections to converter module according to table 6.

Table 6. Converter Voltages

Driver	Converter	Function
E7	C1	-15 Vdc
E8	C5	5.8 Vac
E9	C3	+35 Vdc
E10	C4	Bias $\approx 6 \mathrm{Vdc}$
E11	C2	5.8 Vac
E12	E1	GND

c. Verify integrity of connections E1 through E6. The 10073-2400 alphanumeric display module requires connections E1 to E2 and E5 to E4.
d. Verify 6 MHz clock at U12-2 and U12-3.
e. Verify approximately +5 V at U12-4. (Microprocessor reset in).
f. Verify ALE signal, approximately 60-40 duty cycle square wave at U12-11.
g. Verify activity on bus ADO - AD7 (zero to five volt random square waves).
h. Verify that all socketed ICs are installed correctly with no pins bent underneath the IC.

3.5 Parts List and Schematic Diagram

Table 7 is the Driver Board A13A2 parts list. Figures 5 and 6 are the Driver Board A13A2 component location diagram and schematic diagram.

HARRIS
 RF COMMUNICATIONS

Table 7. Driver Board A13A2 Parts List (PL 10073-2200)

Ref. Desig.	Part Number	Description
	10073-2200	PWB, FRONT PANEL
C1	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C2	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C3	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C4	M39014/02-1310	CAP . 1 UF 10\% 100V CER-R
C5	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C6	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C7	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C8	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C10	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C12	M39014/02-1310	CAP . 1 UF 10\% 100V CER-R
C14	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C15	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C19	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C22	M39014/02-1310	CAP . 1 LF 10\% 100V CER-R
C23	M39014/02-1310	CAP . 1 UF 10\% 100V CER-R
C24	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C25	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C26	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C27	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C29	M39014/01-1535	CAP .01UF 20\% 100V CER
C31	M39014/02-1310	CAP . IUF 10\% 100V CER-R
C32	CK05BX102M	CAP 1000PF 20\% 200V CER
C37	C26-0025-470	CAP 47UF 20\% 25V TANT
C38	C26-0050-479 CK05B 330 M	CAP 4.7UF 20\% 50V TANT CAP 33PF 20\% 200V CER
C39	CK05B $\times 330 \mathrm{M}$	CAP 33PF 20\% 200V CER
CR1	1N4454	DIODE 200mA 75 V SW
CR2	1 N4454	DIODE 200mA 75 V SW
CR3	1 N4454	DIODE 200mA 75V SW
CR4	1N4454	DIODE 200mA 75V SW
J2	J46-0013-030	HDR 30 PIN 0.100" DR SHRD
P1	10073-7050	RIBBON CABLE, 24 COND
P2	10073-7051	RIBBON CABLE, 40 COND
P3	10073-7053	RIBBON CABLE, 20 COND
R3 R14	R50-0010-472	RES, 10SIP, 4.7K, 2.0%, 9RES RES 220 K 5\% 1/4W CAR FILM
R15-R18	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R22	R51-0010-121	RES 10P SIP 1202% 5RES
R23	R51-0010-121	RES 10P SIP 120 2\% 5RES
R25	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R26	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R27	R65-0003-204	RES 200K 5\% 1/4W CAR FILM
R28	R65-0003-393	RES 39K 5\% 1/4W CAR FILM
R29	R-2232	RES,VAR,PCB 100K. 5 20\%

Table 7. Driver Board A13A2 Parts List (PL 10073-2200) (Cont.)

Ref. Desig.	Part Number	Description
R33 R34 R35 R36 R37 R38 R50 R52 R53 TP1 TP2 TP3 TP5 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 U21 U22 U23 U24 U25 U26 U27 U28 VR1 XU12 XU16 Y1	R65-0003-471 R65-0003-471 R65-0003-471 R65-0003-471 R65-0003-161 R50-0008-103 R65-0003-100 R65-0003-100 R65-0003-332 J-0392 $J-0387$ J-0390 $J-0389$ $175-0009-001$ $175-0009-001$ $175-0009-001$ $175-0009-001$ $175-0009-001$ $175-0009-001$ $175-0009-001$ $107-0013-001$ $107-0013-001$ $101-0000-202$ $101-0000-202$ $1 C-0347$ $107-0013-001$ $101-0000-156$ $101-000-156$ $10073-8302$ $105-0001-000$ $105-0000-244$ $105-0000-244$ $105-0000-244$ $101-0000-156$ $105-0000-074$ $107-0013-001$ $105-0001-000$ $101-0056-001$ $105-0000-027$ $102-0015-000$ $118-0006-001$ $1 N 5234 B$ $J 77-0008-007$ $J 77-0008-005$ $Y 15-0004-060$	RES 470 5\% 1/4W CAR FILM RES 160 5\% 1/4W CAR FILM RES, 8 SIP, 10K, 2.0\%, 7RES RES $105 \% 1 / 4 W$ CAR FILM RES $105 \% 1 / 4 W$ CAR FILM RES 3.3K 5\% 1/4W CAR FILM TP PWB BRN RA SIDE ACCESS TP PWB RED RA SIDE ACCESS TP PWB ORN RA SIDE ACCESS TP PWB GRN RA SIDE ACCESS IC NE594 DISPLAY DRIVER IC 74C373 PLASTIC CMOS IC 74C373 PLASTIC CMOS IC 4514 B PLASTIC CMOS IC 4514B PLASTIC CMOS IC 8035 MICRO 8-BIT IC 74C373 PLASTIC CMOS IC 4094B PLASTIC CMOS IC 4094B PLASTIC CMOS SOFTWARE KIT IC 4098B PLASTIC CMOS IC 74LS244 PLASTIC TTL IC 74LS244 PLASTIC TTL IC 74LS244 PLASTIC TTL IC 4094B PLASTIC CMOS IC 74LS74 PLASTICTTL IC 74C373 PLASTIC CMOS IC 4098B PLASTIC CMOS IC 74C02 PLASTIC CMOS IC 74LS27 PLASTIC TTL IC 7404 PLASTICTTL IC 74C14 PLASTIC CMOS DIODE 6.2V 5\% .5W ZENER SKT IC MACH 40 PIN SKTICMACH 24 PIN CRYSTAL, 6MHZ

8 HARRIS
RF COMMUNICATIONS

Figure 5. Driver Board A13A2 Component Location Diagram (10073-2200, Rev. G)
BI HARRIS
RF COMMUNICATIONS

COHARRIE

OU HARFIS
RF COMMUNIGATION

HARRIS
 RF COMMUNICATIONS

4. FRONT PANEL METER BOARD A13A3

4.1 General Description

Meter Board A13A3 contains the circuitry required to monitor selected RF and AF signals on the RF-590 front panel meter (M1). The following signals may be monitored via pushbutton front panel control.

- RF Signal strength - All modes
- AF Line Audio level - All modes
- ISB - LSB RF Signal strength
- ISB - LSB Line Audio Level

The four switches controlling these functions are spring loaded so that only one of them may be active at any time.

Additionally, other signal data relating to the following functions flow through this board to the following RF-590 front panel controls.

- Headphone Audio
- RF Gain
- Squelch
- Speaker ON/OFF

4.2 Interface Connections

Table 8 summarizes the A13A3 interface connections.
Table 8. A13A3 Interface Connections

Connector	Function
J 1 to/from A14	
$\mathrm{J} 1-1$	LSB Select
-2	LSB Meter - AGC
-3	RF Gain
-4	LSB Meter - Audio
-5	-15 V
-6	LSB Line Adjust
-7	Spare

80 HARRIS RF COMMUNICATIONS

Table 8. A13A3 Interface Connections (Cont.)

Connector	Function
$\mathrm{J1-8}$	+5 Vdc
-9	Ground
-10	
+15 Vdc	
J 2 to/from A5	
J2-1	Speaker ON/OFF
-2	USB Meter - Audio
-3	Squelch Wiper
-4	Key
-5	Spare
-6	Speaker Audio
-7	Audio Ground
-8	USB Meter - AGC
-9	Phone Audio
-10	USB Line Adjust
J3 to/from	
Front Panel	
J3-1	Spare
-2	Key
-3	Phone Audio
-4	Audio Ground
-5	Squelch Wiper
-6	Speaker ON/OFF
-7	Spare
-8	Speaker Audio
-9	Ground
-10	RF Gain
-11	+5 Vdc
-12	+15 Vdc
-13	Meter +
-14	Meter -

4.3 Circuit Description

4.3.1 Meter Control

RF signal strength and line audio level signals are normally supplied by AGC assembly A15A2 and IF/ Audio Assembly A15A1 respectively. S2 connects the RF signal to the meter when pressed, and S1 connects the line audio signal. If optional ISB Assembly A18 has not been installed, there will be no ISB RF signal strength or ISB Line audio signals present to be selected. Consequently, pressing either S3 or S 4 will result in a zero meter reading.

8 HARRIS
 RF COMMUNICATIONS

If the ISB option is installed; however, the RF (S1) and AF (S2) switches channel the USB components of the ISB signal to M1. The ISB LSB RF (S3) and ISB LSB AF (S4) switches route the LSB components of the ISB signal to the meter. Whenever an ISB switch (S3 or S4) is selected, +5 Vdc is switched on to the LSB select line ($\mathrm{J} 1-1$) which informs Control Board Assembly A14 that an ISB function has been selected.

4.3.2 Line Level Control

Line audio output level adjustments are provided on the A13A3 assembly. They are accessed through small front panel holes to the left of the meter (USB line audio) and to the right of the meter (ISB-LSB line audio). R1 adjusts USB adjustments under normal receiver operation, while R2 will control the LSB audio portion of the ISB signal if the A18 ISB option is installed. Either control will vary the 600 ohm line audio outputs level (available at RF-590 rear panel connector TB1 and J7) from approximately -16 dBm to +10 dBm.

The adjustment of R1 controls line audio level by varying the bias and consequently the on resistance of an FET in the A5A1 line audio amplifier circuit. The FET therefore acts as an electronic attenuator for the line level. (See subsection A5A1). R2 functions identically for the optional ISB Assembly A18.

4.3.3 Front Panel Control Signals

- RF GAIN

5 Vdc is applied to the top of the front panel RF GAIN control, and a portion is fed back via the wiper to Control Assembly A14 A/D converter. This signal is used to manually control the receiver gain.

- SQUELCH
+15 Vdc is fed through R4, which results in 5 Vdc at the top of the front panel SQUELCH CONTROL. The wiper arm returns a portion of this to act as a squelch threshold signal for squelch circuits on the A5A 1 assembly.
- HEADPHONES

Headphone Audio from the A5A1 assembly is passed through the A13A3 assembly to a front panel HEADPHONE CONNECTOR. Headphone volume is adjustable via the AF GAIN control.

- SPEAKER ON/OFF

The Front Panel SPEAKER ON/OFF switch applies 5 Vdc to the audio select circuit on the A5A1 assembly whenever the switch is pushed in. This signal then gates audio to the speaker.

OH HARRIS RF COMMUNICATIONS

4.3.4 Parts Lists and Schematic Diagram

Table 9 is the Front Panel Meter Board A13A3 parts list. Figures 7 and 8 are the Front Panel Meter Board A13A3 component location diagram and schematic diagram.

Table 9. Front Panel Meter Board A13A3 Parts List (PL 10073-2300)

Ref. Desig.	Part Number	Description
	$10073-2300$	PWB, METER
J1	$10073-2313$	SW DPDT 4SEC INTLOCKING
J2	$J-0870$	CONN, 10 PIN
J3	J46-0032-010	HDR 10 PIN 0.100" SR
R1	J46-0032-014	HDR 14 PN 0.100" SR
R2	R30-0001-103	RES, VAR, 10K 3/4W 20\%
R3	R30-0001-103	RES, VAR, 10K 3/4W 20\%
R4	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
	R65-0003-103	RES 10K 5\% 1/4W CAR FILM

TH HARRIS RF COMMUNICATIONS

Figure 7. Front Panel Meter Board A13A3 Component Location Diagram (10073-2300, Rev. D)
OU HARRIS
RF COMMUNICATION

OX HARRIS
 RF COMMUNICATIONS

5. ALPHANUMERIC DISPLAY ASSEMBLY A13A4

5.1 General Description

Alphanumeric Display Assembly A13A4 consists of a single vacuum fluorescent display which contains twenty fourteen segment (British flag) characters. The alpha display is used to provide indications of AGC, Mode, Bandwidth, and Dwell time in Scan Mode, Scan Group and BFO frequency. Additionally the alphanumeric display is used to prompt the operator for programming and scan related function selections. It is also used to provide fault indications, if any, at the completion of the BITE test.

5.2 Interface Connections

Table 10 lists the A13A4 interface connections.

Table 10. A13A4 Interface Connections

Connector	Description
J 1 to/from A13A2	
$\mathrm{J} 1-1$	a Segment
-2	b Segment
-3	c Segment
-4	d Segment
-5	m Segment
-6	n Segment
-7	e Segment
-8	f Segment
-9	J Segment
-10	k Segment
-11	g Segment
-12	h Segment
-13	Decimal Point
-14	Comma
-15	N/C
-16	G1 Digit
-17	p Segment
-18	r Segment
-19	G2 Digit
-20	G3 Digit
-21	G20 Digit
-22	G4 Digit
-23	G5 Digit
-24	G6 Digit
-25	G19 Digit
-26	G7 Digit

8 HARRIS RF COMMUNICATIONS

Table 10. A13A4 Interface Connections (Cont.)

Connector	Description
J1-27	G8 Digit
-28	G9 Digit
-29	G18 Digit
-30	G10 Digit
-31	G11 Digit
-32	G12 Digit
-33	G17 Digit
-34	G13 Digit
-35	G14 Digit
-36	N/C
-37	G16 Digit
-38	G15 Digit
-39	Filament
-40	Filament

5.3 Functional Description

The alphanumeric vacuum fluorescent display is very similar in principle to the vacuum tube. Front Panel Driver Board A13A2 provides ail required voltages and timing to properly drive the display. The 100732400 twenty character VF display requires a 4.7 Vac filament voltage and 35 Vdc grid and anode voltages. The grids (20 of them) are essentially character enable signals which are driven in multiplexed fashion, enabled one at a time as the segment data for that character is provided to the anode pins. The anode pins are inputs for the 14 segments plus dot and comma signals. Figure 9 shows the display's segment location. See paragraphs 3.1 and 3.3 .3 for additional details.

Figure 9. Alphanumeric Display Segment Location

HARRIS
 RF COMMUNICATIONS

5.3.1 Parts List and Schematic Diagram

Table 11 is the Alphanumeric Display A13A4 Assembly parts list. Figures 10 and 11 are the Alphanumeric Display A13A4 component location diagram and schematic diagram

Table 11. Alphanumeric Display Assembly A13A4 Parts List (PL 10073-2400)

Ref. Desig.	Part Number	Description
DS1	$10073-2400$ N50-0006-001 J46-0031-040	PWB, DISPLAY DSPL FLR VAC 14SEG 20-DIG J1

Hit HARRIS
RF COMMUNICATIONS

Figure 10. Alphanumeric Display Board A13A4 Component Location Diagram (10073-2400, Rev. B)

8 HARRIS

RF COMMUNICATIONS

Figure 11. Alphanumeric Display Board A13A4 Schematic Diagram (10073-2401, Rev. B)

H0 HARRIS RF COMMUNICATIONS

6. NUMERIC DISPLAY ASSEMBLY A13A5

6.1 General Description

Numeric Display Assembly A13A5 consists of a single vacuum fluorescent display which contains eight seven segment characters used for frequency display and two seven segment characters used for the channel display.

6.2 Interface Connections

Table 12 lists the A13A5 interface connections.

Table 12. A13A5 Interface Connections

Connector	Description
J1 to/from	
A13A2	
J1-1	G11 10 MHz Digit
-2	G10 1 MHz Digit
-3	G9 100 kHz Digit
-4	G3 1/2 Segments
-5	G7 1 kHz Digit
-6	G8 10 kHz Digit
-7	Filament
-8	Decimal Point
-9	G5 10 Hz Digit
-10	G6 100 Hz Digit
-11	N/C
-12	Comma
-13	G4 1 Hz Digit
-14	c Segment
-15	G2 CH10 Digit
-16	G1 CH1 Digit
-17	b Segment
-18	a Segment
-19	g Segment
-20	Filament
-21	Underline Segments
-22	d Segment
-23	e Segment
-24	f Segment

HARRIS
 RF COMMUNICATIONS

6.3 Functional Description

The numeric vacuum fluorescent display is very similar in principle to the vacuum tube. Front Panel Driver Board A13A2 provides all required voltages and timing signals to properly drive the display. The 10073-2500 VF display operates by using a 5.8 Vac filament voltage and 35 Vdc grid and anode voltages. The grids (ten of them) are character enable signals which are driven in a multiplexed fashion. The grids are enabled one at a time as the seven segment data plus underline, if required, are provided to the anode pins. Each digit is enabled for approximately 600 to 700 u seconds. Figure 12 shows the displays segment's location.

590-103
Figure 12. Numeric Display Segment Location

6.3.1 Parts List and Schematic Diagram

Table 13 is the Numeric Display Assembly A13A5 parts list. Figures 13 and 14 are the Numeric Display Assembly A13A5 component location diagram and schematic diagram.

Table 13. Numeric Display Assembly A13A5 Parts List (PL 10073-2500)

Ref. Desig.	Part Number	Description
DS1		
11	$10073-2500$ N50-0005-001 J46-0031-024	PWB, DISPLAY DSPL FLR VAC 7SEG 11-DIG HDR 24 PIN 0.100" RT ANG

OH HARRIS

Figure 13. Numeric Display Board A13A5 Component Location Diagram (10073-2500, Rev. B)

Of HARRIS
 RF COMMUNICATIONS

Figure 14. Numeric Display Board A13A5 Schematic Diagram (10073-2501, Rev. B)

8 HARRIS
 RF COMMUNICATIONS

7. CONVERTER ASSEMBLY A13A6

7.1 General Description

Converter Assembly A13A6 is a self contained dc to dc converter type power supply. It supplies anode and filament voltages to the A13A4 and A13A5 front panel vacuum flourescent displays from the available -15 Vdc supply. Anode voltage output is 35 Vdc at 100 mA and filament output voltage is 5.8 Vac at 200 mA .

The A13A6 assembly itself is a sealed unit to provide EMI protection. Input/output connections to the internal A13A6A1 PWB is via feedthrough capacitors.

7.2 Circuit Descriptions

The - 15 Vdc is applied to push/pull square wave oscillator Q 1 and Q 2 operating at approximately 15 kHz . T 1 is a saturating transformer used to provide feedback and two output voltages. One output is rectified by fullwave bridge CR2-CR5 and filtered by pi-network C2-L1-C3 to provide 35 Vdc at 100 mA for display anode power. The second output is filtered by L2, C5, T2, and C6 to provide 5.8 Vac at 200 mA for display filament power. A bias voltage of approximately 6 Vdc is also supplied to the filaments. This bias voltage originates on the Driver Board Assembly A13A2 and is applied via a center tap at T2.

7.2.1 Parts List and Schematic

Table 14 is the Converter Assembly A13A6 parts list. Figure 15 is the Converter Assembly A13A6 component location diagram. Table 15 is the Converter Board Assembly A13A6A1 parts list. Figure 16 is the Converter Board Assembly A13A6A1 component location diagram and figure 17 is the A13A6 and A13A6A1 schematic diagram.

Table 14. Converter Assembly A13A6 Parts List (PL 10073-2250)

Ref. Desig.	Part Number	Description
A13A6	$10073-2250$	CONVERTER ASSY
A13A6A1	$10073-2260$	PWB ASSY, CONVERTER
C1	$10073-7035$	CAP,FEED-THRU 100
C2	$10073-7035$	CAP,FEED-THRU 100
C3	$10073-7035$	CAP,FEED-THRU 100
C4	$10073-7035$	CAP,FEED-THRU 100
C5	$10073-7035$	CAP,FEED-THRU 100
E1	E58-0004-000	LUG SLDR RIGHT ANGLE

g HARRIS

Figure 15. Converter Assembly A13A6 Component Location Diagram (10073-2250, Rev. E)

8 HARRIS RF COMMUNICATIONS

Table 15. Converter Board Assembly A13A6A1 Parts List (PL 10073-2260)

Ref. Desig.	Part Number	
		Description
	$10073-2260$	PWB, CONVERTER
C1	M39014/02-1305	CAP .047UF 10\% 100V CER
C2	C26-0050-100	CAP 10UF 20\% 50V TANT
C3	C26-0050-100	CAP 10UF 20\% 50V TANT
C4	C18-0025-101	CAP 100UF 25V ELEC
C5	M39014/02-1318	CAP .33UF 10\% 50V CER-R
C6	M39014/02-1318	CAP .33UF 10\% 50V CER-R
C7	C26-0025-680	CAP 68UF 20\% 25V TANT
CR1	1N4007	DIODE 1A 1000V RECT GP
CR2	D22-0007-002	DIODE 1A 100V RECT GP
CR3	D22-0007-002	DIODE 1A 100V RECT GP
CR4	D22-0007-002	DIODE 1A 100V RECT GP
CR5	D22-0007-002	DIODE 1A 100V RECT GP
CR6	D22-0007-002	DIODE 1A 100V RECT GP
CR7	D22-0007-002	DIODE 1A 100V RECT GP
L1	MS90538-12	COIL 100UH 5\% FXD RF
L2	$10073-7029$	INDUCTOR, FILTER CHOKE
L3	$10073-7029$	INDUCTOR, FILTER CHOKE
Q1	2N5193	XSTR POWER PNP TO-205AA
Q2	2N5193	XSTR POWER PNP TO-205AA
R1	R65-0003-272	RES 2.7K 5\% 1/4W CAR FILM
R2	R65-0003-270	RES 27 5\% 1/4W CAR FILM
R3	R65-0003-101	RES 1005\% 1/4W CAR FILM
R4	R65-0003-223	RES 22K 5\% 1/4W CAR FILM
T1	10073-7027	TRANSFORMER, POWER
T2	10073-7028	TRANSFORMER, RF, FIXED

H HARRIS

Figure 16. Converter Board Assembly A13A6A1 Component Location Diagram (10073-2260, Rev. D)
RF COMMUNICATION

Figure 17. Converter Assembly A13A6 and

7 HARRIS RF COMMUNICATIONS

TABLE OF CONTENTS

LIST OF FIGURES

Page Figure
Reference Generator Assembly A12/Frequency Standard Assembly A21 Functional Block Diagram 6
40 MHz Outputs Adjustment
40 MHz Outputs Adjustment 6 6
A21 Frequency Standard Adjustment 12 (10073-4700) 13
Reference Generator Assembly A12 Schematic Diagram (10073-4701, Rev. H) .
Reference Generator Assembly A12 Schematic Diagram (10073-4701, Rev. H) 15 15
LIST OF TABLES
Page
Reference Generator A12 Interface Connection 2
Reference Generator Assembly A 12 Parts List (PL 10073-4700) 7

H HARRIS
 RF COMMUNICATIONS

1. GENERAL DESCRIPTION

Reference Generator Assembly A12 is a single phased locked loop synthesizer which locks to a highly stable frequency standard and derives the various reference frequencies required to accurately control the RF-590.

The frequency standard employed may be either an internal or external standard and may be a 1,5, or 10 MHz source. (A jumper connection on the A12 assembly must be configured to allow for the frequency of the standard chosen.)

Frequency Standard Assembly A21 supplied with the radio is a self contained, sealed unit which plugs directly into the A12 assembly via a nine pin connector. The following stability options are available.

- ± 1 part in 10^{6} per day, P/N 10073-6600, 5 MHz
- ± 1 part in 10^{8} per day, $\mathrm{P} / \mathrm{N} 0759-3906,1 \mathrm{MHz}$

Since the reference frequencies supplied by the A12 assembly are derived from the frequency standard used, they will have the same accuracy and stability as the standard. The following reference outputs are provided by the A12 assembly for RF-590 operation.

- $\quad 40 \mathrm{MHz}$ - to Secc rid Converter Assembly A3, 0 dBm
- 40 MHz - to PLL IV Assembly A9, 0 dBm
- 1 MHz - to BFO Synthesizer Assembly A11, TTL
- 800 kHz - to PLL II Assembly A7, TTL
- 800 kHz - to PLL III Assembly A8, TTL
- 800 kHz - to PLL V Assembly A10, TTL

Additionally, the RF-590 rear panel contains BNC type connector J6 allowing access to the buffered frequency standard output of $1 \mathrm{Vrms} / 50$ ohms. BNC connector J 5 provides a 50 ohm input for an external 1 Vrms frequency standard. Rear panel switch S1 (INT/EXT standard select) chooses the standard to be used.

2. INTERFACE CONNECTIONS

Table 1 details the A12 input/output connections and other relevant data.

fif HARRIS
 RF COMMUNICATIONS

Table 1. Reference Generator A12 Interface Connection

Connector	Function	Characteristics
$J 1$	Second LO Output	$40 \mathrm{MHz}, 0 \mathrm{dBm}, 50$ ohms
J2	40 MHz Reference	$40 \mathrm{MHz}, 0 \mathrm{dBm}, 50$ ohms
J3	External Standard Input	1 Vrms, 50 ohms
J4	Standard Output	1 Vrms, 50 ohms
J5	800 kHz Reference Output	TTL
J6	1 MHz Reference Output	TTL
J7-1	40 MHz Lock Detector Output	$0 \mathrm{Vdc}=\mathrm{PLL}$ Locked
J7-2	1 MHz BITE Output	$0 \mathrm{Vdc}=1 \mathrm{MHz} \mathrm{ok}$
J7-3	Key	
J7-4	800 kHz BITE Output	$0 \mathrm{Vdc}=800 \mathrm{kHz} \mathrm{ok}$
J7-5	+5 Volts Unregulated	200 mA
J7-6	+15 Volts	30 mA
J7-7	+24 Volts	10 mA
J7-8	Ground	
J8-1	A21 XTAL Oven Power	+24 (draws 100 mA only when $1 \times 10^{-8} \mathrm{ppm}$ A21 option is chosen)
J8-2	Key	
J8-3	A21 TCXO Power	+15V, 100 mA
J9-1	Frequency Standard A21 Output	0.5 Vrms, 1, 5, or 10 MHz
J9-2	Gnd	
J9-3	Gnd	
J9-4	Same as J8-1	
J9-5	Gnd	

80 HARRIS
 RF COMMUNICATIONS

Table 1. Reference Generator A12 Interface Connection (Cont.)

Connector	Function	
$J 9-6$	Same as J8-3	
J9-7	Spare	
J9-8	Spare	
$J 9-9$	Spare	

3. CIRCUIT DESCRIPTION

Voltage controlled crystal oscillator (VCXO) stage Q 11 free runs at 40 MHz and provides all the outputs listed in section 1 after the required buffering and/or frequency division. The VCXO acquires its stability by providing a 1 MHz IF to one port of phase comparator U 1 where phase comparison of the 1 MHz reference signal derived from the frequency standard occurs. Any difference in phase and/or frequency between these two signals produces an error signal by the phase comparator which causes the VCXO to tune in the direction which will reduce the error. In so doing, the VCXO frequency of 40 MHz acquires the stability and accuracy of the much lower frequency supplied by the frequency standard.

Note that many aspects of A12 operation are identical to the PLL description supplied in section 4 of this manual.

3.1 Frequency Standard Assembly A21

The frequency standard supplied with the RF-590 is a self contained, sealed unit and plugs directly into A12 connector J9. The following stability options are available.

- ± 1 part in 10^{6} per day, $\mathrm{P} / \mathrm{N} 10073-6600,5 \mathrm{MHz}$
- ± 1 part in 10^{8} per day, $\mathrm{P} / \mathrm{N} 0759-3906,1 \mathrm{MHz}$

The $1 \times 10^{-8} \mathrm{ppm}$ option is referred to as the high stability option, and it uses a crystal oven for greater temperature stability.

3.2 PLL Reference Generation

Phase comparator U1 obtains a 1.000000 MHz reference signal derived from either an internal or an external frequency standard whose frequency may be 1,5 , or 10 MHz . RF-590 rear panel INT/EXT standard select switch S1 chooses the desired source.

3.2.1 Internal Standard Select

When the standard select switch is in the INT position, +24 volts and +15 volts are applied via J8 and J 9 to Frequency Standard Assembly A21. (The +24 volt line draws no current unless the $1 \times 10^{-8} \mathrm{ppm}$ A21 option is employed. It feeds a spare pin on the $1 \times 10^{-6} \mathrm{ppm}$.)

3 HARRIS RF COMMUNICATIONS

The +15 volts power the A21 TCXO, and causes a 0.5 Vrms signal at the A21 frequency to appear at J9 (pin 1) RF output. This signal is applied to switch 02 , which is biased on by the +15 volts. This allows the internal standard signal to pass. Simultaneously, the +15 volts biases PIN diode CR1 on, which provides a low impedance path to ground for any signals that might be at the J3 external standard input. The signal present at the Q1-Q2 output is applied via buffer 08 through J 4 to the RF-590 rear panel at a $1 \mathrm{Vrms} / 50$ ohm level. It is also applied to limiter stage Q9-Q10 where it is converted to a TTL level to driver U7. U7 in turn drives divide by 1,5 , or 10 counter U 3 which produces a constant 1 MHz reference output to U 1 . The actual divisor ratio depends upon the choice of frequency standard chosen, and is determined by the locations of a jumper wire on the A12 assembly at the U3 output. This jumper is normally factory set.

3.2.2 External Standard Select

When the standard select is in the EXT position, the +24 and +15 volts are removed from the A21 assembly turning it off. Simultaneously, +15 volts is removed from Q 2 and CR1 turning them both off. Since the low impedance path to ground caused by CR1 is now a high impedance, signals at J3 from an external standard may pass unattenuated through 01 .

3.3 Phase Comparison Circuits

Phase comparator U1 compares the frequency standard derived 1 MHz reference signal to a VCO derived 1 MHz IF signal. When these two signals are equal in frequency and phase, U1 outputs at TP1 and TP2 are essentially 5 Vdc . This holds all transistors in the carge pump circuit ($\mathrm{O} 4, \mathrm{Q5}, \mathrm{Q}$) off. The dc voltage across C16 is constant, Q3 is conducting, and the control voltage developed across R13 at TP1 is constant. This holds the VCO frequency constant and equal to a multiple of the frequency standard.

Assume that the VCO frequency decreases due to temperature variations. This causes the 1 MHz IF frequency to decrease. Comparison at U1, pins 1 and 3, cause TP2 to pulse low, and in so doing, turn on Q6 since the Q 6 base-emitter circuit is now forward biased. (Q 5 remains off.) $\mathbf{Q 6}$ collector voltage drops and forward biases the $\mathbf{Q 4}$ base-emitter junction turning $\mathrm{Q4}$ on. $\mathbf{Q 4}$ now starts driving charge into C 16 raising the $\mathbf{C} 16$ potential. This in turn causes Q 3 to conduct harder, and the control voltage developed across R13 at TP1 increases. As the control voltage increases, the VCO frequency increases until the IF frequency is again equal to the reference frequency at the U1 inputs. At this point, TP2 switches to +5 Vdc and equilibrium is obtained. C16 holds this higher dc level to maintain the new higher VCO frequency.

Assume that the VCO frequency increases. This causes the 1 MHz IF frequency to decrease. Comparison at U1, pins 1 and 3, cause TP3 to pulse low, and in so doing, bias Q 5 into conduction. (O 6 and $\mathrm{Q4}$ remain off.) C16 now has a low impedance discharge path and charge is drawn out. This drops its voltage. This causes Q 3 to conduct less and less control voltage is developed across R13. As this voltage decreases, the VCO frequency decreases until the inputs at U1 are again equal in frequency/phase. At this point, TP3 switches to +5 Vdc and equilibrium is obtained. C16 holds this lower dc level to maintain the new lower VCO frequency.

3.4 VCXO Operation and Control

A charge pump circuit consisting of Q4, Q5, and Q6 in conjunction with filter network C16, C17, and R14 converts the two phase comparator outputs into an analog dc control voltage. Buffer amplifier Q3 applies this control voltage to varactor diodes CR7 and CR8 in the VCXO. As the capacitance of these diodes

5 HARRIS
 RF COMMUNICATIONS

change due to control voltage fluctuations, JFET oscillator stage $\mathbf{Q 1 1}$ shifts in frequency. This stage is crystal controlled by Y 1 and operates at a nominal frequency of 40.000000 MHz . VCXO output passes through amplifier stages $\mathrm{Q} 12, \mathrm{Q} 15$, and onto divide by 10 counter U . The 4 MHz from U 5 is applied to divide by 4 counter U 2 which applies a 1 MHz signal to the second port of phase comparator U 1 to complete the feedback loop.

3.5 A12 Reference Generator Outputs

The 40.000000 MHz from amplifier stage Q 12 is amplified to 0 dBm by Q 13 and applied through J 1 to Second Converter Assembly A3 mixer U1 where it functions as a second local oscillator (LO) for the receiver.

Q12 also feeds amplifier stage 014 which routes a $40.000000 \mathrm{MHz}, 0 \mathrm{dBm}$ signal to PLL IV Assembly A9 mixer U1 as an LO injection.

The 4 MHz from divider U5 is applied to divide by 5 counter U6. U6 TTL output at 800 kHz is fed through J 5 to function as a reference signal for phase comparators on the A7, A8, and A10 assemblies. U5 also feeds 4 MHz to divide by 4 counter U4. U4 TTL output at 1 MHz is fed through U6 to function as a reference signal for beat frequency oscillator (BFO) Assembly A11.

3.6 BITE Circuits

Q7 monitors the phase comparator (U1) outputs. If either output goes low and remains low for a period of time exceeding the time constant of R19-C19, one of the two diodes (CR5 or CR6) will conduct. This turns $\mathbf{Q 7}$ on and develops a +5 Vdc level indicating on out of lock condition. This immediately flags the BITE monitoring circuits on Control Assembly A14 to display a front panel fault light indicator.

The 800 kHz TTL signals from U6 feed detector stage Q18/Q19 and 1 MHz TTL signals from U4B feed detector stage Q16/Q17. Both these detectors will provide a 0 Vdc level when the 800 kHz and 1 MHz reference signals are present and a +5 Vdc level when they are not. These two signals are checked only when the receiver BITE self-test is actuated.

4. MAINTENANCE

The following adjustments should not be performed as a routine maintenance procedure, but only when a failure indicates a definite need. All tests are performed with all connections in normal contact unless otherwise specified.

4.1 $\quad 40 \mathrm{MHz}$ Outputs Adjustment

Perform the following procedure to adjust the 40 MHz outputs.

8 HARRIS
 RF COMMUNICATIONS

a. Connect equipment as shown in figure 1.

$590-97$

Figure 1. 40 MHz Outputs Adjustment
b. Set receiver controls to the following:

- Frequency to 10.000000 MHz
- Mode to USB
- INT/EXT Standard to INT
c. Monitoring J1, adjust T3 and then T4 for a peak indication at 40 MHz . (Approximately 0 dBm).
d. Monitor J2 and adjust T5 for a peak indication at 40 MHz . (Approximately 0 dBm). Test is complete. Reconnect J 1 and J 2 .

4.2 A21 Frequency Standard Adjustment

Perform the following procedure to adjust the A21 frequency standard.
a. Connect equipment as shown in figure 2. Set receiver INT/EXT Standard switch to INT.

590-98(1)

Figure 2. A21 Frequency Standard Adjustment

8 HARRIS
 RF COMMUNICATIONS

Abstract

NOTE

The receiver should be on for at least 15 minutes prior to this alignment.

b. Remove the screw on top of the A21 assembly to gain access to the frequency adjustment. Adjust this control (using a JFD-type nonmetallic alignment tool) to the frequency stamped on top of the assembly. (The accuracy of this setting is crucial to the VCO adjustment so perform this test carefully.)
c. Test is complete. Replace screw in A21 assembly.

4.3 VCO Adjustment

Perform the following procedure to adjust the VCO.
a. Make sure that the INT/EXT Standard switch is in the INT position and that the A21 frequency standard is properly adjusted on frequency.
b. Monitor TP1 with a digital voltmeter. Adjust C36 for 7.4 Vdc . Test is complete.

5. PARTS LIST

Table 2 is a comprehensive parts list of all replaceable components in Reference Generator Assembly A12. When ordering parts from the factory, include a full description of the part. Use figure 3, Reference Generator Assembly A12 Component Location Diagram to identify parts.

6. SCHEMATIC DIAGRAM

Figure 4 is the Reference Generator Assembly A12 schematic diagram.
Table 2. Reference Generator Assembly A12 Parts List (PL 10073-4700)

Ref. Desig.	Part Number	Description
	E70-0001-002	PWB
C1	INSL BEO TO-5 X.030 THK	
C2	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C3	M39014/02-1320	CAP .47UF 10\% 50V CER-R
C4	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C5	C26-0025-339	CAP 3.3UF 20\% 25V TANT
C6	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C7	C26-0025-339	CAP 3.3UF 20\% 25V TANT
C8	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C9	C26-0025-339	CAP 3.3UF 20\% 25V TANT
C10	M39014/01-1535	CAP .01UF 20\% 100V CER

0 HARRIS
 RF COMMUNICATIONS

Table 2. Reference Generator Assembly A12 Parts List (PL 10073-4700) (Cont.)

Ref. Desig.	Part Number	Description
C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36 C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47 C48 C49 C50 C51 C52 C53 C54 C55	M39014/02-1310 M39014/02-1310 C26-0035-100 M39014/02-1310 C26-0025-470 C26-0025-339 M39014/02-1310 M39014/02-1310 C25-0001-301 C26-0025-339 M39014/02-1310 CK05BX102M CK05BX102M M39014/02-1310 C26-0025-680 M39014/01-1535 CM04CD150J03 C85-0001-002 M39014/01-1535 M39014/01-1535 CM04ED470103 M39014/01-1535 M39014/02-1310 M39014/01-1535 M39014/02-1310 M39014/01-1535 CM04ED560J03 M39014/01-1535 M39014/01-1535 M39014/01-1535 M39014/01-1535 M39014/02-1310 M39014/01-1535 CM04ED560J03 M39014/01-1535 M39014/01-1535 M39014/02-1310	CAP .IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP 10UF 20\% 35V TANT CAP .IUF 10\% 100V CER-R CAP 47UF 20\% 25V TANT CAP 3.3UF 20\% 25V TANT CAP .IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP 1.OUF 20\% 20V TANT CAP 3.3UF 20\% 25V TANT CAP .IUF 10\% 100V CER-R CAP . IUF 10\% 100V CER-R CAP 1000PF 20\% 200V CER CAP 1000PF 20\% 200V CER CAP . IUF 10\% 100 V CER-R CAP 68UF 20\% 25V TANT CAP .01UF 20\% 100V CER CAP 15PF 5\% 500V MICA CAP 1.0-10PF 250 V CAP .O1UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP 47PF 5\% 500V MICA CAP .01UF 20\% 100V CER CAP .IUF 10\% 100V CER-R CAP .01UF 20\% 100V CER CAP .IUF 10\% 100V CER-R CAP .01UF 20\% 100V CER CAP 56PF 5\% 500V MICA CAP .O1UF 20\% 100V CER CAP .O1UF 20\% 100V CER CAP . O1UF 20\% 100V CER CAP .O1UF 20\% 100V CER CAP .IUF 10\% 100V CER-R CAP .01UF 20\% 100V CER CAP 56PF 5\% 500V MICA CAP . O1UF 20\% 100V CER CAP .01UF 20\% 100V CER CAP .IUF 10\% 100V CER-R

Hid HARRIS
 RF COMMUNICATIONS

Table 2. Reference Generator Assembly A12 Parts List (PL 10073-4700) (Cont.)

Ref. Desig.	Part Number	Description
C56	M39014/01-1535	CAP .01UF 20\% 100V CER
C57	M39014/01-1535	CAP . O1UF 20\% 100V CER
C58	M39014/01-1535	CAP .01UF 20\% 100V CER
C59	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C60	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C61	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C62	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C63	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C64	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C65	C26-0016-151	CAP 150UF 20\% 16V TANT
C66	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C67	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C68	C26-0025-100	CAP 10UF 20\% 25V TANT
C69	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C70	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C71	C26-0050-100	CAP 10UF 20\% 50V TANT
C72	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C73	M39014/02-1310	CAP .1UF 10\% 100V CER-R CAP 47UF 20\% 25V TANT
C74	C26-0025-470 M39014/02-1310	CAP .1UF 10\% 100V CER-R
C76	CK05BX102M	CAP 1000PF 20\% 200V CER
C77	M39014/01-1535	CAP .01UF 20\% 100V CER
C78	M39014/02-1310	CAP .IUF 10\% 100V CER-R
C79	CK05BX102M	CAP 1000PF 20\% 200V CER
C80	M39014/01-1535	CAP .01UF 20\% 100V CER
C81	M39014/01-1535	CAP . O1UF 20\% 100V CER
C82	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C83	M39014/02-1310 M39014/01-1535	CAP .01UF 20\% 100V CER
C84	M39014/01-1535	CAP .01UF 20\% 100V CER
C86	M39014/01-1535	CAP .O1UF 20\% 100V CER
C87	10121-4720	CAP, TEMP COMP, 10
CR1	D12-0007-001	DIODE 1W 75V PINSW
CR2	1N3064	DIODE 75mA 75V SW
CR3	1N3064	DIODE 75 mA 75 V SW
CR4	1N3064	DIODE 75mA 75V SW
CR5	1N3064	DIODE 75 mA 75 V SW
CR6	1N3064	DIODE 75mA 75 V SW
CR7	10073-7118	DIODE, SILICON, HYPERABRUPT
CR8	10073-7118 1N3064	$\text { DIODE } 75 \mathrm{~mA} 75 \mathrm{~V} \text { SW }$
CR9 CR10	1N3064 1N3064	DIODE 75 mA 75 V SW
$J 1$	J-0031	CONN SMB VERT PCB F
J2	J-0031	CONN SMB VERT PCB F
J3	J-0031	CONN SMB VERT PCB F

Table 2. Reference Generator Assembly A12 Parts List (PL 10073-4700) (Cont.)

Ref. Desig.	Part Number	Description
J4 J5 J6 J7 J8 J9 J10 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 Q1 Q2 Q3 Q4 Q5 Q5 Q6 Q7 Q8 Q9 Q9 Q10 Q11 Q12 Q13 Q14 Q14 Q15 Q16 Q17 Q18 Q18 Q19 R1 R2 R3 R4 R5 R5 R6	J-0031 J-0031 J-0031 J46-0032-008 J46-0022-003 10073-7045 J-0031 MS75085-7 MS75085-7 MS75084-12 MS75083-9 MS75084-12 MS75084-5 MS75084-12 MS75084-12 MS75085-7 MS75084-12 LO8-0001-001 L08-0001-001 LO8-0001-001 MS75084-3 2N3227 2N3227 Q05-0001-000 2N2907 2N2222 2N2222 2N2907 2N3866 Q-0153 2N2369 Q35-0003-000 Q35-0003-000 Q35-0003-000 Q35-0003-000 Q35-0003-000 2N2907 2N2222 2N2907 2N2222 R65-0003-471 R65-0003-471 R65-0003-472 R65-0003-101 R65-0003-272 R65-0003-620	CONN SMB VERT PCB F CONN SMB VERT PCB F CONN SMB VERT PCB F HDR 8 PIN 0.100 " SR HDR 3 PIN, SINGLE CONNECTOR, 9 PIN CONNECTOR SMB VERT PCB F COIL 100UH 10\% FXD RF COIL 100UH 10\% FXD RF COIL 10UH 10\% FXD RF COIL .56UH 10\% FXD RF COIL 10UH 10\% FXD RF COIL 2.7UH 10\% FXD RF COIL 10UH 10\% FXD RF COIL 10UH 10\% FXD RF COIL 100UH 10\% FXD RF COIL 10UH 10\% FXD RF CHOKE WB 50 MHZ CHOKE W B 50 MHZ CHOKE W B 50 MHZ COIL 1.8UH 10\% FXD RF XSTR SS/GP NPN TO-18 XSTR SS/GP NPN TO-18 XSTR JFET N-CH XSTR SS/GP PNP TO-18 XSTR SS/GP NPN TO-18 XSTR SS/GP NPN TO-18 XSTR SS/GP PNPTO-18 XSTR SS/RF NPN TO-39 XSTR SS/RF PN4258 XSTR SS/RF NPN XSTR U310 JFET HIGH GM XSTR SS/GP PNP TO-18 XSTR SS/GP NPN TO-18 XSTR SS/GP PNP TO-18 XSTR SS/GP NPN TO-18 RES 470 5\% 1/4W CAR FILM RES 470 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES 100 5\% 1/4W CAR FILM RES 2.7 K 5\% 1/4W CAR FILM RES 62 5\% 1/4W CAR FILM

8 HARRIS
 RF COMMUNICATIONS

Table 2. Reference Generator Assembly A12 Parts List (PL 10073-4700) (Cont.)

Ref. Desig.	Part Number	Description
R7	R65-0003-561	RES 560 5\% 1/4W CAR FILM
R8	R65-0003-152	RES 1.5K 5\% 1/4W CAR FILM
R9	R65-0003-272	RES $2.7 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM
R10	RN55D6810F	RES,681.0 1\% 1/8W MET FLM
R11	R65-0003-101	RES 1005% 1/4W CAR FILM
R12	RN55D6810F	RES,681.0 1\% 1/8W MET FLM
R13	R65-0003-272	RES $2.7 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM
R1.4	RN55D2211F	RES, 2210 1\% 1/8W MET FLM
R15	RN55D6810F	RES,681.0 1\% 1/8W MET FLM
R16	RN55D2002F	RES,20.0K 1\% 1/8W MET FLM
R17	RN55D3321F	
R18	RN55D6810F	$\text { RES } 4.7 \mathrm{~K} 5 \% \quad 1 / 4 W \text { CAR FILM }$
R19 R20	R65-0003-472	RES 4.7K 5\% 1/4W CAR FILM
R20	R65-0003-472	RES 4.7K 5\% 1/4W CAR FILM
R22	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R23	R65-0003-100	RES 105\% 1/4W CAR FILM
R24	R65-0003-201	RES 200 5\% 1/4W CAR FILM
R25	R65-0003-272	RES 2.7K 5\% 1/4W CAR FILM
R26	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R27	R65-0003-180	RES $185 \% 1 / 4 W$ CAR FILM
R28	R65-0003-470	RES 475% 1/4W CAR FILM
R29	R65-0003-472	RES 4.7K 5\% 1/4W CAR FILM
R30	R65-0003-562	RES 5.6K 5\% 1/4W CAR FILM
R31	R65-0003-241	RES 240 5\% 1/4W CAR FILM
R32	R65-0003-270	RES 275% 1/4W CAR FILM RES 3305\% 1/4W CAR FILM
R33	R65-0003-331	RES 330 5\% 1/4W CAR FILM RES 3.3K 5\% 1/4W CAR FILM
R34	R65-0003-332	$\text { RES } 3905 \% 1 / 4 W \text { CAR FILM }$
R35	R65-0003-391	RES RES $1.0 K 5 \%$
R37	R65-0003-201	RES $2005 \% 1 / 4 W$ CAR FILM
R38	R65-0003-201	RES 200 5\% 1/4W CAR FILM
R39	R65-0003-101	RES 100 5\% 1/4W CAR FILM
R40	R65-0003-201	RES 200 5\% 1/4W CAR FILM
R42	R65-0003-101	RES 1005% 1/4W CAR FILM
R44	R65-0003-201	RES 200 5\% 1/4W CAR FILM
R45	R65-0003-751	RES 7505% 1/4W CAR FILM
R46	R65-0003-751	RES 750 5\% 1/4W CAR FILM
R47	R65-0003-201	RES 200 5\% 1/4W CAR FILM
R49	R65-0003-101	RES 1005% 1/4W CAR FILM
R50	R65-0003-201	RES 2005% 1/4W CAR FILM
R51	R65-0003-101	RES $1005 \% 1 / 4 W$ CAR FILM
R52	R65-0003-101	RES $2005 \% 1 / 4 W$ CAR FILM
R53 R54	R65-0003-102	RES 1.OK 5\% 1/4W CAR FILM

8 HARRIS
 RF COMMUNICATIONS

Table 2. Reference Generator Assembly A12 Parts List (PL 10073-4700) (Cont.)

Ref. Desig.	Part Number	Description
R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 R65 R66 T1 T2 T3 T4 T5 TP1 TP2 TP3 TP4 TP5 U1 U2 U3 U4 U5 U6 U7 VR1 Y1	R65-0003-510 R65-0003-103 R65-0003-472 R65-0003-103 R65-0003-472 R65-0003-222 R65-0003-472 R65-0003-103 R65-0003-103 R65-0003-472 R65-0003-222 R65-0003-224 10073-7006 10073-7007 10073-7009 10073-7009 10073-7009 J-0071 J-0066 J-0069 J-0070 J-0068 IC-0430 105-0000-074 105-0000-090 105-0000-074 165-0004-001 105-0000-090 105-0000-000 111-0001-001 10073-4720	RES 51 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES 2.2K 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES 2.2K 5\% 1/4W CAR FILM RES 220K 5\% 1/4W CAR FILM TRANSFORMER, RF, FIXED TRANSFORMER, RF, FIXED TRANSFORMER, RF, VARIABLE TRANSFORMER, RF, VARIABLE TRANSFORMER, RF, VARIABLE TP PWB BRN TOP ACCS . 080° TP PWB RED TOP ACCS .080" TP PWB ORN TOP ACCS .080" TP PWB YEL TOP ACCS .080" TP PWB GRN TOP ACCS .080" IC MC4044 CERAMIC CMOS IC 74LS74 PLASTIC TTL IC 74LS90 PLASTIC TTL IC 74LS74 PLASTIC TTL IC 12013 PLASTIC ECL IC 74LS90 PLASTIC TTL IC 74LS00 PLASTIC TTL IC VR 7805 + 5V 1.5A 4\% CRYSTAL, 40 MHZ

Figure 3. Reference Generator Assembly A12 Component Location Diagram (10073-4700, Rev. E)
17 HARRIS
RF COMMUNICATIONS

note unless otherwise specifito:
 3. ALL CAPACITOR VALUES ARE TN MC COOT ARADS 5. OPTIONAL JUMEERING REOUTED: E. ALL IMOUCTOR VALUES ARE 'N MICROHENRIES.

munco ant	n.
$\sqrt[9]{9}$	
$1 \sqrt[12]{4}_{1788}{ }^{11}$	

80 MARRIS
RF COMMUNICATIONS

HARRIS
 RF COMMUNICATIONS

TABLE OF CONTENTS

Paragraph Page
1 General Description 1
2 Interface Connections1
3 Functional Description 6
3.1 CPU and Interface 6
3.2 Reset and Trap 6
3.3 Memory 7
3.4 Parallel Input/Output 7
$3.5 \quad$ Serial I/O 8
3.6 Analog I/O 8
4 Bandwidth Selection 9
5 Maintenance 10
$5.1 \quad$ Alignment 10
5.2 Troubleshooting 10
5.2.1 CPU 10
5.2.2 Trap and Reset Circuits 11
5.2.3 Device Selection 11
5.2.4 Memory Circuits 11
5.2.5 Real Time Clock 12
5.2.6 Serial I/O 12
$5.3 \quad$ Parallel I/O 13
5.4 Analog I/O 13
5.4.1 Analog Inputs 13
5.4.2 Analog Outputs 14
$5.5 \quad$ Faults Detected Through BITE 14
$6 \quad$ Parts List 14
7 Schematic Diagram 14
LIST OF FIGURES
Figure Page
Control Board Assembly A14 Functional Block Diagram
1 Control Board Assembly A14 Component Location Diagram (10073-2800) 19
2 Control Board Assembly A14 Schematic Diagram (10073-2801, Rev. K) 21
LIST OF TABLES
Table age
1 trol Board Assembly A14 Interface Summary 1
2 83
4 Operational Inputs for CPU 10567Typical Filter Complement9
Operational Outputs for CPU 11
Significant Serial Data Transmission Circuits 127
8 Fault Areas on Control Board A14 14Significant Analog Input Circuits13
9 Control Board Assembly A14 Parts List (PL 10073-2800) 15
RD HARRIS
RF COMMUNICATIONS

8 HARRIS RF COMMUNICATIONS

1. GENERAL DESCRIPTION

CPU PWB A14 contains the 8085A CPU and associated peripheral circuits, serial data transmission circuits, parallel I/O circuits, and analog-to-digital as well as digital-to-analog converter circuitry. Functioning as the control element of the RF-590, this assembly is responsible for accepting input from the front panel and receiver assemblies as well as generating the digital signals necessary to control the receiver. Software contained within the three, 4 K byte EPROMs is executed to supervise, control, and in the BITE process, test the display, control, and radio circuitry. Random access read/write memory (RAM) is used for temporary storage by the software program and for battery backed storage of receiver setups, programmed channels, and channel groups.

2. INTERFACE CONNECTIONS

All Control PWB interface connections are shown in table 1 and schematic diagram.
Table 1. Control Board Assembly A14 Interface Summary

Connector	Function	To	From
A14J1-1	N/C	-	-
-2	Index Key	-	-
-3	$+5 V$	-	A15J3-9
-4	$+5 V$	-	A15J3-21
A14J2-1	Remote Out 1	J7-1	-
-2	Serial Strobe 2	J7-20	-
-3	Gnd	J7-2	-
-4	N/C	-	-
-5	Scan Step	J7-22	-
-6	Remote Out 2	J7-4	-
-7	Remote Out 0	J7-23	-
-8	Serial Strobe 1	J7-24	-
-9	Stop Scan	-	-
-10	Serial Clock	J7-25	J7-7
-11	N/C	-	-
-12	Serial Data	J7-16	A19J1-1
-13	Ext. Mute	-	A19J1-2
-14	Fault	-	A19J1-3
A14J3-1	Noise Bank	-	-
-2	Filter Id	-	-
-3	Overload	A19J1-5	
-4	Conv. Id		
-5	Osc. Enable	Index Key	

HA HARRIS
 RF COMMUNICATIONS

Table 1. Control Board Assembly A14 Interface Summary (Cont.)

Connector	Function	To	From
$\begin{array}{r} \text { A14J3-7 } \\ -8 \\ -9 \\ -10 \end{array}$	Ext. Mute Enable . Serial Data Serial Clock	A19J1-7 A19J1-8 A19J1-9 A19.11-10	$-$
$\begin{array}{r} \text { A14J4-1 } \\ -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ -7 \\ -8 \\ -9 \\ -10 \end{array}$	N/C Int. Mute Det. IF Input Det. Line Audio AGC Line Audio Adj. Ext. Mute Index Key ISB Audio Meter ISB AGC Meter	A18J1-9 - - - A18J1-5 A18J1-4	$\begin{aligned} & - \\ & - \\ & \text { A18J1-8 } \\ & \text { A18J1-7 } \\ & \text { A18J1-6 } \\ & - \\ & - \\ & - \\ & \text { A18J1-2 } \\ & \text { A18J1-1 } \end{aligned}$
$\begin{array}{r} \text { A15J5-1 } \\ -2 \\ -3 \\ 4 \\ -5 \\ -6 \\ -7 \\ -8 \\ -9 \\ -10 \\ -11 \\ -12 \\ -13 \\ -14 \end{array}$	N/C A3 Det. A2 Det. A1 Ext. Mute A1 Relay Control A1 Relay Test A1 BITE Osc. Enab. A1 Ant. Overload A1 BITE Det. Out A6 PLL I Lock Det A9 PLL IV Lock Det A12 800 kHz Det A12 1 MHz Det A12 40 MHz PLL Lock Det	- - A16A3J3-1 A16A3J3-4 A16A3J3-5 A16A3J3-6 - - - - - -	A16A2J2-3 A16A2J2-4 - - - - A16A3J3-7 A16A3J3-8 A16A3J1-1 A16A3J1-3 A16A3J1-4 A16A3J1-5 A16A3J1-6
$\begin{array}{r} \text { A14J6-1 } \\ -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ -7 \\ -7 \\ -8 \end{array}$	Serial Data Serial Clock Index Key Serial Check Enable PLL II Lock Det Gnd N/C	A7J1-1 A7J1-2 A7J1-5 A7J1-7	

80 HARRIS
 RF COMMUNICATIONS

Table 1. Control Board Assembly A14 Interface Summary (Cont.)

Connector	Function	To	From
$\begin{array}{r} \text { A14J7-1 } \\ -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ -7 \\ -8 \\ -9 \\ -10 \end{array}$	LSB Select ISB AGC Meter RF Gain ISB Audio -15V LSB Audio Adj. N/C +5 V Ref. Gnd $+15 \mathrm{~V}$	A13A3J1-2 A13A3J1-4 A13A3J1-5 - - A13A3J1-8 A13A3J1-9 A13A3J1-10	A13A3J1-1 A13A3J1-3 - A13A3J1-6 - - -
A14J8-1 $\begin{aligned} & -2 \\ & -3 \\ & -4 \\ & -5 \\ & -6 \\ & -7 \\ & -8 \end{aligned}$	```BITE P/S N/C +15V -15V Index Key +8.5V Gnd Gnd```	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	A15J3-22 A15J3-23 A15J3-11 A15J3-12 A15J3-25 A15J3-13
A14J9-1 $\begin{aligned} & -2 \\ & -3 \\ & -4 \\ & -5 \\ & -6 \\ & -7 \\ & -8 \end{aligned}$	N/C N/C D3 D0 D2 Index Key D1 Gnd	- - A4J5-9 A4J5-8 A4J5-7 - A4J5-5 A4J5-4	
A14J10-1 -2 -3 -4 -5 -6 -7 -7	Serial Data Serial Clock Index Key Serial Check Enable PLL III Lock Det Gnd N/C	A8J4-1 A8J4. 2 - A8J4-5 A8J4-7	- A8J4-4 A8J4-6
$\begin{array}{r} \text { A14J11-1 } \\ -2 \\ -3 \end{array}$	Twhl Int Serial Data Twhl Direction	A13A2J1-2	A13A2J1-1 A13A2J1-3

Table 1. Control Board Assembly A14 Interface Summary (Cont.)

Connector	Function	To	From
$\begin{array}{r} \text { A14J11-4 } \\ -5 \\ -6 \\ -7 \\ -8 \\ -9 \\ -10 \\ -11 \\ -12 \\ -13 \\ -14 \\ -15 \\ -16 \\ -17 \\ -18 \\ -19 \\ -20 \end{array}$	Serial Clock Twhl Reset -15V $+5 \mathrm{~V}$ BITE P/S PB3 Kybd Strobe PB2 Fault PB1 Display Strobe PBO Reset N/C Gnd $+8.5 \mathrm{~V}$ Gnd	A13A2J1-4 A13A2J1-5 A13A2J1-6 A13A2J1-7 A13A2J1-8 A13A2J1-9 A13A2J1-10 A13A2J1-11 A13A2J1-13 A13A2J1-14 A13A2J1-15 A13A2J1-16 A13A2J1-18 A13A2J1-19 A13A2J1-20	- - - - - - A13A2J1-12
$\begin{array}{r} \text { A14J12-1 } \\ -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ -7 \\ -7 \end{array}$	Serial Data Serial Clock Index Key Serial Check Enable PLL V Lock Det Gnd N/C	A10.1-1 A10J1-2 - - A10J1-5 - A10J1-7 -	$-$ - A10J1-4 A10J1-6
$\begin{array}{r} \text { A14J13-1 } \\ -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ -7 \\ -8 \\ -9 \\ -10 \\ -11 \\ -12 \\ -13 \end{array}$	Gnd RF Gain 0-10V Data AGC AGC Off C Audio Select Int. Mute B Audio Select AGC Fast A Audio Select AGC Medium Ext. Mute Line Audio Line Audio Gnd	A5J6-1 A5J6-2 - A5J6-4 A5J6-5 A5J6-6 A5J6-7 A5J6-8 A5J6-9 A5J6-10 A5J6-11 - -	

80 HARRIS
 RF COMMUNICATIONS

Table 1. Control Board Assembly A14 Interface Summary (Cont.)

Connector	Function	To	From
$\begin{array}{r} \text { A14J13-14 } \\ -15 \\ -16 \end{array}$	Line Audio Det Out IF Input Det Second IF AGC	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \text { A5J6-14 } \\ & \text { A5J6-15 } \\ & \text { A5J6-16 } \end{aligned}$
$\begin{array}{r} \text { A14J14-1 } \\ -2 \\ -3 \\ -4 \\ -5 \\ 6 \\ -7 \\ -8 \end{array}$	Serial Data Serial Clock Index Key Serial Check 1 Enable BFO Lock Detect Gnd BFO On/Off	A11J4-1 A11J4-2 - - A11J4-5 - A11J4-7 A11J4-8	- - A11J4-4 A11J4-6
A14J15-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28	$\begin{aligned} & +8.5 \mathrm{~V} \\ & +8.5 \mathrm{~V} \end{aligned}$ Reset Out HOLD Line Audio HLDA Line Audio Gnd CPU Clk Out $+15 \mathrm{~V}$ Gnd Ready -15V RST 5.5 $10 / \bar{M}$ INTR S1 $\overline{W R}$ RD INTA ALE N/C N/C ADO N/C AD1 A15 AD2 A14	A17J1-1 A17J1-2 A17J1-3 - A17J1-5 A17J1-6 A17J1-7 A17J1-8 A17J1-9 A17J1-10 - A17J1-12 A17J1-14 - A17J1-16 A17J1-17 A17J1-18 A17J1-19 A17J1-20 - - A17J2-3 A17J2-5 A17J2-6 A17J2-7 A17J2-8	

0 HARRIS
 RF COMMUNICATIONS

Table 1. Control Board Assembly A14 Interface Summary (Cont.)

Control	Function	To	From
A14J15-29	AD3	A17J2-9	Bi direc
-30	A13	A17J2-10	-
-31	AD4	A17J2-11	Bi direc
-32	A12	A17J2-12	-
-33	AD5	A17J2-13	Bi direc
-34	A11	A17J2-14	-
-35	AD6	A17J2-15	Bi direc
-36	A10	A17J2-16	Bi direc
-37	AD7	A17J2-17	-
-38	A9	A17J2-18	-
-39	Gnd	A17J2-19	-
-40	A8	A17J2-20	

3. FUNCTIONAL DESCRIPTION

$3.1 \quad$ CPU and Interface

The 8085A microprocessor (U1) executes the application program. The 6.0 MHz frequency of crystal Y 1 is divided by two with in U 1 to yield the 3.0 MHz processor timing (333 nanosecond cycle time). The high order address bits of the CPU are inputs to address decoder U2, producing one of ten, active low chip selects to peripheral circuits. The multiplexed low address/data (AD) bus from U1 is input to low address latch U3 and bidirectional buffer U4. The control lines $\overline{R D}$ and $\overline{W R}$ are buffered by two gates of U23, with highest address line A15 and interrupt lines gated through U22 to control direction of U4. The $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ signals are combined with several of the enable outputs of U2 through U24 to produce chip selects for several devices. The major outputs of the microprocessor are also run to connector J 15 for access to the installed remote; with R22, R23, R24, and R37 holding the lines at their proper logic levels. R26 and R36 act as pullup termination to the address and data busses, respectively. The high active interrupt lines of the CPU are dedicated as follows.

- RST 7.5 uses the real-time clock
- RST 6.5 handles the tune knob encoder interrupt
- RST 5.5 is used by the remote control option

3.2 Reset and Trap

When the receiver power is turned on, the RC network (formed by R10 and C26) holds the processor RESET IN input low for about 100 milliseconds. This allows the power supplies time to stabilize before the

80 HARRIS
 RF COMMUNICATIONS

CPU starts running. Diode CR4 and $\mathbf{Q 2}$ detect a falling +5 V supply and pull the $\overline{\text { RESETIN }}$ input low to avoid spurious operation on receiver power down or power loss. At such times, the chip select to CMOS RAM U8 is disabled by FET 05, before the RAM enters its battery-backed condition.

During normal program execution, the microprocessor SOD output sends a low active pulse to the retriggerable one-shot U20 every millisecond. If the CPU is so affected by noise on the busses or some other failure that it fails to do this, the one-shot will time out and restart the microprocessor through the 8085A TRAP input. Components C20 and R9 set this one-shot timeout to 50 milliseconds. The one-shot is also reset on powerup.

3.3 Memory

The firmware program is stored in the three 27324 K byte EPROMS U5, U6, and U19. The program steps and data contained in these devices are accessed by the chip selects from U2 to each EPROM, gated onto the data bus with an output enable from the RD signal.

The information stored in the EPROMS is part of the RF-590 software and cannot be altered by the customer.

CAUPION

EPROMs are ultraviolet erasable over extended periods of exposure to fluorescent light or sunlight which can erase the memory information. Do not remove the opaque protective shield on these devices.

The 8155 circuit (U7) contains 256 bytes of RAM which are used for temporary storage by the software program. This device also contains a programmable timer which is conditioned to output a 1 kHz square wave to the RST 7.5 interrupt input of the CPU. This signal is the real time clock which is used to time and coordinate many RF-590 processes.

CAUTION

Do not short out the memory backup battery terminals.
This could result in severe circuit damage.
The 6516 2K byte static CMOS RAM (U8) contains the channel storage. A fully charged battery BT1 in the backup power supply should maintain channel storage for one month. in normal receiver operation, the trickle charge circuit will recharge a dead battery in 24 hours. Terminals E1-E2 left unjumpered, isolate the battery from the board circuitry for prolonged storage without maintaining channel memory to prevent battery discharge. However, E1 and E2 must be connected prior to operating the receiver to provide the battery backup provision, and to avoid damage to U8.

3.4 Parallel Input/Output

The 8155 (U7) provides 22 lines of parallel $1 ; O$, one eight-bit output port, another six-bit output port, and the eight-bit input port. The $8255 \mathrm{I} ; \mathrm{O}$ device (U9) provides another 24 lines, configured as two eight-bit input ports and one, eight-bit output port. Both of these circuits provide a means of monitoring as well as controlling signal lines from both the receiver and front panel sections of the RF-590.

80 HARRIS
 RF COMMUNICATIONS

The modules associated with these parallel ports are shown in table 2.
Table 2. Control Board Port-to-Module Correlation

Port	Associated Modules
U7 port A:	Rear paneI, BFO, PLL III, PLL IV
U7 port B:	IF/Audio, BFO assemblies
U7 port C:	IF filter assembly
U9 port A:	Rear panel and input assemblies
U9 port B:	Reference generator and in- put assemblies, PLL I, PLL IV, preselector option
U9 port C:	Front panel, PLL II, Meter

Additionally, DIP switch S 2 is read by the processor through buffer U21 to determine the filter types used in the particular receiver (see section 4.0).

3.5 Serial I/O

Control Board A14 sends most of its control signals out as serial data. The serial data transmission circuit consists of U16, U17, and U18. Dual flip-flop U16 divides the processor output clock by four and clocks U 18 and U 17 , producing the synchronous 750 kHz serial clock signal sent throughout the receiver. Parallel data written to U 17 is shifted out onto the serial data line (high order bit first), while U18 counts eight bits transmitted before clearing U 16 and ending the serial transmission. The address then written to decoder U14 produces a 1-of-16, high-active strobe to the module which must use the newly transmitted serial data.

3.6 Analog I/O

A/D converter (U10) handles analog inputs. Most inputs come from BITE circuits. One input comes from the RF gain potentiometer on the front panel, which in local mode is sampled every 50 milliseconds. The result is sent serially to the D/A converter made up of U11, R28, and the low pass U13 buffer. This two step process is done to enable full control of RF gain through the optional remote control as well as the front panel control. The U13 output should track local rotation of the RF gain potentiometer over the range of 0 to 9 volts. A reference voltage of +5 volts is provided to the A / D and D / A components from regulator VR1. Dual flip-flop U15 divides the CPU 3 MHz clock by four for converter U10, whose end-ofconversion output is output to an input port of U9.

OH HARRIS
 RF COMMUNICATIONS

4. BANDWIDTH SELECTION

The RF-590 Receiver can support a variety of IF filters (with several bandwidth and configuration options available). For CW, AM, and sideband modes, several bandwidths may be scrolled through from the front panel depending on customer ordered setup. In order to support the many combinations possible, the selected option is indicated to the microprocessor by switch S2 on Control PWB A14. Thirty-two combinations are presently supported, and the one used is indicated by the setting of the five switch sections S2-4 through S2-8. The last three IF filter board positions are used for filter combinations for AM, CW, or FSK modes and may be empty in a given application. Switch positions S2-1 through S2-3 on the A14 PWB are used to indicate such a condition. When the switch is OPEN, it indicates a filter present and when it is CLOSED, it shows the slot is empty.

Table 3 lists a typical filter complement for the RF-590.
Table 3. Typical Filter Complement

Mode	IF Bandwidths
LSB	2.8 kHz
USB	2.8 kHz
CW	0.3 kHz
CW	1.0 kHz
AM	3.2 kHz
AM	6.8 kHz
AM	16.0 kHz
FM	16.0 kHz

This setup uses configuration number 30, and leaves the last IF BW slot empty. The configuration number is expressed as a binary number with OPEN switch sections representing bit = 1 . Therefore,

Configuration $30=11110$ binary (S2-4 through 8)

Final filter slot empty, S2-1 CLOSED

Result:

S2-1	CLOSED
S2-2, S2-3	OPEN
S2-4 through S2-7	OPEN
S2-8	CLOSED

8 HARRIS
 RF COMMUNICATIONS

The configuration for a given receiver is factory set, and should not have to be altered by the customer. If S 2 is to be replaced, its pattern should be recorded and the replacement set similarly after installation.

5. MAINTENANCE

5.1 Alignment

Control PWB Assembly A1.4 requires no adjustment for proper operation.

$5.2 \quad$ Troubleshooting

Although most of the circuitry on this assembly is controlled directly or indirectly by the microprocessor, a practice of standard digital troubleshooting methods will isolate most faults to the component level. A logic HIGH is the level between 3 and 5 volts, and a proper logic LOW typically is between 0 and 1 volt. The circuit area involved in minor faults can typically be determined by BITE fault codes, or by using paragraph 3, Functional Description in this section. More general or major failures are best handled by proceeding in order through the checks outlined below.

5.2.1 CPU

If the microprocessor is running, it is capable of debugging several cirucits on the A14 PWB by itself. However, it must first be determined if the 8085A is operating.

These inputs must be present in order for the device to run. Table 4 lists the operational inputs for the CPU.

Table 4. Operational Inputs for CPU

Pin	Signal
$U 1-1,2$	Crystal inputs - 6 MHz
$\cup 1-36$	Reset input - HIGH
$U 1-6$	Trap input - LOW
$U 1-35$	Ready - HIGH
$U 1-39$	Hold - LOW

A14 PWB +5 V supply should be between +4.75 and +5.1 volts. Table 5 lists the CPU outputs that should be present.

8 HARRIS
 RF COMMUNICATIONS

Table 5. Operational Outputs for CPU

Pin	Signal
U1-37	Clock out - 3 MHz square wave
U1-3	Reset out - LOW
U1-31	Write - active low pulses
U1-32	Read - active low pulses
U1-30	Address latch enable - active high pulses SOD - active low pulses at 1 millisecond intervals

When the CPU is running and executing the application software, its outputs will only be active a portion of each millisecond. The rest of the time it will be halted, waiting for a real time clock interrupt from U7.

5.2.2 Trap and Reset Circuits

The trap circuit is provided to restart the CPU in the software if the device loses synchronization due to high noise levels on its busses. One-shot U20 is retriggered before timeout from U1, pin 4, the SOD output. The software will generate a low active pulse every millisecond if it is executing properly and if it gets the real time clock interrupt. Low voltage on the +5 supply to this board will cause a reset of the processor due to the reset circuit Q2-Q4.

5.2.3 Device Selection

Address decoder U2 aids the access of devices through the data bus by outputting low active chip enable signals corresponding to the address on the high order bits of the CPU. During normal operation, the enables from U2 should be seen on pin 18 of U5, U6, U8, and U19, as well as U7-8. The select on U9-6 should be active immediately following changes in the frequency entered through keyboard or tune knob. Active high selection pulses on A/D converter U10 are visible at least every 50 milliseconds in local receiver operation.

5.2.4 Memory Circuits

It can be very difficult to troubleshoot inemory problems if the 8085A is not operating. If the CPU is running, it can find some problems itself. If the BITE routine indicates a PROM checksum fault, the fact that it is running indicates that the data bus buffers are operating and the PROMs are accessed. However, invalid data in these devices would require replacement of PROMs U5, U6, and U19.

8 HARRIS
 RF COMMUNICATIONS

If the BITE routine indicates a CMOS RAM fault, check that the enable pulse is getting to RAM U8 and check the voltage on U8-24. FET 05 is driven by an enable from U 2 as a switch to select U8. The chip enable should put Q5's gate at 8.5 Vdc to turn on the switch. The CMOS RAM is not connected directly to the +5 volt supply and E1-E2 must be jumpered to avoid damaging the RAM when the power is turned on.

5.2.5 Real Time Clock

As mentioned before, the 1 kHz square wave output from 8155 (U7) is used to interrupt the CPU to synchronize and time many RF-590 processes including the processor reset of the TRAP one-shot circuit U20. If this digital clock is not seen at U1-7, it should be checked at U7-6. The 3 MHz input to $\mathrm{U} 7-3$ from U1-37 should also be present. Any improper real time clock operation can be traced to U1, U7, or their interconnection.

5.2.6 Serial I/O

Control PWB A14 communicates with the display control board through its serial output circuit (U14, U16, U17, and U18). If this circuit fails the display will light up but will never change from its power up lamp test.

When the control board is operating normally, it will attempt to update the complete display once every second. Every second there will be a burst of 64 bytes to the display control board (two bytes of serial data sent every millisecond for a 32 millisecond total duration). There will be a strobe pulse (following every two bytes) to the display control board from U14-5.

The BITE routine tests the serial output circuit by sending a test pattern to four PLLs and reading back a test bit from each. If it can set (high) and reset (low) all four test bits, it assumes that the serial output circuit on the A14 PWB is operating. If any one test bit cannot be set and reset, it assumes a problem with that PLL.

Signals of interest in the serial data transmission circuit are listed in table 6.
Table 6. Significant Serial Data Transmission Circuits

Component	Function
U16-3	Clock in -3 MHz, square wave
U16-1, 13	Serial clock enable - High while data shifting out, 11 microseconds
U15-5, 11	1.5 MHz , square wave
U16-8,9	750 kHz , square waves, opposite polarity
U17,18-1	Serial port enable, narrow low active pulse
U17-9	Serial data

8 HARRIS
 RF COMMUNICATIONS

Table 6. Significant Serial Data Transmission Circuits (Cont.)

Component	Function
U16-8	Serial clock
U14-5	Display control board strobe, 30 narrow high active pulses every second

5.3 Paraliel I/O

ParalleI I/O is centralized through the ports on U7 and U9. If there is a BITE or operational problem concerning the modules (listed above) that are controlled by the lines from these parallel circuits, but the module in question is not at fault, port failure may be indicated. Improper operation of front panel scanned keypad, A/D converter output U10-13, or tune knob may be caused by defective U9.

5.4 Analog I/O

5.4.1 Analog Inputs

If not in remote or test, the control board tries to update the RF gain every 50 milliseconds, using A / D converter U10. Starting the conversion consists of two writes to U10, narrow high-active pulses on U10-16. Ten microseconds later the end of conversion (EOC) line will go low. It will stay low for 100 microseconds and after it goes high again there will be one narrow high active pulse on U10-21. The above is true for all the other analog inputs sampled during the execution of BITE. Signals of interest in the analog input circuit are listed in table 7.

Table 7. Significant Analog Input Circuits

Component	Function
U15-3	Clock in -3 MHz , square wave
U15-5, 11	1.5 MHz
U15-9	Clock out -750 kHz , square wave
U10-22	Clock in -750 kHz , square wave
U10-16,32	Start conversion. Two narrow high going pulses, every 50 milliseconds
U10-13	End of conversion. 85 microseconds low, every 50 milliseconds U10-21
U10-15, 18	Output enable narrow high going pulse, 50 milliseconds Multiplexer out, comparator in

8 HARRIS
 RF COMMUNICATIONS

5.4.2 Analog Outputs

During normal receiver operation, the D/A converter will track the RF gain potentiometer. U11 is a serial in/parallel out shift register. When the A/D finds a changed value for the RF gain, the digital value will be shifted into U11. The resulting bit pattern on the resistor network will cause R28, pin 16, output to track the RF gain potentiometer from $0-5$ volts. U13 buffers and filters this voltage and its output will vary from 0-9 volts.

5.5 Faults Detected Through BITE

The four fault areas on A14 detectable through BITE are listed in table 8.
Table 8. Fault Areas on Control Board A14

Fault	Failure
Fault 01:	PROM failure - The binary checksum calculated from the contents of pro- grammed U5, U6, and U19 do not match value programmed by the factory. Validity of firmware is doubtful, and all three devices should be replaced.
Fault 02:	8155 RAM failure - Errors are found in the ability to store and retrieve data in the 256 byte RAM of U7. Replace U7. CMOS RAM failure - Errors are found in the ability to store and retrieve data in U8. Replace U8. Check E1-E2 jumpering, BT1, O5, and associated circuits. Fault 04: U16 through U18.

6. PARTS LIST

Table 9 is a comprehensive parts list of all replaceable components in Control Board Assembly A14. When ordering parts from the factory, include a full description of the part. Use figure 1, Control Board Assembly A14 Component Location Diagram to identify parts.

7. SCHEMATIC DIAGRAM

Figure 2 is the Control Board Assembly A14 schematic diagram.

8 HARRIS
 RF COMMUNICATIONS

Table 9. Control Board Assembly A14 Parts List (PL 10073-2800)

Ref. Desig.	Part Number	Description
	10073-2800 B41-0009-004 M39014/01-1535 M39014/02-1310 M39014/02-1310 M39014/02-1310 C26-0010-680 C26-0010-680 M39014/02-1310 C26-0010-680 M39014/02-1310 M39014/02-1310 M39014/02-1310 C26-0050-109 C26-0016-479 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1310 C26-0010-680 C26-0050-109 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1310 C26-0016-150 M39014/02-1310 M39014/02-1310 C26-0010-221 C26-0010-221 M39014/02-1310 M39014/02-1310 M39014/02-1310 M39014/02-1318 C25-0001-313 M39014/02-1310 C26-0010-221 C26-0010-221 C26-0016-479 1N4454 1N4454 1N4454 1N4454	PWB, CONTROL BOARD BAT NICAD $3.6 \mathrm{~V}-20 /+70 \mathrm{C}$ CAP .01UF 20\% 100V CER CAP .IUF 10\% 100V CER-R CAP .1UF 10\% 100V CER-R CAP .1UF 10\% 100V CER-R CAP 68UF 20\% 10V TANT CAP 68UF 20\% 10V TANT CAP . IUF 10\% 100V CER-R CAP 68UF 20\% 10V TANT CAP . 1UF 10\% 100V CER-R CAP . 1UF 10\% 100V CER-R CAP . 1UF 10\% 100V CER-R CAP 1.0UF 20\% 50V TANT CAP 4.7UF 20\% 16V TANT CAP . IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP .1UF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP 68UF 20\% 10V TANT CAP 1.0UF 20\% 50V TANT CAP . IUF 10\% 100V CER-R CAP .IUF 10\% 100V CER-R CAP . 1UF 10\% 100V CER-R CAP . IUF 10% 100V CER-R CAP . 1UF $10 \% 100 \mathrm{~V}$ CER-R CAP 15UF 20\% 16V TANT CAP .IUF $10 \% 100 \mathrm{~V}$ CER-R CAP .IUF 10\% 100V CER-R CAP 220UF 20\% 10V TANT CAP 220UF 20\% 10V TANT CAP .IUF $10 \% 100 \mathrm{~V}$ CER-R CAP . IUF 10\% 100V CER-R CAP . 1UF 10\% 100V CER-R CAP .33UF 10\% 50V CER-R CAP 100UF 20\% 20V TANT CAP . 1UF 10% 100V CER-R CAP 220UF 20\% 10V TANT CAP 220UF 20\% 10V TANT CAP 4.7UF 20\% 16V TANT DIODE 200 mA 75 V SW DIODE 200mA 75V SW DIODE 200 mA 75 V SW DIODE 200 mA 75V SW

ه力 HARRIS
 RF COMMUNICATIONS

Table 9. Control Board Assembly A14 Parts List (PL 10073-2800) (Cont.)

Ref. Desig.	Part Number	Description
CR5 CR6 E1 E2 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 L1 L2 L3 L4 L5 L6 Q1 Q2 Q3 Q4 Q5 Q8 R1 R2 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R21 R22	1N4454 IN4454 SE23XCO2 SE23XC02 J46-0032-004 J46-0013-014 J46-0032-010 J46-0032-010 J46-0013-014 J46-0034-008 J46-0031-010 J46-0034-008 J46-0034-008 J46-0034-008 J46-0031-020 J46-0034-008 J46-0031-016 J46-0034-008 J46-0013-040 $10073-7034$ L-0644 $10073-7034$ MS75085-5 $10073-7029$ $10073-7034$ $2 N 2222$ $2 N 2907$ $2 N 2222$ $2 N 2907$ $3 N 170$ $2 N 2222$ $R 65-0003-102$ $R 65-0003-472$ $R 65-0003-114$ $R 65-0003-103$ $R 65-0003-122$ $R 65-0003-473$ $R 65-0003-333$ $R 65-0003-243$ $R 65-0003-204$ $R 65-0003-473$ $R 65-0003-223$ $R 65-0003-223$ R60	DIODE 200mA 75V SW DIODE 200mA 75V SW TRM TRM HDR 4 PIN 0.100" SR HDR 14 PIN 0.100" DR SHRD HDR 10 PIN 0.100° SR HDR 10 PIN 0.100" SR HDR 14 PIN 0.100" DR SHRD HDR 8 PIN $0.100^{\prime \prime}$ RT ANG HDR 10 PIN 0.100" RT ANG HDR 8 PIN $0.100^{\prime \prime}$ RT ANG HDR 8 PIN 0.100" RT ANG HDR 8 PIN 0.100" RT ANG HDR 20 PIN 0.100" RT ANG HDR 8 PIN $0.100^{\prime \prime}$ RT ANG HDR 16 PIN $0.100^{\prime \prime}$ RT ANG HDR 8 PIN $0.100^{\prime \prime}$ RT ANG HDR 40 PIN 0.100° DR SHRD INDUCTOR, 440UH COIL 220UH 10\% FXD RF INDUCTOR, 440UH INDUCTOR INDUCTOR, FILTER CHOKE INDUCTOR, 440UH XSTR SS/GP NPN TO-18 XSTR SS/GP PNP TO-18 XSTR SS/GP NPN TO-18 XSTR SS/GP PNP TO-18 XSTR MOSFET XSTR SS/GP NPN TO-18 RES 1.0K 5\% 1/4W CAR FILM RES 4.7K 5\% 1/4W CAR FILM RES 110K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM RES 1.2K 5\% 1/4W CAR FILM RES 47K 5\% 1/4W CAR FILM RES 33K 5\% 1/4W CAR FILM RES 24K 5\% 1/4W CAR FILM RES 200K 5\% 1/4W CAR FILM RES 47K 5\% 1/4W CAR FILM RES 22K 5\% 1/4W CAR FILM RES 22K 5\% 1/4W CAR FILM RES 22K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM

80 HARRIS
 RF COMMUNICATIONS

Table 9. Control Board Assembly A14 Parts List (PL 10073-2800) (Cont.)

Ref. Desig.	Part Number	Description
R23	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R24	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R26	R50-0010-103	RES, 10SIP, 10K, 2.0\%, 9RES
R27	R50-0010-103	RES, 10SIP, 10K,2.0\%, 9RES
R28	R53-0001-001	RES, DIP NETWORK R/2R
R29	R65-0003-393	RES $39 \mathrm{~K} 5 \% 1 / 4 \mathrm{~W}$ CAR FILM
R30	R65-0003-363	RES 36K 5\% 1/4W CAR FILM
R31	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R32	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R33	R65-0003-512	RES 5.1K 5\% 1/4W CAR FILM
R35	R65-0003-104	RES 100K 5\% 1/4W CAR FILM
R36	R50-0010-103	RES, 10SIP, 10K, 2.0%, 9RES
R37	R50-0010-103	RES, 10SIP, 10K,2.0\%, 9RES
R38	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R39	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R40	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R41	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R42	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R43	R65-0003-184	RES 180K 5\% 1/4W CAR FILM
R44	R65-0003-184	RES 180K 5\% 1/4W CAR FILM
R45	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R46	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R47	R65-0003-102	RES 1.0K 5\% 1/4W CAR FILM
R48	R65-0003-363	RES 36K 5\% 1/4W CAR FILM
S1	S06-0002-100	SW PB SPST NO MOM BLK PCT
S2	S50-0001-008	SW SPST 8SEC. 1 A SLD DIP
U1	127-0006-002	IC 8085A MICRO 8-BIT CER
U2	105-0000-042	IC 74LS42 PLASTIC TTL
U3	105-0000-373	IC 74LS373 PLASTIC TTL
U4	105-0000-245	IC 74LS245 PLASTIC TTL C SOFTWARE PROM
U5** U6**	SEE NOTE SEE NOTE	IC SOFTWARE PROM
U7	126-0003-001	IC 8155-2 STAT RAM 256X8
U8	126-0010-001	IC STATIC RAM CMOS 2048X8
U9	159-0008-001	IC 8255 PLASTIC
U10	140-0010-001	IC ADC0817 PLASTIC CMOS
U11	101-0000-156	IC 4094B PLASTIC CMOS
U13	130-0018-000	IC 1458 OP AMP PLASTIC
U14	101-0000-202	IC 4514B PLASTIC CMOS
U15	105-0000-074	IC 74LS74 PLASTIC TTL
U16	105-0000-074	IC 74LS74 PLASTIC ITL
U17 U18	105-0000-165	IC 74LS 165 PLASTIC TTL
U19**	SEE NOTE	IC SOFTWARE PROM
U20	105-0000-122	IC 74LS122 PLASTIC TTL

[^4]
80 HARRIS RF COMMUNICATIONS

Table 9. Control Board Assembly A14 Parts List (PL 10073-2800) (Cont.)

Ref. Desig.	Part Number	Description
U21	$105-0000-244$	IC 74LS244 PLASTIC TTL
U22	$105-0000-000$	IC 74LS00 PLASTIC TTL
U23	$101-0017-000$	IC 7432 PLASTIC TTL
U24	$105-0000-032$	IC 74LS32 PLASTIC TTL
U25	$105-0000-004$	IC 74LS04 PLASTIC TTL
U27	$105-0000-004$	IC 74LS04 PLASTIC TTL
VR1	$111-0008-005$	IC VR 340 + 5V 0.1A 2\%
XU1	J77-0008-007	SKT IC MACH 40 PIN
XU5	J77-0008-005	SKT IC MACH 24 PIN
XU6	J77-0008-005	SKT IC MACH 24 PIN
XU19	J77-0008-005	SKT IC MACH 24 PIN
Y1	Y15-0004-060	CRYSTAL, 6MHZ.

Ti HARRIS
COMMUNICATIONs

TJ HARRIS
COMMUNICATIO

[^5]

if HARRIS
 RF COMMUNICATIONS

TABLE OF CONTENTS

Paragraph		Page
1	A15 Power Supply Assembly	1
2	A15 Assembly Circuit Description	2
2.1	A15A1 Power Supply Filter Assembly	7
2.2	Power Supply Regulator Assembly A15A2	
2.3	Power Supply BITE Detector Assembly A15A3	

LIST OF FIGURES

Figure
Power Supply Assembly A15 Functional Block DiagramPower Supply Assembly A15 Component Location Diagram (10073-3000)3
Power Supply Assembly A15 Schematic Diagram (10073-3001, Rev. E) 5
Power Supply Filter Board Assembly A15A1 Component Location Diagram (10073-3100) 8
Power Supply Filter Board Assembly A15A1 Schematic Diagram (10073-3101, Rev. C) 9
Power Supply Heatsink Assembly A15A2 Component Location Diagram (10073-3250) 12
Power Supply Regulator Board Assembly A15A2A1 Component Location Diagram (10073-3200) 14
Power Supply Heatsink Assembly A15A2 and Power Supply Regulator Assembly A15A2A1 Schematic Diagram (10073-3201, Rev. E) 15
Power Supply BITE Board A15A3 Component Location Diagram (10073-3300) 20
9 Power Supply BITE PWB A15A3 Schematic Diagram (10073-3301, Rev. D) 21

LIST OF TABLES

Table Page
1 A15 Power Supply Outputs 2Power Supply Rear Panel Assembly A15 Parts List (PL 10073-3000)7
Power Supply Filter Board Assembly A15A1 Parts List (PL 10073-3100) 7
A15A2 Voltage Regulator Identification 11
Power Supply Heatsink Assembly A15A2 Parts List (PL 10073-3250) 11
Power Supply Regulator Board Assembly A15A2A1 Parts List (PL 10073-3200) 13
A15A3 BITE Detector Trip Limits 17
8 Power Supply BITE A15A3 Parts List (PL 10073-3300) 18
RF HARRIS

8 HARRIS
 RF COMMUNICATIONS

1. A15 POWER SUPPLY ASSEMBLY

WARNING

Potentially hazardous high voltages are present inside the A15 assembly whenever the receiver is connected to an ac line source. Do not attempt any repair to this assembly unless the line cord is disconnected. Do not operate the receiver without the protective cover over the assembly properly installed.

Power Supply Assembly A15 converts either 100, 120, 220, or $240 \mathrm{Vac}(47-420 \mathrm{~Hz}$) line input voltages into the voltage and current requirements of the RF-590. Input voltage selection is made via the positioning of a plug-in printed circuit card (P/O FL1) located next to the rear panel ac power fuse. The positioning of this card determines the tap selection of power transformer T1. (FL1 also contains the main ac power fuse and ac input power receptacle.)

All power supply components and assemblies are housed in a single metal housing with a perforated cover. This housing (and all the components it contains) may be removed from the RF- 590 main frame chassis by removing the six screws at the rear panel and the two screws inside the housing which hold it to the chassis. A single plug-in connector (A15A2A1J3) carries output voltages to the RF-590 power distribution assemblies, and one other connector routes the ac input power to the front panel ON/OFF switch. Both of these must be disconnected in order to remove the housing completely.

EMI protection is provided via line filter FL1, as well as the shielding provided by the power supply housing and cover.

The main components and assemblies contained in Power Supply Assembly A15 are listed below.

- Input Line Filter FL1
- Power Transformer T1
- Filter PWB A15A1
- Heatsink Assembly A15A2 with Regulator PWB A15A2A1
- Power Supply BITE Detector PWB A15A3

FL1 provides both EMI protection and input voltage selection. T1 converts the ac line voltage into the required lower ac voltage levels needed to run the regulators. Filter PWB A15A1 converts the T1 ac outputs into unregulated dc voltage levels. The A15A2 assembly contains the three terminal voltage regulators which convert the unregulated dc levels into regulated dc output voltages. (Note that the voltage regulators VR1-VR6 are mounted to the Heatsink assembly, while the remainder of the necessary circuitry is on Regulator PWB Assembly A15A2A1. It is these A15A2A1 outputs which power the receiver.)

Power Supply BITE PWB A15A3 monitors the output of Regulator PWB A15A2A1 and signals the Control PWB A14 microprocessor if these levels exceed certain prescribed limits. This in turn, would cause a front panel fault light to light. All major components and assemblies in the A15 assembly are interconnected via ribbon cable with plug-in connectors.

The power supply output voltages and maximum design current capabilities provided to power the receiver at A15A2A1J3 are listed in table 1. Note that the current is the maximum allowable current, and that the actual amount drawn from each regulator would vary depending upon the options installed in the radio. (i.e., ISB, remote control, frequency standard, etc.)

Table 1. A15 Power Supply Outputs

A15A2A1J3 (Pin)	Voltage (Vdc)	Current (Maximum)
$4,7,12,15$	+5 Unregulated	2.5 A
$2,17,18$	+24 Regulated	600 mA
21	+5 Regulated no. 1	750 mA
9	+5 Regulated no. 2	750 mA
$1,5,6,23$	+15 Regulated no. 1	1.0 A
20	+15 Regulated no. 2	1.0 A
$11,16,19$	-15 Regulated	500 mA

2. A15 ASSEMBLY CIRCUIT DESCRIPTION

The RF-590 may be operated using either $100,120,220$, or $240 \mathrm{Vac}, 47-420 \mathrm{~Hz}$ as a primary source voltage. This voltage feeds through a standard three prong connector on the RF-590 rear panel (part of EMI Filter Assembly FL1). Input voltage selection is via a plug-in printed circuit board which is part of FL1 and accessible from the rear panel. FL1 also contains fuse F1 (replaceable from the rear panel) and initial line filtering. The receiver power switch is part of the front panel AF Gain control and is connected in series with one side of the ac line.

FL1 feeds power transformer T1 (mounted to the A15 assembly). T1 supplies 52 Vac and 36 Vac to Power Supply Filter PWB A15A1, and 18.5 Vac to rectifier CR1 mounted on the Heatsink assembly. CR1 in turn feeds an unregulated +5 volts to A15A1.

Table 2 is the A15 assembly parts list. Figures 1 and 2 show overall component location and schematic diagrams.

8 HARRIS
 RF COMMUNICATIONS

Figure 1. Power Supply Assembly A15 Component Location Diagram (10073-3000, Rev. G)

5 HARRIS
 RF COMMUNICATIONS

Table 2. Power Supply Rear Panel Assembly A15 Parts List (PL 10073-3000)

Ref. Desig.	Part Number	Description
	10073-3000	REAR PANEL ASSEMBLY
	10073-3006	CHASSIS, POWER SUPPLY
A1	10073-3100	PWB ASSY, FILTER
A2	10073-3250	HEATSINK ASSY
A3	10073-3300	PWB ASSY, BITE
E1	M577068-1	LUG SOLDER \#4
F1	F03-0002-022	FUSE 1-1/2A QA
FL1	6919-1400	LINE FILTER
T1	10073-3052	TRANSFORMER,POWER
W1	10073-7060	RIBBON CABLE, 10 COND
W2	10073-7059	RIBBON CABLE, 8 COND
W3	10073-7250	CABLE ASSY,3 COND

2.1 A15A1 Power Supply Filter Assembly

The A15A1 assembly contains voltage rectifiers and the large filter capacitors required to filter the input voltages from T1. The 52 Vac at J1-6 and J1-7 is full-wave rectified by CR1 and CR2 and filtered by C1 to produce an unregulated +24 volts at J2-8.

The 36 Vac at $\mathrm{J} 1-1$ and $\mathrm{J} 1-3$ is full-wave rectified by CR 3 and filtered by C 2 and C 3 to produce an unregulated +15 volts at $\mathrm{J} 2-1$ and $\mathrm{J} 2-2$ and -15 volts unregulated at $\mathrm{J} 2-4$. The 5 volts unregulated at E1 is heavily filtered by filter network C4-L1-C5 and made available at E2.

Table 3 is the A15A1 assembly parts list. Figures 3 and 4 are the A15A1 component location and schematic diagrams.

Table 3. Power Supply Filter Board Assembly A15A1 Parts List (PL 10073-3100)

Ref. Desig.	Part Number	Description
	10073-3100	PWB, FILTER
C1	C17-0050-282	CAP 2800UF 50V ELEC
C2	C17-0035-562	CAP 5600UF 35V ELEC
C3	C17-0035-212	CAP 2100 UF 35V ELEC
C15	C17-0035-123	CAP 12000 UF 35V ELEC
C19	C17-0035-123	CAP 12000 UF 35V ELEC
CR1	D22-0006-001	DIODE 3A 600V RECT GP
CR2	D22-0006-001	DIODE 3A 600V RECT GP
CR3	D22-5011-200	DIODE 10A 200V RECT BR
E3	MP-0372	FAST-ON . 125 PCB MOUNT
J1	J42-0004-007	CONN , 7 PIN
J2	J46-0032-008	HDR 8 PIN 0.100" SR
L1	10073-3051	INDUCTOR, 1 MH 4 AMP

Figure 3. Power Supply Filter Board Assembly A15A 1 Component Location Diagram (10073-3100, Rev. D)

8 HARRIS
 RF COMMUNICATIONS

2.2 Power Supply Regulator Assembly A15A2

Heatsink Assembly A15A2 consists of voltage regulators VR1-VR6, CR1, and Regulator PWB A15A2A1. They are all mounted to a large heatsink bolted to the rear of the A15 assembly. Heatsink Assembly A15A2 may be removed from Power Supply Assembly A15 by removing the five mounting screws on the rear of the A15 assembly.

Regulator PWB A15A2A1 receives the unregulated output voltages from A15A1, and uses linear regulators mounted to Heatsink Assembly A15A2 to produce the regulated output voltages required. Table 4 lists the input voltages, the associated voltage regulator, and the output voltages.

Table 4. A15A2 Voltage Regulator Identification

Input Voltage	A15A2 Voltage Regulator	Output Voltage
+15 Unregulated	VR1	15 Vdc no. 1
+15 Unregulated	VR2	15 Vdc no. 2
-15 Unregulated	VR3	-15 Vdc
+5 Unregulated	VR4	+5 Vdc no. 1
+5 Unregulated	VR5	$+5 \mathrm{Vdc} \mathrm{no} 2$.
+24 Unregulated	VR6	+24 Vdc

All these voltages are routed through connector A15A2A1J3 (located on the bottom of the A15A2A1 PWB) for power distribution throughout the radio.

Additionally, the A15A2A1 assembly provides additional filtering to these voltages, as well as to a +5 volt unregulated output which does not receive any regulation. (This output is used where local regulation to +5 Vdc will be accomplished on a particular assembly.)

Table 5 is the A15A2 assembly parts list and figure 5 is the A15A2 assembly component location drawing. Table 6 is the A15A2A1 parts list and figure 6 is the A15A2A1 assembly component location drawing. Figure 7 is the A15A2 assembly and A15A2A1 assembly schematic diagram.

Table 5. Power Supply Heatsink Assembly A15A2 Parts List (PL 10073-3250)

Ref. Desig.	Part Number	Description
A1	X-0814	INSULATOR, TRANSISTOR
CR1	$10073-3200$	PWB ASSY, REGULATOR
VR1, VR2	D22-5004-001	DIODE 15A 200V RECT BR
VR3 $11-0001-006$	ICVR 7815 + 15V 1.5A 4\%	
VR4, VR5	$112-0002-005$	ICVR 7915C -15V 1.5A 4\%
VR6	$111-0001-001$	ICVR 7805 +5V 1.5A 4\%
IC-0358	ICVR 317 ADJV 1.5A	

80 HARRIS
 RF COMMUNICATIONS

Table 6. Power Supply Regulator Board Assembly A15A2A1 Parts List (PL 10073-3200)

Ref. Desig.	Part Number	Description
	10073-3200 C26-0050-100 M39014/02-1320 M39014/02-1320 C26-0025-680 M39014/02-1310 C26-0050-100 M39014/02-1320 M39014/02-1320 C26-0025-680 M39014/02-1310 C26-0050-100 M39014/02-1320 M39014/02-1320 C26-0025-680 M39014/02-1310 M39014/02-1320 M39014/02-1310 C26-0016-150 M39014/02-1320 M39014/02-1310 C26-0016-150 C25-0003-015 M39014/02-1320 M39014/02-1320 C25-0003-015 M39014/02-1310 C25-0003-313 M39014/02-1310 MP-0372 J46-0032-008 J46-0032-010 J20-0009-025 RN55D2430F RN55D4421F J-0392	PWB, REGULATOR CAP 10UF 20\% 50V TANT CAP . 47 UF 10\% 50V CER-R CAP .47UF 10\% 50V CER-R CAP 68UF 20\% 25V TANT CAP . 1UF $10 \% 100 \mathrm{~V}$ CER-R CAP 10UF 20% 50VTANT CAP . 47UF 10\% 50V CER-R CAP . 47UF 10\% 50V CER-R CAP 68UF 20\% 25V TANT CAP . IUF $10 \% 100 \mathrm{~V}$ CER-R CAP 10UF 20% 50V TANT CAP .47UF 10\% 50V CER-R CAP .47UF 10\% 50V CER-R CAP 68UF 20\% 25V TANT CAP . 1UF 10% 100V CER-R CAP .47UF 10\% 50V CER-R CAP . 1UF 10\% 100V CER-R CAP 15UF 20\% 16V TANT CAP . 47 UF 10\% 50V CER-R CAP .1UF 10\% 100V CER-R CAP 15UF 20\% 16V TANT CAP 22UF 10\% 50V TANT CAP . 47 UF 10\% 50V CER-R CAP . 47 UF 10\% 50V CER-R CAP 22UF 10\% 50V TANT CAP .IUF 10\% 100V CER-R CAP 100UF 10\% 20V TANT CAP .IUF 10\% 100V CER-R FAST-ON . 125 PCB MOUNT HDR 8 PIN $0.100^{\prime \prime}$ SR HDR 10 PIN 0.100° SR CONN-DF 25 FXDRTA RES, 243.0 1\% 1/8W MET FLM RES, 4420 1\% 1/8W MET FLM TP PWB BRN RA SIDE ACCESS

Figure 6. Power Supply Regulator Board Assembly A15A2A1 Component Location Diagram (10073-3200, Rev. C)
If HARRIS
RF COMMUNICATIO

Hithrris
 RF COMMUNICATIONS

2.3 Power Supply BITE Detector Assembly A15A3

The A15A3 assembly monitors all the regulated output voltages listed in table 4 and will issue a fault signal to Control Board Assembly A14 if any of them exceed a defined upper or lower limit. The A14 assembly will then issue a fault command and turn on the RF-590 fault indicator on the front panel. This operation is performed continually while the receiver is operating.

The general operation scheme of the assembly is as follows, using the +5 Vdc from A15A2 at A15A3 $\mathrm{J} 1-9$ as an example.

The +5 Vdc at pin 2 is divided by resistor network R13-R14 to place nominally 3.1 Vdc at U2D-10 (-) and U2C-9 (+). (This level shall be referred to a $\mathrm{V}_{\text {TEST }}$.) The +8 Vdc from VR1 is divided by R1 and R3 to place +4 Vdc at U2D-11 (+) and by R 2 and R 4 to place +2 Vdc at U2C-8(-). (The +4 Vdc level shall be referred to as V_{HI}; the +2 Vdc level as V_{LO}). These two levels establish the "window" that $\mathrm{V}_{\text {TEST }}$ must not exceed.

Under conditions where $\mathrm{V}_{\mathrm{LO}}<\mathrm{V}_{\text {TEST }}<\mathrm{V}_{\mathrm{HI}}, \mathrm{U} 2 \mathrm{C}$ and U 2 D outputs are at +8 volts. This feeds to $\mathrm{U} 3 \mathrm{C}-8$ $(-)$. Since $\mathrm{U} 3 \mathrm{C}-9(+)$ input is always held fixed at $4 \mathrm{Vdc}\left(\mathrm{V}_{\mathrm{HI}}\right)$, U3C output will be low (0 Vdc), Q 1 will be biased off, and the BITE output signal will be at +8 Vdc . This notifies the BITE circuits that the +5 Vdc level is within its limits.

Assume that $\mathrm{V}_{\text {TEST }}$ exceeds V_{HI}. U2D output would switch 0 Vdc , causing U3C to switch to +8 Vdc , turning on Q1. Q1 output would drag the BITE output to 0 Vdc , and notify the BITE circuits of an error condition. The same events would occur if $\mathrm{V}_{\text {TEST }}$ fell below $\mathrm{V}_{\text {LO }}$, except that now U2C output would affect the switching of U3C.

This concept of a comparator pair providing the lower and upper window limits is used to monitor the other regulated input voltages. Since all the comparator outputs are tied together, any one of them changing states would cause $\mathrm{Q1}$ to issue an error signal.

Note that there are five comparator pairs, but six input voltages. The - 15 Vdc input is used as a reference (instead of ground) for the two +15 Vdc and one +24 Vdc inputs, thereby eliminating the need for a separate comparator pair to monitor the -15 Vdc .

The approximate range of upper and lower input limits which will not trip the comparators is given in table 7.

Table 7. A15A3 BITE Detector Trip Limits

Input Voltage Vdc	Permissable Voltage Range
+5 Vdc no. 1	≈ 3.0 to 6.5
+5 Vdc no. 2	≈ 3.0 to 6.5

8 HARRIS
 RF COMMUNICATIONS

Table 7. A15A3 BITE Detector Trip Limits (Cont.)

Input Voltage Vdc	Permissable Voltage Range
+15 Vdc no. 1	≈ 13.0 to 17.0
+15 Vdc no. 2	≈ 13.0 to 17.0
-15 Vdc	≈-13.0 to -17.0
+24 Vdc	≈ 21 to 26

Table 8 is the A15A3 assembly parts list. Figures 8 and 9 are the A15A3 assembly component location and schematic diagrams.

Table 8. Power Supply BITE Board A15A3 Parts List (PL 10073-3300)

Ref. Desig.	Part Number	Description
	10073-3300	PWB, BITE
C1	M39014/02-1310	CAP .1UF 10\% 100V CER-R
C2	C26-0025-100	CAP 10UF 20\% 25V TANT
C3	M39014/02-1310	CAP .IUF 10\% 100V CER-R
J1	J46-0032-010	HDR 10 PIN 0.100" SR
Q1	2N2222	XSTR SS/GP NPN TO-18
R1	RN55D4021F	RES,4020 1\% 1/8W MET FLM
R2	RN55D7501F	RES,7500 1\% 1/8W MET FLM
R3	RN55D4021F	RES,4020 1\% 1/8W MET FLM
R4	RN55D2491F	RES, 2490 1\% 1/8W MET FLM
R5	RN55D1212F	RES,12.1K 1\% 1/8W MET FLM
R6	RN55D1822F	RES,18.2K 1\% 1/8W MET FLM
R7	RN55D1212F	RES,12.1K 1\% 1/8W MET FLM
R8	RN55D1822F	RES, 18.2K 1\% 1/8W MET FLM
R9	RN55D1822F	RES,18.2K 1\% 1/8W MET FLM
R10	RN55D2102F	RES,21.0K 1\% 1/8W MET FLM
R11	RN55D1821F	RES, 1820 1\% 1/8W MET FLM
R12	RN55D3011F	RES,3010 1\% 1/8W MET FLM
R13	RN55D1821F	RES, 1820 1\% 1/8W MET FLM
R14	RN55D3011F	RES,3010 1\% 1/8W MET FLM
R15	R65-0003-103	RES 10K 5\% 1/4W CAR FILM
R16	R65-0003-472	RES 4.7K 5\% 1/4W CAR FILM
R17	R65-0003-103	RES RES 10K 10K \% $1 / 4 / 4$ W CAR FILM
R18	R65-0003-103	RES 10K 5\% 1/4W CAR FILM RES 10K 5\% 1/4W CAR FILM
R19 TP1	$\begin{array}{\|l\|} \text { R65-0003-103 } \\ \mathrm{J}-0392 \end{array}$	RES $10 \mathrm{~K} 5 \%$ 1/4W CAR FILM TP PWB BRN RA SIDE ACCESS
TP2	J-0387	TP PWB RED RA SIDE ACCESS

OH HARRIS RF COMMUNICATIONS

Table 8. Power Supply BITE Board A15A3 Parts List (PL 10073-3300) (Cont.)

Ref. Desig.	Part Number	Description
TP3	$J-0390$	TP PWB ORN RA SIDE ACCESS
TP4	$J-0391$	TP PWB YEL RA SIDE ACCESS
TP5	$J-0389$	TP PWB GRN RA SIDE ACCESS
TP6	J-0393	TP PWB BLU RA SIDE ACCESS
U1	$120-0006-000$	IC LM339 COMPARATOR PL
U2	$120-0006-000$	IC LM339 COMPARATOR PL
U3	$120-0006-000$	IC LM339 COMPARATOR PL
VR1	$112-0006-008$	IC VR 78L08A + 8V .10A 4\%

80 HARRIS

Figure 8. Power Supply BITE Board A15A3 Component Location Diagram (10073-3300, Rev. B)
id HARRIS
RF COMMUNICATIONS

Un HARRIS RF COMMUNICATIONS

TABLE OF CONTENTS

Page
Paragraph 1
1.

1. Top Side of Main Chassis 1 1

1.1

1.1
1.2 Underside of Main Chassis
1.2 Underside of Main Chassis 1 1
1.3
1.3 Front View of Main Chassis Front View of Main Chassis 4 4
1.4
1.4 Rear View of Main Chassis Rear View of Main Chassis 4
2
2 Parts List Parts List 8
Schematic Diagram 8
Main Chassis Power Distribution PWBs
Main Chassis Power Distribution PWBs 25 25
Front Power Distribution Board A16A1
Front Power Distribution Board A16A1 25 25
4.2
4.2 Chassis Power Distribution Board A16A2 Chassis Power Distribution Board A16A2 29 29
Rear Power Distribution Board A16A3
Rear Power Distribution Board A16A3 32 32 32
LIST OF FIGURES
RF-590 Top View Without Covers 2
RF-590 Bottom View Without Covers 5
RF-590 Front View With Panel Down 6
RF-590 Rear Panel 11
Front Power Distribution Board A16A1 Component Location Diagram (10073-1200) 26
Front Power Distribution Board A16A1 Schematic Diagram (10073-1201, Rev. C) 27
(10073-1400) 30
Chassis Power Distribution Board A16A2 Schematic Diagram (10073-1401, Rev. C) 31
Rear Power Distribution Board A16A3 Component Location Diagram (10073-1350, Rev. B) 33
Rear Power Distribution Board A16A3 Schematic Diagram (10073-1351, Rev. A) 35
LIST OF TABLES
Page
Chassis Assembly A16 Parts List (PL 10073-1000) 8
Front Power Distribution Board A16A1 Parts List (PL 10073-1200) 25
Chassis Power Distribution Board A16A2 Parts List (PL 10073-1400) 29
Rear Power Distribution Board A16A3 Parts List (PL 10073-1300) 32

HARRIS
 RF COMMUNICATIONS

1. MAIN CHASSIS

The RF-590 chassis is a rigid one piece sand casting. The main frame includes siderails, assembly mounting holes, and compartments used to mount and house most printed wiring board assemblies.

1.1 Top Side of Main Chassis

The top side of the chassis is shown in figure 1 and contains compartments that house the following assemblies.

- First Converter Assembly A2
- Second Converter Assembly A3
- IF Filter Assembly A4
- IF/Audio Assembly.A5A1 with AGC Assembly A5A2
- Power Supply Assembly A15
- ISB IF/Audio Assembly A18
- Frequency Standard Assembly A21
- Speaker Amplifier Assembly A23

Also, Remote Control Assembly A17 sets over IF/Audio Assembly A5 in a hinged pan that pivots out for troubleshooting.

1.2 Underside of Main Chassis

The underside of the chassis is shown in figure 2 and contains compartments that house the following assemblies.

- Input Filter Assembly A1
- PLL | Assembly A6
- PLL II Assembly A7
- PLL III Assembly A8
- PLLIV Assembly A9

Figure 1. RF-590 Top View Without Covers

H HARRIS
 RF COMMUNICATIONS

Figure 2. RF-590 Bottom View Without Covers

8 HARRIS
 RF COMMUNICATIONS

- PLL V Assembly A10
- BFO Assembly A11
- Reference Generator Assembly A12

1.3 Front View of Main Chassis

Control Board Assembly A14 is mounted on the forward section of the chassis separated by a Z bracket which is securely fastened to the side rails as well as to the main pan section of the casting.

Front Panel Assembly A13, shown in figures 3 and 4, contains all the operator controls. It is hinged so that it can be pivoted down for easy access to the assemblies which are mounted to it. The assemblies which are mounted to the A13 assembly are:

- Switch Board Assembly A13A1
- Driver Board Assembly A13A2
- Meter Board Assembly A13A3
- Display Board (alphanumeric) Assembly A13A4
- Display Board (numeric) Assembly A13A5
- Converter Assembly A13A6

When the front panel is not pivoted out for troubleshooting, it is securely fastened to the main chassis by four captive screws.

Front Panel Assembly A13 details may be found in subsection A13 of this manual.

1.4 Rear View of Main Chassis

The entire rear panel including the power supply can be removed as one assembly to facilitate troubleshooting. Figure 5 shows the RF- 590 rear panel. To remove the rear panel, remove the six screws located on the panel and the two screws inside Power Supply Assembly A15. Disconnect the two connectors on the underside of the chassis.

Power Supply Assembly A15 contains the following assemblies housed in a wrap around chassis design.

- A15A1 Power Supply Filter Board
- A15A2 Power Supply Regulator Heatsink Assembly, with Regulator Board A15A2A1

Figure 3. RF-590 Front View

Figure 4. RF-590 Front View With Panel Down

Figure 5. RF-590 Rear Panel

8 HARRIS RF COMMUNICATIONS

- A15A3 Power Supply BITE Board
- Ac Line transformer, Line filter, fuse holder, etc.

Note that the Regulator Heatsink Assembly A15A2 may be removed without removing the rear panel. Power Supply Assembly A15 details may be found in subsection A15 of this manual.

2. PARTS LIST

Table 1 is a comprehensive parts list of all replaceable components in Chassis Assembly A16. When ordering parts from the factory, include a full description of the part.

3. SCHEMATIC DIAGRAM

Figure 6 is the Chassis Assembly A16 schematic diagram.
Table 1. Chassis Assembly A16 Parts List (PL 10073-1000)

Ref. Desig.	Part Number	Description
A1		
A2	$10073-5100$	INPUT FILTER PWB ASSY
A3	$10073-5200$	1ST CONVERTER PWB ASSY
A6	$10073-5300$	2ND CONVERTER
A7	$10073-4100-01$	PWB ASSY, PLL 1 SLOW
A8	$10073-4200$	PWB ASSY, PLL 2
A9	$10073-4300$	PWB ASSY, PLL 3
A10	$10073-4400$	PWB ASSY, PLL 4
A11	$10073-4500$	PWB ASSY, PLL5
A12	$10073-4600$	BFO PWB ASSY
A13	$10073-4700$	REF-GEN PWB ASSY
A14	$10073-2000$	PANEL ASSEMBLY
A15	$10073-2800$	CONTROL BD ASSY
A21	$10073-3000$	POWER SUPPLY ASSY
A23	$10073-6600$	FREQ, STD 1X10 6
A5A1	$10073-5800$	AUDIO AMPLIFIER
A16A1	$10073-5410$	IF AUDIO BOARD ASSY
A16A2	$10073-1200$	FRONT POWER DIST PWB ASSY
A16A3	$10073-1400$	CHASIS POWER DISTRIBUTION
J10	$10073-1350$	REAR POWER DISTRIBUTION
S1	J90-0012-001	CONN ADP SMB F'DTHRU F-F
TB1	$10073-7245$	FREQ. STAND. SWITCH ASSY
W1	$10073-7121$	TERBLK,FLT CABLE,1OPOS
W2	$10073-7160$	CABLE,ASSY,COAX
W3	$10073-7161$	CABLE,ASSY,COAX
W4	$10073-7158$	CABLE,ASSY,COAX
W5	$10073-7186$	CABLE ASSY COAX
W6	$10073-7184$	CABLE ASSY COAX
W7	$10073-7157$	CABLE ASSY COAX
W8	$10073-7183$	CABLE, COAX ASSY
	$10073-7156$	CABLE ASSY COAX

Table 1. Chassis Assembly A16 Parts List (PL 10073-1000) (Cont.)

Ref. Desig.	Part Number	Description
W9		
W10	$10073-7054$	CABLE,RIBBON
W11	$10073-7182$	CABLE, COAX ASSY
W12	$10073-7246$	CABLE, AC POWER
W13	$10073-7155$	CABLE, COAX ASSY
W14	$10073-7154$	CABLE, COAX ASSY
W15	$10073-7159$	CABLE, COAX ASSY
W16	$10073-7153$	CABLE, COAX ASSY
W17	$10073-7150$	CABLE, COAX ASSY
W19	$10073-7069$	RIBBON CABLE (CH PS)
W20	$10073-7152$	CABLE ASSY
W21	$10073-7070$	RIB CABLE CONT-PAN
W22	$10073-7058$	RIBBON (PAN IF/CONT)
W23	$10073-7151$	CABLE ASSY
W24	$10073-7247$	SPEAKER CABLE
W26	$10073-7055$	RIBBON CABLE (MTR CONT)
W28	$10073-7056$	CABLE,RIBBON
W37	$10073-7078$	IF AUDIO
W38	$10073-7187$	CABLE COAX

fitharris

01 HARRIS
RF COMMUNICATIONS

80 HARFiS RF COMNINTCATION

Figure 6. RF-590 Chassis Interconnect Schematic
Diagram (10073-1001, Rev. J)

Of HARRIS
RF COMMUNICATION

84 HARRIS
RF COMMUNICATIONS

Figure 6. RF-590 Chassis Interconnect Schematic
Diagram (10073-1001, Rev. J)
(Sheet 6 of 7)

эпฉешәчว

73 HARRIS RF COMMUNICATIONS

4. MAIN CHASSIS POWER DISTRIBUTION PWBS

Interconnections to PWBs are made by mass terminated ribbon cables and the following three power distribution PWBs.

- A16A1 Front Power Distribution (section 7)
- A16A2 Chassis Power Distribution (section 8)
- A16A3 Rear Power Distribution (section 9)

All cabling is keyed and polarized to prevent misalignment of plugs.
All PWB assemblies can be removed by removing the standard mounting hardware and connectors supplied. No unsoldering is required.

Internal covers providing Radio Frequency Interference (RFI) protection fit snugly over most of the assembly compartments listed in 1.1 and 1.2. Their snap in design makes removal easy. Top and bottom outer covers are fastened to the unit with quarter turn fasteners.

The RF-590 may be rack mounted into a standard 19 -inch rack by securing rack slides to the chassis side rails in the mounting holes provided for this purpose.

4.1 Front Power Distribution Board A16A1

The A16A1 assembly is located on the underside of the main chassis and mounts through cutouts in the walls of the A7, A8, A10, and A11 compartments. The distribution board carries power to these assemblies via connector J1 from Power Supply Assembly A15. It also feeds power (through chassis cutouts) to the Chassis Distribution Board A16A2 mounted on the top side of the chassis, and power to the A4 and A5 assemblies.

Table 2 is the Front Power Distribution Board A16A1 parts list. Figures 7 and 8 are the Front Distribution Board A16A1 component location and schematic diagrams.

Table 2. Front Power Distribution Board A16A1 Parts List (PL 10073-1200)

Ref. Desig.	Part Number	Description
	10073-1200	PWB, FRONT PWR DIST
C1-C9	CK05BX102M	CAP 1000PF 20\% 200V CER
J1	J46-0033-008	HDR 8 PIN 0.100" RT ANG
W1	10073-7061	RIBBON CABLE, 7 COND
W2	10073-7057	RIBBON CABLE, 24 COND
W3	10073-7057	RIBBON CABLE, 24 COND
W4	10073-7057	RIBBON CABLE, 24 COND
W5	10073-7064	CABLE, RIBBON
W6	10073-7073	CABLE, RIBBON

Figure 7. Front Power Distribution Board A16A1 Component Location Diagram (10073-1200, Rev. E)

dif HARRIS

-

OH HARRIS RF COMMUNICATIONS

4.2 Chassis Power Distribution Board A16A2

The A16A2 assembly is located on the top side of the main chassis and mounts through cutouts in the walls of the A2 and A3 compartments. The assembly receives power and AGC signals via connector J1 from Front Power Distribution Board A16A1. It also carries A2 and A3 BITE information to Control Board Assembly A14 via connector J2.

Table 3 is the Chassis Power Distribution Board A16A2 parts list. Figures 9 and 10 are the Front Distribution Board A16A1 component location and schematic diagrams.

Table 3. Chassis Power Distribution Board A16A2 Parts List (PL 10073-1400)

Ref. Desig.	Part Number	Description
C1	10073-1400	PWB, CHASSIS PWR DIST
C2	C05-0003-102	CAP 1000PF GMV FEED-THRU
C3	C05-0003-102	CAP 1000PF GMV FEED-THRU
C4	C05-0003-102	CAP 1000PF GMV FEED-THRU
C5	C05-0003-102	CAP 1000PF GMV FEED-THRU
C6	C05-0003-102	CAP 1000PF GMV FEED-THRU
C7	C05-0003-102	CAP 1000PF GMV FEED-THRU
J1	C05-0003-102	CAP 1000PF GMV FEED-THRU
12	J46-0033-004	HDR 4 PIN 0.100" RT ANG
P1	J46-0033-004	HDR 4 PIN 0.100" RT ANG
P2	J46-0016-005	CONN HOUSING 5 POS 24AWG

OTMARIS

RF COMMUNICATIONS
NOTE: UNLESS OTHERWISE SPECIFIED:

1. PARTIAL REFERENCE OESIGNATIONS ARE SHOWN
FOR A COMPLETE DESIGNATION, PREFIX WITH
GOR A COMPLETE DESIGNATION, PREFIXNATION.
2. ALL CAPACITOR VALUES ARE in microfarado.

Figure 10. Chassis Power Distribution Board A16A2 Schematic Diagram (10073-1401, Rev. C)

8 HARRIS
 RF COMMUNICATIONS

4.3 Rear Power Distribution Board A16A3

The A16A3 assembly is located on the underside of the main chassis and mounts through cutouts in the walls of the A1, A6, A9, and A12 assemblies. It receives and distributes power from Power Supply Assembly A15 via connector J2. J4 connects to the RF-590 rear panel INT/EXT frequency standard switch. J1 carries BITE information to Control Board Assembly A14. J3 carries A1 control information to Control Board Assembly A14.

Table 4 is the Rear Power Distribution Board A16A3 parts list. Figures 11 and 12 are the Rear Power Distribution Board A16A3 component location and schematic diagrams.

Table 4. Rear Power Distribution Board A16A3 Parts List (PL 10073-1350)

Ref. Desig.	Part Number	Description
A16A3 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C24 JMP1, JMP2 J1, J2 J3 J4 P1 P2, P3 P4 W43	$10073-1350$ $10073-7035$ $M P-1142$ $J 46-0033-006$ $J 46-0033-008$ $J 46-0033-003$ $J 46-0016-008$ $J 46-0016-006$ $J 46-0016-010$ $10073-6915$	PWB, REAR PWR DIST CAP,FEED-THRU 100 CIRCUIT JUMPER HDR 6 PIN 0.100" RT ANG HDR 8 PIN 0.100" RT ANG HDR 3 PIN $0.100^{\prime \prime}$ RT ANG CONN HOUSING 8 POS 24AWG CONN HOUSING 6 POS 24AWG CONN HOUSING 10 POS 24AWG CABLE ASSY

di HARRIS
RFOMMUNICATIONs

$\begin{aligned} & \sim \\ & \frac{1}{2} \\ & \nu \end{aligned}$	\bigoplus

RF COMMUNICATIONS

REMOTE CONTROL ASSEMBLY

(A17 ASSEMBLY)

REMOTE CONTROL ASSEMBLY

(A17 ASSEMBLY)

HARRIS

TABLE OF CONTENTS

Paragraph

1 General Description 1
2 Interface Connections 1
3 Functional Description 3
3.1 Control and Data Transfer 3
3.2 Serial Data Transmission/Reception 3
3.3 Serial Interfaces 3
3.4 Parallel Data I/O 4
3.5 Modem I/O (Optionally Installed) 4
3.6 BITE (Self-Test) 4
3.7 Dc Distribution 5
4 Maintenance 5
4.1 Setup 5
4.1.1 Identification Number 5
4.1.2 Baud Rate Selection 6
4.1.3 Signaling Interface Selection 6
4.1.4 Modem Signalling Frequencies 7
4.2 Hybrid Level Adjustment 8
4.3 Troubleshooting 8
5
Parts List 10
6 Schematic Diagram 10
LIST OF FIGURES

Figure
1
Remote Control Assembly A17 Functional Block Diagram 2 12

Rell (100736201)...

Rell (100736201)...

Rell (100736201)... 13
Remote Control Assembly A17 Schematic Diagram (10073-6201)
Remote Control Assembly A17 Schematic Diagram (10073-6201)
LIST OF TABLES
Table Page
1 LCU Assembly A17 Interface Summary 1
2
Identification Number Setup 5
3 Baud Rate Setup 6
4 Jumper Selection of Interface 6
5
US Answer and US Originate Frequencies 8
6 Test Point Indications 9
7 Remote Control Assembly A17 Parts List (PL 10073-6200) 10

1. GENERAL DESCRIPTION

Remote Control Assembly (LCU) A17 provides facilities necessary to permit control of the RF-590 Receiver from a remote site. Connected to the microprocessor controlling the RF-590, this assembly contains interface buffering to Control Board A14, additional program memory, and circuits for parallel I/O, serial I/O controls, and modem. It functions as a local control unit (LCU) for the receiver providing RS232C, MIL-STD-188C, RS-422, and FSK interface options to a distant remote control unit (RCU). The software programming using one 4 K byte EPROM interfaces the A17 control and communication functions to the main control software on the A14 assembly. Electrical connection to the receiver from A17 is through ribbon cables to the control board and to interface connectors J8 and J9 on the RF-590 rear panel.

2. INTERFACE CONNECTIONS

LCU Assembly A17 interface connections are summarized in table 1
Table 1. LCU Assembly A17 Interface Summary

Connector	Function	To	From
A17J1-1	+8.5 V	-	A14J15-1
-2	+8.5 V	-	A14J15-2
-3	Reset Out	-	A15J15-3
-4	HOLD	A14J15-4	-
-5	Line Audio	-	A14J15-5
-6	HLDA	-	A14J15-6
-7	Line Audio Gnd	-	A14J15-7
-8	CPU Clk. Out	-	A14J15-8
-9	+15 V	-	A14J15-9
-10	Gnd	-	A14J15-10
-11	Ready	-	A14J15-11
-12	-15 V	-	A14J15-12
-13	RST 5.5	-	A14J15-14
-14	IO/M	-	-
-15	INTR	A14J15-15	A14J15-16
-16	S1	-	A14J15-17
-17	$\overline{\text { WR }}$	-	A14J15-18
-18	$\overline{\text { RD }}$	-	A14J15-19
19	INTA	-	A14J15-20
-20	ALE	-	

Table 1. LCU Assembly A17 Interface Summary (Cont.)

Connector	Function	To	From
A17J2-1	N/C	-	-
-2	N/C	-	-
-3	ADO	Bidirec	A14J15-23
-4	N/C	-	-
-5	AD1	Bidirec	A14J15-25
-6	A15	-	A14J15-26
-7	AD2	Bidirec	A14J15-27
-8	A14	-	A14J15-28
-9	AD3	Bidirec	A14J15-29
-10	A13	-	A14J15-30
-11	AD4	Bidirec	A14J15-31
-12	A12	-	A14J15-32
-13	AD5	Bidirec	A14J15-33
-14	A11	-	A14J15-34
-15	AD6	Bidirec	A14J15-35
-16	A10	-	A14J15-36
-17	AD7	Bidirec	A14J15-37
-18	A9	-	A14J15-38
-19	Gnd	-	A14J15-39
-20	A8	-	A14J15-40
A17J3-1	Bus Available	-	J9-21
-2	RS-422 IN -	-	J9-20
-3	Bus Request	J9-3	-
-4	N/C	-	-
-5	RS-422 OUT +	J9-4	-
6	N/C	-	-
-7	RS-422 IN +	-	J9-6
-8	RS-422 OUT -	J9-37	-
-9	Gnd	J9-19	-
-10	Shield (Gnd)	J8-1	-
-11	N/C	-	-
-12	RS-232 TX	J8-2	-
-13	ID3	-	J8-15
-14	RS-232 RX	-	J8-3
-15	ID2	-	J8-16
-16	RSK Data OUT -	J8-4	-
-17	ID5	-	J8-17
-18	FSK Data IN +	-	J8-5
-19	ID6	-	J8-18
-20	IDO	-	J8-6

Table 1 LCU Assembly A17 Interface Summary (Cont.)

Connector	Function	To	From
A17J3-21	Gnd	J8-19	-
-22	RS-232 Sig. Gnd	J8-7	-
-23	N/C	-	
-24	ID1	-	J8-8
-25	N/C	-	-
-26	ID4	-	J8-9
-27	BR3	-	J8-22
-28	BR1	-	J8-10
-29	BRO	-	J8-23
-30	BR2	-	J8-11

3. FUNCTIONAL DESCRIPTION

3.1 Control and Data Transfer

When installed in the RF-590, the A17 assembly appears as an electrical extension of the address/data bus of the microprocessor on the A14 assembly. This bus is buffered by tri-state bidirectional buffer U5 and high-order address and control inputs buffered by U1. Selection of IC devices on the LCU for data transfer to/from the CPU is done using three-to-eight decoder U3 with high-order address bits. Interface signals $\overline{\mathrm{RD}}$, $\overline{W R}$, and S1 from the A14 assembly determine the direction of data flow after addresses have been loaded into latch U6 by ALE, the address latch enable.

The information stored in the EPROM is part of the system software and is not customer alterable.

3.2 Serial Data Transmission/Reception

Upon power up reset, the controlling CPU (A14U1) detects the presence of the LCU option, and initializes all IC devices on A17. Using the software in the LCU EPROM, the CPU conditions the USART U8 to receive incoming signals according to user-selected options. When response to a distant RCU is required by this RF-590 LCU, the transmit interface is enabled, and appropriate parallel data sent via address/data bus ADO-AD7 from the CPU is converted to serial data by USART U8. Completed reception/transmission of message characters by U8 is signaled to the CPU by interrupt line RST 5.5 , generated by U8 and U14. The BRCLK input to the USART is from the 5.0688 MHz crystal oscillator circuit using Y2.

3.3 Serial Interfaces

The A17 assembly provides all standard data communication interfaces (each is individually jumper selectable). For RS-232C/MIL-STD-188C interfaces, 1488 drivers in U15 and 1489A receiver U21 are used. The RS-422 interface utilizes tri-state drivers of U13 and receiver in U18.

OH HARRIS
 RF COMMUNICATIONS

Parallel Data I/O

Parallel data I/O is accomplished by input buffers U 10 and U 11 reading user-selected options from DIP switches S1 and S2. Outputs from latch U9 select operating modes of modem U16 and the interface control functions. Data transfer to/from these parallel I/O elements, as well as USART U8, is managed by chip selects from U3 combined with appropriate $\overline{R D}$ and $\overline{W R}$ signals in U4.

3.5 Modem I/O

The TXD signal from USART U8 (2661) is presented in serial data format to the TXD input of universal low speed ($0-600 \mathrm{bps}$) modem U16 (MC14412) for conversion to frequency shift keying (FSK) signals. The 1.0 MHz Y 1 crystal is required to utilize the U 16 on chip oscillator. The TXCND signal (transmit carrier), a digitally synthesized sine wave derived from the 1.0 MHz oscillator reference is applied to the filter input of transmit filter/line hybrid U19 (1262). With the MODE input from parallel data control U9 (74LS374) set to " 1 " and the TYPE input from switch S1 set to " 1 ", the US standard originate frequencies are used. A MARK " 1 " is 1270 Hz while a SPACE " 0 " is 1070 Hz . The RX RATE input to U16 selects a receive data rate of $0-600$ bits per second (bps).

Transmit filter/line hybrid U19 lowpass filters the oscillator output to attenuate those modulation components which would interfere with the adjacent channel. The CHAN SELECT signal input of U19 (1262), via part of dual op amp U22 allows the filter to pass the originate frequencies $1170 \mathrm{~Hz} \pm 100 \mathrm{~Hz}$ when the CHAN SELECT signal is -12 V and the answer frequencies $2125 \mathrm{~Hz} \pm 100 \mathrm{~Hz}$ when the CHAN SELECT signal is +12 V . $\mathrm{U} 19(1262)$ also contains an active line hybrid which couples the modem to the line. T1 provides a 600 ohm balanced audio output. LEVEL ADJ potentiometer R20 allows the operator to adjust the hybrid output level. The XMT FSK output signal is applied to the distant RCU via rear panel connector J8.

The RCV RSK input signal from the distant RCU via connector J8 is passed through U19 (1262) to receive filter U20 (1267) as the RCV FSK signal. Receive filter U20 (1267) attenuates signals outside the channel passband and also band limits noise energy from the line. The CHAN SELECT signal input to U20 (1267) allows the filter to pass the originate frequencies $1170 \mathrm{~Hz} \pm 100 \mathrm{~Hz}$ when the CHAN SELECT signal is -12 V and the answer frequencies $2125 \mathrm{~Hz}+100 \mathrm{~Hz}$ when the CHAN SELECT signal is +12 V . U20 (1267) also contains a soft limiter amplifier which limits the RXCND signal to supply the demodulator in U16 (MC14412) with a square wave FSK signal. The RXCND signal is demodulated and routed to serial I/O (USART) U8 as the RXD signal via jumper A17E8 to A17E4.

BITE (Self-Test)

When installed, the A17 LCU hardware is tested along with all other RF-590 functions during execution of the build-in-test (BITE) feature of the receiver. These tests are performed if the receiver is in Local or Remote operation. Specifically, three LCU tests are made: a test of USART U8 function, a checksum test to ensure correct EPROM function, and a test of parallel I/O and RS-422 receivers. The corresponding BITE fault codes are:

时 HARRIS

- Fault 01 - EPROM (U7) fault
- Fault 02 - Communications (USART U8) fault
- Fault 03 - Interface (U9, U10, U17, U18) fault

Dc Distribution

The A17 assembly receives three supply voltages from A14, each of which is converted by local regulators to provide voltages needed by the LCU circuits. The +8.5 volt input is regulated by VR2 to yield the +5 V logic supply. The +15 V and -15 V inputs are converted by regulators VR1 and VR3 respectively to provide +12 V and -12 V levels for the modem and serial interface.
4. MAINTENANCE

4.1 Setup

Identification Number

For use in a remote control system consisting of many RF-590 or other compatible units, each LCU must be setup to have an individual unique identification number. This number, an eight-bit Binary code is set up on DIP switch S1 and allows 255 individual unit codes (1 to 255) according to table 2.

Table 2. Identification Number Setup

Switch	Binary Weight
S1-1	128 (highest order bit)
S1-2	64
S1-3	32
S1-4	16
S1-5	8
S1-6	4
S1-7	2
S1-8	1 (lowest order bit)

$0=$ switch closed
1 = switch open

For example, leaving only S1-4 and S1-7 open and all other S1 switches closed, forms the binary idenfification number 00010010 which is $16+2=18$ (in decimal format).

4.1.2 Baud Rate Selection

The RF-590 LCU allows any of sixteen popular baud rates to be used in communication through the USART U8. The baud rate is selectable by setting switches on DIP switch S2 according to table 3.

Table 3. Baud Rate Setup

S2-1	S2-3	s2-4	s2-7	Baud Rate
C	C	C	C	50
C	O	C	C	75
C	C	C	O	110
C	O	C	O	134.5
C	C	O	C	150
C	O	O	C	300
C	C	O	O	600
C	O	O	O	1200
O	C	C	C	1800
O	O	C	C	2000
O	C	C	O	2400
O	O	C	O	3600
O	C	O	C	4800
O	O	O	C	7200
O	C	O	O	9600
O	O	O	O	19200

$\mathrm{O}=$ switch open
C = switch closed

4.1.3 Signaling Interface Selection

As mentioned before, the RF-590 LCU allows any one of four common signaling interfaces to be used. Typically, the desired interface will be set at the factory. If another interface is needed, configure jumpers as shown in table 4.

Table 4. Jumper Selection of Interface

Selected Interface	Jumper Configuration
RS-232C Interface	
RS-232C Tx	E27-E11 Jumpered
	E14-E16 Jumpered
	E15-E16 Open

Table 4. Jumper Selection of Interface (Cont.)

Selected Interface	Jumper Configuration
RS-232C Rx	E6-E4 Jumpered
	E5-E4 Open
	E7-E4 Open
E8-E4 Open	
MIL-188C Interface	
MIL-188C Tx	E27-E11 Jumpered
	E15-E16 Jumpered
MIL-188C Rx	E14-E16 Open
	E7-E4 Jumpered
	E6-E4 Open
RS-E4 Open	
	E8-E4 Open
RS-422 Rx ard Tx	E5-E4 Jumpered
	E6-E4 Open
	E8-E4 Open
Modem (Refer to paragraph 4.1.4)	E27-E12 Jumpered
Modem Tx	E8-E4 Jumpered
	E5-E4 Open
	E7-E4 Open Open

For normal operation, leave jumpers E1-E2 open.

4.1.4 Modem Signalling Frequencies

The FSK modem may be operated using the US Answer or US Originate frequencies from the RF-590 remote control option. Typically, the RF-590 remote option is configured for US Originate operation and the distant controller then must be set for US Answer frequencies. Frequency pair selection is accomplished by the setup listed in table 5. Setup for FSK modem is listed in table 4.

Table 5. US Answer and US Originate Frequencies

RF-590 Option	Jumper Configuration
US Answer	E21-E22 Jumpered
E26-E22 Open	
	E26-E24 Jumpered
E24-E21 Open	
US Originate	E21-E22 Open
	E26-E22 Jumpered
	E26-E24 Open
	E24-E21 Jumpered

4.2 Hybrid Level Adjustment

The following adjustment is for the FSK modem output level, andhas been completed at the factory prior to shipment. In the event a board needs repair or realignment, the following procedure has been included.

Connect an HP-3400A Analog Voltmeter, or equivalent, between pins 16 and 18 of connector J8 on the RF-590 rear panel.
b. Connect an ac power cord on the RF-590 rear panel.

Jumper A17E1 to A17E2.
d. Set the voltmeter RANGE control to the 1 volt, 0 dBm position.
e. Turn on the RF-590 power using Power ON/OFF VOLUME control switch/potentiometer located on the front panel.
f. Adjust hybrid level adjustment A17R20 for a meter reading of 1 volt, 0 dBm .
g. Turn off power and disconnect test equipment. Remove E1-E2 jumper.

4.3 Troubleshooting

There are six test points located on LCU Assembly A17. Table 6 used together with the schematic diagram and component location drawing should help in locating most A17 problems.

Table 6. Test Point Indications

Test Point	Indicates
TP1	A17 address/data buffer enable A17U5
TP2	Chip enable for LCU EPROM A17U7
TP3	LCU activity signal from A17U9
TP4	RST 5.5 interrupt from A17U14
TP5	Modem Transmit carrier (MARK $=1270 \mathrm{~Hz}$, SPACE $=1070 \mathrm{~Hz})^{*}$
TP6	Modem Receive Carrier (MARK $=2225 \mathrm{~Hz}$, SPACE $=2025 \mathrm{~Hz})^{*}$
* Modem configured as U.S. Standard Originate.	

Data transfer to or from the microprocessor on Control Board A14 takes place when a logic LOW is seen at TP1. A simultaneous LOW at TP2 indicates the exchange is that of program steps from the EPROM containing software to manage the A17 assembly. When installed in a properly functioning receiver, logic HIGH pulses should be seen once per millisecond at TP3, even if the RF-590 is not in remote operation (with or without an attached, controlling unit). When a controlling unit is operating, its communication with the RF-590 will result in intermittent active high pulses on the interrupt line (TP4), again regardless of the local or remote operation of the receiver.

Absence of activity on points TP1-TP3 indicate a failure in the connection of A17 assembly to Control Board Assembly A14. If the Remote board is not properly installed, an operator pressing the REMOTE button on the RF-590 front panel will get no response. If activity is seen on TP1-TP3 and the receiver can be placed into remote operation (but no activity is seen at TP4), the fault lies in the setup of the A17 board (baud rate or interface jumpering) or in the controller or link between controller and RF-590.

If activity is seen on all four test points during operation with a controller, but the RF-590 cannot be remotely commanded, check that the LCU identification number is properly selected. Also check that this LCU is the one being commanded from the controller. As an aid to checking desired baud rate and identification number setups, apply power to the receiver after the corresponding DIP switches S1 and S2 have been set on A17. With the receiver selected to remote receive operation, depress and hold in the front panel ENTER button. Within ten seconds, the lefthand display of the RF-590 will show the identification number and baud rate selected on A17S1 and A17S2 in a format such as REMOTE \# 042400 BPS. This is for LCU identification number 4 and a communication rate of 2400 bits per second (baud). Users should change the baud rate switches only when the RF-590 is off so that the A17 PWB will correctly be set up when power is again applied.

5. PARTS LIST

Table 7 is a comprehensive parts list of all replaceable components in Remote Control Assembly A17. When ordering parts from the factory, include a full description of the part. Use figure 1, Remote Control Assembly A17 Component Location Diagram to identify parts.

6. SCHEMATIC DIAGRAM

Figure 2 is the Remote Control Assembly A17 schematic diagram.
Table 7. Remote Control Assembly A17 Parts List (PL 10073-6200)

Ref. Desig.	Part No.	Description
	10073-6200	Remote Control Assembly
C1, C2	CK05BX103M	Capacitor, . 01 uF
C3	C26-0050-109	Capacitor, 1 uF
C4	CK05BX103M	Capacitor, . 01 uF
C5, C6	C26-0050-109	Capacitor, 1 uF
C7-C23	CK05BX103M	Capacitor, . 01 uF
C24	CM04FD201J03	Capacitor, $200 \mathrm{pF}, 500 \mathrm{~V}$
C25-C27	CK05BX103M	Capacitor, . 01 uF
C28	C11-0006-225	Capacitor, 2.2 uF, 50 V
C29	CK05BX103M	Capacitor, . 01 uF
C30	CM05FD511J03	Capacitor, $510 \mathrm{pF}, 500 \mathrm{~V}$
C31	C22-0005-001	Capacitor, 2.7 uF, 50 V
C32, C33	CM04ED330J03	Capacitor, 33 pF
CR1, CR2	1N5234B	Diode, Zener, 6.2 V
E1, E2	J45-0041-001	Wire Wrap Post
E4-E8	J45-0041-001	Wire Wrap Post
E11, E12	J45-0041-001	Wire Wrap Post
E13-E22	J45-0041-001	Wire Wrap Post
E24, E26	J45-0041-001	Wire Wrap Post
E27	J45-0041-001	Wire Wrap Post
J1, J2	J45-0013-020	Connector, Jack, 20 pin
J3	J45-0013-030	Connector, Jack, 30 pin
R1	R50-0010-103	Resistor, SIP, 10 K
R2, R4	R65-0003-103	Resistor, Carbon Film, $10 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$
R5	R50-0010-103	Resistor, Network, 10 K
R6	R50-0010-103	Resistor, Network, 10 K
R7	R65-0003-362	Resistor, Carbon Film, 3.6 K
R8	R65-0003-103	Resistor, Carbon Film, 10 K
R9	R65-0003-203	Resistor, Carbon Film, 20 K
R11, R12	R65-0003-473	Resistor
R14	R65-0003-103	Resistor, Carbon Film, 10 K, 1/4 W, 5\%
R16, R17	R65-0003-361	Resistor, Carbon Film, 360 ohms, 1/4 W, 5\%

Table 7. Remote Control Assembly A17 Parts List (PL 10073-6200) (Cont.i

Ref. Desig.	Part No.	Description
R18, R19	R65-0003-102	Resistor, Carbon Film, 1 K, 1/4 W, 5\%
R20	R30-0002-204	Resistor, Variable, 200 K
R21, R22	R65-0003-471	Resistor, Carbon Film, 470 ohms, 1/4 W, 5\%
S1, S2	S50-0001-008	Switch, DIP, 8 position
T1	T30-0001-004	Transformer
TP1	J-0071	Test Point, Brown
TP2	J-0066	Test Point, Red
TP3	J-0069	Test Point, Orange
TP4	J-0070	Test Point, Yellow
TP5	J-0068	Test Point, Yellow
TP6	J-0072	Test Point, Green
U1	$116-0002-000$	Integrated Circuit, Octal Buffer
U2	$101-0042-000$	Integrated Circuit, Quad AND Gate
U3	$137-0001-000$	Integrated Circuit, Three-to-Eight Decoder
U4	$101-0045-000$	Integrated Circuit, Quad OR Gate
U5	I58-0006-000	Integrated Circuit, Bus Transceiver
U6	$105-0000-373$	Integrated Circuit, 8 Bit Latch
*U7	See Note	Integrated Circuit, 4KX8 EPROM
U8	$159-0005-000$	Integrated Circuit, USART
U9	I50-0027-000	Integrated Circuit, 8 Bit Latch
U10	I16-0002-000	Integrated Circuit, Octal Buffer
U11	I16-0002-000	Integrated Circuit, Octal Buffer
U12	$101-0008-000$	Integrated Circuit, Hex Inverter
U13	$116-0008-000$	Integrated Circuit
U14	$101-0048-000$	Integrated Circuit, Quad NAND Gate
U15	$116-0001-000$	Integrated Circuit, RS-232 Driver
U17	$116-0008-000$	Integrated Circuit, RS-422 Driver
U18	$117-0003-000$	Integrated Circuit, RS-422 Receiver
U21	$117-0001-000$	Integrated Circuit, RS-232 Receiver
XU7	J77-0008-005	Socket, 24 pin
VR1	$112-0006-012$	Regulator, +12 V
VR2	IC-0441	Regulator, +5 V
VR3	$112-0010-012$	Regulator, -12 V
Y1	Y15-0002-000	Crystal, 11000 MHz
Y2	Y15-0003-000	Crystal, 5.0688 MHz

[^6]

Figure 1. Remote Control Assembly A17 Component Location Diagram (10073-6200)

NOTE: UNLESS OTHERWISE SPECIFIED:

1. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN FOR A COMPLETE DESIGNATION. PREFIX WITH.
UNIT NO. ANDIOR ASSEMBLY NO. DESIGNATION.
2. ALL RESISTOR VALUES ARE IN OHMS, $1 / 4 \mathrm{~W}$, $: 5 \%$.
3. ALL CAPACITOR VALUES ARE IN MICROFARADS.
4. YENDOR PART NO. CALLOUTS ARE FOR REFERENCE ONLY

OONENTS ARE

RAPER SELECTION OF INTER ROE
SELECTED INTERFACE
JUMPER CONFIGURATION

NOTE: FOR MORTAL OPERATION
FOR NORMAL OPERATION
ET TO EZ LEFTOPRN.
CONNECT ET TO ER FOR
MODEM OUTPUT ADJUSTMENT
reran elisotion of mintage

Figure 2. Remote Control Assembly A17 Schematic Diagram (10073-6201)

INDEPENDENT SIDEBAND (ISB) ASSEMBLY

(A18 ASSEMBLY)

INDEPENDENT SIDEBAND (ISB) ASSEMBLY

(A18 ASSEMBLY)

Hin HARRIS

Oin HARRIS RF COMMUNICATIONS

TABLE OF CONTENTS

Paragraph

1
General Description 1
Interface Connections 1
A18 Circuit Descriptions 3
455 kHz Second IF Amplifier Chain 3
Product Detector 3
Audio Output Circuitry 4
AGC Circuit Operation 4
Maintenance 4
Second IF Chain Alignment 4
Parts List 5
Schematic Diagram 5
LIST OF FIGURES
Figure Page
ISB Assembly A18 Functional Block Diagram
123
Second IF Chain Alignment5
ISB Assembly A18 Component Location Diagram 12
ISB Assembly A18 Schematic Diagram 13
LIST OF TABLES
Table
1 A18 ISB Assembly Interface Connections 1
ISB Assembly A 18 Maintenance Parts List (PL 10073-6350) 5

SB Assembly A18 Functional Block Diagram

Y) HARRIS

RF COMMUNICATIONS

1
GENERAL DESCRIPTION
The ISB IF/Audio Assembly (10073-6350) duplicates the parts of the IF/Audio Assembly (10073-5410 and 10073-5450) required for independent sideband (ISB) operation. Specifically, it includes:

- $\quad 455 \mathrm{kHz}$ IF Amplifier
- Product detector
- Line audio output
- Signal monitoring

2. INTERFACE CONNECTIONS

Table details the various input/output connections and other relevant data for:

- J4 - Interconnect with A14 Control Assembly
- J5 - Interconnect with A5 IF/Audio Assembly
- J6 - Interconnect with RF-590 Rear Panel

Table 1 A18 ISB Assembly Interface Connections

Connector	Function	Characteristics
J1	IF Input	$455 \mathrm{kHz},-97 /-5 \mathrm{dBm}, 50$ ohms
J2	BFO Input	455 kHz, 0 dBm, 50 ohms
J3	ISB Output	$455 \mathrm{kHz},-7 \mathrm{dBm}$ (under AGC control), 50 ohms
J4-1	ISB AGC Meter	ISB (LSB) signal strength
J4-2	ISB Audio Meter	ISB (LSB) line audio level
J4-3	Index key	
J4-4	External mute	$+5 \mathrm{Vdc}=$ mute $\quad 8$
J4-5	ISB (LSB) Line Level Adjust	0 to -15 Vdc
J4-6	AGC BITE output	Typically 1.5 Vdc during BITE test
J4-7	Detected Line Audio	

Table 1. A18 ISB Assembly Interface Connections (Cont.'

Connector	Function	Characteristics	
J4-8	Detected IF Input (BITE)		
J4-9	Internal Mute	$+5 \mathrm{Vdc}=$ mute	
J4-10	Spare		
J5-1	ISB (LSB) Audio Output	To volume potentiometer	
J5-2	ISB (LSB) AGC Output	To IF/Audio AGC circuit	
J5-3	Medium AGC	+5 Vdc $=$ selected	
J5-4	Fast AGC	$+5 \mathrm{Vdc}=$ selected	
J5-5	AGC ON/OFF	$+5 \mathrm{Vdc}=\mathrm{AGC}$ off	\%
J5-6	RF gain	0 to +12 Vdc	
J5-7	Index key		
J5-8	-15 Vdc		*
J5-9	+15 Vdc		
J5-10	Spare		13xnfon
J6-1	AGC output	0 to +6 Vdc	
J6-2	Spare		
J6-3	Index key		
J6-4	Line audio	wher	
J6-5	AGC dump		
J6-6	Line audio center tap		\$4L
J6-7	External AGC input	0 to +6 Vdc	P等
J6-8	Line audio		Pat

80 HARRIS
 RF COMMUNICATIONS

3. A18 CIRCUIT DESCRIPTIONS

$3.1 \quad 455 \mathrm{kHz}$ Second IF Amplifier Chain

Low level signals at 455 kHz from IF Filter Assembly A4 enter the A18 assembly at coax connector J 1 . At this point it goes to both the input of the IF amplifier and the input BITE detector. The BITE detector consists of Q 6 and its associated components. Q 6 is an amplifier with 26 dB of gain that feeds a diode detector consistsing of CR4, CR5, R32, and C27. CR6 is a 4.7 volt Zener diode that protects the BITE circuitry against overvoltage. This detector serves to check the output of the IF Filter board and the input to the IF/AF board.

Q1 is a grounded gate FET amplifier that is the input stage to the IF strip amplifier, and has approximately 20 dB of gain. $\mathrm{Q} 2, \mathrm{Q} 3$, and Q 4 are common emitter amplifiers with an overall gain of $46 \mathrm{~dB} \pm 6 \mathrm{~dB}$. This 12 dB gain adjustment is available at R8, and allows the user to trim the overall gain of the IF strip to its desired value.

Receiver Automatic Gain Control (AGC) of the IF strip is accomplished throught he use of PIN diodes CR1, CR2, and CR3. A negative voltage applied to the IF AGC line (TP2) forward biases the PIN diodes and decreases the gain of the IF strip by decreasing the load impedance of each stage. Normal receiver operation requires 80 dB of available gain reduction in the strip, which is accomplished with approximately -3.0 volts on the IF AGC line.

L3, L4, C17, C18, and C19 from a bandpass filter which is adjusted during alignment to be centered at 455 kHz . This filter has approximately 9 dB of insertion loss for an overall gain to TP1 of 56 dB . The output of this filter drives Q5, (an emitter follower that buffers the rest of the IF strip) and O9 (a dual gate MOSFET that is the input to the product detector).

Q5 serves as a buffer to provide inputs to 010 (IF output gain stage). Q10 is a common emitter amplifier that has 30 dB of gain to provide the high level IF output, and drive amplifier Q12. Q11 is an emitter follower that buffers the high level IF output, nominally -7 dBm . Resistor R61 serves to set the IF output impedance at 50 ohms at J 3 . This output is then routed to rear panel connector J 2 and is referred to as the ISB output. Overall IF strip gain to the IF output is nominally $80 \mathrm{~dB} . \mathrm{Q} 12$ is a common emitter amplifier with 11 dB of gain that drives Q13 (the AGC detector).

3.2 Product Detector

Sideband signals are demodulated using a mixer as a product detector. The 455 kHz input to the mixer RF port is buffered through dual gate MOSFET Q9. LO input is 455 kHz at $0 \mathrm{dBm} . \mathrm{Q} 7$ is a buffer that drives Q8. Q 8 provides 10 dB of gain to 50 ohm matching network R42, R43, R44, which in turn provides 7 dBm of LO drive to U7. LO leakage back into the IF chain is prevented by the 40 dB LO to RF isolation of U7 as well as the high reverse isolation of buffer Q8. Sideband inversion occurs in the mixing process. Typicaly audio output level of 2.5 mVrms at the U7 IF port is boosted to approximately 150 mVrms by amplifier U1.

7) HARRIS
 RF COMMUNICATIONS

3.3 Audio Output Circuitry

The 600 ohm line audio output at J 6 (pins 4,6 , and 8) is driving long lines. This output is the secondary of transformer T2 and along with the center tap it's available at both the rear panel terminal strip TB1 and D connector J7.

The gain of the output amplifier is adjusted by a 20 turn trim potentiometer at the front panel meter. The output level in dBm 600 ohms may be read from the meter to ease adjustment.

The output amplifier is a FET input, low noise, wideband op amp (U5A) with a complementary current buffer Q15 and Q17. Gain control is accomplished by varying the gate bias on FET Q16. Q16 is configured as a voltage variable resistor and acts as the shunt leg in the amplifier feedback network. Total gain control range is 30 dB from -20 dBm to +10 dBm . The two endpoints can be set independently. The minimum gain is controlled by resistor R82 which is in parallel with Q14. The maximum gain is set by the minimum on resistance of Q14.

The current buffer output stage of this amplifier is formed by Q 15 and Q 17 , a class AB complementary amplifier. The 600 ohm output impedance is set by resistor R85 whose 180 ohm value is transformed to 600 ohms by the $1.82: 1$ ratio of T2.

A buffered single ended line output to the processor is available at J5-1. The output of Q 15 and Q 17 also drives the precision half-wave detector (U3C) that provides the ISB AF meter and line audio detector BITE outputs. This circuit is a precision wideband, temperature compensated detector that provides meter drive through R91. The value of R91 is chosen so that the meter reads calibrated line output level in d8m 600 ohms. R93 provides a discharge path for C60 when the meter is not in circuit. There is also a buffered version of the peak detector output available for the line audio detector BITE line to the processor. A 4.7 volt Zener diode (CR20) provides overvoltage protection for the BITE circuitry.

3.4 AGC Circuit Operation

Refer to paragraph 7 of the A5 (IF/Audio/AGC) section of the RF-590 manual for a discussion of AGC circuit operation. The circuitry is identical except for the portion that produces the RF AGC output.

4. MAINTENANCE

The following adjustments should not be performed as routine maintenance procedures, but only when a failure indicates a definite need. All tests are performed with the assembly connections in normal contact, unless otherwise specified.

4.1 Second IF Chain Alignment

Perform the following procedure to align the second IF chain.
a. Connect equipment as shown in figure 1. Set the signal generator to $456.5 \mathrm{kHz}, 10 \mathrm{uV}$. Set spectrum analyzer to 455 kHz .

TO HARRIS
 RF COMMUNICATIONS

590-208

Figure 1. Second IF Chain Alignment
b. Set RF-590 controls as follows:

- Mode to ISB
- \quad AGC to OFF
- RF Gain to fully clockwise (cw)
c. Monitoring the spectrum analyzer at 455 kHz , adjust L3 and L4 for maximum output. (adjustments may be some what interactive, so repeat as necessary.)
d. Adjust R8 for $-7 \mathrm{dBm}(100 \mathrm{mVrms})$ at J 3 . Test is complete.

5. PARTS LIST

Table 2 is a comprehensive parts lists of all replaceable components in ISB Assembly A18. When ordering parts from the factory, include a full description of the part. Use figure 2, ISB Assembly A 18 Component Location Diagram, to identify parts.

6. SCHEMATIC DIAGRAM

Figure 3 is the ISB A18 schematic diagram.
Table 2. ISB Assembly A18 Maintenance Parts List (PL 10073-6350)

Ref. Desig.	Part No.	Description
C1	CK06BX104M	Capacitor, $.1 \mathrm{uF}, 100 \mathrm{Vdc}$
C2	CK06BX474M	Capacitor
C3	CK06BX474M	Capacitor
C4	CK06BX474M	Capacitor
C5	CK06BX104M	Capacitor, $11 \mathrm{uF}, 100 \mathrm{Vdc}$
C6	CK06BX474M	Capacitor

Table 2. ISB Assembly A18 Maintenance Parts List (PL 10073-6350) (Cont.)

Ref. Desig.	Part No.	Description	
C7	CK06BX474M	Capacitor	
C8	CK06BX474M	Capacitor	
C9	CK06BX104M	Capacitor, 1 uF, 100 Vdc	
C10	CK06BX474M	Capacitor	
C11	CK06BX474M	Capacitor	
C12	C26-0025-220	Capacitor	
C13	CK06BX104M	Capacitor, 1 uF, 100 Vdc	
C14	CK06BX474M	Capacitor	
C15	CK06BX474M	Capacitor	
C16	CM04FD181J03	Capacitor, Mica, 180 pF, 300	
C17	CM06FD112J03	Capacitor	
C18	CM04ED680J03	Capacitor	
C19	CM06FD122J03	Capacitor	
C20	CK06B $\times 104 \mathrm{M}$	Capacitor, $1 \mathrm{uF}, 100 \mathrm{Vdc}$	-
C21	CK06BX474M	Capacitor	
C22	C26-0025-220	Capacitor	
C23	CK06BX104M	Capacitor, $.1 \mathrm{uF}, 100 \mathrm{Vdc}$	
C24	CK06BX104M	Capacitor, $.1 \mathrm{uF}, 100 \mathrm{Vdc}$	OM
C25	CK06BX474M	Capacitor	
C26	CK06BX104M	Capacitor, . $1 \mathrm{uF}, 100 \mathrm{Vdc}$	
C27	CK06BX104M	Capacitor, $1 \mathrm{uF}, 100 \mathrm{Vdc}$	A
C29	CK06BX474M	Capacitor	
C30	CK06BX104M	Capacitor, . $1 \mathrm{uF}, 100 \mathrm{Vdc}$	
C31	CK06BX104M	Capacitor, .1 uF, 100 Vdc	
C32	CK06BX474M	Capacitor	
C33	CK06BX474M	Capacitor	
C34	CK06BX104M	Capacitor, 1 uF, 100 Vdc	
C35	CK05BX102M	Capacitor	
C36	CK06BX104M	Capacitor, 1 uF, 100 Vdc	
C37	CK06BX474M	Capacitor	
C38	CK06BX474M	Capacitor	
C39	CK06BX474M	Capacitor	
C40	CK06BX102M	Capacitor	
C41	C26-0025-470	Capacitor	
C42	C26-0025-470	Capacitor	
C43	CK06BX104M	Capacitor, . 1 uF, 100 Vdc	
C44	CK06BX104M	Capacitor, $1 \mathrm{uF}, 100 \mathrm{Vdc}$	19
C45	CK06BX474M	Capacitor	53
C46	CK06BX104M	Capacitor, . $1 \mathrm{uF}, 100 \mathrm{Vdc}$	
C47	CK06BX474M	Capacitor	
C48	CK06BX474M	Capacitor	

Table 2. ISB Assembly A18 Maintenance Parts List (PL 10073-6350) (Cont.'

Ref. Desig.	Part No.	Description	
C49	CK06B $\times 104 \mathrm{M}$	Capacitor, $11 \mathrm{uF}, 100 \mathrm{Vdc}$	
C50	CK06BX474M	Capacitor	
C51	CK06BX104M	Capacitor, $1 \mathrm{uF}, 100 \mathrm{Vdc}$	
C52	CK06BX104M	Capacitor, $11 \mathrm{uF}, 100 \mathrm{Vdc}$	
C53	CK05BX102M	Capacitor	
C54	C26-0025-339	Capacitor	
C55	C26-0025-339	Capacitor	
C56	C26-0025-339	Capacitor	
C57	CK06BX474M	Capacitor	
C58	CK06BX474M	Capacitor	
C59	CK06BX104M	Capacitor, . 1 uF, 100 Vdc	
C60	C26-0025-339	Capacitor	
C61	C25-0003-209	Capacitor	
C62	CK06BX104M	Capacitor, . $1 \mathrm{uF}, 100 \mathrm{Vdc}$	
C63	CK06BX104M	Capacitor, $1 \mathrm{uF}, 100 \mathrm{Vd}$	
CR1	D12-0008-001	Diode	
CR2	D12-0008-001	Diode	
CR3	D12-0008-001	Diode	
CB4	1N4454	Diode	
CR5	1N4454	Diode	580
CR6	1N4732A	Diode, 1N4732A, 4.7 U, Zener	
CR7	1N4454	Diode	
CR8	1N4454	Diode	
CR9	1N4454	Diode	
CR10-CR19	1N4454	Diode	
CR20	1N4732A	Diode, Zener, 1N4732A, 4.7 U	
CR21	1N4454	Diode	
CR22	1N4732A	Diode, Zener, 1N4732A, 4.7 U	19
CR23-CR30	1N4454	Diode	
J1-J3	J-0031	Connector, Coax	
J4, 55	J46-0032-010	Header, 10 pin	
J6	J46-0032-008	Connector, Amp, 8 pin	
L1,L2	MS75085-19	Inductor	
L3,L4	L11-0004-037	Inductor	
L5,L6	MS75085-19	Inductor	
L7	MS75085-18	Inductor	
L8	MS75085-11	Choke namaga	
L9-L11	MS75085-19	Inductor	
L12	10073-7029	Inductor	
Q1	035-0001-001	Transistor	

Table 2. ISB Assembly A18 Maintenance Parts List (PL 10073-6350) (Cont.

Ref. Desig.	Part No.	Description	
Q2	2N2222	Transistor, SI, NPN, GP	
Q3	2N2222	Transistor, SI, NPN, GP	
Q4	2N2222	Transistor, SI, NPN, GP	
Q5	2N2222	Transistor, SI, NPN, GP	
Q6	2N2222	Transistor, SI, NPN, GP	
Q7	2N2222	Transistor, SI, NPN, GP	
Q8	2N2222	Transistor, SI, NPN, GP	
09	Q-0325	Transistor	
Q10	2N2222	Transistor, SI, NPN, GP	
Q11	2N2222	Transistor, SI, NPN, GP	
Q12	2N2222	Transistor, SI, NPN, GP	
Q13	2N2907	Transistor, PNP	
Q14	2N2222	Transistor, SI, NPN, GP	
Q15	2N2222	Transistor, SI, NPN, GP	
Q16	2N4091	Transistor	
Q17	2N2907	Transistor, PNP	
Q18	2N2222	Transistor, SI, NPN, GP	
Q19	2N2222	Transistor, SI, NPN, GP	
Q20	2N2222	Transistor, SI, NPN, GP	
Q21	2N2907	Transistor, PNP	
R1	R65-0003-181	Resistor, Carbon Film un	
R2	R65-0003-561	Resistor, Film	
R3	R65-0003-101	Resistor	
R4	R65-0003-102	Resistor, Carbon Film	
R5	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%	
R6	R65-0003-512	Resistor, Carbon Film, 5.1 K, 1/4 W	
R7	R65-0003-200	Resistor	
R8	R40-0008-101	Resistor	
R9	R65-0003-431	Resistor, Carbon Film	
R10	R65-0003-102	Resistor, Carbon Film	
R11	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%	
R12	R65-0003-512	Resistor, Carbon Film, 5.1 K, 1/4 W	
R13	R65-0003-221	Resistor	
R14	R65-0003-390	Resistor, Film	
R15	R65-0003-431	Resistor, Carbon Film	
R16	R65-0003-101	Resistor	e.t
R17	R65-0003-102	Resistor, Carbon Film	
R18	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%	
R19	R65-0003-512	Resistor, Carbon Film, 5.1 K, 1/4 W	
R20	R65-0003-561	Resistor, Film	

Table 2. ISB Assembly A18 Maintenance Parts List (PL 10073-6350) (Cont.

Ref. Desig.	Part No.	Description
R21	R65-0003-101	Resistor
R22	R65-0003-361	Resistor
R23	R65-0003-203	Resistor, Carbon Film, 1/4 W, 5\%
R24	R65-0003-203	Resistor, Carbon Film, 1/4 W, 5\%
R25	R65-0003-271	Resistor
R26	R65-0003-102	Resistor, Carbon Film
R27	R65-0003-512	Resistor, Carbon Film, 5.1 K, 1/4 W
R28	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%
R29	R65-0003-561	Resistor, Film
R30	R65-0003-270	Resistor
R31	R65-0003-431	Resistor, Carbon Film
R32	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%
R33	R65-0003-203	Resistor, Carbon Film, 1/4 W, 5\%
R34	R65-0003-203	Resistor, Carbon Film, 1/4 W, 5\%
R35	R65-0003-471	Resistor, Metal Film, 470, 1/4 W
R36	R65-0003-221	Resistor
R37	R65-0003-431	Resistor, Carbon Film
R38	R65-0003-101	Resistor
R39	R65-0003-242	Resistor, Carbon Film, 1/4 W, 5\%
R40	R65-0003-120	Resistor, Carbon Film, 12, 1/4 W
R41	R65-0003-101	Resistor
R42	R65-0003-301	Resistor, Carbon Film
R43	R65-0003-180	Resistor
R44	R65-0003-301	Resistor, Carbon Film
R45	R65-0003-510	Resistor, Carbon Film, 1/4 W, 5\%
R46	R65-0003-102	Resistor, Carbon Film
R47	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%
R48	R65-0003-201	Resistor, Film
R49	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%
R50	R65-0003-201	Resistor, Film
R51	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%
R52	R65-0003-221	Resistor
R53	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%
R54	R65-0003-562	Resistor
R55	R65-0003-561	Resistor, Film
R56	R65-0003-433	Resistor, Carbon Film, 43 K, 1/4 W, 5\%
R57	R65-0003-100	Resistor, Carbon Film, 1/4 W, 5\%
R58	R65-0003-100	Resistor, Carbon Film, 1/4 W, 5\%
R59	R65-0003-431	Resistor, Carbon Film
R60	R65-0003-203	Resistor, Carbon Film, 1/4 W, 5\%
R61	R65-0003-510	Resistor, Carbon Film, 1/4 W, 5\%

Table 2. ISB Assembly A18 Maintenance Parts List (PL 10073-6350) (Cont.)

Ref. Desig.	Part No.	Description
R62	R65-0003-331	Resistor, Carbon Film, 330, 1/4 W
R63	R65-0003-432	Resistor, Carbon Film
R64	R65-0003-432	Resistor, Carbon Film
R65	R65-0003-223	Resistor, Carbon Film, 1/4 W, 5\%
R66	R65-0003-432	Resistor, Carbon Film
R67	R65-0003-433	Resistor, Carbon Film, $43 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$
R68	R30-0008-203	Resistor, Variable, 20 K
R69	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%
R70	R65-0003-561	Resistor, Film
R71	R65-0003-512	Resistor, Carbon Film, 5.1 K, 1/4 W
R72	R65-0003-161	Resistor
R73	R65-0003-561	Resistor, Film
R74	R65-0003-473	Resistor, Carbon Film, 1/4 W, 5\%
R75	R65-0003-101	Resistor
R76	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%
R77	R65-0003-513	Resistor, Carbon Film, 1/4 W, 5\%
R78	R65-0003-512	Resistor, Carbon Film, 1/4 W, 5\%
R79, R80	R65-0003-104	Resistor, Carbon Film, $100 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$
R81	R65-0003-511	Resistor, Carbon Film, 510, 1/4 W
R82	R65-0003-203	Resistor, Carbon Film, 1/4 W, 5\%
R83	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%
R84	R65-0003-910	Resistor, Film, 910, 1/4 W, 5\%
R85	R65-0003-181	Resistor, Carbon Film
R86	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%
R87	R65-0003-910	Resistor, Film, 910, 1/4 W, 5\%
R88	R65-0003-473	Resistor, Carbon Film, 1/4 W, 5\%
R89	R65-0003-152	Resistor, Film, 1.5 K, 1/4 W, 5\%
R90	R65-0003-244	Resistor
R91	R65-0003-273	Resistor
R92	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%
R93	R65-0003-302	Resistor, Carbon Film, 3 K, 1/4 W, 5\%
R95	R65-0003-512	Resistor, Carbon Film, 5.1 K, 1/4 W
R96	R65-0003-101	Resistor
R97	R65-0003-471	Resistor, Metal Film, 470, 1/4 W
R98	R65-0003-101	Resistor
R99	R75-0001-002	Resistor
R100	R65-0003-473	Resistor, Carbon Film, 1/4 W, 5\%
R101	R65-0003-431	Resistor, Carbon Film
R102	R65-0003-473	Resistor, Carbon Film, 1/4 W, 5\%
R103	R65-0003-203	Resistor, Carbon Film, 1/4 W, 5\%
R104	R65-0003-242	Resistor, Carbon Film, 1/4 W, 5\%

Table 2. ISB Assembly A18 Maintenance Parts List (PL 10073-6350) (Cont.)

Ref. Desig.	Part No.	Description
R105	R65-0003-474	Resistor, Carbon Film, 1/4 W, 10\%
R106	R65-0003-100	Resistor, Carbon Film, 1/4 W, 5\%
R107	R65-0003-473	Resistor, Carbon Film, 1/4 W, 5\%
R108	R65-0003-473	Resistor, Carbon Film, 1/4 W, 5\%
R109	R65-0003-473	Resistor, Carbon Film, 1/4 W, 5\%
R110	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%
R111	R65-0003-203	Resistor, Carbon Film, 1/4 W, 5\%
R112	R30-0008-202	Resistor
R113	R65-0003-683	Resistor, Carbon Film, 68 K, 1/4 W
R114	R65-0003-184	Resistor, Carbon Film, 180 K, 1/4 W, 5\%
R115	R65-0003-822	Resistor, Carbon Film, 8, 1/4 W, 5\%
R116	R65-0003-393	Resistor, Carbon Film, 1/4 W, 5\%
R117	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%
R118	R65-0003-751	Resistor, Carbon Film
R119	R65-0003-681	Resistor, Carbon Film, 680, 1/4 W, 5\%
R120	R30-0008-501	Resistor
R121	R65-0003-102	Resistor, Carbon Film
R122	R65-0003-301	Resistor, Carbon Film
R123	R65-0003-102	Resistor, Carbon Film
R124	R65-0003-623	Resistor, Carbon Film, 62 KR, 1/4 W, 5\%
R125	R65-0003-103	Resistor, Carbon Film, 1/4 W, 5\%
T1	10073-7026	Transformer
T2	T60-0004-001	Transformer
TP1	J-0071	Test Point
TP2	J-0066	Test Point
TP3	J-0069	Test Point
TP4	J-0070	Test Point, Yellow
TP5	J-0068	Test Point, Green
TP6	J-0072	Test Point, Blue
TP7	J-0073	Test Point
TP8	J.0074	Test Point, Grey
U1	130-0036-001	Integrated Circuit
U2	130-0035-000	Integrated Circuit
U3	130-0003-000	Integrated Circuit, Quad Oper. Ampl.
U4	130-0003-000	Integrated Circuit, Quad Oper. Ampl.
U5	130-0003-000	Integrated Circuit, Quad Oper. Ampl.
U6	130-0003-000	Integrated Circuit, Quad Oper. Ampl.
U7	151-0003-001	Mixer
VR1	112-0010-005	Voltage Regulator
VR2	112-0006-005	Integrated Circuit

Figure 2. ISB Assembly A18 Component Location Diagram

TE: UHLESS OTHERWISE SPECIFIED: PARTIAL REFEREMCE DESIGYATIONS ARE SHOWN.
OR A COMPLETE DESIGAATION. PRETX WITH. FOR A COMPLETE DESIGMATION. PGEFIX WITH all resistor values are in ohus, $1 / 4 W, 25 \%$. all capacitor values afe in microfarads, zoov.

Figure 3. ISB Assembly A18 Schematic Diagram (Sheet 2 of 3)

Figure 3. ISB Assembly A18 Schematic Diagram

RF-596-02 PRESELECTOR MODULE

(A19 ASSEMBLY)

RF-596-02 PRESELECTOR MODULE

(A19 ASSEMBLY)

Copyright (C) 1983
By Harris Corporation
All Rights Reserved

8 HARRIS
 RF COMMUNICATIONS

TABLE OF CONTENTS

Paragraph

1 General Description 1
2 Technical Characteristics 1
3 Functional Description 1
3.1 Filter Select Assembly A19A2 1
3.2 Tuning Assemblies I and II (A2A4A4, A2A4A3) 3
3.3 Interconnect Schematic 4
4 Maintenance 4
4.1 General 4
4.2 Troubleshooting Procedure 5
5 Assembly A19 Alignment 6
5.1 General Information 6
5.2 Prealignment Performance Check 6
5.3 Assembly A19 Alignment Procedure 6
5.3.1 Low Band Adjustment (Initial Setup) 7
5.3.2 Low Band Adjustments (Tuning) 10
5.3.3 Variable Capacitor Adjustment 10
5.3.4 High Band Adjustment (Initial Setup)
5.3.5 High Band Adjustment (Tuning) 12
5.3.6 High Band/Low Band End Check 12
5.4 Post Alignment Performance Check 12
6 Parts Lists 13
7 Schematic Diagrams 13

LIST OF FIGURES

Figure
Frontispiece 1 2
RF-596-02 Preselector Module (A19 Assembly) Functional Block Diagram
RF-596-02 Preselector Module Option (A19 Assembly)
2
Alignment Test Setup for Assembly A19 3 8
Typical Response Curve for Cavity Filter 84
High/Low Band Cavity Coil Adjustment Locations 9
RF-596-02 Preselector Module Rear Panel Adjustments 11
RF-596-02 Filter Assembly Module Locations 19
Filter Select PWB, Component Location Diagram (10024-2210) 19
Tuning Assembly I, Component Location Diagram (10024-2229 Rev. A) 20
Tuning Assembly II, Component Location Diagram (10024-2339 Rev. A) 20
Interface PWB, Component Location Diagram 21
Filter Select PWB Schematic Diagram 23
Tuning Assemblies I and II, Schematic Diagram 25

LIST OF FIGURES (Cont.

Figure Page
13 RF-596-02 Preselector Module (A19 Assembly) Interconnect Schematic Diagram 27
14
RF-596-02 Preselector Module Schematic Diagram 29
LIST OF TABLES
Table Page
1 Filter Select Assemblies I and II Troubleshooting Aid 5Filter Select PWB A2A4A2 Frequency vs. Relay Operation5
Optimum Response Curve Characteristics 7
Post Alignment Test Frequencies 13
Filter Select PWB Assembly Parts List 14
5Tuning Assembly I Parts List15Tuning Assembly 11 Parts List16
Preselector Interface PWB Assembly Parts List17
9 List of Manufacturer's Codes 18

NOTE

This supplement describes the RF-596-02 Preselector Module, a microprocessor-controlled preselector which improves the RF-590 Receiver's performance in strong signal environments. This option consists of an RF-578 Preselector and the A1 Interface PWB 10073-6400. The A1 Interface PWB 10073-6400 is used to convert serial data from the RF-590 to parallel data for use with the RF-578 Preselector or the $1920-1200$ suboctave filter. The RF-596-02 Preselector Module is the A19 Assembly of the RF-590 Receiver.

RF-596-02 Preselector Module (A19 Assembly) Functional Block Diagram

OHARRIS

 RF COMMUNICATIONS

 RF COMMUNICATIONS}

1. GENERAL DESCRIPTION

The RF-596-02 Preselector Module is a microprocessor-controlled preselector which improves the RF-590 Receiver's performance in strong signal environments. This option consists of an RF-578 Preselector and the A1 Interface PWB 10073-6400. The A1 Interface PWB 10073-6400 is used to convert serial data from the RF-590 to parallel data for use with the RF-578 Preselector or the 1920-1200 suboctave filter. Serial data is constantly clocked through shift registers U1 and U2 by the clock pulses. Only a frequency change on the RF-590 front panel causes a strobe pulse to be applied at the end of a serial word to U1 and U2. This strobe pulse causes the outputs of U 1 and U 2 to change to a parallel data format. The parallel output of shift registers $U 1$ and $U 2$ is the address that is used by EPROMS $U 3$ and $U 4$ to select capacitor control lines CO through C9 of the RF-578 or bands for the one-half octave filter. Figure 1 shows the location of the A1 Interface PWB on the RF-596-02 Preselector Module.

2. TECHNICAL CHARACTERISTICS

Weight:

Preselector Module	2.6 pounds (1.8 kilograms)
Control PWB Assemblies	0.5 pounds (0.23 kilograms)

Dimensions:

Preselector Module	$5.31(\mathrm{H}) \times 5.84(\mathrm{~W}) \times 2.09(\mathrm{D})$ inches $13.49(\mathrm{H}) \times 14.83(\mathrm{~W}) \times 5.31(\mathrm{D})$ centimeters
Power Requirements:	5 Vdc -15 Vdc
Frequency Range:	0.1 to 30 MHz
Insertion Loss:	4 to 6 dB
Selectivity:	20 dB minimum at a frequency 10% from f_{o}
Overload Protection:	On-channel -10 Vrms nominal Off-channel -30 Vrms nominal

3. FUNCTIONAL DESCRIPTION

3.1 Filter Select Assembly A19A2

An RF input signal from the antenna enters the Filter Select PWB at J 2 , and is fed via the normally energized contacts of relay K6, to relay K1. Relays K1 and K2 are under the control of the $<2 \mathrm{MHz}$ input from Interface PWB A19A1. If the receive frequency is less than 2 MHz , a low input would be present at E5. Q 1 is now biased on energizing K1, K2; opening the signal path to the cavity filters; and coupling the

Figure 1. RF-596-02 Preselector Module Option (A19 Assembly)

HARRIS
 RF COMMUNICATIONS

RF signal via the low pass filter network C2, L3, C3, and C4, normally energized K5, to the input of Input Filter PWB A1 of the RF-590.

For a receive frequency greater than 2 MHz (as decoded by Interface PWB A19A1), Q1 is held at cut-off by R2. This keeps relays $K 1$ and $K 2$ deenergized. The $R F$ signal ($>2 \mathrm{MHz}$) is now passed, via the normally closed contacts of $K 1$, to band select relay $K 3$. Relays $K 3$ and $K 4$ operate in unison, under the control of A19A1. When Interface PWB A19A1 determines the receive frequency to be within the low band limits (2 MHz to 7.99 MHz), a low logic level is applied to 03 , via E1 and R10. O3, now being forward biased, energizes relays $K 3$ and $K 4$, while $C 18, L 8$, and $L 9$ serve to decouple any stray $R F$ that may be present on the supply line. Energized relays K3 and K4 couple the RF signal to a high-Q, doubly-tuned bandpass filter, whose resonant frequency is determined by the tuning of the coils within the low band cavity assembly, and the capacitors (located on Tuning Assembly I and Tuning Assembly II) switched into the circuit by control data from A19A1. The individual filter shape is determined by several factors, which include filter tuning (capacitive and inductive) and the coil-to-coil coupling within the low band cavity. With the low band circuitry properly adjusted, each filter is designed to cover a specific frequency band with a onehalf dB bandwidth of approximately $1 / 60$ of an octave. From the low band cavity filter, the RF signal reenters the Filter Select PWB at E10, via low pass filter (C20, C21, L10, L11, and R14/L2), energized relay $K 4$, normal $K 2$ contacts, and energized relay $K 5$, then is applied to the J1 RF output.

Similarly, if Interface PWB A19A1 determines the selected frequency to be 8 MHz or greater, a high logic level is applied to E1. This biases Q3 off, deenergizing relays K3 and K4. Deenergized relays K3 and K4 couple the RF signal to the high band cavity which functions in a manner similar to the low band cavity. The same groups of capacitors are used in both the high band and low band filters with any minor capacitive differences between high and low band cavities being compensated for by C21, C22 on Tuning Assembly 1 and C22, C23 on Tuning Assembly II. From the high band cavity, the RF signal reenters the Filter Select PWB at E12 via a low pass filter (C15, C16, L6, L7, and R11/L1), deenergized relays K4 and K2 and energized relay K5. The RF signal is then applied to the RF-590 A1 Input Filter (10073-5100). In addition, a low logic level is applied to the base of Q4, via E13 and R13, biasing Q4 on, which energizes relays K11 on Tuning Assemblies I and II of the RF-596-02 Preselector Module.

A high level, out-of-band input signal at J 2 is coupled by C 24 to the voltage divider network consisting of R15 and R16. This voltage, detected by CR8, is seen as a negative voltage at the base of Q5. This increases proportionally to the RF input level. At a level of 30 Vrms , the voltage developed across CR8 becomes sufficiently negative to bias 06 off, deenergizing K6 and opening the antenna input path. Voltage divider network R4, R5, and detector CR4 develop a negative voltage proportional to the in-band signal level present at C7. At an in-band signal level of 10 Vrms or greater, the negative voltage at the base of Q 2 becomes sufficient to bias Q 2 off, deenergizing relay K 5 and shorting the RF input to the receiver.

3.2 Tuning Assemblies I and II (A2A4A4, A2A4A3)

Tuning Assembly I (A2A4A4), and Tuning Assembly II (A2A4A3) are similar in design and function, with the exception that Tuning Assembly II contains the ten relay driver transistors (Q1 through Q10). Each PWB assembly is comprised of ten capacitor sections with their associated control relays (K1 through K10), and a high/low band select relay K11.

Refer to the Tuning Assemblies schematic diagram for the following discussion. Relay driver transistors Q1 through Q10, on Tuning Assembly II, are normally reversed biased by a 5 Vdc level supplied by Interface PWB A19A1. The Interface PWB A19A1 decodes the serial data stream from the RF-590 into a parallel word that is used to supply band information to CO through C9. Active control signals appear at the inputs of Tuning Assembly II as low logic levels, while inactive control lines are identified by the presence of the 5 Vdc on the Tuning Assembly II inputs.

For the following discussion, assume that the receiver's front panel frequency select switches are set to 2.15 MHz . The frequency and band information for 2.15 MHz contained in the RF-590 frequency code is decoded by A19A1, which in turn presents a series of low (active) control inputs to Tuning Assembly 11. In this example, all control inputs are low (active), with the exception of A3J1-2 (C8) which remains high (inactive). This low level at $\overline{\mathrm{CO}}$ through $\overline{\mathrm{C} 7}$ and $\overline{\mathrm{C} 9}$, forward biases Q 1 through $\mathrm{Q7}, \mathrm{Q9}$, and $\mathrm{Q10}$, while the high level at A3J1-2 (C8) holds 08 at cut-off. Transistors 01 through $07, Q 9$, and $Q 10$ are now forward biased and energize their respective control relays (K 1 through K10) on Tuning Assembly II, and via A3P1 and A3P2, control relays (K 1 through K10) on Tuning Assembly I. Energized control relays K1 through K7, K9, and K10 switch their associated capacitors into the signal path from the cavity filter, in this case, the low band cavity.

In addition, since the frequency selected (2.15 MHz) is within the low band range, relays K 11 on Tuning Assemblies I and II will be deenergized, connecting the capacitor network to the low band cavity.

> The trimmer capacitors located on Tuning Assemblies I and II and adjustments on the cavity assemblies have been set for optimum response characteristics at the desired frequencies, and should not require any further adjustments under normal use. Severe degradation in receiver performance will result if attempts are made to adjust these capacitors without the use of proper test equipment (i.e., H.P. Spectrum Analyzer Model 8553B, equipped with Model 8444A Tracking Generator, or equivalent).

3.3 Interconnect Schematic

An interconnect schematic for the RF-596-02 Preselector Module is found at the end of this section.

4. MAINTENANCE

4.1 General

The RF-596-02 Preselector Module requires no periodic lubrication or adjustments of a mechanical nature. Under normal operation, no further adjustment to the high band cavities, low band cavities, or to the variable capacitors on the two Tuning Assemblies should be required.

HARRIS
 RF COMMUNICATIONS

4.2 Troubleshooting Procedure

After localizing the receiver's malfunction to the RF-596-02 Preselector Module, it must be further determined which assembly within the module itself is the cause of the problem. To localize faults within the RF-596-02 Preselector, seven different frequencies can be used to test the band selection relays and the tuning capacitors as shown in tables 1 and 2.

Table 1. Filter Select Assemblies I and II Troubleshooting Aid

	Relays											
	K1	K2	K3	K4	K5	K6	K7	K8	K9	K10	A3P1-7	A4P2-2
	Terminals											
Frequency MHz	E1	E11	E2	E8	E7	E4	E5	E6	E9	E10	A3K11	A4K11
2.150	L	L	L	L	L	L	L	H	L	L	H	H
2.90	X	X	X	X	X	X	X	L	H	X	X	X
7.890	H	H	H	H	H	H	H	H	H	H	X	X
8.0	X	X	X	X	X	X	X	X	X	X	L	L

Notes:
L = Low Logic Level/Relay Energized
H = High Logic Level/Relay Deenergized
X = Don't Care
Low Level to Activate Control Functions

Table 2. Filter Select PWB A2A4A2 Frequency vs. Relay Operation

	Relays	
Frequency MHz	K1, K2	K3, K4
1.5	Closed	Open
2.0	Open	Closed
8.0	Open	Open

When using tables 1 and 2 , note that active control lines are indicated by low logic levels, while inactive control lines remain high (approximately 5 Vdc). The low levels on capacitor control lines C 0 through C 9 forward bias relay driver transistors Q1 through Q10, energizing their associated control relays. For example, assume that the front panel switches are set for $2,150 \mathrm{MHz}$. Table 1 indicates that for the frequency of 2.150 MHz , all capacitor control relays on Tuning Assemblies I and II (A2A4A4 and A2A4A3, respectively) should be energized with the exception of control relay K8. In addition, all terminals (E2 through E10)
on Control Input PWB A2A4A1 should indicate a low logic level, with the exception of E6 which should read a high level (approximately 5 Vdc). Should any control line(s) indicate other than what is shown in table 1, the fault is located before the module proper (i.e. Interface PWB A19A1). Similarly, if the status of the control lines reflect what is shown in the table, but the respective control relays remain deenergized, that fault is most likely within the module proper, (i.e., Tuning Assemblies I and II).

The frequencies in table 2 will check the following control lines; 2 MHz Control, Low Band Control, and High Band Control. The use of tables 1 and 2, together with the schematic drawings supplied, should ease fault location and repair.

5. ASSEMBLY A19 ALIGNMENT

5.1 General Information

The RF-596-02 Preselector Module, when used in conjunction with the RF-590 Receiver, will normally require no alignment. Read the following warning before attempting any alignment routine.

WARNING

Do not attempt any Preselector Module Alignment/ Adjustment procedure until all other possible causes for degraded performance have been checked and ruled out. As an example, if appropriate relays on the Tune I and Tune II boards are not switching in pairs, it could appear to be an alignment problem. Attempting to align the unit under these conditions would be futile and would probably require returning the unit to the factory to correct. Remember, realignment should never be required unless mechanical positioning of reactive elements are accidentally (or purposely) disturbed.

5.2 Prealignment Performance Check

The prealignment performance check should consist of measuring the insertion loss (in dB), the accuracy at which the "selectivity window" is centered on frequency, and ensuring that the selectivity is at least -20 dB at ± 10 percent removed from the center frequency $\left(\mathrm{F}_{\mathrm{c}}\right)$. This may be accomplished by setting the receiver frequency select switches to the frequencies specified in table 3 and observing the results with a spectrum analyzer and tracking generator tuned to the appropriate frequency (figure 2).

5.3 Assembly A19 Alignment Procedure

This alignment procedure is not intended to become a part of a periodic maintenance routine. Any attempt to adjust this assembly without the required test equipment (or equivalent) will cause severe

81 HARRIS
 RF COMMUNICATIONS

degradation in receiver performance. The RF-596-02 Preselector Module has been factory set for optimum response characteristics over the operating frequency range, and should not require further adjustment. If after a component replacement, measured performance indicates that a realignment is required; proceed as follows:
note

Do not make the following adjustments without the use of a Hewlett-Packard Spectrum Analyzer Model HP-8553B, equipped with Model HP-8444A Tracking Generator (or equivalent). See figure 3 for alignment test setup.

Table 3. Optimum Response Curve Characteristics

Center Frequency $F_{\mathbf{c}}(\mathrm{MHz})$	-10% Below $\mathrm{F}_{\mathbf{c}}(\mathrm{MHz})$	$+10 \% \mathrm{Above}$ $\mathrm{F}_{\mathbf{c}}(\mathrm{MHz})$
2.015	1.813	2.216
2.500	2.250	2.750
5.000	4.500	5.500
7.945	7.150	8.739
8.050	7.245	8.855
10.000	9.000	11.000
15.000	13.500	16.500
20.000	18.000	22.000
25.000	22.500	27.500
29.999	27.000	33.000

5.3.1 Low Band Adjustment (Initial Setup)

a. For the location of the aperture screw and link assembly mentioned in the following procedure, refer to figure 4.
b. Turn aperture screw fully counterclockwise to the rear of the cavity, then rotate five turns clockwise.
c. Turn low band link assemblies fully clockwise, then rotate two turns clockwise.
d. Set cores fully clockwise.

Figure 2. Typical Response Curve for Cavity Filter

Figure 3. Alignment Test Setup for Assembly A19

Figure 4. High/Low Band Cavity Coil Adjustment Locations
e. Set front panel frequency switches to 7.9450 MHz .

Set analyzer to 7.945 MHz , bandwidth to 300 kHz , scan width to $0.2 \mathrm{MHz}, 2 \mathrm{~dB} \log /$ division. Set A3C21 and A4C22 for a centered display on the spectrum analyzer.
g. Adjust link assemblies and aperture screw to obtain a 3 to 4 dB insertion loss. Set analyzer to $10 \mathrm{~dB} \log / \mathrm{division} .\mathrm{Check} \mathrm{the} \mathrm{points} \pm 10 \%$ of the center frequency (7.150 and 8.739 MHz) for a -22 to -24 dB level consistent with the 3 to 4 dB level at the center frequency (F_{c}). Adjust link assemblies as necessary.

OHARRIS
 RF COMMUNICATIONS

Low Band Adjustments (Tuning)

a. Set front panel frequency switches to 2.015 MHz .
b. Set analyzer F_{c} to $2.015 \mathrm{MHz}, 2 \mathrm{~dB}$ log/division.
c. Adjust cores to center display as shown in figure 4.
d. Insertion loss should be less than 5.8 dB . Check the points at $\pm 10 \%$ of F_{c} (1.813 and 2.216 MHz) with the analyzer set on the $10 \mathrm{~dB} \log /$ division. They should be a -22 to -24 dB .
e. Set front panel frequency switches to 7.945 MHz .
f. Set the analyzer F_{c} to $7.945 \mathrm{MHz}, 2 \mathrm{~dB} \log /$ division. Adjust A 3 C 21 and C 4 C 22 to center display on the analyzer.
g. The insertion loss should be less than 4 dB . With the analyzer set to $10 \mathrm{~dB} \log / \mathrm{division}$, check the bandwidth points $\pm 10 \%$ of $F_{c}(7.150$ and 8.739$)$ for a -22 to -24 dB level.

Variable Capacitor Adjustment

NOTE

Use 2 dB log position on the spectrum analyzer. Precise adjustment of these trimmers is required for proper tracking of the preselector.
a. Refer to figure 5 and set the front panel frequency switches to 7.840 MHz . Set the analyzer to a F_{c} of $7.840 \mathrm{MHz}, 2 \mathrm{~dB} \log /$ division, and bandwidth of 300 kHz . Adjust A3C10 and A4C10 to center and peak the response.
b. Set front panel frequency switches to 7.760 MHz , and analyzer F_{c} at 7.760 MHz . Adjust A 3 C 1 and A 4 C 1 to center and peak response.
c. Set front panel frequency switches to 7.565 MHz , and analyzer F_{c} to 7.565 MHz . Adjust A 3 C 2 and A 4 C 2 to center and peak display.
d. Set front panel frequency switches to 7.260 MHz , and analyzer F_{c} to 7.260 MHz . Adjust A3C3 and A4C3 to center and peak display.
e. Repeat steps 5.3.1e through g and 5.3.3a through d.

Figure 5. RF-596-02 Preselector Module Rear Panel Adjustments

5.3.4 High Band Adjustment (Initial Setup)

a. Turn aperture screw (see figure 4) fully counterclockwise to rear of cavity, then rotate two turns clockwise.
b. Turn link assemblies fully clockwise, then rotate four turns counterclockwise.
c. Set cores fully clockwise.
d. Set front panel frequency switches to 29.880 .

\% HARRIS
 RF COMMUNICATIONS

e. Set analyzer F_{c} to $29.880,2 \mathrm{~dB}$ log/division, and bandwidth to 1 MHz . Adjust A 3 C 22 and A4C21 to center and peak the response.
f. Adjust link assembly and aperture screw to obtain a 5 dB insertion loss.

High Band Adjustment (Tuning)
a. Set front panel frequency switches to 8.050 MHz , and analyzer F_{c} to $8.050 \mathrm{MHz}, 2 \mathrm{~dB} \log /$ division, 300 kHz bandwidth.
b. Adjust slugs to center and peak response.
c. Set front panel frequency switches to 29.880 MHz , and analyzer F_{c} to $29.880 \mathrm{MHz}, 2 \mathrm{~dB}$ log/division, 1 MHz bandwidth. Readjust A 3 C 22 and A 4 C 21 to center and peak display.
d. Set the front panel frequency swirches to 29.880 MHz . Set analyzer F_{c} to $29.880 \mathrm{MHz}, 10$ $\mathrm{dB} \log /$ division, 1 MHz bandwidth. Check the points at 26.892 MHz and $32.868(\pm 10 \%$ of F_{c}) for a minimum of 20 dB loss consistent with the 5 dB insertion loss at the center frequency.

5.3.6 High Band/Low Band End Check

a. Set front panel frequency switches to 8.050 MHz .
b. Set the analyzer F_{c} to $8.050 \mathrm{MHz}, 10 \mathrm{~dB} \mathrm{log} /$ division, 300 kHz bandwidth
c. Check the points at 7.245 MHz and $8.855 \mathrm{MHz}\left(\pm 10 \%\right.$ of $\left.F_{c}\right)$ for a minimum of 20 dB loss consistent with the insertion loss of 5.4 to 5.6 dB .

Post Alignment Performance Check

In addition to evaluating performance data (insertion loss and selectivity at $\pm 10 \%$ of F_{c}) at the frequencies specified in the alignment procedure, spot checks should be made throughout the system frequency range to ensure proper tracking of the cavity filters. This may be accomplished by setting the receiver frequency select switches to the frequencies specified in table 4 and observing the results with a spectrum analyzer/ tracking generator tuned to the appropriate frequency.

NOTE

A properly adjusted preselector will have the selectivity windows centered on frequency and meet published insertion loss and selectivity at $\pm 10 \%$ from the center frequency.

Table 4. Post Alignment Test Frequencies

Center Frequency $\left(F_{\mathbf{c}}\right)$	-10% of $F_{\mathbf{c}}$	$+\mathbf{1 0 \%}$ of $\mathbf{F}_{\mathbf{c}}$
2.500	2.250	2.750
5.000	4.500	5.500
10.000	9.000	11.000
15.000	13.500	16.500
20.000	18.000	22.000
25.000	22.500	27.500
29.999	27.000	33.000

6. PARTS LISTS

Tables 5 through 8 are comprehensive parts lists of all replaceable components for the RF-596-02 Preselector Module. When ordering parts from the factory, include a full description of the part. Manufacturers are referenced by a five digit code found in table 9. Figures 6 through 10 are component location diagrams for the RF-596-02 Preselector Module.

7 SCHEMATIC DIAGRAMS

Figures 11 through 14 are the RF-596-02 Preselector Module schematic diagrams.

8 HARRIS
 RF COMMUNICATIONS

Table 5. Filter Select PWB Assembly Parts List

Ref. Desig.	Part No.	Description
A2	10024-2210	Filter Select PWB Assembly
C1	C11-0005-104	Capacitor, Ceramic, 1 uF
C2	CD15FA122J03	Capacitor, Mica, 1200 pF , \longrightarrow M\%
C3	CMR04C750JODM	Capacitor, Mica, 75 pF
C4	CD15FA122J03	Capacitor, Mica, 1200 pF W0.
C5, C6	C11-0005-104	Capacitor, Ceramic, 10 uF
C7	C320C103MIUICA	Capacitor, Ceramic, . 01 uF; mfr 31433
C8	C330C104MIUICA	Capacitor, Ceramic, . 1 uF; mfr 31433
C9-C14	C11-0005-104	Capacitor, Ceramic, . 1 uF
C15		Not Used
C16		Not Used
C17-C19	C11-0005-104	Capacitor, Ceramic, . 1 uF
C20	CMR04F361JODL	Capacitor, Mica, 360 pF
C21	CMR04F241JODL	Capacitor, Mica, 240 pF
C22, C 23	C11-0005-104	Capacitor, Ceramic, .1 uF
C24	C320C103MIUICA	Capacitor, Ceramic, . 01 uF; mfr 31433
CR1-CR2	1N4148	Diode, Silicon
CR4	HP5082-2800	Diode, Hot Carrier; mfr 28480
CR5-CR6	1N4148	Diode, Silicon
CR8	HP5028-2800	Diode, Hot Carrier; mfr 28480
CR9	1N4148	Diode, Silicon
K1-K4	712-5	Relay, DPDT
K5, K6	712-12	Relay, DPDT; mfr 11532
L1		Not Used
L2		See R14
L3	MS 18130-14	Inductor, Fixed, 3.3 uH
L4, L5	MS181130-8	Inductor, Fixed, 1.0 uH
L6		Not Used
L7		Not Used
L8, L9	MS181130-8	Inductor, Fixed, 1.0 uH
L10	MS75083-11	Inductor, Fixed, . 68 uH
L11	MS18130-9	Inductor, Fixed, 1.2 uH
L12, L13	MS181130-8	Inductor, Fixed, 1.0 uH
Q1	2N2907	Transistor, PNP
02	2N2222A	Transistor, NPN
Q3-Q4	2N2907	Transistor, PNP
05	2N2222A	Transistor, NPN
R1	RCR07G270J	Resistor, Fixed, Composition, 27 ohms, 1/4 W, 5\%
R2	RCR07G103J	Resistor, Fixed, Composition, 10K ohms, 1/4 W, 5\%
R3	RCR07G102J	Resistor, Fixed, Composition, 1000 ohms, 1/4 W, 5\%
R4, R5	100NS2700-5	Resistor, 2,700 ohms, 1 W, 5\%, mfr 00213
R6	RCR07G162J	Resistor, Fixed, Composition, 1.6K ohms, 1/4 W, 5\%
R7	RCR07G822J	Resistor, Fixed, Composition, 8200 ohms, 1/4 W, 5\%

RF COMMUNICATIONS

Table 5. Filter Select PWB Assembly Parts List (Cont.)

Ref. Desig.	Part No.	Description
R8	RCR07G123J	Resistor, Fixed, Composition, 12K ohms, $1 / 4 \mathrm{~W}, 5 \%$
R9	RCR07G103J	Resistor, Fixed, Composition, 10K ohms, $1 / 4 \mathrm{~W}, 5 \%$
R10	RCR07G102J	Resistor, Fixed, Composition, 1000 ohms, $1 / 4 \mathrm{~W}, 5 \%$
R11		Not Used
R12	RCR07G103J	Resistor, Fixed, Composition, 10K ohms, $1 / 4 \mathrm{~W}, 5 \%$
R13	RCR07G102J	Resistor, Fixed, Composition, 1000 ohms, $1 / 4 \mathrm{~W}, 5 \%$
R14/L2	6905-0610	Resistor/Inductor, Fixed
R15, R16	100NS2700-5	Resistor, High Power, 2700 ohms, $1 \mathrm{~W}, 5 \% ; \mathrm{mfr} 00213$
R17	RCR07G183J	Resistor, Fixed, Composition, 18K ohms, $1 / 4 \mathrm{~W}, 5 \%$
R18	RCR07G123J	Resistor, Fixed, Composition, 12K ohms, $1 / 4 \mathrm{~W}, 5 \%$
R19	RCR07G822J	Resistor, Fixed, Composition, 8200 ohms, $1 / 4 \mathrm{~W}, 5 \%$
R20	RCR07G273J	Resistor, Fixed, Composition, 27K ohms, $1 / 4 \mathrm{~W}, 5 \%$
R21, R22	RCR07G750J	Resistor, Fixed, Composition, 75 ohms, $1 / 4 \mathrm{~W}, 5 \%$
VR1, VR2	1N5242B	Diode, Zener.12 V, 5\%
JMP1, 2	MP-1142	Jumper molded

Table 6. Tuning Assembly I Parts List

Ref. Desig.	Part No.	Description
A4	10024-2220	Tuning I PWB Assembly
C1	5801	Capacitor, Variable, . 3 to 3.5 pF; mfr 91293
C2, C3	5201	Capacitor, Variable, . 8 to 10 pF ; mfr 91293
C4	6905-0606-1	Capacitor, Mica, 15 pF
C5	6905-0606-2	Capacitor, Mica, 30 pF
C6	6905-0606-3	Capacitor, Mica, 56 pF
C7	6905-0606-4	Capacitor, Mica, 110 pF
C8, C9	6905-0606-5	Capacitor, Mica, 220 pF
C10	5801	Capacitor, Variable, 3 to 3.5 pF; mfr 91293
C11-C20	C11-0005-104	Capacitor, Ceramic, . 1 uF
C21, C22	5201	Capacitor, Variable, 8 to 10 pF ; mfr 91293
C23	C11-0005-104	Capacitor, Ceramic, . 1 uF
CR1 to CR11	1N3064	Diode, Silicon
K1 to K10	6905-0607	Reed, Relay
K11	6905-0608	Relay, DPDT
P1, P2	1100-1-107-02	Connector; mfr 26742

Table 7. Tuning Assembly II Parts List

Ref. Desig.	Part No.	Description
A3	10024-2230	Tuning II PWB Assembly
C1	5801	Capacitor, Variable, . 3 to 3.5 pF; mfr 91293
C2, C3	5201	Capacitor, Variable, 8 to 10 pF ; mfr 91293
C4	6905-0606-1	Capacitor, Mica, 15 pF
C5	6905-0606-2	Capacitor, Mica, 30 pF
C6	6905-0606-3	Capacitor, Mica, 56 pF
C7	6905-0606-4	Capacitor, Mica, 110 pF
C8, C9	6905-0606-5	Capacitor, Mica, 220 pF
C10	5801	Capacitor, Variable, . 3 to 3.5 pF; mfr 91293
C11-C20	C11-0005-104	Capacitor, Ceramic, . 1 uF
C21, 222	5201	Capacitor, Variable, 8 to 10 pF ; mfr 91293
C23	C11-0005-104	Capacitor, Ceramic, .1 uF
CR1-CR11	1N3064	Diode, Silicon
J1, J2	1300-007	Connector; mfr 26742
K1-K10	6905-0607	Reed, Relay
K11	6905-0608	Relay, DPDT
P1, P2	1100-1-107-02	Connector; mfr 26742
Q1-Q10	MPS-6562	Transistor, PNP; mfr 04713
R1	RCR05G103J	Resistor, Fixed, Composition, 10K ohms, 1/8 W, 5\%
R2	RCR05G392J	Resistor, Fixed, Composition, 3900 ohms, 1/8 W, 5\%
R3	RCR05G 103J	Resistor, Fixed Composition, 10K ohms, 1/8 W, 5\%
R4	RCR05G392J	Resistor, Fixed, Composition, 3900 ohms, $1 / 8 \mathrm{~W}, 5 \%$
R5	RCR05G103J	Resistor, Fixed, Composition, 10 K ohms, $1 / 8 \mathrm{~W}, 5 \%$
R6	RCR05G392J	Resistor, Fixed, Composition, 3900 ohms, 1/8 W, 5\%
R7	RCR05G103J	Resistor, Fixed, Composition, 10K ohms, 1/8 W, 5\%
R8	RCR05G392J	Resistor, Fixed, Composition, 3900 ohms, 1/8 W, 5\%
R9	RCR05G103J	Resistor, Fixed, Composition, 10K ohms, 1/8 W, 5\%
R10	RCR05G392J	Resistor, Fixed, Composition, 3900 ohms, 1/8 W, 5\%
R11	RCR05G103J	Resistor, Fixed, Composition, 10K ohms, 1/8 W, 5\%
R12	RCR05G392J	Resistor, Fixed, Composition, 3900 ohms, 1/8 W, 5\%
R13	RCR05G103J	Resistor, Fixed, Composition, 10K ohms, 1/8 W, 5\%
R14	RCR05G392J	Resistor, Fixed, Composition, 3900 ohms, 1/8 W, 5\%
R15	RCR05G 103J	Resistor, Fixed, Composition, 10K ohms, 1/8 W, 5\%
R16	RCR05G392J	Resistor, Fixed, Composition, 3900 ohms, 1/8 W, 5\%
R17	RCR05G103J	Resistor, Fixed, Composition, 10K ohms, 1/8 W, 5\%
R18, R19	RCR05G392J	Resistor, Fixed, Composition, 3900 ohms, 1/8 W, 5\%
R20	RCR05G103J	Resistor, Fixed, Composition, 10K ohms, 1/8 W, 5\%

Table 8. Preselector Interface PWB Assembly Parts List

Ref. Desig.	Part No.	Description	
A19	10073-6400	Preselector Interface PWB Assembly	
C1	CK06BX104M	Capacitor, Ceramic, 0.1 uF, 50 V	
C2		Not Used	
C3-C6	CK06BX104M	Capacitor, Ceramic, 0.1 uF, 50 V	
C7	C26-0025-100	Capacitor, Tantalum, 10 uF, 25 V	
C8-C21	CK06BX104M	Capacitor, Ceramic, 0.1 uF, 50 V	
C22	C26-0025-339	Capacitor, Tantalum, 3.3 uF, 25 V	
CR1-CR5	1N4454	Diode	
J1	J46-0032-010	Header, 10 Pin	
J2	J46-0032-006	Header, 6 Pin	
J3	J70-0007-010	Card Connector, 20 Pin	
J4	J46-0032-005	Header, 5 Pin	
JMP1	MP-1142	Molded Jumper	
L1-L12	L-0652	Inductor, Fixed, 1 uH	
L13	10073-7029	Inductor, Toroid	
L14	L-0652	Inductor, Fixed, 1 uH	
R1	R65-0003-103	Resistor, Film, 1/4 W, 10K $\mathrm{K}^{\text {¢ }}$	
R2	R65-0003-153	Resistor, Film, 1/4 W, 15K	
R3, R4	R65-0003-103	Resistor, Film, 1/4 W, 10K	
R5	R65-0003-153	Resistor, Film, 1/4 W, 15K	
R6, R7	R65-0003-103	Resistor, Film, 1/4 W, 10K	
R8	R65-0003-153	Resistor, Film, 1/4 W, 15K	
R9, R10	R65-0003-103	Resistor, Film, 1/4 W, 10K	
R11, R12	R50-0010-103	Resistor, SIP, 10K	
U1, U2	101-0000-156	CD4094	
U3, U4	10073-8006-701	PROM	
U5	130-0003-000	LM324	
U6, U7	105-0000-005	SN74LS05	
VR1	111-0001-001	Regulator 5 V	

Table 9. List of Manufacturer's Codes

Mfr. Code	Name \& Address	Mfr. Code	Name \& Address
00213	Nytronics Components Group Inc. Orange Street Darlington, SC 29532	26742	Methode Electronics Inc. 7447 W. Wilson Avenue Chicago, IL 60656
01295	Texas Instruments Inc. Semiconductor Group P.O. Box 5012 13500 N. Central Expressway	27014	National Semiconductor 2900 Semiconductor Drive Santa Clara, CA 95051
04713	Dallas, TX 75222 Motorola Inc.	28480	Hewlett-Packard Company 1501 Page Mill Road Palo Alto, CA 94304
	Semiconductor Division 5005 E. McDowell Road Phoenix, AZ 85036	31433	Union Carbide Corporation Components Division Greenville, SC 29606
077263	Fairchild Semiconductor Div. 464 Ellis Street Mountain View, CA 94042	53387	3M Company Electronic Products Division 3M Center
11532	Teledyne Relays 3155 W. EL Segundo Blvd.		St. Paul, MN 55101
	Hawthorne, CA 90250	91293	Johason Manufacturing Company Box 329
13848	E.F. Johnson Company Comco/Communications Div. Coral Way Suite 106 Miami, FL 33155		Boonton, NJ 07005
18342	Amp Inc. Syscom Division 3711 Paxton Street Harrisburg, PA 17101		
21921	RCA Corporation Distributor and Special Products Clements Bridge Road P.O. Box 100 Deptford, NJ 08096		

Figure 6. RF-596-02 Filter Assembly Module Locations

Figure 7. Filter Select PWB, Component Location Diagram (10024-2210)

Figure 8. Tuning Assembly I, Component Location Diagram (10024-2229 Rev. A)

Figure 9. Tuning Assembly II, Component Location Diagram (10024-2339 Rev. A)

NOTES 1 . COMPLETED ASSY SHALL BE IN ACCOROANCE WITH QC- 3000.
2. MOUNT CONNECTOR J3 ON FARSIDE
3. C2I MOUNTS ON FARSIDE OF BOARD
BETWEEN ITEM IO AT E2 AND ITEM 9. SEE DETAIL "A".
4. REMOVE PIN 5 OF JI, PIN 3 OF J2 AND
PIN 3 OF J4 FOR KEYING PURPOSES

Figure 10. Interface PWB, Component Location Diagram

Figure 11. Filter Select PWB Schematic Diagram

Figure 12. Tuning Assemblies I and II,

NOTE : UNLESS OTHERWISE SPECIFIED:

1. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN FOR A COMPLETE DESIGNATION. PREFIX WITH
2. ALL RESISTOR VALUES ARE IN OHMS, $1 / 4 \mathrm{~W}, 55 \%$
3. ALL CAPACITOR VALUES ARE 0.1 MICROFARAD.
4. ALL inductor values are 1000 microhenrys.
5. STRAP 日ETWEEN E3 AND E4 I JMPII FOR $1 / 2$ OCT. FILTER.
STRAP E5 TO E6 FOR RF-S78.
6. VENDOR PART NO. CALLOUTS ARE FOR REFERENCE ONLY.
COMPONENTS ARE SUPPLIED PER PART NO. IN PARTS LIST
7. CRI IS TO BE GROUNDED TO AN EXTERNAL. CHASSIS THROUGH A
TERMINAL LUG OFF THE PWB AS SHOWN.

in HARRIS
 RF COMMUNICATIONS

table OF CONTENTS

Paragraph		Page
1	Circuit Description	1
2	Audio Amplifier Assembly A23 Interface Connections . . .	1
3	Maintenance .	2
4	Parts List	2
5	Schematic Diagrams .	2
LIST OF FIGURES		
Figure		Page
1	Audio Amplifier Assembly A23 Component Location Diagram (10073-5800)	3
2	Audio Amplifier Assembly A23 Schematic Diagram (10073-5801, Rev. D) . .	4
LIST OF TABLES		
Table		Page
1	Audio Amplifier A23 Interface	1
2	Audio Amplifier Assembly A23 Parts List (PL 10073-5800)	2

81 HARRIS
 RF COMMUNICATIONS

1. CIRCUIT DESCRIPTION

Audio Amplifier Assembly A23 receives audio input from the A5 assembly and outputs a minimum of 2.5 watts of audio power at maximum AF gain control settings to the receiver front panel 8 ohm speaker. The total harmonic distortion at full output is 5 percent maximum and typically it's less than 1%.

Low level audio from the A5 Assembly is applied to voltage divider network R1 and R2. U1 provides 48 dB of fixed voltage gain to provide audio output power. U1 output drives the internal 8 ohm speaker through a shielded cable to prevent interference, and is also routed to rear panel connector J 7 for use in driving an external 8 ohm speaker.

2. AUDIO AMPLIFIER ASSEMBLY A23 INTERFACE CONNECTIONS

Table 1 lists the Audio Amplifier A23 Interface.
Table 1. Audio Amplifier A23 Interface

Connector	Function	Characteristics
$\mathrm{J} 1-1$	Audio Input	From A5
$\mathrm{J} 1-2$	Audio Ground	From A5
$\mathrm{J} 1-3$	Spare	
J2-1	Ground	
J2-2	Ground	
J2-3	External Audio	To Rear Panel J7, 2.5 watts/8 ohms
	Output	
J2-4	External Audio	To Rear Panel J7, 2.5 watts/8 ohms
J2-5	Output	External Audio
J2-6	Output	To Rear Panel J7, 2.5 watts/8 ohms
J3-1	Output	Power
J3-2	Ground	To Rear Panel J7, 2.5 watts/8 ohms
J3-3	Spare	+15 Vdc, 45 mA (quiescent)
E1	Speaker Audio Output	To Front Panel Speaker, 2.5 watts/8 ohms
E2	Speaker Audio Ground	To Front Panel Speaker
E3	Speaker Audio Shield	To Front Panel Speaker

HARRIS
 RF COMMUNICATIONS

3. MAINTENANCE

There are no adjustments or alignments on the A23 assembly.

4. PARTS LIST

Table 2 is a comprehensive parts list of all replaceable components in Audio Amplifier Assembly A23. When ordering parts from the factory, include a full description of the part. Use figure 1, Audio Amplifier Assembly A23 Component Location Diagram to identify parts.

5. SCHEMATIC DIAGRAMS

Figure 2 is the Audio Amplifier Assembly A23 schematic diagram.

Table 2. Audio Amplifier Assembly A23 Parts List (PL 10073-5800)

Ref. Desig.	Part Number	Description
C1 C2 C3 C4 C5 C6 C7 E1 E2 E3 $J 1$ $J 2$ $J 3$ L1 R1 R2 R3 R4 R5 U1	10073-5800 1075-1039 M39014/02-1320 C26-0025-100 10073-7047 M39014/02-1302 10073-7048 M39014/02-1320 MP-0287 MP-0287 MP-0287 J46-0022-003 J-0870 J46-0022-003 10073-7043 R65-0003-183 R65-0003-202 R65-0003-279 R65-0003-681 R65-0003-510 10073-7119	PWB, AUDIO AMPLIFIER CAPACITOR, ALUM, ELEC, 20 VDC, 680UF CAP .47UF 10\% 50V CER-R CAP 10UF 20\% 25V TANT CAPACITOR CAP . O22UF 20\% 100V CER CAPACITOR CAP .47UF 10\% 50V CER-R CONNECTOR PIN CONNECTOR PIN CONNECTOR PIN HDR 3 PIN SINGLE CONN , 10 PIN HDR 3 PIN SINGLE inductor RES 18K 5\% 1/4W CAR FILM RES 2.0K 5\% 1/4W CAR FILM RES 2.7 5\% 1/4W CAR FILM RES 680 5\% 1/4W CAR FILM RES 51 5\% 1/4W CAR FILM IC AUDIO AMP

80 HARRIS

Figure 1. Audio Amplifier Assembly A23 Component Location Diagram (10073-5800, Rev. D)

80 HARRIS

NOTE: UNLESS OTHERWISE SPECIFIED: 1. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN. UNIT NO. ANDOR ASSEMBLY NO'. DESIGNATION. 2. ALL RESISTOR VALUES ARE IN OHMS, $1 / 4 W, 55 \%$. 3. all capacitor values are in microfarads. 4. VENDOR PART NO. CALLOUTS ARE FOR REFERENCE ONLY.
COMPONENTS ARE SUPFLIED PER PART NO. IN PARTS LIST.

Figure 2. Audio Amplifier Assembly A23 Schematic Diagram (10073-5801, Rev. D)

TECHNICALPUBLICATION EVALUATION FORM

To the User of This Instruction Manual:
HARRIS Corporation, RF Communications Group continually evaluates its technical publications for completeness, technical accuracy, and organization. You can assist in this process by completing and returning this form. Please specify section, page number, figure or table number where applicable.

MANUAL TITLE:
MANUAL NUMBER: \qquad REVISION: COVER DATE: \qquad
$\left.\begin{array}{l}\text { GOOD } \\ {\left[\begin{array}{ll}{[}\end{array}\right.} \\ {[} \\ {[}\end{array}\right]$

GENERAL COMMENTS: Please include your suggestions for improvements to the manual. Specify section, page, paragraph, figure number, or table number as applicable. Attach examples or extra pages if more space is needed.
\qquad

GENERAL

SCHEMATIC DIAGRAMS
SETUP/ALIGNMENT INST. TROUBLESHOOTING INST. TABLES ILLUSTRATIONS PARTS LISTS

NAME:
DATE: \qquad
COMPANY: \qquad
ADDRESS: \qquad
CITY: \qquad STATE: \qquad
ZIP: \qquad COUNTRY: \qquad
PHONE NUMBER (INCLUDE AREA CODE): \qquad

NOTE
U.S. POSTAL REGULATIONS NO LONGER PERMIT THE USE OF STAPLES. PLEASE SEAL THIS FORM WITH TAPE.

> MAKE FIRST FOLD HERE

MAKE LAST FOLD HERE

FAERRS GRPOAATION RF COMMUNICATIONS GROUP 1630 Universî̀) Ayэnue Rochester, New York 14610 USA Tel.: 7iE-244-i8S5 Fax: 716-244-2917, 716-325-1572 • TELEX: 240313 RFCOM UR

RF-553-01
 REMOTE PRESELECTOR INTERFACE

 (A24 ASSEMBLY)

 (A24 ASSEMBLY)}

in HARRIS

TABLE OF CONTENTS

Paragraph Page
RF-553-01 Remote Control Adapter General Description 1
2 Functional Description 1
3 Parts List 1
LIST OF FIGURES
Figure
1
A24 Interface PWB Location 2
A24 Component Location (10073-6900) 3
A24 Schematic Diagram (10073-6901) 5
A24 Interface PWB Interconnect Diagram 7
5 Interconnect Cable Assembly (10073-6917) 8
LIST OF TABLES
Table
1 A24 Interface PWB Parts List 9
2 In/Out Cable Assembly Parts List 9
3 Interconnect Cable Parts List 9

RF-553-01 REMOTE CONTROL ADAPTER GENERAL DESCRIPTION

The RF-553-01 Remote Control Adapter enables the RF-551A/552 Preselector to be remotely controlled by the RF-590 Receiver. This option consists of A24 Interface PWB (10073-6900) and necessary interconnecting cables and connectors.

The A24 Interface PWB (10073-6900) is used to convert serial data from the RF-590 to parallel data for use with either preselector. Serial data is supplied to J2 of A24 Interface PWB from A14 Control PWB through W21. Parallel data to the remote preselector is sent through Interconnect Cable W41 (10073-6917) from J9 on the rear panel of the RF-590 Receiver. Figure 1 shows the location of the A24 Interface PWB on the RF-590 Receiver Chassis.

2. FUNCTIONAL DESCRIPTION

Refer to the component location diagram, figure 2; schematic diagram, figure 3; Interface (A24) Interconnect diagram, figure 4; and Interconnect Cable diagram, figure 5 through this discussion.

Upon initial turn on of the RF-590, R10, C13 and inverter U7 produce the trailing-edge-triggering for U8. U8 enables the shift registers U1, U2, and U3 and gated buffers U4, U5, and U6 to load frequency information to the preselector.

Serial data from the RF-590 is clocked into U1, U2, and U3 and latched with strobe 1 . U8 is a retriggerable one shot that enables frequency information to be sent to the preselector ≈ 1 second after a frequency change. When a frequency change is made, strobe 2 is generated causing U8 to disable the shift registers while data is being loaded. Once data is loaded and strobe 2 remains in a low state, U8 $\overline{\mathrm{OA}}$ enables the shift registers after a one second delay set by C9, R1 time constant.

If frequency changes are made at less than one second intervals, the preselector will not respond. A bypass signal is provided for system applications. There is no bypass mode in the RF-551/552 Preselector, a large degradation in sensitivity will be noted for a large frequency change due to the one second delay of frequency information to the preselector.

U8 OB signal is delayed 0.1 milliseconds by $R 7$ and $C 4$ to allow frequency information to be loaded into U4, U5, and U6 from the shift registers. R6 and C5 produce a 1 millisecond delay before U4, U5, and U6 are latched holding the frequency data to the preselector.

3. PARTS LIST

Table 1 is a comprehensive parts list for the A24 Interface PWB Assembly. Tables 2 and 3 are the parts lists for the cable assemblies used in this option.

Figure 1. A24 Interface PWB Location

Figure 2. A24 Component Location (10073-6900)

Figure 4. Interface (A24) Interconnect Diagram

Figure 5. Interconnect Cable Assembly Diagram

id HARRIS
 RF COMMUNICATIONS

Table 1. A24 Interface PWB Parts List

Ref. Desig.	Part No.	Description
	10073-6900	Interface PWB Assembly
C1-C8	CK06BX104K	Capacitor, Ceramic, 1 uF, 100 V
C9	C26-0016-330	Capacitor, 33 uF
C10	C26-0025-339	Capacitor, 3.3 uF
C11, C12	CK06BX104K	Capacitor, Ceramic, 1 uF, 100 V
C13	C26-0016-330	Capacitor, 33 uF
J1	J46-0032-005	Connector, 5 Pin
J2	J46-0031-026	Connector, 26 Pin
J3	J46-0032-005	Connector, 5 Pin
L1	MS75085-13	Coil
R1	R65-0003-303	Resistor, Carbon, Film, 30K, 1/4 W, 5\%
R2-R4	R65-0003-473	Resistor, Carbon, Film, 47K, 1/4 W, 5\%
R5, R6	R65-0003-103	Resistor, Carbon, Film, 10K, 1/4 W, 5\%
R7	R65-0003-102	Resistor, Carbon, Film, 1K, 1/4 W,5\%
R8-R10	R65-0003-473	Resistor, Carbon, Film, 47K, 1/4 W, 5\%
U1-U3	$101-0000-156$	Integrated Circuit, CMOS, CD4094BE
U4-U6	$105-0000-373$	Integrated Circuit, 74LS373
U7	101-0000-018	Hex Inverter - Buffer
U8	$101-0000-353$	Dual Monostable, CD4538BEX

Table 2. In/Output Cable Assembly Parts List

Ref. Desig.	Part No.	Description
	$10073-6916$	In/Output Cable
J1	J20-0004-104	Connector, 37
1	J45-0003-101	Sockets
2	MP-3633	Key
3	$10073-6918$	Cable Assembly

Table 3. Interconnect Cable Parts List

Ref. Desig.	Part No.	Description
	$10073-6917$	Cable Interconnect
P1	$905-0042$	Connector Kit
P2, P3	J20-0004-004	Connector, 37
20	J45-0015-333	Contact Pins

1. Prefix with unit mumber anoior assembly oisignation.
2. Resistion values are in oims. I/4w, SX.

[^0]: $\because \quad \therefore \quad$ IF YOU HAVE ANY QUESTIONS - Concerning this warranty or equipment sales or services, please contact our Customer Service Department.

[^1]: Harris Corporation/RF Communications Group
 1680 University Avenue
 Rochester, New York 14610 U.S.A.
 Phone: (716) 244-5830
 Cable: RFCOM; Rochester, New York
 Telex: 978464

[^2]: 6. AGC PUSHBUTTON ANO DISPLAY

 SWITCHES THROUGH AGC TIME CONSTANTS SINGLE
 STEP, OR SCROLLS WHEN HELD DOWN.
 7. mode pushbutton and display

 1. MOS SHROUG AVAILABLE MODES IAM, FM, CW,
 SWITCHES THR
 ISB OR USB) SINGLE STEP, OR SCROLLS THEM WHEN

 SWITCHES THROUGH AVAILABLE MODES IAM, FM, CW,
 LSB, OR USB) SINGIE STEP, OR SCROLSTS THEM WHEN,
 HED DOWN. ALSO CAUES AUTOMATIC RESELEC.
 TION OF IF BANDWIDTH WHEN NECESSARY.
 g. BANOWIDTH PUSHBUTtION and display

 BANOWIDTHS AVALABELE N IN THE SELECTED
 MODE. THE DISPLAY SHOWS BANDWIDTH IN KHZ.
 9. owell pushbutton and display

 SINGLE STEP OR SCROLLS THROUGH DWELL TIMES
 AVAIA ABLEIN SCAN MODE. DISPLAY SHOWS OWELL
 TIME IN SECONDS.

[^3]:
 all resistor valles are in ohus. $1 / 8 \mathrm{~F}$, 55%,
 all capacitor values are in michooraraos.

[^4]: **NOTE: When ordering U5, U6, or U19, refer to the number located on the PROM label.

[^5]: Control Board Assembly A14
 Schematic Diagram (10073-2801, Rev. L)

[^6]: *When ordering this PROM, refer to the number on the sticker over the PROM

