TECHNICAL MANUAL TRP 8250 D SERIES

[^0]All information contained in the manual including all drawings, specifications, data or other material, is the property of SKANDINAVISK TELEINDUSTRI SKANTI A/S, is disclosed in confidence for use only in operating and maintaining the equipment described herein, is subject to change without notice, is not to be copied and is not to be used or disclosed for any other purpose, without the written consent of SKANDINAVISK TELEINDUSTRI SKANTI"A.S.
INTRODUCTION
1.1 Distress operation on 2182 kHz 1-1
2. Introduction 2-1
2.1 Basic versions 2-3
3. Technical data 3-1
3.1 General 3-1
3.2 Receiver characteristics 3-1
3.3 Transmitter characteristics 3-4
3.4 Antenna Tuning Unit 3-5
3.5 Power requirements 3-5
3.6 Dimensions and weights 3-5
OPERATION
4. Operation 4-1
4.1 Operating instructions 4-1
4.2 Description of operating controls 4-21
INSTALLATION
5. Installation 5-1
5.1 Mounting the Control Unit 5-1
5.2 Mounting the Transceiver Unit 5-1
5.3 Mounting the Antenna Tuning Unit 5-1
5.4 Power Supply 5-2
5.5 Earth Connections 5-2
5.6 Antennas 5-3
5.7 Interconnection of Units 5-3
5.8 Connection of External Equipment 5-4
5.9 Final Installation Check 5-5
5.10 Remote frequency Control 5-6
5.11 Configuration Prom Programming 5-7
TECHNICAL DESCRIPTION
6. Technical Description 6-1
6.1 Control Unit 6-1
6.2 Transceiver Unit 6-1
6.3 Antenna Tuning Unit 6-1
6.4 AC Power Supply Unit 6-2
6.5 ALC and Protection system 6-2
SERVICE
7. Preventive Maintenance 7-1
7.1 Realignment of Master Oscillator 612613614 7-1
7.2 Realignment of Master Oscillator 615616 7-2
7.3 Replacement of Backup Battery 7-3
8. Trouble Shooting and Service 8-1
8.1 Malfunction 8-1
8.2 Replacement of FUSES 8-1
8.3 Manual tuning to 2182 kHz in case of failure in the ATU 8-2
8.4 Description of Self Test functions 8-3
8.5 Spare Parts list, TRP 8250 D Series 8-31
DIAGRAMS
9. Circuit Description and Diagrams 9-1
9.1 Symbol Explanation 9-1
9.2 Abbreviations 9-2
AMENDMENTS
10. SKANTI Service Agents 10-1

1. DISTRESS OPERATION ON 2182 kHZ

1.1 Transmission of two-tone alarm signal

1. Press "Supply On/off" key (A) to turn equipment on.
2. Press "2182" key (B).
3. Press Alarm Generator keys (C) and (D) simultaneously.

Transmission starts immediately after the automatically initiated tuning sequence and the alarm signal is now transmitted for 45 seconds. The antenna current is displayed on the ANTENNA CURRENT meter (E) and the alarm signal is heard in the loudspeaker.

To repeat the alarm signal transmission just press the ALARM GENERATOR keys (C) and (D) again simultaneously.

An alarm signal transmission may be interrupted at any time by pressing the "Stop Alarm" key.

1.2 Transmission of distress message

When the alarm signal ceases press handset key (F), and transmit your distress message by speaking into the handset microphone with a clear and calm voice.

Release handset key and wait for reply.
Repeat the distress message at intervals until a reply is received.

Control Unit (CU)

Fig. 1.1

2. INTRODUCTION

The TRP 8250 D Series is general purpose HF SSB transmitting receiving equipment covering the frequency range 1.6 to 30 MHz designed for marine as vell as point-to-point applications.

The standard version offers duplex, simplex and semiduplex radiotelephone communication in the maritime mobile bands and is intended for installation in voluntarily or compulsorily fitted vessels.

A selection of optional facilities permits configuring equipment fulfilling various needs, including transmission and reception of LSB, J3E signals, transmission and reception of radiotelex, transmission and reception of CW and MCW morse telegraphy. The equipment is fully transistorized and extensive use is made of the latest microprocessor technology.

The TRP 8250 D consists of a Control Unit, a fully remote controlled Transceiver Unit and an automatic Antenna Tuning Unit. The units can be placed up to 100 m apart using standard $16 \times 0.5 \mathrm{~mm}$ sq. screened cable. An AC Pover Supply Unit is used when the equipment is supplied from AC MAINS.

The Control Unit contains all receiver and transmitter operating controls. It is fully push-button controlled by means of a rugged membrane keyboard, insensitive to dust and water. Separate LED-displays show receive and transmit frequencies, and two bargraph displays show receiver signal strength and transmitter output power respectively. When the transmitter is switched-off, time of day is displayed from a built-in realtime clock, which can also be used to switch on the equipment at a predetermined time.

The keyboard permits the operator to program up to 76 receive and transinit frequency pairs and to recall or scan the frequencies with a few key operations.

When the equipment is switched-off the real-time clock and the memory are supplied from a built-in lithium primary cell having a lifetime of several years. The non volatile memory also stores the current setting of the equipment when switching-off and restores it when switching-on again.

Where required by the authorities transmitter frequencies can be preprogrammed into a PROM having a capacity of 1017 frequencies. Transmitter keying can then only take place on the authorized frequencies. The keyboard permits recall of all the preprogrammed frequencies. The receiver can be tuned in $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ or $l \mathrm{kHz}$ steps at the choice of the operator. 5 W audio output is available to the built-in loudspeaker or to external speakers. A squelch circuit is optionally available.

The standard equipment contains the tuo-tone radiotelephone alarm signal generator and single key selection of 2182 kHz .

The Control Unit provides connection facilities for handset, headphones,
extension speaker, morse-key and telex-equipment. 600 ohms AF input and output terminals are provided with Line Transformers as optional extras.

The Control Unit is housed in a Noryl (PPO) cabinet suitable for tabletop or bulkhead mounting. The front panel can be tilted for convenient operation wihen the unit is mounted vertically as vell as horizontally.

The Transceiver Unit contains all receiver and transmitter RF circuitry. The receiver signal path and the exciter signal path together with two identical fast switching synthesizers are contained in the front door of the unit. All frequencies are fully synthesized and derived from a llaster Oscillator. The Master Oscillator is available in different stability versions. These boards are contained in screened compartments of the door of the unit. The door itself is made in moulded Noryl (PPO).

The fully protected solid state 250 W pover amplifier is cooled by natural convection. It ratches a 50 ohms antenna system but is normally used in connection with the Antenna Tuning Unit matching the transmitter to wire or vhip antennas.

In the standard version the transmitter covers the marine bands between 1.6 and 30 HHz but PA-filters are available which in addition give coverage of the 500 kHz marine band or give continuous coverage of the frequency range 1.6 to 30 MHz .

A high efficiency switched mode pover supply ensures optimun output power at low pover consumption and covers a supply voltage range from 10.0 to 41.6 Volts. The nylon-coated steel cabinet can be tabletop or bulkhead mounted by means of rugged nylon-coated cast brackets.

The fast tuning, microprocessor controlled Antenna Tuning Unit is based on high voltage, high current HF reed-relays. It tunes autonatically to all antennas between 7 and 30 meters length and requires no presetting at the installation. Tuning is performed in 0.2 to 1.5 sec .

An optionally available Antenna Relay Board contains a simplex relay system, a dumny load and a grounding relay connecting the antenna to ground uhen the equipment is switched-off. The simplex antenna relay system is fast enough to permit ARQ-telex on one antenna.

The ATU cabinet is made in Lexan (Polycarbonat).
The AC Pover Supply Unit accepts nominal input voltages of $110 / 120 / 220 / 240 \mathrm{~V}$, $50-60 \mathrm{~Hz}$. A built-in switch permits nanual switch-over to battery operation.

2.1 BASIC VERSIONS

In common : 250 Watt P.E.P. Power Amplifier.
Simplex/Semi-duplex/Full-duplex operation $1.6-30 \mathrm{MHz}$.
TRP 8250 D : Marine SSB Radiotelephone.
1017 preprogrammable frequencies in Marine Bands.
TRP 8251 D : Marine SSB Radiotelephone. Free frequency selection Marine Bands.

TRP 8252 D : Marine SSB Radiotelephone. Free frequency selection Marine Bands. CW and MCW facilities.

TRP 8253 D : Marine SSB Radiotelephone. Free frequency selection all bands.

TRP 8254 D : General Purpose SSB Radiotelephone. Free frequency selection all bands.

TRP 8255 D : General Purpose SSB Radiotelephone. Free frequency selection all bands. $\mathrm{C} V$ and MCW facilities.

TRP 8256 D : General Purpose SSB Radiotelephone. Free frequency selection all bands. As type TRP 8254 D, but simplified keyboard.

TRP 8257 D : Marine SSB Radiotelephone. Free frequency selection all bands. CW and MCW facilities.

3. TECHNICAL DATA

Versions complying uith the SOLAS 74 convention and the ITU Radio Regulations are available, meeting one or more of the specifications: CEPT, MPT, DOC and FTZ.

3.1 GENERAL

Frequency Generation: True digital frequency synthesis.
Frequency Selection: By common keyboard.
Single key selection of 2182 kHz . 76 user-programmable frequency pairs. Scanning facilities (may be disabled). Remote control (optional).

Frequency Presentation: Separate LED displays for receive and transmit frequencies.

Frequency Stability:
1.5 ppm
0.8 ppm (optional)
0.4 ppm (optional)

Operating modes: Duplex, semiduplex and simplex.
USB: J3E upper sideband, suppressed carrier.
R3E: Upper sideband, reduced carrier.
All: H3E upper sideband, full carrier.
LSB: J3E lower sideband, suppressed carrier (optional).
CW: AlA morse telegraphy.
MCN: H2A modulated morse telegraphy
TELEX: F1B with center audio frequency selectable between 1500 and 2500 Hz in 100 Hz steps (optional).

Operating Temperature Range:
-20 deg. C to +55 deg. C
Full Performance
Temperature Range: 0 deg. C to +40 deg . C

3.2 RECEIVER CHARACTERISTICS

Frequency Range: $\quad 100 \mathrm{kHz}$ to 30 MHz
(10 kHz to 100 kHz with reduced performance)

Frequency resolution:	100 Hz by numerical frequency keyboard entry. A search/fine tuning facility is provided with selectable increment steps of $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ or 1 kHz . In addition a user-prograrmed step size may be selected.
Antenna Impedance:	Below 4 hHz : 10 ohm in series vith 250 pF or 50 ohm (std.) internally selectable. 4 MHz to $30 \mathrm{MHz}: 50 \mathrm{ohm}$
Input Protection:	30 V RIIS (EMF) for up to 15 min .
If Selectivity:	SSB: 350 Hz to 2.7 kHz
	$\begin{array}{lll}\text { AII: }: \quad & +/-2.7 \mathrm{kHz} \text { or } \\ & +/-4 & \mathrm{kHz} \text { (optional) }\end{array}$
	$\mathrm{CH} / \mathrm{MCU}$:
	$\begin{array}{ll} \text { Wide: } & +/-2.7 \mathrm{kHz} \text { or } \\ & +/-4 \mathrm{kHz} \text { (optional) } \end{array}$
	$\begin{array}{ll} \text { Inter: } & +/-1.2 \mathrm{kHz} \text { or } \\ & +/-2.7 \mathrm{kHz} \text { (optional) } \end{array}$
	$\begin{array}{ll} \text { Narrow: } & +/-250 \mathrm{~Hz} \text { or } \\ & +/-500 \mathrm{~Hz} \text { (optional) } \end{array}$
	Very Narrou:
	TELEX (optional) :
	$\begin{aligned} & +/-150 \mathrm{~Hz} \text { or } \\ & +/-250 \mathrm{~Hz} \text { or } \\ & +/-400 \mathrm{~Hz} \text { or } \\ & +/-1200 \mathrm{~Hz} \end{aligned}$
Sensitivity:	Hax. antenna input for 10 dB SINAD, 50 ohm antenna.
	SSB:
	$1.6-30 \mathrm{HHz}: 0.3 \mathrm{ul}$
	All:
	$100 \mathrm{kHz}-400 \mathrm{kHz}: 7 \mathrm{uV}$
	$400 \mathrm{kHz}-30 \mathrm{HHz}: 5 \mathrm{uV}$

	$\mathrm{CW}(+/-500 \mathrm{~Hz})$: $100 \mathrm{kHz}-30 \mathrm{MHz}: 0.6 \mathrm{uV}$
	When RF-AIAP is selected, the sensitivity is increased by 6 dB .
Intermodulation: (out-of-band)	100 dB uV per signal more than 30 kHz offset from receiver frequency produces less than an equivalent input signal of 30 dB uV .
Third order intercept point:	+22 dBm.
Cross modulation:	Unvanted signal of $118 \mathrm{~dB} \mathrm{uV} / 30 \%-400 \mathrm{~Hz}$ more than 20 kHz offset from receiver frequency, produces cross modulation less than -30 dB relative to a vanted signal of $60 \mathrm{~dB} \mathrm{uV} / \mathrm{SSB}$.
Duplex Operation:	Less than -30 dB cross modulation for Transmitter/Receiver isolation greater than 30 dB and frequency offset more than 1.5%.
Blocking:	More than 80 dB to cause a 3 dB change in output power when wanted signal gives 20 dB SINAD, and the unvanted signal is offset by more than 20 kHz from the receiver frequency.
Image Rejection:	Greater than 80 dB
IF Rejection:	Greater than 90 dB
Spurious Response	
Rejection:	Greater than 80 dB belov 4 MHz Greater than 70 dB above 4 MHz
Internally generated spurious signals:	Less than 5 dB SINAD (SSB)
Spurious Emission:	Less than $25 \mathrm{pW} / 50$ ohm at antenna connector.
RF-Amplifier:	0 dB or 10 dB
RF-Attenuator:	0 dB or 20 dB
Automatic Gain Control:	Less than 5 dB change in output for 100 dB input signal variation from 20 dB sensitivity level (SSB).
BFO Range:	+/- 3 kHz synthesized in 100 Hz steps

Line output:	Internally adjustable up to $+10 \mathrm{dBm} / 600$ ohm. Balanced 600 ohms output (optional).
In-band	
Intermodulation:	Less than -50 dB
Audio Output Power:	5 W in 8 ohm to internal and/or external loudspeaker. Audio Squelch (optional): Speech operated.
3.3 TRANSMITTER CHARACTERISTICS	
Output Power:	250 W PEP +0/-1.4 dB from Transceiver Unit into 50 ohms. Pover Reduction: Medium: approx. 60 W PEP Low: approx. 10 W PEP Single-tone max. Pover: 250 W PEP for keying duty-cycle less than 55\% and modulation rates greater than 3 baud. 3 dB power reduction uhen continuously keyed during 1 min. Automatic pover recovery uhen muted during 2 min.
Transmitter	
Frequencies:	TRP 8250 D:
	Up to 1017 programmable channels, freely distributed in the ranges:
	1606.5 to 4800 kHz
	6200 to 8950 kHz
	12230 to 17650 kHx
	18780 to 27100 kHz
	TRP 8253 D/8254 D/8255 D/8257 D:
	Free or programmable frequency selection in the range:
	1606.5 kHz to 30 MHz .
Spurious Emissions:	Les than -60 dB/PEP
Alarm Generator:	A tuo-tone alarm generator is incorporated (TRP 8250 D/8253 D/8257 D).
Audio Input Level:	Telex: $0 \mathrm{dBm}+10 /-16 \mathrm{~dB}$ Input impedance: 600 ohm
	Aux: $\quad 0 \mathrm{dBm}+10 /-16 \mathrm{~dB}$ Input impedance: 600 ohm

Mic: $\quad 20 \mathrm{mV}$ to 2.5 V internally adjustable. Input impedance: 100 kohm//6.8 nF. Recommended source impedance: Less than 2.5 kohm.

3.4 ANTENNA TUNING UNIT

Frequency Range:	$1.6-30 \mathrm{MHz}$
Antenna Requirements:	$7-30 \mathrm{~m}$ wire and/or whip.
Antenna Tuning:	Fully automatic
Tuning time:	$0.2-1.5 \mathrm{sec}$
Input Impedance after tuning:	$50 \mathrm{ohm} . \mathrm{SWR}<1.4$
Manual setting possible for 2182 kHz	
Power Handling	250 W PEP
Capability:	125 W Average

3.5 POWER REQUIREMENTS

Supply Voltage:
12-24-32 V DC ($-10 /+30 \%$)
(no presetting)
Connection will not earth Supply Battery. 110/120/220/240 V AC (optional external Power Supply Unit, type P 8250).

Pover Consumption
(approx.)

Receive only:	50 W
J3E unmodulated:	
H3E unmodulated:	
H3E alarm:	360 W
CW keyed:	420 W
MCW keyed:	640 W
ARQ-telex:	
	320 W

3.6 DIMENSIONS AND WEIGHTS

Control Unit:

Hidth:	372 mm
Height:	87 mm
Depth:	203 mm
Weight	4 kg, appro\%.

Transceiver Unit:	Hidth:	422 mm (500 mm incl mounting brackets).
	Height:	368 mm
	Depth:	280 mm
	Weight:	28.4 kg , approx.
Antenna Tuning Unit:	Width:	330 mm
	Height:	440 mm (535 mm incl antenna horn).
	Depth:	130 mm
	Weight:	5.7 kg , approx.
AC Pover Supply		
Unit (optional):	Width:	241 mm
	Height:	367 mm (440 mm incl attachment rails).
	Depth:	101 mm
	Weight:	17 kg , approx.

Fig. 4.1

The equipment is operated from the Control Unit (fig. 4.1) and is 100% keyboard controlled. For quick reference section 4.1 gives the operating instructions as pictures of keying sequences, followed by a short description of the action caused by each key. Parentheses around key-numbers indicates that the corresponding keys should only be pressed under the conditions described below. A description of all the keyboard operating controls is foundin section 4.2.

4.1 OPERATING INSTRUCTIONS

4.1.1 SWITCH ON

1 Press "SUPPLY ON/OFF"
The equipment will now enter the state it was in before being switched OFF, as indicated by the displays and annunciators.
(2) Increase light intensity of displays and annunciators if too low.
(3) Decrease light intensity of displays and annunciators if too high.

4.1.2 TRANSMITTER ON

$\underset{\text { ovioff }}{\substack{\text { ºf }}}$
1

1 Press "TX ON/OFF" if the transmitter is OFF.
The transmitter display will then show the transmitter frequency.
If the transmitter display is showing the time of day, as indicated by the flashing time cursor (3rd digit), the equipment is in the "Receive only" state with all transmitter functions switched OFF.

4.1.3 RECEIVING

4.1.3.1 A. CHANGE RECEIVER FREQUENCY (16582.3 kHz)

1 Press "RX"
The receiver display is blanked and its decimal point starts flashing.
2 Enter desired frequency in the receiver display via the numeric keys. The last digit is alvays interpreted as the " 100 Hz " digit.

3 Press "ENTER"
The decimal point stops flashing if the frequency is valid. The whole display starts flashing if the frequency is invalid.

4.1.3.2 B. SET RECEIVER (MODE)

(1)

(2)

(3)

(4)

(5)

(6)

(1) Press "SPEAKER" if the loudspeaker is OFF. Annunciator indicates loudspeaker ON.
(2) Press "AGC ON" if the AGC is OFF. Annunciator indicates AGC ON.
(3) Press "SQUELCH" if the Squelch is OFF. Annunciator indicates Squelch ON.
(4) Press "AM" if the received signal is an $A M$ (A3E) signal.
(5) Press "USB" if the received signal is an SSB (J3E) signal. Annunciators indicate the mode selected.
(6) Increase volume if sound level is too low.
(7) Decrease volume if sound level is too high.

4.1.3.3 C. SELECT SEPARATE RECEIVER MODE

1. Press "RX"

The receiver display is blanked and its decimal point starts flashing.
2 Press "USB", "LSB" or "AM"
If the TX-mode is either USB, LSB, AM, or R3E then the RX-mode is accepted and the receiver display restored. If the TX-mode is neither USB, LSB, AM nor R3E then nothing will happen until either a valid mode-key, a receiver frequency or "ENTER" is pressed.
If the RX-mode is different from the TX-mode then the mode annunciators indicate the mode according to keyline. E.g. if the unit is not keyed then the RX-mode annunciator is turned ON constantly while the TX-mode annunciator is flashing very fast.

4.1.3.4 D. RECEIVER TUNING

1 Press "TUNE RATE" to change frequency step.
An annunciator below one of the three right hand digits of the receiver display indicates the frequency step selected. $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 1000 Hz steps are possible.

2 Increase receiver frequency in steps selected.
3 Decrease receiver frequency in steps selected. If "TUNE" is pressed shortly the receiver frequency is changed one step up or down. Holding "TUNE" pressed for more than 0.5 sec . changes the receiver frequency continuously up or down with 10 steps/sec.

4.1.4 TRANSMITTING

4.1.4.1 A. CHANGE TRANSMITTING FREQUENCY (16473.8 kHz)

1 Press "TX"
The transmitter display is blanked and its decimal point starts flashing.
2 Enter desired frequency in the transmitter display via the numeric keys. The last digit is always interpreted as the " $100-\mathrm{Hz}$ " digit.

3 Press "ENTER"
If TX is ON then the decimal point stops flashing if both frequency and mode are valid, and the whole display starts flashing if frequency and/or mode is invalid.

If TX is OFF the transmitter display will show the time of day.
4.1.4.2 B. SET TRANSMITTER (Mode-Power-Tune)

(1)

(2)

(3)

(4)

(5)

(6)
(1) Press "TX ON/OFF" if the transmitter is OFF.

The transmitter display will then show the transmitter frequency, flashing if frequency and/or mode is invalid.
(2) Press "USB" to transmit an SSB (J3E) signal.

Annunciators indicate the mode selected, and the transmitter display starts flashing if the mode is invalid.
(3) Press "LOW POWER"
(4) Press "MEDIUM POWER" according to desired power level.
(5) Press "FULL POWER"

Annunciators indicate the power level selected. If the transmitter frequency has been changed the Antenna Tuning Unit will automatically tune its input impedance on the new frequency in less than 1.5 sec when the handset key is pressed, and you are then ready to transmit.
(6) Press "TX TUNE" if the power meter annunciator starts flashing during transmission. This indicates that the Antenna Tuning Unit input SWR is greater than $1: 3$, and may happen if the antenna impedance has changed due
to external circumstances.

4.1.4.3 C. SELECT SEPARATE TRANSMITTER MODE

1 Press "TX"
The transmitter display is blanked and its decimal point starts flashing.
2 Press "USB", "LSB", "AM" or "R3E"
If the RX-mode is either USB, LSB, or AM then the TX-mode is accepted and the transmitter display restored. If the RX-mode is neither USB, LSB nor AM then nothing will happen until either a valid mode-key, a transmitter frequency or "ENTER" is pressed.
If the TX-mode is different from the RX-mode then the mode annunciators indicate the mode according to keyline. E.g. if the unit is keyed then the TX-mode annunciator is turned ON constantly while the RX-mode annunciator is flashing very fast.

4.1.5 FAST SET-UP FOR SIMPLEX OPERATION (8295.6 kHz)

1 Press "RX"
2 Press "TX"
The receiver and transmitter displays are blanked, and their decimal points start flashing.

3 Enter the desired frequency in the receiver and transmitter displays via the numeric keys.

4 Press "ENTER"
If frequency and mode are valid the decimal points stop flashing. Set receiver and transmitter as described previously.

4.1.6 COPYING RX FREQUENCY TO TX FOR SIMPLEX OPERATION

1 Press "RX"
The receiver display will be blanked.

2 Press "TX"
The transmitter display will be blanked.
3 Press "ENTER"
The receiver frequency will be copied to the transmitter display, and the 10 Hz digit on the receiver display will be cleared.

4.1.7 FAST SET-UP FOR 2182 kHz

1. Press "2182"

This instantly changes receiver and transmitter frequency to 2182 kHz , selects AM (H3E) mode, selects FULL POWER and enables transmitter function (TX ON). The loudspeaker and AGC are automatically switched ON and RF-AMP, ANT ATT and SQUELCH switched OFF. Antenna current is displayed when transmitting, unless PRESET bit 6 is set (see Second Functions).
(2) Increase volume if sound level is too low.
(3) Decrease volume if sọund level is too high.

Press handset key, wait a couple of seconds for the automatic tuning, and you are ready to transmit.

4.1.8 STORING AND RECALLING FREQUENCY CHANNELS

4.1.8.1 STORING RECEIVER/TRANSMITTER FREQUENCY PAIRS AND MODE

(Channel no. 25)

1 Press "STO"
The receiver and transmitter displays are blanked and their decimal points start flashing. If "STO" is pressed by mistake, just press "ENTER" to escape store mode.

2 Enter the channel-number in the receiver display via the numeric keys. Channels 0-75 are available.

3 Press "ENTER"
If the channel-number is valid the receiver and transmitter displays show the stored frequericy-pair. If the channel-number is invalid the receiver display starts flashing.

4.1.8.2 RECALLING RECEIVER/TRANSMITTER FREQUENCY PAIRS AND MODE

RCL
1

ENTER
(Channel no. 25)

1 Press "RCL"
The receiver and transmitter displays are blanked and their decimal points start flashing.

2 Enter the channel-number in the receiver display via the numeric keys. Channels 0-75 are available.

3 Press "ENTER"
If the channel-number is valid the receiver and transmitter displays show the recalled frequency-pair, an annunciator shows the recalled mode and the AGC is switched ON. If the channel-number is invalid the receiver display starts flashing.

4.1.8.3 RECALLING RECEIVER FREQUENCY

1 Press "RX"
The receiver display is blanked and its decimal point starts flashing.
2 Press "RCL"
3 Enter the channel-number in the receiver display via the numeric keys. Channels 0-75 are available.

4 Press "ENTER"
If the channel-number or frequency is invalid the receiver display starts flashing. If both channel-number and frequency is valid the receiver display shows the recalled frequency.
4.1.8.4 RECALLING TRANSMITTER FREQUENCY

1 Press "TX" The transmitter display is blanked and its decimal point starts flashing.

2 Press "RCL"

3 Enter the channel-number in the transmitter display via the numeric keys. Channels 0-75 are available.

4 Press "ENTER"
If the channel-number or frequency and/or mode is invalid the transmitter display starts flashing. If both channel-number, frequency and mode is valid the transmitter display shows the recalled frequency if TX is $0 N$, and the time of day if TX is OFF.

4.1.8.5 RECALLING ITU CHANNEL FREQUENCY PAIRS FROM PROM

1 Press "RCL"
The receiver and transmitter displays are blanked and their decimal points start flashing.

2 Enter the channel-number in the receiver display via the numeric keys.
3 Press "ENTER"
If the channel-number. is invalid the receiver display starts flashing. If the channel-number (according to mode) is valid the receiver display shows the ITU receiver frequency and the transmitter display shows the ITU transmitter frequency if $T X$ is $O N$, and the time-of-day if $T X$ is OFF.
4.1.8.6 RECALLING ITU CHANNEL RECEIVER FREQUENCY FROM PROM
1

2
ENTER
4
(ITU channel no. 815)

1 Press "RX"
The receiver display is blanked and its decimal point starts flashing.
2 Press "RCL"
3 Enter the channel-number in the receiver display via the numeric keys.
4 Press "ENTER"
If the channel-number is invalid the receiver display starts flashing. If the channel-number (according to mode) is valid the receiver display shows the ITU receiver frequency.

4.1.8.7 RECALLING ITU CHANNEL TRANSMITTER FREQUENCY FROM PROM

1 Press "TX" The transmitter display is blanked and its decimal point starts flashing.

2 Press "RCL"
3 Enter the channel-number in the transmitter display via the numeric keys.
4 Press "ENTER"
If the channel-number is invalid the transmitter display starts flashing. If the channel-number (according to mode) is valid the transmitter display shows the ITU transmitter frequency if TX is ON, and the time-of-day if TX is OFF.
4.1.8.8 RECALLING TRANSMITTER FREQUENCY FROM PROM

1 Press "RCL"
The receiver and transmitter displays are blanked and their decimal points start flashing.

2 Press "TX"
The receiver is reactivated and the first TX PROM frequency is shown in the transmitter display. Repressing "TX" will transfer the next TX PROM frequency to the transmitter display if the PROM location is programmed.

3 Press "ENTER"
If $T X$ is $O N$ then the decimal point stops flashing if both frequency and mode are valid, and the whole display starts flashing if frequency and/or mode is invalid.

If TX is OFF the transmitter display will show the time-of-day.

4.1.9 SCANNING STORED RECEIVER/TRANSMITTER FREQUENCY PAIRS

4.1.9.1 A. SET SCANNING PARAMETERS (Channel 25-50, time l.0 sec.)

1 Press "SCAN"
The receiver and transmitter displays are blanked and their decimal points start flashing.

2 Enter the start channel-number in the receiver display via the numeric keys.

3 Press "ENTER"
If the channel-number is valid the receiver display is blanked. If not, it starts flashing and you must repeat steps 1,2 and 3.

4 Enter the stop channel-number (greater than the start channel-number) in the receiver display via the numeric keys.

5 Press "ENTER"
If the channel-number is valid the receiver and transmitter displays are reset to their initial states. If not, the receiver display starts flashing and you must press "SCAN", enter a valid stop channel-number and press "ENTER" again.

6 Press "SCAN"
The receiver and transmitter displays are blanked and their decimal points start flashing.

7 Press "SET TIME"
8 Enter the dwell time (0.1-9.9 sec.) in the receiver display via the numeric keys.

9 Press "ENTER" The receiver and transmitter displays are reset to their initial states.

4.1.9.2 B. RECALL SCANNING PARAMETERS AND RESET SCAN POINTER

1 Press "SCAN"
The receiver and transmitter displays are blanked and their decimal points start flashing.

2 Press "RCL"
The start and stop channel-number are shown in the receiver display and the duell time in the transmitter display. The scan pointer is reset to the start channel-number.

3 Press "ENTER"
The receiver and transmitter displays are reset to their initial states.
4.1.9.3 C. START/STOP AUTOMATIC SCANNING

1 Press "SCAN"
The receiver and transmitter displays are blanked and their decimal points starts flashing.
(2) Control external scan port. Press "RX" to open port. Press "TX" to close port. If the port is open the scan s / s signal can be used to start automatic scanning. The port is initially closed.

3 Press "SCAN"
The scanning annunciator starts flashing indicating that the equipment is in automatic scanning mode. The receiver/ transmitter frequency pairs stored in each channel between start and stop will be shown in the receiver and transmitter displays for the dwell time set. This is repeated until "ENTER" is pressed. If the scanning parameters has been changed, some time may pass before the start channel frequencies appear in the displays.
(4) Control external scan port. Press "RX" to open port. Press "TX" to close port. If the port is open the scan s/s signal can be used to stop automatic scanning. If neither keys are operated the port-state is as specified in (2).

5 Press "ENTER"
The scanning annunciator stops flashing and the receiver and transmitter are set to the frequencies indicated by the displays.

Note: When OPTION bit 3 is set (see Second Functions), the squelch may be switched on to allow a special scanning in the phone modes (USB, LSB, AM, R3E). Each channel will be muted for 1.5 seconds to provide setting time to the squelch. After this period muting is handled by the squelch in the normal way. If the squelch mutes the signal for more than the dwell time programmed, the scanning will continue.

4.1.9.4 D. MANUAL SCANNING

1 Press "RCL"
The receiver and transmitter displays are blanked and their decimal points start flashing.

2 Press "SCAN"
The scanning annunciator is turned constantly $O N$ indicating that the equipment is in manual scanning mode. The start or next channel-number frequency pair is recalled and shown in the receiver and transmitter displays until "SCAN" is repressed, which will recall the next pair.
(3) Control external scan port. Press "RX" to open port. Press "TX" to close port. If the port is open the scan s / s signal can be used to step manual scanning to next frequency pair. The port is initially closed.

4 Press "ENTER"
Manual scan is terminated, leaving the displayed frequency pair unchanged.

4.1.10 CLOCK FUNCTIONS

4.1.10.1 SET TIME OF DAY (16 hrs. 45 min.)

1 Press "SET TIME"
The transmitter display is blanked and the time cursor set (3rd digit).
2 Enter the time of day in the transmitter display via the numeric keys. The first two digits are interpreted as hours and the last two digits as minutes.

3 Press "ENTER"
The transmitter display shows the time of day if TX is OFF and the transmitter frequency if $T X$ is $O N$. If you set time according to a time signal you must press "ENTER" exactly when the signal is given as this
synchronizes the clock.
4.1.10.2 SET WAKE-UP TIME (18 hrs .00 min.$)$

SET
TIME
Time

1

2
 ENTER
4

1 Press "SET TIME"
The transmitter display is blanked and the time cursor set (3rd digit).

2 Press "RX"

3 Enter the wake-up time in the transmitter display via the numeric keys. The first two digits are interpreted as hours and the last two digits as minutes.

4 Press "ENTER"
The transmitter display is reset to its initial state.

4.1.10.3 RECALL WAKE-UP TIME

1 Press "SET TIME" The transmitter display is blanked and the time cursor set (3rd digit).

2 Press "RCL"
The transmitter display shows wake-up time.

3 Press "ENTER"
The transmitter display is reset to its initial state.

4.1.10.4 START DORMANT STATE

1 Press "SET TIME" The transmitter display is blanked and the time cursor set (3rd digit).

2 Press "ENTER"
The transmitter display is reset to its initial state.
3 Press "SUPPLY ON/OFF"

The equipment is switched OFF, and will automatically be switched ON again at wake-up time recalling the state it was in before being switched OFF.

4.1.11 AUTOTELEX

To select AUTOTELEX mode just make sure that the last keying sequence has been terminated. In this state the $C U$ responds to a frequency command from the ARQ unit by selecting TELEX mode and shifting to a special AUTOTELEX state which is identified by the flashing TELEX annunciator.

In AUTOTELEX mode the following keys are operative:

Switches speaker ON/OFF as described in section 4.2.

ENTER
Terminates AUTOTELEX mode. The TELEX annunciator will stop flashing and normal $C U$ operation resumed. temporarily while making a phone call. In this case OPTION bit 5 should be set and TELEX mode selected manually prior to ARQ scanning. A phone call is then initiated by selecting the appropriate phone mode which will lock out the ARQ frequency commands, thus enabling manual frequency selection. When the phone call is completed the TELEX mode should be reselected to allow further $A R Q$ scanning.

When the "2182" key is pressed, the Control Unit stops listening to the telex terminal until a new transmitter frequency different from 2182 is entered from the keyboard.

AUTOTELEX in MARITEX mode.
TRP 8250 D will protect against erroneous transmitting by not allowing continuous keying in more than $1 / 2$ minute in MARITEX mode. Passed this time limit the transmitter will be switched OFF and the beeper activated until a key is pressed.

4.1.12 SECOND FUNCTIONS

The second function level provides enhanced system control to the advanced user without sacrificing simplicity of the primary keypad functions.
The level consists of 10 menues (pages) each containing a maximum of 10 functions (lines). Operation on this level will always be identified by the non-standard display symbol " " in the left or right most tab of at least one of the displays.

4.1.12.1 SECOND FUNCTION SYNTAX

3

4

(5)

1 Press "2".
The transmitter display is blanked and the decimal points start flashing. The receiver display shows "~~" to identify a non-standard display and "2". If "2" was pressed by mistake "ENTER" will terminate second function mode.

2 Press a number.
The number is passed to the receiver display. This number identifies the second function page. If the number was pressed by mistake "ENTER" will terminate second function mode.

3 Press a number.
The number is passed to the receiver display. This number identifies the second function line. If the number was pressed by mistake "2" will restart the second function mode.

4 Press "ENTER".
If page and line numbers are not valid the receiver display starts flashing and the second function mode can be either restarted by pressing " 2 " or terminated by pressing "ENTER". If both page and line numbers are valid the respective second function is executed and if no further keys are required in the specific function the displays are restored to the state prior to second function execution.
(5) Most second functions require additionally keys to be pressed. Typically "2" will restart second function mode and "ENTER" terminate it. Some second functions require confirmation via the "STO" key. This situation is indicated by a special warning display-flash shifting between "]]]]]]]" and the entered number. Pressing "STO" will execute the function, "2" will restart the second function mode and any other key will terminate it.

Second functions requiring confirmation:

```
250: Clear RAM
251: Reset system
270-278: "OPTION" register
280-287: Toggle "PRESET" register bit 0-7
290-298: "GUARD" register
```

4.l.12.2 PAGE 0 (20非) Self test. For detailed information see self test description in chapter 8.

Executable lines:

200: Start automatic stepped self test.
201: Start manually stepped self test.
202: Start automatic stepped self test from an arbitrary test number.
203: Start manually stepped self test from an arbitrary test number.
4.1.12.3 PAGE 4 (24非)

Miscellaneous functions.

Executable lines:
241: Read accumulated on-time. The receiver display will show total operation time of the TRP 8250 S with 1 hour resolution. Pressing " 2 " or "ENTER" will restart or terminate second function.

242: Read and program receiver tune step. The receiver display shows the present programmable tune step. A new tune step may be entered via the numeric keys.
Tune steps between 100 Hz and 99 kHz are possible.
Pressing "ENTER" will terminate second function.
To use this additional tune step, OPTION bit 4 should be set to l (ref. second function 274).
In this case the "TUNE RATE" key will introduce a fourth state indicated by all tune rate annunciators switched off.

243: Read single frequency formats in configuration PROM. The reading address is initialized to PROM address 0. The receiver display shows the programmed frequency if the $R X$ bit $=1$. The transmitter display shows the programmed frequency if the $T X$ bit $=1$.
The mode annunciators show the programmed modulation(s). Pressing "DIMMER UP" will increase the reading address to the next higher located format if it is not the "LIMITER BYTE".
Pressing "DIMMER DOWN" will decrease the reading address to the next lover located format if the present reading address is higher than PROM address 0.
Keeping either "DIMMER" key pressed will advance the reading address automatically. Pressing "2" or "ENTER" will restart or terminate second function. For further PROM format information refer to section 4.10.

244: Control BFO frequency. The receiver display shows the present BFO frequency. The transmitter display shows the stored BFO frequency selected on power-up. Pressing "STO" will store the present frequency. Pressing "RCL" will recall the stored frequency. Pressing "2" or "ENTER" will restart or terminate second function.

245: Read special system parameters in configuration PROM. The receiver display shows the PROM address in decimal initialized to top of PROM $=$ 4095. The transmitter display shows the PROM data in decimal. Pressing "RCL" will change the displayed data to hexadecimal, useful when reading BCD. Since the display decoder is not designed for letters the following symbols are displayed for hexadecimals greater than 9:

Pressing "DIMMER DOWN" will show the next lower PROM address. Pressing "DIMMER UP" will show the next higher PROM address. Pressing " 2 " or "ENTER" will restart or terminate second function.

246: Read CU program release date and version. The receiver display shows release date (year/month/day). The transmitter display shows version number.
Pressing "2" or "ENTER" will restart or terminate second function.
247: Read TU program.release date and version. The receiver display shows release date (year/month/day). The transmitter display shows version number.
Pressing "2" or "ENTER" will restart or terminate second function.
248: Adjust beeper sound level. A continuous control beeping is started. Pressing "VOLUME UP" will increase the sound level. Pressing "VOLUME DOWN" will decrease the sound level. Pressing "2" or "ENTER" will restart or terminate second function preserving the new beeper sound level.

249: Switch antenna OFF. The antenna and transmitter are switched OFF. The power annunciators are turned OFF to identify antenna OFF and transmitter display shows time of day to identify transmitter OFF. Finally second function is terminated. When "TX ON/OFF" is then pressed both antenna and transmitter are switched ON and power annunciators and transmitter display restored to normal.
4.1.12.4 PAGE 5 (25\#) Miscellaneous functions. This page can not be entered when "GUARD" bit 7 is set (see second function page 9).

Executable lines:
250: Clear RAM. The function requires confirmation as described for the syntax key (5). All stored frequency pairs and modes, the "OPTION" register and "GUARD" register will be cleared ($=0$) and second function terminated.

251: Reset system. The function requires confirmation as described for the syntax key (5). 32 msec after releasing the "STO" key, both CU and TU processors are reset by running the power-up program.

4.1.12.5 PAGE 7 (27\#)

Controls an 8-bit "OPTION" register.
Executable lines:

```
270: Toggle "OPTION" bit 0
271: - - - - 1
272: - - - - 2
273: - - - - 3
274: - - - - 4
275: - - - - 5
276: - - - - 6
277: - - - - 7
278: Clear "OPTION" register
279: Display "OPTION" register (bits 0-3 in transmitter display, bits 4-7
    in receiver display).
```

All lines will display the resulting "OPTION" register. Pressing "2" or "ENTER" will restart or terminate second function.

"OPTION" bit functions:		
BIT	LEVEL	FUNCTION
0	-	Reserved for future use
1	0	Normal
2	1	Disable numeric display
2	0	Normal
3	1	Disable mode display
	0	Normal
4	1	Enable special squelched scanning in "phone mode"
	0	Normal
5	1	Enable programmable receiver tune rate
	0	Normal
6	1	Enable phone call interrupts in AUTOTELEX mode
7	0	Normal
	1	Disable "ENTER" key during AUTOTELEX mode

4.1.12.6 PAGE 8 (28\#) Controls an 8 bit "PRESET" register intended for use in installation only.Special system parameters which are difficult to specify before installation can be changed on location by toggling the respective bit in this non-volatile register. To protect the "PRESET" register against erroneous changes Page 8 can not be entered when "GUARD" bit 7 is set. Toggling any bit requires confirmation as described for the syntax key (5). Further more "PRESET" is excluded from the CLEAR RAM function (250).

Executable lines:

```
280: Toggle "PRESET" bit 0
281: - - - - l
282: - - - - 2
283: - - - - 
284: - - - - 4
285: - - - - 5
286: - - - - 6
287: - - - - 7
```

289: Display "PRESET" register (bits 0-3 in transmitter display, bit 4-7 in
receiver display).
All lines will display the resulting "PRESET" register. Pressing "2" or
"ENTER" will restart or terminate secorid function.
"PRESET" bit functions:

BIT	LEVEL	FUNCTION
0	-	Reserved for future use
1	-	-
2	-	-
3	-	-
	-	-
4	0	Normal
	-	-
5	1	Enable "Key inhibit"
5	0	Normal
6	0	Disable power display (ampere only)
	1	Normal
7	1	Disable ampere display (pover only)
	0	Normal
	1	Complement external scan transitions

4.1.12.7 PAGE 9 (29非) Controls an 8-bit "GUARD" register. This page can not be entered when "GUARD" bit 7 is set (see following explanation).

Executable lines:

```
290: Toggle "GUARD" bit 0
291: - - - - 1
292: - - - - 2
293: - - - - 3
294: - - - - 4
295: - - - - 5
296: - - - - 6
297: - - - - 7
298: Clear "GUARD" register.
299: Display."GUARD" register (bits 0-3 in transmitter display, bit 4-7 in
    receiver display).
All lines will display the resulting "GUARD" register. Pressing "2" or
"ENTER" will restart or terminate second function.
```

"GUARD" bit functions:

BIT	LEVEL	FUNCTION
0	0	Normal
	1	Inhibit direct entry of RX frequencies
1	0	Normal
	1	Inhibit "RX" key
2	0	Normal
	1	Inhibit direct entry of TX frequencies
3	0	Normal "TX" key
	1	Inhibit "TX
4	0	Normal
	1	Inhibit store function
5	0	Normal
	1	Inhibit "STO" key
6	0	Normal
7	1	Inhibit entry of scan parameters
7	0	Normal
	1	Inhibit certain second function pages

If programmed in the Configuration PROM (ref. section 5.12), either of the RX (bit $0 \& 1$) and $T X$ (bit $2-3$) GUARD bits set to l will cause the respective display to show channel numbers exclusively. If no channel number applies to the frequency then a "C" will be displayed (e.g. immediately after "SUPPLY ON".

Clear GUARD-bit 7 (PAGE GUARD)

(1) Switch supply OFF.

2 Press "RCL" and keep it.
3 Switch supply ON.
4 Keep "RCL" pressed until the beeper sounds.
Guard-bit 7 is now cleared and all second function pages can be entered.

To prevent unauthorized use this syntax is not described in the User Manual.

```
4.1.12.8 SECOND FUNCTIONS SUMMARY
200: Start automatically stepped self test
201: Start manually stepped self test
202: Start automatic stepped self test from an arbitrary test number.
203: Start manually stepped self test from an arbitrary test number.
241: Read accumulated on-time
242: Read and program receiver tune step
243: Read single frequency formats
244: Control BFO frequency
245: Read special system parameters
246: Read CU release date and version
247: Read TU release date and version
248: Adjust beeper sound level
249: Turn OFF antenna
250: Clear RAM
251: Reset system
270-277: Toggle "OPTION" register bit 0-7
278: Clear "OPTION" register
279: Read "OPTION" register
280-287: Toggle "PRESET" register bit 0-7
289: Read "PRESET" register
290-296: Toggle "GUARD" register bit 0-6
297: Set "GUARD" register bit 7
298: Clear "GUARD" register
299: Read "GUARD" register
```


4.2 DESCRIPTION OF OPERATING CONTROLS

Switches ON/OFF the equipment power supply. When switched ON the equipment enters the state it was in just before being switched OFF.
Switches ON/OFF the transmitter functions. The transmitter display shows the transmitter frequency when switched uN, and the time of day when switched OFF.

```

```

Increases and decreases the light intensity in the displays, meters and annunciators.

```

Storing of receiver/transmitter frequency pairs and mode. then "STO" is pressed the receiver and transmitter displays are blanked and their decimal points start flashing, indicating that a channel number ( \(0-75\) ) must be entered in the receiver display via the numeric keys.

Setting/recalling scanning parameters and start/stop scanning of stored receiver/transmitter frequency pairs. The annunciator is flashing in automatic scanning mode and turned constantly ON in manual scanning mode. (for details see section 4.l)

Setting tine of day, setting/recalling vake-up time, starting dornant state and setting duell time in scanning. (for details see section 4.1)

Switches ON/OFF duplex operation of the equipment. Annunciator Oiv indicates that duplex operation is selected. When duplex is ON , the receiver is constantly active, even vhen keying the transmitter. If transmitter and receiver frequencies are 20 kHz or less apart, the transmitter display and duple\% annunciator are flashing.
a) Primary function: Change of receiver frequency. When "RX" is pressed the receiver display is blanked and its decimal point starts flashing, indicating that a new receiver frequency must be entered into the display via the numeric keys.
b) Secondary function: Setting of vake-up time, uhen "RK" is pressed immediately after "SET TIME". Opening of the external scan port (see section 4.l)
a) Primary function: Change of transmitter frequency. When "TX" is pressed the transmitter display is blanked and its decimal points starts flashing, indicating that a new transmitter frequency must be entered into the display via the numeric keys.
b) Secondary function: Recalling of transmitter frequency from PROA. Closing of the external scan control port (see section 4.1 )

a) Primary function: Recalling stored receiver/ transmitter frequencies. When "RCL" is pressed the receiver and transmitter displays are blanked and their decimal points start flashing, indicating that a channel-number ( \(0-75\) ) must be entered into the receiver display via the numeric keys.
b) Secondary function: Recalling wake-up time, when "RCL" is pressed immediately after "SET TIME" and recalling scanning parameters when "RCL" is pressed immediately after "SCAN" (see section 4.1)

Numeric keys
a) Primary functions:

Entering of receiver/transmitter frequencies and channel numbers.
b) Secondary functions:

Setting scanning parameters, time of day, wake up time and sound level of beeper. Refer to section 4.1 for further details.

\section*{ENTER}


Terminating keyboard operation. "ENTER" must be pressed to terminate all keyboard operations initiated by the "RX", "TX", "STO", "RCL", "SCAN", "SET TIME" or numeric keys. Generally the displays will then be reset to their initial states if the operating parameters are valid. An exception is the self test mode ( see section 7.4)

Adjustment of receiver AF-amplifier gain. (Sound level of internal speaker, handset phone and headphone). Pressing one of the keys turns on the corresponding annunciator, which is turned off again when the key is released or when minimum or maximum sound level is reached.

Adjustment of receiver IF-amplifier gain when the AGC is switched OFF.


Switches ON/OFF internal and external loudspeaker. Annunci ator ON indicates loudspeaker(s) ON. If headphones are connected via the socket on the rear of the Control Unit, the internal loudspeaker is always switched OFF.

Increases receiver gain 10 dB by activating the RF-amplifier stage. Annunciator ON iridicates RF-amplifier ON. The RF-amplifier may be used when the received signal is weak.

Decreases receiver gain 20 dB by inserting the antenna input attenuator. Annunciator ON indicates attenuator ON . The antenna attenuator may be used if the received signal is disturbed by strong out-of-band signals.

Switches ON/OFF Squelch function. Annunciator ON indicates Squelch ON. If the Squelch is ON a speech signal with a signal to noise ratio greater than a certain value is required to pass the signal through the receiver AF-amplifier. The Squelch is used to eliminate noise when there is no speech signal on the receiver frequency. The Squelch Board is optional. When not installed, pressing the key causes no action.

Selects frequency step in receiver tuning. An annunciator below one of the three right hand digits of the receiver display indicates the frequency step selected. \(10 \mathrm{~Hz}, 100\) Hz and 1000 Hz steps are possible.


Tuning of receiver frequency up or down in frequency steps selected by the "TUNE RATE" key (see section 4.1)


Adjustment of the BFO frequency down and up in CW mode. Receiver display shows BFO frequency when either of the keys are pressed.


Selects respective IF filters in CW and MCW mode. Annunciator ON indicates selected filter.

Selecting transmission of J3E and reception of J3E and R3E signals in USB (Upper Side Band). Annunciator ON indicates USB-mode selected.


Selecting transmission and reception of Telex in FlB mode. Annunciator \(0 N\) indicates Telex mode selected. The Telex function is optional.

Fast set up for 2182 kHz . Pressing this key will instantly change receiver and transmitter frequency to 2182 kHz , select AM (H3E) mode, select FULL POWER, and enable transmitter function (TX ON). The loudspeaker(s) and AGC are automatically switched ON and RF-AMP, ANT ATT and SQUELCH switched OFF. Antenna current is displayed when transmitting.

Fast set-up for 500 kHz . Pressing this key will instantly change receiver frequency to 500 kHz and select MCW (H2A) mode. The loudspeaker(s) and AGC are automatically switched ON and RFAMP, ANT ATT and SQUELCH switched OFF. IF FILTER keys are enabled and the intermediate type filter automatically selected.


Selecting transmission and reception of AlA morse telegraphy signals. Annunciator ON indicates CW -mode selected. If transmission of AlA is illegal and transmission is ON, the transmitter display is flashing and transmitter function disabled. IF FILTER keys are enabled and the intermediate type filter automatically selected. BFO is enabled and AGC is switched ON.

Selecting transmission and reception of H 2 A modulated morse telegraphy signals. Annunciator ON indicates MCW-mode selected. If transmission of H 2 A is illegal and transmission is \(0 N\), the transmitter display is flashing and transmitter disabled. IF FILTER keys are enabled and the intermediate type filter automatically selected. AGC is switched ON.

Activating Antenna Tuner. Pressing this key will start the automatic tuning procedure in the ATU (Antenna Tuning Unit). Tuning is performed in less than 1.5 sec . Pressing the handset key for the first time after changing transmitter frequency will also start the tuning procedure, and it is therefore not necessary to press "TX TUNE" in this case. "TX TUNE" is normally used when the frequency has been unchanged for some time and the antenna impedance has changed due to external circumstances (see section 4.l).

Selecting low transmitter output power (approx. 10 W PEP). Annunciator ON indicates LOW POWER selected.

Selecting medium transmitter output power (approx. 60 W PEP). Annunciator ON indicates MEDIUM POWER selected.


Testing and transmitting the two-tone alarm signal. Press "STOP ALARM" and the left key simultaneously and keep pressed to test alarm. The alarm signal is heard in the loudspeaker, and transmitter keying is disabled. If the Dummy Load option is installed the alarm generator and the transmitter is tested on the built-in dummy load of the Antenna Tuning Unit. The Antenna Current Meter indicates current into the dummy load. The Output Power and Antenna Current annunciators are flashing to show that the transmitter is in the test mode. Test on dummy load cannot be performed on 2182 kHz .

Press the left and right keys simultaneously to send alarm. The alarm signal is heard in the loudspeaker and transmitted for 45 sec . on the selected frequency if the transmitter is \(0 N\). The alarm signal may be interrupted by pressing "STOP ALARM".
4.2.1 Transmitter Display In its initial state the transmitter display shows the transmitter frequency in \(k H z\) if \(T X\) is \(O N\) or the time of day in hours and minutes if TX is OFF. Time of day is indicated by a flashing time cursor (3rd digit). A steady time cursor indicates that entering or recalling of time has not yet been terminated. A flashing decimal point indicates that entering, storing or recalling of a transmitter frequency has not yet been terminated. Flashing digits indicate that the transmitter frequency and/or mode is unauthorized, i.e. the frequency is outside the specified range and/or not contained in the frequency PROM. The transmitter cannot be keyed if the transmitter display is flashing.
4.2.2 Receiver Display In its initial state the receiver display shows the receiver frequency in kHz . A flashing decimal point indicates that entering, storing or recalling of a receiver frequency or channel-number has not yet been terminated. Flashing digits indicate that the frequency or channelnumber is outside the specified range.
4.2.3 Signal Strength meter Gives a relative indication of the signal strength in the received signal.
4.2.4 Output power/Antenna current meter Measures the antenna current during transmission on 2182 kHz and 500 kHz , as indicated by the antenna current annunciator. Gives a relative indication of the transmitter output power during trans- mission on other frequencies by measuring the output peak voltage/current, as indicated by the output power annunciator. A flashing meter indicates a fault in the Transceiver Unit - Antenna Tuning Unit communication.
4.2.5 Output power annunciator Also serves as a mismatch indicator on all frequencies. If the input SWR of the Antenna Tuning Unit exceeds \(1: 3\) the output power annunciator starts flashing, indicating that tuning is required.
4.2.6 Reduced power annunciator If the temperature of the Power Amplifier heatsink and/or the Antenna Tuning Unit exceeds their maximum levels, the output power is reduced by 5 dB which is indicated by the reduced power annunciator. This may occur due to extreme environmental and/or working conditions.

\section*{5. INSTALLATION}

Correct installation of the equipment is important for maximum performance and reliability. Antennas and earth connections must be installed with the greatest care using corrosion resistant materials. Cable routing shall be made so the cables are protected from physical damage. Cable bends especially on coa«ial cables may not be sharp and a sufficient number of clips or straps should be used for securing the cables. Before installing the equipment make sure that the Configuration PROH is properly programned, see section 5.12.

\subsection*{5.1 Mounting the Control Unit}

The Control Unit can be tabletop or bulkhead mounted. Fig. 5.1 shovs overall dimensions and a drilling plan for the necessary holes. The unit is bolted through two holes on the botton part of the cabinet. The unit must be opened when bolting. Loosen the two front panel screvs and lift off the front panel. The front pancl is hinged to the botion part by means of two flexible straps. To enable cable entry from either side of the unit, the botton part of the cabinet may be turned 100 degrees relative to the front panel. To alter the position, open the unit and loosen the screvs of the hinges in the botton part of the cabinet and release the hinges. Turn the front panel and fi火 the hinges in the opposite side of the cabinet bottom. Be careful not to damage any components or to drop any conducting objects onto the printed circuit boards of the unit. The front panel can be tilted for convenient operation. To adjust the angle loosen the two front pancl screvs and open the unit. Hove the two stop pins in each side of the unit to the appropriate holes and refit the front pancl.

\subsection*{5.2 Mounting the Transceiver Unit}

The Transceiver Unit may be mounted up to 100 metres from the Control Unit using a screened \(16 \times 0.5 \mathrm{~mm}\) sq. multivire cable for interconnection. The unit should be installed in a dry place and consideration should be given to accessibility for servicing. The brackets supplied allov for bulkhead or bench mounting. Fig. 5.2 shous mounting details. It is important to provide plenty of airspace belov and above the unit, for adequate air circulation through the heatsink at the back of the unit.

\subsection*{5.3 Mounting the Antenna Tuning Unit}

The Antenna Tuning Unit may be mounted up to 100 metres from the Transceiver Unit using RG-213/U (RG-8A/U) coa«ial cable and a screened \(16 \times 0.5 \mathrm{~min} \mathrm{sq}\) multivire cable for interconnection. The unit should be installed near the antenna feed point. Fig. 5.3 shovs mounting details.

\subsection*{5.4 Power Supply}

The TRP 8250 D operates at voltages between 10.6 and 41.6 VDC and is to be powered from a 12, 24 or 32 volt battery or from a separate AC Power Supply Unit. The supply leads are connected to the Transceiver Unit through the cable entry at the rear of the cabinet.
The supply terminal strip is adapted for screened power supply cable as required by some administrations. The screen of the cable is connected to the center terminal. The terminal strip may be removed from the chassis for easier access.
Attention should be paid to CCIR Rec. \(218-1\) which recommends that cables in the vicinity of the receiving antennas or the radio receiving room, and cables within the radio room, are screened by enclosing them in metal conduits, unless the cables themselves are effectively screened. The earth connection of the equipment will not cause the battery to be earthed. Maximum permissible peak voltage between the battery terminals and earth is 100 V.
Note that fuses must be provided in the supply leads. Installation diagram fig. 5.3 shows the necessary cable cross sections and external fuse ratings.

\subsection*{5.5 Earth Connections}

\subsection*{5.5.1 Antenna Tuning Unit}

As the earth connection of a transmitter is part of the total antenna system, it is of the utmost importance that the earth connection to the Antenna Tuning Unit is constructed to have the lowest possible RF-impedance. Losses in the earth connection will result in a decrease in radiated power which means that the range of the transmitter will be reduced.
In steel ships a \(100 \times 0.5 \mathrm{~mm}\) copper strap as short as possible is connected between the earth terminal at the bottom of the Antenna Tuning Unit and two \(1 / 2\) " or M12 bolts welded to the superstructure.
Vessels constructed of non-conducting materials must be equipped with a copper earth plate having a minimum area of 1 square metre mounted below the water line. From a copper earth bolt hard soldered to the earth plate a 100 x 0.5 mm copper strap is run, preferably uninterrupted to the earth terminal at the bottom of the Antenna Tuning Unit.
Should it be necessary to break the copper strap, for example to pass through a deck, two \(1 / 2^{\prime \prime}\) or M12 bolts should be used for this feed through.
The copper strap may not be passed through iron pipes and should be kept at minimum distance of 0.5 m from iron parts of some extent. If this minimum distance cannot be kept the copper strap must be effectively connected to these parts using a strap having the same dimensions.
On wooden ships having a superstructure of metal, this superstructure should also be effectively connected to the copper strap by using stainless steel bolts and preferably pieces of stainless steel strips between the metal parts.

\subsection*{5.5.2 Other Units}

All other units must be grounded separately to the ships metal in the shortest possible way. The Control Unit is connected to ground from the ground frame at the cable entries using a 2.5 mm sq. wire. In the Transceiver Unit a ground strap is connected to the ground terminal at the cable entry. On vessels with no metallic superstructure the ground connection at the Control Unit and the Transceiver Unit may be omitted.

\subsection*{5.6 Antennas}

The standard equipment is used with separate transmitting and receiving antennas. If, hovever, the Antenna Tuning Unit is fitted vith the optional Antenna Relay Board 641 a conmon antenna may be used for transmission and reception. The antennas should be crected vell in the clear, away from any objects whose influence on the antenna may vary, such as derricks etc. Insulators should be of the best type having low leakage even when vet. Stays, wires, stecl masts etc. should be either effectively earthed or insulated. The receiving antenna should be kept as far as possible from electrical equipment in order to minimize noise. Electrical installation such as cable braiding (screens) and instruments in the vicinity of the receiving antenna shouid be carthed effectively, and the instruments in question should be fitted with noise-interference suppression devices, effective in the range 0.1 liliz to 30 rillz.
5.6.1 Transmitter Antenna The Antenna Tuning Unit will tune on any frequency in the range 1.6 to 30 lliz to wire and/or whip antennas of 7 to 30 metres total length. A long antenna is preforable vith regard to radiated power. The antenna is terminated at the insulator at the top of the Antenna Tuning Unit. The insulator must be relieved from mechanical stress by using ma\%. I metre flexible wire between the insulator and a support.
5.6.2 Receiver Antenna Length: 7-30 n. The antenna feed-in should be coaxial cablc. The receiver antenna terainal is a UIIF-connector (PL 259 type) located in the Transceiver Unit. If a long cable is used an impedance matching transformer should be inserted at the antenna end of the feeder. In one antenna installations using the optional Antenna Relay Board 6al this transformer is built-in.

\subsection*{5.7 Interconnection of Units}
5.7.1 Control Unit-to-Transceiver Unit connections The units are interconnected by a length of \(16 \times 0.5\) min sq. screened multivirc cable (max. 100 metres). In order to connect the cable to the Control Unit the front panel is removed. The cable is entered through the threaded cable entry and the wires are then connected to the terminal strip marked 601-TS2 Transceiver Unit. NOTE: Uire ends should be fitted with cable end sleeves before mounting. The screen is connected to the ground frame at the cable entry. To connect the cable to the Transceiver Unit the front must be opened. The cable is entered through the cable entry at the back of the unit and the vires are connected to the terminal strip marked \(620-T S 3\) Control Unit. The screen must be connected to the chassis bracket. For connections see installation diagram fig. 5.3.
5.7.2 Transceiver Unit-to-Antenna Tuning Unit connections The units are interconnected by an RG-213/U (RG-8A/U) coaxial cable and a \(16 \times 0.5 \mathrm{~mm}\) sq. screened multivire cable (max. 100 metres). In one-antenna installations using the optional Antenna Relay Board 641 an additional RG-213/U coaxial cable is used. The coaxial cables are terminated in UHF-connectors (PL 259 type). The sockets in the Transceiver Unit may be removed from the chassis for easier access. The multivire cable is mounted in the same way in the Transceiver Unit as the cable from the Control Unit. The wires are connected to the terminal strip marked 620-TSl Antenna Tuning Unit, see fig. 5.3. NOTE: If the TRP 8250 D is not operated vith an ATU 8250 Antenna Tuning Unit a strap must be placed between terminal no. 6 (TUNE) and terminal no. 7 (TPR) of 620-TSl. A missing strap will cause the Pover Meter display to flash ll sec. after a TUNE sequence has been initiated. The cables enter the Antenna Tuning Unit through the threaded cable entries at the bottom of the unit. The wires must be connected as shown in fig. 5.3. The screen of the multiwire cable must be connected to the receptacle at the grounding tab next to the terminal strip. NOTE: Vire ends of the multiwire cable should be fitted with cable end sleeves beforc mounting. In installations with long earth straps to the Antenna Tuiling Unit, high RF voltages may be present on the ATU ground terminal. To avoid this voltage being coupled to the Transceiver Unit the interconnection cables must be run from the Transceiver Unit to the point where the copper strap from the Antenna Tuning Unit is connected to earth. From this point the cables must follou the copper strap to the Antenna Tuning Unit. The cables should be placed upon the center of the copper strap to ensure good coupling. The part of the cable-run betvecn earth and the Transceiver Unit must not be run in parallel with the earth strap within a distance of at least 1 metre.

\subsection*{5.8 Connection of External Equipment}

Auxiliary terminals in the Control Unit and the Transceiver Unit allous various external equipment to be connected to the TRP 8250 D. In tables 5.2 and 5.5 terminal assignments are listed for the Control Unit and the Transceiver Unit respectively. Scre əned cable should be used with the screen connected to ground frame or chassis.
5.8.1 Timing of TELEX KEY signal The transmitter pre-keying time should be appro\%. 7 ms . not less. Tele» inodens with programmable pre-keying time must be programmed to this value. In case of telex modems with a fixed pre-keying time longer than 7 ms . a time delay may be introduced by the TELEX KEY DELAY circuit on PCB 601 in the Control Unit. The leading edge of the TELEX KEY signal may be delayed by up to 30 ms . in steps of 3.33 ms . by moving a strap to the appropriate position.


TELEX KEY DELAY SELECTION
(factory setting: 0 ms .)
TPI
TP2


Tele: moden pre-keying time minus selected tele\% key delay time must be equal to 7 ms . or more.

\subsection*{5.9 Final Installation Check}
5.9.1 For operation of the equipment please refor to chapter 3. Note that an appropriate programed Confiouration PRON must be installed in the Control Unit, see section 5.12. The Antenna Tuning Unit will tune automatically to the transmitter antenna when the equipment is keyed or the TUNE button is pressed. The standing vave ratio (SUR) at the input of the tuning unit is autonatically measured after the tuning sequence. If the SUR exceeds approx. 3 the Pover Annunciator on the Control Unit will flash, indicating that correct tuning has not been obtained. In this case, investigate the antenna installation and control that the antenna length is vithin the boundaries.
5.9.2 2182 kHz Hanual Tune Sct-up To enable manual tuning on 2182 klz the ilanual Tuning Suitches in the Antenna Tuning Unit must be preset on the final antenna installation. Remove the cover of the Antenna Tuning Unit and follow belou procedure.


Control that all Manual Switches are in position off. With the switch AUTO/2182 kHz (S5) in position "AUTO", a normal tuning procedure is performed on 2182 kHz . The Manual Tuning Switches are then switched "ON", as indicated by light in the Tune Set-up Indicators. Ensure that the transmitter is not keyed. Check correct setting of the Manual Tuning Switches by switching \(S 5\) to position 2182 kHz and simultaneously control that none of the Tune Set-up Indicators change. If any of the indicators change, repeat the procedure. When \(S 5\) is switched back to "AUTO" the Tune Set-up will be reset.

\subsection*{5.10 Remote Frequency Control}

TRP 8250 D is equipped with a serial interface for remote telex operation. That is, the receiver and/or transmitter frequencies may be remote controlled whereas telex mode will be automatically selected. The remote control terminals are the 601-TS1 Auxiliary Terminals no. 1 to 4, see Table 5.2. The interface, when used, has to be enabled by the appropriate Configuration PROM programming, see section 5.12. PROM addr. FEDh/4077d AUTOTELEX.

The interface circuit conforms electrically to the EIA standard RS-232C using the following:
\begin{tabular}{ll} 
Baud rate & \(:\) \\
Parity & 2400 bps \\
Word length & \(: 8\) bits \\
Start bits & \(:\) \\
Stop bits & \(:\) \\
St
\end{tabular}

DATA FORMAT
Address word:

Command word: The word immediately following the address word contains the command.

Reserved commands:
00h/Od : Reset.
The TRP 8250 D will run the power-up sequence.
14h/20d : Frequency input.
The next 4 words will be interpreted as a frequency.

Frequency vords: After a frequency comand \(b_{\text {; }}\) words are used to specify ' firequency in pac!ed BCD:
\begin{tabular}{ccc} 
1. & 10 Hzz & 1 HHz \\
2. & 100 KHz & 10 kHz \\
3. & 1 kHz & 100 Hz \\
4. & 10 Hz & 0
\end{tabular}

Status vord: After having received the frequency comand and all four frequency words, the TRP 8250 D transmits a status vord having the following fornat:

Bit
7 : Interface error. :hen set to \(l\) this bit icientifies either a parity, franing, overrun or data format error. The comand cycle must be repeated.

5 : Alvays 0.
5 : Busy. Then set to 1 this bit identifies that the the 0250 D is not ready. The comand cycle nust be repeated.
\(0-4:\) Address echo. This field contains the five LSS's of the received address word.

\subsection*{5.11 Configuration PROM Programming}

The Configuration Prom contains 4 :bytes in which legal frequencies, frequency bands and special system parancters can be programiad for custonizing the equipment. Legal frequencies and frequency bands are stecked in the lover part of the Prom together with legal nodulation beginning at Pron adiress 0 and progressing upuard in 4 byte steps until a limiter byte containing the data \(255 \mathrm{~d} /\) FFh are located. Special system parameters are stac!ed in the higher part of the Pron beginning at Pron address \(4095 \mathrm{~d} / \mathrm{Fr}\) Fin procreseing dovnuard.

\subsection*{5.11.1 APPLICABLE PROIIS}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{TE×AS:} & TifiS2532JL \\
\hline & Tils25L32JL \\
\hline \multirow[t]{3}{*}{HITACHI:} & 11 N \\
\hline & |htés2532G \\
\hline & Hill:62532G-2 \\
\hline
\end{tabular}

\subsection*{5.11.2 CONFIGURATION PROM MAP}

\section*{Address}



\subsection*{5.11.3.1 MODULATION HEXADECIMAL}


\subsection*{5.11.3.2 RX AND TX BITS}

0 : Frequency and modulation do not apply to RX or TX respectively.
1 : Frequency and modulation apply to \(R X\) or \(T X\) respectively.
Both bits may be programmed in the same array.
5.11.3.3 ITU BIT

0 : ITU channel apply to programmed frequency in accordance with selected channel-number.
1 : ITU channel do not apply to programmed frequency.
5.11.3.4 ITU BAND-BIT

0 : The programmed frequency is within the band specified by the short-number.
1 : The programmed frequency is 1 MHz above the band specified by the shortnumber.

\subsection*{5.11.3.5 ITU CHANNELS}

When programming a "LEGAL FREQUENCY" table consisting of the ITU channel frequencies and/or other frequencies to be selected by the "RECALL ITU - - -" syntaxes, it is necessary to consider the search-algorithm used. This algorithm initiates the search at PROM addr. 0 and progresses until either the "LIMITER BYTE" (255d/FFh) or the desired "SINGLE FREQUENCY" is found. The "RECALL ITU FREQUENCY PAIRS FROM PROM" syntax utilizes 2 separate searches to obtain the pair.

Having entered "RX"-"RCL"-"8"-"1"-"5"-"ENTER" the desired frequency is found as the 15th "SINGLE FREQUENCY" in the 8 MHz band (if ITU BAND-BIT \(=0\) ) having the RX-BIT \(=1\), ITU-BIT \(=0\) and the modulation nibble validating the present receiver mode.

\subsection*{5.11.4 FREQUENCY BAND FORMAT}

The single frequency format may be used in pairs to form a frequency band format as shown below. This format is used to additionally limit the transmitter frequency range. When programmed, transmission outside this band is not possible. More than one band may be programmed. Please note that the bitand modulation nibbles must be 0 .
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{3}{*}{ADDR \(\quad \mathrm{n}\)} & D7 D6 D5 & D3 D2 D1 & \multirow{5}{*}{\begin{tabular}{l}
lower \\
frequency
\end{tabular}} \\
\hline & always 0 & BCD x 10 MHz & \\
\hline & BCD x 1 MHz & BCD x 100 kHz & \\
\hline \(n+2\) & BCD x 10 kHz & BCD x 1 kHz & \\
\hline \(n+3\) & BCD \(\times 100 \mathrm{~Hz}\) & always 0 & \\
\hline \(n+4\) & always 0 & BCD \(\times 10 \mathrm{MHz}\) & \\
\hline \(n+5\) & BCD \(\times 1 \mathrm{MHz}\) & BCD x 100 kHz & \multirow[t]{3}{*}{\begin{tabular}{l}
upper \\
frequency
\end{tabular}} \\
\hline \(n+6\) & BCD \(\times 10 \mathrm{kHz}\) & BCD x 1 kHz & \\
\hline \(n+7\) & BCD x 100 Hz & always 0 & \\
\hline
\end{tabular}

\subsection*{5.11.5 SPECIAL SYSTEM PARAMETERS}

\section*{ADDR DATA DESCRIPTION}

4095d/FFFh
Telex audio center frequency
Display of assigned frequency
\begin{tabular}{ccc}
\(21 \mathrm{~d} / 15 \mathrm{~h}\) & \(:\) & 1500 Hz \\
\(22 \mathrm{~d} / 16 \mathrm{~h}\) & \(:\) & 1600 Hz \\
\(\vdots\) & & \(\vdots\) \\
\(37 \mathrm{~d} / 25 \mathrm{~h}\) & \(:\) & 2500 Hz
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 4095d/FFFh & \[
\begin{gathered}
149 \mathrm{~d} / 95 \mathrm{~h} \\
150 \mathrm{~d} / 96 \mathrm{~h} \\
\vdots \\
\vdots \\
153 \mathrm{~d} / 99 \mathrm{~h} \\
160 \mathrm{~d} / \mathrm{A} 0 \mathrm{~h} \\
\vdots \\
\vdots \\
165 \mathrm{~d} / \mathrm{A} 5 \mathrm{~h}
\end{gathered}
\] & \begin{tabular}{l}
Display of carrier frequency \\
1500 Hz \\
1600 Hz
\[
\begin{gathered}
\vdots \\
\vdots \\
1900 \mathrm{~Hz} \\
2000 \mathrm{~Hz} \\
\vdots \\
\vdots \\
2500 \mathrm{~Hz}
\end{gathered}
\] \\
When assigned frequency display is used, an input at the programmed audio center frequency will be transmitted at the displayed frequency. When carrier frequency display is used, an input at the programmed audio center frequency will be used as an USB signal at the displayed fequency + the audio center frequency. \\
Any other data are defaulted to 23d/17h
\end{tabular} \\
\hline 4094d/FFEh & \[
\begin{aligned}
& 165 \mathrm{~d} / \mathrm{A} 5 \mathrm{~h}: \\
& 255 \mathrm{~d} / \mathrm{FFh}:
\end{aligned}
\] & \begin{tabular}{l}
Transmitter frequency status \\
Free transmitter frequencies Only transmitter frequencies contained in lower part of the Prom \\
Any other data are defaulted to 255d/FFh
\end{tabular} \\
\hline 4093d/FFDh & \[
\begin{array}{r}
0 \mathrm{~d} / 00 \mathrm{~h} \\
180 \mathrm{~d} / \mathrm{B} 4 \mathrm{~h} \\
255 \mathrm{~d} / \mathrm{FFh}
\end{array}
\] & \begin{tabular}{l}
Dummy load during alarm test \\
Enable dummy load incl. 2182 kHz \\
Enable dummy load excl. 2182 kHz \\
Disable dummy load \\
Any other data are defaulted to 255d/FFh
\end{tabular} \\
\hline 4092d/FFCh & \(4 d / 04 h:\)
195d/C3h :
255d/FFh : & \begin{tabular}{l}
Morse \\
Enable 500, CW, MCW, EILTER and BFO keys. \\
Disable transmitter in MCW mode above 1605 kHz . \\
Disable 500, CW, MCW, FILTER and BFO keys \\
Enable \\
Any other data are defaulted to 255d/FFh
\end{tabular} \\
\hline 4091d/FFBh & \[
\begin{aligned}
& 195 d / C 3 h \\
& 255 d / F F h
\end{aligned}
\] & \begin{tabular}{l}
AGC and Sensitivity \\
Disable AGC and Sensitivity keys Enable \\
Any other data are defaulted to 255d/FFh
\end{tabular} \\
\hline 4090d/FFAh & \[
\begin{aligned}
& \text { 195d/C3h : } \\
& 255 \mathrm{~d} / \mathrm{FFh}:
\end{aligned}
\] & \begin{tabular}{l}
RF Amplifier and Antenna Attenuator \\
Disable RF-AMP and ANT-ATT keys \\
Enable \\
Any other data are defaulted to 255d/FFh
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{5}{*}{4089d/FF9h} & & Alarm \\
\hline & 195d/C3h : & Disable 500, 2182 and ALARM keys \\
\hline & 0d/00h & Enable 500,2182 and ALARM keys plus continuous alarm \\
\hline & 255d/FFh : & Enable 500, 2182 and ALARM keys \\
\hline & & Any other data are defaulted to 255d/FFh \\
\hline \multirow[t]{4}{*}{4088d/FF8h} & & R3E \\
\hline & 195d/C3h : & Disable R3E key \\
\hline & 255d/FFh : & Enable - - \\
\hline & & Any other data are defaulted to 255d/FFh \\
\hline \multirow[t]{4}{*}{4087d/FF7h} & & LSB \\
\hline & 195d/C3h : & Disable LSB key \\
\hline & 255d/FFh : & Enable - - \\
\hline & & Any other data are defaulted to 255d/FFh \\
\hline \multirow[t]{4}{*}{4086d/FF6h} & & SCAN \\
\hline & 210d/D2h : & Enable SCAN key \\
\hline & 255d/FFh : & Disable - - \\
\hline & & Any other data are defaulted to 255d/FFh \\
\hline \multirow[t]{4}{*}{4085d/FF5h} & & Fast AGC \& Slow AGC \\
\hline & 210d/D2h : & Enable AGC-SLOW and AGC-FAST keys \\
\hline & 255d/FFh : & Disable - - - - - \\
\hline & & Any other data are defaulted to \\
\hline & & \\
\hline \multirow[t]{4}{*}{4084d/FF4h} & & LSB Transmitting \\
\hline & 6d/06h : & Enable transmitter in LSB mode \\
\hline & 255d/FFh : & Disable - - - \\
\hline & & Any other data are defaulted to \\
\hline & & \\
\hline \multirow[t]{4}{*}{4083d/FF3h} & & H3E Transmitting \\
\hline & 2d/02h : & enable transmitter in H3E mode \\
\hline & 255d/FFh : & disable - - - - \\
\hline & & Any other data are defaulted to 255d/FFh \\
\hline \multirow[t]{4}{*}{4082d/FF2h} & & VERY NARROW FILTER \\
\hline & 195d/C3h & Disable VERY-NARROW key \\
\hline & 255d/FFh : & Enable - - - \\
\hline & & Any other data are defaulted to \\
\hline \multirow[t]{4}{*}{4081d/FF1h} & & Antenna in TX-Off-State \\
\hline & 180d/B4h : & Antenna disconnected \\
\hline & 255d/FFh : & Antenna connected \\
\hline & & Any other data are defaulted to 255d/FFh \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{5}{*}{4080d/FF0h} & & Distress mode \\
\hline & 0d/00h & Select J3E when "2182" is pressed \\
\hline & 255d/FFh : & Select H3E when "2182" is pressed \\
\hline & & Any other data are defaulted to \\
\hline & & 255d/FFh \\
\hline \multirow[t]{4}{*}{4079d/FEFh} & & Numeric keyboard type \\
\hline & 32d/20h & CCITT. Top left key = "1" \\
\hline & 255d/FFh & Standard. Top right key \(=\) "9" \\
\hline & & Any other data are defaulted to \\
\hline \multirow{6}{*}{4078d/FEEh} & & \\
\hline & & Alarm Band. \\
\hline & 22d/16h & Disable alarm below 1605 kHz . \\
\hline & 255d/FFh & Enable alarm in all bands. \\
\hline & & Any other data are defaulted to \\
\hline & & 255d/FFh. \\
\hline \multirow[t]{5}{*}{4077d/FEDh} & & Autotelex \\
\hline & 82d/52h : & Enable Autotelex interface. \\
\hline & 210d/D2h : & Enable Maritex interface. \\
\hline & 255d/FFh : & Disable telex interface. \\
\hline & & Any other data are defaulted to 255d/FFh \\
\hline \multirow[t]{5}{*}{4076d/FECh} & & Receiver frequency status \\
\hline & 32d/20h : & Only receiver frequencies contained in \\
\hline & & lower part of the Prom \\
\hline & 255d/FFh : & Free receiver frequencies \\
\hline & & Any other data are defaulted to 255d/FFh \\
\hline \multirow[t]{5}{*}{4075d/FEBh} & & Frequency Display \\
\hline & 195d/C3h : & Disable frequency display. Only channel \\
\hline & & numbers can be entered and displayed except using special procedure. \\
\hline & 255d/FFh : & Enable frequency display \\
\hline & & Any other data are defaulted to 255d/FFh \\
\hline \multirow[t]{9}{*}{4074d/FEAh} & & Maximum output power \\
\hline & 255d/FFh & Full output power range \\
\hline & BCD & Programming a packed BCD number will \\
\hline & & limit the maximum output power to 10 \\
\hline & & times the programmed value \\
\hline & & Ex: Data Output power \\
\hline & & 16d/10h 100 W \\
\hline & & \(24 \mathrm{~d} / 18 \mathrm{~h} 180 \mathrm{~W}\) \\
\hline & & Any non-BCD data or BCD-data outside the range 10-25 are defaulted to 255d/FFh \\
\hline
\end{tabular}

Reduced output power between 1.6 and 4 MHz

117d/75h : Output power reduced to 150 W when the transmitter frequency is between 1.6 and 4 MHz
255d/FFh : No output power reduction Any other data are defaulted to 255d/FFh

4072d/FE8h
External scan control
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline dis-
able & RX/TX keys & \begin{tabular}{l}
dis- \\
able
\end{tabular} & \[
\left|\begin{array}{c}
\text { tran- } \\
\text { sition }
\end{array}\right|
\] & \[
\begin{aligned}
& \text { dis- } \\
& \text { able }
\end{aligned}
\] & tran-
sition & disable & transition \\
\hline \multicolumn{8}{|l|}{} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Terminal No. & Designation & Direction & Signal level & Remarks \\
\hline 1 & TX REM & Input & RS-232C & \begin{tabular}{l}
Remote Control \\
Serial Data.
\end{tabular} \\
\hline 2 & GND & - & & \\
\hline 3 & RX REM & Output & RS-232C & \begin{tabular}{l}
Remote Control \\
Serial Data.
\end{tabular} \\
\hline 4 & GND & - & & \\
\hline 5 & 2182 SEL & Output & 74LS00 & High when 2182 is selected. \\
\hline 6 & GND & - & & \\
\hline 7 & SCAN S/S & Input & 0/12 V & Start/Stop of scanning (user programmable). \\
\hline 8 & GND & - & & \\
\hline 9 & TELEX KEY & Input & 0/12 V & Keyes \(T x\) in TELEX mode when LOW. \\
\hline 10 & GND & - & & \\
\hline 11 & AUX KEY & Input & 0/12 V & Keyes Tx in USB, LSB, AM or R3E modes when LOW. \\
\hline 12 & & - & & \\
\hline 13 & TELEX IN & Input & -16 to +10 dBm & 600 ohms audio input. Open in TELEX mode. \\
\hline 14 & GND & & & \\
\hline 15 & AUX IN & Input & -16 to +10 dBm & 600 ohms audio input. Open in USB, LSB, AM or R3E modes when AUX KEY is LOW. * \\
\hline 16 & GND &  & & \\
\hline 17 & LINE OUT & Output & -10 to +10 dBm & \begin{tabular}{l}
600 ohms audio output. \\
Internally \\
adjustable. *
\end{tabular} \\
\hline 18 & \begin{tabular}{l}
GND \\
SPEAKER -
\end{tabular} & & & \\
\hline 19
20 & SPEAKER - & Output & 0 to 5 W & Load impedance 8 ohms. \\
\hline 21 & KEY INHIBIT & Input & \(0 / 12 \mathrm{~V}\) & Inhibit keying when LOW. ** \\
\hline 22 & GND & - & & \\
\hline 23
24 & OPTIONAL IN
GND & Input & 0/12 V & Reserved for future use. \\
\hline
\end{tabular}
* An optional Line Transformer Board 603 is available providing balanced input/output.
** KEY INHIBIT input is applicable only when Preset bit 4 = "1", see second function 284.
```

601-TS1 AUXILIARY TERMINALS, CONTROL UNIT
Table 5.2

```

HANDSET SOCKET:
\begin{tabular}{|c|l|l|l|l|}
\hline \begin{tabular}{c} 
Terminal \\
No.
\end{tabular} & Designation & Direction & Signal level & Remarks \\
\hline 1 & MIC & Input & \(50 \mathrm{mV}-1 \mathrm{~V}\) & \begin{tabular}{l} 
Internally \\
adjustable \(+/-8\) \\
dB.
\end{tabular} \\
2 & GND & EARPIECE & Output & \(0-10 \mathrm{~mW}\) \\
4 & +12 V & Output & \begin{tabular}{l}
500 ohms, \\
Controlled by \\
VOLUME. \\
Supply for MIC. \\
Amplifier. \\
Keyes Tx in USB, \\
LSB, AM or R3E \\
when LOW.
\end{tabular} \\
\hline
\end{tabular}

HEADPHONE SOCKET:
\begin{tabular}{|c|c|l|l|l|}
\hline \begin{tabular}{c} 
Terminal \\
No.
\end{tabular} & Designation & Direction & Signal level & Remarks \\
\hline 1 & - & Output & 0 TO 10-160 mW & \begin{tabular}{l} 
Mono or stereo \\
headphones may be \\
used. 8 ohm - 5 \\
kohm Built-in \\
speaker is \\
disconnected when \\
jack is inserted
\end{tabular} \\
2 & - & & & \\
\hline
\end{tabular}

MORSE KEY SOCKET:
\begin{tabular}{|c|l|l|l|l|}
\hline \begin{tabular}{c} 
Terminal \\
No.
\end{tabular} & Designation & Direction & Signal level & Remarks \\
\hline 1 & MORSE KEY & Input & \(0 / 12 \mathrm{~V}\) & \begin{tabular}{l} 
Keyes Tx in CW \\
or MCW when LOW
\end{tabular} \\
2 & GND & - & & \\
\hline
\end{tabular}

EXTERNAL CONNECTIONS, CONTROL UNIT

Table 5.3
\[
5-16
\]
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c} 
Terminal \\
No.
\end{tabular} & Designation & Direction & Remarks \\
\hline 1 & + & Input & \begin{tabular}{l} 
Supply from \(12 / 24 / 32\) V battery \\
or P 8250 \\
Screen \\
Supply from \(12 / 24 / 32\) V battery \\
or P 8250
\end{tabular} \\
\hline 3 & GND & - & Input
\end{tabular}

TS 1 SUPPLY TERMINALS, TRANSCEIVER UNIT

Table 5.4
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Terminal } \\
\text { No. }
\end{gathered}
\] & Designation & Direction & Max. Current & Remarks \\
\hline 1 & + 24 V & Output & Note 1 & +24 V available when equipment is ON. \\
\hline 2 & TX ON & Output & 250 mA & Open collector, low when \(T X\) on. \\
\hline 3 & + 24 V & Output & Note 1 & +24 V available when equipment is ON . \\
\hline 4 & TX KEYED & Output & 250 mA & Open collector, low when TX KEYED. \\
\hline 5 & + 24 V & Output & Note 1 & +24 V available when equipment is ON. \\
\hline 6 & 2182 KEYED & Output & 250 mA & Open collector, low when TX KEYED on 2182 kHz . \\
\hline 7 & GND & - & & \\
\hline 8 & RX MUTE & Input & 0/12 V. & Rx is muted when connected to GND. \\
\hline 9 & \(+24 \mathrm{~V}\) & Output & Note 1 & +24 V available when TX is ON. \\
\hline 10 & GND & - & & \\
\hline
\end{tabular}

Note 1: Max. total current 1000 mA

620 TS 2 AUXILIARY TERMINALS, 'TRANSCEIVER UNIT
Table 5.5
\begin{tabular}{|c|c|}
\hline pos & CONNECTORS AND CAble types \\
\hline 1 & SCREENED CABLE \(2 \times 0.25 \mathrm{~mm}-2 \times 1.5 \mathrm{~mm} \mathrm{Sq}\) * \\
\hline 2 & 2-POLE JACK PLUG O6.35 \\
\hline 3 & SCREENED MULTIWIRE CABLE \(16 \times 0.5 \mathrm{~mm}\) Sq \\
\hline 4 & COPPER STRAP \(50 \times 0.5 \mathrm{~mm}\) \\
\hline 5 & CONNECTOR TYPE PL 259 \\
\hline 6 & COAXIPL CABLE TYPE RG-213/U OR RG-8A/U \\
\hline 7 & SCREENED (ABLE SEE NOTE 3) \\
\hline 8 & CAbLE (SEE Note 2) \\
\hline 9 & WIRE \(1 \times 2.5 \mathrm{~mm} \mathrm{Sq}\) \\
\hline 10 & COPPER STRGP \(100 \times 0.5 \mathrm{rrm}\) \\
\hline 11 & 5-POLE CONNECTOR (DIN 41524) \\
\hline 12 & 2 OR 3-POLE JACK PLUG Ф6.35 \\
\hline & *MULTIWIRE CABLE MAY BE USED IF CONUEN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{NOTE 1} \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
THE fQUIPMENT MAY BE USED hilit SEPARATE tRQNSMITTING ANU RECEIVING ANTENNAS. \\
IF, HOWEVER, THE ANTENNA TUNING UNIT IS FITTED WITH THE OPIIONAL ANTENNA RELAY GOHILL EG4 A COMMON ANTENNA MAY BE USED FOR TRAISMISSION AND RECEPTION.
\end{tabular}} \\
\hline \multicolumn{6}{|c|}{NOTE?} \\
\hline \multicolumn{2}{|l|}{HC-MAIN:} & \multicolumn{2}{|l|}{CONDUCTOR AREA} & \multicolumn{2}{|l|}{EXTERNHL FIJSES} \\
\hline \multicolumn{2}{|l|}{\(110 \cdot 120 \mathrm{~V}\)} & \multicolumn{2}{|l|}{\(2 \cdot 1.5 \mathrm{~min} \mathrm{~S}_{4}\)} & \multicolumn{2}{|r|}{20 A} \\
\hline \multicolumn{2}{|l|}{220-240V} & \multicolumn{2}{|l|}{\(2 \times 1.51 \cdots \mathrm{msq}\)} & \multicolumn{2}{|r|}{150} \\
\hline \multicolumn{6}{|l|}{SEE DIAGRIM OF P8250 FOR SUPPLT VOLTAGE SETTING} \\
\hline \multicolumn{6}{|c|}{NOTE 3} \\
\hline \[
\begin{aligned}
& \text { BATTERY } \\
& \text { VOLTAGE }
\end{aligned}
\] & Max & \[
\begin{aligned}
& \text { LFNGTH } \\
& \text { TFARY }
\end{aligned}
\] & \[
\begin{aligned}
& \text { KCOMM } \\
& \text { CONDOC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { WNEL } \\
& \text { OR AREA }
\end{aligned}
\] & \[
\begin{aligned}
& \text { EXTETNUL } \\
& \text { FUSES } \\
& \hline
\end{aligned}
\] \\
\hline 12 V & & \% \({ }_{\text {\% }}^{\prime \prime \prime}\) & +2×16 & I' Sq* & 100 \\
\hline 24 V & & \% & 2
\(2 \times 6\)
\(2 \times 10\)
\(2 \times 16\)
2 &  & 500 \\
\hline 32 V & & Om & \(2 \times 6\)
\(2 \times 16\)
\(2 \times 16\)
0 &  & 40 A \\
\hline \multicolumn{6}{|l|}{* USE PIN TERMINAL ADAPTER (Ȧ, E: No. 343428 (x)} \\
\hline
\end{tabular}






SPACE FOR SERVICE MIN. 500
dRILING PLAN AND CUT-OUT FOR \(19 "\) MOUNTING FRAME



MOUNTING OF TRANSCEIVER UNIT 8250 S/D AND AC POWER SUPPLY UNIT 8250



INSTALLATION WIRING OF TRANSCEIVER UNIT 8250


INSTALLATION WIRING OF AC POWER SUPPLY UNIT 8250

\section*{6. TECHNICAL DESCRIPTION}

\subsection*{6.1 Control Unit}

The Control Unit contains a loudspeaker, tvo printed circuit boards, Control Board 600 and Audio Processing Board 601 and a membrane keyboard. In addition an optional Squelch Board 602 and an optional Line Transformer Board 603 may be installed. It furthermore contains connections for handset, headphones, extension speaker, morse-key and telce-equipment. The Block Diagram of the Control Unit illustrates the functions of each circuit board while the Interconnection Diagram shows the interconnections between the boards (see chapter 8 for diagrams). The Control Unit is housed in a Noryl (PPO) cabinet suitable for tabletop or bullhead mounting. The front panel can be tilted for convenient operation when the unit is mounted vertically as vell as horizontally.

\subsection*{6.2 Transceiver Unit}

The R×/Tx Assembly of the Transceiver Unit contains the Receiver Signal Path 618 , the Exciter Signal Path 619 , a llaster Oscillator 612 (or 613 , 614 ) and two Synthesizer Boards 611 , one controlling the receiver the other controlling the exciter. These boards are located in the lower door of the unit. The cabinet it self contains a Switched flode Pover Supply which converts the battery voltage to a stabilized 40 V voltage supplying the Pover Mmplifier and the Voltage Converter Board 621 . The Voltage Converter produces various supply voltages necessary in the equipment and provides galvanic isulation from the battery. Supply voltages, signal and control voltages are distributed via the Interconncetion Board 620 to external units and to the Transceiver Control Board 624 which performs the central control of the Transceiver Unit. The exciter output signal from the \(R \times / T \times\) Assembly is routed to the Power Amplifier Board 626 the output from which is filtered by the harmonic filters on P.A. Filters 627 (or 620 , 629 ).

\subsection*{6.3 Antenna Tuning Unit}

The ATU consists of a Tuning Hetyork, a fleasuring System and a llicroprocessor Part. During the tunc sequence a 6 dB Attenuator is suitched in to keep the load of the Pover nimplifier at appro\%. 50 ohms. The IIPU will set up the Tuning Hetwork to give the best obtajnable SIIR, on basis of the measuring systern. The Tuning Network comprises Capacitor Bank I, Capacitor Bank II and an Incuctor Cank. :lith these it is possible to form either an \(L\) or a pi matching net:"or!e. The capacitor Banks and the Inductor Dank are built up by binary related capacitors respectively binery relatod coils. The setting of the Capacitors and Coils is accoriplisied by relays.

\subsection*{6.4 AC Pover Supply Unit}

The P 8250 is a combined AC/DC Power Supply especially developed for powering the TRP 3250 Serics. The input power for \(P 8250\) is \(A C\), and the output is an unregulated 32 V DC voltage. Where a battery is required as a reserve source of electrical energy to the radiotelephone equipment, it can be connected via the \(P 8250\) power supply. By means of the switch on the front panel it is possible to select betveen AC or Battery operation.

\subsection*{6.5 ALC and Protection system}
6.5.1 Automatic Level Control (ALC) The Transceiver Unit has an advanced microprocessor controlled automatic level system, which ensures that the optimun pover is delivered to the Antenna Tuning Unit. The Tune Sequence, which is initiated either by pressing TUNE on the Control Unit front panel or by keying the transmitter after a frequency change has been carried out, is terminated by a C!! pulse of full power vith a duration of 70 ms . The signal level at the output of the Transceiver Unit is measured by means of a voltage and current peak-detector placed at the output of the P.A. Filter Assembly 627 , 628 or 629 . The detector voltage ( 9.0 V at 250 M output power) is applied to the Transceiver Control Board 624 , PL3-9 (FILPEAK), and compared with the output voltage ( 3.62 V ) of the "SETPOINT REGISTER" in IC42-3,2. The error signal ALC is fed to the Exciter Signal Path 619 , PLl-l2 driving a voltage controlled attenuator placed in the exciter signal path. Finally the ALC voltage is compared in IC42-5,6 with a ranp voltage generated by the "ALCHOLD REGISTER" and the corresponding DAC (IC24). When the two voltages equals, the ramp is stopped and suitch IC44-10,11 is closed. The ALC voltage is now constant generated by the "ALCHOLD REGISTER" and thereby the gain of the Transmitter Signal Path is independent of the modulating signal. lithen fIEDIUU POUER is selected, the NLC voltage generated by the "ALCHOLD REGISTER" is increased by 0.93 V . In LOU POUER a 14 dB attenuator placed on the Pover Amplifier Assembly 626 controlled by PAATT is antivated and the ALC voltage is equal to the Full Power preset value.

\subsection*{6.5.2 Protection Circuits}
6.5.2.1 Power Amplifier Protection The Power Amplifier Protection can be divided into two main groups, SIJR protection and thermal protection. The SIJR protection contains a reflected pover and output voltage detector placed at the output of the Power Arplifier Asscmbly 626. The output of the detector (PAPEAK) is connected to the Transceiver Control Board 624 , PL2-7 and is OR'ed together with the FILPENK voltage from the P.A. Filter Assembly 627 , 628 or 629 . Now, if the SIJR at the output of the Power Amplifier Assembly 626 increases during a transmission an error voltage is generated at IC42-1 exceeding the voltage generated by the "ALCHOLD REGISTER" thereby increasing the ALC voltage and reducing the output power within 1 ms to a permissible level. The output of the reflected power and output voltage detector is also used to make an independent local protection of the Power Amplifier by activating the 14 dD attenuator if the detector voltage exceeds 10 V . This ensures fully protection of the Power Arnplifier if the ALC loop should be faulty or disconnected. To reset the attenuator it is necessary to turn off
the main pover of the Transceiver in a fev seconds. The thermal protection consists of two thermoswitches mounted on the heatsink of the Power Amplifier Assembly and an average/peak pover detector. One thermosuitch is activated if the heatsink temperature exceeds 100 deg . C. Thereby logical signal TCl fed to the Transceiver Control Board 624, PL2-5 goes low and the output power is reduced by 5 dB . This is carricd out by changing the reference voltage from the "SETPOINT REGISTER" to 4.36 V and increasing the voltage from the "ALCHOLD REGISTER" by 0.82 V relative to the Full Power preset value. The other thermoswitch is activated if the temperature of the heatsink exceeds 110 deg. C. In this case the supply voltage to the preamplifier is cut off. The average pover and the peak pover are compared in IC41-3,2. If, in a Full Pover transmission, the average power e»ceeds the peak pover minus 3 dB , the logical sigral at IC4l-l goes high. If this condition has been present during one minute, e.g. by transmitting CH uith continuous key-doun or broadeast mode tele\%, the output power will be reduced by 3 dB (SETPOINT voltage 5.71 V , ALCHOLD voltage increased by 0.54 V relative to Full Pover preset value). The pover vill recover to Full Pover level winen the transmitter has been muted during two minutes. To enable Full Power ARQ Tele\% Transmission the systen accepts keying dutycycles less than \(50 \%\) and modulation rates greater than 3 baud without pover reduction.
6.5.2.2 ATU Protection To protect the Antenna Tuning Unit against excess current, for instance if the antenna is shortcircuited, an average current detector is provided. The output of the detector IANTAVR is connected to the Transceiver Control Board 624, PL4-14 and is OR'ed together with the FILPENK voltage from the P.A. Filter ^ssembly 627 , 620 or 629 . Now, if the average current exceeds \(6 \wedge\) during a transmission an error voltage is generated at IC42-1 exceeding the voltage generated by the "NLCHOLD REGISTER" thereby increasing the ALC voltage and reducing the output pover and thereby the average current. If the SIJR at the input of the Antenna Tuning Unit exceeds l:3 logical signal StIROK goes high and Pover Display Annunciator on Control Unit front panel starts flashing informing the operator that a better antenna match might be obtained by carrying out a nev Tune Sequence. To prevent overheating of the Antenna Tuning Unit a temperature sensor is incorporated. If the internal temperature of the Antenna Tuning Unit exceeds 85 deg. C , logical signal TCO goes lou and the output power is reduced by 5 dB . (SETPOINT voltage 4.36 V , ALCHOLD voltage increased by 0.82 V relative to Full Power preset value).
6.5.2.3 Reduced Power-Indication In case of 5 dB reduced power condition duc to thermal protection the annunciator "Reduced Pover" on the Control Unit front pancl is lit. The annunciator "Reduced Pover" will also turn on if the average pover, in a full poyer transmission, e\%ceeds the peak pover minus 3 dD during one minute. In this condition the power is reduced by 3 dD .



\section*{7. PREVENTIVE MAINTENANCE}

Due to the modern design of the TRP 8250 D preventive maintenance can be reduced to a minimum provided the equipment is correctly installed. To ensure maximum performance and minimum repair trouble we recommend you to follow below stated headlines for preventive maintenance.
1. The condition of the battery should be checked at frequent intervals. The battery must always be fully charged and should be topped up frequently with destilled water (liquid should be 5 to 10 mm above the plates).
2. Check the condition of antenna installation, ground connection and cables at regular intervals.
3. Keep antenna feed-through insulators clean and dry.
4. Ensure that no objects are obstructing the free airflow through the cooling fins at the back of the Transceiver Unit and keep the units free of dust accumulation to prevent overheating.
5. Keep the ATU antenna insulator clean and free of salt.

\subsection*{7.1 Realignment of Master Oscillator 612613614}

The Master Oscillator frequency should be checked at least once a year. The Master Oscillator determines the exact transmit and receive frequencies of the equipment. The oscillator tends to age very slowly with time, typically with the highest drift rate the first year. The check should be performed by a qualified technician with the necessary test equipment at his disposal.
1. Measuring Equipment:
1.1 Frequency Counter: \(\quad\) Frequency range \(>=100 \mathrm{MHz}\)

Input impedance \(=50\) ohm
Sensitivity at least \(>0.2 \mathrm{~V}\)
Accuracy better than 1 Hz
1.2 Thermometer:

Range 0-50 deg. Celcius

\section*{2. Preparations:}
2.1 Switch on the power at least 30 minutes before adjustment.
2.2 Open the front door of the Transceiver Unit and remove the shielding cover of the Exciter Signal Path. Disconnect all sockets from the shielding cover of the Master Oscillator. Remove the shielding cover by unscrewing the 4 screws.
2.3 Note if the TCXO is marked with a frequency offset.
2.4 Connect all sockets again.
2.5 Measure the temperature close to the Master Oscillator and take the neccessary arrangements to keep it between 20 and 30 deg. Celsius. Be sure that thermal equilibrium has taken place before adjustment.
3. Realignment of Master Oscillator:
3.1 Disconnect the socket from PL2 on the Exciter Signal Path 619 carrying the injection signal to the 1st. mixer. Connect the frequency counter to the socket.
3.2 Key-in USB mode and a receiver frequency of 26.68000 MHz on the Control Unit.
3.3 Adjust R1 until the counter reads \(f=71.680000 \mathrm{MHz}+/-1 \mathrm{~Hz}\). If the TCXO is marked with a frequency offset, multiply the offset by 7 and add to the frequency stated above. For example:

Frequency offset +2 Hz
Add 7 * \(2=14 \mathrm{~Hz}\)
Adjust to \(\mathrm{f}=71.680014 \mathrm{MHz}+/-1 \mathrm{~Hz}\)
3.4 Replace all covers and sockets again.

\subsection*{7.2 Realignment of Master Oscillator 615, 616}

The Master Oscillator frequency should be checked at least once a year. The Master Oscillator determines the exact transmit and receive frequencies of the equipment. The oscillator tends to age very slowly with time, typically with the highest drift rate the first year. The check should be performed by a qualified technician with the necessary test equipment at his disposal.
1. Measuring Equipment:

Frequency Counter: Frequency range \(>100 \mathrm{MHz}\)
Input impedance \(=50\) ohm
Sensitivity at least > 0.2 Vrms
Accuracy better than 0.005 ppm
2. Preparations:
2.1 Switch on the power at least one hour before adjustment.
2.2 Remove the front shielding cover of the RX/EX Assembly.
2.3 Open the front door of the Transceiver Unit and locate Master Oscillator 615/616. Disconnect all socket from the shielding cover of the Master Oscillator. Do not remove the two sockets mounted directly on the PCB in front of the cover.
2.4 Remove the shielding cover of the Master Oscillator by unscrewing the 4 screws.
2.5 Connect all sockets again.
2.6 The ambient temperature should be within 10 to 30 deg. Celsius. Do not adjust the Master Oscillator shortly after long keying sequences of the transmitter. Be sure that thermal equilibrium has taken place before adjustment.
3. Realignment of Master Oscillator:
3.1 Disconnect the socket from PL2 on the RX/EX Signal Path 610 carrying the injection signal to 1 st. mixer. Connect the frequency counter to the socket.
3.2 Key-in USB mode and a receiver frequency of 25.0000 MHz on the Control Unit.
3.3 Locate the Master Oscillator adjustment hole in the top end of metal box mounted in the middle of the PCB 615/616. Use a small screwdriver to gently adjust the frequency
3.4 Adjust the frequency as close as possible to 70.000000 MHz .

Adjustment tolerance:
Master Oscillator 615: \(+/-3 \mathrm{~Hz}\)
Master Oscillator 616: \(+/-1 \mathrm{~Hz}\)
3.5 Replace all sockets and both covers again.

\subsection*{7.3 Replacement of backup battery}

The lithium backup battery should be changed within four years after its installation in the equipment. The expiration date is marked on the battery. If the time is exceeded the battery voltage may become too low which causes the real-time clock to default to 00:00 and the contents of the user programmable memory to get lost when the equipment is switched OFF. The battery is located in the Control Unit on Control Board 600 and should be changed by a qualified technician.

NOTE! A replacement of the backup battery will leave the system set-up, defined in the second function "pages", in a random and undefined state, and the equipment may not have the same features as prior to the battery replacement. After replaceing the backup battery, the second function GUARD-bit and the OPTION-register must be cleared, and the second function pages should be re-entered, as descreibed in the "SECOND FUNCTION SYNTAX" part of this technical manual.

\section*{8. TROUBLE SHOOTING AND SERVICE}

\subsection*{8.1 Malfunction}

If the equipment is not functioning correctly a check should be made that is being operated properly, see chapter 4.

\section*{B. 2 Replacement of FUSES}

The Transceiver Unit contains two replaceable fuses located at the front of the Svitched Hode Pover Supply. The fuses become accessible when the front duor j.s opened. Spare fuses are placed on the Switched Hode Power Supply.

The AC Power Supply Unit contains a fusc located at the front of the unit. Spare fuses are located beinind the cover.

Fuse ratings are given in table \(\delta .1\) below. Fuses with marked ratings within 5 percent of the ratings must be used. Note that fast or slou blowing fuses must be used as specified.
\begin{tabular}{|c|c|c|c|}
\hline Location & \[
\begin{aligned}
& \hline \text { Fuse } \\
& \text { Rațing }
\end{aligned}
\] & Function & Symptom if fuse is bloun \\
\hline Transceiver Unit & \begin{tabular}{l}
4 A fast \\
15 A fast
\end{tabular} & \begin{tabular}{l}
\(\because 48 \mathrm{~V}\) to Voltage Converter \\
40 V to Pover Amplifier
\end{tabular} & \begin{tabular}{l}
Equipment dead, but Hain Relay operates when Supply switch is activated. Voltage-indicator lamp in Suitched Viode Pover Supply is lit when pover is on. \\
No RF output pover
\end{tabular} \\
\hline AC Power Supply Unit & \[
\begin{aligned}
& 110 / 120 \mathrm{~V}: \\
& 12.5 \mathrm{~A} \text { slou } \\
& 220 / 240 \mathrm{~V}: \\
& 6.3 \mathrm{~A} \text { slow }
\end{aligned}
\] & llains input & No light in DC OUTPUT LAilp with mains switeh position HA ANS ON \\
\hline
\end{tabular}

Table 8.1

\subsection*{8.3 MANUALLY TUNING TO 2182 kHz IN CASE OF FAILURE IN THE ATU}

How to manually tune the Antenna Tuning Unit to \(2 l 02 \mathrm{kHz}\) in case of failure in the automatic tuning system:
1. Switch SUPPLY OFF on Control Unit.
2. Remove cover from Antenna Tuning Unit.
3. Locate AUTO/2182 kHz toggle suitch and suitch it to 2182 klz (downuards).
4. Refit the cover.
5. The radiotelephone is now ready for operation on 2102 kHz only.

\section*{B.4 DESCRIPTION OF SELF TEST FUNCTIONS}

Self test can be done in two different modes, auto mode and step mode. Auto mode is intended for a quick verification of all functions, it will execute all tests in sequence and stop if a malfunction is detected. Step mode is intended for service purposes, it allows step by step testing and gives the operator the possibility to make measurements during the tests and to repeat tests. Thus it can be used as a built-in signal generator for many purposes. The results of the tests are displayed on the RX display at the Control Unit. The result consists of a test number, indicating vhich test has been performed, and an error code indicating if the test was OK. Please note that the transmitter must be turned ON before ewecuting the self tost, otherwise tion synthesizer, exciter and transmitter tests will fail. Various tests will refer to Receiver Synthesizer and Exciter Synthesizer respectively. Both Synthesizers are of the PCD 611 type. The Receiver Synthesizer is located at the outer side of the Transceiver Unit door, the Exciter Synthesizer is located at the inner side of the door.


The error codes are to be interpreted as follows:
\begin{tabular}{|c|c|}
\hline Error code & lleaning \\
\hline 00 & Tine test has passed. \\
\hline 017 & A malfunction has been detected, refer to specific \\
\hline 02 & test deseription for precise information. \\
\hline & \\
\hline 97 & \\
\hline 00 & Communication error \\
\hline & The lest failed duc to conamunication error betveen \\
\hline & CU and TU. \\
\hline 99 & The test can not be executed due to missing options (special IF filters otc.) \\
\hline
\end{tabular}
0.4.1 EMECUTION OF SELF TEST IN AUTO HODE The self test is executed by pressing:


The test will tale several seconds, during which various sounds may be heard.

The test will stop when all tests have been executed, or the first time an error is detected. then the test stops, a test number and an error-code will be displayed. If the error-code is 00 no faults has been detected. If the error-code is different from 00 , an error has been detected, refer to description of specific tests for information on the fault and for appropriate actions. The test result vill be displayed for 10 seconds, thereafter the Transceiver vill return to normal operation.

\subsection*{8.4.2 EXECUTION OF SELF TEST FROM AN ARBITRARY TEST NUHBER (AUTO HODE)}


The test number is entered via the numeric keys into the receiver display. Picssing "ENTER" will start self test from the specified test number if possible. Pressing other keys than "ENTER" or numerics will resume normal operation as will pressing an invalid test number. Execution of the self test vill progress as described in above passage.
8.4.3 EXECUTION OF SELF TEST IN STEP \(\operatorname{HODE}\) The self test is executed by pressing:


The test vill start by executing test number 1 and displaying the test number and the error code. The test setup vill remain until the operator presses "DIIMER UP", then it vill proceed to the next test. The last test can be repeated by pressing "DIMMER DOMN". If the operator presses any key but "DIFIER UP" or "DIMIER DOUN", the Transceiver vill return to normal operation. The Transceiver will return to normal operation when the last test has been e»ccuted.

\subsection*{8.4.4 EXECUTION OF SELF TEST FROF AN ARBITRARY TEST NUFIBER (STEP HODE)}


The test number is entered via the numeric keys into the receiver display. Pressing "ENTER" vill start self test from the specified test number if possible. Pressing othor keys than "ENTER" or numerics will resume normal operation as vill pressing an invalid test number. Execution of the self test vill progress as described in above passage.

\subsection*{8.4.5 TEST 1}

Test 1 vill test Audio Processing Doard 601 , reception signal path. llicroprocessor tone generator is set to no tone, AF suitch is set to microprocessor tone generator, and speaker is set ON. AF Allip is checked for silence. The test is OK if \(\overline{\text { CHECK } 1}=" 1 "\)
\begin{tabular}{|c|c|}
\hline Error code & lieaning \\
\hline 00 & The test was OK \\
\hline \multirow[t]{4}{*}{01} & Error. \(\overline{\text { CIIECK } 1}\) was "0" \\
\hline & Possible cause: \\
\hline & Fault on 601 Audio Processing Board \\
\hline & or cable connecting 600 and 601 \\
\hline
\end{tabular}

\subsection*{8.4.6 TEST 2}

Test 2 vill test Audio Processing Board 601 , reception signal path. Hicroprocessor tone generator is set to 300 Iz , AF switch is set to microprocessor tone generator, and speaker is set 0il. AF AIIP is checked for tone.
The test is OK if CHECK \(1=" 0 "\)
A clear tone is heard during the test.
\begin{tabular}{|c|c|}
\hline Error code & lleaning \\
\hline 00 & The test vas OK \\
\hline \multirow[t]{6}{*}{01} & Error. Check l vas "1" \\
\hline & Possible cause: \\
\hline & Fault on 601 Audio Processing Doard \\
\hline & or 600 Contrul Board \\
\hline & or cable connecting 600 and 601 \\
\hline & or loudspeaker shortcircuited \\
\hline
\end{tabular}

\subsection*{0.4.7 TEST 3}

Test 3 will test Mudio Processing Board 601 , transmission signal path. The input selector is grounded, the compressor is checked for silence. The execution of this test takes 5 seconds. The test is OK if CHECK \(2=" 0\) "
\begin{tabular}{ll} 
Error code \\
00 & Tleaning \\
The test vas \(0 K\)
\end{tabular}
```

Error. CHECK 2 vas "l"
Possible cause:
Fault on 601 Audio Processing Board
or 600 Control Board
or cable connecting 600 and 601

```

\subsection*{8.4.0 IEST 4}

Test 4 will test Audio Processing Board 601 , transmission signal path. The microprocessor tone generator is set to 800 Hz , input selector is set to microprocessor tone, the compressor is checked for compression. The test is OK if CHECK \(2=11 "\)
\begin{tabular}{ll} 
Error code & \begin{tabular}{l} 
lleaning \\
The test was OK
\end{tabular} \\
00 & \begin{tabular}{l} 
Error. CHECK 2 was " \(0 "\) \\
Possible cause: \\
Fault on 601 \\
or 600 Audio Processing Board \\
or cable connectrol Board \\
600 and 601
\end{tabular}
\end{tabular}

\subsection*{8.4.9 TEST 5}

Display test.
This test will turn all displays, annunciators and bargraph's ON for 10 seconds.
The microprocessor can not test the displays, the operator must inspect the displays visually.
\begin{tabular}{ll} 
Error code & lieaning \\
00 & The test vas \(0 k\), the microprocessor can \\
& not detcet any faults in this test
\end{tabular}

If some displays, annunciators or bar-graph's do not turn ON, e\%change or repair 600 Control Doard.

\subsection*{0.4.10 TEST 6}

Test 6 will test llaster Oscillator and reference dividers on board 612, 613 or 614.
Test 6 vill test that II.O.CHECK = "l"
\begin{tabular}{ll} 
Error code & licaning \\
00 & The test vas \(0<\)
\end{tabular}

Error. H.O.CIECK was "O" Fault on:
612 , 613 or 614 rlaster Oscillator or cable connecting 611 and 612
or 611 Synthesizer Board
or cable connecting 611 and 624
or 624 Transceiver Control Board
Error, no response from TU
Fault on:
024 Transceiver Control Board

\section*{©.4.11 TEST 7}

Test 7 vill test both Synthesizer Boards 611 .
It will set all synthesizers mid range and test for lock.
Both l.LO's are set to 50 WHzz range \(=45-52.5 \mathrm{illz}\)
Both \(2 . \mathrm{LO}^{\prime}\) s are set to 43.6 fllz
Both 3.LO's are set to 1.4 lllz
The test is OK if SYNCHECK \(0=11 "\) and SYNCHECK \(1=" 1 "\)

Error code fleaning
The test vas 0:
01 Error. SYNCHECK 0 was "O"
Fault on:
Gll Receiver Synthesizer Board or cable connecting 611 and 624 or 624. Transcciver Control Board

Error. SYHCHECK 1 vas "O"
Fault on:
611 Exciter Synthesizer Board or cable connecting 611 and 624 or 624 Transceiver Control Board

Error. SYHCHECK 0 was " 0 " and SYNCHECK 1 vas " 0 "
Fault on:
624 Transceiver Control Board or cable connecting 611 and 624

Error, no response from TU
Fault on:
624 Transceiver Control Board

\subsection*{8.4.12 TEST 8}

Test 8 will test both Synthesizer Boards 611].
It vill bring l.LO's out of lock to check that they can be controlled by the microprocessor.
The test is OK if SYNCHECK \(0=\) " 0 " and
SYNCHECK 1 = "0"
Error code lleaning

00
01 The test was OK

Error. SYNCHECK 0 vas "l"
Fault on:
611 Receiver Synthesizer Board or cable connecting 611 and 624 or
624 Transceiver Control Board
Error. SYNCIECK 1 vas "l"
Fault on:
611 Exciter Synthesizer Board or
cable connccting 611 and 624 or
624 Transceiver Control Board
Error. SYNCHECK 0 vas " 1 " and SYNCHECK 1 vas "l"
Fault on:
624 Transceiver Control Board or cable connecting 624 and 611

Error, no response from TU
Fault on:
624 Transceiver Control Board

\subsection*{3.4.13 TEST 9}

Test 9 will test both Synthesizer Boards 611 .
It vill set l.LO's to 45 fHz to check if they can lock.
The test is OK if SYNCHECK \(0=" 1 "\) and
SYNCHECK \(1=" 1 "\)
\begin{tabular}{|c|c|}
\hline Error code & Hleaning \\
\hline 00 & The test was OK \\
\hline \multirow[t]{5}{*}{01} & Error. SYNCIECK 0 was "0" \\
\hline & Fault on: \\
\hline & 611 Receiver Synthesizer Board or \\
\hline & cable connecting 611 and 624 or \\
\hline & 624 Transceiver Control Board \\
\hline
\end{tabular}

Error. SYNCIECK 1 was "O"
Fault on:
G11 Exciter Synthesizer Board or cable connecting 611 and 624 or 624 Transceiver Control Board

03 Error. SYNCHECK 0 was " 0 " and SYNCHECK 1 vas "O"
Fault on:
624 Transceiver Control Board or cable connecting 611 and 624

Erroi, no response from TU
Fault on:
624 Transceiver Control Doard

\section*{Q.4.14 TEST 10}

Test 10 vill test both Synthesizer Doards 611 .
It will set \(1 . L 0\) 's to 52.5 lHz , using the \(45-52.5 \mathrm{lHz}\) band, to check if they
can lock.
The test is OK if SYNCHECK \(0=" 1 "\) and
SYNCHECK \(1=" 1 "\)
Error code Feaning
00 The test was OK
01 Error. SYHCHECK 0 vas "0"
Fault on:
611 Receiver Synihosizer Board or cable connecting 611 and 624 or 624 Transceiver Control Board

02 Error. SYFCHECK l vas "O" Foult on:
6!1 Exciter Synthesizer Board or
cable connecting 611 and 624 or
624 Transceiver Control Board

03
Error. SYICHECK 0 was " \(0 "\) and
SYNCHECK 1 was " \(0 "\)
Fault on:
624 Transceiver Control Board or cable connecting 611 and 624

98
Error, no response from TU
Fault on:
624: Transceiver Control Board

\subsection*{8.4.15 TEST 11}

Test 11 will test both Synthesizer Boards 611 .
It will set l.LO's to 52.5 fHHz , using the \(52.5-60 \mathrm{AHz}\) band, to check if they can lock.
The test is OK if SYNCHECK \(0=\) " 1 " and SYNCHECK \(1=\) "1"

Error code lleaning

00
01

02

03

93

The test was OK
Error. SYNCHECK 0 was "O" Fault on:
611 Receiver Synthesizer Board or cable connecting 611 and 624 or 624 Transceiver Control Board

Error. SYNCHECK 1 was "O" Fault on:
611 Exciter Synthesizer Board or cable connecting 611 and 624 or 624. Transceiver Control Board

Error. SYNCHECK 0 was " \(O\) " and SYNCHECK 1 vas "0"
Fault on:
624 Transceiver Control Board or cable connecting 611 and 624

Error, no response from TU
Fault on:
624 Transceiver Control Board

\subsection*{0.4.16 TEST 12}

Test 12 vill test both Synthesizer Boards 611 .
It will set \(1 . L 0\) to 60 lHz , using the \(52.5-60 \mathrm{lHz}\) band, to check if they can lock.
The test is OK if SYNCHECK \(0=" 1 "\) and
SYNCI HECK \(1=\) "l"
Error code lleaning
00 The test vas \(0 \%\)
01 Error. SYMCHECK 0 was " \(0 "\)
Fault on:
611 Receiver Synthesizer Board or cable crinecting 611 and 624 or
624 Transceiver Control Board

Error. SYNCHECK l was "0" Fault on:
611 Exciter Synthesizer Board or cable connecting 611 and 624 or 624. Transceiver Control Board

03
Error. SYNCHECK 0 vas " 0 " and SYNCHECK 1 was "0"
Fault on:
624 Transceiver Control Board or cable connecting 611 and 624

98
Error, no response from TU
Fault on:
624. Transceiver Control Board

\section*{C.4.17 TEST 13}

Test 13 will test both Synthesizer Doards Gll.
It will set \(1 . L 0\) 's to 60 Fiz , using the \(60-67.5 \mathrm{fizz}\) band, to check if they can lock.
The test is 0K if SYHClIECK \(0=" 1 "\) and
SYICHECK \(1=" l "\)
\begin{tabular}{|c|c|}
\hline Error code \({ }^{\circ}\) & lleaning \\
\hline 00 & The test vas OK \\
\hline 01 & \begin{tabular}{l}
Error. SYIICIECK 0 yas "0" \\
Fault on: \\
611 Receiver Synthesizer Board or cable connecting 611 and 624 or ó24 Transceiver Control Doard
\end{tabular} \\
\hline 02 & \begin{tabular}{l}
Error. SYNCHECK 1 was "0" \\
Fault on: \\
611 Exciter Synthesizer Board or cable connecting 611 and 624 or 624 Transceiver Control Board
\end{tabular} \\
\hline 03 & \begin{tabular}{l}
Error. SYIICHECK 0 was " 0 " and SYHCIECK 1 vas "0" \\
Fault on: \\
626 Transceiver Control Board or cablc connecting 611 and 624
\end{tabular} \\
\hline 98 & \begin{tabular}{l}
Error, no response from TU Fault on: \\
624 Transceiver Control Board
\end{tabular} \\
\hline
\end{tabular}

\subsection*{8.4.18 TEST 14}

Test 14 will test both Synthesizer Boards 611 .
It will set \(1 . L 0\) 's to 67.5 MHz , using the \(60-67.5 \mathrm{llzz}\) band, to check if they can lock.
The test is OK if SYNCHECK \(0=\) " 1 " and
SYNCHECK l = "l"
\begin{tabular}{ll} 
Error code & lleaning \\
00 & The test was \(0 K\)
\end{tabular}

01 Error. SYNCHECK 0 was "0"
Fault on:
611 Receiver Synthesizer Board or cable connecting 611 and 624 or 624. Transceiver Control Board

02 Error. SYINCHECK 1 was "0"
Fault on:
G11 Exciter Synthesizer Board or cable connecting 611 and 624 or 624: Transceiver Control Board

03 Error. SYNCHECK 0 vas " 0 " and SYNCIECK 1 vas "O"
Fault on:
624. Transceiver Control Board or cable connecting 611 and 624

Error, no response from TU
Fault on:
624 Transceiver Co:trol Doard

\subsection*{0.4.19 TEST 15}

Test 15 will test both Synthesizer Doards 611.
It will set l.LO's to 67.5 ilHz , using the 67.5-75 Hilz band, to check if they can lock.
The test is 0 K if SYMCIECK \(0=" 1 "\) and
SYNCIECK \(1=\) "l"
Error code ileaning
The test was OK
01
Error. SYHCHECK 0 was " 0 "
Fault on:
611 Receiver Synthesizer Board or cable connecting 611 and 624 or
624 Transceiver Control Board

Error. SYMCHECK l vas "0"
Fault on:
611 Exciter Synthesizer Board or cable connecting 611 and 624 or 624 Transceiver Control Board

03

90
Error. SYACHECK 0 vas " 0 " and SYNCHECK 1 was "0"
Fault on: 624 Transceiver Control Board or cable connecting 611 and 624

Error, no response from TU
Fault on:
624 Transceiver Control Board

\subsection*{8.4.20 TEST 16}

Test 16 will test both Synthesizer Boards 61.1.
It will set l.LO's to 75 HMz , using the \(67.5-75 \mathrm{HIz}\) band, to chec! if they can lock.
The test is 0 K if SYMCIECK \(0=" 1 "\) and
SYHCHECK 1 = "1"
Error code Ileaning
00 The test vas 0K
0.1 Error. SYNCHECK 0 vas "0"

Fault on:
Gll Receiver Synthesizer Board or cable connceting 611 and 624 or
624. Transceiver Control Board

02
Error. SYMCIECK 1 vas "0"
Fault on:
611 Exciter Synthesizer Board or cable connecting 611 and 624 or 624. Transceiver Control Board

Error. SYICIECK 0 was " 0 " and
SYHCHECK 1 was " \(0 "\)
Fault on:
624 Transceiver Control Board or cablc connecting 611 and 624

Error, no response from TU
Fault on:
626: Transceiver Control Doard

\subsection*{8.4.21 TEST 17}

Test 17 will test both Synthesizer Boards 611 .
It will set \(2 . L 0\) 's to 43.597 lilz to check if they can lock.
The test is OK if SYNCHECK \(0=" 1 "\) and SYNCHECK \(1=" 1 "\)
\begin{tabular}{|c|c|}
\hline Error code
\[
00
\] & \begin{tabular}{l}
Pleaning \\
The test was OK
\end{tabular} \\
\hline \multirow[t]{3}{*}{01} & Error. SYNCHECK 0 vas " 0 " Fault on: \\
\hline & 611 Receiver Synthesizer Board or cable connecting 611 and 624 or \\
\hline & 624 Transceiver Control Board \\
\hline \multirow[t]{4}{*}{02} & Error. SYNCHECK 1 vas "O" \\
\hline & Fault on: \\
\hline & G11 Exciter Synthesizer Board or cable connecting 611 and 624 or \\
\hline & 624 Transceiver Control Board \\
\hline \multirow[t]{3}{*}{03} & Error. SYNCHECK 0 was " 0 " and SYNCHECK 1 vas " \(0 "\) \\
\hline & Fault on: \\
\hline & 624 Transceiver Control Board or cable connecting 611 and 624 \\
\hline \multirow[t]{3}{*}{98} & Error, no response from TU \\
\hline & Fault on: \\
\hline & 624 Transceiver Control Board \\
\hline
\end{tabular}

\subsection*{8.4.22 TEST 13}

Test 10 will test both Synthesizer Doards 611.
It will set \(2 . \mathrm{LO}^{\prime}\) s to 43.603 W Hz to check if they can lock.
The test is OK if SYNCHECK \(0=" 1 "\) and
SYPNCHEC! \(1=" 1 "\)
\begin{tabular}{|c|c|}
\hline Error code & Heaning \\
\hline 00 & The test vas OK \\
\hline \multirow[t]{5}{*}{01} & Error. SYNCHECK 0 was "0" \\
\hline & Fault on: \\
\hline & 611 Receiver Synthesizer Board or \\
\hline & cable connecting 611 and 624 or \\
\hline & 624 Transceiver Control Board \\
\hline
\end{tabular}

Error. SYHCHECK 1 vas " 0 "
Fault on:
Gll Exciter Synthesizer Board or cable connecting 611 and 624 or 624 Transceiver Control Board

03

90
Error. SYHCHECK 0 vas "0" and
SYNCHECK 1 vas " \(0 "\)
Fault on:
624 Transceiver Control Board or cable connecting 611 and 624

Error, no response from TU
Fault on:
62! Transceiver Control Board

\section*{0.4 .23 TEST 19}

Test 19 vill test both Synthesizer Boards Gll.
It will set \(3 . L O\) 's out of lock to check if they can be controlled by the microprocessor.
The test is OK if SYNCIECK \(0=" 0 "\) SYNCIECK \(1=" 0 "\)

Error code floaning
00
01
The test was 0\%
Error. SYINCIEC! 0 uas "l"
Fault on:
G11 Receiver Synthesizer Board or
cable connecting 611 and 624 or
524: Transceiver Control Board
02
Error. SîIICHECK 1 vas "l"
Fault on:
G11 Exciter Synthosizer Doard or cable connecting 611 and 624 or 624 Transceiver Control Board

03

30
Error. SYFICHECK 0 was " 1 " and
SYIUCHECK 1 was "l"
Fault on: .
624 Transceiver Control Board or cable connecting 624 and 611

Error, no response from TU
Fault on:
624 Transceiver Control Board

\subsection*{8.4.24 TEST 20}

Test 20 will test both Synthesizer Boards 611 .
It will set \(3 . \mathrm{LO}\) 's to 1.3955 AHz to check if they can lock.
The test is OK if SYNCHECK \(0=11\) " and SYNCHECK 1 = "1"
\begin{tabular}{|c|c|}
\hline Error code & Heaning \\
\hline 00 & The test vas OK \\
\hline 01 & \begin{tabular}{l}
Error. SYNCHECK 0 yas " 0 " \\
Fault. on: \\
611 Receiver Synthesizer Board or cable connecting 611 and 624 or 624 Transceiver Control Board
\end{tabular} \\
\hline 02 & \begin{tabular}{l}
Error. SYNCHECK 1 vas " 0 " \\
Fault on: \\
611 Exciter Synthesizer Board or cable connecting 611 and 624 or 624 Transceiver Control Board
\end{tabular} \\
\hline 03 & \begin{tabular}{l}
Error. SYNCHECK 0 was " 0 " and SYNCHECK 1 vas " 0 " \\
Fault on: \\
624. Transceiver Control Board or cable connecting 611 and 624
\end{tabular} \\
\hline 98 & \begin{tabular}{l}
Error, no response from TU Fault on: \\
62.4 Transceiver Control Board
\end{tabular} \\
\hline
\end{tabular}

\subsection*{8.4.25 TEST 21}

Test 20 will test both Synthesizer Boards 611 .
It will set \(3 . \mathrm{LO}\) 's to 1.403 llizz to check if they can lock. The test is OK if SYNCHECK \(0=1 \mathrm{l}\) " and SYNCHECK 1 = "i"
\begin{tabular}{ll} 
Error code & \begin{tabular}{l} 
Heaning \\
00 \\
The test was OK
\end{tabular} \\
01 & \begin{tabular}{l} 
Error. SYMCIIECK 0 vas " \(0 "\) \\
Fault on: \\
G11 Receiver Synthesizer Board or \\
Cable connecting G11 and G24 or \\
624 Transceiver Control Board
\end{tabular}
\end{tabular}

Error. SYMCHECK 1 vas "0"
Fault on:
611 Exciter Synthesizer Board or cable connecting 611 and 624 or 624 Transceiver Control Board

Error. SYNCHECK 0 yas " 0 " and SYHCHECK 1 vas " 0 "
Fault on:
624 Transceiver Control Board or cable connecting 611 and 624

Error, no response from TU
Fault on:
624. Transceiver Control Board

\section*{0.4 .26 TEST 22}

Test 22 will tesi Ewciter Signal Path 610.
It will set 619 to JJE reception and test that E\% OUT CIECK and EK AF CIECK is LO:I, this uill prove that the signal path is controlled by the microprocessor. The tos' is OK if EX AF CIECK = "O" and E\% OUT CHECK = "O"

Error code \(H\) leaning
00
01

02
Error, EX OUT CINCK vas "l"
Fault on:
G19 Exciter Signal Path
or cable connecting 61.9 and 624
or G24. Transceiver Control Doard
20 Error, no response fron TU
Fault on:
624. Transceiver Control Coard

\subsection*{0.4.27 TEST 23}

Test 23 will test E\%citer Signal Path org.
It will set 619 to Ml (C!!) trans:nission and test E\% OUT CIECK, this vill prove that the iransmission signal patin is \(0 \%\) for \(\Lambda l\) mode. The frequency is 14.250 IIIz.
The test is OK if EK OUT CIIECK = "l"
\begin{tabular}{|c|c|}
\hline Error code 00 & \begin{tabular}{l}
Heaning \\
The test vas OK
\end{tabular} \\
\hline 01 & \begin{tabular}{l}
Error, EX OUT CHECK was "O", Exciter generates no RF. \\
Fault on: \\
619 Exciter Signal Path \\
or cable connecting 619 and 611 \\
or 611 Exciter Synthesizer Board \\
or cable connecting 619 and 624 \\
or 624 Transceiver Control Board
\end{tabular} \\
\hline 90 & \begin{tabular}{l}
Error, no response from TU \\
Fault on: \\
624 Transceiver Control Board
\end{tabular} \\
\hline
\end{tabular}

\subsection*{8.4.20 TEST 24}

Test 24 uill test Exciter Signal Path 619 .
It uill set 619 to J3E (USB) transmission and test E\% OUT CHECK and EX AF CIIECK, this will prove that the signal path is OK for J3E mode, the CU will generate a 919 Hz tone to modulate the exciter. The carrier frequency is 14.250 f HHz .

The test is OK if EX AF CIECK and EX OUT CHECK is "l"
\begin{tabular}{|c|c|}
\hline Error code 00 & \begin{tabular}{l}
Fleaning \\
The test vas OK
\end{tabular} \\
\hline 01 & \begin{tabular}{l}
Error, EX AF CHECK vas "0" no AF modulation is detected Fault on: \\
cable connecting CU and TU \\
or 601 Audio Processing Board \\
or 619 Exciter Signal Path \\
or cable connecting 619 and 624 \\
or 624 Transceiver Control Board
\end{tabular} \\
\hline 02 & \begin{tabular}{l}
Error, Ex OUT CHECK was "O" no RF is generated on 619 Fault on: \\
619 Exciter Signal Path \\
or cable connecting 619 and 611 or 611 Exciter Synthesizer Board or cable connecting 619 and 624 or 624 Transceiver Control Boar
\end{tabular} \\
\hline 90 & \begin{tabular}{l}
Error, no response from TU Fault on: \\
624 Transceiver Control Board
\end{tabular} \\
\hline
\end{tabular}

\subsection*{0.4.29 TEST 25}

Test 25 will test Receiver Signal Path 618.
It vill set 618 to J3E (USB) reception and set the synthesizer to make a \(1 \mathrm{k} \dot{\mathrm{H}} \mathrm{Hz}\) beat frequency, AGC voltage and AF signal level will be tested by the CU unit. The synthesizer frequencies are: \(1 . L 0=45.0 \mathrm{HHz}, 2 . \mathrm{LO}=43.601 \mathrm{illz}, 3 . \mathrm{LO}=\) 1.4 ilHz .

A clear 1 kHz tone will be heard during this test.
The test is OK if RYM RATE ( 624 ) < 9.1 klz
and CHECK 0 ( 601 ) = "0" and CHECK 1 ( 601 ) = "0"

Error code lleaning
00
The test vas 0K
01
Error, R\% RATE \(>9.1 \mathrm{klz}\) AGC voltage is too low
Fault on:
610 Receiver Signal Path
or 624 Transcciver Control Board
or cable connecting 610 and 611
or cable connecting 611 and 624
or cable connecting CU and TU
or 600 Control Board
02
Error, CIIECK 0 yas "l" no AF signal on 601 Audio processing Coard
Fault on:
610 Receiver Signal Path
or cable connecting 610 and 611
or cable connecting 611 and 624
or cable connecting \(\overline{C U}\) and \(\overline{T U}\)
or 601 Audio Processing Board
or 600 Control Board
Error, CIECK 1 yas "l"
no AF signal on loudspeaker
Feult on:
601 Audio Processing Doard
99 The test can not be executed because cither: filter \(\% 5\) is not installed or tinis is not a standard version

30
Error, no response fromi TU
Fault on:
G24. Transeciver Control Board

\subsection*{8.4.30 TEST 26}

Test 26 will test Receiver Signal Path 618.
It will set 618 to H 3 E (Ali) reception and set the synthesizer to generate an unmodulated carrier. The CU vill test AGC voltage and that no AF signal is detected.
The synthesizer frequencies are: \(1 . L 0=45 \mathrm{HHz}, 2 . L O=43.6 \mathrm{HHz}, 3 . L O=1.4\) l Hz
The test is OK if RX RATE ( 624 ) \(<9.1 \mathrm{kliz}\)
and CHECK 0 \((601)=" 1 "\) and CHECK 1 601 ) = " 1 "

Error code fleaning
00 The test was OK
01 Error, RX RATE > 9.1 kilz
AGC voltage is too low
Fault on:
610 Receiver Signal Path
or 624 Transceiver Control Board
or cable connecting 618 and 611
or cable connecting 611 and 624
or cable connecting CU and TU
or 600 Control Board
02
Error, \(\overline{\mathrm{CHECK} ~} \mathrm{O}\) was "O"
AF was detected on 601 Audio Processing Board
Fault on:
610 Receiver Signal Path
or cable connecting 610 and 611
or cable connecting 611 and 624
or cable connecting CU and TU
or 601 Audio Processing Board
or 600 Control Board
03 Error, \(\overline{\text { CHECK } 1}\) was "O"
AF was detected on loudspeaker
Fault on:
601 Audio Processing Board
Error, no response from TU
Fault on:
624 Transceiver Control Board
The test can not be executed because this is a special version

\section*{B. 4.31 TEST 27}

Test 27 vill test Receiver Signal Path 610
It will set 618 to telex reception and set the synthesizer to generate a 1500
II z tone. The CU will check AGC voltage and AF signal.
The syrihesizer frequencies are: \(1.10=45.0005 \mathrm{flHz}, 2 . L 0=43.002 \mathrm{illz}\) and
\(3 . L O=1.4 \mathrm{Hiz}\).
The test is OK if RN RATE ( 624 ) < 2.1 kllz
and CHECK O \((601)=" 0 "\)
and CHECK 1 \((601)=" \mathrm{O} "\)
\begin{tabular}{|c|c|}
\hline Error code 00 & Heaning
The test was 0\% \\
\hline \multirow[t]{8}{*}{01} & Error, R R RATE > 9.1 lHz \\
\hline & AGC voltage is too lou \\
\hline & Fault on: \\
\hline & 618 Receiver Signal Path \\
\hline & or 624 Transceiver Control Board \\
\hline & or cable connecting 610 and 611 \\
\hline & or cable connecting 611 and 624. \\
\hline & or cable connecting CU and TU or 600 Control Board \\
\hline \multirow[t]{10}{*}{02} & Error, CIECK 0 vas "l" \\
\hline & no AF' signal on 601 Audio processing \\
\hline & Soard \\
\hline & Fault on: \\
\hline & 610 Raceiver Signal Paih \\
\hline & or cable connecting 610 and 611 \\
\hline & or cable connecting 611 and 624 \\
\hline & or cable connecting CU and \(T U\) \\
\hline & or 601 Audio Processing Poard \\
\hline & or 600 Control Doard \\
\hline \multirow[t]{4}{*}{03} & Error, \(\overline{\text { CIECK }}\) l vas "l" \\
\hline & no AF sional on loudspealser \\
\hline & Fauli on: \\
\hline & 601 Audio Processing Board \\
\hline \multirow[t]{2}{*}{97} & The test can not be exccuted because sither filter \(\because 4\) is not installed \\
\hline & or this is not a standard version \\
\hline \multirow[t]{2}{*}{20} & Error, no response fron TU Fault on: \\
\hline & \(626^{6}\) Transceiver Control Board \\
\hline
\end{tabular}

\subsection*{8.4.32 TEST 28}

Test 28 will test Receiver Signal Path 618.
It will set 618 to Cl reception and set the synthesizer to generate a 1 kHz tone. The CU will check AGC voltage and AF signals. A clear 1 kHz tone will be heard during this test.
The synthesizer frequencies are: \(1 . L O=45 \mathrm{HHz}, 2 . L O=43.601 \mathrm{HHz}, 3 . L O=1.4\) HHz .
The test is OK if RX RATE ( 624 ) < 9.1 kHz
and CHECK 0 \((601)=" 0 "\)
and CHECK 1 (601) \(=" 1 "\)
Error code lleaning
00
The test. vas OK
01 Error, RK RATE > 9.1 kliz
AGC voltage is too lou
Fault on:
618 Receiver Signal Path
or 624 Transceiver Control Board
or cable connecting 618 and 611
or cable connecting 611 and 624
or cable connecting CU and TU
or 600 Control Board
02

03

90
Error, \(\overline{\text { CIIECK } 0}\) yas "1"
no AF signal on 601 Audio processing Board
Fault on:
618 Receiver Signal Path
or cable connecting 618 and 611
or cable connecting 611 and 624
or cable connecting CU and TU
or 601 Audio Processing Board
or 600 Control Board
Error, \(\overline{\text { CHECK } 1}\) yas " 1 "
no AF signal on loudspeaker
Fault on:
601 Audio Processing Board
The test can not be executed because either filter X 2 is not installed or this is a special version.

Error, no response from TU
Fault on:
624 Transceiver Control Board

\subsection*{0.6. 33 TEST 29}

Test 29 vill test Receiver Signal Patio 610.
It will set 610 to Cl reception, narrow banduid'h, and set the synthesizer to generate a 1 kllz tone. The CU will check AGC voltage and AF signals. A clear 1 k:1z tone vill be heard during this test.
The synthesizer frequencies are \(1 . L 0=4.5 \mathrm{mlz}, 2 . L 0=43.6 \mathrm{mlz}, 3 . L 0=1.4\)
lilz.
The test is 0\% if RK RATE ( 624 ) < 2.1 l Hz
and CIECK \(0(601)\) ) \(=" 0 "\) and CIECK. 1 (601) \(=" 0 "\)

Error code ficaning 00

01

Error, \(\overline{\text { CHECK' }} \mathbf{0}\) yas "l" no Ar signal on 601 Audio processing Board Fault on:
610 Receiver Signal Path
or cable connecting 61.8 and 611
or cable connecting 611 and 624
or cable connecting CU and TU
or 601 Audio Processing Board
or 600 Control Board
Error, C!ECK 1 was "l"
no \(N\) signal on loudspea!er
Fault on:
Gol Audio Processing Doard
The tost can not be erecuted because cither filter \(火 3\) is not installed or \(\mathfrak{x} 3\) has a center frequency of 1.3905 lliz or this is a special version

Error, no response from TU
Fault on:
624 Transceiver Control Board

\subsection*{8.4.34 TEST 30}

Test 30 will test Receiver Signal Path 618.
It will set 618 to CW reception, narrou banduidth, and set the synthesizer to generate a 1.5 kHz tone. The CU will check AGC voltage and AF signals. A clear 1.5 klzz tone will be heard during the test.

The synthesizer frequencies are: \(1 . L 0=45.0005 \mathrm{HHz}, 2 . L O=43.602 \mathrm{NHz}, 3 . \mathrm{LO}\) \(=1.4 \mathrm{HHz}\).
The test is OK if RX RATE ( 624 ) < 9.1 kHz
and CHECK \(0(601)=" 0 "\) and CHECK 1 (601) \(=" 0 "\)

Error code Meaning

00
01

98

The test vas OK
Error, RK RATE > 9.1 kHz
AGC voltage is too lou
Fault on:
618 Receiver Signal Path
or 624 Transceiver Control Board
or cable connecting 618 and 611
or cable connecting 611 and 624
or cable connecting CU and TU
or 600 Control Board
Error, CHECK O was "l"
no AF signal on 601 Audio processing Board
Fault on:
618 Receiver Signal Path
or cable connecting 618 and 611
or cable connecting 611 and 624
or cable connecting CU and TU
or 601 Audio Processing Board
or 600 Control Board
Error, \(\overline{\text { CHECK } 1}\) was " 1 "
no AF signal on loudspeaker
Fault on:
601 Audio Processing Board
The test can not be executed because filter \(\times 3\) is not installed or has a center frequency of 1.4 fitz or this is a special version

Error, no response from TU
Fault on:
624 Transceiver Control Board

\subsection*{8.4.35 TEST 31}

Test 31 is a listening test at 2.0 MHz . The purpose of this test is not to test anything. The operator should listen to this frequency before proceeding with the transmitter tests. The transmitter tests will transmit at this frequency, therefore the operator must listen to ensure that this frequency is not occupied by others.
If the frequency is free proceed to next test by pressing "DIMMER UP". If the frequency is occupied, wait until it becomes free or abort the test by pressing any key but "DIMMER UP" or "DIMMER DOWN". NOTE: This test can be executed in step mode only.
\begin{tabular}{ll} 
Error code & Meaning \\
00 & Is always returned
\end{tabular}

\subsection*{8.4.34 TEST 32}

Test 32 will-test Power Amplifiers 626, P.A. Filters and Antenna Tuning Unit. It will transmit at 2 MHz CW mode and test that ALCCHECK is OK, SWROK is OK, Power is OK and that IANT (antenna current) is OK. The 1.6-2.3 MHz filter is used in this test.
NOTE: This test can be executed in step mode only.
The test is OK if ALCCHECK = "1"
and SWROK•(640) = "0"
and Power \(=90 \%\)
and IANT \(=1 \mathrm{~A}\)
Error code Meaning

00
01

02

03

The test was OK
Error, ALCCHECK was "0"
Fault on:
624 Transceiver Control Board
or cable connecting 624 and 626
or 626 Power Amplifier
Power was < 90 \%
Fault on:
626 Power Amplifier
or 627, 628 , 629 P.A. Filters
or cable connecting 619 and 626
or cable connecting 626 and 627628629
or antenna too short for full power
on 2 MHz

Error, SWROK was "1"
SWR was > 3
Fault on:
640 Antenna Tuning Unit or antenna

\subsection*{8.4.37 TEST 33}

Test 33 will test PA-filters 627 , 620 or 629.
It will select the \(2.31-3.33 \mathrm{Hilz}\) filter and transmit at 2 iliz .
NOTE: This test can be executed in step mode only. The test is 0K if Power > \(90 \%\).
\begin{tabular}{ll} 
Error code & \begin{tabular}{l} 
lieaning \\
00 \\
The test vas OK
\end{tabular} \\
01 & Error, Power was \(<90 \%\) \\
& Fault on: \\
& \(627,620,629\) PA-filters
\end{tabular}
8.4.30 TEST 34.

Test 34 vill test PA-filters \(627,620,629\).
It will select the \(3.3-4.8 \mathrm{Illz}\) filters at continuous coverage transceiver, and transmit at 2 lliz . Harine bands transceivers can not execute this test. NOTE: This test can be executed in step mode only. The test is OK if Power \(>90 \%\).

Error code Meaning
00 The test vas OK
01 Error, Power was < \(90 \%\)
Fault on:
629 PA-filters
99
This is a marine bands transceiver, this unit can not execute the test

\subsection*{8.4.39 TEST 35}

Test 35 vill test PA-filters \(627,620,629\).
It vill select the 4.0-6.9 illz filter for continuous coverage transceivers or the 3.3-4.8 ritz filter for marine bands transceivers.
NOTE: This test can be executed in step mode only.
The test was OK if Power > \(90 \%\)
\begin{tabular}{ll} 
Error code & Heaning \\
00 & The test was \(0 K\)
\end{tabular}

01
Error, Pover vas < \(90 \%\)
Fault on:
627 , 628, 629 PA-filters

\subsection*{0.4.40 TEST 36}

Test 36 vill test PA-filters \(627,620,629\).
It vill select the \(6.9-10 \mathrm{HHz}\) filter for continuous coverage transceivers or the \(6.2-3.45 \mathrm{HHz}\) filter for marine bands transceivers. It will transmit at 2 H Hz .
NOTE: This test can be executed in step mode only.
The test is 0 K if Pover > \(90 \%\).
Error code lleaning
00 The test was OK
01 Error, Pover uas > \(90 \%\)
Fault on:
627, 620 , 629 PA-filters

\subsection*{8.4.41 TEST 37}

Test 37 will test PA-filters \(627,620,629\).
It vill select the \(10-14.4\) Illz filter for continuous coverage transceivers or the \(12-17\) lilz filter for marine bands transceivers. It will transmit at 2 Fiz . NOTE: This test can be executed in step mode only.
The test is OK if Pover > \(90 \%\).
\begin{tabular}{ll} 
Error code & ileaning \\
00 & The test vas 0k \\
01 & \begin{tabular}{l} 
Error, Pover vas \(>90 \%\) \\
Fault on: \\
\\
\hline \(627,020,629\) PA-filters
\end{tabular}
\end{tabular}

\subsection*{8.4.42 TEST 38}

Test 38 vill test PA-filters \(627,620,629\).
It uill select the \(14-20 \mathrm{lliz}\) filters at continuous coverage transceiver, and transmit at 2 mlz . Harine bands transceivers can not execute this test. NOTE: This test can be executed in step mode only. The test is 0 K if Pover > \(90 \%\).
\begin{tabular}{ll}
\begin{tabular}{ll} 
Error code \\
00 & \begin{tabular}{l} 
ilcaning \\
The tost vas OK
\end{tabular} \\
01 & \begin{tabular}{l} 
Error, Pover vas \(<20 \%\) \\
Fault on:
\end{tabular} \\
G29 Pn-rilters
\end{tabular} \\
00 & \begin{tabular}{l} 
This is a marine bands transceiver, \\
this unit can not execute the test
\end{tabular}
\end{tabular}

\section*{8．4．43 TEST 39}

Test 39 vill test PA－filters \(627,620,629\).
It will select the \(20-30 \mathrm{P} \cdot ⿻ 川 ⿲ 丶 丶 丶 z=\) filter for continuous coverage transceivers or the 14－27 llHz filter for marine bands transceivers．It will transmit at 2 MHz ． NOTE：This test can be executed in step mode only． The test is OK if Pover＞ \(90 \%\) ．
\begin{tabular}{ll} 
Error code & \begin{tabular}{l} 
Heaning \\
00
\end{tabular} \\
The test vas OK
\end{tabular}, \begin{tabular}{l} 
Error，Power vas \(>90 \%\) \\
01 \\
Fault on： \\
\(627,620,629\) PA－filters
\end{tabular}

\section*{8．4．44 TEST 40}

Test 40 is a listening test at 491 kllz ．The purpose of this test is not to test anything，but the operator should listen at this frequency before proceeding to the transmitter test．Test 41 will transmit at this frequency， therefore the operator must listen to ensure that this frequency is not occupied by others．

If the frequency is free proceed to test 41 by pressing＂DIMIER UP＂．
If the frequency is occupied，vait until it becomes free，or abort the test by pressing any key but＂DIRMER UP＂or＂DIIMER DOUNN＂．
NOTE：This test can be executed in step mode only．
Error code lleaning

00 The listening test is executing
99
This transceiver is not a marine bands version with \(400-525 \mathrm{kHz}\) filter， this test can not be executed

\section*{8．4．45 TEST 41}

Test 41 vill test PA－filters 620.
It will select \(400-525 \mathrm{kHz}\) filter and transmit at 491 kHz ．
NOTE：This test can be executed in step mode only．
The test is 0 K if Pover＞ \(90 \%\)
\begin{tabular}{ll}
\begin{tabular}{l} 
Error code \\
00
\end{tabular} & \begin{tabular}{l} 
Heaning \\
The test was 0K
\end{tabular} \\
01 & \begin{tabular}{l} 
Error，Power vas \(<90 \%\) \\
Fault on： \\
628 PA－filters
\end{tabular}
\end{tabular}

This is not a marine bands version with 400-525 kllz filter, the test can not be čecuted
\begin{tabular}{|c|c|c|}
\hline TEST \({ }_{i=}\) & TESTS & REIIARISS \\
\hline 01 & Audio Processing Board 601 & receiver signal path \\
\hline 02 & Audio Processing Board 601 & receiver signal path \\
\hline 03 & Audio Processing Board 601 & transmitter signal path \\
\hline 04 & Audio Processing Board 601 & transmitter signal path \\
\hline 05 & Display test & \\
\hline 06 & Master Oscillator 612 & \\
\hline 07 & Synthesizers 611 & all synthesizers mid range \\
\hline 08 & Synthesizers 611 & 1.LO out of lock \\
\hline 09 & Synthesizers 611 & \(1 . L 0\) O \(45 \mathrm{NHz} 45-52.5 \mathrm{flHz}\) range \\
\hline 10 & Syrthesizers 611 & \(1 . \mathrm{LO}=52.5 \mathrm{fHz} 45-52.5 \mathrm{HHz}\) range \\
\hline 11 & Synthesizers 611 & l.LO \(=52.5 \mathrm{fiHz} 52.5-60 \mathrm{AHz}\) range \\
\hline 12 & Synthesizers 611 & 1.LO \(=60 \mathrm{PlHz} 52.5-60 \mathrm{PHz}\) range \\
\hline 13 & Synthesizers 611 & \(1 . L 0=60 \mathrm{MHz} 60-67.5 \mathrm{AHz}\) range \\
\hline 14 & Synthesizers 611 & 1.LO \(=67.5 \mathrm{lHzz} 60-67.5 \mathrm{HHz}\) range \\
\hline 15 & Synthesizers 611 & \(1 . L 0=67.5 \mathrm{AHz} 67.5-75 \mathrm{HHz}\) range \\
\hline 16 & Synthesizers 611 & 1.LO \(=75 \mathrm{NHz} 67.5-75 \mathrm{lHz}\) range \\
\hline 17 & Synthesizers 611 & \(2 . \mathrm{LO}=43.597 \mathrm{MHz}\) \\
\hline 18 & Synthesizers 611 & \(2 . \mathrm{LO}=43.603 \mathrm{HHz}\) \\
\hline 19 & Synthesizers 611 & 3.LO out of lock \\
\hline 20 & Synthesizers 611 & \(3 . L 0=1.3955 \mathrm{HHz}\) \\
\hline 21 & Synthesizers 611 & \(3 . L 0=1.403 \mathrm{MHz}\) \\
\hline 22 & Exciter Signal Path 619 & no signal \\
\hline 23 & Exciter Signal Path 619 & Al mode \\
\hline 24 & Exciter Signal Path 619 & J3E mode \\
\hline 25 & Receiver Signal Path 618 & J3E mode \\
\hline 26 & Receiver Signal Path 618 & All mode \\
\hline 27 & Receiver Signal Path 618 & FlB mode \\
\hline 23 & Receiver Signal Path 618 & CH inter \\
\hline 29 & Receiver Signal Path 618 & CW narrou \\
\hline 30 & Receiver Signal Path 618 & CW narrow \\
\hline 31 & Listening test ( \(2 \mathrm{l} H \mathrm{~Hz}\) ) & llarine-band Continuous \\
\hline 32 & PA-filters, ATU & \(1.6-2.3 \mathrm{MHHz} 1.6-2.3 \mathrm{MHz}\) \\
\hline 33 & PA-filters & \(2.3-3.3 \mathrm{lHHz} 2.3-3.3 \mathrm{fliz}\) \\
\hline 34 & - - & 3.3-4.8 fliz \\
\hline 35 & - - & 3.3-4.8 \(\mathrm{HHz} 4.8-6.9 \mathrm{HHz}\) \\
\hline 36 & - - & \(6.2-8.9 \mathrm{lHzz} 6.9-10 \mathrm{fiHz}\) \\
\hline 37 & - - & 12-17 \(\mathrm{HHz} \quad 10-14 \mathrm{HHz}\) \\
\hline 38 & - - & - 14-20 PHz \\
\hline 39 & - - & 19-27 lHz 20-30 PHz \\
\hline 40 & Listening test (491 kHz) & \\
\hline 41 & PA-filters & \(400-525 \mathrm{kHz}\) \\
\hline
\end{tabular}

\subsection*{3.5 SPARE PARTS LIST, TRP 8250 D SERIES}

CONTROL UNIT:
600 Control Board (configuration Prom not included) 107560 O̊l (specify program version when ordering)
601 Audio Processing
602 Squelch Board (optional)
603 Line Transformer Board (optional)
Hembrane Keyboard (e\%cl. graphics overlay)
Loudspeaker
Lithium back-up battery
10756011

HAMDSET:
450 Hicrophone Amplifier 10744501
Handset complete, incl. Hicrophone Amplifier 10740060
transceiver unit:
611 Synthesizer Board 10756111
612. Haster Oscillator, 1.5 ppm

10756121
613 (laster Oscillator, 0.8 ppm (optional)
614 Haster Oscillator, 0.4 ppm (optional)
610 Receiver Signal Path incl. filters
619 Exciter Signal Path
40 Lead Flat Ribbon Cable
2 Lead Cable
Coa«ial Cable
Coaxial Cable
Coa;ial Cable
10756131

Coa«ial Cable
10756141

Coa:ial Cable
620 Interconnection Board
Voltage Converter ^ssembly
Switched Flode Pover Supply
624 Transceiver Control Board
10756181
(specify program version when ordering)
Power Amplifier Assembly
10756191
37359021
10660050
10660000
10660010
10660030
10660030
106400
10660290
10756201
10760090

Pover Amplifier Assembly, FCC
10760020
10756241

Amplifier Assembly, FCC 10760340
P.A. Filter Assenbly, llarine Dands (TRP 0250 D/8251 D/8252 D) 10760170
(vithout PCB 624 and cover)
P.A. Filter Assembly, Continuous Coverage 10760190
(TRP 0253 D/8254 D/8255 D), (without PCB 624 and cover)
P.A. Filter Assembly, llarine Bands incl. 500 kHz (optional) 10760180

63050 ohm Antenna Relay (optional)
10756301
ANTENHA TUNING UNIT:
640 ATU Board 10756401
64! Antenna Relay Board 10756411

AC POUER SUPPLY UNIT:
Transformer 38359731
Electrolytic capacitor \(10000 \mathrm{uF} / 63 \mathrm{~V}\)
65291051
Lamp 24 V
75400004
Diode PH70
83100700
CONTROL UNIT ..... 1
PCB 600 CONTROL BOARD ..... 2
PCB 601 AUDIO PROCESSING BOARD ..... 3
PCB 602 SQUELCH BOARD ..... 4
PCB 603 LINE TRANSFORMER BOARD ..... 5
TRANSCEIVER UNIT ..... 6
PCB 611 SYNTHESIZER BOARD ..... 7
PCB 612 / 613 / 614/615/616 MASTER OSCILLATOR AND PCB 699 TCXO HEATER BOARD ..... 8
PCB 618 RECEIVER SIGNAL PATH BOARD ..... 9
PCB 619 EXCITER SIGNAL PATH BOARD ..... 10
PCB 620 INTERCONNECTION BOARD ..... 11
PCB 621 VOLTAGE CONVERTER BOARD ..... 12
SMPS AND PCB‘S 622 CONTROL BOARD AND 623 DRIVER BOARD ..... 13
PCB 624 TRANSCEIVER CONTROL BOARD ..... 14
PCB 626 / 631 POWER AMPLIFIER BOARD ..... 15
PCB 627 / 628 P.A. FILTERS, MARINE BANDS ..... 16
PCB 629 P.A. FILTERS, CONTINUOUS COVERAGE ..... 17
PCB 63050 OHMS ANTENNA RELAY BOARD ..... 18
PCB 695 CONNECTOR BOARD ..... 19
ANTENNA TUNING UNIT ..... 20
PCB 640 ANTENNA TUNING UNIT BOARD AND 641 ANTENNA RELAY BOARD ..... 21
PCB 64450 OHMS ATU RELAY BOARD ..... 22
AC POWER SUPPLY UNIT P 8250 ..... 23
HANDSET/HOLDER ASSEMBLY ..... 24
PCB 707 AF AMPLIFIER AND PCB 709 T-CONNECTION ..... 25

\section*{9. CIRCUIT DESCRIPTION AND DIAGRAMS}

\subsection*{9.1 Symbol Explanation}
9.1.1 Arrous \(A\) black arrou on a line indicates in uhich direction an \(A C\) signal flows. A white arrov on a line indicates in which direction the information of a DC signal flows. An exception from this rule is the supply lines and their connections, which are alvays indicated by a supply voltage level or its associated label.
9.1.2 Logic circuits A small circle at an external input means that the specific input is active LON, i.e. it produces the desired function, in conjunction with other inputs if its voltage is the lover of the two logic levels in the system, othervise the specific input is HIGH. A clock input is indicated by an open triangle. A small circle at a clock input means that the outputs change on the HIGH to LOW clock transition. A small circle at an output indicates that vhen the function designated is true, the output is LOW. Inputs and outputs are labelled with mnemonic letters as described in table 9.1.
9.1.3 Logic Functions Logic functions are labelled with mnemonic letters in brackets. An active LOU: function is given a bar over the label.
9.1.4 Voltages Typical DC voltages are indicated on the circuit diagrams next to the points to which they refer and are marked with a "V". Typical logic levels are indicated in brackets (LOH/IIIGII) on the circuit diagrams neat to the point to which they refer and are marked with a "V". Typical AC voltages are likewise indicated on the circuit diagrans. They are marked vith "Vpp" or "mVpp" and valucs are in Rils unless othervise stated.

\subsection*{9.2 ABBREVIATIONS}

A = ampere, amperes
B = battery, motor
C = capacitor
Car. = carbon
Cer. = ceramic
CR = tyristor
D \(\quad=\) diode
F \(=\) farad, fan
FS = fuse
H = henry
IC = integrated circuit
\(\mathrm{k}=\) kilo or \(10 \wedge 3\)
L = inductor
LED = light emitting diode
LS = loudspeaker
lin. = linear
log. = logarithmic
\(\mathrm{m}=\) milli or \(10^{\wedge}-3\)
\(\mathrm{H}=\) mega or \(10^{\wedge} 6\)
\(\mathrm{FiE}=\) instrument
\(\mathrm{HF}=\) metal film
\(\mathrm{Hi}=\) mica
\(110=\) metallic oxide
\(\| \mathrm{IP}=\) retallized paper
\(u=\) micro or \(10^{\wedge}-6\)
\(n=\) nano or \(10 \wedge-9\)
NPO = temp. coefficient 0
\(\mathrm{N} 150=\) temp. coefficient -150
NTC \(=\) neg. temp. coofficiont
\(\mathrm{P}=\) pico or \(10^{\wedge}-12\)
\(\mathrm{PL}=\) connector (plug or cable vith plug)
Polyes. \(=\) polyester
Polyst. = polystyrene
Pot. = potentiometer
PTC = pos. temp. coefficient
Q \(\quad=\) transistor
\(\mathrm{R}=\) resistor
RL = relay
SK = connector (socket or cable vith socket)
SL = lamp
Sol. al.= solid aluminium
SW = switch
\(T=\) transformer
Tan. = tantalum electrolytic capacitor
\(\mathrm{V} \quad=\) vorking voltage \(D C\) or volts
Vac. = vorking voltage AC
Var. = variable
Varicap \(=\) variable capacitance diode
V1 = valve
```

Vpp = peak to peak voltage
VR = neon lamp
wu = vire vound
| = vatt, vatts
H.alum. = vet aluminium electrolytic
x = crystal, crystal osc. or crystal filter

```

Table 9.1
\begin{tabular}{|c|c|c|}
\hline Label & Short for & Meaning \\
\hline A & Trig Input & triggers one-shot on falling edge \\
\hline Ax & Address & selects a memory location (data word) or a multipleyer input \\
\hline B & Trig Input & triggers one-shot on rising edge \\
\hline \(B / D\) & Binary /Decimal & selects counting mode (modulus 16 or 10) \\
\hline BI & Blank Input & deactivates BCD-to-7 segment decoder (blanks connected display) \\
\hline Cxy & Control Signal & programmable bidirectional hand-shake signal to/from peripheral \\
\hline CEP, CET & Clock Enable & enables clock signal to counter \\
\hline CP & Clock Pulse & edge activated input for updating synchronous circuit \\
\hline CS\% & Chip Select & selecis a memory or peripheral circuit (bus slave) \\
\hline D & Data & input to D flip-flop and register or bidirectional information path for bus connected device \\
\hline E & Enable Input & enables clock signal \\
\hline E0 & Enable Output & activates output(s) from combinatorical circuit \\
\hline EQ & Enable Output & activates output(s) from sequential circuit \\
\hline IILT & Halt & suspends IIPU activity and releases busses \\
\hline I×Y & Input Data & input for combinatorical circuit \\
\hline IROy & Interrupt Request & wired-OR flag from peripheral to IIPU indicating interrupt detected \\
\hline J, K & Data & input to J-K flip-flop \\
\hline K & Hode Sclect & selects counting mode for programable counter \\
\hline LE & Latch Enable & updates latching register \\
\hline LT & Lamp Test & activates all outputs on BCD-to-7 segment decoder \\
\hline IfR & llaster Resct & input for initializing \(\operatorname{IIPU}\) or clearing programmable registers in peripheral circuit \\
\hline IIRDY & llemory Ready & hand-shake flag to IIPU indicating nev bus cycle may be started \\
\hline
\end{tabular}

Table 9.1 continued
\begin{tabular}{|c|c|c|}
\hline Nili & Non-maskable Interrupt & flag to IPU , which cannot be masked softvarewise indicating interrupt detected \\
\hline 0x & Interrupt Output & varewise indicating interrupt detected output from combinatorical circuit \\
\hline PXY & \begin{tabular}{l}
Data \\
(bidirectional)
\end{tabular} & input to programmable counter or programmable bidirectional signal to/from peripheral \\
\hline PE & Parallel Enable & loads P\% data into programmable counter \\
\hline Q* & Output & output from sequential circuit \\
\hline \(\square\) & Reset & forces flip-flop(s) to LOU state \\
\hline RSI & Ripple Blank Input & deactivates \(B C D-\) to- 7 segment decoder (blanks connected display) if data correspond to leading zero, when decoders are cascaded \\
\hline RS\% & Register Select & addresses programriable registers in peripheral circuit \\
\hline 5 & Set & forces flip-flop(s) to HIGH state \\
\hline Sy & Select. Data & sclects data path through multiplexer \\
\hline SYNC & Synchronize & issued from bus master (fIPU) to synchronize data transfer \\
\hline TC & Terminate Count & output from counter indicating new cycle started (corresponds to carry or borrou depending on counting direction) \\
\hline U/D & Up/Down & selects counting direction \\
\hline VIIA & \begin{tabular}{l}
Valid Hemory \\
Address
\end{tabular} & issued from bus master (IPU) to indicate stable address bus \\
\hline WI & Write Input & input to bus slave to make it accept data from master \\
\hline vol & Urite Output & output from master (IIPU) when it is a data source \\
\hline
\end{tabular}
(1) "x" is a numerical indek (zero origin inde»ing) corresponding to bit position
(2) "y" is an alphabetical inde» used for multiple ports




PARTS LIST FOR CONTROL UNIT
\begin{tabular}{|c|c|c|c|c|c|}
\hline O &  & 응 & ㅇ & or & \[
\begin{aligned}
& 6 \\
& \sim N
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] &  & \[
\stackrel{0}{\mathrm{~N}}
\] & -18 & 응 & \[
\begin{array}{ll}
0 & m \\
O & 0 \\
0 & 0
\end{array}
\] \\
\hline - & 송엉 & N & \[
\underset{\substack{N \\ \hline}}{ }
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& \infty
\end{aligned}
\] & \[
0
\] \\
\hline
\end{tabular}

\section*{TECHNICAL DESCRIPTION}

\section*{PCB 600 CONTROL BOARD}

The primary functions of this module are to support the man/machine interface via keyboard and displays, control Audio Processing 601 and communicate with Transceiver Control Board 624 as a master by transmitting commands and receiving acknowledge and status messages in ASCII code according to a fixed protocol. This is accomplished through an embedded computer consisting of a microprocessor ("MPU") with the following onchip facilities: 8 bits CPU, 128 bytes RAM used as buffer area and for saving internal variables, 2 ports of which one handles the transfer of a 16 bits packet to 601 controlling loudspeaker volume, selection of keying and audio signals using the signals (COMDATA), (COMCLOCK) and (COMLOAD), while the other is connected to a serial, asynchronous interface used for communicating at 300 baud via "RS 232C INTERFACE" with 624 using the signals (TUDATA) and (CUDATA), and finally a 16 bits timer used for generating 64 Hz real-time interrupts to switch the microprocessor from back to foreground processing simultaneously measuring the period of the telemetry signals received from 624 representing signal strength and output power (i. e. (RXRATE) and (TXRATE) respectively) through "RATE MULTIPLEXER". The processor is clocked by a signal coming from "4 MHz XTAL OSCILLATOR" and is initialized by "MASTER CLEAR" combined with "MODE SWITCH". Due to "ADDRESS LATCH" being connected to the multiplexed 8 bits wide data/address bus a full 16 bits wide address bus is available for the "MAP DECODER" to select between the connected memories and peripherals, which are the following: "PROGRAM ROM" (up to 16 kbytes of object code in EPROM), "CONFIGURATION PROM" (up to 4 kbytes in EPROM containing a list of up to 1017 permitted TX frequencies and status code for enabled options of the equipment), "NON-VOLATILE RAM" (l knibbles used for saving up to 76 RX/TX frequency pairs with corresponding modes and the present status of the equipment) powered by a lithium battery during power-off condition together with "REAL TIME CLOCK" which controlled by a 32.768 kHz crystal implements the watch function. By programming the latter it is possible to switch on the entire equipment automatically using the "OPTO COUPLER" to generate the galvanically isolated signal PWRON, which activates SMPS Control 622.

Another peripheral circuit is the "KEYBOARD DISPLAY CONTROLLER", which constantly scans the membrane keyboard (organized as an \(8 \times 8\) matrix) through "KEY SCAN DECODER" using the signals (DRVO--7) and (SENO--7), while it simultaneously refreshes the entire display at a rate of 588 Hz (duty cycle l/l6) by utilizing "LED DECODER/LED DRIVER" and "DISPLAY DIGIT DECODER/DISPLAY DIGIT DRIVER" for multiplexing the annunciators and seven segment displays respectively. The segments are driven from "DISPLAY SEGMENT DRIVER" and "DISPLAY SEGMENT DECODER" (performing the conversion from BCD-code). The displays may be dimmed through the last peripheral, "BEEP DIM REGISTER", by pulse width modulation via "PWM COUNTER". "BEEP DIM REGISTER" is also capable of controlling "PROGRAMMABLE DIVIDER" generating the signal SINCLOCK used by 601 to synthesize sinusoidal signals for modulation purposes and "beeping" (acoustic feedback to the operator signaling a key closure). In order to permit remote control, another "RS 232C INTERFACE" is available connected to a serial, asynchronous interface implemented by "ACIA". Both serial interfaces
are clocked by "BAUD RATE DIVIDER", which is fed by a 1 MHz clock from "MPU". Baud rate may be set to 300 or 2400 bits/s selectable by jumper setting.


CONTROL BOARD 600
VERSIDN B2
VIEWED FROM TOP SIDE






TEST POINTS FOR 600 CU CONTROL BOARD.
(1) 12 V
(2) 5 V
(3) \(\begin{aligned} & 5 \mathrm{~V} \text { @ POWER ON } \\ & 3 \mathrm{~V} \text { @ POWER OFF }\end{aligned}\)
4.) -12 V
(5) 4 MHz
\({ }_{0}^{5 V} \Omega\)
(6) \(1 \mathrm{MHz}, 50 \%\) d.c.

(7) \(1 \mathrm{MHz} \cdot 25 \%\) d.c.
\begin{tabular}{l}
50 \\
\(0 V\) \\
\hline 1.1
\end{tabular}
(8) -11V (passive state)
(9) -12 V (passive state when connected to TU)
(10) - 11 V (passive state)
(11) 5 V (passive state)
(12) \(8192 \mathrm{~Hz} \quad 50 \%\) d.c. \(\begin{aligned} & 5 \mathrm{v} \\ & 0 \mathrm{v}\end{aligned} \square\)
(13) \(38462 \mathrm{~Hz} \quad 50 \%\) d.c. \(\begin{gathered}5 \mathrm{~V} \\ \mathrm{ov} \\ \square\end{gathered}\)
(14) \(2404 \mathrm{~Hz} 50 \%\) d.c. \(\mathrm{LV}_{0} \mathrm{~V} \square \square\)
(15) \(2 \mathrm{MHz} \quad 50 \%\) d.c. \(\stackrel{9 \mathrm{~V}}{0 \mathrm{~V}} \Omega \Omega\)
Nㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ엉ㅇㅇㅇㅇㅇㅇㅇㅇN




ie

ti

\title{

}
+ \({ }^{\infty}\) 응ㅇㅇ
tery 3.6 V
\(20 \%\)






\title{

}

74LS04
27128－4
5564
74LS05
8279－5
CNY17－4
CD4516BC
CD4516BC
74C161
CD4040BC
74407374
4 HCT 37
4504
146818
\(74 \mathrm{HC4059}\)
6850
74 HCT541
74 LS48
74 HCT541

©




consisting of pLUG
and SOCKET







ざलかめ




우수우수숫
 \(\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & \infty & \infty & \infty\end{array}\)

응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ






总






888888888888우궁ㅇㅇㅇ




\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline
\end{tabular}

in in

 N（N）












\section*{TECHNICAL DESCRIPTION}

PCB 601 AUDIO PROCESSING BOARD
All pover supply regulation in the Control Unit is performed on this board. Voltages of \(+24 \mathrm{~V},-15 \mathrm{~V},+15 \mathrm{~V},-15 \mathrm{~V}\) are supplied from the Transceiver Unit. The +15 V and one -15 V line are current limited to approximately 0.7 A before supplying the audio power amplifier in order not to disturb the function of the equipment in case of irregularities on the loudspeaker lines. For the same reason the current from the loudspeaker is returned in these -15 V vires and not via the "GND" wire. All other circuits are supplied from the +24 V and the second - 15 V voltage. To obtain the necessary regulation and isolation betveen the circuits, these voltages are stabilized in several small 0.1 A regulators, supplying \(+/-12 \mathrm{~V}\) and +6 V for receiver \(A F\)-circuits, \(+/-12 \mathrm{~V}\) and +6 V for transmitter AF -circuits and \(+/-12 \mathrm{~V}\) for the digital circuits. +5 V to the Control Board 600 is derived from +24 V by means of a switching regulator, capable of delivering 2 A . All functions on 601 are controlled by the microprocessor on 600 through a 3 wire serial interface. The 5 V microprocessor signals are level-shifted to the 12 V logical level used on 601 and converted to a l6-bit parallel code. 3 bits control the key selector and the input selector. Before the signals enter the selectors, they pass through the filters, vhere they are filtered, limited and shaped (keysignals only). The microphone signal further passes through the microphone amplifier where the gain can be set from 0 to 15 dB by means of a potentiometer. A delay circuit makes it possible to delay the positive edge of the tele\% key signal from 0 to 30 ms in steps of 3.33 ms . The negative edge remains unaffected. Accuracy of the delay time vill be within one period of the reference clock signal from the microprocessor ( 0.42 ms ). The selectors are controlled as follous:
\begin{tabular}{|c|c|c|}
\hline Hode & Keyselector & Inputselector \\
\hline AII/R3E & llandset/aux. & Hic./aux. \\
\hline \multicolumn{3}{|l|}{USB/LSB} \\
\hline CH & Horse & off \\
\hline FICH & llorse & Sinetone \\
\hline TELEX & Tele\% & Telex \\
\hline alaril send & Constant keyed & Sinetone \\
\hline ALARH TEST & off & Sinetone \\
\hline
\end{tabular}

In the \(A V / S S B\) modes a keying signal from the handset will open the microphone input, and a signal from the au\%. key input will open the au\%. input. If both keying inputs are activated, the analog signals will be mixed. The sinetone to the input selector is derived from a clocksignal produced by the microprocessor on 600 . The squarevave is converted in the square-to-sine converter circuit to a sinevave vith a frequency 16 times lover than the clock frequency. The sinetone frequency is 919 Hz in HCl mode and \(1300 \mathrm{~Hz} / 2200 \mathrm{~Hz}\) in the alarm-modes. From the input selector the signal is led to the compressor circuit, vhere it is levelled to a 0 dBr ( 0.775 V RISS) balanced signal before transmission to the Transceiver Unit. ^ check detector circuit informs the control board 600 when the input signal is compressed (in the \(-3 \mathrm{dBm}-0 \mathrm{dBm}\) range). From the key selcctor the signal is led to the debounce circuit, which will cancel any bounce on the edges of the keying signal within
approximately 10 ms from first level-shift. The signal is separated from the keyline to the Transceiver Unit by a class B driver stage. The signal is also transmitted to the control board 600 . The keyline also carries a frequency modulated signal from the Transceiver Unit to the Control Unit with information about the transmitter RF output power. The RX-RATE line carries a similar signal representing signal strength. These signals are amplified in two equal amplifiers before they continue to the control board 600 . The RX signal path on 601 starts \(w i t h\) a check-detector, which registrates if the balanced lines from the Transceiver Unit carries a signal greater than approx. 0.5 V R 1 S (nominal line level is 0.775 V RIS). The input amplifier converts the differential signal to a single signal of the same level before it is fed to the Squelch Board 602 if provided. When it returns from 602 (or from the bypass socket in PL2) it enters the AF-switch. Here it is possible to select either the RX signal or the sidetone from the shaping circuit. Both shaping and AF -suitch is controlled by the AF -output selector which combines RX/TX mode and keyline to obtain correct switch-timing (e.g. a 45 ms break-in time in CW and HCW modes). The clock reference is the same as for the telex key
 amplifier. The line output signal can be adjusted from 0 to appro\%. 2.4 V RIS ( +10 dBm ) by means of a potentiometer. The volume control is build around an 0 -bit digital-to-analog converter followed by a 20 dB attenuator in order to control the audio volume by the control board processor. The Re signal path further consists of a preamplifier, which also drives the earpiece, a speaker on/off switch and the audin power amplificr. The signal to the loudspeaker is monitored by a check-detector.




(1) \(+5 V \quad D C\)
6) \(+12 V \quad D C\)
(2) \(+12 V \quad D C\)
(7) \(-12 V \quad D C\)
(3) \(+6 \mathrm{~V} \quad \mathrm{DC}\)
(8) -12 V DV
(4) \(+12 V \quad D C\)
(9) \(-12 V \quad D C\)
5) \(+6 \mathrm{~V} \quad \mathrm{DC}\)

In self test \# 2 following is measured:
10) NOOS 1.8Vpp 800 Hz
11 กOOS. 2.2 Vpp
800 Hz
(12) NOOO 4.5 Vpp 800 Hz
(13) NOON 22vpp
800 Hz

In self test \# 4 following is measured:
(14) مOOS \(1.8 \mathrm{Vpp} \quad 800 \mathrm{~Hz}\)
(15) กOOM 1Vpp
800 Hz

The two signals must be in phase opposition.

SSB check
SSB-mode is selected. Key-in a TX frequency (the signal route between exciter and transmitter may be removed), talk into the microphone and check the signal in:
(16)
ca. 1-5Vpp
(15) ca. 1 Vpp
(17) \(0 \quad \sqrt{\text { keyed }} \quad \begin{gathered}+12 \mathrm{~V} \\ -12 \mathrm{~V}\end{gathered}\)

CW check
check that the morse key can activate the keyline 17 as above.

MCW check
(15) 1Vpp shaped when keyed from morse key.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 응ํ & \(\underline{0}\) &  & 읃잉 & \({ }_{\infty}\) & \(\cdots\) & N &  \\
\hline N్ల No & \[
\underset{\sim}{\sim}
\] & \begin{tabular}{l}
 \\

\end{tabular} &  & \(\stackrel{0}{n}\) & 앙 & － & 攵式式贰 \\
\hline  & \[
\underset{\text { Ñ }}{ }
\] & \begin{tabular}{l}
 \\

\end{tabular} & OM No & \(\stackrel{\sim}{\square}\) & 앛 & \(\stackrel{\text { N }}{\text { N }}\) &  \\
\hline  & \[
\begin{aligned}
& \dot{\dot{0}} \\
& \underset{\sim 1}{0} \\
& \dot{0}
\end{aligned}
\] & \begin{tabular}{l}
 \\
 \\

\end{tabular} & & & 0
0
0
0
-1 & & \\
\hline  & \[
\underset{\substack{\text { en } \\ \hline}}{ }
\] & \begin{tabular}{l}
 \\

\end{tabular} & & & & & \\
\hline  & \[
\stackrel{\infty}{\sim}
\] &  & i¢ & 嵒 &  & & \[
\begin{aligned}
& \text { 畄畄 } \\
& \text { 眰 }
\end{aligned}
\] \\
\hline  & 凹
\(\sim\)
\(\sim\)
－ & \begin{tabular}{l}
 \\

\end{tabular} &  & \[
\begin{aligned}
& \text { D } \\
& \text { 岂 } \\
& \text { Z } \\
& \text { 巴 }
\end{aligned}
\] & \[
\begin{aligned}
& \sum_{Z}^{\mathbb{Z}} \\
& \sum_{0}^{2} \\
& \underset{H}{H}
\end{aligned}
\] &  & \begin{tabular}{l}
붕붕웅 \\
－\({ }^{\circ} \mathrm{O}^{\circ} \mathrm{N}\)
\end{tabular} \\
\hline  &  &  & & & & & \\
\hline  & 号状 & \begin{tabular}{l}
 \\

\end{tabular} & 국 & \({ }_{-1}\) & \({ }_{\text {－}}^{\text {－}}\) & \({ }_{\text {c }}^{\sim}\) & 式留留名岕 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \mathrm{R} 78,80,140, \\
& 150,160
\end{aligned}
\] & 1.5 & kohm & －5\％ & 1／8W & MF & 500 & 315 & 00 \\
\hline \[
\begin{aligned}
& \mathrm{R} 79,82-83,86,89, \\
& 98,114,128,148, \\
& 156-157,164-165
\end{aligned}
\] & 100 & kohm & －5\％ & 1／8W & MF & 500 & 510 & 00 \\
\hline R84－85，107 & 1 & Mohm & n 5\％ & 1／8W & MF & 500 & 610 & 01 \\
\hline R88 & 39 & kohm & －5\％ & 1／8W & MF & 500 & 439 & 00 \\
\hline R90，96，115 & 27 & kohm & －5\％ & 1／8W & MF & 500 & 427 & 01 \\
\hline R93－94 & 47 & kohm & & & Pot． & 583 & 447 & 01 \\
\hline R99 & 56 & kohm & －5\％ & 1／8W & MF & 500 & 456 & 00 \\
\hline R105 & 47 & ohm & 5\％ & 1／8W & MF & 500 & 147 & 00 \\
\hline R109 & 12.1 & kohm & 1\％ & & MF & 511 & 412 & 10 \\
\hline R110，112，116 & 180 & kohm & －5\％ & 1／8W & MF & 500 & 518 & 00 \\
\hline R111 & 10 & kohm & & & MF & 511 & 410 & 00 \\
\hline R121 & 1.8 & kohm & －5\％ & 1／8W & MF & 500 & 318 & 00 \\
\hline R123 & 470 & ohm & 5\％ & 1／4W & Car． & 501 & 247 & 00 \\
\hline R126 & 82 & kohm & 5\％ & 1／8W & MF & 500 & 482 & 00 \\
\hline R127 & 18 & kohm & 5\％ & 1／8W & MF & 500 & 418 & 00 \\
\hline R136 & 33 & kohm & 5\％ & 1／8W & MF & 500 & 433 & 00 \\
\hline R139 & 10 & Mohm & 5\％ & 1／4W & Car． & 501 & 710 & 00 \\
\hline R141 & 1 & kohm & & & Pot． & 581 & 310 & 00 \\
\hline R152 & 390 & ohm & 5\％ & 1／8W & MF & 500 & 239 & 00 \\
\hline R153 & 14.0 & kohm & 1\％ & & MF & 511 & 414 & 00 \\
\hline R154 & 1.0 & kohm & 1\％ & & MF & 511 & 310 & 00 \\
\hline R155 & 15.0 & kohm & 1\％ & & MF & 511 & 415 & 00 \\
\hline R158 & 270 & ohm & 5\％ & 1／4W & Car． & 501 & 227 & 00 \\
\hline R161－162，166－167 & 619 & ohm & 1\％ & & MF & 511 & 261 & 90 \\
\hline R174 & 68 & ohm & 5\％ & 1．6W & MF & 525 & 168 & 00 \\
\hline R188 & 68 & kohm & 1\％ & 1／8W & MF & 500 & 468 & 00 \\
\hline \[
\begin{aligned}
& \mathrm{C} 1,10,43,73,76,80, \\
& 81,92-93,101,107, \\
& 117,120,134-137,140
\end{aligned}
\] & 1 & nF & 10\％ & 63 V & Cer． & 602 & 310 & 02 \\
\hline C2－4 & 100 & uF & & 25 V & w．alum． & 652 & 810 & 00 \\
\hline \[
\begin{aligned}
& C 5-6,53-57, \\
& 131-132,143,144
\end{aligned}
\] & & nF & 20\％ & 63 V & Polyes． & 622 & 447 & 01 \\
\hline C7 & 100 & uF & －10＋50\％ & 40 V & w．alum． & 651 & 810 & 04 \\
\hline C8 & 220 & uF & －10＋50\％ & 40 V & w．alum． & 651 & 822 & 02 \\
\hline \[
\begin{aligned}
& C 9,11-16,18-35, \\
& 37,58-60,65-66,74,
\end{aligned}
\] & 0.1 & uF & 20\％ & 63 V & Polyes． & 622 & 510 & 00 \\
\hline 77-79,83-84,87-89, & & & & & & & & \\
\hline 118－119，121－122， & & & & & & & & \\
\hline 133，145 & & & & & & & & \\
\hline
\end{tabular}

\section*{TECIINICAL DESCRIPTION}

PCB 602 SQUELCH BOARD
The Squelch Circuit is operating exclusively on the received AF signal knowing its spectral distribution with and without the presence of speech. The AF signal is fed to the AF switch, which carries out the squelch function by turning on and off the AF signal. The AF signal is also fed to the input of the High Pass Filter which prevents hum and lov frequency noise from disturbing the Detector. The high pass filter output signal is converted into a squarevave by the Schmitt Trigger, and the resulting signal is led to the input of the Detector. The Clock Generator produces a reference frequency for both Detector and Hold Circuit. In the presence of speech the mean frequency of the AF signal is lovered and becones smaller than the detector frequency limit set by the reference frequency and the A-selector. This causes the Detector via the Hold Circuit to turn on the AF signal. lithen speech ceases the AF signal consists of noise only uhich increases the mean frequency above the detector frequency limit. The detector now triggers the Hold Circuit, uhich turns off. the AF signal after a certain hold time, set by the reference frequency and the B-selector.



\section*{TEST POINTS FOR 602 SQUELCH BOARD}
(1) \(+12 V\)
(2) -12 V
(3) \(\simeq 16 \mathrm{~Hz} \overbrace{-1}^{\text {ca. } 62.5 \mathrm{mS}}\)
(4) +12 V WHEN SQUELCH OFF


ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ


N NNNNNNNN NONN~NO NON
\begin{tabular}{|c|c|}
\hline & \(\dot{v}\) is is \(\dot{0}\) \\
\hline & \(\stackrel{\sim}{入}\) \\
\hline  &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{33 з 3 3 3 3 \(\infty \infty \infty \infty \infty \infty \infty \infty\)} & \\
\hline &  \\
\hline & \\
\hline
\end{tabular}

Printed Circuit Board Complete 602




Complete 602
LF353
NE555
CD4520B
4013B
CD4029B
CD4066BC 1N4148
 D1-6

C1, 2
C3
C4, 9-12, 14
C5
C6
C7,13
C8
C15

PCB 603 LINE TRANSFORIIER BOARD
The Line Transformer Board is an optional available board which, when installed, is housed in the Control Unit and connected to 601-SK1. The Line Transformer Board, consisting of 3 transformers, converts the signals LINE OUT, AUX IN and TELEX IN to 600 ohms balanced lines, which enables external balanced peripherals to be connected to the equipment.

PCB 603 VERSION 1A.
LINE TRANSFORMER BOARD
VIEWED FROM COMPONENT SIDE





PCB 611 SYNTHESIZER BOARDS


INSIDE BACK COVER


TRP \(825 \times\) S/D BLOCK DIAGRAM, TRANSCEIVER UNIT



PARTS LIST FOR TRANSCEIVER UNIT
\begin{tabular}{lll}
108 & 600 & 10 \\
107 & 605 & 00 \\
107 & 562 & 01 \\
107 & 562 & 42 \\
107 & 600 & 10 \\
107 & 600 & 20 \\
107 & 600 & 90 \\
373 & 571 & 63 \\
623 & 668 & 01 \\
622 & 710 & 00 \\
106 & 602 & 90 \\
770 & 000 & 21
\end{tabular}

\section*{TECHNICAL DESCRIPTION}

PCB 611 SYNTHESIZER BOARD

\section*{45-75 MHz Synthesizer}

The 45-75 MHz Synthesizer is of the Fractional-N type and has a frequency resolution of 10 Hz . The 40.96 kHz reference frequency derived from the Master Oscillator 612 is fed to both Phase Comparator and Phase/Frequency Comparator. Likewise the output signal of the Loop Divider is fed to both comparators. When the loop is locked the Phase/Frequency Comparator is turned off and there exists no difference in frequency, but a definite and time varying phase difference between the reference signal and the Loop Divider output signal. The Phase Comparator compares the phase of the two signals and if it differs from the steady state value, the Phase Comparator will produce a correction signal, which via the Loop Filter corrects the frequency and phase of the VCO until the steady state phase difference is reestablished. If the phase difference exceeds the limits of the Phase Comparator, for example during change of the synthesizer output frequency, the Phase/Frequency Comparator is automatically turned on. It will override the Phase Comparator by producing a correction signal which via the Loop Filter will alter the frequency and phase of the VCO until the difference between the reference signal and the Loop Divider output signal is well inside the working limits of the Phase Comparator. After a short amount of time the Phase/Frequency Comparator is turned off and the Phase Comparator takes over again ending up with the steady state locked condition. The Loop Filter is capable of changing parameters when required by means of four diodes. When the loop is locked the diodes are turned off, and in this condition the Loop Filter is designed to prevent noise modulation of the VCO and to give the loop a good dynamic response. During a major change in the synthesizer output frequency the diodes are turned on, and in this case the Loop Filter is designed to give the loop a fast dynamic response. The VCO covers a frequency range of \(45-75\) MHz which is divided in 4 bands. The bands are selected by the microprocessor on the Transceiver Control Board 624 . The amplitude stabilized output signal of the VCO is split between two buffer amplifiers. One for the output signal of the synthesizer, which is led to the lst mixer on the Rx/Ex Signal Path!610) , the other buffer amplifier drives the input of the Loop Divider. The Transceiver Control Board determines the output frequency of the synthesizer by loading the corresponding division ratio into the Loop Divider and the Binary Accumulator. The integer part of the division ratio is stored in the Loop Divider and the fractional part is fed to the one input of the Binary Accumulator. The l2-bit Binary Accumulator enables 10 Hz resolution of the synthesizer output frequency. The output of the Binary Accumulator is fed back to one of it's own inputs and in that way added to the fractional division ratio fed to the other input. The sum is transferred to the output of the Binary Accumulator when it receives an Accumulator Clock Signal. This happens in every period of the loop divider output frequency. When the sum exceeds the maximum capacity (4095) of the Binary Accumulator, it produces an Accumulator Carry Signal, and the remainder of the contents is kept for the next addition. The carry signal increases the division ratio of the Loop Divider by one. The loop will respond to this increase by producing an output frequency
corresponding to the fractional division ratio. The time varying phase difference between the reference signal and the loop divider output signal, caused by the said increase in the division ratio, is a function of the fractional division ratio. This function is derived from the output of the Binary Accumulator and converted into a current by the DA-Converter. The current is fed to the Phase Comparator where it cancels the signal produced by the time varying phase difference and thus preventing modulation of the VCO. The frequency information, loaded by the microprocessor on the Transceiver Control Board 624 , is fed to the Ramp Current Generator, resulting in a current directly proportional to the output frequency of the synthesizer. As the Ramp Current controls the gain of the Phase Comparator, the dynamic response of the loop is held constant over the entire frequency range of the synthesizer. If the said cancellation of the time varying phase difference isn't complete, the Ramp Current Correction circuit measures the error at the Phase Comparator output and automatically adjusts the Ramp Current Generator until cancellation is obtained. Two signals derived from the Phase Comparator and the Phase/Frequency Comparator are combined in a check circuit with the check signals from the 43.6 MHz and 1.4 MHz Synthesizer resulting in a final check signal led to the Transceiver Control Board.

\subsection*{43.6 MHz Synthesizer}

The synthesizer used is of the fractional-N type, which refers to the fact that the smallest step in output frequency is not equal to the reference frequency but a fractional part of this. From the Master Oscillator 612]a l.28 MHz signal is led to the Reference Divider which divides the signal by 10 having a 128 kHz reference frequency at the input of the Phase/Frequency Comparator. The 128 kHz reference frequency and the output frequency of the Loop Divider are compared in the Phase/Frequency Comparator. When the loop is locked there exists no difference in frequency but a definite and time varying phase difference between the two signals. If the loop is out of lock the Phase/Frequency Comparator will produce a correction voltage which will alter the frequency and phase of the VCXO until the loop is back in the locked condition. The Loop Filter is designed to give the loop a good dynamic response and to stop noise modulation of the VCXO. The VCXO covers a frequency range of \(14.53333 \mathrm{MHz}+1.333 \mathrm{kHz} /-1 \mathrm{kHz}\). The output signal of the VCXO is fed to the Tripler where the frequency is multiplied by 3 , resulting in a synthesizer frequency of \(43.6 \mathrm{MHz}+4 \mathrm{kHz}-3 \mathrm{kHz}\). The signal from the Tripler is amplified in the Buffer Amplifier and the level-stabilized output signal is led to the 2nd Mixer on the Rx/Ex Signal Path 610 . Another signal derived from the Buffer Amplifier is fed to the input of the Loop Divider. A 7-bit Binary Accumulator is incorporated in order to obtain a fractional division ratio in the loop, giving a \(l \mathrm{kHz}\) step capability of the synthesizer output frequency. By loading the fractional division ratio into the input of the Binary Accumulator, the microprocessor on Transceiver Control Board determines the output frequency of the synthesizer. The other input of the Binary Accumulator is connected to its output. The two inputs are added and the sum is transferred to the output when the Binary Accumulator is clocked. The clock input is connected to the output of the Loop Divider. When the sum exceeds the maximum capacity (127) of the Binary Accumulator it produces an Accumulator Carry Signal which increases the ratio of the Loop Divider by one,
and the remainder of the accumulator contents is kept for the next addition. The loop responds to this increase by producing an output frequency corresponding to the fractional division ratio. As a result of the variation in the division ratio, the phase difference between the reference frequency and the output frequency of the Loop Divider will be varying and a function of the fractional division ratio. This function is derived from the output of the Binary Accumulator and converted into a voltage by the DA-converter. The output signal of the Phase/Frequency Comparator caused by time varying phase difference is canceled at the input of the Loop Filter by the output voltage of the DA-converter, and thus preventing modulation of the VCXO. The 128 kHz reference frequency and a signal derived from Phase/Frequency Comparator are combined in the Check Detector to give information of the synthesizer lock status.

\subsection*{1.4 MHz Synthesizer}

The synthesizer consists of a Loop Filter, a 5.6 MHz VCO, a Buffer Amplifier and a single integrated circuit which contains both Reference Divider, Loop Divider and Phase/Frequency Comparator. The division ratio of the Reference Divider and the Loop Divider are controlled by the microprocessor on the Transceiver Control Board 624 . A l. 28 MHz signal from the Master Oscillator 612 is fed to the input of the Reference Divider and divided by 3200, thus obtaining a reference frequency of 400 Hz as well as a frequency step size of 400 Hz for the synthesizer loop. The reference frequency and the Loop Divider output frequency are compared in the Phase/Frequency Comparator. In the locked condition there exists no difference between the two signals neither in frequency nor in phase. If a difference occurs, say during a change of the synthesizer output frequency, the Phase/Frequency Comparator will produce a correction voltage which will correct the frequency and phase of the VCO until the locked condition is obtained again. The Loop Filter is designed to give the loop a proper dynamic response and to prevent noise from modulating the VCO. The 5.6 MHz VCO covers the frequency range from 5.582 MHz to 5.612 MHz . The output signal of the VCO is amplified in the Buffer Amplifier and then split into two, one for the input of the Loop Divider and one for the Divide-by-4 circuit. The output frequency range of the Divide-by-4 circuit is 1.4 \(\mathrm{MHz}+3 \mathrm{kHz} / 4.5 \mathrm{kHz}\) and the frequency step size is 100 Hz . The output signal of the Divide-by-4 circuit is fed to the Output Filter where the harmonics of the signal are reduced and the exact output level is set. The output signal is led to the 3rd Mixer on the Rx/Ex Signal Path 610 . A check detector is incorporated to indicate the lock status of the synthesizer.





(1) -12 VDC
(2) +5 VDC
(3) +12 VDC
(4) OUTPUT 1.LO. 45-75Mhz synthesizer \(1,5 \mathrm{Vpp}\)
\begin{tabular}{r|r} 
SELF TEST \# & F OUT \\
\hline 9 & 45 Mhz \\
10 & 52.5 Mhz \\
11 & 52.5 Mhz \\
12 & 60 Mhz
\end{tabular}
\begin{tabular}{r|r} 
SELF TEST\# & F OUT \\
\hline 13 & 60 \\
MHIZ \\
14 & 67.5 Mhz \\
15 & 67.5 Mhz \\
16 & 75 \\
Mhz
\end{tabular}
(5) OUTPUT 2.LO. 43.6Mhz SYNTHESIZER

SELF TEST \# 17 F OUT \(=43.597 \mathrm{Mhz} 2 \mathrm{Vpp}\)
SELF TEST \# 18 F OUT \(=43.603 \mathrm{Mhz} 2 \mathrm{Vpp}\)
(6) OUTPUT 3.LO. 1.4 Mhz SYNTHESIZER

SELF TEST \# 20 F OUT \(=1.3955 \mathrm{Mhz} 650 \mathrm{mVpp}\)
SELF TEST\# 21 F OUT \(=1.403 \mathrm{Mhz} 650 \mathrm{mVpp}\)
(7) \(40,96 \mathrm{KHz}\) FROM MASTER OSCILLATOR
(8) \(1.28 \mathrm{Mhz} 5 \mathrm{~V} P \mathrm{~F}\) FROM MASTER OSCILLATOR
(9) SYNADR O (IC 23 PIN 5)
(10) SYNADR 1 (IC 23 PIN 6)
(11) SYNADR 2 (IC 23 PIN 7)
(12) SYNDATA 0 (IC 28 PIN 2)
(13) SYNDATA 1 (IC 28 PIN 1)
(14) SYNDATA 2 (IC 28 PIN 20)
(15) SYNDATA 3 (IC 28 PIN 19)
(16) SYNSTR 0 (IC 28 PIN 12)
(17)SYNSTR 1 (IC 42 PIN 9)
(18) SYNSTR 2 (IC 46 PIN 11 )

TIMING DIAGRAM


The strobe pulse is generated at each update of the frequency. e.g. the self test's \# 9 to 21. or by repeating the test by pressing "DIM MER DOWN".
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\neg\) & N & 스№tion & \％ & 9 & － &  & 우N & 앙 & ํ & 응ํㄱ \\
\hline \(\stackrel{\text { ® }}{\sim}\) & － &  & \(\stackrel{\text { N }}{ }\) & \(\stackrel{\text {－}}{\substack{\text { a }}}\) & 앙 & \begin{tabular}{l}
 \\

\end{tabular} &  & \(\underset{\sim}{\text { ® }}\) & バカ &  \\
\hline \[
\stackrel{\rightharpoonup}{\mathrm{O}}
\] & \[
\hat{O}
\] &  & \[
\underset{\infty}{\circ}
\] & 出 & in &  \(\infty \infty \infty \infty \infty \infty \infty \infty \infty\) & \[
\underset{\infty}{\circ} \underset{\infty}{\infty} \underset{\infty}{m}
\] & \[
\underset{\infty}{\text { O. }}
\] & \[
\underset{\text { © }}{\text { O. }}
\] &  \\
\hline
\end{tabular}

Printed Circuit Board Complete 611
呙
 IC5
IC6，12，19，23 \({\underset{47}{\text { IC7，}} 11,24,38 \text { ，}}^{2}\)

IC8，16，41，42 IC9， \(17,22,40\),
43
 วิํ Q1， \(32,37,40\) Q \(3,6,16,18\),
\(20-23,25-31\) \(Q 4,7-12,14,19\),
\(33,35,38,39\)

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
 \\
 \\
 \\
ㅇNㅇㅇㅇㅇㅋㅋㅋㅇㅋㅇㅇㅇ \\
in in
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}

\(\circ\)
0
in
N
N

\begin{tabular}{|c|c|}
\hline 88 & 앙 \\
\hline 으글 & N \\
\hline \[
{ }_{0}^{N} \underset{0}{n}
\] & N00 \\
\hline
\end{tabular}

 \(\dot{0}\)
\(\underset{\sim}{2}\)
ì
a
\(\dot{n}\)
\(\underset{\sim}{0}\)
\(\underset{\sim}{0}\)



3 3 з \(\stackrel{i}{N}\) \(\underset{\substack{2 \\ \hline}}{ }\) \(\underset{\substack{2 \\ 0}}{2}\)

 \(\stackrel{\infty}{\sim} \stackrel{\infty}{\sim}\) \(\infty\)
\(\stackrel{\infty}{0}\)
\(\stackrel{+}{+}\)
\(\underset{1}{1}\) \(\stackrel{\infty}{\sim} \stackrel{\infty}{\sim} \stackrel{N}{N}_{\infty}^{\infty} \stackrel{\infty}{\sim}\)
 \(-20+50 \%\) \(\stackrel{\infty}{-}\)
\(\stackrel{+}{-1}\)
 \(\mathrm{R} 44,124,132,188\)
\(\mathrm{R} 127,146\) R127，146 R121，146，154
R138
R144， R148 R157 891＇L9
 0
\(\infty\)
-1
0
\(\sim\)
\(\sim\)
\(\sim\) \(\stackrel{0}{\infty}\)

， 5
 \(48-54,68,76\),
\(80-82,84-85\), 93，101－111，113－115，


\section*{區區宸 \\ ino}


䘮區 웅

\section*{C8，205}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 앙 & 응 & ㅇ &  & 8 & － &  & ㅇㅇㅇㅇㅇㅇ－ㅇㅇ & 앙 & ㅇㅇㅇㅇㅇ & 앙 & 응욱ㅇㅇㅇㅇㅇㅇ \\
\hline \[
』
\] & \[
{\underset{\sim}{\sim}}_{\sim}^{\infty} \underset{\sim}{\infty}
\] & \[
\stackrel{O}{\mathrm{~N}}
\] & \[
{\underset{\sim}{n}}_{\sim}^{\infty} \underset{\sim}{\infty}
\] & \[
\underset{m}{\sim}
\] & \[
\text { HN }_{\text {N }}^{\text {N }}
\] & \[
\underset{\sim}{m}
\] &  & in &  & \({ }_{\text {N }}\) & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline in & in in & io & 옹 & 웅 & OiN & 응 &  in in in in in in in in & io & 옹ㅇㅇㅇ & io &  in \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 崄 & \[
\stackrel{\stackrel{\rightharpoonup}{\mathrm{O}} \stackrel{\mathrm{~L}}{\mathrm{~L}}}{ }
\] & 棺 & 丘号 & 血 & 侌 \({ }_{\text {¢ }}\) & 㞱 &  & 留 &  & 品 &  & 岂岂岂自 \\
\hline \(\underset{\sim}{3}\) & 3 & & \(\infty\) & & ® & \(\underset{\sim}{3}\) &  & \({ }^{\text {® }}\) & \(\infty \times \infty\) & － & \[
\underbrace{\infty}
\] & \(\infty \infty\) \\
\hline \(\cdots\) & ন & & & － & નー & \(\cdots\) &  & न & नうनう & न & न－ & え゙うनう \\
\hline
\end{tabular}
in \(\quad \underset{\sim}{\infty}\) in in
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 통 동 & \[
\underset{0}{\text { E }}
\] &  & \[
\begin{aligned}
& \underset{\mathbf{y}}{\mathbf{5}} \\
& \hline
\end{aligned}
\] & 長菛 & \[
\begin{aligned}
& \text { 툥 } \\
& \text { - }
\end{aligned}
\] & 閭長長長長長長長 & \[
\begin{aligned}
& \text { E } \\
& \text { O } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { E텽통통 } \\
& \text { 旨 }
\end{aligned}
\] & \({ }_{6}^{5}\) & 長長镸長長镸镸镸旨 \\
\hline \[
\stackrel{\sim}{N}^{\sim}
\] & 윽 & \[
\underset{\sim}{\infty} \underset{\sim}{\infty}
\] & \[
\underset{\sim}{n}
\] & 웅웋 & \[
\stackrel{m}{\dot{m}}
\] & No & \[
\begin{aligned}
& 0 \\
& i
\end{aligned}
\] & 윽NㄱㄱN & ㅇN & OONOMON \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline C39,144 & 6.8 nF & 1\% & 63 V & Microp. & 612 & 368 & 00 \\
\hline C56,145 & 47 nF & 10\% & 250 V & Polyes. & 624 & 447 & 01 \\
\hline C59,118,123,146 & 0.47 uF & 10\% & 63 v & Polyes. & 622 & 547 & 01 \\
\hline C61,79 & 3.3 pF & +/-0.25pF & 63 V & NPO & 602 & 033 & 01 \\
\hline C62,64,66,74,100 & 6.8 UF & \(-20+50 \%\) & 25 V & Tan. & 652 & 668 & 00 \\
\hline C63 & 82 pF & 2\% & 63 V & N150 & 602 & 182 & 01 \\
\hline C67 & 100 pF & 2\% & 63 V & N150 & 602 & 210 & 01 \\
\hline C69 & 27 pF & 2\% & 63 V & N150 & 602 & 127 & 01 \\
\hline \[
\begin{aligned}
& \text { C71-72,152,155, } \\
& 165
\end{aligned}
\] & 47 nF & 10\% & 63 V & Polyes. & 622 & 447 & 00 \\
\hline C73 & 18 pF & 2\% & 63 V & N150 & 602 & 118 & 01 \\
\hline C77 & 6.8 pF & +/-0.25pF & 63 V & N150 & 602 & 068 & 01 \\
\hline C87,153 & 82 pF & 2\% & 63 V & N150 & 602 & 182 & 00 \\
\hline C94,161 & 33 nF & 20\% & 63 V & Polyes. & 622 & 433 & 00 \\
\hline Cl16 & 4.7 nF & 1\% & 63 V & Microp. & 612 & 347 & 00 \\
\hline C117 & 680 pF & 1\% & 125 V & Microp. & 613 & 268 & 00 \\
\hline \[
\begin{aligned}
& \mathrm{C} 121,122,127,128, \\
& 137,140,156
\end{aligned}
\] & 4.7 nF & 10\% & 100 V & Cer. & 602 & 347 & 02 \\
\hline C124,130 & 15 nF & 20\% & 63 V & Polyes. & 622 & 415 & 01 \\
\hline C125 & 56 pF & 2\% & 63 V & N150 & 602 & 156 & 00 \\
\hline Cl26 & 1.8 nF & 1\% & 125 V & Microp. & 613 & 318 & 00 \\
\hline C129 & 100 pF & 2\% & 63 V & N150 & 602 & 210 & 00 \\
\hline C131,208 & 2.7 pF & +/-0.25pF & 63 V & NPO & 602 & 027 & 00 \\
\hline C132 & 180 pF & 1\% & 500 V & Microp. & 615 & 218 & 00 \\
\hline Cl3 & 220 pF & 1\% & 125 V & Microp. & 613 & 222 & 00 \\
\hline C134,136 & 220 pF & 10\% & 63 V & Cer. & 602 & 222 & 00 \\
\hline C135 & 22 nF & 20\% & 63 V & Polyes. & 622 & 422 & 00 \\
\hline C149 & 10 nF & 20\% & 63 V & Polyes. & 622 & 410 & 01 \\
\hline C154 & 1.2 nF & 1\% & 125 V & Microp. & 613 & 312 & 00 \\
\hline C162 & 27 pF & 2\% & 63 V & N150 & 602 & 127 & 00 \\
\hline C166 & 0.33 uF & 20\% & 63 V & Polyes. & 622 & 533 & 01 \\
\hline C168-203 & 1 nF & +/-10\% & 100 V & Cer. & 603 & 310 & 00 \\
\hline C204 & 2.2 uF & 20\% & 25 V & Tan. & 652 & 622 & 02 \\
\hline C206 & 47 pF & 2\% & 63 V & N150 & 602 & 147 & 00 \\
\hline C207 & 330 pF & 10\% & 63 V & Cer. & 602 & 233 & 00 \\
\hline L1, 2, 9,10,15 & 10 uH & & & & 740 & 110 & 01 \\
\hline L3, 5, 12, 17, 20 & 100 uH & & & & 740 & 210 & 07 \\
\hline L4 & Var. & & & Coil & 103 & 577 & 02 \\
\hline L6 & Var. & & & Coil & 103 & 577 & 32 \\
\hline L7 & var. & & & Coil & 103 & 577 & 22 \\
\hline L8 & var. & & & Coil & 103 & 577 & 12 \\
\hline L11,16 & 22 uH & & & & 740 & 122 & 03 \\
\hline L13,14 & var. & & & Coil & 103 & 577 & 52 \\
\hline L18 & var. & & & Coil & 103 & 577 & 62 \\
\hline L19 & 220 uH & & & & 740 & 222 & 01 \\
\hline
\end{tabular}


REPLACEMENT FOR IC31 SAA1059

67005900
67003200
67101100
67005900
67101100
6 06

85990400
57002800
57002800
57001800
57002400
57002400

\section*{\begin{tabular}{l}
\(\circ\) \\
\hline- \\
0 \\
ㅇ \\
N \\
+ \\
\(+\infty\)
\end{tabular}}

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{33333 NNNN} \\
\hline \\
\hline in \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline \\
\hline \[
\begin{aligned}
& n \\
& \underset{\sim}{\infty} \\
& \underset{\sim}{\infty}
\end{aligned}
\] \\
\hline
\end{tabular}

\(N\)
\(N\)
0
0
0 －
\(n\)
\(n\)
\(n\)
\(n\)
足足允允允足
COUNTER
気䛼䛼界䛼
TRANS


\section*{PCB 612/613/614 MASTER OSCILLATOR}

The three Master Oscillators all consist of the same circuits but have different frequency stabilities determined by the 10.24 MHz Temperature Compensated Crystal Oscillator (TCXO) used. The output signal of the TCXO is split between two reference dividers. One for the \(45-75 \mathrm{MHz}\) Synthesizer and one for the 43.6 and 1.4 MHz Synthesizers. The Reference Divider, 45-75 MHz Synthesizer, divides the 10.24 MHz TCXO signal by 250 having a 40.96 kHz reference frequency at two outputs.

The Reference Divider, 43.6 and 1.4 MHz Synthesizer, divides the 10.24 MHz TCXO signal by 8 , obtaining a 1.28 MHz signal fed to two outputs. The output signals of the divider are fed to the Check Detector to detect the presence of both. The resulting check signal MO-Check is via the Synthesizer Board 611 fed to the Transceiver Control Board 624.

For Master Oscillator 613 a heater (TCXO Heater 699) is incorporated in order to keep the TCXO ambient temperature above 0 deg. Celcius.

\section*{PCB 615/616 MASTER OSCILIATAR}

Master Oscillator 615 and 616 produces enhanced frequency stabilities of \(+/-0.35 \mathrm{ppm}\) and \(+/-0.1 \mathrm{ppm}\) respectively. A highly stable oven controlled crystal oscillator (PCB 608 or PCB 609) is mounted in a shielding box on top of the Master Oscillator board. On Master Oscillator 615, PCB 608 is mounted and on 616, \(\operatorname{PCB} 609\) is mounted, giving the higher stability.
The crystal oscillators produces a temperature stable 20.480000 MHz signal giving a total frequency stability of less than either 10 Hz or 3 Hz for the Transceiver.

The oscillator signal is led to PCB \(615 / 616\) where it is divided by 2. This 10.24 MHz signal is split between to divider chains dividing with 250 and 8 resulting in two reference frequencies of 40.96 kHz and 1.28 MHz respectively.

The 40.96 kHz signal is led to PL5 and PL8 and is used as a reference frequency for the 45 to 75 MHz synthesizer. Likewise the 1.28 MHz signal is led to PL6 and PL9 and is used as reference frequencies for the 43.6 MHz and the 1.4 MHz synthesizer.

The output signals of the two divider chains are monitored and combined in a check detector, producing a check signal (MO-Check) which via Synthesizer Board 611 is led to the Transceiver Control Board 624. The check signal is used during self-test.


nted Circuit Board Complete \(612 \quad 10756121\)
茄
MC74HCOON
MC74HC161N
LM78L12ACP
LM78L05ACP
BC557B BC547B 1N4148 84005470 83041480

응ㅇㅇㅇㅇㅇㅇ

 \begin{tabular}{l}
0 \\
0 \\
0 \\
0 \\
\multirow{2}{n}{} \\
\multirow{1}{1}{}
\end{tabular}

 TT OLS ع8\＆



\(\mathrm{C} 1,2,4\)
C3， 7,17
C5
C6， 8
C9
C10
C11
C12－16 \(\vec{H}\)
「in
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline IC1， 7 & MC74HCOON & & & & 850 & 740 & 04 \\
\hline IC2，4，6 & MC74HC161N & & & & 857 & 416 & 10 \\
\hline IC3 & LM78L12ACP & & & & 850 & 741 & 20 \\
\hline IC5 & LM78L05ACP & & & & 850 & 780 & 52 \\
\hline Q1 & BC557B & & & & 840 & 055 & 70 \\
\hline 22 & BC547B & & & & 840 & 054 & 70 \\
\hline D1－4 & 1N4148 & & & & 830 & 414 & 80 \\
\hline R2－3，7 & 1 kohm & 5\％ & 1／8W & MF & 500 & 310 & 00 \\
\hline R4 & 100 kohm & 5\％ & 1／8W & MF & 500 & 510 & 00 \\
\hline R5 & 180 ohm & 5\％ & 1／4W & Car． & 501 & 218 & 00 \\
\hline R6，9， 11 & 10 kohm & 5\％ & 1／8W & MF & 500 & 410 & 00 \\
\hline R8 & 330 kohm & 5\％ & 1／8W & MF & 500 & 533 & 00 \\
\hline R10 & 47 kohm & 5\％ & 1／8W & MF & 500 & 447 & 00 \\
\hline C1，2，4 & 6.8 uF & \(-20+50 \%\) & 25V & Sol．al． & 652 & 668 & 01 \\
\hline C3，7，17 & 100 pF & \(2 \%\) & 63 V & N150 & 602 & 210 & 00 \\
\hline C5 & 22 uF & 20\％ & 25 V & Tan． & 652 & 722 & 00 \\
\hline C6， 8 & 0.1 uF & 10\％ & 63 V & Polyes． & 622 & 510 & 00 \\
\hline C9 & 0.33 uF & 20\％ & 63 V & Polyes． & 622 & 533 & 01 \\
\hline C10 & 10 nF & －20＋50\％ & 63 V & Cer． & 602 & 410 & 01 \\
\hline C11 & 150 pF & 2\％ & 63 V & N150 & 602 & 215 & 00 \\
\hline C12－16 & 0.47 UF & 10\％ & 63 V & Polyes． & 622 & 457 & 01 \\
\hline L1 & 33 uH & & & & 740 & 133 & 01 \\
\hline ГCXO & 10.24 MHz & & & & 383 & 570 & 11 \\
\hline PL5，6，8， 9 & 2 POL & & & & 750 & 001 & 45 \\
\hline PL7 & 2 POL & & & & 750 & 001 & 46 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(\underset{0}{ }\) & \(\underset{\sim}{\sim}\) & －1 \\
\hline \[
\underset{\sim}{\underset{\sim}{n}}
\] & 옹 & \[
\begin{aligned}
& \text { on } \\
& \text { in }
\end{aligned}
\] \\
\hline \[
\stackrel{O}{\underset{N}{N}}
\] & \[
\underset{\sim}{\infty}
\] & - \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline  &  \\
\hline  &  \\
\hline  &  \\
\hline
\end{tabular}
MC74HCOON MC74HC161N LM78L12ACP
LM78L05ACP BC557B
1N4148
EEEEEE




\section*{染}


\section*{숭
웅}
TCXO HEATER PCB 699 PL5， \(6,8,9\)
PL7
 ..... \(\circ\)
O
-
 ..... \(\stackrel{\infty}{-\infty}\)
\[
\begin{aligned}
& \text { Q1 } \\
& \text { Q2 } \\
& \text { R1 } \\
& \text { R2,4 } \\
& \text { R3 } \\
& \text { R5 } \\
& \text { R6-13 } \\
& \text { R14-21 }
\end{aligned}
\]C1-2




PCB 615/615 REFERENCE DIVIDER
VERSION A1 DIAGRAM
PARTS LIST FOR PCB 608 ／ 609 MASTER OSCILLATOR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  & \begin{tabular}{l}
ㅇํㅇㅇㅇㅇㅇํ 우 \\
 \\
 \\
 ふふふのぁ \\
 \(\sum_{n} \sum_{n} \sum_{n} \sum_{n} \sum_{n}^{0}\) \\

\end{tabular} &  &  & \begin{tabular}{l}
ㅇํㅇํ 응 믕후 \\
 \\
 \\
 \\
 ふ \(\sum_{0} \sum_{\infty} \sum^{2}\)
\end{tabular} &  &  &  \\
\hline  &  &  &  &  & \[
\begin{aligned}
& \text { 으웅 } \\
& \text { oin } \\
& \text { in in }
\end{aligned}
\] & \begin{tabular}{l}
\(\circ\) \\
\hline 0 \\
0 \\
io \\
\(i\)
\end{tabular} &  &  &  &  \\
\hline
\end{tabular}

PARTS LIST FOR PCB 608 ／ 609 MASTER OSCILLATOR

 CAP SMD 7．3X6 220NF
TANTAL D 22UF 16 V SMD TANTAL D 22 UF 16 V SMD
 CAP SMD 0805 220P NPO SMD CHOKE－B 1．2UH 10\％ \％OL HNOOL a－зyOHO OWS SENSOR LM35CH IC LF353 2XOPAM／JFET SO8 RIBBON CABLE PCB712／PCB713 SMD RESISTOR 3K9 5\％
\(\qquad\) 67008200 67700100 \(602 x x \times x x\)
67003200 \begin{tabular}{l}
\(\circ\) \\
\hline 0 \\
\hline 0 \\
\hline 0 \\
\hline
\end{tabular} 67007100

\section*{67102000}
 O左 74100200 \(\circ\)
\(\frac{0}{\circ}\)
\(\frac{0}{4}\)
 37378501 o
N
O
in
PARTS LIST FOR PCB 615 / 616 REFERENCE DIVIDER
3POL PLUG W.FRICT LOCK
2POL MOLEX PCB CON. 2POL MOLEX W.FRICTION LOCK TRANS SOT23 BC857B 45V SMD RESISTOR 180E 5\%
SMD RESISTOR 1K0 5\%
 SMD RESISTOR 330K 5\% 6 POL MICRO MATCH5000146 84710000 57005400
57001800 57002800
57004100 00ヤt00<s 29100IS

PARTS LIST FOR PCB 615 / 616 REFERENCE DIVIDER

\section*{PRINTED CIRCUIT BOARD COMPLETE}
CAP SMD 1210 100NF 10\% X7R
픈
-m n

\(\omega\)

~ DIODE SOD80 BZV55C6V2 ZENER
IC LM78L05 VOLTREG
IC LM78L12 VOLTREG
IC LM79L12 VOLTREG COUNTER, 4-BIT 74HC161T QUAD 2-INPUT NAND 74HCOOT DUAL D-TYPE FLIP-FLOP 74AC74



67102200
62254701
65274702
67004900
67005500
83710000

\section*{0080عLE8} 85078052

85980000 \(\qquad\) 74103400

\section*{TECHINICAL DESCRIPTION}

\section*{PCB 618 RECEIVER SIGNAL PATH}

The antenna RF signal is led through coax connector SKl to the protection circuit, which protects the receiver against excessive RF voltages and static electricity discharges, appearing on the antenna. Through the switchable attenuator the RF signal is led to the preselector consisting of eleven fixed-tuned bandpass filters. The bandpass filters covers the frequency bands \(10-405 \mathrm{kHz}, 405-527 \mathrm{kHz}, 527-1600 \mathrm{kHz}, 1.6-4 \mathrm{HHz}, 4-5.246 \mathrm{MHz}, 5.246-7.27 \mathrm{HHz}\), \(7.27-10.383 \mathrm{HHz}, 10.383-14.695 \mathrm{HHz}, 14.695-19.571 \mathrm{HHz}, 19.571-24.424 \mathrm{HHz}\), \(24.424-30 \mathrm{MHz}\). A change in receiver frequency will be followed by automatic selection from among the bandpass filters. The automatic selection is controlled from the Transceiver Control Board 624 via the serial data bus. The RF signal goes via the suitchable RF amplifier to the high level double balanced Schottky diodes mixer, where it is mixed with the \(45-75 \mathrm{HHz}\) synthesizer signal from the Synthesizer Board 611 to generate the first intermediate frequency signal of 45 FW zz . Before the signal is applied to the first mixer, the signal level is detected by the broadband detector. The 45 IHz IF signal is amplified in the grounded gate JFET amplifier and then filtered in the 45 lHz double sideband crystal filter, determining the overall Afl selectivity. Before being fed to the 2nd mixer, the IF signal is passing through the \(H O S F E T\) amplifier which has a variable gain controlled by the delayed AGC voltage. The 2 nd mixer converts the 45 fliz IF signal to the 1.4 IHIz IF signal by mixing with a 43.6 NHz synthesizer signal from the Synthesizer Board 611 . After amplification in the grounded gate JFET amplifier, the 1.4 Hitz signal is fed to the Information filter bank. Depending on the version (i.e. erystal filter options) and the selected mode, the \(1.4 \mathrm{f} \boldsymbol{\mathrm { H }} \mathrm{z}\) signal is routed through one of the filters X 2 , \(\mathrm{X3} 3, \mathrm{X4} \times\),5 or the wide filter, controlled by the Transceiver Control Board 624 via the serial data bus. The nov filtered 1.4 fliz signal is amplified in the 1.4 HHz amplifier strip IC4, 014 and 015 . The voltage gain of the amplifier strip is controlled partly by the AGC voltage applied to IC4 and partly by the control line "IF-GAIN", which, when in logical high condition, increases the gain of Q14 vith approx. 8 dB . From the IF strip the signal is fed to the Signal Detector ICG. The integrated circuit of the Signal Detector contains a balanced mixer and a high gain limiting amplifier. The IF signal is applied to the one input port of the mixer. In the modes H3E and H2A, the IF signal is also fed to the amplified input. This signal is amplified and clipped to constant amplitude and internally connected to the other input port of the mixer vhere it is mixed with the modulated signal. The difference frequency contains the vanted AF signal. In other modes but H 3 E and H 2 A a 1.4 FHz signal, derived from the Synthesizer Board 611, is applied to the amplifier input. The unbalanced AF signal is filtered and converted to a balanced signal before it is fed to the flat cable connector PLl.

From the IF strip the signal is also fed to the AGC Detector consisting of two transistors in the integrated array IC23. The signal, uhich is now rectified to a DC voltage, is applied to the AGC Timing Circuit. The AGC voltage from the AGC Timing Circuit controls the overall gain of the receiver. The AGC voltage is also fed to the Transceiver Control Board 624 , where it is used in
self test routines and, by means of a voltage to frequency converter, fed to the Control Unit controlling the signal strength meter on the front panel. then manual gain control (MGC) is selected the Transceiver Control Board 624 generates a DC voltage which is fed to the receiver signal path instead of the AGC voltage. Subdiagram 5 shows the control circuits for the board and Subdiagram 6 shous the interface circuits to the serial data busses.








(1) +15 VDC
(2) \(-15 V D C\)
(3) \(+12 V D C\)
4) \(+5 V D C\)
(5) \(+6.8 V D C\)
(6) SELF TEST \# 22 7V ——"- 23-24 2.9V ——"- 25-30 9.8V
(7) 8) 9 10 (11) ONLY FOR USE WITH SIGNAL GENERATOR
(12) SELF TEST \# \(25 \quad 50 \mathrm{~m} \mathrm{~V}_{\mathrm{pp}}\) ——"—— 26-30 40 mV pp
(13) SELF TEST \# \(25-30 \quad 30 \mathrm{mV} \mathrm{Vp}\)
14) SELF TEST \# 25-30 \(450 \mathrm{mV} \mathrm{V}_{\text {pp }}\) SINEWAVE 1.4 MHz
(15) SELF TEST \# 22-30 650 mV Pp —"一 1.4 MHz
(16) SELF TEST \# \(25 \quad 1.7 \mathrm{~V}_{\mathrm{Pp}}-1 \mathrm{kHz}\)



 0
\(\infty\)
-
-
-
0
0
\(m\)
\(\infty\)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline D81 & \multicolumn{4}{|l|}{Bzx79C6V8} & 832 & & 80 \\
\hline VR1 & \multicolumn{4}{|l|}{NEON LAMP} & 722 & 000 & 00 \\
\hline X1 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} & 383 & 571 & 01 \\
\hline x2 & & & & & 385 & 112 & 03 \\
\hline RL1-4 & & \multicolumn{3}{|l|}{} & 780 & 000 & 25 \\
\hline RL5 & Relay & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { DIL } \\
& \text { DR-12V }
\end{aligned}
\]} & 780 & 000 & \\
\hline \[
\begin{aligned}
& \mathrm{R} 1,204,218,223, \\
& 224,228,241,242, \\
& 244
\end{aligned}
\] & 100 kohm & 5\% & 1/8W & Car. & 500 & 510 & 00 \\
\hline \multicolumn{8}{|l|}{\[
\begin{aligned}
& \mathrm{R} 2,3,8,15,21,40, \\
& 41,117,120,124- \\
& 125,133,138,144, \\
& 148,152,154,157, \\
& 160,171,179,186, \\
& 201,216
\end{aligned}
\]} \\
\hline R4,5 & 220 ohm & 5\% & 1.5W & MO & 544 & 222 & 00 \\
\hline R6 & 75 ohm & 5\% & 5W & MO & 547 & 175 & 00 \\
\hline \multicolumn{8}{|l|}{R7,13,18,26,
\(118,121,203\)} \\
\hline R9 & 68 ohm & 5\% & 1/4W & Car. & 501 & 168 & 00 \\
\hline R10 & 82 ohm & 5\% & 1/4W & car. & 501 & 182 & 00 \\
\hline R11,12 & 226 ohm & 1\% & 1/4W & MF & 511 & 222 & 60 \\
\hline R14,42,182 & 560 ohm & \(5 \%\) & 1/8W & \({ }_{\text {MF }}\) Car. & & 210 & 00 \\
\hline R16 & 100
68
ohm & 1\% & \(1 / 4 \mathrm{~W}\)
1.5 W & MF & 511 & 2168 & 00
00 \\
\hline R19,20 & 120 kohm & 5\% & 1/8W & Car. & 500 & 512 & 00 \\
\hline R22,207,233 & 47 kohm & 5\% & 1/8W & Car. & 500 & 447 & 00 \\
\hline \[
\begin{aligned}
& \mathrm{R} 23,61,106,170, \\
& 184,226
\end{aligned}
\] & 4.7 kohm & 5\% & 1/8W & Car. & 500 & 347 & 00 \\
\hline R24, 32, 50-59 & 470 ohm & 5\% & 1/4W & Car. & 501 & 247 & 00 \\
\hline R25 & 56 ohm & 5\% & 1.5W & MO & 544 & 156 & 00 \\
\hline \[
\begin{aligned}
& \mathrm{R} 27,71,164,222, \\
& 234,240
\end{aligned}
\] & 33 kohm & 5\% & 1/8W & Car. & 500 & 433 & 00 \\
\hline \[
\begin{aligned}
& \mathrm{R} 28,29,127,175, \\
& 188,208,247,249
\end{aligned}
\] & 1.8 kohm & 5\% & 1/8W & Car. & 500 & 318 & 00 \\
\hline R30,66 & 15 kohm & 5\% & 1/8W & Car. & 500 & 415 & 00 \\
\hline R31 & 2.2 kohm & 5\% & 1/4W & Car. & 501 & 322 & 00 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline C1,4-6, 8, 9, & 0.1 uF & 10\% & 63V & Polyes. & 622 & 510 & 00 & C35 & 620 & & 1\% & 250 V & Polyst. & 614 & 262 & 00 \\
\hline 12-17,21,27,44, & & & & & & & & C36,279 & 910 & pF & 1\% & 500 V & Polyst. & 615 & 291 & 00 \\
\hline 69-72,87-92,97, & & & & & & & & C37,104 & 1.3 & nF & 1\% & 160 V & Polyst. & 613 & 313 & 00 \\
\hline 105,109-112,116, & & & & & & & & C40,93,256 & 1.2 & nF & 1\% & 500 V & Polyst. & 615 & 312 & 00 \\
\hline 117,132,133,140, & & & & & & & & C41,107,157,198 & 56 & pF & 2\% & 63V & N150 & 602 & 156 & 00 \\
\hline 145,151,166,172- & & & & & & & & C42,53 & 33 & pF & 2\% & 63V & N150 & 602 & 133 & 01 \\
\hline 174,176-178,180, & & & & & & & & C43,275 & 330 & pF & 1\% & 500 V & Polyst. & 615 & 233 & 00 \\
\hline 185,190,192,194, & & & & & & & & & & & & & & & & \\
\hline 201-203,205,211, & & & & & & & & & 120 & pF & 2\% & 63 V & N150 & 602 & 212 & 00 \\
\hline 215,218-221,224, & & & & & & & & \[
222,223,228
\] & & & & & & & & \\
\hline \[
\begin{aligned}
& 226,227,231,233, \\
& 238,239,243-247,
\end{aligned}
\] & & & & & & & & & & & & & & & & \\
\hline \[
\begin{aligned}
& 238,239,243-247, \\
& 249,251,254,258,
\end{aligned}
\] & & & & & & & & \[
\begin{aligned}
& \mathrm{C} 49,52,77,229, \\
& 253
\end{aligned}
\] & 470 & pF & 1\% & 630 V & Polyst. & 615 & 247 & \\
\hline 261,262,266,267, & & & & & & & & & & & & & & & & \\
\hline 269,278,285,289- & & & & & & & & C51,62,154,164, & 47 & pF & 2\% & 63V & N150 & 602 & 147 & 00 \\
\hline \[
\begin{aligned}
& 292,300,301,304- \\
& 315,320,324,325,
\end{aligned}
\] & & & & & & & & 318 & & & & & & & & \\
\hline 327,329,330 & & & & & & & & C57,113,138 & 0.33 & & 20\% & 63V & Polyes. & 622 & 533 & 01 \\
\hline C2, 3 & 0.22 uF & 10\% & 250V & Polyes. & 624 & 522 & 01 & \[
\begin{aligned}
& \text { C58, 130, 131, 135, } \\
& 139,210
\end{aligned}
\] & 2.2 & uF & & 25V & Sol. al. & 652 & 622 & 03 \\
\hline \[
\begin{aligned}
& C 7,56,68,181, \\
& 270,277,288
\end{aligned}
\] & 22 nF & 10\% & 63 V & Polyes. & 622 & 422 & 00 & & & & & & & & & \\
\hline & & & & & & & & \[
C 59,106,115,134,
\]
\[
280,281,286
\] & 6.8 & uF & 20\% & 25 V & Tan. & 652 & 668 & \\
\hline C10,11 & 4.7 nF & & 63 V & Cer. & 602 & 347 & 02 & & & & & & & & & \\
\hline C18 & 2.7 nF & 10\% & & Cer. & 602 & 327 & 00 & C61 & 18 & pF & 2\% & 63 V & N150 & 602 & 118 & 00 \\
\hline C19,64,65,67 & 15 nF & 20\% & 63 V & Polyes. & 622 & 415 & 01 & & & & & & & & & \\
\hline & & & & & & & & C66,83,96, & 10 & nF & 10\% & 63V & Polyes. & 622 & 410 & 01 \\
\hline \[
\begin{aligned}
& C 20,114,129, \\
& 142,150,303
\end{aligned}
\] & 0.47 uF & 10\% & 63V & Polyes. & 622 & 547 & 01 & \[
\begin{aligned}
& 118-128,137,175 ; \\
& 182,188,191,195,
\end{aligned}
\] & & & & & & & & \\
\hline & & & & & & & & 204,206-209,212, & & & & & & & & \\
\hline C22,25,63,85 & 33 nF & 20\% & 63 V & Polyes. & 622 & 433 & 00 & 213,214,217,230, & 34, & & & & & & & \\
\hline C23,24 & 47 nF & 10\% & 63 V & Polyes. & 622 & 447 & 00 & 237,240,242,248, & & & & & & & & \\
\hline C26 & 68 nF & 20\% & 63 V & Polyes. & 622 & 468 & 00 & \[
259,268,282,284,
\] & & & & & & & & \\
\hline C28,38,149,163, & 150 pF & 2\% & 63V & N150 & 602 & 215 & 00 & 321,322,328 & & & & & & & & \\
\hline 170,183,200, & & & & & & & & C75,159,162,165, & 15 & pF & 2\% & 63V & N150 & 602 & 115 & 00 \\
\hline 225,326 & & & & & . & & & \[
167,168,196
\] & & & & & & & & \\
\hline C29,98,235,257 & 220 pF & 1\% & 500 V & Polyst. & 615 & 222 & 00 & C78 & 560 & & 1\% & 500V & Polyst. & 615 & 256 & 00 \\
\hline C30,60 & 270 pF & 1\% & 500 V & Polyst. & 615 & 227 & 00 & C79,276 & 820 & pF & 1\% & 500 V & Polyst. & 615 & 282 & 00 \\
\hline & & & & & & & & C80,82,103 & 1 & nF & 1\% & 500 V & Polyst. & 615 & 310 & 01 \\
\hline C31,50,76,100, & 390 pF & 1\% & 500V & Polyst. & 615 & 239 & 00 & C81 & 1.5 & & 1\% & 500 V & Polyst. & 615 & 315 & 00 \\
\hline 101 & & & & & & & & C84 & 5.6 & & 1\% & 125 V & Polyst. & 613 & 356 & 00 \\
\hline & & & & & & & & C94,255 & 2.2 & & 1\% & 125 V & Polyst. & 613 & 322 & 00 \\
\hline C32 & 2.7 nF & 1\% & 125 V & Polyst. & & & & C95
C 102 & \[
8.2
\] & & 1\% & 125 V
500 V & Polyst. & 613 & 382
275 & \\
\hline \[
\begin{aligned}
& \mathrm{C} 33,47,48,74,99, \\
& 169,236
\end{aligned}
\] & 100 pF & 2\% & 63 V & N150 & 602 & 210 & 00 & C108,156 & 22 & pF & 2\% & 63 V & N150. & 602 & 122 & 00 \\
\hline C34,39,55,73 & 82 pF & 2\% & 63V & N150 & 602 & 182 & 00 & & & & & & & & & \\
\hline
\end{tabular}
PARTS.LIST FOR RECEIVER SIGNAL PATH BOARD 618 VERSION A7


\section*{TECHNICAL DESCRIPTION}

\section*{PCB 619 EXCITER SIGNAL PATH}

The exciter converts the AF signal to a RF signal of the right frequency, level and modulation. The frequency conversion is controlied by the exciter Synthesizer Board 6ll. The balanced AF signal with a level of \(0 \mathrm{dBm} / 600\) ohm from Audio Processing Board 601 is led to the double balanced mixer IClO. The 1.4 fHz LO signal from the Synthesizer Board 611 is amplified in the limiter and applied to the mixer producing a 1.4 fHz double sideband suppressed carrier output signal which is filtered in the 1.4 HHz lower sideband crystal filter. The 1.4 HHz LO signal amplified in the 1.4 HHz Carrier Amp. and the output signal of the crystal filter amplified in the 1.4 MHz Sideband Amp. are adjusted by two attenuators and combined in the common 1.4 NHz Amp. The setting of the attenuators depends on the selected operation mode and is controlled by the Transceiver Control Board 624 via the serial-to-parallel converter ICl and IC2. In this vay the peak-to-peak voltage of the combined signal is held independent of the operation mode. The combined 1.4 fHz signal is applied to a passive double balanced mixer where it is mixed with a 43.596 FHz signal from the Synthesizer Board 611 producing a IF frequency of 44.996 MHz . The IF signal is amplified in the 45 lHzz Amp. l, filtered in the 45 HHz monolithic crystal filter and further amplification takes place in 45 lllz Amp. 2. The IF signal is then led to the ALC attenuator which is the amplitude controlling element of the ALC system. The attenuation is controlled by a DC voltage generated by the Transceiver Control Board 624 . The attenuated IF signal is mixed with a 45-75 iHzz signal from the Synthesizer Board 611 in a passive double balanced mixer to form the final \(R F\) signal at the actual transmitting frequency. The RF signal is led through a 30 lHz lowpass filter and applied to the Exciter Output Amp. Finally the RF signal is filtered in the Post Selector which consists of one loupass-, si\% bandpass- and one highpass filter. The filter selection is carried out by the Transceiver Control Board 624 via the serial-to-parallel converter. The output signal of the exciter is applied to the Pover Amplifier. For use in the self test routines two check detectors are incorporated. One at the AF input and one at the RF output. The check detectors confirm the presence of the AF- and the RF signal.








OONOHOOO O O O O O O O M M O O O O O




\(\begin{array}{llllll}O & N & N & O & M & O \\ M & N \\ \infty & M & M & M & M & N \\ \infty & \infty & \infty & \infty & \infty & \infty\end{array}\)
ㅇ․

\(\begin{array}{ll}0 & n \\ -1 & \infty \\ \infty & m\end{array}\)






ふ 3 ふ ふ ふ ふ



E


D1，3－5，8－17，44
7.4

\section*{}
\(1 N 4148\)
BZX79C18V
BZX75C3V6
1S920
BA423
45 MHz
1.4 MHz



Ni웅 \({ }^{\circ}{ }^{-1}{ }^{-\infty}\) ずO
 トゥ
\(\begin{array}{lll}\infty & 0 \\ \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}\)
ल ํㅡ웅


PCB 620 VERSION 2A
INTERCONNECTION BOARD
VIEWED FROM COMPONENT SIDE

PARTS LIST FOR INTERCONNECTION BOARD 620 VERSION 2A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Printed Circuit Board Complete 620} & 107 & 562 & 01 \\
\hline D1 & \multicolumn{5}{|l|}{TIL220} & 823 & 000 & 02 \\
\hline R1 & & kohm & ( 5\% & 1/4W & car. & 501 & 310 & 00 \\
\hline RL1 & & & & & & 780 & 000 & 17 \\
\hline \[
\begin{aligned}
& \text { C1-12, 15-18, 21, } \\
& 23,24,26,27
\end{aligned}
\] & 10 & nF & 10\% & 63 V & Polyes. & 622 & 410 & 01 \\
\hline C19,20,22,25 & & nF & 10\% & 63 V & Cer. & 602 & 310 & 02 \\
\hline C13,14 & & uF & +50-10\% & 25V & W.alum. & 652 & 747 & 01 \\
\hline C28,29 & & nF & 10\% & 250 V & Polyes. & 624 & 410 & 01 \\
\hline L1-3,6 & 25 & uH & & & & 740 & 125 & 00 \\
\hline L4,5 & & & & & & & & \\
\hline L7 & 100 & & & & & 740 & 210 & 03 \\
\hline SK1 & & & & & & 373 & 587 & 11 \\
\hline \multicolumn{6}{|l|}{PL1} & 751 & 001 & 34 \\
\hline \multicolumn{6}{|l|}{PL2} & 751 & 001 & 03 \\
\hline \multicolumn{6}{|l|}{TS1,3} & 770 & 000 & 31 \\
\hline 「S2 & & & & & & 770 & 000 & 32 \\
\hline
\end{tabular}

TECHINICAL DESCRIPTION
PCB 621 VOLTAGE CONVERTER BOARD
The voltage converter is a push-pull converter with isolation. There is no stabilisation, it only converts the stabilized 40 V voltage from the Switched Hode Pover Supply. The converter frequency is controlled by IC2 and IC5. The converter starts when the enable input is high. The output is protected by a Short Circuit Sequencer. During a shorticircuit the gate voltage of Olo and Qll is controlled by 05 so that the current through 010 and 011 is limited to appro\%. 3 A and sensed by R20. A sequence network, consisting of ICl, IC2, IC3 and IC4 is sensing the gate voltang of 010 and Qll. If the voltage is low, the converter is shut-off for 300 nsec . and then restarted as the shortcircuit scquencer is disabled for 10 mscc. by IC4, thus allowing the converter to vork for 10 msec . charging the output capacitors. In case of no shortcircuit the gate voltage of 010 and Qll will be high and the converter will continue to vork. In case of a shortcircuit the gate voltage of 010 and \(Q l l\) will remain low and the sequence network shut off the converter for 308 nisec. etc. This moans that the loss in 010 and 011 will be reduced by a duty factor \(1: 30\). At the same time the current in the output circuit vill be reduced and the wiring thereby protected.


\begin{tabular}{|c|c|c|c|c|}
\hline  &  & \(\underline{6}\) & － & \\
\hline  & ボオ゙
n & -8 & -1 & \\
\hline NNNN On n N N ம6060 & Non & \[
\underset{\sim}{\infty}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& -1
\end{aligned}
\] & \\
\hline
\end{tabular}

号号号品



NO웅


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Printed Circu & Complete & 621 & & & 107 & 562 & 11 \\
\hline IC1 & LM358 & & & & 850 & 035 & 80 \\
\hline IC2 & 4001 UB & & & & 850 & 400 & 11 \\
\hline IC3 & 4020B & & & & 850 & 402 & 00 \\
\hline IC4 & 4082B & & & & 850 & 408 & 20 \\
\hline IC5 & 40175 & & & & 854 & 017 & 50 \\
\hline Q1 & BSS89 & & & & 843 & 008 & 90 \\
\hline 22 & BC640 & & & & 840 & 064 & 00 \\
\hline Q3，4 & BC557 & & & & 840 & 055 & 70 \\
\hline Q5，6，8 & BC337 & & & & 840 & 033 & 70 \\
\hline Q7，9 & BC327 & & & & 840 & 032 & 70 \\
\hline 210，11 & IRF530 & & & & 843 & 053 & 00 \\
\hline D1， 2 & BZX79C10 & & & & 832 & 791 & 00 \\
\hline D3－6 & 1N4148 & & & & 830 & 414 & 80 \\
\hline D7－10，13，14 & BYV28 & & & & 831 & 002 & 80 \\
\hline D11，12，15，16 & BYS 26 & & & & 831 & 002 & 60 \\
\hline D17 & 1N5401 & & & & 831 & 540 & 10 \\
\hline R1， 8 & 4.7 kohm & 5\％ & 1／4W & Car． & 501 & 347 & 00 \\
\hline R2 & 10 kohm & 5\％ & 1／4W & Car． & 501 & 410 & 00 \\
\hline R3 & 22 kohm & 5\％ & 1／4W & Car． & 501 & 422 & 00 \\
\hline R4 & 2.2 kohm & 5\％ & 1／4W & Car． & 501 & 322 & 00 \\
\hline R5 & 2.2 kohm & 5\％ & 1.6 W & MF & 544 & 322 & 00 \\
\hline R6，12 & 100 kohm & 5\％ & 1／4W & Car． & 501 & 510 & 00 \\
\hline R7 & 8.2 kohm & 5\％ & 1／4W & car． & 501 & 382 & 00 \\
\hline R9 & 47 kohm & 5\％ & 1／4W & Car． & 501 & 447 & 00 \\
\hline R10 & 18 kohm & 5\％ & 1／4W & Car． & 501 & 418 & 00 \\
\hline R11 & 12.1 kohm & 1\％ & 1／4W & MF & 511 & 412 & 10 \\
\hline R13 & 470 ohm & 5\％ & 1／4W & Car． & 501 & 247 & 00 \\
\hline R14，15 & 1.2 kohm & 5\％ & 1／4W & Car． & 501 & 312 & 00 \\
\hline 216 & 33 ohm & 5\％ & 1／4W & Car． & 501 & 133 & 00 \\
\hline 217 & 330 ohm & 5\％ & 1／4W & Car． & 501 & 233 & 00 \\
\hline 218，19 & 10 ohm & 5\％ & 1／4W & Car． & 501 & 110 & 00 \\
\hline 220 & 0.18 ohm & 2\％ & 3W & Ww & 526 & 001 & 80 \\
\hline R21 & 47 ohm & 5\％ & 1／4W & Car． & 501 & 147 & 00 \\
\hline R22 & 82 ohm & 5\％ & 1／4W & Car． & 501 & 182 & 00 \\
\hline 223，24 & 12 ohm & 5\％ & 1／4W & Car． & 501 & 112 & 00 \\
\hline ？25 & 2.2 kohm & 5\％ & 1／2W & MF & 512 & 322 & 00 \\
\hline 226，27 & 1 kohm & 5\％ & 1／2W & MF & 512 & 310 & 00 \\
\hline 328，29 & 470 ohm & 5\％ & 1／2W & MF & 512 & 247 & 00 \\
\hline 21，2 & 0.33 uF & 10\％ & 250V & Polyes． & 624 & 533 & 00 \\
\hline 23 & 10 uF & 20\％ & 16 V & Sol．al． & 651 & 710 & 01 \\
\hline 24 & 0.1 UF & 10\％ & 63 V & Polyes． & 622 & 510 & 00 \\
\hline 25 & 330 pF & 1\％ & 500 V & Microp． & 615 & 233 & 00 \\
\hline 26，8 & 820 pF & 10\％ & 63 V & Cer． & 602 & 282 & 00 \\
\hline 27，12，13 & 220 UF & \(-10+50 \%\) & 63 V & W．alum． & 652 & 822 & 02 \\
\hline
\end{tabular}

\section*{TECHNICAL DESCRIPTION}

\section*{SWITCHED MODE POWER SUPPLY}

The DC-power, deriving from the battery, first has to pass an input filter and then a relay switch controlled by the overvoltage and reverse polarity protection circuit, before it is allowed to flow to the converter circuit. The converter is a boost-converter combined with a push-pull converter allowing the converter to handle duty cycles higher than fifty percent. The converter does not provide galvanic isolation. The regulating loop has been designed in order to keep the output voltage from the converter fairly stable independent of battery voltage variations and different loading conditions on the output. This is done by regulating the duty cycles of the pulses, deriving from a 25 kHz oscillator, IC6 before they are forming the driving signal for the converter driver. The duty cycle regulation is located on board 622 and consists of ICl, IC2, IC6, Q3 and Q4. D12 ensures that the duty cycle does not rise to more than ninety percent. The total current in the converter is measured by means of T2, T3 and is used for the current limiting circuit located on board 622. The output is also equipped with an overvoltage protection circuit Q9 and Q25 on board 622. The mains relay switch is activated by a bistable circuit Q1, Q2, RLl and is protected from "Welding" by IC3. IC4 prevents the main relay from being closed when the input voltage rises to more than 42 V . These components are located on board 622].

PCB 622 VERSION 2A
SMPS CONTROL BOARD
VIEWED FROM COMPONENT SIDE



All measurements are performed relative to BAT.NEG. e.g. 626 SK10.
(1) +48 V (626 SK9, red socket).
(2) +48 V (SMPS-SK12-1, Din-socket).
(3) ENABLE +12V (SMPS-SK12-3).
4) PWR ON Measured on 620 SK11 (Interconnection Board).
9 V normally.
0.5 V when activated.

21
762

응ㅁㅁ웄ㅁ寽呙吉品




이 요
の ヨ
\(\begin{array}{r}\text { ज } \\ \text { 品 } \\ \\ \hline\end{array}\)







\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Printed Circuit Board Complete 622} \\
\hline IC1，3，4 & IL 431C & \\
\hline IC2 & ULN2083 & \\
\hline IC5 & CD4047B & \\
\hline IC6 & LM2903 & \\
\hline Q1，2，6，9，10 & BC547B & \\
\hline Q3，4 & BC557B & \\
\hline Q5，11，19 & BC639 & \\
\hline Q7 & TIP42C & \\
\hline Q8，13，23 & BD140 & \\
\hline Q12，20 & 2N2907A & \\
\hline Q25 & BRY39 & \\
\hline D1，32 & BZX7989V1 & \\
\hline \[
\begin{aligned}
& \mathrm{D} 2-5,15,16,19,22, \\
& 23-25,49
\end{aligned}
\] & 1N4148 & \\
\hline D7，8 & BZX79C15 & \\
\hline D9，10，12，14 & BZX79B8V2 & \\
\hline D17，18 & BYV27 & \\
\hline D20 & BZX7985V6 & \\
\hline D21 & BZX79C12 & \\
\hline D27，28 & BZX46CIVS & \\
\hline D29 & BZX79B6V2 & \\
\hline D30 & BZX79C3V3 & \\
\hline D31 & BZX79C24 & \\
\hline D33，41，47，48 & 1N4448 & \\
\hline D45 & TIL 220 & \\
\hline D46 & BZX79C39 & \\
\hline \multicolumn{3}{|l|}{RLI} \\
\hline R1，47 & 10 kohm & \\
\hline R2 & 44.2 kohm & 1\％ \\
\hline R3，9 & 2.7 kohm & 5\％ \\
\hline R4，10，75 & 18 kohm & 5\％ \\
\hline RS，48 & 39 kohm & 5\％ \\
\hline R6 & 100 kohm & 5\％ \\
\hline R7，13 & 10 kohm & 5\％ \\
\hline R8 & 10 kohm & 5\％ \\
\hline R11，17 & 27 kohm & 5\％ \\
\hline R12 & 27 kohm & 5\％ \\
\hline R14 15 & 150 ohm & 5\％ \\
\hline R16，24 & 1.8 kohm & 5\％ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\bigcirc\) & m & 8 & －8こ8889 & momむ & \\
\hline & \(\cdots\) & & ～ &  &  & 忍寺 \\
\hline & － & & \(\sim\) & M &  & ¢ \({ }_{\text {m }}^{\text {m }}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}




Q15，021
Q17，Q18
D43，44
RL2
R38
R62，63
C4，5
C7
C9
C21，22
C11，12，15，17
C28，29
C32，33
L1
L2，3
L4
L5
T1
T2，3
FS3
FS4
\begin{tabular}{|c|c|c|c|c|}
\hline 88 & 8 & ヘ88～する & ธ & \\
\hline  & \(\stackrel{\square}{\square}\) &  & 을 & 合 \\
\hline  & ะ &  & 칠 & 可 \\
\hline
\end{tabular}



架
511 ohm
15.4 kohm
47 kohm
3.9 komm
8.2 kom
30.1 kohm
5.36 kohm
1.96 kom
21.5 kohm
4.7
10 kohm
332 obm
270 obm
27.4 ohm
0.18 obm
2.2 obm
3.1
架

\(\mathrm{R} 18,23\)
R 19

\(\mathrm{Cl}, 8,16,36,14,19\),
\(23,34,39\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Printed Circuit & d Complete & 623 & & & 107 & 56231 \\
\hline Q14，24 & BC636 & & & & 840 & 06360 \\
\hline Q16，22 & TIP42A & & & & 842 & 00420 \\
\hline \[
\begin{aligned}
& \text { D27,35-40,42, } \\
& 47-50 .
\end{aligned}
\] & BYV27－150 & & & & 831 & 27150 \\
\hline R53 & 0.22 ohm & 10\％ & IW & w & 523 & 00220 \\
\hline R56，71 & 390 ohm & 5\％ & 1／4W & Car． & 501 & 23900 \\
\hline R59，65 & 12 ohm & 5\％ & 1／4W & Car． & 501 & 11200 \\
\hline RS8，60，66，68 & 100 ohm & 5\％ & 1／4W & Car． & 501 & 21000 \\
\hline R61 & 4.7 ohm & 5\％ & 1W & MF & 544 & 04700 \\
\hline C24－26 & 33 uF & 20\％ & 10 V & Sol． & 651 & 73301 \\
\hline C27，30，31 & 4.7 nF & 20\％ & 400 V & Poly & 625 & 34700 \\
\hline
\end{tabular}

\section*{TECIINICAL DESCRIPTION}

\section*{PCB 624 TRANSCEIVER CONTROL BOARD}

This module implements the following functions: Communication vith Control Board 600 as a slave by receiving and executing command messages in order to control Receiver Signal Path 618, Exciter Signal Path 619, Synthesizer Board's 611 (one for the receiver and one for the exciter), P.A. Filters and Antenna Tuning Unit Board 660 , and by transmitting acknowledge and status messages back to 600 . To achieve this, a structure similar to that described in the section concerning 600 is used: The "IPU" communicates with its counterpart on 600 using (TUDATA) and (CUDATA) via "RS 232C INTERFACE". Status of 618 (i.e. crystal filters installed) is read as a 16 bits packet using the signals (STAT DATA RX/EX), (CLOCK) and (STAT LOAD), while commands are transferred from 624 in the form of a 32 bits packet using (COIDATA), (CLOCK) and (COH LOAD RX/EK). This processor is also clocked by a " 4 HHz XTAL OSC.ILLATOR" and is initialized by a "UATCHDOG" capable of automatically restarting a stalled program, which does not issue a 32 Hz trigger signal combined with "HODE SWITCH". "ADDRESS LATCH" and "IAP DECODER" operate in the same manner as on 600 , "PROGRAH ROM" holds 16 kbytes in EPROFI, while "SCAN BUFFER RARI" (l knibbles) is used for holding the programmed scanning channels.

The frequency synthesizers on 611 are controlled via multiple火ed data (SYNDATA \(0--3\) ) and address busses (SYNADR 0--2) using (SYNSTRO \(0--5\) ), whereas the corresponding suitching betveen transceiving states on 618 and 619 is done by proper sequencing of the signals (TX/Rッ), (SHAPEKEY) and (HUTING) triggered by transitions of the signal (KEYLINE) originating from Audio Processing Board 601 . (KEYLINE) is also modulated by "VF CONVERTER" to carry a telemetry signal representing output pover back to 600 via 601 . Two analog loops are located on this board. The most simple is associated with the receiving state of 610 through "IIGC REGISTER" and the corresponding DAC driving "IIGC LOOP" connected to another "VF CONVERTER" generating a nev telemetry signal representing received signal strength (RYRATE). The other loop ("PA STRESS HONITOR/ALC LOOP") stabilizes the output in the transmitting state by comparing the output of the "SETPOINT REGISTER" and the corresponding DAC with the signals FILPEAK, PAPEAK and IANTAUR in order to generate the error signal ALC used for driving an electronically controlled attenuator placed in the transmitter signal path. If the signal (PA OK), derived from 654 Power Splitter, is high during transmission in full pover, it means that one or more of the power amplifiers is faulty. In this (SET POINT) is decreased by 0.8 dB to prevent overload of the remaining pover amplifiers.

Finally, another signal controlled from the processor is generated using "ALCHOLD REGISTER" and the corresponding DAC to make the gain of the transmitter signal path independent of the modulating signal. To increase the number of peripherals on this board beyond the capacity of "IAP DECODER" indirect addressing is introduced by using "SYNTHESIZER/FUXDATA REGISTER" not only for driving the synthesizers but also as a local bus feeding the following registers: "PA/LP REGISTER" (controls the relays switching the P.A. Filters depending on the TX frequency via "RELAY DRIVERS" and the pover to Power Amplifier Board 626), "IULTIPLEXER REGISTER" (controls a 16-to-1
multiplexer "MUX" used for monitoring diagnostic and status signals) and "SETPOINT REGISTER" (already mentioned). Directly driven from the databus are "ŞTROBE REGISTER" (strobes the synthesizer as described earlier) and "SIGNAL PATH REGISTER", which via "BUFFERS" controls the keying signals mentioned before. The handshake protocol with the processor located on 660 uses the signals ( \(\overline{T U N E}\) ) and (TPR). The status of 660 is constantly monitored via (SUMOK) and (TCO) and any changes detected are signalled to 600 using appropriately coded messages. In the same way 626 is monitored via (TCl) and "PA STRESS HONITOR/ALC LOOP". The signals (FILTYP \(0--3\) ) and (750/250) from P.A. Filters and 660 are used for identifying purposes by the "IPU".





(1) +8.62V IIN NORMAL CONDITION)
(2) +5 V
(3) +24 V
4. -15 V
(5) +15 V
(6) \(: 12 \mathrm{~V}\)
(7) +5 V
(8) \(4 \mathrm{Mhz} \stackrel{+5 \mathrm{~V}}{\mathrm{OV}} \Omega \Omega \Omega\)
(a) 32 hz

(10) 1 Mh

(11) 1 Mhz

(12) \(2400 \mathrm{hz}{ }^{+5 \mathrm{VO}} \_\Omega \Omega\)
(13) 13.3 Khz ov \({ }^{+2 \mathrm{~V}} \Omega \Omega \Omega\)

(NO KEYING)
(15) NORMALLY OV

IF IN A FULL POWER TRANSMISSION THE AVERAGE PUWER EXCEEDS THE PEAK POWER MINUS 3dB IT CHANGES TO + 5 V THIS CAN BE TESTED BY WHISTIING IN THE MICROPHONE DURING TRANSMISSION.
(16) 9 V dc WHEN 250 W QUTPUT
(18) \(3-6 \mathrm{~V} \mathrm{dc} \underset{\text { oV }}{ }{ }^{+5 \mathrm{~V}}\) DEPENDING ON OUTPUT: SIGNAL.


N



PARTS LIST FOR TRANSCEIVER CONTROL BOARD 624 VERSION 6A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& C 47,52,54,55,75, \\
& 81,85,118,124
\end{aligned}
\] & & & 10\% & 63 V & Polyes. & 622 & 410 & 01 \\
\hline C48,56,58,61,63, & 0.1 & uF & 10\% & 63 V & Polyes. & 622 & 510 & 00 \\
\hline 66-70,72,74,76-80, & & & & & & & & \\
\hline 83,86-88,98,111,112, & & & & & & & & \\
\hline 121-123,125,128,129, & & & & & & & & \\
\hline 142,160 & & & & & & & & \\
\hline C49 & & & 2\% & 63 V & N150 & 602 & 139 & 01 \\
\hline C50 & 1.2 & nF & 10\% & 100 V & Cer. & 602 & 312 & 00 \\
\hline C51 & 180 & pF & 10\% & 63 V & Cer. & 602 & 218 & 00 \\
\hline C57,82,141,155 & 6.8 & & 20\% & 25 V & Sol.al. & 652 & 668 & 01 \\
\hline C59,64,136,139 & 220 & pF & 10\% & 100 V & Cer. & 603 & 222 & 00 \\
\hline C71,84,126 & 2.2 & & 1\% & 125 V & Polyst. & 613 & 322 & 00 \\
\hline C110 & & & +50-10\% & 16 V & W.alum. & 651 & 710 & 01 \\
\hline C113,161 & 2.2 & UF & 20\% & 35 V & Tantal & 652 & 622 & 01 \\
\hline C143,154 & 0.47 & & 10\% & 63 V & Polyes. & 622 & 547 & 01 \\
\hline C151-153 & 100 & & 20\% & 25 V & W.alum. & 652 & 810 & 00 \\
\hline C162 & & nF & \(-20+50 \%\) & 100 V & Cer. & 602 & 410 & 01 \\
\hline L1, L3 & & uH & & & & 740 & 122 & 00 \\
\hline L2 & 100 & uH & & & & 740 & 210 & 06 \\
\hline PL1 & 40 & Pol. & & & & 756 & 040 & 04 \\
\hline PL2, 3 & 10 & Pol. & & & & 756 & 010 & 02 \\
\hline PL4 & 34 & Pol. & & & & 756 & 034 & 01 \\
\hline
\end{tabular}

\section*{TECHNICAL DESCRIPTION}

PCB \(626 / 631\) POWER AMPLIFIER BOARD
The Power Amplifier contains four active stages and has a total power gain of approx. 42 dB . The RF signal from the Exciter passes through the inputattenuator, where the gain may be adjusted within a 3 dB range, and where the gain is reduced by 14 dB when "Low Power" is activated or if a fault should occur in the ALC-loop. The signal is then amplified approx. 23 dB in the Class-A Driver stages 1 and 2 and approx. 12.5 dB in the Class-AB push-pull Driver stage 3, before being fed into the final Power Amplifier stage, which also works in Class-AB push-pull, with a gain of approx. 12.5 dB and the capability of delivering 250 W into a 50 ohm load. The DC output from the peak-detector, which monitors the reflected power and output voltage, is connected to the ALC-circuit on the microprocessor-board and to the inputattenuator via the protection-circuit. The input-power is then reduced via the ALC-loop if the reflected power from the load exceeds approx. 25 W during mismatch conditions. The Bias stabilizer circuits provide adjustable stabilized bias voltages from the 5 V source and supplies the bases of the Class-AB amplifier stages, so that the quiescent currents may be adjusted. The key-circuits give a 24 V stabilized voltage from the 48 V source, which supplies Driver 1 and 2 and enables the bias circuits whenever "Key" is activated. Thermoswitch SW2 will close and reduce the input power if the heatsink temperature exceeds 100 deg. \(C\) and thermoswitch SWl will open and remove the supply voltage from Drivers l, 2 and 3 if the heatsink temperature exceeds 110 deg. C.


(1) 48 VDC - measured at PL1 relative to PL2.

In self test \# 32 a signal of 4 sec .
duration appears,during which following test points can be tested:

Input:
(2) \(\approx 2 \mathrm{Vpp} \quad 2 \mathrm{MHz}\)

Output:
(3) \(\approx 300 \mathrm{Vpp} \quad 2 \mathrm{MHz}\)



으숙ㄱㄱㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ엉응응ㅁㅇㅇㅇ음




 BZX79B3V3
BZX79B24
TIL220
SD101C
1N4148
BZX79B9V1




 ロロロロロロ
\begin{tabular}{ll} 
IC1 & CNY17 \\
Q1，8 & BD175 \\
Q2，7，9 & BD645 \\
Q3 & BFW 17A \\
Q4，5 & S25－50 \\
Q6 & BLV20 \\
Q1C，11 & CD4851 \\
Q12 & BC557B \\
Q13 & 2N5061 \\
Q14 & BC547B
\end{tabular}


R56，57
R58
R59
R60
R61
R62
R63－66
C1
C2，3，8，9
\(24,27,28\)
75,76
C4，7，10，
\(19,20,23\)
\(29,32-34\)
\(40,41,52\)

꼬コㅗㅗコ꼬コㅗㅗコ
ヘn Norn








\(\qquad\)
\(\stackrel{\sim}{\infty}\) 영 Nㅡㅇ극ㅇㅇㅇ 승 N


MF
MF
Car.
MF
Car
4
0
0 Polyes． polyes． \(\dot{0}\)
\(\stackrel{y}{\lambda}\)
\(\dot{\sim}\)
ón
－
\(\stackrel{20}{-1}\)
 \(\mathrm{CL}, 3,8,9,21,22\),
\(24,27,28,39,42\),
75,76

\section*{C4，7，10，11，14，
\(19,20,23,25,26\),
\(29,32-34,36-38\),
\(40,41,52,85,87\)}
B


\(\underset{甘}{-} \underset{\sim}{N}\)

Printed Circuit Board Complete 626

\begin{tabular}{|c|c|c|}
\hline ㅇㅇㅇㅇㅇㅇㅇㅇ & － & \(\underset{0}{ }\) \\
\hline  & \[
\underset{\sim}{\sim}
\] & O \\
\hline  & \(\underset{\sim}{\text { ¢ }}\) & N \\
\hline  & & \(\dot{0}\)
\(\underset{\sim}{\sim}\)
0 \\
\hline  ○்ラन ने & \[
\stackrel{\rightharpoonup}{\mathrm{in}}
\] & － \\
\hline  &  & \(\stackrel{\text { ¢0 }}{\substack{\text { a }}}\) \\
\hline  & 岁 & 岁 \\
\hline  & & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline  & 앙 & 웅 \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & \(\bigcirc\) & Nָ웅ㅇㅇㅇ응 \\
\hline  & & ジズオ \\
\hline
\end{tabular}






족노ㄱㅗㅗㄱㅗㅗㄱ

U Uポ


L1，2，6，7，10，12，13



\(825 \quad 842017 \quad 50\)

 엉NO O O

응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅁㅇㅇㅇㅇ엉ㅇㅇㅇㅇㅇㅇ MNOO N N N






Printed Circuit Board Complete 631
CNY17

BD175 BD645
BFW 17 A

BFW 17A
S25－50
BLV20
CD4851
 BZX79B3V3
BZX79B24 TIL220

moin


\[
\stackrel{7}{0}
\]

がざざ
응
\(m \mathrm{~mm}\) ल人 ©
\[
\begin{aligned}
& \text { Thermoswitch } \\
& \text { Thermoswitch }
\end{aligned}
\]
\[
\begin{aligned}
& 110 \\
& 100
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{c}
\end{aligned}
\]
Thermoswitch 110 C
Thermoswitch 100 C


\section*{TECHNICAL DESCRIPTION}

РСВ \(627 / 628\) P.A. FILTERS, Marine Bands
The filter bank contains 6 lowpass filters covering the maritime bands in the frequency range l.6-27.5 MHz, as shown in the table below.
\begin{tabular}{|c|c|c|c|c|}
\hline & & & Relays & \\
\hline Filter no. & Passband MHz & Stopband MHz & A B C & \\
\hline 1 & 1.60-2.31 & 3.19 & 010 & \\
\hline 2 & 2.31-3.33 & 4.61 & 111 & \(0=\) off \\
\hline 3 & 3.33-4.80 & 6.64 & 100 & \(1=\) on \\
\hline 5 & 6.20-8.95 & 12.40 & 110 & \\
\hline 6 & 12.23-17.65 & 24.40 & 0 l 1 & - \\
\hline 8 & 18.78-27.10 & 37.45 & 000 & \\
\hline
\end{tabular}

All filters are 5th order elliptic LP-filters (cauer-filters) with a series coil giving an inductive input impedance on the harmonics. When loaded with 50 ohms the input SWR is less than \(1: 1.1\) and the insertion loss less than 0.2 dB in the passbands. In the stopbands the attenuation is better than 25 dB . The filters are inserted by a system of dual-pole dual-throw Relays controlled from the Transceiver Control Board 624 as shown in the table. Other types of filter banks are available, and the microprocessor selects the corresponding switch pattern by sensing the type code information on 4 lines of the connector cable. If the cable is disconnected filter no. 8 is chosen, so that transmission is possible on all frequencies in case of fault in the switching system. The DC voltage from the output peak-detector, which monitors voltage and current in the load, is connected to the ALC-circuit on the Transceiver Control Board 624 . This voltage is used for automatic adjustment of output power and should be 9.0 V for an output of 250 W into 50 ohms.


PCB 627666

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[b]{3}{*}{\begin{tabular}{l}
 \\

\end{tabular}}} \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Printed Circuit Board Complete 628} & \multicolumn{3}{|l|}{10756281} \\
\hline D1,2,3,4 & SD101C & & & & 830 & 010 & 10 \\
\hline RLI-7 & & & 24 V & & 780 & 000 & 32 \\
\hline R2 & 1.4 kohm & m 1\% & 1/4W & MF & 511 & 314 & 00 \\
\hline R3 & 12 kohm & m 1\% & 1W & MF & 513 & 412 & 10 \\
\hline R4,5,6,7,8,9 & 100 ohm & m 1\% & 1/2W & MF & 512 & 210 & 00 \\
\hline R10 & 9.09kohm & m 1\% & 1/4W & MF & 511 & 390 & 90 \\
\hline C1,81,85 & 1 nF & 10\% & 63 V & Cer. & 602 & 310 & 03 \\
\hline C2-5,79-82 & 0,1 uF. & 10\% & 63 V & Polyes. & 622 & 510 & 00 \\
\hline C6,39 & 160 pF & 2\% & 500 V & Mi & 645 & 216 & 01 \\
\hline C7,14,44 & 27 pF & 2\% & 500 v & Mi & 645 & 127 & 00 \\
\hline C8 & 220 pF & 2\% & 500 V & Mi & 645 & 222 & 02 \\
\hline C9 & 43 pF & 2\% & 500 V & Mi & 645 & 143. & 00 \\
\hline C10,54,61 & 390 pF & 2\% & 500 V & Mi & 645 & 239 & 01 \\
\hline C11,20,27,48,55 & 91 pF & 2\% & 500 V & Mi & 645 & 191 & 00 \\
\hline C12,21,41,63 & 2200pF & 2\% & 500 V & Mi & 645 & 322 & 00 \\
\hline C13,22,43,50,57,73 & 180 pF & 2\% & 500 V & Mi & 645 & 218 & 02 \\
\hline C15,24,45,52,75 & 270 pF & 2\% & 500 V & Mi & 645 & 227 & 02 \\
\hline C18,25,46,53,60,67 & 47 pF & 2\% & 500 V & Mi & 645 & 147 & 00 \\
\hline C19,26,47,56 & 360 pF & 2\% & 500 V & Mi & 645 & 236 & 01 \\
\hline C23,51,58 & 30 pF & 2\% & 500 V & Mi & 645 & 130 & 00 \\
\hline C28,29 & 300 pF & 2\% & 500 V & Mi & 645 & 230 & 01 \\
\hline C30,31 & 51 pF & 2\% & 500 V & Mi & 645 & 151 & 00 \\
\hline C32,33 & 430 pF & 2\% & S00V & Mi & 645 & 243 & 00 \\
\hline C34 & 75 pF & 2\% & 500 V & Mi & 645 & 175 & 00 \\
\hline C35 & 82 pF & 2\% & 500 V & Mi & 645 & 182 & 00 \\
\hline C36,37 & 620 pF & 2\% & 300 V & Mi & 644 & 262 & 01 \\
\hline C38 & 150 pF & 2\% & 500 V & Mi & 645 & 215 & 00 \\
\hline C40,49,70 & 2000pF & 2\% & 500 V & Mi & 645 & 320 & 00 \\
\hline C42 & 820 pF & 2\% & 300 V & Mi & 644 & 282 & 01 \\
\hline C59 & 240 pF & 2\% & 500 V & Mi & 645 & 224 & 02 \\
\hline C62 & 100 pF & 2\% & 500 V & Mi & 645 & 210 & 01 \\
\hline C64 & 200 pF & 2\% & 500 V & Mi & 645 & 220 & 01 \\
\hline C65 & 39 pF & 2\% & 500 V & Mi & 645 & 139 & 00 \\
\hline C66 & 330 pF & 2\% & 500 V & Mi & 645 & 233 & 01 \\
\hline C68 & 430 pF & 2\% & 500 V & Mi & 645 & 243 & 00 \\
\hline C69 & 120 pF & 2\% & 500 V & Mi & 645 & 212 & 00 \\
\hline C71 & 130 pF & 2\% & 500 V & Mi & 645 & 213 & 01 \\
\hline C72 & 18 pF & +-1/2pF & 500 V & Mi & 645 & 118 & 00 \\
\hline C74 & 36 pF & 2\% & 500 V & Mi & 645 & 136 & 00 \\
\hline C76 & 68 pF & 2\% & 500 V & Mi & 645 & 168 & 00 \\
\hline C77,78 & 560 pF & 2\% & 300 V & Mi & 644 & 256 & 01 \\
\hline C83 & 8 pF & +-1/2pF & 500 V & Mi & 645 & 080 & 00 \\
\hline C84 & 33 pF & 2\% & 63 V & Cer. & 602 & 133 & 02 \\
\hline Ll & 1.0 uH & & & & 373 & 572 & 1X \\
\hline
\end{tabular}



```

 㓢
 エエ告甹甹甹先先

```

```

䍘染

```


\begin{tabular}{|c|c|c|c|}
\hline Self test \# & (1) & (2) & (3) \\
\hline 33 & 9VDC & \(\sim 320 \mathrm{Vpp}\) & \(\sim 320 \mathrm{Vpp}\) \\
\hline 35 & - & - & - \\
\hline 36 & 二 & 二 & - \\
\hline 37 & - & - & - \\
\hline 39 & - & - & - \\
\hline 41 6288 ONLY) & - & - & - \\
\hline
\end{tabular}

\section*{TECHNICAL DESCRIPTION}

PCB 629 P.A. FILTERS, Continuous Coverage
The filter bank contains 8 lowpass filters covering the frequency range l.630.0 MHz , as shown in the table below.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Filter no.} & & \multicolumn{3}{|c|}{Relays} \\
\hline & Passband MHz & Stopband MHz & A B C D & \\
\hline 1 & 1.60-2.31 & 3.19 & 0100 & \\
\hline 2 & 2.31-3.33 & 4.61 & 1110 & \\
\hline 3 & 3.33-4.80 & 6.64 & 1001 & \(0=\) off \\
\hline 4 & 4.80-6.93 & 9.58 & 1000 & \(1=0\) n \\
\hline 5 & 6.93-10.00 & 13.85 & 1100 & \\
\hline 6 & 10.00-14.42 & 19.95 & 0110 & \\
\hline 7 & 14.42-20.80 & 28.80 & 0001 & \\
\hline 8 & 20.80-30.00 & 41.00 & 0000 & \\
\hline
\end{tabular}

All filters are 7th order elliptic LP-filters (cauer-filters) with a series coil giving an inductive input impedance on the harmonics. When loaded with 50 ohms the input SWR is less than l:l.l2 and the insertion loss less than 0.25 dB in the passbands. In the stopbands the attenuation is better than 47 dB . The filters are inserted by a system of dual pole dual throw relays controlled from the Transceiver Control Board 624 as shown in the table. Type-code information is given via 4 lines of the connector cable. The DC voltage from the output peak-detector, which monitors voltage and current in the load, is connected to the ALC-circuit on the Transceiver Control Board 624 . This voltage is used for automatic adjustment of output power and should be 9.0 V for an output of 250 W into 50 ohms.



\section*{TEST POINTS FOR PCB 629 P．A．FILTERS．}
\begin{tabular}{|c|c|c|c|}
\hline Self test \＃ & （1） & （2） & （3） \\
\hline 33 & 9 VDC & \(\sim 320 \mathrm{Vpp}\) & \(\sim 320 \mathrm{Vpp}\) \\
\hline 34 & & & \\
\hline 35 & － & － & － \\
\hline 36 & 二 & 二 & 二 \\
\hline 37 & － & 二 & － \\
\hline 38
39 & － & － & － \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Printed Circuit Board Complete 629} & \multicolumn{2}{|l|}{10756291} \\
\hline D1,2 & SD101C & & & & 830 & 01010 \\
\hline RLI-8 & & & & & 780 & 00032 \\
\hline R1-4 & 100 ohm & 1\% & & MF & 512 & 21000 \\
\hline RS & 9.09kohm & 1\% & & MF & 511 & 39090 \\
\hline C1,135 & 1 nF & 10\% & 63 V & Cer. & 602 & 31002 \\
\hline C2-5,129-132 & 0.1 uF & 10\% & 63 V & Polyes. & 622 & 51000 \\
\hline C6,14,32 104,128 & 120 pF & 2\% & 500 v & Mi & 645 & 21200 \\
\hline C7,41,114 & 20 pF & +-1/2pF & 500 v & Mi & 645 & 12000 \\
\hline C8,16,24,54 & 160 pF & 2\% & 500 V & Mi & 645 & 21601 \\
\hline C9 & 33 pF & 2\% & 500 V & Mi & 645 & 13300 \\
\hline C10,18,26,34 & 240 pF & 2\% & 500 V & Mi & 645 & 22402 \\
\hline C11,45,77-79 & 27 pF & 2\% & 500 V & Mi & 645 & 12700 \\
\hline C12,20,28,92,139 & 360 pF & 2\% & 5000 & Mi & 645 & 23601 \\
\hline C13,94-96, & 82 pF & 2\% & 500 V & Mi & 645 & 18200 \\
\hline C15,23,31 & 22 pF & +-1/2pF & 500 V & Mi & 645 & 12200 \\
\hline C17,25,33,122 & 36 pF & 2\% & 500 V & Mi & 645 & 13600 \\
\hline C19,27,35,89-91 & 56 pF & 2\% & 5000 & Mi & 645 & 15601 \\
\hline C21,29,37 & 75 pF & 2\% & 500 V & Mi & 645 & 17500 \\
\hline C22,30 & 110 pF & 2\% & 500 V & Mi & 645 & 21101 \\
\hline C36,86 & 220 pF & 2\% & 500 V & Mi & 645 & 22202 \\
\hline C38,61,68,113,102 & 100 pF & 2\% & 5000 & Mi & 645 & 21001 \\
\hline C39,74,110,126 & 91 pF & 2\% & 5000 & Mi & 645 & 19100 \\
\hline C40, & 18 pF & +-1/2pF & 500 V & Mi & 645 & 11800 \\
\hline C42,43,115,62,137 & 130 pF & 2\% & 500 V & Mi & 645 & 21301 \\
\hline C44,116,136,138 & 30 pF & 2\% & 500 V & Mi & 645 & 13000 \\
\hline \[
\begin{aligned}
& C 46,56,63,75,76, \\
& 80-82,105,121
\end{aligned}
\] & 180 pF & 2\% & 500v & Mi & 645 & 21802 \\
\hline C47,69,97,117,123 & 200 pF & 2\% & 500v & Mi & 645 & 22001 \\
\hline C48,49,85,118 & 43 pF & 2\% & 500 V & Mi & 645 & 14300 \\
\hline C50 & 260 pF & 2\% & 5000 & Mi & 645 & 22600 \\
\hline C51,58,65,71 & 300 pF & 2\% & 500 V & Mi & 645 & 23001 \\
\hline \[
\begin{aligned}
& \text { C52,53,59,66,72 } \\
& 100,120
\end{aligned}
\] & 62 pF & 2\% & soov & Mi & 645 & 16200 \\
\hline C55 & 24 pF & +-1/2pF & soov & Mi & 645 & 12400 \\
\hline C57,64,70,98,106 & 47 pF & 2\% & 500 V & Mi & 645 & 14700 \\
\hline C60,67,109 & 430 pF & 2\% & 500 V & Mi & 645 & 24300 \\
\hline C73,93,101,125 & 390 pF & 2\% & 500 V & Mi & 645 & 23901 \\
\hline C83,84 & 39 pF & 2\% & soov & Mi & 645 & 13900 \\
\hline C87,88,99,107,119 & 270 pF & 2\% & 500 V & Mi & 645 & 22702 \\
\hline C103 & 560 pF & 2\% & 300 V & Mi & 644 & 25601 \\
\hline C108,124 & 68 pF & \(2 \%\) & 500 V & Mi & 645 & 16800 \\
\hline
\end{tabular}

TECHNICAL DESCRIPTION
PCB 63050 OHMS ANTENNA RELAY
When the TRP 8250 S is used without the Antenna Tuning Unit, a 50 ohms Antenna Relay Board can be incorporated in the TRP 8250S. The Antenna Relay is a fast switching Simplex Relay ( \(<5 \mathrm{msec}\) ) permitting ARQ-telex on one 50 ohms antenna. The Relay is controlled from 620 TSl normally used to control the Antenna Tuning Unit.


PARTS LIST FOR 50 OHM ANTENNA RELAY BOARD 630 VERSION 2A
\(0<2\) \＆o
82300000
83041480
83279911
37359001
37358981
\(\begin{array}{lll}502310 & 00 \\ 5020\end{array}\)
588

a
\begin{tabular}{l}
823000 \\
830 \\
8314 \\
832 \\
\hline
\end{tabular}
501247
웈쿨
ㄷ


ぶき 号号号
\begin{tabular}{l} 
ED F20 \\
\(1 \times 4148\) \\
\hline
\end{tabular}
B2x79C9V1
1022
\(\begin{array}{cc}1 \mathrm{kohm} & 5 \% \\ 470 \mathrm{ohm} & 5 \% \\ 0.1 \mathrm{uF} & 10 \% \\ 0.10 \\ 10 & \mathrm{pF} \\ 12 \mathrm{pF} & +-1 / 2 \mathrm{pF} \\ +-1 / 2 \mathrm{pF}\end{array}\)
pLUG COAXCABLE
PLUG BNC FLANGE
BNC 290／U



\(\begin{array}{ll}-1 & 1 \\ 000 \\ 006\end{array}\)

PARTS LIST FOR CONNECTOR BOARD 695 ISSUE
CABLE WITH 3 WAY CONNECTOR, FEMALE




\begin{tabular}{lll}
108 & 600 & 20 \\
& & \\
107 & 564 & 01 \\
107 & 564 & 11 \\
107 & 564 & 41
\end{tabular}

\section*{TECHNICAL DESCRIPTION}

PCB 640 ANTENNA TUNING UNIT BOARD
The ATU consists of a Tuning Network, a Measuring System and a Microprocessor Part. During the tune sequence a 6 dB Attenuator is switched in to keep the load of the Power Amplifier at approx. 50 ohms. The MPU will set up the Tuning Network to give the best obtainable SWR, on basis of the measuring system. The Tuning Network comprises Capacitor Bank I, Capacitor Bank II and an Inductor Bank. With these it is possible to form either an L or a pi matching network. The capacitor Banks and the Inductor Bank are built up by binary related capacitors respectively binary related coils. The setting of the Capacitors and Coils is accomplished by relays. In the measuring system a Directional Coupler extracts information about forward and reflected RFvoltages. A 0 deg. Phasecomparator detects the phase difference between line and forward voltages, and the result is fed to the MPU via an Amplifier. A 90 deg. Phase-comparator detects the phase difference between forward and reflected voltages and the output is fed to the MPU via an Amplifier. Two detectors rectify forward and reflected voltages, and feed them to the MPU to calculate the SWR. The MPU choses the setting of the tuning network, on basis of the detector inputs. The output ports from the MPU are lead to the Port Expansions and Relay Drivers to control the Relays. The ATU is fitted with manual tuning switches for the 2182 kHz manual tune set-up (see chapter 5).

\subsection*{6.3.2}

When a TUNE pulse is received from the Transceiver Unit the first steps are: to inhibit keying. to insert the 6 dB attenuator. to measure and store the reference voltages of the detectors. to send a Tune Power Request to the Transceiver Unit.

The next steps are:
to reset the tuning set-up, i.e. all capacitors disconnected and all coils shortcircuited and bypassed. The bypass relay is incorporated to lower the inductance. to measure the anterina impedance.

Measuring of the antenna impedance involves the two phase-detectors. On basis of the detector outputs the MPU will define the antenna impedance to be in one of four possible impedance areas. From the 90 deg. phase-detector the MPU determines if the impedance \(Z\) is less or greater than 50 ohms, and from the 0 deg. phase-detector the MPU determines if the antenna is either inductive or capacitive. The four possible impedance areas and corresponding detector input voltages to the MPU are listed below. The detector voltages refer to Vref which is for both detectors half the supply voltage, i.e. 2.5 V .
l. Inductive or purely resistive: 0 deg. detector <= Vref
\(|Z|<50\) ohms:
2. Capacitive:
\(|Z|<50\) ohms:
3. Capacitive:
\(|Z|>=50\) ohms:
4. Inductive or purely resistive:
\(|Z|>=50\) ohms:

90 deg. detector > Vref
0 deg. detector > Vref
90 deg. detector > Vref
0 deg. detector > Vref
90 deg. detector. <= Vref
0 deg. detector <= Vref
90 deg. detector <= Vref

Having located the antenna impedance to be in Area \(l\) the tuning procedure is:
```

to increase the capacitance in Capacitor Bank I until the impedance is purely resistive (0 deg . detector \simeq Vref). to measure the admittance.

```

The admittance \(Y\) is separated in two areas.
\begin{tabular}{ll} 
1. \(Y>0.02 \mathrm{mho}:\) & 90 deg . detector \(>\) Vref \\
2. \(Y<=0.02 \mathrm{mho}:\) & 90 deg . detector \(<=\) Vref
\end{tabular}

For \(Y>0.02\) mho: Tuning procedure \(A\) is used:
Capacitor Bank I is reset. By increasing the inductance in the Inductor Bank the impedance is transformed to lie as close as possible to Impedance Area 4 but with the impedance still being in Area l. Then the capacitance in Capacitor Bank I is increased until Area 4 is reached, i.e. 90 deg. detector <= Vref, and then the inductance is decreased until Impedance Area l is reached again. This increasing of capacitance and decreasing of inductance continues until the output from the 0 deg. detector \(>\) Vref. The antenna impedance is then transformed within one bit of resolution to constitute a pure resistance of 50 ohms, seen from the Pover Amplifier.

The MPU finally calculates the SWR for the two nearest settings, choses the best, and the tuning is completed.

For \(Y<=0.02\) mho: Tuning Procedure \(B\) is used:

Capacitor Bank I is reset, and by means of Capacitor Bank II the impedance is transformed to Impedance Area 2, i.e. 0 deg. detector \(>\) Vref and 90 deg. detector > Vref.

To optimize the efficiency, the MPU calculates the reflection coefficient \(p\) (Vreflected divided by Vforward).

If rho < 0.66 , the Tuning Procedure \(A\) is used to complete the tuning. The
capacitance of Capacitor Bank II is retained.
If rho \(>=0.66\), the inductance of the Inductor Bank is increased until Impedance Area 3 is reached. Then the capacitance of Capacitor Bank II is decreased until Impedance Area 2 is reached again and so forth until rho < 0.66. Now the Inductor Bank will be reset and Tuning Procedure A will take over and finalize the tuning.

If the antenna impedance is located to be in Area 2, Tuning Procedure A is chosen.

If the antenna impedance is located to be in Area 3 the first steps are:
```

to increase the inductance of the Inductor Bank until the
impedance is purely resistive (0 deg. detector \simeq Vref).
to measure the admittance Y.
to reset the Inductor Bank.

```

For \(Y>0.02\) mho: Tuning Procedure \(A\) is used.
For \(Y<=0.02\) mho: Tuning Procedure \(B\) is used.
If the antenna impedance is located to be in Area 4, Tuning Procedure B is used.

When the tuning is completed, Tune Power Request is inhibited, the Tune Attenuator bypassed and the ATU is ready for transmitting.

There are a few circuits incorporated in the ATU, not directly related to the tuning procedure.

A current transformer at the antenna output terminal is used for measuring the antenna current. The transformed current is rectified, amplified and used as signal for the Antenna Current Display in the Control Unit.

To prevent overload of the relays a current sensing transformer is incorporated. The output from the current transformer is rectified and fed to an amplifier. The output from this is led to the ALC circuit in the Transceiver Unit to decrease the output power if the maximum permissible current is exceeded.

To prevent overheating of the Antenna Tuning Unit a temperature sensor is incorporated which at excessive temperatures commands the Transceiver Unit to reduce the output power by 5 dB .

The MPU constantly monitors the SWR at the input of the tuner and if it exceeds approximately 3 the Power Display Annunciator in the Control Unit starts to flash.

As an option an Antenna Relay Board 641 can be incorporated in the Antenna Tuning Unit.

The Antenna Relay is a fast switching Simplex relay permitting ARQ-telex on one antenna. It also contains a dummy-load and acts as grounding relay, connecting the antenna to ground when the equipment is switched off.




(1) 5 V
(2) 24 V
(3) 15 V
(4) \(5,3 \mathrm{~V}\)
(5)-15v
(6) \(-12 V \sim S W R<3,+12 V \sim S W R>3\)
(7) \(\quad{ }^{+12 \mathrm{~V}} \mathrm{t}\) :EQUAL TO TUNING TIME ACTIVATE
\(\xrightarrow[t]{\longrightarrow}\)

ACTIVATE "TX TUNE" TO REPEAT
(9) \(R X=5,5 \mathrm{~V} \quad \mathrm{TX}\) - \(\mathrm{KE} \mathrm{YED}=-7,5 \mathrm{~V}\)
(10)-10V WHEN "TEST ALARM" AND IF DUMMY LOAD
ENABLE +6 V DURING TEST.
(11) \(0,1 \mathrm{~V}\)
(12) 0 V
(13) 320 V pp \(\sim 250 \mathrm{~W}_{\text {pep }}\) INTO 50 OHMS
(1) +15 V
(2) \(\mathrm{RX}=0.1 \mathrm{~V} \quad \mathrm{TX}=4.0 \mathrm{~V}\)
\(107 \quad 56401\)


00000 218
べら゙ずず
\(\begin{array}{ccccc}0 & \infty & \infty & \infty & \infty \\ 0 & \infty & \infty & \infty & \infty \\ 0 & \sim & n & n & \infty \\ & n & n & n\end{array}\)



ㅇ․ㅇ



Printed Circuit Board Complete 640
\begin{tabular}{|c|c|c|}
\hline IC1 & LM317T & 5V3 \\
\hline IC2 & 1489P & \\
\hline IC3 & 1488 P & \\
\hline IC4 & HPF505 & \\
\hline IC5 & MC1458C & \\
\hline IC6 & LM358N & \\
\hline IC7 & LM2901 & \\
\hline IC8 & MC68705R3CS & （programmed） \\
\hline IC9－12 & 74 Cl 74 & \\
\hline IC13－16 & 2003A & \\
\hline Q1 & 2N5484 & \\
\hline Q2－5 & BF240 & \\
\hline D1，2，7，12－41，70 & 1N4148 & \\
\hline D3－6，8，9，71－74 & SD101C & \\
\hline D10，11 & B2x79B5V1 & \\
\hline D42－69 & LD4 64 & \\
\hline X1 & 4 MHz & CRYSTAL \\
\hline RL1 & 24V & \\
\hline RL2－9，18－20 & REED RELAY & 500 V \\
\hline RL10－17，25－26 & REED RELAY & 5 KV \\
\hline RL21－24 & REED RELAY & \(2,5 \mathrm{kV}\) \\
\hline RL27－29 & REED RELAY & 10 kV \\
\hline
\end{tabular}
IC1
IC2
IC3
IC4
IC5
IC6
IC7
IC8
IC9 －\({ }_{\alpha}^{\sim}\)
R1
R2，
R5， 6
R7
R8，16 \(\mathrm{R} 9,11,31-33,39\),
40,43 R10 \(\mathrm{R} 12-14,57,58,74\),
150,151 R15，118－143，158， 159
R17，35，36，148，149
R18
R19
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ：8： & ㅇㅇㅇ & ：\％ & 웅ㄱㅇ & －88 & N－ & 앙 &  & －8x \(\times\) & ㅇNN \\
\hline N（NNN & \[
{\underset{N}{n}}_{n}^{n}
\] & \[
\underset{\sim}{\sim} \underset{\sim}{\sim}
\] & N~ & \[
\underset{\sim}{\circ} \underset{\sim}{\circ} \underset{\sim}{\sim}
\] & \[
\stackrel{\sim}{\sim}
\] & \[
\underset{\sim}{n} \underset{\sim}{n}
\] & \begin{tabular}{l}
 \\

\end{tabular} &  & 응ㅇㅇㅇㅇㅇㅇㅇㅇ \\
\hline  & 发 & 風 & \[
\begin{array}{ll}
\infty & 1 \\
0 & 0 \\
0 & 0 \\
\hline 0
\end{array}
\] & \[
\begin{array}{ll}
\infty & \hat{1} \\
0 \\
0 & 0 \\
0
\end{array}
\] & \[
\begin{aligned}
& \infty \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 总 & \begin{tabular}{l}
 \\

\end{tabular} &  &  \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline C3
C4， 52 & & & & 10\％ & 25 V
63 V & W．alum． & 652 & 810 & 00 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{C} 6,7,9,13-16, \\
& 34,36,49,50,54,59, \\
& 61,83-110,198-200, \\
& 213-216
\end{aligned}
\]}} & & & \(-20+50 \%\) & & & & & \\
\hline & & & & & & cer． & 602 & 410 & 01 \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& \text { C10,11,113-128, } \\
& 149-168,184-197, \\
& 207-212
\end{aligned}
\]}} & 0.1 & uF & 10\％ & 100V & Polyes． & 623 & 510 & 01 \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{C} 12,22,31,33,112 \\
& \mathrm{C} 17,205,206,217
\end{aligned}
\]} & & & nF & 10\％ & 63V & Cer． & 602 & 310 & 02 \\
\hline & & 220 & pF & 10\％ & 63 V & Cer． & 602 & 222 & 00 \\
\hline \multirow[t]{2}{*}{\[
{\underset{38}{\mathrm{C}} 19,25,30,32,37,}^{\text {, }}
\]} & & & nF & 20\％ & 63V & Polyes． & 622 & 410 & 01 \\
\hline & & & & & & & & & \\
\hline C20 & & 1.8 & pF & ＋－0．25pF & 400v & Cer． & 605 & 018 & 00 \\
\hline C21 & & 2.2 & pF & \(+-0.26 \mathrm{pF}\) & 400 V & Cer． & 605 & 022 & 00 \\
\hline \multicolumn{2}{|l|}{C23，70} & 0.22 & & 20\％ & 63 V & Polyes． & 622 & 522 & 01 \\
\hline \multicolumn{2}{|l|}{C24，223} & 680 & & 1\％ & 125 V & Microp． & 602 & 268 & 00 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{C} 28,29,44,66-69, \\
& 111,
\end{aligned}
\]}} & 4.7 & & 10\％ & 100V & cer． & 602 & 347 & 02 \\
\hline & & & & & & & & & \\
\hline \multicolumn{2}{|l|}{C39，40} & 56 & pF & 10\％ & 63v & Cer． & 602 & 156 & 00 \\
\hline \multicolumn{2}{|l|}{C43} & 10 & & 20\％ & 16V & Sol．al & 651 & 710 & 03 \\
\hline \multicolumn{2}{|l|}{C45} & & & 10\％ & 63V & Polyes． & 623 & 610 & 01 \\
\hline \multicolumn{2}{|l|}{C46，47} & 47 & nF & 20\％ & 63 V & Polyes． & 622 & 447 & 00 \\
\hline \multicolumn{2}{|l|}{C53} & & & 10\％ & 63 V & Cer． & 602 & 139 & 01 \\
\hline \multicolumn{2}{|l|}{C55} & 1.2 & \(\mathrm{nF}^{\text {F }}\) & 10\％ & 63 V & Cer． & 602 & 312 & 00 \\
\hline \multicolumn{2}{|l|}{C56} & 180 & pF & 10\％ & 63 V & Cer． & 602 & 21 & 00 \\
\hline \multicolumn{2}{|l|}{C58} & 100 & & 2\％ & 100 V & Cer． & 602 & 210 & 00 \\
\hline \multicolumn{2}{|l|}{C64} & 0.47 & uF & 10\％ & 63 V & Polyes． & 622 & 547 & 01 \\
\hline \multicolumn{2}{|l|}{C129} & & pF & －0．5pF & 4 KV & Cer． & 608 & 004 & 00 \\
\hline \multicolumn{2}{|l|}{C130} & 1000 & pF & 12\％ & 100V & CD15 & 643 & 310 & 00 \\
\hline \multicolumn{2}{|l|}{C133 5} & \(\times 790\) & pF & 2\％ & 500 V & Mi & 645 & 279 & 00 \\
\hline \multicolumn{2}{|l|}{C141} & \(\times 18\) & pF & ＋－1／2pF & 500 V & Mi & 645 & 118 & 00 \\
\hline \multicolumn{2}{|l|}{C142} & × 35 & pF & \(2 \%\) & 500 V & Mi & 645 & 135 & 00 \\
\hline C143 & & x 68 & pF & 2\％ & 500 V & Mi & 645 & 168 & 00 \\
\hline C144 & & \(\times 130\) & pF & 2\％ & 500 V & Mi & 645 & 213 & 01 \\
\hline C145 & \(2 \times\) & \(\times 260\) & pF & 2\％ & 500 V & Mi & 645 & 226 & 00 \\
\hline C146 & & \(\times 510\) & pF & 2\％ & 500V & Mi & 645 & 251 & 02 \\
\hline C148 & \(2 \times\) & \(\times 680\) & pF & 2\％ & 500 V & Mi & 645 & 268 & 02 \\
\hline plus & & 650 & pF & 2\％ & 500 V & Mi & 645 & 265 & 00 \\
\hline
\end{tabular}
PARTS LIST FOR ANTENNA TUNING UNIT BOARD 640 VERSION 7A

으응

8 POL. MOLEX
SPADE
4 POL. MOLEX
TERMINAL STRIP
L2
TSI
\begin{tabular}{lll}
850 & 200 & 30 \\
850 & 054 & 70
\end{tabular}
\begin{tabular}{lll}
373 & 589 & 81 \\
373 & 590 & 01 \\
373 & 590 & \(0 X\) \\
780 & 000 & 35
\end{tabular}



\section*{TECHNICAL DESCRIPTION}

50 OHM ATU RELAY 644
The ATU RELAY is a fast switching simplex relay ( \(<5 \mathrm{msec}\) ) which in combination with 630 requires only one coax cable to be connected between the TU and the ATU. The RELAY board is mounted inside the ATU and is controlled by PCB 640 .


PARTS LISI FOR 50 OHM ATU RELAY BOARD 644 VERSION IA
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Printe & Complet & e 644 & & & 107 & 56441 \\
\hline Q1 & BC547B & & & & 840 & 05470 \\
\hline Q2 & BC327 & & & & 840 & 03270 \\
\hline D1,2 & 1N4148 & & & & 830 & 41480 \\
\hline RLI & RELAY & 1022 & & & 373 & 590 0X \\
\hline RL2 & RELAY & 1023 & & & 373 & 5898 X \\
\hline R1 & 10 kohm & 5\% & 1/4W & Car. & 501 & 41000 \\
\hline R2 & 5.6 kohm & 5\% & 1/4W & Car. & 501 & 35600 \\
\hline R3 & 6.8 kohm & 5\% & 1/4W & Car. & 501 & 36800 \\
\hline C1, 3 & 0.1 uF & 10\% & 100 V & Polyes. & 623 & 51001 \\
\hline C2 & 10 nF & -20+50\% & loov & Cer. & 602 & 41001 \\
\hline C4 & 10 pF & +-1/2pF & 500V & Mi & 645 & 11000 \\
\hline Ll & 10 uH & 1582/ & & & 740 & 11000 \\
\hline PLI, 2 & Plug coa & XCable & & & 373 & 6178 X \\
\hline PL3 & PLUG COAX & XCABLE & & & 373 & \(6179 \times\) \\
\hline SK1 & SOCKET 2 & 2-WIRE CA & & & 106 & 60550 \\
\hline
\end{tabular}


AC Power Supply Unit 8250

\section*{TEC'INICAL DESCRIPTION}

AC POUER SUPPLY UNIT P 8250
The P 8250 is a combined AC/DC Pover Supply especially developed for povering the TRP 8250 Series. The input power for \(P 8250\) is \(A C\), and the output is an unregulated 32 V DC voltage.

Where a battery is required as a reserve source of electrical energy to the radiotelephone equipment, it can be connected via the \(P 8250\) pover supply. By means of the switch on the front panel it is possible to select betveen AC or Battery operation.

Primary connections of mains transformer
The primary connections of the mains transformer must be wired according to the diagram inside the cover of the unit depending on the mains voltage.

Fuse ratings
Only one fuse is used in the system, the llains fuse FSl on the front panel.
From the factory the \(P 8250\) is normally delivered wired for 220 VAC, and therefore the fuse mounted is a 6A3 slou type.

The fuse ratings are as follows:
\begin{tabular}{cc}
\begin{tabular}{c} 
Hains voltage \\
\((\) volt \()\)
\end{tabular} & \begin{tabular}{c} 
Fuse FS \\
\((\) size \(6.3 \times 32\) man \()\)
\end{tabular} \\
\hline\(\frac{110 / 120}{220 / 240}\) & \(12 A 5(\) slou \()\) \\
\(6 A 3(\) slou \()\)
\end{tabular}

\[
\begin{aligned}
& \mathrm{D} 1,2 \\
& \text { R1 } \\
& \text { R2 } \\
& \mathrm{C1}, 2 \\
& \mathrm{C}, 5 \\
& \mathrm{C} 4 \\
& \mathrm{C} 6,7,8 \\
& \text { SL1 } \\
& \text { I1 } \\
& \text { SW1 } \\
& \text { IS1 } \\
& \text { TS2 } \\
& \text { FS1 }
\end{aligned}
\]
PARTS LIST FOR AC POWER SUPPLY UNIT VERSION 2A
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{PH70} & 831 & 00700 \\
\hline 470 ohm & 5\% & 2W & Carbon & 503 & 24700 \\
\hline 220Kohm & 5\% & IW & Carbon & 504 & 52200 \\
\hline 10 mF & & 63 V & & 652 & 91051 \\
\hline 47 nF & 10\% & 630 V & Polyes. & 626 & 44701 \\
\hline 470 nF & 10\% & 630 V & Polyes. & 626 & 54701 \\
\hline 4.7 uF & 10\% & 100 V & Polyes. & 623 & 64700 \\
\hline \multicolumn{4}{|l|}{LAMP} & 754 & 00004 \\
\hline \multicolumn{4}{|l|}{TRANSF ORMER} & 383 & 59731 \\
\hline \multicolumn{4}{|l|}{SWITCH} & 760 & 00000 \\
\hline \multicolumn{4}{|l|}{TERMINAL STRIP} & 770 & 00014 \\
\hline \multicolumn{4}{|l|}{TERMINAL STRIP} & 770 & 00024 \\
\hline \multicolumn{4}{|l|}{FUSE 6.3 AMP. SLOW BLOW} & 720 & 36302 \\
\hline
\end{tabular}

\section*{CU 8000 HANDSET}


PARTS LIST FOR HANDSET ASSEMBLY CU 8000
\begin{tabular}{lll}
1. & Handset & 10780000 \\
2. & Handset holder & 10750390 \\
3. & CU - Handset holder & 10660140
\end{tabular}
993870 7X COMP


:OLO709 29-4-91

\begin{tabular}{lll}
107 & 870 & 91 \\
751 & 001 & 59 \\
751 & 001 & 59 \\
751 & 001 & 59 \\
373 & 535 & 71
\end{tabular}

Printed Circuit Board Complete
 Ground wire

ㄱ 요요요요요요요요

응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
\(\stackrel{n}{0}\)

ずonino

人 우수숫수숫ㅅN수 \(\stackrel{\infty}{\infty}\)
 으으Nㅇㅇㅇ

읃두두N AMPLIFIER LM1458 SO8

2 WAY CONNECTOR，MOLEX
4 WAY CONNECTOR，MOLEX
SPRING－CABLE FOR PCB707 5 WAY CONNECTOR，ZIF GRIP
```


[^0]: * NOTE. The technical manual for the TRP 8400 series is based on the TRP 8250 D series manual, with all deviations descreibed in the rear AMENDMENTS .

