TECHNICAL MANUAL

OPERATOR'S, ORGANIZATIONAL, DIRECT SUPPORT AND GENERAL SUPPORT MAINTENANCE MANUAL FOR
MICROWATTMETER, BOONTON MODEL 41BD WITH POWER DETECTOR 41-4E
(NSN 6625-01-050-8800)
HEADQUARTERS, DEPARTMENT OF THE ARMY

TM 11-6625-2857-14
TECHNICAL MANUAL
No. 11-6625-2857-14 $\}$
HEADQUARTERS
DEPARTMENT OF THE ARMY WASHINGTON, DC 18 August 1978

This manual contains copyright material reproduced by permission of Booton Electronics Corporation, Parsippany, New Jersey

OPERATOR'S, ORGANIZATIONAL, DIRECT SUPPORT AND GENERAL SUPPORT MAINTENANCE MANUAL FOR
 MICROWATTMETER, BOONTON MODEL 42BD WITH POWER DETECTOR 41-4E
 (NSN 6625-01-050-8800)

REPORTING OF ERRORS

You can improve this manual by recommending improvements using DA Form 2028-2 located in the back of the manual. Simply tear out the self-addressed form, fill it out as shown on the sample, fold it where shown, and drop it in the mail.
If there are no blank DA Form 20282 in the back of your manual, use the standard DA Form 2028 (Recommended Changes to Publications and Blank Forms) and forward to the Commander, US Army Communications and Electronics Materiel Readiness Command, ATTN: DRSEL MA-Q, Fort Monmouth, New Jersey 07703.
In either case a reply will be furnished direct to you.

TABLE OF CONTENTS

Chapter 0.	INTRODUCTION	TABLE OFCONTENTS	Page
	0.1 SCOP		0.1
	0.2 INDEXE		0.1
	0.3 FORMS		0.1
	0.4 REPOR	ING EQUIPMENT IMPROVEMENT RECOMMENDATIONS (EIR)--------------------	0.2
	0.5 ADMIN		0.2
	0.6 DESTR	UCTION OF ARMY ELECTRONICS MATERIEL	0.2
T.	GENERAL INFORM	TION	1
	1.1 GENER	L	1
	1.2 EQUIP	ENT DESCRIPTION-	2
	1.2.1	Frequency Range	3
	1.2 .2		3
	1.2.3		3
	1.2 .4		4
	1.2 .5		4
	1.2 .6		4
	1.2 .7		4
	1.2 .8		4
III.	SPECIFICATIONS		5
III.	OPERATION	T	9
	3.1 INSTAL	ATION	,
	3.2 OPERA	ION ---	11
	3.2.1.	Initial Operating Procedure ------	11
	3.2.2.	Connection Recommendations --	12
	3.2.3.	Low-Level Measurements -------	12
	3.2.4.	High-Level Measurements	12
	3.2.5.	High Frequency Measurements	13
	3.2.6.	Temperature Effects -----------	21
	3.2.7.	VSWR Measurements ----	22
	3.2.8.	Shielding Recommendations	23
	3.2.9.	Over/Under Range Indication -	24
	3.2.10.	Analog Output ------------------	24
	3.2.11.		25
	3.2.12.		25
	3.2.13.		25
	3.2.14.		25

Figure No.Page
Determination of Calibration Factor 19
Determination of Calibration Factor 19
3 b
Determination of Calibration Factor
Determination of Effective Efficiency
Typical Temperature Characteristic Typical Temperature Characteristic
dB-VSWR Conversion Chart
Block Diagram
Connections
Connections

Power Detector
External Connections 52
12 54
TABLES
Table No Page

1. Test Equipment---- 36
2. Troubleshooting 44

CHAPTER 0

INTRODUCTION

0.1. Scope

This manual describes Microwattmeter, Boonton Model 42BD with Power Detector 41-4E and provides instructions for operation and maintenance. The manual includes a Components of End Item List (COEIL) (App B) and Maintenance Allocation Chart (MAC) (App D). Repair Parts and Special Tools Lists (RPSTL's) are included in TM 11-6625-2857-24P.

0.2. Indexes of Publications

a. DA Pam 310-4. Refer to the latest issue of DA Pam 310-4 to determine whether there are new editions, changes, or additional pub lications pertaining to the equipment.
b. DA Pam 310-7. Refer to DA Pam 310-7 to determine whether there are modification work orders (MWO's) pertaining to the equipment.

0.3. Forms and Records

a. Reports of Maintenance and Unsatisfactory Equipment. Maintenance forms, records, and reports which are to be used by maintenance personnel at all maintenance levels are listed in and prescribed by TM 38-750.
b. Report of Packaging and Handling Deficiencies. Fill out and forward DD Form 6 (Packaging Improvement Report) as prescribed in AR 700-58/NAVSUPINST 4030.29/AFR 71-13/MCO P4030.29A and DIAR 4145.8.
c. Discrepancy in Shipment Report (DISREP) (SF 361). Fill out and forward Discrepancy in Shipment Report (DISREP) (SF 361) as pre scribed in AR 55-38/NAVSUPINST 4610.33B/AFR 75-18/MCO P4610.19C and DLAR 4500.15.
0.4. Reporting Equipment Improvement Recommendations (EIR)

EIR's will be prepared using DA Form 2407, Maintenance Request. Instructions for preparing EIR's are provided in TM 38-750, The Army Maintenance Management System. EIR's should be mailed direct to Commander, US Army Electronics Command, ATTN: DRSEL-MA-Q, Fort Mon mouth, NJ 0773 . A reply will be furnished direct to you.

0.5. Administrative Storage

Administrative storage of equipment issued to and used by Army activities shall be in accordance with TM 740-
90-1.

0.6. Destruction of Army Electronics Materiel

Destruction of Army electronics materiel to prevent enemy use shall be in accordance with TM 750-244-2.

CHAPTERI
 GENERAL INFORMATION

1.1. GENERAL

The Model 42BD provides accurate, sensitive, and stable measurement facilities for rf power from the low radio frequencies to the microwave region (200 kHz to 18 GHz). The power range of this instrument covers from one nanowatt to ten milliwatts.

The Model 42BD is a solid-state, programmable instrument of high sensitivity, and low noise. Because it does not depend upon thermal sensing devices, it exhibits a very high degree of stability and ease of adjustment. This stability is of particular importance because of the resolution of the $3-1 / 2$ digit LED display and BCD outputs. In addition to BCD outputs, a dc voltage proportional to the input power is available at a rear-panel connector. These features allow the instrument to drive recorders, remote indicators, or similar analog devices. Logic-level programming using standard TTL logic permits easy integration with complete test systems.

The 42BD is useful for making a wide variety of measurements. Representative uses of this versatile instrument include:

Adjustment of low-power transmitters, signal generators, and oscillators.
VSWR and return-loss measurements with directional couplers and slotted lines.
Gain measurements on traveling-wave tubes.
Measurements of vswr and attenuation of rf attenuators.
Antenna adjustments.
The standard features of the instrument include:
Logic-level programmability, DTL/TTL compatible.
Calibration-factor control.

42BD
b-874

BCD outputs.
DC analog output.
Low vswr.
Convenient push-button ranging.
Overload protection to 300 milliwatts.
Measurement range from one nanowatt to ten milliwatts.
Auxiliary analog panel meter for easy peaking or nulling.
The optional features of the instrument include:
dBm option with full 4 digit display and a constant 0.01 dB resolution.
Autoranging option.
Serial to parallel data output converter.
The basic characteristics of the 42BD include high reliability, high stability, fast warm-up, plug-in printed-circuit board construction for ease of servicing or modification, light weight, and other advantages of the solid-state design.

1.2. EQUIPMENT DESCRIPTION

The Model 42BD RF Microwattmeter, unlike other instruments of its kind, determines rf power by measuring the voltage appearing across a precision noninductive resistor in the Power Detector head. The panel indicator, of course, is calibrated in terms of power according to the relationship $P=E / R$. This detection system has important performance advantages over conventional power meters using bolometer or thermocouple detection. Sensitivity of $1 \mathrm{nW}(-60 \mathrm{dBm})$ is orders of magnitude better; temperature stability of better than $0.01 \mathrm{~dB} / \mathrm{C}$ supports this sensitivity; and a burnout level above 300 mW reduces the most common cause of detector failure.

This instrument is available with a number of options and Power Detectors, listed in Chapter 2: SPECIFICATIONS. For all options, input-range programming can be controlled by TTL logic or PNP transistors to ground.

The Model 42BD is packaged as a compact bench instrument, with a combination carrying handle and adjustableangle mounting foot. Should rack mounting

42BD
b-874
be preferred, hardware kits to accommodate either one or two instruments are available. For the operator's convenience, essential accuracy and vswr information is reproduced on a reference plate attached to the outside top cover of the instrument. Brief calibration instructions are reproduced on the underside of the top cover.

The Model 42BD is normally ordered with one of the following Power Detectors:
Model 41-4A $\quad 0.2 \mathrm{MHz}$ to 7 GHz
Model $41-4 \mathrm{~B} \quad 0.2 \mathrm{MHz}$ to 12.4 GHz
Model $41-4 \mathrm{C} \quad 0.2 \mathrm{MHz}$ to $1 \mathrm{GHz}(75 \mathrm{~A})$
Model 41-4E $\quad 0.2 \mathrm{MHz}$ to 18 GHz

1.2.1. Frequency Range

The calibrated frequency range extends from 0.2 MHz to 18 GHz , depending upon the particular Power Detector used. Useful response for relative measurements can be obtained from 20 kHz to approximately 20 GHz .

1.2.2. Power Range

With any of the Power Detectors, the Model 42BD will measure power from one nanowatt up to ten milliwatts. Temporary overloads up to 300 milliwatts will do no permanent harm to the instrument or the Power Detector. When measuring pulsed signals, the accuracy is good up to 35 microwatts peak power. The power capabilities of the 42BD can be increased by the use of external attenuators.

1.2.3. Response

At low power levels the detector diodes operate in the square-law region; the instrument response is to the true average power of CW, AM, FM, and pulsed signals. Above the level of approximately twenty microwatts, response gradually becomes average, then peak, becoming peak-to-peak at approximately 0 dBm .
Although the panel meter is calibrated in terms of average power, the instrument will correctly indicate the true average power of CW and FM signals.

42BD

b-874

1.2.4. Noise

The Model 42BD has been designed and constructed to hold noise from all sources to a minimum. The Power Detector cable is of special low-noise design; a vigorous flexing causes only momentary, minor deflection on the most sensitive range of the instrument. The Power Detector is not sensitive to shock or vibration; even sharp tapping on the Detector barrel causes no visible deflection on any range.

Amplification takes place at 94 Hz , reducing susceptibility to 50 or 60 Hz fields. A unique circuit reduces the lowlevel noise originating in the mechanical chopper and renders the instrument immune to changes in chopper performance that could occur with the passage of time.

1.2.5. Zero Adjustment

Zero adjustment is normally not required on the upper ranges of the Model 42BD. For measurement on the lower ranges, the ZERO control is set on the most sensitive range before using. This control balances out small thermal voltages in the sensing elements and, once adjusted, requires only infrequent checking during the course of subsequent measurements.

1.2.6. Calibration Factor Adjustment

A panel-mounted control allows the sensitivity of the instrument to be adjusted in 0.1 dB steps to correct for the frequency response and mismatch errors of the detector. Calibration is in the form of indicated power to incident power.

1.2.7. Analog Output

The Model 42BD provides a dc output voltage proportional to the power being measured. The current capability of 1 mA into 1000 ohms is extremely stable. When used as part of an automatic test system, the fast response of the instrument's dc output to an input step function allows more tests per unit time.

1.2.8. BCD Output

The Model 42BD provides a binary-coded-decimal output (4-line, 8, 4, 2, 1) for connection to an external system. When it is so used, it may be remotely controlled and triggered manually or automatically in synchronism with some system event.

For system or external requirements, all input and output connections are made at the card-edge connector at the rear of the instrument case. See Figure 13 and Chapter 6 for receptacle identification and signal characteristics.

```
42BD
b-874
```


CHAPTER II SPECIFICATIONS

Power Range:

One nW (-60 dBm) to $10 \mathrm{~mW}(+10 \mathrm{dBm})$ in seven decade ranges.
Full-Scale Power Ranges:
$10 \mathrm{nW}, 100 \mathrm{nW}, 1 \mathrm{pW}, 10 \mathrm{pW}, 100 \mathrm{nW}, 1 \mathrm{~mW}, 10 \mathrm{~mW}$.
Full-Scale dBm Ranges:
$-50,-40,-30,-20,-10,0,+10$.
Frequency Ranges:
0.2 MHz to 18 GHz with 41-4E Detector.
0.2 MHz to 12.4 GHz with 41-4B Detector.
0.2 MHz to 7 GHz with 41-4A Detector.
0.2 MHz to 1 GHz with 41-4C Detector (750).

Accuracy:*
10 nW to 10 mW
(-50 to +10 dBm)

+ One digit, plus			
+0.2 dB	+0.3 dB	+0.4 dB	

With 41-4E: $\quad 0.2 \mathrm{MHz} \quad 4 \mathrm{GHz} \quad 8.2 \mathrm{GHz} \quad 12.4 \mathrm{GHz} \quad 18 \mathrm{GHz}$
With 41-4B: $\quad 0.2 \mathrm{MHz} \quad 4 \mathrm{GHz} \quad 8.2 \mathrm{GHz} \quad 12.4 \mathrm{GHz}$
With 41-4A: $\quad 0.2 \mathrm{MHz} \quad 4 \mathrm{GHz} \quad 7.0 \mathrm{GHz}$
With $41-4 \mathrm{C}: \quad 0.2 \mathrm{MHz} \quad 1 \mathrm{GHz}$
1 nW to 10 nW
(-60 to -50 dBm)

\pm One digit, plus			
+0.4 dB	+0.5 dB	+0.6 dB	$\pm 0.8 \mathrm{~dB}$

With 41-4E: $\quad 0.2 \mathrm{MHz} \quad 4 \mathrm{GHz} \quad 8.2 \mathrm{GHz} \quad 12.4 \mathrm{GHz} \quad 18 \mathrm{GHz}$
$0.2 \mathrm{MHz} \quad 4 \mathrm{GHz}-8.2 \mathrm{GHz}$
12.4 GHz

With 41-4A: $\quad 0.2 \mathrm{MHz} \quad 4 \mathrm{GHz} \quad 7.0 \mathrm{GHz}$
With 41-4C: $\quad 0.2 \mathrm{MHz} \quad 1 \mathrm{GHz}$
42BD
a-874
dBm (if option -09
is specified):
-50 to +10 dBm
(10 nW to 10 mW

	+0.2 dB, plus				
	$\pm 0.2 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$	+0.4 dB	+0.6 dB	
With 41-4E:	0.2 MHzz	4 GHz	8.2 GHz	12.4 GHz	18 GHz
With 41-4B:	0.2 MHz	4 GHzz	8.2 GHz	12.4 GHz	
With 41-4A:	0.2 MHz	4 GHz	7.0 GHz		
With 41-4C:	0.2 MHz	1 GHz			

-60 to -50 dBm
(1 nW to 10 nW)

+0.2 dB, plus			
+0.4 dB	$\pm 0.5 \mathrm{~dB}$	+0.6 dB	+0.8 dB

With 41-4E:	0.2 MHz	4 GHz	8.2 GHz	12.4 GHz	18 GHz
With 41-4B:	0.2 MHz	4 GHz	8.2 GHz	12.4 GHz	
With 41-4A:	0.2 MHz	4 GHz	7.0 GHz		
With 41-4C:	0.2 MHz	1 GHz			

*On the $10 \mathrm{~mW}(+10 \mathrm{dBm})$ fs range only, add $+(0.05 \mathrm{x}$ reading in mW$) \mathrm{dB}$ to the accuracy statement for frequencies above 4 GHz .

Temperature: In accordance with ANSI (ASA) Spec. 39.7.

Temperature Range	Influence					
	0	Model 42BD	$	$ Detector $\quad	$	Ref. $210 \mathrm{C}-250 \mathrm{C}$
:---						
Normal, $180 \mathrm{C}-300 \mathrm{C}$						
Severe, $100 \mathrm{C}-400 \mathrm{C}$						

Indicators:
Digital: LED display, 4 digits, full-scale count of 1000 .
Full 4-digit display with dBm option, 0.01 dB resolution.

42BD
 b-874

Blanked at 105% of full scale and below 10% of full scale: decimal point, units, and polarity for dBm .
Analog: Miniature edgewise type, calibrated -9 to $+3 \mathrm{dBm}, 50 \mathrm{Q}$.

Waveform Response:

Input level 1 nW to 10 gW : True average power.
Input level above 10 YW : Average power of sine wave (true rms response changing to average, to peak, to peak-to-peak).

Analog Output:
0 to +10 volts on each range, proportional to the input power. Source resistance 9 kQ . 1 mA maximum into 1 kQ load.

VSWR:

Input Zo	Model 41-4A	Model 41-4B	Model 41-4C	Model 41-4E
	50	50	75	50
Freq. Range	$0.2 \mathrm{MHz} / 7 \mathrm{GHz}$	$0.2 \mathrm{MHz} / 12.4 \mathrm{GHz}$	$0.2 \mathrm{MHz} / \mathrm{GHz}$	$0.2 \mathrm{MHz} / 18 \mathrm{GHz}$
VSWR	<1.3 to 4 GHz			
	<1.4 to 7 GHz	<1.3 to 4 GHz <1.4 to 11 GHz <1.6 to 12.4 GHz	<1.3 to 1 GHz	<1.3 to 4 GHz <1.5 to 10 GHz

Data Outputs:

1-2-4-8 BCD data, serial by digits. 1-2-4 range information. Overrange, underrange, encode complete. Logic $0<$ 0.07 V ; logic $1,2.4$ to 5.25 V .

Power Detectors:
Input Connection: type N (Precision).
Output Connector: To fit 41-2A cable.
Dimensions: 1.5 F (38 mm) diameter; 3.5 F 90 mm) length.
42BD
b-874

Power Requirements:
115 or $230 \mathrm{~V} \pm 10 \%, 50$ to $400 \mathrm{~Hz}, 15 \mathrm{~W}$.
Dimension:
6.0" (152 mm) high, $8.3^{\prime \prime}(211 \mathrm{~mm})$ wide, $12.0^{\prime \prime}(305 \mathrm{~mm})$ deep.

Weight:
9.75 lbs . $(4,5 \mathrm{~kg})$ with cable and Detector.
9.76

Accessories Supplied:
5 -foot power detector cable Model 41-2A.
Equipment Options:
Model 42BD-01: Autoranging. Automatically selects the proper range for the applied input. Can be manually selected or programmed.

Model 42BD-08: Rear signal input option. A duplicate connector for the detector cable is provided on the rear panel of the instrument.

Model 42BD-09: Power/dBm readout option. Either power or dBm display manually selectable or programmed. Logic-level outputs indicate power and dBm.

Model 42BD-16: Serial to parallel BCD converter option. Rear plugin accessory to convert serial data output to parallel data output; DTL/TTL compatible.

42BD
a-874

CHAPTER III OPERATION

3.1. INSTALLATION

Each instrument has been tested and inspected at the factory for compliance with all specifications before packing. Unpack carefully, saving all packing materials for possible future reshipping, and inspect the instrument for any signs of shipping damage. Should any damage be evident, notify the carrier and the factory immediately.

Although the Model 42BD is a simple instrument to use, and operation is largely self-evident, it is recommended that the Table of Controls and Functions, as well as the Operating Procedure, be studied before commencing operation.

Table 1
Controls \& Functions
ITEM
FUNCTION
OFF/PWR/dBM This switch controls the ac power to the instrument's power supply and includes the ZERO control.

FULL SCALE These range push-buttons select the operating range of the instrument. They are arranged in the sequence $10 \mathrm{nW}, 100 \mathrm{nW}, 1 \mathrm{pW}, 10 \mathrm{jW}, 1004 \mathrm{~W}, 1 \mathrm{~mW}$ and 10 mW full-scale.

Indicator \quad Four-digit LED type readout, showing decimal point, units, and polarity for dBm (with dBm option).
Panel Meter Edgemeter, calibrated from -IOto 0 dB Z used when zeroing instrument, and for peaking or nulling applications.

42BD
b-874

The Power Detector cable is connected to the instrument's input via this connector. It should be noted that if the instrument is a Model 42BD-08 option, there will be an additional input connector on the rear apron. The panel connector will have a screw-on shield cap; both input connectors are usable.

ZERO	This control, the center portion of the OFF/PWR/dBM switch, is used to zero the instrument electrically.
CAL FACTOR	This calibration factor control enables the operator to compensate for frequency effect. For a given measurement frequency, the control is set to the figure indicated on the chart found on the barrel of the Detector Head. The resultant reading may then be used directly, with no further correction.
(The following items are on the rear panel.)	

42BD
b-874

This safety requirement has been adopted by the International Electro-technical Commission Document 66 (Central Office) 3, Paragraph 5.3, and indicates that it is necessary to refer to the instruction manual for correct use of the instrument.

3.2. OPERATION

The initial operating procedure detailed below should be followed carefully before attempting to use the instrument for measurement work.

3.2.1. Initial Operating Procedure

a. Compare the serial numbers of the Power Detector to be used and of the instrument; they should be the same. Each 42BD is calibrated with its own Power Detector; using another detector may result in measurement errors unless the instrument is recalibrated.
b. Check the setting of the power switch on the rear panel to be sure that it is set to the correct position for the power line voltage. See that the proper fuse for this voltage is in the fuseholder.
c. Connect the Power Detector cable to the Power Detector connector on the panel, tighten the knurled clamping nut firmly, and attach the Power Detector to the cable.
d. Set the CAL FACTOR control to 0 dBm .
e. Set the OFF/PWR/dBm switch to PWR and allow the instrument to warm up for a few minutes.
f. Depress the 10 nW FS button. With no signal into the Detector, the needle on the analog edgemeter can be adjusted with the ZERO control to the zero reference mark at the bottom of the scale. For greatest zero accuracy, however, adjust the ZERO control so that the "-" sign of the digital display flashes on and off at an equal rate. If the Detector is in a strong power-line or noise field, zeroing may be difficult. In this situation, refer to Paragraph 3.2.8 for shielding instructions.

It is important that the Detector be in thermal equilibrium. For this reason, prolonged handling of the Detector should be avoided before or during this adjustment.

3.2.2. Connection Recommendations

Although the Power Detectors are carefully insulated against external temperature variations, it is advisable to locate the Detector away from any sources of heat when using the most sensitive ranges. If monitoring the output of equipment which generates heat significantly above the ambient temperature, the Power Detector should be allowed to reach thermal equilibrium before making any measurements.

3.2.3. Low-Level Measurements

The Model 42BD will provide reliable, reproducible measurements of CW, AM, and FM power levels as low as 1 nanowatt (-60 dBm). It can also be used, although with slightly decreased accuracy (+1 dB) for pulse measurements. The peak power in this mode should not exceed $30 \mathrm{pW}(-15 \mathrm{dBm})$, however. Above this level the detector enters the region where it ceases to function as a square-law detector; accuracy, except for CW and FM, cannot be guaranteed under these conditions.

When using the three most sensitive ranges (10 nW , 100 nW , and 14 W), the preliminary zero adjustment is required. (Refer to Paragraph 3.2.1.)

3.2.4. High-Level Measurements

When using the higher ranges of the 42BD (10 pW to 10 mW), it is not necessary to make the zero adjustment. As noted in Paragraph 3.2.3 above, accuracy cannot be guaranteed when measuring pulse power with peaks exceeding 304 W . For CW and FM power, measurements within the specified accuracy will be obtained up to 10 mW .

3.2.5. High Frequency Measurements

To obtain the specified accuracy of the 42BD at frequencies above 1 GHz , reference must be made to the correction chart on the barrel of the Power Detector. This curve, which is individually determined for each Power Detector, presents a correction factor vs frequency which must be applied to the instrument reading. While this can be done by adding algebraically the correction to the reading, use of the CAL FACTOR control automatically inserts the correction and enables the operator to read the meter directly. This control is adjusted as follows:

Read the correction to be applied at the frequency of operation from the curve on the Detector barrel. Use a straight-line interpolation if the frequency of operation is between specified frequencies. As an example, say that the correction value is +0.2 dBm . Set the CAL FACTOR control to +0.2 dBm . All values thereafter, at that frequency, are then read directly from the meter, with no further correction needed. Note that if the frequency of measurement is changed, a new CAL FACTOR setting will be required.

The performance of the Model 42BD at high frequencies is described in terms of measurements called Calibration Factor and Effective Efficiency. The following paragraphs define these terms, explain their use, and describe the procedures required for their determination.

NOTE:

The Model 41-4A, 41-4B, and 41-4E Power Detectors are calibrated for use with a 50 -ohm source. Large deviations from 50 ohms may give rise to serious errors from mismatching and increased vswr. This effect can be reduced by inserting a low-vswr attenuator (vswr < 1.10) between the source and the Power Detector; an alternate would be the insertion of a low loss tuner.

The Model 41-4C Power Detector is calibrated for use with a 75 -ohm source. The same comments apply in this case.

3.2.5.1. Calibration Factor and Effective Efficiency

Power measurements are made on either a Z match or on a conjugate match basis. On a Z match basis, the measured power is given by:

```
Pmeas \(=\frac{(1 \pm e) K_{0} \mathrm{P}_{0}}{\left[1-\mathrm{r}_{\mathrm{g}} r_{m}\right]^{2}}\)
Where \(\mathrm{P}_{\text {meas }}=\) measured power
e = low frequency instrumentation error
\(r_{g}=\) complex generator reflection coefficient
\(r_{m}=\) complex power reflection coefficient
\(P_{0}=\) power that would be delivered to a perfect \(Z\) load
\(\mathrm{K}_{\mathrm{b}}=\) calibration factor
```

If the generator source impedance or power meter head provides a perfect Z match, the term II- r is unity. In all other cases, either the complex reflection coefficients have to be measured for the most accurate measurements or the uncertainty of the measurement inherent in this term has to be accepted. Figures 1 and 2show this uncertainty expressed either in dB or percentage terms of the source VSWR and load VSWR, recalling that

$$
\text { VSWR }=\frac{1+[r]}{1-[r]}
$$

In addition to the uncertainty, the mismatch loss associated with the power meter head is described by the calibration factor K_{b} where

$$
\mathrm{K}_{\mathrm{b}}=\frac{\text { Indicated Power }}{\text { Incident Power }}
$$

When power measurements are made on a conjugate match basis, the measured power is given by

$$
\text { Pmeas }=(1-\mathrm{e}) \mathrm{KTnP} \mathrm{c}
$$

```
where e = low frequency instrumentation error
    \(\mathrm{K}_{\mathrm{T}}=\) tuner transmission characteristic
        = power delivered by tuner to load
        power delivered to tuner input
    \(P_{c}=\) power that would be delivered to a perfect conjugate load
    n = effective efficiency
```

The effective efficiency n is described by:
42BD
b-874

Figure 1.

Figure 2.

$$
\mathrm{n}=\frac{\text { Indicated Power }}{\text { Dissipated Power }}
$$

The calibration factor and effective efficiency are related by the following equation:

$$
K_{b}=\left(1-\left[r_{m}\right]^{2}\right) n
$$

where $\mathrm{Ir}_{\mathrm{m}} \mathrm{I}$ is the absolute value of the power detector reflection coefficient.

3.2.5.2. Determination of Calibration Factor

Required equipment:

1. Standard Power Meter. This is any suitable instrument (BE42, HP 432, Gen. Micro. 454, PRD 6685, Narda 443 , etc.) whose power head has been certified for Calibration Factor K_{S} by standards traceable to National Bureau of Standards (NBS) and whose low-frequency instrumentation error (e_{1}) is known.
2. Generator (covering frequencies and power ranges of interest).
3. Double-stub Tuner, Narda 903N.
4. Directional Coupler, HP 11692 D .
5. Precision Termination, Weinschel Model 1404.
6. 6 dB pad, Weinschel Model 1 .
7. Model 42 Power Meter (accuracy of calibration not important).
8. Model $42 B D$ to be calibrated.
9. 50 -ohm Termination, HP909A.

Connect the equipment as shown in Figure 3aland proceed as follows:

1. Adjust the generator (2) to a convenient low frequency and a level sufficient for a stable reading on the Model 42 (7).
2. Adjust the double-stub tuner (3) for a maximum indication on the Model 42 (7).
3. Replace the precision termination (5) with a standard power meter (1). (See Figure 3b.) With generator (2) set at the same frequency as in Step 1, adjust the generator output level for a convenient reading on the standard power meter (1). Record the output reading of the Model 42 (7). Record the indicated reading on the standard power meter (1) as $\left(\mathrm{P}_{\text {ind }}\right)$
4. Replace the standard power meter with the Model 42BD (8). (See Figure 3c.) With generator (2) set at the same frequency as in Step 1, adjust the generator output level until the Model 42 (7) reads the same value as recorded in Step 3. Record the indicated power reading on the Model 42BD (8) as Pind ${ }_{2}$

The calibration factor $\left(\mathrm{K}_{\mathrm{b}}\right)$ is now computed from the relationship:

$$
K_{b}=K_{s} \frac{\left(1 \pm e_{2}\right)\left({ }^{P} \text { ind }_{2}\right)}{\left(1 \pm e_{1}\right)\left({ }^{\left(\text {ind }_{1}\right)}\right)}
$$

where $\mathrm{K}_{\mathrm{s}}=$ calibration factor of standard power meter (1)
$e_{1}=$ instrumentation error of standard power meter (1) for the range used
$\mathrm{P}_{\text {ind }}{ }_{1}=$ indicated power reading on standard power meter (1) ind1
$e_{2}=$ instrumentation error of the Model 42BD (8) for the range used as determined in performance checks, Paragraph 5.4
$\mathrm{P}_{\mathrm{ind}}^{2} 1=$ indicated power reading of Model 42BD (8) ind2
The CAL FACTOR control on the 42BD front panel is calibrated in terms of K_{b} expressed in dB. For example, if K_{b} $=1.023$, the 42 BD cal factor will equal $-10 \mathrm{LOG} \mathrm{K}_{\mathrm{b}}$ or -0.1 dB .

NOTE:

It is important that the instrumentation error (e) of the standard power meter (1) be known completely. For bolometer and thermocoupletype power meters, this error usually can be determined by the dc substitution methods, as described by the manufacturers. In most cases the uncertainty of instrumentation error can be reduced by operating at higher power levels.

At all other frequencies of interest, repeat steps 1 through 4 and compute the calibration factor $\left(K_{b}\right)$ for each frequency used.

42BD
b-874

Figure 3 a .

Figure 36.

Figure 3c.

3.2.5.3. Determination of Effective Efficiency

Required equipment:

1. Generator (covering frequencies and power ranges of interest)
2. Directional Coupler, HP 11692D
3. Two 6 dB pads, Weinschel Model 1
4. Two Model 42 Power Meters
5. Model 42BD to be calibrated, whose Calibration Factor has been determined in accordance with Paragraph 3.2.5.2

Connect equipment as shown in Figure 4.

Figure 4.

1. Set the generator to the first frequency of interest and increase its output level until there is a convenient reading on the Model 42BD (5).
2. Measure the incident power on one Model 42 (4) and the reflected power on the other Model 42 (4) and record these values as $P_{\text {incident }}$ and P reflected. In recording these values, adjust the values to compensate for any differences between the correction factors of two 6 dB pads (3) and for the CAL FACTORS of the two power meters at the frequency under study.
3. Calculate the magnitude of the reflection coefficient Γ_{m} of the Model 42BD (5) in accordance with:
$\left[\Gamma_{\mathrm{m}}\right]=\frac{{ }^{P_{\text {reflected }}}}{P_{\text {incident }}}$

The effective efficiency (ri) is now given by
$n=K b$

$$
\overline{1-[r m] 2}
$$

where Kb is the calibration factor as determined in Paragraph 3.2.5.2. At all other frequencies of interest, repeat steps 1 through 3 and compute the effective efficiency (n) for each frequency used.

3.2.6. Temperature Effects

The accuracy specifications for the Model 423D apply over an ambient temperature range of 180 C to 300 C . Operation outside this temperature range is possible, but some inaccuracy can be expected. Figure 5 shows a typical temperature characteristic of a Power Detector, and Figure 6 shows that of a Model 42BD and Power Detector together.

NOTE:
For best zero stability, the Power Detector and instrument should be allowed to reach a stable temperature.

Figure 5. Typical Temperature Characteristic

Figure 6. Typical Temperature Characteristic

3.2.7. VSWR Measurements

The high upper-frequency limits and the sensitivity of the Model 42BD make it a useful instrument for measuring vswr with a slotted line. As this type of measurement requires only comparative, rather than absolute, values, the 41-4B Power Detector may be used up to 18 GHz 'up to 20 GHz with the Model 41-4E Detector).

VSWR is determined by measurinr the dB difference between a maximum and a minimum indicated power point on a slotted line and converting this difference to vswr. An adapter is needed to couple the instrument to the slotted line; these are usually available from the manufacturer of the particular slotted line used.

Slotted-line vswr measurements may be made as follows:

1. Connect the Power Detector to the sliding carriage, using a suitable adapter.
2. With the signal source OFF, zero the Model 42BD.
3. Turn the signal source on, and slide the carriage along the line until a point of maximum reading is located.
4. Adjust the source level and the probe setting for the leasting coupling that will yield a reading of -41 dBm . (The incident power should be 0 dBm or greater.)
5. Slide the carriage along the line to Icate a point of minimum reading. Note the meter reading (dBm) at this point, then subtract this minimum reading from the maximum reading. Convert the resultant AdB into vswr either by the use of the vswr Conversion Curve (Figure 7) or by computation.

NOTE: VSWR is the antilog, base 10, of $\Delta \mathrm{dB} / 20$.

Figure 7. dB-VSWR Conversion Chart

3.2.8. Shielding Recommendations

As mentioned in Paragraph 3.2.3 the preliminary zero adjustment is required when the instrument is to be used on the three lowest ranges or when first setting up. Difficulty may be experienced in zeroing if the instrument is subjected to strong noise fields (See Paragraph 3.2.17), making it necessary to shield the input to the Power Detector for this adjustment.

The simplest method of shielding the Detector is to connect it to the device being used, making sure that the device is first turned off. Occasionally, however, the device itself will act as an antenna and actually introduce the noise voltage into the Detector. Should this be the case, stand the Detector vertically on a copper plate, holding it down firmly so that the rim of the connector body is in good contact with the copper at all points. An alternative is to wrap a piece of thin copper foil around the barrel of the connector body, and crimp or fold it around the open end of the connector. (Do not short the center-pin, however.) If this will be a frequent occurence an adapter can be made up with a mating Type N connector permanently fitted with a copperfoil shield.

3.2.9. Over/Under Range Indication

When the power applied to the Detector is approximately 5% above the maximum of the range in use, or 12% below the minimum, the digital display will blank out. An upward or downward pointing arrow indicator will appear, to show the direction of the required range change. In instruments with autoranging option, this range switching will be automatically controlled by the indicator circuits when the instrument is in the autorange mode.

3.2.10. Analog Output

The dc output voltage at the RECORDER terminals on the rear panel is directly proportional to the power level at the Power Detector input. It is positive with respect to chassis ground, with a maximum value of 10 volts at full-scale on all ranges.

The voltage is linear with respect to power down to about 10% of full scale (the point where the digital display blanks out). Linearity is not specified below this point, and the operator should switch the instrument to the next lowest scale. Terminal 20 on the rear card-edge connector is at Logic 1 (about +4 volts) when the applied signal goes below range and the indicator blanks. Connection 21 operates in similar fashion for over-range indication. If desired, these outputs can be used to operate an external warning device to alert the operator that the dc output has entered an unreliable region.

3.2.11. BCD Output

Serialized binary-coded-decimal output (4-line, 8, 4, 2, 1) is available at the rear edge-connector, together with BCD command inputs. Output information includes range, digits, over-range, and under-range indications, mode, and encode complete. Logic $0<0.7 \mathrm{~V}$, and Logic 1 is 2.4 to 5.25 V .

3.2.12. Programming

Logic-level inputs to the appropriate pins on the rear edge-connector select ranges and modes, encode hold, encode trigger, manual disable. Logic levels are standard TTL inputs; logic level 0 ($<0.7 \mathrm{~V}$) enables a function, while logic level 1 (2.4 to 5.25 V) disables it.
Chapter 6 of this manual (Interface Information) contains detailed information on input and output signal characteristics.

3.2.13. Autoranging Option (42BD-01)

The instrument can be operated in the automatic ranging mode by pressing the AUTO switch button on the panel, or by grounding the appropriate pin on the card-edge rear connector. With this option, the range is automatically switched up or down as the applied power approaches triggering points slightly above or below the calibrated range. These triggering points are carefully adjusted at the factory to ensure that there is adequate overlap between adjacent ranges. NOTE: The instrument must be zeroed in the normal mode before selecting the autorange mode.

When the 42BD-01 forms part of an external test system, the application of a Logic $0(<0.7 \mathrm{~V})$ to pins 6 (Auto Enable) and 7 (Manual Disable) will place the instrument in the Autorange mode.

3.2.14. $\mathrm{dBm} /$ Power Readout Option (42BD-09)

With this configuration, the readout can be switched to indicate either power or dBm . The switching can be done either manually or by logic-level command inputs.

42BD

b-874

CHAPTER IV
 THEORY OF OPERATION

4.1. GENERAL

The block diagram (Figure 8) illustrates the essential portions of the 42BD configuration. Detailed schematic diagrams of the several sections of the instrument, and of the options available, will be found at the back of this manual. A brief description of the circuit operation on a sectional basis follows.

4.1.1. Power Detector

The Power Detector contains a non-inductive load resistor of 50 ohms (75 ohms in the $41-4 \mathrm{C}$) and a pair of selected diodes connected as a full-wave rectifier across the resistor. The rf voltage appearing across the resistor is rectified by the diodes, producing a dc voltage whose level is a function of the power applied. When the applied power is within the square-law region of the diodes (approximately 10 microwatts), the detector shows true rms response. Above this power level the response approaches peak-to-peak, calibrated on the indicator in terms of rms power. The use of fullwave rectification permits the measurement of highly asymmetrical wave-forms without substantial error.

The body of the detector is very carefully designed and fabricated to eliminate any cavity resonance effects within the calibrated frequency range. Special diodes are selected for this application; they should not be replaced with off-theshelf types by the user in cases of accidental burnout. Detailed replacement and repair procedures will be found in the Maintenance section of this manual.

4.1.2. Chopper and Chopper Driver

The chopper-driver block provides all of the drive signals required by the instrument. The chopper frequency is obtained by dividing the output of

Figure 8. Block Diagram
a unijunction oscillator by two. The oscillator also generates the switching pulse for the synchronous detector. Diode gating feeds the pulse to the proper JFET depending upon chopper phase. The chopper frequency is normally adjusted to 94 Hz , but can be changed $\pm 10 \mathrm{~Hz}$ to avoid beating with harmonically related power-line-frequency ground currents.

4.1.3. Attenuator and Amplifiers

The ac voltage from the chopper is applied to the attenuator and amplifier sections. The pre-amplifier, with a constant gain of 100X is designed for very low noise. The second amplifier is designed to show an output of 3 volts peak-to-peak at full scale for each range; this is done by ranging both the attenuation and the gain of the second amplifier. Both amplifiers are stabilized by large amounts of inverse feedback and exhibit moderately wide bandwidths.

4.1.4. Synchronous Detector

The amplified signal from the second amplifier is converted to dc in the synchronous detector. This detector is driven by pulses triggered by the chopperdriver circuit, assuring accurate synchronization. The peak-to-peak amplitude is derived from a shunt-series capacitor storage circuit using JFET switches.

The characteristics of the detector determine the effective bandwidth of the amplifier-detector combination, and allow modifications of the bandwidth for different range conditions. The detector also provides conversion without offset, with excellent linearity.

4.1.5. Shaping Amplifier

The conversion of rf to dc in the power detector is non-linear, the response being virtually square-law for the lowest ranges and gradually becoming quasi-linear for the 10 mW range. The shaping amplifier converts the non-linear output of the detector to a linear output by using a segmental approximation to the exact correction. The shaping amplifier is an operational amplifier connected so that, as the signal increases at its output, its gain is reduced by successively paralleling resistors across the feedback resistors. The number of segments needed adequately to linearize the response

42BD
 b-874

varies from 0 for the "square-law" ranges up to 6 for the 10 mW range. The output of the shaping amplifier at full scale is +10 volts; this voltage is applied to the miniature panel meter, the RECORDER terminals through a 9 kQ resistor, and to the digital control circuits.

4.1.6. Digital Control

The analog dc signal from the shaping amplifier is processed by the digital control circuits before being passed on to the analog-digital converter and the digital display unit. The digital control section divides the incoming voltage (10 volts full scale) by a factor of 20. It extracts information for the control of range, decimal point position, over- or under-range indications, polarity indication and mode indication. (On the 42BD-09 Option, this section also contains the additional circuitry to convert the incoming power information to dBm values.) The processed analog signal is then passed to the analogdigital converter section.

4.1.7. Analog/Digital Converter

This is a dual-slope type of converter; incoming analog information is changed to digital form and applied to the digital display unit, where the appropriate segments of the LED display are triggered. These show not only numerals, but also over or under-range indication, polarity, and units (nW, 4W, mW, dBm).

4.1.8. Power Supply

The power supply converts the ac line power to regulated +15 and -15 volt outputs. Each supply is protected by current limiting against accidental short circuits, and each is adjustable to within ± 0.1 volt.

4.1.9. Programming

The 42 BD is organized around an eight-line ranging system. In each functional subcircuit, switching is accomplished by solid-state devices, generally FETs, which are actuated by grounding the appropriate range lines. The
front panel ranging switch simply connects to the eight range lines to allow range selection. The range lines are buffered by a logic-level converter. The instrument may be externally ranged by applying a logic "0" command to the desired range line and the manual disable line.

42BD

b-874

CHAPTER V
 MAINTENANCE

NOTE:

Values and tolerances shown in this section are not specifications but are provided only as guides to the maintenance and calibration of this instrument.

5.1. Introduction

The Model 42BD, hereinafter called the instrument, is designed conservatively and, in normal usage, should provide trouble-free operation for long periods of time. However, as with any precision instrument, it should have its calibration checked periodically to ensure that the specified accuracy is maintained. This section contains information necessary to make performance checks, adjustments when needed, and to perform troubleshooting and servicing. Complete schematic diagrams are found at the back of this manual and should be referred to when servicing is performed.

5.2. Test Equipment Required

The test equipment needed to check and maintain the instrument is listed in Table 1 Comparable equipment with equal or better specifications may be substituted for any of the items listed.

Table 1. Test Equipment

Instrument	Characteristics	Model
DC Power Source	0 to 10.0 volts, 0 to 5 amperes,	Hewlett Packard
Test Oscillator	load regulation 5 mv, 0.01\% current plus 250 WA	HP6218A
	Frequency: 10 Hertz to 10 Mega-Hewlett Packard hertz in 6 ranges, $\pm 3 \%$ of frequency setting. Output -70 dBm to +23 dBm	

42BD
b-874

Table 1. Test Equipment (continued)

Instrument	Characteristics	Model
Micropotentiometer	0.17 to 440 millivolts	Ballantine Labs Model 440 including 5 and 15 milliampere thermocouples and three radial resistors: 0.15 ohms, 1.5 ohms and 15 ohms respectively
DC Meter No. 1	100 millivolts, and $1,10,100$, and 1000 volts full-scale. Input impedance greater than 1000 megohms on on 100 millivolt, 1 and 10 volt ranges; greater than 10 megohms on 100 and 1000 volt ranges	Hewlett Packard HP2402A, Integrating DVM (pad for $\mathrm{Zi}=50$ ohms)
DC Meter No. 2	Voltmeter: +3 microvolts to ± 1000 volts dc, 18 zero center ranges, $+2 \%$ of ranges Ammeter: ± 30 picoamperes to ± 30 nanoamperes in zero center ranges i3\% of range up to 1 volt	Hewlett Packard HP419A dc Null Voltammeter
Thermal Voltage Converter (TVC)	Model 1393-1	Ballantine Labs
		Thermal Voltage Converter
Oscilloscope	DC to 10 Megahertz; y axis 50 mV division; x axis $\mathrm{Ims} / \mathrm{IOms}$ division	Tektronix Model 531
Card Extender	--- --- ---	Boonton 92-6A

Table 1. Test Equipment (continued)

Instrument	Characteristics	Model
Frequency Counter	5 Hz to 40 MHz	Monsanto Model 1003
Voltohmmeter	20,000 ohms per volt dc; 1000 ohms per volt ac; volts ac and dc 0-1000 In 5 scales; output 2.5 to 100 in 4 scales; amps 100 A to 10 A in 5 scales; ohms 0-20 megohms in 3 scales	
DC Digital Voltmeter (DVM)	1 vfs to 15 vfs $4-1 / 2$ digits 0.05% accuracy	Fluke Model 8001A

5.3. Calibration Precautions

When checking an instrument having the sensitivity and bandwidth of the Model 42BD, it is essential to take precautions against errors resulting from stray pickup. A well shielded signal source must be used together with coaxial connections.

5.4. Performance Checks (PWR)

Because of the outstanding low-frequency response of the instrument (200 kHz as opposed to the usual 10 MHz of competitive instruments) it is convenient to check the performance by using voltage sources in the frequency range of 200 kHz to 1 MHz . In this range, there are commercial sources and reference standards available with the required accuracy. Figure 9 shows the suggested equipment and connections to check all ranges of the instrument, except the +10 dBm range Figure 10 shows the suggested equipment and connections to check the +10 dBm range.

NOTE :
Prior to proceeding with performance checks, accomplish the initial operating procedures set forth in Paragraph 3.2.1

NOTE:
The Boonton Model 25A Power Meter Calibrator can be substituted for the equipment shown in figures 9 and 10 This calibrator provides 1 MHz power levels from -69 to +20 dBm in 1 dB steps with 0.05 dB uncertainity. If the Model 25A Calibrator is used, disregard all references in paragraphs 5.4 and 5.5 to equivalent voltage levels; merely refer to specified power levels which then can be switch-selected on the Model 25A.

Figure 9. Connections

Figure 10. Connections

5.4.1. Performance Check Procedure (all ranges except 10 mW)

Each range is checked by connecting the Model 440 micropotentiometer (using the appropriate thermocouple and radial resistor) to the dc power source and dc meter No. 1 (Figure 9) and adjusting the dc power source until the dc meter No. 1 reads the voltage equivalent to the full-scale power for that range (refer to Table 2). Record the dc meter No. 1 reading. Now connect the micropotentiometer to the ac power source and the Model 42BD under test. Adjust the ac power source until the dc meter No. 2 indicates the same value as recorded for the dc meter No. 1. The RMS output voltage of the micropotentiometer is now equivalent to the recorded dc voltage. The Model 42BD should now read full scale within the specified tolerance ($\pm 5 \%$ for the PWR mode; $\pm 0.2 \mathrm{dBm}$ for the dBm mode). Perform the steps listed in Table 2to check performance.

5.4.2. Performance Check Procedure (10 mW range only)

a. Connect the instrument to test set-up as shown in Figure 10. Depress the 10 mW button of the FULL SCALE range selection.
b. Adjust the dc power source until the dc meter No. 1 reads 707 mv . Record the reading of the dc meter No. 2.
c. Connect the ac source to the ac source tee (UG-28A/U) as in Figure 10.
d. Adjust the ac source for an output so that the reading of dc meter No. 2 is equal to that obtained in Step b. above. The RMS voltage now connected to the instrument has a value equivalent to the 707 mv reading of the dc meter No. 1. The reading displayed should now read full scale, $10 \mathrm{~mW} \pm 5 \%$ in the PWR mode or $+10 \mathrm{dBm}+0.2 \mathrm{dBm}$ in the dBm mode.

5.4.3. dBm Performance Checks

NOTE:

These adjustments are not normally required. The instrument should be tested in the PWR mode before the dBm performance checks. See Figure 11for the location of boards and test points.

Table 2. Performance Check

*Preliminary zero adjustment required. (Refer to paragraph 3.2.1.
42BD
b-874

ADJ	CONT	FURCTION	RANGE ${ }^{\circ}$	$\begin{gathered} \text { INPUT } \\ \text { PWR } \pm 0.2 \%(50 \text { OHMS }) \end{gathered}$	AOJUST
1	R143	-15V ADJ	-	0	$-15.0 \mathrm{~V} \pm 0.1 \mathrm{~V}$ AT -15V TP
2	R140	+15V ADJ	-	0	$+15.0 \mathrm{~V} \pm 0.1 \mathrm{~V}$ AT +15V TP
3	R244	CHOPPER FREQUENCY	$1 \mu W$	$1 \mu \mathrm{VW}(7.071 \mathrm{mV})$	$94 \pm 1 H_{2}$ AT TP 13
4	R401	$\begin{gathered} \text { FRONT PANEL } \\ \text { ZERO } \end{gathered}$	10 nW	0	AYERAGE ZERO INDICATION AT RECORDER TERMINALS
5	R233	DC IERO	$1 \mu *$	0	ZERO INDICATION AT RECORDER TERMINALS
$6+$	R180	MAIN GAIN	$1 \mu W$	$1 \mu W \quad(7.071 \mathrm{mV})$	-3.00 VOC AT TPI7
7t	R 523	FS RANGE ADJ	$1 \mu *$	$1 \mu W \quad(7.071 \mathrm{mV})$	+10.00Y AT RECORDER IERMINALS $\text { OC VOLTMETER INPUT > } 10 \mathrm{M} \mathrm{OHMS}$
8	R1405	+DPM FS ADJ	$1 \mu \%$	$1 \mu W(7.071 \mathrm{mV})$	$1.000 \mu \mathrm{~W}$ INDICATION
9	$R 639$	EDGEMETER ADJ	1μ W	$1 \mu \mathrm{~W} \quad(7.071 \mathrm{mV})$	ZERO abm INDICATION
10	A716	AUTORANGE TRIP AOJ	AUTO	$1-1.1 \mu W$	TRIP TO 10μ W RANGE AT $1.03 \mu W$
$11+$	R525	FS RANGE ADJ	10 nW	$10 \mathrm{nW} \quad(0.707 \mathrm{mV})$	10.00 nW INDICATIOK
$12+$	R524	FS RANGE AOJ	100 nW	$100 \mathrm{nW}(2.236 \mathrm{mV})$	100.0 nW IHDICATION
13	R 522	FS RANGE ADJ	$10 \mu \mathrm{~W}$	$10 \mu \mathrm{~W}(22.36 \mathrm{mV})$	10.00 mW INDICATION
14	R 521	FS RANGE ADJ	$100 \mu \mathrm{~W}$	$100 \mu \mathrm{~W}(70.71 \mathrm{mV})$	$100.0 \mu W$ INDICATION
15	R543	DS ADJ	$100{ }^{W}$	10 mW (22.36 mV)	$10.0 \mu W$ INDICATION
16	R 520	FS RANGE ADJ	1 mw	$1 \mathrm{~mW}(223.6 \mathrm{mV})$	1.000 mW INDICATION
17	R548.	DS ADJ	1 mW	$100 \mu W(70.71 \mathrm{mV})$	0.100 mW INDICATION
18	R 519	FS RANGE ADJ	10 mm	$10 \mathrm{mw} \quad(707.1 \mathrm{mV})$	10.00 mW INOICATION
19	R 562	DS ADJ	10 mw	$1 \mathrm{~mW}(223.6 \mathrm{mV})$	1.00 mW INDICATION
20	R624	d8 RANGING *	$\begin{gathered} 10 \mathrm{~mW} \\ 100 \mathrm{nW} \\ \hline \end{gathered}$	$\begin{array}{cc} 10 \mathrm{~mW} & (707.1 \mathrm{mV}) \\ 100 \mathrm{nW} & (2.236 \mathrm{mV}) \\ \hline \end{array}$	$\begin{aligned} & \text { ADJUST FOR } 50 \mathrm{OB} \text { SPREAD GETWEEN } \\ & 10 \mathrm{~mW} \text { AND } 100 \mathrm{nW} . \end{aligned}$
21	R610	dB REFERENCE *	1 mW	$1 \mathrm{~mW}(223.6 \mathrm{mV})$	ADJUST FOR O ABm
22	R616	ab LINEARITY *	1 mW	$\begin{array}{rr} 1 \mathrm{~mW} & (223.6 \mathrm{mV}) \\ 100 \mu \mathrm{~W} & (70.71 \mathrm{mV}) \\ \hline \end{array}$	ADJUST FOR 10.0 OB SPREAD BETMEEN I mW AND $100 \mu \mathrm{H}$.
23	R1408	-DPM FS ADJ	(3)	64	(1)
24	R573	CAL. FACTOR ADJ	\cdots	READJUST IF CAL	TOR KNOB IS REMOVED FROM SHAFT.

Figure 11.
5.4.3.1. Performance Check Procedure (dBm ranging)
a. Connect the instrument in a test set-up as shown in Figure 10. Depress the 10 mW button of the FULL SCALE range selector and inject an input of 707.1 mv .
b. Adjust the input to obtain a display indication of 10.00 mW . Set the OFF/PWR/dBm switch to dBm. Check for a display indication of 10.00 dBm .
c. Remove the instrument from the Figure 10test set-up and connect it to a test set-up as shown in Figure 9. Depress the 100 nW button of the FULL SCALE range selector and set the OFF/PWR/dBm switch to PWR.
d. Inject an input of 2.236 mV and adjust the input for a display indication of 100 nW . Set the OFF/PWR/dBm switch to dBm and check for a display indication of -40.00 dBm .

5.4.3.2. Performance Check Procedure (dBm reference)

a. Connect the instrument to a test set-up as shown in Figure 9, depress the 1 mW button of the FULL SCALE range selector and inject an input of 223.6 mv (refer to Table 2, step 6).
b. Adjust input to obtain a display indication of 1.000 mW . Set the OFF/PWR/dBm switch to dBm and check for a display of .00 dBm .

5.4.3.3. Performance Check Procedure (dBm linearity)

a. Connect the instrument in a test set-up as shown in Figure 9. Depress the 1 mW button of the FULL SCALE range selector, and inject an input of 223.6 mV (refer to Table 2, step 6).
b. Adjust input to obtain a display indication of 1.000 mW . Set the OFF/PWR/dBm switch to dBm and record the reading displayed.
c. Decrease the input level to 70.71 mV and set the OFF/PWR/dBm switch to PWR. Adjust input level to obtain a display indication of .100 mW .
d. Set the OFF/PWR/dBym switch to dBm and adjust R616 on the digital control board (schematic D830592B) for a 10 dB spread between 1.000 mW and .100 mW .

5.5. Calibration Procedures (Schematics referred to are in the rear of the manual.)

If the performance checks of Paragraphs 5.4.1 5.4.2 and 5.4.3 show a range or ranges outside of the specified tolerance, the following calibration procedures should be performed, using the same equipment and techniques as used in Paragraph 5.4

The instrument should be calibrated at an ambient temperature of 68° to $720 \mathrm{~F}(200$ to 220 C) after a minimum warmup time of ten minutes. The following adjustments, together with appropriate test points and adjustment location, are listed in abbreviated form on the inside surface of the instrument's top cover. A facsimile of this listing is illustrated in Figure 11, together with the location of applicable test points and adjustments.

Adjustment No. 1. Using dc meter No. 1, measure the -15.0 volt supply voltage at the -15 v test point located on the main amplifier board at C119. If the voltage is not within tolerance ($-15.0, \pm 0.1 \mathrm{vdc}$) adjust R 143 to obtain the proper reading.

Adjustment No. 2. Using dc meter No. 1, measure the +15.0 volt supply voltage at the +15 v test point located on the main amplifier board at C118. If the voltage is not within tolerance ($+15.0, \pm 0.1 \mathrm{vdc}$) adjust R140 to obtain the proper reading.

NOTE :

In the following adjustments, the voltages in parentheses apply to the Boonton Electronics Model 41-4C (75 ohm) Power Detector.

Adjustment No. 3. Depress the 14 W button of the FULL SCALE range selector and apply $7.071 \mathrm{mV}, \pm 0.2 \%$ $(8.66 \mathrm{mV})$ (refer to Table 2] step 3). Using the frequency counter, measure the chopper frequency at test point 13 (the junction of R227 and C206 on the chopper driver board, schematic D830581C). The frequency counter should read 94 $\mathrm{Hz},+1 \mathrm{~Hz}$. If the frequency is not within tolerance, adjust R244 to obtain the desired reading. In some cases it may be desirable to offset the chopper frequency to avoid beating with a harmonic of the power line frequency. Any frequency within the adjustment range will not degrade the performance of the instrument.

Adjustment No. 4. Depress the 10 nW button of the FULL SCALE range selector and zero the instrument as described ir Paragraph 3.2.1, step f.

Adjustment No. 5. Depress the 1 pW button of the FULL SCALE range selector. Using dc meter No. 2, measure the voltage of the RECORDER terminals on the rear panel of the Model 42BD. The voltage should be zero. If necessary, adjust R233 on the chopper driver board, schematic D830581, to obtain the required voltage.

Adjustment No. 6. Depress the 1 pW button of the FULL SCALE range selector and apply $7.071 \mathrm{mV},+0.2 \%$ $(8.66 \mathrm{mV})$ input (refer to Table 2, step 3). Using dc meter No. 2 measure the voltage or test point 17 on the chopper driver board, schematic D830581. The voltage should be -3.00 volts. If necessary, remove the bottom cover and adjust R180 on the amplifier board, schematic E830592, to obtain the required voltage.

Adjustment No. 7. Depress the 1 pW button of the FULL SCALE range selector, and apply $7.071 \mathrm{mV},+0.2 \%$ $(8.66 \mathrm{mV}$) input (refer to Table 2. step 3). Using dc meter No. 2, measure the voltage at the RECORDER terminals on the rear panel. The voltage should read +10.00 volts. If necessary, adjust R523 on the shaping amplifier board, schematic E830592, to obtain the required voltage.

Adjustment No. 8. Depress the 1 pW button of the FULL SCALE range selector and apply $7.071 \mathrm{mV}, \pm 0.2 \%$ $(8.77 \mathrm{mV})$ input refer to Table 2 step 3). The display indication should read 1.000 pW . If necessary, adjust R643 for 0. 500 Vdc at Pin 8 of IC605. Adjust R1405 for 1.OOOW indication.

Adjustment No. 9. Depress the 1 pW button of the FULL SCALE range selector and apply $7.071 \mathrm{mV},+0.2 \%$ (8.66 mV) input (refer to Table 2. step 3). The panel edgemeter should read 0 dBm . If necessary, adjust R639 on the digital control board, schematic D830592, to obtain the required reading.

Adjustment No. 10. (For instruments with Autorange option)

NOTE:

Normally this adjustment should not be required.

Depress the 14 W button of the FULL SCALE range selector and apply $7.071 \mathrm{mV},+0.2 \%(8.66 \mathrm{mV})$ input (refer to Table 2, step 3). Depress the AUTO button of the FULL SCALE range selector, and increase the input level slowly, noting the point at which the instrument changes up to the 104 W range. Refer to Paragraph 3.2.9for over/under range indications. The range switching should occur when the display indication is 1.030 IW. If necessary, adjust R716 on the autorange board, schematic 830483, for a range trip at 1.030 uW by rotating R716 counterclockwise to decrease the trip point level and rotating R716 clockwise to increase the trip point level. It may be necessary to repeat the adjustment several times to reach the desired setting.

Adjustment No. 11. Depress the 10 nW button of the FULL SCALE range selector and zero the instrument as described in Paragraph 3.2.1 step f. Apply $0.707 \mathrm{mV},+0.2 \%(0.866 \mathrm{mV})$ input (refer to Table 2. step 1). The display should indicate 10.00 nW . If necessary, adjust R525 on the shaping amplifier board, schematic E830592, to obtain the proper indication.

Adjustment No. 12. Depress the 100 nW button of the FULL SCALE range selector and zero the instrument as described in Paragraph 3.2.1. step f. Apply $2.236 \mathrm{mV},+0.2 \%(2.738 \mathrm{mV})$ input (refer to Table 2. step 2). The display should indicate 100.0 nW . If necessary, adjust R524 on the shaping amplifier board, schematic E830592, to obtain the proper indication.

Adjustment No. 13. Depress the 10 uW button of the FULL SCALE range selector and apply $22.36 \mathrm{mV},+0.2 \%$ (27.38 mV) input (refer to Table 2 step 4). The display should indicate 10.00 uW . If necessary, adjust R522 on the shaping amplifier board, schematic E830592, to obtain the proper indication.

Adjustment No. 14. Depress the 1004 W button of the FULL SCALE range selector and apply $70.71 \mathrm{mV}, \pm 0.2 \%$ (86.6 mV) input (refer to Table 2, step 5). The display should indicate 100.0 uW . If necessary, adjust R521 on the shaping amplifier board,Schematic E830592 to obtain the proper indication.

Adjustment No. 15. Depress the 1004 W button of the FULL SCALE range selector and apply $22.36 \mathrm{mV},+0.2 \%$ $(27.38 \mathrm{mV}$) input. The display should indicate 10.0 uW . If necessary, adjust R543 on the shaping amplifier board, schematic E830592, to obtain the proper indication.

Adjustment No. 16. Depress the 1 mW button of the FULL SCALE range selector and apply $223.6 \mathrm{mV}, \pm 0.2 \%$ $(273.8 \mathrm{mV}$) input (refer to Table 2, step 6). The display should indicate 1.000 mW . If necessary, adjust R520 on the shaping amplifier board, schematic E830592, to obtain the proper indication.

Adjustment No. 17. Depress the 1 mW button of the FULL SCALE range selector and apply $70.71 \mathrm{mV},+0.2 \%$ $(86.6 \mathrm{mV})$ input. The display should indicate 0.100 mW . If necessary, adjust R548 on the shaping amplifier board, schematic E830592 to obtain the proper indication.

Adjustment No. 18. Depress the 10 mW button of the FULL SCALE range selector and apply $707.1 \mathrm{mV}, \pm 0.2 \%$ $(866 \mathrm{mV}$) input (refer to Paragraph 5.4.2). The display should indicate 10.00 mW . If necessary, adjust R519 on the shaping amplifier board, schematic E830593, to obtain the proper indication.

Adjustment No. 19. Depress the 10 mW button of the FULL SCALE range selector and apply $223.6 \mathrm{mV}, \pm 0.2 \%$ (273.8 mV) input. The display should indicate 1.00 mW . If necessary, adjust R562 on the shaping amplifier board, schematic E830592, to obtain the proper reading.

Adjustment No. 20. Depress the 1 mW button of the FULL SCALE range selector and set the OFF/PWR/dBm switch to dBm . Remove digital control board and mask pins 1, 2, Z and 22 with tape. Return the digital control board to the extender card. Inject $-3.00 \mathrm{vdc}, \pm 0.1 \%$ into the junction of $R 628$ and R629, schematic D830592. If necessary, adjust R1408 on the digital panel meter board, schematic D830546, for a 6000 count indication. Remove -3.00 vdc from the junction and inject +10.00 vdc, $\pm 0.1 \%$ into the junction of $R 631$ and R638, schematic D830592. If necessary, adjust R1405 on the digital panel meter board, schematic D83054 , for a display indication of 1.000 mW .

Adjustment No. 21. Set the OFF/PWR/dBm switch to dBm . Depress the +10 dBm button of the FULL SCALE range selector and adjust R610, schematic D830592 for a display of 10.00 dBm . Depress the -50 dBm button of the FULL SCALE range selector and adjust R624 for a display of -50.00 dBm . Repeat these steps to adjust for a 60 dB difference between +10 and -50 dB . Depress the 0 dBm button of the FULL SCALE range selector ai, d adjust R610 for a display of .00 dB . Check each range for the correct reading in $\mathrm{dBm}, \pm 0.1 \mathrm{~dB}$; touch
up R624 to bring in the middle ranges if they are not out by more than 0.2 dB . Depress the 0 dBm button of the FULL SCALE range selector and note the display. Decrease the injected 10.00 vdc to a value of $+1.00 \mathrm{vdc},+0.1 \%$. Note the display. Adjust R616 for a $10^{\circ} \mathrm{dB}$ difference between the readings. Remove voltage from the junction. Remove tape from the digital control board, remove extender card and insert the digital control board into the connector.

Adjustment No. 22. (Calibration Factor Adjustment)
NOTE :
This adjustment will be required only if the CAL FACTOR knob has been removed from its shaft, or if slippage of the knob on the shaft is suspected.

Center the CAL FACTOR control knob on the shaft so that the pointer swings an equal amount past the scale end points on each end of the rotation. Depress the 14 W button of the FULL SCALE range selector, and set the CAL FACTOR control to -1 dBm . Using the ac source (Figure 9), adjust the input level until a display of 0.6314 W or -32.00 dBm is obtained. Rotate the CAL FACTOR control to the +1 dBm position and adjust R573 on the shaping amplifier board schematic E830592, for a display of 1.0004 W or -30.00 dBm .

Adjustment No. 23.
NOTE:
This adjustment will be required only if IC1202 is replaced, and a 50 millisecond pulse is not obtained at pin 8 of IC1402.

Using an oscilloscope, measure the pulse width at pin 8 of IC1402, schematic D830546. The pulse should be 50 milliseconds wide. If necessary, adjust C1203, schematic D830546, to obtain the proper pulse width. If this pulse width cannot be obtained within the adjustment range of C1203, try slightly different values at C1202, up to 200 pfd, until the 50 millisecond pulse is within the range of trimmer C1203.

5.6. TROUBLESHOOTING PROCEDURE

If faulty operation of the Model 42BD is evident or if the preceding calibration procedures fail to correct an inaccurate reading, reference to Table 3. Troubleshooting, will assist in identifying the cause of the trouble and determining the corrective action to take. Often the nature of the difficulty itself will pinpoint the location of the trouble. If this is not the case, make a visual examination of the instrument by removing the top and bottom covers and inspecting for unseated printed circuit boards or connectors, loose components or fasteners, obviously defective components such as charred resistors, leaking capacitors, broken leads, or for foreign material. If this inspection fails to locate the trouble, it is recommended that the sequential steps of procedure specified in Table 3] be followed and that the schematic diagrams at the rear of the manual be referred to for assistance. It is recommended also that voltage measurements be made using a Fluke Model 8100 A dc digital voltmeter, or equivalent. Use standard shop practices for isolating and replacing defective parts.

NOTE :
If it becomes necessary, during troubleshooting, to remove the CAL FACTOR control knob, first turn the control fully counterclockwise and mark the position of the knob pointer by a pencil scribe line on the front panel; then remove the knob. When replacing the knob, align the pointer with the scribe mark and secure the knob position. Check adjustment 24 after replacing the knob.

Table 3. Troubleshooting

Step	Trouble	Probable Cause	Corrective Action
1	INOPERATIVE INSTRUMENT	Faulty or incorrect line voltage	Correct line voltage or repair connection.
2	inoperative INSTRUMENT	Slide switch (rear panel) in incorrect position for applied line voltage	Set switch to proper position.
3	INOPERATIVE INSTRUMENT	Defective or incorrect fuse installation (rear panel)	Replace defective fuses or ensure installation of 0.2 A fuse for 115 volts; 0.1 A fuse for 230 volts.

Table 3. Troubleshooting (Continued)

Step	Trouble	Probable Cause	Corrective Action
4	INOPERATIVE INSTRUMENT	Defective power detector	Replace power detector and recalibrate instrument. NOTE: It is recommended that defective power detectors be returned to the factory for repair. See 5.1.
5	INOPERATIVE INSTRUMENT	No or incorrect negative voltage at test point at C119 on amplifier board (schematic E830592)	Adjust R143 to obtain -15.0, ± 0.1 volt. If not attainable, check all components of -15 volt supply. Replace all defective parts.
6	INOPERATIVE INSTRUMENT	No or incorrect positive voltage at test point at C118 on amplifier board (schematic E830592)	Adjust R140 to obtain +15.0, ± 0.1 volt. If not attainable, check all components of +15 volt supply. Replace all defective parts.
7	INSTRUMENT OPERATIVE BUT NO DISPLAY	No or incorrect voltage at test point between IC103 and IC106 on amplifier board schematic E830592)	Replace IC103 to obtain $+5.0, \pm 0.1$ volt. If voltage still not attainable, check all components of +5 volt supply. Replace all defective parts.
8	INSTRUMENT OPERATIVE BUT NO DISPLAY	Defective or inoperative display lamps	Replace defective lamps and check connections. Check all components of digital panel meter display board [schematic D830546]. Replace all defective parts.

Table 3. Troubleshooting (Continued)

Step	Trouble	Probable Cause	Corrective Action
9	INSTRUMENT OPERATIVE BUT INCORECT OR ERRATIC DISPLAY INDICATIONS	Defective or incorrect power detector	Check to ensure that the serial number of the power detector being used is the same as the serial number of the instrument or that the power detector is one to which the instrument has been calibrated. If power detector is defective, replace and then recalibrate instrument. (Refer to step 4.)
10	INSTRUMENT OPERATIVE BUT INCORRECT OR ERRATIC DISPLAY INDICATIONS proceed with step 11	Defective chopper G401	Replace defective chopper and recalibrate instrument. NOTE: If new chopper does not correct trouble, reinstall old chopper and
11	INSTRUMENT OPERATIVE BUT INCORRECT OR ERRATIC DISPLAY INDICATIONS	Possible defective components and/or signal paths on amplifier board (schematic E830592)	Check waveshapes, voltages, and resistances at test TP1, TP2, TP3, and TP4. If readings are incorrect, check all components in signal paths and feedback circuits. Replace defective parts. NOTE: FET Q109 is a factory selected item and must be ordered from the factory.

42BD
b-874

Table 3. Troubleshooting (Continued)

12	INSTRUMENT OPERATIVE BUT INCORRECT OR ERRATIC DISPLAY INDICATIONS	Possible defective components and/or signal paths on printed circuit boards: - digital control (schematic D830592) - display panel meter analog/digital converter schematic D830546 - digital panel meter counter board (schematic D830546) - digital panel meter display board (schematic D830546) - serial/parallel BCD converter schematic D830650) \qquad matic D830581) - shaping amplifier schematic E830592	a. Inject a full scale input on any range and read the RECORDER voltage at P105 (rear panel). Voltage should read +10 volts. Lower input by a few dBm and note that RECORDER voltage follows input voltdge. If RECORDER voltage does not follow input voltage proceed to the following step b. If RECORDER voltage does follow input voltage, proceed as follows: Check waveshapes, voltages, and resistances on the following printed circuit boards in the sequence given: - digital control (D830592) - digital panel meter analog/digital converter (D830546utilizing test points TP1 through TP7 - digital panel meter counter board (E830546) utilizing test points TP1 through TP3 - digital panel meter display board (D830546) - serial/parallel BCD converter (D830650)

42BD
b-874

Table 3. Troubleshooting (Continued)

| 12 | INSTRUMENT
 OPERATIVE
 BUT INCOR-
 RECT OR
 ERRATIC DIS-
 PLAY INDI-
 CATIONS
 (cont.) | If readings are incorrect,
 check all components in
 signal paths and feedback
 circuits. Replace defec-
 tive parts and repair or
 replace defective inter-
 connections.
 b. If RECORDER voltage
 does not follow input
 voltage, proceed as fol-
 lows:
 Check waveshapes, volt-
 ages, and resistances on
 the following printed cir-
 cuit boards in the sequence
 given:
 - chopper driver (D830581) |
| :--- | :--- | :--- | :--- |
| | | utilizing test points
 TP1 through TP17
 - shaping amplifier |
| | (E830592)
 If readings are incorrect,
 check all components in
 signal paths and feedback
 circuits. Replace defec- | |
| tive parts and repair or | | |
| replace defective inter- | | |
| connections. If this | | |
| procedure does not correct | | |
| trouble, proceed with pre- | | |
| ceding step a. | | |

Table 3. Troubleshooting (Continued)

Step	Trouble	Probable Cause	Corrective Action
13	INSTRUMENT OPERATIVE BUT DIGITAL DISPLAY DOES NOT BLANK OUT WHEN INPUT POWER IS ABOVE OR BELOW LIMITS FOR SELECTED RANGE	Possible defective components and/or signal path on amplifier board (schematic E830592) and shaping amplifier schematic E830592)	Refer to Ranging Troubleshooting Chart, Figure
14	INSTRUMENT OPERATIVE WITH THE AUTO SWITCH ENGAGED BUT DIGITAL DISPLAY DOES NOT RANGE UP OR DOWN AS INPUT POWER IS VARIED	Possible defective components and/or signal path on amplifier board (schematic 830483)	Refer to Autoranging Troubleshooting Chart, Figure NOTE: This procedure applies only to Model 42BD equipped with the autoranging option.

5.7. POWER DETECTOR REPAIR

NOTE:

Repair and adjustment of a Power Detector is a difficult operation requiring a high degree of knowledge and skill. If the user elects to make such a repair, rather than to return the Detector to this factory, it must be understood that the repaired Detector may not meet the vswr and response characteristics as specified in this manual.

Before attempting a repair of the Power Detector, check all possible sources of trouble, such as the instrument itself, the probe cable, connectors, the RF power source, etc. If the defect cannot be located, and the symptoms indicate a faulty Power Detector, make the external resistance measurements outlined below to localize the trouble before opening the Detector housing. (A Simpson Model 260 is recommended for most of these measurements.)
a. Measure the resistance of the RF input connector from the center conductor to ground shell. This should be 5011 ohms. (For this measurement, a more accurate instrument than the Model 260 must be used.)
b. Inspect the rear connector for possible damage. Measure the resistance from pins 1 and 2 to ground. This should measure > 10 MQ .
c. With the Model 260 on the 10 kE range, measure the resistance from pin 1 (negative lead of the 260) to pin 2 (positive lead). This should be 20 to 30 kQ.
d. With the Model 260 on the 10 kh range, measure the resistance from pin 1 (positive lead of the 260) to pin 2 (negative lead). This should be >400 kQ.

After completing the resistance measurements, the Power Detector housing may be opened as follows:
e. Remove the three 2-56 screws holding the outer shield. Slide the shield forward over the RF input connector.
f. Look for broken wires at this point. If any are found, repair them and retest the unit before proceeding.
g. The rear connector may now be replaced, if necessary, by removing the set-screw at the side of the rear disc (the red mark on the side of the housing polarizes pin 1).
h. Remove the four 2-56 screws holding the inner shield. Slide the shield backwards from the main housing. Unsolder the wires at the teflon terminals, if necessary.

If the Power Detector failed the insulation test in (b), look for a short to ground from the 1000 pF capacitors C102 and C103, or an internal short in one of the capacitors. These capacitors may be removed by taking out the two 0-80 screws on the side of the bracket. Tilt the housing to the side so the bracket will fall away when a soldering iron is touched to the joint. The capacitor may then easily be replaced remotely from the housing. Screw the bracket to the housing before soldering.

CAUTION:

Always ground the soldering iron tip when soldering the probe housing to avoid damaging the diodes.
If the Power Detector failed the tests of (c) or (d), measure the resistance of the diodes CR101 and CR102 with the Model 260 on the 10 kn range. The forward resistance of each diode should measure about 500 ohms, and the backw;rd resistance should be greater than 50 kh . If the back resistance of a diode measures appreciably less than 50 ka , replace it, using the following technique:
i. While grasping the diode with tweezers, and applying a light upward pull, touch the center post with a small, high-temperature iron. The diode will lift when the solder melts. Now unsolder the far end of the series resistor and lift out the diode-resistor combination.
j. At this point, test the terminating resistors as in (a). If R101 or R102 tests faulty, replace it as follows: Remove the four $2-56$ screws holding the 100 Q resistors in place. Unsolder from the center post by pulling the resistor from the rear while heating the center post. (Overheating can cause distortion of the teflon spacer supporting the center conductor.) Replace the new resistor in the reverse order.
k. After any critical parts (diodes or terminating resistors) have been replaced, it will be necessary to check the input vswr throughout the specified frequency range. The test may be made with the shields off the make adjustment easier. The vswr may be checked by any convenient means, such as slotted line, reflectometer, etc. Adjust the length of the 100 A resistor leads with the
clamps on the top of the housing. In general, longer lead lengths will increase the vswr at 6 and 7 GHz , and will decrease it at 11 and 12 GHz . It will usually be necessary to compromise somewhat in these adjustments and try to find the optimum setting across the range.

Variations in the high-frequency response after repair are covered by the Calibration Factor and Effective Efficiency section of this manual, found in Paragraph 3.2.5.1

If proper adjustment of the Power Detector after repair is found difficult, return it to the factory. In a covering letter, be sure to include details of all work performed on the Detector and parts replaced. This information will help our repair department to return the Detector to you in the shortest possible time.

NOTES:

1. FActory selected.

2. LAST MUMBER USED:
 R106 C103

Figure 12. Power Detector
42BD
b-874

CHAPTER VI

 INTERFACE INFORMATION
6.1. PROGRAMMING INPUTS

| Pin
 No. | Function | Comment | |
| :---: | :---: | :--- | :---: | :---: |
| 7 | Man. Disable | Disables front panel range selection | Comit |
| Loading | | | |

*Assumes that Man. Disable has also been selected

Figure 13. External Connections

6.1.1 Input Characteristics

$\left.$| TTL |
| :--- | :--- | :--- | :--- |
| Series | | Logic |
| :--- |
| Level |\quad| Voltage |
| :--- |
Level	\quad	Current per	
Unit Load	\right\rvert\,	Standard	0
:---	:---		

*The -current indicates current out of the input (external command device must sink this current). A standard power (Series 54/74) TTL output will sink and source 10 unit loads.

6.1.2 Input Pull-Up

All input terminals have internal pull-up. The current sourced by this pull-up when the input is brought to a logic level 0 is included in the loading shown in the "Unit Loading" column of the chart in 6.1

6.1.3 Triggering

To trigger an encode cycle, the trigger line must be transferred from logic " 1 " to logic " 0 ". Limits for trigger pulse characteristics are shown in 6.3.1.

42BD
b-874

$\begin{array}{\|l\|} \hline \text { Pin } \\ \text { No. } \\ \hline \end{array}$	Function	Comment	True Logic Level	54/74 Unit Load
22	mW Mode	Indicates power display	1	1
4	DC Analog	10 V for full scale	n/a	n/a
21	Overrange	Indicates that instrument range should be	0	1
20	Underrange	Indicates that instrument range should be decreased	0	1
2	-dBm	Indicates that dBm is below ref. level	1	1
W complete	Encode may be read	Indicates completion of encode cycle; data output	1	1
$\begin{aligned} & \hline 17 \\ & 18 \\ & 19 \end{aligned}$	$\begin{array}{\|l\|} \hline 4 \\ 2 \\ 2 \\ 1 \end{array}$	Indicates range selected in binary code; $0=10 \mathrm{nW}$ range, $6=10 \mathrm{~mW}$	1	1
F	8		1	1
E	4 BCD	Data in serial form, continuously scanned left	1	1
D	2 enc.	(MSD) to right, $500 \mathrm{~s} /$ digit, 2 ms	1	1
C	1		1	1
H	4		1	,
J	3 Digit	Indicates digit to which BCD data applies;	1	,
K	2 Select	4 = MSD (left-most)	1	1
L	1		1	1

6.2.1 Output Characteristics

TTL Series	Logic Level	Voltage Level	Current per Unit Load
Standard Power 54/74	0	$(0.7 \mathrm{~V}$	$1.6 \mathrm{~mA}^{*}$

*The - current indicates current sourced by output.

6.2.2 Analog Output

Source resistance is 9 kn .
6.3 WAVEFORMS
6.3.1 Encode Trigger

42BD
b-874

Reference Description

C101	Capacitor, PE
C102	Capacitor, Elec.
C103	Capacitor, Mica
C104	Capacitor, Elec.
C105	Capacitor, Elec.
C106	Capacitor, Elec.
C107	Capacitor, Met.
C108	Capacitor, Elec.
C109	Capacitor, Elec.
C110	Capacitor, Elec.
C111	Capacitor, PE
C112	Capacitor, Elec.
C113	Capacitor, Elec.
C114	Capacitor, Elec.
C115	Capacitor, Cer.
C116	Capacitor, Cer.
C117	Capacitor, Elec.
C118	Capacitor, Elec.
C119	Capacitor, Elec.
CR101	Diode, Sig.
CR102	Diode, Sig.
CR103	Diode, Sig.
CR104	Diode, Zener
CR105	Diode, Zener
CR106	
through	
CR110	Diode, Sig.
CR111	Bridge, Rectifier
CR112	Bridge, Rectifier
CR113	Bridge, Rectifier
CR114	Diode, Sig.
CR115	Diode, Sig.
CR116	Diode, Sig.
CR117	Not Used
CR118	
through	
CR125	Diode, Sig.
IC101	Integrated Circuit
IC102	Integrated Circuit
IC103	Integrated Circuit
IC104	Integrated Circuit
IC105	Integrated Circuit
IC106	Integrated Circuit
J101	Receptacle
J102	Receptacle
J103	Receptacle
J104	Receptacle
J1201	Receptacle
Q101	Transistor, FET
Q102	Not Used
42BD	
b-776	

BEC Part No.

AMPLIFIER P. C. BOARD	
$100 \mathrm{nF} \pm 10 \% 200 \mathrm{~V}$	234005
$10 \mathrm{pF} \pm 20 \% 20 \mathrm{~V}$	283205
$100 \mathrm{pF} \pm 5 \% 500 \mathrm{~V}$	200001
$10 \mathrm{pF} \pm 20 \% 20 \mathrm{~V}$	283205
$33 \mathrm{pF} \pm 20 \% 15 \mathrm{~V}$	283206
$10 \mathrm{pF} \pm 20 \% 20 \mathrm{~V}$	283205
$1.0 \mathrm{pF} \pm 20 \% 100 \mathrm{~V}$	236007
$1.0 \mathrm{pF} \pm 20 \% 35 \mathrm{~V}$	283199
$50 \mathrm{pF} \pm 75 /-10 \% 25 \mathrm{~V}$	283159
$50 \mathrm{pF} \pm 75 /-10 \% 25 \mathrm{~V}$	283159
$100 \mathrm{nF} \pm 10 \% 200 \mathrm{~V}$	234005
250 pF 40 V	283207
250 pF 40 V	283207
$1000 \mathrm{pF}-10 \%+150 \% 15 \mathrm{~V}$	283221
$100 \mathrm{nF}+80 \%-20 \% 25 \mathrm{~V}$	224124
$100 \mathrm{nF}+80 \%-20 \% 25 \mathrm{~V}$	224124
$10 \mathrm{pF} \pm 20 \% 20 \mathrm{~V}$	283205
$100 \mathrm{pF}+75 /-10 \% 25 \mathrm{~V}$	283105
$100 \mathrm{pF}+75 /-10 \% 25 \mathrm{~V}$	283105
FD300	530052
1 N914	530058
1 N914	530058
1 N5243B (13 V)	530101
1 N5235B (6.8 V)	530089
1 N914	530058
KBP-02	532013
KBP-02	532013
KBP-02	532013
1N914	530058
1N914	530058
1N914	530058
1 N914	530058
pA7805 Regulator	535011
pA7805 Regulator	535011
pA7805 Regulator	535011
MFC6030A Regulator	535007
MFC6030A Regulator	535007
SN74LOON Quad 2 Input NAND Gate	534002
Amphenol 143-022-03 (22 Pins)	479231
Amphenol 143-022-03 (22 Pins)	479231
Amphenol 143-022-03 (22 Pins)	479231
Amphenol 225-22221-103 (Dual 22 Pins)	479254
Amphenol 225-22221-101 (Dual 22 Pins)	479259
2 N5949	528019

Q103	Transistor, FET	AMPLIFIER P. C. BOARD (CONTINUED) HDGP1000	528066
Q104	Transistor, FET	2N5949	528019
Q105	Transistor, FET	TIS58	528038
Q106	Transistor, FET	HDGP1001	528057
Q107	Transistor, FET	HDGP1000	528066
Q108	Transistor, FET	2N5949	528019
Q109	Transistor, FET	Selected	528044
Q110	Transistor, NPN	2N5088	528047
Q111	Transistor, PNP	2N5087	528042
Q112	Transistor, PNP	MPSA66	528048
Q113	Transistor, PNP	2N5087	528042
Q114	Transistor, NPN	2N5088	528047
Q115	Transistor, FET	TIS58	528038
Q116	Transistor, FET	TIS58	528038
Q117	Transistor, FET	TIS58	528038
Q118	Transistor, FET	2N5949	528019
Q119	Transistor, FET	2N5949	528019
Q120	Transistor, FET	2N5949	528019
Q121	Transistor, PNP	MPSA66	528048
Q122	Transistor, PNP	MPS6516	528037
Q123	Transistor, PNP	MPS6516	528037
Q124	Not Used		
Q125			
$\begin{aligned} & \text { through } \\ & \text { Q132 } \end{aligned}$	Transistor, PNP	MPS6516	528037
R101	Resistor, Comp.	1M 25%	344600
R102	Resistor, Comp.	$3.9 \mathrm{k} \Omega 5 \%$	343357
R103	Resistor, Comp.	$3.9 \mathrm{k} \Omega 5 \%$	343357
R104	Resistor, MF	$5.62 \mathrm{M} \Omega 1 \% 1 / 4 \mathrm{~W}$	325397
R105	Not Used		
R106	Resistor, MF	$52.3 \mathrm{k} \Omega$ 1\%	341469
R107	Resistor, MF	$232 \mathrm{k} \Omega 1 \%$	341535
R108	Resistor, MF	$1.0 \mathrm{M} \Omega 1 \%$	342600
R109	Not Used		
R110	Resistor, Comp.	$91 \mathrm{k} \Omega$ 5\%	344492
R111	Resistor, Comp.	$47 \mathrm{k} \Omega$ 5\%	344465
R112	Resistor, Comp.	$33 \mathrm{k} \Omega 5 \%$	344450
R113	Resistor, Comp.	$300 \mathrm{k} \Omega$ 5\%	344546
R114	Resistor, MF	121 ת 1%	341208
R115	Resistor, Camp.	$10 \mathrm{k} \Omega^{\circ} \%$	344400
R116	Resistor, Comp.	$10 \mathrm{k} \Omega 5 \%$	344400
R117	Resistor, Comp.	$33 \mathrm{k} \Omega 5 \%$	344450
R118	Resistor, MF	$15.0 \mathrm{k} \Omega$ 1\%	341417
R119	Resistor, Comp.	$15 \mathrm{k} \Omega$ 5\%	344417
R120	Resistor, Comp.	3.6 k Ω 5\%	344353
R121	Resistor, Comp.	$3 \mathrm{k} \Omega$ 5\%	344346
R122	Resistor, Comp.	1 M , 5\%	344600
R123	Resistor, Comp.	$2.7 \mathrm{k} \Omega$ 5\%	344341
R124	Resistor, Comp.	$5.6 \mathrm{k} \Omega$ 5\%	344372
R125	Resistor, Comp.	$5.6 \mathrm{k} \Omega 5 \%$	344372
R126	Resistor, Comp.	$1 \mathrm{k} \Omega$ 5\%	344300
R127	Resistor, Comp.	$5.1 \mathrm{k} \Omega 5 \%$	344368
R128	Resistor, Comp.	$15 \mathrm{k} \Omega 5 \%$	344417
R129	Resistor, Comp.	$1 \mathrm{k} \Omega$ 5\%	344300
R130	Resistor, Comp.	$10 \mathrm{k} \Omega 5 \%$	344400
R131	Resistor, MF	$30.1 \mathrm{k} \Omega$ 1\%	341446
R132	Resistor, MF	$3.01 \mathrm{k} \Omega$ 1\%	341346

AMPLIFIER P. C. BOARD (CONTINUED)

R133	Resistor, MF
R134	Resistor, MF
R135	Resistor, Comp.
R136	Resistor, Comp.
R137	Resistor, Comp.
R138	Resistor, Comp.
R139	Resistor, MF
R140	Resistor, Var.
R141	Resistor, MF
R142	Resistor, MF
R143	Resistor, Var.
R144	Resistor, MF
R145	Resistor, MF
R146	Resistor, Comp.
R147	Resistor, Comp.
R148	Resistor, Comp.
R149	Resistor, Comp.
R150	Resistor, Comp.
R151	Resistor, Comp.
R152	Resistor, Comp.
R153	Resistor, Comp.
R154	Resistor, Comp.
R155	Not Used
R156	Not Used
R157	Not Used
R158	Resistor, Comp.
R159	Resistor, Comp.
R160	Resistor, Comp.
R161	Resistor, Comp.
R162	Resistor, Comp.
R163	Resistor, Comp.
R164	Resistor, Comp.
R165	Resistor, Comp.
R166	Resistor, Comp.
R167	Resistor, Comp.
R168	Resistor, Comp.
R169	Resistor, Comp.
R170	Resistor, Comp.
R171	Resistor, Comp.
R172	Resistor, Comp.
R173	Resistor, Comp.
R174	Resistor, Comp.
R175	Resistor, Comp.
R176	Resistor, Comp.
R177	Resistor, Comp.
R178	Resistor, Comp.
R179	Resistor, MF
R180	Resistor, Var.

A201	Op. Amp. LM302H
C201	Capacitor, PC
C202	Capacitor, PE
C203	Capacitor, Mica
C204	Capacitor, Mica
C205	Capacitor, PE
42BD	
b-776	

R133

R135
R136
R137
R138

R140
R141
R143
R144
R145
R146
R147

R149
R150

R152
R153
R154
R155
R157
R158
R159
R161
R162
R163
R164
R165
R166
R167
R168

R170
R171
R172
R173

R176
R178

R179
R180
Resistor, Var.

Op. Amp. LM302H
Capacitor, PC
Capacitor, PE
apacitor, Mica

Capacitor, PE

$301 \Omega 1 \%$	341246
$34.8 \Omega 1 \%$	341152
$1 \mathrm{M} \Omega 5 \%$	344600
$1 \mathrm{k} \Omega 5 \%$	344600
$1 \mathrm{k} \Omega 5 \%$	344300
$15 \mathrm{k} \Omega 5 \%$	344417
$1.62 \mathrm{k} \Omega 1 \%$	341320
$200 \Omega \pm 10 \% 1 / 2 \mathrm{~W}$	311304
$604 \Omega 1 \%$	341275
$1.62 \mathrm{k} \Omega 1 \%$	341320
$200 \Omega+10 \% 1 / 2 \mathrm{~W}$	311304
$604 \Omega 1 \%$	341275
$9.09 \mathrm{k} \Omega 1 \%$	341392
$160 \mathrm{k} \Omega 5 \%$	343520
$39 \mathrm{k} \Omega 5 \%$	343457
$100 \mathrm{k} \Omega 5 \%$	343500
$160 \mathrm{k} \Omega 5 \%$	343520
$39 \mathrm{k} \Omega 5 \%$	343457
$100 \mathrm{k} \Omega 5 \%$	343500
$160 \mathrm{k} \Omega 5 \%$	343520
$39 \mathrm{k} \Omega 5 \%$	343457
$100 \mathrm{k} \Omega 5 \%$	343500

$160 \mathrm{k} \Omega 5 \%$	343520
$39 \mathrm{k} \Omega 5 \%$	343457

$\begin{array}{ll}39 \mathrm{k} \Omega 5 \% & 343457 \\ 100 \mathrm{k} \Omega 5 \% & 343500\end{array}$
$160 \mathrm{k} \Omega 5 \% 343520$
$39 \mathrm{k} \Omega 5 \% \quad 343457$
$100 \mathrm{k} \Omega 5 \% \quad 343500$
$160 \mathrm{k} \Omega 5 \% 343520$
$39 \mathrm{k} \Omega 5 \% 343457$
$100 \mathrm{k} \Omega 5 \% 343500$
$160 \mathrm{k} \Omega 5 \% 343520$
$39 \mathrm{k} \Omega 5 \% 343457$
$100 \mathrm{k} \Omega 5 \% 343500$
$160 \mathrm{k} \Omega 5 \% 343520$
$39 \mathrm{k} \Omega 5 \% \quad 343457$
$100 \mathrm{k} \Omega 5 \% 343500$
$160 \mathrm{k} \Omega 5 \% 343520$
$39 \mathrm{k} \Omega 5 \% \quad 343457$
$100 \mathrm{k} \Omega 5 \% 343500$
$160 \mathrm{k} \Omega 5 \% 343520$
$39 \mathrm{k} \Omega 5 \% 343457$
$100 \mathrm{k} \Omega 5 \% \quad 343500$
$150 \Omega 1 \% \quad 341217$
$100 \Omega \pm 20 \% \quad 311277$
CHOPPER DRIVER P. C. BOARD

LM 302 H	535003
$100 \mathrm{nF} \pm 10 \% 50 \mathrm{~V}$	234046
$6.8 \mathrm{nF} \pm 10 \% 200 \mathrm{~V}$	234044
$100 \mathrm{pF} \pm 5 \% 500 \mathrm{~V}$	200001
$100 \mathrm{pF} \pm 5 \% 500 \mathrm{~V}$	200001
$22 \mathrm{nF}+10 \% 200 \mathrm{~V}$	230101

	R DRIVE P. C. BOARD (CONTINUED)		
C206	Capacitor, PC	$100 \mathrm{nF} \pm 10 \% 50 \mathrm{~V}$	234046
C207	Capacitor, Mica	$100 \mathrm{pF} \pm 5 \% 500 \mathrm{~V}$	200001
C208	Capacitor, PC	$100 \mathrm{nF} \pm 10 \% 50 \mathrm{~V}$	234046
C209	Capacitor, Cer.	10 nF 100 V	224119
C210	Capacitor, Cer.	10 nF 100 V	224119
C211	Capacitor, PE	$22 \mathrm{nF}+10 \% 200 \mathrm{~V}$	230101
C212	Capacitor, PC	$470 \mathrm{nF} \pm 10 \% 80 \mathrm{~V}$	234128
C213	Capacitor, Mica	$100 \mathrm{pF} \pm 5 \% 500 \mathrm{~V}$	200001
C214	Capacitor, Elec.	$50 \mathrm{pF} \pm 75 /-10 \% 25 \mathrm{~V}$	283159
C215	Capacitor, Elec.	$50 \mathrm{pF} \pm 75 /-10 \% 25 \mathrm{~V}$	283159
C216	Capacitor, Elec.	$50 \mathrm{pF}+75 /-10 \% 25 \mathrm{~V}$	283159
C217	Capacitor, Elec.	$150 \mathrm{pF} \pm 75 /-10 \% 15 \mathrm{~V}$	283307
CR201			
through			
CR218	Diode, Sig.	1N914	530058
CR219	Diode, Sig.	FD-300	530052
Q201	Transistor, Unijunction	2N4871	528051
Q202	Transistor, NPN	MPS-A20	528043
Q203	Transistor, PNP	2N5087	528042
Q204	Transistor, NPN	2N5088	528047
Q205	Transistor, NPN	MPS-A20	528043
Q206	Transistor, FET	MPS-A12	528052
Q207	Transistor, NPN	MPS-A20	528043
Q208	Transistor, FET	Selected	528093
Q209	Transistor, NPN	MPS-A20	528043
Q210	Transistor, FET	Selected	528093
Q211	Transistor, F ET	2N5949	528019
Q212	Transistor, NPN	MPS-A20	528043
Q213	Transistor, NPN	2 N5308	528050
Q214	Transistor, NPN	2 N5308	528050
R201	Resistor, Comp.	$10 \mathrm{k} \Omega 5 \%$	344400
R202	Resistor, Comp.	$22 \mathrm{k} \Omega 5 \%$	344433
R203	Resistor, Comp.	$10 \mathrm{k} \Omega$ 5\%	344400
R204	Resistor, Comp.	$100 \Omega 5 \%$	344200
R205	Resistor, Comp.	$33 \mathrm{k} \Omega$ 5\%	344450
R206	Resistor, Comp.	$10 \mathrm{k} \Omega 5 \%$	344400
R207	Resistor, Comp.	$100 \mathrm{k} \Omega$ 5\%	344500
R208	Resistor, Comp.	$3.3 \mathrm{k} \Omega$ 5\%	344350
R209	Resistor, Comp.	$4.7 \mathrm{k} \Omega$ 5\%	344365
R210	Resistor, Comp.	$10 \mathrm{k} \Omega 5 \%$	344400
R211	Resistor, Comp.	$150 \mathrm{k} \Omega$ 5\%	344517
R212	Resistor, Comp.	$10 \mathrm{k} \Omega 5 \%$	344400
R213	Resistor, Comp.	$10 \mathrm{k} \Omega$ 5\%	344400
R214	Resistor, Comp.	$22 \mathrm{k} \Omega$ 5\%	344433
R215	Resistor, Comp.	$10 \mathrm{k} \Omega 5 \%$	344400
R216	Resistor, Comp.	$270 \mathrm{k} \Omega$ 5\%	344541
R217	Resistor, Comp.	$240 \mathrm{k} \Omega$ 5\%	344537
R218	Resistor, Comp.	$10 \mathrm{k} \Omega$ 5\%	344400
R219	Resistor, Comp.	$15 \mathrm{k} \Omega$ 5\%	344417
R220	Resistor, Comp.	$10 \mathrm{k} \Omega$ 5\%	344400
R221	Resistor, Comp.	10 kQ 5\%	344400
R222	Resistor, Comp.	$10 \mathrm{k} \Omega$ 5\%	344400
R223	Resistor, Comp.	$4.7 \mathrm{k} \Omega$ 5\%	344365
R224	Resistor, Comp.	$12 \mathrm{k} \Omega 5 \%$	344408
R225	Resistor, Comp.	$100 \mathrm{k} \Omega$ 5\%	344500

42BD
b-776

R226	
R227	Resistor, Comp.
R228	Resistor, Comp.
R229	Resistor, Comp.
R230	Resistor, Comp.
R231	Resistor, Comp.
R232	Resistor, Comp.
R233	Resistor, Comp.
R234	Resistor, Var.
R235	Resistor, Comp.
R236	Resistor, Comp.
R237	Resistor, Comp.
R238	Resistor, Comp.
R239	Resistor, Comp.
R240	Resistor, Comp.
R241	Resistor, Comp.
R242	Resistor, Comp.
R243	Resistor, Comp.
R244	Resistor, Comp.
R245	Resistor, Var.
Resistor, Comp.	

CHOPPER DRIVE P. C. BOARD (CONTINUED)

C401	Capacitor, Mylar
C402	Capacitor, Mylar

C503	Capacitor, Cer.
C504	Capacitor, Cer.
C505	Capacitor, Cer.
C506	Capacitor, Cer.

SHAPING AMPLIFIER (CONTINUED)	
10 nF 100 V	224119
10 nF 100 V	224119
$33 \mathrm{pF} 5 \% 500 \mathrm{~V}$	224139
10 nF 100 V	224119

CR501
through

CR510	Diode, Sig.	1N914	530058
Q501	Transistor, NPN	$2 N 5088$	
Q502	Transistor, NPN	2N5088	528047
Q503			528047
through		$2 N 5949$	
Q509	Transistor, FET		528019
Q510		$2 N 5088$	
through		Selected	
Q513	Transistor, NPN	2N5088	528047
Q514	Transistor, FET	Selected	528068
Q515	Transistor, NPN	$2 N 5088$	528047
Q516	Transistor, FET	Selected	528068
Q517	Transistor, NPN	$2 N 5088$	528047
Q518	Transistor, FET	Selected	528068
Q519	Transistor, NPN		528047
Q520	Transistor, FET		528068
Q521		$2 N 5088$	
through		Selected	528047
Q525	Transistor, NPN		528068
Q526	Transistor, FET		
Q527		$2 N 5088$	528047
through		Transistor, NPN	Transistor, FET

R501
through
R507
Resistor, Comp.
Resistor, MF
R519
through
Resistor, Var.
Resistor, Var.
Resistor, Var.
Resistor, Var.
Resistor, MF
Resistor, MF
Resistor, MF
Resistor, MF

R530	Resistor, Comp.
R531	Resistor, MF
R532	Resistor, MF
R533	Resistor, MF
R534	Resistor, MF
R535	Resistor, Comp.
R536	Resistor, MF
R537	Resistor, MF
R538	Resistor, MF
R539	Resistor, MF
R540	Resistor, Comp.
R541	Resistor, MF
R542	Resistor, MF
R543	Resistor, Var.
R544	Resistor, MF
R545	Resistor, Comp.
R546	Resistor, MF
R547	Resistor, MF
R548	Resistor, Var.
R549	Resistor, MF
R550	Resistor, MF
R551	Resistor, MF
R552	Resistor, MF
R553	Resistor, MF
R554	Resistor, MF
R555	Resistor, MF
R556	Resistor, MF
R557	Resistor, MF
R558	Resistor, Comp.
R559	Resistor, Comp.
R560	Resistor, MF
R561	Resistor, MF
R562	Resistor, Var.
R563	Resistor, Comp.
R564	Resistor, Comp.
R565	Resistor, MF
R566	Resistor, MF
R567	Resistor, MF
R568	Resistor, MF
R569	Resistor, MF
R570	Resistor, MF
R571	Resistor, MF
R572	Resistor, Comp.
R573	Resistor, Var.
R574	Resistor, MF
R575	Resistor, MF
R576	Resistor, Comp.
R577	Resistor, Comp.
R578	Resistor, MF
RT501	Thermistor
A604	Op. Amp.
A605	Op. Amp.
C606	Capacitor, Cer.
42BD	
b-776	

SHAPING AMPLIFIER (CONTINUED)

344225	
$84.5 \mathrm{k} \Omega 1 \%$	341489
$787 \mathrm{k} \Omega 1 \%$	342586
$78.7 \mathrm{k} \Omega 1 \%$	341486
$392 \mathrm{k} \Omega 1 \%$	341557
$1 \mathrm{M} \Omega 5 \%$	344600
$143 \mathrm{k} \Omega 1 \%$	341515
$536 \mathrm{k} \Omega 1 \%$	342570

$\begin{array}{ll}536 \mathrm{k} \Omega 1 \% & 342570 \\ 54.9 \mathrm{k} \Omega 1 \% & 341471\end{array}$
$154 \mathrm{k} \Omega 1 \% \quad 341518$
$1 \mathrm{M} \Omega 5 \% \quad 344600$
$90.9 \mathrm{k} \Omega$ 1\% 341492
$210 \mathrm{k} \Omega$ 1\% 341531
$20 \mathrm{k} \Omega 10 \% 1 \mathrm{~W} 311266$
$21.0 \mathrm{k} \Omega$ 1\% 341431
$1 \mathrm{M} \Omega 5 \% 344600$
$38.3 \mathrm{k} \Omega 1 \% \quad 341456$
$274 \mathrm{k} \Omega 1 \% \quad 341542$
$20 \mathrm{k} \Omega 10 \% 1 \mathrm{~W} 311266$
$48.7 \mathrm{k} \Omega 1 \% \quad 341466$
$226 \mathrm{k} \Omega$ 1\% 341534
$35.7 \mathrm{k} \Omega 1 \% \quad 341453$
$118 \mathrm{k} \Omega 1 \% \quad 341507$
$45.3 \mathrm{k} \Omega 1 \% \quad 341463$
$110 \mathrm{k} \Omega$ 1\% 341504
$36.5 \mathrm{k} \Omega 1 \% \quad 341454$
$73.2 \mathrm{k} \Omega 1 \% \quad 341483$
$25.5 \mathrm{k} \Omega 1 \% \quad 341439$
$1 \mathrm{M} \Omega 5 \% \quad 344600$
$10 \mathrm{k} \Omega 5 \% \quad 344400$
$26.7 \mathrm{k} \Omega$ 1\% 341441
$158 \mathrm{k} \Omega 1 \% \quad 341519$
$20 \mathrm{k} \Omega$ 10\% 1 W 311266
$5.1 \mathrm{k} \Omega 5 \% 344368$
$5.1 \mathrm{k} \Omega 5 \% \quad 344368$
$39.2 \mathrm{k} \Omega 1 \% \quad 341457$
$169 \mathrm{k} \Omega 1 \% \quad 341522$
$7.87 \mathrm{k} \Omega$ 1\% 341386
$32.4 \mathrm{k} \Omega$ 1\% 341449
$97.6 \mathrm{k} \Omega$ 1\% 341495
$40.2 \mathrm{k} \Omega$ 1\% 341458
$100 \mathrm{k} \Omega 1 \% 341500$
$7.5 \mathrm{k} \Omega 5 \% 344384$
$2 \mathrm{k} \Omega$ 20\% 1/2 W 311285
$27.4 \mathrm{k} \Omega 1 \% \quad 341442$
$56.2 \mathrm{k} \Omega$ 1\% 341472
$5.1 \mathrm{k} \Omega 5 \% \quad 343368$
$5.1 \mathrm{k} \Omega 5 \% \quad 343368$
$2.37 \mathrm{k} \Omega$ 1\% 341336
$100 \Omega \pm 10 \% 325005$
DIGITAL CONTROL BOARD

LM301AN	535012
LM301AN	535012
10 nF 100 V	224119

42BD

b-776

	COUNTER P. C. BOARD (CONTINUED)		
C1208	Capacitor, Elec.	$10 \mu \mathrm{~F} 20 \% 20 \mathrm{~V}$	283205
C1209	Capacitor, Elec.	$10 \mu \mathrm{~F} 20 / \mathrm{o} 20 \mathrm{~V}$	283205
CR1201	Diode, Zener	1N5234B (6.2 V)	530093
CR1202	Diode, Zener	1N5234B (6.2 V)	530093
CR1203	Diode, Sig.	1N914	530058
CR1204	Diode, Sig.	1N914	530058
IC1201	Integrated Circuit	SN74L00N NAND Gate	534002
IC1202	Integrated Circuit	MK5002P Decade Counter	534024
J1202	Connector	Amp 583485-8 (6 Pos. Dual)	479277
J1203	Connector	Amp 583485-8 (6 Pos. Dual)	479277
J1204	Connector	Amp 583485-8 (6 Pos. Dual)	479277
Q1201 through			
Q1208	Transistor, PNP	MPS6516	528037
Q1209	Transistor, NPN	MPS6507	528070
Q1210	Transistor, NPN	MPS6512	528059
Q1211	Transistor, NPN	MPS6512	528059
Q1212	Transistor, NPN	MPS6512	528059
Q1213	Transistor, PNP	2N5087	528042
Q1214	Transistor, NPN	MPS6512	528059
Q1215			
Q1218	Transistor, PNP	2N5087	528042
Q1219	Transistor, NPN	MPS6512	528059
Q1220	Transistor, Unijunction	MPU131	528062
Q1221 through			
Q1224	Transistor, PNP	2N5087	528042
R1201 through			
R1206	Resistor, Comp.	$27 \mathrm{k} \Omega$ 5\%	343441
R1207	Resistor, Comp.	$2 \mathrm{k} \Omega 5 \%$	343329
R1208	Resistor, Comp.	$1 \mathrm{k} \Omega 5 \%$	343300
R1209	Resistor, Comp.	$5.1 \mathrm{k} \Omega 5 \%$	343368
R1210	Resistor, Comp.	$5.1 \mathrm{k} \Omega$ 5\%	343368
R1211			
R1214	Resistor, Comp.	$100 \mathrm{k} \Omega 5 \%$	343500
R1215	Resistor, Comp.	$27 \mathrm{k} \Omega 5 \%$	343441
R1216 through			
R1220	Resistor, Comp.	$5.1 \mathrm{k} \Omega$ 5\%	343368
R1221	Resistor, Comp.	$27 \mathrm{k} \Omega 5 \%$	343441
R1222	Resistor, Comp.	$3 \mathrm{k} \Omega 5 \%$	343346
R1223	Resistor, Comp.	$680 \Omega 5 \%$	343280
R1224	Resistor, Comp.	$430 \Omega 5 \%$	343261
R1225	Resistor, Comp.	$680 \Omega 5 \%$	343580
R1226	Resistor, Comp.	$100 \mathrm{k} \Omega 5 \%$	343500
R1227	Resistor, Comp.	$680 \mathrm{k} \Omega 5 \%$	343580
R1228	Resistor, Comp.	$5.1 \mathrm{k} \Omega 5 \%$	343368
R1229	Resistor, Comp.	330 ת 5\%	343250
R1230	Resistor, Comp.	$4.7 \mathrm{M} \Omega 5 \%$	343665

42BD

b-776

R1231 through R1234 R1235
Resistor, Comp.
Resistor, Comp.

COUNTER P. C. BOARD (CONTINUED)
R1235

$5.1 \mathrm{k} \Omega 5 \%$	343368
$430 \Omega 5 \%$	343261

DISPLAY P. C. BOARD
CR1301
through

DS1301

DS1302

DS1303
DS1304
DS1305
DS1306
DS1307
DS1308
DS1309
DS1310
DS1311
Q1301
through
Q1307
Q1308 through Q1311 Q1312

R1301
through
R1307
R1308
through
R1311
R1312

A1401
A1402
A1403
A1404
C1401
C1402
C1403
C1404
C1405
C1406
CR1401
CR1402
CR1403
CR1404

CR1405

Diode, Sig.
Numeric Display
Numeric Display
Numeric Display
Lamp
Lamp
Lamp
Lamp
Numeric Display
Lamp
Lamp
Lamp

1N914	530058
MAN3620	536805
MAN3620	536805
MAN3620	536805
583DX (5 V)	545127
2200D (5 V)	545120
2200D (5 V)	545120
2200D (5 V)	545120
MAN3620	536805
2200D (5 V)	545120
2200D (5 V)	545120
2200D (5 V)	545120

MPS6512 528059
MPSA12 528052
$47 \Omega 5 \% \quad 343165$
$27 \mathrm{k} \Omega 5 \% \quad 343441$
$33 \Omega 5 \% 343150$
A/D CONVERTER P. C. BOARD

LM310 Only	535005
LM301AN	535012
LM310 Only	535005
LM311	535006
$1 \mathrm{pF} \mathrm{10} \mathrm{\%} \mathrm{35} \mathrm{V}$	283216
$1 \mathrm{pF} \mathrm{10} \mathrm{\%} \mathrm{35} \mathrm{V}$	283216
$0.1 \mathrm{pF} 10 \% 50 \mathrm{~V}$	234115
$33 \mathrm{pF} \mathrm{5} \mathrm{\%} \mathrm{500} \mathrm{V}$	224139
1 pF 10\% 35 V	283216
100 nF 10\% 50 V	234046
1N821 (6.2 V)	530050
1N821 (6.2 V)	530050
1N914	530058
1N914	530058
1N914	530058

42BD
b-776

IC1401	Integrated Circuit IC1402
IC1403	Integrated Circuit IC1404
	Integrated Circuit
Q1401	Transistor, FET
R1401	Resistor, MF
R1402	Resistor, MF
R1403	Resistor, MF
R1404	Resistor, MF
R1405	Resistor, Var.
R1406	Resistor, MF
R1407	Resistor, MF
R1408	Resistor, Var.
R1409	Resistor, Comp.
R1410	Resistor, Comp.
R1411	Resistor, MF
R1412	Resistor, Comp.
R1413	Resistor, Comp.
R1414	Resistor, Comp.
R1415	Resistor, Comp.
R1416	Resistor, Comp.
R1417	Resistor, Comp.
R1418	Resistor, Comp.
R1419	Resistor, Comp.
R1420	Resistor, Comp.

A601	Op. Amp.
A602	Op. Amp.
A603	Op. Amp.
C601	Capacitor, Mica
C602	Capacitor, Mica
C603	Capacitor, Cer.
C604	Capacitor, Mica
C605	Capacitor, Mica
CR602	Diode, Zener
CR605	Diode, Zener
CR606	Diode, Sig.
0601	Transistor, FET
0603	Transistor, FET
0605	Transistor, FET
0610	Transistor, NPN
R601	Resistor, MF
R603	Resistor, MF
R605	Resistor, MF
R610	Resistor, Var.
R611	Resistor, MF
R612	Resistor, MF
R613	Resistor, Comp.
R616	Resistor, Var.
R617	Resistor, MF

A/D CONVERTER P. C. BOARD (CONTINUED)

CD4016AE Quad Switch	534007
CD4013AE Dual "D" Binary	534021
CD4011AE NAND Gate	534022
CD4001AE NOR Gate	534023
Selected	528068
$30.9 \mathrm{k} \Omega 1 \%$	341447
$30.9 \mathrm{k} \Omega 1 \%$	341447
$5.49 \mathrm{k} \Omega 1 \%$	341371
$5.49 \mathrm{k} \Omega 1 \%$	341371
$5 \mathrm{k} \Omega 20 \% 1 / 2 \mathrm{~W}$	31293
$1.15 \mathrm{k} \Omega 1 \%$	341306
$200 \mathrm{k} \Omega 1 \%$	341529
$5 \mathrm{k} \Omega 20 \% 1 / 2 \mathrm{~W}$	311293
$330 \Omega 5 \%$	343250
$10 \mathrm{k} \Omega 5 \%$	343400
$1.15 \mathrm{k} \Omega 1 \%$	341306
$27 \mathrm{k} \Omega 5 \%$	343441
$4.7 \mathrm{M} \Omega 5 \%$	343665
$680 \Omega 5 \%$	343280
$27 \mathrm{k} \Omega 5 \%$	343441
$5.1 \mathrm{k} \Omega 5 \%$	343368
$10 \mathrm{k} \Omega 5 \%$	343400
$4.7 \mathrm{M} \Omega 5 \%$	343665
$1 \mathrm{M} \Omega 5 \%$	343600
$47 \mathrm{k} \Omega 5 \%$	343465

OPTION -09 dBm DISPLAY	
LM301AN	535012
LM301AN	535012
LM301AN	535012
$150 \mathrm{pF} \pm 5 \% 500 \mathrm{~V}$	200032
$20 \mathrm{pF} \pm 5 \% 500 \mathrm{~V}$	200027
$33 \mathrm{pF} \pm 5 \% 500 \mathrm{~V}$	224139
$300 \mathrm{pF} \pm 5 \% 500 \mathrm{~V}$	200034
$300 \mathrm{pF} \pm 5 \% 500 \mathrm{~V}$	200034
1N821 (6.2 V)	530050
1N5237 (8.2 V)	530125
1N914	530058
HDGP-1000	528066
HDGP-1000	528066
HDGP-1000	528066
CA3046	528058
$250 \mathrm{k} \Omega$ 0.1\% 3/8 W	340526
$500 \mathrm{k} \Omega 0.19 \% 3 / 8 \mathrm{~W}$	340564
$1.00 \mathrm{M} \Omega 0.1 \% 3 / 8 \mathrm{~W}$	340599
$20 \mathrm{k} 10 \% 1 \mathrm{~W}$	311266
$71.5 \mathrm{k} \Omega$ 1\%	341482
$64.9 \mathrm{k} \Omega$ 1\%	341478
$68 \mathrm{k} \Omega 5 \%$	344480
$5 \mathrm{k} \Omega 10 \% 1 \mathrm{~W}$	311268
$64.9 \mathrm{k} \Omega$ 1\%	341478

BEC Part No.

BOONTON ELECTRONICS CORPORATION

MODEL DPM

Schematic, DISPLAY BOARD
D830546G

APPENDIX A

REFERENCES

DA Pam 310-4	Index of Technical Manuals, Technical Bulletins, Supply Manuals (Types 7, 8, and 9), Supply Bulletins, and Lubrication Orders.
DA Pam 310-7	Index of Modification Work Orders.
TM 11-6625-2857-24P	Organizational, Direct Support and General Support Maintenance Repair Parts and Special Tools List (Including Depot Repair Parts and
TM 38-750	Special Tools) for Microwattmeter, Boonton Model 42BD with Power Detector 41-4E.
TM 740-90-1	The Army Maintenance Management System (TANSS).
TM 750-244-2	Administrative Storage of Equipment.
Procedures for Destruction of Electronics	
Materiel'to Prevent Enemy Use (Electronics	
Command).	

APPENDIX B

COMPONENTS OF END ITEM LIST

Section I. INTRODUCTION

B-1. Scope

This appendix lists integral components of and basic issue items for Boonton Model 42BD with Power Detector 41-4E Microwattmeter to help you inventory items required for safe and efficient operation.

B-2. General

This Components of End Item List is divided into the following sections:
a. Section II. Integral Components of the End Item. These items, when assembled, comprise the microwattmeter and must accompany it whenever it is transferred or turned in. The illustrations will help you identify these items.
b. Section III. Basic Issue Items. Not applicable.

B-3. Explanation of Columns

a. Illustration. This column is divided as follows:
(1) Figure number. Indicates the figure number of the illustration on which the item is shown.
(2) Item number. The number used to identify item called out in the illustration.
b. National Stock Number. Indicates the National stock number assigned to the item and which will be used for requisitioning.
c. Description. Indicates the Federal item name and, if required, a minimum description to identify the item. The part number indicates the primary number used by the manufacturer, which controls the design and characteristics of the item by means of its engineering drawings, specifications, standards, and inspection requirements to identify an item or range of items. Following the part number, the Federal Supply Code for Manufacturers (FSCM) is shown in parentheses.
d. Location. The physical location of each item listed is given in this column. The lists are designed to inventory all items in one area of the major item before moving on to an adjacent area.
e. Usable on Code. Not applicable.
f. Quantity Required (Qty Reqd). This column lists the quantity of each item required for a complete major item.
g. Quantity. This column is left blank for use during an inventory. Under the Rcvd column, list the quantity you actually receive on your major item. The Date columns are for your use when you inventory the major item.
(Next printed page is $\mathrm{B}-2$)

B-1

SECTION II INTEGRAL COMPONENTS OF END ITEM

(1) ILLUSTRATION		(2) NATIONAL STOCK NUMBER	$\begin{gathered} \text { (3) } \\ \text { DESCRIPTION } \end{gathered}$		(4) LOCATION	$\begin{aligned} & \text { (5) } \\ & \text { USUABLE } \\ & \text { ON } \\ & \text { CODE } \end{aligned}$	(6) QTY REQD	(7) QUANTITY	
(A) FIG.	$\begin{gathered} \text { (B) } \\ \text { ITEM } \end{gathered}$		PART NUMBER	CAGE				RCVD	DATE
$\begin{array}{\|c\|} \hline 11 \\ \hline 12 \end{array}$		6625-01-050-8800	MICROWATTMETER 42BD POWER DETECTOR 41-4E	$\begin{aligned} & \text { (O49C1) } \\ & (04901) \end{aligned}$			1 1		

B-2

APPENDIX D

MAINTENANCE ALLOCATION

Section I. INTRODUCTION

D. General

This appendix provides a summary of the maintenance operations for Microwattmeter Boonton Model 42BD. It authorizes categories of maintenance for specific maintenance functions on repairable items and components and the tools and equipment required to perform each function. This appendix may be used as an aid in planning maintenance operations.

D-2. Maintenance Function

Maintenance functions will be limited to and defined as follows:
a. Inspect. To determine the serviceability of an item by comparing its physical, mechanical, and/or electrical characteristics with established standards through examination.
b. Test. To verify serviceability and to detect incipient failure by measuring the mechanical or electrical Characteristics of an item and comparing those characteristics with prescribed standards.
c. Service. Operations required periodically to keep an item in proper operating condition, i.e., to clean (decontaminate), to preserve, to drain, to paint, or to replenish fuel, lubricants, hydraulic fluids, or compressed air supplies.
d. Adjust. To maintain, within prescribed limits, by bringing into proper or exact position, or by setting the operating characteristics to the specified parameters.
e. Align. To adjust specified variable elements of an item to bring about optimum or desired performance.
f. Calibrate. To determine and cause corrections to be made or to be adjusted on instruments or test measuring and diagnostic equipments used in precision measurement. Consists of comparisons of two instruments, one of which is a certified standard of known accuracy', to detect and adjust any discrepancy in the accuracy of the instrument being compared.
g. Install. The act of emplacing, seating, or fixing into position an item, part, module (component or assembly) in a manner to allow the proper functioning of the equipment or system.
h. Replace. The act of substituting a serviceable like type part, subassembly, or module (component or assembly) for an unserviceable counterpart.
i. Repair. The application of maintenance services (inspect, test, service, adjust, align, calibrate, replace) or other maintenance actions (welding, grinding, riveting, straightening, facing, remachining, or resurfacing) to restore serviceability to an item by correcting specific damage, fault, malfunction, or failure in a part, subassembly, module (component or assembly), end item, or system.
j. Overhaul. That maintenance effort (service/action) necessary to restore an item to a completely serviceable/operational condition as prescribed by maintenance standards (i.e., DMWR) in appropriate technical publications.
Overhaul is normally the highest degree of maintenance performed by the Army. Overhaul does not normally return an item to like new condition.
k. Rebuild. Consists of those services/actions necessary for the restoration of unserviceable equipment to a like new condition in accordance with original manufacturing standards. Rebuild is the highest degree of materiel maintenance applied to Army equipment. The rebuild operation includes the act of returning to zero those age measurements (hours, miles, etc.) considered in classifying Army equipments/ components.

D-3. Column Entries

a. Column 1, Group Number. Column 1 lists group numbers, the purpose of which is to identify components, assemblies, subassemblies, and modules with the next higher assembly.
b. Column 2, Component/Assembly. Column 2 contains the noun names of components, assemblies, subassemblies, and modules for which maintenance is authorized.
c. Column 3, Maintenance Functions. Column 3 lists the functions to be performed on the item listed in column 2. When items are listed without maintenance functions, it is solely for purpose of having the group
numbers in the MAC and RPSTL coincide.
d. Column 4, Maintenance Category. Column 4 specifies, by the listing of a "worktime" figure in the appropriate subcolumn(s), the lowest level of maintenance authorized to perform the function listed in column 3. This figure represents the active time required to perform that maintenance function at the indicated category of maintenance. If the number or complexity of the tasks within the listed maintenance function vary at different maintenance categories, appropriate "worktime" figures will be shown for each category. The number of task-hours specified by the "worktime" figure represents the average time required to restore an item (assembly, subassembly, component, module, end item or system) to a serviceable condition under typical field operating conditions. This time includes preparation time, troubleshooting time, and quality assurance/quality control time in addition to the time required to perform the specific tasks identified for the maintenance functions authorized in the maintenance allocation chart. Subcolumns of column 4 are as follows:

C-Operator/Crew
O-Organizational
F-Direct Support
H-General Support
D-Depot
e. Column 5, Tools and Equipment. Column 5 specifies by code, those common tool sets (not individual tools) and special tools, test, and support equipment required to perform the designated function.
f. Column 6, Remarks. Column 6 contains an alphabetic code which leads to the remark in section IV

Remarks, which is pertinent to the item opposite the particular code.
D-4. Tool and Test Equipment Requirements Sect. III)
a. Tool or Test Equipment Reference Code.

The numbers in this column coincide with the numbers used in the tools and equipment column of the MAC. The numbers indicate the applicable tool or test equipment for the maintenance functions.
b. Maintenance Category. The codes in this column indicate the maintenance category allocated the tool or test equipment.
c. Nomenclature. This column lists the noun name and nomenclature of the tools and test equipment required to perform the maintenance functions.
d. National/NATO Stock Number. This column lists the National/NATO stock number of the specific tool or test equipment.
e. Tool Number. This column lists the manufacturer's part number of the tool followed by the Federal Supply Code for manufacturers (5digit) in parentheses.

D-5. Remarks (Sect. IV)

a. Reference Code. This code refers to the appropriate item in section II, column 6.
b. Remarks. This column provides the required explanatory information necessary to clarify items appearing in section II.

(Next printed page is D-3)

SECTION II. MAINTENANCE ALLOCATION CHART
MICROWATTMETER, BOONTON 42BD WITH POWER DETECTOR 41-4E

D-3

SECTION III. TOOL AND TEST EQUIPMENT REQUIREMENTS FOR AN/GRC-240

(1) TOOL OR TEST EQUIPMENT REF CODE	(2) MAINTENANCE CATEGORY	(3) NOMENCLATURE	(4) NATIONAL/NATO STOCK NUMBER	(5) TOOL NUMBER
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { F, D } \\ & \text { F, D } \\ & \text { F, D } \\ & \text { F, D } \end{aligned}$	OSCILLOSOOS ANM/USM-281C DUAL CNANNEL PLUG-IN TEKTRONIX MODEL 7A18N PROBE, TEKTRONIX MODEL P6035 (2 req'd) TOOL KIT ELECTRONIC EQUIPMENT TK-105/G	$6625-00-106-7497$ $6625-00-753-5009$ $6625-00-006-8667$ $5180-00-542-4489$	

SECTION IV. REMARKS FOR RADIO SET AN/GRC-240

REFERENCE	REMARKS
CODE	NEITHER REPAIR PARTS NOR REPAIR PROCEDURES ARE FURNISHED. DEPOT A

*U.S. GOVERNMENT PRINTING OFFICE: 1978-703-128-314

D-5/(D-6 blank)

By Order of the Secretary of The Army:

Official:
J. C. PENNINGTON

Brigadier General, United States Army
The Adjutant General
DISTRIBUTION:
Active Army
TSG (1)
USAARENBD (I)
USAINSCOM (2)
TRADOC (2)
DARCOM (1)
TECOM (2)
OS Maj Comd (2)
USACC (2)
Airmies (1)
USASIGS (10)
Svc Colleges (1)
Ft Monmouth (HISA) (33)
Fort Huachuca (5)
Ft Richardson (CERCOM) (1)
Fort Gillem (5)
WSMR (1)
NG: None
USAR: None
For explanation of abbreviations used, see AR 310-50.

BERNARD W. ROGERS General, United States Army

Chief of Staff

Fort Carson (5)
USAERDAA (1)
USAERDAW (1)
Army Dep (1) except LBAD (10)
SAAD (30)
TOAD (14)
SHAD (3)
USA Dep (1)
Sig Sec USA Dep (1)
Units org under fol TOE:
(1 cy each unit USOINDC)
29-134
29-136
29-207 (2)
29-610 (2)
*U. S. GOVERNMENT PRINTING OFFICE : 1990 0-261-872 (21288)

BOONTON ELECTRONICS CORPORATION

MODEL 42BD
Schematic, Digital control
D830592D

$$
\begin{aligned}
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& 4
\end{aligned}
$$

MODEL 42 \& 92 SERIES
Schematic, Auto Range D830483E

\mathfrak{c}
BOONTON
ELECTRONICS

Schematic, Counter Board

MODEL 42B, 42BB, 42BD, 42BD-S7, 42C, CB, CD
Schematic, Shaping Amplifier
E830592H (Sheet 2 of 3)

MODEL 42B, BB, BD, C, CB, CD 92B, BB, BD
Schematic, Chopper Driver
D830581K (Sheet 3 of 3)

PIN: 034888-000

