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Preface

The contributions of accurate time and frequency measurements to global trade, traffic and
most sub-fields of technology and science, can hardly be overestimated. The availability of
stable sources with accurately known frequencies is prerequisite to the operation of world-
wide digital data networks and to accurate satellite positioning, to name only two examples.
Accurate frequency measurements currently give the strongest bounds on the validity of fun-
damental theories. Frequency standards are intimately connected with developments in all of
these and many other fields as they allow one to build the most accurate clocks and to combine
the measurements, taken at different times and in different locations, into a common system.

The rapid development in these fields produces new knowledge and insight with breath-
taking speed. This book is devoted to the basics and applications of frequency standards. Most
of the material relevant to frequency standards is scattered in excellent books, review articles,
or in scientific journals for use in the fields of electrical engineering, physics, metrology,
astronomy, or others. In most cases such a treatise focusses on the specific applications,
needs, and notations of the particular sub-field and often it is written for specialists. The
present book is meant to serve a broader community of readers. It addresses both graduate
students and practising engineers or physicists interested in a general and introductory actual
view of a rapidly evolving field. The volume evolved from courses for graduate students given
by the author at the universities of Hannover and Konstanz. In particular, the monograph aims
to serve several purposes.

First, the book reviews the basic concepts of frequency standards from the microwave to
the optical regime in a unified picture to be applied to the different areas. It includes selected
topics from mechanics, atomic and solid state physics, optics, and methods of servo control.
If possible, the topics which are commonly regarded as complicated, e.g., the principles and
consequences of the theory of relativity, start with a simple physical description. The subject
is then developed to the required level for an adequate understanding within the scope of
this book.

Second, the realisation of commonly used components like oscillators or macroscopic and
atomic frequency references, is discussed. Emphasis is laid not only on the understanding of
basic principles and their applications but also on practical examples. Some of the subjects
treated here may be of interest primarily to the more specialised reader. In these cases, for the
sake of conciseness, the reader is supplied with an evaluated list of references addressing the
subject in necessary detail.

Third, the book should provide the reader with a sufficiently detailed description of the
most important frequency standards such as, e.g., the rubidium clock, the hydrogen maser, the
caesium atomic clock, ion traps or frequency-stabilised lasers. The criteria for the “impor-
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tance” of a frequency standard include their previous, current, and future impact on science
and technology. Apart from record-breaking primary clocks our interest also focusses on tiny,
cheap, and easy-to-handle standards as well as on systems that utilise synchronised clocks,
e.g., in Global Navigation Satellite Systems.

Fourth, the book presents various applications of frequency standards in contemporary
high-technology areas, at the forefront of basic research, in metrology, or for the quest for most
accurate clocks. Even though it is possible only to a limited extent to predict future technical
evolution on larger time scales, some likely developments will be outlined. The principal
limits set by fundamental principles will be explored to enable the reader to understand the
concepts now discussed and to reach or circumvent these limitations. Finally, apart from the
aspect of providing a reference for students, engineers, and researchers the book is also meant
to allow the reader to have intellectual fun and enjoyment on this guided walk through physics
and technology.

Chapter 1 reviews the basic glossary and gives a brief history of the development of clocks.
Chapters 2 and 3 deal with the characterisation of ideal and real oscillators. In Chapter 4 the
properties of macroscopic and in Chapter 5 that of microscopic, i.e., atomic and molecular
frequency references, are investigated. The most important methods for preparation and in-
terrogation of the latter are given in Chapter 6. Particular examples of frequency standards
from the microwave to the optical domain are treated in Chapters 7 to 10, emphasising their
peculiarities and different working areas together with their main applications. Chapter 11
addresses selected principles and methods of measuring optical frequencies relevant for the
most evolved current and future frequency standards. The measurement of time as a particu-
lar application of frequency standards is treated in Chapter 12. The remainder of the book is
devoted to special applications and to the basic limits.

I would like to thank all colleagues for continuous help with useful discussions and for
supporting me with all kinds of information and figures. I am thankful to the team of Wiley–
VCH for their patience and help and to Hildegard for her permanent encouragement and for
helping me with the figures and references. I am particularly grateful to A. Bauch, T. Bin-
newies, C. Degenhardt, J. Helmcke, P. Hetzel, H. Knöckel, E. Peik, D. Piester, J. Stenger,
U. Sterr, Ch. Tamm, H. Telle, S. Weyers, and R. Wynands for careful reading parts of the
manuscript. These colleagues are, however, not responsible for any deficiencies or the fact
that particular topics in this book may require more patience and labour as adequate in order
to be understood. Furthermore, as in any frequency standard, feedback is necessary and
highly welcome to eliminate errors or to suggest better approaches for the benefit of future
readers.

Fritz Riehle
(fritz.riehle@ptb.de)

Braunschweig
June 2004



1 Introduction

1.1 Features of Frequency Standards and Clocks

Of all measurement quantities, frequency represents the one that can be determined with by
far the highest degree of accuracy. The progress in frequency measurements achieved in the
past allowed one to perform measurements of other physical and technical quantities with un-
precedented precision, whenever they could be traced back to a frequency measurement. It is
now possible to measure frequencies that are accurate to better than 1 part in 1015. In order to
compare and link the results to those that are obtained in different fields, at different locations,
or at different times, a common base for the frequency measurements is necessary. Frequency
standards are devices which are capable of producing stable and well known frequencies with
a given accuracy and, hence, provide the necessary references over the huge range of frequen-
cies (Fig. 1.1) of interest for science and technology. Frequency standards link the different
areas by using a common unit, the hertz. As an example, consider two identical clocks whose

Figure 1.1: Frequency and corresponding time scale with clocks and relevant technical areas.

relative frequencies differ by 1 × 10−15. Their readings would disagree by one second only
after thirty million years. Apart from the important application to realise accurate clocks and
time scales, frequency standards offer a wide range of applications due to the fact that nu-
merous physical quantities can be determined very accurately from measurements of related
frequencies. A prominent example of this is the measurement of the quantity length. Large
distances are readily measured to a very high degree of accuracy by measurement of the time
interval that a pulse of electromagnetic waves takes to traverse this distance. Radar guns used
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by the police represent another example where the quantity of interest, i.e. the speed of a vehi-
cle is determined by a time or frequency measurement. Other quantities like magnetic fields or
electric voltages can be related directly to a frequency measurement using the field-dependent
precession frequency of protons or using the Josephson effect, allowing for exceptionally high
accuracies for the measurement of these quantities.

The progress in understanding and handling the results and inter-relationships of celestial
mechanics, mechanics, solid-state physics and electronics, atomic physics, and optics has
allowed one to master steadily increasing frequencies (Fig. 1.1) with correspondingly higher
accuracy (Fig. 1.2). This evolution can be traced from the mechanical clocks (of resonant

Figure 1.2: Relative uncertainty of different clocks. Mechanical pendulum clocks (full circles);
quartz clock (full square); Cs atomic clocks (open circles); optical clocks (asterisk). For more
details see Section 1.2.

frequencies ν0 ≈ 100 Hz) via the quartz and radio transmitter technology (103 Hz ≤ ν0 ≤
108 Hz), the microwave atomic clocks (108 Hz ≤ ν0 ≤ 1010 Hz) to today’s first optical clocks
based on lasers (ν0

<∼ 1015 Hz). In parallel, present-day manufacturing technology with the
development of smaller, more reliable, more powerful, and at the same time much cheaper
electronic components, has extended the applications of frequency technology. The increasing
use of quartz and radio controlled clocks, satellite based navigation for ships, aircraft and cars
as well as the implementation of high-speed data networks would not have been possible
without the parallel development of the corresponding oscillators, frequency standards, and
synchronisation techniques.

Frequency standards are often characterised as active or passive devices. A “passive” fre-
quency standard comprises a device or a material of particular sensitivity to a single frequency
or a group of well defined frequencies (Fig. 1.3). Such a frequency reference may be based on
macroscopic resonant devices like resonators (Section 4) or on microscopic quantum systems
(Section 5) like an ensemble of atoms in an absorber cell. When interrogated by a suitable
oscillator, the frequency dependence of the frequency reference may result in an absorption
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Figure 1.3: Schematics of frequency standard and clock.

line with a minimum of the transmission at the resonance frequency ν0. From a symmetric
absorption signal I an anti-symmetric error signal S may be derived that can be used in the
servo-control system to generate a servo signal. The servo signal acting on the servo input of
the oscillator is supposed to tune the frequency ν of the oscillator as close as possible to the
frequency ν0 of the reference. With a closed servo loop the frequency ν of the oscillator is
“stabilised” or “locked” close to the reference frequency ν0 and the device can be used as a
frequency standard provided that ν is adequately known and stable.

In contrast to the passive standard an “active” standard is understood as a device where,
e.g., an ensemble of excited atomic oscillators directly produces a signal with a given fre-
quency determined by the properties of the atoms. The signal is highly coherent if a fraction
of the emitted radiation is used to stimulate the emission of other excited atoms. Examples of
active frequency standards include the active hydrogen maser (Section 8.1) or a gas laser like
the He-Ne laser (Section 9.1).

A frequency standard can be used as a clock (Fig. 1.3) if the frequency is suitably divided
in a clockwork device and displayed. As an example consider the case of a wrist watch where
a quartz resonator (Section 4.1) defines the frequency of the oscillator at 32 768 Hz = 215 Hz
that is used with a divider to generate the pulses for a stepping motor that drives the second
hand of the watch.

The specific requirements in different areas lead to a variety of different devices that are
utilised as frequency standards. Despite the various different realisations of frequency stan-
dards for these different applications, two requirements are indispensable for any one of these
devices. First, the frequency generated by the device has to be stable in time. The frequency,
however, that is produced by a real device will in general vary to some extent. The varia-
tion may depend, e.g., on fluctuations of the ambient temperature, humidity, pressure, or on
the operational conditions. We value a “good” standard by its capability to produce a stable
frequency with only small variations.

A stable frequency source on its own, however, does not yet represent a frequency stan-
dard. It is furthermore necessary that the frequency ν is known in terms of absolute units. In
the internationally adopted system of units (Systéme International: SI) the frequency is mea-
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sured in units of Hertz representing the number of cycles in one second (1 Hz = 1/s). If the
frequency of a particular stable device has been measured by comparing it to the frequency of
another source that can be traced back to the frequency of a primary standard 1 used to realise
the SI unit, our stable device then – and only then – represents a frequency standard.

After having fulfilled these two prerequisites, the device can be used to calibrate other
stable oscillators as further secondary standards.

Figure 1.4: Bullet holes on a target (upper row) show four different patterns that are precise
and accurate (a), not precise but accurate (b), precise but not accurate (c), not precise and not
accurate (d). Correspondingly a frequency source (lower row) shows a frequency output that is
stable and accurate (a), not stable but accurate (b), stable but not accurate (c), and not stable and
not accurate (d).

There are certain terms like stability, precision, and accuracy that are often used to charac-
terise the quality of a frequency standard. Some of those are nicely visualised in a picture used
by Vig [2] who compared the temporal output of an oscillator with a marksman’s sequence of
bullet holes on a target (Fig. 1.4). The first figure from the left shows the results of a highly
skilled marksman having a good gun at his disposal. All holes are positioned accurately in
the centre with high precision from shot to shot. In a frequency source the sequence of firing
bullets is replaced by consecutive measurements of the frequency ν, where the deviation of
the frequency from the centre frequency ν0 corresponds to the distance of each bullet hole
from the centre of the target.2 Such a stable and accurate frequency source may be used as a
frequency standard. In the second picture of Fig. 1.4 the marks are scattered with lower pre-
cision but enclosing the centre accurately. The corresponding frequency source would suffer
from reduced temporal stability but the mean frequency averaged over a longer period would
be accurate. In the third picture all bullet holes are precisely located at a position off the
centre. The corresponding frequency source would have a frequency offset from the desired

1 A primary frequency standard is a frequency standard whose frequency correponds to the adopted definition of the
second , with its specified accuracy achieved without external calibration of the device [1].

2 The distances of bullet holes in the lower half plane are counted negative.
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frequency ν0. If this offset is stable in time the source can be used as a frequency standard pro-
vided that the offset is determined and subsequently corrected for. In the fourth picture most
bullet holes are located to the right of the centre, maybe due to reduced mental concentration
of the marksman. The corresponding oscillator produces a frequency being neither stable nor
accurate and, hence, cannot be used as a frequency standard.

The accuracy and stability of the frequency source depicted in the third picture of Fig. 1.4
can be quantified by giving the deviation from the centre frequency and the scatter of the
frequencies, respectively, in hertz. To compare completely different frequency standards the
relative quantities “relative accuracy” (“relative stability”, etc.) are used where the corre-
sponding frequency deviation (frequency scatter) is divided by the centre frequency. As well
as the terms accuracy, stability and precision the terms inaccuracy, instability and imprecision
are also in current use and these allow one to characterise, e.g., a good standard with low in-
accuracy by a small number corresponding to the small frequency deviation, whereas a high
accuracy corresponds to a small frequency deviation.

The simple picture of a target of a marksman (Fig. 1.4) used to characterise the quality of
a frequency standard is not adequate, however, in a number of very important cases. Consider,
e.g., a standard which is believed to outperform all other available standards. Hence, there is
no direct means to determine the accuracy with respect to a superior reference. This situation
is equivalent to a plain target having neither a marked centre nor concentric rings. Shooting
at the target, the precision of a gun or the marksman can still be determined but the accuracy
cannot. It is, however, possible to “estimate” the uncertainty of a frequency standard similarly
as it is done by measuring an a priori unknown measurand. There are now generally agreed
procedures to determine the uncertainty in the Guide to the Expression of Uncertainty in Mea-
surement (GUM) [3]. The specified uncertainty hence represents the “limits of the confidence
interval of a measured or calculated quantity” [1] where the probability of the confidence lim-
its should be specified. If the probability distribution is a Gaussian this is usually done by
the standard deviation (1σ value) 3 corresponding to a confidence level of 68 %. For clarity
we repeat here also the more exact definitions of accuracy as “the degree of conformity of a
measured or calculated value to its definition” and precision as “the degree of mutual agree-
ment among a series of individual measurements; often but not necessarily expressed by the
standard deviation” [1].

1.2 Historical Perspective of Clocks and Frequency
Standards

1.2.1 Nature’s Clocks

The periodicity of the apparent movement of celestial bodies and the associated variations in
daylight, seasons, or the tides at the seashore has governed all life on Earth from the very
beginning. It seemed therefore obvious for mankind to group the relevant events and dates in
chronological order by using the time intervals found in these periodicities as natural measures

3 In cases where this confidence level is too low, expanded uncertainties with k σ can be given, with, e.g., 95.5%
(k = 2) or 99.7% (k = 3).
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of time. Hence, the corresponding early calendars were based on days, months and years
related to the standard frequencies of Earth’s rotation around its polar axis (once a day), Earth’s
revolution around the Sun (once a year) and the monthly revolution of the moon around the
Earth (once a month), respectively. The communication of a time interval between two or more
parties had no ambiguity if all members referred to the same unit of time, e.g., the day, which
then served as a natural standard of time. Similarly, a natural standard of frequency (one cycle
per day) can be derived from such a natural clock. The calendar therefore allowed one to set
up a time scale based on an agreed starting point and on the scale unit.4 The establishment of
a calendar was somewhat complicated by the fact that the ratios of the three above mentioned
standard frequencies of revolution are not integers, as presently the tropical year 5 comprises
365.2422 days and the synodical month 29.5306 days.6 Today’s solar calendar with 365 days a
year and a leap year with 366 days occurring every fourth year dates back to a Roman calendar
introduced by Julius Caesar in the year 45 B.C.7

The use of Nature’s clocks based on the movement of celestial bodies has two disadvan-
tages. First, a good time scale requires that the scale unit must not vary with time. Arguments
delivered by astronomy and geochronometry show that the ratio of Earth’s orbital angular fre-
quency around the sun and the angular frequency around its polar axis is not constant in time.8

Second, as a result of the low revolution frequency of macroscopic celestial bodies the scale
unit is in general too large for technical applications.9

1.2.2 Man-made Clocks and Frequency Standards

Consequently, during the time of the great civilisations of the Sumerians in the valley of Tigris
and Euphrates and of the Egyptians, the time of the day was already divided into shorter
sections and the calendars were supplemented by man-made clocks. A clock is a device
that indicates equal increments of elapsed time. In the long time till the end of the Middle
Ages the precursors of today’s clocks included sundials, water clocks, or sand glasses with
a variety of modifications. The latter clocks use water or sand flowing at a more or less
constant rate and use the integrated quantity of moved substance to approximate a constant
flow of time. Progress in clock making arose when oscillatory systems were employed that

4 The set-up of a time scale, however, is by no means exclusively related to cyclic events. In particular, for larger
periods of time, the exponential decay of some radioactive substances, e.g., of the carbon isotope 14C allows one
to infer the duration of an elapsed time interval from the determination of a continuously decreasing ratio 14C/12C.

5 The tropical year is the time interval between two successive passages of the sun through the vernal equinox, i.e.
the beginning of spring on the northern hemisphere.

6 The synodical month is the time interval between two successive new moon events. The term “synode” meaning
“gathering” refers to the new moon, when moon and sun gather together as viewed from the earth.

7 The rule for the leap year was modified by Pope Gregor XIII in the year 1582 so that for year numbers being an
integer multiple of 100, there is no leap year except for those years being an integer multiple of 400. According to
this, the mean year in the Gregorian Calendar has 365.2425 days, close to its value given above.

8 The growth of reef corals shows ridges comparable to the tree rings that have been interpreted as variations in
the rate of carbonate secretion both with a daily and annual variation. The corresponding ratios of the ridges are
explained by the fact that the year in the Jurassic (135 million years ago) had about 377 days [4].

9 Rapidly spinning millisecond pulsars can represent “Nature’s most stable clocks” [5], but their frequency is still
too low for a number of today’s requirements.



1.2 Historical Perspective of Clocks and Frequency Standards 7

operate at a specific resonance frequency defined by the properties of the oscillatory system.
If the oscillation frequency ν0 of this system is known, its reciprocal defines a time increment
T = 1/ν0. Hence, any time interval can be measured by counting the number of elapsed
cycles and multiplying this number with the period of time T . Any device that produces a
known frequency is called a frequency standard and, hence, can be used to set up a clock.
To produce a good clock requires the design of a system where the oscillation frequency is
not perturbed either by changes in the environment, by the operating conditions or by the
clockwork.

1.2.2.1 Mechanical Clocks

In mechanical clocks, the clockwork fulfils two different tasks. Its first function is to measure
and to display the frequency of the oscillator or the elapsed time. Secondly, it feeds back to
the oscillator the energy that is required to sustain the oscillation. This energy from an exter-
nal source is needed since any freely oscillating system is coupled to the environment and the
dissipated energy will eventually cause the oscillating system to come to rest. In mechanical
devices the energy flow is regulated by a so-called escapement whose function is to steer the
clockwork with as little as possible back action onto the oscillator. From the early fourteenth
century large mechanical clocks based on oscillating systems were used in the clock towers of
Italian cathedrals. The energy for the clockwork was provided by weights that lose potential
energy while descending in the gravitational potential of the Earth. These clocks were regu-
lated by a so-called verge-and-foliot escapement which was based on a kind of torsion pen-
dulum. Even though these clocks rested essentially on the same principles (later successfully
used for much higher accuracies) their actual realisation made them very susceptible to friction
in the clockwork and to the driving force. They are believed to have been accurate to about
a quarter of an hour a day. The relative uncertainty of the frequency of the oscillator steering
these clocks hence can be described by a fractional uncertainty of ΔT/T = Δν/ν ≈ 1 %.
The starting point of high-quality pendulum clocks is often traced back to an observation of
the Italian researcher Galileo Galilei (1564 – 1642). Galilei found that the oscillation period
of a pendulum for not too large excursions virtually does not depend on the excursion but
rather is a function of the length of the pendulum. The first workable pendulum clock, how-
ever, was invented in 1656 by the Dutch physicist Christian Huygens. This clock is reported
to have been accurate to a minute per day and later to better than ten seconds per day corre-
sponding to ΔT/T ≈ 10−4 (see Fig. 1.2). Huygens is also credited with the development of
a balance-wheel-and-spring assembly. The pendulum clock was further improved by George
Graham (1721) who used a compensation technique for the temperature dependent length of
the pendulum arriving at an accuracy of one second per day (ΔT/T ≈ 10−5).

The contribution of accurate clocks to the progress in traffic and traffic safety can be ex-
emplified from the development of a marine chronometer by John Harrison in the year 1761.
Based on a spring-and-balance-wheel escapement the clock was accurate to 0.2 seconds per
day (ΔT/T ≈ 2 − 3 × 10−6) even in a rolling marine vessel. Harrison’s chronometer for the
first time solved the problem of how to accurately determine longitude during a journey [6].
Continuous improvements culminated in very stable pendulum clocks like the ones manufac-
tured by Riefler in Germany at the end of the nineteenth century. Riefler clocks were stable
to a hundredth of a second a day (ΔT/T ≈ 10−7) and served as time-interval standards in
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the newly established National Standards Institutes until about the twenties of the past century
before being replaced by the Shortt clock. William H. Shortt in 1920 developed a clock with
two synchronised pendulums. One pendulum, the master, swung as unperturbed as possible
in an evacuated housing. The slave pendulum driving the clockwork device was synchronised
via an electromagnetic linkage and in turn, every half a minute, initialised a gentle push to
the master pendulum to compensate for the dissipated energy. The Shortt clocks kept time
better than 2 milliseconds a day (ΔT/T ≈ 2 × 10−8) and to better than a second per year
(ΔT/T ≈ 3 × 10−8).

1.2.2.2 Quartz Clocks

Around 1930 quartz oscillators (Section 4.1) oscillating at frequencies around 100 kHz, with
auxiliary circuitry and temperature-control equipment, were used as standards of radio fre-
quency and later replaced mechanical clocks for time measurement. The frequency of quartz
clocks depends on the period of a suitable elastic oscillation of a carefully cut and prepared
quartz crystal. The mechanical oscillation is coupled to electronically generated electric oscil-
lation via the piezoelectric effect. Quartz oscillators drifted in frequency about 1 ms per day
(Δν/ν ≈ 10−8) [7] and, hence, did not represent a frequency standard unless calibrated. At
this time, frequency calibration was derived from the difference in accurate measurements of
mean solar time determined from astronomical observations.

The quartz oscillators (denoted as “Quartz” in Fig. 1.2) proved their superiority with re-
spect to mechanical clocks and the rotating Earth at the latest when Scheibe and Adelsberger
showed [7] that from the beginning of 1934 till mid 1935, the three quartz clocks of the
Physikalisch-Technische Reichsanstalt, Germany all showed the same deviation from the side-
rial day. The researchers concluded that the apparent deviations resulted from a systematic
error with the time determination of the astronomical institutes as a result of the variation of
Earth’s angular velocity.10 Today, quartz oscillators are used in numerous applications and
virtually all battery operated watches are based on quartz oscillators.

1.2.2.3 Microwave Atomic Clocks

Atomic clocks differ from mechanical clocks in such a way that they employ a quantum me-
chanical system as a “pendulum” where the oscillation frequency is related to the energy
difference between two quantum states. These oscillators could be interrogated, i.e. coupled
to a clockwork device only after coherent electromagnetic waves could be produced. Conse-
quently, this development took place shortly after the development of the suitable radar and
microwave technology in the 1940s. Detailed descriptions of the early history that led to the
invention of atomic clocks are available from the researchers of that period (see e.g. [9–12])
and we can restrict ourselves here to briefly highlighting some of the breakthroughs. One of
the earliest suggestions to build an atomic clock using magnetic resonance in an atomic beam
was given by Isidor Rabi who received the Nobel prize in 1944 for the invention of this spec-
troscopic technique. The successful story of the Cs atomic clocks began between 1948 and

10 T. Jones [8] points out that “The first indications of seasonal variations in the Earth’s rotation were gleaned by the
use of Shortt clocks.”
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1955 when several teams in the USA including the National Bureau of Standards (NBS, now
National Institute of Standards and Technology, NIST) and in England at the National Phys-
ical Laboratory (NPL) developed atomic beam machines. They relied on Norman Ramsey’s
idea of using separated field excitation (Section 6.6) to achieve the desired small linewidth of
the resonance. Essen and Parry at NPL (denoted as “Early Cs” in Fig. 1.2) operated the first
laboratory Cs atomic frequency standard and measured the frequency of the Cs ground-state
hyperfine transition [13, 14]. Soon after (1958) the first commercial Cs atomic clocks became
available [15]. In the following decades a number of Cs laboratory frequency standards were
developed all over the world with the accuracy of the best clocks improving roughly by an or-
der of magnitude per decade. This development led to the re-definition of the second in 1967
when the 13th General Conference on Weights and Measures (CGPM) defined the second as
“the duration of 9 192 631 770 periods of the radiation corresponding to the transition between
the two hyperfine levels of the ground state of the caesium 133 atom”. Two decades later the
relative uncertainty of a caesium beam clock (e.g., CS2 in 1986 at the Physikalisch-Technische
Bundesanstalt (PTB), Germany, denoted as “Cs beam cock” in Fig. 1.2) was already as low as
2.2 × 10−14 [16].

A new era of caesium clocks began when the prototype of an atomic Cs fountain was set
up [17] at the Laboratoire Primaire du Temps and Fréquences (LPTF; now BNM–SYRTE) in
Paris. In such clocks Cs atoms are laser cooled and follow a ballistic flight in the gravitational
field for about one second. The long interaction time made possible by the methods of laser
cooling (Section 6.3.1) leads to a reduced linewidth of the resonance curve. The low velocities
of the caesium atoms allowed one to reduce several contributions that shift the frequency of
the clock. Less than a decade after the first implementation, the relative uncertainty of fountain
clocks was about 1 × 10−15 [18–20] (see “Cs fountain clock” in Fig. 1.2).

1.2.2.4 Optical Clocks and Outlook to the Future

As a conclusion of the historical overview one finds that the development of increasingly more
accurate frequency standards was paralleled by an increased frequency of the employed oscil-
lator. From the hertz regime of pendulum clocks via the megahertz regime of quartz oscillators
to the gigahertz regime of microwave atomic clocks, the frequency of the oscillators has been
increased by ten orders of magnitude. The higher frequency has several advantages. First, for
a given linewidth Δν of the absorption feature, the reciprocal of the relative linewidth, often
referred to as the line quality factor

Q ≡ ν0/Δν, (1.1)

increases. For a given capability to “split the line”, i.e. to locate the centre of a resonance line,
the frequency uncertainty is proportional to Q and hence, to the frequency of the interrogating
oscillator. The second advantage of higher frequencies becomes clear if one considers two
of the best pendulum clocks with the same frequency of about 1 Hz which differ by a second
after a year (Δν/ν0 ≈ 3 × 10−8). If both pendulums are swinging in phase it takes about
half a year to detect the pendulums of the two clocks being out of phase by 180 ◦. With two
clocks operating at a frequency near 10 GHz the same difference would show up after 1.6 ms.
Hence, the investigation and the suppression of systematic effects that shift the frequency of
a standard is greatly facilitated by the use of higher frequencies. One can therefore expect
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further improvements by the use of optical frequency standards by as much as five orders of
magnitude higher frequencies, compared with that of the microwave standards. The recent
development of frequency dividers from the optical to the microwave domain (Section 11)
also makes them available for optical clocks [21] which become competitive with the best
microwave clocks (see “Optical clocks” in Fig. 1.2).

It can now be foreseen that several (mainly optical) frequency standards might be realised
whose reproducibilities are superior to the best clocks based on Caesium. As long as the
definition of the unit of time is based on the hyperfine transition in caesium, these standards
will not be capable to realise the second or the hertz better than the best caesium clocks.
However, they will serve as secondary standards and will allow more accurate frequency ratios
and eventually may lead to a new definition of the unit of time.



2 Basics of Frequency Standards

2.1 Mathematical Description of Oscillations

A great variety of processes in nature and technology are each unique in the sense that the
same event occurs periodically after a well defined time interval T . The height of the sea
level shows a maximum roughly every twelve hours (T ≈ 12.4 h). Similarly, the swing of a
pendulum (T <∼ 1 s), the electric voltage available at the wall socket (T ≈ 0.02 s), the electric
field strength of an FM radio transmitter (T ≈ 10−8 s) or of a light wave emitted by an atom
(T ≈ 2× 10−15 s) represent periodic events. In each case a particular physical quantity U(t),
e.g., the height of the water above mean sea level or the voltage of the power line, performs
oscillations.

2.1.1 Ideal and Real Harmonic Oscillators

Even though the time interval T and the corresponding frequency ν0 ≡ 1/T differ markedly
in the examples given, their oscillations are often described by an (ideal) harmonic oscillation

U(t) = U0 cos(ω0t + φ). (2.1)

Given the amplitude U0, the frequency

ν0 =
ω0

2π
(2.2)

and the initial phase φ, the instantaneous value of the quantity of interest U(t) of the oscillator
is known at any time t. ω0 is referred to as the angular frequency and ϕ ≡ ω0t + φ as
the instantaneous phase of the harmonic oscillator. The initial phase determines U(t) for the
(arbitrarily chosen) starting time at t = 0.

The harmonic oscillation (2.1) is the solution of a differential equation describing an ideal
harmonic oscillator. As an example, consider the mechanical oscillator where a massive body
is connected to a steel spring. If the spring is elongated by U from the equilibrium position
there is a force trying to pull back the mass m. For a number of materials the restoring force
F (t) is to a good approximation proportional to the elongation

F (t) = −DU(t). (Hooke’s law) (2.3)

The constant D in Hooke’s law (2.3) is determined by the stiffness of the spring which depends
on the material and the dimensions of the spring. This force, on the other hand, accelerates
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the mass with an acceleration a(t) = d2U(t)/dt2 = F/m. Equating both conditions for any
instant of time t leads to the differential equation

d2U(t)
dt2

+ ω2
0 U(t) = 0 with ω0 ≡

√
D

m
. (2.4)

(2.1) is a solution of (2.4) as can be readily checked. The angular frequency ω0 of the oscillator
is determined by the material properties of the oscillator. In the case of the oscillating mass,
the angular frequency ω0 is given according to (2.4) by the mass m and the spring constant D.

If we had chosen the example of an electrical resonant circuit, comprising a capacitor of
capacitance C and a coil of inductance L the frequency angular would be ω0 = 1/(

√
LC). In

contrast, for an atomic oscillator the resonant frequency is determined by atomic properties.
In the remainder of this chapter and in the next one we will not specify the properties of
particular oscillators but rather deal with a more general description.

It is common to all oscillators that a certain amount of energy is needed to start the os-
cillation. In the case of a spring system potential energy is stored in the compressed spring
elongated from equilibrium by U0. When the system is left on its own, the spring will exert
a force to the massive body and accelerate it. The velocity v = dU(t)/dt of the body will
increase and it will gain the kinetic energy

Ekin(t) =
1
2
mv2 =

1
2
m

[
d U(t)

dt

]2

=
1
2
mω2

0U2
0 sin2(ω0t + φ) (2.5)

where we have made use of (2.1). The kinetic energy of the oscillating system increases
to a maximum value as long as there is a force acting on the body. This force vanishes at
equilibrium, i.e. when sin2(ω0t + φ) = 1 and the total energy equals the maximum kinetic
(or maximum potential) energy

Etot =
1
2
mω2

0U
2
0 =

1
2
DU2

0 . (2.6)

The proportionality between the energy 1 stored in the oscillatory motion and the square of
the amplitude is a feature which is common to all oscillators.

Rather than using a cosine function to describe the harmonic oscillation of (2.1) we could
also use a sine function. As is evident from cosϕ = sin(ϕ + π

2 ) only the starting phase
φ would change by π/2. More generally, each harmonic oscillation can be described as a

1 The energy discussed here is the energy stored in the oscillation of an oscillator that has been switched on and
that would be oscillating forever if no dissipative process would reduce this energy. It must not be mixed with
the energy that can be extracted from a technical oscillator which uses another source of energy to sustain the
oscillation. The voltage U(t), for instance, present at the terminals of such an oscillator is capable of supplying
a current I(t) to a device of input resistance R. This current I(t) = U(t)/R produces a temporally varying
electrical power P (t) = U(t)I(t) = U2(t)/R = U2

0 /R cos2(ω0t + φ) at the external device. The mean power

P̄ , i.e. the power integrated for one period
R T
0 U2

0 /R cos2(ω0t + φ)dt = U2
0 /(2R) is also proportional to U2

0 ,

as well as the energy E(t′) =
R t′
0 P (t)dt = U2

0 /R
R t′
0 cos2(ω0t + φ)dt delivered by the oscillator within the

time t′. In contrast to the energy stored in an undamped oscillator this energy
R t′
0 P (t)dt increases linearly with

time t′.
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superposition of a sine function and a cosine function having the same frequency as follows

U(t) = U0 cos(ω0t + φ) = U0 cos(ω0t) cos(φ) − U0 sin(ω0t) sin(φ)
= U01 cos(ω0t) − U02 sin(ω0t) (2.7)

where we have used cos(α+β) = cosα cosβ−sin α sin β. The two quantities U01 = U0 cos φ
and U02 = U0 sin φ are termed quadrature amplitudes of the oscillation. As computations
including sine and cosine functions can sometimes become awkward it is more convenient to
describe the harmonic oscillation by a complex exponential using Euler’s formula exp iϕ =
cos ϕ + i sin ϕ. Then (2.1) can be replaced by

U(t) = �e
{
U0e

i(ω0t+φ)
}

= �e
{

Ũ0e
iω0t

}
=

Ũ0e
iω0t + Ũ∗

0 e−iω0t

2

=
1
2

{
Ũ0e

iω0t + c.c.
}

, (2.8)

with the complex phasor

Ũ0 = U0 eiφ = U01 + i U02. (2.9)

The phasor Ũ0 contains the modulus U0 = |U(t)| and the starting phase angle in a single
complex number. Calculations using the complex representations of the oscillation take ad-
vantage of the simple rules for dealing with complex exponentials. Having obtained the final
(complex) result one keeps only the real part.2 Accordingly, there are different ways to rep-
resent the ideal harmonic oscillation of (2.8) graphically. To depict the oscillation in the time

Figure 2.1: Ideal harmonic oscillator. a) Time-domain representation. b) Frequency-domain represen-
tation. c) Phasor representation.

2 For simplicity, the operator �e is often not written in the course of the complex computations and the real part is
taken only at the final result. Notice, however, that this procedure is only applicable in the case of linear operations
as e.g. addition, multiplication with a number, integration or differentiation, but not in the case of non-linear
operations. This can be seen in the case of the product of two complex numbers where obviously in general
�e (A2) �= [�e (A)]2.
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domain (Fig. 2.1 a) it is necessary to know the initial phase φ, the amplitude U0, and frequency
ν0 = 1/T of the oscillation. The oscillation in the frequency domain (Fig. 2.1 b) does not
contain any information on the phase of the oscillator. If represented by a complex phasor,
Ũ0 = U0 exp(iφ) may be visualised in the complex plane (Argand diagram; Fig. 2.1 c) by
a pointer of length U0 that can be represented either in polar coordinates or in Cartesian co-
ordinates. The initial phase is depicted as the angle φ between the real coordinate axis and
the pointer. The phasor must not be mixed with the complex pointer U0 exp [i(ω0t + φ)] that
rotates counterclockwise 3 at constant angular velocity ω0.

A specific property of the ideal harmonic oscillator is that we can predict its phase accord-
ing to (2.1) starting from the initial conditions (phase, amplitude, and frequency) at any instant
with any desired accuracy. For real oscillators used as examples above, these properties can
be predicted only with an inherent uncertainty. For instance, the tidewaters do not always rise
and fall to the same levels, but also show from time to time exceptionally high spring tides.
In this case the amplitude of the oscillation resulting from the attraction of the moon is also
“modulated” by the gravitational influence of the sun. In the example of the swinging pen-
dulum the amplitude is constant only if the energy dissipated by friction is compensated for.
Otherwise the amplitude of the swinging pendulum will die away similar to the amplitude of
an oscillating atom emitting a wave train. In reality neither the amplitude nor the frequency
of a real oscillator are truly constant. The long-term frequency variation may be very small as
in the case of the ocean tides, where the angular velocity of the earth is decreasing gradually
by friction processes induced by the tides of the waters and the solid earth but will become
important after a large number of oscillations (see footnote 8 in Chapter 1). Apart from the
natural modulations encountered in these two examples, the frequency of an oscillator may
also be modulated on purpose. The frequency of the electromagnetic field produced by a FM
(frequency modulated) transmitter is modulated to transmit speech and music. Basically, one
refers to any temporal variation in the amplitude of an oscillator as amplitude modulation and
the variation of its phase or frequency as phase modulation or frequency modulation, respec-
tively. In the following we will investigate the processes of amplitude and phase modulation
of an oscillator in more detail and we will develop the methods for the description.

For the oscillators relevant for frequency standards one may assume that the modulation
represents only a small perturbation of the constant amplitude U0 and of the phase ω0t. An
amplitude-modulated signal can then be written as

U(t) = U0(t) cosϕ(t) = [U0 + ΔU0(t)] cos [ω0t + φ(t)] . (2.10)

The instantaneous frequency

ν(t) ≡ 1
2π

dϕ(t)
dt

=
1
2π

d

dt
[2πν0t + φ(t)] = ν0 +

1
2π

dφ(t)
dt

(2.11)

differs from the frequency ν0 of the ideal oscillator by

Δν(t) ≡ 1
2π

dφ(t)
dt

. (2.12)

3 Actually, there is an equivalent way to describe the oscillation mathematically by choosing a negative phase in

(2.8), i.e. writing U(t) = �e
n eU0e−iω0t

o
. From e−iφ = cos φ − i sin φ it is clear that the pointer then rotates

clockwise in the Argand diagram. As a consequence, one would have to change the sign of the imaginary part of
several quantities. In the cases when this might lead to confusion we shall explicitly refer to this point again.
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In the following we shall investigate amplitude modulation and phase modulation of an oscil-
lator separately.

2.1.2 Amplitude Modulation

In general, the temporal variation of the amplitude ΔU0(t) of a real oscillator may be very
complicated and it will be not possible to describe the time dependence analytically. In this
case the stochastic temporal behaviour may be described in terms of probability distributions.
We will deal with these cases in Section 3. In this section we investigate deterministic mod-
ulations and consider two special cases of an amplitude modulation where one can give the
explicit time dependence of ΔU0(t). As examples we will consider a harmonic modulation
and the case of an exponentially decreasing amplitude.

2.1.2.1 Spectrum of an Oscillator with Harmonically Modulated Amplitude

Let us assume that the amplitude varies by a pure sine or cosine function around the mean
value U0 with maximum deviation ΔU0 and the modulation frequency νm = ωm/(2π)
(Fig. 2.2 a). In technical applications the modulation frequency νm is usually much lower than

Figure 2.2: a) Time dependence of an amplitude modulated oscillation according to (2.13) using
ωm = ω0/8 and M = 0.8. b) Frequency spectrum of the harmonically amplitude modulated oscil-
lation according to (2.13) displayed in Fig. 2.2 a).

the frequency of the oscillation ν. The amplitude modulated (AM) oscillation is described by

UAM(t) = (U0 + ΔU0 cos ωmt) cos ω0t

= U0(1 + M cosωmt) cosω0t (2.13)

where

M ≡ ΔU0

U0
(2.14)
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is referred to as the modulation index of the amplitude modulation. Using the identity
cos α cos β = 1

2 cos(α + β) + 1
2 cos(α − β) one writes (2.13) as

UAM(t) = U0

[
cos ω0t +

M

2
cos(ω0 + ωm)t +

M

2
cos(ω0 − ωm)t

]
. (2.15)

The frequency spectrum of the amplitude modulated oscillation (2.15) comprises three com-
ponents (Fig. 2.2 b). The first term in square brackets of (2.15) represents the so called carrier,
i.e. the component with the previously unmodulated angular frequency ω0. The second and
third terms are referred to as the high-frequency side band 4 and the low-frequency side band,
respectively, representing the components generated by the modulation. The frequency of
each side band is separated by the modulation frequency ωm with respect to the frequency of
the carrier. Both side bands are present with the same amplitude which is determined by the
amplitude of the carrier and the modulation index.

One expects to obtain the same result as (2.15) if one uses the complex representation of
the oscillation of (2.1)

UAM(t) = U0�e
{
[1 + M cos ωmt] eiω0t

}
= U0�e

{[
1 +

M

2
(
eiωmt + e−iωmt

)]
eiω0t

}
= U0�e

{
eiω0t +

M

2
ei(ω0+ωm)t +

M

2
ei(ω0−ωm)t

}
. (2.16)

In the phasor plot the harmonically amplitude modulated oscillation of the last line of
(2.16) can be represented by three phasors in the complex plane. The phasor of the carrier
is fixed on the real axis 5, whereas the phasor of the high-frequency side band is rotating
counter-clockwise with the anguar frequency ωmt with respect to the phasor of the carrier and
the phasor of the low-frequency side band is rotating clockwise with −ωmt. The side band
phasors have the length M/2. The influence of the amplitude modulation is defined by the sum
of both side-band phasors. The phasor resulting from this sum is always parallel to the phasor
of the carrier but changes its length and direction with the period of the modulation frequency.
Consequently, the length of the phasor resulting from all three phasors and describing the
harmonically modulated oscillation is also changed periodically (Fig. 2.3).

The power contained in the harmonically amplitude modulated oscillation is proportional
to the amplitude squared (cf. footnote 1 on page 12) which in the case of a complex amplitude

4 The phrase “band” refers to the more common case of amplitude modulation with a band of frequencies.

5 In our case the phasor of the carrier is depicted on the real axis. Electrical engineers, however, prefer to represent
the harmonic oscillation in contrast to (2.1) as a real sine function. The corresponding phasor is then rotated by
exp(iπ/2), i.e. by 90◦ and is pointing along the imaginary axis.



2.1 Mathematical Description of Oscillations 17

Figure 2.3: Phasor representation of an oscillation whose amplitude is modulated harmonically accord-
ing to (2.16) and shown in Fig. 2.2 a) using M = 0.8 and ωm = ω0/8. The phasor of the high-frequency
side band rotates with angular velocity ωm and the phasor of the low-frequency side band rotates as -ωm

with respect to the carrier. The length of the phasor (grey arrow) resulting from the three single phasors
varies periodically.

(2.16) has to be taken as the product of the amplitude of and its complex conjugate leading to

PAM ∝ U0

[
eiω0t +

M

2
ei(ω0+ωm)t +

M

2
ei(ω0−ωm)t

]
× U∗

0

[
e−iω0t +

M

2
e−i(ω0+ωm)t +

M

2
e−i(ω0−ωm)t

]
(2.17)

= |U0|2
[
1 + 2

M

2
e−iωmt + 2

M

2
eiωmt + 2

M2

4
+ 2

M2

4
e2iωmt + 2

M2

4
e−2iωmt

]
= |U0|2

[
1 +

M2

2
+ 2M cosωmt +

M2

2
cos(2ωmt)

]
.

Since the rapidly oscillating cosine terms average to zero for measurement times t � 2π/ωm

one obtains

PAM ∝ |U0|2
[
1 +

M2

2

]
. (2.18)

Hence, the total power of the amplitude modulated oscillation is given by the power contained
in the unmodulated carrier augmented by the power contained in both side bands.

Simple harmonic modulation of the amplitude of an oscillator results in two additional
frequencies. One might therefore expect that more complicated forms of modulation will
lead to a more complicated frequency spectrum comprising a larger number of side bands. In
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the case of the harmonic AM the corresponding frequency spectrum was obtained by applying
the simple rules for adding harmonic functions. The general procedure to derive the frequency
spectrum, when the amplitude function is known in the time domain, is given by the Fourier
transformation.

2.1.2.2 Fourier Transformation

The Fourier transformation makes use of a theorem of Jean Baptiste Joseph, Baron de Fourier
(1768 – 1830). According to this theorem, any periodic function f(t) characterised by the
temporal period T can be represented unambiguously by a sum of harmonic functions de-
fined by temporal periods Ti being integral sub-multiples of T , e.g. T, T/2, T/3, T/4, · · · .
This theorem can be stated in an equivalent way by saying that any periodic (time-) function
U(t) of angular frequency ωg = 2π/T can be represented by a (finite or infinite) sum of sine
and cosine terms having angular frequencies that are integral multiples of the basic frequency
ωg . The amplitudes of these so-called higher harmonics of the basic frequency represent the
weights of the constituents necessary to synthesise the time function of interest. The time
function of the harmonically amplitude modulated oscillator of Fig. 2.2 contains three single
components of angular frequencies ω0 − ωm, ω0 and ω0 + ωm with the respective weights
(amplitudes) M

2 U0, U0 and M
2 U0. From a different point of view we can synthesise the tem-

poral function depicted in Fig. 2.2 by these three purely harmonic functions. Generalisation
of the Fourier series to non-periodic functions leads to a Fourier integral

U(t) =
1
2π

∞∫
−∞

A(ω)eiωtdω, (2.19)

for any time function U(t) represented by harmonic functions of angular frequencies ω. Sim-
ilarly to the description of the harmonic oscillation, we use here the complex representation
of the Fourier integral which is mathematically simpler to work with. The complex spectral
function A(ω) gives the weights of all harmonic constituents (often called the Fourier com-
ponents with the Fourier frequencies ω) contained in the time function U(t). To determine
the weight of a particular (complex) Fourier component we have to use the (complex) Fourier
transformation

A(ω) = �e A(ω) + i	m A(ω) = F {U(t)} ≡
∞∫

−∞
U(t)e−iωtdt. (2.20)

Unfortunately, the Fourier transformation according to (2.20) and the inverse Fourier transfor-
mation according to (2.19) are not defined in a consistent way in the literature. Depending on
the choice of the phase of the complex oscillation to be positive or negative (see footnote 3)
the phase angles of the complex exponential functions of (2.20) and (2.19) interchange their
positive and negative signs. Sometimes also the factor 1/(2π) in (2.20) is divided evenly as
1/
√

2π to (2.20) and (2.19).
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Applying the complex Fourier transformation to the harmonic amplitude modulated oscil-
lation of (2.13) leads to

A(ω) = U0

+∞∫
−∞

(
eiω0t + e−iω0t

)
2

e−iωtdt (2.21)

+ MU0

+∞∫
−∞

(
eiωmt + e−iωmt

)
2

(
eiω0t + e−iω0t

)
2

e−iωtdt

=
U0

2

+∞∫
−∞

e−i(ω−ω0)tdt +
U0

2

+∞∫
−∞

e−i(ω+ω0)tdt

+
U0M

4

+∞∫
−∞

e−i(ω−ω0−ωm)tdt +
U0M

4

+∞∫
−∞

e−i(ω+ω0−ωm)tdt

+
U0M

4

+∞∫
−∞

e−i(ω−ω0+ωm)tdt +
U0M

4

+∞∫
−∞

e−i(ω+ω0+ωm)tdt.

The integrals of the kind
∫ +∞
−∞ e−i(ω−ω′)tdt encountered in the previous equation are a

special representation of the Dirac delta function 6

δ(ω − ω′) =
1
2π

+∞∫
−∞

e−i(ω−ω′)tdt. (2.23)

Hence,

A(ω) = 2π
U0

2
δ(ω + ω0) + 2π

U0M

4
δ(ω + (ω0 + ωm)) + 2π

U0M

4
δ(ω + (ω0 − ωm))

+ 2π
U0

2
δ(ω − ω0) + 2π

U0M

4
δ(ω − (ω0 + ωm)) + 2π

U0M

4
δ(ω − (ω0 − ωm)).

(2.24)

In contrast to the amplitude spectrum of (2.16) the amplitude spectrum of (2.24) is not re-
stricted to components at the angular frequencies ω = ω0 − ωm , ω and ω0 + ωm, but also

6 To be more specific the so-called Dirac delta function is not a function. It is defined by the so-called sifting property

∞Z
−∞

δ(ω − ω′)f(ω)dω = f(ω′) (2.22)

where f(ω) corresponds to any function which is continuous at ω′. If one substitutes f(ω) = 1 one obtains
∞R

−∞
δ(ω − ω′)dω = 1. The delta function approaches ∞ for ω′ → ω.
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includes negative angular frequencies ω = −(ω0 − ωm), −ω and −(ω0 + ωm). Hence, the
complex Fourier analysis leads to an amplitude spectrum which is symmetrical with respect
to the angular frequency zero. Since the power contained in the oscillation must not depend
on the description obtained by complex or real Fourier analysis, the spectrum of the latter is
distributed evenly to the positive and negative angular (mirror) frequencies. Consequently, the
amplitude spectra of (2.24) and (2.15) differ by a factor of 1/2.

2.1.2.3 Spectrum of a Damped Oscillator

A different type of amplitude modulation to be discussed now occurs when the amplitude
of the oscillation dies out after some time. This situation is encountered, for instance, when
an excited atom loses its energy by emitting electromagnetic radiation. To describe the rate
of loss one often assumes that the portion of energy dW emitted during a time dt is at any
instant t proportional to the energy W (t) stored in the oscillator at this particular instant, i.e.
dW (t) = −ΓW (t)dt. 7 Integrating dW (t)/W (t) = −Γt leads to ln W (t) − ln W0 = −Γt
and

W (t) = W (t = 0) exp(−Γt). (2.25)

As the energy stored in an oscillator is proportional to the square of the amplitude U(t) the
damped oscillation can be written as

U(t) = U0e
−Γ

2 t cos ω0t. (2.26)

Figure 2.4: Damped harmonic oscil-
lation according to (2.26) with Γ =
0.04ω0.

Equation (2.26) is an approximation for Γ 
 ω0 of the solution of a damped harmonic oscilla-
tor of mass m, spring constant D, damping constant α, described by the differential equation

d2U(t)
dt2

+ Γ
dU(t)

dt
+ ω2

0U(t) = 0 (2.27)

with ω0 ≡
√

D

m
and Γ ≡ α

m
for Γ 
 ω0.

7 As in this book the frequency ν and the angular frequency ω are equally used in the formulas, Γ = 2πγ denotes
the damping constant, linewidth, etc. in the angular frequency domain and γ the corresponding quantities in the
frequency domain.
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Solving the differential equation (2.27) by the ansatz U(t) = U0 exp (iωt) leads to

−ω2U(t) + iωΓU(t) + ω2
0U(t) = 0. (2.28)

For arbitrary amplitudes U(t) �= 0 this equation is solved by

ω1,2 =
iΓ
2

±
√

−Γ2

4
+ ω2

0 (2.29)

which leads to ω1,2 ≈ iΓ
2 ± ω0 for Γ 
 ω0. Inserting these two solutions into the ansatz

U(t) = U ′
0 exp (iωt) and taking the sum of the two particular solutions leads to (2.25) with

U ′
0 = U0/2.

To obtain the frequency spectrum of the damped harmonic oscillator, (2.26) is Fourier
transformed by use of (2.20) as

A(ω) =

∞∫
0

U0e
−Γ

2 t cos(ω0t)e−iωtdt (2.30)

where the lower integration limit has been changed from −∞ to 0 since U(t) = 0 for t < 0.

A(ω) =

∞∫
0

U0e
−Γ

2 t

{
eiω0t + e−iω0t

2

}
e−iωtdt (2.31)

=
∫ ∞

0

U0

2
e[i(ω0−ω)−Γ

2 ]tdt +

∞∫
0

U0

2
e[i(−ω0−ω)−Γ

2 ]tdt

=
U0

2
1

i(ω0 − ω) − Γ
2

[
e[i(ω0−ω)−Γ

2 ]t
]∞
0

+
U0

2
1

i(−ω0 − ω) − Γ
2

[
e[i(−ω0−ω)−Γ

2 ]t
]∞
0

=
U0

2

{
1

i(ω − ω0) + Γ
2

+
1

i(ω + ω0) + Γ
2

}
.

If one is interested in the spectrum of frequencies ω close to ω0, i.e. for ω − ω0 
 ω0, the
second term is in general much smaller compared to the first one and can be neglected.8 After
multiplying numerator and denominator using the complex conjugate of the denominator one
obtains

A(ω) =
U0

2
−i(ω − ω0) + Γ

2[
i(ω − ω0) + Γ

2

] [−i(ω − ω0) + Γ
2

] =
U0

2
−i(ω − ω0) + Γ

2

(ω − ω0)2 + (Γ
2 )2

. (2.32)

8 This approximation is often referred to as the “rotating wave approximation”.
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In contrast to the example of the harmonically modulated oscillator the spectral function
A(ω) = �e A(ω) + i	m A(ω) comprises a real and an imaginary part

�e A(ω) =
U0

2

Γ
2

(ω − ω0)2 + (Γ
2 )2

and

	m A(ω) = −U0

2
ω − ω0

(ω − ω0)2 + (Γ
2 )2

(2.33)

which are displayed in Fig. 2.5 a) and b).9

Figure 2.5: Spectral function of a damped oscillator according to (2.33) with Γ = 0.04 ω0.a) Real part.
b) Imaginary part.

Like �e A(ω) the power spectrum contained in the Fourier components P (ω) ∝
A(ω)A∗(ω) = [�e A(ω)]2 + [	m A(ω)]2, i.e.

P (ω) ∝ U2
0

4
(ω − ω0)2 + (Γ

2 )2[
(ω − ω0)2 + (Γ

2 )2
]2 =

U2
0

4
1

(ω − ω0)2 + (Γ
2 )2

, (2.34)

has also a Lorentzian lineshape (Fig. 2.6). Hence, the exponential decay of the amplitude of
the damped harmonic oscillation leads to a continuous band of frequencies of linewidth Δω.
To determine the width Δω of the band one first determines the maximum of the Lorentzian
as A(ω = ω0)A∗(ω = ω0) = U2

0 /Γ2. To determine the Full Width at Half Maximum
(FWHM) one calculates the frequency ω1/2, where the corresponding value A(ω1/2)A∗(ω1/2)
has dropped to one-half of the maximal value A(ω1/2)A∗(ω1/2) = 1/2A(ω0)A∗(ω0) as

1
2

U2
0

Γ2
=

U2
0

4
1

(ω1/2 − ω0)2 + (Γ
2 )2

. (2.35)

9 The sign of the imaginary part of (2.33) and Fig. 2.5 b) is a consequence of our choice of the Fourier pair (2.19)
and (2.20). Interchanging the signs in the complex exponential functions in (2.19) and (2.20) would lead to a sign
change in (2.33) and Fig. 2.5 b).
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Figure 2.6: The square of the modulus of the Fourier transform of the damped harmonic oscil-
lation is a Lorentzian.

From (2.35) one finds (ω1/2 − ω0)2 = (Γ
2 )2. Hence, the full width at half maximum

ΔωFWHM ≡ 2(ω1/2 − ω0) of a Lorentzian is given by 10 the “damping constant” Γ as

ΔωFWHM = Γ. (2.36)

According to (2.25) 1/Γ ≡ τ represents a characteristic time after which the energy stored
in the oscillator has been reduced by 1/e. In the case of a damped atom where the excitation
energy of the atomic oscillator decays with the same time constant τ as the irradiated power,
the linewidth can be related to the lifetime τ of the excited state as

Δω = Γ =
1
τ

. (2.37)

If the starting and terminating level both decay with the lifetimes τ2 and τ1, respectively, the
bandwidth of the line is given as

Δω = Γ =
1
τ1

+
1
τ2

. (2.38)

Optical transitions in atoms often start from excited states having lifetimes of a few nanosec-
onds. As an example, consider the calcium atom in the excited 1P1 state that decays to the
ground state with a time constant τ ≈ 4.6 ns emitting blue radiation with a wavelength λ ≈
423 nm (frequency ν = c/λ ≈ 7× 1014 Hz). Relating the decay time to the oscillation period
of this transition one notices that the amplitude of the emitted wave train decays to 1/e ≈ 0.37
only after about three million oscillations. The change of the amplitude during one oscillation
is therefore very small and would be hardly visible in a plot like Fig. 2.4.

10 Here, and in the remainder of this book we use Γ to denote a full width at half maximum in the angular frequency
(ω) domain and use γ for the full width at half maximum in the frequency ν domain.
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To characterise the damped oscillation, a quality factor (Q factor) is used which is defined
via the average stored energy W divided by the average dissipated energy as

Q ≡ ω0W

−dW/dt
. (2.39)

Using (2.26) one derives W ∝ U(t)2 = U2
0 /2 exp (−Γt) and dW/dt ∝ −ΓU2

0 /2 exp (−Γt)
and, hence, using (2.36)

Q =
ω0

Γ
=

ω0

Δω
. (2.40)

Thus the Q factor can be derived from the fractional linewidth Δω/ω0 of a measured line and
the definitions (2.39) and (1.1) are equivalent.

As a typical example of optical transitions, the aforementioned spectral line of the Calcium
atom has a line quality factor Q ≈ 2 × 107. The same atom, however, can be excited to a
long-lived state designated by 3P1 from which, after a lifetime of τ = 0.4 ms, the atom decays
to the ground state thereby emitting red radiation (λ = 657 nm). The quality factor of the
corresponding damped oscillation is Q > 1.1 × 1012.

The relation Δω τ = 1 (2.37) between the decay time of an oscillation and the width
of the corresponding frequency band has been derived here by the Fourier transformation.
Multiplication with Planck’s constant � = h/(2π) leads to �Δω τ = ΔE τ = � which
shows an intimate connection of (2.37) to the Heisenberg uncertainty principle of quantum
mechanics

ΔE Δt ≥ �

2
. (2.41)

The time-domain and the complementary frequency-domain description of the oscillation
are linked by the fact that the integrated power spectra in both domains have to be equal as
will be shown in the following. The total energy contained in the damped oscillation is (cf.
footnote 1 of Chapter 2) proportional to

∞∫
−∞

|U(t)|2dt =

∞∫
−∞

U(t)U∗(t)dt =

∞∫
−∞

U(t)

⎡⎣ 1
2π

∞∫
−∞

A∗(ω)e−iωtdω

⎤⎦ dt. (2.42)

Interchanging the sequence of integration one obtains
∞∫

−∞
|U(t)|2dt =

1
2π

∞∫
−∞

A∗(ω)

⎡⎣ ∞∫
−∞

U(t)e−iωtdt

⎤⎦ dω

and
∞∫

−∞
|U(t)|2dt =

1
2π

∞∫
−∞

|A(ω)|2dω (Parseval’s formula) (2.43)

where we have used (2.19) and (2.20). As |A(ω)|2dω is the power within the angular fre-
quency interval between ω and ω + dω, it is found that |A(ω|2 represents a so-called power
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spectral density in the angular frequency domain. Hence, Parseval’s formula states that the
total power integrated over the time domain equals the total power integrated in the Fourier-
frequency domain.

To summarise the results of this section, one finds that any amplitude modulation of a
harmonic oscillation leads to additional frequency components besides the carrier frequency.
Hence, a small linewidth of an oscillator can be achieved only if the amplitude of the os-
cillator has a high temporal stability. In the case of a damped oscillation decaying with a
time constant τ a band of frequencies occurs whose width is reciprocal to the decay time τ .
Similarly, any oscillation that is limited to a finite period or interrogated during a finite ob-
servation time τ corresponds to a frequency band whose width is indirectly proportional to τ
(see Section 5.4.1).

2.1.3 Phase Modulation

In this section the modulation of the phase of a harmonic oscillation and its effect on the
frequency spectrum is investigated. To simplify the mathematics and to identify the related
effects as purely as possible, the amplitude is kept constant and for simplicity a harmonic
modulation of the phase is chosen as follows

UPM(t) = U0 cos ϕ = U0 cos(ω0t + δ cos ωmt). (2.44)

The modulation index δ (index of phase modulation) corresponds to the maximum difference
between the phase of the modulated oscillator and that of an unmodulated one. The instanta-
neous angular frequency ω(t) of (2.44) can be derived by using (2.11) as

ω(t) = ω0 − ωm δ sin ωmt ≡ ω0 − Δω sin ωmt (2.45)

where

Δω = ωm δ. (2.46)

represents the maximal deviation of the instantaneous angular frequency from the unperturbed
angular frequency ω0.

According to (2.46) phase modulation and frequency modulation are closely related and
the terms are used in parallel. Radio engineers refer to phase modulation if the modulation in-
dex δ is kept constant independent of the modulation frequency ωm. In this case the frequency
deviation Δω = ωmδ increases linearly with the modulation frequency. If in the modulation
process the frequency deviation Δω is fixed and does not depend on the modulation frequency
ωm, one refers to frequency modulation. The modulation index δ = Δω/ωm is reciprocal to
the modulation frequency ωm.

Figure 2.7 shows an oscillation where the phase is harmonically modulated with ωm =
0.1 ω0 using a modulation index of δ = 7.5. From (2.46) one finds that this modulation in-
dex corresponds to a frequency deviation Δω = 0.75 ω0 and that the instantaneous frequency
swings between 0.25 ω0 and 1.75 ω0. Obviously, the phase modulated oscillation cannot be
represented by a single frequency. To investigate the frequency spectrum of the phase modu-
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Figure 2.7: Time dependence of the amplitude of a phase-modulated oscillation according to
(2.44) with ωm = 0.1ω0 and modulation index δ = 7.5.

lated oscillation we write (2.44) as

UPM(t) = U0 cos(ω0t + δ cos ωmt)
= U0�e {exp(iω0t) exp(iδ cosωmt)}. (2.47)

We expand the second complex exponential function into a power series and transform the
higher powers of cos ωmt into cosine terms of higher harmonics n ωmt by the appropriate
trigonometric formulas obtaining

exp[iδ cos(ωmt)]
= 1 + iδ cos(ωmt)

+ i2
1
2 !

δ2 1
2
[1 + cos(2 ωmt)]

+ i3
1
3 !

δ3 1
4
[3 cos(ωmt) + cos(3 ωmt)]

+ i4
1
4 !

δ4 1
8
[3 + 4 cos(2 ωmt) + cos(4 ωmt)]

+ i5
1
5 !

δ5 1
16

[10 cos(ωmt) + 5 cos(3 ωmt) + cos(5ωmt)]

+ i6
1
6 !

δ6 1
32

[10 + 15 cos(2 ωmt) + 6 cos(4 ωmt) + cos(6 ωmt)]

+ i7
1
7 !

δ7 1
64

[35 cos(ωmt) + 21 cos(3 ωmt) + 7 cos(5 ωmt) + cos(7 ωmt)]

+ · · · .

After rearranging the terms one finds

exp[iδ cos(ωmt)] = J0(δ) + 2 i J1(δ) cos(ωmt) + 2 i2J2(δ) cos(2 ωmt) (2.48)

+ · · · + 2 inJn(δ) cos(n ωmt) · · ·
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where the Bessel functions of the first kind Jn are given as follows

J0(δ) = 1 −
(

δ

2

)2

+
1
4

(
δ

2

)4

− 1
36

(
δ

2

)6

+ · · · (2.49)

J1(δ) =
(

δ

2

)
− 1

2

(
δ

2

)3

+
1
12

(
δ

2

)5

− · · ·

J2(δ) =
1
2

(
δ

2

)2

− 1
6

(
δ

2

)4

+
1
48

(
δ

2

)6

− · · ·

J3(δ) =
1
6

(
δ

2

)3

+
1
24

(
δ

2

)5

+
1

240

(
δ

2

)7

− · · ·
...

The Bessel functions J0 to J10 are shown in Fig. 2.8.

Figure 2.8: Bessel functions (of the first kind) Jn(δ) of order 0 ≤ m ≤ 10 as a function of δ. The
dashed line indicates the modulation index δ = 7.5 used in Fig. 2.7.

Hence, (2.47) can now be written as

UPM(t) = U0

∞∑
n=−∞

�e {(i)nJn(δ) exp [i(ω0 + nωm)t]}. (2.50)

The Bessel functions of negative order can be computed from

J−n = (−1)n Jn. (2.51)
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By writing (2.50) explicitly as follows

UPM(t) = U0�e {J0(δ) exp(iω0t) (2.52)

+ iJ1(δ) [exp i(ω0t + ωmt) + exp i(ω0t − ωmt)]
− J2(δ) [exp i(ω0t + 2ωmt) + exp i(ω0t − 2ωmt)]
− iJ3(δ) [exp i(ω0t + 3ωmt) + exp i(ω0t − 3ωmt)]
+ J4(δ) [exp i(ω0t + 4ωmt) + exp i(ω0t − 4ωmt)]
+ i · · · }

= U0 {J0(δ) cosω0t

− J1(δ) sin(ω0t + ωmt) − J1(δ) sin(ω0t − ωmt)
− J2(δ) cos(ω0t + 2ωmt) − J2(δ) cos(ω0t − 2ωmt)
+ J3(δ) sin(ω0t + 3ωmt) + J3(δ) sin(ω0t − 3ωmt)
+ J4(δ) cos(ω0t + 4ωmt) + J4(δ) cos(ω0t − 4ωmt)
− · · · }

one finds in the frequency spectrum of the harmonic phase-modulated oscillation the carrier at
angular frequency ω and an infinite number of components at the side-band angular frequen-
cies ω±n ωm spaced at multiples of the angular modulation frequency ωm. This is in contrast
to the harmonically amplitude-modulated oscillation where there is only one first-order fre-
quency component ω ± ωm on either side of the carrier. From Fig. 2.8 we see that Bessel
functions of higher orders become important only when the modulation index becomes larger
than unity. To illustrate this in more detail we investigate the phase modulated oscillation
shown in Fig. 2.7. Since the modulation index of this example was δ = 7.5 one has to compute
Jn(7.5) according to (2.49) or one has to look them up in Fig. 2.8 at the dashed line repre-
senting δ = 7.5. From the amplitudes Jn(7.5) displayed in Fig. 2.9 a) one finds that about
10 components on either side of the carrier are necessary to represent the phase modulated
oscillation with modulation index δ = 7.5. The amplitudes of the higher-order components
become rapidly less important. As a rule of thumb, the number of side bands contributing
significantly to the spectrum is given by the modulation index. This is readily seen because
the highest instantaneous frequency according to (2.46) is ωmax = ω0 +Δω = ω0 +ωmδ. To
synthesise the most rapid oscillations in Fig. 2.7 accurately we mainly need frequencies up to
this maximum frequency.

The square of the amplitude components of Fig. 2.9 a) is a measure of the power con-
tained in the different frequency components representing the phase modulated oscillation.
The power spectrum is symmetrical with respect to the carrier frequency. In the example cho-
sen only about 7 % of the total power of the oscillation remains in the carrier. Even though it is
not obvious from (2.50) the total power contained in the carrier and all of the side bands has to
equal that of the unmodulated oscillation as can be concluded from Parseval’s formula (2.43).
Hence, the phase modulation leaves the total power unchanged, but distributes it onto the side
bands in dependence on the modulation index. This is in contrast to the amplitude modulation
(see (2.18)) where the total power increases with increasing (amplitude) modulation index M .

Oscillators utilised in frequency standards in general are supposed to exhibit only little
phase modulation so that the modulation index is small (δ < 1). In this case it is sufficient
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Figure 2.9: a) Bessel functions Jn(δ = 7.5) contributing to the spectrum of a phase modulated oscillation
according to Fig. 2.7. b) Amplitudes of Fig. 2.9 a) are squared and represent the power contained in the
side bands of the harmonically phase modulated oscillation of Fig. 2.7.

to take into account only the carrier and the first-order side bands determined by J0 and J1,
respectively, because the Bessel functions of higher orders become very small (see Fig. 2.8
and (2.52)). Similar to the case of an amplitude modulated oscillation, there is a carrier at ω0

and the two side bands at ω0 +ωm and at ω0 −ωm. There is, however, a significant difference
stemming from the phase differences between the cosine function of the carrier and the sine
functions of the first-order side bands in (2.52). To see this more clearly we investigate a
phase modulated oscillation in the phasor plot using a modulation index δ = 1 (Fig. 2.10). In
this case J0 = 0.765, J1 = 0.44 and J2 = 0.115 and it may be justified to keep only the
carrier and the two first-order side bands. As usual, the phases ω0t are chosen as multiples
of 2π such that the carrier phasor is on the real axis. At the starting time t = 0, i.e. ω0t
= 0 the phasors representing both side bands are rotated by 90◦ with respect to the carrier
phasor due to the phase shift of 90◦ between the cosine and sine function (or the phase factor
i = exp(iπ/2)) in (2.52). The phase modulated oscillation at ω0t = 0 is represented by the
phasor resulting from the addition of the phasor of the carrier and the two side-band phasors
both being perpendicular to the carrier phasor. The resultant phasor points at an angle of
arctan α = (2 × 0.4)/1 ≈ 38.7◦. When the carrier phase has gained 2π (second picture) the
phasor representing the low-frequency side band fell back by 45◦ and the phasor representing
the high-frequency one advanced by 45◦. In this case and in all cases depicted in Fig. 2.10 both
side-band phasors are symmetrical with respect to the imaginary axis and the resultant phasor
of both first-order side bands is always perpendicular to the carrier phasor. From Fig. 2.10 one
sees that in the case of a phase modulated oscillation the resultant phasor “swings” around the
phasor representing the carrier. With respect to the fixed phasor of the carrier the resultant is
sometimes ahead of and sometimes falls back behind the carrier.

At first glance it is surprising that the length of the resultant phasor is not constant in
Fig. 2.10 which is equivalent to an additional amplitude modulation even though we have as-
sumed a “pure” phase modulation with the amplitude being constant. The apparent amplitude
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Figure 2.10: Phasor representation of a phase modulated oscillation according to (2.52) of modulation
index δ = 1 and a modulation frequency ωm = ω0/8 by the phasors of the carrier pointing to the right
on the abscissa and the two rotating side-band phasors (see text).

modulation results because we took into account only the phasors of the first-order side bands.
For an exact treatment one needs to include the phasors of all higher-order side bands with
frequencies ω0 + nωm und ω − nωm.

Real oscillators are in general not modulated in the simple ways described so far. It has
to be expected that real oscillators show at least to some degree modulations of phase and
amplitude at the same time. The modulations in general cannot be represented by a single
modulation frequency or by a harmonic time function. If one were to know the explicit time-
dependent modulation function one could decompose it according to Fourier by a finite or
infinite number of harmonic functions. In such a case the spectrum of the side bands could
be very dense. In general, the modulation of a real oscillator cannot even be described by an
analytical time function because the temporal evolution of the phase and the amplitude of the
oscillator fluctuates in a non-deterministic way. The methods describing the fluctuations of
the amplitude and frequency of such oscillators will be presented in Section 3.
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2.2 Oscillator with Feedback

From the results of the previous section it follows that any amplitude and phase modulation
has to be kept at a minimum in an oscillator to be used for a frequency standard. The keep
the amplitude of an oscillator constant the power extracted from or dissipated by the oscillator
has to be compensated for. The compensation can be achieved by splitting off a fraction of
the emitted power which is amplified and fed back to the oscillator with the proper phase
(Fig. 2.11 a). The feedback works as well if the arrangement of the power splitter and the
amplifier is interchanged (Fig. 2.11 b).

Figure 2.11: a) To compensate for the power extracted from the oscillator, part of this extracted power
is split off in a power splitting device, amplified and fed back to the oscillator. b) The sequence of power
splitter and amplifier in Fig. 2.11 a) can be interchanged.

To sustain continuous oscillation with constant amplitude certain conditions have to be
fulfilled that can be derived from a balance when the system described by Fig. 2.11 a) is in
equilibrium. Consider the oscillating signal Uout(t) = U0 exp(iωt) at the output terminals of
the oscillator which can represent, e.g., a voltage, a microwave power or the field strength of a
light wave. A fraction k of this signal amplitude is split off in the power splitter and fed back
via the amplifier with amplitude gain factor A to the oscillator. In the steady state the power
(∝ U2

out) extracted from the oscillator has to be supplied to the input of the oscillator (∝ U2
in)

leading to the identity for the amplitudes 11

Uout = U0 exp(iωt) = Uin = kAU0 exp i[ωt − α(ω) − β(ω)]. (2.53)

In (2.53) α and β take into account the frequency-dependent phase shift resulting from the
finite velocity of the signal with the corresponding transit time of the signal in the feedback
path and the phase shift in the amplifier, respectively. From the oscillation condition (2.53)
separate conditions for the amplitude and the phase can be derived as

kA = 1 (amplitude condition) (2.54)

and α + β = 0, 2π, · · · (phase condition). (2.55)

The phase condition α + β = 0, 2π, · · · requires that the signal fed back to the oscillator
is in phase with the oscillator. According to the amplitude condition harmonic oscillations
occur only when the gain compensates all losses. For a smaller gain the amplitude of the
oscillation decays exponentially, for a higher gain it increases exponentially with time. Since

11 Here we have assumed for simplicity that the impedances for the input and the output are equal.
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the output of the amplifier is limited, the amplitude of the output signal will saturate at a
level determined by, e.g., the voltage supplied by the power supply. The non-linearity of the
amplifier, however, will distort the signal of the oscillator and will no longer deliver a purely
harmonic signal. Hence, besides the fundamental frequency the output signal will also include
higher-harmonic frequency components. To avoid this harmonic distortion a control system
for the amplifier has to ensure that the amplitude condition (2.54) holds.

In the feedback system of Fig. 2.11 a) part of the power of the oscillator is fed back to the
oscillator via the amplifier and the oscillator is now no longer freely oscillating but acts as a
driven oscillator. As the sequence of the power splitter and the amplifier can be interchanged
(see Fig. 2.11 b) an alternative interpretation for this feedback loop assumes that part of the
power delivered by the amplifier is coupled back to the input of the amplifier via the oscillator.
In this case the oscillator acts as a resonant filter whose properties will be investigated in the
following.

To calculate the frequency dependence of the driven oscillator (resonant filter) we mod-
ify the dynamic equation of the damped harmonic oscillator (2.27) by adding an addi-
tional periodic force F (t) that acts on the oscillator. To simplify the calculation one uses
F (t) = u0/m exp(iωt) in complex representation and obtains

d2U(t)
dt2

+ Γ
dU(t)

dt
+ ω2

0U(t) =
u0

m
eiωt. (2.56)

(2.56) can be solved using the ansatz U(t) = Ũ0 exp(iωt) 12 yielding

Ũ0 =
u0

m(ω2
0 − ω2 + iΓω)

(2.57)

=
u0(ω2

0 − ω2)
m(ω2

0 − ω2) + mΓ2ω2)
− i

u0Γω

m(ω2
0 − ω2)2 + mΓ2ω2

.

Ũ0 is the frequency-dependent complex response of the driven oscillator (resonant filter). Of-
ten, a complex transfer function is defined as the ratio of the response and the driving force

χ(ω) ≡ Ũ0

u0/m
. (2.58)

The response of the resonant filter can be represented in the complex plane either (as in (2.58)
as Cartesian coordinates) by its real and imaginary part �e Ũ0 and 	m Ũ0 or (in polar coordi-
nates) by amplitude and phase angle

Ũ0 = a(ω)eiϕ with

a(ω) = |Ũ0| =
√

Ũ0Ũ∗
0 =

√
�e Ũ2

0 + 	m Ũ2
0 (2.59)

=

√
u2

0 [(ω2
0 − ω2)2 + Γ2ω2]

m2 [(ω2
0 − ω2) + Γ2ω2]2

=
u0

m
√

(ω2
0 − ω2)2 + Γ2ω2

and tanϕ =
	m Ũ0

�e Ũ0

=
Γω

ω2 − ω2
0

. (2.60)

12 This particular solution is not necessarily the general solution.
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The amplitude gain of the resonant filter, given by the modulus of the complex transfer func-
tion (2.59), is almost constant for low frequencies ω 
 ω0 (see Fig. 2.12a) and increases
when it approaches ω0 provided that Γ < ω0. After passing its maximum value at ω0 it falls
off roughly proportional to 1/ω and for high values of ω � ω0 it drops proportional to 1/ω2.
In the vicinity of the resonance frequency the phase of the resonant filter changes from 0◦ to

Figure 2.12: Bode plot of a resonant filter for Γ = ω0, Γ = 0.1ω0, and Γ = 0.01ω0. a) Amplitude. b)
Phase.

−180◦ as can be seen from Fig. 2.12 b).

The representation of a particular element in a feedback loop by a complex transfer func-
tion whose modulus describes the frequency response of the gain of the signal amplitude and
whose phase represents the phase shift the signal suffers in the element is a common proce-
dure. If more than one element is in the loop the total phase shift in the loop is calculated by
adding the individual phase shifts whereas the resultant amplitude is given by the product of
the individual components. Hence, the modulus α(ω) and phase ϕ(ω) of the complex transfer
function of an electronic element are often represented like in Fig. 2.12 in a so-called Bode
plot where the (amplitude) gain is displayed logarithmically and the phase shift is displayed
linearly. The Bode plots of the particular components are then added to yield the Bode plot
of the combined system. As it is often useful to know the frequency response of the transfer
functions in a frequency range of several orders of magnitude, a logarithmic scale is used for
the frequency axis of the Bode plot.

The rapid phase change in the vicinity of the resonance frequency can be used to keep the
frequency of an interrogating oscillator close to the resonance frequency. Thus it is interesting
to investigate the phase variation, displayed in Fig. 2.12 b) close to resonance, in more detail.
From (2.60) one finds

ϕ = arctan
Γω

ω2 − ω2
0

≈ −π

2
− ω2 − ω2

0

Γω
(2.61)

where we have made use of arctan x = ±π/2 − 1/x + 1/(3x2) − · · · . At ω = ω0 one finds
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the slope

dϕ

dω

∣∣∣∣
ω=ω0

= − ω2 + ω2
0

Γω2

∣∣∣∣
ω=ω0

= − 2
Γ

= −2Q

ω0
(2.62)

where (2.40) has been used.

2.3 Frequency Stabilisation

The steep variation of the response of a macroscopic or microscopic frequency reference in the
vicinity of its resonance can be used to stabilise the frequency of an oscillator either making
use of the amplitude or phase response of Fig. 2.12.

2.3.1 Model of a Servo Loop

Consider a servo system of a frequency standard depicted in Fig. 1.3. If the feedback loop 13

is open there is no fixed relationship between the frequency νi of the free-running oscillator
and the reference frequency ν0. The stabilisation scheme comprises a component called the
discriminator which produces an error signal S that is a measure of the frequency deviation
δν ≡ νs − ν0 between the actual frequency of the oscillator νs and the reference frequency
ν0. Note that one has to distinguish the frequency νi of the free-running oscillator from
the frequency of the oscillator νs even if the feedback loop is closed. There is a variety
of techniques to produce an error signal, some of them will be discussed later. Here, for
simplicity we assume that the error signal S is proportional to the frequency deviation

S ≈ C (νs − ν0) = C δν (2.63)

for frequency deviations δν not being too large. The error signal in general is processed
further by suitable filtering and amplification in a servo amplifier which then produces the
servo signal. The servo signal UR acts on a servo element capable of changing the frequency
of the oscillator in order to minimise its frequency deviation δν. Describing the servo amplifier
by a frequency-dependent gain g(f) one writes 14

UR = g(f) C δν. (2.64)

Assuming that the servo element changes the frequency of the oscillator proportional to
the servo signal UR with a frequency-dependent response D(f) the combined frequency-
dependent transfer function of the servo loop is D(f) g(f) C. With the servo loop closed
the frequency change of the oscillator initiated by the servo element has to counteract the
frequency deviation δν by so-called negative feedback and, hence,

νs = νi − D g(f) C δν. (2.65)

13 This is a different feedback loop from the one considered in Section 2.2 where it was assumed that the oscillator
becomes oscillating as a result of the feedback. Here, we assume that the oscillator is already oscillating and the
feedback is used for frequency stabilisation.

14 Here, we have to distinguish between the frequency of the oscillator ν in the so-called carrier frequency domain
and the Fourier frequency f used to describe the (Fourier) spectrum of the frequency deviations δν(f).
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Subtracting ν0 on both sides of (2.65)

νs − ν0 = νi − ν0 − D g(f) C δν (2.66)

one finds that the left-hand side of (2.66) represents the deviation δν of the frequency νs of
the frequency-stabilised oscillator from the reference frequency ν0. Denoting the deviation of
the frequency of the free-running oscillator from the reference frequency as νi − ν0 ≡ Δν,
(2.66) can be written as

Δν = δν + D g(f) C δν = δν[1 + D g(f) C] (2.67)

from which one arrives at

δν =
Δν

1 + C D g(f)
. (2.68)

In this simple model of a servo loop with proportional gain and negative feedback the fre-
quency deviation Δν of the free-running oscillator is reduced by the factor 1 + C D g(f).
The somewhat surprising result is that there is a non-zero residual frequency deviation δν. To
keep the frequency of the stabilised oscillator as close as possible to the reference frequency
the overall gain C D g(f) of the loop has to be as high as possible. In general the gain of the
amplifier as well as the sensitivity of the servo element is frequency dependent. For optimum
performance of the servo loop one needs to know the complex frequency response of each
component including the amplitude gain as well as the phase. Dead times or transit times
in servo elements, cables or in the amplifiers will lead to a frequency-dependent phase shift
in the loop. Phase shifts are of utmost importance as they add up and a total phase shift of
180◦ produces positive rather than negative feedback, thereby increasing any frequency de-
viations. For characterising or designing an optimised servo loop it is therefore necessary to
have profound knowledge of the frequency-dependent transfer functions of all components.
Examples of the transfer functions of some often-used electronic components will be given in
Section 2.4.

2.3.2 Generation of an Error Signal

There is a variety of different methods to generate an error signal. The error signal does
not have to be a linear function of the frequency offset from the reference frequency as has
been assumed in (2.63) but it should be monotonous with a zero crossing at resonance. This
sign change at the resonance frequency allows the servo system to discriminate between the
cases where the frequency of the oscillator is larger or lower than the reference frequency
and to counteract the frequency deviations accordingly. Measuring the phase change near the
resonance of a filter like that of Fig. 2.12 b) and subtracting a constant phase of −π/2 im-
mediately leads to an error signal with the desired property. The transmission profile shown
in Fig. 2.12 a), however, that is observed by monitoring the power in the loop when the fre-
quency of the oscillator is scanned across the resonance, has an almost symmetric bell-shaped
line profile. In the following we give two examples of how to generate an anti-symmetric dis-
persive signal from such a symmetric resonance feature. More examples will be given when
describing particular frequency standards, e.g., in Section 9.
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2.3.2.1 Side-lock Stabilisation

A particular simple method to stabilise the frequency of an oscillator is possible if the ref-
erence frequency is chosen at a suitable point at one side of the resonance line where the
transmitted signal is at a level between maximum and minimum transmission (see Fig. 2.13).

Figure 2.13: a) Schematics of a side lock. b) Error signal obtained from the difference of the sig-
nals from a detector measuring the power transmitted by the frequency reference and from a reference
detector.

In this side-lock scheme, part of the power of the oscillator whose frequency is to be
stabilised to a frequency reference, is divided roughly equally by a power splitter to different
paths. In one path the signal interacts with the reference. To discuss the side-lock technique we
need not specify the particular kind of oscillator and reference. Regardless whether we think
of a combination of a laser and a Fabry–Pérot interferometer or of a microwave oscillator in
connection with an absorption cell, the transmitted power is detected by a suitable photodiode
or microwave detector and leads to a signal with the frequency dependence of the particular
reference. The second path provides the reference signal which is obtained from a second
detector exposed to a fraction of the power from the oscillator split off by the power splitter and
which can be adjusted by a suitable attenuator. Subtracting both signals, e.g., in a differential
amplifier, leads to a signal similar to the one shown in Fig. 2.13 b) which has two suitable
lock points A and B for each resonance of the frequency reference. Near the lock points
A and B the difference signal has the desired property of a monotonous curve that changes
sign at the lock point. The side lock is simple to implement and it allows one to tune the
frequency within a limited range by tuning the offset. The difference signal has the advantage
of being largely independent of amplitude fluctuations of the power from the oscillator. The
simplicity of the side lock has to be paid for by some disadvantages. Firstly, the chosen lock
point does not coincide with the centre of the resonance, but is defined by the offset given by
the setting of the attenuator. Secondly, as a consequence, the lock point is not very stable.
Power fluctuations will only be compensated to the extent they lead to the same variations
of the respective detector signals. A variation of the coupling to the frequency reference will
also lead to a variation of the transmitted power and to a frequency shift. Such a variation is
not unlikely, e.g., in the case of a Fabry–Pérot interferometer where the mode matching can
be easily degraded by a limited beam pointing stability of the incoming laser beam. Thirdly,
the capture range of the servo stabilisation is in general very asymmetric as can be seen from
Fig. 2.13 b). Consider zero crossing A chosen as the lock point for a given polarity of the error
signal. Any perturbation that reduces the frequency of the oscillator leads to a positive error



2.3 Frequency Stabilisation 37

signal and is counteracted by the servo unit. The influence of a perturbation that increases
the frequency of the oscillator will be reduced by the servo unit as long as the error signal is
negative, i.e. if the frequency of the oscillator is within the range between ν(A) and ν(B). If,
however, the perturbation leads to an increased frequency higher than ν(B) the error signal will
again be positive and consequently the frequency of the oscillator will be repelled from the
resonance and may jump to a corresponding lock point A′ of the next higher lying resonance.
These disadvantages can be overcome by locking schemes employing modulation techniques.

2.3.2.2 Generation of an Error Signal Using Modulation Techniques

The stabilisation of the frequency νs of an oscillator to the centre frequency ν0 of a reso-
nance can also be achieved by modulating the frequency difference νs − ν0. In general, either
the frequency of the oscillator or the centre frequency of the reference can be modulated. The
latter method is often used with macroscopic frequency references but is also available for fre-
quency standards based on microscopic quantum absorbers if their clock transitions depend on
external parameters that can be used for modulation, e.g., an absorption line with pronounced
Zeeman effect. For non-tuneable resonance lines the frequency of the interrogating oscilla-
tor has to be modulated either by directly modulating the frequency of the oscillator itself or
by use of an external modulator. In microwave and optical frequency standards two kinds
of modulation are common, i.e. square wave modulation and harmonic modulation. Using
square-wave modulation the frequency νs of the oscillator is periodically switched between
by νs + δν and νs − δν for a time interval τ/2 (Fig. 2.14 a).

Consider the case where the power transmitted through the absorber and measured by a
detector is integrated for the durations of both half-periods τ/2. The difference of the two
integrated signals ΔI(νs) ≡ I(νs + δν)− I(νs− δν) as a function of the frequency deviation
νs − ν0 of the oscillator from the centre frequency leads to an anti-symmetric discriminant
curve (see Fig. 2.14 b).

Figure 2.14: a) Power behind a bell shaped resonance line centred at ν0. b) The difference
signal ΔI(νs) = I(νs + δν) − I(νs − δν) of Fig. 2.14 a) leads to a discriminant curve with a
zero crossing at νs = ν0.
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Hence, the difference signal can be utilised as an unambiguous error signal for a servo
unit. There is a positive error signal if the frequency of the oscillator is lower than the centre
frequency of the reference and vice versa. The integrated difference signal can be obtained
by using a so-called lock-in amplifier. This device integrates a signal synchronously to the
frequency of a modulation signal thereby changing the polarity of the input signal after half the
modulation period. This phase-sensitive detection technique is capable of detecting very weak
periodic signals buried in a very strong background since the dc and all frequency components
except the one at the modulation frequency are integrated to zero.

Square-wave modulation of the signal is often not appropriate for several reasons. Square-
wave modulation introduces very high harmonics that can mix high-frequency noise compo-
nents to the base band by so-called aliasing (Section 3.5.3). Furthermore, the rapid switching
may introduce ringing effects in a narrow filter which may depend on the actual frequency
spectrum of the modulation. Hence, often a harmonic modulation is used where the amplitude
modulated signal is detected as a function of a frequency modulation either of the interrogating
oscillator or the resonance of the reference (see Fig. 2.15).

Figure 2.15: Harmonic modulation of the oscillator frequency (dots) tuned to different frequencies of
the resonance line results in different modulations of the signal amplitude (solid lines). a) Modulating
the frequency near the high-frequency halfwidth (ν′) leads to a reduction of the signal for positive fre-
quency excursions. In contrast, on the low-frequency slope (ν′′) positive frequency excursions lead to an
increased signal. b) Modulation of the frequency near the centre frequency (ν0) leads to a modulation of
the signal with twice the modulation frequency. c) Phase-sensitive detection of the amplitude modulated
signal results in an anti-symmetric discriminant curve.

The phase-sensitively signal, detected, e.g., by means of a synchronous detector or lock-in
amplifier, shows an anti-symmetric discriminant curve (see Fig. 2.15 c) as a function of the
difference in the frequency of the oscillator and the centre frequency of the resonance. As can
be seen from Fig. 2.15 a) the sign change of the error signal results from the phase shift by π
of the modulated signals for frequencies above or below resonance.

2.4 Electronic Servo Systems

In the servo control unit of Fig. 1.3 the error signal generated by the discriminator is converted
into a servo signal which is fed back to the oscillator when the servo loop is closed. In this
section the function and frequency response of some widely used electronic elements in the
servo control units are discussed.
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2.4.1 Components

To determine the frequency response of the servo system the particular electronic components,
e.g., electronic amplifiers or filters and also other mechanical and thermal components can be
described by electronic equivalent circuits.

2.4.1.1 Low-pass Filter

As a first example, consider an electronic low pass (Fig. 2.16). As the low-pass behaviour
is also found in mechanical components, amplifiers with a high-frequency cut-off, piezoelec-
tric actuators or others, the electronic low pass often serves as an equivalent circuit for such
devices.

Figure 2.16: Low-pass filter. Figure 2.17: Bode plot of a low-pass filter.

To determine the frequency-dependent complex amplitude gain

A(ω) ≡ Uout

Uin
(2.69)

one finds from Fig. 2.16 that the applied voltage Uin leads to a current I determined by the
purely ohmic resistance R and the frequency-dependent complex impedance RC = 1/(i ωC)
of the capacitor. This current I at the same time leads to a voltage drop at the capacitor which
represents the output voltage Uout. Hence, it follows that

I =
Uin

R + 1
iωC

and I =
Uout

1
iωC

. (2.70)

Equating both results leads to the complex amplitude response (see (2.69))

A(ω) =
1

1 + iωRC
=

1
1 + ω2 R2 C2

− i
ωRC

1 + ω2 R2 C2
. (2.71)

The behaviour of A(ω) is characterised by the dimensionless quantity ωRC where RC is a
reciprocal characteristic angular “corner” frequency ωc with

ωc = 2πνc ≡ 1
R C

. (2.72)
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The frequency dependence of the modulus |A| and the phase ϕ are calculated as

|A| =

√
12 + ω2 R2 C2

(1 + ω2 R2 C2)2
=

1√
1 + ω2R2C2

and (2.73)

tan ϕ =
	m {A(ω)}
�e {A(ω)} = −ωRC or

ϕ = − arctan ωRC.

The modulus of the amplitude response is nearly constant for frequencies below the corner
frequency (ν 
 νc or ωRC 
 1) and rolls off with 1/ν for frequencies ωRC � 1 well
above the corner frequency (Fig. 2.17).

Similarly as in the Bode plot of the resonant filter, the response of an electronic element
in the servo loop is often characterised by a logarithmic quantity rather than by the ratio of the
amplitudes (2.69). The unit of the decadic logarithm of the power ratio Pout/Pin is 1 B (Bel)
= 10 dB (deciBel). Hence, the power ratio in dB is

10 log
Pout

Pin
= 10 log

U2
out

U2
in

= 20 log
Uout

Uin
. (2.74)

If a broad-band amplifier with constant gain of say 40 dB (amplitude gain A = 100) is put in
series to the low-pass filter in the servo loop, the Bode plot of the amplitude gain in Fig. 2.17
is raised by 40 dB in the combined system. Above the characteristic frequency the gain of
the low-pass filter is reduced by −20 dB per decade or about 6 dB per octave. The frequency
where the gain is A = 1 (or 0 dB) is referred to as the unity-gain frequency. Increasing the
(frequency independent) proportional gain leads to a higher unity-gain frequency. Adding
several components each with a frequency-dependent phase shift may result in a total phase
shift exceeding 180◦ for Fourier frequencies higher than a particular frequency. Hence, the
negative feedback is converted into a positive feedback and the frequency fluctuations are
amplified by the servo loop provided the gain is not A ≤ 1.

2.4.1.2 Operational Amplifier

To increase the gain in the servo loop in general, circuits with operational amplifiers are used.
The operational amplifier symbolised in Fig. 2.18 is an integrated electronic device with spe-
cific properties.

It is often powered by a symmetric voltage ±US of 12V ≤ US ≤ 15V . The operational
amplifier has two inputs realised as ground free differential inputs. The output voltage Uout

with respect to ground can have values between +Umax and −Umax with Umax being slightly
lower than the supply voltage +US . The open-loop gain A is large

105 <∼
Uout

Uin

<∼ 106. (2.75)

Hence, assuming Umax = 10 V and A = 105 an input voltage of 100 μV is sufficient to sat-
urate the output voltage with the gain curve of Fig. 2.19. With the negative input as reference
the output voltage follows the polarity of the input voltage. Hence, this input is called the



2.4 Electronic Servo Systems 41

Figure 2.18: Symbol of an operational ampli-
fier.

Figure 2.19: Gain curve of an operational am-
plifier.

non-inverting input in contrast to the second one (inverting input) where the output voltage
changes polarity when the inverting input is referenced to the non-inverting input. As a con-
sequence of the high gain, +Uin ≈ −Uin holds as long as the output voltage is in the linear
range (Fig. 2.19).

Despite the peculiar gain curve (Fig. 2.19) of such an element where the output voltage is
saturated at the smallest input voltage, the operational amplifier is a very useful device if used
with external feedback circuitry. To describe the behaviour of an operational amplifier with
feedback, two “golden rules” of the operational amplifier can be applied [22] as follows.

I. The output voltage of the operational amplifier is always such that the
voltage difference between the two inputs is zero.

(2.76)

II. The input currents are very low (zero). (2.77)

These rules, however, only apply if the operational amplifier does not saturate.

2.4.1.3 Non-inverting Proportional Amplifier

In the circuit of Fig. 2.20 the input voltage is applied to the non-inverting input and a small
fraction of the output voltage is fed back to the inverting input via the resistor R2. As a
consequence of the negative feedback the output voltage will be such that the partial voltage
fed back compensates the voltage difference between the input terminals, i.e. golden rule I
(2.76) applies.

Since the inverting and the non-inverting inputs are at the same potential (UR2 ≈ Uin)
according to golden rule II (2.77) there is almost no input current and hence, the voltages are
divided as follows

UR2 = Uout
R1

R1 + R2
≈ Uin. (2.78)

As a consequence, the gain

A ≡ Uout

Uin
=

R1 + R2

R2
(2.79)
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Figure 2.20: Non-inverting amplifier. Figure 2.21: Inverting amplifier.

no longer depends on the open-loop gain but rather on the values of the external resistors
R1 and R2 and the circuit represents a proportional amplifier. For high frequencies, however,
depending on the particular type of operational amplifier the gain is reduced and the frequency
is that of a low-pass filter including the associated phase shift.

2.4.1.4 Inverting Amplifier

In Fig. 2.21 where the non-inverting input is taken as the reference, a positive signal at the
inverting input will lead to a negative output voltage from where a small part is fed back to
the inverting input via the resistor R2. According to golden rule II (2.77) no current flows into
the input of the operational amplifier and, consequently, the input current Iin equals the output
current Iout

Iin =
Uin

R1
=

Uout

R2
= Iout. (2.80)

The proportional gain is

A =
Uout

Uin
= −R2

R1
(2.81)

where the minus sign reflects the fact that the output voltage has the opposite polarity from
the input signal. In comparison to the non-inverting amplifier which according to golden rule
II (2.77) has an infinite input impedance, this amplifier draws a disadvantageously high input
current when at high gain R2/R1 the input resistance R1 is small.

2.4.1.5 Integrator

The inverting amplifier is converted into an integrating amplifier (Fig. 2.22) if the ohmic re-
sistor R in the feedback network is replaced by a capacitor with the capacitance C.

As a result of the frequency-dependent impedance 1/ωC of the capacitor the amplitude
gain decreases like 1/ν (Fig. 2.23). To understand the way the network acts let us assume that
a voltage Uin is applied to the inverting input. Applying golden rule I (2.76) one finds both
input terminals at the same potential. Hence, the current I = Uin/R flows via the feedback
loop and thus C is charged. As a consequence the voltage U = Q/C across the capacitor
C increases. This corresponds to a temporally increasing resistance and, hence, the output



2.4 Electronic Servo Systems 43

Figure 2.22: Operational amplifier as
integrator.

Figure 2.23: Frequency-dependent gain of an integra-
tor.

voltage Uout increases linearly with time. If at a later instant the input voltage is set to zero
(Uin = 0) and the output Uout is not saturated, the voltage between the input terminals is zero
(see (2.76)). Hence, no current flows via R leaving the charge on the capacitor unchanged and
the output voltage remains constant. If, however, the input voltage Uin is applied again the
capacitor will be charged further. Applying golden rule II (2.77) the input current Iin flows
via the feedback loop to the output Iout

Iin =
Uin

R
= −d Q

d t
= − d

d t
(C Uout) = −C

d Uout

d t
. (2.82)

Integration of (2.82) leads to

Uout =
1

RC

∫
Uin dt + const (2.83)

and it is seen from (2.83) that the output voltage is proportional to the time-integrated input
voltage.15 In reality, however, the output voltage of an integrator may increase until saturation
even if the inputs are shorted as a result of unavoidable offsets in the operational amplifier.
External terminals of the operational amplifiers can be used to adjust these offsets. To properly
take into account its temperature dependence, the adjustment of the offset has to be performed
under the actual working conditions.

2.4.1.6 P-I Amplifier

Consider the case of Fig. 2.24 where the feedback loop comprises a capacitor and an ohmic
resistor in series. For high frequencies the gain of the device is determined by the resistance
and for small frequencies by the reactance 1/(ωC) of the capacitor (Fig. 2.25). Similarly, to
(2.74) one derives

|A| =

√
1 +

1
(ω2R2C2)2

(2.84)

and

ϕ = − arctan
1

ωRC
. (2.85)

15 Without the use of an input resistor R, likewise the input current can be integrated.
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The corner frequency νc where the integrating gain (dotted line in Fig. 2.25 top) intersects
the proportional gain (dashed line in Fig. 2.25 top) of the “Proportional-Integrating” (P-I)
amplifier is determined by ωcRC = 1 (see (2.84)).

Figure 2.24: Operational amplifier
with a feedback network as a P-I am-
plifier.

Figure 2.25: Frequency-dependent amplitude gain of a
P-I amplifier.

2.4.2 Example of an Electronic Servo System

The combination of various circuits discussed so far and similar ones, allows one to tailor a
servo controller with the desired frequency response. As an example, consider a servo system
(Fig. 2.26) that has been used to stabilise the frequency of a diode laser system to a Fabry–
Pérot interferometer [23]. Two independent servo elements were used to vary the frequency
of the laser namely the current input of the laser diode (fast input) and a piezo element for
variation of the length of the laser cavity (slow output). Hence, the servo controller of Fig. 2.26
has a fast output for the current input of the laser diode and a slow output for the piezo actuator.
Since the driver providing the high voltage for the piezo actuator had a frequency response of
a low pass with a 3 dB frequency of 32 Hz the operational amplifier D is used as an integrator
for ν < 32 Hz and has a constant gain of 0 dB for higher frequencies leading to an integrating
behaviour of the combination. The corner frequency of νc ≈ 32 Hz where the integrating
characteristics changes to the proportional gain is given by 1/(2πνcC) = R of the capacitor
C = 470 nF and the resistor R = 10 kΩ. The combined frequency response of the fast output
of the servo controller together with the fast input of the laser diode was chosen to show an
overall integrating behaviour for frequencies above about 4.5 kHz. As the measured amplitude
transfer function of the laser showed an integrating (1/ν) behaviour for frequencies 40 kHz ≤
ν ≤ 350 kHz and a doubly integrating (1/ν2) behaviour for frequencies above about 350 kHz,
the frequency-dependent gain of the operational amplifier B and C was chosen as shown in
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Figure 2.26: Simplified example of a servo controller for a frequency stabilised laser system [23] with
the Bode plots for the particular operational amplifiers.

the insets B and C of Fig. 2.26. Consider operational amplifier B. For very low frequencies
the capacitor (330 pF) in the feedback loop has a very high impedance and the amplitude gain
is given by 120 kΩ/600 Ω = 200 or 46 dB. For very high frequencies the impedance of the
capacitor can be neglected and the feedback resistance of 10.9 kΩ is given by the two parallel
resistors of 120 kΩ and 12 kΩ leading to a gain of 25.2 dB. The lower corner frequency (νc =
4.5 kHz) is determined as the frequency where the combined impedance 1/(2 πνc 330 pF)
+ 12 kΩ equals 120 kΩ whereas the upper corner frequency is given for 1/(2 πνc 330 pF) =
12 kΩ.

Operational amplifier A acts as a second integrator for frequencies above 230 Hz if the
switch in the feedback loop is open.16 The frequency response in the doubly integrating
regime rolls off with 1/ν2. The amplitude gain of 55.2 dB results from the gain of the am-
plifier (10 MΩ/5 kΩ) and the subsequent reduction at the voltage divider (1.62 kΩ/5.62 kΩ).
The gain is reduced by a factor of 4 per octave, i.e. for a factor of two increase in frequency,
corresponding to a power reduction of about 12 dB per octave. This second integrator pro-

16 The R-C network at the input of operational amplifier A is used to prevent oscillation of the operational amplifier
stage.
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vides the high gain at low Fourier frequencies to allow one to suppress frequency fluctuations
(see (2.68)) in the regime where technical noise contributes the most. For a more detailed
discussion of electronic laser stabilisation schemes the reader is referred to [24].



3 Characterisation of Amplitude and Frequency
Noise

The frequency and amplitude of even the most advanced oscillators are not really constant
in time, but fluctuate. In the previous chapter we have analysed the situation where these
quantities were modulated in a strictly deterministic way. The harmonic modulation of the
amplitude of an oscillation was found to lead to discrete sideband frequencies whereas the
exponential temporal decay of the amplitude resulted in a continuous band of frequencies. In
both cases, for any instant in the past or in the future one was able to predict the exact value
of the instantaneous amplitude, frequency and the phase. For real oscillators, however, a large
variety of physical processes that are not under control can affect these quantities in a com-
plicated way. As a result, the amplitude, phase or frequency of any oscillator will fluctuate in
an irregular way that in general can no longer be represented by an analytic function of time.
These unwanted fluctuations are often referred to as noise or jitter. To describe these fluctua-
tions, statistical measures have to be applied. The characterisation of frequency standards in
terms of statistical quantities nevertheless allows one to select the most suitable standard or to
infer information about possible sources that degrade the performance of the standard.

For frequency standards one deals in general with the best available oscillators where
often the statistical “modulations” of amplitude and phase are small. Consequently, one uses
a model of the oscillator where the instantaneous output signal of the oscillator is written as
in (2.10)

U(t) = [U0 + ΔU0(t)] cos (2πν0t + φ(t)) . (3.1)

The quantity U(t) may represent, e.g., the signal from a quartz oscillator or the electric field of
an oscillator in the microwave or optical domain. In contrast to (2.10) ΔU0(t) now represents
random rather than deterministic amplitude fluctuations around U0. Similarly, the fluctuations
φ(t) of the phase result from a random process. In (3.1) it is furthermore assumed that the
fluctuations of the phase and amplitude are orthogonal meaning that no amplitude fluctuations
are transferred to phase fluctuations and vice versa. To compare frequency standards operating
at different frequencies ν0 it is helpful to define the normalised phase fluctuations

x(t) ≡ φ(t)
2πν0

(3.2)

which are sometimes referred to as the phase time. Similarly, rather than using the fluctuations
of the instantaneous frequency (see (2.11)) itself, the instantaneous fractional (or normalised)
frequency deviation

y(t) ≡ Δν(t)
ν0

=
dx(t)

dt
(3.3)

is defined where (2.12) has been utilised to derive the latter equation.
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3.1 Time-domain Description of Frequency Fluctuations

Consider the time sequence of a fluctuating quantity measured as a continuous function y(t)
(Fig. 3.1 a) or as series of discrete readings yi (Fig. 3.1 b). The latter may be obtained, e.g.,

Figure 3.1: a) Continuous time sequence y(t). b) Discrete time series yi of a fluctuating quantity. c)
Consecutive mean values of y(t) (see Fig. 3.1 a) where the values yi are taken during a duration τ . d)
Histogram Fy corresponding to the distribution of y in the bin size Δy. e) Corresponding Gaussian
probability density p(y). f) yi+1 − yi used to compute the Allan variance according to (3.13).

if the measurement of y(t) was performed by using a frequency counter. As a result the
continuous function y(t) is reduced to a discrete series of consecutive measurements averaged
over the measurement time τ

yi =
1
τ

ti+τ∫
ti

y(t)dt (3.4)

(Fig. 3.1 c), referred to as the normalised frequency deviation averaged over the duration
τ . The experimental determination of these quantities will be discussed in Section 3.5. As
repeated measurements of yi in general differ from each other (see Fig. 3.1 b), we recall in
the following the statistical means usually employed to characterise such a data set. It is well
known that the mean value and the square of the experimental standard deviation are

y =
1
N

N∑
i=1

yi (3.5)
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and

s2
y =

1
N − 1

N∑
i=1

(yi − y)2 =
1

N − 1

⎡⎣ N∑
i=1

y2
i − 1

N

(
N∑

i=1

yi

)2
⎤⎦ , (3.6)

respectively. The standard deviation of the mean is

sy =
sy√
N

. (3.7)

sy is a measure of the width of the histogram Fy (see Fig. 3.1 d) where the values of y(t) (or
yi) have been grouped into bins of width Δy as a function of y(t).

Often the fluctuations of y(t) are thought to result from a statistical process. If the pro-
cess causing the fluctuations of y(t) is stationary,1 according to the central-limit theorem of
probability theory one expects that for T → ∞, Fy evolves into a Gaussian probability density

p(y) =
1

σ
√

2π
exp

(
− (y − y)2

2σ2

)
(3.8)

(Fig. 3.1 d) with variance σ2. The statistical process is characterised by the expectation value

〈y〉 ≡
∫ ∞

−∞
yp(y)dy (3.9)

and the variance

σ2 =
∫ ∞

−∞
(y − 〈y〉)2p(y)dy. (3.10)

Using the notation of (3.9), (3.10) can be written as

σ2 = 〈(y − 〈y〉)2〉 = 〈y2 − 2y〈y〉 + 〈y〉2〉 = 〈y2〉 − 〈y〉2. (3.11)

The expectation value (3.9) and variance (3.10) of a statistical process can be only estimated
from the measured finite sequence of the fluctuating quantity in such a way that the mean
value (3.5) is an estimate for the expectation value 〈y〉 of the Gaussian process and the square
of the standard deviation (3.6) is an estimate of its variance σ2.

Besides defining mean value and standard deviation from consecutive measurements of,
e.g., the frequency of a single oscillator, analogously, the mean value and standard deviation
can be defined as a statistical average for a sample of identical oscillators. For a stationary
process such a sample average is independent of the chosen time of the measurement. For
an ergodic process,2 σ2 can be estimated either from the time average or from the sample
average.3

1 A statistical process is called stationary if the statistical measures describing the process, e.g., the mean value or
the variance, are time independent.

2 A process where the average over an infinite number of samples is identical to the infinite time average (〈y〉 = y)
is referred to as an ergodic process.
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The use of the statistical tools of mean value and standard deviation meets with difficulties
if applied to fluctuating quantities with correlations. This can be seen if one divides the times
series of Fig. 3.1 a) into equidistant intervals like in Fig. 3.1 c). A quick look reveals that
the data of Fig. 3.1 a) or b) within each subset scatter much less than the data within the
total interval. The corresponding experimental standard deviations (3.6) calculated within
each sub-interval in general are much smaller than the one calculated from the entire data
set. This indicates that the adjacent data points are not independent of each other but are
somehow correlated. Consequently, the standard deviation of the mean is not reduced by
1/
√

N (see (3.7)) for N as would be the case for uncorrelated data. Thus, the determination
of standard deviations from different subsets of the data can be used to get information about
the existence of correlations. It has to be pointed out that the statistics of a fluctuating quantity
with correlations can sometimes be well described by a Gaussian distribution and, hence, the
lack of this property cannot be used to identify correlations.

3.1.1 Allan Variance

To make a meaningful estimate of the statistical process in the presence of correlations one
has to specify the number N of measurements (samples), the measuring time τ of a single
sample and the time T between consecutive measurements which may differ from τ by the
dead time T − τ (see Fig. 3.2). After having done this one can readily define a so-called

Figure 3.2: Measurement cycle.

N -sample variance for this data set in analogy to (3.6) as 4

σ2(N, T, τ ) =
1

N − 1

N∑
i=1

⎛⎝yi −
1
N

N∑
j=1

yj

⎞⎠2

(3.12)

for a given number N of samples and given values of T and τ (see Fig. 3.2). It is now generally
agreed [25] to follow a proposition made by Dave Allan [26,27] and to select from all possible
sample variances the expectation value of the so-called two-sample variance with N = 2 and

3 Stationarity and ergodicity are mathematical properties that are often assigned to the statistical processes used to
model the fluctuations of real frequency standards. As a result of the limited time available for any measurements
and the limited number of identical frequency standards at hand these properties cannot be proven but merely
represent reasonable assumptions. Care has to be taken when the results derived on these assumptions are applied
to practical cases. During their lifetimes, e.g., frequency standards may become more “noisy” and stationarity may
not be granted over this time.

4 To be more specific, there is more than one possible definition for the N sample variance. The various definitions
differ by the pre-factor and each have their advantages for a particular type of noise [25].
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T = τ . Hence, this so-called Allan variance σ2
y(2, τ, τ) which is alternatively referred to as

short-hand notation σ2
y(2, τ ) or σ2

y(τ ), is defined using (3.12) as

σ2
y(τ ) =

〈 2∑
i=1

⎛⎝yi −
1
2

2∑
j=1

yj

⎞⎠2〉
=

1
2
〈
(y2 − y1)

2 〉
. (3.13)

The Allan variance and its square root sometimes termed the Allan (standard) deviation is
based on differences of adjacent frequency values rather than on frequency differences from
the mean value, as is the “true” standard deviation.

Alternatively, the Allan variance can be determined from the phase deviation φ(t) or the
normalised phase deviation x(t). For a given measuring interval τ it follows from (3.3) that

yi =
xi+1 − xi

τ
(3.14)

which after insertion into (3.13) gives

σ2
y(τ ) =

1
2τ2

〈
(xi+2 − 2xi+1 + xi)

2

〉
. (3.15)

3.1.1.1 Practical Determination of the Allan Variance

In the experiment the Allan variance of a particular oscillator “1” may be determined, e.g.,
from a beat note (3.87), i.e., the frequency difference with respect to a second oscillator “2”
(reference oscillator) using a counter gated with the measuring time τ . According to the def-
inition it has to be ensured that there is no dead time between two adjacent measurements.
From the squared normalised frequency differences between two adjacent pairs νi and νi+1

the mean value is computed and divided by 2 to give the Allan variance σ2
y,tot for the particu-

lar measuring time τ . To make a good approximation of the expectation value (〈〉) of (3.13) a
sufficiently large number of frequency differences has to be used. The procedure has to be re-
peated for the different times τ and may lead to Allan deviations such as the ones displayed in
Fig. 3.3. In Fig. 3.3 the Allan deviations σy(τ ) of various frequency standards and oscillators
are compared with frequencies ranging from the microwave region to the optical regime.

In practice the Allan variance is determined in slightly different ways in order to allow
for the minimum measurement time necessary to retrieve the full information required. The
counter is set to the shortest gate time τ0 where the Allan variance is to be determined and
the frequency difference yi,τ0

between the oscillators is measured repeatedly and the data are
stored making sure that no deadtime occurs during the data aquisition (see Fig. 3.4 a). To
derive the data for longer times, e.g., τ = 3τ0 the consecutive values of y1,τ = (y1,τ0

+y2,τ0
+

y3,τ0
)/3, y2,τ = (y4,τ0

+ y5,τ0
+ y6,τ0

)/3, y3,τ = · · · are determined in a post processing
(Fig. 3.4 b) to estimate the Allan variance for the time τ = 3τ0 and accordingly for all other
times τ .

To make even better use of the stored data, roughly n times more values of yi,τ=nτ0
can

be obtained if the data processing is done in the way depicted in Fig. 3.4 c) where y1,τ =
(y1,τ0

+ y2,τ0
+ y3,τ0

)/3, y2,τ = (y2,τ0
+ y3,τ0

+ y4,τ0
)/3, y3,τ = · · · are taken.
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Figure 3.3: Allan deviation σy(τ) as a function of the measuring time τ for various highly
stable oscillators used as frequency standards and discussed in this book: commercial caesium
atomic clock (big squares: [28], small squares: [29]), hydrogen maser (typical, dashed line; see
also Fig. 8.5), caesium fountain (dashed dotted line) [18], sapphire loaded cavity microwave-
oscillator (thick line) [30], superconducting-cavity stabilised microwave oscillator (open circles
[30], laser stabilised to a Fabry–Pérot cavity (full circles) [31], Ca stabilised laser (asterisks)
[32].

Figure 3.4: Alternative methods of calculating the Allan variance.

If the reference oscillator is known to be of superior stability with respect to the oscillator
under test, the Allan variance is a measure of the instability of the latter one. If the Allan vari-
ance of two identical oscillators “1” and “2” is taken one is led to assume that both oscillators
contribute equally to the instability and the measured Allan variance σy,tot is attributed evenly
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to both oscillators as follows

σ2
y,tot(τ ) = σ2

y,1(τ ) + σ2
y,2(τ ) and

σy,1(τ ) = σy,2(τ ) =
1√
2
σy,tot(τ ). (3.16)

The Allan variance σ2
y(τ ) is a useful time-domain measure of the frequency instability of

an oscillator. It allows one to select the ideal oscillator for a particular application. As an ex-
ample, consider the Allan variance of a typical hydrogen maser and one of the best frequency
stabilised lasers shown in Fig. 3.3. The latter one has an optimum stability of σy ≤ 5× 10−16

for measurement times τ between 1 s and 100 s whereas the former one reaches its optimum
frequency stability at one to several hours. In the plot of σy(τ ) one often can identify re-
gions where the frequency instability of a particular frequency standard follows a well defined
power law. We will see in Section 3.1.1.2 that a linear drift leads to an Allan deviation pro-
portional to τ . The relationship between the τ−1 and τ−1/2 dependencies recognised, e.g., in
the plot of the hydrogen maser (Fig. 3.3) and the underlying noise processes will be discussed
in Section 3.3.

Besides stochastic fluctuations, deterministic variations of the frequency of a given os-
cillator have a profound impact on the measured Allan variance. In the following we will
investigate two important cases, a linear frequency drift and an harmonic frequency modula-
tion.

3.1.1.2 Influence of a Linear Frequency Drift

Consider an oscillator whose normalised frequency shows a linear drift y(t) = at where a is
the slope of the drift. With y1 = [at0 + a(t0 + τ )]/2 and y2 = [a(t0 + τ ) + a(t0 + 2τ )]/2
one calculates from (3.13)

σy(τ ) = 〈aτ/
√

2〉 =
a√
2
τ for linear frequency drift. (3.17)

Hence, a linear frequency drift leads to an Allan deviation that linearly increases with measur-
ing time τ .

3.1.1.3 Influence of an Harmonic Modulation

Next we consider an oscillator whose frequency is modulated with a sinusoidal modulation
frequency fm as 5

y(t) =
Δν0

ν0
sin (2πfmt) . (3.18)

Calculating (3.13) by use of (3.18) leads to [25]

σy(τ ) =
Δν0

ν0

sin2 (πfmτ )
πfmτ

for modulation with sinusoidal signal. (3.19)

5 In this chapter modulation and Fourier frequencies are denoted by f rather than by ν to allow for better distinction
with respect to the carrier frequency.
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From (3.19) one finds that the influence of the frequency modulation on the Allan deviation
becomes zero for τ = 1/fm, i.e., when τ equals the modulation period 1/fm or one of
its harmonics, where the influence of the modulation is averaged to zero. It is maximal for
τ ≈ n/(2fm) with n an odd integer.

3.1.2 Correlated Fluctuations

A simple method of identifying correlations between measured data is to plot each measured
value as function of the preceding one (see Fig. 3.5). As an example of a fluctuating quantity
with correlations consider the simple model

yk+1 = αyk + ε (3.20)

where each value of the fluctuating quantity y has a purely statistical contribution ε but also is
influenced by the previous value depending on a correlation factor 0 ≤ α ≤ 1. In Fig. 3.5 a)

Figure 3.5: Series of 200 pseudo-random data calculated according to (3.20). a) Uncorrelated data
(α = 0). b) Correlated values using α = 0.5.

with α = 0 the values of yk+1(yk) are evenly distributed in the four quadrants and no cor-
relation between the data of adjacent values can be seen. This is in contrast to Fig. 3.5 b)
where the correlations identify themselves by the fact that the data points cluster in the first
and third quadrant. In the following we discuss methods that are better suited as the common
statistical ones to cope with the correlated time series that may be encountered when dealing
with frequency standards.

Commonly, any fluctuating signal B(t), e.g., y(t), U(t) or Φ(t) is decomposed into a
purely fluctuating contribution b(t) and a mean value B(t) as follows

B(t) = b(t) + B(t). (3.21)

Consider the autocorrelation function of the signal fluctuations defined by

Rb(τ ) ≡ b(t + τ )b(t) = lim
T→∞

1
2T

T∫
−T

b(t + τ )b(t)dt (3.22)
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which multiplies the signal fluctuations b(t) at the instant t with the signal fluctuation b(t+ τ )
at the instant t+τ and takes the mean over all epochs. If the fluctuations were totally uncorrre-
lated, the time-averaged product b(t + τ )b(t) would cancel for any τ . For stationary processes
the autocorrelation function must be an even function since Rb(−τ ) = Rb(τ ) holds. Com-
paring the definition of the autocorrelation function (3.22) for τ = 0 and the right-hand side
of (3.11) for a purely fluctuating quantity (i.e. for 〈B〉2 = 0) the value of the autocorrelation
function for τ = 0 represents the variance of the signal fluctuations

Rb(τ = 0) = σ2
b . (3.23)

For very large times τ one may assume that the power fluctuations are not correlated and
the autocorrelation function approaches zero for τ → ∞. It has been shown in the previous
chapter that the Fourier transform of a temporal varying amplitude function represents the
amplitude spectrum in the Fourier frequency domain. In the case of the statistically fluctuating
power of the oscillator the time function U(t) is not known but the autocorrelation function
Rb(τ ) might have been determined. To perform the integration in (3.22) we consider b(t) as
the Fourier transform b(t) = F (a(ω)) (see (2.19)) of a quantity α(ω) whose relevance will
become clear later and obtain

Rb(τ ) = lim
T→∞

1
2T

T∫
−T

1
(2π)2

∞∫
−∞

a(ω)ei(ωt+τ)dω

∞∫
−∞

a(ω′)eiωt′dω′dt

=
1

(2π)2

∞∫
−∞

∞∫
−∞

⎡⎣ lim
T→∞

1
2T

T∫
−T

ei(ωt+t′)dt

⎤⎦ a(ω)a(ω′)eiωτdω′dω, (3.24)

after we have interchanged the orders of integration. In the limit T → ∞ the term in square
brackets can be expressed by the Dirac delta function (see (2.23)) and, hence,

Rb(τ ) =
1
2π

∞∫
−∞

∞∫
−∞

a(ω) a(ω′) eiωτ δ(ω + ω′) dω dω′

=

∞∫
−∞

| a(ω)a(ω′) |
2π

eiωτ dω

≡
∞∫

−∞
Sb(f) ei2πfτdf. (3.25)

To find the significance of Sb(f) we set τ = 0 in (3.25) and obtain

Rb(0) =

∞∫
−∞

Sb(f)df. (3.26)
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Recalling that the left-hand side of (3.26) is the averaged square of the fluctuating quantity
b(t) (see (3.22)), Sb represents a power spectral density. In the case of a fluctuating voltage
the spectral density is given in units of V2/Hz.

The autocorrelation function Rb(τ ) and the spectral density function Sb(f) form a Fourier
transform pair

S 2−sided
b (f) ≡ F∗{Rb(τ )} =

∞∫
−∞

Rb(τ ) exp(−i 2πfτ)dτ (3.27)

Rb(τ ) ≡ F{S 2−sided
b (f)} =

∞∫
−∞

Sb(f) exp(i 2πfτ)df (3.28)

where the meaning of the index {2-sided} will be discussed below. (3.27) is one form of
the so-called Wiener–Khintchine theorem and allows one to determine the spectral density
function from the autocorrelation function of the time-dependent signal amplitude.

If one chooses the power fluctuations δP (t) of the oscillator rather than the amplitude
fluctuations b(t), the Fourier transformation of the corresponding autocorrelation function
RδP (τ ) leads to a spectral density of the square of the power fluctuations (in units of W2/Hz).6

Similarly, the fluctuations of the phase φ(t) with time 7 result in a power spectral density
of phase fluctuations in units of rad2/Hz. Caution is necessary as sometimes in the literature
also the square root of Sb(f) ∝ a(ω) (see (3.25)) is used.

The power spectral density of the frequency fluctuations in the Fourier domain represented
by (3.27) is defined for Fourier frequencies −∞ < f < ∞ thereby extending to both the
positive and negative side of the frequency spectrum. Consequently, Sb(f) is referred to as
the two-sided power spectral density S 2−sided

b (f). From Rb(τ ) = Rb(−τ ) it follows that
Sb(f) is a real, non-negative and even function, i.e. Sb(−f) = Sb(f). In experimental work,
however, only positive frequencies are of interest. Hence, a one-sided power spectral density
is often introduced for Fourier frequencies 0 ≤ f < ∞ (see Fig. 3.6) with

S 1−sided
b (f) = 2 S 2−sided

b (f). (3.30)

As the power spectral density is a real quantity, it suffices to use a real Fourier trans-
form pair rather than (3.27) and (3.28). Changing also the limits of the integrals the Wiener–

6 This quantity is closely related to the so-called “Relative Intensity Noise” (RIN)

RIN(f) ≡ SδP

P 2
0

(3.29)

often used to describe the power fluctuations of lasers oscillators.

7 Power spectral densities are used not only to describe fluctuations of a physical quantity with time but also, e.g., to
characterise the roughness of a technical surface [33].
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Khintchine relations for a one-sided spectral density function S 1−sided
b (f) are written as

S 1−sided
b (f) = 4

∞∫
0

Rb(τ ) cos(2πfτ)dτ (3.31)

Rb(τ ) =

∞∫
0

S 1−sided
b (f) cos(2πfτ)df. (3.32)

Figure 3.6: Two-sided (dots) and one-sided
(line) power spectral densities.

Figure 3.7: Different regimes in a power spec-
tral density. BW: band width.

3.2 Fourier-domain Description of Frequency Fluctuations

For a reasonable frequency-stable oscillator, the instantaneous frequency ν(t) as function of
time can be expected to deviate only slightly from the temporal mean ν and

Δν(t) ≡ ν(t) − ν 
 ν (3.33)

holds.
We assume that the frequency excursions Δν(t) are stationary distributed, i.e., that their

distribution is time independent. Similarly as in (3.22), we define the autocorrelation function
of the frequency deviations

Rν(τ ) ≡ lim
T→∞

1
2T

T∫
−T

Δν(t + τ )Δν(t)dt (3.34)

as a measure of this distribution and use the Wiener–Khintchine relationship to obtain the
power spectral density of the frequency deviations from the autocorrelation of the frequency
deviations

S 2−sided
ν (f) =

∞∫
−∞

Rν(τ ) exp(−i2πfτ)dτ. (3.35)
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Besides the power spectral density of the frequency fluctuations Sν(f) the power spectral
density Sy(f) of the fractional frequency fluctuations y(t) (see (3.3), (3.34) and (3.35)) can
be found as

Sy(f) =
1
ν2
0

Sν(f). (3.36)

Similarly one defines a power spectral density of phase fluctuations Sφ(f) and, by taking
into account that the frequency fluctuations are essentially the time derivative of the phase
fluctuations (2πΔν(t) = d/dtΔφ(t)), one obtains by comparison with (3.34) and (3.35)

Sν(f) = f2Sφ(f). (3.37)

From the last two equations it follows that

Sy(f) =
(

f

ν0

)2

Sφ(f). (3.38)

Each of the defined three power spectral densities contains the same information.
In the typical power spectral density of Fig. 3.7 one can identify different regimes. The

delta function at f = 0 occurs if B(t) has a non-vanishing mean value B(t) and does not
show up for a purely fluctuating quantity b(t). The contributions at low Fourier frequencies
decreasing with increasing frequency are termed 1/f -noise. In an intermediate regime the
power spectral density of the frequency fluctuations is often independent of the frequency
referred to as white frequency noise. The total power contained in the frequency fluctuations
is obtained from

∞∫
0

S 1−sided
ν (f)df =

∞∫
−∞

S 2−sided
ν (f)df = 〈[Δν(t)]2〉 = σ2

ν (3.39)

where we have made use of (3.23) and (3.26). From reasons of energy conservation this total
power must be finite and one therefore expects that for higher frequencies the power spectral
density of the frequency fluctuations decreases again (Fig. 3.7).

The determinations of spectral densities of different frequency sources reaching from
quartz oscillators to atomic frequency standards has shown that the observed spectral density
Sy(f) can be reasonably well modelled by a superposition of five independent noise processes
obeying power laws with integer exponents −2 ≤ α ≤ 2

Sy(f) =
2∑

α=−2

hαfα (3.40)

(see Table 3.1).
The particular contributions also have characteristic appearances in the time domain

(Fig. 3.8).
In a doubly logarithmic plot the particular contributions to (3.40) can be identified readily

by their slope, thereby allowing identification of the causes of the noise mechanisms in the
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Table 3.1: Model of a power law of the power spectral density of fractional frequency fluctuations
Sy(f) = hαfα and the corresponding power spectral density of phase fluctuations Sφ(f). The corre-
sponding Allan variance σ2

y(τ) derived in Section 3.3 holds for a low-pass filter with cut-off frequency
fh when 2πfhτ � 1.

Sy(f) Sφ(f) Type of noise σ2
y(τ )

h−2f
−2 ν2

0h−2f
−4 Random walk (2π2h−2/3)τ+1

of frequency noise
h−1f

−1 ν2
0h−1f

−3 Flicker frequency noise 2h−1 ln 2τ0

h0f
0 ν2

0h0f
−2 White frequency noise (h0/2)τ−1

(Random walk
of phase noise)

h1f ν2
0h1f

−1 Flicker phase noise h1[1.038 + 3 ln(2πfhτ )]/(4π2)τ−2

h2f
2 ν2

0h2f
0 White phase noise [3h2fh/(4π2)]τ−2

Figure 3.8: Time-domain signal with a) white frequency noise. b) 1/f noise. c) 1/f2 noise.

oscillators. The particular contributions listed in Table 3.1 can sometimes be identified in
frequency standards [25]. The random walk of frequency noise (α = −2) is often caused
by the influences of environmental parameters, e.g., temperature, vibrations, etc.. Flicker
frequency noise (α = −1) is observed in active devices such as quartz crystal oscillators,
hydrogen masers or laser diodes, but also in passive frequency standards like the Cs clock.
White frequency noise (α = 0) can result from thermal noise in the oscillator loop of active
standards. It is also present in passive standards and may result, e.g., from the shot noise of
the photons or atoms where it represents the quantum limit. Flicker phase noise (α = 1)
often results from contributions of noisy electronics whose level can be reduced by selected
components. White phase noise (α = 2) becomes important for high Fourier frequencies and
can be reduced by band-pass filtering the output of a frequency standard.

One has to keep in mind that the pure power laws of (3.40) represent a theoretical model,
which is not always observed in this form. The low frequency contributions to the noise
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sometimes referred to as 1/f noise often follow a f−β dependence with 0.5 ≤ β ≤ 2 (see,
e.g., Fig. 3.10) where the observed power law may also be due to a superposition of several
noise processes.

3.3 Conversion from Fourier-frequency Domain to Time
Domain

So far we have described the frequency instability of an oscillator either in the Fourier fre-
quency domain by power spectral densities or in the time domain by the Allan variance. In
the following we develop the procedure that allows one to calculate the Allan variance from a
given power spectral density.

The Allan variance defined by (3.13) and (3.4) can be written as

σ2
y(τ ) =

1
2
〈(y2 − y1)

2〉 =
〈1

2

⎛⎜⎝1
τ

tk+2∫
tk+1

y(t′)dt′ − 1
τ

tk+1∫
tk

y(t′)dt′

⎞⎟⎠
2 〉

(3.41)

with tk+i − tk = τ for all i. In (3.41) a single sample is obtained by one-half of the squared
difference of the mean values of the function y(t) derived from two adjacent intervals of
duration τ and the Allan variance is then the expectation value of this quantity. To obtain
many samples of the Allan variance it is not necessary to divide the function y(t′) into discrete
time intervals but rather we derive a sample for each instant t as follows

σ2
y(τ ) =

1
2

〈⎛⎝1
τ

t+τ∫
t

y(t′)dt′ − 1
τ

t∫
t−τ

y(t′)dt′

⎞⎠2 〉
. (3.42)

(3.42) can be written as

σ2
y(τ ) =

〈⎛⎝ ∞∫
−∞

y(t′)hτ (t − t′)dt′

⎞⎠2 〉
(3.43)

by introducing the function hτ (t) with

hτ (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1√

2τ
for −τ < t < 0

+
1√
2τ

for 0 ≤ t < τ

0 otherwise

(3.44)

(see Fig. 3.9 a). The integral in (3.43) represents a convolution of the time series y(t) with
the function hτ (t). One recognises the meaning of the function hτ (t) by applying, e.g., a
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Figure 3.9: a) Filter function hτ (t) according to (3.44). b) Transfer function |Hτ (f)|2 corresponding
to the filter function of Fig. 3.9 a).

sharp pulse (Dirac’s δ function) for y(t) which reproduces hτ (t) (see (2.22)). Hence, the
convolution integral in (3.43) can be interpreted as the temporal response of a hypothetical
linear “filter” with impulse response hτ (t) to an input signal y(t). Consequently, the Allan
variance is the mean square of the accordingly filtered temporal fluctuations at the output of
this filter. On the other hand the (true) variance of an unfiltered signal y(t) that has a zero
mean is given by (3.39) as an integral over the corresponding power spectral density.

To take into account the influence of the filter hτ (t) on the power spectral density we re-
call that, according to the convolution theorem, a convolution of y(t) and hτ (t) in the time
domain corresponds in the Fourier frequency domain to a multiplication of the Fourier trans-
formed F(y(t)) and F(hτ (t)). Similarly, in the Fourier frequency domain the filtered power
spectral density is given as a product of the unfiltered power spectral density and the appro-
priate weighting function, i.e., the square of the filter function.8 Hence,

σ2
y(τ ) =

∞∫
0

|Hτ (f)|2S 1−sided
y (f)df (3.45)

where the transfer function

Hτ (f) = F{hτ (t)} (3.46)

represents the Fourier transform of the filter function h(t).

8 Note that this only holds if the corresponding time functions are uncorrelated.
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We are now in a position to calculate the transfer function for the filter function hτ (t) of
(3.44) as

H(f) = −
0∫

τ

1√
2τ

exp(i2πft)dt +

τ∫
0

1√
2τ

exp(i2πft)dt

=
1√
2τ

{
− 1

i2πf
[exp(i2πft)]0−τ +

1
i2πf

[exp(i2πft)]τ0

}
=

1√
2i2πfτ

[−1 + exp(−i2πfτ) + exp(i2πfτ) − 1]

=
1√

2i2πfτ
2[cos(2πfτ) − 1] =

1√
2iπfτ

2 sin2(πfτ). (3.47)

Hence,

|H(f)|2 = 2
sin4(πτf)
(πτf)2

(3.48)

and

σ2
y(τ ) = 2

∞∫
0

Sy(f)
sin4(πτf)
(πτf)2

df (3.49)

allows one to compute the Allan variance directly from the (one-sided) power spectral density.
As an example, we calculate the Allan variance for white phase noise (Sy = h2f

2) using
(3.49) as follows

σ2
y(τ ) = 2

∞∫
0

h2f
2 sin4(πτf)

(πτf)2
df =

2h2

π2τ2

∞∫
0

sin4(πτf)df. (3.50)

The integral (3.50) diverges for f → ∞. In the experiment this does not present a problem
since the frequency bandwidth of each measuring device is limited towards high frequencies.
Modelling this bandwidth by a low-pass filter with sharp cutoff frequency fh, (3.50) can be
solved with the help of

∫
sin4 axdx = 3/8x − 1/(4a) sin 2ax + 1/(32a) sin 4ax as

σ2
y(τ ) =

2h2

π2τ2

fh∫
0

sin4(πτf)df =
3h2fh

4π2τ2
+ O(τ−3). (3.51)

Since the term O(τ−3) in general can be neglected for fh � 1/(2πτ ) the Allan variance for
white phase noise shows a power law ∝ τ−2. Similarly, σy(τ ) is calculated for other power
spectral densities where each one also shows a well-defined power law dependence of the
Allan variance (see Table 3.1).

The integral (3.49) also diverges for flicker phase noise (Sy(f) = h1f ) as can be seen
from the fact that |H(f)|2 with its infinite number of side lobes (see Fig. 3.9 b) decreases
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as 1/f2. Exactly, as in the case of white phase noise discussed above, the low-pass filtering
Sy(f) results in an Allan variance that depends on the cut-off frequency of the low-pass filter.
In general, the integral (3.49) diverges for f → ∞ for all power laws of (3.40) with α ≥ −1.
The integrals over the model spectral densities with α = −1 and α = −2 are also diverging
for f → 0. In reality, however, an infinite variance will not be observed as both cases can-
not be realised experimentally. The case f → 0 would require an infinite measurement time
and f → ∞ would require an infinite bandwidth of the measurement equipment. Neverthe-
less, the situation is not very satisfactory as for these cases σ2

y(τ ) depends on the maximum
measurement time or on the bandwidth of the equipment.

The integral (3.49) converges for all Sy(f) ∝ fα with α ≥ −2 at the low-frequency
cut-off. If Sy(f) can be represented by a power law according to (3.40), the calculation of
the respective two-sample standard deviation by means of (3.49) in general leads also to a
power law for the dependence of σ2

y(τ ) as a function of the measurement time τ . In the cases
when α = −2,−1, 0 the exponent in the power law and in the Allan variance can be related
unambiguously. The dependence of the Allan variance, however, in practice does not allow
one to distinguish between flicker phase noise (Sy(f) ∝ f−2; σ2

y(τ ) ∝ τ−2) and white phase
noise (Sy(f) ∝ f−1; σ2

y(τ ) ∝ τ−2[1.038 + 3 ln(2πfhτ ]) (see Table 3.1). To overcome this
deficiency a so-called modified Allan variance

Mod σ2
y(τ ) =

1
2

〈[
1
n

n∑
i=1

(
1
n

n∑
k=1

yi+k+n,τ0
− 1

n

n∑
k=1

yi+k,τ0

)]2 〉
(3.52)

has been introduced [1, 34]. This type of variance does not influence the variance of the
first four types of power spectral densities given in Table 3.1 but increases the sensitivity for
white phase noise. Hence, for Sy(f) = h2f

2 the modified Allan variance Mod σ2
y(τ ) =

3h2fhτ0/(4π2)/τ3 is proportional to τ−3 in contrast to the regular Allan variance that goes
as τ−2.

The time-domain description of the instability of oscillators by the Allan variance is often
chosen as it is easily calculated from the time series measured with simple counters. The de-
scription of fluctuations by power spectral densities in the Fourier frequency domain, however,
contains the full information about the noise process if properly determined. It furthermore al-
lows one to calculate the Allan variance according to (3.49). In contrast, the calculation of the
power spectral density from the measured Allan variance requires the solution of an integral
equation which is possible only in simple cases, e.g., those where the power spectral density
is given by a simple power law as discussed. It is, however, sufficient if the power spectral
density follows a power law within limited frequency ranges which can then be interpreted
as resulting from a superposition of different noise processes. As an example, consider the
Allan deviation of the hydrogen maser (Fig. 3.3) which at low measuring times is dominated
by white phase noise (∝ τ−1) or perhaps flicker phase noise (which also is roughly propor-
tional to τ−1), at higher measuring times by white frequency noise (∝ τ−1/2). The Allan
deviation then reaches the so-called flicker floor, before it may increase again, e.g., due to a
frequency drift (∝ τ1/2). The underlying physical processes will be described in more detail
in Section 8.1.
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3.4 From Fourier-frequency to Carrier-frequency Domain

Often, when dealing with laser or microwave frequency standards, one is interested in the
power spectrum of the oscillator in the carrier frequency domain. An ideal oscillator operat-
ing at the frequency ν0 would consist of a delta function at ν0 in the carrier frequency domain.
For a real oscillator perturbed by noise processes the power is spread over a frequency range
around the centre frequency ν0. The power spectrum can be measured by different methods.
As a first method consider a bandpass filter whose centre frequency is tuned over a frequency
range in the vicinity of the centre frequency of the oscillator. The power spectrum of the os-
cillator is directly related to the power transmitted through the filter measured as a function of
the frequency setting of the filter. In the optical domain, a tuneable Fabry–Pérot interferometer
(Section 4.3.1) is often chosen as a filter to sweep across laser lines. Another possibility of
measuring the power spectrum in the carrier frequency domain is to feed the signal from the
oscillator simultaneously to a parallel filter bank. The parallel filter bank can also be simulated
by a fast Fourier transform of a digitised and numerically filtered signal. It has to be pointed
out, however, that the concept of a power spectrum with a well defined form and linewidth
is in general not applicable to all noise processes. As an example, consider a power spectral
density with large 1/f contribution. For long observation times corresponding to low Fourier
frequencies the central frequency may drift away and, hence, there is no unique “linewidth”
as the measured width of the power spectrum will depend on the observation time.

With this note of caution in mind, we show in this section how the shape of the emission
line in the carrier frequency domain can be determined from a particular noise spectral density,
e.g., Sν(ν) determined in the Fourier domain. The power spectrum of the electric field SE(ν)
can be evaluated by following [35–37]. In analogy to (3.27) and (3.28) one defines the two-
sided power spectral density as the Fourier transform

SE(ν) =

∞∫
−∞

exp (−i2πνt)RE(τ )dτ (3.53)

of the autocorrelation function

RE(τ ) =
〈
E(t + τ )E∗(t)

〉
(3.54)

of the electric field E(t). For a complex representation of the electric field of the electromag-
netic wave with negligible amplitude fluctuations and real amplitude E0

E(t) = E0 exp i[2πν0t + φ(t)] (3.55)

the autocorrelation function becomes

RE(τ ) = E2
0 exp[i2πν0τ ]

〈
exp i[φ(t + τ ) − φ(τ )]

〉
. (3.56)

Now, 〈exp i[φ(t + τ ) − φ(τ )]〉 has to be expressed in terms of the spectral density of phase
fluctuations Sφ(f). To begin with, one assumes that the noise process is ergodic, i.e., that the
temporal average is identical to the corresponding ensemble average

exp[iΦ(t, τ )] =
〈
exp[iΦ(t, τ )]

〉
=

∞∫
−∞

p(Φ) exp(iΦ)dΦ (3.57)
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where

Φ(t, τ ) ≡ φ(t + τ ) − φ(τ ) (3.58)

is the phase accumulated during the interval τ . The right-hand side of (3.57) uses the usual
definition of the expectation value of the quantity exp[iΦ(t, τ )] if the probability density p(Φ)
is known. For a large number of uncorrelated phase-shifting events the central limit theorem
allows one to use the Gaussian probability density

p(Φ) =
1

σ
√

2π
exp

(
− Φ2

2σ2

)
(3.59)

with the classical variance σ2. As p(Φ) is an even function, only the real (cosine) part
of the complex exponential of (3.57) survives. (3.57) is evaluated by using (3.59) and∫ ∞
−∞ exp(−a2x2) cosxdx =

√
π/a exp(1/4a2) leading to〈

exp[iΦ(t, τ )]
〉

= exp
(
−σ2

2

)
. (3.60)

According to (3.11) with vanishing mean value 〈Φ〉 = 0 and (3.58)

σ2(Φ) =
〈
Φ2

〉
=

〈
[φ(t + τ ) − φ(τ )]2

〉
=

〈
[φ(t + τ )]2

〉 − 2
〈
[φ(t + τ )φ(τ )]

〉
+

〈
[φ(τ )]2

〉
. (3.61)

Using (3.54) and (3.32) one finds〈
[φ(t + τ )φ(τ )]

〉
=

∞∫
0

Sφ(f) cos(2πfτ)df = Rφ(τ ) (3.62)

〈
[φ(t + τ )]2

〉
=

〈
[φ(τ )]2

〉
=

∞∫
0

Sφ(f)df = Rφ(0). (3.63)

Insertion of (3.62) and (3.63) into (3.61) leads to

σ2 = 2

∞∫
0

Sφ(f) [1 − cos 2πfτ)]df (3.64)

which can be used to derive the autocorrelation function from (3.56)

RE(τ ) = E2
0 exp(i2πν0τ ) exp

⎛⎝−
∞∫
0

Sφ(f) [1 − cos 2πfτ)] df

⎞⎠ . (3.65)

From (3.53) and (3.65) the power spectral density in the carrier frequency domain

SE(ν − ν0) = E2
0

∞∫
−∞

exp−[i2π(ν − ν0)τ ] exp

⎛⎝−
∞∫
0

Sφ(f) [1 − cos 2πfτ)] df

⎞⎠ dτ

(3.66)

can be derived for a given phase noise spectral density Sφ(f) (see (3.37)) provided that the
integral in brackets in (3.66) converges.
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3.4.1 Power Spectrum of a Source with White Frequency Noise

We now consider a source whose power spectral density in the Fourier-frequency domain can
be represented as white (frequency independent) frequency noise S0

ν (see Table 3.1). Conse-
quently,

Sφ(f) =
S0

ν

f2
=

ν2
0h0

f2
(3.67)

holds and the integral in the exponential of (3.66) can be solved analytically using
∫ ∞
0

[1 −
cos(bx)]/x2dx = π|b|/2 leading to

SE(ν − ν0) = E2
0

∞∫
−∞

exp−[i2π(ν − ν0)τ ] exp
(−π2h0ν

2
0 |τ |

)
dτ

= 2E2
0

∞∫
0

exp−τ
[
i2π(ν − ν0) + π2h0ν

2
0

]
dτ. (3.68)

Solving the integral (3.68) and keeping the real part leads to the power spectral density of

SE(ν − ν0) = 2E2
0

h0π
2ν2

0

h2
0π

4ν4
0 + 4π2(ν − ν0)2

= 2E2
0

γ/2
(γ/2)2 + 4π2(ν − ν0)2

(3.69)

with γ ≡ 2h0π
2ν2

0 = 2π(πh0ν
2
0) = 2π(πS0

ν). Hence, the power spectral density of frequency
fluctuations in the carrier-frequency domain of an oscillator with white frequency noise S0

ν in
the Fourier-frequency domain, is a Lorentzian whose full width at half maximum is given by

ΔνFWHM = πS0
ν . (3.70)

Similarly, other types of phase noise spectral densities can be calculated accordingly. Godone
and Levi have furthermore treated the case of white phase noise and flicker phase noise [38].

3.4.2 Spectrum of a Diode Laser

As an example of white frequency noise, consider the frequency fluctuations in a laser result-
ing from the spontaneous emission of photons [39]. They lead to the so-called Schawlow–
Townes linewidth

ΔνQNL =
2πhν0(Δν1/2)2μ

P
. (3.71)

where hν0 is the photon energy, Δν1/2 is the full width at half maximum of the passive
laser resonator, μ ≡ N2/(N2 − N1) is a parameter describing the population inversion in
the laser medium, and P is the output power of the laser. This quantum-noise limited power
spectral density (which is enhanced for laser diodes by Henry’s linewidth enhancement factor;
see (9.37)) can be found in the measured spectral noise of a solitary diode laser (Fig. 3.10)
at Fourier frequencies above a corner frequency of about 80 kHz. At frequencies below the
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Figure 3.10: Measured power spectral densities of frequency fluctuations versus Fourier fre-
quency f of a diode laser without optical feedback (triangles) and with optical feedback from a
grating (squares) after [40] with permission.

corner frequency the power spectral density increases with a power law of roughly 1/f . The
white frequency noise regime is also visible above the corner frequency fc of about 200 kHz if
the cavity of the diode laser is extended (Section 9.3.2.5) but Sν(f) is reduced by about 33 dB
according to the reduced linewidth Δν1/2 (see (3.71)).

As the 1/f -like behaviour often results from technical noise which is present in any os-
cillator to some degree it is interesting to investigate the validity of (3.69). O’Mahony and
Henning [41] have investigated the effect of low frequency (1/f) carrier noise on the linewidth
of a semiconductor laser. From their findings Koch [40] gives a criterion that allows one
to obtain information about the lineshape from the positions of the corner frequencies fc as
follows

Sν(fc)/fc � 1 :⇒ Lorentzian lineshape (3.72)

Sν(fc)/fc 
 1 :⇒ Gaussian lineshape. (3.73)

We apply these criteria to the power spectral density of frequency noise displayed in Fig. 3.10
where one finds, for the solitary laser diode (triangles), Sν(fc)/fc > 100 and, hence, crite-
rion (3.72) applies. With (3.70) one expects a Lorentzian profile of about 5 MHz linewidth.
From the power spectral density of frequency fluctuations (squares in Fig. 3.10) of another
diode laser with extended cavity (Section 9.3.2.5) one finds Sν(fc)/fc ≈ 10−2 and hence ex-
pects a Gaussian lineshape according to criterion (3.73). The origin of the Gaussian lineshape
can be thought of as resulting from a small Lorentzian line whose width is given by (3.70)
which statistically wanders around a central frequency. The width of the Gaussian depends
on the time T of averaging, as the measurement time T also defines the lowest measurable
Fourier frequency 1/T . For a true 1/f behaviour of Sν the linewidth would be infinite as∫ ∞
1/T

Sν(f)df = ∞ holds (see (3.66)). Experimentally, however, one always finds a finite
linewidth resulting from the finite measurement time T with the low-frequency cut off 1/T .
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The mean frequency excursion Δνrms (linewidth) can be computed as

Δνrms =

√√√√√√
fc∫

1/T

Sν(f)df (3.74)

from (3.39). In the case of the laser with optical feedback in an extended cavity arrangement
(squares in Fig. 3.10) one derives a FWHM of the Gaussian of about 120 kHz for a measure-
ment time of 10 ms.

3.4.3 Low-noise Spectrum of a Source with White Phase Noise

With the help of (3.62) and (3.63) we can write (3.66) as

SE(ν − ν0) = E2
0

∞∫
−∞

exp [−Rφ(0)] exp [Rφ(τ )] exp[−i2π(ν − ν0)τ ]dτ. (3.75)

For very low phase fluctuations, i.e., for
∫ ∞
0

Sφ(f)df 
 1 it is justified to expand the first
two exponential functions in (3.75) and to keep only the first terms as

SE(ν − ν0) ≈ E2
0

∞∫
−∞

[1 − Rφ(0) + Rφ(τ )] exp[−i2π(ν − ν0)τ ]dτ. (3.76)

Using the definition of Dirac’s delta function δ(ν−ν0) (see (2.23)) and the Wiener–Khintchine
relation (3.28) one finds

SE(ν − ν0) ≈ E2
0 [1 − Rφ(0)] δ(ν − ν0) + E2

0S 2−sided
φ (ν − ν0). (3.77)

Hence, the spectrum in the carrier frequency domain comprises a carrier (delta function) at
ν = ν0 and two symmetric sidebands with the level of the phase noise spectral density Sφ at
f = |ν − ν0|.

Often commercial oscillators are specified by the measure of the so-called spectral purity
L(f), i.e., the noise found on each side of the carrier when the signal of an oscillator is
measured directly with a spectrum analyser [1]

L(f) ≡ S 2−sided
Φ (ν − ν0)

1/2E2
0

. (3.78)

Here it is assumed that the amplitude noise is negligible as compared to the phase noise. Then
the spectral purity represents all phase noise for all Fourier frequencies except for the origin,
i.e., the delta function of (3.77).
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3.5 Measurement Techniques

In practical applications, the power spectral density of the frequency (phase) fluctuation of a
signal is determined from measured time sequences of Δν(t) (Δφ(t)) by different methods.
One may measure Sν(f) by separating the spectrum into frequency classes by a number of fil-
ters of different centre frequencies and then measuring the (ac) power transmitted by each one
of these filters. After division of the respective bandwidths of the filters these discrete power
values represent Sν(f) at the Fourier frequencies of the centre frequencies of the filters. An-
other method makes use of digital spectrum analysers, using the Fast Fourier Transformation
(FFT) algorithm giving, e.g.,

Δφ(f) = F(Δφ(t)). (3.79)

From this, the power spectral density of phase fluctuations can be determined from

Sφ(f) =
[Δφ(f)]2

BW
(3.80)

where the measurement bandwith BW in Hertz has to be chosen such that BW 
 f . This
procedure is equivalent to the definition of the power spectral density via the autocorrelation
function for reasonably well behaved noise processes. To allow the reader to trace possible
implications, the derivation of (3.80) is given in the following. We rewrite (3.31) and (3.32)
in complex notation [42] as

Sb(f) = 4 lim
T→∞

1
T

T∫
0

⎡⎣ T∫
0

b(t)b(t + τ )dt

⎤⎦ exp(2πifτ)dτ. (3.81)

Substitution of

τ → z − t (3.82)

leads to

Sb(f) = 4 lim
T→∞

1
T

T∫
0

⎡⎣ T∫
0

b(z) exp(2πifz)dz

⎤⎦ b(t) exp(−2πift)dt. (3.83)

As the expression in squared brackets is a complex number it can be moved out of the integral

Sb(f) = 4 lim
T→∞

1
T

T∫
0

b(z) exp(2πifz)dz

T∫
0

b(t) exp(−2πift)dt. (3.84)

If the value of the integral does not change after the shift of the integration interval by τ
(see (3.82)), each one of these integrals is the complex conjugate of the other one and, hence,
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we finally end up with the relation

Sb(f) = 4 lim
T→∞

1
T

∣∣∣∣∣∣
T∫

0

b(t) exp(−2πift)dt

∣∣∣∣∣∣
2

(3.85)

for the one-sided power spectral density Sb(f).
Frequency fluctuations can be converted into amplitude or power fluctuations by means

of a discriminator. The slopes of an electronic filter, an optical Fabry–Pérot Interferometer
(FPI) or an absorption line can be employed as such a discriminator. If the oscillator or the
filter is tuned such that the carrier frequency of the oscillator is at the slope, preferably near
the inflection point (Fig. 3.11), the power transmitted by the filter varies, to first order, linearly
with the frequency of the signal as

V (ν − νS) = (ν − νS) kd + V (νS) (3.86)

where kd is the slope of the filter at νS . The detector behind the filter of Fig. 3.11 a) converts

Figure 3.11: a) The transmission of a filter can be used to convert the frequency fluctuations of
a signal P (ν) into voltage fluctuations V (ν). b) At a suitable working point νS the filter acts as
a frequency discriminator where the voltage fluctuations are approximately proportional to the
frequency fluctuations (see (3.86)).

the power fluctuations into the fluctuations of a voltage that can be analysed by means of an
electronic spectrum analyser. Modern spectrum analysers show a quantity directly related to
the spectral density of the fluctuations of the signal. To obtain the power spectral density of
the frequency fluctuations in Hz2/Hz the slope kd of the frequency discriminator has to be de-
termined. The application of this method requires that the contributions of other noise sources
do not affect the measurement. Fluctuations of the centre frequency of the filter or fluctua-
tions of the signal amplitude may mimic a higher spectral density of frequency fluctuations.
The latter contribution has to be eliminated by stabilising the input or by using the amplitude
fluctuations measured directly with a second detector of frequency independent response to
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normalise the signal transmitted by the filter. The influence of amplitude fluctuations can eas-
ily be detected by tuning the centre frequency of the filter or the frequency of the signal such
that both coincide. For not too high frequency excursions, the flat portion of the filter at the
centre frequency is less susceptible to frequency fluctuations and the observed fluctuations of
the transmitted signal can be related to amplitude fluctuations of the incoming signal. The
frequency of electric signals up to a few gigahertz can be measured directly with an electronic
counter. In its simplest form the counter measures the number of cycles during a given time
interval τ by the number of detected zero crossings with positive slope. The time interval is
provided by a well defined number of cycles of a reference frequency. In this simple case the
resolution of the frequency to be measured is limited to ±1 cycle. Often, electronic counters
employ interpolation techniques in order to estimate the fractions of a cycle. In any case, the
uncertainty of a frequency measurement with a counter decreases with 1/τ .

3.5.1 Heterodyne Measurements of Frequency

Higher frequencies can be measured by the heterodyne technique. The heterodyne technique
produces the difference signal between the signal of the Device Under Test (DUT) of fre-
quency ν and a reference signal of frequency ν0, by mixing them. Consider two harmonic

Figure 3.12: a, b) Signals differing in frequency by 10%. c) Squared sum of signals a) and b). d) Beat
signal.

signals of very high frequencies ν and ν0 (see Fig. 3.12 a, b), e.g., two laser beams that are
superimposed on a photodetector. The frequencies of the particular fields are far too high to
allow the electronics to trace them directly. However, the power, being proportional to the
amplitude squared of the resulting field, shows an amplitude-modulated signal (Fig. 3.12 c).
After filtering with a low pass, the so-called beat frequency νbeat of this signal (Fig. 3.12 d) is
the difference frequency

νbeat = |ν − ν0|. (3.87)
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Since the photodetector delivers a signal which is proportional to the product of the electric
field, it responds in a highly non-linear way to the input field. Similarly in the radio-frequency
regime non-linear devices are used that form the product of two inputs. We briefly recall the
essential features of such a product mixer. The mixer multiplies two input signals often termed
the Radio Frequency (RF) and the Local Oscillator (LO) leading to an output signal called the
Intermediate Frequency (IF). If the two input signals are harmonic signals the output

cos(ωRFt) cos(ωLOt) = 1
2 cos[(ωRF + ωLO)t] + 1

2 cos[(ωRF − ωLO)t] (3.88)

contains the sum and the difference of the two input signals but not the input signals or their
harmonics. The Double Balanced Mixer (DBM) (Fig. 3.13) often used for frequency mix-
ing is an electronic device based on four diodes and two transformers, in order to facilitate
the generation of only the sum and the difference signals, but not the input signals nor their
harmonics.

Figure 3.13: Double-Balanced Mixer. a) Set up. b) Symbol.

Important applications are found for ωLO = ωRF ≡ ω where two signals with the same
frequency ω but a phase difference are delivered to the inputs of the mixer. Using (3.88) one
finds

cos(ωt + φ) cos(ωt) =
1
2

[cos(2ωt + φ) + cos φ] . (3.89)

The output signal contains an ac component 1/2 cos(2ωt + φ) of twice the input frequency
superimposed on a dc signal 1/2 cos φ that depends on the phase difference between the two
input signals.

Consequently, the mixer can be used as a discriminator to detect phase fluctuations as in
Fig. 3.14 [1] where the phase of the signal from an oscillator under test is compared to the
phase of the signal from a reference oscillator. If the voltage fluctuations from the mixer
are measured by a spectrum analyser, they are a measure of the fluctuations of the phase
difference provided that amplitude modulation is negligible. These in turn can be attributed to
the phase fluctuations of the oscillator under test only if the phase of the reference oscillator
can be regarded as more stable. To have a constant slope for the phase discriminator it has
to be operated close to 90◦ during the measurement, where the cosine function (3.89) near
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Figure 3.14: System for measurement of phase noise of an oscillator under test.

zero can be approximated by a linear discriminant curve. This is the case only if the mean
frequencies of both oscillators are kept the same during that time, i.e., if their mean phases
are locked. This condition can be fulfilled by employing a Phase-Locked Loop (PLL) that
uses the signal from the mixer representing the phase difference between the oscillators as
an error signal. The error signal is integrated to give a servo signal which is used to control
the frequency of the reference oscillator. Provided that the slope of the phase discriminator
kd and the frequency-dependent gain G(f) of the amplifier are known, the power spectral
density of phase fluctuations at Fourier frequency f from the carrier are measured from the
mean-squared phase fluctuations in a measurement bandwidth of 1 Hz according to (3.80).

Care has to be taken in determining the power spectral density of phase fluctuations if the
frequency is translated by summation, multiplication or division. In a beat-note measurement
(see (3.87)) the frequency is translated and the stochastic phase modulation (PM) noise of
the reference oscillator and the PM noise in the non-linear device Strans

φ (f) performing the
translation are added to the PM noise of the oscillator under test (DUT) as

Sφ(ν, f) = SDUT
φ (ν0, f) + SRefOsc

φ (ν1, f) + Strans
φ (f). (3.90)

Frequency multiplication in a non-linear device by a factor N at the same time multiplies the
phase by the same factor N and, hence, the phase fluctuations. From (3.80) one finds that in
this case the PM noise is increased by N2

Sφ(Nν0, f) = N2Sφ(ν0, f) + Smult
φ (f). (3.91)

where Smult
φ (f) is the PM noise added by the multiplication process in the non-linear device.

Similarly, frequency division by 1/N reduces the PM noise by 1/N2. Hence, the residual
noise is reduced if a high-frequency signal is divided rather than mixed down [43].

3.5.2 Self-heterodyning

The phase noise of a single oscillator can be measured also by using a self-heterodyning
technique where the phase fluctuations of an oscillator are determined by comparing the signal
of the oscillator with the same signal at a previous epoch (Fig. 3.15). The signal is split
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Figure 3.15: Set-up for measurement of phase noise by use of a delay line discriminator

in a power splitter PS and the particular signal in one path is delayed with respect to the
other one before being mixed again and amplified. The splitting in the power splitter and
the recombination in the mixer makes the arrangement essentially to an interferometer plus
square-wave detector.

3.5.2.1 Sensitive Measurement of AM and PM Noise in the Microwave Regime

For low-noise microwave devices the sensitive measurement of phase and amplitude noise
close to the carrier meets with difficulties since the power in the carrier is typically several
orders of magnitude higher than the noise power to be measured. A highly sensitive method
based on interferometric techniques has been used as early as 1968 [44] and has been applied
later to achieve ultra-high sensitivity [45]. In such a microwave interferometer (Fig. 3.16) the

Figure 3.16: Microwave interferometer for the measurement of AM and PM noise (DUT: De-
vice Under Test).

carrier is cancelled in the branch referred to as Δ by adding the signal from the device under
test phase-shifted by +90◦ with the suitably adjusted reference phase-shifted by –90◦. Hence,
the Δ branch is operated on a dark fringe of the interferometer. The signal with suppressed
carrier is amplified in the readout system and mixed with the reference branch Σ. Depending
on the phase shift of the latter signal adjusted in the reference phase shifter either phase noise
or the amplitude noise can be measured.
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3.5.2.2 Fibre Optical Interferometer

Interferometric systems are also often employed in the optical telecommunication bands to
investigate the linewidth of diode lasers where the interferometer comprises an optical fibre
as the delay line and an acousto-optic modulator (AOM) (see Section 11.2.1), that shifts the
frequency in one arm of the interferometer. For a delay time small compared to the coherence
time of the laser the power spectral density comprises of a delta function peak at the frequency
of the AOM, superimposed on a pedestal [46,47] (Fig. 3.17). As the delay time increases until
the phase of the optical field becomes uncorrelated the peak becomes a self-convolution of the
lineshape, which is the case when the delay time becomes approximately six times larger than
the coherence time [46]. For highly coherent laser oscillators with a linewidth of 10 kHz, a
fibre optic delay of several tens of kilometres would be necessary. In contrast to the several
kilometre long fibres, a 100 m long fibre leads to an optical path difference which is small
compared to the coherence length of the laser. In this case, each frequency component of the
interference signal corresponds to a Fourier component of the frequency noise of the laser. In
this regime a comparison between the calculated and measured spectrum (Fig. 3.17) can be
used to derive the linewidth of the laser. It furthermore gives hints for additional influences
that degrade the phase stability [46].

Figure 3.17: Power spectral density SE(ν − ν0) of a diode laser at 1.5 μm measured at the exit
of a heterodyne fibre interferometer with a laser linewidth of 0.4 MHz. Courtesy of U. Sterr.

3.5.3 Aliasing

Care has to be taken if a continuous signal is sampled digitally to obtain spectral densities.
Such a situation is encountered, e.g., if a digital spectrum analyser is used in Fig. 3.15. It is
well known that a harmonic signal can be sampled digitally unambiguously only if at least
two samples are taken per period T (see, e.g., open circles in Fig. 3.18 a). The corresponding
minimal sampling frequency

νN ≡ 2
T

(3.92)

is referred to as the Nyquist frequency. Consider a harmonic signal that is sampled with less
than two points per period T (dots in Fig. 3.18 a). The sampling period Δt is higher than
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half of the signal period T and, hence, the frequency of the signal is higher than the Nyquist
frequency. In Fig. 3.18 a) eleven samples are taken in ten periods of the component with

Figure 3.18: Aliasing. a) A cosine signal (full line) can be sampled unambiguously only with at least
two samples per period (open circles). If the sampling is done with less than two samples per period
(dots) the reconstructed signal shows an apparent lower frequency (dotted line). b) The true frequency
component ν1 = 1/T is higher than the Nyquist frequency νN (3.92) and appears as a low-frequency
component ν′

1.

frequency ν. Hence, the frequency ν = 20/11νN of the sampled signal is 82 % larger than
the Nyquist frequency. The sampled signal appears to have a lower frequency compared to
the original signal (dotted curve of Fig. 3.18 a). In the frequency domain (Fig. 3.18 b) this
signal appears at ν′ = ν/10 = 0.18 ν, i.e., 82 % below the Nyquist frequency. The frequency
component above the Nyquist frequency seems to be “reflected” at the latter one. In a case
where a complete spectrum has been sampled in too crude a manner and the power spectral
density has non-zero components above the Nyquist frequency, the spectral density between
νN and 2νN is reflected into the interval 0 ≤ ν ≤ νN . As a result, the power spectral density
is corrupted by contributions from outside this interval. This corruption of the power spectral
density resulting from insufficient sampling is referred to as “aliasing”.

3.6 Frequency Stabilization with a Noisy Signal

In a scheme of the frequency standard (Fig. 1.3) where the signal from a passive frequency
reference is used to stabilise the frequency of the standard, fluctuations of the signal I from
the passive reference lead to fluctuations of the stabilised frequency. As an example consider,
e.g., the noisy absorption signal of a passive reference (Fig. 3.19) where the deviation of
the frequency of the oscillator from the centre frequency ν0 is detected by modulating the
frequency by ±Δν/2 and comparing the signals at both sides of the absorption line. The
fluctuations of the signal at a given working point νwp described by σ(I) and the corresponding
uncertainty in the frequency νwp described by σ(ν) are linked by the slope of the absorption
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Figure 3.19: Effect of fluctuations of the signal from a passive frequency reference on the
frequency stability.

line at νwp as follows

σ(ν) = σ(I) 1
dI(ν)
dν

∣∣∣∣
νwp

. (3.93)

In general, the slope can be written as

dI(ν)
dν

= K
Imax

Δν
(3.94)

where K is a constant of the order unity that depends on I(ν) and Δν is the full width at half
maximum. As an example, we approximate I(ν) of Fig. 3.19 by a symmetric triangle of hight
Imax and baseline 2Δν. In this simplified case K = 1 holds. A second important example is
I(ν) = Imax {1 + cos[2π(ν − ν0)t]} /2, which is encountered in the case of background-free
Ramsey excitation (see (6.44)). In this case one finds K = π. Often the fluctuations of the
signal are limited to white frequency noise, resulting, e.g., from the shot noise of the detected
photons or atoms and

σI(τ ) = σI(τ = 1 s)
1√
τ/s

(3.95)

holds. From (3.93) a useful formula can be derived to estimate the ultimate frequency stability
of a frequency standard by

σy(τ ) =
1
K

1
Q

1
S/N

1√
τ/s

(3.96)

where we have used Q = ν0/Δν, σ(ν) = ν0σy(τ ) and the signal-to-noise ratio S/N is
determined by the signal S = Imax and the noise N by σI(τ = 1 s). (3.96) has to be
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modified if the atoms are interrogated only for a fraction τ/Tc of the total cycle time Tc used
for preparation and interrogation of the atoms leading to

σy(τ ) =
1
K

1
Q

1
S/N

√
Tc

τ
. (3.97)

(3.96) and (3.97) are widely used to determine the achievable instability given by the Allan
deviation if the signal-to-noise ratio is known.

3.6.1 Degradation of the Frequency Stability Due to Aliasing

In frequency standards where the frequency of a local oscillator is stabilised to a passive refer-
ence by modulation techniques the frequency stability expected from (3.97) is often degraded
by different aliasing effects. These effects map high-frequency noise of the free-running local
oscillator onto the output frequency of the stabilised oscillator.

Such an effect [48, 49] referred to as “intermodulation effect” results from the nonlinear
slope of the discriminant curve used to derive the error signal (Fig. 3.19). A nonlinear element
in the servo control loop acts as an element which generates difference frequencies between
the harmonics of the modulation frequency and the nearby high-frequency noise components
of the oscillator which are thereby mixed into the base band. These low-frequency fluctuations
are interpreted by the servo control unit as frequency fluctuations which are counteracted,
thereby increasing the fluctuations of the frequency of the stabilised oscillator.

This effect is in particular pronounced in passive frequency standards that are operated
or interrogated in a pulsed mode, e.g., atomic fountain clocks (Section 7.3) or single-ion fre-
quency standards (Section 10) where the atoms are prepared and interrogated in a sequence.
The periodic activation of the control loop only during the interrogation again can mix down
frequency noise of the oscillator near the harmonics of the interrogation frequency into the
base band and, hence, into the bandwidth of the control loop. Increased noise due to this
so-called “Dick effect” has been predicted by Dick [50] and observed in atomic frequency
standards [51].

The degradation depends on the particular mode of interrogation and has been calculated
for a number of different operational schemes and parameters [51–53]. Often, use is made of
the so-called “sensitivity function” g(t) which is the response of the atomic system to a phase
step of the interrogating oscillator or the impulse response with respect to a frequency change
occuring at time t [51]. Hence the sensitivity function g(t) takes into account that during the
interrogation of the passive resonance the effect of frequency fluctuations of the local oscillator
on the error signal can be very different during the cycle time Tc. As an example, consider
the case of a sinusoidally modulated local oscillator where frequency fluctuations have almost
no effect when the instantaneous frequency is near the maximum of the line, but contribute
maximally at instantaneous frequencies near the maximum slope (Fig. 2.15). The sensitivity
function is represented as a function periodic in Tc with Fourier series

g(t) =
∞∑

m=−∞
gmei2πmfct (3.98)
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with fc = 1/Tc. The contributions of the power spectral density of fractional frequency
fluctuations SLO

y (f) of the free-running local oscillator weighted by the corresponding Fourier
components of the sensitivity function can be used to determine [51, 53] the resulting Allan
variation as follows

σ2
y(τ ) =

1
τ

∞∑
m=1

|gm|2
g2
0

SLO
y (mfc) (3.99)

where g0 is the mean value of g(t) over the cycle time Tc. As the Dick effect and the inter-
modulation effect can seriously affect the achievable stability of the most advanced frequency
standards local oscillators have to be selected whose noise properties match the chosen inter-
rogation scheme [51].





4 Macroscopic Frequency References

Macroscopic structures of specifically designed geometries can be excited to oscillate at dis-
tinct resonance frequencies. The eigenfrequencies of such resonators are uniquely determined
by their dimensions and the properties of the medium from which they are made. Resonators
find applications in stabilising the frequency of oscillators which in turn can serve as sec-
ondary frequency references as in the case of the quartz oscillator (Section 4.1) where a vi-
brating quartz plate defines the frequency of the oscillator. In the microwave (Section 4.2)
and optical domain (Section 4.3) dielectric resonators or empty cavities serve as stable fly
wheels for frequency standards. Furthermore, cavity resonators are also applied to interrogate
quantum absorbers at well defined frequencies.

4.1 Piezoelectric Crystal Frequency References

In solid bodies, mechanical deformations can be excited that oscillate with resonance frequen-
cies which depend on the properties and dimensions of the chosen material. Certain materials
like quartz (SiO2) or langasite (La3Ga5SiO14) and its isomorphs furthermore have piezoelec-
tric properties that allow one to couple such a mechanical resonator to an electric circuit and
to generate high-frequency electric oscillations.

4.1.1 Basic Properties of Piezoelectric Materials

Consider a plate of a piezoelectric material where two opposite surfaces are coated with a thin
metallic layer. When stress is applied to this plate, the centres of the positive and negative
charges in each unit cell are displaced with respect to each other. Inside the materials the
charges are compensated. On the metallised surfaces, however, the uncompensated charges
give rise to a voltage between these surfaces depending on the capacitance C of the plate
with the two conducting surfaces. As a result, any mechanical oscillation of the piezoelectric
plate is directly connected to an oscillating electric voltage. Conversely, a voltage applied
to the surfaces generates a strain and an electric ac voltage can be used to excite mechanical
oscillations in the plate.

From the several modifications of SiO2, α-quartz is the thermodynamically stable form
at temperatures up to 573 ◦C. There are distinct properties that make α-quartz unique for
building oscillators. First, the high mechanical stiffness and the high elasticity of the material
allows one to excite mechanical oscillations of a suitably cut plate with high frequencies and
high Q. Second, quartz is a material that can be grown with high purity and in large quantities
at low cost. Third, the material can be easily machined.



82 4 Macroscopic Frequency References

Langasite (La3Ga5SiO14) and its isomorphs langanite (La3Ga5.5Nb0.5O14) and langatate
(La3Ga5.5Ta0.5O14) have higher Q than the best suitable cuts of quartz and higher piezoelec-
tric coupling. Furthermore these materials have no phase transition up to their melting point
around 1400 ◦ C. Hence, in some applications these and other piezoelectric materials [54] may
replace the more familiar quartz.

4.1.2 Mechanical Resonances

The mechanical vibrations that can be excited in quartz specimens can be very complex. In
order to derive the frequencies associated with particular modes of motions we restrict our-
selves to the simple cases of rectangular plates where we consider the extensional, flexural and
shear modes (Fig. 4.1). Consider a rectangular slab of a homogeneous and isotropic medium
of length l, width a and height b. Applying a force F to both ends of the slab will stretch its
length (Fig. 4.1 a) by Δl. In the elastic regime where Hooke’s law holds, the fractional length

Figure 4.1: Different modes of strain in a quartz crystal plate. Extensional mode (a), flexure
mode (b), face shear mode (c), thickness shear mode (fundamental mode, d), and third-overtone
thickness shear mode (e).

change Δl/l is proportional to the force which can be written as F = EAΔl/l with A = a · b
and E being Young’s modulus of elasticity. Alternatively one writes

S = Es (4.1)

for the stress S ≡ F/A and the ensuing strain s ≡ Δl/l. Similarly, as in the case of a spring
obeying Hooke’s law (2.3), the slab can vibrate where the elastic medium is alternatively
stretched and compressed. When the length of the slab is increased, at the same time its width
and height are reduced (Fig. 4.1 a). In an isotropic medium the reduction of the thickness
occurs in the same way for the width and the height. The respective fractional thickness
variations are commonly described by Δa/a = Δb/b = −σΔl/l where σ is referred to as
Poisson’s ratio. However, in general, (4.1) has to be replaced by a tensor equation since a
stress along any direction leads not only to strain along this direction but also in all other
directions.
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In the following we briefly recall the derivation of the eigenfrequencies of a long thin
bar having all surfaces free. Here the thickness variation is small and may be neglected so
that the only stress that needs to be considered is along the x direction of the slender slab.
The eigenfrequencies of the (longitudinal) vibrations can be derived from the fundamental
relationships of Newton’s axiom and Hooke’s law. In contrast to the isolated mass used to
derive (2.4) one has now to treat a large number of mass elements Δmi coupled by forces∑

Fi,j to all other elements. We model the thin slab by a linear chain of mass elements Δmi

where each element at the ith position qi interacts only with its direct neighbours. Newton’s
second axiom then reads

d

dt

(
Δmi

d

dt
qi

)
= Fi,i+1 − Fi−1,i (4.2)

for each mass element. Introducing the density ρ ≡ Δmi/(AΔx) and the continuous function
u(x, t) describing the displacement of a mass element, the transition from the single masses
Δmi to an elastic continuum can be performed by letting

d

dt

(
Δmi

d

dt
qi

)
→ AΔxρ

∂

∂t

∂u(x, t)
∂t

(4.3)

and

Fi,i+1 − Fi−1,i → A
∂S(x, t)

∂z
Δx. (4.4)

Equating (4.3) and (4.4) according to (4.2) one finds

ρ
∂

∂t

∂u(x, t)
∂t

=
∂S(x, t)

∂x
. (4.5)

Relating the strains S(x, t) at any position of the slab and at any time to the stresses, we insert
Hooke’s law

S(x, t) = Es(x, t) = E
∂u(x, t)

∂x
(4.6)

into (4.5) and end up with a wave equation for u(x, t)

∂2

∂x2
u(x, t) − ρ

E

∂2

∂t2
u(x, t) = 0. (4.7)

The wave equation (4.7) is solved, e.g., by the ansatz

u(x, t) = u(x) exp(iωt) (4.8)

which leads to

∂2

∂x2
u(x) − k2u(x) = 0 (4.9)

with the wavenumber

k = ω

√
ρ

E
. (4.10)
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(4.9) is solved either by a cosine or sine function or a linear combination of both. There are,
however, so-called “boundary conditions” which restrict the possible solutions. If the ends
of the bar are free the stress has to be zero at x = 0 and at x = l. From (4.6) we find
∂u(x)/∂x = 0 and, hence, it follows that

u(x) = A cos kx (4.11)

with k = mπ/l. Combining this result with (4.10) we find equidistant angular eigenfrequen-
cies of the oscillating slab as

ωm =
mπ

l

√
E/ρ (4.12)

where m = 1, 2, 3, · · · .
For a different limiting case of a thin plate whose length l′ (thickness) is small with respect

to the transverse dimensions (l′ < a and l′ < b) the other stress components can no longer be
neglected. Similar, but more lengthy calculations [55] lead to the eigenfrequencies

ωm =
mπ

l′

√
E

ρ

1 − σ

(1 + σ)(1 − 2σ)
. (4.13)

Comparison of (4.12) and (4.13) shows that ωml′ of (4.13) is always smaller than ωml of
(4.12) by the factor

√
(1 − σ)/(1 − σ − 2σ2 depending on Poisson’s ratio. As (4.12) and

(4.13) describe the limiting cases of a rectangular block, one expects that the frequency of the
longitudinal mode becomes gradually lower as the width of the bar is increased. Consequently,
for such a block there are specific eigenfrequencies corresponding to the extensional vibrations
along the different directions.

This simple model does not account for the variety of effects that can occur in real plates,
e.g., in a quartz plate. First, apart from the extensional vibrations, other modes can be excited
(see Fig. 4.1) depending on the direction of the external force applied to the plate. Second,
as a result of the mechanical coupling between the different directions described by Poisson’s
ratio, the respective eigenfrequencies also exhibit coupling effects. Third, a real quartz plate
is a highly anisotropic medium as can be concluded already from the complicated shape of
the macroscopic quartz crystal (see Fig. 4.2 a) which gives a clue to anisotropic growth along
the different directions. Similarly the elastic constants and the coefficients of the thermal ex-
pansion differ along the different directions. The latter properties lead to dependencies of the
eigenfrequencies on external parameters that degrade the frequency stability of quartz oscil-
lators. These influences could be dramatically reduced since it was discovered that cutting
the crystals along selected crystallographic directions leads to devices where the temperature
coefficients of the electrical properties can be made exceedingly small as in the so-called AT-
cut. The SC-cut furthermore has an excellent stress compensation. On the other hand, LC-cut
quartz crystals show an almost linear temperature coefficient and can be used as a quartz ther-
mometer where the variation of the eigenfrequency is used to monitor temperature variations.
The locations of some common cuts and their angles with respect to the crystallographic axes,
are shown in Fig. 4.2 b) and c).
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Figure 4.2: a) Natural quartz crystal. b) Orientations of singly and doubly rotated quartz crystal cuts. c)
Angles of some important cuts after [2]. For the definition of the angles θ and φ see b).

4.1.3 Equivalent Circuit

In the quartz oscillator the energy is swapped between the electric energy stored in the ca-
pacitor and the mechanic energy stored in the elastic deformation of the crystal. This energy
exchange between its electric and mechanical form is analogous to the case of an oscillating
circuit. There, the energy of the system is stored alternatively in the magnetic field of a coil
with inductance L and the electric energy of the capacitor having a capacitance C. Hence,
the quartz crystal unit is readily represented by an electric equivalent circuit (Fig. 4.3). The
resistance R takes into account the dissipation of the energy from the oscillation to mostly
thermal energy in the crystal itself and in the mounts. The C − L − R branch is called the
motional arm representing the electric equivalent of the mechanical vibrating body of the res-
onator coupled into the circuit by means of the piezoelectric effect. C0 is the static capacitance
of the electrodes and the leads. To determine the resonance frequency of the crystal oscillator

Figure 4.3: Equivalent electrical circuit of a quartz crystal unit.

one calculates the impedance Z of the equivalent circuit of Fig. 4.3 from

1
Z

=
1
Z1

+
1
Z2

=
1

iωL + 1
iωC + R

+
1
1

iωC0

. (4.14)

The impedance Z of the device in general is a complex quantity that determines its current
response to an oscillating voltage. The real part is the conventional resistance to electric
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current and the imaginary part, referred to as the reactance, is positive when the phase of the
current lags behind the voltage. From the typical values of a 4 MHz quartz (L ≈ 100 mH, C ≈
0.015 pF, C0 ≈ 5 pF, and R ≈ 100 Ω) one finds that, close to the resonance, the resistance
R is small compared to other contributions to the impedance. Hence, neglecting R in the
following, one obtains the reactance

Z =
L
C0

− 1
ω2CC0

1
iωC0

+ iωL + 1
iωC

=
ω2LC − 1

ωC
i + iω3CC0L + ωC0

i

=
i

ω

ω2LC − 1
C0 + C − ω2LCC0

. (4.15)

There are two specific frequencies of the crystal oscillator defined by Z = 0 and Z = ∞ called
the series resonance νs and the parallel resonance νp, respectively. They can be calculated by
finding the zeros of the nominator and the denominator of (4.15) as

νs =
1

2π
√

LC
series resonance (4.16)

νp =
1

2π
√

LC

√
1 +

C

C0
parallel resonance. (4.17)

The frequencies of the series and parallel resonances are closely spaced (Fig. 4.4). In the

Figure 4.4: Reactance of a typical 4 MHz quartz calculated according to (4.15) using L =
100 mH, C = 0.015 pF and C0 = 5 pF.

example chosen they differ by 0.15 %. The resonance frequency of the series resonance
depends on the well defined quantity LC, whereas the parallel resonance also includes C0,
resulting from the less well defined capacities of the electrodes and leads.

Crystal oscillators make use of the steep slope of the reactance between νs and νp

(Fig. 4.4). In principle the oscillator comprises an amplifier as an active element and the
quartz inserted into a feedback loop (Fig. 4.5) which can be realised by a variety of different
circuits (see e.g. [22]). The oscillator sustains steady oscillation if the gain in the feedback
loop is unity (2.54) and the phase shift is an integer multiple of 2π (2.55). The steep fre-
quency dependence of the reactance allows the oscillator to maintain these conditions with
very small frequency deviations even if the parameters of the remaining elements in the os-
cillating loop vary, e.g., in dependence on the temperature. Consider any phase fluctuation
Δφamp in the amplifier of Fig. 4.5. To sustain the phase condition of n2π for oscillation,
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Figure 4.5: Schematics of a quartz oscillator.

this phase fluctuation has to be compensated by an opposite phase fluctuation in the resonator
Δφres = −Δφamp which causes fluctuations in the frequency of the resonator that can be es-
timated from the phase shift in the vicinity of the resonance (Fig. 4.4). From (2.62) it follows
that

Δν

ν0
=

1
2QL

Δφamp (4.18)

where QL is the loaded Q of the resonator. Optimum frequency stability, hence, requires a
high-Q resonator and an amplifier with low phase fluctuations Δφamp.

Often it is necessary to tune the frequency of a quartz oscillator. This can be achieved,
e.g., by a load capacitor CL (Fig. 4.3) that affects the series resonance frequency. It can be
calculated from the series impedance of the corresponding equivalent circuit given by (4.15)
and adding 1/(iωCL) which leads to

Z ′ =
1

iωCL

C + C0 + CL − ω2LC(C0 + CL)
C0 + C − ω2LCC0

. (4.19)

From the zero of the nominator one obtains the shifted series resonance frequency as

ν′
s =

1
2π

√
LC

√
C + C0 + CL

C0 + CL
= νs

√
1 +

C

C0 + CL
. (4.20)

For C 
 C0 + CL the square root can be expanded leading to

ω′
s = ωs

[
1 +

C

2(C0 + CL)

]
. (4.21)

Hence, the load capacitance CL changes the frequency of the series resonance by

Δνs

νs
=

C

2(C0 + CL)
. (4.22)

Often the load capacitor comprises a fixed capacitor in series with a varactor, i.e., a capac-
itor whose capacitance can be varied by an applied voltage in order to fine-tune the fre-
quency of the quartz-crystal oscillator. Such a Voltage Controlled Crystal Oscillator (VCXO)
compromises between the good intrinsic stability of a crystal oscillator and the tunability
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(10−5 <∼ Δν/ν <∼ 10−4). The frequency stability of a VCXO is typically a few parts per mil-
lion within the normal operational temperature range.

The production of quartz plates thin enough to produce fundamental frequencies higher
than 30 MHz meets with difficulties. To realise quartz oscillators with higher frequencies,
electrical circuits are used that, e.g., selectively excite higher modes of the quartz oscillator or
lock an LC oscillator via a phase-locked loop (PLL) to higher harmonics of a low-frequency
quartz.

4.1.4 Stability and Accuracy of Quartz Oscillators

The noise and instability of the phase and frequency of a quartz oscillator results from var-
ious contributions such as ageing, the sensitivity to external influences such as temperature,
acceleration, magnetic fields, or noise in the electronic circuits, to name only a few. Age-
ing can result from relief of stress in the crystal or the bonds which settles down after some
months, from the absorption or desorption of molecules, from dc bias on the crystal, from
load reactance change (see (4.22)) but also for a number of other reasons. The mounting of
the quartz plate is of utmost importance to achieve high Q, low cross coupling between the
different modes (see Fig. 4.1) and minimum external stress. Coating the quartz plate with
metallic electrodes, in general leads to stress that is partially reduced during the lifetime of the
resonator and, hence, leads to a variation of the resonance frequency which contributes to the
“ageing”. This source of ageing can be avoided in a so-called “BVA” electrodeless resonator
structure [56] (Fig. 4.6). There the electrodes are on auxiliary plates with a small gap of a

Figure 4.6: BVA quartz resonator structure. a) Side view of vibrating quartz plate clamped by
two quartz holders with deposited electrodes. b) Top view of vibrating plate with four quartz
bridges connecting the vibrating part to the outer ring being clamped.

few micrometres to the vibrating plate rather than on the vibrating plate itself. The absence of
the electrodes from the vibrating plate furthermore allows the achievement of a high Q which
is not degraded by the damping of the electrode material.

From the external influences, temperature fluctuations affect the quartz crystal’s frequency
despite of the use of temperature compensated cuts. Higher immunity to temperature fluctua-
tions can be obtained by use of a Temperature Compensated Crystal Oscillator (TCXO) where
the temperature sensitivity of the quartz crystal is compensated by temperature sensitive reac-
tances. Better performance (see Table 4.1) is obtained with the Microcomputer Compensated



4.2 Microwave Cavity Resonators 89

Crystal Oscillator (MCXO) which makes use of a dual mode oscillator that operates simulta-
neously on the fundamental frequency ν1 and on the third overtone (ν3 ≈ 3ν1).

Table 4.1: Properties of quartz crystal oscillators after [2].

TCXO MCXO OCXO

Fractional inaccuracy / year 2 × 10−6 5 × 10−8 1 × 10−8

Ageing / year 5 × 10−7 2 × 10−8 5 × 10−9

Temp. stability / year (-55◦ C to +85◦ C) 5 × 10−7 3 × 10−8 1 × 10−9

σy(τ = 1 s) 1 × 10−9 3 × 10−10 1 × 10−12

Since the frequency difference 3ν1 − ν3 exhibits a monotonous almost linear variation
with the temperature of about −14 Hz/K, in the MCXO this frequency difference is monitored
by a microcomputer that corrects the output frequency accordingly. In the Oven Controlled
Crystal Oscillator (OCXO) a crystal with a zero temperature-coefficient cut is operated in an
oven at a temperature of >∼ 80◦ C kept constant by a thermostat. A typical commercial high
performance oscillator operating at 10 MHz can have an instability of a few parts in 1011 over
periods of seconds to hours.

The frequency stability of a quartz oscillator depends on a variety of ambient parame-
ters. Even though quartz is diamagnetic, quartz crystal resonators are slightly sensitive to
external magnetic fields that can influence the circuitry with fractional frequency changes of
2 × 10−8 T−1 [57]. The quartz resonator is particularly sensitive to vibrations and shocks.
The associated frequency excursions result from the sensitivity of the resonator to stress. The
best available SC-cut BVA resonators show a fractional frequency change with acceleration
between 10−10 g−1 and a few times 10−12 g−1 [57]. Fluctuations of the ambient humidity and
pressure affect the frequency by deforming the oscillator package and the oscillator circuitry.
Fluctuations of the supply voltage can change the resonator drive level and the load reactance,
which in turn can change the amplitude or phase of the signal in the oscillator loop. Noise in
the electronic circuit represents another source of frequency instability of quartz oscillators.

Hyperstable quartz oscillators at 10 MHz employing a 3rd overtone, SC-cut BVA quartz
have been shown [57] to have instabilities below σy(τ ) < 10−13 for 0.3 s ≤ τ ≤ 500 s.
Ageing ratios of the best specimens between 2 × 10−11 per day and 5 × 10−13 per day have
been observed.

4.2 Microwave Cavity Resonators

In microwave frequency standards cavities are often used where electromagnetic fields are
contained in structures bounded by electrically conducting surfaces. The boundaries affect
the properties of the electromagnetic fields inside the cavity. For a quantitative analysis of
such microwave cavity-resonators, Maxwell’s equations have to be solved with the boundary
conditions resulting from the particular shape of the cavity. Here, we restrict ourselves to
the right circular cylindrical resonator which is wide-spread in frequency standards, e.g., in
the hydrogen maser (Section 8.1), the rubidium clock (Section 8.2) or the caesium fountain
clock (Section 7.3). Right cylindrical resonators can be thought of as resulting from a finite
cylindrical wave guide which is sealed at its end with metal caps (Fig. 4.7).
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Figure 4.7: Right circular cylinder with coordinate system as used in a microwave cavity.

We take the z axis of the coordinate system to coincide with the axis of the cylindrical
cavity of length L and radius R with circular end faces. The radial distance from the axis
is denoted as r, the axial distance z is conveniently chosen having a zero position z = 0 at
the surface at one end plane, and the angle φ is the angle around the axis with respect to a
defined radial direction. In the mathematical description of the properties of those resonators
we will apply a two-step procedure and begin by using Maxwell’s equations to find the elec-
tromagnetic waves that can propagate in the circular wave guide. Afterwards we look for the
standing waves and resonance frequencies that result from the introduction of the metal caps.
This type of empty microwave resonator will be treated in the following section. Later we
will also discuss resonators filled with a dielectric medium finding applications as fly wheels
in frequency standards.

4.2.1 Electromagnetic Wave Equations

The treatment often starts [58] with Maxwell’s equations in differential form for the electric
field �E and the magnetic induction �B in a volume of space which is free of currents and charge
and is filled with a uniform, non-dissipative medium.

�∇× �E = −∂ �B

∂t
(4.23)

�∇× �B = μμ0εε0
∂ �E

∂t
(4.24)

�∇ · �E = 0 (4.25)
�∇ · �B = 0. (4.26)

Here, μ0 = 4π × 10−7 V s / (A m) and ε0 = 8.854 × 10−12 A s / (V m) are the permeability
and the permittivity of the vacuum, respectively. From these equations a wave equation for the
electric field can be derived by taking the curl of (4.23), i.e., �∇× (�∇× �E) = �∇× (−∂ �B/∂t).
Using the well kown relationship �∇ × �∇ × �E = �∇(�∇ · �E) − �∇ · (�∇�E) one ends up with
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0−∇2 �E = �∇× (−∂ �B/∂t) = −∂/∂t�∇× �B = −μμ0εε0∂
2 �E/∂t2 leading to wave equations

for the electric field and similarly for the magnetic field as follows

∇2 �E − με

c2

∂2 �E

∂t2
= 0 (4.27)

∇2 �B − με

c2

∂2 �B

∂t2
= 0. (4.28)

Here, we have made use of the speed of light in the vacuum c = 1/
√

μ0ε0. Assuming a
harmonic time dependence, e.g., exp(iωt) of the fields, one derives a differential equation for
the spatial part of the electromagnetic wave

∇2 �E + k2
0
�E = 0 (4.29)

∇2 �B + k2
0
�B = 0 (4.30)

with

k0 =
√

με

c
ω (4.31)

being the wave number. To solve these wave equations one has to take into account boundary
conditions similarly as in Section 4.1.2. For simplicity, we assume that the walls have infi-
nite conductivity and no losses. For an ideal conducting surface the tangential electric field
on the surface must vanish since the charges inside a perfect conductor would move under
the influence of this field, thereby creating a field distribution of the charges that completely
counteracts the applied field. At the boundary between two media “1” and “2” the tangen-
tial component of the electric field �E is continuous as well as the normal component of the
magnetic induction �B, i.e.,

�n × �E1 = �n × �E2 (4.32)

�n · �B1 = �n · �B2 (4.33)

where �n denotes the normal vector of the surface. Hence, for �E2 = 0 and �B2 = 0 in the metal
the boundary conditions take the simple forms

�n × �E |S = 0 (4.34)

�n · �B |S = 0. (4.35)

Hence, the electric field �E at the surface S of the cylinder has to be perpendicular to the
surface leading to (4.34). Similarly, the normal component of the magnetic field vanishes
at the surface of a conductor of infinite conductivity (see (4.35)) since any magnetic field
reaching into the conductor would induce internal currents with opposite magnetic field. As
the wave equations (4.27) and (4.28) only deal with �E and �B their solutions only require the
boundary conditions (4.34) and (4.35), respectively. The solutions to the wave equations are
the types of waves that are possible in the wave guide. To this end one only needs to know the
z component of �E for (4.29) or �B for (4.30) in order to derive all other components, as will
become obvious in the following.
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4.2.2 Electromagnetic Fields in Cylindrical Wave Guides

For the electric field we utilise a cylindrical coordinate system with the coordinates r, φ, and
z and the corresponding unit vectors êr, êφ, êz , respectively. The fields of the wave travelling
in the wave guide along the +z direction are given by

�E(�r) = �E(r, φ)e−ikz (4.36)
�B(�r) = �B(r, φ)e−ikz (4.37)

with k the wave number in the wave guide. If the axial components are known, the radial
and azimuthal components can be determined from Maxwell’s equations (4.23) and (4.24) as
follows. For example, consider (4.24) with the curl of �B in cylindrical coordinates given as

�∇× �B =
(

1
r

∂Bz

∂φ
− ∂Bφ

∂z

)
êr +

(
∂Br

∂z
− ∂Bz

∂r

)
êφ +

(
1
r

∂(rBφ)
∂r

− 1
r

∂Br

∂φ

)
êz. (4.38)

Applying (4.24) and (4.38) by components, one obtains for the z dependent fields of (4.36)
and (4.37)

iωμμ0εε0Er =
1
r

∂Bz

∂φ
+ ikBφ, (4.39)

iωμμ0εε0Eφ = −ikBr − ∂Bz

∂r
(4.40)

iωμμ0εε0Ez =
1
r

∂(rBφ)
∂r

− 1
r

∂Br

∂φ
, (4.41)

and similarly from (4.23)

−iωBr =
1
r

∂Ez

∂φ
+ ikEφ, (4.42)

−iωBφ = −ikEr − ∂Ez

∂r
, (4.43)

−iωBz =
1
r

∂(rEφ)
∂r

− 1
r

∂Er

∂φ
. (4.44)

These equations can be combined (e.g., (4.39) and (4.43) lead to (4.45)) to express the trans-
verse components Er, Eφ, Br, and Bφ by the axial components Ez and Bz as follows

Er = − ik

ω2μμ0εε0 − k2

(
∂Ez

∂r
+

ω

k

1
r

∂Bz

∂φ

)
, (4.45)

Eφ = − ik

ω2μμ0εε0 − k2

(
1
r

∂Ez

∂φ
− ω

k

∂Bz

∂r

)
, (4.46)

Br = − ik

ω2μμ0εε0 − k2

(
∂Bz

∂r
− μμ0εε0

ω

k

1
r

∂Ez

∂φ

)
, (4.47)

Bφ = − ik

ω2μμ0εε0 − k2

(
1
r

∂Bz

∂φ
+ μμ0εε0

ω

k

∂Ez

∂r

)
. (4.48)

Hence, the wave equations have to be solved with the appropriate boundary conditions only
for the z components, e.g., Ez and Bz for a cylindrical resonator (Fig. 4.7) from which later
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the other components can be derived by use of (4.45) to (4.48). From (4.29) and (4.36) one
finds

∇2
[
Ez(r, φ)e−ikz

]
+ k2

0Ez(r, φ)e−ikz = 0 (4.49)

∇2 [Ez(r, φ)] e−ikz + Ez(r, φ)∇2
(
e−ikz

)
+ k2

0Ez(r, φ)e−ikz = 0 (4.50)

or

∇2 [Ez(r, φ)] + (k2
0 − k2)Ez(r, φ) = 0 (4.51)

∇2 [Bz(r, φ)] + (k2
0 − k2)Bz(r, φ) = 0. (4.52)

The electromagnetic field inside the cavity reflects the cylindrical symmetry and the inter-
nal boundary of the electrically conducting surface leads to different boundary conditions on
the magnetic induction �B and on the electric field �E (4.34) and (4.35). Since the boundary
conditions in general cannot be satisfied simultaneously there are two distinct categories of
field configurations. They are referred to as the transverse magnetic (TM) case with Bz = 0
everywhere and the transverse electric (TE) case with Ez = 0 everywhere [58]. Alternatively,
the TM waves and TE waves are referred to as H waves and E waves, respectively.

To determine the r and φ dependence ψ(r, φ) of Ez and Bz the wave equations (4.27) and
(4.28) have to be solved with the Laplacean operator in cylindrical coordinates as follows

∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂φ2
+

∂2

∂z2
. (4.53)

Insertion of (4.53) into (4.51) yields[
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂φ2
+ γ2

]
Ez(r, φ) = 0 (4.54)

with

γ2 ≡ k2
0 − k2. (4.55)

We look for solutions to (4.54) of the form

Ez(r, φ) = A(r)Φ(φ) (4.56)

and derive

r2
∂2A(r)

∂r2

A(r)
+ r

∂A(r)
∂r

A(r)
+ r2γ2 = −

∂2Φ(φ)
∂φ2

Φ(φ)
. (4.57)

Since the left-hand side and the right-hand side of (4.57) depend independently on r and φ,
respectively, both sides are equal to the same real constant which we call m2. We obtain two
regular differential equations

∂2

∂r2
A(r) +

1
r

∂

∂r
A(r) +

(
γ2 − m2

r2

)
A(r) = 0 (4.58)

∂2

∂φ2
Φ(φ) + m2Φ(φ) = 0. (4.59)
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Particular solutions to (4.59) are sin mφ and cos mφ. In order to ensure that Ez and Bz are
single-valued functions of φ the azimuthal solution has to fulfil m = 0, 1, 2, · · · . To each
m �= 0 there is a pair of degenerate azimuthal eigenfunctions, one with sin φ and one with
cos φ. There is, however, only a single solution with rotational symmetry (n = 0).

(4.58) is known as Bessel’s differential equation [59]. From the particular solutions to
(4.59) only the Bessel functions of the first kind J±m(γr) (see (2.49)) are relevant which stay
finite for r = 0. Since the boundary condition (4.34) requires that Ez(r = R) = 0, the Bessel
function Jm(γr) of order m is a solution to the problem only if it is zero at r = R. Thus,

xmn = γmnR (4.60)

is the nth root of the equation Jm(γR) = 0 with the first few values given in Table 4.2.

Table 4.2: Roots of the Bessel function of the
first kind of order m(Jm(x) = 0).

m xm1 xm2 xm3 xm4

0 2.405 5.520 8.654 11.792
1 3.832 7.016 10.173 13.324
2 5.136 8.417 11.620 14.796
3 6.380 9.761 13.015 16.223

Table 4.3: Maxima or minima of the Bessel func-
tion of the first kind of order m (J ′

m(x) = 0).

m x′
m1 x′

m2 x′
m3 x′

m4

0 3.832 7.016 10.173 13.324
1 1.841 5.331 8.536 11.706
2 3.054 6.706 9.969 13.170
3 4.201 8.015 11.346 14.586

Hence, the solution for the z component of the electric field is

Ez(r, φ, z) = E0Jm

(
xmn

r

R

) {
sin mφ
cosmφ

exp(−ikz). (4.61)

Using (4.61) and �∇ × �E = −iω �B (which one derives from (4.23) and a harmonic time de-
pendence of the fields) one immediately finds that Bz vanishes. Hence, (4.61) corresponds to
a solution where the magnetic field has only transverse components. This solution is therefore
the transverse magnetic (TM) wave sometimes called the E wave.

We now start with (4.30) and use the boundary condition (4.35). At the curved surface
of the cavity the fields Eφ and Br must vanish. This is equivalent to the condition that the
derivative of the Bessel function J ′

0(γr) is zero at r = R. Similar to the Bessel function itself,
the resonance frequencies of a cylindrical resonator are given by the zeros of J ′

0(γr) = 0
labelled as x′

mn = γmnR and shown in Table 4.3 for the first few values. Hence,

Bz(r, φ, z) = B0Jm

(
x′

mn

r

R

) {
sin mφ
cos mφ

exp(−ikz) (4.62)

holds for the transverse electric (TE) waves (H waves).

4.2.3 Cylindrical Cavity Resonators

We now consider the fields in cylindrical resonators. There, the wave travelling along the
+z direction described by the e−ikz factor is reflected by the end cap. Neglecting losses, the
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reflected wave has the same amplitude but an e+ikz factor which leads to standing waves with
the z dependence A sin kz+B cos kz. We furthermore have to take into account the boundary
conditions at the end caps

k = q
π

L
, q = 0, 1, 2, 3 · · · . (4.63)

Due to the boundary conditions (4.34) the transverse components of the electric field Er and
Eφ must vanish at the bottom (z = 0) and at the top (z = L) of the cylinder. On the other
hand, the z component of the magnetic field has to vanish at the bottom and the top of the
cylinder (see (4.35)). Hence, eigenoscillations being TM with respect to z are given by

Ez(r, φ, z) = E0Jm

(
xmn

r

R

) {
sin mφ
cos mφ

cos
(qπz

L

)
with

m = 0, 1, 2, · · ·
n = 1, 2, 3, · · ·
q = 0, 1, 2, · · ·

(4.64)

and eigenoscillations being TE with respect to z are given by

Bz(r, φ, z) = B0Jm

(
x′

mn

r

R

) {
sin mφ
cos mφ

sin
(qπz

L

)
with

m = 0, 1, 2, · · ·
n = 1, 2, 3, · · ·
q = 1, 2, 3, · · ·

(4.65)

The three integers m = 0, 1, 2, · · · , n = 1, 2, 3, · · · and q are related to the numbers of zeros
of the fields along the φ, r and z coordinates, respectively. Furthermore, m denotes the order
of the Bessel function of the first kind. The field configurations determined by these integers
are called the modes of the cavity. Instead of (4.55) the eigenvalue problem now leads to

γ2
mn = με

ω2

c2
−

(qπ

L

)2

(4.66)

from where the resonant angular frequencies ωmnq associated with these modes can be calcu-
lated using the corresponding zeros xmn = γmnR from Table 4.2 as

ν(TM)
mnq =

c

2π
√

με

√
x2

mn

R2
+

q2π2

L2
. (4.67)

Using D = 2R, (4.67) can be given as a linear relation for (D/λ)2 as function of the dimen-
sion (D/L)2 (see Fig. 4.8 a).

Similarly, the resonance frequencies for the TE waves are

ν(TE)
mnq =

c

2π
√

με

√
(x′)2mn

R2
+

q2π2

L2
(4.68)

(see Fig. 4.8 b). In general, for each m �= 0 according to (4.56) there are two degenerate
oscillations with sin mφ and cos mφ (Fig. 4.8). The oscillation with the lowest eigenfrequency
is TE111 for 2R/L < 0.985 and TM010 for 2R/L > 0.985.

As an example, consider the TE011 resonance in a right cylindrical resonator (Fig. 4.9).
In frequency standards like the Cs fountain or the hydrogen maser this mode is often used to
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Figure 4.8: Resonance wavelengths in a cylindrical resonator with height L and radius R = D/2. a)
TM waves (E waves) calculated according to (4.67) and b) TE waves (H waves).

Figure 4.9: a) Magnetic (full lines) and electric field lines (dashed lines) of a resonator mode TE011 in
a right circular microwave cavity. b) Radial field components according to (4.69), (4.72) and (4.73) c)
Top view.

interrogate or to excite magnetic hyperfine transitions. Atoms supposed to interact with the
magnetic field enter and leave the resonator through small holes in the centre of the bottom
and top of the right circular cylinder.

From m = 0 there is no azimuthal dependence of the magnetic field and the z dependence
is taken from (4.65) using q = 1. Hence, the magnetic field has a maximum along the z axis
of the cylinder with

Bz = B0J0(3.832
r

R
) sin

(πz

L

)
exp (iωt) (4.69)

Ez = 0. (4.70)

The remaining components of the TM011 mode can be calculated by applying (4.45) to (4.48).
By insertion of (4.69) and (4.70) into (4.45) one finds

Er = 0. (4.71)
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Similarly, we obtain

Eφ = B0
ω

ω2μμ0εε0 − k2
J1(3.832

r

R
) cos

(πz

L

)
and (4.72)

Br = B0
k

ω2μμ0εε0 − k2
J1(3.832

r

R
) cos

(πz

L

)
, (4.73)

where we have used [59]

J ′
m(x) ≡ dJm(x)

dx
=

m

x
Jm(x) − Jm+1(x). (4.74)

The factor i in (4.45) – (4.48) leads to the phase shift of π/2 between Eφ (see (4.72)), Br

(see (4.73)) and Bz (see (4.70)). From insertion of (4.69) and (4.70) into (4.48) one finds

Bφ = 0. (4.75)

The radial dependencies of Bz , Eφ and Br are shown in Fig. 4.9.

4.2.4 Losses due to Finite Conductivity

For finite conductivity of the walls of the resonator the high-frequency electromagnetic field
penetrates into the metallic walls of the cavity. At the same time the electric currents in the
walls suffer from ohmic losses and the eigenoscillations are damped. The field distribution in-
side cylindrical cavities, however, does not differ considerably from that of an ideal resonator
with infinite conductivity. In particular, for eigenoscillations (m n q) with one index equal to
zero these modifications of the field are small. A fraction of the energy of the electromagnetic
wave is dissipated continuously to heat by the ohmic losses of the wall currents and hence
the energy flux in the wall decreases exponentially with a characteristic length. In a regular
conducting material such as, e.g., copper this characteristic length is given by the skin depth
δS of a few micrometres. In a superconducting material the penetration depth is given by the
much smaller London depth of, e.g., λL ≈ 30 nm in niobium.

To determine the quality factor (see (2.39)) of a cavity mode, the ratio of the stored elec-
tromagnetic energy and the power dissipated into the walls

dW/dt = Rs

∮
|Ht|2dA (4.76)

has to be calculated [58] where the integration has to be extended over all walls of the cavity.
Ht are the components of the magnetic field transverse to the surfaces of the cavity and Rs is
the surface resistivity. From such calculations, in general, the quality factor can be written as

Q ≡ ω
W

−dW/dt
=

Γ
Rs

(4.77)

where Γ = μ0cG(R/L) is of the order of the resistivity of the vacuum μ0c = 376.73 Ω for
low-order modes and the geometrical factor G(R/L) is of order unity. The surface resistivity
of copper and superconducting niobium (at 1.8 K) of Rs ≈ 5 mΩ and Rs ≈ 7 nΩ leads to
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a quality factor of 50 000 and 4 ×1010, respectively. In general the TE0nq modes have the
highest Q factors as a result of the associated low wall losses. If microwave resonators with
highest Q factors are required superconducting materials are employed. Ultrastable supercon-
ducting cavity resonators [30] are used in basic research [60, 61], in accelerator physics and
for space applications [62].

4.2.5 Dielectric Resonators

Near 10 GHz, monocrystalline sapphire shows a high permittivity of ε = 11.5 along the crys-
tal’s c axis allowing one to build compact cavities (see (4.67) and (4.68)). Consider a sap-
phire cavity resonator exhibiting cylindrical symmetry with the cavity axis coinciding with
the sapphire crystal’s c axis and the sapphire surface coated with a conducting material. Such
a resonator can be thought of as a vacuum cavity filled with the dielectric sapphire mate-
rial with the transverse electric (TEmnq) or transverse magnetic (TMmnq) modes described in
Section 4.2.2.

The unloaded quality factor of such a cavity is given [30] as

Q =
1

RsΓ−1 + pε tan δ + pμχ′′ . (4.78)

where pε and pμ are the electric and magnetic filling factors, respectively. Apart from the
losses in the metallic shield described by RS/Γ (see (4.77)) the losses of the medium reduce
the Q factor. The loss tangent tan δ ≡ ε′′/ε′ of the dielectric material is determined by the
real and imaginary part ε′ and ε′′, respectively, of the relative dielectric constant. χ′′ is the
imaginary part of the ac susceptibility resulting from paramagnetic impurities. For an ideally
conducting shield and no paramagnetic impurities, the Q factor is determined by the dielectric
losses that can be calculated from (2.39) and from the maximal electric energy density leading
to W = ε′ε0

∫ |E|2dV and from −dW/dt = ω0ε
′′ε0

∫ |E|2dV as Q = 1/ tan δ. When the
shield is a direct metallic coating of the sapphire body the surface resistance has maximum
influence on the quality factor Q. Hence, in typical resonators, the metallic shield is placed at
some distance from the surface and a mode configuration is chosen which is optimally con-
fined in the dielectric medium, e.g., “whispering gallery modes” 1 (WG modes; see Fig. 4.10).
In general the modes in such an arrangement are hybrid, but whispering gallery modes can

have dominant axial electric fields referred to as E modes or quasi-TM or WGH modes. In
the case of a dominant axial magnetic field dependence they are called H modes or quasi-TE
or WGE modes.

For a well designed sapphire resonator the Q factor of the unloaded cavity (4.78) is gov-
erned by the loss tangent of the dielectric material. At cryogenic temperatures, unloaded
quality factors can be between 108 at 50 K and 1010 at 2 K for frequencies near 12 GHz [30].
The frequency stability of such a resonator is limited by temperature stability since, e.g., the
mechanical dimensions as well as the permittivity ε have significant temperature dependen-
cies. Different techniques such as, e.g., paramagnetic compensation, dielectric compensa-
tion or mechanical compensation have been used to achieve compensation of the different

1 These modes are named after the “whispering gallery” in St. Paul’s cathedral in London where the acoustics allow
one to hear a whispered word at the opposite end of the gallery.
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Figure 4.10: Example of the electric field configuration (dark area) in a dielectric resonator with
azimuthal mode number m = 12 (metallic shield not shown). a) Side view. b) Top view.

temperature-dependent effects [63]. The first technique uses the contribution of a suitably
chosen portion of paramagnetic ions in the dielectric to compensate the temperature depen-
dence of the permittivity by the temperature dependence of the magnetic susceptibility. The
second method uses compensation with two different dielectric materials, e.g., rutile and sap-
phire showing opposite slopes of the temperature dependence of the dielectric constant and
having low microwave losses at the same time. Composite sapphire-rutile resonators with a
turning point in the temperature dependence of the resonance frequency show excellent fre-
quency stability and very high Q values. The third method uses two different materials with
different thermal expansion to compensate for the change in ε. Various concepts have been
realised that led to exceptional short and medium-term stabilities [63]. For integration times τ
between a few seconds and about one hundred seconds, the best sapphire oscillators can reach
a flicker floor in the Allan deviation at σ(τ ) ≈ 3 × 10−16 [30]. Ultra low-noise microwave
resonators based on dielectric materials like single-crystal sapphire, have proven to be excel-
lent flywheel oscillators, e.g., for Cs fountain clocks [18, 64] or for deep-space applications
(see Section 13.1.2.2, [65]).

4.3 Optical Resonators

Optical resonators differ from the microwave resonators in the sense that the wavelength of
about one micrometre is typically very small compared to the dimensions of the resonator.
Diffraction effects are often therefore not very relevant and the resonator structures need not
be confined in all three dimensions but can be set up using discrete mirrors. The most simple
arrangement consists of two reflecting mirrors facing each other separated by the distance L
(Fig. 4.11 a). More than two mirrors can be arranged in a ring configuration (Fig. 4.11 b) or
even in a three-dimensional arrangement.
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Figure 4.11: a) Linear optical resonator. b) Optical ring resonator.

4.3.1 Reflection and Transmission at the Fabry–Pérot Interferometer

For simplicity, we investigate the case of a linear resonator with plane mirrors often called a
plane Fabry–Pérot interferometer (FPI). E0, Er, and Et denote the complex amplitudes of the
electromagnetic wave incident on the first mirror M1 (Fig. 4.12) representing the input coupler
of the resonator, the amplitude of the wave reflected by the input coupler, and the amplitude
transmitted by the resonator, respectively. We assume that the reflection takes place at the
surfaces of the mirrors pointing towards the inner side of the resonator. Hence, the reflected
wave will suffer from a phase shift of π at this interface when travelling from the medium with
the lower index of refraction to the medium with the higher index of refraction. The mirrors
are characterised by their (amplitude) reflection coefficients r1 and r2 and by their (amplitude)
transmission coefficients t1 and t2. The phase factor of the incident wave exp i(ωt − �k · �r) is
chosen such that it is unity at the surface of the entrance mirror.

Figure 4.12: Reflection and transmission from an optical resonator (plane Fabry–Pérot interfer-
ometer) with the amplitudes of the partial waves.

In the following we calculate the amplitudes of the waves that are transmitted and re-
flected by the resonator (see Fig. 4.12). To visualise the particular reflected or transmitted
partial waves we slightly tilt the impinging beam but do not take into account the phase shift
associated with this tilt in the following calculation. The complex amplitude of the transmitted
wave is a superposition of all partial amplitudes resulting from the contribution of the directly
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transmitted part and the ones coupled out after circulating once, twice, three times, and so on
inside the resonator and each time acquiring a phase factor exp(−i�k · �r) = exp(−iω/c · 2L)
leading to

ET = E0t1t2e
−iωL/c + E0t1t2r1r2e

−iω3L/c + E0t1t2r
2
1r

2
2e

−iω5L/c · · · (4.79)

= E0t1t2e
−iωL/c

[
1 + r1r2e

−iω2L/c + r2
1r

2
2e

−iω4L/c · · ·
]
.

The geometrical series of the terms inside the brackets of (4.79) can be evaluated by using

∞∑
n=0

qn =
1

1 − q
and q = r1r2e

−iω2L/c (4.80)

as 1/[1 − r1r2 exp(−iω2L/c)] and one obtains

ET = E0
t1t2 exp(−iωL/c)

1 − r1r2 exp(−iω2L/c)
. (4.81)

From

ET = E0
t1t2 exp(−iωL/c)[1 − r1r2 exp(iω2L/c)]

[1 − r1r2 exp(−iω2L/c)][1 − r1r2 exp(iω2L/c)]

= E0
t1t2 [exp(−iωL/c) − r1r2 exp(iωL/c)]

1 + r2
1r

2
2 − 2r1r2 cos(2ωL/c)

. (4.82)

one calculates

ET E∗
T = E2

0

t21t
2
2

1 + r2
1r

2
2 − 2r1r2 cos(ω2L/c)

(4.83)

being proportional to the power transmitted through the FPI representing the so-called Airy
function (Fig. 4.13) which depends on the phase shift

Δφ = ω 2 L/c. (4.84)

between adjacent partial waves.
If this phase shift corresponds to an integral (q) multiple of 2π, all partial waves interfere

constructively in contrast to all other cases where the partial waves interfere more or less
destructively. Obviously, the phase difference between the partial waves, and consequently
the transmitted power, varies with the angular frequency ω of the incident radiation. The
frequency difference that leads to a phase shift of 2π between two consecutive round trips
of the radiation inside the resonating cavity is the so-called free spectral range (FSR) of the
Fabry–Pérot interferometer

FSR =
c

2 L
. (4.85)

The linewidth 2πδν (FWHM) of the interference structure becomes sharper if more partial
waves contribute to the transmitted amplitude, i.e., if the reflectivities r1 and r2 of the mirrors
become higher. The quantitative relation between δν and the reflectivities can be derived
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Figure 4.13: The fraction of the incident power transmitted through a Fabry–Pérot interferom-
eter shows an Airy function according to (4.83) for R = r2

1 = r2
2 = 0.5, R = 0.9, R = 0.99

and T = t21 = t22 = 1 − R.

readily for small phase shifts, i.e., for Δφ = 2ωL/c 
 2π. Expanding the cosine function in
the denominator of (4.83) leads to

ET E∗
T = E2

0

t21t
2
2

1 + r2
1r

2
2 − 2r1r2(1 − 4ω2L2

2c2 + · · · ) ≈ E2
0

t21t
2
2

(1 − r1r2)2 + 4r1r2
ω2L2

c2

.

(4.86)

In this approximation the resonance curve becomes Lorentzian (see (2.34)) where the trans-
mitted power is reduced to 50 % at the angular frequency ω 1

2
. The full width at half maximum

(FWHM) 2πδν = 2ω 1
2

can be calculated from the condition IT (ω = ω1/2) = 1/2IT (ω = 0)
as ω2

1/2 = c2(1 − R)2/(L24R) as

δν =
2ω 1

2

2π
=

(1 − r1r2)
π
√

r1r2

c

2L
. (4.87)

The linewidth normalised to the free spectral range (4.85) is referred to as the finesse F ∗

of the Fabry–Pérot resonator and using (4.87) it is given as

F ∗ ≡ FSR
δν

=
π
√

r1r2

1 − r1r2
. (4.88)

As an example, a Fabry–Pérot interferometer of length L = 30 cm and a reflectivity of the
mirrors, R = r1r2 = 99 %, has a finesse F ∗ ≈ 314, a free spectral range FSR = 500 MHz and
a linewidth δν ≈ 1.6 MHz.

In the photon picture, an optical high-finesse resonator stores the photons for a mean
time τ before they eventually escape through the output mirror. As the finesse and the time
τ are correlated, the former can be determined from the decay time of the power stored in
the resonator by measuring the decreasing power behind the output coupler after abruptly
blocking the input power to the resonator (Fig. 4.14). The linewidth of the spectrum of the
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Figure 4.14: Exponential decay of the power stored in an optical resonator as measured by
the voltage Upd of a fast photo diode after abruptly switching off the power incident onto the
resonator. The experimental data can be fitted by a decay time τ = 252 μs corresponding to a
linewidth δν = 630 kHz and a Q = ν/δν ≈ 7.5 × 108.

exponentially decreasing electromagnetic wave is related to the decay time as δν = δω/2π =
1/(2πτ) (2.37). Hence, the finesse is

F ∗ =
c/2L

δν
=

c

2L
2πτ. (4.89)

The measurement of the storage time τ is a suitable way of determining the linewidth of an
optical high-finesse resonator and of characterising super mirrors with very high reflectivities
with the help of (4.89) [66,67]. The relationship between the linewidth of the resonator and the
combined reflectivities of the mirrors can be derived from (4.88) and (4.89) for 1−r1r2 << 1
as

r1r2 = 1 − L

cτ
. (4.90)

The determination of the reflectivity of the mirrors has to be performed with an “empty”
resonator. Any absorbing medium inside the resonator reduces the number of round trips and
the storage time and consequently, the actual linewidth will increase.

In the same way as for the transmitted amplitude, the amplitude of the electromagnetic
wave reflected by the optical resonator is calculated (see Fig. 4.12) as

ER = E0r1 − E0t1r2t1e
−iω2L/c − E0t

2
1r1r

2
2e

−iω4L/c − E0t
2
1r

2
1r

3
2e

−iω6L/c − · · ·
= E0

[
r1 − t21r2e

−iω2L/c − t21r1r
2
2e

−iω4L/c − t21r
2
1r

3
2e

−iω6L/c − · · ·
]

= E0r1 − E0t
2
1r2e

−iω2L/c
[
1 + r1r2e

−iω2L/c + r2
1r

2
2e

−iω4L/c + · · ·
]

(4.91)

Evaluating the geometrical series in the square brackets of the last line of (4.91) one arrives at

ER = E0r1 − E0
t21r2 exp(−iω2L/c)

1 − r1r2 exp(−iω2L/c)
. (4.92)
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The (amplitude) reflection coefficient of the Fabry–Pérot interferometer

rFP(ω) ≡ ER

E0
=

r1 − r2(r2
1 + t21) exp(−iω2L/c)

1 − r1r2 exp(−iω2L/c)
(4.93)

does not depend on the (amplitude) transmission coefficient t2 of the second mirror used as
output coupler. From (4.92) and from Fig. 4.11 one finds that the amplitude of the wave
reflected from the resonator is composed of two contributions. The first one results from the
part of the incident wave that is directly reflected by the input mirror. Its negative sign results
from the phase shift of π radians that occurs at the optical interface when the wave comes
from and is reflected into the material with the higher index of refraction. The second term is
the part of the wave circulating in the resonator that is transmitted through the same mirror.
Exactly at resonance (ω2L/c = 2π) the reflected wave exhibits a minimum (see (4.93)).
Hence, these two contributions are out of phase by π which is provided for by the minus sign
of the second term 2 in (4.93).

The minimum goes to zero for a loss-less symmetrical cavity with r1 = r2 = r and
t1 = t2 = t with r2 + t2 = R + T = 1. For the symmetrical loss-less cavity the complex
reflection coefficient (4.93) becomes

rFP(ω) = r
1 − exp(−iω2L/c)

1 − r2 exp(−iω2L/c)
. (4.94)

The separation of the real and imaginary part of (4.93)

�e rFP =
−r1 − t21r1r

2
2 + 2(t21 + 2r2

1) cos(ω2L/c)
1 − 2r1r2 cos(2ωL/c) + r2

1r
2
2

(4.95)

	m rFP = − r2t
2
1 sin(2ωL/c)

1 − 2r1r2 cos(2ωL/c) + r2
1r

2
2

can be used to derive the power reflection factor

rFPr∗FP = (�e rFP)2 + (	m rFP)2 =
r2
1 + r2

2 − r2
1r

2
2 cos(ω2L/c)

1 + r2
1r

2
2 − 2r1r2 cos(ω2L/c)

(4.96)

and the relation for the phase φR of the reflected wave as

tanφR =
	m rFP

�e rFP
=

r2t
2
1 sin(2ωL/c)

r1 [1 + r2
2(r

2
1 + t21)] − r2(2r2

1 + t21) cos(2ωL/c)
. (4.97)

In the last equation, we have made use of cos δ = 1 − 2 sin2(δ/2). In the vicinity of a
resonance frequency ωq/2π = qc/(2L) of the Fabry–Pérot interferometer, the reflected and
the transmitted wave change by π (Fig. 4.16). The slope of the phase change increases with
increasing reflectivity of the mirrors.

The complex reflection coefficient (4.94) in the vicinity of the qth resonance frequency
ωq can be simplified by introducing the detuning Δω ≡ ω − ωq. For a detuning Δω smaller

2 The + and − signs in the nominator of (4.93) are sometimes interchanged in the literature.
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Figure 4.15: Power reflection factor of the
Fabry–Pérot interferometer versus frequency
detuning according to (4.96) for R1 = r2

1 =
0.99 and R2 = r2

2 = 0.99 (full line), R2 =
r2
2 = 0.98 (dashed-dotted line) and R2 = r2

2 =
0.95 (dots).

Figure 4.16: Phase shift of the wave reflected
by the Fabry–Pérot interferometer versus angu-
lar frequency detuning according to (4.97) for
R1 = r2

1 = 0.99 and R2 = r2
2 = 0.99 (full

line), R2 = r2
2 = 0.98 (dashed-dotted line) and

R2 = r2
2 = 0.95 (dots).

than the free spectral range c/(2L) we approximate the phase factor exp(−iω2L/c) by 1 −
i(Δω)2L/c + · · · and obtain

rFP(Δω) ≈ r
iΔω2L/c

1 − r2 + r2iΔω2L/c
. (4.98)

For a cavity with high finesse (R − 1 
 1) we approximate (1 − r2)/r2 ≈ (1 − r2)/r and
use (4.87) together with Γ ≡ 2πδν to derive

rFP(Δω) ≈ 1
r

iΔω

Γ/2 + iΔω
(4.99)

from which the amplitude and phase variation in the vicinity of the resonance is readily de-
rived.

4.3.2 Radial Modes

In the Fabry–Pérot resonator the maxima of the Airy function (Fig. 4.13) occur at the eigen-
frequencies

ωq = q 2π
c

2L
with q ∈ N . (4.100)

The electromagnetic field components with ωq are called the longitudinal or axial modes of
the linear optical resonator. The corresponding field components are plane waves along the
optical axis of the resonator. As a plane wave would extent to infinity in the transverse di-
rection, the energy contained in such a wave would be unlimited. A more realistic treatment
of the electromagnetic field in the resonator has to include an amplitude dependence from
the transverse coordinates and a transverse confinement of the wave inside the resonator. On
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the other hand, any transverse confinement will result in diffraction effects which in turn will
modify the z dependence of the exp(±ikz) factor in the plane wave.

To determine the transverse beam profile we follow [68, 69] and make use of the wave
equation (4.27) for the electric field E(x, y, z, t) of a laser beam. Factorising E(x, y, z, t)
into a spatial and a temporal part E(x, y, z, t) = E(x, y, z) exp(iωt) and separating the time
dependence exp(iωt) leads to a differential equation for the spatial part of the electromagnetic
wave. For the latter one we use the ansatz

E(x, y, z) = ũ(x, y, z)e−ikz (4.101)

where ũ(x, y, z) represents a complex scalar wave amplitude describing the transverse profile
of the laser beam. For simplicity, we use the scalar form[∇2 + k2

]
E(x, y, z) = 0. (4.102)

Substituting (4.101) into (4.102) yields a differential equation for the complex scalar ampli-
tude of the wave

∂2ũ

∂x2
+

∂2ũ

∂y2
+

∂2ũ

∂z2
− 2ik

∂ũ

∂z
= 0. (4.103)

If it is justified to neglect the second derivative of ũ with respect to z as compared to the
first-order derivative with respect to z and compared to the second derivatives with respect to
x and y (paraxial approximation) one obtains

∂2ũ

∂x2
+

∂2ũ

∂y2
− 2ik

∂ũ

∂z
= 0. (4.104)

This is the paraxial wave equation which can be solved by the ansatz

ũ(x, y, z) = A(z) exp
(
−ik

x2 + y2

2q̃(z)

)
. (4.105)

leading to the differential equation[(
k

q̃

)2 {
dq̃

dz
− 1

}
(x2 + y2) − 2ik

q̃

{
q̃

A

dA

dz
+ 1

}]
A(z) = 0. (4.106)

(4.106) can be solved for all x and y only if both terms in the braces are identically zero

dq̃

dz
= 1 and

dA(z)
dz

= −A(z)
q̃(z)

(4.107)

After integration we obtain

q̃(z) = q̃0 + z and
A(z)
A0

=
q̃0

q̃
(z). (4.108)
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For simplicity, we have chosen the integration constant z0 = 0 in (4.108). The first of
these equations describes the evolution of the complex beam parameter q̃ from the value q̃0 in
a plane through z0 to the value q̃(z) in a plane through z.

To identify the meaning of the beam parameter q̃ we write it as the sum of a real and an
imaginary part as

1
q̃(z)

=
1

R(z)
− i

λ

πw2(z)
with k =

2π

λ
(4.109)

and substitute it into (4.105). Thus

ũ(x, y, z) = A0
q̃0

q̃(z)
exp

[
−ik

x2 + y2

2R(z)
− x2 + y2

w2(z)

]
(4.110)

holds. The distribution ũ(x, y, z) has a purely real part

exp
[
−x2 + y2

w2(z)

]
≡ exp

[
− r2

w2(z)

]
(4.111)

which yields a two-dimensional Gaussian amplitude distribution ũ along the transverse coor-
dinates x and y. w(z) is called the beam radius at the location z describing the transverse
distance where the amplitude of the beam is reduced to 1/e of the maximum.

The complex part

exp
[
ik

x2 + y2

2qre

]
≡ exp

[
ik

x2 + y2

2R(z)

]
(4.112)

represents a phase factor of a spherical wave with R(z) being the real radius of curvature of
the wave front intersecting the axis the point z. The representation of the beam parameter
q(z) by a real and an imaginary part contains all the physics of a Gaussian wave. Starting at
the location z = 0 where the wave front is a plane wave, i.e., where the radius of curvature
R(z = 0) = ∞ leads to

1
q̃(z = 0)

≡ 1
q̃0

= −i
1

qim(z = 0)
= −i

λ

πw2
0

or

q̃0 = i
πw2

0

λ
. (4.113)

w0 is called the waist of the Gaussian wave. q̃(z) can be derived by using of (4.113) as follows

q̃(z) = q̃0 + z = i
πw2

0

λ
+ z ≡ izR + z (4.114)

where zR = πw2
0/λ is known as the Rayleigh range. By inserting (4.114) into (4.109) and by

equating the imaginary parts we obtain

w2(z) = w2
0

[
1 +

(
λz

πw2
0

)2
]

= w2
0

[
1 +

(
z

zR

)2
]

. (4.115)
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After equating the real parts it follows that

R(z) = z

[
1 +

(
πw2

0

λz

)2
]

= z

[
1 +

(zR

z

)2
]

. (4.116)

A wave with a Gaussian profile will remain a Gaussian with the beam diameter 2w(z)
(Fig. 4.17). The radius of curvature and the beam radius evolve as given by (4.115) and
by (4.116), respectively.

Figure 4.17: Evolution of a Gaussian beam.

Finally, from (4.110), (4.114), (4.115) and (4.116) one finds

ũ(x, y, z) = A0
i

i + z
zR

exp

⎡⎣−ik
x2 + y2

2z(1 + z2

z2
R

)
− x2 + y2

w2
0(1 + z2

R

z2 )

⎤⎦. (4.117)

The evolution of the Gaussian wave in the way depicted in Fig. 4.17 is a result of the
diffraction to which any wave is subjected. Even though at the location of the waist w0 the
wave fronts are described by a plane wave the finite transverse extension leads to a transverse
expansion. This is a result of the diffraction described by Huyghens’ principle stating that in
an isotropic medium any point of a wave front by itself is the origin of a spherical wavelet.
The characteristic distance where the diffractive expansion becomes more and more notice-
able is determined by the Rayleigh range πw2

0/λ. The principle of the diffractive expansion
of a wave front whose transverse extension is restricted to a small area is a general one. Even
the so-called diffraction-free beams [70] obey this principle, however, in this case the appar-
ent diffractional expansion of particular small transverse structures (on a wide pedestal) are
considerably reduced.

The beam radius w(z) in Fig. 4.17 evolves like a hyperbola and for large distances w � w0

holds and the second term in square brackets of (4.115) becomes the dominant one

w(z) ≈ λz

πw0
. (4.118)
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The angle between the asymptotes and the axis is θ ≈ tan θ ≈ w/z and hence

θ =
λ

πw0
. (4.119)

The smaller the waist w0 the larger is the expansion of the beam as a consequence of the
diffraction.

The ansatz (4.105) representing the fundamental Gaussian mode is by no means the only
possible solution of the paraxial wave equation. Suppose we had rather chosen an ansatz of
the form

ũ(x, y, z) = g
( x

w

)
h

( y

w

)
exp

[
−ik

x2 + y2

2q̃(z)

]
(4.120)

then ũ(x, y, z) would lead to higher transverse modes represented by the product of two Her-
mite polynomials Hm(

√
2 x

w ), Hn(
√

2 y
w ) and a Gaussian function. The four lowest Hermite

polynomials are

H0(
√

2
x

w
) = 1,

H1(
√

2
x

w
) = 2(

√
2

x

w
), (4.121)

H2(
√

2
x

w
) = 4(

√
2

x

w
)2 − 2,

H3(
√

2
x

w
) = 8(

√
2

x

w
)3 − 12(

√
2

x

w
).

Hn(
√

2x/w) has n − 1 zeros along the x direction leading to n − 1 dark regions in the
transverse power profile. Consequently, the higher order transverse modes are characterised by
the number of zeros m and n (in Cartesian coordinates). They are called Transverse Electro-
Magnetic waves of order m and n, i.e., TEMmn.

Hence, the TEM00 mode has no zeros along the x and y direction and represents the
Gaussian profile. Owing to the contributions of the Hermite polynomials the area taken by
the higher transverse modes becomes larger with increasing m and n. This behaviour can
be utilised to suppress higher transverse modes by putting a diaphragm into the resonator
with a diameter large enough to allow the fundamental mode to pass but small enough to cut
off considerable power from the outer rim of the higher-order modes. If the resonator has a
truly cylindrical symmetry it is more appropriate to use polar coordinates r and φ rather than
Cartesian coordinates. In this case, the modes are described by a product of Laguerre and
Gaussian functions.

Both, the Hermite-Gauss polynomials as well as the Laguerre–Gauss polynomials form
a complete system of eigenfunctions. Hence, the modes can be represented in both systems
and a mode described in one system of eigenfunctions can be represented in general as a
superposition of modes in the other one [71]. Fig. 4.19 depicts a Laguerre–Gauss mode (in
polar coordinates) made up by three Hermite–Gauss modes. The Laguerre–Gauss modes are
characterised similarly by two independent integers denoting the zeros of the field along the
radial (r) coordinate and along the azimuthal (φ) coordinate. The three Hermite–Gauss modes
of Fig. 4.19 necessary to make up the TEM31 with three zeros along the φ coordinate and one
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Figure 4.18: Distribution of the electric field and mode pattern.

Figure 4.19: Representation of a TEM31 Laguerre–Gauss mode by three Hermite–Gauss modes TEM14,
TEM32 and TEM50.

zero in the radial direction r exhibit, 1 and 4, 3 and 2, 5 and 0 zeros along the x and y
coordinates, respectively.

Practical optical resonators use curved mirrors rather than planar ones. In fact, resonators
with flat mirrors have in general larger diffraction losses and hence are not ideally suited for
high-finesse resonators. In general they are not even truly Gaussian in profile. For a linear
resonator comprising two concave mirrors with the radii of curvature R1 and R2 separated by
the distance L, the eigenfrequencies of the modes also depend on the radii of curvature. The
calculation of the eigenfrequencies is somewhat lengthy and can be found, e.g., in [68] to lead
to

νmnq =
c

2L

[
q +

1
π

(m + n + 1) arccos
√

(1 − L

R1
)(1 − L

R2
)

]
. (4.122)

For m = n = 0 the frequencies of (4.122) correspond to the νq of the axial modes defined
only by the optical length of the resonator.

A particular simple but rather important case is the one where the radii of curvature of both
mirrors equal the distance between both mirrors, i.e., L = R1 = R2. As a result, the square-
root term in (4.122) disappears and the arccos term becomes π/2 and the eigenfrequencies
depend on ν, m and n as follows

νmnq =
c

2L

[
q +

1
2
(m + n + 1)

]
(4.123)
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Figure 4.20: Schematic mode spectrum of a Fabry–Pérot interferometer.

For an even number of m + n the eigenfrequencies of the transverse modes coincide with the
frequencies of the fundamental modes, i.e., they are degenerate. The eigenfrequencies of the
transversal modes with odd m + n, however, are shifted by c/(4L) with respect to the axial
modes separated by c/(2L). Consequently, in the confocal Fabry–Pérot resonator modes with
frequencies can be excited that differ by

δν =
c

4 L
. (4.124)

A linear optical resonator can be comprised of two mirrors with different radii of curvature
R1 and R2. If the length L �= R1, R2 the degeneracy of the eigenfrequencies of the transverse
modes is lifted (Fig. 4.20).

An electromagnetic wave impinging onto one of the mirrors of the optical resonator can
only excite those modes whose frequencies coincide with that of the wave. In a confocal res-
onator an infinite number of axial modes have the same eigenfrequencies but have different
distribution of the transverse field distribution on the surface of the mirror. Consequently, a
wave of a given field distribution will predominantly excite that particular mode inside the res-
onator whose field distribution coincides with the one of the impinging wave. Mathematically
speaking, the incident wave will be decomposed into a linear combination of the modes, i.e.,
of the eigenfunctions representing the field inside the resonator. The coupling of the incident
wave to the particular modes is determined by the coupling coefficients which are determined
by the overlap integrals between the modes in the resonator and the incident wave. If only one
mode is to be excited, the field distributions of the incident wave and of the resonator mode
have to coincide exactly at the surface of the resonator mirror.

For optical frequency standards, Fabry–Pérot interferometers (FPIs) are particularly useful
for analysing the frequency spectrum of laser radiation or to pre-stabilise the frequency of such
a laser to a suitable eigenfrequeny of the FPI. For the first purpose, the FPI can be used as a
tuneable filter since a particular eigenfrequency of the comb of equidistant resonances can
be adjusted to match the desired frequency of the laser. Applying a variable high voltage
to a piezoelectric element between the spacer and a resonator mirror allows one to vary the
length of the resonator by a few wavelengths. Here, a confocal FPI is often preferred since the
frequencies of all modes with odd m + n are grouped together at the frequencies of the axial
modes and all modes with even m+n are located at frequencies shifted by half a free spectral
range. Consequently, accurate mode matching is not necessary. For achieving very narrow
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linewidths of the FPI or for use of a frequency discriminator, however, the confocal FPI is not
well suited, since in general it is not possible, to realise the condition L = R with sufficient
accuracy.

4.3.3 Microsphere Resonators

In the optical domain, whispering gallery modes in dielectric microspheres of fused silica can
exhibit exceedingly high Q values and, hence, represent an alternative to resonators of the
Fabry–Pérot type. They also have the potential to be used in ultra-compact optical frequency
standards. Microspheres are readily prepared by a fusion technology from a high-quality fused
silica rod in an oxygen-hydrogen torch. The surface tension of the melting material leads to
a spheroid with a diameter D = 2R of a few tens to a few hundreds of micrometres. The
quality factor Q of a whispering gallery mode is determined by the radiative loss as a result
of the curvature, the scattering on residual surface inhomogeneities, surface contaminants and
intrinsic material losses [72, 73]. From the latter, a principal limit of Q = 9 × 109 has been
derived at λ = 633 nm and Q = 1.5 × 1011 at λ = 1.55 μm. Quality factors Q = 8 × 109

have been measured in three resonators with diameters between 0.6 mm and 0.9 mm [73] at
633 nm immediately after preparation of the microspheres. The large Q, however, was shown
to deteriorate rapidly by adsorption of atmospheric water and thus it might be necessary to
keep the sphere in a hermetically sealed chamber [74].

The TE and TM eigenmodes of an electromagnetic field in a dielectric sphere with a
refractive index n are characterised by three integers l, m, q. The number of field maxima
along the radius of the sphere is given by q ≥ 1, the number of field maxima in the equatorial
plane equals m and l is the mode number [75, 76]. The latter can be thought of as roughly
the number of wavelengths λ on the circumference of the sphere (l ≈ 2πRn/λ). For l � q
one refers to the modes as whispering gallery modes. As a result of the production process
the final shape of the microspheres differs from a perfect sphere and is better approximated
by an ellipsoid. Denoting the axes of the ellipsoid by a and b, typically 10−2 < ε2 < 10−1 is
achieved [74] where the eccentricity ε of the ellipsoid is given by ε2 ≡ 1 − b2/a2.

The eigenfrequencies of the eccentric microsphere are given by [74]

γE,H
qlm = Δ0

[
l +

1
2
− Aq

3
√

(l + 1/2)/2 − ΔE,H ± ε2(l − |m|)/2
]

(4.125)

where Aq = 2.338, 4.088, 5.521, 6.787, · · · are the qth zeros of the Airy function. ΔE,H takes
into account that the two waves of orthogonal polarisations are differently confined near the
surface and, hence, experience a different index of refraction. The positive and negative sign
has to be chosen for an oblate and a stretched spheroid, respectively. The free spectral range
of the microresonator is Δ0 = c/(πDn) which is about 180 GHz for a D = 370 μm diameter
sphere and n = 1.45 at λ = 852 nm.

Tuning of the eigenfrequencies can be achieved by temperature variation or by strain. The
resonance frequency is shifted by Δν/ν = −Δa/a−Δn/n where a is the radius and n is the
index of refraction of the sphere. The temperature dependence reduces the mode frequency by
a few gigahertz per degree. Larger tuning over several hundred gigahertz has been achieved
in the near infrared [77] by applying a compressive force near the “polar” regions in a “micro
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vice” or by stretching a microsphere with two attached stems [78]. The dominant effect on the
detuning is due to the associated equatorial expansion and, to a lesser degree, to the change
of the index of refraction. Relative variations in the circumference of about 10−3 have been
achieved without noticeably degrading the quality factor of Q ≈ 109.

The high Q of whispering gallery modes indicates that these modes have extremely low
losses and hence are very weakly coupled to free space which means that, on the other hand,
they can hardly be excited by free-space beams. Hence, light has to be coupled into the mi-
crosphere by other methods [79], e.g., by placing side-polished optical fibres in close contact
with the microspheres or via a coupling prism (Fig. 4.21). With the former method a more
than 99.8 % optical power transfer to the sphere has been achieved [80]. In the latter method

Figure 4.21: Coupling of laser radiation to a
whispering-gallery microresonator by a prism us-
ing frustrated internal reflection.

a laser beam is focused by a lens onto the inner surface of a coupling prism. If the micro-
sphere is placed at a distance d ≈ λ/(2π) from the surface of the microsphere despite the
frustrated internal total reflection light from the near-field evanescent wave can be coupled
into the whispering gallery mode (I). Resonances excited in the microsphere resonator show
up as dips in the reflected light leaving the coupling prism. The coupling to the resonator is
varied by adjusting the gap width d. Rayleigh backscattering inside the microsphere, together
with the high Q, in general leads to the build-up of a backward reflected wave (II) that can be
used for frequency locking of a diode laser [74]. A diode laser whose frequency is stabilised
to a microsphere might lead to a sub-kHz-linewidth laser [74] for applications in very compact
frequency standards.

4.4 Stability of Resonators

The eigenfrequencies of the resonators treated in this chapter depend on the macroscopic
dimensions of the resonators (see (4.100)). Consequently, there is a linear variation of the
frequency associated with any variation of the length relevant to the frequency

dν

dL
= − qc

2L2
= − ν

L
(4.126)

or

Δν

ν
= −ΔL

L
. (4.127)

Here, we have replaced the differential quotient by the ratio of the differences. One of the most
significant environmental parameters that affect the stability of the mechanical dimensions of
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macroscopic resonators is the temperature. Temperature fluctuations ΔT around the working
temperature T0 of the resonator result in a variation of the length L0 to L(T ) which can be
described as a Taylor series with linear (α), quadratic (β), cubic (γ), ... coefficients of thermal
expansion (CTE)

L(T ) = L(T0) + L(T0) α ΔT + L(T0) β (ΔT )2 + L(T0) γ (ΔT )3 + · · · . (4.128)

In most cases it suffices to refer to the linear coefficient of thermal expansion α and conse-
quently the fractional frequency shift of a particular mode is given by

Δν

ν
≈ −αΔT. (4.129)

High frequency stability thus asks for minimisation of the temperature fluctuations and the
employment of materials with a low thermal expansion coefficient (see Table 4.4). At room
temperature the linear coefficient of thermal expansion of copper is αCu ≈ 1.65 × 10−5 K−1

and that of the temperature compensated nickel iron steel Invar 3 is about an order of magni-
tude lower and comparable to that of fused silica (see Table 4.4). Much lower values of the
thermal expansion are provided by a mixture of glass and ceramic materials such as Zerodur
or temperature compensated glasses called Ultra-Low-Expansion glass (Corning ULE 7971);
comprising about 80 % SiO2 and 20 % TiO2). These materials are specifically tailored by

Table 4.4: Mechanical properties of materials suitable for macroscopic resonators. α: linear
coefficient of thermal expansion; E: Young’s modulus of elasticity; ρ: density; cp: specific
heat; λ: heat conductivity.

Symbol Units Copper Invar Fused ULE Zerodur Sapphire
silica M (4.2 K)

α 10−8/K 1650 150 55 0.3 < 1 5 × 10−4

E 109 N/m2 130 145 73 68 89 435
ρ 103 kg/m3 8.92 8.13 2.2 2.21 2.52 4.0
cp J/(kg K) 385 500 703 0.77 0.81 5.9 × 10−6

λ W/(m K) 400 10.5 1.38 1.31 1.63 280

a suitable composition to show a zero crossing or an extremum of the coefficient of thermal
expansion α(T ) at a given temperature, e.g., near 25◦ C. Very low coefficients of thermal
expansion can be achieved at this temperature.

In contrast to crystalline materials, glass or glass-ceramic materials suffer from long-
term length variations. Such a behaviour is expected, e.g., from the thermal diffusion of the
molecules in a glass leading to the formation of crystalline domains with the associated reduc-
tion in volume. The length variation due to this ageing effect or “creep” in general slows down
with an exponential decrease in the length [81–83]. As an example consider a Fabry–Pérot in-
terferometer made of Zerodur M where a particular eigenfrequency was monitored over more

3 Super Invar (31% Ni 5% Co 64% Fe) has an even smaller coefficient of linear thermal expansion of α ≈ −19 ×
10−8/ K at 20◦ C.



4.4 Stability of Resonators 115

Figure 4.22: Temporal length variation of a Fabry–Pérot interferometer made of Zerodur M, as
measured by the frequency of a suitable resonance, shows a drift due to ageing. The inset shows
the effect when the temperature was reduced by 0.5 K.

than three years (Fig. 4.22). After about one hundred days a monotonous drift of the frequency
was observed that gradually slowed down, which corresponds to a length variation. The ear-
lier behaviour was probably dominated by a heat treatment after the Fabry–Pérot resonator
had been put into vacuum. A variation in the temperature (inset of Fig. 4.22) by twice 0.5 K
did not show a big effect. For α �= 0 one would expect a discontinuous change in the eigen-
frequency at the respective instants. The measured drift of about Δν ≈ 0.4 Hz/s at 456 THz
translates into a relative length variation ΔL/L = −Δν/ν < 10−15/s which corresponds to
a relative length change of about 8× 10−11 per day. Marmet et al. [84] reported on an optical
resonator of ULE with a differential coefficient of thermal expansion of 2 × 10−9/K2. With a
temperature stability of 50 μK achieved with a two-stage temperature stabilisation the residual
relative length variation was no longer limited by temperature fluctuations but by the creep of
about 1 × 10−11 per day.

The thermal expansion of a solid crystalline material, e.g., quartz can be explained by
the anharmonicity of the lattice oscillations. For purely harmonic oscillations of the atoms
around their equilibrium, the mean length of a crystal would not change with temperature.
The thermal expansion is therefore intimately connected to the modes of the lattice oscilla-
tions in a real crystal. Since all the modes contribute to the specific heat of the crystal the
temperature dependence of the specific heat determines the thermal expansion of the crystal.
In general according to Debye’s model, the specific heat and consequently the linear thermal
expansion coefficient for low temperatures decreases with the third power of the temperature.
Ultra-stable cryogenic optical resonators with sapphire spacers have been set up [85, 86] and
operated at 1.9 K. The low coefficient of thermal expansion of sapphire (see Table 4.4) leads
to a reduced sensitivity to ambient temperature changes. It has been pointed out [86] that
at cryogenic temperatures the thermal diffusivity is also strongly enhanced in comparison to
room temperature and leads to a greater precision in active temperature stabilisation. The ther-
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mal diffusivity, i.e., λ/(ρcp) is a measure of how fast the material can react to a variation in
the heat transport. When selecting a suitable material for a resonator, either for the microwave
or the optical domain, attention has to be given also to Young’s modulus of elasticity E of the
material (see Table 4.4). The higher E the smaller the deformation and, hence, the smaller the
variation of the eigenfrequencies due to tilt or acceleration.



5 Atomic and Molecular Frequency References

The resonance frequencies of the resonators described in Chapter 4 depend on dimensional
quantities. These in turn are influenced in a delicate way by environmental parameters as,
e.g., temperature, air pressure, vibrations, gravity. Consequently, the stability of a resonance
frequency of a macroscopic oscillator can be kept constant only to that extent to which these
parameters can be precisely controlled. If, on the other hand, electromagnetic transitions in
free atoms, ions, or molecules, i.e., microscopic oscillators, are utilised to stabilise the fre-
quency of an oscillator, the influence of the external parameters on its frequency is usually
very small. The use of these quantum oscillators relies on the fact that the emission and ab-
sorption of electromagnetic radiation by the atomic particles occurs at well defined frequencies
which are characteristic for each species. According to Bohr such a frequency ν occurs when
the absorbing particle undergoes a transition between two discrete states with energies E1

and E2. Energy conservation immediately leads to the well known relationship between the
energy of the photon and the energy difference between these states

ΔE = E2 − E1 = hν ≡ �ω (5.1)

where h is Planck’s constant. Another advantage of the microscopic quantum systems over
macroscopic oscillators is based on the fact that all atomic systems of a given species are the
same and consequently have the same transition frequencies. Thus, after having determined
the frequency of a particular microscopic oscillator, an unlimited number of identical copies
of this frequency standard can be cast to realise a fixed frequency in the electromagnetic
spectrum. In contrast to the particular group of macroscopic resonators treated in Chapter 4,
with their combs of nearly equidistant resonant frequencies, atoms and ions exhibit only a few
suitable absorption lines in a given frequency range. In contrast, molecular quantum systems
have a large number of transitions that can serve as frequency references in a much wider
regime.

In this chapter we first recall the basic properties of quantum transitions in atoms (Sec-
tion 5.1) and molecules (Section 5.2) with particular emphasis to examples relevant for fre-
quency standards. Later, the quantitative description of the interaction of radiation with a
two-level system is introduced (Section 5.3) for current use in further chapters. Last, we con-
sider effects that are able to shift and broaden the observed quantum transitions (Section 5.4)
and thus ultimately limit the accuracy of frequency standards.
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5.1 Energy Levels of Atoms

The possible energy states of an isolated quantum system such as a single atom, ion or mol-
ecule are readily determined by quantum theory where the quantum state is described by a
wavefunction ψ or by a state vector often denoted using Dirac’s bra ( 〈ψ|) and ket (|ψ〉 ) no-
tation. The temporal evolution of the state ψ is described by the time-dependent Schrödinger
equation

Hψ = i�
∂ψ(t)

∂t
(5.2)

which reduces for stationary cases to the time independent Schrödinger equation Hψn =
Enψn. The Hamiltonian operator H has to be chosen such that En contains all relevant
contributions to the energy of the system. Important contributions include the electrostatic
Coulomb attraction each electron experiences in the central field of the nucleus, the mutual
Coulomb repulsion between the electrons, the magnetic interactions between the magnetic
moments associated with the angular momenta and spins of the electrons and the nucleus as
well as the interaction of the system with external fields.

5.1.1 Single-electron Atoms

To start with, we recall the simplest system where a single electron moves in the central field
of a positively charged nucleus of charge Z e. This situation is realised in the hydrogen atom
(Z = 1) or in hydrogenic atoms or ions. In the so-called “central-field approximation” only the
kinetic energies of the nucleus and the electron and their respective Coulomb interaction are
taken into account. As a solution of the time-independent Schrödinger equation, one obtains
the wavefunction ψn(�r) describing the probability amplitude to find the electron at the position
�r together with the eigenvalues En of the energy. The wavefunctions of the hydrogenic atoms
can be separated into a radial function R(r) and a spherical harmonic function Yl,m(θ, φ)

ψn,l,m(�r) = Rn,l(r)Yl,m(θ, φ). (5.3)

The wavefunction depends on the principal quantum number n = 1, 2, 3 . . ., designated as K,
L, M . . ., the orbital angular momentum quantum number l = 0, 1, 2, 3 . . ., (n−1) designated
as s, p, d, f . . ., and the magnetic quantum number m = −l, (−l + 1), . . . , (l − 1), l. The
quantum number m defines the projection of the orbital angular momentum of an electron
onto a chosen (z) axis.

In the central-field approximation, the energies of the discrete states

En = −hcR
Z2

n2
≡ −mrc

2

2
Z2α2

n2
(5.4)

depend only on the principal quantum number n being an integer. The fine structure constant
α and the Rydberg constant R are given as follows

α ≡ e2

4πε0�c
(5.5)

R ≡ mre
4

8ε20h
3c

≡ mr

me
R∞. (5.6)
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Here, e and me are the elementary charge and the rest mass of the electron, respectively. c
is the speed of light and ε0 is the dielectric permeability of free space. The reduced mass is
given as

mr =
memn

me + mn
(5.7)

where mn is the mass of the nucleus. R∞ is the Rydberg constant for a nucleus of infinite
mass where the reduced mass coincides with the rest mass of the electron me. The energies
of the hydrogenic atoms in the central-field approximation are represented in the energy level
diagram shown in the left-hand part of Fig. 5.1. Since the energy levels of hydrogen-like

Figure 5.1: Schematic energy diagram of atomic hydrogen. a) Central-field approximation. b) Inclusion
of the spin-orbit interaction and QED effects. c) Interaction with the nuclear spin. d) Interaction with a
magnetic field (Zeeman effect).

atoms depend on the mass of the nucleus (see (5.4)) the energy levels of different isotopes of
the same species are shifted by the so-called isotopic shift.1

Besides the Coulomb interaction leading to the central field approximation, the magnetic
interactions of the magnetic moments �μ associated with the orbital angular momentum of the
electron, the spin of the electron and of the nucleus contribute to the energy of the atomic
system

Emag = −�μ · �B. (5.8)

Like in classical physics, in quantum mechanics the magnetic moment of a rotating charge q
is proportional to the angular momentum �J . For an atom the magnetic moment is determined
by the electrons with charge e = −q = −1.602 × 10−19 A s and hence the magnetic moment
of an atom

�μ = −gJ
e

2me

�J = −gJ
e�

2me

�J

�
≡ −gJμB

�J

�
(5.9)

1 If necessary, one explicitly indicates the total number of protons and neutrons in the nucleus for atoms, ions, or
molecules, e.g., 40Ca, 6Be+, or 127I2, respectively.



120 5 Atomic and Molecular Frequency References

is always antiparallel to the angular momentum. Here, the Landé factor gJ is a dimen-
sionless constant of order unity that can be calculated from quantum mechanics and μB =
e�/(2me) = 9.274 × 10−24 J/T is referred to as the Bohr magneton with me the mass of
the electron. The g factor is g = 1 for a pure orbital angular momentum �l of the electron
and g ≈ 2 for a pure spin angular momentum �s. Conventionally the magnetic moment of the
nucleus is written as

�μ = gI
e

2mp

�I = gI
e�

2mp

�I

�
≡ gIμn

�I

�
(5.10)

where �I is the nuclear spin and μn = e�/(2mp) = 5.051×10−27 J/T is the nuclear magneton
using the mass mp of the proton.

The magnetic interactions of the magnetic moments associated with the spin and the orbital
angular momentum also contribute to the energy of the atomic system. Hence, the simple
energy level structure given by the central-field approximation (5.4) is modified by the spin-
orbit coupling, resulting in a so-called fine structure. The corrections are calculated either by
taking into account the spin-orbit interaction and the relativistic corrections due to the high
velocity (v/c > 10−2) of the electron or by the Dirac equation and lead to a modification of
(5.4) as (see [87, 88])

En,j = −hcR
Z2

n2

[
1 +

(Zα)2

n2

(
n

j + 1/2
− 3

4

)
+ · · ·

]
. (5.11)

The spin-orbit interaction therefore reduces the energies of the possible levels of the electron
in the hydrogenic atom in dependence of the total angular momentum quantum number j
of the electron. According to (5.11) the separation between the p3/2 and p1/2, i.e., the fine
structure of the n = 2 state, is about 3 × 10−6hcR. As in the case of (5.4) for each principal
quantum number n there are n2 possible energy states which belong to the same energy. This
degeneracy is only partly removed with respect to the total angular momentum j, but not
with respect to l. This degeneracy is a particular property of the Coulomb potential where
the energy levels do not depend on the quantum number l of the orbital angular momentum �l
(see (5.11)).2

Similar to the electronic shell the nucleus can have a total nuclear angular momentum
�I resulting from the spins and the particular angular momenta of the protons and neutrons
that make up the nucleus. For the case of �I �= 0 the coupling of �I with the total angular
momentum �J of the shell to the total angular momentum �F has to be taken into account.
According to the rules of quantum mechanics the total angular momentum quantum number
can be F = J + I, J + I − 1, . . . , |J − I|. For the ground state of hydrogen J = j = 1/2
and I = 1/2 are coupled to F = 1 and F = 0 which leads to an associated splitting of the
energy levels called the hyperfine structure (see Fig. 5.1 c). In a magnetic field the magnetic
moment of the F = 1 state can be oriented in three different ways with respect to the direction
of the magnetic induction �B. The three directions with their z component being parallel,
perpendicular, and anti-parallel to �B are designated by the quantum numbers mF = 1, 0,−1,

2 In fact, there is a small energy difference between the s1/2 and p1/2 states resulting from the Lamb shift.
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respectively. The corresponding three energy states belong to three different energies in the
magnetic field (see Fig. 5.1 d).

The discrete energy levels of hydrogenic atoms result in discrete absorption lines for elec-
tromagnetic radiation according to (5.1). In the hydrogen atom, the well-known Lyman,
Balmer, or Paschen series can be excited for transitions from the states with n1 = 1, 2, or
3, respectively, to states n2 = n1 + 1, n1 + 2, n1 + 3, . . . with higher energies. Many of
the transitions allowed by Bohr’s principle are not observed as a consequence of so-called
selection rules reflecting conservation laws for particular physical quantities. As an example,
consider the selection rule applicable for the interaction with electric dipole radiation. The
photon carries a spin angular momentum of � and angular momentum conservation requires
that the angular momentum of the atom changes by the same amount when a photon is ab-
sorbed or emitted. Hence,

ΔJ = 0,±1, except for J = 0 ↔ J = 0 (5.12)

holds.
For frequency standards where the frequency of an oscillator is stabilised to the transi-

tion frequency of an atomic absorber, narrow-linewidth transitions are preferred that connect
long-lived states. The hyperfine-split ground states represent such long-lived states,3 e.g, the
transition between the F = 1 and F = 0 ground states of the hydrogen atom. The convenient
frequency separation of Δν ≈ 1.4 GHz made this transition very suitable for a frequency stan-
dard which is exploited in the hydrogen maser (Section 8.1). Similarly, other highly accurate
frequency standards are based on the hyperfine separation of the ground states of atoms and
ions (see Table 5.1). With these magnetic dipole transitions, the selection rule ΔF = 0,±1
(but without F = 0 ↔ F = 0) has to be fulfilled exactly and ΔJ = 0,±1 (again without
J = 0 ↔ J = 0) approximately. Since the spontaneous decay rates for allowed dipole

Table 5.1: Ground-state splitting due to the hyperfine structure in neutral atoms. For ions
see Table 10.1.

Atom Frequency Standard Reference
(Hz)

1H 1 420 405 751.770(3) H-maser (Section 8.1) [1, 90]
87Rb 6 834 682 610.904 29(9) Rb-clock (Section 8.2) [91]

133Cs 9 192 631 770.0 (exact) Cs-clock (Section 7) [1, 92]

transitions are proportional to the third power of the transition frequency (see (5.133)) their
linewidths rapidly increase from the microwave to the optical regime. For a dipole-allowed
optical transition the lifetime of the excited state is typically of the order of a few nanosec-
onds and below and the associated linewidth resulting from (2.37) is several ten megahertz or

3 The higher sublevels of the hyperfine Zeeman sub-states in the ground state decay predominantly by magnetic
dipole radiation with a rate given by (5.133). Itano et al. [89] derive a spontaneous decay rate for a magnetic dipole
transition at ω = 2π × 30 GHz of 2.7 × 10−11 s−1 corresponding to a lifetime of the energetically higher state
of about 1200 years.
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more. Hence, mostly so-called (dipole) forbidden transitions are relevant for optical frequency
standards.

5.1.2 Multi-electron Systems

Apart from the hydrogenic atoms discussed so far, all other atoms have many electrons and
the mutual interaction of the electrons, in general, makes the energy structure of the respective
atoms or ions more complicated. As an example of multi-electron atoms we consider alkaline
earth atoms like magnesium or calcium (Fig. 5.2) where there are two electrons in the outer 3s
or 4s shell, respectively.4 In calcium, the most abundant isotope 40Ca has no nuclear spin and

Figure 5.2: Partial energy diagrams of the alkaline earth atoms magnesium and calcium.

consequently, there is no hyperfine structure. The eighteen inner electrons fill the first shells
1s2, 2s2, 2p6, 3s2, and 3p6. The angular momenta of the two outer electrons can be described
by the so-called LS coupling scheme. Besides the total angular momentum �J , in this scheme
the total spin �S =

∑
�si resulting from a coupling of the spins of the particular electrons and

the total orbital angular momentum �L =
∑�li are conserved to a good approximation. As a

result the additional selection rules for electric dipole radiation

ΔL = 0,±1 (5.13)

and

ΔS = 0 (5.14)

are approximately valid. In the ground state of the calcium atom the spins of the two outer
electrons of the 4s shell are anti-parallel, leading to L = 0, S = 0, and J = 0. We describe
the states by using the nomenclature n 2S+1LJ as 4 1S0 state, as 4s4s 1S0 state, or as 4s2 1S0

state. Owing to the multiplicity 2S + 1 = 1 the ground state is a singlet state. The lowest
excited states result from a 4s and a 4p single electron state. The coupling to a singlet state of

4 A similar situation is encountered with the singly charged ions of the third group of the periodic system of the ele-
ments, e.g., in indium or thallium. These absorbers will be discussed in more detail in Section 9.4.4 and Section 10
for their use as optical frequency standards.
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total spin S = 0 leads to the so-called 1P1 state which decays with a decay time τ = 4.6 ns to
the ground state 1S0 by emission of blue light (λ = 423 nm). Besides the singlet state, there
is also a triplet of states at lower energy resulting from a combination of the 4s and 4p states.
In this state the two spins are parallel (S = 1) and with L = 1 the three states 3P2,

3P1 and
3P0 result from the three combinations of J = L + S = 2, L + S − 1 = 1 and L − S = 0,
respectively.

5.1.2.1 Forbidden Atomic Transitions for Optical Frequency Standards

In the simplified picture of Fig. 5.2 the transition of the atom from the 3P1 state to the ground
state (λ = 657 nm) requires a spin flip of one of the two electrons, which cannot be accom-
plished by an electric field (see (5.14)). Thus this transition is forbidden for electric dipole
radiation if the LS coupling would be exactly fulfilled, i.e., if S and L were conserved ex-
actly. Experimentally one finds that the natural lifetime of the excited 3P1 state is τ ≈ 0.5 ms.
This lifetime is about five orders of magnitude higher than that of the excited 1P1 state in the
singlet configuration. The intercombination transition between the singlet and triplet systems
is therefore forbidden in such a sense that it is about five orders of magnitude less probable
compared to the corresponding transition in the singlet system, 1P1 →1S0 at λ = 423 nm.

The lighter the atoms are, the better the LS coupling scheme applies. Correspondingly, the
intercombination selection rule is weakened for atoms with a higher number of protons (Z)
and electrons. As a result, the lifetime of the 3P1 state (Fig. 5.2) decreases from Mg to Ba. The

Table 5.2: Selected narrow transitions in atoms suitable for optical frequency standards. The frequencies
are from [93], [94], [95], [96], [97], [98] for H, Mg, Ca, Sr, Ag, Xe, respectively. Other candidates can
be found, e.g., in reference [99]. For ions see Table 10.2. Wavelengths denoted by an asterisk refer to
that of one of the two photons required to excite the two-photon transition.

Atom Transition Frequency Wavelength Width
THz nm Hz

1H 1S - 2S 2 466.061 413 187 103(46) 243.13 * 1
24Mg 31S0 - 33P1 655.658 9 457.24 40
40Ca 41S0 - 43P1 455.986 240 494 15 657.46 370
88Sr 51S0 - 53P1 434.829 121 311(10) 689.45 6 900

109Ag 5s 2S1/2 - 453.320 4 661.33 * 0.8
4d9 5s2 2D5/2

132Xe 6s’[1/2]0 - 6s[3/2]2 136.844 2190.76 * 1.2 5

transition 3P2 →1S0 with ΔJ = 2 is only allowed for electric quadrupole radiation and hence
the excited state lifetime is more than 5000 seconds in magnesium. Excited states connected
to lower energetic states only by higher-order multipole transitions can have extraordinarily
long lifetimes of, e.g., ten years in the 2F7/2 state of the 171Yb+ ion that is connected to the

5 At room temperature, however, a much larger linewidth of 12 Hz is observed as a result of transitions induced by
black-body radiation to energetically higher states which subsequently can decay [100].
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ground state via an octupole transition [101] (Section 10.3.2.2). The transition 3P0 →1S0

(Fig. 5.2) as an example of a J = 0 → J = 0 transition is totally forbidden in 40Ca. This
is a consequence of angular momentum conservation where the photon has to carry away an
angular momentum of at least � but the atom has no net angular momentum in both states.

The combination of the selection rules (5.13) and (5.14) also makes the 1S – 2S transition
(Fig. 5.1) in atomic hydrogen a forbidden transition with a natural linewidth of about 1 Hz.
This transition can be excited by intense laser fields where two photons with a wavelength of
243.1 nm (see Table 5.2) are absorbed at the same time [102]. The 1S – 2S [93] and the 2S –
8S/D transitions [103] and other transitions [88] have been utilised recently to set up optical
frequency standards or to perform precision measurements. Atomic silver also has a forbidden
transition (see [99,104,105], Table 5.2) that can be excited by two photons. The realisation of
standards based on these transitions is described in Section 9.

5.2 Energy States of Molecules

In contrast to atoms and ions, the spectrum of molecules contains many more spectral lines as
a result of their complex energy structure. In the following we begin with the description of
molecules built up from two identical atoms like the 127I2 molecule that is used as an absorber
in a variety of optical frequency standards. The two atoms in the molecule are separated by
the distance R. For a large separation R → ∞, the total energy of the molecule composed
of two atoms is given by the sum of the energies of the two isolated atoms. If the two atoms
come closer they may attract or repel each other and the energy states of the molecule depend
on the distance R and split into so-called bonding and anti-bonding states (Fig. 5.3). For very
small distances R between the nuclei the two atoms repel each other due to their Coulomb
interaction. Consequently, when the distance R is reduced, the energy of a bonding state
initially decreases to a minimum at the equilibrium distance R0 and increases again towards
even smaller distances. In contrast to the spherical symmetry of the central potential of an

Figure 5.3: The energy states of a molecule split into bonding (full line) and anti-bonding
(dotted line) states, both depending on the distance R between the two atoms. In the case of
an H2 molecule the bonding state and the anti-bonding state correspond to the cases where the
electron spins are anti-parallel and parallel, respectively. R0 represents the equilibrium distance
between the atoms in the bonding state of the molecule.
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atom the potential of a two-dimensional molecule has a cylindrical symmetry. The axis of the
cylinder coincides with the inter-nuclear axis of the molecule, i.e., the line of sight between the
nuclei. In the case of a small interaction between the spin and the orbital angular momentum,
i.e., for small multiplet splitting, the total spin quantum number S of the molecule results from
the two spins �S1 and �S2 of the individual atoms. The total spin is a vector combination leading
to the values S = S1 + S2, S1 + S2 − 1, . . . |S1 − S2|. The orbital angular momenta �L1 and
�L2 of the individual atoms, however, are quantised with respect to the symmetry line of the
molecule. The quantum number of the component of the resulting electronic orbital angular
momentum is defined as Λ with the values Λ = 0, 1, 2, . . .. In an analogous way to the atom,
the molecular states are labelled as Σ, Π, Δ, Φ, . . . for Λ = 0, 1, 2, 3, . . ., respectively. The
total angular momentum �Ω of the electrons projected onto the inter-nuclear axis is composed
of the orbital angular momentum �Λ and the spin �S in an analogous way as the total electronic
angular momentum �J results from �L and �S for atoms. The symmetry of the potential of the
molecule moreover requires that the spatial density of the electronic charge distribution of the
molecule is symmetric with respect to any mirror plane containing the centres of both nuclei.
Consequently, the symmetry of the electronic wavefunction can be either even or odd which is
indicated by the plus or minus sign as Ω = 0+, 1+, . . . and Ω = 0−, 1−, . . . in the symmetric
and anti-symmetric case, respectively. In a homonuclear molecule comprising two identical
atoms the centre of symmetry is located halfway between the two atoms. As the electronic
charge density will reflect this symmetry the charge density will not change if all coordinates
of the electrons are inverted with respect to this centre of symmetry and the corresponding
wavefunction will have an even or an odd symmetry. Wavefunctions representing an even
function or an odd function with respect to this symmetry operation are denoted by “g” and
“u”, respectively.6 To identify the different electronic states, traditionally, the ground state is
referred to as the X state and the higher lying electronic states are labelled by A, B, C, . . . in
a somewhat arbitrary manner depending on the order of their first identification.

5.2.1 Ro-vibronic Structure

A quantum mechanical treatment of the molecule is often based on the Born–Oppenheimer
approximation.7 The wavefunctions of the electrons and the nuclei are separated and as a
result the energy of the molecule is given as the kinetic energy of the centre-of-mass system
and a contribution that depends only on the distance R between the two nuclei. The latter part
is described by the Schrödinger equation [106, 107]{

− �
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2mr

∂2

∂R2
− �

2

mr

1
R

∂

∂R
+

�
2J(J + 1)
2mrR2

+ V (R)
}

χ(R) = Ev,J · χ(R) (5.15)

where mr is the reduced mass of the molecule and χ(R) is the wavefunction describing the
relative motion of the two nuclei.

In the vicinity of the equilibrium distance R0, the potential energy V (R) (Fig. 5.3) can be
approximated by a parabola V (R) = V (R0) + (R − R0)2/2, which is the potential corre-

6 g and u are the abbreviations for the German words gerade (even) and ungerade (odd).
7 In the Born–Oppenheimer approximation the vibration and rotation of the nuclei are treated separately from the

motion of the electrons since the electrons can follow the movement of the nuclei almost instantaneously.
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sponding to an harmonic oscillator. For J = 0 (5.15) then represents the Schrödinger equation
of a quantised harmonic oscillator whose equilibrium position is shifted by R0 from the origin
of the coordinate system with the vibrational eigenvalues

Evib = �ωvib

(
v +

1
2

)
. (5.16)

ωvib/(2π) is the vibrational frequency and v is the vibrational quantum number. In this ap-
proximation the nuclei perform harmonic oscillations along the line connecting the two nuclei.

Since the amplitude of the oscillation is small with respect to the equilibrium distance,
R ≈ R0 holds, and the third term in curled brackets of (5.15) is approximately constant.
Hence the energy eigenvalues to (5.15) are given by

E = V (R0) +
(

v +
1
2

)
�ωvib +

�
2J(J + 1)

2Θ
(5.17)

with Θ = mrR
2
0. The latter term corresponds to the rotational energy Erot = J2/(2Θ)

of a classical rotating dumb-bell with two masses mr/2 at a distance 2R0. The rotational
energy of the quantum mechanical rotator depends on the moment of inertia Θ and the angular
momentum �J with the quantum numbers J = 0, 1, . . .. Hence, each vibrational state in the
potential energy of the electronic states is accompanied by a ladder of bound rotational states
(Fig. 5.4). Compared to an atom, a molecule has additional degrees of freedom, i.e., the

Figure 5.4: Energy level scheme of a
molecule (not to scale).

vibrations of the atoms with respect to the centre of gravity of the molecule, and the rotation
of the molecule.

For larger excursions from the equilibrium distance R0 the asymmetry of the potential
curve has to be taken into account and the vibration becomes anharmonic. In comparison to
the purely harmonic oscillator the anharmonicity leads to a modification of the vibrational
energy levels Evib that are no longer equidistantly spaced.
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Similarly, the model of a rigid rotator with a constant moment of inertia Θ has its deficits
when applied to the description of a real molecule. Owing to the anharmonicity of the potential
curve and to the stretching due to the centrifugal force, the energy levels depend on the vibra-
tional quantum number and on the rotational quantum number, respectively. In general, the
energies of the rotational and vibrational energy levels are no longer de-coupled and, hence,
they are often referred to as ro-vibronic levels. To describe the energy states and to predict the
experimentally observed transitions, more realistic potentials V (R) have to be used which are
usually derived from a comparison with experimentally determined transition frequencies.

5.2.2 Optical Transitions in Molecular Iodine

For optical frequency standards the iodine molecule is one of the most prominent absorbers.
By absorbing a photon the molecule makes a transition from an energetically lower electronic
state referred to as E′′

el with the vibrational state E′′
vib and the rotational state E′′

rot to an ener-
getically higher electronic state with E′

el, E
′
vib and E′

rot (Fig. 5.4). For low-lying vibrational
levels in the I2 molecule the vibrational frequencies ωvib/(2π) are separated by about 6 THz
in the X state and by about 4 THz in the B state. For low-lying rotational levels of the io-
dine molecule the rotational frequencies ωrot/(2π) are separated by about 3 GHz. At room
temperature, the thermal energy kBT ≈ hc/λ corresponds to 1/λ ≈ 200 cm−1 = 6 THz.
Hence, only the low-lying v′′ = 0, 1, 2 vibrational states are populated with up to a hundred
rotational states. Together with the roughly 80 accessible vibrational states v′ there are about
60 000 fine structure lines resulting from transitions in the B – X system in the spectral region
between about 500 nm and roughly 900 nm. Due to the symmetries and the resulting con-
servation laws not all transitions are allowed. The allowed ones obey specific selection rules
(see Table 5.3). In molecules, the transition probabilities (see (5.133)) can vary largely, even

Table 5.3: Selection rules for electric dipole radiation in molecules.

ΔΛ = 0, ± 1
± ↔ ±
g ↔ u
ΔJ ≡ J ′ − J ′′ = −1 (P - branch)

= 0 (Q - branch; but not J ′ = 0 ↔ J ′′ = 0)
= +1 (R - branch)

for transitions allowed by the selection rules. The observed absorption strength of a particu-
lar transition is determined by the Franck–Condon principle 8 reflecting the structures of the
relevant wavefunctions. Consider the transition indicated in Fig. 5.4 connecting regions of R
near the boundaries of the potential wells. In these regions the wavefunctions go to zero and,
hence, the matrix elements corresponding to the transition probabilities will become small.
On the other hand, transitions occurring at distances where the wavefunctions of both states

8 The quantum mechanical transition probability is given by the Franck–Condon integral
R

χv′(�R)χv′′(�R)dR.
χv′′(R) and χv′(R) are the wavefunctions describing the nuclear oscillations in the ground state with energy E′′
and the excited state with energy E′, respectively.
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have large values, i.e., where the charge density shows anti-nodes, can be expected to exhibit
large transition probabilities.

The particular absorption lines are classified by comparison with calculations similar to
(5.17) by reference to the quantum numbers. As an example consider the transition from
the ground state X 1Σ+

g to the excited state B Π+
u (11 - 5), R(127) which coincides with

the Doppler broadened emission line of the He-Ne laser and is used as an optical frequency
standard (see Section 9.1.3 and Table 5.4). Σ and Π denote the orbital angular momentum
around the line connecting both nuclei, Λ = 0 and Λ = 1, respectively. The parity of the
wavefunctions of the ground state (excited state) is even (odd) denoted by g (u), i.e., the
wavefunction keeps (changes) its sign by inversion at a centre of symmetry of the molecule.
The ground state (excited state) wavefunction of the molecule is symmetric (anti-symmetric)
referred to as + (−) with respect to a mirror plane intersecting the line of sight between
the nuclei. The vibrational quantum number of the electronic ground state (excited state) is
v′′ = 5 (v′ = 11).9 The rotational angular momentum quantum number is J ′′ = 127 and
since this transition belongs to the so-called R-branch (J ′ = J ′′ + 1; see Table 5.3) J ′ = 128
holds.

The Doppler-broadened absorption spectrum of iodine has been measured using Fourier
transform spectroscopy by Gerstenkorn and coworkers between 11 000 cm−1 (905 nm) and
20 000 cm−1 (500 nm) [108,109]. Kato presented an atlas with Doppler-free lines in the range
between 15 000 cm−1 (905 nm) and 19 000 cm−1 (500 nm) [110]. A large number of accurate
determinations of transition frequencies are available (see [111, 112] and references therein).

5.2.2.1 Determination of Molecular Potentials

Since the potential V (R) is intimately connected with the energy levels in a molecule
(see (5.15)), the experimentally determined transitions can be used to identify the energy lev-
els and to determine more realistic potential curves. These potential curves, on the other hand,
allow one to extrapolate to hitherto unknown energies and line spectra. A particular approach
according to Dunham [113] uses a series expansion of the potential V (R) of a vibrating rotor
which leads to energy levels

E(v, J) =
∑
k,l

Yk,l

(
v +

1
2

)k

[J(J + 1)]l , k, l = 0, 1, 2, . . . (5.18)

The Yk,l are referred to as Dunham coefficients. The Dunham coefficients can be determined
from a fit of a measured ro-vibronic spectrum allowing one to construct potentials V (R).
Gerstenkorn and Luc [114] were able to represent their measured 17 800 iodine lines by 46
molecular parameters with a fractional uncertainty of about 10−7. More recently, Knöckel et
al. [112] described selected bands in the B – X spectrum of iodine between 778 nm and 815 nm
using Dunham coefficients with an uncertainty of less than 200 kHz. A different model based
on analytical molecular potentials allowed a prediction of the iodine lines between 515 nm
and 815 nm with an uncertainty of less than 12 MHz.

9 As in atoms, in molecules the quantum numbers of the energetically higher state are denoted by a prime. The
energetically lower state to which this state is connected by a transition is usually denoted by a double prime in
molecular spectroscopy in contrast to atomic spectroscopy where it is not primed.
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Alternatively, a fully quantum mechanical description of the ro-vibrational structure can
be performed by using analytical potentials V (R) and integrating the Schrödinger equation
(5.15) numerically (see e.g. [115]).

5.2.2.2 Influence of the Hyperfine Structure

The hyperfine interaction of the magnetic moment associated with the electrons in the shell
and the magnetic moment of the nuclei leads to a splitting of the lines (Fig. 5.5). The two

Figure 5.5: Observed hyperfine multiplet of the R(57) 32-0 and P(54) 32-0 lines of 127I2 molecules also
known as lines 1104 and 1105 according to the iodine atlas of Gerstenkorn et al. [108]. Courtesy of H.
Schnatz.

multiplets in Fig. 5.5 of the so-called 1104 and 1105 lines comprise 15 or 21 hyperfine compo-
nents, respectively, which results from the spin statistics and the selection rules for electronic
dipole radiation. The nuclear spin quantum number of an iodine atom in the 127I2 molecule
is I1 = I2 = 5/2 and I = 7/2 for 129I2, resulting in a total nuclear spin quantum number of
I = |I1 − I2|, |I1 − I2 + 1|, . . . , |I1 + I2| = 0, 1, . . . , 5 for 127I2 and |I1 + I2| = 0, . . . 7
for 129I2. Since the nuclei are fermions the wavefunction which is the product of the spin
wavefunction and the spatial wavefunction including the rotational function has to be anti-
symmetric with respect to an exchange of the nuclei. Consequently, for any state with even
parity (like the X ground state) a symmetric wavefunction of the nuclear spins requires an odd
rotational wavefunction with odd values of J and vice versa for an anti-symmetric nuclear
spin wavefunction a symmetric rotational wavefunction is necessary. In the iodine molecule
the anti-symmetric nuclear spin wavefunction requires I = I1 + I2 = 0, 2, 4 and the sym-
metric one I = 1, 3, 5. Hence, anti-symmetric wavefunctions of the X state are obtained by
coupling even J ′′ and even I states or odd J ′′ and odd I states. Consequently, the ground
state in 127I2 splits into∑

I=0,2,4

(2I + 1) = 15 for even J ′′

∑
I=1,3,5

(2I + 1) = 21 for odd J ′′ (5.19)
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hyperfine components and in the case of 129I2 into 28 for even J ′′ and 36 for odd J ′′. Electric
dipole transitions obey the selection rules ΔJ = ±1, ΔI = 0 and ΔF = 0,±1. For higher
values of J only ΔF = ΔJ are relevant [106]. An anti-symmetric wavefunction of the excited
B state results from a coupling of states with even J ′ and odd I (21 hyperfine levels 127I2)
or odd J ′ and even I states (15 hyperfine levels for 127I2). Hence, the optical transitions for
high J ′′ of the ground state also show 15 (21) components for even (odd) J ′′. This can be
seen from Fig. 5.5 where the line R(57) of 127I2 with an odd J ′′ = 57 in the X state exhibits
21 hyperfine transitions in contrast to the P(54) line with even J ′′ which has 15 hyperfine
absorption lines. Arguments like these allow one to characterise the observed transitions and
to compare the measured frequencies with the calculated ones.

The hyperfine structure results from the contributions of the electric and magnetic inter-
actions of the nuclear moments with the electrons and the moments of the other nuclei in
the molecule. Despite the complexity of the problem, often an effective hyperfine Hamilton-
ian can be introduced [116] that allows one to describe the hyperfine energies of a particular
ro-vibronic state as follows

Hhfs,eff = HEQ + HSR + HSSS + HTSS. (5.20)

In (5.20) HEQ is the electric quadrupole interaction, HSR is the spin-rotation interaction,
HSSS is the scalar spin–spin interaction, and HTSS is the tensor spin–spin interaction. The
matrix elements of these contributions are often separated into a product of different geomet-
rical factors gi and four hyperfine parameters eQq, C, A, D [111,117] leading to the hyperfine
energy splitting

〈(J ′I ′), F |Hhfs,eff |(J, I), F 〉 = eQq · geQq + C · gSR + A · gSSS + D · gTSS. (5.21)

Based on physical models, interpolation formulae for the hyperfine splittings have been
derived and fitted to measured frequency separations (see, e.g., [111, 117] and references
therein). Bodermann et al. give an uncertainty for the calculation of the hyperfine splittings of
< 30 kHz for the wavelength range between 514 nm and 820 nm [111]. Within the hyperfine
multiplet of a particular transition the four parameters of (5.21) can be used to fit the observed
hyperfine splittings with residuals below 1 kHz [118].

5.2.3 Optical Transitions in Acetylene

In the infrared and in particular in the region of the optical telecommunication bands around
1.3 μm and 1.5 μm there is a need for transitions that can be used as reference lines. A promi-
nent example of such a molecular absorber is the acetylene molecule (C2H2; H−C≡C−H)
[47, 119–123]. The molecule has a strong three-fold bond between the central C atoms and a
weaker single bond between the respective C and H atoms. The acetylene molecule has a lin-
ear symmetry and can vibrate in different modes (Fig. 5.6). The vibrational mode ν2 results
when the C atoms vibrate towards each other and each H atom vibrates more or less in phase
with its neighbouring C atom corresponding predominantly to a stretching of the C ≡ C bond.
In contrast, the ν3 vibrational mode results mainly from the stretching of the C – H bond. ν4

and ν5 correspond to a bending of the C ≡ C and C – H bonds, respectively. The frequencies
(wavenumbers; wavelengths) corresponding to the vibrational modes ν1, ν2, ν3, ν4, and ν5 are
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Figure 5.6: Five normal vibrations of acetylene (H – C ≡ C – H). The arrows indicate the
motions of the respective atoms at a particular instant.

101.1 THz (3373 cm−1; 2.965 μm), 59.2 THz (1974 cm−1; 5.066 μm), 98.4 THz (3282 cm−1;
3.047 μm), 18.4 THz (613 cm−1; 16.31 μm), and 21.9 THz (730 cm−1; 13.70 μm), respec-
tively [47]. The anharmonicity of the potential (Fig. 5.4) corresponds to a non-linearity be-
tween a driving force and the excursion of the atoms. Hence, so-called overtone spectra with
2ν, 3ν, . . . can be observed, however, with strongly decreasing intensities. The non-linear
interaction furthermore leads to combinations, e.g., ν1 + ν2, ν1 − ν2, 2ν1 − ν2, . . ..10 The
transitions resulting from a combination of the ν1 and ν3 oscillations (Figs. 5.7 b) and 13.5)
are frequently used as frequency and wavelength references in the telecommunication band
(see Table 13.1, [124]).

The origin of the R (P) branch results from the almost linearly increasing (decreasing) en-
ergy differences (see Fig. 5.7 a) from J ′′ → J ′ for increasing J ′′ and ΔJ = +1 (ΔJ = −1).
The intensity variations in Fig. 5.7 b) between even and odd J transitions are a result of the
nuclear spin which affects the number of possible molecular states similarly as discussed in
the case of iodine (Section 5.2.2.2). The shape of the envelope of the spectra results from
the interplay between the increasing number of accessible states with increasing J and the
decreasing thermal occupation of these states. The absorption lines of the 13C2H2 are shifted
by about 8 nm towards higher wavelengths with respect to the ones of the 12C2H2 molecules.
This shift can be explained by the different masses of the two carbon isotopes, therefore lead-
ing to a variation of the vibrational frequency of the C – H bonds.

10 Note that the frequencies of the combined oscillations agree roughly, but not exactly, with the combined frequencies
of the particular oscillations.
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Figure 5.7: a) Energy levels and rotational transitions in acetylene. b) Corresponding calculated rota-
tional bands of the acetylene spectrum resulting from the ν1 + ν3 modes of Fig. 5.6.

5.2.4 Other Molecular Absorbers

The transitions in molecular iodine are restricted to the green, red, and near infrared part of the
electromagnetic spectrum. For the infrared spectral range there are other suitable absorbers,
e.g., H2O, NH3, HCN, HI, Cs2, O2, or others [47]. In the blue and green spectral range
tellurium Te2 is often used [125–128].

In the methane molecule CH4 used for stabilisation of the He-Ne laser (see Table 5.4) near
3.39 μm, the four H atoms form a regular tetrahedron around a C atom in the centre. The high
symmetry leads to four fundamental vibrational modes, a two-fold degenerate vibration, and
two three-fold degenerate vibrations referred to as A1, E, and F2, respectively. Methane sta-
bilised lasers used as high-accuracy optical frequency standards are treated in Section 9.1.4.
The osmium tetraoxide (OsO4) molecule has a three-fold degenerate ν3 mode with the absorp-
tion band near 10.42 μm that coincides with the emission of the CO2 laser (Section 9.1.5). A
more detailed compilation of molecular transitions for frequency stabilisation of lasers can be
found, e.g., in reference [47].

5.3 Interaction of Simple Quantum Systems with
Electromagnetic Radiation

5.3.1 The Two-level System

To model the interaction of an atomic quantum system with a monochromatic electromagnetic
field it often suffices to treat the system as a two-level system having only two states with
energies E1 and E2 with E2 > E1. These states are referred to in many ways, such as |1〉 and
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Table 5.4: Selected optical transitions in molecules used for frequency standards. Others may be found
in [47] and Table 9.1. DL: Diode Laser; Dye: Dye Laser.

Molecule Transition Frequency Wavelength Lasers Ref.
THz μm

OsO4 R(12) 29.096 274 952 34 10.303 CO2 [95]
CH4 88.376 181 600 18 3.392 He-Ne [95]
12C2H2 P(21) 194.916 199 55(15) 1.538 DL [124]

ν1 + ν3
13C2H2 R(23) 196.929 745 92(15) 1.522 [124]

ν1 + ν3
12C2H2 R(18) 197.750 466 56(15) 1.516 DL [124]

ν1 + ν3
HCN P(27) 192.622 446 9(1) 1.556 DL [129]
127I2 R(42) 0-17 b1 367.615 127 628(14) 0.816 DL [130]

R(127) 11-5 a13 473.612 214 705 0.633 He-Ne [95]
130Te2 d4 613.881 149 1(5) 0.488 Dye [127]

642.116 513 6(6) 0.467 Dye
[128],
[131]

|2〉 , as the ground state and the excited state, as |g〉 and |e〉 , or |↓〉 and |↑〉 , respectively. We
briefly go through this description following the approach given in textbooks [11,132,133] in
order to derive the relevant tools and formulas that will be used in the remainder of this book.
We start with the time-dependent Schrödinger equation of (5.2), writing the Hamiltonian as

H = H0 + Hint. (5.22)

H0 describes the system without interaction with the radiation using the time-independent
Schrödinger equation neglecting spontaneous emission

H0φk(�r) = Ekφk(�r) (5.23)

with k = 1, 2 and where �r denotes all internal degrees of freedom, such as positions of
electrons, spins, etc. The operator Hint represents the contribution of the perturbation due to
interaction with the radiation field. We assume that Hint has no diagonal elements.11 Since
the eigenfunctions φk(�r) form a complete set, the general solution ψ(�r, t) of (5.2) can be
expressed in the interaction picture as a linear combination of this basis set as follows

ψ(�r, t) = c1(t)e−iE1t/�φ1(�r) + c2(t)e−iE2t/�φ2(�r). (5.24)

11 One can easily remove any constant energy by going to new basis states which shift the energies of both states,
which is then included in H0.
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In general, the ck(t) now include the time dependence introduced by the perturbation operator
Hint. To find the explicit time dependence (5.22) and (5.24) are inserted into (5.2) which leads
to

(H0 + Hint)
[
c1(t)e−iE1t/�φ1(�r) + c2(t)e−iE2t/�φ2(�r)

]
= i�

∂

∂t

[
c1(t)e−iE1t/�φ1(�r) + c2(t)e−iE2t/�φ2(�r)

]
(5.25)

or

E1c1(t)e−iE1t/�φ1(�r) + E2c2(t)e−iE2t/�φ2(�r)
+Hintc1(t)e−iE1t/�φ1(�r) + Hintc2(t)e−iE2t/�φ2(�r)

= i�
dc1(t)

dt
e−iE1t/�φ1(�r) + E1c1(t)e−iE1t/�φ1(�r)

+i�
dc2(t)

dt
e−iE2t/�φ2(�r) + E2c2(t)e−iE2t/�φ2(�r) (5.26)

where we have used (5.23) on the left-hand side. After subsequent multiplication from the left
by φ∗

1(�r) and φ∗
2(�r) and by integrating over the spatial coordinates �r one obtains

i�
dc1

dt
= c2(t)H12(t)e−iω0t (5.27)

i�
dc2

dt
= c1(t)H21(t)e+iω0t. (5.28)

with E2 − E1 ≡ �ω0 and the time-dependent matrix elements

H21(t) ≡
∫

φ∗
2(�r)Hint(t)φ1(�r)d3r ≡ 〈2|Hint(t)|1〉 (5.29)

and

H12(t) ≡
∫

φ∗
1(�r)Hint(t)φ2(�r)d3r ≡ 〈1|Hint(t)|2〉. (5.30)

Since Hint is Hermitian it follows that

H21 = H∗
12. (5.31)

For the probabilities |c1|2 and |c2|2 to find the two-level atom in state |1〉 and state |2〉 , re-
spectively, the relation holds

|c1(t)|2 + |c2(t)|2 = 1. (5.32)

The solutions of the coupled differential equations (5.27) and (5.28) for c1(t) and c2(t) can be
obtained if the wavefunctions or state vectors for the two levels are known together with the
Hamiltonian that couples the two states.

The Hamiltonian describing the particular interaction of the atom with the electromagnetic
field can be derived, e.g., from the minimal coupling between a charged particle of mass
m and charge q at the position �r with the vector potential A(�r, t) of the electromagnetic
field [134, 135]. If the wavelength of the radiation is large compared to the extension of the
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atom the field can be expanded into multipoles at the centre–of–mass position �r0 of the atom.
For frequency standards some of the most relevant interaction Hamiltonians are given [11] by

Hint = −�d · �E(�r0, t) = +q�r · �E (electric dipole interaction), 12 (5.33)

Hint = −�μ · �B(�r0, t) (magnetic dipole interaction), (5.34)

Hint = +
q

2
�r · �r · �∇r0

�E(�r0, t) (electric quadrupole interaction) (5.35)

where �d, �μ, etc have to be interpreted as quantum mechanical operators.
The electric dipole interaction is relevant for optical frequency standards like the ones

based on the alkaline earth atoms (Section 9.4.4). In the approximation of (5.33) the electric
dipole moment �d = q�r = e�r (where the elementary charge e = 1.602 × 10−19 A s must be
taken positive) of the atom interacts with the mean electric field at the position �r0 of the atom.

The Hamiltonian (5.34) refers to the interaction of the magnetic dipole moment �μ of the
atom with the magnetic �B(�r0, t) field of the electromagnetic radiation. Magnetic dipole tran-
sitions between hyperfine transitions are employed in microwave frequency standards as, e.g.,
the caesium atomic clock (Section 7), the hydrogen maser (Section 8.1), or a large number
of trapped ion standards. In optical frequency standards also electric quadrupole transitions
(Hg+ and Yb+) or even an octupole transition (Yb+) (Section 10.3.2) are used.

Let us consider in more detail the electric dipole interaction (5.33). The presence of an
electric field �E first of all tends to separate the positive and negative charges in an atom, mol-
ecule or ion thus polarising the microscopic particle and changing its energy. The polarisation
of the atom is usually described by the expectation value of the (induced) electric dipole opera-
tor �d = −q

∑N
i=1 �ri with the position coordinates �ri of the N electrons of the atom taken with

the perturbed field-depending state of the atom. In analogy to the classical case, the dipole
moment �d can be thought of as the distance which is now the electronic �r operator between
the charges. For simplicity we assume that the electric dipole is parallel to the electric field
direction ε̂ of a linearly polarised electromagnetic wave �E(�r0, t) = E0ε̂ cos(ωt). Applying
the dipole approximation, i.e., neglecting the spatial variation of the electric field across the
atom, (5.27) can be re-written as

i�
dc1(t)

dt
= c2(t)

(∫
φ∗

1(�r) �d · �E φ2(�r)d3r

)
e−iω0t 1

2
[
eiωt + e−iωt

]
≡ c2(t)

�ΩR

2

[
ei(ω−ω0)t + e−i(ω+ω0)t

]
(5.36)

where

ΩR =
eE0

�

∫
φ∗

1(�r)�r · �ε φ2(�r)d3r (5.37)

is called the Rabi frequency. It is always possible to adjust the relative phases of the states
φ1 and φ2 such that the matrix elements (5.29) and (5.30), and hence the Rabi frequency, are

12 The dipole moment is a vector in the direction from −q to +q. In an atom the electric field of the electromagnetic
wave leads to an induced dipole moment where the electron follows the electric field but the position of the positive
cloud of charge, determined mainly by the nucleus, is virtually fixed. If �r is the vector between the nucleus and the
electron it is antiparallel to the dipole moment which leads to the positive sign on the right-hand side of (5.33).
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real [136]. Then we obtain

i�
dc2(t)

dt
= c1(t)

�ΩR

2

[
e−i(ω−ω0)t + ei(ω+ω0)t

]
. (5.38)

Near resonance (ω ≈ ω0) the second terms in the square brackets of (5.36) and (5.38) are
rapidly oscillating with about twice the frequency of the electromagnetic field, in contrast to
the terms containing the detuning

Δω ≡ ω − ω0. (5.39)

It can be shown that the rapid oscillation gives rise to only a small frequency shift, referred to
as the Bloch–Siegert shift [11,137,138]. Hence, often the terms rapidly oscillating with ω+ω0

are neglected, a procedure which is known as the rotating-wave approximation. According
to Vanier and Audoin [11] one easily finds that this rapidly oscillating term has an negligible
influence if one integrates (5.36) for times short enough that c2(t) can be regarded as constant,
e.g., for c2(t) ≈ 1. In this case, c1(t) is the sum of a term with the resonance denominator
1/Δω and a term with 1/(ω + ω0), where the first is much larger than the second one. In the
“rotating-wave approximation” we replace (5.36) and (5.38) by

dc1(t)
dt

= −ic2(t)
ΩR

2
eiΔωt and (5.40)

dc2(t)
dt

= −ic1(t)
ΩR

2
e−iΔωt. (5.41)

To solve (5.40) and (5.41) we try the ansatz

c1(t) = eiαt (5.42)

with dc1(t)/dt = iα exp(iαt) and substitute it into (5.40). The result

c2(t) = −α
2

ΩR
ei(α−Δω)t (5.43)

when inserted into (5.41) leads to a quadratic equation α2 − αΔω − Ω2
R/4 = 0 with the two

solutions

α1,2 =
Δω

2
± 1

2

√
Δω2 + Ω2

R. (5.44)

By denoting

Ω′
R ≡

√
Ω2

R + Δω2 (5.45)

equations (5.42) and (5.43) can now be written as

c1(t) = ei
Δωt

2

[
Aei

Ω′
Rt
2 + Be−i

Ω′
Rt
2

]
(5.46)

and

c2(t) = e−iΔωt
2

[
−A

Δω + Ω′
R

ΩR
ei

Ω′
Rt
2 − B

Δω − Ω′
R

ΩR
e−i

Ω′
Rt
2

]
. (5.47)
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The coefficients A and B can be determined from the initial conditions c1(t = 0) = 1 and
c2(t = 0) = 0 as 1 = A + B and A(Δω +

√
Δω2 + Ω2

R) = −B(Δω − √
Δω2 + Ω2

R) or

A = −Δω − Ω′
R

2Ω′
R

(5.48)

B =
Δω + Ω′

R

2Ω′
R

. (5.49)

Substituting (5.48) and (5.49) into (5.46) and (5.47) we end up with

c1(t) =
[
cos

Ω′
Rt

2
− i

Δω

Ω′
R

sin
Ω′

Rt

2

]
exp

[
i
Δω

2
t

]
(5.50)

c2(t) = −i
ΩR

Ω′
R

sin
Ω′

Rt

2
exp

[
−i

Δω

2
t

]
. (5.51)

The probability of finding the two-level atom in either one of the two states given by |c1(t)|2
or |c2(t)|2 oscillates at frequency Ω′

R (see Fig. 5.8). These oscillations are referred to as
Rabi oscillations. This angular frequency depends on the detuning of the frequency of the

Figure 5.8: The probability |c2(t)|2 of finding a two-level atom in the excited state calculated
from (5.51) for Δω = 0 (solid line), Δω = ΩR (dotted line), Δω = 2ΩR (dashed line) versus
time, showing Rabi oscillations.

radiation from the transition frequency and on the Rabi frequency ΩR (5.37) defined by the
particular interaction such as (5.33) – (5.35). For zero detuning the probability of finding the
atom in the excited state increases to unity after some time. A pulse of radiation applied for
the corresponding time t is called a π pulse since it changes the phases of the Rabi oscillations
(full line in Fig. 5.8) by π. In general, the angle

θR = Ω′
Rt (5.52)

is referred to as the Rabi angle. As can be seen from Fig. 5.8, with increasing detuning, this
oscillation frequency increases. However, at the same time the amplitude of the oscillation
decreases.



138 5 Atomic and Molecular Frequency References

5.3.2 Optical Bloch Equations

The evolution of the two-level system near resonance described by the Schrödinger equation
13 (5.2) can be visualised by a geometrical picture that has been given by Feynman, Vernon
and Hellwarth [139]. To avoid confusion with the convention which led to (5.24) we do not
follow their notation but write

ψ(�r, t) = C1(t)φ1(�r) + C2(t)φ2(�r). (5.53)

The equations of motion are then derived from (5.2) and by using (5.25) similarly as has been
done in Section 5.3.1 as follows

dC1(t)
dt

= +i
ω0

2
C1(t) − i

�
C2(t)H12(t) (5.54)

dC2(t)
dt

= −i
ω0

2
C2(t) − i

�
C1(t)H21(t). (5.55)

Here again, H21 ≡ ∫
φ∗

2Hintφ1d
3r, H12 ≡ ∫

φ∗
1Hintφ2d

3r = H∗
21 and �ω0 = E2 − E1

holds. The zero of the energy of the two-level system is chosen as (E2 + E1)/2 leading
to E2 = �ω0/2 and E1 = −�ω0/2. The difference between the different time-dependent
coefficients is such that c1(t) and c2(t) of (5.27) and (5.28) in the interaction picture show a
slowly varying time dependence determined by the interaction energy Hint alone, whereas the
more rapidly oscillating C1(t) and C2(t) of (5.54) and (5.55) in the Schrödinger picture are
determined by the total Hamiltonian. Nevertheless, C1C

∗
1 = c1c

∗
1 and C2C

∗
2 = c2c

∗
2 holds.

Feynman et al. used the three real functions depending on C1(t) and C2(t)

R′
1(t) ≡ C2(t)C∗

1 (t) + C∗
2 (t)C1(t) (5.56)

R′
2(t) ≡ i [C2(t)C∗

1 (t) − C∗
2 (t)C1(t)] (5.57)

R′
3(t) ≡ C2(t)C∗

2 (t) − C1(t)C∗
1 (t) (5.58)

to define a vector �R′(t) = (R′
1(t), R

′
2(t), R

′
3(t)). �R′(t) is commonly referred to as a fictitious

spin vector or pseudo-spin vector whose name will be justified below. Equating (5.56) to
(5.58) and (5.32) one finds

R′2
1(t) + R′2

2(t) + R′2
3(t) = [C2(t)C∗

2 (t) + C1(t)C∗
1 (t)]2 =

(|c2(t)|2 + |c1(t)|2
)2

= 1
(5.59)

which means that the length of the vector �R′(t) is constant, i.e., the tip of R′(t) traces an
orbit on a unit sphere referred to as a “Bloch sphere”. To find out the significance of the three
components of the pseudo-spin vector �R′(t) we determine the dynamics of the pseudo-spin
vector by deriving the motional equations from d�R′(t)/dt.

As an example we calculate the vector component dR′
1(t)/dt from (5.56) as

dR′
1(t)
dt

=
dC2(t)

dt
C∗

1 (t) + C2
dC∗

1 (t)
dt

+
dC∗

2 (t)
dt

C1(t) + C∗
2 (t)

dC1(t)
dt

(5.60)

13 Equivalently, the Heisenberg picture can be used [138].
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and find by using (5.54) and (5.55) together with (5.57) and (5.58)

dR′
1(t)
dt

=
1
i�

�ω0

2
C2C

∗
1 +

1
i�

C1C
∗
1H21 +

1
i�

�ω0

2
C2C

∗
1 − 1

i�
C2C

∗
2H∗

12

− 1
i�

�ω0

2
C∗

2C1 − 1
i�

C1C
∗
1H∗

21 −
1
i�

�ω0

2
C∗

2C1 +
1
i�

C2C
∗
2H12

=
2ω0

2i
(C2C

∗
1 − C∗

2C1) +
1
i�

C1C
∗
1 (H21 − H∗

21) +
1
i�

C2C
∗
2 (H12 − H∗

12)

= −ω0R
′
2(t) −

2
�
	m (H21)R′

3(t). (5.61)

Similarly, we find the equations for the components Ṙ2(t) and Ṙ3(t). The complete set of
equations given in the following is referred to as the optical Bloch equations

dR′
1(t)
dt

= −ω0R
′
2(t) −

2
�
	m (H21)R′

3(t) (5.62)

dR′
2(t)
dt

= +ω0R
′
1(t) −

2
�
�e (H21)R′

3(t) (5.63)

dR′
3(t)
dt

= +
2
�
�e (H21)R′

2(t) +
2
�
	m (H21)R′

1(t). (5.64)

This set of equations can be written in a more compact form as

d�R′(t)
dt

= �Ω′ × �R′(t) (5.65)

where �Ω′ represents a “torque” vector 14 with the three real components 15

�Ω′ ≡
(

2
�
�e (H21),−2

�
	m (H21), ω0

)
. (5.66)

Equation (5.65) resembles the equation used to describe the precession of a spinning top under
the action of a torque (Fig. 5.9) or the precession of a spin-1/2 particle with a magnetic moment
gyrating in a magnetic field which led one to adopt the name “pseudo-spin vector”. The
optical Bloch equations describe the coupling of a radiation field to a two-level system. The
R′

1 and R′
2 components of the Bloch vector correspond to the real and imaginary part of the

polarisation of the atom, whereas the R′
3 component gives the difference in the probabilities

to find the two-level system in the upper state φ2 (|e〉 , |2〉 ) and in the lower state φ1 (|g〉 , |1〉 ),
i.e., it represents the inversion of the two-level system. For an atom in the ground state (|1〉 )
or in the excited state (|2〉 ) �R′ points downward or upward, respectively.

The simple picture of �R′ precessing around �Ω′ is adequate only in cases where �Ω′ varies
slowly during the time needed for �R′ to precess around �Ω′. Near resonance ω ≈ ω0 holds and
�Ω′(t) has components where the time dependence (of the interaction operator) is determined
by the frequency of the electromagnetic field ω. As an example consider the case of a π pulse

14 The vector �Ω′ must not be confused with the Rabi frequency Ω′
R.

15 If we had chosen H12 rather than H21 in (5.62) – (5.64) then the second component of the “torque” vector would
read +2/�
m H12.
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Figure 5.9: The pseudo-spin vector R′ pre-
cesses around the Ω′ vector.

Figure 5.10: Evolution of the R′ vector on the
Bloch sphere for a resonant π pulse applied to an
atom in the ground state.

where the interaction is constant for a time τ such that ΩRτ = π (Fig. 5.10). In microwave
(optical) frequency standards the time τ is typically of the order of microseconds or longer
and hence the pseudo-spin vector spirals at least a thousand (thousand millions) times around
the Bloch sphere. Thus often a transformation is applied where a reference frame with the
new coordinates u, v, w is used, that rotates at the frequency of the electromagnetic wave ω
around the 3 coordinate, with the w coordinate being parallel to the 3 coordinate [133, 138–
140]. Before performing this transformation we again specify the particular interaction as the
electric dipole interaction where H12 = H∗

21 = −�d · �E (see (5.33)) and the dipole moment
d12 = dr + idi in general is a complex vector. With the same argument as before the phases
of the states ψ1 and ψ2 can be adjusted in such a way that di = 0. Thus we can write (5.62) –
(5.64) as

dR′
1(t)
dt

= −ω0R
′
2(t) (5.67)

dR′
2(t)
dt

= +ω0R
′
1(t) +

2dr

�
E0 cos ωt R′

3(t) (5.68)

dR′
3(t)
dt

= −2dr

�
E0 cos ωt R′

2(t). (5.69)

which we now transform into the rotating system by means of the transformations

R′
1(t) = u cosωt − v sin ωt (5.70)

R′
2(t) = u sin ωt + v cos ωt (5.71)

R′
3(t) = w. (5.72)
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Insertion of, e.g., (5.71) into (5.67) and equating the result with the derivative of (5.70) leads
to

u̇ cos ωt − v̇ sin ωt = (ω − ω0) u sin ωt + (ω − ω0) v cosωt (5.73)

u̇ sin ωt + v̇ cosωt = − (ω − ω0)u cosωt + (ω − ω0) v sin ωt +
2dr

�
E0 cos ωt w

(5.74)

ẇ = −2dr

�
E0 cos ωt sin ωt u − 2dr

�
E0 cos2 ωt v. (5.75)

Adding or subtracting (5.73) and (5.74) after suitable multiplication by cos ωt and sin ωt,
leads to the optical Bloch equations in the rotating frame

u̇ = (ω − ω0)v +
dr

�
E0 sin 2ωt w (5.76)

v̇ = −(ω − ω0)u +
dr

�
E0(1 + cos 2ωt) w (5.77)

ẇ = −dr

�
E0 sin 2ωt u − dr

�
E0(1 + cos 2ωt) v. (5.78)

Hence the transformation to the rotating frame leads to terms slowly varying with the detuning
as (ω − ω0)t and rapidly oscillating terms oscillating with 2ωt. In microwave and optical
frequency standards where the pulse duration τ is large compared to 1/ω these terms in general
have only a small influence (the so-called Bloch–Siegert shift, [11, 137, 138]). Applying the
rotating-wave approximation where the terms oscillating with 2ωt are neglected and using the
Rabi frequency ΩR (see (5.37)) we find the optical Bloch equations in the rotating frame and
in the rotating-wave approximation as follows

u̇ = (ω − ω0)v (5.79)

v̇ = −(ω − ω0)u + ΩR w (5.80)

ẇ = −ΩR v. (5.81)

The transformation to the rotating frame again leaves the length of the vector constant and
again the pseudo-spin vector �R = (u, v, w) traces out an orbit on the Bloch sphere. Similarly
as before (see (5.65)) these equations can be written as a single vector equation

d�R(t)
dt

= �Ω × �R(t) (5.82)

with the “torque” vector

�Ω = (−ΩR, 0, ω0 − ω) (5.83)

where the third component of �Ω now is the negative detuning −(ω − ω0).
The picture of the pseudo-spin vector on the Bloch sphere is particularly useful in the

context of pulsed excitations, e.g., in the Ramsey technique (Section 6.6) and it will be used in
more detail in the next chapters. In Fig. 5.11 we therefore consider two particular cases which
represent “building blocks” for such sequences.
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Figure 5.11: a) For zero detuning, the pseudo-spin vector precesses in the v − w plane. b) Evolution of
the pseudo-spin vector representing a pure coherence of the two-level system.

As a first case (Fig. 5.11 a) consider the interaction of a monochromatic field with a fre-
quency that coincides with the atomic transition frequency. As the detuning is zero, the “torque
vector” �Ω points along the −u axis (see (5.83)) and the pseudo-spin vector �R precesses around
this axis. To find the evolution of the pseudo-spin vector in general one uses (5.79) to (5.81).
Since at the beginning the two-level system is in the ground state the pseudo-spin vector points
to the south pole of the Bloch sphere with u = v = 0 and w = −1. Hence, u̇ = 0 (see (5.79)),
ẇ = 0 (see (5.81)), v̇ = −ΩR (see (5.81)) and consequently the pseudo-spin vector acquires
a −v component. On its path on the Bloch sphere the pseudo-spin vector passes the north
pole and later the south pole again and again as long as the interaction is switched on. As
the third component of �R represents the inversion of the two-level system we recover here the
on-resonance Rabi oscillations of Fig. 5.8.

Next, we consider the case (Fig. 5.11 b) where the “torque vector” has only a w com-
ponent, i.e., there is a detuning ω − ω0 �= 0 but no field (Ω1 = 0). Such a case can be
encountered after a π/2 pulse resulting from an infinitely short interaction of the atom with a
detuned field. The Bloch vector precesses now in a the u − v plane and its third component
does not change with time. The positive or negative detuning defines if the pseudo-spin vector
rotates clockwise or counter-clockwise.

In the more general case where the “torque vector” has a u and a w component, i.e., during
interaction of the two-level system with a detuned radiation field, the Bloch vector acquires
a non-zero u component. Consequently, the Bloch vector never can reach the north pole of
the Bloch sphere again and hence the Rabi oscillations with finite detuning never lead to full
inversion (Fig. 5.8).
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5.3.2.1 Density Operator

Up to now we have described a single two-level atom by a state vector or a wave function
(5.24) that contains all possible information about the system. Often, however, this informa-
tion is not available, e.g., if spontaneous decay, described by a decay rate γ from the upper
level to the lower level, has to be taken into account. In such a case one does not know the
state of the system but rather knows the probabilities of finding the system in the particular
states and the system is described by the density operator. The density operator is defined
as the sum of the projectors onto the possible state vectors |ψi〉 each properly weighted by a
classical probability Pi

ρ ≡
∑

i

Pi|ψi〉〈ψi| (5.84)

(see e.g. [133, 135]). For a two-level system where the state of the system is given by |ψ〉 =
C1|1〉 + C2|2〉 the matrix elements of the density operator

ρ =
(

C1C
∗
1 C1C

∗
2

C2C
∗
1 C2C

∗
2

)
=

(
ρ11 ρ12

ρ21 ρ22

)
(5.85)

can be written as ρij = 〈j|ρ|i〉 where

ρ11 = C1C
∗
1 is the probability to find the system in the lower level,

ρ22 = C2C
∗
2 is the probability to find the system in the upper level,

ρ12 = C1C
∗
2 = ρ∗21 is the so-called coherence.

The diagonal elements of the density matrix represent the population of the atomic states.
Similar to the R1 and R2 components of the Bloch vector, the non-diagonal elements represent
the induced polarisation which is responsible for the absorption and dispersion. The relaxation
of terms resulting from spontaneous emission, collisions, and other damping mechanisms are
included in a phenomenological way by decay rates γ. A complex non-diagonal element
describes the coherent superposition of two states and is therefore referred to as a coherence.

The pseudo-spin vector on the Bloch sphere can be constructed by using the elements of
the density matrix ρ in an equivalent way to (5.56) – (5.58) [133].

5.3.3 Three-level Systems

The simple two-level picture used so far is capable of describing a large body of the effects
associated with the absorption and emission of photons by quantum mechanical systems and
hence the physics of frequency standards. There are, however, a number of effects, such as
optical pumping [141], the occurrence of dark states, or coherent population trapping [142]
that are based on the interaction of radiation fields with absorbers having more than two levels.
Most of these effects can be visualised in a three-level system in a simplified way (Fig. 5.12).

5.3.3.1 Optical Pumping

Optical pumping, first described by Kastler [141], can occur, e.g., in multi-level systems.
Consider an ensemble of atoms described by the simplified energy level scheme of Fig. 5.12 a)
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Figure 5.12: Three-level systems in a) Λ configuration, b) V configuration and c) cascade configuration.

where the atom, if excited in the state |3〉 , can decay by allowed transitions with energies
�ω13 and �ω23 to the two states |1〉 and |2〉 . If a monochromatic light source is tuned, e.g.,
to the transition �ω23, the atoms spontaneously decaying into the state |2〉 will be re-excited,
whereas the atoms in the state |1〉 remain unaffected. After a number of excitation–emission
cycles, virtually all atoms will be found in the |1〉 state. For frequency standards this optical
pumping is important in several aspects. First, it is used to prepare multi-level atoms in a well-
defined state, e.g., in the optically pumped Cs clock, where the F = 4 to F ′ = 3 transition
(λ = 852 nm) (see Fig. 7.8) can be used to redistribute the atomic population in the ground
states. Second, optical pumping may terminate laser cooling, where, e.g., in the case of the
alkaline atoms its influence has to be counteracted by an additional laser that re-pumps the
atoms.

5.3.3.2 Coherent Population Trapping

Very peculiar features can be observed when two coherent (laser) fields interact with a three-
level system, e.g., the Λ system of Fig. 5.12 a), whose angular frequencies ωL1 and ωL2 are
near the two-photon Raman resonance condition

�ω13 − �ω23 = E2 − E1. (5.86)

The detunings

δωL1 = ωL1 − ω13, (5.87)

δωL2 = ωL2 − ω23 (5.88)

differ from zero. The features include the occurrence of so-called coherent population trapping
(CPT) or dark resonances. They can be calculated, e.g., by formulating the optical Bloch
equations for the density matrix elements of a three-level system [142–144] and considering
the stationary solutions ρ̇ = 0. As an example consider the three elements of the density matrix
ρ11, ρ22, and ρ33 (Fig. 5.13) representing the populations of the three states |1〉 , |2〉 , and |3〉
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Figure 5.13: Diagonal elements of the density matrix describing the steady-state populations
in a closed three-level Λ system according to Fig. 5.12 a), as a function of the detuning of the
second laser δωL1 and the first laser on resonance (δωL1 = 0). The transition rates and the Rabi
frequencies were chosen as Γ13 = ΩR 13 = 2π × 15 MHz, Γ23 = ΩR 23 = 2π × 5 MHz, and
Γ23 = 0 (similarly to [145]).

of Fig. 5.12 a), respectively. Away from the two-photon resonance, the population ρ33 in the
excited state |3〉 depends Lorentzian-like on the detuning of the laser frequency. However,
in a narrow region close to resonance the population is decreased and vanishes exactly when
both lasers are tuned to resonance. As a result the population is trapped in the two lower
states by this coherence effect, and hence it is termed “coherent population trapping” (CPT).
The two dipoles associated with the transitions |1〉 → |3〉 and |2〉 → |3〉 are coupled via
the non-diagonal elements of the density matrix in the optical Bloch equations. It can be
shown [142] that exactly at resonance the coherent superposition of both dipoles leads to
destructive interference for the transition to the state |3〉 . Since due to the missing population
in the state |3〉 at resonance the fluorescence is suppressed, the term “dark resonance” was
coined. Far from resonance the distribution of the population distribution in the states |1〉
and |2〉 is determined by the effect of optical pumping and consequently depends on the
effective Rabi frequencies of the transitions driven by the respective lasers (see Fig. 5.13).
The steady-state populations in the states |1〉 and |2〉 depend on the ratio of the associated
Rabi frequencies ΩR 13/ΩR 23 and on ratio of the decay rates Γ13 and γ23. If in Fig. 5.13
the first laser were also detuned from the transition (δωL1 �= 0) the dark resonance would be
shifted by the amount given by the two-photon Raman resonance condition.

Dark resonances and coherent population trapping find increasing application in frequency
standards since they allow one to use a very small linewidth in compact devices (Section 8.2).
The width of the dark resonance is ultimately limited by the lifetime of the coherence between
the two lowest states |1〉 and |2〉 . If these states result, e.g., from the hyperfine split ground
state of an alkali atom such as caesium or rubidium, these states are coupled by weak magnetic
dipole transitions that would have an extremely long spontaneous lifetime. Consequently, the
observed linewidth is mainly determined by the phase stability of the laser fields and other
experimental parameters.
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5.4 Line Shifts and Line Broadening

The transitions in atoms, ions, or molecules considered so far are widely used to stabilise
the frequencies of external oscillators. Any effects that shift the transition frequencies in
an uncontrolled way may limit the performance of such frequency standards. Hence, the
knowledge of the origins, magnitudes, and properties of these shifts is essential to reduce and
control them in order to design and to operate frequency standards at optimum performance.
In this sense all microscopic quantum systems of a particular species behave in the same
way only to the extent that one is able to create the same conditions for all of these systems.
Frequency shifts of a transition line immediately lead to line broadening if either a particular
perturbation to the quantum system is not stable during the interaction or if the interaction
includes many systems subject to different perturbations. If the interaction takes place with
an ensemble of particles it is useful to distinguish two different categories of line broadening.
One refers to a homogeneous broadening if all particles show the same individually broadened
line. If, on the other hand, the particles of an ensemble that is interrogated experience different
perturbations of their transition frequencies, one refers to an inhomogeneous broadening of the
line.

5.4.1 Interaction Time Broadening

The natural linewidth resulting from the finite lifetime of the excited state considered in 2.1.2.3
represents an example of a homogeneous broadening since it is common to all atoms. Sim-
ilarly, the finite interaction time of an interrogating field with the absorber leads to a finite
homogeneous width of the corresponding spectrum in the frequency domain. In the following
we consider two special cases where the interaction is switched on and off either abruptly or
smoothly and calculate the corresponding frequency spectrum.

If the interaction of the field with the atom is switched on for a finite duration τp the field
spectrum can be described by

f(t) =
{

A0 cos ω0t for − τP /2 < t < τp/2
0 elsewhere.

The frequency-domain spectrum can be calculated as the inverse Fourier transformation of
f(t) according to (2.19) as

F (ω) =
A0

2

∞∫
−∞

{exp(iω0t) + exp(−iω0t)} exp(−iωt)dt (5.89)

=
A0

2

τp/2∫
−τp/2

exp[i(ω0 − ω)t]dt +
A0

2

τp/2∫
−τp/2

exp[−i(ω0 + ω)t]dt.

By writing the complex exponential as cosine and sine terms, one finds

F (ω) =
A0

2

τp/2∫
−τp/2

cos[(ω − ω0)t]dt +
A0

2

τp/2∫
−τp/2

cos[(ω + ω0)t]dt (5.90)
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where the integration of the odd (sine) function cancels. From the two terms in (5.90) F (ω) ≡
F+(ω − ω0) + F−(ω + ω0) the second one F−(ω + ω0) is the one that takes into account the
negative “mirror frequencies”. Evaluation of the first integral leads to

F+(ω − ω0) =
A0

2
1

ω − ω0

[
sin

(ω − ω0)τp

2
− sin

−(ω − ω0)τp

2

]
=

A0τp

2
sin[(ω − ω0)τp/2]

(ω − ω0)τp/2
. (5.91)

The power spectrum 16 |F+(ω − ω0)|2 (Fig. 5.14) shows side lobes besides the main peak at
ω0. These side lobes result from the steep slopes when the interaction is switched on and off
and from the corresponding high-frequency Fourier components necessary to reproduce these
steep slopes. To determine the full width at half maximum Δωp of the main peak of Fig. 5.14

Figure 5.14: a) Square pulse of finite length τ . b) Corresponding power spectrum.

we set

1
2

=
sin2[(ω1/2 − ω0)τp/2]
[(ω1/2 − ω0)τp/2]2

. (5.92)

Solving this equation is equivalent to solving 1/
√

2x = sin x with x ≡ (ω1/2 − ω0)τp/2 =
1.3916. From the full width at half maximum Δωp = 2(ω1/2 − ω0) = 4 × 1.3916/τp of
the pulse we find Δνp × τp = 0.8859. This is a special case of the time–bandwidth product
relating the temporal width τp of a pulse 17 to the width Δνp of the corresponding power
spectrum F (ν).

Often, the interaction is “switched on and off” smoothly. This situation occurs, e.g., when
a moving atom crosses a laser beam with a Gaussian profile. In this case the pulse can be
described by

f(t) = A0 exp
(
− t2

2σ2

)
cos ω0t (5.93)

16 Note that the total power is given by |F+(ω − ω0) + F−(ω + ω0)|2.

17 For short laser pulses in general the time–bandwidth product is given for the square of the field amplitude rather
than the amplitude itself.
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where A0 denotes the amplitude at t = 0 (Fig. 5.15 a). The spectrum in the frequency domain
is obtained from the inverse Fourier transformation

F (ω) =
A0

2

∞∫
−∞

exp
(−t2

2σ2

)
[exp(iω0t) + exp(−iω0t)] exp(−iωt)dt (5.94)

=
A0

2

∞∫
−∞

exp
(−t2

2σ2

)
exp[i(ω0 − ω)t]dt

+
A0

2

∞∫
−∞

exp
(−t2

2σ2

)
exp[−i(ω0 + ω)t]dt.

To evaluate the left-hand term of (5.94) F (ω) ≡ F+(ω−ω0)+F−(ω +ω0) we complete the
square of the exponent

F+(ω) =
A0

2

∞∫
−∞

exp
{
−

[
t2

2σ2
− i(ω0 − ω)t

]}
dt

=
A0

2

∞∫
−∞

exp

⎡⎣−(
t√
2σ

− i
(ω0 − ω)

√
2σ

2

)2

− (ω0 − ω)2σ2

2

⎤⎦ dt

=
A0

2
exp

[
− (ω0 − ω)2σ2

2

] ∞∫
−∞

exp

[
−

(
t√
2σ

− i
(ω0 − ω)σ√

2

)2
]

dt. (5.95)

The value of the definite integral can be looked up in tables after simplifying it by taking
t√
2σ

− i (ω0−ω)σ√
2

≡ β as

∞∫
−∞

exp

[
−

(
t√
2σ

− i
(ω0 − ω)σ√

2

)2
]

dt ≡
√

2σ

∞∫
−∞

exp(−β2)dβ =
√

2σ
√

π. (5.96)

Hence, the Fourier transform of the Gaussian (5.93)

F+(ω) =
A0

√
2πσ

2
exp

[
− (ω0 − ω)2σ2

2

]
(5.97)

is again a Gaussian function of width σ′ = 1/σ (Fig. 5.15). The (1/e) width of the squared
amplitude of both pulses (in the time domain and in the frequency domain) is related to the
respective halfwidth by 2

√
ln 2. Hence, the corresponding time–bandwidth product is given

by 4 ln 2/2π×Δνp×τp = 0.4413. The time–bandwidth product for the most common pulses
(see e.g. Table 5.5) are of the order of unity and, hence,

Δνp × τp
<∼ 1 (5.98)

holds.
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Figure 5.15: a) A Gaussian pulse of length σ. b) The corresponding power spectrum (b)

Table 5.5: Time–bandwidth product of different pulse shapes. τp: pulse length (FWHM) of
[f(t)]2; Δνp: bandwidth (FWHM) of [F(f(t))]2.

Shape I(t) ΔνP × τp

Rectangular pulse

{
1, |t| ≤ τp/2

0, |t| > τp/2
0.8859

Gaussian e−(4 ln 2)t2/τ2
p 0.4413

Secans Hyperbolicus sech2

(
1.7627

t

τp

)
0.3148

Lorentzian
1

1 +
(

2t
τp

)2 0.2206

5.4.2 Doppler Effect and Recoil Effect

In contrast to a single, ideally isolated two-level system at rest, real quantum systems such
as, e.g., caesium atoms in an atomic clock or iodine molecules in an absorption cell used to
stabilise a laser are moving during their interaction with the radiation field. As a consequence
of this movement the angular frequency of the absorbed or emitted photon ω differs from
Bohr’s angular frequency ω0 = (E2 − E1)/� of the unperturbed absorber. We are going to
calculate this frequency difference by assuming that the energy and momentum of the system
will be conserved during the absorption or emission of a photon. Energy conservation requires

p2
1

2m
+ E1 + �ω =

p2
2

2m
+ E2. (5.99)

Momentum conservation for absorption and emission of a photon requires

�p1 + ��k = �p2 (5.100)
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�ω and ��k are the energy and momentum, respectively, of a photon corresponding to the
wave number k = ω/c being absorbed or emitted by a two-level quantum system having the
energies E1 and E2 with E2 > E1. The corresponding momenta of the two-level system are
�p1 and �p2. Rearranging (5.99) and inserting (5.100) into (5.99) leads to

�ω = E2 − E1 +
p2
2

2m
− p2

1

2m

= E2 − E1 +
p2
1

2m
+

�p1 · ��k

m
+

�
2k2

2m
− p2

1

2m

= �ω0 + �v1 · ��k +
�

2k2

2m
. (absorption) (5.101)

The energy �ω of the absorbed photon differs from the Bohr energy �ω0 by the terms �v1 · ��k

and �
2k2

2m = (�ω)2

2mc2 . The first term varies linearly with the velocity of the absorber. It is referred
to as the (linear) Doppler effect. The second term results from the recoil of the absorber owing
to the photon momentum transferred to the atom (Eq. (5.100)).

In the case of the emission of a photon the atom is initially in the state |2〉 with momentum
�p2. Hence we derive in a similar way

�ω = �ω0 + �v2 · ��k − �
2k2

2m
(emission) (5.102)

where the sign of the recoil term is changed. From (5.101) and (5.102) one finds that the
energy difference between the photon absorbed by an atom which is initially at rest (v1 = 0)
and the photon emitted by an atom initially at rest (v2 = 0) is

�Δω =
(�ω)2

mc2
. (5.103)

As the recoil term depends on ω2 its influence in general can be neglected in microwave
frequency standards but becomes very important in the frequency standards in the optical
regime where its magnitude is about ten orders of magnitude higher.

In the following we use the relativistic relationship E =
√

p2c2 + m2
0c

4 rather than the
classical one E = p2/(2m) between the energy and the momentum of a free particle and
we will find additional terms occurring in (5.101) and (5.102) as seen in (5.108). Relativistic
energy conservation requires that

�ω =
√

p2
2c

2 + (m0c2 + �ω0)2 −
√

p2
1c

2 + m2
0c

4 (5.104)

= (m0c
2 + �ω0)

√
1 +

p2
2c

2

(m0c2 + �ω0)2
− m0c

2

√
1 +

p2
1c

2

m2
0c

4
.
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By expanding the square roots and neglecting all terms in powers higher than the square of
v/c we find

�ω = (m0c
2 + �ω0)

(
1 +

1
2

p2
2c

2

(m0c2 + �ω0)2
− · · ·

)
− m0c

2

(
1 +

1
2

p2
1c

2

m2
0c

4
− · · ·

)
≈ m0c

2 + �ω0 +
p2
2c

2

2(m0c2 + �ω0)
− m0c

2 − p2
1c

2

2m0c2

= �ω0 +
p2
2c

2

2m0c2(1 + �ω0
m0c2 )

− p2
1c

2

2m0c2
. (5.105)

Expanding the term in brackets in the denominator results in

�ω = �ω0 +
p2
2c

2

2m0c2

(
1 − �ω0

m0c2
+ · · ·

)
− p2

1c
2

2m0c2

≈ �ω0 +
p2
2c

2

2m0c2
− �ω0p

2
2c

2

2m2
0c

4
− p2

1c
2

2m0c2
. (5.106)

Considering the case of absorption of a photon we use the conservation of momentum

p2
2 = p2

1 + �p1 · ��k + �
2k2 (5.107)

which we insert into (5.106) to find

�ω = �ω0 + ��v1 · �k +
(�ω)2

2m0c2
− �ω0

v2
1

2c2
+ . . . (absorption) (5.108)

Like in (5.101) the first three terms are the Bohr frequency �ω0, the linear Doppler shift and
the recoil shift. The fourth term is sometimes called the quadratic Doppler shift as it depends
on v2/c2. Since it is due to the time dilation in the moving frame when observed by an external
observer the resulting shift is often called the “time dilation shift”. In the case of the emission
of a photon we obtain

�ω = �ω0 + ��v2 · �k − (�ω)2

2m0c2
− �ω0

v2
2

2c2
+ . . . . (emission) (5.109)

The correction terms accounting for the energy difference between the Bohr energy �ω0 =
E2 − E1 and the energy absorbed (or emitted) by the particle, i.e., the first-order Doppler
shift, the second-order Doppler shift, and the recoil shift result from the fact that the energy–
momentum relationship of a photon is linear in contrast to the non-linear relationship of a
particle with rest mass (Fig. 5.16).

5.4.2.1 First-order Doppler Shift and Broadening

Consider an absorber moving with velocity �v in the field of an electromagnetic wave described
by a plane wave with wavevector �k with |�k| = 2π/λ = 2πν/c and frequency ν0 which
corresponds to the transition frequency of an atom at rest. According to (5.108) the frequency
ν experienced by the absorber in its frame is

ν = ν0 +
�k · �v
2π

− v2

2c2
ν0 (5.110)
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Figure 5.16: The recoil effect and the first- and higher-order Doppler effects result from the
mismatch between the energy momentum relationship of the photon (E = pc, solid line) and a
particle with rest mass m0c

2 either with the classical energy (E = m0c
2 + p2/(2m0), dots) or

the relativistic energy (
p

p2c2 + m2
0c

4, dashed line), respectively.

which differs from the transition frequency by the first-order Doppler shift and the second-
order Doppler shift. We first look to the frequency shift due to the first-order Doppler shift

ν − ν0 =
�k · �v
2π

=
|�v|
λ

cos α = ν
|�v|
c

cos α (5.111)

which depends on the angle α between �k and �v. Consider an ensemble of quantum absorbers,
e.g., atoms kept in an absorption cell. We assume that the velocities of atoms in thermal equi-
librium with a reservoir of temperature T are isotropically distributed. For a given direction
chosen as the vz-direction the probability of finding an atom within the velocity interval v and
vz + dvz is described by a Maxwellian distribution (Fig. 5.17)

p(vz)dvz =
1√
πu

exp
[
−

(vz

u

)2
]

dvz (5.112)

with a most probable velocity u that can be derived from

mu2

2
= kB T as u =

√
2 kB T

m
. (5.113)

kB = 1.38 × 10−23 Ws/K is the Boltzmann constant. As a result of (5.111) each atom
experiences a (linear) Doppler shift that depends on its velocity.

The influence of the first-order Doppler effect on the profile of an absorption line of atoms
obeying a Maxwellian velocity distribution is easily calculated from (5.112) by inserting vz =
(ν − ν0)λ = c(ν − ν0)/ν0 from (5.111) as

p

(
c(ν − ν0)

ν0

)
∝ exp

[
− mc2

2kBT

(
ν − νo

ν0

)2
]

. (5.114)

Hence, as a result of the first-order Doppler effect, a transition line is broadened according
to (5.114) where the Doppler-broadened profile of the spectral line (Fig. 5.18) represents a
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Figure 5.17: Maxwellian velocity distribution
(5.112) for atomic hydrogen at T = 300 K.

Figure 5.18: Doppler broadened spectral line
of the Ca intercombination line λ = 657 nm for
two temperatures 765 ◦C (squares) and 625 ◦C
(dots) and fits according to (5.114).

Gaussian whose full width at half maximum (FWHM) is

FWHM = ν0

√
2 ln 2

kB T

mc2
. (5.115)

As a consequence of the Doppler broadening (Fig. 5.18), for example, at room temperature
(300 K) the gain profile of the neon atoms in the HeNe laser at λ = 633 nm has a width of
about 1.5 GHz.

5.4.2.2 Second-order Doppler Effect

For larger velocities of the absorbers the second-order Doppler effect becomes more and more
important with respect to the first-order Doppler effect. The dramatic influence of the second-
order Doppler effect (second term of (5.110)) on the shape and centre of a spectral line can
be seen in particular in the spectra of absorbers having low masses and high transition fre-
quencies, as for instance, in the 1S – 2S transition of atomic hydrogen (see Fig. 5.19). These
spectra were taken at different temperatures of the absorbers corresponding to different mean
velocities. At room temperature the centre of gravity of this absorption line is shifted by about
40 kHz to lower frequencies. The quadratic dependence on the velocity furthermore leads to
a strong asymmetry of the line.

5.4.3 Saturation Broadening

The observed shape and width of an absorption line in an ensemble of absorbers furthermore
depends on the irradiance of the radiation field. Consider a number N of two-level atoms
with populations N1 and N2 in the ground state and excited state, respectively, and N =
N1 + N2. The interaction of the two-level system with a radiation field of spectral energy
density ρ(ν) is often described phenomenologically by the Einstein coefficients A21, B21 and
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Figure 5.19: Influence of the second-order Doppler effect on the 1S – 2S two-photon absorption
line in atomic hydrogen. Courtesy of Th. Hänsch.

B12 of spontaneous emission, stimulated emission and stimulated absorption, respectively. In
the stationary case, the total absorption rate N1B12ρ(ν) has to be equal to the sum of the rate
due to spontaneous emission (A21N2) and that due to induced emission (B21ρ(ν)N2)

(B21ρ(ν) + A21)N2 = B12N1ρ(ν). (5.116)

Hence, stimulated emission and absorption strongly modify the population distribution. By
defining a dimensionless saturation parameter 18

S ≡ 2B12
ρ(ν)
A21

(5.117)

and using B21 = B12, the population ratio in the excited state can be expressed as

N2

N
=

S

2(1 + S)
. (5.118)

In the vicinity of the atomic transition the frequency dependence of the absorption rate, and
hence that of B12 and S, is given by a Lorentzian

S = S0

(
γ
2

)2(
γ
2

)2 + δν2
. (5.119)

The frequency detuning δν = ν − ν0 represents the difference between the frequency of the
electromagnetic radiation and the transition frequency which in general may be shifted by the
Doppler effect and external fields. The on-resonance saturation parameter

S0 ≡ I

Isat
(5.120)

18 Note that in the literature a different definition of the saturation parameter is also used (S = B12
ρ(ν)
A21

) which then
leads to saturation intensities being twice those shown in Table 5.6.



5.4 Line Shifts and Line Broadening 155

includes the so-called saturation intensity 19

Isat =
2π2hcγ

3λ3
. (5.122)

The saturation intensity is the irradiance (energy flow density) where S0 = 1 and, hence,
where according to (5.118) the steady-state population difference is (N1−N2)/N = 0.5. For
S � 1 the population difference tends to zero. Saturation intensities for some relevant atomic
transitions are shown in Table 5.6.

Table 5.6: Saturation intensities of some resonance lines in atoms relevant for frequency stan-
dards. Others may be found, e.g., in [132].

Atom Transition Wavelength γ = 1/(2πτ) Isat

nm MHz mW/cm2

1H 12S1/2 - 22P3/2 121.57 99.58 7244
24Mg 31S0 - 31P1 285.30 81 455
40Ca 41S0 - 41P1 422.79 34 59
85Rb 52S1/2 - 52P3/2 780.24 6 1.6
88Sr 51S0 - 51P1 460.86 32 43
133Cs 62S1/2 - 62P3/2 852.35 5.2 1.1

By inserting (5.119) into (5.118) one finds

N2

N
=

S0

2
(γ/2)2

(1 + S0) (γ/2)2 + δν2
=

S0

2(1 + S0)
1

1 + ((2δν)/γ′)2
(5.123)

which again is a Lorentzian, however, with an increased linewidth

γ′ = γ
√

1 + S0. (5.124)

In the centre of the spectral line the number of scattered photons saturates faster than in the
wings and the line is broadened (Fig. 5.20). This effect is referred to as “power broadening”
or “saturation broadening”. It can become very important in the case of frequency standards
where narrow lines with low decay rates γ easily lead to large saturation ratios.

19 The word “intensity” is often used for different radiation quantities which can lead to confusions when comparing
the results from different sources as has been illustrated by Hilborn [146]. Often, the word intensity is used for
the physical quantity “irradiance” (units: W/m2) as in the case of the saturation intensity (see (5.122)). The
relationship between the irradiance I, time-averaged over the fast oscillation, and the electric field amplitude E0

of a plane electromagnetic wave E(t, z) = E0 cos(ωt − kz) is given by

I =
ε0c

2
E2

0 . (5.121)

Except for the saturation intensity as a well known quantity, whenever possible, here the word intensity in conjunc-
tion with radiation quantities is avoided.
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Figure 5.20: Power broadening of a spectral line for on-resonance saturation parameters S0 =

0.1 (solid line), S0 = 1 (dotted line) and S0 = 10 (dashed line) according to (5.123).

5.4.4 Collisional Shift and Collisional Broadening

In an ensemble of atomic or molecular particles where the particles move with a velocity
defined by their kinetic energy (5.112), close encounters between particles may occur. One
refers to such processes as collisions if energy and momentum are exchanged between these
particles. In so-called elastic collisions the total kinetic energy is conserved, whereas in in-
elastic collisions an energy exchange takes place between the external and the internal degrees
of of freedom of the partners involved in the collision. During the collision process the energy
levels of the particles involved in the collision are modified depending on their relative dis-
tance, e.g., as depicted in Fig. 5.3. The modification of the energy level structure during the
collision in general may also lead to a change of the transition frequency between two levels.
The time-integrated effect on the position and the width of the absorption line are referred to
as collisional shift and collisional broadening, respectively.

The magnitude of these effects depends on a variety of conditions and no universal theory
exists that is capable of describing all effects. Most of the microscopic absorbers, however,
are used in the form of dilute gases and, hence, the temperature of the gas and the associated
velocities of the particles lead to very different aspects in the different regimes. As we are
interested in the shift and broadenings occurring for particular frequency standards, in the
following we briefly sketch those effects in the relevant regimes.

5.4.4.1 Collisions at Thermal Energies

For thermal energies at room temperature and above, the velocities of the atoms are of the
order of a few hundred metres per second (see (5.113)). The collision diameter, i.e., the range
where the particles interact with each other, corresponds typically to a few diameters of the
particles. Hence, for atoms with a velocity of a few hundred metres per second and a collision
diameter of about a nanometre, the time of the collision Tcol is a few picoseconds. This
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time is still large enough that the electronic energy levels of the collision partners are able
to follow “adiabatically” the perturbation by the other partners as depicted in the potential
curves of Fig. 5.3. If one of the particles involved in the collision emits electromagnetic
radiation during the collision the frequency of the emitted radiation is temporarily shifted. If
Tcol is small compared to one oscillation period T = 1/ν of the electromagnetic radiation, an
instantaneous phase shift occurs as is visualised in Fig. 5.21. This approximation is valid in

Figure 5.21: The influence of collisions on the phase of the emitted wave. a) Unperturbed
emission. b) Phase shifting collisions at time t1 and t2.

the case of microwave clocks operating at a few gigahertz and corresponding times of several
nanoseconds but not in the case of optical transitions where the corresponding oscillation
times T are of the order of femtoseconds. Consider the case where the collision rate is high
enough that multiple collisions occur during the emission of radiation. Hence, the emitted
radiation consists of finite wave trains of a mean duration τc = t2 − t1 of unperturbed phase
(see Fig. 5.21) with random phase shifts due to the collisions. A Fourier analysis similar to
that performed in Section 2.1.2.2 leads to a Lorentzian lineshape.20 The halfwidth Δνc is
calculated, e.g., by analogy to (2.38) as

Δνc =
1

πτc
(5.125)

by assuming that the lifetimes of both states are limited by the mean time τc between the
collisions. The lifetime can be calculated from kinetic gas theory, leading to

Δνc =
√

3
4mkBT

d2p (5.126)

where m and d are the mass and diameter of the absorbers, respectively. T and p are the
temperature and the pressure of the gas. Since the broadening according to (5.126) depends
on the pressure it is sometimes referred to as pressure broadening. This model (with Tcol 
 T )
is capable of explaining the occurrence of collision broadening. Collisional shifts then occur,
e.g., as a result of asymmetric lineshapes where the broadening affects the maximum or the
centre of gravity of the line.

In the case of T 
 Tcol, e.g., for optical transitions, the frequency of the electromagnetic
radiation absorbed or emitted during the collision can be severely altered for a considerable

20 If, however, a finite duration of the collision process is taken into account small but detectable deviations from the
Lorentzian lineshape have been observed [147].
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fraction of the total wave train, which immediately explains the occurrence of collisional shifts
and broadening. As a rule of thumb for optical frequency standards, the pressure shift is
lower by at least an order of magnitude compared to the pressure broadening. In optical
frequency standards such as the iodine-stabilised lasers (Section 9) the pressure shift is of
utmost importance for the achievable accuracy. For iodine near room temperature the pressure
shift is roughly proportional to the pressure, with the proportionality constant being of the
order of 10 kHz/Pa.

5.4.4.2 Collisions of Cold Quantum Systems

For absorbers at very low temperatures, e.g., for laser-cooled atoms, the very quantum nature
of the systems becomes more and more important for a meaningful description of the collision
process. To begin with, at these temperatures the velocity of an atom is so low that the de
Broglie wavelength

λdB =
h

mv
(5.127)

becomes much larger than the diameter of the atom. Hence, the picture of interacting wave
packets is more appropriate as the concept of particles and the collision process has to be
treated as a scattering process. The wavefunction describing both incoming particles in the
centre-of-mass system is expanded in partial waves with a well-defined angular momentum
with the quantum number l. It is appropriate to solve the time-dependent Schrödinger equation
(5.15) in spherical coordinates with V the interaction potential.

V (R) = −Cn

Rn
. (5.128)

If two identical atoms collide, the long-range potential can be given in some special cases. If
both atoms are in an S state, the interaction is of the van der Waals type and n = 6 holds.
This case is realised, e.g., in the collision of two alkaline-earth atoms (20Mg, 40Ca,or 88Sr)
being in their ground states. If one of the two atoms were in the excited state the atoms are
coupled by an electric dipole transition and the corresponding dipole interaction has an R−3

dependence. Hence, the dipole potential is relevant for the collisions of alkaline earth atoms
used in optical frequency standards (Section 9.4.4), e.g., in a magneto-optical trap operated on
the 1P1 – 1S0 transition which might then limit the achievable density. The S – P interaction
between excited-state atoms and ground-state atoms also may lead to a collisional shift of
the optical clock transition 3P1−1S0. As the C3 coefficients are proportional to the transition
strength of the relevant transition, the interaction potential is much weaker in the latter case.
If both colliding atoms are in the P state n = 5 holds as a result of the quadrupole interaction.

Apart from the collisional aspects discussed so far quantum mechanical scattering reso-
nances may play an important role as, e.g., in caesium (Section 7.3.2.1) where they may lead
to inelastic collisions and the occurrence of so-called Feshbach resonances.21

21 A Feshbach resonance occurs when two colliding atoms are resonantly coupled to a bound state of the molecular
pair.
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5.4.5 Influence of External Fields

External fields, e.g., dc or ac electric and magnetic fields, in general, shift the energy levels of
the atomic, ionic, or molecular absorbers employed in frequency standards and hence have a
profound influence on the accuracy and stability of the standards.

5.4.5.1 Electric Fields

The interaction of an atom with an external electric field resulting in frequency shifts of atomic
levels and the associated line shifts and splittings is referred to as Stark effect. Since the
interaction energy with the external field in general is small with respect to the internal energy
of the atom the Stark effect can be calculated by perturbation theory. The induced dipole
moment �d is proportional to the electric field �E and the ratio

α ≡ d

E
(5.129)

of the electric dipole moment d and the electric field E is called the “polarisability”. For an
atom without permanent dipole moment the Stark shift of energy Em of the unperturbed level
m is calculated as a second-order perturbation as

ΔEm =
∑

n

|〈m|�d |n〉|2
Em − En

E2 (5.130)

where the summation includes all discrete and continuum states n that are coupled with the
state m by the dipole operator but excludes m = n.

Apart from static electric fields the quantum system can interact with alternating (ac) elec-
tric fields whose frequencies can vary from dc to the optical ones if, e.g., the interaction with
the electric field of an electromagnetic wave is considered. The polarisability α can be cal-
culated [148] classically in the so-called Lorentz model where the oscillation of an electron
with charge −e and mass m driven by the electric field E(t) is described by the equation of
motion as ẍ+Γωẋ+ω2

0x = −eE(t)/m (Section 2.2). By integrating this equation of motion
and by using α = −ex/E0, where E0 is the amplitude of the electric field, it follows from
x = x0 exp(iωt) that

α =
e2

m

1
ω2

0 − ω2 + iωΓω
. (5.131)

The classical damping rate due to the radiative loss is given [58] from Larmor’s formula by

Γω =
e2ω2

6πε0mc3
. (5.132)
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Following Grimm et al. [148] we introduce an on-resonance damping rate Γ ≡ Γω0 =
(ω0/ω)2Γω. By insertion of (5.132) into (5.131) one obtains 22

α = 6πε0c
3 Γ/ω2

0

ω2
0 − ω2 + i(ω3/ω2

0)Γ
. (5.134)

By writing �E = �E0 cos ωt = 1
2

�E0 exp(iωt) + c.c. = 1
2

�E0 [ exp(iωt) + exp(−iωt)] and
�d = α�E = 1

2α�E0 exp(iωt)+ 1
2α∗ �E0 exp(−iωt) we find the interaction energy of the induced

dipole moment �d in the electric field �E

Wdip = −1
2
〈�d �E〉 = −�e {α} (

1
2E0

)2
(5.135)

where 〈 〉 indicates that the oscillating terms have to be time averaged. The oscillating dipole
absorbs power from the driving field that is calculated as

Pabs = 〈
(

d

dt
�d

)
�E〉 = −2ω	m {α} (

1
2E0

)2
. (5.136)

Hence, the real part (5.135) and imaginary part (5.136) of the polarisability α describes the in-
phase and out-of-phase component of the dipole oscillation with the dispersive and absorptive
properties, respectively. We will use these properties later to describe optical traps for neutral
atoms (Section 6.4)

In the following we discuss in more detail the polarisability depending on the driving
frequency where we have to distinguish four different cases [149, 150]. Consider a state |m〉
whose energy Em is shifted by ΔEm under the influence of radiation of angular frequency ω
that couples the level |m〉 to other levels |n〉 with the matrix elements 〈m|�d |n〉.

First, if the electric field oscillates with an angular frequency ω that is slow with respect
to the inverse lifetime τ (ω 
 1/τ ) of the atomic transition, the atom follows adiabatically
the perturbation by the electric field and the Stark effect can be calculated as if the field were
static with an amplitude varying with the angular frequency ω.

A second important case is encountered if the frequency of the electric field is larger than
the spectral width of the transition but much smaller than the transition frequency of a dipole
transition between the states |m〉 and |n〉 with the energies Em and En, respectively, i.e.,
1/τ 
 �ω 
 |Em − En|. In this case the atom can no longer follow the oscillation of
the electric field, but responds to the average (rms) electric field. Hence the ac-Stark shift
is calculated by using the static response of the atom and the square averaged electric field
strength.

22 If the atomic polarisability is calculated by using a two-level quantum system and a classical radiation field one
derives for low saturation an expression similar to (5.134) where the classical damping rate is replaced by

Γ =
ω3

0

3πε0�c3
|〈2|d̂ |1〉|2. (5.133)

Nevertheless, the classical expression (5.132) is a good approximation for strong dipole-allowed transitions from
the ground state [146, 148].
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In the third regime the angular frequency ω of the alternating electric field becomes com-
parable to a transition angular frequency |Em − En|/� between two levels that can be con-
nected by an allowed dipole transition with matrix element 〈m|�d |n〉 but is not resonant, the
mth energy level is shifted by

ΔEm =
1
4

∑
n

|〈m|�d |n〉|2E2
0

(
1

Em − En − �ω
+

1
Em − En + �ω

)
=

1
2

∑
n

|〈m|�d |n〉|2E2
0

Em − En

(Em − En)2 − (�ω)2
. (5.137)

The classical analogue of this formula is readily derived from (5.135) for large detunings
(�ω0 − �ω ≡ Em − En − �ω � Γ).

A fourth important case occurs if the electric field is resonant with an allowed transition
(�ω ≈ Em −En) where transitions between the states can be induced. The coupling between
these states leads to a splitting of the states. Exactly at resonance the splitting is given by
�ΩR where ΩR is the Rabi frequency. Resonant transitions between the states may be in-
duced also by thermal radiation thereby reducing the lifetime of the excited state of the atoms.
Such reduction of the lifetime was, e.g., held responsible for the unexpectedly low excited-
state lifetime of a xenon transition [100] proposed as an optical frequency standard ( [151],
Section 9.4.6).

The frequencies of clocks and frequency standards operating on a transition between the
hyperfine-split ground states 2S1/2 as in the Cs atomic clock are affected by the averaged elec-
tric field associated with the radiation field at ambient temperature which will be considered
in more detail in Section 5.4.5.2 and in Section 7.1.3.4.

Frequency shifts due to near-resonant optical radiation referred to as “ac-Stark shift” or as
“light shift” can ultimately limit the accuracy of frequency standards, e.g., in optically pumped
standards (Section 8.2.2 or Section 7.2). Spatially dependent light shifts are furthermore im-
portant for the realisation of optical traps for neutral atoms (Section 6.4).

5.4.5.2 Black-body Radiation

In frequency standards operated at a temperature T �= 0 K the atoms are exposed to the am-
bient electromagnetic temperature-radiation field which perturbs the energy levels and hence
leads to frequency shifts of the clock transition. To estimate the magnitude of the temperature
field, one considers the radiation field of an ideal black-body radiator whose spectral energy
density ρ2(ν, T ) emitted into a solid angle of 4π is given by Planck’s formula as

ρ2(ν, T )dν =
8πhν3

c3

1

e
hν

kBT − 1
dν. (5.138)

Hence, the ac-Stark shift resulting from the thermal radiation field is sometimes also referred
to as the “black-body shift”.

For a monochromatic field of amplitude E0 the spectral energy density is given as

ρ2 = ε0〈E2〉 = 1
2ε0E

2
0 . (5.139)
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Since the field of the temperature radiation represents a continuous spectrum of frequencies
the electric field, e.g., in (5.137) has to be substituted by an integral over its spectral density
which can be connected to the spectral density ρ2(ν, T ) of the black-body radiator as follows

〈E2(t)〉 =
1
ε0

∞∫
0

ρ2(ν, T )dν. (5.140)

(5.140) can be solved by using (5.138) and with the help of
∫ ∞
0

x3

ex−1 = π4

15 . The averaged
squared amplitude of the electric field integrated over all frequencies then becomes

〈E2(t)〉 =
1
ε0

8πk4T 4

c3h3

∞∫
0

( hν
kT )3

e
hν
kT − 1

d(
hν

kT
) =

8π5k4

15c3h3ε0
T 4 =

4σ

cε0
T 4 (5.141)

where we have introduced the Stefan–Boltzmann constant σ ≡ (2π5k4)/(15c2h3) =
5.6705 × 10−8 W m−2 K−4. Hence, one finds from (5.141) the time-averaged quadratic elec-
tric field is

〈E2(t)〉 = (831.9 V/m)2 for T = 300 K. (5.142)

There is also a time-averaged quadratic magnetic field that can be calculated by using
〈B2〉 = 〈E2〉/c as 〈B2(t)〉 = (2.775 μT)2, which corresponds to about 5 % of Earth’s mag-
netic field. In general the frequency shift due to the electric field is much larger. The influence
of the black-body radiation on the frequency of the caesium clock will be discussed in Sec-
tion 7.1.3.4.

5.4.5.3 Magnetic Fields

The Hamiltonian of an atom in an external magnetic field can be written conveniently as

H = HLS + Hhfs + HB (5.143)

where HLS , Hhfs and HB take into account the spin-orbit interaction in LS coupling, the
hyperfine interaction, and the interaction of the electronic shell with the magnetic field, re-
spectively. In a small magnetic field where HB can be considered as a perturbation to HLS

the energy levels of the atoms show a Zeeman splitting according to (5.8) and (5.9) where the
energy of the level depending on the magnetic quantum number mJ and on the Landé factor
gJ as follows

ΔEZeeman = gJμBmJB =
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
μBmJB. (5.144)

For large magnetic fields where the interaction energy of the electronic shell with the magnetic
field is larger than the interaction energy between the spin and the orbital angular momenta
and the associated magnetic moments both are decoupled and precess independently around
the magnetic field. In this so-called Paschen–Back regime

ΔEP−B = μB(mL + 2mS)B (5.145)
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holds. We now consider the hyperfine interaction which is much smaller than the spin-orbit in-
teraction. In the regime of a small magnetic field the magnetic moment mF precesses around
the field and the energy levels depend on mF . For a small magnetic field, i.e., if the inter-
action energy corresponding to HB is much smaller than the hyperfine coupling between I
and J leading to F , one observes the Zeeman effect of the hyperfine structure (see left part
of Fig. 5.22). In the strong-field regime I and J precess independently around the magnetic
field and one observes the Paschen-Back effect of the hyperfine structure (see right part of
Fig. 5.22). In the intermediate region the interaction Hamiltonian with the magnetic field can
be written as

HB =
gJμBB

�
Jz +

gIμnB

�
Iz ≈ ωJJz (5.146)

where the second term can in general be neglected since gIμn 
 gJμB . The basis states
|IJFmF 〉 , however, are no longer eigenstates of the operator Jz and hence the operator
Hhfs + ωJ (B)Jz has to be diagonalised as a function of the external field B. In the in-
termediate regime the states with the same mF but different F are mixed without coupling
between the states with different mF , leading to (2mF + 1)-dimensional sub-matrices that
have to be diagonalised independently.

In the ground state of hydrogen and the alkaline metals where J = 1/2 leads to only
two hyperfine levels the sub-matrices are of rank 2. The solution is known as the Breit–Rabi
formula

Ehfs(B, mF ) = − Ehfs

2(2I + 1)
+ mF gIμnB ± Ehfs

2

√
1 +

4mF

2I + 1
x + x2 (5.147)

x =
gJμB − gIμn

Ehfs
B ≈ 2μB

Ehfs
B (5.148)

where in (5.148) we have used gIμn 
 gJμB and gJ = 2 for S = J = 1/2.
As an example we consider the case of hydrogen whose nucleus is composed of a single

proton orbited by a single electron. The angular momentum of the electronic shell described
by the quantum number J = L + S = 1/2 results entirely from the spin S = 1/2 of the
electron since its angular momentum in the ground state is L = 0. The angular momentum
I = 1/2 of the nucleus is made up by the proton. Since both angular momenta I and J interact
with each other via their associated magnetic moments only the total angular momentum F =
I+J is a “good” quantum number. Its possible values are F = |I+J | = 1; mF = +1, mF =
0, mF = −1 forming a triplet and F = |I − J | = 0; mF = 0 (singlet). The energies of the
F = 1 and F = 0 states differ by ΔW = hΔν = 6.6×10−34 W s2×1.42 GHz and transitions
from one state to the other can be stimulated by electromagnetic radiation of 1.42 GHz (see
Fig. 5.22) calculated by using (5.147)). Since a magnetic moment of M(mF ) = μBgF mF is
associated with the atom in the three triplet states F = 1 the energies of the three states of the
hydrogen atom in a magnetic field of magnetic induction B differ. The F = 1, mF = 1 and
F = 1, mF = −1 show a linear Zeeman effect whereas the mF = 0 states in the singlet and
in the triplet at low magnetic fields show a small quadratic dependence of the energy on the
magnetic field.

The quadratic dependence of the energy of the F = 1, mF = 0 and the F = 0, mF = 0
states on the magnetic field is small at low fields and fluctuations of magnetic fields do not
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Figure 5.22: Energy levels of the ground states of hydrogen in a magnetic field showing the
F = 1 triplet and the F = 0 singlet separated by 1.42 GHz. The labels 1, 2, 3, 4 for the energy
levels are used for the description of the hydrogen maser in Section 8.1.

much affect the energy separation between these states. Consequently, the hydrogen maser as
a frequency standard (Section 8.1) is usually operated on the ΔF = 1, ΔmF = 0 hyperfine
transition (Fig. 5.22) with a frequency separation of 1.42 GHz. The particular dependencies
of the energies of the different states on the magnetic field can also be used to manipulate
the atoms. From Fig. 5.22 it can be seen that the energies of the F = 0, mF = 0 and the
F = 1, mF = −1 states are reduced in a magnetic field. Consequently, in an inhomogeneous
magnetic field, these atoms will be accelerated into the regions of high magnetic fields. Atoms
in such states are therefore referred to as high-field seekers in contrast to the F = 1, mF = 1
and F = 1, mF = 0 states which are called low-field seekers since they are attracted into
regions of a smaller magnetic field.

5.4.6 Line Shifts and Uncertainty of a Frequency Standard

The particular physical effects that have been discussed in this section are examples that affect
the stability and accuracy of any frequency standard. The design of good frequency standards
thus requires that the associated lineshifts are kept small and constant and that they can be
determined accurately. During operation of the standard it has to be ensured that the corre-
sponding offsets of the frequency are known in order to correct for them. The operation of a
frequency standard, hence, asks for a careful evaluation of all the effects that are capable of
shifting the frequency from the frequency of the unperturbed transition.

The standard procedure is to determine the sensitivity of the frequency of the standard
to all relevant parameters, e.g., the temperature of the absorbers (to account for the Doppler
effect), the density and temperature of the absorbers (to account for the collisional shift), or
the magnitude of the external magnetic or electric dc and ac fields. When these sensitivities to
the particular effects have been determined the frequency of the standard is corrected for the
combined offset at the chosen working point.

This correction, however, can be performed only with a limited degree of accuracy since,
e.g., the sensitivity to a particular parameter is determined with a given uncertainty. Fur-
thermore, the device can be operated at the chosen nominal working point only with a given
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uncertainty, e.g., at T = (20 ± 1) ◦C, at (60 ± 10) μT, etc. The corresponding contributions
to the uncertainty of the frequency measurement have to be estimated and are usually pre-
sented in an uncertainty budget. The procedure of evaluating and stating the uncertainty of a
measurement is now standardised [3]. All individual contributions are added in quadrature,
leading to a single figure that gives the estimated standard uncertainty and, hence reflects,
to the best of the operator’s knowledge, the validity of the measurement. In a, not strictly
exact, way this figure is often interpreted as the “estimated standard uncertainty of the fre-
quency standard” even though it is merely the estimated standard uncertainty of the particular
frequency measurement for which the evaluation has been performed.





6 Preparation and Interrogation of Atoms and
Molecules

As has been emphasised in the previous chapter, the linewidth and the centre frequency of
a transition is affected by the external degrees of freedom, i.e., the positions and the veloci-
ties of the microscopic oscillators interacting with the interrogating electromagnetic radiation.
Hence, the progress achieved in the past with frequency standards was intimately related to
the development of novel methods for interrogating and manipulating the absorbers under well
defined conditions. In this chapter, methods are discussed for overcoming Doppler shifts and
broadenings, for increasing the interaction time and for confining the microscopic absorbers
to spatial locations of well defined properties. Depending on the methods used to prepare and
interrogate the absorbers the observed linewidth can vary over several orders of magnitude
(Fig. 6.1).

Figure 6.1: Optical transition (λ = 657 nm) in Ca atoms of a natural linewidth of Δν ≈ 0.37 kHz
obtained under different conditions. a) The absorption in a heated cell (Section 6.1) shows a Doppler
broadened linewidth of Δν ≈ 2 GHz. b) Transverse excitation in a collimated effusive atomic beam
(Section 6.2) shows a reduced Doppler width of Δν ≈ 2 MHz and the saturated absorption (Sec-
tion 6.5.1) leads to a transit-time limited absorption dip (Δν ≈ 150 kHz). c) In a laser cooled (Sec-
tion 6.3.1) atomic cloud, separated field excitation (Section 6.6) allows one to resolve the line close to
the natural linewidth.
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6.1 Storage of Atoms and Molecules in a Cell

The confinement of absorbers in a suitable container for interrogation has a number of distinct
advantages. Besides allowing for a compact set-up, the absorbing material can be prepared and
kept at well defined conditions, e.g., at constant temperature or pressure. It furthermore allows
one to make economic use of expensive material with defined purity or isotopic composition.

The advantage of increasing the interaction time with the radiation by containing the ab-
sorbing gases or vapours in a suitable cell but is limited to the extent that collisions with the
wall during the interrogation perturb the coherent response of the absorbers to the electromag-
netic field. Consequently, much work has been devoted to finding or preparing surfaces where
the collisions with the surface have as little influence as possible on the clock transition. In
the case of absorbers based on microwave transitions between magnetic sub-states, metallic
surfaces and surfaces or surface layers with magnetic interactions have to be avoided. Coat-
ing the wall of the bulb in the hydrogen maser with PTFE (Teflon) or helium, or coating the
absorption cells in the rubidium standard with paraffin, has proved to be an efficient method
of reducing the influence of collisions. To increase the time the absorber spends in the cell
before reaching the wall, sometimes the cell contains additionally buffer gases of inert atoms
or molecules, besides the absorbers.

Confining the absorbers in cells whose relevant dimensions are smaller than half the wave-
length of the interrogating electromagnetic radiation, allows one to probe the transition with-
out perturbation by the first-order Doppler effect. This so-called Lamb-Dicke regime (see
Section 10.1.4) is readily obtained in microwave standards where the radiation has a wave-
length of a few centimetres. In this regime, collisions can narrow the linewidth rather than
broadening it [152, 153]. Line narrowing in a very thin cell has also been observed in the
optical domain [154].

In a variety of frequency standards the microscopic particles are contained in a cell with
walls that can let through the electromagnetic radiation used for interrogation of the quantum
systems. Cells containing atoms or molecules are applied likewise in microwave standards,
e.g., the hydrogen maser (Section 8.1) and the rubidium standard (Section 8.2) or in optical
frequency standards (see, e.g., Section 9.1 and Section 9.4). The particular properties of the
cells and their influence will be discussed in more detail later in conjunction with the relevant
frequency standards.

6.2 Collimated Atomic and Molecular Beams

Atomic and molecular absorbers are often prepared in beams rather than in absorption cells.
Beams are applied, e.g., in cases where gases like hydrogen or vapours from metals with high
melting points are not stable as atomic species, but are readily available in molecular form or
as solid material. After the preparation of atomic particles from those materials, collisions and
the formation of molecules or solids prior to the interrogation can be avoided in a beam.

The specific properties of atomic and molecular beams and the relevant techniques for
their preparation can be found in [155,156] and hence it suffices here to recall only the basics
that are relevant to frequency standards. Often atoms effuse from an oven kept at temperature
T . Inside the oven, the velocities of the atoms in any direction are given by the Maxwellian
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velocity distribution (see (5.112)). The probability of an atom emerging from the oven is
proportional to v. Hence, the intensity I(v)dv of a beam, i.e., the number of atoms per unit
area and unit time in the velocity interval between v and v + dv, effusing from an oven kept
at a temperature T , through a nozzle, is given by

I(v) =
2I0

u4
v3e−(v/u)2 (6.1)

with the most probable velocity u given by u =
√

2kBT/m (5.113). Here, I0 is the full beam
intensity and v is the velocity of the atom or molecule. The transverse extension of the beam
and the velocities of particles effusing from the orifice of an oven result from the position and
diameter of the chosen diaphragms. For limiting apertures, the maximum full opening angle
is given by

2α = (d + D)/L (6.2)

where d and D are the diameters of the orifice and the diaphragm, respectively, and L is
the distance that separates them along the z direction. For a narrow collimation angle α

equivalent to d 
 L, D 
 L, only particles with transverse velocities v⊥ =
√

v2
x + v2

y

are selected, where v⊥/vz < α. For typical collimation angles 0.01 rad <∼ α <∼ 0.001 rad,

v =
√

v2
x + v2

y + v2
z ≈ vz holds.

In optical frequency standards a laser beam is often used that crosses the atomic beam per-
pendicularly. In the case of flat wave fronts the residual Doppler broadening can be calculated
in a similar way to the case of a vapour in an absorber cell (Section 5.4.2.1) except for the fact
that the width is now reduced by sin α ≈ α, i.e.,

Δνbeam,⊥ ≈ αΔνvapour (6.3)

in an atomic beam as compared to a cell. The associated striking reduction of the broadening
can be seen by comparing the Doppler curves of Fig. 6.1 a) and Fig. 6.1 b).

The Maxwellian velocity distribution is modified if collisions take place inside the nozzle
of the oven. Collisions become relevant if the Knudsen number K = λ̄/l approaches unity
where λ̄ is the mean free path of the atoms and l is the length of the nozzle. The mean
number of collisions of the atoms in the nozzle described by the Knudsen number gives rise
to a reduction of the slow atoms in the beam.1 For high-precision experiments with hydrogen
atoms this effect had to be taken into account to describe the lineshapes of the measured two-
photon absorption spectrum properly [157].

For frequency standards, the use of atomic or molecular beams with a defined velocity
direction meets with both advantages and disadvantages. Well defined trajectories can be
used to spatially separate the particles with different internal states as is done in Cs atomic
clocks or the hydrogen maser with magnetic state selection (Section 7.1, Section 8.1.3.2).
In optical frequency standards, the use of collimated atomic beams allows the excitation of
the absorbing particles by transversal laser beams, thereby reducing the first-order Doppler

1 This effect was considered to be the reason for the unsuccessful attempt to operate the first atomic fountain em-
ploying a thermal beam by Zacharias [15, 17, 155].
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shift and broadening by orders of magnitude depending on the collimation ratio. On the
other hand, if the laser beam intersects the atomic beam at an angle deviating from 90◦, then
immediately a residual first-order Doppler shift occurs. The excitation of long-lived states that
are particularly useful in frequency standards allows one to spatially separate the excitation
and detection zones with obvious advantages for the signal-to-noise ratio.

In an ensemble of particles of finite temperature their velocities are generally spread over a
large velocity range. Hence, the perturbations by the first and second-order Doppler effect and
the interaction-time broadening can be reduced if absorbers with lower than the mean velocity
are selected. Selection of the signal from the slow atoms in a thermal beam of hydrogen
atoms has been achieved, e.g., by gating the excitation and detection of the excited atoms
in a beam [157] and selecting the velocity class by the time delay between both processes
(Section 9.4.5). Generally, as in the case of the Maxwell-Boltzmann distribution, the number
of particles in a given velocity range is dramatically reduced for selected velocities which
differ considerably from the mean velocity. Thus, the suppression of possible perturbations
has to be paid for by a reduced number of contributing absorbers and hence by a reduced
signal.

6.3 Cooling

The most rigorous approach for reducing the velocity of the interrogated particles and, hence,
the Doppler effect in all orders and for increasing the interaction time, is to cool the particles.
Cooling rather than selection of the slowest particles furthermore has the advantages that in
general more particles contribute to the signal.

6.3.1 Laser Cooling

The advances in laser cooling and the development of cheap and convenient tuneable lasers
has made laser cooling [132] one of the most efficient methods of cooling atoms for use
in optical frequency standards. The description of laser cooling and the applied methods
differ somewhat if one considers free atoms or particles bound to a trap [158]. The common
underlying principle is that on the average the energy of the radiation absorbed by the particles
is smaller than the energy irradiated by the particles during the subsequent emission. The
energy difference is supplied by the kinetic energy of the particles leading to a reduction of the
mean value and width of the velocity distribution. Soon after the invention of tuneable lasers,
this effect was proposed for reducing the velocity of atoms in a gas by Hänsch and Schawlow
[159] or of trapped ions by Wineland and Dehmelt [160]. Here, we consider laser cooling of
free atoms and leave the treatment of laser cooling of bound particles to Section 10.2.2.3.

6.3.1.1 Optical Molasses

Consider processes where a two-level atom with the two states Eg and Ee absorbs a photon
having a momentum ��k from a laser beam with wave vector�k and subsequently emits a photon
by spontaneous emission. The laser is red detuned with respect to the transition frequency
(Ee − Eg)/h. The momentum of the photon is transferred to the atom thereby changing
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the momentum �p = m�v of the atom. The Doppler shift Δν = p/(mλ) associated with
the absorption is assumed to be small compared to the natural width γ = 1/(2πτ) of the
absorption line where τ is the lifetime of the excited state, i.e., Δν = h/(mλ2) 
 γ. In this
approximation, the momentum transfer Δ�p = ��k can be averaged over many processes of
absorption and re-emission, leading to a classical force �F onto the atom. The photons from
the spontaneous decay are emitted isotropically and, hence, do not contribute to the force,
whereas the averaged force due to the absorption of the photons is

�F =
Ne

N

��k

τ
. (6.4)

Here, Ne is the averaged number of atoms in the excited state, N = Ne + Ng is the total
number of atoms including the number Ng of atoms in the ground state. The ratio Ne/N can
be expressed by the saturation parameter (5.119) leading to

�F =
��k

2τ

S0

1 + S0 +
(

δν
γ/2

)2 . (6.5)

At low enough laser irradiance, i.e. S0 
 1, the spontaneous force (see (6.5)) shows a
Lorentzian profile as a function of the detuning δν determined by the natural linewidth of the
atomic transition. For a particular atom with velocity �v, where the detuning depends on the
velocity of the atom, the laser frequency in the reference frame of the atom is shifted by the
Doppler effect, and the detuning is δν = ν−ν0−�k ·�v/(2π). Next we consider the movement
of an atom with a velocity �v in the field of two counter-propagating laser beams of equal
intensities realised, e.g., in a retro-reflected laser beam. In the low-intensity limit (S0 
 1)
the forces of the two counter-propagating light waves acting on the atom can simply be added
to yield

�Fom =
��k

2τ

(
S0

1 + S0 + 4(ν − ν0 − �k·�v
2π )2/γ2

− S0

1 + S0 + 4(ν − ν0 + �k·�v
2π )2/γ2

)

=
��k

2τ
S0

16(ν − ν0)
�k·�v

2πγ2[
1 + S0 + 4(ν−ν0)2

γ2 +
(

k2v2

π2γ2

)]2

−
[
8(ν − ν0)

�k·�v
2πγ2

]2 . (6.6)

Fig. 6.2 shows the force for a saturation parameter of S0 = 0.3 and a frequency of the laser ν
that is red detuned from the resonance ν0 by a linewidth γ, i.e. ν − ν0 = −γ.

For very low velocities (v < γλ) in (6.6) the terms (�k ·�v/γ2)2 and higher can be neglected
and one finds

�Fom ≈ 8�k2S0(ν − ν0)

γ
(
1 + S0 + 4(ν−ν0)2

γ2

)2 �v ≡ α�v, (6.7)

i.e., near zero velocity the combined force varies monotonically with the velocity of the atoms.
For red detuning (ν−ν0 < 0) one finds �Fom = −α�v, which represents a friction force. Hence,
as a result of the Doppler effect, atoms moving with a velocity �v are more resonant with the
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Figure 6.2: The velocity-dependent force exerted on an atom due to the near-resonant absorp-
tion of photons according to (6.6) with the parameters S0 = 0.3 and ν − ν0 = −γ.

counter-propagating beam as compared to the co-propagating beam. As a consequence, the
atom is decelerated by the viscous damping in the red detuned near-resonant light field [161,
162] and the name “optical molasses” has been coined to describe the damping interaction of
the light field on the moving atom.

6.3.1.2 Doppler Limit

One might expect that the residual motion of the atoms gradually decreases and the atoms
come to rest and reach a temperature T = 0. This clearly unphysical result does not take into
account that even an atom at rest would absorb and emit photons. The recoil energy trans-
ferred to each atom during the absorption process of +�

2k2/(2m) and the emission process
of −�

2k2/(2m) leads to heating which in total corresponds to a mean increase in the kinetic
energy per particle by 2�

2k2/(2m) (see (5.103)).2 In equilibrium

Ėheat = −Ėcool (6.8)

holds. The heating rate Ėheat for each of the two beams due to the rate of the recoil transfers is
proportional to the fraction of atoms in the excited state Ne/N (see (5.123)) and to the decay
rate 1/τ = 2πγ (see (2.37)). Hence, the heating rate is

Ėheat = 2
(�k)2

2m

2πγ

2
2S0

1 + 2S0 + 4(ν − ν0)2/γ2
(6.9)

where we have assumed that the on-resonance saturation parameter in the two counter-
propagating beams is 2S0. The cooling rate due to the loss of kinetic energy resulting from
the damping is calculated from

Ėcool =
∂

∂t

p2

2m
= ṗ

p

m
= F (v)v = −αv2. (6.10)

2 Averaging is required as the atom undergoes a random walk in momentum space as a result of the spontaneous
re-emission processes [158] where the value given holds for isotropic emission.
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Insertion of (6.9) and (6.10) together with (6.7) into (6.8) and replacing v2 with its mean value
〈v2〉 leads to

m〈v2〉 =
hγ

4

[
1 + 2S0 + (2(ν − ν0)/γ)2

]
2(ν − ν0)/γ

. (6.11)

(6.11) has a minimum for ν−ν0 = γ/2 from which one derives by use of m
〈
v2

〉
/2 = kBT/2

the minimal temperature in the limit S0 → 0 as

TD =
hγ

2kB
=

�Γ
2kB

. (Doppler limit) (6.12)

The Doppler temperature TD represents the minimal temperature that can be reached by
means of Doppler cooling and hence is often referred to as the Doppler limit.

The Doppler limit in three dimensions is derived similarly [162]. It suffices to note that
the cooling rate is the same as in the one-dimensional case but the heating rate is three times
higher if six beams are used rather than two. At the same time, however, the three degrees
of freedom result in m

〈
v2

〉
3D

/2 = 3kBT/2 and the Doppler limit in three dimensions is
the same as in (6.12). For typical cases like the Cs 6 2S1/2 − 6 2P3/2 transition (λ = 852 nm,
γ = 5.18 MHz) and the Ca 4 1S0−4 1P1 transition (λ = 423 nm, γ = 34.6 MHz), the Doppler
temperature (6.12) is 0.12 mK and 0.83 mK, respectively. The velocity corresponding to the
Doppler limit is calculated from 1/2mv2

D = kBTD/2 as

vD =

√
hγ

2m
. (6.13)

For the cases given above this velocity corresponds to vD, Cs = 8.82 cm/s and vD, Ca =
41.5 cm/s.

6.3.1.3 Sub-Doppler Cooling

The velocities, determined by the Doppler limit of suitable resonance lines for atoms used in
frequency standards, range from several cm/s to several tens of cm/s which in cases where
a long interaction time is required as, e.g., in an atomic fountain (Section 7.3) would lead
to a high loss of atoms. Fortunately, in the case of atoms with magnetic or hyperfine split
ground states, e.g., the alkali atoms Cs and Rb used in atomic clocks (Section 7) and (Sec-
tion 8.2), there are a number of mechanisms (see e.g. [132]) that conveniently allow one to
reach lower temperatures. As an example we consider briefly the case of “Sisyphus cooling”
where the atoms move in a laser field whose polarisation has strong gradients (see Fig. 6.3 a)
as it changes completely over half a wavelength. Such a polarisation gradient is achieved, e.g.,
in two counter-propagating beams of the same frequency and amplitude, but whose linear po-
larisations are perpendicular in a so-called “lin ⊥ lin” arrangement

�E = E0x̂ cos(ωt − kz) + E0ŷ cos(ωt + kz)
= E0 [(x̂ + ŷ) cos ωt cos kz + (x̂ − ŷ) sin ωt sin kz] . (6.14)

From (6.14) one finds (see Fig. 6.3 a) that for kz = 0 there is a linear polarisation under 45◦

between x̂ and ŷ. It changes to a perpendicular polarisation for a quarter of a wavelength kz =
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Figure 6.3: Sisyphus cooling. a) The polarisation in a “lin ⊥ lin” standing wave. b) The light shift in the
standing wave of Fig. 6.3 a) modulates the energies of the ground states (mg = +1/2 and mg = −1/2)
and leads to a spatially periodic modulation of the optical pumping.

π/2 with circular polarisation at kz = π/4, i.e., at z = λ/8. In such a field the m±1/2 ground
states of an atomic system with a Jg = 1/2 → Je = 3/2 transition experience different light
shifts which change with position, due to the position-dependent polarisation (see Fig. 6.3 b).
Consider an mg = −1/2 ground state atom which has the lower potential energy in the valley
at z = λ/8. If this atom moves to the +z direction it has to climb up the potential hill
thereby lowering its kinetic energy. Near the top of the hill the radiation becomes σ+ and
the atom is predominantly optically pumped into the mg = +1/2 state via the me = +1/2
state. Moving on again, the atom loses further kinetic energy while climbing up the next hill
from where it is optically pumped by the σ− radiation via the me = −1/2 state to the mg =
−1/2 state. Referring to the ancient Greek fairy tale where Sisyphys had to continuously
move a stone uphill which escaped there and rolled down again, the process is referred to as
Sisyphus cooling. The process works best if the average time needed for the pumping process
corresponds to the time an atom takes to move over the distance of λ/2. Besides the “lin ⊥
lin” standing wave, other combinations like the σ+ – σ− counter-propagating waves exhibit
polarisation gradients, too. Furthermore, constant polarisation in combination with a magnetic
field can lead to magnetically induced sub-Doppler cooling [132].

The minimum achievable temperature in a three-dimensional optical molasses for Cs,
where sub-Doppler cooling mechanisms are present, is around 2.5 μK which is considerably
lower than the Doppler limit of 0.12 mK, but slightly higher than the temperature correspond-
ing to the recoil energy

kBT > Er = (�k)2/2m. (recoil limit) (6.15)

In cases where there is no ground-state splitting as, e.g., in the even alkaline earth isotopes
like 20Mg, 40Ca, 88Sr used as optical frequency standards, the velocity can be reduced below
the Doppler limit of the strong resonance line by a second-stage Doppler cooling on a narrow
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“forbidden” line [163] (Sr). Even in cases where the corresponding linewidth is so small that
the cooling force is too weak to efficiently counteract gravity, schemes have been found to
achieve temperatures in the microkelvin regime [164, 165] (Ca), however, at the expense of
additional lasers.

Thus the recoil limit (6.15) constitutes a much more severe limit to the achievable tem-
perature than the Doppler limit. Nevertheless, several clever schemes have been devised that
allow one to achieve temperatures even below the recoil limit by using methods of coherent
population trapping [166, 167] or Raman transitions with tailored detuning sequences [168].
Up to now, however, these latter techniques have not found wide applications in frequency
standards.

6.3.2 Cooling and Deceleration of Molecules

In contrast to atoms, the cooling of molecules by conventional laser-cooling techniques meets
with difficulties since after laser excitation to an excited state a molecule can radiatively de-
cay into myriads of ro-vibrational states of the deeper lying electronic state and hence, no
cycling transitions exist. Consequently, for the most advanced frequency standards molecular
references have become of less importance. This situation might change if suitable cooling
mechanisms will be applied, some of which will be discussed in the following.

Cooling with Buffer Gas Paramagnetic atoms and ions can be trapped in a magnetic trap
with a minimum of the magnetic field. Doyle and co-workers at Harvard used such a trap
to trap various atoms and molecules and cool them by collisions with cryogenically cooled
3He at a temperature around 0.3 K [169]. In their apparatus, two superconducting magnetic
coils generate a spherical quadrupole field trap. The atoms or molecules to be investigated are
set free by laser ablation from a solid target. The particles lose kinetic energy by collisions
with the helium atoms. Inside the trap, atoms or molecules with their magnetic moment anti-
parallel to the trapping field are attracted into the region of the low field in the centre of the
trap. The “high-field seeking particles” (Section 6.4) with their magnetic moment parallel
to the magnetic field are lost. Large numbers of atoms of up to 1012 and as many as 108

molecules (CaH) have been trapped. For frequency standards with neutral atoms or molecules,
buffer gas cooling has not been used yet in contrast to ions (see Section 10.2.2.2).

Electrostatic Deceleration The interaction of the dipole moment of molecules with a time-
varying electric field has been used to decelerate these particles [170, 171]. In this method a
bunch of molecules to be slowed down pass through an array of electrode pairs which are ori-
ented perpendicularly to the trajectory of the molecular beam. Low-field seeking molecules,
with their electric dipole moments anti-parallel to the gradient of the electric field of the first
electrode pair, are decelerated when penetrating into the high electric field between the elec-
trodes. When the pulse of molecules arrives at the region of maximum field between the
electrodes, the electric field of this electrode pair is rapidly switched off and the molecules
have to climb up the potential hill again which is created by the next pair of electrodes that are
connected to a high voltage of several kilovolts. Hence, the low-field seeking molecules lose
their kinetic energies and can later be stored in a trap.
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Photoassociation of Molecules Molecules which are with much lower kinetic energies than
those achieved by buffer gas cooling or electrostatic deceleration can be produced from ultra-
cold atoms by means of photoassociation. As shown in Fig. 5.4, the potential energies of the
ground state and a particular excited electronic state of two atoms that collide with each other,
are functions of the internuclear distance of the two atoms. A properly tuned laser beam which
is red detuned with respect to the transition frequency of the free atom can put the molecule
into one of the bound excited states. The molecules formed by this photoassociation process
can radiatively decay into a ro-vibrational bound state of the ground state for close distances of
the atoms, when the Franck–Condon factors are high enough. This method is mainly restricted
to the formation of dimers from cold atoms as, e.g., alkali atoms [172, 173]. In general this
method produces molecules in high vibrational states but the use of two lasers can access very
low vibrational states [174]. Extremely cold diatomic molecules can be produced by starting
from a Bose Einstein condensate [175].

Presently the particular type of cold molecules accessible by these techniques are not the
best candidates for frequency standards and it remains to be shown to what extent these tech-
niques can be applied to molecules more suitable for the latter purpose.

6.4 Trapping of Atoms

For frequency standards it is often highly desirable to keep the absorbers in a well defined
location during interrogation. Electric, magnetic, gravitational and light forces can be used
to manipulate the external degrees of freedom of ions, atoms, or molecules in order to con-
fine them to the desired region of space. Several restrictions, however, exclude the design of
stable traps of particular design. In a volume free of electric charge ΔΦ = 0 holds 3 and
consequently no configuration of static electric fields can be designed that exhibits maxima or
minima of the electrostatic potential Φ. This fact is sometimes referred to as Earnshaw’s the-
orem. As a consequence of Earnshaw’s theorem no electrostatic ion trap can be constructed.
Wing [176] has shown that in a space region, free of currents and charges, there are no max-
ima of the moduli of electric or magnetic fields. Consequently, no electro- or magneto-static
trap can be set up for neutral atoms in the lowest energy state. Wing’s theorem has been gen-
eralised by Ketterle and Pritchard [177] to any combination of static electrical, magnetic and
gravitational fields. Hence, inclusion of the graviational field does not change these findings.
Ashkin and Gordon [178] have derived a so-called “optical Earnshaw theorem” stating that no
stable trap can be constructed based on time-independent optical fields where the force on an
atom is proportional to the irradiance.

Atomic or molecular ions are easily confined in ion traps where Earnshaw’s theorem does
not exclude the use of an electric potential having saddle points where positive and negative
gradients are generated with high frequency. The electric force �F = q �E is strong enough to
create a deep trapping potential of a few electron volts (1 eV =̂ 11 600 K) that easily confines
ions of thermal energies. We leave the discussion of such ion traps and the frequency standards
based thereon to Section 10.1.1.

3 If the total charge density ρ in the trapping volume is zero, Maxwell’s equation (4.25) div �E = �∇· �E = �∇· �∇Φ =
ΔΦ = ρ/ε0 = 0 holds.
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The forces acting on neutral atoms and molecules are much weaker. They are based on the
interactions (5.33) and (5.34) of external electric or magnetic field gradients with permanent
or induced electric or magnetic moments. Due to their inversion symmetry, unperturbed atoms
cannot have a permanent electric dipole moment and hence atoms can be trapped in electric
fields only via induced dipole moments. On the other hand, atoms can be easily prepared in
states where they have a magnetic moment. The applied field shifts the energy levels of the
atoms. Any spatial gradient of this energy level shift, i.e., of the potential, leads to a force on
the centre-of-mass motion of the atom. As a result of the perturbation by the external field
the energy of atoms in the ground state is lowered and those atoms are accelerated towards
regions of higher field and are sometimes referred to as “high-field seekers”. Atoms in excited
states, however, can be “low-field seekers” which are attracted to regions of lower fields. As a
consequence of Wing’s theorem in static magnetic [179] or electric traps [180] only low-field
seekers can be stored [177].

Figure 6.4: Magnetic quadrupole trap
formed by a pair of coils in an anti-
Helmholtz configuration.

Figure 6.5: Magnetic Ioffe trap realised with
four linear rods carrying a current and two end
coils. The arrows indicate the direction of the
currents.

The most simple magnetic trap, among other possibilities [181], can be realised by an
anti-Helmholtz coil configuration (Fig. 6.4). These coils generate a magnetic field with radial
symmetry in the x and y plane and a zero field at the centre. Near the centre the magnetic
induction varies linearly (Bx = {∂Bx/∂x} · x, By = {∂By/∂y} · y, Bz = {∂Bz/∂x} · z).
From div �B = �∇ · �B(�r) (see (4.26)) it follows that 2∂Bx/∂x = 2∂By/∂y = −∂Bz/∂z.
Hence, the field gradient is twice as large along the z direction as compared to the x and y
directions and in the opposite direction. Neutral atoms were trapped for the first time in such
a trap [179]. A quadrupole magnetic trap with its zero-field at the centre has the disadvantage
that atomic spins have a non-vanishing probability to not follow adiabatically when passing
through this zero field region and may suffer from so-called Majorana spin flips [182]. By
this effect low-field seekers are converted into high-field seekers and are expelled from the
trap. A solution to this problem represents the Ioffe trap with an additional bias field. It can
be realised, e.g., by a two-dimensional magnetic quadrupole field generated by four current
carrying wires (Fig. 6.5) [181]. Confinement along the longitudinal direction is achieved by
two current loops such that there is no longer a zero field in the centre line. These traps are
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shallow and, hence, can only be used to confine neutral particles with very low temperature.
Larger potential depth can be achieved with dynamical traps, e.g., the time-averaged orbiting
potential trap (TOP trap) [183] which also is a trap for low-field seekers.

Atoms without a magnetic dipole moment can be trapped using the electric dipole moment
induced in an electric field [148]. Very high electric fields, and hence sufficiently strong
gradients, can be generated in a focussed laser beam. For a laser beam whose frequency is
red detuned from resonance (Fig. 6.6) the energy of the ground state in a two-level system is
lowered whereas the energy of the excited state is increased. For red and blue detuning the
induced dipole oscillates in-phase and out of phase and the atom experiences a force pulling
it into and out of the maxima of the irradiance, respectively.

Figure 6.6: The interaction of a
two-level atom with the spatially
dependent field distribution of a
near-resonant laser beam, leads to a
spatially dependent “light shift” of
the atomic levels.

Figure 6.7: Schematic illustration of dipole traps with
red (a) and blue (b) detuning. The red detuned dipole
trap can be realised by a simple Gaussian laser beam.
The blue detuned dipole trap can be realised, e.g., by a
Laguerre–Gaussian LG01 “doughnut” mode.

The potential energy of an atom in the laser beam with the electric field amplitude E0 is
derived from (5.135) and (5.134) as

Wdip(r, z) = −6πε0c
3

ω2
0
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)
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. (6.16)

In (6.16) we have assumed first that the detuning is much larger than the line width (ω−ω0 �
Γ). Furthermore we have applied the rotating wave approximation by neglecting the second
term in square brackets and introduced the irradiance of the laser beam (I(r, z) = (ε0c/2)E2

0 )
and the saturation intensity Isat given by (5.122). The most simple optical trap for red detuning
(see Fig. 6.7 a) is realised by a focussed Gaussian laser beam (4.110) which generates a three-
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dimensional spatial maximum of the irradiance at the waist. From (4.117) we find
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)
, (6.17)

where P defines the power in the Gaussian beam with waist w0 and zR = πw0/λ is the
Rayleigh range. The approximation in (6.17) holds for small distances from the centre of the
waist, i.e., z < zR and r < w0 and shows that there is an harmonic potential along the z and
r directions.

In contrast to the spontaneous force, the maximum dipole force does not saturate. On
the other hand, spontaneous emissions in the dipole trap lead to radiative heating which is
proportional to the rate of scattered photons. The scattering rate Γsc, i.e. the number of
photons that are scattered per second by the atoms, can be calculated from (5.136) and (5.134)
with the same approximations as before leading to

Γsc =
Pabs
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= −2
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I
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. (6.18)

The scattering rate and hence the heating becomes less important for a large detuning ω − ω0

since the scattering rate decreases as (ω−ω0)−2 (see (6.18)). Thus red-detuned traps are most
often operated as Far Off-Resonant Traps (FORT) [184].

Blue detuned traps do not suffer from these disadvantages. The blue detuned dipole trap
realised, e.g., by a Laguerre–Gaussian LG01 “doughnut” mode (Fig. 6.7 b) can provide the
same potential depth and the same curvature in the trap centre as the red detuned dipole trap.
However, for the same detuning of both trapping laser fields, the laser power has to be in-
creased for the blue detuned trap by a factor of e2 [148]. Three-dimensional blue-detuned
traps have also been generated by light sheets [185] or as a pyramid trap [186]. The blue
detuned trap, suitable for low-field seekers, is more advantageous for frequency standards as
the ac Stark shift is several orders of magnitude smaller than in a red detuned trap. In a blue
detuned trap Davidson et al. [185], e.g., were able to observe the hyperfine clock transition in
sodium atoms by means of Ramsey excitation (Section 6.6).

6.4.1 Magneto-optical Trap

In an optical molasses atoms are decelerated to very low velocities. However, there is only a
damping force but no force that binds the atoms to a particular point in space. Such a force
can be generated, e.g., in an inhomogeneous magnetic field. Consider an atom with a ground
state Eg with total angular momentum J = 0 and an excited state Ee with J = 1 (Fig. 6.8).
Such conditions are readily encountered in a number of cases (see Table 5.6) as, e.g., the
alkaline earth metals. In a magnetic field the energy of the ground state is not affected to a
good approximation whereas the energy level of the excited state is split into three magnetic
sub-states. In contrast to the mJ = 0 sub-state whose energy is almost independent of the
magnetic field, the energies of the two other sub-states (mJ = ±1) vary linearly but with
opposite signs, with an applied magnetic field. Suppose that the magnetic induction B varies
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Figure 6.8: Energy levels of an atom in a
magneto-optical trap.

Figure 6.9: Schematics of a magneto-optical
trap.

along the z direction linearly with distance z from a centre z = 0 as

Bz(z) = bz. (6.19)

The corresponding Zeeman shift of the energy of the mJ �= 0 excited states

ΔE(z) = ±gJμBbz (6.20)

introduces a spatially dependent term into the detuning

δν = ν − ν0 ∓ v

λ
∓ gJμB

h
bz (6.21)

where gJ is the Landé factor of the excited state and μB is the Bohr magneton (μB/h =
1.4 × 1010Hz/T). Along the z axis, transitions to the mJ = 1 and mJ = −1 can be excited
selectively by means of circularly polarised σ+ and σ− radiation, respectively. If one per-
forms the calculation of (6.7) with the spatially dependent term rather than with the velocity
dependent detuning term of (6.21), one ends up with a force that is linear in z

Fz(z) = −Dz (6.22)

where the constant D is given as

D ≈ 8μBbkS0(ν − ν0)

γ
(
1 + S0 + 4(ν−ν0)2

γ2

)2 . (6.23)

As a result of this force, resembling Hooke’s law for a small distance z from the centre, there
is a harmonic potential V (z) = Dz2/2 which is capable of trapping the atoms. Given that the
two laser beams have the same irradiance, the centre of the trap coincides with the zero of the
magnetic field. The combined force including the damping resulting from the optical molasses
and the harmonic potential resulting from the spatially varying magnetic field, is given by

Fz(z, v) = −Dz − αv. (6.24)
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The corresponding one-dimensional equation of motion for an atom of mass m is described by
a damped linear harmonic oscillator with the angular frequency of the undamped oscillation

with ω0 =
√

D
m and the damping constant Γ = α

m (see (2.27)).
The extension of this scheme to a three-dimensional magneto-optical trap (MOT) is

straightforward [187] when for each spatial dimension a pair of laser beams with the proper
circular polarisation is employed (Fig. 6.9). A magnetic field that vanishes at the centre of
the trap and increases approximately linearly with the distance from the centre can be gen-
erated by a pair of anti-Helmholtz coils (Fig. 6.4) with gradients of the magnetic induction
varying between about 0.05 T/m and 0.5 T/m. To calculate typical values for the angular fre-
quency ω0 and the damping constant Γ we use (6.23) and (6.7) and a trap for 40Ca atoms
with b = 0.1T/m, ω − ω0 = Γ/2, k = 2π/423 nm and m = 40 × 1.66 × 10−27 kg. With
ω0 ≈ 2π × 2.4 kHz and Γ ≈ 1.56 × 105/s one finds that the motion of the atoms in a MOT is
strongly overdamped.

Loading of a Magneto-optical Trap The maximal velocity of the atoms which can be cap-
tured in a MOT is vc ≈ (2Fmaxr/m)1/2 = (�kγr/m)1/2 [188] where r is the radius of the
MOT. Hence atoms with velocities up to vc

<∼ 30 m/s can be loaded directly from an uncooled
vapour [189] or from an uncooled thermal atomic beam [104, 187, 190, 191]. However, in
such set-ups only atoms from the low velocity tail of the Maxwell–Boltzmann distribution are
captured. In order to obtain a good duty cycle between preparing and interrogating the atoms,
in optical frequency standards it is desirable to load a large number of atoms in a short time.
The number N of atoms trapped in a magneto-optical trap can be derived from a rate equation

dN

dt
= Rc − N

τMOT
− βN2 (6.25)

where Rc is the capture rate and τMOT is the average time of an atom spent in the MOT. The
second term represents the collisions of the trapped atoms with the background gas and the
third term describes collisions between the trapped atoms themselves. (6.25) is solved if the
last term which becomes important only at high densities can be neglected by

N(t) = (N(0) − RcτMOT)e−t/τMOT + RcτMOT. (6.26)

The loading curve (see Fig. 6.10) approaches the equilibrium value N(t → ∞) = RcτMOT

with the time constant τMOT. Starting with an empty trap (N(0) = 0) the loading curve is

N(t) = RcτMOT

(
1 − e−t/τMOT

)
. (6.27)

The capture range and hence the flux of atoms loaded into the trap can be increased consid-
erably by employing two or more optical frequencies separated from each other by about a
natural linewidth of the cooling transition [190, 192].

Alternatively, a Zeeman cooling technique [193, 194] is often employed to load a MOT
[195–198] where a circularly polarised cooling laser beam counter-propagates to the atoms in
a beam whose changing Doppler shift is compensated by a longitudinal magnetic field. In fre-
quency standards, sometimes the Zeeman slower is used in conjunction with a tilted molasses
to deflect only the slowest atoms into the MOT [199]. Dense samples (ρ ≥ 1010 atoms/cm3 of
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Figure 6.10: Measured loading curves (squares) of a Ca magneto-optical trap and fits (lines)
according to (6.27). When a particular trap loss channel is closed (where the atoms lost into the
1D2 state (Fig. 5.2) are re-pumped) the lifetime increases from τMOT = 19 ms (a) to τMOT =

83 ms (b).

N � 107 atoms are easily cooled in a MOT which after switching off the MOT fields (lasers
and magnetic field) can serve as a cold ballistic ensemble for interrogation in microwave and
optical frequency standards.

6.4.2 Optical lattices

Atoms can also be trapped in an optical lattice. An optical lattice is generated by the in-
terference between two or more light fields, that leads to a stationary field pattern in space.
Consider a standing wave created by the interference between two counter-propagating waves
of the same frequency ν = c/λ, polarisation and irradiance

�E = E0ε̂ cos(ωt − kz) + E0ε̂ cos(ωt + kz) (6.28)

= 2E0ε̂ cos kz cosωt.

The light-shift (ac Stark shift) potential (∝ E2) experienced by atoms in the region of the
interference also forms a one-dimensional periodic potential structure with the nodes and anti-
nodes separated by λ/4. Atoms with low enough kinetic energy may become trapped in
the corresponding potential wells and may be localised to a region significantly smaller than
the wavelength of the light creating the potential wells. A two-dimensional optical lattice
can be realised in the intersection of two perpendicular laser beams (Fig. 6.11) [200]. The
interference pattern depends on the orientation of the polarisation of the beams and shows a
regular arrangement of potential wells (Fig. 6.12).

It has been found that lattices in n dimensions may be formed by n + 1 laser beams [201]
with the appropriate choice of polarisations. In three dimensions a simple and convenient
realisation is shown in Fig. 6.13. The two penetrating beams from the left in the x − y plane
and from the right in the y−z plane form a standing wave in the x and z direction, respectively.
Along the y direction a standing wave is formed by the interference between all four beams.
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Figure 6.11: Generation of a two-dimensional
optical lattice. M: mirror, R: optional retarding
plate.

Figure 6.12: Potential of a two-dimensional
optical lattice.

Figure 6.13: Four-beam geometry used to produce
a three-dimensional optical lattice. The two beams
from the left and the two beams from the right are
propagating within two orthogonal planes. All beams
are linearly polarised with the polarisation perpendic-
ular to the respective plane as indicated by the arrows.

By filling an optical lattice from a cold source of atoms, in general, a very dilute occupation
of the lattice sites is achieved. There are, however, methods that allow the achievement of
densities near unity occupation of the lattice sites [202]. For use in an optical frequency
standard, optical lattices could allow very long interaction times, even in the presence of the
gravitational field, also with neutrals confined to the Lamb–Dicke regime where the first-
order Doppler effect can be eliminated. A promising method has been devised [203] where the
perturbations of the clock transition by the lattice laser beams can be avoided (Section 14.2.2).

6.4.3 Characterisation of Cold Atomic Samples

The performance of a frequency standard usually depends in various ways on particular prop-
erties of the ensemble (see Section 5.4) to which its frequency is stabilised. A variety of
methods and techniques are routinely employed [204] to measure the number of absorbers,
their density or their temperature, some of which will be discussed in the following.
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6.4.3.1 Measurement of the Number and Density of the Particles

The total number of particles forming the sample is usually determined by one of three meth-
ods, namely from measurements of the power of the fluorescent light emitted by the sample,
from the light absorbed by the sample or from the phase shift that light suffers when trans-
mitted through the sample. The spatial variation of the corresponding signals also allows one
to determine the size and distribution of the atoms in the cloud. A weak probe laser beam
passing through a medium along the z axis experiences the influence of a complex index of
refraction n = n′ + in′′ as

E(z, t) = E0e
−i(ωt−n′kz)e−n′′kz ≡ tE0e

−i(ωt−φ) (6.29)

and thus suffers from a phase shift φ = n′kz and from absorption. In a medium comprising
two-level systems the absorption characterised by the (amplitude) transmission coefficient
t = exp(−n′′kz) is given as

t ≡ e− eD/2 = exp

⎛⎝− ρ̃σ0

2
1

1 + (ω−ω0)2

(Γ/2)2

⎞⎠ (6.30)

and the phase shift as

φ = exp

⎛⎝− ρ̃σ0

2

(ω−ω0)
2

(Γ/2)2

1 + (ω−ω0)2

(Γ/2)2

⎞⎠ (6.31)

as can be derived, e.g., from (5.131). ρ̃ =
∫

ρdz is the density of absorbers integrated along a
column through the sample and

σ0 =
3λ2

2π
(6.32)

is the (on-resonance) cross-section for scattering [146, 204, 205]. Consider a set-up where
a probe beam with diameter larger than the atomic cloud is directed onto a charge coupled
device (CCD) camera where it produces a shadow image of the cloud. The density of the
atomic cloud can be determined as follows

D(x, y) = − ln
(

Iwith cloud(x, y) − I0(x, y)
Iw/o cloud(x, y) − I0(x, y)

)
(6.33)

where Iwith cloud(x, y), Iw/o cloud(x, y), andI0(x, y) are the images taken with the probe
beam illuminating the cloud, the probe beam alone, and the dark image without cloud and
without probe beam, respectively. Often the two-dimensional density distribution can be de-
scribed by a Gaussian

D(x, y) = Dmaxe
−x2+y2

2r2
0 . (6.34)
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To determine Dmax one has to know the atomic distribution along the z axis. For a Gaussian
with the same radius r0 in the z direction it follows that

Dmax =
∫

σ0ρmax exp
(
− z2

2r2
0

)
dz (6.35)

which after evaluation of the integral yields

ρmax =
Dmax√
2πσ0r0

. (6.36)

Dark-ground imaging, phase-contrast imaging, or polarisation-contrast imaging are other
methods that probe the atomic dispersion for non-destructive imaging of atomic clouds [204].

6.4.3.2 Temperature

Several methods can be employed to measure the temperature of cold atomic clouds either in
the trap or after the atoms have been released from the trap.

Time-of-flight Measurements These techniques measure in one way or another [206] the
ballistic expansion of the atomic cloud and relate the derived distribution in space and time
to the kinetic energy of the particles. Given that the atoms are in thermal equilibrium, which
is not always the case in a MOT [207], this distribution is related to the temperature of the
ensemble. One of the simplest and earliest methods now referred to as the “release and re-
capture” technique was employed to determine the temperature of atoms in an optical mo-
lasses [161]. In this method the number of atoms (or a quantity being proportional to this
number) is measured before and after the confining fields, e.g., magnetic field or laser fields
are turned off abruptly for a variable time, τoff . During this time the fastest atoms in the bal-
listically expanding cloud leave the capture range of the trap which contains less atoms after
being switched on again. From the fraction of atoms remaining as a function of τoff the tem-
perature can be determined to the extent that the shape and size of the capture region can be
determined. As the trapping fields have to be switched fast enough, this method is particu-
larly suited for optical traps where the fluorescence of the atoms in the trapping field can be
measured directly without extra equipment.

Methods that allow higher accuracy employ an extra laser beam and image the cloud se-
quentially by one of the methods described in Section 6.4.3.1. From a sequence of absorption
or phase contrast images taken after various times t, the evolution of the size of the atomic
cloud can be determined. As an example, consider the case of a spherical cloud of Gaussian
distribution with radius r0 immediately after switching off the trap. Since the position of each
atom results from the initial position and the path travelled after shutting off the trap, both
quantities are uncorrelated and hence can be added quadratically as follows

r(t) =
√

r2
0 + 〈v2〉t2. (6.37)

As a third method, consider a sheet of light with low vertical extension and high horizon-
tal extension placed a few centimetres below the trapped atoms. To determine the vertical
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velocity distribution of the atoms released from the trap, the time-dependent fluorescence of
the atoms falling through the light sheet is measured. Imaging the fluorescence radiation from
the horizontal plane gives the velocities in the two horizontal directions [208].

Another method determines the height of the atoms released from the trap in the gravita-
tional potential [162, 206].

Trap Centre Oscillations The temperature of atoms confined in a trap with a harmonic
potential, e.g., a MOT, dipole trap, or a magnetic trap, can be measured using their response
to an external force. In thermal equilibrium the thermal energy equals the average potential
energy or the average kinetic energy as follows

kBT = D〈x2〉 = m〈v2〉. (6.38)

Determination of the spring constant D (see (2.6)) together with a measurement of the exten-
sion of the trapped cloud, e.g., by a CCD camera, allows one to determine the temperature
using (6.38) [209]. The spring constant can be determined by measuring the response of the
cloud as a function, e.g., of the light pressure of a pushing laser beam or of the movement
of the centre of the magnetic trapping fields. If the atomic cloud is driven by an external
harmonic force to perform forced oscillations, the averaged damping constant and the spring
constant can be determined by measuring the frequency-dependent amplitude response and
phase using (2.59) and (2.60) [210].

Measurement of the Doppler Broadening Quantum systems used as frequency references
in frequency standards often posess a narrow transition. Given that its homogeneous linewidth
is small enough to allow the inhomogeneous Doppler broadening to be measured, the broad-
ening can be utilised to derive the velocity distribution in the sample. In optical frequency
standards the broadening of the clock transition is often used directly (Fig. 6.1). The method
requires a laser of high short-term and medium-term stability which, in any case, is required as
a local oscillator for the frequency standard. The velocity distribution in microwave standards,
e.g., the Cs atomic fountain (Section 7.3), can be probed using Raman transitions (Fig. 5.12 a)
with two phase-coherent laser fields [211]. For Raman transitions the relative phase of the
two laser fields has to be stable rather than the phases of both laser fields themselves. Hence,
the two necessary phase-coherent fields can be obtained either from a single laser of moder-
ate frequency stability by the use of acousto-optic (Section 11.2.1) or electro-optic frequency
shifters (Section 11.2.2) or for larger frequency separations by two phase-locked lasers.

6.5 Doppler-free Non-linear Spectroscopy

6.5.1 Saturation Spectroscopy

In optical frequency standards where the Doppler broadening becomes of utmost importance
an easy-to-use method of obtaining narrow lines is based on non-linear spectroscopy or satura-
tion spectroscopy [212]. Consider the case of a strong laser beam of frequency ν slightly blue
detuned (ν > ν0) with respect to the transition frequency ν0 interacting with an ensemble of
two-level systems with velocities obeying a Maxwellian distribution. Atoms whose velocities
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�v ′ satisfy the Doppler condition ν − ν0 = �k ·�v ′ are transferred from the lower energy level to
the higher one and a hole, sometimes called a Bennett hole [213], is “burned” into the ground-
state velocity distribution (Fig. 6.14 a). In the case of large saturation S0 � 1 approximately

Figure 6.14: Population in the ground state E1 and in the excited state E2. a) A travelling wave with
a positive detuning with respect to the transition centre transfers population from the state with lower
energy E1 to the state with higher energy E2 thereby burning a hole in the lower state velocity distribu-
tion. b) Two counter-propagating waves interact with different velocity groups in the Doppler broadened
profile if slightly detuned from resonance. c) Two counter-propagating waves tuned to resonance interact
with the same velocity group.

one half of the atoms is transferred to the excited state. By tuning the frequency of the laser
across the line and measuring the absorbed power or the fluorescence light from the decay
of the excited atoms, e.g., by using a set-up like the one shown in Fig. 6.15 a), the Doppler
broadened absorption line is recorded. Consider now the case where a second laser beam with
the same frequency ν crosses the absorbing ensemble counter-propagating to the first laser
beam, e.g., by re-directing the laser beam by means of a retro-reflector Fig. 6.15 a). For an
“optically thin” atomic beam, each one of the two laser beams, if tuned across the absorption
line independently, would show the absorption line and the total absorption suffered by both
beams would be twice that of a single beam. For a fixed frequency the second beam interact-
ing with the same ensemble burns a second hole into the ground-state velocity distribution at
v = −v′ (see Fig. 6.14 b). For ν �= ν0 the two waves interact with different velocity groups,
however, if the frequency ν of the laser is tuned to the transition frequency ν0 (see Fig. 6.14 c)
both waves interact with the same velocity class. The velocity of these atoms is characterised
by a zero Doppler shift along the axis of the laser beam (say the z axis), i.e., by the velocity
(vz = 0). If the first laser beam has already saturated the transition (S0 � 1), the second laser
beam virtually does not experinece absorption, and hence, at resonance the total absorption is
reduced by almost a factor of two as compared to the off-resonant absorption of the two single
beams (see Fig. 6.16, open circles).

Such non-linear absorption occurs also for weaker saturation since atoms of this velocity
group are saturated by twice the saturation parameter S0 compared to atoms with a velocity
far from resonance (ν �= ν0). The dip due to the saturated absorption at the centre of the
absorption line is often called “Lamb dip” [212]. The width of the Lamb dip can be as narrow



188 6 Preparation and Interrogation of Atoms and Molecules

as the homogeneous power broadened (Fig. 5.20) linewidth. The Lamb dip thus in general
provides a more narrow spectroscopic feature than the absorption profile itself and can be
utilised to stabilise the frequency of a laser with higher stability, due to the higher slope of the
corresponding discriminator curve.

The intuitive picture given above for the saturated absorption is valid only in the weak
saturation approximation [212]. Strong-field effects in coherent saturation spectroscopy can
modify the absorption feature dramatically. To correctly describe the absorption spectrum
in the strong-field case, the influence of the photon recoil, the actual laser beam profile and
multiple momentum exchanges between atoms and light, have to be taken into account [214–
216]. The latter becomes important if a standing wave is used for excitation. As an example,
compare the absorption lines observed by exciting the transition 1S0−3P1 (λ = 657 nm) in a
Ca atomic beam with two spatially separated travelling waves and a standing wave (Fig. 6.16)
[216].

Figure 6.15: Saturated absorption in a beam.
By shifting the cat’s eye retroflector by Δx/2
the incoming beam and the reflected beam over-
lap leading to a standing wave.

Figure 6.16: Power absorbed in a Ca atomic
beam measured by the fluorescence of the ex-
cited atoms [216] in two counter-propagating
travelling waves (open circles) and in a stand-
ing wave (dots) using the set-up of Fig. 6.15.

Due to the recoil effect the saturated absorption line (Fig. 6.16) is splitted into two com-
ponents [217]. The origin of such a doublet can be inferred from Fig. 6.17 where the en-
ergy momentum parabola is shown for atoms in the ground state E1 and the excited state
E2. Consider an atom at rest in the ground state (see Fig. 6.17 a). After the absorption of
a photon the momentum of the atom is p2/(2m) = (�k)2/(2m). Hence the two counter-
propagating laser waves interact with the same (zero-) velocity group in the ground state and
�ω = E2−E1+(�k)2/(2m), i.e. the saturated absorption is blue shifted in angular frequency
Δω = �k2/(2m). A saturated absorption feature appears also if the two laser beams interact
with the same (zero -) velocity group of atoms in the excited state. In this case conservation
of energy and momentum requires that the line is red shifted by the same amount. Hence the
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frequency separation (recoil splitting) between both absorption lines is (see (5.103))

Δν =
h

mλ2
(6.39)

which in the case of the Ca intercombination line (λ = 657.46 nm) is 23.1 kHz (Fig. 6.18).

Figure 6.17: Energy–momentum diagrams for satu-
rated absorption. a) The two counter-propagating laser
waves interact with the same (zero-) velocity group in
the ground state or b) in the excited state.

Figure 6.18: Recoil splitted saturated
absorption line in a laser cooled cloud
of Ca atoms.

Since the high-frequency recoil component results when both laser beams interact with
the same velocity group in the excited state this component can be affected by spontaneous
decay of the excited atoms during the desired and required long interaction time. Hence
the high-frequency component in general shows a smaller saturated absorption feature than
the low-frequency component. Thus if both recoil components are not resolved the centre
of gravity of both lines is not necessarily at the frequency of the unperturbed line. For an
optical frequency standard it might therefore be necessary to suppress one the components.
Methods have been developed to suppress either the low-frequency component [218] or the
high-frequency one [219, 220].

In saturated absorption spectroscopy only the absorbers from the zero velocity group con-
tribute to the signal and hence give a first-order Doppler free signal. Nevertheless the second-
order Doppler effect might still be large, e.g., in an atomic beam.

6.5.2 Power-dependent Selection of Low-velocity Absorbers

The first-order and second-order Doppler effect can be reduced significantly if only the ab-
sorption signal from the slowest particles, e.g., in a gas are selected. Such an effect occurs
if the irradiance of the laser beam is so low that it is too small to markedly excite the faster
particles since for optimum excitation of a two-level system a π pulse is required. Consider a
particle with velocity v that crosses a coherent interacting radiation field of diameter 2w0 per-
pendicularly. The Rabi angle (5.52) during transit is given as θR = ΩR2w0/v (see (5.52)). If
the Rabi frequency ΩR (5.37) is kept deliberately low by choosing a small enough field ampli-
tude, only those particles are excited whose velocities are small enough to lead to a significant
Rabi angle.
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The selection of slow molecules or atoms requires low pressure and low saturation inten-
sity. Consequently, the saturation signal becomes very low. Despite of these difficulties the
method has been used in frequency standards. Bagayev et al. [221] in their methane stabilised
He-Ne laser, placed the methane absorption cell inside the laser cavity to benefit from the am-
plification of the signal with the laser operating just above threshold. The laser comprised an
8 m long internal absorption cell which was cooled to a temperature of 77 K. The laser beam
had a waist of 2w0 = 15 cm to allow for sufficient interaction time. The group at the Uni-
versité Paris-Nord [222] applied the same method by using a multiple-pass CO2 laser beam
(λ ≈ 10 μm of a radius w0 = 3.5 cm in an 18 m long OsO4 absorption cell with an effective
path length of 108 m. The cell was kept at room temperature and the pressure was below
3 × 10−4 Pa. With a power of 30 nW, molecules with an effective temperature of Teff = 0.6 K
could be selected. To utilise the signal contrast of only 10−6, heterodyne detection and double
modulation techniques had to be employed.

6.5.3 Two-photon Spectroscopy

First-order Doppler free absorption lines can be recorded if the energy energy required for a
transition in a quantum absorber is provided by two photons (Fig. 6.19) from two counter-
propagating beams of the same frequency [223, 224]. If an absorber moving with a velocity

Figure 6.19: Two-photon transition. The dashed line indicates a
virtual level.

�v is to be excited at the same time by a photon from each beam according to the first-order
Doppler effect the energy of one photon (�ω1) is red-shifted and that of the other one (�ω2) is
blue shifted in the rest frame of the absorber. The combined energy of both photons

�ω1 + �ω2 = �ω0

(
1 − �v · �k

ω0

)
+ �ω0

(
1 +

�v · �k
ω0

)
= 2�ω0 (6.40)

is not affected by the first-order Doppler effect. Two-photon transitions can induce transitions
between states that are otherwise not coupled by single-photon dipole radiation, e.g., if they
have the same parity.

The transition amplitude for a two-photon transition has to be calculated in second-order
time-dependent perturbation theory since the first-order amplitude for a transition such as
1S – 2S in hydrogen would be zero. Consider an atom moving in the field of two counter-
propagating waves of the same angular frequency ω, amplitudes E1 and E2 and polarisations



6.5 Doppler-free Non-linear Spectroscopy 191

described by the unit vectors �ε1 and �ε2. It has been shown [223–225] that the probability for
two-photon absorption is

c(2)(ω) =
∑

j

e2E2
1

4�2

〈g|e�r · �ε1|j〉〈j|e�r · �ε1|e〉
ωj g − ω

×
exp

[
i(ωe g − 2ω + 2�k · �v)t

]
(ωg e − 2ω + 2�k · �v) − iΓe/2

(6.41)

+
∑

j

e2E2
2

4�2

〈g|e�r · �ε2|j〉〈j|e�r · �ε2|e〉
ωj g − ω

×
exp

[
i(ωe g − 2ω − 2�k · �v)t

]
(ωg e − 2ω − 2�k · �v) − iΓe/2

+
∑

j

e2E1E2

4�2

[〈g|e�r · �ε1|j〉〈j|e�r · �ε2|e〉
ωj g − ω

+
〈g|e�r · �ε2|j〉〈j|e�r · �ε1|e〉

ωj g − ω

]
× exp [i(ωe g − 2ω)t]

(ωg e − 2ω) − iΓe/2

where all atomic eigenstates have to be included in the sum and Γe = 2πγe is the inverse
lifetime of the state |e〉 , provided that the ground state has an infinite lifetime. As a result of
the resonance denominator ωjg−ω the largest contributions come from any intermediate level
j close to the virtual level (Fig. 6.19). The first two terms in (6.41) describe the absorption
of two photons from any one of the running waves. Consequently, both terms include the
first-order Doppler shift. The third term describes the absorption of a photon from each of
the two counter-propagating waves where the first-order Doppler shift cancels according to
(6.40). Squaring (6.41) and averaging over all velocities of the atoms, the first two terms lead
to a Gaussian Doppler background [223]. In general, for frequency standards, the width of
the Doppler background is large compared to the linewidth of the two-photon transition and
the Doppler pedestal contributes a very weak, almost constant background. For a linearly
polarised standing wave (E ≡ E1 = E2 and �ε ≡ �ε1 = �ε2) the third term of (6.41) leads to a
Doppler-free Lorentzian profile

P (2)(ω) =
e4E4

4�4

∣∣∣∣∣∣
∑

j

〈g|e�r · �ε |j〉〈j|e�r · �ε |e〉
ωj g − ω

∣∣∣∣∣∣
2

Γe

(ωg e − 2ω)2 + Γ2
e/4

(6.42)

whose linewidth is the width of the final state. The transition probability depends on the fourth
power of the field amplitude, i.e., on the square of the laser irradiance. Hence, the laser beam
often has to be focussed to a small diameter to drive the weak second-order transitions. The
high irradiance often leads to a considerable ac Stark shift which has to be measured and cor-
rected for in frequency standards. For fast atoms the small diameter of the laser beam may
result in a transit time broadening that changes the lineshape of (6.42) [226]. In contrast to sat-
uration spectroscopy, two-photon spectroscopy has the big advantage that all atoms contribute
to the signal despite their velocity.

Two-photon transitions are used in frequency standards based on the 1S – 2S transition
in atomic hydrogen (Section 9.4.5), the 5S1/2 – 5D5/2 transition in Rb (Section 9.4.3), or the
4d10 5s 2S1/2 – 4d9 5s2 2D5/2 transition in Ag (Section 9.4.6).
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6.6 Interrogation by Multiple Coherent Interactions

In order to make the best use of the narrow linewidth achievable with quantum absorbers, also
the interaction time broadening has to be reduced by allowing a coherent interaction with the
applied electromagnetic field over the necessary long time. An extremely fruitful method has
been developed for microwave standards by Norman Ramsey [155, 227, 228] where, rather
than applying a coherent field over the total time T , the quantum absorbers are exposed to the
field for short durations τ that are separated by a time T where no field is present. This “Ram-
sey excitation” is equally well applied to atomic or molecular beams interacting with spatially
separated fields or to devices where the absorbers interact at the same location with a field that
is switched on and off in a time sequence. Ramsey excitation using two separated interactions
is applied likewise in caesium atomic clocks and other microwave frequency standards. In
the optical regime the method has to be modified where in general more than two coherent
interactions are used.

As will be shown, a main advantage of the Ramsey excitation with multiple coherent in-
teractions in contrast to, e.g., saturation spectroscopic methods, results from the fact that the
interaction time broadening and the resolution can be adjusted independently. The former
can be increased by choosing short interaction times τ thereby also allowing absorbers with
Doppler shifts vν/c <∼ 1/(2πτ) to contribute to the signal. The resolution, however, is deter-
mined mainly by the much longer time T between the interactions.

6.6.1 Ramsey Excitation in Microwave Frequency Standards

To describe the interaction of two short pulses of an electromagnetic field with a suitable
quantum absorber, e.g., the 9.2 GHz radiation with the hyperfine split ground states of Cs
atoms, we first outline the calculations of the resonance features using the methods developed
in Section 5.3.1 for two-level systems. To complement the description we also visualise the
relevant processes using the Bloch vector picture developed in Section 5.3.2 (Fig. 6.21).

Consider two subsequent interactions of duration τ of a two-level atom with an interro-
gating field where these two interaction times are separated by a time T where the field is
switched off. Such a situation is realised, e.g., in a caesium beam machine (Section 7.1)
where the caesium atoms on their way pass two spatially separated interaction zones or in the
caesium fountain clock (Section 7.3) where the caesium atoms during their vertical ballistic
flight cross the same microwave field on their way up and down.

In the calculation of the probability amplitudes c1(t) and c2(t) of finding the two-level
system in the ground state and in the excited state given by (5.50) and (5.51), respectively,
(Section 5.3.1) we have assumed that the atom immediately before the interaction was in
the ground state (c1(t = 0) = 1, c2(t = 0) = 0). In order to investigate the combined
influence of the field during the first and second interaction and the evolution of the atomic
states between both, Ramsey [155, 227] considered a more general expression. He calculated
the evolution of the amplitudes c1(t1 + t) and c2(t1 + t) for an interaction applied between the
time t1 and t1 + t, where at the beginning of the interaction, the two-level atom is described
by given probability amplitudes c1(t1) and c2(t1) as a result of any previous interaction. The
probability amplitude to find the two-level atom in the excited state after the second interaction
is the sum of two contributions. One term describes the probability amplitude that the atom
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has been excited during the first interaction and enters the second interaction in this state. The
other term describes the probability amplitude for the atom to leave the first interaction in the
ground state and being excited during the second interaction. Hence, by calculating the total
probability to find the atom in the excited state after the second interaction one expects an
interference between both amplitudes that depends on the phase difference between the two
amplitudes.

Ramsey [155, 227] calculated the probability to find the two-level system in the excited
state after the second interaction as

p(τ + T + τ ) ≡ |c2(τ + T + τ )|2 (6.43)
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where the Rabi frequency ΩR (for electric dipole interaction (5.37) or equivalently for mag-
netic dipole interaction), Ω′

R (see (5.45)), and the detuning Δω (see (5.39)) are defined as
before.

In the immediate vicinity of the resonance, i.e., for Δω 
 ΩR, ΩR ≈ Ω′
R holds and (6.43)

leads to

p(τ + T + τ ) ≈ 1
2 sin2 ΩRτ [1 + cos 2π(ν − ν0)T ] . (6.44)

From (6.44) one finds that optimal excitation of the atom is achieved for two interactions with
ΩRτ = π/2, i.e. π/2 pulses. The full width at half maximum of the resonance curve is
given by

Δν =
1

2T
. (6.45)

Hence, the achievable resolution with Ramsey excitation is about twice that of Rabi excitation
for the same interrogation time (Fig. 6.20).

In practical frequency standards, that make use of the Ramsey scheme, there are important
effects that require a modification of (6.44). As an example we consider the Cs atomic clock
described in more detail in Section 7. There, the Ramsey scheme is applied to a beam of cae-
sium atoms that successively interact with two phase coherent electromagnetic fields derived
from the same microwave source. If there is a phase difference ΔΦ = Φ2 − Φ1 between the
phases Φ1 and Φ2 in the first and second zone, respectively, then (6.44) has to be modified to

p(τ + T + τ ) ≈ 1
2 sin2 ΩRτ [1 + cos 2π(ν − ν0)T + ΔΦ] . (6.46)

Phase differences ΔΦ in general shift the centre of the Ramsey structure to ν �= ν0 by

ΔνΦ

ν0
= − Φ

2πν0T
. (6.47)

Consequently, for the operation of precise frequency standards methods have been devised
for keeping such phase shifts as low and as constant as possible as will be discussed in more
detail later. Compared to a continuous interaction the application of Ramsey’s technique in
atomic clocks has distinct advantages if frequency shifts are considered that result from a
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Figure 6.20: Comparison of the probability to find an atom in the excited state after excitation
by two short Ramsey pulses of duration τ � T separated by a field-free time T (full curve;
(6.44)) and a constant interaction (dashed curve; (5.51), so-called Rabi pulse) with the same
interaction time.

varying phase during the coherent interaction of the atomic systems with the electromagnetic
field. This is due to the fact that, in general, the phase in the limited interaction regions can be
controlled more accurately as in the extended region.

In a set-up as the Cs atomic clock (Section 7) furthermore the influence of the velocity
distribution of the atoms has to be taken into account. The atoms in the beam having different
velocities v enter the second interaction zone after a time T = L/v and hence (6.44) leads
to different resolutions for the different atomic velocity classes. Consequently, the Ramsey
fringes for a thermal ensemble are washed out for larger detunings and, mainly, the central
fringes persist (Fig. 7.4). The velocity furthermore affects the time τ that the atom spends in
the interaction zones and hence affects the Rabi angle that the atoms acquire. These effects
will be discussed in more detail in connection with the particular frequency standards.

We now use the pseudo-spin picture to visualise the Ramsey method with two phase-
coherent pulses of very short duration τ and the interaction, whose frequency is in resonance
with the transition, adjusted such that each interaction corresponds to a π/2 pulse. As before,
the time between the pulses is T . A two-level system in the ground state before the first
interaction is represented by a pseudo-spin vector pointing towards the south pole of the Bloch
sphere (Fig. 6.21 a). As described in Fig. 5.11 the first π/2 pulse rotates the pseudo spin by
the angle θ = π/2 around the −u axis (Fig. 6.21 b). Afterwards, during the time T the pseudo
spin rotates in the u − v plane by the angle 2π(ν − ν0)T (Fig. 6.21 c1). If the time is such
that this angle is 2nπ, a second π/2 pulse rotates the pseudo spin by π/2 around the −u axis
leaving the atom with unity probability in the excited state (Fig. 6.21 d1). If this time is chosen
such that, during this time, the pseudo spin rotates around the w axis by 3/4π as depicted in
(Fig. 6.21 c2) the second pulse would not change the orientation of the pseudo spin as the
rotation axis is now the v axis. A subsequent measurement projecting the wave function onto
the eigenstate |e〉 would show only 50 % of the atoms in the excited state. If the time T , on
the contrary, was chosen to give an angle π(ν − ν0)T in the equatorial plane (Fig. 6.21 c3)



6.6 Interrogation by Multiple Coherent Interactions 195

Figure 6.21: Evolution of the fictitious spin (Bloch vector) after excitation by two very short π/2 pulses
ΩRτ � ΔωT in a Ramsey excitation separated by different times T . a) – d1) ΔωT = 2π. a), b), c2,
d2) ΔωT = 3/4π. a), b), c3, d3) ΔωT = π.

the precession of the pseudo spin under the “torque” of the second pulse (around the −u axis)
would flip the pseudo spin pointing to the south pole (Fig. 6.21 d3) and the atom would be
found in the ground state. It follows from such arguments that the probability of finding the
atom in the excited state after the two Ramsey pulses shows a sinusoidal variation as a function
of 2π(ν − ν0)T , i.e., either for fixed T as a function of the detuning or for fixed detuning as
function of the time T . In other words, the Ramsey technique measures the difference in the
phase 2πνT of the external oscillating field and the internal phase 2πν0T of the quantum
system by, e.g., (6.44).

6.6.2 Multiple Coherent Interactions in Optical Frequency Standards

In the optical regime the wavelength of the radiation is so small that, in general, freely moving
atoms are not confined to the Lamb-Dicke regime. The associated phase shifts do not allow
one to observe a stationary Ramsey interference pattern. Thus the generation of optical Ram-
sey resonances requires either extra elements affecting the trajectories of the absorbers [229]
or non-linear optical Doppler-free excitation schemes such as Doppler-free two-photon exci-
tation or three [230] and more [215] suitable separated excitation zones.

6.6.2.1 Linear Optical Ramsey Resonances

As a first example consider Fig. 6.22 a) where the absorbers in a beam interact consecutively
with two standing optical waves forming a Ramsey interrogation scheme. The electric field of
the linearly polarised standing wave comprised of two counter-propagating linearly polarised
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Figure 6.22: Linear Ramsey excitation of a molecular beam with two spatially separated standing waves
of wavelength λ according to Kramer [229]. a) Trajectories of the absorbers passing anti-nodes in the two
standing waves with an even phase difference of 2nπ (solid lines) or with phase difference (2n + 1)π
(dashed lines). (b) Insertion of a grating (grating constant λ/2) blocks the trajectories that lead to
inverted Ramsey fringes.

travelling waves used to excite a transition in the atoms or molecules in the beam changes its
phase by π every λ/2 (see (6.28)). Trajectories of the molecules passing anti-nodes in the two
standing waves with an odd phase difference (2n + 1)π (dashed lines) give rise to Ramsey
fringes that are phase shifted by π, i.e., inverted with respect to the Ramsey fringes generated
by molecules that experience an even phase difference of 2nπ (solid lines). Blocking the
trajectories of either group by means of a transmission grating for the molecules with a period
of λ/2 allowed Kramer [229,231] to use optical Ramsey fringes in optical CH4 (Section 9.1.4)
or OsO4 frequency standards.

6.6.2.2 Optical Ramsey Resonances Using Non-linear Spectroscopy

Ramsey’s method of two spatially separated fields can be transferred to the optical regime if
first-order Doppler-free methods are employed.

Two-photon Optical Ramsey Resonances After Baklanov et al. [232] suggested two-
photon excitation to apply Ramsey’s method to the optical domain Salour and Cohen–
Tannoudji [233] used two time-delayed short pulses to excite so-called “optical Ramsey res-
onances” in a sodium cell. Two spatially separated standing waves allowed Lee et al. [234]
to observe two-photon Ramsey resonances in rubidium Rydberg atoms. The method has been
employed recently to the hydrogen 1S – 2S transition [235] to obtain narrow resonances and
is suitable for all two-photon clock transitions.

Saturated Absorption with Spatially Separated Laser Fields To overcome the Doppler
shift in the optical domain where, in general, the atoms are no longer in the Lamb-Dicke
regime, Ramsey excitation is often performed with three or more interaction zones. Shortly
after Baklanov et al. [230] suggested the use of three equidistantly separated standing
waves Bergquist et al. [236] used this technique to observe optical Ramsey resonances in
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a metastable neon beam. Later Barger et al. [237] applied the method to the Ca intercombi-
nation transition (λ = 657 nm) used today as optical frequency standard (Section 9.4.4). With
laser beam separations up to 21 cm Barger was able to resolve the Ca line in a thermal atomic
beam with a width as narrow as 1 kHz [238] thereby resolving the recoil dublet and demon-
strating the shifts and broadening due to the second-order Doppler effect. Kisters et al. [196]
applied the method in the time domain to a laser-cooled sample of Ca atoms and used three
pulses of a standing wave.

Baba and Shimoda [239] used three separated beams from a He-Ne laser to excite Ram-
sey resonances at 3.39 μm in a CH4 cell. The two outermost beams were counterpropagating
travelling waves with a central standing wave. Bordé et al. [240] and Helmcke et al. [241]
showed that optical Ramsey resonances with much higher contrast could be obtained by us-
ing a scheme of two counter-propagating pairs of co-propagating laser beams which will be
discussed in more detail below.

6.6.2.3 Optical Ramsey Resonances as Bordé Atom Interferences

We consider in the following the interaction of an atom in the ground state that subsequently
interacts with two counter-propagating pairs of parallel laser beams. Rather than describing
the interaction scheme in the pseudo-spin picture which has been done in [215] we use, in the
following, a more illustrating and conceptionally simple picture that has been introduced by
Bordé [242, 243] to explain the origin of the Ramsey interferences in terms of atom interfer-
ences.

Consider a two-level atom in the ground state |g〉 with momentum �p = m�v interacting
with a laser beam with wave vector �k (Fig. 6.23 a). If a photon is absorbed, the atom is excited

Figure 6.23: Near-resonant interaction of a photon with a two-level atom. a) Stimulated absorption.
b) Stimulated emission.

to the state |e〉 and the momentum ��k with �k = hν/c of the photon is transferred to the
atom. As a consequence of this momentum transfer, the momentum and the trajectory of the
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atom are changed (dashed line in Fig. 6.23 a). If no photon is absorbed, however, the atom
leaves the interaction zone without changing its direction. The probability of finding the atom
in the excited state after the interaction with the field depends on the Rabi angle (Fig. 5.8)
which can be adjusted by the amplitude and the interaction time depending on the particular
matrix element of the interaction. If the Rabi angle is chosen to be θ = π/2, the atom is put
into a coherent superposition of both states |e〉 and |g〉 with equal amplitudes. Both sub-states
have different trajectories which in the picture of an atomic “particle” would mean that the
atom “breaks up” into two parts that separate. It is therefore more appropriate to describe the
atomic particle as an atomic wave packet that is split into two partial wave packets travelling
into two different directions. The wavelength associated with each of the wave packets is the
well known de Broglie wavelength (5.127) λdB = h/mv depending on the momentum mv
of the particle. Similar arguments hold for the case of the stimulated emission of a photon
(Fig. 6.23 b).

In this picture the interaction of a photon field with a two-level atom can be thought of as
an atomic beam splitter for the atomic wave packet. When two of those partial wave packets
are recombined they interfere where the resulting amplitude is a function of the phase shift
between the two partial waves. In the following, we use this picture to calculate the phase
shift quantitatively, following Sterr et al. [244, 245].

The (non-relativistic) energy conservation

�p 2

2m
+ �ω =

(�p + ��k)2

2m
+ �ω0 (6.48)

leads to

�k · �p
m

= ω − ω0 − �k2

2m
. (6.49)

From (6.49) it follows that, in general, for a detuning not equal to the recoil term (ω − ω0 �=
�k2/(2m)) also a momentum component �kx is transferred to the atom which is parallel to
the momentum of the atom and perpendicular to the z direction. This somewhat surprising
result can be explained by the fact that the interacting electromagnetic field is localised to a
spatial area and consequently is composed of a bundle of wave vectors with different direc-
tions (Fig. 6.23 a) in contrast to the single wave vector of a plane wave of infinite transverse
extension. As a result of the momentum transfer in the x and z direction, the two partial wave
packets are displaced in space by

Δz = T
�kz

m
(6.50)

and Δx = T�
(ω − ω0) − �k2/(2m) − kzpz/m

px
. (6.51)

The three terms in the displacement Δx (6.51) are due to the detuning, the recoil, and the
Doppler shift. If another interaction zone is added (Fig. 6.24) to provide a second 50 % beam
splitter, there are two partial wave packets in the ground state |g〉 and two wave packets in
the excited state |e〉 . The two partial wave packets in the state |e〉 (and likewise in the state
|g〉 ) are identical with respect to their quantum numbers. If the spatial shifts (6.50) and (6.51)
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Figure 6.24: Atom interferometer comprising two laser beam splitters 1 and 2. Solid and dotted
wave packets represent atoms in the ground state and excited state, respectively. Interferences
between the respective wave packets leaving the interferometer after the second interaction zone
occur if the two wave packets overlap in the x and z directions.

are smaller than the corresponding widths of the wave packets, the amplitudes of both wave
particles have to be added, where the total amplitude depends on the phase shift between the
two interfering partial wave packets. In the x direction, one partial wave is shifted with respect
to the other by the phase shift kΔx = (2π/λdB)Δx and additionally by the phase φi of the
electromagnetic wave in the ith interaction process.4

Consequently, the periodic variation of the number of atoms in the excited state as a func-
tion of the detuning (see (6.51)), previously referred to as Ramsey resonances, is now inter-
preted as an interference term between the amplitudes of both (atomic) partial waves in the
excited state |e〉 .

From (6.50) and (6.51) and Fig. 6.24, the difference between the Ramsey resonances in the
microwave and in the optical domain becomes obvious. In the microwave domain the modulus
of the wave vector k = 2π/λ is about five orders of magnitude smaller than in the optical
domain, and hence only the detuning term is relevant in the x direction and practically no
transverse separation (Δz) between the wave packets occurs. Thus two interaction zones are
sufficient for observing atom interferences. In the optical domain, however, the separation is
large and the wave packets have to be re-directed, e.g., by additional beam splitters (Fig. 6.25,
Fig. 6.26).

In the case of an atom interferometer with four travelling laser beams as beam splitters
(Fig. 6.25) there are two different interferometers (indicated by the two grey trapezoids) with

4 This latter phase shift is a result of the fact that the interaction operator, e.g., the magnetic or electric dipole operator
that initiates the transition, explicitly depends on the phase of the electromagnetic wave. Solving the Schrödinger
equation with this interaction operator leads to an atomic wave function with the same time dependence, and hence
the same phase, as the electromagnetic field [246].



200 6 Preparation and Interrogation of Atoms and Molecules

Figure 6.25: Time-domain atom interferometer com-
prising four coherent interactions with four travelling
waves. Trajectories of wave packets in the ground state
|g〉 are shown as full lines, trajectories depicting excited
state wave packets |e〉 are dashed lines.

Figure 6.26: Atom interferometer with
three standing waves. Trajectories of
wave packets in the ground state |g〉 are
shown as full lines, trajectories depict-
ing excited state wave packets |e〉 are
dashed lines.

different directions of the recoil shift. The changed direction of the second pair of laser beams
with respect to the first one, leads to a final displacement at the exit ports of the interferometers
of Δz = 0 and Δx = 2T�[(ω − ω0) ± �k2/(2m)]/px where the + and − signs hold for the
red and blue recoil component, respectively.

The contrast of the atom interferences near zero detuning for four travelling waves can
be calculated from Fig. 6.25 by counting the interfering and the non-interfering paths that
lead to excited states. Consider an atomic wave packet entering the interferometer. Assuming
an ideal beam splitter in each interaction zone, an incoming wave packet is split into two
wave packets, one being in the ground state |g〉 and one in the excited state |e〉 , with the
amplitudes reduced by 1/

√
2. Hence, from the sixteen partial waves with amplitudes 1/4

leaving the fourth interaction zone, there are four wave packets in the excited state that lead
to an incoherent background with probability 4 × 1/16 = 1/4. The same reasoning leads
to a probability of 1/4 for the atom leaving the interferometer in the ground state. At each
exit port of each of the two interferometers, two partial waves with amplitude 1/4 have to be
added coherently. Hence the probability of finding the atom in the excited state behind the
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fourth interaction is given by

p|e〉 =
1
4

+
1
8

(
1 + cos

[
2T

(
ω − ω0 +

�k2

2m

)
+ φ2 − φ1 + φ4 − φ3

])
(6.52)

+
1
8

(
1 + cos

[
2T

(
ω − ω0 − �k2

2m

)
+ φ2 − φ1 + φ4 − φ3

])
.

Up to now we have considered only the interference pattern generated by a single atom.
Consider the interaction of the atoms in a beam with two field zones separated by the distance
D. For an ensemble of atoms the sinusoidal oscillation (see (6.52)) can be observed only
in cases where the time T = d/v between the two interactions is the same for all atoms.
This can be achieved if all atoms have the same velocity v crossing the spatially separated
interaction zones or if all atoms interact with a sequence of phase coherent pulses. The former
case represents an atom interferometer in the space domain, the latter an atom interferometer
in the time domain. In a space-domain atom interferometer the beam of atoms in general
has a velocity spread Δv corresponding to a coherence length xcoh = �/(2mΔv) and the
fringes can be observed only as far as the displacement is smaller than the coherence length
Δx < xcoh. Hence, for a thermal beam, only a few fringes can be observed (Fig. 7.4).

Separated field excitation with three standing waves (Fig. 6.26) was first proposed by
Baklanov et al. [230]. A standing wave acting as a beam splitter, in general, produces more
than one deflected partial wave. Furthermore, there are six interferometers, two of which
are symmetric and hence are not sensitive to the detuning. Because of this and due to the
additional diffraction orders in the beam splitters, the achievable contrast is lower than in
the set-up with four travelling waves. Each interferometer (triangle) has a mirror image. As
a result of the symmetry, this type of atom interferometer is less susceptible to phase errors
introduced by misalignments of the laser beams which, to first order, result in reduced contrast
but not in a phase shift.

The Ramsey resonances interpreted as atom interferences, where a photon splits and re-
combines an atomic wave packet, meets with difficulties if we apply the photon picture in a
naive way. We have started our consideration with the interaction of a photon with the wave
packet in each interaction zone. On the other hand, we know that an excited atom leaving the
second interaction zone has absorbed in total only a single quantum �ω0 from both interaction
regions. We therefore have to regard both interaction zones as a single field and the absorbed
photon as the quantum of the total field. As a consequence, we cannot distinguish in which in-
teraction zone the photon has been absorbed and which path the “atom” has taken, a situation
that is encountered in each interferometry experiment.

The principal limit of accuracy that can be achieved with such an interferometer and hence
with an atomic clock is set by the fluctuations of the phase to be detected. Jacobson et al. [247]
have shown that the smallest detectable phase is given by

δφmin =
1
2

√
Nat + 4Nphot

NatNphot
(6.53)

where Nat and Nphot are the number of atoms and photons, respectively. In a typical atom
interferometer, the number of photons in the beam splitting fields is much larger than the
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number of atoms (Nphot � Nat) and the minimum detectable phase of (6.53) reduces to
δφmin ≈ 1/

√
Nat, i.e., the shot noise of the atoms.

These excitation schemes can also be applied to an isotropically expanding sample of
laser cooled atoms by using three pulses from a standing wave or two pulses separated by a
time T from each one of two counter-propagating running waves. These time-domain atom
interferometers differ from the separated field set-ups in such a way that energy conservation
according to (6.48) has not to be fulfilled. In contrast, the energy spread associated with a
short pulse of duration τ , in general, can provide the energy difference �(ω − ω0). Since
in the pulsed excitation all atoms are subject to the same duration T between the pulses, in
general many more fringes can be observed despite the velocity spread of the atomic ensemble.

Sequences of more than four pulses have also been used to obtain narrow fringes [248].
For a given total interrogation time, however, the resolution is the same if a sequence of 2n
pulses with a dark time T in between (Δν = 1/(2nT )) or if a pulse sequence with two pulses
of a dark time nT is used.



7 Caesium Atomic Clocks

Amongst all the atomic clocks, the Cs clock has a special place, since the unit of time is at
present based on a microwave transition in Cs. The 13th General Conference for Weights and
Measures (CGPM) has defined in 1967 [92] that

the second is the duration of 9 192 631 770 periods of the radiation corresponding
to the transition between the two hyperfine levels of the ground state of the caesium
133 atom.

The only stable isotope 133Cs has a nuclear spin quantum number of I = 7/2 which
together with the total spin J = 1/2 of the electron shell leads to the two hyperfine states
F = I + J = 4 and F = I − J = 3 which split, in the magnetic field, into 16 components
(Fig. 7.1). The Cs clock uses the transition with the smallest sensitivity to magnetic fields,
i.e., between the |F = 4, mF = 0〉 → |F = 3, mF = 0〉 transition (Fig. 7.2).

Figure 7.1: The energies of the hyperfine com-
ponents F = 3 and F = 4 of the 6 2S1/2

state in 133Cs, calculated according to (5.147),
are split in a magnetic field into 16 components
(F = 4, +4 ≤ mF ≤ −4) and (F = 3, +3 ≤
mF ≤ −3).

Figure 7.2: The transition frequency between the
F = 4, mF = 0 and the F = 3, mF = 0 states
of 9 192 631 770 Hz at zero magnetic field is used
to define the unit of time, the second.

To excite this ΔmF = 0 magnetic dipole transition the magnetic quantisation field and
the magnetic component of the oscillating field levels are chosen to be parallel. For a weak
magnetic field in the μT range used in atomic clocks the other transitions between the levels
with mF �= 0 show a linear Zeeman effect

ΔνB = (gF=4 − gF=3)gJmF μBB ≈ 6.998 × 103 Hz mF
B

μT
(7.1)
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(see Fig. 7.1). For weak magnetic fields the mF = 0 levels have a small quadratic dependence
on the field (see Fig. 7.2) leading to a frequency shift of

ΔνB2 ≈ 4.274 5 × 10−2 Hz

(
B

μT

)2

. (7.2)

In a caesium atomic clock the atoms are prepared such that they are either in the F = 4, mF =
0 or in the F = 3, mF = 0 state. Afterwards the atoms interact with an electromagnetic field
that induces transitions into the former unoccupied state. The atoms in this state are detected
and allow one to determine the frequency of the interrogating field where the transition proba-
bility has a maximum. The observed transition frequency is corrected for all known frequency
offsets that would shift the transition frequency from the unperturbed transition and is used to
produce a standard frequency or a Pulse Per Second (PPS) every 9 192 631 770 cycles.

In the following we describe first how this preparation and interrogation is implemented
in commercial caesium clocks where a compromise must be found between the achievable
accuracy and stability and the corresponding weight, power consumption and costs of the
devices. The perturbing effects and the methods used to suppress or avoid the associated
frequency shifts are discussed later in the examples of primary laboratory standards.

7.1 Caesium Atomic Beam Clocks with Magnetic State
Selection

Most Cs atomic clocks operated today use an atomic Cs beam in a high vacuum chamber.
The principal design is similar to the one used in the predecessor of all Cs atomic clocks
developed in the National Physical Laboratory, England by Essen and Parry [14]. The atoms
effuse through a nozzle or a system of channels from an oven, heated to a temperature of
about 100◦ C or higher, which is filled with a few grams of caesium. Due to the small energy
separation between the F = 3 and F = 4 states both levels are almost equally populated in
the thermal beam. Consequently, the atoms must be prepared in one of these states in order to
allow the detection of transitions between the levels induced by an external oscillating field.
In conventional Cs atomic beam machines, like most of the commercial Cs atomic clocks
and older primary clocks, atoms in a particular state are selected by means of their magnetic
moments. As can be seen from Fig. 7.1, in a strong magnetic field of more than about 0.4 T
the energy of a Cs atom in any one of the F = 3 states is reduced when the magnetic field is
increased. The same is true for the F = 4, mF = −4 state. The energies of atoms in any one
of the other F = 4 states, however, increase when the magnetic field increases. Consequently,
a magnetic induction B(z) with spatial variation along the z direction leads to a force acting
on the Cs atoms

Fmag = −∂W

∂z
= −∂W

∂B

∂B

∂z
≡ −μeff

∂B

∂z
(7.3)
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Figure 7.3: Schematic layout of a commercial Cs atomic clock. The magnetic quantisation field (C
field) is perpendicular to the paper plain. The inset shows the detector current when the frequency of the
synthesiser is tuned across the atomic resonance displaying the Ramsey resonance on the Rabi pedestal.

depending on their potential energy W and is given by the effective magnetic moment μeff
1

which is proportional to the gradient of the curves in Fig. 7.1.

7.1.1 Commercial Caesium Clocks

Caesium atomic clocks have been produced since the 1950s beginning with the Atomichron
[15] the earliest commercially available caesium-beam atomic frequency standard. Fifty years
later most commercial products [29] use a basic layout shown in Fig. 7.3. A so-called magnetic
polariser with an inhomogeneous magnetic field deflects the atoms according to their magnetic
moment and can be used to select the atoms in the desired state. Consider the mF = 0 states
of the clock transition. As the F = 3, mF = 0 state is a high-field seeker in contrast to the
F = 4, mF = 0 state which is a low-field seeker (Fig. 7.2) one of these can be eliminated from
the beam. In Fig. 7.3 it is assumed that the latter one, with energy Eg, enters the interaction
regions provided by the U-shaped microwave resonator tuned to 9.192 GHz.

The resonator is usually a standard waveguide of rectangular cross section with end plates
that short circuit the wave guide. The resonator may be bent in a way shown in Fig. 7.3 and the
atomic beam enters and leaves the two end sections of the resonator through small holes near
the end plates. In Fig. 7.3 the transverse dimensions of the waveguide resonator are chosen
such that the magnetic field lines of the standing electromagnetic field inside the resonator

1 Only at very weak magnetic fields (Zeeman regime) and at very high magnetic fields (Paschen-Back regime) is
the magnetic moment ∂W

∂B
given by the slopes of the curves in Fig. 7.1 constant. In the intermediate regime the

effective magnetic moment μeff varies with the field.
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are perpendicular to the paper plane. In this case the atoms crossing the terminal parts of the
resonator experience a constant field inside the resonator. The resonator is fed by the radio
frequency derived from a voltage-controlled quartz crystal oscillator (VCXO), typically an
OCXO as characterised in Table 4.1. The atoms in the Eg state pass the first and later the
second end segment of the U-shaped microwave resonator where transitions from the F = 3
state to the F = 4 state of the Cs atoms can be induced in a Ramsey excitation (Section 6.6)
depending on the detuning between the frequency of the external oscillator and the atomic
transition. A second magnet combination, i.e., the analyser, deflects the atoms in the upper
state into the detector.2

A constant magnetic field is used to separate energetically the otherwise degener-
ate magnetic sub-levels (Fig. 7.1) in order to allow the excitation of the clock transition
|F = 3, mF = 0〉 → |F = 4, mF = 0〉 isolated from the other transitions. By convention
such a field is referred to as the C field as it is applied between the fields of the polariser and
the analyser which historically were called the A field and the B field, respectively. The mag-
nitude of the C field is chosen as a compromise between two conflicting requirements. First, it
has to be large enough to separate the otherwise overlapping resonances. Second, the C field
shifts the resonance frequency quadratically according to (7.2) which has to be corrected, as
will be discussed below. However, in a larger field the frequency of the clock is influenced to
a larger extent by fluctuations of the magnetic field. In the scheme of a commercial Cs clock
depicted in Fig. 7.3 the C field is often generated by a coil with windings in the paper plane
wound around the Ramsey resonator and hence, points perpendicularly to that plane. Owing
to the dependence of the frequency of the clock transition from the magnetic field, efficient
magnetic shielding has to be provided in order to attenuate the ambient magnetic field and the
magnitude of the associated fluctuations.

The detector for the Cs atoms can consist of a hot-wire detector (Langmuir–Taylor de-
tector) consisting of a transition-metal ribbon made from tungsten or iridium-platinum which
is heated to prevent surface layers due to adsorbed gases. Due to the large difference in the
work functions of metallic Cs (1.7 eV) and, e.g., metallic tungsten (4.5 eV) a Cs atom is easily
ionised at the hot wire, giving its outer electron to the tungsten metal. An applied voltage
allows detection of the positively charged Cs atoms, e.g., directly in a Faraday cup as often
employed in primary caesium clocks. In commercial caesium clocks a mass filter is used to
select the caesium ions from other ions that are produced near the detector. The caesium ions
are then directed onto the first stage of a photoelectron multiplier where the current of the
electrons emitted by the impinging ions is amplified. In contrast to collecting the caesium
ions directly in a Faraday cup, this detection method is much faster and allows one to utilise
higher modulation frequencies for the stabilisation onto the resonance.

Scanning the frequency ν of the synthesiser around the frequency ν0 of the atomic res-
onance leads to a detector current like the one shown in the inset of Fig. 7.3. The signal
shows the Ramsey resonance structure on a broader, so-called, Rabi pedestal. As has been
shown in Section 6.6 the Ramsey resonance results from atoms that have been coherently ex-
cited in the two interaction zones of the Ramsey resonator. The interaction with the rf field

2 Depending on the position of the detector, the Cs atoms that are excited in the resonator are either deflected into
the detector or are guided to miss it. These two “flop-in” and “flop-out” techniques therefore lead to a peak or to a
dip of the signal at resonance, respectively.
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in the first interaction zone puts the caesium atoms into a coherent superposition between the
F = 4, mF = 0 and the F = 3, mF = 0 state. The temporal evolution of the quantum me-
chanical state of the Cs atom occurs with a frequency corresponding to the energy difference
of these states. After the interaction of the atom in the second zone of the Ramsey cavity the
probability of finding the atom in the F = 4 state or in the F = 3 state depends whether the
external rf field is in phase or out of phase with the atomic oscillator. Hence, the number of
atoms in either the F = 4 or in the F = 3 state oscillates as a function of the frequency of
the external oscillator thereby leading to the Ramsey interference structure. Due to the large
width of the atomic velocity distribution, only the central Ramsey fringes survive the asso-
ciated velocity averaging. By contrast, the Rabi pedestal reflects the Doppler broadened line
resulting from the interaction of the atoms in a single zone.

The central feature with its maximum at the transition frequency ν0 is used to stabilise the
frequency of the VCXO to the atomic transition frequency. To this end, the frequency from
the synthesiser is modulated across the central peak. The signal from the detector is phase-
sensitively detected in the servo electronics (Section 2.3.2), integrated and the servo signal
is used for stabilising the frequency of the VCXO. From this suitable output frequencies are
derived, such as 5 MHz or a 1 PPS signal.

As a result of the second-order Zeeman effect the atoms experience in the C field region,
the centre frequency of the Ramsey resonance is shifted from the frequency of the frequency of
the unperturbed transition defined as 9 192 631 770 Hz. To take into account the corresponding
frequency offset, the value of the chosen C field is usually determined by using (7.1) and the
associated frequency shift is determined from (7.2) and added in the synthesiser to make sure
that the output frequency from the VCXO represents the exact SI value.

Caesium atomic beam clocks are commercially available from several manufacturers [29].
They fit into a 19 inch rack and have a mass of less than 25 kg and a power consumption of
less than 50 W. The specified fractional inaccuracies range from 2× 10−12 to 5× 10−13. The
measured instability of commercial clocks is shown in Fig. 3.3. The flicker floor of 5× 10−15

can be reached after about 10 days of averaging [28, 29].
Commercial caesium atomic clocks find applications in several fields. To begin with,

they are used in time-keeping laboratories. About two hundred of them are used to give
a stable atomic time scale (TAI) (Section 12.1.2). Commercial caesium atomic clocks are
furthermore used in Global Navigation Satellite Systems (GNSS) (Section 12.5) such as GPS,
GLONASS, or GALILEO. They are used there in the ground segments and sometimes also in
the satellites. A third application for commercial caesium clocks is in the telecommunications
sector covering all forms of distance communications, including radio, telegraphy, television,
telephony, data communication and computer networking. There, atomic clocks are used to
synchronise the different networks. Caesium atomic clocks are furthermore used, e.g., to
synchronise radio-controlled clocks by a time code transmitted by various radio transmitters
(Section 12.4).

7.1.2 Primary Laboratory Standards

Better accuracy than obtained with commercial caesium clocks is achieved with primary lab-
oratory standards where the scheme of Fig. 7.3 is modified in a number of aspects. In the
following we discuss the effects that contribute to the achievable accuracy using the examples
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of primary laboratory standards even though the effects that limit the accuracy by and large are
the same as in commercial devices. For the discussion we often refer to the examples of PTB’s
primary clocks CS1 and CS2 [29, 249, 250] as those standards allowed already in the 1980s
to achieve fractional uncertainties as low as 10−14. First, in order to achieve higher resolu-
tion, the length of the Ramsey in primary clocks is about five times larger than in commercial
clocks, e.g., 76 cm in the case of PTB’s primary clocks CS1 and CS2. Second, in order to
use a sufficient flux of atoms, the one-dimensional deflection in a two-pole magnet (Fig. 7.3)
is replaced by magnetic lenses comprising four- or six-pole magnets (Section 8.1.3.2) for the
polariser and analyser. In contrast to the scheme of Fig. 7.3 the oven and the detector are
arranged on a line of sight with suitable means to block the trajectories of atoms with the
undesired magnetic moments. Magnetic selectors of this kind focus the atoms in a focal point
that depends on the velocity of the atoms. Even though for a typical oven temperature of
T ≈ 450 K the most probable velocity is about 250 m/s, the velocity selection in the magnetic
selectors of CS1 leads to a mean velocity of about 95 m/s and a much narrower velocity dis-
tribution contributes to the Ramsey signal than in a thermal beam of Cs atoms. Consequently,
in the former, a larger number of Ramsey fringes is visible (Fig. 7.4).3 In primary laboratory

Figure 7.4: a) Ramsey resonance structure of the F = 4, mF = 0 → F = 3, mF = 0 transition
recorded using PTB’s primary caesium atomic clock CS1. b) Central Ramsey fringes.

clocks, the homogeneity of the C field obtained by the method described in Section 7.1.1 is
not sufficient. Hence, in general a configuration is chosen where the field is produced by a
solenoid whose axis coincides with the trajectory of the Cs beam.

7.1.3 Frequency Shifts in Caesium Beam-Clocks

As a representative of the state-of-the-art primary beam-machine clocks, PTB’s CS1 has a
stability of 5 ×10−12

√
τ/s and an accuracy of 7 ×10−15 [249]. To derive a meaningful

figure for such an uncertainty a careful analysis of all the effects has to be performed that
can shift the frequency of the clock transition. Once the influences of these effects have
been quantitatively established for a particular device, the frequency of the clock is corrected
for the associated shifts in order to derive the frequency of the unperturbed transition. The

3 In CS1 the detector signal is reduced if an atom undergoes a transition and hence at resonance there is a minimum
in Fig. 7.4 in contrast to the resonance curve shown in Fig. 7.3, where there is a maximum.
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correction, however, can be performed only with limited accuracy due to the uncertainties
associated with the correction procedure. The overall uncertainty of the clock is then derived
from a budget of all relevant contributions. In the following we discuss the most important
sources for frequency shifts in a primary Cs atomic clock.

7.1.3.1 Influence of the Magnetic Field

The largest frequency offset results from the Zeeman effect that shifts the energy levels in
the presence of a magnetic field (Fig. 7.1 and Fig. 7.2). The seven transition lines in Fig. 7.5
originate from the seven magnetic sub-states (F = 3,−3 ≤ mF ≤ 3) with the selection rule
ΔmF = 0. The highly asymmetrical population of the different Zeeman states of Fig. 7.5
results from the state selection which is performed by deflecting the Cs atoms in an inhomo-
geneous magnetic field.

Figure 7.5: Zeeman splitting of the rf resonance transition F = 4 → F = 3, ΔmF = 0 in a
weak magnetic field of about 8 μT in PTB’s caesium atomic clock CS1.

For a typical value of the C field near 8 μT the frequency shift is 2.7 Hz corresponding to a
relative frequency shift of 3 × 10−10. The average magnetic field 〈B〉, to which the Cs atoms
are exposed during their passage between the two Ramsey zones, can be determined from the
frequency separation of two rf resonances shown in Fig. 7.5. To determine the frequency shift
of the clock transition one has to keep in mind that the correction for the quadratic Zeeman
shift asks for the determination of 〈B2〉 (see (7.2)) which equals 〈B〉2 only in the case of a
constant C field. Consequently, an excellent homogeneity of the B field is required within the
C field region of the rf cavity. A fractional (rms) deviation of ΔB/B of a few 10−4 has been
reported, which allows one to correct for the quadratic Zeeman shift with a relative uncertainty
of 1 ×10−15 [249]. From ΔνB2/ν ≈ 2ΔB/B a relative field fluctuation of 5× 10−5 leads to
a relative frequency shift of about 3 × 10−14 at 8 μT which requires efficient shielding of any
external magnetic fields and stable field generation.
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7.1.3.2 Cavity Phase Shifts

The Ramsey resonance feature (Fig. 7.4) essentially relies on a comparison between the tem-
porally evolving internal phase ω0T of the Cs atom and the phase difference of the rf field ωT
at the locations of the two interactions of the atom with the field (see (6.44)). These interac-
tions take place in the two end zones of a U-shaped rf resonator of rectangular cross-section.
The orientation of the magnetic C field, which defines the quantisation axis, and the resonator
structure is chosen such that the magnetic field lines are parallel to the C field in the interaction
zones in order to allow only excitation of the transitions with ΔmF = 0. In the arrangement
shown in Fig. 7.3 the magnetic field lines of the electromagnetic field inside the resonator are
perpendicular to the paper plane as does the magnetic component of the standing-wave rf field
in the resonator. In primary laboratory standards, the resonator often has a shape similar to the
one shown in Fig. 7.6 a, b). Consequently the C field, generated by a solenoid, is parallel to
the atomic beam. Even though the electromagnetic energy of the field fed into the resonator is

Figure 7.6: a) Cross-section of the Ramsey resonator with the magnetic field lines of the standing rf
wave. b) Side view of the end segment with the hole for the trajectories of the Cs atoms. c) Side view of
the race-track end section according to [251].

equally divided into both arms, allowing two interactions of each atom with exactly the same
frequency ν, phase differences ΔΦ of the electromagnetic field in the two interaction zones, in
general, lead to a frequency offset according to (6.46). In the following we discuss the origin
of such phases and the associated frequency shifts together methods with methods to reduce
their influence.

Phase shifts occur as a result of the ohmic losses in the microwave resonator where in par-
ticular the electric losses at the end parts of the resonator lead to a reduction in the amplitude
of the reflected wave with respect to the impinging wave. Hence, the resulting field inside
the resonator is not completely described by a standing wave but also includes a contribution
from a travelling wave towards the end caps of the resonator. If we assume that the reflecting
surface has an amplitude reflection coefficient 1−δ for a wave travelling along the z axis with
k = 2π/λ, the field is

B = B0 cos(ωt − kgz) + B0(1 − δ) cos(ωt + kgz)

= 2B0

[
cos(ωt) cos(kgz) − δ

2
cos(ωt + kgz)

]
, (7.4)
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where we have made use of cos(α ± β) = cosα cos β ∓ sin α sin β. In (7.4) kg is the
wave vector depending on the group velocity inside the wave guide. For a wavelength
λg = 2π/kg ≈ 4.65 cm, corresponding to the transition frequency of 9.192 GHz in a standard
X-band waveguide as compared to the vacuum wavelength λ ≈ 3.26 cm. The first term in the
brackets of (7.4) represents a standing wave whose spatial dependence is given by the cos kgz
factor thereby representing an spatial modulation of the amplitude of the magnetic field along
the z coordinate. However, the sign change of this factor at odd multiples of kgz = π/2
corresponds to a phase shift of π at these positions leading to a phase variation as depicted in
Fig. 7.7 a) along the two halves of the resonator fed symmetrically at the centre. In the Cs

Figure 7.7: a) Phase of a standing wave in an symmetric resonator (Fig. 7.6) with infinite
conductivity. b) Influence of the contribution to the phase by a travelling wave component. c)
Influence of asymmetric resonator.

atomic clocks the interaction regions with the atomic beam are located near the anti-nodes of
the magnetic field component so that all atoms even in a beam with finite transverse extension
are subject to the same spatial phase.

For finite conductivity, i.e., for δ �= 0 there is a travelling wave contribution in (7.4) whose
amplitude is proportional to the non-ideal reflection and whose phase increases linearly with
kgz (see Fig. 7.7 b). This contribution of the travelling wave gives rise to a spatial variation in
the phase of the microwave field in the resonator which is often termed the distributed phase
shift. As a consequence, the atoms in the beam experience a position-dependent phase and
the frequency of the observed resonance maximum depends on the trajectory of the beam.
In order to reduce the phase gradient, de Marchi et al. [251] devised a special resonator (see
Fig. 7.6 c) where the standing wave field splits into two parts that travel in opposite directions
in the annular end part. The superposition of the two waves in the region of the atomic beam
should result in a negligible energy flux at the interaction point with the atoms. Thus, the
position dependence of the phase is expected to vary only quadratically in the vertical and
horizontal direction [251] in contrast to the conventional resonator design where the phase
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varies linearly with position. The use of such annular end parts in primary clocks has reduced
the distributed cavity phase shift considerably [249, 252, 253].

Next, we consider the case where the total length of the resonator is still correct but the
two arms of the resonator are of unequal lengths (Fig. 7.7 c). Since both arms are fed by the
same source at the junction, at this point the phase has the same value for both arms. Since
the lengths of both arms are different the phases at the terminating end parts are different
leading to a so-called end-to-end cavity shift. The end-to-end phase shift changes sign if the
direction of the atomic beam is reversed (see (6.46)). Consequently, in the primary caesium
beam standards, such as PTB’s CS1 and CS2, the fractional beam-reversal frequency shift
is determined on a regular basis [250] and is about 6 × 10−13 and 5 × 10−13, respectively.
To this end in CS1 the beam reversal requires breaking the vacuum and interchanging the
detector and oven assemblies with the respective magnetic lenses. In CS2, which is equipped
with an oven assembly and a detector assembly at each end, the oven and detector at each end
can be interchanged without breaking the vacuum. The residual fractional uncertainties after
applying the beam reversal were estimated to be 0.6×10−14 and 1×10−14 for CS1 and CS2,
respectively.

7.1.3.3 Influence of Neighbouring Transitions

The multilevel structure of the 133Cs atom with its 16 ground states sub-levels allows the
coupling of several levels apart from the mF = 0 → mF = 0 clock transition that can shift
the experimentally determined transition frequency in different ways. If one keeps in mind
that the linewidth of about 60 Hz, corresponding to a Q ≈ 1.5 × 108, has to be split to about
10−6 to reach a relative uncertainty below 10−14 one appreciates the importance of even the
slightest contributions to any asymmetry of the lineshape.

Rabi Pulling A particular effect that may shift the apparent central minimum (Fig. 7.4) from
the frequency of the unperturbed atom is called Rabi pulling [254]. It results from an overlap
of the central F = 3, mF = 0 ↔ F = 4, mF = 0 line, with the wings of the adjacent
F = 3, mF = 1 ↔ F = 4, mF = 1 and F = 3, mF = −1 ↔ F = 4, mF = −1 lines
(Fig. 7.5). If the two latter contributions are not symmetric, as is the case in the signal shown
in Fig. 7.5, their influence leads to an asymmetric Rabi pedestal of the mF = 0 → mF = 0
transition. A quantitative treatment of the Rabi pulling [11, 254, 255] leads to a frequency
shift that is proportional to the population difference of the ±1 Zeeman components. Hence
this shift can be largely reduced by generating a more symmetric spectrum or by depleting the
mF �= 0 states, e.g., by optical pumping. The shift is smaller in clocks with smaller linewidth
or with a larger C field as the latter determines the separation between the lines (Fig. 7.5).
Since the amplitudes in the wings of the transitions is proportional to the microwave power the
frequency shift is also proportional to this power. Hence a power dependence of the frequency
of the caesium clock may indicate the presence of Rabi pulling.

Ramsey Pulling Another type of frequency shift referred to as Ramsey pulling [255, 256]
results from the contributions of transitions with ΔmF = ±1. Such transitions, barely visi-
ble in Fig. 7.5, e.g., between the components labelled mF = 2 and mF = 3, are excited by
components of the rf field which are orthogonal to the desired direction of the quantisation
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field (C field). Since the ΔmF = ±1 transitions F = 3, mF = 0 ↔ F = 4, mF = ±1
and F = 3, mF = ±1 ↔ F = 3, mF = 0 couple to the states of the clock transition
F = 3, mF = 0 ↔ F = 3, mF = 0 these states can be perturbed when the above transitions
occur giving rise to a frequency shift of the clock transition. Due to the finite extension of the
atomic beam and the distribution of the field inside the cavity, the transition amplitude into
a particular sub-state differs for atoms following different trajectories. As the different paths
cannot be identified the associated transition amplitudes give rise to an interference structure
that can shift the apparent minimum or maximum used to determine the clock transition. The
quantitative theoretical treatment given in the literature is inconsistent [255,256]. Experimen-
tally, the frequency shift can be identified by its oscillation with a variation of the C field
strength. Its influence can result in a frequency shift of a few parts in 1013 for short (commer-
cial) clocks but has been shown to be two orders of magnitude smaller in a primary standard
with a homogeneous C field [249].

Majorana Pulling Frequency shifts can also result from transitions induced between dif-
ferent magnetic sub-states of the same hyperfine transition (ΔF = 0, ΔmF �= 0; Majorana
transitions; [182,257]). Majorana transitions occur if the magnetic moment of a state-selected
atom cannot follow adiabatically the inhomogeneous static magnetic field along its path be-
tween the polariser and the analyser. The influence of Majorana pulling is affected when the
magnitude of the C field is altered and when the rf power is varied allowing one to identify
these contributions [249, 257].

7.1.3.4 Frequency Shift due to Black-body Radiation

In neutral-atom atomic clocks such as the Cs clock, a dc electric field in general does not
represent a major source of uncertainty as electric fields can be shielded effectively. However,
the Cs atoms are exposed inevitably to the electromagnetic temperature-radiation field which
is emitted from each body with a temperature T �= 0 K.

As was discussed in Section 5.4.5.2 the ac hyperfine Stark shift due to an electric field is
approximately equal to the shift due to a static field with the same rms value. Itano et al. [258]
calculated the shift for several alkali metals and have shown that the above approximation is
justified. In the case of the Cs atomic clock they calculate the fractional ac Stark shift of the
hyperfine transition to be −1.69(4) × 10−14 [T/300 K]4. Pal’chikov et al. [259] calculated
the fractional frequency shift as

δν

ν
= −17.2 × 10−15

(
T

300 K

)4

×
[
1 + 0.014

(
T

300 K

)2

− 3.18 × 10−5

(
T

300 K

)2
]

(7.5)

where the first term corresponds to the polarisability and the second term inside the square
brackets is a correction due to the separation in the frequencies of the D1 (λ = 894 nm) and
D2 (λ = 852 nm, Fig. 7.8 a) lines in caesium. The third term in the square brackets represents
the third-order term in the polarisability of the atom (hyperpolarisability) giving rise to a
higher-order Stark effect. Bauch and Schröder [260] have measured the black-body shift in a
thermal beam apparatus to be −(16.6±2)×10−15 in good agreement with the expected values.
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Simon et al. [261] have measured directly the dc-Stark shift in a Cs atomic fountain clock to be
δν = −2.271(4)×10−10 E2 Hz (V/m)−2. From this value and the time averaged electric field
of the black-body radiation at 300 K (see (5.142)) one calculates δν/ν = 17.09(3) × 10−15

with an order-of-magnitude reduced uncertainty. For the best Cs clocks the black-body shift at
room temperature is more than an order of magnitude larger than the uncertainty of realising
the unperturbed line centre of the clock. Hence, it is now generally agreed to correct the Cs
atomic clocks for the black-body shift, for realisation of the unit of time. In the long run the
influence of the time-dependent electric field of the black-body radiation might be the largest
source contributing to the uncertainty of the most advanced frequency standards. However,
this influence can be largely avoided by keeping the absorbers at cryogenic temperature as is
done, e.g., in the case of the optical mercury frequency standard (Section 10.3.2.4).

7.1.3.5 Gravitational Frequency Shift

Since the definition of the second is based on proper time, a direct comparison of the fre-
quencies of two non-local clocks has to take into account the influence of the gravitational
potential Φ at the location of each clock (see Section 12.2). According to general relativity
the frequency is shifted by Δν = −ν Φ/c2 where the potential includes the contributions due
to gravitational acceleration as well as those due to the acceleration, e.g., on the surface of
the rotating Earth. If the potential is referenced to the rotating geoid the gravitational poten-
tial can be expressed by Φ = gh/c2 where g ≈ 9.81 m/s2 is the local acceleration due to
Earth’s gravitation and h is the height above the surface of the geoid. For small heights the
fractional frequency shift is therefore 1.09 × 10−16 m−1. The corresponding corrections are:
−8.7×10−15 in the case of PTB’s clocks at an altitude of 79.5 m; or −180.54×10−15 [20,262]
for NIST’s clocks in Boulder, at an altitude of 1.6 km. For such a large difference in altitudes
and the accuracies obtained with present days best clocks it suffices no longer to approximate
the potential by Φ = gh/c2 [263].

7.1.3.6 Second-order Doppler Shift

Time dilation leads to a frequency shift δν = −νv2/(2c2) with respect to the proper frequency
if the Cs atoms moving with velocity v are observed in the laboratory frame (Section 5.4.2 and
Section 12.2). For a mean velocity of 95 m/s in CS1 the fractional shift is about 5 × 10−14.
The observed Ramsey pattern results from the contributions of all atoms with their different
velocities and hence the information about the relevant velocity distribution is contained in this
spectrum. In general, the velocity distribution can be calculated from the Fourier transforms of
the Ramsey lineshapes (see e.g., [264,265] and references therein). The fractional contribution
to the uncertainty after correction of the second-order Doppler shift leads to 0.5 × 10−15 and
1 × 10−15 for PTB’s CS1 and CS2, respectively.

7.1.3.7 Frequency Shifts due to Non-perfect Instrumentation

Cavity Pulling Cavity pulling occurs if the eigenfrequency of the microwave cavity is not
tuned exactly to the atomic resonance. Consider a stabilisation scheme where the frequency
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of the interrogating oscillator is modulated by ±γ/2 with γ the full width of the central Ram-
sey fringe. If the cavity is detuned from the resonance, the two frequencies are located on
different positions of the resonance curve of the resonator which leads to different excitation
probabilities of the atoms. An approximation for the corresponding fractional frequency shift
in Cs clocks is given as follows [11, 266]

Δνc

ν0
≈ νc − ν0

ν0
Kc

Q2
c

Q2
at

. (7.6)

In (7.6) νc and ν0 are the resonance frequencies of the atomic absorber and the resonator,
respectively. Qat and Qc are the line quality factors of the atomic resonance as measured
in the given device, respectively. Kc is a constant depending on the modulation width, the
velocity distribution, and the dipole moment of the atoms. Thus, the cavity pulling effect can
be reduced by employing a resonant cavity with low Qc. If the clock is operated at optimum
power, i.e., with π/2 excitation in each zone, the transition probability is largely independent
of the power. Varying the power allows one to identify the cavity pulling effect.

Since the cavity pulling effect is more pronounced in the case of the Rabi pedestal, as in
the Ramsey fringes, a power-dependent shift can be used to determine and to correct for this
influence as Shirley et al. [267] have pointed out. There are several other effects that affect the
Rabi pedestal more than the Ramsey fringes including shifts due to the inhomogeneity of the
magnetic field, Rabi pulling, an asymmetric microwave spectrum, or light shift in optically
pumped standards.

Frequency Shifts Related to the Electronics Even carefully devised electronics and se-
lected components may introduce shifts that limit the performance of the clocks. Examples
include integrator offsets in the servo amplifier or insufficient purity of the signals. As the
servo control is supposed to bring the error signal to zero, any offset will be counteracted by
a frequency offset that compensates the electronic offset. Spurious frequency components in
the microwave field used to interrogate the atoms can also induce frequency shifts. The differ-
ent microwave signals present at various stages of a frequency standard are later processed in
very different applications, e.g., to derive timing signals. Any non-linear element in the corre-
sponding electronic devices may result in phase or frequency shifts if the spectral purity of the
primary signal is not sufficient. Mixtures of amplitude and phase modulation may occur that
shift the output frequency. Great care has to be taken and the art of clock-making depends on
the ability to reduce the associated deficiencies to a level where they are no longer significant.

Microwave Leakage Spurious microwave leakage in the resonator can induce transitions
outside the well-defined interaction zones, leading to asymmetric resonance curves and can
shift the centre frequency considerably [268]. In general, these effects can be identified by
varying the microwave power applied to the clock from the optimum π/2 Rabi angle to higher
odd integer multiples (3π/2, 5π/2, . . . ).

Uncertainty budget For primary standards, careful examination of all relevant shifts is usu-
ally performed on a regular basis and published where the offsets are corrected and reported.
The uncertainties of the relevant contributions are evaluated in a standardised way [3] leading
to a so-called “uncertainty budget”. It is now generally agreed to add all contributions to the
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uncertainty in quadrature and to give a single value for the uncertainty of the measurement
corresponding to the evaluation.

7.2 Optically-pumped Caesium Beam Clocks

The magnetic state selection, previously described, suffers from the fact that at thermal ener-
gies all 16 states (Fig. 7.1) are almost equally populated and only 1/16 of all atoms, i.e., the
ones in the desired state, e.g., the F = 3, mF = 0 state are selected. If all atoms could be pre-
pared in the |F = 3, mF = 0〉 state, the signal could be greatly increased. Preparation rather
than selection can be performed by optical pumping (Section 5.3.3.1) as has been first demon-
strated by Picqué [269] using an atomic beam. In the simplest approach (see Fig. 7.8 a), light

Figure 7.8: A simple version of optical pumping of a Cs atomic clock for state preparation.

resonant with the D2 line at λ = 852.355 nm between the F = 4 and F ′ = 3 states is absorbed
by the atoms in the F = 4 state. The atoms excited into the F ′ = 3 states decay after about
30 ns by spontaneous emission into the F = 4 and F = 3 hyperfine-split ground states. Since
only the atoms in the F = 4 state are excited again and again, after a few cycles all population
from the F = 4 state is optically pumped into the F = 3 state. Other pumping schemes
and the resulting distributions in the population of the states have been described by Avila et
al. [270]. There is another important advantage of optical state preparation as compared to
magnetic selection. If the optical pumping beam is perpendicular to the atomic beam, the ex-
citation is not velocity selective. In contrast to the limited angle of acceptance in the magnetic
selector, the optical pumping produces a beam which can have a higher number of atoms and
can be spatially more homogeneous. As a third advantage the optical state preparation avoids
the strong magnetic gradients used in magnetic selectors. Therefore, Majorana transitions that
can lead to additional frequency shifts (Section 7.1.3.3) can be mainly avoided.

After excitation in the Ramsey zones there are atoms in the F = 4 state. These atoms can
be detected by exciting them by a laser beam tuned to the F = 4 to F ′ = 5 transition and by
monitoring the fluorescence photons from this decay (see Fig. 7.8 b). The F = 4 to F ′ = 5
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Figure 7.9: Simplified set-up of a Cs atomic clock with optical state selection and detection.

transition is called a cycling transition because, due to the quantum mechanical selection rule
ΔF = 0, 1, atoms excited to the F ′ = 5 level can decay only back to the F = 4 state and the
excitation and emission process can take place many times. As a consequence each excited
atom can emit a large number N of photons. Even for a small detection probability p 
 1
the number of detected photons N × p easily exceeds unity, thereby allowing one to detect
virtually each excited atom.

In general, a Cs beam clock using optical excitation for state preparation and detection
(Fig. 7.9) has two laser systems for this purpose. Depending on the chosen scheme, more
lasers are used to deliver the necessary frequencies. The central part with the Ramsey exci-
tation is similar to the one employed in beam machines and hence the uncertainty budget has
much in common with the clocks using magnetic state selection. A particular error source
that is connected with optically pumped frequency standards is due to spurious light from the
pumping and detection region that is present along the atomic beam path between the interac-
tion regions. This radiation can introduce a light shift due to the ac Stark effect. It has been
modelled for particular cases [11, 271] but it can also be studied experimentally by changing
the laser power. Atomic beam reversal for determining the cavity shift is much more easily
accomplished since the ovens do not have to be moved.

Several primary Cs clocks using optical state preparation and detection have been built and
operated, e.g., in Japan at the former NRLM (now NMIJ) [272, 273] and at the former CRL
(now National Institute of Information and Telecommunications Technology, NICT [253]),
in France at the former LPTF (now BNM–SYRTE) [271, 274], and in the USA at the NIST
[253,275]. Fractional instabilities of about 1× 10−12

√
τ/s [253,276] and 3.5× 10−13

√
τ/s

[271] have been achieved. Relative uncertainties of between 10−14 and 10−15 have been
reported [253, 271, 273] for these types of clocks.

7.3 Fountain Clocks

The line quality factor achieved with typical laboratory atomic clocks based on thermal Cs
beams is Q ≈ 108. To attain fractional uncertainties around 10−14 requires that the centre
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of the atomic transition is located to 10−6 of the linewidth, which can hardly be improved
further. The development of more accurate clocks thus requires increasing the interaction
time and thereby reducing the linewidth of the atomic transition. Laser cooled samples with
velocities of a few centimetres per second allow interaction times of the order of seconds.
Horizontal beam machines are no longer appropriate for these low-velocity atoms as they
would fall several metres during this time, as a result of the gravitational acceleration.

To interrogate low-velocity atoms in the gravitational field the concept of an atomic “foun-
tain” sometimes referred to as Zacharias fountain 4 is now widely used for clocks with greatly
increased accuracy.

7.3.1 Schematics of a Fountain Clock

In an atomic fountain (Fig. 7.10) a cloud of cold atoms is launched vertically through an
interaction region with a velocity of a few metres per second. The gravitational acceleration g
forces the atoms to slow down and to fall back, thereby passing the same interaction zone with
the electromagnetic field a second time. As in the Cs atomic clocks with beam machines, the
resulting resonance feature displays a Ramsey interference structure with a resolution that is
determined by the time T between the two interactions. This time is calculated from the time
necessary for the atoms to climb up to the apogee and the same time to fall down

T = 2

√
2H

g
. (7.7)

For an apparatus with a typical height between the Ramsey resonator and the apogee of H=
1 m, this time is T = 0.9 s and the necessary starting velocity of the atoms is v =

√
2gH =

4.5 m/s. The low velocities of the atoms in the atomic cloud are the prerequisite for an efficient
operation of such an atomic fountain inasmuch as the number of atoms returning through the
opening in the Ramsey cavity on their way down depends on the transverse velocity. An
initially very small cloud of caesium atoms with a temperature T = 2 μK will spread to 1.1 cm
in 1 s thereby allowing about 40 % of the atoms to enter the 1 cm interaction region, in contrast
to about 0.7 % that would enter the same region if the sample was cooled only to the Doppler
limit of 125 μK [277]. The first successful predecessor of a fountain clock experiment used
laser cooled sodium atoms in a pulsed radio frequency cavity and demonstrated a linewidth
of 2 Hz [278]. The first atomic fountain clock with Cs atoms was realised in the former
LPTF [17, 279]. Later a variety of atomic fountains using Cs or Rb atoms were operated or
investigated for atomic clocks in several institutions [280–289]. Even though these realisations
differ somewhat in their design, each set-up essentially contains three sections (Fig. 7.10): a
preparation zone where the atoms are collected and cooled, an excitation zone containing the
cavity resonator and the zone for the ballistical flight and a third zone for the detection.
The cloud of cold atoms is often prepared from a thermal vapour fed by a Cs reservoir at a
base pressure of about typically 10−6 Pa. In a magneto-optical trap about 107 Cs atoms are
collected and further cooled in an optical molasses to typically about 2 μK. If necessary the
Cs atoms are sometimes further cooled by means of special cooling techniques [168, 290].

4 Zacharias at the Massachussetts Institute of Technology is reported to have undertaken the first attempt to use the
low-velocity atoms from an effusive source in a fountain apparatus [15].
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Figure 7.10: Set-up of an atomic fountain clock.

In the next step the atoms have to be launched upward without increasing their tempera-
ture. This is conveniently done in a moving molasses where the frequency ν1 of the downward
pointing vertical laser beam is red-detuned by δν and the frequency ν2 of the upward pointing
beam is blue-detuned by δν with respect to the frequency ν used to cool the atoms in the
molasses. Choosing z in the upward direction, the superposition of two counter-propagating
waves of equal amplitudes can be written as

E(z, t) = E0 exp i[(ω + δω)t − kz] + E0 exp i[(ωt − δω) + kz] (7.8)

= 2E0 exp iωt cos(δωt − kz).

Consider the phase fronts with δωt− kz = 2πδνt− 2πz/λ = 0. From this relation one finds
that they move upward with a velocity v = z/t given by

v = λδν. (7.9)
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As the atoms are laser cooled in this “walking wave” they also move upward with the velocity
of the phase fronts.

Besides the arrangement of the fountain shown in Fig. 7.10, where four of the six beams for
the MOT are arranged horizontally and two vertically, a so-called “1 1 1” arrangement is often
used. In this arrangement the hypothetical “cube” whose six planes, defined by the six MOT
beams, is oriented such that two opposite corners are aligned along the vertical direction. Each
of the mutually perpendicular three pairs of counter-propagating beams intersects the tube axis
at the same angle (≈ 54.7◦). A detuning δν between the counter-propagating beams creates
a moving molasses [17] that leads to a velocity v = λδν

√
3/2 of the atoms passing through

the microwave cavity for interrogation. This arrangement may lead to less stray light in the
cavities and the drift region. To launch the atoms, all three beams pointing downward have to
be red-detuned and all upward beams blue-detuned.

When the detuned beams are switched off, the atoms follow the trajectories of a ballistic
flight. The atoms pass the microwave resonator, e.g., a TE011 cavity on their way up and
down, and hence experience a Ramsey excitation, where transitions between the ground states
|F = 4, mF = 0〉 ↔ |F = 3, mF = 0〉 are induced. In PTB’s clock CSF1, typically 5 × 105

atoms come back through the resonator to the detection zone. Atoms that have undergone
a transition in the microwave cavity can be detected in different ways. A scheme which is
often used [281] detects the atoms in the |F = 3〉 and |F = 4〉 states separately. First,
the atoms cross a standing-wave laser field tuned to the |F = 4〉 → |F ′ = 5〉 transition
(Fig. 7.8). Cycling the atoms between these states, a large number of fluorescence photons can
be detected by a photodetector whose signal is proportional to the number of atoms N(F = 4)
in the |F = 4〉 state. The standing wave is employed in order not to accelerate the atoms by a
unidirectional light pressure. Behind the first detection zone, these atoms in the |F = 4〉 state
are pushed away by a single transverse beam in order to prevent them from reaching the second
detection zone. There, the atoms in the |F = 3〉 state are pumped by a second standing-wave
laser field into the |F = 4〉 state from where they are detected in the same way, by a second
photodetector, as the atoms in the first detection zone. Hence, the laser field in the second
detection zone comprises the two frequencies necessary to excite the |F = 3〉 → |F ′ = 4〉
(pumping) transition and the |F = 4〉 → |F ′ = 5〉 (cycling) transition. The signals from
the two photodetectors are combined to give the rate of atoms excited by the microwave field,
normalised to the total number of atoms

p ∝ N(F = 3)
N(F = 3) + N(F = 4)

. (7.10)

Excitation spectra for a particularly low apogee and a typical height of the atoms in the foun-
tain, i.e., for low and high resolution, are shown in Fig. 7.11 and Fig. 7.12, respectively.

State-selection Cavity Several effects that may lead to frequency shifts of a Cs atomic clock
are directly related to population in states others than |F = 3, mF = 0〉 and |F = 4, mF = 0〉
like the shifts due to Rabi pulling, Ramsey pulling, Majorana pulling, cavity pulling or cold
collisions (Section 7.3.2.1). Hence, most of the fountain clocks comprise a second microwave
resonant cavity that can be used to prepare the atomic population in the desired states. In
PTB’s fountain, atoms in the state |F = 4, mF = 0〉 are transferred in the state-selection cav-
ity by a π pulse to the state |F = 3, mF = 0〉 . Atoms remaining in the state |F = 4〉 that
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Figure 7.11: Measured probability p of excit-
ing Cs atoms in the fountain clock of PTB with
the apogee of the atomic trajectories about 5 cm
above the resonator.

Figure 7.12: Central part of a high-resolution
Ramsey spectrum similar to the one shown in
Fig. 7.11 with the apogee of the atomic trajec-
tories being 0.4 m above the resonator.

have not experienced an exact π pulse as a result of inhomogeneities in the field, or due to
their different velocities, are pushed away by radiation from a short pulse of the downward
laser beam.

7.3.2 Uncertainty of Measurements Using Fountain Clocks

Most of the effects that limit the uncertainty of the measurements performed with fountain
clocks, and the methods, to explore and correct for them, are similar to the ones described
with Cs beam clocks, as discussed in Section 7.1.3. However, most of these contributions are
smaller in a fountain as in the clocks using thermal beams. The much reduced velocity v of
the atoms in the former one reduces all contributions that scale with v or v2. Moreover, the
use of a single resonator for interrogation, in general, leads to a smaller influence of the cavity
phase shifts. Furthermore, the special arrangement of the fountain allows for a convenient
method to map the magnetic field in the region of free ballistic flight. Variation in the height
of the apogee by changing the initial vertical velocity of the atomic cloud allows the atoms to
spend most of their time near this region. The magnetic field is then easily determined as a
function of the height from the shifted transition lines affected by the linear Zeeman effect.

Fractional uncertainties of primary Cs fountain clocks have been reported around 1 ×
10−15 from several institutions [18–20] where one of the largest contributions results from
the collisional shift.

7.3.2.1 Cold Collision Shifts

With Cs atoms, cold collisions have been found to be one of the biggest sources of system-
atic shifts since they can produce a frequency shift of Δν/ν = −1.7 × 10−12 at an atomic
density of 109 cm−3 [291, 292]. At low temperatures of a few millikelvin, the collision pro-
cess between the Cs atoms is essentially described by s-wave scattering. This can be seen
by calculating the maximum angular momentum Lmax = bmax × mrv where bmax is the
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maximal impact parameter, i.e., the distance of closest approach of two caesium atoms for a
straight-line trajectory. The reduced mass of the temporary Cs2 molecule is mr = mCs/2
and v ≈ 1 cm/s is the atomic velocity at a temperature of 1 μK. Assuming that the maximal
impact parameter bmax is within the range of the molecular potential, i.e., bmax = 30 nm, the
corresponding maximal angular momentum is Lmax =

√
l(l + 1)� ≈ 0.3�. Since l < 1,

i.e., l = s, only s-wave scattering is possible. At the same time the de Broglie wavelength
λdB = h/(mrv) ≈ 150 nm is larger than bmax which again indicates that there is no p-wave
scattering. Hence at low temperature, collisions can be described by a single parameter, i.e.,
the s-wave scattering length. The large scattering cross-section of Cs at low temperature has
two causes. First, for cold atoms the collisional cross-section λ2

dB/(2π) becomes huge as a
result of the increased de Broglie wavelength λdB in the microkelvin temperature range. Sec-
ond, in Cs there are molecular bound states of the Cs2 molecule very close to the dissociation
energy, leading to resonances in the scattering amplitude. Hence, in Cs fountains used for
atomic clocks the density, in general, is kept at a lower level and the shift is measured for
different densities and an extrapolation to zero density has to be performed. If one refers to
measured frequency shift coefficients [292] an accurate determination of the absolute density
has to be performed. The resulting correction is one of the largest contributions to the uncer-
tainty of the Cs fountain clocks. As a consequence of the large scattering lengths in Cs the
cold-collision shift is expected to be strongly temperature dependent. A reversal of the cold-
collision shift in Cs has been predicted to occur at very low temperatures below 100 nK [293].
It remains to be shown whether this dependence can be used to improve the accuracy of Cs
fountain clocks.

The measurement of the collisional frequency shift is usually performed by alternating
sequences of frequency measurements with a high and low atomic density, performed with
respect to a reference frequency of sufficient short-term stability, e.g., a hydrogen maser (Sec-
tion 8.1). In a fountain, the frequency shift is proportional to the “effective” density, which
takes into account the density change during the ballistic flight and which depends on the ini-
tial spatial and velocity distribution [286]. The density for the two conditions is often changed
by loading different numbers of atoms in the MOT. This is readily achieved by varying the
loading parameters such as the power of the trapping laser beams or the time the beams are
switched on.

Another method keeps these parameters constant but changes the microwave power in the
selection cavity used to prepare the atoms in the |F = 3, mF = 0〉 state. In general, a π pulse
transfers all atoms from the |F = 4, mF = 0〉 to the |F = 3, mF = 0〉 state and a laser beam
tuned to the |F = 4〉 → |F = 5′〉 transition is subsequently applied to remove the remaining
atoms. Using a π/2 pulse rather than a π pulse leaves one-half of the atoms in the lower
ground state thereby reducing the number of atoms by one half.

An elegant method that allows one to vary the number of atoms by an exact factor of two,
but does not depend, e.g., on inhomogeneities in the microwave field in the selection cavity,
has been devised by Pereira Dos Santos et al. [294]. Adiabatic fast passage allows one to
transfer all atoms from a state |g〉 to a state |e〉 by continuously tuning the frequency of the
interacting field from very large negative detunings to very far positive detunings. The pseudo-
spin representing the ensemble in the rotating frame then spirals from the south pole of the
Bloch sphere toward the north pole in a similar way to that depicted in Fig. 5.10. If the rapid
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tuning of the frequency of the driving field is stopped exactly at resonance, the pseudo-spin
vector of the ensemble is in the equatorial plane and the population is evenly distributed on
the two ground states. Provided that no other losses occur during this process, the number
of atoms, and hence the density, can be reduced to one-half of the former density. With the
two latter methods it is not necessary to measure the absolute density for the determination of
the collisional shift and to rely on the knowledge of the exact value of the coefficient of the
collisional shift [291, 292].

The influence of the density-dependent shift is regularly measured in fountains used as
frequency standards or clocks [19,20,289]. Fountain clocks are usually operated using atomic
densities such that the associated uncertainty contributes not more than 50 % to the total un-
certainty which typically limits the number below 106 atoms per bunch.

7.3.3 Stability

In a fountain clock the Allan deviation can be expressed as [64]

σy(τ ) =
1

πQat

√
Tc

τ

√(
1

Nat
+

1
Natnph

+
2σ2

δN

N2
at

+ γ

)
(7.11)

which is a straightforward extension of (3.97). In (7.11) τ is the measurement time in seconds,
Tc is the duration of a cycle of the measurement and Qat = ν0/Δν is the line quality factor.
The first term in (7.11) is due to the quantum projection noise [89] resulting from the quantum
fluctuations of the population, after a measurement that projects the quantum mechanical su-
perposition of the two states on either state. This term is not the only one in (7.11) that depends
on the number of detected atoms Nat. The second term results from the photon shot noise due
to the fluorescence detection of the atoms when nph photons are detected. As a large number
of photons is scattered by every atom in this process, this term is in general much smaller than
the first one. The third term results from the noise of the detection system where the number of
atoms in the |F = 4, mF = 0〉 and the |F = 3, mF = 0〉 states are measured separately. σδN

represents the uncorrelated rms fluctuations of the atom number in each measurement. γ is
the contribution of noise added from the interrogation oscillator. For example, non-linearities
in the control loop or in the interrogation process can occur as the pulsed interrogation can
mix down high-frequency noise of the oscillator into the base band. There it contributes to
fluctuations of the signal via aliasing effects such as the Dick effect or intermodulation effects
(Section 3.5.3). By using a low-noise cryogenic sapphire oscillator [18, 64] and by varying
the atomic number Nat in the fountain between 105 and 6× 105, the principal limit set by the
quantum projection noise for 105 ≤ Nat ≤ 5× 105 atoms could be reached. An instability of
4 × 10−14(τ/s)−1/2 could be obtained using 6 × 105 atoms [64].

7.3.4 Alternative Clocks

7.3.4.1 Rubidium Fountain

The collisional shift in 87Rb has been found to be at least a factor of thirty smaller than in 133Cs
[286, 295]. Consequently, in comparison to a Cs fountain, an atomic fountain based on 87Rb
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atoms has the advantage of a good short-term stability since larger densities of atomic clouds
can be employed without degrading the accuracy. Different 87Rb fountains have been operated
[91,295] and the ground state splitting of 87Rb has been measured (see Table 5.1). In their Rb
fountain, Sortais et al. [286] obtained a fractional instability of σy(τ ) = 1.5×10−13(τ/s)1/2.
An instability of σy(τ ) = 1× 10−14(τ/s)1/2 and a potential relative uncertainty in the 10−17

was envisaged [91].

7.3.4.2 Fountains with Increased Duty Cycle

The high accuracy achievable with caesium fountain clocks is hampered by their instability
which allows one to make use of their accuracy only after a long measurement time of about
a day. For a given line Q, the instability can be reduced by increasing the rate of detected
atoms (see (7.11)) which is limited, on the other hand, by the pulsed operation of the fountain.
To increase this rate, methods have been devised to multiply launching clouds of atoms or to
employ quasi-continuous beams. The concepts of multiple launching or continuous beams in
a fountain, require specific provisions to be made in order not to perturb the energy levels of
the atoms, already in free flight, by the ac-Stark shift coming from stray light.

Juggling Fountain The successive launch of more than ten laser-cooled clouds of atoms
simultaneously in the atomic fountain clock, has been proposed [296, 297] and demonstrated
[287, 298]. Juggling many clouds at the same time has two advantages. First, for a given
density corresponding to a given collisional frequency shift, the number of atoms detected
and hence the signal-to-noise ratio can be increased. Second, juggling mainly eliminates the
dead times between the measurements thereby imposing less stringent requirements for the
stability of the local oscillator. However, shutters have to be used to block stray light from the
interrogation region of the clock. Furthermore, the launching rate is limited by the fact that
the frequency shift, due to collisions between the clouds, increases.

Fountain Using a Continuous Beam of Atoms A completely different concept that com-
bines the advantages of a continuous beam and the fountain, has been jointly developed in the
Observatoire de Neuchatel and the Swiss National Metrology Institute METAS [288,299–301]
(Fig. 7.13). The continuous beam fountain has two advantageous properties. First, the atomic
density at a given atomic flux is reduced by up to two orders of magnitude in a continuous
beam as compared to a pulsed fountain. This property can be used to reduce the collisional
shift by the same magnitude. On the other hand, for a given allowable shift, the increased
number of atoms can reduce the instability (see (7.11)). Second, the Dick effect, as a result of
an intermittent interrogation scheme, is expected to be much reduced, also promising higher
short-term stability [52].

Due to the peculiarity of a fountain based on a continuous beam the powerful method
which uses the same microwave field twice to interrogate the atoms has to be be given up.
However, employing parabolic trajectories with a small separation of a few centimetres be-
tween the rising and the descending atoms at the interrogation region, a single coaxial cavity
TE021 can be used [52] (Fig. 7.14).

The atoms pass through the coaxial cavity at opposite sides but at the same radial dis-
tance from the axis. At the positions of the atomic beam the magnetic field configuration of
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Figure 7.13: Schematics of a fountain with a continu-
ous atomic beam.

Figure 7.14: Vertical section of the
TE021 cavity with schematic B field
lines.

the TE021 cavity mode is similar to the field in the TE011 cavity used in typical fountains
(Section 7.3.1) in a sense that there is a maximum of the Bz component with a sinusoidal
dependence along the axis of the cylindrical resonator and no azimuthal dependence on the B
field. It is expected that the relative frequency offset, related to the end-to-end phase shift, can
be below 10−15 [288]. In order to allow one to investigate the phase shift in the microwave
resonator, despite the fact that reversal of the atomic beam is not possible, the TE021 cavity
(Fig. 7.14) can be rotated by 180◦ around the vertical axis. Thus the interaction of the caesium
atoms with the interaction zones in time-reversed order also reverses the phase shift which can
be determined and corrected for.

To prevent stray light, produced by the preparation of the cold beam, from perturbing the
atoms which could lead to a relative frequency shift of up to 10−12, light traps are necessary.
Light traps based on turbine wheels with black blades mounted under 45◦, rotating with an
angular velocity matched to the velocity of the caesium beam, have been used. Such light
traps have been shown to suppress the stray light to better than 10−5 [299] thereby attenuating
the flux of atoms only by about 10 %. A short-term instability of 2.5 × 10−13

√
τ/s has been

measured and a fractional uncertainty around 10−15 is anticipated [288].
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7.4 Clocks in Microgravitation

The interaction time in a fountain is limited to about 1 s for the typical height of a labora-
tory clock. To go beyond is practically not possible as the height of the fountain increases
quadratically with the desired interrogation time (see (7.7)). A longer interrogation time of
up to 10 s corresponding to a linewidth as low as 50 mHz might be achieved in a microgravity
environment such as is provided in a satellite orbiting Earth.

Several clocks are planned for use on board the International Space Station (ISS) orbiting
Earth at a height of up to 450 km [302–306]. In the microgravity environment the use of a
fountain is no longer possible or necessary and the current designs are based on a low-velocity
beam.

A prototype of such a clock (PHARAO: Projet d’Horloge Atomique par Refroidissement
d’Atomes en Orbite) already has been flown in a special aircraft to allow the simulation of
microgravity in parabolic flights for about a minute [302]. The source is a sample of about 107

atoms laser cooled to about 2 μK in a six-beam optical molasses (Fig. 7.15). The six beams in

Figure 7.15: Schematic of a clock for use in space [302] with vacuum system, magnetic shields
and lasers omitted for clarity.

the “1 1 1” arrangement are delivered to the vacuum apparatus by polarising optical fibres and
the power of each beam can be adjusted individually. After leaving the cavity the atoms in the
two atomic states |F = 4〉 and |F = 3〉 are detected separately using two separated detection
laser beams in order to get a signal largely free of fluctuations in the atomic flux. In an earlier
version [302] the microwave cavity was a cylindrical TE013 of length about 19.5 cm with
three half-wavelengths of the standing wave fitting along the cylindrical axis. In the vicinity
of the two nodes of the standing wave along the axis of this cavity, the residual spurious
travelling waves led to phase inhomogeneities with a resulting large first-order Doppler shift.
Hence, it was concluded [303] that cavities TE01n(n > 1) have to be given up to equip a
space cold atom clock and, as an alternative, a ring resonator was used. In this resonator one
coupling system feeds two symmetrical lateral waveguides which meet at the two interaction
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zones [304]. The expected relative frequency instability and the fractional inaccuracy are
σy(τ ) = 10−13(τ/s)1/2 and 10−16, respectively [304].

Another clock for the ISS is the PARCS (Primary Atomic Reference Clock in Space)
which is designed to perform tests of relativity and fundamental physics and to serve as a pri-
mary clock [305, 307]. The set-up differs from that of Fig. 7.15 in a way that the microwave
interrogation will take place in two independent cavities (Q ≈ 20 000) operated in the TE011

mode. The end-to-end cavity phase shift is expected to be measured with a fractional uncer-
tainty of 2 × 10−17 by varying the atomic velocity and extrapolating to zero velocity [307].
Most of the contributions to the relative uncertainty are expected to be below 10−16 [305].
One of the biggest contributions to the uncertainty results from the frequency shift induced by
the black-body radiation which, at the operational temperature of 37◦ C, is about 2 × 10−14

and cannot be corrected with a relative uncertainty in the 10−17 range. The PARCS clock will
be compared to a superconducting microwave oscillator during flight.

Other clocks for space operation have been devised both for Cs or Rb [306]. An anticipated
relative uncertainty of 10−16 or below requires a low instability of the microwave clocks in
microgravity. With 106 detected atoms, a shot-noise limited signal-to-noise S/N = 103 can
be achieved. Using an interrogation time of 10 s and a corresponding Δν ≈ 50 mHz one
calculates from (7.11) σy(τ = 10 s) ≈ 5 × 10−15 for Cs and σy(τ = 10 s) ≈ 8 × 10−15 for
Rb allowing one to reach σy(τ ) ≈ 10−16 within a few hours.





8 Microwave Frequency Standards

In addition to the Cs atomic clock, which holds the special position of direct realisation of the
unit of time and frequency, according to the definition, there are other microwave standards
based on neutral atoms, which are used for different purposes. Amongst them are hydrogen
masers with a short-and medium-term stability which surpasses the best caesium clocks, or
the much cheaper and more compact clocks, such as the rubidium clock, used for applications
with less demanding accuracy.

8.1 Masers

The first microwave amplification by stimulated emission of radiation (maser) was proposed
in 1954 [308, 309] and the acronym maser is now used for all devices based on this type
of process. Masers have been built using various atomic or molecular species in order to
perform high-resolution microwave spectroscopic investigations. From the various kinds of
masers developed for frequency standards and based on, e.g., ammonia, hydrogen, rubidium,
or caesium, the hydrogen maser (H maser) has achieved the greatest widespread use and will
be discussed in the following.

8.1.1 Principle of the Hydrogen Maser

The H maser utilises a transition between two ground state levels |F = 1, mF = 0〉 and
|F = 0, mF = 0〉 of atomic hydrogen, with a frequency separation of 1.42 GHz (Fig. 5.22).
Hydrogen masers used today do not differ much from the first realisation in the group of
Norman Ramsey [310–312].

Hydrogen atoms from the source (Fig. 8.1) effuse in a vacuum of about 10−4 Pa main-
tained with an ion pump. Low-field seeking atoms are focussed into a storage bulb by means
of a state selecting magnet which, at the same time, deflects the high-field seekers in the low-
est states such that they do not enter the bulb. Hence, the storage cell, which is placed in
a microwave resonator, contains more atoms in the upper state which can emit radiation by
stimulated emission. The radiation is detected by an antenna and used to tune the frequency
of a voltage-controlled crystal oscillator (VCXO) to the transition of the hydrogen atoms. The
maser design allows the detection of the atomic transition with a small linewidth as a result
of the long possible interaction time of about a second which is the time the atoms typically
spend in the storage bulb. During this time the atoms are kept in a volume whose extension of
about 15 cm is smaller than the wavelength of the transition. This confinement to the Lamb–
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Figure 8.1: Schematic of an active hydrogen maser.

Dicke regime leads to a suppression of the first-order Doppler effect of the atoms interacting
with the standing-wave field allowed in the microwave resonator.

In the here described “active H maser” conditions are such that continuous oscillation is
sustained. However, the acronym maser is also used for a “passive H maser” (Section 8.1.4),
where self-sustained oscillation is not achieved, but where the hydrogen atoms in the upper
state resonantly amplify externally injected microwave radiation of the proper frequency.

8.1.2 Theoretical Description of the Hydrogen Maser

The theory of the hydrogen maser is presented in several publications [11,311–313] and hence
here we only give a comprehensive sketch following Bender [314] and Vanier [313]. There
is a substantial difference in the interaction of the hydrogen atoms in a H maser and the Cs
atoms in a Cs clock. In the latter, discussed in Section 7, the atoms were prepared in a pure
state before the first interaction. Moreover, the resolution was limited by the interaction time
which was much smaller than the lifetime of the states involved in the transitions. Hence we
described the Cs atom by a state vector and applied the Bloch vector picture to this state. This
treatment is no longer appropriate in the case of the hydrogen maser where the collisions of
the hydrogen atoms with the wall, and with each other, in general lead to a mixture of states.
Hence one can only give statistical estimates about the probability of finding the ensemble
of atoms in the excited state. The theoretical framework makes use of the density operator
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(Section 5.3.2.1) which can be written in the equilibrium as the matrix

ρ =

⎛⎜⎜⎝
ρ11 0 0 0
0 ρ22 0 ρ42

0 0 ρ33 0
0 ρ24 0 ρ44

⎞⎟⎟⎠ (8.1)

where the four magnetic sub-states of the S1/2 state are numbered according to their energy
in the magnetic field (Fig. 5.22) beginning with |F = 1, mF = 1〉 as “1” and ending with
|F = 0, mF = 0〉 as “4” [313]. The clock transition connects states “2” und “4” and conse-
quently only the coherence between these states, given by the off-diagonal elements, is con-
sidered. The different elements of the density matrix are affected by four relevant processes
occurring in the H maser. In the following we discuss these processes and the assumptions
used to model them based on the rate equation

dρ

dt
=

(
dρ

dt

)
flow

+
(

dρ

dt

)
wall

+
(

dρ

dt

)
spin exchange

+
(

dρ

dt

)
radiation

. (8.2)

First, there is a positive change in the number of atoms in the bulb, affecting ρ11 and ρ22,
as only atoms in the low-field seeking states are deflected into the bulb. At the same time there
are losses by atoms escaping through the entrance hole of the bulb that depend on the bulb
geometry and, thus, change all elements of the density matrix in the same way by −Γbρij ,
where Γb represents the relaxation rate due to the escape. Hence,

(
dρ

dt

)
flow

=

⎛⎜⎜⎝
I1/N 0 0 0

0 I2/N 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ − Γbρ (8.3)

where I1 and I2 is the flux of atoms entering the storage bulb in the states “1” and “2”,
respectively, and N is the total number of atoms.

Second, there are losses when atoms hit the wall. A fraction of these atoms are lost since
they are absorbed on the surface or form a molecule with another atom thereby giving the
binding energy to the wall. If these losses affect the atoms in all states in the same way,
the rate of change is dρii/d t = −Γwρii where Γw is the wall relaxation rate. Besides this
effect, in less hard collisions with the wall, the coherence may also suffer from a phase change
similar of to that described in Section 5.4.4. Hence dρ24/d t = −Γwρ24 + iΩwρ24 where it is
often assumed that the coherence decays with the same rate Γw as the populations and where
the imaginary term includes the phase change of the coherence resulting from the associated
frequency shift Ωw.

Third, there are collisions between two hydrogen atoms that can exchange their spins mu-
tually thereby changing ρ22 and ρ44 by a rate Γse. Furthermore, the spin-exchange collisions
also lead to a phase shift of the coherence. It has been shown both theoretically and exper-
imentally by Berg, [315] that in the case of spin-exchange collisions between two hydrogen
atoms, the relaxation time (dephasing time) of the coherence ρ24 is 1

2Γse.
Fourth, besides these relaxation processes the dynamic change due to the interaction with

the magnetic component of the electromagnetic field is obtained from the equation of motion
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of ρ in the Schrödinger picture

d

d t
ρij =

1
i�

∑
k

[Hi kρkj − ρikHk j ] (8.4)

which is the quantum mechanical equivalent of Liouville’s equation. The calculation can be
performed using the Hamiltonian

H24 = −1
2μBgJBz(r) cos(ωt + φ) (8.5)

describing the magnetic interaction (5.34) for the hyperfine transition between two states with
mF = 0 and where μB is the Bohr magneton and gJ = 2. Bz is the only component of
the magnetic field that is capable to induce transitions between the |F = 1, mF = 0〉 and
|F = 0, mF = 0〉 states since it is parallel to the static quantisation field provided by the
solenoid.

In equilibrium, the total rate of change for all four contributions is dρtot/dt = 0 which
allows one to calculate the response of the atomic ensemble in the microwave field including
the relaxation processes. In the following we give some results relevant to the practical use of
the maser.

Let ΔI denote the difference in the flux of atoms entering the storage bulb in the
|F = 1, mF = 0〉 and |F = 0, mF = 0〉 states. Then the averaged power radiated by this
beam is P = ΔI hν p where p is the averaged probability of finding the atoms in the excited
state “2”. Neglecting for the time being any losses of the hydrogen atoms in state “2” by the
processes discussed above, we could simply use (5.51) and (5.45) to derive p = |c2|2 and

Pwithout losses =
1
2
ΔIhν

b2

b2 + [2π(ν − ν0)]2
. (8.6)

In (8.6) the Rabi frequency b is defined as

b = μB
〈Bz〉b

�
(8.7)

of the atoms induced by 〈Bz〉b, i.e., the Bz component of the rf field, averaged over the
bulb. Here, and in the following, the indices b and c represent bulb and cavity, respectively.
According to (8.6) the power at resonance would linearly increase with the inversion ΔI
independent of the Rabi frequency and hence of the power of the microwave field. It turns out
that this behaviour is not observed in the H maser.

To correctly describe the hydrogen maser, the relaxation of the atoms in the upper state
has to be taken into account. Using the processes discussed above, one can define decay times
T1 and T2 given by

1
T1

≡ Γb + Γw + Γse and (8.8)

1
T2

≡ Γb + Γw + Γse/2 (8.9)
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that are related to the total decay of population and the total loss of coherence, respectively.
By including the decay times T1 and T2, Bender [314] and Kleppner et al. [312] obtained for
the power

P =
1
2
ΔIhν

b2

1
T1T2

+ b2 +
(

T2

T1

)
[2π(ν − ν0)]

2
(8.10)

instead of (8.6).
For a large amplitude of the rf field, the b2 term in the denominator becomes dominant

and the power saturates with the on-resonance saturation parameter S0 = T1T2b
2. The width

(FWHM) of the resonance curve (8.10) is calculated as

Δν =
1
π

√
1

T 2
2

+
(

T1

T2

)
b2. (8.11)

A necessary condition for self-sustained oscillation of the maser is that the power delivered
by the beam is equal to the power dissipated in the microwave resonator dW/dt. We recall
that the quality factor of the rf cavity is Qc = ωcW/(−dW/dT ) (see (2.39)) and that the
energy W stored in the magnetic field in the cavity is

W =
1

2μ0

∫
Vc

B2dV ≡ Vc

2μ0
〈B2〉c (8.12)

where 〈B2〉c is the mean squared amplitude of the magnetic field amplitude over the volume
Vc of the cavity. We thus calculate the power dissipated by the cavity as

dW

dt
=

ωcVc〈B2〉c
2μ0Qc

. (8.13)

Defining a “filling factor”

η ≡ 〈B〉2b
〈B2〉c , (8.14)

the power dissipated by the cavity field (see (8.13)) can be expressed by a corresponding Rabi
frequency b (see (8.7)) as follows

dW

dt
=

ωcVc

2μ0Qc

�
2

ημ2
B

b2. (8.15)

Following [312] we determine the power in the maser as function of the atomic flux ΔI .
Taking (8.10) at resonance (ν = ν0) one obtains

P =
1
2
ΔIhν − 1

T1T2

P

b2
which leads to

P

Pc
=

ΔIhν

2Pc
−

(
1 +

3Γse

2(Γw + Γb)
+

Γ2
se

2(Γw + Γb)2

)
(8.16)
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after inserting (8.8), (8.9), and (8.15) and defining Pc as

Pc ≡ (Γw + Γb)
2 ωcVc

2μ0Qc

�
2

ημ2
B

. (8.17)

Defining a threshold flux

Ithr ≡ 2Pc

hν
, (8.18)

i.e., the minimum flux that is required to sustain oscillation in the cavity, then above threshold
one would expect the power to increase linearly with the flux of hydrogen atoms if spin-
exchange collisions can be neglected in (8.16).

However, the probability for spin-exchange collisions to occur is proportional to the den-
sity n of hydrogen atoms, which in turn depends on the total flux Itot of hydrogen atoms as
follows [312]

Γse = nσv̄r with n =
Itot

VbΓb
. (8.19)

In (8.19) σ is the cross-section for spin-exchange collisions and v̄r is the average relative
velocity of the hydrogen atoms. The density n = N/Vb, with Vb the volume of the bulb, is
calculated from dN/dt = Itot − NΓb = 0.

By inserting (8.19) and (8.18) into (8.16) one obtains

P

Pc
=

ΔI

Ithr
−

[
1 + 3q

ΔI

Ithr
+ 2q2

(
ΔI

Ithr

)2
]

(8.20)

with

q =
σv̄r�

2μ2
Bμ0

Vc

Vb

1
Qη

Itot

ΔI

Γw + Γb

Γb
. (8.21)

Fig. 8.2 displays the normalised power of the maser calculated according to (8.20) as a func-
tion of ΔI/Ithr for different parameters q ≥ 0. Hence, self-sustained oscillation (P/Pc > 0)
of the H maser occurs only if the flux of hydrogen atoms is limited to a range between a
minimal flux ΔImin and a maximal flux ΔImax. These limits can be derived by solving the
quadratic equation (8.20) for P/Pc = 0 leading to

ΔImax

Ithr
=

1 − 3q +
√

1 − 6q + q2

4q2
and (8.22)

ΔImin

Ithr
=

1 − 3q −
√

1 − 6q + q2

4q2
. (8.23)

The maser cannot oscillate for q > 3 −√
8 ≈ 0.171 as can be derived by equating (8.22) and

(8.23), i.e., ΔImax = ΔImin. Typical values of the power delivered by a hydrogen maser are
P ≈ 1 pW. The maser quality parameter q in general is less than 0.1. The ratio ΔI/Itot is a
measure of how effectively the state-selective magnet works.
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Figure 8.2: Normalised power of the H maser versus normalised flux of hydrogen atoms for
different values of the parameter q (see (8.20) and (8.21)).

8.1.3 Design of the Hydrogen Maser

8.1.3.1 Hydrogen Source

In the set-up of Fig. 8.1 the atomic hydrogen (H) is produced in an intense electrical discharge
from the chemically more stable molecular hydrogen gas (H2) which is supplied by a reservoir
bottle or from a heated metal hydride, e.g., LaNiHx. The molecules from either source pass
a purifier stage and diffuse to the discharge source through a sealed tube with thin walls con-
sisting often of a silver palladium alloy. This so-called palladium-silver “leak” acts as a filter
whose temperature-dependent mass flow can be varied by means of a heater coil. Hence, the
pressure in the discharge region can be adjusted rapidly within typically 10 Pa and 100 Pa. In
the discharge with a characteristic red colour a high-frequency electric field of about 200 MHz
leads to a dissociation of the molecular hydrogen via molecular impact ionisation in the elec-
tric field.

8.1.3.2 State Selecting Magnet

In the beam of hydrogen atoms, all of the four states (Fig. 5.22) are populated with almost the
same probabilities p as can be calculated from the Boltzmann distribution as p(F = 1)/p(F =
0) = exp[−h× 1.42 GHz/(kBT )] ≈ 0.99976. The, almost equal, thermal population of both
states requires the selection of the atoms in the high-energy states which is often performed in
an inhomogeneous magnetic field.

Assuming that the magnitude of the magnetic moment of the moving particle (see (7.3))
is constant (�μeff = μ) and that the direction of the magnetic field, as viewed from the frame
of the moving particle, changes slowly compared to the Larmor frequency, i.e. the precession
of the magnetic moment in the magnetic field, then the energy of the system is proportional to
the modulus of the magnetic induction | �B| and does not change with the direction of �B.
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Different inhomogeneous magnetic field configurations can be used for state selection,
however, higher-order magnets like hexapoles also focus the beam and lead to a higher usable
flux of the desired atoms.

Consider a hexapole field whose magnetic induction has the components

Bx =
D

2μ
(x2 − y2), By = −D

μ
xy, Bz = 0 (8.24)

where D is a constant. Such a field (Fig. 8.3) can be generated by six magnets facing each
other under 60◦ with alternating north and south poles or by six wires arranged on a regular
hexagon and alternatively carrying the same current in different directions [316–318].

Figure 8.3: Hexapole magnet with alter-
nating north (N) and south (S) poles. Dot-
ted curves sketch the magnetic induction of
(8.24).

Figure 8.4: Trajectories of low-field seeking (full
lines) and high-field seeking (dashed lines) param-
agnetic atoms in a hexapole focussing magnet.

The modulus of the field√
B2

x + B2
y =

√
D2

4μ2
(x2 − y2)2 +

D2

4μ2
4x2y2 =

D

2μ
(x2 + y2) (8.25)

varies quadratically with the radius r =
√

x2 + y2.
In a real magnetic hexapole lens the magnetic field depends on the details of the realisation,

e.g., the spacings of the gaps between the poles and the dimensions of the poles. The magnetic
field (Fig. 8.3) can be calculated from Laplace’s equation for the magnetic potential for a given
set of boundary conditions. For a chosen geometry where the pole tips were arranged on a
cylinder of radius r0 with equal pole and air gap spacings (Fig. 8.3) the magnetic induction
was calculated [132, 319] (or equivalently for the six current-carrying wires [317]) as follows

B(r, θ) = B0

(
r

r0

)2
√

1 − 2
(

r

r0

)6

cos 6θ + O
(

r

r0

)12

. (8.26)

The leading term of (8.26) is again quadratic in r. Hence from (8.25) and (8.26), a particle with
magnetic moment μ and mass m experiences a force (see (7.3)) �Fmag = −�∇μ|B| = −D�r
that increases linearly with the distance from the origin x = y = 0. Consequently, an atom
with a negative magnetic moment and a sufficiently small excursion and radial velocity, would
undergo an oscillation with angular frequency

ω =
√

2μB0/(mr2
0). (8.27)
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As for any harmonic oscillation the angular frequency (8.27) does not depend on the transverse
velocity vt. Hence, all atoms starting with the longitudinal velocity vl from a source point on
the axis of the hexapole will cross the axis again after performing half an oscillatory cycle
corresponding to the time T = π/ω. The distance from the source point L = vlT depends on
the longitudinal velocity and, hence, all atoms of the same kind and with the same longitudinal
velocity are focussed into the same point (Fig. 8.4).

The hexapole magnet acting as a magnetic lens is often used in the hydrogen maser to
select the low-field seeking atoms by focussing them into the entrance of the storage bulb.
Since the focal length depends on the velocity of the atoms, the magnetic lens shows a “chro-
matic aberration” and the focussing properties for a thermal ensemble of atoms are limited. If
permanent magnets are used, B0 is limited to less than about 1 T and from the, typically, 1016

atoms/s of a collimated source, a fraction of, typically 5 × 10−4 atoms in the upper state can
be focussed. The use of rare-earth magnetic materials allows one to design iron-free magnets
where the field pattern can be predicted on the 1 % level if the geometry of the individual
segments forming the multipole is known [320].

8.1.3.3 Storage Bulb

The storage bulb containing the atoms has to fulfil several requirements. As it is located
inside the microwave cavity with a desired high Qc it has to be made of a dielectric material
with low dielectric loss. It is often made of a fused silica sphere with a typical diameter
of 15 cm with a collimator at the inlet of the atomic beam. The wall is usually coated with
a material that minimises the wall shift and what is even more important, that produces a
temporally stable wall shift. Typically, the wall is coated with a fluorocarbon polymer such as
Teflon using special procedures [311, 321]. The wall shift depends on the particular type of
fluorocarbon [90].

8.1.3.4 Microwave Resonator

In the hydrogen maser, the TE011 mode of a right cylindrical microwave resonator is used
(Section 4.2.3) where the magnetic field in the centre points along the axis of the cylinder
(Fig. 4.9). Often, a cavity is employed where the length and diameter of the cavity are the
same, in order to minimise the losses in the walls of the cavity and hence to obtain a large
quality factor Qc. For the resonance frequency of ν

(TE)
011 = 1.42 GHz, the length is calculated

from (4.68) as L <∼ 27 cm. The spherical quartz bulb is located symmetrically in the cavity
with respect to the cylinder axis. Its diameter along the radial direction (D <∼ 15 cm) has to
be small enough to confine the atoms in a region where the axial Bz field does not reverse
its direction (see Fig. 4.9 b). The quartz bulb does not much affect the Qc factor of the mi-
crowave resonator, but for the given frequency the resonant length is reduced by about 5 cm
for a quartz bulb with 1 mm thick walls due to the increased dielectric constant ε > 1. The
body of the resonator has to be very rigid in order to achieve ultimate stability of the length and
diameter to avoid frequency shifts due to cavity pulling, i.e., an offset of the maser frequency
from the frequency of the atomic transition resulting from a detuning of the eigenfrequency
of the resonator. In order to avoid furthermore fluctuations of the eigenfrequency of the res-
onator, resulting from temperature-induced variations of the size, the resonator is kept in a
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temperature-stabilised vacuum chamber. The cavity is often made from a material with low
thermal expansion coefficient such as, e.g., a glass ceramic (see Section 4.4) whose surface is
internally coated with silver thus forming resonator walls with a low ohmic resistance.

To obtain a larger filling factor η (see (8.14)), sometimes the length of the resonator is
chosen to be larger than its diameter by about a factor of 1.5 [322,323] with a similar form for
the bulb.

The size of the resonator, together with the necessary vacuum housing and magnetic
shieldings, determines the dimensions and the weight of the hydrogen maser which in sta-
tionary devices can be up to 0.5 m3 and more than 200 kg. In order to reduce the size of the
cavity, sometimes a dielectric material such as a quartz tube used to hold the bulb [322] or a
sapphire ring, is introduced which allows one to reduce the volume of the cavity as a result of
the high dielectric constant of these materials.

A hair-pin loop antenna, located at a position near the end plates of the cavity where the
magnetic field is strong enough, is used to couple out the power delivered by the hydrogen
atoms to a 50 Ω coaxial cable leading to an amplifier. Often a second loop antenna is used in
combination with a varactor to fine-tune the cavity.

8.1.3.5 Frequency Shifts

The actual frequency of a hydrogen maser in general differs from the frequency of the ground-
state splitting of the unperturbed hydrogen atom as a result of several effects. In the following
these effects are addressed in the order of magnitude in which they contribute to the frequency
shift in a hydrogen maser.

Second-order Doppler Effect Due to their small mass, hydrogen atoms in thermal equi-
librium near room temperature have a rather large average velocity and hence suffer from
a considerable second-order Doppler shift. Equating the mean thermal energy 3kBT/2 to
the kinetic energy mv2/2 of a hydrogen atom with mass m and velocity v, the second-order
Doppler shift or time dilation shift (5.110) is

Δνtime dil.

ν
= −3kBT

2mc2
. (8.28)

Hence, the transition frequency varies linearly with the temperature. At a typical operational
temperature for masers of t = 40◦ C (T = 313 K) the frequency is shifted by −4.3 × 10−11.
Keeping the temperature of the bulb constant to 0.1 K leads to an associated fractional uncer-
tainty of the corresponding frequency of 1.4 × 10−14. Consequently, the hydrogen masers in
general have a single- or double-stage temperature stabilisation set-up.

Wall Shift Hydrogen atoms, interacting with the radiation field, and colliding with the walls
of the storage bulb, suffer from a mean phase shift of the radiating atom per collision which
depends on the coating of the walls and the temperature of the atoms. For a given interaction
time the number of collisions is inversely proportional to the diameter D of the bulb. Thus
the offset between the frequency of the maser and the frequency of the unperturbed hydrogen
atoms referred to as the “wall shift” is sometimes [90, 266] expressed as

Δνw =
K(t)
D

(8.29)
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where K(t) is a temperature-dependent constant. At a temperature of t = 40◦ C the constant
has been determined for different Teflon coatings [90] by using bulbs of different size and
extrapolating the measured frequency offsets as function of 1/D to infinite diameter D. The
value of K(t = 40◦C) ≈ −0.5 Hz cm (for Teflon FEP 120) leads to a fractional shift of
2.3 × 10−11 for a spherical bulb of D = 15 cm. The value of this shift is estimated to be
accurate to 10% [266] which is relevant only if the frequency of the unperturbed ground state
hyperfine splitting (νH = 1 420 405 751.768(2) Hz [90,324], see also Table 5.1) is determined.
In most other cases it is more important that the wall shift is stable in time. Around 40 ◦C,
K(t) varies by about −10−2/K [90] which requires that the temperature of the bulb is kept
stable to at least 0.1 K to restrict the fluctuations to the lower 10−14 regime.

Magnetic Field The |F = 1, mF = 0〉 → |F = 0, mF = 0〉 clock transition does not show
a linear Zeeman effect and for weak magnetic fields the transition frequency varies quadrati-
cally with the magnetic field as

ΔνB2 ≈ 2.7730 × 10−1 Hz

(
B

μT

)2

, (8.30)

which is more than six times higher than in the Cs clock (see (7.2)). For a typical value
of the magnetic field of 0.1 μT the fractional frequency shift is ΔνB2/ν ≈ 2 × 10−12. It
can be determined by measuring the linear Zeeman shift of the |F = 1, mF = ±1〉 states.
Frequency shifts due to a variation in the magnetic field inside the storage bulb are usually
controlled by using four to five layers of soft magnetic material like permalloy. For higher
requirements or harsher environments, active field compensation [325] is used, where leakage
of the external magnetic field through the outer shielding layer is sensed by a magnetometer
and largely reduced by using a compensating coil wound around the next inner layer. By this
means the internal field fluctuation could be reduced by 2 × 106 when the external field was
varied by ±50 μT [325].

Cavity Pulling If the resonance frequency νc of the microwave resonator is detuned from
the frequency of the atomic transition ν0, the maser frequency ν is shifted by [326]

Δνc = ν − ν0 =
Qc

Qat
(νc − ν0) (8.31)

where Qc and Qat are the quality factors of the cavity and the atomic resonance line, re-
spectively. The shift can be understood in a simple way if one considers the hydrogen en-
semble as an amplifying oscillator and the microwave cavity as a resonant filter in the feed-
back loop (Section 2.2). The radiation fed back from the detuned cavity suffers from a phase
shift. According to the phase condition (see (2.55)) this phase shift is compensated by a
slightly changed frequency of the oscillator. In contrast to the cavity-pulling shift in Cs
clocks, which varies proportionally to (Qc/Qat)2 (see (7.6)), the linear ratio is as large as
Qc/Qat ≈ 3.5× 10−5 for Qc ≈ 5× 104 and Qat ≈ 1.4× 109. In order to reduce the associ-
ated frequency shift, hydrogen masers in general are equipped with one or another method of
“auto-tuning”.

A first method keeps the eigenfrequency of the cavity constant by electronically stabil-
ising it to a chosen frequency close to the resonance frequency. To this end the resonance
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frequency of the cavity is square-wave modulated by means of a tuning varactor attached to
the microwave resonator, driven with a modulation frequency of a few ten hertz [322] to a
few hundred hertz. This frequency is much higher than the inverse lifetime of the radiat-
ing atoms in the cavity whose emission is not much affected by the modulation. Detuning
of the microwave cavity changes the gain and, hence, the output power of the maser. If the
frequency of the cavity is modulated symmetrically with respect to the eigenfrequency, the
modulation of the output power vanishes and the centre frequency of the resonant cavity can
be locked to this position. This method works only if the fluctuations of the frequency used
to interrogate the cavity are smaller than the fluctuations or drift of the cavity frequency. As
the modulation frequency is sufficiently fast the requirements for medium-term stability of the
frequency reference can be met by an ultra-stable quartz oscillator used as a reference for for
the synthesiser.

A second method of locking the eigenfrequency of the microwave resonator to a given
value [327] involves directly injecting a frequency-modulated microwave signal into the cavity
and then measuring the reflected signal to determine the offset of the eigenfrequency from the
frequency of the signal serving as a reference. Depending on the obtained error signal the
cavity can be tuned to the desired resonance frequency. In order not to perturb the atoms by
a resonant injected microwave signal, a square-wave frequency-modulated signal is chosen
where the modulation frequency is an even sub-multiple of the modulation depth, since in this
case the carrier is totally suppressed. This method has the advantage that the error signal can
have a better signal-to-noise ratio as compared to the previously described technique since
higher power can be employed as delivered by the atoms themselves.

Spin-exchange Collisions Collisions between hydrogen atoms in the “clock states”
|F = 0, mF = 0〉 and |F = 1, mF = 0〉 , where the spin of both atoms is exchanged, lead
directly to a frequency shift as a consequence of the exchange interaction. In addition to this
direct shift, there is a broadening of the atomic resonance as a consequence of the associated
relaxation. The additional broadening may lead to a frequency shift via the cavity pulling
effect. This combination then becomes a major source for frequency shifts as it couples the
oscillation frequency to parameters like the density of the hydrogen atoms that can hardly be
controlled with the desired uncertainty. The spin-exchange frequency shift has been calcu-
lated by Koelman et al. [328] from zero temperature to 1000 K. However, measurements at
room temperature [329] and cryogenic temperatures [330] revealed significant discrepancies
with theory [331].

The combined effects of the spin-exchange shift and the cavity pulling are often used for
auto-tuning by the method of “spin-exchange tuning”. It is based on tuning the cavity such
that the cavity pulling and the spin-exchange collision shift cancel each other to a high de-
gree [332]. As described by (8.19) the spin relaxation rate and hence the quality factor Qat

of the atomic resonance can be easily changed by changing the flux of atoms. In general,
the variation of Qat affects the frequency pulling (see (8.31)). At the same time, variation of
the atom number affects the number of spin-exchange collisions and, hence, the associated
frequency shift. The working point where both effects cancel each other can be found by
slowly switching the atomic flux, with a modulation time of a few minutes, between two dif-
ferent values Itot,1 and Itot,2, with the associated quality factors Qat(Itot,1) and Qat(Itot,2).
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The measurement of the associated frequency shift requires a very stable reference frequency
which, in cases where the highest precision is required, is often supplied by a second maser.

Both effects cannot be separated but the influence of the spin exchange collisions is be-
lieved to be reduced to the 10−13 level [266] by this method.

8.1.3.6 Frequency Stability of Active Hydrogen Masers

The frequency instability of a hydrogen maser represented by the Allan deviation shows dis-
tinct regimes for different averaging times τ (Fig. 8.5).

Figure 8.5: Combined instability (Allan deviation) of two commercial hydrogen masers at PTB
measured in 1998. For the measurements shown, both masers were operated without auto-
tuning.

The short-term instability can be represented by a 1/τ dependency, whereas the medium-
term instability shows a 1/

√
τ behaviour. For longer times the instability increases again after

a flicker floor.
The long-term instability of Fig. 8.5 is determined mainly by the cavity drift. This contri-

bution to the instability can be improved if auto-tuning is employed leading also to a reduction
of the flicker floor. The medium-term instability with the 1/

√
τ decrease results from two prin-

cipal processes ultimately limiting the frequency stability of any maser activity. The phase of
the electromagnetic field in the cavity resulting from the stimulated emission is perturbed by
the presence of the thermal radiation field with random phase contributing to the excited mode
of the resonator. Hence, the power spectral density of fractional frequency fluctuations of the
hydrogen maser [11, 266, 333]
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comprises a first term with the corresponding white frequency noise. The associated frequency
instability described by the Allan deviation is calculated from Table 3.1 as

σy(τ ) =
1

Qat

√
kBT

2P

1√
τ

. (8.33)

The stability due to this process is limited by the power P delivered by the atoms and the
atomic Qat factor, typically to 3 × 10−14 τ−1/2. A similar value is derived from Fig. 8.5 if
the Allan deviation is evenly attributed to each maser using (3.16).

The short-term instability is limited by additional white phase noise added to the signal
represented by the second term in (8.32). Such phase fluctuations can occur by length fluctu-
ations of the microwave resonator and by phase fluctuations in the electronic circuit, e.g., the
amplifier that depends on the amplifier noise factor F and the power Pr that is received by the
amplifier. The corresponding contribution to the Allan deviation is calculated (see Table 3.1)
as

σy(τ ) =

√
3kBTfh
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)
1
τ

. (8.34)

The factor fh is the cut-off frequency defining the bandwidth of the equipment used to mea-
sure the frequency fluctuations (Section 3.3). As both noise contributions (8.33) and (8.34) are
independent they can be added in the Allan deviation plot limiting the stability at different av-
eraging times. The flicker floor of commercial masers (Fig. 8.5) corresponding to a frequency
instability of below 10−15 is reached for periods from 1 000 to 10 000 seconds. For higher
measuring times τ frequency drifts cause the Allan deviation to increase again. Drift rates of
a few times 10−14 per year have been reported for five different masers kept in a very stable
environment [334].

8.1.4 Passive Hydrogen Maser

Below threshold, where active self-sustained oscillation is not achieved, radiation whose fre-
quency coincides with the frequency of the transition of the hydrogen atoms can still be ampli-
fied. In this regime the maser acts as an amplifier within a narrow frequency range set by the
linewidth of the atomic transition. In such a “passive maser” an external generator provides
electromagnetic radiation of 1.42 GHz which is coupled into the resonator. The resonance line
is interrogated by monitoring the amplified signal and the frequency of the external oscillator
is tuned to the maximum output signal. Passive hydrogen masers combine high short-term
stability with smaller size and weight compared to active masers.

To achieve smaller size sometimes a so-called magnetron microwave resonator is em-
ployed [266] which contains an internal concentric capacitive-inductive structure of annular
metal electrodes resembling the electrode structure in a magnetron. With a magnetron cavity
a mass of a few ten kilograms can be achieved [335]. The contributions that limit the fre-
quency stability of the passive maser are similar to that of the active maser. The medium-term
instability also follows τ−1/2 but in contrast to (8.33) it is increased by a factor of about 10
which depends on the experimental conditions. A small-size passive maser has a fractional
instability of σy(τ ) ≤ 10−12/

√
τ/s, up to about 104 seconds, which then levels to a flicker

floor of a few times 10−15 [336, 337].
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8.1.5 Cryogenic Masers

The exceptionally low fractional frequency instability of a maser, operated near room temper-
ature, of below σ(τ ) ∼= 10−15 for about 104 seconds, was expected to be even reduced to the
10−18 [338] domain for cryogenic temperatures. Temperature affects the instability of the hy-
drogen maser via various effects. First, as can be seen from (8.19) the spin-exchange linewidth
is proportional to the velocity of the hydrogen atoms which can be reduced by an order of mag-
nitude or more by using hydrogen atoms at a temperature of a few Kelvin. Reduction of the
linewidth leads to an increased line Qat of the maser with the associated reduced instability
(8.33). Second, the temperature enters (8.33) directly as temperature radiation induces inco-
herent emission of photons and hence leads to fluctuations in the phase of the radiation field in
the maser. Third, at cryogenic temperatures the walls can be coated with a helium film which
leads to a better controlled and a temporally more stable interaction with the hydrogen atoms
than the Teflon coating. A temperature can be found where the wall shift is, to first order,
independent of the temperature (Fig. 8.6). Fourth, as the maximal flux of atoms in the maser
depends on the relaxation rates, a reduction of the spin-exchange rate at lower temperatures
allows one to operate the maser with a larger number of atoms (see (8.20) and (8.21)) thereby
increasing the usable output power and reducing the instability.

Figure 8.6: Frequency shifts resulting from collisions for liquid helium surfaces and solid neon
surfaces. After [339] with permission.

Cryogenic masers have been realised [330, 338, 340–342] and it was expected that a frac-
tional instability in the 10−18 range could be obtained [338]. However, later it turned out
that serious discrepancies existed between measured and calculated hydrogen spin-exchange
cross-sections [331, 343]. These difficulties, together with the necessary additional effort to
realise cryogenic masers, have restricted their use mainly to basic research.

8.1.6 Applications

Masers are used in a variety of challenging applications like time transfer, navigation, tracking
of space crafts or performing leading-edge experiments in basic research.
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8.1.6.1 Hydrogen Masers for Time Scales

With respect to their excellent stability for periods from about 10 s to a day, masers are superior
to Cs clocks. Timing laboratories usually have several masers as so-called “fly wheels” to
increase the short-term stability of their time scale (Section 12.1.2). Sometimes an ensemble
of masers augmented by commercial caesium clocks is used to provide a time scale [334]
in order to have a convenient frequency reference for evaluating the stability of frequency
standards. The long-term stability of such an ensemble at the National Institute for Standards
and Technology (NIST, USA) was given as σy(τ = 0.1 day) ≈ 1 × 10−15, σy(τ = 1 day) ≈
4×10−16, σy(τ = 10 days) ≈ 2.5×10−16, σy(τ = 100 days) ≈ 8×10−16 with a frequency
drift of less than 3 × 10−15/year.

8.1.6.2 Gravitation and Relativity Experiments

The influence of gravitational and acceleration potentials on clocks and frequency standards
is described by Einstein’s Theory of General Relativity (Section 12.2). Consequently, the
comparison of remote clocks represents a suitable means of checking the predictions of theory
in order to determine the validity of the basic ingredients and assumptions.

An early precision experiment, now referred to as “Gravity Probe A”, 1 used to test Ein-
stein’s general theory of relativity, measured the frequency difference between a hydrogen
maser onboard a rocket and masers on Earth [344]. To this end a hydrogen maser was launched
in a nearly vertical trajectory in a two-hour sub-orbital flight by a Scout rocket to an altitude
of about 10 000 km. During flight, microwave links allowed comparison of the frequencies of
the masers which were subjected to different gravitational potentials, different time-dilation
shifts (second-order Doppler shift; Section 5.4.2) and different first-order Doppler shift due
to acceleration. When analysed, the observed frequency shift was consistent with Einstein’s
predicted gravitational red shift within a fractional uncertainty of 7 × 10−5 [344].

The clocks onboard the “space-ship Earth” also probe the variation of the gravitational
potential U(t) of the sun during the annual elliptical orbital motion of Earth around the sun.
According to Einstein’s equivalence principle, clocks on Earth experience an associated frac-
tional frequency shift ΔU(t)/c2 of ±3.3 × 10−10. The so-called “principle of local posi-
tion invariance” furthermore requires that this gravitational shift is independent of the atomic
species used as reference in the atomic clock. Bauch and Weyers [345] have tested this basic
assumption by comparing the frequencies of a hydrogen maser and a caesium atomic clock
for about one year and did not find a related variation of the frequency ratio within a fractional
uncertainty of 2.1 × 10−5.

Measurements of the Zeeman frequency splitting in a hydrogen maser performed by
Phillips et al. [346] and the unobserved sidereal variations were used to constrain possible
Lorentz and CPT violations.2 Nowadays the standard model of particles is believed to repre-
sent the low-energy limit of a more general theory that might include general relativity. Rea-

1 In April 2004 “Gravity Probe B” a relativity gyroscope experiment was launched to check tiny changes in the
direction of the spins of four gyroscopes, contained in an Earth satellite orbiting at 650 km altitude directly over
the poles, resulting from space-time dragging effects by the rotating Earth.

2 The CPT theorem states that physical laws are invariant under simultaneous application of Charge conjugation,
Parity inversion, and Time reversal.
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sonable, but only guessed, extensions of the standard model often lead to spontaneous Lorentz
symmetry violation [347] whose bounds have been determined by these measurements in the
proton.

8.1.6.3 Other Applications

Passive masers are employed in global navigation satellite systems (Section 12.5) such as the
future European satellite system GALILEO with space-qualified versions for use onboard the
satellites. There, the primary function of the masers is to provide clocks with high short-term
stability. Long-term stability and accuracy is of less importance in this application since the
clocks can be synchronised with clocks on Earth.

Active masers find applications in astronomy and geodesy, e.g., to correlate the signals
from different antennas in Very Large Baseline Interferometry (VLBI) (Section 12.6.1). The
maser at each antenna site provides the clock signal that is recorded with the radio signal from
the telescope, so that the signals from each pair of telescopes in the VLBI network can be later
properly correlated.

8.1.6.4 Cosmic Masers

Masers are also “operated” by nature. The first cosmic maser was discovered accidentally in
1965 [348] when radio astronomers measured the absorption of OH molecules against ther-
mal background sources in order to map the distribution of gas in molecular clouds. In the
meantime, a number of natural masers have been found, based on transitions in OH, H2O,
SiO, CH3OH, or NH3 molecules, to name only a few [349]. The evidence for the maser
action results from the combination of spectral features, namely narrow linewidths, high po-
larisation and high brightness. The measurement of these properties can rule out a black-body
source since the measured linewidths require low temperatures, whereas the brightness would
correspond to a black-body radiator with a temperature as high as 1015 K. In contrast to man-
made masers, cosmic masers are single-pass amplifiers and rely on the large path lengths in
molecular clouds to provide the required gain. The spatial coherence is assumed to be very
small.

Cosmic masers have been used to derive information about a large variety of astro-physical
phenomena which are otherwise not accessible [349]. They have been used to probe the
velocities of winds of matter flowing from newly formed stars or the envelopes of red giant
stars. In some fortunate cases, the appearance of maser action in SiO, H2O and OH has
been observed from the same object in different shells with diameters of more than 1010 km,
allowing one to derive useful information about the composition of stellar objects. Similarly,
supernova remnants or nuclei of active galaxies have been investigated. Other investigations
include the measurements of distances via the Doppler effect or of magnetic fields via the line
splitting by the Zeeman effect.
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8.2 Rubidium-cell Frequency Standards

In a rubidium-cell standard the frequency of an oscillator is locked to the 6.83 GHz transition
between the hyperfine-split ground state of the isotope 87Rb (Fig. 8.7). This isotope makes
up about 28 % of the natural abundance of rubidium, with the remaining 72 % composed of
the isotope 85Rb which has a lower hyperfine splitting of 3.04 GHz (Fig. 8.7). The quantum

Figure 8.7: Hyperfine structure of the ground state and the first excited electronic states of
87Rb and 85Rb including the D1 transitions (λ = 794.7 nm; dotted lines) and D2 transitions
(λ = 780.0 nm; full lines).

numbers of the nuclear spins of 87Rb and 85Rb are I = 3/2 and I = 5/2, respectively, and
the angular momentum in the ground state is given for both isotopes by the spin of the single
electron in the outer shell, i.e., J = 1/2. The coupling of both angular momenta leads to the
two hyperfine states with the total angular momenta F = 2 and F = 1 for 87Rb, and F = 3
and F = 2 for 85Rb.

In 87Rb the sub-states associated with the quantum numbers F = 1,−1 ≤ mF ≤ +1 and
F = 2,−2 ≤ mF ≤ +2, split in a magnetic field (Fig. 8.8). Again, the transition between the
states with only a weak quadratic dependence on the magnetic field

ΔνB2 ≈ 5.74 × 10−2 Hz

(
B

μT

)2

, (8.35)

i.e., the |F = 2, mF = 0〉 and |F = 1, mF = 0〉 states, is chosen as the clock transition.

8.2.1 Principle and Set-up

Rubidium microwave standards are in current use as frequency references that are very com-
pact, require low-power and are transportable. The heart of such a standard (Fig. 8.9) is a glass
cell containing isotope-enriched 87Rb vapour whose ground-state transition is interrogated by
a radiation field in a microwave resonator.

As in the H maser and the Cs clock, near room temperature, both ground states are al-
most equally populated. In the rubidium standard the population is re-distributed by optical
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Figure 8.8: The energies of the hyperfine states
of 87Rb in a magnetic field.

Figure 8.9: Layout of a rubidium frequency standard.

pumping to allow absorption of the microwave at 6.83 GHz. Due to a fortuitous coincidence
between the spectra of 87Rb and 85Rb, optical pumping can be achieved by using a simple
87Rb discharge lamp and a 85Rb absorption filter. A discharge lamp on its own would not
allow one to achieve optical pumping, since there are emission lines that always couple both
ground states to the same excited state.

The effect of the 87Rb lamp – 85Rb filter combination can be understood from Fig. 8.7
and Fig. 8.10. The excited 5 P1/2 and 5 P3/2 states are connected to the hyperfine-split 5 S1/2

ground states by 8 and 12 allowed optical transitions, referred to as the D1 (λ = 795 nm) and
D2 (λ = 780 nm) resonance lines and indicated in Fig. 8.7 by dotted and full vertical lines,
respectively. The natural linewidths of these lines shown in Fig. 8.10 are about 6 MHz. As a
result of the Doppler and collisional broadening in the lamp, the two D1 lines starting from
the F ′ = 1 and the F ′ = 2 states (separated by 816 MHz) in general overlap and two lines
(νA and νB) are emitted which are separated by 6.83 GHz. Due to a fortuitous coincidence
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Figure 8.10: Measured Doppler-free absorption spectra of a mixture of 85Rb and 87Rb. a) D1 line
(λ = 795 nm). b) D2 line (λ = 780 nm).

(Fig. 8.10 a), the frequency of the transition F = 2 → F ′ = 1, 2 is only about 1.3 GHz lower
than the centre of the Doppler broadened D1 transition from the F = 3 state to the excited
F ′ = 3 and the F ′ = 2 states in 85Rb. In contrast, the separation between the transition of
87Rb designated as νB(F = 1) and the transition in 85Rb designated as (F = 2) is larger
than the Doppler widths and hence, the radiation νB from the 87Rb lamp is not absorbed in
the 85Rb filter. The situation is analogous for the D2 lines (Fig. 8.10 b). Consequently, behind
the filter cell the radiation from the lamp (Fig. 8.9) contains only the components νB, νB′ that
can excite the transition from the F = 1 ground state.

After a few absorption-emission cycles in the absorption cell, virtually all 87Rb atoms are
optically pumped into the F = 2 state and the absorption cell becomes transparent to the
filtered light, whose power is monitored with a photodetector. When the microwave radiation
is tuned into resonance with the 87Rb atoms in the absorption cell, transitions from F = 2
to F = 1 take place. Hence, the absorption of the λ = 795 nm radiation is increased with
an associated decrease of the signal from the photodetector. A servo electronics uses this
absorption feature at the microwave resonance to tune a crystal oscillator (VCXO) such that
the microwave frequency from the synthesiser is kept at the atomic resonance.

Discharge Lamp The discharge lamp contains a noble gas like krypton and about a mil-
ligram of rubidium which is either isotope enriched 87Rb or a mixture of 87Rb and 85Rb given
by its natural abundance. The rubidium atoms fluoresce in a radio frequency excited discharge
at an operational temperature of up to 140◦ C . Rubidium lamps are supposed to operate for
as long as twenty years. Even though the bulb of the lamp is made of alkali-resistant glass
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ageing during this time results, e.g., from the diffusion of the rubidium into the glass which
can be as high as 100 micrograms after one year of operation.

Absorption Cell In order to keep the Rb atoms in the Lamb–Dicke regime (see Sections 6.1,
10.1.4) the length L of the cell has to be L < λ/2 = c/(2ν) ≈ 2 cm where the wavelength
corresponding to the transition in free space is λ = 4.4 cm. For optimum signal-to-noise from
the resonance light transmitted through the absorption cell, it is important that the rubidium
vapour be neither too optically thin nor too dense. An appropriate density for the length of
a cell of about 1 cm ≤ L ≤ 2 cm is obtained by operating the cell at a temperature between
70 ◦C and 80 ◦C.

Rubidium absorption cells also contain a buffer gas for different reasons. The most im-
portant one is that the collisions with the cell walls lead to a large spin-relaxation rate and
hence limit the interaction time. Adding an inert gas like nitrogen or a rare gas like neon
leads to frequent collisions of the rubidium atoms with the particles of the buffer gas, thereby
increasing the time before the atoms reach the walls of the cell. Furthermore, the use of a
buffer gas avoids blackening of the glass cell due to the high chemical activity of alkali met-
als. The pressure of the buffer gas is chosen to be of the order of 1 kPa (680 Pa N2; [350] or
4 kPa Ne; [351]) to obtain diffusion velocities of the rubidium atoms of about 1 cm/s or below,
depending on the size of the cell.

The collisions of the rubidium atoms with the constituents of the buffer gas, in general
leads to a frequency shift of the resonance line. If the pressure is such that the rubidium atoms
predominantly suffer from two-body collisions with the atoms or molecules of the buffer gas,
the frequency shift at a given temperature is proportional to the pressure. Light buffer gases
like helium, neon or nitrogen lead to a positive pressure shift whereas rare gases of heavier
atoms like argon, krypton and xenon, reduce the frequency of the resonance. The collisional
shift under typical conditions for a single-component buffer gas can be as large as one kilo-
hertz, corresponding to a fractional shift of about 1.5 × 10−7. In order to keep the frequency
shifts that result from temperature fluctuations with the corresponding pressure fluctuations
small, a suitable mixture of two buffer gases is often chosen. For example, a mixture of 12%
neon and 88% argon at a pressure of 5.3 kPa leads to a fractional temperature shift of about
−1.5 × 10−9/K.

Buffer gases can be avoided if the walls of the cells can be coated with organic materials
like paraffin wax [352] that can reduce the spin-relaxation rate due to wall collisions by four
orders of magnitude. Other types of wall coatings, coating procedures, associated processes
for alkalis have been described by Stephens et al. [353].

Microwave Resonator Often microwave cavities sustaining the TE111 or TE011 modes are
used [354] with a loaded Qc

<∼ 400 of the microwave resonator including the resonance cell
[355]. To reduce the size of the rubidium frequency standard, which is limited by the size of
the microwave resonator, sometimes a magnetron-type microwave resonator is employed [266,
356]. Couplet et al. [356] report on a design where the magnetic field is concentrated at the end
region of the cell. In order to obtain an even more compact design, the functions of the filter
and the absorption cell were combined in a single cell. In this “integrated filter technique”,
the irradiance of the unwanted hyperfine components, e.g., νA, is steadily decreasing along
the light path in the cell and optical pumping becomes spatially dependent. The associated
processes are in general more complicated than discussed above.
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Electronics The electronics package has to serve several purposes. It contains the con-
trollers to keep the lamp, the filter and the absorption cell at their respective optimal tem-
peratures. The electronics package has also to provide the 6.83 GHz signal for interrogation
which is derived from a high-quality quartz oscillator in a phase-coherent way by means of a
synthesiser. The signal is frequency modulated and the associated variation of the photocur-
rent is phase-sensitively detected and used to stabilise the oscillator to the atomic transition.
Standard frequencies, e.g., 10 MHz, are provided directly which are derived from the quartz
together with a PPS signal. The power consumption of such rubidium standards is typically
below 10 watts for continuous operation but somewhat higher for the warm-up phase.

8.2.2 Performance of Lamp-pumped Rubidium Standards

As in any passive standard, the frequency instability of the rubidium standard is ultimately
limited by the fluctuations of the signal derived from the interrogation process. Provided
that the detected photocurrent exhibits white frequency noise the stability is determined by
the signal-to-noise ratio S/N of the photocurrent and the Qat factor of the atomic resonance
the ultimate stability of the lamp-pumped rubidium standard can be calculated using (3.96).
Couplet et al. [356] give for their rubidium standard an amplitude of the absorption dip of 1 μA
and a photocell current of 150 μA corresponding to 9× 1014 electrons per second from which
one calculates a shot-noise of 5 pA/

√
Hz. From the S/N ≈ 2×105

√
Hz and Qat ≈ 3.6×106

one calculates σy(τ ) ≈ 1.4×10−12/
√

τ/s. Due to other noise contributions and the dead time
in the interrogation scheme the observed instability is higher. In the best cases, lamp-pumped
devices show an instability of σy(τ ) >∼ 4 × 10−12

√
τ/s for 1 s < τ < 1000 s [355–358].

Depending on the environmental conditions and the particular device, the relative instability
may reach a flicker floor between 10−12 and 10−13 after about 1000 s. For times longer than
about 104 s the Allan deviation increases again mainly due to fluctuations of the frequency
shifts, resulting from the collisions of the rubidium atoms with the atoms or molecules of the
buffer gas and from light shifts.

Considering that different manufacturers use different compositions of the buffer gases
and that the filling pressure of different cells can be controlled only to a limited extent, it
is obvious that rubidium cell standards are not accurate frequency standards on their own.
Furthermore, in the long run, the composition and the pressure of the buffer gas and the Rb
vapour in the absorption cell can change, e.g., due to diffusion into the cell walls. As a result,
the frequencies of rubidium clocks are largely affected by ambient conditions, in particular
by the temperature. Typically, the sensitivity is Δν/ν ≈ 10−10/K. For applications requiring
less sensitivity to ambient temperature fluctuations, optimised design is expected to lead to a
sensitivity of 10−13/K [358].

Another effect that influences the frequency of rubidium clocks results from light shifts
that occur if the frequency of the light that is used for optical pumping is detuned from the
optical resonance frequency. The complicated processes involving temperature-dependent
Doppler shifts and broadenings, collisional shifts, isotope dependencies or processes associ-
ated with the filtering, may easily shift the centre of gravity of the lines and lead to a frequency
shift of the rubidium clock of a few hertz.

As a result of these influences rubidium clocks drift by a few times 10−11 per month [358].
To be used as frequency standards they have to be calibrated against more accurate standards.
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Consequently, the rubidium clocks are often “disciplined” [359] by GPS (see Section 12.5)
where the signals from the GPS satellites are used to long-term stabilise the frequency of the
oscillator in the rubidium standard. Depending on the instability of the rubidium clock and on
the conditions of the GPS signal, the disciplining algorithm is such that GPS takes over for
times above 1000 s or 10 000 s to ensure the long-term stability and accuracy.

8.2.3 Applications of Rubidium Standards

Rubidium frequency standards have their market since they can be compact with a volume of
a litre or below and are low priced. They are best used when instabilities in the 10−11 regime
are needed as this is where quartz crystals become very costly.

Rubidium clocks are used when timing is critical but the host device may need to perform
autonomously. As an example we consider a satellite where an internal clock is synchronised
via microwave links with clocks on Earth. Occasionally the connection may be interrupted
and, by re-establishing the contact, both the internal and Earth clocks must be synchronised to
maintain communication. As an example we consider the performance of the rubidium atomic
clock carried onboard the United States Milstar FLT-2 satellite in geo-synchronous orbit used
to provide secure military communications. After its activation in November 1995, the clock’s
linear frequency ageing rate was determined as +7 × 10−14 /day and 1 × 10−15(τ/s)−1/2

[360].
Similarly, rubidium clocks are used in base stations of cellular telephones where incoming

and outgoing signals received from and transmitted to the cellular phones must be synchro-
nised. The accuracy of the signal synchronisation is critical since often a large number of
cellular phones access the same site at the same time. Usually, GPS-disciplined rubidium
clocks are used where the rubidium clock acts as a fly-wheel providing the short-term stability
and the internal synchronisation in the case where there is an insufficient GPS signal.

Other areas where rubidium clocks are employed are audio broadcasting, analogue and
digital television transmissions, navigation, military communications and tracking, and guid-
ance control.

8.3 Alternative Microwave Standards

8.3.1 Laser-based Rubidium Cell Standards

Depite the simplicity of rubidium standards based on lamps the use of lasers for state prepara-
tion and detection of the microwave-induced hyperfine transition has distinct advantages. The
broad-band light from the lamp that does not directly contribute to optical pumping leads to
an increased background signal on the photodetector, with the associated degradation of the
achievable signal-to-noise ratio. Furthermore, near-resonant components of the light can limit
the number of excited atoms by de-excitation.

Consequently there have been many attempts to establish rubidium cell standards where
the lamp and filter is replaced by a laser for optical pumping. It has been shown that the
use of diode lasers in rubidium cell standards can reduce the instability to a few parts in
1013 [354, 361, 362] and improve the short-term stability between 1 and 10 seconds by an
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order of magnitude. However, the medium-term stability for τ > 100 s is still limited by
the effects on the buffer gas cell and by the light shift and hence, the flicker floor of around
7 × 10−13 [362] achieved with laser pumping has been reached also with lamp-filter designs.
The light shift can be largely reduced with a narrow-band laser whose frequency is kept exactly
at resonance at the expense of an additional stabilisation scheme thereby further reducing the
medium-term stability.

8.3.2 All-optical Interrogation of Hyperfine Transitions

Rubidium or caesium cell standards that can be even more compact and have much less power
consumption may be based on an interrogation scheme that avoids the microwave resonator
altogether. Interrogation of the hyperfine transition in an alkali vapour cell is accomplished
by using optical rather than microwave radiation [350]. Consider two coherent laser radiation
fields tuned such that they connect the two hyperfine ground states to either the 5P1/2 (D1 line)
or to the 5P3/2 states (D2 line) in the Λ configuration of Fig. 5.12 a). The interaction of the
two fields creates a coherence in the ground states by the coherent population trapping (CPT)
mechanism (Section 5.3.3.2). If the frequency difference of the two laser fields equals the
frequency difference of the two ground states, minimal absorption occurs, sometimes referred
to as electromagnetically induced transparency.

The resonance can be detected by several methods. One may use the small variation of
the absorption of the exciting beam present in the signal from a photodetector behind the
absorption cell. Alternatively, one may detect the fluorescence from the excited atoms. A
much more sensitive detection of the resonance signal superimposed on a weak background
signal can be obtained if the transmission of an additional weak probe beam is detected [350].

The two optical frequencies necessary for the optical interrogation can be supplied either
by two phase-locked diode lasers or by a single-frequency single-mode diode laser whose
injection current is modulated to produce phase-coherent side bands, besides the laser carrier
frequency. For the latter use, Vertical-Cavity Surface Emitting Lasers (VCSELs) with a high-
quality single-spatial and spectral mode are well suited as they exhibit extraordinarily high
modulation bandwidths of up to 10 GHz.

We discuss the principal scheme of such a clock (Fig. 8.11) according to Kitching et al.
[363] where the first-order optical sidebands of the laser, used to interrogate the ground-state
coherence of the caesium atoms, were generated by the 4.6 GHz (3.2 GHz in case of 87Rb)
modulation frequency synthesiser which was driven by a 5 MHz VCXO.

The 10 kHz servo system was used to stabilise the optical frequency of the laser close
to the Doppler-broadened absorption line, having a width of about 1.4 GHz. The 0.5 kHz
servo system stabilised the side-band frequency to the dark-line resonance of a width of about
100 Hz. A small magnetic field was applied to select the Δm = 0 transition. The fractional
frequency instability of such a low-power, small scale frequency reference was demonstrated
to be σy(τ ) < 3 × 10−11(τ/s)−1/2 for 1 < τ < 105 s.

The optical interrogation of the hyperfine transition is seriously affected by light shifts.
Zhu and Cutler [364] have investigated the light shift in systems comprising either two phase-
locked lasers or a single frequency-modulated laser. They found that the total light shift could
be controlled by adding extra frequency components which can be produced, e.g., by changing
the index of the current modulation. The short-term stability of such a CPT-based rubidium
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Figure 8.11: Schematic of a compact cell-based frequency reference.

vapour cell standard has been reported as σy(τ ) = 1.3 × 10−12(τ/s)−1/2 with a flicker floor
reached below 2 × 10−13 for 100 s to 10 000 s [364].

A different method used stimulated Raman scattering in Rb vapour [351] where a laser
beam was tuned about 1 GHz from the Rb D1 transition at 795 nm. Due to the stimulated
Raman scattering related to dark lines in the Rb cell a second optical field is generated, co-
propagating with the first one, but frequency shifted by the ground-state hyperfine splitting.
Both radiation fields produce a beat note signal on a fast photodetector with the frequency
coinciding with the one of the hyperfine transitions of Rb or Cs that can be used to lock an
oscillator.

The ongoing quest for more compact, cheaper and less power-consuming atomic clocks
requires the reduction of the size of the absorption cell. Conventional glass-blowing tech-
niques can lead to cell volumes of a few mm3 but the production and filling procedures for
each cell place severe limitations on a low price and therefore on widespread use for, e.g.,
replacing quartz oscillators. Chip-scale atomic clocks have been suggested [365, 366] based
on small-scale vapour cells. A concept has been proposed where a silicon spacer with a
large number of regularly arranged holes each of 1.5 mm diameter is anodically bonded in
the desired buffer gas environment to two pyrex wafers, forming the windows. The com-
posite wafer can later be cut, leading to a large number of single buffer gas cells [366, 367].
The buffer gas pressure in miniature vapour cells has to be increased as the wall collisions
for a given pressure increase with reduced cell dimensions. In a miniature caesium vapour
cell containing temperature-compensated N2/Ar buffer gas at 65 ◦C at a pressure of 12 kPa, a
linewidth of 0.44 kHz (Qat ≈ 2 × 107) has been observed leading to an Allan deviation of
σy(τ ) = 1.5 × 10−10(τ/s)−1/2 falling below 1 × 10−11 for 1000 s [366].





9 Laser Frequency Standards

Lasers represent oscillators with frequencies from the terahertz to the petahertz regime
(1012 − 1015 Hz). Lasers operating in the visible part of the electromagnetic spectrum exceed
the frequencies of the oscillators in the microwave domain by about five orders of magni-
tude and often show frequency stabilities that are highly competitive to the best microwave
oscillators. Hence, when the same measurement uncertainty has to be achieved, frequency
comparisons between two oscillators in the optical regime can be performed within a much
shorter time than between microwave oscillators. In the optical regime there are highly for-
bidden transitions that can be used for stabilising the frequency of a laser oscillator. The
reduction of the wavelength associated with the increase in frequency, however, leads to par-
ticular difficulties as it is much harder to eliminate the influence of the Doppler effect with the
desired accuracy. Consequently, much work has been devoted in the past years to developing
Doppler-free methods that can be applied to optical frequency standards.

Depending on the application, the design of laser frequency standards has followed two
different routes. One approach relies on easy–to–operate and simple lasers and uses preferably
molecular references with transitions that coincide fortuitously with the frequencies of those
lasers. The iodine stabilised He-Ne laser at 633 nm (Section 9.1.3), which is used as a fre-
quency and wavelength standard for the realisation of the length unit, represents a prominent
example of this group discussed in Section 9.1. The second strategy first identifies an “ideal”
atomic, ionic, or molecular reference and makes use of a tuneable laser, e.g., a dye laser or a
diode laser to access the corresponding transition frequency. This approach is often chosen if
the highest accuracy is desired.

The particular laser oscillators used for both groups of standards furthermore differ with
respect to their inherent noise properties. As an example, consider the power spectral noise
densities of a He-Ne laser and a dye laser (Fig. 9.1). At low Fourier frequencies, in both
cases technical noise sources are dominating and the resulting laser linewidth is approximately
Gaussian. Without proper reduction of these noise contributions the resulting laser linewidth is
much larger than that of the Lorentzian expected for quantum noise [369]. For higher Fourier
frequencies the noise spectra differ substantially and, hence, in this chapter both groups will
be discussed separately beginning with the gas laser frequency standards (Section 9.1). After-
wards (Section 9.2) suitable methods will be discussed that allow one to narrow the linewidths
and to stabilise the frequencies of the lasers used as oscillators for optical frequency standards.
In Section 9.3 we will treat tuneable lasers where the spectral width of the gain medium of the
lasers can extend over a considerable fraction of the spectrum. The larger this width the more
provisions have to be made to suppress all but one of the possible laser modes.
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Figure 9.1: Power spectral densities of frequency fluctuations of a free-running dye laser with
two different nozzles (lines; courtesy of J. Helmcke) and a He-Ne laser (dots; from [368]).

In the last section of this chapter several optical frequency standards based on neutral
absorbers will be treated in more detail. Optical frequency standards based on ionic absorbers
will be described separately in Chapter 10 together with the microwave ion standards.

9.1 Gas Laser Standards

The He-Ne laser was one of the very first examples of an optical frequency standard. Owing
to its simplicity it is still widely employed in different set-ups and wavelength regions for use
as optical wavelength standards of moderate to high accuracy. Other gas lasers used for these
purposes are CO2 lasers and to a lesser extent Ar+ lasers.

9.1.1 He-Ne Laser

In the He-Ne laser the amplifying medium is provided by neon atoms that are efficiently
pumped into the excited states predominantly by excited helium atoms. In a glass capillary
a mixture of helium and neon at a pressure pHe

<∼ 200 Pa and pNe
<∼ 10 Pa is excited in an

electrical discharge. The discharge is started by an electrical breakdown when an electrical
voltage of several thousand volts is applied and it is sustained by a voltage of about 1.5 kV or
higher.

Helium atoms are excited by collisions with electrons in the discharge to the 2 1S0- and
to the 2 3S1-states. Collisions between the excited helium atoms and the neon atoms lead to a
transfer of the energy from the excited He atoms to the Ne atoms according to

He∗ + Ne → He + Ne∗ + ΔE. (9.1)
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Figure 9.2: Energy levels of helium and neon relevant for the He-Ne laser.

These inelastic collisions are nearly resonant, particularly since the energies of the 3s2 and
2s2 levels of the Neon atoms are close to the energy levels 23S1 and 21S0 of the Helium atoms
(Fig. 9.2).1

As a consequence of the population of the higher energy levels, population inversion of
the neon atoms can be achieved. From these excited states a variety of different radiating
transitions into energetically lower states occur which can be utilised for stimulated emission
(e.g. the well known transition 3s2 → 2p4 at 633 nm; see Table 9.1).

Table 9.1: Selected transitions of the He-Ne laser used for optical frequency standards. Detailed
descriptions of the operational procedures can be found in [95, 370].

Transition Wavelength Stab. frequency Absorber
LS coupling 1 Paschen nm THz

5s 1Po
1 → 4p 3P2 3s2 → 3p4 3.391 μm 88.376 181 600 18 CH4

4s 1Po
1 → 3p 3P2 2s2 → 2p4 1.153 μm 260.103 404 2 127I2

5s 1Po
1 → 3p 3P1 3s2 → 2p2 0.640 μm 468.218 332 4 127I2

5s 1Po
1 → 3p 3P2 3s2 → 2p4 0.633 μm 473.612 353 604 127I2

5s 1Po
1 → 3p 1D2 3s2 → 2p6 0.612 μm 489.880 354 9 127I2

5s 1Po
1 → 3p 3S1 3s2 → 2p10 0.543 μm 551.579 482 97 127I2

1 The electron states of the helium atoms are given in the LS coupling scheme. The excited states of neon with the
ground state configuration of 1s22s22p6 in Fig. 9.2 result from a single electron excited to the 3s, 4s, · · · , or 3p,
4p, · · · states and the remaining shell 1s22s22p5. The departure from the LS coupling scheme in neon allows
the LS designations to be used only in a few cases [94] and often a different, purely phenomenological, notation
according to Paschen is used, where the sub-levels of the excited electrons are counted from 2 to 5 for s states and
from 1 to 10 for the p states (see Table 9.1).
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The lower 2p4 laser state of the 633 nm line radiatively decays further to the 1s levels. At
higher pressure this state is re-populated by radiative capture and at higher discharge current
by collisions with electrons thus increasing the effective lifetime τ2 ≥ 20 ns of the lower laser
level. The 1s states are effectively de-populated by collisions with the wall. The design

Figure 9.3: Schematics of a Helium-Neon-laser

of the He-Ne laser (Fig. 9.3) takes these peculiarities into account. The discharge current in
a capillary is limited to a current of 5 mA <∼ I <∼ 20 mA by a series resistor (R ≈ 70 kΩ).
The discharge tube is sealed either with laser mirrors forming the optical laser resonator or
with Brewster angled windows which allow reduction of the Fresnel reflection losses in the
window, at least for one polarisation component. In the latter case external mirrors attached
to a rigid framework make up the optical resonator.

The natural linewidth of any transition is determined by the lifetimes of the initial and final
states (see (2.38)). Using the lifetimes τ1 ≈ 10 ns and τ2 ≈ 20 ns of the 3s state and the 4p
state, respectively, one calculates the natural linewidth of the 633 nm-laser transition as Δν ≈
20 MHz. In the laser this line is homogeneously broadened, i.e. broadened by mechanisms
that affect all absorbers homogeneously. These mechanisms include pressure broadening by
collisions (FWHM ≈ 20 MHz) and saturation broadening (FWHM < 100 MHz). The largest
(inhomogeneous) line broadening effect results from the Doppler shift which is different for all
atoms. From (5.115) one calculates for neon at λ = 633 nm a width of the Doppler broadened
line of about 1.5 GHz.

For a typical length of the laser resonator (Fig. 9.3) of L = 30 cm, the frequency separa-
tion of the longitudinal modes is FSR = c/2L ≈ 500 MHz. In general, more than one mode
can overcome the threshold within the gain profile (Fig. 9.4) where the particular laser modes
interact with different velocity classes. If the free spectral range is smaller than the homo-
geneous linewidth, different modes interact with the atoms of the same velocity class leading
to a coupling of these modes. In such a case the mode with the highest number of photons
uses up the gain and the modes with less photons die out. Strong mode coupling is observed
in the argon ion laser and in diode lasers. The distribution of the modes need not be tempo-
rally stable since a particular mode can start oscillating as a consequence of, e.g., the length
fluctuation of the laser resonator. Like any other amplitude modulation (see Section 2.1.2) the
fluctuations of the amplitudes of the particular modes necessarily lead to a broadening of the
linewidth of the laser, commonly referred to as mode-partition noise.
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Figure 9.4: Two-mode operation of a
laser with a free spectral range (FSR)
smaller than the gain profile. Dashed-
dotted line: laser threshold.

The noise sources of a gas laser like the He-Ne laser are mainly of technical origin resulting
from the fluctuations of the discharge current and of the length of the resonator. The latter ones
are affected, e.g., by fluctuations of the temperature, by mechanical vibrations of the set-up or
by acoustical perturbations of the ambient air. The corresponding contribution of the technical
noise to the power noise spectral density (Fig. 9.1) is dominating for Fourier frequencies below
about 10 kHz. For higher Fourier frequencies where this contribution rapidly rolls off, the
white noise resulting from the spontaneous emission becomes dominant. For a laser power
of P = 1 mW, a length of the resonator L = 30 cm and a reflectivity R = 0.98 we expect
a Schawlow–Townes linewidth (3.71) of about 18 mHz that translates to a power spectral
density (3.70) of Sν ≈ 6 × 10−3 Hz2/Hz. Hence, a servo bandwidth of a few kilohertz is
sufficient for effectively stabilising the frequency of a He-Ne laser.

9.1.2 Frequency Stabilisation to the Gain Profile

The gain curve of a He-Ne laser resulting from the Doppler broadening of the atomic laser
transition has a typical linewidth of about 1.5 GHz. For a resonator whose length is short
enough that the free spectral range is larger than the gain profile single-frequency operation
is achieved, however, this frequency can be located at any frequency between νA and νB

(Fig. 9.4). The corresponding relative frequency uncertainty of a free-running He-Ne laser of
Δν/ν = 1.5 GHz / 473.6 THz≈ 3 × 10−6 can be reduced if the laser frequency is kept at
a well defined position of the gain profile. The frequency dependence of the output power
on the gain profile of the He-Ne laser has been utilised in a variety of convenient and cheap
means to stabilise the laser frequency.

9.1.2.1 Two-mode Stabilisation

Consider a gas laser where the length of the resonator and, hence, the axial mode separation
is chosen such that over a large tuning range only two adjacent axial modes oscillate. Such a
situation is typically encountered if the length of the resonator is about 30 cm corresponding
to a mode separation of 500 MHz. Using laser tubes without apparent polarisation-dependent
losses i.e. with internal mirrors rather than Brewster angled mirrors, these two modes in
general are polarised orthogonally since in this case the two modes experience reduced mode
competition losses. The two orthogonally polarised modes can be easily separated behind
the rear mirror in a polarising beam splitter, e.g., a Wollaston prism (Fig. 9.5). When the
length of the resonator is tuned both modes move across the gain profile and produce different
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Figure 9.5: Two-mode polarisation scheme. The laser operates simultaneously with two orthogonally
polarised modes (I and II), a) that are spatially separated by means of a Wollaston prism W, and whose
powers are measured with two photodiodes. The difference of the signals from the two photodiodes can
be used to generate a non-zero error signal, b) when the two modes have different intensities.

signals at the respective photodetectors behind the polarising beam splitter. Provided that both
photodetectors have the same sensitivities and that the gain curve is symmetric the difference
of both signals shows an anti-symmetric discriminant curve (Fig. 9.5 b) with a zero crossing
at the line centre, i.e. at the atomic resonance. The difference signal can be used to stabilise
the frequency of the laser where the frequencies of both modes are symmetrical with respect
to the gain curve. The anti-symmetric shape of the error signal allows the servo amplifier to
discriminate whether the length of the laser resonator has to be increased or reduced after a
perturbation to set the laser frequency back to the reference frequency.

The two-mode stabilisation technique [371] is frequently used for He-Ne lasers operating
in the red (λ = 633 nm) or green (λ = 543 nm) spectral range. The simplicity of the two-mode
stabilisation with two orthogonally polarised resonator modes makes it useful for operation
in interferometers, in particular in combination with heterodyne interferometers. Caution has
to be exercised if one mode is suppressed, e.g., by a polariser. Since the remaining mode
is not in the centre of the gain profile the mode frequency can be stabilised to either side of
the gain profile depending on the polarity of the difference signal. When such a laser is used
as a frequency or wavelength standard this frequency shift has to be corrected accordingly.
Difficulties of the two-mode stabilisation technique sometimes arise with lasers as, e.g., the
He-Ne laser at 543 nm where the modes change their polarisations when going through the
centre of the gain profile. These polarisation jumps can be suppressed by placing a magnet
near the gain tube [372]. Moreover, the electronic lock point may be shifted by unbalanced
gain of the photodiodes and by electronic offsets.

Investigations of the frequencies of polarisation stabilised He-Ne lasers at λ = 633 nm
during a period of more than two years showed a drift of about 5 MHz [373] corresponding to
a fractional frequency variation of 10−8. These lasers often show frequency changes of similar
magnitude which can be attributed to fluctuations of external magnetic fields, temperature
fluctuations and ageing due to pressure loss in the gain tube.



9.1 Gas Laser Standards 261

9.1.2.2 Zeeman Stabilisation

If the laser tube is placed in an axial magnetic field the energy levels of the neon atoms in
the amplifying medium are shifted due to the Zeeman effect with the shift being proportional
to the applied magnetic field. As a consequence, the laser line splits into two oppositely cir-
cularly polarised waves, the frequencies of which differ depending on the magnetic field by
typically 300 kHz to 2 MHz. In a Zeeman stabilised laser the two circularly polarised waves
are converted into two orthogonally linearly polarised waves by means of a quarter-wave plate.
Similarly to the case of the two-mode stabilised laser (Section 9.1.2.1) the difference in the
powers of the two waves detected by two detectors can be used to stabilise the laser frequency.
An alternative method [374] uses the fact that, due to the strong dispersion, the index of re-
fraction in the centre of the laser line varies with the frequency of the laser line. The difference
frequency of both Zeeman modes therefore shows a minimum at the line centre that can be
utilised to stabilise the laser frequency. When the Zeeman splitting is used for frequency sta-
bilisation the frequency difference of both modes is much smaller than the separation of the
two resonator modes in the two-mode stabilised laser. The higher slope of the discriminant
curve leads to a higher gain in the servo system. On the other hand this advantage is paid for
by a reduced locking range.

9.1.2.3 Lamb-dip Stabilisation

Consider a laser where only a single resonator mode is excited with the eigenfrequency νL.
When the laser frequency νL is tuned as a function of the length of the resonator the output
power exhibits a sharp minimum in the centre of the Doppler-broadened absorption line. This
minimum has been predicted by Willis Lamb Jr. [375,376] and, hence is often referred to as the
Lamb dip. Its origin is understood by considering a standing wave in the linear laser resonator.
The standing wave can be thought to result from two counter-propagating running waves with
wave vectors �k and −�k. These waves are in resonance with atoms whose velocities �v ′ satisfy
the Doppler condition νL − ν0 = �k · �v ′. At νL �= ν0 the two waves interact with different
velocity groups. At the corresponding frequencies spectral holes are burnt into the velocity
distribution (see Fig. 6.14 b). If the frequency νL of the laser is tuned to the frequency ν0 (see
Fig. 6.14 c) of the laser transition by changing the length of the laser resonator both waves
interact with the same velocity class. The velocity of these atoms is characterised by a zero
Doppler shift along the axis of the laser beam (say the z axis), i.e. by the velocity (vz = 0).
In general, the transition of this velocity group is more saturated as in atoms with a velocity
far from resonance (νL �= ν0) and, hence, the absorption is reduced. As a result, a smaller
laser power is sufficient to reach the equilibrium condition where the saturation is increased to
lower the gain to the extent needed to compensate for the losses. The Lamb dip thus provides
a more narrow spectroscopic feature than the gain profile itself and can be utilised to stabilise
the frequency of the laser.

The different types of gain stabilised lasers discussed so far have in common that the active
laser medium itself is used for the frequency stabilisation, allowing one to build compact and
simple devices. For optical frequency standards these methods suffer from the disadvantage
that any variation associated with the laser medium, in general affects the frequency of the
laser. Examples include the fluctuation of the discharge current with the associated effects on
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the temperature, the electromagnetic field in the plasma or the index of refraction in the laser
medium. To overcome these and other deficiencies in the iodine-stabilised He-Ne laser, the
absorber (iodine) and the lasing medium (neon) consist of different species which are spatially
separated.

9.1.3 Iodine Stabilised He-Ne Laser

The absorption spectrum of the iodine molecule (see Section 5.2.2) has myriads of hyperfine
transitions in the green and red part of the visible spectrum and fortuitous coincidences oc-
cur with the emission lines of the He-Ne laser (see Table 9.1). Following the early work of
Hanes and Dahlstrom [377] the emission frequencies of many gas lasers have been stabilised
to iodine absorption lines. Most widely used is the He-Ne laser at λ = 633 nm where the
coincidence between the Doppler broadened emission line of the isotope 22Ne and the vibra-
tional transition 11-5 of the R(127) line of the isotope 127I2 is utilised. As a matter of fact,
these absorption lines are weak and the irradiance required to detect the absorption signals
with good signal-to-noise is in general not available in the output beam from a He-Ne laser.
The irradiance can be increased by about two orders of magnitude if the absorbing medium is
placed inside the laser resonator (Fig. 9.6).

Figure 9.6: Schematics of an iodine stabilised He-Ne laser with the absorption cell inside the
laser resonator: PZT, piezo actuator; PSD, Phase-sensitive detector.

Owing to the thermal velocity distribution of the iodine molecules in the absorption cell
the hyperfine lines of iodine are Doppler broadened. For arbitrary laser frequency νL both
counter-propagating laser beams inside the resonator in general interact resonantly with dif-
ferent Doppler-shifted velocity groups. If, however, the frequency of the laser coincides with
an unperturbed transition frequency of the molecules, both laser beams are interacting with
the same velocity group of molecules having zero velocity in the direction of the laser beams.
Correspondingly, the absorption of these molecules is reduced due to the saturation of the
corresponding non-linear absorption. Hence, the absorption losses inside the laser resonator
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decrease and the output power of the laser increases. For the conditions of the typical iodine
stabilised He-Ne laser at λ = 633 nm the output power increases by only about 0.1 %. Often,
this variation is not directly detectable as a result of the amplitude noise associated with the
discharge. Furthermore, the output power varies by about 10 % when the laser frequency is
tuned across the absorption profile. In order to stabilise the frequency to the centre of the weak
feature on a large and varying background, first- and higher-order modulation techniques are
applied.

9.1.3.1 First-, Third- and Higher-harmonic Detection

To detect the absorption signal buried in the noise the frequency of the laser is modulated
across the line and the corresponding synchronous variation of the laser power is phase-
sensitively detected (Fig. 9.6). To modulate the laser frequency the length L of the resonator
is periodically changed with a few kilohertz by modulating the high voltage applied to the
piezoelectric transducer (lead zirconium titanate; PZT) supporting one of the laser mirrors.
The phase-sensitive detector (PSD) consists of a lock-in amplifier that changes the polarity
each half-cycle of the modulation signal which is later integrated. Due to the change of the
polarity with the modulation frequency all frequency components in the detected signal inte-
grate to zero except for the one occurring with the modulation frequency.

Consider a given variation of the output power PL(ω) of the laser with the laser angular
frequency ω representing, e.g., a narrow absorption feature on a frequency dependent Doppler
background. As a consequence of the harmonic modulation of the angular frequency of the
laser around the laser frequency ω0, the output power of the laser varies as

PL(ω) = PL(ω0 + Δω sin ωmt) (9.2)

where Δω is the amplitude of the frequency modulation. One finds from Taylor’s expansion

PL(ω) = PL(ω0) + Δω sin ωmt
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that the output power PL(ω) contains higher-order components of sinn ωm. According to the
trigonometric rules for the harmonic functions, sinn ωm contains terms ∝ sin n ωm. Hence,
PL(ω) includes contributions with higher harmonics nωm of the modulation frequency. Ac-
cording to (9.3) the amplitude of this contribution is proportional to the nth derivative of the
output power of the laser.

In the typical set-up of the iodine stabilised He-Ne laser stabilised with the third-harmonic
technique (Fig. 9.6) the angular frequency components around 3ωm are filtered from the de-
tected signal and fed into the lock-in amplifier which is triggered by the angular frequency of
3ωm. This signal of the third harmonic (Fig. 9.7) does not contain the constant, linear and
quadratic contributions of the background since it is proportional to the third derivative of the
signal rather than to the signal itself. Hence, the central zero crossings of the signal (Fig. 9.7)
are not shifted by these contributions and correspond, to a good approximation, to the centre
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Figure 9.7: Signal of the third harmonic of the iodine 127I2 hyperfine components in the
R127 (11-5) rotational line. The frequency value of the central zero crossing of the “f”
line as recommended by the International Committee of Weights and Measures (CIPM) is
473 612 353 604 kHz [370].

frequencies of the respective absorption lines and can be utilised for frequency stabilisation of
the laser.

Even-order derivatives showing a maximum or minimum at the position of the maximal
absorption are not suited for frequency stabilisation, in contrast to the odd-order derivatives
exhibiting a zero crossing at the frequency where a maximum or minimum of the absorption
occurs.

As a result of intercomparisons performed between the lasers operated in the different
national metrology institutes over more than thirty years, the reproducibility of the iodine
stabilised He-Ne laser is well documented (see e.g. [378, 379] and references therein). The
frequency of the stabilised laser is known to depend on a number of operational parameters
like the amplitude Δω of the frequency modulation, the vapour pressure in the iodine absorp-
tion cell, or the laser power in the cavity. The variation of the frequency of the laser with
the modulation amplitude can be explained by the effect of the residual Doppler background
together with an asymmetry of the absorption line. The temperature of the cold finger of the
iodine cell changes the vapour pressure and, hence, affects the rate and duration of the col-
lisions of the iodine molecules leading to a pressure broadening and shift of the absorption
line. The dependence of the frequency on the laser power results from the modification of the
saturation parameter in the iodine cell and by a modification of the index of refraction in the
gas discharge. The latter may lead to a gas lens and hence to a distortion of the wave front of
the laser radiation with an associated first-order Doppler shift.

Typically, the frequency varies by 6 kHz/Pa near 15 ◦C and by -10 kHz/MHz as a con-
sequence of the pressure and modulation dependency, respectively. International compar-
ison showed that the frequencies of the majority of the iodine stabilised He-Ne lasers at
λ = 633 nm coincide to about 10 kHz provided all lasers are operated under the same con-
ditions. These standard conditions have been laid down in a recommendation by the Interna-
tional Committee of Weights and Measures (CIPM) [370]. The wall temperature of the iodine
cell should be kept at 25 ◦C ± 5 ◦C with a cold finger temperature of 15 ◦C ± 0.2 ◦C to keep
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the vapour pressure fixed. The full width of the modulation of the laser frequency is 6 MHz ±
0.3 MHz and the internal power of one of the counter-propagating waves should be 10 mW ±
5 mW. If these conditions are met and “good practice” is provided [370] a relative uncertainty
of the frequency of the laser of 2.5× 10−11 can be expected. The magnitude of the frequency
dependence of the stabilised laser varies for lasers of different design. In order not to exceed
the estimated relative uncertainty of 2.5× 10−11 this contribution must be smaller or equal to
1.4 kHz/mW.

With the possibility at hand to measure the frequencies of a particular standard more reg-
ularly and at different locations by using femtosecond laser frequency combs (Section 11.5) it
has been shown [380] that a particular laser was reproducible to 1×10−12 after transportation.

Even though the third-harmonic technique is capable of largely reducing the contributions
of a non-linear background, there are higher-order contributions. Hence, a fifth-harmonic
modulation has been used sometimes. Frequency offsets between the third- and fifth-harmonic
techniques have been observed for different hyperfine components (d to g) in the range from
26 kHz to 35 kHz [379]. This indicates that the actual frequency of the iodine stabilised He-Ne
laser differs considerably from the frequency of the respective transition in the unperturbed
iodine molecules. The frequency reproducibility attributed to this type of standard critically
depends on the extent of similarity of the design and operation.

The frequency modulation of the output of the iodine stabilised He-Ne laser is disadvan-
tageous in cases where another laser or an interferometer is to be locked precisely to the
standard. It has been demonstrated, however, that the dither modulation can be removed al-
most completely by use of an external acousto-optical modulator (AOM) [381]. In this work
the AOM was operated in a double-pass configuration to avoid beam-displacement induced
amplitude modulation. When the AOM was driven by the same frequency used to dither
the iodine-stabilised laser with a suitable phase shift and a properly adjusted amplitude, the
linewidth of the dither modulated laser could be reduced from 6 MHz to a few kilohertz. In
principle, negative feedback alone could be used to suppress a measured frequency modu-
lation. Taubmann and Hall [381] found, however, that this technique gave inferior results
compared to a feed-forward technique, as a result of the added noise in the servo system with
the required large bandwidth.

9.1.4 Methane Stabilised He-Ne Laser

The coincidence of the 3.39 μm radiation of the He-Ne laser (Fig. 9.2) with the methane
transition ν3, P(7) component F(2) has led to the development of a high-accuracy optical
frequency standard which is also recommended for the realisation of the metre (see Table 13.1;
[370]). Since the CH4 molecule is highly symmetrical its energy levels are not easily perturbed
and, hence, the frequency shifts associated with external perturbations are small. Compared
to the iodine molecule the methane molecule has a low mass which leads to a large velocity at
room temperature (see Table 9.2). To reduce the associated transit-time broadening, stationary
lasers and portable lasers have been set up [382–384] with beam diameters in the absorption
cell of up to 20 cm and more. These lasers allow one to resolve the hyperfine-structure triplet
with a frequency separation of about 11 kHz (Fig. 9.8) or even the recoil doublet in each
line separated by 2.15 kHz [217]. In the Lebedev Physical Institute a laser system was
operated [383] comprising three He-Ne lasers. They were used as a reference laser with
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Figure 9.8: Double recordings of the first derivatives of saturated dispersion signals obtained
with two different CH4 stabilised He-Ne lasers. a) transportable laser, beam diameter 60 mm.
b) Stationary laser, beam diameter 200 mm. Courtesy of M. Gubin.

narrow emission spectrum, a single-mode heterodyne laser and a main laser with a telescopic
beam expander inside the cavity to resolve the hyperfine structure of methane. The first and
third laser were operated in a double-mode regime where saturated absorption and saturated
dispersion resonances were used to stabilise the laser to the methane transition. Saturation
dispersion resonances were recorded by monitoring the beat frequency between both modes
which varies owing to the frequency pulling effect near the centre of the absorption line. A
frequency-to-voltage converter delivered the voltage as the fast error signal that was used to
lock the laser. Transportable standards of this kind have been shown to have a frequency
reproducibility for different devices of 1 × 10−12 and a frequency repeatability for a single
device of 2 × 10−13 during several months [385]. Bagayev and co-workers [384] reported on
a similar transportable CH4/He-Ne laser system employing three lasers. The measured Allan
deviation showed a minimum of 5 × 10−15 at τ ≈ 10 s. The reproducibility over three years
was given as 30 Hz (Δν/ν ≈ 10−12).

With stationary systems, much higher resolutions of the absorption feature can be obtained
when only the slowest molecules are selected. The laser operated at the Institute of Laser
Physics in Novosibirsk [221] comprised an 8 m long internal absorption cell which was cooled
to 77 K. The slowest molecules were selected optically (Section 6.5.2) i.e., by applying low
laser power to saturate the transition only in the slowest molecules. At a pressure of 6 ×
10−4 Pa, Bagayev et al. [221] obtained a full width at half maximum of about 100 Hz. The use
of the cold absorbers at the same time reduces the second-order Doppler effect considerably.

Compared to the F line the E line of the P(7) transition does not show a hyperfine splitting
and, hence, has the potentially higher accuracy. The E line with its frequency about 3 GHz
lower than the F line can be accessed by a Zeeman shifted He-Ne laser or by a tuneable source
like an optical parametric oscillator. The frequency of the E line has been determined with
respect to the Cs atomic clock as νE = 88 373 149 028 553 ± 200 Hz [386].

Owing to its simplicity and high frequency accuracy based on early frequency measure-
ments [370,388–393] the methane stabilised HeNe laser has been used often as a starting point
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Table 9.2: Comparison of properties of I2 and CH4 relevant to optical frequency standards at
532 nm and 3.4 μm, respectively, after [387].

I2 CH4

Transition a10 (line # 1110 [108]) F2 - P(7) in the ν3 band
Natural linewidth 380 kHz 10 Hz
Doppler broadening 430 MHz (300 K) 275 MHz (300 K)
2nd order Doppler shift 5 × 10−12 10−12

Pressure broadening 0.11 MHz/Pa 0.11 kHz/Pa
Pressure shift 4 kHz/Pa 1 Hz/Pa
Transit-time broadening 5 kHz 170 kHz

(2 w0 = 2 mm, 300 K) (2 w0 = 2 mm, 77 K)
Saturation broadening 660 kHz

√
1 + I/Isat 500 kHz

√
1 + I/Isat

ac Stark shift 25 kHz/mW
(linearised at 1 mW)

dc Stark shift 1 kHz/(V/cm)
1st order Zeeman shift 2 kHz/mT
2nd order Zeeman shift 0.1 kHz/(mT)2

Hyperfine splitting ≈ 10 MHz 11 kHz
Recoil splitting 5.55 kHz 2.2 kHz

for frequency chains to the visible and UV region to perform measurements of the highest ac-
curacy [394, 395].

9.1.5 OsO4 Stabilised CO2 Laser

The two three-fold degenerate vibrational oscillations of the symmetry type F2 in the OsO4

molecule occurring at ν3 = 28.9 THz [396] coincide with the emission spectrum of the CO2

laser and thus can be used to set up a frequency standard near 9.6 μm. The natural abundance
of the isotopes 192Os, 190Os, and 189Os is 41.0 %, 26.4 %, and 16.1 %, respectively. Like the
CH4 molecule, the OsO4 molecule belongs to the spherical top molecules. In each of these
molecules the principal moments of inertia are the same for rotations around the principal axes
of the molecule. There are three different types of rotational levels referred to as A, E and F.
In the molecule 192Os16O4 the nuclear spin of the four identical nuclei is zero and only the
A rotational levels occur. Systematic frequency shifting effects are small in OsO4 stabilised
lasers since the energy levels are not easily perturbed by external fields. In the even isotopes
of osmium there is no hyperfine structure. Owing to the high mass of the OsO4 molecule the
effects resulting from the second-order Doppler effect and the recoil splitting (≈ 15 Hz) are
small.

CO2/OsO4 frequency standards have been set up in several laboratories [222, 397–403].
A typical standard [402] comprised a 1 m long sealed CO2 laser whose frequency was locked
on the third derivative of the OsO4 saturation peak. In this laser the OsO4 absorbers were kept
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in a cell of 1.5 m length kept inside a Fabry–Pérot high-finesse build-up cavity that allowed
the transitions to be saturated with less than 1 μW of external laser power. The Fabry–Pérot
cavity was modulated and a first-harmonic detection technique was used to keep the centre fre-
quency on the molecular resonance. By comparing two independent systems over six months
a fractional reproducibility of 2 × 10−13 has been found [403]. A short-term instability of
σy(τ ) = 6.6 × 10−14(τ/s)−1/2 up to τ = 300 s with a minimum of the Allan deviation of
4 × 10−15 near about 500 s has been reported [404].

Several absolute frequency measurements have been performed (see e.g. [397, 398, 403,
405, 406] and references therein) with a fractional uncertainty as low as 7 × 10−13. Some
of the frequencies of the OsO4 stabilised laser have been included into the list of radiations
recommended by the CIPM for the realisation of the metre [370]. 189OsO4 and 197OsO4 with
odd osmium isotopes and, hence, with hyperfine structure have been utilised to determine the
spin-rotation constants and to set up a different grid of frequencies [407]. By selecting slow
molecules in an 18 m long gas cell, a linewidth as low as 160 Hz at a pressure of 2 × 10−4 Pa
has been reported [222].

9.2 Laser-frequency Stabilisation Techniques

The frequency of lasers can be stabilised by using the dispersive or absorptive feature of a suit-
able resonance frequency supplied by either microscopic references such as atoms, molecules,
and ions or macroscopic ones provided, e.g., by a Fabry–Pérot resonator. Polarisation spec-
troscopic or rf phase-modulation spectroscopic techniques are characterised by a very high
sensitivity. As an example of the former one we discuss the Hänsch–Couillaud technique in
Section 9.2.1. A particular phase-modulation spectroscopic method, referred to as Pound–
Drever–Hall technique, is often used to pre-stabilise a laser to a Fabry–Pérot resonator and
thereby narrowing its linewidth (Section 9.2.2). Two often-used different phase modulation
spectroscopic methods will be discussed later that allow one to long-term stabilise the fre-
quency of a laser to reference frequencies of quantum systems.

9.2.1 Method of Hänsch and Couillaud

Hänsch and Couillaud [408] have devised a frequency stabilisation scheme that uses a polar-
isation spectroscopic method in combination with an optical resonator to derive a dispersion-
like signal and consequently the technique is referred to as Hänsch–Couillaud technique. Con-
sider a light field with amplitude E(0) impinging on a Fabry–Pérot interferometer (FPI). The
FPI (Fig. 9.9) comprises an internal element such as a Brewster plate, a polariser or a birefrin-
gent crystal exhibiting polarisation-dependent losses.

As a result of the internal polarising element the polarisation components E
(r)
‖ =

E(0) cos θ and E
(r)
⊥ = E(0) sin θ of the reflected light field being parallel and perpendicular to

the direction of minimum loss will experience minimal and maximal losses, respectively. θ is
defined as the angle between the polarisation of the incoming beam and the direction of mini-
mum loss. The complex amplitudes of the reflected fields E

(r)
⊥ and E

(r)
‖ are given (see (4.92))
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Figure 9.9: Set-up for the stabilisation of the frequency of a laser to a Fabry–Pérot Interferome-
ter (FPI) by means of polarisation spectroscopy according to Hänsch and Couillaud [408]. PBS:
Polarising Beam Splitter. � and

J
indicate the in-plane and out-of-plane polarisations of the

laser beam. PD: Photodiode.

as

E
(r)
⊥ = E

(0)
⊥ r1 (9.4)

and

E
(r)
‖ = E

(0)
‖

(
r1 − t21

r1

re−iδ

1 − re−iδ

)
= E

(0)
‖

(
r1 − t21r

2

r1

−r2 + cos δ − i sin δ

(1 − r2)2 + 4r2 sin2(δ/2)

)
(9.5)

with δ ≡ 2ΔωL/c. Here, r1 and t1 are the amplitude reflection and transmission factors of
the entrance mirror, respectively. r is the amplitude reduction factor that includes not only
the reflection factor of the output mirror but also the internal losses including that due the
two additional reflections in the confocal cavity of Fig. 9.9 used off-axis. As a consequence
of the different finesse for the two polarisation directions the two components E

(r)
‖ and E

(r)
⊥

suffer from phase shifts that are in general different if the frequency of the laser light does not
coincide with the eigenfrequency of the optical resonator (see Fig. 4.16). Due to its high loss
the perpendicular component is essentially reflected at the entrance mirror with low frequency-
dependent phase shift and, hence, can serve as a phase reference for the larger detuning-
dependent phase shift of the parallel beam. The phase shift will lead to an ellipticity of the
combined beam which is detected by an analyser for the polarisation state of the beam. The
combination of the λ/4 plate and the polarising beam splitter serves as such an analyser. With
a suitable alignment of the λ/4 plate the power of the linearly polarised light is divided equally
between the two ports. Elliptical polarised light can be thought of as composed of left-handed
and right-handed circularly polarised components with different amplitudes. The λ/4 plate
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generates linearly polarised light from these two components with two orthogonal components
that are detected by the two photodiodes. The photocurrents i1 and i2 are proportional to the
squared amplitude |E1|2 and |E2|2, respectively of the waves behind the polarising beam
splitter. |E1|2 and |E2|2 can be derived [408] by using the Jones matrices describing the
evolution of polarised light (see e.g. [409])

E1,2 =
1
2

(
1 ±1
±1 1

) (
1 0
0 i

) ⎛⎜⎝ E
(r)
‖

E
(r)
⊥

⎞⎟⎠ (9.6)

where the first Jones matrix describes a linear polariser set at 45 ◦ and the second one a quarter-
wave plate with the fast axis horizontal. Hence

|E1,2|2 =
∣∣∣∣12 (

E
(r)
‖ ± iE

(r)
⊥

)∣∣∣∣2 . (9.7)

The difference signal of the photocurrents i1 − i2 ∝ |E1|2 − |E2|2 is readily calculated by
using (9.7) and (9.5) as follows

i1 − i2 ∝ |E(0)|2 2 cos θ sin θ
t21r

2 sin δ

(1 − r2)2 + 4r2 sin2 δ/2
. (9.8)

The corresponding signal (Fig. 9.10) can be used as an error signal for the stabilisation with a
steep slope at resonance and a capture range extending halfway to the next resonance.

Figure 9.10: Error signal of the Hänsch-Couillaud method calculated according to (9.8) with
cavity finesse F ∗ = πr/(1 − r2) = 14. The grey area indicates the capture range when locked
to the central resonance.

The Hänsch–Couillaud technique is very versatile owing to its simple and inexpensive set-
up and is often used for pre-stabilisation of a laser. However, as with any dc technique the
locking point is sensitive to baseline drifts of the error signal and it is furthermore affected by
the technical noise of the laser at low Fourier frequencies.



9.2 Laser-frequency Stabilisation Techniques 271

9.2.2 Pound–Drever–Hall Technique

The Pound–Drever–Hall technique named after its inventors [410] and R. V. Pound who used
a corresponding technique in the microwave regime [411] is a phase modulation spectroscopic
method which is applied to stabilise the frequency of a laser to an optical resonator. In the
Pound–Drever–Hall technique (Fig. 9.11) the phase of the laser beam of angular frequency ω
is modulated by an electro-optical modulator (Section 11.2.2) with the angular frequency ωm.

In the case of small modulation index δ 
 1 it suffices to take into account the carrier of

Figure 9.11: Pound-Drever-Hall stabilisation scheme. Optical and electrical paths are depicted
as solid and dashed lines, respectively. EOM: Electro-Optical Modulator. PBS: polarising beam
splitter. DBM: double - balanced mixer.

angular frequency ω (see (2.52)) and the two nearest sidebands at ±ωm

EFM(ω) = E0

[
J0(δ)eiωt + J1(δ)ei(ω+ωm)t − J1(δ)ei(ω−ωm)t

]
+ c.c.. (9.9)

When the carrier and the sidebands are reflected from the Fabry–Pérot interferometer their
amplitudes and phases are changed by the complex reflectivity coefficient rFP(ω) (see (4.92))
to

Er(ω) =
E0

2

[
rFP(ω)J0(δ)eiωt + rFP(ω + ωm)J1(δ)ei(ω+ωm)t (9.10)

− rFP(ω − ωm)J1(δ)ei(ω−ωm)t
]

+ c.c..

To separate the beam reflected back by the Fabry–Pérot interferometer from the impinging
beam, a quarter-wavelength plate or a Faraday rotator is employed (see Fig. 9.11). The appli-
cation of either device leads to a rotation of the direction of the polarisation of the laser beam
and the reflected beam is directed by a polarising beam splitter to a photodetector. The current
iPD of the photodiode with detection efficiency ηPD depends on the reflected power Pr

iPD ≈ ηPDPr ∝ ErE
∗
r (9.11)
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and, hence,

iPD ∝ [
J2

0 (δ)|rFP(ω)|2 + J2
1 (δ)

{|rFP(ω + ωm)|2 + |rFP(ω − ωm)|2}
+ J0J1rFP(ω)r∗FP(ω + ωm)e−iωmt

− J0J1rFP(ω)r∗FP(ω − ωm)eiωmt

+ J0J1r
∗
FP(ω)rFP(ω + ωm)eiωmt

− J0J1r
∗
FP(ω)rFP(ω − ωm)e−iωmt

− J2
1

{
rFP(ω + ωm)r∗FP(ω − ωm)ei2ωmt

−r∗FP(ω + ωm)rFP(ω − ωm)e−i2ωmt
}]

(9.12)

The photocurrent (9.12) is comprised of the three dc components resulting from the power of
the carrier and the two sidebands and of the components modulated with the beat frequencies
between the three fields. Consider a detector which is constructed such that it is sensitive only
to frequencies near the modulation frequency ωm, i. e. for the beat note between the carrier
and the side bands. Then the beat note between the high-frequency and the low-frequency side
bands occurring at 2ωm is usually suppressed, e.g., by a notch filter in the detector. Hence, in
this case, we need to keep only the terms from (9.12) oscillating with the modulation frequency
ωm and obtain

i
(ωm)
PD ∝ J0J1 {[rFP(ω)r∗FP(ω + ωm) − r∗FP(ω)rFP(ω − ωm)] exp[−i(ωmt)]

+ [r∗FP(ω)rFP(ω + ωm) − rFP(ω)r∗FP(ω − ωm)] exp[i(ωmt)]} (9.13)

which is equivalent to 2

= 2J0J1�e {rFP(ω)r∗FP(ω + ωm) − r∗FP(ω)rFP(ω − ωm)} cosωmt

+ 2J0J1	m {rFP(ω)r∗FP(ω + ωm) − r∗FP(ω)rFP(ω − ωm)} sin ωmt. (9.14)

From (9.14) we find that the photocurrent

i
(ωm)
PD ∝ J0(δ)J1(δ) [A(Δω) cos(ωmt) + D(Δω) sin(ωmt)] (9.15)

contains a sine term and a cosine term with the components D(Δω) and A(Δω). To calculate
the coefficients A and D we use (4.98)

rFP = −Δω(Δω + iΓ/2)
(Γ/2)2 + Δω2

(9.16)

rather than the exact Airy function (4.92). From

rFP(ω)r∗FP(ω + ωm) − r∗FP(ω)rFP(ω − ωm) (9.17)

=
Δω [Δω + i(Γ/2)] (Δω + ωm) [Δω + ωm − i(Γ/2)]

[(Γ/2)2 + Δω2] [(Γ/2)2 + (Δω + ωm)2]

− Δω [Δω − i(Γ/2)] (Δω − ωm) [Δω − ωm + i(Γ/2)]
[(Γ/2)2 + Δω2] [(Γ/2)2 + (Δω − ωm)2]

2 Using A = a + ib one finds A exp(−iωt) + A∗ exp(iωt) = 2a cos ωt + 2b sin ωt.
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we can separate the real and imaginary part by comparison of (9.14) with (9.15) to determine
the coefficients A and D. After some straightforward but tedious algebra we obtain

D(Δω) = −4
ω2

m(Γ/2)Δω
[
(Γ/2)2 − Δω2 + ω2

m

]
[Δω2 + (Γ/2)2] [(Δω + ωm)2 + (Γ/2)2] [(Δω − ωm)2 + (Γ/2)2]

(9.18)

and

A(Δω) = 4
ωm(Γ/2)2Δω

[
(Γ/2)2 + Δω2 + ω2

m

]
[Δω2 + (Γ/2)2] [(Δω + ωm)2 + (Γ/2)2] [(Δω − ωm)2 + (Γ/2)2]

. (9.19)

The photocurrent (9.15) contains contributions depending on cos(ωmt) and on sin(ωmt).
By comparison with the phase φ of the modulation frequency ωm one can select the former (by
multiplying with cos(ωmt)) or the latter (by multiplying with sin(ωmt) = cos(ωmt − 90◦)).
In the experiment (Fig. 9.11) the phase comparison is readily done by employing a double-
balanced mixer (DBM; Fig. 3.13). If a low pass filter is used only the difference frequency
remains and the frequencies ωRF ≈ ωLO remain. Consider the case ωRFt = ωLOt + φ where
the phase difference φ can be adjusted by a phase shifter (Fig. 9.11) and the IF signal at the
output is 1/2 cosφ (see (3.88)). Hence, the error signal applied to the RF input of the DBM
is phase sensitively detected, i.e. rectified and integrated and the DBM acts like a lock-in
amplifier.

Fig. 9.12 and Fig. 9.13 show the signals calculated from (9.18) and (9.19), i.e. the signal
out of phase with the modulation frequency and the in–phase–signal, respectively, versus the
detuning from the resonance Δω = ω − ω0 of the resonance of a FPI for ωm = 10 Γ.

Figure 9.12: Dispersion term −D(Δω) calcu-
lated from (9.18) for ωm = 10Γ.

Figure 9.13: Absorption term A(Δω) calcu-
lated from (9.19) for ωm = 10Γ.

The out–of–phase signal (Fig. 9.12) can be thought of as a superposition of three
dispersion-like signals at the resonance frequency ω0 and at ω0 + ωm and ω0 − ωm corre-
sponding to the three contributions of the phase modulated reflected wave. As the sidebands
are out of phase with the carrier the corresponding signals change sign. If the modulation
frequency is considerably larger compared to the half width of the resonance of the interfer-
ometer the three structures are separated. Close to the resonance frequency of the FPI only a
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small fraction of the power of the carrier is reflected but the phase of this wave varies strongly
in this region (Fig. 2.5). Similarly to the Hänsch-Couillaud method the phase comparison
between the three reflected fields contains the information about the detuning of the laser fre-
quency from the resonance frequency of the FPI. The steep slope at the resonance frequency
of the FPI can be used as an error signal for the frequency stabilisation of the laser. In this
case the output signal of the mixer ∝ ωRF − ωLO is a measure of the fluctuations of the laser
frequency.

By setting the phase difference between the modulation frequency and the signal from
the photodiode to 0◦ the DBM averages over all phases (Fig. 9.13) and becomes particularly
sensitive to variations of the amplitude, i.e. the absorption by the FPI. Hence, there are two
absorptive structures at the sideband frequencies. At resonance the absorptive signal vanishes
as both beat notes with the sideband frequencies are out of phase by π.

As the error signal is proportional to J0 × J1 (see (9.15)) the highest signals are obtained
for a modulation index of δmax ≈ 1.08 (Fig. 9.14).

Figure 9.14: J0(δ)J1(δ) versus modu-
lation index δ. The curve is proportional
to the slope of the error signal in the
Pound-Drever-Hall technique.

The ultimate sensitivity that can be achieved by this technique is limited by the shot noise
of the detected error signal. In a properly designed servo loop any deviation of the error signal
from zero is counteracted by a feedback signal to the servo element.

We consider the case where the resonator is impedance-matched and the modulation fre-
quency is large compared to the linewidth of the resonator. In this case only the optical power
of the two sidebands is reflected from the resonator and is incident onto the detector. If the
electrical noise of the photodetector with efficiency η is due to the shot-noise of the laser
amplitude the spectral density of frequency fluctuations of the locked laser is given by

Sν =
δνc

ν

√
hν

8ηPd
(9.20)

where Pd is the laser power impinging on the detector. The Allan deviation calculated from
(9.20) is

σy(τ ) =
1

4Q

√
hν

ηPdτ
. (9.21)
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Both, the Hänsch-Couillaud technique and the Pound-Drever-Hall technique have the ad-
vantage with respect to the side lock technique (Section 2.3.2.1, [412]) that the frequency of
the oscillator is stabilised to the centre of the resonance. A particular advantage of the Hänsch-
Couillaud technique is based on the fact that the oscillator frequency need not be modulated,
whereas the Pound-Drever-Hall technique often (except in the case of diode lasers) needs an
additional electro-optical modulator. In the latter case, the error signal of the detected fre-
quency fluctuations is located in a band around the modulation frequency and has to be mixed
down to the base band, whereas the error signal in the Hänsch-Couillaud technique is already
in the base band. This additional complication of the Pound-Drever-Hall technique is often
compensated by the fact that the modulation frequency can be chosen high enough for the
technical noise of the laser to be no longer relevant. Particular emphasis has to be given to any
spurious amplitude modulation with the same frequency as the modulation frequency, since
this residual amplitude modulation is detected in the Pound-Drever-Hall technique and shifts
the locking point. This is of particular importance for residual amplitude modulation pro-
duced in the electro-optical modulator as a result of any piezoelectric effects. Much attention
has been devoted to the suppression of such effects [413, 414].

9.2.3 Phase-modulation Saturation Spectroscopy

Phase-modulation spectroscopy [415, 416] is often used to stabilise the frequency of a laser
to the first-order Doppler free saturated absorption lines in an external absorber cell [118,
417–420]. The method is closely related to the Pound-Drever-Hall technique. Consider the
experimental set-up (Fig. 9.15 a) of an iodine stabilised laser where an adjustable portion of
the output of a laser is split off by use of a λ/2 plate and a polarising beam splitter PBS1. A
similar combination (at PBS 2) allows one to generate a probe beam and a counter-propagating
pump beam for interaction with the iodine molecules in the absorber cell. The probe beam
is phase modulated with angular frequency ωm and modulation index δ. To consider the
interaction with the molecular absorbers we first assume that δ < 1 where the electric field
can be represented by a carrier together with a low-frequency and a high-frequency sideband
(Section 2.1.3).

When passing the iodine absorption cell the phases and amplitudes of these three electric
field components with the respective frequencies are affected differently by the interaction
with the absorbers. Following Bjorklund [415] we take into account the absorption and the
optical phase shift (dispersion) of each one of the three waves l = −1, 0, +1 by a factor
Tl = exp[−αl − iφl] where αl describes the amplitude attenuation due to absorption and φl

represents the phase shift experienced by the lth field component. Hence, the probe field after
the interaction is given by

Eprobe(t) = E0,probe/2
[
T0e

iωt + T1
δ

2
ei(ω+ωm)t − T−1

δ

2
ei(ω−ωm)t

]
+ c.c. (9.22)

Near resonance where the balance between the three waves is perturbed an amplitude
modulation of the power of the laser beam occurs that can be detected with a photodetector



276 9 Laser Frequency Standards

Figure 9.15: Set-up of an iodine stabilised frequency-doubled Nd:YAG laser at 532 nm using
the technique of a): phase modulation and b): modulation-transfer. EOM: Electro-Optical Mod-
ulator; AOM: Acousto-Optical Modulator; PBS: Polarising Beam Splitter; PD: Photodetector.
Optical and electrical paths are shown as solid and dashed lines, respectively.
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PD in Fig. 9.15 a). The signal is calculated from

Pprobe ∝ |E0,probe|2e−2α
∣∣∣e−iφ0eiωt +

δ

2
e−i(α0−α1)e−iφ1ei(ω+ωm)t

− δ

2
e−i(α0−α−1)e−iφ−1ei(ω−ωm)t

∣∣∣2. (9.23)

Dropping terms with δ2 one obtains

Pprobe ∝ e−2α
{

1 +
[
e−i(α0−α1) cos(φ − φ0) − e−i(α0−α−1) cos(φ0 − φ−1)

]
δ cos ωt

+
[
e−i(α0−α1) sin(φ − φ0) − e−i(α0−α−1) sin(φ0 − φ−1)

]
δ sin ωt

}
.

(9.24)

For |α0 − α1| 
 1, |α0 −α−1| 
 1, |φ0 − φ1| 
 1, and |φ0 − φ−1| 
 1 the power on the
detector is calculated [415] from (9.24) as

Pprobe ∝ e−2α [1 + (α−1 − α1)δ cos(ωmt) + (φ1 − 2φ0 + φ−1)δ sin(ωmt)] . (9.25)

The cosine term in (9.25) is in phase with the modulation frequency and is proportional to
the difference of the absorptions of the low and high frequency sidebands. The sine term is
out of phase compared to the modulation frequency by π/2 being proportional to the phase
differences.

The error signal can be computed if the spectral absorption and dispersion feature is
known. Assuming a Lorentzian lineshape Bjorklund et al. [421] determined the absorption
signal, the dispersion signal and the modulus of the total beat signal for a large range of pa-
rameters. In this case the absorptive component in (9.23) is given by two symmetric lines
centred at ω − ω0 and at ω + ω0 representing the real part of the Lorentzian (Fig. 2.5 a).
Hence one expects maximum signal of the in-phase component at ω = ω0 ± ωm. The disper-
sive component is a superposition of three dispersion-shaped features (see Fig. 2.5 b) at the
angular frequencies ω − ω0, ω0, and ω + ω0.

Hall et al. [416] and Shirley [422] have similarly calculated the phase and amplitude
changes of the several spectral components including the non-linear absorption and disper-
sion resonances together with the second-order side bands. They use the notations

xj =
ω − ω0 − jωm

Γ/2
, Lj =

1
1 + x2

j

and Dj = Ljxj (9.26)

where ωm is the centre frequency of the absorption line and Γ is the homogeneous width of
a velocity group with the power broadening by the pump and probe beam taken into account.
The variable j can take the values 3 −1,−1/2, 0, 1/2, 1. The calculated error signal VPMS is
given [416, 422] as

VPMS ∝ J1(δ) × (9.27){[
(J0(δ) + J2(δ))

(
L1/2 − L−1/2

) − J2(δ) (L1 − L−1)
]
cos(Φ)−[

(J0(δ) − J2(δ))
(
D1/2 − 2D0 + D−1/2

)
+ J2(δ) (D1 − 2D0 + D−1)

]
sin(Φ)

}
.
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Figure 9.16: Phase-modulation spectroscopy
signal calculated according to (9.27) using
ωm = 2π× 5.185 MHz, δ = 0.6, Γ = 2π ×
0.4 MHz and absorptive phase (Φ = 0◦).

Figure 9.17: Phase–modulation spectroscopy
signal calculated according to (9.27) using
ωm = 2π× 5.185 MHz, δ = 0.6, Γ = 2π ×
0.4 MHz and dispersive phase (Φ = 90◦).

Fig. 9.16 and Fig. 9.17 show the absorptive and dispersive contributions of the different
Lorentzians (Fig. 2.5). The steep slope of the experimental dispersive signal (Fig. 9.18) at the
centre frequency is used for frequency stabilisation.

Figure 9.18: Error signal measured with the set-
up of Fig. 9.15 a) based on phase-modulation
spectroscopy. Compare also Fig. 9.17. Courtesy
of H. Schnatz.

In order to allow first-order Doppler-free detection of the absorption line a laser beam
counter-propagating to the phase modulated beam (see Fig. 9.15 a) is used to prepare the
absorbers. The strong unmodulated pump beam is switched on and off by means of a acousto-
optical modulator facilitating phase-sensitive detection of the probe signal when used in com-
bination with a lock-in amplifier. The phase Φ of the photosignal can be adjusted by means of
a phase shifter before the photosignal is multiplied in the double-balanced mixer with the sig-
nal from the EOM driver to yield an error signal VPMS. The phase shifter (Fig. 9.15) allows
one to select the purely absorptive (Φ = 0; Fig. 9.16) or dispersive component (Φ = π/2;
Fig. 9.17) or any superposition.

3 Since only the probe beam in the set-up of Fig. 9.15 a) is phase modulated but not the probe beam the first-order
sidebands resonances are offset from the resonance frequency by ωm/2 rather than by ωm (see Fig. 9.16 and
Fig. 9.17).
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The method is particularly useful since the modulation frequency can be chosen to be large
enough to allow for shot-noise limited detection not affected by the (mainly low-frequency)
technical noise of the laser. The accuracy to which a laser can be locked to the centre of an
absorption line, however, is affected by any offset in the detected error signal. A particular
problem arises from residual amplitude modulation (AM) of the probe beam which adds in-
phase sidebands to the out-of-phase sidebands from the phase modulation. Spurious AM is
always present to some degree and hence limits the achievable accuracy. This problem can be
largely avoided if an unmodulated probe beam is employed as it is done in the spectroscopic
method referred to as modulation transfer spectroscopy.

9.2.4 Modulation Transfer Spectrocopy

Near resonance, the interaction of the pump beam and the probe beam with the absorbers
is sufficiently non-linear to transfer the modulation from a amplitude-modulated or phase-
modulated beam to an unmodulated counter-propagating beam. The modulation transfer
[422–427] represents an example of four-wave mixing where the probe-beam carrier, one
of its sidebands and the counter-propagating unmodulated beam generate a fourth wave pro-
ducing a sideband to the latter one. As the modulation transfer is essentially a non-linear
process which requires non-linearity near the absorption feature there is virtually no non-
resonant background absorption. Consequently, stabilisation techniques based on modulation
transfer are not very susceptible to fluctuations of the baseline that can shift the locking point
and, hence, the frequency of stabilised laser. The physical mechanisms have been elucidated
by Shirley [422] resulting predominantly from modulated hole burning where the amplitude
or frequency modulated beam burns holes of modulated depths into the velocity distribution
of the absorbers. When the unmodulated beam interacts with the holes whose depths vary
with the modulation frequency it experiences modulated absorption and dispersion. With the
notations of (9.26) the error signal is given [422, 428] as

VMTS ∝ J0(δ)J1(δ)×
{(

L1 − L1/2 + L−1/2 + L−1

)
cos(Φ)

+
(−D1 + D1/2 + D−1/2 − D−1

)
sin(Φ)

}
.

(9.28)

Besides the effect of the modulated hole burning taken into account to derive (9.28) (see
Fig. 9.19 and Fig. 9.20) Shirley [422] has pointed out that in general additional weak reso-
nances occur as a result of higher-order interactions with the saturating beam. Furthermore,
portions of the carrier and the sidebands of the modulated wave could be Bragg reflected into
the counter-propagating, previously unmodulated, beam. The Bragg grating results from a
spatial modulation of the population in the standing wave 4 generated by the two counter-
propagating pump and probe beams. This contribution changes the height of the inner absorp-
tion peaks at ±ωm/2 with respect to the outer ones [422].

Due to their non-linear origins the modulation transfer signals in general are weak and,
hence, it is important to obtain a large slope of the error signal. For frequencies higher than

4 In the case of Fig. 9.15 where the unmodulated beam is frequency shifted by Ω by the acousto-optical modulator it
is rather a “walking wave”.
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Figure 9.19: Modulation-transfer spectroscopy
signal calculated according to (9.28) using
ωm = 10Γ and an absorptive phase setting (Φ
= 0◦).

Figure 9.20: Modulation-transfer spectroscopy
signal calculated according to (9.28) using
ωm = 10Γ and a dispersive phase setting (Φ
= 90◦).

the Doppler broadened absorption the non-linearity of the medium rapidly decreases. Conse-
quently, the modulation frequency is favourably chosen ωm

<∼ Γ/2 (Fig. 9.21) to give an error
signal that can be used to stabilise the laser. From (9.28) and from experiments [428] it is
found that an optimal slope of the discriminant curve (Fig. 9.22) is obtained for Φ ≈ 50◦ and
ωm ≈ 0.35Γ.

Figure 9.21: Error signal calculated ac-
cording to (9.28) using ωm = Γ/4 with
dispersive phase setting (Φ = 90◦; full
line) and absorptive phase setting (Φ = 0◦;
dashed line).

Figure 9.22: Experimental error signal from the io-
dine stabilisation set-up using modulation transfer
spectroscopy (Fig. 9.15 b). Courtesy H. Schnatz.

Jaatinen [429] has calculated the parameters required to produce a maximal signal accord-
ing (9.28). He finds that an amplitude modulated pump beam provides a higher slope than
can be achieved with a frequency modulated beam. Even though the overall lineshape can
be described well by simple theory, Eickhoff and Hall [118] find systematic residuals that
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may eventually limit the achievable accuracy of frequency standards based on this type of
spectroscopy.

Modulation transfer spectroscopy has been used to stabilise, e.g., the frequency of fre-
quency-doubled Nd:YAG laser to iodine (Section 9.4.1).

9.3 Widely Tuneable Lasers

Tuneable lasers are employed to reach a particular absorption line at a given frequency. The
cheapest, smallest lasers with lowest energy consumption and the ability to be tuned across
several tens of nanometres are diode lasers. Even though they can be produced to operate
as single mode over a large wavelength region (Fig. 9.23) they are often not available at the
desired wavelength. Moreover, their output powers are often limited to the range of a few
milliwatts to a few tens of milliwatts.

Figure 9.23: Widely tuneable solid-state lasers. Wavelength range of diode lasers (from [430]),
tuning range of a Ti:sapphire laser. OPO: signal beam from an optical parametric oscillator
based on a Nd:YAG pumped periodically poled LiNbO3 crystal. OPO + SHG: emission range
of an OPO whose idler beam is frequency doubled in an external resonator [431]. DL: diode
lasers.

In the near infrared the titanium sapphire laser (see Section 11.5.1) allows one to reach
any wavelength between about 0.7 μm and 1 μm with high power of up to a few watts. Other
wavelength regions can be accessed by frequency conversion in non-linear crystals. In the
longer wavelength region, e.g., a commercially available optical parametric oscillator based
on a Nd:YAG laser at 1.06 μm and periodically poled LiNbO3 crystals allows one to reach the
region between 1.45 μm and 2 μm with the signal beam and between 2.4 μm and about 4 μm
with the idler beam. To obtain tuneable radiation with large power in the visible in particular
in the yellow and green spectral range where diode lasers are missing (Fig. 9.23) dye lasers
are sometimes the only choice (Fig. 9.24). In the following the properties of these different
lasers will be discussed to the extent relevant to optical frequency standards.
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9.3.1 Dye Lasers

Continuous-wave dye lasers are versatile tools that allow one to produce coherent electromag-
netic radiation from the ultraviolet to the infrared region without any gap (Fig. 9.24) and with
large power. Their use is restricted to laboratory standards because of the required expensive
pump lasers, their large technical noise and the required dye circulators. In the following we
concentrate on the properties of dye lasers relevant to optical frequency standards; a more
detailed description can be found in [432].

Dye lasers make use of organic molecules solved in organic solvents, e.g., ethylene gly-
cole. The simplified energy level scheme of a dye molecule (Fig. 9.25) comprises a singlet
electronic ground state, a singlet excited state and a triplet excited state, each one with a broad
range of ro-vibrational levels. Owing to the strong interaction of the dye molecules with the
molecules of the solvent the ro-vibrational states are strongly broadened by collisions. Hence,
the fluorescence lines overlap and lead to a homogeneously broadened emission continuum.
The excitation energy is supplied by optical pumping predominantly using high-power ion
lasers in the UV or green spectral range or by frequency-doubled solid state lasers around
0.53 μm similarly to the Nd:YAG laser. The dye molecule is optically pumped from the 1S0

ground state to the 1S1 state (Fig. 9.25) from where it decays in less than 10−12 seconds to
the lowest vibrational level.

Figure 9.24: Tuning range of laser dyes covering the visible
and near infrared part of the electromagnetic spectrum.

Figure 9.25: Simplified energy
level scheme of dyes.

This level represents the starting point for laser emission to the ro-vibrational states of the
electronic 1S0 state. As a result of collisions with the molecules of the solvent radiation-less
transitions into the triplet system can occur. The molecules in the long-lived triplet system
do not contribute to the laser emission. To keep the number of these molecules small the
dye solution is pumped with 0.4 MPa to 1.5 MPa through a nozzle to produce a dye jet with
rectangular cross-section of about 0.2 mm – 1 mm width and 3 mm – 5 mm length. The dye
molecules spend about 1 μs within the waist (≈ 10 μm) of the beam of the pumping laser.

The thickness fluctuations of the dye jet inside the laser resonator give rise to frequency
fluctuations (Fig. 9.1). The mechanical resonances of the dye jet dominate the power spectral
density of frequency fluctuations for Fourier frequencies below a few megahertz before rolling
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off towards the white noise due to spontaneous emission. As a result, a servo bandwidth of a
few megahertz is necessary to suppress the frequency fluctuations effectively.

Owing to the broad gain profile in a dye laser a large number of modes can be excited.
Dye lasers can be easily tuned across Δλ ≈ 30 nm or more (Fig. 9.24). The corresponding
frequency width of Δν = |c/λ2|Δλ = 36 THz at 500 nm is broad enough to sustain 120 000
modes of a laser with a perimeter of 1 m. To achieve single-mode operation wavelength se-
lective elements are required which exhibit broad tuneability and low losses and which do
not change the light path when the laser frequency is changed. In particular, interferometric
optical devices fulfil these requirements. Coarse tuning is often achieved with a birefringent
filter (Lyot filter) 5 with a free spectral range of each plate

ΔνLyot,i =
c

(no − ne)Di
(9.29)

of a few gigahertz depending on the thickness Di and the index of refraction no and ne of
the ordinary and extraordinary beam. A further frequency selective element often used in a
tuneable laser is the etalon where a thin glass plate with partially reflecting surfaces acts as a
multiple beam interferometer. The free spectral range of the etalon

Δνetalon =
mc

2D
√

n2 − sin2 α
(9.30)

is calculated [409, 433] similarly to that of the Fabry–Pérot interferometer. In (9.30) α is the
angle of incidence, m denotes the interference order, D the thickness of the plate and n the
index of refraction. Frequency tuning is achieved by tilting the etalon. The selectivity of a thin
etalon D = 1 mm of glass corresponds to a free spectral range (FSR) of about 100 GHz which
is not sufficient yet to achieve single-mode operation of a laser with a FSR ≈ 300 MHz. Hence,
another interferometer with FSR ≈ 10 GHz is necessary. A second etalon with D ≈ 1 cm can
be chosen. However, at a larger angle α, the interfering beams show a shear. This shear
leads to an incomplete overlap of the interfering beams thereby reducing the contrast in the
interferometer and to a considerable walk-off. Hence, the thicker etalon is sometimes replaced
by a Mach-Zehnder interferometer [434] which has lower insertion loss as it can be stabilised
to a dark fringe of the interferometer. If all frequency selective elements are properly tuned
with respect to each other, single mode operation can be achieved as a consequence of the
multiplicative transmissions of the single elements (Fig. 9.26). To counteract the technical
frequency fluctuations of the dye laser effectively (see Fig. 9.1) one of the end mirrors of
the laser resonator is mounted on a piezo actuator. Piezo elements in general are slow and,
hence, are utilised to eliminate frequency fluctuations with large excursions but low Fourier
frequencies. As fast servo elements internal-cavity electro-optical modulators are often used
that allow variation of the optical path length by applying a voltage (see Section 11.2.2). In
order to incorporate these different elements into the resonator of a dye laser a ring laser
design with a folded beam path can be used (Fig. 9.27) where only one of the two possible
counter-propagating running waves is allowed to oscillate. The other one is suppressed by

5 The Lyot filter comprises of three birefringent plates of different thickness Di. It is essentially a two-beam inter-
ferometer where the impinging beam is split into two different polarisation components which are subsequently
recombined. Rotating the plates allows one to vary the relative path lengths of the two beams and thereby to achieve
the typical cosine interference pattern of a two-beam interferometer (see e.g. [433]).
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Figure 9.26: Mode selection in a tuneable laser (free spectral ranges of the particular elements
to scale). MZI: Mach-Zehnder Interferometer. p: perimeter of the laser. c/p: free spectral range
of the laser.

Figure 9.27: Ring dye laser. M1 to M5: Mirrors. Mp: Pump mirror. MZI: Mach-Zehnder inter-
ferometer. PZT: Piezo actuator. UDD: Unidirectional device. EOM: Electro-optic modulator.

use of a unidirectional device ( [433], see also Section 9.4.1.1) that rotates the polarisation
only for this direction. The wave travelling along this direction suffers from high losses at
any polarisation discriminating element in the laser resonator, e.g., the Brewster angled dye
jet. With only one travelling wave present in the laser resonator spatial hole burning in the
active medium is avoided. The reflection angles at the folding spherical mirrors M3 and M4

are chosen such that the associated astigmatism compensates for the astigmatism introduced
by the Brewster angled dye jet.

To narrow the linewidth of a free-running dye laser and to pre-stabilise its frequency, fast
and efficient stabilisation schemes to a reference frequency of a Fabry–Pérot interferometer are
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in current use. Among them are the side-lock technique (Section 2.3.2.1, [412]), polarisation
spectroscopic methods (Section 9.2.1, [408]) and phase modulation spectroscopic methods
(Section 9.2.2 [82, 410]). Despite the large free-running linewidth of about a megahertz or
higher, reduction of the linewidth of a dye laser to below 1 Hz have been achieved [31].

9.3.2 Diode Lasers

9.3.2.1 Basics of Diode Lasers

In a diode laser the active medium is a semiconductor where the p-n junction emits electro-
magnetic radiation if excited by an electric current. Semiconductors are solid-state materials
where the valence band is filled with electrons and the conduction band is empty at zero tem-
perature. In contrast to isolators, the energy width of the gap between these bands is about
1 eV and, hence, at finite temperatures some electrons are thermally activated into the valence
band. The Fermi energy, i.e. the energy level separating the filled energy levels from the
empty ones, is located in a semiconducting material in the gap half-way between the conduc-
tion and the valence band. If the semiconductor is heavily doped with positive donor ions
(p-type material) or negative acceptor ions (n-type) there are holes in the conduction band or
electrons in the valence band and the Fermi energy is shifted into the valence band or in the
conduction band, respectively.

In a p-n junction, i.e. in the contact region of a p-type and an n-type material, the Fermi
energies level out. In a forward-biased diode where a voltage U is applied, the Fermi energies
of both materials are shifted by the energy e U and the electrons in the conduction band as
well as the holes in the valence band are swept into a spatially confined area (Fig. 9.28). In
this region of the p-n junction the population of the electrons is inverted and consequently the
electrons may recombine with the holes by emission of photons.

Figure 9.28: In a forward-biased p-n
junction the electrons and holes are
swept into the transition region leading
to inversion.

Figure 9.29: Energy bands of a forward-biased double-
heterostructure laser diode. The p+ and n+ material
could be e.g. Ga1−yAlyAs and Ga1−xAlxAs, respec-
tively, whereas the active region of a width of about
0.1 μm consists of undoped GaAs.
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The energy gap and hence the energy of the emitted photons depends largely on the crystal
structure of the semiconductor material and can be tailored over a large range by suitably
choosing the composition as, e.g. in InxGa1−xAs or in InAs1−x Px. If the gain medium,
i.e. the p-n junction, is put into an optical resonator and if the charge carrier density is high
enough, laser action can occur. The simplest arrangement referred to as a Fabry–Pérot-type
laser makes use of the cleaved surfaces of the semiconductor crystal as mirrors. Due to the
high index of refraction 3.5 ≤ n ≤ 4 the reflectance R due to the Fresnel equations [409] is

R =
(

n − 1
n + 1

)2

=
(3.5 − 1)2

(3.5 + 1)2
≈ 30%, (9.31)

which is sufficient to achieve laser oscillation thanks to the large gain in the active medium.
To achieve the carrier density necessary to allow for laser activity at not too high injection

currents it is necessary to keep the range where the carriers recombine as small as possible.
Thus the laser diode is designed in such a way that the laser beam is emitted by a wave guide
where only the lowest transverse mode is sustained. The active layer thickness (height) of a
p-n junction results from the diffusion zone of about 1 μm ≤ d ≤ 2 μm. Its width is adjusted
by suitable means from about 1 μm to about 100 μm (broad area diode lasers). As a result
of the diffraction the laser beam originating from such a small area has a large divergence
(see (4.119)) with opening angles θ of several tens of degrees. The large divergence of the
laser field can be reduced by a lens of short focal length close to the front facet of the diode
laser. Depending on the means taken to confine the wave-guide, laser diodes are grouped into
gain-guided or index-guided laser diodes. In both types the electromagnetic wave is guided in
the vertical direction by total reflection as a result of the index of refraction of the thin active
layer, which is higher than the one in the adjacent material. In the gain-guided diode laser the
horizontal guiding of the wave results from the geometry of the contact electrode leading to a
confinement of the current flow with the resulting thermally induced gradient of the index of
refraction. In contrast, index guided laser diodes contain a horizontal profile of the index of
refraction that confines the electromagnetic wave inside the laser. The length L of the diode
laser is typically 0.3 mm ≤ L ≤ 0.5 mm. After one round trip inside the laser resonator the
phase of the electromagnetic wave is changed by

φa = ωt = 2πνa n(ν)
2L

c
, (9.32)

which depends on the frequency dependent index of refraction n(ν). Using

dφa

dν
= 2π n(ν)

2L

c
+ 2πνa

dn(ν)
dνa

2L

c
= 2π

2nL

c

(
1 +

νa

n

dn

dν

)
≈ Δφa

Δν
(9.33)

the free spectral range (FSR) of the laser diode can be calculated as the frequency difference
Δν where Δφ = 2π as follows

FSR = Δν(2π) =
c

2 nL(1 + ν
n

dn
dν )

. (9.34)

With typical values of L = 0.3 mm, (ν/n)( dn/dν) ≈ 1.5 and n = 3.5 for GaAs, the
free spectral range becomes FSR ≈ 57 GHz corresponding to a wavelength separation of
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Δλ = λΔν/ν ≈ 0.2 nm of two adjacent longitudinal modes. Depending on the widths of the
conduction band and the valence band the emission spectrum of a laser diode can be as wide
as a few tens of nanometres. In general, as a consequence of their design, gain-guided diode
lasers operate in a multi-longitudinal mode (Fig. 9.30) whereas index guided diode lasers show
a single mode behaviour at high currents (Fig. 9.31).

Figure 9.30: Spectrum of a gain-guided soli-
tary laser diode.

Figure 9.31: Spectrum of an index-guided soli-
tary laser diode.

The typical transverse multi-mode structure of gain-guided laser diodes leads to an asym-
metrical beam profile in the far field of the laser. For laser frequency standards, index-guided
laser diodes are preferred. If they are not available, other means have to be applied to allow
for single mode operation.

9.3.2.2 Noise in Diode Lasers

Frequency Noise In contrast to the majority of gas lasers and solid-state lasers the linewidth
of a solitary diode laser is determined by the quantum process of spontaneous emission. Each
photon spontaneously emitted into the laser mode can be multiplied by stimulated emission
and the resulting field amplitude adds to the field in the diode laser. On the other hand,
the small line-quality factor Q of the laser resonator does not sustain a very well defined
phase of the internal field. As a result, the phase of the combined field shows considerable
fluctuations owing to the statistically fluctuating contributions of the spontaneously emitted
photons leading to a large Schawlow–Townes linewidth (see (3.71)). Hence, in a Fourier
frequency regime where technical noise is not dominant the noise floor in diode lasers is large
compared with other lasers as can be seen by comparing Fig. 9.1 and Fig. 9.32.

In diode lasers the spontaneous emission leads to an additional fluctuation of the index of
refraction

Δn = Δn′ + iΔn′′ (9.35)

within the duration of the relaxation oscillation, i.e. during ≈ 1 ns. Here, n′ describes the
dispersion and n′′ the absorption. The fluctuation of Δn′′ also leads to a fluctuating gain since
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Δn′′ is a result of the fluctuation of the density of the charge carriers ΔN . A fluctuation of
the charge carrier density ΔN also leads to a fluctuation of the dispersive part of the index of
refraction n′ thereby leading to a fluctuation of the phase of the laser wave. In essence, there
is a coupling between the phase and the amplitude of the light wave expressed by Henry’s
coupling parameter [435]

α ≡ Δn′

Δn′′ = 2k
dn/dN

dg/dN
(9.36)

which leads to an excess line broadening with respect to the Schawlow–Townes linewidth. In
(9.36) k is the modulus of the wave vector, n the index of refraction, g the gain factor, and
N the density of carriers. α depends on the material of the diode laser. For GaAs and λ ≈
850 nm, α ≈ 4 has been determined.

Figure 9.32: Typical power spectral densities Sy(f) and Sν(f) of a diode laser near 850 nm
as function of the Fourier frequency f according to [436] with different regimes. A: 1/f fluc-
tuations. B: fluctuations of the carrier density. C: relaxation oscillations. D: fluctuation of the
spontaneous emission.

Starting with a thermodynamic model of the “phase diffusion” the emission line is found
to be Lorentzian with a width (FWHM) given by the so-called “modified Schawlow–Townes
linewidth” as follows [39]

ΔνLD =
hν0μ

2πτ2
P P

(
1 + α2

)
=

2πhν0(Δν1/2)2μ
P

(
1 + α2

)
. (9.37)

Here, P is the output power, μ ≡ N2/(N2 − N1) is the parameter describing the inversion,
τp is the lifetime of the photons in the passive resonator and Δν1/2 is the half-width of the
passive resonator.

In a semiconductor laser the coupling between amplitude and phase of the electromagnetic
field is much more pronounced compared with other lasers since here the spectral profile of the
gain, and hence that of the index of refraction, are asymmetrical with respect to the frequency
of the laser. Fluctuations of the gain induced by the emission of spontaneous photons lead
to fluctuations of the index of refraction and, hence, of the laser phase. The resulting excess
phase noise accounts for the modification of the Schawlow–Townes linewidth (3.71) by the
factor (1 + α2) in (9.37).
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Intensity Noise In contrast to the phase, the amplitude of the electromagnetic field in a laser
diode is much less subject to noise as the latter one is stabilised by the gain saturation. Hence,
the intensity noise of a laser diode is extremely small for a wide range of Fourier frequencies
with the exception of the regime near the relaxation frequency. A typical value of the relative
spectral intensity noise density is about 10−6 Hz−1 [436].

9.3.2.3 Frequency Stability and Tuning of Diode Lasers

To find the frequency of the mth longitudinal mode the phase shifts occurring at the laser
facets have to be taken into account. Often, the facet at the rear of the diode laser is coated
as a mirror of high reflectivity and the laser field can be thought of as a standing wave with a
node at the facet. This is obviously not true for the other facet that serves as an output coupler
with a typical coefficient of reflection of R ≈ 35 %. Consequently, there is a phase shift ϕ of
the wave internally reflected from the output facet that is equivalent to an additional optical
path length

m λ = 2n(ν) L + ϕ
λ

2π
= m

c

ν
(9.38)

or

νm =
m c

2 n(ν)L + ϕ·c
2πν

. (9.39)

Hence, the frequency ν of the emitted wave depends on the number m of the longitudinal
modes, on the phase shift ϕ due to reflection, on the length L = L(T ) of the laser crystal
and on the index of refraction n. In the case of small variations of these parameters one can
assume [37]

Δν

ν
=

Δm FSR
ν

− Δϕ FSR
2πν

− ΔL

L
− Δn

n
(9.40)

with the free spectral range FSR determined according to (9.34). The first contribution of
(9.40) can lead to mode jumps of about 100 GHz (Fig. 9.33). The phase ϕ in the second term
of (9.40) can be varied in particular by coupling back a part of the light emitted by the diode
laser. This effect can be used for frequency stabilisation of diode lasers. On the other hand,
spurious radiation reflected back, e.g., by the window of the housing of the diode laser, by
the collimating lens or from other optical components, can alter the frequency of the laser, in
particular if the phase of the back-reflected light fluctuates.

The last two contributions of (9.40) are influenced by the temperature of the laser. For
small temperature variations the length L(T ) of the laser diode is expected to vary linearly
with the temperature according to (4.128). The index of refraction n influences the laser fre-
quency in a complicated way since it varies with the frequency ν, temperature T , the injection
current I and the laser power P (n = n(ν, T, I, P )). Temperature fluctuations affect the index
of refraction via different effects [37, 39, 430, 436]. In general, raising the temperature of a
laser diode increases its wavelength where the monotonic variation is interrupted by discon-
tinuous jumps (Fig. 9.33).
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Figure 9.33: Tuning of the wavelength of a In-
GaAlP laser diode with injection current. The
grey areas indicate regions of multi-mode oper-
ation.

Figure 9.34: Tuning of the wavelength of a In-
GaAlP laser diode with temperature. The grey
areas indicate regions of multi-mode operation.

The monotonous variation with a typical value of about −30 GHz/K is due to the length
variation and the associated shift of the mode frequency. At the same time the temperature-
dependent lattice constants of crystal and the associated variation of the band structure result
in a shift of the gain profile of the laser. As a result, mode jumps of about 50 GHz – 100 GHz
or more occur and the mean wavelength variation with temperature over a wide temperature
range amounts to about −100 GHz/K. The wavelength, however, is not an unambiguous func-
tion of the temperature but rather shows hysteresis effects dependence whether the temperature
is raised or lowered.

Besides the ambient temperature, the temperature of the diode laser is also affected by the
injection current. With a nearly constant voltage drop across the p-n junction the dissipated
power, and hence the temperature increase, is proportional to the injection current. Conse-
quently, a smooth increase of the injection current results in a red detuning of the frequency
of the laser due to the associated temperature variation. The shift of the frequency of a soli-
tary diode laser as a function of the injection current varies from -5 GHz/mA to 1 GHz/mA
for (AlxGa1−x)yIn1−yP to GaxIn1−xPyAs1−y for wavelengths between 635 nm and 1.5 μm,
respectively [430]. To achieve good long-term frequency stability these values ask for a low-
noise power supply with low ripple. A list of practical precautions and design criteria has been
given by Fox et al. [430].

Variation in the current, in general, also affects the index of refraction by the changed
number of the free charge carriers. For larger variations of the injection current and higher
modulation frequencies this influence of the current prevails, which is of particular importance
when the injection current is to be used as a fast input for frequency stabilisation [37, 437].
The current-to-frequency transfer function rapidly goes down for modulation frequencies high
enough that the thermal effect dies out. For frequencies above 1 GHz the current to frequency
transfer function often displays a resonance-like feature resulting from the relaxation oscilla-
tions.

The mechanism leading to the relaxation oscillations can be understood as follows. Con-
sider a temporal fluctuation of the number of photons above the equilibrium (n(t) > n0)
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induced by spontaneous emission. As a consequence of the stimulated emission the inversion
will be reduced below the equilibrium value (N(t) < N0), provided there is a constant pump
rate. The reduced number of emitted photons (n(t) < n0) associated with the reduced inver-
sion will eventually tend to increase the inversion above the equilibrium again (N(t) > N0).
Any delay between N(t) and n(t) then may lead to so-called relaxation oscillations.

For frequencies close to the relaxation oscillation small perturbations in N(t) or n(t) are
amplified and consequently their influences can be seen as well in the spectral density of the
power fluctuations as in the spectral density of the frequency fluctuations (Fig. 9.32).

There are methods for fast frequency modulation or frequency control of diode lasers that
avoid the phase delays and amplitude modulation associated with modulation of the bias cur-
rent such as the use of an intra-cavity electro-optic modulator [438] or the injection of “control
light” [439]. If the wavelength of the control laser diode is tuned close to the transparency re-
gion of the laser diode to be controlled, i.e. to a wavelength between the two regions of
absorption and stimulated emission, the index of refraction of the laser under control can be
modulated without amplitude modulation.

9.3.2.4 Linewidth Reduction by Optical Feedback

The linewidth of a solitary diode laser of the Fabry–Pérot type can be as high as tens to
hundreds of megahertz. Such a linewidth cannot be reduced by negative electronic feedback
alone since the required large servo bandwidth can hardly be achieved. The limited frequency
range and delay times of currently available electronic components and the phase shifts of the
signals in the electronic feedback loop make it necessary to reduce the linewidth first by other
than electronic means. These difficulties can be overcome by employing an optical feedback
loop. It has been shown by Velichansky et al. [440] and by Fleming and Mooradian [441]
that feedback from an external mirror can be used to change the linewidth of a laser diode.
Consider a solitary diode laser where part of the emitted radiation is coupled back into the
diode laser (Fig. 9.35). In this case, the electromagnetic field in the laser is composed of a

Figure 9.35: Diode laser with feedback from an external reflector referred to as an external
cavity laser. For r2 � 1 the device becomes an extended cavity diode laser.

superposition of the internal field and the back-coupled field. Depending on the phase between
both fields the amplitude of the resulting field is increased or reduced. Due to the strong
coupling between the phase and the amplitude of the diode laser a sudden power fluctuation
in the active medium will lead to a fluctuation of the phase of the field in the diode laser.
Consequently, the field coupled back after an external round trip time τd = 2Ld/c also suffers
from a phase shift. Depending on the phase difference between the internal and the back-
coupled field, the initial perturbation will be increased or reduced.
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In the latter case, the influence of the internal field at an instant t − τL, on the field at an
instant t, leads to reduced frequency fluctuations by the so-called self-injection locking. As
a consequence, the frequency of the laser is very sensitive to the phase of the back-reflected
radiation. A small fraction

β ≡ PR

Pl
(9.41)

of, say, β ≤ 10−6 of the power Pl of the laser coupled back into the laser is sufficient to
influence the frequency of the diode laser considerably. For a more specific characterisation
of the feedback process not only the fraction β of the power of the laser diode that is coupled
back, but also the ratio of the round-trip times τd/τLD need to be taken into account where
τLD is the round-trip time inside the laser diode.

The feedback is characterised by the parameter

C =
τd

τLD

1 − r2
2

r2
r3

√
1 + α2 (9.42)

where β is approximated by the (amplitude) reflection coefficients r1 and r2 (see Fig. 9.35).
Different regimes have been identified [442, 443]. In Regime I (C 
 1) the spectrum of the
diode laser is stable. The attainable linewidth reduction or broadening is not very high and
depends critically on the phase of the reflected radiation field. The radiation reflected by the
window of the diode laser or from a glass plate close to the front facet of the diode laser
(0.1 mm ≤ L ≤ 0.5 mm) can be used for mode selection. In Regime II (C ≈ 1) the laser likes
to jump between several modes of the external resonator depending on the phase. In Regime
III (C > 1) with weak feedback the laser operates stably on a single mode with reduced
linewidth and independent of the external feedback phase. Increasing C, e.g., by increasing
the distance between the external reflector or by increasing its reflectivity (Regime IV; C � 1)
leads to a “coherence collapse” initiated by frequent mode jumps in the nanosecond regime.
The associated linewidth of several gigahertz is a result of the mode partition noise. For even
stronger feedback (C � 1) Regime V is again a stable one. Here, the linewidth is determined
by the external resonator and is small. Often, the portion of the light fed back into the laser
diode is frequency narrowed by, e.g., a diffraction grating or a Fabry–Pérot interferometer.

Depending on the elements and configurations used to accomplish the feedback, several
terms have been coined which, however, are used differently in the literature. The laser diode
by itself without any extra elements is referred to as “solitary diode laser”. If an external
reflective element is added to the solitary diode laser the combined arrangement is termed
“External Cavity Laser” (ECL) since an external cavity is formed by the reflective element
and the output coupler of the solitary laser. If the output coupler has a low reflectivity, e.g.,
from an anti-reflective coating, the laser cavity is formed by the rear mirror of the laser diode
and the external reflector and, hence, acts as an “Extended Cavity Diode Laser” (ECDL).6

The various aspects of feedback from external elements with different feedback levels have
been treated in the literature based on different theoretical methods [444–447]. One approach
[447] considers the influence of the external elements, e.g., mirror, grating, interferometer or

6 Sometimes, however, the acronym ECDL is also used for an external cavity laser and sometimes the extended
cavity diode laser is abbreviated as XCDL.
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atomic ensemble as a modification of the complex reflectivity of the front facet of the diode
laser

reff = r(ω)eiΦr(t). (9.43)

The modulus r(ω) takes into account the modified fraction of the internal field that is reflected
at the front facet owing to the contribution reflected from the external components. The phase
shift Φr(t) depends on the roundtrip time of the backcoupled light in the external extension.
The ansatz (9.43) allows one to modify the rate equations for the solitary diode laser. Kazari-
nov and Henry [445] derived the linewidth reduction of a Lorentzian line in the presence of
optical feedback as

Δν =
Δν0

(1 + A + B)2
(9.44)

where Δν0 is the Lorentzian linewidth without feedback. The factors A and B

A − i
B

α
=

1
iτLD

d(ln reff)
dω

=
1

τLD

dΦr

dω
− i

τLD

d(ln r(ω))
dω

(9.45)

are determined by the increase in roundtrip phase in the laser diode with optical angular fre-
quency ω and by the increase in reflectivity of the mirror of the laser diode cavity with ω,
respectively.

As an example of how to determine the effective reflectivity (9.43) of a particular arrange-
ment, consider the case of the effective reflectivity of the front facet of the solitary laser diode
with a plain external mirror which is given [444, 445] 7 as

reff =
r2 + r3(ω)eiωτd

1 + r2r3(ω)eiωτd
. (9.46)

In (9.46) τd is the external roundtrip time. (9.46) can be calculated in a similar way to (4.92).
The difference in the signs in (9.46) and (4.92) reflects the fact that the reflectivity of the
input mirror of the Fabry–Pérot resonator is reduced at resonance, whereas in the case of the
external mirror, the effective reflectivity of the output facet of the laser diode is increased.

Rather than using a plain mirror commercially available “External Cavity Diode Lasers”
often comprise a diffraction grating placed at a distance of a few centimetres from the laser
diode. The frequency stability of this type of laser is determined by the complicated interplay
of the three different resonators formed by the front facet and the rear facet of the laser diode,
the rear facet and the external reflector, and the front facet and the external reflector. Higher
frequency and mode stability is achieved when the spectrally purified reflected light from an
external Fabry–Pérot interferometer is coupled back into the solitary laser diode with low
β 
 0.01. The “Extended Cavity Diode Laser” comprises a laser diode with good anti-
reflection coating on the front facet. The front facet reflector is replaced by an external grating
or other reflector which couples back a large fraction 0.1 < β <∼ 0.8 of the power. The last
two schemes will be discussed in more detail in the following.

7 The authors use different phase conventions. Here we follow the one used in [445] and modify the signs of the
reflection coefficients accordingly.
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9.3.2.5 Diode Laser with Extended Cavity

Diode lasers used in optical frequency standards are often operated in Regime V where R2 

β holds, e.g., by placing a mirror at a distance L behind the output facet of the laser diode of
length LLD. In general, only a fraction of the power reflected by the external mirror is fed back
into the active zone of the laser diode and the strong feedback Regime V can be accessed only
when the reflectivity of the front facet is reduced by an anti-reflective (AR) coating. State-of-
the-art AR coatings can achieve amplitude reflection coefficients r2 < 10−2. In this case the
influence of the residual reflection from the front facet can often be neglected and the device
is referred to as an Extended Cavity Diode Laser (ECDL).

The cavity length of the extended resonator can be as large as about 30 cm. At such a
distance the longitudinal mode separation of about 500 MHz becomes sufficiently small to
allow stable single-mode operation in the broad gain profile of the diode laser only at the
expense of additional frequency selective elements such as, e.g., etalons, gratings or prisms.
The wavelength selected by a diffraction grating can be calculated from the grating equation

mλ = a(sin θi + sin θd) (9.47)

depending on the angle of incidence θi, the diffraction angle θd, the grating constant a and the
diffraction order m.

In diode lasers, two particular arrangements are often used. The first one, called the Lit-
trow configuration, employs the reflection grating as the output coupler of the extended cavity.
The grating angle is set such that the first-order reflection coincides with the incident beam
from the diode laser (Fig. 9.36). In this case θi = θd = θ holds. The zero-order reflection
is used to couple out the output beam and the wavelength of the diode laser is adjusted by a
rotation of the grating.

Figure 9.36: Extended-cavity diode laser using
a grating as output coupler in Littrow configu-
ration. Wavelength selection is achieved by ro-
tating the grating.

Figure 9.37: Extended-cavity diode laser with
an intra-cavity grating in Littman configuration.
Wavelength selection is achieved by rotating the
mirror.

The Littman configuration [448] (Fig. 9.37) uses a folded laser cavity. In contrast to the
Littrow configuration the incident beam and the diffracted beam are no longer collinear. The
diffracted beam is reflected back from a mirror and is directed into the laser diode after a
second diffraction at the grating. Tuning of the wavelength is achieved by rotating the mirror.
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Again, the zero-order beam is used to couple out a fraction of the power circulating in the
cavity. By comparing both configurations [449], the Littman configuration has the advantage
that the tuning does not change the direction of the output beam. The double diffraction,
however, leads to increased intra-cavity losses and requires gratings of high reflectivity. The
double pass, on the other hand, leads to an increased selectivity. Another advantageous feature
of the Littman configuration is the free choice of the angle of incidence independent of the
wavelength. Consequently, this configuration allows one to use a large angle of incidence
independent thereby illuminating a large number of grooves of the grating with the associated
better resolution.

For an extended cavity diode laser with grating, the effective reflectivity (9.46) is modified
by the frequency dependent reflectivity r3 of the grating which has been given [444] as

r3 = r0 exp

[
−

(
Neff

4

)2

(ωρ − 2πm)2
]

. (9.48)

In (9.48) r0 is the reflectivity of the grating with grating constant a which is illuminated by a
Gaussian beam of a full spot size 2b (1/e irradiance) under the angle θi and

ρ =
2a

c
sin θi (9.49)

and the number of illuminated lines of the grating

Neff =
2b

a cos θi
. (9.50)

Combining (9.46) and (9.48) leads to the effective reflectivity

reff =
r2 + r0 exp

[
− (

Neff
4

)2
(ωρ − 2πm)2

]
eiωτd

1 + r2r0 exp
[
− (

Neff
4

)2
(ωρ − 2πm)2

]
eiωτd

(9.51)

which can be used to calculate the minimum achievable linewidth with the help of (9.44) and
(9.45) as

Δν =
ΔνLD

[1 + (τd/τLD)]2
=

ΔνLD

[1 + (Ld/nLLD)]2
(9.52)

where n is the index of refraction of the laser diode. The reduced noise in a laser with extended
cavity can be seen, e.g., from Fig. 3.10. The power spectral density of frequency fluctuations
Sν of a solitary diode laser decreases for Fourier frequencies f below about 80 kHz faster than
1/f and shows white noise for higher frequencies. With grating the corner frequency is above
200 kHz and Sν(f) is reduced by about 33 dB. Note the increase of the spectral noise den-
sity near f ≈ 1 kHz which was attributed [40] to acoustical vibrations changing the length of
the extended cavity. In general, laser with extended cavities are more susceptible to external
perturbations. The reduced spectral density of frequency fluctuations also shows up as a con-
siderably reduced linewidth of the ECDL (Fig. 9.38) as compared to the solitary laser. On the
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Figure 9.38: The beat note between a free-
running extended cavity diode laser and a
frequency stabilised dye laser with linewidth
<1 kHz essentially shows the linewidth of
the extended cavity diode laser. Measuring
time: 2 s

other hand, in the ECDL set-up the desired reduction of frequency fluctuations is accompanied
by a reduced sensitivity of the injection current when used as a servo actuator. Continuously
tuning without mode hops over extended portions of the spectrum can be achieved when the
cavity length and the grating or mirror are tuned synchronously [448, 450, 451].

Owing to the losses due to the various elements in the laser cavity, the power of frequency-
narrowed diode lasers is often too low to be used directly in optical frequency standards. To
achieve higher power often a second laser is used which is either injection locked [452] or
used as an amplifier. Broad area laser diodes [438] or tapered amplifiers [191] are readily
used for this purpose.

9.3.2.6 Optical Feedback from a Fabry–Pérot Interferometer

Consider a weak field of high spectral purity which is coupled back into the laser diode. This
field can be produced by filtering the laser field by an optical resonator of reasonably high
finesse. Conveniently, a confocal Fabry–Pérot interferometer (FPI) is used [446, 453] which
allows one to mode match the field of the diode laser to the confocal FPI. In Fig. 9.39 a
confocal FPI is used whose optical axis is tilted with respect to the axis of the FPI. The FPI
acts as a V-shaped degenerate three-mirror cavity. With the tilted FPI, the light reflected in a
frequency independent manner at the front mirror of the FPI (direction A) is no longer coupled
back into the diode laser. The field fed back into the diode laser has been circulated inside the
FPI and, hence, is spectrally filtered. To stay in the regime of weak coupling it is sufficient to
couple back 10−8 < β < 10−4 of the laser power into the diode laser.

The effective reflectivity of the front facet of the laser again can be calculated from (9.46)
using the modulus r3(ω) and the phase of the complex reflection coefficient of the Fabry–
Pérot interferometer (4.93) [447]. For the case when the frequency of the laser corresponds to
an eigenfrequency of the confocal FPI (ω = ωq) and the distance from the laser diode to the
confocal FPI is approximately an integer times half the wavelength, the Lorentzian linewidth
is reduced maximally [447] to

Δν =
Δν0

(1 + α2)β
(

F∗
FPILFPI

F∗
LDnlLD

)2 (9.53)

where F ∗
FPI and F ∗

LD is the finesse (see (4.89)) of the FPI and the solitary laser diode, respec-
tively. From (9.53) one finds that apart from the coupling coefficient β and Henry’s parameter
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Figure 9.39: Optical feedback from a high-finesse confocal Fabry–Pérot interferometer (FPI)
according to reference [453].

α the linewidth reduction is given by the the ratio of the product of the finesse and the op-
tical length of the FPI and the laser diode. For typical values of F ∗

FPI = 100, FLD = 2,
LFPI = 20 cm, nLLD = 1 mm and β = 10−3 the linewidth reduction is calculated from
(9.53) as 10−8, i.e., one would expect a linewidth of a few hertz. In practice, however, the
minimal achievable linewidth was measured around a few kilohertz [446] which can be attrib-
uted to the influence of technical 1/f noise at Fourier frequencies below 1 MHz.

Laurent et al. [446] gave the steady-state solution of the rate equations describing the
angular frequency ωN of the laser with feedback from the confocal FPI as a function of the
angular frequency of the laser ω without feedback as

ωN = ω + K
sin[ω(τd + τFPI) + Θ] − R2 sin[ω(τd − τFPI) + Θ]

1 + F 2 sin2 ωτFPI

. (9.54)

The different quantities used in (9.54) are

τd =
2Ld

c
and τFPI =

2LFPI

c
, (9.55)

F =
2R

1 − R2
, (9.56)

Θ = arctan(α), (9.57)

K =
√

1 + α2
c

2nLLD

√
β

1 − r2
0

r0
r

1 − r2

(1 − r4)2
(9.58)

with τd and τFPI the roundtrip times, r0 = r1 = r2 the amplitude reflection factors of the
laser facets, r is the amplitude reflection factor of the mirrors of the confocal FPI. FSRLD =
c/(2nLLD) is the free spectral range, i.e., the mode separation of the solitary laser diode
and β the power feedback coupling factor. Fig. 9.40 shows by using (9.54) how under the
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influence of the feedback from the confocal FPI the frequency of the laser is “locked” to the
eigenfrequencies of the FPI over large detunings ω − ωN . This scheme has been used to set

Figure 9.40: Angular frequency ωN of the laser with feedback versus angular frequency ω of the
free-running laser according to (9.54) with α = 5, FSRLD = 90 GHz, r2

0 = 0.4, β = −40 dB,
r2 = 0.97, c/(4LFPI) = 0.5 GHz and Ld/LFPI = 3.

up pre-stabilised lasers with large tuning ranges as narrow band sources for high-resolution
spectroscopy [454] which in turn could be frequency stabilised to molecular transitions [455].

9.3.3 Optical Parametric Oscillators

In cases where suitable absorption lines are not accessible by tuneable lasers as, e.g., in the
infrared or ultraviolet, continuous-wave coherent radiation can also be generated by utilising
non-linear interactions in suitable materials (Section 11.1.3). The development of powerful
and easy-to operate solid state lasers like the Nd:YAG laser and its frequency-doubled ver-
sion together with quasi-phase matched materials (see Table 9.3) makes optical parametric
oscillators [456] available for tuneable sources of coherent radiation. The optical parametric
process between the strong electric field of the pump laser and the non-linear material converts
a photon from the pump field of energy �ωp into two photons referred to as the signal photon
�ωs and the idler �ωi. In the process energy and momentum are conserved

�ωp = �ωs + �ωi (9.59)

�kp = �ks + �ki. (9.60)

The latter condition (9.60) requires matching the phase of the respective waves which can be
achieved by different means (Section 11.1.3). In order to generate the high fields necessary
to make efficient use of the non-linear process, optical parametric oscillators employ a single,
double or triple resonant cavity for one or more of the pump, signal, or idler beams. Tuning
of an OPO can be achieved by rotating the crystal or by temperature tuning. In the case
of periodically poled materials, the former procedure is not possible. In this case gratings
with several periods are often implemented into the same substrate where each sub-device can
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Table 9.3: Properties of phase-matching materials for optical parametric oscillators for the fun-
damental and frequency doubled wavelength of a Nd:YAG laser

Material Transmission Phase matching range
range (μm) 0.532 μm 1.064 μm

BBO 0.19 – 2.56 0.67 – 2.5
LBO 0.16 – 2.6 0.67 – 2.5
KNbO3 0.35 – 4.2 0.61 – 4.2 1.43 – 4.2
KTP 0.35 – 4.0 0.61 – 4.0 1.45 – 4.0
LiNbO3 0.35 – 4.3 0.61 – 4.3 1.42 – 4.3
AgGaS2 0.8 – 9 1.2 – 9.0 2.6 – 9.0

be temperature tuned over a few ten gigahertz and the tuning ranges overlap. An extended
OPO cavity with an intra-cavity etalon and periodically poled LiNbO3 with 33 gratings has
been used [457] to derive Doppler-free absorption lines of the F(2)

2 component of the P7 ro-
vibrational transition in CH4 with a linewidth of 100 kHz.

9.4 Optical Standards Based on Neutral Absorbers

9.4.1 Frequency Stabilised Nd:YAG Laser

Favourable properties such as high power, compact size and intrinsically high stability make
the Nd:YAG laser a prominent oscillator for use in optical frequency standards. The laser
action results from Nd3+ ions present in the cubic host crystal of Yttrium-Aluminium Garnet
(Y3Al5O12 known as YAG). In the Nd:YAG laser about 1% of the Y3+ ions are replaced
by Nd3+ ions. The most versatile laser transition at 1.064 μm (Fig. 9.41) is part of a four-
level laser system. The radiation of a diode laser at, e.g., 0.81 μm pumps the Nd3+ ion from
the 4I9/2 ground state to the 4F5/2,

2H9/2 pump bands from where the ion rapidly decays by
radiationless transitions to the 4F3/2 state. Since electric dipole transitions to the lower states
are forbidden this upper laser state is long lived with a lifetime of 0.24 μs. The lower laser
state (4I11/2) is rapidly emptied by radiationless transitions to the ground state. Near room
temperature the lasing lines in the YAG are homogeneously broadened by lattice oscillations.
The linewidth of about 100 GHz near room temperature is small in comparison with other
solid state lasers, resulting in high gain for small pump power. This property together with
the low threshold of the four-level system allows one to build lasers of considerable power
but moderate size. The large numbers of host crystals and doping ions available give some
flexibility for accessing (after frequency doubling) the transitions of atoms, ions (see e.g.
[458]) and molecules which is highly interesting for optical frequency standards.
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Figure 9.41: Simplified energy level scheme of Nd3+ ions in a Nd:YAG laser crystal with some
absorption and laser wavelengths.

9.4.1.1 Monolithic Ring Laser

Solid-state laser media allow the construction of monolithic lasers where the reflecting sur-
faces of the resonator are directly attached to the lasing material with exceptional immunity
to acoustic perturbations. The simplest linear resonator would make use of two polished and
coated reflecting end surfaces. However, in a standing-wave resonator the stability is often
degraded by mode competition and the output power is limited by spatial hole burning. Spa-
tial hole burning occurs in a standing wave where stimulated emission is suppressed at the
nodes of the standing wave with vanishing field amplitude. A ring laser with unidirectional
and single-frequency operation can avoid these disadvantages. Monolithic ring lasers have
been developed by Kane and Byer [459] in a non-planar ring configuration (Fig. 9.42) or as
quasi-planar ring design [460]. To obtain unidirectional operation in a ring laser a combi-

Figure 9.42: Monolithic non-planar Nd:YAG ring laser.

nation of elements is used that rotate the polarisation of the two counter-propagating waves
differently in a non-reciprocal way. Consequently, the two counter-propagating waves suffer
from different losses at any polarising element in the ring. Such a non-reciprocal device can
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be constructed by a combination of a Faraday rotator 8 and a plate exhibiting natural optical
activity, e.g., a quartz plate. The combination of both elements is chosen such that for the
desired direction of the light wave the rotation in the first element is reversed by the second
one. In the opposite direction the two polarisation rotations add up which leads to an increased
round-trip loss at a suitable polarising element. In the non-planar ring laser of Fig. 9.42 the
crystal itself has a positive Verdet constant. The internal reflections B and D at the inclined
faces rotate the polarisation [459]. The reflection at the output coupler A is different for the
horizontal and vertical polarisation direction and, hence, has polarising properties.

9.4.1.2 Atomic and Molecular Absorbers

The advantages of this kind of Nd:YAG laser such as low noise, compact size and high laser
efficiency, make it an excellent oscillator for an optical frequency standard. Unfortunately,
at the prominent wavelength of 1.064 μm there are only a few absorption lines among which
are molecular 133Cs2 [461–463], acetylene C2H2 [124], deuterated acetylene C2HD [418],
and carbon dioxide CO2 [464]. The transition in molecular Cs is an electronic one whereas
the others are due to ro-vibrational overtones and, hence, their line strengths are about nine
orders of magnitude weaker as compared to the one in the Cs molecule. The Cs2 stabilised
Nd:YAG laser is not widely used, mainly since the Cs2 molecular transition is subject to a
large temperature induced frequency shift [462]. To utilise the weak overtone transitions in
optical frequency standards the absorbers are often exposed to the increased irradiance in a
resonant cavity (see Section 9.4.2).

9.4.1.3 Iodine Stabilised Frequency-doubled Nd:YAG Laser

In contrast to the fundamental frequency, the frequency-doubled radiation of the Nd:YAG laser
at 532 nm falls into a regime where the molecular iodine spectrum has suitable absorption lines
(Fig. 5.5). The frequencies of a variety of transitions have been determined accurately and are
recommended for the realisation of the metre (see [370]).

Several methods have been used to stabilise the frequency of a frequency-doubled Nd:YAG
laser to a suitable absorption line. A design from the Novosibirsk group [420] employed
a method where the modulation of the fluorescence from the iodine cell was detected which
was induced by a frequency modulated laser beam. A modulation frequency of 455 Hz with an
amplitude of about 500 kHz was used and a third-harmonic detection scheme was employed.
The laser captivates by its simple set-up, a good short-term stability with a minimum of the
Allan deviation between two identical systems of σy(τ = 300 s) ≈ 5 × 10−14 and a relative
uncertainty of 2 × 10−12.

Using the method of modulation transfer an Allan deviation has been reported as low as
σy(τ ) = 5 × 10−15 at τ = 1000 s [465]. Extensive comparisons of the frequencies of the
iodine-stabilised frequency-doubled Nd:YAG lasers have been performed (see e.g. [419, 420,
466]). Hong et al. [466] reported a frequency reproducibility of this type of laser of about
1 × 10−13. However, the frequency difference between different lasers could be as large

8 A Faraday rotator comprises a material of length L in a magnetic field of induction B whose direction is parallel
to the direction of the light. The polarisation vector is rotated by an angle α = V BL where the Verdet constant V
is characteristic of the material.
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as 2 − 5 kHz. Nevsky et al. [420] stated uncertainties of their lasers of 2 kHz and 1.1 kHz,
corresponding to 3.5 × 10−12 and 2 × 10−12, respectively. Ye et al. [467] even recommend
such a laser as an optical clock with a measured instability of 4.6 × 10−13 over one year.

9.4.2 Molecular Overtone Stabilised Lasers

Molecular ro-vibronic transitions are located predominantly in the infrared part of the electro-
magnetic spectrum. Hence, their richness of transitions is not directly accessible for optical
frequency standards in the visible. Radiation in the visible or near infrared, however, is capable
of exciting so-called molecular overtones where two or more different vibrational or rotational
quanta are transferred to the molecule (Section 5.2.3). These transitions exhibit the same small
linewidths in the kilohertz regime as their fundamentals but suffer from low dipole moments
and the associated weak absorption. Hence, highly sensitive spectroscopic methods have to
be applied to utilise these transitions. One method increases the absorption length by plac-
ing the absorber material into an optical cavity with high finesse [468]. Furthermore, highly
sensitive phase modulation techniques could be applied where the phase shift of the carrier in
the vicinity of the molecular resonance is probed, by comparison with the less affected side
bands (Section 9.2.3). The combination of both techniques, however, meets with difficulties.
To allow a sufficient side band power through the cavity, the modulation frequency has to be
comparable to the linewidth of the cavity. The low modulation frequency leads to a low band-
width of the servo system for the frequency stabilisation. At the same time the error signal is
detected at a low frequency where considerable technical noise of the laser may be present.
Furthermore, even though the carrier is kept near the maximum of the transmission curve of
the resonator the sidebands are located in its wings. Any frequency fluctuations will affect the
amplitudes of the sidebands and frequency noise will be converted into amplitude noise, hence
limiting the achievable signal-to-noise of the molecular signal. This noise can be effectively
reduced if the laser beam is modulated with a frequency that matches the free spectral range of
the resonator. In this case the carrier as well as the sidebands can be kept at the centres of the
respective transmission maxima leading to a largely reduced frequency-to-noise conversion.
This so-called Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy
(NICEOHMS, [469]) has been applied to weak overtones of, e.g., C2H2 [470] (see Fig. 9.43),
C2HD [469], CH4 [471] or to O2 [472]. The instability of an acetylene stabilised laser was
determined to be σy(τ ) = 4.5 × 10−11

√
s/τ for measurement times τ < 1000 s [418]. Such

standards find applications as wavelength references for optical communications [473] (see
Section 13.1.4.1).

9.4.3 Two-photon Stabilised Rb Standard

The frequency of a laser stabilised to the two-photon transition 5S1/2 – 5D5/2 in rubidium
(Fig. 9.44) has recently been recommended by the CIPM for the realisation of the length
unit [370]. This reference frequency in the near infrared at 778 nm wavelength [474] makes
use of easy-to-handle laser diodes of low frequency noise allowing the development of a trans-
portable optical frequency standard of high precision. Different realisations of this optical
frequency standard have been investigated. In a simple set-up, the collimated beam of an
extended cavity diode laser passed through an absorption cell filled with rubidium vapour.
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Figure 9.43: Experimental set-up of an acetylene stabilised laser using overtone spectroscopy [470].
Courtesy of U. Sterr.

Figure 9.44: Partial atomic energy diagram of rubidium including the two-photon transition at 778 nm.

The cell was sealed with Brewster windows at its ends and filled with rubidium of natural
abundance (73% 85Rb and 27% 87Rb). The beam was retro-reflected by a mirror or a cat’s
eye in order to achieve Doppler-free two-photon excitation. Optical feedback into the diode
laser was avoided by Faraday isolators. When the laser frequency was scanned through res-
onance, the two-photon transition was observed via the blue fluorescence (420 nm) of the 6P
– 5S transition in the cascade of the spontaneous decay 5D → 6P → 5S. With this set-up, a
frequency stability of σy(τ = 2000 s) = 2 × 10−14 has been achieved. Another design [475]
operated the absorption cell inside a non-degenerate optical resonator which allowed a power
build-up of the radiation and therefore an increase in the two-photon signal. Furthermore,
this arrangement can provide exact retro-reflection of the laser beam which is necessary to
suppress residual first-order Doppler shifts. It is known that the stabilised frequencies of
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standards based on two-photon transitions suffer from light shifts whose magnitudes depend
linearly on the irradiance (see (5.137)). Therefore, it is important to control the laser power
and to prepare a well defined laser beam geometry for the excitation. In the set-up of [475]
the laser frequency was pre-stabilised in a first step to a resonance of the cavity. Such a laser
can then be tuned through the two-photon resonance if the length of the resonator is changed
by applying voltage to the PZT transducer to which one of the mirrors is mounted. Compared
to the results of the simple set-up described before, the observed frequency stability was ap-
proximately the same. However, the light shift could be better controlled and consequently
the frequency of the transition could be extrapolated more precisely to zero laser power. The
two-photon Rb standard provides a precise frequency reference for optical communication
systems since the sub-harmonic coincides with the transmission band at 1.55 μm. Moreover,
this laser has played an important role as an intermediate standard for the synthesis of optical
frequencies [476] and as a reference for the frequency determination of the 2S – 8S/8D two-
photon transition in atomic hydrogen and the determination of the Rydberg constant [103].
Further improvements may be achieved by laser cooling the rubidium atoms [474] and the
same two-photon transition might then be used as an optical frequency standard of high but
not ultra-high accuracy.

A two-photon 6S – 8S transition in caesium [477] has also been measured, although the
natural linewidth of 1.5 MHz is a factor of three larger as compared to the corresponding one
in rubidium.

9.4.4 Optical Frequency Standards Using Alkaline Earth Atoms

The intercombination transitions of the alkaline earth atoms have been long recognised to
represent excellent references for optical frequency standards (see, e.g., [99] and references
therein). For example, Mg, Ca and Sr (see Table 5.2 and Fig. 5.2) exhibit narrow natural
linewidths of about 0.035 kHz, 0.37 kHz, and 6 kHz, respectively. Furthermore, the frequen-
cies of the ΔmJ = 0 transitions in these elements are very little perturbed by magnetic and
electric fields. In the case of Ca the dependencies are Δν/ν = 1.3 × 10−13 (mT)−2 × B2

[191, 478] and Δν/ν = 5.4 × 10−17 (V/cm)−2 × E2 [479], respectively. The intercombi-
nation lines in an effusive beam have been investigated in magnesium [244], calcium, stron-
tium [96, 480, 481], and barium [482].

9.4.4.1 Ca Beam Standard

Most work for optical frequency standards using alkaline earth elements has been performed
with Ca. Already around 1980 Barger et al. obtained a resolution as low as 1 kHz [237, 238].
Frequency standards based on an effusive beam have been set up, e.g., at the Physikalisch-
Technische Bundesanstalt (PTB) [483,484], at the National Research Laboratory of Metrology
(now NMIJ) [485, 486] and at the National Institute of Standards and Technology (NIST)
[191, 487].

A transportable standard based on an effusive beam (Fig. 9.45) has been developed at the
PTB [484] that has been used to compare standards at the PTB in Braunschweig and NIST in
Boulder.
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Figure 9.45: Optical frequency standard based on an
effusive Ca beam [484]. Dp: Diaphragm; Q: Quartz
plate; PM: Photomultiplier.

Figure 9.46: Optical Ramsey reso-
nances (atom interferences) obtained
with the set-up of Fig. 9.45 [484].

The set-up (Fig. 9.45) comprised an Extended Cavity Diode Laser (ECDL) system whose
frequency was pre-stabilised to a Fabry–Pérot interferometer (FPI) by means of the Pound–
Drever–Hall technique (Section 9.2.2). A fraction of the power from the laser of about two
milliwatts was sent to a beam splitter / mirror configuration and was split into two beams R1
and R2 of equal power. From each one of the beams (R1 or R2) crossing the atomic beam
perpendicularly, an excitation geometry with two pairs of counter-propagating laser beams
was obtained by the help of two cat’s-eye retro-reflectors. With one of the two directions (R1
or R2) blocked, the atoms excited in the four-beam geometry were detected by a photomul-
tiplier that measured the fluorescence light associated with the decay of the excited atoms in
the 3P1 state. The detected fluorescence of the δmj = 0 transition versus angular frequency
detuning Δω = ω−ω0 of the laser from the Ca intercombination transition (Fig. 9.46) can be
described [215, 483] by

I(Δω) ∝
∞∫
0

A(P, v, Δω)f(v)
{

cos
[
2T

(
Δω + δrec +

ω0v
2

2

)
+ ΔΦL

]

+ cos
[
2T

(
Δω − δrec +

ω0v
2

2

)
+ ΔΦL

]}
dv + B(P, v, Δω). (9.61)

(9.61) can be derived from the evolution matrices of the pseudo-spin vectors [215] (Sec-
tion 5.3.1) or in the frame work of atom interferometry (Section 6.6.1). In (9.61), A(P, v, δω)
represents the contribution of a particular atom with velocity v to the signal, and B(P, v, δω)
takes into account the amplitude of the background of the Doppler broadened line including
the saturation dip, both depending on the laser power P and weakly on the detuning Δω. The
factor f(v) represents the velocity distribution. According to (9.61) each velocity group v con-
tributes to the signal with two cosine functions. The phases of the cosine functions given in
square brackets in (9.61) depend on the detuning and the flight time T = D/v of the atoms be-
tween two co-propagating beams. The phases furthermore include three contributions. There
is a term δrec = ��k2/(2mCac

2) = 2π × 11.5 kHz resulting from the photon recoil where �k is
the wave vector of the laser field and mCa is the mass of a Ca atom. The term ω0v

2/(2c2) is
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due to the second-order Doppler shift which is a consequence of the relativistic time dilation.

ΔΦL = Φ4 − Φ3 + Φ2 − Φ1 (9.62)

(see (6.52)) gives the residual phase transferred to the atomic de Broglie wave by the four
exciting laser beams, having the individual phases Φi, i = 1, · · · , 4 in each interaction zone.

The two cosine functions are shifted symmetrically with respect to the resonance fre-
quency and separated by the recoil splitting 2δrec = 2π × 23.1 kHz with a period 1/(2T )
depending on the time-of-flight through the distance D. Optimum visibility is expected if the
superposition of the two cosines is such that the period is an integer fraction of the recoil split-
ting. The linewidth of the signal is given by FWHM ≈ 1/(4T ). The measured fluorescence
signal versus detuning (Fig. 9.46) shows the two central minima originating from the two co-
sine terms separated by the recoil splitting of 23.1 kHz in the saturation dip at the centre of
the Doppler broadened line. The Doppler broadening of the signal displayed in Fig. 9.46 of
7.5 MHz was a result of the chosen collimation of the atomic beam. With increasing detun-
ing the cosine structure is rapidly washed out, since all velocity groups v of the atomic beam
contribute with a slightly different period (see (9.61)). The FWHM = 16 kHz of the resolved
structure was determined by the separation of the beams D = 10 mm and a most probable
atomic velocity in the beam of vprob = 620 m/s.

The pre-stabilised laser with a linewidth of about 2 kHz was long-term stabilised to the
central maximum of Fig. 9.46 by a third-harmonic technique using a sinusoidal modulation
frequency of 325 Hz and a full width of the frequency modulation of 32 kHz. The stabilised
laser had a short term instability of σy(τ ) < 10−12 at an integration time τ = 1 s. The char-
acterisation of the frequency standard showed that the major contributions to the frequency
uncertainty were due to a residual first-order Doppler and second-order Doppler effect caused
by the high atomic velocities. The influence of the first-order Doppler effect essentially results
from misalignments of the four interrogating laser beams and curvatures of the wave fronts at
the interaction regions.

From (9.61) it is evident that the corresponding phase shift ΔΦL (see (9.62)) changes
sign when the direction of the laser beams is reversed [483]. In the set-up of Fig. 9.45 the
laser beams could be reversed by blocking alternatively either R1 or R2. The corresponding
frequency shift allowed one to determine the residual phase shift and to correct its influence.

The uncertainty due to the residual first-order Doppler effect was estimated to be 500 Hz
[23]. The large velocity of the atoms led to a considerable second-order Doppler effect whose
influence could be corrected by calculating the influence of the velocity distribution f(v)
(see (9.61)) of the atoms on the resonance pattern. Rather than using a Maxwellian velocity
distribution an effective velocity distribution had to be used that included modifications from
several effects, e.g., the velocity dependent excitation and detection efficiency [216] affecting
A(P, v, ω). The effective velocity distribution was determined from a Fourier analysis of
the measured signal (Fig. 9.46) similarly to how it was done with Cs atomic clocks (see e.g.
[264, 265] and references therein). The relative uncertainty of the transportable standard was
estimated to be 1.3 × 10−12 [23]. With stationary standards, a relative uncertainty of 5 ×
10−13 was estimated [486] mainly limited by the first-order and second-order Doppler effects
associated with the high velocities of the atoms in the beam.
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9.4.4.2 Optical Frequency Standard Using Cold Ballistic Alkaline Earth Atoms

Much work has been done to cool and trap alkaline earth atoms for use in frequency stan-
dards in order to minimise velocity-induced contributions to the frequency uncertainty. The
alkaline earth atoms can be conveniently laser cooled and trapped in a magneto-optical trap
(MOT) (Section 6.4.1) via fast transitions connecting the 1P1 states with the 1S0 ground
states (Fig. 5.2). The missing splitting of the ground state makes the alkaline earth ele-
ments well suited for optical frequency standards but does not easily allow to reach tem-
peratures below the Doppler limit (6.12) of the 1S0 →3P1 transition. Magnesium has been
cooled [488] and trapped [489] and the optical spectroscopy necessary for an optical frequency
standard has been successfully demonstrated [490]. Laser cooled strontium atoms captured
and stored [491] in a magneto-optical trap [163, 492] are of particular interest since the inter-
combination line can be used to further cool the atoms down to the recoil limit [163,493]. The
straightforward application of the same method to other alkaline earth elements is hampered
by the fact that the narrow linewidth leads to a cooling force that is close to the gravitational
force (Ca) or even smaller (Mg). This problem can be overcome by quenching the intercom-
bination transition and Ca has also been “quench-cooled” to temperatures well below the limit
imposed by the width of the 1P1 – 1S0 transition [164,165,494]. In the following, the progress
made with laser-cooled optical frequency standards will be discussed by using the example of
40Ca.

Optical frequency standards with laser-cooled ballistic Ca atoms have been realised with
different set-ups [191, 196, 495]. One method used atoms effusing from an oven heated to
about 600 ◦C which were subsequently laser cooled by a counter-propagating laser beam
(423 nm) in a Zeeman slower, deflected by a standing laser beam, before being trapped in a
magneto-optical trap [196,199]. A more compact apparatus can be set up if the Zeeman slower
is omitted (Fig. 9.47, [191,495]). Hence, only the low velocity atoms of the atomic beam can

Figure 9.47: Magneto-optical trap (MOT) loaded by the low-velocity tail of the atomic distri-
bution effusing from a calcium oven (Ca) [191, 496]. The acousto-optical modulators (AOM)
cut the pulses of about 1 μs used for the excitation from the clock laser beam. Det: Detector.

be captured by the trap. To increase the loading rate the oven has to be placed close to the trap
centre. The capture velocity can be increased by using two laser frequencies for the horizontal
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trapping beams [190] or by an additional slowing beam and the deceleration within the fringe
field of the magneto-optical trap [191]. The radiation at λ = 423 nm was either produced
by a dye laser pumped by an argon UV-laser or later by a solid state laser system consisting
of a frequency-doubled diode laser system or by a frequency doubled Ti:Sapphire laser. The
traps are loaded typically for about five to twenty milliseconds leading up to 108 stored atoms.
After this time the light of the trapping laser and (when higher accuracy is needed) also the
magnetic field of the MOT, is shut off and the atoms are allowed to expand ballisticly. The
intercombination transition at 657 nm of the freely falling atoms is then excited by the radia-
tion of a high-resolution dye laser spectrometer [82] or a diode laser spectrometer [191, 452].
From the width (≈ 3 MHz) and shape of the Doppler broadened intercombination line at λ =
657 nm the temperature of the atomic sample can be determined indicating a temperature of
the atoms of 2 mK – 3 mK. The simplest method to detect the percentage of excited atoms is
to detect the photons (λ = 657 nm) from the fluorescence decay. In this case, however, each
excited atom emits only one photon which is detected in general with a probability around
0.1 % and, hence, the signal-to-noise ratio is limited by the shot noise of these photons. To
detect each excited atom with almost unity probability different shelving techniques have been
applied to magnesium [489] and calcium [191, 496, 497]. These methods monitor the fluores-
cence on the strong transition 1P1 – 1S0 which is coupled to the 3P1 – 1S0 via the common
ground state (Fig. 5.2). The fluorescence on the strong transition (λ = 423 nm) decreases at
a rate proportional to the number of atoms excited to the 3P1 state where they are shelved for
some time. These methods represent modifications of the electron shelving technique used
with single ions (see Section 10.2.3.3, [498]).

The root mean square velocity of the atoms in an ensemble cooled close to the Doppler
limit of the 1P1 – 1S0 transition is about 1 m/s as can be derived from the Doppler broadening
of about 3 MHz (Fig. 9.48) and (first-order) Doppler-free methods have to be applied for the
interrogation. Excitation by two counter-propagating pulses leads to a saturation dip in the

Figure 9.48: Atom interferences in the centre of the Doppler-broadened intercombination line
1S0 – 3P1 (see inset) observed with laser-cooled Ca atoms.

centre of the Doppler broadened line whose width depends on the duration of the pulse (Sec-
tion 5.4.1). In calcium, an interaction time of 0.5 ms corresponding to the natural lifetime of
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the excited state, however, results in a linewidth of about 0.37 kHz and consequently only a
few times 10−4 of the atoms in the Doppler broadened velocity distribution are excited. High
spectral resolution combined with a good signal-to-noise ratio (S/N) can be achieved by using
a sequence of short pulses to realise the time-domain equivalent of the separated field exci-
tation. The resulting optical Ramsey resonances or Bordé atom interferences (Section 6.6.1)
of the number of excited atoms vary proportional to cos(2πνT − 2πν0T ) (Fig. 9.48). Even
during the short interaction time of 1 μs the pulses excite only a fraction of the cold ensemble
of atoms (see inset of Fig. 9.48). The necessary high spectral resolution is achieved by a suffi-
ciently large time separation T between the exciting pulses. If the length of the pulse is small
compared to their separation, the width of the interference fringes Δν = 1/(4T ) is inversely
proportional to T . Depending on the time T the resolution can be increased without changing
the interaction time broadening and the signal does not degrade much with increasing reso-
lution. Fringe widths below 300 Hz, i.e. close to the natural linewidth of the clock transition
were obtained (see Fig. 6.1 c) and [191]). The interference pattern is comprised of the two
contributions of the two recoil components with a frequency difference 2δrec = h/(mCaλ

2)
= 23.1 kHz. To obtain maximum contrast the resolution is usually adjusted in such a way that
both patterns overlap. The contrast also depends on the kind of excitation, e.g., whether three
pulses of a standing wave or two pulses of the laser beam in each direction are employed.

The central fringe is usually chosen to stabilise the frequency of the laser, i.e. to keep the
frequency at a minimum or maximum of the fluorescence signal by means of an electronic
servo-control system. From the periodicity of the fringes it might seem ambiguous to find
the proper frequency of the intercombination transition. There are, however, several means
of determining the central fringe. One method relies on the fact that for arbitrary variations
of the fringe period only the positions of the minima corresponding to the frequencies at both
recoil components are constant.

The performance of optical Calcium frequency standards has been investigated in the
groups of the NIST [499] and the PTB [495, 500]. Uncertainty budgets have been given
between 1 × 10−13 [500], 6 × 10−14 [501] and 2 × 10−14 [502, 503] with prospects to reach
even smaller fractional uncertainties [497]. The frequency of the intercombination transition
has been measured over the years with a phase-coherent frequency chain [504] and with a
mode-locked femtosecond laser [501, 505] (Section 11). The uncertainty of the frequency of
νCa = 455 986 240 494 150 (9) Hz [502] makes the Ca stabilised laser one of the most accurate
optical frequency standards. The uncertainty eventually achieved with the optical Ca standard
might be limited by errors in the phase fronts of the laser pulses exciting the clock transi-
tion. Atoms moving perpendicular to the laser beams in curved phase fronts will experience
a phase shift between consecutive laser pulses equivalent to a first-order Doppler shift. Since
the atoms are accelerated by gravitation between the first and last laser pulse a frequency shift
can occur if the laser beams are not exactly levelled horizontally [506]. The application of
different types of excitation schemes equivalent to different kinds of atom interferometers has
been used to reduce these effects [503,506]. Frequency shifting radiation fields resulting from
incomplete suppression of the cooling lasers or temperature radiation from the Ca oven lead to
a so-called ac-Stark shift or black-body shift, respectively. Smaller contributions to the uncer-
tainty include influences of the superposition of the two recoil components, the contribution
of Doppler background, and the stabilisation scheme.
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The uncertainty of these types of optical frequency standards based on a ballisticly ex-
panding cloud of neutral atoms is ultimately limited by the velocity of the atoms and the
associated phase shifts in tilted or curved wave fronts and can be efficiently reduced further
by employing atoms of lower velocities. The measured Doppler broadened intercombination
transition (Fig. 9.49 a) with 40Ca atoms quench-cooled [507, 508] to the microkelvin range
is much less affected by the velocity as, e.g., the one obtained with atoms in the millikelvin
range (Fig. 9.48). Hence, the lineshape can be modelled more accurately (Fig. 9.49 b) which
is prerequisite to determining the true line centre to a precision much lower than the linewidth.

Figure 9.49: a) Atom interferences with four travelling waves using quench-cooled atoms [507]. b)
Calculated spectrum according to [215].

The fractional instability of a Ca optical frequency standard was measured to be σy(τ =
1 s) = 4 × 10−15 [499]. The minimal instability that can be obtained with such an optical
neutral-atom frequency standard is given by the quantum projection noise (Section 14.1.3.1).
For N0 = 1×107 atoms and a time T = 0.6 ms corresponding to a linewidth of about 0.6 kHz,
one computes from (3.97) σy(τ ) < 10−16/

√
τ/s [497, 499].

9.4.5 Optical Hydrogen Standard

The natural linewidth around one hertz and the corresponding exceptionally high Q ≈ 1015

of the hydrogen 1S – 2S two-photon transition (Fig. 5.1, Table 5.2) makes it ideally suited
for precision spectroscopy and an optical frequency standard. Based on the results obtained
in the group of Th. Hänsch [93, 157, 235, 509] this transition has been recommended for
the realisation of the metre [370]. In the set-up of this group (Fig. 9.50) the Doppler-free
two-photon transition was excited by frequency doubled radiation from a dye laser operated
at 486 nm [510] in an atomic beam. Owing to their small mass the hydrogen atoms in a
room-temperature gas have a mean velocity near 2 km/s and the associated large second-order
Doppler shift (Fig. 5.19) will eventually limit the achievable accuracy. Hence, a cold beam
of atomic hydrogen has been produced in a liquid helium cooled nozzle kept at a temperature
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Figure 9.50: Set-up used to measure the frequency of the 1S – 2S hydrogen transition after
[157]. LHe: Liquid Helium. Courtesy of Th. Hänsch.

of about 7 K. The atoms in the beam were excited by the collinearly aligned standing wave
light of 243 nm resonantly enhanced in a linear cavity in the vacuum. To detect the excited
atoms an electric field was applied that mixed the 2S and the 2P state. This field quenched the
121 nm transition whose photons could be detected by a solar-blind photomultiplier during
the time the 243 nm radiation was blocked.

An estimation of the uncertainty of the optical hydrogen beam standard has been given
with a fractional uncertainty of a few parts in 1014 and the frequency has been measured
[93] with the same accuracy. Frequency shifting contributions result from the second-order
Doppler effect, electric and magnetic fields, light shift, and a pressure shift. To find the line
centre despite the asymmetric lineshape resulting from the second-order Doppler effect the
experimental lineshape was modelled and compared to the experimental ones [157]. Fur-
thermore, when the slowest atoms in the beam were selected, the second-order Doppler shift
could be reduced further. The fluorescence of the excited atoms was monitored after a delay
time τ , after blocking the laser light. Hence, the maximum velocity of the atoms is given by
vmax = d/τ where d ≈ 13 cm is the distance between the nozzle and the detector.

Static electric fields shift the line by ΔνdcStark = 3.6 kHz ×E2/(V/m)2 as a result of the
mixing of the almost degenerate 2P and 2S levels. To reduce the electric field produced by
static charges, and hence the dc Stark shift, to a minimum a graphite-coated Faraday cage
was employed (Fig. 9.50). The 243 nm radiation is red detuned with respect to the 1S –
2S level separation thereby repelling these levels. Consequently, the ac Stark shift leads
to a blue detuning of the resonance frequency depending on the one-way irradiance I as
ΔνacStark = 2I × 1.667 × 10−4Hz/(W/m2) [157]. The frequency shift was estimated to
be several tens of hertz. A residual first-order Doppler effect may be present as a result of the
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limited parallelism of the wave vectors in the resonator and the contribution of higher-order
modes in the resonator. The ultimate uncertainty to be achieved with a frequency standard
based on a two-photon transition seems to be limited to the extent that the ac-Stark shift can
be determined and corrected for.

The resolution of the two-photon line might be further increased by means of optical Ram-
sey two-photon excitation which also has been demonstrated for the 1S – 2S transition [235].
Since no first-order Doppler shift occurs in the two-photon excitation two interaction zones
are sufficient even in the optical domain where the wavelength of the interacting electromag-
netic radiation is much smaller than the width of the atomic beam. The necessity of only
two interaction zones in two-photon optical Ramsey excitation allows one to make efficient
use of the concept of an atomic fountain as has been proposed also for ultra-cold hydrogen
atoms [511]. The necessary cooling of hydrogen to lower temperatures has been achieved
in a magnetic trap by using resonant light from a hydrogen lamp. The temperature achieved
of 8 mK [512] is not far above the Doppler limit of about 3 mK. For a fountain, however,
sub-Doppler cooling schemes have to be applied that require the use of coherent radiation.
Generation of continuous coherent radiation near the Lyman-α line at 121.56 nm is very te-
dious. However, up to 200 nW have been obtained by four-wave-mixing of the radiation from
three lasers [513] which might be sufficient for laser cooling.

9.4.6 Other Candidates for Neutral-absorber Optical Frequency
Standards

Two-Photon Transition in Atomic Silver A promising two-photon clock transition with a
natural linewidth of about 1 Hz can be excited by two photons with a wavelength of 661.2 nm
in 109Ag (Fig. 9.51; [514]). Silver transitions have been investigated in a thermal beam

Figure 9.51: Partial energy level diagram of 119Ag

[105, 515] and with laser-cooled atoms [104, 516]. Technically, the generation of the UV
cooling radiation at 328.1 nm meets with difficulties. However, frequency doubling of the
radiation of a dye laser using a LBO crystal or a diode laser with tapered amplifier and a
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LiNbO3 crystal have led to 50 mW and 5 mW, respectively [104]. A minimum temperature of
0.3 mK which is below the Doppler limit of 0.56 mK has been achieved and 3×106 atoms have
been stored. The corresponding velocities of about 20 cm/s are already low enough to allow
for a frequency standard with an expanding cloud of ballistic atoms. With further reduction
of the velocity the setting up of a fountain seems possible. As in the case of the hydrogen
standard the ultimate attainable uncertainty of a future silver standard may be limited by the
ac-Stark shift.

Two-photon Transition in Xenon An optical frequency standard has been proposed [100,
151] based on a two-photon transition in xenon connecting a 3P2 state with a 3P0 state with
two 2.19 μm photons. Xenon has been laser cooled in a magneto-optical trap to microkelvin
temperatures. The promotion of this candidate was somewhat hampered by the observation
that the clock state is de-excited by the ambient room-temperature black-body radiation [100]
thereby increasing the linewidth considerably from the expected 2 Hz. It was pointed out,
however, that by cooling the apparatus to liquid nitrogen temperature, the black-body induced
broadening could be virtually eliminated and the associated frequency shifts could be reduced
by three orders of magnitude [100].





10 Ion-trap Frequency Standards

The ideal reference in a frequency standard would consist of an absorber at rest in an environ-
ment free of perturbations by other particles or fields, with a high line quality factor Q and a
strong signal when probed by an external oscillator. To keep microscopic particles at rest at
a fixed position in space a strong binding force pointing to this point is required. Due to the
weak interaction of neutral atoms or molecules with electric and magnetic fields, relatively
strong fields or field gradients are required which may perturb the atomic energy levels. For
ionised particles, however, with an electron added or one or more electrons removed from the
shell, much smaller fields are needed for confinement in a so-called ion trap. There are several
advantages of ion traps when used for frequency standards applications which will be briefly
addressed here and considered in more detail below. First, storage times of days and more
allow one to probe ultra-narrow lines with virtually no broadening due to the limited inter-
action time. Second, the concentration of the absorbers into a small volume allows effective
application of the methods of laser cooling and detection of the induced signals originating
from a single spot. The reduction of the velocity and the confinement to regions smaller than
the wavelength of the probing radiation (Lamb–Dicke regime; see Section 10.1.4) allows the
reduction of the Doppler effect in all orders. Third, collisions with other atomic species can
be largely suppressed by the use of ultra-high vacuum environment which at the same time
reduces the coupling to the outside world. Fourth, the strong interaction with other ions can
be avoided by the use of a “mono-ion oscillator as potential ultimate laser frequency standard”
as was proposed by Dehmelt in 1982 [517]. The use of ion traps in frequency standards has
been the subject of a number of reviews (see e.g. [277, 518–521]). An account of the history
of ion traps with important developments and references has been given by Thompson [519].

10.1 Basics of Ion Traps

Electrically charged particles can be confined almost indefinitely to a well defined region in
space by suitably shaped electric and magnetic field configurations.

Since it is not possible to keep an electrically charged particle fixed in space using solely
static electric fields (Earnshaw’s theorem), a combination of static magnetic and electric fields
(Penning trap) or a time-dependent inhomogeneous electric field (radio frequency (rf) trap or
Paul trap) 1 must be used to trap ions.

1 The pioneering developments of W. Paul and co-workers [522] to store electrically charged particles in the ion
trap have been acknowledged in 1989 by the Nobel prize. The Penning trap is named after Penning [523] who
investigated the effects of magnetic fields on low pressure discharges.
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10.1.1 Radio-frequency Ion Traps

Consider an electric field configuration �E(�r) defined by a potential Φ(�r) leading to a force on
an ion with charge q at any space point inside the trapping volume pointing to the centre of
this volume. In the following we consider singly charged ions, where the charge is q = +e =
1.602 × 10−19 A s. The force on the ion is

�F (�r) = e �E(�r) = −e · ∇Φ(�r). (10.1)

Here, ∇ = (∂/∂x, ∂/∂y, ∂/∂z) denotes the Nabla operator, used to determine the gradient of
a vector field in Cartesian coordinates. Preferentially, this force should increase linearly with
the distance �r from the centre �F (�r) ∝ �r since in this case the particles are expected to perform
simple harmonic oscillations. The corresponding scalar potential Φ(x, y, z) has a parabolic
shape and may be represented by

Φ = const · (ax2 + by2 + cz2
)

(10.2)

with the constant to be determined later. From Laplace’s equation ΔΦ ≡ ∇2Φ = 0 for regions
of space where there is no charge density we derive the condition

a + b + c = 0 (10.3)

for the constants determining the potential (10.2).
In the following, we will have a closer look to two particular solutions fulfilling (10.3),

namely

a = 1, b = −1, c = 0 (linear quadrupole configuration) (10.4)

and

a = b = 1, c = −2 (three-dimensional quadrupole configuration). (10.5)

10.1.1.1 Linear Quadrupole Trap

The first solution (10.4) represents a trap configuration where the potential is independent of z

Φ = const · (x2 − y2
)

(10.6)

leading to the configuration of a two-dimensional linear quadrupole as sketched in Fig. 10.1.
We will discuss this configuration first before treating the second case (10.5) leading to a

trap in three dimensions.
This two-dimensional quadrupole potential can be generated by a set of four hyperbolic

electrodes (Fig. 10.1) where the upper and lower electrodes are kept, e.g., at a negative poten-
tial and the two remaining ones are set to a positive potential. Consider a potential difference
of Φ0 between both sets of electrodes generated by an applied voltage. The constant of (10.2)
and (10.6) is readily determined from Φ(r0) = Φ0/2 = const · r2

0 as const = Φ0/(2r2
0)



10.1 Basics of Ion Traps 317

Figure 10.1: The two-dimensional quadrupole
potential in the x − y plane can be generated
by four electrodes of hyperbolic shape (dark ar-
eas).

Figure 10.2: The potential surface of a
quadrupole electrode (Fig. 10.1) system of hy-
perbolic shape exhibits a saddle point.

where 2r0 is the distance between two opposite electrodes. From this potential the electric
field is calculated by use of (10.1) as

Ex =
Φ0

r2
0

x, Ey = −Φ0

r2
0

y, Ez = 0. (10.7)

Within this static field in the x− y plane a particle of electric charge +e will be repelled from
the positive charged electrodes experiencing a repulsive force along the x direction towards the
centre at x = 0. According to the linear dependence of the field strength E on the coordinate
x (Hooke’s law) we expect the ion to perform a harmonic oscillation in the x direction. In
contrast, along the y direction the ion is accelerated towards the nearest negative electrode.
The potential surface of (10.6) shows a saddle point at the centre with a minimum along the x
direction but a maximum along the y direction (Fig. 10.2). Changing the polarity of the static
field will lead to a confinement in the y direction and a corresponding repulsive force pointing
away from the centre along the x direction.

To confine the ion in both directions, the potential of both pairs of electrodes is alternated
periodically. The alternating rf voltage Vac with a driving angular frequency ω may be added
in general to a constant voltage Udc so that

Φ0 = Udc − Vac cos ωt. (10.8)

Hence, the potential surface of Fig. 10.2 rotates around the vertical axis through the saddle
point with angular frequency ω. At first sight, it is not obvious that the alternating focussing
and de-focussing along the x and y direction leads to trapping since we might expect that the
time-dependent terms cancel on average and no net force acts onto the ion. This is, however,
not true in a periodic inhomogeneous field where there is always a small mean force pointing
towards the centre. Before we discuss the origin of this force we consider the motion of an ion



318 10 Ion-trap Frequency Standards

in the trapping potential in more detail following the treatment given by Dehmelt [524] and
Paul ( [525] and references therein).

Consider an ion near the centre of the trap experiencing a time-dependent force according
to (10.8). The time-dependent position and velocity components can be obtained from the
resulting equations of motion of the ion

Fx(t) = mẍ(t) = eE(x) cosωt =
e

r2
0

(Udc − Vac cos ωt) x

Fy(t) = mÿ(t) = eE(y) cosωt = − e

r2
0

(Udc − Vac cos ωt) y (10.9)

where, as usual, the shorthand ẍ(t) represents d2x/dt2. Using (10.7) and the dimensionless
parameters

τ ≡ ω

2
t, a ≡ 4eUdc

mω2r2
0

, q ≡ 2eVac

mω2r2
0

(10.10)

the equations of (10.9) lead to Mathieu’s differential equation 2

d2x(τ )
dτ2

+ (a − 2q cos 2τ )x = 0 (10.11)

and
d2y(τ )
dτ2

− (a − 2q cos 2τ ) y = 0. (10.12)

Since the coefficients of Mathieu’s equation (10.11) are periodic functions of τ there exists a
so-called Floquet-type solution [59, 526] of the form

Fμ(τ ) = eiμτP (τ ). (10.13)

P (τ ) is a periodic function of the same period as that of the coefficients in (10.11), i.e. π.
Every non-periodic solution of (10.11) is known to be a linear combination of the two linearly
independent Floquet-type solutions Fμ(τ ) and Fμ(−τ ). The so-called characteristic exponent
μ ≡ α + iβ depends uniquely on the parameters a and q. A complex characteristic exponent
μ in general leads to an exponential growth of the amplitude (see (10.13)) and, hence, is
termed the unstable solution. A characteristic exponent being real μ = β, β ∈ R leads
to oscillations of the ions with uniformly bounded amplitude (stable solution). Obviously,
for stable trapping in the experiment the amplitude has to be smaller than the distance from
the centre to the electrodes. Since the characteristic exponent is a function of a and q the
corresponding dependence a(q) has to be computed for a given β = f(a, q), e.g., by the
method of the continued fraction [59, 526].

Calculations of a(q) [526] displayed in Fig. 10.3 show stable (shaded) regions for 0 ≤ β ≤
1, 1 ≤ β ≤ 2, 2 ≤ β ≤ 3 beginning from bottom to top 3.

2 This type of equation was treated in 1868 by the French mathematician E. Mathieu when he studied the vibration
of an elliptical membrane.

3 Mathematically, there are distinct differences depending on whether β is an integer or not as can be seen, for
instance, by the fact that β = 1 represents the boundary of the first and the second stable region. In practice,
however, we need not be concerned with these integer solutions since a trap has to be operated well inside a stable
region to allow for stable trapping also in the presence of unavoidable fluctuations of the voltages defining a and q.
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Figure 10.3: The computed a(q) for β =
f(a, q) with 0 ≤ β ≤ 3 in increments of 0.2
(lines) [526] shows three stable regions (shaded
areas). The figure is symmetric, i.e. a(q) =
a(−q).

Figure 10.4: A composite diagram similar to
Fig. 10.3 for both x and y shows overlapping
regions of stability in both directions.

Since stable trapping depends exclusively on the choice of the parameters a and q it does
not depend (within some reasonable restrictions) on the initial conditions, e.g., on the velocity
of the ions.

To allow stable trapping in a two-dimensional trapping field like the one of Fig. 10.1 or
in three dimensions the parameters ai and qi (i = x, y) have to be kept in a stable region
independently. For the trajectory along the x and y directions a compound stability diagram
can be constructed (Fig. 10.4) simply by plotting both diagrams into a single one using +a and
+q for the x motion and −a and −q for the y motion together with the fact that a(q) = a(−q).
We identify stable regimes only where x stable regions and y stable regions overlap in the a−q
diagram. The first stability region which is almost exclusively used in the experiments, is
plotted together with the curves representing constant stability parameters β for both separate
coordinates (Fig. 10.5).

Figure 10.5: First stability region (shaded area) in a two-dimensional trapping configuration like the
linear Paul trap or in the mass filter.
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The stable solutions to the Mathieu equation (10.11) can be found from the linear combi-
nations of the Floquet solutions Fμ(τ ) and Fμ(−τ ) (10.13) as an infinite series of harmonics
of τ [59]

x(τ ) = A

∞∑
n=−∞

cn cos(2n + β)τ + B

∞∑
n=−∞

cn sin(2n + β)τ, (10.14)

where A and B are constants depending on the initial conditions and cn and β are functions
of a and q. Hence, using (10.10) the motional angular frequency spectrum of the trapped ions
is given by the values

ωn = (n ± β

2
) ω (10.15)

defined by the driving rf angular frequency ω applied to the trap.
Rather than investigating (10.14) in more detail we now turn back to the question of why

there is a residual trapping force on the ion in a periodic inhomogeneous electric field. To
understand the origin of this force we summarise the treatment given by Dehmelt [524] and
Paul ( [525] and references therein). We first investigate the motion of an ion which has an
excursion x̂ from the centre of the trap. Even though in the vicinity of the particle’s location
the electric field varies locally we neglect this spatial variation for the time being and replace
it by the mean constant field Ê. Integrating the first of equations (10.9) mẍ(t) = eÊ cos ωt
twice and assuming for simplicity that the ion was at rest at t = 0, we find the time-dependent
position of the particle to be

x(t) = x̂ − eÊ

mω2
cos ωt. (10.16)

Hence, the ion oscillates with the frequency of the driving field but (because of the minus sign)
it is out of phase by π with respect to the driving field. This oscillation is called micromotion
and its phase lag is the reason that, in the spatially dependent potential of Fig. 10.2, the ion is
accelerated towards the centre of the trap. When the ion is displaced from the mean position
x̂ by the micromotion towards the centre of the trap, the force on the ion points away from
the centre and vice versa. We now lift the restriction of a constant field Ê. We see that in
the case when the ion is accelerated away from the centre of the trap, it is at a position closer
to the centre of the trap where the field is smaller than the mean field Ê. Consequently, the
electric force acting on the ion is smaller than the force the ion experiences in the higher field
at a distance x > x̂. As a result, there is a net force acting in the direction of decreasing
amplitude of the oscillating electric field. If the driving frequency is sufficiently high and
the field amplitude is sufficiently low the resulting force can be thought of as being due to a
potential, sometimes called the pseudopotential. In this case the excursion x(t) − x̂ during
one cycle of the oscillating field is small enough to allow one to use only the first terms of the
Taylor series of the electric field

F (t) = eE(x̂) cosωt + e
dE(x̂)

dx
(x − x̂) cosωt + · · ·

≈ eE(x̂) cosωt − e2E(x̂)
mω2

dE(x̂)
dx

cos2 ωt. (10.17)
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Here, we have made use of (10.16) to determine x(t)− x̂. Averaging the force over one cycle
of the driving field, the first term of (10.17) cancels and the second one averages to

Fav(x̂) = −e2E(x̂)
2mω2

dE(x̂)
dx

. (10.18)

The pseudopotential Ψpseudo corresponding to this force can be obtained from (10.18) by use
of (10.1) and extended to two dimensions as

Ψpseudo(x̂, ŷ) =
eE2(x̂, ŷ)

4mω2
. (10.19)

In this so-called adiabatic approximation [524] the ion rapidly oscillates with the frequency
applied to the trap (micromotion) and performs a much slower movement (macromotion or
secular motion) in the pseudopotential. The secular frequency of this radial slow oscillation
can be obtained by equating the potential energy derived from (10.19) and the kinetic energy
as follows

eΨpseudo = 1
2mω2

r (x2 + y2). (10.20)

For simplicity, we assume Udc = 0 and insert E2(x̂, ŷ) = E2
x + E2

y (see (10.7)) into (10.19)
to obtain ωr ≈ eVac/(

√
2mωr2

0). This angular frequency corresponds to the resonance of
lowest order of the solution of (10.14).

Up to now, we have looked for a two-dimensional potential which is capable of confining
the ions only radially. For axial confinement, additional means have to be used. The trapping
electrodes shown in Fig. 10.1 can be bent to form a ring structure [527, 528]. For frequency
standards such a “race track” is not well suited since the position of a particular group of
ions is not necessarily fixed and may therefore limit the interaction time with the interrogat-
ing field. Several methods have been used to make axial confinement in a so-called linear
trap. Examples include additional ring electrodes [529] or segmented rods with a dc potential
coupled to the outer rods [530] (Fig. 10.6) or separate dc end electrodes [531, 532].

Figure 10.6: Realisations of linear traps generating a radial potential similar to the one of Fig. 10.1 with
two additional ring electrodes a) or with additional rods b) for axial confinement.

10.1.1.2 Three-dimensional Paul Trap

The second particular solution (10.5) leads to a three-dimensional potential [533]

Φ =
Φ0

x2 + y2 + 2z2
0

· (x2 + y2 − 2z2
)

(10.21)
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which can be generated by the potential surfaces

x2 + y2 − 2z2 ≡ r2 − 2z2 = ±r2
0. (10.22)

The positive sign leads to a hyperbolic surface with rotational symmetry around the z axis
generated by a ring electrode of an inner radius r0 (Fig. 10.7). The negative sign results in two
branches of the hyperbola of revolution separated by the distance 2z0 =

√
2r0 also exhibiting

rotational symmetry with respect to the z axis.

Figure 10.7: Three-dimensional Paul
trap.

Figure 10.8: First stability region (shaded area) in a
three-dimensional Paul trap.

The electric field in the radial direction (Er) and in the axial z direction (Ez) differ by a
factor of −2. The potential in cylindrical coordinates now reads

Φ(r, z) =
Udc + Vac cos ωt

r2
0 + 2z2

0

(r2 − 2z2) (10.23)

where r0 and z0 are defined as shown in Fig. 10.7. Consequently, we have to introduce
individual constants a and q (10.10) for the radial direction (ar, qr) and for the axial direction
(az, qz) also differing by the same factor of −2

az = −2ar ≡ a, qz = −2qr ≡ q. (10.24)

Again, we plot a composite stability diagram a(q) for the axial az(qz) and radial ar(qr) di-
agrams (Fig. 10.8). We first plot the diagram for az = a and qz = q. In a second step we
include into the same diagram ar(qr), scaling the latter with the factor of two (see (10.24)).
The resulting first stability region is somewhat deformed (Fig. 10.8) as compared to the two-
dimensional case (Fig. 10.5).

Even though there is more than one region where stable confinement is possible the first
stability region is used almost exclusively in the experiments. A particular trap used at PTB
to store 171Yb+ ions had a radius of r0 = 0.7 mm and was operated with a voltage of Vac =
500 V at an angular frequency ω = 2π × 16 MHz and with a few volts for Udc. We calculate
the corresponding parameters qz = 0.11 and az ≈ 2 × 10−3 from (10.10) and (10.24) and
find that the trap is operated well within the first stability region of Fig. 10.8.



10.1 Basics of Ion Traps 323

The pseudopotential Ψpseudo(r̂, ẑ) for the Paul trap can be obtained in a similar way as in
the two-dimensional case (see (10.19)) as follows

Ψpseudo(r̂, ẑ) =
Udc

2r2
0

(r̂2 − 2ẑ2) +
eV 2

ac

4mω2r4
0

(r̂2 + 4ẑ2)

=
mω2

16e

[
(q2

r + 2ar)r̂2 + 4(q2
r − ar)ẑ2

]
. (10.25)

We refer to eΨpseudo(r0, 0) and eΨpseudo(r0/
√

2, 0) as the radial and axial depth of the poten-
tial well, respectively. For an alternating potential without constant term (Udc = 0) the depth
of the axial well is twice that of the radial one. The potential can be made more symmetrical if
a dc voltage (having the same sign as the charge of the ions to be stored) is applied to the ring
electrode. For ar = q2

r/2 the potential becomes spherically symmetrical. The frequencies of
the secular motion can be calculated from (10.25) as

ωr =
ω√
8

√
q2
r + 2ar and ωz =

ω√
2

√
q2
r + 2ar. (10.26)

10.1.2 Penning Trap

The Penning trap makes use of the same electrode arrangement as in the radio frequency trap
(Paul trap) but no high-frequency field is applied (Vac = 0). The ions experience a repulsive
potential along the z axis. In the x − y plane, however, this potential would kick the ion out
of the centre. To trap the ion, an additional magnetic field is applied along the z axis. The
(classical) equations of motion of the ion in this case read

m�̈r = e �E(�r) + e�̇r × �B, which is equivalent to (10.27)

mẍ = e(Er + ẏBz)
mÿ = e(Er − ẋBz)
mz̈ = eEz.

The components of the electric field can be obtained using the potential Φ of (10.23). Solving
the last equation leads to a harmonic oscillation where the angular frequency

ω2
z =

4eUdc

m(r2
0 + 2z2

0)
(10.28)

is independent of Bz . If there was only a magnetic field of induction Bz , the charged particle
would circle in the plane orthogonal to the magnetic field with its angular frequency

ωc =
e

m
Bz (cyclotron angular frequency). (10.29)

The cyclotron frequency 4 of (10.29) can be derived from a balance of the Lorentz force and
the centrifugal force evB = mv2/r or eB = mωc. There is, however, an radial electric field

4 The name cyclotron frequency refers to the cyclotron where this condition is essential to accelerate charged parti-
cles.
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�Er which is orthogonal to the axial �B field resulting in a �E× �B drift leading to a circular orbit
in the x − y plane around the z axis. The balance of the electric force and the Lorentz force
qEr = qvB leads to the magnetron frequency 5

ωm =
Er

Br
(magnetron angular frequency). (10.30)

For a typical magnetic induction of a few tesla and a voltage of a few tens of volts the mag-
netron angular frequency ωm, the angular frequency of the axial oscillation ωz , and the cy-
clotron angular frequency ωc are a few tens of kilohertz, a few hundred kilohertz, and a few
megahertz, respectively. Hence, for the three frequencies the following relations hold

ωc � ωz � ωm. (10.31)

In this regime the trajectory of an ion in the Penning trap is a superposition of the three largely
independent motions (Fig. 10.9). There is a fast cyclotron motion around a field line of the
magnetic field (10.29), an oscillation along this field line described by (10.28) and a slow
( �E × �B) drift that can be calculated from (10.30). The trajectory can be described by an
orbit with epicircles in the x − y plane. In addition, the ion oscillates harmonically along the
perpendicular z axis corresponding to the direction of the magnetic field. If, however, the

Figure 10.9: The trajectory of an ion in a Penning trap represents an orbit in the x − y plane
with epicircles and an additional perpendicular axial oscillation in the z direction, the axis of
the magnetic field. The trajectory is drawn for ωc = 10 ωz = 100 ωm.

cyclotron frequency ωc (10.29) is not higher than the magnetron frequency ωm (10.30), the
orbits in the x − y plane can no longer be described by a epicircles. Several methods can be

5 The magnetron frequency does not depend on the properties of the particle as, e.g., charge, mass, or velocity but
on the parameters of the electric and magnetic fields. Its name results from the devices called magnetrons used to
generate high-power microwave radiation.
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applied to solve the two coupled differential equations of (10.27) for the x − y components

ẍ =
e

m

(
2Udc

r2
0 + 2z2

0

x + ẏBz

)
=

ω2
z

2
x + ωcẏ (10.32)

ÿ =
e

m

(
2Udc

r2
0 + 2z2

0

y − ẋBz

)
=

ω2
z

2
x − ωcẋ. (10.33)

Probably the easiest approach is to add (10.32) and i times (10.33) and to use the complex
quantity r = x+ iy [534] which leads to r̈ = ω2

zr/2− iωcṙ. The latter equation can be solved
by r = r0 exp(iωt) leading to the quadratic equation ω2 − ωωc − ω2

z/2 = 0 for ω. The two
solutions of this equation for the angular frequencies are

ω′
c =

ωc

2
+

√
ω2

c

4
− ω2

z

2
(modified cyclotron frequency) (10.34)

ωm =
ωc

2
−

√
ω2

c

4
− ω2

z

2
(magnetron frequency). (10.35)

If the argument of the square root in (10.34) and (10.35) is not negative, i.e. if ωc ≥ √
2ωz

this solution leads to two new frequencies called the modified cyclotron angular frequency ω′
c

and the magnetron angular frequency ωm. The modification to the “true” cyclotron angular
frequency ωc results from the repulsive term in the electrostatic potential (10.23).

Adding the two equations (10.34) and (10.35) and adding the same equations after squar-
ing them leads to the following relations

ωc = ω′
c + ωm (10.36)

ω2
c = ω′

c
2 + ω2

m + ω2
z . (10.37)

Both equations can be used to calculate the cyclotron frequency (10.29) from which very
accurate comparisons of ionic masses can be derived as will be discussed later. The last
equation (10.37) is the more accurate one since it also holds if the magnetic field is mis-
aligned with respect to the axis of the electrode configuration as has been shown by Brown
and Gabrielse [535]. Another useful relation is

ωm =
ω2

z

2ω′
c

(10.38)

which can be derived by subtracting (10.34) from (10.35), squaring the result and inserting
(10.37).

For a cloud of ions the ( �E× �B) drift leads to a rotation around the field lines of the magnetic
field. The associated time dilation results in a second-order Doppler shift and represents a
systematic shift of the frequency of microwave standards based on ions in a Penning trap.
Since the diameter of the cloud grows with the number of ions, this shift increases with the
number of trapped ions for otherwise fixed trapping conditions [536]. The radial trapping of
ions in the Penning trap is a consequence of the orbits resulting from the balance between an
electric force pointing away from the axis of the trap and a magnetic (�v × �B) force pointing
toward the axis. Consequently, in contrast to the Paul trap there is no restoring force acting
on an ion that suffered, e.g., from a collision with a neutral particle. Hence, the ions may
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diffuse out of the trap if collisions with the molecules of the background gas occur. There
are distinct differences between the magnetron motion and the cyclotron and the axial motion.
The latter represents a harmonic oscillation and consequently the energy is swapped between
its kinetic and potential part. Due to the high velocity and the small radius, the energy of
the cyclotron motion is mainly a kinetic one, whereas the nature of the magnetron motion
is essentially potential energy. We can see this immediately by comparing the kinetic and
potential energies of an ion performing a magnetron motion close to the centre of the trap and
close to the radial electrodes. The potential energy of a singly charged ion decreases from
zero to about Epot = 5 eV = 8 × 10−19 J if we assume a voltage of 10 V between the radial
and the axial electrodes. From (10.30) we calculate the magnetron velocity of the ion in a
trap (magnetic induction B = 5 T; radius r = 1 mm) as v ≈ 1000 m/s. For an ion having an
intermediate mass of about 100 nucleons (1.6 ×10−25 kg) the corresponding kinetic energy
of Ekin = 1/2mv2 ≈ 8× 10−20 J is an order of magnitude smaller compared to the potential
energy. Hence, the total energy decreases with increasing magnetron radius and collisions
preferably will increase the magnetron radius leading eventually to a loss of the ions.

For frequency standards, the Penning traps suffer furthermore from the fact that the large
magnetic field in general causes a large Zeeman shift which is undesirable when applied to
frequency standards purposes. Nevertheless, in some exceptional cases frequency standards
based on the ions trapped in a Penning trap have been realised or proposed (see e.g. [537–
539]). An example will be given below.

10.1.3 Interactions of Trapped Ions

The results derived so far for the motion of the ions hold only for single ions since we have
neglected the strong interaction between the ions due to their mutual Coulomb repulsion. If
there are several ions in a trap with kinetic energies that are small compared to the energy of
their mutual Coulomb interaction, the ions will be arranged in quasi-crystalline structures. In
the field-free nodal line of a linear quadrupole trap a small number of ions may be aligned like
the pearls on a string [528, 530] (Fig. 10.10). For higher numbers of ions more complicated
structures like helices can occur [540]. After the first crystal-like structures were observed in
a three-dimensional Paul trap [541, 542] large crystals containing up to 105 ions have been
observed in a Penning trap [543] or in a linear quadrupole trap [544].

Figure 10.10: Fluorescence from eight ions trapped in a linear Paul quadrupole trap. Photograph cour-
tesy of R. Blatt, University of Innsbruck.

Due to the collective oscillations of the ions new motional frequencies of the ions occur.
For intermediate temperatures the non-linearity of the Coulomb interaction will lead to chaotic
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behaviour of the ions, and the ions absorb energy from the trapping field, a phenomenon
known as radio frequency heating. For even higher temperatures and a sufficiently small
density the ions can be thought of as independent particles again and their motion can be
described by Mathieu’s equation.

Heating results from non-linear forces acting on the stored ions. It has been pointed out
by Walther [540] that the non-linear Coulomb force between the ions can lead to substantial
heating if the density of the ions is sufficiently high. Strong heating in clouds of ions has been
observed which depended on the operating point of the Paul trap as well as on the number
of ions in the cloud [545, 546]. This heating has been explained by deviations from the ideal
quadrupole potential, resulting, e.g., from misalignment of the electrodes or holes in the elec-
trodes. In this case coupling between the different degrees of freedom of the particles in the
trap can occur and energy can be exchanged between the otherwise uncoupled oscillations.
Hence, instabilities of the trap due to this heating occur at the resonances (see (10.15) and
Fig. 10.11)

nrβr

2
+

nzβz

2
= 1. (10.39)

Here, nr and nz are integers with nr +nz = N , N is the multipole order of the potential, and
βr and βz are the stability parameters.

Figure 10.11: Scan revealing instabilities due to heating in a Paul trap [547]. The numbers
assigned to the resonances are N,nr, nz . Courtesy of G. Werth.

10.1.4 Confinement to the Lamb–Dicke Regime

Besides its many advantages for interrogation of the ions discussed so far the high frequency
of optical laser radiation also leads to a predominant broadening Δν due to the first-order
Doppler effect since the broadening is proportional to the frequency (see e.g. (5.111)). For
an ion temperature of 1 mK the width of an optical transition is Doppler broadened to a few
megahertz. Since, e.g., tuneable laser oscillators can be stabilised to below one hertz [31]
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it is important to reduce this broadening. It has been realised by R. H. Dicke [152] that
the radiation emitted by a particle confined in a box of dimensions much smaller than its
wavelength does not suffer from the first-order Doppler effect. In the same way the Doppler
broadening of a spectral line absorbed by an ion vanishes if the oscillation amplitude of the
ion in the trap is restricted to much less than the wavelength of the absorbed radiation. To
understand this, we recall that an ion oscillating harmonically in the trap with the angular
frequency ωm experiences a phase modulated radiation field

E(t) = E0 sin (ωt + δ sin ωmt) (10.40)

even though the field in the laboratory frame E(t) = E0 sin ωt is unmodulated. From (2.50)
we know that such a phase modulated radiation in the time domain is represented in the fre-
quency domain by distinct frequencies composed of the carrier with angular frequency ω and
an infinite series of sidebands with angular frequencies ω ± nωm with 1 ≤ n ≤ ∞. For weak
phase modulation (δ ≡ Δω/ωm 
 1) only the carrier remains (see (2.52) and (2.49)). We
rewrite this condition as

δ ≡ Δω

ωm
=

ωvmax

ωmc
=

ωxmax

c
=

2πxmax

λ
< 1 (10.41)

where we have made use of the Doppler shift Δω = vmaxω/c and the energy balance for
an harmonic oscillator mv2

max/2 = Dx2
max/2 or v2

max = ω2
mx2

max. Consider an ion whose
vibration is confined to a spatial region d = 2xmax. From (10.41) we find that if the diameter
of this region is limited to

d <
λ

π
, (Lamb–Dicke criterion) (10.42)

δ < 1 holds. Hence predominatly only radiation at the carrier frequency but not at the frequen-
cies of the sidebands is absorbed and the Doppler broadening of the absorption line becomes
less significant the better (10.42) is fulfilled. Dicke [152] has derived a similar condition
d < λ/(2π) for a particle in a box of dimension d and consequently this regime is called the
Dicke regime or the Lamb–Dicke regime.

10.2 Techniques for the Realisation of Ion Traps

10.2.1 Loading the Ion Trap

Ions can be confined in a trap only if the kinetic energy of the ion is smaller than the barriers
surrounding the potential well. It is therefore not possible to inject ions with a defined energy
into an ion trap with fixed height of the barrier. There are several ways to load ion traps. The
most common method creates the ions inside the trap from neutral atoms, e.g., by ionising
an atomic beam by electron impact. This method is not always suitable for isotopes or an-
tiparticles of low abundance that have to be generated or selected for instance in accelerator
facilities. Consequently, it may be necessary to raise the potential barrier after injection of the
ions fast enough during the time the ions take to traverse the trap [548, 549]. Another method
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that has been used is to rapidly reduce the kinetic energy of the ions by an effective cooling
method within the time of their passage through the trap region [550]. Although easy to apply,
the first method of loading an ion trap is not without deficiencies for use in frequency stan-
dards. A common problem often encountered with this technique is that the atoms from the
atomic beam may be deposited on the electrodes and on insulating materials. A thin layer is
sufficient to lead to a surface potential which can disturb the potential distribution in rf traps.
As a result the ions may be shifted into a region where the rf field is no longer zero resulting
in an increased micromotion. Modern traps often include additional heating elements to allow
heating the trap after loading [551] or additional electrodes to compensate the fields. Ionis-
ing the atoms in the trapping region by means of, e.g. UV radiation, avoids these additional
provisions.

10.2.2 Methods for Cooling Trapped Ions

The deep potential well in ion traps allows the ions to have high energies without being lost
from the trap. The well depth can be as large as 20 eV and if we assume that the kinetic
energy of the ions under high vacuum conditions is about 10 % of the well depth [552] the
kinetic energy corresponds to a temperature of the ions which is about 80 times higher as
compared to room temperature where kBT ≈ 1/40 eV. The fractional frequency shift due to
the second-order Doppler effect for an ion of mass number 200 of Δν/ν = −v2/(2c2) =
−(mv2/2)/(mc2) ≈ 2 eV/(200 × 0.94GeV) ≈ −10−11 is in general not acceptable for use
in a frequency standard. Since the ions in the trap are well isolated from the environment
they do not effectively thermalise to the temperature of the apparatus and they have to be
cooled by an appropriate method. On the other hand, if the ions have been cooled to low
temperatures, e.g., by laser cooling methods, the ions may be kept at temperatures below 1 K
for extended times without further cooling. The phrase “cooling” of ions has to be utilised
with care. Here, we use it to describe the reduction of the velocity of the ions rather than to
reduce their temperature, since the concept of temperature is difficult to use for a single ion
or for ions that are far from thermal equilibrium. The prominent methods for cooling the ions
will be described in more detail now following reviews given by Holzscheiter [553] or Itano
et al. [554].

10.2.2.1 Energy Dissipation in an Electric Circuit

Ions oscillating in the trap induce electric currents in the trap electrodes. If these currents
are damped by an external resistor energy is removed from the ion and the motion of the
ion is damped. If no heating takes place the ions will come to equilibrium at the tempera-
ture of the external circuit. A simple model has been given by Dehmelt [555] to describe
the time dependence of the corresponding cooling process. Consider a single ion of mass
m and charge q oscillating along the z direction between the electrodes of the trap sepa-
rated by a distance 2z0 (Fig. 10.7). The current induced by the ion moving in the electric
field E between the electrodes along the distance ds with the velocity v can be calculated
from the energy dWz = qEds, necessary to move the ion. If the corresponding power
dWz/dt = qEds/dt ≈ qUv/(2z0) is provided by an external power supply connecting
the electrodes, the current I flowing from one electrode to the other can be calculated from
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IU = qUv/(2z0) as I = qv/(2z0). The approximation is equivalent to replacing the field of
the electrode configuration of the trap by that of a parallel plate capacitor. The moving ion in-
side the capacitor therefore can be thought of as an ideal current source shunted by a capacitor
dissipating the time averaged power 〈I2R〉 in an external resistor of resistance R which con-
nects the electrodes. Here, we have assumed that the capacitance C of the electrodes is small
enough that R 
 1/(ωzC) holds. The average power dissipated by the ion in the external
circuit is calculated as

−dWz

dt
= 〈I2R〉 =

q2RWz

4mz2
0

(10.43)

where we have used Wz = m〈v2
z〉 for the energy of the ion. The solution to this differential

equation represents an exponentially decaying energy of the ion with a damping time constant

t0 =
4mz2

0

q2R
. (10.44)

This method can be applied to cool all ions. However, it is most effective for highly charged
ions of small mass, as can be seen from (10.44). For cooling the axial motion in a Paul trap
(Fig. 10.7) the end caps can be directly connected by the external resistance circuit. To damp
the radial (x or y) direction the ring electrode has to be split and the external circuit must be
connected between the opposite segments. This cooling method is not applicable for cooling
the magnetron motion in Penning traps, since there the reduction of energy is paralleled by an
increase of the diameter of the magnetron orbit and by an increase of the magnetron velocity.

In principle, the cooling time can be reduced by use of negative electrical feedback. In
this case the electric signal induced in one of the end caps by the displacement of an ion could
be used as an error signal to generate an amplified servo signal of opposite phase which is
fed to the other endcap. For a cloud of ions only the centre-of-mass motion can be damped.
Due to the spread of energies of the individual ions, after some time the centre-of-mass is
displaced again and this so-called stochastic cooling can be applied again. The method has
been demonstrated [556] but is not in current use in frequency standards.

10.2.2.2 Buffer Gas Cooling

In early trapping experiments with dust particles in a rf trap, Wuerker et al. [557] observed
that the particles lost kinetic energy and their motion was damped when the pressure of the
background was raised to a few hectopascals. Similarly, light buffer gases can be used to cool
heavy ions in the same way as kinetic energy is transferred from a coin which is tossed to
a second one having a smaller mass. It has been shown, e.g., for mercury ions in a helium
pressure of about 10−3 Pa [558] that the fractional energy loss per collision would be

ΔEkin

Ekin
=

mHe

mHg
. (10.45)

Cutler et al. [552] have used this collisional cooling with neutral helium gas atoms to cool
199Hg+ ions in a Paul-trap frequency standard. The secular (or macro) motion was cooled



10.2 Techniques for the Realisation of Ion Traps 331

in their experiments to room temperature but the micromotion corresponded to a higher tem-
perature. The disadvantage of the buffer gas cooling results from the occurrence of pressure
shifts [559] and from the loss of ions from the trap by collisions if the mass of the stored ions
is not much larger than the mass of the buffer gas ions.

10.2.2.3 Laser Cooling

The idea of using lasers for cooling ions in a trap was proposed as early as 1975 by Wineland
and Dehmelt [160]. Laser cooling of ions was first observed with barium ions by Neuhauser et
al. [560] and with magnesium ions by Wineland et al. [561]. As discussed in Section 6.3.1 for
free atoms, the method is based on the fact that, in general, the energy of the photon absorbed
by the ion is smaller than the energy subsequently emitted by the ion. In contrast to free
atoms, however, the ion is bound to the trap and the states of allowed energies are discrete
(see (10.14)) separated by the energies corresponding to the motional frequencies of the ions
in the trap. In cases, however, where these energy differences are small compared to hγ, with
γ the natural linewidth of the cooling transition, the cooling process can be treated classically.
Strong resonance lines used for cooling often have a linewidth of γ of a few tens of megahertz,
whereas the frequencies in the spectrum of an ion bound in a trap are separated typically by a
few megahertz or less. The corresponding cooling process is then very similar to the Doppler
cooling of free atoms. The frequency of the cooling laser beam is red detuned, i. e. it is
smaller compared to the transition frequency of the ion at rest. Consequently, mostly ions
moving towards the direction of the cooling laser beam of wave vector �k absorb photons from
this beam. In the course of each absorption process the momentum of the ion is reduced by
�p = �k. The subsequently emitted spontaneous photons in general are randomly distributed
into all directions and the average momentum transfer of the emitted photons is zero.

The lowest temperature that can be reached by this kind of laser cooling is given by the
so-called Doppler limit kTD ≡ hγ/2 (see (6.12)). This minimum temperature results from
an equilibrium between the cooling and heating processes and has been treated in more detail
in Section 6.3.1. The minimum temperature TD is obtained, in general, when the detuning
is chosen to be half a linewidth below resonance. The exact factor in the relation between
temperature and linewidth depends on the particular situation. For a strong cooling transition,
having a linewidth of a few ten megahertz, the minimum temperature is TD ≈ 1 mK. Laser
Doppler cooling is possible in both Paul and Penning traps. However, large clouds of ions
can be cooled by this technique only in Penning traps. In three-dimensional Paul traps, the
radio frequency heating increases rapidly with the number of stored atoms since, due to the
Coulomb repulsion, the ions experience the electric rf fields that increase with distance from
the trap centre. Consequently, even in small clouds of about one hundred ions, the rf heating
cannot be compensated any longer by laser cooling. In Penning traps the heating is much less
pronounced and is mostly due to anharmonic trapping fields. Bollinger et al. [537] investigated
heating effects in a Penning trap and found an increase of the kinetic energy of the ions to about
20 eV only after about 20 s. Hence, it is not surprising that Brewer et al. [562] observed laser
cooling in clouds of more than 10 000 ions.

Heating effects experienced by laser-cooled single or few ions in radio-frequency traps are
much weaker in general. However, they are of particular importance in frequency standards
using very long interrogation times. There are different mechanisms that lead to motional
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heating in Paul traps [563] such as collisions with background gases and fluctuating fields that
exert a fluctuating force on the ions. The latter may be due to Johnson noise, fluctuating patch
potentials on the electrodes or others. The Johnson noise, i.e. thermal electronic noise, may re-
sult from the resistance in the trap electrodes or in the external circuit. It has been found [563]
that the largest contributions are more likely due to fluctuating patch potentials resulting from
inhomogeneous surface conditions, e.g., randomly oriented domains or adsorbed material on
the electrodes.

Motional Sideband Cooling For ions strongly bound to the trap corresponding to high an-
gular frequencies ω or for weaker cooling transitions, the regime 2πγ 
 ω is reached. If the
laser linewidth as well as the recoil energy is smaller than the separation of the energy levels
in this regime of resolved sidebands, a cooling method is possible that has been described by
Wineland and Dehmelt [160]. Consider an ion oscillating in a trap with oscillation frequency
νa. In a harmonic potential well the energies of this oscillating ion will be equidistant and
separated by νa (Fig. 10.12). Due to the harmonic motion the emission spectrum as well as
the absorption spectrum of the ion absorbing at a frequency νb in the laboratory system is
phase modulated and exhibits resolved sidebands around the carrier νb ± mνa where m is a
positive integer. If the atom is irradiated with a frequency tuned to νb − νa the ion absorbs
this frequency. The frequency of the emitted radiation, however, on the average is νb. Multi-
ple absorption–emission cycles can bring the ion to the ground state in the trapping potential.
In this case the absorption spectrum is dramatically modified as can be seen from an experi-
ment performed by Diedrich et al. [564] (Fig. 10.13) who cooled a single 198Hg+ ion by this
method close to the zero point of motion.

Figure 10.12: Principle of side-
band cooling.

Figure 10.13: Absorption spectrum of the 281.5 nm transition
in a single 198Hg+ ion before (inset) and after side-band cooling
using 194 nm radiation. Courtsey of D. Wineland, with permis-
sion from [564].

Consider an ion confined in the Lamb–Dicke regime (Section 10.1.4) where there are
only the first-order sidebands in the spectrum due to the motion of the ion. If the ion is
in the lowest vibrational level of the electronic ground state only laser radiation with the
transition frequency νb or with the frequencies νb + mνa can be absorbed. Consequently,
the low frequency sideband disappears. From a comparison of the heights of the lower and
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upper motional sidebands the population probabilities of the harmonic oscillator levels in the
potential well can be derived. The different heights of the sidebands in Fig. 10.13 correspond
to a situation where the ion is in the lowest level of the trapping potential for about 95 % of
the time corresponding to a temperature of the ion of below 50 μK.

In a Paul trap the Coulomb repulsion between the ions, stray fields and surface potentials
can lead to a micromotion of the particles with the frequency of the rf field. Consequently, in
contrast to the secular motion which can be reduced for a cloud of ions by laser cooling the
kinetic energy in the micromotion cannot be reduced. This problem can be reduced in a linear
Paul trap where the rf field is zero on the nodal line.

Sympathetic Cooling In cases where laser cooling of an ionic species meets with difficulties
due to, e.g., an unfavourable energy level structure, one species may be cooled by another one
that is accessible to laser cooling. This so-called sympathetic cooling has been applied first
to cool different isotopes of the same ionic species (25Mg+ and 26Mg+ isotopes) by laser
cooled 24Mg+ ions [565]. Sympathetic cooling has also been applied to different species as
in the case of 198Hg+ ions that have been cooled sympathetically in a Penning trap by the
use of laser cooled 9Be+ ions [566]. The 198Hg+ ions were cooled and maintained cold by
the Coulomb interaction with the cold 9Be+ ions. The dynamics of the ions in this kind of
trap leads to some kind of spatial separation where the ions with the higher mass-to-charge
ratio move radially to the outside of the species with the lower mass-to-charge ratio. In the
latter experiment the Hg+ ions were cooled to a temperature near 1 K by the Be+ ions whose
temperature was about an order of magnitude lower. In general, since laser cooling of large
clouds is restricted to Penning traps, so also is sympathetic cooling.

10.2.3 Detection of Trapped and Excited Ions

Charged particles like ions leaving the trap can be easily detected by, e.g., a channel electron
multiplier (channeltron) where the accelerated ion ejects electrons. The electrons are acceler-
ated in the electric field inside the tubular channel coated with a high-resistance material and
emit secondary electrons each time they hit the surface. The ion loss current can therefore be
monitored with high gain. This method relies on the loss of the ions from the trap and there-
fore is preferentially used in mass spectrometry. For frequency standards, however, methods
are preferred which detect the ions but still keep them trapped.

10.2.3.1 Electronic Detection

The motion of the ions in the trap can be detected by highly sophisticated electronic tech-
niques. One so-called “bolometric” technique [567] was devised to detect rf transitions be-
tween suitable energy levels of ions by monitoring the translational temperature of the ion
gas. There, the noise voltage in a resistor connected between the end caps induced by the
moving ions is amplified by suitable electronics. Other more sensitive methods use active
circuits where the ionic motion is driven by a weak voltage applied to the electrodes. When
the driving circuit has a high Q, the absorption of energy by the ion from the circuit leads to
a reduction of the Q value and to an associated voltage drop in the drive when the motional
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frequency of the ion is resonant with the frequency of the drive. Very sensitive superconduct-
ing detection systems have been used [568,569] preferably in combination with Penning traps
where low temperatures are required in any case in order to generate the magnetic field. The
heating of the trapped ions during the detection process and the small signal-to-noise ratio
makes electronic detection of minor importance for frequency standards.

10.2.3.2 Optical Detection

Trapped ions in a particular internal quantum state can be state-selectively excited to a higher
electronic state by a laser tuned to the corresponding transition. The occurrence of this exci-
tation can be monitored either by measuring the absorbed power or the fluorescence radiation
from the subsequent spontaneous decay. If a cyclic transition is chosen, i.e. if the excited
state always decays to the same initial state, a large number of photons can be scattered and
detected from the same ion. This is of particular importance in ion traps where the size of
the electrodes often places severe limits on the solid angle for the detection of the fluores-
cence radiation. Despite the complications of an additional laser for optical excitation, optical
fluorescence detection was used even for the determination of microwave ground state split-
tings [570]. In cases where laser cooling is applied to reduce the velocity of the trapped ions
the cooling laser is conveniently used to implement the optical detection scheme.

10.2.3.3 Electron Shelving and Quantum Jumps

A widely used technique relies on a double-resonance method referred to as “electron shelv-
ing” [498]. It is often applied to ions with a so-called V system where a strong (cooling) tran-
sition and the weak (clock) transition are connected at the ground state (see e.g., Figs. 10.18,
10.19, 10.20). Consider an ion which can be irradiated either with radiation which is resonant
with the strong transition, or with radiation which is capable of exciting the clock transition.
When the ion is irradiated by the light resonant with the strong transition the excited state
will decay after only a few nanoseconds thereby emitting more than 108 fluorescence photons
per second. Monitoring this fluorescence with a moderate detection efficiency of about 10−3

as many as 105 photons per second can be detected. If, however, a “quantum jump” to the
long-lived excited state occurs, e.g., by absorbing a photon from the clock laser, the strong
transition of the ion can no longer be excited as long as the electron is “shelved” in the long-
lived state. The fluorescence of the strong transition will be terminated until eventually the ion
returns to the ground state and the detected power of the fluorescence light will exhibit dark
intervals (Fig. 10.14) during the time the electron spends in the long-lived state. After the first
experimental demonstrations [498, 571] the detection of the dark intervals in the fluorescence
of an ion due to quantum jumps to a long-lived state is now a routinely applied technique.

From the time of the dark phases the lifetime of the long-lived excited state can be deter-
mined directly by evaluating the number of observed dark phases as function of their duration
(Fig. 10.15).

In frequency standards it is not necessary, in general, to wait for the spontaneous decay to
occur which in special cases could be as high as years [131]. In contrast, after unambiguous
identification of the quantum jump by a dark phase the ion might be brought back to the ground
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Figure 10.14: The dark intervals in the fluo-
rescence spectrum of a single trapped In+ ion
[572] indicate the transitions to the long-lived
state. Courtesy of E. Peik.

Figure 10.15: The number of observed dark
phases taken from data like that of Fig. 10.14
[572] as a function of their duration allows one
to fit an exponential decay and to determine the
lifetime of the long-lived state.

state by use of a suitable excitation from the long-lived state and subsequent fast spontaneous
decay.

The method of electron shelving is equivalent to a quantum amplification since the excita-
tion of an ion can be monitored with detection probability that can approach unity despite the
very low efficiency of detection of the photons from the direct excitation.

10.2.4 Other Trapping Configurations

There is, in general, an infinite number of possible trapping configurations aside from the ones
described so far. Many of them as, e.g., the combined trap [533, 573] where radio frequency
and magnetic fields are used at the same time are not particularly suited for frequency stan-
dards and will not be discussed here. Precise hyperbolic electrodes where the potential in
the vicinity of a saddle point is parabolic to first order together with a suitable choice of the
dimensions of the trapping electrodes allows one to minimise the higher-order contributions
to the potential [574] which helps to avoid instability resonances as shown in Fig. 10.11. De-
spite the associated higher-order contributions that may lead to an increased radio-frequency
heating rate, semi-spherical [575], spherical [529] or conical [576, 577] electrodes have been
utilised that create a predominantly quadrupole field by simpler electrode arrangements. These
configurations are often used for frequency standards.

10.2.4.1 Miniaturised Traps

In large traps, the laser cooling is not very effective since a single ion initially may perform
oscillations with large amplitude and is only a short time within the laser field. Hence, at
the beginning of the cooling cycle the cooling rate is weak. Good localisation of the ion can
be expected from a miniaturised trap. The Paul trap, however, is not the best candidate for
such a trap since the optical access for the laser beams used for cooling and excitation is only
possible in the space between the electrodes. Consequently, the solid angle for collection of
the detected photons is small and the stray light scattered by the electrodes increases.
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In cases where good optical access to the stored ions is mandatory, often the so-called
Paul–Straubel trap is used. Its roots go back to the early work of Straubel [578] who trapped
oil drops in the 50 Hz alternating field of a single ring electrode. Yu et al. [579] used such a
small ring electrode with a diameter of 100 μm to trap a single barium ion. This type of trap
can be thought of as a Paul trap with the end caps being far away. Other modifications have
been implemented also as, e.g., three thin ring electrodes [580] or a trap comprising only two
end caps [581]. In comparison to a Paul trap with end caps and a ring electrode (Fig. 10.7)
the Paul–Straubel trap exhibiting the same ring size requires a larger rf voltage to obtain the
same potential depth. The reason for this is that the potential drop occurs in the former case
close to the ring electrode whereas in the latter case it is extended over the distance to the
grounded environment. Miniaturised traps offer particular advantages and disadvantages for
frequency standards. The much smaller electrode size allows the use of small rf voltages.
At the same time, however, the field resulting from contact potentials is typically larger so
that its compensation is more critical. Since the region of a harmonic potential is small in a
miniaturised trap, the rf heating due to the anharmonicity may also be large.

10.2.4.2 Higher-multipole Traps

Besides the traps discussed so far, i.e. with parabolic trapping potentials, there are other
possible configurations. Due to their steeper confining potential, rf traps using higher-order
electric multipole fields might be used to store a larger number of ions and to confine them in a
smaller volume than for Paul traps of comparable size. An rf octupole trap has been analysed
and used [582] with clouds of Ba+ ions. In the Paul trap the motions of charged particles are
described by linear, uncoupled equations of motion (Mathieu equations) which can be solved
analytically. In contrast, the motion of an ion in a higher-order rf trap is described by non-
linear, coupled, and explicitly time-dependent equations of motion which had to be solved by
numerical integration. Experimentally, it was observed that the ion cloud radially showed two
distinct maxima with a separation that was much larger than the width of the Gaussian spatial
distribution in a Paul trap.

In a linear ion trap comprising four rods (Fig. 10.6) the degree of harmonicity depends on
the diameters and the spacings of the rods. The use of a segmented cylinder with eight sectors,
four at 60 degrees and four at 30 degrees angular width, leads to the desired quadrupole
potential depending on the square of the distance ρ from the central nodal line. From the
higher order terms the first one which is proportional to ρ6 vanishes and the next remaining
one shows a ρ10 dependence. This configuration can be approximated by an arrangement of
twelve circular rods [583]. It was shown [584] that fluctuations of the clock frequency due to
a fluctuating number of ions can be much smaller in ion clocks based on multipole traps than
comparable clocks based on quadrupole linear traps.

10.3 Microwave and Optical Ion Standards

Trapped ions can provide reference frequencies in the microwave or in the optical domain. In
the former case mostly magnetic dipole transitions between the ground states split by the
hyperfine interaction are used. In the optical domain mostly forbidden electric dipole or
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higher-order multipole transitions between different electronic states are utilised. Since the
frequencies of both classes typically differ by four to five orders of magnitude, both have
their particular advantages. Microwave transitions can be conveniently used to lock radio fre-
quency oscillators and the generated signal frequencies can be easily processed and counted
using conventional electronics. By contrast, the high frequencies of optical transitions allow
frequency comparisons with the same uncertainty in a much shorter time. This advantage,
however, has to be paid for by the additional equipment required to connect the optical fre-
quencies to the microwave regime.

10.3.1 Microwave Frequency Standards Based on Trapped Ions

Several candidates for microwave standards based on trapped ions have been investigated (see
Table 10.1). Here, we discuss the standards based on 9Be+, 171Yb+, and 199Hg+ ions

Table 10.1: Selected microwave clock transitions in ions. Ground state hyperfine splitting in
other ions may be found, e.g., in [585].

Ion Frequency / Hz References

9Be+ 303 016 377.265 070(57) [536, 537, 586]
43Ca+ 3 255 608 286.4(3) [587]
137Ba+ 8 037 741 667.694(360) [588, 589]
113Cd+ 15 199 862 858.(2) [590]
171Yb+ 12 642 812 118.468 5(10) [591–593]
199Hg+ 40 507 347 996.841 59(44) [529]

in more detail since they may serve as examples in the following to recall the state of the
art with ion-trap frequency standards. Comprehensive compilations can be found also, e.g.,
in [277, 520].

10.3.1.1 9Be+ Ions in a Penning Trap

The 9Be+ ion has an angular momentum of the nucleus of I = 3/2 and of the electron shell
of J = 1/2. The ground states F = 2 and F = 1 split in the magnetic field according
to Fig. 10.16. At a magnetic induction of B = 0.8194 T, which is conveniently obtained in
a Penning trap, the transition frequency ν1 between the F = 1, MI = −3/2, MJ = 1/2
sub-state and the F = 1, MI = −1/2, MJ = 1/2 sub-state becomes independent of the
magnetic field to first order. The frequency ν1 ≈ 303 MHz between these states depends only
quadratically on the magnetic induction, ΔB, as Δν1/ν1 = −0.017(ΔB/B)2. A frequency
standard based on this clock transition has been operated at the United States National Institute
of Standards and Technology in Boulder [537, 586, 594]. Different schemes have been used
to obtain the desired population difference between the two sub-states. In the first realisation
of the standard [537] the ions were laser cooled by the radiation of a frequency-doubled dye
laser (λ ≈ 313 nm) tuned to the transition from the 2s 2S1/2 (MI = −3/2, MJ = −1/2)
state to the 2p 2P3/2 (MI = −3/2, MJ = −1/2) state, which leads to optical pumping to the
MI = −3/2, MJ = −1/2 state (see Fig. 10.16). Microwave (mixing) radiation of a frequency
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Figure 10.16: Ground state hyperfine energy levels of the 9Be+ ion in a magnetic field. For a
magnetic induction of B = 0.8194 T the frequency of the clock transition ν1 from the F = 1,
MI = −3/2, MJ = 1/2 state to the F=1, MI = −1/2, MJ = 1/2 state becomes independent
from the magnetic field to first order.

of about 23.9 GHz was used to repump half of the ion population from the MI = −3/2,
MJ = −1/2 state to the MI = −3/2, MJ = −1/2 state. Applying a microwave radiation
near the clock transition at 303 MHz reduces the population in the higher state and allows the
microwave mixing field at 29.5 GHz to further reduce the population in the lowest state (MI =
−3/2, MJ = −1/2). The depletion of this state therefore indicates that the clock transition
is resonantly excited. This was monitored by the reduction of the fluorescence induced by
the 313 nm laser. The interrogation of the clock transition by the 303 MHz radiation was
performed using two pulses of duration t separated by a time T defining the resolution. This
pulsed scheme represents the time-domain equivalent of the Ramsey excitation. The observed
linewidth of 25 mHz corresponding to T = 19 s resulted in a line quality factor Q = 1.2 ×
10−10. When a passive hydrogen maser was used as reference, the frequency was measured to
be ν1 = 303 016 377.265 070(57) Hz and a fractional frequency stability of σy(τ ) ranging from
1.3×10−11(τ/s)−1/2 to 4×10−11(τ/s)−1/2. The fractional uncertainty of about 1.8 ×10−13

was dominated by the second-order Doppler shift. During the interrogation time the cooling
laser and the microwave mixing radiation had to be shut off to avoid light shifts and ac Zeeman
shifts. Within the measurement the temperature of the ion cloud consisting of a few hundred
to about 2000 ions, increased from less than 1 K to about 35 K. To cool the ions also during
the time necessary to interrogate the clock transition with high resolution, sympathetic laser
cooling was used in the most recent version of the 9Be+ frequency standard [586,594]. 26Mg+

ions were loaded into the same trap together with the 9Be+ ions. Since the frequency of the
laser beam of a wavelength of 280 nm used to cool the magnesium ions is far off resonance,
with any transitions of the 9Be+ ion, continuous radiation can be used to cool the magnesium
ions, and consequently the beryllium ions continuously. In contrast to the methods described
before, the 9Be+ ions were optically pumped into the MI = +3/2, MJ = +1/2 state by
the 313 nm radiation. After turning off this laser the ions were successively transferred to
the MI = +1/2, MJ = +1/2 state and from there to the MI = −1/2, MJ = +1/2 state
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by means of two π pulses of 321 MHz and 311 MHz, respectively. After interrogating the
transition from the lower to the higher state by two Ramsey pulses the number of ions left in
the lower state was probed by bringing them back to the MI = +3/2, MJ = +1/2 using
the π pulses in reversed order and monitoring the fluorescence when excited with the 313 nm
laser. The time between the two Ramsey pulses could be made as long as 550 s corresponding
to a linewidth of 0.9 mHz. The fractional instability was better than 3 × 10−12(τ/s)−1/2 for
103 s < τ < 104 s. An unexpectedly large pressure shift from collisions with CH4 molecules
was observed which limited the stability to about 3 × 10−14. A cryogenic environment was
suggested as a remedy [536]. The fractional second-order Doppler shift corresponding to
about 5 ×10−15 [594] seems to represent a limit for the fractional uncertainty of this standard.

10.3.1.2 171Yb+ Microwave Frequency Standards

The 171Yb+ ion has caused many researchers to establish a microwave frequency standard.
The advantages of this ion result from the low Doppler shifts associated with the high mass
of the ytterbium ion, the simple hyperfine spectrum and the large transition frequency of
12.6 GHz between the hyperfine structure sub-levels of the ground state (Fig. 10.17). The

Figure 10.17: Partial energy level diagram of 171Yb+ ions. The microwave clock is operated
on the 12.6 GHz transition betwen the F = 0 and F = 1 ground states.

optical transition at S1/2 → P1/2, λ = 369.5 nm for cooling and detection can be reasonably
well accessed by dye lasers or frequency-doubled solid-state lasers. Probably the first mea-
surement of the frequency of the 12.6 GHz transition using trapped ions has been performed in
the group of G. Werth at the University of Mainz [595]. These authors obtained a line quality
factor Q = 2 × 10−11 using a He buffer gas cooled (p ≈ 10−4 Pa) cloud of about 105 ions
in a Paul trap. Rather than to detect the tiny absorbed power directly and to determine the
centre of the absorption curve an optical pumping scheme is in general employed to obtain
a background-free signal [596]. The ions were optically pumped by a weak pulsed dye laser
(λ = 369.5 nm) from the S1/2, F = 1 state via the P1/2 state to the F = 0 ground state,
where the fluorescent decay served to monitor the population in the F = 1 state. Transitions
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between the F = 0 and F = 1, mF = 0 ground state sub-levels, induced by the applied
microwave radiation, were monitored by the fluorescence detected perpendicular to the laser
beam through one of the end caps of the trap.

The possibility of a microwave standard based on about 106 Yb+ ions in a Paul trap
was demonstrated later at the University of Hamburg [597] with a reduced uncertainty of the
frequency measurement and a measured instability σy(τ ) = 2×10−11(τ/s)−1/2 for averaging
times τ up to a few hundred seconds.

Several institutes including the Physikalisch-Technische Bundesanstalt (PTB) in Braun-
schweig [559, 592], the National Research Laboratory of Metrology (NRLM) in Tsukuba
[598–600], the National Measurement Laboratory (NML) of the Commonwealth Scientific
and Industrial Research Organisation of Australia (CSIRO) in Sydney [591, 593], or the Cali-
fornia Institute of Technology’s Jet Propulsion Laboratory (JPL) [601] used rf traps of hyper-
bolic shaped electrodes (PTB, NRLM) or linear rf traps (NMI, JPL) to investigate Yb+ mi-
crowave standards. As in most other microwave ion standards, at PTB also a double-resonance
technique using radio-frequency excitation and laser preparation and detection (λ = 370 nm)
was applied to a cloud of up to 50 000 collision cooled 171Yb ions [559]. The frequency of
the ground state hyperfine transition was determined by comparison with the frequency of the
primary Cs standards to be 12 642 812 118.471(9) Hz [592]. The uncertainty of 9 mHz was
mainly limited by the high temperature in the region of 2000 K. Other sources of uncertainty
included the quadratic ac-Stark effect with a coefficient of the fractional frequency shift of
2× 10−17 (V/cm2)−1 and the pressure shift in helium. Pressure shifts relevant for microwave
Yb+ standards have been determined [559,593] for helium, nitrogen, neon and hydrogen, with
relative frequency shifts ranging between 10−8/Pa and 10−10/Pa. In CSIRO, Fisk et al. [593]
operated Yb+ microwave frequency standards using linear trap configurations where rf heat-
ing and Stark shifts were substantially reduced since the node of the confining rf field is a line.
In their standard IT-2 Fisk et al. used a cloud of a 2 × 104 ions of length 24 mm, radius about
2 mm and a temperature of about 400 K. The ions were excited by microwave π/2 pulses of
0.4 s duration separated by 25 s yielding Ramsey fringes with a period of 40 mHz. The fre-
quency of the 12.6 GHz radiation was synthesised from the frequency supplied by a cryogenic
sapphire resonator. The frequencies corrected to the frequency of the unperturbed Yb+ ion are
listed in Table 10.1 where the maximum correction was due to the second-order Zeeman effect
of about 0.8 Hz. Earlier values for the transition frequencies have been compiled in [520].

Using laser-cooled 171Yb+ ions the fractional uncertainty of the measured frequency of
12 642 812 118.468 5 Hz could be reduced to below 8× 10−14 with a projected uncertainty of
4 × 10−15 [591].

Several researchers have reported that the fluorescence of a cloud of Yb+ ions excited
by the 369 nm radiation gradually becomes weaker with a corresponding degradation of the
signal-to-noise ratio. It has been found that there is a possibility for the ions to get trapped
in low-lying long-lived meta-stable D and F states (Fig. 10.17). It has been shown that the
signal could be increased again by the use of additional laser radiation which repumped the
ions from the meta-stable D states before they further decayed to the extremely long-lived
F state [598, 602–605]. Another approach [601] investigated different buffer gases to quench
the trapped population in excited Yb+ and found nitrogen as the most suitable one.

The use of a single Yb+ ion in a frequency standard has been investigated by the Hamburg
group [606] and a potential fractional uncertainty of 10−16 has been envisaged.
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10.3.1.3 199Hg+ Microwave Frequency Standards

The higher mass and the higher ground-state hyperfine splitting of mercury ions, as com-
pared to ytterbium ions, led to the development of excellent microwave standards based on
199Hg+ ions.

Figure 10.18: Partial energy-level diagram of 200Hg+ and 199Hg+ relevant for laser cooling and
detection including the electric quadrupole transition at 282 nm used for an optical frequency
standard.

Historically, after the observation of the 40.5 GHz ground-state hyperfine splitting [596]
with Q ≈ 1010 the first prototypes of frequency standards were realised in the Laboratoire de
l’Horloge Atomique (LHA) [607, 608] and at Hewlett–Packard [552, 609–611]. Both groups
operated a Paul trap with hyperbolically shaped electrodes with typically 106 stored ions. The
latter used helium buffer gas at a pressure of 1.3 × 10−3 Pa to cool the ions. Electromagnetic
radiation of 40.5 GHz produced by a microwave source locked to a synthesiser was used to
excite the atoms from the F = 0 to the F = 1 ground state (Fig. 10.18). Similarly, as in
the rubidium clock (Section 8.2) there is a natural coincidence between the wavelengths of
two isotopes that can be utilised. The 2S1/2−2P1/2 transition (λ = 194.2 nm) of the 202Hg+

isotope, that has no hyperfine splitting owing to its nuclear spin quantum number I = 0,
coincides with the 2S1/2(F = 1) − 2P1/2 transition of the 199Hg+ isotope. When a discharge
lamp filled with 202Hg+ irradiates the trapped 199Hg+ ions only those ions previously excited
by the microwave radiation to the F = 1 state will re-emit ultraviolet radiation at λ = 194.2 nm
that can be detected with a photomultiplier. Three of those systems have been operated in
the US Naval Observatory for several years. The group at the Jet Propulsion Laboratory
has developed ultra-stable frequency standards [583, 612] based on linear traps [531] with
typically 106 to 107 199Hg+ ions pumped by a 202Hg rf discharge lamp and cooled with He
buffer gas to near room temperature. In an extended linear trap ions are transferred between
two confinement regions one for production and detection of the ions and one for Ramsey
excitation. The contribution of the fractional second-order Doppler shift was estimated to be
−4 × 10−13 [612]. This buffer gas cooled mercury trap has a very low instability expressed
by the relative Allan deviation σy(τ ) = 7 × 10−14(τ/s)−1/2.
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The uncertainties associated with a large cloud of Hg+ ions can be avoided by storing a
single ion or only a few ions in a trap. Very low numbers of laser cooled 198Hg+ ions [542] in a
Paul trap have been shown to exhibit clusters or crystals. The crystallisation of the ions takes
place when the kinetic is reduced below the energy associated with the Coulomb repulsion
between the ions. The group at NIST has operated a linear ion trap with only a few 199Hg+

ions [613] that can be located near to the field-free nodal line in a regular “string of pearls”
to investigate its use for frequency standards. From one to up to more than thirty 199Hg+

ions could be stored in these experiments. The ions were loaded by leaking atomic mercury
into the system at a pressure of about 10−6 Pa that was reduced by two orders of magnitude
after loading the trap. Crystals have been observed showing “defects” [542, 613] resulting
from impurities of other isotopes or molecular ions. At this pressure also background neutral
Hg atoms cause losses of Hg+ ions presumably by forming dimers with ions excited by the
cooling laser. Consequently, the group at NIST has operated a cryogenic linear ion trap for a
199Hg+ frequency standard [529, 551].

Due to the hyperfine separation of 6.9 GHz of the excited state in 199Hg+ the optical pump-
ing in the laser cooling scheme requires a second laser at 194 nm that is offset by 47.4 GHz
with respect to the first one. The transition between the sub-states 2S1/2(F = 1) of the ground
state and 2P1/2(F = 0) is a cycling transition since the excited ions can decay only to the same
ground sub-state due to dipole selection rules. There is, however, a small probability that the
strong cooling laser will also excite ions from the 2S1/2(F = 1) state to the 2P1/2(F = 1)
state from where the ions can decay to the other ground state 2S1/2(F = 0) and are lost for
cooling. A second weak laser is therefore necessary to repump those ions to the 2P1/2(F = 1)
state from where they can decay to both ground states.

Further complications result from the magnetic sub-structure of the F = 1 sub-state
which requires a strong magnetic field during laser cooling that has to be switched off dur-
ing microwave Ramsey excitation [530] or modulated in the polarisation of two cooling laser
beams [529]. Despite the technical difficulties associated with the hyperfine structure, the
ultraviolet lasers, and the cryogenic environment at 4 K, impressive results have been ob-
tained [529]. With seven ions and a Ramsey interrogation time of 100 s, a fractional fre-
quency instability of 3.2 ×10−13(τ/s)−1/2 was measured for measurement times of τ < 2
hours. These authors derive a fractional uncertainty of 1.1 × 10−14 for the system where the
uncertainty of the frequency (see Table 10.1) was dominated by the uncertainty with which
the frequency could be referenced to the atomic time scale TAI (Section 12.1.2) at the time of
the measurement.

10.3.2 Optical Frequency Standards with Trapped Ions

There are several candidates with trapped ions for a frequency standard in the optical domain.
A short and by no means exhaustive list on this work is given in Table 10.2. The most impor-
tant criterion for selecting an ion is the existence of a suitable clock transition and a conve-
nient transition for laser cooling and detection. The realisation of several promising alternative
schemes is currently hampered by the fact that the relevant wavelengths are in the deep ultra-
violet where no convenient laser sources are available. The rapid progress encountered with
laser techniques during the past years and the tremendous achievements currently achieved
in material technology, however, make it foreseeable that this argument will lose importance
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Table 10.2: Selected optical clock transitions in ions. The data are from Ba+: [614–616], Sr+: [617,
618], Ca+: [619–621], Yb+: [101, 131, 622–626], In+: [627–629], Hg+: [21, 499, 501]. In some cases
other isotopes of these ions may be more advantageous. Other candidates can be found, e.g. in [630].

Ion Transition Frequency Natural line-

wavelength / μm width / Hz

138Ba+ 5d 2D3/2 - 5d 2D5/2 24 012 048 317 170 Hz 0.02
12.5

6s 2S1/2 - 5d 2D5/2 170.1 THz 0.005
1.762

88Sr+ 5s 2S1/2 - 4d 2D5/2 444 779 044 095 510(50) Hz 0.4
0.674

43Ca+ 4s S1/2 - 3d D5/2 411 THz 0.13
0.729

171Yb+ 6s2S1/2 - 5d2F7/2 642 121 496 772.6(1.2) kHz 5 × 10−10

0.467
171Yb+ 6s2S1/2 - 5d2D3/2 688 358 979 309 312(6) Hz 3.2

0.435
171Yb+ 6s2S1/2 - 5d2D5/2 729 487 779 566(153) kHz 22

0.411
115In+ 5s2 1S0 - 5s5p 3P0 1 267 402 452 899.92(23) kHz 1.1

0.2365
199Hg+ 6s 2S1/2 - 5d96s2 2D5/2 1 064 721 609 899 143(10) Hz 1.8

0.282

in the near future. Blue diode lasers, more efficient frequency doubling crystals or optical
parametric oscillators, to name only a few, may pave the road to this development. We will
therefore also discuss in the following, some of the technologically challenging candidates.

10.3.2.1 88Sr+ Optical Frequency Standards

The 2S1/2−2D5/2 674 nm transition in single trapped Sr+ ions has been investigated for use in
an optical frequency standard [84,618,631]. The advantage of this ion stems from the fact that
the wavelengths of the clock transition at 674 nm and the transition needed for laser cooling
and detection at 422 nm (Fig. 10.19) is conveniently generated by diode lasers and by fre-
quency doubling of 844 nm diode laser light, respectively. The cooling cycle, however, is not
closed and subsidiary light at 1092 nm is necessary to repump the ions lost from the cooling
cycle by a decay channel to the 2D3/2 meta-stable level. This light can also be obtained from
a Nd3+ doped silica fibre laser [632]. The upper level of the clock transition has a lifetime of
(347 ± 33) ms.

A laser with its frequency referenced to this transition has been recently recommended
by the International Committee of Weights and Measures (CIPM) for the realisation of the
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Figure 10.19: Partial energy diagram
of Sr+.

length unit [370]. The optical clock transition at 674 nm was thoroughly investigated at the
National Physical Laboratory of England and the National Research Council of Canada and
the frequencies of the trapped 88Sr ions measured in both institutes yielded an agreement of
about 10−13 [617,618,631]. Madej et al. [618] find it likely that the fractional uncertainty can
be reduced to the 10−17 level for the 88Sr standard.

A particular complication in this frequency standard results from the fact that the 88Sr
isotope has zero nuclear spin and the ten Zeeman components (Fig. 10.19) all have a
linear linear dependence on the magnetic field. An alternative may be the 2S1/2(F =
5, mF = 0)−2D5/2(F ′ = 7, mF ′ = 0) transition in 87Sr with a quadratic Zeeman shift
of 6.4 Hz/(μT)2 [633].

10.3.2.2 171Yb+ Optical Frequency Standards

The single Yb+ ion received a lot of attention recently as a candidate for an optical frequency
standard. First, 171Yb+ has a nuclear spin of I = 1/2 leading to reference transitions without
linear Zeeman effect in a level system with relatively simple hyperfine and magnetic sub-level
structure. Second, there are three different optical transitions with high frequencies in the
blue spectral region (Table 10.2 and Fig. 10.20) that together with the other optical transitions
needed for cooling or detection can be accessed by frequency-doubled near-infrared semicon-
ductor laser sources. Fig. 10.21 shows a measurement of the 435 nm transition that has been
recorded with a linewidth of less than 80 Hz; where the carrier together with the sidebands
due to the oscillation frequencies of the ion in the trap in the radial (r1, r2) and the vertical (z)
direction can be identified.

Tamm et al. [623] have compared two largely independent 171Yb+ standards and found no
significant deviation on the 1 × 10−15 level. The fractional instability was σy(τ = 1000 s) =
1 × 10−15. The absolute frequency has been measured with a femtosecond comb (see Ta-
ble 10.2). The ultimate accuracy of the 171Yb ion may be limited by the quadrupole shift
similarly as in the 201Hg+ ion [634]. A transition without quadrupole shift, however, can be
found in the isotope 173Yb+ isotope to the I = 5/2, F = 0 state.

A particularly interesting transition is the highly forbidden electric octupole (E3) tran-
sition at 467 nm with an estimated lifetime of the 2F7/2 excited state of ten years which is
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Figure 10.20: Partial energy diagram of Yb+.
Dashed lines (411 nm, 435 nm and 467 nm) rep-
resent the optical transitions proposed for op-
tical frequency standards. The 369 nm line is
used for cooling and detection.

Figure 10.21: The spectrum of the transition
of a single Yb+ ion in a Paul trap [622] shows
besides the carrier the motional sidebands along
the radial (r1 and r2) and axial (z) directions.
Courtesy of Chr. Tamm.

investigated for an optical frequency standard in the NPL (UK) [131]. The octupole transition
is weak and, hence, high irradiance of the probe laser is required to interrogate the transi-
tion. The transition has been recorded in a trapped single 171Yb+ ion with a linewidth of
the clock laser of 4.5 kHz [101] and an irradiance of 107 W/m2. In this experiment the high
irradiance led to a considerable ac Stark shift (Section 6.6) of about 500 Hz. As the predicted
ac Stark shift of 47 μHz W−1 m2 scales with the linewidth of the laser for a clock laser having
0.5 Hz linewidth, a fractional shift of 1 part in 1016 is expected [101]. The transition is free
from first-order Zeeman shift and the second-order Zeeman shift has been determined to be
2.1 mHz/mT2.

10.3.2.3 113In+ and 115In+ Optical Frequency Standards

On the way to the ideal frequency standard Dehmelt [517, 635] has suggested utilising the
J = 0 → J = 0 transitions in particular intercombination transitions in group III ions from
the 1S0 ground state to the 3P0 state. Conservation of angular momentum does not allow this
transition for any order of multipoles of the radiation field in a pure LS coupling scheme.
Due to hyperfine interaction, however, other states of J �= 0 are usually mixed to the 3P0 state
leading to a small transition probability of decay by dipole radiation. Owing to the vanishing
angular momentum of the electron in the ground and the excited state, the perturbations of
the frequencies of these transitions by external fields are expected to be extremely small. In
contrast to the S→D transitions in Yb+, Ca+, Sr+, and Hg+ ions discussed also here, the
static intrinsic quadrupole moment of the ion vanishes for J ≤ 1. The interaction of the
quadrupole moment with the gradient of the electric field leading to a fractional frequency
shift that can be as large as 10−15 in other ions is missing in the In+ ion. The single ground
state represents a further advantage of the ions in the third group of the periodic system since
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no pumping to other hyperfine states can occur during the cooling process and consequently
no repumping laser is needed. From the singly ionised group III elements of the periodic
system B+, Al+, Ga+, In+, and Tl+ with the 1S1 →3P0 transition the lighter elements are up
to now not much suited due to a missing suitable cooling transition. The heavy elements In
and Tl are much better candidates and consequently Dehmelt in his proposal has concentrated
on Tl+ [517].

The indium ion has been investigated as a frequency standard in the group at the Max
Planck Institute at Garching [395, 627, 629]. The clock transition 1S0 →1P0 (Fig. 10.22;
λ = 236.5 nm) has an achievable line quality factor Q = 1.2×1015 due to its natural linewidth
of 1.1 Hz. There is a strong transition in the singlet system (1S0 →1P1; λ = 158.1 nm;

Figure 10.22: Partial energy diagram of In+.

Fig. 10.22) that could be used to cool and detect the ion. However, the generation of the
ultraviolet transition meets with technical difficulties. Peik et al. [572] have therefore used
the intercombination transition 1S0 →3P1 (λ = 230.6 nm) for this purpose. The lifetime
of τ (3P1) = 0.44 μs corresponds to a linewidth of 360 kHz, which is about two orders of
magnitude smaller compared with the cooling transitions in “alkali like” group II ions or other
ions like Ba+ or Hg+. Since this linewidth is in general smaller than the motional frequencies
of the ion, optical sideband cooling is possible and very low temperatures of 20 μK can be
reached. On the other hand, the small linewidth of this transition leads to a reduced cooling
rate and to a reduced fluorescence scattering rate when used for detection with the electron
shelving technique. The radiation for the cooling transition has been obtained by frequency
doubling the radiation of a dye laser at 461.2 nm using stilben 3 (Fig. 9.24) or solid state
lasers. The clock transition fortuitously coincides with the fourth harmonic of the 946 nm line
of the Nd:YAG laser and thus permitted the set-up of a narrow-linewidth solid state laser [636].
For the ultimate accuracy [637] of a standard based on the In+ transition, the linear Zeeman
effect of the clock transition may be disadvantageous. The corresponding frequency shift of
about 2.4 kHz/mT for the transitions 1S0 →3P1 with mF = ±1/2 → mF = ± 1/2 due
to the high nuclear spin of the stable isotopes 113In+ and 115In+ of I=9/2 requires control
of the magnetic field below the nanotesla region. A narrow linewidth of the clock transition
of 170 Hz has been observed, and its frequency has been measured by comparison with the
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frequency of an iodine stabilised optical frequency standard at 532 nm [395] or by means of a
femtosecond comb [629].

10.3.2.4 199Hg+ Optical Frequency Standard

The electric quadrupole transition in 199Hg+ (λ = 282 nm; Fig. 10.18) has been investigated
in the group at the NIST [21, 499, 638, 639] as a reference for an optical frequency standard.
A standard based on this transition has only be made possible after overcoming a number of
challenging technical difficulties. For example, the high vapour pressure of elemental mer-
cury leads to a reduced storage time of the ions as a consequence of the recombination of the
trapped ions with the neutral atoms. To reduce this effect, the trap is operated at liquid helium
temperature with further challenges for the experimenters [640]. To use the narrow linewidth
of the clock transition of 1.8 Hz, a laser has been developed with sub-hertz linewidth [31]. A
Fourier limited linewidth as narrow as 6.7 Hz at 282 nm has been observed [641] correspond-
ing to an experimentally realised Q ≈ 1.6 × 1014. The projected accuracy of a single ion
Hg+ standard has been estimated as low as 10−18 [641]. As in Yb+ the uncertainty finally
achieved may be limited by the non-vanishing electronic quadrupole moment of the 2D5/2

state and its interaction with the electric field of the trap. The quadrupole shift of the 199Hg
ion has been calculated [634] to be of the order of 1 Hz for 103 V/m2. The frequency has been
measured with a femtosecond comb [501] with a fractional uncertainty of less than 10−14. By
comparison with an optical Ca standard an upper limit of the instability with a 199Hg+ clock
of σy(τ ) = 7× 10−15(τ/s)−1/2 has been derived [21]. These impressive results clearly show
that suitable single-ion optical clocks can compete favourably with the best microwave clocks.

10.3.2.5 Other Candidate Ions

There is a large number of suitable candidate ions to be used in frequency standards of the
future. Ba+ and Ca+ ions having energy level schemes similar to that of the Sr+ ion have been
investigated [521]. The proposed clock transition (4S – 3D) of the Ca+ ion (see Table 10.2,
Fig. 10.23) is an electric quadrupole transition with a lifetime of about 1 s [642]. The isotope
43Ca+ with the odd nuclear spin I = 7/2 has a transition that is to first order independent of
residual magnetic fields. Furthermore, the Ca+ ion is a hydrogen-like atom and, hence, is

Figure 10.23: Partial energy diagram of
Ca+.
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interesting because its wave functions can be calculated readily. Technically, this ion and its
transitions become more interesting since all relevant optical transitions can be accessed by
diode lasers.

The Tl+ ion already proposed by Dehmelt [635] has the same outer electronic configu-
ration as the indium ion discussed above. A completely different class of candidates with an
even number of both the neutrons and protons (so-called gg nuclei) 6 and vanishing nuclear
spin is found in the doubly ionised elements of the fourth group in the periodic system. The
technical difficulties associated with the use of these elements ranging from C2+ to Pb2+ are
enormous, since the relevant clock transitions 1S0 →3P1 are located in the deep ultraviolet
between 199 nm and 166 nm. These difficulties may be overcome, however, thanks to a pro-
posal [643] in which the clock ion is trapped simultaneously with an auxiliary ion species
which could provide cooling and state detection of the clock ion (Section 14.2.1). It has been
suggested that besides the Tl+ ion, 10B+ and 27Al+ [644] might then also become suitable
candidates.

10.4 Precision Measurements in Ion Traps

Apart from their use as frequency standards where the internal oscillations of the ionic quan-
tum absorbers are utilised, the measurement of the external oscillation frequencies of ions in
the trap allows a variety of measurements with unprecedented accuracy. As the external os-
cillation frequencies of trapped ions depend on the properties of the ions themselves, valuable
information about these particles can be extracted from the frequency measurements. On the
other hand these particles can be monitored over a long time and the same system can be
studied again and again allowing one to use the stored particles as high sensitivity probes of
tiny time-dependent and environment-dependent effects. From the numerous excellent exper-
iments performed with stored ions in the past we restrict ourselves to a few examples closely
related to applications in fundamental research, metrology and technology.

10.4.1 Mass Spectrometry

The knowledge of accurate masses of microscopic particles [645] is extremely important if
they are used as probes in high precision experiments where the masses are the input data
for other measurements. An example of this kind is presented in Section 13.6.1 where the
measurement of the Rydberg constant with optical frequency standards allows one to derive
fundamental constants only after correcting for the finite mass of the particle. Accurate masses
are furthermore needed to build a consistent mass scale from the lightest to the heaviest atomic
particles. Moreover, the atomic and nuclear binding forces contribute to the mass of an atomic
particle and weighing atomic particles with low uncertainty allows one to test nuclear models.

The most accurate mass measurements are performed in Penning traps where the true
cyclotron frequency (10.29) of an ion in a strong magnetic field relates the mass-to-charge
ratio m/e to the magnetic induction B. The true cyclotron frequency can be derived by use of
(10.37) from the measured trap-dependent modified cyclotron frequency ν′

c and the magnetron

6 See footnote 6 on page 125.
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frequency νm derived from the measured axial frequency according to (10.38). Alternatively,
(10.37) can be used to determine the true cyclotron frequency from the three normal mode
frequencies for the trapped ions, namely the observable trap-dependent modified cyclotron
frequency [646], the axial frequency νz and the magnetron frequency νm.

DiFilippo et al. [646] have measured atomic masses of several atomic and molecular ions
by relating these masses to the atomic mass unit mu = m(12C)/12. To obtain the high accu-
racy, perturbations by the electric field had to be kept small by applying only a small electric
field. The resulting low axial frequency (160 kHz) was measured using a superconducting
resonance circuit. To locate ions with different mass numbers at the same place in the trap
the trap voltages were kept the same for the different ions. In order to derive the ratio of the
masses of the ions by the ratio of their respective cyclotron frequencies, the magnetic field
has to be kept constant during the measurement. To reduce the influence of temporal drifts
of the magnetic field of several 10−9 per hour the cyclotron frequencies of two ion species
were measured alternating between the two ions. As a result, a table of fundamental atomic
masses could be derived with relative uncertainties of 10−10 and below [646]. To illustrate
the impressive accuracy achieved so far it was almost possible to detect the mass difference of
molecules due to their binding energies and to allow to “weigh molecular bonds”.

Similar techniques have been applied to determine masses of unstable isotopes [647] pro-
duced in high-energy reactions at accelerator facilities. The accurate measurement of isotope
sequences allows one to study the nuclear binding energy as a function of a broad range of pro-
ton and neutron numbers. As a consequence, nuclear properties, e.g., shell closures, pairing,
or deformation effects of the nucleons can be inferred and used to test models of the nuclei.
The short lifetime of the unstable isotopes, their different frequencies and the small number
of ions available requires special techniques to detect the cyclotron resonances of the ions.
One method uses the interaction of the magnetic moment of the ion’s orbit with a gradient of
the magnetic field, where energy associated with the cyclotron motion is converted into axial
energy. After excitation of their motion and ejection from the trap, the ions excited with the
cyclotron frequency drift faster towards the detector. The resolution for the masses of unstable
isotopes can exceed 106 and the relative uncertainty of the mass determination can be lower
than 10−7.

The masses and mass ratios of fundamental particles represent another important field for
precision frequency measurements in Penning traps. Examples include the determination of
the mass of the proton, electron, positron, neutron or antiproton. The atomic mass scale is
based on the mass of the 12C isotope and, hence, the masses of all atomic particles have to
be referenced to this isotope. Van Dyck et al. [648] have measured the proton’s rest mass by
comparing the mass ratio of a proton and a C4+ ion in a compensated Penning trap. In these
types of traps apart from the hyperbolic end caps and ring electrode, guard ring electrodes
were used to compensate for the non-quadratic even-order terms in the trapping potential.
To efficiently drive and cool the cyclotron motion and to detect the cyclotron frequency di-
rectly the ring electrode was split into four equal parts. The mass ratio of a proton and a
C4+ ion was determined from the free-space cyclotron frequencies νc(p+) and νc(C4+) as
mp = M(C4+) × νc(C4+)/(4νc(p+)). The latter were derived from the respective modi-
fied cyclotron resonance frequencies ν′

c using (10.37). To refer the mass of the proton to the
mass of the neutral 12C atom, rather than to that of the C4+ ion a correction for the binding
energies EB = 148.019 eV and the masses me of all the four liberated electrons had to be
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performed, leading to M(12C) = M(12C4+) − EB + 4me. The corrected value gave a mass
of the proton with a relative uncertainty of about 3 × 10−9. The mass ratios of positrons
m(e+)/m(e−) [649] and protons m(p+)/m(e−) [650] relative to the electron had been de-
termined also in Penning traps. The electron’s mass has been determined alternatively [651]
from a measurement of the g factor of the electron in 12C5+ [652] in combination with cal-
culated quantum electrodynamical corrections to 0.000 548 579 909 2(4)mu with a relative
uncertainty of 7.3 × 10−10.

10.4.2 Precision Measurements

The investigation of the hyperfine structure and the effects that lead to frequency shifts is of
vital importance since a number of frequency standards are based on hyperfine transitions. At
present the accuracy of measurement of the hyperfine splitting exceeds the capability of cal-
culating these splittings from first principles. Ab initio calculations agree with the experiment
on the 10−3 level [585]. Differential effects, however, e.g., by comparing the hyperfine struc-
ture and the gI factors in a chain of isotopes are expected to clarify details of the magnetic
structure of nuclei [585].

The measurements of magnetic moments or g factors of ions require large magnetic fields
and, hence, are performed preferably in Penning traps. The accuracy of the measurement of gJ

factors of ionic ground states is possible with a fractional uncertainty of a few times 10−7 with
similar uncertainties of the calculations [585] where relativistic corrections become important.
The g factors allow therefore sensitive tests for relativistic wave functions. The uncertainty
is mainly limited by the uncertainty of the determination of the magnetic field strength at the
position of the ions. In the group at the university of Mainz, therefore, a double trap configu-
ration was used [652] where the transitions are induced and detected spatially separated in an
analysis trap and a precision trap, respectively. In the precision trap the magnetic field is as
homogeneous as possible to allow for narrow linewidths of the cyclotron resonance line when
irradiated by the microwave field. After the ions are transported to the analysis trap by moving
the electric potential minimum between the two traps spin flips are detected via the Larmor
frequency in the inhomogeneous magnetic field that couples the spin orientation to the axial
frequency of the ion. Accurate measurements of the g factor of the electron in 12C5+ were
used together with quantum electrodynamical predictions to derive an independent determi-
nation of the electron’s rest mass [651].

10.4.3 Tests of Fundamental Theories

The measurement of the anomalous magnetic moment of the electron (and similarly that of the
positron) [326] challenged the theory since the deviation g−2 is believed to result mostly from
quantum electrodynamic (QED) corrections.7 The QED contribution can be written as a series
of powers in the fine-structure constant α. Kinoshita [653, 654] has given a value for g − 2
using α derived from measurements of the quantum Hall effect [655]. The comparison of the
theoretical (g − 2)theor = (1 159 652 156.4 ± 23.8) × 10−12 and experimental (g − 2)exp =

7 There are also hadronic and electro-weak contributions of a few parts in 1012 and 1014,
respectively.
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(1 159 652 188.25 ± 4.24) × 10−12 [326] values of g − 2 is at the same time a striking proof
of the accuracy that can be achieved with experiments based on frequency measurements and
the theoretical framework connecting very different fields of physics.

The test of the equivalence of the mass and charge of a particle and its antiparticle is
particularly interesting since it is required from the invariance of physical laws under the so-
called CPT transformation. The CPT theorem states that physical laws must remain the same
under the combined transformation when the charge C is conjugated, and parity P and time
T are reversed. Experiments have shown violations of P in the weak interaction, CP , or
T , separately, but the combined transformation CPT is believed to leave the physical laws
invariant. A comparison of the charge-to-mass ratios of the proton and the antiproton was
performed by Gabrielse et al. [656, 657]. The Penning trap is not capable of trapping both
positive and negative particles simultaneously, and one has to alternate either the voltage of the
trapping electrodes or that of the magnetic field to trap either particle or antiparticle. To keep
the magnetic field constant during the experiment the latter procedure is not practical. To allow
an efficient transfer of the antiprotons into the trap, a large opening was required and stacked
cylinders were used rather than hyperbolically shaped electrodes to produce the quadrupole
potential of the trap. The high quality of the potential necessary to generate harmonic motions
independent of the energy of the trapped ions was obtained by a careful choice of the length
of the cylindrical electrodes and the voltages. Gabrielse et al. [656] obtained the same charge-
to-mass ratio for the proton and the antiproton within a relative uncertainty of 9× 1011 [657].
An even tighter bound on a possible CPT violation was deduced [658] from earlier g − 2
measurements of the electron and positron.

Frequency standards based on ion traps have been utilised to perform several fundamental
tests devised as null experiments with the aim either of setting new limits for the currently
accepted theories or of finding deviations that require a refinement of our current understand-
ing. The researchers at the National Institute of Standards and Technology have used their
frequency standard based on Be+ ions in a Penning trap (Section 10.3.1.1) to look for a possi-
ble dependence of the frequency of the 303 MHz ground-state hyperfine transition on various
parameters [586]. In a first experiment, the frequency of the Be+ transition was compared to
the frequency of a hydrogen maser. Since the 9Be+ nucleus has a quadrupole moment and the
hydrogen atom has not, a possible anisotropy of space would lead to a diurnal variation of the
frequency ratio between both standards. Within the experimental uncertainty no dependence
of this ratio was observed that could be interpreted as resulting from a 24 hour period associ-
ated with a possible anisotropy of space [659]. Another experiment looked for the dependence
of the frequency of the Be+ ion on the way the transition was excited. For excitation, a radio-
frequency pulse with a well defined Rabi angle θ was applied. The probability of finding the
Be+ ion in the upper of the two states (−3/2, 1/2; see Fig. 10.16) varies sinusoidally with the
Rabi angle (5.52). In particular if a π pulse is applied the ion is excited with 100 % probability
whereas a π/2 puts the ion into a coherent superposition with equal probabilities to find the
ion in the two states (−3/2, 1/2) and (−1/2, 1/2); (Fig. 10.16)). It has been proposed by
Weinberg [660] that a non-linear correction to quantum mechanics would result in a small
shift of the transition frequency shift on the Rabi angle. Bollinger et al. [661] looked for fre-
quency differences when the Rabi angle was near to 60 degrees or 120 degrees, but did not
find such a term within their very low fractional uncertainty of 1.3 × 10−14.

In another series of experiments Wineland et al. [662] compared the frequencies of the
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303 MHz transition of Be+ in devices where the magnetic field was generated either by a
superconducting magnet or by a conventional electromagnet. From the null results, upper
bounds were derived for possible but hitherto unknown spin-dependent interactions between
the spins of the Be+ ions and the spins of the electrons in the iron pole faces of the electro-
magnet and the nucleons in the Earth.
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The advantages of the high frequencies of laser oscillators in the optical domain can be utilised
to their full extent only if these frequencies can be generated or measured with the same
ease of operation as their counterparts in the microwave domain. In order to connect these
regimes, where the frequencies can differ by up to five orders of magnitude, special devices
have been developed. They allow one to multiply the low frequencies or to divide the high
frequencies in a similar way as does a gear for rotational frequencies of mechanical shafts.
These “gears” comprise non-linear mixing stages (Section 11.1) or frequency shifting ele-
ments (Section 11.2) and allow the frequency synthesis by harmonic generation (Section 11.3),
by frequency division (Section 11.4) or by frequency combs from ultra-short pulse lasers (Sec-
tion 11.5).

11.1 Non-linear Elements

The response P of a medium perturbed by a small excitation U is often considered to be linear
in the same way as a mechanical spring shows an elongation proportional to the applied force
in the regime of Hooke’s law. If the system is excited with a harmonic perturbation of angular
frequency ω

U(t) = U0 cos ωt (11.1)

it responds with the same frequency ω. For larger perturbations, however, the response be-
comes non-linear

P (U) = α1U + α2U
2 + α3U

3 · · ·
= α1U0 cos ωt +

α2

2
U2

0 (1 + cos 2ωt) +
α3

4
U3

0 (3 cosωt + cos 3ωt) + · · · (11.2)

and higher harmonics 2ω, 3ω, · · · , appear. The coefficients αi can be considered as the expan-
sion coefficients of order i of a Taylor series. Hence, the generation of higher harmonics 2ω,
3ω, · · · , nω is intimately related to the occurrence of that particular term in the Taylor expan-
sion. In other words, a strong curvature of the transfer function (Fig. 11.1) of the non-linear
device is essential for the generation of higher harmonics.

As can be seen from (11.2) the non-linear characteristic produces higher-order powers of
a harmonic signal. If the input signal U is composed of two components with two different
angular frequencies ω1 and ω2 the resulting signal (response) contains new frequencies with

ω = mω1 ± nω2 (11.3)
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Figure 11.1: Linear (a) and non-linear (b, c) characteristic responses P (U) of a medium excited by a
perturbation U .

where m and n are integers and m + n is the highest power exponent of the non-linear char-
acteristic. In the following several non-linear effects will be discussed that lead to devices
that can be used to produce and detect suitable combinations of frequencies of two or more
signals.

11.1.1 Point-contact Diodes

A rectifying diode exhibits a particularly strong non-linear characteristic (see Fig. 11.1 c) and,
hence, is well suited for generating high harmonics. To achieve suitable response to high
frequencies the time constant of the device τ = RC has to be as low as possible. The series
resistance R can be minimised by using materials of high conductivity made from metal or
highly doped semiconductors. The minimal stray capacity C is obtained by using the smallest
possible point contacts.

11.1.1.1 MIM Diodes

Point-contact metal-insulator-metal (MIM) diodes have long been used for absolute frequency
measurements in the far infrared [663]. The point contact diode results from the MIM interface
when a tip of, e.g., a tungsten wire is pressed onto an oxidised surface of a nickel or cobalt
post. The tip of the tungsten wire of about 8 μm diameter is etched to a radius of about 30 nm.
The radiations of a microwave or a far infrared laser coupled into the MIM interface can give
rise to an electric signal to be further processed with frequencies at the difference or sum
frequencies or higher harmonics of the impinging radiations. To use the contact wire as an
antenna [664] for the electromagnetic radiation of a far infrared laser the laser beam has to
be coupled properly to the antenna pattern with good focussing, e.g., by use of a high quality
microscope objective with long working distance. In the infrared the coupling of the radiation
into the MIM diode also critically depends on the polarisation. When visible radiation is used
the polarisation and the orientation of the laser beam with respect to the antenna are much less
critical [665].

The characteristic of a MIM diode in general is not as simple as sketched in Fig. 11.1 c)
but can show either a more symmetric or a completely anti-symmetric shape [666, 667]. The
corresponding signal critically depends on the obtained characteristic, the wavelength of the



11.1 Non-linear Elements 355

radiation and the electrical polarisation of the MIM diode by a forward or reverse bias. The
preparation of a good MIM diode is tricky. Furthermore, the fragility of the MIM diode set-up
comprising a thin wire which is exposed to high laser power coupled to the point contact, often
allows one to use a particular MIM diode for only a few hours.

11.1.2 Schottky Diodes

More stable mixers and detectors can be obtained by using Schottky barrier diodes that
are based on a metal-semiconductor transition. The small resistance necessary to allow for
high-frequency applications is achieved by using a thin semiconductor layer (thickness about
0.1 μm) which is on top of a highly doped substrate. Commercial Schottky diodes typically
comprise several hundred AuPt metal anodes of a diameter 1 μm <∼ d <∼ 2μm within a SiO2

mask on the active n-GaAs layer. A tungsten whisker is used to contact any one of the PtAu-
GaAs diodes and serves as the antenna for coupling the microwave radiation. Such a diode
structure is in general more stable than a MIM diode. More detailed comparisons between the
Schottky and MIM diodes have been performed, e.g., in [665, 667].

11.1.3 Optical Second Harmonic Generation

In the optical regime non-linearities are generally weak. However, with the strong laser fields
available, they give rise to a number of important effects. An electromagnetic wave interacting
with the atomic or molecular systems in a dielectric medium can drive or induce electric
microscopic dipoles. In a harmonic approximation the polarisation P (E), i.e. the sum of
all microscopic dipoles varies linearly with the field E (Fig. 11.1 a) and the induced electric
dipole moments oscillate with the frequency of the electromagnetic wave. These oscillating
dipoles are sources of electromagnetic radiation. However, in general, the polarisation P (E)
is non-linear (Fig. 11.1 b) and (11.2) is written as

P (E) = ε0

[
χ(1)E + χ(2)E2 + χ(3)E3 + · · ·

]
. (11.4)

Here, the χ(i) are the susceptibilities describing the relevant processes of order i and usually
become smaller with increasing i. In (11.4) it has been assumed implicitly that the polarisa-
tion depends on the instantaneous value of the field and that the medium does not have any
“memory”. Consider the quadratic term with the second-order susceptibility χ(2)E2 which
represents the special case of a tensor equation

Pi = ε
3∑

j,k=1

χ
(2)
i,j,kEjEk, i, j, k = 1, 2, 3. (11.5)

The general case of the superposition of any two waves E1 and E2 produces the product terms
EjEk occurring in (11.5)

(E1 + E2)2 = E2
01 cos2 ω1t + 2E01E02 cos ω1t cosω2t + E2

02 cos2 ω2t (11.6)

= E2
01/2 (1 − cos 2ω1t) + E2

02/2 (1 − cos 2ω2t)
+ E01E02 [cos(ω1 − ω2)t − cos(ω1 + ω2)t] (11.7)
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and includes terms with the doubled frequencies 2ω1 and 2ω2 as well as the sum and differ-
ence frequencies. In general, frequency conversion experiments in non-linear optical materials
can be thought of as resulting from the interactions between three different light fields with
frequencies ν1, ν2, ν3 and the corresponding vacuum wavelengths λi = c/νi. The three fre-
quencies and wavelengths are constrained by energy conservation as

ν1 + ν2 = ν3 or
c

λ1
+

c

λ2
=

c

λ3
. (11.8)

Several processes can be identified:
Reading (11.8) from left to right describes the process of sum frequency generation (SFG)

in which two photons of ν1 and ν2 annihilate thereby producing a new photon with the fre-
quency of the sum of the two previous photons. In the case of ν1 = ν2 this process is called
second harmonic generation (SHG). Reading (11.8) from right to left allows the generation of
any “signal” photon of desired frequency ν1 together with a so-called “idler” photon of fre-
quency ν2 from a “pump” photon of the higher frequency ν3. This second process is realised
in an optical parametric oscillator (OPO) (Section 9.3.3). A third process is the difference
frequency generation (DFG) where the frequency of the resulting photon equals the difference
of the frequencies of the two initial photons. Energy conservation requires that the resulting
photon with difference frequency ν1−ν2 is accompanied by two other photons as can be seen
by writing ν1 + ν2 = ν1 + (−ν2 + ν2) + ν2 = (ν1 − ν2) + 2ν2.

11.1.3.1 Phase Matching

As an example consider the frequency doubling in a non-linear crystal. In a medium with a
second-order non-linear susceptibility χ(2) the electric field with a fundamental frequency ω1

produces a polarisation wave at the second harmonic frequency ω2 = 2ω1. This polarisation
wave travels with the same velocity as its generating fundamental wave. Hence, this velocity
is determined by the index of refraction n1 at the fundamental wavelength. The polarisation
wave, however, gives rise to a second harmonic wave travelling with a velocity which is deter-
mined by the index of refraction n2 at the wavelength of the second harmonic. In general, these
indices of refraction are not the same and vary monotonically with the wavelength as is shown
in Fig. 11.2 for the case of LiNbO3. This material may serve as a representative example for
the following discussion as it is commonly used for efficient frequency doubling. LiNbO3 is
an uniaxially birefringent crystal, where the two eigenmodes of polarisation, referred to as the
ordinary and the extraordinary waves, in general have different phase velocities c/no and c/ne

(Fig. 11.2). The ordinary beam whose electric field vector is perpendicular to the optical axis
has the same velocity, i.e. the same index of refraction in each direction (Fig. 11.3) thereby
behaving as if in an isotropic medium. The phase velocity and consequently the index of re-
fraction of the extraordinary beam varies monotonically between the extreme velocities of the
two eigenpolarisations. In contrast, the extraordinary beam with its polarisation perpendicular
to the ordinary beam travels with a velocity that depends on the angle between the optical axis
and the direction of the beam. If the direction of the extraordinary beam coincides with the
optical axis its polarisation is also perpendicular to the axis. Hence, for this case the velocities
of the extraordinary and the ordinary beam are the same.
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Figure 11.2: Ordinary refractive index no and extraordinary refractive index ne of LiNbO3.

Figure 11.3: Cut through the surface of the refractive index in a negative uniaxial crystal (ne <

no) as, e.g., LiNbO3. For the indicated crystal direction θpm the index of refraction of the
extraordinary beam matches the index of refraction of the ordinary beam.

As a result of the, in general, different velocities of the fundamental wave and the second
harmonic wave, the incremental second harmonic field generated in an incremental crystal
element δz is out of phase by δφ with respect to the contribution to the field from the previous
length element. The total field of the second harmonic contribution E2ω(z) is obtained by
adding all phasors of the incremental elements (see Fig. 11.4 a). After a length lc called
the coherence length both waves are out of phase by π and the power of the second harmonic
wave falls to zero at 2 lc (Fig. 11.5 a). The coherence length is calculated as follows

lc =
π

Δk
=

λ

4(n2ω − nω)
, (11.9)

where λ is the wavelength in vacuum of the fundamental beam and where we have made use
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Figure 11.4: The phasor describing the evolution of the second harmonic wave E2ω(z). a) In a
non-phase-matched medium. b) For perfect phase matching. c) For quasi phase matching. In the
latter case the polygon of a) has been replaced by a continuous curve of infinitesimal phasors.

Figure 11.5: Increase of the second harmonic
amplitude for phase mismatch between the fun-
damental and the second harmonic wave (a), for
perfect phase matching (b) and for quasi phase
matching (c).

of Δk = k2ω − 2kω. The coherence length lc is the optimum crystal length that is useful
in producing the second harmonic power.1 In order to achieve frequency doubled light over
a long distance in the non-linear crystal the phases of the fundamental wave and the second
harmonic wave have to be matched. Phase matching can be obtained in birefringent crystals
that are characterised by two different indices of refraction depending on the orientation of the
electric field vector with respect to the optical axis.

The so-called phase matching condition where n(ω) = n(2ω) can be achieved for the
direction in the crystal where the index of refraction of the ordinary beam matches the index
of refraction of the extraordinary beam, i.e. no(ω) = ne(ω) (Fig. 11.3). In this case also the
phase velocities of both waves of ω and 2ω are the same and consequently the energy flows
continuously from the fundamental wave to the second harmonic wave. The electric field
strength of the latter increases linearly with the distance travelled in the crystal (see Fig. 11.4 b)

1 Sometimes [39] the coherence length lc is defined as twice the value given in (11.9).
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and the power increases quadratically (Fig. 11.5, curve b). For optimum phase matching the
angle θpm needs to be chosen accurately and consequently this type of phase matching is
often referred to as critical phase matching. Besides this angular matching, in favourable
cases at a certain temperature, the ellipsoidal surface of the extraordinary beam nestles against
the sphere of the ordinary beam for the direction of beam propagation perpendicular to the
optical axis. This “90◦ phase matching” or “non-critical phase matching” allows a particularly
large conversion efficiency for two reasons. Firstly, there is no dependence of the conversion
efficiency on beam divergence. Secondly, since no birefringence occurs the extraordinary
beam will not walk off the ordinary beam and longer crystals can be used to increase the
efficiency of the second harmonic generation.

11.1.3.2 Quasi Phase Matching

An elegant method referred to as quasi phase matching has been developed for efficient sec-
ond harmonic generation [668, 669] which does not need to rely on the methods of critical
or non-critical phase matching. The underlying idea can be understood from Fig. 11.4 c) and
Fig. 11.5 c). Consider a crystal whose non-linear coefficient is periodically modulated such
that the direction of the polarisation of the medium is changed at each integer multiple of lc.
This leads to a change of the phase of π for the second harmonic polarisation and, hence,
for E2ω. The sum of all phasors representing the resultant contribution of all wavelets of the
second harmonic generated in the quasi phase-matched crystal, increases continuously. Such
a structure can be implemented, e.g., by periodically poling the crystal thereby creating a se-
quence of oppositely polarised optical domains. Stable domain inversion is achieved [669],
e.g., by the tailored application of strong electric pulsed fields to the properly cut material
where the spatial field pattern is determined by metallic masks with the desired periods. For a
given length of the crystal and for the same non-linear coefficients, the second harmonic gen-
eration per unit length is not as efficient in quasi phase-matched devices as in phase-matched
materials (Fig. 11.5). However, the method allows one to use non-linear coefficients with
higher values from the diagonal elements of (11.5) that otherwise are not accessible for phase
matching when relying on the natural birefringence. Second harmonic generation in suitable
periodically poled materials has also been used to generate efficient coherent radiation in the
UV [670].

11.1.4 Laser Diodes as Non-linear Elements

In laser diodes the processes including χ(2) terms are of limited importance owing to the
strong absorption bands in semiconductors where at least one of the contributing fields Ei is
absorbed. As has been shown [40, 671] the relevant χ(3) process is due to four-wave mixing.
The three pump fields Ei with the three frequencies νi which are different in general can give
rise to a fourth field E4 with frequency ν4. The allowed frequencies are dictated by energy
conservation as follows

±hν1 ± hν2 ± hν3 = hν4. (11.10)

Typically only one of the pump frequencies in (11.10) has a negative sign which leads to a
fourth signal having a frequency close to that of the pump waves and, hence, lies in the trans-
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parent spectral range of the laser diode. The origin of four-wave mixing in laser diodes for
frequency differences of up to 30 GHz between the pump waves, results from interband mod-
ulation, i.e. by a modification of the carrier concentration. For higher frequency differences,
spectral intraband modulation by spectral hole burning has been identified as the relevant
mechanism [40]. Four-wave mixing in laser diodes has been demonstrated for frequency dif-
ferences of the pump waves up to 3.1 THz and such laser diodes have been used for optical
bisection of a frequency interval (Section 11.4.1).

11.2 Frequency Shifting Elements

For optical frequency measurements often elements are required that allow one to shift the
frequency of an optical wave by an accurately determined frequency increment. The most
important of such devices make use of acousto-optic or electro-optic effects.

11.2.1 Acousto-optic Modulator

Acousto-optic modulators based on materials such as PbMoO4 or TeO2 are characterised by
a particularly high velocity v of the sound waves in the material, which are excited, e.g.,
by a piezoelectric transducer (Fig. 11.6). The sound wave of wavelength Λ = 2πv/ωsound

modulates the density and, hence, the index of refraction n of the material. A laser beam

Figure 11.6: a) In an acousto-optic modulator the light wave is diffracted by a modulation of the index of
refraction induced by a ultrasonic sound wave of angular frequency ωsound. b) Momentum-conservation
relation.

passing through the medium is diffracted by the periodic modulation of the index of refraction
similarly to the case of an optical grating. In general, there is a big difference whether the
light wave is deflected by a thin grating or by a thick one (λ× l > Λ2) where l is the thickness
of the grating. The latter condition is referred to as the Bragg case. In this regime there is
an exchange of energy and momentum between light waves and sound waves. In both waves
the energy is quantised and depends linearly on the angular frequency ω of the wave. We
refer to the quanta of the light wave and of the sound wave as photons �ωphoton and phonons
�ωsound, respectively. The photons in the diffracted beam are deflected and consequently the
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momentum ��kd of each photon in the deflected beam differs from the momentum of that of
the photons ��ki in the incident beam. Conservation of momentum requires that this difference
is supplied by the momentum of the phonons absorbed from the sound wave

��ki + ��ksound = ��kd (11.11)

(see Fig. 11.6 b)). Accordingly, energy conservation requires

�ωi + �ωsound = �ωd or

ωd − ωi = ωsound. (11.12)

From (11.11) and Fig. 11.6 one finds that the angle between the undeflected laser beam
(zeroth order)and the diffracted beam depends on the frequency of the ultrasonic wave used
for excitation since the transferred momentum increases with increasing angular frequency
ωsound. Commercial acousto-optic modulators in general are operated with frequencies
40 MHz <∼ ωsound/(2π) <∼ 0.5 GHz. To obtain high diffraction efficiency the modulators are
in general operated at low orders of diffraction resulting in an efficiency of up to about 85 %
depending on the power of the ultrasonic wave. Consequently, this power dependence is read-
ily used to modulate or adjust the amplitude of the transmitted and the diffracted laser beam
by the power used to drive the piezo actuator. Moreover, according to (11.12) the frequency of
the diffracted laser beam can be varied by the frequency of the oscillator driving the piezoelec-
tric transducer. The use of positive or negative diffraction order allows an increase or decrease
in the frequency of the light wave (Fig. 11.6). The frequency shifted and deflected beams can
be easily separated from the undeflected laser beam even though the variation of the angle
of the deflected beam with the variation of the frequency is sometimes disadvantageous in
applications. The deflection angle α = 2θ is calculated from the vector equation (11.11) as

sin θ =
ksound

2ki
=

λνsound

2v
(11.13)

where ki ≈ kd has been used. From (11.13) the deflection angle of a laser beam (λ = 633 nm)
in an acousto-optic modulator made of PbMoO4 (velocity of sound v = 3650 m/s) operated
at 80 MHz is calculated as α ≈ 2 sin θ = 13.9 mrad.

From (11.12) we find (by multiplying with the time t) an equation that relates the phase of
the diffracted light beam to the phase of the sound wave. Hence, the acousto-optic modulator
can also be used as a phase shifter for the diffracted light wave.

11.2.2 Electro-optic Modulator

In certain crystals it is possible to modify the propagation properties of electromagnetic radi-
ation by an applied electric field in a number of ways (see e.g. [39]). Consider a birefringent
crystal like (NH4)H2PO4 (ADP), LiTaO3, LiNbO3, etc., cut and used in such a way that the
optical axis of the crystal is perpendicular to the direction of incidence of the laser beam
(Fig. 11.7). A linearly polarised laser beam is split into two orthogonally polarised beams
called the ordinary beam (which obeys Snell’s law of refraction) and the extraordinary beam.
The ordinary and the extraordinary beams travel with different velocities according to their
different indices of refraction no and ne, respectively. When an electric field is applied to
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the electro-optic medium the centre of charge of the binding electrons may be displaced with
respect to the ionic cores. The resulting polarisation of the material leads to a modification of
the index of refraction. The anisotropic response of the crystal to an applied electric field in
general has to be described by a tensor. For simplicity, in Fig. 11.7 the direction of the applied
field Ez coincides with the direction of the polarisation of the extraordinary beam. The index

Figure 11.7: Electro-optic crystal operated as a transverse phase modulator.

of refraction n along this direction is modified by the applied electric field Ez as

n = (ne − 1
2n3

e rzz Ez). (11.14)

Here, rzz is a diagonal element of the tensor describing the response of the crystal along the z
direction if the field is applied along this z direction. The phase of the light wave is shifted in
the crystal by

δφ =
2πn

λ
L =

n3
e rzz

λ

L

d
π Um ≡ π

Um

Vπ
, (11.15)

when the electric field is realised by applying a voltage Um = dEz . The so-called “half-wave
voltage”

Vπ =
λ

n3
e rzz

d

L
, (11.16)

refers to the voltage that changes the phase of the light wave after travelling through the crystal
by δφ = π. Such an electro-optic device can serve different purposes. It is readily used as a
fast servo element for frequency stabilisation of lasers (Section 9) which allows one to vary
the optical path length n L, and hence to counteract technical path length fluctuations. The
device is furthermore used as an electro-optic (phase) modulator by applying a sinusoidal
modulation voltage Um = U0 sin ωmt to modulate the phase of the light wave. In this case,
πU0/Vπ (11.15) represents the modulation index and besides the carrier, the phase-modulated
laser beam comprises sidebands whose amplitudes depend on the modulation index according
to (2.52).

In a different arrangement the electro-optic modulator can be used for fast amplitude mod-
ulation of the light field, similarly to a Pockels cell. Consider a linearly polarised laser beam
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directed to a crystal whose fast (slow) axis is now tilted by 45◦ with respect to the polari-
sation direction of the laser beam (Fig. 11.8). In this arrangement the different velocities of
the two partial waves of different polarisations result in a phase shift between the two waves
behind the crystal depending on the voltage applied to the crystal. With respect to the polar-
isation of the input beam a phase difference of 0◦ and 180◦ leads to linearly polarised light
with the polarisation axes being parallel and perpendicular, respectively. A phase difference
of 90◦ and 270◦ leads to circularly polarised light and all other phase differences result in
elliptically polarised light. Placing a polariser behind the exit of the electro-optic modulator
(Fig. 11.8) allows one to adjust the laser power by an applied voltage. Both, electro-optic

Figure 11.8: Electro-optic crystal operated as a transverse amplitude modulator.

modulators operated as amplitude modulators, and acousto-optic modulators are often used as
a “noise eater” to eliminate fluctuations of the laser power. In such an arrangement part of the
transmitted laser power is split off and directed onto a photodiode. The difference between
the photo current and the reference current of a constant current source can be utilised as an
error signal for an electronic servo system which uses the electro-optic modulator as a servo
element to keep the laser power constant.

In optical frequency standards electro-optic modulators are often used as phase modula-
tors with the requirement that no amplitude modulation occurs (Section 9.2.2). In practical
devices, however, phase modulation is often accompanied by a certain contribution of am-
plitude modulation. Even for well aligned polarisation, amplitude modulation hardly can be
avoided since all materials with non-vanishing electro-optic coefficients are also to some ex-
tent piezoelectric. As a consequence, the applied electric ac field used to modulate the phase of
the light wave at the same time excites vibrations of the material. These vibrations in general
also modulate the indices of refraction via the elasto-optic effect. Any resulting modulation in
the direction of the beam in turn may be converted into amplitude modulation occurring, e.g.,
at a limiting aperture.

11.2.3 Electro-optic Frequency Comb Generator

The sidebands produced by an electro-optic modulator can be used to bridge frequency dif-
ferences in the optical regime considerably larger than the difference frequencies that can be
measured directly with photodiodes. The maximal frequency separation can be increased by
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either using a high radio frequency or by producing a large number of sidebands. The first
route has been followed by Kallenbach et al. [672] who placed an electro-optic modulator
into a resonant microwave cavity to produce sidebands at 72 GHz. The second approach uses
resonant microwave cavity in a resonant optical cavity where each sideband can again be
the origin of new sidebands thereby increasing the total number of sidebands considerably
(Fig. 11.9). In such an optical frequency comb generator any two adjacent frequencies are

Figure 11.9: The sidebands created in an electro-optic modulator a) generate additional side-
bands in a resonant optical cavity b), where the modulation frequency corresponds to an integer
value of the free spectral range.

separated by the modulation frequency and there is a well defined phase relationship between
all waves. Electro-optic frequency comb generators have been developed [673, 674] that span
a frequency range of several terahertz. Telle and Sterr [675] have calculated the relative power
of the kth sideband with respect to the power of the carrier Pc as

Pk

Pc
= exp

(
− π|k|

δ × F ∗

)
(11.17)

where δ is the single-pass phase modulation index and F ∗ is the finesse of the optical resonator
corresponding to −13.64 dB/(δ × F ∗) per sideband order. Assuming δ = 0.5, F ∗ = 100 and
fmod = 9.2 GHz the power of the comb varies like −30 dB/THz. With high enough power in
the carrier and a sensitive detector, several terahertz can be bridged. At a frequency of several
terahertz, however, the sideband power abruptly drops as a consequence of the group veloc-
ity dispersion [676, 677] where the frequencies of the sidebands no longer coincide with an
integer multiple of the free spectral range. As the material dispersion typically decreases for
longer wavelengths the span of 3 THz at 1.064 μm [677] increases to 7.7 THz at 1.54 μm [678]
and may be more than 20 THz above 1.8 μm [678]. These values can be further increased if the
cavity frequency is locked slightly off resonance from the laser frequency [677,678]. Brothers
and Wong [677] have utilised an intracavity prism pair to partially compensate the material
dispersion of a lithium niobate modulator in order to increase the span of the comb at 1064 nm
from 3.0 THz to 4.3 THz. The width of the comb can be furthermore expanded by non-linear
interactions, e.g., by self-phase modulation in a fibre. Second harmonic generation in a peri-
odically poled quasi-phase matched LiNbO3 (Section 11.1.3.2) material has yielded a comb
of 22 THz width [678]. Electro-optic comb generators have been used to measure frequency
gaps for optical frequency measurements [679]. For frequency standard applications, typi-
cally only a particular sideband is desired. Ye et al. [680] used a three-mirror cavity with
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two tuneable mirrors. With this set-up they could couple out the desired sideband resonantly,
while keeping all other sidebands confined in the resonator for continued comb generation.

11.3 Frequency Synthesis by Multiplication

The comparison of the frequency of an optical laser oscillator with the frequency of an oscil-
lator in the microwave region was for a long time not an easy task due to the large frequency
ratio of about 105 between both domains. In the visible, one of the very first measurements
of an optical frequency led to the frequency of a Lamb-dip stabilised He-Ne laser where the
difference and the ratio of two optical frequencies were determined resulting in a relative un-
certainty of 6×10−8 [681]. The measurement of the frequency of the iodine-stabilised He-Ne
laser (λ = 633 nm; Section 9.1.3) was reported in 1983 [682]. In the following years several
so-called “frequency measurement chains” have been developed connecting microwave clocks
to oscillators in the infrared [391, 392, 397], from the infrared to the optical regime [683] or
directly from the Cs clock to the optical regime [103, 504, 684]. These chains were based on
a large number of intermediate oscillators with different frequencies that were compared and
phase locked by harmonic mixing in non-linear elements and beat frequency measurements,
respectively.

Optical frequencies can be measured by a technique well known from the measurement
of microwave frequencies. There, the known frequency ν1 of an oscillator is used to produce
higher harmonics in a non-linear element. If a suitable harmonic nν1 is close enough to the un-
known frequency ν2 of another oscillator the beat note δν between the frequency of the latter
and the nth harmonic of ν1 can be used to determine the previously unknown frequency by

ν2 = nν1 ± δν. (11.18)

The plus or minus sign in (11.18) can easily be determined by monitoring the change of the
beat frequency resulting from an increase of the frequency ν1. Several stages of frequency
multiplication can be combined to a so-called frequency multiplication chain to link a mi-
crowave frequency to a frequency in the optical domain. The non-linear devices used in
the different steps of such a chain are Schottky diodes (ν ≤ 5 THz), metal-insulator-metal
(MIM) diodes (ν ≤ 120 THz), and non-linear crystals (ν > 120 THz). Fig. 11.10 shows
an example of such a frequency multiplication chain that was used to reference the optical
frequency (456 THz) of a Ca-stabilised laser to the frequency (9.2 GHz) of the Cs atomic
clock [504, 667]. At the low-frequency end of the chain, the frequency of a hydrogen maser
is locked to the frequency of a primary Cs atomic clock. This combination joins the long-term
accuracy of the Cs atomic clock with the short-term stability of the hydrogen maser thereby
allowing one to perform precise measurements at short integration times. The quartz oscil-
lator at 100 MHz serves as a “flywheel” with a phase noise of SΦ ≈ −170 dBc at 10 kHz
from the carrier. Its frequency is multiplied, driving a step-recovery diode which produces
harmonics near the 22.7 GHz of the Gunn oscillator. The 17th harmonic of the 22.7 GHz sig-
nal at 386 GHz derived from an F-band harmonic mixer is mixed in a Schottky diode with the
radiation from a backward wave oscillator to lock the phase of the latter to the signal from
the Gunn oscillator. Part of the radiation from a methanol laser at 4.25 THz is coupled to a
Schottky barrier diode together with the radiation from the backward wave oscillator using
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Figure 11.10: Frequency multiplication measurement chain based on the synthesis of frequen-
cies according to Schnatz et al. [504]. PLL: Phase Lock Loop; DRO: Dielectric Resonator
Oscillator.

the beat between its eleventh harmonic and the radiation from the methanol laser to keep the
frequency of the latter loosely locked. In the next step, the beat note between the seventh
harmonic signal of the methanol laser and a CO2 laser is measured. The frequency of this
laser is again locked via a series of other CO2 lasers to two CO2 lasers (CO2 P(14) laser and
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12C18O2 P∗(20) laser) at 28.5 THz, using MIM diodes. The sum of the frequencies of two
photons from each of these lasers is very close to the frequency of a photon from a colour cen-
tre laser (KCL:Li) operated at 2.6 μm. The mixing signal at about 1.4 GHz from a MIM diode
is counted. The next multiplication step uses second harmonic generation in an angle matched
AgGaS2 crystal. The beat note between this radiation and the radiation of a diode laser oper-
ating at about 1314 nm and pre-stabilised to a Fabry-Pérot interferometer is measured with a
photodetector and used to phase lock the frequencies of the colour centre laser and the diode
laser. Eventually, the radiation of the diode laser is frequency-doubled in a temperature-tuned
Lithium-Beta-Borate (LBO) crystal. LBO allows non-critical phase matching at 1314 nm near
12 ◦C where the fundamental wave propagates as an ordinary beam and its polarisation is per-
pendicular to the second harmonic extraordinary beam (Type I phase matching). The doubled
frequency is very close to the frequency of the Ca stabilised laser and the beat frequency be-
tween both radiations is measured with a photodetector. The frequency of the diode laser is
controlled by a phase lock loop in such a way that their beat note is kept constant. Hence, the
frequencies of the two oscillators, i.e. the Ca stabilised laser and the diode laser at 1 314 nm,
are phase coherently related to each other.

The upper part of the frequency chain of Fig. 11.10 is phase locked to the Ca stabilised
laser, the lower part to the Cs atomic clock. Thus if both sub-chains are phase coherently
locked, the beat frequency measured by use of counter 3 together with all offset frequencies
and multiplication factors can be used to obtain a truly phase coherent frequency ratio of the
Ca stabilised laser and the Cs clock.

The far infrared methanol laser in the frequency chain of Fig. 11.10, however, is not di-
rectly locked to the adjacent stages by phase lock loops. This laser in general is tricky to oper-
ate [667] and some peculiarities do not allow to phase lock it directly. Nevertheless, the phase
coherence in the chain can be preserved by the “transfer oscillator concept” [667, 685, 686].
To understand this concept, consider the upper and lower part of the chain to produce stable
frequencies at the mixers above and below the methanol laser in Fig. 11.10. If the beat note
measured by counter 2 between the seventh harmonic of the methanol laser and the CO2 laser
is electronically divided by a factor of seven the frequency fluctuations of the resulting signal
are those of the methanol laser at counter 1. The same fluctuations with opposite sign show
up in the beat note between the methanol laser and the eleventh harmonic from the backward
wave oscillator. In the sum of both frequencies the frequency fluctuations of the methanol
laser are eliminated. This elimination can be performed either afterwards by an electronic
computation of the two readings from the counters, or by a direct electronic implementation
using mixers and dividers [686]. Experimentally, the frequency of the transfer laser (methanol
laser) is loosely locked to keep the beat frequencies within the filter bands of the employed
electronic circuits. Using purely electronic means to track the phase of a pre-stabilised laser
rather than to phase lock a laser in general seems the better choice, since the tracking range
provided by an inertia-free electronic system can hardly be surpassed.

Measurements of different Ca frequency standards have been performed over several
years [495, 504]. The mean value of all frequency measurements of νCa = 455 986 240
494.13 kHz with a total relative uncertainty of 2.5 × 10−13 agrees well with more recent
frequency measurements with femtosecond comb generators [501, 505]. The frequency mea-
surement chain of Fig. 11.10 could also be used to measure simultaneously the frequencies of
the CH4 stabilised He-Ne laser at 3.39 μm (Section 9.1.4; [392, 667]) and the OsO4 stabilised
CO2 laser at 10.6 μm (Section 9.1.5).
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Frequency measurements based on multiplication in non-linear elements have been also
used to connect novel frequency standards in the visible or near infrared to known frequency
standards (see e.g. [475, 687]).

11.4 Optical Frequency Division

Apart from the conventional frequency multiplication techniques discussed so far, there is
a completely different approach for the measurement of large optical frequency differences.
This method divides an optical interval, with an accurately known factor, into a frequency
interval that can be measured directly. If the frequency interval spans a complete octave, i.e.
if it extends from ν to 2ν, the frequency ν is determined directly as ν = 2ν − ν.

11.4.1 Frequency Interval Division

An optical frequency interval divider, that is capable of bisecting an optical frequency interval,
has been invented by Telle, Meschede and Hänsch [688]. Consider the frequency interval
ν1 − ν2 generated by two lasers of frequencies ν1 and ν2 (Fig. 11.11).

Figure 11.11: Division of an optical frequency interval according to Telle et al. [688].

In a suitable non-linear material with a second-order non-linear susceptibility χ(2) the
beams of these two lasers produce a wave with the sum frequency ν1 + ν2. This new wave is
mixed with the frequency 2ν3 obtained by second harmonic generation in a second non-linear
device, from the beam of a third laser with frequency ν3. If this frequency is adjusted in such
a way that the beat note from the photodetector is zero, it follows that

ν1 + ν2 = 2ν3 or ν3 =
ν1 + ν2

2
. (11.19)

In this case ν3 is located exactly halfway between the frequencies ν1 and ν2. Any one of the
two new frequency intervals between ν1 and ν3 or between ν3 and ν2 again can be bisected in
the same way. This technique allows one to divide the initial interval to any desired frequency
difference with the help of the required number of cascaded interval divider stages. A divider
chain comprising n stages reduces the initial frequency difference by 2n. It has been proposed
to measure optical frequencies directly by comparison with the frequency of a microwave
frequency standard using a divider chain where the initial frequency interval corresponds to
an optical octave, i.e. ν2 = 2ν1. Such a situation is depicted in Fig. 11.12 for the frequency
of the sub-harmonic of the Ca stabilised laser where the frequency ν2 is the second harmonic
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of ν1. The number of necessary divider stages depends on the ability to measure the final
interval.

Figure 11.12: Frequency division chain based on frequency interval division. OFC: Optical
Frequency Comb generator.

With the advent of optical frequency comb generators (Section 11.2.3) large optical fre-
quency differences could be measured with a small number of divider stages. The wavelength
range at the final frequency difference measurement is chosen depending on the availability
of suitable laser diodes and non-linear crystals. The same starting points as in Fig. 11.12 have
been used in a proposal [689] to end in a wavelength region around 875 nm. Similar schemes
have been used, e.g., to measure optical frequencies by comparison with other optical or in-
frared standards [394, 395, 690].

11.4.2 Optical Parametric Oscillators as Frequency Dividers

A different divider scheme (Fig. 11.13) has been devised by Wong [691]. The scheme uses
a laser with frequency ν1 that is divided by an optical parametric oscillator (2:1) to yield a
frequency ν1/2 and by a second one (3:1) to yield 2ν1/3 (and at the same time ν1/3). The
frequency of a second auxiliary laser (laser 2) is adjusted such that its frequency ν2 is near
to the frequency 2ν1/3 derived from the first laser allowing the difference frequency x to be
measured as a beat note. The frequency 2ν2/3 is derived from the auxiliary laser by means
of a third optical parametric oscillator (3:1) to allow measurement of the difference y. The
frequencies are related by

ν2 = 2
3ν1 + x or 2

3ν2 = 4
9ν1 + 2

3x, (11.20)

and by

2
3ν2 = 1

2ν1 − y. (11.21)
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Figure 11.13: Frequency division scheme using three optical parametric oscillators (OPO) ac-
cording to Wong [691].

Equating (11.20) and (11.21) one derives

4
9ν1 + 2

3x = 1
2ν1 − y or

ν1 = 12x + 18y (11.22)

which allows one to compute the frequency of laser 1 directly from the two measured beat
notes x and y. Schemes to measure optical frequencies with optical parametric oscillators by
phase coherent links to the microwave region have been worked out [692] and the ability to
perform cycle-slip free measurements has been demonstrated to an accuracy of 5 × 10−18

[693].

11.5 Ultra-short Pulse Lasers and Frequency Combs

Frequency combs much wider than the ones produced by electro optic generators Sec-
tion 11.2.3 can be obtained from ultra-short pulse lasers. A periodic train of ultra-short light
pulses emitted by a continuous wave mode-locked laser with repetition frequency frep gives
rise to a comb of equidistant frequencies. This is easily understood from the corresponding
statement that the coherent superposition of harmonic signals with frequencies differing by the
same constant frequency offset Δω results in a periodic signal with pulses in the time domain
(Fig. 11.14) separated by T = 2π/Δω = 1/frep. An example is shown in Fig. 11.14 where
the periodic pulsed signal resulting from 21 equidistant frequencies has been calculated. To
find the envelope of N pulses one calculates

E(t) =
N−1∑
n=0

ei(ω0+nΔω)t = eiω0t
N−1∑
n=0

einΔωt = eiω0t

[ ∞∑
n=0

einΔωt −
∞∑

n=N

einΔωt

]
(11.23)

= eiω0t

[
1

1 − eiΔωt
− eiNΔωt 1

1 − eiΔωt

]
=

1 − eiNΔωt

1 − eiΔωt
eiω0t,
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Figure 11.14: Comb of 21 frequencies separated by Δω = 2πfrep = 0.1ω, a) and corresponding pulse
trains in the time domain, b) calculated from the phase-coherent superposition of the 21 equidistant
amplitudes of a).

where use has been made of
∑∞

n=0 qn = 1/(1− q) for |q| < 1. The corresponding irradiance
is given by

I(t) ∝ |E(t)|2 =
1 − cos NΔωt

1 − cosΔωt
=

sin2 NΔωt/2
sin2 Δωt/2

. (11.24)

From (11.24) one can estimate the width of the pulse for N � 1 by finding the first zero of
the nominator that occurs at ±NΔωt0/2 = π corresponding to a full base width of 2t0 =
4π/(NΔω). The full width at half maximum of the pulse τp is approximately half of this
value

τp ≈ 2π

ΔωN
. (11.25)

From (11.25) one finds that the pulses become shorter the more frequencies (N ) that contribute
to the signal. Equivalently (11.25) can be interpreted in such a way that the spectral width
of the comb scales inversely with the pulse duration. With the advent of femtosecond mode-
locked Ti:sapphire lasers, frequency combs can be generated that cover a considerable fraction
of the optical spectrum.

11.5.1 Titanium Sapphire Laser

The Ti:sapphire laser shows an exceptionally large gain between about 670 nm and about
1100 nm. The active medium of this laser is formed by Ti3+ ions in a sapphire crystal (Al2O3)
where they replace a significant fraction of the Al3+ ions. The crystal is doped with as much
as a few times 0.1 weight percent titanium. The energy levels of the Ti3+ ion are strongly
shifted by the Stark effect due to their bonding to the neighbouring ions in the lattice. The 3d1

configuration of an ion resulting from the single electron in the outer shell is split by the cubic
part of the crystal field into the 2E and 2T2 states (Fig. 11.15).
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Figure 11.15: The splitting of the energy levels of the Ti3+ ion in the sapphire crystal leads to
broad absorption and emission bands.

The trigonal part of the crystal field, together with the spin-orbit coupling leads to fur-
ther splitting. As a result of the interaction with lattice oscillations these levels are strongly
broadened and overlap. In essence, there are two well separated bands. Absorption of photons
can take place from the bottom of the lower band to any energy level in the upper band. The
resulting broad absorption band of Ti:sapphire has a maximum near 500 nm allowing these
levels to be pumped with about 50 % efficiency by an argon ion laser or a frequency doubled
Nd:YVO4 laser. The excited Ti3+ ions rapidly decay to the lowest levels of the upper band by
non-radiative processes. There, the lifetime is about 3 μs at 20 ◦C and radiative emission can
occur to any state in the lower band. The large width of this emission band is prerequisite to
the generation of ultra-short pulses provided that there is an efficient mode coupling process.

11.5.2 Mode Locking

If a broad-band frequency comb is to be generated in a laser, all laser modes contributing
to the comb have to have a well defined and constant phase relationship. This locking of the
modes with different frequencies separated by the free spectral range of the laser resonator can
be achieved by active or passive means. The more modes that are locked, the shorter are the
pulses emitted by the laser. In fact, the shortest pulses of around 5 fs are obtained by passive
mode locking [694].

11.5.2.1 Active Mode Locking

The active mode locking schemes often employ acousto-optic (AOM) or electro-optic mod-
ulators (EOM) to modulate the losses in the laser resonator. Consider an intracavity AOM
driven by a sinusoidal voltage of frequency f where the first-order diffracted beam is coupled
out of the resonator. Photons passing the AOM in phase with zero applied voltage will suffer
from minimal losses if their round trip time in the laser resonator of perimeter z corresponds
to the inverse repetition rate frep = c/z. In each pass the power in the leading and trail-
ing tails of the pulse is reduced with respect to the central part. The repetitive shaping and
amplification of the pulse circulating in the resonator leads to a shortening of the pulse and
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a pulse train is emitted by the laser. With acousto-optic modulators, continuous pulse trains
with pulse times below 100 ps can be achieved. Shorter pulses can be obtained with passive
mode locking schemes using saturable absorbers or Kerr-lens mode locking [69, 695].

11.5.2.2 Saturable Absorbers

Efficient passive mode locking in lasers is achieved when saturable absorbers, e.g., organic
dyes or semiconductors are placed in the laser resonator. The transmission of a saturable
absorber depends on the irradiance of the laser beam and the absorber becomes transparent
at high power. A laser with a saturable absorber begins to oscillate with the different modes
unlocked. Fluctuations with higher intensities corresponding to an in-phase superposition
of different modes lead to higher transmission of the saturable absorber and, hence, suffer
from lower losses, thereby being amplified predominantly in the subsequent circulations. Any
other fluctuating mode acquiring the proper phase with respect to the modes already phase-
locked will contribute to even higher pulse power thereby further reducing the absorption in
the saturated absorber. Semiconductor saturable absorber mirrors (SESAMs) [696, 697] are
sometimes used to achieve self-starting of mode locked lasers.

11.5.2.3 Kerr Lens Mode Locking

Kerr lens mode locking is based on the optical Kerr effect which represents a non-linear
change in the index of refraction with increasing optical irradiance. It is based on the third-
order term χ(3)E3 of (11.4). Unlike the second-order susceptibility term which is identically
zero in centrosymmetric materials, the third-order term is non-vanishing in all optical ma-
terials. Keeping the linear and third-order term of (11.4) one obtains for the displacement
resulting from the influence of the electric field

D = ε0E +P = ε0

(
1 + χ(1)

)
E +χ(3)E3 = ε0

[
1 + χ(1) + ε−1

0 χ(3)E2
]
E. (11.26)

The quantity in square brackets in (11.26) can be regarded as a non-linear dielectric “constant”

ε′ = ε1 + ε2E
2 (11.27)

with a linear dielectric constant ε1 ≡ 1 + χ(1) and a non-linear contribution ε2 ≡ χ(3)/ε0.
Using n =

√
ε′ one derives from (11.27) the index of refraction as n ≈ n0 + n′

2E
2 with

n′
2 = ε2/2 or

n ≈ n0 + n2I. (11.28)

Hence, the index change is proportional to the irradiance I of the laser beam. The non-linear
index of refraction, e.g., for glass used in optical fibre material and for sapphire near 800 nm
is n2 ≈ 10−16cm2/W [69] and n2 ≈ 3.2× 10−16cm2/W [698], respectively. The propagation
of a light pulse in a Kerr medium is affected in two different ways referred to as the transverse
Kerr effect and the longitudinal Kerr effect. The transverse spatial variation of the irradiance
in a Gaussian beam leads to a spatial variation of the phase shift in the Kerr medium that acts
in the same way as does a lens. This so-called Kerr lens leads to a self-focussing of the laser
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beam, focussing the high-irradiance part of the beam more strongly than the low irradiance
part. The Kerr lens can be used to achieve passive mode locking since an aperture behind the
Kerr medium produces less loss for the high irradiance. Similarly to the case of the saturable
absorber, mode-locking occurs since it leads to higher power and less loss at the aperture. In
the Ti:sapphire laser, the crystal, a few millimetres in length, serves as both the laser medium
and the Kerr medium. Mode locking can also be achieved by optimising the overlap of the
pump beam with the mode of the resonator, taking into account the Kerr lens acting as a soft
aperture. Practical hints for optimisation of the mode locking can be found in [699].

The longitudinal Kerr effect is based on the temporal irradiance dependence in an optical
pulse. The temporal envelope of the pulses emitted by a femtosecond laser can often be
approximated by a hyperbolic secant pulse

E(t) =
1

πτp
sech

(
t

τp

)
eiω0t =

1
πτp

cosh−1

(
t

τp

)
eiω0t. (11.29)

In comparison with the Gaussian pulse

E(t) =
1√
2πτp

exp
(
− t2

2τ2
p

)
eiω0t (11.30)

the wings of the sech pulse are more pronounced (Fig. 11.16). Since both pulse shapes,

Figure 11.16: The hyperbolic secant short pulse with its envelope (lines; (11.29)) in comparison
with the envelope of a Gaussian pulse (dots, (11.30)). The amplitudes of both pulse envelopes
are normalised to the same area.

however, are not so different we prefer to work with the Gaussian pulse in the following since
it is easier to handle mathematically.

Consider a pulse with the irradiance distribution I(t) = I0 exp[−(t/τp)2] corresponding
to the Gaussian pulse of (11.30) and travelling through a Kerr medium of length L thereby ac-
quiring a phase factor exp(iΦ) = exp (iω0Ln/c). Using (11.28) and expanding the Gaussian
pulse near the centre as I(t) = I0

[
1 − (t/τp)2 + · · · ] the field of the pulse behind the Kerr

medium of length L is given as

E(t) ∝ exp[−(t/τp)2] exp(iω0t) exp(iω0L/c{n0 + n2I0[1 − (t/τp)2]}). (11.31)

From the phase

Φ(t) = ω0t + ω0L/c{n0 + n2I0[1 − (t/τp)2]} (11.32)



11.5 Ultra-short Pulse Lasers and Frequency Combs 375

the instantaneous frequency ω is calculated as

ω(t) ≡ d

dt
Φ(t) = ω0 − 2ω0

n2I0L

cτ2
p

t. (11.33)

Hence, near the centre of the pulse the frequency varies linearly with t. This frequency chirp
means that for n2 > 0 (i.e. positive dispersion) the frequency decreases with increasing time
t. The central part of the pulse with the highest irradiance is retarded thereby producing a
red shift on the leading edge of the pulse and a blue shift on the trailing part. This effect is
sometimes referred to as self-phase modulation.

11.5.3 Propagation of Ultra-short Pulses

The propagation of ultra-short pulses in a medium like the Ti:sapphire crystal has several pe-
culiarities usually not encountered when the propagation of almost monochromatic radiation is
considered. The spread of frequencies corresponding to ultra-short pulses over a considerable
part of the spectrum according to (5.5) requires the inclusion of the dispersion, i.e. the depen-
dence of the index of refraction on the wavelength. As we will see in the following, assuming
normal dispersion (dn/dω > 0), the high-frequency components are delayed with respect to
the low-frequency components. This group velocity dispersion (GVD) results in a temporal
broadening of the pulse and a variable instant frequency called a chirp (Fig. 11.17). Since the

Figure 11.17: Amplitude of an ultra-short Gaussian pulse before, a) and after passing a material
with normal dispersion, b). The pulse suffers from a delay with respect to the original pulse
(dotted line), it is stretched and it acquires a chirp with the blue shifted frequency components
at the trailing edge of the pulse.

pulse shape is dramatically affected by the dispersion one has to include its effect on the propa-
gation of the pulse in a medium described by the propagation constant k = 2π/λ = ωn(ω)/c.
We expand the propagation constant in a Taylor series about its value at ω0 as

k(ω) = k(ω0) + (ω − ω0)
dk

dω

∣∣∣∣
ω=ω0

+
1
2
(ω − ω0)2

d2k

dω2

∣∣∣∣
ω=ω0

+ · · · (11.34)
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The different coefficients in the power series affect the propagation of the pulse in a dispersive
medium in different ways.

k(ω0) ≡ ω0

vφ
(11.35)

is a measure of how the angular frequency ω0 of the sinusoidal carrier propagates within the
pulse envelope. The corresponding phase delay after a distance z is k(ω0)z and the corre-
sponding time delay is tφ = k(ω0)z/ω0 = z/vφ. The phase velocity vφ is related to the index
of refraction by n ≡ c/vφ.

dk

dω

∣∣∣∣
ω=ω0

=
1
vg

(11.36)

is a measure of how fast the envelope moves with the group velocity vg . Hence, there is also
an index of refraction of the wave group

ng(λ) ≡ c

vg
= c

dk

dω
= c

d

dω

ω · n
c

= n + ω
dn

dω
= n(λ) − λ

d

dλ
n(λ) (11.37)

where we have made use of dω/dλ = −ω/λ. If the group velocity is smaller than the phase
velocity (vg < vφ) the cycles of the carrier frequency move from the trailing tail through the
pulse envelope to the leading edge as depicted in Fig. 11.24 a) for consecutive pulses in a
mode-locked laser. The second derivative in the third term of (11.34)

d2k

dω2

∣∣∣∣
ω=ω0

=
d

dω0

(
1

vg(ω)

)
(11.38)

represents the group velocity dispersion. This term will lead to a distortion of the pulse when
travelling through a medium with a non-vanishing group velocity dispersion. The group veloc-
ity dispersion in optical materials, e.g., in optical fibres is often characterised by the dispersion

D ≡ 1
L

dT

dλ
(11.39)

where λ is the vacuum wavelength and T is the time a pulse takes to travel through the material
of length L. This time is T = L/vg and hence

D =
d 1

vg

dλ
= −ω

λ

d 1
vg

dλ
= −2πc

λ2

d2k

dω2
(11.40)

where we have used (11.36). For quartz glass, which is a typical material for optical fibres,
the index of refraction n(λ) and the group index of refraction ng(λ) are shown in Fig. 11.18
and the corresponding dispersion is displayed in Fig. 11.19.

In a wave guide or in an optical fibre the group velocity dispersion results not only from
the material dispersion, but also from waveguide dispersion, modal dispersion, or polarisation
mode dispersion. The latter three result from the confinement of the mode in a waveguide
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Figure 11.18: Index of refraction n(λ) and
group index of refraction ng(λ) (see (11.39))
of quartz glass.

Figure 11.19: Index of refraction n(λ) and dis-
persion (see (11.37)) of quartz glass.

where the propagation constant k and hence vg depend on the angular frequency ω. If present,
both material and waveguide dispersion contribute to the group velocity dispersion [39]

D = −λ

c

[(
∂2n

∂λ2

)
m

+
(

∂2n

∂λ2

)
w

]
(11.41)

where the indices m and w refer to the material and waveguide, respectively. The pure material
dispersion of a quartz glass fibre shows zero dispersion near a wavelength of 1.3 μm. At
this wavelength very short pulses can be transmitted over long distances without dispersive
spreading. Taking into account the modal dispersion, this zero of dispersion can be shifted
by suitable preparation of the waveguide where the material dispersion is compensated by the
waveguide dispersion. The use of special fibres (see Section 11.5.5) with the zero of dispersion
shifted to about 800 nm where short pulses can be generated by a Ti:sapphire laser allows one
to generate extremely broad frequency combs.

11.5.4 Mode-locked Ti:sapphire Femtosecond Laser

A Ti:saphire femtosecond laser based on Kerr-lens mode locking often has a linear resonator
formed by the output coupler and the end mirror similar to the one shown in Fig. 11.20. The
Ti:sapphire crystal with Brewster angled facets is typically pumped, e.g., by a 10 W single-
frequency 532 nm frequency-doubled Nd:YVO4 laser. To produce short pulses the normal
group velocity dispersion in the Ti:Sa crystal has to be compensated, e.g., by a pair of fused
silica prisms [700] inside the laser resonator. Adjustment of the prisms allows one to correct
the round-trip velocity dispersion.

Self-starting of a femtosecond Ti:sapphire laser with a repetition rate of about 100 MHz
is not always easily obtained since the peak power changes by about six orders of magnitude
when the laser switches from cw to pulsed operation. As a consequence, the Kerr-lens mode
locking process is very weak in the cw regime. To accomplish self-starting of the pulsed laser
sometimes a semiconductor saturated absorber (SESAM) is included [505, 696]. The broad-
band saturable absorber is a composite mirror consisting of a 5 μm silver mirror on a silicon
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Figure 11.20: Layout of a Ti:sapphire laser for generation of femtosecond pulses [505]. Ti:Sa:
Ti:sapphire crystal; SESAM: semiconductor saturable absorber; PD 1 – PD 3: photodiodes.

substrate and a complex sequence of films including a low temperature GaAs semiconduc-
tor absorber layer of 15 nm thickness [696]. With such a mirror, laser pulses of 6.5 fs were
obtained [697] covering a wavelength range between about 690 nm and 900 nm.

11.5.4.1 Chirped Mirrors

Even though the prism pair compensates the group-velocity dispersion, the higher-order dis-
persion of the fused silica prisms is the most important limitation to the generation of ultra-
short pulses. To achieve simultaneously a high reflectivity and compensation of the group-
delay over an extended bandwidth the use of chirped mirrors [701] is imperative. They consist
of multilayers of TiO2 and SiO2 ion beam sputtered onto a SiO2 substrate. The alternating lay-
ers exhibiting a high index of reflection n(TiO2) ≈ 2.3 and n(SiO2) ≈ 1.45 (near 800 nm) can
be regarded as a Bragg reflector. Each step in the index of refraction leads to Fresnel refraction
with a Fresnel reflectivity for the amplitude of r = [n(TiO2) – n(SiO2)]/[n(TiO2)+n(SiO2)]
≈ 0.23. With a sequence of alternating layers of the same thickness a Bragg reflection occurs
for an angle 2 θ with nλ = 2a sin θ. To compensate for the group-delay dispersion in other
elements the chirped mirror requires a group delay that varies approximately linearly with
wavelength. Such a variation can be obtained for mirrors where the multilayer period is not
constant (Fig. 11.21) sometimes referred to as chirped mirrors. In a chirped mirror a wave
packet is reflected by the multilayer structure in a depth where the period matches the centre
wavelength of the wave packet. In Fig. 11.21 longer wavelengths are reflected in a deeper re-
gion of the mirror as compared to shorter wavelengths thereby leading to a larger group delay
of longer wavelengths. However, chirped multilayer coatings with monotonic variations of
the layer thickness are not suitable due to Fabry-Pérot-like resonances that strongly perturb

2 Note that the Bragg angle θ is defined differently to the angle of incidence α of ordinary optics. α is the angle
between the incident ray and the normal of the surface whereas θ represents the angle between the wave vector of
the incident beam and the surface.



11.5 Ultra-short Pulse Lasers and Frequency Combs 379

Figure 11.21: Schematic representation of the universal structure of a double-chirped mirror
according to [702].

the group-delay dispersion. These interferences for longer wavelengths result from partial
reflection from the front section of the mirror and from the Bragg reflection at the back of
the mirror. The interferences can be avoided by an appropriate adjustment of the layer thick-
ness [701] which then can result in double chirped mirrors [702] (Fig. 11.21). The reflectivities
of these mirrors can be considerably higher than 99 % for very broad ranges [701, 702].

With these techniques Kerr-lens mode-locked lasers with pulse lengths down to about 10 fs
can be routinely operated. Such a pulse has a length in space of only Δl = c × 10 fs ≈ 3 μm
corresponding to Δλ/λ = Δν/ν ≈ 10 % (see (5.98) and Table 5.5). For application of
a frequency comb to the measurement of optical frequencies it is advantageous if a whole
octave or even more is covered (Section 11.5.6).

11.5.5 Extending the Frequency Comb

An even broader spectrum can be generated when the pulse from a femtosecond laser under-
goes self-phase modulation in an optical fibre. With conventional fibres, however, the short
pulses of a few tens of picoseconds produced by a Kerr-lens mode-locked laser are rapidly
broadened already in the first few hundred micrometres in the fibre. At the same time the peak
power of the pulse rapidly decreases and the self-phase modulation becomes inefficient. The
development of microstructured fibres allowed one to shift the zero dispersion wavelength
close to the midband wavelength λ ≈ 0.8 μm of femtosecond pulses from a Kerr-lens mode-
locked Ti:sapphire laser. In such a fibre these pulses can travel several centimetres without
serious pulse spreading.

Self-phase modulation in the fibre can be regarded as a four-wave mixing process. Con-
sider two adjacent angular frequencies ω1 and ω2 = ω1 + δ of the comb representing the
short pulse in the frequency domain. In the optical fibre non-linear processes may lead to the
frequencies 2ω1 and 2ω2 = 2ω1 + 2δ. The difference frequencies of these two new frequen-
cies together with the original frequencies 2ω1 − ω2 and 2ω2 − ω1 immediately lead to new
frequencies at ω1 − δ and ω2 + δ = ω1 + 2δ. As a result, new frequencies are generated that
broaden the comb. As a consequence of the group velocity dispersion, ultra-short pulses are
rapidly broadened and the peak power necessary to produce an efficient self-phase modulation
cannot be sustained over a certain distance in the fibre. The group velocity dispersion can be
tailored in a specific class of optical fibres. Fibres can be made to form a two-dimensional
periodic array of closely packed hollow silica fibres (so-called holey fibres) to exhibit a two-
dimensional photonic crystal [703]. If the core of such a fibre consists of a fibre with no hole,
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radiation with frequencies inside the photonic band gap cannot penetrate into the cladding of
the fibre. Holey fibres can be fabricated [703,704] by a procedure where thin glass capillaries
are stacked into a periodic array and the stack is fused and drawn at high temperature. When
the process is repeated it results in a desired structure as depicted in Fig. 11.22. The authors of
reference [705] used a microstructure fibre consisting of an 1.7 μm-diameter silica core sur-
rounded by an array of 1.3 μm diameter air holes in a hexagonal close-packed arrangement.
In such a fibre the waveguide dispersion can be tailored to compensate the material dispersion
as a function of the core diameter between wavelengths of about 0.7 μm, 0.8 μm, and above
0.9 μm for core diameters of 1.4 μm, 1.7 μm, and 4 μm, respectively [705].

Figure 11.22: Cross-section of
a fibre with a periodic array
of air holes running down its
length. The central hole is
absent and this region with a
high index of refraction and sur-
rounded by the air gaps guides
the light.

Figure 11.23: Optical spectrum of the continuum generated in
a 75 cm section of a microstructure fibre. The dashed curve
shows the spectrum of the initial 100 fs pulse. With permission
from [705].

The use of a microstructured fibre does not require any longer to generate pulses below 10
fs and, hence, most of the femtosecond lasers used for the measurement of optical frequencies
do not make use of a SESAM any longer.

In more detail, the “supercontinuum generation” in a microstructured fibre includes several
processes among them self-phase modulation, soliton fission, four-wave mixing and Raman
scattering [706]. For use of these combs it is essential that these processes conserve phase
coherence. Fundamental limits to the noise result, e.g., from spontaneous Raman scattering
down the fibre [707]. Nevertheless, with microstructured fibres frequency combs are readily
produced that extend over more than an octave and where the phase coherence between each
line of the comb is preserved.

11.5.6 Measurement of Optical Frequencies with fs Lasers

The mode-locked laser (Fig. 11.20) emits pulses of a few femtoseconds with a repetition rate
given by the free spectral range of the laser resonator. Typical repetition frequencies are
100 MHz ≤ frep ≤ 1 GHz.
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Figure 11.24: Time domain a), and frequency domain b), spectra of a mode locked femtosecond
laser [708].

Since in general the group velocity of the pulse differs from the phase velocity of the
wave, the phase of the carrier is shifted with respect to the envelope by ΔΦ after each round
trip of the pulse in the laser resonator (Fig. 11.24). Hence, the amplitude spectrum in the time
domain is not periodic and consequently each line of the corresponding frequency spectrum
is not an exact multiple of the repetition frequency. If this shift occurs with a constant rate the
whole comb is shifted by a so-called carrier envelope offset frequency shift

νCEO =
dΦ
dt

=
ΔΦ
2πT

. (11.42)

Hence, each frequency νm of the comb can be determined by

νm = mfrep + νCEO (11.43)

provided that the repetition frequency frep and νCEO are measured and provided that m is
known. With repetition frequencies of the order of several hundreds of megahertz a wavemeter
is suited to determine the latter without any ambiguity. The repetition frequency can be easily
measured by means of a photodiode (PD 2 of Fig. 11.20) and compared to a frequency standard
in the microwave range. In general it is desirable to measure a higher harmonic (say, near 10
GHz) rather than the repetition frequency itself since in this case a fast InGaAs PIN photodiode
allows one to achieve a higher signal-to-noise ratio [43]. To this end an etalon with a free
spectral range of 10 GHz in front of the photodiode PD 2 (Fig. 11.20) is used.

The shift of the frequency comb νCEO can be determined if the comb spans more than an
frequency octave, i.e. if the comb includes the frequency νm = mfrep + νCEO together with



382 11 Synthesis and Division of Optical Frequencies

a frequency ν2m = 2mfrep + νCEO, both with sufficient power. Consider radiation from a
laser whose frequency is phase locked to the frequency νm of the frequency comb and which
is frequency doubled in a non-linear crystal. The frequency of the frequency doubled light is
simply given by 2νm = 2mfrep +2νCEO. The frequency of the beat note Δx of this line with
the line of the comb ν2m is

Δx = 2νm − ν2m = 2(mfrep + νCEO) − (2mfrep + νCEO) = νCEO (11.44)

and exactly gives the carrier offset frequency νCEO. To implement this scheme the frequency
doubled comb (Fig. 11.20) is superimposed with the fundamental comb and directed to a
grating. The number of modes contributing to the doubling process is determined by the
spectral width of the phase matching in the non-linear crystal. The resolution of the grating
is chosen such that only those modes are selected behind a suitable aperture which achieve an
optimal signal-to-noise ratio with the photodetector PD 3. If a complete octave is not available
from the frequency comb, alternative schemes to determine νCEO are available [709].

Fine tuning of the frequency comb is necessary if the repetition frequency frep and the
optical frequency νm have to be stabilised or kept in the optimum range of filters or phase
lock loops. An end mirror placed on a piezoelectric transducer (PZT; Fig. 11.20) allows one
to vary the length of the laser cavity thus shifting all modes of the frequency comb at the same
time [710, 711]. The end mirror behind the prism pair can also be tilted by means of a second
PZT thereby affecting predominantly the intracavity dispersion. As a consequence, the mode
spacing which equals the repetition rate, can be controlled. These two actuators, tilt and length
change, are not completely orthogonal as can be seen from the following equations. Taking
into account the influence of the Ti:sapphire crystal the repetition frequency in a femtosecond
laser is given by

frep =
c

z + lTi:Sa(ng + n2gI − 1)
(11.45)

where z is the perimeter of the laser, lTi:Sa is the length of the Ti:sapphire crystal, ng and n2g

are the (group) indices of refraction in analogy to (11.28). The carrier frequency of the mth

mode is given as

νm =
mc

z + lTi:Sa(np + n2pI − 1)
(11.46)

with np and n2p the phase indices of refraction. The combined effects of the influences leading
to fluctuations of the repetition frequency and the carrier frequency in a femtosecond laser
show up as noise (see e.g. Fig. 11.25). Their influences can be found from inspection of
(11.45) and (11.46). The path length z includes an increase due to the path inside the prisms
and to the air inside the resonator leading to a variation of the carrier frequency by a few
gigahertz and a few terahertz, respectively. Path length fluctuations are predominantly due
to acoustical perturbations. Thermal fluctuations from the heat dissipated in the Ti:sapphire
crystal and from n2 induced fluctuations are other sources of noise. Apart from tilting the
output coupler, there are also other techniques that can be used to provide a fast servo element
such as a variation of the irradiance, e.g., by varying the pump power [709]. A very fast
modulator input can also be generated by injecting an additional laser field into the laser
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Figure 11.25: Measured phase noise spectral density of the repetition frequency frep for a
free-running Kerr-lens mode-locked laser (1) compared to the phase noise of the frequency
synthesiser (2). Courtesy of L. Hollberg.

crystal thereby modulating the Kerr lens [712]. Technically, the fluctuations in general can be
controlled to the extent that true phase coherent measurements can be performed.

By stabilising the repetition rate frep and the carrier offset frequency νCEO to a microwave
frequency standard, e.g., a Cs atomic clock, the frequency comb represents a self-referenced
“frequency ruler” with well known optical frequencies.

Several comparisons have shown the equivalence between frequency measurements per-
formed by frequency chains using frequency division by a femtosecond comb and harmonic
generation synthesis [501, 505, 713] or with a frequency interval divider chain [679] or with
two independent combs [714].

Telle et al. [686] have applied the transfer oscillator concept to optical frequency mea-
surements that are not degraded by the noise properties of the Kerr-lens mode-locked laser.
Consider the signal processing scheme of Fig. 11.26. x is the frequency difference between
the unknown frequency νx of the laser under test and the nearest comb line. The measured
repetition frequency frep is mixed in mixer M1 with the frequency of the rf source as lo-
cal oscillator providing the microwave frequency fLO. The difference signal is selected and
multiplied by m2, e.g., using a harmonic phase lock loop, leading to

νA = m2(fLO − m1frep). (11.47)

In mixer M2 the sum of νCEO and x is generated and after the divider the frequency is

νB =
νCEO + x

m3
. (11.48)
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Figure 11.26: Signal processing scheme for linking optical and radio frequencies after [686].
M1, M2, M3: mixers.

Behind the mixer M3 the difference νA − νB is generated as follows

νC = νA + νB = m2fLO −
(

m1m2frep +
νCEO + x

m3

)
. (11.49)

On the other hand, from (11.43) it follows that

νx

m3
= m1m2frep +

νCEO + x

m3
. (11.50)

Putting (11.50) into (11.49) one ends up with

νx = m2m3fLO − m3νC . (11.51)

Hence, the scheme of Fig. 11.26 allows one to measure the optical frequency νx without
degradation by the noise of the Kerr-lens mode-locked laser, provided that the phases of all
signals in the scheme of Fig. 11.26 can be tracked unambiguously.

Similarly, the measurement of optical frequency ratios need not be degraded by the insta-
bility of the microwave oscillators. Consider the case of two different optical frequencies ν1

and ν2 from two independent optical frequency standards, locked to suitable frequencies of
the same frequency comb

ν1 = νCEO + mfrep + Δx (11.52)

ν2 = νCEO + nfrep + Δy. (11.53)

Provided the values of ν1 and ν2 are known much better than the pulse repetition frequency
frep, then m and n are known without ambiguity. Since νCEO, Δx and Δy are measured
there are only two unknowns ν1/ν2 and frep which can be determined by the use of (11.52)
and (11.53). This method has been used to show that a frequency ratio can be measured with
an inaccuracy of below 6 × 10−19 [715].

Besides the Ti:sapphire laser there are other solid-state femtosecond systems [698] that
might be used to produce a frequency comb. Cr:LiSAF (Cr:LiSrAlF6) is another candidate
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capable of producing pulses of a width below 60 fs [499, 716]. Such a laser can be directly
pumped by 670 nm diode lasers thereby allowing one to set up a transportable battery powered
system. The repetition frequency of such a laser comprising a set-up similar to the one shown
in Fig. 11.20 with an intracavity SESAM and a prism pair for adjusting the group velocity
dispersion has been locked to a 100 MHz quartz oscillator [716]. Very promising candidates
are Er-doped amplifier lasers [717]. They are much less expensive as they can set up using
commercial telecommunications lasers and components. They can be built very compact and
may be even suitable for space applications.

Immediately after its invention the femtosecond comb generator was used for frequency
measurements of the Cs D1 line [718] and of a number of optical frequency standards
[501, 505, 626, 713, 719–721]. In a rapid succession of experiments with increasing accuracy,
it has been shown [715, 718] that the relative inaccuracy of a femtosecond optical frequency
generator can be smaller than 6 × 10−19. In contrast to frequency chains based on multipli-
cation, the division of optical frequencies with a comb generator has a number of advantages.
First, the frequency grid of well known frequencies extending over the visible, infrared and
near UV spectral range makes the measurement of any optical frequency an easier task, in
contrast to the use of frequency chains that were dedicated to particular optical transitions.
Second, the all solid-state system sustains a high reliability and this, together with compact
size and affordable prize, makes it a convenient clockwork for optical clocks. Third, the divi-
sion of frequencies avoids the growth of phase noise associated with each multiplication step.
Consequently, the long standing problem of sufficiently simple measurements of optical fre-
quencies is solved by the femtosecond comb generator allowing one to utilise the full potential
of optical frequency standards and clocks.





12 Time Scales and Time Dissemination

Accurate time and frequency is of fundamental importance to technology and science. Tech-
niques taken for granted in our daily life, e.g., navigation for ships, aircraft and vehicles,
geodetic positioning, wide area networks or high-speed digital telecommunication are based
on accurate time and frequency. Less obviously to the public, deep space navigation, very
long base line interferometry, the measurement of fundamental constants and the realisation
of units in basic metrology present other examples at the frontier of science.

In one way or another all these applications rely on the dissemination of frequency or
time signals. At distant locations the received time and frequency information allows one
to compare, generate or synchronise local time scales, to discipline oscillators or to measure
propagation delay times between transmitters and receivers. The measured path delays and
the fact that time signals are travelling along the transmission path with the speed of light, per-
mit the determination of geometric distances or accurate positions. The transfer techniques,
however, have to meet different requirements depending on whether time information or fre-
quency is transmitted. For time transfer the various contributions to the delay time, as in the
cables, equipment and propagation path have to be taken into account properly. Hence, the
uncertainty achieved in the time transfer is ultimately affected by the signal structure, the ac-
curacy with which the delays in the transmitting and receiving equipment can be determined,
the stability of the signal delays in the equipment and on the propagation path. All these con-
tributions sum up to the uncertainty of the time transfer. On the other hand, if frequencies are
to be compared as a consequence of the periodicity of the signal, the amount of delay need
not be known but it is required that its value is constant during the comparison. The high per-
formance of today’s frequency standards, clocks and methods for intercomparison, moreover,
makes it necessary to address thoroughly the constraints imposed by general relativity. We
begin this chapter by giving a short description of time scales and their history (Section 12.1)
before presenting a comprehensive treatment of general relativity (Section 12.2) necessary for
comparison. We then discuss the methods and techniques currently used for dissemination
and comparison of time and frequency. Finally, we present examples of the most demanding
applications like pulsar timing and very long baseline interferometry.

12.1 Time Scales and the Unit of Time

12.1.1 Historical Sketch

For a long time the true solar day, i.e. the time between two successive meridian crossings of
the sun, was the natural unit of time for mankind.1 Because the Earth’s orbit around the sun
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is elliptical and the ellipse is tilted this duration is not uniform and can vary by as much as
50 seconds during the year. Hence, Universal Time (UT) now called UT0 as agreed by the
International Astronomical Union (IAU) in 1928 was based on the mean solar day beginning
at midnight on the Greenwich meridian. The day was divided into 86 400 seconds and, hence,
the second was de facto coupled to the rotation of the Earth through this definition. Correcting
UT0 for periodic contributions of the oscillations of the polar axis of the Earth resulted in the
time scale UT1 which corresponds to the Earth’s angular position but still reflects seasonal
fluctuations of different origin. UT1 is used in celestial naviagation. To remove these fluctu-
ations the more uniform time scale UT2 is derived from UT1 by applying corrections of up
to 10−8.

To obtain a time unit no longer depending on Earth’s variable rotation, in 1956 the General
Conference of Weights and Measures (CGPM) decided to adopt the definition of the ephemeris
second which had already been defined in 1952 by the IAU. This ephemeris second later
formed the base unit of time in the 1960 newly adopted International System of Units (SI). In
short,1 the ephemeris second was based on the period of revolution of the Earth around the sun
which is more predictable than the rotation of Earth itself. Rather than using the siderial year,2

the tropical year was chosen which is measured from one spring equinox to the next one.3 The
definition of the second “as 1/31 556 925.974 7 of the tropical year for December 31, 1899 at
12 hours ephemeris time” was replaced in 1967 by the definition: “The second is the duration
of 9 192 631 770 periods of the radiation corresponding to the transition between the two
hyperfine levels of the ground state of the caesium 133 atom” (see page 203). This definition
was based on the result of a measurement of the ephemeris second in terms of the period of
the Cs transition that was conducted between 1955 and 1958 in a collaboration between the
National Physical Laboratory (UK) [14] and the United States Naval Observatory.

12.1.2 Time Scales

A number of different time scales are in current use, some of them will be briefly described
in the following.3 Time scales as “ordered sets of scale markers with an associated num-
bering” [1] are divided into two categories, dynamic time scales and integrated time scales.
Dynamic time scales are derived from a description of a dynamical physical system where the
time t is used as a parameter to describe the evolution of the system. Examples of dynamic
time scales are Universal Time (UT1) and Ephemeris Time (ET) which are derived from ob-
serving and modelling the rotation of the Earth around its polar axis and its revolution around
the sun, respectively. The elapsed time can be determined from the observed position and
the corresponding equation. Integrated time scales are based on a time interval, e.g., the sec-
ond as derived from the frequency of the transition in 133Cs. They are formed by a suitable
starting point and by integrating the defined time units consecutively. The Temps Atomique

1 A more detailed description of the history can be found, e.g., in [8].
2 One siderial year is when the Earth after one orbit around the sun has the same position as measured with respect

to the fixed reference system of distant stars.
3 In the geocentric system used for astronomic time definition, the apparent path of the sun on the celestial globe is

a great circle that intersects the projection of Earth’s equator in the vernal and the autumnal equinox.
3 For a more detailed description the reader is referred to [1, 8, 722].
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International (International Atomic Time, TAI) and the Coordinated Universal Time (UTC)
represent integrated time scales. Both time scales are established by the Time Section of the
Bureau International des Poids et Mesures (International Bureau of Weights and measures,
BIPM) in Paris by a complicated process. About 50 national timing institutes contribute to

Figure 12.1: Simplified scheme of the formation of International Atomic Time (TAI) and Coordinated
Universal Time (UTC) according to Jones [8].

this process (Fig. 12.1) with their clock ensembles that may consist of commercial clocks or
primary clocks or both by forming their local atomic time scale TA(k) where k represents the
acronym of the institute. Furthermore, the national timing institutes form a local represen-
tation UTC(k) that approximates the universal coordinated time scale UTC, to be discussed
later. At the end of each month the participating institutes report the time differences between
their individual clocks and their local UTC(k) to the BIPM. In addition to the clock data the
results of regular time scale comparisons between the timing centres are communicated to the
BIPM, too.

In a highly sophisticated scheme the BIPM uses these data to derive the free atomic time
scale Echelle Atomique Libre (EAL, free atomic time scale) which represents a world mean.
As a result of the large number of about 250 clocks contributing to EAL this is a very stable
time scale. However, the scale unit of EAL does not necessarily coincide with that derived
from the primary standards. Hence, TAI is derived from EAL by steering the duration of
the EAL scale unit in accordance with the SI second as realised by primary clocks in some
major timing laboratories. The applied corrections are kept below the short-term fluctuations
of EAL. The origin of TAI is January, 1st 1958 where it agreed with UT1.

Since our daily life and astronomical navigation are both governed by the rotation of the
Earth, an atomic time scale called Universal Coordinated Time (UTC) was adopted in 1972.
UTC is referenced to the Greenwich meridian. UTC is derived from TAI and kept in step with
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the Earth rotation by insertion of leap seconds. Leap seconds [722] are inserted in such a way
that UTC approximately follows UT1 and meets the condition |UTC(t) − UT1(t)| < 0.9 s.
Hence, the scale unit of UTC is the same as that of TAI but UTC and TAI differ by an integer
number n of seconds where n depends on the irregular angular velocity of the Earth

UTC(t) = TAI(t) − n. (12.1)

Since UTC’s scale unit is the second as it is defined in the SI, UTC is an atomic time scale.
A leap second is inserted in UTC world-wide at the same epoch, preferably in the middle or
at the end of a year. The time interval between two leap seconds depends on astronomical
observations of the Earth’s rotation. This information is provided by the International Earth
Rotation and Reference Systems Service. As a result of the slowing down of Earth’s rotation,
UTC was more than half a minute behind TAI in the year 2000.

The atomic time scales TAI and UTC calculated by the BIPM and the deviations of the
local time scales UTC(k) are distributed in a monthly bulletin called “Circular T” [723]. As
a result of the time necessary to collect and process the data transferred to the BIPM, these
time scales can be compared to other time scales “a posteriori”. Hence, only the local approx-
imations UTC(k) to UTC of the different timing centres are available in real time and they are
used for numerous technical applications, different fields of navigation, telecommunication,
space science and basic research.

It is requested that a particular UTC(k) does not deviate from UTC by more than 1 μs with
a maximum deviation of 0.1 μs strived for in the future [1] which has been achieved already
by about thirty UTC(k) laboratories in the year 2004. As a result the local UTC(k) have to be
steered to follow UTC. For this purpose in the national timing centres a clock is selected that
has proved to be particularly stable during the past months and its frequency is adjusted such
that it is expected to realise a time scale that coincides as closely as possible to UTC.

There are other time scales, e.g., the system times used for the Global Positioning System
(GPS) and the Russian Global Navigation Satellite System (GLONASS). Although GPS and
GLONASS system time are maintained as independent time scales they are in fact steered
with high update rates according to UTC(USNO) of the United States Naval Observatory and
UTC(SU) of the Russian timing centre, respectively.

According to the definition of the SI second (see page 203), each clock realises the proper
time in its local frame. When viewed from another local frame, the local time elsewhere is sub-
ject to the (different) gravitational potential there. General Relativity predicts (Section 12.2)
that the time realised in the first frame appears to be shorter or longer depending on the sign of
the difference of the respective gravitational potentials. As a result of this effect, the clocks of,
e.g., the NIST at Boulder located at an altitude of about 1.6 km above sea level appear to run
faster by about 2 × 10−13 when viewed from the site of PTB in Braunschweig at an altitude
of 79.5 m. Hence, TAI was defined such that the gravitational red shift is taken into account
as “TAI is a coordinate time scale defined in a geocentric reference frame (origin of the centre
of the Earth) with the SI second as realised on the rotating geoid as the scale unit [1].”
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12.2 Basics of General Relativity

The accuracy of frequency standards used in scientific and technical applications and clocks
has long reached a stage where accurate time and frequency comparisons require the taking
into account of relativistic effects. A clock in the vicinity of the Earth is subject to gravitational
and rotational forces. Hence, the clock represents an accelerated system thereby requiring the
description in terms of a curved space-time geometry of general relativity. The relationship
between two infinitesimally close space-time events is given by the relativistic line element

ds2 = gα,β (xμ) dxαdxβ (12.2)

where gα,β (xμ) is the coordinate-dependent metric tensor and (xμ) ≡ (
x0 = ct, x1, x2, x3

)
denote the four space-time coordinates with t termed the coordinate time and c the speed of
light. In (12.2) Einstein’s summation convention of repeated indices is used. In the solar
system the space time-curvature due to the gravitational field is weak and the components
of the metric tensor gα,β (xμ) deviate from the Minkowski metric of special relativity (g00 =
−1, gij = δij with the Kronecker δij = 1 for i = j and δij = 0 for i �= j) by small corrections
expressed as a power series in the gravitational potential [724]. In the vicinity of Earth the
potential is weak and is approximated by the Newtonian gravitational potential U .4 The metric
in an Earth centred (non-rotating) inertial reference frame is

g00 = −
(

1 − 2U

c2

)
, g0j = 0, gij =

(
1 +

2U

c2

)
δij (12.3)

where the non-diagonal elements of the metric tensor in a non-rotating geocentric coordinate
system vanish. Hence, the line element can be approximated by

ds2 = −
(

1 − 2U

c2

)
c2dt2 +

(
1 +

2U

c2

) [
(dx1)2 + (dx2)2 + (dx3)2

]
(12.4)

where the potential U = UE + UT comprises the Newtonian gravitational potential UE of the
Earth and the tide-generating potential UT of external bodies. A simple approximation to the
gravitational potential of Earth [263]

UE =
GME

r
+ J2GMEa2

1

(
1 − 3 sin2 φ

)
2r3

. (12.5)

takes into account that Earth bulges around its equator 5 and, hence, the potential depends
on the latitude characterised by the angle φ which is zero at the equator and is counted pos-
itive towards the north pole. The equatorial radius of the Earth is a1 = 6 378 136.5 m; r is
the distance from the origin of the geocentric coordinate frame and GME = 3.986 004 418

4 We adopt here the notation of the “clock community” and the IAU where the potentials are taken with a positive
sign. Note that no general convention exists for the signs of the spatial and temporal coordinates, here we follow
the convention of references [263, 724].

5 Note that (12.5) approximates the predominantly ellipsoidal shape of the Earth but does not take into account mass
irregularities.
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×1014 m3/s2 is the product of the gravitational constant and Earth’s mass. J2 = + 1.082 636
×10−3 is the quadrupole moment coefficient of the Earth. The potential of (12.5) leads to
correct results for the gravitational red shift within a relative uncertainty of δν/ν < 10−14 of
the frequency standards and clocks.

In a coordinate system co-rotating with the Earth, a coordinate transformation has to be
performed, i.e. from the inertial system to a system rotating towards the east with a constant
angular velocity ω as

x = x′ cos(ωt′) − y′ sin(ωt′) (12.6)

y = x′ sin(ωt′) + y′ cos(ωt′)
z = z′

t = t′

where ω = 7.292 115 × 10−5 rad/s is the rotational angular velocity of the Earth. Here, we
have restricted ourselves to the case where ω(x′2 + y′2) 
 c2. Insertion of (12.6) and its
derivatives into the quadratic form of the interval ds2 = −c2dt2 + dx2 + dy2 + dz2 of the
inertial system leads to

ds2 = −
[
1 − ω2

c2
(x′2 + y′2)

]
c2dt′2 − 2ωy′dx′dt′ + 2ωx′dy′dt′ + dx′2 + dy′2 + dz′2

= g′α,β

(
x′μ)

dx′αdx′β (12.7)

where we have neglected the influence of the potential U for the time being. In the first
term of (12.7) we find the additional term ω2ρ2 which is related to the potential Ucentr =
ω2ρ2/2 due to the centrifugal force experienced on a massive body rotating at distance ρ =√

x′2 + y′2 from the rotational axis with angular velocity ω. Hence, in a rotating coordinate
system without gravitational potential one finds

g00 = −
(

1 − 2Ucentr

c2

)
(12.8)

which is the same expression as has been used in the metric of (12.4) reflecting the equiv-
alence of accelerational and gravitational potentials. From (12.7) one finds that there are
non-diagonal terms of the metric tensor in the co-rotating geocentric coordinate system.

Using spherical coordinates r, φ and L for the distance from the geocentre, the angle
of the latitude, and the angle of the longitude (which is counted positive towards the East),
respectively, we use the transformations

x′ = r cos φ cosL (12.9)

y′ = r cos φ sin L

z′ = r sin φ

t′ = t

and end up with the metric [263]

ds2 = −c2dt2 +
[
dr2 + r2dφ2 + r2 cos2 φ

(
ω2dt2 + 2ωdLdt + dL2

)]
. (12.10)
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In contrast to (12.3) the metric in the co-rotating rotating frame with the gravitational potential
can be written as

g00 = −
(

1 − 2U

c2
− (�ω × �r)2

c2

)
, g0j =

(�ω × �r)j

c
, gij =

(
1 +

2U

c2

)
δij (12.11)

where the vector product term between the angular velocity �ω and the vector �r pointing from
the centre of the Earth to a point on the surface gives rise to the centrifugal potential and the
Sagnac effect, to be discussed later, via the off-diagonal elements in the tensor (see (12.3) and
(12.11)).

According to the definition of the SI second, the time displayed by a clock is the proper
time τ , i.e. the time t measured in a coordinate system attached to the clock. Consider the
transportation of a clock described in an external coordinate system between two infinitesi-
mally close events from x0, x1, x2, x3 to x0 + dt, x1 + dx1, x2 + dx2, x3 + dx3. The metric

dτ =
1
c

√
−ds2 (12.12)

relates the increments of the proper time as measured by the clock with the increments of
time dt as measured in the time t of the external coordinate system. The time t is called
the coordinate time. The increment of the coordinate time dtclock displayed by the clock as
viewed from the coordinate system can be determined from

dtclock = dτclock
dt

dτ
(12.13)

by use of the metric (12.12) where all quantities have to be evaluated at the event
x0, x1, x2, x3. Integration of (12.13) along the world line of the clock yields the coordinate
time tclock(t) of the clock. The relation dτ

dt can be found from (12.2) and (12.12) as

dτ

dt
=

√
−g00(x0, x1, x2, x3) − 2

c
g0i(x0, x1, x2, x3)

dxi

dt
− 1

c2
gij(x0, x1, x2, x3)

dxi

dt

dxj

dt
.

(12.14)

In the vicinity of Earth the influence of the gravitational potential on the metric is small
(2U/c2 ≈ 1.4 × 10−9 
 1). Hence, it is suitable to consider only the deviation from flat
space by defining a quantity h(t) as

dτ

dt
≡ 1 − h(t) (12.15)

with h(t) given as a power series in 1/c. The difference between the coordinate time and the
proper time is given by

Δt ≡ t − τ =

t∫
t0

h(t)dt. (12.16)
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Δt can be calculated by either using the metric in the geocentric system (12.4) or in the
coordinate system rotating with the Earth (12.10). In the metric for a geocentric non-rotating
coordinate system (12.4) the non-diagonal elements vanish and insertion into (12.14) leads to

h(t) = 1 −
√(

1 − U

2c2

)
− 1

c2

(
1 +

U

2c2

)
v2. (12.17)

By expanding the root in (12.17) one ends up with

h(t) =
U(t)
c2

+
v(t)2

2c2
+ O(

1
c4

). (12.18)

The second term is known as the time-dilation shift of a clock moving with velocity �v with
respect to the centre of the coordinate system, i.e. the centre of Earth. The term O( 1

c4 ) of
(12.18) typically contributes less than 10−18 and will be neglected in the following.

For a coordinate system co-rotating with Earth, Guinot [263] gives

h(t) =
1
c2

[
Ug + ΔU(t) +

V (t)2

2

]
+

2ω

c2

dAE

dt
(12.19)

which can be derived similarly when the metric (12.10) is used. V is the modulus of the
coordinate velocity relative to the Earth. The last term results from the Sagnac effect [725]

1
c2

∫ Q

P
(�ω × �r) · d�r =

1
c2

∫ Q

P
�ω · (�r × d�r) = 2

1
c2

∫ Q

P
�ω · d �AE =

2ωAE

c2
. (12.20)

AE is the area (Fig. 12.2) swept by the projection of the vector into the equatorial plane
whose origin is at the centre of the Earth and which points to the clock that rests or moves
slowly in the rotating frame (Fig. 12.2). Ug = 6.263 685 75 × 107 m2/s2 is the constant

Figure 12.2: A clock moved from point P to Q on
Earth experiences a time difference due to the Sagnac
effect which is proportional to the area AE .

potential in the geocentric rotating coordinate system on the rotating geoid which can be
obtained from (12.5) augmented by the potential of the centrifugal force. The difference in
the gravitational potential between a specific location and the geoid including the potential
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due to the centrifugal force of the rotating geoid can be modelled if a relative uncertainty of
10−14 is sufficient as

ΔU(�r) =
GME

r
+ J2GMEa2

1

(
1 − 3 sin2 φ

)
2r3

+ (ω2r2 cos2 φ) − Ug. (12.21)

An even better parametrisation as a function of the altitude b above the geoid and the latitude
φ is given as follows [263]

ΔU(b, φ)
c2

= (−1.08821 × 10−16 − 5.77 × 10−19 sin2 φ)
b

m
+ 1.716 × 10−23

(
b

m

)2

(12.22)

This approximation is valid for an altitude b < 15 km above the geoid with the relative uncer-
tainty of the potential being smaller than 10−15.

The proper frequency of a frequency standard H is the frequency of the standard νH(τ )
where τ is the proper time at the location of the standard. This frequency may be referred to as
the “nominal frequency” νH,0. Often, the proper frequency νH(t) of the standard as function
of a chosen coordinate time t is required. Following Guinot [263] we define the dimensionless
quantity “proper normalised frequency” or “proper relative frequency” of a frequency standard
H as

ΦH(t) ≡ νH(t)
νH,0

. (12.23)

Consider a clock resting on the surface of the geoid. This geoid rotates with respect to the
geocentric reference system defined by Earth’s centre of mass where the spatial axes do not
show a rotation with respect to distant extragalactic objects. The coordinate time of the latter
system is referred to as Temps Coordonnée Géocentrique (geocentric coordinate time, TCG).
The proper normalised frequency of the clock in coordinate time TCG is

ΦH(TCG, xμ
geoid) =

dτ

dTTCG
= 1+

Ug

c2
+O

(
1
c4

)
= 1+6.969 290 3×10−10. (12.24)

Hence, all clocks H operated according to the definition of the SI second on the surface of the
geoid advance by this fraction with respect to TCG which adds up during one year to 22 ms.
Thus a geocentric coordinate time called Terrestrial Time (TT) has been introduced whose
scale unit is the SI second as realised on the rotating geoid. In both systems the normalised
frequencies differ by the same amount. TAI realises TT.

12.3 Time and Frequency Comparisons

As simultaneity is not defined in general relativity, first one has to agree on how to synchronise
clocks. Synchronised clocks show the same reading at the same instant of time. In contrast
to Einstein’s synchronism 6 today’s convention [724] is to apply “coordinate synchronisation”

6 Consider two separated clocks A and B. A time signal is sent from A at τ send
A to B where it is received at τ rec

B ,
reflected and received by A at τ rec

A . A and B are (Einstein) synchronised if τ rec
B = 1/2(τ send

A + τ rec
A ) [266].
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where two events described in a suitable coordinate system by their coordinates xμ
1 and xμ

2 are
considered to be simultaneous if the values of the time coordinates are equal (x0

1 = x0
2).7

Clocks operating at different locations P and Q on Earth can be compared by different
methods. The most common ones include transportation of a clock or exchanging electromag-
netic signals between P and Q. Both processes are readily described in a geocentric system
where the origin of the coordinate system is at the centre of the Earth. The coordinate system
can be chosen in two different ways, either in a locally inertial frame with fixed orientations
in space (with respect to the most distant objects of the Universe) or as a co-rotating system
fixed to the rotating Earth. The equations to be given below depend on this choice. Both cases
are described in a recommendation of the International Telecommunication Union [726] and
in [263, 725] together with useful examples.

12.3.1 Comparison by a Transportable Clock

When the time is transported from the point P to the point Q by means of a transportable
clock, the coordinate time that is accumulated during this transport in the geocentric non-
rotating reference frame is

Δt =

Q∫
P

ds

[
1 +

U(�r) − Ug

c2
+

v2

2c2

]
. (12.25)

U(�r) is the purely gravitational potential at the location of the clock and v is its velocity as
viewed from the geocentric non-rotating reference frame. ds is the increment of proper time
as measured in the rest frame of the moving clock.

In the rotating geocentric reference frame the time difference is

Δt =

Q∫
P

ds

[
1 +

ΔU(�r)
c2

+
V 2

2c2

]
+

2ω

c2
AE (12.26)

where V is the velocity of the clock with respect to the ground. �r is the vector whose origin is
at the centre of Earth and pointing to the position of the clock on its journey from point P to
point Q. The equatorial projection of the vector �r sweeps an area AE .

The three terms in (12.26) represent the influence of the gravitation, the time dilation and
the Sagnac effect. The latter is actually nothing more than “time dilation shift in disguise” [8].
It results from the fact that the clocks on Earth co-rotate with the same angular velocity. Hence,
their velocity is dependent on the latitude defining the distance from the polar axis. AE is
taken as positive when the path projected on the equatorial plane has an eastward component
(the situation depicted in Fig. 12.2 leads to a negative AE).

7 In contrast to Einstein’s synchronism, coordinate synchronism leads to transitivity, i.e. if clocks 1 and 2 are
synchronised and clocks 2 and 3 are synchronised then clocks 1 and 3 are also synchronised.
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12.3.2 Time Transfer by Electromagnetic Signals

To compare the readings of two or more distant clocks by electromagnetic signals with radio
frequencies or optical frequencies, several techniques differing in expenditure and achievable
accuracy are distinguished: one-way time transfer; common-view; and two-way time transfer.
The time between the emission and the reception of an electromagnetic signal in the non-
rotating geocentric reference frame is

Δt =
1
c

Q∫
P

dσ

[
1 +

U(�r) − Ug

c2
+

v2

2c2

]
(12.27)

where dσ is the increment of proper length along the transmission path between P and Q and
all other quantities are defined as before.

In the rotating geocentric reference frame the time difference is

Δt =
1
c

Q∫
P

dσ

[
1 +

ΔU(�r)
c2

]
+

2ω

c2
AE . (12.28)

Here, ΔU(�r) is the gravitational potential at the point �r (diminished by the potential of the
geoid, i.e. the Standard Earth) as monitored from a coordinate system rigidly attached to the
Earth, and AE is the area of the equatorial projection of the triangle with the corner points
given by the centre of the Earth, the point P irradiating the signal and the point Q where the
signal is recorded. The area AE is taken positive if the signal has an eastbound component.

For the path from a position on Earth’s surface to a satellite in a geostationary orbit and
back, the second term including ΔU(�r)/c2 leads to a correction of about a nanosecond corre-
sponding to a distance ct of about 30 cm. The third term with 2ω/c2 = 1.6227 ×10−6 ns/km2

can be as large as a few hundreds of nanoseconds for large distances.

12.3.2.1 One-way Time Transfer

The most common way to disseminate time information uses the transmission of an electro-
magnetic signal with coded information. Examples include time signals that can be accessed
from regular telephone and television service or the internet. Radio transmitters broadcasting
short-wave transmissions with frequencies of several megahertz or long-wave transmission
of a few tens of kilohertz (see 12.4) allow the user to access time signals within large areas.
Clocks on board the satellites orbiting around the Earth, e.g., of the Global Positioning Sys-
tem (GPS) provide accurate time worldwide. Time information transmitted from terrestrial
stations and from satellites is used to set clocks, computer time, or to discipline oscillators to
be used as frequency standards and radio controlled clocks with particular impact on every-
day life. The accuracy to which the clock of a user at the receiving location can be set, i.e.
synchronised to the clock at the transmitting site, depends on the propagation time the signal
takes to reach the user’s clock. This time delay can be as large as several tenths of a second
when the signal is transferred via the internet or a geo-synchronous satellite. Measuring the
round-trip delay client-server-client and assuming equal path lengths in both directions, the
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propagation time in the internet is taken into account for the largest contribution. For satellite
links the delay time can be calculated and corrected for, using the speed of light and the known
distance.

12.3.2.2 Common-view Time Transfer

The simultaneous observation of the same signal transmitted, e.g., by a satellite and received at
different locations can be used to synchronise the clocks at the particular locations. Consider
two stations A and B receiving the time signal tS over the path S–A and over the path S–B
with a delay time τSA and a delay time τSB , respectively. When stations A and B exchange
the results of their measurements ΔtA = (tS − τSA) − tA and ΔtB = (tS − τSB)− tB they
obtain

ΔtB − ΔtA = (tA − tB) − (τSA − τSB) (12.29)

i.e. the time difference tA − tB between their clocks and the difference of the path delays.
This so-called “common-view method” avoids the necessity to know the exact time of the
clock onboard the satellite since tS cancels in the evaluation. This property was particularly
useful before the year 2000 when the clocks signals in the GPS satellites (Section 12.5) were
deteriorated on purpose by the so-called selective availability to degrade the positioning accu-
racy. The common-view method is frequently used to compare the clocks in different timing
institutes.

12.3.2.3 Two-way Time Transfer

The most accurate means up to now to compare remote time scales is provided by a Two-Way
Satellite Time and Frequency Transfer (TWSTFT). Consider two stations A and B each one
having a clock, a transmitter and a receiver (Fig. 12.3). Each station transmits a signal to the
satellite (uplink) which in turn transmits this signal to the other station (downlink). In order
not to perturb the weak incoming signal by the strong outgoing signal in the same antenna
of each station, different carrier frequencies are used for the uplink and downlink, e.g., of
about 14 GHz for the uplink and about 12 GHz for the downlink at Ku-band frequencies. At
a defined time tA the clock of station A triggers a signal to be transmitted to station B via the
satellite and at the same time starts the counter in station A. The same procedure is initiated at
station B at tB . The incoming signals from the satellite are used to stop the counters. Hence,
the counters in station A and B measure the time differences

ΔtA = tA − tB + δB→A (12.30)

ΔtB = tB − tA + δA→B. (12.31)

If the transfer of the signals between the two stations was completely reciprocal the delay times
δB→A and δA→B would be equal. The time difference ΔT between the two clocks in station
A and B could be computed after exchanging the readings of both stations by subtracting
(12.31) from (12.30) to yield ΔT = (ΔtA − ΔtB)/2. There are, however, effects which lead
to different delays in both directions. The time difference between the clocks in station A and
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Figure 12.3: Two-way time transfer.

B is calculated as [727]
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+ ΔτR. (12.32)

Apart from the measured time difference (ΔtA − ΔtB)/2 the second term on the right-hand
side of (12.32)

[(
τup
A + τdown

A

) − (
τup
B + τdown

B

)]
/2 is the contribution of the different path

delays of the uplink and downlink in both directions. In the case of quasi simultaneous trans-
mission it can be neglected. The third term takes into account the different delays in the
transponders of the satellite if different transponders are used for both directions. Different
delays in the receiving and transmitting sections of the stations give rise to the fourth correc-
tion term of (12.32). The last term ΔτR is a correction resulting from the Sagnac effect of the
rotating Earth. Expressions to correct for these relativistic effects to picoseconds have been
given by Petit and Wolf [728].

12.4 Radio Controlled Clocks

In several areas, e.g., in the United States, in Japan, or in Germany, long-wave transmitters are
utilised to disseminate timing signals. As an example we refer to the long-wave transmitter
called DCF77 operated in Mainflingen near Frankfurt, Germany, at a geographical location
50◦ 01′ north and 09◦ 00′ east by the German Telekom and supervised by the Physikalisch-
Technische Bundesanstalt (PTB). Commercial Cs atomic clocks at the location of the plant
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are used to steer the time signals of the transmitter. Time and frequency are transmitted by
a carrier frequency of 77.5 kHz whose amplitude is modulated by second markers. At the
beginning of each second (except for the 59th second) the amplitude of the carrier frequency
is reduced to about 20 % for a duration of 0.1 s or 0.2 s, corresponding to a binary zero or
one, respectively (Fig. 12.4). The trailing edge of the envelope represents the marker of the
beginning of the second. To identify the beginning of a new minute the 59th second pulse is
omitted.

Figure 12.4: The amplitude reduction of the
carrier of the 77.5 kHz signal of DCF77 to 20 %
defines the beginning of a new second. The am-
plitude is reduced for 0.1 s or 0.2 s, correspond-
ing to a binary zero or one, respectively.

Figure 12.5: Phase modulation of DCF77 with
a pseudo random phase shift keying.

The time information is encoded in a binary-coded decimal (BCD) system in a scheme
given in Fig. 12.6 where the bits of information available at the 59 seconds of a minute have
a specific meaning. The marker bits 21 to 27, e.g., are utilised to identify the current minute
of the actual hour. Hence, the 47th minute of an hour is identified if the bits for the 40, 4, 2,

Figure 12.6: Coding scheme of DCF77 according to Becker and Hetzel. [729]

and 1 minutes are set, i.e. if the amplitudes of the 21st, 22nd, 23rd, and 27th second markers
are reduced for 0.2 s (one) and those for second numbers 24, 25, and 26 have a duration of
0.1 s (zero). Similarly, the information is encoded for the current hour, day, day of the week,
month, or the last two digits of the number of the year. The coded time information is related
to the legal time of Germany. Bits 1 to 14 are reserved for future use, e.g., to alert the public,
and the bits 15 to 20 have a specific meaning. Bits Z1 and Z2 carry the information about the
time zone (MEZ, i.e. standard European time with the bits Z1 = 0 and Z2 = 1 or MESZ, i.e.
daylight saving time with the bits set to Z1 = 1 and Z2 = 0).
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To achieve a more accurate time transfer and better use of the frequency spectrum avail-
able, in addition to the amplitude modulation of Fig. 12.4, the carrier is phase modulated
with a pseudo random phase noise. The phase of the carrier is shifted by ±13◦ (Fig. 12.5)
according to a binary sequence, without changing the average phase of the carrier. The mod-
ulation frequency of 645.83 Hz is a subharmonic (77 500/120) of the carrier frequency. Each
pseudo noise cycle lasts 793 ms and conveys a bit where the inverted sequence corresponds
to the state 1. The pseudo random phase shift keying of the carrier corresponds to a binary
random sequence of 29 bits superimposed on the AM second markers. The binary informa-
tion via the pseudo random noise corresponds to the AM information except for the minute
identifier. In the receiver the pseudo random code can be reproduced as a signal and used for
cross-correlation with the received pseudo random phase noise. As a result, the received time
markers can be detected with higher precision. Despite the phase modulation, the reception of
the AM time markers is not affected and the long-term properties of DCF77 as transmitter of
a standard frequency is not degraded.

The electromagnetic long-wave signals of DCF77 can reach a receiver along different
paths. One important part of the emitted electromagnetic radiation is guided along the surface
(Fig. 12.7) and is called the ground wave. Alternatively, the electromagnetic wave can reach
the same receiver via the so-called sky wave which is reflected by the ionosphere.8 Due to
the larger damping losses the ground wave becomes less important for distances larger than
about 500 km and the maximum distance for the signals of DCF77 is reached when the sky
wave leaves the ground tangentially (see Fig. 12.7).

Figure 12.7: The signal from the transmitter T reaches the receiver D by a surface wave (dotted
line) travelling the distance 2 L1 and by a sky wave travelling the distance 2 L2.

8 In the ionosphere between about 70 km and 1000 km above ground the ultraviolet radiation from the sun is capable
of ionising air molecules leading to a plasma of free mobile electrons of charge e and mass me, together with
heavy almost-static ions. A perturbation of the plasma electrons results in free oscillations of the electrons around

their equilibrium positions. The corresponding plasma (angular) frequency ωp =
q

n0e2

ε0me
depends on the square-

root of the density ne of the electrons; ε0 is the permeability of the vacuum. Electromagnetic waves with angular
frequencies ω � ωP force the electrons to oscillate with frequency ω leading to a reflection by the ionosphere.
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The maximum distance is calculated from Fig. 12.7 as L1 = 2αR ≈ 2100 km for a height
of the ionosphere ΔR = 90 km using cos α = R/(R+ΔR). With the transmitter located near
Frankfurt, DCF77 can serve almost all of Western Europe with a signal of 100 μV/m or greater.
The coverage area contracts during day-time and expands during night-time. It is furthermore
affected by the available field strength since, e.g., state-of-the-art receivers for wrist watches
require a minimum field strength between 15 and 20 μV/m for interference-free operation.
The time delay between the sky wave and the surface wave is given as ΔL = 2L2 − 2L1 =
2R(tanα−α) and leads to a time delay Δt = ΔL/c of about 70 μs for the maximum distance.
The delay can easily go as high as 0.5 ms for small distances between the transmitter and the
receiver. The DCF77 carrier frequency of 77.5 kHz is a standard frequency with a relative
uncertainty averaged over one day of 1 × 10−12. At the transmitting antenna, the phase time
is kept in agreement with UTC(PTB) within the limits of approximately ±25μs. Larger phase
and frequency fluctuations at the location of the receiver are due to the superposition of sky
wave and ground wave.

Similar long-wave systems (see Table 12.1) are operated, e.g., in the United States and
in Japan. The US system (WWVB) located near Ft. Collins, Colorado operates at 60 kHz
carrier frequency with a power of up to 50 kW and the signal is usable throughout most of the
USA. The time code uses pulse-width modulation similarly to DCF77. The carrier power is
reduced 10 dB at the beginning of each second with the leading edge of the negative pulse
representing the marker. For a binary “0”, “1”, or a position marker full power is restored
after 0.2, 0.5, or 0.8 seconds, respectively. A BCD format is used but the time code differs
from the one shown in Fig. 12.6. Despite the increasing importance of GPS (to be described

Table 12.1: Characteristics of long-wave standard frequency and time signals. Others may be
found in [730]. δν/ν represents the fractional uncertainty of the carrier frequency over one
day (1σ).

Call sign Location Latitude Longitude Carrier δν/ν
frequency

BPC Pucheng 34◦ 57′ N 109◦ 33′ E 68.6 kHz
China

DCF77 Mainflingen 50◦ 01′ N 09◦ 00′ E 77.5 kHz ±1 × 10−12

Germany
HBG Prangins 46◦ 24′ N 06◦ 15′ E 75 kHz ±1 × 10−12

Switzerland
JJY Oktahadoyayama 37◦ 22′ N 140◦ 51′ E 40 kHz ±1 × 10−12

Japan
JJY Haganeyama 33◦ 28′ N 130◦ 11′ E 40 kHz ±1 × 10−12

Japan
MSF Rugby 52◦ 22′ N 01◦ 11′ W 60 kHz ±2 × 10−12

UK
WWVB Fort Collins, CO 40◦ 40′ N 105◦ 03′ W 60 kHz ±1 × 10−11

USA
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in Section 12.5), long-wave transmitters for dissemination of time will still have applications
in the years to come. Advantages include cheaper prices, less power consumption and indoor
use of the receivers. The applications are numerous, e.g., phase synchronisation of power
plants, the control of traffic lights, air traffic guidance and the synchronisation of computer
and telecommunication networks. Moreover, long-wave transmission time services are used
for accurate billing of phone calls and stock trading and for radio controlled wrist watches.

12.5 Global Navigation Satellite Systems

Space-based navigational systems have outpaced most other earth-based navigation systems
or are about to do so. The most widely known space-based navigational systems are the United
States Navigation System with Timing and Ranging Global Positioning System (NAVSTAR
GPS) , the Russian Global Navigation Satellite System (GLONASS) that evolved from dedi-
cated military systems and the forthcoming purely civilian European GALILEO system.9

12.5.1 Concept of Satellite Navigation

A Global Navigation Satellite System (GNSS) can be divided into three segments often called
the space segment, the operational control segment, and the user equipment segment. The
space segment comprises a system-dependent number of satellites that deliver the ranging
signals and other important data to the user. The operational control segment consists of
monitor stations, ground antennas and a master control station. The monitor stations passively
track all satellites in view, accumulating ranging data. This information is processed at the
master control station to determine satellite orbits and is further transmitted to each satellite
via the ground antennas to update each satellite’s navigation message.

The satellites of the space segment are equipped with atomic clocks. Each satellite broad-
casts a signal with the information on its position and status together with the time of its clock.
The user determines his or her own position from the distances to several satellites of known
positions using the time the signals take to travel to the user.

To determine its local position on Earth, a GNSS receiver simultaneously uses the signals
with time stamps from different satellites and compares them with its local clock. If a signal
is received by the user U at the coordinates X, Y, Z from a particular satellite “i” of known
position xi, yi, zi (see Fig. 12.8) the time delay between the transmission and reception of the
signal is a measure of the distance between the satellite and the user.

If the clock in the user’s receiver and the clock onboard the satellite were synchronised,
the true range from the first satellite could be calculated from the propagation velocity c and
the time delay Δt1 as R1 = c×Δt1. A similar evaluation with a second satellite immediately
gives the position of the user in the plane containing the two satellites and the user, as one
of the two intersection points of the two circles with the two ranges R1 and R2 (Fig. 12.8).
For a three-dimensional location in space, a third satellite is necessary. However, in general,
the quartz clock in the user’s receiver will not be synchronised with the atomic clocks of
the satellites to the required accuracy since a time difference δt = 1 μs would correspond

9 The history that led to the current development of the GPS is described, e.g. in [731].
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Figure 12.8: Concept of satellite navigation and
time determination.

Figure 12.9: Geometric diffusion of preci-
sion.

to a systematic error of about 300 m. In the two-dimensional case depicted in Fig. 12.8 it
is assumed that the time TU of the user’s clock advances the system time TGNSS from the
satellites by δtu = TU − TGNSS. Consequently the ranges are too big by c × δtu and lead to
the erroneous position U ′. The ranges computed from the apparent time differences between
the satellite clocks and the user clock, including the offsets resulting from the time difference
δtu, are referred to as “pseudo ranges” Pi = Ri + c × δtu.

If four different pseudo ranges Pi are used to set up four equations for four unknowns, the
three spatial coordinates X, Y, Z and the offset of the user clock δtu can be determined from
the set of equations

(x1 − X)2 + (y1 − Y )2 + (z1 − Z)2 = (P1 − cδtu)2,
(x2 − X)2 + (y2 − Y )2 + (z2 − Z)2 = (P2 − cδtu)2,
(x3 − X)2 + (y3 − Y )2 + (z3 − Z)2 = (P3 − cδtu)2, (12.33)

(x4 − X)2 + (y4 − Y )2 + (z4 − Z)2 = (P4 − cδtu)2.

The system of nonlinear equations (12.33) can be solved for the unknowns either by lineari-
sation, in a closed form or by Kalman filtering [731]. The linearised system of equations
obtained by a Taylor expansion from (12.33) is iteratively used by employing estimates of the
starting position and the clock offset. As a reference ellipsoid primarily the geocentric World
Geodetic System of 1984 (WGS84) is employed.

In the following we describe the properties of a satellite based navigation system in
more detail using the example of the GPS and keeping in mind that they similarly refer to
GLONASS as well as GALILEO.

12.5.2 The Global Positioning System (GPS)

The clocks on board the GPS satellites are related to the GPS system time with a known
time difference to UTC(USNO) and, hence, the satellite-based positioning system also dis-
seminates an approximation to UTC. The GPS time scale is based on the readings from the
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different atomic clocks in the satellites and in the ground stations in a complicated procedure
of data processing. It is steered by the GPS control segment to coincide with UTC(USNO)
of the US Naval Observatory to within 1 μs except for an integer number of seconds. At 0 hr
January 6, 1980, both scales coincided but now they differ since in contrast to UTC(USNO)
the GPS system time has not been adjusted to leap seconds.

The transmitted signal contains the time of the satellite, the difference between the time
of the satellite clock and the system time of the GPS, the expected temporal variation of
this difference (i.e. the drift of the clock aboard the satellite), the position of the satellite, the
(Keplerian) data of the orbit of the respective satellite and the status of all other GPS satellites.

12.5.2.1 Satellite Constellation

The orbit of a satellite is determined by the equilibrium between Earth’s gravitational force
and the centrifugal force

G
MEMS

R2
= MSω2R (12.34)

allowing an infinite number of re-entrant Keplerian orbits. GME = 3.986 004 418
×1014 m3/s2 is the product of the gravitational constant G and the mass of the Earth. To
achieve an optimised satellite constellation for the GPS, however, a number of constraints
had to be taken into account. First, to allow for a continuous determination of the position
and time at any spot on Earth, each spot has to be covered by the radiation cones from four
satellites at a time. Second, the time to finish one orbit was chosen such that it corresponds
to half a sidereal day equivalent to twelve hours minus two minutes to allow positioning of
each satellite using distant stars. As a consequence, the satellites appear four minutes earlier
each day at a particular location. For the chosen time of a satellite to orbit around Earth the
semi-major axis of the respective ellipse with a focus in the centre of the Earth is calculated
from Kepler’s third law as 26 560 km. In order to keep the corrections due to the second-order
Doppler shift and the gravitational red shift as constant as possible, the satellites are operated
in almost circular orbits with eccentricities 10 no larger than ε = 0.02.

Six parameters are required to describe the motion of the satellite at an epoch, i.e. a point
in time. These six parameters could be chosen, for instance, as the three components of the
spatial coordinates and the velocities, but since the satellite orbits in a Keplerian ellipse, it is
more appropriate to represent the satellite’s vector alternatively by the six so-called Keplerian
parameters. The so-called terrestrial equatorial system defined by the equatorial plane of Earth
is chosen as the reference system and the inertial reference with respect to distant stars is the
direction to the vernal equinox Υ, i.e. the intersection point between the celestial equator and
the ecliptic.11

The orientation of the satellite’s plane in space with respect to the equatorial plane is given
by two parameters: the inclination and the right ascension of the ascending node, i.e. that point
where the satellite passes the equator on its way from south to north. The orbital ellipse of

10 The eccentricity relates the semi-major axis a and the semi-minor axis b of the ellipse by b = a
√

1 − ε2.

11 The vernal equinox is that point in the sky which the sun reaches on its annual path at the beginning of spring.
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the satellite is characterised by the length of the semi-major axis and the eccentricity ε of the
ellipse.

The orientation of the ellipse in the orbital plane is described by an angle between the
direction to the ascending node and the perigee. The sixth parameter is the time-dependent
true anomaly, i.e. the angle between the direction to the perigee and the direction to the actual
position of the satellite. The GPS satellite constellation consists of nominally 24 satellites
with each four satellites orbiting in six fixed orbital planes inclined 55◦ from the equator.

12.5.2.2 Satellite Clocks and Signals

Aboard each satellite there are four clocks, either caesium clocks or rubidium clocks or both,
used to transmit the satellite time. Since the clocks on board are in general less accurate
compared to ground-based clocks, the information about the deviation between the time of
the satellite clock and the system time is transmitted simultaneously.

From the onboard clocks four phase-coherent frequencies of 1.023 MHz, 10.23 MHz, L1
= 1540 × 1.023 MHz = 1.575 42 GHz and L2 = 1200 × 1.023 MHz = 1.227 60 GHz, are
generated. L1 and L2 are the carrier frequencies of two signals transmitted by each satellite
in the so-called microwave L band. The carriers from each satellite are modulated by an indi-
vidual spread code, i.e. a binary Pseudo Random Number (PRN) code (Fig. 12.10). Two code
sequences are used, referred to as the Coarse Aquisition code (C/A code) and the Precision
code (P code). The C/A code is a pseudo random number of 210 − 1 = 1023 bits and has a
chipping rate 12 of 1.023 MHz and hence repeats itself after a millisecond. The P code repeats
every 266.4 days. Each satellite is attributed an individual one-week segment of this code.
Hence, the C/A code and the P code allow the user to identify unambiguously the satellite
which transmits the signal with the aid of the codes stored in the GPS receivers.

Both, L1 and L2 are modulated with the P code and L1 is furthermore modulated with
the C/A code. In order to transmit further information besides the PRN sequence, the PRN
sequence of each code is inverted (state 1) or not inverted (state 0) with a bit rate of 50 Hz
(Fig. 12.11). To modulate the high-frequency signal L1 with both codes it is split into two
components shifted by π/2. One component is modulated by the C/A code, the other one by
the P code and both components are superimposed again and transmitted. Hence, depending
on the state of the P code and the C/A code the transmitted signal can exhibit four different
phases (0/0, 0/1, 1,1, 1/0). The reader interested in more details is referred to reference [731].

12.5.2.3 Uncertainties Associated with GPS

The uncertainty with which users can determine their position, velocity or time from the GPS,
depends primarily on a variety of effects that influence the determination of the pseudo range
to a given satellite. The uncertainty of the pseudo range is referred to as the “User-Equivalent
Range Error” (UERE). The uncertainty is furthermore increased by the combined effect of
the geometry including the satellites and the user. As an example, illustrated in Fig. 12.9,
the uncertainties in the pseudo ranges from the satellites can lead to a large uncertainty in the

12 The term “chip” is used rather than “bit” to indicate that no information is conveyed in the sequence (except for the
identification of the satellite).
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Figure 12.10: Phase modulation with a Pseudo
Random Number Code.

Figure 12.11: Mixing code and data in the GPS
signal.

determination of the position along a particular direction if the satellites are seen by the user
from a similar angle. This effect is termed “Geometrical Dilution of Precision” (GDOP) and it
is taken into account by multiplying the UERE with a GDOP factor. This direction-dependent
geometry factor is derived by solving the linearised pseudo range equations simultaneously
for four satellites. From the analytical treatment it follows that the GDOP factor is inversely
proportional to the volume of a polyhedron whose corners are formed by the positions of the
four satellites and the user.

The uncertainty of the pseudo range depends on a variety of factors that lead to deviations
of the pseudo ranges from the true ranges and the capability to correct them.

Ephemerides The exact knowledge of the position of each satellite is mandatory to deter-
mine the user’s position and time. The satellite does not exactly follow a Keplerian orbit due
to gravitational and other perturbations. These perturbations include drag from the outskirts
of the atmosphere or forces resulting from the radiation pressure of the solar wind. The gravi-
tational perturbations result, e.g., from the oblateness of the Earth and from the tidal effects of
the sun and the moon (see also Fig. 13.4). The deviation from the sphericity of the Earth leads
to a slow precession of the satellite orbit. As a result of these and other effects the orbit of a
satellite is not stationary if not corrected for by the satellites’s thrusters for manoeuvring and
station keeping, i.e. keeping the satellites in their proper orbital positions. The positions of
the satellites are determined by the monitor stations that use the measured pseudo range data
together with their exactly known position and time, to determine the position of the satellite
and the time of the satellite’s clock. The master control station processes the data from the
monitor stations to obtain accurate estimates of a satellite’s ephemeris and time, together with
predictions into the future. The ephemeris data, the formed almanac 13 and the clock data are
transmitted by the satellite and are necessary for the user to determine his or her position and
time.

Satellite Clock Uncertainty According to General Relativity the frequency of a clock de-
pends on the gravitational potential (see (12.15) and (12.17)) which, according to the equiva-
lence principle, is composed of the gravitational and centrifugal potential. The potential expe-
rienced by a clock orbiting around the centre of Earth at a distance R with velocity v = ω×R

13 The almanac data comprise satellite constellation information including “health” of the satellites.
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is

U = −GME

R
− ω2R2

2
. (12.35)

From (12.35) and the data from reference [263] one calculates the potential Usurface =
−62.6 (km/s)2 for a clock located on the surface of the geoid. If the clock is onboard a satellite,
the combination of (12.35) and (12.34) leads to

Usatellite = −GME

R
− GME

2R
= −3

2
GME

R
. (12.36)

The difference in the potentials of a clock in a satellite and a clock on the surface of the Earth
leads to a fractional frequency difference of

Δν

ν
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ΔU

c2
=
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2
GME
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+ 62.6 × 106 m2

s2

)
. (12.37)

The corresponding time difference per day (Fig. 12.12) calculated by use of (12.37) is nega-
tive for low orbiting satellites and goes to zero at a height of about 3190 km above ground
corresponding to half of Earth’s radius. It becomes positive for satellites in higher orbits, e.g.,
for the GPS satellites or for geo-synchronous satellites. Hence, when viewed from the surface

Figure 12.12: Time difference per day between a clock on board a satellite at height h above
ground and a clock on the surface of Earth according to (12.37).

of the Earth the clocks onboard the GPS satellites at R = 26 600 km advance by 38.5 μs/d. To
compensate for this effect the atomic clocks on board are given a fixed fractional frequency
offset of −4.464 733 × 10−10 [725, 732] to deliver a frequency of 10.229 999 995 432 6 MHz
rather than 10.23 MHz. This steering, however, does not take into account the slight eccen-
tricity of the GPS satellite orbits. The satellites dip into lower gravitational potential and have
a higher velocity at perigee. Both effects reduce the satellite’s clock rate when viewed from
Earth’s surface. At apogee the satellite clock runs faster as a result of the lower velocity and
the higher gravitational potential. This effect can lead to a maximum deviation of 70 ns [731].
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Delay in the Atmosphere The electromagnetic waves transmitted by the satellites in the
vacuum propagate differently when passing through Earth’s atmosphere. The largest effects
occur in the ionosphere.8 The index of refraction np for the propagation of the phase of an
electromagnetic signal of frequency ν can be represented to a good approximation [731] by

np = 1 +
c2

ν2
. (12.38)

The coefficient c2 = −40.3 × ne Hz2 depends on the electron density ne along the path from
the satellite to the user. The electron density integrated along this path is called the Total
Electron Count (TEC) representing the number of free electrons in a volume column of an
area of 1 m2. The TEC varies between 1016 m−2 and 1019 m−2 depending on the location
of the user, day time, satellite elevation, sunspot activity and others. Since the GPS signal is
modulated it represents a frequency band of finite width. Hence, the group velocity is given
by ng = np + νdnp/dν as

ng = 1 − c2

ν2
. (12.39)

The (group velocity) delay time of the signal resulting from the influence of the ionosphere is
given by

ΔT =
40.3 × TEC

cν2
. (12.40)

The use of two different transmission frequencies L1 and L2 leads to a difference in the delay
times of

ΔT̃ ≡ ΔT (L1)−ΔT (L2) =
40.3 × TEC

c

(
1
ν2
1

− 1
ν2
2

)
= ΔT (L1)

ν2
2 − ν2

1

ν2
2

(12.41)

and, hence, the delay ΔT1 on the frequency L1 can be determined from the measured delay
ΔT̃ by use of (12.41). The delay on L2 can be computed by multiplication with the ratio
ν2
1/ν2

2 = (77/60)2.
If only L1 is measured the influence of the ionosphere has to be corrected by referring

to an empirical model. Parameters of the model are included in the broadcast message. The
uncertainty after applying such a correction can be as large as 50 % of the effect itself.

The lower part of the atmosphere called the troposphere is nearly non-dispersive for fre-
quencies up to 15 GHz. Thus, the delay of a signal within the troposphere cannot be measured
by comparing the signals L1 and L2. In the troposphere the index of refraction depends
on the temperature, pressure and humidity. The correction to the path length depending on
these parameters and on the elevation angle of the satellite has to be taken into account by
semi-empirical models. The corresponding correction of the path length corresponds to a few
metres.

Accuracy of Time and Position Determination Between the years 1990 and 2000 the per-
formance of the GPS system was degraded intentionally by the so-called Selective Availability
(SA). The SA was accomplished by dithering the clock on board the satellites. Hence, the un-
perturbed data could be used only by military and other authorised personell with the knowl-
edge of the regularities of the manipulations. Various effects contribute to the uncertainty
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Table 12.2: Pseudo range uncertainty budget ac-
cording to [731] grouped into the contributions
from the space segment, the control segment and
the user segment.

Source of uncertainty Uncertainty

Satellite clock instability 3.0 m
Satellite perturbations 1.0 m
Other perturbations 0.5 m

Ephemeris prediction 4.2 m
Other 0.9 m

Ionospheric delay 2.3 m
Troposheric delay 2.0 m
Receiver noise 1.5 m
Multipath 1.2 m
Other 0.5 m

Total 6.6 m

Table 12.3: Uncertainty budget for the
coarse acquisition SPS (C/A) code and the
precision PPS (P) code using the uncer-
tainty of the pseudo range (UERE) data
as, e.g., taken from Table 12.2 and includ-
ing the geometrical diffusion of precision
(GDOP) (Fig. 12.9). The large difference
between the SPS and the PPS mainly results
if the Selective Availability is included.

C/A P

Position (3D) 95 m 17 m
Horizontal 56 m 10 m
Vertical 72 m 13 m
Time 100 ns 87 ns
Velocity 0.1 m/s

of the determination of the pseudo range (see Table 12.2). The corresponding uncertainties
in determining a position and time information (see Table 12.3) largely depend whether the
selective availability is included or not.

To increase the accuracy of the determination of the position and the timing, sometimes a
so-called “differential GPS” is applied. This method relies on an extension of the GPS system
that uses land-based radio beacons to transmit differential position corrections from a fixed
receiver at known position to mobile GPS receivers.

12.5.2.4 Time and Frequency Transfer with GPS

Table 12.4 shows the relative uncertainties that can be achieved for the time and frequency
transfer with the different transfer methods via GPS. One-way GPS measurements rely on the
data transmitted from the GPS satellite for calibration. In the single-channel common-view
method each one of the two GPS receivers at the two different locations tracks the same GPS
satellite at the same time. In the multi-channel common-view method each receiver collects
data from all satellites in view. 14 As compared to the single-channel method more data are
available leading to smaller statistical uncertainties.

So-called “geodetic” GPS receivers can also be used to perform time transfer. This is
currently done on a world-wide basis in the framework of the International GPS Service for
Geodynamics (IGS). These receivers process all GPS observables (Code PA, P1, P2, phase

14 For this purpose the BIPM recommends a schedule for the reception of the signals from the 24 satellites in the
different areas around the world. By averaging typically 20 to 30 comparisons per day, the time scales of two
timing centres on the same continent can be compared with an uncertainty of a few nanoseconds which increases
to about 10 ns – 20 ns for intercontinental comparisons.
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Table 12.4: Uncertainties (2σ) achievable with GPS measurement techniques in a measurement
time of 24 hours (according to [733]).

Technique Fractional Fractional
timing uncertainty frequency uncertainty

One way < 20 ns < 2 × 10−13

Single-channel ≈ 10 ns ≈ 1 × 10−13

Common-view

Multi-channel < 5 ns < 5 × 10−14

Common-view

Carrier-phase < 500 ps < 5 × 10−15

Common-view

L1, L2) including the phase of the carrier signal. Since the carrier phase is heavily distorted
by the Doppler effect the Doppler-shifted frequency measurements have to be integrated to
reconstruct the carrier phase. Observing the phase allows one to compare the frequencies
of two distant clocks very accurately. If time scales are to be compared, the ambiguity of
the phase has to be resolved, i.e. the accurate numbers of wavelengths between the satellite
and the receivers have to be determined. This is achieved if a long series of uninterrupted
measurements with the precision code is available. The measurements of the various geodetic
receivers are evaluated together with the necessary satellite data in a network. In Europe this
is done at the Centre for Orbit Determination in Europe (CODE) in Bern, Switzerland which
is part of the IGS. In essence, the precision from the phase measurements corresponds to about
10 ps corresponding to a few millimetres.

Time transfer with uncertainties below a nanosecond requires that the location of the re-
ceiver is accurately determined in the station where the time signal is measured, as the trav-
elling time in a 1 m coaxial cable already leads to a delay of 5 ns. The delay of each receiver
DA and DB has to be determined and taken into account when calculating the time difference
between two stations A and B from the measured time difference δgeod.rec.

δgeod.rec. = (TA + DA) − (TB + DB) = (TA − TB) + (DA − DB) . (12.42)

The difference between the local delays DA −DB in (12.42) can be determined in a so-called
“common clock experiment” where two geodetic receivers are set up close to each other in the
same laboratory and referenced to the same clock. In this case, TA −TB = 0 holds in (12.42).
In such a so-called “zero-baseline experiment” the errors resulting from inadequate models of
the troposphere or ionosphere cancel. For comparisons where the two station are separated
again by a larger baseline the resulting differences contribute to the measured time difference.

The quality of time transfer in the year 2001 can be seen from a comparison between the
Two-Way Satellite Time and Frequency Transfer method and a time transfer by GPS common-
view (Fig. 12.13). As the TWSTFT leads to smaller uncertainties, the standard deviation of
the difference data in Fig. 12.13 of 2.6 ns is a measure of the uncertainty achievable with the
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Figure 12.13: Measured differences between Two-Way Satellite Time and Frequency Transfer
and GPS C/A-code common-view for a link between NPL and PTB measured for the Modified
Julian Date MJD, i.e. a continuous count of the days. (MJD = 0 corresponds to 17 November
1858, 0 h.)

latter method. The long-term variations are probably also caused by GPS but this is difficult
to verify.

In a transatlantic time and frequency comparison between the PTB and the USNO, [734]
instabilities of 10−13 were reached after 300 s and the 10−14 level was reached after 30 000 s.
The difference between the time transfer by geodetic receivers and by the two-way satellite
time and frequency transfer, showed slight seasonal variation of a few nanoseconds amplitude
attributed to multipath and thermal effects.

12.5.3 Time and Frequency Transfer by Optical Means

Few attempts have been made to use optical radiation for time and frequency transfer using ei-
ther free-space or fibre-bound transmission. The LASSO experiment (Laser Synchronization
from Stationary Orbit) [735] used satellites carrying a clock. Nd:YAG laser pulses were fired
from stations at Grasse (France) and McDonald (Texas). 100 ps uncertainties of the time trans-
fer were expected. However, later the uncertainties had to be raised to 1.5 ns. Time Transfer
by Laser Link (T2L2) has been projected for the space stations Mir and the International Space
Station (ISS) [736] but were not realised at the time of writing. This method needs a clear sky
without clouds and, hence, cannot be utilised at every location and instant. It is, however,
ideal for time and frequency transfer between satellites.

Optical fibre links have been used to transfer frequencies in local and regional fibre net-
works. Optical frequencies at 385 THz (λ = 778 nm) have been transferred by using a 3 km
long single-mode 1.3 μm optical fibre to connect two laboratories in Paris [737]. The fre-
quency shift introduced by the fibre was measured after sending back the light through the
fibre that has been frequency shifted by means of an acousto-optic modulator (AOM). The
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measured shift of 0.4 Hz was attributed to a time delay probably due to a temperature effect
resulting, e.g., from a temperature variation of a few ten microkelvin per hour. Frequency
jitter resulting from acoustic pressure can easily lead to phase variations of a several radians
of phase noise and can easily lead to kilohertz broadening of the carrier. Ma et al. [738] have
shown how this broadening can be reduced to the millihertz domain by using a double-pass
heterodyne measurement where the measured phase excursion was divided by two in order to
obtain a correction signal that was fed to a phase-compensating AOM. This approach is valid
to the extent that the counterpropagating signals suffer from the same phase perturbations.
This reciprocity is not necessarily given for long-haul transmissions.

Optical and radio frequency standards located at the US National Institute of Standards and
Technology (NIST) and the JILA in Boulder, Colorado have been connected through a 3.45 km
optical fibre link [739]. The comparison of the optical and microwave frequency of an iodine-
stabilised Nd:YAG laser at 1064 nm and a H maser by means of optical femtosecond combs
allowed the comparison of both frequencies before and after transmission in both laboratories.

An even longer distance optical link between the Laboratoire des Physique des Lasers
in northern Paris and the BNM–SYRTE in the centre of Paris, separated by about 13 km,
has been used to connect the frequency base of a femtosecond laser comb to the microwave
standards of SYRTE [406]. The 1.55 μm laser beam, amplitude modulated by a 100 MHz
signal, was transmitted through a modified commercial network where a few tens of network
interconnection points of the standard single mode fibres were fused. The transmitted signal
derived from a H maser was compared after a complete roundtrip of about 85 km with the
original signal and the extra noise from the optical link was found to correspond to a relative
Allan deviation σy(τ = 10 000 s) < 10−15. More recent measurements have shown an order
of magnitude lower noise level which is expected to be further reduced by using a higher
modulation frequency of 1 GHz. These noise characteristics compare favourably with that of
free-space microwave links.

12.6 Clocks and Astronomy

Accurate measurements of time and frequency and the synchronisation of clocks have a vir-
tually unlimited number of applications for precise cosmology, interstellar medium physics,
orbital evolution measurements and space exploration, to name only a few. In the following,
some examples will be discussed.

12.6.1 Very Long Baseline Interferometry

Radio astronomy where telescopes gather and concentrate the radio waves from astronomical
sources has contributed incredibly to today’s knowledge about astronomical objects. The
minimum resolvable angular separation θ of any imaging system is

θ = α
λ

b
(12.43)

as a result of diffraction due to a limited aperture b. The constant α is of the order of unity and
depends on the geometrical shape of the aperture and on the illumination across the aperture.
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The desired highest angular resolution with radio waves of wavelength λ in the centimetre to
metre range would require, according to (12.43), a size of a radio telescope which is impossi-
ble to construct with current technology.

The diffraction limit of (12.43) results from the interference of different partial waves
originating from different spots on the telescope. Hence, the resolution can be increased if
the signals from different single telescopes are combined with the proper phase relationship.
The signals from two different receivers are then cross-correlated and the resulting fringe
pattern can then be analysed to yield, e.g., an image of a distant astronomical object or a
precise location of an astronomical radio source. In this way a so-called “aperture synthesis
telescope” can be formed. For example, the Very Large Array (VLA) links 27 antennas of
a radio telescope located near Socorro, New Mexico, to a maximum size of 36 km. The
resolution of the VLA at the highest frequency of 43 GHz is 0.04 arcseconds.

For the so-called Very Long Baseline Interferometry (VLBI) the elements of the inter-
ferometer may be separated by thousands of kilometres or be spread over several continents
(Fig. 12.14). The Very Large Baseline Array (VLBA), for instance, is an array of radio tele-
scopes dedicated to VLBI and extending from the Hawaian to the Virgin islands. For such

Figure 12.14: Principle of Very Long Baseline Interferometry (VLBI).

large separations it was no longer practical to physically combine the signals from the single
telescopes in real time. Hence, the data are recorded first in digitised form with time stamps
on magnetic tapes and the correlation is performed afterwards. The recording tapes are syn-
chronised by the use of hydrogen masers in the respective stations. The correlator removes the
Doppler shift and geometric delay due to the position and motion of the two stations and then
cross-correlates them. Hence, VLBI can be thought of as a measurement of the time differ-
ence between the arrival of a radio signal at two telescopes from a very distant astronomical
object e.g. a QUASAR.15

15 The acronym QUASAR i.e. QUAsi StellAr Radio source was coined when during the sixties of the last century
the positional accuracy of radio observations became high enough that visible objects could be attributed to known
radio sources [740, 741]. The large red shift with 0.1 <∼ v/c <∼ 5 indicated that these objects are several 109 light
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The positions of these extragalactic radio sources (mostly QUASARs) as measured by
VLBI to fractions of a milliarcsecond have been used to set up a celestial reference frame
adopted by the International Astronomical Union. The great distances of these sources make
their motions across the sky virtually undetectable and, hence, they form a true inertial refer-
ence frame. This system is used to relate the positions of stars in our galaxy and for measuring
Earth’s position and orientation very accurately. Theses data are used by geophysicists to de-
rive models for the influence of the atmospheric angular momentum, ocean tides or the elastic
response of the solid Earth. At the same time VLBI measurements allow the determination of
the relative positions of the antennas for a one-day session as good as 1 mm in the horizon-
tal and 3 mm in the vertical. From these data also valuable information about tectonic plate
motion is derived.

The largest baseline on Earth is limited to its diameter of about 12 750 km. The baseline for
VLBI can be further increased by implementing space-borne radio telescopes into the system.
E.g., in the VLBI Space Observatory Programme (VSOP) the Japanese radio telescope called
HALCA with its 8 metre radio antenna was launched in 1997 into an elliptical Earth orbit. In
combination with surface-based antennas a baseline of over 30 000 km is achieved. At 5 GHz
the VSOP mission allows imaging at resolutions lower than a milliarcsecond.

12.6.2 Pulsars and Frequency Standards

There was great excitement when in 1967 the first radio sources were observed that emitted
periodic signals [742]. These radio sources were called pulsars and it was soon realised that
they emit broad-band pulses of radiation with periods between about a millisecond to several
seconds. At the end of 1998 more than 1000 pulsars had been detected. Since the time
interval τ between the pulses is constant to about Δτ/τ ≈ 10−3 one is forced to assume
that these pulses are emitted by a body of a rather rigid structure. One can think of a rapidly
rotating body with a fixed radio source whose radiation cone sweeps across the Earth like a
searchlight or the beam from a lighthouse. For a rotating body, one derives immediately an
upper limit for its size by considering that the angular velocity at the surface cannot exceed
the speed of light c. The radius R of a pulsar emitting one pulse each millisecond is thus less
than 50 km. The pulsar PSR B1937+21 [743] 16 has a rotational period of 1.6 ms. It is not
expected that much faster pulsars will be discovered since the balance between the centripetal
and the gravitational force on the surface of the body sets an upper limit for the rotational

years away and hence, have a huge absolute luminosity. The temporal variation of the radiation of up to a factor of
ten within a few days is compatible with a size not larger than a few light days since a source cannot fluctuate faster
than a light beam takes to travel across the source. The true nature of QUASARs is still not known. A plausible
explanation refers to a black hole in the centre of a galaxy with a 109-fold mass of the sun. When the black hole
sucks in gas and stars from the vicinity, the accelerated ionised gas masses may generate huge magnetic fields,
thereby emitting high energetic radiation.

16 The position of any stellar object can be defined by two angles named as declination and right ascension. If we think
of such a stellar object as being fixed on a celestial sphere whose centre is represented by Earth, the declination
and right ascension correspond to the geographic longitude and latitude, respectively. The declination is the angle
from the celestial equator to the object counted from zero to + 90 degrees north and -90 degrees to south. The
right ascension is counted in hours from the spring point from west to east. Pulsars are identified by the prefix
PSR. The pulsar named PSR B1937+21, for instance, can be found at the angular coordinates 19 hours 37 minutes
declination and 21 degrees (north) right ascension.
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frequency Ω =
√

GM/R3 depending on the radius R, the gravitational constant G, and the
mass M = 4πR3ρ/3. Using the highest density ρ that is known today, i.e. the typical density
of a neutron star of ρ ≈ 1017 kg/m3 one calculates a rotational period of 1.2 ms. Hence,
it is assumed that these pulsars are rotating neutron stars.17 If there was a magnetic field
before the collapse of the star it is enhanced during the collapse. Consider a radius of Ri ≈
7 × 108 m and Rf ≈ 5 × 104 m before and after the collapse, respectively. Conservation of
the magnetic flux requires Bi4πR2

i = Bf4πR2
f and leads to an enhancement of the magnetic

field B of about eight orders of magnitude with magnetic fields of about 108 T.18 The origin
of the pulsar radiation is readily explained in the “lighthouse model” (Fig. 12.15). As the

Figure 12.15: A rotating neutron star emits radiation into a rotating cone like a cosmic light-
house.

neutron star is rotating with angular velocity Ω, charged particles are accelerated along the
magnetic field lines in the magnetosphere. The accelerated particles emit electromagnetic
radiation predominantly in the regions near the magnetic poles of the neutron star in a cone
around the magnetic field axis of the neutron star. Since the magnetic field axis in general
does not coincide with the rotation axis, the radiation beam can sweep across the observer
once per rotation period like the light of a lighthouse. Hence, the period of the pulses is
determined by the rotation period of the neutron star. The pulses are detected typically at
radio frequencies between a few hundred megahertz and several gigahertz. Even if the power
emitted by the pulsar is incredibly high only a tiny fraction can be detected on Earth. Typically,
the spectral irradiance detected from the pulsars is at a low level between 10−29 W m−2 Hz−1

and 10−27 W m−2 Hz−1 at a reference frequency often chosen close to 400 MHz [745, 746].
Consequently, the individual radio pulses are often hidden in the noise. Since, however, the
pulses are occurring periodically, standard techniques applying phase-sensitive detection can

17 A neutron star may originate from a star which has used up its fusion fuel and has a mass 5MJ ≤ M ≤ 10MJ
where MJ is the stellar mass of our sun. In the steady state of a star there is a balance between the gravitational
acceleration and the radiation pressure. When the star burns out the radiation pressure is reduced and the star
collapses thereby heating up and blowing away its corona in a supernova explosion. The temperature of the
remaining matter is high enough to ionise the atoms and to allow the protons (p+) and electrons (e−) to produce
an inverse neutron decay (p+ +e− → n+ν). The neutrino ν is emitted and all the matter left consists of neutrons
(n) leading to a so-called neutron star.

18 In fact, even higher magnetic fields have been observed by a pulsar emitting bursts of low-energy gamma rays
rotating with a period of about 7.4 s. A magnetic field of 8 × 1010 T has been deduced from the the rotation period
and the slowdown of that rotation [744].
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be used to reduce the noise and to recover the signals from the pulsars. The digitised signal
from the telescope is coherently summed in slices of the expected pulse period. It is found
experimentally that the average profile of the pulse shows a unique structure characteristic for
each pulsar (Fig. 12.16) to some extent depending on the frequency of detection. About 3 %

Figure 12.16: Average pulse profiles for PSR B1855+09 and PSR B1937+21 recorded at a
frequency of 1.4 GHz and 2.4 GHz, respectively, [747]. Courtesy of V. Kaspi. These inte-
grated pulse profiles show the “fingerprints” of the pulsars. More of them can be found in [746]
and [748].

of the average pulse profiles show an interpulse at about half of the period after the main pulse
(see e.g. that of PSR B1937+21 shown in Fig. 12.16 b). The main pulse and the interpulse can
be explained if one assumes that both beam cones of the neutron star sweep across the observer
on Earth, indicating that they result from the opposite magnetic poles of the neutron star.
Double-pulse structures may also result from a hollow-cone shape of the emission beam [748].

The large number of known pulsars can be divided into two groups with distinct prop-
erties [745]. The larger group named “normal” or “slow pulsars” show pulse periods, i.e.
rotation periods P of the order of one second (33 ms < P < 5 s). The rotation period in-
creases for most of the normal pulsars by typically Ṗ ≈ 10−15 s/s. The second group called
“millisecond pulsars” have periods of 1.5 ms <∼ P <∼ 30 ms and spin down with Ṗ ≈ 10−19

s/s. There are other differences between the slow and millisecond pulsars as their different
ages of 105 years <∼ τ < 109 years [746] and τ ≈ 109 years or their surface magnetic field of
B ≈ 108 T and B ≈ 104 T, respectively. Furthermore, about 80 % of the millisecond pulsars
are observed to have orbital companions in contrast to the slow pulsars where this fraction is
below 1 % [745]. Plausible physical models that have been developed to explain these obser-
vations and to derive these data describe a pulsar with its large magnetic field by a rotating
magnetic dipole and an associated classical magnetic dipole moment M . The magnetic dipole
moment rotates with the rotational frequency Ω and there is an angle α between the axis of
the dipole and the rotation axis. According to classical electrodynamics the rotating magnetic
dipole emits radiation and the total radiated power is given by

dE

dt
=

2(M sin α)2Ω4

3c2
. (12.44)
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The radiated power slows down the spinning neutron star and reduces the rotational energy

Erot = 1
2ΘΩ2, (12.45)

where Θ is the moment of inertia of the neutron star. For a sphere of a radius R ≈ 15 km
and a density of ρ ≈ 1017 kg/m3 the moment of inertia is Θ = 2/5MR5 = 8/15πρR5 ≈
1.3 · 1038 kg m2. The loss of rotational energy can be calculated from the observed rotational
frequency Ω = 2π/P and its derivative Ω̇ = −2πṪ/P 2 as

dErot

dt
= ΘΩΩ̇ = −4π2Θ

Ṗ

P 2
. (12.46)

For 29 slow pulsars Camilo and Nice [746] conclude 1023 W <∼ Ėrot
<∼ 1026 W. The latter

value corresponds roughly to the power irradiated by our sun resulting from the nuclear fusion
processes. Equating the loss of rotational energy (12.46) and the total energy radiated by the
magnetic dipole (12.44) leads to

Ω̇ =
2(M sin α)2

3Θc3
Ω3. (12.47)

As an example, from the magnetic dipole moment M (12.47) the surface magnetic induction

B can be estimated as B ∝
√

PṖ .

12.6.2.1 Pulsar Timing

For accurate determinations of parameters that should reflect the properties of the pulsar, the
arrival times of the pulsar signals have to be corrected for a number of effects affecting the
signals that are detected by an antenna on the moving Earth. As a first step, the data are ref-
erenced to an inertial observer. To a good approximation the centre of gravity of the solar
system (barycentric frame) can be regarded as such an inertial system to get rid of the si-
nusoidal yearly variation due to Earth’s revolution around the sun and the sinusoidal monthly
variation due to the revolution around the Earth-Moon barycentre. The arrival time at the solar
barycentre tb is obtained from the arrival time t measured at the telescope by

tb = t +
�r · n̂

c
+

(�r · n̂)2− | �r |2
2cd

− D

f2
+ ΔE

J + ΔS
J + ΔA

J (12.48)

where t is the observed topocentric time of arrival, �r is a vector from the barycentre to the
telescope, and n̂ is a unit vector from the barycentre to the pulsar. c is the speed of light, d
is the distance to the pulsar, D is the dispersion constant of the interstellar medium resulting
from the ionised interstellar plasma, and f is the radio frequency. ΔE

J is the Einstein delay
resulting from the red shift and the time dilation, ΔS

J is the so-called Shapiro delay resulting
from the curvature of space-time in the vicinity of the sun and ΔA

J is the aberration resulting
from Earth’s rotation [749]. The correction is performed by using a planetary ephemeris that
has been computed, e.g., in the so-called JPL-DE200 or JPL-DE450 codes [750].

After performing the transformations (12.48) the pulsar’s rotational parameters can be
determined from the rotational phase φ(t) given by a Taylor expansion

Φ(t) = φ(t0) + Ω(t − t0) + 1
2 Ω̇(t − t0)2 + 1

6 Ω̈(t − t0)3 + · · · (12.49)
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with Ω the angular velocity of the pulsar. From these data, valuable information on the prop-
erties of pulsars themselves can be obtained, e.g., on the structure of the neutron star, the
equations of state, or the pulsar evolution. Besides the investigation of the pulsars them-
selves, they can be used as tools to test fundamental theories and for other applications [751].
The fundamental physics tests include [752] relativistic precession, Einstein and Shapiro de-
lay, gravitational waves, variation in G, Chandrasekhar mass, strong equivalence principle,
Lorentz invariance and conservation laws. Hulse and Taylor have received the Nobel prize for
their investigation of the 59 ms binary pulsar 1913+16 comprising a neutron star and a com-
panion [5, 753]. These investigations allowed the most accurate tests of General Relativity.
The periastron rotation, more than four orders of magnitude larger than in the case of the mer-
cur perihelion, has been well confirmed. The observed reduction Ṗ /P ≈ −3 × 10−12 could
be explained by the emission of gravitational waves. In the mean time, a number of more pre-
cise fundamental tests with increasing accuracy have been performed [752]. Measurement of
the orbital period derivative allows the measurement of the temporal change of G, Newton’s
gravitational constant. Currently, for instance, Ġ/G = (−22 ± 775) × 10−12 a−1 has been
observed for the 4.57 ms binary pulsar PSR J1713+0747.

12.6.2.2 Pulsars as Frequency Standards

Pulsars have been referred to as “nature’s most stable clocks” [5]. In fact, the pulsars 1937+21
and 1855+09 have been observed to have stabilities of Ṗ = 1.05× 10−19 s/s and Ṗ = 1.78×
10−20 s/s, respectively [754]. The stability is affected also by the measurement noise, which
is often considered as white phase noise with a measurement uncertainty of the order of a
microsecond.

To determine the stability, however, the deterministic but a priori unknown drift present
in the timing data has to be removed in order not to be confused with long-term random
fluctuations. In order to ignore fixed frequency drifts, Matsakis et al. [755] and Vernotte [756]
have suggested and applied third-order differences leading to a variance referred to as “pulsar
variance” or σ2

z . The fractional instabilities of pulsars come down to a σz ≈ 10−15 regime for
measurement times of a few years [5, 755].

There are, however, several effects that can change the rotational frequency of a pulsar.
First, if the axis of the magnetic field is not collinear to the axis of rotation as depicted in
Fig. 12.15 electromagnetic waves will carry away energy. Similarly, any deviation of the
rotational symmetry of the mass distribution will lead to the emission of gravitational waves.
In binary systems, a decrease in the orbital frequency has been observed that is consistent with
the emission of gravitational waves according to the theory of general relativity. Both effects
will reduce the frequency of the signal from the pulsars. As a result, older pulsars should
become slower. On the other hand, pulsars in binary systems could increase their rotational
frequency by an effect where matter is sucked by the pulsar from the companion star. In
this case the sucked plasma is collected in an accretion disk in the orbital plane of the binary
system. When this plasma eventually is trapped by the neutron star its angular momentum is
transferred to the latter thereby increasing its rotational frequency. Furthermore, the steady
decrease in the frequencies of some pulsars has been observed to be interrupted by a sudden
increase. The interpretation of these so-called glitches is based on the assumption that neutron
stars consist of a fluid interior and a solid brittle crust. The glitches are explained either by
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cracking of the crust or by fluctuations of the angular momentum resulting from the quantised
vortex properties in the neutron superfluid of the interior. As a result, pulsars with their built-
in precise clocks are extremely helpful tools for astronomy but presently it seems safe to
conclude that they will not be used for time keeping.



13 Technical and Scientific Applications

The high accuracy of time and frequency metrology based on the use of atomic clocks and
frequency standards has challenged and inspired researchers and engineers to transfer this
accuracy to the measurements of other physical quantities. Together with the widespread
availability of easy-to-use and cost-effective reference frequencies, on virtually each level
of accuracy, frequency-based measurement techniques are applied to various fields of tech-
nology. Prominent examples in the low-accuracy regime are the various sensors based on
quartz where the eigenfrequency of a quartz resonator (Section 4.1) changes in a defined way
under an external influence. Sensitive and accurate thermometers, pressure gauges and ac-
celerometers of microbalances are constructed using this principle. The microbalance where
the eigenfrequency changes with the mass deposited on the quartz crystal can be used, e.g., to
sense quantitatively the adsorption of organic molecules in vapour or liquids. In this chapter,
however, examples are presented for the measurements of dimensional, electric and magnetic
quantities with highest accuracy together with applications in technology and fundamental
physics.

13.1 Length and Length-related Quantities

13.1.1 Historical Review and Definition of the Length Unit

During the time of the French revolution, the need was felt to set up a general system of
units 1 that could be derived from properties of the Earth. The unit of length, the metre, was
chosen as the tenth million part of the quadrant of an Earth meridian. From geodetic length
measurements the metre was determined and transferred to a length bar called the “Mètre
des Archives”. It was only in 1889 when the 1st Conférence Générale des Poids et Mesures
(CGPM; General Conference on Weights and Measures) defined the length unit “metre” as the
length of the “International Prototype of the Metre” made of a platinum iridium alloy whose
length could be related to that of the Mètre des Archives. Besides the definition of a unit,
like the metre, one is interested in a procedure to “realise” this unit, i.e. to perform practical
measurements based on this definition. The relative uncertainty to realise the metre derived
from the International Prototype was about 10−7 (see Fig. 13.1) which was limited, e.g., by the
quality of the edges of the grooves used as the length markers in the International Prototype.

Already by the beginning of the 20th century Michelson and others had created “sec-
ondary standards of length” by determining the wavelengths of various emission lines, e.g.,

1 A more detailed review can be found in [757].
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Figure 13.1: Progress in the accuracy of the realisation of the length unit in the International
System of Units (SI) where, according to the definitions of the CGPM, the metre was defined
by the International Prototype (1889 – 1960; [758]), by the Krypton wavelength (1960 – 1983;
[759]) and by the speed of light using realisations by laser frequency standards (from 1983;
[95,370,760–762]).

of Cadmium and Mercury, by comparison with the International Prototype thereby follow-
ing an earlier suggestion of Maxwell.2 In the fifties of the past century, Engelhard in
the Physikalisch-Technische Bundesanstalt developed a special Krypton lamp whose orange
wavelength at 605.78 nm was superior to any artefact standard with respect to stability and
reproducibility. The lamp used the transition 5d5 → 2p10 (designation according to Paschen;
see footnote 1 on page 257) of the 86Kr isotope excited in a gas discharge. To reduce the
Doppler width, the discharge was immersed in liquid nitrogen. In 1960 about six decades af-
ter Michelson’s first attempts, the CGPM defined the metre via the wavelength of the Krypton
lamp.

In the same year, however, the invention of the laser initiated the development of
frequency-stabilised light sources that were superior to the Krypton lamp with respect to the
output power, the coherence length or the reproducibility of their frequencies. It was clearly
foreseen that through the years to come new and more stable lasers would continuously be
developed that, in principle, could be used to realise the metre with increasing accuracy. To
make full use of the best of these lasers for accurate length measurements, however, would
require a frequent re-definition of the SI unit metre. To solve this problem, the 17th CGPM
adopted in 1983 a new definition of the metre as

the metre is the length of the path travelled by light in a vacuum during a time
interval of 1/299 792 458 of a second.

This definition utilises the impressive accuracy that can be achieved by measurements of time
with atomic frequency standards together with the value of a fundamental constant, the speed

2 “If, then, we wish to obtain standards of length, time, and mass which shall be absolutely permanent, we must
seek them not in the dimensions, or the motion, or the mass of our planet, but in the wavelength, the period of
vibration, and the absolute mass of the imperishable and unalterable and perfectly similar molecules” quoted from
Petley [763], page 15.
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of light c. With the 1983 definition of the metre this value of c = 299 792 458 m/s is now
fixed. Its value had been determined very accurately in the laboratory by a measurement of
a distance and a frequency (see e.g [681]). The invariance of the speed of light is not only a
postulate of Einstein’s theory of relativity based on Michelson and Morley’s experiment but
has been shown experimentally to be valid with very low uncertainty [764].

To realise the metre according to the 1983 definition, the Comité International des Poids et
Mesures (CIPM) adopted a recommendation that the metre be realised by one of the following
methods:

a) by means of the length l of the path travelled in vacuum by a plane electromagnetic
wave in a time t; this length is obtained from the measured time t, using the relation

l = c × t (13.1)

and the value of the speed of light in vacuum c = 299 792 458 m/s;
b) by means of the wavelength in vacuum λ of a plane electromagnetic wave of frequency

f ; this wavelength is obtained from the measured frequency f , using the relation λ = c/f and
the value of the speed of light in vacuum c = 299 792 458 m/s;

c) by means of one of the radiations from a list (see Table 13.1), whose stated wavelength
in vacuum, or whose stated frequency, can be used with the uncertainty shown, provided
that the given specifications and accepted good practice are followed and that in all cases
any necessary corrections be applied to take account of actual conditions such as diffraction,
gravitation, or imperfection in the vacuum [761].

The different methods a) to c) will be discussed in the following in more detail.

13.1.2 Length Measurement by the Time-of-flight Method

The time-of-flight method a) of Section 13.1.1 is particularly suited to the measurement of
large distances. Examples of this approach include satellite navigation (Section 12.5) or dis-
tance measurements on astronomic scales where the measure of distance is the light year.

13.1.2.1 Lunar Ranging

As an example, consider the distance between Earth and Moon which has been measured reg-
ularly over more than thirty years by directing a pulsed laser beam towards the moon. The
pulses are reflected back by reflectors placed on the surface of the moon during the American
space missions Apollo 11, 14, and 15 and the Soviet mission Luna 21. The measured travelling
time allows one to measure this distance with an uncertainty of a few centimetres [765, 766].
These data have been used as precise tests for gravitational theories. Gravitational forces can
lead to a precession of gyrating tops. A particular example is the precession of a gyro freely
falling in a gravitational field. The system, Earth and Moon, exhibits an angular momentum
and, hence, can be considered as a gyro orbiting around the Sun. De Sitter has recognised
the corresponding precession as early as 1916 as a consequence of General Relativity. The
calculated de Sitter angle of precession of the lunar orbit is about 2 ′′ per century. The theoret-
ical value has been confirmed with an uncertainty of about 1 % from lunar ranging data and a
comparison with a model of the orbits of Earth and Moon [767, 768].
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13.1.2.2 Deep Space Network

The art of ranging based on precise timing and advanced clocks has culminated to paramount
accuracy in deep space navigation. As an example, consider the Cassini project. In late 1997
the Cassini spacecraft lifted off heading towards a seven year’s journey to Saturn with four
gravity assisted flybys of Venus (twice), Earth and Jupiter. The orbiter Cassini is expected
to deliver in 2004 ESA’s probe Huygens in the Saturn system for a descent to Saturn’s moon
Titan which is known to have a substantial atmosphere. The winds will cause perturbations
to Huygens’s local horizontal velocity and, by Doppler tracking the Huygens entry probe, the
zonal wind profile on Titan is expected to be measured [769]. Similar measurements of the
deep zonal winds at Jupiter have been obtained from the changes in the speed of the Galileo
probe during descent with wind speeds as high as 200 m/s [770]. For these purposes the
Cassini spacecraft carries an ultrastable SC cut quartz crystal oscillator with 4.79 MHz with
an Allan deviation of σ(τ = 1 s) = 2 × 10−13. On board the Huygens probe there is a
rubidium clock with σ(τ = 1 s) = 6 × 10−11 [771].

The spacecraft telemetry is acquired by NASA’s Deep Space Network with three different
tracking stations about 120 degrees apart at Goldstone (California), Canberra (Australia) and
Madrid (Spain). To track the spacecraft, a radio frequency signal is sent to the spacecraft
which transmits a phase coherent signal back to Earth thereby allowing the ground stations
to determine the Doppler shift and, hence, the velocity of the space vehicle. The ranging
is performed by sending a pseudo-random code on the uplink signal which is transmitted
back on the downlink. The correlation of the received code with the replica of the (uplink)
ranging signal allows the ground stations to measure the round trip time in order to determine
the range.

To appreciate the need for the very precise telemetry required for accurate manoeuvres
consider the flyby at Venus. During these flybys kinetic energy is transferred to the spacecraft
which needs to arrive at the destination with minimum lift-off fuel. The mission requires that
the spacecraft passes venus at an altitude of (300±25) km. Another challenge occurs when the
spacecraft is to fly by Titan with a required accuracy of 10 km at a distance of about 1.5× 109

kilometres from Earth.

13.1.3 Interferometric Distance Measurements

The time-of-flight method a) of Section 13.1.1 is not very accurate on the scale of dimensions
relevant to everyday life. Consider a distance measurement of 1 m with a desired fractional
uncertainty of 1×10−7 which corresponds to the realisation uncertainty that has been achieved
already with the International Metre Prototype (Fig. 13.1). This moderate uncertainty would
require a measurement of the time-of-flight of 3 ns with an uncertainty of 0.3 fs.

Hence, interferometric methods are applied for distance measurements on the laboratory
scale where the distance to be measured is compared to the number of wavelengths of the par-
ticular radiation used in the interferometer. A laser whose frequency is stabilised to an atomic,
molecular or ionic transition represents a light source whose frequency, and, hence its vacuum
wavelength, is largely independent of ambient conditions. Provided that this wavelength is
known with sufficient accuracy the small wavelength of visible radiation of λ ≈ 0.5 μm pro-
vides an accurate ruler. Recommendations b) and c) of Section 13.1.1 give methods showing
how to arrive at the vacuum wavelength with low uncertainty for a particular source of radia-
tion.
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Figure 13.2: Michelson-type interferometer for displacement measurements Δs. a) Schematic set-up
with the direction of polarisation indicated, PD: photodetectors. b) Photocurrent of the detectors PD 1
and PD 2.

For interferometric distance measurements often a two-beam interferometer according to
Michelson (Fig. 13.2) is used. In the classical laser interferometer design, corner cube prisms
are used instead of plane mirrors because this configuration is less sensitive to tilts during
movement and it minimises the light back-reflected to the laser which can change the fre-
quency of the laser source. Due to the corner cube prism, the measurement beam and refer-
ence beam are always parallel to the incoming beam. In the beam splitter the wave is split into
two partial waves of field amplitude E1 and E2 that are recombined at the beam splitter after
travelling along the different paths r1 and r2 yielding

E1 = E01 cos(kr1 − ωt + φ1) and

E2 = E02 cos(kr2 − ωt + φ2). (13.2)

The waves being reflected and transmitted by the beam splitter suffer from independent phase
shifts which are taken into account by the additional phases φ1 and φ2. The time dependent
power impinging on a detector is

I(t) ∝ (E1 + E2)2 = E1
2 + E2

2 + 2E1E2 (13.3)

= E1
2 + E2

2 + 2 E01E02 [cos(kr1 + φ1) cosωt + sin(kr1 + φ1) sin ωt]
× [cos(kr2 + φ2) cosωt + sin(kr2 + φ2) sin ωt]

= E2
1 + E2

2 + 2E01E02

[
cos(kr1 + φ1) cos(kr2 + φ2) cos2 ωt

+ sin(kr1 + φ1) cos(kr2 + φ2) sin ωt cos ωt

+ cos(kr1 + φ1) sin(kr2 + φ2) sin ωt cos ωt

+ sin(kr1 + φ1) sin(kr2 + φ2) sin2 ωt
]

where we have made use of the identity

cos(α − β) = cosα cos β + sin α sin β (13.4)
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to separate the space-dependent kr + φ terms and the time-dependent ωt terms in the phases.
Since photodetectors are not fast enough to respond to the high carrier frequency of light, the
fast oscillating sin ωt cos ωt terms integrate to zero when time averaged and one ends up with

I = 〈I(t)〉 (13.5)

∝ 1
2E01

2 + 1
2E02

2

+2(E01E02) 1
2 [cos(kr1 + φ1) cos(kr2 + φ2) + sin(kr1 + φ1) sin(kr2 + φ2)]

=
E01

2

2
+

E02
2

2
+ E01 E02 cos(kr1 + φ1 − kr2 − φ2)

∝ I1 + I2 + 2
√

I1I2 cos(kr1 − kr2 + φ1 − φ2)

where we have used again (13.4). I1 and I2 are the time averaged irradiances of the partial
waves.

If the retro-reflector is moved between two positions with a separation Δs and the refer-
ence mirror is kept at a fixed position the power varies periodically with the path difference.
The visibility or contrast V ≡ (I2 − I1)/(I1 + I2) is optimal (V = 1) if I1 = I2 holds.
Counting the number N(Δs) of the power maxima or minima allows one to determine the
separation Δs by

2Δs = N(Δs) λ. (13.6)

The periodicity of the signal allows an unambiguous determination of a displacement of
the measurement reflector only within a period of λ/4. To measure larger displacements it is
necessary to trace the signal continuously and to count the number of periods due to the zero
crossings of the cosine term. With a single periodic signal alone, the direction of the reflec-
tor movement cannot be determined. Hence, often a second interference signal is generated
with constant 90◦ phase shift. Fig. 13.2 shows a possible optical set-up of such a “homodyne
interferometer”. In a principal beam splitter BS a measurement beam and a reference beam
are generated from the laser beam whose linear polarisation vector is decomposed into two
orthogonal components of equal amplitudes. In the measurement beam a λ/4 wave plate with
the principle axes rotated 45◦ relative to the polarisation of the beam produces a circular po-
larisation state, where the perpendicular polarisation states have a phase shift of 90◦. In the
reference beam these two perpendicular polarisation states are in phase. After superposition of
measurement beam and reference beam in the principal beam splitter a secondary polarising
beam splitter BS 1 is used to generate two 90◦ phase shifted interference signals detected by
PD 1 and PD 2. The direction of movement of the corner cube in the measurement beam can
now be determined at the zero crossing of the first interference signal by using the sign of the
second signal (Fig. 13.2 b). There are two other photodetectors (PD 3 and PD 4) and a second
secondary beam splitter (BS 2) behind the second output of the principal beam splitter gener-
ating two more interference signals. These additional 180◦ and 270◦ phase shifted signals are
used to minimise the offsets of the interference signals. Simply counting the zero crossings of
both interference signals gives a resolution of λ/8. For higher precision the resolution can be
improved by an interpolation where the phase φ of the interference signal is determined from
the irradiances I0 of the 0◦ signal and I90 of the 90◦ signal with φ = arctan(I0/I90).

This method to determine the displacement of the retro-reflector by the optical path length
suffers from the dependence of the wavelength λ(n) = n λvac on the index of refraction n
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of the air. The index of refraction of air nair ≈ 1.00027 depends largely on the temperature,
pressure, humidity and on the content of other gases, in particular of CO2. In practical inter-
ferometers, often the temperature, pressure and the humidity are measured and the deviation
of the wavelength from the vacuum wavelength is determined by use of an empirically deter-
mined formula. The corrections determined originally by Edlén [772] have been refined later
(see, e.g., [773] and references therein). Under ideal circumstances these corrections are good
enough to allow one to achieve a relative uncertainty Δn/n ≈ 10−8. For large distances or
in a harsh environment like an industrial plant, however, the achievable uncertainty may be
considerably higher due to the less accurately known composition of the air.

In applications demanding higher accuracy the light path which changes during the move-
ment is kept in vacuum. Interferometric measurements have been performed with fractional
uncertainties as low as 2 × 10−11 [774] where a displacement of Δs ≈ 4 m was used. The
necessary interpolation (< 10−4) between the zeros of the interference fringes was performed
by locking a tuneable laser to an interference minimum and measuring the beat frequency
between this laser and a frequency standard. With such an impressive accuracy for distance
and time measurements at hand also measurements of velocities and accelerations can be per-
formed with unprecedented accuracy as shown by the example of gravimetry to be discussed
in the following.

13.1.3.1 Gravimetry

Highly accurate absolute values of Earth’s gravitational acceleration g are needed in a wide
variety of scientific and technical applications. These include the determination of crustal
deformation of the Earth, the measurement of changing sea levels, variations of ice masses
in Greenland or Antarctica or the measurements of fundamental constants and units, e.g., for
the Watt balance [775]. Gravimeters for precise measurements of g also find applications in
geophysical explorations to locate crude oil or other natural resources.

The gravitational acceleration g experienced by a body of mass m at the position �r0 as a
result of Earth’s gravitational force is

g(�r0) =
�F

m
= G

∫
dMEarth

(�r − �r0)2
= G

∫
ρ(�r0)dV

(�r − �r0)2
. (13.7)

Here, G = 6.67 × 10−11 m3/(s2 kg) is the Newtonian gravitational constant and the integra-
tion has to be performed over the locally varying density ρ of the Earth. Local variations of g
witnessed on the surface of the Earth are thus hints to variations of the density that might be
caused by bubbles of natural gas, deposits of ores or oil. As a result of the 1/r2 dependence of
(13.7) nearby density variations contribute more to the local gravitational acceleration than do
more distant ones. For precise measurements of the local gravitational acceleration, gravime-
ters are in current use (see Fig. 13.3).

A gravimeter of this type basically represents a Michelson interferometer with a vertical
arm whose retro-reflector is a corner cube. g is determined by dropping the retro-reflector
inside an evacuated vertical tube several times in a minute and monitoring at the same time the
interference fringes as a function of time. The measured temporal sequence of the interference
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Figure 13.3: Schematic diagram of a gravimeter for the measurement of the local gravitational
acceleration.

maxima allows one to determine the height h(t) making use of the free-fall condition

h(t − t0) = 1
2g (t − t0)2 (13.8)

to determine g. The two beams in the interferometer are displaced in order not to be retro-
reflected into the laser. The corner cube falls drag-free inside a co-falling carriage in order to
eliminate the influence of the friction of the residual gas in the apparatus on the falling corner
cube which would reduce the value of the measured g.

The interferometer of the most advanced types use iodine stabilised He-Ne lasers whereas
also two-mode stabilised He-Ne lasers have been used. The measured path difference in the
Michelson interferometer critically depends on the inertial reference of the second corner
cube. In the system described in [776] a two-stage spring-isolated platform carries the refer-
ence corner cube with the second stage employing a “super spring” system. The concept of
the super spring [777] simulates a very long spring with a very small spring constant despite
using a relatively short spring. This short spring can be considered as the end part of the long
spring where the properties of the “missing part” are simulated by an active electronic stabil-
isation scheme. The relative uncertainty of determining g that can be obtained with such a
device can be as low as 10−9 g [776, 778].

Novel types of gravimeters are based on the technique of a Ramsey-Bordé atom inter-
ferometer [779–781] (Section 6.6.2.3). These devices employ laser-cooled Cs atoms in an
atomic fountain where three pairs of Raman pulses are used to split, redirect and recombine
the atomic wave packets by a π/2, π, π/2 pulse, respectively. Under the influence of gravity
the third pulse that is used to recombine the partial waves must have a phase shift (see also
Section 9.4.4.2)

ΔΦ = gkeffT 2. (13.9)
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keff = 2π/(λ1 + λ2) hold for counterpropagating Raman beams. A comparison with a
gravimeter employing a falling corner cube gave agreement within (7 ± 7) × 10−9 [781]. At
this level of accuracy the measured acceleration has to be corrected for the temporal variation
resulting from the tides caused by the moon and the sun (see Fig. 13.4). Atom interferometers
have also been used to measure gravity gradients [782].

Figure 13.4: The variation of Earth’s gravitational acceleration g measured with an atom inter-
ferometer (dots) [779–781] and a theoretical model (line) of the gravity tides at the measurement
site at Stanford University, California. Courtesy of A. Peters.

13.1.4 Mise en Pratique of the Definition of the Metre

The full accuracy possible with interferometric methods can be achieved only if the wave-
length of the radiation used in the interferometer is known with the same accuracy. Optical
frequency standards with well known vacuum wavelengths at various spectral regimes have
been developed (see Section 9). Method b) of Section 13.1.1 allows one to determine the
wavelength of any source of monochromatic electromagnetic radiation in conformity to the
definition of the metre with an accuracy that ultimately depends on the accuracy of the fre-
quency measurement. The measurement of optical frequencies can be performed now by
direct comparison to the frequency of the primary standard of time and frequency (see Sec-
tion 11). Despite the continuous development of optical frequency measurements culminating
in reduced complexity like the femtosecond comb, these methods are still the domain of a
small number of well equipped laboratories. Hence, the CIPM recommended a number of
validated and selected radiations of such stabilised lasers as references for the realisation
of the metre and for precision spectroscopy (see Table 13.1 [370]). This list (method c) of
Section 13.1.1 of the realisation of the metre, is referred to as the “Mise en Pratique of the
Definition of the Metre”. It contains a number of approved wavelength standards where the
frequency measurement has been performed and the accuracy has been evaluated. After its
first edition in 1983 [761] this list was updated in 1992 [762], 1997 [95], 2001 [370] and
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Table 13.1: Radiations recommended by the CIPM for the realisation of the metre [370].

Quantum Transition Wavelength (nm) Rel. stand.

absorber uncertainty

115In+ 5s2 1S0 – 5s5p 3P0 236.540 853 549 75 3.6 ×10−13

1H 1S – 2S 243.134 624 626 04 2.0 ×10−13

199Hg+ 5d106s 2S1/2 (F = 0) 281.568 867 591 969 1.9 ×10−14

– 5d96s2 2D5/2 (F = 2) ΔmF = 0
171Yb+ 6s 2S1/2 (F = 0) 435.517 610 739 69 2.9 ×10−14

– 5d 2D3/2 (F = 2)
171Yb+ 2S1/2 (F = 0, mF = 0) 466.878 090 061 4.0 ×10−12

– 2F7/2 (F = 3, mF = 0)
127I2 R(56) 32–0, a10 532.245 036 104 8.9 ×10−12

127I2 R(127) 11–5, a16 or (f) 632.991 212 58 2.1 ×10−11

40Ca 1S0 – 3P1; ΔmJ = 0 657.459 439 291 67 1.1 ×10−13

88Sr+ 5 2S1/2 – 4 2D5/2 674.025 590 863 1 7.9 ×10−13

85Rb 5S1/2 (Fg = 3) – 5D5/2 (Fe = 5) 778.105 421 23 1.3 ×10−11

13C2H2 P(16) (ν1 + ν3) 1 542.383 712 5.2 ×10−10

CH4 F(2)
2 comp., P(7) ν3, (7–6) trans. 3 392.231 397 327 3.0 ×10−12

OsO4 coinciding with 12C16O2 laser 10 318.436 884 460 1.4 ×10−13

line R(10) (0001) – (1000)

contains some of the lasers stabilised to atomic (see Table 5.2), ionic (see Table 10.2)) or
molecular transitions (see Table 5.4 and Table 9.1). The wavelengths of these standards range
from the near ultraviolet (243 nm) to the infrared (10.3 μm).

13.1.4.1 Frequency Standards for Optical Telecommunication

Optical reference frequencies with less demanding accuracy such as the acetylene transition
at 1.54 μm given in Table 13.1 find important applications also in optical telecommunica-
tions where Wavelength Division Multiplexing (WDM) in optical fibres provides many wave-
length channels. In the important wavelength region of the erbium-doped amplifier from about
1.540 μm to 1.56 μm the International Telecommunication Union (ITU) recommends the use
of a frequency grid of 50 GHz or 100 GHz channel spacing with the possibility of narrower
spacings implemented in the near future.

Reference cells filled with suitable absorbers are available as transfer standards, e.g., from
the national standards institutes. Light from broadband sources, like light emitting diodes,
passing these cells exhibits the absorption dips characteristic for the molecular spectrum.
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These lines can be used to calibrate optical spectrum analysers or wavelength meters and
to characterise tuneable lasers and channel wavelengths with an uncertainty of a few tenths
of a picometre. The ν1 + ν3 ro-vibrational transitions in acetylene 12C2H2 (Fig. 13.5) and
13C2H2 have each more than 50 strong absorption lines in the region between about 1510 nm
and 1550 nm (Fig. 5.7, Fig. 13.5). The spectrum of the 2ν3 overtone transitions in hydrogen

Figure 13.5: Ro-vibrational absorption lines of acetylene used as frequency references in the
telecommunication bands. Courtesy of F. Bertinetto.

cyanide H13C14N span the region between approximately 1525 nm and 1565 nm [473]. In
the wavelength division multiplexing L-band between about 1565 nm and 1625 nm the spec-
trum of hydrogen iodide (HI) and carbon monoxide (12C16O) cover the high frequency range,
whereas 13C16O has about 35 lines between 1595 nm and 1628 nm. Semiconductor distributed
feedback (DFB) lasers, extended cavity diode lasers and DFB fibre lasers have been used in
this region. The latter, stabilised to CO near 1.58 μm, had a frequency stability of a few mega-
hertz over some minutes [783]. CO in general has weaker lines as compared to HI [473]. For
higher accuracy the subharmonic of the Rb two-photon transition (Section 9.4.3) or the He-Ne
laser operating at 1523 nm has been used.

Table 13.2: Optical frequency standards in the telecommunication bands. Other candidates can
be found, e.g. in [47].

Band Range (nm) Absorber Reference

O-band 1260 to 1360 [784]
E-band 1360 to 1460
S-band 1460 to 1530 12C2H2

C-band 1530 to 1565 HCN [473]
L-band 1565 to 1625 HI, 12C16O [473]
U-band 1625 to 1675
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13.2 Voltage Standards

The measurement of a voltage can be traced back to a frequency measurement via the Joseph-
son effect. In 1962 Brian D. Josephson described effects [785] which can occur in a “Joseph-
son junction” where two superconducting layers are separated by an isolating layer with a
thickness of a few nanometres. The superconducting state on either side of the barrier is char-
acterised by “Cooper pairs” comprised of two electrons with opposite spins and �k vectors and
is described by a single macroscopic wave function with a macroscopic phase for all Cooper
pairs. If the barrier is thin enough Cooper pairs can tunnel through it and the two wave func-
tions on either side of the barrier are weakly coupled. This coupling of the two quantum
mechanical states leads to a current through the barrier that sinusoidally depends on the phase
difference φ of the two states [786] when the Josephson junction is connected to a current
source. Furthermore, the evolution of the phase difference is related to a voltage U applied
between the superconductors which leads to an alternating current of frequency

f =
1
2π

dφ

dt
=

2e

h
U ≡ KJU. (13.10)

The Josephson constant KJ is the reciprocal value of the elementary flux quantum in super-
conductors

Φ0 = h/2e (13.11)

and can be calculated from the Planck constant h and the elementary charge e. Hence, the
Josephson effect can be thought of as a voltage controlled oscillator that links a voltage to a
frequency via fundamental constants. If this oscillator is locked to an external frequency fe

the non-linear dc characteristic of the Josephson junction can lead to higher harmonics of the
oscillation frequency and, hence, to steps of constant voltage at the voltages

Un = n
h

2e
f (13.12)

where n = 1,2,· · · .
In real Josephson devices, the ideal Josephson junction is shunted by a capacitance, the

high frequency source and an ohmic resistance, which leads to a damping of the oscillator. The
voltage steps (Fig. 13.6) are used as reproducible reference frequencies. The low voltage of
the steps in Fig. 13.6 b) has been increased to 1 V and 10 V by connecting up 20 000 Josephson
junctions in series [787, 788] which have shown over several years that a reproducibility of a
10 V standard of as good as 5 × 10−11 can be reached [788]. Series junctions as well as
measurement systems are commercially available. An interlaboratory comparison between
sixteen national, industrial and military laboratories with four travelling Zener diode standards
have shown relative differences at 10 V for most of the laboratories of less than 2×10−8 [789].

It has to be emphasised, however, that this is not the accuracy that can be attributed
to a voltage measurement in the international system of units (SI) since the values of the
fundamental constants are not known with sufficient accuracy. Hence, in 1990 a value of
KJ−90 = 483 597.9 GHz/V was recommended by the Consultative Committee of Electricity
(CCE) for maintaining the unit volt. This agreed value allows one to reproduce the volt-
age much better than to know its value in SI units where according to [790, 791], h/2e =
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Figure 13.6: a) dc voltage-to-current characteristic of a highly damped Josephson junction
from Nb-PdAu-Nb without microwave. b) Voltage-to-current characteristic with an applied
microwave frequency of 10 GHz. Courtesy of J. Niemeyer.

483 597 879(41) × 109 Hz/V with a relative standard uncertainty of 8.5 × 10−8. Cryogenic
voltage standards have been developed that rely on standard frequencies transmitted either by
DCF77 (see Section 12.4) or GPS (see Section 12.5).

13.3 Measurement of Currents

Extending Maxwell’s suggestion (see footnote 2 of this chapter) to electric units, there is
considerable interest in reproducing the ampere as the SI unit of electric current also from
quantum standards. At first sight the route seems to be straightforward since the periodic
transportation of a defined number N of elementary charges e with a well defined frequency
f , immediately leads to a current

I = Nef. (13.13)

The difficulty rests with the smallness of the current associated with the elementary charge and
with the requirement to determine the number unambiguously in a real device. Hence several
possibilities are explored to relate the measurement of a current to a frequency using (13.13).

13.3.1 Electrons in a Storage Ring

It has been proposed to use the electrons that circulate with a well defined frequency in an
electron storage ring [792] as a standard of current. Due to their high kinetic energy of the
order of several hundred megaelectronvolts to several gigaelectronvolts in a storage ring, the
relativistic electrons travel with a velocity very close to the speed of light c. In the magnets
used to bend the trajectories of the electrons to a closed orbit the electrons are radially ac-
celerated thereby emitting synchrotron radiation into a small cone along the trajectory. In a
storage ring the loss of kinetic energy due to the emission of synchrotron radiation is com-
pensated for by an accelerating electromagnetic field in a microwave cavity inserted into the
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ring. The radio frequency frf of the microwave field is synchronised with the frequency of
revolution fe of the electrons. In general, frf = nfe holds and the frequency of revolution
is an exact sub-harmonic 1/n of the radio frequency and, thus, can be measured precisely.
For a few thousands orbiting electrons, the actual number N can be determined directly from
the irradiated power of the synchrotron radiation measured by a photodetector (Fig. 13.7).

Figure 13.7: The steps in the measured synchrotron radiative power can be used to identify the
exact number of electrons circulating in the storage ring [792].

When a single electron is removed from a number (e.g. one hundred) of stored electrons, the
measured photo current of a detector that monitors the synchrotron radiation power is reduced
by 1 %, provided the detector is sufficiently linear and the noise level is not too high. The
photo current of Fig. 13.7 [792] shows the steps corresponding to the last forty electrons that
were successively removed from the electron beam down to a single electron. The current
associated with a single electron was about Ie = ec/L ≈ 0.77 × 10−12 A for a perimeter
of the storage ring of L = 62.4 m. The accuracy attainable with this method depends on
the accuracy that can be obtained when the electron current in the storage ring is compared
to an external current to be calibrated. Such a comparison can be done, e.g., by means of a
cryogenic current comparator where the difference of the magnetic field of the two currents
is measured with a SQUID magnetometer (see Section 13.4.1). A current resolution as low
as 6 fA/

√
Hz to 65 fA/

√
Hz depending on the frequency range has been measured [793]. An

even smaller resolution of 0.1 fA/
√

Hz is expected in the white noise region for an optimised
device [794]. Such a device could allow to compare a current with the current of 10 nA carried
by 1300 circulating electrons in a dedicated storage ring of 6 m perimeter in a measuring time
of 1 s to 10−8.

13.3.2 Single Electron Devices

Single electron devices are based on the long-range Coulomb interaction between singly
charged carriers that contribute to the electronic transport in circuits based on small conduct-
ing areas. The effects of charging small neutral bodies with a few additional quanta of charge
has a long history dating back to the well known experiment of Millikan at the beginning of
the twentieth century. Modern single electron devices use isolated islands charged with a few
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elementary charges at the most. The charge flow from a particular island is accomplished by
sequential tunnelling of electrons through the barriers between the islands. The probability
that an electron tunnels from one island to the next one depends on its kinetic energy deter-
mined by the temperature T of the device and on the energy the electron gains in this process.
The transport of an electron to an island is equivalent to charging a capacitor. For a small
capacitance C of the island the Coulomb energy Ec = eU can be much higher compared to
the thermal energy

Ec =
e2

2C
� kT. (13.14)

Under this condition the tunnelling is blocked (Coulomb blockade) as long as the voltage U
is not compensated by an externally applied voltage Uext. As a consequence, the current in
single-electron devices results from the tunnelling of single electrons and can be controlled
effectively by applying external voltages. They allow to develop a current source, where the
movement of single charges can be gated by an accurate radio frequency. The basic circuit
referred to as a single electron tunnelling pump may consist of two islands and a gate electrode
for each island (Fig. 13.8). Since the transportation of single electrons depends on the instan-

Figure 13.8: Single electron tunnelling pump based on three tunnelling sections.

taneous values of the two gate voltages, a periodic temporally shifted modulation of both gate
voltages leads to a current I = efrf where a single electron is transported per period of the
applied radio frequency. The radio frequency of a few megahertz leads to a low current of a
few picoamperes. Single electron tunnelling devices have been utilised also to set up a capac-
itance standard based on counting electrons with a relative uncertainty of 3×10−7 [795,796].
In this work a single electron tunnelling element comprising seven tunnelling contacts was
employed in order to reduce the so-called co-tunnelling. This effect results from higher-order
quantum mechanical tunnelling processes through the complete chain that lead to erroneous
counting of electrons.

For a metrological dc current source the current in the picoampere regime is too low to be
compared with the required accuracy to higher currents using state-of-the art SQUID-based
current comparators. It has been shown, however, that the required sensitivity can be achieved
in the nanoampere range [794]. Another method that may be suited to reaching this level
makes use of surface acoustic waves in a semiconducting material where single electrons are
transported in travelling potential minima [797, 798]. As a consequence of the piezoelectric
effect in GaAs, a propagating modulation of the electrostatic potential can be achieved in a
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two-dimensional electron gas close to the surface. The higher frequencies of several gigahertz
and the associated higher currents may lead to an alternative standard of electric current [799]
based on fundamental constants and frequency standards only.

13.4 Measurements of Magnetic Fields

Several methods are used to measure magnetic fields very accurately via frequency measure-
ments.

13.4.1 SQUID Magnetometer

A Superconducting QUantum Interferometric Device (SQUID) comprises a superconducting
ring where the flux is quantised according to

Φ = nΦ0 = n
h

2e
(13.15)

and may be realised in two different configurations [800]. In the dc SQUID two Josephson
junctions divide the ring into two halves (Fig. 13.9). The dc SQUID can be operated with

Figure 13.9: The voltage Ū measured using a SQUID driven by a bias current Ib is a measure
of the magnetic flux Φ enclosed by the two halves of a superconducting ring separated by two
Josephson junctions (×) shunted with parallel resistance Rp. The dashed box indicates the
low-temperature environment necessary to sustain the superconducting state.

a dc bias current. In the rf-SQUID the superconducting ring contains a single Josephson
junction which is read out by an inductively coupled resonant circuit. Quantisation of the
magnetic flux in the superconducting loop and the Josephson effect lead to a flux-to-voltage
characteristic with flux quantum periodicity [800]. In order to obtain a large dynamic range,
a null-detector scheme with flux quanta counting can be used. dc SQUID magnetometers can
achieve a flux noise depending on the bandwidth of 10−6Φ0/

√
Hz [800, 801]. The SQUID

is by far the most sensitive sensor of magnetic flux. Magnetic field resolutions in the region
of 50 fT/

√
Hz are possible with an area of the pickup coil of only a few square millimetres.
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SQUIDs require cooling to low temperatures, at least to the temperature where high temper-
ature superconductors such as YBaCuO can be employed that are cooled by liquid nitrogen
or by cryocoolers. SQUIDs can measure low magnetic fields (about 20 fT) and low magnetic
field gradients (<1 pT/cm).

13.4.2 Alkali Magnetometers

Compact laser magnetometers can be built which use the magnetic field-dependent splitting
and shift of energy levels in the alkaline metals caesium (Fig. 7.1), rubidium (Fig. 8.8) or
potassium. Several schemes have been used based on zero-field level crossing resonances
[802] or non-linear magneto-optical (Faraday) rotation [803]. Sensitive magnetometers can
also be built based on magnetic field sensitive dark resonances. The dark resonances can
occur in a so-called Λ system in an alkaline atom such as Rb or Cs when two coherent laser
fields couple the two closely spaced ground states to a common third level (see Fig. 5.12 a).
The schematic shown in Fig. 8.11 allows one to set up a compact magnetometer operated at
room temperature and requiring low power with a sensitivity of a few picotesla in one second
integration time [804].

13.4.3 Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) methods use the nuclear spin as a probe to sensitively
detect structure and dynamics of the electronic cloud and that of other nuclei in the neighbour-
hood of the probe spin. From its invention [805,806] the technique has contributed invaluably
to molecular spectroscopy, medical diagnostics and other fields. Its precision results from the
fact that the probe responds with frequency shifts that can be read out with the associated
accuracy. The interaction energy

Emag = −�μI
�B0 = gIμNB0mI (13.16)

between an external magnetic field B0 and the magnetic moment of the nucleus

�μI =
gIμN

�

�I (13.17)

depends on the angular momentum (spin) �I of the nucleus and its orientation described by
the magnetic quantum number mi = I, I − 1, · · · − I . In contrast to the Landé gJ factor of
the electron shell, the nuclear gI factor cannot be calculated from other quantum numbers but
rather has to be determined experimentally for each nucleus with I �= 0. It furthermore can
be negative or positive. The interaction energy (13.16) is much smaller than the interaction
energy (5.8) of the magnetic moment of the electron shell as a result of the nuclear magneton
μN = 5.051 × 10−27 A m2 being me/mp times smaller than Bohr’s magneton μB .

Consequently, the frequency ν = ΔEmag/h required to excite transitions between the
Zeeman split magnetic sub-states is much smaller than in the case of the electronic ground
state. For hydrogen nuclei (gI = 5.585 6912; ΔmI = 1) the NMR frequency is about 42.576
MHz/T which has to be contrasted with the ground state Zeeman splitting of hydrogen in the
gigahertz regime (Fig. 5.22).



438 13 Technical and Scientific Applications

The sample is brought into a magnetic field with B0
<∼ 20 T. High fields are desirable

to achieve large oscillation frequencies and, hence, good resolution. A high-frequency coil
produces a field pulse that induces transitions between the Zeeman split energy levels of the
nuclei contained in the sample. The absorbed signal is due to the difference between the
absorption and the stimulated emission between the two energetically separated states. Due to
the low fractional population difference between the two states

N1 − N2

N1 + N2
=

1 − exp (−gIμNB0/kBT )
1 + exp (−gIμNB0/kBT )

≈ gIμNB0

2kBT
(13.18)

only a very small fraction of the total number of spins of the sample contributes to the po-
larisation of the sample. Owing to the long wavelength which in general is larger than the
extension of the sample under investigation, a short high-frequency pulse excites all dipoles
in phase which results in a macroscopic magnetic polarisation of the sample. This magnetisa-
tion decays by two different mechanisms. The component along B0 (longitudinal component)
depends on the population difference in the energetically different states and decays, e.g., by
thermal fluctuations with a time constant that can be as long as 10−4 <∼ T1

<∼ 10 s in liquid
samples and 10−2 <∼ T1

<∼ 1000 s in solid samples. The longitudinal relaxation, hence, can
be used to derive information about the binding forces between the atoms in the lattice of a
crystalline sample. The Larmor precession of the individual magnetic moments around the
magnetic field B0 corresponds to sinusoidal fields in the transverse directions. Local fluc-
tuations of the magnetic field that can also be induced by the sample itself lead to different
precession frequencies of the individual magnetic dipoles. Hence, after some time referred
to as the transverse relaxation time T2 the transverse components are randomly phased. The
transverse relaxation can be used to determine the mean diffusion of the atoms.

13.4.3.1 Nuclear Magnetic Resonance Magnetometer

Methods based on the nuclear magnetic resonance (NMR) are employed for high precision
measurements of static magnetic fields [807]. In NMR magnetometry a sample of a few
cubic centimetres containing nuclei with spin different from zero (commonly hydrogen or
deuterium) is placed in the static magnetic field B0 to be measured. The frequency necessary
to excite resonance transitions is directly proportional to the magnetic field B0 (see (13.16))
and B0 is then determined by the resonance frequency of the absorption line.

In the field range between 0.01 T <∼ B0
<∼ 20 T commercial NMR magnetometers show

fractional inaccuracies of the order of 10−6 as a result of the narrow absorption line. Fur-
thermore, the temperature dependence of the resonance frequency is extremely weak being
below about 10−6 from -20 ◦ C to +70 ◦ C. High field probes often use deuterated samples
(2H; I = 1; gI = 0.857 437 6). On the other hand, these magnetometers are not very well
suited to measure magnetic fields with relative inhomogeneities ΔB0/(B0Δx) much larger
than 10−4 cm−1.
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13.5 Links to Other Units in the International System of
Units

Motivated by the success of the current definition of the metre which allows one to relate
length measurements to a measurement of time or frequency via a fixed value of the speed
of light in vacuum, there are a number of proposals to follow the same route for other basic
units in the International System of Units (SI). The kilogram is currently still defined as the
mass of the International Prototype which is kept at the BIPM in Paris. The prototype, as the
last material artefact for the realisation of a basic unit, has prompted several proposals for a
frequency based definition. Some of them are based on the equations E = hν and E = mc2

therefore relating the mass of a particle m = h/c2 × ν to a frequency via Planck’s constant h
and the speed of light c. Since c is already fixed in the present definition of the SI, attributing
a fixed value to Planck’s constant would also allow one to measure the mass of a microscopic
particle via a frequency measurement.

Wignall has proposed an absolute atomic definition of the mass where the mass of a par-
ticle is defined by its de Broglie (angular) frequency mc2/� [808]. The mass could then be
determined by measuring the reduced de Broglie wavelength λ/(2π) = �/(mγv) of a beam
of monoenergetic particles with known speed v where γ = (1 − v2/c2)−1/2.

One route to a new definition of the kilogram as a mass standard based on fundamental
constants is via the Avogadro constant NA. The work involves an accurate measurement of
the mass and volume of a crystalline silicon sphere together with the lattice constant and other
material properties of silicon. Some of the measurements, e.g., that of the lattice constants
and the volume can be related to a wavelength and hence to a frequency measurement. The
achieved relative uncertainty of higher than 10−7 [809, 810] has to be reduced by at least an
order of magnitude to become competitive with the uncertainty that is routinely achieved with
the current definition.

Taylor and Mohr [811] have suggested to employ a moving-coil watt balance [775] that
has been used recently to determine the Planck constant [812] and proposed a definition as
“The kilogram is the mass of a body at rest whose equivalent energy equals the energy of
a collection of photons whose frequencies sum to 135639274 × 1042 Hz”. In this way the
unit of mass could be related directly to a frequency without making any statement about the
realisation to be used.

13.6 Measurement of Fundamental Constants

The need to measure the fundamental physical constants with increasing accuracy is driven by
different reasons. First, these constants can be used to realise units that no longer depend on
the environment, on local conditions or on material artefacts. The use of an agreed value of
the Josephson constant (see 13.2) gives an example of this kind allowing one to use the avail-
able high accuracy in applied metrology for the benefit of industry and trade. Second, these
constants often show up in different branches of natural sciences with their specific theories.
The accurate determination of the relevant physical constants in the different subfields leads
to a test of the consistency of these theories and to their limitations. An example of this kind
is given by discussing the determination of the fine structure constant (see Section 13.6.2).



440 13 Technical and Scientific Applications

13.6.1 Rydberg Constant

The Rydberg constant (5.6) defines the energy levels in an atom and is furthermore related
to other fundamental constants me, e, � and c. The Rydberg constant has been measured
preferably in hydrogen since it is the most simple atom whose energy levels can be computed
with the highest accuracy and which has suitable transitions accessible to highest resolution
laser spectroscopy. In the hydrogen atom the finite mass of the nucleus leads to the largest
deviation of the reduced mass (see (5.7)) from the rest mass me of the electron in all atoms.
However, the ratio me/mp of the masses of the electron and the proton can be measured
with high accuracy in ion traps (Section 10.4.1) where a recent measurement [650] gives
mp/me = 1836, 152 664 6(58). The simplicity of (5.4) allows one to determine the Rydberg
constant R∞ from a measurement of the transition frequency

νm,n =
Em − En

h
= c Z2 R∞

(
1
n2

− 1
m2

)
(13.19)

between two levels with the principal quantum numbers n and m, to a relative uncertainty
of about ΔR∞/R∞ ≈ 10−5. To obtain a more accurate value various theoretical correc-
tions have to be applied. There are relativistic effects, interaction between the electron spin
and the nuclear spin, contributions from quantum electrodynamics and corrections resulting
from the finite size of the nucleus. The quantum electrodynamic corrections lead to the Lamb
shift between the S level and the P level thereby lifting the degeneracy of the orbital angular
momentum in the case of identical principal quantum number and identical total angular mo-
mentum. The extended charge distribution of the nucleus leads to an additional shift of the S
level since the S electron spends some time at the position of the nucleus.

Measurements of the Rydberg constant have been performed over the years with increasing
accuracy in the groups of T. W. Hänsch (Garching) [93,813] and F. Biraben (Paris) [103,814].
Hänsch’s group measured the two-photon transitions 1S – 2S and 2S – 4S, the Paris group 2S –
8D, 2S – 12D. Earlier measurements have determined the transition frequencies in the hydro-
gen atom by comparison with the difference frequency of two optical frequency standards, i.e.
the methane stabilised He–Ne laser and the iodine stabilised He–Ne laser. Recently, a direct
comparison with the frequency of the Cs atomic clock has been obtained [93]. These mea-
surements have been used with a high weight to obtain a value of R∞ = 10 973 731.568 525
(73) m−1 for the 2002 CODATA evaluation of fundamental constants [791]. The relative un-
certainty of 6.6 × 10−12 represents one of the most accurate measurements of a fundamental
constant. Similar measurements have determined the Lamb shift of the 1S ground state in
hydrogen and deuterium ( [102, 394]). In order to perform a meaningful comparison between
measurement and theory, it is necessary to include quantum electrodynamic corrections and
the nuclear charge distribution. Since the experimentally achieved accuracy is currently much
higher compared to the corrections, these measurements represent a means of testing the va-
lidity of the quantum electrodynamics or the nuclear charge distribution, depending on which
contribution has the highest uncertainty [815].
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13.6.2 Determinations of the Fine Structure Constant

The fine structure constant α represents one of the most fundamental constants of nature since
it scales the electromagnetic interaction. Its value 3 can be determined in a variety of in-
dependent experiments conducted in different branches of physics via the von Klitzing ef-
fect (quantum Hall effect), the ac Josephson effect, the g − 2 value of the electron, the de
Broglie wavelength of the neutron [816] or atom interferometry [817]. The relative uncertain-
ties achieved so far range from about 4.2 × 10−9 for the g − 2 experiment (Section 10.4.2)
including a QED estimation [653] to about an order of magnitude higher. All methods essen-
tially rely on frequency measurements as will be pointed out for the two latter experiments.
The fine structure constant can be related to the determination of the Rydberg constant R∞
described in Section 13.6.1 and the measurement of h/me as follows

α2 =
2R∞

c

h

me
. (13.20)

The determination of the quantity h/me can be related to the determination of any other ratio
h/m = h/me × me/m since, in general, mass ratios between microscopic particles again
can be determined via frequency measurements in ion traps (Section 10.4). In the neutron
experiment [816] h/Mn = λnv has been determined using the de Broglie wavelength λn ≈
0.25 nm of a neutron wave packet, Bragg reflected from a silicon crystal, and the neutron’s
velocity vn. The interplanar spacing a of the atomic planes of the silicon crystal needed to
derive λn = 2a sin θ (Bragg’s law) has been determined interferometrically by reference to
a laser wavelength standard (Section 9). The measurement of the velocity vn has also been
referred to an interferometric measurement of the flight path and the time of flight. The latter
was determined by a periodic modulation of the polarisation of the neutron beam before and
a detection of this modulation after travelling along the path.

An atom interferometric measurement of the fine structure constant with Caesium atoms is
performed in the group of S. Chu (Stanford University) [817–819] where h/mCs is measured
which is related to the fine structure constant by

α2 =
2R∞

c

h

mCs

mp

me

mCs

mp
= 2R∞

cΔνrec

νCs

h

mCs

mp

me

mCs

mp
. (13.21)

Here,

Δνrec = 2
hk2

2m4π2
(13.22)

is the frequency separation between the two recoil components that shows up in satura-
tion spectroscopy with narrow spectral lines or in Ramsey-Bordé atom interferometry (Sec-
tion 6.6.2.3). (13.21) shows that only frequency measurements are needed to derive the fine
structure constant and hence allows for a high accuracy.

3 From the CODATA evaluation [791] its value is 1/α = 137.035 999 11 ± 3.3 × 10−9.
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13.6.3 Atomic Clocks and the Constancy of Fundamental Constants

The question of whether fundamental constants such as the fine structure constant α are really
constant or vary with time, was raised as early as 1937 by Dirac [820] in his large number
hypothesis 4. Dirac’s large number hypothesis was based on the observation that most of the
dimensionless constants such as the fine structure constant α ≈ 1/137, are close to unity, but
other dimensionless ratios are really large and come up with a value around 1040. Examples
include the Coulomb electrostatic force divided by the gravitational force between electron
and proton, the length scale of the universe divided by the classical radius of the electron, or
the age of the universe divided by the time it takes for light to travel the distance equal to
the classical electron radius. If this coincidence was not by accident but all values were to
be proportional, they would increase with time since the radius of the universe varies with
time. Depending on which of the “constants” can be regarded as constant, different variations
of the others are deduced. As an order-of-magnitude for any of the constants β the variation
expected from the known value of the Hubble constant is β̇/β ≈ 10−11 /year. Today Dirac’s
large-number hypothesis can be ruled out by experimental data (see [821] and Table 13.3).
There are, however, other theories that require the fundamental constants to change with time.

Such a temporal variation of the non-gravitational fundamental constants is excluded by
the equivalence principle of General Relativity. Theories attempting to unify gravitation and
other interactions, however, may violate this principle. In the concept of string theory as well
as in the Kaluza-Klein theories that use extra spatial dimensions [822] new fields namely the
scalar “dilaton field” or “moduli fields” are proposed as partners of Einstein’s tensor field gμν .
These fields couple to matter and might lead to time-varying fundamental constants [823,824]
and to a violation of the universality of free fall according to which all bodies fall with the
same acceleration in an external gravitational field. These ideas have attracted new interest
from the report of frequency shifted absorption spectra from distant quasars [825] that were
interpreted as evidence for the cosmological evolution of the fine structure constant α. There
are, however, stringent experimental bounds that limit these violations. From the Lunar Laser
Ranging experiment [767] one finds that Earth and Moon fall towards the Sun with the same
acceleration to better than 10−12. Nuclear data together with the Oklo phenomenon, astro-
physical data and clock comparisons, introduce even more stringent limits, to be discussed
in the following. The Oklo phenomenon is attributed to the existence of a natural fission re-
actor moderated by water in Gabon (Western Africa). The evidence that this fission reactor
operated about two billion years ago for about a million years has been derived from ores
of the Oklo mine that contained much less 149Sm, 151Eu, 155Gd and 157Gd than the usual
natural abundancy. As an example, the isotope ratio of the 149Sm/147Sm from this site was
measured to be about 0.02 compared to the ratio of natural ores from other sites of about 0.9.
This phenomenon has been investigated by the French Commissariat à l’Energie Atomique
and it is believed that the missing isotopes like the 149Sm isotope, which is a good neutron
absorber, were burned up by the neutron flux from the uranium fission. The relevant tran-
sition 149Sm +n →150Sm + γ has a cross-section which, due to a resonance, is about two
orders of magnitude larger than the corresponding transition 147Sm +n →148Sm + γ. From

4 An extensive review of the meaning and earlier measurements of the fundamental physical constants has been given
by Petley [763]
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the 149Sm/147Sm ratio one can deduce a maximal variation of the position of the resonance
from the time when the reactor was operational until today. The smallness of the variation
of the energy of the resonance places an upper limit to a possible variation of α, as has been
pointed out by Shlyakter [826]. The data have been re-evaluated by Damour and Dyson [827]
who have obtained stringent limits for α̇/α < 5 × 10−17 /year.

Another completely different source for the determination of any possible time depen-
dence of the fundamental constants is given by the absorption lines from QUASAR spectra.
The large distance to these quasi-stellar objects of up to 1010 light years, means that the mea-
sured absorption spectra contained the information about the value of a fine structure constant
1010 years ago. A possible shift of these lines with respect to the corresponding absorption
spectra obtained at the present time in the laboratory, however, may be buried in the huge red
shift of the radiation from the QUASARs. Comparing the spectra of heavy and light atoms
from the same quasi-stellar objects, or the gross structure with the fine structure of the same
element, allows one to surpass this difficulty. Evaluations of the spectra of Fe+ and Mg+ with
respect to the relativistic correction were performed [828–830] and yielded relative variations
in α2 < 10−14.

The rapid progress in the development of clocks allows one to investigate possible vari-
ations of fundamental constants by comparing the frequencies of clocks based on different
physical principles or transitions. Turneaure and Stein performed a twelve-day comparison
between the frequencies of a superconductive cavity-stabilised oscillator near 8.6 GHz and a
Cs beam clock and observed a relative drift rate of (−0.4 ± 3.4) × 10−14 /day. This com-
parison between a macroscopic clock and a microscopic one monitors the Bohr radius deter-
mining the dimensions of the cavity with respect to the hyperfine structure splitting of Cs.
An upper limit for the variation of a combination of fundamental constants including α3 was
< 1.5 × 10−12 [60, 61, 831]. Godone et al. [832] compared, for about a year, the 601 MHz
frequency of the fine structure transition 3P0 →3P1, Δmj = 0 of 24Mg with a commercial Cs
clock referenced to PTB’s primary Cs standard by satellite time comparisons. These authors
derived a limit for the time stability of the fine structure constant of α̇/α < 2.7 × 10−13 /year.
Prestage et al. [833] compared the frequency (40.5 GHz) of the hyperfine structure transition
of Hg+ stored in an ion trap to the hyperfine frequency of a hydrogen maser and obtained
a limit of α̇/α < 3.7 × 10−14/a that might be slightly corrected due to the comments of
Karshenboim [831]. The sensitivity of such clock rate comparisons to a variable fine structure
constant, results from the fact that the relativistic contributions of the hyperfine splitting are a
function of α times the nuclear charge Z which increases for heavier atoms or ions.

The rapid progress with fountain clocks and optical frequency standards makes it very
likely that the current limits can be reduced dramatically in the years to come. The frequen-
cies of a Cs and a Rb fountain clock have been compared over about five years and yielded
α̇/α = (0.4 ± 16) × 10−16/year [835].

In contrast to the microwave frequency standards, there is no analytical formula for the
dependence of the frequency of optical transitions on α. For some of the most promising
optical frequency standards, however, the relativistic corrections have been calculated [830,
838]. From these calculations one expects the largest contribution in the 199Hg ion, a smaller
contribution in the 171Yb ion and the smallest effect in 40Ca and in 1H. These belong to the
optical frequency standards with the currently lowest uncertainties with the best prospects of
further significant reduction and, hence, may be the candidates to achieve lower limits on a
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Table 13.3: Selected experimental limits for the temporal variation of fundamental constants
β ∈ G, α per year a.

Method β β̇/β Reference
(a−1)

Lunar orbit G (1 ± 1) × 10−12 [766]
Oklo natural fission reactor α < 5 × 10−17 [827]
Quasar spectra α (−2.2 ± 5.1) × 10−16 [828]
Cosmic background α < 7 · 10−13 [834]
Mg vs Cs clock α < 2.7 × 10−13 [832]
H-maser vs Hg+ α < 3.7 × 10−14 [833]
Cs vs Rb clock α (−0.04 ± 1.6) × 10−15 [835]
199Hg+ (1.064 THz) vs Cs clock α < 1.2 × 10−15 [639]
171Yb+ (1.064 THz) vs Cs clock α < 2 × 10−15 [836]
1H (2.466 THz) vs Cs clock α < 2.9 × 10−15 [837]

possible time dependence by comparing their frequencies over some time. A measurement
of the optical 199Hg+ standard (Section 10.3.2.4) with respect to the hyperfine transition of
the Cs atomic clock over a two year duration by Bize et al. [639] yielded an upper bound for
|α̇/α| < 1.2 × 10−15/year. Combining this result with measurements of the Yb+ standard
[836] (Section 10.3.2.2) or the 1H standard [837] (Section 9.4.5) similar upper bounds could
be derived, however, with an analysis that was using less a priori assumptions.



14 To the Limits and Beyond

From the temporal evolution of the quality of frequency standards and clocks demonstrated
in Fig. 1.2 one would expect that the tremendous improvement in the accuracy and stability
of such devices will not lose its pace in the near future. It is therefore interesting to discuss
the constraints that eventually limit the performance of frequency standards. Excellent sta-
bility is always prerequisite to achieving the utmost accuracy of a frequency standard since
the detection of small systematic frequency shifts is only possible to the extent they can be
separated from the frequency fluctuations of the standard. In this chapter we will first recall
the limitations to the stability that arise from the quantum nature of the radiation field and the
absorbers and discuss ideas that may allow some of the limitations to be overcome. We will
end this book with speculations on novel technical developments that may be envisaged to
lead to standards with improved accuracy.

14.1 Approaching the Quantum Limits

In this section we assume that technical noise associated with the oscillator in the frequency
standard has been reduced to such a level that the stability is limited by fundamental quantum-
mechanical fluctuations. There are different limiting cases that depend on the experimental
realisation of the frequency standard.

Consider a device where a weak radiation field interrogates a large number of quantum
absorbers in the scheme of Fig. 1.3 and the scattered light is used for the detection. Here the
fluctuations of the detected radiation may limit the achievable signal-to-noise ratio and, hence,
the stability of the frequency standard. For uncorrelated fluctuations of the radiation field the
fundamental limit is then often given by the shot noise of the photons (Section 14.1.2).

In other frequency standards the radiation field may interact with a small number of quan-
tum absorbers. Here, the fluctuations of the detected radiation field comprising a large number
of photons may be negligible with respect to the fluctuations associated with the interaction
process between the quantum absorbers and the photons. In such a case the stability is affected
by the quantum projection noise [89], (Section 14.1.3.1) which is already limiting the stability
of single-ion frequency standards or the best Cs fountains.

Suitable preparation of either the radiation field or the absorbers with correlated fluctua-
tions, however, may allow one to overcome these limits and approach the ultimate Heisenberg
limit based on the quantum mechanical uncertainty relations.
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14.1.1 Uncertainty Relations

According to quantum mechanics two non-commuting operators Â and B̂ that have no com-
mon eigenstates can be described by[

Â, B̂
]
≡ ÂB̂ − B̂Â = iĈ (14.1)

which leads to the uncertainty relation√
〈Â2〉〈B̂2〉 ≥ 1

2

∣∣∣〈Ĉ〉
∣∣∣ . (14.2)

As an example of (14.1) consider

[q̂i, p̂i′ ] = i�δii′1

[p̂i, p̂i′ ] = [q̂i, q̂i′ ] = 0 (14.3)

with Ĉ = �1 for the commutator relation between the operator q̂i and p̂i′ of the spatial
coordinate and the momentum of a free particle, respectively. The uncertainty relation (14.2)
holds for arbitrary non-commuting operators and, hence, also for the operators of the mean
deviation, i.e. the uncertainties of the observables Â and B̂

Δ̂A = Â − 〈Â〉 and Δ̂B = B̂ − 〈B̂〉 (14.4)

leading to the Heisenberg uncertainty relation√
〈Δ̂A

2〉〈Δ̂B
2〉 ≥ 1

2

∣∣∣〈Ĉ〉
∣∣∣ . (14.5)

Equation (14.5) sets lower limits for the minimal fluctuations that can be achieved when the
expectation values of two conjugated quantities are measured that are represented by two non-
commuting operators. The limit derived from (14.5) is commonly referred to as the Heisen-
berg limit. Examples include the uncertainty of the simultaneous measurement of a spatial
coordinate and momentum of a particle

ΔxΔpx ≥ �

2
(14.6)

or the uncertainty of the simultaneous measurement of the number of photons n and the phase
φ of an electromagnetic field (see [39] 1)

ΔnΔφ ≥ 1
2
. (14.7)

1 Note, that there is no Hermitian operator corresponding to the classical phase variable and, hence, the derivation
in [39] is semi-classical.
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14.1.2 Quantum Fluctuations of the Electromagnetic Field

14.1.2.1 Quantisation of the Field

The classical electromagnetic field based on Maxwell’s equations is quantised in textbooks on
quantum optics [133, 135] by starting with the electric field in a linear cavity 2 of length L.
With the cavity axis chosen as the z axis the electric field which is linearly polarised along the
x direction can be expanded in the normal modes of the cavity as

Ex(z, t) =
∑

j

Ajqj(t) sin(kjz) =
∑

j

√
2ω2

j mj

ε0V
qj(t) sin(kjz). (14.8)

Here, the amplitude Ajqj(t) of the mode is split into a factor Aj with the unit V/m2 and
a “mechanical” amplitude qj(t) whose unit is m. V is the mode volume of the resonator
and kj = ωjc = jπ/L with j = 1, 2, · · · . From (14.8) and Maxwell’s equation (4.23) the
magnetic field is obtained as

Hy(z, t) =
∑

j

√
2ω2

j mj

ε0V

ε0
kj

q̇j(t) cos(kjz). (14.9)

Insertion of (14.8) and (14.9) into the classical Hamiltonian of the electromagnetic field

H =
1
2

∫ [
ε0E

2
x + μ0H

2
y

]
dV (14.10)

leads to

H =
1
2

∑
j

[
mjω

2
j q2

j +
q̇2
j

mj

]
(14.11)

which is equivalent to a Hamiltonian comprising a sum of harmonic oscillators characterised
by an amplitude qj and a velocity q̇j (momentum pj/mj). The electromagnetic field can be
quantised by interpreting the amplitude q and momentum p of the jth oscillator in (14.11) as
operators which obey the commutator relations (14.3).

The Schrödinger equation with the Hamiltonian of a single harmonic oscillator represent-
ing the jth mode in (14.11) can be solved [839] by the correspondence p = −i�d/dq leading
to eigenfunctions in terms of the Hermite polynomials and to the eigenenergies

Wn = �ωj

(
n + 1

2

)
. (14.12)

Alternatively, following the treatment of Scully and Zubairy [135] one defines annihilation
and creation operators â and â†, respectively, by

âe−iωt =
1√

2m�ω
(mωq̂ + ip̂)

â†eiωt =
1√

2m�ω
(mωq̂ − ip̂) (14.13)

2 For the purpose of this chapter the differences in the results of the quantisation of the field in unbounded free space
do not matter.
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with the commutator relations following from (14.3)[
âi, â

†
i′

]
= i�δii′

[âi, âi′ ] =
[
â†

i , â
†
i′

]
= 0. (14.14)

Insertion of (14.13) into (14.10) the Hamiltonian for a single mode reads

H = �ωj

(
ââ† + 1

2

)
. (14.15)

With the help of (14.13) the electric and magnetic fields (14.8) and (14.9) now read

Ex(z, t) =
∑

j

√
�ωj

ε0V

(
âe−iωt + â†eiωt

)
sin(kjz) (14.16)

Hy(z, t) = −iε0c
∑

j

√
�ωj

ε0V

(
âe−iωt − â†eiωt

)
cos(kjz). (14.17)

By introducing the Hermitian operators

X̂1 =
1
2

(
â + â†) and

X̂2 =
1
2i

(
â − â†) (14.18)

and the commutation relation[
X̂1, X̂2

]
=

i

2
(14.19)

that follows from (14.18) and (14.14) the electric field for the jth mode now reads

Ex(z, t) = 2
√

�ωj

ε0V

(
X̂1 cos ωt + X̂2 sin ωt

)
sin(kjz). (14.20)

The two non-commuting operators X̂1 and X̂2 in (14.20) correspond to the amplitudes of
the classical quadratures E1 and E2 (see (2.7)) of the field of the classical monochromatic
electromagnetic field which are out of phase by π/2. Hence, the quadrature components of
the electromagnetic field cannot both be determined with zero uncertainty at the same time.
The uncertainty principle sets a lower limit for the product of the uncertainties in E1 and E2.
From (14.19) follows the uncertainty relation (see Section 14.1.1)

ΔX̂1ΔX̂2 ≤ 1
4

(14.21)

for the quadrature operators of the electric field. As a classical approximation the electric field
is sometimes [39] written as

E(t) = E1(t) + iE2(t) with (14.22)

E1(t) = 〈E1(t)〉 + ΔE1(t) and

E2(t) = 〈E2(t)〉 + ΔE2(t)
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where the quantities E1(t) and E2(t) are given by their expectation values 〈E1(t)〉 and
〈E2(t)〉 which can be obtained as the mean of an (infinite) number of measurements and
ΔE1(t) and ΔE2(t) are the uncertainties. Hence,

ΔE1ΔE2 ≥ �ω

2ε0V
. (14.23)

14.1.2.2 States of the Light Field

Number States The eigenstates |n〉 corresponding to the energies Wn of (14.12) represent
states with well defined numbers of photons in the jth mode and are referred to as number
states or Fock states. The annihilation and creation operators reduce or raise the number of
photons, respectively,

â |n〉 =
√

n |n − 1〉 (14.24)

â† |n〉 =
√

n + 1 |n + 1〉. (14.25)

The lowest number state |n = 0〉 is called the vacuum state. The number states form a com-
plete, orthogonal, and normalised set of states.

Coherent States In general it is not easily feasible to prepare states with an exact number of
photons n but rather to have a definite average number 〈n〉 of photons. A particularly useful
class of states that have these properties are the coherent states [840] which are eigenstates of
the annihilation operator â [135, 841]

â |α〉 = α |α〉 (14.26)

where in general α is a complex number. Even though two different coherent states are not
orthogonal, the coherent states form a basis which is over complete and, hence, can be used
as a basis to expand any state. In contrast to the Fock state where each measurement of the
photon number gives the same result, the probability of measuring a number n of photons in
a coherent states is given by the Poissonian probability distribution [840, 841]

p(n) =
〈n〉ne−n

n!
. (14.27)

The variance of the Poissonian distribution (Δn)2 is equal to the mean value 〈n〉 and, hence,

Δn =
√

〈n〉. (14.28)

The fluctuations of the photons according to (14.27) and (14.28), that also show up in the
fluctuations of the current from a photodetector used to measure the radiation field, are often
termed as shot noise.

An important property of the coherent state is that the uncertainties of the quadrature
components (14.21) are minimal and equal. This limit

〈ΔX̂1
2〉 = 〈ΔX̂2

2〉 = 1
4 (14.29)
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is referred to as the “standard quantum limit”. For E1 and E2 the standard quantum limit
reads

ΔE1 = ΔE2 =

√(
�ω

2ε0V

)
. (14.30)

Hence, the coherent state of the electric field is represented by a phasor whose uncertainty
contour is a circle (see Fig. 14.1 a).

Figure 14.1: a) The phasor of the electromagnetic field in a coherent state represented by the expectation
value 〈E〉 with the uncertainty ΔE1 and ΔE2 divided equally between the quadrature components E1

and E2, respectively. b) Squeezed field with ΔE1 > ΔE2. c) Squeezed state with amplitude fluctuation
less than a coherent state. d) Squeezed state with phase fluctuation less than a coherent state.

14.1.2.3 Squeezed States

A coherent state of the electric field is said to be “squeezed” if the fluctuations of one quadra-
ture component are reduced below the standard quantum limit at the expense of the conjugate
one (see Fig. 14.1 b) while the uncertainty relation (14.23) is still preserved. Such cases are
depicted in Fig. 14.1 c) and d). In squeezed light the fluctuations of the respective quantities,
e.g., phase and field amplitude (photon number) or the quadrature components are correlated.
There are several processes that can be used to correlate the quadrature components and to
generate squeezed light. As an example, consider a medium exhibiting the optical Kerr effect
where the index of refraction depends on the irradiance of the light wave (see (11.28)). Since
the phase of the light wave is affected by the index of refraction there is a coupling between
the number of photons and the phase and, hence, a correlation between the fluctuations of
either quantity at the output of the medium.

14.1.2.4 Possible Applications of Squeezed Light to Frequency Standards

Squeezed light might find applications in optical frequency standards in cases where the quan-
tum fluctuations of the light interrogating the microscopic or macroscopic absorbers, limit the
achievable stability of the standard. Which of the quadrature components has to be used de-
pends on the method of interrogation. For standards employing an absorption line as frequency
reference for the optical oscillator, amplitude squeezed light could be used. Several methods
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are at hand [841] and have been used to produce amplitude squeezed light, e.g., by a sec-
ond harmonic process [842], in an optical parametric oscillator [843] or in diode lasers [844].
Quadrature phase squeezed light can be generated, e.g., in the four-wave mixing process where
the amplitude noise is increased and the phase noise is reduced.

Using amplitude squeezed light produced by an optical parametric oscillator, Polzik et
al. [843] were able to reduce the fluctuations of the current from a photodetector by 5 dB below
the vacuum-state level. The squeezed light was used to measure the Doppler-free saturation
signal of atomic Cs at 852 nm with an enhanced sensitivity, thereby reducing the noise by
more than 3 dB.

The short-term stability of optical frequency standards is governed in general by the short-
term stability of a pre-stabilised laser (Section 9) locked, e.g., to a Fabry-Pérot interferometer
where the wavelength of the laser is stabilised with respect to the distance between the end
mirrors. The precision with which an interferometer can measure the distance between two or
more mirrors is also Heisenberg limited. From the Heisenberg uncertainty relation ΔzΔpz ≈
Δz(mΔz/τ ) ≥ �/2 a minimum uncertainty of the position measurement of an end mirror of
mass m in a duration τ can be derived as

ΔzHL =

√
�τ

2m
. (14.31)

For a mass of 0.5 kg, a duration τ = 1 ms the limit according to (14.31) is ΔzHL ≈
3 × 10−19 m. In general, the shot noise of the detected photocurrent behind one output of
the interferometer leads to fluctuations that impose much higher limitations to the length mea-
surement of an interferometer. Assuming that the photons and photoelectrons obey Poisson
statistics, the fractional fluctuations scale inversely with the radiation power and, hence, can
be reduced by applying higher power to the interferometer. However, the increasing power is
associated with increasing pressure fluctuations of the radiation impinging onto the interfer-
ometer mirrors [845]. There is an optimum power where the fluctuations due to the radiation
pressure and to the photon counting are equal. The minimum of the combined fluctuations
approaches the standard quantum limit of the interferometer. Often, the available laser power
is far too low to reach the standard quantum limit and the shot noise with its 1/

√
n level of

fractional phase fluctuations for a coherent laser source dominates the measurement precision.
To approach the Heisenberg limit of 1/n rad in the interferometer at low laser power it has
been suggested to use non-classical states of light [845], e.g., by illuminating the unused input
port of the interferometer with squeezed light. Following this suggestion an increase in the
signal-to-noise ratio of 3 dB with respect to the shot-noise limit has been demonstrated in a
Mach-Zehnder interferometer [841,846]. It has to be emphasised, however, that the reduction
of the fluctuations in the photon current has to be paid for by increased fluctuations in the
radiation pressure. There have been several other suggestions as to how phase measurements
in the interferometer [847] can be improved using entangled or squeezed states [848–850] or
by driving an interferometer with two Fock states containing equal numbers of photons [851].
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14.1.3 Population Fluctuations of the Quantum Absorbers

14.1.3.1 Quantum Projection Noise

We now turn to a different regime where the fluctuations of the signal obtained by interrogating
an ensemble of quantum absorbers by a radiation field are no longer limited by the quantum
fluctuations of the field itself.

Consider a suitable two-level system with narrow transition and resonance frequency ν0

that is interrogated by an electromagnetic field with frequency ν close to the resonance fre-
quency. For two-pulse Ramsey excitation the probability that a quantum absorber is found in
state |2〉 is (see (6.44))

p2 =
1 + cos(ω − ω0)T

2
. (14.32)

Here, T is the free evolution time and we have assumed that the duration τ of the Ramsey
pulses is small compared to T . By scanning the frequency of the oscillator the frequency
dependence of the power absorbed by an ensemble of N two-level systems results in a curve
like the one shown in Fig. 14.2. Near the maxima of this curve the probability p2 of finding

Figure 14.2: Stabilisation of the angular frequency ω of an oscillator to the resonance ω0 of
a suitable absorber is often performed by modulating the angular frequency of the oscillator
by ±Δω/2. For a symmetrical resonance curve, ωosc is an estimate of ω0 if the mean signals
obtained at the two shifted frequencies are equal.

the atoms in the state |2〉 is close to unity whereas the minima of the resonance curve reflect
the cases when this probability goes to zero. The internal state is in general a superposition of
the two eigenstates

|ψ〉 = c1 |1〉 + c2 |2〉 (14.33)

where according to Section 5.3.1 |c1|2 + |c2|2 = 1 and p1 = |c1|2 and p2 = |c2|2 are the
probabilities of finding the two-level system in state |1〉 and in state |2〉 , respectively. When
a measurement is performed it is defined whether the two-level system has absorbed a photon
or not. Consider the case where the frequency ν is close to the inflection points of the curve in
Fig. 14.2. This situation arises, e.g., if the frequency of the interrogating oscillator is square-
wave modulated with the modulation width chosen close to the halfwidth of the resonance
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curve (Fig. 14.2) in order to lock the oscillator to the centre frequency ω0. In this and in all
other cases except when c1 or c2 are zero quantum mechanics requires that the occurrence
of the absorption process cannot be predicted without uncertainty. The measurement process
projects the two-level atom either in state |1〉 or into |2〉 where the photon has been absorbed
or not absorbed, respectively. To determine the variance σ2 of the measurement of the state
|2〉 we follow Itano et al. [89] and define a projection operator P̂2 ≡ |2〉 〈2|. The probability
of finding the atom in |2〉 is given by the expectation value 〈ψ|P̂2|ψ〉 = |c2|2 = p2. The
variance is then calculated as

σ2 =
(
ΔP̂2

)2

= 〈
(
P̂2 − 〈P̂2〉

)2

〉 (14.34)

= 〈P̂ 2
2 − 2〈P̂2〉P̂2 + 〈P̂2〉2〉

= 〈P̂ 2
2 〉 − 〈P̂2〉2.

Using P̂ 2
2 = (|2〉 〈2|)(|2〉 〈2|) = |2〉 〈2| = P̂2 it follows that

σ2 = 〈P̂2〉 − 〈P̂2〉2 (14.35)

= 〈P̂2〉
(
1 − 〈P̂2〉

)
= p2(1 − p2).

As follows from (14.35) the quantum projection noise, described by σ, i.e. the uncertainty of
the measurement to find the atom in state |2〉 is zero when either p2 = 1 or p2 = 0 and has its
maximum value σ(p2 = 1/2) = 1/2 at the inflection points of Fig. 14.2. For an ensemble of
N particles the variance of the number of atoms in the excited state is given as

〈ΔN〉2 = Np2(1 − p2). (14.36)

The situation is equivalent to the case when photons from a laser beam impinge on a beam
splitter characterised by power reflectivity p2 and transmissivity p1. The number of photons
detected behind either exit port shows the same indeterminism as does the number of two-level
atoms in the ground state or excited state. Assuming that the number of quantum absorbers
projected onto the excited state |2〉 in a frequency standard can be detected with probability
unity, the uncertainty in the estimated value of ω0 can be derived using (14.36) as

|δω0| =

√
Np2(1 − p2)∣∣∣∣d(Np2)

dω

∣∣∣∣ . (14.37)

From (14.32), in Fig. 14.2 at the inflection points determined by (ω − ω0)t = π/2 one
finds p2 = 1/2 and, hence,

|δω0| =
1√
Nτ

(14.38)

holds. Again, we encounter a shot-noise limit ∝ 1/
√

N . The fundamental limit of the quan-
tum projection noise has been reached using ion traps [89] either with a single 199Hg+ ion or
with 9Be+ ions. The latter experiment performed with a few to up to 385 ions clearly showed
the enhanced noise near the inflection points of Fig. 14.2 according to (14.35). Santarelli et
al. [64] have observed the quantum projection noise limit also in the case of a caesium fountain
clock.
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14.1.3.2 Absorbers with Quantum Mechanical Correlations

As in the case of the shot noise level 1/
√

n of the photons, the 1/
√

N level of the fluctuations
resulting in the interaction of a radiation field with N two-level atoms, i.e. the quantum
projection noise need not be a rigid limit. The use of particularly prepared quantum states
with well chosen quantum mechanical correlations could in principle allow one to overcome
this limit.

Entangled States Quantum mechanical systems often have to be described by a wave func-
tion that cannot be separated into product states, i.e. that cannot be written as a product of
the wave systems of the sub-systems. The sub-states are said to be “entangled”. Hence, it is
possible to prepare two or more particles in an entangled state where a particular quantum me-
chanical quantity has a well defined value but where, however, the state of the same variable
is not well defined for each single particle.

A well known example for an entangled two-particle state represents the so-called
Einstein-Podolsky-Rosen state |ΨEPR〉 whose name refers to the Gedanken experiment of Ein-
stein, Podolsky and Rosen [852]. In the version of Bohm a spin-1 particle decays into a pair
of spin-1/2 particles described by the singlet state

|ΨEPR〉 =
1√
2

(| ↑1, ↓2〉 − | ↓1, ↑2〉) (14.39)

=
1√
2

(|+�r1,−�r2〉 − |−�r1, +�r2〉) . (14.40)

Here, | ↑〉 und | ↓〉 are eigenstates of the spins for each particle 1 and 2 along the z axis
defining the magnetic quantisation field. |�r1〉 and |�r2〉 are the states in any arbitrary direction
�r. Before a measurement is performed neither particle 1 nor particle 2 are in a defined state.
However, when the spin of particle 1 has been measured and found to point in a defined di-
rection �r, the direction of the spin of particle 2 is fixed and points along −�r. Consequently,
there are correlations between particle 1 and 2 that are independent of the chosen basis. Not
only that these correlations are counter-intuitive when asking classical questions such as “How
does the second particle know that one has measured the spin of the first one along a particular
direction and why can it respond to that measurement with a velocity higher than the speed
of light?”. Moreover, the quantum mechanical statistical predictions violate the predictions
of local theories (see e.g. [853]) expressed by the Bell inequalities [854]). These contradic-
tions are even more visible in an entangled state formed by the triplet of spin-1/2 particles
investigated by Greenberger, Horne and Zeilinger (GHZ) [855]

|ΨGHZ〉 =
1√
2

(| ↑1, ↑2, ↑3〉 + || ↓1, ↓2, ↓3〉) (14.41)

where a single ideal experiment yields completely different results for quantum mechanics
and local theories [856]. Mermin [857] investigated GHZ states with N Spin-1/2 particles
and pointed out that these states are a superposition of two states differing in all N degrees
of freedom. From the fact that only the mean values of the N particle operators show inter-
ference effects he concluded that non-locality of quantum mechanics here occurs as a direct
consequence of the interference effects between macroscopically distinct states.
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Spin-squeezed Atomic States A particular example of entangled particle states are the “spin
squeezed states” that can be engineered in such a way that the correlations lead to fluctuations
below the shot noise limit (standard quantum limit).

A two-level atom interacting with radiation can be described mathematically in the same
way as a spin-1/2 system in a magnetic field (Section 5.3.1), [139]. Consequently, the latter
framework is often used to conveniently describe the collective observables of a large number
N = 2S of identical two-level atoms. As an example, consider the difference in the number
of atoms populating the two internal states of the individual atoms given by the Jz component
of the total spin J = S = N/2. Applying the commutator relation (14.1) for the angular
momentum operators of a spin-1/2 system[

Ĵi, Ĵj

]
= i�Ĵk (14.42)

and cyclic permutations, Heisenberg’s uncertainty relation for the Cartesian components fol-
lows from (14.5) as

Δ̂JxΔ̂Jy ≥ �

2

∣∣∣〈Ĵz〉
∣∣∣ . (14.43)

Hence, each one of the N individual spin-1/2 systems contributes to the macroscopic spin. If
all individual spin systems are in the “spin-up” state, the state of the macroscopic system is an
eigenstate |Jz = S〉 and the total spin vector S of length S(S+1) spans a cone (Fig. 14.3 a).

Figure 14.3: a) 2S uncorrelated spin-1/2 states lead to a coherent state. b) Correlations between
the y components lead to a spin squeezed state with reduced fluctuations along the y direction
and increased fluctuations along the x direction (after [858]).
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In the coherent spin state the directions of the particular spin vectors add up incoherently in
such a way that the fluctuations ΔJx and ΔJy are equal and satisfy the minimum value of
�/2 |Jz| (see (14.43)).

In contrast, consider a case where the individual spins are correlated in the way depicted
in Fig. 14.3 b) which leads to a squeezing of the fluctuations of the total spin in the y direction
with enhanced fluctuations in the x direction.

Preparation of Spin-squeezed Atomic States Methods have been developed to prepare
spin-squeezed atomic states similarly to the one in Fig. 14.3 b). We consider in the following
primarily entangled states of very few trapped ions, e.g., in a linear rf trap since the ions can
be prepared easily in well prepared motional states and the dissipative interaction with the
environment is small. A collection of N spin-1/2 particles can be prepared in an arbitrary
entangled state

|ψ〉 = a0| ↓〉1| ↓〉2 · · · | ↓〉N (14.44)

+ a1| ↓〉1| ↓〉2 · · · | ↑〉N
+ + · · ·
+ ak| ↓〉1| ↓〉2 · · · | ↓〉k · · · | ↑〉N−1| ↑〉N
+ · · ·
+ a2N−1| ↑〉1| ↑〉2 · · · | ↑〉N

where the ak are the amplitudes with k atoms in the up-state. Such a state can be constructed,
e.g., by use of the Cirac-Zoller scheme [859] that has been used to demonstrate [860] an
efficient entanglement using a pair of ions trapped in an ion trap.

The maximally entangled state

|ψ〉 =
1√
2

(| ↓〉1| ↓〉2 · · · | ↓〉N + eiΦ| ↑〉1| ↑〉2 · · · | ↑〉N
)

(14.45)

as the generalisation of the GHZ state (see (14.41)) has the consequence that a measurement
on any atom immediately determines the value of all other atoms. Mølmer and Sørensen have
devised a scheme [861] to produce large-scale maximally entangled states of (14.45) with a
single laser pulse.

Consider an atomic or ionic system like the one shown in Fig. 14.4 a) where two spin-1/2
particles are kept in a harmonic potential. Such a system is realised by two identical ions in
the harmonic well of an ion trap where the angular oscillation frequencies are ωm. We assume
that both ions are initially entangled in the |↓↓〉 internal state since they are in a collective
motional state n where the centre-of-mass motion of the two ions has an energy of n�ωm.
Two Raman pulses of (optical) angular frequencies (ω0−ωm) and (ω0+ωm) are used to bring
the ions from the state |↓↓〉 to the state |↑↑〉 via two interfering paths. Due to the detuning
δ, neither one of the frequencies is resonant with a single-particle transition but the sum of
both frequencies is resonant with the two-particle transition. The transition amplitudes for the
two paths are (ηΩR

√
n + 1)2/δ and −(ηΩR

√
n)2/δ where η is the Lamb-Dicke parameter

and ΩR is the single-ion Rabi frequency on resonance. The n dependence of the two paths is
different and can be calculated using the properties of the creation and annihilation operators
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Figure 14.4: a) Entanglement scheme for two particles according to Mølmer and Sørensen [861]. φ−
is the difference in the two laser phases at the positions of the two ions. b) Adaptation of the scheme of
Fig. 14.4 a) to 9Be+ ions by Sackett et al. [862].

given in (14.24) and (14.25) for a harmonic oscillator. The – sign results from the blue and
red detunings along the two different paths. When the amplitudes are added the interesting
feature occurs that the total transition amplitude is η2Ω2

R/δ which does not depend on the
quantum number n of the intermediate motional state for ions in the Lamb-Dicke regime
(η2(n+1) 
 1). By driving the transition with the appropriate π/2 pulse, the entangled state

ψ2 =
| ↑↑〉 + eiφ+ | ↓↓〉√

2
(14.46)

can be generated where φ+ is the sum of the two laser phases at the positions of the two ions.
Analogously in the state of N entangled ions φ+ contains the sum of all N laser phases and
the probability of finding an ion in the excited state oscillates with

p
(N)
2 =

1 + cos [N(ω − ω0)τ ]
2

(14.47)

for excitation with two Ramsey pulses which differs from (14.32) by the factor of N in the
argument. Consequently, this affects the uncertainty in estimating the frequency ω0 which
now is

|δω0| =
1

Nτ
. (14.48)

In contrast to (14.32) the measurement with the entangled state now decreases with 1/N
rather than with 1/

√
N which for large numbers N could improve the stability of a frequency

standard with entangled absorbers considerably. The scheme works for any number of even
ions and can be extended to odd numbers [863]. It has been applied in a slightly modified
system (Fig. 14.4 b, [862]) to two and four 9Be+ ions with two ground states.

Applications of Entangled States to Frequency Standards Larger systems with N entan-
gled atomic or ionic states have been suggested to lead to an improved quantum limited signal-
to-noise ratio in frequency standards [864–866]. The basic idea from is taken from [865] and
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shown in Fig. 14.5 for the evolution of the pseudo-spin vector in the two-pulse Ramsey exci-
tation described in more detail in Section 6.6.1. We start with a state where all atoms are in a

Figure 14.5: Ramsey spectroscopy with spin squeezed states.

squeezed ground state and where the correlation between the quantum mechanical absorbers
is such that the uncertainties ΔJx, ΔJy, ΔJz of the combined state are correlated and form an
uncertainty ellipsoid which is squeezed for ΔJy(0). Applying the first π/2 interaction pulse
the pseudo spin is rotated in the x − z plane around the y axis which is also the direction of
the B1 field driving the clock transition, e.g., between the two ground states of Cs. After this
short interaction the expectation value 〈J(tπ/2)〉 is oriented along the x axis (Fig. 14.5 a). In
the time between the first and second Ramsey pulses the magnetic moment and, hence, the
pseudo spin precesses around the C field (Br) which is assumed to be parallel to the z axis.
For a detuning ω − ω0 = −Tπ/2 corresponding to a red detuning of the exciting radiation
field from the atomic resonance of half a linewidth, 〈J(tπ/2 + T )〉 now points along the −y
axis (Fig. 14.5 b). The second Ramsey pulse rotates the pseudo spin by π/2 around the B1

field. Interestingly, the fluctuations ΔJz = ΔJy(0) are now squeezed (Fig. 14.5 c) and the
quantum projection noise is smaller than for a coherent state.

It has been pointed out [867], however, that the advantage presented in the maximally
entangled states [866] is lost if the influence of the decoherence is taken into account. In
contrast to other, more robust entangled states [867, 868] the maximally entangled states are
particularly fragile. Huelga et al. [867] came to the conclusion that maximally entangled
states of N particles lead to the same minimal uncertainty as is obtained with standard Ramsey
spectroscopy, but at a

√
N shorter time. The minimum measurement time is therefore given

by the decoherence time of the spin phases resulting from collisions, magnetic, electric stray
fields, or fluctuations of the radiation source.

Meyer et al. [869] have demonstrated how entangled states can be used to improve the
precision when determining the frequency in a Ramsey excitation scheme below the standard
quantum limit (shot noise limit) in a coherent spin state with two ions (Fig. 14.6). In the case
of a few ions the small gain margin between the standard quantum limit and the Heisenberg
limit ∝ 1/

√
N will not be as large as with neutral atom ensembles.

For neutral atom ensembles, several different routes to entanglement are explored. Two-
atom correlations also have been observed from a thermal source of ultra-cold atoms [870]
but far from quantum degeneracy the small overlap of the wave functions makes these corre-
lations not very suitable to be used directly. It has been proposed also to couple neutral atoms
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Figure 14.6: Improvement in the precision to determine the transition frequency in a Ramsey
interrogation scheme [869]. SQL: Standard quantum limit. Courtesy of D. Wineland.

in an optical lattice by phonon-like excitations [871] but it remains to be shown that quan-
tum entanglement of neutral atoms will lead to a reduced signal-to-noise ratio in frequency
standards. Squeezed atomic samples have been produced by irradiating atoms with squeezed
light [872], or with an off-resonant laser beam [873]. The latter method led to a spin noise
reduction of 70 % below the standard quantum limit expected for a coherent spin state. Atom-
number squeezed states have been prepared in an optical lattice populated by atoms from a
Bose–Einstein condensate [874].

The application of non-classical states of light or entangled atomic absorbers may allow
one to overcome the standard quantum limit for coherent states for a given light power or
number of absorbers but not for the Heisenberg limit. Nevertheless, the potential is huge
as can be seen from an example of neutral atom frequency standards. The instability of a
Cs fountain clock employing 105 atoms can be decreased by a factor of ≈ 300 from the
1/
√

N dependent standard quantum limit to the 1/N dependent Heisenberg limit in the same
measurement time. Alternatively, in the latter case the same level of instability can be reached
by a 105 fold reduced measurement time.

It has been shown theoretically [875] that quantum entanglement and squeezing can also
be used to overcome the classical limits in clock synchronisation or ranging.

14.2 Novel Concepts

14.2.1 Ion Optical Clocks Using an Auxiliary Readout Ion

There are excellent candidate ions not yet used for optical frequency standards since their
transitions for cooling the ion and detecting the excitation by the electron shelving technique
are in the deep ultraviolet. A method has been devised [644] that allows one to overcome these
limitations by using two ions in the same trap where besides the clock ion there is a second
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one, called the logic 3 ion, which is used for cooling the clock ion and detecting transitions in
the clock ion. The method makes use of the entanglement of the internal states of the clock
and logic ion with their external degrees of freedom. Consider the case where both, the clock
ion and the logic ion, are described by a two-level system with the two states |↑〉 and |↓〉 .
The motion of the two ions in the trap is described by the motional quantum state |n〉M with
n = 0, 1, 2, · · · . The clock ion is sympathetically cooled by the logic ion which in turn is
cooled by conventional laser cooling to the initial state prepared such that both atoms being
are their ground states and in the quantised motional ground state |0〉M (see Fig. 14.7 a)

|ψ0〉 = |↓〉L|↓〉C |0〉M . (14.49)

Application of a coherent pulse of radiation tuned to the clock transition puts the two elec-

Figure 14.7: Scheme for excitation of a clock ion (index: C) and read-out by a logic ion (index: L) in
different electronic states (↑ and ↓) and motional states (index: M) according to [644]. a) Clock ion and
logic ion are in their electronic and motional ground states. b) Excitation of the clock ion. c) A π pulse
detuned to the blue motional sideband maps the excitation amplitudes α and β of the clock ion onto the
motional states of the clock ion and, as a result of the entanglement, the logic ion. d) A π pulse detuned
to the red motional sideband maps α and β on the electronic states of the logic ion.

tronic states of the clock ion into a coherent superposition with the amplitude coefficients α
and β leading to (Fig. 14.7 b)

|ψ0〉 → |ψ1〉 = |↓〉L [ α|↓〉C + β|↑〉C ] |0〉M
= |↓〉L [ α|↓〉C |0〉M + β|↑〉C |0〉M ] . (14.50)

If now a π pulse which tuned to the blue motional sideband is applied to the clock ion only
the state is | ↓〉C is affected whereas the state | ↑〉C is not since there is no state | ↓〉C | − 1〉M .
Hence,

|ψ1〉 → |ψ2〉 = |↑〉L [ α|↑〉C |1〉M + β|↑〉C |0〉M ]
= |↓〉L|↑〉C [ α|1〉M + β|0〉M ] . (14.51)

3 This name reflects the fact that the applied scheme is very similar to the ones used in quantum information pro-
cessing with ions.
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By comparing (14.50) and (14.51) one notices that application of this blue-detuned π pulse
has mapped the clock states onto the motional states (Fig. 14.7 c). Due to to the very nature of
the entanglement of the internal and external states of both ions this mapping affects both the
clock and the logic ion. In the next step (see Fig. 14.7 d) the motional state is mapped onto
the state of the logic ion by applying a π pulse which is tuned to the red motional sideband as

|ψ2〉 → |ψfinal〉 = [α| ↑〉L + β| ↓〉L] | ↑〉C |0〉M . (14.52)

Now, the probability β2 to find the logic ion in the ground state can be read out, e.g., by a
measurement of the number of quantum jumps using the electron-shelving technique. At the
same time, this measurement gives the probability that the clock ion was excited.

An experiment using this technique is performed at the NIST, Boulder (USA) using the
clock transition 1S0 →3P0 of the 27Al+ ion (λ = 267.44 nm) with an expected lifetime of
τ (3P0 = 284 s) [644]. The cooling of the 27Al+ ion and the detection of the clock transition
is performed by using Be+ as the logic ion.

14.2.2 Neutral-atom Lattice Clocks

A promising candidate for an optical frequency standard has been proposed by Hidetoshi Ka-
tori [163, 493] that combines the advantages of single ion standards and an ensemble with a
large number of neutral atoms, namely long interaction times and high short-term stability.
In this approach ultra-cold Sr atoms are trapped in the potential wells of an optical lattice
(Section 6.4.2) and the clock transition is excited in the trapped ensemble. Even though the
radiation producing the optical lattice will shift the atomic levels connected by the clock transi-
tion, a so-called “magic” wavelength can be found, where the light shifts for both states cancel
each other out. A similar concept was also used in the 9Be Penning trap microwave standard
where the huge Zeeman shift of the two states involved in the microwave clock transition,
cancels at a well defined (“magic”) magnetic field (Section 10.3.1.1). The basic idea relies on
the fact that it is not necessary to avoid all perturbations, but rather to control them in a defined
way. Katori proposed to use the 5s2 1S0(F = 9/2)–5s5p 3P0(F = 9/2) transition of the 87Sr
isotope. Due to the nuclear spin-orbit interaction, the strictly forbidden J = 0 → J = 0
transition acquires a dipole-allowed transition probability corresponding to an excited-state
lifetime of about 160 s by hyperfine mixing of the 3P0(F = 9/2) state with the 1P1 and 3P1

states. The clock transition of 87Sr atoms has been observed trapped in a one-dimensional
optical lattice [876] with a magic wavelength of (813.5 ± 0.9) nm. Its frequency has been
determined in a ballistic flight to be 429 228 004 235(20) kHz [877]. Trapping in an optical
lattice allowed Ido and Katori [878] to confine 88Sr atoms in the Lamb-Dicke regime where
the first-order Doppler effect is suppressed and no recoil shift occurs (Fig. 14.8). Calcula-
tions of ac multipole polarisabilities and dipole hyperpolarisabilities for the clock transition
performed, indicate that the contribution of the higher-order light shifts can be reduced to less
than 1 mHz, allowing for a projected fractional inaccuracy of better than 10−17 [876]. Besides
strontium there are other suitable candidates such as 171Yb [879,880] or 43Ca. The possibility
to store a large number of atoms in an optical lattice at the magic wavelength and in the mo-
tional ground states may furthermore allow one to make use of the full potential of the other
promising methods discussed in this chapter.
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Figure 14.8: Measured intercombination transition of 88Sr atoms, a) using atoms trapped in
an optical lattice operated at a “magic” wavelength, b) using atoms in ballistic flight [878].
Courtesy of H. Katori.

14.2.3 On the Use of Nuclear Transitions

Up to this point in frequency standards, only clock transitions have been used that connect
states of the electronic shell of the atoms. In the nucleus, however, there are extremely long-
lived states that may lead to narrow linewidths that have been favourably used in Mössbauer
spectroscopy. In comparison to electronic states, nuclear energy states might be more immune
to a number of external perturbations, e.g., collisions or blackbody radiation. In general, the
energy separations of the nuclear states are much larger as compared to the energy states in the
electronic shell and, hence, suitable Mössbauer transitions have to be excited by the radiation
of X-ray sources whose coherence properties are far from those of the oscillators used in
frequency standards. Even though the coherence of radiation generated by X-ray lasers, higher
harmonic generation from pulsed laser sources, or from future free-electron lasers is steadily
increasing, truly phase coherent sources currently exist only up to the optical regime.

There might, however, exist other possibilities of using nuclear transitions for optical fre-
quency standards. From γ-ray spectroscopy, a long-lived isomeric state of the 229Th nucleus
has been deduced [633, 881, 882]. This state has an estimated lifetime of a few hours and has
an energy of (3.5 ± 1.0) eV above the ground state. Peik and Tamm [883] have proposed a
method of detecting the laser excitation of the nucleus in a double resonance method by prob-
ing hyperfine transitions in the electronic shell. These authors show that the frequency of the
nuclear transition is independent of external magnetic and electric fields to first and second
order, respectively, making the 229Th absorber a novel candidate for a high-accuracy optical
clock.

14.3 Ultimate Limitations Due to the Environment

The surface of Earth is not the most ideal location for the accurate and stable clocks one can
envisage for the future. A variety of perturbations both of man-made and natural origin may
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limit the performance and, hence, the achievable accuracy and stability will depend on the
extent to which one can control these perturbations. Examples include seismic perturbations
that limit the optimal stability of macroscopic references, temperature radiation leading to the
black-body shift (Section 7.1.3.4), or changes in the gravitational potential.

According to the definition each frequency standard and clock realises its proper time and
can be used for numerous applications, e.g., those described in Section 12 and Section 13.
When operated in a gravitational potential, however, the influence of this potential has to be
taken into account if the frequency of the standard has to be compared with other clocks on
a different potential. As was shown (see (12.24)) this influence can be as large as 7 × 10−10

in the vicinity of the geoid. The uncertainty of the potential on the geoid is of the order
of 1m2/s2 [263] which contributes to an uncertainty of about 1 × 10−17 in s/s(TCG). If the
height above the geoid can be determined by the use of geodetic GPS receivers to about
1 m this leads to an uncertainty of about 10−16 in s/s(TCG). Differential GPS together with
levelling networks can now give levelling uncertainties of a few centimetres. For this regime
of accuracy Earth can no longer be regarded as a stable platform. Tidal effects from the
gravitational potentials of the Moon and Sun can change local elevation by several tens of
centimetres. Even a continental drift of about 1 cm/year would lead to a relative frequency
shift of 1 × 10−18 via the first-order Doppler effect. Thus synchronisation of clocks with
respect to coordinate time TCG on the surface of Earth seems to be limited to a few parts in
10−17 [724].

With this order of uncertainty a typical Cs fountain of 1 m height can no longer be regarded
as a local system since according to (12.22) the proper normalised frequency of a much smaller
clock would vary by 1.1 × 10−16 over this vertical distance.

The deep gravitational potential well of Earth makes its surface not the most ideal place
for clocks and one may speculate on future “master clocks” in a space region with a more
flat gravitational potential. For frequency standards and clocks on board terrestrial satellites
Wolf [724] has shown that synchronisation with respect to TCG can be achieved within a few
parts in 1018 limited by the accuracy of the orbits. The required accuracy of position and
velocity are 1 cm and 1 × 10−5 m/s for a satellite at 1000 km altitude and about 0.4 m and
3 × 10−5 m/s for a geostationary satellite, respectively.

If the rapid evolution of the quality of frequency standards and clocks demonstrated in
Fig. 1.2 will go on also in the future one might have to be prepared to put the best clocks in
a microgravity environment. First experiments on the International Space Station (ISS) are
already under way (Section 7.4) but such a multi-purpose space station like the ISS which,
e.g. is loosing height with a rate of about 1 cm/s due to the air drag and needs periodic re-
boosts [884] is still not the ideal microgravity environment. One may envisage that eventually
such atomic “master clocks in space” will be placed on dedicated satellites.
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π pulse 137
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ac Josephson effect 441
ac Stark shift 161
accuray 5
active standard 3
Airy function 101
aliasing 76
alkaline earth atoms 304, 307
Allan variance 51
amplitude modulation 14
amplitude modulator 362
anti-bonding states 124
aperture synthesis telescope 414
atomic fountain 218
auto-tuning 239
autocorrelation function 54
axial modes 105

backward wave oscillator 365
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beat frequency 71
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black-body shift 161
Bloch sphere 138
Bloch–Siegert shift 136
Bode plot 33, 40
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Born–Oppenheimer approximation 125
Bose–Einstein condensate 176, 459
boundary conditions 84, 93

Bragg case 360
Bragg reflector 378
Breit–Rabi formula 163
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C field 206
C/A code 406
calendar 6
capture range 36
carrier 16
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central-field approximation 118
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characteristic exponent 318
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Circular T 390
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closed transition 334
coefficient of thermal expansion 114
coherence length 357
coherent population trapping, see also CPT
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coherent spin state 456
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collision parameter 156
collisions 156, 168
common clock experiment 411
common-view time transfer 398
contrast 426
convolution theorem 61
coordinate time 391, 393
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CPT theorem 244
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critical phase matching 359
cycling transition 217
cyclotron frequency 323
cyclotron frequency, modified 325
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dark states 143
de Sitter 423
dead time 50
Deep Space Network 424
delta function 19
density matrix 143
density operator 143
Dick effect 78, 223
Dicke criterion 249
Dicke regime 168
difference frequency generation 356
differential GPS 410
diffraction-free beam 108
Dirac delta function 19
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distributed phase shift 211
Doppler cooling 331
Doppler effect 150
Doppler limit 173, 331
Doppler shift 152
Doppler temperature 173
double balanced mixer 273
Dunham coefficients 128
DUT: Device Under Test 71
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Earnshaw theorem 176
ECDL: Extended Cavity Diode Laser 294
effective magnetic moment 205
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Einstein equivalence principle 244
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electro-optic modulator 362
electron shelving 308, 334
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equivalence principle 442
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error signal 34
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Extended Cavity Diode Laser 293, 294, 302
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extraordinary beam 356
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Fabry–Pérot-type diode lasers 286
feedback 31
Feshbach resonance 158
fictitious spin 138
filling factor 233
fine structure 120
fine structure constant 118, 119
finesse 102
flicker floor 63
Floquet solution 318
Fock states 449
FORT: Far Off-Resonant Trap 179
four-wave mixing 359
Fourier transformation 18
Franck–Condon principle 127
free spectral range 101
frequency chirp 375
frequency comb generator 364
frequency domain 14
frequency measurement chain 365
frequency modulation 14
frequency multiplication chain 365
frequency synthesis 304
fundamental mode 109
FWHM: Full Width at Half Maximum 22

Gaussian wave 107
GDOP: Geometrical Dilution of Precision 407
general relativity 391
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GLONASS: Global Navigation Satellite Sys-

tem 390, 403
GNSS: Global Navigation Satellite System
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golden rules of operational amplifiers 41
GPS 390, 403
grating equation 294
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gravitational red shift 396
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ground wave 401
group velocity 376
group velocity dispersion 375, 376

H maser, active 230
H maser, passive 230
Hänsch–Couillaud technique 268
half-wave voltage 362
Hamiltonian 118
Heisenberg limit 446
Heisenberg uncertainty principle 24
Henry’s parameter 288
Hermite polynomials 109
Hermite–Gauss modes 109
heterodyne technique 71
high-field seeker 164, 175, 177
holey fibre 379
homodyne interferometer 426
homogeneous broadening 146, 258
hot-wire detector 206
hyperbolic secans pulse 374
hyperfine structure 120
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inhomogeneous broadening 146, 258
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interaction time 192
intercombination transition 123, 304, 307
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irradiance 155
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ISS: International Space Station 226

Josephson constant 432
Josephson effect 432
Josephson junction 432

Keplerian parameters 405
Kerr effect 373
Kerr lens mode locking 373
Knudsen number 169

Laguerre–Gauss modes 109
Lamb dip 187, 261
Lamb shift 440

Lamb–Dicke regime 230, 315, 328
Landé factor 120
Langmuir–Taylor detector 206
Larmor frequency 235
laser diode, gain-guided 286
laser diode, index-guided 286
LASSO: Laser Synchronization from Station-

ary Orbit 412
leap second 390
light shift 161, 217, 304
line quality factor, Q 9
linear resonator 100
linear trap 321
Littrow configuration 294
local position invariance 244
lock-in amplifier 38
longitudinal modes 105
Lorentz model 159
Lorentzian 22, 102
low-field seeker 164, 177
LS coupling 122
Lyot filter 283

macromotion 321
magic wavelength 461
magnetic polariser 205
magneto-optical trap 181
magnetron frequency 324, 325
magnetron resonator 242, 249
Majorana transitions 177, 213
maser 229
maser, passive 242
Mathieu’s equation 318
maximally entangled state 456
Maxwell distribution 152, 169
MCXO: Microcomputer Compensated Crystal

Oscillator 89
mean value 48
metric tensor 391
Michelson interferometer 427
micromotion 320
millisecond pulsars 417
MIM diode 354
mirror frequencies 20, 147
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tre 429
MJD: Modified Julian Date. 412
mode of a resonator 95
mode partition noise 258
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modified Allan variance 63
modified Julian date 412
modified Schawlow–Townes linewidth 288
modulation frequency 15
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modulation transfer 279
modulation, harmonic 37
modulation, square wave 37
moving molasses 219
multilayer mirror 378

N-sample variance 50
NAVSTAR GPS 403
negative feedback 34
neutron star 416
new moon 6
noise eater 363
non-critical phase matching 359
nuclear magneton 120, 437
number states 449
Nyquist frequency 75
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Oklo phenomenon 442
open-loop gain 40
optical Bloch equations 139, 141
optical molasses 172
optical parametric oscillator 356
optical pumping 143, 144, 216
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oscillation condition 31
overtones 131, 302
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paraxial approximation 106
PARCS: Primary Atomic Reference Clock in
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Parseval’s formula 25
Paschen-Back regime 205
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Refroidissement d’Atomes en Or-
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phase matching 358
phase modulation 14
phase modulation spectroscopy 268, 275
phase modulator 362
phase time 47
phase velocity 376
phasor 13
photoassociation 176
photon recoil 305
piezoelectric effect 363
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PLL: phase lock loop 73
Pockels cell 362
Poisson’s ratio 82
Poissonian probability distribution 449
polarisability 159
Pound–Drever–Hall technique 271
power broadening 155
power build-up 303
power spectral density 25, 56
power spectral density, one-sided 56
power spectral density, two-sided 56
power splitter 31
PPS: Pulse Per Second 204, 207
precision 5
pressure broadening 157, 258
primary frequency standard 4
propagation constant 375
proper normalised frequency 395
proper relative frequency 395
proper time 393
pseudo range 404
pseudo spin 138
pseudopotential 320
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Q factor 9, 24
quadrature amplitudes 13
quality factor 24
quantum Hall effect 350, 441
quantum projection noise 310
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Rabi angle 137, 198
Rabi frequency 135
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Rabi pulling 212
radio frequency heating 327
radio frequency trap 315
radius of curvature 107
Raman resonance, two-photon 144
Ramsey excitation 192, 338
Ramsey pulling 212
Rayleigh range 107, 108
reactance 86
realisation of a unit 421
recoil limit 307
recoil shift 198
relaxation oscillations 290, 291
release and recapture 185
resonator 81
resonator, optical 105
rf trap 315
Riefler clock 7
RIN: Relative Intensity Noise 56
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ro-vibronic structure 127
rotating wave approximation 21, 136
Rydberg constant 118, 119, 440

SA: Selective Availability 409
Sagnac effect 396
saturable absorber 373
saturation broadening 155, 258
scattering rate 179
Schawlow–Townes linewidth 66
Schrödinger equation 118, 133
second harmonic generation 356
second-order Doppler shift 152, 306
secular frequency 321
selection rules 121, 127
self-focussing 373
self-injection locking 292
self-phase modulation 375
self-referenced optical comb 383
sensitivity function 78
servo element 34
servo signal 34
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Mirror 373
Shortt clock 8
shot noise 449
SI: International System of Units 388

sifting property 19
single electron tunnelling pump 435
Sisyphus cooling 173
skin depth 97
sky wave 401
slow pulsar 417
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spectral function 18
speed of light in vacuum 423
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spin-orbit coupling 120
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Stark effect 159
stationary process 49
sum frequency generation 356
supercontinuum generation 380
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synchrotron radiation 433
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TCXO: Temperature Compensated Crystal
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TE field 93
TEC: Total Electron Count 409
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time dilation 396
time dilation shift 151
time domain 14, 18
time scale 6, 388
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time-of-flight method 423
TM field 93
transfer function 32–34, 61
transfer oscillator 367, 383
transverse electric 93
transverse magnetic 93
tropical year 6
troposphere 409
TT: Terrestrial Time 395
two-sample variance 50
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uncertainty 5
uncertainty relation 446
unidirectional device 284, 300
unity-gain frequency 40
URE: User-Equivalent Range Error 406
UT: Universal Time 388
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V system 334
vacuum state 449
variance 49
VCSEL: Vertical-Cavity Surface Emitting

Laser 252
VCXO: Voltage Controlled Crystal Oscillator

87, 229
Verdet constant 301

verge-and-foliot escapement 7
vernal equinox 405
visibility 426
VLBI: Very Long Baseline Interferometry

245, 414
von Klitzing effect 441
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walking wave 220
wall shift 238
WGS84: World Geodetic System of 1984 404
whispering gallery modes 98, 112
white noise 58
Wiener–Khintchine theorem 56, 57

Young’s modulus 82

Zacharias fountain 218
Zeeman shift 180
Zeeman splitting 162


	Frequency Standards Basics and Applications
	Contents
	Preface
	1 Introduction
	1.1 Features of Frequency Standards and Clocks
	1.2 Historical Perspective of Clocks and Frequency Standards
	1.2.1 Nature’s Clocks
	1.2.2 Man-made Clocks and Frequency Standards


	2 Basics of Frequency Standards
	2.1 Mathematical Description of Oscillations
	2.1.1 Ideal and Real Harmonic Oscillators
	2.1.2 Amplitude Modulation
	2.1.3 Phase Modulation

	2.2 Oscillator with Feedback
	2.3 Frequency Stabilisation
	2.3.1 Model of a Servo Loop
	2.3.2 Generation of an Error Signal

	2.4 Electronic Servo Systems
	2.4.1 Components
	2.4.2 Example of an Electronic Servo System


	3 Characterisation of Amplitude and Frequency Noise
	3.1 Time-domain Description of Frequency Fluctuations
	3.1.1 Allan Variance
	3.1.2 Correlated Fluctuations

	3.2 Fourier-domain Description of Frequency Fluctuations
	3.3 Conversion from Fourier-frequency Domain to Time Domain
	3.4 From Fourier-frequency to Carrier-frequency Domain
	3.4.1 Power Spectrum of a Source with White Frequency Noise
	3.4.2 Spectrum of a Diode Laser
	3.4.3 Low-noise Spectrum of a Source with White Phase Noise

	3.5 Measurement Techniques
	3.5.1 Heterodyne Measurements of Frequency
	3.5.2 Self-heterodyning
	3.5.3 Aliasing

	3.6 Frequency Stabilization with a Noisy Signal
	3.6.1 Degradation of the Frequency Stability Due to Aliasing


	4 Macroscopic Frequency References
	4.1 Piezoelectric Crystal Frequency References
	4.1.1 Basic Properties of Piezoelectric Materials
	4.1.2 Mechanical Resonances
	4.1.3 Equivalent Circuit
	4.1.4 Stability and Accuracy of Quartz Oscillators

	4.2 Microwave Cavity Resonators
	4.2.1 Electromagnetic Wave Equations
	4.2.2 Electromagnetic Fields in Cylindrical Wave Guides
	4.2.3 Cylindrical Cavity Resonators
	4.2.4 Losses due to Finite Conductivity
	4.2.5 Dielectric Resonators

	4.3 Optical Resonators
	4.3.1 Reflection and Transmission at the Fabry–Pérot Interferometer
	4.3.2 Radial Modes
	4.3.3 Microsphere Resonators

	4.4 Stability of Resonators

	5 Atomic and Molecular Frequency References
	5.1 Energy Levels of Atoms
	5.1.1 Single-electron Atoms
	5.1.2 Multi-electron Systems

	5.2 Energy States of Molecules
	5.2.1 Ro-vibronic Structure
	5.2.2 Optical Transitions in Molecular Iodine
	5.2.3 Optical Transitions in Acetylene
	5.2.4 Other Molecular Absorbers

	5.3 Interaction of Simple Quantum Systems with Electromagnetic Radiation
	5.3.1 The Two-level System
	5.3.2 Optical Bloch Equations
	5.3.3 Three-level Systems

	5.4 Line Shifts and Line Broadening
	5.4.1 Interaction Time Broadening
	5.4.2 Doppler Effect and Recoil Effect
	5.4.3 Saturation Broadening
	5.4.4 Collisional Shift and Collisional Broadening
	5.4.5 Influence of External Fields
	5.4.6 Line Shifts and Uncertainty of a Frequency Standard


	6 Preparation and Interrogation of Atoms and Molecules
	6.1 Storage of Atoms and Molecules in a Cell
	6.2 Collimated Atomic and Molecular Beams
	6.3 Cooling
	6.3.1 Laser Cooling
	6.3.2 Cooling and Deceleration of Molecules

	6.4 Trapping of Atoms
	6.4.1 Magneto-optical Trap
	6.4.2 Optical lattices
	6.4.3 Characterisation of Cold Atomic Samples

	6.5 Doppler-free Non-linear Spectroscopy
	6.5.1 Saturation Spectroscopy
	6.5.2 Power-dependent Selection of Low-velocity Absorbers
	6.5.3 Two-photon Spectroscopy

	6.6 Interrogation by Multiple Coherent Interactions
	6.6.1 Ramsey Excitation in Microwave Frequency Standards
	6.6.2 Multiple Coherent Interactions in Optical Frequency Standards


	7 Caesium Atomic Clocks
	7.1 Caesium Atomic Beam Clocks with Magnetic State Selection
	7.1.1 Commercial Caesium Clocks
	7.1.2 Primary Laboratory Standards
	7.1.3 Frequency Shifts in Caesium Beam-Clocks

	7.2 Optically-pumped Caesium Beam Clocks
	7.3 Fountain Clocks
	7.3.1 Schematics of a Fountain Clock
	7.3.2 Uncertainty of Measurements Using Fountain Clocks
	7.3.3 Stability
	7.3.4 Alternative Clocks

	7.4 Clocks in Microgravitation

	8 Microwave Frequency Standards
	8.1 Masers
	8.1.1 Principle of the Hydrogen Maser
	8.1.2 Theoretical Description of the Hydrogen Maser
	8.1.3 Design of the Hydrogen Maser
	8.1.4 Passive Hydrogen Maser
	8.1.5 Cryogenic Masers
	8.1.6 Applications

	8.2 Rubidium-cell Frequency Standards
	8.2.1 Principle and Set-up
	8.2.2 Performance of Lamp-pumped Rubidium Standards
	8.2.3 Applications of Rubidium Standards

	8.3 Alternative Microwave Standards
	8.3.1 Laser-based Rubidium Cell Standards
	8.3.2 All-optical Interrogation of Hyperfine Transitions


	9 Laser Frequency Standards
	9.1 Gas Laser Standards
	9.1.1 He-Ne Laser
	9.1.2 Frequency Stabilisation to the Gain Profile
	9.1.3 Iodine Stabilised He-Ne Laser
	9.1.4 Methane Stabilised He-Ne Laser
	9.1.5 OsO(4) Stabilised CO(2) Laser

	9.2 Laser-frequency Stabilisation Techniques
	9.2.1 Method of Hänsch and Couillaud
	9.2.2 Pound–Drever–Hall Technique
	9.2.3 Phase-modulation Saturation Spectroscopy
	9.2.4 Modulation Transfer Spectrocopy

	9.3 Widely Tuneable Lasers
	9.3.1 Dye Lasers
	9.3.2 Diode Lasers
	9.3.3 Optical Parametric Oscillators

	9.4 Optical Standards Based on Neutral Absorbers
	9.4.1 Frequency Stabilised Nd:YAG Laser
	9.4.2 Molecular Overtone Stabilised Lasers
	9.4.3 Two-photon Stabilised Rb Standard
	9.4.4 Optical Frequency Standards Using Alkaline Earth Atoms
	9.4.5 Optical Hydrogen Standard
	9.4.6 Other Candidates for Neutral-absorber Optical Frequency Standards


	10 Ion-trap Frequency Standards
	10.1 Basics of Ion Traps
	10.1.1 Radio-frequency Ion Traps
	10.1.2 Penning Trap
	10.1.3 Interactions of Trapped Ions
	10.1.4 Confinement to the Lamb–Dicke Regime

	10.2 Techniques for the Realisation of Ion Traps
	10.2.1 Loading the Ion Trap
	10.2.2 Methods for Cooling Trapped Ions
	10.2.3 Detection of Trapped and Excited Ions
	10.2.4 Other Trapping Configurations

	10.3 Microwave and Optical Ion Standards
	10.3.1 Microwave Frequency Standards Based on Trapped Ions
	10.3.2 Optical Frequency Standards with Trapped Ions

	10.4 Precision Measurements in Ion Traps
	10.4.1 Mass Spectrometry
	10.4.2 Precision Measurements
	10.4.3 Tests of Fundamental Theories


	11 Synthesis and Division of Optical Frequencies
	11.1 Non-linear Elements
	11.1.1 Point-contact Diodes
	11.1.2 Schottky Diodes
	11.1.3 Optical Second Harmonic Generation
	11.1.4 Laser Diodes as Non-linear Elements

	11.2 Frequency Shifting Elements
	11.2.1 Acousto-optic Modulator
	11.2.2 Electro-optic Modulator
	11.2.3 Electro-optic Frequency Comb Generator

	11.3 Frequency Synthesis by Multiplication
	11.4 Optical Frequency Division
	11.4.1 Frequency Interval Division
	11.4.2 Optical Parametric Oscillators as Frequency Dividers

	11.5 Ultra-short Pulse Lasers and Frequency Combs
	11.5.1 Titanium Sapphire Laser
	11.5.2 Mode Locking
	11.5.3 Propagation of Ultra-short Pulses
	11.5.4 Mode-locked Ti:sapphire Femtosecond Laser
	11.5.5 Extending the Frequency Comb
	11.5.6 Measurement of Optical Frequencies with fs Lasers


	12 Time Scales and Time Dissemination
	12.1 Time Scales and the Unit of Time
	12.1.1 Historical Sketch
	12.1.2 Time Scales

	12.2 Basics of General Relativity
	12.3 Time and Frequency Comparisons
	12.3.1 Comparison by a Transportable Clock
	12.3.2 Time Transfer by Electromagnetic Signals

	12.4 Radio Controlled Clocks
	12.5 Global Navigation Satellite Systems
	12.5.1 Concept of Satellite Navigation
	12.5.2 The Global Positioning System (GPS)
	12.5.3 Time and Frequency Transfer by Optical Means

	12.6 Clocks and Astronomy
	12.6.1 Very Long Baseline Interferometry
	12.6.2 Pulsars and Frequency Standards


	13 Technical and Scientific Applications
	13.1 Length and Length-related Quantities
	13.1.1 Historical Review and Definition of the Length Unit
	13.1.2 Length Measurement by the Time-of-flight Method
	13.1.3 Interferometric Distance Measurements
	13.1.4 Mise en Pratique of the Definition of the Metre

	13.2 Voltage Standards
	13.3 Measurement of Currents
	13.3.1 Electrons in a Storage Ring
	13.3.2 Single Electron Devices

	13.4 Measurements of Magnetic Fields
	13.4.1 SQUID Magnetometer
	13.4.2 Alkali Magnetometers
	13.4.3 Nuclear Magnetic Resonance

	13.5 Links to Other Units in the International System of Units
	13.6 Measurement of Fundamental Constants
	13.6.1 Rydberg Constant
	13.6.2 Determinations of the Fine Structure Constant
	13.6.3 Atomic Clocks and the Constancy of Fundamental Constants


	14 To the Limits and Beyond
	14.1 Approaching the Quantum Limits
	14.1.1 Uncertainty Relations
	14.1.2 Quantum Fluctuations of the Electromagnetic Field
	14.1.3 Population Fluctuations of the Quantum Absorbers

	14.2 Novel Concepts
	14.2.1 Ion Optical Clocks Using an Auxiliary Readout Ion
	14.2.2 Neutral-atom Lattice Clocks
	14.2.3 On the Use of Nuclear Transitions

	14.3 Ultimate Limitations Due to the Environment

	Bibliography
	Index


