#### Errata

Title & Document Type: 4262A LCR Meter Operating and Service Manual

Manual Part Number: 04262-90007

Revision Date: October 1983

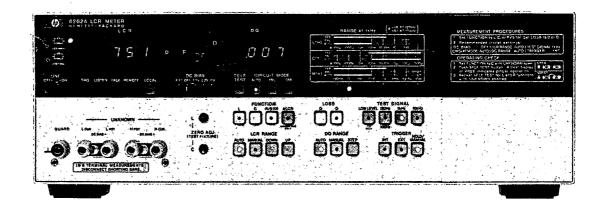
#### **HP References in this Manual**

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

#### **About this Manual**

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

## **Support for Your Product**


Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

## www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.



# 4262A DIGITAL LCR METER





## MANUAL CHANGES

4262A

DIGITAL LCR METER

MANUAL IDENTIFICATION

Model Number: 4262A

Date Printed: OCT. 1983

Part Number: 04262-90007

This supplement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after the printing of the manual.

To use this supplement:

Make all ERRATA corrections.

Make all appropriate serial number related changes indicated in the tables below.

| SERIAL PREFIX OR NUMBER                 | MAKE MANUAL CHANGES | SERIAL PREFIX OR NUMBER | MAKE MANUAL CHANGES |
|-----------------------------------------|---------------------|-------------------------|---------------------|
| A11                                     | 1                   |                         |                     |
|                                         |                     |                         | ·                   |
|                                         |                     |                         |                     |
| *************************************** |                     |                         |                     |
|                                         |                     |                         |                     |

► NEW ITEM

## ERRATA

Page 2-8, Table 2-1:

Add the following item to the option 101 (HP-IB) components.

PN 2190-0577

2ea.

Spring Washer

Page 3-22, Figure 3-9:

Delete the following sentence from beneath the table in step 3: "\*Bias current when +40V is applied to DC BIAS connector."

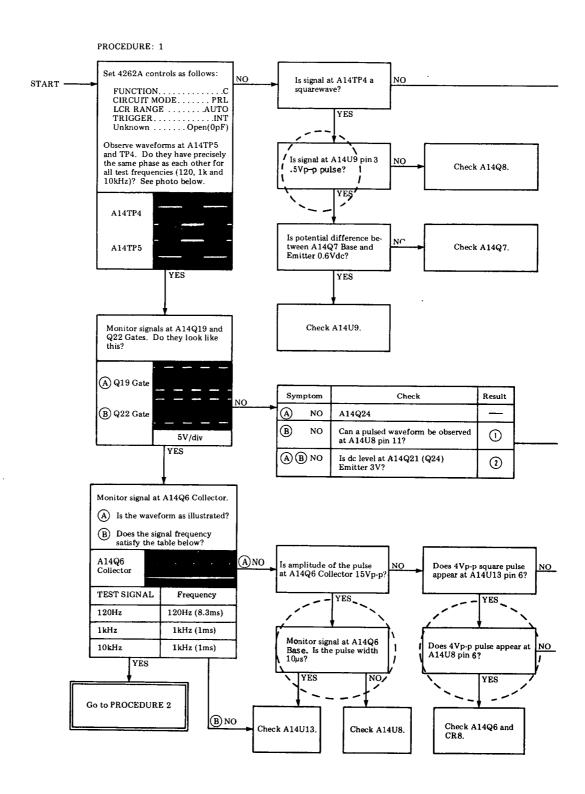
#### NOTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

Date/Div: Sep. 19, 1984/33

Page

1 of 4




▶ Page 4-24, Figure 4-9: Correct the TTL outputs table in Figure 4-9 as follows:

| Comparison | TTL  | TTL output pins* |      |  |  |  |
|------------|------|------------------|------|--|--|--|
| LCR        | 19   | 20               | 45   |  |  |  |
| HIGH       | 0.C. | LOW              | LOW  |  |  |  |
| IN         | LOW  | LOW              | 0.0. |  |  |  |
| LOW        | LOW  | 0.C.             | LOW  |  |  |  |
| DQ         | 15   | 16               | 41   |  |  |  |
| HIGH       | 0.C. | LOW              | LOW  |  |  |  |
| IN         | LOW  | LOW              | 0.0. |  |  |  |
| LOW        | LOW  | 0.C.             | LOW  |  |  |  |

- \* TTL low-level output is indicated as LOW, and open-collector turn-off state is indicated as O.C.
- ▶ Page 8-47, Figure 8-29: Change the part number for the power transformer to 9100-0865.

Page 8-53, Figure 8-39, Correct the flow diagram as shown below:



## CHANGE 1

## ▶ Page 1-10, Table 1-4:

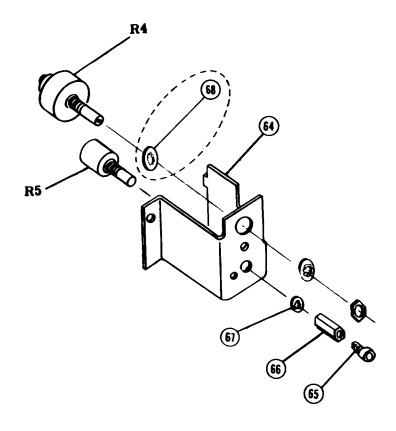

Change the recommended oscilloscope to the HP 1740A.

Table 6-3: Change the table as shown below:

| Reference<br>Designation | HP Part<br>Number | Description                 |
|--------------------------|-------------------|-----------------------------|
| A14 Q4                   | 1855-0570         | TRANSISTOR J-FET N-CHAN SI  |
| R5 (ZERO ADJ L)          | 2100-4086         | RESISTOR-VAR 500 10%        |
| 66                       | 04262-24004       | NUT-HEX-DBL-CHAM 1/4-32-THD |
| 68                       | 2190-0016         | WASHER-LK INTL T NO3/8      |

## Page 6-25:

Add a washer (reference designation (1)) to the illustration, as shown below:





## OPERATING AND SERVICE MANUAL

## MODEL 4262A LCR METER

(including Options 001, 004, 010, and 101)

#### SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 2022J

With changes described in Section  $\mathbb{W}$ , this manual also applies to instruments with serial numbers prefixed 1710J, and 1739J

For additional important information about serial numbers, see INSTRUMENTS COVERED BY MAN-UAL in Section I.

© COPYRIGHT: YOKOGAWA-HEWLETT-PACKARD, LTD., 1977 9-1, TAKAKURA-CHO, HACHIOJI-SHI, TOKYO, JAPAN

Printed: OCT, 1983

Manual Part No. 04262-90007 Microfiche Part No. 04262-90057

## TABLE OF CONTENTS

| Section | Title                                          | Page         | Section | ì           | Title                                   | Page   |
|---------|------------------------------------------------|--------------|---------|-------------|-----------------------------------------|--------|
| I GE    | NERAL INFORMATION                              | 1-1          | 3-      | 30.         | Terminal Configuration                  | .3-10  |
| 1-      | I. Introduction                                | 1-1          | 3-      | 32.         | Offset Adjustment                       | .3-10  |
| 1       | L. Description                                 | 1-1          |         | <b>4</b> 0. | Option Operation                        | .3-27  |
| 1-8     | 3. Specifications                              | 1-7          | 3-      | 42.         | Option 001: BCD Parallel Data           |        |
| 1-1     |                                                |              |         |             | Output                                  | 3-27   |
|         | <ol> <li>Instruments Covered by Man</li> </ol> |              | 3-      | 44.         | Output Data and Pin                     |        |
| 1 - :   | 18. Options                                    | 1-8          |         |             | Assignment                              | 3-27   |
| 1-3     | 20. Option 001                                 | 1-8          | 3-      | 46.         | Alternate Output of LCR and             |        |
| 1 - 3   | 22. Option 004                                 | 1-8          |         |             | D/Q Data                                |        |
| 1-3     | 24. Option 101                                 | 1-8          | 3-      | 47.         | Output Timing                           |        |
| 1-2     | 26. Option 010                                 | 1-8          |         | 49.         | Option 004-COMPARATOR                   | 3-30   |
| 1-3     | 28. Other Options                              | 1-8          | 3-      | 51.         | Front Panel Features                    |        |
| 1 - 3   | 31. Accessories Supplied                       | 1-8          |         |             | (Figure 3-42)                           | 3-30   |
| 1-3     | 33. Equipment Available                        | 1-8          | 3-      | 52.         | LIMIT Setting Warning                   | 3-31   |
| ** TAT  | TO A T. T. A COTON                             | 9 1          | 3-      | 53.         | OUTPUT Connector Decision               |        |
|         | STALLATION                                     |              |         |             | Output                                  | 3-31   |
| 2-1     | *                                              |              | 3-      | 60.         | Option 101: HP-IB                       | 3-32   |
| 2-3     | •                                              |              | 3-      | 62.         | Connection to HP-IB Controller          | r 3-32 |
| 2-5     | · •                                            |              | 3-      | 63.         | HP-IB Status Indicator                  | 3-32   |
| 2-0     |                                                |              | 3-      | 64.         | LOCAL Switch                            | 3-32   |
| 2-8     |                                                |              | 3-      | 65.         | HP-IB Interface Capabilities            | 3-32   |
| 2-      |                                                |              | 3-      | 66.         | Source and Acceptor                     |        |
| 2-      |                                                |              |         |             | Handshake: SH1, AH1                     | 3-32   |
| 2-3     | 1                                              |              | 3-      | 67.         | Talker Capability: T5                   |        |
| 2-:     | •                                              | 2-3          | 3-      | 68.         | Functions Related to                    |        |
| 2-2     |                                                | 0 0          |         |             | Talker Capability                       | 3-33   |
|         | 907, 908 and 909                               |              | 3-      | 69.         | Listener Capability: L4.                |        |
| 2-      |                                                |              | 3-      | 70.         | Service Request                         |        |
| 2-3     |                                                |              |         |             | Capability: SR1                         | 3-33   |
| 2-2     |                                                |              | 3-      | 71.         | Remote/Local                            |        |
| 2-2     | <u>*</u>                                       | 2-0          |         |             | Capability: RL1                         | 3-36   |
| 2-3     |                                                | 9.6          | 3-      | 72.         | Device Clear                            |        |
|         | Installation                                   | 4-0          |         |             | Capability: DC1                         | 3-36   |
| 2-3     |                                                | 9.6          | 3-      | 73.         | Device Trigger                          |        |
|         | Installation                                   |              |         |             | Capability: DT1                         | 3-36   |
| 2-3     |                                                | ator         | 3-      | 74.         | ADDRESS Switch                          | 3-36   |
|         | with Option 001 BCD Data                       | 9.0          | 3-      | 75.         | Remote Message Coding                   | 3-36   |
|         | Output Installation                            |              |         |             |                                         |        |
| 2-      |                                                |              | IV P    | ERF         | ORMANCE TEST                            | . 4-1  |
|         | and Data Output Installation                   | 4-0          | 4-      | 1.          | Introduction                            | . 4-1  |
|         |                                                |              | 4-      | 3.          | Equipment Required                      | . 4-1  |
|         |                                                |              | 4-      | 5.          | Test Record                             | . 4-1  |
| III OF  | ERATION                                        | 3_1          | 4-      | 7.          | Calibration Cycle                       |        |
| 3-1     |                                                |              |         |             | Preliminary Operations                  |        |
| 3-3     |                                                |              |         | _           | Calibration of DUT's                    | . 4-4  |
| 3-      |                                                |              | 4-      | 9.          | Measurement Frequency Test              |        |
| 3-      |                                                |              | 4-      | 10.         | Capacitance Accuracy Test               | . 4-8  |
| 3-9     |                                                |              |         | 11.         | Resistance/ESR Accuracy Test            |        |
| 3-1     |                                                |              |         | 12.         | Dissipation Factor Confirmation Check . |        |
| 3-1     |                                                |              | 4-      | 13.         | Inductance Accuracy Test                |        |
| 3-1     |                                                |              |         | 14.         | Internal DC Bias Source Test            |        |
| 3-1     | • •                                            |              | 4-      | 15.         | Offset Adjustment Test                  | 4-20   |
| 3-1     |                                                | 0-1          |         | 16.         | Comparator Test (Option 004 Only)       | 4-22   |
| 0       | selectable function inside cabine              | et) _ 3-9    | 4-      | 17.         | HP-IB Interface Test                    |        |
| 3-2     |                                                |              |         |             | (Option 101 Only)                       | 4-25   |
| 3-2     | •                                              |              |         |             |                                         |        |
| 3-2     |                                                |              |         |             |                                         |        |
| 3-2     |                                                |              |         |             |                                         |        |
|         |                                                | <del>.</del> |         |             |                                         |        |

## TABLE OF CONTENTS

| Sec           | tion           | Title                           | Page           | Section     | Title                           | Page  |
|---------------|----------------|---------------------------------|----------------|-------------|---------------------------------|-------|
| v             | ADJUS          | STMENT                          | 5-1            | 8-11.       | Basic Theory                    | 0_9   |
|               | 5-1.           | Introduction                    | . 5 <u>-</u> 1 | <del></del> | Principles of Operation         | 0 4   |
|               | 5-3.           | Safety Requirements             | . 5-1<br>5-1   | 8-21.       | Block Diagram Discussion        | 0 0   |
|               | 5-7.           | Equipment Required              | . 5-1          | 8-22.       | Analog Section Discussion       |       |
|               | 5-9.           | Factory Selected Components     | . J-1<br>5_1   | 8-23.       | All Oscillator and              | . 0-0 |
|               | 5-12.          | Adjustment Relationships        | . 5-1<br>5-1   | 0-20.       |                                 | 0 0   |
|               | 5-14.          | Adjustment Locations            | 5-1            | 8-25.       | Source Resistor                 |       |
|               | 5-16.          | DUT Adjustment Recommendations  | 5-4            | 8-26.       | A12 Range Resistor              |       |
|               | 5-18.          | Initial Operating Procedure     | . 5-1<br>5-5   | 8-27.       | A13 Process Amplifier           | . 8-8 |
|               | 5-20.          | DC Power Supply Adjustment      |                | 0-21.       | A14 Phase Detector and          |       |
|               | 5-21.          | Nanoprocessor Operating Power   | . 5-0          | 0.00        | Integrator                      |       |
|               | 0-21.          | Voltage Adjustment              | 5 7            | 8-28.       | Digital Control Section         |       |
|               | 5-22.          | A12 Board Offset Adjustment     |                | 8-30.       | A23 Processor and ROM           |       |
|               | 5-22.<br>5-23. |                                 |                | 8-31.       | A21 Keyboard Control            | 8-11  |
|               | 5-24.          |                                 | . 5-9          | 8-32.       | A22 Display Control             |       |
|               | J-24.          | A14 Phase Detector & Integrator | E 14           | 0.00        | & RAM                           |       |
|               | 5-25.          | Adjustment                      | 5-14           | 8-33.       | A2 Display and Keyboard         |       |
|               | J-2J.          | 10kHz Measurement Accuracy      | - 1-           | 8-34.       | Timing Diagram Discussion       |       |
|               | E 90           | Adjustment                      | 5-17           | 8-37.       | Options                         | 8-14  |
|               | 5-26.          |                                 | - 00           | 8-39.       | Option 001 BCD Data             |       |
|               |                | (A12)                           | 5-22           |             | Output (A35)                    | 8-14  |
|               |                |                                 |                | 8-40.       | Option 004 Comparator           |       |
| VI            |                | ACEABLE PARTS                   |                |             | (A4, A5 & A24)                  | 8-15  |
|               | 6-1.           | Introduction                    |                | 8-41.       | Option 101 HP-IB                |       |
|               | 6-3.           | Abbreviations                   |                |             | Compatible (A25)                |       |
|               | 6-5.           | Replaceable Parts List          | . 6-1          | 8-42.       | Troubleshooting                 | 8-16  |
|               | 6-7.           | Ordering Information            | , 6-2          | 8-46.       | Repair                          | 8-26  |
|               | 6-12.          | Direct Mail Order System        | 6-2            | 8-47.       | Removal of Q2 and Q3            | 8-26  |
|               | ·              | Da cot man or der by beem       | , 0-2          | 8-48.       | Line Switch (S1) Removal        |       |
| VII           | MANII          | AL CHANGES                      | 7_1            | 8-49.       | Protective Diode Replacement    |       |
| *             | 7-1.           | Introduction                    |                |             | (CR4, CR5, CR6 and CR7)         | 8-27  |
|               | 7-3.           | Manual Changes                  |                | 8-50.       | ZERO ADJ Control Potentiometer  |       |
|               |                | Manual Changes                  |                |             | (R4 and R5) Replacement         | 8-27  |
| <b>1711</b> 1 | SEDVI          | CE                              | 0 1            | 8-51.       | A2 Keyboard and Display         |       |
| A 111         | 8-1.           | Introduction                    |                |             | Board Disassembly               | 8-27  |
|               | 8-3.           |                                 |                | 8-52.       | Keyboard Switch LED Replacement |       |
|               | 8-5.           | Theory of Operation             |                |             | Product Safety Checks           |       |
|               |                | Troubleshooting                 |                |             |                                 | 3 20  |
|               | 8-7.           | Recommended Test Equipment      |                |             |                                 |       |
|               | 8-9.           | Repair                          | 8-1            |             |                                 |       |

## LIST OF TABLES

| Number       | Title                                                       | Page  | Number | Title                                           | Page  |
|--------------|-------------------------------------------------------------|-------|--------|-------------------------------------------------|-------|
| 1-1.         | Specifications                                              | . 1-2 | 5-1.   | Adjustable Components                           | . 5-2 |
| 1-2.         | General Information                                         |       | 5-2.   | Factory Selected Components                     |       |
| 1-3.         | Equipment Available                                         | . 1-9 | 5-3.   | DUT's Recommended for                           |       |
| 1-4.         | Recommended Test Equipment                                  | 1-10  |        | Making Adjustments                              | . 5-4 |
|              | • •                                                         |       | 5-4.   | Adjustment Requirements                         |       |
| 2-1.         | Option Components                                           | . 2-8 |        | •                                               |       |
|              | •                                                           |       | 6-1.   | List of Reference Designators and Abbreviations | . 6-1 |
| 3-1.         | To at Cianal Taxal                                          | o c   | 6-2.   | Manufacturers Code List                         |       |
| 3-1.<br>3-2. | Test Signal Level                                           | . 3-0 | 6-3.   | Replaceable Parts                               |       |
| 3-2.         | Measurement Ranges                                          |       | 6-4.   | Option 010 Modification                         |       |
| 3-3.<br>3-4. | Annunciation Display Meanings Unusual Operating Indications |       | 7-1.   | Manual Changes by Serial Number.                |       |
| 3-60.        | Remote Program Codes                                        | 3-32  | 7-2.   | Summary of Changes by Assembly.                 |       |
| 3-61.        | Remote Message Coding                                       | 3-33  | 8-1.   | Currently Available Options                     | 8-14  |
| 4 1          |                                                             |       | 8-2.   | Symptoms Likely to Mislead                      |       |
| 4-1.         | Recommended Components for                                  |       | 8-3.   | Front Panel Symptoms of Internal                | 0 -0  |
|              | Accuracy Checks                                             | . 4-6 | ,      | Control Misadjustment                           | 8-19  |
|              |                                                             |       | 8-4.   | Front Panel Isolation Procedure                 |       |

## LIST OF ILLUSTRATIONS

| Number | Title                              | Page | Number | Title Page                              |
|--------|------------------------------------|------|--------|-----------------------------------------|
| 1-1.   | Model 4262A and Accessories        | 1-1  | 4-4.   | Dissipation Factor Confirmation Check   |
| 1-2.   | Serial Number Plate                | 1-7  |        | Setups                                  |
|        |                                    |      | 4-5.   | Inductance Accuracy Test Setup 4-17     |
| 2-1.   | Voltage and Fuse Selection         | 2-2  | 4-6.   | Internal DC Bias Source                 |
| 2-2.   | Power Cable                        |      |        | Test Setup 4-19                         |
| 2-3.   | Rack Mount Kit                     | 2-5  | 4-7.   | Offset Adjustment Test Setup 4-20       |
| 2-4.   | Option Installation Illustrations  | 2-7  | 4-8.   | Comparator Test Setups 4-22             |
|        |                                    |      | 4-9.   | Comparator Output (J6) data format 4-24 |
| 3-1.   | Front Panel Features               | 3-2  | 4-10.  | HP-IB Interface Test Setup 4-25         |
| 3-2.   | Rear Panel Features                | 3-4  | 4-11.  | SRQ Service Routing 4-29                |
| 3-3.   | Test Fixture and Leads             | 3-8  |        |                                         |
| 3-4.   | Measurement Error due to           |      | 5-1.   | Power Supply Voltage Adjustment 5-6     |
|        | Misadjusted ZERO ADJ controls3     | 3-10 | 5-2.   | Nanoprocessor Operating Power           |
| 3-5.   | Conversion between Parallel and    |      |        | Voltage Adjustment Location 5-7         |
|        | Series Equivalents                 | -12  | 5-3.   | A12 Board Offset Adjustment 5-8         |
| 3-6.   | Relationship of Dissipation to     |      | 5-4.   | Waveform at A12Q11 Source 5-9           |
|        | Series and Parallel Resistance3    | 3-13 | 5-5.   | A13 Board Offset Adjustment 5-9         |
| 3-7.   | General Component Measurements3    |      | 5-6.   | Waveform at A13TP1 5-10                 |
| 3-8.   | Semiconductor Device Measurement 3 |      | 5-7.   | Waveform at A13TP2 5-11                 |
| 3-9.   | External DC Bias Circuits3         | -20  | 5-8.   | Waveform at A13TP3 5-12                 |
| 3-40.  | Pin Assignments of Output          |      | 5-9.   | A14 Phase Detector & Integrator         |
|        | Connector and Output Format3       | -28  |        | Adjustment 5-13                         |
| 3-41.  | Timing Chart of BCD Data Output3   |      | 5-10.  |                                         |
| 3-42.  | Front Panel Features               |      | 5-11.  |                                         |
| 3-43.  | Option 004: COMPARATOR3            |      | 5-12.  |                                         |
| 3-44.  | Pin Location of Comparator         |      |        | Adjustment 5-17                         |
|        | Data Output3                       | 3-31 | 5-13.  |                                         |
| 4-1.   | Measurement Frequency Test Setup.  | 4-7  | 6-1.   | Major Mechanical Parts                  |
| 4-2.   | Capacitance Accuracy Test Setup    |      |        | - Exploded View 6-23                    |
| 4-3.   | Resistance Accuracy Test Setup4    | -12  | 6-2.   | Mechanical Parts                        |
| •      | -                                  |      |        | - Exploded View 6-25                    |

#### CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

#### WARRANTY

This Hewlett-Packard instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment, except that in the case of certain components listed in Section 1 of this manual, the warranty shall be for the specified period. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by HP. Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will execute its programming instructions when properly installed on that instrument. HP does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.

#### LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environment specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILTY AND FITNESS FOR A PARTICULAR PURPOSE.

#### **EXCLUSIVE REMEDIES**

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

#### ASSISTANCE

 $\begin{tabular}{ll} Product & maintenance & agreements & and & other & customer & assistance & agreements & are available & for & Hewlett-Packard & products. \end{tabular}$ 

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

#### SAFETY SYMBOLS

General Definitions of Safety Symbols Used On Equipment or In Manuals.



Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage to the instrument.



Indicates dangerous voltage (terminals fed from the interior by voltage exceeding 1000 volts must be so marked).



Protective conductor terminal. For protection against electrical shock in case of a fault. Used with field wiring terminals to indicate the terminal which must be connected to ground before operating equipment.



Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common, as well as providing protection against electrical shock in case of fault. A terminal marked with this symbol must be connected to ground in the manner described in the installation (operating) manual, and before operating the equipment.



Frame or chassis terminal. A connection to the frame (chassis) of the equipment which normally includes all exposed metal structures.



Alternating current (power line).

\_\_\_

Direct current (power line).

\_\_\_

Alternating or direct current (power line).

#### WARNING

A WARNING denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in injury or death to personnel.

#### **CAUTION**

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product.

Note

A Note denotes important information. It calls attention to a procedure, practice, condition or the like, which is essential to highlight.

## LIST OF ILLUSTRATIONS

| Number         | Title                                                          | Page                 | Number | Title                                                     | Page   |
|----------------|----------------------------------------------------------------|----------------------|--------|-----------------------------------------------------------|--------|
| 8-1.<br>8-2.   | Basic Block Diagram                                            |                      | 8-37.  | A13 Process Amplifier Board Assembly Component Locations  | 8-53   |
| 8-3.           | Measurement Principles                                         |                      | 8-38.  | A13 Process Amplifier Board                               | . 0 00 |
| 8-4.           | Offset Control Principle                                       | . 8-6                |        | Assembly Schematic Diagram                                | .8-53  |
| 8-5.           | DC Bias Circuit                                                | . 8-6                | 8-39.  |                                                           |        |
| 8-6.           | Analog Section Block Diagram                                   | . 8-9                |        | Board Troubleshooting Tree(A)                             | . 8-54 |
| 8-7.           | Digital Section Block Diagram                                  | .8-11                | 8-40.  |                                                           |        |
| 8-8.           | Timing Diagram                                                 |                      |        | Board Troubleshooting Tree(B)                             | .8-55  |
| 8-9.           | Option Section Block Diagram                                   |                      | 8-41.  |                                                           |        |
| 8-10.          | How to Use Troubleshooting Guides                              |                      |        | Board Assembly                                            |        |
| 8-11.<br>8-12. | Self Test Function                                             |                      | 0.40   | Component Locations                                       | . 8-57 |
| 8-12.<br>8-13. | Signature Analysis Guide Protective Diode and ZERO ADJ         | .0-23                | 8-42.  | A14 Phase Detector & Integrator                           |        |
| 0-13.          | Control Potentiometer                                          |                      |        | Board Assembly                                            | 0      |
|                | Replacement                                                    | Q_26                 | 0.49   | Schematic Diagram                                         | . 8-57 |
| 8_14           | A2 Keyboard and Display                                        | .0-20                | 8-43.  |                                                           | 0 50   |
| 0-14.          | Board Disassembly                                              | 9.97                 | 0.44   | Assembly Component Locations                              | . 8-59 |
| 8-15.          | Inserting Tubing into Switch Plunger                           | .0-41<br>r Q_2Q      | 8-44.  |                                                           | 0 50   |
| 8-16.          | LED Installation in Switch                                     |                      | 0.45   | Assembly Schematic Diagram                                | . 8-ეყ |
| 8-17.          | Analog and Digital Section                                     | .0-20                | 0-40.  | A22 Display Control & RAM Board                           | 0 01   |
| 0 -1.          | Isolation Procedure                                            | <b>Ω_31</b>          | 0 46   | Assembly Component Locations                              | . 8-01 |
| 8-18.          | Analog Section Troubleshooting                                 | .0-01                | 8-46.  |                                                           | 0 61   |
| <b>5</b> -5.   | Procedure to Assembly Level                                    | 8-33                 | 8-47.  | Assembly Schematic Diagram A23 Processor & ROM Board      | . 0-01 |
| 8-19.          | Digital Section Troubleshooting                                | • 0 00               | 0-41.  | Assembly Component Locations                              | 0 69   |
|                | Procedures                                                     | . 8-35               | 8_48   | A23 Processor & ROM Board                                 | . 0-03 |
| 8-20.          | Schematic Diagram Notes                                        | .8-43                | 0 10.  | Assembly Schematic Diagram                                | 8_63   |
| 8-21.          | Assembly Locations                                             | .8-43                | 8-49.  |                                                           | . 0-00 |
| 8-22.          | Adjustment Locations                                           | .8-43                | 0 10.  | Assembly Component Locations                              | 8-65   |
| 8-23.          | Front Panel Component Locations.                               |                      | 8-50.  | A5 Comparator Keyboard Board                              | . 0 00 |
| 8-24.          | Rear Panel Component Locations                                 |                      |        | Assembly Component Locations                              | . 8-65 |
| 8-25.          | A2 Keyboard & Display Board                                    |                      | 8-51.  |                                                           |        |
|                | Assembly Component Locations                                   | .8-45                |        | A5 Comparator Keyboard Board                              |        |
| 8-26.          | A2 Keyboard & Display Board                                    |                      |        | Assembly Schematic Diagram                                | . 8-65 |
|                | Assembly Schematic Diagram                                     | .8-45                | 8-52.  | A24 Comparator Control Board                              |        |
| 8-27.          | A9 Power Supply Board                                          |                      |        | Diagnostic Flow Diagram                                   | . 8-66 |
|                | Troubleshooting Tree                                           | .8-46                | 8-53.  |                                                           |        |
| 8-28.          | A9 Power Supply Board Assembly                                 |                      |        | Assembly Component Locations                              | .8-67  |
| 0.00           | Component Locations                                            | .8-47                | 8-54.  | A24 Comparator Control Board                              |        |
| 8-29.          | A9 Power Supply Board Assembly                                 |                      |        | Assembly Schematic Diagram                                | . 8-67 |
| 0.00           | Schematic Diagram                                              | .8-47                | 8-55.  |                                                           |        |
| 8-30.          | All OSC & Source Resistor Board                                | 0 40                 |        | Diagnostic Flow Diagram                                   | . 8-68 |
| 0 21           | Troubleshooting Tree                                           | .8-48                | 8-56.  | A25 HP-IB Interface Board                                 |        |
| 8-31.          | A11 OSC & Source Resistor Board                                | 0.40                 |        | Assembly Component Locations                              | . 8-69 |
| 8-32.          | Assembly Component Locations . All OSC & Source Resistor Board | .0-49                | 8-57.  | A25 HP-IB Interface Board                                 |        |
| 0-02.          | Assembly Schematic Diagram                                     | 9 40                 | 0.50   | Assembly Schematic Diagram                                | . 8-69 |
| 8-33.          | Al2 Range Resistor Board                                       | . 0 <del>- 4</del> 8 | 8-58.  | A35 BCD Output Control Board                              | . =0   |
| 0.00.          | Troubleshooting Tree                                           | 8-50                 | 0 50   | Diagnostic Flow Diagram                                   | . 8-70 |
| 8-34.          | A12 Range Resistor Board Assembly                              |                      | 8-59.  | A35 BCD Output Control Board                              | 0 71   |
| ~ ~ .          | Component Locations                                            |                      | 8-60.  | Assembly Component Locations A35 BCD Output Control Board | , v-71 |
| 8-35.          | A12 Range Resistor Board                                       | . 5 01               | 0-00.  | Assembly Schematic Diagram                                | 0 71   |
|                | Assembly Schematic Diagram                                     | . 8-51               |        | Assembly schematic Diagram                                | 0-11   |
| 8-36.          | A13 Process Amplifier Board                                    | V-                   |        |                                                           |        |
|                | Troubleshooting Tree                                           | 8-52                 |        |                                                           |        |

# SECTION I GENERAL INFORMATION

#### 1-1. INTRODUCTION.

1-2. This operating and service manual contains the information required to install, operate, test, adjust and service the Hewlett-Packard Model 4262A Digital LCR Meter. Figure 1-1 shows the instrument and supplied accessories. This section covers specifications, instrument identification, description, options, accessories, and other basic information.

1-3. Listed on the title page of this manual is a microfiche part number. This number can be used to order  $4 \times 6$  inch microfilm transparencies of the manual. Each microfiche contains up to 60 photoduplicates of the manual pages. The microfiche package also includes the latest manual changes supplement as well as all pertinent service notes. To order an additional manual, use the part number listed on the title page of this manual.

#### 1-4. DESCRIPTION.

1-5. The HP Model 4262A LCR Meter is a general

purpose, fully automatic test instrument designed to measure the parameters of an impedance element with high accuracy and speed. The 4262A measures capacitance, inductance, resistance (equivalent series resistance) and dissipation factor or quality factor over a wide range at test frequencies of 120Hz, 1kHz and 10kHz employing a five-terminal connection configuration between the component and the instrument. The measuring circuit for the device to be measured is capable of both parallel and series equivalent circuit measurements and the measured values are displayed by the two three-full digits LED displays on the front panel. A convenient diagnostic function, also featured in the 4262A, is actuated by a SELF TEST switch. This confirms functional operation of the instrument.

1-6. The measuring range for capacitance is from  $0.01 \mathrm{pF}$  to  $19.99 \mathrm{mF}$ , inductance from  $0.01 \mathrm{\mu H}$  to  $1999 \mathrm{H}$ , and resistance from  $1 \mathrm{m}\Omega$  to  $19.99 \mathrm{M}\Omega$ , which are measured with a basic accuracy of 0.2 to 0.3% depending on test signal level, frequency, and measuring equivalent circuit, and at typical measuring speeds of 220 to 260 milliseconds at

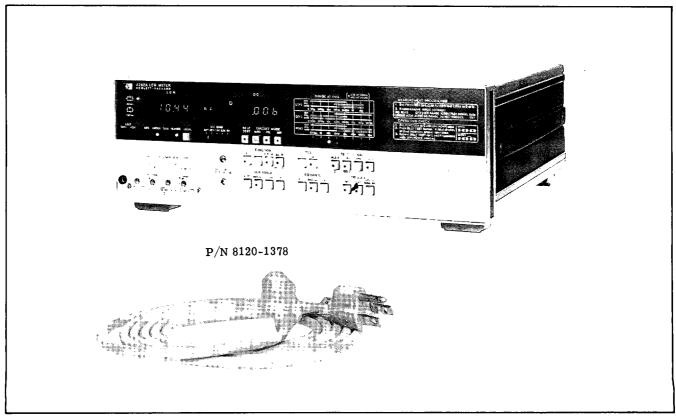



Figure 1-1. Model 4262A and Accessories.

#### Table 1-1. Specifications (Sheet 1 of 4).

#### COMMON SPECIFICATIONS

Parameters Measured: C - D or Q (1/D)

L - D or Q(1/D)

R (ESR) (Loss measurement can be negated by switch on internal board).

Display: 3-1/2 Digit, Maximum Display 1999
(When D value is more than 10, max-

mum display is 199).

Measurement Circuit Modes:
Auto, Parallel, and Series

Measurement Terminals: 5-terminal configuration (high and low terminals for both potential and current leads plus guard).

Range Modes: LCR - Auto and Manual

(up-down)

DQ - Auto and Manual (step)

Measurement Frequencies: 120(100)Hz, 1kHz

and  $10kHz \pm 3\%$ .

Test Signal Level: Normal level: 1Vrms.

Low level: 50mVrms (parallel

capacitance mode only)

Warm-up Time: 15 minutes

Deviation Measurement: When  $\triangle$ LCR key is depressed, the existing measured value is stored as a reference value and displayed value is offset to zero. The range is held and deviation is displayed as the difference between the referenced value and subsequent result. (Deviation spread in counts from -999 to 1999).

Offset Adjustment: Stray capacitance and residual inductance of test jig can be compensated for as follows:

C: up to 10pF L: up to 1 $\mu$ H

Self Test: Annunciates either Pass, or Fail for performance in each of the five basic ranges.

DC Bias:

Internal: 1.5V, 2.2V, 6V (Selectable at front

panel). Accuracy ±5%

External: External DC bias connector on rear panel. Maximum +40V.

Trigger: Internal, External, or Manual

#### **GENERAL**

Operating Temperature & Humidity:

0°C to 55°C at 95% RH(to 40°C)

Power Requirements:  $100/120/220V \pm 10\%$ , 240V + 5% - 10% 48 - 66Hz

Power Consumption: 55VA with any option

Dimensions:  $426(W) \times 147(H) \times 345(D)mm$ 

 $(16-3/4" \times 5-3/4" \times 13-3/4")$ 

Weight: Approximately 8kg (Std)

|                         |              | C-D, C-Q MEASUREMENT                                                                                                               |  |  |  |  |  |  |  |
|-------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Ranges                  | C 1kHz       | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                            |  |  |  |  |  |  |  |
| ŭ                       | D            | .001~19.9 (2 Ranges)                                                                                                               |  |  |  |  |  |  |  |
|                         | Q *1         | 0.05~1000 (4 Ranges)                                                                                                               |  |  |  |  |  |  |  |
| -                       | ₩            | 1V or 50mV (LOW LEVEL)                                                                                                             |  |  |  |  |  |  |  |
| Test Signal<br>Level *2 | <b>⊣⊦</b> ₩- | 10μA 100μA 1mA 10mA 40mA                                                                                                           |  |  |  |  |  |  |  |
| Level *2                | AUTO         | Same as - Mode Same as - Mode                                                                                                      |  |  |  |  |  |  |  |
|                         | -ch-         | 0.2% + 1 counts (Test signal level; 1V)                                                                                            |  |  |  |  |  |  |  |
|                         |              | 0.3% + 2 counts (Test signal level; 50mV)                                                                                          |  |  |  |  |  |  |  |
| C Accuracy *3           | -H-W-        | (At 120Hz, 1kHz) 0.3% + 2 counts 0.5% 1% 4 2 counts 2 counts 2 counts                                                              |  |  |  |  |  |  |  |
|                         | ATTE         | (At 10kHz) 0.3% + 2 counts 1% + 2 5% + 2                                                                                           |  |  |  |  |  |  |  |
|                         | AUTO         | Same as - Mode Same as - Mode                                                                                                      |  |  |  |  |  |  |  |
|                         |              | 0.2% + (2 + 200/Cx) counts At 120Hz, 1kHz (Test signal level; 1V)                                                                  |  |  |  |  |  |  |  |
|                         | _Hh_         | 0.5% + (2 + 200/Cx) counts (1est signal level, 1v) At 10kHz                                                                        |  |  |  |  |  |  |  |
|                         |              | 0.3% + (2 + 1000/Cx) counts At 120Hz, 1kHz                                                                                         |  |  |  |  |  |  |  |
| D(1/Q)<br>Accuracy *3   |              | 1.0% + (2 + 1000/Cx) counts (Test signal level; 50mV) At 10kHz                                                                     |  |  |  |  |  |  |  |
|                         |              | (At 120Hz, 1kHz) $0.3\% + (2 + Cx/500)$ counts $\frac{C_x}{18 + (5 + \frac{C_x}{500})}$                                            |  |  |  |  |  |  |  |
|                         | -H-W-        | (At 10kHz) $0.5\% + (2 + Cx/500) \text{ counts}$ $\left[1\% + (5 + \frac{Cx}{500})\right] \left[5\% + (5 + \frac{Cx}{500})\right]$ |  |  |  |  |  |  |  |
|                         | AUTO         | Same as - Mode Same as - Mode                                                                                                      |  |  |  |  |  |  |  |

Accuracy applies over a temperature range of  $23^{\circ}C \pm 5^{\circ}C$  (At  $0^{\circ}C$  to  $55^{\circ}C$ , error doubles).

Note: C accuracy for higher D values are unspecified.

<sup>\*1</sup> Calculated from D value as a reciprocal number.
\*2 Typical data, varies with value of D and number of counts.

<sup>\*3 ±(%</sup> of reading + counts). Cx is capacitance readout in counts. This accuracy only applies for D values to 1.999. (For higher D values, refer to General Information).

<sup>\*4</sup> (5% + 2 counts) at 1 kHz.

Table 1-1. Specifications (Sheet 3 of 4).

|                         |      |                        |                              | L-D, L-Q N           | 1EASURE!                     | MENT                         |                             |                            |                           |
|-------------------------|------|------------------------|------------------------------|----------------------|------------------------------|------------------------------|-----------------------------|----------------------------|---------------------------|
| Ranges                  | L    | 120Hz<br>1kHz<br>10kHz | 1000μΗ<br>100.0μΗ<br>10.00μΗ | $1000 \mu H$         | 100.0mH<br>10.00mH<br>1000µH | 1000mH<br>100.0mH<br>10.00mH | 10.00H<br>1000mH<br>100.0mH | 100.0H<br>10.00H<br>1000mH | 1000H<br>100.0H<br>10.00H |
|                         | D    |                        |                              | .001~19.9 (2 Ranges) |                              |                              |                             |                            |                           |
|                         | Q*1  |                        |                              | 0.05~100             | 00 (4 Range                  | es)                          |                             |                            |                           |
|                         | 4    | ₹3                     |                              |                      |                              |                              | 1                           | V                          |                           |
| Test Signal<br>Level *2 | -00  | *                      | 40mA                         | 10mA                 | 1mA                          | 100μΑ                        | 10μΑ                        |                            |                           |
|                         | AU   | TO                     |                              | Same as              | -380-₩ <del>-</del>          | Mode                         | Same a                      | s -@-                      | Mode                      |
|                         | 700  |                        |                              | (At 120H             | z, 1kHz)                     | 0.3% + 2                     | 2 counts                    | 1% + 2                     | counts                    |
|                         | 44   | <b>W</b> -             |                              | (At 10               | kHz)                         | 0.3% + 2                     | counts                      | 1% + 2                     | 5% + 2                    |
| L Accuracy*3            |      |                        |                              | 0.                   | (At 120Hz,                   | 1kHz)                        |                             |                            |                           |
|                         | -,00 | <b>~~</b>              | 0.3% + 2 0.2% + 2 counts     |                      |                              |                              |                             | (At 10kHz)                 | )                         |
|                         | AU   | то                     |                              | Same as              | <b>-₩-</b>                   | Mode                         | Same a                      | s -(M)                     | Mode                      |
|                         | ~    | 180                    |                              | (At 120H             | z, 1kHz)                     | 0.3% + (3                    | + Lx/500)                   | 1% + (3 +                  | Lx/500)                   |
| 7 (1)                   |      | <b>*</b> -             |                              | (At 10               | kHz)                         | 0.5% + (3 + Lx/500)          |                             | 1% + (3 + Lx / 500 )       | 5% + (5 + Lx 500 )        |
| D(1/Q)<br>Accuracy      | ~~   |                        |                              | 0.2% + (             | $3 + 200/L_2$                | c) counts                    |                             | (At 120Hz                  | , 1kHz)                   |
|                         | - 00 | <b>\\\</b>             |                              | 0.5% + (             | (3 + 200/L                   | k) counts                    |                             | (At 1kHz)                  |                           |
|                         | AU   | то                     |                              | Same as              | -30·₩-                       | Mode                         | Same a                      | s -(CC)-                   | Mode                      |

<sup>\*1</sup> Calculated from D value as a reciprocal number.

Accuracy applies over a temperature range of 23°C ± 5°C. (At 0°C to 55°C, error doubles).

### R/ESR MEASUREMENT

|                         |                              | <u> </u>                | .,       | LAJONE    |       |         |                    |         |         |
|-------------------------|------------------------------|-------------------------|----------|-----------|-------|---------|--------------------|---------|---------|
| Ranges                  | 120Hz<br>R/ESR 1kHz<br>10kHz | $1000 \mathrm{m}\Omega$ | 10-00Ω   | 100.0Ω    | 1000Ω | 10.00kΩ | $100.0$ k $\Omega$ | 1000kΩ  | 10.00Ms |
| ,                       | 4                            |                         |          |           |       |         | 1V                 | -       |         |
| Test Signal<br>Level *1 | -æ-₩-<br>-IF₩-               | 40mA                    | 10mA     | 1mA       | 100μΑ | 10μΑ    |                    |         |         |
|                         | AUTO                         | Sa                      | me as ⊣⊦ | w-as-w-   | Mode  | Sam     | eas C              | ₩- M    | ode     |
|                         | 4                            |                         |          |           |       | 0.39    | % + 2 cou          | ınts *3 |         |
| Accuracy *2             | -28                          |                         | 0.2      | % + 2 cou | ınts  |         |                    | •       |         |
|                         | AUTO                         | Same as -I-w            |          |           |       |         | ode                |         |         |

<sup>\*1</sup> Typical data, varies with number of counts.

Accuracy applies over a temperature range of 23°C ± 5°C. (At 0°C to 55°C, error doubles.)

<sup>\*2</sup> Typical data, varies with value of D and number of counts.

<sup>\*3 ±(%</sup> of reading + counts). Lx is inductance readout in counts. This accuracy only applies for D values to 1.999.

<sup>\*2</sup>  $\pm$ (% of reading + counts).

<sup>\*3 (0.5% + 2</sup> counts) on 10.00M $\Omega$  range at 10kHz.

<sup>\*\*</sup> Measurement range for ESR (equivalent series resistance) is from  $1m\Omega$  to  $19.99k\Omega$  (typical), which varies with series capacitance and inductance value . . . . refer to "REFERENCE DATA".

#### **OPTIONS**

Option 001: Simultaneous BCD output of LCR and DQ data (positive true). Max. sink current 16mA. Mating connector (P/N 1251-0086). (Alternate BCD output of LCR and DQ data selectable by switch on internal board).

Option 004: Digital comparator (can not be used with OPT 101). Compares measured value with high and low limit settings for LCR or DQ and provides HIGH, IN, LOW comparison outputs.

Limit setting range: 0000 - 1999 for each limit switch.

Comparison output: Visual, relay contact, and TTL level.

Visual: 3 LED's indicate HIGH(red), IN (green), or LOW (red).

Relay contacts:

SPST contacts to circuit common for each HIGH, IN and LOW output. TTL level:

Open collector circuits to high level (open) for each HIGH, IN and LOW outputs (fanout max. 30mA).

Option 101: HP-IB data output & remote control.

Remotely controllable functions:

Function (L, C, R/ESR, △LCR)

Loss (D, Q)

LCR range

DQ range

Circuit mode

Test frequency & level

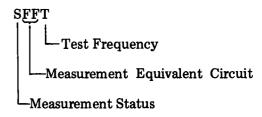
Trigger

Self test

Data output: C - D/Q, L - D/Q, R/ESR Internal function allowable subsets:

SH1, AH1, T5, L4, RL1, DCl, SRl and DTl.

Data output format: Either of two formats may be selected. Switchable at rear panel (no + sign outputs).


Format A.

SFFT±N.NNNE+NN, SF±N.NNCR(LF)

#### Format B.

SFFT±N.NNNE±NN(CR)(LF)

SF±N.NN(CR)(LF)



SF
Loss measurement D or Q
Measurement status

Option 010: 100Hz test frequency instead of 120Hz.

#### ACCESSORIES AVAILABLE

16061A: Test fixture, direct coupled, 5-terminal Two kinds of inserts are included for components with either axial or radial leads. Usable on all ranges of 4262A.

16062A: Test cable with alligator clips, 4-terminal. Useable for low impedance measurements. Measurement range at 1kHz is L  $\leq$  2H, C  $\geq$  200nF and R  $\leq$  10k $\Omega$ . [For L and C measurements, these ranges increase by x10 at 120 (100)Hz and decrease by same factor at 10kHz].

16063A: Test cable with alligator clips, 3-terminal. Useable for high impedance measurements. Measurement range at 1kHz is  $L \ge 3$ mH,  $C \le 10\mu$ F and  $R \ge 200\Omega$ . [For L and C measurement, these ranges increase by x10 at 120(100)Hz and decrease by same factor at 10kHz].

Table 1-2. General Information.

## Measurement Times (typical):

For a 1000 count measurement on a low loss component on a fixed range:

 Test Frequency
 Function
 Meas. Time

 1kHz, 10kHz
 C/L
 220-260ms

 R
 120-160ms

 120(100)Hz
 C/L
 900ms

 R
 700mS

When autorange is selected the following times per range step must be added to the above times:

1kHz, 10kHz 45ms/180ms 120(100)Hz 150ms/670ms

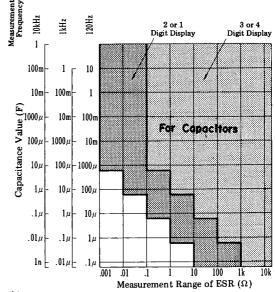
When U-CL is displayed, the faster ranging time is selected.

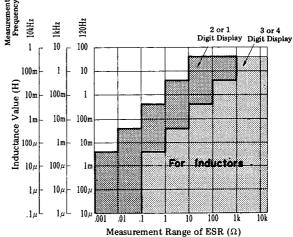
### Reading Rate:

Internal - Approx. 30ms between end of measurement and start of next cycle.

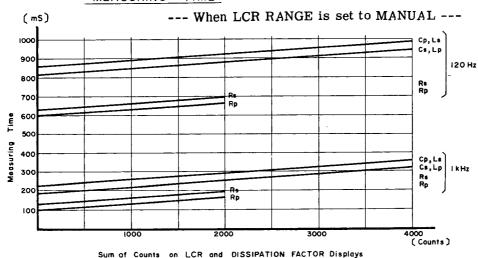
External - Measurement cycle is initiated by external trigger input.

## High D Factor Accuracies:


Typical


 $(\geq 2, \text{ on } 10.00 \text{ range}).$ 

| Circuit Mode | Accuracy           |
|--------------|--------------------|
| ~~~~~        | 5% + (2 + 1000/Cx) |
| o-1⊢-Wo      | 5% + (5 + Cx/500)  |
| ٠٤٨٨٠        | 5% + (5 + Lx/500)  |
| oww.         | 5% + (3 + 200/Lx)  |


### ESR (Equivalent Series Resistance) Measurement:

Following tables show ESR measurement range for capacitors and inductors.









1kHz and 10kHz and about 900 milliseconds at 120Hz. The wide range capability of the 4262A enables a measurement range from small capacitances such as mica capacitors and the parasitic capacitance of a semiconductor device through high capacitances such as the measurement of electrolytic capacitors to be covered. A wide range of inductance measurements from the inductance of a high frequency transformer to that of a power transformer can be measured. The wide resistance range permits the measurement of wirewound resistors through the measurement of solid resistors. In parallel capacitance measurements, either a test signal level of 1Vrms, or 50mVrms can be selected.

1-7. The 4262A has the capability of making capacitance, inductance, and resistance deviation measurements. This function is enabled by pushing the  $\Delta$  LCR switch to display the deviation of a reference value. When the  $\Delta$  LCR switch is depressed the reference value is obtained and memorized from the preceding measurement. The practical use of this feature is evident when it is desired to make a measurement on a variable capacitor: First, the minimum value is measured, then the  $\triangle$ LCR button is pushed. Minimum to maximum capacitance is now displayed as the capacitor is rotated through its range. For parallel capacitance measurements, test signal levels of either 1Vrms or 50mVrms may be selected. Other versatile 4262A capabilities and features are, for example, the use of internal and external dc bias voltages, LC zero adjustment, and options providing BCD output, HP-IB interfacing capability, or a comparator function.

#### 1-8. SPECIFICATIONS.

1-9. Complete specifications of the Model 4262A LCR Meter are given in Table 1-1. These specifications are the performance standards or limits against which the instrument is tested. The test procedures for the specifications are covered in Section IV Performance Tests. Table 1-2 lists gen-

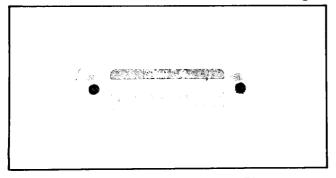



Figure 1-2. Serial Number Plate.

eral information. General information is not specifications but is typical characteristics included as additional information for the operator. When the 4262A LCR Meter is shipped from the factory, it meets the specifications listed in Table 1-1.

#### 1-10. SAFETY CONSIDERATIONS.

- 1-11. The Model 4262A LCR Meter has been designed to conform to the safety requirements of an IEC (International Electromechanical Committee) Safety Class I instrument and is shipped from the factory in a safe condition.
- 1-12. This operating and service manual contains information, cautions, and warnings which must be followed by the user to ensure safe operation and to maintain the instrument in a safe condition.

## 1-13. INSTRUMENTS COVERED BY MANUAL.

- 1-14. Hewlett-Packard uses a two-section nine character serial number which is marked on the serial number plate (Figure 1-2) attached to the instrument rear panel. The first four digits and the letter are the serial prefix and the last five digits are the suffix. The letter placed between the two sections identifies country where instrument was manufactured. The prefix is the same for all identical instruments; it changes only when a change is made to the instrument. The suffix, however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the serial number prefix(es) listed under SERIAL NUMBERS on the title page.
- 1-15. An instrument manufactured after the printing of this manual may have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates the instrument is different from those described in this manual. The manual for this new instrument may be accompanied by a yellow Manual Changes supplement or have a different manual part number. This supplement contains "change information" that explains how to adapt the manual to the newer instrument.
- 1-16. In addition to change information, the supplement may contain information for correcting errors (called Errata) in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with this manual's print date and part number, both of which appear on the manual's title page. Complimentary copies of the supplement are available from Hewlett-Packard. If the serial prefix or number of an instrument is lower than that on title page of this manual, see Section VII Manual Changes.

1-17. For information concerning a serial number prefix that is not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

#### 1-18. **OPTIONS.**

1-19. Options for the Model 4262A LCR Meter are available for adding the following capabilities:

Option 001: BCD Parallel Data Output.

Option 004: Comparator. A comparator function providing GO/NO-GO judgement with HIGH and LOW limits for LCR and D/Q.

Option 101: HP-IB Interface.

Option 010: 100Hz Test Frequency.

(instead of 120Hz)

Options 907, 908 or 909 are handle or rack mount kits. See paragraph 1-29 for details.

Option 910: Extra Manual.

#### 1-20. OPTION 001.

1-21. The 4262A option 001 provides separate BCD parallel data output for L, C, R/ESR and dissipation factor or quality factor simultaneously from the two rear panel connectors. With this option, external data processing devices such as a digital printer can be used with the 4262A.

### 1-22. OPTION 004.

1-23. The 4262A Option 004 provides for GO/NO-GO judgement by comparing L, C, R/ESR and D/Q values to HIGH and LOW limits. Three judgement outputs are provided: LED lamp display, relay contacts, or TTL level voltages (open collectors):

HIGH . .measured value is not less than HIGH limit.

IN . . . . measured value is less than HIGH limit and not less than LOW limit.

LOW ... measured value is less than LOW limit.

#### 1-24. OPTION 101.

1-25. The 4262A Option 101 provides interfacing functions to both transfer L, C, R/ESR and D/Q data to HP Interface Bus line and to receive remote control signals from HP Interface Bus line.

#### 1-26. OPTION 010.

1-27. The 4262A Option 010 provides test frequencies of 100Hz, 1kHz, and 10kHz (100Hz is used instead of standard 120Hz). All other electrical performance is the same as that of standard instrument.

#### 1-28. OTHER OPTIONS.

1-29. The following options provides mechanical parts necessary for rack mounting and hand carrying:

Option 907: Front Handle Kit. Option 908: Rack Flange Kit.

Option 909: Rack Flange and Front Handle

Kit.

The installation procedures for these options are detailed in section II.

1-30. The 4262A Option 910 provides an extra copy of the operating and service manual.

## 1-31. ACCESSORIES SUPPLIED.

1-32. Figure 1-1 shows the HP Model 4262A LCR Meter, power cord (HP Part No. 8120-1378), and fuses (HP Part No. 2110-0007 and 2110-0202).

## 1-33. ACCESSORIES AVAILABLE.

1-34. For effective and easy measurement, three styles of fixtures and leads for the measurement of various components are available. These are listed in Table 1-1. A brief description of each of these fixtures and leads is given in Table 1-3. Refer to Section III Figure 3-3 on page 3-8 for detailed information on these devices.

Table 1-3. Accessories Available.

| Table 1-3. Access | Description                                                                                                                    |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Model             | Description                                                                                                                    |
| HP 16061A         | Test Fixture (direct coupled type) for general measurement of both axial and vertical lead components.                         |
| HP 16062A         | Test Leads (with alligator clips) useful for low inductance, high capacitance or low resistance (less than 10kΩ) measurements. |
| HP 16063A         | Test Leads (with alligator clips) for general component measurement and especially useful for high impedance measurements.     |
| HP P/N 5060-4017  | Extender Board used for <b>4262A</b> troubleshooting.                                                                          |

Table 1-4. Recommended Test Equipment.

| Instrument                                                                                | Critical Specifications                                                                    | Recommended<br>Model            | *Use     |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------|----------|
| Frequency Counter                                                                         | Frequency Range: 40Hz to 10kHz<br>Sensitivity: 50mVrms min.                                | HP 5300A/<br>w 5306A            | P        |
| Capacitance Standard<br>(See para. 4-3)                                                   | Capacitance Values: 100pF, 1000pF, 10nF, 100nF, 1000nF and 10µF                            | GR Type 1413<br>GR Type 1417    | P, A     |
| Resistance Standard<br>(See para. 4-3)                                                    | Resistance Values: $1 k\Omega$ , $10 k\Omega$ , $100 k\Omega$ and $10 M\Omega$             | GR Type 1443-Y                  | P, A     |
| Inductance Standard<br>(See Para. 4-3)                                                    | Inductance Value: 100mH                                                                    | GR Type 1482-L                  | P        |
| DC Voltmeter                                                                              | Voltage Range: 1V to 10V<br>Sensitivity: 10mV min.                                         | HP 5300A/<br>w 5306A            | P, A     |
| Oscilloscope                                                                              | Bandwidth: 10MHz min.<br>Vertical Sensitivity: 5mV/div.<br>Horizontal Sweep Rate: 1µs/div. | HP 180C/<br>w 1801A/<br>w 1821A | A, T     |
| Signature Analyzer                                                                        |                                                                                            | HP 5004A                        | Т        |
| Current Tracer                                                                            |                                                                                            | HP 547A                         | Т        |
| Service Kit                                                                               | Signature Analysis Test Board                                                              | HP P/N:<br>04262-87002          | Т        |
| DUT Box                                                                                   | Comprises L, C and R components whose values are calibrated at 120Hz and 1kHz.             | HP 16361A                       | P, A     |
| DUT Box  Comprises L, C and R components whose values are calibrated at 10kHz.  HP 16362A |                                                                                            | P, A                            |          |
| *P=Performan                                                                              | ace Test A=Adjustments T=Troubleshootin                                                    | ng                              | <u> </u> |

# SECTION II

#### 2-1. INTRODUCTION.

2-2. This section provides installation instructions for the Model 4262A LCR Meter. The section also includes information on initial inspection and damage claims, preparation for using the 4262A, packaging, storage, and shipment.

#### 2-3. INITIAL INSPECTION.

2-4. The 4262A LCR Meter, as shipped from the factory, meets all the specifications listed in Table 1-1. On receipt, inspect the shipping container for damage. If the shipping container or cushioning material is damaged, notify the carrier as well as the Hewlett-Packard office and be sure to keep the shipping materials for carrier's inspection until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1. The procedures for checking the general electrical operation are given in Section III (Paragraph 3-5 Basic Operating Check) and the procedures for checking the 4262A LCR Meter against its specifications are given in Section IV. Firstly, do the self test. If the 4262A LCR Meter is electrically questionable, then do the Performance Tests to determine whether the 4262A has failed or not. If contents are incomplete, if there is mechanical damage or defects (scratches, dents, broken switches, etc.), or if the performance does not meet the self test or performance tests, notify the nearest Hewlett-Packard office (see list at back of this manual). The HP office will arrange for repair or replacement without waiting for claim settlement.

#### 2-5. PREPARATION FOR USE.

#### 2-6. POWER REQUIREMENTS.

2-7. The 4262A requires a power source of 100, 120, 220 Volts ac  $\pm 10\%$ , or 240 Volts ac  $\pm 5\%$ , -10%, 48 to 66Hz single phase. Power consumption is approximately 55 watts.

#### WARNING

IF THIS INSTRUMENT IS TO BE ENERGIZED VIA AN EXTERNAL AUTOTRANSFORMER FOR VOLTAGE REDUCTION, BE SURE THAT THE COMMON TERMINAL IS CONNECTED TO THE NEUTRAL POLE OF THE POWER SUPPLY.

## 2-8. LINE VOLTAGE AND FUSE SELECTION.

#### CAUTION

BEFORE TURNING THE 4262A LINE SWITCH TO ON, VERIFY THAT THE INSTRUMENT IS SET TO THE VOLTAGE OF THE POWER SUPPLIED.

2-9. Figure 2-1 provides instructions for line voltage and fuse selection. The line voltage selection card and the proper fuse are factory installed for the voltage appropriate to instrument destination.

#### **CAUTION**

USE PROPER FUSE FOR LINE VOLTAGE SELECTED.

#### CAUTION

MAKE SURE THAT ONLY FUSES FOR THE REQUIRED RATED CURRENT AND OF THE SPECIFIED TYPE ARE USED FOR REPLACEMENT. THE USE OF MENDED FUSES AND THE SHORT-CIRCUITING OF FUSEHOLDERS MUST BE AVOIDED.

### 2-10. POWER CABLE.

2-11. To protect operating personnel, the

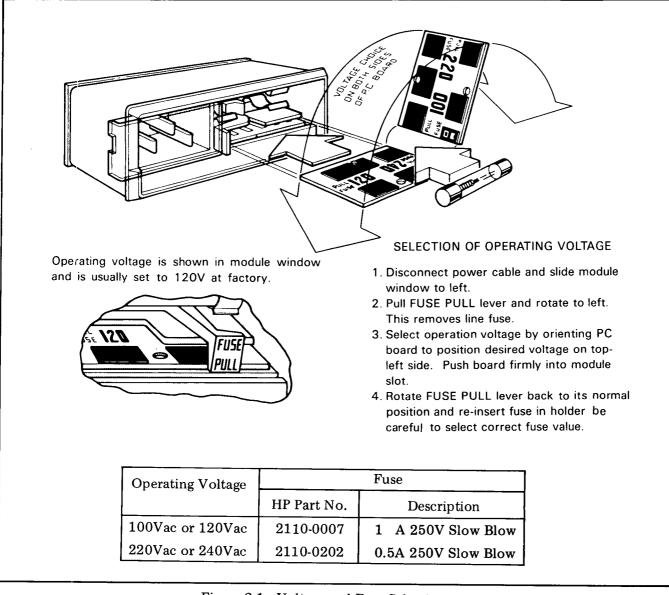



Figure 2-1. Voltage and Fuse Selection.

National Electrical Manufacturer's Association (NEMA) recommends that the instrument panel and cabinet be grounded. The Model 4262A is equipped with a three-conductor power cable which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable is the ground wire.

2-12. To preserve the protection feature when operating the instrument from a two contact outlet, use a three prong to two prong adapter (HP Part No. 1251-8196) and connect the green grounding tab on the adapter to power line ground.

## **CAUTION**

THE MAINS PLUG MUST ONLY BE INSERTED IN A SOCKET OUTLET PROVIDED WITH A PROTECTIVE EARTH CONTACT. THE PROTECTIVE ACTION MUST NOT BE NEGATED BY THE USE OF AN EXTENSION CORD (POWER CABLE) WITHOUT PROTECTIVE CONDUCTOR (GROUNDING).

2-13. Figure 2-2 shows the available power cords, which may be used in various countries including the standard power cord furnished with the instrument. HP Part number, applicable standards for power plug, power cord color, electrical characteristics and countries using each power cord are listed in the figure. If assistance is needed for selecting the correct power cable, contact nearest Hewlett-Packard office.

#### 2-14. Interconnections.

2-15. When an external bias is applied to the sample capacitor through DC BIAS input connectors on the 4262A rear panel, both plus and minus sides of the external power supply should be connected to the plus and minus sides of the 4262A EXT DC BIAS connector, respectively.

#### **CAUTION**

THE MAINS PLUG MUST BE INSERTED BEFORE EXTERNAL CONNECTIONS ARE MADE TO MEASURING AND/OR CONTROL CIRCUITS.

## 2-16. Operating Environment.

- 2-17. Temperature. The instrument may be operated in temperatures from 0°C to +55°C.
- 2-18. Humidity. The instrument may be operated in environments with relative humidities to 95% to 40°C. However, the instrument should be protected from temperature extremes which cause condensation within the instrument.

#### 2-19. Installation Instructions.

2-20. The HP Model 4262A can be operated on the bench or in a rack mount. The 4262A is ready for bench operation as shipped from the factory. For bench operation a two-leg instrument stand is used. For use, the instrument stands are designed to be pulled towards the front of instrument.

## 2-21. Installation of Options 907, 908 and 909.

2-22. The 4262A can be installed in a rack and be operated as a component of a measurement system. Rack mounting information for the 4262A is presented in Figure 2-3.

## 2-23. STORAGE AND SHIPMENT.

#### 2-24. Environment.

2-25. The instrument may be stored or shipped in environments within the following limits:

| Temperature. |      |  | -4 | $0^{\circ}$ C | to +75°C |
|--------------|------|--|----|---------------|----------|
| Humidity     | <br> |  |    |               | to 95%   |
| Altitude     |      |  |    |               | 50,000ft |

The instrument should be protected from temperature extremes which cause condensation inside the instrument.

## 2-26. Packaging.

- 2-27. Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by model number and full serial number.
- 2-28. Other Packaging. The following general instructions should be used for re-packing with commercially available materials:
  - a. Wrap instrument in heavy paper or plastic. If shipping to Hewlett-Packard office or service center, attach tag indicating type of service required, return address, model number, and full serial number.
  - b. Use strong shipping container. A double-wall carton made of 350 pound test material is adequate.
  - c. Use enough shock absorbing material (3 to 4 inch layer) around all sides of instrument to provide firm cushion and prevent movement inside container. Protect control panel with cardboard.
  - d. Seal shipping container securely.
  - e. Mark shipping container FRAGILE to ensure careful handling.
  - f. In any correspondence, refer to instrument by model number and full serial number.

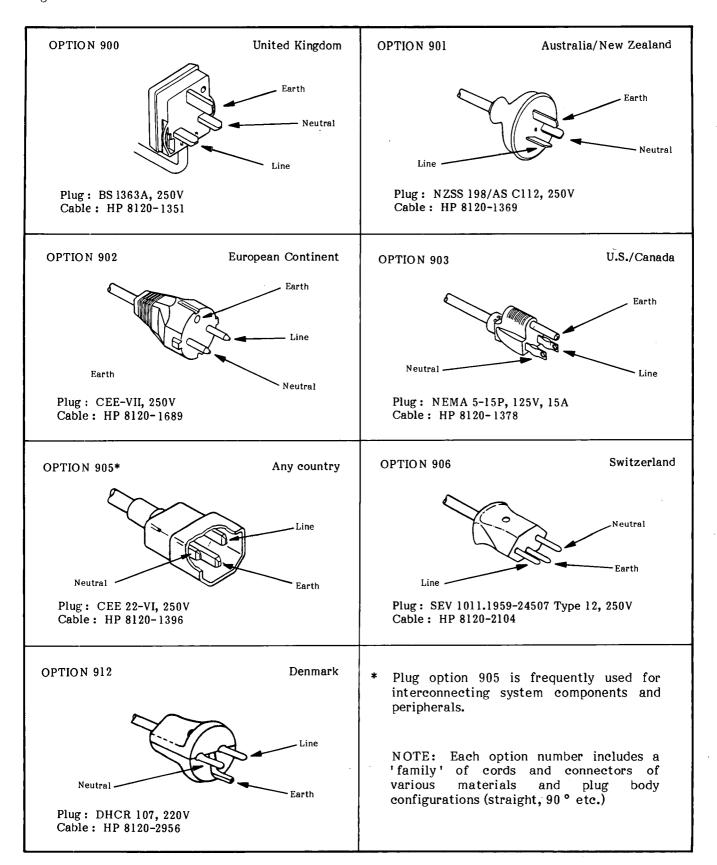
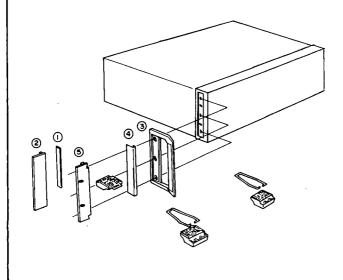




Figure 2-2. Power Cables Supplied.

| Option | Kit<br>Part Number                       | Parts Included                                         | Part Number                             | Q'ty        | Remarks  |
|--------|------------------------------------------|--------------------------------------------------------|-----------------------------------------|-------------|----------|
| 907    | Handle Kit<br>5061-0089                  | Front Handle<br>Trim Strip<br>#8-32 x 3/8 Screw        | 3 5060-9899<br>4 5060-8896<br>2510-0195 | 2<br>2<br>6 | 9.525mm  |
| 908    | Rack Flange Kit<br>5061-0077             | Rack Mount Flange<br>#8-32 x 3/8 Screw                 | ② 5020-8862<br>2510-0193                | 2<br>6      | 9.525mm  |
| 909    | Rack Flange &<br>Handle Kit<br>5061-0083 | Front Handle<br>Rack Mount Flange<br>#8-32 x 3/8 Screw | ③ 5060-9899<br>⑤ 5020-8874<br>2510-0194 | 2<br>2<br>6 | 15.875mm |



- 1. Remove adhesive-backed trim strips (1) from side at right and left front of instrument.
- 2. HANDLE INSTALLATION: Attach front handle (3) to sides at right and left front of instrument with screws provided and attach trim (4) to handle.
- 3. RACK MOUNTING: Attach rack mount flange (2) to sides at right and left front of instrument with screws provided.
- 4. HANDLE AND RACK MOUNTING: Attach front handle 3 and rack mount flange 5 together to sides at right and left front of instrument with screws provided.
- 5. When rack mounting (3 and 4 above), remove all four feet (lift bar at inner side of foot, and slide foot toward the bar).

Figure 2-3. Rack Mount Kit

Section II Paragraphs 2-29 to 2-34

#### 2-29. OPTION INSTALLATION.

2-30. When it is desired to add one or two of the available optional features to a standard 4262A instrument, perform the installation as follows:

Refer to option installation illustrations on facing page.

- a. Push LINE switch to off.
- b. Remove instrument top cover.
- c. Follow the appropriate paragraph below.
- 2-31. OPTION 001 BCD DATA OUTPUT INSTALLATION.
  - a. Remove the left side middle and lower blind covers from the rear panel.
  - b. Install two 50-pin connector assemblies in the openings.
  - c. Set BCD switch of SW1 on A23 board assembly (RED/ORANGE GUIDE, P/N: 04262-66523 or 04262-66623) from OFF to opposite position. This board is located third from front on the right side.
  - d. Connect cable attached to A23 board (shown below) between A23 and A35 BCD Option board assemblies (P/N: 04262-66535). Install A35 in RED/GREEN GUIDE option receptacle.
  - e. Plug 2 each flat cable assemblies from A35 BCD Option board into connector boards of rear panel connector assemblies.
  - f. Install instrument top cover.

## 2-32. OPTION 004 COMPARATOR INSTALLATION.

Refer to Fig 2-4 for installation procedure.

- 2-33. COUPLING OPTION 004 COMPARATOR WITH OPTION 001 BCD DATA OUTPUT INSTALLATION.
  - a. Set CMP (comparator) and BCD option switches of SW1 ON A23 board assemblies (RED/ORANGE GUIDE, P/N: 04262-66523 or 04262-66623) from OFF to opposite position. This board is located third from front on the right side.
  - b. Connect cables attached to A23 board between A23 and A24 comparator option BCD board assembly. No other cable assembly change is necessary for this combination of options.
  - c. Refer to Paragraphs 2-31 and 2-32 for other installation procedures.
- 2-34. OPTION 101 HP-IB REMOTE CONTROL AND DATA OUTPUT INSTALLATION.
  - a. Remove right side blind covers from rear panel.
  - b. Install connector board assembly (P/N: 04262-66503) in the opening and mount with washers and nuts included with assembly.
  - c. Set the HP-IB switch of SW1 on A23 board assembly from OFF to opposite position. The A23 board is located on the right side third from front.
  - d. Connect cable assembly attached to A25 board between A23 and A25 HP-IB option board assemblies (P/N: 04262-66525). Install A25 in RED/GREEN GUIDE option receptacle.
  - e. Plug flat cable assembly from connector board assembly P/N: 04262-66503 into A25 board assembly (installed in RED/GREEN GUIDE receptacle).

OPTION 101 IS NOT COMPATIBLE WITH OPTIONS 001 AND 004.

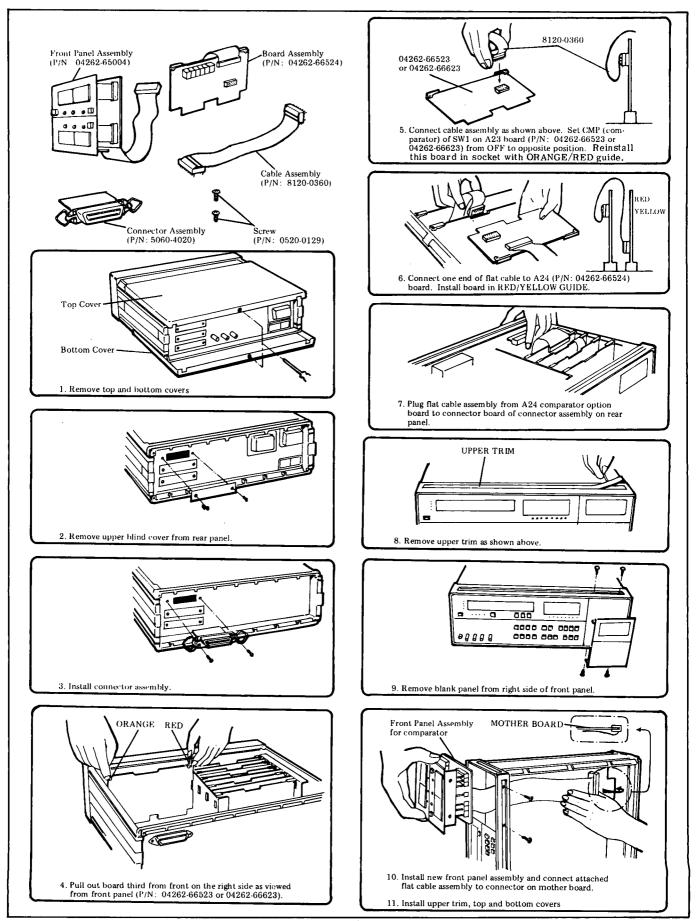



Figure 2-4. Option Installation Illustrations.

Table 2-1. Option Components

|        |                         |                                                                                                 | Comp                       | ponents                                                                                                                        |
|--------|-------------------------|-------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Option | Function                | HP Part No.                                                                                     | Q'ty                       | Description                                                                                                                    |
| 001    | BCD Data<br>Output      | 04262-66535<br>5060-4020<br>8120-0360                                                           | 1<br>2<br>1                | A35 Board Assembly<br>Connector Board Assembly<br>Flat Cable Assembly                                                          |
| 004    | Comparator              | 04262-66544<br>04262-66505<br>04262-66524<br>3100-1201<br>5060-4020<br>8120-0360<br>04262-24003 | 1<br>1<br>1<br>2<br>1<br>1 | A4 Board Assembly A5 Board Assembly A24 Board Assembly Thumbwheel Switch Connector Board Assembly Flat Cable Assembly Standoff |
| 010    | 100Hz Test<br>Frequency | 04262-66911<br>04262-66914                                                                      | 1 1                        | All Board Assembly<br>Al4 Board Assembly                                                                                       |
| 101    | HP-IB<br>·              | 04262-66525<br>04262-66503<br>8120-0360<br>0380-0644                                            | 1<br>1<br>1<br>2           | A25 Board Assembly A3 Board Assembly Flat Cable Assembly Stud for A3 Board Assemby                                             |

Note: To mount Connector Board assemblies, use rear panel blank plate retaining screws (Part No. 0520-0129) removed for the option installation.

# SECTION III OPERATION

#### 3-1. INTRODUCTION.

3-2. This section provides the operating information to acquaint the user with the 4262A LCR Meter. Basic product features and characteristics, measurement procedures for various applications, an operational check of the fundamental electrical functions, and operator maintenance information is presented in this section. Operating cautions throughout the text should be carefully observed.

#### 3-3. PANEL FEATURES.

3-4. Front and rear panel features for the 4262A are described in Figures 3-1 and 3-2. Description numbers match the numbers on the photographs. Other detailed information for panel displays and controls are covered in the Operating Instructions (paragraph 3-7).

### 3-5. SELF TEST (Basic Operating Check).

## WARNING

ANY INTERRUPTION OF THE PROTECTIVE GROUNDING CONDUCTOR INSIDE OR OUTSIDE THE INSTRUMENT OR DISCONNECTION OF THE PROTECTIVE EARTH TERMINAL IS LIKELY TO CAUSE THE INSTRUMENT TO BE DANGEROUS. INTENTIONAL INTERRUPTION IS PROHIBITED.

## WARNING

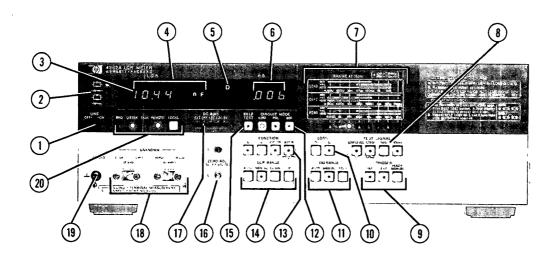
WHENEVER IT IS LIKELY THAT THE PROTECTION OFFERED BY FUSES HAS BEEN IMPAIRED, THE INSTRUMENT MUST BE MADE INOPERATIVE AND BE SECURED AGAINST ANY UNINTENDED OPERATION.

## CAUTION

BEFORE ANY OTHER CONNECTION IS MADE, THE PROTECTIVE EARTH TERMINAL MUST BE CONNECTED TO A PROTECTIVE GROUNDING CONDUCTOR.

3-6. Functional operation of the Model 4262A should be confirmed by the SELF TEST switch before measuring samples of interest. This test can

be done under all conditions of FUNCTION and TEST SIGNAL settings. Tests under certain combined conditions of FUNCTION and TEST SIGNAL settings are done for five ranges. A test for a range ends with a display of PASS (normal operation) or FAIL (abnormal operation) and then next range test is started. Range shifting for this test is done automatically from lower to higher.




All the combinations of FUNCTION and TEST SIGNAL switch settings are listed below. Even if the FUNCTION or TEST SIGNAL switch settings are limited for proposed sample measurement, all combined conditions should be tested.

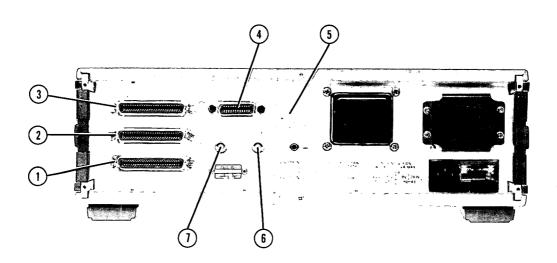
| Pushbutton Switch Setting *                                                                                                                                                                         | UNKNOWN** Connectors                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| (C), (120Hz), (SELF TEST)*** (C), (1kHz), (SELF TEST) (C), (10kHz), (SELF TEST) (C), (LOW LEVEL), (10kHz), (SELF TEST) (C), (LOW LEVEL), (1kHz), (SELF TEST) (C), (LOW LEVEL), (120Hz), (SELF TEST) | Open between<br>HIGH side and<br>Low side   |
| (L), (120 Hz), (SELF TEST) (L), (1 kHz), (SELF TEST) (L), (10 kHz), (SELF TEST) (R/ESR), (10 kHz), (SELF TEST) (R/ESR), (1 kHz), (SELF TEST) (R/ESR), (120 Hz), (SELF TEST)                         | Short between<br>HIGH side<br>and LOW side. |

\* When FUNCTION or TEST SIGNALS switch setting is changed, the SELF TEST switch is automatically disabled. Therefore, whenever a new setting is made, push the SELF TEST switch again.

For \*\* see page 3-5



- ① LINE ON/OFF switch: Turns instrument on and readies instrument for measurement
- 2 Circuit Mode Indicator: LED lamp, next to equivalent measuring circuit being used, lights. Sample connected to UNKNOWN terminals (18) is measured in an equivalent circuit selected by FUNCTION (13) and CIRCUIT MODE (12) switches and is indicated by appropriate LED lamp. Equivalent circuits are shown as electronic circuit symbols at the left of indicator lamps. Desired circuit parameter of component is measured in one of the following selected circuit modes:


| •                                        |                   |
|------------------------------------------|-------------------|
| Parallel capacitance Parallel resistance |                   |
|                                          |                   |
| Series capacitance                       |                   |
| Series resistance                        | <del>-11-w-</del> |
| Parallel inductance                      | -[                |
| Series inductance                        |                   |
| Series resistance                        | -30-W-            |

Trigger Lamp: Turns on during sample measuring period. Turns off during period when instrument is not taking measurement (or hold period). There is one turnon-and-off cycle per measurement. This lamp turns on and off repeatedly when TRIGGER (9) is set to INT.

- 4 LCR Display: Inductance, capacitance or resistance value including the decimal point and unit is displayed in 3-½ digit decimal number from 0000 to 1999. If the sample value exceeds 1999 in a selected range, O-F(Over-Flow) appears in this display. This display also shows PASS or FAIL when SELF TEST is performed.
- 5 D/Q Indicator: In a capacitance or inductance measurement, this indicator indicates which of D (dissipation factor) or Q (quality factor) is displayed in D/Q display 6. In resistance measurement, this indicator is also lit (however, D or Q indication has no meaning and D/Q display 6 is left blank).
- 6 D/Q Display: Value for dissipation factor or quality factor is displayed in capacitance and/or inductance measurement. In resistance measurement, this display is kept blank.
- (1) RANGE Indicator: The range automatically or manually selected is indicated by LED lamp. The table printed above the LED array shows the measurement ranges of the Model 4262A.
- (8) TEST SIGNAL These pushbuttons enable selection of measurement frequency—120Hz, 1kHz or 10kHz and that of low test voltage of the signal applied to sample to be tested. LOW LEVEL switch is effective only in parallel capacitance measurements, supplying a test voltage of 50mVrms. For units equipped with option 010, arrow on pushbutton (120Hz) points to 100Hz.

- TRIGGER: These pushbuttons select trigger mode, INT, EXT or HOLD/MANUAL. INT key provides internal trigger which enables instrument to make repeated automatic measurements. In external trigger mode (EXT), trigger signal should be applied to either of following two connectors: (1) EXT TRIGGER input connector on the rear panel (2) 50 pin connector of Option 001 or 004 on the rear panel. HOLD/MANUAL trigger mode provides trigger signal for one measurement cycle when this key is depressed.
- (10) LOSS: These pushbuttons select whether D or Q value is displayed in the D/Q display (6) in capacitance or inductance measurements.
- D/Q RANGE: These pushbuttons select ranging method for loss measurement. AUTO: Optimum D/Q range is selected by internal logic circuit. MANUAL: D/Q range is fixed to a range. Range change is done by depressing the STEP key on the right.
- (12) CIRCUIT MODE: Appropriate circuit mode for taking a measurement is selected and set with these pushbuttons. A parallel equivalent circuit is selected by PRL key and series equivalent circuit by SER key. When AUTO key is pushed, the instrument automatically selects the appropriate parallel or series equivalent circuit.
- (3) FUNCTION: These pushbuttons select electrical circuit parameter to be measured as follows:
  - C: Capacitance together with dissipation factor (D) or quality factor (Q).
  - L:Inductance with dissipation factor (D) or quality factor (Q).
  - R/ESR: Resistance or Equivalent Series Resistance.
  - △LCR: Difference in L, C, or R value between the value of the sample under test and the internally stored value obtained by a measurement just before △LCR key is depressed.
  - (4) LCR RANGE: These pushbuttons select ranging method for LCR measurement.
    - AUTO: Optimum range for the sample value is automatically selected.

- MANUAL: Measurement range is fixed (even when the sample connected to the UNKNOWN terminals is changed). Range change is done by depressing DOWN or UP key on the right.
- (15) SELF TEST: This pushbutton performs automatic check for checking the basic operation of Model 4262A. If normal operation is confirmed, "PASS" is displayed in LCR display 4. If wrong performance is detected, a display of "FAIL" appears. See paragraph 3-5 for details.
- (b) ZERO Adjustment Controls: These adjustments provide proper compensation for cancelling stray capacitance and residual inductance which are present when a test fixture is mounted on the UNKNOWN terminals. Connectors are kept open for cancelling stray capacitance and shorted for cancelling residual inductance.
- ① DC BIAS Selector Switch: This switch permits selection of internal DC bias voltage applied to sample (1.5Vdc, 2.2Vdc, or 6.0Vdc). When switch is set to EXT, it is used to apply external bias voltage from rear DC BIAS input connectors. OFF position is selected if no bias voltage is necessary.
- (B) UNKNOWN Terminals: Consist of four terminals: High current terminal (Hcur), High potential terminal (Hpot), Low potential terminal (Lpot) and Low current terminal (Lcur). A five-terminal configuration is constructed by adding the GUARD terminal (9). A three-terminal configuration is constructed by shorting High terminals and Low terminals together with shorting bars. Under DC Bias operation, the high terminals have a positive DC voltage with respect to LOW terminals.
- (9) GUARD Terminal: This is connected to chassis ground of instrument and can be used as Guard terminal for increasing accuracy in certain measurements.
- (20) HP-IB Status Indicator and LOCAL switch. LED lamps for SRQ, LISTEN, TALK, and REMOTE which indicate status of interface between the 4262A (Option 101) and HP-IB controller. LOCAL switch enables front panel controls instead of remote control signals from HP-IB line.



- (1) BCD D/Q DATA OUTPUT Connector: BCD parallel data of measured dissipation factor (D) or quality factor (Q) are outputted through this 50 pin connector installed on the 4262A Option 001.
- ② BCD LCR DATA OUTPUT Connector: With Option 001, BCD parallel data for inductance, capacitance and resistance measured values are outputted through this 50 pin connector.
- 3 COMPARATOR OUTPUT Connector: The 4262A Option 004 provides comparator decision outputs for LCR and D/Q through this 50 pin connector.
- 4 HP-IB Digital Bus Connector: This 24 pin connector conveys bus signals and remote programming instructions to the 4262A Option 101 and transmits data from the 4262A Option 101 to the bus.

- Address Switch: This seven section switch sets address code of 4262A Option 101 and TALK ONLY or ADDRESSABLE mode of operation.
- 6 EXT DC BIAS Connector: External dc bias voltage can be applied to the sample up to the maximum voltage of plus 40V through this connector.
- (i) EXT TRIGGER Connector: This connector is used for externally triggering the instrument by inputting an external trigger signal. TRIGGER SWITCH on front panel should be set to EXT.

Model 4262A Section III

\*\* Two HIGH side terminals and two LOW side terminals should be connected with the shorting strap, for each configuration of the UNKNOWN terminals. When the UNKNOWN terminal configuration is not appropriate, for example, shorted (C) or open (L), display will show FAIL 1 (because they result from different causes, FAIL 2 or FAIL 3 are rarely displayed).



\*\*\* Setting change required is only the underlined switch setting.

If FAIL is displayed, check the UNKNOWN terminal configurations as follows:

- (1) That the two HIGH side terminals (H<sub>CUR</sub> H<sub>POT</sub>) and the two LOW side terminals (L<sub>CUR</sub> L<sub>POT</sub>) are properly shorted.
- (2) That short or open conditions properly exist between HIGH and LOW side terminals.
- (3) That GUARD terminal is isolated (open) from both of HIGH and LOW terminals.

If FAIL is still displayed (under the above condition), notify the nearest Hewlett-Packard office with information detailing which combination of settings show FAIL.

During SELF TEST, other controls are automatically set as follows:

| CIRCUIT MODE | SER when FUNCTION     |
|--------------|-----------------------|
|              | is set to L or R/ESR. |
|              | PRL when FUNCTION     |
|              | is set to C.          |
| LOSS         | D                     |
| LCR RANGE    |                       |
| D/Q RANGE    |                       |
| TRICORD      | TNIT                  |

#### NOTE

TO ENSURE CORRECT RESULTS OF SELF-TEST OPERATION IN L AND R MEASUREMENT FUNCTIONS, CONNECT ALL (HIGH AND LOW SIDE) UNKNOWN TERMINALS TOGETHER WITH A LOW IMPEDANCE STRAP (IF THIS SHORT-CIRCUIT IS MADE AT THE ENDS OF THE TEST LEADS, CORRECT RESULTS MAY NOT OCCUR).

### 3-7. TEST SIGNALS.

3-8. Three test signal frequencies are available: these are 120Hz, 1kHz and 10kHz sinusoidal waveforms which have a frequency accuracy of 3%. The typical voltage applied to the sample or current flowing through the sample is specified in Table 3-1 for all test signal frequencies. A constant test voltage is supplied to the sample when measuring parallel parameters Lp, Cp, and Rp. The constant current method is adopted for the measurement of Ls, Cs, and Rs. The 50mVrms test voltage is used only for Cp measurement.

### 3-9. MEASUREMENT RANGE.

3-10. As given in Table 3-2, the 4262A has wide measurement ranges. Seven or eight ranges are available (depending upon measurement function) and the appropriate range is automatically selected for the value of sample connected to the 4262A UNKNOWN terminals. For applications which require a fixed measurement range (such applications are sometimes needed, for example, in inductance measurements), manual range control is pushbutton selectable. Four or five ranges, however, are used in the series and parallel equivalent circuit measurement modes. When the CIRCUIT MODE is set to AUTO, the 4262A will automatically select the appropriate circuit mode, range over the measurement ranges shadowed in Table 3-2, settle on the proper range, and measure the sample.

Table 3-1. Sample Voltage or Current.

| DANCE | CIRCUIT MODE               |        |             |                    |                        |        |  |
|-------|----------------------------|--------|-------------|--------------------|------------------------|--------|--|
| RANGE | Ls                         | Lp     | Cs          | Ср                 | Rs                     | Rp     |  |
| 1     | 40mA rms                   |        |             | 1Vrms (50mVrms)*   | 40mA rms               |        |  |
| 2     | 10mA rms                   |        | <del></del> | 1V rms (50mV rms)* | 10mA rms               |        |  |
| 3     | 1mA rms                    | l ——   |             | 1V rms (50mV rms)* | 1mA rms                |        |  |
| 4     | $100~\mu A~{ m rms}$       | 1V rms | 10 μA rms   | 1Vrms (50mVrms)*   | $100~\mu \text{A rms}$ | 1V rms |  |
| 5     | $10~\mu 	ext{A}~	ext{rms}$ | 1V rms | 100 μA rms  | 1Vrms (50mVrms)*   | $10~\mu 	ext{A}$ rms   | 1V rms |  |
| 6     |                            | 1V rms | 1 μA rms    |                    |                        | 1V rms |  |
| 7     |                            | 1V rms | 10mA rms    |                    |                        | 1V rms |  |
| 8     |                            |        | 40mArms     |                    |                        | 1V rms |  |

<sup>\*</sup>When TEST SIGNAL is set to LOW LEVEL.

Table 3-2. Measurement Ranges.

| CIRCUIT | TEST                      |                                 |                                 |                                 | Ra                              | inge                             |                                  |                                    |                                  |
|---------|---------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|------------------------------------|----------------------------------|
| MODE    | SIGNAL<br>Frequency       | 1                               | 2                               | 3                               | 4                               | 5                                | 6                                | 7                                  | 8                                |
| Lp      | 120 Hz<br>1 kHz<br>10 kHz |                                 |                                 |                                 | 0000 mH<br>000.0 mH<br>00.00 mH | 00.00 H<br>0000 mH<br>000.0 mH   | H 0.000<br>H 00.00<br>Hm0000     | H 00,000                           |                                  |
| Ls      | 120 Hz<br>1 kHz<br>10 kHz | Ημ 0000<br>Ημ 0.000<br>Ημ 00.00 | 00,00 mH<br>Hμ 0000<br>Hμ 0,000 | 000,0 mH<br>00,00 mH<br>0000 μH | 0000 mH<br>000.0 mH<br>00.00 mH | 00.00 H<br>0000 mH<br>000.0 mH   |                                  |                                    |                                  |
| Ср      | 120 Hz<br>1 kHz<br>10 kHz | 0000 pF<br>000.0 pF<br>00.00 pF | 00.00 nF<br>0000 pF<br>000.0 pF | 000.0 nF<br>00.00 nF<br>0000 pF | 0000 nF<br>000.0 nF<br>00.00 nF | 00.00 μF<br>0000 nF<br>000.0 nF  | ·                                |                                    |                                  |
| Cs      | 120 Hz<br>1 kHz<br>10 kHz |                                 |                                 |                                 | 0000 nF<br>000.0 nF<br>00.00 nF | 00,00 μF<br>0000 nF<br>000.0 nF  | 000.0 μF<br>00.00 μF<br>0000 nF  | -0000 μF<br>-000.0 μF<br>-00.00 μF | 00.00mF<br>0000 μF<br>000.0 μF   |
| Rp      | 120 Hz<br>1 kHz<br>10 kHz |                                 |                                 |                                 | Ω 0000<br>Ω 0000<br>Ω           | 00.00 kΩ<br>00.00 kΩ<br>00.00 kΩ | 000.0 kΩ<br>000.0 kΩ<br>000.0 kΩ | 0000 kΩ<br>0000 kΩ<br>0000 kΩ      | 00,00 MΩ<br>00,00 MΩ<br>00,00 MΩ |
| Rs      | 120 Hz<br>1 kHz<br>10 kHz | Ωm 0000<br>Ωm 0000<br>Ωm 0000   | Ω 00,00<br>Ω 00,00<br>Ω 00,00   | Ω 0.000<br>Ω 0.000<br>Ω 0.000   | Ω 0000<br>Ω 0000<br>Ω           | 00.00 kΩ<br>00.00 kΩ<br>00.00 kΩ |                                  |                                    |                                  |

Note:  $0000\mu$ H indicates a range of  $0001\mu$ H to  $1999\mu$ H (and similarly for F and  $\Omega$ ).

### 3-11. INITIAL DISPLAY TEST.

3-12. The Model 4262A automatically performs a front panel LED display test for a few seconds after instrument is tuned on (after LINE button is depressed). The display test sequence is:

- 1. All front panel indicator lamps, except numeric segments and multiplier indicator lamps will illuminate. (SRQ, LISTEN, TALK and REMOTE lamps illuminate only when HP-IB option is installed).
- 2. Front panel pushbutton LED's and indicator lamps indicate that automatic initial settings (see Paragraph 3-13 which follows) have been set. Simultaneously, the LCR DISPLAY and DQ DISPLAY readouts are tested. All numeric displays show figures of 8 (□) and multiplier indicators (p n μ m k M) light in turn.
- 3. Range indicator lamps step from right (upper range) to left (lower range). When steps 1, 2 and 3 have been completed, the trigger lamp begins to flash. Figures on numeric displays change to meaningful numbers showing that the 4262A is ready to take a measurement.

### 3-13. INITIAL CONTROL SETTINGS.

3-14. One of the sophisticated features of the 4262A is its automatic initial control setting function. After the instrument is turned on, the front panel control functions are automatically set as follows:

| SELF TESTOFF      | ř |
|-------------------|---|
| CIRCUIT MODE AUTO | ) |
| FUNCTION          | 3 |
| LCR RANGE AUTO    | ) |
| LOSS              | ) |
| DQ RANGE AUTO     | ) |
| TEST SIGNAL 1kHz  | Z |
| TRIGGER INT       | 1 |

As these initial settings provide the general capacitance measurement conditions applicable to a broad range of capacitance measurements, a capacitance can be usually measured by merely connecting the sample to the UNKNOWN terminals. Inductance or resistance can be measured by pressing the L FUNCTION or R/ESR FUNCTION buttons, as appropriate. When a different measurement is to be attempted, press appropriate pushbuttons and select desired functions.

### 3-15. D/Q MEASUREMENT.

3-16. The Model 4262A makes a loss measurement along with capacitance or inductance measurements on each measurement cycle. The measured loss factor is displayed in the form of the dissipation (D) or quality (Q) factor of the sample. The D or Q function is pushbutton selectable in both L and C measurements. D and Q measurement ranges are:

| D: | 2 ranges | .001 to 1.999  |
|----|----------|----------------|
|    | _        | 0.01 to 19.9   |
| Q: | 4 ranges | .050 to 1.996  |
|    | _        | 0.05 to 19.61  |
|    |          | ,00.1 to 166.7 |
|    |          | 001 to 1000    |

The D range, appropriate to the value of the sample is automatically selected. Alternately, a manual D range control is pushbutton selectable. Quality factor (Q) is calculated as a reciprocal dissipation number from the measured D value. Hence, the Q readout display will skip some numbers when low dissipation samples are measured. For example, when the dissipation measured is .010, the quality factor display is 100. When dissipation is .009, the quality factor reading is 111 (Q readings of 101 to 110 are not obtained). On the high D measurement range, the readout is displayed in 3 digits.

### 3-17. △LCR MEASUREMENT.

3-18. When many components of similar value are to be tested, it is sometimes more practicable to measure the difference between the value of the sample and a predetermined reference value. The △LCR function permits repetitive calculation of the difference between the reference and each individual sample and to display the result on the LCR DISPLAY. When the \(^LCR\) FUNCTION button is pressed, the inductance, capacitance, or resistance value of the sample is stored in an internal memory. The 4262A will now display the difference between the stored value and the measured value of a sample connected to UNKNOWN. The LCR RANGE is automatically held in MANUAL for the duration of \(^LCR\) measurements. (if another pushbutton is inadvertently pressed, the \$\triangle LCR\$ measurement function will be reset and will require reactivating).

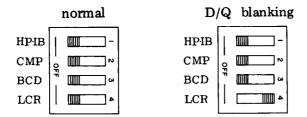

### Accessory Model Characteristics 16061A Test Fixture This fixture facilitates easy measurement of general type components with axial or vertical leads. To install fixture, disconnect shorting bars between high terminals and between low terminals. Insert fixture screws to firmly attach fixture to instrument. Two kinds of inserts are included (for components with either axial or vertical leads). DUT range (at 1kHz) pFnF $\mu F$ mΗ Η $\mu$ H 10 100 10 100 kΩ 10 100 MΩ C L Five terminal construction test fixture. R 16062A Test Leads The 16062A is especially useful when measuring low impedances. DUT values measurable with the 16062A are diagrammed below. If the measuring sample is more than approx. $300\mu F$ at 1kHz or less than approx. 100µH at 1kHz, it is recommended that the respective potential leads and current leads be twisted together. Measurable DUT ranges (at 1kHz) $\mu \mathbf{F}$ pF nF $\mu H$ mH H 100 $k\Omega$ $10 \ 100 \ M\Omega \ 10 \ 100$ Ω 10 C $\mathbf{L}$ Test Leads for four terminal measurement (does not contain guard conductor). $\mathbf{R}$ 16063A Test Leads The 16063A is particularly useful when measuring high impedances. DUT values measurable with the 16063A are diagrammed below. This test lead set is not intended to be used for the accurate measurement of small capacitances (less than approx. 100pF) due to the residual capacitance of the leads. Measurable DUT ranges (at 1kHz) nF рF $\mu F$ $\mu$ H mΗ Η $10 100 k\Omega$ 10 100 M $\Omega$ 10 100 $\mathbf{C}$ L Coaxial test leads with guard conductor for three terminal measurement. $\mathbf{R}$

Figure 3-3. Test Fixture and Leads.

# 3-19. D/Q Blanking Function (Switch selectable function inside cabinet).

3-20. The D/Q blanking function permits deactivating the D/Q measurement as desired. If operator has no need of D/Q measurement data, and alternatively desires to make higher speed LCR measurements, the switch for this function may be set. When the D/Q function is deactivated, measurement time is shortened to approximately 220 to 250 milliseconds (at 120Hz) and to 80 to 110 milliseconds (at 1kHz and 10kHz) as compared to standard measuring times (which includes a D/Q measurement). The D/Q deactivating switch is located on the A23 board assembly. To select this function, change setting of the switch as follows:

- a. Remove top cover.
- b. Take out A23 board (red and orange colored extractors).
- c. The selection switch is mounted near left edge of the A23 board.
- d. Change position of the switch as illustrated below.
- e. Reinstall the A23 board in its normal position,
- f. Replace top cover.



### 3-21. General Component Measurement.

3-22. Figure 3-7 shows the operating procedures for measuring an L, C or R (inductance, capacitance or resistance) circuit component. Almost all discrete circuit components (inductors, capacitors or resistors) except for components having special shapes or dimensions can be measured with this setup. Special components may be measured by using Test Leads 16062A or 16063A or by specially designed user built fixtures instead of 16061A Test Fixture.

### 3-23. Semiconductor Device Measurement.

3-24. The procedures for using the 4262A semiconductor device measurement capabilities are described in Figure 3-8. For example, the junction (interterminal) capacitance of diodes, collector output capacitance of transistors, etc., can easily and accurately be measured (with and without dc bias).

### 3-25. External DC Bias.

3-26. A special biasing circuit using external voltage or current bias, as needed for capacitor or inductor measurements, is illustrated in Figure 3-9. The figure shows sample circuitry appropriate to 4262A applications. Biasing circuits must avoid permitting dc current to flow into the 4262A as dc current increases the measurement error and the excess current sometimes may cause damage to the instrument. When applying a dc voltage to capacitors, be sure applied voltage does not exceed maximum working voltage and that you are observing polarity of capacitor. Note that the external bias voltage is present at Hcur and Hpot terminals.

3-27. Bias Voltage Settling Time. When a measurement with dc bias voltage superposed is performed, it takes some time for voltage across sample to reach a certain percentage of applied (desired) voltage. Figure 3-9 shows time for dc bias voltage to reach more than 99% of applied voltage and for 4262A to display a stable value. If the bias voltage across sample is not given sufficient time to settle, the displayed value may fluctuate or O-F may be displayed. Read measured value after display settles.

### 3-28. External Triggering.

3-29. For triggering the 4262A externally, connect an external triggering device to the rear panel EXT TRIGGER connector (BNC type) and press EXT TRIGGER button. The 4262A can be triggered by a TTL level signal that changes from low (0V) to high level (+5V). Triggering can be also done by alternately shorting and opening the center conductor of the EXT TRIGGER connector to ground (chassis).

### Note

The center conductor of the EXT TRIGGER connector is normally at high level (no input).

### 3-30. TERMINAL CONFIGURATION.

3-31. Connection of DUT. The 4262A Unknown terminals consists of five binding post (type) connectors:  $H_{\text{CUR}}$ ,  $H_{\text{POT}}$ ,  $L_{\text{CUR}}$ ,  $L_{\text{POT}}$  and GUARD. By connecting the stationary shorting straps to appropriate terminals, the UNKNOWN terminals can be adopted for the desired measurement terminal configuration: the two, three, four or five terminal method.

For measurements of samples having a medium order of impedance ( $100\Omega$  to  $10k\Omega$ ), the convenient two terminal method is suited to measurement requirements for good accuracy as well as for ease in connecting the sample. When converting to two terminals, shorting straps are attached to the UNKNOWN HCUR and HPOT terminals, and LCUR and LPOT terminals, respectively.

High impedance samples (greater than  $1k\Omega$ ) --which includes low capacitance, high inductance and high resistance -- should be measured by the three terminal method to eliminate the effects of stray capacitances on the measurements. For this purpose, the guard conductor of the sample is connected to the instrument GUARD terminal.

In the measurement of low impedance samples (less than  $1k\Omega$ ), efforts should be made to eliminate the effects of contact resistance, lead resistance, residual inductance and other residual parameters in the measuring apparatus. terminal configuration measurements allow stable, accurate measurement of high capacitance, low inductance and low resistance samples at minimum incremental errors in the measurement of low impedance samples. In the four terminal method, the shorting straps are disconnected to separate potential leads from current leads. Thereby, the characteristics of the sample can be precisely determined by the instrument irrespective of the various residual parameters present in the measuring signal current path. To ensure the best accuracy, the potential leads should be connected near to the sample.

The five terminal method, which adds the guard conductor to the four terminal configuration, expands the applicable measurement range into the higher impedance regions. Thus, this method covers a broad range of measurements from low to high impedance samples at the measuring frequency of the 4262A.

When test fixtures and test leads used have a shielding conductor and are designed to consider residual impedance, the measurement limitations described above for the individual terminal configurations can vary to some extent depending on the particular characteristics of the fixture and connections. Three accessories, the 16061A Test Fixture, the 16062A Test Leads, and the 16063A Test Leads are available. The characteristics of these accessories and applicable measurement ranges are outlined in Figure 3-3. These accessories make it easy to construct the desired terminal configuration.

### IMPORTANT!

FOR CERTAIN TERMINAL MEAS-UREMENT CONFIGURATIONS, THE HCUR TERMINAL MUST BE CON-NECTED TO HPOT TERMINAL AND THE LCUR TERMINAL CONNECTED TO THE LPOT TERMINAL. OTHER-WISE, THE DISPLAYS WILL HAVE NO MEANING AND THE LIFE OF THE RELAYS USED IN THE INSTRU-MENT WILL SOMETIMES BE SHORT-ENED.

### Note

The 4262A can not measure a sample which has one lead connected to earth (grounded).

### 3-32. OFFSET ADJUSTMENT.

3-33. Since test fixtures and test leads have different inherent stray capacitances and residual inductances, the measured value obtained with respect to the same sample may possibly differ depending on the test fixture (leads) used. These residual factors can be read from the 4262A display by properly terminating (short or open) the measurement terminals of the test jig. The front panel C ZERO ADJ and L ZERO ADJ controls permit compensation for these residual factors and can eliminate measurement errors due to the test jig. The capacitance or inductance readout can be set to zero for the particular test jig used with the instrument. In capacitance and inductance measurements, an incomplete offset adjustment causes two types errors:

### 1) Deviation from zero counts.

When a small capacity or a small inductance is measured, the measured capacitance (inductance) value becomes the sum of the capacitance (inductance) of sample and the stray capacitance (residual inductance) of test jig. The effects of the residual factors are:

Cm = Cx + CstLm = Lx + Lres

Where, subscripts are

m: measured value.x: value of sample.st: stray capacitance.res: residual inductance.

Both Cst and Lres cause the same measurement error and are independent of sample value. 2) Influence on high capacitance and high inductance measurements.

When a high inductance (a high capacitance) is measured, the residual factors in the test jig also contribute a measurement error. The affect of stray capacitance or residual inductance on measurement parameters are:

These measurement errors increase in proportional to the square of the test signal frequency. The effects of the residual factors can be expressed as follows:

$$Cm = \frac{Cx}{1 - \omega^2 CxLres}$$
or  $(\frac{Cm - Cx}{Cm} \approx \omega^2 CxLres)$ 

$$Lm = \frac{Lx}{1 - \omega^2 LxCst}$$
or  $(\frac{Lm - Lx}{Lm} \approx \omega^2 LxCst)$ 

In a 10kHz measurement, for the measurement error to be less than 0.1%, the product of Cx and Lres (Lx and Cst) should be less than 0.25 x  $10^{-12}$ . The relationship between the residual factors of the test jig and measurement accuracies are graphically shown in Figure 3-4.

The 4262A ZERO ADJ controls cover the following capacitance and inductance offset adjustment ranges:

C ZERO ADJ: up to 
$$10pF$$
 L ZERO ADJ: up to  $1\mu H$ 

An offset adjustment should always be performed before measurements are taken.

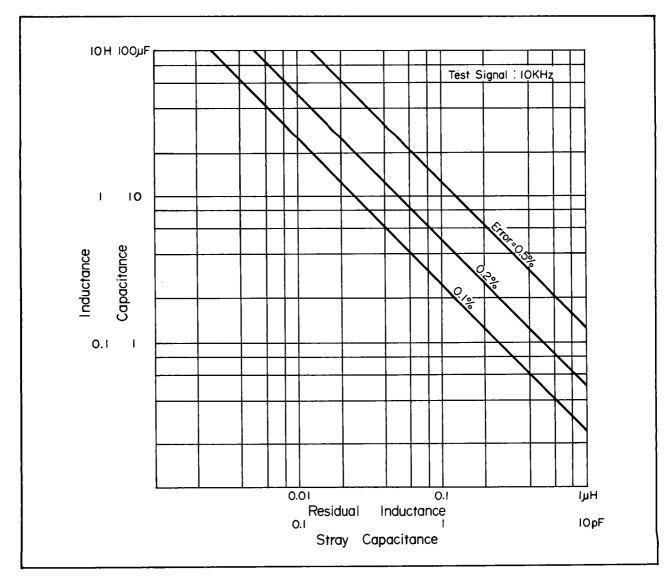



Figure 3-4. Measurement Error due to Misadjusted ZERO ADJ Controls.

### Measurement Parameter Conversions

Parameter values for a component measured in a parallel equivalent circuit and that measured in series equivalent circuit are different from each other. For example, the parallel capacitance of a given component is not equal to the series capacitance of that component. Figure A shows the relationships between parallel and series parameters for various values of D. Applicable diagrams and equations are given in the chart. For example, a parallel capacitance (Cp) of 1000pF with a dissipation factor of 0.5, is equivalent to a series capacitance (Cs) value of 1250pF at 1kHz. As shown in Figure A, inductance or capacitance values for parallel and series equivalents are almost identical when the dissipation factor is less than 0.01. The letter D in Figure A represents dissipation factor and is calculated by the equations presented in Table A for each circuit mode. The dissipation factor of a component always has the same dissipation factor at

a given frequency for both parallel equivalent and series equivalent circuits.

### Note

Dissipation factors displayed when CIRCUIT MODE is switched between PRL and SER may exhibit slight differences due to the measurement accuracy of the 4262A.

The reciprocal of the dissipation factor (D) is quality factor (Q) and D is often represented as  $\tan \delta$  which is the tangent of the dissipation angle ( $\delta$ ). Figure 3-6 is a graphical presentation of the equations in Table A. For example, a series inductance of  $1000\mu H$  which has a dissipation factor of 0.5 at 1kHz has a series resistance of 3.14 ohms.

Table A. Dissipation Factor Equations.

| Circuit Mode |          | Dissipation Factor                                        | Conversion to other modes                                      |  |
|--------------|----------|-----------------------------------------------------------|----------------------------------------------------------------|--|
| Cp mode      | Cp<br>Rp | $D = \frac{1}{2\pi f C p R p} \left(= \frac{1}{Q}\right)$ | $Cs = (1 + D^2)Cp, Rs = \frac{D^2}{1 + D^2} \cdot Rp$          |  |
| Cs mode      | Cs Rs    | $D = 2\pi f C s R s \left(= \frac{1}{Q}\right)$           | $Cp = \frac{1}{1 + D^2} Cs, Rp = \frac{1 + D^2}{D^2} \cdot Rs$ |  |
| Lp mode      | -Lp      | $D = \frac{2\pi f Lp}{Rp} \ (= \frac{1}{Q})$              | Ls = $\frac{1}{1 + D^2}$ Lp, Rs = $\frac{D^2}{1 + D^2}$ Rp     |  |
| Ls mode      | -M-      | $D = \frac{Rs}{2\pi f Ls} \ (= \frac{1}{Q})$              | $Lp = (1 + D^2)Ls, Rp \approx \frac{1 + D^2}{D^2} \cdot Rs$    |  |

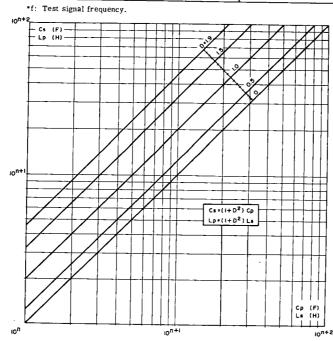



Figure A. Relationships between Parallel and Series Parameters.

Where n stands for a free integer.

Figure 3-5. Conversion Between Parallel and Series Equivalents.

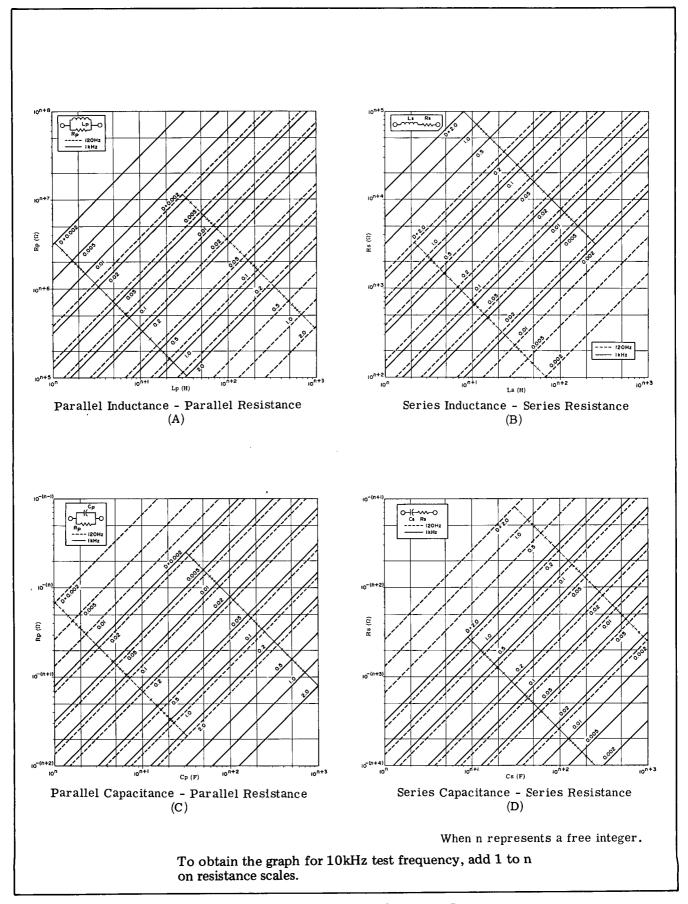
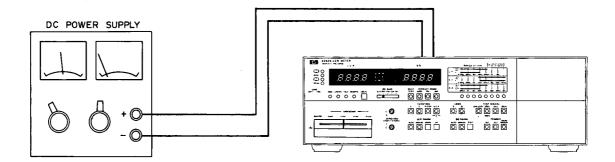




Figure 3-6. Relationship of Dissipation to Series and Parallel Resistance.

Table 3-3. Annunciation Display Meanings

| DISPLAY                        | e 3-3. Annunciation Display Meaning  Indicated Condition                                                                              |                                                                                              |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| LCR DISTRICT DQ                |                                                                                                                                       | Action                                                                                       |
| 0 - F ""                       | FUNCTION has been inappropriately set.                                                                                                | Change 4262A FUNCTION to L, C or R suitable for the sample being measured.                   |
|                                | Measured L or C value exceeds<br>1999 counts. DQ display indicates<br>that DQ measurement has been<br>omitted.                        | Set 4262A to:<br>CIRCUIT MODE: AUTO<br>LCR RANGE: AUTO                                       |
| G - F                          | Measured R value exceeds 1999 counts.                                                                                                 | Try changing TEST SIGNAL to 120, 1k or 10kHz.                                                |
| (any LCR (overflowed) reading) | Measured D/Q value exceeds the upper range limit (1999 counts). Accuracy of LCR readings may not be within specifications.            | Set 4262A DQ RANGE to<br>AUTO.<br>Try changing TEST SIGNAL<br>to 120, 1k or 10kHz.           |
| LI - E L                       | CIRCUIT MODE setting is not suitable for the sample being measured.                                                                   | Set 4262A to: CIRCUIT MODE: AUTO LCR RANGE: AUTO                                             |
|                                | Measured L, C or R value is extremely large or small compared with the selected range.                                                | Try changing TEST SIGNAL to 120, 1k or 10kHz.                                                |
| 78 · (less than 80 counts)     | When Measured L or C value is less than 80 counts, DQ measurement is omitted.                                                         | Set 4262A LCR RANGE to<br>AUTO. Try changing TEST<br>SIGNAL to 120, 1k or 10kHz.             |
| (any DQ reading)               | In ^LCR measurement, the difference between the preset value and the measured value of the sample exceeds -999 counts.                |                                                                                              |
|                                | In ^LCR measurement, the calculated difference exceeds -999 counts. In addition, the value of measured sample is less than 80 counts. | <u> </u>                                                                                     |
| Minus (-) is displayed.        | Minus display sometimes occurs when sample having a value around zero is measured.                                                    | Zero count display is meaning-<br>ful when minus (-) display<br>repeatedly turns on and off. |
| ·                              | Sometimes a minus display occurs when a capacitor (or inductor) is measured in L (or C) FUNCTION.                                     | Change to appropriate FUNCTION.                                                              |
|                                | Offset adjustment signal applied is too great (causes minus display).                                                                 | Readjust offset signal for proper magnitude.                                                 |

### MEASUREMENT PROCEDURE FOR GENERAL COMPONENTS



1. Remove shorting bar connections between high terminals and between low terminals (all terminals are now isolated from each other). Connect 16061A Test Fixture to 4262A UNKNOWN terminals.

### Note

User constructed test fixture may also be connected. Guard terminal is sometimes used in small capacitance measurements.

- 2. Depress LINE button to turn instrument on. An initial display test is automatically performed before measurement begins.
- 3. Check that 4262A trigger lamp begins to flash. The 4262A control functions are automatically set as follows (automatic initial settings):

| DC BIASOF        | F  |
|------------------|----|
| SELF TESTOF      | F  |
| CIRCUIT MODE AUT | O' |
| FUNCTION         | C  |
| LCR RANGE AUT    | O' |
| LOSS             | D  |
| DQ RANGE AUT     | O. |
| TEST SIGNAL 1kH  | Ιz |
| TRIGGER IN       | 1T |

### Note

To check fundamental operating conditions of the instrument, perform SELF TEST (refer to Paragraph 3-5 for SELF TEST details). Press SELF TEST button again to release the function.

- 4. Rotate C ZERO ADJ control until capacitance readout is 000 counts on LCR DISPLAY (minus sign should not appear).
- 5. Connect a shorting lead to Test Fixture to short-circuit the Unknown terminals to zero ohms (zero microhenries).
- 6. Press L FUNCTION button.

Figure 3-7. General Component Measurements (Sheet 1 of 3).

7. Rotate L ZERO ADJ control until inductance readout is 000 counts on LCR DISPLAY.

### Note

To achieve more critical zero adjustments, when 10kHz test signal frequency is used, perform the capacitance and inductance zero offset adjustments (steps 4, 5, 6 and 7) at 10kHz.

- 8. Remove shorting lead from 16061A.
- 9. Select desired FUNCTION, either L, C or R/ESR.
- 10. Connect sample to be measured (L, C or R) to Test Fixture.
- 11. Model 4262A will automatically display value of unknown.

### Note

If O-F, U-CL, minus (-) or blank display occurs, see Table 3-3 for solution. Measured values for semiconductor devices are sometimes unreliable when TEST SIGNAL LOW LEVEL pushbutton is in its normal (1V) state (button lamp is not lit). In these instances, follow Figure 3-8 for semiconductor device measurement.

### Note

If manual triggering is required, press HOLD/MANUAL button. Each time the button is pressed, the instrument is triggered.

12. If internal DC bias is required, set DC BIAS switch to 1.5V, 2.2V or 6V: If not, OFF position should be selected.

### Note

DC bias application may only be used for capacitance measurements.

### CAUTION

POSITIVE POLE OF ELECTROLYTIC CAPA-CITOR MUST BE CONNECTED TO HIGH TERMINALS AS PLUS BIAS VOLTAGE IS APPLIED TO HIGH TERMINALS WITH RE-SPECT TO LOW TERMINALS.

### Note

An external bias voltage up to +40V may be applied to EXT DC BIAS rear panel connector. Connect DC power supply to EXT DC BIAS connector. Set DC BIAS switch to EXT.

### **CAUTION**

### EXTERNAL DC BIAS AT EXT BIAS CON-NECTOR MUST NEVER EXCEED +40V.

### 13. Read measured value on display.

### Note

It is usually recommended that the LCR RANGE be set to MANUAL and to hold the range when measuring multiple samples having almost the same value. Range hold operation will somewhat shorten measurement time.

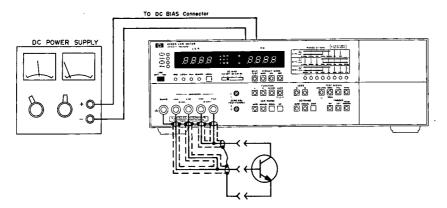
### Note

Series resistance of electrolytic capacitors, inductors or transformers can be measured in series R/ESR measurement mode. In these cases, the number of digits is sometimes reduced. On the other hand, resistance can, of course, be indirectly measured with the C/L FUNCTION and calculated from one of the following equations:

Rs = D/ $\omega$ Cs (Cs-D measurement) Rs =  $\omega$ Ls·D (Ls-D measurement) Rs =  $\omega$ Lp· $\frac{D}{1 + D^2}$  (Lp-D measurement)

The above relationships are graphically shown in Figure 3-6.

— CAUTION —


DO NOT CONNECT A CHARGED CAPACITOR (EXCEEDING 40V) DIRECTLY TO THE UNKNOWN TERMINALS AS A DUT.

– CAUTION –

NEVER APPLY A DC VOLTAGE DIRECTLY BETWEEN THE UNKNOWN H AND L TERMINALS WITHOUT PROPER PROTECTION AGAINST A POSSIBLE HARMFUL CURRENT. DC VOLTAGE MUST NOT BE APPLIED TO THE L TERMINAL WITH RESPECT TO GROUND.

Figure 3-7. General Component Measurements (Sheet 3 of 3).

### Junction Capacitance Measurement



Setup-

The figure above is a typical test setup used for measuring base-collector junction capacitance (Cob) of an NPN transistor. For this measurement, test leads or fixture may be user designed. If external DC bias is not necessary, arrangement and procedures associated with this function may be deleted from setup.

### Procedure -

1. Press LINE button to turn instrument on. After the initial display test, trigger lamp will begin to flash and the 4262A functions are automatically set as follows:

| SELF TEST    | OFF  |
|--------------|------|
| CIRCUIT MODE | AUTO |
| FUNCTION     | C    |
| LCR RANGE    | AUTO |
| LOSS         | D    |
| DQ RANGE     | AUTO |
| TEST SIGNAL  | 1kHz |
| TRIGGER      | INT  |
|              |      |

2. Press TEST SIGNAL LOW LEVEL and PRL CIRCUIT MODE buttons. The test signal level is now 50mV and the parallel equivalent circuit mode is selected.

### Note

A semiconductor junction capacitance measurement must be made with a low level test signal. If desired, TEST SIGNAL fequency may be set to 10kHz.

3. Adjust C ZERO ADJ control for zero counts on LCR DISPLAY.

### Note

If necessary, apply DC bias voltage internally or externally at rear panel EXT DC BIAS connector. External DC bias source should be stable with low noise. Set DC BIAS switch in EXT position during application of external DC bias.

Figure 3-8. Semiconductor Device Measurement (Sheet 1 of 2).

### **CAUTION**

## NEVER APPLY AN EXTERNAL DC BIAS OVER +40V.

4. Connect Semiconductor device to test lead or to fixture. To obtain reliable measurement results, observe the following:

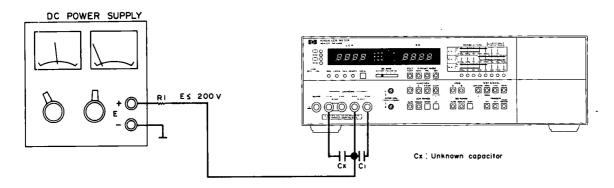
### Note

- a. It is impossible to measure junction capacitance when bias current flows through sample.
- b. If lead length of device allows, it is recommended that the device be connected directly to UNKNOWN terminals.
- 5. Read displayed values. Loss factor of the sample will be simultaneously displayed on DQ DISPLAY.

### Note

When using manual trigger, press HOLD/MAN-UAL button. Each time the button is pressed, the instrument is triggered. When measuring multiple samples whose values are about the same, it is recommended that the LCR RANGE be set to MANUAL and that the range be held.

| Parameter Measured                                                                                                 | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Farameter Measured                                                                                                 | Connections to 4262A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Base-collector junction capacitance (Cob)- Emitter current = 0                                                     | High (+Bias)  Open High (+Bias)  Open Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Base- collector junction<br>capacitance (Cre)-<br>Common emitter                                                   | High (+Blas) High (+Blas) OOK GUARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FET gate capacitance                                                                                               | High (+ Bias) Copen S High (+ Bias) Copen S Open (+ Bias) Copen S Open (+ Bias) Copen S Open |
| Diode junction capacitance<br>Note: Hot carrier diodes and<br>germanium diodes<br>sometimes cannot<br>be measured. | High Low Low High (+ Bias)  Note: No bias should be applied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |


Figure 3-8. Semiconductor Device Measurement (Sheet 2 of 2).

### External DC Voltage Bias Circuits (40V \langle, \langle 200V)

1. Connect external dc bias source as shown in diagram.

### **CAUTION**

DO NOT APPLY DC VOLTAGE EXCEEDING 200VOLTS OR 4262A CIRCUITRY WILL BE DAMAGED.



### Note

+E voltage is applied to Cx in figure. -E voltage can be applied to Cx in this figure. In the above arrangement, the polarity of Cx and C1 must be taken into consideration.

### **CATUION**

NEVER SHORT BETWEEN HPOT AND LOW TERMINALS WHEN R1 IS SMALLER THAN  $1k\Omega$ . MAKE SURE THAT UNKNOWN CAPACITOR IS NOT DEFECTIVE BEFORE CONNECTING TO INSTURMENT.

TO AVOID HARMFUL SURGE CURRENT WHICH MAY FLOW THROUGH INTERNAL CIRCUITRY WHEN A HIGH VOLTAGE DC BIAS IS SUDDENLY APPLIED, IT IS RECOMMENDED THAT DC BIAS BE GRADUALLY INCREASED FROM A LOWER VOLTAGE.

### Note

Ripple or noise of external dc bias source should be as low as possible. The low frequency noise of bias source should be less than 1mVrms for a TEST SIGNAL level of 50mV (LOW LEVEL) and 30mVrms for 1V.

Figure 3-9. External DC Bias Circuit (Sheet 1 of 3).

2. Minimum values for both C1 (dc blocking capacitor) and R1 are given in table below:

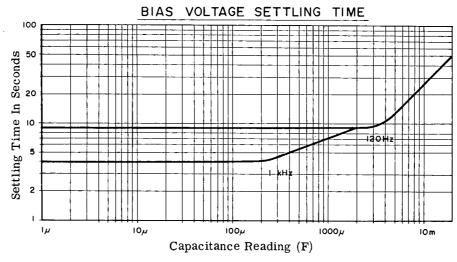
### Note

Insulation resistance for Cx must be greater than a certain minimum value. Refer to Table 3-4 for unusual operating indications.

| Range<br>(at 120Hz) | 1000pF                 | 10.00nF           | 100.0nF        | 1000nF          | 10.00μF                |
|---------------------|------------------------|-------------------|----------------|-----------------|------------------------|
| Minimum<br>C1       | $0.01 \mu  \mathrm{F}$ | $0.1 \mu  { m F}$ | $1 \mu { m F}$ | $10 \mu { m F}$ | $10.00 \mu \mathrm{F}$ |
| Minimum<br>R1       | 300kΩ                  | 100kΩ             | <b>10k</b> Ω   | 1kΩ             | 100Ω                   |

In 1kHz(10kHz) measurement, multiply both range value and value of C1 by 1/10 (1/100). If the calculated value of C1 is less than  $0.01\mu F$ , use  $0.01\mu F$  capacitor.

### Note


DC withstand voltage for C1 capacitor must be greater than dc applied voltage E. Also observe polarity of capacitor C1 with respect to applied voltage.

3. Set 4262A controls as follows:

| SELF TEST                |              |
|--------------------------|--------------|
| FUNCTION                 | $\mathbf{C}$ |
| CIRCUIT MODEPI           |              |
| Other controls any setti | ng           |

4. Read displayed value after allowing time for bias voltage to settle. Typical settling times are:

120Hz: 6 to 7 seconds. 1kHz/10kHz: 2 to 3 seconds.



If C1 and R1 which are larger than those given in table on above are connected, longer settling times are necessary.

Figure 3-9. External DC Bias Circuit (Sheet 2 of 3).

# Using Current Bias (for inductors). 1. Connect dc power supply as shown below: Note DC power supply should be floated from ground. If cable between low terminals of 4262A and power supply is relatively long, it should be shielded cable. The outer conductor is connected to GUARD terminal. To DC BIAS Connector DC POWER SUPPLY DC POWER SUPPLY

2. Set 4262A controls as follows:

| DC BIASEXT                  |
|-----------------------------|
| FUNCTIONL                   |
| CIRCUIT MODEPRL or SER      |
| LCR RANGEMANUAL             |
| Other controls any settings |

### Note

First, determine appropriate range by connecting sample with no dc bias current applied. Then hold the range.

3. Recommended inductance ranges and maximum bias currents are:

| Range (at 120Hz)         | 1000 дН | 10.00 mH | 100.0 mH | 1000 mH | 10.00 H | 100.0 H |
|--------------------------|---------|----------|----------|---------|---------|---------|
| CIRCUIT MODE             | SER     |          |          | PARA    |         |         |
| Maximum Bias<br>Current* | 40m A   | 36m A    | 13mA     | 40m A   | 36m A   | 13mA    |

<sup>\*</sup>Bias current when +40V is applied to DC BIAS connector.

In 1kHz(10kHz) measurement, multiply range value by 1/10 (1/100).

### **CAUTION**

DC BIAS OVER +40 VOLTS MUST NOT BE APPLIED TO EXTERNAL DC BIAS INPUT CONNECTOR.

Figure 3-9. External DC Bias Circuit (Sheet 3 of 3).

Table 3-4. Unusual Operating Indications (Sheet 1 of 4).

# A. Same sample sometimes shows quite different values between PRL and SER CIRCUIT MODE measurements.

### B. The decimal point moves and measurement unit changes.

### Cause of trouble:

A and/or B may occur in the following cases:

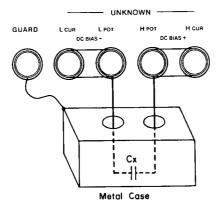
Resistance of low loss inductor or capacitor being measured in R FUNCTION.

Inductance of lossy inductor or capacitance of lossy capacitor being measured in L or C FUNCTION.

### What to do:

- A. Do not set CIRCUIT MODE to AUTO. Set CIRCUIT MODE to a PRL or SER setting that shows a valid display.
- B. Set LCR RANGE to MANUAL.

  Manually settle the instrument
  on an appropriate range.


### Indication:

The displayed value fluctuates on minimum capacitance, maximum inductance or maximum resistance ranges in either PRL or SER circuit modes.

### Cause of trouble:

Here are some of the reasons why this happens:

- A. A large size sample is being measured.
- B. A high voltage power line or similar exists near the 4262A.
- C. The 4262A and sample are connected together with relatively long, non-shielded cable.



### What to do:

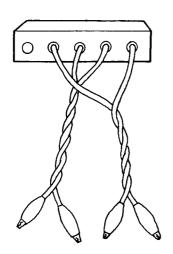

- Enclose sample in metal case.
   Connect case electrically to 4262A
   GUARD terminal as illustrated.
- 2. Use shielded cable for connection between sample and the instrument. Connect cable shield to GUARD.

Table 3-4. Unusual Operating Indications (Sheet 2 of 4).

### Cause of trouble:

When measuring a low impedance (small inductance, resistance or high capacitance), measurement error is excessive.

- Excessive residual impedance (inductance, capacitance or resistance) of test leads in a two terminal measurement.
- 2. Mutual test lead induction between current leads ( $H_{CUR}$  and  $L_{CUR}$ ) and potential leads ( $H_{POT}$  and  $L_{POT}$ ).



### What to do:

Use test leads in four-terminal configuration and measure.

Twist current leads ( $H_{CUR}$  and  $L_{CUR}$ ) together. Do the same with potential leads ( $H_{POT}$  and  $L_{POT}$ ).

Additional error is presented as  $\omega^2 Lr Cx \; X \; 100 \; (\%)$  for C measurement, where:

 $\omega = 2\pi f$ 

f = test frequency

Lr = residual inductance

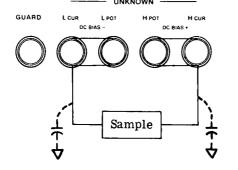
Cx = unknown capacitance

### Indication:

### Cause of trouble:

| Measurement error is excessive when high                    | Measurement          | Cause of error                                      |
|-------------------------------------------------------------|----------------------|-----------------------------------------------------|
| impedance (high inductance, small capacitance) is measured. | High Inductance      | Stray capacitance<br>between High and Low<br>leads. |
|                                                             | Small<br>Capacitance | Stray capacitance<br>between High and Low<br>leads. |

### What to do:


Use shielded cable for connection between sample and 4262A UNKNOWN terminals. Connect outer conductor to GUARD terminal.

Adjust C ZERO ADJ control properly to compensate for stray capacitance.

Table 3-4. Unusual Operating Indications (Sheet 3 of 4).

Excessive measurement error.

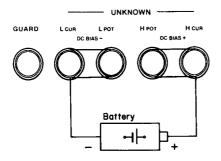
| Measurement<br>Frequency | Allowable Stray<br>Capacitance Magnitude |
|--------------------------|------------------------------------------|
| 120Hz                    | 100nF                                    |
| 1kHz                     | 1000pF                                   |
| $10 \mathrm{kHz}$        | 200pF                                    |
|                          | •                                        |



### Cause of trouble:

### Cause A.

Effect of Low terminal capacitance with respect to ground.


Sometimes the measurement can not be performed when a relatively large capacitance between  $L_{POT}$  terminal and ground exists. Allowable magnitudes for stray capacitance without additional error are given in figure at left.

### Cause B.

Effect of High terminal capacitance with respect to ground. The stray capacitance will reduce test signal level applied to the sample measured during capacitance measurement. This decrease in signal level will not produce an additional error even when measurement signal level is reduced to a third of its nominal level. It is neccessary, of course, that special care be taken to use the proper test signal level when a device is measured whose parameters may be affected by the test signal level. Display fluctuations may sometimes appear.

### Indication:

Internal resistance of a battery can not be measured.



### What to do:

- 1. Connect sample battery (observe polarity) as illustrated.
- Batteries up to 40V are measured under no load conditions.
- 3. If battery voltage exceeds 4V, set DC BIAS to EXT
- 4. Since the internal resistance of a battery is relatively low, use the four-terminal measurement configuration.

Table 3-4. Unusual Operating Indications (Sheet 4 of 4).

### Cause of trouble:

When a sample (for example, an iron core inductor) is measured in AUTO of CIRCUIT MODE, the instrument repeats range selection and does not complete the measurement depending upon level of test current used.

The measurement reading of sample depends on the level of measurement test signal applied.

### What to do:

Set LCR RANGE to MANUAL. Manually settle the instrument on an appropriate range.

### Indication:

When a capacitor is measured with dc bias voltage applied, an abnormal display occurs.

There are limitations to the permissible insulation resistance of a capacitor measured with dc bias. See table below.

| MOD                                   | Ε  |              |        | RANGE         |                 |                    |
|---------------------------------------|----|--------------|--------|---------------|-----------------|--------------------|
| 1kHz                                  | Ср | 100.0pF      | 1000pF | 10.00nF       | 100.0nF         | 1000nF             |
| 1 KHZ                                 | Cs | 100.0nF      | 1000nF | $10.00 \mu F$ | 100.0μ <b>F</b> | $1000 \mu 	ext{F}$ |
| Permissil<br>insulation<br>resistance |    | <b>30M</b> Ω | 3000kΩ | 300kΩ         | 30kΩ            | 3000Ω              |

### Note

In 120 Hz (10 kHz) measurement, multiply range value by 10 (1/10).

Ri given in above table is applicable for a dc bias of 40 V. When the bias voltage is less than 40 V, Ri limit is RiVb/40 ( $\Omega$ ) where Ri is value given in the table and Vb is applied dc bias voltage.

### 3-40. OPTION OPERATION.

3-41. Operating instructions for Options 001, 004, and 101 are described in the following paragraphs.

### 3-42. **OPTION 001: BCD PARALLEL DATA** OUTPUT.

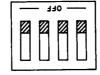
The 4262A Option 001 provides parallel BCD outputs for LCR display, D/Q display and information for various control settings. These outputs are fed to two 50 pin connectors on the rear panel.

### 3-44. Output Data and Pin Assignment.

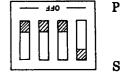
The 4262A Option 001 provides eight kinds of output data:

- (1) FUNCTION and CIRCUIT MODE.
- (2) Test Signal Frequency (LOW LEVEL or normal is excluded).
- (3) Annunciator: Normal, Overflow, Uncal, (LCR and D/Q are not annunciated).
- (4) Unit: p, n,  $\mu$ , m, k, M, D, Q (judgement whether capacitance, inductance or resistance depends on output of FUNCTION switch setting information).
- (5) Decimal Point.
- (6) Polarity.
- (7) Displayed value.
- (8) Other Input/Output Signals.

The signal pin assignments for the 50 pin connector are shown in Figure 3-40. When these signals are fed to digital printer, the print-out is given as a 10 digit decimal number.


### 3-46. Alternate Output of LCR and D/Q Data.

BCD outputs for LCR and D/Q data of 4262A Option 001 can be alternately supplied through one 50 pin BCD LCR DATA OUTPUT connector on rear panel. This alternate output is enabled by changing slide switch setting on printed circuit board P/N 04262-66535. PC board 04262-66535 is located nearest to the rear panel in the right hand row of PC boards. Normal setting of the four section slide switch for parallel output and the setting for alternate output are illustrated below.


### Normal

Parallel output:

Alternate output:







S

### 3-47. **Output Timing.**

Timing charts for parallel (simultaneous) output and alternate output are shown in Figure 3-41.

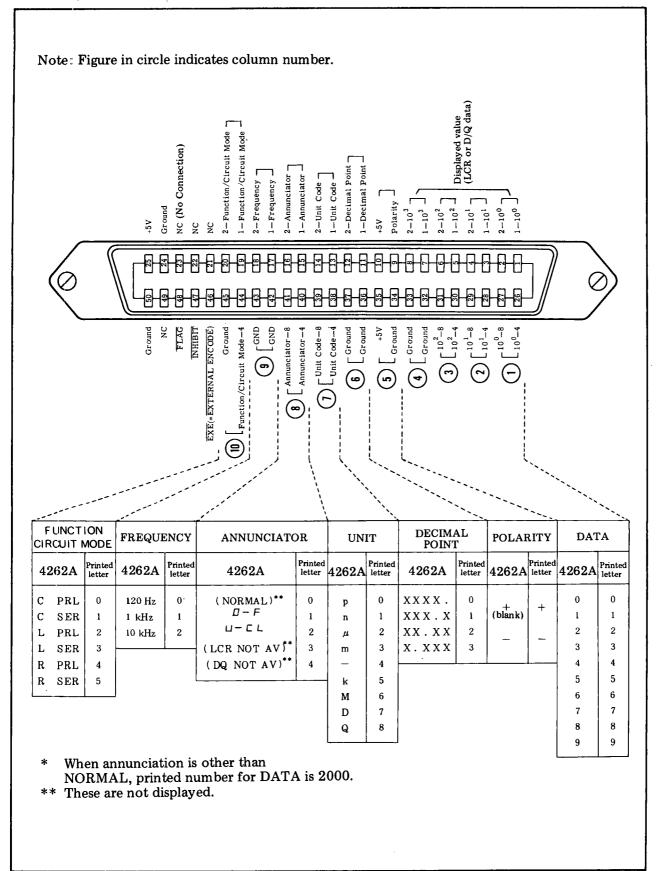



Figure 3-40. Pin Assignments of Output Connector and Output Format.

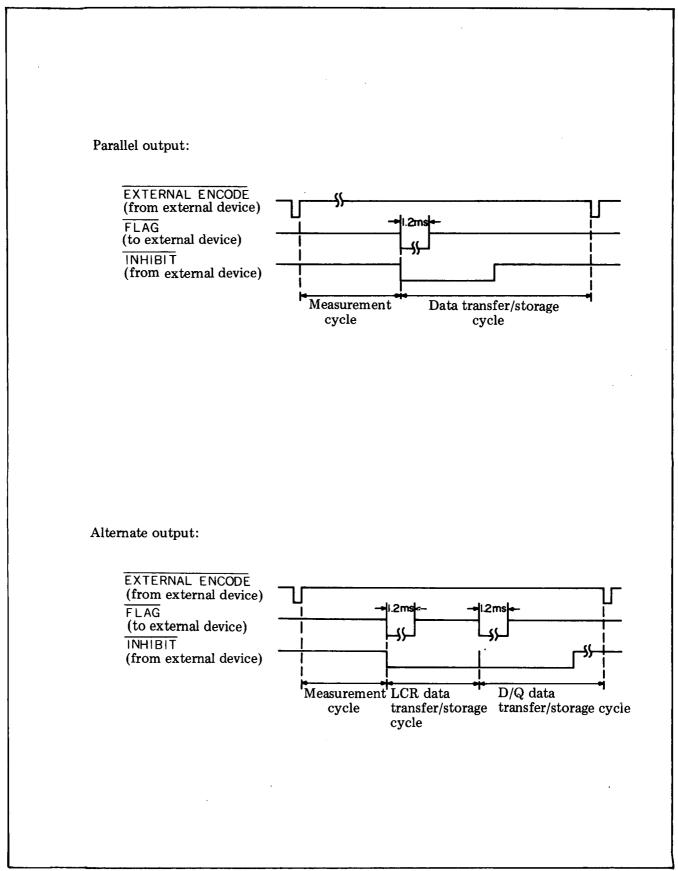



Figure 3-41. Timing Chart of BCD Data Output.

### 3-49. OPTION 004- COMPARATOR.

3-50. The 4262A Option 004 (shown in Figure 3-43) provides:

- (a) HIGH and LOW limits setting for comparison of LCR and D/Q measured data.
- (b) LED visual decision output lamps display of results of HIGH and LOW limit comparisons.
- (c) TTL outputs and relay outputs for HIGH, IN, and LOW decision outputs.

### 3-51. Front Panel Features (Figure 3-42).

- (1) LCR LIMIT Switch: Two four-digit switches provide HIGH and LOW limit values with which measured LCR value is compared. Setting range is from 0000 to 1999.
- (2) LCR Decision Output Lamp: Results of comparison are indicated by LED lamps as follows:

HIGH: (measured value ≥ High limit)
IN: (Low limit ≤ measured value < High limit)
LOW: (measured value < Low limit)

(3) LCR LIMIT CHECK Switch: While this switch is depressed, HIGH and LOW limit values set by LCR LIMIT switches (1) are displayed in LCR and D/Q displays. During this period, three LCR decision output lamps are lit. Comparator must be enabled display limits.

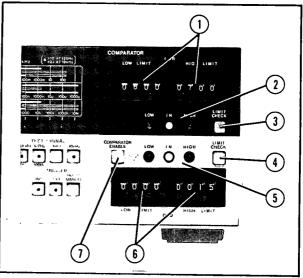



Figure 3-42. Front Panel Features

- (4) D/Q LIMIT CHECK Switch: While this switch is depressed, HIGH and LOW limit values set by D/Q LIMIT switches (6) are displayed in LCR and D/Q displays. During this period, three D/Q lamps of decision outputs are lit.
- (5) D/Q Decision Output Lamp: Results of comparison is indicated by LED lamps as follows:

(6) D/Q LIMIT Switch: Two four-digit switches provide HIGH and LOW limit values with which measured D/Q value is compared. Setting range is from 0000 to 1999.

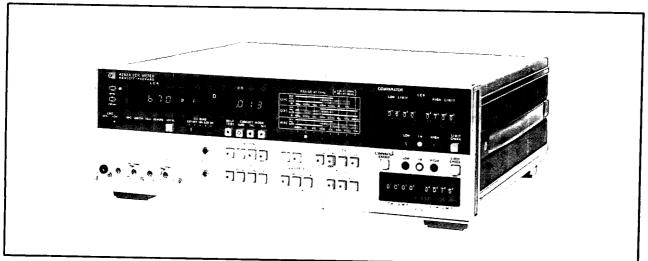



Figure 3-43. Option 004: COMPARATOR.

- (7) COMPARATOR ENABLE Switch: This switch enables the Option 004 to compare measured data with HIGH and LOW limits under a fixed range condition (LCR or D/Q RANGE switch set to MANUAL). If LCR RANGE switch or D/Q switch is set to AUTO, depressing COMPARATOR ENABLE switch changes LCR or D/Q RANGE switch setting to MANUAL.

  If AUTO key of LCR or D/Q RANGE
  - If AUTO key of LCR or D/Q RANGE switch is depressed while COMPARATOR ENABLE switch is ON, one measurement cycle is done in AUTO ranging and the range is fixed to that selected in this measurement cycle.
- 3-52. LIMIT Setting Warning: If HIGH LIMIT setting is lower than LOW LIMIT setting, HIGH and LOW lamps of decision output repeatedly turn ON and OFF to warn operator to change LIMIT setting.
- 3-53. DATA OUTPUT Connector Decision Output: Decision outputs in TTL open collector signal and in relay contact are supplied through COMPARATOR OUTPUT connector on the rear panel. Signal pin assignment is given in Figure 3-44.

### WARNING!

DO NOT APPLY AC LINE VOLTAGE TO RELAY OUTPUT CONNECTOR PIN TO SWITCH LINE CURRENT. For such relay applications, remotely control an external relay with relay output.

Relay Contact Ratings

|                                | AC                     | DC         |
|--------------------------------|------------------------|------------|
| Contact Resistance             | $100 \mathrm{m}\Omega$ | 100mΩ      |
| Maximum Permissible<br>Power   | 30VA                   | 20W        |
| Maximum Permissible<br>Voltage | 110V                   | 30V        |
| Maximum Permissible<br>Current | 0.3A                   | 1A         |
| Actuation Life                 | > 10 million           | >1 million |

### Decision Output Data Format

| Decisions | Relay output pins |                 |                 | TTL output pins |                 |                 |  |
|-----------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
| Decisions | DQ LCR<br>13 17   | DQ LCR<br>14 18 | DQ LCR<br>39 43 | DQ LCR<br>15 19 | DQ LCR<br>16 20 | DQ LCR<br>41 45 |  |
| ні        | s                 | 0               | 0               | Н               | L               | L               |  |
| IN        | 0                 | 0               | S               | L               | L               | Н               |  |
| LO        | 0                 | S               | 0               | L               | Н               | L               |  |

S: Short O: Open

Referenced to common (pin 38 or 42). TTL Output sink current: 30mA max.

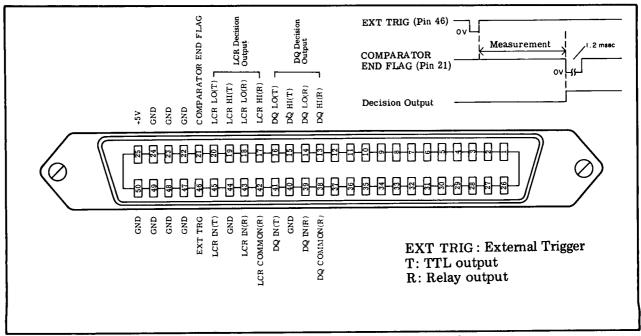



Figure 3-44. Comparator Data Output Pin Locations.

### 3-60. OPTION 101: HP-IB.

- 3-61. The 4262A Option 101 provides interface capabilities in accordance with IEEE-STD-488-1975 recommendations.
- 3-62. Connection to HP-IB Controller: The 4262A Option 101 can be connected to an HP-IB Controller (HP calculator) via HP-IB digital bus connector on the rear panel of the 4262A and the bus connector of the Bus I/O card installed in calculator.
- 3-63. HP-IB Status Indicator: The four LED lamps of the HP-IB Status Indicator (located below the LCR display) show which HP-IB condition the 4262A is in:

SRQ: SRQ signal put on HP-IB line from

4262A. See paragraph 3-70 for details.

LISTEN: 4262A is set to listen. See paragraph

3-69 for details.

TALK: The 4262A is set to talk. Se

paragraph 3-67 for details.

Remote: The 4262A is remotely controlled.

See paragraph 3-71 for details.

- 3-64. LOCAL Switch: This switch disables remote control and enables setting measurement conditions by front panel controls (pushbutton switches). REMOTE lamp of HP-IB status indicator turns off when LOCAL switch is depressed. (When Local Lock Out does not function).
- 3-65. HP-IB INTERFACE CAPABILITIES: The 4262A Opt 101 has the following eight bus interface functions:

SH1: Source Handshake Capability.

AH1: Acceptor Handshake Capability.

T5: Talker (the 4262A sends measurement data to the bus).

L4: Listener (the 4262A receives remote control signals from the bus).

SR1: Service Request Capability.

RL1: Remote/Local Capability.

DC1: Device Clear Capability.

DT1: Device Trigger Capability.

3-66. Source and Acceptor Handshake: SH1, AH1.

Three Bus handshake lines (DAV, NRFD and NDAC) perform Source and/or Acceptor handshake functions.

- (1) DAV (DAta Valid). DIO (Data Input Output) line is available.
- (2) NRFD (Not Ready For Data). Listener preparation for receiving data from Talker is not yet completed.

- (3) NDAC (Not Data Accepted). Listener has not yet received data from Talker.
- 3-67. Talker Capability: T5.

When set to Talker by MTA (My Talk Address) signal from controller, the 4262A sends measurement data to the Bus in one of three types of output formats:

Type A: Ordinary output format. Address switch on the rear panel set to FMT A.

$$\frac{S}{(1)} \frac{FC}{(2)} \frac{F}{(3)} \frac{-NN. NNE-NN}{(4)} , \frac{S}{(5)(1)(6)} \frac{N. NNN}{(7)} \frac{CRLF}{(8)}$$

Type B: Output format used for Model 5150A HP-IB Digital Recorder. Address switch on the rear panel set to FMT B.

$$\frac{S}{(1)} \frac{FC}{(2)} \frac{F}{(3)} \frac{-NN. NNE-NN}{(4)} \frac{CRLF}{(8)} \frac{S}{(1)(6)} \frac{N. NNN}{(7)} \frac{CRLF}{(8)}$$

Type C: Output format used in resistance measurement or LCR ONLY measurement when no D/Q data is to be outputted. Selection of this format is automatically done in accordance with FUNCTION switch setting.

$$\frac{S}{(1)} \frac{FC}{(2)} \frac{F}{(3)} \frac{-NN. NNE-NN}{(4)} \frac{CRLF}{(8)}$$

The numbered elements of output data are described below:

(1) Status:

 N
 Normal

 O
 Overflow

 U
 Uncal

 X
 LCRNA or DNA

(NA: Not Available)

(2) Function and Circuit Mode:

| FUNCTION      | MEASURE-<br>MENT | CIRCUIT<br>_MODE |
|---------------|------------------|------------------|
| <del></del>   |                  |                  |
| CP            | C                | $\mathtt{PRL}$   |
| CS            | $\mathbf{C}$     | $\mathbf{SER}$   |
| LP            | ${f L}$          | $\mathtt{PRL}$   |
| LS            | L                | $\mathbf{SER}$   |
| $\mathbf{RP}$ | $\mathbf{R}$     | PRL              |
| $\mathbf{RS}$ | R/ESR            | SER              |

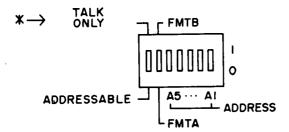
(3) Frequency:

A..... 120Hz (100Hz)

B..... 1kHz

C..... 10kHz

- (4) LCR Data
- (5) Data Delimiter
- (6) Loss


D..... Dissipation Factor measurement Q..... Quality Factor measurement

- (7) DQ Data
- (8) Data Terminator

### 3-68. Functions Related to Talker Capability.

EOI (End Or Identify): When multiple byte data of Source Handshake has been sent, the 4262A provides EOI to the bus.

Talk Only Mode: When ADDRESS switch is set to TALK ONLY "1" position, the 4262A is set to Talker regardless of address code.



Talk Address Disabled by Listen Address:

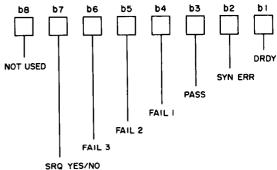
MTA (My Talk Address) is automatically disabled when MLA (My Listen Address) is set. MTA (My Talk Address) is otherwise disabled by IFC (Interface Clear) signal, OTA (Other Talk Address) signal or UTA (Untalk Address) signal.

### 3-69. Listener Capability: L4.

To receive Remote Program signal or Addressed Command signal, the 4262A is set to Listener by an MLA (My Listen Address) signal from the bus.

- Remote Program signal: Remote program codes for the 4262A are listed in Table 3-60.
- (2) Addressed Command signal: When the 4262A receives command signals GET, GTL, or SDC, it is set to Listener and controlled by command signals. These command signals are valid regardless of the status (remote or local).

GET (Group Execute Trigger): When the 4262A receives this command, it is triggered regardless of front panel TRIGGER switch setting.


GTL (Go to Local). The 4262A is set to LOCAL by this command to enable front panel control.

SDC (Selected Device Clear): When this command is accepted, front panel controls are set to initial conditions (the same conditions that are automatically set after turn-on of power switch).

Listen status is automatically disabled when MTA (My Talk Address) is received. Listen status is otherwise disabled by IFC (Interface Clear) signal or ULA (Unlisten Address) signal.

### 3-70. Service Request Capability: SR1.

The 4262A sends an SRQ (Service Request) signal whenever it is set in one of the six possible RQS (Request Status) states. It does this by responding to a serial poll of the controller by setting an STB (Staus Byte) signal on the bus. The 7th bit of this 8 bit signal establishes whether or not a service request exists. The remainder of the 8-bit signal identifies the character of the SRQ.



SRQ (Service Request) is disabled when RQS (Request Status) or STB (Status Byte) is set to 000000000 or when STB (Status Byte) signal transfer is completed.

Request Statuses (RQS) of the 4262A:

- (1) DRDY (Data ReaDY): When the 4262A-completes a measurement cycle, this status bit is set. This status is set without serial polling if NOT DATA READY is set.
- (2) SYN ERR (SYNtax ERRor): When the 4262A receives an erroneous Remote Program Code which is not listed in Table 3-60, this status bit is set.
- (3) PASS (Self Test Pass): When PASS is displayed in Self Test done by remote control, this status bit is set.
- (4) FAIL 1 (Self Test Fail 1): When FAIL 1 is displayed in Self Test done by remote control, this status bit is set.
- (5) FAIL 2 (Self Test Fail 2): When FAIL 2 is displayed in Self Test done by remote control, this status bit is set.
- (6) FAIL 3 (Self Test Fail 3): When FAIL 3 is displayed in Self Test done by remote control, this status bit is set.

Table 3-60. Remote Program Codes.

|                 | C     | Program Code                          |      |
|-----------------|-------|---------------------------------------|------|
| Function        | L     | F 1                                   |      |
|                 | C     |                                       | F 2  |
|                 | R/E   | SR                                    | F 3  |
| Circuit Mode    | AUT   | )                                     | C 1  |
|                 | PRL   |                                       | C 2  |
|                 | SER   |                                       | C 3  |
| Loss            | D     |                                       | L 1  |
|                 | Q     | · · · · · · · · · · · · · · · · · · · | L 2  |
| Frequency       | 120 H | z                                     | H 1  |
|                 | 1 kH2 | 3                                     | Н 2  |
|                 | 10 kH | z                                     | H 3  |
| Trigger         | INT   |                                       | T 1  |
|                 | EXT   |                                       | T 2  |
|                 | HOLE  | MANUA L                               | Т 3  |
| Self Test       | OFF   | S 0                                   |      |
|                 | ON    | S 1                                   |      |
| △LCR            | OFF   | M 0                                   |      |
|                 | ON    | M 1                                   |      |
| Cp Low Level    | OFF   | P 0                                   |      |
|                 | ON    | P 1                                   |      |
| *<br>Data Ready | OFF   |                                       | D 0  |
| RQS Mode        | ON    |                                       | D 1  |
|                 | (C)   | (L) (R)                               |      |
| LCR Range       | 100 p | 100 μ 1000 m                          | R 1  |
| at 1 kHz        | 1000  | 1000 10                               | R 2  |
|                 | 10 n  | 10 m 100                              | R 3  |
| i               | 100   | 100 1000                              | R 4  |
|                 | 1000  | 1000 10 k                             | .R 5 |
|                 | 10 μ  | 10 100 k                              | R 6  |
|                 | 100   | 100 1000 k                            | R 7  |
|                 | 1000  | - 10 M                                | R 8  |
| !               |       | AUTO —                                | R 9  |
| DQ Range        | (D)   | (Q)                                   |      |
| į               |       | 1000                                  | N 1  |
|                 |       | 100.0                                 | N 2  |
|                 | 10.00 | 10.00                                 | N 3  |
|                 | 1.000 | 1.000                                 | N 4  |
|                 | — A   | N 5                                   |      |

Table 3-61. Remote Message Coding.

|     |                       | CLASS | D D I O O S 7 6 5 4 3 2 1         |
|-----|-----------------------|-------|-----------------------------------|
| DCL | device clear          | UC    | X 0 0 1 0 1 0 0                   |
| GET | group execute trigger | AC    | X 0 0 0 1 0 0 0                   |
| GTL | go to local           | AC    | X 0 0 0 0 0 0 1                   |
| LLO | local lock out        | UC    | X 0 0 1 0 0 0 1                   |
| MLA | my listen address     | AD    | X 0 1 L L L L L L L 5 4 3 2 1     |
| МТА | my talk address       | AD    | X 1 0 T T T T T T 5 4 3 2 1       |
| ОТА | other talk address    | AD    | $(OTA = TAG \cap \overline{MTA})$ |
| SDC | selected device clear | AC    | X 0 0 0 0 1 0 0                   |
| SPD | serial poll disable   | UC    | X 0 0 1 1 0 0 1                   |
| SPE | serial poll enable    | UC    | X 0 0 1 1 0 0 0                   |
| STB | status byte           | ST    | s x s s s s s s                   |
| UNL | unlisten              | AD    | X 0 1 1 1 1 1 1                   |
| UNT | untalk                | AD    | X 1 0 1 1 1 1 1                   |

CLASS UC: Universal Command

AC: Addressed Command

AD: Address
ST: Status Byte

### 3-71. Remote/Local Capability: RL1.

The 4262A goes to Remote Status only when it accepts Listen address with REN (Remote Enable) line in the Bus lines set to "1". Remote status is not obtained if REN line is set to "1" after Listen address is received. Remote status is returned to Local status when one of following conditions is present:

- (1) REN line is set to "0".
- (2) LOCAL switch on front panel is depressed.
- (3) GTL (Go To Local) command is received.

### Local Lock Out: LLO

Local Lock Out inhibits the function of LOCAL switch. This LLO command is a universal command and is valid when REN line is set to "1". LLO command is disabled when REN line is set to "0"

### 3-72. Device Clear Capability: DC1.

The 4262A is set to initial conditions (the same conditions that are automatically set after turn-on of power switch), when it accepts DCL (Device CLear) command—universal command—or SDC (Selected Device Clear)—addressed command.

### 3-73. Device Trigger Capability: DT1.

The 4262A is triggered regardless of TRIGGER switch setting when it accepts GET command—address command.

3-74. ADDRESS Switch: ADDRESS switch on the rear panel sets Listen/Talk address. Five section or five bit switch provides 30 settings from 00000 to 11110.

3-75. Remote Message Coding: Interface Bus Command signals for the 4262A are listed in Table 3-61.

# SECTION IV PERFORMANCE TESTS

### 4-1. INTRODUCTION.

4-2. This section provides the check procedures to verify the 4262A specifications listed in Table 1-1. All tests can be performed without access to the interior of the instrument. A simpler operational test is presented in Section III under Self Test (paragraph 3-5). The performance test procedures in this section can also be used to do an incoming inspection of the instrument and to verify whether the instrument meets its specified performance after troubleshooting or making adjustments. If specifications are found to be out of limits, check that controls are properly set, and then proceed to adjustments or troubleshooting.

### Note

Allow a 15-minute warm-up and stabilization period before conducting any performance test.

### 4-3. EQUIPMENT REQUIRED.

4-4. Equipment required for the performance tests is listed in Table 1-4 Recommended Test Equipment in Section I. Any equipment whose characteristics equal the critical specifications given in the table may be substituted for the recommended model(s).

Accuracy checks in this section use standard LCR components as the samples to be connected to the 4262A. Accessories 16361A and 16362A can be utilized for this purpose. These accessory models are DUT (device under test) boxes from which the desired component can be selected and connected to the 4262A through cables by use of a

rotary switch. If models 16361A/16362A are unavailable, use the discrete components recommended in Table 4-1.

### Note

All components used as standards should be calibrated by an instrument whose specifications are traceable to NBS, PTB, LNE, NRC, JEMIC, or equivalent standards group; or all components should be calibrated directly by an authorized calibration organization such as NBS. The calibration cycle should be determined by the stability specification for each component.

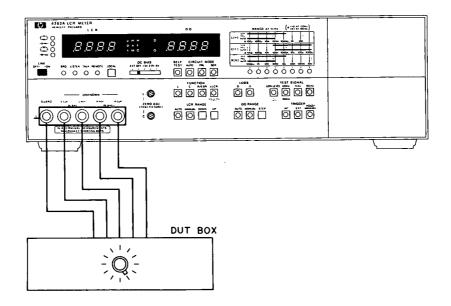
### 4-5. TEST RECORD.

4-6. Results of the performance tests may be tabulated on the Test Record at the end of these procedures. The Test Record lists all the tested specifications and their acceptable limits. Test results recorded at incoming inspection can be used for comparison in periodic maintenance and trouble-shooting and after repairs or adjustments.

### 4-7. CALIBRATION CYCLE.

4-8. This instrument requires periodic verification of performance. Depending on the use and environmental conditions, the instrument should be checked with the following performance tests at least once every year. To maximize the "up time" of the instrument, the recommended preventive maintenance frequency for the 4262A is twice a year.

### -PRELIMINARY OPERATIONS-


Before beginning performance test, adjustment, or calibration of 4262A, check fundamental operating conditions of the instrument and perform display ZERO adjustments in accord with the following procedures:

- 1) Confirm that power line power voltage in use is appropriate for the instrument operating power voltage.
- 2) Depress LINE pushbutton and confirm that all the front panel displays and indicators momentarily illuminate. The 4262A functions are automatically set to capacitance measurement mode.
- 3) ZERO offset adjustment should be made whenever a test fixture or DUT box is connected to 4262A UNKNOWN terminals. Adjust C ZERO ADJ and L ZERO ADJ controls so as to fully compensate for stray capacitance and residual inductance of equipment connected to UNKNOWN terminals. Adjustment procedures to adjust for individual test equipment used are provided in steps 3-a and 3-b which follow.
  - 3-a) 16361A/16362A or user built DUT box.
    - 1. Disconnect shorting bars from 4262A UNKNOWN terminals. Connect test leads between 4262A UNKNOWN terminals and DUT box.
    - 2. Set 4262A FUNCTION to C. Set TEST SIGNAL frequency as appropriate to DUT box being used.
    - 3. Set range control of DUT box to open-circuit position (2pF range on 16361A or 1pF range on 16362A). The 4262A is automatically set to its lowest capacitance measurement mode range.
    - 4. Adjust C ZERO ADJ control so that capacitance readout on 4262A LCR display is identical to calibrated value of DUT box range.
    - 5. Set 4262A FUNCTION to L.
      - 6. Set range control of DUT box to short-circuit position ( $20m\Omega$  range on 16361A or on 16362A).
      - 7. Adjust L ZERO ADJ control for 000 counts on LCR display.

### Note

To permit easy adjustment of ZERO ADJ controls for an individual DUT box, each DUT box should be equipped with short and open circuit ranges which provide  $0\mu$ H and 0pF (practical values), respectively.

### PRELIMINARY OPERATIONS-



### 3-b) 16061A or other test fixtures.

- 1. Disconnect shorting bars from 4262A UNKNOWN terminals and attach test fixture to UNKNOWN.
- 2. No DUT should be connected to the test fixture.
- 3. The 4262A is automatically set to lowest capacitance range in measurement mode. Set 4262A TEST SIGNAL frequency to 10kHz.
- 4. Adjust C ZERO ADJ control for 000 counts on LCR display.
- 5. Set 4262A FUNCTION to L.
- 6. Connect a shorting lead to test fixture to short-circuit the measurement terminals.
- 7. Adjust L ZERO ADJ control for 000 counts on LCR display.

### Note

When positions or mutual distance between Test Fixture contacts are changed, or contacts are changed to a different type, again perform ZERO adjustments.

### - CALIBRATION OF DUT'S -

Either user built DUT's or substitution standards with accuracies which satisfy the requirements may be used for performance testing and calibration of the 4262A. The DUT's recommended for making the tests and adjustments can be accuracy certified in accord with the calibration procedure detailed below. This calibration procedure applies to all alternate DUT's which do not carry public or testing laboratory certification.

### [CAPACITANCE CALIBRATION]

Measure the DUT or substitution standard capacity with a precision capacitance bridge that meets the calibration accuracy and frequency requirements. For testing or calibrating dissipation factor of DUT, use equipment with required dissipation measuring capability and verify the exact calibration frequency to permit compensating D value for the difference in measuring frequency between individual Model 4262A's and the calibration equipment. If the frequency error is less than 3%, compensation is not required for dissipation factors of 0.01 and below.

### [RESISTANCE CALIBRATION]

Use a metal film resistor of appropriate value for each DUT to maintain a constant resistance over a wide range of frequencies. Measure the resistance with a high accuracy DMM. When measuring  $1k\Omega$  and below, use a 4 terminal measurement configuration.

### [DISSIPATION FACTOR CALIBRATION]

DUT's used as D standards can be built with precisely measured components. The dissipation factor of the DUT is determined by an exact calculation from the calibrated values of each components in accord with the following equations:

| Circuit Mode | Derivation of D     |
|--------------|---------------------|
| Cp Rp        | $D = 1/\omega CpRp$ |
| Cs Rs        | $D = \omega CsRs$   |

Note

For easier calibration of dissipation, use accurately calibrated resistors rather than capacitors.

### - CALIBRATION OF DUT'S -

To minimize the calculation error, the inherent dissipation of the capacitor should be 0.001 or below. When using polystyrene or silvered mica type capacitors (dissipation factor is generally very low), the residual factors will not affect the derivation of accurate dissipation factors. If dissipation of capacitor alone is greater than 0.001, the effective value of the DUT is calculated in accord with the following equation:

$$Ds = Dc + Dr$$
 ( $Dr \leq Dc, Dr \leq 0.01$ )

where, Ds is actual dissipation factor of DUT.

Dc is calculated D value (excludes inherent dissipation).

Dr is inherent dissipation of capacitor.

Compensate the dissipation factor for the measuring frequencies of individual 4262A being tested or calibrated. Convert the D value of the calibration frequency to that of the actual 4262A measuring frequency in accord with the following equations:

|           | <del>-</del>    | $x = \frac{fc}{fm}$ | Dm: D value at 4262A measuring frequency. Ds: D value at calibration frequency. |
|-----------|-----------------|---------------------|---------------------------------------------------------------------------------|
| Dm = X·Ds | - <b>I-</b> -W- | $x = \frac{fm}{fc}$ | fm: 4262A measuring frequency fc: Calibration frequency.                        |

Note

To accurately measure frequencies fm and fc, use a reciprocal counter or calculate reciprocal number of period.

### [CALIBRATION EQUIPMENT]

The recommended model and required performance of calibration equipment is listed below:

| Instrument         | nstrument Required Performance                                                   |                            |
|--------------------|----------------------------------------------------------------------------------|----------------------------|
| Capacitance Bridge | Capacitance Accuracy: 0.1% Dissipation Factor Accuracy: 0.1% (Resolution 0.0001) | GR 1620-A                  |
| DMM                | Resistance Accuracy: 0.02%                                                       | HP 3490A<br>HP 3455A       |
| Freq. Counter      | Reciprocal counter<br>Resolution: 0.01Hz                                         | HP 5300A/5307A<br>HP 5323A |

Table 4-1. Recommended Components for Accuracy Checks.

| Compo                                                                                                                                                                                                                                                                                         | onent *1                                                           | HP Part Number                                                             | Alternate Source                                         | Required<br>Calibration Accuracy                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|--|
| Capacitor                                                                                                                                                                                                                                                                                     | 100pF<br>1000pF<br>10nF<br>100nF<br>1000nF<br>10\mu F<br>1000\mu F | 0160-0336<br>0160-3766<br>0160-0408<br>0160-1571<br>0160-3645<br>0160-3563 | HP Model 4440B GR Type 1413  SOSHIN TM-520C GR Type 1417 | 0.05%<br>0.2%<br>0.25%                          |  |
| Resistor:                                                                                                                                                                                                                                                                                     | 1kΩ<br>10kΩ<br>100kΩ<br>10MΩ                                       | 0698-3491<br>0698-6360<br>0698-4158<br>0698-8194                           | GR Type 1433-Y                                           | 0.05%                                           |  |
| Inductor:                                                                                                                                                                                                                                                                                     | 100mH                                                              |                                                                            | GR Type 1482-L                                           | 0.05%                                           |  |
| Dissipation Factor: $1000 \text{nF in parallel with } 887\Omega$ $(D \approx 1.50 \text{ at } 120 \text{Hz})$ $100 \text{nF in parallel with } 887\Omega$ $(D \approx 1.79 \text{ at } 1 \text{kHz})$ $10 \text{nF in parallel with } 887\Omega$ $(D \approx 1.79 \text{ at } 10 \text{kHz})$ |                                                                    | 0160-3645<br>0698-4464<br>0160-1571<br>0698-4464<br>0160-3171<br>0698-4464 | (D=1/ωCR)                                                | **2 Capacitors · · · 0.1% Resistors · · · 0.02% |  |

<sup>\*1</sup> The components listed above or used as standards should be calibrated before they are utilized.

Proper method and procedure for calibrating the DUT's is given in "Calibration of DUT's" (Page 4-4).

<sup>\*\*2</sup> For easier calibration of dissipation to the required accuracy (0.1%), use accurately calibrated resistors rather than capacitors (use a high accuracy DMM to measure resistors).

#### 4-9. MEASUREMENT FREQUENCY TEST.

#### DESCRIPTION:

This test verifies the accuracy of the measurement frequencies that are applied to an unknown sample connected to the 4262A.

#### SPECIFICATIONS:

Measurement Frequencies:

120Hz ± 3% 1kHz ± 3% 10kHz ± 3%

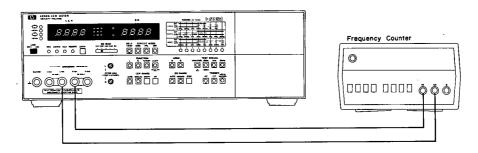



Figure 4-1. Measurement Frequency Test Setup.

### **EQUIPMENT:**

#### PROCEDURE:

- 1. Connect frequency counter to the 4262A UNKNOWN terminals as shown in Figure 4-1.
- 2. Set range of frequency counter as appropriate for measuring 4262A test frequencies of 120Hz, 1kHz and 10kHz.
- 3. Read display output of frequency counter when 4262A TEST SIGNAL is set to 120Hz, 1kHz or 10kHz.
- 4. Frequency readouts must be within the following limits (record measured frequency in table below as the data is used in paragraph 4-12):

| TEST SIGNAL | Test Limits     | Counter Readout |
|-------------|-----------------|-----------------|
| 120Hz       | 116.4 - 123.6Hz |                 |
| 1kHz        | 970 - 1030 Hz   |                 |
| 10kHz       | 9700 - 10300 Hz |                 |

### Note

Test limits in table above do not take into account reading error caused by measurement error in test equipment.

#### Note

If this test fails, refer to Service Sheet 11 in Section VIII for troubleshooting.

## 4-10. CAPACITANCE ACCURACY TEST.

## **DESCRIPTION:**

This test checks capacitance measurement accuracy for zero and full scale displays at three test frequencies and at two signal levels. The test is made by connecting a stable capacitor more accurate than the 4262A to the instrument and reading the display to verify that the 4262A meets its measurement accuracy specifications. Check all ranges in Cp mode and one range in Cs mode at each frequency (120Hz, 1kHz and 10kHz) to guarantee C measurement accuracy since all variable elements (range resistors and detecting phases) needed for C measurement are thus checked. In this test, almost all ranges, from the lowest through the highest ranges, are being verified.

#### Note

If the following tests satisfy the accuracy specifications, all the accuracy specifications listed in Table 1-1 are guaranteed.

#### Capacitance Accuracy Test Ranges

| TEST  | TEST SIGNAL |                 | RANGE             |          |          |         |         |                         |                |  |  |
|-------|-------------|-----------------|-------------------|----------|----------|---------|---------|-------------------------|----------------|--|--|
| Freq. | Level       | CIRCUIT<br>MODE | 10.00pF           | 100.0pF  | 1000pF   | 10.00nF | 100.0nF | 1000nF                  | 10.00µF        |  |  |
|       | TOM TEAET   | PRL             | > <               | > <      |          |         |         |                         |                |  |  |
| 120Hz | normal      | PRL             | > <               | > <      |          |         |         |                         |                |  |  |
|       | norma       | SER             | > <               | $\times$ | > <      | > <     | > <     |                         |                |  |  |
|       | TOM FEART   | PRL             | ${}$              |          |          |         |         |                         | $\overline{}$  |  |  |
| 1kHz  |             | PRL             | $\supset \subset$ |          |          |         |         |                         | $\overline{}$  |  |  |
|       | normal      | SER             | $\times$          | > <      | > <      | > <     |         |                         |                |  |  |
|       | LOW LEVEL   | PRL .           |                   |          |          |         |         | > <                     | $\searrow$     |  |  |
| 10kHz | notmal      | PRL             |                   |          |          |         |         | $\overline{\mathbf{x}}$ | ightrightarrow |  |  |
|       |             | SER             | $\times$          | >        | $\times$ |         |         | $\overline{}$           | _              |  |  |

#### TEST SIGNAL level:

| LOW LEVEL |  |  |   |  |  |  |  |  | .50 mV |
|-----------|--|--|---|--|--|--|--|--|--------|
| normal    |  |  | _ |  |  |  |  |  | 1 V    |

Tests for dissipation factor accuracy with above capacitance standards should be done at the same time as capacitance tests

Check all parallel (PRL) mode ranges. It is sufficient to check any one range in series (SER) mode.

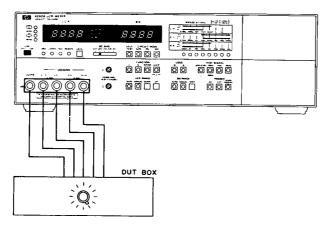



Figure 4-2. Capacitance Accuracy Test Setup.

### SPECIFICATIONS:

### C-D/Q MEASUREMENT ACCURACIES.

| Range               | 120Hz<br>1kHz 1kHz<br>10kHz | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                      |
|---------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -411-               |                             |                                                                                                                                                                             |
| C Accuracy*1        | -11                         | (At 120Hz, 1kHz) 0.3% + 2 counts 0.5% + $\frac{15. *2}{2 \text{ counts}}$ (At 10kHz) 0.3% + 2 counts 1% + 2 [5% + 2]                                                        |
|                     | AUTO                        | Same as - Mode Same as - Mode                                                                                                                                               |
| D (1/Q) Accuracy *1 | -₩-                         | 0.2% + (2 + 200/Cx) counts  0.5% + (2 + 200/x) counts  1.0% + (2 + 1000/Cx) counts  At 120Hz, 1kHz  At 10kHz  At 10kHz  At 120Hz, 1kHz  (Test signal level: 50mV)  At 10kHz |
| riccuracy .         | -I+-W-                      | (At 120Hz, 1kHz) $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                    |
|                     | AUTO                        | Same as - Mode Same as - Mode                                                                                                                                               |

<sup>\*1 ±(%</sup> of reading + counts). Cx is capacitance readout in counts. This accuracy only applies for D values to 1.999.

Accuracy applies over a temperature range of 23°C ±5°C (at 0°C to 55°C, error doubles).

### **EQUIPMENT:**

DUT Box..... HP 16361A/16362A Test Leads..... HP P/N 16361-61605

#### Note

User built test fixture or DUT box may be used instead of those HP provides. If user supplied, the residual impedance and stray capacitance of the fixture and box must be taken into account.

#### PROCEDURE:

- 1. Connect Test Leads (HP P/N 16361-61605) between 4262A UNKNOWN terminals and HP 16361A DUT Box (see Figure 4-2). When TEST SIGNAL frequency is 10kHz, use HP 16362A in place of HP 16361A.
- 2. Set 4262A controls as follows:

| DC BIASOFF     |
|----------------|
| FUNCTIONC      |
| LCR RANGE AUTO |
| LOSSD          |
| D/Q RANGE AUTO |
| TRIGGER INT    |

<sup>\*2</sup> (5% + 2 counts) at 1kHz.

3. Confirm that the table on page 4-11 is satisfied when the measurements are made by changing TEST SIGNAL, CIRCUIT MODE and DUT as given in the table. Record capacitance and dissipation factor readings in blank spaces provided in table.

### Note

Error caused by stability of standard component is not taken into account for test limits in the table.

Test limits in parentheses are those for dissipation factor measurement value.

If tests fail, proceed to Section V ADJUSTMENTS or Section VIII SERVICE.

| TEST S | SIGNAL       | CIRCUIT |        |                             |        | 16361                               | A/16362A  | RANGE     |           |                                    |                                   |
|--------|--------------|---------|--------|-----------------------------|--------|-------------------------------------|-----------|-----------|-----------|------------------------------------|-----------------------------------|
| Freq.  | level        | MODE    | 10pF*1 | 100pF                       | 1000pF | 10nF                                | 100nF     | 1000nF    | 10µF      | 1000µF                             | 10mF                              |
|        | LOW<br>LEVEL | PRL     |        | C. V.<br>±4 counts<br>(———) |        | C. V.<br>±5 counts<br>(±3 counts)   | ±5 counts |           |           |                                    |                                   |
| 120Hz  |              | PRL     |        | ±2 counts                   |        | C. V.<br>±3 counts<br>(±3 counts)   |           | ±3 counts |           |                                    |                                   |
|        | normal       | SER     |        |                             |        |                                     |           | ±5 counts | ±5 counts | C. V.<br>±7 counts<br>(±4 counts)  | C. V.<br>±12 counts<br>(±7 counts |
|        | LOW<br>LEVEL | PRL     |        | ±8 counts                   |        | C. V.<br>±5 counts<br>(±3 counts)   |           |           |           |                                    |                                   |
| 1kHz   |              | PRL     |        | •                           |        | C. V.<br>±3 counts<br>(±3 counts)   |           |           |           |                                    |                                   |
|        | normal       | SER     |        |                             | •      | 3                                   | 1         |           | ı         | C. V.<br>±52 counts<br>(±7 counts) | ·                                 |
|        | LOW<br>LEVEL | PRL     | l      |                             |        | C. V.<br>±5 counts<br>(±3 counts    |           | 1         | <u> </u>  |                                    |                                   |
| 10kHz  |              | PRL     |        |                             |        | C. V.<br>s±3 counts<br>(±3 counts   | l         |           |           |                                    |                                   |
|        | normal       | SER     |        |                             | 1      | C. V.<br>s±5 counts<br>) (±4 counts | 1         | I .       | 1         | 1                                  |                                   |

TEST SIGNAL level: LOW LEVEL . . . . . 50mV normal . . . . . . . . 1V

<sup>\*1</sup> HP 16362A Only \*\*2 C. V. = Calibrated Value of Standard Component.

## 4-11. RESISTANCE/\*\*ESR ACCURACY TEST.

#### DESCRIPTION:

This test verifies that resistance measurement accuracies for 4262A tested meets the specifications listed below. Although R measurement accuracies are actually guaranteed when C measurement accuracies meet the specifications, almost all ranges in Rp mode are checked in this test.

#### Note

Resistance accuracy has only to be proved for one resistor of about full scale value on any one range to verify specifications for 120Hz, 1kHz and 10kHz.

#### SPECIFICATION:

## RESISTANCE/ESR ACCURACY SPECIFICATIONS

|             |                        | r                  |          |        | <del> </del> | <del>,</del> - |             |        |             |  |
|-------------|------------------------|--------------------|----------|--------|--------------|----------------|-------------|--------|-------------|--|
| Ranges      | 120Hz<br>1kHz<br>10kHz |                    | 10.00Ω   | 100.0Ω | 1000Ω        | 10.00kΩ        | 100.0kΩ     | 1000kΩ | 10.00Ms     |  |
|             | 4                      | 0.3% + 2 counts *2 |          |        |              |                |             |        |             |  |
| Accuracy *1 | -35-W-<br>-11-W-       | 0.2% + 2 counts    |          |        |              |                |             |        |             |  |
|             | AUTO                   |                    |          |        | r ]          |                | <b>.</b>    |        | <del></del> |  |
|             | AUIU                   | Sam                | e as 1PW |        | loge         | Same a         | <u>。</u> -🖏 | Mo     | de          |  |

- \*1  $\pm$ (% of reading + counts).
- \*2 (5% +2 counts) on 10.00M $\Omega$  range at 10kHz.
- \*\* Measurement range for ESR (equivalent series resistance) is from  $1m\Omega$  to  $19.99k\Omega$  (typical), which varies with series capacitance or inductance value . . . . . refer to "REFERENCE DATA" on page 1-6.

Accuracy applies over a temperature range of 23°C ±5°C. (at 0°C to 55°C, error doubles).



Figure 4-3. Resistance Accuracy Test Setup

### **EQUIPMENT:**

Note

User built fixture/leads or DUT box can be used. If user supplied, the residual resistance must be considered.

#### PROCEDURE:

- 1. Connect Test Leads (HP P/N 16361-61605) between 4262A UNKNOWN terminals and HP 16361A DUT Box (see Figure 4-3).
- 2. Set 4262A controls as follows:

| DC BIASOFF       |
|------------------|
| CIRCUIT MODEPRL  |
| FUNCTION         |
| LCR RANGE AUTO   |
| TEST SIGNAL 1kHz |
| TRIGGER INT      |

3. Check that the resistance measurement accuracies meet specifications according to table below:

| DUT         | 1kΩ                | <b>10</b> kΩ       | 100kΩ              | 10ΜΩ               |
|-------------|--------------------|--------------------|--------------------|--------------------|
| Test Limits | C. V.<br>±5 counts | C. V.<br>±5 counts | C. V.<br>±5 counts | C. V.<br>±5 counts |
| R Readout   |                    |                    |                    |                    |

C. V. = Calibrated Value of Standard Component

### Note

Error caused by stability of standard component is not taken into account for test limits in table above.

### Note

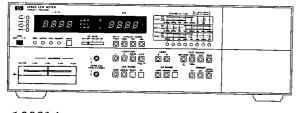
If this test fails, go to Section V or Section VIII for the troubleshooting.

## 4-12. DISSIPATION FACTOR CONFIRMATION CHECK

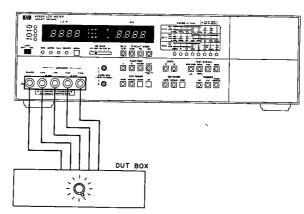
#### DESCRIPTION:

This test verifies that a tested 4262A satisfies dissipation factor measurement accuracies. Only one Dissipation Factor (D = 1.8) is checked for 120Hz, 1kHz and 10kHz in this check because only one detecting phase needs to be checked. All other factors influencing D accuracy were checked in paragraph 4-10.

#### Note


Dissipation factor accuracy for only one D standard which has a D value of approximately 1.8 need be proved to guarantee D accuracy. This test also verifies that 4262A correctly calculates Q factor as a reciprocal number of Dissipation Factor. Only one Q factor corresponding to a D value of approximately 1.8 is checked in this test. D accuracy in measuring inductance does not need to be checked because detecting phase accuracy is equated with that for capacitance measurement.

### C-D ACCURACY SPECIFICATIONS


| o b necessite i bi best teations |                    |                              |         |                        |         |                                                         |           |           |                              |  |
|----------------------------------|--------------------|------------------------------|---------|------------------------|---------|---------------------------------------------------------|-----------|-----------|------------------------------|--|
| Range                            | l kHz              | 1000pF<br>100.0pF<br>10.00pF | 1000pF  | 10.00nF                | 100.0nF | l 1000nF                                                | 110.00uF  | 1100 Ou F | l 1000#F                     |  |
|                                  | dh                 |                              |         | 2 + 200/C<br>0.5% + (2 |         | At 120Hz, 1kHz<br>(Test signal level: 1V)<br>At 10kHz   |           |           |                              |  |
| D (1/Q)<br>Accuracy *1           | <b></b>            |                              |         | + (2 + 10<br>+ (2 + 10 |         | At 120Hz, 1kHz<br>(Test signal level: 50mV)<br>At 10kHz |           |           |                              |  |
| 1                                | - <del>11-W-</del> | (                            |         | z, 1kHz)<br>; 10kHz)   |         | + (2 + Cz                                               | k/500) co |           | $1\% + (5 + \frac{Cx}{500})$ |  |
|                                  | AUTO               | San                          | ne as - | ₩- N                   | 1ode    | Sam                                                     |           |           | ode                          |  |

<sup>\*1 ±(%</sup> of reading + counts). Cx is capacitance readout in counts.

Accuracy applies over temperature range of 23°C  $\pm 5$ °C. (At 0°C to 55°C, error doubles) This accuracy only applies for D values to 1.999.



16061A



(a) (b)

Figure 4-4. Dissipation Factor Accuracy Test Setups.

### **EQUIPMENT:**

#### Note

HP 16361A and HP 16362A DUT Boxes are equipped with D standards (D = 1.8) calibrated at 1kHz and 10kHz frequencies, respectively. For the test at 120Hz frequency or if DUT box is not available, it is recommended that the following DUT's be used as D standards:

| DUT | Freq. | Values of components                                       | Calculated D | Tolerance* |
|-----|-------|------------------------------------------------------------|--------------|------------|
| С   | 120Hz | C:1000nF(HP P/N 0160-3645)<br>R:887Ω (HP P/N 0698-4464)    | 1.495        | ±0.030     |
| -   | 1kHz  | C: 100nF (HP P/N 0160-1571)<br>R: 887Ω (HP P/N 0698-4464)  | 1.794        | ±0.036     |
| R   | 10kHz | C : 10nF (HP P/N 0160-3171)<br>R : 887Ω (HP P/N 0698-4464) | 1.794        | ±0.036     |

<sup>\*</sup> After calibrating capacitance C  $\,$  to within 0.1% and resistance R  $\,$  to within 0.02%, the dissipation factor tolerance is  $\pm 0.002$  for each DUT.

#### PROCEDURE:

### 1. Connect DUT to 4262A.

### Note

To facilitate connecting recommended DUT's, attach HP 16061A Test Fixture to 4262A UNKNOWN terminals [see Figure 4-4 (a)]. When HP 16361A/16362A DUT Box is used for this test, connect Test Leads (HP P/N 16361-61605) between 4262A UNKNOWN terminals and DUT Box as shown in Figure 4-4 (b).

## 2. Set 4262A controls as follows:

| DC BIASOFF      |
|-----------------|
| CIRCUIT MODEPRL |
| FUNCTIONC       |
| LOSS            |
| LCR RANGE AUTO  |
| D/Q RANGE AUTO  |
| TRIGGER INT     |

3. Check D accuracies according to following table:

| Freq  | Circuit Mode      | Test Level | D Test Limits                  | D Reading |
|-------|-------------------|------------|--------------------------------|-----------|
| }     |                   | Low Level  | Calibrated Value X ± 8 counts  |           |
| 120Hz |                   | normal     | Calibrated Value X ± 6 counts  |           |
|       | -I-W-             | normal     | Calibrated Value X ± 8 counts  |           |
|       |                   | Low Level  | Calibrated Value X ± 8 counts  |           |
| 1kHz  |                   | normal     | Calibrated Value X ± 6 counts  |           |
|       | -I-W-             | normal     | Calibrated Value X ± 9 counts  |           |
|       |                   | Low Level  | Calibrated Value X ± 21 counts |           |
| 10kHz |                   | normal     | Calibrated Value X ± 11 counts |           |
|       | -I <del>-w-</del> | normal     | Calibrated Value X ± 13 counts |           |

#### Note

X in above table is produced by test frequency error and may be determined from the following equations:

| <br>$x = \frac{fn}{fx}$ |
|-------------------------|
| <br>$x = \frac{fx}{fn}$ |

••• where fn is nominal measurement frequency and fx is measurement frequency from paragraph 4-9.

#### Note

Error caused by stability of standard component is not taken into account for test limits in table above.

- 4. Set 4262A TEST SIGNAL frequency to 1kHz and connect appropriate DUT to 4262A (Set 16361A LCR RANGE to D = 1.8). Note dissipation readout on D/Q display.
- 5. Push 4262A LOSS Q button.
- 6. Confirm that displayed Q factor is correct reciprocal number of dissipation.

#### Note

The 4262A rounds fractions of 5 or greater below the LSD to the next higher digit and drops any fractions of 4 or less. For example, if the actual dissipation is .0135, the display will read .014. If the actual dissipation is .0134, the display will read .013. If the test fails, refer to Section VIII Service.

## 4-13. INDUCTANCE ACCURACY TEST.

### DESCRIPTION:

This test verifies that inductance measurement accuracy satisfies the specifications listed below. L accuracy is proved to meet the specification when the results obtained in the accuracy checks of paragraphs 4-9 through 4-12 satisfy the specifications. This test is performed to confirm the L accuracy specification.

#### Note

Inductance accuracy has only to be proved for one inductor of about full scale value on any one range to verify specifications for all three test frequencies (120Hz, 1kHz and 10kHz).

#### SPECIFICATIONS:

#### INDUCTANCE ACCURACY SPECIFICATIONS

| Range      | 120Hz<br>1kHz<br>10kHz | 100.0μH                                                        |           | 100.0mH<br>10.00mH<br>1000μH | 100.0mH | 10.00H<br>1000mH<br>100.0mH | 100.0H<br>10.00H<br>1000mH | 1000H<br>100.0H<br>10.00H |
|------------|------------------------|----------------------------------------------------------------|-----------|------------------------------|---------|-----------------------------|----------------------------|---------------------------|
|            | 魯                      | (At 120Hz, 1kHz) 0.3% + 2 counts<br>(At 10kHz) 0.3% + 2 counts |           | 1% + 2 counts 1% + 2 5% + 2  |         |                             |                            |                           |
| L Accuracy |                        |                                                                | 0.2       | % + 2 cour                   | nts     |                             | (At 120Hz                  | , 1kHz)                   |
| *1         |                        | 0.3% + 2 0.2% + 2 counts                                       |           |                              |         | (At 10kHz)                  |                            |                           |
|            | AUTO                   | Sa                                                             | me as -on | Mode                         |         | Same a                      | ıs <b>-(∰)</b> -           | Mode                      |

\*1  $\pm$ (% of reading + counts).

Accuracy applied over temperature range of 23°C ±5°C (at 0°C to 55°C, error doubles). This accuracy only applies for D values to 1.999.

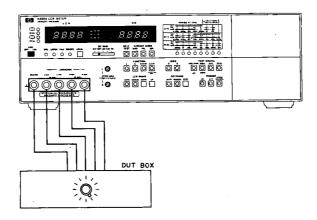



Figure 4-5 Inductance Accuracy Test Setup.

### **EQUIPMENT:**

#### Note

User built test fixture/leads or DUT box must take residual impedance into consideration.

#### PROCEDURE:

- 1. Connect Test Leads (HP P/N 16361-61605) between 4262A UNKNOWN terminals and HP 16361A DUT Box (see Figure 4-5). When TEST SIGNAL frequency is 10kHz, use HP 16362A in place of HP 16361A.
- 2. Set 4262A controls as follows:

| DC BIASOF      | F |
|----------------|---|
| FUNCTION       | L |
| LOSS           | O |
| LCR RANGE AUTO | ) |
| D/Q RANGE AUTO | ) |
| TRIGGER IN'    | Г |

- 3. Set HP 16361A/16362A LCR RANGE to 100mH.
- 4. Confirm that L accuracy is within the test limits shown in table below:

#### Note

Test limits below are given for 100mH inductance measurement. If another inductance value is measured, refer to SPECIFICATIONS above.

| TEST SIG<br>Freq. | CIRCUIT<br>MODE | TEST Limits                 | L Readout |
|-------------------|-----------------|-----------------------------|-----------|
| 120Hz             | PRL             | Calibrated Value ± 3 counts |           |
| 120112            | SER             | Calibrated Value ± 4 counts |           |
| 1kHz              | PRL             | Calibrated Value ± 5 counts |           |
| IRIIZ             | SER             | Calibrated Value ± 4 counts |           |
| 10kHz             | PRL             | Calibrated Value ± 5 counts |           |
| TUKITZ            | SER             | Calibrated Value ± 4 counts |           |

#### Note

Error caused by stability of standard component is not taken into account for test limits in table above. If this test fails, refer to Section VIII, Service.

#### 4-14. INTERNAL DC BIAS SOURCE TEST.

#### DESCRIPTION:

This test verifies that the internal dc bias source will apply the specified bias values to the device under test.

### SPECIFICATIONS:

DC bias, Internal Source:

 $1.5V \pm 5\%$ ,  $2.2V \pm 5\%$ ,  $6V \pm 5\%$ 

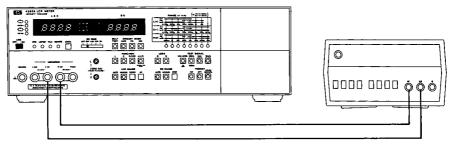



Figure 4-6. Internal DC Bias Source Test Setup.

### **EQUIPMENT:**

DC Voltmeter . . . . . . . . . . . . . . . . . HP 5300A/w5306A

#### PROCEDURE:

- 1. Connect DC Voltmeter to 4262A UNKNOWN terminals as shown in Figure 4-6.
- 2. Set 4262A controls as follows:

#### Note

Do not connect anything to UNKNOWN terminals.

3. Test limits are shown below. Read dc voltmeter output with DC BIAS switch set as follows:

| DC BIAS<br>Switch Setting | Test Limits        | Voltmeter Readout |
|---------------------------|--------------------|-------------------|
| 1.5V                      | 1.425V thru 1.575V |                   |
| 2.2V                      | 2.09 V thru 2.31 V |                   |
| 6 V                       | 5.7 V thru 6.3 V   |                   |

### Note

Reading error caused by measurement error of test equipment is not taken into account for test limits in table above.

4. If tests fail, proceed to Troubleshooting in Section VIII.

## 4-15. OFFSET ADJUSTMENT TEST.

### DESCRIPTION:

This test checks that both C and L ZERO ADJ controls can be set (over their specified ranges) to respectively offset the stray capacitance and residual inductance of test jig.

### SPECIFICATIONS:

Offset Adjustment:

C:up to 10pF

L:up to  $1\mu H$ 

## EQUIPMENT:

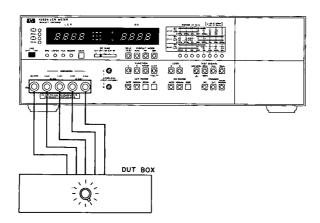



Figure 4-7. Offset Adjustment Test Setup.

#### PROCEDURE:

## (1) C ZERO ADJ test.

- 1. Connect shorting bars at 4262A UNKNOWN terminals for doing a two terminal measurement. Connect no DUT to unknown terminals (open).
- 2. Set 4262A controls as follows:

| DC BIASOFF          |
|---------------------|
| CIRCUIT MODE AUTO   |
| FUNCTION C          |
| LOSS D              |
| TEST SIGNAL 10kHz   |
| LCR RANGEMANUAL     |
| (Set to 10pF range) |
| DQ RANGE AUTO       |
| TRIGGER INT         |

- 3. Rotate C ZERO ADJ control fully cw.
- 4. Verify that capacitance readout on 4262A LCR display is within 0.00 to 0.30 counts.
- 5. Disconnect shorting bars from 4262A UNKNOWN terminals and connect Test Leads (HP P/N 16361-61605) between 4262A UNKNOWN terminals and 16362A DUT Box as shown in Figure 4-7.

#### Note

If 16362A is not available, connect an 18pF capacitor (HP P/N 0160-2263) directly to UNKNOWN terminals (without disconnecting shorting bars).

- 6. Set 16362A LCR RANGE to 19pF.
- 7. Note capacitance readout on 4262A LCR display.
- 8. Rotate C ZERO ADJ control fully ccw.
- 9. Verify that capacitance readout on 4262A LCR display reduces count more than 10.30 counts as compared to count obtained in step 7.
- 10. Remove Test Leads (or DUT) from UNKNOWN terminals.
- (2) L ZERO ADJ test
  - 11. Set 4262A FUNCTION to L.
  - 12. Connect shorting bars on 4262A UNKNOWN terminals for doing a two terminal measurement. Connect a shorting lead to UNKNOWN terminals so that H and L terminals are short circuited.
  - 13. Rotate L ZERO ADJ control fully cw.
  - 14. Verify that inductance readout on 4262A LCR display is within 0.00 and 0.02 counts.
  - 15. Disconnect shorting lead from 4262A UNKNOWN terminals and connect a 5.6 $\mu$ H inductor (HP P/N 9100-1618) directly to UNKNOWN terminals as a DUT (without disconnecting shorting bars).
  - 16. Note inductance readout on 4262A LCR display.
  - 17. Rotate L ZERO ADJ control fully ccw.
  - 18. Verify that inductance readout on 4262A LCR display reduces count more than 1.02 counts as compared to count obtained in step 16.

### 4-16. COMPARATOR TEST (OPTION 004 ONLY).

#### DESCRIPTION:

This test verifies that the built-in 5 digit digital comparator makes the correct comparison between the digits set into the thumbwheel switch and the displayed counts. Comparison output data at COMPARATOR OUTPUT connector (rear panel) is also checked by this test.

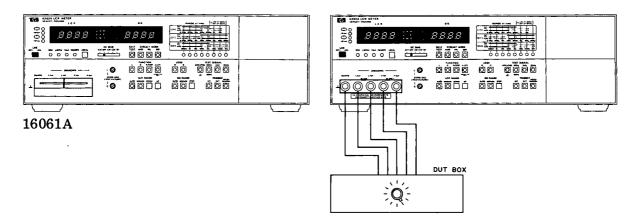
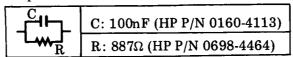



Figure 4-8. Comparator Test Setup.

### EQUIPMENT:

#### PROCEDURE:

- 1. Connect Test Leads (HP P/N 16361-61605) between 4262A UNKNOWN terminals and 16361A DUT Box as shown in Figure 4-8. If DUT Box is not available, attach 16061A Test Fixture to 4262A UNKNOWN terminals and use a 100pF capacitor as a DUT.
- 2. Set 4262A controls as follows:


| DC BIASOFI        | 7 |
|-------------------|---|
| CIRCUIT MODE AUTO | ) |
| FUNCTION          |   |
| TEST SIGNAL 1kH   |   |
| LCR RANGE AUTO    | ) |
| TRIGGER INT       | 7 |

- 3. Set 16361A LCR RANGE to 100pF.
- 4. Push COMPARATOR ENABLE button (simultaneously, the LCR RANGE and DQ RANGE will be automatically changed to MANUAL).
- 5. Set LCR HIGH LIMIT switch to "1000" and LOW LIMIT switch to "0950".
- 6. Verify HIGH and LOW LIMIT settings by pushing and holding upper LIMIT CHECK pushbutton.
- 7. Adjust ZERO ADJ C control for a display reading of "949" (or less) counts.

- 8. LOW lamp should be lit. Verify circuit configuration on COMPARATOR OUT-PUT connector (J6) according to Figure 4-9.
- 9. Adjust ZERO ADJ C control cw for a display reading of "950" (up to "999").
- 10. IN lamp should be lit. Verify relay contact and TTL output as in step 8.
- 11. ADJUST ZERO ADJ C control cw for a display reading of "1000" or more.
- 12. HIGH lamp should be lit. Verify relay contact and TTL output as in step 8.
- 13. Set 16361A LCR RANGE to D = 1.8 and 4262A LCR RANGE manually to  $1\mu$ F.

### Note

If HP 16361A is not available, use a D factor sample as shown below.



14. Push D/Q RANGE AUTO button.

#### Note

The 4262A D/Q RANGE is automatically set to an appropriate range and successively reset to MANUAL.

15. Set appropriate numbers into D/Q LIMIT switches. Change the set numbers and check comparison outputs with Figure 4-9.

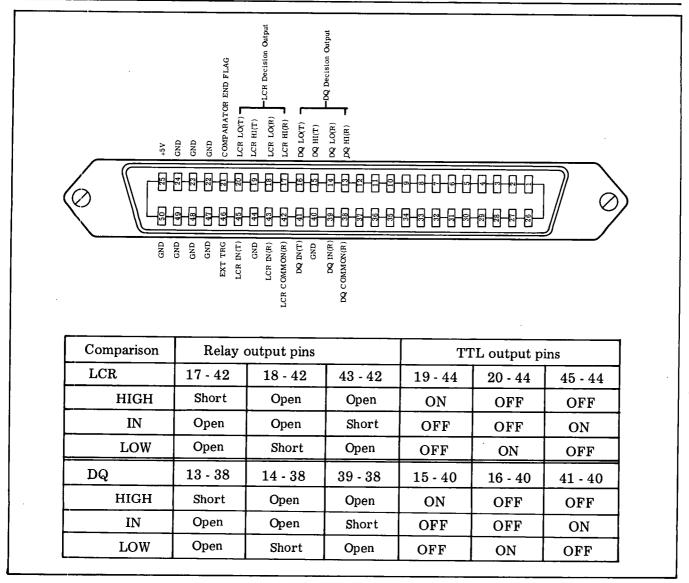



Figure 4-9. DATA OUTPUT (J6) comparator output data format.

### 4-17. HP-IB INTERFACE TEST (OPTION 101 ONLY).

#### **DESCRIPTION:**

This test verifies that the HP-IB circuitry has the capability to correctly communicate between external HP-IB devices and the 4262A through the interface bus cable.

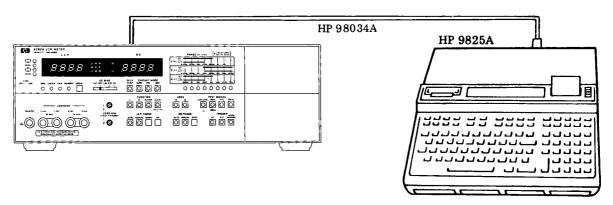



Figure 4-10. HP-IB Interface Test Setup.

#### **EQUIPMENT:**

#### PROCEDURE:

- 1. Connect 98034A Interface Card with cable between 9825A I/O slot and 4262A rear panel HP-IB connector. Install required ROM blocks in 9825A ROM slots.
- 2. Set 98034A Select Code Switch dial to select code 7 (using a screwdriver).
- 3. Set 4262A rear panel ADDRESS switch to address number 17 in binary code (refer to Paragraph 3-68).
- 4. Load test program (shown on Pages 4-26 through 4-35) in calculator.
- 5. Execute the program. Check that 4262A display, calculator display, and printed data are consistent with the results described for each program.
- 6. Perform steps 4 and 5 with respect to individual test programs and verify that 4262A and calculator correctly communicate through the HP-IB interface.

#### Note

Connect appropriate sample(s) to 4262A UNKNOWN terminals as necessary (and observe whether printout is correct).

#### **TEST PROGRAM 1**

#### [PURPOSE]

This test verifies that system controller remotely sets 4262A TEST SIGNAL and TRIGGER and successively accesses the measured data for printing.

## [PROGRAMMING]

- 0: prt "MEASURED DATA
   RECEIVED"; spc 3
  1: dev "4262A",717
  2: rem 7
  3: cli 7
  4: clr "4262A"
  5: wrt "4262A","H3T3"; wait 1000
  6: trg "4262A"
  7: red "4262A",A,B
  8: flt 3
  9: prt "LCR DATA=",A,
   "DQ DATA=",B
  10: spc 3
  11: end
  \*32657
  - 0) Commands calculator to print MEASURED DATA RECEIVED and successively to space three lines.
  - 1) Defines 717 (= Interface Select Code 7, address 17) as address code for 4262A in the programming.
  - 2) Sets REN (Remote Enable) line of the Bus line to "1". Enables remote control.
  - 3) Sets IFC (Interface Clear) line of Bus line to "1". Sets interface select code 7 to its initial conditions.
  - 4) Sets 4262A to its initial conditions. (Device Clear: ref to Para 3-72).
  - 5) Addresses calculator to talk and 4262A to listen. Program code string sets device: TEST SIGNAL 10kHz, and TRIGGER to HOLD/MANUAL (ref to Para 3-69).
  - 6) Triggers 4262A (ref to Para 3-73).
  - 7) Addresses calculator to listen and 4262A to talk. Takes incoming data and stores LCR measurement data in register A and DQ data in register B (ref to Para 3-67).
  - 8) Designates printer print format and floating decimal point (3 digits below decimal point).
  - 9) Prints LCR and DQ data.
  - 10) Commands printer to line space three vertical lines to put entire recording into proper cutting position.

#### [RESULTS]

The 4262A REMOTE lamp lights. LISTEN and TALK lamps alternately light once. Calculator prints measured LCR and DQ values.

#### **TEST PROGRAM 2**

### [PURPOSE]

This test verifies that system controller sets 4262A TEST SIGNAL and TRIGGER and prints the measured data along with the 4262A functional status codes.

### [PROGRAMMING]

```
0: prt "MEASURED DATA RECEIVED "; spc 3
1: rem 7
2: cli 7
3: clr 717
4: wrt 717,"H3PlT3";wait 1000
5: trg 717
6: fmt 4b, f, 2b, f
7: red 717,A,B,C,D,E,F,G,H
8: fxd 0;prt "S=",A, "F=",B,
  "C=",C,"F=",D
9: flt 3;prt "N=",E
10: fxd 0;prt "S=",F,"F=",G
ll: flt 3;prt "N=",H
12: spc 3
13: end
*15961
```

- 3) Sets device address code 717 (4262A) for initial conditions.
- 4) Addresses calculator to talk and device of address code 717 (4262A) to listen. Program code string sets device TEST SIGNAL to 10kHz, LOW LEVEL, and TRIGGER to HOLD/MAN-UAL (ref to Table 3-60).
- 6) Designates format for data in program step 7.
- 7) Addresses calculator to listen and 4262A to talk. Takes incoming data A, B, C, D, F and G in binary code and translates them into decimal code. Takes data E and H in free field format. Stores data items in the registers specified in the variable lists.
- 8-11) Prints data in fixed or floating decimal point format. Data items are:

A: Status,
C: Circuit Mode,
E: LCR Data,
G: DQ Function,
B: Function,
D: Frequency,
F: DQ Status,
H: DQ Data.

Refer to Paragraph 3-67 and Table 3-60.

#### [RESULTS]

The 4262A REMOTE lamp lights. LISTEN and TALK lamps alternately light once. Calculator prints 4262A functional codes along with the measured LCR and DQ data.

#### **TEST PROGRAM 3**

#### [PURPOSE]

This test verifies that 4262A notifies system controller of the Request Status (RQS) and that demands of the Service Request (SRQ) are processed according to programmed service routing.

### [PROGRAMMING]

- 0: prt "MEASURED DATA RECEIVED -DATA READY RQS MODE"; spc 3 1: oni 7, "SRQ" 2: rem 7 3: cli 7 4: clr 717 5: wrt 717,"H3D1T3";wait 1000 6: trq 717 7: "LOOP":eir 7,128 8: if bit(0,B)=1;gto "READ" 9: gto "LOOP" 10: "SRQ":rds(717)→B 11: if bit(6,B)=1; jmp 2 12: prt "OTHER DEVICE SRQ"; spc 3 13: "IRET":eir 7,128 14: iret 15: "READ":red 717,A,B 16: flt 3;prt "LCR DATA=",A. "DQ DATA=",B 17: spc 3 18: end \*22913
  - 1) Designates label (SRQ) for service routing to be performed when an interrupt is set by a device on select code 7 Bus Line.
  - 5) Addresses calculator to talk and 4262A to listen. Program code string set device: TEST SIGNAL 10kHz, Data Ready RQS Mode to ON (ref to Para 3-70), and TRIGGER to HOLD/MANUAL.
  - 7) Labels LOOP. Enables Service Request to be sent from device on select code 7 Bus Line. Checks status of SRQ line on the Bus Line.
  - 8) If the last bit of Status Byte (corresponding to Data Ready — ref to Para 3-70) is 1, goes to program step 15 labeled READ.

#### Note

When status of the SRQ line becomes 1, the programming sequence phase changes from cycling through steps 7, 8, and 9 and successively goes to step 10. Steps 10 through 14 comprise the service routing to process interrupt (Service Request) phase. See Figure 4-11 for programming flow diagram.

- 10) Labels SRQ. Takes Status Byte responding to serial poll of calculator and stores data in register B.
- 11) Verifies that SRQ YES/NO line of Status Byte is actually 1 (ref to Para 3-70).

- 13) Again enables acceptance of SRQ from device because SRQ is disabled when Status Byte signal transfer is completed (re to Para 3-70).
- 14) After service subroutine is completed, return to the step that follows step 7, 8, or 9 as appropriate to main programming sequence.



Figure 4-11 SRQ Service Routing.

## [RESULTS]

Calculator prints LCR and DQ values of the sample measured by 4262A (test frequency 10kHz). Verifies that 4262A SRQ lamp lights momentarily. Press calculator RUN button again to repeat checks. If calculator prints OTHER DEVICE SRQ, interface is faulty.

### **TEST PROGRAM 4**

### [PURPOSE]

This test confirms that 4262A FUNCTION, LOSS, and TEST SIGNAL functions are fully controlled by system controller.

## [PROGRAMMING]

#### Annotation is omitted.

```
0: prt "ENTER REMOTE PROGRA1 CODE ";spc 3
1: fmt 1,4f1.0
2: rem 7
3: cli 7
4: clr 717
5: ent "FUNCTION?(1,2,3)",A
6: ent "LOSS?(1,2)",B
7: ent "FREQUENCY?(1,2,3)",C
8: wrt 717.1,"F",A,"L",B,"H",C,"T3";wait 1000
9: trg 717
10: red 717,D,E
11: flt 3;prt "LCR DATA=",D,"DQ DATA=",E
12: spc 3
13: end
*31495
```

## [RESULT]

The 4262A REMOTE lamp lights. LISTEN and TALK lamps alternately light once. Calculator prints LCR and DQ values. Confirms that 4262A functions were correctly set (check the printed data).

### **TEST PROGRAM 5**

### [PURPOSE]

This test verifies that 4262A self test function can be remotely controlled.

### [PROGRAMMING]

```
0: prt "REMOTE SELF TEST"; spc 3
1: .oni 7, "SRQ"
2: rem 7
3: cli 7
4: clr 717
5: wrt 717, "S1"
                                      5) Addresses calculator to talk and 4262A to listen.
6: "LOOP":eir 7,128
                                         Sets device to SELF TEST mode.
7: if bit(2,A)=1;dsp "PASS"
3: if bit(3,A)=1;dsp "FAIL 1"
                                      7, 8, 9, 10)
9: if bit(4,A)=1;dsp "FAIL 2"
                                         Checks status of the third through sixth bit of
10: if bit(5,A)=1;dsp "FAIL 3"
                                         Status Byte signal and displays its contents (ref
ll: gto "LOOP"
                                         to Para 3-70).
12: "SRQ":beep;rds(717) →A
13: if bit(6,A)=1;gto "IRET"
14: prt "OTHER DEVICE
                                     12) Labels SRQ. Takes Status Byte responding to
    SRQ"; spc 3
                                         serial poll of calculator and stores data in regis-
                                         ter A. Simultaneously beeps in announcement.
15: "IRET":eir 7,128
16: iret
17: end
*14058
[RESULT]
```

The 4262A performs self test. Letters "PASS" flash on both 4262A and calculator displays.

## **TEST PROGRAM 6**

### [PURPOSE]

This test verifies that system controller takes the incoming data in character (ASCII) code and prints the data in accord with the format shown in Paragraph 3-67.

## [PROGRAMMING]

```
0: prt "RECEIVING MEASURED DATA when using STRING-ADV. ROM"; spc 3
1: dim A$[25]
2: rem 7
3: cli 7
                                      1) Establish dimension of 25 character memory
4: clr 717
                                         capacity for using string variables.
5: wrt 717, "H3T3"; wait 1000
6: trg 717
7: red 717,A$
8: prt A$
9: spc 3
10: end
                                      7) Takes incoming data (measured data) in charac-
*671
                                        ter (ASCII) code.
                                      8) Prints data in character code.
```

## [RESULT]

The measured data and 4262A functional status code are printed in accord with the format shown in Paragraph 3-67.

#### **TEST PROGRAM 7**

### [PURPOSE]

This test verifies that 4262A FUNCTION, FREQUENCY and TRIGGER can be controlled in character (ASCII) code and that the measured data is printed in accord with the format shown in Paragraph 3-67.

## [PROGRAMMING]

#### Annotation is omitted.

```
0: prt "ENTER REMOTE PROGRAM CODE when using STRING-ADV ROM";spc 3
1: dim A$[20],B$[25]
2: rem 7
3: cli 7
4: ent "PROGRAM CODE ? (as F2H3T3)",A$
5: wrt 717,A$; wait 1000
6: trg 717
7: red 717,B$
8: prt B$
9: spc 3
10: end
*3337
```

## [RESULTS]

The 4262A REMOTE lamp lights. LISTEN and TALK lamps alternately light once. Calculator prints LCR and DQ values. Confirms that 4262A functions were correctly set (check the printed data).

#### **TEST PROGRAM 8**

### [PURPOSE]

This program checks function of 4262A ADDRESS switch (rear panel) and verifies that the address code set into the switch provides access to the 4262A by the system controller.

#### Note

To perform this test, set ADDRESS switch (ref to Para 3-68) according to calculator display and, after setting the switch, press calculator CONT button.

### [PROGRAMMING]

Annotation is omitted.

```
0: prt "REM ADDRESS TEST"; spc 3
1: dsp "Set up SW *ADDRESSABLE "; beep; stp
2: rem 7
3: cli 7; clr 7
4: dsp "Set up A5-A1=00000"; beep; stp
5: 700 → A; gsb "CHK"
6: dsp "Set up A5-Al=00001"; beep; stp
7: 701 → A; gsb "CHK"
8: dsp "Set up A5-A1=00010";beep;stp
9: 702→A;gsb "CHK"
10: dsp "Set up A5-A1=00100"; beep; stp
11: 704+A;gsb "CHK"
12: dsp "Set up A5-A1=01000"; beep; stp
13: 708 → A; gsb "CHK"
14: dsp "Set up A5-A1=10000"; beep; stp
15: 716→A;gsb "CHK"
16: dsp "Set up A5-A1=10001"; been; stp
17: 717+A;gsb "CHK"
18: prt "TEST END"; spc 3
19: end
20: "CHK":dsp "Check *LISTEN=1 *REMOTE=1"; beep; wrt A; wait 2000
21: dsp "Check *TALK=1 *REMOTE=1"; beep; red A; wait 2000
22: cli 7
23: ret
*11359
```

### [RESULT]

Both 4262A LISTEN and REMOTE lamps illuminate for two seconds. Successively, both TALK and REMOTE lamps light for two seconds. Calculator prints TEST END.

#### **TEST PROGRAM 9**

Checks that 4262A functions change at intervals of 1 second as follows:

```
0: prt "REMOTE/LOCAL TEST"; spc 3
1: cli 7
2: rem 7
3: 110 7
4: beep; clr 717; wrt 717, "FlH1"; 1) FUNCTION: L, TEST SIGNAL: 120Hz.
   wait 1000
                                     2) FUNCTION: C, CIRCUIT MODE: PRL, TEST
5: beep; lcl 717; wait 1000
                                      SIGNAL: 1kHz, LOSS: Q, TRIGGER: EXT.
6: beep; wrt 717, "F2C2H2L2T2";
   wait 1000
                                     3) FUNCTION: R/ESR, CIRCUIT MODE: SER,
7: beep; lcl 7; wait 1000
                                       TEST SIGNAL: 10kHz, TRIGGER: HOLD/
8: rem 7
                                      MANUAL.
9: beep; wrt 717, "F3C3H3T3";
                                      Calculator prints TEST END.
   wait 1000
10: clr 717
                                                       Note
11: cli 7
12: lcl 7
                                        llo in step 3: Local Lockout; causes 4262A
13: prt "TEST END"; spc 3
                                        LOCAL function to be invalid.
14: end
*15032
```

## **TEST PROGRAM 10**

Checks that 4262A range indicator lamps light (in turn) each for 1 second.

```
0: prt "REMOTE RANGING TEST"; spc 3
1: fmt 1,f1.0
2: rem 7
3: cli 7
4: clr 717
5: l+A
6: "LOOP":wrt 717.1,"R",A
7: beep; wait 1000
8: if (A+1+A) #9; gto "LOOP"
9: clr 717
10: prt "TEST END"; spc 3
11: end
*6328
```

Hewlett-Packard

Model 4262A

LCR METER

Serial No.\_\_\_\_\_

| Paragraph | Test                      | Results            |              |                |
|-----------|---------------------------|--------------------|--------------|----------------|
| Number    | Test                      | Minimum            | Actual       | Maximum        |
| 4-9       | MEASUREMENT FREQUENCY     |                    |              |                |
|           | TEST 120Hz                | 116.4              |              | 123.6          |
|           | 1kHz                      | 970                |              | 1030           |
|           | 10kHz                     | 9700               |              | 10300          |
| 4-10      | CAPACITANCE ACCURACY TEST |                    |              |                |
|           | 120Hz PRL LOW LEVEL       |                    |              |                |
|           | 100pF                     | C. V. * - 4 counts |              | C. V. + 4 cour |
|           | 1600pF                    | C. V 8 counts      |              | C. V. + 8 cour |
|           | 10nF                      | C. V 5 counts      |              | C. V. + 5 cour |
|           | 100nF                     | C. V 5 counts      |              | C. V. + 5 cour |
|           | 1000nF                    | C. V 5 counts      |              | C. V. + 5 cour |
|           | 10μF                      | C. V 5 counts      |              | C. V. + 5 cour |
|           | 120Hz PRL 1V 100pF        | C. V 2 counts      |              | C. V. + 2 cou  |
|           | 1000pF                    | C. V 3 counts      | <del></del>  | C. V. + 3 cour |
|           | 10nF                      | C. V 3 counts      |              | C. V. + 3 cou  |
|           | 100nF                     | C. V 3 counts      | ·            | C. V. + 3 cou  |
|           | 1000nF                    | C. V 3 counts      |              | C. V. + 3 cou  |
|           | 10μF                      | C. V 3 counts      |              | C. V. + 3 cour |
|           | 120Hz SER 1V 100nF        | C. V 3 counts      |              | C. V. + 3 cour |
|           | 1000nF                    | C. V 5 counts      |              | C. V. + 5 cour |
|           | 10μ F                     | C. V 5 counts      |              | C. V. + 5 cour |
|           | 100μF                     | C. V 7 counts      |              | C. V. + 7 cour |
|           | 10mF                      | C. V 12 counts     | <del>.</del> | C. V. + 12 cou |
|           | 1kHz PRL LOW LEVEL        |                    |              |                |
|           | 100pF                     | C. V8 counts       |              | C. V. + 8 cour |
|           | 1000pF                    | C. V5 counts       |              | C. V. + 5 cour |
|           | 10nF                      | C. V5 counts       |              | C. V. + 5 cour |
|           | 100nF                     | C. V5 counts       |              | C. V. + 5 cour |
|           | 1000nF                    | C. V5 counts       |              | C. V. + 5 cour |
|           |                           |                    |              |                |

<sup>\*</sup>C. V. = Calibrated Value.

| Paragraph | m - 1                                 | Results        |          |                   |
|-----------|---------------------------------------|----------------|----------|-------------------|
| Number    | Test                                  | Minimum        | Actual   | Maximum           |
| 4-10      | CAPACITANCE ACCURACY TEST (Continued) |                |          |                   |
|           | 1kHz PRL 1V 100pF                     | C. V 3 counts  |          | C. V. + 3 counts  |
|           | 1000pF                                | C. V 3 counts  |          | C. V. + 3 counts  |
| 1         | 10nF                                  | C. V 3 counts  |          | C. V. + 3 counts  |
|           | 100nF                                 | C. V 3 counts  |          | C. V. + 3 counts  |
|           | 1000nF                                | C. V 3 counts  |          | C. V. + 3 counts  |
|           | 1kHz SER 1V 10nF                      | C. V 3 counts  |          | C. V. + 3 counts  |
|           | 100nF                                 | C. V 5 counts  |          | C. V. + 5 counts  |
|           | 1000nF                                | C. V 5 counts  |          | C. V. + 5 counts  |
|           | $10\mu\mathrm{F}$                     | C. V 5 counts  |          | C. V. + 5 counts  |
|           | $1000 \mu 	ext{F}$                    | C. V 52 counts |          | C. V. + 52 counts |
|           | 10kHz PRL LOW LEVEL                   |                |          |                   |
|           | 10pF                                  | C. V 8 counts  |          | C. V. + 8 counts  |
|           | 100pF                                 | C. V 5 counts  |          | C. V. + 5 counts  |
|           | 1000pF                                | C. V 5 counts  |          | C. V. + 5 counts  |
|           | 10nF                                  | C. V 5 counts  |          | C. V. + 5 counts  |
|           | 100nF                                 | C. V 5 counts  |          | C. V. + 5 counts  |
|           | 10kHz PRL 1V 10pF                     | C. V 3 counts  | <u> </u> | C. V. + 3 counts  |
|           | 100pF                                 | C. V 3 counts  |          | C. V. + 3 counts  |
| ]         | 1000pF                                | C. V 3 counts  |          | C. V. + 3 counts  |
| }         | 10nF                                  | C. V 3 counts  |          | C. V. + 3 counts  |
|           | 100nF                                 | C. V 3 counts  |          | C. V. + 3 counts  |
|           | 10kHz SER 1V 1000pF                   | C. V 3 counts  |          | C. V. + 3 counts  |
|           | 10nF                                  | C. V 5 counts  |          | C. V. + 5 counts  |
|           | 100nF                                 | C. V 5 counts  |          | C. V. + 5 counts  |
|           | 1000nF                                | C. V 5 counts  |          | C. V. + 5 counts  |
|           | $10\mu\mathrm{F}$                     | C. V 12 counts |          | C. V. +12 counts  |
|           |                                       |                |          |                   |

<sup>\*</sup>C. V. = Calibrated Value.

| Dave manh           |                       |                         |                  | Results     |                  |
|---------------------|-----------------------|-------------------------|------------------|-------------|------------------|
| Paragraph<br>Number | Test                  |                         | Minimum          | Actual      | Maximum          |
| 4-11                | RESISTANCE AC         | CURACY TEST             |                  |             |                  |
|                     |                       | $1 \mathrm{k} \Omega$   | C. V.*- 5 counts |             | C. V. + 5 counts |
|                     |                       | $10 \mathrm{k}\Omega$   | C. V 5 counts    |             | C. V. + 5 counts |
|                     |                       | 100kΩ                   | C. V 5 counts    |             | C. V. + 5 counts |
|                     |                       | <b>10M</b> Ω            | C. V 5 counts    |             | C. V. + 5 counts |
| 4-13                | INDUCTANCE AC         | CCURACY TEST<br>(100mH) |                  |             |                  |
|                     | 120Hz                 | PRL                     | C. V 3 counts    |             | C. V. + 3 counts |
|                     |                       | SER                     | C. V 4 counts    |             | C. V. + 4 counts |
|                     | 1kHz                  | PRL                     | C. V 5 counts    |             | C. V. + 5 counts |
|                     |                       | SER                     | C. V 4 counts    | <del></del> | C. V. + 4 counts |
|                     | 10kHz                 | PRL                     | C. V 5 counts    |             | C. V. + 5 counts |
|                     |                       | SER                     | C. V 4 counts    |             | C. V. + 4 counts |
| 4-14                | INTERNAL DC B<br>TEST | IAS SOURCE              |                  |             |                  |
|                     |                       | 1.5V                    | 1.425            |             | 1.575            |
|                     |                       | 2.2V                    | 2.09             |             | 2.31             |
|                     |                       | 6 V                     | 5.7              |             | 6.3              |

<sup>\*</sup>C. V. = Calibrated Value.

# SECTION V ADJUSTMENT

#### 5-1. INTRODUCTION.

5-2. This section provides the information needed to adjust the 4262A to its specifications (listed in Table 1-1). Prime purpose of adjustment is to return the instrument to its peak operating capabilities after repairs have been made. The instrument should be tested and adjusted when a part or component has been replaced. Adjustments sometimes restore an instrument to its normal operating conditions without the necessity of repairs. Adjustment procedures can also be performed periodically to maintain top operating performance. Recommended adjustment schedule for the 4262A is every 12 months. All adjustable components referred to in individual tests are summarized in Table 5-1 and adjustments locations are identified pictorially on the foldout sheets in Section VIII. If proper performance cannot be achieved after adjustment procedures have been performed, refer to troubleshooting procedures beginning with paragraph 8-42.

#### Note

Before performing any adjustments, warm up instrument for more than 60 minutes to stabilize operating conditions.

#### 5-3. SAFETY REQUIREMENTS.

5-4. Although the instrument has been designed in accordance with international safety standards, this manual contains information, cautions, and warnings which must be followed to ensure safe operation and to keep the instrument in safe condition (see Sections II and III). Adjustments described in this section should be performed only by qualified service personnel.

### WARNING

ANY INTERRUPTION OF THE PROTECTIVE (GROUNDED) CONDUCTOR (INSIDE OR OUTSIDE THE INSTRUMENT) OR DISCONNECTION OF THE PROTECTIVE EARTH TERMINAL IS LIKELY TO MAKE THE INSTRUMENT DANGEROUS. INTENTIONAL INTERRUPTION IS PROHIBITED.

- 5-5. The opening of covers for removal of parts, except those to which access can be gained by hand, is likely to expose live parts. Accessible terminals may also be live.
- 5-6. Capacitors inside instrument may still be charged even if instrument has been disconnected from its source of supply.

#### WARNING

ADJUSTMENTS DESCRIBED HEREIN ARE PERFORMED WITH POWER SUPPLIED TO THE INSTRUMENT AFTER PROTECTIVE COVERS HAVE BEEN REMOVED. ENERGY EXISTING AT MANY POINTS MAY, IF CONTACTED, RESULT IN PERSONAL INJURY.

#### 5-7. EQUIPMENT REQUIRED.

5-8. The equipment needed to adjust the Model 4262A is listed in Table 1-4 (Page 1-6). This equipment should always be calibrated to satisfy its own specifications and those of the required characteristics. If the recommended model is not available, any instrument that has specifications equal to or better than required specifications may be substituted.

#### 5-9. FACTORY SELECTED COMPONENTS.

- 5-10. Factory selected components can be recognized by an asterisk near the reference designator on the schematic diagrams in Section VIII (a nominal value is shown). Section VI, Replaceable Parts, lists the part number of the nominal value component. If the nominal value of the selected component is changed, the Manual Changes supplement, supplied with this manual, will list the change to update the manual. Table 5-2 lists all factory selected components with their nominal value ranges and their influence on instrument performance.
- 5-11. Adjustable components, with reference designators, are listed in Table 5-1. The table gives the name of the control to be adjusted and the purpose of its adjustment.

#### 5-12. ADJUSTMENT RELATIONSHIPS.

5-13. The adjustment procedures, beginning with paragraph 5-20, should be performed in step sequence as they are interactive. Neglecting or changing procedures may make it impossible to gain best 4262A performance. Table 5-4 shows alignment procedures required when repairing the instrument (replacement of a component or board). The adjustments in Table 5-4 assume that no other adjustments were attempted prior to board or component replacement.

#### 5-14. ADJUSTMENT LOCATIONS.

5-15. For reference, overall adjustment location illustrations are given in Figure 8-22. The locations of individual board assemblies are denoted in board assembly component location illustrations included on each foldout service sheet.

Table 5-1. Adjustable Components.

| Table 5-1. Adjustable Components. |                 |                                                                                                                                                  |  |
|-----------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Reference<br>Designator           | Name of Control | Purpose                                                                                                                                          |  |
| A9R6<br>(Para. 5-20)              | +12V            | To set output of +12V dc power supply.                                                                                                           |  |
| A12R1<br>(Para. 5-22)             |                 | To eliminate any dc offset voltage in A12 Range Resistor Amplifier in order to maximize measurement accuracy on each range.                      |  |
| A12C3<br>(Para. 5-25)             |                 | To eliminate measurement error due to stray capacitances on A12 board assembly. Maximizes measurement accuracies of 10kHz measurement.           |  |
| A12C11<br>(Para. 5-26)            |                 | To properly set C ZERO ADJ control range.                                                                                                        |  |
| A13C1<br>(Para. 5-25)             |                 | To eliminate measurement error due to phase error in A12 Range Resistor Amplifier output. Maximizes measurement accuracies of 10kHz measurement. |  |
| A13R1<br>(Para 5-23)              | OFS-1           |                                                                                                                                                  |  |
| A13R2<br>(Para. 5-23)             | OFS-2           | To eliminate any dc offset voltage in A13 Process Amplifier in order to maximize measurement accuracies on each range.                           |  |
| A13R66<br>(Para. 5-23)            | OFS-3           |                                                                                                                                                  |  |
| A13R67<br>(Para. 5-24)            | OFS-4           | To adjust reference phase of phase detector to minimize measurement errors.                                                                      |  |
| A14R1<br>(Para. 5-24)             | ZOF             | To adjust timing of integrator output zero detection in order to accurately set full scale display count.                                        |  |
| A14R15<br>(Para. 5-24)            | APAO            | To adjust auto phase adjustment circuit output level. Minimizes measurement errors due to phase detector error.                                  |  |
| A23R12<br>(Para 5-21)             | VR1             | To properly set operating power voltage to nanoprocessor integrated circuit.                                                                     |  |

Table 5-2. Factory Selected Components.

| Table 5-2. Factory Selected Components. |                                                                                                                                    |                                                                                                                                                |  |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Reference<br>Designator                 | Nominal Value Range                                                                                                                | Effect on Performance                                                                                                                          |  |  |
| A11R16                                  | HP P/N: 0757-0440, R:FXD 7.5kΩ<br>► HP P/N: 0698-3259, R:FXD 7.87kΩ<br>HP P/N: 0757-0441, R:FXD 8.25kΩ                             | Changes test signal level. If signal level is too high, use less resistance; if too low, use more resistance.                                  |  |  |
| A12C1<br>(Para. 5-23.)                  | HP P/N: 0160-0159, C:FXD 6800pF<br>► HP P/N: 0160-0160, C:FXD 8200pF<br>HP P/N: 0160-0161, C:FXD 10000pF                           | Minimizes dissipation measurement error on *100nF (100μF) and *10μH (10mH) ranges at 10kHz measurement. Refer to Paragraph 5-23 (2).           |  |  |
| A12C2<br>(Para. 5-23)                   | ► HP P/N: 0140-0190, C:FXD 39pF<br>HP P/N: 0160-2201, C:FXD 51pF                                                                   | Minimizes dissipation measurement<br>error on 100pF (100nF) and *10mH<br>(10H) ranges at 10kHz measurement.<br>Refer to Paragraph 5-23 (4).    |  |  |
| A12C3<br>(Para. 5-23)                   | ► HP P/N: 0121-0059, C:VAR 2 - 8pF<br>HP P/N: 0121-0036, C:VAR 5.5 - 18pF                                                          | Changes adjustment range for dissipation measurement error on *10pF (10nF) and 100mH ranges at 10kHz measurement. Refer to Paragraph 5-23 (3). |  |  |
| A12C14                                  | HP P/N: 0160-2199, C:FXD 30pF<br>► HP P/N: 0160-2307, C:FXD 47pF                                                                   | Rejects parasitic oscillation of A12U2 OP AMP in measuring $10 m\Omega$ resistor at $10 kHz$ .                                                 |  |  |
| A13C1<br>(Para. 5-23)                   | ► HP P/N: 0121-0059, C:VAR 2 - 8pF<br>HP P/N: 0121-0036, C:VAR 5.5 - 18pF                                                          | Changes adjustment range for dissipation measurement error on all ranges at 10kHz measurement. Refer to paragraph 5-23 (1).                    |  |  |
| A13C5                                   | ► HP P/N: 0160-2251 5.6pF<br>HP P/N: 0160-2253 6.8pF                                                                               | Changes the phase delay of A13U3B OP AMP.                                                                                                      |  |  |
| A13C23                                  | ►HP P/N: 0160-0134 220pF                                                                                                           | Changes the feedback signal amount of A13U5B OP AMP.                                                                                           |  |  |
| A14C5                                   | ► HP P/N: 0160-2307, C:FXD 47pF<br>HP P/N: 0140-0205, C:FXD 62pF<br>HP P/N: 0160-2202, C:FXD 75pF<br>HP P/N: 0160-2203, C:FXD 91pF | Eliminates switching transient noise from A14 phase detector output. Nominal value is usually used.                                            |  |  |

Note: Component marked (  $\blacktriangleright\,$  ) in table is usually used.

<sup>\*</sup> Ranges in PRL mode for capacitance and in SER mode for inductance. Values in ( ) are ranges in SER mode for capacitance and in PRL mode for inductance.

# 5-16. DUT ADJUSTMENT RECOMMENDATIONS.

5-17. If HP 16361A/16362A DUT Boxes or substitute devices are not available, user built DUT's with required characteristics may be used to adjust or to calibrate the 4262A. When it is desired to adjust the 4262A to perform to its specifications, the recommended DUT may be selected from Table 5-3. To establish accuracies appropriate for comparing the 4262A performance to its specifications, calibrate the DUT's to the accuracies given in the table. Refer to "CALIBRATION OF DUT's" (Page 4-4) for proper DUT calibration methods.

Table 5-3. DUT's Recommended for making Adjustments.

| Paragraph | DUT             | Component            | HP Part Number         | Calibration<br>Accuracy | Required<br>Characteristics |
|-----------|-----------------|----------------------|------------------------|-------------------------|-----------------------------|
| 5-24      |                 | C: 10nF              | 0160-0408              | 0.1%                    | D < 0.001<br>at 1kHz        |
|           | <b>→</b>        | C: 1000pF            | 0160-3766              | 0.1%                    | D < 0.001<br>at 1kHz        |
|           | -L <sup>C</sup> | C: 10nF<br>R: 10kΩ   | 0160-0408<br>0698-6360 | *D:0.1%<br>(at 1kHz)    |                             |
| 5-25      |                 | C: 100pF<br>R: 100kΩ | 0160-0336<br>0698-4158 | *D: 0.1%<br>(at 10kHz)  |                             |
|           | <u></u>         | C: 1000pF<br>R: 10kΩ | 0160-3766<br>0698-6360 | *D: 0.1%<br>(at 10kHz)  |                             |
|           | -₩ <del>-</del> | C: 10nF<br>R: 3kΩ    | 0160-0408<br>0698-6348 | *D: 0.1%<br>(at 10kHz)  |                             |
|           | Ţ.              | C: 100nF<br>R: 100Ω  | 0160-4113<br>0698-6323 | *D: 0.1%<br>(at 10kHz)  |                             |
|           | -1 <del>-</del> | C: 100nF<br>R: 300Ω  | 0160-4113<br>0698-6346 | *D: 0.1%<br>(at 10kHz)  |                             |
| 5-26      | -I-W-           | C: 18pF<br>R: 8.66kΩ | 0160-2263<br>0698-3498 | *D: 0.1%<br>(at 10kHz)  |                             |

<sup>\*</sup> For easier calibration of dissipation to the required accuracy, use accurately calibrated resistors rather than capacitors (use a high accuracy DMM to measure resistors).

# 5-18. INITIAL OPERATING PROCEDURE.

5-19. Preparatory to adjusting the 4262A, do the following to locate and to gain access to the adjustment controls. This procedure facilitates a comprehensive adjustment of instrument.

# [FUNDAMENTAL OPERATING CHECKS]

Confirm that instrument power line module is set for local power line voltage. Check front panel displays using "PRELIMINARY OPERATIONS" on Page 4-2. Offset control should be individually set for "zero" display for DUT Boxes or Test Fixtures as they are connected to 4262A UNKNOWN terminals. After attaching or interchanging test equipment, adjust front panel ZERO ADJ controls in accord with the procedure in "PRELIMINARY OPERATIONS".

# [TOP COVER REMOVAL]

#### WARNING

WHEN TOP COVER IS REMOVED LIVE PARTS ARE EXPOSED.

Remove top cover as follows:

- a. Loosen the retaining screw at rear of top cover until screw is free.
- b. Pull top cover towards the rear and lift off.

#### WARNING

TO INSURE PERSONAL SAFETY FROM POSSIBLE ELECTRICAL SHOCK HAZARDS AND RESULTANT INJURY, USE INSULATED ADJUSTMENT TOOL.

Table 5-4. Adjustment Requirements.

| Assembly Repaired or Replaced                                                                    | Required Adjustments                   |
|--------------------------------------------------------------------------------------------------|----------------------------------------|
| A1 (04262-66501)<br>A2 (04262-66502)<br>A3 (04262-66503)<br>A4 (04262-66504)<br>A5 (04262-66505) | None                                   |
| A9 (04261-77009)                                                                                 | Para. 5-18                             |
| A11(04262-66511)                                                                                 | None                                   |
| A12(04262-66512)                                                                                 | Para. 5-20 and 5-22<br>thru 5-24       |
| A13(04262-66513)                                                                                 | Para. 5-21 thru 5-23                   |
| A14(04262-66514)                                                                                 | Para. 5-22 and 5-23                    |
| A21(04262-66521)<br>A22(04262-66522)                                                             | None                                   |
| A23(04262-66623)                                                                                 | Para. 5-19 (only if A23U1 is replaced) |
| A24(04262-66524)<br>A25(04262-66525)<br>A35(04262-66535)                                         | None                                   |

# 5-20. DC POWER SUPPLY ADJUSTMENT.

#### PURPOSE:

To adjust regulated +12V DC Supply (A9).

#### Note

Only +12V DC supply can be adjusted.

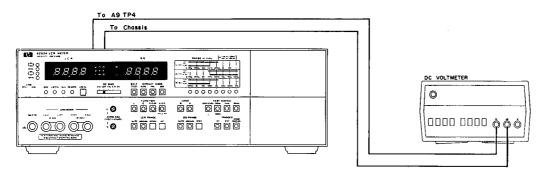



Figure 5-1. Power Supply Voltage Adjustment.

# **EQUIPMENT:**

#### PROCEDURE:

- a. Connect DC voltmeter plus input to test point A9TP4 (+12V) and minus input to 4262A chassis with dual banana plug to alligator clip cable. See Figure 5-1.
- b. Set DC Voltmeter range as appropriate for measuring +12 volts.
- c. Adjust "+12V" potentiometer A9R6 for +12 volts±0.05 volts (see Figure 8-22 for location).
- d. After adjustment of +12V, check dc voltages at test points listed below:

| oltage Limits            |
|--------------------------|
| 12V ±0.15V<br>+5V ±0.15V |
|                          |

e. Remove cables and DC voltmeter from 4262A.

#### Notes

1. DC supply voltage ripple should be equal to or less than the allowable limits given below.

| DC supply voltage | Ripple voltage |
|-------------------|----------------|
| +12V at A9TP4     | < 30mVp-p      |
| -12V at A9TP5     | < 30mVp-p      |
| +5V at A9TP6      | < 50mVp-p      |

2. This adjustment is not affected by any other adjustment. If this adjustment fails to bring any of the output voltages to their specified values, refer to Section VIII Service Sheet No. 9 for troubleshooting.

# 5-21. NANOPROCESSOR OPERATING POWER VOLTAGE ADJUSTMENT.

#### PURPOSE:

This adjustment adjusts the operating power voltage to the nanoprocessor integrated circuit on A23 Nanoprocessor and ROM Assembly to its prescribed value.

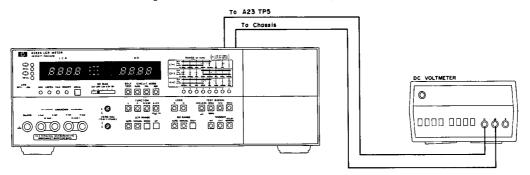
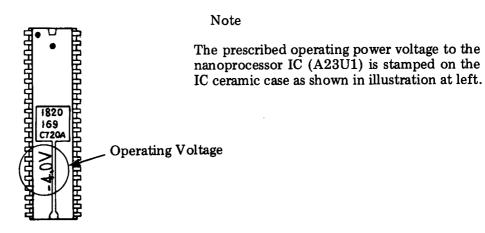




Figure 5-2. Nanoprocessor Operating Power Voltage Adjustment Location.

# **EQUIPMENT:**

# PROCEDURE:

a. Connect DC voltmeter plus input to test point A23TP4 and minus input to 4262A chassis with dual banana plug to alligator clip cable. See Figure 5-2.



- b. Set DC Voltmeter range as appropriate for measuring the prescribed operating voltage of A23U1 nanoprocessor.
- c. Adjust VR1 potentiometer A23R14 for the prescribed voltage to within ±0.1Vdc.
- d. Remove cables and DC voltmeter from 4262A.

# 5-22. A12 BOARD OFFSET ADJUSTMENT.

#### PURPOSE:

This adjustment eliminates any residual dc offset voltage from range resistor amplifier to maximize accuracy of measurement.

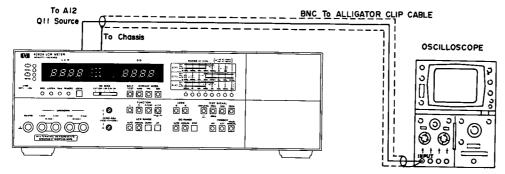



Figure 5-3. A12 Board Offset Adjustment.

# **EQUIPMENT:**

#### PROCEDURE:

a. Connect BNC to dual alligator clip cable between oscilloscope and transistor A12Q11\*source on the A12 Range Resistor Board Assembly (See Figure 5-3).

\*(Junction of A12R36 and R41)

b. Set 4262A controls as follows:

| DC BIASOF           | F         |
|---------------------|-----------|
| SELF TESTOF         | F         |
| FUNCTION            | Ċ         |
| CIRCUIT MODEPR      | Ĺ         |
| LOSS                | D         |
| TEST SIGNAL 1kH     | _<br>[ 7. |
| LCR RANGE           | T.        |
| (Set to 100pF range |           |
| DQ RANGE AUTO       | ń         |
| TRIGGERIN           | Ť         |

c. Connect nothing (open,  $\infty$   $\Omega$ ) to UNKNOWN terminals.

#### Note

High terminals (HPOT and H  $_{\rm CUR}$ ) and Low terminals (L  $_{\rm CUR}$  and LPOT), respectively, must be connected together.

d. Set oscilloscope control as follows:

| VOLTS/DIV    |                                         | 0.01V     |
|--------------|-----------------------------------------|-----------|
| TIME/DIV     |                                         | . 0.5msec |
| TRIGGER      | • • • • • • • • • • • • • • • • • • • • | INT       |
| SWEEP MODE . | • • • • • • • • • • • • • • • • • • • • | AUTO      |
| Input        |                                         | GND       |

- e. Adjust position control of oscilloscope so that baseline is centered on the CRT.
- f. Set oscilloscope input mode to dc.
- g. Adjust potentiometer A12R1 until dc level of displayed waveform is 0mV ±10mV. Refer to Figure 5-4 which shows well-adjusted waveform.

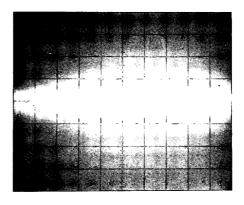



Figure 5-4. Waveform at A12Q11 Source.

Note

If adjustment is not successful, see Section VIII service sheet for troubleshooting.

# 5-23, A13 BOARD OFFSET ADJUSTMENT.

# PURPOSE:

This adjustment eliminates any residual dc offset voltage from the A13 Process Amplifier Board Assembly.

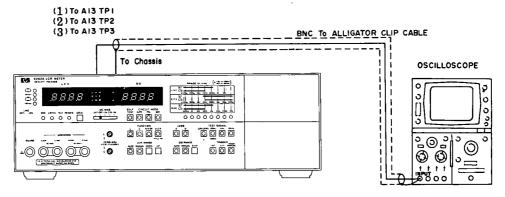



Figure 5-5. A13 Board Offset Adjustment.

# **EQUIPMENT:**

#### PROCEDURE:

#### Note

The A12 board offset adjustment (paragraph 5-22) must precede these adjustments. The adjustments in these steps can be performed separately, but steps (1) and (2) must be performed prior to step (3).

# (1) OFS - 1 ADJUSTMENT.

- a. Connect BNC to dual alligator clip cable between oscilloscope and 4262A test point A13TP1 and 4262A chassis (see Figure 5-5).
- b. Set 4262A controls as follows:

| DC BIASOFF           |
|----------------------|
| SELF TESTOFF         |
| FUNCTION L           |
| CIRCUIT MODESER      |
| LOSS                 |
| TEST SIGNAL 1kHz     |
| LCR RANGE            |
| (Set to 100mH range) |
| DQ RANGE AUTO        |
| TRIGGER INT          |
|                      |

- c. Short-circuit the four UNKNOWN terminals together.
- d. Set oscilloscope controls as follows:

| VOLTS/DIV  | 0.005V    |
|------------|-----------|
| TIME/DIV   | . 0.5msec |
| TRIGGER    | INT       |
| SWEEP MODE | AUTO      |
| Input      | GND       |

- e. Adjust position control of oscilloscope so that baseline is centered on the CRT.
- f. Set oscilloscope INPUT to DC.
- g. Adjust "OFS-1" potentiometer A13R1 until dc level of displayed waveform is 0mV ±1mV. Refer to Figure 5-6 which shows well adjusted waveform.

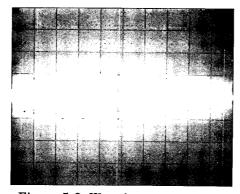



Figure 5-6. Waveform at A13TP1.

# (2) OFS - 2 ADJUSTMENT.

- a. Connect BNC to dual alligator clip cable (or 1:1 oscilloscope probe) between oscilloscope and 4262A test point A13TP2 and 4262A chassis (see Figure 5-5).
- b. Change 4262A controls as follows:

| FUNCTION     | C                    |
|--------------|----------------------|
| CIRCUIT MODE | PRL                  |
| LCR RANGE    | MANUAL               |
|              | (Set to 100pF range) |

c. Connect nothing (open,  $\infty$   $\Omega$ ) to UNKNOWN terminals.

#### Note

High terminals (H<sub>POT</sub> and H<sub>CUR</sub>) and Low terminals (L<sub>CUR</sub> and L<sub>POT</sub>), respectively, must be connected together.

d. Adjust "OFS-2" potentiometer A13R2 until dc level of displayed waveform is within 0mV ±1mV. Refer to Figure 5-7 which shows well adjusted waveform.

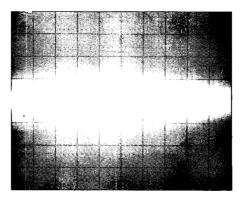



Figure 5-7. Waveform at A13TP2.

# (3) OFS -3 ADJUSTMENT.

- a. Use 10:1 oscilloscope probe for this adjustment. Connect oscilloscope probe to 4262A test point A13TP3 and ground clip lead of probe to 4262A chassis.
- b. Change 4262A controls as follows:

| TEST SIGNAL | 1kHz, LOW LEVEL       |
|-------------|-----------------------|
| LCR RANGE   |                       |
|             | (set to 1000pF range) |

c. Adjust "OFS-3" potentiometer A13R66 until dc level of displayed waveform is 0mV ±10mV. Refer to Figure 5-8 which shows well adjusted waveform.

# Note

Signal observed may be somewhat noisy. Adjust offset control so that signal is equally balanced around 0 volts dc.

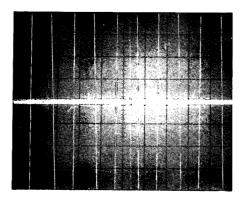



Figure 5-8. Waveform at A13TP3.

# 5-24. A14 PHASE DETECTOR & INTEGRATOR ADJUSTMENT.

#### PURPOSE:

These adjustments eliminate phase error in the phase detector and properly set timing of zero detector to minimize measurement error.

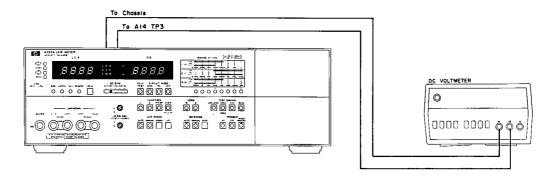



Figure 5-9. A14 Phase Detector & Integrator Adjustment.

# **EQUIPMENT:**

Note

If DUT box is not available, it is recommended that the following DUT's be used as standards:

| DUT     | Values of components                                       | Calculated D<br>(1kHz) | Required<br>Calibration<br>Accuracy |
|---------|------------------------------------------------------------|------------------------|-------------------------------------|
| <u></u> | C: 10nF (HP P/N: 0160-0408)                                | D < 0.001              | 0.1%                                |
|         | C: 1000pF(HP P/N: 0160-3766)                               | D < 0.001              | 0.1%                                |
|         | C: 10nF (HP P/N: 0160-0408)<br>R: 10kΩ (HP P/N: 0698-6360) | 1.592                  | D: 0.1%                             |

The components listed above should be calibrated before use. Refer to "Calibration of DUT's" on page 4-4 for proper DUT calibration method.

#### PROCEDURE:

# (1) OFS - 4 ADJUSTMENT.

- a. Connect DC voltmeter minus input to test point A14TP3 and plus input to 4262A chassis with dual banana plug to alligator clip cable. See Figure 5-9.
- b. Set DC voltmeter range as appropriate for measuring +3 volts.
- c. Set integrator test switch A22S1 (located at upper right on A22 Display Control and RAM Board Assembly) to TEST 1 position. See Figure 5-10 which shows location of switch S1.

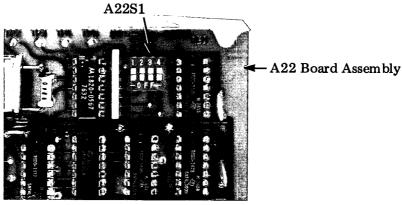



Figure 5-10. A22S1 Switch Setting.

d. Set 4262A controls as follows:

| DC BIASOFF       |
|------------------|
| SELF TEST        |
| FUNCTION         |
| CIRCUIT MODEPRL  |
| LOSSD            |
| TEST SIGNAL 1kHz |
| LCR RANGE AUTO   |
| DQ RANGE AUTO    |
| TRIGGER INT      |

e. Connect nothing (open,  $\infty \Omega$ ) to UNKNOWN terminals.

#### Note

High terminals (H POT and H CUR) and Low terminals (L CUR and L POT), respectively, must be connected together.

f. Adjust "OFS-4" potentiometer A13R67 for +2 volts ±0.5 volts (the voltage is actually negative).

# (2) ZERO DETECTOR & APAO ADJUSTMENT.

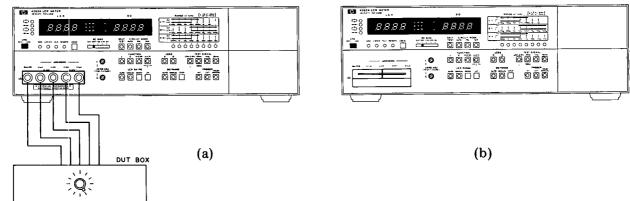



Figure 5-11. Zero Detector & APAO Adjustments.

#### Note

If DUT Box is available, use procedure A. If not, use procedure B.

#### PROCEDURE A.

- a. Adjust "ZOF" potentiometer A14R1 for 1000 counts ±1 count on 4262A LCR display.
- b. Adjust "APAO" potentiometer A14R15 for .000 to .001 count on 4262A DQ display.
- c. Set 4262A TEST SIGNAL control successively to each test frequency and test signal level shown in Table 5-5 and confirm that DC voltmeter readings are within 0 to +4 volts at each control setting. Also confirm that 4262A LCR display and DQ display are within the tolerances described in steps a and b.

Table 5-5. TEST SIGNAL Settings.

| Frequency | Low Level |
|-----------|-----------|
| 120Hz     | off       |
| 1kHz      | off       |
| 10kHz     | off       |
| 120Hz     | on        |
| 1kHz      | on        |
| 10kHz     | on        |

#### Note

If result of confirmation check is not satisfactory, readjust "OFS-4" potentiometer A13R67 for any voltage between +1 volt and +3 volts to satisfy the requirements of step c. If this adjustment fails to bring the voltage at A14TP3 to within its tolerance or to satisfy the confirmation check, refer to Section VIII for troubleshooting.

- d. Reset integrator test switch A22S1 to off.
- e. Connect Test Leads (HP P/N: 16361-61605) between 4262A UNKNOWN terminals and 16361A DUT Box as shown in Figure 5-11 (a).
- f. Set 16361A LCR RANGE to 1000pF.
- g. Note dissipation factor readout on DQ display.
- h. Manually change 4262A LCR RANGE to 10nF.
- i. The change in dissipation factor readout between that obtained in step g and that in step h should be less than ±1 count. If not satisfactory, readjust "ZOF" potentiometer A14R1 (step a).
- j. Set 4262A LCR RANGE to AUTO.
- k. Set 16361A LCR RANGE to D = 1.8.
- 1. Verify that DQ display count is the calibrated value of 16361A within ±3 counts. If this test fails, readjust "APAO" potentiometer A14R15 (step b).

#### PROCEDURE B.

- a. Set integrator test switch A22S1 to off.
- b. Attach HP 16061A Test Fixture to 4262A UNKNOWN terminals as shown in Figure 5-11 (b).
- c. Connect 10nF capacitor to the 16061A as DUT.
- d. Manually set 4262A LCR RANGE to 10nF.
- e. Adjust "ZOF" potentiometer A14R1 for the calibrated value of DUT ±1 count on 4262A LCR display.
- f. Adjust "APAO" potentiometer A14R15 for .000 count on 4262A DQ display.
- g. Connect a 1000pF capacitor in place of the 10nF capacitor as DUT.
- h. Adjust "ZOF" potentiometer A14R1 for 000 count on 4262A DQ display.
- i. Connect a 10nF capacitor with  $10k\Omega$  parallel resistance (D  $\approx$ 1.59) in place of the 1000pF capacitor.
- j. Adjust "APAO" potentiometer A14R15 for the calibrated D value of DUT ±2 counts on 4262A DQ display.

# 5-25. 10kHz MEASUREMENT ACCURACY ADJUSTMENT.

#### PURPOSE:

This adjustment eliminates measurement error due to stray capacitances on A12 and A13 board assemblies and maximizes measurement accuracies at 10kHz measurement.

#### Note

Each of the following adjustments are interrelated. To achieve correct adjustments, do not change adjustment procedure or sequence.

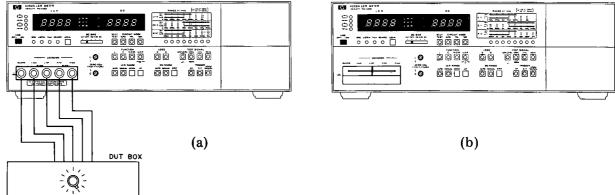



Figure 5-12. 10kHz Measurement Accuracy Adjustment.

# **EQUIPMENT:**

# Note

It is recommended that the following DUT's be used as dissipation factor standards. DUT's marked with a dot (•) in the table are included in the 16362A DUT Box.

| DUT                 | Values of components                                            | Calculated D<br>(at 10kHz) | Required<br>Calibration<br>Accuracy |
|---------------------|-----------------------------------------------------------------|----------------------------|-------------------------------------|
| - L C1              | •C1::100pF (HP P/N: 0160-0336)<br>R1: 100kΩ (HP P/N: 0698-4158) | 1.592                      |                                     |
|                     | •C2: 1000pF (HP P/N: 0160-3766)<br>R2: 10kΩ (HP P/N: 0698-6360) | 1.592                      |                                     |
| C3 R3               | C3: 10nF (HP P/N: 0160-0408)<br>R3: 3kΩ (HP P/N: 0698-6348)     | 1.885                      | D 0.1%<br>[C 0.1%]*<br>[R . 0.02%]  |
| - H <sup>C4</sup> - | •C4: 100nF (HP P/N: 0160-4113)<br>R4: 100Ω (HP P/N: 0698-6323)  | 1.592                      |                                     |
| C5 R5               | C5: 100nF (HP P/N: 0160-4113)<br>R5: 300Ω (HP P/N: 0698-6346)   | 1.885                      |                                     |

<sup>\*</sup>After calibrating capacitances to within 0.1% and resistances to within 0.02%, the dissipation factor tolerance is ±0.002 for each DUT. Refer to "Calibration of DUT"s" on page 4-2 for the proper DUT calibration method.

# PROCEDURE:

# (1) A13C1 Adjustment.

- a. Connect Test Leads (HP P/N 16361-61605) between 4262A UNKNOWN terminals and 16362A DUT Box as shown in Figure 5-12 (a). If DUT Box is not available, attach 16061A Test Fixture to 4262A UNKNOWN terminals [see Figure 5-12 (b)].
- b. Set 4262A controls as follows:

| DC BIASOFF        |
|-------------------|
| SELF TESTOFF      |
| FUNCTION          |
| CIRCUIT MODEPRL   |
| LOSSD             |
| TEST SIGNAL 10kHz |
| LCR RANGE AUTO    |
| DQ RANGE AUTO     |
| TRIGGER INT       |

- c. Rotate both C and L ZERO ADJ controls fully cw.
- d. Set 16362A LCR RANGE to 1000pF D = 1.8 or connect the following sample, as an alternate DUT, to 16061A:

| DUT    | Values of components          |  |  |
|--------|-------------------------------|--|--|
| r-1F-1 | C: 1000pF (HP P/N: 0160-3766) |  |  |
|        | R: 10kΩ (HP P/N: 0698-6360)   |  |  |

e. Adjust capacitor A13C1 for the calibrated value of the 16362A (or DUT) ±3 counts on 4262A DQ display.

#### Note

If this adjustment fails to bring dissipation factor readout to within the tolerance, change A13C1 to 5.5/18pF capacitor (HP P/N: 0121-0036) and try adjustment again.

# (Confirmation Check)

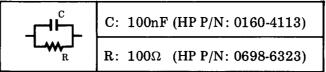
#### Note

If 16362A is available, perform the following check. If not, proceed to A12C1 adjustment which follows.

f. Verify that the table below is satisfied when the tests are made by changing DUT and CIRCUIT MODE (as given in table):

| 16362A<br>LCR RANGE | 4262A<br>CIRCUIT<br>MODE | Capacitance<br>Readout | Dissipation Factor<br>Readout |
|---------------------|--------------------------|------------------------|-------------------------------|
| 1000pF D=0.01       | -THE PRI                 | *C. V. ± 2 counts      | *C. V. ± 2 counts             |
| 1000pF D=1.8        | PRL PRL                  | Approx. 1100 counts    | *C. V. ± 3 counts             |
| 100nF D=1.8         | → SER                    | Approx. 500 counts     | *C. V. ± 5 counts             |
| 1μF D=0.01          | → SER                    | *C. V. ± 2 counts      | *C. V. ± 2 counts             |

\*C. V. = Calibrated Value of DUT.


g. If table test fails, repeat step e.

# (2) A12C1 Adjustment.

#### Note

The following A12C1 Adjustment needs to be performed only when A12R4 is replaced.

a. Set 16362A LCR RANGE to 100nF D = 1.8 or connect the following sample, as an alternate DUT, to 16061A.



b. Verify that the dissipation factor readout on 4262A DQ display is the calibrated value of the DUT within a tolerance of ± 3 counts. If not within tolerance, change A12C1 to an appropriate value selected from the adjustment range below:

6800pF HP P/N: 0160-0159 8200pF HP P/N: 0160-0160 10000pF HP P/N: 0160-0161

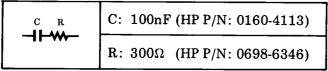
#### Note

Nominal value is 6800pF. Increasing A12C1 by 1000pF increases display 2 counts.

# (3) A12C3 Adjustment.

- a. Remove Test Leads and attach 16061A Test Fixture to 4262A UNKNOWN terminals.
- b. Connect the following DUT to 16061A.

| C R | C: 10nF (HP P/N: 0160-0408) |  |  |
|-----|-----------------------------|--|--|
| 71  | R: 3kΩ (HP P/N: 0698-6348)  |  |  |


- c. Note dissipation factor readout on 4262A DQ display.
- d. Change 4262A CIRCUIT MODE to SER.
- e. Adjust A12C3 so that capacitance readout on 4262A CRL display is the calibrated value of DUT ±2 counts and the difference in dissipation factor readout between steps c and d is less than ±5 counts.

#### Note

If adjustment is not successful, change A12C3 to 5.5/18pF capacitor (HP P/N: 0121-0036) and try adjustment again.

# (4) A12C2 Adjustment.

a. Connect the following DUT to 16061A.



- b. Set 4262A CIRCUIT MODE to PRL.
- c. Note dissipation factor readout on 4262A DQ display.
- d. Change 4262A CIRCUIT MODE to SER.
- e. Verify that 4262A displays the following:
  - 1) Capacitance readout of CRL display should be the calibrated value of DUT ±2 counts.
  - 2) The difference in dissipation factor readout between steps c and d should be less than ±5 counts.
- f. If either 1) or 2) are not satisfied, change A12C2 to an appropriate value selected from the adjustment range below:

| 30pF | HP P/N: 0160-2139 |
|------|-------------------|
| 39pF | HP P/N: 0140-0190 |
| 51pF | HP P/N: 0160-2201 |
| 62pF | HP P/N: 0140-0205 |

# Note

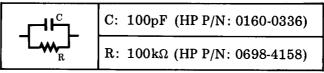
Nominal value is 39pF. Increasing A12C2 by 10pF decreases capacitance and dissipation factor readouts 2 and 3 counts respectively.

(Confirmation check)

#### Note

If 16362A DUT Box is available, use procedure A. If not, use procedure B.

#### PROCEDURE A.


- g. Remove 16061A from 4262A UNKNOWN terminals and connect Test Leads (HP P/N: 16361-61605) between 4262A UNKNOWN terminals and 16362A DUT Box as shown in Figure 5-12 (a).
- h. Set 16362A LCR RANGE to 1pF position.
- i. Set 4262A CIRCUIT MODE to PRL.
- Adjust C ZERO ADJ potentiometer for calibrated value of 16362A on 4262A LCR display.
- k. Set 16362A LCR RANGE to 100pF D = 1.8.
- Verify that dissipation factor readout on 4262A DQ display is the calibrated value of 16362A ±5 counts.

#### Note

If this confirmation check fails, repeat A12C2 adjustment.

#### PROCEDURE B.

- g. Set 4262A CIRCUIT MODE to PRL.
- h. Connect nothing to 16061A Test Fixture.
- i. Adjust C ZERO ADJ potentiometer for 0.00 counts (10pF range) on 4262A LCR display.
- j. Connect the following DUT to 16061A.



k. Verify that dissipation factor readout on 4262A DQ display is the calibrated value of DUT ±5 counts.

#### Note

If this confirmation check fails, repeat A12C2 adjustment.

# 5-26. C ZERO ADJ CIRCUIT ADJUSTMENT (A12).

# PURPOSE:

To adjust C ZERO ADJ control range.

Note

No adjustment is required for L ZERO ADJ control.

# **EQUIPMENT:**

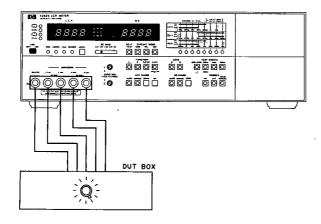



Figure 5-13. Offset Adjustment Setup.

#### PROCEDURE:

- 1. Connect Test Leads (HP P/N: 16361-61605) between 4262A UNKNOWN terminals and 16362A DUT Box as shown in Figure 5-13. If 16362A is not available, attach 16061A Test Fixture to UNKNOWN terminals.
- 2. Set 4262A controls as follows:

| DC BIAS OF       | F |
|------------------|---|
| SELF TESTOF      | F |
| FUNCTION         | C |
| CIRCUIT MODEPRI  |   |
| LOSS             | ) |
| TEST SIGNAL 10kH | z |
| LCR RANGE AUTO   | ) |
| DQ RANGE AUTO    | ) |
| TRIGGERIN        | Γ |

3. Set 16362A LCR RANGE to 19pF or connect the following DUT to 16061A:

| <b>⊣ĭ⊢₩</b> −     | C: | 18pF   | (HP P/N: | 0160-2263) |
|-------------------|----|--------|----------|------------|
| -11- <del>-</del> | R: | 8.66kΩ | (HP P/N: | 0698-3498) |

- 4. Note capacitance and dissipation factor readout on 4262A display.
- 5. Rotate 4262A C ZERO ADJ control ccw until capacitance readout on LCR display is half that obtained in step 4 within a tolerance of  $\pm 3$  counts.
- 6. Adjust A12C11 until dissipation factor readout becomes double that obtained in step 4 within a tolerance of ±2 counts.

#### Note

Because A12C11 and C ZERO ADJ controls interact with each other, maintain capacitance readout obtained in step 5 by controlling C ZERO ADJ until A12C11 is properly adjusted.

Section V

# SECTION VI REPLACEABLE PARTS

#### 6-1. INTRODUCTION.

6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list and throughout the manual. Table 6-3 lists all replaceable parts in reference designator order. Table 6-2 contains the names and addresses that correspond to the manufacturer's code numbers.

#### 6-3. ABBREVIATIONS.

6-4. Table 6-1 lists abbreviations used in parts list, schematics and throughout the manual. In some cases, two forms of abbreviations are used, one in all capital letters, and one in partial capitals or no capitals. This occurs because the abbreviations in parts list are always all capitals. However, in the schematics and in other parts of the manual, other abbreviation forms with both lower case and upper case letters are used.

#### 6-5. REPLACEABLE PARTS LIST.

- 6-6. Table 6-3 is a list of replaceable parts and is organized as follows:
  - a. Electrical assemblies and their components in alphanumerical order by reference designation.
  - Chassis-mounted parts in alphanumerical order by reference designation.
  - c. Miscellaneous parts.
  - d. Illustrated parts breakdowns, if appropriate.

The information for each part includes:

- a. The Hewlett-Packard part number.
- b. The total quantity (Qty) in the instrument.

Table 6-1. List of Reference Designators and Abbreviations

|          |                               |          | REFERENCE DESIG            | GNATORS |                                 |           |                                    |
|----------|-------------------------------|----------|----------------------------|---------|---------------------------------|-----------|------------------------------------|
| A        | = assembly                    | E        | = misc electronic part     | P       | = plug                          | U         | = integrated circuit               |
| В        | = motor                       | F        | = fuse                     | Q       | = transistor                    | v         | = vacuum, tube, neon               |
| ВТ       | = battery                     | FL       | = filter                   | Ŕ       | = resistor                      |           | bulb, photocell, etc.              |
| 2        | = capacitor                   | J        | = jack                     | RT      | = thermistor                    | VR        | = voltage regulator                |
| СP       | = coupler                     | к        | = relay                    | S       | = switch                        | W         | = cable                            |
| CR       | = diode                       | Ĺ        | = inductor                 | T       | = transformer                   | x         | = socket                           |
| DL       | = delay line                  | M        | = meter                    | TB      | = terminal board                | Y         | = crystal                          |
| DS       | = device signaling (lamp)     | MP       | = mechanical part          | TP      | = test point                    |           |                                    |
|          |                               |          | ABBREVIATI                 | ONS     |                                 |           |                                    |
| A        | = amperes                     | н        | = henries                  | NPN     | = negative-positive-            | RWV       | = reverse working                  |
|          | = automatic frequency control |          | = hexagonal                | 112.11  | negative                        | 2000      | voltage                            |
|          | = automatic frequency control | HG       | = mercury                  | NRFR    | = not recommended for           |           | voltage                            |
| AMPL     | = ampinier                    | HR       | = hour(s)                  | NAFA    | field replacement               |           |                                    |
| B. F. O. | = beat frequency oscillator   | nk<br>Hz | = hour(s)<br>= hertz       | NSR     | = not separately                | S-B       | = slow-blow                        |
| BE CU    | = beryllium copper            | HZ       | = nertz                    | NSK     |                                 |           | = SIOW=DIOW<br>= SCreW             |
| ВН       | = binder head                 | IF       | = intermediate freg.       |         | replaceable                     | SCR<br>SE |                                    |
| BP       | = bandpass                    | IM PG    | = impregnated              |         |                                 | SECT      | = selenium                         |
| BRS      | = brass                       | INCD     | = incandescent             | OBD     | = order by description          |           | = section(s)                       |
| BWO      | = backward wave oscillator    | INCL     | = include(s)               | OH      | = oval head                     | SEMICON   | = semiconductor                    |
|          |                               | INS      | = insulation(ed)           | OX      | = oxide                         | SI        | = silicon                          |
| CCW      | = counter-clockwise           | INT      | = internal                 |         | ******                          | SIL       | = silver                           |
| CER      | = ceramic                     |          |                            |         |                                 | SL        | = slide                            |
| CMO      | = cabinet mount only          | k        | = kilo = 1000              | P       | = peak                          | SPG       | = spring                           |
| COEF     | = coefficient                 | LH       | = left hand                | PC      | = printed circuit               | SPL       | = special                          |
| COM      | = common                      | LIN      | = linear taper             | p       | = pico = 10 <sup>-12</sup>      | SST       | = stainless steel                  |
| COMP     | = composition                 |          | = lock washer              | PH BRZ  | = phosphor bronze               | SR        | = split ring                       |
| COMPL    | = complete                    | LOG      |                            | PHL     | = phosphor bronze<br>= Phillips | STL       | = steel                            |
| CONN     | = connector                   |          | = logarithmic taper        |         |                                 |           |                                    |
| CP       | = cadmium plate               | LPF      | = low pass filter          | PIV     | = peak inverse voltage          | TA        | = tantalum                         |
| CRT      | = cathode-ray tube            |          | = milli = 10 <sup>-3</sup> | PNP     | = positive-negative-            | TD        | = time delay                       |
| CW       | = clockwise                   | m        |                            | - 10    | positive                        | TGL       | = toggle                           |
|          |                               | M        | = meg = 10 <sup>6</sup>    | P/O     | = part of                       | THD       | = thread                           |
| DEPC     | = deposited carbon            |          | = metal film               | POLY    | = polystyrene                   | TI        | = titanium                         |
| DR       | = drive                       | MET OX   | = metallic oxide           | PORC    | = porcelain                     | TOL       | = tolerance                        |
| FLECT    | = electrolytic                | MFR      | = manufacturer             | POS     | = position(s)                   | TRIM      | = trimmer                          |
|          | = encapsulated                | MINAT    | = miniature                | POT     | = potentiometer                 | TWT       | = traveling wave tube              |
| EXT      | = external                    | MOM      | = momentary                | PP      | = peak-to-peak                  | • •       | in accounting was a second         |
|          | = external                    | MTG      | = mounting                 | PT      | = point                         | и         | $= micro = 10^{-6}$                |
| F        | = farads                      | MY       | = ''mylar''                | PWV     | = peak working voltage          | μ.        | - 1111010 - 10                     |
| f        | = femto = 10 <sup>-15</sup>   |          | = nano = 10 <sup>-9</sup>  |         | _                               | VAR       | = variable                         |
| FH       | = flat head                   | n<br>N/C |                            |         |                                 | VDCW      | <ul><li>dc working volts</li></ul> |
| FIL H    | = fillister head              |          | = normally closed          | RECT    | = rectifier                     | w/        | = with                             |
| FXD      | = fixed                       | NE       | = neon                     |         |                                 | w/<br>w   | = with<br>= watts                  |
| _        | = giga = 10 <sup>9</sup>      | NI PL    | = nickel plate             | RF      | = radio frequency               | WIV       | = watts<br>= working inverse       |
| G        |                               | N/O      | = normally open            | RH      | = round head or                 | MIA       |                                    |
| GE       | = germanium                   | NPO      | = negative positive zero   | 2110    | right hand                      | ww        | voltage<br>= wirewound             |
| GL       | = glass                       |          | (zero temperature          | RMO     | = rack mount only               |           |                                    |
| GRD      | = ground(ed)                  |          | coefficient)               | RMS     | = root-mean square              | w/o       | = without                          |

- c. A description of the part.
- d. A typical manufacturer of the part in a five-digit code.
- e. The manufacturer's number for the part.

The total quantity for each part is given only once - at the first appearance of the part number in the list.

#### 6-7. ORDERING INFORMATION.

- 6-8. To order a part listed in the replaceable parts table, give the Hewlett-Packard part number, indicate the quantity required, and address the order to the nearest Hewlett-Packard office.
- 6-9. To order a part that is not listed in the replaceable parts table, state the full instrument model and serial number, the description and function of the part, and the number of parts required. Address your order to the nearest Hewlett-Packard office.

#### 6-12. DIRECT MAIL ORDER SYSTEM.

- 6-13. Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are:
- a. Direct ordering and shipment from the HP Parts Center in Mountain View, California.
- b. No maximum or minimum on any mail order (there is a minimum order amount for parts ordered through a local HP Office when the orders require billing and invoicing).
- c. Prepaid transportation (there is a small handling charge for each order).
- d. No invoices to provide these advantages, a check or money order must accompany each order.
- 6-14. Mail order forms and specific ordering information is available through your local HP Office. Addresses and phone numbers are located at the back of this manual.

Table 6-2. Manufacturers Code List.

| MFR NO.        | MANUFACTURER NAME                      | ADDRESS         |    | ZIP CODE |
|----------------|----------------------------------------|-----------------|----|----------|
| 0024E          | JERMYN INDUSTRIES                      |                 |    |          |
| 0138Ј          | AMP INC                                | HARRISBURG      | PA |          |
| 0160G          | ALLEN-BRADLEY CO                       | MILWAUKEE       | WI |          |
| 0169H          | TEXAS INSTR INC SEMICOND COMPNY DIV    | DALLAS          | TX | ļ        |
| 03888          | KDI PYROFILM CORP                      | WHIPPANY        | NJ | 07981    |
| 0203G          | MOTOROLA SEMICONDUCTOR PRODUCTS        | PHOENIX         | ΑZ |          |
| 0217B          | AIRCO SPEER ELEK DIV AIR RDCN CO       | NOGALES         | ΑZ |          |
| 0223G          | FAIRCHILD SEMICONDUCTOR DIV            | MOUNTAIN VIEW   | CA | i        |
| 07933          | RAYTHEON CO SEMICONDUCTOR DIV HQ       | MOUNTAIN VIEW C |    | 94040    |
| 0248C          | CTS OF BERNE INC                       | BERNE           | IN |          |
| 0248D          | CTS KEENE INC                          | PASO ROBLES     | CA |          |
| 0291J          | SIGNETICS CORP                         | SUNNYVALE       | CA |          |
| 0299E          | MEPCO/ELECTRA CORP                     | MINERAL WELLS   | TX | 1        |
| 03251          | STANFORD APPLIED ENGINEERING INC       | SANTA CLARA     | CA |          |
| 0329B          | CORNING GLASS WORKS (BRADFORD)         | BRADFORD        | PA |          |
| 0340F          | NATIONAL SEMICONDUCTOR CORP            | SANTA CLARA     | CA |          |
| 0341B          | CORNING GLASS WORKS (WILMINGTON)       | WILMINGTON      | NC |          |
| 28480          | HP DIV 00 CORPORATE                    | PALO ALTO       | CA |          |
| 0365A          | MEPCO/ELECTRA CORP                     | SAN DIEGO       | CA |          |
| 0374D          | BOURNS INC TRIMPOT PROD DIV            | RIVERSIDE       | CA |          |
| 03 <b>7</b> 9D | ADVANCED MICRO DEVICES INC             | SUNNYVALE       | CA |          |
| 03791          | HARRIS SEMICON DIV HARRIS-INTERTYPE    | MELBOURNE       | FL |          |
| 0420Ј          | SPRAGUE ELECTRIC CO                    | NORTH ADAMS     | MA |          |
| 0450G          | TRW ELEK COMPONENTS CINCH DIV          | ELK GROVE VLGE  | IL |          |
| 72136          | ELECTRO MOTIVE CORP SUB IEC            | WILLIMANTIC CT  |    | 06226    |
| 73138          | BECKMAN INSTRUMENTS INC HELIPOT DIV    | FULLERTON       | CA | 92634    |
| 73899          | J F D ELECTRONICS CORP                 | BROOKLYN        | NY | 11219    |
| 04678          | TRW INC PHILADELPHIA DIV               | PHILADELPHIA    | PA |          |
| 76381          | 3M COMPANY                             | ST PAUL         | MN | 55101    |
| 0552D          | DALE ELECTRONICS INC                   | COLUMBUS        | NE |          |
| 28480          | NO M/F DESCRIPTION FOR THIS MFG NUMBER |                 |    |          |

Table 6-3. Replaceable Parts.

| Reference<br>Designation                                                                           | HP Part<br>Number                                                          | Qty    | Description                                                                                                                                                                                                                   | Mfr<br>Code                                    | Mfr Part Number                                                                                    |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------|
| A 1                                                                                                | 04262-66501<br>04262-26501                                                 | i<br>1 | MOTHER BOARD ASSEMBLY<br>PC BOARD, BLANK                                                                                                                                                                                      | 28480<br>28480                                 | 04262=66501<br>04262=26501                                                                         |
| AlJi                                                                                               | 1251+3004                                                                  | 1      | CUNNECTOR 40-PIN M RECTANGULAR                                                                                                                                                                                                | 76381                                          | 3432-2002                                                                                          |
| 41 x 4 9 R<br>41 x 4 1 1 L<br>41 x 4 1 1 R<br>61 x 4 1 2 R<br>41 x 41 2 R                          | 1251~1886<br>1251~1886<br>1251~1886<br>1251~1886<br>1251~1886              |        | CONNECTOR=PC EDGE 15-CONT/ROW 2-ROWS                                      | 04506<br>04506<br>04506<br>04506<br>04506      | 252+15+30+340<br>252+15+30+340<br>252+15+30+340<br>252+15+30+340<br>252+15+30+340                  |
| A † X A 1 3 L<br>A ‡ X A 1 5 R<br>A 1 X A 1 4 L<br>A ‡ X A 1 4 R<br>A 1 X A 2 1 L<br>A 1 X A 2 1 H | 1251=1886<br>1251=1886<br>1251=1886<br>1251=1886<br>1251=1886<br>1251=1886 |        | CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS | 0450G<br>0450G<br>0450G<br>0450G<br>0450G      | 252-15-30-340<br>252-15-30-340<br>252-15-30-340<br>252-15-30-340<br>252-15-30-340<br>252-15-30-340 |
| 41 x 4 2 2 H<br>41 x 4 2 2 H<br>41 x 4 2 3 L<br>41 x 4 2 3 H<br>41 x 4 2 U<br>41 x 4 2 U R         | 1251-1886<br>1251-1886<br>1251-1886<br>1251-1886<br>1251-1886<br>1251-1886 |        | CONNECTUR-PC EDGE 15-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS | 0450G<br>0450G<br>0450G<br>0450G<br>0450G      | 252-15-30-340<br>252-15-30-340<br>252-15-30-340<br>252-15-30-340<br>252-15-30-340<br>252-15-30-340 |
| A1 XA25t.<br>A1 XA25R                                                                              | 1251=1886<br>1251=1886                                                     |        | CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS<br>CONNECTOR-PC EDGE 15-CONT/ROW 2-ROWS                                                                                                                                                  | 0450G                                          | 252=15=30=340<br>252=15=30=340                                                                     |
| 4.5                                                                                                | 04262+66502<br>04262+26502                                                 | 1 1    | KEYPOARD & DISPLAY ASSEMBLY .<br>PC HOARD, RLANK                                                                                                                                                                              | 28480<br>25480                                 | 04262=66502<br>04262=26502                                                                         |
| 4201                                                                                               | 0180-0291                                                                  | o o    | CAPACITOR=FXO 1UF+=10% 35VDC TA                                                                                                                                                                                               | 0420J                                          | 1500105X9035AZ                                                                                     |
| 2051<br>52054<br>2054<br>2050<br>2050<br>2055                                                      | 1990-0#d6<br>1990-0486<br>1990-0486<br>1990-0486<br>1990-0452              | 37     | LED-VISIBLE LUM-INT=1MCD IF=20MA=MAX<br>LED-VISIBLE LUM-INT=1MCD IF=20MA=MAX<br>LED-VISIBLE LUM-INT=1MCD IF=20MA=MAX<br>LED-VISIBLE LUM-INT=1MCD IF=20MA=MAX<br>DISPLAY-NUM SEG 1=CHAR .3-M                                   | 28480<br>28480<br>28480<br>28480<br>28480      | 1990-0486<br>1990-0486<br>1990-0486<br>1990-0486<br>1990-0482                                      |
| 42086<br>42087<br>42088<br>42089<br>42089                                                          | 1990=0434<br>1990=0434<br>1990=0454<br>1990=0517<br>1990=0517              | 15     | DISPLAY-NUM SEG 1-CHAR .3-H DISPLAY-NUM SEG 1-CHAR .3-H DISPLAY-NUM SEG 1-CHAR .3-H LED-VISIHEE LUM-INTESMED IF-20MA-MAX LED-VISIHEE LUM-INTESMED IF-20MA-MAX                                                                 | 28480<br>28480<br>28480<br>28480<br>28480      | 1990=0454<br>1990=0454<br>1990=0434<br>1990=0517<br>1990=0517                                      |
| 42US11<br>A2US12<br>A2US13<br>A2US14<br>A2US15                                                     | 1990=0517<br>1990=0517<br>1990=0517<br>1990=0517<br>1990=0517              |        | LED-VISIBLE LUM-INT=3MCD IF=20MA-MAX<br>LEC-VISIBLE LUM-INT=3MCD IF=20MA-MAX<br>LED-VISIBLE LUM-INT=3MCD IF=20MA-MAX<br>LED-VISIBLE LUM-INT=3MCD IF=20MA-MAX<br>LED-VISIBLE LUM-INT=3MCD IF=20MA-MAX                          | 28480<br>28480<br>28480<br>28480<br>28480      | 1990-0517<br>1990-0517<br>1990-0517<br>1990-0517<br>1990-0517                                      |
| A2DS16<br>A2DS17<br>A2DS18<br>A2DS19<br>A2DS20                                                     | 1990 + 0517<br>1990 + 0517<br>1990 + 0517<br>1990 + 0517<br>1990 + 0434    |        | LED-VISIBLE LUM-INTESMED IF=20MA-MAX<br>LED-VISIBLE LUM-INTESMED IF=20MA-MAX<br>LED-VISIBLE LUM-INTESMED IF=20MA-MAX<br>DISPLAY-NUM SEG 1-CHAR 3-H                                                                            | 28480<br>28480<br>28480<br>28480<br>28480      | 1990-0517<br>1990-0517<br>1990-0517<br>1990-0517<br>1990-034                                       |
| A2US21<br>A2US22<br>A2US23<br>42US24<br>42US24<br>A2US25                                           | 1990=0454<br>1990=0434<br>1990=0434<br>1990=0486<br>1990=0486              |        | DISPLAY-NUM SEG 1-CHAR .3-H DISPLAY-NUM SEG 1-CHAR .3-H DISPLAY-NUM SEG 1-CHAR .3-H LED-VISIHLE LUM-IN1=1MCD IF=20MA-MAX LED-VISIHLE LUM-INT=1MCD IF=20MA-MAX                                                                 | 28480<br>28480<br>28480<br>28480<br>28480      | 1990-0434<br>1990-0434<br>1990-0434<br>1990-0486<br>1990-0486                                      |
| A2US26<br>A2DS27<br>A2US28<br>A2US29<br>A2US30                                                     | 1990+0486<br>1990+0486<br>1990-0665<br>1990-0665<br>1990-0665              |        | LED-VISIBLE LUM-INT=IMCD IF=20MA=MAX<br>LED-VISIBLE LUM-INT=IMCD IF=20MA=MAX<br>LED-VISIBLE LUM-INT=IMCD IF=20MA=MAX<br>LED-VISIBLE LUM-INT=IMCD IF=20MA=MAX<br>LED-VISIBLE LUM-INT=IMCD IF=20MA=MAX                          | 28480<br>28480<br>28480<br>28480               | 1990-0486<br>1990-0466<br>1990-0665<br>1990-0665<br>1990-0665                                      |
| A20531<br>A20542<br>A20533<br>A20534<br>A20535                                                     | 1990-0665<br>1990-0486<br>1990-0486<br>1990-0486<br>1990-0486              |        | LED-VISIBLE LUM-INT=IMCD IF=20MA=MAX<br>LED-VISIBLE LUM-INT=IMCD IF=20MA=MAX<br>LED-VISIBLE LUM-INT=IMCD IF=20MA=MAX<br>LED-VISIBLE LUM-INT=IMCD IF=20MA=MAX<br>LED-VISIBLE LUM-INT=IMCD IF=20MA=MAX                          | \$8480<br>\$8480<br>\$8480                     | 1990-0665<br>1990-0486<br>1990-0486<br>1990-0486<br>1990-0486                                      |
| A2D536<br>A2D517<br>A2U538<br>A2U539<br>A2U540                                                     | 1990-0486<br>1990-0486<br>1990-0486<br>1990-0486<br>1990-0665              |        | LED-VISIBLE LUM-INTEIMCD IF=20M4-MAX<br>LED-VISIBLE LUM-INTEIMCD IF=20M4-MAX<br>LED-VISIBLE LUM-INTEIMCD IF=20M4-MAX<br>LED-VISIBLE LUM-INTEIMCD IF=20M4-MAX<br>LED-VISIBLE LUM-INTEIMCD IF=20M4-MAX                          | \$9480<br>\$9480<br>\$8480<br>\$8480<br>\$8480 | 1990-0486<br>1990-0486<br>1990-0486<br>1990-0486<br>1990-0665                                      |
| 1203u1<br>6203u3<br>6203u3<br>6203u4<br>6203u5                                                     | 1990-0665<br>1990-0665<br>1990-0665<br>1990-0665<br>1990-0665              |        | LED-VISIBLE LUM-INT=1MCD IF=20MA-MAX<br>LED-VISIBLE LUM-INT=1MCD IF=20MA-MAX<br>LED-VISIBLE LUM-INT=1MCD IF=20MA-MAX<br>LED-VISIBLE LUM-INT=1MCD IF=20MA-MAX<br>LED-VISIBLE LUM-INT=1MCD IF=20MA-MAX                          | 28480<br>28480<br>28480<br>28480               | 1990-0665<br>1990-0665<br>1990-0665<br>1990-0665<br>1990-0665                                      |
|                                                                                                    |                                                                            | į      |                                                                                                                                                                                                                               |                                                |                                                                                                    |

Table 6-3. Replaceable Parts (Cont'd).

|                                                | T                                                                          | Г -                    | Table 6-3. Replaceable Parts (Cont'o                                                                                                                                                                       | 1).                                                |                                                                            |
|------------------------------------------------|----------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|
| Reference<br>Designation                       | HP Part<br>Number                                                          | Qty                    | Description                                                                                                                                                                                                | Mfr<br>Code                                        | Mfr Part Number                                                            |
| A20546<br>A20547<br>A20548<br>A20549<br>A20550 | 1990-0665<br>1990-0665<br>1990-0665<br>1990-0665<br>1990-0665              |                        | LED-VISIBLE LUM-INTEIMCD IFEROMA-MAX                   | 28480<br>28480<br>28480<br>28480<br>28480          | 1990-0665<br>1990-0665<br>1990-0665<br>1990-0665<br>1990-0665              |
| 420551<br>420552<br>420553<br>420554<br>420555 | 1990-0665<br>1990-0665<br>1990-0665<br>1990-0665<br>1990-0665              |                        | LED-VISIBLE LUM-INTEIMCO IFE20MA-MAX<br>LED-VISIBLE LUM-INTEIMCO IFE20MA-MAX<br>LED-VISIBLE LUM-INTEIMCO IFE20MA-MAX<br>LED-VISIBLE LUM-INTEIMCO IFE20MA-MAX<br>LED-VISIBLE LUM-INTEIMCO IFE20MA-MAX       | 28480<br>28480<br>28480<br>28480<br>28480          | 1990-0665<br>1990-0665<br>1990-0665<br>1990-0665<br>1990-0665              |
| 420856                                         | 1990-0665                                                                  |                        | LED-VISIBLE LUM-INT#1MCD IF#20MA-MAX                                                                                                                                                                       | 28480                                              | 1990-0665                                                                  |
| 1 LSA<br>2 LSA<br>2 LSA<br>2 LSA<br>2 LSA      | 1200-0638<br>1200-0638<br>1200-0638<br>1200-0638<br>1200-0638              | 8                      | SOCKET-IC 14-CONT DIP-SLDR SOCKET-IC 14-CONT DIP-SLDR SUCKET-IC 14-CONT DIP-SLDR SOCKET-IC 14-CONT DIP-SLDR SUCKET-IC 14-CUNT DIP-SLDR                                                                     | 03251<br>03251<br>03251<br>03251<br>03251          |                                                                            |
| A2J6<br>A2J7<br>A2J8                           | 1200-0638<br>1200-0638<br>1200-0638                                        |                        | SUCKET-IC 14-CONT DIP-SLOK<br>SUCKET-IC 14-CONT DIP-SLOR<br>SUCKET-IC 14-CONT DIP-SLOR                                                                                                                     | 16250<br>16250<br>16250                            |                                                                            |
| A2K1<br>A2R2<br>A2K3<br>A2R4<br>A2K5           | 0683-4715<br>0663-4715<br>0683-4715<br>0683-4715<br>0683-2715              | 37<br>20               | RESISTOR 470 5% .25w FC TC==400/+600 FESISTOR 470 5% .25w FC TC==400/+600 RESISTOR 470 5% .25w FC TC==400/+600 RESISTOR 470 5% .25w FC TC==400/+600 RESISTOR 270 5% .25w FC TC==400/+600                   | 0160G<br>0160G<br>0160G<br>0160G<br>0160G          | CB4715<br>CB4715<br>CB4715<br>CB4715<br>CB4715<br>CB2715                   |
| 4286<br>4287<br>4284<br>4289<br>42810          | 0663-2715<br>0663-2715<br>0663-2715<br>0663-2715<br>0663-2715              |                        | RESISTOR 270 5% ,25m FC TC==400/+600<br>RESISTOR 270 5% ,25m FC TC=-400/+600<br>MESISTOR 270 5% ,25m FC TC=-400/+600<br>RESISTOR 270 5% ,25m FC TC=-400/+600<br>RESISTOR 270 5% ,25m FC TC=-400/+600       | 0160G<br>0160G<br>0160G<br>0160G<br>0160G          | CB2715<br>CB2715<br>CB2715<br>CB2715<br>CB2715                             |
| A2R11<br>A2H12<br>A2H13<br>A2H14<br>A2R15      | 0683-4715<br>0683-4715<br>0683-4715<br>0683-4715<br>0683-4715              |                        | ##\$I\$TOM 470 5% .25% FC TC#=400/+600   #E\$I\$TOM 470 5% .25% FC TC#=400/+600   ##\$I\$TOM 470 5% .25% FC TC#=400/+600   ##\$I\$TOM 470 5% .25% FC TC#=400/+600   ##\$I\$TOM 470 5% .25% FC TC#=400/+600 | 01606<br>01606<br>01606<br>01606<br>01606          | CB4715<br>CB4715<br>CB4715<br>CB4715<br>CB4715                             |
| A2816<br>A2817<br>A2816                        | 0653+4715<br>0663+4715<br>0683+4715                                        |                        | RESISTOR 470 5% .25% FC TC==400/+600<br>RESISTOR 470 5% .25% FC TC==400/+600<br>RESISTOR 470 5% .25% FC TC==400/+600                                                                                       | 0160G<br>0160G<br>0160G                            | C84715<br>C84715<br>C84715                                                 |
| 4251<br>4252<br>4253                           | 5060-9436<br>5041-0342<br>5060-4802<br>5080-3440<br>5060-9436<br>5041-0351 | 28<br>2<br>1<br>1<br>a | SWITCH, PUSHBUTTON  KEY CAP  SLIDE ASSEMBLY  SPRINGIPETENT  SWITCH, PUSHBUTTON  KEY CAP                                                                                                                    | 28480<br>28480<br>28480<br>28480<br>28480<br>28480 | 5060-9436<br>5041-0342<br>5060-4802<br>5020-5440<br>5060-9436<br>5041-0351 |
| 4254<br>4255<br>4256                           | 5000=9436<br>5041=0351<br>5060=9436<br>5041=0351<br>5060=9436<br>5041=0351 |                        | SWITCH, PUSHBUTTON KEY CAP SWITCH, PUSHBUTTON KEY CAP SWITCH, PUSHBUTTON KEY CAP                                                                                                                           | 28480<br>26480<br>28480<br>28480<br>28480<br>28480 | 5060=9436<br>5041=0351<br>5060=9436<br>5041=0351<br>5060=9436<br>5041=0351 |
| A 2 S 7<br>A 2 S R<br>A 2 S 9                  | 5060+9436<br>5041+0252<br>5060+9436<br>5041+0252<br>5060+9436              | c                      | SWITCH, PUSHBUTTON KEY CAP SWITCH, PUSHBUTTON KEY CAP SWITCH, PUSHBUTTON                                                                                                                                   | \$8480<br>\$8480<br>\$8480<br>\$8480               | 5060=9436<br>5041=0252<br>5060=9436<br>5041=0252<br>5060=9436              |
| 42510<br>42511                                 | 5041-0252<br>5060-9436<br>5041-0318<br>5060-9436<br>5041-0252              | 11                     | KEY CAP SWITCH, PUSHBUTTON KEY CAP SWITCH, PUSHBUTTON KEY CAP                                                                                                                                              | 28480<br>28480<br>28480<br>28480<br>28480          | 5041-0252<br>5060-9436<br>5041-0318<br>5060-9436                           |
| 45515                                          | 5060-9436<br>5041-0252                                                     |                        | SWITCH, PUSHBUTTON KLY CAP                                                                                                                                                                                 | 28480<br>28480                                     | 5041-0252<br>5060-9436<br>5041-0252                                        |
| A2513                                          | 5060+9436<br>5041=0318                                                     |                        | SWITCH, PUSHBUTTON                                                                                                                                                                                         | 28480                                              | 5060=9436                                                                  |
| A2514<br>A2515                                 | 5060-9436<br>5041-0408<br>5041-0436<br>5041-0318                           | 1                      | SWITCH, PUSHBUTTON KFY CAP SWITCH, PUSHBUTTON                                                                                                                                                              | 28480<br>28480<br>28480<br>28480                   | 5041-0318<br>5060-9436<br>5041-0408<br>5060-9436                           |
| A2516                                          | 5060-9436                                                                  |                        | KEY CAP SWITCH, PUSHBUTTON                                                                                                                                                                                 | 28480<br>28480                                     | 5041-0316<br>5060-9436                                                     |
| A2S17<br>A2S18                                 | 5041-0316<br>5060-9436<br>5041-0318<br>5060-9436                           |                        | KEY CAP<br>SWITCH, PUSHBUTTON<br>KEY CAP                                                                                                                                                                   | 28480<br>28480<br>28480                            | 5041=0318<br>5060=9436<br>5041=0318                                        |
| -6413                                          | 5041-0318                                                                  |                        | SWITCH, PUSHBUTTON<br>KEY CAP                                                                                                                                                                              | 28480<br>28480                                     | 5060=9436<br>5041=0318                                                     |
| A2519<br>A2520                                 | 5060=9436<br>5041=0309 -<br>5060=9436                                      | ч                      | SWITCH, PUSHBUTTON KEY CAP SWITCH, PUSHBUTTON                                                                                                                                                              | 28480<br>28480<br>28480                            | 5060=9436<br>5041=0309<br>5060=9436                                        |
| A252)                                          | 5041=0309<br>5060=9436<br>5041=0318                                        |                        | MEY CAP<br>SWITCH, PUSHBUTTON<br>MEY CAP                                                                                                                                                                   | 28480<br>28480<br>28480                            | 5041-0309<br>50-0-9436<br>5041-0318                                        |

Table 6-3. Replaceable Parts (Cont'd).

| Reference<br>Designation                    | HP Part<br>Number                                                                                    | Qty | Description                                                                                                                                                                                  | Mfr<br>Code                                                 | Mfr Part Number                                                                        |
|---------------------------------------------|------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|
| A2523<br>A2523                              | 5060-9436<br>5041-0318<br>5060-9436<br>5041-0309<br>5060-9436<br>5041-0318                           |     | SWITCH, PUSHBUTTON  KŁY CAP SWITCH, PUSHBUTTON  KŁY CAP SWITCH, PUSHBUTTON  KŁY CAP                                                                                                          | 28480<br>28480<br>28480<br>28480<br>28480<br>28480          | 5060 = 9436<br>5041 = 0318<br>5060 = 9436<br>5041 = 0309<br>5060 = 9436<br>5041 = 0318 |
| 42525<br>42526                              | 5060~9436<br>5041-0318<br>5060-9436<br>5041-0318                                                     |     | SWITCH, PUSHBUTTON KEY CAP SWITCH, PUSHBUTTON KEY CAP                                                                                                                                        | 28480<br>28480<br>28480                                     | 5060=9436<br>5041=0318<br>5060=9436<br>5041=0318                                       |
| A2U3<br>A2U3<br>A2U3                        | 1820+1200<br>1820+0491<br>1820+0491<br>1820+0491                                                     | 5 4 | IC INV TTL LS HEX 1-INP IC DCDP TTL BCD-TO-DEC 4-TO-10-LINE IC DCDR TTL BCD-TO-DEC 4-TO-10-LINE IC DCDR TTL BCD-TO-DEC 4-TO-10-LINE                                                          | 0169H<br>0169H<br>0169H<br>0169H                            | SN74L805N<br>SN74145N<br>SN74145N<br>SN74145N                                          |
| 1 4 2 4 2 4                                 | 8120-0365<br>8120-0362                                                                               | 1 1 | CABLE ASSEMBLY, 40-PIN<br>Cable Assembly, 34-PIN                                                                                                                                             | 28480<br>28480                                              | 8120-0365<br>8120-0362                                                                 |
| Δ 3                                         | 04262-66503<br>04262-26503                                                                           | 1 1 | HP⇒IH CONNECTUR BOARD ASSEMBLY<br>PC HOARD, BLANK                                                                                                                                            | 28480<br>28480                                              | 04262-66503<br>04262-26503                                                             |
| A3J1<br>A3J2                                | 1251-3283<br>1200+0485                                                                               | 1 1 | CUNNECTOR 24-PIN F MICRORIBBON<br>SOCKET:IC 14-PIN PC MOUNTING                                                                                                                               | 28480<br>28480                                              | 1251=3283<br>1200=0485                                                                 |
| A351                                        | 3101-1973                                                                                            | 1   | Smitch-St 7-14-NS DIP-Stide-ASSY .14                                                                                                                                                         | 05440                                                       | 117-1028                                                                               |
| 43w1                                        | 04262-61609                                                                                          | 1   | CABLE ASSEMBLY                                                                                                                                                                               |                                                             |                                                                                        |
| A4 (OPTION 004)                             | 04262-66544<br>04262-26544                                                                           | 1 1 | THUMBWHEEL SWITCH HOARD ASSEMBLY<br>PC HOARD, BLANK                                                                                                                                          | 28480<br>28480                                              |                                                                                        |
| A4J1<br>A4J2<br>A4J3<br>A4J4<br>A4J5        | 1251-0923<br>1251-0923<br>1251-0923<br>1251-0923<br>1251-0923                                        | 16  | CONNECTOR, PC 2 x 11 CONTACT                                             | 28480<br>28480<br>28480<br>28480<br>28480                   |                                                                                        |
| AUJ6<br>7 LUA<br>8 LUA<br>9 LUA<br>11 LUA   | 1251-0923<br>1251-0923<br>1251-0923<br>1251-0923<br>1251-0923                                        |     | CONNECTOR, PC 2 x 11 CONTACT                                             | 28480<br>28480<br>28480<br>28480                            |                                                                                        |
| Auji;<br>Auji;<br>Auji;<br>Auji;<br>Auji;   | 1251-0923<br>1251-0923<br>1251-0923<br>1251-0923<br>1251-0923                                        |     | CONNECTOR, PC 2 x 11 CONTACT                                             | 28480<br>08485<br>08485<br>28480<br>8480<br>8480            |                                                                                        |
| A4J16<br>A4J17                              | 1251-0923                                                                                            | 5   | CONNECTOR, PC 2 x 11 CONTACT<br>SUCKET-IC 16-CONT DIP-SLOR                                                                                                                                   | 28480<br>0138J                                              |                                                                                        |
| Auni                                        | 1200-0607<br>M120-0364                                                                               | 1   | CABLE ASSEMBLY, FLAT                                                                                                                                                                         | 28480                                                       | 8120-0364                                                                              |
| A5 (OPTION 004)                             | 04262-66505<br>04262-26505                                                                           | 1 1 | CUMPANATOR KEYBUARD ASSEMBLY PC BOARD, BLANK                                                                                                                                                 | 28480<br>28480                                              | 04262=66505<br>04262=26505                                                             |
| 45051<br>45052<br>45053<br>45054<br>45084   | 1990-0517<br>1990-0521<br>1990-0517<br>1990-0517                                                     | 5   | LED-VISIBLE LUM-INTESMCD IF=20MA-MAX LED-VISIBLE LUM-INTE2,2MCD IF=50MA-MAX LED-VISIBLE LUM-INTE3MCD IF=20MA-MAX LED-VISIBLE LUM-INTE3MCD IF=20MA-MAX LED-VISIBLE LUM-INTE2,2MCD IF=50MA-MAX | 28480<br>28480<br>28480<br>28480                            | 1990-0517<br>1990-0521<br>1990-0517<br>1990-0517<br>1990-0521                          |
| ASDS 6<br>ASDS 7<br>ASS 1<br>ASS 2<br>ASS 3 | 1990-0517<br>1990-0665<br>5060-9436<br>5041-0342<br>5060-9436<br>5041-0309<br>5060-9436<br>5041-0252 |     | LED-VISIBLE LUM-INT=3MCD IF=20MA-MAX LED-VISIBLE LUM-INT=1.0MCD IF=20MA-MAX SWITCH, PUSHBUTTON KEY CAP SWITCH, PUSHBUTTON KEY CAP SWITCH, PUSHBUTTON KEY CAP                                 | 28480<br>28480<br>28480<br>28480<br>28480<br>28480<br>28480 | 1990-0517 5060-9436 5041-0342 5060-9436 5041-0309 5060-9436 5041-0309                  |
| 45*1                                        | 8120+0361                                                                                            | 1   | CABLE ASSEMBLY                                                                                                                                                                               | 28480                                                       | 8120-0361                                                                              |
| 46                                          |                                                                                                      |     | NOT ASSIGNED                                                                                                                                                                                 |                                                             |                                                                                        |
| A 7                                         |                                                                                                      |     | NUT ASSIGNED                                                                                                                                                                                 |                                                             |                                                                                        |
| ΔR                                          |                                                                                                      |     | NOT ASSIGNED                                                                                                                                                                                 |                                                             |                                                                                        |
|                                             |                                                                                                      |     |                                                                                                                                                                                              |                                                             |                                                                                        |
|                                             |                                                                                                      |     |                                                                                                                                                                                              | İ                                                           |                                                                                        |

Table 6-3. Replaceable Parts (Cont'd).

| Reference<br>Designation                            | HP Part<br>Number                                             | Qty                   | Description                                                                                                                                                                                 | Mfr<br>Code                               | Mfr Part Number                                                                                    |
|-----------------------------------------------------|---------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------|
| A 9                                                 | 04261=77009<br>04261=87009                                    | . !                   | POWER SUPPLY BOARD ASSEMBLY<br>PC BOARD, BLANK                                                                                                                                              | 28480<br>28480                            | 04261-77009<br>04261-87009                                                                         |
| A 9C 1<br>A 9C 2<br>A 9C 3<br>A 9C 4<br>A 9C 5      | 0180-1057<br>0180-1057<br>0180-1057<br>0180-1056<br>0180-1056 | 2                     | CAPACITORIFXD 2200 UF 16VDCW AL ELECT CAPACITORIFXD 2200 UF 16VDCW AL ELECT CAPACITORIFXD 2200 UF 16VDCW AL ELECT CAPACITORIFXD 1000 UF 25VDC AL ELECT CAPACITORIFXD 1000 UF 25VDC AL ELECT | 28480<br>28480<br>28480<br>28480<br>28480 | 0180=1057<br>0180=1057<br>0180=1057<br>0180=1056<br>0180=1056                                      |
| 4906<br>4907<br>4908<br>4909                        | 0140+0200<br>0180-0814<br>0180-0814<br>0180+0814              | 3                     | CAPACITOR-FXD 390PF +-5% 300VDC MICAO+70<br>CAPACITURIFXD 100UF +100-10% 16VDCW AL<br>CAPACITORIFXD 100UF +100-10% 16VDCW AL<br>CAPACITORIFXD 100UF +100-10% 16VDCW AL                      | 72136<br>28480<br>28480<br>28480          | DM15f391J0300WV1CR<br>0180=0814<br>0180=0814<br>0180=0814                                          |
| A9CR1<br>A9CR2                                      | 1901-0237<br>1901-0237                                        | 5                     | DIDDE:SI, RECTIFIER BRIDGE, 200V<br>Didde:SI, Rectifier Bridge, 200V                                                                                                                        | 28480<br>28480                            | 1901-0237<br>1901-0237                                                                             |
| 4901<br>4902<br>4903<br>4904                        | 1854-0039<br>5080-3078<br>5080-3078<br>5080-3078              | 1<br>20               | TPANSISTOR NPN 2N3053S SI TO-39 PD=1W<br>Transistor npn SI<br>Transistor npn SI<br>Transistor npn SI                                                                                        | 0203G                                     | 2N5053                                                                                             |
| A 9R 1<br>A 9R 2<br>A 9R 3<br>A 9R 4<br>A 9R 4      | 0811-2771<br>0811-1746<br>0683-1025<br>0811-1746<br>0757-0436 | 1<br>20<br>1          | RESISTOR .18 3% 3W PW fC=0+=90 RESISTOR .3 5% 2W PW fC=0+=800 RESISTOR 1K 5% .25W FC fC==400/+600 RESISTOR .36 5% 2W PW fC=0+=800 RESISTOR 5.11K 1% .125W F fC=0+=100                       | 05520<br>04678<br>0160G<br>04678<br>03298 | #S=28<br>hw#2-56/100=J<br>CB1025<br>bw#2-36/100=J<br>C4-1/8-T0=5111=F                              |
| 49R6<br>49R7<br>49R8<br>49R9<br>49R10               | 2100-2521<br>0757-0440<br>0757-0289<br>0698-4020<br>0757-0442 | 1<br>1<br>1<br>1<br>4 | RESISTOR-TRMR 2K 10% C SIDE-ADJ 1-TRN RESISTOR 7,5K 1% ,125W F TC=0+=100 RESISTOR 13,3K 1% ,125W F TC=0+=100 RESISTOR 9,53K 1% ,125W F TC=0+=100 RESISTOR 10K 1% ,125W F TC=0+=100          | 03654<br>03298<br>0299E<br>03298<br>03298 | £150x202<br>C4-1/8-T0-7501-F<br>MF4C1/8-T0-1352-F<br>C4-1/8-T0-9531-F<br>C4-1/8-T0-1002-F          |
| AGR11<br>AGR12<br>AGR13<br>AGR14<br>AGR15           | 0757-0442<br>0698-3155<br>0698-3155<br>0698-3431<br>0757-0420 | 5<br>1<br>1           | RESISTOR 10K 1% .125W F TC#0+=100 RESISTOR 4,64K 1% .125W F TC#0+=100 RESISTOR 4,64K 1% .125W F TC#0+=100 RESISTOR 25.7 1% .125W F TC#0+=100 RESISTOR 750 1% .125W F TC#0+=100              | 03298<br>05298<br>05298<br>03888<br>03298 | C4-1/8-T0-1002-F<br>C4-1/8-T0-4641-F<br>C4-1/8-T0-4641-F<br>PME55-1/8-T0-23R7-F<br>C4-1/8-T0-751-F |
| 49R16<br>49R17<br>A9R18<br>A9R19                    | 0698=3427<br>0757=0317<br>0757-0159<br>0683-7529              | 1 2                   | RESISTOR 13.3 1% .125W F TC=0+-100<br>RESISTOR 1.33K 1% .125W F TC=0+-100<br>RESISTOR 1K 1% .5W<br>RESISTOR 7.5K 5% .25W                                                                    | 888E0                                     | PME55-1/8-10-1385-F<br>C4-1/8-10-1331-F                                                            |
| A9U1<br>A9U3<br>A9U4                                | 1826+0271<br>5080-3834<br>1826+0271<br>1826+0271              | 1                     | IC 741 OP AMP<br>IC 723 V RGLTR<br>IC 741 OP AMP<br>IC 741 OP AMP                                                                                                                           | 0340F<br>0340F<br>0340F                   | LM741CN<br>LM741CN<br>LM741CN                                                                      |
|                                                     | 5040+3304                                                     | 9                     | A9 MISCELLANEOUS PARTS HOLDER, CAPACITOR                                                                                                                                                    | 28480                                     | 5040 <b>~</b> \$304                                                                                |
| A10                                                 | 04261=50022                                                   | 1                     | SUPPORTER, BOARD NOT ASSIGNED                                                                                                                                                               | 28480                                     | 04261*50022                                                                                        |
| All                                                 | 04262+66511<br>04262+26511                                    | 1 1                   | OSCILLATOR & SOURCE RESISTOR HOARD ASSY<br>PC HOARD, BLANK                                                                                                                                  | 28480<br>28480                            | 04202=06511<br>04202=26511                                                                         |
| A11C1<br>A11C2<br>A11C3<br>A11C4<br>A11C5           | 0140-2396<br>0160-2200<br>0180-1051<br>0180-1051<br>0180-1052 | 1<br>1<br>20<br>4     | CAPACITOR-FXD 1000UF+75=10% 75VDC AL CAPACITOR-FXD 43PF +=5% 300VDC CAPACITOR, FXD 100 UF 16V M CAPACITOR, FXD 100 UF 16V M CAPACITOR, FXD 220 UF 6.3V M                                    | 0420J<br>28480<br>28480<br>28480<br>28480 | 39D104G075JP4<br>0180-2200<br>0180-1051<br>0180-1051<br>0180-1052                                  |
| A11Cb<br>A11C7<br>A11C8<br>A11C9                    | 0180-1051<br>0180-1051<br>0160-5819<br>0160-5819              | 3                     | CAPACITUR, FXO 100 UF 16V M CAPACITUR, FXD 100 UF 16V M CAPACITOR, FXD 3300°FF 50V CAPACITOR, FXD 3300°FF 50V                                                                               | 28480<br>28480                            | 0160-1051<br>0160-1051                                                                             |
| A11C10                                              | 0180-0228                                                     | 5                     | CAPACITUR-FXD 22UF+-10% 15VDC TA  CAPACITUR-FXD 22UF+-10% 15VDC TA                                                                                                                          | 0420J                                     | 1500226×901562<br>1500226×901562                                                                   |
| Alicia                                              | 0180-1052                                                     | 3                     | CAPACITOR, FXD 220 UF 6.3V M DIUDE-ZNR 53.6V 2x DD-15 PD=1w 1C=+.081%                                                                                                                       | 28480<br>0203G                            | 0180-1052                                                                                          |
| A11CR2<br>A11CR3<br>A11CR4<br>A11CR5                | 1901+0025<br>1901+0025<br>1901+0025<br>1901+0025              | 10                    | DIODE-GEN PRP 100V 200MA DO-7                                                                     | 58480<br>58480<br>58480<br>5480           | 1901-0025<br>1901-0025<br>1901-0025<br>1901-0025                                                   |
| A11CR6<br>A11CR7<br>A11CR8<br>A11CR9<br>A11CR10     | 1901-0040<br>1901-0040<br>1902-3037<br>1902-3149<br>1901-0040 | 1 6                   | DIODE-SWITCHING 30V 50MA 2NS D0-35 DIODE-SWITCHING 30V 50MA 2NS D0-35 DIODE-ZNR 3.16V 2% 00=7 PD=4W TC=064% DIODE-ZNR 9.09V 5% D0-7 PD=4W TC=+.057% DIODE-SWITCHING 30V 50MA 2NS D0-35      | 28480<br>28480<br>0203G<br>0223G<br>28480 | 1901-0040<br>1901-0040<br>FZ7256<br>1901-0040                                                      |
| Alicrii<br>Alicriz<br>Alicria<br>Alicria<br>Alicria | 1901-0040<br>1901-0040<br>1901-0040<br>1902-0688<br>1902-0688 |                       | DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-ZNR 53.6V 2% DO-15 PD=1W                                            | 26460<br>26460<br>28460                   | 1901-0040<br>1901-0040<br>1901-0040                                                                |
| WildWid                                             | , , , , , , , , , , , , , , , , , , , ,                       |                       |                                                                                                                                                                                             |                                           |                                                                                                    |

Table 6-3. Replaceable Parts (Cont'd).

| Reference<br>Designation                                 | HP Part<br>Number                                                          | Qty          | Description                                                                                                                                                                               | Mfr<br>Code                                    | Mfr Part Number                                                                                  |
|----------------------------------------------------------|----------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------|
| AJIK1<br>AJIK2<br>AJIK3<br>AJIK4                         | 0490-0234<br>0490-0234<br>0490-0234<br>0490-0276                           | 3            | RELAY, REED<br>RELAY, REED<br>RELAY, REED<br>RELAY; REED                                                                                                                                  | 28480<br>28480<br>28480<br>28480               | 0490-0226                                                                                        |
| A1101<br>A1102<br>A1103<br>A1104<br>A1105                | 5080-3078<br>1453-0020<br>5080-3078<br>1855-0082<br>5080-3078              | 26<br>1      | TRANSISTOR NPN SI PD#300MW FT#200MMZ TRANSISTOR PNP SI PD#300MW FT#150MMZ TRANSISTOR NPN SI PD#300MW FT#200MMZ TRANSISTOR MOSET P#CHAN D=MODE SI TRANSISTOR NPN SI PD#300MW FT#200MMZ     | \$8480<br>\$8480<br>\$8480<br>\$8480<br>\$8480 | 1854-0071<br>1854-0020<br>1854-0071<br>1855-0082<br>1854-0071                                    |
| A1106<br>A1107<br>A1108<br>A1109<br>A11010               | 5080 - 3078<br>5080 - 3078<br>5080 - 3078<br>5080 - 3830<br>5080 - 3830    | 22           | TRANSISTOR NPN SI PD#300MW FT#200MMZ TRANSISTOR NPN SI PD#300MW FT#200MMZ TRANSISTOR NPN SI PD#300MW FT#200MMZ TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN D=MODE SI        | 28480<br>28480<br>28480                        | 1854-0071<br>1854-0071<br>1854-0071                                                              |
| A11011<br>A11012<br>A11013<br>A11014<br>A11015           | 1855-0268<br>1855-0268<br>1853-0020<br>5080-3078<br>1853-0020              | 9            | TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR PNP SI PD=300Mw FT=150MHZ TRANSISTOR NPN SI PD=300Mw FT=270MHZ TRANSISTOR PNP SI PD=300Mw FT=150MHZ        | 28480<br>28480<br>28480<br>28480<br>28480      | 1885-0268<br>1885-0268<br>1855-0020<br>1854-0071<br>1853-0020                                    |
| A11016                                                   | 1853-0020                                                                  |              | TRANSISTOR PNP SI PD#300MW FT#150MHZ                                                                                                                                                      | 28480                                          | 1853-0020                                                                                        |
| A11R1<br>A11R2<br>A11R3<br>A11R4<br>A11R5                | 0768=0001<br>0683=3335<br>0698=4418<br>0683=5605<br>0683=5605              | 1<br>1<br>23 | RESISTOR 1K 10% 3W MD TC=0+-250 RESISTOR 33K 5% ,25W FC TC=-400/+800 RESISTOR 205 1% ,125W F TC=0+-100 RESISTOR 56 5% ,25W FC TC=-400/+500 RESISTOR 56 5% ,25W FC TC=-400/+500            | 03418<br>0160G<br>03298<br>0160G<br>0160G      | FP3-3-250-1001-K<br>CH3335<br>C4-178-70-205R+F<br>CH5605<br>CH5605                               |
| A11R6<br>A11R7<br>A11RA<br>A11R0<br>A11R10               | 0757-0465<br>0757-0442<br>0698-0083<br>0698-0083<br>0757-0405              | 2            | RESISTOR 100K 1% ,125W F TC=0+=100 RESISTOR 10K 1% ,125W F TC=0+=100 RESISTOR 1,96K 1% ,125W F TC=0+=100 RESISTOR 1,96K 1% ,125W F TC=0+=100 RESISTOR 162 1% ,125W F TC=0+=100            | 03298<br>03298<br>03298<br>03298<br>03298      | C4-1/8-T0-1003-F<br>C4-1/8-T0-1002-F<br>C4-1/8-T0-1901-F<br>C4-1/8-T1-1961-F<br>C4-1/8-T0-102K-F |
| A11R11<br>A11R12<br>A11R13<br>A11R14<br>A11R15           | 0757-0405<br>0683-2705<br>0683-2705<br>0683-1535<br>0683-1535              | 2            | RESISTOR 162 1% .125W F TC=0+-100 RESISTOR 27 5% .25W FC TC=-400/+500 RESISTOR 27 5% .25W FC TC=-400/+500 RESISTOR 15K 5% .25W FC TC=-400/+800 RESISTOR 15K 5% .25W FC TC=-400/+800       | 0329H<br>0160G<br>0160G<br>0160G<br>0160G      | C4-1/8-T0-162A-F<br>C82705<br>C82705<br>C81705<br>C81535<br>C81535                               |
| A11R164  A11R17  A11R18  A11R19                          | 0698-4471<br>0757-0442<br>0698-4420<br>0698-4442                           | 1 2          | RESISTOR 7.87K 1% .125W F TC=0+=100<br>*FACTORY SELECTED PART<br>RESISTOR 10K 1% .125W F TC=0+=100<br>HESISTOR 226 1% .125W F TC=0+=100<br>RESISTOR 4.42% 1% .125W F TC=0+=100            | 03298<br>03298<br>03298                        | C4-1/8-10-1002-F<br>C4-1/8-10-220R-F<br>C4-1/8-10-4421-F                                         |
| A11R20<br>A11R21<br>A11R22<br>A11R23                     | 0698-3155<br>0757-0276<br>0683-3335<br>0757-0281<br>0683-3335              | 1            | RESISTOR 4,64k 1% .125W F TC=0+=100 RESISTOR 1.78K 1% .125W F TC=0++100 PESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 2.74K 1%.25W F TC=0+-100 RESISTOR 33K 5% .25W FC TC==400/+800       | 03298<br>03298<br>0160G                        | C4=1/8=10=4641=F<br>C4=1/8=10=1781=F<br>C83335<br>C83335                                         |
| A11R24<br>A11R25<br>A11R26<br>A11R27<br>A11R28           | 0698#4498<br>0698=1427<br>0757-0437<br>0757-0459                           | 5            | PESISTOR 53.6% 1% 125% F TC=0+-100 RESISTOR 400% .5% .25W RESISTOR 4.75% 1% .125% F TC=0+-100 RESISTOR 56.2% 1% .125% F TC=0+-100 RESISTOR 400% .5% .25W                                  | 05298<br>25480<br>28480                        | C4-1/A-T0-5362-F<br>0698-1427                                                                    |
| A11R30<br>A11R31<br>A11R31<br>A11R32<br>A11R33<br>A11R34 | 0698-1427<br>0698-4444<br>0683-8225<br>0683-4725<br>0683-3335<br>0757-0443 | 1<br>13<br>1 | HESISTOR 4.87K 1% ,125W F TC=0+=100 RESISTOP 8.2K 5% ,25W FC TC=+400/+700 HESISTOR 4.7K 5% ,25W FC TC==400/+700 RESISTUM 33% 5% ,25W FC TC==400/+R00 RESISTOR 11K 1% ,125W F TC=0+-100    | 0160G<br>0160G<br>0160G<br>03298               | C6H225<br>C64725<br>C63535<br>C4-1/8-T0-1102-F                                                   |
| A11R35<br>A11R36<br>A11R37<br>A11R38<br>A11R39           | 0757-0416<br>0698-3154<br>0663-5625<br>0683-3335<br>0683-7525              | 3<br>1<br>11 | RESISTOR 511 1X ,125W F TC=0+-100  PESISTUR 4,22K 1X ,125W F TC=0+-100  RESISTOR 5,6K 5X ,25W FC TC=-400/+700  RESISTOR 35K 5X ,25W FC TC=-400/+00  RESISTOR 7,5K 5X ,25W FC TC=-400/+700 | 03298<br>03298<br>0160G<br>0160G<br>0160G      | C4-1/6-10-511R-F<br>C4-1/A-T0-4221-F<br>C45625<br>C43335<br>C87525                               |
| A11R40<br>A11R41<br>A11R42<br>A11R43<br>A11R44           | 0643-3335<br>0683-3335<br>0683-3335<br>0683-3335<br>0757-0486              | 4            | HESISTOR 33K 5% .25W FC TC==400/+800 PESISTOR 33K 5% .25W FC TC==400/+800 RESISTOP .3% 5% .25W FC TC==400/+800 RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 33K 5% .25W FC TC==400/+800  | 0160G<br>0160G<br>0160G<br>0160G<br>05520      | CB3335<br>CB3335<br>CB3335<br>CB3335<br>CMF=55=1                                                 |
| A11R45<br>A11R46<br>A11R47<br>A11R48<br>A11R49           | 0757-0486<br>0757-0486<br>0757-0486<br>0683-3335<br>0683-3335              |              | RESISTOR 750K 1% ,125M F TC#0+=100 RESISTOR 750K 1% ,125W F TC#0+=100 RESISTOR 750K 1% ,125W F TC#0+=100 RESISTOR 33K 5% ,25W FC TC#=400/+800 RESISTOR 33K 5% ,25W FC TC#=400/+800        | 05520<br>05520<br>05520<br>0160G<br>0160G      | CMF=55=1<br>CMF=55=1<br>CMF=55=1<br>CB3335<br>CB3335                                             |
| 411R50<br>411R51<br>411R52<br>A11R53                     | 0683-3335<br>0683-3335<br>0683-3335<br>0683-5605                           |              | RESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 33K 5% .25W FC TC==400/+800 HESISTOR 33K 5% .25W FC TC==400/+800 RESISTOR 56 5% .25W                                                        | 0160G<br>0160G<br>0160G                        | CB3335<br>CB3335<br>CR3335                                                                       |
|                                                          |                                                                            |              |                                                                                                                                                                                           |                                                |                                                                                                  |

Table 6-3. Replaceable Parts (Cont'd).

| Reference<br>Designation                                                  | HP Part<br>Number                                                                       | Qty         | Description                                                                                                                                                                                                 | Mfr<br>Code                               | Mfr Part Number                                                   |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------|
| Attri<br>Attra                                                            | 9100-0866<br>9100-0866                                                                  | 2           | THANSFORMER, PULSE TOK412NG<br>TRANSFORMER, PULSE TOK412NG                                                                                                                                                  | 28480<br>28480                            | 9100-0866<br>9100-0866                                            |
| A11U1<br>A11U2<br>A11U3                                                   | 1826-0043<br>1826-0319<br>1826-0326                                                     | 5           | IC OP AMP<br>IC OP AMP<br>IC OP AMP                                                                                                                                                                         | 0340F<br>07933                            | LF356H<br>RC4558DN                                                |
| A12                                                                       | 04262-66612<br>04262-26612                                                              | 1 1         | RANGE RESISTOR BOARD ASSEMBLY<br>PC HOARD, BLANK                                                                                                                                                            | 28480<br>28480                            | 04262-66612<br>04262-26612                                        |
| A12C3+<br>A12C3+                                                          | 0160-0159<br>0140-0190<br>0121-0059                                                     | 1 2         | CAPACITOR-FXD 6R00PF +-10% 200VDC POLYE<br>CAPACITOR-FXD 39PF +-5% 300VDC<br>*FACTORY SELECTED PART<br>CAPACITOR-V TRMR-CER 2-8PF 350V PC-MTG                                                               | 0420J<br>72136<br>73899                   | 292P68292<br>DM15E390J0300WV1CR<br>DV11PR8A                       |
| A12C4<br>A12C5<br>A12C6<br>A12C7<br>A12C8                                 | 0180-1051<br>0180-1051<br>0150-0050<br>0150-0050<br>0150-0050                           | ь           | *FACTORY SELECTED PART  CAPACITOR, FXD 100 UF 16V M CAPACITOR, FXD 100 UF 16V M CAPACITOR-FXD 1000PF +80-201 KVDC CEH CAPACITOR-FXD 1000PF +80-201 KVDC CER CAPACITOR-FXD 1000PF +80-201 KVDC CER           | 28480<br>28480<br>28480<br>28480<br>28480 | 0180-1051<br>0180-1051<br>0150-0050<br>0150-0050<br>0150-0050     |
| 415C13<br>415C11<br>415C10<br>415C10                                      | 0150-0050<br>0150-0050<br>0121-0105<br>0180-0269<br>0160-2150                           | 1<br>1<br>1 | CAPACITUR-FXD 1000PF +80=20% 1KVDC CER<br>CAPACITOR-FXD 1000PF +80=20% 1KVDC CEP<br>CAPACITOR-V TRMR-CER 9-35PF 200V PC-MTG<br>CAPACITOR-FXD 1UF+75-10% 150VDC AL<br>CAPACITUR-FXD 33PF +-5% 300VDC         | 28480<br>28480<br>73899<br>0420J<br>28480 | 0150-0050<br>0150-0050<br>DV11PR35D<br>300105G150BA2<br>0160-2150 |
| A12C14*<br>A12C15<br>A12C16<br>A12C17<br>A12C18                           | 0160-2307<br>0180-1051<br>0180-1051<br>0180-1051<br>0180-1051                           | 3           | CAPACITOR-FXD 47pF +-5% 300VDC CAPACITOR, FXD 100 UF 16V M CAPACITUR, FXD 100 UF 16V M CAPACITOR, FXD 100 UF 16V M CAPACITOR, FXD 100 UF 16V M                                                              | 28480<br>28480<br>28480<br>28480          | 0180-1051<br>0180-1051<br>0180-1051<br>0180-1051                  |
| 053514<br>053514                                                          | 0180-1051<br>0180-1051                                                                  |             | CAPACITOR, FXD 100 UF 16V M<br>CAPACITUR, FXD 100 UF 16V M                                                                                                                                                  | 28480<br>28480                            | 0180-1051<br>0180-1051                                            |
| A12CR1<br>A12CR2<br>A12CR3<br>A12CR4<br>A12CR5                            | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040                           | <b>6</b> 0  | DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35                  | 28480<br>28480<br>28480<br>28480<br>28480 | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040     |
| A12CR6<br>A12CR7<br>A12CR8<br>A12CR9<br>A12CR10                           | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040                           |             | DIODE-SWITCHING 30V 50MA 2NS DD-35<br>DIODE-SWITCHING 30V 50MA 2NS DD-35<br>DIODE-SWITCHING 30V 50MA 2NS DD-35<br>DIODE-SWITCHING 30V 50MA 2NS DD-35<br>DIODE-SWITCHING 30V 50MA 2NS DD-35                  | \$8480<br>\$8480<br>\$8480<br>\$8480      | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040     |
| 415CH15<br>415CH13<br>415CH13<br>415CH13<br>415CH11                       | 1901-0040<br>1901-0040<br>1902-3149<br>1901-0040<br>1901-0040                           |             | DIODE-SWITCHING 30V 50MA 2NS DU-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-ZNR 9.09V 52 DO-7 PD#.4W TC++.057%<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35            | 28480<br>28480<br>02236<br>28480<br>28480 | 1901-0040<br>1901-0040<br>FZ7256<br>1901-0040<br>1901-0040        |
| 412CR16<br>412CR17<br>412CR18<br>412CR19<br>412CR20<br>A12CR21<br>A12CR21 | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0376<br>1901-0376 |             | D10DE-SWITCHING 30V 50MA 2NS D0-35<br>D10DE-SWITCHING 30V 50MA 2NS D0-35<br>D10DE-SWITCHING 30V 50MA 2NS D0-35<br>D10DE-SWITCHING 30V 50MA 2NS D0-35<br>D10DE-SWITCHING 30V 50MA 2NS D0-35<br>D10DE-GEN PRP | 28480<br>28480<br>28480<br>28480<br>28480 | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040     |
| A12K1                                                                     | 0490+0237                                                                               | 1           | RELAY, REED 2A                                                                                                                                                                                              | 25480                                     | 0490-0237                                                         |
| A1202<br>A1203<br>A1204<br>A1205                                          | 1855-0223<br>1855-0223<br>1855-0223<br>1855-0128<br>1855-0223                           | i           | TRANSISTOR JOFET NOCHAN DOMORE SI THANSISTOR JOFET NOCHAN DOMORE SI TRANSISTOR JOFET NOCHAN DOMORE SI TRANSISTOR JOFET NOCHAN SI THANSISTOR JOFET NOCHAN DOMORE SI                                          | 28480                                     |                                                                   |
| A1206<br>A1207<br>A1208<br>A1209<br>A12010                                | 1855-0223<br>1855-0223<br>1855-0223<br>1855-0223<br>1855-0223                           |             | TRANSISTOR J-FET N-CHAN D-MODE SI                                   |                                           |                                                                   |
| A12011<br>A12012<br>A12013<br>A12014<br>A12015                            | 1855-0223<br>5080-3078<br>5080-3078<br>5080-3835<br>1854-0013                           | 6           | TRANSISTOR J=FET N=CHAN D=MODE SI TPANSISTOR NPN SI PD=300MM FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR J=FET 2N5245 N=CHAN D=MODE SI TRANSISTOR NPN 2N22184 SI TU=5 PD=800MW                | 28480<br>28480<br>0169H<br>0203G          | 1854-0071<br>1854-0071<br>285245<br>2822184                       |
| A12016<br>A12017<br>A12018<br>A12019<br>A12020                            | 1853-0012<br>1853-0020<br>1853-0020<br>1853-0020<br>5080-3078                           | 2           | TRANSISTOR PNP 2N2904A SI TU-39 PD=600MW TRANSISTOR PNP SI PD=300MW FT=150MMZ TRANSISTOR PNP SI PD=300MW FT=150MMZ TRANSISTOR PNP SI PD=300MW FT=150MMZ TRANSISTOR NPN SI PD=300MW FT=200MMZ                | 0169H<br>28480<br>28480<br>28480          | 2N2904A<br>1853-0020<br>1853-0020<br>1853-0020<br>1854-0071       |
| A12021<br>A12022<br>A12023                                                | 1853-0020<br>1853-0020<br>1853-0020                                                     |             | TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ                                                                                              | 28480<br>58480<br>58480                   | 1853-0020<br>1853-0020<br>1853-0020                               |

Table 6-3. Replaceable Parts (Cont'd).

| Reference<br>Designation                                           | HP Part<br>Number                                                                       | Qty               | Description                                                                                                                                                                                                                           | Mfr<br>Code                               | Mfr Part Number                                                        |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------|
| A12R1<br>A12R2<br>A12R3<br>A12R4<br>A12R4                          | 2100-2514<br>0683-1055<br>0683-1055<br>0698-2298<br>0698-2294                           | 1<br>35<br>1<br>1 | RESISTOR-TRMR 20K 10% C SIDE-ADJ 1-TRN RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR 1M 5% .25W FC TC=-800/+900 RESISTOR 10 .05% .33W RESISTOR 100 .1 .05%                                                                             | 0365A<br>0160G<br>0160G<br>28480<br>28480 | ET50#203<br>CB1055<br>CB1055<br>0698-2298<br>0698-2294                 |
| A12R6<br>A12R7<br>A12R8<br>A12R9                                   | 0698+2296<br>0698-2214<br>0698-7847<br>0698-2225                                        | 1<br>1<br>1       | RESISTOR 1010.1 .05%  RESISTOR: FXD 10.0K OHM 0.05% 1/8W MF RESISTOR: 1.111K .1% .125W F TC=0+-100 RESISTOR: 50 90.0K OHM 0.05% 1/8W MF                                                                                               | 28480<br>28480<br>28480                   | 0698=2296<br>0698=2214<br>0698=2225                                    |
| A12R10                                                             | 0698+3329<br>0683+3335                                                                  | 1                 | RESISTOR 10K .5% .125W F TC=0+=100 RESISTOR 33K 5% .25W FC TC==400/+800                                                                                                                                                               | 03868<br>0160G                            | PME55-1/8-T0-1002-D<br>CB3335                                          |
| 412R12<br>412R13<br>412R14<br>412R15                               | 0683-4705<br>0683-4705<br>0683-1055<br>0683-1055                                        | 4                 | RESISTOR 47 5% ,25W FC TC==400/+500<br>RESISTOR 47 5% ,25W FC TC==400/+500<br>RESISTOR 1M 5% ,25W FC TC==800/+900<br>RESISTOR 1M 5% ,25W FC TC==800/+900                                                                              | 0160G<br>0160G<br>0160G<br>0160G          | CB4705<br>CB4705<br>CB1055<br>CB1055                                   |
| A12R16<br>A12R17<br>A12R18<br>A12R19<br>A12R20                     | 0683-1055<br>0683-1055<br>0683-1055<br>0683-1055<br>0683-1055                           |                   | RESISTOR 1M 5% .25W FC TC#+000/+900<br>RESISTOR 1M 5% .25W FC TC#+800/+900<br>RESISTOR 1M 5% .25W FC TC#+800/+900<br>RESISTOR 1M 5% .25W FC TC#+800/+900<br>RESISTOR 1M 5% .25W FC TC#+800/+900                                       | 0160G<br>0160G<br>0160G<br>0160G<br>0160G | CH1055<br>CH1055<br>CH1055<br>CH1055<br>CH1055                         |
| A12R21<br>A12R22<br>A12R23<br>A12R24<br>A12R25                     | 0683-1055<br>0683-1055<br>0683-2225<br>0683-2225<br>0683-2225                           |                   | RESISTOR 1M 5% .25% FC TC=-800/+900<br>RESISTOR 1M 5% .25% FC TC=-800/+900<br>RESISTOR 2.2K 5% .25% FC TC=-400/+800<br>RESISTOR 2.2K 5% .25% FC TC=-400/+800<br>RESISTOR 2.2K 5% .25% FC TC=-400/+800                                 | 0160G<br>0160G                            | C81055<br>C81055                                                       |
| A12R26<br>A12R27<br>A12R28<br>A12R29<br>A12R30                     | 0683-2225<br>0683-2225<br>0683-1035<br>0683-5655<br>0757-0442                           | 5<br>1            | RESISTOR 2.2K 5% .25W FC TC=-400/+800 RESISTOR 2.2K 5% .25W FC TC=-400/+800 HESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 5,6M 5% .25W FC TC=-900/+1100 RESISTOR 10K 1% .25W FC TC=-400/+700                                          | 0160G<br>0160G                            | CR1035<br>CR5655                                                       |
| A12R31<br>A12R37<br>A12R33<br>A12R34<br>A12R35                     | 0757-0433<br>0683-1065<br>0683-1055<br>0757-0394<br>0683-1035                           | 1 2               | RESISTOR 3,32K 1% .125W FC TC=-400/+700 H&SISTOR 10M 5% .25w FC TC=+000/+1100 R&SISTOR 1M 5% .25w FC TC=+000/+900 H&SISTOR 51.1 1% .125w F TC=0+100 R&SISTOR 10M 5% .25w FC TC=-400/+700                                              | 0160G<br>0160G<br>03298<br>0160G          | CB10B5<br>CR1055<br>C4-178-10+51k1-F<br>CB1035                         |
| A12R36<br>A12R37<br>A12R38<br>A12R39<br>A12R40                     | 0633-0275<br>0663-4705<br>0663-4705<br>0757-0394<br>0663-1035                           | 5                 | PESISTOR 2,7 5% ,25w FC TC==400/+500<br>RESISTOR 47 5% ,25w FC TC==400/+500<br>RESISTOR 47 5% ,25w FC TC==400/+500<br>RESISTOR 51,1 1% ,125w F TC=0+=100<br>RESISTOR 10M 5% ,25w FC TC==400/+700                                      | 01606<br>01606<br>01606<br>03298<br>01606 | CR2765<br>CB4705<br>CB4705<br>C4=1/8=T0=51R1=F<br>CB1035               |
| A12Ru1<br>A12Ru2<br>A12Ru3<br>A12Ru4<br>A12Ru5                     | 0683-0275<br>0757-1090<br>0757-1090<br>0683-3335<br>0683-3335                           |                   | RESISTOR 2,7 5% ,25W FC TC==400/+500<br>RESISTOR 261 1% ,5W F TC=0+=100<br>RESISTOR 261 1% ,5W F TC=0+=100<br>RESISTOR 33K 5% ,25W FC TC==400/+800<br>RESISTOR 33K 5% ,25W FC TC==400/+800                                            | 0160G<br>0299E<br>0299E<br>0160G<br>0160G | C82765<br>MF7C1/2=10=201H=F<br>MF7C1/2=10=201H=F<br>CB35355<br>CH3335  |
| A12R46<br>A12R47<br>A12R48<br>A12R49<br>A12R50<br>A12R51<br>A12R52 | 0683-1035<br>0683-1035<br>0683-1035<br>0683-1035<br>0683-1035<br>0698-4105<br>0757-0401 |                   | HESISTUR 10K 5% .25W FC TC#+400/+800 RESISTOR 13.3 1% .25W RCSISTOR 10.0 1% .125W |                                           |                                                                        |
| A12U1<br>A12U2<br>413                                              | 1826-0326<br>1826-0089<br>04262-66513<br>04262-26513                                    | 1 1 1             | IC OP AMP<br>IC 2525 OP AMP<br>PROCESS AMPLIFIER BOARD ASSEMBLY<br>PC HOARD, BLANK                                                                                                                                                    | 07933<br>03791<br>28480<br>28480          | RC4558DN<br>HA2-2525-5<br>04262-66513<br>G4262-26513                   |
| A13C1+ A13C2 A13C3 A13C4                                           | 0121-0036<br>0160-1586<br>0160-2554<br>0160-1586                                        | 3                 | CAPACITOR-V TRMR-CER 5.5-18pF  +FACTORY SELECTED PART CIFXD MY 0.1 UF 10% 100VDCW CAPACITOR-FXD 7.5PF +25PF 500VPC CIFXD MY 0.1 UF 10% 100VDCW                                                                                        | 26480<br>26480<br>28480                   | 0160-1586<br>0160-2254<br>0160-1586                                    |
| A13C5*<br>A13C6<br>A13C7<br>A13C8<br>A13C9                         | 0160-2261<br>0180-1051<br>0180-1051<br>0160-2055                                        | 8                 | CAPACITOR-FXD 15pF NOT ASSIGNED CAPACITOR, FXD 100 UF 16V M CAPACITUR, FXD 100 UF 16V M CAPACITUR-FXD ,01UF +80-20% 100VDC CER                                                                                                        | 58480<br>58480<br>58480                   | 0180-1051<br>0160-1051<br>0160-2055                                    |
| A13C10<br>A13C11<br>A13C12<br>A13C13<br>A13C14                     | 0160=2055<br>0180=1051<br>0180=1051<br>0160=2055<br>0160=2055                           |                   | CAPACITUR-FXD .01UF +80-20% 100VDC CER<br>CAPACITUR, FXD 100 UF 16V M<br>CAPACITUR, FXD 100 UF 16V M<br>CAPACITOR-FXD .01UF +80-20% 100VDC CER<br>CAPACITOR-FXD .01UF +80-20% 100VDC CER                                              | 28480<br>28480<br>28480<br>28480<br>28480 | 0160-2055<br>0180-1051<br>0180-1051<br>0160-2055<br>0160-2055          |
| A13C15<br>A13C16<br>A13C17<br>A13C18<br>A13C19                     | 0150-0050<br>0140-0200<br>0160-2055<br>0160-2055<br>0180-1051                           |                   | CAPACITOR-FXD 1000PF +80-20% 1KVDC CER CAPACITOR-FXD 300PF +-5% 300VDC MICA0+70 CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR, FXD 100 UF 16V M                                             | 28480<br>72136<br>28480<br>28480<br>28480 | 0150-0050<br>DM15F301J0300wv1CR<br>0100-2055<br>0160-2055<br>0180-1051 |
|                                                                    |                                                                                         |                   |                                                                                                                                                                                                                                       |                                           |                                                                        |

Table 6-3. Replaceable Parts (Cont'd).

| Reference<br>Designation                                  | HP Part<br>Number                                                       | Qty | Description                                                                                                                                                                                                                            | Mfr<br>Code                                    | Mfr Part Number                                                   |
|-----------------------------------------------------------|-------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|
| A13C20<br>A13C21<br>A13C22<br>A13C23*<br>A13CR1<br>A13CR2 | 0180-1051<br>0160-2055<br>0160-2055<br>0760-0134<br>1901-0033           | 2   | CAPACITOR, FXD 100 UF 16V M  CAPACITOR=FXD .01UF +80=20% 100VDC CER  CAPACITOR=FXD .01UF +80=20% 100VDC CER  CAPACITOR=FXD 220PF 5% 200V:  DIODE=GEN PRP 180V 200MA D0=7  DIDDE=GEN PRP 180V 200MA D0=7                                | 28480<br>28480<br>28480<br>28480<br>28480      | 0180-1051<br>0160-2055<br>0160-2055                               |
| A13CR3<br>A13CR4<br>A13CR5<br>A13CR6                      | 1901-0040<br>1901-0040<br>1901-0040                                     |     | DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35                                                                                                                         | 58480<br>58480<br>58480                        | 1901-0033<br>1901-0040<br>1901-0040<br>1901-0040                  |
| A13CR7<br>A13CR8<br>A13CR9<br>A13CR10                     | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040                        |     | DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35                                             | 28480<br>28480<br>28480<br>28480<br>28480      | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040     |
| A13CR11<br>A13CR12<br>A13CR13<br>A13CR14<br>A13CR15       | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1902-0041           | 6   | DIODE-SWITCHING 30V 50MA 2NS D0-35<br>DIODE-SWITCHING 30V 50MA 2NS D0-35<br>DIODE-SWITCHING 30V 50MA 2NS D0-35<br>DIODE-SWITCHING 30V 50MA 2NS D0-35<br>DIODE-SWITCHING 30V 50MA 2NS D0-35<br>DIODE-ZNR 5,11V 5% D0-7 PD=,4K TC=-,009% | 28480<br>28480<br>28480<br>28480<br>0203G      | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>SZ 10939-98   |
| A13CH16<br>A13CH17<br>A13CH18<br>A13CH19<br>A13CH20       | 1902-0041<br>1902-0049<br>1901-0040<br>1901-0040<br>1902-3149           | 3   | DIODE-ZNR 5, 119 5% DO-7 PD=.4W TC=009% DIUDE-ZNR 6,199 5% DO-7 PD=.4W TC=+.022% DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 9,099 5% DO-7 PD=.4W TC=+.057%                                        | 0203G<br>0223G<br>28480<br>28480<br>0223G      | SZ 10939-98<br>FZ7240<br>1901-0040<br>1901-0040<br>FZ7256         |
| A1301<br>A1302<br>A1303<br>A1304<br>A1305                 | 5080 - 3830<br>5080 - 3830<br>5080 - 3830<br>5080 - 3830<br>5080 - 3830 |     | THANSISTOR JOFET NOCHAN DOMODE SI                            |                                                |                                                                   |
| A1306<br>A1307<br>A1308<br>A1509<br>A13010                | 5080-3830<br>1853-0020<br>1853-0020<br>1853-0020<br>1853-0020           | :   | TRANSISTOR JEFET NECHAN DEMODE SI<br>TRANSISTOR PNP SI PDE300MW FIE150MHZ<br>TRANSISTOR PNP SI PDE300MW FIE150MHZ<br>TRANSISTOR PNP SI PDE300MW FIE150MHZ<br>TRANSISTOR PNP SI PDE300MW FIE150MHZ                                      | \$#480<br>\$#480<br>\$9480<br>\$9480<br>\$8480 | 1855-0091<br>1853-0020<br>1853-0020<br>1853-0020                  |
| A13011<br>A13012<br>A13013<br>A13014<br>A13015            | 1853+0020<br>1853+0020<br>1853+0020<br>1853+0020<br>1853+0020           |     | THANSISTOR PNP SI PD=300MW FT=150MHZ THANSISTOR PNP SI PD=300MW FT=150MHZ THANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ          | 28480<br>28480<br>28480<br>28480<br>28480      | 1853-0020<br>1853-0020<br>1853-0020<br>1853-0020<br>1853-0020     |
| A13016<br>A13017<br>A13018<br>A13019                      | 1855-0062<br>1855-0062<br>1855-0062<br>1855-0062                        |     | TRANSISTOR J=FET N=CHAN D=MODE SI<br>TRANSISTOR J=FET N=CHAN D=MUDE SI<br>TRANSISTOR J=FET N=CHAN D=MUDE SI<br>TRANSISTOR J=FET N=CHAN D=MODE SI                                                                                       | 28480<br>28480<br>28480<br>28480               | 1855-0062<br>1855-0062<br>1855-0062<br>1855-0062                  |
| A13R1<br>A13R2<br>A13R3<br>A13R4<br>A13R5                 | 2100-2516<br>2100-2516<br>0643-1035<br>0683-1035<br>0683-1055           | ü   | RESISTOR=TRMR 100K 10% C SIDE=ADJ 1=TRN RESISTUR=TRMR 100K 10% C SIDE=ADJ 1=TRN RESISTOR 10K 5% _25% FC TC==400/+700 RESISTOR 10K 5% _25% FC TC==400/+700 RESISTOR 10K 5% _25% FC TC==800/+900                                         | 73138<br>73138<br>0160G<br>0160G<br>0160G      | 62-231-1<br>62-231-1<br>CH1035<br>CH1035<br>CH1055                |
| A13R6<br>A13R7<br>A13R8<br>A13R9<br>A13R10                | 0698-2206<br>0698-2207<br>0643-1055<br>0698-2206<br>0698-2207 :         | \$  | RESISTORIFXD 100 OHM 0.05% 1/HW MF RESISTORIFXD 900 OHM 0.05% 1/HW MF RESISTORIFXD 30 5% 75W FC 10==8007.4900 PESISTORIFXD 100 OHM 0.05% 1/HW MF RESISTORIFXD 900 OHM 0.05% 1/HW MF                                                    | 28480<br>28480<br>0150G<br>28480<br>28480      | 0698-2206<br>0648-2207<br>CH1055<br>0698-2206<br>0648-2207        |
| A13R11<br>A15R12<br>A13R13<br>A13R14<br>A13R15            | 0683-1055<br>0698-2297<br>0698-2297<br>0698-2297                        | 8   | RESISTOR JM 5% .25% FC 1C==800/+900<br>RESISTOR 3.01K .05%<br>RESISTOR 3.01K .05%<br>RESISTOR 3.01K .05%<br>NOT ASSIGNED,                                                                                                              | 0160G<br>28480<br>28480<br>28480<br>03298      | C81055<br>0698-2297<br>0698-2297<br>0698-2297<br>C4-1/8-T0-1333-F |
| A13R16<br>A15R17<br>A13R18<br>A13R19<br>A13R20            | 0698-2297<br>0683-1055<br>0698-2297<br>0698-2297<br>0698-2297           | ļ   | RESISTOR 3.01K .05% RESISTOR 1M 5% .25% FC TC==600/+900 RESISTOR 3.01K .05% RESISTOR 3.01K .05% RESISTOR 3.01K .05%                                                                                                                    | 28480<br>0160G<br>28480<br>28480<br>28480      | 0696-2297<br>CB1055<br>0698-2297<br>0698-2297<br>0698-2297        |
| A13R21<br>A13R22<br>A13R23<br>A13R24<br>A13R25<br>A13R25  | 0698-2297<br>0683-1035<br>0683-1035                                     | 6   | NOT ASSIGNED NOT ASSIGNED RESISTOR 3.01K .05% RESISTOR 10K 5% .25W FC TC=-400/+700 RESISTOR 10K 5% .25W FC TC=-400/+700 NOT ASSIGNED                                                                                                   | 03298<br>28480<br>0160G<br>0160G               | C4-1/8-T0-1333-F<br>0698-2297<br>CB1035<br>CB1035                 |
| A12R27<br>A13R28                                          | 0683-5605<br>0683-5605                                                  |     | RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 10 5% .25W FC TC=-400/+500                                                                                                                                                                | 0160G<br>0160G                                 | CB1005<br>CH1005                                                  |
| A13R29<br>A13R30<br>A13R31                                | 0683-1025<br>0683-2235<br>0683-5605                                     | 55  | PESISTOR 1K 5% "25W FC TC==400/+600<br>RESISTOR 22K 5% "25W FC TC==400/+800<br>RESISTOR 10 5% "25W FC TC==400/+500                                                                                                                     | 0160G<br>0160G<br>0160G                        | C81025<br>C82235<br>C81005                                        |
|                                                           |                                                                         |     |                                                                                                                                                                                                                                        |                                                |                                                                   |

Table 6-3. Replaceable Parts (Cont'd).

| r                                              | Table 6-3. Replaceable Parts (Cont u).                        |                  |                                                                                                                                                                                                       |                                           |                                                               |  |  |
|------------------------------------------------|---------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|--|--|
| Reference<br>Designation                       | HP Part<br>Number                                             | Qty              | Description                                                                                                                                                                                           | Mfr<br>Code                               | Mfr Part Number                                               |  |  |
| A13R32                                         | 0683-5605                                                     |                  | RESISTOR 10 5% .25W FC TC==400/+500                                                                                                                                                                   | 0160G                                     | C81005                                                        |  |  |
| A13R33<br>A13R34<br>A13R35                     | 0683-1055<br>0683-1055<br>0683-1055                           | ļ                | RESISTOR 1M 5% .25W FC TC=+800/+900<br>RESISTOR 1M 5% .25W FC TC=-800/+900<br>RESISTOR 1M 5% .25W FC TC=-800/+900                                                                                     | 0160G<br>0160G<br>0160G                   | C81055<br>C81055<br>C81055                                    |  |  |
| A13R36<br>A13R37<br>A13R3H<br>A13R39<br>A13R40 | 0683-1055<br>0683-1055<br>0683-1055<br>0683-1055<br>0683-1055 |                  | RESISTOR 1M 5% .25% FC TC==800/+900<br>RESISTOR 1M 5% .25% FC TC==800/+900       | 0160G<br>0160G<br>0160G<br>0160G<br>0160G | C81055<br>C81055<br>C81055<br>C81055<br>C81055                |  |  |
| A13R41<br>A13R42<br>A13R43<br>A13R44<br>A13R45 | 0683-1025<br>0683-1035<br>0683-1235<br>0683-1235<br>0683-1235 | 4                | RESISTOR 1K 5% .25% FC TC%=400/+600 RESISTOR 10K 5% .25% FC TC%=400/+700 RESISTOR 12K 5% .25% FC TC%=400/+800 RESISTOR 12K 5% .25% FC TC%=400/+800 RESISTOR 12K 5% .25% FC TC%=400/+800               | 0160G<br>0160G<br>0160G<br>0160G          | CR1025<br>CR1035<br>CR1235<br>CR1235<br>CR1235                |  |  |
| A13R46<br>A13R47<br>A13R48<br>A13R49<br>A13R50 | 0683-1235<br>0683-1055<br>0683-2235<br>0683-2235              |                  | RESISTOR 12K 5% .25W FC TC==400/+600 RESISTOR 1M 5% .25W FC TC==800/+900 RESISTOR 22K 5% .25W FC TC==400/+800 RESISTOR 22K 5% .25W FC TC==400/+800 RESISTOR 22K 5% .25W FC TC==400/+800               | 0160G<br>0160G<br>0160G<br>0160G<br>0160G | CB1235<br>CB1055<br>CB2235<br>CB2235<br>CB2235                |  |  |
| 413851<br>413852<br>413853<br>413854<br>413855 | 0663-2235<br>0663-2235<br>0663-2235<br>0663-2235<br>0663-2235 |                  | HESISTOR 22K 5% ,25% FC TC=-400/+800<br>HESISTOR 22K 5% ,25% FC TC=-400/+800<br>RESISTOR 22K 5% ,25% FC TC=-400/+800<br>HESISTOR 22K 5% ,25% FC TC=-400/+800<br>RESISTOR 22K 5% ,25% FC TC=-400/+800  | 0160G<br>0160G<br>0160G<br>0160G<br>0160G | CH2235<br>CH2235<br>CH2235<br>CH2235<br>CH2235                |  |  |
| A13R56<br>A13R57<br>A13R58<br>A13R59<br>A13R60 | 0683=2235<br>0683=2235<br>0683=2235<br>0683=2235<br>0683=2235 |                  | RESISTOR 22K 5% .25W FC TC==400/+800<br>RESISTOR 22K 5% .25W FC TC==400/+800  | 0160G<br>0160G<br>0160G<br>0160G<br>0160G | C#5532<br>C#5532<br>C#5532<br>C#5532<br>C#5532                |  |  |
| A13R61<br>A13R62<br>A13R63<br>A13R64<br>A13R65 | 0683-2235<br>0683-2235<br>0683-2235<br>0683-2235<br>0683-2235 |                  | RESISTOR 22K 5% ,25W FC TC==400/+800<br>RESISTOR 22K 5% ,25W FC TC==400/+800  | 0160G<br>0160G<br>0160G<br>0160G          | CH2235<br>CH2235<br>CH2235<br>CH2235                          |  |  |
| A13R66<br>A15R67<br>A13R68<br>A13R69<br>A13R70 | 2100-2516<br>2100-2516<br>06*3-1025<br>0683-1045<br>0683-1025 | 3                | RESISTOR-TRMR 100k 10% C SIDE-ADJ 1-TRN RESISTOR-TRMR 100k 10% C SIDE-ADJ 1-TkN RESISTOR 1k 5%,25% FC TC=-400/+800 RESISTOR 10% 5%,25% FC TC=-400/+800 RESISTOR 1k 5%,25% FC TC=-400/+600             | 73138<br>73138<br>0160G<br>0160G          | 02-231-1<br>02-231-1<br>UB1025<br>CB1045<br>CR1025            |  |  |
| A13P71<br>A13P72<br>A13P73<br>A13P74<br>A13P75 | 0683-3935<br>0683-1035<br>0683-1045<br>0683-1035<br>0683-1025 | \$               | RESISTOR 39% 5% ,25% FC TC=-400/+800<br>RESISTOM 10K 5% ,25% FC TC=-400/+700<br>RESISTOR 10K 5% ,25% FC TC=-400/+800<br>RESISTOR 10K 5% ,25% FC TC=-400/+700<br>RESISTOR 3K 5% ,25% FC TC=-400/+600   | 0160G<br>0160G<br>0160G<br>0160G<br>0160G | CH5945<br>CH1045<br>CH1045<br>CH1045<br>CH1025                |  |  |
| A13R76<br>A13R77<br>A13R78<br>A13R79<br>A13R80 | 0683-1025<br>0683-1025<br>0683-2235<br>0683-2235<br>0683-1025 | ē                | RESISTOR 1K 5%, 25% FC TC==400/+600<br>RESISTOR 1K 5%, 25% FC TC==400/+600<br>RESISTOR 2,7% TS 32% FC TC==400/+600<br>RESISTOR 4,7% 5%, 25% FC TC==400/+700<br>RESISTOR 1K 5%, 25% FC TC==400/+600    | 0160G<br>0160G<br>0160G<br>0160G<br>0160G | CM1025<br>CB1025<br>CH2235<br>CH4725<br>CB1025                |  |  |
| A13RA1<br>A13RA2<br>A13RA3<br>A13RA4<br>A13RA4 | 0683-1055<br>0683-1825<br>0683-2235<br>0683-1825<br>0683-2235 | 5                | RESISTOR 1M 5% ,25W FC TC=+000/+900<br>RESISTOR 1,8K 5% ,25W FC TC=+400/+700<br>RESISTOR 22K 5% ,25W FC TC=+400/+700<br>RESISTOR 1,8K 5% ,25W FC TC=+400/+700<br>RESISTOR 22K 5% ,25W FC TC=+400/+800 | 0160G<br>0160G<br>0160G<br>0160G<br>0160G | C81055<br>C81825<br>C42235<br>C81825<br>C82235                |  |  |
| A13R86<br>A13R87                               | 0683+1055<br>0683+1025                                        |                  | RESISTOR 1M 5% .25W FC TC==800/+900<br>RESISTOR 1K 5% .25W FC TC==400/+600                                                                                                                            | 0160G<br>0160G                            | C81055<br>C81025                                              |  |  |
| A13R88<br>A13R89                               | 0683-1015<br>0683-1015                                        | 7                | RESISTUR 100 5% ,25W FC TC==400/+500<br>RESISTOR 100 5% ,25W FC TC==400/+500                                                                                                                          | 0160G<br>0160G                            | CH1015<br>CH1015                                              |  |  |
| A13U1<br>A13U2<br>A13U3<br>A13U4<br>A13U5      | 5080-3069<br>5080-3069<br>1826-0217<br>1826-0217<br>1826-0326 | 5                | IC GP AMP IC OP AMP IC OP AMP IC OP AMP IC OP AMP                                                                                                                                                     | 0340F<br>0340F<br>07933<br>07933          | LF356H<br>LF356H<br>RC4558T<br>RC4558T<br>RC4558UN            |  |  |
| A13U6<br>A13U7<br>A13UR                        | 1826-0326<br>1820-0321<br>1820-0125                           | 2                | IC OP AMP IC 710 COMPARATOR IC 711 COMPARATOR                                                                                                                                                         | 07933<br>0223G<br>0223G                   | RC4558UN<br>710HC<br>711HC                                    |  |  |
| A14                                            | 04262-66514<br>04262-26514                                    | 1 1              | PHASE DETECTOR & INTEGRATOR BOARD ASSY PC BOARD, BLANK                                                                                                                                                | 28480<br>28480                            | 04545=54214<br>04545=44214                                    |  |  |
| A14C1<br>A14C2<br>A14C3<br>A14C4               | 0160-1603<br>0160-1674<br>0160-1605<br>0150-0075<br>0160-2307 | 2<br>1<br>1<br>1 | C1FXD MY 1 UF 10X 100VDCW CAPACITOR .33 UF 5% 200VDCW C1FXD MY 1 UF 10X 100VDCW CAPACITOR=XD 4700PF +100-0X 500VDC CER CAPACITOR=XD 470PF +=5X 300VDC *FACTORY SELECTED PART                          | 28480<br>28480<br>28480<br>28480<br>28480 | 0160-1603<br>0160-1674<br>0160-1603<br>0150-0075<br>0169-2307 |  |  |

Table 6-3. Replaceable Parts (Cont'd).

| Reference<br>Designation                                 | HP Part<br>Number                                             | Qty         | Description                                                                                                                                                                                                                   | Mfr<br>Code                               | Mfr Part Number                                               |
|----------------------------------------------------------|---------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|
| A14C6<br>A14C7<br>A14C8<br>A14C9<br>A14C10               | 0160-0207<br>0160-1587<br>0170-0040<br>0170-0040<br>0160-1586 | 2<br>1<br>2 | CIFXD MY 0.01 UF 5% 200VDCW CAPACITOR, FXD POLY 0.33 UF 5% 200NVDC CIFXD MY 0.047 UF 5% 200VDCW CIFXD MY 0.047 UF 5% 200VDCW CIFXD MY 0.1 UF 10% 100VDCW                                                                      | 28480<br>28480<br>28480<br>28480<br>28480 | 0160-0207<br>0160-1567<br>0170-0040<br>0170-0040<br>0160-1586 |
| A14C11<br>A14C12<br>A14C13<br>A14C14<br>A14C19           | 0160-0207<br>0160-5819<br>0160-0127<br>0160-1052<br>0160-2055 | 28          | CIFXD MY 0.01 UF 5% 200VDCW  CAPACITOR 3300 PF 50V  CAPACITOR=FXD 1UF +=20% 25VDC CER  CAPACITOR =20 UF 6.5V M  CAPACITOR=FXD .01UF +80=20% 100VDC CER                                                                        | 28480<br>28480<br>28480                   | 0160-0207<br>0160-0127<br>0180-1052                           |
| A14C16<br>A14C17<br>A14C18<br>A14C19<br>A14C20           | 0160-2055<br>0160-2055<br>0160-2055                           |             | CAPACITOR-FXD .01UF +80-20% 100VDC CER<br>CAPACITOR-FXD .01UF +80-20% 100VDC CER<br>CAPACITOR-FXD .01UF +80-20% 100VDC CER<br>-NOT ASSIGNED<br>NOT ASSIGNED                                                                   |                                           |                                                               |
| V 1 4 C S 4<br>V 1 4 C S 5<br>V 1 4 C S 5<br>V 1 4 C S 5 | 0180=1051<br>0180=1051<br>0180=1052<br>9160=0127              | :           | CAPACITOR, FXD 100 UF 16V M CAPACITOR, FXD 100 UF 16V M CAPACITOR 220 UF 6,3V M CAPACITOR=FXD 1UF +=20X 25VDC CER NOT ASSIGNED                                                                                                | 28480<br>28480<br>28480<br>28480          | 0180-1051<br>0180-1051<br>0180-1052<br>0160-0127              |
| A14C25<br>A14C26<br>A14C27<br>A14C28<br>A14C29           | 0160-2261                                                     | 1           | C-FXD 15pF 5% 500V NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED                                                                                                                                           |                                           |                                                               |
| 414031<br>414081<br>414083<br>414084<br>414085<br>414086 | 1901-0040<br>1901-0040<br>1902-3059<br>1902-0049<br>1901-0040 | 1           | DIODE-SKITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-ZNR 3,83V 52 DO-7 PD=,4W TC=+,051%<br>DIODE-ZNR 6,19V 5% DO-7 PD=,4W TC=+,022%<br>DIODE-SWITCHING 30V 50MA 2NS DO-35                        | 28480<br>28480<br>0203G<br>0223G<br>28480 | 1401-0040<br>1401-0040<br>SZ 10939-62<br>FZ7240<br>1901-0040  |
| A14CR7<br>A14CR8<br>A14CR9<br>A14CR10<br>A14CR11         | 1901+0040<br>1902+3149<br>1902+3674<br>1901+0040<br>1901+0040 | 1           | DIODE-SWITCHING 30V 50M4 2NS 00-35<br>DIODE-ZNR 9.09V 5% 00-7 PD#, 4W TC#+.057%<br>DIODE-ZNR 4.32V 2% 00-7 PD#, 4W TC#+.055%<br>DIODE-SWITCHING 30V 50M4 2NS 00-35<br>DIODE-SWITCHING 30V 50M4 2NS 00-35                      | 28480<br>05036<br>05236<br>28480<br>28480 | 1901-6040<br>F27256<br>SZ 10939-78<br>1901-0040<br>1901-0040  |
| A14CH12<br>A14CR13<br>A14CR14<br>A14CR15<br>A14CR16      | 1901-0040<br>1901-0040<br>1902-0048<br>1901-0040<br>1901-0040 | ?           | D10DF=SWITCHING 30V 50MA 2NS D0=35<br>D10DE=SmITCHING 30V 50MA 2NS D0=35<br>D10DE=7NR 6,81V 5X D0=7 PD=,4W 1C=+,043%<br>D10DE=5W1TCHING 30V 50MA 2NS D0=35<br>D10DE=SWITCHING 30V 50MA 2NS D0=35                              | 28480<br>28480<br>28480<br>28480<br>28480 | 1901-0040<br>1901-0040<br>FZ7Z44<br>1901-0040<br>1901-0040    |
| 414CK17<br>414CK1K<br>414CK19<br>414CK20                 | 1902-0049<br>1901-0040<br>1901-0040<br>1902-3149              |             | DIODE-ZNR 6,19V 5% DO-7 PD#,4W TC#+,022%<br>DIODE-SKITCHING 30V SOMA 2NS DO-35<br>DIODE-SWITCHING 30V SOMA 2NS DO-35<br>DIODE-ZNR 9,04V 5% DO-7 PD#,4W TC#+,057%                                                              | 0223G<br>28480<br>28480<br>0223G          | F27240<br>1901-0040<br>1901-0040<br>F27256                    |
| 414CR22<br>414CR23                                       | 1902 <b>-3</b> 149<br>1902 <b>-3</b> 125                      | 1           | DIODE-ZNR 9,09V 5% 00-7 PD#.4% TC#+.057%<br>DIODE-ZNR 6,98V 2% 00-7 PD#.4% TC#+.045%                                                                                                                                          | 05530<br>05530                            | F Z 7 2 5 6<br>F Z 7 4 4 5                                    |
| A 1 401<br>A 1 402<br>A 1 403<br>A 1 404<br>A 1 405      | 1855-0062<br>5080-3830<br>5080-3830<br>1855-0119<br>5080-3835 | 1           | TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN SI TRANSISTOR J=FET 2N5245 N=CHAN D=MODE SI                                                     | 28480<br>28480<br>28480<br>28480<br>0169H | 1855-0062<br>1855-0091<br>1855-0091<br>1855-0119<br>285245    |
| A1406<br>A1407<br>A1408<br>A1459<br>A14510               | 1853-0020<br>1854-0023<br>5080-3078<br>5080-3830<br>1853-0020 | 1           | TRANSISTOR PNP SI PD#300MW FT#150MH/ TRANSISTOR NPN SI TU#18 PD#360MW TRANSISTOR NPN SI PD#300MW FT#200MH/ TRANSISTOR J#FET N=CHAN D=MODE SI TRANSISTOR J#FET N=CHAN D=MODE SI TRANSISTOR PNP SI PD#300MW FT#150MH/           | 28480<br>28480<br>28480<br>28480<br>28480 | 1854-0020<br>1854-0023<br>1854-0071<br>1855-0091<br>1853-0020 |
| A14011<br>A14012<br>A14013<br>A14014<br>A14015           | 5080-3078<br>1853-0020<br>5080-3078<br>1853-0020<br>1853-0020 |             | THANSISTOR NPN SI PD#300MN FT#200MHZ THANSISTOR PNP SI PD#300MN FT#150MHZ THANSISTOR NPN SI PD#300MN FT#200MHZ THANSISTOR PNP SI PD#300MN FT#150MHZ THANSISTOR PNP SI PD#300MN FT#150MHZ THANSISTOR PNP SI PD#300MN FT#150MHZ | 28480<br>28480<br>28480<br>28480<br>28480 | 1854-0071<br>1853-0020<br>1854-0071<br>1853-0020<br>1853-0020 |
| A14016<br>A14017<br>A14018<br>A14019<br>A14020           | 1855-0062<br>1855-0062<br>5080-3830<br>5080-3835<br>5080-3835 |             | TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET 2N5245 N=CHAN D=MODE SI TRANSISTOR J=FET 2N5245 N=CHAN D=MODE SI                                       | 28480<br>28480<br>28480<br>0169H<br>0169H | 1855-0062<br>1855-0062<br>1855-0091<br>2N5245<br>2N5245       |
| A14021<br>A14022<br>A14023<br>A14024<br>A14025           | 1853-0034<br>5080-3835<br>5080-3835<br>1853-0034<br>1853-0020 | 5           | THANSISTOR PNP SI TU-18 PD=360MW TRANSISTOR J=FET 2N5245 N=CHAN D=MODE SI THANSISTOR J=FET 2N5245 N=CHAN D=MODE SI THANSISTOR PNP SI TO-18 PD=360MW THANSISTOR PNP SI PD=300MW FT=150MHZ                                      | 25480<br>0169H<br>0169H<br>28480<br>25480 | 1853-0034<br>2N5245<br>2N5245<br>1853-0034<br>1853-0020       |
|                                                          |                                                               |             |                                                                                                                                                                                                                               |                                           |                                                               |

Table 6-3. Replaceable Parts (Cont'd).

| Designation   Number   Cry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reference        | HP Part                | П   | able 0-3. Replaceable Faits (Cont u)                                           | Mfr            |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|-----|--------------------------------------------------------------------------------|----------------|----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                        | Qty | Description                                                                    |                | Mfr Part Number            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A14026           | 1853-0020              |     | TRANSISTOR PNP SI PD=300MW FT=150MHZ                                           | 28480          | 1853-0020                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 414R2            | 0683-1525              |     | RESISTOR 1.5K 5% .25W FC TC==400/+700                                          | 01606          | CB1525                     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A14R4            | 0683-4725              | 1   | RESISTOR 4.7K 5% .25W FC TC==400/+700                                          | 0160G          | C84725                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                        |     |                                                                                |                |                            |
| Authors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A14R8<br>A14R9   | 0683-1055<br>0683-1055 |     | RESISTOR 1M 5% .25W FC TC#+800/+900<br>RESISTOR 1M 5% .25W FC TC#+800/+900     | 0160G<br>0160G | CB1055<br>CB1055           |
| A   Sept   O   O   O   O   O   O   O   O   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l                |                        |     |                                                                                |                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A14R12<br>A14R13 | 0757-0465              | 5   | RESISTOR 19.6K 1% ,125W F TC=0+=100<br>RESISTOR 100K 1% ,125W F TC=0+=100      | 03298          | C4-1/8-T0-1003-F           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                        |     | RESISTOR -TRMR 10K 10X C SIDE-ADJ 1-TRN                                        | 03654          | £750X103                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A14R17           | 0683-2225              |     | RESISTOR 2.2K 5% .25W FC TC==400/+700                                          | 01606          | C85552                     |
| Alumon   A   | A14R19           | 0683-4745              |     | RESISTOR 470K 5% .25W FC TC==800/+900                                          | 01606          | C84745                     |
| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                        | ,   |                                                                                |                | C4-1/8-T0-StiR-F           |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A14R23<br>A14R24 | 0683-1055<br>0683-3335 |     | RESISTOR IM 5% ,25W FC TC==800/+900<br>RESISTOR 33K 5% ,25W FC TC==400/+800    | 0160G          | C83335                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                        | 1   | •                                                                              | 01606          | C83335                     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A14R28           | 0663-3335              |     | RESISTOR 33K 5% .25W FC TC==400/+800<br>RESISTOR 33K 5% .25W FC TC==400/+800   | 0160G          | CB3335                     |
| A   May   O   O   O   O   O   O   O   O   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                        |     | RESISTOR 6.49K 1% .125W F TC=0+=100                                            | 89520          | C4=1/8=70=6491=F           |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A14832           | 0683=1025              | ,   | RESISTOR 1K 5% ,25% FC TC=+400/+600                                            | 01606          | CB1025                     |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A14R34           | 0683-1035              |     | RESISTOR 10k 5% .25W FC 1C#=400/+700                                           | 0160G          | C81035                     |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                        | 1   | RESISTOR 100K 1% .125W F TC=0++100                                             | 05298          | C4-1/8-10-1005-F           |
| A14RA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A14R39           | 0698-3155              | ٫   | RESISTOR 4.64K 1% .125W F TC=0+-100                                            | 03298          | E4-1/R-T0-4641-F           |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A14R41           | 0757-0401              |     | RESISTOR 100 1% .125W F TC=0+=100                                              | 03298          |                            |
| A14R46 A14R47 A14R48 A14R47 A14R48 A14R48 A14R48 A14R48 A14R48 A14R48 A14R59 A1 | A14R43           | 0683-1055              |     | RESISTOR 1M 5% .25W FC TC==800/+900<br>RESISTOR 19.6K 1% .125W F TC=0+=100     | 0160G<br>03298 | CB1055<br>C4+178+T0+1962+F |
| A   4   4   4   4   4   4   4   4   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                |                        |     |                                                                                |                |                            |
| A14R50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A14R47<br>A14R48 | 0683-1035              |     | RESISTOR 10K 5% ,25W FC TC==400/+700<br>RESISTOR 10K 5% ,25W FC TC==400/+700   | 0160G<br>0160G | CH1035<br>CB1035           |
| A14R54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                        |     | RESISTOR 3.3K 5% .25W FC TC==400/+700<br>RESISTOR 3.3K 5% .25W FC TC==400/+700 |                |                            |
| A 1 4 8 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A14R52           | 0685-3335              |     | RESISTOR 33% 5% .25% FC TC#=400/+800                                           | 0160G          | C83335                     |
| A14R56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A14R54           | 0683-3335              |     | RESISTOR 33k 5% .25W FC TC#-400/+800                                           | 01606          | C83555                     |
| A14R58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A14R56           |                        |     | HESISTON 33K 5% ,25W FC TC==400/+800<br>RESISTON 4.7K 5% ,25W FC TC==400/+700  |                |                            |
| A14R61 0698-6943 2 RESISTOR 20K .1% .125W F TC=0+=50 0329H NC55  A14R62 0698-0083 2 RESISTOR 1.96K 1% .25W FC TC=-400/+700 A14R64 0698-0083 A14R65 0757-0401 2 RESISTOR 100 1% .25W FC TC=-400/+700 RESISTOR 100 1% .25W FC TC=-400/+700 A14R66 0683-3335 A14R67 0683-1245 1 RESISTOR 100 1% .25W FC TC=-400/+700 NESISTOR 100 1% .25W FC TC=-400/+700 NESISTOR 100 1% .25W FC TC=-400/+700 NESISTOR 100 1% .25W FC TC=-400/+900 0160G CB1345 NESISTOR 120K 5% .25W FC TC==000/+900 0160G CB1345 NESISTOR 31K 5% .25W FC TC==000/+900 0160G CB1345 NESISTOR 33K 5% .25W FC TC==000/+900 0160G CB13355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A14R58<br>A14R59 | 0698-4157<br>0698-4157 |     | RESISTOR 10K .1% .125W F TC=0++50<br>RESISTOR 10K .1% .125W F TC=0++50         | 0329B<br>0329B | NC55<br>NC55               |
| A14R62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                        |     | RESISTOR ZOK .1% .125W F TC#0+-50                                              | 1              |                            |
| A14R65 0757-0401 RESISTOR 100 1% .25W FC TC=-400/+700  A14R66 0683=3335 RESISTOR 33K 5% .25m FC TC==400/+800 0160G C83535  A14R67 0683=1245 1 RESISTOR 120K 5% .25W FC TC==800/+900 0160G C81245  A14R68 0683=4735 1 RESISTOR 47K 5% .25W FC TC==400/+800 0160G C81245  A14R69 0683=3355 RESISTOR 33K 5% .25W FC TC==400/+800 0160G C81335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A14R62<br>A14R63 | 0757-0401              |     | RESISTOR 100 1% .25W FC TC=-400/+700                                           |                |                            |
| 414867 0683-4735 1 RESISTOR 120K 5% ,25W FC TC==800/+900 0160G CB1245<br>414868 0683-4735 1 RESISTOR 47K 5% ,25W FC TC==400/+800 0160G CB4735<br>414869 0683-3355 RESISTOR 33K 5% ,25W FC TC==400/+800 0160G CB3335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A14R65           | 0757-0401              | ]   | RESISTOR 100 1% .25W FC TC=-400/+700                                           | 01.05          | CHITIE                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A14R67<br>A14R68 | 0683-1245<br>0683-4735 |     | RESISTOR 120K 5% .25W FC TC=-800/+900<br>RESISTOR 47K 5% .25W FC 1C=-400/+800  | 0160G<br>0160G | CB1245<br>CB4735           |
| A14R70 0083-4725 RESISTOR 4.7K 5% .25W FC TC==400/+700 016UG CB4725<br>A14R71 0683-2265 RESISTOR 22M 5% .25W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A14R70           | 0683-4725              |     | RESISTOR 4.7K 5% .25W FC TC==400/+700                                          | 0160G<br>0160G | CH \$335<br>CB 4725        |
| A1477 0757-1094 RESISTOR 1.47K 1% .125W  A14U1 1826-1071 2 Icilin Op. AMPL. FET-INPT 28480 LF411CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A14R72           | 0757-1094              | ,   | RESISTOR 1.47K 1% .125W                                                        | 28480          | F411CH                     |
| A14U2 1826-0271 IC 741 OP AMP' 0340F LM741CN 1820-0321 IC 710 COMPARATOR 0223G 710MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A14U2<br>A14U3   | 1826-0271<br>1820-0321 |     | IC 741 OP AMP'<br>IC 710 COMPARATOR                                            | 0340F<br>0223G | LM741CN<br>710HC           |
| A1404 1826-1071 ICILIN OP, AMPL, FET-INPT 28480 LF411CH RC4558DN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                        |     |                                                                                |                |                            |

Table 6-3. Replaceable Parts (Cont'd).

| Reference<br>Designation                            | HP Part<br>Number                                                          | Qty         | Description                                                                                                                                                                                                                    | Mfr<br>Code                                        | Mfr Part Number                                                                            |
|-----------------------------------------------------|----------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------|
| A1406<br>A1407<br>A1408<br>A1409<br>A14010          | 1826-0319<br>1826-0326<br>1820-0054<br>5080-3832<br>1826-0180              | 1<br>1<br>1 | IC OP AMP IC OF AMP IC GATE TIL NAND QUAD 2-INP IC MISC TIL IC 555                                                                                                                                                             | 0340F<br>07933<br>0223G<br>0203G<br>0291J          | LF 356H<br>RC 4558DH<br>7405PC<br>MC 4044P<br>NE 555V                                      |
| A14U11<br>A14U12<br>A14U13<br>A14U14<br>A14U15      | 1820-0379<br>1820-0075<br>1820-1210<br>1820-1210<br>1820-1490              | 1<br>1<br>2 | IC GATE TIL H AND-OR IC FF TIL J-K PULSE CLEAR DUAL IL GATE TIL LS AND-OR-INV DUAL 2-INP IC GATE TIL LS AND-OR-INV DUAL 2-INP IC CNIR ITL LS DECD ASYNCHRO                                                                     | 0223G<br>0223G<br>0169H<br>0169H<br>0169H          | 74H52PC<br>7473PC<br>SN74L551N<br>SN74L551N<br>SN74L590N                                   |
| A15                                                 |                                                                            |             | NUT ASSIGNED                                                                                                                                                                                                                   |                                                    |                                                                                            |
| Alb                                                 |                                                                            |             | NUT ASSIGNED                                                                                                                                                                                                                   |                                                    |                                                                                            |
| A 1 7                                               |                                                                            |             | NOT ASSIGNED                                                                                                                                                                                                                   |                                                    |                                                                                            |
| A18                                                 |                                                                            |             | NOT ASSIGNED                                                                                                                                                                                                                   |                                                    |                                                                                            |
| A19                                                 |                                                                            |             | NUT ASSIGNED                                                                                                                                                                                                                   |                                                    |                                                                                            |
| 050                                                 |                                                                            |             | NOT ASSIGNED                                                                                                                                                                                                                   |                                                    |                                                                                            |
| A21                                                 | 04262=66521<br>04262=26521                                                 | 1<br>1      | KEYBOARO & DISPLAY BOARD ASSEMBLY<br>PC HOARD, BLANK                                                                                                                                                                           | 28480<br>28480                                     | 04262=66521<br>04262=26521                                                                 |
| A21C1<br>A21C2<br>A21C3<br>A21Cu                    | 01H0+029t<br>0160-2055<br>0160-2055<br>0160-2055                           |             | CAPACITOR-FXD 1UF++10% 35VDC TA CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER CAPACITOR-FXD .01UF +80-20% 100VDC CER                                                                           | 0420J                                              | 1500105X903542                                                                             |
| A21C6<br>A21C6<br>A21C7<br>A21C8<br>A21C9<br>A21C10 | 0180-0376<br>0150-0197<br>0180-0197<br>0180-0197<br>0180-0197<br>0140-0198 | 1 6         | CAPACITOR=FXD ,47uF+=10x 35v0C TA  CAPACITOR=FXD 2,2UF+=10x 20vDC TA  CAPACITOR=FXD 2,2UF+=10x 20vDC TA  CAPACITOR=FXD 2,2UF+=10x 20vDC TA  CAPACITOR=FXD 2,2UF+=10x 20vDC TA  CAPACITOR=FXD 20vPF+=5x 30vDC MICA              | 0420J<br>0420J<br>0420J<br>0420J<br>0420J<br>72136 | 1500474x903542<br>1500225x902042<br>1500225x902042<br>1500225x902042<br>0M15F201J030UWV1CR |
| AZICRI<br>AZICRZ<br>AZICRZ<br>AZICRZ<br>AZICRZ      | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040              |             | DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35                                     | 28480<br>28480<br>28480<br>28480<br>28480          | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040                              |
| A21CR6<br>A21CR7                                    | 1901-0040<br>1901-0040                                                     |             | DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35                                                                                                                                                       | 28480<br>28480                                     | 1901-0040<br>1901-0040                                                                     |
| A21J1                                               | 1251+0541                                                                  | ē           | CONNECTOR 34-PIN M RECTANGULAR                                                                                                                                                                                                 | 76381                                              | 3431=1002                                                                                  |
| 42101<br>421R1<br>421R2<br>421R3<br>421R4<br>421R5  | 1654-0019<br>0685-4715<br>0683-4715<br>0683-4715<br>0683-4715<br>0683-4715 | 1           | TRANSISTOR NPN S] TO-18 PD=360MM  HESISTOR 470 5% .25W FC TC=-400/+600  RESISTOR 470 5% .25W FC TC=-400/+600 | 28480<br>0160G<br>0160G<br>0160G<br>0160G<br>0160G | 1854-0019<br>CR4715<br>CR4715<br>CB4715<br>CB4715<br>CR4715                                |
| A21Rb<br>A21R7<br>A21RB<br>A21R9<br>A21R10          | 0683-3305<br>0683-1015<br>0683-1015<br>0683-1015<br>0683-4715              | t           | RESISTUR 33 5% ,25% FC TC==400/+500<br>PESISTOP 100 5% ,25% FC TC==400/+500<br>RESISTOR 100 5% ,25% FC TC==400/+500<br>PESISTUR 100 5% ,25% FC TC==400/+500<br>RESISTOR 470 5% ,25% FC TC==400/+600                            | 01606<br>01606<br>01606<br>01606<br>01606          | C83505<br>CB1015<br>CB1015<br>CB1015<br>CB4715                                             |
| A21R11<br>A21R12<br>A21R13<br>A21R14<br>A21R14      | 0683-4715<br>0685-4715<br>0683-4715<br>0683-4715<br>0683-4715              |             | RESISTOR 470 5% .25% FC TC=+400/+600<br>RESISTOR 470 5% .25% FC TC=+400/+600                           | 0160G<br>0160G<br>0160G<br>0160G<br>0160G          | C84715<br>C84715<br>C84715<br>C84715<br>C84715                                             |
| A21R16<br>A21R17<br>A21R18<br>A21R19<br>A21R20      | 0683-1015<br>0683-1015<br>0683-4715<br>0683-4715<br>0683-4715              |             | RESISTOR 100 5% .25w FC TC*-400/+500 RESISTOR 100 5% .25w FC TC*-400/+500 RESISTOP 470 5% .25w FC TC*-400/+600 RESISTOR 470 5% .25w FC TC*-400/+600 RESISTOR 470 5% .25w FC TC*-400/+600                                       | 0160G<br>0160G<br>0160G<br>0160G<br>0160G          | CH1015<br>CB1015<br>CH4715<br>CB4715<br>CB4715                                             |
| A21R21<br>A21R22<br>A21R23<br>A21R24<br>A21R29      | 0663-4715<br>0683-4715<br>0683-4715<br>0683-4715<br>0683-4715              |             | HESISTOR 470 5% .25W FC TC==400/+600 PESISTOR 470 5% .25W FC TC==400/+600 PESISTOR 470 5% .25W FC TC==400/+600 RESISTOR 470 5% .25W FC TC==400/+600 PESISTOR 470 5% .25W FC TC==400/+600                                       | 0160G<br>0160G<br>0160G<br>0160G<br>0160G          | C84715<br>C84715<br>C84715<br>C84715<br>C84715                                             |
|                                                     |                                                                            |             |                                                                                                                                                                                                                                |                                                    |                                                                                            |

Table 6-3. Replaceable Parts (Cont'd).

| Reference<br>Designation                                           | HP Part<br>Number                                                                                    | Qty          | Description                                                                                                                                                                                                                                                                                                        | Mfr<br>Code                               | Mfr Part Number                                                    |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|
| A21R26<br>A21R27<br>A21R28<br>A21R28<br>A21R29<br>A21R30           | 0683-4715<br>0683-3935<br>0683-1035<br>0683-1035<br>0683-1035                                        |              | RESISTOR 470 5% .25W FC TC=-400/+600<br>RESISTOR 39K 5% .25W FC TC=-400/+800<br>RESISTOR 10K 5% .25W FC TC=-400/+700<br>RESISTOR 10K 5% .25W FC TC=-400/+700<br>RESISTOR 10K 5% .25W FC TC=-400/+700                                                                                                               | 0160G<br>0160G<br>0160G<br>0160G<br>0160G | C84715<br>C83935<br>C81035<br>CB1035<br>CB1035                     |
| A21R31<br>A21R32                                                   | 0683*1035<br>1810=0164                                                                               | 5            | RESISTOR 10K 5% ,25W FC TC#=400/+700<br>NETWORK-RES 9-PIN-SIP ,15-PIN-SPCG                                                                                                                                                                                                                                         | 0160G<br>28480                            | C81035<br>1810-0164                                                |
| 42181<br>42182<br>42184<br>42184<br>42184<br>42185                 | 1:820-1415<br>1820-1279<br>1820-0261<br>1820-1200<br>1820-1200                                       | 2<br>1<br>1  | IC SCHMITT-TRIG TTL LS NAND DUAL 4-INP IC CNTR TTL LS DECD UP/DOWN SYNCHRO IC MY TTL MONOSTBL IC INV TTL LS MEX 1-INP IC INV TTL LS MEX 1-INP                                                                                                                                                                      | -0169H<br>-0169H<br>-0169H<br>-0169H      | SN74L513N<br>SN74L3190N<br>SN74121N<br>SN74L505N<br>SN74L505N      |
| A2106<br>A2107<br>A2108<br>A2109<br>A21010                         | 1820-1200<br>1820-1195<br>1820-1195<br>1820-1198<br>1820-1197                                        | 15<br>1<br>8 | IC INV ITL LS MEX 1-INP IC FF TIL LS D-TYPE POS-EDGE-TRIG COM IC FF TIL LS D-TYPE POS-EDGE-TRIG COM IC GATE TIL LS NAND GUAD 2-INP IC GATE TIL LS NAND GUAD 2-INP                                                                                                                                                  | 0169H<br>0379D<br>0379D<br>0169H<br>0169H | 5N74L805N<br>AM74L8175A<br>AM74L8175A<br>5N74L803N<br>SN74L800N    |
| A21U11<br>A21U12<br>A21U13<br>A21U14<br>A21U15                     | 1820-1081<br>1820-1470<br>1820-1197<br>1820-1112<br>1820-1195                                        | 18<br>8<br>7 | IC DRVR TIL BUS DRVR GUAD 1=TNP IC MUXR/DATA=SEL TIL LS 2=TO=1=LINE GUAD IC GATE TIL LS NAND GUAD Z=INP IC FF TIL LS D=TYPE POS=EDGE=TRIG IC FF TIL LS D=TYPE POS=EDGE=TRIG COM                                                                                                                                    | 0379D<br>0379D<br>0169H<br>0169H<br>0379D | AMRT26<br>SN74L8157N<br>SN74L800N<br>SN74L874N<br>AM74L8175A       |
| A21U16<br>A21U17<br>A21U18<br>A21U19<br>A21U20                     | 1820+1195<br>1820+1195<br>1820+1195<br>1820+1195<br>1820+1245                                        | 2            | IC FF ITL LS D-TYPE POS-EDGE-TRIG COM<br>IC DCDR ITL LS 2-TO-4-LINE DUAL 2-INP                                                                                                          | 03790<br>03790<br>03790<br>03790<br>0169H | AM74LS175A<br>AM74LS175A<br>AM74LS175A<br>AM74LS175A<br>SN74LS175A |
| A21021<br>A21022<br>A21023<br>A21024<br>A21025                     | 1820-1195<br>1820-1081<br>1820-1470<br>1820-1473<br>1820-1201                                        | 1<br>5       | TO FF TIL LS D-TYPE PUS-EDGE-TRIG COM TO DRYR TIL BUS DRYR GUAD 1-INP TO MUXR/DATA-SEL TIL LS 2-TO-1-LINE GUAD TO ENCOR TIL H-INP TO GATE TIL LS AND GUAD 2-INP                                                                                                                                                    | 0379D<br>0379D<br>0379D<br>0169H<br>0169H | AM74L5175A<br>AM8T26<br>SN74L5157N<br>SN74148N<br>SN74L508N        |
| 5 S A                                                              | 04262~66522<br>04262~26522                                                                           | s            | DISPLAY CONTROL & RAM BOARD ASSEMBLY<br>PC BOARD, BLANK                                                                                                                                                                                                                                                            | 28480<br>28480                            | 04262 <b>~</b> 66522<br>04262 <b>~</b> 26522                       |
| A22C1<br>A22C2<br>A22C3<br>A22C4<br>A22C5                          | 0180-0291<br>0160-2055<br>0160-2055<br>0160-2055<br>0160-2055                                        |              | CAPACITUR-FXD 1UF+=10% 35VDC TA  CAPACITOR-FXD .01UF +80-20% 100VDC CER                                                                                                                    | 04507                                     | 150D105X9035A2                                                     |
| A22C6<br>A22C7<br>A22C8<br>A22C9<br>A22C10                         | 0160-2204<br>0160-2261<br>0160-0939<br>0180-0291<br>0160-0939                                        | 5            | CAPACITOR-FXD 100PF +-5% 300VDC MICA0+70<br>CAPACITOR-FXD 15PF +-5% 500VDC CER0+-30<br>CAPACITOR-FXD 450PF +-5% 300VDC MICA0+70<br>CAPACITOR-FXD 1UF4-10% 35VDC TA<br>CAPACITOR-FXD 450PF +-5% 300VDC MICA0+70                                                                                                     | 28480<br>28480<br>28480<br>0420J<br>28480 | 0160=2204<br>0160=2201<br>0160=0939<br>150D105×9035A2<br>0160=0939 |
| A22C11<br>A22C13<br>A22C13<br>A22C14<br>A22C15                     | 0160-0939<br>0160-2205<br>0150-0121<br>0150-0121<br>0150-0121                                        |              | CAPACITOR-FXD 430PF +-5% 300VDC MICAO+70<br>CAPACITOR-FXD 120PF +-5% 300VDC MICAO+70<br>CAPACITOR-FXD 11F +80-20% 50VDC CER<br>CAPACITOR-FXD 11F +80-20% 50VDC CER<br>CAPACITOR-FXD 11F +80-20% 50VDC CER                                                                                                          | 28480<br>28480<br>28480<br>28480<br>28480 | 0160-0939<br>0160-2205<br>0150-0121<br>0150-0121<br>0150-0121      |
| A22C16<br>A22C17<br>A22C18<br>A22C19<br>A22C20<br>A22C21<br>A22C22 | 0150-0121<br>0150-0121<br>0150-0121<br>0150-0121<br>0150-0121<br>0150-0121<br>0180-1743<br>0160-2205 |              | CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 0.1UF 35VDC TA CAPACITOR-FXD 120DF 5% 300VDC MICA                      | 28480<br>28480<br>28480<br>28480<br>28480 | 0150-0121<br>0150-0121<br>0150-0121<br>0150-0121<br>0150-0121      |
| A22CR1<br>A22J1<br>A22Q1<br>A22Q2<br>A22Q3<br>A22Q4<br>A22Q5       | 1902-0041<br>1200-0541<br>1853-0084<br>1853-0084<br>1853-0084<br>1853-0084                           | 8            | DIODE=ZNR 5.11V 5% D0=7 PD=.4W TC=009% SOCKET=IC 24=CONT DIP=SLOH  TRANSISTOR PNP 2N4918 SI PD=30W FT=3MHZ | 0203G<br>0203G<br>0203G<br>0203G<br>0203G | 5W4318<br>5W4318<br>5W4318<br>5W4318                               |
| A2206<br>A2207                                                     | 1853=0084<br>1853=0084<br>1853=6084                                                                  |              | THANSISTOR PNP 2N4918 SI PD=30# FT=3MHZ<br>THANSISTOR PNP 2N4918 SI PD=30# FT=3MHZ<br>TRANSISTOR PNP 2N4918 SI PD=30# FT=3MHZ                                                                                                                                                                                      | 0203G<br>0203G<br>0203G                   | 5/4418<br>5/4418<br>5/4418                                         |
| A2208<br>A22R1<br>A22R2<br>A22R3<br>A22R4<br>A22R5                 | 0603-2715<br>0683-2715<br>0683-2715<br>0683-2715<br>0683-2715                                        |              | RESISTOR 270 5% .25W FC TC=-400/+600                                                                                                                           | 0160G<br>0160G<br>0160G<br>0160G          | CB2715<br>CB2715<br>CB2715<br>CB2715<br>CB2715                     |
| A22R6<br>A22R7<br>A22R8<br>A22R9<br>A22R10                         | 0683-2715<br>0683-2715<br>0683-2715<br>0683-2715<br>0683-6805<br>0683-6805                           |              | RESISTOR 270 5% 25% FC TC==400/+600<br>RESISTOR 270 5% 25% FC TC==400/+600<br>RESISTOR 270 5% 25% FC TC==400/+600<br>RESISTOR 68: 5% 25% FC TC==400/+500<br>RESISTOR 68: 5% 25% FC TC==400/+500                                                                                                                    | 0160G<br>0160G<br>0160G<br>0160G          | CH2715<br>CB2715<br>CH2715<br>CH6805<br>CH6805                     |

Table 6-3. Replaceable Parts (Cont'd).

| Reference<br>Designation                                                | HP Part<br>Number                                                | Qty         | Description                                                                                                                                                                                          | Mfr<br>Code                                        | Mfr Part Number                                                                |
|-------------------------------------------------------------------------|------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|
| 422R11<br>422R12<br>422R13<br>422R14<br>422R15                          | 0683-6805<br>0683-6805<br>0683-6805<br>0683-6805<br>0683-6805    |             | RESISTOR 68 5% .25W FC TC=-400/+500<br>RESISTOR 68 5% .25W FC TC=-400/+500      | 0160G<br>0160G<br>0160G<br>0160G<br>0160G          | C#68 05<br>C#68 05<br>C#68 05<br>C#68 05<br>C#68 05                            |
| A 2 2 R 1 6<br>A 2 2 R 1 7<br>A 2 2 R 1 R<br>A 2 2 R 1 P<br>A 2 2 R 2 O | 0683-6805<br>0683-2725<br>0683-1825<br>0683-4725<br>1810-0121    | 2           | RESISTOR 68 5% .25W FC TC==400/+500<br>RESISTOR 2,7K 5% .25W FC TC==400/+700<br>PESISTOR 1,8K 5% .25W FC TC==400/+700<br>RESISTOR 4,7K 5% .25W FC TC==400/+700<br>NETWORK=RES 9=PIN=SIP .15=PIN=SPCG | 0160G<br>0160G<br>0160G<br>0160G<br>28480          | C86805<br>C82725<br>C81825<br>C84725<br>1810-0121                              |
| A 22 P 2 1<br>A 22 P 2 2<br>A 22 P 2 2<br>A 22 P 2 2<br>A 25 P 2 5      | 1810-0205<br>1810-0206<br>0693-1025<br>0683-1025<br>0683-1025    | 2           | NETWORK-RES 8-PIN-SIP .1-PIN-SPCG NETWORK-RES 8-PIN-SIP .1-PIN-SPCG RESISTOR 1K 5% .25% FC TC=-400/+600 RESISTOR 1K 5% .25% FC TC=-400/+600 RESISTOR 1K 5% .25% FC TC=-400/+600                      | 0248C<br>0374D<br>0160G<br>0160G<br>0160G          | 750-81-R4,7K<br>4308R-101-1058<br>CB1025<br>CB1025<br>CB1025                   |
| A 22 R 26<br>A 22 R 28<br>A 22 R 29<br>A 22 R 20<br>A 22 R 30           | 0683-1025<br>0683-1025<br>0683-1025<br>0683-1025<br>0683-1025    |             | RESISTOR 1K 5% .25W FC TC=+400/+600<br>RESISTOR 1K 5% .25W FC TC=+400/+600      | 01606<br>01606<br>01606<br>01606<br>01606          | CB1025<br>CB1025<br>CB1025<br>CB1025<br>CB1025                                 |
| 422R31<br>422R32<br>427R33<br>422R34<br>422R35                          |                                                                  | 8           | NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED                                                                                                                        |                                                    |                                                                                |
| A22R36<br>A22R37<br>A22R38<br>A22R39<br>A22S1                           | 1810-0164                                                        |             | NOT ASSIGNED NOT ASSIGNED NOT ASSIGNED NETWORK-RES 9-PIN-SIP .15-PIN-SPCG                                                                                                                            | 28480                                              | 1810-0164                                                                      |
| A22U4<br>A22U4<br>A22U3<br>A22U3                                        | 3101-0299  1820-0738  1820-1194  1820-1199  1820-1201  1820-1688 | 1<br>2<br>7 | SWITCH, SLIDE 4-SPST  IC DCDR TIL 2-TO-4-LINE DUAL 2-INP IC CNTR TIL LS BIN UP/DOWN SYNCHRO IC INV TIL LS HEX 1-INP IC GATE TIL LS AND QUAD 2-INP IC DCDR TIL HCD-TO-7-SEG                           | 28480<br>0203G<br>0379D<br>0169H<br>0169H<br>0169H | 3101-0299<br>MC74155P<br>AM74L8193PC<br>SN74L504N<br>SN74L504N<br>SN74LS241N   |
| 422116<br>422117<br>422118<br>422119<br>4221110                         | 5080-3068!<br>1820-1490<br>1858-0033<br>1820-0628<br>1820-1470   | s :         | IC MV TTL DUAL IC CNTR TTL LS DECD ASYNCHRU TRANSISTOR IC SN7489N 64-BIT RAM ITL IC MUXR/DATA-SEL TTL LS 2-TU-1-LINE QUAD                                                                            | 0169H<br>28480<br>0340F<br>0379D                   | SN74L590N<br>1858-0033<br>DM7489N<br>SN74L5157N                                |
| A22011<br>A22012<br>A22013<br>A22014<br>A22014                          | 1820-1425<br>1820-1112<br>1820-1197<br>1820-1490<br>1820-1478    | 5           | IC SCHMITT-TRIG TIL LS NAND QUAD 2-INP IC FF TIL LS D-TYPE PUS-EDGE-TRIG IC GATE TIL LS NAND QUAD 2-INP IC CNIR TIL LS DECD ASYNCHRO IC ENTR TIL LS BIN ASYNCHRO                                     | 0169H<br>0169H<br>0169H<br>0169H<br>0169H          | 5N7/1L 51 3.2N<br>5N7/4L 57 4N<br>5N7/4L 50 0N<br>5N7/4L 59 0N<br>5N7/4L 59 3N |
| A22016<br>A22017<br>A22018<br>A22019<br>A2200                           | 1858-0033<br>1820-0628<br>1820-1470<br>1820-1081<br>1820-1081    |             | TRANSISTOR IC SN7489N 64-BIT RAM TTL IC MUXR/DATA-SEL TTL LS Z-TU-1-LINE QUAD IC DRVK TTL HUS DRVR QUAD 1-INP IC DRVR TTL HUS DRVR QUAD 1-INP                                                        | 28460<br>0340F<br>0379D<br>03790<br>03790          | 1950-0033<br>DM7489N<br>SN74LS157N<br>AM8126<br>AM8126                         |
| 1425A1<br>75713<br>75713                                                | 1820-1196<br>1818-0135<br>0410-0209                              | 5           | IC FF TIL LS D-TYPE PUS-EDGE-TRIG COM<br>IC MC 6610L-1 1K RAM NMOS<br>CRYSTAL, GUARTZ                                                                                                                | 0374D<br>0203G<br>28480                            | AM74L5174N<br>MC6810L=1<br>0410=0209                                           |
|                                                                         |                                                                  |             |                                                                                                                                                                                                      |                                                    |                                                                                |
|                                                                         |                                                                  |             |                                                                                                                                                                                                      |                                                    |                                                                                |
|                                                                         |                                                                  |             |                                                                                                                                                                                                      |                                                    |                                                                                |
|                                                                         |                                                                  |             |                                                                                                                                                                                                      |                                                    |                                                                                |
|                                                                         |                                                                  |             |                                                                                                                                                                                                      |                                                    |                                                                                |

Table 6-3. Replaceable Parts (Cont'd).

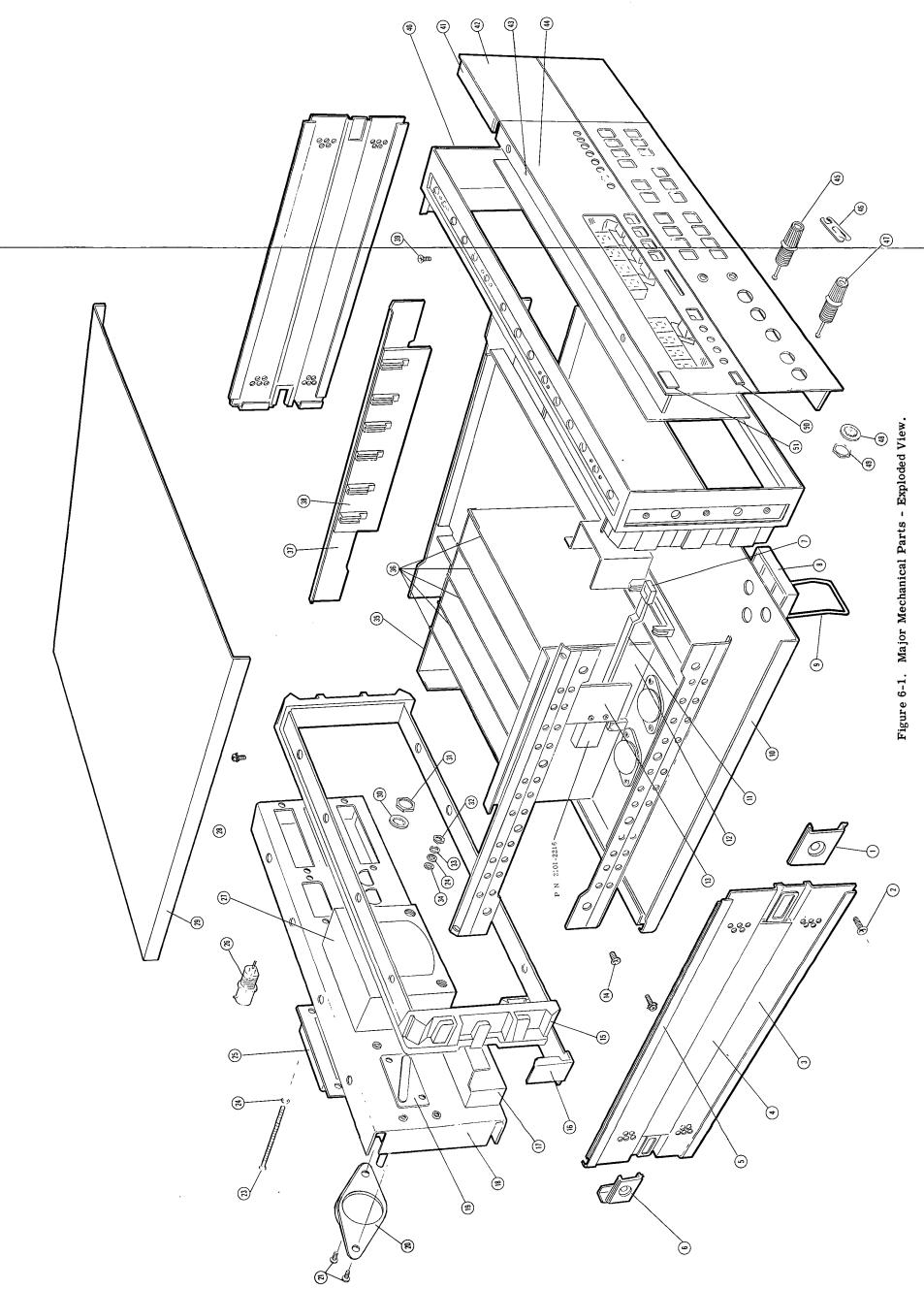
| Reference<br>Designation                                 | HP Part<br>Number                                                             | Qty | Description                                                                                                                                                                                         | Mfr<br>Code                               | Mfr Part Number                                              |
|----------------------------------------------------------|-------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|
| A23                                                      | 04262-66623<br>04262-26623                                                    |     | PROCESSOR & ROM BOARD ASSEMBLY<br>PC BOARD, BLANK                                                                                                                                                   | 28480<br>28480                            | 04262-66 <b>5</b> 23<br>04262-26623                          |
| A23C1<br>A23C2<br>A23C3<br>A23C4<br>A23C5                | 0160-2202<br>0180-2141<br>0180-0291<br>0180-0197<br>0180-0197                 |     | CAPACITOR-FXD 75pF 5% 300VDC CAPACITOR-FXD 3.3µF +-10% 50VDC TA CAPACITOR-FXD 1UF +-10% 35VDC TA CAPACITOR-FXD 2.2UF +-10% 20VDC TA CAPACITOR-FXD 2.2UF +-10% 20VDC TA                              | 0420J<br>0420J<br>0420J                   | 150D105X9035A2<br>150D225X9020A2<br>150D225X9020A2           |
| A23C6<br>A23C7<br>A23C8<br>A23C9<br>A23C10               | 0180-0229<br>0160-2055<br>0160-2055<br>0160-2055<br>0160-2055                 |     | CAPACITOR-FXD 33UF +-10% 10VDC TA CAPACITOR-FXD .01UF +80-20% 100VDC CER       | 0420J                                     | 150D336X9010B2                                               |
| A23CR1<br>A23CR2<br>A23CR3<br>A23CR4                     | 1901-0040<br>1901-0040<br>1902-3158<br>1902-0048                              |     | DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE, ZENER, 9.76V<br>DIODE, ZENER, 6.81V                                                                              | 28480<br>28480<br>0223G<br>0223G          | 1901-0040<br>1901-0040<br>FZ7459<br>FZ7244                   |
| A23J1<br>A23J2<br>A23J3<br>A23J4                         | 1200-0853<br>1200-0541<br>1200-0541<br>1200-0654                              |     | SOCKET-IC 16-CONT DIP-SLDR SOCKET-IC 24-CONT DIP-SLDR SOCKET-IC 24-CONT DIP-SLDR SOCKET-IC 40-CONT DIP-SLDR                                                                                         | 28480<br>28480<br>28480                   | 1200-0541<br>1200-0541                                       |
| A23Q1<br>A23Q2<br>A23Q3<br>A23Q4                         | 1853-0089<br>5080-3078<br>1854-0477<br>1854-0215                              |     | TRANSISTOR PNP 2N4917 SI PD=200MW FT=450MHz<br>TRANSISTOR NPN SI PD=300MW FT=200MHz<br>TRANSISTOR NPN 2222A SI TO=18 PD=500MW<br>TRANSISTOR NPN SI PD=350MW FT=300MHz                               | 0223G<br>0203G                            | 2N4917<br>2N2222A<br>SPS3611                                 |
| A23R1<br>A23R2<br>A23R3<br>A23R4<br>A23R5                | 0683-4725<br>0683-4725<br>0683-1025<br>0683-1025<br>0683-1035                 |     | RESISTOR 4.7K 5% .25W FC TC=-400/+700<br>RESISTOR 4.7K 5% .25W FC TC=-400/+700<br>RESISTOR 1K 5% .25W FC TC=-400/+600<br>RESISTOR 1K 5% .25W FC TC=-400/+600<br>RESISTOR 1K 5% .25W FC TC=-400/+700 | 0160G<br>0160G<br>0160G<br>0160G<br>0160G | CB4725<br>CB4725<br>CB1025<br>CB1025<br>CB1035               |
| A23R6<br>A23R7<br>A23R8<br>A23R9<br>A23R10               | 0683-1055<br>0683-1845<br>0683-1035<br>0698-3430<br>0683-5615                 |     | RESISTOR 1M 5% .25W FC TC=-800/+900<br>RESISTOR 180K 5% .25W FC TC=-800/+900<br>RESISTOR 10K 5% .25W FC TC=-400/+700<br>RESISTOR 21.5 1% .125W F TC=0+-100<br>RESISTOR 560 5% .25W FC TC400/+600    | 0160G<br>0160G<br>0160G<br>03888<br>0160G | CB1055<br>CB1845<br>CB1035<br>RME 55-1/8-TO-21R5-F<br>CB5615 |
| A23R11<br>A23R12<br>A23R13                               | 0683-5625<br>1810-0164                                                        |     | RESISTOR 5.6K 5% .25W FC TC=-400/+700<br>NETWORK-RES 9-PIN-SIP .15-PIN-SPCG<br>NOT ASSIGNED                                                                                                         | 0160G<br>28480                            | CB5625<br>1810-0164                                          |
| A23R14                                                   | 2100-2633                                                                     |     | RESISTOR-TRMR 1k 10% C SIDE-ADJ 1-TRN                                                                                                                                                               | 0365A                                     | ET50X102                                                     |
| A23S1                                                    | 3101-0299                                                                     |     | SWITCH SLIDE 4-SPST                                                                                                                                                                                 | 28480                                     | 3101-0299                                                    |
| A23U1<br>A23U2<br>A23U3<br>A23U4<br>A23U5                | 1820-1691<br>1820-1197<br>1820-2053<br>1820-2053<br>1820-1081                 | :   | IC MICROPROC MOS IC GATE TTL LS NAND QUAD 2-INP IC DCDR TTL LS 4-TO-16-LINE 4-INP IC DCDR TTL LS 4-TO-16-LINE 4-INP IC DCDR TTL LS 4-TO-16-LINE 4-INP IC DRVR TTL BUS DRVR QUAD 1-INP               | 28480<br>0169H<br>0379D                   | 1820-1691<br>SN74LSOON<br>74LS154N<br>74LS154N<br>AM8T26     |
| A23U6<br>A23U7<br>A23U8<br>A23U9<br>A23U10               | 1820-1081<br>1820-1195<br>1820-1196<br>1820-1112<br>1820-0471                 |     | IC DRVR TTL BUS DRVR QUAD 1-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG IC INV TTL HEX 1-INP                                  | 0379D<br>0379D<br>0379D<br>0169H<br>0223G | AM8T26<br>AM74LS175A<br>AM74LS174N<br>SN74LS74N<br>7406PC    |
| A23U11<br>A23U12<br>A23U13<br>A23U14<br>A23U15<br>A23U16 | 1820-1195<br>1820-1201<br>1820-197<br>1820-1199<br>04262-85009<br>04262-85010 |     | IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC GATE TTL LS AND QUAD 2-INP IC GATE TTL LS NAND QUAD 2-INP IC INV TTL LS HEX I-INP IC, ROM MOS IC, ROM MOS                                                  | 0379D<br>0169H<br>0169H<br>0169H          | AM74LS175A<br>SN74LS08N<br>SN74LS00N<br>SN74LS04N            |
| <b>424</b> (OPTION: 004)                                 | 04262=66524<br>04262=26524                                                    | 1 1 | CUMPARATOR CONTROL BOARD ASSEMBLY<br>PC BOARD, BLANK                                                                                                                                                | 28480<br>28480                            | 04262-66524<br>04262-26524                                   |
| A24C1<br>A24C2<br>A24C3                                  | 0180-0229<br>0180-0229<br>0160-2055                                           |     | CAPACITOR-FXD 33UF+=10% 10VDC TA<br>CAPACITOR-FXD 33UF+=10% 10VDC TA<br>CAPACITUR-FXD .01UF +80=20% 100VDC CER                                                                                      | 04507<br>04507                            | 150D336x9010H2<br>150D336x9010H2                             |
|                                                          |                                                                               |     |                                                                                                                                                                                                     |                                           |                                                              |

Table 6-3. Replaceable Parts (Cont'd).

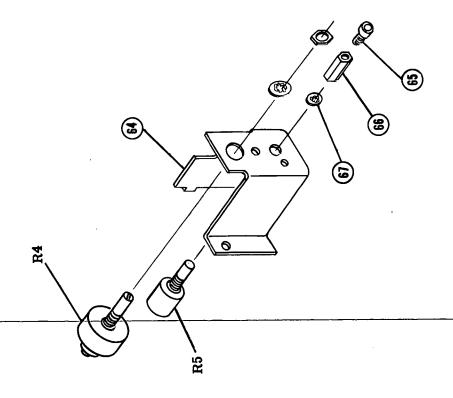
| Reference<br>Designation                         | HP Part<br>Number                                             | Qty    | Description                                                                                                                                                                                               | Mfr<br>Code                               | Mfr Part Number                                                |
|--------------------------------------------------|---------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|
| A24CR1<br>A24CR3<br>A24CR4<br>A24CR4<br>A24CR5   | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040 |        | DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35                | 28480<br>28480<br>28480<br>28480          | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040  |
| A24CH6                                           | 1901-0040                                                     |        | CINDE-SWITCHING 30V 50MA 2NS DO-35                                                                                                                                                                        | 28480                                     | 1901-0040                                                      |
| A24J1                                            | 1200-0853                                                     |        | SOCKET-IC 16-CONT DIP-SLUR                                                                                                                                                                                |                                           |                                                                |
| \$54K2<br>\$54K3<br>\$54K5<br>\$54K5             | 0490+0235<br>0490+0235<br>0490+0235<br>0490+0235<br>0490+0235 | 6      | RELAY, REED RELAY, REED RELAY, REED RELAY, REED RELAY, REED RELAY, REED                                                                                                                                   | \$8480<br>\$8480<br>\$8480<br>\$8480      | 0490=0235<br>0490=0235<br>0490=0235<br>0490=0235<br>0490=0235  |
| A24M6                                            | 0490-0235                                                     |        | RELAY, REED                                                                                                                                                                                               | 28480                                     | 0490-0235                                                      |
| 42461                                            | 9100-1616                                                     | 1      | COTE-MED 5. OUH 10% G#45 .1550x.375LG                                                                                                                                                                     | 02178                                     | 15-4435-1K                                                     |
| 10428<br>10428                                   | 5080-3078<br>5080-3078                                        |        | TRANSISTOR NPN SI PD#300MW FT#200MHZ<br>Transistor npn si PD#300MW FT#200MHZ                                                                                                                              |                                           |                                                                |
| A 2 4 R 7<br>A 2 4 R 3<br>A 2 4 R 4<br>A 2 4 R 5 | 0663-4715<br>0663-4725<br>0663-4725<br>0663-4725<br>0663-4725 | :      | RESISTOR 470 5% .25W FC TC=+400/+600 RESISTOR 4.7K 5% .25W FC TC=+400/+700              | 0160G<br>0160G<br>0160G<br>0160G<br>0160G | CB4715<br>CB4725<br>CB4725<br>CB4725<br>CB4725                 |
| A24R6<br>A24R7<br>A24RR<br>A24RR<br>A24R1        | 0683-2715<br>0683-2715<br>0683-2715<br>0683-2715<br>0683-2715 |        | RESISTOR 270 5% .25% FC TC=-400/+600 RESISTOR 270 5% .25% FC TC=-400/+600 RESISTOR 270 5% .25% FC TC=-400/+600 HESISTOR 270 5% .25% FC TC=-400/+600 RESISTOR 270 5% .25% FC TC=-400/+600                  | 0160G<br>0160G<br>0160G<br>0160G<br>0160G | CB2715<br>CB2715<br>CB2715<br>CB2715<br>CB2715                 |
| 424R11<br>424R12                                 | 0683-2715<br>1810-0164                                        |        | RESISTOR 270 5% .25W FC TC==400/+600<br>NETWORK=RES 9=PIN=SIP .15=PIN=SPCG                                                                                                                                | 0160G<br>28480                            | CH2715<br>1810-0164                                            |
| A24111<br>A2442<br>A2443<br>A2444<br>A2445       | 1820-1112<br>1820-1200<br>1820-1196<br>1820-1199<br>1820-1199 |        | IC FF TIL LS D=TYPE POS=EDGE=TRIG IC INV TIL LS HEX I=INP IC FF TIL LS D=TYPE POS=EDGE=TRIG COM IC INV TIL LS HEX I=INP IC INV TIL LS HEX I=INP                                                           | 0169H<br>0169H<br>0379D<br>0169H<br>0169H | SN74LS74N<br>SN74LS05N<br>AM74LS174N<br>SN74LS04N<br>SN74LS04N |
| A24U6<br>A24U7<br>A24U8<br>A24U9<br>A24U9        | 1820-1415<br>1820-1081<br>1820-0471<br>1820-0668<br>1820-0491 | 2      | IC SCHMITT-TRIG TIL LS NAND DUAL 4-INP IC DRVR TIL BUS DRVR QUAD 1-INP IC INV TIL HEX 1-INP IC RFP ITL NON-INV HEX 1-INP IC DCDW TIL RCD-TO-DEC 4-TO-10-LINE                                              | 0169H<br>0379D<br>0223G<br>0223G<br>0169H | SN74L513N<br>Ambt26<br>7406PC<br>7407PC<br>SN74145N            |
| A24111<br>A24U12<br>A24U13                       | 1820-1195<br>1820-1081<br>1820-1081                           |        | IC FF ITE LS D-TYPE POS-EDGE-TRIG COM<br>IC DRVR ITE BUS DRVR QUAD 1-INP<br>IC DRVR ITE BUS DRVR QUAD 1-INP                                                                                               | 03790<br>03790<br>03790                   | AM74L5175A<br>AM8126<br>AM8126                                 |
| 454M1                                            | 04261-72009                                                   | 3      | CAHLE ASSEMBLY                                                                                                                                                                                            | 28480                                     | 04261-72009                                                    |
| #25 (OPTION 101)                                 | 04262+66525<br>04262 <b>-</b> 26525                           | 1<br>1 | HP-IR INTERFACE BUARD ASSEMBLY PC BOARD, BLANK                                                                                                                                                            | 28480<br>28480                            | 04262=66525<br>04262=26525                                     |
| 425C1<br>425C2<br>425C3<br>425C4<br>425C5        | 0140~0291<br>0160-2055<br>0160-2055<br>0160-2055<br>0160-2704 |        | CAPACITOR-FXD 1UF++10% 35VDC TA<br>CAPACITOR-FXD .01UF +80-20% 100VDC CER<br>CAPACITOR-FXD .01UF +80-20% 100VDC CER<br>CAPACITOR-FXD .01UF +80-20% 100VDC CER<br>CAPACITOR-FXD 100PF +-5% 300VDC MICAO+70 | 0450J                                     | 150D105x903542                                                 |
| A25C6<br>A25C7                                   | 0160-2204<br>0160-0153                                        | 1      | CAPACITOR-FXD 100PF +-5% 300VDC MICAO+70 CAPACITOR-FXD 1000PF +-10% 200VDC POLYE                                                                                                                          | 28460<br>0420J                            | 4055-0410<br>585014585                                         |
| 1254<br>5758                                     | 1 <b>251-0541</b><br>1200-0853                                |        | CONNECTOR 34-PIN M RECTANGULAR<br>SUCKET-IC 16-CUNT DIP-SLDR                                                                                                                                              | 70381                                     | 3451-1002                                                      |
| A2501                                            | 5080-3078                                                     |        | TRANSISTUR NPN SI PD#300Mm FT#200MHZ                                                                                                                                                                      | .                                         |                                                                |
| A25R1<br>A25R2<br>A25R3<br>A25R4<br>A25R5        | 0683-4715<br>0683-4715<br>0683-4715<br>0683-4715<br>0683-4715 |        | RESISTOR 470 5% .25w FC TC=-400/+600<br>RESISTOR 470 5% .25w FC TC=-400/+600<br>RESISTOR 470 5% .25w FC TC=-400/+600<br>RESISTUK 470 5% .25w FC TC=-400/+600<br>RESISTOK 470 5% .25w FC TC=-400/+700      | 0160G<br>0160G<br>0160G<br>0160G<br>0160G | CB4715<br>CB4715<br>CB4715<br>CB4715<br>CB4715<br>CB1825       |
| A25R6<br>A25R7                                   | 1810-0136<br>1810-0125                                        | 2      | NETWORK-RES 10-PIN-SIP .1-PIN-SPCG<br>NETWORK-RES 8-PIN-SIP .125-PIN-SPCG                                                                                                                                 | 28480<br>0248C                            | 1810=0136<br>750                                               |
| A25U1<br>A25U2<br>A25U3<br>A25U4<br>A25U5        | 1820-1197<br>1820-1558<br>1820-1558<br>1820-1199<br>1820-0269 | 2      | IC GATE TIL LS NAND QUAD 2-INP IC MISC TIL+ QUAD IC MISC TIL+ QUAD IC INV TIL LS HEX 1-INP IC GATE TIL NAND QUAD 2-INP                                                                                    | 0169H<br>0203G<br>0203G<br>0169H<br>0223G | 5N74L300N<br>MC3441P<br>MC3441P<br>5N74L504N<br>7403PC         |
|                                                  |                                                               |        |                                                                                                                                                                                                           |                                           |                                                                |

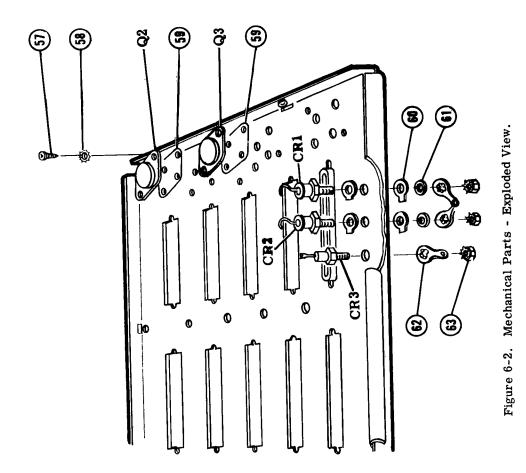
Table 6-3. Replaceable Parts (Cont'd).

| Reference<br>Designation                                                         | HP Part<br>Number                                                                       | Qty      | Description                                                                                                                                                                                                            | Mfr<br>Code                                         | Mfr Part Number                                                      |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|
| A25U6<br>A25U7<br>A25U8<br>A25U9<br>A25U10                                       | 1820-1199<br>1820-1201<br>1820-1195<br>1820-1195<br>1820-1195                           |          | IC INV TTL LS MEX 1-INP IC GATE TTL LS AND QUAD 2-INP IC FF TTL LS D-TYPE PUS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD                                             | 0169H<br>0169H<br>0379D<br>0379D<br>0379D           | SN74LS04N<br>SN74LS08N<br>AM74LS175A<br>AM74LS175A<br>SN74LS157N     |
| A25U11<br>A25U12<br>A25U13<br>A25U14<br>A25U15                                   | 1820=1470<br>1820=1195<br>1820=1195<br>1820=1081<br>1820=1081                           |          | IC MUXR/DATA=SEL TIL LS 2=TO=1=LINE QUAD IC FF TIL LS D=TYPE POS=EDGE=TRIG COM IC FF TIL LS D=TYPE POS=EDGE=TRIG COM IC DRVR TIL BUS DRVR QUAD 1=INP IC DRVR TIL BUS DRVR QUAD 1=INP                                   | 0379D<br>0379D<br>0379D<br>0379D<br>0379D           | SN74LS157N<br>AM74LS175A<br>AM74LS175A<br>AM6126<br>AM8126           |
| A25U16<br>A25U17<br>A25U18<br>A25U19<br>A25U20                                   | 1820-1081<br>1820-1081<br>1820-1081<br>1820-1081<br>1820-0328                           | 1        | IC DRVR TIL BUS DRVR QUAD 1-INP IC GATE TIL NOR QUAD 2-INP                                                             | 0379D<br>0379D<br>0379D<br>0379D<br>0223G           | AM8126<br>AM8126<br>AM8126<br>AM8126<br>7402PC                       |
| 15055<br>452055                                                                  | 1820-1112<br>1820-1112                                                                  |          | IC FF TIL LS DOTYPE POS-EDGE-TRIG IC FF TIL LS DOTYPE POS-EDGE-TRIG                                                                                                                                                    | 0169H<br>0169H                                      | 3N74L374N<br>5N74L374N                                               |
| A26                                                                              |                                                                                         |          | NOT ASSIGNED                                                                                                                                                                                                           |                                                     |                                                                      |
| 427                                                                              |                                                                                         |          | NOT ASSIGNED                                                                                                                                                                                                           |                                                     |                                                                      |
| 858                                                                              |                                                                                         | :        | NOT ASSIGNED                                                                                                                                                                                                           |                                                     |                                                                      |
| 429                                                                              |                                                                                         | <b>.</b> | NOT ASSIGNED                                                                                                                                                                                                           |                                                     |                                                                      |
| A 30                                                                             |                                                                                         |          | NOT ASSIGNED                                                                                                                                                                                                           |                                                     |                                                                      |
| A 3 1                                                                            |                                                                                         |          | NOT ASSIGNED                                                                                                                                                                                                           |                                                     |                                                                      |
| 432                                                                              |                                                                                         |          | NGT ASSIGNED                                                                                                                                                                                                           |                                                     |                                                                      |
| a 3 3                                                                            |                                                                                         |          | NUT ASSIGNED                                                                                                                                                                                                           |                                                     |                                                                      |
| A 3 4                                                                            |                                                                                         |          | NOT ASSIGNED                                                                                                                                                                                                           |                                                     |                                                                      |
| 435 (OPTION 001)                                                                 | 04262=66535<br>04262=26535                                                              | 1 1      | BCD DUTPUT CONTROL BOARD ASSEMBLY PC BOARD, BLANK                                                                                                                                                                      | 28480<br>28480                                      | 04262=66535<br>04262=26535                                           |
| A35C1<br>A35C2<br>A35C3<br>A35C4<br>A35C5                                        | 0160-2199<br>0160-2199<br>0180-0229<br>0160-2055<br>0160-2055                           |          | CAPACITON=FXD 30PF +=5% 300VDC<br>CAPACITOR=FXD 30PF +=5% 300VDC<br>CAPACITOR=FXD 33UF+=10% 10VDC TA<br>CAPACITOR=FXD 01UF +80=20% 100VDC CER<br>CAPACITOR=FXD 01UF +80=20% 100VDC CER                                 | 28480<br>28480<br>0420J                             | 120 <u>032</u> 0x40108S<br>0100=5144<br>0100=5144                    |
| A35C6<br>A35C7<br>A35C8                                                          | 0160-2055<br>0160-2055<br>0160-2055                                                     |          | CAPACITUR-FXD .01UF +80-20X 100VDC CER<br>CAPACITUR-FXD .01UF +80-20X 100VDC CER<br>CAPACITUR-FXD .01UF +80-20X 100VDC CER                                                                                             |                                                     |                                                                      |
| A35CR1<br>A35CR2                                                                 | 1902-0041<br>1902-0041                                                                  |          | DIODE-ZNR 5.11V 54 DO-7 PD=.4W TC=0094<br>DIDDE-ZNR 5.11V 54 DO-7 PD=.4W TC=0094                                                                                                                                       | 0203G<br>0203G                                      | 32 10939-98<br>32 10939-98                                           |
| A35J1                                                                            | 1200-0853                                                                               |          | SOCKET-IC 16-CONT DIP-SLDR                                                                                                                                                                                             |                                                     |                                                                      |
| A35L1                                                                            | 9100=1611                                                                               | 1        | COIL-MLD 220NH 20% 9#50 ,1550%,375LG                                                                                                                                                                                   | 02178<br>0160G                                      | 15-4415-2M<br>CB5025                                                 |
| A35R1<br>A35R2<br>A35R3<br>A35R4<br>A35R5                                        | 0683-5625<br>0683-5625<br>0683-5625<br>0683-5625<br>0683-5625                           |          | RESISTOR 5.6K 5% .25W FC TC==400/+700 RESISTOR 5.6K 5% .25W FC TC=+400/+700                          | 0160G<br>0160G<br>0160G<br>0160G                    | CB5025<br>CB5025<br>CB5025<br>CB5025<br>CB5025                       |
| A35R6<br>A35R7<br>A35R8<br>A35R9<br>A35P10                                       | 0683=5625<br>0683=5625<br>0683=2225<br>0683=2225<br>0683=5625                           |          | RESISTOR 5.6K 5% .25W FC TC==400/+700 RESISTOR 5.6K 5% .25W FC TC==400/+700 RESISTOR 2.2K 5% .25W FC TC==400/+700 RESISTOR 2.2K 5% .25W FC TC==400/+700 RESISTOR 5.6K 5% .25W FC TC==400/+700                          | 0160G<br>0160G<br>0160G<br>0160G                    | CH5625<br>CH5625<br>CH2225<br>CH2225<br>CH5625                       |
| A35R11<br>A35R12                                                                 | 0663-5625<br>1810-0136                                                                  |          | RESISTOR 5.6K 5% 25W FC TC==400/+700<br>NETWORK=RES 10-PIN-SIP .1-PIN-SPCG                                                                                                                                             | 0160G<br>28480                                      | C85625<br>1810=0136                                                  |
| A 35 S 1<br>A 35 S 2<br>A 35 U 1<br>A 35 U 2<br>A 35 U 3<br>A 35 U 4<br>A 35 U 5 | 3101-0299<br>3101-1273<br>1820-1423<br>1820-0077<br>1820-1197<br>1820-0294<br>1820-0294 | 1<br>1   | SWITCH, SLIDE 4-SPST SWITCH, DPDT-NS IC MV TIL LS MONOSTBL RETRIG DUAL IC FF TIL D-TYPE POS-EDGE-TRIG CLEAR IC GATE TIL LS NAND GUAD 2-INP IC SHF-RGTR TIL R-S SERIAL-IN PHL OUT IC SHF-RGTR TIL R-S SERIAL-IN PHL OUT | 28480<br>-0169H<br>0223G<br>0169H<br>0340F<br>0340F | 3101-0299<br>SN74LS123N<br>7474PC<br>3874LS00N<br>DM8570N<br>DM8570N |


Table 6-3. Replaceable Parts (Cont'd).

| Reference<br>Designation                   | HP Part<br>Number                                                                                   | Qty                   | Description                                                                                                                                                                                                         | Mfr<br>Code                               | Mfr Part Number                                   |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------|
| A35116<br>A3517<br>A3508<br>A3509<br>A3509 | 1820-0294<br>1820-0294<br>1820-0668<br>1820-0694<br>1820-1081                                       |                       | IC SHF-RGTR TIL R-S SERIAL-IN PRL OUT IC SHF-RGTR TTL R-S SERIAL-IN PRL OUT IC BFR TTL NON-INV HEX 1-INP IC SHF-PGTR TIL R-S SERIAL-IN PRL OUT IC OFF-PGTR TIL R-S SERIAL-IN PRL OUT IC OFF TTL BUS DRVR QUAD 1-INP | 0340F<br>0340F<br>0223G<br>0340F<br>0379D | DM8570N<br>DM8570N<br>7407PC<br>DM8570N<br>AMHT26 |
| A35U11<br>A35U12<br>A35U13                 | 1820-0294<br>1820-0294<br>1820-0294                                                                 |                       | IC SHF-RGTR TIL R-S SERIAL+IN PRL OUT IC SHF-RGTR TIL R-S SERIAL+IN PRL OUT IC SHF-RGTR TIL R-S SERIAL-IN PRL OUT                                                                                                   | 0340F<br>0340F<br>0340F                   | DM8570N<br>DM8570N<br>DM8570N                     |
| A 35W1<br>A 35W2                           | 04261-72009<br>04261-72009                                                                          |                       | CABLE ASSEMBLY<br>CABLE ASSEMBLY                                                                                                                                                                                    | 28480<br>28480                            | 04261-72009<br>04261-72009                        |
|                                            |                                                                                                     |                       | ·                                                                                                                                                                                                                   |                                           |                                                   |
|                                            |                                                                                                     |                       | •                                                                                                                                                                                                                   |                                           |                                                   |
|                                            | II.                                                                                                 |                       | CHASSIS MOUNTED COMPONENTS                                                                                                                                                                                          |                                           |                                                   |
| C1<br>C2<br>C3                             | 0160-4259<br>0160-1586<br>0160-1586                                                                 | 1 2                   | CAPACITOR FXD .22UF 10%<br>CAPACITOR FXD .1UF 200VDC<br>CAPACITOR FXD .1UF 200VDC                                                                                                                                   |                                           |                                                   |
| CR1, CR2<br>CR3<br>CR4 ~ CR7<br>F1         | 1901-0496<br>1902-1232<br>1901-0033<br>2110-0007<br>2110-0202                                       | 2<br>1<br>4<br>1      | DIODE:RECTIFIER POWER<br>DIODE:ZNR IN3997AR 5.6V PD = 10W<br>DIODE Ge 180V 200mA<br>FUSE 1A 250V<br>FUSE .5A 250V                                                                                                   | j                                         |                                                   |
| J6, J7, J8                                 | 5060-4020                                                                                           | 3                     | CONNECTOR ASSEMBLY,50 CONTACTS (OPT. 001/004)                                                                                                                                                                       | :                                         |                                                   |
| A3<br>Q1, Q2, Q3                           | 04262-66503<br>0380-0644<br>2190-0034<br>1854-0063                                                  | 1<br>2<br>2<br>3      | CONNECTOR BOARD ASSEMBLY, HP-IB (OPT. 101)<br>SCREW, STAND OFF WASHER SP<br>WASHER SP<br>TRANSISTOR NPN 2N3055                                                                                                      |                                           |                                                   |
| R1<br>R2, R3<br>R4<br>R5<br>S1<br>S2, S4   | 0683-1025<br>0698-3391<br>2100-1250<br>2100-1832<br>3101-2216<br>3100-1201                          | 2<br>1<br>1<br>1<br>2 | RESISTOR 1k 5% .25W RESISTOR 21.5 1% .5W RESISTOR-VAR 500 20% RESISTOR-VAR 500 10% SWITCH:LINE SWITCH:THUMBWHEEL (OPT. 004)                                                                                         |                                           |                                                   |
|                                            |                                                                                                     |                       | CABLE ASSEMBLIES                                                                                                                                                                                                    |                                           |                                                   |
|                                            | 8120-0360<br>04262-61601<br>04262-61602<br>04262-61603<br>04262-61604<br>04262-61605<br>04262-61901 | ]<br>]<br>]<br>]      | FLAT CABLE ASSY (OPT. 001, 004, 101) CABLE ASSEMBLY, Lc, 19cm CABLE ASSEMBLY, Lp, 19cm CABLE ASSEMBLY, Hc, 16cm CABLE ASSEMBLY, Hp, 22cm CABLE ASSEMBLY, Hp, 18cm CABLE ASSEMBLY, LINE SWITCH                       |                                           |                                                   |
|                                            |                                                                                                     |                       | MISCELLANEOUS                                                                                                                                                                                                       |                                           |                                                   |
|                                            | 5001-0439<br>5040-7202<br>04261-40024<br>04262-40002<br>04262-85001                                 | 2<br>1<br>1<br>1      | TRIM, SIDE TRIM, TOP LAMP HOUSE, UNIT INDICATOR WINDOW ANNUNCIATOR FILM, UNIT                                                                                                                                       |                                           |                                                   |
| TOOL                                       | 8710-0340                                                                                           |                       | SCREWDRIVER (FURNISHED)                                                                                                                                                                                             |                                           |                                                   |
|                                            |                                                                                                     |                       | •                                                                                                                                                                                                                   |                                           |                                                   |
|                                            | !                                                                                                   |                       |                                                                                                                                                                                                                     |                                           |                                                   |
|                                            |                                                                                                     |                       |                                                                                                                                                                                                                     |                                           |                                                   |


Model 4262A Section VI


Table 6-3. Replaceable Parts (Cont'd).

| Reference<br>Designation                  | HP Part<br>Number                                                            | Qty                        | Description                                                                                                                | Mfr<br>Code | Mfr Part Number |
|-------------------------------------------|------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|
| CHASSIS PARTS                             |                                                                              |                            |                                                                                                                            |             | ***             |
| 1<br>2<br>3<br>4<br>5                     | 5040-7219<br>2680-0172<br>5060-9935<br>5060-9802<br>2360-0115                | 2<br>4<br>2<br>2<br>2<br>6 | CAP HANDLE FRONT<br>SCREW-MACH 10-32 .375-IN-LG<br>COVER. SIDE<br>HANDLE<br>SREW-MACH 6-32 .312-IN-LG                      |             |                 |
| 6<br>7<br>8<br>9                          | 5040-7220<br>0370-2159<br>5040-7201<br>1460-1345<br>5060-9845                | 2<br>1<br>4<br>2<br>1      | CAP HANDLE REAR<br>KNOB:PUSHBUTTON LINE<br>FOOT, FULL/HALF MODULE<br>STAND TILT<br>COVER, BOTTOM                           |             |                 |
| 11<br>12<br>13<br>14                      | 5040-7023<br>04262-00602<br>04262-00606<br>2510-0192<br>5020-8804            | 1<br>1<br>1<br>16<br>1     | ROD, PUSHBUTTON<br>DECK, LEFT<br>PLATE, LINE SWITCH<br>SCREW-MACH 8-32 .25-IN-LG<br>FRAME, REAR                            |             |                 |
| 16<br>17<br>18<br>19<br>20                | 5040-3318<br>0960-0443<br>04262-00205<br>1200-0041<br>.0340-0833             | 1<br>1<br>1<br>3<br>1      | COVER, L MODULE<br>LINE MODULE<br>PANEL, REAR<br>SOCKET, TRANSISTOR<br>COVER, TRANSISTOR                                   |             |                 |
| 21<br>22                                  | 2190-0020                                                                    | 2                          | SCREW                                                                                                                      |             |                 |
| 23<br>24<br>25                            | 2510-0135<br>3050-0139<br>7100-0129                                          | 4<br>8<br>1                | SCREW-MACH 8-32 2.25-IN-LG<br>WASHER FL MTLC NO8<br>COVER, POWER TRANSFORMER                                               |             |                 |
| 26(J9, J10)<br>27<br>28<br>29<br>30       | 1250-0118<br>9100-0865<br>2360-0113<br>5060-9833<br>2190-0016                | 2<br>1<br>8<br>1<br>3      | CONNECTOR, BNC<br>TRANSFORMER, POWER<br>SCREW-MACH 6-32 .25-IN-LG<br>. COVER, TOP<br>WASHER-LK INTL T NO3/8                |             |                 |
| 31<br>32<br>33<br>34<br>35                | 2950-0001<br>2580-0004<br>2190-0087<br>3050-0239<br>04262-00603              | 2<br>4<br>4<br>4<br>1      | NUT-HEX-DBL-CHAM 3/8-32-THD<br>NUT-HEX-DBL-CHAM 8-32-THD<br>WASHER-LK HLCL NO8<br>WASHER-FL NM NO8<br>DECK, CENTER         |             |                 |
| ·36<br>37<br>38<br>39<br>40               | 04262-00605<br>5020-8835<br>04262-00604<br>2360-0333<br>5020-8803            | 5<br>4<br>1<br>1           | PLATE, SHIELD<br>STRUT CORNER<br>DECK, RIGHT<br>SCREW-MACH 6-32 .25-IN-LG<br>FRAME, FRONT                                  |             |                 |
| 41<br>41<br>42<br>42<br>43                | 04262-00204<br>04262-00214<br>04262-00202<br>04262-00212<br>04262-00203      | ]<br>]<br>]                | SUB PANEL, FRONT (STD) SUB PANEL, FRONT (OPT. 004) PANEL, FRONT (STD) PANEL, FRONT (OPT. 004) SUB PANEL, FRONT             |             |                 |
| 44<br>44<br>45 (J2 - J5)<br>46<br>47 (J1) | 04262-00201<br>04262-00211<br>1510-0090<br>5000-4206<br>1510-0107            | 1<br>1<br>4<br>2<br>1      | PANEL, FRONT (HP) PANEL, FRONT (YHP) BINDING POST GRAY SHORTING LINK BINDING POST BLK                                      |             |                 |
| 48<br>49<br>50<br>51<br>51                | 2190-0016<br>2950-0043<br>0370-0451<br>7120-1254<br>7120-0478                | 2<br>5<br>1<br>1<br>1      | WASHER-LK INTL T NO3/8 NUT-HEX-DBL-CHAM 3/8-32-THD BEZEL, PUSHBUTTON LINE TRADE MARK (HP) TRADE MARK (YHP)                 |             |                 |
| 52<br>53<br>54<br>55<br>56                | 04262-00607<br>2360-0115<br>0520-0129<br>04262-00608<br>2420-0006            | 1<br>2<br>6<br>3<br>2      | PLATE, BLIND<br>SCREW-MACH 6-32 .312-IN-LG<br>SCREW-MACH 2-56 .312-IN-LG<br>PLATE, BLIND<br>NUT-HEX-W/LKWR 6-32-THD        |             |                 |
| 57<br>58<br>59<br>60<br>61                | 0624-0045<br>2190-0008<br>0340-0458<br>1200-0080<br>3050-0226                | 6<br>6<br>3<br>4<br>2      | SCREW-TPG 6-20 .375-IN-LG<br>WASER-LK EXT T NO6<br>INSULATOR, TRANSISTOR<br>INSULATOR, DIODE<br>WASHER-FL MTLC NO10        |             | ;               |
| 62<br>63<br>64<br>65<br>66<br>67          | 0360-0270<br>2740-0003<br>04262-01201<br>1490-0848<br>0590-0061<br>2190-0060 | 3<br>3<br>1<br>1<br>1      | SOLDER LUG<br>NUT-HEX-W/LKWR 10-32-THD<br>PLATE, ANGLE<br>BUSHING<br>NUT-HEX-DBL-CHAM 1/4-32-THD<br>WASHER-LK INTL T NO1/4 |             |                 |
|                                           |                                                                              |                            | •                                                                                                                          |             |                 |



Model 4262A





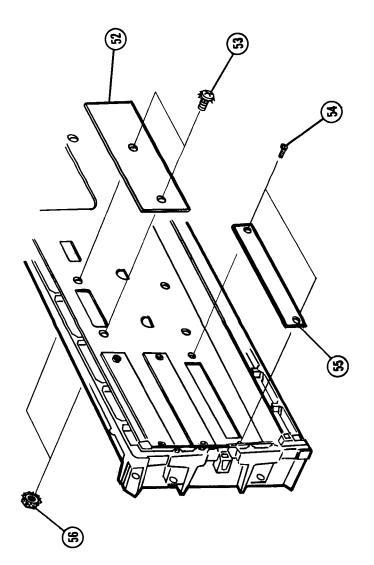



Table 6-4. Option 010 Modification

| Reference<br>Designation                                 | HP Part<br>Number                                                          | Qty | Description                                                                                                     |
|----------------------------------------------------------|----------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------|
| All (OPTION 010)                                         | 04262-66911                                                                |     | OSCILLATOR & SOURCE RESISTOR BOARD ASSY                                                                         |
| Al 1C8<br>Al 1C9                                         | 0160-5821<br>0160-5821                                                     |     | CAPACITOR, FXD 5000pF .25% 50V CAPACITOR, FXD 5000pF .25% 50V                                                   |
| A11R25<br>A11R26<br>A11R27<br>A11R28<br>A11R29<br>A11R30 | 0698-4494<br>0698-2228<br>0757-0279<br>0757-0123<br>0698-2228<br>0757-0279 |     | RESISTOR 35.7K 1% RESISTOR 318.3K .5% RESISTOR 3.16K 1% RESISTOR 34.8K 1% RESISTOR 318.3K .5% RESISTOR 3.16K 1% |
|                                                          |                                                                            |     | other parts are same as 04262-66511                                                                             |
| A14 (OPTION 010)                                         | 04262-66914                                                                |     | PHASE DETECTOR & INTEGRATOR BOARD ASSY                                                                          |
| A14C7                                                    | 0160-1554                                                                  |     | CAPACITOR, FXD .47UF 200V                                                                                       |
| A14R33                                                   | 0698-4511                                                                  |     | RESISTOR 86.6K 1%                                                                                               |
|                                                          |                                                                            | i   | other parts are same as 04262-66514                                                                             |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          | -                                                                          |     |                                                                                                                 |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          |                                                                            |     |                                                                                                                 |
|                                                          | 1                                                                          |     |                                                                                                                 |

# SECTION VII MANUAL CHANGES

#### 7-1. INTRODUCTION.

7-2. This section contains information for adapting this manual to instruments to which the contents do not directly apply. The following paragraphs explain how to adapt this manual to apply to older instruments with a lower serial prefix.

## 7-3. MANUAL CHANGES.

- 7-4. To adapt this manual to your particular instrument, refer to Table 7-1 and make all of the manual changes listed opposite your instrument serial number. Perform these changes in the summary by assembly.
- 7-5. If your instrument serial number is not listed on the title page of this manual or in Table 7-1 to the right, it may be documented in a yellow MANUAL CHANGES supplement. For additional information about serial number coverage, refer to INSTRUMENT COVERED BY MANUAL in Section I.

Table 7-1. Manual Changes by Serial Number.

| Serial Prefix<br>or Number | Make Manual Changes |
|----------------------------|---------------------|
| 1710J00260 and below       | 1, 2, 3             |
| 1710J00340 and below       | 2, 3                |
| 1739J00600 and below       | 3, 5                |
| 1739J02280 and below       | 4, 5                |
| 2022J03750 and below       | 5                   |
|                            |                     |
|                            |                     |
|                            |                     |
|                            |                     |

Table 7-2. Summary of Changes by Assembly (Continued on Page 7-2).

|    | Assembly |    |    |             |                |                   |                       |  |  |  |  |  |
|----|----------|----|----|-------------|----------------|-------------------|-----------------------|--|--|--|--|--|
| A1 | A2       | A3 | A4 | A5          | A9             | A11               | A12                   |  |  |  |  |  |
|    |          |    |    |             |                |                   |                       |  |  |  |  |  |
|    |          |    |    |             |                |                   |                       |  |  |  |  |  |
|    |          |    |    |             | -              |                   | 04262-<br>26512       |  |  |  |  |  |
|    |          |    |    |             |                |                   | 04262-<br>66612       |  |  |  |  |  |
|    |          |    |    |             |                |                   |                       |  |  |  |  |  |
|    | ,        |    |    |             |                |                   |                       |  |  |  |  |  |
|    |          |    |    |             |                |                   | -                     |  |  |  |  |  |
|    |          |    |    |             |                |                   |                       |  |  |  |  |  |
|    | Al       |    |    | A1 A2 A3 A4 | A1 A2 A3 A4 A5 | A1 A2 A3 A4 A5 A9 | A1 A2 A3 A4 A5 A9 A11 |  |  |  |  |  |

Table 7-2. Summary of Changes by Assembly (Continued).

| CHANGE |     |     |     |                 | Assembly        | 7   |     |     |           |
|--------|-----|-----|-----|-----------------|-----------------|-----|-----|-----|-----------|
| GHANGE | A13 | A14 | A21 | A22             | A23             | A24 | A25 | A35 | No Prefix |
| 1      |     |     |     | 04262-<br>66522 |                 |     |     |     |           |
| 2      | _   |     |     |                 | 04262-<br>66623 |     |     |     |           |
| 3      |     |     |     |                 |                 |     |     |     |           |
| 4      |     |     |     |                 |                 |     |     |     |           |
| 5      |     |     |     |                 | U15<br>U16      |     |     |     |           |

Pages 6-16 and 6-17, Table 6-3, Replaceable Parts, Change A22 board parts list to Table A.

Page 8-61, Figure 8-46, A22 schematic diagram,
Partially change Figure 8-46 as shown in Figure A.

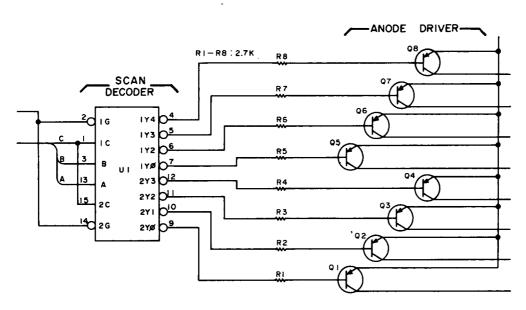



Figure A.

Table A.

| Reference<br>Designation                                                                                                                            | HP Part<br>Number                                             | Qty | Description                                                                                                                                                                                                    | Mfr<br>Code                                    | Mfr Part Number                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|
|                                                                                                                                                     |                                                               |     |                                                                                                                                                                                                                |                                                |                                                                    |
| 55A                                                                                                                                                 | 04262-66522<br>04262-26522                                    | 2   | DISPLAY CONTROL & RAM BOAKO ASSEMBLY<br>PC HOARD, BLANK                                                                                                                                                        | 28480<br>28480                                 | 04565-5625<br>04565-66255                                          |
| A 2 2 C C A 2 2 C C C A 2 2 C C C A 2 2 C C C A 2 2 C C C A 2 2 C C C A 2 2 C C C A 2 2 C C C A 2 2 C C C A 2 C C C A 2 C C C A 2 C C C A 2 C C C C | 0180-0291<br>0160-2055<br>0160-2055<br>0160-2055<br>0160-2055 |     | CAPACITOR=FXO 1UF+=10% 35VDC TA CAPACITOR=FXD .01UF +80-20% 100VDC CER                    | 04507                                          | 1500105%903542                                                     |
| 42264<br>42367<br>42368<br>42369<br>423610                                                                                                          | 0160-2204<br>0160-2261<br>0160-0939<br>0180-0291<br>0160-0939 | i)  | CAPACITUR-FXD 100PF +=5% 300VDC MICA0+70<br>CAPACITUR-FXD 15PF +=5% 500VDC CER0+=30<br>CAPACITUR-FXD 430PF +=5% 300VDC MICA0+70<br>CAPACITOR-FXD 10F++10% 35VDC TA<br>CAPACITOR-FXD 450PF +=5% 300VDC MICA0+70 | 28480<br>0420J<br>0420J<br>28480<br>28480      | 0160=2204<br>0160=2261<br>0160=0939<br>1500105×9035A2<br>0160=0939 |
| 455C11<br>455C15                                                                                                                                    | 0169-0939<br>0169-2205                                        | ۶   | CAPACITUR-FXD 430PF +-5% 300VDC MICAO+70 CAPACITUR-FXD 120PF +-5% 300VDC MICAO+70                                                                                                                              | 28480<br>28480                                 | 9390-0410<br>2055-0410                                             |
| 422CR1                                                                                                                                              | 1902-0041                                                     |     | DIODE-ZNR 5.11V 5% 00-7 PD#,4W TC==,009%                                                                                                                                                                       | 05036                                          | S7 10939-9H                                                        |
| 15521                                                                                                                                               | 1200-0541                                                     | 1   | SUCKET-IC 24-CONT DIP-SEDR                                                                                                                                                                                     |                                                |                                                                    |
| A2201<br>A2202<br>A2203<br>A2204<br>A2205                                                                                                           | 1853-0107<br>1853-0107<br>1853-0107<br>1853-0107<br>1853-0107 |     | TRANSISTOR, PNP SI                                                                                              | \$8480<br>\$8480<br>\$8480<br>\$8480<br>\$8480 | 1853-0107<br>1853-0107<br>1853-0107<br>1853-0107<br>1853-0107      |
| 42846<br>70854<br>40554                                                                                                                             | 1853-0107<br>1853-0107<br>1853-0107                           |     | TRANSISTOR, PNP SI<br>TRANSISTOR, PNP SI<br>TRANSISTOR, PNP SI                                                                                                                                                 | 28480<br>28480<br>26460                        | 1855-0107<br>1853-0107<br>1855-0107                                |
| A22H1<br>A22H7<br>A22K3<br>A22K4<br>A22H5                                                                                                           | 0683-2735<br>0683-2735<br>0683-2735<br>0683-2735<br>0683-2735 | 8   | RESISTOR 27K 5% .25W FC TC==400/+600<br>RESISTOR 27K 5% .25W FC TC==400/+600           | 0160G<br>0160G<br>0160G<br>0160G<br>0160G      | CH2735<br>CH2735<br>CH2735<br>CH2735<br>CH2735                     |
| 42246<br>42247<br>42244<br>42249<br>422410                                                                                                          | 0643-2735<br>0643-2735<br>0643-2735<br>0643-5605<br>0643-5605 |     | PESISTOM 27K 5% .25W FC TC=-400/+800<br>RESISTOM 27K 5% .25W FC TC=-400/+800<br>HESISTOM 27K 5% .25W FC TC=-400/+800<br>RESISTOM 50 5% .25W FC TC=-400/+500<br>RESISTOM 50 5% .25W FC TC=-400/+500             | 01606<br>01606<br>01606<br>01606               | CH2735<br>CH2735<br>CH2735<br>CH3605<br>CH5605                     |
| A22H11<br>A22R12<br>A22H13<br>A22H14<br>A22H15                                                                                                      | 0643-5605<br>0643-5605<br>0643-5605<br>0643-5605<br>0663-5605 |     | RESISTOR 56 5% .25% FC TC==400/+500<br>RESISTOR 56 5% .25% FC TC==400/+500                | 01606<br>01606<br>01606<br>01606<br>01606      | L #3605<br>C #3605<br>C #3605<br>C #3605<br>C #3605                |
| A22R16<br>A22R17<br>A22R18<br>A22R19<br>A22K20                                                                                                      | 06#3=5605<br>06#3=2725<br>06#3=1#25<br>06#3=4725<br>1810=0121 |     | HESISTON 56 5% .25% FC TC==400/+500 RESISTOP 2,7% 5% .25% FC TC==400/+700 RESISTOR 1.6% 5% .25% FC TC==400/+700 RESISTOW 4,7% 5% .25% FC TC==400/+700 NETWORK=PES 9=PIN=SIP .15=PIN=SPC/                       | 0160G<br>0160G<br>0160G<br>0160G<br>28480      | (85005<br>CH2725<br>CH34725<br>CH4725<br>1810~0121                 |
| 422821<br>422822<br>A22839                                                                                                                          | 1810-0205<br>1810-0206<br>1810-0164                           | 2   | NETWORK-RES H-PIN-SIP .I-PIN-SPCG<br>NETWORK-HES R-PIN-SIP .I-PIN-SPCG<br>NETWORK-RES 9-PIN-SIP .IS-PIN-SPCG                                                                                                   | 0248C<br>0374D<br>28480                        | 750-61-R4.7K<br>4508R-101-103S<br>1810-0164                        |
| 42251                                                                                                                                               | 3101-0299                                                     |     | SWITCH, SLIDE 4-SPST                                                                                                                                                                                           | 28480                                          | 3101-0299                                                          |
| A22U1<br>A22U2<br>A22U3<br>A22U4<br>A22U5                                                                                                           | 1820-1245<br>1820-1194<br>1820-1199<br>1820-1201<br>1820-1201 |     | IC DCDR TIL LS 2-TD-4-LINE DUAL 2-INP IC CNTR TIL LS HIN UP/DDWN SYNCHHO IC INV TIL LS HEX 1-INP IC GATE TIL LS AND GUAD 2-INP IC DCDR TIL HCD-TD-7-SLG                                                        | 0169H<br>0379D<br>0169H<br>0169H<br>0169H      | 5N74L8155N<br>AM74LS193PU<br>SN74L504N<br>SN74L508N<br>SN74L5247N  |
| A22H6<br>A22U7<br>A22UA<br>A22U9<br>A22U10                                                                                                          | 1820-9567<br>1820-1490<br>1858-0033<br>1820-0628<br>1820-1470 | 8   | IC MV TIL DUAL IC CNTR TIL LS DECD ASYNCHRO TRANSISTOR FT5712M IC SN7489N 64-BIT RAM TIL IC MUXRZDATA-SEL TIL LS 2-T0-1-LINE QUAD                                                                              | 0203G<br>0169H<br>28480<br>0340F<br>03790      | MC4024P<br>SN74L590H<br>DM7489N<br>SN74L5157N                      |
| A22U11<br>A22U12<br>A22U13<br>A22U14<br>A22U14                                                                                                      | 1820+1425<br>1820+1112<br>1820+1197<br>1820+1490<br>1820+1478 |     | IC SCHMITT-TRIG TIL LS NAND QUAD 2-INP IC FF TIL LS D-TYPE POS-EDGE-TRIG IC CATE TIL LS NAND QUAD 2-INP IC CNTR TIL LS DECD ASYNCHRO IC CNTR TIL LS BIN ASYNCHRO                                               | 0169H<br>0169H<br>0169H<br>0169H<br>0169H      | SN74LS132N<br>SN74LS74N<br>SN74LS96N<br>SN74LS96N<br>SN74LS93N     |
| A22016<br>A22017<br>A22018<br>A22019<br>A22020                                                                                                      | 1858-0033<br>1820-0628<br>1820-1470<br>1820-1081<br>1820-1081 |     | TRANSISTOR FT5712M  IC SN7489N 64-81T RAM TTL  IC MUXR/DATA-SEL TTL LS 2-10-1-LINE GUAD  IC DRYR TTL BUS DRYR GUAD 1-INP  IC DRYR TTL BUS DRYR GUAD 1-INP                                                      | 28480<br>0340F<br>03790<br>03790<br>03790      | DM7459N<br>5N74L5157N<br>AM5726<br>AM5726                          |
| 150554<br>550554                                                                                                                                    | 1820-1196<br>1818-0135                                        | 4   | IC FF TTL LS D-TYPE POS-EDGE-TRIG COM<br>IC MC 0810L-1 1K RAM NMUS                                                                                                                                             | 0379D<br>n203G                                 | AM74LS174N<br>MCG810L=1                                            |
| A22Y1                                                                                                                                               | 0410-0209                                                     | 2   | CRYSTAL, QUARTZ                                                                                                                                                                                                | 28480                                          | 0410-0209                                                          |

Page 6-17, Table 6-3, Replaceable Parts, Change A23 board parts list to Table B.

Page 8-63, Figure 8-47, A23 Component Locations, Change Figure 8-47 to Figure B.

Page 8-63, Figure 8-48, A23 schematic diagram, Change Figure 8-48 to Figure C.

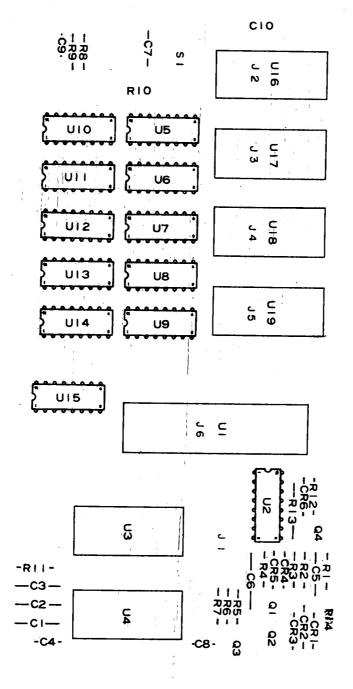



Figure B.

Table B.

| Designation                                        | HP Part<br>Number                                                     | Qty | Description                                                                                                                                                                                            | Mfr<br>Code                               | Mfr Part Number                                                |
|----------------------------------------------------|-----------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|
|                                                    |                                                                       | ,   | FROCESSOR & ROM BUARD ASSEMBLY                                                                                                                                                                         | 28480                                     | 04262+66523                                                    |
| 453                                                | 04262-66523<br>04262-26523                                            | 1 1 | PC HOARD, BLANK                                                                                                                                                                                        | 28480                                     | 04262-26523                                                    |
| A23C2<br>A23C3<br>A23C4<br>A23C5                   | 0150-0291<br>0180-0197<br>0180-0197<br>0160-2055<br>0180-0291         |     | CAPACITUR-FXD 1UF++10X 35VDC TA CAPACITUR-FXD 2.2UF++10X 20VDC TA CAPACITUR-FXD 2.2UF++10X 20VDC TA CAPACITUR-FXD 3.0UF +80-20X 100VDC CEN CAPACITUR-FXD 1UF++10X 35VDC TA                             | 10200<br>10500<br>10500<br>10500          | 1500105x9035A2<br>1500225x9020A2<br>1500225x9020A2             |
| A23C6<br>A23C7<br>A23C8<br>A23C9<br>A23C9          | 0180-2141<br>0180-0229<br>0160-2055<br>0160-2055<br>0160-2055         | 1 4 | CAPACITOR-FXD 3.3UF+-10% 6VDC TA<br>CAPACITOR-FXD 33UF+-10% 10VDC TA<br>CAPACITOR-FXD .01UF +80-20% 100VDC CER<br>CAPACITOR-FXD .01UF +80-20% 100VDC CEP<br>CAPACITOR-FXD .01UF +80-20% 100VDC CER     | CuSuO                                     | 1500336x9010h2                                                 |
| A23CP2<br>A23CP2<br>A23CR3<br>A23CR4<br>A23CR4     | 1902-315A<br>1902-315A<br>1902-1299<br>1902-0048<br>1901-0040         | 1   | DIODE, ZENER, 9.76V<br>CIODE, ZENER, 3.3V<br>DIODE-ZNE 6,81V 5% DD-7 PDE,4W TC=+,043%<br>DIODE-SWITCHING 30V 50MA 2NS DD-35<br>DIODE-SWITCHING 30V 50MA 2NS DD-35                                      | 0223G<br>0203G<br>0223G<br>28480<br>28480 | F77459<br>SZ11213-1<br>F27244<br>1901-0040<br>1901-0040        |
| A23CR6                                             | 1902-3107                                                             | 1   | DIODE-ZNK 5.76V 2% DO-7 PD=.4% 1C=+,017%                                                                                                                                                               | 02036                                     | 87 10939-114                                                   |
| 1.625<br>2.625<br>2.625<br>2.625<br>2.625<br>2.625 | 1200-0853<br>1200-0541<br>1200-0541<br>1200-0541<br>1200-0541         | 1   | SOCKET-IC 16-CONT DIP-SLDR SOCKET-IC 24-CONT DIP-SLDR SOCKET-IC 24-CONT DIP-SLDK SUCKET-IC 24-CONT DIP-SLDR SOCKET-IC 24-CONT DIP-SLDR                                                                 | \$8480<br>\$8480<br>\$8480<br>\$8480      | 1200-0541<br>1200-0541<br>1200-0541<br>1200-0541               |
| A23J6                                              | 1200-0654                                                             |     | SOCKET-IC 40-CONT DIP-SLDR                                                                                                                                                                             |                                           |                                                                |
| A2301<br>A2302<br>A2303<br>A2304                   | 5080-3078<br>1854-0215<br>1854-0477<br>1853-0012                      | i i | THANSISTOR MPN SI PD=300M, FT=200PH/ THENSISTOR MPN SI PD=350Mm FT=360MH/ THANSISTOR MPN 2M2222A SI TU=18 PD=500MM THANSISTOR PMP 2M2290MA SI TU=39 FU=600MM                                           | 02036<br>02236<br>01698                   | 245557<br>545557<br>5456447                                    |
| A23R1<br>A23R2<br>A23R3<br>A23R4<br>A23R4          | 06-3-1035<br>06-43-16-45<br>06-43-10-55<br>06-43-10-35<br>06-43-56-25 | 1   | #ESISTON 10K 5% .25% FL 1C==#00/+700<br>#ESISTOP 180K 5% .25% FC 1C==600/+700<br>#ESISTON 10K 5% .25% FC 1C==600/+700<br>#ESISTOM 10K 5% .25% FC 1C==400/+700<br>#ESISTOM 5,6K 5% .25% FC 1C==400/+700 | 01606<br>01606<br>01606<br>01606<br>01606 | CM1035<br>CM1M45<br>CM1055<br>CM1035<br>CB5625                 |
| A23R6<br>A23R7<br>A23RR<br>A23R9<br>A23R10         | 0698-5430<br>0643-5615<br>0683-4725<br>0683-4725<br>1819-0164         | 1   | RESISTOR 21,5 1% .125% F TC=0++100  RESISTOR 4,7% 5% .25% FC TC=+400/+000  RESISTOR 4,7% 5% .25% FC TC=+400/+700  RESISTOR 4,7% 5% .25% FC TC=+400/+700  NETWORK-PES 9-PIN-SIP .15-PIN-SPCG            | 03858<br>01606<br>01606<br>01606<br>28480 | FMESS=170=10=1185=1<br>CMS015<br>CM4725<br>CM4725<br>1810=0164 |
| A23R11<br>A23R12<br>A23R13<br>A23R14               | 0643-1025<br>0757-0418<br>0698-3391<br>2100-2033                      | 1 1 | RESISTOR 1K 5% ,25% FC TC==400/+660<br>RESISTOR 619 1% ,125% F TC=0+=100<br>RESISTOR 21,5 1% ,5% F TC=0+=100<br>RESISTOR=TRMK 1K 10% C 510E=ADJ 1=TRN                                                  | 20610<br>18580<br>18680<br>18680          | (8)025<br>(4=1/8=10=6)9x=F<br>(MF=65=2<br>ET50X102             |
| 42351                                              | 3101-0299                                                             | 1   | SWITCH, SLIDE 4-SPST                                                                                                                                                                                   | 28480<br>28480                            | 3101-0299                                                      |
| 42301<br>42302<br>42303<br>42304<br>42305          | 1820=1691<br>1820=1197<br>1820=0702<br>1820=0702<br>1820=1081         | 2   | IC MICPROC MOS IC CATE TIL LS HAND QUAD 2-INP IC DCDR TIL L 4-TU-16-LINE 4-INP IC DCDR TIL L 4-T0-16-LINE 4-INP IC DRVR TIL BUS DRVR HUAD 1-INP IC DRVR TIL BUS DRVR HUAD 1-INP                        | 0169H<br>0223G<br>0223G<br>0273G          | 91.11PC<br>93.11PC<br>AMOTES                                   |
| A2306<br>A2307<br>A2308<br>A2309<br>A23010         | 1820-1081<br>1820-1195<br>1820-1196<br>1820-1418<br>1820-0471         | 1 2 | IC DRVR TIL BUS DRVR UUAD 1-INP IC FF TIL LS D-TYPE PUS-EDGE-TRIG COM IC FF TIL LS D-TYPE POS-EDGE-TPIG COM IC DCDR TIL LS BCD-TO-DEC 4-TO-10-LINE IC INV ITL HEX 1-INP                                | 03790<br>03790<br>03790<br>0169H<br>02236 | AM6126<br>AM74LS1754<br>AM74LS174N<br>SN74LS42N<br>7406PC      |
| A23011<br>A23012<br>A23013<br>A23014<br>A23015     | 1620-1195<br>1820-1201<br>1820-1197<br>1820-1199<br>1820-1112         |     | IC FF TTL LS D-TYPE PUS-EDGE-TPIG COM IC GATE TIL LS AND QUAD 2-INP IC GATE TIL LS NAND QUAD 2-INP IC INV TIL LS HEX 1-INP IL FF TTL LS G-TYPE PUS-EDGE-TPIG                                           | 0379D<br>0169H<br>0169H<br>0169H<br>0169H | AM74LS175A<br>SN74LS08N<br>SN74LS08N<br>SN74LS08N<br>SN74LS78N |
|                                                    | 04262-85002<br>04262-65003<br>04262-85004                             | 1 1 | IC. RUM INTEL 2708<br>IC. RUM INTEL 2708                                                                                                                                                               | 28480<br>28480<br>28480<br>28480          | 04262-65002<br>04262-65003<br>04262-65005                      |

Page 8-51, Figure 8-34. Al2 Component Locations, Change Figure 8-34 to Figure D.

|                                |                  | * * ***                   | - |
|--------------------------------|------------------|---------------------------|---|
| —C12<br>÷R2                    | CIE              | -R12+                     |   |
| ÷R2<br>-R3<br>-R3              | 0-   ***         | .C5 (C4) QF (R)           |   |
|                                | <u></u><br>      | Q2 + R2 +<br>- CR2 +      |   |
| C <sub>1</sub> 15              | -R32-            | -R14- Q3 -R3-             |   |
| -R37-<br>-R38-                 | U2               | -R15- Q4 -R4-             |   |
|                                | C14              | -RI6- Q5<br>-CR6- Q6 —CI— |   |
| C16                            | Q14              | -R17                      |   |
| CR   7<br>- R39                | -R33 -<br>-R34 - | -RI8- Q8                  |   |
| CR   8                         | CR 14<br>- R35-  | -CR8 R7-                  |   |
| CR19                           | CR 15:           | -CR9-                     |   |
| CR20                           | CR16             | -R20-                     |   |
| -R41-                          | -R36-            | CR10<br>-R21- K1          |   |
| Q16                            | Q15              | Source                    |   |
| CIB                            | C17              | -R22- QIIR9-              |   |
|                                |                  | С3                        |   |
|                                | R42—             | -R10-                     |   |
| -R44-                          | R43—<br>Q19      | -CR3-                     |   |
| -R45-<br>-R46-                 | Q20              | Q12<br>C6 -R23-           |   |
| -R47-                          | Q21 Q17          | C7 -R24- Q13              |   |
| -R48 <i>-</i><br>-R49 <i>-</i> | Q22<br>Q18       | C8 -R25RII-<br>C9 -R26-   |   |
| -R50-                          | Q23              | CIO -R27-<br>CRI3         |   |
| C20                            | C19              |                           |   |

Figure D.

Page 6-8, Table 6-3, Replace Parts, Change Al2 board parts list to Table C.

Page 8-51, Figure 8-34. Al2 Compornent Locations, Change Figure 8-34 to Figure E.

Page 8-51, Figure 8-35. Al2 Schematic diagram, Change Figure 8-35 to Figure F.

Table C.

| Reference HP Part Number                            |                                                                                        | Qty         | Description                                                                                                                                                                                         | Mfr<br>Code                               | Mfr Part Number                                                   |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------|--|
| A12                                                 | 04262-66512<br>04262-26512                                                             | 1 1         | RANGE RESISTOR BOARD ASSEMBLY<br>PC BOARD, BLANK                                                                                                                                                    | 28480<br>28480                            | 04262-66612<br>04262-26612                                        |  |
| A12C3*                                              | 0160-0159<br>0140-0190<br>0121-0059                                                    | 1 1         | CAPACITOR-FXD 6800PF +-10X 200VDC POLYE<br>CAPACITOR-FXD 39PF +-5X 300VDC<br>*FACTORY SELECTED PART                                                                                                 | 0420J<br>72136                            | 292P68292<br>DM15E390J0300WV1CR                                   |  |
| <b>412C</b> 4                                       | 0180-1051                                                                              |             | CAPACITOR-V TRMR-CER 2-8PF 350V PC-MTG *FACTORY SELECTED PART  CAPACITOR, FXD 100 UF 16V M                                                                                                          | 73899                                     | 0180-1051                                                         |  |
| 412C5<br>412C6<br>412C7<br>412C8                    | 0180=1051<br>0150=0050<br>0150=0050<br>0150=0050                                       | 6           | CAPACITUR, FXD 100 UF 16V M CAPACITUR-FXD 1000PF +80=20% 1KVDC CEH CAPACITUR-FXD 1000PF +80=20% 1KVDC CEH CAPACITUR-FXD 1000PF +80=20% 1KVDC CEH                                                    | 28480<br>28480<br>28480<br>28480          | 0180-1051<br>0150-0050<br>0150-0050<br>0150-0050                  |  |
| A12C9<br>A12C11<br>A12C12<br>A12C13                 | 0150-0050<br>0150-0050<br>0121-0105<br>0180-0269<br>0160-2150                          | 1<br>1<br>1 | CAPACITUR-FXD 1000PF +80-20% 1KVDC CER<br>CAPACITOH-FXD 1000PF +80-20% 1KVDC CER<br>CAPACITOR-V TRMH-CER 9-35PF 200V FC-MTG<br>CAPACITOR-FXD 1UF+75-10% 150VDC AL<br>CAPACITOR-FXD 33PF +-5% 300VDC | 28480<br>28480<br>73899<br>0420J<br>28480 | 0150-0050<br>0150-0050<br>0111PR350<br>3001050150842<br>0100-2150 |  |
| A12C14*<br>A12C15<br>A12C16<br>A12C17<br>A12C18     | 0160-2307<br>0180-1051<br>0180-1051<br>0180-1051<br>0180-1051                          | 3           | CAPACITOR-FXD 47pF +-5% 300VDC CAPACITOR, FXD 100 UF 16V M                                                      | 58480<br>58480<br>58480<br>58480          | 0180-1051<br>0180-1051<br>0180-1051<br>0180-1051                  |  |
| 412C10                                              | 0180-1051<br>0180-1051                                                                 |             | CAPACITOR, FXD 100 UF 16V M<br>CAPACITUR, FXD 100 UF 16V M                                                                                                                                          | 28480<br>28480                            | 0180-1051<br>0180-1051                                            |  |
| A12CR1<br>A12CR3<br>A12CR3<br>A12CR4<br>A12CR5      | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040                          | 60          | DIODE-SMITCHING 30V 50MA 2NS DO-35<br>DIODE-SMITCHING 30V 50MA 2NS DO-35<br>DIODE-SMITCHING 30V 50MA 2NS DO-35<br>DIODE-SMITCHING 30V 50MA 2NS DO-35<br>DIODE-SMITCHING 30V 50MA 2NS DO-35          | 28480<br>28480<br>28480<br>28480<br>28480 | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040     |  |
| A12CH6<br>A12CH7<br>A12CH9<br>A12CH9<br>A12CH10     | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040                          |             | DIODE-SWITCHING 30V 50MA 2NS 00=35<br>DIODE-SWITCHING 30V 50MA 2NS DO=35<br>DIODE-SWITCHING 30V 50MA 2NS DO=35<br>DIODE-SWITCHING 30V 50MA 2NS DO=35<br>DIODE-SWITCHING 30V 50MA 2NS 00=35          | 28480<br>28480<br>28480<br>28480<br>28480 | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040     |  |
| A12CR11<br>A12CR12<br>A12CR13<br>A12CR14<br>A12CR15 | 1901-0040<br>1901-0040<br>1902-3149<br>1901-0040<br>1901-0040                          |             | DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-ZNP 9,09V 52 DO-7 PDE,4W 1C=+.057X<br>DIODE-SWITCHING 30V 50MA 2NS DO-35<br>DIODE-SWITCHING 30V 50MA 2NS DO-35    | 28480<br>28480<br>02236<br>28480<br>28480 | 1901-0040<br>1901-0040<br>FZ7256<br>1901-0040<br>1901-0040        |  |
| 412CR16<br>412CR17<br>412CR1H<br>412CR19<br>412CR20 | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040                          |             | D10DE-SWITCHING 30V 50MA 2NS D0-35<br>D10DE-SWITCHING 30V 50MA 2NS D0-35<br>D10DE-SWITCHING 30V 50MA 2NS D0-35<br>D10DE-SWITCHING 30V 50MA 2NS D0-35<br>D10DE-SWITCHING 30V 50MA 2NS D0-35          | 28480<br>28480<br>28480<br>28480<br>28480 | 1901-0040<br>1901-0040<br>1901-0040<br>1901-0040<br>1901-0040     |  |
| A12K1                                               | 0490-0237                                                                              | 1           | RELAY, REED 2A                                                                                                                                                                                      | 26480                                     | 0490-0237                                                         |  |
| A1201<br>A1202<br>A1203<br>A1204<br>A1205           | 5080-3830<br>5080-3830<br>5080-3830<br>1855-0128<br>5080-3830                          | 1           | TRANSISTOR J=FET N=CHAN D=MODE SI THANSISTOR J=FET N=CHAN D=MODE SI THANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN SI THANSISTOR J=FET N=CHAN D=MODE SI                                  | 28480                                     |                                                                   |  |
| A1206<br>A1207<br>A1208<br>A1209<br>A12010          | 5080 - 3830<br>5080 - 3830<br>5080 - 3830<br>5080 - 3830<br>5080 - 3830                |             | TRANSISTOR J-FET N-CHAN D-MODE SI                           |                                           |                                                                   |  |
| A12011<br>A12012<br>A12013<br>A12014<br>A12015      | 5080 - 3830<br>5080 - 3078<br>5080 - 3078<br>5080 - 3078<br>5080 - 3835<br>1854 - 0013 | 6           | TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOR NPN SI PD=300MM FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR J=FET 2N5245 N=CHAN D=MODE SI TRANSISTOR NPN 2N2218A SI TO=5 PD=800MW        | 0169H<br>0203G                            | 2N5245<br>2N2218A                                                 |  |
| A12016<br>A12017<br>A12018<br>A12019<br>A12020      | 1853-0012<br>1853-0020<br>1853-0020<br>1853-0020<br>5080-3078                          | 5           | TRANSISTOR PNP 2N2904A SI TU=39 PD#600MW TRANSISTOR PNP SI PD#300Mm FT#150MMZ TRANSISTOR PNP SI PD#300Mm FT#150MMZ TRANSISTOR PNP SI PD#300Mm FT#150MMZ TRANSISTOR NPN SI PD#300Mm FT#200MMZ        | 0169H<br>28480<br>28480<br>28480          | 2N2904A<br>1853-0020<br>1853-0020<br>1853-0020                    |  |
| 12021<br>A12022<br>A12023                           | 1853-0020<br>1853-0020<br>1853-0020                                                    |             | TRANSISTOR PNP ST PD=300MW FT=150MMZ TRANSISTOR PNP SI PD=300MW FT=150MMZ TRANSISTOR PNP SI PD=300MW FT=150MMZ                                                                                      | 28480<br>28480<br>28480                   | 1853-0020<br>1853-0020<br>1855-0020                               |  |
|                                                     |                                                                                        |             |                                                                                                                                                                                                     |                                           |                                                                   |  |

Table C. (Cont'd).

| Reference<br>Designation                       | HP Part<br>Number                                             | Qty               | Description                                                                                                                                                                                        | Mfr<br>Code                               | Mfr Part Number                                                      |
|------------------------------------------------|---------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|
| A12R1<br>A12R2<br>A12R3<br>A12R4<br>A12R5      | 2100-2514<br>0683-1055<br>0683-1055<br>0698-2298<br>0698-2294 | 1<br>35<br>1<br>1 | RESISTOR-TRMR 20K 10% C SIDE-ANJ 1-TRN RESISTOR 1M 5% ,25% FC TC=-800/+900 RESISTOR 1M 5% ,25% FC TC=-800/+900 RESISTOR 10 .05% .33W RESISTOR 100 .1 .05%                                          | 0365A<br>0160G<br>0160G<br>28480<br>28480 | £150m203<br>CB1055<br>CH1055<br>0698-2298<br>0698-2294               |
| A12R6<br>A12R7<br>A12R8<br>A12R9<br>A12R10     | 0698+2296<br>0698-2214<br>0698-5408<br>0698-2225<br>0698-3329 | 1<br>1<br>1<br>1  | RESISTOR 1010.1 .05%  RESISTOR: FXD .10.0K .0HM 0.05% 1/8K MF  RESISTOR 1.111K .1% .125W F TC=0+-100  RESISTOR: FXD .00.0K .0HM 0.05% 1/8W MF  RESISTOR 10K .5% .125W F TC#0+=100                  | 28480<br>28480<br>28480<br>03888          | 0698-2296<br>0698-2214<br>0698-2225<br>PME55-178-10-1002-D           |
| A12R11<br>A12R12<br>A12R13<br>A12R14<br>A12R15 | 0683-3335<br>0683-4705<br>0683-4705<br>0683-1055<br>0683-1055 | 4                 | RESISTOR 33K 5% ,25% FC TC=-400/+900<br>RESISTOR 47 5% ,25% FC TC=-400/+500<br>RESISTOR 47 5% ,25% FC TC=-400/+500<br>RESISTOR 1M 5% ,25% FC TC=-800/+900<br>RESISTOR 1M 5% ,25% FC TC=-800/+900   | 0160G<br>0160G<br>0160G<br>0160G<br>0160G | CB3335<br>CH4705<br>CB4705<br>CB1055<br>CH1055                       |
| A12R16<br>A12R17<br>A12R18<br>A12R19<br>A12R20 | 0683-1055<br>0683-1055<br>0683-1055<br>0683-1055<br>0683-1055 |                   | PESISTOR IM 5% .25W FC TC==000/+900 PESISTOR IM 5% .25W FC TC==000/+900 RESISTOR IM 5% .25W FC TC==000/+900 RESISTOR IM 5% .25W FC TC==000/+900 RESISTOR IM 5% .25W FC TC==000/+900                | 0160G<br>0160G<br>0160G<br>0160G<br>0160G | CH1055<br>CH1055<br>CH1055<br>CH1055<br>CH1055                       |
| A12R21<br>A12R22<br>A12R23<br>A12R24<br>A12R25 | 0683-1055<br>0683-1055<br>0683-3335<br>0683-3335<br>0683-3335 |                   | RESISTOR 1M 5% .25% FC TC==800/+900<br>HESISTOR 1M 5% .25% FC TC==800/+900<br>RESISTOR 33K 5% .25% FC TC=-400/+800<br>RESISTOR 33K 5% .25% FC TC=-400/+800<br>RESISTOR 33K 5% .25% FC TC=-400/+800 | 0160G<br>0160G                            | CB1055<br>CB1055                                                     |
| A12R26<br>A12R27<br>A12R28<br>A12R29<br>A12R30 | 0683-3335<br>0683-3335<br>0683-1035<br>0683-5055<br>0683-1035 | 51                | RESISTOR 33K 5% .25W FC TC=-400/+800 RESISTOR 33K 5% .25W FC TC=-400/+800 ht SISTOP 10K 5% .25W FC TC=-400/+700 PESISTOP 5.6W 5% .25W FC TC=-900/+1100 PESISTOR 10K 5% .25% FC TC=-400/+700        | 0160G<br>0160G                            | CH1035<br>CH5655                                                     |
| A12R31<br>A12R32<br>A12R33<br>A12R34<br>A12R35 | 0683-3325<br>0683-1065<br>0683-1055<br>0757-0394<br>0683-1035 | 4<br>1<br>2       | RESISTOR 3.3K 5% .25W FC TC=-400/+700 HESISTOR 10M 5% .25W FC TC=-900/+1100 RESISTOR 1M 5% .25W FC TC=-800/+900 HESISTOR 51.1% .12% F TC=6+=100 FESISTOR 10% 5% .25W FC TC=+400/+700               | 0160G<br>0160G<br>0329B<br>0160G          | C81065<br>CH1055<br>C4-1/8-T0-51k1-f<br>CK1035                       |
| A12R36<br>A12R37<br>A12R38<br>A12R39<br>A12R40 | 0683-0275<br>0683-4705<br>0663-4705<br>0757-0594<br>0683-1035 | 2                 | PESISTOR 2,7 5% ,25W FC TC==400/+500  PESISTOR 47 5% ,25W FC TC==400/+500  RESISTOR 47 5% ,25W FC TC==400/+500  RESISTOR 51,1 1% ,125W F TC=0+=100  RESISTOR 10% 5% ,25W FC TC==400/+700           | 0160G<br>0160G<br>0160G<br>0329B<br>0160G | CR2765<br>CR4705<br>CR4705<br>C4-1/8-T0-51R1-F<br>CB1035             |
| A12R41<br>A12R42<br>A12R43<br>A12R44<br>A12R45 | 0683-0275<br>0757-1090<br>0757-1090<br>0683-3335<br>0683-3335 | 5                 | RESISTOR 2,7 5% ,25% FC TC==400/+500<br>RESISTOR 261 1% ,5% F TC=0+=100<br>RESISTOR 261 1% ,5% F TC=0+=100<br>RESISTOR 33% 5% ,25% FC TC==400/+800<br>RESISTOR 33K 5% ,25% FC TC==400/+800         | 0160G<br>0299E<br>0160G<br>0160G          | CB2765<br>MF7C1/2=10=261R=F<br>MF7C1/2=10=261R=F<br>CB3335<br>CB3335 |
| A12R46<br>A12R47<br>A12R48<br>A12R49<br>A12R50 | 0683-3335<br>0683-3335<br>0683-3335<br>0683-3335<br>0683-3335 | l la              | #ESISTUM 33K 5% 25W FC TC#=400/+800<br>RESISTOM 33K 5% 25W FC TC#=400/+800<br>#ESISTOM 33K 5% 25W FC TC#=400/+800<br>#ESISTOM 33K 5% 25W FC TC#=400/+800<br>RESISTOM 33K 5% 25W FC TC#=400/+800    |                                           |                                                                      |
| A12U1<br>A12U2                                 | 1826-0326<br>1826-0089                                        | 1                 | IC OP AMP<br>IC 2525 OP AMP                                                                                                                                                                        | 07933<br>03791                            | RC4558DN<br>HA2-2525-5                                               |
|                                                | į                                                             |                   |                                                                                                                                                                                                    |                                           |                                                                      |
|                                                |                                                               |                   |                                                                                                                                                                                                    |                                           |                                                                      |
|                                                |                                                               |                   |                                                                                                                                                                                                    |                                           |                                                                      |
|                                                |                                                               |                   |                                                                                                                                                                                                    |                                           |                                                                      |
|                                                |                                                               |                   |                                                                                                                                                                                                    |                                           |                                                                      |

Page 6-17, Table 6-3, Replaceable Parts
Change part numbers for A23 U15 and U16 to 1818-0423 and 1818-0424, respectively.

Page 8-63, Figure 8-47, A23 Component Locations, Change Figure 8-47 to Figure G.

Page 8-63, Figure 8-48, A23 schematic diagram, Partially change Figure 8-48 as shown in Figure H.

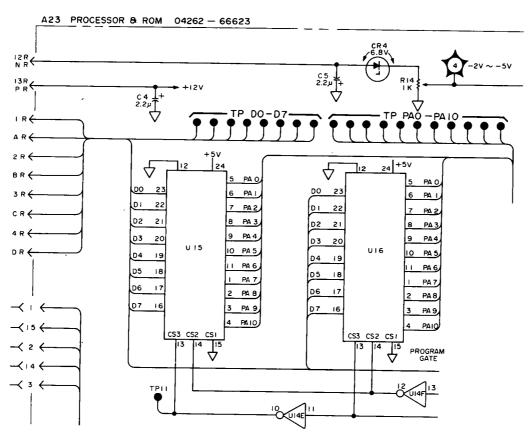
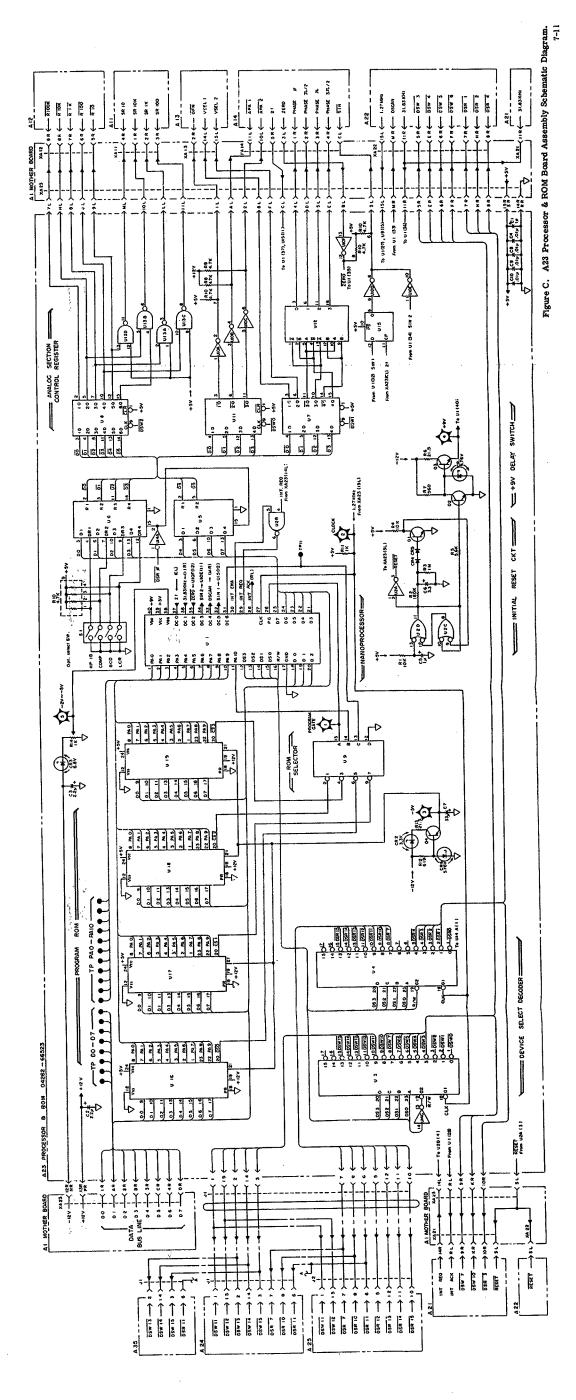




Figure H.



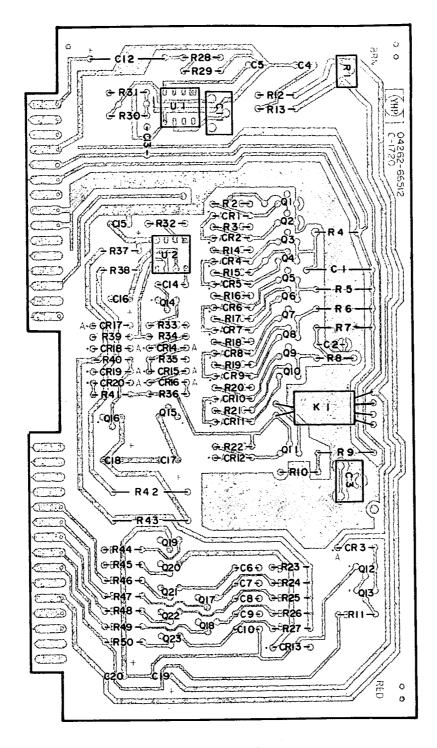
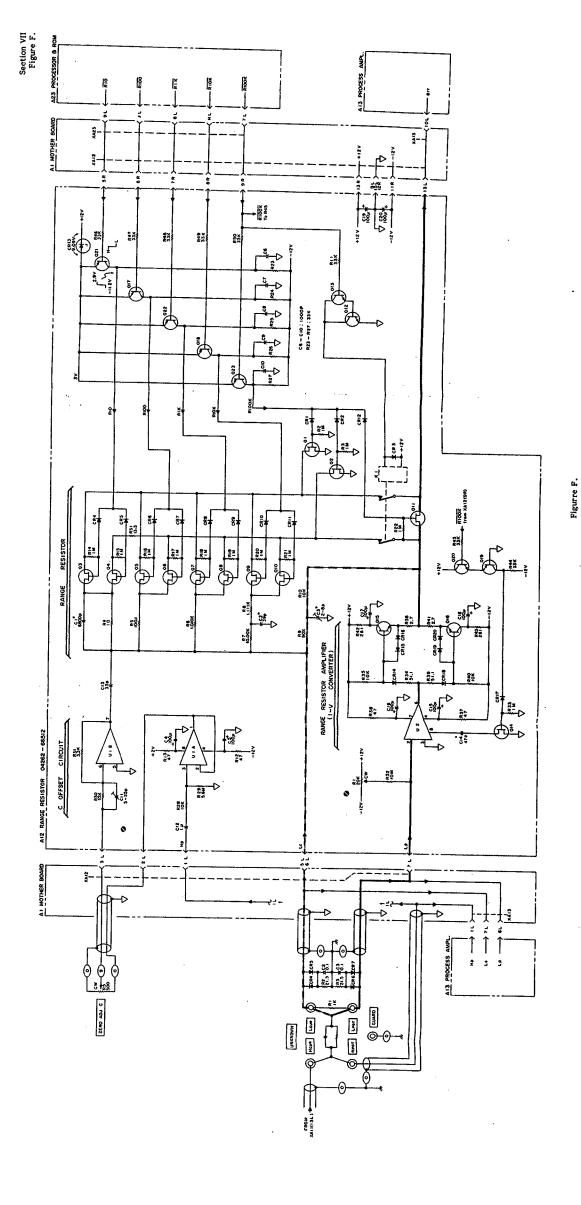




Figure E.



Model 4262A

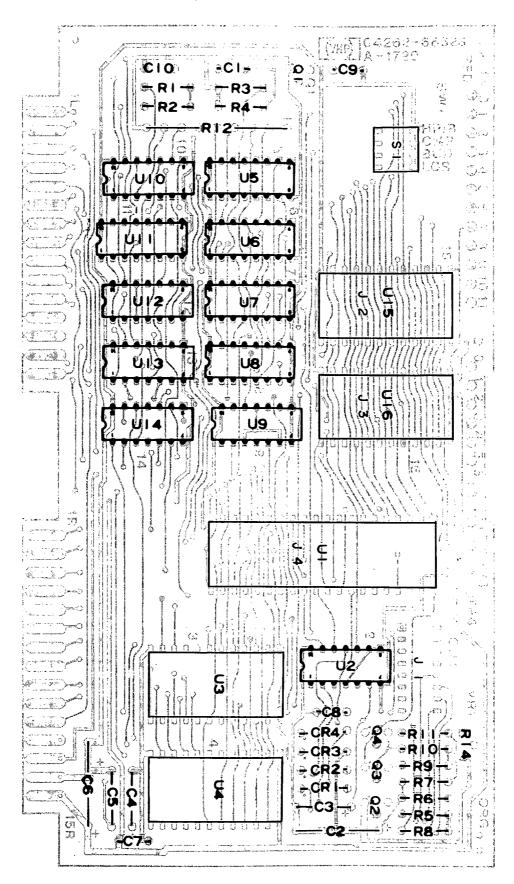



Figure G.

## SERVICE

#### 8-1. INTRODUCTION.

8-2. This manual section provides the information and instructions required for servicing the HP Model 4262A LCR Meter. Included are Theory of Operation and Troubleshooting Guide with Circuit Schematics. The Theory of Operation describes fundamental principles and circuit operating theory of the 4262A with block diagrams. Circuit schematics, locator illustrations, troubleshooting guide, circuit analysis and other technical data necessary for repairs are integrated into the service sheet foldouts. An illustration of the instrument interior is shown in Figure 8-21.

#### Note

When the instrument circuitry includes expanded capabilities provided by optional equipment, refer to paragraphs entitled OPTIONS for specific option service information.

#### WARNING

TROUBLESHOOTING AND REPAIR ARE ALLOWED FOR QUALIFIED TECHNICAL PERSONNEL ONLY. IF YOUR INSTRUMENT FAILS, REFER INSTRUMENT TO SERVICE PERSONNEL. H-P SERVICE OFFICES OFFER YOU THE BEST ANSWER TO YOUR PROBLEM. A GUIDE TO YOUR LOCAL H-P SERVICE OFFICES MAY BE FOUND ON THE BACK COVER OF THIS MANUAL.

#### 8-3. THEORY OF OPERATION.

8-4. This theory of operation has been organized into three sections: basic theory, a block diagram discussion, and circuit analysis. The basic theory, beginning with paragraph 8-11, explains the concepts and fundamental theory of the 4262A instrument technique adapted for accurately measuring the DUT and for fully achieving automated measurement performance. The block diagram discussion describes the overall circuit operating theory of the 4262A with block-to-block signal flow. Included are block and timing diagrams. The

circuit analysis provides a detailed description of how the circuit on each board functions. For reference convenience, when servicing the instrument, a circuit description is included in the service sheets.

### 8-5. TROUBLESHOOTING.

8-6. This troubleshooting guide provides instructions and information for locating a faulty circuit instrument component that requires service. instructions consider the safety of service personnel who will perform the procedures. These diagnostic guides are in the form of step-by-step procedures with flow diagrams. The board level troubleshooting diagrams are the procedures for isolating the problem to an individual malfunctioning circuit board assembly. The guides for locating a defective component are given on the individual board service sheets and integrate service test point locations, waveform support data: illustrations, voltage data, timing digrams, and other technical information in addition to providing schematic diagrams for each board. To facilitate easy troubleshooting of the 4262A digital section, the troubleshooting guide for the logic circuit employs a signature analysis technique incorporating the concept of data stream analysis. A guideline to signature analysis is provided in Figure 8-12.

## 8-7. RECOMMENDED TEST EQUIPMENT.

8-8. The test equipment required to perform operations outlined in this section is listed in Table 1-4 (Section I). The table includes: type of instrument required, critical specifications, use, and recommended model. If the recommended model is not available, equipment which meets or exceeds critical specifications listed may be substituted.

## 8-9. REPAIR.

8-10. Repair explanations tell how to replace defective circuit components. The recommended replacement procedures for components and parts which require special repair, replacement tools, or test equipment should be observed. Correct disassembly and the exchange procedures for such special parts are outlined in Paragraphs 8-46 through 8-52. To prevent damage from improper repair procedure, refer to the appropriate manual section before proceeding with repair.

#### 8-11. BASIC THEORY.

8-12. Figure 8-1 is the basic block diagram of the 4262A showing mainly the analog measurement section. It illustrates how the 4262A measures inductance L, capacitance C, resistance R and/or dissipation factor D. In this figure, the dotted lines denote the directions of control signals to and from the nanoprocessor centered control circuit. A measuring test signal from the oscillator is applied (at level E1) through the source resistor to both the unknown device and the range resistor Rr. Amplifier Rr causes the same current that flows through the unknown device to flow through Rr and operates as a current to voltage converter. The effect of the Rr amplifier is to produce a voltage (E2) equal in phase to and exactly proportional to the current that flows through the unknown device. This amplifier drives the junction of the unknown device and Rr to zero volts (virtual thus Rr does not affect the unknown device current. The voltage E2 represents the vector current which flows through unknown device at test signal level E1. E1 and E2 completely define the electrical characteristics of the DUT (Device Under Test) at a given test level and frequency. The details of how the measured values are derived from the ratio of E1 and E2 are discussed in Paragraph 8-16.

8-13. Voltages E1 and E2, across the unknown device and Rr, respectively, are connected to selector switches S1 and S2. These switches have two

important functions: first, S1 selects either E1 or E2 as the voltage to drive the four phase generator [this also establishes the measurement mode-either series or parallel which is automatically or manually set (PARA or SER - as selected at the front panel)] and, secondly, S2 selects either E1 or E2 as the measurement voltage to charge or discharge the integrator (as appropriate to the measurement function and mode - i. e. Cp, Cs, Lp, Ls, Rp or Rs) in the Vector Voltage-Ratio Measurement Section.

The Vector Voltage-Ratio Measurement Section calculates the measured value for L, C, R or D by ascertaining the voltage ratio between E1 and E2 through a dual-slope (type) analog to digital conversion technique. (This technique is popularly used in digital voltmeters). The section also processes the E1 and E2 signal flow to make the desired measurement. Selection of either an L, C, R or D measurement and an appropriate equivalent measuring circuit is established by setting detector phase reference and by S1 and S2 switch operation timing. The analog section receives its measurement instructions from the digital section. A detailed operating description of the Vector Voltage-Ratio Measurement Section is given in Paragraph 8-15.

8-14. Appropriate values for the source and range resistors, Ro and Rr, are selected with respect to the impedance of unknown device. In a series equivalent circuit measurement (Ls, Cs or Rs), the

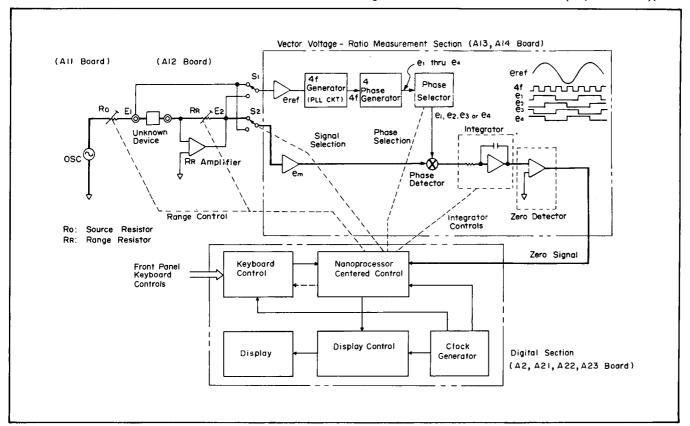



Figure 8-1. Basic Block Diagram.

impedance of the unknown is usually low and Ro is set to a value much greater than the impedance of the unknown device to achieve a constant current drive. On the other hand, for a parallel equivalent circuit measurement (Lp, Cp or Rp), the impedance of the unknown device is usually high so Ro is set to a much smaller value than the impedance of the unknown. Thus, a constant voltage drive is realized. The resistance values for Ro and Rr are always equal.

Here is a brief discussion of Vector Voltage-Ratio Measurement Section operation. The em signal selected by S2 (from either E1 or E2) is detected by a phase detector that outputs the rectangular component or in-phase component to an integrator. Phase detector drive signals e1 through **e**4 are produced in the following manner: a 4f signal is generated from an eref signal (at a frequency of f) as selected by switch S1. This creates signals **e**1 through **e**4, each being different by 90 degrees in phase from one another (a 4 phase generator). As a PLL (Phase Lock Loop) circuit is used for generating the reference phase signal to minimize measurement error, the phase of signals E1 through E4 is very accurate. One of these signals. as directed by the digital circuitry, detects the em measurement signal. Phase detector output is a vector component signal representing the capacitive, reactive, or other characteristic of unknown to be measured.

8-16. This paragraph discusses the parallel capacitance Cp measurement principle. To simplify the explanation, the example used here is that of measuring an ideal capacitor. See Figure 8-2, Cp Measurement. During time T1, Switch S2 selects E2 and the integrator is charged by that portion of the E2 sinusoidal waveform which is synchronously phase detected by the **e**2 pulse train. Both S1 and S2

switches select the E1 signal that is fed to discharge the integrator after being phase-detected by the **e**1 signal. Since time period T2, for the integrator to discharge to zero volts, is proportional to the value of Cx, Cx can be directly obtained from the contents of a counter if the values for Rr and T1 are properly and accurately set. A zero detector signals the digital section to establish a counted number corresponding to Cx each time the integrator output crosses the zero level. Other measurements are done similar to the Cp measurement.

8-17. The analog section of the 4262A is controlled by nanoprocessor centered control which manages the various sequences required to perform the desired measurements. Range control, selection of measurement mode, and timing of the A-D conversion processes are governed by the nanoprocessor. The nanoprocessor also acts as a computing device and calculates deviation  $\triangle$ LCR and the quality factor of sample (mathematical operation) as well as counting the L, C, R and D values converted into time periods.

8-18. The functions set by pushing front panel pushbuttons are inputted to the nanoprocessor through the keyboard control. The keyboard switches are assigned individual addresses for discrimination. When a panel control pushbutton is depressed, the keyboard control identifies the address of switch and causes the nanoprocessor to treat the "interruption" of the function it recognizes by the address code. The nanoprocessor gives priority to specific pushbutton functions so as to be able to restrict improper control settings. Keyboard operation is monitored by and in-part managed by nanoprocessor programming. This is partly to assist the operator and partly to prevent misoperation.

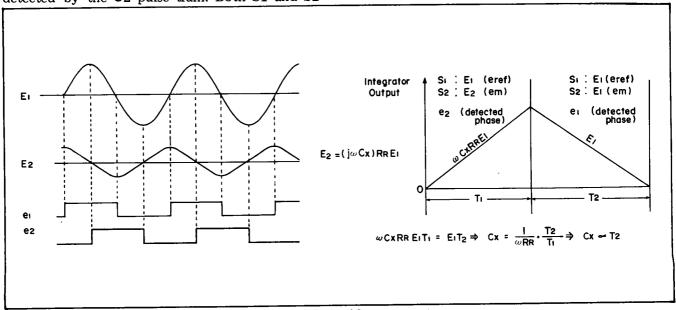



Figure 8-2. Cp Measurement.

## PRINCIPLES OF OPERATION

The following outlines 4262A measurement principles using some equations to aid and acquaint you with the basic concepts of the unit. To simplify explanation in general, only the principles for C-D (capacitance and dissipation factor) measurements are discussed here. The measurement principles for other impedance paramters can be deduced by a similar course of reasoning.

In Cp - D measurements, since a constant test voltage is applied to the unknown, the DUT generally presents a high impedance to the test signal. The following equation shows the relationship beteen voltage E1 at the "H" terminal (voltage across the DUT) and range resistor amplifier output voltage E2 (voltage across range resistor):

$$-E2 = (Gp + j\omega Cp) Rr \cdot E1 \dots eq. 8-1$$

where, Gp is parallel conductance Cp is unknown capacitance Rr is value of range resistor  $\omega$  is angular frequency of test signal

The phase detector separately extracts the real and the imaginary voltage components of E2 (represented by formulas GpRrE1 and j $\omega$ CpRrE1, respectively). Figure A is a vector diagram of phase detector output voltage.

During the charging cycle T1, the phase detector detects the 90 degree phase component of the E2 signal. Thus, the integrator output voltage becomes:

$$k1\omega$$
 CpRrE1T1 . . . . . . eq. 8-2

where, k1 is a constant value determined by 4262A circuitry.

Following the E2 signal, the E1 signal is applied to the phase detector and the discharge cycle begins. The phase detector detects a signal whose magnitude is E1/10 (that is, the E1 signal is attenuated to 1/10 to develop the appropriate time T2 for discharging the integrator) by phase detection of the signal in phase with E1. The resulting change in integrator output voltage developed by the E1/10 signal is:

$$-k1 - \frac{E1}{10}$$
 T2 . . . . . . eq. 8-3

The integrator output eventually reaches zero volts (as a result of the charge and discharge cycle). Thus, the sum of the voltages given in equations 8-2 and 8-3 is zero. And,

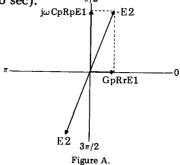
$$k\omega CpRrE1T1 = k1 - \frac{E1}{10} T2 \dots eq. 8-4$$

Cp is derived from equation 8-4 as follows:

$$Cp = \frac{T2}{10\omega RrT1} \dots eq. 8-5$$

$$(\omega = 2\pi fm)$$

To eliminate  $\omega$  from equation 8-5, the 4262A establishes a constant charging time T1 as follows:


$$T1 = k2 \frac{1}{fm} \dots eq. 8-6$$

where k2 is a constant value (for each test signal frequency).

Equation 8-5 then becomes:

$$Cp = \frac{T2}{20k2\pi Rr} \dots eq. 8-7$$

This is how the measurement frequency is cancelled out of the equation for the measured capacitance value. The discharge period, T2, is measured by counting clock fc whose frequency is constant at 31.83 kHz (its period is  $31.4 \mu \text{sec} = 10\pi \times 10\text{-}6 \text{ sec}$ ).



Thus, if n is the number of counts for fc, T2 can be expressed as follows:

$$T2 = n \cdot 10\pi \times 10^{-6} \text{ (seconds)} \dots eq. 8-8$$

And, if equation 8-8 is substituted in equation 8-7,

$$Cp = n \cdot \frac{10^{-6}}{2k^2Rr} \cdot \dots eq. 8-9$$

(Sheet 1 of 2)

This equation means that discharge period T2 (number of counts for fc) is directly equal to the mantissa of a measured Cp value (note that  $Rr = 10^{m}$ ; and m is an integer).

For example, if a 1200pF capacitor is measured at a measurement frequency of 1kHz, the 4262A automatically selects  $10k\Omega$  as the Rr and constant k2 is 50. Therefore, equation 8-9 may be written as:

$$Cp = n \cdot \frac{10^{-6}}{2k \, 2Rr} = n \cdot \frac{10^{-6}}{2 \times 50 \times 10 \times 10^{3}} = n \cdot 10^{-12}$$

Consequently,

$$n = Cp \times 10^{12} = (1200 \times 10^{-12}) \times 10^{-12} = 1200$$

The 4262A will display 1200 counts and the "pF" unit lamp will light.

In a D measurement cycle, the integrator is charged for period T3 by the E2 signal as detected by a detection phase in phase with E2. Integrator output voltage rises to k1GpRrE1T3. During the discharge cycle T4, the detection phase is different by 90 degrees as referred to E2. The discharge voltage becomes  $k1\omega$ CpRrE1T4. From these integrator voltage changes in the D measurement cycle, the following equation may be composed:

$$k1GpRrE1T3 = k1\omega CpRrE1T4 \dots eq. 8-10$$

Dissipation factor D is derived as follows:

$$D = \frac{Gp}{\omega Cp} = \frac{T4}{T3} \dots eq. 8-11$$

The period T3 is constant and is equal to  $1000 \frac{1}{\text{fc}}$  (fc = 31.83kHz). If n stands for number of 1 counts for fc during period T4, T4 is equal to  $n \cdot \frac{1}{\text{fc}}$  Thus, equation 8-11 may be converted to:

$$D = \frac{T4}{T3} = \frac{n \frac{1}{fc}}{1000 \frac{1}{fc}} = \frac{n}{1000}$$

Therefore, n = 1000D.

If D value for the unknown is 1.2, n will become 1200 which will be displayed at the front panel with the decimal point. Figure 8-3 shows the expanded forms of calculations for impedance parameters.

As shown in Figure 8-3, two kinds of integrator waveforms exist. These two distinctive integrator operations may be examined with respect to Cp and Cs measurement modes. For a Cs - D measurement, a constant current drive is applied to the unknown. Voltage E2 is a constant value drop across Rr and E1 is a variable voltage produced by DUT. The following equation shows the relationship between voltages E1 and E2:

$$-E1 = \left(\frac{Rs}{Rr} + \frac{1}{j\omega CsRr}\right) \cdot E2 \quad \dots \quad eq. \ 8-12$$

The reference phase for the phase detector is now taken from E2 signal. During charging cycle T1, the phase detector detects input voltage E1/10 by a detection phase in phase with E2. The integrator output voltage becomes:

$$k1 \cdot \frac{E2}{10} \cdot T1 \cdot \dots \cdot eq. 8-13$$

The integrator charges to a constant voltage regardless the value of the DUT. During integrator discharge cycle, the phase detector detects E1 signals with a detection signal that is different in phase by 90 degrees with respect to the E2 signal. The resulting integrator output voltage change is:

$$-k1 \cdot \frac{E2}{\omega \, CsRr} \cdot T2 \, \dots \, eq. \, 8\text{-}14$$

Therefore,

$$k1 \frac{E2}{10} T1 = k1 \frac{E2}{\omega CsRr} T2 \dots eq. 8-15$$

Cs is derived from equation 8-15 as follows:

$$Cs = \frac{10}{\omega Rr} \cdot \frac{T2}{T1} \cdot \dots \cdot eq. 8-16$$

Substituting T1 in equation 8-6 produces:

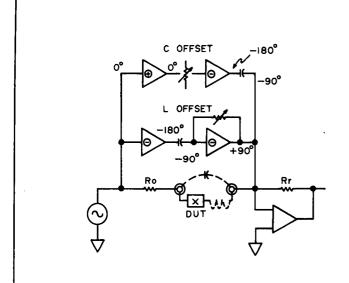
$$C_{S} = \frac{10}{2\pi k_{2}R_{r}}T_{2}...$$
 eq. 8-17

Since T2 is counted by a 31.83kHz (its period is  $10\pi \times 10^{-6}$  sec) clock, equation 8-17 is:

$$C_S = n \frac{100}{2k 2Rr} \times 10^{-6} \dots eq. 8-18$$

where, n is number of clock counts.

If 4262A measurement frequency is 1kHz, Rr is  $1k\Omega$ , and k2 is 5, equation 8-18 becomes:


$$C_S = n \frac{100}{2 \times 5 \times 10^3} \times 10^{-6} = 10n \times 10^{-9} (F)$$

When the capacitance of the unknown is  $10\mu F$ , the 4262A displays 10.00 counts and the  $\mu F$  unit lamp lights.

(Sheet 2 of 2)

8-19. Display Control converts the measurement data signals from the nanoprocessor to display component signals which are so coded that corresponding numeric figures are displayed on the 7 segment LED displays. The measurement data is momentarily stored in a memory in this section and sent, in turn, to the matrix drive of each digit of the displays. The alphabetic PASS FAIL, U-CL, and O-F annunciations are illuminated directly on the display by annunciation signals coded by the nanoprocessor. This section also includes a clock generator which employs a crystal resonator to provide the digital section with accurate timing.

8-20. The nanoprocessor centered control and other digital sections are connected to a data bus line (8 bit) on which the measurement data and nanoprocessor I/O signals are transferred. This data bus line serves the overall digital section including the optional sections when the instrument is equipped with HP-IB Compatible (Option 101), BCD Data Output (Option 001), or Comparator (Option 004) option. The timing of the handshakes with system controller (such as a calculator), data transfer, and comparative data are also managed via the data bus line by the nanoprocessor. The operating principles of the option sections are discussed in the paragraphs entitled Options.



The influence of stray capacitance and residual inductance of the test jig can be offset from the current flowing through the range resistor Rr by establishing an opposition current flow through the junction of the unknown device and Rr. The C and L offset circuits develop, respectively, currents which are phase shifted by -90 and +90 degrees as referenced to the oscillator output. The changes in phase are reverse those of the effects of the capacitance and inductance of the test jig. When the offset currents are properly adjusted, the offset currents and the undesired component of the test jig measurement current cancel each other.

Figure 8-4. Offset Control Principle.

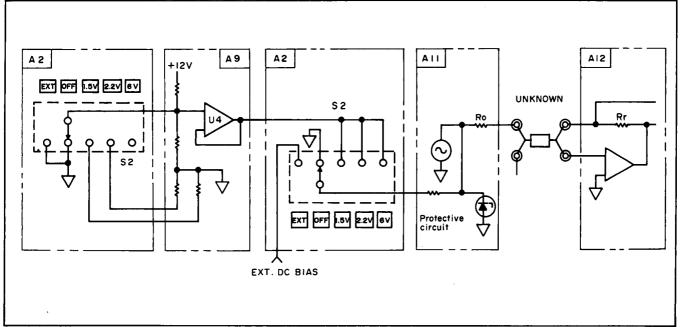



Figure 8-5. DC Bias Circuit.

|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                          |                                                                                         |                                                                                                  | Note 2  • When distipation Extor range is 20, the plasse desertor output voltage is sitemated by 1/10 and D value is multiplied by 10. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| _                                      | 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Derivation of<br>Dissipation Factor                                      | $D = \frac{Gp}{\omega Cp} = \frac{T^4}{T^3}$ $= ^4n \times 10^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $D = \omega C_5 R_5 = \frac{T_4}{T_3}$ $= 4_B \times 10^3$                                                                                                                               | $D = \frac{Rs}{\omega Ls} = \frac{T^4}{T^3}$ $= *n \times 10^3$                         | $D = \frac{\omega L p}{R p} = \frac{T_4}{T_3}$ $= ^*n \times 10^3$                               | Note 2  When distipated by the sector out, and D value is 100.001                                                                      | 1000<br>1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 10000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 100 | Cates                                      |
| Vector voltage ratio measurement (D)   | 1000000   Photophysis   Photop | n:number of clock counts Detection phase of phase detector               | $\begin{array}{c c} & cop_{R,S^1} \\ & eref = ex \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$ | $\frac{k_{\text{PLE}}}{k_{\text{PLE}}}   \text{Ref.}$ $\frac{k_{\text{PLE}}}{k_{\text{PLE}}}   \text{Ref.}$ $\frac{k_{\text{PLE}}}{k_{\text{PLE}}}   \text{Ref.}$ $0 \qquad \text{a.12}$ | eref = 6y                                                                               | eref = 6x                                                                                        | 1                                                                                                                                      | R1, R0   2558   1050   1050   145   1050   1500   150   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   1050   10    | 100Ha<br>SER 100 1000 1kg 1000<br>PARA 100 |
| 6,1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Integrator output waveform                                               | T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T1 T2                                                                                                                                                                                    | T.                                                                                      | T R                                                                                              | T. a.                                                                                                                                  | T:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |
|                                        | Phase Det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Value of k<br>120Hz 1kHz 10kHz                                           | 5 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5 5                                                                                                                                                                                    | 5 50 500                                                                                | 0.5 5 50                                                                                         |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |
|                                        | -6y 10<br>-6x 10<br>-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Derivation of<br>unknown value                                           | $C_{P} = \frac{T_{2}}{10\omega RrT^{1}}$ $= n \cdot \frac{1}{2kRr} \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $C_8 = \frac{10T_2}{\omega R T T_1}$ = $n \cdot \frac{100}{2 R R r} \times 10^6$                                                                                                         | $L_{S} = \frac{R_{L} T_{2}}{10\omega T_{1}}$ $= n \cdot \frac{R_{Z}}{2k} \times 10^{6}$ | $L_{\rm p} = \frac{10 R \cdot T^2}{\omega \cdot T_1}$ $= n \cdot \frac{100 R r}{2k} \times 10^6$ | Rs = <u>RrTr</u><br>= n · 100Rr x 10 <sup>-6</sup>                                                                                     | $Rp = \frac{10RrT2}{T1}$ $= n \cdot 100Rr \times 10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |
| Vector voltage ratio measurement (LCR) | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | k: constant n:number of clock counts.  Detection phase of phase detector | ους (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (                                                                                                                                                                                                                                                                                                                                              | 61t0 & 62/659k.                                                                                                                                                                          | ετεί = 6y<br>π/2 0                                                                      | eref = 6x                                                                                        | (T1 = 1 x 10.2 sec)   Ref = Cy                                                                                                         | (T1 = # x 10.3 sec) eref = 6x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |
| 1                                      | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ्रे<br>Relationship between B1 and B2                                    | .E2 = (Gp + j.o.Cp)RtE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .E1 = ( Rs + 1 / 10/GRr )E2                                                                                                                                                              | $\cdot E_1 = (\frac{R_8}{R_T} + \frac{j\omega L_8}{R_T})E_2$                            | $.\mathbb{E}_2 = (\frac{R_x}{Rp} + \frac{R_t}{j\omega L_p})$                                     | .51 = ( <del>11 + 11 )</del> .52                                                                                                       | .E2 = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |
|                                        | ia () →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          | 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 Z                                                                                                                                                                                      | <sup>14</sup> <sup>18</sup> <sup>18</sup> مربر                                          | 3 4 4 91<br>81                                                                                   | Rs jx                                                                                                                                  | Rp Rp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |

Figure 8-3. Measurement Principles.

8-7

. Model 4262A

#### 8-21. BLOCK DIAGRAM DISCUSSION.

## 8-22. Analog Section Discussion.

These paragraphs describe how each individual circuit section operates to establish L, C, R and D measurement values as controlled by the digital section. Figure 8-6 is a schematic block diagram of the 4262A analog section. The table in Figure 8-6 shows the range and source resistor values selected by range and function controls.

#### 8-23. A11 Oscillator and Source Resistor.

The test signal is generated by an amplitude stabilized Wien Bridge type oscillator. Oscillator output is fed through an attenuator (A11R18 and R19) to a power amplifier. Attenuator switch A3Q3 turns on only when a Cp measurement is being made and the TEST SIGNAL LOW LEVEL button is pushed. The oscillator signal from the secondary of transformer T2 is designed to have a low output impedance via source resistor Ro to the unknown device (Cx in diagram). Transformer T2 isolates the power amplifier from dc bias voltages which can be applied to unknown device. The A11 Board includes an L Offset Control circuit which provides a compensation circuit to compensate for residual inductance of test leads or fixture. The operating principle of the L Offset Control is diagrammed in Figure 8-4.

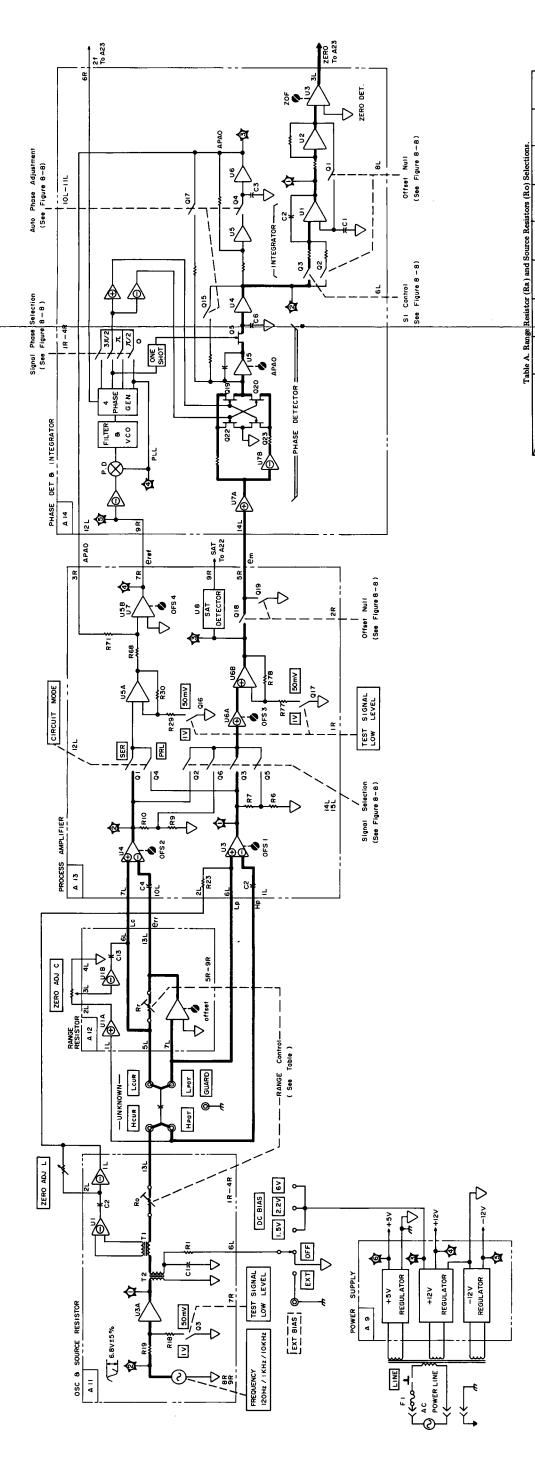
8-24. The unknown connection is basically a four terminal (five terminals including GUARD terminal) configuration method. The GUARD terminal is connected directly to the instrument chassis. Circuit common for all PC boards is also eventually connected to the chassis. DC bias voltages up to +40 volts (+6V internally) can be applied to unknown device. The DC bias circuit is illustrated in Figure 8-5.

## 8-25. A12 Range Resistor.

The current that flows through Cx also flows through range resistor Rr. The range resistor amplifier causes the voltage across Rr to represent (exactly) the current flow through Cx. Ro and Rr are selected by a range control signal from the digital section. The table in Figure 8-6 describes how the resistors are controlled. C Offset Control circuit is capable of compensating for stray capacitance up to 10pF (see Figure 8-4 for operating principle).

#### 8-26. A13 Process Amplifier.

The very precise voltage across Cx and Rr are fed to differential amplifiers (A13U1 through U4). C2 and C4 are dc blocking capacitors. This assembly processes these signals to feed the Cref signal (reference phase signal used for phase detection) and the Cm signal (signal measured by the integrator) to the A6 board. The two input signals are selected according to specific measurement rules and are used as Cref and Cm signals. The Cref signal is chosen at the same time that the measurement cir-


cuit mode is selected. Setting the CIRCUIT MODE to PRL selects the voltage across Cx as the eref signal. When the CIRCUIT MODE is set to SER, the voltage across Rr is selected as the eref signal. In the AUTO measurement mode, the eref signal selection is done automatically and applied in a manner similar to the above. The selected eref signal is amplified by A13U5A and is wave-shaped by A13U5B and U7 which also adjusts the phase angle of eref by a control input (APAO signal) from A14 Board.

The em signal is selected by FET switches A13Q2, Q3, Q5, and Q6 which are, in turn, controlled by signal selection signals from the digital section. The method of selecting the em signal is graphically shown in Figure 8-8 Timing Diagrams. The selected **e**m signal is amplified by A13U6A, U6B and becomes an input signal for the phase detector on A14 Board. The switches A13Q19 and Q18 turn on and off respectively to interrupt the em signal flow during integrator offset control period. When TEST SIGNAL LOW button is pushed and lights (this pushbutton functions in Cp measurement mode only), the gain of amplifiers A13U5A and U6B is increased. Thus, the voltage levels of eref and em signals remain the same as when making a measurement at the nominal (high) test signal level. An SAT detector detects any em signal level that exceeds approximately ±5 volts and transfers such SAT signals to digital section.

## 8-27. A14 Phase Detector and Integrator.

The A14 Board consists of three major circuit sections: PLL Reference Phase Generator, Phase Detector, and Integrator. The specific end functions of the two input signals, **e**ref and **e**m are to establish a ZERO signal whose time interval is equivalent to the desired measurement quantity. This ZERO signal is fed to A23 Board to be manipulated by the nanoprocessor.

The Reference Phase Generator produces four reference phase signals each being different by 90 degrees in phase one from the other (these four signals are phase shifted respectively 0,  $\pi/2$ ,  $\pi$  and  $3\pi/2$  in radius vector as referred to the input signal eref.). The reference phase signals are individually selected in a manner peculiar to the measurement modes (four types). The selected reference phase signal is fed to the Phase Detector to drive switches A14Q19, Q20, Q22 and A23 of the Phase Detector. The method of selecting the reference phase signal is illustrated in Figure 8-8 Timing Diagram. To establish the very accurate 90° phase difference, the Reference Phase Generator employs a Phase Locked Loop (PLL) circuit consisting of a local phase detector (PD), filter, and voltage controlled oscillator (VCO). Thus measurement error is minimized. An explanation of Reference Phase Generator operation is given on Service Sheet 14.



The input signal **e**m to the Phase Detector is a vector voltage representing the impedance of the unknown device. The voltage components of the **e**m signal are detected. These components correspond to the phase angles  $(0, \pi/2, \pi \text{ or } 3\pi/2)$  established by the reference phase signal. Consequently, the phase detector outputs are voltage components which represent the resistive, capacitive, or inductive characteristics of the unknown device. The phase detector output is converted to dc by a smoothing circuit which adopts the period averaging technique to accelerate transient response to the input signals. The special combination of this technique is to speed measurements at the 120Hz test frequency. An explanation of the period averaging technique is given on Service Sheet 14.

The Integrator is charged and discharged by input signals (dc) fed from the Phase Detector. The Zero Detector notes the time that the output of the Integrator crosses the zero level and sends a ZERO signal to the Digital Section (A23 Board). For accurate integrator operation, an integrator Offset Null sequence is excuted before integrator charging is began. Offset Null control details are described on Service Sheet 14.

The phase detector output is provided through A14U5 and U6 to A13 Board as an APAO (Auto Phase Adjustment Output) signal for the period of the auto phase adjustment. In this sequential period, the reference phase signals are adjusted to minimize any phase error which cause a measurement error. The operating principle of the auto phase adjustment is given on Service Sheet 14.

1000kg 10.00Mg 100kn 100.0kΩ 10.00kg 10001 1005 100.00 100.0dl 10.00വ 1000m100 100 1kHz 10kHz RR, RO SER 120HzPARA RR, RO RR, RO Full-scale Full-scale Full-scale

Figure 8-6. Analog Section Block Diagram.

8-9

## 8-28. DIGITAL CONTROL SECTION.

8-29. Paragraphs 8-29 discusses how the 4262A digital section controls the analog section to measure LCR and D values of unknown device and how the built-in nanoprocessor creates unique performance in the 4262A. Figure 8-7 is the basic block diagram of 4262A digital section. All analog section control signals except for Test Signal and Circuit Mode Control Signals are sequentially outputted from A23 Processor & ROM in accord with nanoprocessor programming. The A21 Keyboard Control establishes the measurement function as selected when the front panel control keys are appropriately depressed. The A21 section also stores annunciation data and transfers it to A2 Display and Keyboard to display the annunciation information. A22 Display Control and RAM converts measured data transmitted from A23 into signals appropriate for display on the numeric displays (A2). The A21, A22, and A23 sections are connected to the bidirectional DATA BUS LINE (8 bit).

#### 8-30. A23 PROCESSOR AND ROM.

A23 board consists of Nanoprocessor (A23U1) located in the center of the digital section, Program Control ROM (U15andU16), Data Bus Driver/ Receiver (U5 and U6), Device Select Decoder (U3 and U4), and Analog Section Control Register (U7, U8 and U11). The Nanoprocessor governs the various sequences and timing of the digital section and also sends properly timed measurement control signals to the analog section. For control and data processing, the Nanoprocessor has four major input/output data bus lines: Program Address, Device Select Code, Direct Control Flag, and Data Bus lines. The nanoprocessor programs are filed in the Program Control ROM which has a 4 kilobyte total memory capacity. To extract measurement control instructions from the Program Control ROM, the Nanoprocessor sequentially addresses the ROM through the PROGRAM AD-DRESS BUS line (11 bit). The measurement control instructions outputted from the ROM are momentarily stored in the Analog Section Control Register when the Data Bus Driver/Receiver is set to receiver mode. The analog section control signals which are outputted from the Analog Section Control Register are shown on the block diagram. For accurate timing control of integrator operations, the integrator switch control, ZERO signal, and 2f (= double the test signal frequency) signals are transmitted directly from/to the Nanoprocessor through the Direct Control Flag bus line (bidirectional bus line).

The Nanoprocessor accesses its program data simultaneously by addressing the ROM while the ROM outputs the nanoprocessor program codes. When the ROM outputs an analog section control signal or while measured data is being transferred through the Data Bus line, the Nanoprocessor is not accessing. The Nanoprocessor sequentially excutes program steps in accord with the program data given by the ROM. Various timing in the digital section is controlled by Device Select Code signals (4 bit). These timing control signals are decoded to DSR (Device Select: Read) and DSW (Device Select: Write) signals and manipulate the individual devices, respectively, of the digital section as follows:

DSR: Causes Register or Memory to output data or sets Data Bus Driver/Receiver to driver mode. Nanoprocessor accesses (reads) the data sent from Memory or Data Bus Driver/receiver.

DSW: Enables Register or Memory to store data or sets Data Bus Driver/Receiver to receiver mode. Nanoprocessor sends (writes out) data to Register, Memory or Data Bus Driver/Receiver.

The Device Select Decoder (U3 and U4) each have 15 DSR and DSW output ports.

When 4262A function is selected or changed, the INT. REQ (INTerrupt REQuest) control line goes to high level. This INT. REQ signal requests the Nanoprocessor to pause before proceeding with the nanoprocessor program and to manage the function control prior to program processes. The INT. REQ control line is always active so as to allow for servicing of interrupt requests. The INT. ACK (INTerrupt ACKnowledge) line momentarily goes high to make the vector address line valid. The Nanoprocessor accesses the vector address code (VAO and VA1) to discriminate which control (or controller) originated the interrupt request. When the INT ACK line is at high level. interrupt control data is inputted to the nanoprocessor via A21 Keyboard Control. Successively, the INT ENA (INTerrupt ENAble) output line is set to "disable" status so as not to allow a second interruption before the present interrupt is processed and ends. The INT ENA line is also controlled in the program execute phase (specifically, this output line performs a "handshake" function when the 4262A is used as a component in an HP-IB system).

The Nanoprocessor is synchronized with the 1.27MHz Clock and calculates the measured quantity as a number counted toward the 31.83kHz ( $100k/\pi$ Hz) secondary clock pulse. To identify which, if any, option is installed and being used in the instrument, the Nanoprocessor accesses the option code from the option selection switch setting when the Data Bus Driver/Receiver is set to driver mode by a DSR signal. The Nanoprocessor controls the option section in accord with the nanoprocessor programs as appropriate to the selected option.

## 8-31. A21 KEYBOARD CONTROL.

The A21 Keyboard Control is composed of two major sections: one is the interrupt control consisting of the Interrupt Priority Encoder (U24), Multiplexer (U12 & U23), Row Scan Counter (U2), Gate (U1) and Flip-Flops (U3 & U14); the other is the Annunciator Register (U7, U8, U15 through U21) which stores and transfers manifold annunciation data (keyboard pushbutton indication, range indication, circuit mode indication, etc.).

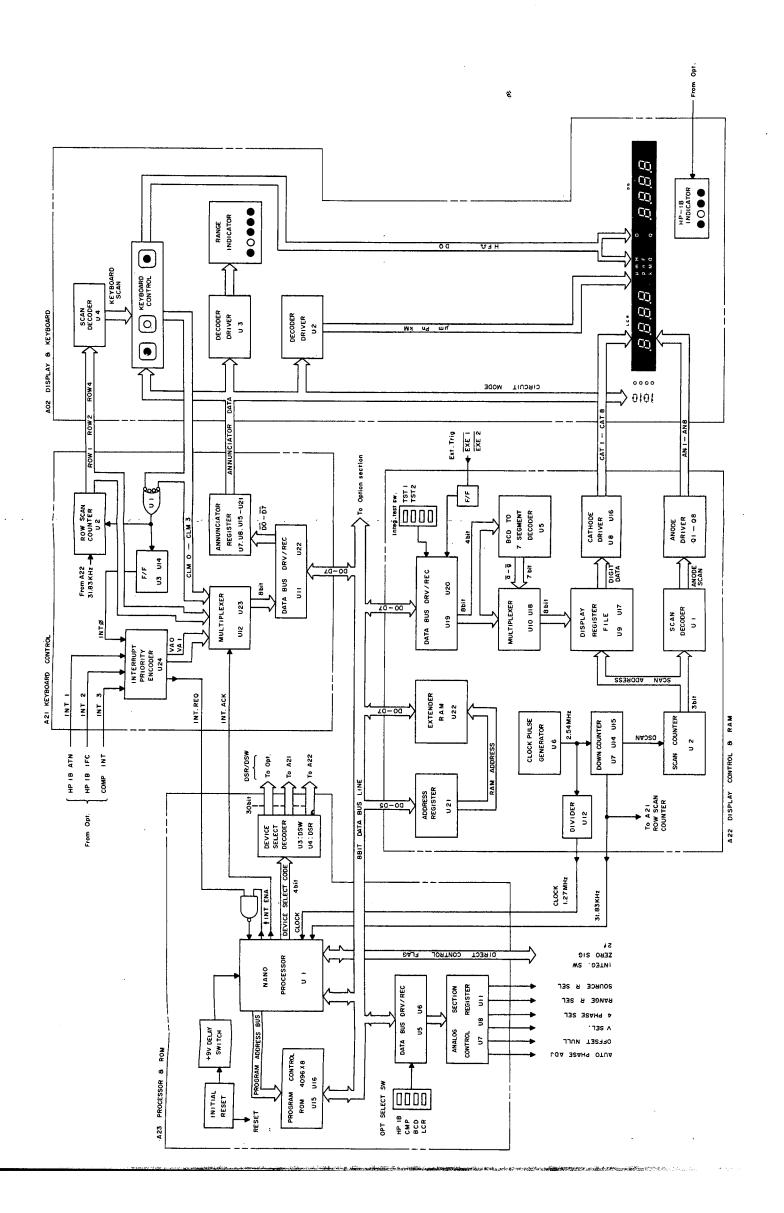
The Row Scan Counter outputs periodic ROW signals (3 bit) to A2 board as driven by 31.83kHz secondary clock. These ROW signals are decoded to the keyboard scan signals which cause, in turn, specific groups of keys to become valid. Each group of control keys is enabled, in sequence, to perform its function. When a keyboard pushbutton is pressed, the output logic of U1 goes high and subsequently the Row Scan Counter stops. The contents of the ROW Scan Counter and the column number given by CLM Ø through CLM 3 signals are coordinated with the address of the key depressed. Simultaneously, U1 activates Flip-Flops U3 and U14 causing the INT & signal to be outputted. The Interrupt Priority Encoder converts its INT Ø through INT 3 input signals into the vector address signals (4 bit octal code) as appropriate for nanoprocessor input. INT 1, 2, and 3 signals are present only when the 4262A is equipped with option(s). The INT REQ signal is sent to A23 and the INT ACK signal actuates the Multiplexer so that the vector address and keyboard address signals pass through the Multiplexer toward the DATA BUS line.

The Annunciator Register stores manifold annunciation data which are serially transferred from the Nanoprocessor to each register file of IC's U7, U8 and U15 through U21. Specifically, U15 stores test signal annunciation data and, additionally, originates the test signal control signals which direct the Low Level, 120kHz, 1kHz and 10kHz measurement functions. U8 also originates the CMS (Circuit Mode Selection) signal. When the nano-

processor is transferring the annunciation data, the Data Bus Driver/Receiver is set to receiver mode.

#### 8-32. A22 DISPLAY CONTROL & RAM.

A22 section consists of three major circuits: Display control, Extender RAM and Clock generator. The Display control does conversion and storage of measured data to be displayed on the seven segment numeric display. When the Nanoprocessor begins to transfer measured counts (8 bit BCD signal), the Data Bus Driver/Receiver (U19 & U20) is set to receiver mode. L, C or R count data passes through the Data Bus Driver/Receiver and D or Q count data follows. These signals are simultaneously routed to both the Multiplexer (U10 & U18) and the BCD to Seven Segment Decoder (U5). When the measured data is being transferred, the Multiplexer continues selecting BCD to seven segment decoder output signals from its two channel input signals. Other signals, fed directly from the Data Bus Driver/Receiver, are disregarded. Thus, the measured data is translated into segment data which is coded as appropriate for driving the seven segment numeric displays and, is successively stored in the Display Register File (U9 & U17) to accomplish matrix drive of display. The Display Register File outputs the display segment signals which alternately illuminate the numeric figure of each measured count digit of the displays. These display segment signals are amplified to supply sufficient current to the LED displays (cathode driver output signals CAT1 - CAT8). The Scan Decoder U1 outputs periodic anode scan signals which activate, in sequence, the display for each digit. Both the Display Register File and the Scan Decoder are simultaneously driven by Scan Counter U2.


Alphabetic annunciations— PASS, FAIL, O-F and U-CL— are displayed in the following manner: the nanoprocessor encodes annunciation contents so that the annunciation data comprises the display segment signals appropriate for displaying annunciation figures. The annunciation data passes through the Data Bus Driver/Receiver and is inputted to the Multiplexer. In the annunciation execute phase, the Multiplexer selects the annunciation data and disregards the (unnecessary) signals from the BCD to Seven Segment Decoder. The Display Register File stores the annunciation data which coincides directly with the display segment signals. The Data Bus Driver/Receiver can be set to driver mode when the Integrator test switch is set to TST position or the instrument is triggered externally. The Extender RAM (U22) performs supplementary storage of data which is inputted or outputted to/from the Nanoprocessor. The Nanoprocessor sends address signals to the Address Register (U21) before storing data in the Extender RAM. When data is transferred to the RAM, the DSW signal actuates the RAM and the Address Register addresses the RAM to assign individual memories for storing the data. When a DSR signal actuates the RAM, the Nanoprocessor causes the RAM to output stored data. The RAM writes out data as addressed by signals inputted at the RAM ADDRESS signal port.

The clock pulse generator oscillates at 2.54MHz and is frequency stabilized by a crystal resonator. Divider U12 counts down the 2.54MHz basic clock by one half (to 1.27MHz) and provides the nanoprocessor with a stable time base for synchronizing various circuit timing. The Down Counter (U7, U14 and U15) produces the 31.83kHz frequency whose value coincides with the reciprocal number of pi ( $\pi$  = 3.14159...). This particular frequency is significant in derivation of the measured value. The secondary clock signal is fed to the Nanoprocessor for calculating the value of the DUT. Additionally, the Down Counter drives the Scan Counter (U2) which produces display timing signals.

### 8-33. A2 DISPLAY AND KEYBOARD.

A2 section includes the Keyboard Control, Displays, and certain decoders. The Keyboard Control manipulates the Keyboard Scan signals sent from the Scan Decoder (U4) and outputs the resulting CLM (CoLuMn) signals. All annunciator data except for alphabetic annunciations are transmitted from the A21 section. Because the range and multiplier annunciator data has been coded to minimum bit size, the Decoder Drivers U3 and U4 translate them so as to illuminate proper indicators. The Unit and DQ annunciator signals are fed, respectively, via the Function and Loss indicators assembled in the keyboard pushbutton. The numeric displays are independently driven by the A22 section.

8-11



#### 8-34. TIMING DIAGRAM DISCUSSION.

8-35. Figure 8-8 presents a timing diagram for the 4262A. The upper part of the diagram shows output waveforms of the integrator, execute time for each measurement sequence, and main control signals which direct the vector voltage ratio measurement. As may be seen from the diagram, the instrument first measures the L/C or R value and then the dissipation (D) and Q (calculated from D) factors. Approximately three seconds after the LINE switch is depressed to turn the instrument on, power voltage (VGG) is applied to the nanoprocessor through a delay switch (A23 board). The nanoprocessor is simultaneously set to its initial conditions ready for beginning the display test which precedes measurement. When the display test ends, the processor sets the 4262A to a predetermined measurement mode (automatic initial settings) and a capacitance measurement is initiated. When LCR and DQ ranges are set to AUTO, the autoranging recycle repeats until an LCR range suitable for the sample is selected. A front panel range indicator lamp lights and step-shifts to left or right. The displays show blanking signs (- - -) during autoranging period. If the sample is too (in PRL mode) or too small value (in SER mode) compared to the range, the Saturation Detector (A13) send a SAT signal to the nanoprocessor. Range is shifted just after Offset Null operations are completed (instrument does not cycle through steps in remaining measurement sequence). This permits faster ranging. Setting LCR RANGE to MANUAL bypasses autoranging cycle.

When a range is selected in which integrator discharge time interval is within 162 and 1820 clock periods (limits), the measurement sequence proceeds with an L/C/R measurement cycle. To minimize vector voltage ratio measurement error, Offset Null and Auto Phase Adjustment sequences precede integrator charge/discharge (by phase detected DUT signal). During Offset Null period, A13Q19 turns on and Q18 turns off to interrupt the em signal transfer. At this time, any output of the integrator caused by residual phase detector output voltage and integrator output offset voltage is fed back to the input of the integrator to reduce the output of the integrator to zero. And this feedback voltage is stored in a memory capacitor during the measurement to eliminate any measurement error

due to residual phase detector and integrator voltages. Refer to service sheet 14 for offset null control details.

At each integrator operating sequence change, a HOLD TIME is provided to prevent a switching transient waveform from entering the integrator and/or to permit full discharge of the integrator capacitor (from previous integrator operation). Now, an Auto Phase Adjustment consisting of two periods begins. During these periods, to minimize measurement error, the phase detector phase reference is precisely set. APA1 (Auto Phase Adjustment 1) and APA2 control signals administer switches A14Q13, Q14 and Q15 timing to accomplish phase adjustment of **e**ref signal (A14TP1) for establishing exact detection phases of Phase Detector. The Integrator disregards this phase adjustment sequence. Refer to service sheet 14 for auto phase adjustment details.

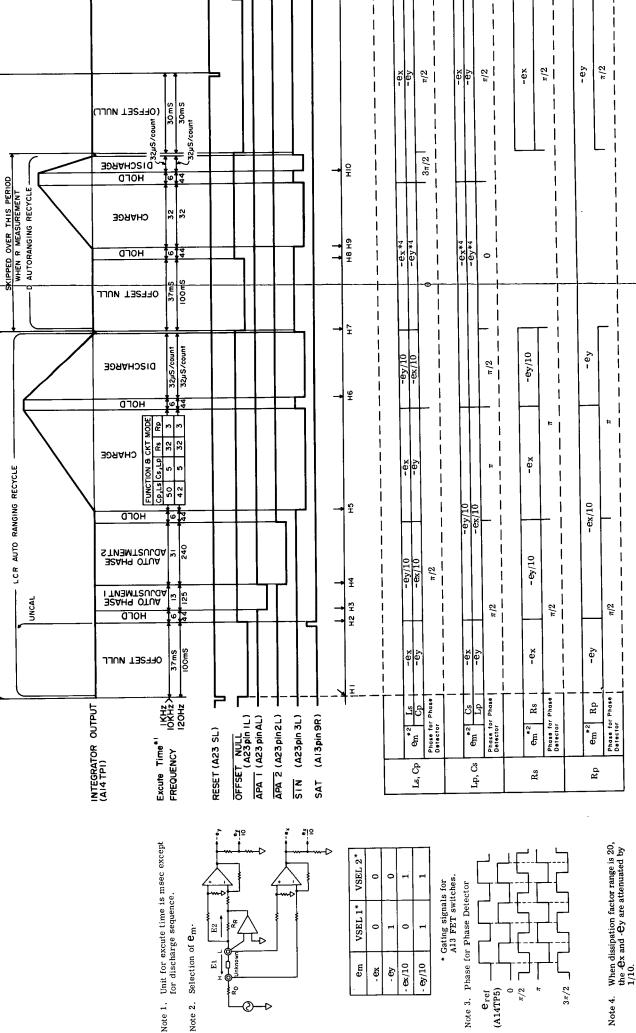
When an integrator charge period is initiated, the DUT signal (synchronously phase detected) is applied to the integrator input. The Integrator is charged with the incoming signal (dc) for a constant time interval (see table in timing diagram). Two kinds of integrator waveforms are developed depending on measurement function and circuit mode. In the Cp measurement mode, integrator output voltage is increased as its charge is proportional to the DUT current (voltage across Rr) and is decreased as its discharge is proportional to the (constant) voltage across the DUT (constant decay rate). On the other hand, in the Cs measurement mode, the integrator rapidly charges in a short time - the constant voltage across Rr representing the current flowing through the DUT. The integrator discharge depends on the voltage across the DUT (and is proportional to DUT). Detailed integrator operation peculiar to each measurement mode group is described in "Principles of Operation" on Page 8-4. The nanoprocessor counts the time of a 31.83kHz  $(10000/\pi \text{ kHz})$ clock for the time required to discharge the integrator until integrator output voltage reaches the zero level. When integrator output voltage crosses the zero level, a zero detector transfers the ZERO signal to the nanoprocessor. The Nanoprocessor stops counting and stores a number corresponding to the L, C or R value of DUT in its internal registers.

D/Q MEASUREMENT

MEASUREMENT CYCLE

L/C/R MEASUREMENT

the real to the imaginary part of the DUT current (voltage across DUT when circuit mode is SER), the integrator is charged when the detection degrees. In R measurements, the D measurement cycle is omitted. Since the electrical response time this frequency, the sequence execute times are different for measurement frequencies of 120Hz, 1kHz and 10kHz. Note that the execute time for set instrument to appropriate D range. After an Successively, the D measurement cycle begins. The integrator begins to charge - its incoming voltage being proportional to the conductance or resistance of the DUT. Discharge time is proportional to the reactance of the DUT. To calculate the ratio of at "90" for each measurement frequency is different and the charge cycle time is sometimes a function of D autoranging recycle is done or repeats once to offset null sequence for D measurement, the is. detected output the discharge sequence is variable. the oţ phase


8-36. The table shown in the lower part of the diagram explains how voltage Em is selected by the instrument (either from voltage across Rr or the voltage across the UNKNOWN) and how the detection phase for the phase detection, employed in either PRL and SER circuit modes, is selected. Both upper and lower sections of the waveform timing diagram have the same time scale.  $-\mathbf{e}\mathbf{x}$ ,  $-\mathbf{e}\mathbf{x}/10$ ,  $-\mathbf{e}\mathbf{y}$  and  $-\mathbf{e}\mathbf{y}/10$  in the  $\mathbf{e}\mathbf{m}$  column are names for voltages shown in diagram Note 2. Diagram Note 3 shows the phase relationships of the voltages applied to phase detector FET switches A14Q19, Q20, Q22 and Q23 (detection phase) along with the phase of  $\mathbf{e}\mathbf{r}\mathbf{e}$  signal at A14 TP5. The detection phase is sequentially selected by PHASE control signals  $(\phi \sim 3\pi/2)$  which are transmitted to 4 Phase Selector on A14 board (from A23 Nanoprocessor & ROM board).

# Note

Labels H1 through H10 in the timing diagram denote the timing for trigger used when troubleshooting instrument using A23 service board (service kit 04262-87001). The 4262A measurement sequence can be stopped at or resumed from the desired point from among these triggering points by pushing specific 4262A front panel buttons.

8-13

Figure 8-8. Timing Diagram.



#### **8-37. OPTIONS.**

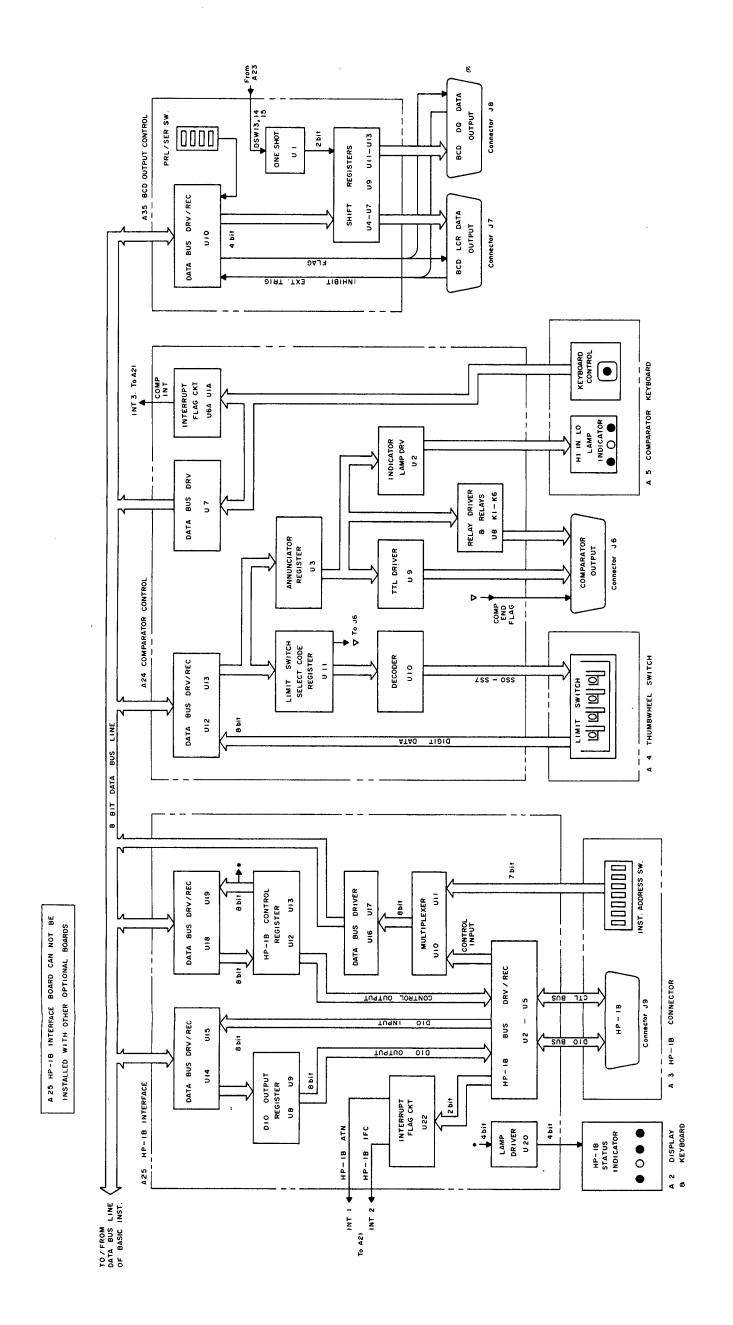
8-38. The theory of operation for the 4262A optional circuits is outlined in the following paragraphs. The currently available options (001, 004 and 101) with a summary of their functions and the material furnished are listed in Table 8-1.

Figure 8-9 is a block diagram showing the option section when all available optional equipment is installed. The basic instrument and the individual option sections are interconnected by 8 bit data bus lines through which both measured and control data are transferred.

8-39. OPTION 001 BCD DATA OUTPUT (A35). Option 001 BCD OUTPUT CONTROL (A35) consists of a Data Bus Driver/Receiver and two shift Register Files which momentarily store the measured data for simultaneous transfer of the complete data to BCD DATA OUTPUT connectors. Timing control of the A35 circuitry is done by nanoprocessor Device Select signals DSR11, DSW13, DSW14 and DSW15. When 4262A TRIG-GER function is set to EXT, the instrument can be triggerred by an EXE (external encode) signal inputted from either BCD DATA OUTPUT connector J7 or J8 (pin 46). After a measurement cycle ends, a DSR11 pulse signal sets Data Bus Driver/ Receiver U10 to driver mode. As long as the DSR11 signal is valid, the switch setting of the SER/PRL switch (A35S1) has access to the nanoprocessor for assigning the output data format in parallel (simultaneous) or serial (alternate) sequences. The data output timing for both simultaneous and alternate sequencing is diagrammed on Page 8-70. To simplify the explanation, only the parallel output sequence is discussed here. The measured data is stored in the shift registers in synchronism with DSW13 and DSW14 pulses (each outputted 8 times during the data transfer cycle). The Data Bus Driver/Receiver is set to receiver mode to allow the measured data to pass through the device. First, a DSW13 pulse train causes the shift registers U9, U11, U12 and U13 to store the LCR data which is simultaneously transferred with the pulse train. Successively, a DSW14 pulse train actuates shift registers U4, U5, U6 and U7 to store the sequentially transferred DQ data. One shot multivibrators U1A/B generate an output pulse train consisting of pulses that are somewhat shorter than the input DSW pulses. This eliminates the possibility of the shift register not storing the input data because of a DSW signal timing error. One transfer data group is stored in the first 1/8 stack of each shift register when triggered by the rising edge of the one shot multivibrator output pulse. Thus, a total of 16DSW pulses complete storage of all data in the shift register file during the data transfer phase. Next, a DSW15 pulse activates the "two times" Flip Flop U2 - one delayed for 1.2 msec after the other. Thus, the Flip Flop generates FLAG pulse which commands the external recorder to print the measured data concurrently presented at the LCR and DQ BCD output connectors. After the FLAG signal is transferred, a periodic DSR11 pulse actuates the Data Bus Driver/ Receiver and frequently sets it to driver mode to monitor the status of the INHIBIT signal outputted by the external recorder. The DSR11 pulse train continues until the nanoprocessor senses a change in the logic of the INHIBIT signal (meaning that printing is complete). In alternate data output format, the data storage and output cycle for LCR precedes that for DQ. Hence, Device Select signals are alternately provided for both an LCR and a DQ output cycle [as shown in Timing Diagram(Page 8-70)].

Table 8-1. Currently Available Options.

| OPTION                       | FUNCTION                                                                                                                                        | MATERIAL                                                                                                                    |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| OPT. 001<br>BCD DATA OUTPUT  | Provides measured LCR and DQ data with Polarity, Decimal Point, Unit, and measurement status in BCD code at rear panel connectors.              | A35 BCD OUTPUT CONTROL<br>(04262-66535)                                                                                     |
| OPT. 004<br>COMPARATOR       | Built-in comparator compares measured value with LCR and DQ HIGH and LOW limits. Provides decision data in display and by Relay and TTL output. | A24 COMPARATOR CONTROL<br>(04262-66524)<br>A4 THUMBWHEEL SWITCH<br>(04262-66504)<br>A5 COMPARATOR KEYBOARD<br>(04262-66505) |
| OPT. 101<br>HP-IB COMPATIBLE | Provides system interface capabilities in accordance with IEEE-STD-488-1975 recommendations.                                                    | A25 HP-IB INTERFACE<br>(04262-66525)<br>A3 HP-IB CONNECTOR<br>(04262-66503)                                                 |


8-40. OPTION 004 COMPARATOR (A4, A5, & A24). Option 004 adds A24 COMPARATOR CON-TROL and the front panel control unit comprised of A4 Thumbwheel Switch and A5 Comparator Keyboard. The A24 Comparator Control manages the control data set into the panel controls as well as the decision data transferred from the nanoprocessor so that comparison results are provided (in three output configurations). The panel control functions are managed in the following manner: An instrument equipped with option 004 includes a front panel control assembly which includes four 4 digit thumbwheel switches used to assign the desired respective limits of L, C or R and D or Q. The thumbwheel switch assembly provides output data for each digit in a 4 bit code which correspondes to the set number indicated in the control panel window. To transmit the high and low limit data from the thumbwheel switch assembly through an 8 bit digit data transmission line, the thumbwheel switches are assigned 8 addresses (each set of four digits occupies two addresses). The nanoprocessor alternately accesses the thumbwheel switch output code in the order of their address numbers. First. Data Bus Driver/Receiver is set to receiver mode and a 4 bit address code is stored in the Limit Switch Select Code Register U11. The Decoder U10 sets its output logic (SS0) to low level in response to the 4 bit address code (output logic of the SS1 through SS7 outputs stay at high level). The SSO signal causes the 8 bit digit data to change depending on the setting of the most significant digit and third digit of the LCR HIGH LIMIT switch that is first addressed. The digit data is transferred to the nanoprocessor (passing through the Data Bus Driver/Receiver set to driver mode).

Successively, the other digit data is transferred in like manner. The commands of all pushbutton controls on the A5 Comparator Keyboard are processed during the interruption phase. The Interrupt Flag circuit directs the nanoprocessor to act on the interrupt request. When a comparator keyboard control pushbutton is pressed, Gate U6A sets its output logic to high level. This causes Flip Flop U1A to generate an INT 3 output pulse. The INT 3 signal is sent to A21 Keyboard Control circuit which forwards the interrupt requests to the nanoprocessor. At this point, the comparator keyboard signals access the nanoprocessor via the Data Bus Driver U7.

The nanoprocessor compares the measured values with the limit numbers (values) and stores the decision data — the results of the comparison in Annunciator Register U3. The decision data is inputted, in parallel, to the TTL, Relay and Indicator Lamp drivers.

8-41. OPTION 101 HP-IB COMPATIBLE (A25). An instrument equipped with Option 101 HP-IB Compatibility includes the A25 HP-IB INTER-FACE board which provides the circuitry to enable intercommunications with external devices in accord with IEEE-STD-488-1975 recommendations. The A25 circuitry is basically composed of data bus driver/receivers and data registers which provide the timely actions for handling the HP-IB data bus input/output and control bus input/output flow as directed by the nanoprocessor. Since the circuit configuration is of general HP-IB design and since general instructions on HP-IB interface is otherwise readily available, a detailed circuit description is not given in this manual.

8-15



#### 8-42. TROUBLESHOOTING.

#### CAUTION

THE OPENING OF COVERS OR THE REMOVAL OF PARTS, EXCEPT THOSE TO WHICH ACCESS CAN BE GAINED BY HAND, IS LIKELY TO EXPOSE LIVE PARTS. IN ADDITION, ACCESSIBLE TERMINALS MAY ALSO BE LIVE.

THE APPARATUS SHALL BE DISCONNECTED FROM ALL VOLTAGE SOURCES BEFORE ANY ADJUSTMENT. PARTS REPLACEMENT, OR MAIN-TENANCE AND REPAIR ARE PERFORMED FOR WHICH THE INSTRUMENT MUST BE OPEN-ED. IF, AFTERWARDS, ANY ADJUSTMENT, MAINTENANCE OR REPAIR OF THE OPENED INSTRUMENT UNDER VOLT-AGE IS REQUIRED, IT SHALL BE CARRIED OUT ONLY BY A PERSON WHO IS SKILLED AWARE OF THE HAZARD IN-VOLVED.

8-43. When 4262A is inoperative or readings for the sample connected to the UNKNOWN terminals are incorrect, you should first check power line voltage used and next the behavior of instrument with respect to the DUT when a measurement is attempted. The two may be incompatible. In addition, check for appropriate test leads or fixture. Determining whether the trouble is in an external device connected to the instrument or is in the actual instrument is primary and a fundamental procedure which must precede troubleshooting the LCR Meter. Occasionally, the unknown sample may have characteristics not measurable by the 4262A. Table 8-2 lists the examples of symptoms likely to mislead. You should also be concerned about the operating environmental conditions in which the instrument is operated. Surrounding magnetic fields or the presence of a strong radiowave will sometimes disturb the measurement. To isolate any instrument trouble from the above possibilities, perform the following examinations:

1) Measure a sample whose characteristics and value (L, C or R and D/Q value) are known to be measurable with the 4262A. Thus, if the problem is restricted to difficulty in measuring a particular sample, it might suggest that the sample is not measurable with the 4262A.

- 2) Next, connect sample directly to the UN-KNOWN terminals without using any test fixture or test leads. Any external equipment being used with 4262A should be disconnected from the connectors of the 4262A. These tests isolate troubles on the external equipment or test jig from those on the instrument.
- 3) Securely ground the instrument to earth. If environmental conditions are suspected, change the location of instrument.
- 4) Use a four terminal connection configuration and measure a sample. An improper connection to unknown will cause a measurement error.
- 5) Properly terminate UNKNOWN terminals (short or open circuit), and press SELF TEST button. Confirm that normal PASS annunciator readouts occur on the LCR DISPLAY.

8-44. Figure 8-10, "How to Use Troubleshooting Guides", is helpful when starting to troubleshoot the 4262A. This flow diagram shows the fundamental procedures which breakdown the trouble possibilities to the component level. The troubleshooting guides are divided into the following major procedures:

## Power Supply Section Isolation Procedure (Fig. 8-17).

Basically used for checking internal dc power supply voltages of the instrument. The guide for checking the power supply section is included in Figure 8-17.

#### Option Section Isolation Procedure (Fig. 8-17).

This procedure, which is used to isolate the option section from the overall unit, is included in Figure 8-17. If the instrument is a standard unit equipped with no option, omit this procedure.

## Analog and Digital Section Isolation Procedure (Fig. 8-17).

The troubleshooting guide in Figure 8-17 describes how to distinguish whether the faulty assembly is located in the analog or in the digital section. In conjunction with the troubleshooting flow diagram of Figure 8-17, the built-in self test function is used to assist in isolating the analog section from the digital section. To study the self test function, refer to Figure 8-11.

## Analog Section Troubleshooting Procedure to Assembly Level (Fig. 8-18).

The troubleshooting flow diagram in Figure 8-18 helps to isolate a faulty board assembly in the analog section. The built-in self test function is also helpful in troubleshooting to the assembly level.

### Component Level Troubleshooting Guides.

Component level troubleshooting guides are provided for each major assembly (other than for A21, A22 and A23 boards of the digital control section) in the service sheets. Procedures for narrowing down the trouble possibilities in A21, A22 and A23 boards to the component level are covered in "Digital Section Troubleshooting Guide". Refer to guideline below.

## Digital Section Troubleshooting Guide.

The search for and location of a faulty component in the digital control section is done in accord with the troubleshooting flow diagrams in Figure 8-19. To facilitate an "easy to make" failure diagnosis, a "signature analysis" method was adopted for troubleshooting both the digital and option sections. When diagnosing with this method, a Signature Analyzer (HP 5004A) is necessary to properly employ the procedures and associated signature maps (see service sheets). Refer to Figure 8-12 for signature analysis guidelines.

8-45. Table 8-3 describes typical front panel symptoms present when 4262A internal controls

(adjustable points) are not well-adjusted. A search for and interpretation of trouble symptoms by operating front panel controls is important and often gives hints as to trouble location. Table 8-4, Front Panel Isolation Procedure provides such an approach to troubleshooting. These primary troubleshooting procedures are supplemental to and should be used with the main procedures in the flow diagrams.

#### WARNING

WHENEVER IT IS LIKELY THAT THE PROTECTION PROVIDED BY THE FUSE HAS BEEN IMPAIRED, THE INSTRUMENT MUST BE SECURED AGAINST ANY UNINTENDED OPERATION.

#### **CAUTION**

CAPACITORS INSIDE THE INSTRUMENT MAY STILL BE CHARGED EVEN THOUGH THE INSTRUMENT HAS BEEN DIS-CONNECTED FROM ALL VOLTAGE SOURCES. BE SURE THAT ONLY FUSES OF THE REQUIRED RATED CURRENT AND THE SPECIFIED TYPE ARE USED FOR REPLACEMENT. THE USE OF REPAIRED FUSES AND THE SHORT-CIRCUITING OF HOLDERS MUST BE FUSE AVOIDED.

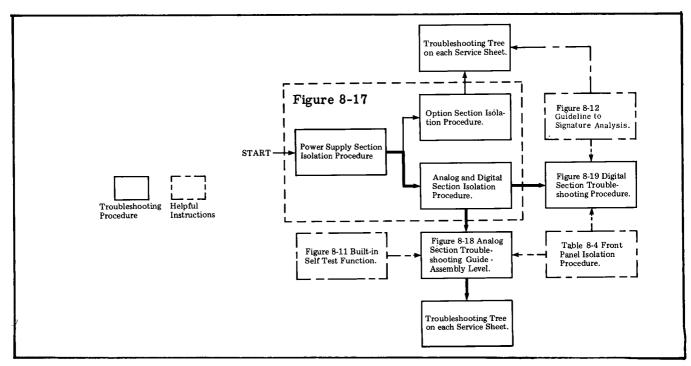



Figure 8-10. How To Use Troubleshooting Guides.

Table 8-2. Symptoms Likely to Mislead.

| Category                       | Symptoms                                                                                                                                                                                                       | Probable cause                                                                                                                                                             |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | When LCR RANGE setting is in AUTO, the range is shifted alternately up and down between two ranges and does not settle on a specific range.                                                                    | This symptom occurs when the inductance of an inductor with core changes because of the current flowing through the coil.                                                  |
| L MEASUREMENT                  | Measured values differ depending on the range selected.                                                                                                                                                        | Permeability of inductor core changes with measurement signal level (current), which differs for each range. (Measure in MANUAL ranging mode.) See Note below.             |
|                                | Measured values differ depending on<br>the selected test signal frequencies.<br>Specifically, a large difference exists be-<br>tween the measured value at 120Hz and<br>that at another test signal frequency. | This symptom is because of a difference in the permeability of the inductor core developed by two different measurement frequencies.                                       |
| C MEASUREMENT                  | When measuring a small capacitance at 120Hz test signal frequency, measured counts on the LCR DISPLAY fluctuates by several counts.                                                                            | Interference of ac frequency hum noise. Check for any ac line cables close to the test leads. Check for grounding of the instrument chassis.                               |
| R MEASUREMENT                  | Both LCR and D/Q DISPLAYS are blank () with respect to the sample connected to the UNKNOWN terminals.                                                                                                          | The DUT is a wirewound resistor having a large inductance. (Note that some standard resistors are used only with dc current and their calibrated values are so certified.) |
| Common to all LCR MEASUREMENTS | When measuring an inductance, capacitance or resistance of a large value, a measurement error over the specified limits occurs.                                                                                | C OFFSET control (related to inductance and resistance measurements) or L OFFSET control (related to capacitance measurement) is misadjusted.                              |

Note: For example, if value of sample is  $187.0\mu H$  on the  $100\mu H$  range, the auto ranging function moves to  $1000\mu H$  range. Then the sample may develop a lower inductance at the applied measurement signal on the  $1000\mu H$  range. It may, for example, develop an inductance of  $160.0\mu H$  that is suitable for measurement on  $100\mu H$  range. The range will again be reset to the  $100\mu H$  range and, as a result will repeat (auto range) up and down between the lower and the higher ranges.

Table 8-3. Front Panel Symptoms of Internal Control Misadjustment.

| Adjustment        | Symptom                                                                                                                                                                                                                  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A12R1             | When TEST SIGNAL setting is LOW LEVEL, autoranging operation sometimes does not work well.                                                                                                                               |
| A12C3             | Measurement accuracy of $10 \mathrm{kHz}$ measurements is lower on the highest L and R measurement ranges or the lowest C measurement range.                                                                             |
| A12C11            | C ZERO ADJ control range is improper.                                                                                                                                                                                    |
| A13C1             | The 10kHz measurement error is excessive.                                                                                                                                                                                |
| A13R1<br>(OFS-1)  | When making a measurement in the series equivalent mode, the measurement accuracy is sometimes lower (due to improper dc level at A13TP3).                                                                               |
| A13R2<br>(OFS-2)  | When making a measurement in the parallel equivalent mode, the measurement error is sometimes excessive (due to improper dc level at A13TP3) — especially when TEST SIGNAL is set to LOW LEVEL.                          |
| A13R66<br>(OFS-3) | Measurement accuracy will become lower when offset voltage at A13U6 pin 7 is not zero volts. This is usually more noticeable when TEST SIGNAL is set to LOW LEVEL.                                                       |
| A13R67<br>(OFS-4) | D measurement error sometimes exceeds specifications (impossible to automatically adjust the detection phase of phase detector). This symptom is present when auto phase adjustment signal at A14TP3 exceeds 0 ±3 volts. |
| A14R1<br>(ZOF)    | Measurement errors for both LCR and D/Q values has increased. The error is maximum at count displays of 1999 for all three measurement functions (Cs, Lp and Rp).                                                        |
| A14R15<br>(APAO)  | D measurement has significant error (detection phase error).                                                                                                                                                             |
| A23R12<br>(VR1)   | Instrument is inoperative or measurement sometimes stops.                                                                                                                                                                |

Table 8-4. Front Panel Isolation Procedure.

| Symptoms                                                                        | Probable Faulty<br>Board |
|---------------------------------------------------------------------------------|--------------------------|
| ZERO ADJ L control malfunctions but measurement is made correctly.              | A11                      |
| Measured value is incorrect at a particular range setting.                      | A11, A12                 |
| Measurement is not made correctly when TEST SIGNAL setting is at LOW LEVEL.     | A11, A13<br>Note 1       |
| Displayed count is unstable and fluctuates several counts at 120Hz measurement. | A11, A14                 |
| ZERO ADJ C control malfunctions but measurement is made correctly.              | A12                      |
| Autoranging operation skips a particular range.                                 | A12                      |
| U-CL is displayed on every range.                                               | A13                      |
| Measurement is made only in either PRL or SER mode.                             | A13                      |
| Display count changes randomly.                                                 | A14                      |
| Figure(s) in numeric display is (are) defective.                                | A2                       |
| An indicator lamp does not light.                                               | A2, A21                  |
| Pushbutton controls do not work (always invalid).                               | A2, A21, A23             |
| An indicator lamp stays lit.                                                    | A21                      |
| All numeric display are blank.                                                  | A22                      |
| Trigger lamp does not light or stays lit.                                       | A22, A23                 |
| Autorange control is inoperative.                                               | A23                      |

Note 1: If test signal voltage at H<sub>CUR</sub> terminal is correct (140mVp-p), A13 board is faulty. If not, A11 board is faulty.

#### **SELF TEST FUNCTION**

Pressing the SELF TEST button (located at left in line with the CIRCUIT MODE selection buttons) directs the instrument to begin a sequence of instrument operated self-test functions. This is an outline of how to use the self test function for failure diagnosis.

#### Automatic self test settings:

An appropriate equivalent circuit mode (either to SER or PRL) is automatically selected for the duration of the self test. Since self testing is done in a particular equivalent circuit mode for each of the measurement parameters (L, C and R), auto testing is limited to the ranges specified for these circuit modes. The table below shows measurement ranges tested by self-test function. However, since, during self test, all instrument measurement functions are brought into action (including all the range resistors), this test is broad check of overall instrument performance for all ranges.

Table 8-5. Self Test Ranges

| Range | Cs —   | Ls     | Rs -11                  |
|-------|--------|--------|-------------------------|
| 1     | 100pF  | 100μΗ  | $1000 \mathrm{m}\Omega$ |
| 2     | 1000pF | 1000μΗ | 10Ω                     |
| 3     | 10nF   | 10mH   | 100Ω                    |
| 4     | 100nF  | 100mH  | 1000Ω                   |
| 5     | 1000nF | 1000mH | 10kΩ                    |

Note

Multiply range by 10 at 120Hz and by 0.1 at 10kHz test signal frequencies.

#### How the self test function operates:

To perform the self test, the instrument simulates a measurement of either zero or infinite impedance. For these tests, the UKNOWN terminals are appropriately terminated (short or open). Under these test conditions, the integrator develops an output voltage corresponding to a 1000 count display (full scale) for the LCR measurement test cycle and a 000 count display for the DQ measurement test cycle. The nanoprocessor monitors the 1000 and 000 counts calculated from the integrator output. If either or both of the counted numbers differ by more than 5 counts from their respective nominal values, a FAIL annunciation is displayed on the LCR DISPLAY. The nanoprocessor also monitors a SAT signal from Saturation Detector (A13) to further categorize the failures into other subdivisions.

#### Self Test Diagnostic Guide

Table 8-6 "Self Test Displays and Trouble Possibilities" is helpful in troubleshooting the analog section. No pushbuttons except for the FUNCTION and TEST SIGNAL controls should be depressed while the self test is being performed (if a pushbutton is inadvertently pressed, the self test function will be reset and will require reactivating).

Table 8-6. Self Test Displays and Trouble Possibilities.

| Display | Source of FAIL signal                                                                                                  | Probable Cause of Trouble                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FAIL 1  | Process Amplifier has been saturated by a signal of excessive amplitude. Saturation Detector is generating SAT signal. | <ol> <li>One of the range resistor selection switches on the A12 board is defective.</li> <li>One of the signal selection switches on the A13 board is defective.</li> <li>Saturation Detector on A13 board is faulty.</li> <li>A13Q17 is always conducting (display will change to PASS when LOW LEVEL button is pressed).</li> </ol>                                                                                                           |
| FAIL 2  | Integrator has developed an incorrect output voltage in an LCR measurement cycle.                                      | <ol> <li>Test signal is not present at HCUR terminal.<br/>A11 board is faulty.</li> <li>A12 range resistor amplifier is faulty.</li> <li>An amplifier or an active switch on A13 board is faulty.</li> <li>PLL circuit or Phase Selector in A14 board is faulty.</li> <li>Phase Detector or Integrator on A14 board is faulty.</li> <li>Auto Phase Adjustment malfunctioning.</li> <li>Integrator Offset Null control malfunctioning.</li> </ol> |
| FAIL 3  | Integrator has developed an incorrect output voltage in the D/Q measurement cycle.                                     | A23 Processor and ROM board assembly is faulty.                                                                                                                                                                                                                                                                                                                                                                                                  |

Note: The trouble possibilities outlined in the table above presupposes that the digital control section is operating correctly. A FAIL indication can also be generated by trouble in the digital section.

Figure 8-11. Self Test Function (sheet 2 of 2).

### Digital Section Troubleshooting Using Signature Analyzer.

The advantage of troubleshooting based on "Signature Analysis" is accuracy and ease in finding failures. It is generally difficult to search for an error by means of observing waveforms on an oscilloscope for the reason that bit trains in a digital circuit seem to be much the same whichever is observed. Specifically, to find the errors in stream of a large bit size (or word length) data takes much time and requires the use of an instrument such as a logic state analyzer. Hewlett-Packard has proposed a method called "Signature Analysis" which recognizes the bit pattern measured in a 4 digit hexa-decimal code (signature) for running an easy diagnostic test program. With the Signature Analyzer (HP 5004A), the signatures are displayed in a readable 4 digit-figure set of alphanumeric figures (0 1 2 3 4 5 6 789 ACFHPU). The signature analysis is based the usual signal tracing method followed in troubleshooting an analog circuit. According to signature analysis, devices in a digital circuit are checked with the signal analyzer by comparing signal input and output signatures to and from each device for the "correct" signature denoted in the service manual signature map. If a signature is not identical, the troubleshooter need only trace the bit train in opposite direction to the signal flow and, when a device is noted which generates an erratic signature despite a correct input, the component may be regarded as faulty. One additional important consideration, since the actual program ROM board (P/N: 04262-66523) in the 4262A does not include a self-test program for signature analysis (as part of the program ROM), a troubleshooting board is required when diagnosing with the Signature Analyzer.

When the troubleshooting board is installed in the instrument, a test program is written out from a special ROM which activates overall the digital control circuit, and, if included, any optional circuits. For convenience in troubleshooting the 4262A, this signature test board is supplied as Service Kit (04262-87002).

#### HOW TO USE THE SIGNATURE ANALYZER TEST BOARD.

#### Note

Use either procedure 1 or 2 depending upon instrument serial number.

#### 1. Serial numbers 1710J00340 and below.

- a. Remove A11, A12, A13 and A14 boards from instrument.
- b. Take out A23 Board.
- c. Disconnect A23U16 (ROM) from socket J2 and put aside.
- d. Disconnect signature program ROM from socket J3 (labeled TEST ROM) on test board and install the ROM in place of A23U16.
- e. Reinstall A23 Board in its normal position.

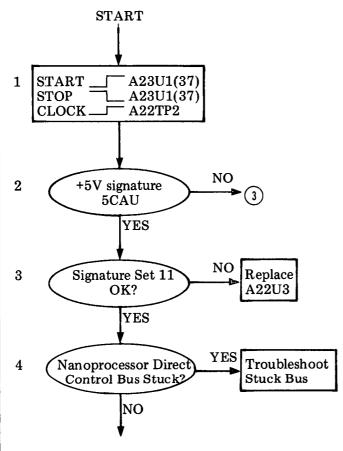
#### Note

When testing ROM's with A23 board assembly, install the ROM in socket J1 (labeled 2708A) on the test board. Install the test board in place of A13 board assembly. Observe signatures at test points D0 through D7 on the board and follow troubleshooting procedures. Test board flat cable need not be connected anywhere.

- f. Turn instrument off and on (press LINE button) to reset digital control circuit and to return test program to its initial address line.
- 2. Serial numbers 1739J00341 and above.
  - a. Remove A11, A12, A13 and A14 boards from instrument.
  - b. Install Signature test board in place of A13 board.
  - c. Take out the A23 board.
  - d. Disconnect A23U15 (ROM) from socket J2 and put aside.
  - e. Connect 24 pin plug of the test board flat cable assembly to socket J2 on A23 board.
  - f. Reinstall A23 board in its normal position.
  - g. Turn instrument off and on (press LINE button) to reset digital control circuit and to return test program to its initial address line.

#### Note

When testing ROM's on A23 board assembly, install the ROM in socket J2 (labeled 2316A) on test board. Observe signatures at test points D0 through D7 on the board and follow troubleshooting procedures. Test board flat cable may be left connected to A23 board.


### SIGNATURE ANALYZER TECHNIQUE.

An active digital hand-held logic tracer coupled with an active pod (with four miniature clip connection leads) is sufficient for detecting the test signal and for development of the signature on the Signature Analyzer display. The active probe has access to the desired node in the circuit being tested and transfers this input data to the analyzer. The four input leads of the test cable active pod, connect the gate signals — START, STOP, and CLOCK — from the instrument being tested to the analyzer. The remaining lead is connected to instrument GND. The START signal is an open "window" (measurement gate) signal which causes the signature analyzer to prepare for receiving data via the active probe. The STOP signal causes the window to close. The CLOCK is taken from the time base of the instrument and permits receiving input data and gate signals in synchronization. Polarity of the gate signal active (enable) edges (positive or negative) can be selected by the front panel controls of the signature analyzer. Probing points and connection locations of START, STOP and CLOCK leads are designated on the troubleshooting flow diagrams.

Use an -hp- Model 547A Current Tracer to trace a "stuck" node current.

Figure 8-12. Signature Analysis Guide (sheet 2 of 3).

### Signature Analysis Diagnostic Flow Diagram Notes.



1. Both START and STOP signals are taken from A23U1 pin 37. CLOCK signal is taken from A22TP2. Front panel control settings for Signature Analyzer are:

START button: released (1)
STOP button: depressed (1)
CLOCK button: released (1)

- 2. Checks that signature of +5V supply is 5CAU. If incorrect, go to Flow Diagram number 3.
- 3. Compares actual signatures with signature set (1) on the signature map (see Figure B). If not identical, replace A22U3.
- 4. Check signatures with respect to nanoprocessor direct control bus line. If incorrect, check every component on faulty bus line.

Figure A. Diagnostic Flow Diagram Notes.

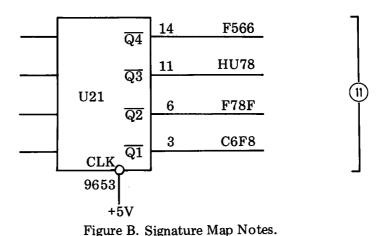



Figure 8-12. Signature Analysis Guide (sheet 3 of 3).

#### 8-46. REPAIR.

### **WARNING**

BEFORE PROCEEDING WITH REPAIR, BE SURE THAT INSTRUMENT IS DISCONNECTED FROM POWER LINE!

## 8-47. REMOVAL OF 02 or 03.

- a. Fully loosen top cover retaining screw located at rear of instrument and lift off top cover.
- b. Remove left handle mounting screws (2). Slide left side panel toward the rear of instrument and take off.
- c. Remove the two transistor retaining screws.
- d. Lift out transistor.
- e. Install new transistor. To maintain good thermal diffusion, use fresh silicone paste on transistor and insulator sheet.

## 8-48. LINE SWITCH (S1) REMOVAL.

- a. Perform steps a and b of paragraph 8-47, removal of Q2 and Q3.
- b. Remove the two screws which fasten LINE switch S1 to plate on side frame.
- c. Remove the cable clamp screw (located at center near top of side frame).
- d. Pull LINE switch toward the rear of instrument and take out switch with extender shaft from instrument.
- e. Pull extender shaft out of switch shaft. Unsolder cable from switch.
- f. Install new switch. Envelop the switch with heat contractible tubing.

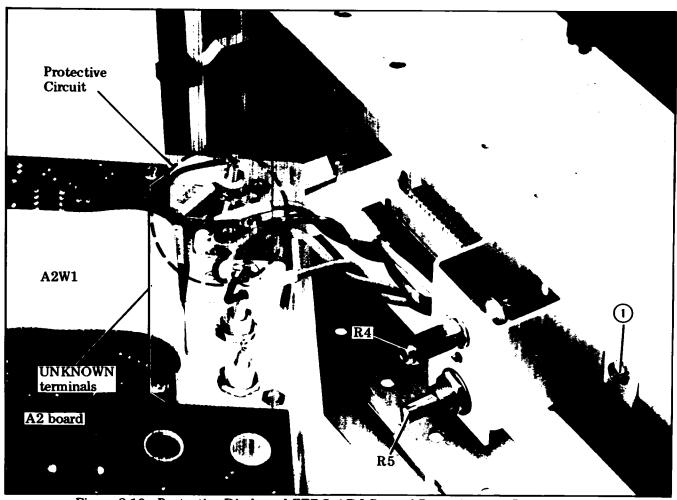



Figure 8-13. Protective Diode and ZERO ADJ Control Potentiometer Replacement.

## 8-49. PROTECTIVE DIODE REPLACEMENT (CR4, CR5, CR6 and CR7).

To replace protective circuit diodes connected to UNKNOWN terminals (Low side), perform the following procedure:

- a. Remove top trim strip from front frame (use a screwdriver to lift out the trim).
- b. Remove the two left hand screws from among the four screws located at the top side of the front frame.
- c. Turn instrument upside down.
- d. Remove the two right-hand screws from among the four screws located at bottom side of the front frame.
- e. Carefully pull unknown terminal binding posts forward and front panel assembly out.

#### **CAUTION**

DO NOT USE EXCESSIVE FORCE OR WIRE CONNECTIONS TO UNKNOWN TERMINALS MAY BREAK.

f. Disconnect flat cable 40 pin connector A2W2 from the plug mated with A21 board assembly. See Figure 8-14.

- g. Disconnect flat cable 40 pin connector A2W1 from the plug mated with mother board. See Figure 8-14.
- h. Unsolder wire leads to diode and disconnect diode from the binding post soldering lugs of UNKNOWN terminals.
- Install new diode. Solder wire leads to new diode.

## 8-50. ZERO ADJ CONTROL POTENTIOMETER (R4 and R5) REPLACEMENT.

- a. Perform steps a through g of paragraph 8-49 Protective Diode Replacement.
- b. Remove retaining screw 1 shown in Figure 8-13.
- c. Remove the potentiometer retaining nut and unsolder wiring leads to the potentiometer.
- d. Install new potentiometer.

## 8-51. A2 KEYBOARD AND DISPLAY BOARD DISASSEMBLY.

- a. Perform steps a through g of paragraph 8-49 Protective Diode Replacement.
- b. Remove the 8 screws (1) through (8) in Figure 8-14) fastening A2 board to front panel.

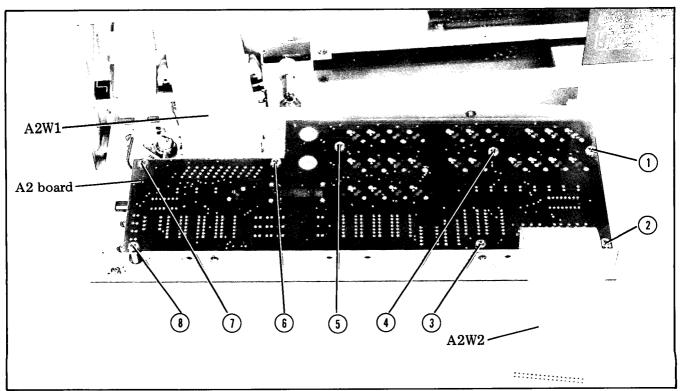



Figure 8-14. A2 Keyboard and Display Board Disassembly.

## 8-52. KEYBOARD SWITCH LED REPLACEMENT.

- a. Perform steps a through g of paragraph 8-49, Protective Diode Replacement.
- b. Remove 8 screws (1) through (1) in Figure 8-14) fastening A2 board to front panel.
- c. Take out A2 board from instrument.
- d. Remove pushbutton switch by melting plastic legs of the switch. Use tool HP P/N 5951-8516.
- e. Unsolder defective LED.
- f. To assure that the newly installed LED will not rub against the switch plunger (when pushbutton is pressed), a soldering guide is required. Fabricate a soldering guide from a piece of 3.18mm (0.125 inch) internal diameter, thin walled plastic tubing 4.76mm (3/16 inch) in length. If tubing is not available, use a 4.76mm strip of paper rolled to make up an approximate I. D. of 3.18mm.
- g. Insert tubing (or rolled paper) into bottom of plunger of new switch (see Figure 8-15).
- h. Insert the new LED into bottom of switch plunger containing tubing.
- i. Rotate LED (in bottom of switch plunger) so that the shortest lead passes through the P. C. board mounting hole (identified with dot marking). See Figure 8-16.

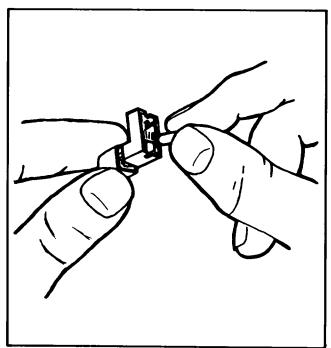



Figure 8-15. Inserting Tubing Into Switch Plunger.

- Install switch and LED combination onto A2 board assembly.
- k. Grasp LED leads (back side of A2 board) and pull LED flush against front side of A2 board.
- l. Solder LED to A2 board assembly.

#### **CAUTION**

WHILE SOLDERING LED, PRESS SWITCH AGAINST FRONT SURFACE OF A2 BOARD ASSEMBLY. BE CAREFUL NOT TO MELT PLASTIC LEGS OF SWITCH OR TO CONTAMINATE IT WITH SOLDERING FLUX.

- m. Take off switch and remove tubing (or rolled paper) from switch plunger. Clean any reresidual flux from A2 board assembly.
- n. Mount switch over LED and operate switch several times to assure that switch plunger does not rub against LED, and that the lightpipe in key-cap does not contact LED before switch plunger bottoms.

#### Note

If the results of step n are not satisfactory, repeat the LED installation procedure.

 Install switch (over new LED) onto A2 board assembly.

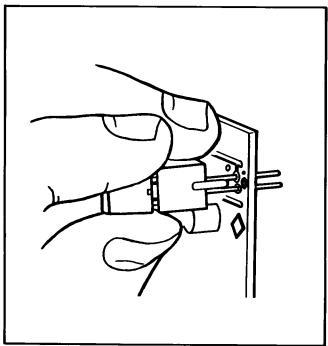



Figure 8-16. LED Installation in Switch.

#### 8-53. PRODUCT SAFETY CHECKS.

### WARNING

WHENEVER IT APPEARS LIKELY THAT SAFETY PROTECTIVE PROVISIONS HAVE BEEN IMPAIRED, THE APPARATUS SHALL BE MADE INOPERATIVE AND BE SECURED AGAINST ANY UNINTENDED OPERATION. THE PROTECTION IS LIKELY TO BE COMPROMISED IF, FOR EXAMPLE;

- -- THE APPARATUS SHOWS VISI-BLE DAMAGE.
- -- THE INSTRUMENT FAILS TO PERFORM THE INTENDED MEAS-UREMENT.
- -- THE UNIT HAS UNDERGONE PRO-LONGED STORAGE UNDER UN-FAVORABLE CONDITIONS.
- -- THE INSTRUMENT HAS SUFFERED SEVERE TRANSPORT STRESS.

8-54. The following five checks are recommended to verify the product safety of the 4262A LCR Meter (these checks may also be done to check for product safety after troubleshooting and repair). When such checks are needed, perform the following:

- Visually inspect interior of instrument for any signs of abnormal, internally generated heat, such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. Determine and remedy cause of any such condition.
- 2. Using a suitable ohmmeter, check resistance from instrument enclosure to ground pin on power cord plug. The reading must be less than 0.5 ohm. Flex the power cord while making this measurement to determine whether intermittent discontinuities exist.
- 3. Check GUARD terminal on front panel using procedure (2).
- 4. Disconnect instrument from power source. Turn power switch to on. Check resistance from instrument enclosure to line and neutral (tied together). The minimum acceptable resistance is two megohms. Replace any component which fails or causes a failure.
- 5. Check line fuse to verify that a correctly rated fuse is installed.

Section VIII Model 4262A

## TROUBLESHOOTING FLOW DIAGRAMS

| Figure 8-17. Analog  | and Digital Section Isolation Procedure                                     | 8-31 |
|----------------------|-----------------------------------------------------------------------------|------|
| Figure 8-18. Analog  | Section Troubleshooting Procedure to Assembly Level                         | 8-33 |
| Figure 8-19. Digital | Section Troubleshooting Procedures                                          | 8-35 |
| Flow Diagram A.      | Primary Diagnostic Flow Diagram                                             | 8-35 |
| Flow Diagram B.      | Program ROM Diagnostic Flow Diagram                                         | 8-35 |
| Flow Diagram C.      | A23 Board Diagnostic Flow Diagram (Nanoprocessor and Device Select Decoder) | 8-37 |
| Flow Diagram D.      | A23 Board Diagnostic Flow Diagram (Analog Section Control Signals)          | 8-38 |
| Flow Diagram E.      | A22 Board Diagnostic Flow Diagram (Clock and RAM)                           | 8-39 |
| Flow Diagram F.      | A22 Board Diagnostic Flow Diagram (Display Control)                         | 8-40 |
| Flow Diagram G.      | A21 Board Diagnostic Flow Diagram                                           | 8-41 |
| Flow Diagram H.      | A21 Board Diagnostic Flow Diagram                                           | 8-42 |

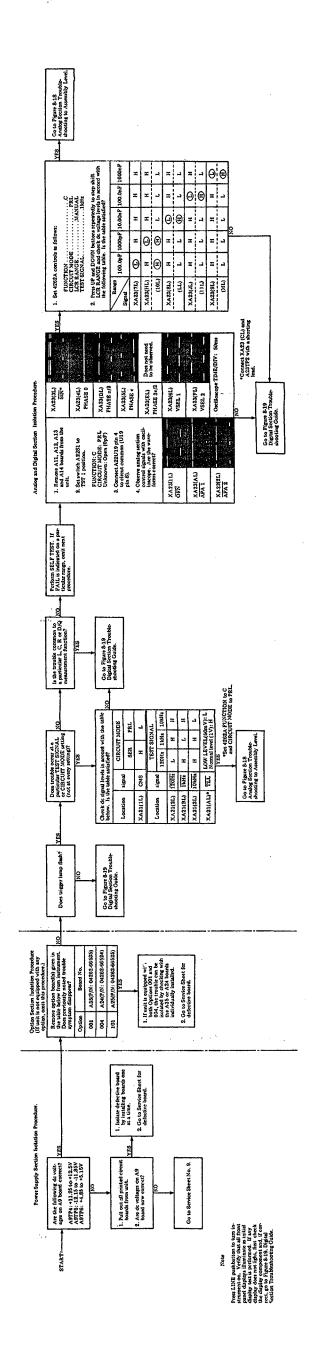



Figure 8-17. Analog and Digital Sections Isolation Procedure.

Model 4262A

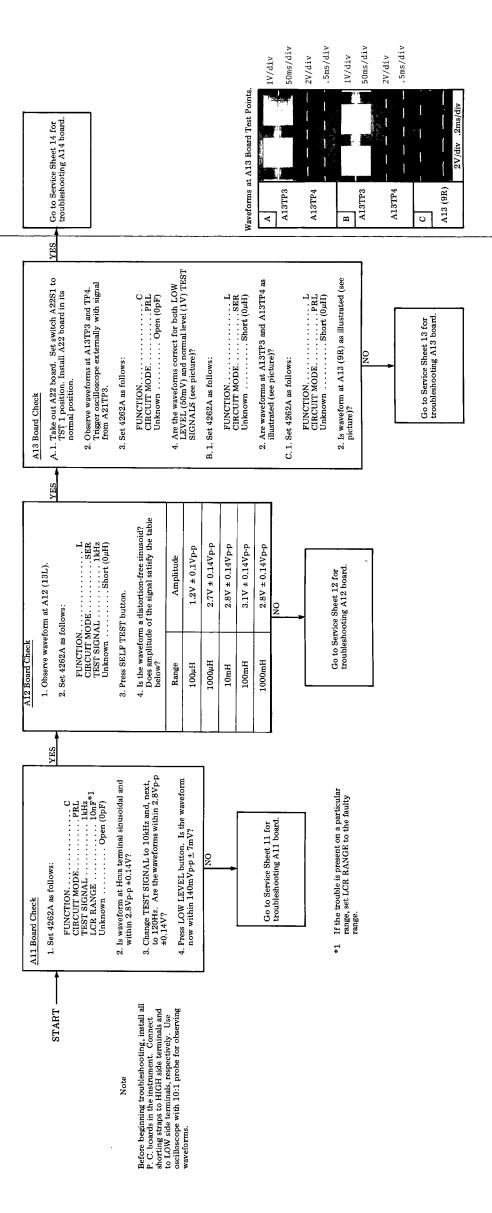



Figure 8-18. Analog Section Troubleshooting Procedure to Assembly Level.

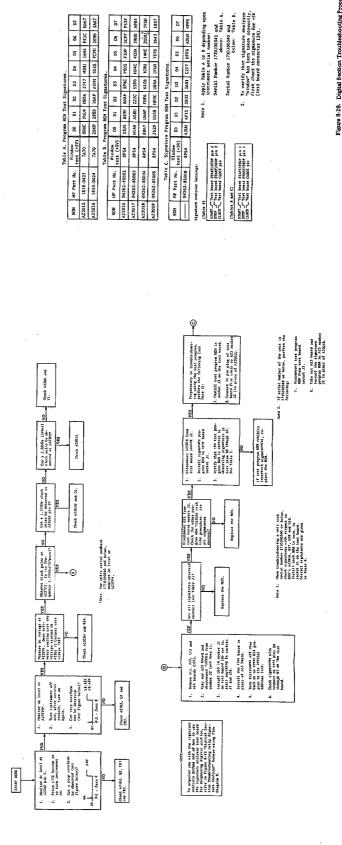



Figure 8-18. Digital Section Troubleshooting Proceduses. Flow Diagram A. Primary Diagnostic Row Diagram. Flow Diagnam B. Program ROM Diagnostic Flow Diagram.

Noto 1. Apply Table A or 8 depending upon instrument serial number: Serial Number 172500591 and Serial Number 173500591 and Serial Number 17300550

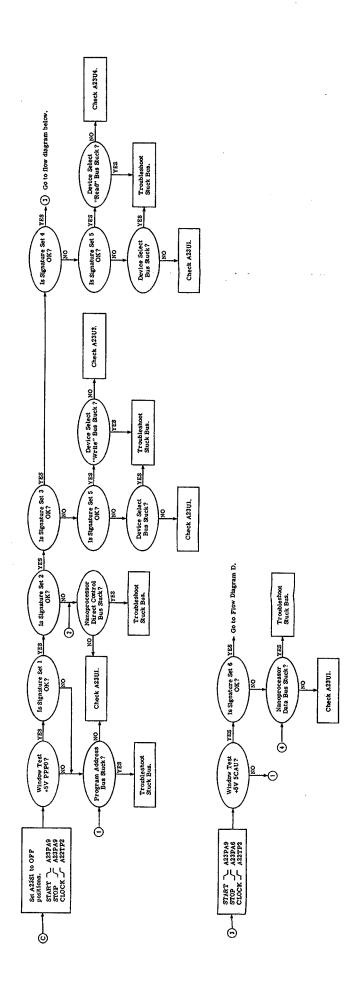
| STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STATE | STAT

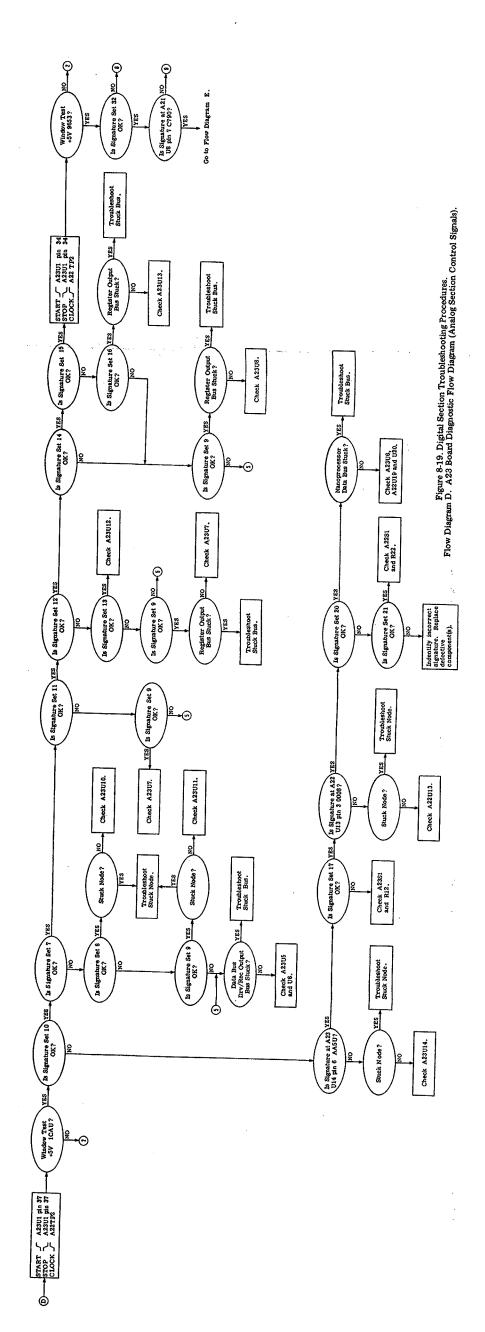
| Applied | Applied A | Program RGN Text Signatures. | Applied A |

To verify that signature analyzer "window" has been taken correctly first check the signature for +5V (test board connector 13%).

(Tables 8 and C)

\$1MCT\_Test board \$1M(7)\$10p pin 1


\$10CT\_Test board \$1M(7)\$0p pin 1


CLOCKT\_Test board \$1M(7)\$0p pin 1

8-35

Model 4262A

8-37





Pigital Section Troubleshooting Procedures
Flow Diagram C

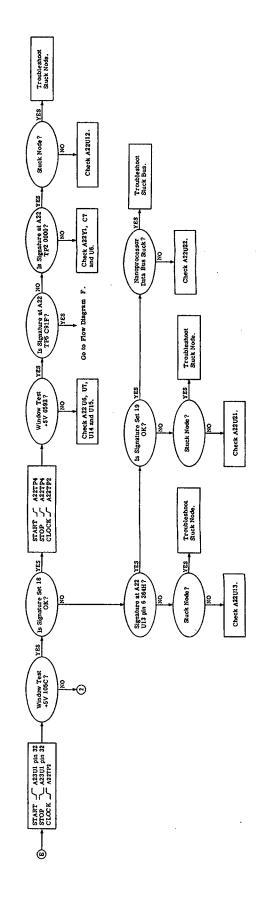
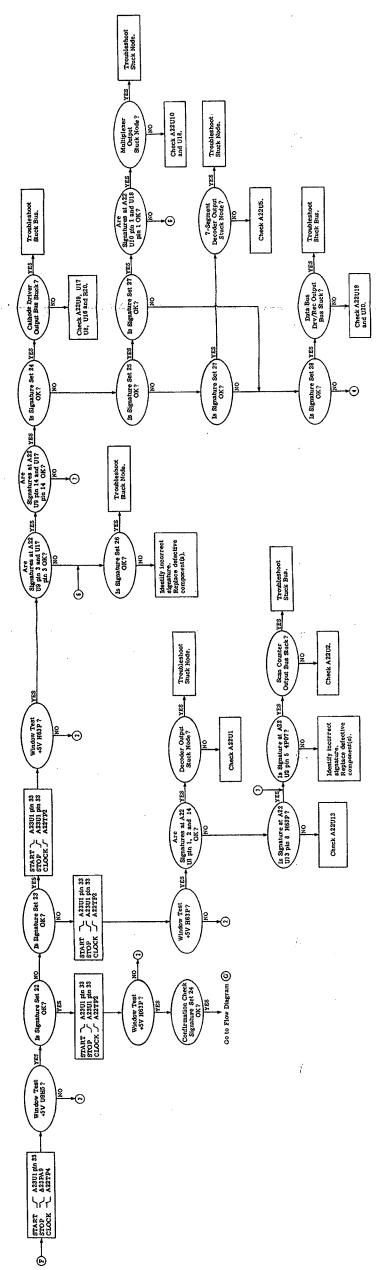



Figure 8-19. Digital Section Troubleshooting Procedure Iow Discram E. A 22 Board Dismostic Flow Discram (Clock and RAM)



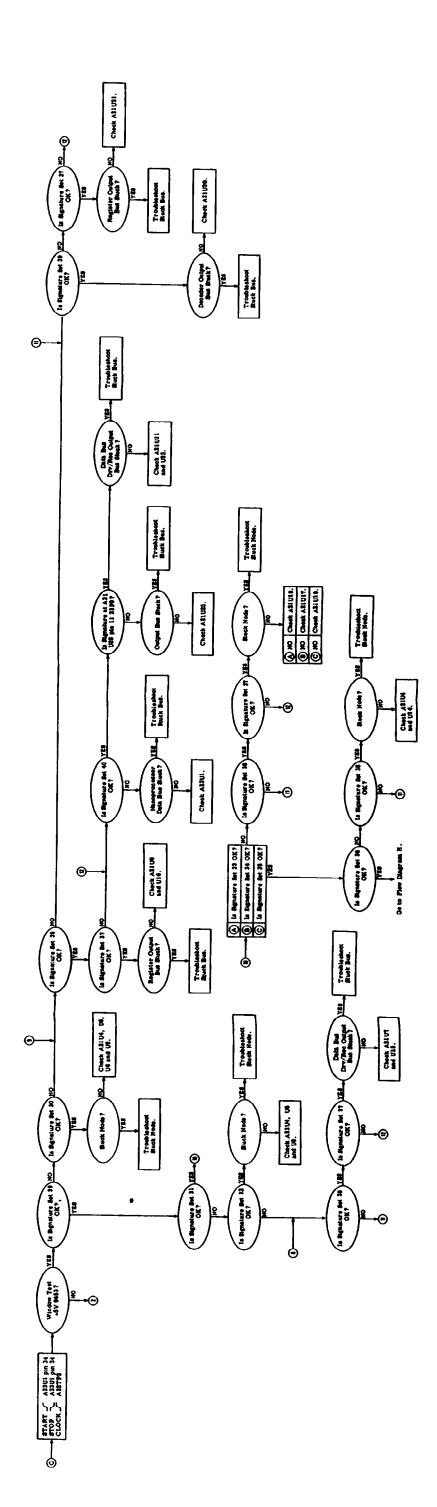


Figure 8-19. Digital Section Troubleshooting Procedures. Flow Diagram F. A22 Board Diagnostic Flow Diagram (Dispaly Control).

Figure 8-19

Pigital Section Troubleshooting Procedures
Flow Diagram E
see INSIDE
8-39

8-40

Ī



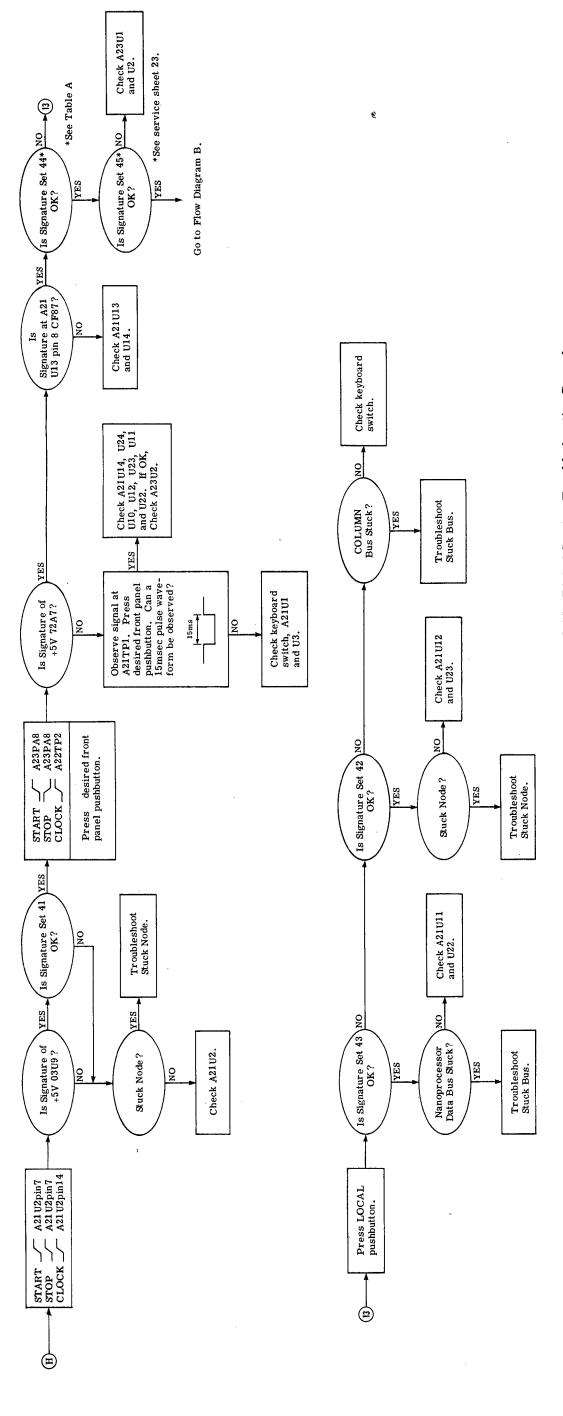



Figure 8-19. Digital Section Troubleshooting Procedures. Flow Diagram H. A21 Board Diagnostic Flow Diagram.

Figure 8-19
Digital Section Troubleshooting Procedures
Flow Diagram G
see inside

Table A. Keyboard Switch Test Signature.

| Key*               | U22(3)D0     | U22(6)D1 | U22(10)D2 | U22(13)D3 | U11(3)D4 | U11(6)D5 | U11(10)D6 | U11(13)D7 |
|--------------------|--------------|----------|-----------|-----------|----------|----------|-----------|-----------|
| LOCAL              | บ0บ7         | 35U8     | H64U      | 4548      | 5754     | 209 F    | H4H9      | 2 FH7     |
| SELF TEST          | U0U7         | 35 U8    | H64U      | 4548      | 9974     | PPCF     | H4H9      | 2FH7      |
| CMD AUTO           | Մ0Մ7         | 35U8     | H64U      | 4548      | 9974     | 209 F    | 1AU9      | 2FH7      |
| CMD PRL            | U0U <b>7</b> | UCH8     | H64U      | 4548      | 5754     | 209F     | H4H9      | 2FH7      |
| CMD SER            | U0U7         | UCH8     | H64U      | 4548      | 9974     | PPCF     | Н4Н9      | 2FH7      |
| FUNC L             | U0U7         | UCH8     | H64U      | 4548      | 9974     | 209F     | 1AU9      | 2FH7      |
| FUNC C             | U0U7         | 35 U8    | 186U      | 4548      | 5754     | 209F     | H4H9      | 2FH7      |
| FUNC R             | U0U7         | 35 U8    | 186U      | 4548      | 9974     | PPCF     | H4H9      | 2FH7      |
| FUNC A LCR         | U0U7         | 35 U8    | 186U      | 4548      | 9974     | 209 F    | 1AU9      | 2FH7      |
| LCR RNG AUTO       | U0U7         | UCH8     | 186U      | 4548      | 5754     | 209F     | H4H9      | 2FH7      |
| LCR RNG MANUAL     | U0U7         | UCH8     | 186U      | 4548      | 9974     | PPCF     | H4H9      | 2 FH7     |
| LCR RNG DOWN       | U0U7         | UCH8     | 186U      | 4548      | 9974     | 209 F    | 1AU9      | 2FH7      |
| LCR RNG UP         | UOU7         | 35 U8    | H64U      | 8C68      | 5754     | 209F     | H4H9      | 2FH7      |
| LOSS D             | U0U7         | 35 U8    | H64U      | 8C68      | 9974     | PPCF     | H4H9      | 2FH7      |
| LOSS Q             | U0U7         | 35U8     | H64U      | 8C68      | 9974     | 209F     | 1 AU9     | 2FH7      |
| DQ RNG AUTO        | U0U7         | UCH8     | H64U      | 8C68      | 5754     | 209F     | H4H9      | 2FH7      |
| DQ RNG MANUAL      | U0U7         | UCH8     | H64U      | 8C68      | 9974     | PPCF     | H4H9      | 2FH7      |
| DQ RNG STEP        | U0U7         | UCH8     | H64U      | 8C68      | 9974     | 209 F    | 1AU9      | 2FH7      |
| TEST SIG LOW LEVEL | U0U7         | 35U8     | 186U      | 8C68      | 5754     | 209 F    | Н4Н9      | 2FH7      |
| TEST SIG 120Hz     | U0U7         | 35U8     | 186U      | 8C68      | 9974     | PPCF     | H4H9      | 2 FH7     |
| TEST SIG 1kHz      | U0U7         | 35U8     | 186U      | 8C68      | 9974     | 209 F    | ÎAU9      | 2FH7      |
| TEST SIG 10kHz     | U0U7         | UCH8     | 186U      | 8C68      | 5754     | 209F     | Н4Н9      | 2FH7      |
| TRIG INT           | U0U7         | UCH8     | 186U      | 8C68      | 9974     | PPCF     | Н4Н9      | 2FH7      |
| TRIG EXT           | U0U7         | UCH8     | 186U      | 8C68      | 9974     | 209F     | 1AU9      | 2FH7      |
| TRIG HOLD/MANUAL   | U0U7         | 35U8     | H64U      | 4548      | 9974     | 209 F    | Н4Н9      | P2U7      |

## Signature Analyzer Settings:

START A23PA8 \_\_\_\_ STOP A23PA8 \_\_\_\_ CLOCK A22TP2 \_\_\_ Window Test (+5V): 72A7 \* Depressing the keys listed will result in the signatures defined in Table A.

Model 4262A

Section VIII Figures 8-20, 8-21 and 8-22

| P/0                                       | Part of.                                                                                                             | Encloses front panel designations.        |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| 0                                         | Knob control.                                                                                                        | Encloses rear panel                       |  |
| 0                                         | Screwdriver adjustment.                                                                                              |                                           |  |
|                                           | Circuit assembly boarderline.                                                                                        |                                           |  |
| *                                         | Asterisk denotes a factory selected value, part may be omitted.                                                      | e. Value shown is typical                 |  |
|                                           | Heavy line indicates main signal path.                                                                               |                                           |  |
|                                           | Heavy dashed line indicates main feedback path.                                                                      | ck path.                                  |  |
| ₩<br>•••••••••••••••••••••••••••••••••••• | Wiper moves towards CW with clockwise rotation of control (as viewed from shaft or knob).                            | e rotation of control (as viewed          |  |
|                                           | Numbered test point. Measurement aid provided.                                                                       | provided.                                 |  |
|                                           | Denotes wire color code. Code used is the same as the resistor color code (e.g., 9.4.7 denotes white/yellow/violet), | the same as the resistor color //violet), |  |
| <b>-</b>  ı                               | Indicates direct conducting connection to earth.                                                                     | earth.                                    |  |
| 4                                         | Indicates conducting connection to chassis or frame.                                                                 | is or frame.                              |  |
| <b>→</b>                                  | Indicates circuit common connection.                                                                                 |                                           |  |
|                                           |                                                                                                                      |                                           |  |

Figure 8-20. Schematic Diagram Notes.

8-43

Figure 8-22. Adjustment Locations.

A22 Display Control & RAM A35 BCD Output Control A24 Comparator Control A21 Keyboard Control A25 HP-IB Interface Koleman and Antonomical Control of the Control of t Option board slots Figure 8-21. Assembly Locations. ALON WIND LIES, John HIDDEN A9R6 (+12V) To reference of A13R67 (OFS-4) A9 Power Supply A13R2 (OFS-2) A14R15 (APAO) A13C1. A12C11~ A12R1 A14 Phase Detector & Integrator A13 Process Amplifier A11 OSC & Source Resistor A12C3 A12 Range Resistor A14R1 (ZOF) A13R1 (OFS-1)

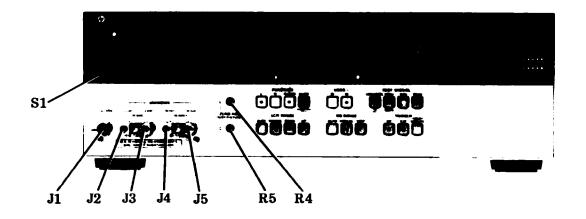



Figure 8-23. Front Panel Component Locations.

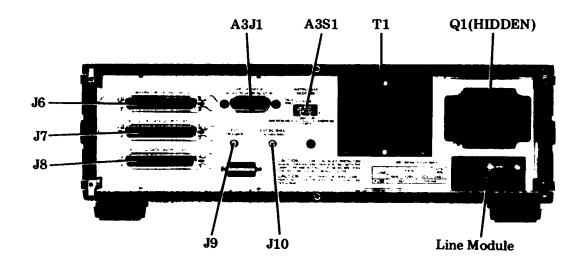
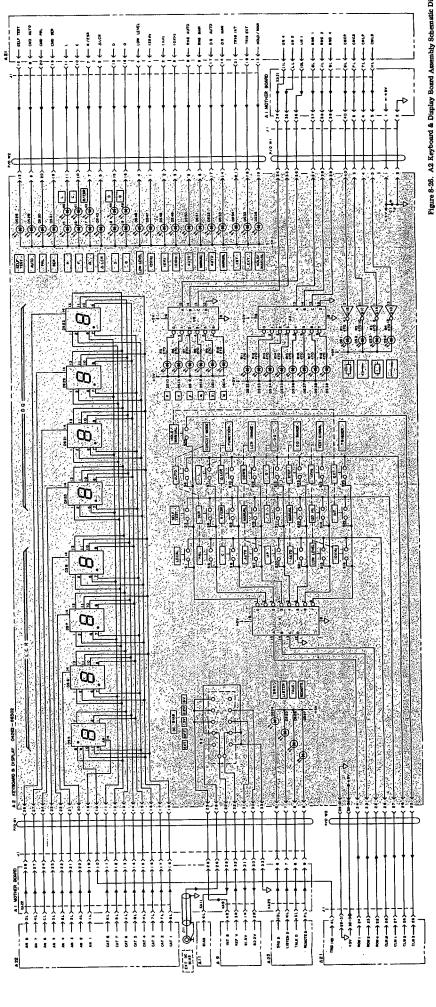
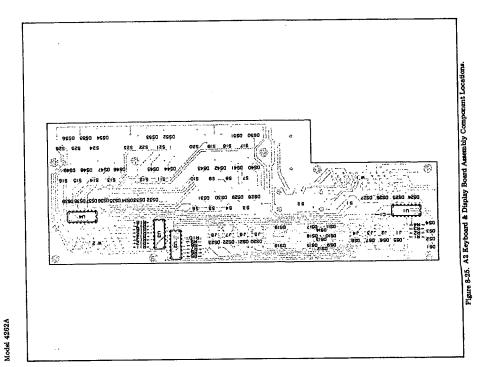





Figure 8-24. Rear Panel Component Locations.

# A9 Board Troubleshooting Tree Under Fold





.

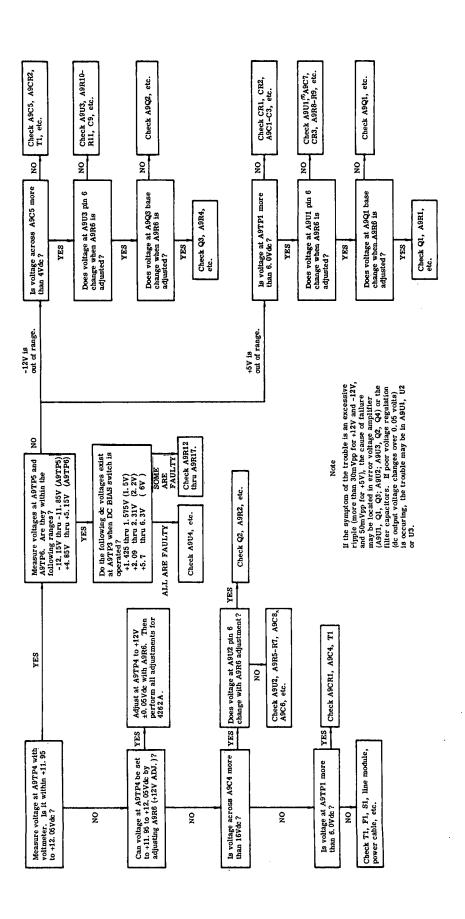
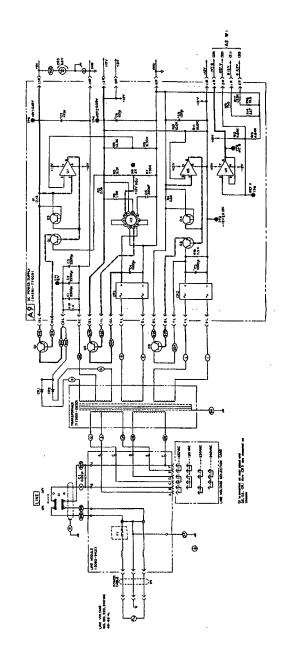
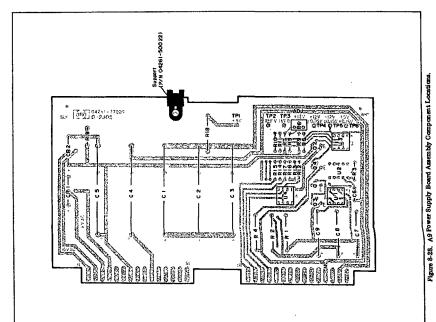





Figure 8-27. A9 Power Supply Board Troubleshooting Tree.

# A11 Board Troubleshooting Tree Under Fold







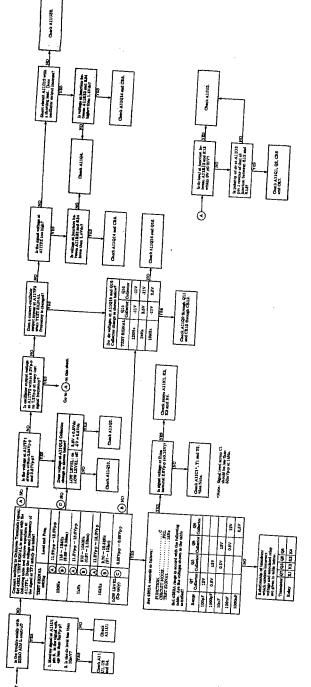
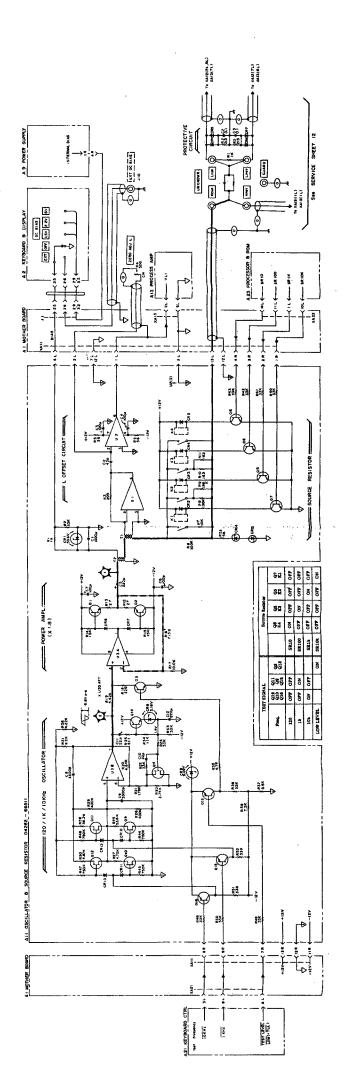



figure 8-30. A11 OSC & Source Resistor Board Troubleshooting Trees


### A11 BOARD CIRCUIT DESCRIPTION.

The Wien bridge oscillator frequency is derived from the equation:  $1/(2\pi\sqrt{RaRbC8C9})$ . Associated resistances Ra and Rb are selected from resistors R25 through R30 by active switches Q9 through Q12 to set desired test signal frequency (both Ra and Rb have the same value). The relationships of the switches to the oscillation frequency are shown in the table with the circuit diagram. Automatic level control circuit Q4 and Q14 operates to maintain a constant oscillator output level against changes in oscillator circuit parameters and supply voltage as follows: if the oscillator output level rises above 6.8Vp-p, Q14 is turned on for a longer period, the voltage across C12 increases, and Q3 is moved nearer to an OFF condition. Therefore, the feedback to U3B increases, and the gain of U3B is decreased to lower its output level to the proper amplitude. This provides stable amplitude characteristics to the oscillator. The table below shows the relationship of selected source and range resistors to 4262A FUNCTION, CIRCUIT MODE, and RANGE settings. At any setting, both the range resistor Rr and source resistor Ro have the same value. Note that the  $100\Omega$  and  $10\Omega$  source resistances include the total series resistance of the range resistors and the output resistance of transformers T1 and T2.

| I able A. | kange Resistor | (Kr | and Source I | Resistor | (Ro) | Selections. |
|-----------|----------------|-----|--------------|----------|------|-------------|
|           |                |     |              |          |      |             |

| Tuble 11. Italige Resistor (Ita) and Source Resistor (Ita) Selections. |                |                        |            |         |         |              |                        |         |              |         |
|------------------------------------------------------------------------|----------------|------------------------|------------|---------|---------|--------------|------------------------|---------|--------------|---------|
| Range<br>Function                                                      |                | 1                      | 2          | 3       | 4       | 5            | 6                      | 7       | 8            |         |
| L                                                                      | Full-<br>scale | 120Hz                  | 1000µH     | 10.00mH | 100.0mH | 1000mH       | 10.00H                 | 100.0H  | 1000H        |         |
|                                                                        |                | 1kHz                   | 100.0μH    | 1000µH  | 10.00mH | 100.0mH      | 1000mH                 | 10.00H  | 100.0H       |         |
|                                                                        |                | 10kHz                  | 10.00μH    | 100.0μΗ | 1000µH  | 10.00mH      | 100.0mH                | 1000mH  | 10.00H       |         |
|                                                                        | RR, Ro         | SER                    | $10\Omega$ | 100Ω    | 1kΩ     | 10kΩ         | 100kΩ                  |         |              |         |
|                                                                        |                | PARA                   |            |         |         | 10Ω          | 100Ω                   | 1kΩ     | 10kΩ         |         |
| C                                                                      | Full-<br>scale | 120Hz                  | 1000pF     | 10.00nF | 100.0nF | 1000nF       | $10.00 \mu \mathrm{F}$ | 100.0μF | 1000μF       | 10.00mF |
|                                                                        |                | 1kHz                   | 100.0pF    | 1000pF  | 10.00nF | 100.0nF      | 1000nF                 | 10.00μF | 100.0µF      | 1000µF  |
|                                                                        |                | 10kHz                  | 10.00pF    | 100.0pF | 1000pF  | 10.00nF      | 100.0nF                | 1000nF  | 10.00µF      | 100.0μF |
|                                                                        | RR, Ro         | PARA                   | 100kΩ      | 10kΩ    | 1kΩ     | $100\Omega$  | $10\Omega$             |         |              |         |
|                                                                        |                | SER                    |            |         |         | 100kΩ        | 10kΩ                   | 1kΩ     | 100Ω         | 10Ω     |
| R s                                                                    | Full-<br>scale | 120/<br>1kHz/<br>10kHz | 1000mΩ     | 10.00Ω  | 100.0Ω  | 1000Ω        | 10.00kΩ                | 100.0kΩ | 1000kΩ       | 10.00MΩ |
|                                                                        | RR, Ro         | SER                    | 10Ω        | 100Ω    | 1kΩ     | <b>10k</b> Ω | 100kΩ                  |         |              |         |
|                                                                        |                | PARA                   |            |         |         | $10\Omega$   | 100Ω                   | 1kΩ     | <b>10k</b> Ω | 100kΩ   |

A12 Board Troubleshooting Tree Under Fold



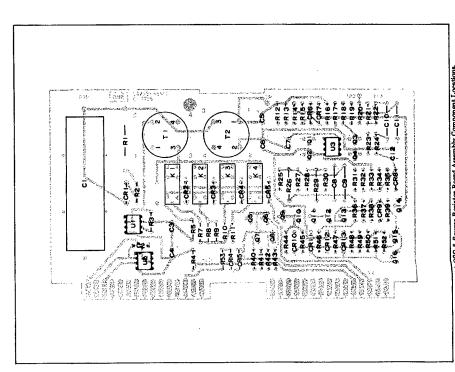



Figure 8-51. A11 08C & Source Resistor Board Assembly Component Locali

MAG.

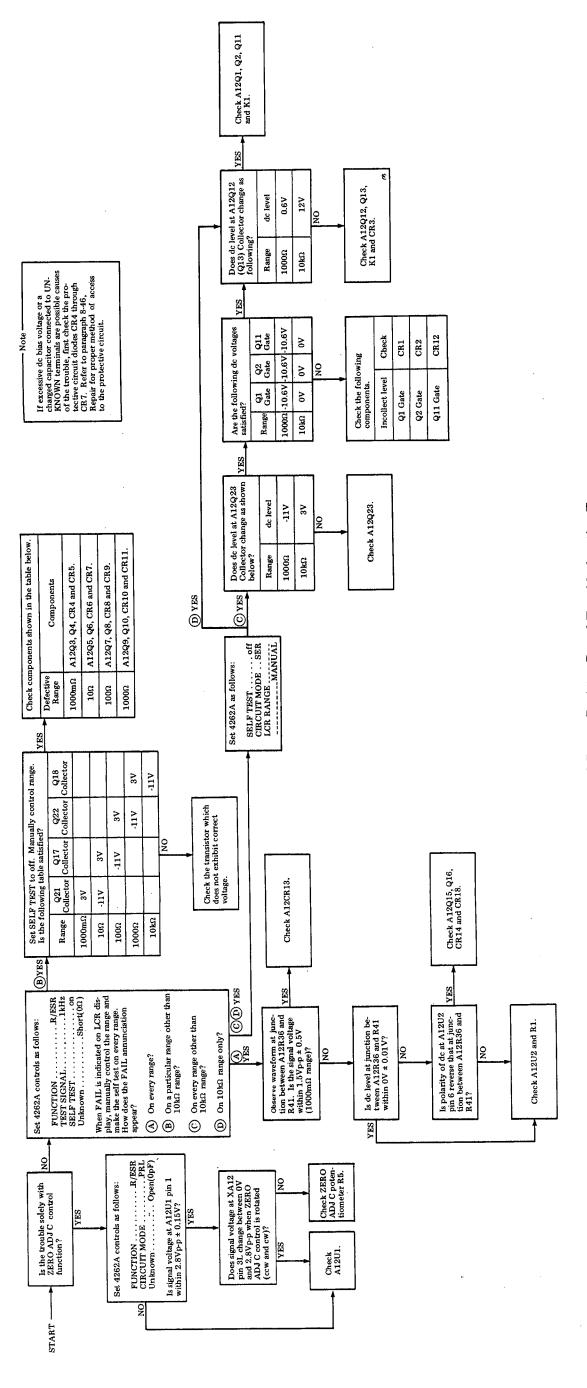



Figure 8-33. A12 Range Resistor Board Troubleshooting Tree.

### A12 BOARD CIRCUIT DESCRIPTION.

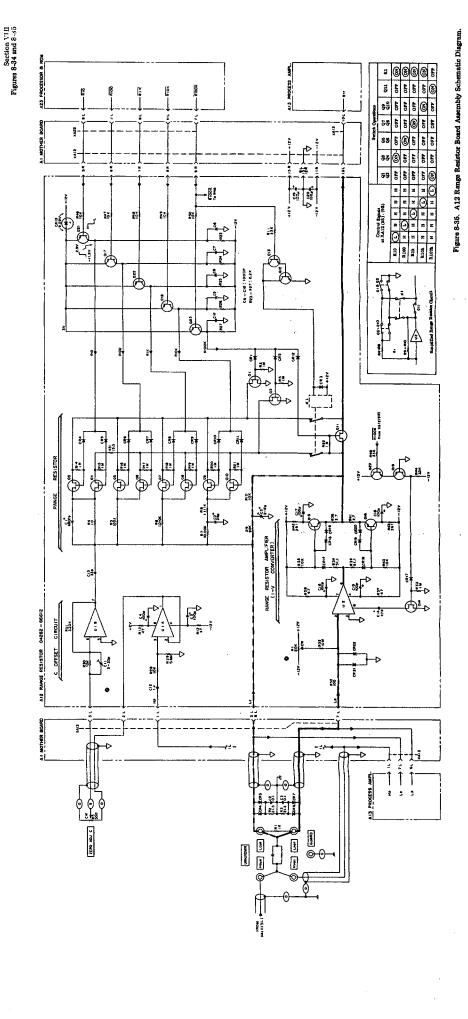
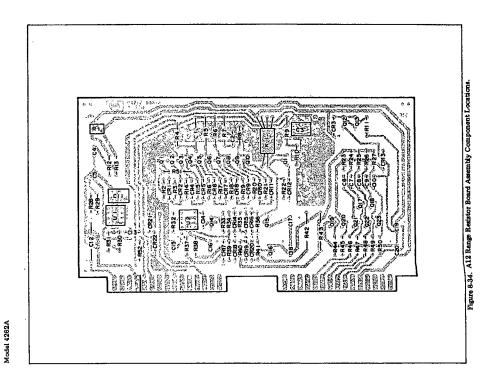

Table A below shows the relationship of selected range resistors to 4262A FUNCTION, CIRCUIT MODE and RANGE settings. Range selector switches (active switches) Q3 through Q10 and associated switches Q1, Q2, Q11 and K1 (relay) are controlled to select the range resistance which will provide an appropriate full scale range (see table with circuit schematic). Two switches concurrently act to enable detection of an exact voltage drop across the range resistor regardless of the resistance of the range selection switch through which the range resistor current flows. For example, both Q3 and Q4 turn on to sense the voltage drop and to simultaneously route the DUT current flow through range resistor R4 (10 $\Omega$ ). R4 and Q4 compose a feedback loop in the Range Resistor amplifier on the selected range. The exact voltage drop across R4 is routed through Switch Q3 (K1: ON, Q11: OFF). The selectable  $10\Omega$ ,  $100\Omega$ ,  $1k\Omega$  and  $10k\Omega$ range resistances are always placed in parallel with the permanent 100kΩ range resistance (R9 plus R10). The  $100k\Omega$  range resistance alone is selected by causing Q11 to turn on, K1 to deenergize, and its contacts to open. The open contacts of K1 also interrupt the error current flowing through the stray capacitance in the range resistor circuit. This eliminates any error current effect on the circuit being used (R9, R10 and C3) on this range. In addition, to further reduce the error current, Q1 and Q2 conduct the current flowing through the stray capacitance of the relay contacts to ground.

Table A. Range Resistor (RR) and Source Resistor (Ro) Selections.


| Fu | nction         | Range                  | 1             | 2       | 3       | 4                     | 5           | 6             | 7                     | 8                      |
|----|----------------|------------------------|---------------|---------|---------|-----------------------|-------------|---------------|-----------------------|------------------------|
| L  | Full-<br>scale | 120Hz                  | 1000µH        | 10.00mH | 100.0mH | 1000mH                | 10.00H      | 100.0H        | 1000H                 |                        |
|    |                | 1kHz                   | 100.0μΗ       | 1000µH  | 10.00mH | 100.0mH               | 1000mH      | 10.00H        | 100.0H                |                        |
|    |                | 10kHz                  | 10.00μH       | 100.0μH | 1000μH  | 10.00mH               | 100.0mH     | 1000mH        | 10.00H                |                        |
|    | Rr, Ro         | SER                    | 10Ω           | 100Ω    | 1kΩ     | $10 \mathrm{k}\Omega$ | 100kΩ       |               |                       |                        |
|    |                | PARA                   |               |         |         | 10Ω                   | $100\Omega$ | 1kΩ           | $10 \mathrm{k}\Omega$ |                        |
| C  | Full-<br>scale | 120Hz                  | 1000pF        | 10.00nF | 100.0nF | 1000nF                | 10.00μF     | 100.0μF       | 1000μF                | 10.00mF                |
|    |                | 1kHz                   | 100.0pF       | 1000pF  | 10.00nF | 100.0nF               | 1000nF      | $10.00 \mu F$ | 100.0µF               | $1000 \mu F$           |
|    |                | 10kHz                  | 10.00pF       | 100.0pF | 1000pF  | 10.00nF               | 100.0nF     | 1000nF        | 10.00µF               | $100.0 \mu \mathrm{F}$ |
|    | Rr, Ro         | PARA                   | <b>100</b> kΩ | 10kΩ    | 1kΩ     | 100Ω                  | 10Ω         |               |                       |                        |
|    |                | SER                    |               |         |         | 100kΩ                 | 10kΩ        | 1kΩ           | $100\Omega$           | $-10\Omega$            |
| R  | Full-<br>scale | 120/<br>1kHz/<br>10kHz | 1000mΩ        | 10.00Ω  | 100.0Ω  | 1000Ω                 | 10.00kΩ     | 100.0kΩ       | 1000kΩ                | 10.00MΩ                |
|    | RR, Ro         | SER                    | $10\Omega$    | 100Ω    | 1kΩ     | 10kΩ                  | 100kΩ       |               |                       |                        |
|    |                | PARA                   |               |         |         | $10\Omega$            | 100Ω        | 1kΩ           | $10 \mathrm{k}\Omega$ | 100kΩ                  |

## A13 Board Troubleshooting Tree Under Fold





8-51



. . .

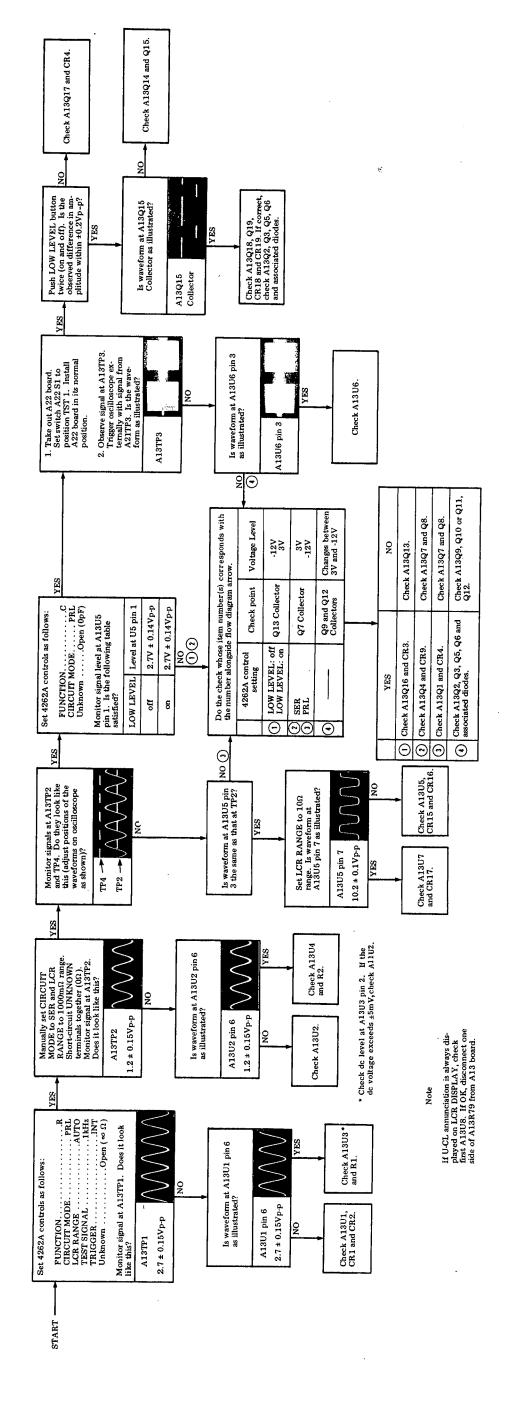



Figure 8-36. A13 Process Amplifier Board Troubleshooting Tree.

#### A13 BOARD CIRCUIT DESCRIPTION.

The input circuitry of the A13 board is composed of impedance converters and differential amplifiers which sense the exact voltage drops across the DUT (E1) and across range resistor (E2). The choice of the eref and Em signals by Q1 through Q6 depends upon the FUNCTION and CIRCUIT MODE settings. Switches Q1 and Q4 select the phase detector phase references (eref) from either ex or ey (representing E1 and E2, respectively) differential amplifier outputs as directed by the CMS (Circuit Mode Selection) signal. Switches Q2, Q3, Q5 and Q6 sequentially select the em signal (as components of the measured quantity) from among the  $e_x$ ,  $e_x/10$ ,  $e_y$  and  $e_y/10$  signals. The method of the selection, relative to the measurement mode, is graphically illustrated in Figure 8-8 Timing Diagram. When the TEST SIGNAL function is set to LOW LEVEL, both Q16 and Q17 turn on. To maintain the amplitudes of eref and em signals the same as in taking a measurement with a standard test signal level, the amplification factors of amplifiers U5A and U6B are now increased by 20 times. If the amplitude of U6B output (em) exceeds ±5.2V peak, the window comparator U8 outputs a SAT (saturation) pulse which signals that an improper FUNCTION or RANGE setting is being attempted for measuring the unknown device. Switches Q18 and Q19 operate during the integrator null offset sequence (refer to Page 8-56 for the null offset control details). An APAO (Auto Phase Adjustment Output) signal, added to the eref signal at the input stage of the Phase Shifter U5B causes a change in the phase of the eref signal. This phase change on the APAO voltage is determined by a comparison of the phase shifter output to the zero level. Circuit operating theory of the Phase Shifter is given in the following paragraph.

#### AUTO PHASE ADJUSTMENT (Phase Control).

This paragraph should be read along with the general description of the auto phase adjustment (on service sheet 14). A DC input (APAO) to the Phase Shifter is added to the ac input signal (eref) for the purpose of shifting the ac waveform upwards or downwards depending on the dc input level (as illustrated in Figure A). Additionally, the phase shifter reverses polarity of the signal. The phase shifter output is wave-shaped to a square wave which changes its polarity every time that the phase shifter output waveform crosses the zero level. The waveforms drawn in solid lines in Figure A are those that exist when 0V dc input (APAO) is applied. Waveforms in dotted lines are those that are present when a plus dc input (APAO) is applied. When an ac signal with a certain dc (APAO) level is inputted, the duty factor of the eref signal is shifted (narrowed or widened) as the phase shifter output is wave-shaped with respect to a fixed (0V) reference. Therefore, the phase of the PLL output used for phase detection will vary since the PLL circuit detects only the trailing edge of an eref signal.

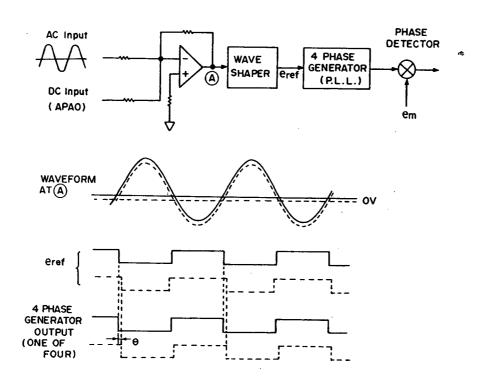
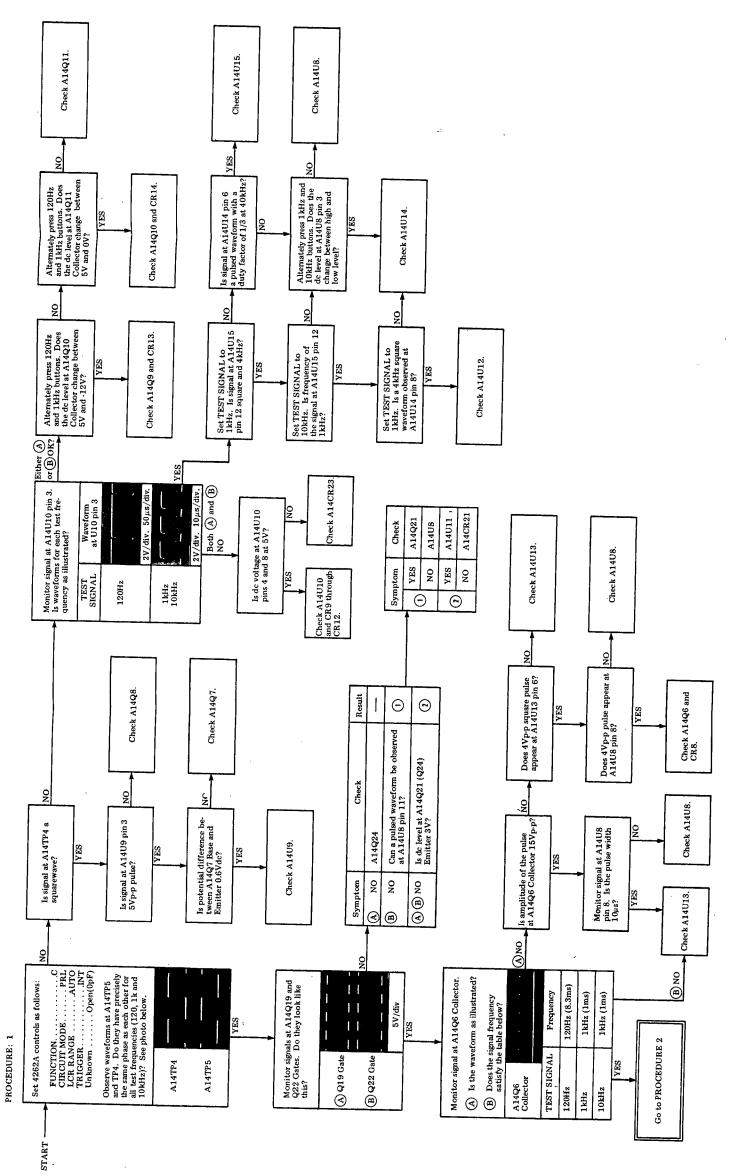
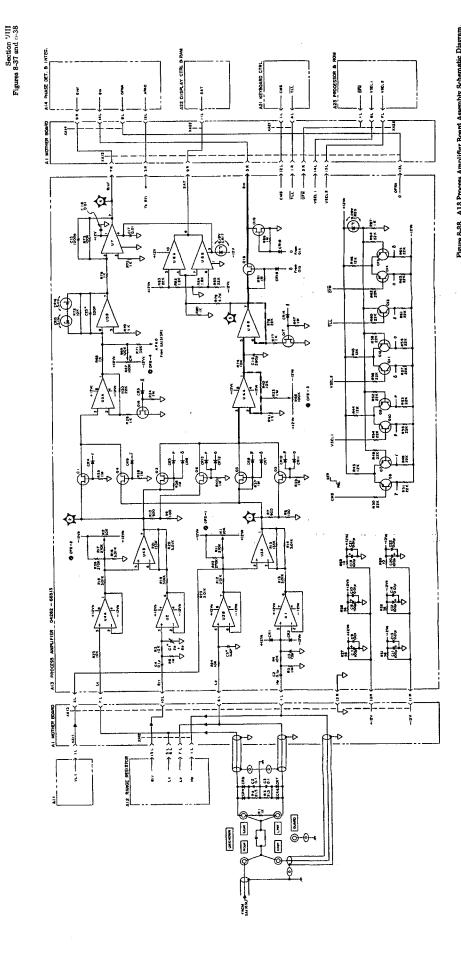
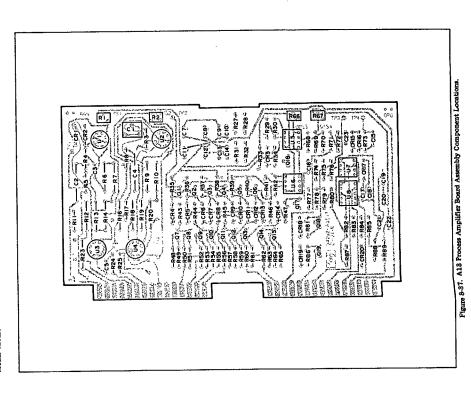
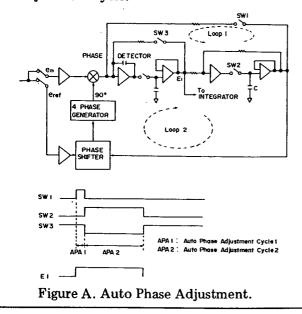



Figure A. Phase Control.

# A14 Board Troubleshooting Tree Under Fold



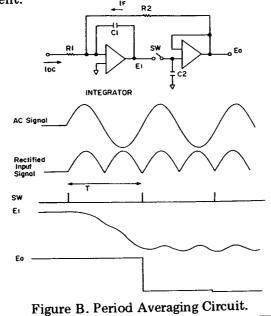






Figure 8-39. A14 Phase Detector & Integrator Board Troubleshooting Tree (A).





## AUTO PHASE ADJUSTMENT.


By using a feedback control technique in the Auto Phase Adjustment period, the phase of the Phase Locked Loop circuit is automatically adjusted to minimize detection phase error. This paragraph describes how the phase error is eliminated during APA (Auto Phase Adjustment) cycle periods 1 and 2. The basics of the auto phase adjustment circuit are diagrammed in Figure A. In the APA 2 period, the same signal is applied to both the phase detector and the phase shifter. The four phase generator outputs a 90 degree phase shifted pulse. Assuming that the detection phase is accurate, the average level of the phase detector output should necessarily be zero. If any phase error exists between the em and eref signal channels, the phase detector outputs an E1 signal which is the integrator output for such error signal. Because SW3 is open, the period averaging circuit functions as an ordinary integrator. APA amplifier (A14U5A and U6) which follow develop an APAO signal (dc) proportional to E1 and supply it to the phase shifter. In response to the APAO voltage, the phase shifter output tends to lower the E1 level. The phase error of detection phase is thus minimized (refer to phase shifter circuit description on service sheet 13). The APA2 cycle is performed by LOOP 2 (SW1: OFF, SW2: ON, SW3: OFF) as denoted in the diagram. After the APA2 period, SW3 is closed and SW2 is turned off to memorize the dc voltage stored in capacitor C. The memory capacitor C maintains the dc voltage to continuously provide an effective APAO signal during the measurement cycle. In the APA1 (Auto Phase Adjustment cycle 1) period which is done prior to APA2, SW1 is closed and the current flow through the LOOP 1 charges the capacitors in the period averaging circuit. APA1 control is provided to accelerate development of an appropriate APAO signal during the APA2 period and helps to reduce the time of the auto phase adjustment cycle.



### A14 BOARD CIRCUIT DESCRIPTION.

## PERIOD AVERAGING CIRCUIT.

A period averaging technique was adopted to get pure dc voltage at high speed from a rectified ac signal having a large ripple component. Generally, a filtering circuit has a long transient response time in converting a low frequency burst input signal to a pure dc voltage. The period averaging technique enables a dc output voltage to be produced which is almost equal, (in a precise fashion) to the final value in only several periods of the input ac signal. The 4262A employs the period averaging circuit for smoothing the phase detector output to a dc and for combining specified measurement accuracies and provides an improved measurement speed at the 120Hz test frequency. Figure B shows the full-wave rectified current input signal of this circuit. During the first T (time) period, the input current charges the integrator capacitor C1 (A14C8 in the actual circuit. In a 120Hz measurement, Q18 conducts to add C7 in parallel with C8). At the end of this period, the integrator output E1 is proportional to the dc current of the input signal (since T is equal to one period of the input ac signal). After the first T period, voltage E1 is memorized as a charge on C2 (A14C6) when switch SW (A14Q5) is momentarily closed, and E0 (period averaging circuit output) becomes a step function. As the feedback current (IF) from E0 to the integrator input is designed to be almost equal to Inc (input current to the period averaging circuit) in magnitude, the difference between Inc and IF is integrated during the next (T) integrating period so that output voltage E0 becomes exactly proportional to Inc. After four or five periods, E0 will be a pure dc signal having no ac component and be precisely proportional to (Ix) the input current.



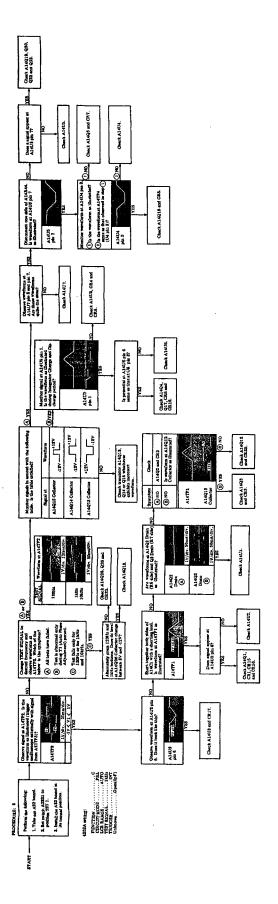



Figure 8-40. A14 Phase Detector & Integrator Board Troubleshooting Tree (B).

### A14 BOARD CIRCUIT DESCRIPTION.

PHASE LOCKED LOOP (PLL) CIRCUIT AND 4 PHASE GENERATOR.

Figure C shows the block diagram of the phase locked loop circuit used to establish an accurate detection phase in the phase detector. The PLL technique was incorporated to develop an input to the Four Phase Generator which satisfies the requirements of phase and frequency accuracies for establishing the exact relationships between the four phase generator output and the measurement signal. When the PLL control is off, the VCO oscillates at a frequency close to 40 times the frequency of the input signal (eref) to the Phase Shifter. In the 120Hz measurement setting, the frequency of VCO output becomes 4.8kHz. A 1/10 down counter U15 and the Four Phase Generator U12 (a 1/4 down counter) count down the VCO output frequency to 120Hz. This becomes the frequency of the feedback signal ef to the local phase detector (LPD) U9. The output voltage of the LPD (converted to a dc by Low Pass Filter Q7 and Q8) directs the oscillation of VCO so that the difference in both frequency and phase between the two input signals (eref and ef) to the LPD tends to become minimum. Eventually, both the phase and frequency of the four phase generator output (one of four) is precisely the same as that of the eref signal (120Hz). In a 1kHz measurement frequency setting, switch Q9 is turned off to change the oscillation frequency of the VCO to 40kHz. In a manner similar to that for the 120Hz measurement, the four phase generator output is fixed to the exact frequency of eref signal (1kHz). When measurement frequency is switched to 10kHz, the 40kHz VCO output passes through the gate circuitry (U14) and bypasses the 1/10 down counter. Thus, the frequency of the feedback signal ef

becomes 10kHz. The frequency of the four phase generator input is always four times the eref signal frequency. The 4f pulse train is converted to four square wave signals, each having an exact phase difference of 0°, 90°, 180° and 270° with respect to the negative edge of the Cref signal. The U13 Gate circuitry periodically creates a short pulse which drives sampling switch (Q5) of the period averaging circuit in synchronism with the measurement signal. In a 10kHz measurement, the four phase generator output is fed to the 1/10 down counter whose output is inputted to gate circuitry U13. The U13 output is a 1msec (1kHz) pulse train which drives the sampling switch Q5 at a rate of once in 20 periods of the period averaging circuit input (phase detector output) signal. The periodic rate is sufficient for period averaging of the high frequency input signal.

## INTEGRATOR NULL OFFSET CONTROL.

During the offset null sequence period, the Amplifier output offset voltages present in the phase detector and the integrator stages are reduced to zero at the integrator output. While the offset null is being performed, switches A13Q18 and Q19 interrupt em signal transfer to the Phase Detector. Simultaneously, A14Q1 and Q2 turn on. Q2 provides the integrator with a lower input resistance and advances charging to achieve a shorter null offset control period. The Integrator produces a dc output which represents the accumulated charge of the offset voltages. The integrator output is stored in capacitor C1 to maintain its voltage during the measurement cycle. Any incoming voltage to the integrator is referenced to the voltage across the charged capacitor. Thus, any offset voltages present are eliminated and are not a factor in the integrator output.

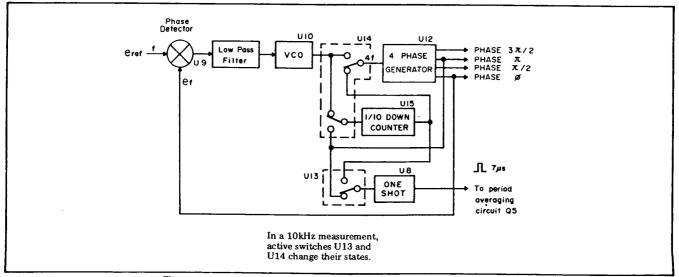



Figure C. Phase Locked Loop Circuit Block Diagram.

Model 4262A

Section VIII

KEYBOARD CONTROL.

Figure A below shows the simplified echematic of the Keyboard Control. Pressing a pushbutton key creates a connection between one of the 8 'vow" lines and one of the 4 'voolumn' lines. In the keyboard Coutroity, an individual switch is distinguished by its "address" which is related to a specific "vow" and "column" line. Identification of the pushbutton pressed and its associated function is coordinated by a time sharing operation of the keyboard courted system. A "keyboard court of the keyboard courtile standing concept contributes to the simplification of the circuit nereting a keyboard address code unique to each keyboard sawitch. The operation of the keyboard control may be explained as follows: The Scan Counter (A2102), whose time base is the 31.83kHz clock, divess the Decoder (A2404). The scan counter outputs are 3 bit ROW signals (binary ROWs 1, 2 and 4). These three signals are sufficient to achieve binary outputs of 1 through 8 from the Decoder. For example, a binary input of 101 will cause an output to occur on decoder couptut to will be super pulse width as that of the

011(6)D6 U11(10)D8

Table A. Keyboard Switch Test Signature,

U22(6)D1 U32(10)D2

input signals (ROW signals) on the 8 channel "row" drive lines and corresponding with the binary ROW signals. The 8 channel row lines, in turn, become low level as illustrated in Figure A. A row signal causes the three or four pushbutton keys on the row line to become valid (enabled). If a pushbutton is pressed while it is enabled (able to function), Gate (AZJUJ) switches its output logic and instantaneously stops the Scan Counter. Because the keyboard "scan" speed is extremely fast compared to the time it takes to depress the pushbutton, all the keyboard controls are seemingly always valid (enabled). When a pushbutton is pressed, the counter input to the decoder is momentarily interrupted and the column line peculiar to the individual pushbutton key goes to low level. Thus, each key can be identified by observing the RoW and CLM signals, but before the ROW and the CLM signals, but before through the Data Bus Driver/Receiver towardt the data bus line, flip (flop (AZJUJ4) outputs an INT of signal, the Interrupt Priority Encoder outputs a VAC (Vector Address O) signal which informs the nanoprocessor in response to the INT O signal, the Interrupt was generated from the Reyboard Control. The interrupt is managed in accord with the interrupt process routing of the nanoprocessor.

DECODER C 3333

Figure A. Keyboard Control Simplified Schematic Diagram

8-58

8-57

EASP\*

LOCAL

SELF TEST

CMD ANTO

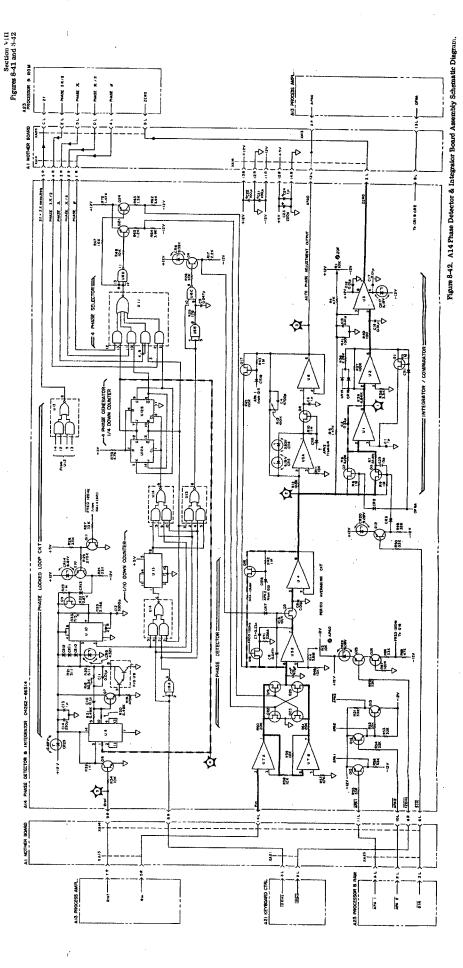
CMD STR

FUNC I

FUNC I

FUNC I

FUNC RNG ANTO


LCR RNG ANTO

LOSS D

LOSS Q

\* Depressing the keys listed will result in the signatures defined in Table A.

A14 Phase Detector & Integrator SERVICE SHEET 14



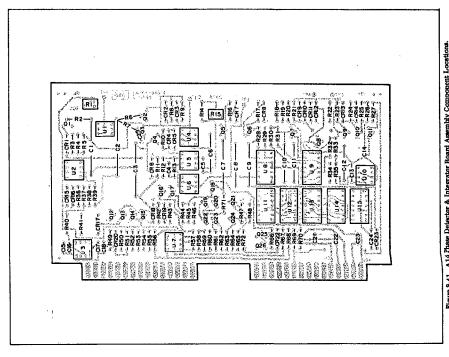



Figure 8-41. A14 Phase Detector & Integrator Board

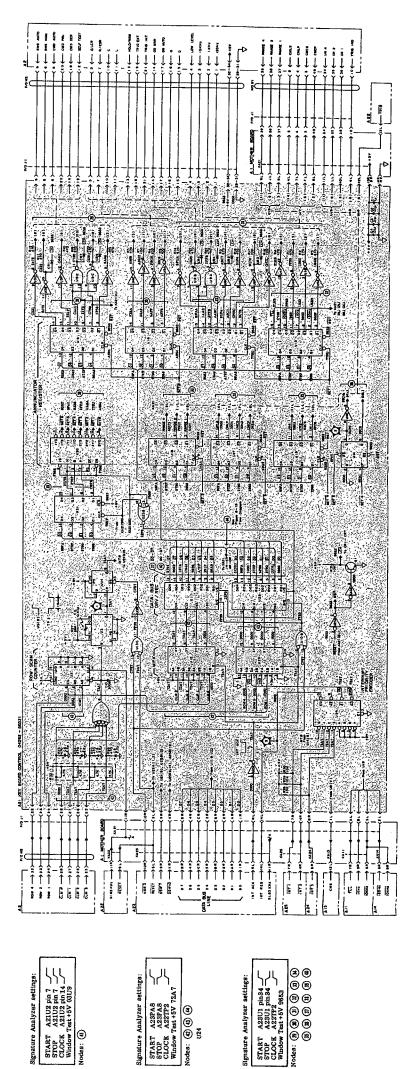



Figure 8-43. A21 Key board Control Board Assembly Com

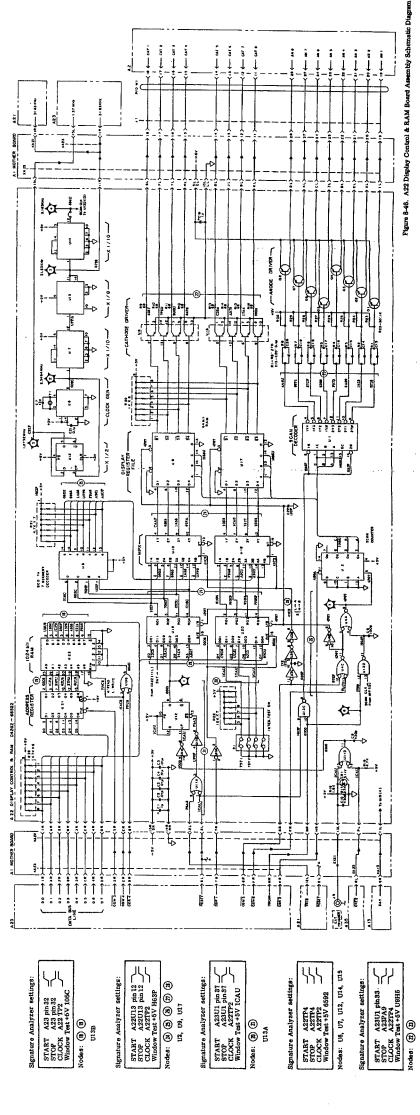



Figure 845. A22 Display Control & RAM Board Assembly Component Locations.

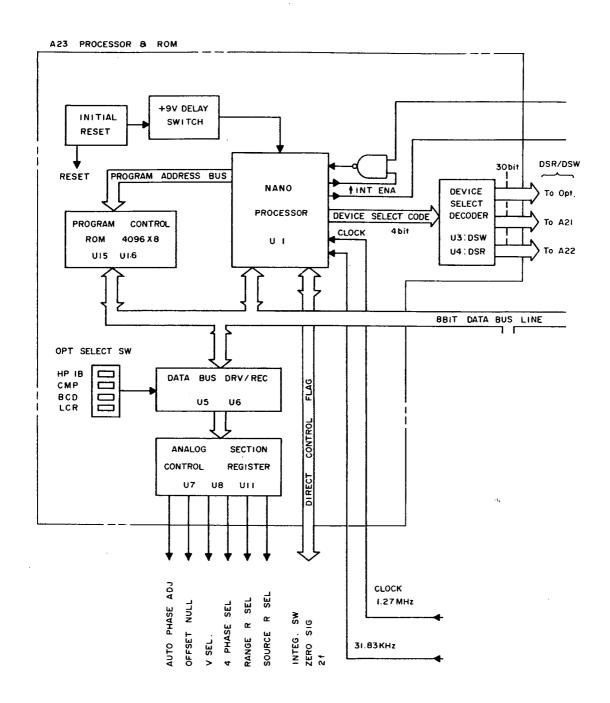
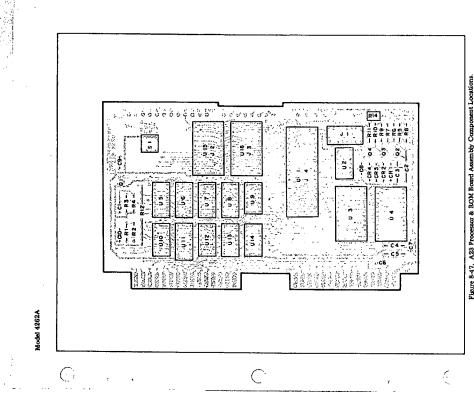




Figure A. A23 Processor & ROM Block Diagram.





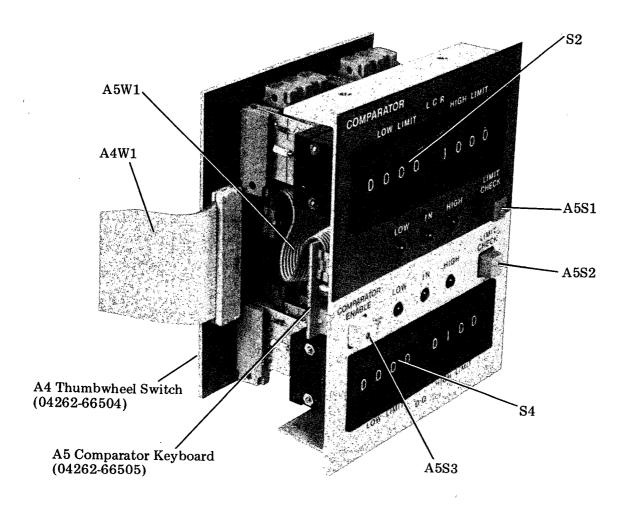
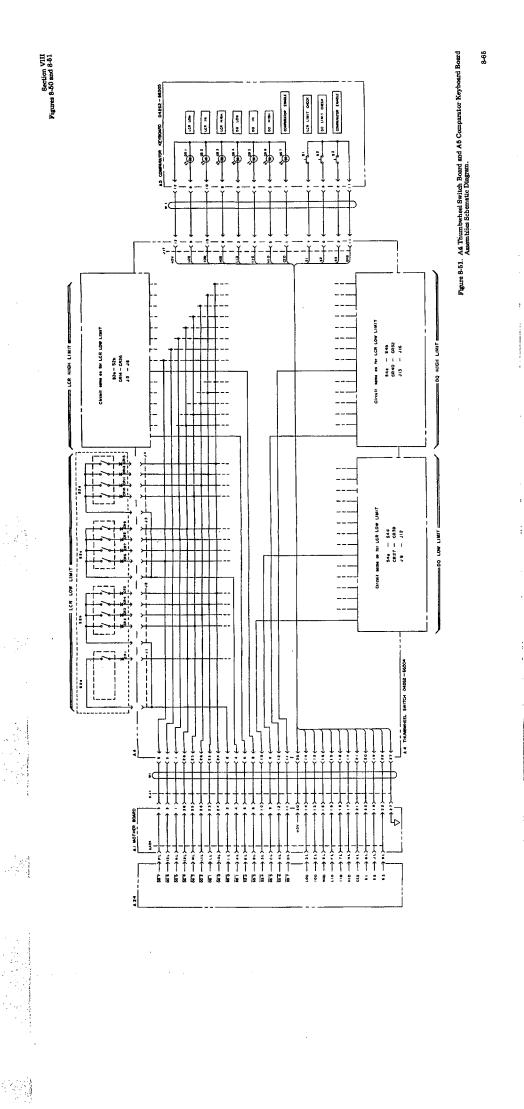
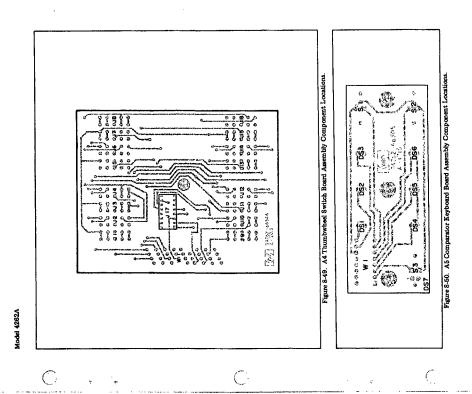
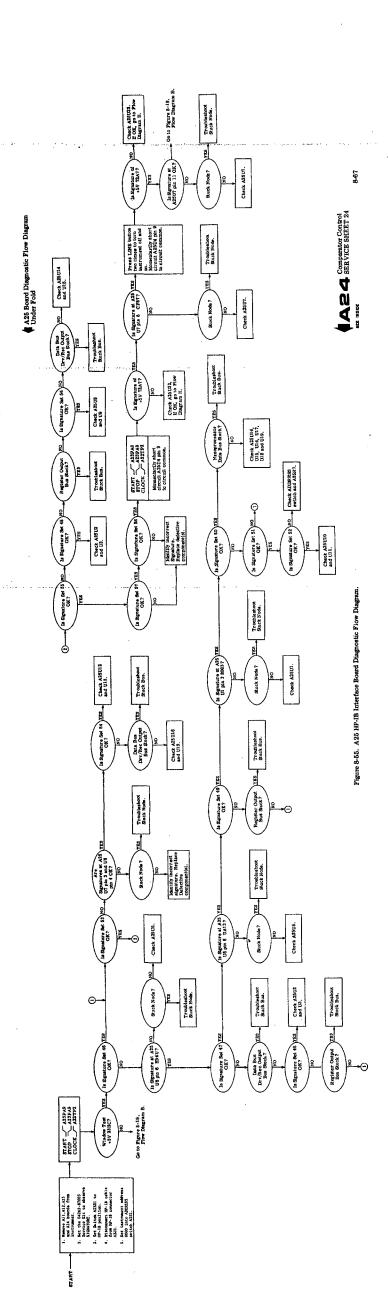
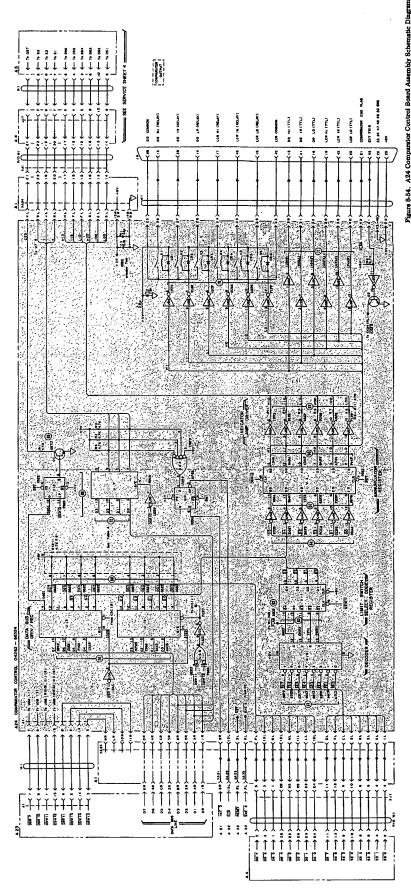




Figure A. Comparator Control Panel Assembly Component Locations.







Table A. Comparator Keyboard Test Signatures.


| Keyboard Switch | U7(3) D0 | U7(6) D1 | U7(10) D2 |
|-----------------|----------|----------|-----------|
| LCR LIMIT CHK   | AF4C     | AF08     | AF08      |
|                 |          |          |           |
| DQ LIMIT CHK    | AF0C     | AF48     | AF08      |
| CMP ENA         | AF0C     | AF08     | AF48      |

Window Test (+5V): U9FF

## Note

To observe window test signature, continue pressing COMPARATOR ENABLE button for the duration of the initial window test. Then, press pushbuttons in accord with Table A above. Signatures for each individual circuit node can be observed while the appropriate button is being pushed.





867

ei 4262A

## A35 Board Diagnositc Flow Diagram Under Fold



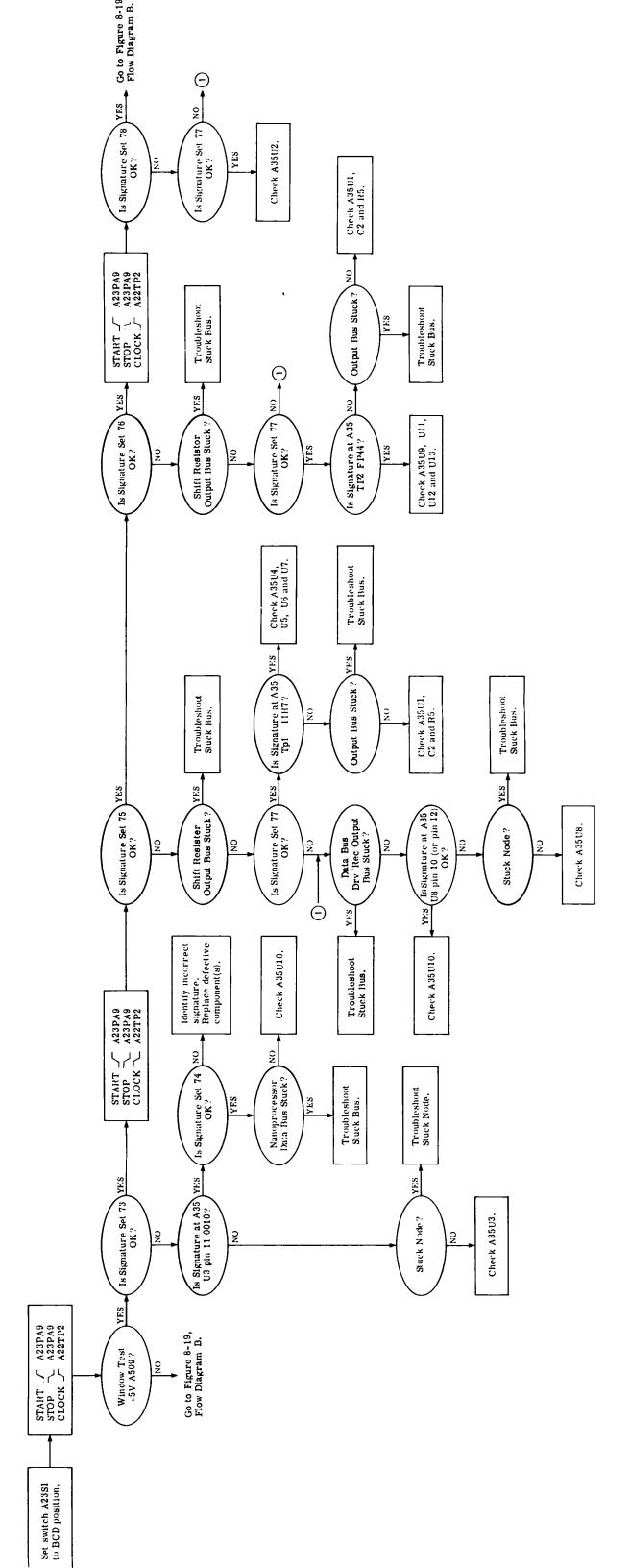



Figure 8-58. A35 BCD Output Control Board Diagnostic Flow Diagram.

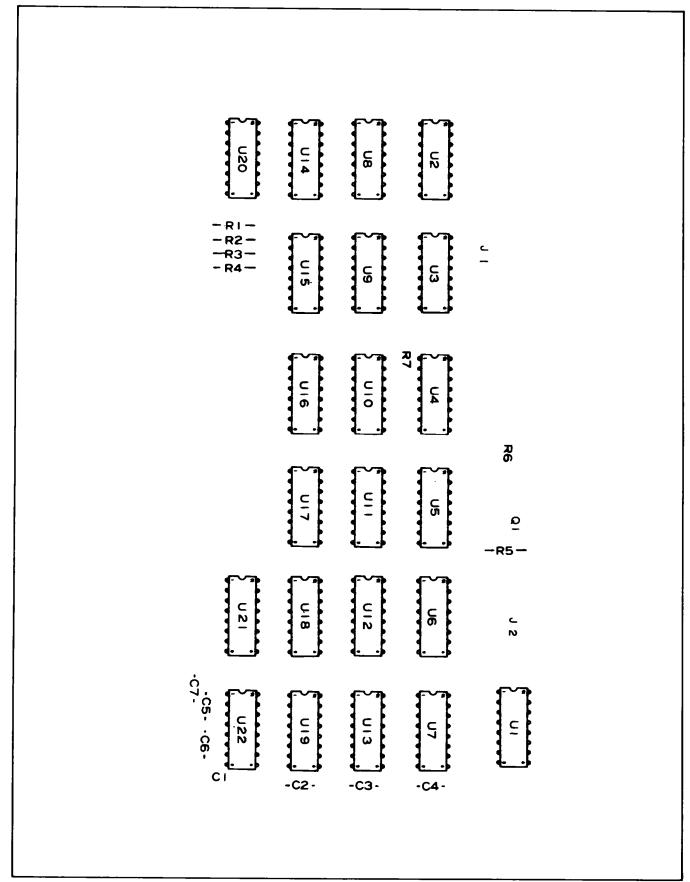



Figure 8-56. A25 HP-IB Interface Board Assembly Component Locations.

## Signature Analyzer settings:

START A23PA8 STOP **A23PA8** CLOCK A22TP2 Window Test +5V 72A7

Nodes: U22, U7B, U7D

## Signature Analyzer settings:

A23PA9 A23PA9 **START STOP** CLOCK A22TP2 Window Test +5V 23HC

Nodes: (46) (17) (48) (49)

(52) (53) (54) (55) (56) (57)

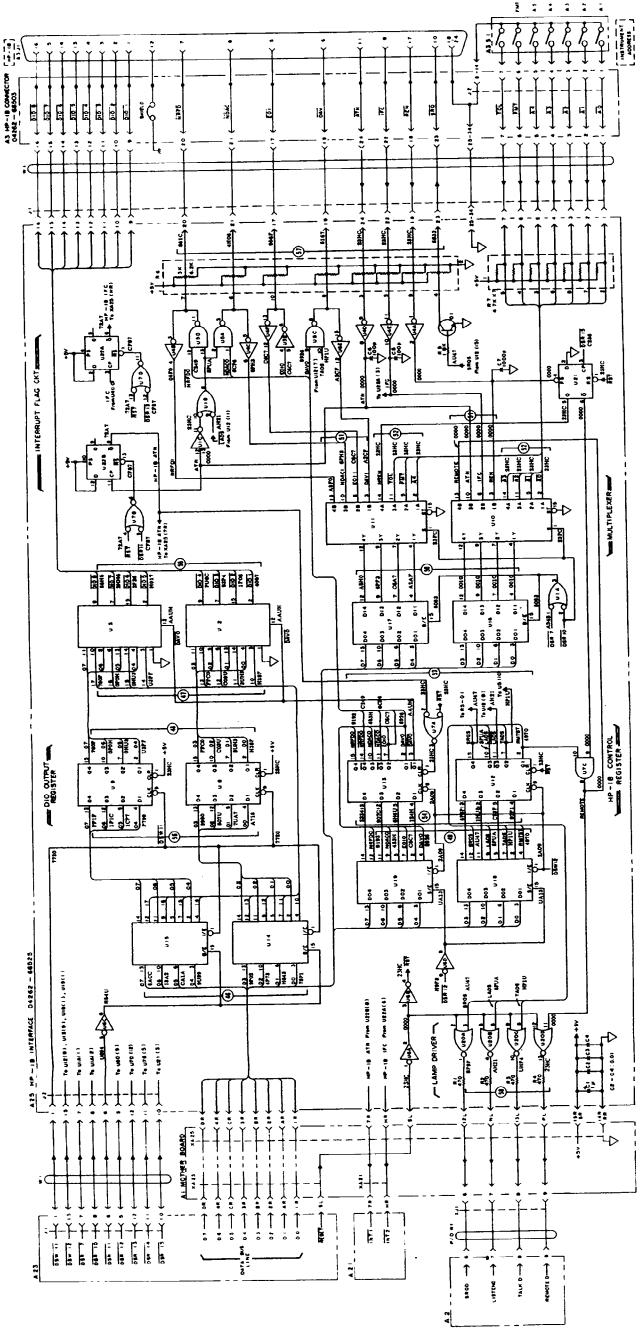



Figure 8-57. A25 HP-IB Interface Board Assembly Schematic Diagram.

8.69

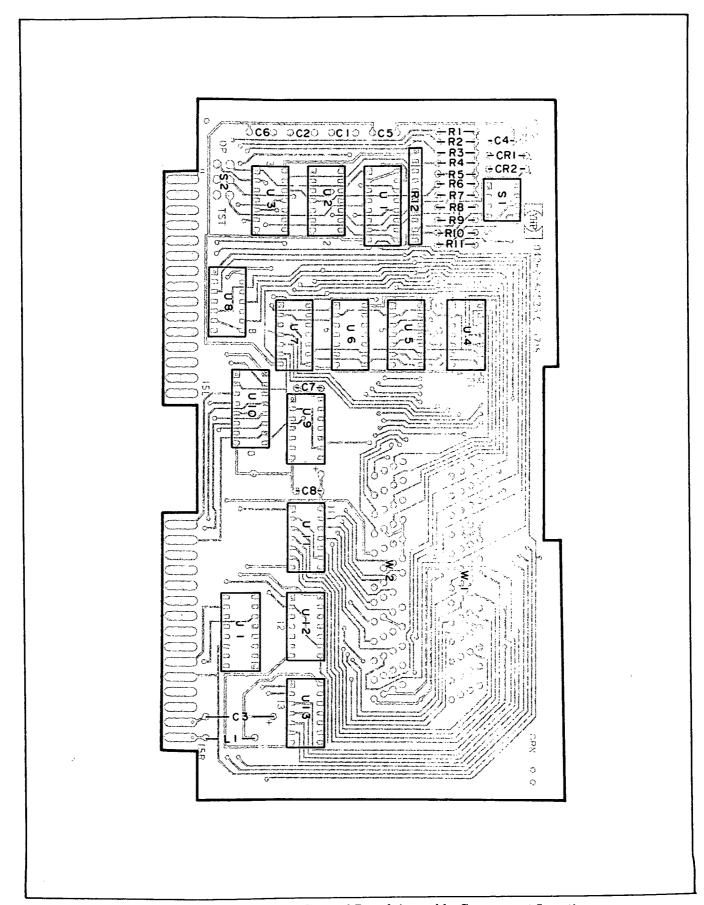
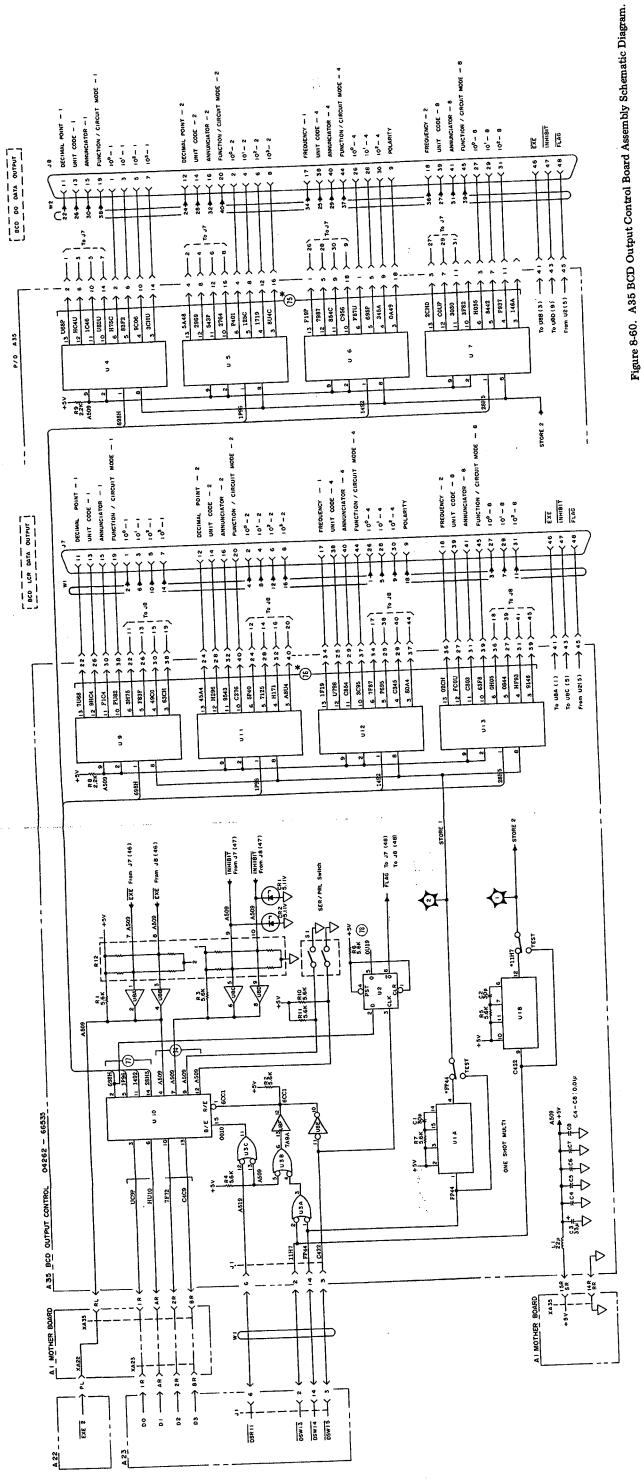




Figure 8-59. A35 BCD Output Control Board Assembly Component Locations.

Signature Analyzer settings:

START A23PA9
STOP A23PA9
CLOCK A22TP2
\*CLOCK
Window Test +5V A509

Nodes: (13) (14) (15) (16) (17) (18)

