SAIT ELECTRONICS

1. GENERAL 1 1
2. TECHNICAL DATA
3. TECHNICAL DATA 2
2.1 - FREQUENCY RANGE 2
2.2 - TUBE COMPLEMENT
3
3
2.3 - SCALE GRADUATION
3
3
2.4 - RF INPUT
5
5
2.5 - INTERMODULATION
б
б
2.6 - AUDIO OUTPETSS
6
6
2.7 - POWER SUPPLY
2.7 - POWER SUPPLY 6
2.8 - DIMERSIONS AND WEIGFIT
7
4. BASIC FUNNCTION
7
7
3.1 - BANDS 1 AND 2
7
7
3.2 - BANDS 3 AND 5
3.2 - BANDS 3 AND 5
8
8
3.3 - BAND 4
3.3 - BAND 4
8
8
3.4 - BANDS 6 TO 12
3.4 - BANDS 6 TO 12
8
8
3.5 - BLOC DIAGRAM
9
9
3.6 - FREQUENCY SCHEDUEE
3.6 - FREQUENCY SCHEDUEE
10
10
5. FUNCTIONS OF THE SUBASSEMBLIES
11
11
4.1 - RF SECTION
11
11
4.2 - Calibrating oscillator
12
12
4.3 - FIRST MIXER STAGE AND FIRST OSCILLATOR
13
13
4.4 - DOUBLER
4.5 - INTERMEDIATE FREQUENCY 1, 2nd MIXER STAGE AND 2nd OSCILLATOR 13
4.6 - INTERMEDIATE FREQUENCY 2, JEMODULATION, GENERATION OF THE AUTOMATIC CONTROL VOLTAGE 14
4.7 - AUDIO STAGE, NOISE LIMITER 15
4.8 - AUDIO STAGE AND FINAL STAGE 15
4.9 - TUNING INDICATION 15
4.10- POWER SUPPLY UNIT 16

SAIT ELECTRONICS

745 Ea	II

5. LAYOUT 16
6. OPRRATION 18
6.1 - PROCEDURES PILOR TO PLACING INT'O OPERATION 18
6.2 - PLACING THE RECEIVER INTO OPFRATION 20
7. Mainmenance 21
7.1 - CLEANING, SERVICING, SUPERVISING 21
7.2 - CHECKING THE CRYSTAL OSCILLATOR 22
7.3 - REMOVING THE FRONT PANEL 23
7.4 - REPLACING PARTS 24
7.5 - ALIGNGitaNT 25
7.6 - ALIGNMENT OF FREQUENGIES FOR. TRACKING 30
7.7-GUIDING VALUES FOR THE CORE POSITIONS 31
7.8 - TROUBLE SHOOTING 32
8. ;COMPONENTS LIST 36
8.1 - INPUT SECTION (STAGE 1 TO 4) 36
8.2 - FREQUENCY CONVERTER SECTION (STAGES 5, 6 and 7). 43
8.3 - AMPLIFIER SECTION (STAGES 8 TO 14) 46
8.4 - POWER SUPPLY SECTION (STAGE 15) 51

ALL WAVE MARINE RECEIVER
745 Ea

3 - GENFRAL

The superheterndyne all wave communications receiver is of the highest grade and covers the frequency ranges 14 to $21 \mathrm{Kc} / \mathrm{s}$ and $85 \mathrm{Kc} / \mathrm{s}$ to $30,3 \mathrm{Mc} / \mathrm{s}$ in twelve bands ; in its shortwave bands it operates with double frequency conversion. The frequency bands are selected with pushbuttons. For incremental control of receiving frequencies above $15 \mathrm{Mc} / \mathrm{s}$ the second oscillator can be detuned by up to 100 Kc / s in ganged tuning with the circuits of the first intermediate frequency. Fach $100 \mathrm{Kc} / \mathrm{s}$ scale division on the main scale can be checked against a built-in crystal spectrum generator.

Temperature-compensated layout of the frequency-determining stages, temperature-resistant materials and components and impregnation of moisture-sensitive components makes the receiver widely immune to climatic conditions and suitable even for deep-sea navigation.

The receiver may be operated from $A C$ or $D C$ ship's main or from 24 volts storage battery.

It may be supplied either as a separate unit contained in a robust metal cabinet for bench mounting or be incorporated in the SAIT console as Main or Fmergency receiver.

2 - TECHNICAL DATA

Types of reception :

A1	Unmodulated telegraphy in all frequency bands
A2	Mndulated telegraphy in the frequency bands between
\ldots	170 and $30.300 \mathrm{Kc} / \mathrm{s}$
A3	Telephony in the frequency bands between
	170 and $30.300 \mathrm{Kc} / \mathrm{s}$

2.1.- FREQUENCY RANGE

14 to $21 \mathrm{Kc} / \mathrm{s}$ and $85 \mathrm{Kc} / \mathrm{s}$ to $30.3 \mathrm{Mc} / \mathrm{s}$ in twelve bands.

Band 1	14 to $21 \mathrm{Kc} / \mathrm{s}$ (xx)
2	85 to $175 \mathrm{Kc} / \mathrm{s}$
3	170 to $350 \mathrm{Kc} / \mathrm{s}$
4	340 to $730 \mathrm{Kc} / \mathrm{s}$
5	720 to $1540 \mathrm{Kc} / \mathrm{s}$
6	1500 to $3100 \mathrm{Kc} / \mathrm{s}$ (x)
7	3100 to $6300 \mathrm{Kc} / \mathrm{s}$ (x)
8	6000 to $0,200 \mathrm{Kc} / \mathrm{s}(\mathrm{x})$
9	9700 to $15,200 \mathrm{Kc} / \mathrm{s}$ (x)
10	14,700 to $20,200 \mathrm{Kc} / \mathrm{s}(\mathrm{x})$
11	19,700 to $25,200 \mathrm{Kc} / \mathrm{s}$ (x)
12	24,700 to $30,200 \mathrm{Kc} / \mathrm{s}(\mathrm{x})$

(x) The up to $100 \mathrm{Kc} / \mathrm{s}$ that can be set on the frequency interpolator scale have to be added to the frequency values read on the main scale.
(xc) 14 to $25 \mathrm{Kc} / \mathrm{s}$ optional.
2.2.- TUBE COMPLEMENTP

	European type	U.S.A.type
4 tubes	EF93	6BA6
3 tubes	EK 90	6 BE 6
4 tubes	ECC 82	$12 \mathrm{AU7}$
2 tubes	$\begin{array}{r} \text { FAA } 91 \\ \text { or } \quad 9 B \quad 91 \end{array}$	6 AL5
1 tube	EL 90	6AQ5

1 tube	EM 34	6 CD7
1 stabilizer tube (input protection)	$108 \mathrm{C1}$	082

2.3.- SCALE GRADUATION
in band 1 with $1-\mathrm{kc} / \mathrm{s}$ divisions $\leqq 100 \mathrm{kc} / \mathrm{s}$ per mra
2 wi.th $5-\mathrm{kc} / \mathrm{s}$ divisions $\leqq 1 \mathrm{kc} / \mathrm{s}$ per man
3 with $10-\mathrm{kc} / \mathrm{s}$ divisions $\leqq 1.5 \mathrm{kc} / \mathrm{s}$ per mm
4 with $10-\mathrm{kc} / \mathrm{s}$ divisions $\leqq 3 \mathrm{kc} / \mathrm{s}$ per mm
5 with $20-\mathrm{kc} / \mathrm{s}$ divisions $\leqq 5 \mathrm{kc} / \mathrm{s}$ per mm
in bands 6 to 12 with $100-\mathrm{kc} / \mathrm{s}$ divisions with incremental control $1 \mathrm{kc} / \mathrm{s}$ per ma
2.4.- R.F. INPUT

Bands 1 to 6
high-impedance, unbalanced

7 to 12
Receiver is operation
Warmup for full calibrating accuracy
, unbalanced
after about one minute
two hours

Setting error in the bands 6 to 12
after calibrating the main tuning control
agains the $100-\mathrm{Kc} / \mathrm{s}$ spectrum $1 \mathrm{Kc} / \mathrm{s}$
Frequency drift (measured during a 10-hour operating period after 2hours of warmup) with mains voltage variations of $\pm 5 \%$
and 5 C temperature variation in the range +10 C to +40 C
in the bands 1 to 5

$$
6 \text { to } 12
$$

$$
\begin{aligned}
& \pm 10^{-3} \\
& \pm 2 \times 10^{-4}
\end{aligned}
$$

Parasitic oscillator voltage at the receiver input
(fundamental plus harmonics)
with termination into a dummy antenna
Bands 1 to $11 \quad 100 \mathrm{v}$
Bands 12 . 200 v

SAIT ELECTRONICS

Clectronies

Seleotivity :

Band	Class-ofemission	Attenuation 6 db for a detuning of $f_{q}(\mathrm{kc} / \mathrm{s})$	Attenuation 46 db for a detuning of $\mathrm{f}_{2}(\mathrm{kc} / \mathrm{s})$	Edge steepness $\begin{aligned} F= & \frac{40}{f_{2}-f_{1}} \\ & (\mathrm{db} \text { per kc/s)} \end{aligned}$
1 and 2	A1	± 0.3	± 1.6	30
3 to 12	A1	± 0.8	± 3.1	17
3 to 12	A2/A3narrow	± 1.1	± 4.4	12
3 to 12	A2/A3 wide	± 3.0	± 7.0	10

Image frequency rejection :

Band 1	70 db
2	50 db
3	60 db
4	80 db
5	50 db
6 to $11(12)$	$50(40) \mathrm{db}$

IF rejection at input:

Bend 1	$=70 \mathrm{db}$
2	$=50 \mathrm{db}$
3	$=80 \mathrm{db}$
4	$=60 \mathrm{db}$
5	$=50 \mathrm{db}$
6 to 12	

SAIT ELECTRONICS

2.5.-_INTERMODULATION

For an unmodulated useful signal of $100 \mu \mathrm{v}$ and an interfering signal of 10 mv with 50% modulation, $20 \mathrm{kc} / \mathrm{s}$ away
Sensitivity and signal-to-noise ratio for 1 into 10 ks (at audio output)

Band	Class-of- emission	signal-to-noise ratio (db)	Input FifF $(\mu \mathrm{v})$
1	A1	10	$\leqq 3.0$
2 to 4	A1	10	$\leqq 2.0$
6 to 12	A1	10	$\leqq 0,6$
4 and 5	A3	20	$\leqq 40$
6 to 12	A3	20	$\leqq 10$

Range of control for the pitch of the beat note
$= \pm 3000 \mathrm{c} / \mathrm{s}$ Audio gain control
manual
RF gain control
automatic (AVC)or manual
Variation of the audio output voltage
With a change in RF input voltage
from $10 \mu \mathrm{v}$ to 50 mv
$<4 \mathrm{db}$
Charging time constant of the AVC system
With classes-of-emission A1 and A2/A3 0.1 sec
Discharge time constant of the AVC
With class-of-emission A1
0.5 to 1 sec
With class-of-emission A2/A3
0.1 sec

Noise limiting action continuously adjustable and disconnectable
Bandwidth of the audio amplifier
At the 3-db-down points With respect to the $1 \mathrm{kc} / \mathrm{s}$ response

$$
300 \text { to } 5000 \mathrm{c} / \mathrm{s}
$$

Distortion factor with 1.5μ audio output
Unweighted noise at the loudspeaker
With full audio gain and minimum RF gain
Corresponding to a signal-to-noise ratio

SAIT ELECTRONICS

Electranics

2.6. - AUDIO OUPPUTS

Headphone terminal
Internal on/off loudspeaker
Terminal for external loudspeaker
Line output

$$
\begin{array}{r}
1 \mathrm{mw} ; 3_{i}=500 \Omega \\
2 \mathrm{w} / 5 \Omega \\
0.6 \mathrm{w} / 51 \Omega \\
1 \mathrm{mw} / 600 \Omega
\end{array}
$$

2.7.- POWER SUPPLY

AC Mains :
Via built-in power sypply unit. may be adjustied for 110-125-220-250 volts operation at 40 to $60 \mathrm{c} / \mathrm{s}$ - Input power : about 100 VA.
DC Mains : Receiver fitted as independent unit
opération from DC Mains 110-220 volts
or 24 volts storage battery via vibrator, inverter or rotary converter.

Receiver included in SAIT Console
When the ship's mains is $D C$, the receiver is
powered by the Console's Main Converter 110 volts single phase output.

Permissible voltage variation of the power supply

$$
\pm 10 \%
$$

2.8.- DIMENSIONS_AND_WEIGHT

Front panel (When the receiver is included in SAIT Console)

| Width : $\quad 52 \mathrm{~cm}$ |
| :--- | :--- |
| Height : $30,4 \mathrm{~cm}$. |

In metal cabinet with shock absorbers (When fitted as independent Unit)

Width : 55 cm
Height : $35,0 \mathrm{~cm}$
Depth : 38 cm
Weight : approx. $35 \mathrm{Kgs}$.

3.- BASIC FUNCTION

The receiver performs in different ways in the twelve bands. Four different functional patterns can be distinguished; they are associated with the various bands as follows :

Functional pattern A with bands 1 and 2
B with bands 3 and 5
C with band 4
D with bands 6 to 12
The differences by reference to functional circuit diagrams showing mexely the subassemblies activated at the time, not however switches and relays, are described hereafter.

```
3.1.- BANDS 1 AND 2
    (See DWG 4.92 Fig. 2)
```

In the bands 1 and 2 only signals of class A1 are to be received. The set operates with single frequency conversion. The frequency of the tunable first oscillator is $50 \mathrm{kc} / \mathrm{s}$ above the receiving frequency. The intermediate frequency of $50 \mathrm{kc} / \mathrm{s}$ so generated in the mixer stage is doubled in the following stage to give $100 \mathrm{kc} / \mathrm{s}$, i.e. raised to the frequency position of the following IF amplifier.

This IF signal passes trough the second half of a quadru-ple-tuned band filter. Subsequently the IF channel splits into a narrowband and a wide-band branch. In the wide-band branch the AVG voltage is produced; in the narrow-band branch the A1 signal is amplified once more and finally translated to the audio position with a carrier differing but slighty from $100 \mathrm{kc} / \mathrm{s}$. Audio stages with noise limiter and a final stage amplify the audio signal (difference of intermediate frequency and variable heterodyning frequency) to be output level desired.

$$
\begin{aligned}
3.2 .- & \text { BAND } 3 \text { AND } 5 \\
& \text { (See DWG } 4.62 \text { Fig. 3) }
\end{aligned}
$$

Also in these bands the receiver operates with single frequency conversion, but the first oscillator frequency is now $100 \mathrm{kc} / \mathrm{s}$ above the receiving frequency so that the $100-\mathrm{kc} / \mathrm{s}$ IF signal comes about already in the first mixer stage. It travels trough both halves of the quadruple-tuned filter. Subsequently the signal passes the same subassemblies as with bands 1 and 2. The narrow-band IF amplifier branch (Dwg.4.9.1) heterodynes and demodulates the signal (anode bend detection) in receiving signals of class A1, the upper wideband IF amplifier branch supplying the AVC voltage. In the reception of signals

SAIT ELECTRONICS

Electronies

of class A2/A3 the upper IF amplifier path effects the demodulation (diode detection); in the lower IF amplifier path the AVC voltage is gained.

$$
\text { 3.3.- } \frac{\text { BAND_4- }}{} \quad \text { (See DWG 4.6.2 Fig. 4) }
$$

In this band the receiver operates with double frequency conversion with the second oscillator set at a fixed frequency. The first oscillator is of variable frequency and operates $1180 \mathrm{kc} / \mathrm{s}$ abom ve the receiving frequency. The IF1-signal of $1180 \mathrm{kc} / \mathrm{s}$ so generated in the first mixer stage is applied to the second mixer stage via a double-tuned filter. The fixed-tuned second oscillator operates at $1280 \mathrm{kc} / \mathrm{s}$ that an IF signal of $100 \mathrm{kc} / \mathrm{s}$ comes about in the second mixer stage. The quadruple-tuned filter and the stages following in the signal path equal those for bande 3 and 5.

3.4.- BANDS 6 TO_12
 (See DWG 4.6.2.Fig. 5)

The receiver operates with double frequency conversion also in these bands. If it is tuned with the main scale alone, the electrical conditions are the same as described for band 4.

With the incremental tuning scale, however, (frequency interpolator) the IF1 filter and the second oscillator can be gangedtuned trough up to $100 \mathrm{kc} / \mathrm{s}$, their frequency difference always equalling the constant second intermediate frequency (see aiso paragraph 4.3.6). Since the incremental tuning control does not affect the fre-s quency of the first oscillator, the receiving frequency changes to the same extent (but in opposite direction) as the first intermediate frequency. The RF circuits need not be returned, for they are sufficiently wideband.

The class-of-emission awitch varies the couplings in the quadruple-tuned filter of the IF2 amplifier and thus the bandwidth according to the three positions "A1", "A2/A3 Narrow" and "A2/A3 Wide". The following circuitry again equals that for the other groups of bands.

3.5.- BLOCK DIAGRAM

"
The functional circuit diagram (Dwg.4.9.1) shows the basic interconnection of the individual receiver stages and control elements.

At the antenna input the protective measures against overload of the input circuits are symbolized (neon lamp, protective lamps, cut-off relay A). The input signal reaches the RF preselector

SAIT ELECTRONICS
 Electronies

stage which is switched to the band desired at the time with twelve pushbuttons. By pressing the callibrating key a signal of $100 \mathrm{kc} / \mathrm{s}$ or a multiple thereof can be applied from the calibrating oscillator to the control grid of the first tube. In this procedure the antenna, the BFO and the incremental frequency control are automatically disconnected.

Contacts of the relays B and C lead the signal from the first mixer stage via the doubler to the second half of the quadrupletuned filter (IF2), or directly to the input of the quadruple-tuned filter, or via IF1-filter and the second mixer stage with second oscillator to the input of the quadruple-tuned filter. The operating condition of the relays B and C depends on the band selected with the pushbuttons. The quadruple-tuned filter feeds into a narrow-band and a wide-band IF stage. In class-of-emission A1 the narrow-band (lower)IF path supplies the signal voltage which is heterodyned with a frequency of about $100 \mathrm{kc} / \mathrm{s}$ in the A1-demodulator, while the AVC voltage comes about at a diode behind the wide-band(upper)IF path. In class A2/A3 this diode supplies the demodulated signal, and the other diode which is fed by the lower IF stage, derives the AVC voltage.

The AVC voltage controls the preselector stage, first mixer stage, second mixer stage and last IF stage. The gain can also be adjusted by hand with the control "RF Gain".

A common switch for class-of-emission and bandwith connects the demodulator activated at the time to the volume control which is followed by the audio section with noise limiter and final stagte.
3.6.- FRERUUENCY SCHEDULE

Band	Receiving frequency in kc/s	Frequency of 1st oscillator in kc/s	1st inter- mediate frequency in kc/s	Frequency of 2nd oscillator in kc/s
1	14 to 21	64 to 71	(50)	-
2	85 to 175	135 to 225	(50)	-
3	170 to 350	270 to 450	(100)	-
4	340 to 730	1520 to 1910	1180	1280
5	720 to 1540	820 to 1640	(100)	-

6	$\begin{aligned} & 1500 \text { to } 3100 \\ & +(0 \text { to } 100) \end{aligned}$	2680 to 4280	$\begin{gathered} 1180 \\ -(0 \text { to } 100) \end{gathered}$	$\begin{gathered} 1280 \\ -\left(\begin{array}{lll} 0 \text { to } & 100 \end{array}\right) \end{gathered}$
7	$\begin{array}{r} 3100 \text { to } 6300 \\ +(0 \text { to } 100) \end{array}$	4280 to 7480	$\begin{aligned} & 1180 \\ & -(0 \text { to 100 }) \end{aligned}$	$\begin{gathered} 1280 \\ -\left(\begin{array}{ll} 0-t o & 100 \end{array}\right) \end{gathered}$
8	$\begin{aligned} & 6000 \text { to } 10,200 \\ & +(0 \text { to } 100) \end{aligned}$	7180 to 11,380	$\begin{gathered} 1180 \\ -(0 \text { to } 100) \end{gathered}$	$\begin{gathered} 1280 \\ -(0 \text { to 100 }) \end{gathered}$
9	$\begin{aligned} & 9700 \text { to } 15,200 \\ & +(0 \text { to } 100) \end{aligned}$	10,880 to 16,380	$\begin{gathered} 1180 \\ -(0 \text { to } 100) \end{gathered}$	$\begin{gathered} 1280 \\ -(0 \text { to } 100) \end{gathered}$
10	$\begin{gathered} 14,700 \text { to } 20,200 \\ +(0 \text { to } 100) \end{gathered}$	15,880 to 21,380	$\begin{array}{r} 1180 \\ -(0 \text { to } 100) \end{array}$	$\begin{gathered} 1280 \\ -(0 \text { to } 100) \end{gathered}$
11	$\begin{gathered} 19,700 \text { to } 25,200 \\ +(0 \text { to } 100) \end{gathered}$	20,880 to 26,380	$\begin{gathered} 1180 \\ -(0 \text { to } 100) \end{gathered}$	$\begin{gathered} 1280 \\ -(0 \text { to } 100) \end{gathered}$
12	$\begin{gathered} 24,700 \text { to } 30,200 \\ +(0 \text { to } 100) \end{gathered}$	25,880 to 31,380	$\begin{gathered} 1180 \\ -(0 \text { to 100 }) \end{gathered}$	$\begin{gathered} 1280 \\ -\left(\begin{array}{l} \text { to } 100 \end{array}\right) \end{gathered}$

2nd intermediate frequency : $100 \mathrm{kc} / \mathrm{s}$ for each band
Frequency doubling : for bands 1 and 2 only
4.- FUNCTIONS OF THE SUBASSEMBLIES
4.1 - RF SECTION
$-\left({ }^{-}\right.$See $^{-} \mathrm{DWG}^{-} 4.9 .4$, stages 1 and 3)
A neon stabilizer tube $V 101$ (1 Rö?) is connected across the antenna terminal of the device to prevent overvoltage across the antenna coils.

The antenna lead passes via contact aII. 2 of relay K-101. This relay is controlled via de keying line of the transmitter of the same station; for the time this transmitter operates, the antenna input of the all-wave receiver is connected to chassis ground. Contact aII. 2 is also opened, when the calibrating key is depressed, with simultaneous energization of the indicating lamp I-101 "Cal." by contact AI-1. The protective lamp I-102 limits the current in the antenna coils and so protects the input circuit from overload due to neighboring transmitters of higher power. The protective lamp I-501 performs in addition the same function for the bands 1 to 5.

SAIT ELECTRONICS
 Electronies

Wi.th operation in the bands 6 and 7 two wavetraps for the first intermediate frequency ($\mathrm{L}-525=\mathrm{C}-530$ with $\mathrm{f}_{\mathrm{o}}=1150 \mathrm{kc} / \mathrm{s}$ and $\mathrm{L}-500=\mathrm{C}-500$ with $\mathrm{f}_{\mathrm{O}}=1110 \mathrm{kc} / \mathrm{s}$) are connected across the input; in band 3 a $100-\mathrm{kc} / \mathrm{s}$ wavetrap ($\mathrm{I}-526=\mathrm{C}-531$) and in the bands 1 and 2 a $50-\mathrm{kc} / \mathrm{s}$ wavetrap ($\mathrm{L}-551=\mathrm{C}-563$) are effective. The preselector section 1 C-102 of the main tuning capacitor and the control grid of the preselector tube V103 (1 Rö1) are connected via the pushbutton assemby to the preselector coil used at the time. To suppress parasitic resonances, the six tuning coils not used at the time are connected to chassis ground. The anode lead of the preselector tube includes the interstage circuit corresponding to the band chosen; via the pushbutton assembly it is connected to the second control grid of the first mixer stage 3 V 104 (Ro1) and the second section of the variable capacitor. All tuned circuits except the one actiated at the time are connected to ground via the pushbutton assembly.

```
4.2 - CALIBRATING OSCILLATOR
    (See Dwg. 4.9.4, stage 2)
```

The calibrating oscillator is energized via the contact E3 by pressing the calibrating button. Cathode, control grid and screen grid of tube V101 (2 Rö1) function as a triode section that produces a crystal-controlled fundamental of $100 \mathrm{kc} / \mathrm{s}$. The following section screen grid - suppressor grid - anode annlifies this wave with simultaneous shaping of its waveform in a way that its anode circuit carries all harmonics required for calibration at frequencies up to $30 \mathrm{mc} / \mathrm{s}$. Via capacitors C-106 and C-105 the calibrating wave passes to the control grid of tube V101 (1 Rö1); the output coupling is so proportioned that all harmonics appear with about the same amplitude at tube V101 (1 Rö1).

Independently of the beat-frequency oscillator V305b (11 Ro2) whose anode voltage is disconnected when the calibrating button is pressed, the audible calibrating beat note comes about by heterodyning the IF2 wave with the $100-\mathrm{kc} / \mathrm{s}$ crystal wave. Via the variable voltage divider R-106, R-107 (for adjusting the volume of the calibrating notes) it is taken from the control grid of tube V103 (2 Ro1) and applied via C-109 to the last IF stage with tube V302 (9 R 01).

For accurate setting of the frequency to $100 \mathrm{kc} / \mathrm{s}$ or a harmonic thereof, the beat note pitch must be zeroed with the main tuning capacitor.

For offsetting crystal tolerances, the crystal frequency can be slightly pulled with the trimmer C-106.

The contact E6 is independent of the calihrating button and serves for energizing the calibrating oscillator if its

SAIT ELECTRONICS

Electronies

frequency is to be checked without disconnecting the antenna (see par. 4.7.2).

4.3.- FIRST MIXER STAGE AND FIRST OSCILLATOR (See Dwg 4.9.4. stages 3 and 4)

The first mixer stage with tube V104 (3 Rö1)translates the receiving signal with the wave produced in the first oscillator tube V105a (4 Ro1). With the capacitor $\mathrm{C}-135$ this oscillator is ganged-tuned together wi.th the preselector circuit and interstage circuit. Depending on the band chosen, the frequency of the oscillator wave is above the receiving frequency by 50,100 or $1180 \mathrm{kc} / \mathrm{s}$ (or in operation with frequency interpolator by some value between 1180 and $1080 \mathrm{kc} / \mathrm{s}$). (Paragraph 4.3 .6). The need for producing in the first stage of conversion different intermediate frequencies depending on the band used at the time is due to the wide over-all frequency range of the all-wave receiver. In the bands 1 and 2 the first mixer stage produces a difference frequency of $50 \mathrm{kc} / \mathrm{s}$ which does not coincide with any receiving frequency. After doubling its frequency, this signal is applied directly to the IF2 section which is fixed-tuned at $100 \mathrm{kc} / \mathrm{s}$. Since in the bands 1 and 2 only A1 reception is desired, such doubling of the sideband-to-carrier interval, i.e. of the audio signal frequency is inconsequential.

In band 3 the signal is translated to the $100 \mathrm{kc} / \mathrm{s}$ position in the first mixer stage so that no doubling is required. This band is therefore suitable for A2/A3-signals as well.

In band 4 the receiver operates with double frequency conversion. The first intermediate frequency of $1180 \mathrm{kc} / \mathrm{s}$ secures high image frequency rejection, and the second intermediate frequency of $100 \mathrm{kc} / \mathrm{s}$ provides excellent rejection of interfering signals at nearby frequencies.

In band 5 the signal is translated directly to the $100-\mathrm{kc} / \mathrm{s}$ position, for an intermediate frequency of $1180 \mathrm{kc} / \mathrm{s}$ would fall in the receiving range.

In the bands 6 to 12 the receiver operates as in band 4 with double frequency conversion, but for incremental detuning the IF1 filter and the second oscillator can be simultaneously detuned by up to $100 \mathrm{kc} / \mathrm{s}$. Since the input circuits are sufficiently wideband, they do not participate in this incremental tuning procedure.

In all bands the first oscillator operates in a Hartley circuit with cathode feedback (anode grounded). The oscillator wave is extracted in the cathode circuit formapplication to the fifirst cortrol grid of the first mixer tube.

SAIT ELECTRONICS

4.4- $\frac{\text { DOUBLER }}{(\text { See Dwg.4.9.4, stage 5) }}$

The anode circuit of the first mixer tube V104 (3 Rö1) includes the contacts $c^{I I}$ and b^{I} of the relays $K-201$ and $K-202$ In the contact positions cII2, bI1 (bands 1 and 2) the mixer tube feeds into a $50-\mathrm{kc} / \mathrm{s}$ circuit (L-201/C-204). Via a $100-\mathrm{kc} / \mathrm{s}$ wave-trap (L-203/C-205) and another $50-\mathrm{kc} / \mathrm{s}$ circuit (L-204/0-206) the signai reaches the control grid of the doubler tube V201 (5 Rot which is loaded by the secord half of the $100-\mathrm{kc} / \mathrm{s}$ quadmple-tuned filter. Whis tube receives the sorsen grid voltoge via contact qi....2b of the push... button assembly; the tube receives its amode voltage via switoh :SW301a for bandwidth control.

In the bands 3 and 5 the first frequency conversion produces an IF signal of $100 \mathrm{kc} / \mathrm{s}$ which via the relay contacts c^{112}, b^{12} reaches the input of the quadruple-tuned filter in stage 9 . In these bands no anode current flows in the second mixer tube V202 (6 Röl), since the contact set c^{I} disconnects the screen grids from their supply voltage, Also disconnected is the doubler stage v20 (5 Röil) by $\mathrm{T} 1 \ldots 2 \mathrm{~B}$.

In the bands 4 and 6 to 12 the variable doubletuned filter of the first intermediate frequency is in the anode lead of the first mixer stage V 104 (3 R61).

4.5 - INPERMEDIATE FREQUENGY 1, 2nd MIXER STAGE AND 2nd OSGILLATOR (See Dwg.4.9.4n; stage 6 and 7)

In the bands with single frequency conversion these stages are inactivated. In those bands with double frequency conversion the double-tuned filiter of the 1 st $I F(1180 \mathrm{kc} / \mathrm{s}$ or 1080 to $1180 \mathrm{kc} / \mathrm{s}$) is connected via the contact $c^{I I 1}$ of relay $\mathrm{K}-201$ to the anode of the first mixer tube V104 (3 RB1). The output of this filter goes to the control grid of the second mixer tube V202 (6 Rôi). Dwg.4.9.4 shows the condition "Interpolator On". When the relays K-203, K-204 now receive a pulse of current, the associated contacts transfer and the fixed capacitors $\mathrm{C}-216$ and $\mathrm{C}-219$ are connected in parallel to the filter coils L-205 and L-206. The double-tuned filter is so fixed-tuned to $1180 \mathrm{kc} / \mathrm{s}$. At the same time the contact dII 1 connects the oscillator coil L-209 to the trimmer capacitor $\mathrm{C}-233$. The second oscillator now operates permanently $a+1280 \mathrm{kc} / \mathrm{s}$; i.e. the frequency intermolator is inactivated.

The relays K -203 and K-204 are energized either via the contact $E 1$ when the calibrating button is pressed ox via the pushbutton contacts T1 ... 5 or T4b when any of the lower bands is selected. The relays receive further a pulse of current by the momen-

tary contact $T 1$ to $T 12$ of the pushbutton system when a band is changed, or via the control contact $S 11$ with any minute shift of the main tuning control.

With energization of relay $\mathrm{K}-204$ the contact set dI1 closes to act as a holding contact via the normally closed pushbutton contact S 12 on the frequency interpolator knob assembly. The indicating lamp"Interpolator On" (I-101) goes out.

The second oscillator and the second mixer stage are applied via $c^{I 1}$ to the regulated operating voltage 450 v onlys if the relay K-201 is energized by pushing any of the buttons 4 and 6 to 12.

4.6 - INTHRMEDIATE FREQUENCY 2, DEMODULATION, GENERATION OF THE ĀUTOMATIC $\bar{C} O N T T O \bar{L}, \overline{\mathrm{~V}} O \overline{\mathrm{~L}} \overline{\mathrm{~A}} \mathrm{I} \mathrm{E}$. (See Dwg.4.9.4., stages 8, 9, 10, 11)

(6 Rö1) goes to the input circuit of the second mixer stage V202 filter, whose bandwith can be varied in three steps with the class-ofemission swithch SW302a/b/SW301a, depending on the class-of-emission selected. At the output of this filter two amplifier stages are arranged with tubes V302 (9 R01) (with L-307/L-308) and V301 (8 Rö1) (with L-309/L-310) of which the latter is narrower in bandwidth. In class A1 it is used for amplifying the signal. In this setting the control grid of tube V301 (8 Rö1) is connected to the AVC voltage lead via $[-305$ and switch Sib ; the gain of tube V302 (9 Ro1) is not controlled, however. The filter in the anode circuit of tube V302 (9 Rö1) is of greater bandwidth and followed by the diode section V303 (10 RO1) which in class-of-emission A1 produces the AVC woltage for application to the AVC line via the switches SW304b and SW305.

In the position A2/A3 the switch SW301b disconnects the AVC line from tube V301 (8 RO 1). The primary of the IF2 filter after tioe (Ro1) is connected to the diode section V303b (10 RO 2) at whose anode the AVC voltage is taken in class-of-emission A2/A3. The signal is here amplified by tube V302 (9 R81) whose contrd grid is connected to the AVC line via R-307, SW304a. The tubes V101 (1 Ro1), V104 (3 RO1) and V202 (6 Rö) are connected to the AVC line in all classes-of-emission.

In class-of-emission A1 the narrow-band branch is thus used for amplification of the signal, and the wide-band branch for deriving the AVC voltage; with the classes A2 and A3 conditions are reverse.

In class-of-emission A1 the switch SW 303a which connects the volume control R-323 to the demodulator active at the time is applied to the anode of tube V305a (11 Rô1). The control grid lof this tube which operates in the lower bend of the characteristic,

receives beside the input signal a $100-\mathrm{kc} / \mathrm{s}$ wave generated by the beat frequency oscillator (tube V305 (11 R82)). The capacitor C-342 can vary the frequency of this oscillation by $\pm 3 \mathrm{kc} / \mathrm{s}$. An additive mixing os this wave with the on/off keyed carrier results in an audio beat note whose pitch depends on the setting of capacitor C-342.

With the switch SW 303 b the BFO is disconnected from its supply potential in the classes-of-emission A2/A3; it is also disconnected with contact $\# 4$ whenever the calibrating button is pressed.

The RF and IF gain of the receiver can also be controlled by hand. For this purpose the switch SW305 disconnects the AVC line from the regulating diode and applies it to the wiper of the potentiometer $\mathrm{K}-320$ which is connected to a negative potential. A depression of the cálibrating button connects with contact E2 the AVC line always to the regulating diode, irmespective of the position of SW305.

```
4.7 - AUDIO STAGE, NOISE LIMITER
    (See Dwg.4.9.4, stages 10 and 12).
```

After amplification in tube V304a (10 R03) the audio signal is applied in stage 12 to a double diode whose cathodes are interconnected and applied to a variable negative bias. The diode section V307a (12 R61) becomes conducting only at voltages exceeding a minimum depending on the cathode bias; negative peaks beyond a certain value thus are limited. On the other hand the diode section V307b (12 Rö2) becomes conducting only at voltages not exceeding a certain maximum; positive peaks beyond a certain value thus are limited as well. The onset point of the limiting action can be adjusted with the aid of the potentiometer R-346 corresponding to the respective receiving conditions. With 'the switch SW306 the limiting action can be disabled.

$$
\begin{aligned}
4.8- & \text { AUDIO STAGE AND FINAL STAGE } \\
& \text { (See Dwg. } 4.9 \cdot 4, \text { stages } 12,13 \text { and 14). }
\end{aligned}
$$

After the noise limiter the audio signal reaches the second amplifier stage V304b (12 Ro3) and ultimately the final stage V308 (13 R'1). The anode circuit of the final tube includes an output transformer which besides the winding for the built-in loudspeaker has terminals for the connection of 6008 lines as well as high-impedance outputs for a second loudspeaker and headphones. The built-in loudspeaker can be silenced with the push-pull switch SW307 combined with the volune control R-323.

i4.9-TUNING INDICATION

```
( See Dwg. 4.9.4, stage 11)
```


SAIT ELECTRONICS

Clectronies

The control grid of the tuning indicator tube V306 (11 Ro3) (magic-eye tube) is connected to the AVC line. With reconnection of the receiver for manual control the indicating tube remains connected to the AVC line so that a tuning indication is possible also with manual control.

```
4.10 - POWER SUPPIY UNIT
    (See Dwg.4.9.4., stage 15).
```

The power supply unit, stage 15, feeds the receiver. The power transformer can bereconnected for primary voltages of $110,125,220$, and 250 v . Operation from DC mains or storage battery is possible via a vibrator inverter or rotary converter. Its input circuit can be looped via two switch contacts in the receiver that are ganged with the switch of the power transformer. The vibrator inverter (or rotary converter) is so also under control of the receiver on/off switch.

The power transformer has three secondary windings The heater winding is so designed that apart from the 6.3-v tap for the heater supply of the receiver tubes a voltage of about 9.5 v is available which supplies regulated 6.3 v for heating the two oscillator tubes via the Thernewid resistor (resistance with negative temperature coefficient) $\mathrm{R}-402$ and ballast resistor $\mathrm{R}-401$. From the $9.5-\mathrm{v}$ $A C$ the DC supply voltage for the relay circuits is also derived via a rectifier 403 and filter capacitor $C-401$.
A. secondary winding (220 v AC) produces 230 v DC for the anode and screen grid supply via a rectifier bridge 40$\}$ and filter network $C-402 / C-403$, L-401.

A regulated voltage of 950 V is taken at the neon stabilizer tube V401 (15 Röl) for the anode supply of the osicillator tubes and the screen grid supply of the mixer tubes. Via a rectifier bridge 402 and filter chain $C-404 / C-405, R-404$ another secondary winding ($127 \mathrm{v} A C$) produces a voltage of 115 v for manual control and noise limiting which is negative with respect to chassis ground.
5.- LAYOUT

The all-wave receiver consists of five different subassemblies mounted in a common frame of strong angle iron.

1. Input section
2. Calibrating oscillator
3. Converter section
4. Amplifier section
5. Power supply unit.

The annexed Figs. 1 and 2 show top and bottom views of the receiver slide-in chassis. The left of the slide-in chassis accomodates the input section which comprises the RF and oscillator circuits with pushbuttion assembly and three-section variable capacitor for coarse tuning. The associated tubes Vi01 (1 Rö1), V104 (3 Rö) and V105a/b (4 R61/2) (RF prestage, first mixer stage, and first oscillatc) are arranged at the bottom of the chassis below the variable capacitor.

Behind the variable eapacitor the calibrating oscillator is arranged which produces a $100-\mathrm{kc} / \mathrm{s}$ spectrum with the aid of a crystal and the oscillating and harmonic-generating stage v103 (2 Rö1).

At the right beside the variable capacitor the converter section is arranged with doubier stage V201 (5Rö), second mixer stage V202 (6 Robl), second oscillator with buffer stage V203a/b (7 Rö1/2) as well as a threemsection variabla capacitor for the frequency interpolator.

All stages of the IF2 section (filters,amplifier stages V301 (8 Rob1) and V302 (9 Rö1), demodulator and AVC voltage diode V303a/b (10 R61/2) as well as the additionally shielded BFO V305a/b (11 Röl/2) are in the amplifier section in the righthand half of the frame. This subassembly contains further the audio stages : Anplifier V304a (10 Ró3), noise Jimiter V307a/b (12 Rö1/2), amplifier V304b (12 R03) and final stage V308 (13 Ro1) with output transformer. The indicating tube V306 (11 Ro3) mounts above the amplifier section on the front panel.

The power supply unit (annexed Fig.1) is arranged at the rear of the frame. It comprisss the power transformer (rear right) the filter choke (rear left) and in-between a neon stabilizer tube, ballast resistor, filter capacitors and rectifiers. The layout plan (annexed Fig. 4) shows the details of the setup.

For DC the subassemblies are interconnected via wires (cableforms) decoupled with lead-trough capacitors and for AC via shielded cables. Apart from the power supply all subassemblies have separate eleotrical shielding; after removal of the cableforms and shielding cables they can be taken down singly. Itshould be noted that the input section requires realignment aiter any dismounting and remounting, Sometimes need may even arise for a redrawn main scale. For this reason the input section should never be dismounted outside the factory, if. possible.

The main tuning capacitor is controlled with the tuning knob via bronze strip and gearing on the bay frame. With knob pulled outward the coarse drive is activated for sweeping the scale range in $3^{3 / 4}$ revolutions. With the knob pushed (fine drive) such coverage takes $15 \times 33 / 4=$ about 56 revolutions.

SAIT ELECTRONICS

Electronies

With the front panel all subassemblies in the frame integrate to a slide-in chassis accomodated in a rugged dripwaterproof metal cabinet and attached to the latter by four screws at the corners of the front panel. When the receiver is fitted as independent unit, shock mounts are provided.

The receiver slide-in chassis can also be inserted into a bay.

6.- OPERATION

6.1 - PROCEDURES PRIOR TO PLACING INPO OPRERAPION
a) Equipping the sliderin chassis

The receiver is mostly supplied with tubes inserted. Insert into the correspondingly lettered holders electron tubes, stabilizer tubes, and the control crystal supplied as separate items. For this purpose loosen the four red-ringed screws at the corners of the front panel and withdraw the slide-in chassis in a forward direction from the casing by the two handles.
b) Setting the operating voltage

The receiver leaves the factory adjusted for $220-\mathrm{v}$ $A C$ mains. For operation from 110,125 or 250 v AC supplies the mains voltage adjuster should be shifted accordingly. It is accessible at the rear of the slide-in chassis after withdrawing the latter from the casing. The mains voltage value, for which the unit is set, appears in a window at the rear of the cabinet.

If only DC mains are available in case of an independent fitting, a corresponding vibrator inverter or ratary converter should be connected in tandem with the power lead of the receiver. The mains and the vibrator inverter should be connected to the three-terminal safety sockets at the rear of the receiver. In this way the vibrator inverter input is also brought under control of the on/off switch of the receiver.

For operation on DC mains the receiver incorporated in SAIT Console is powered by the Console's main converter.
c) Antenna and ground

Connect a reliable ground lead to the grounding terminal at the rear of the device. Connect the antenna via the coaxial antenna jack to the device.
d) Headphone, loudspeaker, audio line.

A geadphone ($\leqslant 2 \mathrm{k} \Omega$) can be connected to the jack pair on the front panel.

Two additional jack pairs at the rear of the device 'serve for the optional connection of an external loudspeaker ($\leqq 5 \mathrm{k} \Omega$)

and a 600-8line (audio power 1 nw.)
With simultaneous operation of the internal and external loudspeakers each receives 0.6 watts at most.
e) Keying line

If a transmitter is operated together with the receiver, it may happen that it feeds considerable power into the receiving antenna. In such case connect the jack pair "Keying Line" at the rear of the receiver via a two-wire line to the corresponding jacks of the transmitter. When its carrier appears, a relay closes the keying line circuit and so energizes relay 1 Rel A in the receiver to disconnect the antenna from the receiver input.
6.2 - PLACING THE RECEIVER INTO OPERATION
(See DwE.4.9.5)
a) Energization

Operate the power switch to "On". Illumination of the scale indicates the energized condition of the receiver; within about one minute it is ready for operation. Its full frequency stability is attained:after about two hours of warmup.
b) Preparatory settings

With one of the twelve pushbuttons select the desired band as a first step. Before tuning-in on the desired station, operate the other controls as follows :
Operate the class-of-emission and bandwidth switch to "A1", "A2/A3" "Narrow"or "A2/A3 Wide" corresponding to the desired class-of-emission Bring the control "RF Gain" to its zero position; this simultaneously activates the automatic volume control (AVC). Operate the control for the noise limiter to "Off". Turn on the loudspeaker by pushing the audio control and set the latter for a medium volume.
c) Tuning in the bands 1 to 5

In these bands the frequency interpolator is inactive. Tune the receiver with the control knob; in so doing set the scale index directly to the desired frequency (control knob pulled : coarse tuning; control knob pushed : fine tuning). Checking of the $100-\mathrm{kc} / \mathrm{s}$ points aginst the built-in crystal spectrus is possible by pressing the calibrating button; the red display "Calibration" becomes lighted in such case. Set the main tuning control for zero beat. The deviation between index and scale mark can so be determined and taken into account in setting the desired frequency.

Check the tuning conditions against the "Magic-Eye-Tube' In class-of-emission A1 set the control "A1 Pitch" for the desired pitch. To eliminate interfering noise the noise limiter can be activated and set correspondingly.

SAIT ELECTRONICS

d) Tuning in the bands 6 to 12

In all these bands the incremental fine scale with its high reading accuracy can be used beside the main scale. This "heterodyning frequency interpolator" is established by the tunable second oscillator.

By reference to an example let us explain the setting to a given frequency. A frequency $13,678 \mathrm{kc} / \mathrm{s}$ is assumed as desired. Such setting requires only the foilowing few operations :

- Press pushbutton 9 for the range 9700 to $15,300 \mathrm{kc} / \mathrm{s}$.
- Set the control "Tuning" in the coarse drive (knob pulled) to the $100-\mathrm{kc} / \mathrm{s}$ value of the desired frequency, i.e. $13,600 \mathrm{kc} / \mathrm{s}$.
- By pressing the pushbutton "Calibration" (red display "Calibration" becomes lighted) and slow rotation of the knob "Tuning" in the fine drive (knob pushed) make the beat note zero by reference to the crys tal spectrum. The index of the incremental tuning scale may be in ang position; it is of no influence onto the calibrating procedure.
Important : After releasing the pushbutton "Calibration" the index of the main scale must no longer be shifted.
- By temporary pushing of the knob "Frequency Interpolator" (White display "Frequency Interpolator" becomes lighted) activate the incremental tuning action and set its control now for the tens and units. (i,e. the figure "78" in this case).

This leaves the receiver accurately tuned to the desired frequency $13,678 \mathrm{kc} / \mathrm{s}$. The index of the interpolator scale need not be set to " 0 " beforehand. The white display "Frequency Interpolator" indicates that any kilocycle value set on the fine scale has to be added to the setting of the main scale in the bands 6 to 12 .

Whenever a new frequency is being set, i.e. the knob "Tuning" is rotated or some other band selector button is pushed, the "Frequency Interpolator" is automatically disconnected and the display "Frequency Interpolator" becomes dark. The value just set on the incremental scale is new inconsequential.
e) $\frac{\text { Setting for the classes-of-emission }}{(\text { See DWG.4.9.5) }}$

The position without AVC, i.e. with activated control "RF Gain" will be used, for instance, only if the received radio signals show slow lading or noneat all. Stations whose signals hardiy are above the interfering noise can be better received with manual control, for in case of automatic control large noise peaks. are liable to shut down the receiver gain.

By activating the control "Noise Limiting" such noise peaks can be widely suppressed. This control must be so set that the

useful signal is passed without diatortion.

- Class-of-emission A1_

Before tuning in on an Al-station, bring the index of the control "A1 Pitch" to a vertical upward position, hence between the two tapering arrow ends. With the main scale, and, if applicable, the incremental scale, tune the receiver to the station in a, way that the frequency of the beat note becomes virtually zero (dead interval between audible beats). Subsequently adjust the control "A1 Pitch" for the desired pitch.

- Class-of-emission F1-Manual Morse

Operate the class-of-emission switch to "A1".
Before the tuning procedure itself the index of the control "A1 Pitch" must point upward. Adjust the RF gain with the control "Gain RF".

With the aid of the rain scale and, if need arises, incremental scale tune the receiver to the transmitting station in a way that the lower of the two shifted carrier positions is associated with zero beat.

Buring reception adjust the pitch control or the incremental scale in a way that, if possible, only the mark elements are audible and the space elements are silent due to the zero beat method.

- Classes-of-emission A2 andal

Corresponding to the demanded bandwith operate the classof - emission switch to "A2/A3 Narrow" or "A2/A3 Wide".

In these classes-of-emission the control "A1 Pitch" is ineffective.
7.- MATNTENANCE
7.1 - CLEEANING, SERVICING, SUPERVISING

Since the all-wave receiver is built for rough conditions of use, it needs servicing only at intervals of about 2 to 3 months under normal climatic environment and in dry operating rooms. Equipment permanently used in vehicles or under adverse climatic conditions should be serviced about every four weeks. The intervals stated do not for the indicating lamp "Frequency Interpolator" and the crystal oscib lator (see paragra.phs 4.7.1.e and 4.7.2)
Generally the following is required :
a) Cleaning the receiver inside and outside including servicing of the surfaces.
b) Servicing the bearing points onrotating parts.

c) Cleaning and servicing of exposed contacts (power switch and classof emission switch)
d) Supervision of the operating voltage and tubes (See table, Dwg.4.9.)
e) Supervision of the indicating, scale, and protective lamps.

Important : Check the lamp lighting the display "Frequency Interpolator" daily, if possible. When the frequency interpolator is activited, the display indicates by lighting that in the short-wave bands 6 to 12 the numerical values of the incremental scale, in kilocycles are to be added to the frequency getting of the main scale; satisfactory performances of this indicating lamp thus is of extreme importance.

The indicating and scale lamps have screw bases and are protected by paint against coming loose. For replacing lamps the holders can be galled off the holding brackets in the direction of the lamp exis.

All work must be carried out with care by well (trained personnal, observing the demands applying for fine mechanical equipment. Permissible tools are dry washed lintfree cloths, clean brushes with positively attached bristles, grease-free compreased air at a precessure not exceeding 1 at (141 hsi) and satisfactory screwdrivers, pliers and pincers.

Near coils including adjusting screws, variable capacitors, trimmers, ans switch springs maximum care must be exercised in order to avoid mistune of frequency-determining parts.

Only a bare minimum of grease and oil should be used; as a rule "too little" will be preferable to "too much". Use always only best grease and oil free of resin and acid.

The tables in the annexed Fig. 5 and Dwg.4.9.3 include all necessary information for supervision of the tubes and the operating voltage and for the measurement of the gain per stage.

If a tube should show deviations of more than 10% from the value stated, it must be checked in a tube tester. Should it pass that test, check whether the circuitry around the respective tube has developed a fault.
7.2 - CHECKING_THE CRYSTAL_OSCILLATOR

At regular intervals of about four weeks the frequency of the crystal oscillator must be compared against a standard frequency. For this purpose withdraw the slide-in chassis from the casing after loosening the four screws at the corners of the front panel, and place the chassis into operation again with antenna connected. (Caution : Receiver is under operating voltage). Tune the receiver subsequently

in band 3 to the station Droitwioh I at $200 \mathrm{kc} / \mathrm{s}$. Activate the crystal spectrum generator with the pushbutton at the rear of the chassis.

The $100-\mathrm{kc} / \mathrm{s}$ wave of the crystal and the IF wave generated from the crystal harmonics heterodyne to give a beat note. As a first step set the main tuning control of the receiver approximately to zero beat. The ordinarily small difference between the second harmonic of the crystal and the standand frequency of the transmitter is evident from a beat note indicated by the magic-eye tube. Minimize the beat frequency by varying the pulling trimmer on the crystal spectrum generator (lettered "100-kc/s Cal.Freq.") (minimum pulsation period about 2 to 3 sec.$)$

The, volume of the $100-\mathrm{kc} / \mathrm{s}$ bea, notes can be varied with the control "Cal. Oscillator level" inside the set. It must be checked in particular in the shortwave bands with the highest numbers.

After checking and aligning reinsert the chassis into the casing and bolt it in position.

7.3 - REMOVING THE FRONT PANEL_

To gain access with repair work to those components that are controlled from the front (e.g. potentiometers, pushbuttons, power switch), the front panel must be removed.

After loosening their tops all controls can be pulled off easily : only in the case of the knob driving the index of the main scale it is requisite to proceed according to the following instruction (Dwg.4.9.2, Fig. 1)

1- Place the receiver with front panel facing upward.
2- Turn the knob in a way that access is gained to one after the other of the two grub screws (1) in the slot (2) of the ring. Loosen the grub screws.
3- Grip and withdraw the slipped-on protective cover (3) with finger nails or pocket knife.

4- Push the knob to the rear position.
5- Screw out the tapered-head screw (4).
6- Pull off the knob slowly and gently from the driving axle. If it should refuse to come off smoothly, open the grob screws about another quarter turn.

After repair and reapplication of the front panel and the other controls reassemble the main tuning control knob in the following order:?
1- Place the receiver with front panel facing upward.
2- Slip the knob onto the driving axle.

SAIT ELECTRONICS

Electronies

3- Turn the knob in a way that the two grub screws (1) become accessible one after the other; tighten the screws.
4- Push the knob to the rear position.
5- Screw the tapered-head screw (4) into the axle.
6- Slip the cover (3) onto the control.

7.4 - REPLACING PARTS

1. Notes on mounting work

In replacing defective parts the following should be observed :
a- To avoid connecting errórs, it is advisable before taking down a defective part or larger structural unit, to draw a situation plan of the wires and components that must be unsoldered.
b- Screws loosened for repair must be tightened again firmly after repair and protected against coming loose.
c- If need arises for replacing parts, use if possible only original parts and mount and fix them in accurately the same position.
By reference to the annexed photographs in Fig. 1 resistors and capacitors can be easily located, and by reference to the annexed Fig. 4 coils, switches, relays and lead-trough capacitors.
2. Replacing a coil or a trimmer in the pushbutton assembly

Unsolder the connections to the respective pushbutton strip. After bending up the fastening tabs, take out the strip and replace the coil or the trimmer. Proceed with care and avoid jamming.
3. Dismounting of the pushbutton assembly with variable capacitor C-102/C-132/C-135.
a- Connect an RF generator of constant frequency to the receiver input and tune the receiver. Set the frequency in a way that the grub screws on the axle of the variable capacitor are accessible in this position of the index. Mark in a suitable manner the positions of the variable capacitor and the index, and loosen the connection between the variable capacitor and the gearing system.
In reassembling set the index, the gearing unit, and the variable capacitor to the \exists forementioned frequency and tighten the grub screws. Using the $100-\mathrm{kc} / \mathrm{s}$ crystal spectrum check the agreement between the positions of variable capacitor and index.
b- Unsolder and take down the bracket with the antenna jacks and the antenna relay K-101.

c- Open the connections between arystal spectrum and pusiontton assernbly and taken down the box with the crystal spectrum generator.
d- Unsolder the shielded line to the converter,
e- Unsolder the cableform connections to the pushbutton assembly.
f- Unscrew the clips of the power cable from the pushbutton assembly.
g- Loosen the seven fastening screws and take down the pushbutton assembly plus variable capacitor.
h- In reassembling proceed in the reverse order.

4. Replacing the relays

If a relay should fail or give poor performance, replace it (adjustments on relay contacts are permissible only according to special instructions and with suitable tools and measuring facilities).
7.5 - ALIGGMENTI

Measuring instruments required :
Frequency meter from 1 to $2 \mathrm{mc} / \mathrm{s}$
Signal generator from $10 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{mc} / \mathrm{s}\left(Z_{i}=60 \Omega\right)$
RF tube voltmeter 0.5 to 2 v
DC tube voltmeter 1 to 5 v .

1. Quadruple-tuned filter and narrow-band double-tuned filter $T-3 n 9 /$ $\mathrm{L}-310(\mathrm{IF} 2,100 \mathrm{kc} / \mathrm{s}$)

Preparation :

a- Unscrew both shielding baffles from the pushbutton assembly ($T 3$ to T12). Unsolder the capacitor $C-130$ ($250 \mu \mu f$) from the pushbutton assembly. Connect the signal generator via the capacitor C-130 to grid 3 of V104 (3 RO1). Disconnect the first oscillator by unsoldering the anode resistor R-122 from the lead-trough capacitor C-139. After the alignment restore the device to the original condition.
b- As a detector in the aligning procedure connect the RF tube voltme-
-- ter via $0.5 \mu \mu \mathrm{f}$ to the soldering-lug 5 of $\mathrm{L}-310$.
c- Set the receiver to band 3 or 5 .
d- Open the RF gain control ($\mathrm{R}-320$) all the way.
e- Set the signal generator accurately to $100 \mathrm{kc} / \mathrm{a}$ (check with frequency meter or $100-\mathrm{kc} / \mathrm{s}$ crystal) and during the aligning procedure,

Electrenies

745 Ea	26

always readjust for a detector voltage of $0,1 \mathrm{v}$.
Alignment procedure :
In the position "A2/A3 Narrow" of the class-of-emission switch align the filters without additional damping several times in succession for maximum detector voltage (I-309, L-310, L-310, $\mathrm{I}-301$, L-302, L-304, L-305).
2. Double-tuned filter $10 \operatorname{So1} / 10 \operatorname{se2}(100 \mathrm{kc} / \mathrm{s})$.

Preparation:

a- Proceed as mader 1.1; 1.3; 1.4; 1.5.
b- Connect the RF tube voltmeter via. $5 \mu \mu \mathrm{f}$ to soldering lug 5 of L-308 as a detector in the aligning procedure.
c- Prepare a damping network (1000 $\mu \mu \mathrm{f}$ with 500Ω in parallel).
Alignment procedure :
Operate the class-of-emission switch to position "A2/A3
Narrow" ; damp down [-307 (terminals 2 and 1) and adjust L-308 for maximum detector indication (core below the chassis)

Subsequently damp down L-308 (terminals 5 and 6) and alig L-307 for maximurn deflection (core above the chassis).
3. Beat-frequency oscillator (BFO for class A1)

Preparation
a- Proceed as under 4.7.5-1a, c and d
b- Iurr the oontrol "Al Pitch" on its axle until the index at the left stop points towards the end of the left-hand arrow; screw the knob in position and turn the pitch control subsequently to the mid-position between the arrows.
c- Set the sjgnal generator accurately to $100 \mathrm{kc} / \mathrm{s}$ (check with Irequency meter or $100-k c / s$ crystal).

Alignment procedure:
In position "A1" of the class-of-emission switch align the BFO with L-311 for zero beat in headphone or loudspeaker.

Ckeck : The pitch at the counterclockwise stop shall about equal that at the clookwise stop.
4. Filter $\mathrm{L}-201 / \mathrm{L}-204(50 \mathrm{kc} / \mathrm{s}): \mathrm{L}-203(100 \mathrm{kc} / \mathrm{s})$

An alignment is only possible after the alignment under 1.

SAIT ELECTRONICS
 Electrenies

Preparation
$a-$ Proceed as under 4.7.5-1a, b and d.
b-- Operate the class-of-emission switch to position "A2/A3 Narrow".
c- Set the receiver to band 1 or 2 .
d- In aligning always adjust the signal generator with an input signal of $50 \mathrm{kc} / \mathrm{s}(100 \mathrm{kc} / \mathrm{s})$ for a detector voitage of 0.1 v .

Alignment procedure :
a- At $50 \mathrm{kc} / \mathrm{s}$ align Lr-201 and L-204 for maximun ciatector voltage.
b- At $100 \mathrm{kc} / \mathrm{s}$ align $\mathrm{L}-203$ for minimum detector voltage.
Shuttle several times between the procedures (a) and (b), until no further aligning with L-201, L-204, I-203 is possible.

5. Second oscillator $1280 \mathrm{kc} / \mathrm{s}$ (1280 to $1180 \mathrm{kc} / \mathrm{s}$)

Effect the alignment only after a warmup of about two hours. In aligning do not remove the shielding plate or else detuning will occur.

Preparation
a- Connect the frequency meter via about $5 \mu \mu f$ to anode of the trbe V202 (6 Ro1) (soldering-lug 2 of L-301).
b- Set the receiver to band 6 (or 7 to 12).
Alignment procedure
Turn on the frequency interpolator (second oscillator tunable).
a- With the index in position $100 \mathrm{kc} / \mathrm{s}$ adjust $\mathrm{I}-209$ for the oscillator frequency $1180 \mathrm{kc} / \mathrm{s}$.
b - With the index in position $0 \mathrm{kc} / \mathrm{s}$ adjust the trimer $\mathrm{C}-232$ to the oscillator frequency $1280 \mathrm{kc} / \mathrm{s}$.
Shuttle between the procedures (a) and (b) until no further alignment with L-209 and C-232 is possible.
c- Turn off the frequency interpolator (second oscillator is fixed). The index position is inconsequential. With the trimer C-233 adjust to the oscillator frequency $1280 \mathrm{kc} / \mathrm{s}$.
6. Variable intermediate frequency (1180 to $1080 \mathrm{kc} / \mathrm{s}$) and fixed inter mediate frequency ($1180 \mathrm{kc} / \mathrm{s}$)

An alignment is only possible if the IF2 filters and the second oscillator are aligned. In the aligning procedure do not remove

SATT ELECTRONICS

Electronics

the shielding plate or else detuning will occur.
Preparation :
a- Proceed as under $4.7 .5-1 a, b$ and d.
b- Set the receiver for band 6 (or 7 to 12).
c- In the aligning procedure always adjust the $1080-\mathrm{kc} / \mathrm{s}$ or $1180-\mathrm{kc} / \mathrm{s}$ input signal for a detector voltage of 0.1 v .

Aligment procedure :
Activate the frequency interpolator (IF1 variable).
a- In the position " $100 \mathrm{kc} / \mathrm{s}$ " of the index and with a signal generator frequency of $1080 \mathrm{kc} / \mathrm{s}$ adjust L-205 and L-206 for maximum detector voltage.
b- In the position " $0 \mathrm{kc} / \mathrm{s}$ " of the index and for a signal generator frequency of $1180 \mathrm{kc} / \mathrm{s}$ adjust $\mathrm{C}-215$ and $\mathrm{C}-218$ for maximum detector voltage.
Shuttle several times between the procedures (a) and (b) above, until an alignment of $\mathrm{L}-205$, L-206, $\mathrm{C}-215$ and $\mathrm{C}-218$ is no longer possible.
c- Turn off the frequency interpolator (IF1 fixed) index position arbitrary.
At the signal generator freguency $1180 \mathrm{kc} / \mathrm{s}$ adjust $\mathrm{C}-216$ and $\mathrm{c}-219$ several times in succession for maximum detector voltage.

7. First heterodying oscillator

Align only after a warmup of about two hours.

Preparation :
a- Screw the shielding plate firmly in position. Check the tube shielding cap for firm seat.
b- No backlash is permissible between the driving axle and the variable capacitor. Check the take-up of the gears and the firm seat of the fastening screws on the axle.
c- Check the adjustment of the index. When the plates of the variable capacitor are enmeshed 15°, the index must be on the second marking line from the upper right-hand scale edge. A 15-degree gauge is supplied with a replacement capacitor. At the right-hand and lefthand stops of the gearing unit the index must be equally away from the end division in each case.

Alignment procedure:

Begin with band 12, subsequently check band 11, etc.,

to 1 or align them, as the case may be. Align the oscillator at the right-hand end of the scale with the trimmer C 5..., at the left-hand end of the scale with coil L $5 \ldots$ in a way that the scale calibration hoids accurately (check against the built-in 100-kc/s calibrating oscillator).

Caution : Beware from aligning to the image frequency in the bands 9 to 12. Check with method (a) or (b).
a- Check with a frequency meter whether the oscillator frequency is the sum of input frequency plus first intermediate frequency.
b- Set the index to the input frequency. Set the signal generator to the image frequency, i.e. the input frequency plus two times the intermediate frequency and connect it to the receiver input. Upon application of a sufficiently high input voltage it must be possible to receive the image frequency; if such is not the case, the oscillator is misaligned (input frequency less intermediate frequency). In such case turn out the trimming core and effect a realignment.
8. If wavetraps

Preparation :
a- Set the RF gain control R-320 for -3 v at the AVC line. Measure with $D C$ tube voltmeter, connecting "+" to chassis ground and "-" to the white wire at the lead-through capacitor $\mathrm{C}-243$ (lead-in to the shielding box, variable IF).
b- Tuning indication with $D C$ tube voltmeter; connecting " + " to chassis ground and "-" to $\mathrm{R}-331$ ($510 \mathrm{k} \Omega$, at the right-hand rear, viewel from the front panel, below the chassis in the corner; clamp the lead to the point where brown and green wires leave).
c- In the bands 1 to 6 connect the signal generator to the input via the CCIR dummy antenna (Dwg.4.9.2, Fig. 6).
In the bands 7 to 12 connect the signal generator via 15Ω resistor to input (Dwg.4.9.2, Fig. 7).

Alignment procedure :
In band 2 set the receiver to $90 \mathrm{kc} / \mathrm{s}$ and the signal generator to $50 \mathrm{kc} / \mathrm{s}$. Align the coil $\mathrm{L}-551$ for minimum voltage indication.

In band 3 set the receiver to $180 \mathrm{kc} / \mathrm{s}$ and the signal generator to $100 \mathrm{kc} / \mathrm{s}$. Align the coil L-526 for minimum voltage indication. In band 6 set the receiver to $1.52 \mathrm{mc} / \mathrm{s}$ (coarse scale).
a- Activate the frequency interpolator and set it to $+70 \mathrm{kc} / \mathrm{s}$ (i.e. IF1 $=.1110 \mathrm{kc} / \mathrm{s}$); set the signal generator to $1110 \mathrm{kc} / \mathrm{s}$. Align the

SAIT ELECTRONICS
 Clectromies

coil L-500 for minimus voltage indication.
b- Activate the frequency intarpolator and set it to $+30 \mathrm{kc} / \mathrm{s}$; operate the signal generator to $1150 \mathrm{kc} / \mathrm{s}$. Align the coil $\mathrm{L}-525$ for minimum detector voltage,
9. Input circuits and interstare circuits

Preparation :
a- Proceed as under $8 a, 8 t, 80$, The lids of the pushbutton assembly must be closed.
b- In the bands 6 to 12 activate at each aligning point the frequency intermolator and set the index to: the mid-position ($+50 \mathrm{kc} / \mathrm{s}$).
7.6 - ALIGNMENT OF FREQUENCIES FOR TRACKING

Band	Inductive alignment with coarse scale setting and input frequency	Capacitive alignment with coarse scale setting and input frequency
1	; $14.5 \mathrm{kc} / \mathrm{s}$	$20.5 \mathrm{kc} / \mathrm{s}$
2	$90.0 \mathrm{kc} / \mathrm{sd}$	$155.0 \mathrm{kc} / \mathrm{s}$
3	$176.0 \mathrm{kc} / \mathrm{s}$	$335.0 \mathrm{kc} / \mathrm{s}$
4	$362.0 \mathrm{kc} / \mathrm{s}$	$685.0 \mathrm{kc} / \mathrm{s}$
5	$745.0 \mathrm{kc} / \mathrm{s}$	$1450.0 \mathrm{kc} / \mathrm{s}$
6	$1.58 \mathrm{mc} / \mathrm{s}$	$3.02 \mathrm{mc} / \mathrm{s}$
7	$3.25 \mathrm{mc} / \mathrm{s}$	$6.05 \mathrm{mc} / \mathrm{s}$
8	$6.2 \mathrm{mc} / \mathrm{s}$	$9.8 \mathrm{mc} / \mathrm{s}$
9	$10.0 \mathrm{mc} / \mathrm{s}$	$14.7 \mathrm{mc} / \mathrm{s}$
10	$15.0 \mathrm{mc} / \mathrm{s}$	$19.9 \mathrm{mc} / \mathrm{s}$
11	$20.0 \mathrm{mc} / \mathrm{s}$	$24.7 \mathrm{mc} / \mathrm{s}$
12	$25.0 \mathrm{mc} / \mathrm{s}$	$29.7 \mathrm{mc} / \mathrm{s}$

Caution : In aligning the input and interstage circuits a correct core position is of primary importance. The following table gives guiding values for the core position in millimeters

above tine coil body (+) or down in the coil body ($(-)$.
7.7 - GUIDING VALUES FOR TTHE CORE POSITIONS

Band	Input circuit	Interstage circuit	First oscillatc
1	$L-5021+2$	I-528, -7	L-552 1 -3
2	L-5041-8.5	$\underline{L}-530{ }_{\text {i }} \mathrm{I}_{1}-7.5$	L-553 i -3
3	L-506:-15	I-532: -6	L-554: -3
4	$L-5081-16$	L-534 1-16	L-555
5	$\underline{-510}-16.5$	I-536 $\quad 1-5$	I-556 ${ }_{1}^{1}-2.5$
6	L-512, -5	L-538 $\quad 1-6$	L-557 $1_{1}^{1}-3.5$
7 :	L-514i +3.5	$5-540 \quad 1-4$	I-558 : -4
$8!$	I-516:-1.5	L-542 $1-6$	L-559 ı -2.5
9	$1-5181+3$	I-544 $\mathrm{i}^{1}-1$	$\underline{-560:-1.1}$
10	$\underline{L}-520^{i}+2.5$	$\underline{-546}$: -1.5	$\underline{L}-561 \quad 1 \quad-3$
11	L-522 ${ }^{\prime}+2$	I-548	L-562 ${ }^{\text {a }}$
12 -	L-524:-1	I-550	I-563 ${ }_{\text {I }}$

Alignment :

With the coils and the trimmers align the input and interstage circuits for maximum voltage reading at the prescribed alignment of frequencies in the corresponding band; a capacitive adjustment should be the last in each case of aligmment. The order in which the bands are aligned is inconsequential. After alignment secure the coil cores and trimmers against rotation.

Fault	Probable cause	Tracking down and detecting the fault	Fault elimination
Receiver remains dead despite application of power	Fuse blown	Check voltage adjuster anc fuse	Set the correct mains voltage and insert fuses.
No reception in any band	a. Ballast resistor défective, oscillator receives no heating coltage b. Relay K. 101 fails to restore c. Tube V.105a (4 Rö1) is defective d. Lamp I-102 is defective	3. Check-ballast resistor for continuity b. Check K. 101 c. Check tube V.105a (4 R01) d. Check I-102	a. Replace the unit, if defective b. Replace the unit, if defective; clean the contacts of the cali brating pushbutton c. Replace the unit, if defective d. Replace the unit, if defective
In the bands 6 to 12 rotation of the main tuning control activates and inactivates the frequency interpolator temporarily	Control contact on the axle of the frequency interpolator fails	By-pass control contact	Clean the contact and adjust it properly
Frequency interpolator fails to be automatically inactivated with turning of the main tuning control	Take-along switch on the main driving exle fails	Remove front panel and check switching contacts	Clean the switching cor tacts and replace the lead-in Litz wire, if need arises

Cotacti.

Reception in the bands 6 to 12 , but pressing and turning of the frequency interpolator knob fails to change the frequency incrementally. The lamp frequency interpolator "On" remains dark	The relays K. 203 and K. 24 fail	a.The lead-trough capacitors C. 224 and C. 225 must" be at +10V. with respect to chassis ground. If such is not the case, one or both capacitors have a fault to chassis ground b. Check the momentary contact T6-12 in the pushbutton assembly for proper performance	a.Replace the capacitors C. 224 and C.225, if defective b. Readjust the momentary contact
In all bands.and classes-of-emission settings reception is weak and distorted; limiter fails to operate.	Limiter blocks because of defective electrolytic capacitor 0.356	The voltage across capaci tor C .356 be 40 V .	- Replace the defective components C .356 and R. 345
No calibrating beats are audible when the calibrat ing button is pressed	a. Incorrect setting of the output coupling fro the crystal spectrum b.Calibrating crystal defective c.Tube V103 (2 Rb1) defective	a.Check whether heterodyning beats are lacking in the higher bands only b. Check whether calibrating beats are lacking in all bands c.Check tube V103(2 Ro1)	a. Turn the setting poten- tiometer at the rear of the crystal spectrum ge nerator for maximum volume of the calibrat-- ing beat notes b. Replace the calibratind crystal c.Replace tube $V 103(2 R O 1)$

Class-of-emission switch at A1/A3. Equipment output remains dead, magic-eye tube does not operate, but lights.	Switch S. 305 on potentiometer R. 320 defective	Receiver operates only with manual control	Replace potentiometer R. 320

SAIT ELECTRONICS

8.- COMPONENTS LIST

8.1 - INPUP SECTION (STAGES $1=2=3$ AND 4)
(1) References on diagram 4.9.4
(2) References marked on components.

References	Description	Value	Remarks
(1) (2)			
STAGE 1		\bigcirc	
C $500{ }^{1}$, 34	Plastic Foil Capacitor	170 pF	-
C $501{ }^{1} \mathrm{c} 1$	Air Dielectric,	$25^{\circ} \mathrm{pF}$	82753/25EV alvo(1)
	Trimmer		
c 502, c 2	" " "	16 pF	82753/16EV alvo(1)
C 503,03	" " "	16 pF	" "
C 504,C4	" "	16 pF	" " "
C 50510 5	" " "	16 pF	" " "
c 506106	" " "	16 pF	" " " ...
C 507 1c 7	" " "	25 pF	82753/25EV alvo(1)
C 508108	" ${ }^{\text {" }}$	25 pF	" "
C 509 IC 9	"	25 pF	" " "
C $510{ }^{\prime} \mathrm{C} 10$	". " "	25 pF	" " "
C 511 'C11	" " "	25 pF .	" "
C 512 'C12	" " "	25 pF	" " "
C 513 , c13	Plastic Foil Capacitor	$70 \mathrm{pF} \pm 2.5 \%$ 125V.	DN 70/2. 5/125B310
C 514; 014	Ceramic Capacitor	15 pF Sirutit 10	Sad 15/0.4/700B371
c 515 , 015	" "	15 pF Rd D 50 2.5\%	Stettner (2)
C 516,016	" "	50 pF Konstit 100 k	$\begin{aligned} & \operatorname{Rd} 50 / 2 / 250-2 \times 16 \\ & B \quad 3714 \end{aligned}$
c 5171017	" "	$50 \mathrm{pFPRa} \mathrm{D} 202 \%$	Stettner 250V. (2)
C 5181018	" "	50 pFF Rd D 20 2\%	
C 519 IC19	" "	$20 \mathrm{pFR} \operatorname{Rd} \mathrm{D} 202 \%$	" " "
$\begin{array}{cc} c & 520 \\ 1020 \\ 1 \end{array}$	$\begin{aligned} & \text { Plastic Foil Capa- } \\ & \text { citor } \end{aligned}$	$1000 \mathrm{pFF} \pm 2.5 \% 125 \mathrm{~V}$.	$\text { DN } 1000 / 2.5 / 125 B$
C 521 : 21	" "	$700 \mathrm{pF} \pm 2.5 \% 125 \mathrm{~V}$.	DN $\begin{gathered}700 / 2.5 / 125 B \\ 3101\end{gathered}$
C $522: \mathrm{c} 22$	"	$200 \mathrm{pFF} \pm 2.5 \% 125 \mathrm{~V}$.	DN $200 / 2.5 / 1258$ 3101
C $523:$ c23	"	$140 \mathrm{pF} \pm 2.5 \% 125 \mathrm{~V}$.	$\begin{array}{cc} \text { DN } & 140 / 2.5 / 125 B \\ & 3101 \end{array}$
C $524:$ 'C24	" " "	$80 \mathrm{pF} \pm 2.5 \%$ 125V.	DN 80/2.5/125B
-1			3101
C 525 1025		$20 \mathrm{pF} \pm 1 \mathrm{pF}$ 125V。	DN 20/1/125B3101
C 526 IC26	" " 110	" " "	
C 5271027	" "	" 25 pF +2.5\%	DN " 25/2.5/12583101
C 528 1028		$25 \mathrm{pF} \pm 2.5 \%$	DN 25/2.5/12583101

C 529, c29	Plastic Foil Capacitor	$25 \mathrm{pF} \pm 2.5 \%$ 125v.	DN 25/2.5/1258319
C 530, C30	" " 1	$160 \mathrm{pF} \pm 2.5 \% .125 \mathrm{~V}$.	1
C 531, C31	" " " 90	$90 \mathrm{pF} \pm 2.5 \%$ 125V. D	
c 532, 032	Ceramic Capacitor	5 pF Sirutit 10	Sad 5/0.4/7008377
C 533, 633	Plastic Foil Capacitor	$100 \mathrm{pF} \pm 2.5 \%$ 500V	DN100/2.5/500B301
$\text { c } 101 \text { : C39 }$	Soldering Leadtrough capacito	2500/350V . I	Duko $2500 / 350 B$ 3705
$\text { C } 1021 \text { C40 }$	3 Gang Variable Capacitor	250 pF 1 Pake	$2 \mathrm{DC} / 3 \times 250 \mathrm{E}$
C 103:C41	Plastic Foil Capacitor	$250 \mathrm{pF} / 2.5 \%$ 500V.	$\begin{gathered} \mathrm{FN} / 250 / 2.5 / 500 \mathrm{~B} \\ 3101 \end{gathered}$
C 104 ${ }^{\prime}$ C43	Metallized--Paper Capacitor	0.	$\begin{gathered} 6 \mathrm{ko} \text { mpd } 843 \\ \mathrm{aaB} 2611 \end{gathered}$
R 101' W 1	Carbon-film Resistox	$560 \mathrm{~K} \Omega$	S.BT Vitrohm (3)
$\begin{array}{ll}\text { L } & 500 \\ \text { L } 501 & \text { L28 } \\ \text { L }\end{array}$			
L 501; L 502, L2	Antenna Coil I Preselector Coil I	Funk by empf/ 115 ul	
$\begin{array}{lll} \text { L 502, } & \text { L2 } \\ \text { L 503, } & \text { L3 } \end{array}$	Antenna Coil II	" " " U2	
L 504 i L4	Preselector Coil II		
L 505: L5	Antenna Coil	" " " U3	
[506: L6	Preselector Coil IIT		
L 5071 L7	Antenna Coil	" " "	
L 508' L8	Preselector Coil IV		
L $509{ }^{\text {' L9 }}$	Antenna Coil	U5	
L 510' L10	Preselector Coil		
L 511: L11	Antenna Coil	" " " U6	
L 512, L12	Preselector Coil VI		
L 513 L13	Antenna Coil VII	" " " U7	
L 514, L14	Preselector Coil V		
L 515, L15	Antenna Coil VII		
L 516, L16	Preselector Coil VI		
L 517, L17	Antenna Coil IX	" " " U9	
$\pm 518 \mathrm{~L}$ L18	Preselector Coil IX	" " " U10	
L 5191 L19	Antenna Coil X	" " " U1	
L 5201 L20	Preselector Coil X	" " " U11	
L 5211 L 21	Antenna Coil XI Preselector Coil	\because " 011	
L 5221 L 5231	Preselector Coil Antenna Coil XII	012	
$\begin{array}{ll}\text { L } & 524 \\ \text { L2 }\end{array}$	Preselector Coil XII		
L 525: L25	Wavetrap	" " " U13	
	$1130 \mathrm{kc} / \mathrm{s}$		
L 526, L26	Wavetrap coil $100 \mathrm{kc} / \mathrm{s}$	" " " U40	
L 101 !	Heater choke	39	
I 101, LA1	Pilot lamp	TV 0.3	$\text { Osram(4)L.N. } 3341$
I 102: LA2	Protective lamp	40V 10/Elektromobi	

SAIT ELECTRONICS

Electronics

I 501 L LA3	Protective lamp	260/220V $10 / 7$	Osram BZM E 14
K $101: \mathrm{Re} 1 \mathrm{~A}$	Antenna Relay	Trls. 151 y	TBV 65018/74d
V 101 T1	Input tube	EFF 93/6BA6	Siemens
V 102: R2	Protective neon gap	$108 \mathrm{C} 1 / \mathrm{OB} 2$	"
STAGE 2			
C 105 , C-1	Ceramic Capacitor	Sad $1 \mathrm{pF} \pm 0.4 \mathrm{pFF}$ Eli	B 3711
c $106, \mathrm{C} 2$	". $"$	Sad $0.5 \mathrm{pF} / 20 \%$ Elit	B 3711700 V .
C 107 1 C 3	" "	$8000 \mathrm{pF} \pm 20 \% 250 \mathrm{~V}$.	SKR 16/8000D
- $10{ }^{1} 0$			$3000 \mathrm{St}(2)$
$\begin{array}{lllll} \mathrm{C} & 108 & 1 & C & 5 \\ & & 1 & & 0 \end{array}$	Plastic Foil Capacitor	$80 \mathrm{pF} / 2.5 \% / 500 \mathrm{~V}$.	$\begin{gathered} \text { EN } 80 / 2.5 / 500 \\ \text { B3101 } \end{gathered}$
C 1091 C 6	Ceramic Capacitor.	40 pFP Rd D 202%	Stettner 250 V (2)
C 11010107	Plastic Foil Capa- Citor	$\begin{gathered} 50 \mathrm{pF} / 2.5 / 125 \mathrm{~V} . \\ \mathrm{VK} 122 \mathrm{NE} \end{gathered}$	$\begin{gathered} \text { DN } 50 / 2.5 / 125 \mathrm{VB} \\ 3101 \end{gathered}$
C 111 C 8	Tubular Trimmer	c3/60 vK 64023	Valvo (1)
C 112: C 9	Soldering Lead-trout Capacitor	2500 pF 350 V 。	Duko 2500/350B3705
C 113, $\mathrm{C10}$	" " "	" " "	" " "
c 100, 011	" " "	"	" " "
R 102 , R 1	Carbon Film Resistor	1.2KS $10 \% 0.5 \mathrm{~W}$	S.BT Vitrohm (3)
R 103 । R 2	" !" "	$68 \mathrm{KS} \mathrm{10} \mathrm{\%} 0.5 \mathrm{w}$	" " "
R 104 । R 3	" ¢ "	$100 \mathrm{~K} \Omega 10 \% 0.5 \mathrm{~W}$	"
R 105 \| R 4	" " "	$68 \mathrm{~K} \Omega 10 \% 0.5 \mathrm{~W}$	Vi.trohm (3)
R 106 (R 5	" " "	$390 \mathrm{~K} \Omega 10 \% 0.5 \mathrm{~W}$	
R 107 I R 6	Setting Potentiomeder	$10 \mathrm{~K} 8 \operatorname{lin} 0.2 \mathrm{~W}$	LiN 100 Ruwido (6)
V 103 1 T 1	Calibrating Oscillator Tube	EFF 93/6BA6	Siemens
XTAL			
101 : Q 1	Control Crystal	$100 \mathrm{kc} / \mathrm{s}$	Rel BV 673 R 8
STAGE 3			
$\text { C } 534: c 1$	Air-dielectric Trimmer	25 pF	$82753 / 25 E$ Valvo (1)
[535 ${ }^{\prime}$ c 2	" "	16 pF	$82753 / 16 \mathrm{EV}$ Valvo (1)
c $536:$ c 3	" "	16 pF	" " "
c 537 C 4	" "	16 pF	" "
c $538: 05$	" "	16 pF	"
C $539:$ C 6	" "	16 pF	"" "
c 540; C 7	" "	25 pF	82753/25E Valvo (1)
C541:c8	" "	25 pF	"
C 542 , C 9	" "	25 pF	" " $"$
C 543 - 610	" "	25 pF	" " "
c 544:C11	" "	25 pF	" " "
C 545 : C12	" "	25 pF	" "
C 5461 C 13	Plastic Foil Capacitor	$90 \mathrm{pF} \pm 2.5 \% 125 \mathrm{~V}$.	DN $90 / 2.5 / 125 \mathrm{VB}$

$\text { C } 547: C 14$	Ceramic Capacitor 15	15 pr Sirrutit	d 15/0.4/700B
C 5481 c	20	$20 \mathrm{pF} \pm 2.5 \%$ SKR 12	Sad 20/2.5/700
$\mathrm{C} 549: \mathrm{C}$		$50 \mathrm{pF} \frac{ \pm 0.4 \mathrm{pF}}{\mathrm{Konst}}$	
C 550	5	$50 \mathrm{pFi}+2 \% \mathrm{D} 20 \mathrm{Rd} 2$	250V.Stettner (2)
0551	4	$40 \mathrm{pF} \pm 2 \% \mathrm{D} 20 \mathrm{Rd} 2 \%$	
C 552	2	$20 \mathrm{pF} \pm 2 \% \mathrm{D} 20 \mathrm{Rd} 2 \%$	
C 553:020	Plastic Foil Capacitor	$1000 \mathrm{pF} \pm 2.5 \% 125 \mathrm{~V}$.	DN1000/2.5/125B
C 554	" 11700	$700 \mathrm{pF} \pm 2.5 \% 125 \mathrm{~V}$.	DN5 $700 / 2.5 / 125 B 301$
C 555, C 22	20	$200 \mathrm{pFF} \pm 2.5 \% 125 \mathrm{~V}$.	DN 200/2.5/125B3101
c 5561023	" " " 1	$140 \mathrm{pF} \pm 2.5 \% 125 \mathrm{~V}$	DN140/2.5/125B301
c 557, 024	" " "	$80 \mathrm{pF} \pm 2.5 \% 125 \mathrm{~V}$.	DN80/2.5/125B3101
C 5581	" " "	$20 \mathrm{pF} \pm 1 \mathrm{pF} 125 \mathrm{~V}$.	DN20/1/125B3101
- 5591 c 26	" " '		
C 5601 C 27	" " "		
C 561^{\prime}	" " "	$25 \mathrm{pF} \pm 2.5 \% 125 \mathrm{~V}$.	LN25/2.5/125B3101
C $562{ }^{\text {c }}$ C29	" ${ }^{\prime \prime}$		
C $114: 030$	Metallized Paper Capacitor	0.1	P
C 115, 031	Ceramic Capacitor		Sa
$\text { c } 116_{1}^{\prime} 032$	Matellized Paper Capacitor	$0.1 \mu \mathrm{~F} 250 \mathrm{~V}$. Sicatrop	0.1/250V.B2530
C 117,033	Cexamic Capacitor	$8000 \mathrm{pF} \pm 20 \% 250 \mathrm{~V}$.	
$\begin{gathered} C 1181034 \\ 1 \\ 1 \end{gathered}$	Ceramic soldering lead-trough Capacitor	2500 pF 350 V .	B 3705
C $119^{\prime} 0$	" " "	"	
c $120^{\prime} \mathrm{C} 36$	" "	"	
C 121 C37	" " "	"	
C 122:038	" "	\cdots	
C $123: 039$	" "	"	
C 124, 640	" " "		
C 125,	" " "		
c 126, 042	Ceramic Capacitor		
C 127, C43	Ceramic Capacitor	$3000 \mathrm{pF} 20 \%$	(2)
C 128, C44	Metallized Paper	$0.1 \mu \mathrm{~F} 200 \mathrm{~V} .6 \mathrm{kompd}$	d 843 aa B 2611
- ' 129	,		
	" Platic Foil Capacior		. DN 250/2.5/125B
$\text { C } 130: c 46$	Platic Foil Capacior	r $250 \mathrm{pFr} 2.5 \% 125 \mathrm{~V}$.	- N 250/2.5/125B
c $131^{\prime} \mathrm{C} 47$	" " "	$40 \mathrm{pF} \quad 2.5 \% 125$	DN40/2.5/125B3
c 132, 648	3 gang variable	(2nd.Capsection (contained in C102	${ }_{2}{ }^{\text {Valvo (1) }}$

C $563: \mathrm{C47}$	Plastic Foil Capa－ cition	$140 \mathrm{pE} \pm 2.50$	$\begin{gathered} \text { DN } 140 / 2.5 / 500 \mathrm{~B} \\ 3101 \end{gathered}$
C 1333，050	Soldexixg lead－	2500 pe 350 V	B 3705
C 138,062	trough Comacitor	$\because \quad$＂	
10．180， 064	＂＂	＂＂	＂
C 1411065	\＃＂	＂$\quad 1$	＂
0 Sta 105	Csmantic Sapaoduct	$\because \mathrm{pr}$ z\％mint 10	Sad 5／0．4／70083717
O134 36	$\begin{gathered} \text { faralljand ran⿻ } \\ \text { Gapation } \end{gathered}$	O． 1 uncot－	843 aa B 2614
R 503 ： 1	Garbon Prato feasker	8.260160 .5 N	SET Vitrohin（3）
R $108^{1} \mathrm{R} 2$	：＂	130 50 10 \％ 0.5 W	${ }^{11}$
ㄲ109 ${ }^{\text {\％}}$ R 3	＊＊	12 K 16 F	$A B T$
F 110 R 4	＂＂－	$1 \mathrm{~K}, 1000.5 \mathrm{~T}$	SBT
R $1111: 85$	＂$\%$＂	560 kO 10\％ 0.5 W	＂
R 112 同 6	＂	$200 \mathrm{~K} \Omega 10$ 有 0.5 W	＂
R $113, \mathrm{P}$	＂	12 K	$A B T$＂
P 1141 R 8	： 1	$560 \mathrm{~K} \Omega 20 \% 0.5 \mathrm{~W}$	SB＇T
F 1115 iR 9	＂＂1	$100 \mathrm{~K} \Omega 10 \% 0.5 \mathrm{~W}$	＂ 1
R 116，R10	＂	$100 \mathrm{~K} \Omega 10 \% 0.5 \mathrm{~W}$	＂
R 11711 R 12	＂ 1	$22 \mathrm{~K} \mathrm{~K} 10 \% 0.5 \mathrm{~W}$	！
K 118：R13	＂！＂．	$12 \mathrm{~K} \Omega 10 \% 0.5 \mathrm{~W}$	＂－＂
R 1191896	！＂＂	$12 \mathrm{~K}, ~ 10 \% ~ 0.5 \mathrm{~W}$	\because
P 120 1817	＂${ }^{\prime}$	$1 \mathrm{~K} \Omega 10 \% 0.5 \mathrm{~W}$	＂ 1
员 121^{1818}	＂＂	$100 \mathrm{KO} 10 \% 0.5 \mathrm{~W}$	$\because 1$
R	＂＂＂	$100 \mathrm{~K} \Omega 10 \% 0.5 \mathrm{~W}$	＂ 1
$\begin{array}{lll:l}\mathrm{R} & 126 & \mathrm{FI}\end{array}$	＂ 1	2 A KW 10.01 .0 W	＂\quad＂
E 127：Ri5	＂${ }^{\prime}$	$24 \mathrm{KO} 10 \% 1.0 \mathrm{~W}$	＂＂
I 527 L 1	Anode Coil）Tnterm．	Funk by emfo115015	
I $528, \mathrm{~L} 2$	Grid Coil Circuit I		
L 529 1 L 3	anode Coil）＂	$\because \quad 1016$	
L 530 ；I 4	Guida Coil）		
I 5311 L 5	Bnote Coil）＂IJI	＂＂U17	
I 5321 L 6	（frid Scil）Ifl		
1．533：L7	（node Coill）＂IV	$\because \quad$＂18	
－534，L 8	（Grid Coil）IV		
L $5355^{1} \mathrm{LI} 9$	Anode cojl）：V	$\cdots \quad \therefore \quad \therefore \quad$ U19	
L $536^{\prime} \mathrm{L} 10$	Gmjd Ooij）		
L 537 L 11	（inode Coil）：＂VI	\＃\＃U20	
L 5381 L 12	（rid Coij）VI		
L，539，L13	Anode Goil）＂VII	I 11	
L 540，L14	Grid Coil）．		
L 541^{\prime} L1 5	Anode Cojl）＂VIII	I＂U22	
L． $542{ }^{\text {L }} 16$	Grid Coil）		

c $594: 030$	Ceramic Capacitor 2	25pF $\pm 0.5 \mathrm{pFF} \mathrm{Pa} / \mathrm{/C.45}$	250V Steittner (2) Rd 65/2/250
c 5951031	" " 0	$65 \mathrm{pF} \pm 2 \%$ Konstit $\%$ O0	$3 \times 20 \mathrm{~B} 3714$
c 596:032	$\prime \prime$ $"$ 5 1	$50 \mathrm{pr} \mathrm{m}^{2 \% \%} \mathrm{Rd/D20}$	250V Stettner
C 5971033	20		
C 5981034	" ${ }^{\text {Prastic Foil }}$ " ${ }^{\text {apan--1 }}$		DN1000/2.5/125B
$0599: 035$	Plastic Foil Capa- citor		3107
c 6001035		500 yi	DN 500/ " " " "
c 6011037	" " " ${ }^{\prime \prime}$	360 pe	DN $360 /{ }^{\text {DN }} 140 /$
c 602:c38	" " ", " ${ }^{\prime \prime}$	140 ${ }^{120} \mathrm{pF}^{\text {che }}$	DIN 120/"
C 603 c39	", " ${ }_{\text {", }}$	1200 pF	DN 100/"
C 604 , 640	" " ' "	80 pr	DN $80 /$
${ }^{6} 606: 942$	" " "	50 pr	DM 50/
C 607, 043	" "	40 pF "	40
c 608, 044	" "	30	
c 609, 645	" " "	$25 \mathrm{pF}+1 \mathrm{pF} 125 \mathrm{~V}$	$\begin{array}{lll}\text { DiN } & 20 / 1 / 125 & \text { B3101 }\end{array}$
c 610, 446	" " " $"$	${ }_{16}^{20} \mathrm{pF}+i \mathrm{pFF}$	DN $16 / 1 / 125$
	" " " "	$10 \mathrm{pF} \pm 1 \mathrm{pFF} 125 \mathrm{~V}$	DN $10 / 1 / 125$
c 613 1049	" "	$25 \mathrm{PF} \pm 2.5 \mathrm{PF} 125 \mathrm{y}$	DN 25/2.5/"
c 614 1050	" " "		". " "
cc 615 'c51	" " "		
c $616: 052$	" " " "	" " "	" " "
$\begin{array}{\|c:c:c} C & 617 \\ \hline & 6: 8 & 054 \\ \hline & 6: 8 \end{array}$	Ceramic Capacitor	$15 \mathrm{pzF} \pm 0.4$ Siruibit	$\begin{aligned} & 15 / 0.4 / 700 \\ & 10 \text { Sad B3717 } \end{aligned}$
C $619: 055$			DN 12/1/125 B3101
$\left\lvert\, \begin{array}{cc:c} c & 620 \\ c & 621 & 057 \end{array}\right.$		$10 \mathrm{pF} \pm 1 \mathrm{pFF}+25 \mathrm{~V}$.	Dis $10 / 1 / 125$ B3101
c 622 c58	Ceramic Capacitor	$15 \mathrm{pFP} \pm 0.4 \mathrm{PF}$	15/0.4/700 в 3717
		Sirutit Sad	
$0135 i c 59$	Gang Variable Gapacitor	$\left\{\begin{array}{l} \text { Brd Cap sectiont } \\ \text { contained in C102 } \end{array}\right.$	
c 1361660	Soldering Lead-	12500 pF 350 V .	B 370
'	trough Capac		
137 ' 06	"		"
$\begin{array}{ll:c} c & 139 \\ \hline & 142 & 063 \\ 0 \end{array}$	"tallizeà Paper	0.01 HF 200 V .	6 kompd843 aaB26
142	apacit		
c 143,067	" " "		
121 ! R	Carbon film resistor	$22 \mathrm{~K} 210 \% 0.5 \mathrm{Wm}$	SET Vitrohm (3)
R122'R 2	"	470	
\|r123'R3	"	$20 \mathrm{~K} \Omega$	" "
R 506 'R	5." " "	220Ω	" "
R 507 R 6		$2.2 \mathrm{~K} \Omega^{\prime \prime}$	

R 125: R 7	Carbon film resistor	$20 \mathrm{~K} \Omega 10 \% 0.5 \mathrm{~W}$.	SBT Vitrohm (3)
L 552, L 1	Osc. Coil I	Funk bv.empf. $115 \mathrm{Lz7}$	
L 5531 L 2	" " II	" " " U28	
L 5541 L 3	" "III	" " " U29	
L 5551 L 4	" " IV	" " " U30	
L 5561 L 5	" "V	" " " U31	
L557: L 6	" "VI	" " " U32	
L 558 i L 7	" VII	" " 11033	
L 559 L 8	" VIII	" " " U34	
L 560: L 9	" IX	" " " U35	
L $561: \mathrm{L} 10$	" X	" " " U36	
L 562: Li11	" "XI	" " " U37	
L 563, L12	" , "XII	" " " U38	
L 103, L13	Heater choke	" " " U39	
$\left(\begin{array}{c:c} \mathrm{V} 105 a & \mathrm{~T}) \\ \mathrm{V} 105 \mathrm{~b} & \mathrm{T2}) \end{array}\right.$	ist.Osc.Tube	ECC82/12 AU7	Siemens

8.2 - FREQUENGY GONVERTER SECTION (STAGES 5 - 6 AND 7)
(1) References on diagram 4.9.4
(2) References marked on components.

References	Description	Value	Remarks
$\left(\begin{array}{c} (1) \\ \text { STAGE } 5 \end{array}\right.$			
$\begin{gathered} C \\ 201: \\ \\ \\ \\ \end{gathered}$	Ceramic Soldering 3ead-trough capacitor	2500 pF 350 V .	Duko2500/350B3T5
C $202{ }^{\prime} \mathrm{C} 2$	" " " "	" "	" " "
$\mathrm{C} 203: \mathrm{c} 3$	Paper Capacitor	$0.01 \mu \mathrm{~F} 250 \mathrm{~V}$.	Kf 310/2 Roederstein (5)
$\text { C } 204: 04$	Plastic Foil Capacitor	$1000 \mathrm{pF} \pm 2.5 \% 125 \mathrm{~V}$.	$\begin{gathered} \text { DN1000/2.5/125B } \\ 3101 \end{gathered}$
C 205; C 5		$10000 \mathrm{pF} \pm 2.5 \% 125 \mathrm{~V}$.	DN10000/" $"$
C 206:066	" " "	$1000 \mathrm{pF}^{+2} \mathbf{2} 5 \% 125 \mathrm{~V}$.	DN1000/ "
$\begin{array}{ll} 1 & 7 \\ 1 & 8 \end{array}$			
$\text { C 207: C } 9$	Paper Capacitor	$0.1 \mu \mathrm{~F} 250 \mathrm{~V}$.	IFF 410/2 Roederstein (5)
$\text { C } 208: \mathrm{C} 10$	Ceramic Soldering Lead--trough capacitor	2500 pF 350 V .	Duko250/350B3705
C $209{ }^{1} \mathrm{C11}$	capacitor	2500 pF 350 V.	" " " "
C 210:012	id.	2500 p 350	" " ". "
C 211 C13	id.		" " " "

R 210, R 1	Carbon Film Resistor	$100 \mathrm{~K} \Omega \pm 10 \% 0.5 \mathrm{~W}$.	SBT Vitrohm (3)
R 211 R 2	$"$ " "(3)	$220 \mathrm{~K} \Omega \pm 10 \% 0.5 \mathrm{~W}$.	" "
R 212,R 3	" 11	$1 \mathrm{~K} \Omega \pm 10 \% 0.5 \mathrm{~W}$.	" "
R 213124	" " "	$10 \mathrm{~K} \Omega \pm 10 \% 0.5 \mathrm{~W}$.	" "
L 209: L 1	Oscillator Coil II	Funk bv empf 115M6	
L 210, L 2	Anode choke	" 115M7	
L211; 53	Ka,thode choke	" "	
$\checkmark$$V$ $203 a^{\prime}$	2nd.Osc.Trube	ECC82/12AU7	Siemens
V 203bi T 2	Osc.and buffer stase,	-	
I201 1 Lhi	Indicating lamp for	7V/0.3A	Osram L.Nr 3341 (4)
SW201 S12	frequency interpolat		

$8.3=$ AMPLIFIER SECTION. STAGES 8-9-10 = 11_-12 $=13$ and 14)
(1) References on diagram 4.9.4.
(2) References marked on components.

$\frac{S B A C E F O}{1}$	Paper Capacitor	$\left\lvert\, \begin{gathered} 0.025 / 250 \mathrm{~V} \text {.Minityp } \\ 85 \end{gathered}\right.$	Kf 325/2 Roederstein (5)
C $302^{\prime} \mathrm{C} 2$	"' "	0.005/250V. " "	Kf 250/2 "
C 303'c 3	19	$0.1 / 125 \mathrm{~V} . \mathrm{"}$ "	Kf 410/1 "
R 301IR 1	Carbon Film Resistor	$1 \mathrm{~K} \Omega \pm 10 \% 0.5 \mathrm{~W}$,	SBT Vitrohm (3)
R 3021R 2	1	$68 \mathrm{~K} \Omega \pm 10 \% 0.5 \mathrm{~W}$.	
R 3031R 3	" " "	$150 \mathrm{~K} \Omega \pm 10 \% 0.5 \mathrm{~W}$.	" "
V 301'T1 1	IF ampl.tube for A1	EPF 93/6BA6	Siemens
STAGE 2			
$03051 \mathrm{C} 2$	Plastic Foil Capacit.	. $500 \mathrm{pF} 2.5 \% 125 \mathrm{~V}$	DN 500/2.5/125B 3101
C 3061 C 3	" " "	$500 \mathrm{pF} 2.5 \% 500 \mathrm{~V}$	DN $500 / 2 \cdot 5 / 500 \mathrm{~B}$ 3101
- ${ }^{1} \mathrm{C} 4$			
C 3071' ${ }^{\prime} 5$	" " "	$500 \mathrm{pF} 2.5 \% 500 \mathrm{~V}$.	DN $500 / 2.5 / 500 \mathrm{~B}$
C $308{ }^{\circ} \mathrm{C} 6$	" " "	$0.03 \mu \mathrm{~F} 2.5 \% 125 \mathrm{~V}$.	HNO.03/2.5/125B
C 309, ${ }^{\text {c }} 7$	" " "	$0.016 \mu \mathrm{~F} 2.5 \% 125 \mathrm{~V}$.	HNO. $016 / 2.5 / 125 \mathrm{~B}$ 3101
c 310, 08	*	$500 \mathrm{pF} \pm 2.5 \% 125 \mathrm{~V}$.	DN 500/2.5/125B
			Kf 325/1 Roeder-
$\begin{gathered} \text { C } 311, \mathrm{C} \\ 1 \end{gathered}$	Paper Capacitor	$0.025 \mu \mathrm{~F} 125 \mathrm{~V}$ Minityp 85	Kf 325/1 Roederstein (5)
C 3121010	" " .	$0.1 \mu \mathrm{~F} 125 \mathrm{~V}$. id.	Kı 410/1 "

$\left[\begin{array}{l} 313: c 11 \\ 314_{:}^{:} \mathrm{c} 12 \end{array}\right.$	Paper Capacitor Plastic Foil Capacitor	$0.05 \mu \mathrm{~F}$ 250V. id. $100 \mathrm{pF} 2.5 \% 125 \mathrm{~V}$.	$\begin{gathered} \text { Kf } 350 / 2 \text { Roeder- } \\ \text { stein }(5) \\ \text { DN } 100 / 2.5 / 125 \mathrm{~B} \\ 3101 \end{gathered}$
R 304: R 1	Carbon film Resistr	22 K ¢ $\pm 10 \% 0.5 \mathrm{~W}$.	rohm (3)
R 305:R2	" " "	$150 \mathrm{~K} \Omega \pm 10 \% 0.5 \mathrm{~W}$.	" ${ }^{\text {" }}$
R 306,R 3	" " "	$1 \mathrm{~K} \Omega+5 \% 0.5 \mathrm{~W}$.	" "
R 307:R 4	" " "	$1 \mathrm{MS} \pm 5 \% 0.5 \mathrm{~W}$.	" "
R 308, R 5	" "	$22 \Omega \pm 10 \% 0.5 \mathrm{~W}$	" "
R 309, R 6	" " "	$22 \Omega \pm 10 \% 0.5 \mathrm{~W}$.	" "
L 301^{\prime} L 1	Anode Coil	k by empf 115V.1	
[302: 12	Circuit Coil II	d.y empr 115v.	
¢ 303: L 3	Cóupling Coil I/II)		
L 304, L 4	Circuit Coil III)		(4
L 305, L 5	Grid Coil)		
[306, L 6	Coupling Coil III/IV)	Funk by empf 115v.2	(
SW301a sia	Bandwidthswitch 1dak	Range switch A9	Fa. Mayr. (7)
SW301k S1b	1st deck		
SW302a S2a	2nd "	" "	" 1
SW302b 52b	" 2nd "	" "	" "
SW304a, S4a	4th	" "	" "
$\begin{array}{ll} & 302 \\ 1 \end{array} T$	IF ampf.tube for A2/A3	EFF 93/6 BA 6	Siemens
STAGE 10			
- 31510	Paper Capacitor	5000pF 250V Mrintp 85	Kf 250/2 Roeder-
- $316 \% \mathrm{C} 2$	" " :	0,025/250V " "	${ }_{n}$
- 317, 3	Plastic Foil Capa-	600/2.5\% 125 V .	DN 660/2.5/125
$1{ }^{1}$			B 3101
[318:c4	Paper Capacito	0.025 pF 125 V."י'	Kf 325/1 Roeder stein (5)
$\text { F } 319: c 6$	Plastic Foil Capacitor	$600 \mathrm{pF} 2.5 \% 125 \mathrm{~V}$.	$\text { DN } 600 / 2.5 / 125 B$ 3101
c $320{ }^{1} \mathrm{C} 7$	" " "	$100 \mathrm{pF} 2.5 \% 125 \mathrm{~V}$.	DN 100/ " " "
- $321^{1} \mathrm{C} 8$	" " "	300 pF "	DN 300/ " " "
- 3221 C 9	" " "	$300 \mathrm{pF} \quad 1$	DN 300/ " " "
- 323:010	Paper Capacitor	$0.01 \mu \mathrm{~F} 125 \mathrm{~V}$.	Kf $310 / 1$ Roederstein (5)
- 324:011	Plastic Foil Capacitor	$300 \mathrm{pF} 2.5 \% 125 \mathrm{~V}$.	DN 300/2.5/125 B 3101
P 325:012	Paper Capacitor	0.05/125 V.Minityp	Kf 350/1 Roeder-
- 326		85	stein (5)
P3261013	" " \quad "	$0.5 / 125$ V. "	Kf. 450/1 "
P 3271014	" \quad "	0.01/125 V. "	Kf 310/1

STAGE 11

STAGE 12

	351	C 1	Electrolytic Capacitor
	352	C 2	Paper Capacitor
	353	c 4	Electrolytio Capaoitor
	354	C 5	Papar Capacitor
	355	c 6	Eleotrolvtio Capacitor
	356	C 7	Eleotroly;ic Capacitor
	343	R 1	Carbon Film Resistor
	R 344	R 2	\% "
	P 345	R 3	" " "
	R 346	E 4	Potentiometer
	R 347	R 5	Carbon Film Resistor
	- 348		" "
	- 349	R 7	" ${ }^{\prime \prime}$ "
	R 350	R 8	" "
	R 351	R 9	" "
	R 352	R10	" " ${ }^{\prime \prime}$
	∇ 307a	$T 1$	Noise limiting diode)
	\checkmark 307b	T 2	Soine Iimiting diode)
	\checkmark 304b	T 3	AF-stage contained

STAGE 13

C 357	C 1	Electrolytic Capacitor	2 uF 350 V	E1ko $2 / 350$ B 4371-5
c 358	C 2	Paper Capacitor	0.01 UF 250 V .	Kf 310/2 Boederstein (5)
R 353	R 1	Carbon Film resistor	$100 \mathrm{kohm} \pm 10 \% 0.5 \mathrm{H}$	SBT Vitrohm (3)
R 354	R 2	" " "	$10 \mathrm{kohm} \pm 10 \% 0.5 \mathrm{~W}$	
R 355	R 3	" " "	$330 \mathrm{kohm} \pm 10 \% 0.5 \mathrm{~W}$	ABT "
R 356	R 4	" " "	$270 \mathrm{ohm} \pm 10 \% 10 \mathrm{H}$.	$\begin{aligned} & \text { ABT " } \\ & \text { SBT } \end{aligned}$
R 357	R 5	" " "	$51 \mathrm{kohm} \pm 10 \% 0.5 \mathrm{w}$	SBT "
V 308	T 1	Final stage tube	EL S0/6 AQ	Stemens
stage	14			
C 359	C 1	Paper Capaoitor	5000 pFF 1000 V	Kf 250/10 Roederstein (5)
R 358	R 1	Carbon Film Resistor	$560 \mathrm{ohm} \pm 10 \% 0.5 \mathrm{H}$	SBT Vitrohm (3)
R 359	R 2	" " "	$4.7 \mathrm{kohm} \pm 10 \% 2$	
R 360	R 3	" " "	$5 \mathrm{ohm} \pm 5 \% 2$ is.	Zub wd 4c DIN 41404
TR301	Tr 1	Output tranaformer	6 Zub Bv 714055/20 1732	
LS301	Lepl	Loudspeaker	PM 95/19 CT Trop.	Wigo

STAGS 15

| T 401 | Tr1 | Power tranaformer | 6 | Zub. Ev 724 | $102 / 35 / 2468$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| L 401 | L 3 | Power ohoke | 6 | Zub. Br 734 | $065 / 27 / 999$ |

Bect. 401 Heot1 Flat rectifiers
Heot. 402 " 2 Rectifier
Beot. 403 u 3 Reotifier
C 401 C 1 Electrolytio Capacitor
$\begin{array}{lllll}\text { C } 402 & \text { C } & 2 & \text { n } \\ \text { C } 403 & \text { C } & 3 & \end{array}$
" "
$32+32 \mathrm{uF} 350 \mathrm{~V}$.
contained in 0402
$C 404$ C 4 Electrolytic Capacitor $16+16 \mathrm{uF} 350 \mathrm{~V}$.
r "
contained in C 404
C 406 C 6 Paper Capacitor
0.05 UF 500 V.

I 401 LAt Scale lamp main scale
7 V. 0.3 A.
I 402 LA2 " " \quad " \quad " 7 V. 0.3 A.
I $403 \mathrm{LA} 3 \mathrm{n} \quad \mathrm{n} \quad \mathrm{n} \quad 7 \mathrm{~V} .0 .3 \mathrm{~A}$.
i. 404 LA4 " \quad " 7 V. 0.3 A.

R 401 EW1 Osram balast resistor
(double-anded tubular form with blade contact).
402 Th 1 Thernewid Resistor
R 403 R 1 Wire wound resistor
332 3/400 OR 1/600
4 kohm 4 K. $\pm 10 \%$
3.3 kohm $1 \mathrm{M} \pm 10 \%$
0.6 D[ni 41571
$150 \mathrm{c} 2 / \mathrm{OA} 2$
accessories
F. 401 S11 Fuse for 110 V. AC 0.8 DIN 41571

Siemens
Siemens
Siemens
Elko $\$ 500 / 12$
B 4101
B 4373-5

B 4373-5S

Kf 350/10 Roeder-
stein (5)
Orram (4)L.
Nr .3341
11 "
II 19
if ir
Caps Oaram (4)

Siemens
Zub.wd. 240 g .
ABT Vitrohm (3)
Fa.Wiokmann (10)
Siemens

Fa. Hi ckmann (10)

Fig. 5 Functional circuit diagram for bands 6 to 12

Fig.6- CCIR dummy antenna

Fig. 2 Functional circuit diagram for bands 1 and 2

Fig. 3 Functional circuil diagrarn for bands 3 and 5

Fig. 7 Dummy antenna for the shortwave bands

Drw. 4.9.2.

Fig. 1 Control knob for the Index of the main scale

ES\%N.				$\begin{aligned} & 7 \text { TUBE } / / 2 \\ & E C C 82 \end{aligned}$				$\begin{aligned} & 11 \text { IUBE } 3 \\ & \text { EM34 } \end{aligned}$	At	3	1 M
$\begin{aligned} & \text { ITUBE } 1 \\ & \text { EFG3 } \\ & \hline \end{aligned}$	A.	5	1.1k (3.2k)		AII	1	718		A_{2}	6	1 M
	62.	6	10k		A_{I}	2	100 k		61	4	1.4 M
	K	7	150		GII	2	100k		L	5	0
	61	1	1.55M		GI_{1}	7	220k	10TUBE3 12 TUBE 3 ECC82	AII	1	120 K
$\begin{gathered} 2 \text { TVBET } \\ \text { EF } 93 \end{gathered}$	A	5	EI $168 \mathrm{k}(\mathrm{P} 100 \mathrm{M})$		$\frac{K_{I}}{A}$	$\frac{8}{5}$	3k		${ }_{\text {AII }}$	3	2.2 k
	6_{2}	6	E1 $168 \mathrm{k}(>100 \mathrm{M})$	$\begin{aligned} & \text { 8TUBE } 1 \\ & E F 93 \\ & A 9-A 213 \end{aligned}$	A_{3}	5	68k		GII	2	1 M
	61	1	400k		K	7	150		A_{I}	6	110 K
3 TUBE 1 . EK 90 EK 90	A	5	1k			1	900k-22k		$K_{\text {I }}$	8	2.2 K
	G2/4	6	9.5k		61	5	$\frac{2.2 k}{}$		\hat{G}^{\prime}	7	1 M
	K	2	220	$\begin{aligned} & \text { gTUBE } 1 \\ & \text { EF } 93 \\ & A I-A 2 / 3 \end{aligned}$	${ }_{6}$	5	68K	$12 \text { TUBE } 7 / 2$			330k
	G3	1	175M		K	7	150 :	$E B 91$	K_{I}	1+5	330 N
4 TUBE 1	A	6	13.5K		${ }_{6}{ }_{1}$	1	7M-1.9M	$\begin{aligned} & \text { TS TUBE } 1 \\ & \text { EL } 90 \end{aligned}$	A	5	385
$\begin{aligned} & 5 \text { TUBE } \\ & \quad \text { EK } 90 \end{aligned}$	A	5	$\frac{1 \mathrm{~K}}{68 \mathrm{~K}(100 \mathrm{M})}$	10 TUBE $1 / 2$ EB 91	K_{I}	1	1k		K	2	270
	$62 / 4$	6	$\frac{68 \mathrm{~K}(2100 \mathrm{M})}{820}$		$K_{\text {I }}$	5	1k		61	$1+7$	330 K
	K	2	820	$\begin{aligned} & 11 \text { TUBE } 1 / 2 \\ & \text { ECCB2 } \\ & \text { AI-AD/3 } \end{aligned}$	$A T$	1	$46 k$				
	61	1	12		KII	3	10k				
-	A	5	$\frac{1 \mathrm{~K}}{7100 \mathrm{M}}$		6II	2	28				
6TUBE 1	$\frac{62 / 4}{}$	+ 6	$\frac{7100 \mathrm{M}}{150}$		A_{1}	6	43k-280k				
+	$\frac{1}{1 \sigma_{3}}$	2	1.9M		K_{I}	8	2.7 K				
¢	1				$6{ }^{6}$	17	100 K				

Anode and screen grid resistors measured against • filter capacitor © 202. . All other resistances and voltages areasured agoinst chassis ground. linless specified otherwise, one button (T 1 to $\mathrm{T12}$) pressed. Valuas in parantheses: THo pushbution prossed, EI: Calibrating buttommessed.

Voltage measured with AVQaultizet meter ($1000 \mathrm{~N} / \mathrm{V}$). Resistances neasured with suitable measuring bridge. Voltages at anode and screen grid maasured in the $300-\mathrm{v}$ range. Unless specified othervise, 112 pressed, without if input signal.

Power supply unit.

Right-hand view of receiver chassis.

C314 R358R305 C312 C315 R311 C322 C331R312/14C320R316 R330
C311 C315 R307 C350 R310 R322 R328 R315 Cs R R318 R326 R33

Bottom view of recelver chassis
Annexed Fig. 2.

R114R115 C134R122

4留 andurf lovel plant Measuring conditionsi Noise Limiter "Off"; full volume; RF manl frequency interpolator "Off"; signal gen

$$
\begin{aligned}
& \text { Mompy antenna } \\
& \text { (seefigso6.7. } \\
& \text { TypelFrequency }
\end{aligned}
$$

Type|Frequency volt.
manual gain control off; RF voltages for audio output power $50 \mathrm{mw}=0.5 \mathrm{~V}$ across F^{2}. generator $Z_{i}=60 \Omega$; ooupling capacitor $10,000 \mu \mu f$

90	$\mathrm{G}_{3} / \mathrm{Y} 202 / \mathrm{EK} \cdot 90$		G1/V301/EK-93		G1/V302/EF 93 ¢		Notes
$\stackrel{\vdots}{\stackrel{t}{r}} \cdot$	Frequency (kc/s)	volt. (μv)	Frequency (kc/s)	Volt. ($\mu \mathrm{v}$)	Frequency (kc/a)	Volt. $(\mu \nabla)$	
5	${ }^{-}$	-	100	0,8	-	$\therefore 1$	Bandridth control at "At"; signal generator unmodulated;' BFO set for about $1000 \mathrm{~d} / \mathrm{s}$
5	\therefore -	-	100,	0,8	-		
-	-	-	-	-	100	40	
-	1180	0,9	-	-	100	40	
-	-	-	-	-	100	40	
-	1180	0,9	-	-	100	40	
-	1180	0,9	-	-	100	40	Bandwicth control at "A2/A3 Narrow";
-	1180	0.9	-	-	100	40	Signal generator $1000 \mathrm{c} / \mathrm{s} ; 30 \%$ modu-
-	1180	0,9	-	-	100		latior:
-	1180	0,9	-	-	100	40	
-	1180	0,9	-	-	100	40	
-	1180	0,9	-	-	100		

n.g capacitor $0.1 \mu \mathrm{f}$; audio voltages for 50 mw 今 0.5 V across internal loudspeaker or headphone jack with $10-\mathrm{k} \Omega$ load

$\mathrm{G}_{1} / \mathrm{V} 304 \mathrm{~b} / \mathrm{ECC} \cdot 82$		$\mathrm{G}_{1} / \mathrm{V} 308 / \mathrm{EL}-90$	
frequaricy ($0 / \mathrm{s}$).	$\begin{aligned} & \text { V1t } \begin{array}{l} \text { (} \\ (\pi v r \end{array} \end{aligned}$	Frequency (c/s)	V1tg ${ }_{\text {(uv) }}$
1000	270	1000	1900

