

Level	Part \# Component-Description	Qty-Per-Parent
===		
Parent Item:	59-040-0901 FBC	
1	$\begin{gathered} 21-30-0023 \quad \text { CAB DIL RIBBON 20-PIN } 1.25 \mathrm{~mm} \\ 708 \mathrm{~mm} \text { IDC x } 4 \end{gathered}$	1.000000
1	$\begin{aligned} & 21-30-0024 \quad \text { CAB DIL RIBBON } 20-\text { PIN } 1 \mathrm{~mm} \\ & 226.06 \mathrm{~mm} \text { IDC-IDC } \end{aligned}$	1.000000
1	$\begin{gathered} \text { SCREW } 1 / 4-20 \times 3.5 \text {-0012 STEEL } \\ \text { SHCS BLK OXIDE } \end{gathered}$	1.000000
1	$\begin{gathered} \text { 30-00-0013 SCREW } 6-32 x .25 i n \text { STL PNH PHH } \\ \text { BLK OXIDE } \end{gathered}$	4.000000
1	30-00-1632 SCR 6-32x3/8 PNH PHH TAP TITE STL BLK	10.000000
1	30-00-1633 SCR, 6-32 x 3/8 LG, PHILLIPS P PPZ W/LockWasher	2.000000
1	30-03-0003 WASHER . 473 x .260 x .030 steel	4.000000
1	30-03-0005 WASHER . 500 x .260 x .030 NYLON	2.000000
1	30-03-0007 WASHER . 500 x .260 x .125 NYLON	2.000000
1	30-03-0013 WASHER . 50 x .170 x .040 NYLON	2.000000
1	30-03-0014 WASHER N0.6 FINISHING	12.000000
1	$\begin{aligned} & \text { 30-03-0017 WASHER } 15.9 \times 11.9 x .53 \mathrm{~mm} \\ & \text { STEEL NICKEL } \end{aligned}$	12.000000
1	30-06-0008 NUT 4mm PUSH NUT STEEL ZINC	12.000000
1	30-06-0009 NUT 1/4-20 STL W/NYLON LOCK	1.000000
1	30-06-0623 NUT 6-32 W/CAPTV-STAR-WASHER	2.000000
1	30-15-0005 SPACER .25ID x N0. 8 OD AL	2.000000

1	30-15-0006 PLASTIC INSULATOR . 17 ODx. 46 LG	2.000000
1	30-15-0011 or Stl	1.000000
1	$\begin{aligned} & \text { 30-27-0030 BEZEL FBX3 } 1.4 \times 7.0 \mathrm{H} \text { IMP } \\ & \text { ABS SM MICROTEXTURE } \end{aligned}$	1.000000
1	$\begin{aligned} & \text { 30-27-0037 LENS BEZEL FBX3 6.5x. } 95 \\ & \text { LEXAN CLEAR } \end{aligned}$	1.000000
1	30-27-0038 LT PIPE DIVERG .55IN X .16DIA LEXAN 141 HIGHLY POLISHED	12.000000
1	$\begin{aligned} & \text { 30-48-5012 BUMPER RBR .465" O.D. } \\ & \text { BLK FLOORBOARD } \end{aligned}$	8.000000
1	$\begin{gathered} \text { 30-51-0046 BRACKET PEDAL . } 85 \times 2.54 " 16 \text { GA } \\ \text { STL EG } \end{gathered}$	1.000000
1	$\begin{gathered} \text { 30-51-0077 SUPPORT CORRUGATED } 1.9 \times 7.5 \text { IN } \\ \text { 20GA EG STL } \end{gathered}$	1.000000
1	30-51-0078 TACTILE DOME 20mm SST NP	3.000000
1	30-51-0085 PEDAL 8.0x3.1 16 GA EGS NKL PL	1.000000
1	$\begin{aligned} & \text { 30-51-0106 CHASSIS BASE } 18.2 \times 7.8 \times 2.0 \\ & 18 \text { GA EG STL } \end{aligned}$	1.000000
1	$\begin{gathered} \text { 30-75-0002 FOOT RUBBER } \\ 2.87 \times 7.70 \times .237 \text { BLK } \end{gathered}$	1.000000
1	30-75-0007 PEDAL STOP FOAM RUBBER 2.63x.25x. 06	1.000000
1	30-75-0011 STOP PEDAL RBR .81SQ x . 52 BLK	2.000000
1	50-00-0092 PCBA DISPLAY LCD FBV shortboard	1.000000
2	18-30-0001 DISPLAY LCD - FBV Shortboard TQLOO1TPL	1.000000
2	$\begin{aligned} & \text { Ref: LCD Display } \\ & \text { 21-20-1011 HDR PCB MT DIL 20-PIN } 2 \times 10 \times 2 \mathrm{~mm} \\ & \text { MALE VERT MT TH } \end{aligned}$	1.000000
1	Ref: LCD Display 50-00-0142 PCBA MAIN FBV Shortboard	1.000000

2

Ref: \mathbf{Q}^{5}

2	$\begin{array}{cc}\text { 09-20-0095 } & \text { PhoToTransISTOR, SMD Blue } \\ \text { Lens } & \text { Ledtech LT5K95-AA-0125 }\end{array}$	1.000000
2		1.000000
2	$$	2.000000
2	Ref: L3-4 11-10-2012 FERRITE BEAD 600 Re100MHZ 300 mA 0805 SM	6.000000
2	$\begin{array}{cr} \text { Ref: L1-2, L6, L8-10 } \\ \text { 12-02-1087 } & \text { IC REG +5.0V T0-220 TH } \\ \text { LM1086 } & \end{array}$	1.000000
2	Ref: U19 12-64-8832 IC ADC 2 -CH 10-BIT W/MULTIPLEXER SM ADC08832	1.000000
2	$$	1.000000
2	$\begin{gathered} \text { Ref: U3 } \\ \text { 15-62-0273 IC 74HC273 FLIP-FLOP D-TYPE } \\ \text { 8-BIT S0-20 SM } \end{gathered}$	1.000000
2	$$	1.000000
2	Ref: U615-67-0179 IC RS-485 LOW PWR DIFF TRANCEIVER SN7LBC179 S0-8 SM	1.000000
2	Ref: U915-78-1024 IC EEPROM 1K 64×16 SERIAL AK93C45 SOP-8 SM	1.000000
2	$$	1.000000
2	$\begin{array}{cc} & \text { Ref: U4 } \\ \text { 18-20-0002 } & \text { LED } \\ \text { SMLD-LX0805SRC-TR } & 0805 \text { SUPER } \end{array}$	1.000000
2	Ref: D15 18-24-0003 LED GREEN SUPER SML-LX0805SGC-TR 0805 SM	1.000000
2	Ref: D19 18-27-0083 LED INFRA-RED, 880 nm CLEAR LENS LT5K83-AA-880 Ref: $: ~ D 36 ~$	1.000000

HORIZ TH
Ref: J4
21-16-0045 JACK RJ-45 8-Pin Female

Ref: J1
. 100 MALE SHRD RT ANG
Ref: H2

45-01-0004 IC PROGRAMMED MPU FBC v1.00
$\mathrm{c} / \mathrm{s}=26 \mathrm{BDh}$ FBC
Ref: U2
15-84-8751 IC MCU 87C51 OTP w/512 byte
1.000000

SRAM 8K ROM PLCC44 BLANK
50-00-0143 PCBA SWITCH LOWER FBV Shortboard
1.000000

06-00-4148 DIODE SMALL-SIGNAL 100V 300mA
4ns DO-35 TH 1 N 4148
Ref: D6
18-02-0002 LED RED HI INTENSITY
21-20-1020 HDR PCB MT D
.100 MALE SHRD RT ANG

Ref: H1

50-00-0144 PCBA SWITCH MIDDLE FBC

06-00-4148 DIODE SMALL-SIGNAL 100V 300mA
4ns Do-35 TH 1 N 4148
Ref: D11
18-02-0002 LED RED HI INTENSITY
L34LSRD
Ref: D7-10
21-20-1020 HDR PCB MT DIL 20 Pin $2 x 10 x$
. 100 MALE SHRD RT ANG
Ref: H2

50-00-0145 PCBA SWITCH UPPER
1.000000

06-00-4148 DIODE SMALL-SIGNAL 100V 300mA
4nS DO-35 TH 1N4148
Ref: D13

FBV SHORTBOARD TEST INSTRUCTIONS

The FBV SHORTBOARD is mostly a self-testing device that will simply require power to be applied to test the unit. You will need to connect the FBV SHORTBOARD to a Line 6 host amplifier (ie. POD XT, Vetta, or DuoVerb) via an RJ-45 cable. The following instructions detail the test process and the very important pedal calibration process.
*Please note: The FBV Shortboard can not be used with nor powered by AX2, Flextone 1, Flextone 2, Spider, POD, POD 2.0, POD Pro, Bass POD or Bass POD Pro products.

AUTOMATED TEST PROCEDURE

1. First, check the FIRMWARE VERSION: Press BANK DOWN+MODULATION+REVERB. The display should read " FBV V1_00 " or higher. If this is not displayed install a new MPU chip programmed with the current firmware code release.
2. START TEST MODE: To activate the test mode, press the BANK DOWN+STOMP+REVERB foot switches at the same time and release. (See Diagram 3). A sequence of automated tests will commence in the following order:
A. LCD TEST
B. SWITCH/LED TEST
C. COMM TEST (see detailed instructions for these tests below).
<Note: The pedals will be tested and calibrated in the sections following the automated test procedure> Diagram 3.

A. LCD TEST: This test will start by turning on all segments of the LCD for about 10 seconds. Then all segments will then turn off. The first three characters are seven-segment characters. The fourth character is a fourteen-segment character. The special flat symbol is located to the right of the fourth character. The remaining sixteen characters are fourteen-segment characters. The operator should note if any segments of the LCD are not working properly (which the operator should do quickly and accurately due to the 10 sec .) and have the faulty LCD module replaced.
B. SWITCH/LED TEST: This test starts with ALL LED'S TURNED ON so that the operator notes if any LED's are not working properly and should have the faulty LED's replaced. Also, they show which switches to still test. The operator will press and release all foot switches one at a time. The LCD will display the name of the footswitch that is being depressed and the corresponding LED should turn off. The operator must make sure the name matches the name of the switch when depressed.
*NOTE: For this step, make sure that each of the 12 momentary switches produces a consistent "click" when depressed. If not, replace the faulty switch.
Test the pedal toe switch under the pedal by placing the palm of your hand at the top of the pedal and your fingers around and behind the FBV top chassis. (See Diagram 4). Press on the pedal with your hand until the footswitch clicks. Use caution so you do not bend or warp the metal when you press down. (Note: The LED's to the side of the pedal will not turn off at this time but the LCD will display the pedal switch name when the pedal toe switch is pressed). This test will remain active until the operator moves on to the next step COMM TEST. The operator should note if any footswitches are not working properly and have the faulty footswitches replaced. Also, the operator should have any footswitches replaced that do not produce a tactile click when fully depressed.

Diagram 4.

To Exit the Footswitch portion of the automatic test press BANK DOWN+DELAY+REVERB. This will automatically start the COMM TEST (see below).
D. COMMUNICATIONS TEST: This test will automatically determine the ability of the FBV to send and receive data from a host (e.g. Vetta Combo). If the test passes the LCD will display "COMM TEST PASSED" followed by "TEST PEDALS". If the test fails, the LCD will display "COMM TEST FAILED". You will need to press BANK DOWN+DELAY+REVERB to exit the error message. If the test fails then you should first check the RJ45 cable on the test fixture and make sure it is connected properly to the FBV (you will know this automatically if the backlight is not turned on but the LCD is working). If the cable is connected properly then replace the main PCB in the FBV.

PEDAL TESTING

To test the foot pedals; you must press a special footswitch combination as follows:
LEFT INTERNAL PEDAL: STOMP+DELAY+REVERB
RIGHT EXTERNAL PEDAL: BANK DOWN+STOMP+DELAY
<Note: You can only test one pedal at a time>
The LCD will display one letter and four sets of numbers. "L 000111222333 " for LEFT INTERNAL PEDAL TEST and "R 000111222 333" for the RIGHT EXTERNAL PEDAL TEST. (See Diagram 5).

Diagram 5.

L = Left Pedal (Internal Pedal)
$\mathbf{R}=$ Right Pedal (External Pedal)
$000=$ Actual pedal height, (range is $000 \ldots 255$) with 0 being at the heel down position and 255 being at the toe down position. Note that in actual usage, the min and max numbers will be something in between 0 and 255 .
111 = Scaled normalized pedal number using the max and min values to output a number between 0 and 127.
$\mathbf{2 2 2}=$ the pedal min value $(0 \ldots 255)$ this is a stored version of the pedal's lowest heel down (MIN) position.
$333=$ the pedal max value $(0 \ldots 255)$ this is a stored version of the pedal's highest toe down (MAX) position.

To test out the pedals, you are only concerned with the MAX and MIN values. Swing the pedal under test from its MAX position to its MIN position. You may watch the ACTUAL PEDAL HEIGHT number (000) to verify its position. The values should be within the ranges as shown below:

If the pedal has passed the above test within the correct values, slowly press the pedal down to its heel position and then press down on the heel slightly. The second column (111) value should go down to 000 . If the $\mathbf{1 1 1}$ column value goes up while the pedal is going down to the heel position, fail it. It will require pedal lance adjustment.

If any of the pedals are not within the specified the following may be checked in this order:
a) The pedal's lance is not at the correct angle. When the pedal lance is at its correct angle the tip of the lance should be parallel to the PCB when the pedal is all the way in its heel down position. See the engineering released pedal drawing Line 6 \#30-51-0085 Rev E (or higher if applicable). Check also that when the pedal lance is closest to the board it is within the specified distance to the board (See FBV SHORTBOARD assembly instructions).
b) The copper tape on the lance is properly applied.
c) The pedal sensor's infrared LED or Phototransistor may be out of spec. You can try replacing both of these parts at the same time (IR LED=Line 6 \#18-27-0083, Phototransistor $=09-20-0095$). LEFT PEDAL: IR LED $=$ D36, Phototransistor $=$ Q42.

To exit the LEFT or RIGHT pedal test move on to PEDAL CALIBRATION on the next page.

PEDAL CALIBRATION

Once the FBV has passed all of the above tests, you must calibrate the pedals. Every time an FBV is opened and then closed, you must recalibrate the pedals.

1. Start by attaching the chassis base with all $\mathbf{1 0}$ screws (some screws have rubber feet). IT IS VERY IMPORTANT THAT THE BASE BE ATTACHED FOR THIS.
2. Connect the FBV SHORTBOARD to the host amplifier (POD XT, Vetta or DuoVerb.)
3. Move both pedals to their center postions roughly halfway between the MAX and MIN position.
4. Press BANK DOWN+MODULATION+DELAY and hold for three seconds. This will reset the calibration values for the pedals to their default values.
5. Press STOMP+DELAY+REVERB and hold for three seconds. This will now display the pedal information for the LEFT INTERNAL PEDAL.
6. Move the pedal to its MIN position and press down (pedal all the way heel down).
7. Move the pedal to its MAX position (pedal all the way toe down) and press down hard enough to actuate the pedal's toe switch.
8. Check the range on the MAX (number displayed on right hand side of display) and MIN (number displayed second from right hand side of display) values to see that they are within spec (Pedal Testing section above).
9. Move the pedal to its MIN position. With the pedal just sitting there, check the number displayed in the second column (111). It should read 000. Press the pedal down at the heel position. This number should still read 000 . If this number is nonzero for either of these two cases then check the items listed for troubleshooting under "Pedal Testing" above.
10. Press BANK DOWN+STOMP+DELAY and hold for three seconds. This will now display the pedal sinformation for the RIGHT EXTERNAL PEDAL.
11. Repeat steps 6 through 9 only for the RIGHT EXTERNAL PEDAL.
12. You just calibrated the pedals. Remove the RJ45 cable to power down the unit.

Forward and Notes

The information in this booklet applies to the FBV Shortboard. It is suggested that the steps for assembly follow the order presented in these instructions.

This booklet deals with the assembling of the major sub-assemblies, the final product, and quality/inspection considerations. See also the Related Electrical assembly documentation for major considerations in assembling the electrical components of the PCBs (through the soldering process and preparation of the board for addition of custom components.

A note on the text: the illustrations in this book are for reference only. In some cases, color and geometry of illustrations may not accurately reflect the color or exact geometry of actual parts.

- Unless otherwise noted, all dimensions are in inches.
- Part identifying notes are in this format: Description (Part Number)
- Drawings are not to scale.
- Torque value tolerance +/- . 5 in.-lbs. Do not over tighten any components.
- For clarity, not all component details are shown. This is especially true with respect to cable assemblies. They are often omitted from views to provide a clearer picture of the material discussed. Do not be confused by the absence (or unexpected presence) of any component in the illustrations in this book.

Table of Contents

Light Pipe Assembly 2
1 Light Pipe P/N 30-27-0038 3
Pedal Switch PCB Assembly 3
Pedal Switch PCB to Chassis Assembly 5
Pedal Sub-Assembly 7
Pedal Assembly 9
SAE Steel Washers 9
Nylon Spacers 9
Stomp Switch PCBs to Chassis Assembly 10
Display to Chassis Assembly 12
Display Cable Attachment and Pedal Lance Adjustment 13
Corrugated Support Attachment 14
Final Assembly 16

Light Pipe Assembly

The FBC requires 12 Light Pipe assemblies. Each assembly consists of the following;
1 Light Pipe. Line 6 P/N 30-27-0038
1 Finishing Washer. Line 6 P/N 30-03-0014
1 Push Retainer. Line 6 P/N 30-06-0008

Light Pipe. Line 6 P/N 30-27-0038. 12 required

Finishing Washer. Line 6 P/N 30-03-0014. 12 required

Pedal Switch PCB Assembly

There is one (1) Pedal Switch PCB assembly required per FBC. To complete this subassembly place three (3) Tactile Domes aligned on top of each other (make sure there are exactly 3 Tactile Domes used, they are thin and easily miss-counted) and tape them to the Pedal Switch PCB so that the feet of the bottom Tactile Dome rest on the conductive pads.

Pedal Switch PCB to Chassis Assembly

The assembly of the Pedal Switch PCB sub-assembly to the Chassis is completed using the following:

2 Nylon Washers. . 5 x .170 x .04 thick. Line 6 P/N 30-03-0013.
2 Round Aluminum Spacers. 1/4 O.D. x . 166 I.D. x . 460 LNG. Line 6 P/N 30-15-0005.
1 Round Plastic Insulator. . 17 O.D. x . 156 I.D. x . 460 LNG. Line 6 P/N 30-15-0006.

Main PCB to Chassis Assembly

The assembly of the Main PCBA to the chassis is completed using the following:
1, Main PCBA. Line 6 P/N 50-00-0142
$2,6-32 \times .375$ screws with captive star washers. Line 6 P/N 30-00-1633.
2, 6-32 Hex nuts with captive star washers. Line 6 P/N 30-06-0623
First, secure the $1 / 4$ " jack (part of the PCB Assy) to the chassis using the $1 / 4$ " jack nut. Then, secure the PCB to the mounting studs using the Hex Nuts and Screws.

Hex Nuts w/captive star washers.
(Line 6 P/N 30-06-0623).
Using a $5 / 16$ " socket, tighten the Hex Nuts to $10-12$ in-lbs.
$6-32 \times .375$ screws with captive star washers. (Line 6 P/N 30-00-1633).
Tighten screws to $10-12$ in-lbs

Pedal Bracket to Chassis Assembly

The Pedal Bracket, Line 6 P/N 30-51-0046, is attached to the under side of the chassis using 4, 6-32 x . 250 Pan Head Phillips Screws. Line 6 P/N 30-00-0013.

6-32 x . 250 Pan Head Phillips
Screws. Line 6 P/N 30-00-
0013. Torque each screw to

10-12 in-lbs

Pedal Sub-Assembly

To complete the Pedal sub-assembly, the following shall be attached to the Pedal, Line 6 P/N 30-51-0085. Each rubber part has pressure sensitive adhesive on the side to be attached to the Pedal.

2 Rubber Pedal Stops. Line 6 P/N 30-75-5514 3M).
1 Foam Rubber Pedal Stop. Line 6 P/N 30-75-0007.
1 Rubber Cover. Line 6 P/N 30-75-0002.

Note: If unit cannot be properly calibrated and is not achieving a minimum value of less than 50 during pedal calibration, copper tape should be applied to the pedal lance. Refer to "Pedal Lance Copper Tape Preparation.doc"

Pedal Assembly

The Pedal is attached to the Chassis by using the following parts:
4 Steel Washers. 1/4 ID x ½ OD x . 030 thick. Line 6 P/N 30-03-0003.
2 Nylon Spacers. 1/4 ID x ½ OD x . 125 thick. Line 6 P/N 30-03-0007.
2 Nylon Spacers. $1 / 4$ ID x ½ OD x .030 thick. Line 6 P/N 30-03-0005.
$11 / 4-20$ Locknut with nylon insert. Line 6 P/N 30-06-0009.
1 Socket Head Cap Screw. 1/4-20 UNC-2A x 3.50 Lg. Line 6 P/N 30-00-0012.
1 Tape. 2.6 mil. 2 inch $x .25$ inch copper with adhesive. Line 6 P/N 30-65-0003.
1 Spacer, 39 inch Dia x 2.40 inch Lg. Line 6 P/N 30-15-0011.
The Spacer, Line 6 P/N 30-15-0011, is added to prevent the Pedal Bracket from "collapsing" when the torque is applied to the socket head cap screw.

Pedal Assembly (continued)

NOTE.
Spacer, Line 6 P/N 30-15-0011, is not shown in this view

Stomp Switch PCBs to Chassis Assembly

There are three (3) stomp switch PCB Assemblies. They are Top, Middle and Bottom. Each assembly is held to the chassis by the stomp switches.

Tighten Nut next to the switch body so it rests on the inside chassis

Example of LED and Lightpipe alignment

Display to Chassis Assembly

To complete the Display Assembly and attach it to the Chassis, use the following:
1 Bezel. Line 6 P/N 30-27-0030.
1 Lens. Line 6 P/N 30-27-0037.
1 LCD Module. Line 6 P/N 50-00-0092.
44-24 Type B x. 500 thread forming screws. Line 6 P/N 30-00-0016.

Display Cable Attachment and Pedal Lance Adjustment

The Display Cable, Line 6 P/N 21-30-0024, is attached to the Main PCB as shown below. Apply RTV adhesive to the cable header areas to prevent the cable from coming loose during shipping etc.

Pedal Lance adjustment:

The optimum set up for the angle of the lance is such that the lance reflective surface is parallel to the PCB when the pedal is at the full heel position:

Toe switch activation force:

With the following components:

- 3M rubber bumpers (3M part number SJ5514) positioned between the two registration notches.
- 3 stacked Snaptron domes per pedal. (Snaptron part number FD202250, specified at trip force 2250 g each).
The activation force, measured on the pedal right above the activation strike, should be between 50 to 75 Pounds (22.7 Kg to 34.0 Kg).

Corrugated Support Attachment

The Corrugated Support, Line 6 P/N 30-51-0077, is attached to the Chassis, Base, Line 6 P/N 30-51-0106 mounting holes, using two (2) No.6-32 x . 375 Lg Phillips pan head screws, Line 6 P/N 30-00-1632, and two (2) bumpers with steel washers inside, Line 6 P/N 30-48-5012. Important: Note the orientation of the Support. Damage may result if the support is not placed on the base correctly.

Foam Strip Attachment

Position Foam Strip, Line 6 P/N 30-63-0002, onto inside surface of Chassis, Top, Line 6 P/N 30-51-0104, as shown.

Stomp Switch Cable Attachment

Attach the Stomp Switch PCB Assemblies to the Middle PCB via the Cable, Line 6 P/N 21-34-0023. Apply tape as shown to secure cable assemblies to chassis.

Final Assembly

To complete the assembly of the Chassis to the Base requires the following
6 No. $6-32 \times$ x 375 Phillips pan head screws. Line 6 P/N 30-00-1632.
6 No. 6 Bumpers with steel washers inside. Line 6 P/N 30-48-5012.

SERIES FOOT CONTROLLERS

Care and Feeding

When moving your FBV around, always grab it by the edges of the main body's metalwork; do not lift up the FBV by the pedals. You can clean the FBV with a damp (not wet) cloth. If you own a Vetta combo, you will find that the FBV is sized to fit into the back of the amp; insert the pedal so its display and switches face the magnets, with the thin edge of the pedal (the edge that would normally be toward you as you stand in front of the pedal while using it) toward the bottom of the amp.

Getting Connected

The FBV series foot controllers are designed exclusively for Line 6 products. Check your product manual to ensure it is compatible with FBV. Your FBV connects with the included locking cable. This cable allows communication, and also supplies the FBV with power; there is no separate power cord needed for the FBV.

Calibrating Your Fooł Pedals

Calibration matches the FBV software to the exact physical range of the pedal controls:

1. Make sure your FBV is connected to your Line 6 product and that it is powered up.
2. Press the AMP 1, AMP 2, and TREMOLO switches simultaneously and hold down for about 3 seconds. For the FBV Shortboard press BANK DOWN, MODULATION and DELAY switches and hold for about 3 seconds. There will be no indication that you have entered a special mode - pedal calibration is "invisible".
3. With your foot on the Left pedal, press forward all the way until the pedal's toe switch clicks.
4. Now pedal back toward the heel and apply pressure when you reach the heel position.
5. Repeat steps 3 and 4 for the Right pedal. This procedure only works for the internal pedal on the FBV Shortboard. The FBV Shortboard will automatically adjust itself to variations in expression pedals connected to the rear panel $1 / 4$-inch jack.
6. Your pedals are now calibrated.

Cable Specifications

The cable that connects the FBV is a standard cable used in the computer industry for connecting networks of computers. We chose this type of cable for the FBV because (1) it can carry multiple signals simultaneously, allowing it to transport both power and communications between FBV compatible products and the FBV, eliminating the need for multiple tangled cables or a bulky wall wart; (2) it gives you locking connectors on both ends to insure you don't disconnect from your product or FBV by accident when you're jumping up and down on your FBV; (3) it has a proven track record for reliability in millions of computer installations around the world; (4) replacement cables are available in a variety of lengths and at low cost at any major computer supply store.

When purchasing a replacement cable, you should specify a:
"Category 5, 10 Base-T or RJ-45 cable with male connectors on both ends."
There is a 1 to 5 grading system for The connectors on the end of the cable are computer network cable quality, with 5 being the highest quality. Get the good one. called RJ-45 connectors; these are the standard type of connector used for 10 Base-T computer networks. So asking for "a 10 Base-T cable" or for "an RJ-45 cable" should get you what you need.

If you're unsure if you've got the right thing, note that the RJ-45 connectors basically look like a wide version of standard US telephone line connectors, with eight contacts instead of four.

