

Instruction Manual AVTM21-83J

For the
Battery Megger Insulation Tester Catalog Numbers 210800-3 \& 210801-3

BM100/3 BM101/3

SAFETY IN THE USE OF ELECTRICAL. EQUIPMENT

It should be understood that any use of electricity inherently involves some degree of safety hazard.

- Safety is the responsibility of the user
- La Sequridad es el cargo del operador

While every effort is made by responsible manufacturers to reduce the hazard, it still rests with the user to play his part inensuring his own safety.

```
The best way to achieve this is:-
```

- Understand the equipment you are proposing to use and its ratings.
- Understand the application to which the equipment is to be put.
- Ensure that all reasonable safety procedures are followed.
- Take no chances, nor short cuts, in safety procedures.

See also the notes on safety for this particular instrument in the paragraph headed 'WARNING' on page 10.

CONTENTS

Safety Warning	2	Desirability of insulation testing	13
General Description	4	Preventive maintenance	13
Applications	5	Testing motors and generators	14
Accassories	5	Circuit Description	15
Specitication	6	Service and Maintenance	16
Operation	10	Parts List	23
Warnings	10	Circuit Diagram	25
Precautions	11		
Preliminary procedures	11	Illustrations	
Insulation tests	11	Fig. 1 The tester dis-assembled	
Resistance and continuity tests	12	Fig. 2 The printed circuit board	17
A.C. voltage measurement	12		20
Fuse check	12		
Using the Insulation Tester	13		

GENERAL DESCRIPTION

The 210800-3 and 210801-3 are hand-held insulation esters incorporating resistance and continuity ranges. The 210800-3 can also indicate ac voltage up to 600V. The 210800-3 and 210801-3 test insulation a 500 V d.c (normal).
Each tester has a $\mathbf{2 5 0} \mu \mathrm{A}$ moving coil meter with a black scale plate, white calibrations and an orange pointer The test leads connect to fully shrouded terminal sockets at the top of the case. The test lead set includes prods and clips. The insulation, resistance or continuity prods and cilps. The insulation, resistance or continuity initiated by pressing the 'Test' push-button. The initiated by pressing the 'Test' push-button. The The 210800-3 acts as a voltmeter with the checked. The $210800-3$ acts as a voltmeter with the swilch in any position and the 'Test' push-button not pressed. Therefore an immediate indication can begiven of whether a circuit is energized or not as soon as the test cally discharged after insulation tests. The case is fitted with a fold-away support stand and non-slip rubber feet.
The instructions given in this book are common to both

of the testers except where stated.

Note:-
(i) Each tester is protected against

500 V a.c. on all resistance ranges.
(ii) The window covering the meter of this instrument has been given an antistatic treatment which should be effective for many months. If in the course of time the cover is found to retain electrostatic charges, it should be re-treated with a suitable antistatic solution.

APPLICATIONS

* These insulation testers are intended for installation and maintenance work on domestic and industrial wiring systems, transformers, molor windings, electrical appliances etc. They are for use on electrical systems rated for up to 300 V a.c.r.m.s. to ground (500 V a.c. phase to phase).

SUPPLIED WITH THE INSTRUMENT
A test lead set including prods and clips An operating instruction book.

SPECIFICATION

The VDE 0413 part 1 specification stipulates that these instructions should contain a diagram showing the minimum value which the instrument must indicate certain conditions. An insulation test being performed on any item of equipment would normally be carried out to a particular speciticalion for that type of carted a particular specirication for that type of equipmen (over the marked part of the scale) the reading indicated should be such that the actual value is never below should be such that the limiting value required by the particular specification in question.
The graph opposite shows the maximum value which shall be indicated by the instruments (at their maximum error) to ensure that the limiting value of the insulation resistance given in the relevant equipment specification is met.

WARNING

1. THE CIRCUIT UNDER TEST MUST BE SWITCMED OFF, DE-ENERGIZED AND ISOLATED BEFORE INSULATION, AESISTANCE OR CONTINUITY TESTS ARE MADE

Swhich the circuit off and check that it is so by making a voltage test. The $210800-3$ will automatically indicate any a.c. voltage present as soon as the tast leads are connected. If this does happen, do not press the 'Test' button.
2. Voltage measurements may be made with the Voltage measurements may be made with the
$210800-3$ tester. Take great care when the system $210800-3$ iester. Jake great
voltage is greater than 50 V .
3. Where capacitive circults have been tested allow a suitable time to elapse before disconnecting the test leads in order for the circult to discharge. 4. All measuring ranges of the instrument are protected by a 2 A 500 V fuse. Additionally the 2Ω and 200Ω continulty ranges are protected by a 500 mA 250 V user-replaceable fuse. Replacement fuses MUST be of the correct type and rating(see the specification).
5. In order to satisfy the requirements for the protection of the user in IEC 1010-1 (1990), the following points should be noted.-
(I) A 500 V rated fuse has been fitted In the Instrument's Input circult to provide protection against the risk of fire should the Instrument be connected to a high energy source producing up to 500 V between the terminals. Adequate protection must be ensured \mathbf{i} voltages in excess of 500 V are to be encountered.
(II) The instrument has been designed to withstand 4 kV impulse voltages between the terminals and also with respect to ground. It must not herefore be used on high energy systems with phase to ground voltages exceeding 300 V or phase to phase voltages exceeding 500 V .

PRECAUTIONS

1. Instruments used in dusty environments should be stripped and cleaned periodically. (Refer to the Service and Maintenance section page 16 and the
. Do not leave the meter exposed to section page 23). Do not leave the meter exposed to direct heat from the sun for long periods.

PRELIMINARY PROCEDURE

(a) Fitting a battery or 500 mA fuse Ensure that the instrument is not connected to any external circuit. Remove the battery and fuse celeasing the cover from ine reer of the case by The battery and fuse compartment will be exposed Obsenve the porrect polarity shown on the holder when replacing the batery Replace the cover
(b) Checking battery condition

Set the selector switch to and press the 'Test' pushbutton. The meter pointer should deflect to within the 'battery check' arc on the scale.
Note:- It is advisable to remove the battery if the tester is not to be used for any length of
time. Never leave discharged batteries in the tester because of the possibility of causing damage by leaking electrolyte
(c) Setting the meter mechanical zero With the tester horizontal set the meter pointer to zero (\mathbf{O} on insulation range) if necessary, using the mechanical adjuster located censtrally on the fron panel.
(d) Connecting and checking the test leads Connect the red and black test leads, terminated with he appropriate prods, or clips, to the ' + ' and 'emmal sockets respecivery. Inspeci the test leads to soe that thay have good, unirokon ind set Cons ioct nd set he senecior swich or 2Ω. Press the 'Tes' push-bution and check that the meter reads 0 . If a high cale co che conections. if the grealing is still high cale, chack the cost leads may te ataing stiwh INSULATION TESTS
The red test lead is connected to ground, frame of the equipment or cable sheath etc. and the black test lead

OPERATION

is connected to the circuit under test or cable core With the selector switch set to ' $200 \mathrm{M} \Omega$ ' and the 'Test' push-button pressed, the insulation resistance can be read from the top meter scale after the pointer has become steady.
Capacitive circulis automatically discharge through the tester when the 'Test' push-button is released. Theretester when the 'Test' push-button is released. Thereleads to allow this to allow for discharge of capactance is 15 seconds per microfarad. The $210800-3$ automatically monitor the discharge on its voltage range thus showing when safe to remove the test leads. Be aware that dielectric absorption may take place during an insulation test on capacitive item atlowing the voltage ecross the tem to rise after the test leads have been removed. RESISTANCE AND CONTINUITY TESTS
The test leads are connected across the circuit under test and the selector switch set to the required resistance or continuity range. When the 'Test' push bution is pressed the resistance is indicated on the appropriate meter scale. There is a separate scale for 12

USING THE INSULATOR TESTER

each range so the readings are direct. Release the push-button and remove the test leads.
A.C. VOLTAGE INDICATOR (210800-3)

The voltage range is automatically selected when the swith is in any position and the 'Test' push-button not pressed. Connect the test leads across the circuit under test. The tester will indicate if the circuit is energized and the level of the voltage present(up to 600 V a.c.) will be shown on the inner scale.

FUSE CHECK

With the test leads open circuit, switch to the 200Ω range and press the 'Test' push-button. A reading of < 200 o indicates a ruptured 500 mA fuse.
Note:- The fuse is located in clips in the battery and fuse compartment at the rear of the case. An additional 2 A 500 V fuse is fitied for overall safety protection. This fuse is not replaceable by the user. If there is no response from the meter to an insulation test with the leads shoried together, this fuse may have ruptured. The instrument must be returned to the manufacturer or one of his approved agents for repair.

- DESIRABILITY OF INSULATION TESTING The safety of electrical instaliations and apparatus depends on the condition of the insulation. It is essentia that this is thoroughly checked when new equipment is installed, while being subjected to a voltage high - enough to break through any mechanical flaws arising
t is also desirable, in order to avoid interruptions or beakdowns, that tests on the condition of the installation and equipment are made from time to time to ensure that deterioration is not occurring because of the accumulation of dirt or moisture, or caused by mechanical factors of wear or breakage.
in every case the insulation resistance can be measured very simply by using the MEGGER ${ }^{\circledR}$ Tester.

PREVENTIVE MAINTENANCE

It is good practice to make regular tests of the insulation resistance of all larger machinery and thus detect any incipient faults. When the tests are entered in the logbook a considerable variation between test results will be noted.

- It is therefore important to test under similar conditions each time and to note the current weather status.

Damp weather-or damp conditions of use or storage can cause large reductions in insulation resistance. Drying out by heat or by running for a period, shou ive a more consistent and appropriate insulation resistance value.
A counter effect to that above occurs because the insulation resistance of the varnishes used in the construcon of machine windings becomes lower when hot than when cold. Thus for constant comparisons the temper ature of the machine under test should also be noted.
The best plan is regularty to make the time for testing a machine as soon as possible after it has been shut down. The insulation resistance is then likely to be at its lowest operational value. This then would become the figure which would show any continuing mechanica epreciation or potential insulation breakdown.
If the machine stands idle in humid conditions a worse picture might well apply but this would normally be assumed to be safe during the running up to temperaure, provided that the resistance at working temperature remained unchanged.

USING THE INSULATION TESTER

TESTING MOTORS AND GENERATORS

1. Disconnect the equipment from the supply by opening the main swich and removing the main fuses.
2. Join together BOTH terminals on the motor side of he double pole main switch.
3. With a contactor operated starter where all the lines o the motor are disconnected at 'off' it is necessan to make tests to ground on both the incoming and utgoing terminals of the starter.
4. Connect the red test lead to ground using the frame of the motor.
5. Using the black test lead measure the resistance of each part of the cricuit in the usual way. If the value is unsatisfactory then separate tests in starter, motor and cables must be carried out to locate the defect.
6. If the motor itseli is suspect, disconnect its supply cables and with one lead connected to the frame carry out the following tests:
7. Test with the armature and field windings connected together.
8. Test with the brushes lifted from contact with the commutator
9. Test on the armature only, section by section.
10. If all resistances are low the fault can usually be emedied by complete and caraful cleaning of the acine. Equipumil that has boen in sorvice lor a period can accumulate melalic, or olher conducting re the leakage pats from such depos beand deposits are aliminated by thorough cleaning.

CIRCUIT DESCRIPTION

INSULATION TEST RANGES

An inverter provides a stable 500 V test voltage for the $200 \mathrm{M} \Omega$ range. The cricult is arranged so that the $200 \mathrm{M} \Omega$ range. The cricuit is arranged so that the pointer gives a sight kick before setuing back to a
steady reading. This is noticeable only above about 100 $M \Omega$ and is included to show that the instrument is functioning correctly when measuring resistances corresponding to small deflections of the pointer. A $470 \mathrm{k} \Omega$ resistor is connected automatically between the positive and negative test terminals on releasing the 'Test' button, to allow for capacitive circuits to discharge. VOLTAGE RANGE (210800-3)

On any position with the 'Test' button not pressed, the instrument acts as a voltmeter, reading $0-600 \mathrm{~V}$ a.c.
CONTINUITY RANGES (2Ω and 200Ω)
The nominal test voltage on these ranges is 1.6 V for the 2Ω range and 0.76 V for the 200Ω range. Overload protection is provided by a 500 mA 250 V ceramic fuse type F. Changing the fuse will have no effect on the calibration of the ranges.

RESISTANCE RANGES (210801-3)

The nominal test voltage is 53 V . Protection against overload is provided by a positive temperature coefficient (PTC) thermistor

battery check

In the battery check position the instrument functions as a voltmeter of approx. 12 V i.s.d. (6 V mid-scale). The battery is rejected if its voltage is less than 6.4 V During this test the battery is drawing approx. 110 mA , so the 'Test' button should not be pressed longer than necessary to make the check

SERVICE AND MAINTENANCE

In order for any servicing and maintenance work to be carried out on the instrument it must be opened up. NOTE: THIS WILL AUTOMATICALLY INVALIDATE ANY WARRANTY COVERING THE INSTRUMENT. It is important that any servicing or repalr work is carried out by a sultably qualified instrument technician who is aware that high voltage is present at varlous points on the p.c.b. when the circuit is energized.
Caution:-The instrument circuit contains static Caution:-The instrument circuit contains static sensitive devices. If the instrument casing is opened any reason, care must be exercised in handing the printed circuit board. This should be done in accordance handling electrostatic sensitive devices.

OPENING THE TESTER

The tester should not be connected to any external circuit and the test leads should be removed. All parts should be stored carefully ready for re-assembly.

1) Lay the tester face down on the work bench.
2) Remove the battery and fuse compartment cover plate. Release the screw in the center and then lift
up and towards the top of the tester until the cover is completely free. Do not lose the spare fuse which is attached to the inside of the cover.
Note:-The tester stand is not fixed in place once the cover has been removed. Be careful that it is not lost.
3)

Release the four cross-head screws, one in each Release the four cross-head
corner of the rear cover.
5) Lift the rear cover assembly vertically off the tester. 6) Lift off the protection screen around the edge of the p.c.b.
7) The printed circuit board and components are now exposed so that test measurements and settings exposed so that

REMOVING THE PRINTED CIRCUIT BOARD

If it is necessary to unsolder components, service the selector switch or push-button or remove the movement, the printed circuit board must be taken out.

1) Unclip the red and black wires connecting the meter to the board, at the board end.
2) The push-button prevents the board from being lifted straight out. Therefore hold the front cover assembly

Fig. 1 The tester dis-assembled (detail not authentic)

SERVICE AND MAINTENANCE

in one hand and grip the push-button S2 with the other. Pull firmly until the button is released from the
switch, (take care that it is not lost), then continue to switch, (take care that it is not lost), then continue to
lift until the selector switch mechanism separates lift until the selector switch mechanism separates from its knob.
3) The removal of the setector switch arms from the board should not normally be necessary. However, to achiave this, hold the rear switch arm moulding still and rotate he ront one until they spring apart. (The two sections Nole:-The contacts argeable)
Nole:-The contacts are retained and will not drop
out. To replace the selector switch arms,
position them either side of the board and
line up the tab on one with the recess on the other. Push together and turn counter-
clockwise until locked

RE-ASSEMBLY

The lester is re-assembled by performing the dismantling operations in the reverse order. When replacing the p.c.b. in the front cover assembly, ensure that the slots in the selector switch mouldings line up with the 'keys' on the knob tab. Ensure that the parts are properly in
place before securing the screws. It is most importan that the protection screen is replaced correctly. The battery must be fitted properly, therefore observe the correct polarity as indicated in the battery compartment.

CALIBRATION

Refer to the circuit diagram and to fig. 2 to find the positions of the adjustment potentiometers. There is no adjustment of the battery check function nor of the 210800-3 a.c. voltage range.
Open up the tester as described in 'Opening the Tester' and connect a 9 V battery (IEC 6 LR 61type) to the circuit. This may be done using short leads with crocodile cips, or convenience. The positive being from which a lead connects to the pushative to the pin Setting the 2Ω range

1) Set potentiometers R7 and R19 to their mid-positions. Connect the fest leads to the instrument terminals and join their ends together.
2) Press the push-button and adjust R19 to give a reading of zero.
3) Connect the test leads to a known $2 \Omega \pm 0.5 \%$ resistor Press the push-button and adjust R7 to give a reading of 2Ω on the ' 2Ω scale'
4) Because the adjustments of R7 and R19 could be interactive the setting procedure may need to be repeated until the required accuracy is obtained.
Note:- It is necessary to ensure a good connection between the test lead clips and the resistor erminals in order to keep contact resistance as low as possible.

Setting the 200Ω range

1) Conned the test leads to a known $200 \Omega \pm 0.3 \%$ resistor
2) Press the push-button and adjust R8 to give a reading of 200Ω on the ' 200Ω scale'.
Setting the Insulation resistance range
3) Set R25 fully counter-clockwise and connect the test leads to a $0.5 \mathrm{M} \Omega 0.3 \%$ resistor
4) Press the push-button and adjust R26 for $505 \mathrm{~V} \pm 3 \mathrm{~V}$.
5) With the push-button pressed adjust R20 to give a reading of 0.5 M .
6) Short the test leads together, press the push-button and adjust R15 to give a reading of zero.
7) Connect the test leads to a $0.3 \mathrm{M} \Omega+0.3 \%$ resisto

Adjust R25 to give a to a $0.3 \mathrm{M} \Omega \pm 0.3 \%$ resisto
7) Check that the voltage at $100 \mathrm{M} \Omega$ is
8) Check that the voitage at $100 \mathrm{M} \Omega$ is 600 V $\pm 400 \mu \mathrm{~A}$.
9) Because the adjustments of R15, R20, R25 and R26 could be interactive the setting procedure may need to be repeated until the required accuracy is obtained.
Note:- All the resistors used must be able to
withstand the voltage applied to them.
Setting the $1 \mathrm{M} \Omega$ range (210801-3)

1) Connect the test leads to a known $1 \mathrm{M} \Omega \pm 0.3 \%$ resistor.
2). Press the push-button and adjust R28 to give a reading of $1 \mathrm{M} \Omega$ on the ' $1 \mathrm{M} \Omega$ scale'.
Having set all the potentiometers the calibration of all the scale points may be checked against the specification using appropriate value resistors or resistance boxes. Foilowing the setting-up and calibration chock the potentiometers should be locked in place using a suitable varnish, and the tester re-assembled.

SERVICE AND MAINTENANCE

 Fig. 2 The printed circuit board

CLEANING THE TESTER

A mild solution of detergent in water is recommended for cleaning the instrument case. Wipe the exterior suriace

 with a moistened cloth taking particular care not to scratch the meter cover. This has been given an
antistatic treatment.

CARE OF THE BATTERY
If the tester is not in regular use, the condition of the battery should be checked periodically. Prelerably the battery should be removed and stored separately, to avold possible damage caused by feaking electrolyte

Notes referring to fig. 2 page 20:-
R24-on 210800-3 only
R27-on 210801-3 only
R28-on 210801-3 only
R29-on 210801-3 only
D11-on 210800-3 only
D13-on 210800-3 only TR2-not used

WARRANTY AND REPAIRS

WARRANTY

All products supplied by Biddle Instruments are warranted against all defects in material and workman－ ship for a period of one year following shipment．Our liability is specifically limited to replacing or repairing，at our option，defective equipment．Equipment returned he factory for repair will be shipped Prepaid and Insured．The warranty does not include batteries，lamps or tubes，where the original manuiacturer＇s warranty shall apply．WE MAKE NO OTHER WARRANTY．
The warranty is void in the event of abuse or fallure by the customer to perform specified maintenance as indicated in the manual．

REPAIRS

Biddle Instruments maintains a complete instrumen epair service．Should this instrument ever require epairs，we recommend that it be returned to the factory or repair by our instrument specialists．When returning insiruments for repairs，either in or out of warranty，they the attention of the Instrument Service Manager．

PARTS LIST

（Components are common to both instruments except where stated）					$\begin{aligned} & \text { R23 } \\ & \text { R9A } \end{aligned}$	Resistor Resistor	$\begin{array}{r} 4.3 \mathrm{k} \Omega \\ 1.08 \mathrm{M} \Omega \end{array}$	$\begin{aligned} & \pm 1 \% \\ & \pm 1 \% \end{aligned}$	$1 / 4 \mathrm{~W}$ 1／2W 210800－3 only
R1	Resistor	919	$\pm 1 \%$	1／4W	R25	Polentiom	ter $50 \mathrm{k} \Omega$	$\pm 20 \%$	1／2W
R2	Resistor	100Ω	$\pm 1 \%$	1／4W	R26	Potentiom	ater 1M8	$\pm 20 \%$	1／2W
R3	Resistor	479	$\pm 5 \%$	1／4W	R27	Resistor	$1 \mathrm{M} \Omega$	$\pm 5 \%$	1／2W 210801－3 only
R4	Resistor	3．65kn	$\pm 1 \%$	1／4W	R28	Polentiom	ater 1M8	$\pm 20 \%$	1／2W 210801－3 only
R5	Posistor	10ka			R29	Resistor	180kO	$\pm 5 \%$	1／4W 210801－3 only
R6	Posistor	10k			R30	Resistor	0.39Ω	$\pm 5 \%$	1／2W
R7	Potentiom	ter200』	$\pm 20 \%$	1／2W	R31	Resistor	100k	$\pm 1 \%$	1／4W
R8	Potentiom	ter 1k』	$\pm 20 \%$	1／2W	R32	Resistor	4．3』	$\pm 1 \%$	1／4W
R9	Resistor	$1.5 \mathrm{k} \Omega$	$\pm 1 \%$	1／4W	R33	Resistor	470k	$\pm 10 \%$	1 W
R10	Resistor	47kR	$\pm 1 \%$	1／4W	R34	Resistor	62Ω	$\pm 2 \%$	1／2W
P11	Resistor	68Ω	$\pm 2 \%$	1／4W	C2	Capacitor	$10 \mu \mathrm{~F}$	$35 v$	electrolytic
R12	Resistor	$2 \mathrm{k} \Omega$	$\pm 1 \%$	1／4W	C3	Capacitor	$10 \mu \mathrm{~F}$	35 V	electrolytic
R13	Resistor	82，5k	$\pm 1 \%$	1／2W	C4	Capacitor	150pF	$\pm 2 \%$	100V
R14	Resistor	$1 \mathrm{k} \Omega$	$\pm 1 \%$	1／4W	C5	Capacilor	$47 \mu \mathrm{~F}$	25 V	electrolytic
R15	Resistor	$1 \mathrm{k} \Omega$	$\pm{ }^{+1}$	1／2W	C6	Capacitor	4．7nF	400 V	
R16	Resistor	18M ${ }^{\text {a }}$	$\pm 5 \%$	1／2W	C7	Capacitor	68 F ¢	630 V	
R17	Resistor	20M8	$\pm 5 \%$	1／2W	C8	Capacitor	$470 \mu \mathrm{~F}$	16V	electrolytic
R18	Resistor	3，32k	$\pm 1 \%$	1／4W	C9	Capacilor	$10 \mu \mathrm{~F}$	35 V	electrolytic
R19	Potentiom	ter 5k＠	$\pm{ }^{ \pm} \mathbf{2} \%$	1／2W	C10	Capacitor	4，7 $\mu \mathrm{F}$	25 V	tantalum
R20	Polentiom	ter 5k＠	$\pm 20 \%$	1／2W	C11	Capacitor	15nF	$\pm 20 \%$	1000V
R21	Resistor	$15 \mathrm{k} \Omega$	＋1\％	1／4W	C12	Capacitor	150pF	$\pm 2 \%$	100V
R22	Resistor	100k	$\pm \mathbf{2 0 \%}$	1／2W					

PARTS LIST

