

INSTRUCTION MANUAL MODEL 8210-01-S/3 F.M.-A.M. MODULATION METER
 N00104-88-D-D058
 N00104-91-D-M090
 7Z 6625-01-284-8256

BOONTON ELECTRONICS CORPORATION 791 ROUTE 10 - RANDOLPH, NJ 07869-1980 PHONE: (201)584-1077 O FAX: (201)584-3037 TLX: 710-986-8215 BOONTRONICS

SAFETY SUMMARY

The following general safety prccilutirms must be observed during all phases of operation and maintenance of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Boonton Electronics assumes no liability for the customer's failure to comply with these requirements.

THE INSTRUMENT MUST BE GROUNDED

To minimize shock hazard the instrument chasis and cabinet must be connected to an electrical ground. The instrument is quipped with a three conductor, three prong a.c. power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to a two-contact adapter with the (green) grounding wire firmly connected to an electrical ground at the power outlet.

DO NOT OPERATE THE INSTRUMENT IN AN EXPLOSIVE ATMOSPHERE.

Do not operate the instrument in the presence of flammable gases or fumes.

KEEP AWAY FROM LIVE CIRCUITS.

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with the power cable connected. Under certain conditions dangerous voltage may exist even though the power cable was removed, therefore; always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE.

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitiation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT.

Do not install substitute parts or perform any unauthorized modification of the instrument. Return the instrument to Boonton Electronics for repair to ensure the safety features are maintained.

SAFETY SYMBOLS.

This safety requirements symbol (located on the rear panel) has been adopted by the International Elcctrotechnical Commission. Document 66 (Central Office) 3. Para-
 graph 5.3. which directs that and instrumnet be so labeled if for the correct use of the instrument. it is necessary to refer to the instruction manual. In this case it is recommended that reference be made to the instruction manual when connecting the instrument to the proper power source. Verify that the correct fuse is installed for the power available, and that the switch on the rear panel is set to the applicable operating voltage.

The CAUTION sign denotes a hazard. It calls attention to an operatition procedure. practice, or the like, which, it not correctly performed or adhered to could result in damage to or destruction of part or all of the equipment. Do not proceed beyond a CAUTION sign until the indicated conditions are fully understood and met.

WARNING:

The WARNING sign denotes a hazard. It calls attention to an operation procedures. practice, or the like, which, if not correctly performed or adhered to could result in injury or loss of life. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

BOONTON ELECTRONICS CORPORATION
 Instruction-Manual SUPPLEMENT: MODEL 8210-01-S/3
 Instruction -manual supplements are issued as required to correct errors in a manual, and to adapt the manual to changes made after its printing.

Page 1-1, Para. 1-2. b.
replace "Each time it is turned on, . . ."with

"When the LEVEL key is depressed at power on, ..."
Page 1-4, Para. 1-6 continued.
add after the WEIGHT specification,
"Recommended Calibration Internal: 12 Months."
Page 2-4, Para. 2-3. a.
before the period after "position"
add "and depress the LEVEL key"
Page 2-8, Para. 2-5. a. (1)
after the word "measured"
add "Note: If a calibration cycle is desired, depress the LEVEL key while the firmware date is displayed."

Page 2-8, Para. 2-5. a. (2)
delete the text, "After the 8210 has completed its calibration cycle," and Capitalize the word "select".

Page 2-5, Para. 2-5 c.
after 'The LEVEL pushbutton serves another purpose."
add "If a calibration operation is desired, depress the LEVEL key while the firmware date is displayed at power on."

Page 3-2, Para. 3-2 c.
delete the words "which are activated when the 8210 is turned on"
Page 3-10, Para. 3-3 e.
before the word "RAM" add "non-volatile"

Page 3-13, Para. 3-3 e
add sub-paragraph (8)
"Non-volatile operation of A4U13 is controlled byU31. This circuit switches the Vcc connection of A4U13 from the +5 L supply to the battery supply, BT1 and BT2, when the +5 L supply falls below the battery voltage. Additionally, U31 inhibits the chip enable signal at pin 18 of A4U13 when the +5 L supply drops below 4.75 volts. This action insures that the RAM contents will not change when power is removed."

Page 4-20, Table 4-9

before step 1) add,
Procedure Indication Indication is abnormal
Connect 'scope to TTL high Replace A4U13.
Pin 16 of A4U8.
Connect 'scope to Voltage greater Replace BT1 and Bt2. pin 2 of U31.

Compare signals on pins 5 and 6 of U31.

Page 5-9, Table 5-2

Before Item Cl
add Item BT1-Battery, alkaline, 1.5 volts-54473;P146ND-55601100A
add Item BT2-Battery, alkaline, 1.5 volts-54473;P146ND-55601100A

Page 5-11, Table 5-2

after Item U29
add Item U31-IC DS1210 controller-0B0A9;DS1210-53514300A
change Item U11-IC EProm PROG.-04901-53444300B
add Item XBT1,2-Socket Battery-FSCN-BH2AAA-W-48331700A

Page 5-12, Table 5-2

Change Item T1 from part number 446093 to 446101

Page 6-9,10, Figure 6-5
modify schematic as follows:

Page 6-13,14 Figure 6-7
modify schematic as follows:
change voltage at C 26 from 8.7 V to 9.7 V
change voltage at C27 from 20 V to 22 V
change voltage at C 25 from -20 V to -22 V

TABLE OF CONTENTS

SECTION I - INTRODUCTION

SUBSECTION PAGE
1-1 Safety Notice 1-1
1-2 Description of the Instrument 1-2
1-3 Items Furnished 1-2
1-4 Options and Accessories 1-2
1-5 Environmental Data 1-2
1-6 Specifications 1-2
SECTION II - INSTALLATION AND OPERATION
2-1 Installation 2-1
2-2 Operating Controls, Indicators and Connectors 2-2
2-3 Preliminary Check 2-4
2-4 Application Notes 2-4
2-5 Operating Instructions 2-8
2-6 Performance Verification 2-9
a. Test Equipment Required 2-9
b. R.F. Input Sensitivity 2-10
c. Deviation Accuracy 2-10
d. Residual F.M. 2-11
e. Residual A.M. 2-11
f. A.M. Rejection 2-12
g. A.M. Audio Distortion, 2-12
h. Audio-Frequency Response, 15 kHz 2-12
i. F.M. Audio Distortion. 2-13
j. F.M. Rejection 2-13
k Audio-Frequency Response, 3 kHz 2-14

1. Audio-Frequency Response, 750 us De-emphasis 2-14
m. A.M. Depth Accuracy 2-14
SECTION III - THEORY OF OPERATION
3-1 Introduction 3-1
3-2 Circuits: General Discussion 3-1
a. R.F. Circuits 3-1
b. I.F. Circuits 3-2
c. Calibrator Circuits. 3-2
d. A.F. Circuits 3-2
e. Logic Circuits 3-2
f. Power-Supply Circuits 3-2
3-3 Circuits: Detailed Discussion 3-2
a. R.F. Circuits 3-2
b. I.F. Circuits 3-5
c. Calibrator Circuits 3-7
d. A.F. Circuits 3-10
e. Logic Circuits 3-10
f. Power-Supply Circuits 3-13
SUBSECTION PAGE
4-1 Introduction 4-1
4-2 Test Equipment Required. 4-1
4-3 Location of Major Assemblies 4-1
4-4 Removal of Major Assemblies and Parts 4-1
a. Instrument Covers. 4-1
b. R.F .-Assembly Cover. 4-4
c. R.F. Circuit Board 4-4
d. I.F.-A.F. Circuit Board 4-4
e. Rear-Panel Assembly 4-4
f. Digital Circuits and Power-Supply Board 4-5
g. Display Circuit Board 4-5
4-5 Removal of Detail Parts 4-5
4-6 Preliminary Checks 4-6
4-7 Troubleshooting. 4-7
4-8 Adjustment and Alignment Procedures 4-26
SECTION V - PARTS LIST
5-1 Introduction 5-1
SECTION VI - SCHEMATIC DIAGRAMS
6-1 Schematic Diagrams, Table of Contents 6-1
APPENDIX A - CALIBRATOR OPERATION
A-1 Introduction A-1
A-2 Technical Discussion A-1
a. F.M. Calibrator A-1
b. A.M. Calibrator A-1
c. Audio Processing A-4
d. R.F. Circuitry A-4
LIST OF ILLUSTRATIONS
FIGURE PAGE
1-1 Model 8210 ii
2-1 Model 8210, Front View 2-3
2-2 Model 8210, Rear view 2-3
2-3 Residual F.M., Typical 2-5
2-4 Residual A.M., Typical 2-5
2-5 Audio Response, Typical 2-6
2-6 Test Setup: R.F. Input Sensitivity 2-10

LIST OF ILLUSTRATIONS (CONTINUED)

FIGURE PAGE
2-7 Test Setup: Residual F.M., Residual A.M. 2-11
2-8 Test Setup: A.M. Rejection, Frequency Response, Audio Distortion. 2-12
2-9 Test Setup: F.M. Audio Distortion, F.M. Rejection 2-13
2-10 Packaging Diagram 2-14
3-1 Simplified Block Diagram 3-1
3-2 R.F. Circuits: Detailed Block Diagram 3-3
3-3 Sampling Gate: Simplified Operation. 3-4
3-4 I.F. Circuits: Detailed Block Diagram 3-6
3-5 Calibrator Circuits: Detailed Block Diagram 3-8
3-6 A.F. Circuits: Detailed Block Diagram 3-9
3-7 Logic Circuits: Detailed Block Diagram 3-11
3-8 Program Flow Diagram. 3-12
4-1 Model 8210: Top View with Covers Removed 4-2
4-2 Model 8210: Bottom View with Covers Removed 4-3
4-3 Test Setup: Adjustment and Alignment 4-27
LIST OF TABLES
TABLE PAGE
2-1 Operating Controls, Indicators and Connectors 2-2
2-2 Test Equipment for Performance Verificatuion 2-9
4-1 Test Equipment for Maintenance and Adjustment 4-1
4-2 Power-Supply Checks 4-6
4-3 Condition-Code Displays 4-8
4-4 Troubleshooting Test-Switch Chart 4-8
4-5 Symptomatic Troubleshooting Chart 4-9
4-6 Systematic Troubleshooting Chart: R.F. Circuits 4-10
4-7 Systematic Troubleshooting Chart: I.F. Circuits 4-14
4-8 Systematic Troubleshooting Chart: A.F. Circuits 4-16
4-9 Systematic Troubleshooting Chart: Logic Circuits 4-20
4-9a Signature-Analysis Chart: Address Field 4-23
4-9b Signature-Analysis Chart: Decoder Circuit 4-24
4-9c Signature-Analysis Chart: PROM'S A4U11 and A4U13 4-24
4-10 Systematic Troubleshooting Chart: Calibrator Circuits 4-25
4-11 Systematic Troubleshooting Chart: Power Supply 4-26
5-1 Manufacturers' Code Numbers 5-1
5-2 Replaceable Parts 5-2

WARRANTY: Cover 3

GENERAL INFORMATION

1-1. SAFETY NOTICE
The Model 8210 is furnished with a three-conductor power cable and threeprong plug so that, when the plug is inserted in a properly polarized a.c. power receptacle, the instrument is grounded. The instrument depends upon such connection to ground for equipment and operator safety.
*** WARNING
To avoid the possibility of electrical shock, before anything is connected to this instrument, and before you use this instrument, make certain that its power cable is plugged into a mating a.c. receptacle that has a grounded ("earthed") contact.

Never defeat the instrument's protective grounding. For example: Do not use an extension power cable if it is not equipped with a ground conductor; do not plug the instrument into an a.c. receptacle that does not provide a high-quality earth ground. If only a two-terminal a.c. power receptacle is available, use a three-prong-to-two-prong adapter and connect the ground wire of the adapter to the power-receptacle ground. Do not use such an adapter if the ground wire cannot be grounded.

1-2. DESCRIPTION
The Model 8210 Modulation Meter, manufactured by Boonton Electronics Corp., is a versatile, solid-state instrument that measures and displays the deviation of frequency-modulated signals or the percentage modulation of amplitude-modulated signals over a carrier range of 2 MHz to 1.5 GHz . Both the a.m. and f.m. detectors of the 8210 are true peak-responding at all levels. Thus they conform to the basic definition of modulation depth or deviation. In addition, because the detectors are true peak-responding, the effect of any system noise will be accurately included in the measured value. Among the features of the Model 8210 are:
a. Fully Automatic Tuning and Leveling. The Model 8210 will automatically acquire the largest signal present at the input connector and adjust its local oscillator, and the gain of its measurement channel, to provide a fully calibrated display of amplitude modulation or frequency modulation.
b. Internal Calibration. Each time it is turned on, the 8210 calibrates both its a.m. and its f.m. detector.
c. Digital Display. The 8210 presents recovered modulation on a 3-1/2 digit. display, providing exceptional resolution and accuracy for modulation measurements.
d. Pushbutton operation. Selection of all operational parameters is made by means of pushbuttons, thus allowing fast measurement setup.
e. Low Residual Modulation. The 8210's exceptionally low residual modulation permits accurate measurements of lownoise sources. Direct residual measurements are possible if an external r.m.s. detector is used.

The Model 8210 is intended for both laboratory and field application. It will also be especially useful in the design of, and for production-line and field-testing of, f.m. and a.m. transmitters and signal generators.

1-3. ITEMS FURNISHED
The instrument is supplied complete with power cord. For making measurements the connection of various cables will be called for, depending upon the operating mode of the 8210. Required cable connections are discussed in paragraph 2.1d.

1-4. OPTIONS AND ACCESSORIES
Option -01: with this option, the 15 kHz low-pass filter is replaced by a 30 kHz low-pass filter. See Specifications, below, for details.

Accessory 950027: This is a rack-mounting kit (not supplied as standard), for mounting a single 8210 to left or right of center.

1-5. ENVIRONMENTAL DATA, OPERATING AND STORAGE
Temperature: Operating, 0 to $+55^{\circ} \mathrm{C}$ Storage, $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

1-6. SPECIFICATIONS
R.F. INPUT:

Carrier-Frequency Range
Tuning
Sensitivity

Level Set
Maximum Safe Input

Input Impedance
FREQUENCY MODULATION:
Maximum Deviation
Deviation Ranges
Deviation Accuracy

Modulation Bandwidth
Residual F.M.
(R.F. Level >100 mV)
A.M. Rejection

2 MHz to 1.5 GHz
Automatic
$10 \mathrm{mV}, \mathrm{r} . \mathrm{m} . \mathrm{s} ., \quad 2 \mathrm{MHz}$ to 520 MHz
30 mV , r.m.s., 520 MHz to 1.5 GHz
Automatic for levels up to 1 V
7 v, r.m.s.

50 ohms, nominal

150 kHz , peak
10 and 100 kHz , full scale
1% of reading for modulation frequencies between 50 Hz and 5 kHz .
2% of reading, 5 kHz to 7.5 kHz .
NOTE : Peak residuals must be accounted for to obtain the above accuracies.
$<30 \mathrm{~Hz}$ to 15 kHz
with 3 kHz low-pass filter:
$<150 \mathrm{~Hz}$, r.m.s., at 1.5 GHz , decreasing linearly to a floor of $<5 \mathrm{~Hz}$, r.m.s.

With 15 kHz low-pass filter:
$<200 \mathrm{~Hz}$, r.m.s., at 1.5 GHz , decreasing linearly to a floor of $<15 \mathrm{~Hz}$, r.m.s.
$<100 \mathrm{~Hz}$ deviation at 50% a.m. (modulation frequency $\leqslant 1 \mathrm{kHz}) 3 \mathrm{kHz}$ low-pass filter.

AMPLITUDE MODULATION
Modulation-Depth Ranges 10% and 100\%, full scale

Depth Accuracy	Modulation Frequency	Accuracy	
		10\% to 90\% A.M.	<10\% \& >90\% A.M.
	50 Hz to 5 kHz	1\% of reading	3\% of reading
	5 kHz to 7.5 kHz	2% of reading	6\% of reading

NOTE: Peak residuals must be accounted for to obtain the above accuracies. Carrier frequency $<520 \mathrm{MHz}$ r.f. level between -10 and +10 dBm .

Modulation Bandwidth
Residual A.M.
F.M. Rejection

AUDIO-FREQUENCY RESPONSE
$<30 \mathrm{~Hz}$ to 15 kHz .
With 3 kHz low-pass filter:
Less than 0.15% a.m., r.m.s., for input levels above 100 mV , r.m.s.

With 15 kHz low-pass filter:
Less than 0.25\% a.m., r.m.s., for input levels above 100 mV r.m.s.

NOTE : Carrier frequency $<520 \mathrm{MHz}$; above 520 MHz residuals increase linearly with frequency.

Less than 1.0\% a.m. ,peak, at 100 kHz peak modulation.

3 kHz low-pass, 15 kHz low-pass, \& 750 us de-emphasis; corner accuracy is $\pm 4 \%$. Jumper selects de-emphasis either before or after the display.

Less than 0.25\% t.h.d., for 75 kHz peak deviation. $<0.5 \%$ t.h.d., for 90% a.m.
F.M.: 1 v, r.m.s., approx. , into 600 ohms at 1000 counts on the display.
A.M.: 1 V to 1.2 V , r.m.s.

DISPLAY
Modulation

Annunciators
I.F. OUTPUT

Frequency
Level
POWER REQUIREMENTS

LED display; 1000 counts plus 50\% overrange; true peak, positive peak, negative peak, or peak-average indications.

Display of settings of mode switch and of filter. Digital display indicates levelhigh, level-low and unlocked conditions.

400 kHz , nominal.
300 to 360 mV , approx. , into 600 ohm load
100, 120, 220, or 240 volts, a.c., 50 to 400 Hz ; 24 VA .

This model is the same as the standard Model 8210 except as follows:

AUDIO-FREQUENCY RESPONSE
Filters The 15 kHz low-pass filter is replaced by a 30 kHz low-pass filter; corner accuracy is $\pm 4 \%$.

FREQUENCY MODULATION

Deviation Accuracy	1\% of reading for modulation frequencies between 50 Hz and 10 kHz .
	2% of reading, 10 kHz to 15 kHz .
Modulation Bandwidth	$<30 \mathrm{~Hz}$ to 30 kHz
Residual F.M. (R.F. Level >100 mV)	with 30 kHz low-pass filter: $<400 \mathrm{~Hz}$, r.m.s., at 1.5 GHz , decreasing linearly to a floor of $<25 \mathrm{~Hz}$, r.m.s.
	With 3 kHz low-pass filter: $<150 \mathrm{~Hz}$, r.m.s, at 1.5 GHz , decreasing linearly to a floor of $<5 \mathrm{~Hz}$, r.m.s.

AMPLITUDE MODULATION

Depth Accuracy

Modulation	Accuracy		
Frequency	10% to 90% A.M.	$\langle 10 \%$ \& $>90 \%$ A.M.	
50 Hz to 10 kHz	1% of reading	3% of reading	
10 kHz to 15 kHz	2% of reading	6% of reading	

NOTE: Peak residuals must be accounted for to obtain the above accuracies.

Carrier frequency <520 MHz; r.f. level between -10 and +10 dBm .

Modulation Bandwidth

Residual A.M.
$<30 \mathrm{~Hz}$ to 30 kHz .
With 30 kHz low-pass filter:
Less than 0.35% a.m., r.m.s., for input levels above 100 mV , r.m.s.

With 3 kHz low-pass filter:
Less than 0.15\% a.m., r.m.s., for input levels above 100 mV , r.m.s.

NOTE : Carrier frequency $<520 \mathrm{MHz}$; above 520 MHz residuals increase linearly with frequency.

2-1. INSTALLATION
a. Unpacking. The 8210 is shipped complete and ready for use. Unpack the equipment from the shipping container and inspect it for any damage that may have occured during shipment. Check that all connectors and switches operate without binding.

NOTE : Save the packing material and container for possible use in reshipment of the 8210. See Figure $2-10$ (p. 2-14) for the repacking method.
b. Mounting. For bench mounting, choose a clean, sturdy and uncluttered mounting surface. For rack mounting, an accessory package (Model Number 950027) is available; it consists of two angle-mounting brackets, two flat plates, four binder-head screws, and four lockwashers. To rack mount an 8210, proceed as follows:
(1) The 8210 has one extrusion at each end of the front panel. On the outside surfaces of these extrusions, where they join the cabinet, are two strips of green pressure-sensitive tape. Remove or perforate these tape strips to expose the tapped mounting holes for the rack-mounting brackets.
(2) Refer to the drawing in the accessory's package for the proper orientation of the two mounting brackets.
(3) Mount the 8210 in the rack with standard rack-mounting screws through the slotted holes in the angle brackets.

NOTE : If necessary, the feet and tilt bail may be removed from the cover in order to clear any adjacent rack-mounted units.
c. Power Requirements. The 8210 can be operated on a.c. power sources of 100, 120, 220 or 240 volts, 50 to 400 Hz , single phase. The power required is 24 VA at 120 or 240 volts, a.c.

CAUTION
Before connecting the 8210 to an a.c. power source, see that the voltage-selector switches on the rear panel are set for the available line voltage and that a fuse of the proper rating is in the instrument's fuse holder: 0.25 A for 100 or 120 V ; 0.125 A for 220 or 240 V -- either fuse to he type MDL Slo-Blo.
d. Cable Connecting. Depending on the operating mode of the 8210 , various cables will have to be connected to it; these cables are not supplied with the instrument. Connections that may be required are:
(1) R.F. Input. The RF IN connector of the 8210 is a type BNC. The input impedance is 50 ohms, nominal.
(2) I.F. Output. The $8210^{\prime} s$ if. output is available at the front-panel BNC marked IF OUT. The level varies between 300 and 360 mV , r.m.s.; the source impedance is 600 ohms, nominal.
(3) A.F. Output. The recovered audio signal appears at the front-panel BNC connector labeled AF OUT. For f.m., the level is approximately 1 volt, r.m.s., into 600 ohms at 1000 counts on the digital display. For a.m., the level is 1 to 1.2 volts.

```
2-2. OPERATING CONTROLS, INDICATORS AND CONNECTORS
```

All controls, indicators and connectors used during operation of the 8210
are shown in Figures $2-1$ and 2-2. They are described in Table 2-1, below.

Table 2-1. operating Controls, Indicators, and Connectors

ITEM F	FIGURE	INDEX	NO.	FUNCTION
FILTER switches	2-1	1		Select low-pass or de-emphasis filters.
PEAK switches	"	2		Select display of + peak, - peak or peak average.
FUNCTION switches	$"$	3		Select AM, FM or LEVEL display functions.
RANGE switches	"	4		Select desired full-scale modulation range.
LED display	"	5		Indicates modulation or i.f. level--as determined by the FUNCTION switch setting.
LINE switch	"	6		Turns line power on and off.
RF IN connector	"	7		Input signal connection point.
IF OUT connector	"	8		Allows connection of 8210's i.f. signal to external circuits.
AF OUT connector	"	9		Allows connection of 8210^{\prime} s recovered audio signal to external circuits.
Power connector	2-2	1		Input connector for a.c. power cable.
Line-voltage switches	s "	2		Permit selection of appropriate a.c. operating voltage.
Fuse holder	"	3		Contains replaceable line fuse.

Figure 2-1. Model 8210, Front View

Figure 2-2. Model 8210, Rear View

2-3. PRELIMINARY CHECK
NOTE: The following preliminary check procedure is intended only to ensure that all circuits are operating. If a detailed performance check against specifications is desired, refer to subsection 2-6.

Before using the Model 8210, perform a preliminary check as follows:
a. Set the LINE switch to the "on" position. The LED display should indicate "CAL," which means that the calibration sequence has begun. After about 30 seconds, a series of dashes should appear on the LED display, indicating an unlocked condition.
b. Apply a 100 mV (r.m.s.) unmodulated test signal, at a frequency between 2 and 520 MHz , to the RF IN connector of the 8210. The LED display on the 8210 should now indicate residual modulation. Note that two dashes on the led indicate that the 8210 is executing an a.g.c. cycle.
c. Reduce the test signal to 5 mV . The display should indicate "IFLO."
d. Increase the test signal to 1.5 V . The display now should read "IFHI." e. Decrease the test signal to approximately 0 dBm . The display should read as in Step (b).
f. In turn, depress the three FILTER switches, and see that the associated annunciators indicate the switch selection correctly.
g. Repeat Step (f) for the FUNCTION switches.
h. Depress in turn the three PEAK switches. A plus sign (+) will be shown for the + PEAK switch, a minus sign (-) for the - PEAK, and no sign when the AVG switch is depressed.
i. Depress in turn the RANGE switches. The decimal-point indication of the display should move to left or right as each switch is depressed.
j. Connect an oscilloscope to the 8210's IF OUT connector. Set the scope so that it displays the 400 kHz if. signal of the 8210.
k. Modulate the test signal with approximately 50\% a.m. Depress the AM FUNCTION switch, the 100 RANGE switch, and the 15 kHz FILTER switch. The display should indicate approximately 50\% a.m.

1. Remove the amplitude modulation, and frequency-modulate the test signal with approximately 50 kHz peak deviation. Depress the FM FUNCTION switch. The display should indicate approximately 50 kHz deviation.

2-4. APPLICATION NOTES
The following paragraphs describe some typical applications for the Model 8210. The use of the 8210 is not restricted to these applications, however.
a. F.M. Measurements . High-accuracy f.m. measurements are possible with the 8210 for modulating frequencies from less than 30 Hz to 15 kHz , and deviations up to $300 \mathrm{kHz} \mathrm{p}-\mathrm{p}$. To achieve maximum accuracy, the signal level applied to the RF IN connector should be greater than 100 mV , r.m.s. Such signal levels reduce residual f.m. in the 8210 to a minimum value. To further reduce residuals, the minimum measurement-bandwidth consistent with the modulation frequency should be used. For instance: for measurements at a 400 Hz modulation rate, the 3 kHz low-pass filter should be used.

Typical residuals for the 8210 are plotted in Figures 2-3 and 2-4; audio response curves are plotted in Figure 2-5. Because the audio detectors in the 8210 are true peak-responding, the residual noise is added to the recovered signal being measured. Peak-detector response to a signal plus

Figure 2-3. Residual P. M., Typical

Figure 2-4. Residual A. M., Typical

Figure 2-5. Audio Response, Typical

2-4a, Continued.

noise is not linear, and is a function of the carrier-to-noise ratio and the modulation waveshape. In most measurement situations involving sinusoidal modulation, noise suppression is approximately 30%.

For example, if the peak residual indicated without modulation is 100 Hz , and 10 kHz deviation is added, the resulting display would be 10.07. (Since the 0.7 multiplier is an approximate value, there will be variation. However, the use of that figure guarantees that the resulting display will always be within specification.) The assumption made is that the noise is gaussian and that the carrier-to-noise ratio exceeds 20 dB .

True r.m.s. measurements of the recovered audio signal will provide a more precise indication of modulation in the presence of large amounts of noise.
b. A.M. Measurements. The 8210 makes possible fast, accurate indications of amplitude modulation. Optimum accuracy is achieved with input signal levels between -10 and +10 dBm (for lowest residuals), and the minimum bandwidth consistent with the modulation frequency. As discussed above for f.m., noise suppression does occur, and the 0.7 multiplier is used to subtract added noise.
c. Spurious Responses. Most frequency- translating devices rely on a nonlinear circuit element to produce the multiplication required for frequency translation. This non-linearity produces spurious mixing products, which tend to "cross over" the desired if. and change its character. In contrast, the 8210 converts frequency by using a sampler, which is very linear and which produces few spurious responses in the usual sense.

There are, however, a few points to remember when applying a sampling instrument like the 8210. If the input signal contains significant harmonic power above the third harmonic, an if. beat can occur and thus produce unwanted a.m. and f.m. indications.

Signals that are not harmonically related can interfere if, when they are mixed with any local-oscillator harmonic, the resulting sum frequency or difference frequency appears near the 8210's intermediate frequency.

EXAMPLE: Assume two input signals--the larger at 100 MHz the smaller at 501.6 MHz . The local oscillator might be at 2.51 MHz so that its 40 th harmonic (100.4 MHz), when mixed with the 100 MHz signal, produces a 400 kHz if. However, the 200 th harmonic of 2.51 MHz is $502 \mathrm{MHz}-$ which converts the 501.6 MHz carrier to 400 kHz also. Since the two signals are not phase coherent, a low-frequency beat will occur at the i.f. and produce spurious a.m. and f.m. indications. The offending input signal should be filtered in order to eliminate this interference.
d. Additional Applications. Information relevant to further applications of the 8210 will be found in Boonton Electronics' Application Note $\$ 19$:

High Accuracy AM-FM Measurements
with the Boonton 82AD Modulation Meter.
The Application Note is available free upon request to Boonton Electronics. inquiries regarding application of the 8210 to specific customer requirements are invited. Please direct any such inquiries to the Applications Engineering Department of Boonton Electronics Corporation.

2-5. OPERATING INSTRUCTIONS
The operation of The Model 8210 is essentially automatic, requiring only that the operator select the proper display function and baseband filter. Paragraphs $2-5 a$ and $2-5 b$ summarize operating steps for a.m. and f.m. measurements, respectively.

a. A.M. Measurements.

(11 Set the LINE switch to ON, and connect to the RF IN connector the r.f. signal that is to be measured.
(2) After the 8210 has completed its calibration cycle, select the desired measurement bandwith. Use the minimum bandwidth consistent with the modulation frequency.
(3) Depress the appropriate PEAK switch, as determined by the amplitude modulation measurement to be made.
(4) Depress the AM FUNCTION switch and the 100 RANGE switch.
(5) Read the percentage of a.m. modulation from the LED display. The 10 RANGE may be selected if the modulation is less than 15%.
b. F.M. Measurements. Operation of the Model 8210 for f.m. measurements is basically the same as for a.m., except for the selection of Function and Filter. For f.m. measurements, depress the FM FUNCTION switch and the appropriate RANGE and PEAK switches.

Either a low-pass filter or the 750 us de-emphasis filter may be selected for the measurement. The de-emphasis filter may be placed before or after the modulation display, according to an internal jumper selection. Units shipped from the factory are normally wired for de-emphasis before the display.
c. Level Function. The "Level" function is included in the Model 8210 to indicate the relatlve a.m. -detector operating point; it is required only when an external indicator is used for making an a.m. measurement. When the 8210 is operating properly, depressing LEVEL should always result in a number between 0.95 and 11.5 on its digital display. If the reading on the external indicator is now multiplied by 10.00, then divided by the Level indication, the external indicator will be properly scaled.

The LEVEL pushbuton serves another purpose. If a malfunction occurs during calibration, a condition code (the letters cc, followed by a number), will appear on the digital display. It means that proper calibration could not be accomplished. (Refer to Section IV for the meaning of each condition code.) Depressing the LEVEL pushbutton releases the error condition, and measurements can be made. Note, however, that the detector that malfunctioned will not be properly calibrated.

In addition, the LEVEL button is utilized in several of the test routines provided for troubleshooting the 8210. These routines are described in detail in Section IV.

2-6. PERFORMANCE VERIFICATION
The following tests may be performed when the Model 8200 is first received. Thereafter, performance verification should be needed only after repair to the instrument.

NOTE: In these verification procedures, some settings or results are followed by data in parentheses. These parenthetical entries apply to instruments with the -01 Option installed
a. Test Equipment Required. Table 2-2 lists all test equipment required for verification of performance of the 8210. Other models of test equipment that meet or exceed the Critical Specifications may be used instead.

Table 2-2. Recommended Test Equipment for Performance Verification

EQUIPMENT	CRI'TICAI. SPECIPICATIONS	SIJGGESTED MODEL
Signal Generator	```A.M.-F.M., n.Dl to 520 MHz , -30 to +10 dBm level. T.H.D. \(<0.05 \%\) at 75 kHz deviation at 100 MHz```	Boonton Electronics $102 \mathrm{E}-19$
Signal Generator	$\begin{aligned} & \text { C.W. } 1.5 \mathrm{GHz}, \\ & -30 \text { to }+7 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & \text { Hewlett-Packard } \\ & 3660 \mathrm{C} \& 86603 \mathrm{~A} \end{aligned}$
CrystalControlled Source or Synthesizer	$<3 \mathrm{~Hz}$ resiqual f.m. at 500 MHz in 15 kHz handwidth	$\begin{aligned} & \text { Ail.tech } \\ & 460 \end{aligned}$
Voltmeter	True r.m.s., 10 mV fullscale sensitivity, 100 kHz bandwidth	Boonton Electronics $93 A D$
Double-Balanced Mixer	$\begin{aligned} & +7 \mathrm{ABm}, \mathrm{l} .0 . \mathrm{Range} \text { of } 1.0 . \\ & \& \mathrm{r} . \mathrm{f} .: 0.5-500 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { Mini-Circuits } \\ & \text { ZAD-1 } \end{aligned}$
Audio Oscillator	$\begin{aligned} & \text { Range: } 20 \mathrm{~Hz}-20 \mathrm{kHz} \\ & <0.1 \mathrm{t} \text { t.h.d. } \end{aligned}$	$\begin{aligned} & \text { Hewlett-Packari } \\ & 204 \mathrm{C} \end{aligned}$
Resistor Resistor	$\begin{array}{llll} 10 \mathrm{k} \Omega, & 1 / 4 \mathrm{~W}, & 5 \% \\ 620 \Omega, & 1 / 4 \mathrm{~W}, & 5 \% \end{array}$	$\begin{aligned} & \text { Allen Bradley } \\ & \text { AB-EB } \end{aligned}$
Power Supply	+10 V, d.c.	Power Designs $5015 \mathrm{~T}$
Capacitor	$1000 \mu \mathrm{~F}, 6 \mathrm{w} \cdot \mathrm{v} \cdot \mathrm{d} \cdot \mathrm{c}$.	
Distortion Analyzer	Range: $20 \mathrm{~Hz}-20 \mathrm{kHz}$ Resolution: 0.18 t.h.d.	Radiometer BKFIO

S2-6, Continued.
b. R.F. Input Sensitivity.
(1) Connect the 8210 and test equipment as shown in Figure 2-6.
(2) Depress the switches of the 8210 as indicated in Figure 2-6.
(3) Apply a $10 \mathrm{mHz}, 10 \mathrm{mV}$ r.m.s. signal from the Model $102 \mathrm{E}-19$ signal generator to the RF IN connector of the 8210 . The 8210 should indicate "lock" and adequate signal level for a measurement.
(4) Change the r.f. input to 500 mHz . Indications should be the same as in Step (3).
(5) Connect the Model 8660C signal generator to the RF IN connector of the 8210. Set the signal qenerator's controls to provide an r.f. input of 30 mV , r.m.s., at 1500 MHz . Indications as in Step (3).

Figure 2-6. Test Setup: R.F. Input Sensitivity
c. Deviation Accuracy. Verification of the deviation accuracy of the 8210 is not usually required. If there is any doubt as to the operation of the internal calibrators, refer to Section IV for maintenance instructions, or to Appendix A for operation of the calibrators.
d. Residual F.M.
(1) Connect the 8210 and test equipment as shown in Figure 2-7.
(2) Apply the 500 MHz signal, at 0 dBm , from the test source to the RF IN connector of the 8210 .
(3) Depress the switches of the 8210 as indicated in Figure 2-7.
(4) Connect the r.m.s. voltmeter (without 600Ω termination) to the $A F$ OUT connector on the 8210 .
(5) Set the voltmeter for 100 kHz bandwidth and 30 mV full-scale sensitivity. The voltmeter should indicate less than 13.3 mV (26.6 mV).
(6) Depress the 8210's 3 kHz FILTER switch. The voltmeter should read less than 10 mV .

NOTE: The display of the 8210 indicates true peak deviation; therefore the display's readings will always be two to three times higher than the r.m.s. readings of the voltmeter.

e. Residual A.M.
(1) Connect the equipment as shown in Figure 2-7.
(2) Set the 8210^{\prime} s controls as indicated, but select the AM FUNCTION.
(3) Set the voltmeter to 100 kHz bandwidth and 100 mV sensitivity.
(4) The voltmeter should indicate less than 50 mV (70 mV).
(5) Set the $8210^{\prime} \mathrm{s}$ FILTER to 3 kHz , and voltmeter sensitivity to 30 mV .
(6) The voltmeter should indicate less than 30 mV .

S2-6, Continued.
f. A.M. Rejection.
(1) Connect the 8210 and test equipment as shown in Figure 2-8.
(2) Set the 8210's controls as shown in Figure 2-8.
(3) Apply a 30 MHz signal, at 0 dBm , from the generator to the mixer.
(4) Adjust the power-supply output voltage to +10 V d.c. Adjust the audio source for approximately 50% indicated a.m. at a 1 kHz rate.
(5) Change the 8210's FUNCTION to FM.
(6) Vary the r.f. level between 0 and +10 dBm for a deviation null. The display should indicate less than 100 Hz peak f.m. (Residual noisemodulation must be subtracted.)
g. A.M. Audio Distortion. NOTE : Step 2-6f, the A.M. Rejection check, should be completed before performing this verification. Leave the equipment set up as in Figure 2-8.
(1) Adjust the audio oscillator for 90% a.m. at a 1 kHz rate.
(2) The distortion analyzer should indicate less than 0.5%.
(3) Vary the audio oscillator frequency from 50 Hz to 10 kHz .
(4) The distortion should be less than 0.5% at all frequencies.
h. Audio-Frequency Response, 15 kHz . NOTE of Step $2-6 \mathrm{~g}$ applies here also.
(1) Depress the AM FUNCTION button.
(2) Adjust the frequency of the audio oscillator to 1 kHz ; adjust its amplitude for an indication of 60.0% a.m.
(3) While maintaining a constant audio-oscillator amplitude, vary the modulation frequency between 50 Hz and 5 kHz (10 kHz).
(4) The indicated a.m. should be between 59.4% and 60.6% for all modulation frequencies.

Figure 2-8. Test Setup: A.M. Rejection, A.M. Frequency Response, and A.M. Audio Distortion

S2-6h, Continued.
(5) Increase the frequency to $7.5 \mathrm{kHz}(15 \mathrm{kHz})$. The indicated a.m. should be between 58.8% and 61.2%.
(6) Increase the frequency to $15.0 \mathrm{kHz}(30 \mathrm{kHz})$. The indicated a.m. should be between 40.4% and 44.38 .
i. F.M. Audio Distortion.
(1) Connect the 8210 and test equipment as shown in Figure 2-9.
(2) Set the controls of the 8210 as shown.
(3) Set the signal generator to $100 \mathrm{MHz}, 0 \mathrm{dBm}$, and external f.m.
(4) Adjust the level of the audio oscillator for 75 kHz peak deviation at a 1 kHz rate.
(5) The indicated distortion should be less than 0.25%.
(6) Repeat Step (4) for modulation rates of 50 Hz and 10 kHz .

Figure 2-9. Test Setup: F.M. Audio Distortion and P.M. Rejection
j. F.M. Rejection.
(1) Connect the equipment as shown in Figure 2-9.
(2) Set the controls of the 8210 as indicated.
(3) Adjust the audio oscillator's frequency to 1 kHz ; adjust its amplitude for a 100 kHz peak deviation.
(4) Change the 8210's FUNCTION to AM and its RANGE to 10.
(5) The display should indicate less than 1.0\%, peak.

S2-6, Continued.
k. Audio-Frequency Response, 3 kHz .
(1) Connect the equipment as in Figure 2-9.
(2) Set the 8210's controls as shown.
(3) Adjust the audio oscillator's frequency to 300 Hz , then adjust its amplitude until the 8210 reads 100.0 kHz .
(4) Without changing the audio oscillator's level, adjust its frequency to exactly 3.00 kHz .
(5) The Model 8210 display should indicate between 67.5 and 73.8 kHz .

1. Audio-Frequency Response, $750 \mu \mathbf{s}$ De-emphasis.
(1) Connect the equipment as in Figure 2-9.
(2) Set the 8210's controls as shown.
(3) Adjust the audio oscillator's frequency to 212.2 Hz , then adjust its amplitude until the 8210 's display indicates 100.0 kHz .
(4) Change the 8210's FILTER to 750 us.
(5) The display should read between 68.0 and 73.5 kHz deviation.
m. A.M. Depth Accuracy. Verification of the a.m. depth accuracy of the 8210 is not required. If there is any doubt as to the operation of the internal calibrators, refer to Section IV for maintenance instructions, or to Appendix A for operation of the calibrators.

Figure 2-10. Packaging Diagram

3-1. 1NTRODUCTION

The 8210 is a compact, microprocessor-controlled, internally calibrated, a.m.-f.m. modulation meter that covers the carrier-frequency range of 2 MHz to 1.5 GHz . Amplitude modulation or frequency modulation is displayed on a four-digit led display that provides a maximum resolution of 0.01% a.m. or 10 Hz deviation. Signal acquisition, display operation, calibration, and instrument control is accomplished using a microprocessor.

Operation of the 8210 is fully automatic. The largest signal present at the RF IN connector is converted to a 400 kHz intermediate frequency, which is adjusted to a convenient level for a.m. measurements. The modulation depth of a.m. signals is equal to the peak amplitude of the recovered audio signal divided by the d.c. level of the a.m. detector. The deviation of an f.m. signal is equal to the peak amplitude of the recovered signal. The recovered modulation is converted into a proportional d.c. level, then into a digital display, by microprocessor-controlled detectors and an analogdigital (A-D) converter.

3-2. CIRCUITS: GENERAL DISCUSSION
For this discussion the circuits of the 8210 are grouped by function, as follows: r.f., if., calibrator, a.f., logic, and power-supply circuits. Refer to Figure 3-1, a simplified block diagram of the 8210.

Figure 3-1. Simplified Block Diagram
a. R.F. Circuits. The r.f. input signal to be measured is applied to the r.f. circuits through the front-panel RF IN connector. This signal passes through a fixed 3 dB pad to a zero-order hold sampler. The sampler is fully bootstrapped to accept signals as large as 1 V, r.m.s., without overload.

3-2a, Continued.
A sampling pulse, generated from a tunable local oscillator, converts the r.f. signal into an if. signal at approximately 400 kHz . The if. signal is passed to the if. circuits and also through a filter to a limiter, a discriminator, and an error amplifier. Automatic frequency control is accomplished by these circuits in conjunction with the microprocessor.
b. I.F. Circuits. The if. signal from the sampler is filtered and amplified, then coupled to a.m. and f.m. detectors through a digital-to-analog (D-A) converter configured as a variable-gain element. The logic circuitry adjusts the converter so as to maintain a convenient d.c level at the output of the a.m. detector. The last-mentioned is a linear active detector, which recovers the amplitude modulation of the if. and provides a d.c. signal proportional to the if. level. A portion of the a.m. detector output signal is used to drive a monostable multivibrator, which detects the f.m. modulation of the if. signal. Both a.m. and f.m. signals are amplified and applied to the a.f. circuits through a switch. During calibration, the signal from the r.f. circuits is disconnected from, and the calibrator signal is connected to, the if. circuits.
c. Calibrator Circuits. The calibrator circuits, which are activated when the 8210 is turned on, and a precision attenuator. consist of a variable-modulus counter circuit The variable-modulus counter is alternately programmed to divide the output of a 3.579 MHz crystal-controlled oscillator by eight or by ten. The resulting signal has an average frequency of 402 kHz , approximately, and a peak deviation of 44.74 kHz . This signal is used to calibrate the f.m. detector. In addition, a fixed-frequency signal is applied to a switchable attenuator, which is alternately programmed to attenuate by two-thirds and by one-third. The signal from the attenuator has an amplitude variation of two to one, and therefore is equivalent to a signal with 33.33% a.m.
d. A.F. Circuits. The recovered audio signal from the a.m. or the f.m. detector (as determined by the FUNCTION switch), is filtered by an activefilter circuit to remove if. components. Baseband processing circuitry, in the form of selectable low-pass filters, additional gain, and precision peak detectors--all under the control of the logic circuity--convert the recovered signal into a digital display.
e. Logic Circuits. The logic circuits consist of a central processing unit (CPU), read-only memory (ROM), random-access memory (RAM), peripheral interface adapters (PIA), and a digital-to-analog converter (DAC). The CPU operates under control of a microprogram, stored in ROM, to monitor the frequency control, level control, peak-detector circuits, and the frontpanel switches. In addition, the CPU controls and updates the front-panel displays, and operates all internal control circuits.
f. Power-Supply Circuits. The power-supply circuits convert the a.c. line voltage into well regulated d.c. voltages. Five power-supply voltages are used to operate the circuits in the $8210:+15,-15,-7.5$, and separate +5 supplies for the analog and for the digital circuits.

3-3. CIRCUITS: DETAILED DISCUSSION
a. R.F. Circuits. The r.f. circuits convert the r.f. input signal that is to be measured into a 400 kHz if. signal. With the assistance of a microprocessor, a local-oscillator signal is generated and controlled so as to maintain this intermediate frequency. (Refer to Figure 3-2, a detailed block diagram of the r.f. circuits.)
(1) The input signal applied to the front-panel RF IN connector, J1, is passed through connectors J2 and P1 to a fixed 3 dB pad, which consists of R2-R4. This pad reduces the r.f. level, and improves the impedance match to the incoming signal. The output of the pad is connected to a sampling gate consisting of diodes CR2a-CR2d. The sampling gate and sampler amplifier, consisting of transistors Q2

Figure 3-2. R.F. Circuits: Detailed Block Diagram
through Q6 and associated components, constitute a zero-order hold sampler.
(2) The operation of the sampling gate is shown in simplified form in Figure 3-3. Each time the sampling gate is closed, by a shortduration pulse, the input capacitance of the sampler amplifier plus any stray capacitance is charged to a voltage that is less than the instantaneous r.f. input voltage. Before the next sample is taken, positive feedback from the sampler amplifier causes additional charge to be placed on this capacitance. Charge is added until the output voltage of the sampler amplifier is equal to the r. f. input at the time the sample was taken. This output voltage is held constant until the next sample is taken. Sucessive samples are taken until the r.f. waveform is reconstructed at 400 kHz . Additional feedback from the sampler amplifier maintains symmetrical reverse bias on the sampling gate. R10 adjusts the bias magnitude, and R14 adjusts the bridge balance.

Figure 3-3. Sampling Gate: Simplified Operation
(3) The output of the sampler amplifier is connected to a switchable 20 dB attenuator, consisting of R34, R35, and U4a. The attenuation is selected by the control program whenever the r.f. input level exceeds approximately 100 mV . Amplifier U 5 increases the signal level about four times before it is coupled to the if. circuits. The output of $U 5$ is connected also to a switchable low-pass filter composed of U5b, L6, L7, L9, L10, C36, C37, C42, C43, C45 and C46. This filter eliminates most of the local-oscillator signal at the input of the limiting amplifier U8. A level-shift circuit, which consists of CR11, CR12, C57 and R71, translates the limited if. signal to TTL levels in order to operate U9--a monostable multivibrator. The duty cycle, and thus the average value, is proportional to frequency. R64 sets the operating level of U6b to zero volts, d.c., when the intermediate frequency is 400 kHz .
(4) The output of U6b is connected to integrating amplifier U6a through a voltage divider formed by R58, R60. This attenuation is needed to preserve low-frequency f.m. response at high carrier frequencies. CMOS switch U7 can be programmed to "dump" the integrator or to bypass the input voltage divider on command from the logic circuits. The output of the integrator is resistively coupled to the varactor diodes CR9 and CR10.
(5) The local oscillator, composed of FET 08 and associated components, is voltage-tuned. The frequency is determined by a tuned circuit consisting of L2 and varactor diodes CR9 and CR10. As the voltage at the ouput of $U 6 a$ varies from +11 to -11 volts, the oscillator's
frequency changes from less than 30 MHz to approximately 40 MHz . Level shifter Q7 increases the signal to TTL-compatible levels to drive both U3d (a buffer), and U1b (a divide-by-two stage). U2 and U3a-C are configured as a programmable counter, able to divide by four, by five, or by six, as controlled by the logic circuitry. By successively changing the divide modulus, three overlapping bands (extending together over one octave), are generated.
(6) The sampling pulses are generated by the step-recovery diode CR3, amplifier Q1, and transformer T1. Initially, diode CR3 is forward biased from the +5 volt supply through R5. Ula generates a narrow pulse from the output of the counter. This pulse, amplified by Q1, drives the step-recovery diode into reverse conduction; however, CR3 does not "open" until all of its stored charge is depleted. At that time the diode recovers and produces a large narrow pulse, which is coupled to the sampling bridge through T2, a balun transformer. The output of $T 2$ is two nearly equal opposite-polarity pulses. If the two pulses were exactly equal and opposite, they would cancel one another at the input and output of the sampling bridge. Since such equality is never the case, however, R14 is adjusted to null the bridge-input signal--and thereby the signal fed out of the RF IN connector.
(7) Frequency acquisition occurs in the following manner: If no carrier is present at the input ($R \mathrm{~F}$ IN), the discriminator level indicates that the frequency is high. The integrator ramps toward the negative supply rail until it has exceeded 11 volts. At that time the integrator is reset to 0 volts, the integrator attenuator is bypassed, and the count-modulus of the band counter is changed. This process continues until a carrier signal is applied to the RF IN connector.
(8) When a carrier is applied, an if. signal will be produced at a frequency that is between zero and one-half of the sampling rate. This signal is hard-limited, then applied to a discriminator which, in turn, causes the integrator to move toward one or the other of the supply rails--depending on whether the i. f. is high or is low. If a valid 400 khz i.f. is produced the inteqrator stops, and the by-pass of the integrator attenuator is removed. If no valid if. occurs, the integrator output. will eventually exceed either +11 or -11 volts. Then the integrator will be reset, and the band-counter modulus will be either increases or decreased. In this way, all. possible input frequencies can be made to produce a valid if.
(9) The capture performance of the system is determined principally by the limiter's gain and the bandwith of the sampler. Weaker signals at the r.f. input (non-harmonically related to the signal of interest) will be supressed, since the largest signal present will drive the limiter to a low-gain state. These weaker signals will appear as f.m. sidebands at the output of the limiter.
b. I.F Circuits. The if. circuits recover the a.m. and f.m. signals from the frequency-shifted input signal. These circuits also provide a sample if. kignal to the front-panel IF OUT connector; in addition, for a.m. measurements, they provide a d.c. signal proportional to the if. level. (Refer to Figure 3-4, a detailed block diagram of the if. circuits.)
(1) The 400 kHz if. signal from the r.f. circuits is connected to amplifier U2 through a low-pass filter that consists of inductors L1 through L3, capacitors C1-C2, and resistors R3, R5 and R6. Variable resistor $R 5$ reduces the filter's amplitude-response variations, which are due to component tolerances. It is adjusted so as to give minimum a.m. indication when an F.m. siqnal is applied. Amplifier U2 has a closed-loop gain of four (approximately), as determined by

Figure 3-4. I.F. Circuits: Detailed Block Diagram

R3, R5, R6 \& R8. The signal is then connected to calibrator switch U3, and a.c. -coupled to DAC U4. The gain of the DAC is determined by the digital byte appearing at inputs B1-B8. The logic circuitry varies this byte in order to maintain the d.c. output of the a.m. detector between 0.5 and 0.6 volts. The amplifier that consists of us, Q3, and associated components, increases the if. level and provides the high output impedance necessary for driving the linear active detector circuit. The signal at the emitter of $Q 3$ is buffered by U8 and routed to the IF OUT connector.
(2) The active detector circuit, which comprises transistors Q4 through Q6, diodes CR6-CR7, and associated components, converts the input current into two half-wave-rectified signals. The circuitry of Q4Q6 yields maximum gain and a high output impedance for driving the feedback network. The two half-wave-rectified signals at the outputs of CR6 and CR7 are added to complete the feedback path.
(3) The output at detector diode CR7 is a signal that contains a d.c. component proportional to if. level, and an a.c. component proportional to modulation depth. This signal is lightly filtered by R47 and C27, and amplified by U9a. The output of U9a is connected to the a.m.-f.m. switch U14.
(4) A portion of the linear active detector's output is coupled to a limiter circuit via impedance transformer Q2 and associated components. The limiter, consisting of CR4, CR5, R22 \& R17, removes most a.m. from the if. signal. The resulting signal is amplified to TTL levels by amplifier Q1, then differentiated by C9, R19 and R20. The TTL gates U6a and U6b amplify the differentiated signal into a narrow TTL pulse to drive U7, a monostable multivibrator.
(5) The period of U7 is 1.25 us, approximately. The network consisting of R43-R46 and CR8 confines the peak-to-peak amplitude of U7's output to four volts. As the intermediate frequency changes, the duty cycle of the multivibrator--and consequently the average value of the waveform--changes proportionally.
(6) The signal is lightly filtered by $R 48$ and $C 28$, then amplified and level-shifted by U9b. The signal is routed to the a.m.-f.m. switch U10, and to the audio circuits.
c. Calibrator Circuits. The calibrator circuits provide the reference calibration signals for the 8210's a.m. and f.m. detectors. See Figure 3-5. (In addition to the circuit description given below, technical information on design and operation of the calibrator circuits appears in Appendix A.)
(1) The 1.79 MHz signal from U5a, pin 8, is connected to the clock input of synchronous counter U9. The counter is configured to selfload its data inputs at the end of each count cycle. By varying the input data with an 874 Hz signal from U1f, pin 2, the divide modulus is changed from four to five. The signal that results synchronously switches from 357.9 to 447.4 kHz , producing an average frequency of 402.6 kHz and deviation of $89.48 \mathrm{kHz}, \mathrm{p}-\mathrm{p}$. This signal is used to calibrate the f.m. discriminator. The signal is connected to data selector $U 12$, along with a signal at 447.4 kHz from U3, pin 6, and an 874 Hz signal from U1f, pin 2. The outputs of the data selector are controlled by the signals from U-16, pins 39 and 17. During the calibration cycle U16, pin 17, is "low;" pin 36 is set "high" for a.m. calibration, and "low" for f.m. calibration.
(2) When the calibration routine initially selects AM FUNCTION, the outputs of the data selector are the signal from U3, and the 874Hz signal from U1f, pin 2. The 447.4 kHz signal is routed through a low-pass filter consisting of $\mathrm{L} 1, \mathrm{~L} 2, \mathrm{C} 6, \mathrm{C} 8$ and C 10 to the if.

Figure 3-5. Calibrator Circuits: Detailed Block Diagram

Figure 3-6. A.F. Circuits: Detailed Block Diagram
circuits. This signal is amplified (x2) by A3U1 and applied to the voltage divider A3R7. The analog switch A3U3 is controlled by the $874-H z$ signal from $A 4 U 12$ so as to switch between two taps of the divider. The voltage ratio is exactly two, therefore the equivalent a.m. is 33.33%. This signal is coupled through an attenuator (R11 and R12) and the second half of switch A3U3 to the if. circuitry.
d. A.F. Circuits. The audio circuits process the recovered modulation signal supplied from the a.m. or the f.m. detector circuits--as determined by the front-panel FUNCTION switch. The recovered signal is filtered and converted to a d.c. level, which is then measured; the result is presented on the front-panel LED display. Refer to Figure 3-6.
(1) The signal from the output of the a.m.-f.m. switch U1O, is filtered by active filter U9c and associated components. This filter is part of a three-pole 60 kHz filter, which removes most of the if. component from the recovered signal. The filtered signal is then a.c. coupled to a 20 dB attenuator: R59, R60. CMOS switch U11 selects either the signal, or the attenuated signal, as determined by the front-panel RANGE switch. Additionally, the logic circuitry can program U11 to disconnect the recovered signal in order to prevent audio-circuit overload when the instrument is unlocked.
(2) The signal is then amplified (x11) by U9d and is coupled to the 15 kHz filter, the 3 kHz filter, and the $750 \mathrm{\mu s}$ de-emphasis network. U12a and associated components form the 15 kHz filter; U16b and associated components form the 3 kHz filter. Both are three-pole Butterworth types. The $750 \mu \mathrm{~s}$ de-emphasis network is a single RC section: R69, C45. A jumper circuit is provided to give the option of connecting the de-emphasis network either before or after the measuring circuits.
(3) CMOS switch U13 selects one of the three filters, as determined by the front-panel FILTER switch. In addition, the logic circuitry can program U13 to select--during calibration--a filter consisting of R67, R70, R72, C43, C46 and C48. One of the outputs of U13 is amplified (x2.8) by U14 and routed to the front-panel AF OUT connector. The other output is buffered by voltage-follower U12c and a.c. coupled to U15, an auto-zero switch. U15 is operated by the logic circuitry to disconnect the recovered signal for a period of time adequate to determine the output of the peak detectors with no input. The switch is then closed, and the modulation signals are connected through buffer U12d to the peak detectors.
(4) The positive-peak detector consists of $U 24$, U21a, CR1, CR3 and C18. During the positive excursion of the modulating signal, the output of U 24 is driven positive; C 18 then charges through CR1. U21a buffers the voltage across C18, and adds a small offset. When the output of $U 21 a$ reaches a value equal to the peak of the waveform plus a small increment, the output of U 24 goes negative and thus terminates the charging. The voltage at the output of $U 21 a$ is then equal to the positive peak of the modulating signal.
(5) Similarly, U23, U21b, CR4, CR6 and C17 constitute a negative-peak detector. In addition, $U 22$ provides a means for resetting both detectors for auto-zero measurements.
e. Logic Circuits. The logic circuits generate all control and display functions in the 8210. The logic circuits consist of a CPU, 4096 bytes of ROM, 2048 bytes of RAM, two PIA's, a DAC, and several IC gates and drivers.

The CPU, U8, is controlled by a program stored in ROM (U11). Temporary program variables and subroutine return addresses are stored in RAM (U13). The control functions of the 8210 are directed by U16, a PIA; keyboard

Figure 3-7. Logic Circuits: Detailed Block Diagram
and display functions are directed by the PIA U17. See Figures 3-7 and 3-8.
(1) The control program initializes the RAM and PIA circuits and checks the status of the test switch during the power-up sequence. The display is then enabled, and interrupt processing of the keyboard and the display begins. As each digit of the display is updated, each row of keys is tested simultaneously, and any key closures are detected. The calibration sequence then starts; when it ends, the main program loop begins. The latter places the highest priority on successful frequency acquisition, then on establishing the proper if. level, and finally on measuring the recovered signal. The program checks level and frequency each time through the main loop, so if. errors are detected immediately. When proper operating parameters are established, the recovered signal is processed.
(2) The program executes an auto-zero cycle each time a measurement is made. The audio signal is turned off, the peak detectors are reset and released, and both detectors are read. The information is stored temporarily. The peak detectors are reset, audio is turned on, and the detectors are released. They are read again and the "zero" information is subtracted. The display is then updated with the data determined by the setting of the frontpanel PEAK switch.
(3) All d.c. voltage measurements are made by the successive - approximation A-D converter consisting of U7, U4, Q1, and associated components. The successive trial values are software generated, and sent to the 12-bit DAC (U7) via the address bus of the CPU. An I-O read cycle (signalled by $I O R Q=R D=L O$) returns the comparison (made by U4) of the DAC value and the input d.c. signal on data line D7. A complete conversion requires 12 succesive tests to converge within 1 LSB. U2 serves as a fixed-gain buffer to isolate U20, the CMOS multiplexer, from the A-D converter circuit's low input impedance.
(4) The CMOS multiplexer, U20, is operated by the program to select various voltages from the 8210's circuits. Both peak detectors are
connected to it, as are the outputs of the integrator and the discriminator from the r.f. circuits, and the d.c. level from the a.m. detector. The a.m. detector output is filtered by R21 and C56 to provide one a.m.-level input and by R20 and C15 to provide another. The two a.m. detector inputs are used during if. level setting and a.m. depth measurements: the moderately filtered one for testing the level, the heavily filtered one for computing a.m.
(5) U1b, U1d, and U5e constitute a crystal-controlled oscillator, with the 3.58 MHz crystal frequency divided by a factor of two by U5a. The output of U5a is connected to the clock input of the CPU. The 3.58 mHz signal is also divided by a factor of 4096 by U3, to generate the 1.1 ms interrupt signal. U1b is clocked by this signal going high, which activates the INT line of the CPU and causes an interrupt to occur. The $C P U$ recognizes the interrupt; it acknowledges by setting lines IORQ and Ml low. Thus U5b is reset, and the interrupt condition is cleared. The interrupt program updates the display and interrogates the keyboard, then returns to the main program.
(6) U10 decodes the address lines to enable the IC's of ROM, RAM, and PIA. The program ROM is located from adress O to FFF hex; the RAM is located at addresses 2000 to 27 FF hex; the display PIA, IC7, is located at address 4000 hex; and the control PIA, IC6, is located at address 6000 hex.
(7) A circuit composed of U1a, U1c, R1, C1 and CR1 resets the CPU and PIA IC's at power-up.
f. Power-Supply Circuits. The power-supply circuits provide d.c. operating power for all other circuits of the instrument. Regulated output voltages of $+15,-15,+5(L),+5$, and -7.5 volts are provided. The power supplies are designed to operate from a 100 , 120, 220 , or 240 volt (nominal) a.c. power source. Refer to Figures 6-1 and 6-2.
(1) Power is applied to the primary windings of power transformer T1 through the power connector P1, line fuse F1, line-voltage selector switch S1, and the front-panel LINE switch. $S 1$ is set by the user in accordance with the available a.c. power source.
(2) two separate secondary windings of $T 1$ supply a.c. voltages to the rectifier circuits, through connector J6. Bridge rectifier CR8 and capacitor C23 generate an unregulated d.c. output, which supplies power to U26 (a five volt, three-terminal regulator). CR1O and CR15 protect the regulator from reverse voltages during power-on and power-off transients. C26 and C33 improve the transient response of the regulator. The unregulated output of CR8 also is connected to a second regulator, U 25 , which is enclosed in the feedback loop of U29C. This connection produces a precision +5 volt supply for the analog circuitry of the 8210.
(3) The reference output of U7 is filtered by R31b and C34, and applied to pin 3 of U29a. This provides a reference for the generation of the +15 volt supply. R31 is actually an array of eight matched $10 \mathrm{k} \Omega$ resistors, three of which are connected in series between +15 volts and ground. Since the junction of R31a and R31c is connected to pin 2 of U29a, the feedback loop will cause the voltage at this point to be +10.00 volts within the offset of $U 29 a$. Consequently, the voltage at the junction of R31c and R31e will be +5.00 volts. This voltage becomes the reference for $U 29 \mathrm{c}$, which generates the precision +5 volt supply.
(4) The -15 volt supply is generated by $U 28$ and U29b, and associated components. A sample of the regulated output voltage of the supply,
developed by the resistive divider composed of R31d and R31f, is compared to ground. Error voltages are amplified by U29b, and are coupled to regulator U 28 in order to adjust the output voltage so as to reduce the error. In this manner the -15 volt supply is made to track the +15 volt supply.
(5) One additional supply voltage is generated; its components are a resistive divider (R31h and R31g), and U29d. The latter is connected as a voltage follower in order to buffer the -7.5 volts at pin 5.
(6) All regulators are protected from reverse bias by diodes both from their outputs to ground, and from their outputs to inputs.
(7) Capacitors at input and output terminals improve the transient response of the supplies.
(8) Diodes CR12, CR14 and CR16 ensure proper start-up of the supplies.

4-1. INTRODUCTION
This section contains maintenance and adjustment instructions for the Model 8210. Symptomatic and systematic troubleshooting procedures for localizing a malfunction are given, as well.

4-2. TEST EQUIPMENT REQUIRED
The test equipment that is required for maintenance and adjustment of the Model 8210 is listed in Table $4-1$, below. Other models of test equipment that meet or exceed the Critical Specifications may be used instead.

Table 4-1. Required Test Equipment for Maintenance Adjustment

EQUIPMENT	CRITICAL SPECIFICATIONS	$\begin{aligned} & \text { SUGGESTED } \\ & \text { MODEL } \end{aligned}$
Signal Generator	A.M.-F.M. O.O1 to 520 MHz. -30 to +10 dBm .	```Boonton Electronics 102E-19```
Oscilloscope	100 MHz Bandwidth. 5 mV Sensitivity.	Hewlett-Packard 1740A
Audio Oscillator	20 Hz to 75 kHz . Constant level of 110 mV , with low distortion.	$\begin{aligned} & \text { Hewlett-Packard } \\ & 204 \mathrm{C} \end{aligned}$
$\begin{aligned} & \text { A.C. } \\ & \text { Voltmeter } \end{aligned}$	10 mV to 2 V . Accuracy 1 s , 50 Hz to 1 kHz .	```Boonton Electronics 9 AD```
Digital D.C. Voltmeter	100 mV to 20 V . Accuracy 0.158 at 15 V .	$\begin{aligned} & \text { Data Precision } \\ & 1350 \end{aligned}$
Frequency Counter	20 Hz to 5 MHz . Sensitivity 100 mV .	$\begin{aligned} & \text { Data Precision } \\ & 5740 \end{aligned}$
Signature Analyzer	> 3.5 MHz Operating Frequency.	$\begin{aligned} & \text { Hewlett-Packard } \\ & 5004 \mathrm{~A} \end{aligned}$

4-3. LOCATION OF MAJOR ASSEMBLIES
See Figures 4-1 and 4-2 for the location of the major assemblies of this instrument.

4-4. REMOVAL OF MAJOR ASSEMBLIES AND PARTS
a. Instrument Covers.
(1) Disconnect all signal cables and the power cord from the 8210.
(2) Remove two 4-40 screws securing the top cover at the rear panel.

Digital/Power Supply PCB

> (A4)

Figure 4-1. Model 8210: Top View with Covers Removed

Figure 4-2. Model 8210: Bottom View with Covers Removed

4-4a, Continued.
(3) Remove the cover by lifting up and toward the rear of the unit.
(4) Turn the instrument over and remove the two \#4-40 screws securing the bottom cover.
(5) Remove the bottom cover as in Step (3).
b. R.F.-Assembly Cover.
(1) Remove the $8210^{\prime} \mathrm{s}$ covers as in 4-4a.
(2) Place the instrument on a smooth working surface, with the bottom side up.
(3) Remove the nine \#4-40 screws that secure the R.F.-Assembly cover.
(4) Push the cover toward the rear of the instrument and lift the front of the cover upwards.
(5) Pull the cover toward the front of the instrument and remove it.
c. R.F. Circuit Board.
(1) Remove the instrument's covers (4-4a).
(2) Remove the cover of the r.f assembly (4-4b).
(3) Remove the if. connection at the r.f. circuit board.
(4) Turn the instrument over and disconnect ribbon connector A1P4.
(5) Remove the five \#4-40 screws and the one hex standoff securing the circuit board.
(6) Carefully slide the circuit board toward the rear of the instrument to disengage the r.f. input connector.
(7) Lift the circuit board out of the instrument.
d. I.F.-A.F. Circuit Board.
(1) Remove the instrument's covers (4-4a).
(2) Remove the if. connection at the rear of the i.f.-a.f. circuit board.
(3) Disconnect both ribbon connectors on the left edge of the circuit board.
(4) Disconnect both two-pin connectors at the front edge of the circuit board; disconnect the two-pin connector at the right edge of the circuit board.
(5) Remove the five \#4-40 screws securing the circuit board, and lift out the board.
e. Rear-Panel Assembly.
(1) Remove the instrument's covers (4-4a).
(2) Disconnect the power connector, A1P14.
(3) Disconnect the power-switch connector, A1P15.

4-4e, Continued.
(4) Remove three \#6-32 screws securing the rear panel to the chassis.
(5) Remove two 44-40 screws securing the rear panel to the power-supply heat sink.
(6) Pull the rear panel away from the chassis.
f. Digital Circuits and Power-Supply Board.
(1) Remove the instrument's covers (14-4a).
(2) Disconnect the four ribbon connectors A1P7, A1P8, A1P9 and A1P11.
(3) Disconnect pin connector A1P13.
(4) Disconnect two-pin connector A1P10.
(5) Remove the rear-panel assembly (4-4e).
(6) Remove seven \#4-40 screws securing the circuit board, and lift the board out of the chassis.
g. Display Circuit Board (Access or Removal).
(1) Remove the instrument's covers (4-4a).
(2) Remove three \#4-40 screws securing the top trim-strip extrusions and grounding clip.
(3) Grasp the trim strip by its edges and pull it away from the instrument's frame.
(4) Carefully remove the plexiglass display window.
(5) Turn the instrument over and remove the bottom trim-strip extrusion as in steps (2) and (3) , above.
(6) Tilt the bottom of the front trim panel away from the instrument until all switches are cleared, then pull the front panel up and out to clear the center trim extrusion.

NOTE : This completes the procedure for gaining access to the Display Circuit board. If it is necessary to remove the board, carry on as follows:
(7) Disconnect the ribbon-cable connector from the rear of the board.
(8) Disconnect the power-switch connector, A1P15.
(9) Disconnect the power-indicator connector, A1P13.
(10) Remove the two \#4 flat-head screws securing the center trim extrusion. Lift out the extrusion.
(11) Remove the four \#4-40 screws securing the circuit board, and lift the board out of the instrument.

4-5. REMOVAL OF DETAIL PARTS
In the design of the 8210, much thought was given to maintainability. Most detail parts are readily available for checking and replacement once the instrument's covers and shields are removed. Solid-state components, on plated-through circuit boards, are used throughout the instrument. Sockets are used for all active components except for the power-supply regulators.

Standard printed-circuit-board maintenance techniques are required for the removal and replacement of parts. Excessive heat must be avoided; a lowwattage soldering iron, together with suitable heat sinks, should be used for all soldering and unsoldering operations.

4-6. PRELIMINARY CHECKS
a. Visual Check. If equipment malfunction occurs, perform a visual check of the 8210 before performing electrical tests. Visual checks often help to isolate, quickly and simply, the cause of a malfunction. Inspect for signs of damage caused by excessive shock or vibration, such as: broken wires, loose hardware, and loose electrical connections. Then check for signs of overheating, which may be caused by an electrical short-circuit or an accumulation of dirt and other foreign matter.

Correct any problems discovered through the visual check. If the trouble persists, proceed with the electrical checks.
b. Power-Supply Check. Improper operation of the 8210 may be caused by incorrect d.c. operating voltages. Before proceeding with any other electrical checks, perform the power-supply checks given in Table 4-2.

*** WARNING ***

Line voltages up to 240 volts, a.c., may be encountered in the power-supply circuits. To protect against electrical shock, observe suitable precautions when connecting and disconnecting test equipment, and when making voltage measurements.

Table 4-2. Power-Supply Checks

STEP	PROCEDURE	NORMAL INDICATION
1)	Set the LINE switch to ON. Using a digital voltmeter, measure the d.c. voltage at the +15 V supply rail, A4TP5.	14.75 to 15.25 V
2)	Using a digital voltmeter, measure the d.c. voltage at the -15 V supply rail, A4TP2.	-14.75 to -15.25 V
3)	Using a digital voltmeter, measure the d.c. voltage at the +5 V supply rail, A4TP4.	4.90 to 5.10 V
4)	Using a digital voltmeter, measure the d.c. voltage at the -7.5 V supply rail, A4TP3.	-7.33 to -7.68 V
5)	Using a digital voltmeter, measure the d.c. voltage of the $+5(\mathrm{~L})$ supply (pin 24, A4Ull).	4.75 to 5.25 V
6)	Using an oscilloscope, measure the a.c. ripple at the $+15,-15,+5$ and -7.5 V supply rails.	Less than 1 mV , peak-to-peak.

In case of abnormal indications. refer to Table 4-11, a systematic troubleshooting chart for the power supplies.
a. Concepts. Logical trouble-localization involves three major procedures:
(1) symptomatic troubleshooting, used to localize the cause of a malfunction to a major circuit group;
(2) systematic troubleshooting within the affected circuit group, used to localize the cause to a specific circuit or stage; and,
(3) voltage measurements, waveform analysis, or signature analysis--all used to isolate the defective part.
b. Symptomatic Troubleshooting: Discussion. The design of the Model 8210 facilitates symptomatic troubleshooting. Various "condition codes" are displayed both" as a guide to proper operation and to localize a malfunction to a major circuit group (see Table 4-3). Moreover, certain circuit groups can be switched in and out of operation by an internal seven-position Test Switch (refer to Table 4-4). with a grasp of the detailed block diagrams (Figures 3-1 through 3-8), and of the function of each position of the Test Switch, along with manipulation of the front-panel controls, the user is well on the path to localizing the cause of a malfunction to one or more of the major circuit groups. In addition, a variety of symptoms is listed in Table 4-5, together with the probable causes of the malfunctions.
c. Systematic Troubleshooting: Discussion. Once you have localized the cause of a malfunction to a major circuit group, refer to the appropriate Systematic Troubleshooting Chart (Tables 4-6 through 4-11). These charts give instructions to help further localize a cause of malfunction to a particular stage or even to the component of that stage likely to be causing the trouble.
d. Measurements and Analyses: Discussion. The 8210 uses both analog and digital circuitry. Tables $4-6$ through 4-11, information on the schematic diagrams (Figures 6-1 through 6-7), and waveform data in Table 4-12, are intended to assist in troubleshooting the analog circuits. Frequently this will suffice--without having to look into the digital circuitry. In case the tests in the analog portions have not solved the problem, some of the troubleshooting tables continue with tests (still using an oscilloscope and voltmeter) , for the digital portions of the circuits.

However, the digital circuitry of the 8210 uses a microprocessor in a busoriented system. In such circuits, d.c.- and a.c.-measuring instruments are not always adequate to isolating problems, and a new technique, called signature analysis, has been developed. The troubleshooting chart for the 8210's logic circuits accordingly has tests that utilize an oscilloscope, and also has tests that call for signature analysis.

A complete discussion of signature analysis is beyond the scope of this manual; however, a brief description will aid in understanding its use in maintenance of the 8210 .

Long, complex data streams are present in any microprocessor bus-oriented system. In signature analysis, with the system operating at normal speed, these data streams are compressed into concise, easy-to-interpret readouts \{signatures) measured at pertinent data nodes. By choosing the appropriate measuring periods, or windows, signatures become unique: one, and only one signature occurs at any given node of the instrument in normal operation.

Using a test device known as a signature analyzer you can therefore proceed through the instrument in an orderly fashion: you compare the signature you find at each specified node to the signature that the instrument's manufacturer tells you ought to be at that node, until an improper signature is obtained. General at that Point it is possible for you to deduce which component is the most probable cause of the malfunction.

Table 4-3. Condition-Code Displays

DISPLAY	MEANING
CAL	Instrument in calibration (takes approximately 30 seconds).
ccl	8210 has failed to calibrate properly the a.m. channel.
cc2	8210 has failed to calibrate properly the f.m. channel.
----	8210 is unlocked, due to improper r.f.-input frequency or level or to malfunction in the r.f. circuits.
--	8210 is in unleveled state, due to low modulation frequency or to a malfunction in the i.f. circuits.
IFLO	R.F. input too low in amplitude, or there is a malfunction in the r.f. circuits.
IFHI	R.F. input too high in amplitude, or there is a malfunction in the r.f., i.f., or a.f. circuits.
dSP	The panel meter is over-ranged.

Table 4-4. Troubleshooting Test-Switch Chart

SWITCH POSITION	FUNCTION	AID IN TROUBLESHOOTING THE FOLLOWING CIRCUITS
1	Disables the automatic frequency-lock loop.	a) Oscillator b) Band-switching c) Attenuator d) Discriminator e) Integrator f) Logic
2	Disables the automatic gain control loop.	a) Automatic gain control b) Logic
3	Disables the frequencycontrol loop and the auto-zero circuit.	a) Audio b) Peak Detector c) Voltmeter
4	Operates data-acquisition circuits in an endless loop.	a) Voltmeter b) Logic

$\begin{aligned} & \text { SWITCH } \\ & \text { POSITION } \end{aligned}$	FUNCTION	AID IN TROUBLESHOOTING THE FOLLOWING CIRCUITS
5	LED test: enables the display (lights all segments), decimal points \& annunciators.	a) Logic; ports A, B, \quad b C of Ul7 and associated buffers. b) Display circuit-board assembly.
5 Plus LEVEL	Tests I/O port of 116 . Loads three output ports with hex 55 or hex $A A$, depending upon PEAK setting.	a) Logic; ports $A, B, \& C$ of Ul6--used for logic control of r.f., i.f., a.f. and calibrator circuits.
6	8210 displays month and year of the installed program.	a) Facilitates testing (signature analysis) of special or updated versions. b) Aids in ordering correct spare PROM's.
7	Operates calibrator circuits in an endless loop.	a) Calibrator b) I.F. c) A.F.

Table 4-5. Symptomatic Troubleshooting Chart

SYMPTOM	PROBABLE CAUSE OF MALFUNCTION
After power-on, instrument fails to display CAL.	One of the Test Switches (A4SL) is on; or defective logic circuits (refer to Table 4-9).
During calibration cycle, 8210 displays ccl.	Defective calibrator circuits (see Table 4-10); or defective i.f. circuits (refer to Table 4-7).
During calibration cycle, 8210 displays cc2.	Defective i.f. circuits (refer to Table 4-7).
The 8210 fails to exit from CAL mode.	Defective logic circuits (refer to Table 4-9).
Instrument fails to lock.	Defective r.f. circuits (Table 4-6).
8210 locks but fails to level properly.	Defective i.f. circuits (refer to Table 4-7).
8210 displays IFLO when proper aignal is applied to RF IN.	Defective i.f. circuits (refer to Table 4-7).
8210 displays IFHI when proper signal is applied to RF IN.	Defective i.f. circuits (refer to Table 4-7).

Table 4-5. Symptomatic Troubleshooting Chart (Continued)

SYMPTOM	Probable cause of malfunction
A.M. incorrect or inoperative.	Defective r.f. circuits (Table 4-6); defective a.f. circuits (Table 4-8).
F.M. incorrect or inoperative.	Defective a.f. circuits (Table 4-8).
One or more low-pass filters inoperative.	Defective a.f. circuits (refer to Table 4-8).
One or more peak indications incorrect.	Defective a.f. circuits (refer to Table 4-8).
One or more panel switches inoperative.	Defective logic circuits (refer to Table 4-9).
One or more switch annunciators inoperative.	Defective logic circuits (refer to Table 4-9).
All digital panel-meter displays incorrect or inoperative.	Defective logic circuits (refer to Table 4-9).
8210 does not range properly.	Defective a.f. circuits (Table 4-8).
A.F. output missing or incorrect.	Defective a.f. circuits (Table 4-8).
I.F. output missing or incorrect.	Defective i.f. circuits (Table 4-7).

Table 4-6. Systematic Troubleshooting Chart: R.F. Circuits

Table 4-6. Systematic Troubleshooting Chart: R.F. Circuits (Continued)

STEP	procedure	INDICATION IF	INDICATION IS ABNORMAL	
23) Set Pos. 2 on Test Switch (A4Sl) "off." Turn power off, then on. Allow completion of the calibration cycle. To RF IN apply a 30 MHz , -10 dBm signal with 50% 1 kHz a.m. Connect the scope to the junction of A3L3 and A3R3.		400 kHz sine wave with a.m.; amplitude approx. 0.82 V , peak-to-peak.	Problem in the i.f. filter circuit. Use waveform measurements to isolate the problem	
24) Connect 'scope to pin 6 of A3U2.		Same as Step 23, but amplitude increased to about 3.5 V , p-p.	Isolate defective com-	
		ponent in circuit of		
		input amplifier, using voltage and waveform measurements.		
25)	Connect 'scope to pin 8 or 9 of A3U3.		A TTL high.	Defective 16-conductor ribbon cable $W 5$ (or
				pin connections): or
		A TTL low.	malfunction in logic circuits (Table 4-9);	
26) C	pin 6 or 11 of A3U3.		or replace defective	
			A3 U3.	
27) Increase level of generator to more than +13 dBm .		Display shows If H I.	Defect in circuits of: a.f. (see Table 4-8); r.f. (Table 4-6); or logic (Table 4-9).	
28)	Reduce generator's level to -40 dBm .	Display shows Iflo.	Same as Step 27.	

Table 4-8. Systematic Troubleshooting Chart: A.F. Circuits

Table 4-8. Systematic Troubleshooting Chart: A.F. Circuits (ContinueD)

STEP PROCEDURE	INDICATION I	Indication is abnormal
18) Connect 'scope to A3J5. Depress the button labeled $750 \mu \mathrm{~s}$. 19) Connect 'scope to AF OUT. Depress the button labeled 15 kHz . 20) Connect 'scope to A4J5. 21) Connect 'scope to pin 10 of A4U22. 22) With a 2nd 'scope probe, connect to pin 6, A4U23 (see Table 4-12, Fig.9, for 'scope settings). Connect r.m.s. voltmeter to AF OUT.Set a.f. oscillator to 50 Hz \& adjust output for 2 V, r.m.s., on $V M$. 23) Connect probe B to pin 6, A4U24. See Table 4-12, Fig.10, for 'scope settings. 24) Connect probe B to pin 3. A4U20.	Same as Step 17, but approximately 670 mV , peak-to-peak. Same as Step 16. Same as Step 17. 5 volt logic signal. See Waveform 9 in Table 4-12. See Waveform 10 in Table 4-12. See Waveform 11 in Table 4-12.	Defective A3Ul2, or shorted two-conductor cable W7. Defective Al P2, AlW2, or AlJ4. Repair or Replace $W 7$ (two-conductor cable). Malfunction in logic circuits (Table 4-9). Isolate defective components by waveform measurements. Suspect A4U22, A4U21, A4U23, or open A4CR4, A4CR6. Isolate defective component by waveform measurements. Suspect A4U22, A4U21, A4U24, or open A4CR5, A4CR7. Defective A4U20; or malfunction in logic circuits (Table 4-9).
- VOLTMETER SECTION		
25) Power off. Set Test Switch Pos.\#4 "on." Power on. "Short" pins 1 and 2 of A4TP6. 26) Check the logic on pins 9, 10 \& 11 of A 4 U 20 . 27) Connect d.c. voltmeter to junction of A 4 R 20 and A 4 Cl 5. 28) Move VM probe to pin 3 of A4U20. 29) Move VM probe to pin 6 of A4U2.	All high. Indicated d.c. voltage should be approx. 1 V . Same as Step 27. Indicated d.c. voltage 2.4 to 2.47 volts.	Malfunction in logic circuits. See Table 4-9, Steps 49 and 50. Check for open circuit at pin 2 of cable W6 (16-conductor cable). Replace defective A4U20. Replace defective A4 U2.

Table 4-9. Systematic Troubleshooting Chart: Logic Circuits

STEP	Procedure	INDICATION IF	INDICATION IS ABNORMAL
1)	Connect 'scope to pin 10 of A4Ul.	3.579 MHz TTL logic signal.	Replace A4Ul, A4Yl, or A4C2.
2)	Connect 'scope to pin 8 of A4Ul.	Same as Step 1.	Replace A4U5.
3)	Connect 'scope to pin 6 of A4U8.	$1.789 \mathrm{MHz} \mathrm{TTL} \mathrm{signal}$.	Replace A4U5 or A4U9.
4)	Connect 'scope to pin l of A4U3.	Approximately 874 Hz CMOS logic signal.	Replace A4U3.
5)	Connect 'scope to pin 6 of A4U3.	447.35 kHz CMOS logic signal.	Replace A4U3 or A4Ul2.
6)	Connect 'scope to pin 26 of A4U8.	TTL high.	Replace A4Ul, or check for shorted A4Cl.
7) sign Tabl Run test	Power off. Remove jumper A4J8. Connect nature analyzer per e 4-9a. Power on. signature-analysis of the address bus.	See Table 4-9a.	Defective A4UB, or a "short" in circuitry.
8) line	Connect 'scope in turn to data bus Es D0 - D7 of A41J8.	TTL signals on all lines.	Same as Step 7.
9) pins	Connect 'scope in turn to remaining of A4IJB.	TTL signals on pins 19, 21, $27 \& 28$. Pins 17. 18, 20, 22, 24 and 25 are TTL high.	Same as Step 7.
$10)$	Connect 'scope to pin 8 of A4U6.	TTL $\operatorname{logic~signal~}$	Defective A4U6, or a "short" in circuitry.
11) 4-9b the	Connect signature analyzer per Table and run test on तecoder: A4Ulo.	See Table 4-9b.	Defective A4Ul0, or a "short" in circuitry.
$\begin{aligned} & 12) \\ & 4-9 c \end{aligned}$	Connect signature analyzer per Table ; test PROM A4Ull.	See Table 4-9c.	Defective A4Ull, or a "short" in circuitry.
13)	This step deleted, 12/83		
14) pin	Replace jumper A4J8. Connect 'scope to 18 of A4U8.	TTL high.	Replace A4Ul3 or A4U6.
15)	Connect 'scope to pin 3 of A405.	TTL logic signal, about 874 Hz .	Defective A4Ul, or a "short" in circuitry.

STEP	PROCEDURE	INDICATION	INDICATION IS ABNORMAL
	Connect 'scope to pin 6 of A4U5.	TTL $\log i c$ signal, 1.15 ms period.	Replace A4U5, A4U6, or A4U8.
	Connect 'scope to pin 6 of A4U6.	TTL logic signal.	Replace A4U6 or A4Q4.
	Connect 'scope to pin 8 of A4U6.	TTL logic signal.	Defective A4U6, or a "short" in circuitry.
19)	Connect 'scope to pin 35 of A4Ul6.	TTL low.	Replace A4U1.
20)	Connect 'scope to pin 35 of A4Ul7.	TTL low.	Same as Step 19.
21)	Connect 'scope in turn to pins 18 ough 22 of A4Ul7.	TTL logic signal.	Replace A4Ul7 or A4U18; or check for a "short" in circuitry.
22)	Connect 'scope in turn to pins 11 ough 15 of A4Ul8.	Same as in Step 21.	Defective A4Ul8, or a "short" in circuitry; or defective A4R16.
23)	Connect 'scope to pin 4 of A4Ul7.	TTL low.	Defective A4Ul7, or a "short" in circuitry.
24)	Depress the 15 kHz pushbutton.	See Waveform 12 in Table 4-12.	Check for open circuit: 16-conductor cable w8 (and its connections); also, A4CR8 A4S8.
25)	Depress the +PEAK pushbutton.	Same as in Step 24.	As above: W8 (etc.), A4CR9, A4S9.
26)	Depress the FM pushbutton.	Same as in Step 24.	As above: WB (etc.), A4CR10, A4S10.
27)	Depress the 100 RANGE pushbutton.	Same as in Step 24.	As above: W 8 (etc.), A4CR11, A4S1l.
28)	Connect 'scope to pin 3 of A4Ul7.	TTL low.	Defective A4Ul7, or a "short" in circuitry.
29)	Depress the 3 kHz pushbutton.	Same as in Step 24.	Replace A4Ul7; check for open circuit in W8 (and its connections). or in A4S4.
30)	Depress the -PEAK pushbutton.	Same as in Step 24.	Check for open circuit in $W 8$ (etc.), \& A4S5.
31)	Depress the AM pushbutton.	Same as in Step 24.	As above: w8 (etc.), A4S6.
32)	Depress the 10 RANGE pushbutton.	Same as in Step 24.	As above: $\mathbf{W 8}$ (etc.), A4S7.

Table 4-9. Systematic Troubleshooting Chart: Logic Circuits (Continued)

Table 4-9. Systematic Troubleshooting Chart: Logic Circuite (Continued)

STEP PROCEDURE	INDICATION IF	INDICATION IS ABNORMAL
47) Connect the 'scope in turn to pins PBO through PB7 of A4Ul6.	Same as in Step 46.	Defective A4Ul6; or a "short" in circuitry.
48) Depress the +PEAK button. Connect the 'scope in turn to pins PBO through PB7, A4Ill6.	Same as in Step 45.	Same as in Step 47.
49) Connect the 'scope in turn to pins PCO through PC7 of A4Ul6.	Same as in Step 45.	Replace A4Ul6 or A4U20; or check for a "short" in their circuitry.
50) Depress the -PEAK button. Connect the socope in turn to pins PCO through PC7, A4Ul6.	Same as in Step 46.	Same as above.
51) Set Test Switch Pos. \#5 "off." Power off. Power on.	Instrument is returned to operating condition.	

Table 4-9a. Signature-Analysis Chart: Address Field

PROCEDURE: Power off. Remove jumper A4J8, located on the Power-Supply-and-Digital-Circuits board. Set the Signature Analyzer's controls, and connect it, as shown below. Turn the 8210 "on".

SIGNATURE ANALYZER SWITCH SETTINGS \& CABLE-CONNEC'IION POINTS:

Function	Switch Setting	Cable Connection			
START	Γ	Pin	5 of	A4U8	(TP7)
STOP	L	Pin	20 of	A4U7	(TP7)
CLOCK	L	Pin	8 of	A4U6	(TP8)

Item	SIGNATURE ANALYZER PROBE CONNEC'IIONS:				
	Test Point: Pin on A4U8	Correct Signature	Item	Test Point: Pin on A4U8	Correct Signature
Common	29	0000	A7	37	A3Cl
V_{Cc}	11	7550	A8	38	7707
A0	30	H335	A9	39	577A
A1	31	Cl1 3	A10	40	HH86
A2	32	7050	Al1	1	89Fl
A 3	33	0772	Al 2	2	AC99
A4	34	C4C3	Al 3	3	PCF3
A5	35	AA08	A14	4	1180
A6	36	7211	Al 5	5	755 U

Table 4-9b. Signature-Analysis Chart: Decoder Circuit

PROCEDURE: Same as in Table 4-9a.					
SIGNATURE ANALYZER SWITCH SETTINGS \& CABLE-CONNECTION POINTS:					
Function	Switch Setting		Cable Connection		
START			Pin	Of A4U8 (TP7)	
STOP			Pin	of A4U7 (TP7)	
CLOCK			Pin	of A4U6 (TP8)	
SIGNATURE ANALYZER PROBE CONNECTIONS:					
Item	Test Point: Pin on A4U10	Correct Signature	Item	$\begin{aligned} & \text { Test Point: } \\ & \text { Pin on A4Ul0 } \\ & \hline \end{aligned}$	Correct Signature
Common	8	0000	CS2	3	868C
+5 V	16	7550	CS3	4	970 C
CSO	1	1817			
CSI	2	$7 \mathrm{FF8}$			

Table 4-9c. Signature-Analysis Chart: PROM A4U11 (June, 1983)*

* To determine date of PROM: Set Pos. \#6 of the Test Switch (A4Sl) to "on". Turn power off, then on. The date of the PROM will appear on the 82l0's display, Reset the Test Switch (all positions "off").

STEP	Procedure	INDICATION I	INDICATION IS ABNORMAL
1) (A4S Depr Conn of A	Power off. Set Pos. $\$ 7$ of Test Switch 1) "on." Power on. ress LEVEL button. nect 'scope to pin 2 44U9.	1.79 MHz TTL logic signal.	Replace A4U9, or bad logic circuits (see Table 4-9).
2)	Connect 'scope to pin 3 of A4U9.	TTL signal, at about 8.74 Hz .	Replace A4U9 or A4Ul2; or defective logic circuits (Table 4-9).
3)	Connect 'scope to pin 9 of A4U9.	TTL signal, switching from 357.9 to 447.4 kHz at an 874 Hz rate.	Replace A4U9.
4)	Connect scope to pin 4 of A4U12.	TTL signal, 447.4 kHz .	Replace A4U12, or bad logic circuits (see Table 4-9).
5)	Connect 'scope to pin 12 of A4Ul2.	TTL signal, 874 Hz .	Same as in Step 2.
6) Depr	Connect 'scope to pin 7 of A4U12. ess the AM button.	TTL signal, 447.4 kHz .	Replace A4U12, or bad logic circuits (Table 4-9, Steps 44-50).
7)	Connect 'scope to pin 9 of A4Ul2.	TTL signal, 874 Hz .	Same as in Step 6.
8)	Depress FM button.	TTL high.	Same as in Step 6.
9) Depr	Connect 'scope to pin 3 of A3U1. ess the AM button.	Sine wave, 447.4 kHz ; approximately 1.9 V . peak-to-peak.	Check for open A4L1, A4L2, A4CB, A4C10, A4Cll, or 16 -conductor cable WS (or its connections); or replace defective A3Ill.
10)	Connect 'scope to pin 6 of A3U1.	Same as in Step 9, but doubled in amplitude.	Replace defective A3Ul.
11)	Connect 'scope to IF OUT connector.	See Waveform 15, Table 4-12.	Bad i.f. circuits. Refer to Table 4-7, Steps 4 through 9, and 15.
12)	Depress FM button	See Waveform 16, Table 4-12.	Replace A4U9; or bad i.f. circuits (see Table 4-7).
13) Depr	Connect 'scope to AF OUT connector. ess the AM button.	$874 \mathrm{~Hz}, 2.5 \mathrm{~V}, \mathrm{p}-\mathrm{p}$. See Waveform 17, Table 4-12.	Bad i.f. circuits (refer to Table 4-7, Steps 4 through 10); or bad a.f. circuits (refer to Table 4-8, Steps through 6, and 14 through 16).

Table 4-11. Systematic Troubleshooting Chart: Power Supply

STEP PROCEDURE	INDICATION	INDICATION IS ABNORMAL
(Line Voltage $=120$)		
1) Connect 'scope to the junction of A4CR8 and A4C23.	8.55 to $9.45 \mathrm{~V}, \mathrm{~d} . \mathrm{c}$. ; ripple approximately 350 mv , peak-to-peak.	Isolate defective component by voltage or waveform measurements.
2) Connect 'scope to the junction of A4CR9 and A4C24.	19.0 to 21.0 V ; ripple approximately 350 mV . peak-to-peak.	Same as above.
3) Connect 'scope to the junction of A4CR9 \& A4C25.	$\begin{aligned} & -19 \text { to -21 V; } \\ & \text { ripple approximately } \\ & 800 \mathrm{mV} \text {. peak-to-peak. } \end{aligned}$	Same as above.
4) Connect voltmeter to pin 4, 6, or 8 of A4U7.	9.9 to $10.1 \mathrm{~V}, \mathrm{~d} . \mathrm{c}$.	Check A4C34 for short circuit; or defective A4U29, A4U7.
5) Connect VM \& 'scope to the junction of A4CR18 and A4C35.	14.75 to 15.25 V ; ripple less than 1 mV , peak-to-peak.	Isolate defective component by voltage measurements.
6) Connect VM \& 'scope to the junction of A4CR19 and A4C36.	$-14.75 \text { to }-15.25 \mathrm{~V} \text { : }$ ripple less than 1 mV . peak-to-peak.	Same as Step 5.
7) Connect VM \& 'scope to pin 7 of A4U29.	7.33 to 7.68 V ; ripple less than 1 mV , peak-to-peak.	Same as Step 5.
8) Connect $V M$ \& 'scope to the junction of A4CR15 and A4C33.	4.75 to 5.25 V ; ripple less than 1 mV . peak-to-peak.	Same as Step 5.
9) Connect VM \& 'scope to the junction of A4CR17 and A4C32.	4.90 to 5.10 V ; ripple less than 1 mV , peak-to-peak.	Same as Step 5.

4-8. ADJUSTMENT AND ALIGNMENT PROCEDURES
This subsection lists all required adjustments and alignment Procedures. Note, however, that adjustment is not a substitute for troubleshooting: be certain that all other possible causes of equipment malfunction have been eliminated before making adjustments.

Connect the equipment, and depress the switches, as shown in Figure 4-3.
a. I.F. Adjustment.
(1) Remove the r.f.-assembly cover (4-4b).
(2) Set the output frequency of the signal generator to 100 mHz , c.w., and the output level to 0 dBm .
(3) Adjust potentiometer A2R65 for a reading of 400 kHz , $\pm 5 \mathrm{kHz}$, on the frequency counter.

Figure 4-3. Test Setup: Adjustment and Alignment
b. R.F. Efficiency and F.M. Rejection.
(1) Replace the r.f.-assembly cover.
(2) Set the oscilloscope to $0.05 \mathrm{~V} /$ division and 1 ins/division.
(3) Set the signal generator to $2 \mathbf{m H z}$, 0 dBm . Apply 100 kHz deviation at a 1 kHz rate. Let the if. to settle to within $\pm 5 \mathrm{kHz}$ of 400 kHz (or, disconnect the 8210's r.f. input, then reconnect it).
(4) Adjust potentiometer A2R10 for a minimum indication on the 'scope.
(5) Set $102 \mathrm{E}-19^{\prime} \mathrm{s}$ r.f. to 3.5 MHz . Wait til if. is $400 \mathrm{kHz} \pm 5 \mathrm{kHz}$.
(6) Adjust potentiometer A3R6 for a minimum indication on the 'scope.
(7) Repeat Steps 4-8b(3) through 4-8b(6) until the adjustment of either potentiometer increases the indication on the oscilloscope.
c. R.F. Sensitivity Adjustment (excepting early models: see Note, below).
(1) Set the 102E-19 to 2 MHz , approx. -29.5 dBm . Remove all modulation.
(2) If the 8210 displays IFLO, slowly adjust potentiometer A3R79* until a numeric display (i.e., a display of residual modulation) appears. * NOTE: Early model 8210's do not have potentiometer A3R79.
d. R.F. Balance Adjustment.
(1) Disconnect the r.f. input to the 8210.
(2) Disconnect the scope from AF OUT and connect it to RF IN.
(3) Set the 'scope to $0.005 \mathrm{~V} / \mathrm{div} ., 50 \Omega$ input, and $0.5 \mu \mathrm{~s} / \mathrm{div}$.
(4) Adjust potentiometer A2R14 for a minimum indication on the 'scope.

Vertical:
l V/division, d.c.
Horizontal:
0.1 us/division.

2 4-6 9

Vertical:
$5 \mathrm{~V} / \mathrm{division}, \mathrm{d.c}$.

Horizontal:
$0.1 \mu s / d i v i s i o n$.

Vertical:
$0.5 \mathrm{~V} / \mathrm{division}, \mathrm{a.c}$.
Horizontal:
0.1 us/division.

FIG. REFERENCE:	
TABLE STEP	

$4 \quad 4-6 \quad 13$

Vertical:
$0.5 \mathrm{~V} / \mathrm{division}$.
Horizontal:
1 us/division.

Vertical:
$0.2 \mathrm{~V} / \mathrm{division}$.
Horizontal:
1 us/division.

6 4-7 11

Vertical:
1 V/division, d.c.
Horizontal:
1 us/division.

FIG. REFERENCE:		SCOPE SETTINGS E
TABLE STEP	WAVEFORM	SIGNAL CONDITIONS

7 4-7
13

Vertical:
$0.2 \mathrm{~V} / \mathrm{divi}$ ion.
Horizontal:
$0.2 \mathrm{~ms} / \mathrm{division}$.

Vertical:

1 V/division, d.c.
Horizontal: 1 us/division.

Vertical (Channel A): $5 \mathrm{~V} / \mathrm{division}$, d.c. Channel-A probe to pin 10 of A4U22.
Trigger on A. Negative trigger.

Vertical (Channel B): $0.5 \mathrm{~V} / \mathrm{division}, \mathrm{d.c}$. Display Channel B.

Horizontal:
Uncalibrated, 10 ms per division.
'SCOPE SETTINGS \& SIGNAL CONDITIONS

Vertical (Channel A): $5 \mathrm{~V} / \mathrm{division}, \mathrm{d.c}$. Channel-A probe to pin 10 of A4U22.
Trigger on Channel A. Negative trigger.

Vertical (Channel B): $0.5 \mathrm{~V} / \mathrm{division}, \mathrm{d.c}$. Display Channel B.

Horizontal:
Uncalibrated, 10 ms per division.

11
 4-8
 24

Vertical (Channel A): $5 \mathrm{~V} / \mathrm{division}, \mathrm{d.c}$. Channel-A probe to pin 10 of A4U22.
Trigger on Channel A. Negative trigger.

Vertical (Channel B): $0.5 \mathrm{~V} / \mathrm{division}, \mathrm{d.c}$. Display Channel B.

Horizontal:
Uncalibrated, 20 ms per division.

Vertical:
$1 \mathrm{~V} / \mathrm{division}, \mathrm{d} . c$.
Horizontal:
l ms/division.

FIG. REFERENCE:	
TABLE STEP	SAVEFORM

13 4-9 39

Vertical:
1 V/division, d.c.
Horizontal:
$0.5 \mathrm{~ms} /$ division.

Vertical:
l V/division, d.c.
Horizontal:
$0.5 \mathrm{~ms} / \mathrm{division}$.

15
 4-10
 11

Vertical:
$0.5 \mathrm{~V} / \mathrm{division}$.
Horizontal:
$0.2 \mathrm{~ms} / \mathrm{division}$.
'SCOPE SETTINGS E SIGNAL CONDITIONS

Vertical:
$0.5 \mathrm{~V} / \mathrm{division}$.

Horizontal: 1 ms/division.

17 4-10
13

Vertical:
$0.5 \mathrm{~V} / \mathrm{division}$.
Horizontal:
$0.5 \mathrm{~ms} / \mathrm{division}$.

5-1. INTRODUCTION

Table 5-2, Replaceable Parts, identifies the manufacturers of components by five-digit groups taken from the Federal Supply Code for Manufacturers. A list of the applicable code groups and manufacturers is given in Table 5-1.

The Table of Replaceable Parts begins with major assemblies, including PC boards complete with all their parts, followed by miscellaneous parts and components not mounted on PC boards. Then all the components of the individual assemblies (including PC boards) are listed.

To simplify ordering, please note the following:
A. When ordering a component or an assembly, the BEC Part Number is all that we need. However, part numbers can suffer changes during transmission and it is safer to include also a brief description. Examples:

1) BEC Part \#200050: Mica Capacitor, $470{ }_{\mathrm{F}} \mathrm{F}, ~ 1 \%$, 500V.
2) BEC Part \#10249: Oscillator PC Board Assembly
B. The number printed on a $P C$ board is not an assembly number; it is the number for the bare board, alone. To order a complete assembly--the board with all its components installed--specify it by the BEC Part Number given in the Assemblies Section of this table.
c. Unless otherwise identified, the number on a schematic diagram or on a parts-location diagram is not an assembly number; it is the number for just the diagram itself.

Table 5-1. Applicable Federal Supply Code Numbers for Manufacturers

00853	Sangamo Electric	28480	Hewlett-Packard Corp.
01121	Allen Bradley Company	31918	ITT Schadow, Inc.
01295	Texas Instruments	32575	AMP
02735	RCA Solid State Div.	32997	Bourns Inc., Trimpot
03888	Pyrofilm KDI	33883	RMC
04222	AVX Ceramics Company	34335	Advanced Micro Devices
04713	Motorola Semiconductor	34649	Intel Corp.
04901	Boonton Electronics	50316	Mini-Systems, Inc.
06383	Panduit Corp.	51406	Murata Corp. of America
06665	Precision Monolithics	51640	Analog Devices, Inc.
06776	Robinson Nugent, Inc.	52464	OKI
07047	Milton Ross	54420	Dage
07263	Fairchild Semiconductor	54426	Buss Fuses
13812	Amperex, Dialight Div.	56289	Sprague Electric Company
14752	Electro Cube, Inc.	56708	Zilog, Inc.
17117	Electronic Molding	57582	Kahgan Elertronics Corp.
19505	Applied Eng'r. Products	59474	Jeffers Electronics, Inc.
19701	Mepco Electra	61637	Union Carbide - Kemet
20307	Arco - Micronics	71279	Cambridge Thermionics
24226	Gowanda Electronics	71450	CTS Corporation
27014	National Semiconductor	73138	Beckman, Helipot Div.
27264	Molex, Inc.	91168	Elmenco
27735	F-Dyne Electronics	95402	Electro Dynamics
27777	Varo Semiconductors	98291	Sealectro Corp.

Table 5-2. Replaceable Parts
Item Description Mfg. Mfr's. Part No. BEC Part No.

Al	Frame Assemblv	04901	08210201 A
A 2	R.F. Boart Assembly	04901	08210801 K
A3	I.F.-A.F. Board Assembly	04901	08210901 J
A 4	Diqital \& Power-Supnly Roard Assemhly	04901	08210701 P
A 5	Disnlay Roard Assemhly	04901	08211001 E
A 5	Line- Switch Connector Assembly	04901	08211500A
A7	Chassis Unit Assembly	04901	08211400A
AB	Sub-Panel Assembly	04901	08210301 A
A 9	Rear Panel Assembly	04901	08210401 C

C1	Canacitor, Cer.	0.l $\mu \mathrm{F}, ~ 20 \%, 50 \mathrm{~V}$	04222	SR215E104MAA	224268000
C 2	Canacitor, Fl.	$10 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	S4217	SM $25-\mathrm{VA}-10 \mathrm{M}$	283336000
C 3	Canacitor, Cer. Chin	$0.01 \mu \mathrm{~F}, ~ 20 \%$, 100V	61637	Cl210C103M5 XAH	224210000
C4	Capacitor, fl.	$10 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	S4217	SM25-VB-10M	283336000
C 5	Canacitor, Cer. Chin	$680 \mathrm{nF}, 10 \%, 50 \mathrm{~V}$	61637	C1210C681K5×AH	224377000
C6	Canacitor, Cer.	$0.01 \mu \mathrm{~F}, ~ 20 \%, 50 \mathrm{~V}$	51406	DD350A10Y5P103M50V	224363000
C 7	Canacitor, Mica	$100 \mathrm{nF}, 18,500 \mathrm{~V}$	14655	CD15-101F	200045000
C8	Capacitor, Cer.	$0.01 \mu \mathrm{~F}, ~ 208,50 \mathrm{~V}$	51406	DD350Al0Y5P103M50V	224363000
C9	Canacitor, Mica	$100 \mathrm{nF}, 5 \%, 300 \mathrm{~V}$	20307	DM5-FCl01J	205006000
C10	Canacitor, Tant.	$1.0 \mu \mathrm{~F}, ~ 10 \%, 35 \mathrm{~V}$	56289	196D105X9035HAl	283216000
Cl1	Canacitor, Fl.	$10 \mu \mathrm{~F}, ~ 208,25 \mathrm{~V}$	S4217	SH25-VR-10M	283336000
C12	Canacitor, Mica	$100 \mathrm{nF}, 58,300 \mathrm{~V}$	20307	DM5-FCl01J	205006000
C13	Capacitor, Tant.	$1.0 \mu \mathrm{~F}, 108,35 \mathrm{~V}$	56289	196D105×9035HAl	283216000
C14	Capacitor, Mica	$100 \mathrm{nF}, 18,500 \mathrm{~V}$	14655	CD15-101F	200045000
C15	Canacitor, Mica	$33 \mathrm{nF}, 58,300 \mathrm{~V}$	20307	DM 5-FEC330.J	205010000
C16	Not Used				
C17	Capacitor, Mica	$8 \mathrm{nF}, 108,300 \mathrm{~V}$	57582	KD50800301	205001000
C18	Capacitor, Cer.	0.1 HF, 208, 50 V	04222	SR215F104MAA	224268000
C19	Canacitor, Fil.	10) $\mu \mathrm{F}, 20$ \%, 25 V	S4 217	SM25-VB-10M	283336000
C20	Canacitor, Cer.	0.1 - $\mathrm{F}, 20 \%$, 50 V	04222	SR215F104MAA	224268000
C21	Canacitor, Mica	$270 \mathrm{nF}, ~ 59.50 \mathrm{~V}$	57582	KD5271.J101	205045000
C 22	Capacitor, Cer.	0.1 ¢F, 20\%, 50 V	04222	SR215E104MAA	224268000
C23	Canacitor, Cer.	0.1 $\mu \mathrm{F}, ~ 20 \%, 50 \mathrm{~V}$	04222	SR215E104rAA	224268000
C24	Canacitor, Cer.	0.1 $\mathrm{HF}_{\mathrm{F}, ~ 20 \%, ~ 50 V}$	04222	SR215E104MAA	224268000
C25	Canacitor, Cer.	$0.1 \mu \mathrm{~F}, ~ 20 \%, 50 \mathrm{~V}$	04222	SR215E104MAA	224268000
C.26	Canacitor, Cer.	0.1 $\mu \mathrm{F}, ~ 20 \%, 50 \mathrm{~V}$	04222	SR215F104MAA	224268000
C 27	Canacitor, Mica	$15 \mathrm{nF}, 58,300 \mathrm{~V}$	14655	CDSCCl50J	205035000
C28	Canacitor, Mica	47 nF, 5\%, 300V	20307	DM5-EC.470J	205018000
C29	Capacitor, Cer.	$1000 \mathrm{nF}, 10 \mathrm{~F}, 100 \mathrm{~V}$	04222	SR151C102KAA	224270000
C30	Canacitor, F.l.	$10 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	S4217	SM25-VR-10M	283336000
C31	Capacitor, Cer.	0.01 - $0 \mathrm{~F}, ~ 10 \%, 100 \mathrm{~V}$	04222	SR201C103KAA	224269000
C 32	Canacitor, Fl.	$100 \mu \mathrm{~F}, ~ 208,25 \mathrm{~V}$	S4217	SM25-VB-100M	283334000
C33	Canacitor, Mica	$10 \mathrm{nF}, 5 \%, 300 \mathrm{~V}$	14655	CD5wCC 100 J	205002000
C34	Canacitor, Mica	$22 \mathrm{nF}, ~ 5$ \% , $^{\text {a }}$, 300V	14655	CD5WCC $220 . J$	205036000
C35	Canacitor, El.	$10 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	S4217	SM $25-\mathrm{VB}-10 \mathrm{M}$	283336000
C36	Canacitor, Mica	$270 \mathrm{nF}, 58,50 \mathrm{~V}$	57582	KD5271J101	205045000
C 37	Capacitor, Mica	$270 \mathrm{pF}, 58,50 \mathrm{~V}$	57582	KD5271J101	205045000
C38	Canacitor, Tant.	$10 \mu \mathrm{~F}, ~ 208,25 \mathrm{~V}$	56289	196D106X0025KAl	283293000
C39	Canacitor, Cer.	$0.01 \mathrm{\mu F}, 10 \mathrm{l}, 100 \mathrm{~V}$	04222	SR201C103KAA	224269000
C40	Canacitor, El.	$10 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	54217	SH25-VB-10M	283336000
C41	Canacitor, Cer.	0.01 山F, 10\%, 100 V	04222	SR201Cl03KAA	224269000
C42	Canacitor, Mica	$390 \mathrm{nF}, 5 \%, 500 \mathrm{~V}$	S4217	KD15391J501	200108000
C43	Capacitor, Mica	$390 \mathrm{nF}, 5 \%, 500 \mathrm{~V}$	S4217	KD15391J501	200108000
C44	Canacitor, El.	$100 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	S4217	SM25-VB-100M	283334000
C45	Canacitor, Mica	$270 \mathrm{DF}, 58.50 \mathrm{~V}$	57582	KD5271J101	205045000
C46	Canacitor, Mica	$270 \mathrm{DF}, 5 \%, 50 \mathrm{~V}$	57582	KD5271J101	205045000
C47	Capacitor, MPC	$1.0 \mu \mathrm{~F}, 10 \%$, 50V	14752	652A-1-A-105K	234152000

Table 5-2. Replaceable Parts (Continued)

Item	Description		Mfr.	Mfr's Part	BEC Part
R.F. BOARD ASSEMBLY (A2); PART NUMBER 08210801K					
C48	Capacitor, Tant.	$10 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	56289	196D106X0025KAl	283293000
C49	Not Used				
C50	Capacitor, Tant.	$10 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	56289	196D106x0025KAl	283293000
C51	Capacitor, Cer.	0.1 $\mu \mathrm{F}, 208,50 \mathrm{~V}$	04222	SR215E104MAA	224268000
C52	Capacitor, Cer.	$0.1 \mu \mathrm{~F}, ~ 208,50 \mathrm{~V}$	04222	SR215E104MAA	224268000
C53	Capacitor, Cer.	$0.1 \mu \mathrm{~F}, ~ 20 \%, 50 \mathrm{~V}$	04222	SR215E104MAA	224268000
C54	Not Used				
C55	Canacitor, Cer.	0.1 HF, 20\%, 50V	04222	SR215E104MAA	224268000
C56	Capacitor, Mica	47 DF, 5\%, 300V	20307	DM 5-EC470J	205018000
C57	Capacitor, Tant.	1.0 $0 \mathrm{~F}, ~ 108,35 \mathrm{~V}$	56289	196D105×9035HAl	283216000
C58	Capacitor, Mica	$100 \mathrm{nF}, 58$, 300 V	20307	DM5-FC101J	205006000
C59	Canacitor, Cer.	0.1 HF, 20\%, 50 V	04222	SR215E104MAA	224268000
C60	Canacitor, El.	10 $\mu \mathrm{F}, ~ 208,25 \mathrm{~V}$	S4217	SM25-VR-10M	283336000
CR1	Diode, Siqnal	1N6263	28480		530174000
CR2	Diode, Ouad	5082-2815	28480		530903000
CR3	Diode, PIN	5082-0180	28480		530168000
CR4	Diode, Signal	1N6263	28480		530174000
CR5	Diode, Signal	1N914	01295		530058 COO
CR6	Diode, Siqnal	1N914	01295		530058000
CR7	Diode, Siqnal	1N6263	28480		530174000
CR8	Diode, Siqnal	1N6263	28480		530174000
CR9	Diode, Varactor	MV2115	04713		530760000
CR10	Diode, Varactor	MV2115	04713		530760000
CR11	Diode, Siqnal	1N914	01295		530058000
CR12	Diode, Siqnal	1N914	01295		530058000
CR13	Diode, Signal	1N6263	28480		530174000
J 2	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
L1	Choke, R.F.	$33 \mu \mathrm{H}, 58$	59474	4465-2K	400310000
L2	Coil, Osc.	$0.72 \mathrm{\mu H}$	04901		40041700 A
L3	Choke, R.F.	$4.7 \mu \mathrm{H}, 10 \%$	59474	4425-14K	400292000
L4	Choke, R.F.	4.7 H $\mathrm{H}, 108$	24226	10/471	400384000
L5	Choke, R.F.	5.6 山H, 10%	24226	15/561	400308000
L6	Choke, R.F.	$68 \mu \mathrm{H}, 10 \%$	24226	10/682	400411000
L7	Choke, R.F.	$39 \mu \mathrm{H}, 10 \%$	24226	10/392	400387000
L8	Choke, R.F.	$5.6 \mu \mathrm{H}, 10 \%$	24226	15/561	400308000
L9	Choke, R.F.	$68 \mu \mathrm{H}, 10 \%$	24226	10/682	400411000
L10	Choke, R.F.	$39 \mu \mathrm{H}, 108$	24226	10/392	400387000
Lll	Choke, R.F.	5.6 н H, 10\%	24226	15/561	400308000
P1	Connector, R.F.		98291	52-054-0000	479336000
P17	Connector Pin		71279	450-3367-01-03-00	479417000
01	Transistor, NPN	2N3866	04713		528116000
02	Transistor, FET	2N4416	04713		528072000
03	Transistor, PNP	2N3906	04713		528076000
04	Transistor, NPN	2N3904	04713		528071000
Q5	Transistor, NPN	2N3904	04713		528071000
06	Transistor, PNP	2N3906	04713		528076000
07	Transistor, NPN	MPS-6507	04713		528070000
08	Transistor, FET	2N4416	04713		528072000
R1	Resistor, MF	$33.2 \mathrm{ohm} 1 \%$	19701	5034ED33R20F	341150000
R2	Resistor, MF	301 ohm 1\%	19701	504 3ED301R0F	341246000
R 3	Resistor, Chip	18 ohm 5\% 1/2W	50316	WA-7PG-180JS	339996000
R4	Resistor, MF	301 ohm 1\%	19701	5043 ED 301 ROF	341246000
R5	Resistor, MF	332 ohm 18	19701	5043 ED 332 ROF	341250000
R6	Resistor, MF	100 ohm 1\%	19701	5043 EDIOOROF	341200000
R7	Resistor, MF	6.81 k ohm 1\%	19701	504 3ED6K810F	341380000
R8	Resistor, Comp.	100 ohm 5\% 1/8W	01121	BB1015	331058000
R9	Resistor, Comp.	$100 \mathrm{ohm} \mathrm{5} \mathrm{\%} \mathrm{1/8W}$	01121	BB1015	331058000
R10	Resistor, Var.	50 k ohm 10\% 0.5w	73138	72PR50K	311393000
R11	Resistor, MF	7.5 k ohm 18	19701	5043 ED7K 500 F	341384000
R12	Resistor, Comp.	200 ohm 5\% 1/8W	01121	RB2015	331065000

Table 5-2. Replaceable Parts (Continued)

Table 5-2. Replaceable Parts (Continued)

Item	Description		Mfr.	Mfr's Part	BEC Part
	R.F. BOARD	SEMRLY (A2), CONTINUED;	PART	UMBER 08210801 K	
Tl	Transformer, Pulse Gen.		04901	41009000 B	41009000 R
T2	Transformer, Balun		15542	Tl-1	410089000
TPl	Connector		27264	22-03-2021	477361000
TP2	Connector		27264	22-03-2021	477361000
U1	Integrated Circuit	SN74ALS 74 N	01295		534281000
U2	Integrated Circuit	SN74LS163N	01295		534279000
U3	Integrated Circuit	SN74LS00N	01295		534167000
U4	Analog Switch	LFI3333N	27014		535095000
U5	Oner. Amplifier	LF357N	27014		535096000
U6	Oner. Amnlifier	TL072CP	01295		535092000
07	Inteqrated Circuit	CD4051be	02735		534209000
U8	Oper. Amplifier	MC1355P	04713		535038000
09	Integrater Circuit	SN74LS122N	01295		534280000
XO 2	Socket Transistor 4 Pin		17117	7004-265-5	473051000
X 08	Socket Transistor 4 Pin		17717	7004-265-5	473051000
Xul	Socket IC 14 Pin		06776	ICN-143-S3-G	473019000
XU2	Socket IC 16 Pin		06776	ICN-153-S3-G	473042000
XU?	Socket IC 14 Pin		06776	ICN-143-S3-G	473019900
XIJ4	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
xu5	Socket IC 8 Pin		06776	ICN-083-S3-G	473041000
XU6	Socket IC 8 Pin		06776	ICN-083-S3-G	473041000
$\times 107$	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
XU8	Socket IC 14 Pin		06776	ICN-143-S3-G	473019000
X 119	Socket IC 14 Pin		06776	ICN-143-S3-G	473019000

Cl	Canacitor, Mica	$470 \mathrm{nF}, 1 \%, 500 \mathrm{~V}$	14655	OM15-471F	200050000
C2	Canacitor, Mica	$240 \mathrm{nF},{ }^{\text {d }}$ \%, 500 V	00853	D10-FD-241-F03	200124000
C3	Canacitor, Mica	$15 \mathrm{nF}, ~ 5 \%, 300 \mathrm{~V}$	14655	CD5-CC150J	205035000
C4	Canacitor, Cer.	$0.01 \mu \mathrm{~F}, 10 \%, 100 \mathrm{~V}$	04222	SR201C103KAA	224269000
C5	Capacitor, Tant.	$1.0 \mu \mathrm{~F}, 10 \%$, 35 V	56289	$196 \mathrm{D} 105 \times 9035 \mathrm{HAl}$	283216000
C6	Capacitor, Fil.	$100 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	54217	SM25-VR-100M	283334000
C7	Canacitor, Cer.	$0.1 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	51406	DD312E10Y5P104M25V	224364000
C8	Canacitor, Tant.	$1.0 \mu \mathrm{~F}, 10 \%$, 35V	56289	196D105X9035HAl	283216000
C9	Capacitor, Mica	$150 \mathrm{pF}, 5 \%, 100 \mathrm{~V}$	57582	DM5-FAl5lJ	205009000
C! 0	Capacitor, Mica	$100 \mathrm{nF}, 5 \%, 300 \mathrm{~V}$	20307	DM5-FCl01J	205006000
Cll	Capacitor, El.	$10 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	S4217	SM25-VB-10M	283336000
Cl2	Camacitor, Mica	$33 \mathrm{nF}, 5 \%, 300 \mathrm{~V}$	20307	DM5-EC330J	205010000
Cl3	Canacitor, Cer.	n.1 $\mu \mathrm{F}, ~ 20 \%, 50 \mathrm{~V}$	04222	SR215E104MAA	224268000
Cl4	Canacitor, El.	10 $\mu \mathrm{F}, 20 \%$, 25 V	54217	SM25-VA-10M	283336000
C 15	Canacitor, Cer.	0.1 uF, 20\%, 25 V	51406	DD312E10Y5P104M25V	224364000
C. 16	Not User				
C17	Cabacitor, Fl.	$10 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	54217	SM25-VB-10M	283336000
C.18	Canacitor, Cer.	0.1 $\mu \mathrm{F}, 208,25 \mathrm{~V}$	51406	DD312E10Y5P104M25V	224364000
C19	Canacitor, Fi.	$10 \mu \mathrm{~F}, ~ 20 \%$, 25 V	S4217	SM $25-\mathrm{VB}-10 \mathrm{M}$	283336000
C20	Canacitor, Mica	$39 \mathrm{nF}, 18,300 \mathrm{~V}$	57582	KD50390F301	205049000
C21	Canacitor, Tant.	$10 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	56289	196D106×0025KAl	283293000
C22	Canacitor, Cer.	0.1 HF, 20\%, 50V	04222	SR215E104MAA	224268000
C23	Canacitor, Cer.	1.0 $\mu \mathrm{F}, ~ 20 \%, 50 \mathrm{~V}$	04222	SR305E105MAA	224264000
C24	Canacitor, Fl.	$10 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	S4217	SM $25-\mathrm{VB}$-10M	283336000
C25	Capacitor, El.	$100 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	S4217	SM25-VR-100M	283334000
C26	Capacitor, El.	100 HF, 20\%, 25 V	54217	SM25-VB-100M	283334000
C27	Capacitor, Mica	$47 \mathrm{DF}, 58.300 \mathrm{~V}$	20307	DM5-EC470J	205018000
C28	Canacitor, Mica	$47 \mathrm{nF}, 5 \%, 300 \mathrm{~V}$	20307	DM5-EC470J	205018000
C 29	Capacitor, Cer.	$0.1 \mu \mathrm{~F}, ~ 20 \%, 50 \mathrm{~V}$	04222	SR215E104MAA	224268000
C30	Capacitor, Cer.	O.1 $\mu \mathrm{F}, 20 \%, 25 \mathrm{~V}$	51406	DD312E10Y5P104M25V	224364000
C31	Capacitor, El.	$10 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	S4217	SM25-VB-10M	283336000
C32	Capacitor, El.	$10 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	S4217	SM25-VB-10M	283336000
C. 33	Capacitor, El.	$100 \mu \mathrm{~F}, ~ 208,25 \mathrm{~V}$	S4217	SM25-VB-100M	283334000

Table 5-2. Replaceable Parts (Continued)

Description
MEr.
Mfr's Part
BEC Part *
I.F.-A.F. BOARD ASSEMBLY (A3); PART NUMBER 08210901 J

C34	Capacitor, El.	$100 \mu \mathrm{~F}, 20 \%$, 25 V	S4217	SM25-VB-100M	283334000
C 35	Capacitor, Mica	$500 \mathrm{pF}, 18,500 \mathrm{~V}$	00853	D15-5-F-501-F-O	200123000
C36	Capacitor, Mica	$120 \mathrm{pF}, 58,100 \mathrm{~V}$	14655	DM5-FCl21J	205022000
C37	Capacitor, Tant.	$10 \mu \mathrm{~F}, 20 \%$, 25 V	56289	196D106X0025KAl	283293000
C 38	Canacitor, Mica	$1000 \mathrm{nF}, ~ 1 \%, 100 \mathrm{~V}$	51406	DM15-102F	200113000
C39	Capacitor, Mica	$1000 \mathrm{nF}, 18,100 \mathrm{~V}$	51406	DM15-102F	200113000
C40	Capacitor, Mica	$240 \mathrm{nF}, 1 \%, 500 \mathrm{~V}$	00853	D10-FD-241-FO3	200124000
C41	Capacitor, Mica	$200 \mathrm{nF}, 2 \%, 500 \mathrm{~V}$	14655	DM15-201G	200053000
C42	Capacitor, Cer.	0.1 HF, 20\%, 50 V	04222	SR215E104MAA	224268000
C43	Capacitor, Mica	$100 \mathrm{nF}, 5 \%$, 300 V	20307	DM5-FC101J	205006000
C44	Capacitor, MPC	$0.01 \mu \mathrm{~F}, ~ 2 \%, 50 \mathrm{~V}$	14752	652A-1A-103G	234142000
C45	Capacitor, MPC	0.1 HF, 2\%, 50 V	27735	MPC-53-.1-50-2	234139000
C46	Capacitor, Mica	$100 \mathrm{pF}, 58$, 300 V	20307	DM5-FClolj	205006000
C47	Capacitor, MPC	$0.01 \mu \mathrm{~F}, ~ 28,50 \mathrm{~V}$	14752	652A-1A-103G	234142000
C48	Capacitor, Mica	$100 \mathrm{pF}, ~ 5 \%, 300 \mathrm{~V}$	20307	DM5-FCl01J	205006000
C49	Capacitor, Cer.	$0.1 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	51406	DD312E10Y5P104M25V	224364000
C50	Capacitor, Cer.	$0.1 \mu \mathrm{~F}, 20 \%, 25 \mathrm{~V}$	51406	DD312E10Y5P104M25V	224364000
C51	Capacitor, Tant.	$10 \mu \mathrm{~F}, ~ 208,25 \mathrm{~V}$	56289	196D106×0025KA1	283293000
C52	Capacitor, Cer.	$0.1 \mu \mathrm{~F}, 20 \%$, 25 V	51406	DD312E10Y5P104M25V	224364000
C53	Canacitor, Mica	$20 \mathrm{pF}, 58$, 300 V	14655	CD5CC200J	205017000
CR1	Diode, Siqnal	1N914	01295		530058000
CR2	Diode, Siqnal	1N914	01295		530058000
CR 3	Diode, Signal	1N6263	28480		530174000
CR4	Diode, Siqnal	1N6263	28480		530174000
CR5	Diode, Signal	1N6263	28480		530174000
CR6	Diode, Siqnal	1N6263	28480		530174000
CR 7	Diode, Signal	1N6263	28480		530174000
CRA	Diode, Signal	1N914	01295		530058000
CR9	Diode, Siqnal	1N914	01295		530058000
CR10	Diode, Signal	1N914	01295		530058000
CR11	Diode, Siqnal	1N914	01295		530058000
CR12	Diode, Signal	1N914	01295		530058000
CR13	Diode, Signal	1N914	01295		530058000
CR14	Diode, Signal	1N914	01295		530058000
CR15	Diode, Siqnal	1N914	01295		530058000
J 1	Connector, 16-pin		06776		473042000
J 2	Connector, 16-pin		06776		473042000
J 3	Connector, 2-pin		06383	HFAS100-2-C	477367000
J 4	Connector, 2-pin		06383	HFAS100-2-C	477367000
J 5	Connector, 2-pin		06383	HFAS100-2-C	477367000
Ll	Choke, R.F.	$100 \mu \mathrm{H}, 5 \%$	59474	1315-12J	400295000
L2	Choke, R.F.	$91 \mu \mathrm{H}, 58$	59474	1311-11J	400416000
L 3	Choke. R.F.	$20 \mu \mathrm{H}, 5 \%$	59474	4445-6J	400258000
L4	Choke, R.F.	150 䒑H, 5\%	59474	1315-16J	400415000
L5	Choke, Wide-hand		02114	VK 200-20/4B	400409000
L6	Choke, R.F.	$5.6 \mu \mathrm{H}, 108$	24226	15/561	400308000
L7	Choke, R.F.	5.6 HH, 10\%	24226	15/561	400308000
L8	Choke, R.F.	$5.6 \mu \mathrm{H}, 10 \%$	24226	15/561	400308000
L9	Choke, R.F.	$5.6 \mathrm{\mu H}, 10 \%$	24226	15/561	400308000
P16	Connector Pin		71279	450-3367-01-03-00	479417000
01	Transistor, NPN	2N3904	04713		528071000
02	Transistor, PNP	2N3906	04713		528076000
03	Transistor, NPN	2N3904	04713		528071000
04	Transistor, PNP	2N3906	04713		528076000
05	Transistor, PNP	2N3906	04713		528076000
06	Transistor, NPN	2N3904	04713		528071000
R1	Resistor, Comp.	330 ohm 58 1/8w	01121	BB3315	331070000
R2	Resistor, MF	10k ohm lit	19701	5043 EDIOK00F	341400000
R3	Resistor, MF	221 ohm 18	19701	5043 ED221R0F	341233000
R4	Resistor, MF	200 ohm 18	19701	5043 ED200R0F	341229000

em	Description		Mfr.		BEC Part ${ }^{\text {P }}$
I.F.-A.F. BOARD ASSEMBLY (A3), CONTINUED; PART NUMBER 08210901 J					
R5	Resistor, MF	10k ohm 18	19701	5043 EDIOK00F	341400000
R6	Resistor, Var.	100 ohm 108 0.5W	32997	3329H-1-101	311406000
R7	Resistor Network	500 ohm 0.58 0.5W	73138	694-3-R500D	345035000
R8	Resistor, MF	2 k ohm 18	19701	504 3ED2K000F	341329000
R9	Resistor, MF	5.11 k ohm 18	19701	5043 EDSK110F	341368000
R10	Resistor, MF	1 k ohm $\mathrm{l} \frac{8}{}$	19701	5043 EDIK000F	341300000
R11	Resistor, MF	10k ohm 1\%	19701	5043 EDIOKOOF	341400000
R12	Resistor, MF	10k ohm 18	19701	5043 EDIOK00F	341400000
R13	Resistor, MF	100 ohm 1\%	19701	5043 EDI OOROF	341200000
R14	Resistor, MF	15 k ohm 18	19701	5043 EDI 5 KOOF	341417000
R15	Resistor, MF	1.82 k ohm 1\%	19701	5043 EDIK820F	341325000
R16	Resistor, MF	1.5 k ohm 18	19701	5043 EDLK 500 r	341317000
R17	Resistor, MF	475 ohm 18	19701	5043 ED 475 ROF	341265000
R18	Resistor, MF	10k ohm 18	19701	5043 EDIOK00F	341400000
R19	Resistor, MF	3.32 k ohm 18	19701	5043 ED 3 K 320 F	341350000
R20	Resistor, MF	6.19 k ohm 18	19701	5043 ED6K190F	341376000
R21	Resistor, MF	511 ohm 18	19701	5043 ED5 11R0F	341268000
R22	Resistor, MF	475 ohm 18	19701	5043 ED 475 ROF	341265000
R23	Resistor, MF	1.5k ohm 1\%	19701	5043 EDIK500F	341317000
R24	Resistor, MF	47.5 ohm 18	19701	5043 ED47R50F	341165000
R25	Resistor, MF	2.21 k ohm 1\%	19701	5043 ED 2 K 210 F	341333000
R26	Resistor, MF	2 k ohm 18\%	19701	5043 ED2K000F	341329000
R27	Resistor, MF	1k ohm 18	19701	5043 EDlK000F	341300000
R28	Resistor, MF	$47.5 \mathrm{shm} 1 \%$	19701	5043 ED47R50F	341165000
R29	Resistor, MF	100 ohm 18	19701	5043 EDIOOROF	341200000
R30	Resistor, MF	15 k ohm 18	19701	5043 ED 5 K00F	341417000
R31	Resistor, MF	6.19 k ohm 18	19701	504 3ED6K190F	341376000
R32	Resistor, MF	15 k ohm 18	19701	5043 EDI5K00F	341417000
R33	Resistor, MF	39.2 k ohm 18	19701	5043 ED39K20F	341457000
R34	Resistor, MF	47.5 ohm 18	19701	$5043 \mathrm{~F} . \mathrm{D}^{\text {7 }}$ 7R50F	341165000
R35	Resistor, MF	475 ohm 18	19701	5043 ED 475 ROF	341265000
R36	Resistor, MF	475 ohm 18	19701	5043ED475R0F	341265000
R37	Resistor, MF	47.5 ohm ${ }^{\text {\% }}$	19701	5043 ED47R50F	341165000
R38	Resistor, MF	2 k ohm 18	19701	5043 ED2K000F	341329000
R39	Resistor, MF	6.19 k ohm 1\%	19701	504 3ED6K190F	341376000
R 40	Resistor, MF	10k ohm 1\%	19701	5043 EDIOKOOF	341400000
R 41	Resistor, MF	2 k ohm 1 \%	19701	5043ED2K000F	341329000
R42	Resistor, MF	10 k ohm 18	19701	5043EDIOK00F	341400000
R43	Resistor, MF	243 ohml \%	19701	5043 ED 243 ROF	341237000
R44	Resistor, MF	$2.0 \mathrm{k} \mathrm{ohm} \mathrm{1} \mathrm{\%}$	19701	5043 ED2K000F	341329000
R45	Resistor, MF	150 ohm 1%	19701	5043EDI50R0F	341217000
R46	Resistor, MF	1.0 k ohm 18	19701	5043 EDIK000F	341300000
R 47	Resistor, MF	52.3k ohm 18	19701	5043 ED5 2 K 30 F	341469000
R48	Resistor, MF	52.3 k ohm 1 \%	19701	$5043 \mathrm{FD52k30F}$	341469000
R49	Not Used				
R50	Resistor, MF	10.0k ohm ${ }^{\text {\% }}$	19701	5043 EDIOK00F	341400000
R51	Resistor, MF	10.0 k ohm 18	19701	5043 EDLOK 00 F	341400000
R52	Resistor, MF	10.0 k ohm 18	19701	5043 EDIOK00F	341400000
R53	Resistor, MF	15.0 k ohm 18	19701	5043 EDI 5 K00F	341417000
R54	Not Used				
R55	Resistor, MF	30.1 k ohm 18	19701	5043 ED 30 K 10 F	341446000
R56	Resistor, MF	604 ohm 1\%	19701	5043 ED604R0F	341275000
R57	Resistor, MF	13.3 k ohm 18	19701	5043 EDI 3 K 30 F	341412000
R58	Resistor, MF	8.87 k ohm 18	19701	5043 EDBK870F	341391000
R59	Resistor, MF	9.000 k ohm 0.181/8W	19701	PME55-T2	324354000
R60	Resistor, MF	1.000 k ohm 0.1 \% $1 / 8 \mathrm{~W}$	03888	PME55-T2	324241000
R61	Resistor, MF	10.0 k ohm 18	19701	5043 EDIOK00F	341400000
R62	Resistor, MF	1.0k ohm l\%	19701	5043 EDl K000F	341300000

Table 5-2. Replaceable Parts (Continued)

Item	Description		Mfr.	Mfr's Part :	BEC Part
I.F.-A.F. BOARD ASSEMBLY (A3), CONTINUED; PART NUMBER 08210901 J					
R63*	Resistor, MF	26.7 k ohm 18	19701	5043 ED 26 K 70 F	341441000
R64	Resistor, MF	182 k ohm 18	19701	5043 EDI $82 \mathrm{K0F}$	341525000
R65*	Resistor, MF	16.9 k ohm 18	19701	5043 ED16K90F	341422000
* Wher Option -01 is installed, these components are changed as follows:					
R63	Resistor, MF	12.7 k ohm 18	19701	5043 EDI 2K70F	341410000
R65	Resistor, MF	8.25 k ohm 18	19701	504 3ED8K250F	341388000
R66	Resistor, MF	73.2k ohm 1\%	19701	5043 ED73K20F	341483000
R67	Resistor, MF	51.1 k ohm 18	19701	5043 ED51K10F	341468000
R68	Resistor, MF	4.99 k ohm 18	19701	5043 ED4K990F	341367000
R69	Resistor, MF	7.50 k ohm 18	19701	5043 ED 7 K500F	341384000
R70	Resistor, MF	51.1 k ohm 18	19701	5043 ED51K10F	341468000
R71*	Resistor, MF	1.00 k ohm 1\%	19701	5043 EDIK000F	341300000
R72	Resistor, MF	51.1 k ohm 18	19701	5043 EDSIK10F	341468000
R73	Resistor, MF	1.54 k ohm 18	19701	5043 EDIK 540 F	341318000
R74	Resistor, MF	1.0k ohm 18	19701	5043 EDlK 000 F	341300000
R75	Resistor, MF	100k ohm 18	19701	5043 EDIOOK0F	341500000
R76	Resistor, MF	604 ohm 1\%	19701	5043 ED 604 ROF	341275000
R77	Resistor, MF	2.00 k ohm 18	19701	5043 ED 2 K 000 F	341329000
R78	Resistor, MF	511k ohm 1\%	19701	5043ED511K0F	341568000
R79	Resistor, Var.	lk ohm $10 \% 0.5 \mathrm{~W}$	32997	3329H-1-102	311404000
* When Option -01 is installed, this component chanqes as follows:					
R71	Resistor, MF	499 ohm 18	19701	5043 ED 499 ROF	341267000
TP1	Connector		27264	22-03-2021	477361000
Ul	Oner. Amolifier	LF356P	01295		535040000
U2	Oper. Amplifier	NE5534AN	18324		535061000
U3	Analon Switch	LFI3333N	27014		535095000
U4	D-A Converter	DAC-08EP	06665		421037000
05	Oper. Amplifier	NE5534AN	18324		535061000
U6	Inteqrated Circuit	SN74LSOON	01295		534167000
47	Intearated Circuit	SN74121N	01295		534038000
$\cup 8$	Oner. Amplifier	LF356P	01295		535040000
U9	Oper. Amplifier	TL074CN	01295		535082000
U10	Integrated Circuit	CD4051BE	02735		534209000
U11	Inteqrated Circuit	CD4051BE	02735		534209000
U12	Oper. Amplifier	TL074CN	01295		535082000
U13	Inteqrated Circuit	CD4052BE	02735		534140000
U14	Oper. Amplifier	LF356P	01295		535040000
U15	Inteqrated Circuit	CD40518E	02735		534209000
XUl	Socket IC 8 Pin		06776	ICN-083-S3-G	473041000
XU2	Socket IC 8 Pin		06776	ICN-083-S3-G	473041000
xU3	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
XU4	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
XU5	Socket IC 8 Pin		06776	ICN-083-S3-G	473041000
XU6	Socket IC 14 Pin		06776	ICN-143-S3-G	473019000
xu7	Socket IC 14 Pin		06776	ICN-143-S3-G	473019000
XU8	Socket IC 8 Pin		06776	ICN-083-S3-G	473041000
XU9	Socket IC 14 Pin		06776	ICN-143-S3-G	473019000
XUl0	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
xull	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
xul2	Socket IC 14 Pin		06776	ICN-143-S3-G	473019000
XU13	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
XU14	Socket IC 8 Pin		06776	ICN-083-S3-G	473041000
XU15	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000

Item
Description
Mfr.
Mfr's Part
BEC Part

C1	Capacitor, El.	$10 \mu \mathrm{~F}, ~ 20 \%, ~ 25 V ~$	S4217	SM25-VB-10M	283336000
C2	Capacitor, Mica	$51 \mathrm{pF}, 5 \%, 300 \mathrm{~V}$	57582	KD5510J301	205020000
C 3	Capacitor, El.	$10 \mu \mathrm{~F}, ~ 20 \%$, 25V	S4217	SM25-VB-10M	283336000
C4	Capacitor, El.	$10 \mu \mathrm{~F}, ~ 20 \%$, 25V	54217	SM25-VB-10M	283336000
C5	Capacitor, Cer.	0.1 $\mu \mathrm{F}, 20 \%$, 25 V	51406	DD312E10Y5P104M25V	224364000
C6	Capacitor, Mica	$1100 \mathrm{pF}, 5 \%, 100 \mathrm{~V}$	14655	DM15-112J	200111000
C7	Capacitor, Cer.	$0.14 \mathrm{~F}, 20 \%$, 25 V	51406	DD312E10Y5P104M25V	224364000
C8	Canacitor, MPC	$0.002 \mu \mathrm{~F}, ~ 28,50 \mathrm{~V}$	27735	MPC-53-.002-50-2	234140000
C9	Capacitor, Cer.	0.001 HF, 10\%, 100 V	04222	SR151C102KAA	224270000
C10	Canacitor, Mica	$1100 \mathrm{pF}, 58.100 \mathrm{~V}$	14655	DM15-112J	200111000
C11	Capacitor, El.	$10 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	S4217	SM 25-VB-10M	283336000
C12	Capacitor, Cer.	$0.1 \mu \mathrm{~F}, 20 \%$, 25 V	51406	DD312E10Y5P104M25V	224364000
C13	Canacitor, Cer.	0.1 HF, 20\%, 25 V	51406	DD312E10Y5P104M25V	224364000
C14	Capacitor, Cer.	0.1 $\mathrm{LE}, 20 \%$, 25V	51406	DD312E10Y5P104M25V	224364000
C15	Capacitor, Tant.	10 0 F, 208, 25 V	56289	196D106×0025KAl	283293000
C16	Capacitor, Tant.	$1.0 \mu \mathrm{~F}, ~ 20 \%, 35 \mathrm{~V}$	56289	196D105×9035HAl	283216000
C17	Capacitor, Mylar	0.1 $1 \mathrm{~F}^{2}, 10 \%, 100 \mathrm{~V}$	19701	C280MAH / A 100 K	234080000
C18	Capacitor, Mylar	$0.1 \mu \mathrm{~F}, 10 \%$, 100 V	19701	C280MAH/A100K	234080000
C19	Capacitor, El.	$10 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	S4217	SM25-VB-10M	283336000
C20	Capacitor, El.	$10 \mu \mathrm{~F}, ~ 20 \%$ 年, 25V	S4217	SM25-VB-10M	283336000
C21	Not Used				
C22	Not Used				
C23	Capacitor, El.	4700 нF, 16V	57582	KSMM-4700-16	283352000
C 24	Canacitor, El.	2200 F F, 35V	57582	KSMM-2200-35	283351000
C25	Canacitor, El.	2200 HF, 35V	57582	KSMM-2200-35	283351000
C26	Capacitor, Cer.	0.1 $\mu \mathrm{F}, ~ 20 \%, 25 \mathrm{~V}$	51406	DD312E10Y5P104M25V	224364000
C27	Canacitor, Cer.	$0.1 \mu \mathrm{~F}, ~ 208,25 \mathrm{~V}$	51406	DD312E10Y5P104M25V	224364000
C28	Capacitor, Cer.	0.1 HF, 20\%, 25 V	51406	DD312E10Y5P104M25V	224364000
C29	Capacitor, Cer.	$0.001 \mu \mathrm{~F}, 10 \%$, 100V	04222	SRI51Cl02KAA	224270000
$\bigcirc 30$	Capacitor, Cer.	$0.001 \mu \mathrm{~F}, 108,100 \mathrm{~V}$	04222	SR151C102KAA	224270000
C31	Capacitor, Cer.	$0.001 \mu \mathrm{~F}, 108,100 \mathrm{~V}$	04222	SR151C102KAA	224270000
C 32	Capacitor, Tant.	10 $4 \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	56289	196D106×0025KAl	283293000
C33	Capacitor, El.	$100 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	S4217	Sm25-VB-100M	283334000
C34	Capacitor, Tant.	$10 \mu \mathrm{~F}, ~ 20 \%, 25 \mathrm{~V}$	56289	$196 \mathrm{Dl} 06 \times 0025 \mathrm{KAl}$	283293000
C 35	Canacitor, Tant.	$10 \mu \mathrm{~F}, ~ 208,25 \mathrm{~V}$	56289	196D106X0025KAl	283293000
C36	Canacitor, Tant.	$10 \mu \mathrm{~F}, ~ 208,25 \mathrm{~V}$	56289	196D106×0025KAl	283293000
C 37	Canacitor, Cer.	$0.001 \mu \mathrm{~F}, 108,100 \mathrm{~V}$	04222	SR151Cl02KAA	224270000
CR1	Diode, Signal	1N914	01295		530058000
CR2	Diode, Signal	1N914	01295		530058000
CR 3	Diode, Siqnal	1N914	01295		530058000
CR4	Diode, Siqnal	FDH-300	07263		530052000
CR5	Diode, Siqnal	EDH-300	07263		530052000
CR6	Diode, Signal	1N914	01295		530058000
CR7	Diode, Signal	1N914	01295		530058000
CR8	Diode Bridge	VM-18	27777		532031000
CR9	Diode Bridqe	VM-18	27777		532031000
CR10	Diode, Siqnal	iN4001	04713		530151000
CRII	Diode, Siqna]	1N4001	04713		530151000
CR12	Diode, Zener	1N5242B (12V)	04713		530146000
CR13	Diode, Siqnal	1N4001	04713		530151000
CR14	Diode, zener	1N5242R (12V)	04713		530146000
CR15	Diode, Siqnal	1N4001	04713		530151000
CRI6	Diode, Siqnal	1N4001	04713		530151000
CR17	Diode, Siqnal	IN4001	04713		530151000
CR18	Diode, Siqnal	IN4001	04713		530151000
CR19	Diode, Siqnal	1N4001	04713		530151000
CR20	Diode, Siqnal	1N4001	04713		530151000
CR21	Diode, Siqnal	1N914	01295		530058000
J1	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
J 2	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000

Table 5-2. Replaceable Parts (Continued)

Item	Description		Mfr.	Mfr's Part	BEC Part
DIGITAL \& POWER-SUPPLY BOARD ASSEMBLY (A4); PART NUMBER 08210701P					
J3	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
J4	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
J 5	Connector 2 Pin		27264	22-03-2021	477361000
J6	Header 5 Pin		06383	MPSS156-5-D	477345000
J7	Connector Pin (M)		98291	229-1086-000-550	477240000
J8	Shunt 8 Circuit		32575	435704-8	483226000
Ll	Choke, R.F.	$150 \mu \mathrm{H}, 58$	59474	1315-16J	400415000
L2	Choke, R.F.	150 H ${ }^{\text {, }}$, 58	59474	1315-16J	400415000
L3	Choke, R.F.	$39 \mu \mathrm{H}, 10 \%$	24226	10/392	400387000
01	Transistor, NPN	2N3904	04713		528071000
R1	Resistor, MF	22.1k ohm 18	19701	RN55D-2212-F	341433000
R2	Not Used				
R3	Resistor, MF	10.0k ohm 18	19701	5043ED10K00F	341400000
R4	Resistor, MF	1k ohm 18	19701	5043 EDlK 000 F	341300000
R5	Resistor, MF	4.75k ohm 18	19701	5043ED4K750F	341365000
R6	Resistor, MF	14.3 k ohm 18	19701	$5043 \mathrm{EDL4K} 30 \mathrm{~F}$	341415000
R7	Resistor, MF	1 k ohm 18	19701	5043 EDIK000F	341300000
R8	Resistor, MF	1 k ohm 1\%	19701	5043 EDIK000F	341300000
R9	Resistor Network	10k ohm 2\%, 1.5N	71450	750-101-R3.3K	345038000
R10	Resistor, MF	1 k ohm 18	19701	5043 EDlK000F	341300000
R11	Resistor, MF	332 ohm 18	19701	5043 ED332R0F	341250000
R12	Resistor, MF	10k ohm 18	19701	5043ED10K00F	341400000
Rl3	Resistor Network	3.3 k ohm 28 l 1.5W	71450	750-101-R3.3K	345030000
R14	Resistor Network	3.3k ohm 2\% 1.5W	71450	750-101-R3.3K	345030000
R15	Resistor Network	3.3 k ohm 28 2W	75378	784-1-R3.3K	345017000
R16	Resistor Network	3.3 k ohm 282 W	75378	784-1-R3.3K	345017000
R17	Resistor Network	22 ohm $+/-2$ ohm 2W	01121	316R-220	345034000
R18	Resistor, MF	909 k ohm 18	91637	RN60D9093F	342592000
R19	Resistor, MF	100k ohm 18	19701	5043ED100K0F	341500000
R20	Resistor, MF	100k ohm 18	19701	5043 EDL 00 KOF	341500000
R21	Resistor, MF	47.5 k ohm 18	19701	5043 ED 47 K 50 F	341465000
R22	Resistor, MF	22.1 k ohm 18	19701	RN55D-2212-F	341433000
R23	Resistor, MF	200 ohm 1\%	19701	5043ED200R0F	341229000
R24	Resistor, MF	200 ohm 1\%	19701	5043 ED 200 ROF	341229000
R25	Resistor, MF	33.2 k ohm 18	19701	5043 ED 33 K 20 F	341450000
R26	Resistor, MF	lk ohm lis	19701	5043 EDlK 000 F	341300000
R27	Resistor, MF	1 k ohm 18	19701	5043EDIK000F	341300000
R28	Resistor, MF	22.1 k ohm 18	19701	RN55D-2212-F	341433000
R29	Resistor, MF	22.1 k ohm 18	19701	RN55D-2212-F	341433000
R 30	Resistor, MF	10k ohm 18	19701	5043EDIOK00F	341400000
R31	Resistor Network	10k ohm .18 1.5W	73138	698-3R10KD	345010000
R32	Resistor, MF	909 ohm 1\%	09701	5043 ED909R0F	341292000
R33	Resistor, MF	2.0 k ohm 1\%	19701	5043ED2K000F	341329000
R34	Resistor, MF	357 ohm 18	19701	5043 ED 357 ROF	341253000
R 35	Resistor, MF	750 ohm 18	19701	5043ED750R0F	341284000
R36	Resistor, MF	1.82 k ohm 18	19701	5043EDIK820F	341325000
R 37	Resistor, MF	4.99 k ohm 18	19701	5043 ED4K990F	341367000
R 38	Resistor, MF	49.9 k ohm 18	19701	5043ED49K90F	341467000
R 39	Resistor, MF	10k ohm 1\%	19701	5043 EDIOK00F	341400000
S1	Switch. DIP	7-section	75378	206-7	46530007 A
TP1	Conn M		06383	MFSS $100-5-\mathrm{C}-\mathrm{A}$	477365000
TP2	Conn M		06383	MFSS100-5-C-A	477365000
TP3	Conn M		06383	MFSS100-5-C-A	477365000
TP4	Conn M		06383	MFSS100-5-C-A	477365000
TP5	Conn M		06383	MFSS100-5-C-A	477365000
TP6	Conn M		06383	MFSS100-3-C-A	477364000
TP7	Test Point		31313	TP-103-02	48330600A
TP8	Test Point		31313	TP-103-02	48330600 A
TP9	Test Point		31313	TP-103-02	48330600 A
TP10	Test Point		31313	TP-103-02	48330600 A

Table 5-2. Replaceable Parts (Continued)

Item	Description		Mfr.	Mfr's Part \&	BEC Part \#
	DIGITAL \& POWER-SUPPLY BOARD ASSEMBLY (A4), CONTINUED; PART NUMBER 08210701P				
U1	Integrated Circuit	SN74LS04N	01295		534155000
U2	Oper. Amplifier	LF356N	01295		535040000
U3	Integrated Circuit	CD4040BE	02735		534275000
U4	Oner. Amplifier	LM311N	27014		535035400
U5	Inteqrated Circuit	SN74LS74N	01295		534157000
U6	Integrated Circuit	SN74LS 32N	01295		534168000
U7	A-D Converter	AD565AJD/BIN	24355		421034000
U8	CPU	280-CPU-PS	56708		534159000
U9	Integrated Circuit	SN74LS163AN	01295		534279000
010	Integrated Circuit	SN74LS42N	01295		534210000
011	EPROM		04901		53444300 B
012	Inteqrated Circuit	SN74LS153N	01295		534278000
U13	RAM	MSM5128-20-RS	52464		534304000
U14	Not Used				
U15	Not Used				
U16	Inteqrated Circuit	AM8255AAPC	34335		534171000
U17	Integrated Circuit	AM8255AAPC	34335		534171000
U18	Inteqrated Circuit	UDN2983A	56289		534255000
U19	Transistor Array	ULN2803A	56289		534274000
U 20	Intearated Circuit	CD4051BE	02735		534209000
U21	Oper. Amplifier	TL072CP	01295		535092000
U22	Integrated Circuit	CD4052BE	02735		534140000
U23	Oner. Amplifier	CA3080E	02735		535091000
U24	Oper. Amplifier	CA3080E	02735		535091000
U25	Inteqrated Circuit	MC78M05CT	04713		535046000
U26	Inteqrated Circuit	UA7805UC	07263		53511700 A
U27	Inteqrated Circuit	MC78M05CT	04713		535046000
U28	Inteqrated Circuit	UA79M05AUC	07263		535093000
029	Oper. Amplifier	LM324N	27014		535068000
030	Oper. Amplifier	LMIOCLN	27014		53512200 A
U31	Inteqrated Circuit	DS 1210			53514300 A
XBT1	Battery Holder		25441	BH-906	483263000
XJ8	Socket IC 16 Pin		06776	ICN-163-S3-G	473024000
x 01	Socket Transistor		07047	90363-202	473046000
xUl	Socket IC 14 Pin		06776	ICN-143-S3-G	473019000
XU2	Socket IC 8 Pin		06776	ICN-083-S3-G	473041000
XU3	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
XU4	Socket IC 8 Pin		06776	ICN-083-S3-G	473041000
XU5	Socket IC 14 Pin		06776	ICN-143-S3-G	473019000
XU6	Socket IC 14 Pin		06776	ICN-143-S3-G	473019000
$\times 117$	Socket IC 24 Pin		06776	ICN-246-S4-G	473043000
X188	Socket IC 40 Pin		06776	ICN-406-S4-TG	473052000
XU9	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
xulo	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
XU11	Socket IC 28 Pin		06776	ICN-286-S4-TG	473044000
XU12	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
XUl 3	Socket IC 24 Pin		06776	ICN-246-S4-G	473043000
XIJ 16	Socket IC 40 Pin		06776	ICN-406-S4-G	473052000
XUl7	Socket IC 40 Pin		06776	ICN-406-S4-G	473052000
xU18	Socket IC 18 Pin		06776	ICN-183-S3-TG	473045000
XU19	Socket IC 18 Pin		06776	ICN-183-S3-TG	473045000
XU20	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
XU21	Socket IC 8 Pin		06776	ICN-083-S3-G	473041000
XU22	Socket IC 16 Pin		06776	ICN-163-S3-G	473042000
XU23	Socket IC 8 Pin		06776	ICN-083-S3-G	473041000
XU24	Socket IC 8 Pin		06776	ICN-083-S3-G	473041000
xU29	Socket IC 14 Pin		06776	ICN-143-S3-G	473019000
XU30	Socket IC 8 Pin		06776	ICN-083-S3-G	473041000
Y1	Crystal	3.579545 MHz	EDMAR	MQC035A	547035000

```
Table 5-2. Replaceable Parts (Continued)
```

Item
Description
Mfr. Mfr's Part :
BEC Part

	LINE-SWITCH CONNECTOR ASSEMBLY,	(A6)	PART	NUMBER	08211500A
P15	Connector Housing	27264	$30-06-2043$	477306000	
S2	Switch Power	13812	$572-2121-0103-010$	465286000	

SECTION VI

SCHEMATIC DIAGRAMS
6-1. TABLE OF CONTENTS
Figure Page
6-1. Main-Frame Schematic Diagram (E831193C, Sheet 1 of 4) 6-3
6-2. I.F. \& A.F. Board Schematic Diagram (E831193C, Sheet 3b of 4). and Parts-Location Diagram (D831244D) 6-3
6-3. I.F. \& A.F. Board Schematic Diagram (E831193D, Sheet 3a of 4), and Parts-Location Diagram (D831244D) 6-5
6-4. R.F. Board Schematic Diagram (E831193D, Sheet 2 of 4), and Parts-Location Diagram (D831245B) 6-7
6-5. Digital and Power-Supply Board Schematic Diagram (R831193F, Sheet 4a of 4), and Parts-Location Diagram (D831244D) 6-9
6-6. Digital \& Power-Supply Board Schematic Diagram (E831193D, Sheet 4b of 4), Parts-Location Diagram (D831248F), and Display-Board Parts-Location Diagram (C831250A) 6-11
6-7. Digital \& Power-Supply Board Schematic Diagram (D831193D, Sheet 4c of 4), and Parts-Location Diagram (D831248F) 6-13

N O T E S

 sed tor callibation

 a)
not critical since the a.g.c. system is used to normalize the a.m. detector output.
(2) The filtered signal is routed to the i.f.-a.f. circuit board via C11, which removes any d.c. component, and thence to the input of buffer U1. Amplifier U1 increases the level of the signal, and more importantly, provides a very low output impedance to drive the voltage divider consisting of A3R7a, b, and c. The signal is kept at a high level in its passage through A3U3 in order to reduce the effects of switching transients and feed-through. The attenuator consisting of R11 \& R12 reduces the signal to the correct level after modulation.
(3) The voltage divider comprising A3R7a, b, c, is a precision-resistor array. The absolute value of the resistors, however, is not as important as is the match between them. Thus, resistors R7b and R7c are guaranteed to a $\pm 0.1 \%$ match with $R 7 a$.

Maintaining this voltage divider at a constant impedance minimizes the loading effect of attenuator A3R11-R12.
(4) The voltage at the junction of A3R7a and R7b is two-thirds of the output voltage of A3U1; the voltage at the junction of R7b and R7c is one-third. The ratio of these two voltages is 2:1. The equivalent a.m. percentage is then derived as follows:
NOTE:
\% $p_{+}=\frac{E_{\text {max }}-E_{a v g}}{E_{a v g}} \times 100$
$p_{+}=+$peak
\% $p_{-}=\frac{E_{a v g}-E_{m i n}}{E_{a v g}} \times 100$
peak average $\delta=\frac{p_{+}-p_{-}}{2} \times 100$

Therefore, combining Eqs. 1, $2 \& 3$, for symetrical modulation,

$$
\begin{equation*}
8 \mathrm{a} . \mathrm{m} .=\frac{E_{\max }-E_{\min }}{E_{\max }+E_{\min }} \times 100 \tag{4}
\end{equation*}
$$

And for a 2:1 ratio,

$$
\begin{aligned}
& =\frac{2-1}{2+1} \quad \times 100 \\
& =33.338
\end{aligned}
$$

(5) The above equations assume that the modulation is symmetrical (i.e. perfectly so). Should that not be the case, a d.c. shift occurs and the plus and minus peaks are not symmetrical. The calibrator program eliminates such an error by calculating a.m. as:

$$
\begin{equation*}
\text { peak average }=\frac{p_{+}+2 p_{-}}{3} \tag{5}
\end{equation*}
$$

This expression is determined as follows:

Asymmetric Modulation

Calibrator Undulation Signal

IA-2b(5), Continued.
Now, since the peak detectors are a.c. coupled,

$$
\begin{equation*}
(\mathrm{p}+)\left(\mathrm{T}_{1}\right)-\left(\mathrm{p}_{-}\left(\mathrm{T}_{2}\right)=0 \quad(0 \text { volts, d.c.) }\right. \tag{6}
\end{equation*}
$$

And:

$$
\begin{equation*}
\mathrm{T}_{1}+\mathrm{T}_{2}=1 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
(\mathrm{p}+)\left(\mathrm{T}_{1}\right)-\left(\mathrm{p}_{-}\right)\left(1-\mathrm{T}_{1}\right)=0 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
T_{1}=\frac{p-}{p++p-} \tag{9}
\end{equation*}
$$

Now:

$$
E_{a v g}=E_{\min }+\left(E_{\max }-E_{\min }\right) \quad \frac{T_{1}}{T_{1}+T_{2}}\left(\begin{array}{ll}
1 & 0 \tag{11}
\end{array}\right)
$$

And, in the 8210:
[see IA-2b(4)]
$E_{\text {max }}=2 \mathrm{E}_{\text {min }}$
Combining Eqs. 7,10 \& 11: $\mathrm{E}_{\mathrm{avg}}{ }^{=} \mathrm{E}_{\mathrm{min}}+\mathrm{E}_{\mathrm{min}}\left(\mathrm{T}_{1}\right)$
$\mathrm{E}_{\mathrm{avg}}=\mathrm{E}_{\min }\left(1+\mathrm{T}_{1}\right)$
If symmetry is perfect: $\quad E_{a v g}=E_{\min }(1.5)$
If symmetry is less than perfect, the d.c. ratio error, R (that is, Eq. 13 vs. Eq 14), will be:

$$
\begin{equation*}
\mathrm{R}=\left(1+\mathrm{T}_{1}\right) / 1.5 \tag{15}
\end{equation*}
$$

Combining Eqs. $9 \& 15: \quad \mathrm{R}=\frac{\mathrm{p}++2 \mathrm{p}-}{1.5(\mathrm{p}++\mathrm{p}-)}$
(Eavg normalized to 1):
$=\frac{\mathrm{p}++\mathrm{p}-}{2}$
(6) It should be noted that only the ratio of the two modulating levels is important--not their absolute values. The two a.m. levels can be measured at the $A F$ OUT connector by manually operating the IC analog switch A3U3 as follows:
(a) With power off, set Pos. \#7 of Test Switch A4S1 "on."
(b) Power on. Connect a voltmeter to the AF OUT connector.
(c) Connect a clip lead from pin 1 or 16 of A3U3 to ground. (These pins are resistively isolated, so no harm will occur in grounding them.)
(d) Depress the AM FUNCTION button and measure the AF OUT voltage.
(e) Disconnect the clip lead from ground and connect it to +5 volts (pin 14 of A3U6).
(f) Measure the AF OUT voltage.

The ratio of the two voltages should be exactly $2: 1$, within $\pm 0.1 \%$ (The voltmeter should be able to resolve a 0.1% error at 447.4 kHz ; a thermocouple type is suggested.)

The procedure given above is not intended to be a performance test;

- $A-2 b(6)$, Continued.
it is included only to satisfy one who is curious as to the operation of the calibrator.
(7) The calibration program accumulates ten readings, and averages them to eliminate the last-digit uncertainty in the scaling operation. The voltmeter, however, can resolve the reading only to 1 part in 333. Therefore, the worst-case quantification error is $\pm 0.3 \%$. A.M. noise is of little consequence in determining calibrator depth since the level is determined by TTL gates before filtering, and the frequency is crystal-controlled. Actual noise levels are less than 1 part in 3333.
(8) Cross-correlation measurements using a specially calibrated Model 82AD F.M.-A.M. Modulation Meter (Boonton electronics) indicate that the actual calibration uncertainty for 100 calibrations is approximately $\pm 0.15 \%$.
c. Audio Processing. During calibration, a three-pole gaussian filter is used to remove high-frequency signal components. The filter time-constants are selected so as to provide the required filtering without affecting the absolute peak values of the recovered signal. The use of a gaussian filter ensures that there will be no overshoot on the recovered audio signal.
d. R.F. Circuitry. The Model 8210^{\prime} s r.f. circuitry is designed to have exceptional linearity so that a.m. performance is not degraded. As noted earlier, however, the r.f. circuits are not included in the modulationcalibration process. Consequently, during a.m. measurements, errors can occur if there is a malfunction in the r.f. section. These errors will usually be obvious to the user.

For f.m. measurements, the bypassing of r.f. circuitry during modulation calibration does not present a problem, since frequency modulation is the same before and after frequency conversion.

W A R R A N TY

Boonton Electronics Corporation warrants its products to the original purchasertobe free from defects in material and workmanship and to operate within applicable
 under normal operating conditions. This warianty does not apply to active devices that have given normal service, to sealod assemblies which have been opened pr to ary ltem which has been repaired of thered without our aufforization defective under the terms of this Warranty
 transportation during the first threo months of this warrant

\qquad
Except for such repair or reptaces or for any consequential damet the Uniform Commercial Codest

BOONTON

BOONTON

BOONTON ELECTRONICS CORPORATION

BOONTON ELECTRONICSCOPPORATION 791 ROUTE 10,RANDOLPH, NJ 07869
(201) 584-1077-TWXX $10986: 8215$

FAX: (201) $5843037, \ldots+2$

