ANALOG OUTPUT BOX

 AO 8
SERVICE MANUAL

- A08-DA8

CONTENTS

REVISED PAGE LIST 2-1
SPECIFICATIONS 3-1
PANEL LAYOUT 3-2
DIMENSIONS 3-3
CONNECTOR CIRCUIT DIAGRAM 4
BLOCK DIAGRAM 6
DISASSEMBLY PROCEDURE 7
LSI PIN DESCRIPTION 11
IC BLOCK DIAGRAM 14
CIRCUIT BOARDS 15
INSPECTION 20
TEST PROGRAM 22
ERROR MESSAGES 27
PARTS LISTCIRCUIT DIAGRAM

REVISED PAGE LIST

ITEM	PAGE
SPECIFICATIONS	$3-1$
PANEL LAYOUT	$3-2$
DIMENSIONS	$3-3$
CONNECTOR CIRCUIT DIAGRAM	5
DISASSEMBLY PROCEDURE	7,9
IC BLOCK DIAGRAM	14
CIRCUIT BOARDS	$15 \sim 19$
	AD, IPC4, DR, PSB, LED2
IFC3	16
	17
INSPECTION	19
TEST PROGRAM	$20 \sim 21$
ERROR MESSAGES	$22 ~ 26$

<PARTS LIST>

ITEM	PAGE
OVERALL ASSEMBLY	$2,3,4$
SIDE PANEL ASSEMBLY	4,5
MOTHER ASSEMBLY	6
ELECTRICAL PARTS	$7 \sim 12$

<CIRCUIT DIAGRAM>

ITEM		PAGE
UNC CIRCUIT DIAGRAM	003	4
MB1 CIRCUIT DIAGRAM	002	5
	003	6
	004	7
	005	8
IFC3 CIRCUIT DIAGRAM	002	9
	003	10
	004	11
	005	12
IPC2 CIRCUIT DIAGRAM	006	13
IPC4 CIRCUIT DIAGRAM	007	14
AOCOM CIRCUIT DIAGRAM 002	15	

IMPORTANT NOTICE

This manual has been provided for the use of authorized Yamaha Retailers and their service personnel. It has been assumed that basic service procedures inherent to the industry, and more specifically Yamaha Products, are already known and understood by the users, and have therefore not been restated.
WARNING: Failure to follow appropriate service and safety procedures when servicing this product may result in personal injury, destruction of expensive components and failure of the product to perform as specified. For these reasons, we advise all Yamaha product owners that all service required should be performed by an authorized Yamaha Retailer or the appointed service representative.
IMPORTANT: This presentation or sale of this manual to any individual or firm does not constitute authorization, certification, recognition of any applicable technical capabilities, or establish a principal-agent relationship of any form.

The data provided is belived to be accurate and applicable to the unit(s) indicated on the cover. The research engineering, and service departments of Yamaha are continually striving to improve Yamaha products. Modifications are, therefore, inevitable and changes in specification are subject to change without notice or obligation to retrofit. Should any discrepancy appear to exist, please contact the distributor's Service Division.
WARNING: Static discharges can destroy expensive components. Discharge any static electricity your body may have accumulated by grounding yourself to the ground bus in the unit (heavy gauge black wires connect to this bus).
IMPORTANT: Turn the unit OFF during disassembly and parts replacement. Recheck all work before you apply power to the unit.

WARNING: CHEMICAL CONTENT NOTICE!

The solder used in the production of this product contains LEAD. In addition, other electrical/electronic and/or plastic (where applicable) components may also contain traces of chemicals found by the California Health and Welfare Agency (and possibly other entities) to cause cancer and/or birth defects or other reproductive harm.
DO NOT PLACE SOLDER, ELECTRICAL/ELECTRONIC OR PLASTIC COMPONENTS IN YOUR MOUTH FOR ANY REASON WHAT SO EVER!
Avoid prolonged, unprotected contact between solder and your skin! When soldering, do not inhale solder fumes or expose eyes to solder/flux vapor!
If you come in contact with solder or components located inside the enclosure of this product, wash your hands before handling food.

IMPORTANT NOTICE FOR THE UNITED KINGDOM

Connecting the Plug and Cord
IMPORTANT. The wires in this main lead are coloured in accordance with the following code:
BLUE: NEUTRAL
BROWN: LIVE
As the colours of the wires in the main lead of this apparatus may not correspond with the coloured markings identifying the terminals in your plug, proceed as follows:

The BLUE wire must be connected to the terminal that is marked with the letter N (or coloured BLACK).
The BROWN wire must be connected to the terminal that is marked with the letter L (or coloured RED).

Be certain that neither core is connected to the earth terminal of the three pin plug.

WARNING

Components having special characteristics are marked $\$$ and must be replaced with parts having specification equal to those originally installed.

■ SPECIFICATIONS

Sampling frequency (external sync)	$39.69 \mathrm{kHz}-50.88 \mathrm{kHz}$
Power supply	USA and Canada: $120 \mathrm{~V}, 60 \mathrm{~Hz}$
	Others: $230 \mathrm{~V}, 50 \mathrm{~Hz}$
Power consumption	120 W
Dimensions (W x H x D)	$480 \mathrm{~mm} \times 141.5 \mathrm{~mm} \times 466.8 \mathrm{~mm}$
Weight	15.4 kg
Operating temperature	$10-35{ }^{\circ} \mathrm{C}$
Power cable length	2.1 m
Cooling fan speed	always fixed
Accessories	Connection cable (68-pin, D-sub, half-pitch) $\times 1$, Length: 3 m

Digital I/Os

I/O connectors	Level	Type
INPUT A, B, C	RS-422	D-sub, half-pitch, 68-pin connector (female)
WORD CLOCK IN	TTL/75 Ω (ON/OFF)	BNC Connector
WORD CLOCK OUT	TTL/75 Ω	BNC Connector

Slots

Card	Input
LMY4-AD	Channel 1-4

- Front Panel

(1) OUTPUT UNIT ID indicator
(2) INPUT SELECTOR switch
(3) POWER ON/OFF

- Rear Panel

(4) INPUT connectors A and B
(5) WORD CLOCK IN jack, ON/OFF switch
(6) WORD CLOCK OUT jack

DIMENSIONS

DISASSEMBLY PROCEDURE

1. UNC Card Assembly

1-1 Remove the four (4) screws marked [470]. The UNC card assembly can them be removed. (Fig. 1)

2. Front Panel Assembly

2-1 Remove the UNC card assembly. (See Procedure 1.)
2-2 Remove the thirty-two (32) screws marked [500]. The blank panel can then be removed. (Fig. 1)
2-3 Remove the six (6) screws marked [450]. Each mount bracket can then be removed. (Fig. 1)
2-4 Remove the six (6) screws marked [400]. The front panel assembly can then be removed. (Fig. 1)

<Right Side View>

<Left Side View>

[400]: Flat Head Screw 4.0x8 MFZN2BL (VA221200)
[450]: Oval Head Screw 4.0x8 MFZN2BL (VS153600)
[452]: Oval Head Screw B4.0x8 MFZN2BL (V6221000)
[470]: Bonding Screw 3.0x6 MFZN2BL (VS863000)
[500]: Bonding Screw 3.0x6 MFZN2BL (VS863000)

Fig. 1

3. LED2 Circuit Board

3-1 Remove the front panel assembly. (See Procedure 2.)
3-2 Remove the two (2) screws marked [80]. The LED2 circuit board can then be removed. (Fig. 2)

4. PSB Circuit Board

4-1 Remove the UNC card assembly. (See Procedure 1.)
4-2 Remove the front panel assembly. (See Procedure 2.)
4-3 Remove the seventeen (17) screws marked [430]. The top panel can then be removed. (Fig. 2)
4-4 Remove the two (2) screws marked [100]. The PSB circuit board can then be removed. (Fig. 2)

5. Circuit Boards and Units

Remove the top panel, each circuit board and unit can then be removed. (Fig. 3)

Circuit Board and Unit	Ref. No.	Screw	QTY
IPC2	A	Screw	2
IPC4	310	Bonding Screw 3.0x6 MFZN2BL (VS863000)	2
	320	Bind Head Screw A4.0x6 MFZN2BL (EG340290)	2
DR	380	Bonding Tapping Screw-B (VN413300)	2
Power Transformer	240	Bonding Tapping Screw-B (VC688800)	4

6. Mother Assembly

6-1 Remove the UNC card assembly. (See Procedure 1.)
6-2 Remove the front panel assembly. (See Procedure 2.)
6-3 Remove the top panel. (See Procedure 4-3.)
6-4 Remove the seven (7) screws marked [280]. The mother assembly can then be removed. (Fig. 3)
<Top View>
IPC2 IPC4
<Rear View>

Mother assembly
[180]
[180]: Bind Head Tapping Screw-B A3.0x6 MFZN2BL (VP157900)
[280]: Bind Head Tapping Screw-B A4.0x8 MFZN2BL (VC688800)

7. MB1 Circuit Board

7-1 Remove the mother assembly. (See Procedure 6.)
7-2 Remove the nine (9) screws marked [30] and the five (5) screws marked [50]. The MB1 circuit board can then be removed. (Fig. 4)

8. IFC3 Circuit Board

8-1 Remove the mother assembly. (See Procedure 6.)
8-2 Remove the six (6) screws marked [70]. The IFC3 circuit board can then be removed. (Fig. 4)

9. Side Panel Assembly

9-1 Remove the UNC card assembly. (See Procedure 1.)
9-2 Remove the front panel assembly. (See Procedure 2.)
9-3 Remove the top panel. (See Procedure 4-3.)
9-4 Remove the mother assembly. (See Procedure 6.)
9-5 Remove the eight (8) screws marked [450] and the two (2) screws marked [452]. Each mount bracket can then be removed. (Fig. 5)

9-6 Remove the seven (7) screws marked [200]. The side panel (L) can then be removed.
9-7 Remove the three (3) screws marked [170] and the five (5) screws marked [180]. The upper chassis can then be removed. (Fig. 2, Fig. 3)
9-8 Remove the seven (7) screws marked [260]. The side panel assembly can then be removed. (Fig. 5)

- Mother Assembly

[30]: Bind Head Tapping Screw-B 3.0x6 MFZN2BL (EP600230) [50]: Bind Head Tapping Screw-B 3.0x6 MFZN2BL (EP600230) [70]: Bind Head Tapping Screw-B 3.0x6 MFZN2BL (EP600230)
<Left Side View>

[200]: Bind Head Tapping Screw-B A4.0x8 MFZN2BL (VC688800)
[260]: Bind Head Tapping Screw-B A4.0x8 MFZN2BL (VC688800)
[450]: Oval Head Screw 4.0x8 MFZN2BL (VS153600)
[452]: Oval Head Screw B4.0x10 MFZN2BL (V6221000)

10. AC Assembly

10-1 Remove the side panel assembly. (See Procedure 9.)
10-2 Remove the three (3) screws marked [90]. The AC assembly can then be removed. (Fig. 6)

11. DC Assembly

11-1 Remove the side panel assembly. (See Procedure 9.)
11-2 Remove the four (4) screws marked [60]. The DC assembly can then be removed. (Fig. 6)

12. DC Circuit Board

12-1 Remove the side panel assembly. (See Procedure 9.)
12-2 Remove the DC assembly. (See Procedure 11.)
12-3 Remove the four (4) screws marked [D60]. The TR holder can then be removed. (Fig. 7)
12-4 Remove the three (3) screws marked [D80]. The BR holder can then be removed. (Fig. 7)

12-5 Remove the five (5) screws marked [D90]. The DC cricuit board can then be removed. (Fig. 7)

- Side Panel Assembly

[60]: Bind Head Screw A4.0x6 MFZN2BL (EG340290)
[90]: Bind Head Tapping Screw-B A4.0x8 MFZN2BL (VC688800)

- DC Assembly

[D60]: Pan Head Screw SP4.0x8 MFZN2Y (EL200020)
[D80]: Pan Head Screw SP4.0x8 MFZN2Y (EL200020)
[D90]: Bind Head Tapping Screw-B 3.0x6 MFZN2BL (EP600230)
Fig. 7

■ LSI PIN DESCRIPTION

- SGH609080F-47F (XU235A00) ATSC

IFC3: IC501-504

- YM3436DK (XG948E0) DIR2 (Digital Format Interface Receiver)

IFC3: IC301 to 303, 401 to 403

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	NAME	I/O	FUNCTION	$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	NAME	I/O	FUNCTION
1	DAUX	1	Auxiliary input for audio data	23	RSTN	1	System reset input
2	HDLT	O	Asynchronous buffer operation flag	24	Vdda		VCO section power (+5 V)
3	DOUT	O	Audio data output	25	CTLN	1	VCO control input N
4	VFL	0	Parity flag output	26	PCO	O	PLL phase comparison output
5	OPT	0	Fs $\times 1$ Synchronous output signal for DAC	27	(NC)		
6	SYNC	0	Fs x 1 Synchronous output signal for DSP	28	CTLP	1	VCO control input P
7	MCC	O	Fs $\times 64$ Bit clock output	29	Vssa		VCO section power (GND)
8	WC	0	FS $\times 1$ Word clock output	30	TSTN	1	Test terminal. Open for normal use
9	MCB	0	Fs x 128 Bit clock output	31	KM2	1	Clock mode switching input 2
10	MCA	O	Fs $\times 256$ Bit clock output	32	KM0	1	Clock mode switching input 0
11	SKSY	I	Clock synchronization control input	33	FS1	0	Channel status sampling frequency display output 1
12	XI	1	Crystal oscillator connection or external clock input	34	FSO	0	Channel status sampling frequency display output 0
13	XO	O	Crystal oscillator connection	35	CSM	1	Channel status output method selection
14	P256	0	VCO oscillating clock connection	36	EXTW	1	External synchronous auxiliary input word clock
15	LOCK	0	PLL lock flag	37	DDIN	1	EIAJ (AES/EBU) data input
16	Vss		Logic section power (GND)	38	LR	0	PLL word clock output
17	TC	O	PLL time constant switching output	39	Vdd		Logic section power (+5 V)
18	DIM1	1	Data input mode selection	40	ERR	0	Data error flag output
19	DIMO	I	Data input mode selection	41	EMP	0	Channel status emphasis control code output
20	DOM1	1	Data output mode selection	42	CDO	O	3 -wire type microcomputer interface data output
21	DOM0	1	Data output mode selection	43	CCK	1	3-wire type microcomputer interface clock input
22	KM1	1	Clock mode switching input 1	44	CLD	1	3 -wire type microcomputer interface load input

- HD6477042AF28 (XY715A00) CPU

$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	NAME	I/O	FUNCTION	$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	NAME	I/O	FUNCTION
1	PE14	O	Port E	57	D11	I/O)
2	PE15	0	Port E	58	D10	I/O	
3	VSS	1	Ground	59	D9	I/O	¢ Data bus
4	A0	0	7	60	D8	I/O	\bigcirc
5	A1	0		61	VSS	1	Ground
6	A2	0		62	D7	I/O	7
7	A3	0		63	D6	I/O	$\}$ Data bus
8	A4	0		64	D5	I/O	¢
9	A5	0		65	VCC	1	Power supply
10	A6	0		66	D4	I/O	
11	A7	0		67	D3	I/O	
12	A8	\bigcirc	\} Address bus	68	D2	I/O	$\}$ Data bus
13	A9	0		69	D1	I/O	I
14	A10	0		70	D0	I/O	J
15	A11	0		71	VSS	1	Ground
16	A12	O		72	XTAL	1	Crystal oscillator
17	A13	0		73	MD3	I	Mode control
18	A14	0		74	EXTAL	1	Crystal oscillator
19	A15	0		75	MD2	I	Mode control
20	A16	0	J	76	NMI	1	Non-maskable interrupt request
21	VCC	1	Power supply	77	VCC	I	Power supply
22	A17	O	Address bus	78	MD1	1	Mode control
23	VSS	1	Ground	79	MDO	I	Mode control
24	/RAS	0	Row address strobe	80	PLLVCC	1	PLL Power supply
25	/CASL	0	Column address strobe (low)	81	PLLCAP	I	PLL capacitor
26	/CASH	0	Column address strobe (high)	82	PLLVSS	1	PLL Ground
27	VSS	0	Ground	83	PA15 / CK	0	Port A / Clock
28	RDWR / PB5	0	DRAM read/write / Port B	84	/RES	1	Reset
29	A18	0	\} Addres bus	85	PE0	I	
30	A19	0	\} Address bus	86	PE1	1	
31	A20	0	\int Port B Address bus	87	PE2	I	$\}$ Port E
32	PB9 /A21	O	Port B / Address bus	88	PE3	I	
33	VSS	1	Ground	89	PE4	I	〕
34	/RD	0	Read	90	VSS	I	Ground
35	/WDTOVF	0	Watch dog timer overflow	91	ANO / PFO	I	
36	WRH	0	High write	92	AN1 / PF1	I	
37	VCC	1	Power supply	93	AN2 / PF2	I	$\}$ Analog input / Port F
38	/WRL	0	Low write	94	AN3 / PF3	I	
39	VSS	1	Ground	95	AN4 / PF4	1	」
40	/CS1	0	Chip select	96	AN5 / PF5	I	
41	/CS0	0	Chip select	97	AVSS	,	Analog ground
42	PA9 / TCLKD	0	Port A / Timer clock	98	AN6 / PF6	I	Analog input / Port F
43	/IRQ2/TCLKC	1	Interrupt request / Timer clock	99	AN7 / PF7	I	Analog input / Port F
44	/CS3	0	Chip select	100	AVCC	I	Power supply
45	/CS2	O	Chip select	101	VSS	1	Ground
46	/IRQ1	1	Interrupt request	102	PE5	0	Port E
47	TXD	0	Data transmission	103	VCC	1	Power supply
48	RXD	I	Data reception	104	PE6	0	
49	/IRQ0	1	Interrupt request	105	PE7	O	
50	PA1 / TXD0	O	Port A / Data transmission	106	PE8	\bigcirc	$\}$ Port E
51	PAO / RXDO	1	Port A / Data reception	107	PE9	O	
52	D15	1/O	$\}$ Data bus	108	PE10	O	
53	D14	I/O	\} Data bus	109	VSS	1	Ground
54	D13	1/O	¢	110	PE11	0	
55	VSS	1	Ground	111	PE12	0	$\}$ Port E
56	D12	1/O	Data bus	112	PE13	0	\int

IC BLOCK DIAGRAM

- HD74LVU04AFPEL (XY102A00)

 Hex InverterIFC3: IC105

- SN74LV138ANSR (IS013810) 3 to 8 Demultiplexer UNC: IC211, 212

- HD74LV04AFPEL (IS000400)

Hex Inverter
IFC3: IC311, 408
UNC: IC105

- TC74VHC245F (XT487A00)

Octal 3-State Bus Transceiver IPC2: IC104, 105
IFC3: IC101-103, 106, 107, 404-407, 601-608
UNC: IC102, 204, 210

- AM26LS31CNSR (XU996A00) Quad Line Driver IPC2: IC107

- SN75124N (XE737A00) Triple Line Receiver IPC4: IC300

- HD74LV08AFPEL (IS000800) Quad 2 Input AND IFC3: IC104, 310, 409 UNC: IC104, 213

- DS26C32ATMX (XU815A00) Quad Differential Line Receiver IPC2: IC100-103, 106

- SN75121 (XE638A00) Dual Line Driver IPC4: IC301

CIRCUIT BOARDS

AC Circuit Board (XW295B0) 16
DC Circuit Board (XW295B0) 17
DR Circuit Board (XW295B0) 16
IFC3 Circuit Board (XW287A0) 19
IPC2 Circuit Board (XW289A0) 15
IPC4 Circuit Board (XW286B0) 16
LED2 Circuit Board (XW286B0) 16
MB1 Circuit Board (XW282A0) 17
PSB Circuit Board (XW295B0) 16
UNC Circuit Board (XW281B0) 18

Note: See parts list for details of circuit board component parts.

- AC Circuit Board

- IPC4 Circuit Board

- DR Circuit Board

- LED2 Circuit Board

AC, DR, PSB: 3NA-V412970 IPC4, LED2: 3NA-V491380

- UNC Circuit Board

to IPC2 2/2-CN101

3NA-V4130002

INSPECTION

1. Range of Applicability

These specifications apply to the AO8 and AO8-DA8.

2. Preparations

2-1. Conditions
\diamond For details on the connection method, refer to the Test Program Specifications KES-92653.
\diamond Unless otherwise specified, the conditions are as follows.

- Set the INPUT SELECTOR switch to A.
- Set WORD CLOCK IN 75Ω to ON.

2-2 Loading the Firmware
The firmware used must be the "AI8/AO8 Firmware" (managed with the already drawn CD-R assembly drawing (3JL-XY714A0)) of the PM1D System Software with a version later than the version shown on the cover. For details on the firmware writing method, refer to theTest Program Specifications KES-92652.

2-3. Test Program
For details on the starting method etc., refer to the Test Program Specifications KES-92653.

3. Inspection

3-1. Inspection with Test Program

- Inspect based on the Test Program Specifications KES-92653.

3-2. Jitter Measurement

- Connect the LMY-slot inspection jig Canon terminal to DSA1.
- Set Fs to 48 kHz and 44.1 kHz with the test program and measure the jitter at DSA1.

	Range of tolerance
48 kHz	6 nsec max.
44.1 kHz	5 nsec max.

3-3. Fan Operation Check
Check that the fan rotates while the power is on.

3-4. Sound

- The connections are as in the diagram below.

- Set the AI8 and AO8 sheet UNC DIP switch as below. DIP Switch 8 is not used.

	DIP SW						
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Al8	OFF	ON	OFF	OFF	ON	ON	ON
AO8	OFF	OFF	OFF	ON	OFF	OFF	OFF

- For 01 V , OSC1kHz is output from OMNI1 OUT and the signal input to INPUT is assigned to ST OUT.
- For AO8, insert the inspection LMY4-DA cards in Slot 1-8.

For AO8-DA8, insert the shipping LMY4-DA cards in Slot 1-8.
(1) $\mathrm{Fs}=51.12 \mathrm{kHz}(48 \mathrm{kHz}+6.5 \%)$

- Set the function generator to 51.12 kHz .
- Test listen for 30 seconds at all the output terminals and verify that there is no noise.
(2) $\mathrm{Fs}=39.69 \mathrm{kHz}(44.1 \mathrm{kHz}-10 \%)$
- Set the function generator to 39.69 kHz .
- Test listen for 30 seconds at all the output terminals and verify that there is no noise.

3-5. Firmware Load Test
Check that it is possible to load the firmware as in 2-2. using the Input B terminal.

3-6. Inspects word clock output of INPUT A, B
In the test program performed in 3-1, use the oscilloscope to monitor Pin 5 of IC101 of sheet IPC for output A of A18 that is being used as a jig using the timing shown below. Confirm that 44.1 kHz word clock is being output.
(It is good if the wave form like the one shown in Figure 1 appears.)
(1) Observe at the time of completing the inspection of Port A of the AO8-IPC 2 Test.
(2) Observe at the time of completing the inspection of Port B of the AO8-IPC 2 Test.

Frequency range (44.098kHz~44.102kHz)
(Figure 1)

4. Factory Settings

- Switch all the sheet UNC DIP switch settings On.
- Front panel INPUT SELECTOR: A
- Rear panel WORD CLOCK IN 75Ω : On

TEST PROGRAM

A. Preparations for Inspection -Writing the firmware

This equipment requires firmware. When there are changes to the manufacturing processes and program for this equipment, it is necessary to download the new firmware to FlashRom from a PC. (If there is no firmware loaded or its checksum does not match the correct value, when the power is first switched on the LED on UNC flashes at one second intervals.)

The only sheet for which the firmware must be downloaded is UNC. There are two methods for writing this firmware: to write it indirectly using the CS1D or DSP1D RS232C port or to write it directly to the AO8 UNC sheet. The detailed methods are given below.

- Method for writing firmware using the DSP1D RS232C port
* It is possible to write the AO8 (UNC) firmware from the PC via the CS1D or DSP1D RS232C port. This is the method normally used.
Software used: PM1DLOAD within PM1D system software
Firmware used: AI8/AO8 firmware in PM1D system software
Version used: PM1DLOAD and the AI8/AO8 firmware are files composed using a PM1D SYSTEM SOFTWARE with a version later than the version shown on the cover.
(Managed with the already drawn CD-R assembly drawing (3JL-XY714A0).)
* For the installation and setting methods, refer to the CS1D Test Program Specifications.

1. Install and set the above reference destination files.
2. At the very least, connect as shown in the figure above (when A08). If it is not possible to avoid making signal connections other than these, turn off the power supply for all components other than those relevant to the write object and turn off the control power supply for the volume of other components such as speakers and amplifiers. Please note that at that time, if other AI8/A08 are connected they may be written and because of this, there is no guaranteed that the writing has been properly performed even if the writing shows a successful completion.
3. Use the methods shown in the CS1D Test Program Specifications to write the firmware to the necessary units. After the firmware has been written, check that the versions for all the units are the desired versions.

- Method for writing firmware directly to the AO8 UNC

* When there is some kind of problem or the DSP1D is unavailable due to this equipment's production processes and the firmware can not be written with the method on the previous page, use the method below.

1. Connect the D-sub 9-pin serial cables (cross) and DSP-CHECK board between the 5-pin connector for the target board and the PC. At this time, do not connect other signal lines.
2. After PM1DLOAD starts up, select CardDirect with MODE SELECT, then press OK.
3. Use the setup menu to properly set the serial port to be used and then select AI8/A08 from the pull-down menu.
4. Check on the items for OUTPUT 1 on the list and click the write button.
5. After writing ends, end PM1DLOAD.
6. Switch off the power for AO8 and remove the PH connector, then switch the power for AO8. DSP1D on again and check that it starts up normally. (Operation is normal if an "EI" is displayed in 7-segment display for A08.)

-PM1D inspection PC software preparation

Inspection with this device uses special PC software for inspection.
The software versions are as follows

Software used:	PM1D inspection PC software in PM1D system software
Version used:	PM1D system software component files with the version number listed on the cover sheet. (Managed with the already drawn CD-R assembly drawing (3JL-XY714A0).)
Method of preparation:	Follow the instructions in the CS1D test program specifications (Drawing No: KES-92654) titled "Procedure for extracting software groups for production and customer service applications". Once the files have been extracted, refer to the Readme.txt in the FactoryDiag directory.

Before starting inspection, refer to version.txt in the same directory as the firmware shown on the previous page and input the version character string as instructed. (Please refer to page 23, 24)

B. Inspection Method

The inspection configuration is shown in the diagram below.

Install the inspection jig to the AO8 to be inspected as in the figure above. Send the inspection commands from the PC via the AI8 to the LMY-slot inspection jig and take in at the PC the results returned from the LMY-slot inspection jig.

* Turn on the power supply for AI8 before making the connection between the AI8 on the jig side and the jig for serial communication. Warning: Do not connect until " is displayed on the AI8 7-segment display.
* Use the LMY-slot inspection jigs inserted into the LMY-slots. For details, see the LMY-slot inspection jig specifications.
* Serial communications jigs are boards that convert the serial interface from the PC. For details, see the LMY-slot inspection jig specifications.
* Set the DIP switches on the ID change jig for AO8 inspection as shown below. For details on the IC change jig, see the LMY-slot inspection jig specifications.

PM1D inspection PC software summary
The AO8 is inspected using PC inspection software. This inspection software is common for AI8/AO8/DSP1D/CS1D. For the basic operation methods, menu screen specifications, etc., see the CS1D Test Program Specifications.
Below is the menu for AO8 inspection.

Input the latest version of AO8 UNC before starting the inspection. (This is necessary for the version check.) For the character string to input, refer to version.txt in the same directory as the AI8/AO8 firmware. Details of each check item and the corresponding PC software are shown on the following pages.

C. Inspection Items

The inspection items are as below. Details of the inspection items are shown on the following pages.

* However, 128 Fs Sync must be normal for the DSP to operate, so there is no special check item.

No.	Item
$\mathbf{1}$	AO8 - UNC test
$\mathbf{2}$	AO8 - IFC3 test
$\mathbf{3}$	AO8 - SLOT test
$\mathbf{4}$	AO8 - IPC4, LED2 test
$\mathbf{5}$	AO8 - IPC2 test

1. AO8 - UNC Test Using the terminal status display and

This test checks around the AO8-UNC.
OK/NG display for the page as a whole

Received ID displayed as
board name and hexadecimal board name and hexadecimal

Current status display

NG example
the corresponding pin numbers in the example below, it is possible to determine that the fifth one from left on the terminal status display is for pin 32 .

Stopped the moment an actual ID NG appears; stopped at the end of the page for any other NG.

$$
\left(\begin{array}{ll}
\text { SRAM } & \text { OK: LED lit up } \\
& \text { NG: LED flashes on }(0.2 \mathrm{~s})-\text { Off }(0.2 \mathrm{~s})-\text { On }(0.2 \mathrm{~s})-\text { Off }(0.1 \mathrm{~s}) \\
\text { Flash } & \text { OK: LED lit up } \\
& \text { NG: LED flashes on }(0.1 \mathrm{~s})-\text { Off }(0.1 \mathrm{~s})-\text { On }(0.1 \mathrm{~s})-\text { Off }(0.1 \mathrm{~s})
\end{array}\right)
$$

3-1. AO8 - Slot [Initial] Test

Checks slot operation by checking the minimum necessary number of pins.
The results for each slot are displayed in order from the left. A mark is made for each check to show the progress of the checks.
(Blank: Not yet checked; 0: Normal; 1: Abnormal; N: No response)

*/CON Line Test 00000000 OK
\square

Basically, the same as up till here

4 First, all the voltages for one slot are

* Voltage Check 00010100 NG

Stopped the moment an actual Addr.BusTest

The detected voltage is displayed and the percentage deviation from the ideal state is displayed. This is shown for each slot.

3-2. AO8-Slot [Clock Line] Test

This test checks around the slot clock.

NG example

3-3. AO8 - Slot [Data Line] Test

This test checks around the serial communications.

NG sample
Please refer to page 24 for NG charts.

4. AO8-IPC4, LED2 test

This test checks around the AO8-IPC4 and LED2.

5. AO8-IPC2 test

This test checks around the AO8-IPC2. Ports A and B are both checked, so the same procedure is carried out in 5-1 for Port A and in 5-2 for Port B.
Before starting these items, refer to page 23 and set all settings for MSB/LSB, $2 \mathrm{CH} / 4 \mathrm{CH}$ lines to off.

ERROR MESSAGES

If an error occurs in the connection to the DSP1D, or if the unit does not lock to the wordclock signal, one of the following error indications appears.

ERROR MESSAGE	DESCRIPTION
	The AO8 is connected to the INPUT connector of the DSP1D/DSP1D-EX. Connect the AO8 to the OUTPUT connector.
	A cable is disconnected from the INPUT A, B, or C connector on the rear panel, or the connection is made incorrectly. If the connection is proper, replace the cable.
The unit does not lock to the wordclock signal.	

ANALOG OUTPUT BOX AO 8 PARTS LIST

CONTENTS

OVERALL ASSEMBLY 2
SIDE PANEL ASSEMBLY 4
MOTHER ASSEMBLY 6
ELECTRICAL PARTS 7~12

Notes: DESTINATION ABBREVIATIONS

A: Australian model	M: South African model
B: British model	O: Chinese model
C: Canadian model	Q: South-east Asia model
D: German model	T: Taiwan model
E: European model	U: U.S.A. model
F: French model	V: General export model (110 V)
H: North European model	W: General export model (220 V)
I: Indonesian model	N, X : General export model
J: Japanese model	Y: Export model

WARNING

Components having special characteristics are marked $\$$ and must be replaced with parts having specification equal to those originally installed.

- The numbers in "QTY" show quantities for each unit.
- The parts with " - - " in "PART NO." are not available as spare parts.
- The mark " \} " in the remarks column indicates that these parts are interchangeable.
- The second letter of the shaded (\quad) part number is O , not zero.
- The second letter of the shaded () part number is I, not one.

AO8

■ OVERALL ASSEMBLY

SIDE PANEL ASSEMBLY

MOTHER ASSEMBLY

■ ELECTRICAL PARTS

Refno.	PART NO.	DESCRIPTION			REMARKS		ату	${ }^{\text {Ra }}$
		ELECTRICAL PARTS			AO8			
	V46487S0	Circuit Board	AO8 AC (AOCOM)			(XW295C0)		
	V46490S0	Circuit Board	AO8 DC (AOCOM)			(XW295C0)		
	V46492S0	Circuit Board	AO8 DR (AOCOM)			(XW295C0)		
	V4913750	Circuit Board	AO8 PSB (AOCOM)			(XW295C0)		
	V41302S0	Circuit Board	AO8 IPC2			(XW289A0)		
	V41300S0	Circuit Board	AO8 IFC3			(XW287B0)		
	V41293S0	Circuit Board	AO8 IPC4 (IPCOM)			(XW286B0)		
	V49136S0	Circuit Board	AO8 LED2 (IPCOM)			(XW286B0)		
	V41288S0	Circuit Board	AI8 MB1			(XW282AO)		
	V41287S0	Circuit Board	Al8 UNC			(XW281B0)		
	V46487S0	Circuit Board	AO8 AC (AOCOM)			(XW295C0)		
	V46490S0	Circuit Board	A08 DC (AOCOM)			(XW295C0)		
	V46492S0	Circuit Board	AO8 DR (AOCOM)			(XW295C0)		
	V49137S0	Circuit Board	AO8 PSB (AOCOM)			(XW295C0)		
	VH610100	Bind Head Screw	3.0X14 MFZN2BL					01
	VR144900	Bonding Tapping Screw-B	3.0X6 MFZN2BL					
	VA078900	Jumper Wire	0.55					
	V4276300	AC Shield Metal						04
	V4797200	Transistor Holder						07
	VN057300	Heat Sink						08
	V5101700	Insulation Sheet						01
C104	V4871100	Electrolytic Cap.	33000 16.0V					06
C106	UR838100	Electrolytic Cap.	100.0016 .0 V					01
C108	UR838100	Electrolytic Cap.	100.0016 .0 V					01
C110	UR838100	Electrolytic Cap.	100.0016 .0 V					01
C112	UR838100	Electrolytic Cap.	100.0016 .0 V					01
C204	V4871300	Electrolytic Cap.	2200016					05
C205	V4871300	Electrolytic Cap.	2200016					05
C208	UR838100	Electrolytic Cap.	100.0016 .0 V					01
C209	UR838100	Electrolytic Cap.	100.0016 .0 V					01
C212	UR838100	Electrolytic Cap.	100.0016 .0 V					01
C213	UR838100	Electrolytic Cap.	100.0016 .0 V					01
C216	UR838100	Electrolytic Cap.	100.0016 .0 V					01
C217	UR838100	Electrolytic Cap.	100.0016 .0 V					01
C304	VR499300	Electrolytic Cap.	470035.0 V					05
C305	VR499300	Electrolytic Cap.	470035.0 V					05
C308	UR848100	Electrolytic Cap.	100.0025 .0 V					01
C309	UR848100	Electrolytic Cap.	100.00 25.0V					01
C312	UR848100	Electrolytic Cap.	100.0025 .0 V					01
C313	UR848100	Electrolytic Cap.	100.0025 .0 V					01
C400	V5170300	Capacitor	0.220275 V U.C.S					01
C500	UR838100	Electrolytic Cap.	100.0016 .0 V					01
C501	UR848220	Electrolytic Cap.	220.0025 .0 V					01
C503	UR838100	Electrolytic Cap.	100.00 16.0V					01
C600	V3311600	Capacitor-KH	0.010 250V J.U.C.S					01
	VS589000	Ceramic Capacitor-E	4700P 500V M					01
	FG644100	Ceramic Capacitor-F	0.010050 V Z					01
	UA355100	Mylar Capacitor	0.100050 V J					01
CNOO1	LB932050	Base Post Connector	VH 5P TE					01
CN002	LB932030	Base Post Connector	VH 3P TE					01
CN100	VE352600	Connector Base Post	PH-14P TE					01
CN101	VB390000	Connector Base Post	PH 4PTE					01
CN200	VB390200	Connector Base Post	PH 6PTE					01
CN201	VB390200	Connector Base Post	PH 6P TE					01
CN300	VB389800	Connector Base Post	PH 2P TE					01
CN301	VB390000	Connector Base Post	PH 4PTE					01
CN302	VB389800	Connector Base Post	PH 2P TE					01
CN303	VB390000	Connector Base Post	PH 4P TE					01
CN400	VG879900	Base Post Connector	VA 2P TE					01
CN401	LB933040	Base Post Connector	VH 4P SE					01
CN402	LB933030	Base Post Connector	VH 3P SE					01
CN500	VB858100	Connector Base Post	PH 2P SE					01
CN502	VB858200	Connector Base Post	PH 3P SE					01
CN600	LB933030	Base Post Connector	VH 3P SE					01
D100	VB481900	Diode	11ES4					01
-107	VB481900	Diode	11ES4					01
D200	VB481900	Diode	11ES4					01
-211	VB481900	Diode	11ES4					01

REF No.	PART NO.	DESCRIPTION			REMARKS	QTY	RANK
D300	VB481900	Diode	11ES4				01
-307	VB481900	Diode	11ES4				01
DB100	VM621400	Diode Stack	RBV-1506				05
DB200	VT682400	Diode Stack	D6SB60L 6.0A 600V				04
DB300	VT682400	Diode Stack	D6SB60L 6.0A 600V				04
EM100	FZ006970	LC Filter	LS MT Y223NB				02
-103	FZ006970	LC Filter	LS MT Y223NB				02
EM200	FZ006970	LC Filter	LS MT Y223NB				02
-205	FZ006970	LC Filter	LS MT Y223NB				02
EM300	FZ006920	LC Filter	LS MT B271KB				01
-303	FZ006920	LC Filter	LS MT B271KB				01
FZ100	VP206500	Fuse Holder	EYF-52BC				01
FZ200	VP206500	Fuse Holder	EYF-52BC				01
FZ201	VP206500	Fuse Holder	EYF-52BC				01
FZ300	VP206500	Fuse Holder	EYF-52BC				01
FZ301	VP206500	Fuse Holder	EYF-52BC				01
FZ400	VP206500	Fuse Holder	EYF-52BC				01
FZ500	VG297000	IC Protector	ICP-F20				02
IC100	XH672A00	IC	PQ05RF2		REGULATOR +5 V 2 A		04
-102	XH672A00	IC	PQ05RF2		REGULATOR +5 V 2 A		04
IC103	XW196A00	IC	UPC2933HF		REGULATOR +3.3 V		03
IC200	XR607A00	IC	UPC2405AHF		REGULATOR +5 V		04
IC201	XK309A00	IC	NJM7905FA		REGULATOR -5V		03
IC202	XR607A00	IC	UPC2405AHF		REGULATOR +5 V		04
IC203	XK309A00	IC	NJM7905FA		REGULATOR -5V		03
IC204	XR607A00	IC	UPC2405AHF		REGULATOR +5 V		04
IC205	XK309A00	IC	NJM7905FA		REGULATOR -5V		03
IC300	XR608A00	IC	UPC2415AHF		REGULATOR +15 V		04
IC301	XD854A00	IC	NJM7915FA		REGULATOR -15V		03
IC302	XR608A00	IC	UPC2415AHF		REGULATOR +15 V		04
IC303	XD854A00	IC	NJM7915FA		REGULATOR -15V		03
IC304	XD631A00	IC	PST518B-TP		SYSTEM RESET		02
K700	BB069510	Land Terminal	A-8				01
-703	BB069510	Land Terminal	A-8				01
L400	V4122100	Line Filter	PLH10A7003R6P02				02
R502	VC757100	Metal Oxide Film Resistor	22.0 2W J				01
R504	VC740100	Metal Oxide Film Resistor	1.0 1W J				01
	HF456330	Carbon Resistor	$3.3 \mathrm{~K} 1 / 4 \mathrm{~J}$				01
	HF456470	Carbon Resistor	4.7K 1/4 J				01
	HF457100	Carbon Resistor	10.0K 1/4 J				01
SW600	V3127000	Push Switch	ESB92S23B J.U.C.S		POWER ON/OFF		02
TR300	IA101590	Transistor	2SA1015 O,Y				01
TR500	IB059600	Transistor	2SB596LBB O,Y				04
TR501	IC1815M0	Transistor	2 SC1815 Y,GR				01
TR502	IC1815M0	Transistor	2SC1815 Y,GR				01
ZD500	VQ554100	Zener Diode	MTZJ7.5A 7.5V				01
W0013	--	GND Wire	L=180		(V744560)		
	V41302S0	Circuit Board	AO8 IPC2		(XW289A0)		
C108	UF038100	Electrolytic Cap. (chip)	100 16V				01
	UB245100	Monolithic Ceramic Cap.	F 0.10025 V Z				01
CN100	V4158600	Connector	230R(SCSI) 68P SE		INPUT A/B		06
CN101	VF283100	Connector Base Post	PH 13P TE				01
CN102	VF283100	Connector Base Post	PH 13P TE				01
CN103	VB390600	Connector Base Post	PH 10P TE				01
CN104	VB390800	Connector Base Post	PH 12P TE				01
DA100	VV556300	Diode Array	DAN217 0.3A X2				01
-143	VV556300	Diode Array	DAN217 0.3A X2				01
DA147	VV556300	Diode Array	DAN217 0.3A X2				01
-156	VV556300	Diode Array	DAN217 0.3A X2				01
EM100	VL534100	LC Filter	NFA81R00C101				05
-102	VL534100	LC Filter	NFA81R00C101				05
EM104	VL534100	LC Filter	NFA81R00C101				05
-106	VL534100	LC Filter	NFA81R00C101				05
EM108	FZ006970	LC Filter	LS MT Y223NB				02
IC100	XU815A00	IC	DS26C32ATMX		LINE RECEIVER		06
-103	XU815A00	IC	DS26C32ATMX		LINE RECEIVER		06
IC104	XT487A00	IC	TC74VHC245F		TRANSCEIVER		03
IC105	XT487A00	IC	TC74VHC245F		TRANSCEIVER		03
IC106	XU815A00	IC	DS26C32ATMX		LINE RECEIVER		06

REFNo.	PART NO.	DESCRIPTION		REMARKS	ату	RA
	V41288S0	Circuit Board	AI8 MB1	(XW282A0)		
CN101	VU328200	Plug	PHEC 100P TE	SLOT 1-8,UNC Card		05
-109	VU328200	Plug	PHEC 100P TE			05
CN110	VI878600	Cable Holder	51048 8P TE			01
-117	VI878600	Cable Holder	51048 8P TE			01
CN118	VI878400	Cable Holder	51048 6P TE			01
CN119	VQ045900	Connector, FFC	52044 30P SE			02
CN120	VQ045000	Connector, FFC	52044 20P SE			01
CN121	VB858300	Connector Base Post	PH 4P SE			01
CN122	VB858500	Connector Base Post	PH 6P SE			01
CN123	VB858300	Connector Base Post	PH 4P SE			01
CN124	VB858500	Connector Base Post	PH 6P SE			01
CN125	VB858300	Connector Base Post	PH 4P SE			01
CN126	VB858300	Connector Base Post	PH 4P SE			01
CN127	VB858400	Connector Base Post	PH 5P SE			01
W110	--	Ribbon Cable	$\mathrm{P}=2.0$ \#26 8P 140L	(V507960)		
-117	--	Ribbon Cable	$\mathrm{P}=2.0$ \#26 8P 140L	(V507960)		
W118	--	Ribbon Cable	$\mathrm{P}=2.0$ \#26 6P 140L	(V510880)		
	V41287S0	Circuit Board	AI8 UNC	(XW281B0)		
C218	UF038100	Electrolytic Cap. (chip)	100 16V			01
	FG652120	Ceramic Capacitor	120P 50V K			01
	FG612560	Ceramic Capacitor	560P 50V K			01
	UB012470	Monolithic Ceramic Cap.	B 470P 50V K			01
	UB245100	Monolithic Ceramic Cap.	F 0.10025 V Z			01
CN101	VB390100	Connector Base Post	PH 5P TE			01
CN202	VT640300	Receptacle	PHEC 100P SE			04
EM201	FZ006970	LC Filter	LS MT Y223NB			02
IC101	XY715A00	IC	PM1D42 V1.01	MASK CPU		10
IC102	XT487A00	IC	TC74VHC245F	TRANSCEIVER		03
IC103	XP226A00	IC	IC-PST591DMT	SYSTEM RESET		03
IC104	IS000800	IC	HD74LV08AFPEL	AND		01
IC105	IS000400	IC	HD74LV04AFPEL	INVERTER		01
IC201	XV685A00	IC	MBM29F400BC-70PFTN	FLASH ROM 4M		11
IC203	XV729A00	IC	IDT71016S15Y-TR	RAM 1M		09
IC204	XT487A00	IC	TC74VHC245F	TRANSCEIVER		03
-210	XT487A00	IC	TC74VHC245F	TRANSCEIVER		03
IC211	IS013810	IC	SN74LV138ANSR	decoder		01
IC212	IS013810	IC	SN74LV138ANSR	DECODER		01
IC213	IS000800	IC	HD74LV08AFPEL	AND		01
K201	VI474400	Terminal Plate				01
K202	VI474400	Terminal Plate				01
LD101	V3990300	LED (chip)	TLSU1008 RE	FOR TEST		01
RA101	RE047100	Resistor Array	10KX4			01
-120	RE047100	Resistor Array	10KX4			01
RA202	RE048100	Resistor Array	100KX4			01
-212	RE048100	Resistor Array	100KX4			01
SW102	VQ949900	Switch	SSGM18151A	FUNCTION		03
X101	V3990700	Ceramic Resonator	CSTCC7.16MGOH6-TC			01
	RD250000	Carbon Resistor (chip)	0.00 .0 J			01
	RD255220	Carbon Resistor (chip)	220.00 .1 J			01
	RD256300	Carbon Resistor (chip)	3.0 K 0.1 J			01
	RD257100	Carbon Resistor (chip)	10.0 K 0.1 J			01
	XW261A00	Power Transformer		J		17
	XW262A00	Power Transformer		u, V		18
	XW263B00	Power Transformer		H,B,W		17
	V5789100	Motor	DC KDE1208PTS3-6	Fan		09
	VS228900	AC Cord Assembly	2P 15A	J		09
	VS229000	AC Cord Assembly	3P 10A	U,V		10
	VS229100	AC Cord Assembly	3 P 6A	H, W		10
	VS229200	AC Cord Assembly	3P 10A	B		11
FZ400	KB003620	Fuse	4.00A JU	J,U,V		01
FZ400	KB003090	Fuse	3.15A S	H,B,W		01
FZ100	VS823300	Fuse	8.00A JU	J,U,V		02
FZ100	KB003250	Fuse	6.30A S	H,B,W		01

[^0]

ANALOG OUTPUT BOX AO 8 CIRCUIT DIAGRAM

CONTENTS

WARNING

Components having special characteristics are marked $\$$ and must be replaced with parts having specification equal to those originally installed.
\qquad

\square UNC CIRCUIT DIAGRAM 003 (AO8)

[2]

[3]

0
[4]

[5]

[6]

\mathbf{M}	\mathbf{L}						
:---	:---		\mathbf{K}	\mathbf{J}	\mathbf{I}	\mathbf{H}	\mathbf{G}
:---	:---	:---	:---	:---	G	F	E
:---	:---	E D c B					

SLOT No.

[8]

■MB1 CIRCUIT DIAGRAM 005 (AO8)

■IFC3 CIRCUIT DIAGRAM 006 （AO8）
M L L K J H

■IFC3 CIRCUIT DIAGRAM 007 (AO8)

| H | O |
| :--- | :--- | G

IPC4 CIRCUIT DIAGRAM (AO8)

3
[WORD CLOCK]

H
G \qquad E D B

[^0]: *: New Parts

