8860A Digital Multimeter

Operator Manual

DIGITALY REMASTERED OUT OF PRINT- MANUAL SCANS

By Artek Media
$18265200^{\text {th }}$ St. Welch, MN 55089
www.artekmedia.com
"High resolution scans of obsolete technical manuals"

If your looking for a quality scanned technical manual in PDF format please visit our WEB site at www.artekmedia.com or drop us an email at manuals@artekmedia.com and we will be happy to email you a current list of the manuals we have available.

If you don't see the manual you need on the list drop us a line anyway we may still be able to point you to other sources. If you have an existing manual you would like scanned please write for details. This can often be done very reasonably in consideration for adding your manual to our library.

Typically the scans in our manuals are done as follows;

1) Typed text pages are typically scanned in black and white at 300 dpi .
2) Photo pages are typically scanned in gray scale mode at 600 dpi
3) Schematic diagram pages are typically scanned in black and white at 600 dpi unless the original manual had colored high lighting (as is the case for some 70's vintage Tektronix manuals).
4) Most manuals are text searchable
5) All manuals are fully bookmarked

All data is guaranteed for life (yours or mine ... which ever is shorter). If for ANY REASON your file becomes corrupted, deleted or lost, Artek Media will replace the file for the price of shipping, or free via FTP download.

Thanks

WARRANTY

Notwithstanding any provision of any agreement the following warranty is exclusive:
The JOHN FLUKE MFG. CO., INC., warrants each instrument it manufactures to be free from defects in material and workmanship under normal use and service for the period of 1-year from date of purchase. This warranty extends only to the original purchaser. This warranty shall not apply to fuses, disposable batteries (rechargeable type batteries are warranted for 90 -days), or any product or parts which have been subject to misuse, neglect, accident, or abnormal conditions of operations.

In the event of failure of a product covered by this warranty, John Fluke Mfg. Co., Inc., will repair and calibrate an instrument returned to an authorized Service Facility within 1 year of the original purchase; provided the warrantor's examination discloses to its satisfaction that the product was defective. The warrantor may, at its option, replace the product in lieu of repair. With regard to any instrument returned within 1 year of the original purchase, said repairs or replacement will be made without charge. If the failure has been caused by misuse, neglect, accident, or abnormal conditions of operations, repairs will be billed at a nominal cost. In such case, an estimate will be submitted before work is started, if requested.

> THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS, Of ADEQUACY FOR ANY PARTICULAR PURPOSE OR USE. JOHN FLUKE MFG. CO., INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN CONTRACT, TORT, OR OTHERWISE.

If any failure occurs, the following steps should be taken:

1. Notify the JOHN FLUKE MFG. CO., INC., or nearest Service facility, giving full details of the difficulty, and include the model number, type number, and serial number. On receipt of this information, service data, or shipping instructions will be forwarded to you.
2. On receipt of the shipping instructions, forward the instrument, transportation prepaic. Repairs will be made at the Service Facility and the instrument returned, transportation prepaid.

SHIPPING TO MANUFACTURER FOR REPAIR OR ADJUSTMENT

All shipments of JOHN FLUKE MFG. CO., INC., instruments should be made via United Parcel Service or "Best Way"* prepaid. The instrument should be shipped in the original packing carton; or if it is not available, use any suitable container that is rigid and of adequate size. If a substitute container is used, the instrument should be wrapped in paper and surrounded with at least four inches of excelsior or similar shock-absorbing material.

CLAIM FOR DAMAGE IN SHIPMENT TO ORIGINAL PURCHASER

The instrument should be thoroughly inspected immediately upon original delivery to purchaser. All material in the container should be checked against the enclosed packing list. The manufacturer will not be responsible for shortages against the packing sheet unless notified immediately. If the instrument is damaged in any way, a claim should be filed with the carrier immediately. (To obtain a quotation to repair shipment damage, contact the nearest Fluke Technical Center.) Final claim and negotiations with the carrier must be completed by the customier.

The JOHN FLUKE MFG. CO., INC, will be happy to answer all applications or use questions, which will enhance your use of this instrument. Please address your requests or correspondence to: JOHN FLUKE MFG. CO., INC., P.O. BOX C9090, EVERETT, WASHINGTON 98206, ATTN: Sales Dept. For European Customers: Fluke (Holland) B.V., P.O. Box 5053, 5004 EB, Tilburg, The Netherlands.
*For European customers, Air Freight prepaid.
John Fluke Mfg. Co., Inc., P.O. Box C9090, Everett, Washington 98206
Rev. 6/81

Table of Contents

SECTIONTITLEPAGE
1 INTRODUCTION AND SPECIFICATIONS 1-1
1-1. THE 8860A INSTRUCTION MANUAL SET 1-1
1-4. DESCRIPTION 1-2
1-11. SPECIFICATIONS 1-3
2 SHIPPING AND SERVICE INFORMATION 2-1
2-1. INTRODUCTION 2-1
2-4. SERVICE INFORMATION 2-1
2-7. QUESTIONS/PROBLEMS 2-1
3 INSTALLATION AND MAINTENANCE 3-1
3-1. INTRODUCTION 3-1
3-4. INSTALLATION 3-1
3-5. Bench-Top 3-1
3-9. Rack-Panel Mounting 3-1
3-11. Input Line Voltage 3-2
3-14. OPERATOR MAINTENANCE 3-2
3-16. Fuse Replacement 3-2
3-18. Cleaning 3-2
4 OPERATING INSTRUCTIONS 4-1
4-1. INTRODUCTION 4-1
43. OPERATING FEATURES 4-1
4-5. OPERATING NOTES 4-4
4-7. Initial Turn-On 4-4
4-9. Input Overload Limits 4-4
4-11. Measurement Connections 4-4
4-22. Display Indications 4-6
4-35. Front Panel Push Buttons 4-8
4-56. OPERATION 4-14
4-58. Turn-On Procedures 4-14
4-60. Making Measurements 4-14
5 OPTION AND ACCESSORY INFORMATION 5-1
5-1. TABLE OF CONTENTS 5-1
A FLUKE SALES AND SERVICE CENTERS A-1

List of Tables

TABLE TITLE PAGE
1-1. 8860A Options 1-3
1-2. Option Compatability 1-3
1-3. 8860A Specifications 1-4
3-1. 8860A Panel-Mount Kits 3-2
4-1. . . . Front Panel Controls, Indicators, and Connectors 4-2
4-2. Rear Panel Connectors 4-4
4-3. Input Overload Limit 4-5
4-4. $\quad \Omega 2 \mathrm{~T}$ and $\Omega 4 \mathrm{~T}$ Test Current and Open Circuit Voltage 4-5
4-5. 8860A Error Codes 4-8
A-1. Fluke Technical Service Centers - U.S. and Ganada A-2
A-2. Fluke Technical Service Centers - International A-2
A-3. \quad Sales Representatives - U.S. and Canada A-4
A-4. Sales Representatives - International A-5

List of Illustrations

FIGURE TITLE PAGE
Fontispiece 8860 A Digital Multimeter vi
1-1. Outline Drawing 1-7
3-1. Rack Mount Kits 3-3
4-1. Front Panel Controls, Indicators, and Connectors 4-1
4-2. Rear Panel Connectors 4-3
4-3. Test Connections for Four-Terminal Resistance Measurements 4-6
4-4. Guard Connections 4-7

8860A Digital Multimeter

Section 1
 Introduction and Specifications

1-1. THE 8860A INSTRUCTION MANUAL SET

1-2. The John Fluke Model 8860A Digital Multimeter is documented by a set of five manuals: Operator, Calibration, Calculating Controller User Handbook, Service, and a Reference Guide. The Operator Manual includes a description of the unit, installation information, operating instructions, and routine operator maintenance. The Calibration Manual is designed for use by the Calibration Technician. It contains specifications, general maintenance information, access procedures, performance tests, and calibration adjustment procedures. The User Handbook contains the operating instructions for the Calculating Controller Option (-004). The Service Manual contains the theory of operation, troubleshooting information, a list of replaceable parts, and schematics. Condensed operating information for both the 8860A and the Calculating Controller are included in the Reference Guide. The five manuals can be separated for use in different areas or joined together in a single three-ring binder.

1-3. The Calibration Manual is divided into the following sections:

1 INTRODUCTION AND SPECIFICATIONS
$2 \begin{aligned} & \text { SHIPPING AND SERVICE } \\ & \text { INFORMATION }\end{aligned}$

3 ACCESS PROCEDURES

4 GENERAL MAINTENANCE

5 PERFORMANCE TEST

Introduces the 8860A Instruction Manual Set, lists the recommended test equipment required to complete the performance tests and the calibration adjustments, and lists the instrument specifications.

Provides unpacking and shipping information. Instructions for contacting your local Fluke Service Center and the John Fluke Mfg. Co. Inc. are also included.

Describes how to access the calibration adjustments and general maintenance circuit areas.

Includes procedures for fuse replacement, line voltage selection, and other general maintenance.

Provides a set of procedures to verify that the 8860 A is performing within the specifications listed in Section 1. All of these procedures are accomplished without removing the instrument from its case.

6 CAIIBRATION ADJUSTMENTS

Provides a set of step by step procedures for making all of the 8860 A calibration adjustments. These procedures are performed when the 8860 A does not meet the specifications listed in Section 1.

1-4. RECOMMENDED TEST EQUIPMENT

1-5. The equipment required to complete the Performance Test and the Calibration Procedure is listed in Table 1-1. If the recommended models are not available, instruments with equivalent specifications can be substituted.

1-6. SPECIFICATIONS

1-7. The specifications for the 8860 A are listed in Table 1-2.

Table 1-1. Recommended Test Equipment

INSTRUMENT TYPE	MINIMUM SPECIFICATIONS	RECOMMENDED MODEL
AC Calibrator	Voltage Range: $0-1000 \mathrm{~V}$ ac Freq. Range: $20 \mathrm{~Hz}-300 \mathrm{kHz}$ Voltage Accuracy: 0-100V ac: $20 \mathrm{~Hz}-50 \mathrm{~Hz} .1 \%$ $50 \mathrm{~Hz}-10 \mathrm{kHz} .03 \%$ $10 \mathrm{kHz}-100 \mathrm{kHz} .03 \%$ $100 \mathrm{kHz}-300 \mathrm{kHz}$. 4% $100-1000 \mathrm{~V}$ ac: $20 \mathrm{~Hz}-50 \mathrm{~Hz} .15 \%$ $50 \mathrm{~Hz}-10 \mathrm{kHz} .05 \%$ $10 \mathrm{kHz}-100 \mathrm{kHz} .1 \%$	JF 5200A, JF5205A
DC Calibrator	Voltage Range: 0-1000V dc Accuracy: .003\%	JF 332B
Voltage Divider	Ratio Range: 0-1.0 Absolute Linearity: $\pm 1 \mathrm{ppm}$ of input at dial setting	JF 720A
Resistor Decade	Resistance Accuracy: .005\%	
Oscilloscope	General purpose with 10M probe	Tektronix T932A
Digital Voltmeter	```Voltage Accuracy: .01% (V dc) 1.0% (V ac) for 1 volt input at }100\textrm{kHz Input Impedance: 10 Megohm or greater in V dc 1 Megohm in parallel with <100 pF in V ac```	JF 8800A

Table 1-2. 8860A Specifications

DC VOLTS

Ranges $\pm 200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$
Ranging Fully automatic or manual
Polarity of Input Automatic polarity selection and display
Resolution (Max.) 00005% of full scale (1 uV on 200 mV range) with 5-1/2 digit display.
Accuracy Using front panel zero, \pm (\% input + no. of digits $)$

5-1/2 DIGIT DISPLAY*

RANGE	$\begin{gathered} 24 \mathrm{HR} \\ 23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 90 \mathrm{DAY} \\ 18^{\circ} \mathrm{C}-28^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 1 \text { YR } \\ 18^{\circ} \mathrm{C}-28^{\circ} \mathrm{C} \end{gathered}$	NORMAL MODE REJECTION	
				NO FILTER	FILTER
200 mV	$(0.004+3)$	$(0.008+3)$	$(0.01+3)$	$\begin{aligned} & >60 \mathrm{~dB} \\ & 50,60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & >100 \mathrm{~dB} \\ & 50,60 \mathrm{~Hz} \end{aligned}$
2V-200V	$(0.004+2)$				
1000V					

4-1/2 DIGIT DISPLAY*

RANGE	$90 D A Y$ $18^{\circ} \mathrm{C}-28^{\circ} \mathrm{C}$	1 YR $18^{\circ} \mathrm{C}-28^{\circ} \mathrm{C}$	NORMAL MODE REJECTION			
	All	$(0.01+2)$	$(0.015+3)$	NO FILTER	FILTER	$>60 \mathrm{~dB}$
:---:						
$50,60 \mathrm{~Hz}$						

*Settling Time: 30 ms to within $.01 \%$ of input step size, with filter 300 ms .
3-1/2 DIGIT DISPLAY (Available with -004 or -005 options only)

RANGE	1 YR $18^{\circ} \mathrm{C}-28^{\circ} \mathrm{C}$	NORMAL MODE REJECTION	
	All	$(0.1+1)$	NO FILTER

Settling Time: 5 ms to within $.1 \%$ of input step size, with filter 250 ms .

Common Mode Rejection

CONDITIONS Line frequency switch properly set. Line frequency at 50 or $60 \mathrm{~Hz} \pm 0.1 \%$. One kilohm in either lead.

4-1/2 AND 5-1/2 DIGIT RATE
Normal Guard $>130 \mathrm{~dB}$
External Guard (Driven) $>150 \mathrm{~dB}$
3-1/2 DIGIT RATE
Normal Guard $>70 \mathrm{~dB}$
External Guard (Driven) $>90 \mathrm{~dB}$
DC, ALL READING RATES >160 dB
Input Resistance
200 mV , 2V RANGES $>10,000 \mathrm{M} \Omega$
20V, 200V, 1000V RANGES $10 \mathrm{M} \Omega$

Table 1-2. 8860A Specifications (cont)
Input Bias Current (@ 23${ }^{\circ} \mathrm{C}$) $<100 \mathrm{pA}$
Zero Stability
(after 1 hour warmup) ± 10 uV for 90 days
Maximum Input $\begin{aligned} \ldots \ldots & \pm 1000 \mathrm{~V} \text { Pk input HI to LO } \\ & \pm 500 \mathrm{~V} \mathrm{Pk} \text { input LO to Earth } \\ & \pm 30 \mathrm{~V} \mathrm{Pk} \text { input LO to Guard }\end{aligned}$
AC VOLTS (True RMS, AC only or AC + DC)
Ranges $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 700 \mathrm{~V}$
Ranging Fully automatic or manual
Resolution (Max) 0.0005% F.S. (1 uV on 200 mV range) with 5-1/2 digit display.
Accuracy $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . \pm(\%$ INPUT + DIGITS $), 0.5 \%$ F.S. to F. S. AC only*

FREQUENCY	RANGE(S)	$\begin{gathered} 90 \mathrm{DAY} \\ 18^{\circ} \mathrm{C}-28^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} 1 \mathrm{YR} \\ 18^{\circ} \mathrm{C}-28^{\circ} \mathrm{C} \end{gathered}$		
		\% INPUT	DIGITS		\% INPUT	DIGITS	
			5-1/2	4-1/2		5-1/2	4-1/2
$20 \mathrm{~Hz}-50 \mathrm{~Hz}$	All	0.25	70	10	0.25	100	13
$50 \mathrm{~Hz}-10 \mathrm{kHz}$	All	0.15	70	10	0.15	100	13
$10 \mathrm{kHz}-50 \mathrm{kHz}$	$2 \mathrm{~V}-700 \mathrm{~V}$	0.4	150	18	0.4	300	33
	200 mV	0.7	150	18	0.7	300	33
$50 \mathrm{kHz}-100 \mathrm{kHz}$	$2 \mathrm{~V}-700 \mathrm{~V}$				1.0	350	38
	200 mV				2.5	350	38
$100 \mathrm{kHz-300} \mathrm{kHz}$	All				8.0	700	73

*For $A C+D C$ operation, add 0.1% of input +50 digits for 5-1/2 digit resolution.
For $A C+D C$ operation, add 0.1% of input +5 digits for $4-1 / 2$ digit resolution.

$$
\text { Bandwidth (typical) } \leqslant 3 \mathrm{~dB} @ 1 \mathrm{MHz}
$$

Crest Factor 3 at full range, increasing down range
Input Impedance $10 \mathrm{M} \Omega, \leqslant 70 \mathrm{pF}$
Maximum Input
$700 \mathrm{~V} \mathrm{rms}, 1000 \mathrm{~V}$ Pk, or $2 \times 10^{7} \mathrm{volt} / \mathrm{Hz}$, whichever is less.

OHMS (2-terminal or 4-terminal)

Ranging	Fully Automatic or Manual
Resolution (Max)	0.0005% F.S. ($1 \mathrm{~m} \Omega$ on 200Ω range) with $5-1 / 2$ digit display

Table 1-2. 8860A Specifications (cont)

Accuracy
Using front panel zero, \pm ($\%$ of input + no. of digits $)$

5-1/2 DIGIT DISPLAY

RANGE	24 HR $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$	90 DAY $18^{\circ} \mathrm{C}-28^{\circ} \mathrm{C}$	1 YR $18^{\circ} \mathrm{C}-28^{\circ} \mathrm{C}$
200	$(0.008+4)$	$(0.012+4)$	$(0.015+4)$
$2 \mathrm{k}-200 \mathrm{k} \Omega$	$(0.006+2)$	$(0.01+2)$	$(0.013+2)$
2 M	$(0.01+3)$	$(0.014+3)$	$(0.017+3)$
20 M	$(0.07+3)$	$(0.09+3)$	$(0.10+3)$

4-1/2 DIGIT DISPLAY

RANGE	90 DAY $18^{\circ} \mathrm{C}-28^{\circ} \mathrm{C}$	1 YR $18^{\circ} \mathrm{C}-28^{\circ} \mathrm{C}$
$200-2 \mathrm{M} \Omega$	$(0.01+2)$	$(0.02+3)$
$20 \mathrm{M} \Omega$	$(0.1+2)$	$(0.14+3)$

3-1/2 DIGIT DISPLAY

RANGE	1 YR $18^{\circ} \mathrm{C}-28^{\circ} \mathrm{C}$
$200 \Omega-2 \mathrm{M} \Omega$	$(0.1+1)$
$20 \mathrm{M} \Omega$	$(0.3+1)$

INPUT CHARACTERISTICS

RANGE	CURRENT THRU RX	OPEN CIRCUIT VOLTAGE
200	1 mA	
$2 \mathrm{k} \Omega$	1 mA	
$20 \mathrm{k} \Omega$	100 uA	6.0 V MAX
$200 \mathrm{k} \Omega$	10 uA	
$2 \mathrm{M} \Omega$	1 uA	
$20 \mathrm{M} \Omega$.1 uA	

Maximum Input \qquad 300 V DC or Peak AC
Ohms Settling Times

RANGE	5-1/2 and 4-1/2 DIGIT (TO .01\% OF STEP)		3-1/2 DIGIT (TO .1\% OF STEP)	
	NO FILTER	FILTER	NO FILTER	FILTER
200-20 k Ω	100 ms	$<300 \mathrm{~ms}$	$<15 \mathrm{~ms}$	$<300 \mathrm{~ms}$
$200 \mathrm{k} \Omega$		$<1.1 \mathrm{~s}$		$<800 \mathrm{~ms}$
2 m		$<650 \mathrm{~ms}$	$<70 \mathrm{~ms}^{*}$	$<500 \mathrm{~ms}$
20m	$<1.5 s^{*}$	$<6.8 \mathrm{~s}$	$<600 \mathrm{~ms}^{*}$	$<4.5 \mathrm{~s}$

*For these ranges the filter is recommended. This will reduce the effects of noise pickup common to all high impedance measurements.

Table 1-2. 8860A Specifications (cont)

GENERAL				
DISPLAY	RESOLUTION (\% FS)	$\begin{gathered} \text { MAX } \\ \text { READING/SEC } \end{gathered}$	LINE FREQ. (HZ)	A/D INTEGRATE TIME (MS)
5-1/2	0.0005	2.5	50, 60	100
4-1/2	0.005	$\begin{aligned} & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 16-2 / 3 \\ & 20 \end{aligned}$
3-1/2*	0.05	30	50,60	2
*Accessible through IEEE-488 or Calculating Controller options only.				
Temperature $\ldots \ldots \ldots \ldots \ldots . .0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ operating; $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ nonoperating.				
Temperature Coefficient		$\pm 0.1 \times$ applicable accuracy specification per ${ }^{\circ} \mathrm{C}$		
Relative Humidity		$\leqslant 80 \%$ to $+35^{\circ} \mathrm{C} ; \leqslant 70 \%$ to $+50^{\circ} \mathrm{C}$		
Shock \& Vibration		MIL-T-28800B, class 4		
Power		$\begin{aligned} & 100,129,220,240 \mathrm{VAC} \pm 10 \%, 250 \mathrm{VAC} \text { MAX., } 50 \\ & \mathrm{~Hz} \text { or } 60 \mathrm{~Hz} \end{aligned}$		
Size	,	$13.08 \mathrm{~cm} \times 20.45 \mathrm{~cm} \times 32.69 \mathrm{~cm}(\mathrm{H} \times W \times \mathrm{L})$ (5.15 in $\times 8.05$ in $\times 12.85 \mathrm{in}$) See Figure 1-1.		
Weight		3.39 kg (7.48 lbs)		
Protection Class 1		Relates solely to insulating or grounding properties defined in IEC 348		

*Accessible through IEEE-488 or Calculating Controller options only

Figure 1-1. Outline Drawing

Section 2 Shipping and Service Information

2-1. SHIPPING INFORMATION

2-2. The 8860 A is packaged and shipped in a foam-packed container. When you receive the 8860 A , inspect it thoroughly for possible shipping damage. Special instructions for inspection and claims are included on the shipping container.

2-3. If reshipment is necessary, use the original container. If the original container is not available, order a new container from John Fluke Mfg. Co., Inc./P.O. Box 43210/Mountlake Terrace. WA 98043, telephone (206)774-2211.

2-4. SERVICE INFORMATION

2-5. Each John Fluke Model 8860A Digital Multimeter is warranted for a period of I year upon delivery to the original purchaser. The WARRANTY is located at the front of this manual.

2-6. Factory authorized calibration and service for each Fluke product is available at various worldwide locations. A complete list of these service centers is given in Appendix A. If requested, Fluke will provide an estimate before any work begins on instruments that are beyond the warranty period.

2-7. QUESTIONS/PROBLEMS

2-8. For any additional information, contact your nearest John Fluke Sales Representatives (see Appendix A), or the John Fluke Mfg. Co., Inc. at the address or telephone number given above.

THIS
 PAGE
 LEFT BLANK

SCANS
 By Artek Media

Section 3
 Installation and Maintenance

3-1. INTRODUCTION

3-2. This section of the manual contains installation and operator maintenance information for the basic 8860A. Review the installation information prior to using the instrument. Have a qualified technician perform any procedures that require internal access to the 8860 A . Perform the operator maintenance procedures as required.

3-3. Installation and maintenance procedures that apply to the 8860A Options are included in Section 5 of this manual. The installation of these options must be performed by a qualified technician. However, some routine maintenance procedures, such as battery replacement, can be accomplished by the operator.

3-4. INSTALLATION

3-5. Bench-Top
3-6. The 8860 A is designed primarily as a bench-top instrument. It is housed in a Fluke Portable Test Instrument (PTl) case. The case includes: non-marring rubber feet, a folddown bail for tilting the unit, a retractable carrying handle, and the ability to stack and lock with other PTl instruments.

3-7. The fold-down bail is located on the bottom front of the instrument. To use the bail: pull it away from the bottom of the instrument by its cross-bar, and lock it in the extended position by pressing it up into the case. To retract the bail: puil it out of the locked position, fold it up, and press it into its retracted position latch.

3-8. The stacking feature of the PTI case allows the 8860 A to be stacked with, and locked to other Fluke instruments in the PTI product line. Use the following procedure to stack PTI instruments:

1. Locate and pull the black latches on both sides of the unit to their extended position.
2. Place the unit on top of the PTI stack with the front panel toward the front of the stack.
3. When the unit is properly seated, push both latches in. This will lock the unit to the stack.

3-9. Rack-Panel Mounting

3-10. A series of rack-panel-mount kits (accessories) are available for installing the 8860 A in a standard 19 -inch equipment rack or in a DIN-size panel opening. The available kits are shown in Table 3-1. Typical kit configurations are shown in Figure 3-1. Installation instructions are included with each kit.

Table 3-1. 8860A Panel-Mount Kits

DESCRIPTION	MODEL NUMBER
Rack Mount, 19-inch, Offset-RightY2016	Y2016
Rack Mount, 19-inch, Side-by-sideY2017	Y2017
Panel Mount, DIN-SizeY2021	Y2021

3-11. Input Line Voltage

$3-12$. The 8860 A is internally configured to operate from a $100,120,220$, or 240 V ac $\pm 10 \%$ (250 V ac maximum), 50 or $60 \mathrm{~Hz} \pm 0.1 \%$ power line. A decal on the rear panel of the instrument specifies the voltage selected prior to shipment. The procedure to select another voltage or frequency is given in the 8860A Calibration Manual. The selection procedure should be performed only by a qualified technician.

3-13. Line voltage is applied to the 8860A by way of a rear-panel, three-prong power connector. Use the three-wire line cord supplied with the unit to make the connection between line power and the 8860A. The offset prong on the line cord should be connected to a high quality earth ground.

3-14. OPERATOR MAINTENANCE

3-15. Operator maintenance for the 8860A is limited to cleaning and fuse replacement. Detailed calibration and service procedures are included in the Calibration and Service Manuals.

3-16. Fuse Replacement

3-17. The fuse is located in the lower-left corner of the rear panel. When fuse replacement is necessary, remove the fuse-cap by turning it $1 / 8$ of a turn counterclockwise with a screwdriver. The fuse will pull out with the fuse-cap. Replace the fuse with one of the proper rating:

For 110 or 120 V ac, use $1 / 4 \mathrm{~A}$ slo-blo 250 V
For 220 or 240 V ac, use $1 / 8 \mathrm{~A}$ slo-blo 250 V

3-18. Cleaning

3-19. Periodically clean the front panel using a soft cloth dampened with a mild solution of detergent and water. Use low pressure air ($<20 \mathrm{psi}$) to clear dust from corners, crevices, and rear-panel connectors.

CAUTION

Do not use aromatic hydrocarbons or chlorinated solvents for cleaning the 8860A. They have adverse effects on plastic materials.

Figure 3-1. Rack Mount Kits

THIS
 PAGE
 LEFT BLANK

SCANS
 By Artek Media

Section 4 Operating Instructions

4-1. INTRODUCTION

4-2. This section of the manual contains the operating instructions for the 8860 A . Successful and efficient operation of the 8860A requires an understanding of the unit's features and capabilities. Both are described in detail under Operating Features and Operating Notes. They are followed by operating instructions that assume a knowledge of the instrument's features and capabilities.

4-3. OPERATING FEATURES

4-4. The 8860A front-panel controls, indicators, and connectors are shown in Figure 4-1 and described in Table 4-1. Similarly, the rear-panel features are shown in Figure 4-2 and described in Table 4-2.

Figure 4-1. Front Panel Controls, Indicators, and Connectors

Table 4-1. Front Panel Controls, Indicators, and Connectors

REF. NO.	NAME	FUNCTION
1	Mantissa Field	The mantissa field is a $5-1 / 2$ digit LED display complete with polarity indicator and a floating decimal point. Measurement data and other operator data is displayed in the mantissa field.
2	Exponent Field	The exponent field is a two digit LED display plus a negative sign. It is used for displaying error codes, limit results (H, L, P), and exponents of 10. Exponents are used for entering, storing, and recalling data. It is not used to display basic measurement data.
3	Annunciators	Measurement units of the selected measurement function are defined by the annunciators. They include: $V, m V, \Omega, k \Omega$, and $M \Omega$.
4	POWER Switch	The POWER switch is a push-push switch used to turn the 8860A on and off.
5	REMOTE Indicator	Lights to indicate that the 8860A is in the remote operating mode. When the light is off, the 8860A is in the local mode.
6	Control	All 8860A measurement, control, and data functions are governed by these multi-function push-button switches. The switches are divided into functional groups. They are:
.		Measurement FUNCTIONS Measurement RANGE Measurement MODIFIERS Measurement SAMPLE Local/Remote CONTROL Numeric Data STORE Numeric Data RECALL NUM and FCN (Alternate switch assignment selectors, NUM enables gray assignments, FCN enables rust assignments)
7	ת4T SENSE Connectors	Two recessed banana connectors (HI and LO). They are used for connecting the, sense leads when making four-terminal resistance measurements.
8	GUARD Switch	A push-push switch used to connect the internal guard shieid to the GD (guard) connector (EXT GD) or to the LO INPUT connector (NORM). The GD connector is open when the GUARD switch is set to NORM.
9	GD (Guard) Connector	A recessed banana connector for making external guard connections when the GUARD switch is set to EXT GD. The GD connector is open when the GUARD switch is set to NORM.

Table 4-1. Front Panel Controls, Indicators, and Connectors (cont)

Figure 4-2. Rear Panel Connectors

Table 4-2. Rear Panel Connectors

REF.NO.	NAME.	FUNCTION
1	1/0 Cover	A protective cover that is present when the Calculating Controller Option (-004) or the IEEE488 Interface Option (-005) is not installed. Connectors are in this location if either of these options is installed in the 8860A.
2	Rear Input Cover	A protective cover that is present when the Rear Input Option (-006) or the DC External Reference Option (-007) is not installed. Connectors are in this location if either option is installed.
3	Input Power Connector	Three-prong power connector for connecting the 8860A, by way of the ine cord, to line power.
4	Fuse	Houses the line power fuse.
5	EXT TRIG Connector	Provides BNC connection for an external trigger input.

4-5. OPERATING NOTES

4-6. The following operating notes describe various conditions, capabilities, and procedures that the operator should be aware of before attempting to operate the 8860A.

4-7. Initial Turn-On

4-8. After input line power is connected to the 8860A, as described in Section 3, turn the unit on by pressing the POWER switch to ON. The unit will initialize to the following configurations: VDC, autorange, all MODIFIERS disabled, slow SAMPLE RATE (2-1/2 readings per second, $5-1 / 2$ digit resolution). The display will remain blank until initialization is complete.

4-9. Input Overload Limits

WARNING

TO AVOID SHOCK HAZARD OR EQUIPMENT DAMAGE, DO NOT APPLY input potentials that exceed the input overload limits.

4-10. All 8860A measurement functions are input overload protected. The overload limits are given in Table 4-3. Exceeding these limits may damage the instrument and/or pose a shock hazard to the operator.

4-11. Measurement Connections

4-12. There are five test-lead connectors on the 8860 A front panel. They are divided into three groups: INPUT HI and LO, SENSE HI and LO, and GD (guard). The following paragraphs discuss test lead connection and the proper use of each of the three connector groups.

Table 4-3. Input Overload Limit

TERMINALS	FUNCTIONS	MAXIMUM INPUT
	VDC \sim	HI to LO 1000 V peak
Input	VAC	LO to GD, 30 V
	VAC	LO to earth ground, 500 V peak
	$\Omega 2 T$	HI to LO 300V dc or peak ac
	$\Omega 4 T$	HI to LO, 300V peak
Sense	$\Omega 4 T$	5 V peak
EXT TRIG	ALL	

4-13. INPUT HI AND LO

4-14. Connect the test leads to the INPUT HI and LO connectors for all voltage and two-terminal resistance measurements. The test leads are interchangeable for twoterminal resistance measurements unless a semiconductor device is being measured. In this event, the HI connector lead is positive with respect to the LO connector lead. Test currents and open circut voltage for all resistance ranges are listed in Table 4-4.

4-15. When making voltage measurements, connect the LO connector lead probe to circuit common or the lowest of the two potentigls with respect to earth ground. This establishes the reference level for the measurment and ensures a proper polarity indication for dc measurements. It also minimizes the possibility of exceeding the 500 V peak limit between LO INPUT connector and earth ground. Connect the HI connector lead to the highest of the two terminals with respect to earth ground.

4-16. SENSE HI AND LO
4-17. The $\Omega 4 \mathrm{~T}$ SENSE connectors provide for the connection of sense leads when making four-terminal measurements. They are used in conjunction with the INPUT connectors. A constant test current is supplied to the test resistor through the INPUT connector test leads. The sense test leads are connected across the resistor as voltage sensors. As a result, errors caused by the voltage drop across the INPUT connector test leads are eliminated from the measurement.

Table 4-4. $\Omega 2$ T and $\Omega 4$ T Test Current and Open Circuit Voltage

RANGE	TEST CURRENT	OPEN CIRCUIT VOLTAGE
100Ω	1 mA	
$1 \mathrm{k} \Omega$	1 mA	
$10 \mathrm{k} \Omega$	100 uA	$<6 \mathrm{~V}$ dc on all ranges
$100 \mathrm{k} \Omega$	10 uA	
$1 \mathrm{M} \Omega$	1 uA	
$10 \mathrm{M} \Omega$	100 nA	

4-18. Proper use of the SENSE HI and LO connector is shown in Figure 4-3. Notice that the HI and LO test leads for both the INPUT and SENSE connectors are paired at
the test resistor, i.e., INPUT HI and SENSE HI are connected together, as are INPUT LO and SENSE LO. The test current and the open circuit voltages for four-terminal measurement are the same as those listed in Table 4-4.

Figure 4-3. Test Connections for Four-Terminal Resistance Measurements

4-19. GD (GUARD)
4-20. The GD connector operates in conjunction with the GUARD switch to eliminate measurement errors associated with common mode voltages which are encountered when making floating measurements. Figure 4-4 shows some typical measurement connections using the guard. If external guarding is not required for a measurement, set the GUARD switch to the NORMAL position.

4-21. The GUARD switch is a two-position, mechanical latching switch. When the switch is set to the out position (NORMAL), it connects the internal guard shield to the LO INPUT connector and disconnects the front-panel GD connector from the internal guard shield. When the Guard switch is set to the in position (EXT GD), it disconnects the internal guard shield from the LO INPUT connector and connects the front-panel GD connector to the internal guard shield.

4-22. Display Indications

4-23. The display, as shown in Figure 4-1, consists of a 5-1/2 digit mantissa field, a two digit exponent field, range indicators, and function annunciators. A given display reading uses a combination of these indicators to communicate with the user. Display information is presented in one of the following forms: measurement data; overrange/overvoltage indications; high, low, pass indications; numeric input data and error codes.

4-24. MEASUREMENT DATA

4-25. Basic measuremnt data is displayed in the mantissa field as a 4-1/2 or $5-1 / 2$ (sejectable) digit reading with a floating decimal point and function annunciator. Range information is provided by the decimal point and a function annunciator. The exponents are not used in displaying measurement data.

4-26. OVERRANGE AND OVERVOLTAGE
4-27. An overrange display indicates a reading above the limit or-capability of the present range. It appears as a 1 in the most significant digit of the mantissa field (with polarity for VDC), and the decimal point indicates the range. The rest of the display is blank. Removing the input condition or changing to an acceptable range clears the indication.

Figure 4-4. Guard Connections

4-28. An overvoltage display indicates that the input voltage level exceeds the maximum input specified for the instrument (1000 V dc or 700 V rms ac). It only occurs on the 1000 V range. The display will indicate the measured value, but will flash to indicate the overvoltage condition and the potential for instrument damage.

4-29. HIGH-PASS-LOW
4-30. Part of the display for limits and $\mathrm{pk}-\mathrm{pk}$ measurements is a single H, P, or L (high, pass, or low) character in the exponent field. This character is the result of a comparison and complements the measurement data. Refer to the limits and pk-pk functions described later in this section.

4-31. NUMERIC INPUT DATA

$4-32$. Numeric data can be entered manually from the front panel of the 8860 A . The data is displayed as it is entered. It appears as a left justified, dimensionless number with a decimal point. Exponents may be used with numeric input data. The exponent field includes polarity and a two digit exponent of 10 .

4-33. ERROR CODES

4-34. The 8860A has built-in diagnostic software for analysing operation of the frontpanel controls. An error code is displayed when an improper operation is detected. The code is displayed as Err in the mantissa field and a two digit number in the exponent field. Table 4-5 lists and defines the 8860A error codes: Errors that are not caused by hardware failures are automatically cancelled when the next reading is taken or another function is selected.

Tabfe 4-5. 8860A Error Codes

ERROR CODE	DEFINITIONS
10	External reference not present. Connect reference or cancel selection.
11	Input greater than analog zero range (99 uV or $99 \mathrm{~m} \Omega$). Verify DMM
12	Calibration.
13	A/D data received is not BCD.
14	Exponent magnitude too large.
15	Guard Crossing data error. Cannot start receiver.
16	Guard Crossing data error. Bit error in receiver.
17	Guard Crossing data error. Cannot start transmitter.
18	Guard Crossing data error. Biterror in transmitter.
	Offset result cannot be displayed. Overrange indication has priority over

4-35. Front-Panel Push Buttons

4-36. All push-button switches on the 8860 A front panel;-except NUM, FCN, GUARD, and POWER; have multifunction assignments. Their primary assignments are labeled in black above each switch. Alternate assignments are labeled in gray and rust, beside and below each switch. The alternate functions are enabled by pressing either the NUM or the FCN switch. The NUM switch enables the gray functions next to the
switches. The NUM light is lit while the gray functions are enabled. Pressing NUM again turns off the NUM light and returns the push-button switches to their primary (black) assignments.-The FCN switch is used in the same manner as the NUM switch. Pressing FCN enables the rust switch assignments.

4-37. The black and rust assignments are used for DMM control and storage functions. The gray assignments are the equivalent of a numeric keyboard; they are used to manually enter numeric data. Numéric entries are used in conjunction with, and as supplements to the control and storage functions. Each of the front-panel switch assignments and the proper use of each switch is described in the following paragraphs. The descriptions are keyed to the switch grouping as outlined on the front panel.

NOTE

The function and operation of the POWER and GUARD switches are described earlier in this section under Initial Turn-On and Measurement Connections.

4-38. FUNCTION

4-39. The FUNCTION switches provide for the selection of the measurement function. They are electronically interlocked so that only one function can be selected at any given time. Available functions include: VDC, VAC $\sim, ~ V A C \backsim, ~ \Omega 2 T, \Omega 4 T$. Pressing any one of the FUNCTION switches will enable that function and disable the previous function. Remember, the alternate rust assignments require the use of the FCN switch. Proper selection is verified by a light next to the switch assignments. (The ZERO function is a momemtary control and does not require a light).

4-40. Each of the FUNCTION switches, their operation, and their interaction with switch groups is described in the following list:
\square VIC $=-\quad$ The VDC $==$ function is used for making dc voltage measurments. It can be used in conjunction with the FILTER MODIFIER and the ZERO FUNCTION switches. Noise rejection is improved when the filter is enabled. Unwanted voltage offsets can be eliminated from a measurment by enabling the ZERO function. The proper use of the zero feature is described later in this list.
\square VAG ~ The VAC \sim function is used for making ac coupled, true rms ac voltage measurements. The FILTER and the ZERO switches have no affect when the VAC \backsim function is enabled.

The VAC - function is used for making dc coupled, true rms ac voltage measurements; the dc component is included in the measurement result. The FILTER and the ZERO switches have no affect when the VAC function is enabled.

The $\Omega 2 \mathrm{~T}$ function is used for making two-terminal resistance measurements. The measured resistance is sensed at the INPUT connectors. As a result, lead resistance is included in the measurement. Short the test leads and enable the ZERO function to eliminate unwanted lead resistance from the measurement. The zero for VDC and $\Omega 2 \mathrm{~T}$ are separate and independent operations. Enable the FILTER to improve noise rejection.

The $\Omega 4 \mathrm{~T}$ function is used for making four-terminal resistance measurements. The measured resistance is sensed at the test resistor. As a result, lead resistance is eliminated from the measurement. Proper connections for four-terminal resistance measurements are described earlier in this section under lnput Connections. The ZERO and FILTER are functional if required.

The ZERO function is used for making zero offset corrections when using the VDC, $\Omega 2 T$, or $\Omega 4 \mathrm{~T}$. measurement functions. Separate and independent corrections are stored for VDC and ohms. To correctly zero a function, short the test leads and enable the ZERO function. Zero corrections are limited to the range of $\pm 99 \mathrm{uV}$ or $99 \mathrm{~m} \Omega$. An Err 11 is displayed if the correction value is not within the usable range.

4-41. RANGE

4-42. Measurement ranges for the enabled measurement function are selected using the RANGE switches. These include: AUTO (autorange), UP, and DOWN. Autoranging is enabled or disabled each time the AUTO switch is pressed (toggle operation). The operation and interaction of the switches is described in the following list:

Autorange is enabled when the AUTO light is on. When the light is off, ranges are selected manually using the UP and DOWN switches. When autorange is disabled the present range remains enabled, as indicated by the decimal point in the mantissa field.

Autorange is disabled by pressing the AUTO switch to turn off the AUTO light. It is also disabled when the UP or DOWN switch is pressed, and the indicated range change is possible. If a change is not possible (i.e., the highest, UP, or lowest, DOWN, range is already selected), autorange remains enabled.

UP The UP switch is used to manually select the ranges above the one indicated by the decimal point in the mantissa field. Each press of the UP switch increments the 8860A to the next higher range. If it is pressed while autorange is enabled, it cancels autorange and selects the next higher range. If a higher range is not available, the command is ignored unless a voltage function is enabled. In this event autorange is cancelled.

Down The DOWN switch is used to select the ranges below the one indicated by the decimal point in the mantissa field. Each press of the DOWN switch decrements the 8860 A to the next lower range. If it is pressed while autorange is enabled, it cancels autorange and selects the next lower range. If a lower range is not available, the command is ignored.

4-43. MODIFIERS
4-44. The MODIFIER switches control independent functions that supplement the basic measurement functions. They include: FILTER, LIMITS, PK-PK, EXT REF, and OFFSET. The switches operate in a toggle fashion and are not interactive except for LIMITS and PK-PK. A light next to each switch is lit when the modifier is enabled. The function and operation of each of the MODIFIER switches is given in the following list.
\square FILTER The filter, when enabled, provides additional noise rejection for measurements using the VDC, $\Omega 2 \mathrm{~T}$, and $\Omega 4 \mathrm{~T}$ FUNCTIONS. The VAC \sim and $V A C \bar{\sim}$ FUNCTIONS are not affected by the FILTER modifier. When the FILTER light is on the filter is enabled.
$\square E X T$ REF The EXT REF modifier is functional only when the External Reference,

\squareOption -007, is installed in the 8860A. If the External Reference Option is not installed, an error code (Err 10) is displayed when EXT REF is enabled.

When the External Reference Option is installed and enabled, a voltage applied to the rear panel EXT REF terminals (± 1 to 11 V dc) is used in place of the internal voltage reference. Measurements are displayed as 10X the ratio of the input voltage (VDC, VAC \sim, or VAC $\bar{\sim}$) to the external reference voltage. Refer to Section 5 of this manual for a description of the External Reference function and details for making resistance ratio measurements.
\square offset The offset feature is used to subtract the numeric contents of the Offset Data Register from the present measurement and display the result. An error code, Err 18, is displayed when the computed offset value is beyond range for the selected measurement function.

The offset value subtracted from the display is stored in the Offset Data Register. The stored value can be taken from a displayed reading or keyed in manually from the front panel. Stored data is retained for future use when the offset function is disabled. Instructions for storing and recalling data from the Data Registers are given later in this section under Data Registers and Alternate Switch Assignments.
\square umits Pressing the LIMITS switch will endble the limits function and cancel the PK-PK function if enabled. The limits function compares the present measurement to the contents of the High and Low Data Registers and displays an L, P, or H in the exponent field.

H when reading is $>$ high limit
L when reading is $<$ low limit
P when low \leqslant reading \leqslant high

Enabling the PK-PK function cancels the LIMITS function if enabled. The PK-PK function is used to store the high and low level changes that occur about a reference level. It can be used with all measurment functions.

When a PK-PK measurement is initiated, each new measurement is compared with the values stored in the High/Low Data Registers. If the measurement is higher than the high limit value, the High Data Register is updated to the measurement value, and an H is displayed momentarily in the exponent field. If the measurement is lower than the measurement value, the Low Data Register is updated to the measurement value, and an L is displayed momentarily in the exponent field.

The high and low limit values can be set to specific values prior to starting PK-PK measurements, or they can both be preset to the present measurement value. Instructions for operating the Data Registers are given later in this section.

4-45. SAMPLE

4-46. The SAMPLE switches are used to select the trigger mode and to establish the display resolution. Trigger selections include continuous, manual, and external. Two
switches control the sample mode: TRIG ARM and RATE. The TRIG/RUN switch is used primarily as a manual trigger. The function and operation of each of the SAMPLE switches follow:

RATE The Rate switch selects one of two continuous sample rates. Display resolution and integration period are a function of the selected sample rate. The sample rates (readings per second, rps) resolution (digits), and integration periods (ms) are as follows:

1. $2-1 / 2 \mathrm{rps}, 5-1 / 2$ digits, 100 ms
2. $15 \mathrm{rps}(60 \mathrm{~Hz}), 4-1 / 2$ digits, $16-2 / 3 \mathrm{~ms}$
$12-1 / 2 \mathrm{rps}(50 \mathrm{~Hz}), 4-1 / 2$ digits, 20 ms
The selected reading rate (slow or fast) can be determined by observing the TRIG/RUN light while continuous sample is enabled. The light blinks once for each sample.

The TRIG ARM switch is used to select the trigger mode (continuous sample or trigger sample). Continuous sample is enabled when the TRIG ARM light is off. When the TRIG ARM light is on, continuous sample is disabled. However, the selected resolution and integration period are not altered. A sample is initiated by pressing the TRIG/RUN switch or by using an external trigger at the rear-panel EXT TRIG connector. The TRIG/RUN light blinks to indicate that asample is being taken.
\square TRIG/RUN The TRIG/RUN switch is active when the TRIG ARM light is on. It is used
 in the local mode to, manually initiate a measurement. The TRIG/RUN light blinks to indicate that a measurement is being taken.

In the remote mode, the TRIG/RUN switch is used with the Calculating Controller (Option -004) as a RUN command. It is also used with the IEEE488 Interface (Option -005). Refer to Section 5 of this manual for information concerning the -004 and -005 Options.

4-47. CONTROL
4-48. The CONTROL switches are used to select the operating mode (local or remote) and remote programs associated with the Calculating Controller (Option -004). They include: LOC/REM and PROG SEL. They are active only when either the Calculating Controller (-004) or the IEEE-488 Interface (-005) Option is installed. The operation of each is described in the following list:

LOC/REM The LOC/REM switch alternately selects the local and remote operating modes. When remote is enabled, the REMOTE light (to the left of the POWER switch) is on. Local operation is enabled when the light is off.

PROG SEL The PROG SEL switch is only active in the local mode. When it is pressed (in local), measurement samples are stopped and a P is displayed in the mantissa field. The P is a prompt to enter a program label $(0-9)$ for selecting. a remote Calculating Controller program.

4-49. DATA REGISTERS (OFFSET - HIGH - LOW)
4-50. The Data Registers are used in conjunction with the OFFSET, LIMITS, and PKPK MODIFIERS. They are controlled by the STORE and RECALL switch groups. The STORE switches are used to enter numeric display values into the registers. The values
can be taken from a measurement reading or from manually entered data using the frontpanel numeric switches (i.e., the gray switch assignments associated with the NUM switch). The RECALL switches are used to display the values present in the registers.

4-51. When the 8860 A is initially turned on, the Data Registers are reset to zero. To verify the contents of each of the registers, press the FCN switch followed by one of the RECALL switches. The contents of the recalled register is displayed as long as the RECALL switch is held in. The display returns to the measurement function within a few seconds after the switch is released.

4-52. Values are stored in the Data Registers as dimensionless numbers expressed as exponents of 10 . However, when the number is selected for storage it does not have to be expressed as a exponent of 10 . Thus, measurement values can be stored directly from the display or they can be manually entered. The exponent of 10 conversion is accomplished by the 8860 A .
$4-53$. The range of values that can be stored in the Data Register is $\pm 1.99999 \pm 99$. If the maximum value is exceeded, an error code, Err 13, is displayed. A summary of the Data Register operations follows:

STOHE Use these switch sequences to store presently displayed numeric values (including exponents if any) in the addressed Data Register:

FCN STORE OFFSET *
FCN STORE HIGH
FCN STORE LOW
Use this switch sequence to store presently displayed numeric values (including exponents if any) in both the High and Low Data Registers.

FCN STORE PK-PK

RECALL Use these switch sequences to recall stored numeric values to the display. The recalled value is displayed while the RECALL switch is held in. The value is removed from the display a few seconds after the switch is released.

FCN RECALL OFFSET
FCN RECALL HIGH
FCN RECALL LOW

4-54. ALTERNATE SWITCH ASSIGNMENTS (SHIFT)

4-55. The FCN and NUM switches are toggle action switches, push to enable, push to clear. They are used to enable or clear the alternate rust and gray switch assignments. The FCN switch controls the rust assignments, and the NUM switch controls the gray assignments. Selecting either assignment will cancel the other. A light next to each switch (FCN or NUM) is turned on to indicate the enabled assignmetns. When both lights are turned off, the primary (black) switch assignments are enabled. The operation of both the rust and gray switch assignments is described in the following list:

Press the FCN switch to turn on the FCN light and enable the rust switch assignments. Continuous sampling is stopped and the NUM (gray) switch assignments are cleared if active. Perform the desired rust function by pressing the appropriate switch. After the function is executed, the FCN light is turned off, clearing the rust assignments.

Press the FCN switch to turn on the NUM light and enable the gray switch assignments. Continuous sampling is stopped and the FCN switch asssignments are cleared if active. Perform the desired numeric entry using the switches as a numeric keyboard. Enter digits, decimal point, and change sign $(+/-)$ before keying in the two-digit exponent (EEX) and its sign. Use the clear entry (CE) switch to cancel an entry. The following guidelines apply to the entry of numeric data:

1. Numbers that have a floating decimal point and are within the range of $\pm 1.99999 \pm 99$ may be entered in the mantissa field. The decimal point is ignored after its first use, and numeric entries are ignored after the field is filled.
2. The change sign $(+/-)$ is active in the mantissa field until EEX is pressed. It is then active in the exponent field.
3. Exponents enter the field on the right and shift to the left.
4. The normal exit sequence from a numeric entry is to store the value in one of the Data Registers (PK-PK Reset, Offset, High, or Low). Each store sequence is as follows:
```
FCN STORE PK-PK RESET
FCN STORE OFFSET
FCN STORE LOW
FCN STORE HIGH
```

4-56. OPERATION
4-57. With reference to the previous paragraphs, use the following procedures to make voltage and resistance measurements.

4-58. Turn-On Procedures

$4-59$. Use the following procedure to turn on the 8860A.

1. Verify the line power requirements shown on the rear of the 8860 A , and connect the unit to an appropriate power line. Use the line cord supplied with the unit.
2. Set the POWER switch to ON. The display remains blank until the unit is initialized. Initial front panel conditions are! VDC, autorange, 5-1/2 digit display.

4-60. Making Measurements

$4-61$. The same basic procedure is used for making all measurements. The only exception is the use of the ZERO and FILTER switches. They are only functional when making VDC or resistance measurements. Proceed as follows:

1. Select the desired FUNCTION.
2. Select the desired RANGE.
3. Connect the appropriate test leads, and ZERO the display if the VDC, $\Omega 2 \mathrm{~T}$, or $\Omega 4 \mathrm{~T}$ FUNCTION is selected.
4. Select the desired MODIFIERS.
5. Select the desired SAMPLE conditions.
6. Connect the test leads to the test circuit and, if continuous sample is not enabled, trigger a sample. The measurement will appear on the display.
7. STORE and RECALL data as required to satisfy the enabled MODIFIERS and the measurement requirements.

THIS
 PAGE
 LEFT BLANK

SCANS
 By Artek Media

Section 5 Option and Accessory Information

OPTION/ DESCRIPTION PAGE
MODEL NO.
ACCESSORIES
Y2016 Offset Rack Mount Kit 500-1
Y2017 Side-by-Side Rack Mount Kit 500-1
Y2021 PTI-to-DIN-Panel Adapter 500-1Y2023Y7203Y7204Y8001Y8002Y8003
Accessory Case 500-2
2-Foot Ribbon Cable, PTl 500-2
5-Foot Ribbon Cable, PTI
500-2
500-2
IEEE-488 Cable, 1 meter 500-2
IEEE-488 Cable, 2 meter 500-2
IEEE-488 Cable, 4 meter 500-2
DC/AC Current Probe
DC/AC Current Probe 500-2 500-2
Test Lead Set 500-4
Memory Cartridge (for -004 option only) 500-4Test Lead Set500-4
80K-40 High Voltage Probe 500-6
80T-150
81RF82RF80J-10
High Frequency Probe 500-7 500-7
High Frequency Probe 500-9
Current Shunt 500-10
OPTIONS
-004 Calculating Controller 004-1
-006 Rear Input 006-1
-007 External Reference 007-1

5-1. INTRODUCTION

5-2. This section of the manual documents the accessories and options available for use with the 8860 A . It consists of a table of contents and an introduction followed by a series of subsections. The first subsection provides a description and the specifications for each of the applicable accessories. Subsequent subsections document the available options.

5-3. Unique page and paragraph numbers are used to identify each of the subsections. For example, the $500-\mathrm{x}$ series identifies the accessories, and the 004 -x series identifies the subsection for the -004 Option (where x is the sequential page and paragraph number).

Accessories

500-1. INTRODUCTION

$500-2$. This subsection describes the accessories available for use with the Model 8860A Digital Multimeter. Each accessory is described separately. The description is intended to acquaint the prospective user with the features and capabilities of the accessory. Further information is supplied with the accessory.

500-3. Y2016 OFFSET RACK MOUNT KIT

500-4. The Y2016 Rack Mount Kit is illustrated in Section 3 of this manual. It supports a single D-size PTI instrument, such as the 8860 A , in a standard 19 -inch equipment rack. The instrument occupies the right half of the mourting panel; the left half of the panel is blank.

500-5. Y2017 SIDE-BY-SIDE RACK MOUNT KIT
500-6. The Y2017 Rack Mount Kit supports two D-size PTI instruments side-by-side in a standard 19 -inch equipment rack. The Y2017 is illustrated in Section 3 of this manual.

500-7. Y2021 PTI-TO-DIN PANEL ADAPTER

$500-8$. The Y2021, shown in Figure 500-1, adapts a single D-size PTI instrument, like the 8860 A , to a panel with a DIN-size opening. The supplied front panel dimensions are $14.55 \mathrm{~cm} \times 21.4 \mathrm{~cm}$.

Figure 500-1. PTI-to-DIN Panel Adapter

500-9. Y2023 ACCESSORY CASE

$500-10$. The Model Y2023A is a PTl-style case. As shown in Figure 500-2, it has a sliding drawer that provides convenient storage for small accessories. It is designed to stack with and latch to the 8860A.

Figure 500-2: Y2023 Accessory case

500-11. Y7203, Y7204, PTI RIBBON CABLE
500-12. Accessory Models Y7203 and 7204 are 36 -conductor cables used to connect the Calculating Controller (Option -004) to an external printer. The cables are identical except for length; Y7023 is 2 feet and Y7204 is 5 feet. Amp Champ, 36 -pin connectors are provided on both ends of the cable; male on one end, female on the other.

500-13. Y8001, Y8002, Y8003 IEEE-488 CABLES
500-14. IEEE-488 cables are available in three lengths: 1 meter (Y8001), 2 meter (Y8002), and 4 meter (Y8003). See Figure 500-3. These cables attach the $8860 \mathrm{~A}-005$ to any other IEEE device. Each cable has double IEEE 24 -pin connectors at both ends to enable stacking. Metric-threaded mounting screws are provided with each connector.

500-15. Y8100 DC/AC CURRENT PROBE
500-16. Description
500-17. The Model Y8100, as shown in Figure 500-4, is a battery-powered clamp-on current probe for measuring currents up to 200A dc or ac rms. Two ranges are provides on the probe, 20 A and 200 A . The probe produces a dc output voltage proportional to the measured current. At full scale the output of the probe is 2 V dc. Current carrying conductors-up to -1.9 cm (0.75 inches) in diameter can be placed within the probe clamp. Batteries and a 5 -foot cable (dual banana plug on both ends) are supplied with the probe.

Figure 500-3. IEEE-488 cable

Figure 500-4. Y8100 DC/AC Current Probe

500-19. Y8134 TEST LEAD SET

500-20. Description

$500-21$. The Y8134 Test Lead Set is shown in Figure $500-5$. It includes a pouch and the following attachments:

1. Two test leads (one red, one black) with shrouded banana connectors at both ends. Rated 10 A max, 2000 V max.
2. Two test probes (one red, one black). Rated 10A max, 2000V max.
3. Two insulated alligator "clips (one red, one black).
4. Two spade lugs.
5. One squeeze hook. Rated $1 \mathrm{~A} \max , 1000 \mathrm{~V}$ max.

500-22. Y8140 TEST LEAD SET

$500-23$. The Y8140 Test Lead Set consists of one red and one black $60-\mathrm{inch}(1.52$ meter) test lead, as shown in Figure 500-6. Each lead has a standard banana plug on one end and an extendable tip probe on the other. This flexible metallic tip conductor may be extended up to $2-1 / 2$ inches, and has a clear insulation to within $1 / 10$ of an inch of its tip. Intended primarily for measuring voltages (to 1000 V rms), the Y 8140 leads may also be used for measuring currents to 2 A .

500-24. Y8833 MEMORY CARTRIDGE

$500-25$. The Y8833 Memory Cartridge is shown in Figure 500-7. It is used with the Calculating Controlier (Option -004). It contains the program memory plus the first ten data registers for the Controller. It plugs into the rear of the 8860A-004. Instructions for installing and using the cartridge are given in the Calculating Controller User Handbook. One Y8833 is provided with the -004 option.

500-26. Two watch batteries are used inside the Y8833 to continuously maintain the memory when the cartridge is not powered by the 8860A. Life expectancy for the batteries is at least I year. The procedure for replacing the batterics is given in Appendix F of the Calculating Controller User Handbook.

Figure 500－5．Y8134 Test Lead Set

Figure 500-6. Y8140 Test Lead Set

Figure 500-7. Y8833 Memory Cartridge

500-27. $80 \mathrm{~K}-40 \mathrm{HIGH}$ VOLTAGE PROBE
500-28. Description
500-29. $80 \mathrm{~K}-40$ is a high voltage probe designed to extend the ac and do voltage measuring capability of the DMM up to 40 kV . The physical characteristics of the probe are shown in Figure 500-8. In essence, the probe is a $1000: 1$ divider formed by two matched metal-film resistors. The unusually high input impedance offered by these resistors minimizes circuit loading and optimizes measurement accuracy. A special plastic body houses the divider and provides the user with isolation and protection form the voltage being measured. Requires a $10 \mathrm{M} \Omega$ resistor be placed across the output when 8860 A is on the two lowest ranges.

Figure 500-8. 80k-40 High Voltage Probe

500-30. Specifications

$500-31$. The following specifications assume that the probe is used with a voltmeter having a 10 megohm input impedance. A correction factor or a shunt resistor must be used if the input impedance of the voltmeter is other than 10 megohms.

```
VOLTAGE RANGE .........1 kV to 40 kV dc or peak ac, 28 kV rms AC
INPUT RESISTANCE ...... }1000\mathrm{ megohms
DIVISION RATIO ......... 1000:1
ACCURACY
    DC
        I kV to 20 kV .......... Linear change frôm }\pm4%\mathrm{ to }\pm2
        20 kV to 30 kV ......... 土2% (calibrated, to 1% at 25 kV)
        30 kV to 40 kV ........ Linear change from }\pm2%\mathrm{ to }\pm4
    AC ................... }\pm5%\mathrm{ at }60\textrm{Hz
```


500-32. 80T-150 TEMPERATURE PROBE

500-33. Description

500-34. The Model 80T-150, as shown in Figure 500-9, is a universal temperature probe designed to provide a DMM with temperature measuring capability. Temperature is sensed at the probe tip and converted into a voltage for use by the DMM. The conversion factor is 1 mV per degree. Temperature scales in degrees Celsius or Fahrenheit may be specified at the time of purchase or selected by the user. Operating power for the probe is supplied by a disposable battery. Battery life is 1000 hours of continuous use. An on/off switch is provided to conserve battery life when the unit is not in use.

500-35. Specifications
RANGE $\ldots \ldots \ldots \ldots \ldots . .-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C},-58^{\circ} \mathrm{F}$ to $+302^{\circ} \mathrm{F}$
RANGE SELECTION Internal Jumpers (and re-calibrate)
SENSITIVITY 1 mV per ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
RESOLUTION $0.1^{\circ} \mathrm{C}$ or $0.1^{\circ} \mathrm{F}$ recommended maximum
AMBIENT TEMPERATURE
RANGE $\ldots \ldots \ldots \ldots \ldots .0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
RELATIVE HUMIDITY $\ldots .<80 \%$ non condensing
ACCURACY Including nomimal $\pm 0.25 \%$ voltmeter error at $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ ambient. Add $1^{\circ} \mathrm{C}$ to the accuracy specifications if ambient temperature is below $+15^{\circ} \mathrm{C}$ or above $+35^{\circ} \mathrm{C}$.

```
-50}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to }-2\mp@subsup{5}{}{\circ}\textrm{C}\ldots....... \pm.30' C
```

$-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \ldots \ldots . . \pm 2^{\circ} \mathrm{C}$
$+125^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} \ldots \ldots . \pm 3^{\circ} \mathrm{C}$
VOLTMETER INPUT
IMPEDANCE
$\geqslant 10$ megohm
MAXIMUM VOLTAGE Probe tip to circuit low, 350 V dc or peak ac
SETTLING TIME 8 seconds to settle to within 1 degree after a 100
degree step change at the probe tip
POWER Internal disposable battery, 1000 hours of continuous use
CONTROLS Power on/off switch

Figure 500-9. 80T-150 Temperature Probe

500-36. 81RF HIGH FREQUENCY PROBE

500-37. Description

$500-38$. The Model 81 RF is designed to convert a dc voltmeter with a 10 megohm input impedance into a high frequency ac voltmeter. It provides a useful frequency range of 20 kHz to 250 MHz . Physical characteristics of the probe are shown in Figure 500-10. The output of the probe is a dc voltage calibrated to equal the rms value of a 1 MHz sine wave input. Requires a $10 \mathrm{M} \Omega$ resistor across output when 8860 A is on two lowest ranges.

500-39. Specifications

FREQUENCY RESPONSE .. $\pm 1 \mathrm{~dB}$ from 100 kHz to 100 MHz (Relative to ac/dc transfer ratio)

AC-to-DC TRANSFER RATIO

$\left(23+5^{\circ} \mathrm{C}\right)$

RMS lnput (100 kHz)	DC Output
0.25 to 0.5 V	$\ldots \ldots \ldots \ldots$
0.25 to $0.5 \mathrm{~V} \pm 1.5 \mathrm{~dB}$	
-0.5 to 2.0 V	$\cdots \cdots \cdots \cdots$
2.0 to 30 V	$\ldots .5 \cdots \cdots \cdots$

Figure 500-10. 81RF High Frequency Probe

500-40. 82RF HIGH FREQUENCY PROBE

500-41. Description

$500-42$. The Model 82 RF is designed to convert a dc voltmeter with a 10 megohm input impedance into a high frequency voltmeter. It provides a useful frequency range of 20 kHz to 700 MHz . Physical characteristics of the probe are shown in Figure $500-11$ (a BNC probe tip adapter is supplied with the 82 RF). The output of the probe is a dc voltage calibrated to equal the rms value of a sine wave input. Requires a $10 \mathrm{M} \Omega$ resistor across the output when 8860 A is on two lowest ranges.

500-43. Specifications

$500-44$. The frequency response and the ac-to-dc transfer ratio specifications assume the use of the BNC adapter supplied with the probe and a voltmeter with a 10 megohm input impedance shunted by less than 200 pF .

```
FREQUENCY RESPONSE .. Relative to ac/dc transfer ratio
    100 kHz to 200 MHz ..... }\pm1\textrm{dB
    200 MHz to 500 MHz ..... }\pm3\textrm{dB
AC-to-DC TRANSFER RATIO
(23+5
    RMS Input (10 M Hz) DC Output
        0.25 to 0.5V \ldots.......... 0.25 to 0.5V \pm1.5 dB
        0.5 to 2.0V ............ 0.5 to 2.0V \pm0.5 dB
        2.0 to 5.0V \ldots......... 2.0 to 5.0V \pm1.0 dB
        5.0 to 30V _.......... 5.0 to 30V \pm1.5 dB
```

EXTENDED FREQUENCY
RESPONSE Useful for relative readings from 20 kHz to 700M Hz
RESPONSE Responds to peak value of input; Calibrated toread rms value of a sine wave.
vOLTAGE RANGE 0.25 to 30 V mms
MAXIMUM INPUT
VOLTAGE 30 V rms, 200 V dc
INPUT IMPEDANCE 2 megohms shunted by $<10 \mathrm{pF}$TEMPERATURECOEFFICIENT..........<0.1 of ac-to-dc transfer ratio specification per
${ }^{\circ} \mathrm{C}$OUTPUT CONNECTOR Fits standard 0.75 -inch spaced dual bananaconnectors
BNC ADAPTER Slip-on BNC adapter is supplied with the probe

Figure 500-11. 82RF High Frequency Probe

500-45. 80J-10 CURRENT SHUNT

500-46. Description

$500-47$. The Model $80 \mathrm{~J}-10$ is a plug-in shunt designed to convert a voltmeter into a current meter. Two banana plugs, see Figure $500-12$, with 0.75 inch spacing are used to connect the shunt to the input terminals of the voltmeter. Input connections to the shunt are made at two 5 -way binding posts. The shunt value is selected to provide a 10 mV per ampere output.

Figure 500-12. 80J-10 Current Shunt

500-48. Specifications

SENSITIVITY	10 mV per ampere
SHUNT RESISTANCE	0.01 ohms
ACCURACY	$\pm 0.25 \%$ from dc to 10 kHz , rising 1 dB at 100 kHz
SERIES INDUCTANCE	8.3 nH
OVERLOAD	$>20 \mathrm{~A}$, not fused

500-49. GENERAL PURPOSE ACCESSORIES

500-50. Several other general purpose accessories; such as adapters, connectors, and attenuators are available from Fluke. These are listed and described in Table 500-1.

Table 500-1. General Purpose Accessories

MODEL NO.	DESCRIPTION
Y9100	6 dB Attenuator (2X), 50 ohm, 2 watt, BNC
Y9101	14 dB Attenuator (5 X), 50 ohm, 2 watt, BNC
Y9102	20 dB Attenuator (10X), 50 ohm, 2 watt, BNC
Y9103	50 ohm BNC Feed-Through Termination
Y9104	Alligator Clip to fit pin tip
Y9105	Alligator Clip to fit banana plug
Y9106	BNC Tee (3 Jacks)
Y9107	BNC Tee (Jack-Plug-Jack)
Y9108	BNC Jack to Dual Banana Plug
Y9109	Binding Posts to BNC Plug
Y9110	BNC Jack to PCB Pins
Y9111	3-Foot BNC Cable (97 cm)
Y9112	6-Foot BNC Cable (1.95m)
Y9113	BNC Plug to Dual Banana Plug
Y9114	BNC Jack to 1/4in. Phone Plug
Y9115	1/4in. Phone Jack to BNC Plug
Y9116	BNC Jack to Phono Plug
Y9117	Phono Jack to BNC Plug
Y9118	1/4in. Phone Jack to Dual Banana Plug
Y9119	Phono Jack to Dual Banana Plug

THIS
 PAGE
 LEFT BLANK

SCANS
 By Artek Media

Calculating Controller

004-1. INTRODUCTION

$004-2$. The Calculating Controller option is a programmable scientific calculator which has the 8860 A DMM under its program control. Included in this option are the following three pieces of hardware:

1. A pair of circuit boards connected by a ribbon cable (mounted inside the 8860 A chassis).
2. A handheld Control Keyboard (plugs intp rear option board).
3. Memory Cartridge (also plugs into rear óption board).

004-3. Use of this option is mutually exclusive with use of the IEEE-488 Interface option (-005). The Calculating Controller has the following features:

- SAMPLE key for initiating DMM measurements
- Programmable capability -- 72 programmable functions
- Full scientific math function capabilities
- RPN logic with XYZT stack
- Non-volatile, interchangeable program memory (Memory Cartridge)
- 100 merged program steps
- 50 data registers, 10 of which are non-volatile
- Four levels of subroutines
- Indirect addressing capability
- Ten conditionals (eight for branching, two for loop control)
- / $/ \mathrm{O}$ functions (for hardwiring to an external device)
- Printer functions (for accessory printer)

004-4. Documentation for the Calculating Controller is spread among four manuals as follows:

- 8860 A Operator Manual - option section. Brief description of Calculating Controller; installation procedure.
- 8860A Calculating Controller User Handbook. How to use the Control Keyboard; detailed description of each function; how to program the 8860A.

8860A Calculating Controller Reference Guide. Brief pocket-size summary of the User Handbook, with helpful reminders.

- 8860 A Service Manual -- option section. Theory of operation; service information; parts lists; schematics.

004-5. INSTALLATION

004-6. The Calculating Controller option is field installable. Install the option as follows:

1. Disconnect the 8860A from its line power, remove all front (and rear) panel inputs.
2. Remove the four screws located on the bottom of the unit, and pull the top cover straight up and off.
3. Remove the $2-1 / 4 \mathrm{in}$. $\times 3-3 / 4 \mathrm{in}$. ($60 \times 90 \mathrm{~cm}$) metal plate from the rear panel, by unscrewing the four screws which hold it in place.
'
4. Plug the large circuit board of the Calculating Controller into the option slot, as shown in Figure 004-1. Make sure the edge-connector tab at the bottom of the board plugs firmly into its socket. The two tabs at the top of the board fit into metal slots to hold it vertical.
5. Install the small printed circuit board inside the rear panel hole, and secure it with the four screws removed earlier.
6. Fold the excess ribbon cable between the transformer and the Rear Interface board, as shown in. Figure 004-1.
7. Reinstall the top cover and secure it using the four cover screws.

004-7. OPERATION

004-8. Refer to the 8860A Calculating Controller User Handbook for operating instructions.

Figure 004-1. Top View of Calculating Controller Option

THIS
 PAGE
 LEFT BLANK

SCANS
 By Artek Media

Option -006 Rear Input

006-1. INTRODUCTION

$006-2$. The Rear Input option relocates the five input connections from the 8860 A front panel banana jacks to a 20 -pin connector located at the rear panel. The 8860 A then makes its voltage and resistance (both two- and four- terminal) measurements from this rearinput connector. With the Rear Input installed, the five front panel input jacks are completely disconnected. The Rear Input option is intended for system applications where single cable connections to the instrument are required.
$006-3$. This option is compatible with the External Reference option. The External Reference uses pins K and L of the 20-pin Rear Intput connector.

006-4. SPECIFICATIONS

006-5. Specifications for the Rear Input option are identical to the front panel input specifications, except for slightly different input load characteristics: input capacitance approximately 30 pF added. The additional lead resistance of the Rear Input option requires rezeroing the DMM for the 200 ohm range. The voltage ratings between terminals are also identical to those printed on the front panel.

006-6. INSTALLATION

$006-7$. The Rear Input option is field installable. Install the option as follows:

1. Disconnect the 8860 A from its line power, and remove all signals from the front panel inputs.
2. Unscrew the four screws located on the bottom of the unit, and pull the top cover straight up and off.
3. Remove the guard cover by unscrewing its four top screws. (The guard cover is the large, gold-colored metal cover with adjustment holes.).
4. Determine whether or not the External Reference (option-007) is installed. The External Reference is easily identified by a dual banana jack mounted in the rear panel where the rear input connector will go (as in Figure 006-1).
a. If the External Reference is not installed in the 8860 A :
5. Remove the A / D-Ohms circuit board (see Figure 006-1) from the mainframe by lifting the board out.

Figure 006-1. Installation of Rear Input Option
2. Remove the small (3/4in. x 1-1/2in.) plastic dummy plug, which covers a hole in the rear panel. Save this plastic plug. It can be reinserted if the Rear Input is ever removed.
b. If there is an External Reference installed:

1. Disconnect the two External Reference wires (Violet and Gray) from the dual banana jack mounted to the rear panel. These wires are force fitted; pull them straight out.
2. Remove the A / D-Ohms circuit board by lifting it out.
3. Remove the dual banana jack by unfastening its two screws.
4. Remove the External Reference circuit board (identified in Figure 006-1) from the A / D-Ohms circuit board by first unfastening the single screw holding it in place. This will allow the left-hand angle bracket of Figure $006-2$ to be installed.

5．Disconnect the five input wires where they attach to the front panel input jacks by pulling them straight off．

6．Fasten the two small angle brackets to the A／D－Ohms board（already removed），using the two screws and nuts as shown in Figure 006－2．（Note each angle bracket has one threaded hole．Mount the non－threaded hole against the A／D－ Ohms circuit board．）

7．If the External Reference option is being installed，then reinstall its circuit board on the A／D－Ohms board by first threading its two wires through the hole，and then fastening it with the single screw．

8．Orient the Rear Input connector with the holes marked A, B, C ，and D at the top，as shown in the close－up，Figure 006－3．Fasten this connector to the rear panel with two screws，as in Figure 006－1．

9．Reinstall A／D－Ohms circuit board in its slot in the main instrument．
10．Connect the five color－coded wires to the Rear Analog input board according to the colors designated on that board．Push the connectors all the way on．

11．If the External Reference option is present，then connect the Violet and Gray wires of that option to the pins labeled VIO and GRA on the Rear Input circuit board．Push the connectors all the way on．＊

12．Fasten the Rear Input circuit board to the A／D－Ohms board by installing two screws in the angle brackets，as in Figure 006－1．

13．Lead the Blue ground wire behind the shielded wire，and to the ground screw in the corner of the guard，as in Figure 006－1．Using a nut，fasten the Blue wire to the ground screw．

14．Reinstall the guard cover（four screws）．
15．Reinstall the top cover（four screws）．

Figure 006－2．Installing Angle Brackets for Rear Input Option

Figure 006-3. Rear Inpui Connector, Viewed from Plug End

006-8. OPERATION
006-9. Operation of the Rear Input is identical to that of the front panel inputs, except for the type of connector used. The pin designations are given in Figure 006-3. The plug which mates with the rear-panel-mounted Rear Input connector can be ordered using part number 541797, Hardware Connector Kit, from John Fluke Mfg. Co., Inc. This kit includes a cable connector (part \#369231), and the necessary solder contacts (part \# 369298).

Option -007

 External Reference
007-1. INTRODUCTION

$007-2$. The External Reference option (-007), when enabled, scales the display reading by the quantity $10 /$ Vrer: It substitutes for the internal reference used by the analog-todigital converter. The option is useful for measuring the ratio (multiplied by ten) of two voltages -- Vin to Vref.

007-3. SPECIFICATIONS

$007-4$. The specifications for the External Reference option are listed in Table 007-1. Note that the input resistance varies according to the circuit connections. Figure 007-1 shows the internal input stage of the External Reference, which causes this input resistance to differ according to the external connepction to Input Lo.

Table 007-1. Specifications for External Reference Option

```
EXTERNAL REFERENCE
    Range .......................... }11.0\textrm{V DC to }\pm11.0\textrm{V}\mathrm{ DC
    Display ........................... 10(VIN/VREF)
    Accuracy ....................... (1 yr, 18
    input range and function
        5-1/2 DIGIT .................. 
        4-1/2 DIGIT . . . . . . . . . . . ..... }\pm(0.01% + 2 Digits) x (10/VrEF) 
        3-1/2 DIGIT ................... 士(2 Digits) x (10/NREF)
    Input Resistance ................ 2 M\Omega when EXT REF HI is tied to INPUT LO
    1 M\Omega when EXT REF LO is tied to INPUT LO
    Maximum Input ................. 土11V EXT REF HI to LO
    \pm11V EXT REF LO to INPUT LO
    \pm11V EXT REF HI to INPUT LO
```


Figure 007-1, Input Stage of External Reference

007-5. INSTALLATION

007-6. The External Reference option (-007) is field installable. This option is compatible with the Rear Input option (-006). The following procedure describes installation of the External Reference (Ext. Ref.) without the Rear Input option.

007-7. If the External Reference option is being installed with the Rear Input option, the 20 -pin Rear lnput connector will be used rather than the dual banana jacks. In this case, follow the installation procedure given in the Rear lnput option.

1. Disconnect the 8860 A from its line power; remove all signals from its front (and rear) panel inputs.
2. Remove the top cover by unscrewing the four screws located on the bottom of the unit and pulling the cover straight up and off.
3. Remove the guard cover by unscrewing its four top screws. (The guard cover is the large, gold-colored metal cover with adjustment holes.)
4. Lift out the A/D-Ohms circuit board, shown in Figure 007-2.
5. Thread the two wires (Gray and Violet) from the External Reference circuit board through the hole at the rear, and from the component side of the A/D-Ohms board, as in Figure 007-2.
6. Plug the External Reference board into the A/D-OHMS board (9-pin connector). Fasten the External Reference board in place with a screw from the other side.
7. Reinstall the A / D-Ohms circuit board into its slot in the main instrument.
8. Remove the small ($3 / 4 \mathrm{in}$. x 1-1/2in.) dummy plug, which covers a hole in the rear panel, by pushing it out. Save this plug; it can be reinserted if the Rear Input is ever removed.
9. From the inside, install the dual banana jack connector in the rear panel hole. Fasten it with two screws. You will need a short, stubby screwdriver or a right-angle screwdriver to fasten the lower screw.

Figure 007-2. Instailation of External Reference Option
10. Connect the Gray wire to the lower jack and the Violet wire to the upper jack, as in Figure 007-2.
11. Reinstall the guard cover (four screws).
12. Calibrate REF GAIN, NULL, and REF OFFSET pots according to the instructions given under External Reference in the 8860A Calibration Manual. These three pots are located on the External Reference circuit card.
13. Reinstall the top cover (four screws).

007-8. OPERATION

NOTE

The External Reference conditioning circuitry will not operate if the external voltage is not referenced to the firont panel INPUT LO. This can be accomplished by tying either end of the external reference to INPUT LO, or referencing it to some constant voltage above or below INPUT LO.

007-9. To operate the External Reference option, use the following procedure.

1. Apply a dc voltage to the External Reference connector (the upper pin is positive).
2. Select the appropriate function and range.
3. Activate the External Reference (and disable the internal reference) by pressing FCN, EXT REF on the 8860 A front panel. The indicator light next to the EXT REF switch turns on.
4. For voltage measurements, the display will now read a number equal to:

$$
V_{\text {IN }} \times \frac{10}{V_{\text {REF }}}
$$

and for resistance measurements:

$$
\operatorname{RIN} \times \frac{10}{V_{\mathrm{REF}}}
$$

