

OPERATING AND SERVICE MANUAL

MODEL 1340A X-Y DISPLAY

(Including Options 001, 002, 004, 039, 110, 216, 300, 301, 302, 303, 304, 315, 316, 317, 324, 330, 331, 561, 604, 607, 631, and 639.)

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 1748A.

For additional important information about serial numbers, see INSTRUMENTS COVERED BY MANUAL in SECTION I.

² COPYRIGHT HEWLETT-PACKARD COMPANY/COLORADO SPRINGS DIVISION 1977 1900 GARDEN OF THE GODS ROAD, COLORADO SPRINGS, COLORADO, U.S.A.

ALL RIGHTS RESERVED

Manual Part Number 01340-90901 Microfiche Part Number 01340-90801 Operating Note Part No. 01340-90902

PRINTED: DECEMBER 1977

SAFETY

This product has been designed and tested according to International Safety Requirements. To ensure safe operation and to keep the product safe, the information, cautions, and warnings in this manual must be heeded. Refer to Section I and the Safety Summary for general safety considerations applicable to this product.

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

The cathode-ray tube (CRT) in the instrument and any replacement CRT purchased from HP are also warranted against electrical failure for a period of one year from the date of shipment from Colorado Springs. BROKEN TUBES AND TUBES WITH PHOSPHOR OR MESH BURNS, HOWEVER, ARE NOT INCLUDED UNDER THIS WARRANTY.

For warranty service or repair, this product must be returned to a service facility designated by HP. However, warranty service for products installed by HP and certain other products designated by HP will be performed at Buyer's facility at no charge within the HP service travel area. Outside HP service travel areas, warranty service will be performed at Buyer's facility only upon HP's prior agreement and Buyer shall pay HP's round trip travel expenses.

For products returned to HP for warranty service, Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

S C W & A 9/78 (CRT)

TABLE OF CONTENTS

Sect	ion		Page
I	GENE	RAL INFORMATION	1-1
	1-1.	Introduction	1-1
	1-5.	Specifications	1-1
	1-7.	Description	1-1
	1-9.	Options	1-1
	1-11.	Accessories Supplied	1-1
	1-13.	Recommended Test Equipment	1-6
	1-15.	Instruments Covered by Manual	1-6
Π	INSTA	LLATION	2-1
	2-1.	Introduction	2-1
	2-3.	Initial Inspection	2-1
	2-5.	Preparation for Use	2-1
	2-6.	Power Requirements	2-1
	2-7.	Line Voltage Selection	2-1
	2-8.	Power Cables	2-1
	2-9.	Repacking for Shipment	2-1
III	OPER	ATION	3-1
	3-1.	Introduction	3-1
	3-3.	Panel Features	3-1
	3-5.	Preoperational Procedure	3-1
	3-6.	General	3-1
	3-7.	Bandwidth Reduction	3-2
	3-8.	Input Polarity Selection	3-2
	3-9.	Application Considerations	3-3
	3-10.	General	3-3
	3-11.	Interfacing Considerations	3-3
	3-12.	General	3-3
	3-16.	Display Adjustments	3-3
	3-17.	Focus	3-3
	3-20.	Performance Specifications	3-3
IV	PERFO	DRMANCE TESTS	4-1
	4-1.	Introduction	4-1
	4-3.	Equipment Required	4-1
	4-5.	Test Record	4-1
	4-7.	Calibration Cycle	4-1
	4-11.	Performance Test Procedures	4-1
	4-12.	Dynamic Range Test (X and Y	
		Amplifiers)	4-1
	4-13.	X-, Y-Amplifier Bandwidth and	4.9
	A 1A	Dhase Shift	4-J //
	4-14. 1 15	Diagonal Sottling Time	4-4
		Bonostobility	4-0 1 C
	4.17	TTI Blanking (Ontion 916	-t -O
	7-1()	Only)	4-7
		······································	

Secti	ion		Page
v	ADJUS	STMENTS	5-1
	5-1.	Introduction	5-1
	5-3.	Safety Requirements	5-1
	5-5.	Equipment Required	5-1
	5-7.	Adjustments	5-1
	5-11.	Adjustment Procedures	5-1
	5-12.	Low-voltage Power Supply Adjustment	5-2
	5-13.	High-voltage Power Supply Adjustment	5-3
	5-14	Focus Limit Adjustment	5-4
	5-15	Intensity Limit Adjustment	5-4
	5.16	Pattern Adjustment	5-5
	5-17	X- and Y-amplifier Balance	00
	010	Adjustments	5-5
	5-18	X- and Y-amplifier Gain Set	5-6
	5.19	Z-amplifier Balance Adjustment	5-6
	5.20	Z-amplifier Gain and High	00
	0 20.	Frequency Adjustments	5-7
	5-21	Input Attenuator Compen-	0.
		sation	5-8
VI	REPLA	ACEABLE PARTS	6-1
	6-1.	Introduction	6-1
	6-3.	Abbreviations	6-1
	6-5.	Replaceable Parts List	6-1
	6-7.	Ordering Information	6-1
	6-10.	Direct Mail Order System	6-1
VII	MANU	AL CHANGES	7-1
	7-1.	Introduction	7-1
VIII	SERVI	CE	8-1
	8-1.	Introduction	8-1
	8-4.	Theory of Operation	8-1
	8-6.	Troubleshooting	8-1
	8-7.	Initial Troubleshooting	
		Procedure	8-1
	8-8.	DC Voltages and Waveforms	8-1
	8-9.	Recommended Test Equipment	8-1
	8-11.	Repair	8-1
	8-12.	Assembly Removal	8-1
	8-13.	CRT Removal	8-3
	8-14	Preventive Maintenance	8.3
	8-16.	Circuit Boards	8-4

LIST OF ILLUSTRATIONS

Figure	Title	Page	Figure	Title	Page
1-1.	Model 1340A X-Y Display	1-0	5-1.	Pattern Adjustment Test Setup	5-5
			5-2.	Gain Set Adjustment Test Setup	5-6
2-1.	Power Receptacles	2-1	5-3.	Z-amplifier Gain and High Frequency	
	•			Test Setup	5-7
3-1.	Input Attenuation and Bandwidth		5-4.	Input Attenuator Adjustment Test	
	Selection Switches	3-2		Setup	5-8
3-2.	Input Termination Impedance of Display	7	8-1.	Service Sheet 1. Model 1340A Overall Bl	ock
	Connected in Parallel	3-3		Diagram	8-5
3-3.	Brightness vs Cross section of Typical	-	8-2.	Component Identification. Control	• -
	CRT Spot	3-4		Assembly, A4	8-6
3-4.	Settling Time	3-4	8-3.	Component Identification, X-Y-Z	
3-5.	Linearity of Beam Position Showing			Assembly, A1	8-6
	Ideal Positioning and Possible		8-4.	Service Sheet 2. X-Y Amplifiers	8-7
	Error	3-4	8-5.	Component Identification, HVPS	•
3-6.	Geometric Distortion Caused by			Assembly, A3	8-8
	CRT (Exaggerated)	3-5	8-6.	Service Sheet 3. HVPS and Z-axis	
3-7.	Controls and Connectors	3-5		Amplifier	8-9
			8-7.	Component Identification, LVPS	
				Assembly, A2	8-10
4-1.	Dynamic Range Test Setup	4-2	8-8.	Service Sheet 4. LV Power Supply	8-11
4-2.	Bandwidth and Rise Time Test Setup	4-3	8-9.	Component Identification, DC Power Sur	vlaa
4-3.	Phase-shift Test Setup	4-4		Assembly, A5 (Option 002)	8-12
4-4.	Phase-shift Measurement	4-4	8-10.	Service Sheet 5. DC Power Supply	
4-5.	Diagonal Settling Time Test Setup	4-5		(Option 002)	8-13
4-6.	Repeatability Test Setup	4-6	8-11.	Service Sheet 6, Adjustment	
4-7.	Option 216 Test Setup	4-7		Locations	8-15

LIST OF TABLES

Table	Title	Page	Table	Title	Page
1-1. 1-2.	Specifications	1-1 1-2	6-1.	Reference Designators and Abbreviations	6-2
1-3.	Available Options	1-4	6-2.	Replaceable Parts	6-3
1-4.	Recommended Test Equipment	1-6	6-3.	List of Manufacturers' Codes	6-9
3-1.	X, Y, and Z Input Switch Coding	3-2			
3-2.	Input Signal Polarity Selection	3-2			
			8-1.	Schematic Notes	8-2
5-1.	Adjustable Components	5-1	8-2.	Assembly Index	8-4
5-2.	LVPS Tolerances	5-2	8-3.	X, Y, and Z Input Switch Coding	8-6

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

GROUND THE INSTRUMENT.

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS.

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE.

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

USE CAUTION WHEN EXPOSING OR HANDLING THE CRT.

Breakage of the Cathode-ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion). To prevent CRT implosion, avoid rough handling or jarring of the instrument. Handling of the CRT shall be done only by qualified maintenance personnel using approved safety mask and gloves.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT.

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification of the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DANGEROUS PROCEDURE WARNINGS.

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

SS-2-1/76

Figure 1-1. Model 1340A X-Y Display

1-0

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION.

1-1. This manual contains information required to install, operate, test, adjust, and service the Hewlett-Packard Model 1340A.

1-3. Supplied with this manual is an Operating Note that should be kept with the instrument for use by the operator. The part number is listed on the title page.

1-4. Also listed on the title page of this manual is a Microfiche part number. This number can be used to order 4- x 6-inch microfilm transparencies of the manual. Each microfiche contains up to 96 photo-duplicates of the manual pages. The microfiche package also includes the latest Manual Changes supplement.

1-5. SPECIFICATIONS.

ъ

1-6. Instrument specifications are listed in table 1-1. These specifications are the performance standards or limits against which the instrument is tested. Table 1-2 lists supplemental characteristics. Supplemental characteristics are not specifications but are typical characteristics included as additional information for the user.

VERTICAL AND HORIZONTAL AMPLIFIERS RESPONSE

- **Rise Time:** ≤ 120 ns (10% to 90% points) for full-screen deflection or less.
- **Phase Shift:** < 3° to 1 MHz for full-screen input signals.
- **DEFLECTION CHARACTERISTICS:** front panel adjustable from 800 mV to 2 volts for 4.7 in. deflection of X or Y amplifiers.
- LINEAR WRITING SPEED: $\geq 25 \text{ cm}/\mu \text{s}$ (9.8 in./ μs).
- **SETTLING TIME:** signal settles to within one spot diameter of final value in ≤ 300 ns for any on-screen final location. Off-screen deflection (if any) must not exceed specified dynamic range.
- **REPEATABILITY:** $\leq 0.4 \text{ mm} (0.015 \text{ in.})$ error (fullscreen) for re-addressing a point from any on- or off-screen location within specific dynamic range. **LINEARITY:** 5% of full scale along major axes.
- **MAXIMUM INPUT:** ± 40 V (dc + peak ac) for high impedance input termination; ± 3.5 V (dc + peak ac) for 50 Ω input termination.
- **DYNAMIC RANGE:** beam may be deflected offscreen up to 1/2 screen diameter in any direction provided

1-7. DESCRIPTION.

1-8. The Hewlett-Packard Model 1340A is an X-Y display recommended for OEM system use in electronic test equipment, chemical or physical analytical systems, medical electronic equipment or any application where a high-quality image is required. The display uses a post-accelerator CRT with 6.6 kV accelerating potential and aluminized P31 phosphor.

1-9. OPTIONS.

1-10. Standard options are modifications installed on HP instruments and are available on request. Table 1-3 lists available options for the 1340A.

1-11. ACCESSORIES SUPPLIED.

1-12. The following accessories are supplied with the 1340A:

One blue contrast filter One ac line cord

Table 1-1. Specifications

that the zero input position is onscreen without degradation of specifications.

CROSSTALK: < 0.25 mm (0.01 in.) with one input terminated in 50Ω and the other axis excited by a 1-V, 500 kHz signal; < 0.5 mm (0.02 in.) at 3 MHz when driven from a terminated 50Ω source.

Z-AXIS AMPLIFIER

RISE TIME: < 70 ns.

- ANALOG BLANKING RANGE: a 1 V change in Zinput voltage causes a full scale change in brightness.
- **MAXIMUM INPUT:** $\pm 40V$ (dc + peak ac) for high impedance input termination; $\pm 3.5 V$ (dc + peak ac) for 50 Ω input termination.

CATHODE-RAY TUBE

- VIEWING AREA: 114 cm² (17.73 in.²); 9.6 cm (3.78 in.) vertically by 11.9 cm (4.69 in.) horizontally.
- **SPOT SIZE:** < 0.46 mm (0.018 in.) at center of screen at normal viewing brightness; measured using shrinking raster method.

SAFETY PROTECTION

When ordered with Option 315 the instrument is listed by Underwriters Laboratories for use in Electronic Data Processing Equipment (UL 478). When ordered with Option 330, Model 1340A is listed by UL as a component for use in Medical and Dental Electronic Equipment (UL 544).

These displays are designed and manufactured primarily for OEM system applications. Therefore, without Option 315 or Option 330, the top and bottom protective covers are not provided and internal wiring connections of HAZARDOUS VOLT-AGES ARE EXPOSED. Operator protection must be provided by the purchaser and/or user of the instrument. If in doubt, order either Option 315 or Option 330 which provides the covers.

GENERAL

OPERATING ENVIRONMENT

Temperature: 0°C to +55°C; nonoperating, -40°C to +70°C.

Humidity: to 95% relative humidity at +40°C.

- Altitude: to 4600 m (15 000 ft); nonoperating, 15 300 m (50 000 ft).
- Vibration: vibrated in three planes for 15 minutes each with 0.38 mm (0.015 in.) excursion, 5 Hz to 55 Hz. 1 minute per octave, 10 minutes each resonance.
- **Shock:** 30 g level shock, 11 ms duration and 1/2 sine wave shape.

Table 1-2. General Information

VERTICAL AND HORIZONTAL AMPLIFIERS

INPUTS: BNC connectors with shield grounded.

- Input RC: approx 1 M Ω shunted by ≤ 50 pF. 50Ω (nominal) input termination selectable internally. Bandwidth: dc to > 3 MHz (3 dB down) for 5 cm or less
- deflection.
- **Input Deflection:** Independently switch-selectable 5:1 attenuators extend range from approximately 4 V to 10 V for full-screen deflection of X or Y amplifiers.
- **Polarity:** a positive input signal moves beam up or to the right. Negative polarity selectable by internal switches.
- **POSITION:** front-panel controls allow undeflected spot to be set off screen from any where within the viewing area. Spot position, with both inputs grounded and position controls electrically centered, is approximately at the geometric center of the viewing area.

DRIFT

- **Position:** typically < 0.5 mm/hr (0.02 in./hr) and typically < 1 mm (0.04 in.) in 24 hours (with covers installed and after a 15-minute warmup period).
- **Gain:** typically <1% under all conditions of specified line voltage with covers installed, with a temperature range between +20°C and +55°C (+68°F and +131°F), and after a 15-minute warmup period.

Z-AXIS AMPLIFIER

ANALOG BLANKING: cutoff level can be set from +0.2 Vdc to -1 Vdc with intensity control. Brightness is limited to a safe level for any Z-axis input voltage with intensity control set fully counterclockwise.

BLANKING POLARITY: positive going input signal, applied to the Z-axis input, increases brightness. Negative polarity is selectable internally. **INPUT:** BNC connector with shield grounded. Input RC: approx 1 $M\Omega$ shunted by ≤ 40 pF. 50Ω (nominal) input termination selectable internally. GAIN: internally adjustable over 2:1 attenuation range.

CATHODE-RAY TUBE

- **TYPE:** post deflection accelerator, approximately 6.6 kV accelerating potential. Aluminized P31 phosphor, electrostatic focus and deflection.
- **GRATICULE:** internal graticule, 8 x 10 divisions, 1 div = \approx 1.2 cm (Refer to table 1-3 for CRT's without graticules).
- **RESOLUTION:** Line resolution at center screen is approximately 25 lines/cm at the specified line brightness.

SAFETY PROTECTION

X-RAY EMISSION: <0.5 mr/hr measured with Victoreen Model 440 RF/C.

GENERAL

FRONT PANEL CONTROLS

Knob Adjustments: Intensity, Focus, Position $\blacktriangleleft (X)$, Position $\clubsuit (Y)$.

- Screw-driver Adjustments: Trace Align, X Gain, Y Gain.
- LINE POWER: Selectable 100, 120, 220, or 240 Vac, +5% to --10%, 48 Hz to 66 Hz (see note); average power dissipation at 60 Hz and 120 Vac is approximately 35 watts.

NOTE

Unit meets all electrical specifications from 48 - 440 Hz, but does not meet line leakage requirements for medical and dental listings at line frequencies above 66 Hz.

DIMENSIONS: see outline drawing.

Table 1-3. Available Options

)ptions	Description	Kit Part Number
	MODULES	
001	Basic module without control panel.	See Table 6-2,
002	Basic module with dc supply voltages.	Section VI
	CABINET CONFIGURATIONS	
315	Basic module with System II 5-1/4 in. high, half rack width cabinet, 15-in. long struts with control panel. (Model 1340A is supplied without cabinet and with control panel.)	
316	Basic module with all necessary hardware assembled for mounting in 10380A or 10386A with 18-inch side struts. Front casting, two 18-inch struts, no covers, rear cover panel.	
317	Basic module with System II 5.25-in. high, full-rack width cabinet with 15-in. long struts (17-1/8 in. overall length). Painted blank front panel and filter panel included.	
	X AND Y AMPLIFIERS	
110	4-10 V/div deflection factor.	
	Z AMPLIFIER	
216	TTL blanking level added to Z-axis amplifier. High state (+2.5 V to +5 V) blanks any analog Z-input signal. Low state (0.0 V to +0.8 V) returns blanking to analog Z-axis input. Input through rear-panel BNC connector.	
	CRT	
004	Standard CRT replaced with CRT having P4 aluminized phosphor, 8- by 10-div internal graticule.	
039	Standard CRT replaced with CRT having P39 aluminized phosphor, 8- by 10-div internal graticule.	
604	Standard CRT replaced with CRT having P4 aluminized phosphor, no internal graticule.	
607	Standard CRT replaced with CRT having P7 aluminized phosphor, no internal graticule.	
631	Standard CRT replaced with CRT having P31 aluminized phosphor, no internal graticule.	
ĺ		

Table 1-3. Available Options (Cont'd)

Options	Description	Kit Part Number
	CONTRAST FILTER	
561	Standard blue contrast filter replaced by clear CRT impact-protection shield.	See Table 6-2, Section VI
	SIGNAL INPUTS	
324	Remote program connector added to rear panel. X-, Y-, and Z-signal inputs wired in parallel with BNC inputs. (NOTE: input capacitance increases to approxi- mately 120 pF.)	
	POWER CORDS	
300	Power cord for use in Great Britain and Singapore. 2.3 m (7.5 ft), removable, 240 V max, 3 conductor 90° IEC.	
301	Power cord for use in Australia and New Zealand. 2.3 m (7.5 ft), removable, 240 V max, 3 conductor IEC.	
302	Power cord for use in East and West Europe. 2.3 m (7.5 ft), removable, 240 V max, 3 conductor 90° IEC.	
303	Power cord for use in USA, Canada, Japan,and Mexico. 2.3 m (7.5 ft), removable, 240 V max, 3 conductor IEC to NEMA 5-15P.	
304	Power cord used in USA, Canada, Japan, and Mexico. 77.2 cm (30 in.) coiled, extends to 1.8 m (6 ft), removable, 120 V max, 3 conductor IEC to NEMA 5-15P. (NOTE: not available with Option 315 or 330.)	
	SAFETY	
330	Listed by Underwriter Laboratories for medical and dental electronic equipment (UL 544). Includes special hospital-grade AC line cord, special AC line transformer, special marking on top cover and rear panel, and clear CRT impact-protection shield in lieu of standard blue contrast filter.	
331	Underwriter Laboratories recognized components for use in medical anddental equipment (UL 544) display module without cabinet).	
	Includes special hospital-grade AC line cord, special AC line transformer, and clear CRT implosion shield in lieu of standard blue contrast filter.	
1		

1-13. RECOMMENDED TEST EQUIPMENT.

1-14. Equipment required to maintain the 1340A is listed in table 1-4. Other equipment may be substituted if it meets or exceeds the critical specifications listed in the table.

1-15. INSTRUMENTS COVERED BY MAN-UAL.

1-16. Attached to the instrument is a serial number plate. The serial number is in the form: 0000A00000. It is in two parts; the first four digits and the letter are the serial prefix and the last five digits are the suffix. The prefix is the same for all identical instruments; it changes only when a change is made to the instrument. The suffix however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the serial number prefix(es) listed under SERIAL NUMBERS on the title page.

1-17. An instrument manufactured after the printing of this manual may have a serial number prefix that is

not listed on the title page. This unlisted serial number prefix indicates the instrument is different from those described in this manual. The manual for this newer instrument is accompanied by a yellow Manual Changes supplement. This supplement contains "change information" that explains how to adapt the manual to the newer instrument.

1-18. In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with the manual print date and part number, both of which appear on the manual title page. Complimentary copies of the supplement are available from Hewlett-Packard.

1-19. For information concerning a serial number prefix that is not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

Instrument	Critical Specification	Recommended Model	Use
Function Generator	Output 1: Sine, Square Wave Amplitude: 0 ± 10 Volts into High Z load Amplitude: 0 ± 2 Volt into 50Ω load Offset: ±1 Volt Frequency: 10 MHz Output Z: 50Ω Output 2: Sine Amplitude: 1 V into 50Ω Frequency: 10 kHz	HP 3312A	P,A,T
Pulse Gen- erator (2 Required)	Period: $0.1 \ \mu$ s to 1 ms Width: square wave Amplitude: 1 Volt Transition Time: < 5 ns Output Z: 50 Ω	HP 8013B	P,A,T
Digital Multimeter	Volts:±300 VDC Inputs Z: 10 MΩ	HP 3476A	A,T
High Voltage Probe	40 kV for use with above DMM	HP 34111A	A,T
Oscilloscope	Bandwidth: 100 MHz Input Z: 50 Ω and 1 M Ω $\approx 20 \text{ pF}$ Vertical Sensitivity: 5 mV	HP 1740A	A,T
Oscilloscope Probe (2 each)	Division Ratio: 10:1 Impedance: 10 MΩ, ≈10 pF	HP 10004D	A,T
	\mathbf{P} = Performance Checks \mathbf{A} = Adjustments \mathbf{T} = Trou	bleshooting	

Table 1-4. Recommended Test Equipment

SECTION II

INSTALLATION

2-1. INTRODUCTION.

2-2. This section provides installation instructions for the Model 1340A. This section also includes information about initial inspection, damage claims, and packaging instructions.

2-3. INITIAL INSPECTION.

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked mechanically and electrically.

2-5. PREPARATION FOR USE.

This instrument is designed and manufactured primarily for OEM systems. Without Option 315 or Option 317, protective covers are not provided and internal, hazardous voltages are exposed when ac power is connected. Operator protection from these hazardous voltages must be provided by the system in which the instrument is used.

2-6. POWER REQUIREMENTS. The 1340A operates from any power source supplying 100, 120, 220, or 240 Vac (+5% -10%), single phase, 48 Hz to 66 Hz that can deliver at least 35 watts. (See LINE POWER note in table 1-2.)

2-7. LINE VOLTAGE SELECTION. The instrument is normally shipped from the factory set to operate at 120 Vac. To operate from any of the other sources, proceed as follows:

Component replacement, (including ac fuse) and all adjustments should be performed only by service trained personnel who are aware of the hazards involved (for example, fire and electrical shock).

- a. Remove power cable (if attached).
- b. Remove top cover of 1340A (if installed).

c. Install line select jumper connector (E1 or E2) as indicated on LVPS schematic at rear of this manual.

NOTE

AC input requirement selected by E1 or E2 jumper connector will be displayed as a color code through rear-panel openings indicating selection of either 100, 120, 220, or 240volts.

d. Replace internal input line fuse with 300 mAT fuse (HP Part No. 2110-0044) for 220/240 Vac operation.

- e. Replace top cover of 1340A (if required).
- f. Connect input ac power cable.

2-8. POWER CABLES. This instrument is equipped with a three-wire power cable. When connected to an appropriate ac power receptacle, this cable grounds the instrument cabinet. The type of power cable plug shipped with each instrument depends on the country of destination. See figure 2-1 for part numbers of the power cables with plug configurations available.

HP POWER CABLE PART NUMBERS						
8120-1692 8120-0698 8120-0696						
OPTION 302	OPTION 303	OPTION 301				
8120-1703	8120-2296	8120-2061				
OPTION 300	OPTION 306	OPTION 304				
INPUT POWER RECEPTACLE TYPES						

Figure 2-1. Power Receptacles

2-9. REPACKING FOR SHIPMENT.

2-10. If the instrument is to be shipped to a Hewlett-Packard Sales/Service Office for service or repair, attach a tag showing owner (with address), complete instrument serial number, and a description of the service required.

2-11. Use the original shipping carton and packing material. If the original packing material is not available, the Hewlett-Packard Sales/Service Office will provide information and recommendations on materials to be used.

SECTION III

OPERATION

3-1. INTRODUCTION.

3-2. This section contains operating instructions, applications and interfacing considerations for the HP Model 1340A.

Without Option 315 or Option 317, protective covers are not provided and internal, harzardous voltages are exposed when ac power is connected. Operator protection from these hazardous voltages must be provided by the system in which the instrument is used.

3-3. PANEL FEATURES.

3-4. The Model 1340A is an X, Y, Z display with analog voltage inputs for X-, Y-, and Z-axis controls. All signals must be externally supplied through rear-panel connectors. The instrument is intended for use as a general-purpose graphic display. Intensity, trace align, focus, position \clubsuit (X), position \clubsuit (Y), X-gain, and Y-gain controls are accessible on the front panel. Trace align, X-gain, and Y-gain controls are screwdriver adjustments. Controls and connectors are illustrated and briefly described in figure 3-7.

Component replacement (including ac fuse) and internal adjustments must be made by qualified maintenance personnel.

3-5. PREOPERATIONAL PROCEDURE.

The INTENSITY control will adjust display brightness from completely off (ccw) to maximum brightness (cw). To avoid damage to CRT phosphor, increase intensity slowly until display brightness is at a comfortable viewing level.

3-6. GENERAL. Prepare the 1340A for operation as follows (instruments with options may require modification of input levels):

NOTE

The instrument is normally shipped with the input attenuator switches set for the 1-volt full scale, high-input impedance configurations. For other input configurations refer to table 3-1 and figure 3-1.

a. Set INTENSITY fully counterclockwise.

b. Set horizontal and vertical POSITION controls to midrange.

c. Set line switch (rear panel) to ON. LINE indicator lamp (front panel) should light.

CAUTION

A high-intensity display over an extended period will burn the CRT phosphor.

d. Adjust INTENSITY control. Display spot brightness should vary from completely extinguished (full ccw position) to acceptable viewing brightness as control is turned cw. Adjust for comfortble viewing brightness of display spot.

e. Adjust position (Y) through its full range. Display spot will move vertically on CRT, disappearing from viewing area at either extreme of control.

f. Adjust position $\P (X)$ through its full range. Display spot will move horizontally on CRT, disappearing from viewing area at either extreme of control.

g. Set \triangleleft and \blacklozenge position controls to center display spot on CRT.

h. Set FOCUS control for smallest, sharpest display spot.

i. Apply 1-kHz, 1-volt p-p sine-wave signal to X amplifier input connector on rear panel of instrument.

j. Adjust TRACE ALIGN to align trace horizontally.

k. Set X GAIN for trace length of 119 mm (4.7 in.), or as required by application.

l. Connect 1-kHz, 1-volt p-p sine-wave signal to Y amplifier input connector on rear panel of instrument.

m. Adjust Y GAIN for trace length of 95.2 mm (3.75 in.), or as required by application.

		A1 ASSEMBLY SWITCH AND SECTION						
ATTEN IMPEDANCE		X INPUT			Y INPUT			Z INPUT
		S1-1	S1-2	S1-5	S2-4	S2-7	S2-8	S2-1
1:1	50Ω	CLOSED	CLOSED	OPEN	CLOSED	CLOSED	OPEN	CLOSED
1:1	HIGH	OPEN	CLOSED	OPEN	OPEN	CLOSED	OPEN	OPEN
5:1	HIGH	OPEN	OPEN	CLOSED	OPEN	OPEN	CLOSED	NA

Table 3-1. X, Y, and Z Input Switch Coding

3-7. BANDWIDTH REDUCTION. In certain cases, the full 3-MHz bandwidth of the deflection amplifiers is not required. In fact, in some applications it may be desirable to reduce the bandwidth to eliminate system noise problems. The X- and Y-amplifier bandwidth can be limited by engaging the following input attenuation and bandwidth selection switches (see figure 3-1 for switch location):

Amplifier	Engage Switch
Х	A1S3-8
Y	A1S3-7

Engaging the bandwidth limit switches reduces the bandwidth of the amplifiers to approximately 165 kHz.

3-8. INPUT POLARITY SELECTION. The X-, Y-, and Zamplifiers can be conditioned by the input attenuation and bandwidth selection switches for input signals with different polarities. To condition the equipment for different polarity signals, set applicable switches as indicated in table 3-2. (See figure 3-1 for switch location.)

Т

Figure 3-1. Input Attenuation and Bandwidth Selection Switches

٦

Table 3-2. Inp	ut Signal Polarity Selection	

INPUT	X AMPLIFIER INPUT		Y AMI IN	PLIFIER PUT	Z AMPLIFIER INPUT		
POLARITY	Switch A1, S3-5	Switch A1, S3-6	Switch S3-3	Switch S3-4	Switch S3-1	Switch S3-2	
Positive	CLOSED	OPEN	CLOSED	OPEN	CLOSED	OPEN	
Negative	OPEN	CLOSED	OPEN	CLOSED	OPEN	CLOSED	

3-9. APPLICATION CONSIDERATIONS.

3-10. GENERAL. This section contains interfacing considerations, display adjustments, definitions for specification terminology, and optional features.

3-11. INTERFACING CONSIDERATIONS.

3-12. GENERAL. Front-panel gain controls allow adjustment from 800 mV to 2 V to give full-screen deflection in both the X and Y axes of display. One graticule division is equal to ≈ 1.2 cm (0.47 in.). Switch-selectable attenuation is available to provide full-screen deflection within the range of 4 V to 10 V. This attenuation range plus the gain adjustments allow the 1340A to interface with most systems.

3-13. Crosstalk and Ringing. The importance of 50ohm input terminations as related to display quality and reduction of crosstalk cannot be overemphasized. The undersirable effects of crosstalk and ringing will increase as input cable length or system bandwidth are increased. However, the use of the 50Ω terminations will usually reduce crosstalk and reflections to a negligible level.

NOTE

Crosstalk can also be produced by input driving circuits and ground loops.

3-14. Ringing is one possible undesirable side effect of improperly terminated inputs. For instance, an abrupt transition from blanked to unblanked in an improperly terminated Z-axis input line may cause ringing which would appear as intensity fluctuations in the display. For minimum induced crosstalk and ringing, displays connected in parallel should be connected in a "daisychain" configuration with only the last display in the chain terminated in 50 ohms (figure 3-2).

Figure 3-2. Input Termination Impedance of Displays Connected in Parallel

3-15. Setting the intensity control fully ccw prevents the beam from being turned full-on, regardless of the voltage applied to the Z-axis input. This condition is provided to protect the CRT from damage when a system failure causes loss of control over the Z-axis input voltage or loss of deflection voltages. Therefore, the system operator only has to turn the intensity control fully ccw in the event of a system failure.

3-16. DISPLAY ADJUSTMENTS. In order to obtain best performance and flexibility of the 1340A, it is essential that front-panel controls be set properly.

3-17. FOCUS. To focus a display, position the beam approximately 2/3 the diagonal distance from center screen towards any corner of the screen and adjust the focus control for optimum spot size. Position the beam to the remaining three quadrants and check for optimum focus at each location. Often, one quadrant of the screen will not focus as precisely as the other three and this quadrant should be adjusted for the best focus.

3-18. Astigmatism Adjustment. This control (internal adjustment A3R24) is used to match voltage on the forward-most element of the focus lens to voltage on the deflection plates to prevent the deflection plates from acting as part of the focus lens. Without this balanced voltage condition, the focal length of the electron gun is changed at the sides of the beam with respect to the top and bottom of the beam, or vice versa, which distorts the beam shape.

3-19. To check the astigmatism adjustment, rotate the focus control back and forth through the point of optimum focus. If the dots elongate vertically and then horizontally, it indicates improper astigmatism adjustment.

NOTE

Astigmatism is properly adjusted if the dots in the corners slant approximately 45° from upper left to lower right and vice versa as the focus control passes through the point of optimum focus.

3-20. PERFORMANCE SPECIFICATIONS. Major performance specifications, what they mean, how they are determined, and how they affect system performance are explained in the following paragraphs.

3-21. Spot Size and Resolution. If you scan a CRT spot with a microscope photometer and plot brightness versus distance (spot width), the result approximates a Gaussian curve (figure 3-3). The spot size is the width of the Gaussian curve at its 50% point (see section I, table 1-2).

Figure 3-3. Brightness vs Cross Section of Typical CRT Spot

3-22. In practice, the 50% point can be determined by using the shrinking raster measurement method. The shrinking raster measurement is obtained by displaying a raster of lines (or dots) on the CRT and then adjusting the vertical and horizontal gain until the individual lines (or dots) are no longer individually identifiable. The size of the raster is then divided by the number of lines in the raster to determine the spot size. The point where the raster (or dots) merge is approximately the theoretical 50% point on the Gaussian curve.

3-23. The shrinking raster method should be used if a scanning microscope photometer is not available, because observing an individual line (or dot) with an optical comparator can be very misleading. On a single dot, the eye can see to about the 3% point on the Gaussian curve. Here the dot appears to be approximately twice the width it is across the 50% points.

3-24. Settling Time. Settling time is defined as the elapsed time between an input step command and the time for the beam to settle within a specified tolerance to its final position (see figure 3-4). Settling time must be taken into account when moving the beam from one location to another. Otherwise, there may be tails on dots, or line distortions at the starting point of vectors.

3-25. Linearity. Linearity can be defined as either a scaling error in locating a point on the CRT with given input voltages relative to known full scale input voltages or an error in locating a point within any calibrated increment on the CRT other than full-screen. In other words, if known X and Y input voltages correspond to a certain CRT screen position and other known voltages correspond to another position, then any intermediate voltages between these two sets of voltages correspond to points located proportionately

Figure 3-4. Settling Time

Figure 3-5. Linearity of Beam Position Showing Ideal Positioning and Possible Error

between the two predetermined points with a possible error of $\pm 3\%$ of the distance between the two known points. The increment of position shown in figure 3-5 may be either full screen or any portion of the screen.

3-26. Linearity is specified only along the major CRT screen axes. For CRT line distortion other than along the major axes, refer to the CRT geometry specifications listed in table 1-1 and see figure 3-6.

Figure 3-6. Geometric Distortion Caused by CRT (exaggerated) 3-27. From the specifications, it is difficult to relate the actual position of a point on the CRT to the input voltages applied to the X and Y axes, except on the major axes. This is because a CRT is an open-loop device (unlike an X-Y plotter) with no method of applying feedback to the amplifier circuits to make corrections to beam positioning. Therefore, a point along a line from the CRT screen center to a point in the CRT corner is subject to a location error caused by nonlinearity along the major axes and an additional geometric distortion error component which increases in significance as the beam moves out from the CRT center.

SECTION IV

PERFORMANCE TESTS

4-1. INTRODUCTION.

4-2. The procedures in this section test the instrument's electrical performance using the specifications of table 1-1 as the performance standards. All tests can be performed without access to the interior of the instrument.

4-3. EQUIPMENT REQUIRED.

4-4. Equipment required for the performance tests is listed in Section I, table 1-4. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended models.

4-5. TEST RECORD.

4-6. Results of the performance tests may be tabulated on the Test Record at the end of this section. The Test Record lists the tested specifications and their acceptable limits. The results recorded at incoming inspection can be used for comparison in periodic maintenance and troubleshooting and after repairs or adjustments.

4-7. CALIBRATION CYCLE.

4-8. Periodic calibration is not normally required for this instrument. Performance tests, however, should be

made after service work has been performed or if improper operation is suspected.

4-9. Further performance checks are included in the adjustments section that require access to the inside of the instrument. These checks are not considered normal requirements for a standard performance test.

The instrument is designed and manufactured primarily for OEM systems. Without Option 315 or Option 317, protective covers are not provided and internal, hazardous voltages are exposed when ac power is connected. Component replacement, including ac fuse, and internal adjustments must be made by qualified maintenance personnel.

4-10. The X (horizontal) and Y (vertical) amplifiers are indentical, therefore, only one test has been written and should be applied to both amplifiers before proceeding to the next test.

4-11. PERFORMANCE TEST PROCEDURES.

4-12. DYNAMIC RANGE TEST (X AND Y AMPLIFIERS).

SPECIFICATIONS:

The dynamic range shall extend offscreen to at least 1/2 screen diameter in any direction provided the zero input position is on screen.

DESCRIPTION:

A square-wave signal and a ramp signal are used in an oscilloscope-type presentation. Amplitude of the waveforms is 1.5 times the screen diameter and the display is then checked for distortion.

NOTE

Care must be taken to correctly identify changes in output of the pulse generator. Otherwise, these changes can be misinterpreted as dynamic range irregularities.

PERFORMANCE TESTS

Figure 4-1. Dynamic Range Test Setup

EQUIPMENT:

Function Generator	HP 3312A
Oscilloscope	HP 1740A
Pulse Generator	HP 8013A

PROCEDURE:

a. Connect equipment as shown in figure 4-1.

NOTE

Sync output from the recommended function generator (table 1-4) must be shifted to gate the pulse generator. The R-C network shown in figure 4-1 shift the output level from the function generator to assure stable gating of the pulse generator.

b. Set pulse generator as follows:

PULSE PERIOD	$10\mu s$
PULSE WIDTH	Wave
AMPLITUDE (V) (see Note b	elow)

NOTE

The output amplitude of the pulse generator is set for a full screen display of 96 mm when driving the Y (vertical) amplifier and 119 mm when driving the X (horizontal) amplifier.

c. Set function generator as follows:

FREQUENCY	20 kHz
FUNCTION	(Sawtooth)
OFFSET	OFF
AMPLITUDE fu	ll-screen deflection

- d. On oscilloscope, note amplitude of pulse generator output required to produce 96 mm (119 mm) display on 1340A CRT.
- e. Increase output amplitude from pulse generator by 1.5 times that noted in step d.
- f. Displayed waveform on 1340A should extend offscreen in one direction (depending on which axis is driven by pulse generator).

NOTE

If trouble is experienced while performing this procedure, check the power supplies, their decoupling networks, and the X-, Y-amplifier outputs, particularly the plate average of +85 volts.

4-13. X-, Y-AMPLIFIER BANDWIDTH AND RISE TIME.

SPECIFICATION:

Rise time is ≤ 120 ns (10% to 90% points) for full-screen deflection (or less). Bandwidth is dc to greater than 3 MHz (3 dB down) for 5 cm or less deflection.

DESCRIPTION:

This test measures bandwidth of the amplifiers; bandwidth is then used to compute rise time.

Figure 4-2. Bandwidth and Rise Time Test Setup

EQUIPMENT:

Function Generator	HP 3312A
Oscilloscope	HP 1740A

PROCEDURE:

- a. Connect equipment as shown in figure 4-2.
- b. Set function generator as follows:

FREQUENCY	10 kHz
FUNCTION	e Wave)

- c. Connect output of function generator to one input on 1340A.
- d. Adjust function generator output for 5 cm trace deflection on 1340A CRT.
- e. Using oscilloscope, note p-p amplitude from function generator.
- f. Maintaining same amplitude noted in step e, increase function generator frequency until trace deflection on 1340A CRT decreases to 3.5 cm.
- g. Final frequency setting of function generator is 3 dB bandwidth of amplifier under test.
- h. Using the following formula, compute rise time:

$$rt_{(ns)} = \frac{350}{BW (MHz)}$$

i. Repeat above procedure for other amplifier and complete following:

X AMPL BANDWIDTH	MHz
X AMPL RISE TIME	ns
Y AMPL BANDWIDTH	MHz
Y AMPL RISE TIME	ns

PERFORMANCE TESTS

4-14. PHASE SHIFT.

SPECIFICATION:

3° to 1 MHz for input signals causing full-screen deflection.

DESCRIPTION:

This test verifies the phase shift difference between the X and Y amplifiers. Phase shift must remain the same (within 3°) to at least 1 MHz.

4-4

4-15. DIAGONAL SETTLING TIME.

SPECIFICATION:

Signal settles to within one spot diameter of final value in ≤ 300 ns for any on-screen movement. Off-screen deflection must not exceed specified dynamic range.

DESCRIPTION:

The intensity (Z-axis) is turned on a short time after the X- or Y-axis transition. Blanking time must be \leq 300 ns before a significant tail (1 spot diameter) is seen on the spot indicating the beam position is just reaching its settling point.

Figure 4-5. Diagonal Settling Time Test Setup

EQUIPMENT:

Pulse Generators (2)	HP 8013B
Oscilloscope	HP 1740A

- a. Connect equipment as shown in figure 4-5.
- b. Set pulse generator (A) as follows:

PULSE PERIOD	10)μ s
PULSE DELAY	minim	ıum
PULSE WIDTH	Square W	ave

- c. Adjust pulse generator (A) AMPLITUDE to position two spots on diagonal corners of 1340A CRT. Position and Gain controls of 1340A may require adjustments for proper positioning of the spots.
- d. Set pulse generator (B) as follows:

PULSE PERIOD	(+) EXT
PULSE DELAY	400 ns
PULSE WIDTH	$. 1 \mu s$
AMPLITUDE	1V

- e. Reduce pulse generator (B) PULSE DELAY time until tail of one spot diameter in length is visible at one or both diagonal spots.
- f. Measure delay time on oscilloscope. Test limit is 300 ns maximum. Diagonal Settling Time is:_____ ns.

PERFORMANCE TESTS

4-16. REPEATABILITY.

SPECIFICATION:

0.4 mm error (full-screen) for re-addressing a point from any on- or off-screen location within the specified dynamic range.

DESCRIPTION:

This test verifies the amplifier performance stability with a varying input signal.

Figure 4-6. Repeatability Test Setup

EQUIPMENT: HP 8013B Oscilloscope. HP 1740A

NOTE

This test requires a pulse generator with a very stable baseline during changes in pulse period, pulse width, and amplitude. If a pulse generator other than that recommended is used, the baseline shift should be carefully measured. The baseline shift should not exceed 0.05% of the amplitude change.

PROCEDURE:

- a. Connect equipment as shown in figure 4-6.
- b. Set pulse generator as follows:

PULSE PERIOD	0.1 ms
PULSE WIDTH	50 μ s

c. Using 1340A controls, position baseline spot at center of CRT.

NOTE

Use oscilloscope as a monitor when accomplishing step d. Do not exceed specified dynamic range of the 1340A.

d. Vary pulse generator amplitude, pulse period, and pulse width verniers and notice any position change in spot. Spot movement should be 0.4 mm or less.

4-17. TTL BLANKING (OPTION 216 ONLY).

SPECIFICATION:

Option 216 - high state (+2.5 V to +5.0 V) blanks any analog Z-axis input signal. Low state (0 V to +0.8 V) returns blanking function to Z-axis input.

DESCRIPTION:

This test verifies the upper and lower TTL blanking and unblanking limits.

Figure 4-7. Option 216 Test Setup

EQUIPMENT:

Function Generator	HP 3312A
Pulse Generator	HP 8013B
Oscilloscope	HP 1740A

PROCEDURE:

a. Connect equipment as shown in figure 4-7.

NOTE

Sync output from the recommended function generator (table 1-4) must be shifted to gate the pulse generator. The R-C network shown in figure 4-7 shifts the output level from the function generator so that stable gating of the pulse generator is assured.

b. Set function generator as follows:

	FREQUENCY FUNCTION AMPLITUDE	10 kHz (Sawtooth) full screen deflection
c.	Set pulse generator as follows:	
	PULSE PERIOD	10 μ SEC Square Wave +2.5 V +0.8 V

- d. Increase 1340A INTENSITY control until segmented line is displayed on CRT indicating blanking and unblanking is occurring.
- e. Disconnect pulse genertor fom 1340A Z-axis input connector.

PERFORMANCE TEST RECORD

HEWLETT-PACKARD MODEL 1340A X-Y DISPLAY Tested By Serial No Date					
Paragraph Number	Test	Min	Results Actual	Max	
4-11	Dynamic Range Test				
	Y-amplifier	off-screen			
	X-amplifier	off-screen			
4-12	X-, Y-amplifier Bandwidth and Rise Time				
	X-amplifier Bandwidth X-amplifier Rise Time	3 MHz		130 ns	
	Y-amplifier Bandwidth Y-amplifier Rise Time	3 MHz		130 ns	
4-13	Phase Shift	1 MHz			
4-14	Diagonal Settling Time			300 ns	
4-15	Repeatability			0.4 mm	
4-16	TTL Blanking (Opt 216 only)	+0.8 V (unblank) +2.5 V (blank)			

``

`~

SECTION V

ADJUSTMENTS

5-1. INTRODUCTION.

5-2. This section describes adjustments and checks required to return the instrument to peak operating capabilities when repairs have been made. Included in this section are equipment setups and adjustment procedures.

5-3. SAFETY REQUIREMENTS.

5-4. Although this instrument has been designed in accordance with international safety standards, general safety precautions must be observed during all phases of operation, service, and repair of the instrument. Failure to comply with the precautions listed in the Safety Summary at the front of this manual or with specific warnings given throughout the manual could result in serious injury or death. Service and adjustments should be performed only by qualified service personnel.

5-5. EQUIPMENT REQUIRED.

5-6. A complete list of required test equipment is given in Section I, table 1-4. Test equipment equivalent to that recommended may be substituted, provided it meets the required characteristics. For best results, use recently calibrated test equipment.

5-7. ADJUSTMENTS.

5-8. The adjustments given in this section are not interrelated. Refer to table 5-1 for a list of adjustable components and their functions.

5-9. After repair, the applicable adjustments should be made, but a complete readjustment of the instrument is unnecessary. Prior to any adjustments, however, the power supply outputs should be checked for proper voltage levels.

5-10. For best results, allow the instrument to warm up for 15 minutes before making adjustments. Adjustment locations are shown on Service Sheet 6 at the back of this manual.

5-11. ADJUSTMENT PROCEDURES.

Adjustment procedures described are performed with power supplied to the instrument and should be performed only by trained service personnel who are aware of the hazards involved (for example, fire and electrical shock).

Reference Designator	Adjustment Name	Adjustment Paragraph	Service Sheet	Description
A2R15	+165 V Adj	5-12	4	+165 V LVPS Adjustment.
A3R2	HV Adj	5-13	3	Adjust for proper CRT filament voltage.
A3R22 A3R24	Focus Adj AST	5-14	3	Centers FOCUS control and adjusts astigmatism of CRT.
A1R74	INT LIMIT	5-15	3	Sets maximum intensity limit for CRT.
A3R25	PATTERN	5-16	3	Adjusts CRT deflection for minimum distortion.
A1R7 A1R19	X BAL Y BAL	5-17	2	Balance X and Y amplifiers for minimum spot move- ment while GAIN controls are varied.

Table 5-1. Adjustable Components

Reference Designator	Adjustment Name	Adjustment Paragraph	Service Sheet	Description
A1R13 A1R25	Y GAIN SET X GAIN SET	5-18	2	Establishes range of front-panel X and Y GAIN controls.
A1R67	Z BAL	5-19	2	Balances the Z-axis amplifier.
A1R70 A1R75 A1C31	Z GAIN HF Adj No. 1 HF Adj No. 2	5-20	2	Z-axis amplifier response adjustment.
A1C1 A1C10	X-Input Comp Y-Input Comp	5-21	2	AC compensation for 5:1/Hi impedance range.

Table 5-1. Adjustable Components (Cont'd)

5-12. LOW-VOLTAGE POWER SUPPLY ADJUSTMENT.

REFERENCE:

Service Sheet 4.

DESCRIPTION:

The +165 Vdc Power Supply is adjusted for an output of +165 V \pm 1 V. The low-voltage supplies are then checked for proper output.

EQUIPMENT:

DMM (Digital Multimeter) H	IP 34'	76	A
----------------------------	--------	----	---

PROCEDURE:

Adjust +165 V low-voltage power supply as follows:

- a. Connect DMM between pin 10 (+165 V) and pin 3 (ground) of ribbon cable A2W1.
- b. Adjust +165 V Adj A2R15 for +165 V±1 V indication on DMM.
- c. Check other dc voltages as indicated in table 5-2.

Power Supply	Test Point (A2W1 Pin No.)	Tolerance	Range
+15 V	Pin 5	±5%	+14.25 to +15.75 V
—15 V	Pin 1	±5%	-14.25 to -15.75 V
—7.5 V	Pin 4	±10%	-6.75 to -8.25 V
+3.5 V	Pin 2	±10%	+3.15 to +3.85 V

Table 5-2. LVPS Tolerances

5-13. HIGH-VOLTAGE POWER SUPPLY ADJUSTMENT.

REFERENCE:

Service Sheet 3.

DESCRIPTION:

The HVPS is adjusted to the voltage specified on the high-voltage transformer $(\pm 3\%)$ to assure proper filament voltage for the CRT.

EQUIPMENT:

DMM (Digital Multimeter)	HP 3476A
High-voltage Probe (1000:1)	HP 34111A

NOTE

Digital Multimeter must have a 10-megohm input termination and a 10-V range to be compatible with the 1000:1 probe.

PROCEDURE:

- a. Set 1340A front-panel INTENSITY control fully ccw.
- b. Set rear-panel LINE switch to OFF position.

WARNING

Voltages capable of causing injury or death are present in the high-voltage power supply. Use an insulated adjustment tool and proceed carefully.

- c. Note voltage marked on high-voltage transformer.
- d. Set rear-panel LINE switch to ON.
- e. Connect DMM to +165 V (pin 5 of ribbon connector A3W1) and note voltage indication.
- f. Connect DMM to +165 V through high-voltage probe (1000:1) and note voltage indication.
- g. Compute percentage of error introduced by high-voltage probe (difference between indications noted in step e and step f).
- h. Set LINE switch to OFF.
- i. Connect DMM through high-voltage probe to cathode output at assembly A3 (square pin to which (4) wire is connected).
- j. Set LINE switch to ON.
- k. While monitoring voltage at cathode output, adjust A3R2, HV ADJ, on assembly A3 for DMM indication equal to that listed on high-voltage transformer (step c).

NOTE

Final indication on DMM should include percentage of error noted in step g.

- l. Set LINE switch to OFF.
- m. Disconnect high-voltage probe from cathode output square pin.

5-14. FOCUS LIMIT ADJUSTMENT.

REFERENCE:

Service Sheet 3.

DESCRIPTION:

Focus Adj A3R22 centers the range of the front-panel FOCUS control.

EQUIPMENT:

None

PROCEDURE:

- a. Set INTENSITY and vertical/horizontal POSITION controls for spot of normal intensity at center of CRT.
- b. Set front-panel FOCUS control to midrange.
- c. Adjust Focus Adj A3R22 and AST control A1R24 for sharpest focus of round spot.

5-15. INTENSITY LIMIT ADJUSTMENT.

REFERENCE:

Service Sheet 3.

DESCRIPTION:

Intensity limit adjustment A1R74 sets maximum intensity of the CRT by limiting the grid-to-cathode voltage to 40 volts above cutoff.

EQUIPMENT:

DMM (Digital Multimeter)		HP 3476A
--------------------------	--	----------

PROCEDURE:

- a. Connect DMM to pin 1 of ribbon cable A3W1 at A1 assembly.
- b. Slowly adjust front-panel INTENSITY control until CRT displayed spot just extinguishes. Note DMM indication.

The INTENSITY control will adjust display brightness from completely off (ccw) to maximum brightness (cw). To avoid damage to the CRT be certain to accomplish step c before proceeding with this adjustment.

- c. Using Y POSITION control move spot from CRT viewing area.
- d. Set front-panel INTENSITY control fully clockwise (maximum brightness).
- e. With DMM connected as directed in step a, adjust INT LIMIT A1R74 for 40 V indication on DMM above that voltage noted in step b.
- f. Set front-panel INTENSITY control fully counterclockwise.
- g. Disconnect DMM.

5-16. PATTERN ADJUSTMENT.

REFERENCE:

Service Sheet 3.

DESCRIPTION:

The function generator outputs provide a raster display which is adjusted for the squarest shape.

Figure 5-1. Pattern Adjustment Test Setup

EQUIPMENT:

Function Generator HP 3312A

PROCEDURE:

- a. Connect equipment as shown in figure 5-1.
- b. Set function generator outputs as follows:

FREQUENCY A	15 kHz
FREQUENCY B	10 kHz
FUNCTION A and B	~ Sine Wave
AMPLITUDE A and B	Near full screen deflection square pattern

c. Adjust pattern control A3R25 for squarest pattern, i.e., straight sides, no barreling or pincushioning.

5-17. X- AND Y-AMPLIFIER BALANCE ADJUSTMENTS.

REFERENCE:

Service Sheet 2.

DESCRIPTION:

X- and Y-amplifier balances are adjusted so that there is minimum spot movement as the front-panel GAIN controls are rotated through their range.

EQUIPMENT:

None

- a. Using vertical and horizontal POSITION controls, center spot on CRT.
- b. While rotating front-panel X GAIN control through its range, adjust A1R7 for minimum spot shift.
- c. While rotating front-panel Y GAIN control through its range, adjust A1R19 for minimum spot shift.

5-18. X- AND Y-AMPLIFIER GAIN SET.

REFERENCE:

Service Sheet 2.

DESCRIPTION:

X- and Y-amplifier gains are adjusted so that front-panel gain controls have a range of 0.8 V to 2 V.

Figure 5-2. Gain Set Adjustment Test Setup

EQUIPMENT:

Function Generator	HP 3312A
Oscilloscope	HP 1740A

PROCEDURE:

- a. Connect equipment as shown in figure 5-2.
- b. Set X- and Y-input attenuators for 50Ω range (see Service Sheet 2).
- c. Set front-panel X- and Y-GAIN controls fully clockwise.
- d. Set function generator output as follows:

FREQUENCY		1 kHz
FUNCTION	Square	. Wave
AMPLITUDE	0.4	V p-p

- e. Adjust appropriate X- or Y-amplifier GAIN SET control (A1R25 or A1R13) for 5 div (60 mm).
- f. Increase output of function generator to 2 V p-p.
- g. Verify that front-panel X- or Y-GAIN control can decrease spot separation to less than 5 div (60 mm).

5-19. Z-AMPLIFIER BALANCE ADJUSTMENT.

REFERENCE:

Service Sheet 3.

DESCRIPTION:

Z-amplifier balance control is adjusted so that there is minimum change in intensity as the Z GAIN control is rotated through its range.

EQUIPMENT:

None

- a. Using vertical and horizontal POSITION controls, center spot on CRT.
- b. While rotating Z-GAIN control, A1R70, through its range, adjust A1R67 for minimum change in intensity.

5-20. Z-AMPLIFIER GAIN AND HIGH FREQUENCY ADJUSTMENTS.

REFERENCE:

Service Sheet 3.

DESCRIPTION:

Z-axis GAIN control A1R70 is normally operated at full gain (fully clockwise). Amplifier response is adjusted for the fastest transition consistent with minimum overshoot.

Figure 5-3. Z-amplifier Gain and High Frequency Adjustment Test Setup

EQUIPMENT:

Pulse Generator	HP 8013B
Oscilloscope	HP 1740A
10:1 Divider Probe	HP 10004D

- a. Using front-panel FOCUS control, defocus spot on CRT.
- b. Set Z-amplifier input attenuator for 50Ω range.
- c. Set Z-axis gain control A1R70 fully clockwise.
- d. Connect equipment as shown in figure 5-3.
- e. Using 10:1 divider probe, connect oscilloscope to pin 1 of A3W1 at A1 assembly.
- f. Set pulse generator as follows:

PULSE PERIOD		0.1 ms
PULSE WIDTH	duare	Wave
AMPLITUDE	. 0.5	5 V p-p

- g. Adjust front-panel INTENSITY control so waveform observed at pin 1 of A3W1 does not limit at top or bottom.
- h. Adjust HF ADJ No. 1 (A1R75) and HF ADJ No. 2 (A1C31) to achieve fast-rise response as observed on oscilloscope (<70 ns) consistent with sharp corners and minimum overshoot.

5-21. INPUT ATTENUATOR COMPENSATION.

REFERENCE:

Service Sheet 2.

DESCRIPTION:

This procedure adjusts input attenuators for the X- and Y-axis amplifiers. No adjustments are required for the 1:1/50 and the 1:1/Hi impedance ranges. The 5:1/Hi impedance range requires ac compensation. Service Sheet 2 shows switch settings for the 5:1/Hi impedance input.

Figure 5-4. Input Attenuator Adjustment Test Setup

EQUIPMENT:

Function Generator	HP	9 3312A
Oscilloscope	HP	1740A
10:1 Divider Probe	HP	10004D

PROCEDURE:

NOTE

Connect the function generator output to only one input at a time. Using 10:1 divider probe, connect oscilloscope to appropriate amplifier output.

- a. Set both X- and Y-input attenuator switches for 5:1/Hi impedance input (see Service Sheet 2).
- b. Connect equipment as shown in figure 5-4.
- c. Set function generator output as follows:

FREQUENCY		10 kHz
FUNCTION	Squar	e Wave
AMPLITUDE	••••	5 V p-p

d. Adjust appropriate attenuator compensation capacitor (A1C1 for X INPUT; A1C10 for Y INPUT) for sharp square-wave response on oscilloscope.

SECTION VI

REPLACEABLE PARTS

6-1. INTRODUCTION.

6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list, table 6-2 lists all replaceable parts in reference designator order, and table 6-3 contains the names and addresses that correspond to the manufacturers' code numbers.

6-3. ABBREVIATIONS.

6-4. Table 6-1 lists abbreviations used in the parts list, the schematics, and throughout the manual. In some cases, two forms of the abbreviation are used, one all in capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always all capitals. However, in other parts of the manual other abbreviation forms are used with both lower and uppercase letters.

6-5. REPLACEABLE PARTS LIST.

6-6. Table 6-2 is the list of replaceable parts and is organized as follows:

a. Electrical assemblies in alphanumerical order by reference designation.

b. Chassis-mounted parts in alphanumerical order by reference designation.

c. Electrical assemblies and their components in alphanumerical order by reference designation.

The information given for each part consists of the following:

- a. Complete reference designation.
- b. Hewlett-Packard part number.
- c. Total quantity (Qty) in instrument.
- d. Description of part.

e. Typical manufacturer of part in identifying five-digit code.

f. Manufacturer's number for part.

The total quantity for each part is given only once—at the first appearance of the part number in the list.

6-7. ORDERING INFORMATION.

6-8. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number, indicate the quantity required, and address the order to the nearest Hewlett-Packard office.

6-9. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

6-10. DIRECT MAIL ORDER SYSTEM.

6-11. Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are as follows:

a. Direct ordering and shipment from HP Parts Center in Mountain View, California.

b. No maximum or minimum on any mail order (there is minimum order amount for parts ordered through local HP offices when orders require billing and invoicing).

c. Prepaid transportation (there is small handling charge for each order).

d. No invoices—to provide these advantages, check or money order must accompany each order.

6-12. Mail order forms and specific ordering information is available through your local HP office.

Table 6-1. Reference Designators and Abbreviations

REFERENCE DESIGNATORS

		_					
A	= assembly		= TUSE	MP	= mechanical part	U	= integrated circuit
8	= motor	FL	= filter	P	= plug	v	= vacuum, tube, neon
BI	= battery		= integrated circuit	9	= transistor		buib, photocell, etc
C	= capacitor	J	= jack	8	= resistor	VR	= voltage regulator
CP	= coupler	ĸ	≔ relay	RT	= thermistor	W	= cable
CR	= diode	L	= inductor	S	= switch	X	= socket
DL	≃ delay line	LS	= loud speaker	т	= transformer	Y	= crystal
DS	= device signaling (lamp)	м	= meter	тв	= terminal board	z	= tuned cavity network
E	= misc electronic part	МК	= microphone	TP	= test point		
			ABB	REVIATIONS			
A	= amperes	н	= henries	N/O	= normally open	RMO	= rack mount only
AFC	= automatic frequency control	HDW	= hardware	NOM	= nominal	RMS	= root-mean square
AMPL	= amplifier	HEX	≈ hexagonal	NPO	= negative positive zero	RWV	= reverse working
		HG	= mercury		zero temperature		voltage
BFO	= beat frequency oscillator	HR	= hour(s)		coefficient)		-
BE CU	= beryllium copper	HZ	= hertz	NPN	= negative-positive-	8-B	= slow-blow
эн	= binder head				negative	SCR	= screw
3P	= bandpass			NRFR	= not recommended for	SE	= selenium
BRS	= brass	IF	= intermediate freg		field replacement	SECT	= section(s)
SWO	= backward wave oscillator	IMPG	= impregnated	NSR	= not separately	SEMICON	= semiconductor
		INCD	= incandescent		replaceable	SI	= silicon
cw	= counter-clockwise	INCL	= include(s)			SIL	= silver
ER	= ceramic	INS	= insulation(ed)	OBD	= order by description	SL	= slide
MO	= cabinet mount only	INT	= internal	01	= oval head	SPG	= spring
OEF	= coeficient			OX	= oxide	SPL	= special
OM	= common	ĸ	= kilo=1000	~	5,100	SST	= stainless steel
COMP	= composition		1000			SR SR	= split ring
OMPI	= complete	I HI	= left band	P	= neak	STI	= steel
	= connector	LIN	= linear taper	PC	= printed circuit	311	0.001
	= cadmium plate		= lock weeper	DE	= printed circuit = picoferede= 10-12	ТА	= tentelum
/F	- cathode ray tube	100	- locarithmic tapor	Fr	forede		- time delay
		100	- loganinino taper	BU 807		TO	- tore of ay
.w	- GIOCKWISE	LPF	= low pass filter	PHBHZ	= prosphor bronze	TUD	- loggie
	de a contra de construir a			PHL	= pniitips		- inread
JEPC	= deposited carbon	M		PIV	= peak inverse voltage	n 	= titanium
DR	= drive	MEG	= meg=106	PNP	= positive-negative-	TOL	= tolerance
		MET FLM	= metal film		positive	TRIM	= trimmer
LECT	= electrolytic	MET OX	= metallic oxide	P/O	= part of	TWT	= traveling wave tube
INCAP	= encapsulated	MFR	= manufacturer	POLY	= polystyrene		
EXT	= external	MHZ	= mega hertz	PORC	= porcelain	U	= micro=10-6
		MINAT	= miniature	POS	= position(s)		
	= farads	MOM	= momentary	POT	= potentiometer	VAR	= variable
H	= flat head	MOS	= metal oxide substrate	PP	= peak-to-peak	VDCW	= dc working volts
IL H	= fillister head	MTG	= mounting	PT	= point		
TXD	= fixed	MY	= "mylar"	PWV	= peak working voltage	W /	= with
						w	= watts
3	= giga (109)	N	= nano (10 -0)	RECT	= rectifier	WIV	= working inverse
	= germanium	N/C	= normally closed	RF	= radio frequency		voltage
βE							
GE GL	= glass	NE	= neon	RH	= round head or	ww	= wirewound

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1 A2 A3 A4 A5	01340-66501 01340-66502 01340-66503 01340-66504 01340-66506	1 1 1 1	BOARD ASSEMBLY – X Y Z AMPLIFIER BOARD ASSEMBLY – LOW-VOLTAGE POWER SUPPLY BOARD ASSEMBLY – HIGH-VOLTAGE POWER SUPPLY BOARD ASSEMBLY – CONTROL BOARD ASSEMBLY – DC POWER (OPTION 002 ONLY)	28480 28480 28480 28480 28480 28480	01340-66501 01340-66502 01340-66503 01340-66504 01340-66506
E1	01340-67601	1	LINE SELECT ASSY : 100V-120V (NOT SUPPLIED WITH OPTION 002)	28480	01340-67601
E2	01340-67602	1	LINE SELECT ASSY: 220V-240V (NOT SUPPLIED WITH OPTION 002)	28480	01340-67602
E3 E4 E5	1510-0038 0340-0564 0340-0565	1 3 1	POST-BINDING INSULATOR-TSTR INSULATOR-TSTR	28480 28480 28480	1510-0038 0340-0564 0340-0565
H1 H2 H3 H4 H5	0340-0857 0360-1632 0400-0002 0400-0009 0520-0144	4 3 1 1 2	INSULATOR-BUSHING LUG-SOLDER GROMMET-RUBBER GROMMET-VINYL SCREW-RETAINING, FILTER 2-56 .25 IN. LG	28480 79963 82099 01538 28480	0340-0857 761-3/8 3002 G250 0520-0144
H6 H7 H8 H9 H10	0624-0289 1200-0081 1400-0017 2190-0008 2190-0027	3 9 1 1	SCREW-TAPPING 2-28.312-IN-LG PAN HD INSULATOR-BUSHING, NYLON CLAMP-CABLE.312-DIA.375 WD NYL WASHER-LK EXT T NO. 6.141-IN-ID WASHER-LK INTL T 1/4 IN.256-IN-ID	28480 28480 05683 04604 78189	0624-0289 1200-0081 374-6 1341 1934-00
H11 H12 H13 H14 H15	2190-0030 2190-0045 2190-0112 2200-0107 2200-0129	4 3 3 1 3	WASHER-LK HLCL NO. 4 .115-IN-ID WASHER-LK HLCL NO. 2 .088-IN-ID WASHER-LK HLCL NO. 2 .088-IN-ID SCREW-MTL 0.375 LG SCREW-MTL 2.00 LG	28480 76854 78189 28480 28480	2190-0030 1501-009 1920-02 2200-0107 2200-0129
H16 H17 H18 H19 H20	2200-0143 2200-0179 2200-0180 2200-0528 2260-0001	4 1 1 3	SCREW-MTL 0.375 LG SCREW-MTL 0.125 LG SCREW-MTL 1.375 LG SCREW-MTL 1.875 LG NUT-HEX-DBL-CHAM 4-40 THD .094-IN-THK	28480 28480 28480 28480 28480 28480	2200-0143 2200-0179 2200-0180 2200-0528 2260-0001
H21 H22 H23 H24 H25	2260-0003 2360-0111 2360-0115 2360-0181 2360-0192	1 4 7 4 6	NUT-HEX-PLST CLKG 4-40 THD .141-IN-THK SCREW-MTL 0.188 LG 6-32 SCREW-MTL 0.312 LG 6-32 SCREW-MTL 0.250 LG 6-32 SCREW-MTL 0.250 LG 6-32	72962 28480 28480 28480 28480 28480	97NM40 2360-0111 2360-0115 2360-0181 2360-0192
H26 H27	2420-0001 2260-0009	1 1	NUT-HEX W/LKWR 6-32 .109-IN-THK NUT, HEX-DBL-CHAM 4-40 THD .093-IN-THK	28480 28480	2420-0001 2260-0009
J1 J2 J3 J4	1250-0083 1250-0083 1250-0083 1250-0083	4	CONNECTOR-BNC FEMALE CONNECTOR-BNC FEMALE CONNECTOR-BNC FEMALE CONNECTOR-BNC FEMALE	02660 02660 02660 02660	31-222-1021 31-222-1021 31-222-1021 31-222-1021 31-222-1021
L1	01340-66001	1	COIL-TRACE ALIGN	28480	01340-66001
MP1 MP2 MP3 MP4 MP5	0370-0603 0370-2512 7100-0389 01340-00201 01340-00601	1 4 1 1	PUSHBUTTON-MINT GRAY SQ KNOB-RND COVER-XFMR PANEL-REAR (STANDARD MODEL) SHIELD-HV, OUTER	28480 28480 28480 28480 28480 28480	0370-0603 0370-2512 7100-0389 01340-00201 01340-00601
MP6 MP7 MP7 MP7 MP8	01340-00602 01340-02702 01340-02701 01340-02703 01340-02703 01340-04101	1 1 1 1	SHIELD-HV, INNER FILTER-BLUE FILTER-CLEAR (OPTION 561 ONLY) FILTER-AMBER (OPTION 007 ONLY) RETAINER-FILTER	28480 28480 28480 28480 28480 28480	01340-00602 01340-02702 01340-02701 01340-02703 01340-02703
MP9 MP10 MP11 MP12 MP13	01340-60602 01340-04103 4040-1311 5040-7648 5040-8381	1 1 1 1	SUBASSY-SHIELD SUPPORT PLATE-COVER, REAR COVER, LOW VOLTAGE PLATE, COVER-CRT PANEL, FRONT	28480 28480 28480 28480 28480 28480	01340-60602 01340-04103 4040-1311 5040-7648 5040-8381
MP14 MP15 MP16 MP17 MP18	5060-9977 01332-00204 01340-00207 01340-00208 01340-00208	1 1 1 1	COVER-TOP (OPTION 315 ONLY) PANEL-REAR (OPTION 316 ONLY) PANEL-FRONT, BLANK (OPTION 317 ONLY) PANEL-COVER, REAR, BLANK (OPTION 317 ONLY) PANEL-SUB, FRONT (OPTION 317 ONLY)	28480 28480 28480 28480 28480 28480	5060-9977 01332-00204 01340-00207 01340-00208 01340-00208
MP19 MP20 MP21 MP22 MP23	01340-01201 1460-1345 5060-9834 5060-9846 5060-9973	1 1 1 1	BRACKET-MOUNTING (OPTION 316 ONLY) STAND, TILT (OPTIONS 315 AND 317 ONLY) COVER-TOP (OPTION 317 ONLY) COVER-BOTTOM (OPTION 317 ONLY) COVER-BOTTOM (OPTION 315 ONLY)	28480 28480 28480 28480 28480 28480	01340-01201 1460-1345 5060-9834 5060-9846 5060-9973
MP24 MP25 MP26 MP27 MP28	5001-0439 5020-8803 5020-8804 5020-8815 5020-8816	2 1 1 1	TRIM-FRONT SIDE (OPTIONS 315 AND 317 ONLY) CASTING-FRONT (OPTION 317 ONLY) CASTING-REAR (OPTION 317 ONLY) CASTING-FRONT FRAME (OPTIONS 315 AND 317 ONLY) CASTING-REAR FRAME (OPTIONS 315 AND 316 ONLY)	28480 28480 28480 28480 28480 28480	5001-0439 5020-8803 5020-8804 5020-8815 5020-8816
			·		

Table 6-2.	Replaceable	Parts	(Cont'd)
------------	-------------	-------	----------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
MP29 MP30 MP31 MP32 MP33	5020-8836 5020-8837 5040-7201 5040-7202 5040-7203	4 1 4 1 1	STRUT-CORNER (OPTIONS 315 AND 317 ONLY) CASTING-CORNER (OPTION 316 ONLY) FOOT (OPTIONS 315 AND 317 ONLY) TRIM-STRIP, TOP (OPTION 317 ONLY) TRIM-TOP FRONT (OPTION 315 ONLY)	28480 28480 28480 28480 28480 28480	5020-8836 5020-8837 5040-7201 5040-7202 5040-7203
MP34 MP35	5040-8382 5040-8383	1 1	FRONT PNL INSERT-RIGHT (OPTIONS 315 AND 316 ONLY) FRONT PNL INSERT-LEFT (OPTIONS 315, 316, AND 317	28480 28480	5040-8382 5040-8383
MP36	5060-9911	1	ONLY) SIDE-PERF (OPTION 317 ONLY)	28480	5060-9911
Q1 Q2	1854-0433 1854-0330	3 1	TRANSISTOR NPN SI PD=90W FT=2 MHZ TRANSISTOR NPN SI PD=21W FT=10 MHZ (NOT SUPPLIED	28480 28480	1854-0433 1854-0330
Q3 Q4	1854-0433 1854-0433		WITH OPTION 002) TRANSISTOR NPN SI PD=90W FT=2 MHZ (OPTION 002 ONLY) TRANSISTOR NPN SI PD=90W FT=2 MHZ (OPTION 002 ONLY)	28480 28480	1854-0433 1854-0433
Т1	01340-66002	1	TRANSFORMER-INPUT PWR (NOT SUPPLIED WITH OPTION	28480	01340-66002
U1 U2 U3	1826-0106 1826-0214 1826-0106	2 1	UC2) IC 7815 V RGLTR (NOT SUPPLIED WITH OPTION 002) IC V RGLTR (NOT SUPPLIED WITH OPTION 002) IC 7815 V RGLTR (OPTION 002 ONLY)	28480 28480 28480	1826-0106 1826-0214 1826-0106
V1 V1 V1 V1 V1 V1	5083-5251 5083-5252 5083-5261 5083-5270 5083-5271	1 1 1 1	CRT-P31 AL NG CRT-P31 AL IG (OPTION 031 ONLY) CRT-P4 AL NG (OPTION 004 ONLY) CRT-P39 AL IG (OPTION 039 ONLY) CRT-P39 AL NG (OPTION 639 ONLY)	28480 28480 28480 28480 28480 28480	5083-5251 5083-5252 5083-5261 5083-5270 5083-5271
W1 W1 W1 W1 W1 W1 W1 XV1	8120-1521 8120-1703 8120-0696 8120-1692 8120-0698 8120-2061 8120-2296 5040-7649	1 1 1 1 1 1 1	CABLE UNSHLD 3-COND 18AWG CABLE, 3-COND (OPTION 300 ONLY) CABLE, 3-COND (OPTION 301 ONLY) CABLE, 3-COND (OPTION 302 ONLY) CABLE, 3-COND (OPTION 303 ONLY) CABLE, 3-COND (OPTION 304 ONLY) CABLE, 3-COND (OPTION 306 ONLY) SOCKET-CRT BASE	28480 28480 28480 28480 28480 28480 28480 28480 28480	8120-1521 8120-0696 8120-1692 8120-0698 8120-0698 8120-2061 8120-2296 5040-7649
A1	01340-66501	1	BOARD ASSEMBLY-X Y Z AMPLIFIER (LESS A1A1 AND A1A2)	28480	01340-66501
A1A1 A1A2	1KA2-5006	2	SEPARATELY) IC: Z PREAMPLIFIER (NOT SUPPLIED WITH A1-ORDER IC: Z PREAMPLIFIER (NOT SUPPLIED WITH A1-ORDER	28480	1KA2-5006
A1C1 A1C2 A1C3	0121-0506 0160-2257 0160-2055	3 2 4	SEPARATELY) CAPACITOR-V TRMR 1-5 PF 250V CAPACITOR-FXD 10 PF +-5% 500VDC CER 0+-60 CAPACITOR-FXD .01 UF +80-20% 100VDC CER	28480 28480 28480	0121-0506 0160-2257 0160-2055
A1C4 A1C5 A1C6 A1C7 A1C8	0160-3447 0160-2265 0160-3447 0160-3443 0160-3443	2 2 4	CAPACITOR-FXD 470 PF +10% 1KVDC CER CAPACITOR-FXD 22 PF +-5% 500VDC CER 0+-30 CAPACITOR-FXD 470 PF +10% 1KVDC CER CAPACITOR-FXD. 1 UF +80-20% 500VDC CER CAPACITOR-FXD. 1 UF +80-20% 500VDC CER	56289 28480 56289 28480 28480	C0168102F221KS25-CDH 0160-2265 C0168102F221KS25-CDH 0160-3443 0160-3443
A1C9 A1C10 A1C11 A1C12 A1C13	0160-3443 0121-0506 0160-2257 0160-2055 0160-2265		CAPACITOR-FXD .1 UF +80-20% 50WVDC CER CAPACITOR-V TRMR 1-5 PF 250V CAPACITOR-FXD 10 PF +-5% 500VDC CER 0+-60 CAPACITOR-FXD .01 UF +80-20% 100VDC CER CAPACITOR-FXD 22 PF +-5% 500VDC CER 0+-30	28480 28480 28480 28480 28480 28480	0160-3443 0121-0506 0160-2257 0160-2055 0160-2265
A1C14 A1C15 A1C16 A1C17 A1C18	0160-3443 0140-0192 0160-3665 0160-2236 0160-2236	2 7 4	CAPACITOR-FXD .1 UF +80–20% 50WVDC CER CAPACITOR-FXD 68 PF +-5% 300VDC CAPACITOR-FXD .01 UF +80–20% 500VDC CER CAPACITOR-FXD 1 PF +1 PF 500VDC CAPACITOR-FXD 1 PF +1 PF 500VDC	28480 72136 28480 28480 28480 28480	0160-3443 DM 15E 56(J)0300WV 1CR 0160-3665 0160-2236 0160-2236
A1C19 A1C20 A1C21 A1C22 A1C22 A1C23	0160-3665 0160-0166 0160-0166 0140-0192 0160-3665	5	CAPACITOR-FXD .01 UF +80-20% 500VDC CER CAPACITOR-FXD .068 UF +-10% 200VDC CAPACITOR-FXD .068 UF +-10% 200VDC CA ² ACITOR-FXD .068 PF +-5% 300VDC CA ² ACITOR-FXD .01 UF +80-20% 500VDC CER	28480 06001 06001 72136 28480	0160-3665 AE22C683KT AE22C683KT DM15E560J0300WV1CR 0160-3665
A1C24 A1C25 A1C26 A1C27 A1C28	0160-2236 0160-2236 0160-3665 0160-0166 0160-0166		CAPACITOR-FXD 1 PF +1 PF 500VDC CAPACITOR-FXD 1 PF +1 PF 500VDC CAPACITOR-FXD .01 UF +80-20% 500VDC CER CAPACITOR-FXD .08 UF +-10% 200VDC CAPACITOR-FXD .068 UF +-10% 200VDC	28480 28480 28480 06001 06001	0160-2236 0160-2236 0160-3665 AE22C683KT AE22C683KT

Table 6	5 -2 .	Replaceable	Parts	(Cont'd)
---------	---------------	-------------	-------	----------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1C29 A1C30 A1C31 A1C32 A1C33	0160-2055 0150-0116 0121-0506 0160-2055 0160-3638	1	CAPACITOR-FXD .01 UF +80-20% 100VDC CER CAPACITOR-FXD 47 PF +-10% 500VDC CAPACITOR-V TRMR 1-5 PF 250V CAPACITOR-FXD .01 UF +80-20% 100VDC CER CAPACITOR-FXD .22 UF +80-20% 200VAC	28480 28480 28480 28480 16546	0160-2055 0150-0116 0121-0506 0160-2055 CZ40B224Z
A1C34	0160-0166	1	CAPACITOR-FXD .068 UF +~10% 200VDC	06001	AE22C683KT
A1CR1 A1CR2 A1CR3 A1CR4	1901-0028 1901-0028 1901-0096 1901-0040	10 1 1	DIODE-PWR RECT 400V 750MA D0-29 DIODE-PWR RECT 400W 750MA D0-29 DIODE-SWITCHING 120V 50MA 100NS DIODE-SWITCHING 30V 50MA 2NS D0-35	28480 28480 28480 28480 28480	1901-0028 1901-0028 1901-0096 1901-0040
A1J1	1200-0474	1	SOCKET IC-14 PIN DIP	28480	1200-0474
A1MP1	1600-0441	2	SHIELD, AMPLIFIER	28480	1600-0441
A1Q1 A1Q2 A1Q3 A1Q4 A1Q5	1853-0036 1853-0036 1853-0038 1854-0523 1854-0523	4 5 4	TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI TO-39 PD=1W FT=100MHZ TRANSISTOR NPN SI TO-39 PD=1W FT=150MHZ TRANSISTOR NPN SI TO-39 PD=1W FT=150MHZ	28480 28480 28480 28480 28480 28480	1853-0036 1853-0036 1853-0038 1854-0523 1854-0523
A1Q6 A1Q7 A1Q8 A1Q9 A1Q10	1853-0038 1853-0036 1853-0036 1853-0038 1854-0523		TRANSISTOR PNP SI TO-39 PD=1W FT=100MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR PNP SI TO-39 PD=1W FT=100MHZ TRANSISTOR NPN SI TO-39 PD=1W FT=150MHZ	28480 28480 28480 28480 28480 28480	1853-0038 1853-0036 1853-0038 1853-0038 1854-0523
A1Q11 A1Q12 A1Q13 A1Q14 A1Q15 A1Q16	1854-0523 1853-0038 1854-0019 1853-0038 1854-0419 1854-0215	1 1 1	TRANSISTOR NPN SI TO-39 PD=1W FT=150MHZ TRANSISTOR PNP SI TO-39 PD=1W PT=100MHZ TRANSITION NPN SI TO-18 PD=360MW TRANSISTOR PNP SI TO-39 PD=1W FT=100MHZ TRANSISTOR NPN SI TO-39 PD=1W F T=200MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ	28480 28480 07933 28480 28480 28480	1854-0523 1853-0038 RT-2849 1853-0038 1854-0419 1854-0215
A1R1 A1R2 A1R3 A1R4 A1R5	0684-3331 0684-3331 0757-0706 0757-0487 0757-0472	6 3 2 2	RESISTOR 33K 10% .25W FC TC=-400/+800 RESISTOR 33K 10% .25W FC TC=-400/+800 RESISTOR 51.1 1% .25W F TC=0+-100 RESISTOR 825K 1% .125W F TC=0+-100 RESISTOR 200K 1% .125W F TC=0+-100	28480 28480 28480 28480 28480 28480	0684-3331 0684-3331 0757-0706 0757-0487 0757-0487
A1R6 A1R7 A1R8 A1R9 A1R10	0684-2211 2100-0554 0683-1825 0684-2241 0757-0420	3 3 3 3 3	RESISTOR 220 10% .25W FC TC=-400/+800 RESISTOR-TRMR 500 10% C TOP ADJ 1-TRN RESISTOR 1.8K 5% .25W FC TC=-400/+700 RESISTOR 220K 10% .25W FC TC=-800/+900 RESISTOR 750 1% .125W F TC=0+-100	01121 32997 28480 28480 16701	CB2211 3386P-Y46-501 0683-1825 0684-2241 C4-1/8-T0-751-F
A1R11 A1R12 A1R13 A1R14 A1R15	0684-8211 0757-0465 2100-3211 0684-3331 0684-3331	3 4 5	RESISTOR 820 10% .25W FC TC=-400/+600 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR-TRMR IK 10% C TOP ADJ 1-TRN RESISTOR 33K 10% .25W FC TC=-100/+800 RESISTOR 33K 10% .25W FC TC=-100/+800	01121 16701 32997 28480 28480	CB8211 C4-1/8-T0-1003-F 3366-Y46-102 0684-3331 0684-3331
A1R16 A1R17 A1R18 A1R19 A1R19 A1R20	0757-0706 0757-0487 0684-2211 2100-0554 0683-1825		RESISTOR 51.1 1% .25W F TC=0+-100 RESISTOR 825K 1% .125W F TUBULAR RESISTOR 220 10% .25W FC TC=-400/+800 RESISTOR TRMR 500 10% C TOP ADJ 1-TRN RESISTOR 1.8K 5% .25W FC TC=-400/+700	28480 28480 01121 32997 28480	0757-0706 0757-0487 CB2211 3386P-Y46-501 0683-1825
A1R21 A1R22 A1R23 A1R24 A1R24 A1R25	0757-0472 0684-2241 0757-0420 0684-8211 2100-3211		RESISTOR 200K 1% .125W F TC=0+-100 RESISTOR 220K 10% .25W FC TC=-800/+900 RESISTOR 750 1% .125W F TC=0+-100 RESISTOR 820 10% .25W FC TC=-400/+600 RESISTOR-TRMR 1K 10% C TOP ADJ 1-TRN	28480 28480 16701 01121 32997	0757-0472 0684-2241 C4-1/8-T0-751-F CB8211 3386P-Y46-102
A1R26 A1R27 A1R28 A1R29 A1R29 A1R30	0757-0465 0684-1831 0698-0085 0757-0406 0698-0085	2 2 1	RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 18K 10% .25W F C TC=400/+800 RESISTOR 2.61K 1% .125W F TC=0+-100 RESISTOR 182 1% .125W F TC=0+-100 RESISTOR 2.61K 1% .125W F TC=0+-100	16701 28480 28480 16701 28480	C4-1/8-T0-1003-F 0684-1831 0698-0085 C4-1/8-T0-182R-F 0698-0085
A1R31 A1R32 A1R33 A1R33 A1R34 A1R35	0684-1831 0698-3438 0684-5631 0684-5631 0684-6811	2 4 8	RESISTOR 18K 10% .25W FC TC=-400/+800 RESISTOR 147 1% .125W F TC=0+-100 RESISTOR 56K 10% .25W FC TC=-400/+800 RESISTOR 56K 10% .25W FC TC=-400/+800 RESISTOR 680 10% .25W FC TC=-400/+800	28480 28480 01121 01121 28480	0684-1831 0699:3438 CB5631 CB5631 0684-6811
A1R36 A1R37 A1R38 A1R39 A1R40	0684-6811 0698-3175 0757-0847 0757-0847 0698-3175	4 9	RESISTOR 680 10% .25W FC TC=-400/+800 RESISTOR 147K 1% .5W F TC=0+-100 RESISTOR 27.4K 1% .5W F TC=0+-100 RESISTOR 27.4K 1% .5W F TC=0+-100 RESISTOR 147K 1% .5W F TC=0+-100	28480 28480 28480 28480 28480 28480	0684-6811 0698-3175 0757-0847 0757-0847 0698-3175
A1R41 A1R42 A1R43 A1R44 A1R45	0757-0290 0757-0338 0757-0847 0757-0290 0757-0338	4 5	RESISTOR 6.19K 1% .125W F TC=0+-100 RESISTOR 1K 1% .25W F TC=0+-100 RESISTOR 27.4K 1% .5W F TC=0+-100 RESISTOR 6.19K 1% .125W F TC=0+-100 RESISTOR 1K 1% .25W F TC=0+-100	16701 16701 28480 16701 16701	C4-1/8-T0-6191-F C4-1/8-T0-1001-F 0757-0847 C4-1/8-T0-6191-F C4-1/8-T0-1001-F

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1R46 A1R47 A1R48 A1R49 A1R50	0757-0847 0698-3438 0684-5631 0684-5631 0684-6811		RESISTOR 27.4K 1%, 5W F TC=0+-100 RESISTOR 147 1%, 125W F TC=0+-100 RESISTOR 56K 10%, 25W FC TC=-400/+800 RESISTOR 56K 10%, 25W FC TC=-400/+800 RESISTOR 680 10%, 25W FC TC=-400/+800	28480 28480 01121 01121 28480	0757-0847 0698-3438 C85631 C85631 0684-6811
A1R51 A1R52 A1R53 A1R54 A1R55	0684-6811 0698-3175 0757-0847 0757-0847 0698-3175		RESISTOR 680 10% .25W FC TC=-400/+800 RESISTOR 147K 1% .5W F TC=0+-100 RESISTOR 27.4K 1% .5W F TC=0+-100 RESISTOR 27.4K 1% .5W F TC=0+-100 RESISTOR 147K 1% .5W F TC=0+-100	28480 28480 28480 28480 28480 28480	0684-6811 0698-3175 0757-0847 0757-0847 0698-3175
A1R56 A1R57 A1R58 A1R59 A1R60	0757-0290 0757-0338 0757-0847 0757-0290 0757-0338		RESISTOR 6.19K 1%.125W F TC=0+-100 RESISTOR 1K 1%.25W F TC=0+-100 RESISTOR 27.4K 1%.5W F TC=0+-100 RESISTOR 6.19K 1%.125W F TC=0+-100 RESISTOR 1K 1%.25W F TC=0+-100	16701 16701 28480 16701 16701	C4-1/8-T0-6191-F C4-1/8-T0-1001-F 0757-0847 C4-1/8-T0-6191-F C4-1/8-T0-1001-F
A1R61 A1R62 A1R63 A1R64 A1R65 A1R66	0757-0847 0684-1231 0757-0706 0684-2241 0684-2211 0684-2211	1	RESISTOR 1K 1% .25W F TC=0+-100 RESISTOR 12K 10% .25W FC TC=-400/+800 RESISTOR 51.5 1% .25W FC TC=-400/+800 RESISTOR 220K 10% .25W FC TC=-800/+900 RESISTOR 220 10% .25W FC TC=-400/+800 RESISTOR 1M 10% .25W FC TC=-800/+900	28480 28480 28480 28480 01121 01121	0757-0847 0684-1231 0757-0706 0684-2241 CB2211 CB 1051
A1R67 A1R68 A1R69 A1R70 A1R71	2100-0554 0683-1825 0684-3331 2100-3211 0684-3331		RESISTOR-TRMR 500 10% C TOP ADJ 1-TRN RESISTOR 1.8K 5%.25W FC TC=-400/+700 RESISTOR 33K 10%.25W FC TC=-400/+800 RESISTOR-TRMR 1K 10% C TOP ADJ 1-TRN RESISTOR 33K 10%.25W FC TC=-400/+800	32997 28480 28480 32997 28480	3386P-Y46-501 0683-1825 0684-3331 3386P-Y46-102 0684-3331
A1R72 A1R73 A1R74 A1R75 A1R76	0757-0419 0757-0419 2100-3211 2100-3211 0684-1011	2	RESISTOR 681 1% .125W F TC=0+-100 RESISTOR 681 1% .125W F TC=0+-100 RESISTOR-TRMR 1K 10% C TOP ADJ 1-TRN RESISTOR-TRMR 1K 10% C TOP ADJ 1-TRN RESISTOR 100 10% .25W FC TC=-400/+800	16701 16701 32997 32997 01121	C4-1/8-T0-681R-F C4-1/8-T0-681R-F 3386P-Y46-102 3386P-Y46-102 CB 1011
A1R77 A1R78 A1R79 A1R80 A1R81	0684-3311 0757-0190 0757-0761 0757-0847 0761-0070	4 2 1 1	RESISTOR 330 10% .25W FC TC=-400/+800 RESISTOR 20K 1% .5W F TC=0+-100 RESISTOR 22.1K 1% .25W F TC=0+-100 RESISTOR 27.4K 1% .5W F TC=0+-100 RESISTOR 8.2 K 5% 1W MO TC=0+-200	01121 28480 16701 28480 28480	CB3311 0757-0190 C5-1/4-T0-2212-F 0757-0847 0761-0070
A1R82 A1R83 A1R84 A1R85 A1R86	0757-0190 0757-0433 0684-3311 0757-0420 0684-3331	2	RESISTOR 20K 1%.5W F TC=0+-100 RESISTOR 3.32K 1%.125W F TC=0+-100 RESISTOR 330 10%.25W FC TC=-400/+800 RESISTOR 750 1%.125W F TC=0+-100 RESISTOR 33K 1%.125W F TC=0+-100	28480 24546 01121 16701 24546	0757-0190 C4-1/8-T0-3321-F CB3311 C4-1/8-T0-751-F C4-1/8-T0-73302-F
A1S1 A1S2 A1S3	3101-2159 3101-2268 3101-2268	1 2	SWITCH ASSY-5 SPST SWITCH ASSY-8 POS SWITCH ASSY-8 POS	28480 28480 28480	3101-2159 3101-2268 3101-2268
A1VR1 A1VR2 THRU	1902-0025 1902-3139	1 3	DIODE-ZNR 10V 5% D0-7 PD=.4W TC=+.06% DIODE-ZNR 8.25V 5% D0-7 PD=.04W TC=+.053%	04713 04713	SZ 10939-182 SZ 10939-158
A1VR4 A1VR5	1902-0074	1	DIODE-ZNR 7.15V 5% D0-7 PD=.04W TC=+.047%	04713	SZ10939-140
A1XA1 A1XA2	1200-0624 1200-0624	2	IC SOCKET 40-PIN DIP IC SOCKET 40-PIN DIP	28480 28480	1200-0624 1200-0624
A2 A2C1 A2C2 A2C3 A2C3 A2C4	01340-66502 0180-2843 0160-0168 0180-2351 0180-0291	1 1 2 1	BOARD ASSEMBLY-LOW-VOLTAGE POWER SUPPLY (NOT SUPPLIED WITH OPTION 002) CAPACITOR-FXD 70 UF 300VDC CAPACITOR-FXD 1 UF +10% 200VDC POLYE CAPACITOR-FXD 2000 UF +75-10% 50VDC AL CAPACITOR-FXD 1 UF +10% 35VDC TA	28480 28480 06001 56289 28480	01340-66502 0180-2843 AE22C104KT 39D243-DSB 0180-0291
A2C5 A2C6 A2C7 A2C8	0180-2351 0140-0196 0180-0195 0180-0195	1 2	CAPACITOR-FXD 2000 UF +75–20% 50VDC AL CAPACITOR-FXD 150 PF +–5% 300VDC MICA 0+70 CAPACITOR-FXD .33 UF +–20% 35VDC TA CAPACITOR-FXD .33 UF +–20% 35VDC TA	56289 28480 28480 28480 28480	39D243-DSB 0140-0196 0180-0195 0180-0195
A2CR1 A2CR2 A2CR3 A2CR4 A2CR5	1906-0006 1901-0028 1901-0028 1906-0006 1906-0006	3	DIODE-FW BRDG 400V 1A DIODE-PWR RECT 400V 750MA D0-29 DIODE-PWR RECT 400V 750MA D0-29 DIODE-FW BRDG 400V 1A DIODE-FW BRDG 400V 1A	28480 0271C 0271C 28480 28480	1906-0006 MP493 MP493 1906-0006 1906-0006
A2CR6 A2CR7 A2CR8 A2F1 A2F1 A2F1 A2F2	1901-0028 1901-0028 1901-0040 2110-0016 2110-0044 2110-0016	1 2 1	DIODE-PWR RECT 400V 750MA D0-29 DIODE-PWR RECT 400V 700MA D0-29 DIODE-SWITCHING 30V 50MA 2NS D0-35 FUSE .6A 250V SLO-BLO 1.25 X .25 UL FUSE .3A 250V SLO-BLO (220V/240V OPERATION ONLY) FUSE .6A 250V SLO-BLO 1.25 X .25UL	0271C 0271C 28480 6F364 6F364 6F364 6F364	MP493 MP493 1901-0040 MDL 6/10 MDL 3/10 MDL 6/10

Table 6-2. Replaceable Parts (Cont	c'a	ł,)
------------------------------------	-----	----	---

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A2F3 A2J1 A2J2 A2J3	2110-0011 1200-0690 1200-0690 1200-0690	1 3	FUSE .062A 250V NORM-BLO 1.25 X .25 UL SOCKET-TSTR SOCKET-TSTR SOCKET-TSTR	6F 364 28480 28480 28480 28480	AGC 1/16 1200-0690 1200-0690 1200-0690
A2MP1 A2MP2 A2P1 A2P2 A2P3	2110-0269 5041-0565 1251-4743 1251-5099 1251-5090	6 1 1 2 1	CLIP-FUSE CAP-ON/OFF SWITCH CONNECTOR-AC POWER CONNECTOR-8 PIN M CONNECTOR-13 PIN M	28480 28480 28480 28480 28480 28480	2110-0269 5041-0565 1251-4743 1251-5099 1251-5090
A2Q1 A2Q2 A2Q3 A2Q4 A2Q5 A2Q6	1854-0071 1853-0336 1854-0575 1854-0053 1854-0053	1 1 2	TRANSISTOR NPN SI PD=300MW FT=200MHZ NOT ASSIGNED TRANSISTOR PNP SI PD=625MW FT=50MHZ TRANSISTOR NPN SI PD=625MW FT=50MHZ TRANSISTOR NPN 2N2218 SI T0-5 PD=800MW TRANSISTOR NPN 2N2218 SI T0-5 PD=800MW	01295 28480 28480 28480 28480 28480	SKA1124 1853-0336 1854-0575 1854-0053 1854-0053
A2R1 A2R2 A2R3 A2R4 A2R5	0690-1841 0683-1005 0684-8211 0757-0777 0757-0443	1 1 1 1	RESISTOR 180K 10% 1W CC TC=0+882 RESISTOR 10 5% .25W FC TC=-400/+500 RESISTOR 820 10% .25W FC TC=-400/+600 RESISTOR 121K 1% .25W FC TC=0+-100 RESISTOR 11K 1% .125W F TC=0+-100	01 121 01 121 01 121 16701 16701	GB1841 CB1005 CB8211 C5.1/4-T0-1213-F C4-1/8-T0-1102-F
A2R6 A2R7 A2R8 A2R9 A2R10	0684-3941 0683-8225 0698-3618 0687-5611 0684-2701	1 2 1 2 1	RESISTOR 390K 10% .25W FC TC=-800/+900 RESISTOR 8.2K 5% .25W FC TC=-400/+700 RESISTOR 82 5% 2W MO TC=0+-200 RESISTOR 560 10% .5W CC TC=0+529 RESISTOR 27 10% .25W FC TC=-400/+500	01121 01121 28480 01121 -1121	CB3941 CB8225 0698-3618 EB5611 CB2701
A2R11 A2R12 A2R13 A2R14 A2R15	0683-8225 0687-5611 0764-0013 0687-1021 2100-3273	1 1 1 1	RESISTOR 8.2K 5% .25W FC TC=−400/+700 RESISTOR 560 10% .5W CC TC=0+529 RESISTOR 565 5% 2W MO TC=0+−200 RESISTOR 1K 10% .5W CC TC=0+647 RESISTOR TRMR 2K 10% C SIDE ADJ 1-TRN	01121 01121 28480 01121 92507	CB8225 EB5611 0764-0013 FB1021 3386X-Y46-202
A2R16 A1R17 A2R18 A2S1	0757-0801 0757-1001 0683-0275 3101-2252	1 1 1	RESISTOR 150 1% .5W F TC=0+100 RESISTOR 56.2 1% .5W F TC=0+100 RESISTOR 2.7 5% .25W FC TC=400/+500 SWITCH-PB	28480 28480 01121 28480	0757-0801 0757-1001 CB27G5 3101-2252
A2VR1 A2VR2 A2VR3 A2VR4 A2W1	1902-0188 1902-0041 1902-0048 1902-0668 8120-2602	1 1 2 2	DIODE-ZNR 4.12V 5% D0-7 PD=.4W TC=041% DIODE ZNR 5.11V 5% D0-7 PD=.4W TC=009% DIODE-ZNR 6.81V 5% D0-7 PD=.4W TC=+.043% DIODE-ZNR 200V 5% D0-15 PD=1W TC=+.088% CABLE-FLEXIBLE	04713 04713 04713 04713 28480	SZ 10939-71 SZ 10939-98 SZ 10939-134 SZ 11213-449 8120-2602
A3 A3A1 A3A1C1 A3A1C1 A3A2CR1 A3A2	01340-66503 01340-61101 0160-2264 1901-0683 0960-0490	1 1 1 1	BOARD ASSEMBLY-HIGH-VOLTAGE POWER SUPPLY TRANSFORMER-HIGH VOLTAGE CAPACITOR-FXD 20 PF +-5% 500VDC CER 0+-30 DIODE-HV RECT 10KV 5MA 250NA MULTIPLIER-HIGH VOLTAGE	28480 28480 28480 28480 28480 28480	01340-66503 01340-61101 0160-2264 1901-0683 0960-0490
A3C1 A3C2 A3C3 A3C4 A3C5	0160-0162 0160-3558 0160-4051 0160-4051 0160-3453	1 1 4 1	CAPACITOR-FXD .022 UF + 10% 200VDC POLYE CAPACITOR-FXD .1 UF + 20% 50VDC CER CAPACITOR-FXD .01 UF + 20% 4KVDC CAPACITOR-FXD .01 UF + 20% 4KVDC CAPACITOR-FXD .05 UF +80 20% 100VDC CER	06001 28480 56289 56289 56289 56289	AE17C223KT 0160-3558 430P103040 430P103040 C023B101H203MS25-CDH
A3C6 A3C7 A3C8 A3C9 A3C10	0160-0684 0160-0684 0160-4051 0160-3665 0180-0269	2	CAPACITOR-FXD 1000 PF +-20% 4KVDC CAPACITOR-FXD 1000 PF +-20% 4KVDC CAPACITOR-FXD 01 UF +-20% 4KVDC CAPACITOR-FXD 01 UF +80-20% 500VDC CER CAPACITOR-FXD 1 UF +75-10% 150VDC AL	56289 56289 56289 28480 56289	430P102040 430P102040 430P103040 0160-3665 30D105G150BAZ-DSM
A3C11 A3C12 A3C13 A3C14	0160-4051 0160-3665 0160-3665 0180-0141	1	CAPACITOR-FXD .01 UF +-20% 4KVDC CAPACITOR-FXD .01 UF +80-20% 500VDC CER CAPACITOR-FXD .01 UF +80-20% 500VDC CER CAPACITOR-FXD 50 UF +75-10% 50VDC AL	56289 28480 28480 56289	430P103040 0160-3665 0160-3665 30D506G050DD2-DSM
A3CR1 A3CR2 A3CR3 A3CR4 A3CR5	1901-0028 1901-0028 1901-0040 1901-0040	2	DIODE-PWR RECT 400V 750MA D0-29 DIODE-PWR RECT 400V 750MA D0-29 DIODE-SWITCHING 30V 50MA 2NS D0-35 DIODE-SWITCHING 30V 50MA 2NS D0-35 DELETED	28480 28480 28480 28480 28480	1901-0028 1901-0028 1901-0040 1901-0040
A3CR6 A3CR7 A3CR8 A3CR9	1901-0028 1901-0028 1901-0028 1901-0028		DIODE-PWR RECT 400V 750MA D0-29 DIODE-PWR RECT 400V 750MA D0-29 DIODE-PWR RECT 400V 750MA D0-29 DIODE-PWR RECT 400V 750MA D0-29	28480 28480 28480 28480 28480	1901-0028 1901-0028 1901-0028 1901-0028 1901-0028
A3DS1 A3DS2 A3J1 A3L1 A3L2	2140-0018 2140-0018 1251-5112 9140-0115 9140-0129	2 1 1 1	LAMP-GLOW A9A-C 90/58 VDC 700UA T-2 BULB LAMP-GLOW A9A-C 90/58 VDC 700UA T-2 BULB CONNECTOR-3 PIN F COIL-MLD 22 UH 10% Q=60 .215 DX .56 LG COIL-MLD 220 UH 5% Q=65 .155 DX .375 LG	74276 74276 28480 99800 99800	C7A (NE-2D) C7A (NE-2D) 1251-5112 1537-36 1537-92

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A3P1 A3R1 A3R2 A3R3 A3R4	1251-4316 0757-0194 2100-3357 0757-0465 0683-2265	1 1 3 1	CONNECTOR-7 CONT M RESISTOR 1.33M 1%.5W F TC=0+100 RESISTOR-TRMR 500K 10% C SIDE ADJ 1-TRN RESISTOR 100K 1%.125W F TC=0+-100 RESISTOR 22M 5%.25W FC TC=900/+1200	28480 28480 32997 16701 01121	1251-4316 0757-0194 3386X-Y46-504 C4-1/8-T0-1003-F CB2265
A3R5 A3R6 A3R7 A3R8 A3R9	0684-1011 0687-3911 0757-0465 0684-4731 0684-2221	1 1 1 1	RESISTOR 100 10% .25W FC TC=-400/+500 RESISTOR 390 10% .25W FC TC=0+529 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 47K 10% .25W FC TC=-400/+800 RESISTOR 2.2K 10% .25W FC TC=-400/+700	01121 01121 16701 01121 01121 01121	CB1011 CB3911 C4-1/8-T0-1003-F CB4731 CB2221
A3R10 A3R11 A3R12 A3R13 A3R14	0684-5621 0687-3941 0684-1001 0698-8689 0684-6811	1 1 1 1	RESISTOR 5.6K 10% .25W FC TC=-400/+700 RESISTOR 390K 10% .5W FC TC=0-882 RESISTOR 10 10% .25W FC TC=-400/+500 RESISTOR 20M 5% IW CF TC=0-3500 RESISTOR 680 10% .25W FC TC=-400/+800	01121 01121 01121 03888 28480	CB5621 EB3941 CB1001 PVC 70 0684-6811
A3R15 A3R16 A3R17 A3R18 A3R19	0684-1061 0684-6811 0684-6811 0684-6811 0684-6811 0757-0452	1	RESISTOR 10M 10% .25W FC TC=-900/+1100 RESISTOR 680 10% .25W FC TC=-400/+800 RESISTOR 680 10% .25W FC TC=-400/+800 RESISTOR 680 10% .25W FC TC=-400/+800 RESISTOR 27.4K 1% .125W F TC=0+-100	01121 28480 28480 28480 28480 16701	CB1061 0684-6811 0684-6811 0684-6811 C4-1/8-T0-2742-F
A3R20 A3R21 A3R22 A3R23 A3R24	0757-0446 0698-8770 2100-3358 0698-6441 2100-3357	1 1 1 1	RESISTOR 15K 1% .125W F TC=0+−100 RESISTOR 3M 5% 1W CF TC=0−2000 RESISTOR-TRMR 1M 20% C SIDE ADJ 1-TRN RESISTOR 6.5M 5% 1W CF TC=0−2000 RESISTOR-TRMR 500K 10% C SIDE ADJ 1-TRN	16701 03888 73138 03888 32997	C4-1/8-T0-1502-F PVC 70 72-154-0 PVC 70 3386X-Y46-504
A3R25 A3R26 A3U1 A3VR1 A3VR2	2100-3357 0684-1021 1826-0167 1902-0175 1902-0668	1 1	RESISTOR-TRMR 500K 10% C SIDE ADJ 1-TRN RESISTOR 1K 10% .25W FC TC=400/+800 IC OP AMP DIODE-ZNR 100V 5% DO-15 PD=1W TC=+.083% DIODE-ZNR 200V 5% DO-15 PD=1W TC=+.088%	32997 01121 28480 04713 04713	3386X-Y46-504 CB1021 1826-0167 SZ11213-403 SZ11213-449
A3VR3 A3W1	1902-3402 8120-2602	1	DIODE-ZNR 80.6V 2% D0-7 PD=.4W TC=.081% CABLE-FLEXIBLE	04713 28480	SZ10939-444 8120-2602
A4 A4DS1 A4R1 A4R2 A4R3 A4R4	01340-66504 1990-0521 2100-3692 2100-3690 2100-3691 2100-3689	1 3 1 1 2	BOARD ASSEMBLY-CONTROL (NOT SUPPLIED WITH OPTION 001) DIODE, LIGHT- EMITTING-GRN RESISTOR-VAR 5K (INTENSITY) RESISTOR-VAR 5K (TRACE ALIGN) RESISTOR-VAR 1M (FOCUS) RESISTOR-VAR 1K (X GAIN)	28480 28480 28480 28480 28480 28480 28480	01340-66504 1990-0521 2100-3692 2100-3690 2100-3691 2100-3689
A4R5 A4R6 A4R7 A4R8 A4R9	2100-3692 2100-3689 2100-3689 0757-0338 0684-2711	1	RESISTOR-VAR 5K (X POSITION) RESISTOR-VAR 1K (Y GAIN) RESISTOR-VAR 5K (Y POSITION) RESISTOR 1K 1%.25W F TC=0+-100 RESISTOR 1270 10%.25W FC TC=-400/+800	28480 28480 28480 16701 01121	2100-3692 2100-3689 2100-3692 C5-1/4-TO-1001-F CB2711
A4R10 A4W1	0684-2711 8120-0622	1	RESISTOR 270 10% .25W FC TC - —400/+800 CABLE ASSY-RIBBON	01121 28480	CB2711 8120-0622
A5 A5C1 A5C2 A5C3 A5C4 A5C5	01340-66506 0160-3443 0160-0207 0160-3448 0180-1819 0180-2843	1 1 1 1 1	BOARD ASSEMBLY-DC POWER (OPTION 002 ONLY) CAPACITOR-FXD .1UF +80-20% 50WVDC CER CAPACITOR-FXD .01UF +-5% 200VDC POLYE CAPACITOR-FXD 1000F +-10% 1KVDC CER CAPACITOR-FXD 100UF +75-10% 50VDC AL CAPACITOR-FXD 70UF 300VDC	28480 28480 06001 56289 56289 28480	01340-66506 0160-3443 AE13C103JT C016B102F471LS25-CDH 30D107G050DH2-DSM 0180-2843
A5C6 A5C7 A5C8 A5CR1 A5CR2	0180-0195 0180-0291 0180-0291 1901-0669 1901-0669	1 2 2	CAPACITOR-FXD .33UF +-20% 35VDC TA CAPACITOR-FXD 1UF +-10% 35VDC TA CAPACITOR-FXD 1UF +-10% 35VDC TA DIODE-PWR RECT 400V 1A 150NS DIODE-PWR RECT 400V 1A 150NS	28480 28480 28480 28480 28480 28480	0180-0195 0180-0291 0180-0291 1901-0669 1901-0669
A5CR3 A5CR4 A5F1 A5F2 A5F3	1901-0028 1901-0040 2110-0080 2110-0020 2110-0004	1 1 1 1	DIODE-PWR RECT 400V 750MA D0-29 DIODE-SWITCHING 30V 50MA 2NS D0-35 FUSE .75AT 250V SLO-BLO 1.25 X .25 UL IEC FUSE .8AT 250V SLO-BLO 1.25 X .25 UL FUSE .25A 250V FAST-BLO 1.25 X .25 UL	28480 01295 6F364 6F364 6F364	1901-0028 PG512 MDL 3/4 MDL 8/10 AGC-1/4
A5J1 A5J2 A5L3 A5L1 A5L2 A5D1 A5Q1 A5Q2 A5Q3 A5Q4 A5R1 A5R2 A5R2 A5R3	1251-5112 1251-5112 1200-0690 9100-3139 9140-0137 1251-3195 1854-0433 1854-0433 1854-0053 1854-0053 0757-0780 2100-3351 0757-0431	2 1 1 2 2 1 1 1	SOCKET-TSTR SOCKET-TSTR COLL 75UH 15%, 5D X.875 LG COLL-MLD 15%, 5D X.875 LG COLL-MLD 1MH 5% Q=60 CONNECTOR-4 PIN M POST TYPE TRANSISTOR NPN SI SPEC TRANSISTOR NPN SI SPEC TRANSISTOR NPN 2N2218 SI T0-5 PD=800MW TRANSISTOR NPN 2N2218 SI T0-5 PD=800MW RESISTOR 162K 1%.25W F TC=0+-100 RESISTOR 162K 1%.25W F TC=0+-100	27264 27264 28480 28480 27264 28480 28480 28480 28480 28480 28480 28480 28480 28480	09-52-3031 09-52-3031 1200-0690 9100-3139 9140-0137 09-60-1041 1854-0433 1854-0433 1854-0433 1854-0053 0757-0780 2100-3351 0757-0431

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A5R4 A5R5 A5R6 A5R7 A5R8 A5R10 A5R10 A5R10 A5R11 A5R12 A5R13 A5R13 A5R14 A5R15 A5R16 A5R16 A5R17 A5T1 A5U1 A5U1 A5U1 A5VR1 A5VR1 A5VR1 A5VR3 A5W1	0757-0438 0757-0438 0698-3151 0760-0014 0757-0449 0757-0280 0687-5611 0698-3618 0757-0801 0684-2701 0754-0013 0752-0042 1902-0148 1902-0048 8120-2602	2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	RESISTOR 5.11K 1%.125W F TC=0+-100 RESISTOR 5.11K 1%.125W F TC=0+-100 RESISTOR 2.87K 1%.125W F TC=0+-100 RESISTOR 2.87K 1%.125W F TC=0+-100 RESISTOR 2.07K 1%.125W F TC=0+-100 RESISTOR 7 1%.125W F TC=0+-100 RESISTOR 7 1%.125W F TC=0+-100 RESISTOR 560 10%.5W F TC=0+-200 RESISTOR 560 10%.5W FTC=0+-200 RESISTOR 560 10%.5W FTC=0+-20	24546 24546 24546 24546 24546 24546 01121 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	C4-1/8-T0-5111-F C4-1/8-T0-5111-F C4-1/8-T0-2871-F 0760-0014 C4-1/8-T0-2002-F C4-1/8-T0-1001-F EB5611 0698-3618 0757-0801 0684-2701 EB5611 0764-0013 0757-1001 9100-XXXX 1826-0428 1826-0106 1902-0188 1902-0041 1902-0041 1902-0048 FSN22A-10

Table 6-2. Replaceable Parts (Cont'd)

Table 6-3. List of Manufacturers' Codes

Mfr Code	Manufacturer Name	Address	Zip Code
01121 01538 02660 03888 04604 04713 05683 06001 07933 16546 16701 28480 32997 56289 6F364 72962 73138 74276 76854 74276 76854 74276 76854 78189 79963 82099 99800	ALLEN BRADLEY CO SMALL PARTS INC BUNKER RAMO CORP AMPHENOL CONNECTOR DIV PYROFILM CORP EAGLE CHEMICAL CO INC MOTOROLA INC SEMICONDUCTOR PRODUCT DIV MEG PRODUCT DIV OF MANDREL INDUSTRIES INC GENERAL ELECTRIC CO CAPACITOR AND BATTERY PRODUCTS DEPT RAYTHEON CO SEMICONDUCTOR DIV HQ US CAPACITOR CORP RAPITAG NEEDLE CO HEWLETT-PACKARD CO CORPORATE HQ BOURNS INC TRIMPOT PROD DIV SPRAGUE ELECTRIC CO BUSSMAN MFG DIV OF MCGRAW-EDISON CO ELECTRO MOTIVE MFG CO INC ELASTIC STOP NUT DIVISION OF AMERACE ESNA CORP BECKMAN INSTRUMENTS INC HELIPOT DIV SIGNALITE INC OAK MFG CO DIV OF OAK ELECTRO/NETICS CORP ILLINOIS TOOL WORKS INC SHAKEPROOF DIV ZIERICK MFG CO GOODYEAR SUNDRIES AND MECHANICAL CO INC AMERICAN PRECISION INDUSTRIES INC DELEVAN DIV	MILWAUKEE WI COSTA MESA CA BROAD VIEW IL WHIPPANY NJ CHICAGO IL PHOENIX AZ SEATTLE WA IRMO SC MOUNTAIN VIEW CA BURBANK CA LAKE WORTH FL PALO ALTO CA RIVERSIDE CA NORTH ADAMS MA ST LOUIS MO WILLIMANTIC CT UNION NJ FULLERTON CA NEPTUNE NJ CRYSTAL LAKE IL ELGIN IL MT KISCO NY NEW YORK NY EAST AURORA NY	53204 92626 60153 07981 60612 85008 95266 29063 94040 91504 933460 94304 92507 01247 63017 05226 07083 92634 97753 60014 60126 10549 10013 14052

SECTION VII

MANUAL CHANGES

7-1. INTRODUCTION.

7-2. This section normally contains information for adapting this manual to instruments for which the content does not apply directly. Since this manual does apply directly to instruments having serial numbers listed on the title page, no change information is given here. Refer to INSTRUMENTS COVERED BY MAN-UAL in Section I for additional important information about serial number coverage.

SECTION VIII

SERVICE

8-1. INTRODUCTION.

8-2. This section provides instructions for troubleshooting and repairing the Model 1340A X-Y Display.

8-3. Detailed theory of operation and troubleshooting information are located opposite the schematics on foldout Service Sheets.

8-4. THEORY OF OPERATION.

8-5. Overall theory of operation is on the foldout page opposite the block diagram (Service Sheet 1). Each section of the diagram refers to service sheets where detailed theory, schematics, and troubleshooting information are presented. Table 8-1 explains any unusual symbols that appear on the schematics.

8-6. TROUBLESHOOTING.

Maintenance described herein is performed with power supplied to the instrument. Such maintenance should be performed only by trained service personnel who are aware of the hazards involved (for example, fire and electrical shock). Where maintenance can be performed without power applied, the power should be removed.

Before any repair is completed, ensure that all safety features are intact and functioning, and the all necessary parts are connected to their protective grounding means. 8-7. INITIAL TROUBLESHOOTING PROCEDURE. Before troubleshooting the 1340A in detail, try to perform the adjustment procedures listed in Section V of this mannual. Some apparent malfunctions may be corrected by these adjustments, or failure to obtain a correct adjustment will often reveal the source of trouble.

8-8. DC VOLTAGES AND WAVEFORMS. DC voltages, waveforms, and conditions for making these measurements are given on, or adjacent to, the schematics on the service sheets. Since conditions for making these measurements may differ from one circuit to another, always check the specific conditions listed for each schematic.

8-9. RECOMMENDED TEST EQUIPMENT.

8-10. Test equipment required to maintain the 1340A is listed in Section I, table 1-4. Equipment other than that listed may be used if it meets the listed critical specifications.

8-11. REPAIR.

8-12. ASSEMBLY REMOVAL. Instruction for removing major board assemblies are given in the following procedure. The removal procedure includes instructions for System II instruments. To remove assemblies, proceed as follows (refer to table 8-2 for the list of assemblies indexed to Service Sheets):

NOTE

Disregard steps a through g for basic instruments. When removing assemblies from the basic instrument, start with step h.

a. Remove top and bottom covers (System II instruments).

b. Remove trim strips from top and sides of front frame (System II instruments).

c. Remove Control Assembly A4 from front frame by removing four retaining screws (top frame (1), bottom frame (1), side frame (2)).

d. Disconnect A4W1 ribbon cable connector from A1 Assembly. Remove Control Assembly A4 from instrument.

e. Remove front, left filler panel from front frame by removing two retaining screws at side of front frame.

f. Remove rear-panel filler by removing four retaining screws.

g. Remove basic instrument module from System II frame by removing two retaining screws.

h. Remove plastic shield covering LVPS Assembly A2 by pulling shield from basic frame.

i. Remove retaining screw holding HVPS Assembly A3 shield to basic frame.

j. Remove HVPS shield by pushing toward rear of instrument until tabs are clear, then rotate upwards and remove.

k. Remove screws holding LVPS regulators U1, U2, and Q2 to basic frame.

l. Remove screw holding HVPS oscillator Q1 to basic frame.

Failure to discharge high voltage (\approx +4500 V) can result in severe electrical shock to personnel and damage to the instrument.

In the following step, be careful not to damage the CRT glass.

m. Using water-pump pliers, disconnect post accelerator lead from CRT at CRT connection by squeezing pronged connector leads together. Immediately discharge lead to ground.

n. Unsolder six wires (three (3) and three (0)) connected to A1 Assembly. These wires are from X, Y, and Z BNC input connectors.

o. Disconnect input ac transformer cable connector from LVPS Assembly, A2.

p. Remove one screw holding input ac power connector to rear panel.

q. Disconnect input ac power connector ground lead (544) from rear panel.

r. Remove four screws (one per side rail) holding rear panel in place. Remove rear panel.

NOTE

The following steps outline the procedure for removing all board assemblies from the instrument. For the removal of individual assemblies only, modify the following steps as required.

s. Remove two ribbon cables at A1 Assembly. One cable is from A2 Assembly and one is from A3 Assembly.

t. Unsolder CRT filament leads (two(1) wires) from rear of HVPS Assembly A3.

u. Unsolder focus wire (3) from rear of HVPS Assembly A3.

v. Disconnect five square-pin leads (98), (8), (96), (4), and (6) from HVPS Assembly A3. Remove HVPS Assembly A3 by sliding to rear of instrument.

w. Disconnect six square-pin leads, (5) (9) - X output, (6) (9) - Y outupt, and two (905) to trace align coil from A1 Assembly.

x. Remove Assembly A1 by sliding it to rear of instrument.

y. Remove Assembly A2 by sliding it to rear of instrument.

z. To reinstall assemblies, reverse removal procedure.

WARNING

To prevent personal injury wear a face mask or goggles and protective gloves and handle the CRT carefully. Do not lift the CRT or support its weight by the neck.

8-13. CRT REMOVAL. To remove the CRT from the instrument proceed as follows:

a. Accomplish steps a through y in paragraph 8-12 for System II instruments. Accomplish steps h through y in paragraph 8-12 for standard instruments.

b. Disconnect socket and cable from CRT base.

c. Remove four screws retaining front bezel to four side rails. Remove bezel.

- d. Remove CRT through front of CRT shield.
- e. To reinstall CRT, reverse removal procedure.

Assembly	Name	Service Sheet(s)
A1	X-Y-Z AMPLIFIERS	2, 3
A2	LVPS	4
A3	HVPS	3
A4	CONTROL ASSY	2, 3

Table 8-2. Assembly Index

8-14. **PREVENTIVE MAINTENANCE.** Painted surfaces can be cleaned with a commercial, spray-type window cleaner or with a mild soap and water solution.

CAUTION

Do not use chemical cleaning agents that might damage the plastics used in this instrument. Recommended cleaning agents are isopropyl alcohol, a kelite solution (1 part kelite to 20 parts water), or a solution of 1% mild detergent and 99% water. 8-15. Corroded spots are best removed with soap and water. Stubborn residues can be removed with a fine abrasive. Protect such areas from further corrosion with an application of silicone resin such as GE DRIFILM 88.

8-16. CIRCUIT BOARDS.

8-17. Board Connections. Square-pin connectors are identified on circuit boards by color code of connecting wire or by the signal name. Connector pins on plugs and jacks are identified by either a number or a letter (letters G, I, O, and Q are omitted). Coaxial wires are identified by different shrink tubing colors.

8-18. Servicing Etched Circuit Boards. All the etched circuit boards have plated-through component holes. This allows components to be removed or replaced from either side of the board. When unsoldering large components such as potentiometers, rotate the soldering iron tip from lead to lead while applying pressure to the part to lift it from the board. HP Service Note M-20E contains additional information for repair of circuit boards.

SERVICE SHEET 1

BASIC PRINCIPLES OF OPERATION

General. The following paragraphs contain functional descriptions keyed to a simplified block diagram located on the opposite page. The block diagram is drawn for function and does not show circuit details. Schematics, along with detailed theory descriptions of each circuit are located on subsequent service sheets. Refer to table 8-2 for service sheet identification.

Low-voltage Power Supply. The low-voltage power supply (not shown on the block diagram) converts the ac line input to three regulated dc voltages, +15 V, -15 V, and +165 V. From the regulated +15 V and -15 V supplies, +3.5 V and -7.5 V are developed for use as bias supplies for IC's on the X-Y-Z Amplifier assembly. +24 V UNREG is tapped off before the +15 V regulator for use in the high-voltage oscillator circuit.

High-voltage Power Supply. The high-voltage power supply provides voltages to operate the CRT; ≈ -2140 V for the cathode voltage, a grid voltage referenced to the cathode, CRT heater voltage, and a post-accelerator voltage of \approx +4500 V. A Z-axis amplifier is used to control intensity of the CRT beam.

X- and Y-amplifier Circuits. The X- and Y-amplifier circuits are identical. They amplify the input signals to drive the CRT horizontal and vertical deflection plates. Each amplifier is design for (+), (-), or differential inputs (special option). Input voltage/impedance characteristics are switch-selectable.

TROUBLESHOOTING

Use this block diagram and Section V of this manual to isolate the trouble to a specific section of the instrument. Next turn to the service sheets which cover that section and isolate the trouble to a specific circuit or component.

1

 1_{χ}

(

Service

1

1

Figure 8-1. Service Sheet 1, Model 1340A Overall Block Diagram 8-5

SERVICE SHEET 2

THEORY OF OPERATION

General. The X- and Y-amplifier attenuators, preamplifiers, and output amplifiers are identical; therefore, only the X-amplifier circuit will be discussed.

Input Attenuator and Impedance Converter (P/O A1A1). By properly positioning switch segments of A1S1, the Xinput voltage/impedance ranges may be selected. (Refer to table 8-3 for proper switch selection for all amplifiers.) Output from the attenuator section is applied to one section of the preamplifier IC A1A1. The IC input is an impedance converter with an active current source in both the source and drain.

IC Preamplifier-Bandwidth Limit. The preamplifier consists of a bipolar paraphase amplifier and a crossconnected, common-base amplifier. The paraphase amplifier converts the single-ended input to a differential signal with a special input from the X BAL control for offset adjustment. The cross-connected, common-base amplifier is used for GAIN vernier control.

The bandwidth amplifier consists of two amplifiers: one with a capacitor connected across its collectors, and one without a capacitor. The bandwidth limit switch selects the proper amplifier for the desired bandwidth characteristics.

IC Output Amplifier. The output amplifier of the IC consists of a differential amplifier and a differential current source which also serves as a position control circuit. The differential amplifier converts the singleended position voltage to a differential current. Magnitude of the current is controlled by external current sink A1R30.

X-amplifier Output. The differential output from A1A1 is applied to two identical amplifiers A1Q7/A1Q9/A1Q10 and A1Q8/A1Q11/A1Q12 where the signal voltage is

raised to the required level to drive the CRT horizontal plates. The gain of the amplifiers is stabilized by negative feedback from the collectors of A1Q9/A1Q10 to the base of A1Q7 and from the collectors of A1Q11/ A1Q12 to the base of A1Q8.

A1 REMOVAL PROCEDURE

Refer to paragraph 8-12 for A1 Assembly removal.

Figure 8-2. Component Identification, Control Assembly, A4

Table 8-3. X, Y, and Z Input Switch Coding

ATTN		A1 ASSEMBLY SWITCH AND SECTION								
	IMPEDANCE		X INPUT		Y IN	PUT	Z INPUT			
		S1-1	\$1-2	S1-5	S2-4	\$2-7	S2-8	S2-1		
1:1 1:1 5:1	50Ω HIGH HIGH	CLOSED OPEN OPEN	CLOSED CLOSED OPEN	OPEN OPEN CLOSED	CLOSED OPEN OPEN	CLOSED CLOSED OPEN	OPEN OPEN CLOSED	CLOSED OPEN NA		

Service

REF DESIG	GRID LOC	REF DESIG	GRID LOC	REF DESIG	GRID LOC	REF DESIG	GRID LOC	REF DESIG	GRID LOC	REF DESIG	GRID LOC	REF DESIG	GRID LOC
A1A1 A1A2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C10 C17 C18 C19 C10 C17 C18 C19 C10 C17 C10 C1 C1 C1 C1 C2 C1 C1 C2 C2 C2 C2 C1 C2 C1 C2 C1 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	D B E E A 4 3 4 3 4 5 4 4 5 4 4 3 4 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 CR2 CR3 CR4 P/OJ1 Q1 Q2	C-1 4 2 3 3 2 1 1 4 3 3 2 2 2 2 2 2 2 3 4 3 3 2 2 2 2 2 2	Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q13 Q14 Q15 Q16 R1 R2 R3 R4 R5 R6 R7 R8 0	C-C-2-2-3-3-2-2-2-2-3-3-2-2-3-4-5-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	R10 R11 R12 R13 R14 R15 R16 R17 R16 R17 R18 R20 R21 R22 R23 R24 R25 R27 R26 R27 R29 R20 R27 R29 R20 R20 R20 R20 R27 R29 R20 R20 R20 R20 R20 R20 R20 R20 R20 R20	ц ш D D C S B B C D C C C C C C C C C C C C C C C C	R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R44 R45 R46 R47 R48 R49 R50 R51 R52	2 3 3 3 3 3 3 3 3 3 3 3 3 3	R53 R55 R55 R55 R57 R59 R60 R62 R63 R64 R63 R64 R65 R66 R66 R66 R66 R67 R68 R69 R70 R71 R72 R73	E-2 D-1 E-1 E-1 D-1 D-1 D-1 D-1 D-1 D-1 D-1 D-1 D-1 D	R74 R75 R76 R77 R78 R80 R81 R82 R83 R84 R83 R84 R85 R86 P/OS1 P/OS2 P/OS3 VR1 VR2 VR3 VR4 VR5	4 3 3 3 3 3 1 2 1 2 3 4 4 3 4 5 3 3 3 3 3 4 8 8 8 4 3 4 4 5 3 3 3 3 3 2 8 8 8 8 8 8 8 8 8 8 4 0 4 5 7 3 3 3 3 2 8 8 8 8 8 8 8 8 4 0 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1													

Figure 8-3. Component Identification, X-Y-Z Assembly, A1

Model 1340A

í

Figure 8-4. Service Sheet 2, X-Y Amplifiers 8-7

SERVICE SHEET 3

THEORY OF OPERATION

Z-AXIS AMPLIFIER

Input Attenuator and Impedance Converter (P/O A1A2). A high or low input impedance termination may be selected by switch A1S2-1 Output from the attenuator section is applied to one section of preamplifier IC A1A2. The IC input is an impedance converter with an active current source in both the source and the drain.

IC Preamplifier-Bandwidth Limit. The preamplifier consist of a bipolar paraphase amplifier and a crossconnected, common-base amplifier. The paraphase amplifier converts the single-ended input to a differential signal with a special input from the Z BALcontrol for offset adjustment. The cross-connected, commonbase amplifier is used for GAIN vernier control.

IC Output Amplifier. The output amplifier of the IC consists of a differential amplifier and a differential current source which also serves as an intensity control circuit. The differential amplifier converts the singleended intensity voltage to a differential current. Magnitude of the current is controlled by external current sink A1R87 (INT LIMIT). External blanking can be used to control the CRT display. A TTL logic level (+) applied through J4 to the base of A1Q16 causes it to conduct heavily, acting as a drain to current supply A1R87. This blanks the CRT.

Z-AMPLIFIER OUTPUT. The output from A1A2 is applied to emitter-follower A1Q13. The output of A1Q13 is applied to amplifier A1Q14/A1Q15 where the signal voltage is raised to the required level to drive the control grid of the CRT. The gain of the amplifiers is stablized by negative feedback from the collectors of A1Q14/A1Q15 to the base of A1Q13. HF Adj. No. 2 (A1C31) provides adjustment for the fast corner of the signal. Slower compensation is provided by lag-compensation network A1C30/A1R75. Diode A1CR3 is a high-speed diode, and A1CR1 and A1CR2 are high-current diodes. Together they provide protection for the output amplifiers against arcs and transients. The output of the Z-axis amplifier is applied to a level translator on High-voltage Assembly A3 where it establishes the potential difference between the grid and cathode of the CRT.

HIGH-VOLTAGE POWER SUPPLY

HV Generator and Level Translator. Transistor Q1 and transformer A3A1T1 form an oscillator circuit with the main source of power coming from the +24 V UNREG low-voltage power supply. The primary windings of A3A1T1 are connected to provide positive feedback to the base of Q1 to sustain oscillations. Two windings are provided in the secondary of A3A1T1: one winding supplies high voltage, and the other supplies heater power to the cathode-ray tube.

WARNING

Heater winding of the high-voltage transformer is connected to -2140 V cathode potential and is dangerous to life. Use extreme caution when handling, testing, and adjusting.

The HV winding of A3A1T1 is tapped and provides a sine wave for the level translator. The winding is also tapped at another point and is applied to High-voltage Multiplier Assembly A3A2 where the voltage is doubled. rectified, filtered, and then applied to the post accelertor of the CRT. The full output of the secondary of A3A1T1 is rectified and provides the negative high voltage for the CRT cathode.

Diode rectifier A3A1CR1 and filter network A3C3, A3C4, and A3R10 provide the -2140 V potential for the cathode, grid reference level, and focus reference level. The focus reference level is divided by A3R21, A3R22, A3R23, and front-panel FOCUS control, A4R3. Feedback for high-voltage regulator A3U1 is through A3C6 and A3R13.

The sine-wave signal from the secondary top on highvoltage transformer A3A1T1 is applied through A3A1C1/ A3R11 to the Z-axis level translator. The top and bottom of the sine-wave are clipped by the following action: The top of the sine wave is clipped by the action of A3CR9. The clipping level is established by a fixed voltage divider nework consisting of A3R19, A3R20, and A3VR3. The bottom of the sine wave is clipped by the action of A3CR8. The lower clipping level is established by the Z-axis signal from the Z-axis amplifier.

With front-panel INTENSITY control A4R1 set for maximum intensity the Z-axis amplifier output is at its highest level. This output causes maximum clipping action on the bottom section of the sine wave from A3A1T1. This results in the smallest peak-to-peak swing of the sine wave, since the upper clipping level is held constant by the fixed voltage divider network. As INTENSITY control A4R1 is turned toward minimum intensity, clipping action on the bottom of the sine wave becomes less, resulting in a greater peak-to-peak swing. The clipped sine wave is ac coupled through A3C7 to a rectifier circuit consisting of A3CR6 and A3CR7. The rectifier circuit provides a dc level equal to the peak-topeak amplitude of the clipped sine wave. The dc level is referenced to the cathode potential. Diodes A3CR6 and A3CR7 are connected so that the dc level established is negative with respect to the cathode and is applied to the CRT grid. Capacitor A3C8 is not returned directly to the -2140-volt cathode but is connected to the Z-axis amplifier output for coupling fast Z-axis transitions to the grid.

High-voltage Regulator. Operational amplifier A3U1 compares the voltage at the junction of A3R2 and A3R13 (with respect to ground, 0 V) and drives HV oscillator Q2 to correct for any differences. Since the input of A3U1 (pin 3) is a very high resistance, it will

Service

draw negligible current. Therefore, current flow between the +165 V regulated supply and the -2140 V cathode voltage is established by resistor string A3R1, A3R2, and A3R13, with the junction of A3R2 and A3R13 being held at 0 V by the action of A3U1. For example, if the high voltage goes more negative, the input to A3U1 (pin 3) will start to go negative and its output (pin 6) will follow. This applies a more negative average voltage to the feedback winding on HV transformer A3A1T1. Since HV oscillator Q1 is an NPN device (conducts only on positive peaks of the base waveform), the more negative average voltage applied to A3A1T1 causes the oscillator to conduct less, and for a shorter period of time. With Q1 conducting less, less power is available in the transformer and the hy output will go positive. returning the high voltage to its previously adjusted level.

Cathode-ray Tube. In addition to the cathode, control grid, focus grid, X- and Y-deflection plates discussed previously, the CRT contains other elements vital to its operation. The heater is powered by a separate winding on the HV transformer, A3A1T1, and is raised to the cathode potential by a direct connection.

The heater voltage is 5.9 Vac, however, use extreme care when measuring because the ac voltmeter must be floated at -2140volts. The common input of most ac powered voltmeters are not rated for this use; there-

fore, a battery operated unit is normally used. Do not contact the case of the ac voltmeter or its leads when measuring this high potential. Isolate voltmeter case from the 1340A chassis.

The required voltage for the accelerator electrode of the CRT is supplied from zener diode regulator A3VR3. Astigmatism (A3R24) and the Pattern (A3R25) are screw-driver adjustments located on the high-voltage power supply assembly.

The post accelerator is a conductive coating around the inner part of the CRT glass. It provides a high-accelerating field for the electron beam and collect electrons produced by secondary emission when the beam strikes the screen.

Use extreme care when measuring the post accelerator voltage. The potential is approximately 4500 V with respect to ground and is dangerous to life.

A1 AND A3 REMOVAL PROCEDURES.

Refer to paragraph 8-12 for A1 and A3 Assemblies removal.

NOTE

Refer to Service Sheet 2 for Assembly A1 and Assembly A4 Component Identification Locations.

Figure 8-5. Component Identification, HVPS Assembly, A3

Model 1340A

(

Service

Figure 8-6. Service Sheet 3, HVPS and Z-axis Amplifier 8-9

Service

SERVICE SHEET 4

THEORY OF OPERATION

General. The low-voltage power supply converts the ac input line voltage to several dc levels required to power individual circuits in the instrument. All supplies except the +24-volt UNREG line to the HV oscillator are regulated. The +24-volt UNREG line is fused with a 0.6 A overload protection fuse.

The +15-volt and —15-volt supplies have a three-terminal IC regulator with a nominal output being 15 volts. The actual voltage depends on the IC regulator and is acceptable within $\pm 5\%$ of nominal (14.25 volts to 15.75 volts). The lower voltages (+3.5 volts and -7.5 volts) required to operate A1A1 and A1A2 are developed within these supplies.

+165-volt Regulator. The ac input voltage from power transformer T1 is applied to bridge rectifier A2CR1. The dc output from A2CR1 is filtered by A2C1. A +15 V reference is applied through A2CR2 to the emitter of A2Q3. The base of A2Q3 is connected to a voltage divider across the output circuit with A2R15 being used as the adjustable reference. If the output of the supply decreases, the base of A2Q3 becomes less positive causing it to conduct more heavily. With A2Q3 conducting heavily, the conduction through Darlington pair Q2 and A2Q4 increases. This results in an increase in output voltage. When the output voltage again reaches +165 volts, conduction through A2Q3 decreases, allowing the output voltage to stablize. Transistor A2Q1 and resistor A2R2 form a current

limiting circuit. As current requirements increase toward the limit of the supply, the voltage drop across A2R2 is applied to the base of A2Q1 which conducts, limiting the current drain from the Darlington pair.

REMOVAL PROCEDURE

Refer to paragraph 8-12 for A2 Assembly removal.

TROUBLESHOOTING

General. If trouble is suspected, visually inspect the instrument. Look for loose or burned components that might suggest a source of trouble. Verify that all circuit board connections are making good contact.

Component Identification. Components on the assembly associated with this service sheet are shown adjacent to the schematic.

Troubleshooting Hints. Before any extensive troubleshooting, check the external power source for proper input. When troubleshooting the low-voltage power supply, check voltages indicated on the schematic.

REF	GRID	REF	GRID	REF	GRID	REF	GRID	REF	GRID	REF	GRID	REF	GRID
DESIG	LOC	DESIG	LOC	DESIG	LOC	DESIG	LOC	DESIG	LOC	DESIG	LOC	DESIG	LOC
C1 C2 C3 C4 C5 C6 C7 C8	E-2 B-3 C-2 A-3 D-2 B-2 A-2 A-2	CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8	E-2 C-3 E-3 E-2 A-2 B-1	E3 F1 F2 J1 J2 J3 MP1	F-2 F-2 B-2 E-1 B-1 A-3 A-1 B-2	MP2 P1 P2 Q1 Q2 Q3 Q4	G-2 G-2 F-1 F-2 C-2 C-2 B-2 B-2	Q5 Q6 R1 R2 R3 R4 R5 R6	B-2 B-2 C-1 C-1 C-2 B-2 C-3	R7 R8 R9 R10 R11 R12 R13 R14 R15	A-2 A-2 A-2 A-3 A-2 B-1 A-1 B-3 B-2	R16 R17 R18 S1 VR1 VR2 VR3 VR4 W1	B-2 B-1 C-3 F-2 A-2 B-3 B-1 C-3 B-3

Figure 8-7. Component Identification, LVPS Assembly, A2

(

Service

PARTS ON THIS SCHEMATIC

A2	CHASSIS
C16 CR18 F1-3 J13 P1-3 C1,36 R1-18 S1 VR1-4 W1	E1,2 02 T1 U1,2

Figure 8-8. Service Sheet 4, LV Power Supply 8-11

U2 LOCATION ON CHASSIS 3 A5W1 CR3 C5 J3 (Q4) ([CR1][CR2]) (UNDER) 2 5 R9 R10 Ξ J2 J1 1 Q1 LOCATION ON CHASSIS LOCATION ON CHASSIS С D Α В

REF	GRID	REF	G LOC	RE F	GRID	REF	GRID
DESIG	LOC	DESI		DESIG	LOC	DESIG	LOC
C1 C2 C3 C4 C5 C6 C7 C8 CR1 CR2 CR3 CR4	F-2 F-2 B-2 D-3 B-2 D-2 D-2 D-2 D-2 A-3 C-2	F1 F2 J1 J2 J3 L1 L2 P1 Q1 Q3	F-1 F-3 G-1 C-1 B-1 B-2 G-2 G-2 G-2 CHASSIS CHASSIS B-2	Q4 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11	C-2 F-2 E-2 E-2 F-2 F-2 F-2 F-2 B-2 C-2 B-1	R12 R13 R14 R15 R16 R17 T1 U1 U2 CH VR1 VR2 VR3 W1	A-2 B-2 C-2 C-2 C-2 C-2 E-2 ASSIS B-2 C-2 B-3

Figure 8-9. Component Identification, DC Power Supply Assembly, A5 (Option 002)

Model 1340A

(

(

1

Figure 8-10. Service Sheet 5, DC Power Supply (Option 002) 8-13/(8-14 blank) _ (

(

(

Model 1340A

(

í

(

A1

Figure 8-11. Service Sheet 6, Adjustment Locations 8-15