TECHNICAL MANUAL

OPERATOR'S, ORGANIZATIONAL, DIRECT SUPPORT AND GENERAL SUPPORT MAINTENANCE MANUAL (INCLUDING REPAIR PARTS AND SPECIAL TOOLS LIST)

FOR

FREQUENCY COMB GENERATOR SG-1129/U (HP-8406A)
(NSN 6625-00-937-3525)

WARNING
115/230 VAC and DC supply wires are exposed when either top or bottom instrument cover is removed.

WARNING

If this instrument is to be energized through an autotransformer (for voltage reduction), make sure the common terminal is connected to the earthed pole of the power source.

BEFORE SWITCHING ON THE INSTRUMENT, the protective earth terminals of the instrument must be connected to the protective conductor of the mains power cord. The mains plug shall only be inserted in a socket outlet provided with protective earth contact. The protection must not be negated by using an extension cord (power (cab) without a protective grounding conductor.

Any interruption of the protective (grounding) conductor, inside or outside the instrument, or disconnection of the protective earth terminal is likely to make this instrument dangerous. Intentional interruption of the earth ground is prohibited.

Servicing this instrument often requires that you work with the instrument's protective covers removed and with ac power connected. Be very careful; the energy at many points in the instrument may, if contacted, cause personal injury.

With the ac power cable connected, the ac line voltage is present at the terminals of the power line module and at the LINE power switch. Be very careful. Bodily contact with this voltage can be fatal.

CAUTION
BEFORE SWITCHING ON THIS INSTRUMENT, make sure instrument's ac input is set to the voltage of the ac power source.

BEFORE SWITCHING ON THIS INSTRUMENT, make sure that all devices connected to the instrument are connected to the protective earth ground.

BEFORE SWITCHING ON THIS INSTRUMENT, make sure the line power (mains) plug is connected to a three-conductor line power outlet that has a protective (earth) ground. (Grounding one conductor of a twoconductor outlet is not sufficient.

BEFORE SWITCHING ON THIS INSTRUMENT, make sure the ac line fuse is of the required current rating and type (normal-blow, time-delay, etc.).

F

SAFETY STEPS TO FOLLOW IF SOMEONE IS THE VICTIM OF ELECTRICAL SHOCK

DO NOT TRY TO PULL OR GRAB THE INDIVIDUAL

4

IF POSSIBLE, TURN OFF THE ELECTRICAL POWER

IF YOU CANNOT TURN OFF THE ELECTRICAL POWER, PULL, PUSH OR LIFT THE PERSON TO SAFETY USING A DRY WOODEN POLE OR A DRY ROPE OR SOME OTHER INSULATING MATERIAL
4
SEND FOR HELP AS SOON AS POSSIBLE
5
AFTER THE INJURED PERSON IS FREE OF CONTACT WITH THE SOURCE OF ELECTRICAL SHOCK, MOVE THE PERSON A SHORT DISTANCE AWAY AND IMMEDIATELY START ARTIFICIAL RESUSCITATION

This manual contains copyrighted material reproduced by permission of the Hewlett-Packard Company. All rights reserved.

TECHNICAL MANUAL
No. 11-6625-2847-14\&P
HEADQUARTERS
DEPARTMENT OF THE ARMY
Washington, DC 26 June 1980

OPERATOR'S, ORGANIZATIONAL, DIRECT SUPPORT, AND GENERAL SUPPORT MAINTENANCE MANUAL INCLUDING REPAIR PARTS AND SPECIAL TOOLS LIST FOR
FREQUENCY COMB GENERATOR SG-1129/U
(HP-8406A)
(NSN 6625-00-937-3525)
CURRENT AS OF 21 DECEMBER 1979

REPORTING ERRORS AND RECOMMENDING IMPROVEMENTS

You can help improve this manual. If you find any mistakes or if you know of a way to improve the procedures, please let us know. Mail your letter, DA Form 2028 (Recommended Changes to Publications and Blank Forms), or DA Form 2028-2 located in back of this manual direct to: Commander, US Army Communications and Electronics Materiel Readiness Command and Fort Monmouth, ATTN: DRSEL-ME-MQ, Fort Monmouth, New Jersey 07703. A reply will be furnished to you.

TABLE OF CONTENTS

Section 0	INTRODUCTION	
0-1	Scope	0-1
0-2	Indexes of Publications	0-1
0-3	Maintenance Forms, Records, and Reports	0-1
0-4	Administrative Storage.	0-2
0-5	Destruction of Army Electronics Materiel.	0-2
0-6	Reporting Equipment Improvement Recommendations (EIR).	0-2

This manual is an authentication of the manufacturer's commercial literature which, through usage, has been found to cover the data required to operate and maintain this equipment. The manual was not prepared in accordance with military specifications; therefore, the format has not been structured to consider categories of maintenance.

TABLE OF CONTENTS (Continued)

APPENDICES

APPENDIX	A.	REFERENCES	A-1
APPENDIX	B.	COMPONENTS OF END ITEM LIST (Not Applicable)..	
APPENDIX	C.	ADDITIONAL AUTHORIZATION LIST (Not Applicable)	
APPENDIX	D.	MAINTENANCE ALLOCATION	
Section	1.	Introduction..	D-1
	11.	Maintenance Allocation Chart for Frequency Comb	
		Generator SG-1129/U (HP-8406A)	D-5
	III.	Tool and Test Equipment Requirements for Frequency	
		Comb Generator SG-1129/U (HP-8406A)	D-6

LIST OF ILLUSTRATIONS

LIST OF TABLES

Numb	Title	Page
1-1.	Specifications	1-1
5-1.	Test Equipment Required	5-1
5-2.	In-Cabinet Performance Check	5-2
5-3.	Performance Check Test Card.	5-5
5-4.	Safe Ohmmeter Ranges for Transistor Resistance Measurements..	.5-5
5-5.	Output-of-Circuit Transistor	
	Resistance Measurement	5-5
6-1.	Reference Designation Index.	6-2
6-2.	Replacement Parts.	6-7
6-3.	Code List of Manufacturers	6-10
6-4.	Part Number-National Stock Number	
	Cross-Reference Index	.6-11

SECTION 0 INTRODUCTION

0-1. SCOPE

a. This manual contains instructions for the operation, organizational maintenance, direct support, and general support maintenance of the SG-1129/U Frequency Comb Generator, Hewlett-Packard Model HP-8406A, hereinafter referred to as the HP-8406A.
b. This TM is an authentication of Hewlett-Packard manual, HP Part No. 08406-90001, printed June 1967 for HP8406A with serial prefixes 649 and 737. For HP-8406A with serial prefixes other than 649 or 737 this manual must be corrected in accordance with, Backdating Changes for earlier models, or Manual Changes for later models. Backdating Changes and Manual Changes are located in Section VIII.
c. Appendix A provides a list of applicable references, and Appendix D contains the maintenance allocation chart (MAC). The MAC is current as of 16 May 1979. Table 6-4 contains the part number-national stock number crossreference index.

0-2. INDEXES OF PUBLICATIONS

a. DA Pam 310-4. Refer to the latest issue of DA Pam 310-4 to determine whether there are new editions, changes, or additional publications pertaining to the equipment.
b. DA Pam 310-7. Refer to DA Pam 310-7 to determine whether there are modification work orders (MWOs) pertaining to the equipment.

0-3. MAINTENANCE FORMS, RECORDS AND REPORTS

a. Reports of Maintenance and Unsatisfactory Equipment. Department of the Army forms and procedures used for equipment maintenance will be those prescribed by TM 38-750, The Army Maintenance Management System.
b. Report of Packaging and Handling Deficiencies. Fill out and forward DD Form 6 (Packaging Improvement Report) as prescribed in AR 735-11-2/NAVSUPINST 4440.127E/AFR 400-54/MCO 4430.3E and DSAR 4140.55.
c. Discrepancy in Shipment Report (DISREP) (SF 361). Fill out and forward Discrepancy in Shipment Report (DISREP) (SF 361) as prescribed in AR 55-38/NAVSUPINST 4610.33B/AFR 75-18/MCO P4610.19C and DLAR 4500.15.

0-4. ADMINISTRATIVE STORAGE

Before placing this instrument in storage, its complete operability must be verified and all deficiencies corrected by accomplishing the performance checks and adjustment procedures in Section V pf this manual. Troubleshooting procedures are also provided in Section V tp aid in the correction of malfunctions.

0-5. DESTRUCTION OF ARMY ELECTRONICS MATERIEL

Destruction of Army electronics materiel to prevent enemy use shall be in accordance with TM 750-244-2.

0-6. REPORTING EQUIPMENT IMPROVEMENT RECOMMENDATIONS (EIR)

If your Frequency Comb Generator HP-8406A needs improvement, let us know. Send us and EIR. You, the user, are the only one who can tell us what you don't -Like about your equipment. Let us know why you don't like the design. Tell us why a procedure is hard to perform. Put it on an SF 368 (Quality Deficiency Report). Mail it to: Commander, US Army Communications and Electronics Materiel Readiness Command and Fort Monmouth, ATTN: DRSEL-ME--MQ, Fort Monmouth, New Jersey 07703. We will send you a reply.

Figure 1-1. Frequency Comb Generator
02293-1

SECTION I GENERAL INFORMATION

1-1. DESCRIPTION.

$1-2$. The hp Model 8406A supplies a frequency comb with a selectable spectral line spacing of $1 \mathrm{Mc}, 10 \mathrm{Mc}$, 100 Mc , or the frequency of an external trigger signal. The frequency comb generated is usable to at least 4 Gc.
1-3. The Model 8406A provides these additional features:
a. Output level is continuously variable by a front panel control.
b. Interpolation amplitude level is continuously variable by a front panel control.
c. Comb frequency or external trigger frequency is selectable by front panel pushbuttons. This switch will not permit more than one button to be actuated at a time
to avoid confusion in the output signal.
d. Front panel BNC jacks are provided for modulation and external trigger frequencies.
e. A switch is provided on the rear apron to switch the instrument to 230 -volt operation.

1-4. INSTRUMENT IDENTIFICATION.

1-5. Hewlett-Packard uses a two- section, eight-digit serial number (on instrument rear panel) to identify instruments $(000-00000)$. The first three digits are a serial prefix number, and the last five digits refer to a specific instrument. If the serial prefix on your instrument does not appear on the title page of this manual, there are differences between the manual and your instrument which are described in a Manual Change sheet included with this manual

Table 1-1. Specifications

Comb Fundamental Frequencies: 1, 10, and 100 Mc , pushbutton selected, generate harmonically related signals usable to beyond 5 Gc .
Comb Frequency Accuracy: $\pm 0.01 \%$ (0° to $50^{\circ} \mathrm{C}$).
Peak Amplitude*:

	1 Mc Comb	10 Mc Comb	100 Mc Comb
$10-500 \mathrm{Mc}$	$>-80 \mathrm{dBm}$	$>-60 \mathrm{dBm}$	-
$0.1-1.0 \mathrm{Gc}$	-	-	$>-45 \mathrm{dBm}$
$0.5-2.0 \mathrm{Gc}$	$>-70 \mathrm{dBm}$	$>-50 \mathrm{dBm}$	-
$1-2 \mathrm{Gc}$	-	-	$>-35 \mathrm{dBm}$
$2-4 \mathrm{Gc}$	$>-82 \mathrm{dBm}$	$>-62 \mathrm{dBm}$	$>-47 \mathrm{dBm}$

*Peak signal level defined in terms of equipment cw signal level (as measured on hp 8551B/851B Spectrum Analyzer).
OUTPUT AMPLITUDE control permits continuous level adjustment.
Comb Output Connector: Type N female, source impedance approximately 50 ohm.
Maximum External Signal at Comb Output: Signals exceeding 1 watt (pk and av) may cause damage.
Interpolation Function: 10- Mc and 1-Mc combs can be combined into primary- secondary comb; Interpolation Amplitude control adjusts level of secondary (1 Mc) signal.

External Modulation: External modulation signals can be used to phase modulate any of the combs to produce sidebands for interpolation between fixed comb markersl. BNC female connector.
External Trigger: External signals (normally sine waves) between 1 Mc and 200 Mc can be used to produce combs spaced at frequency of trigger signals ${ }^{2}$. BNC female connector.
Power: 115 or 230 volts $\pm 10 \%, 50-400 \mathrm{cps}, 2$ watts
Dimensions:

```
Dimensions in wches And (millmeteas)
(A) FOA TOTAL LEEGTH INELUOING KNOBS
```


Weight: Net $6 \mathrm{lb}(2.7 \mathrm{Kg})$; shipping 9 lb (4.1 Kg)
${ }^{1}$ External modulation: Modulation frequencies can be as low as 5 kc . Although the level of modulation voltage required varies with modulating frequency and the harmonic number of the comb being modulated, the information here will serve as a guide:
To produce sidebands approximately 20 db below the main comb marker at the 1 Gc harmonic of the appropriate comb (comb output amplitude at maximum), typical modulation voltages are: $\quad 1-2 \quad \mathrm{mv}$ rms at 200 kc for the 1 Mc comb
$5-10 \quad \mathrm{mv}$ rms at 2 Mc for the 10 Mc comb
50-100 mv rms at 20 Mc for the 100 Mc comb
Signals greater than 5 v rms at modulation input may cause damage.
${ }^{2}$ External Trigger: Typical input signal levels to generate externally triggered combs at the frequency of the external trigger are in the range of $1-3$ volts rms . Input signals greater than 5 volts rms may cause damage. With input triggers in the $1-20 \mathrm{Mc}$ frequency span, the OUTPUT AMPLITUDE control of the 8406A can be used to adjust the output comb level. When using signals in the frequency span from $20-200 \mathrm{Mc}$, output comb amplitude is a function of the input signal level.

Figure 2-1. Combining Case

SECTION II INSTALLATION

2-1. INTRODUCTION.

2-2. This section contains information on unpacking, inspection, repacking, storage and installation.

2-3. UNPACKING AND INSPECTION.

2-4. Inspect instrument for shipping damage as soon as it is unpacked. Check for broken knobs and connectors; inspect cabinet and panel surfaces for dents and scratches. A performance check is given in Table 5-2

DELETED

2-5. STORAGE AND SHIPMENT.

2-6. DELETED

2-8. RACK INSTALLATION.

2-9. When the Model 8406A is to be rack-mounted, a combining case (Paragraph 2-10) or adapter frame Paragraph 2-11) is required. The two methods for rack mounting are discussed in the following paragraphs.

2-10. COMBINING CASE. The combining case (hp 1051A) shown in Figure 2-1 is a full-module unit which accepts varying combinations of submodule units such as the $1 / 3$ module Model 8406. The combining case can be used as a bench model or it can be rackmounted. A rack-mounting kit (hp part number 50600777) is supplied to rack mount the combining case. Instructions for using the case are given in Figure 2-1. When only one-third of the case is used, a blank fillerpanel (hp part number 5060-0793) is available to enclose the unused front panel space.

2-11. ADAPTER FRAME. The adapter frame (hp part number 5060-0797) in Figure 2-2 is a rack frame that accepts any combination of submodule units;
a. Place adapter frame on edge of bench as shown in step 1. Figure 2-2. (Only two submodule units are illustrated for clarity. The method of operation is the same for three.)
b. Stack units in frame as shown in step 2. Place spacer clamp between units, step 3.
c. Place end spacer clamps as shown in step 4, and push units into frame.
d. Insert screws on either side of frame, step 5, and tighten until units are tight in frame.
e. The complete assembly is now ready for rack mounting.

2-12. OPERATING FROM 115 OR 230 VOLTS.

2-13. The Model 8406 may be operated from either 115 - or 230 -volt $10 \%, 50$-to 400 -cpspower lines. A slide switch on the rear panel permits quick conversion for operating from either voltage. Insert a narrow- blade screwdriver in the switch slot and slide the switch to expose "115" marking for 115 -volt operation or " 230 " marking for 230 -volt operation. A $1 / 16$ amp fuse is used for both voltages.

CAUTION: Be sure this switch is in proper position before turning on.

2-14. POWER CABLE. The Model 8406 is equipped with a detachable 3 -wire power cable. Proceed as follows for installation:
a. Connect flat plug (three-socket connector) to ac line jack at rear of instrument.
b. Connect plug (two-blade with round grounding pin) to three-wire (grounded) power outlet. Exposed portions of the instrument are grounded for safety; when only a two-blade outlet is available, use connector adapter (hp part number 1251-0048), and connect short wire from side of adapter to ground.

Figure 2-2. Adapter Frame

02293-1

SECTION III OPERATION

3-1. INTRODUCTION.

3-2. The Model 8406 Frequency Comb Generator is used to calibrate other instruments which display the frequency domain. It is usually used with Spectrum Analyzers to calibrate their frequency and output characteristics. The illustration on the facing page, Figure 3-1 shows in general the operation of the Model 8406. The following paragraphs discuss special points which are not covered in the general explanation.
3-3. INTERPOLATION MODULATION. Usually to calibrate an instrument, the $10-$ Mccomb is used first to determine which lines correspond to the $10-\mathrm{Mc}$ markers. If a finer determination is required, the INTERPOLATION AMPLITUDE control is turned on and the amplitude adjusted. This will give ten times more lines, each marking a $1-\mathrm{Mc}$ point, in addition to the $10-\mathrm{Mc}$ lines. If the $1-\mathrm{Mc}$ Oscillator only were used, the same accuracy would be obtained but there is the possibility that a wrong line would be chosen if the instrument being tested is badly out of calibration.
3-4. EXTERNAL MODULATION. If a modulation spectrum other than 1 Mc on the internally generated comb is desired, feed the output from an external oscillator into the appropriate MODULATION jack (1 Mc and 10 Mc or 100 Mc COMB). The level should be adjustable around 10 millivolts. Depress the COMB FREQUENCY pushbutton for the main frequency spectrum desired. The output will now contain major spectrallines spaced at the frequency of the external oscillator.

SECTION IV THEORY OF OPERATION

4-1. GENERAL.

4- 2. The Model 8406 generates a train of sharp pulses at a repetition frequency of $1 \mathrm{Mc}, 10 \mathrm{Mc}$, or 100 Mc supplied internally or at the frequency of an external oscillator. The frequency spectrum of the output is a comb with spectral lines spaced by the repetition frequency, I-Mc, 10-Mc, 100Mc or the frequency of an external oscillator.

4-3. BLOCK DIAGRAM.

4-4 Figure 4-1 s a block diagram which shows the interconnections between the main sections of the instrument. Note that only one oscillator is on at any one time, except when the 1-Mc Interpolation Oscillator is used to interpolate between the main spectral lines of the $10-\mathrm{Mc}$ Oscillator. In the case of the $1-\mathrm{Mc}$ and $10-\mathrm{Mc}$ Oscillators the signal is passed through a Diode Driver before it is applied to the Output Harmonic / Generator (low-frequency signals do not generate harmonics with sufficient amplitude when applied directly to the Output Harmonic Generator). The Diode Driver sharpens the transition so that higher amplitude
harmonics are generated. The 100-Mc Oscillator-Amplifier generates high-level harmonics without shaping and thus triggers the step-recovery diode directly.

4-5. INDIVIDUAL CIRCUITS.

4-6. 1-MC AND 10-MC OSCILLATORS.
4-7. Since these oscillators are similar they will be described together. Both of these oscillators consist of a Colpitts-type oscillator in a common-emitter configuration. Crystal control is used in both oscillators. The output of the $10-\mathrm{Mc}$ Oscillator goes directly to the Diode Driver. Output of the 1-Mc Oscillator goes either directly to the Diode Driver or to the 5 -Mc Harmonic Generator Diode A1CR1. The filter follow- ing removes all harmonics above 5 Mc when the 1 Mc signal is used for interpolation between the spectral lines of the $10-\mathrm{Mc}$ Oscillator. The Interpolation Oscillator phasemodulates the $10 \mathrm{M} / \mathrm{c}$ signal producing upper and lower sidebands. Line overlap would be produced if signals above 5 Mc were used for modulation.

Figure 4-1. Block Diagram

To reduce the confusion caused by two sets of signals, only modulating frequencies 5 Mc or below are permitted to modulate the $10-\mathrm{Mc}$ signal.

4-8. 100-MC OSCILLATOR.

4-9. This oscillator is also of the Colpitts type with a tuned tank circuit. Series tuning of the crystal is used to adjust the frequency.

4-10. 100-MC AMPLIFIER.

4-11. This Amplifier is of standard configuration with a tuned input and a tuned output. The Amplifier is energized only in the $100-\mathrm{Mc}$ switch position, since it is not needed otherwise.

4-12. DIODE DRIVER AND EMITTER FOLLOWER.

4-13. The Diode Driver generates a fast-rise pulse for each cycle sinewave fed to the tunnel diode, CR2. This fast-rise pulse produces a large current in the reverse direction of the Output Harmonic Generator, CR1. When the stored charge in the diode is depleted, the diode opens, producing a step of voltage on the transmission line of the Harmonic Generator. The Emitter Follower is used as a source of variable voltage
to the Diode Driver. As the output of the Diode Driver is varied, the level of the output frequency comb varies.

4-14. STEP-RECOVERY DIODE.

4-15. Diode CR1 is a step-recovery diode used for harmonic generation. Step-recovery diodes operate somewhat differently than normal diodes. In the forward-biased condition they act as any diode. However when back-biased, these diodes continue to conduct due to stored carriers. When the diode runs out of stored carriers it shuts off abruptly. This sharp cutoff generates a multitude of harmonics. The step function produced is formed into a impulse by the shorted transmission-line stub at the diode output. The diode must conduct in the forward direction after each pulse to replace the stored charge. A biasing network (R19, L10) sets the voltage at the diode so that conduction takes place. The step-recovery diode may be used by itself for harmonic generation. This is the situation when using the 20-200 MC EXTERNAL TRIGGER jack. For this application the instrument does not have to be turned on.

4-16. ATTENUATOR ASSEMBLY.

4-17. This attenuator isolates the step-recovery diode from the output connector to give a 50 -ohm output impedance.

5-1. INTRODUCTION.

$5-2$. This section provides maintenance and service information for the Model 8406 Frequency Comb Generator. Included are a table of recommended test equipment, troubleshooting procedures, repair and adjustment procedures, and an in-cabinet performance check which may be used to verify proper operation of the Generator.

5-3. TEST EQUIPMENT.

5-4. Recommended test equipment for performance checking, troubleshooting, and repair is listed in Table 51 Other test instruments may be used if their specifications satisfy the required characteristics. See Section II of Appendix D. MAC.

5-5. IN-CABINET PERFORMANCE CHECK.

5-6. GENERAL. The In-Cabinet Performance Checks, Table 5-2. and Performance Check Test Card (to be filled out during incoming inspection), verify specifications and provide a permanent record of the performance of the instrument. The In-Cabinet

Performance Check verifies the proper operation of all circuits in the Generator and may be used:
a. As part of an incoming inspection check of instrument specifications;
b. periodically, for instruments used in systems where maximum reliability is of utmost importance;
c. as part of a troubleshooting procedure to locate out-of-tolerance operation;
d. after any repairs or adjustments, before returning instrument to regular service.

5-7. VARIABLE LINE VOLTAGE.

5-8. During the Performance Check,Table 5-2 connect the Generator to a power source through a variable voltage device so that line voltage may be varied $\pm 10 \%$ from nominal (115 or 230 Vac) to assure proper operation of the Generator under various supply conditions.

Refer to Section II ff Appendix D, MAC.
Table 5-1. Test Equipment Required

Instrument Type	Critical Specifications	Instrument Recommended
AC Voltmeter	Range: to 1 mV.	hp Model 400D/H/L/E/EL
	Frequency Range: $40-200 \mathrm{cps}$	
DC Voltmeter	Range: 14 volts	hp Model 405BR
	Resolution: 0.2 volts	hp Model 5254L with
Electronic Counter	Range: 1 to 100 Mc	hp Model 5253B plug-in
	Accuracy: $\pm 0.005 \%$	hp Model 8551 with
Spectrum Analyzer	Range: 10 Mc- 4 Gc	
hp Model 851	Rejects 2 Gc	hp Model 8439A
Notch Filter	Range: 100 Mc	hp Model 411A
RF Voltmeter	Power: 1 amp	Ohmite VT8F
Variable Autotransformer	Voltage: 102 to 128 volts	hp Model 606
	Range: 200 Kc to 50 Mc	hp Model 8614A
Signal Generator	Frequency: $1-2$ Gc	hp Model 8431A
Signal Generator	Pass: $2-4$ Gc, reject other	hp part number 1250-0072
Bandpass Filter		hp part number 1250-0077
ACCESSORIES	BNC T Connector	Walsco 2947
UG-274A/U	Female N-Male BNC connector	General Cement Company
UG-349A/U		GC 8271
Tuning Wand		
Plastic Tuning Wand		

02293-2

OUTPUT

a. Connect 1-2 Gc Signal Generator to Notch Filter at the input to the Spectrum Analyzer.
b. Set Spectrum Analyzer controls as follows:

TUNE
IF
VERT DISPLAY ...LOG
SWEEP TIME ... 1 SEC/CM
SPECTRUM WIDTH ... 200 MC/CM
ATTENUATOR... 10 DB (to start)
IF BANDWIDTH 10 KC
c. Set Signal Generator for $-35-\mathrm{dBm}$ output at 1 Gc .
d. Adjust the Spectrum Analyzer for a display 6 cm high.
e. Increase the Signal Generator frequency at approximately $200-\mathrm{Mc}$ intervals to 2 Gc , observing the display amplitude at each frequency. If the amplitude changes, mark the level with a grease pencil on the face of the Spectrum Analyzer.
f. Connect the 8406A as shown in Figure 5-1

h. Leave Spectrum Analyser controls as in band d. The frequency comb should be smooth in output with an output level of greater than -35 dBm from 1-2 Gc and greater than -45 dBm from 100 Mc to 1 Gc .
i. Depress the 10 Mc pushbutton on the 8406.
j. The frequency comb should be smooth in output with an output level of greater than -50 dBm from 500 Mc to 2 Gc and greater than -60 dBm from 10 Mc to 500 Mc .
k. Depress the 1 Mc pushbutton on the 8406 .
m . The frequency comb should be smooth in output with a level of greater than -70 dBm from 500 Mc to 2 Gc and greater than.-80 dBm from 10 Mc to 500 Mc (ATTENUATOR may have to be switched to 0 DB).
n. Connect the counter and measure the frequency. Must be within 100 cycles.
o. Depress the 10 MC pushbutton on the 8406 . The frequency must be within 1000 cps .
p. Depress the 100 MC pushbutton on the 8406 . The frequency must be within 10 kc .
q. Set the Spectrum Analyzer so that two successive 10-Mc harmonics are displayed, widely spaced.
r. Turn the INTERPOLATION AMPLITUDE control on the 8406 fully clockwise. Ten 1-Me pulses should appear in the space between the two 10-Mc pulses.

If it is desired to check the output level from 2-4 Gc, fundamental mixing must be used to increase sensitivity in order that the lower levels may be observed. Proceed as follows:
a. Repeat Analyzer Calibration steps a-d, using a 2-4 Gc Signal Generator with a 8431A Bandpass Filter and set the Spectrum Analyzer controls as follows:

TUNE
\qquad
VERT DISPLAY ..LOG
\qquad
SPECTRUM WIDTH .. 200 MC/CM
ATTENUATOR... 10 DB (to start)
IF BANDWIDTH 10 Kc

Table 5-2. In-Cabinet Performance Check (cont'd)
b. Measure 8406 comb output level,
$100-\mathrm{Mc}$ comb should be greater than -47 dBm over 2-4 Gc range
$10-\mathrm{Mc}$ comb should be greater than -62 dBm over $2-4 \mathrm{Gc}$ range
$1-\mathrm{Mc}$ comb should be greater then -82 dBm over $2-4 \mathrm{Gc}$ range (may have to reduce ATTENUATOR to 0 DB to see this sensitivity on last measurement).

MODULATION/EXT
1-20 MC Input
a. Connect the instrument as shown in Figure 5-1.
b. Depress the 1 Mc pushbutton.
c. Set the Spectrum Analyzer to a center frequency of 1 Gc and a spectrum width of about 3 Mc with an IF bandwidth of 1 Kc .
d. Connect a Signal Generator to 1 MC, 10 MC COMB MODULATION jack on 8406.
e. Set frequency of signal generator to 200 Kc and adjust output amplitude so that the sidebands displayed on Spectrum Analyzer are 20 db below the amplitude of the $1-\mathrm{Mc}$ comb.
f. Read the output level of the signal generator. This level should be less than 1 mV . (Actual modulating voltage required will be approximately twice this since the input impedance at this jack is high.)
g. Depress the 10 MC pushbutton on the 8406 .
h. Set the Spectrum Analyzer to a spectrum width of 100 Mc and an IF bandwidth of 10 Kc .
i. Set the frequency of signal generator to 2 Mc and level so that the sidebands displayed on spectrum analyzer are 20 db below carrier frequency. Signal Generator output level should be less than 6 mV .
j. Insert a BNC T connector at the 1-20 Mc input and connect an RF Millivoltmeter to the open arm of the T to measure the input signal.
k. Depress EXT TRIG pushbutton on 8406, set Signal Generator to 20 Mc and increase output level until 8406 triggers. This level should be less than 4 volts.
m . Connect Signal Generator to the 100 MC COMB MODULATION jack of 8406 with the same set-up as in step k.
n. Depress 100 MC pushbutton on 8406 , set Signal Generator to 20 Mc and increase output level until 8406 triggers. This level should be less than 200 mV .
o. Set Signal Generator frequency to 50 Mc , depress EXT TRIG pushbutton on 8406, and increase output level of Signal Generator until Comb Generator triggers. This level should be less than 2 volts.

CAUTION

TO AVOID DAMAGE, REMOVE POWER FROM INSTRUMENT BEFORE REMOVING OR REPLACING INSTRUMENT COVERS, ASSEM-BLIES, OR COMPONENTS.

5-9. INSTRUMENT COVER REMOVAL.

5-10. To remove top or bottom cover, unscrew and remove the countersunk Phillips-head screws which secure cover to the instrument at the rear. Then slide cover toward rear of instrument.

> WARNING: $115 / 230$ VAC AND DC SUPPLY WIRES ARE EXPOSED WHEN EITHER TOP OR BOTTOM INSTRUMENT COVER IS REMOVED. BE CAREFUL DURING TROUBLESHOOTING, ADJUSTMENTS, OR REPAIR.

5-11. TROUBLESHOOTING AND REPAIR.

5-12. PRELIMINARY TROUBLESHOOTING.
$5-13$. The first step is to decide if the trouble is catastrophic or marginal. If catastrophic, start with the power supply and then trace the signal through the
instrument (the block diagram, Figure 4-1 will help here). If marginal, perform the In- cabinet Performance Check to determine the circuit which is causing the marginal performance. The instrument is straightforward except for the Diode Driver. Note that the Diode Driver is energized in the EXT TRIG position of the COMB FREQUENCY switch in addition to the 1 MC and 10 MC positions. This permits the use of the Diode Driver to "square" up the incoming trigger signal when using external trigger.

5-14. TRANSISTOR TROUBLESHOOTING.

5-15. When troubleshooting transistor circuits certain precautions must be observed. Transistors can be damaged by small voltages or by heat. Be very careful not to short the circuit and thereby apply excessive voltage to the transistors. When using a VTVM measure emitter-to-base voltages to a common point, such as the chassis (there may be enough loop current between the leads of the VTVM to damage transistors). When measuring resistance use only the ranges on the ohmmeter which have 1.5 volts or less between the leads and whose short-circuit current is less than 3 mA . See Table 5-4 for the safe ranges of popular ohmmeters.

Figure 5-2. Location Diagram

Table 5-3. Performance Check Test Card

5-16. IN-CIRCUIT TESTING. The most common causes of transistor failures are internal short- and opencircuits. In transistor circuit testing the most important consideration is the transistor base-emitter junction. Like the control grid of a vacuum tube, the base is the control point of the transistor. The emitter-base voltage should be a fraction of a volt, the polarity and exact value depending upon the material

Table 5-4. Safe Ohmmeter Ranges for Transistor Resistance Measurements

Ohmmeter	SafeRange(s)	$\begin{gathered} \text { Open } \\ \text { Ckt } \\ \text { Voltage } \end{gathered}$	$\begin{aligned} & \text { Short } \\ & \text { Ckt } \\ & \text { Current } \end{aligned}$	Lead		
				Color	Polarity	
HP 412A	Rx 1K	1.0V	1 ma			
	Rx 10K	1.0 V	$100 \mu \mathrm{a}$	Red	+	
	Rx 100K	1.0 V	$10 \mu \mathrm{a}$	Black	-	
	Rx1M	1.0 V	$1 \mu \mathrm{a}$			
	Rx 10M	1.0 V	$0.1 \mu \mathrm{a}$			
HP 410C	Rx 1K	1.3 V	0.57 ma			
	Rx 10K	1.3 V	$57 \mu \mathrm{a}$	Red	+	
	Rx 100K	1.3 V	$5.7 \mu \mathrm{a}$	Black	-	
	Rx 1 M	1.3 V	$0.5 \mu \mathrm{a}$			
	Rx 10M	1.3 V	$0.05 \mu \mathrm{a}$			
HP 410B	Rx 100	1.1V	1.1 на	Black Red	+	
	Rx 1 K	1.1V	$110 \mu \mathrm{a}$			
	Rx 10K	1.1V	$11 \mu \mathrm{a}$			
	Rx100K	1.1 V	$1.1 \mu \mathrm{a}$			
	Rx 1 M	1.1 V	0.11 uа			
Simpson260	Rx 100Rx 1K	1.5 V	1 ma	Red	+	
				Black	-	
Simpson			0.82ma		+	
269				Red		
$\begin{gathered} \text { Triplett } \\ 630 \\ \hline \end{gathered}$	Rx 100	1.5 V	3.25 mA	Varies with Serial Number		
	Rx 1K	1.5 V	$325 \mu \mathrm{~A}$			
Triplett 310	Rx 10	1.5 V	$750 \mu \mathrm{a}$			
	Rx 100	1.5 V	$75 \mu \mathrm{a}$			

Paragraphs 5-16 to 5-18
of the transistor and the current carried. Short the emitter to the base. If the transistor is working, the voltage on the collector should go toward the supply voltage.

5-17. OUT-OF-CIRCUIT TESTING. While it is not recommended to remove the transistors from the instrument for troubleshooting as a general rule, sometimes it is impossible to isolate troubles to a particular transistor. In such case it may be necessary to remove the suspected transistor and test it on a curve tracer. Do NOT remove a transistor for testing without some indication that this particular transistor is at fault. Use a heat sink, such as a pair of long-nosed pliers, between the soldering iron and the transistor. When soldering a transistor back in the circuit use the same precautions as when unsoldering. If a particular transistor is all right but the circuit still does not work, try the transistor ahead and behind the suspected one. Table 5-5 gives typical resistance measurements of transistors.

5-18. PRINTED CIRCUIT COMPONENT

REPLACEMENT. Component lead holes in the Model 8406 circuit board have plated walls to ensure good electrical contact between conductors on the opposite sides of the board. To prevent damage to this plating and to the replacement component, apply heat sparingly and work carefully. The following replacement procedure is recommended;
a. Remove defective component.
b. Melt solder in component lead holes. Use clean, dry soldering iron to remove excess solder. Clean holes with toothpick or wooden splinter. Do not use metal tool for cleaning as this may damage throughhole plating.

Table 5-5. Output-of-Circuit Transistor Resistance Measurement

Resistance Measurement				
Transistor Type		Connect Ohmmeter		Measure Resistance (ohms)
		Pos. lead to	Neg. lead to	
PNP Germanium	Small	emitter	base*	200-500
	Signal	emitter	collector	10K-100K
	Power	emitter	base*	30-50
		emitter	collector	several hundred
NPN	Small Signal	base	emitter	1K-3K
		collector	emitter	very high (might read open)
Silicon		base	emitter	200-1000
	Power	collector	emitter	high, often greater than 1M

*To test for transistor action, add collector-base short. Measured resistance should decrease.
c. Bend lead of replacement component to correct shape and insert component leads into lead holes. Using heat and solder sparingly, solder leads in place. Heat may be applied to either side of the board. Use heat sink (long-nose pliers, commercial heat-sink tweezers, etc.) when replacing transistors and diodes in order to prevent conduction of excessive heat from the soldering iron to the component. Firm application of heat for the shortest possible time is the rule.
d. Through-hole plating breaks are indicated by the separation from the board of the round conductor pad on either side of the board. To repair breaks, press conductor pads against board and solder replacement component lead to conductor pad on both sides of the board.
5-19. ADJUSTMENTS.
5-20. Rarely, if ever, will it be necessary to perform adjustments on a particular instrument. Do NOT perform these adjustments as a performance check. Use the performance check. Test limits given here should not be construed as part of the specifications.
$5-21$. POWER SUPPLY. Perform the following tests at either 115 or 230 volt $50-400 \mathrm{cps}$, unless otherwise noted. When line voltage variations are specified, the test limits apply at the following voltages:

	115 VOLTS	230 VOLTS
Low line	103 volts	207 volts
Normal line	115 volts	230 volts
High line	127 volts	253 volts

Proceed as follows:
a. Depress 10 MC COMB FREQUENCY pushbutton.
b. Set INTERPOLATION AMPLITUDE fully clockwise.
c. Set OUTPUT AMPLITUDE fully clockwise.
d. Connect a dc and an ac voltmeter to the -14 volt supply. This is a violet wire on top of the printed circuit, third terminal from the rear (see Figure 5-2 for location).
e. Vary the line voltage from low to high while watching the meters. The dc voltage should stay in regulation within 0.5 Vdc and the ac voltage (ripple) should be below 3 millivolts.
5-22. OSCILLATOR FREQUENCIES. Connect the instrument as shown in Figure 5-1. The 2 Gc Notch Filter prevents overloading of 851/8551 Spectrum Analyzer at the intermediate frequency, but may not be necessary with all Spectrum Analyzers. Set Generator controls as follows:

```
COMB FREQUENCY 100 MC
INTERPOLATION AMPLITUDE ..................OFF
OUTPUT AMPLITUDE fully clockwise
```

a. Set Spectrum Analyzer to a center frequency of 1 Gc with spectrum width of 2 Gc . The frequency comb should be smooth in output. If not, tune A1T1 (see location diagram Figure 5-2) with a Walsco 2547 tuning wand for a stable frequency and A1T2 for maximum flat output in the $400-\mathrm{Mc}$ region as the OUTPUT AMPLITUDE control is varied from maximum to minimum.
b. Connect counter and tune A1C39 (see location diagram Figure 5-2) for 100-Mc frequency.
c. Depress 10 Mc pushbutton and use counter to measure frequency. Tune A1C18 with a General Cement 8271 plastic tuning wand to 10 Mc .
d. Depress 1 Mc pushbutton and use counter to measure frequency. Tune A1C7 to 1 Mc .

SECTION VI
 REPLACEABLE PARTS

See Table 6-4. PART NUMBER-NATIONAL STOCK NUMBER CROSS-REFERENCE INDEX.

6-1. INTRODUCTION.

6-2. This section contains information about replacement parts. Table 6-1 lists parts in alphanumerical order of their reference designators and indicates the description and hp stock number of each part, together with any applicable notes. Table 6-2 lists parts in alpha-numerical order of their hp stock numbers and provides the following information on each part:
a. Description of the part (see list of abbreviations
b. Typical manufacturer of the part in a five-digit code; see list of manufacturers in Table 6-3
c. Manufacturer's stock number.
d. Total quantity used in the instrument (TQ column).
6-3. Miscellaneous parts not indexed in Table 6-1 are listed at the end of the table.
6-4. DELETED below).

A	$=$	assembly
B	$=$	motor
BT	$=$	battery
C	$=$	capacitor
CP	$=$	coupler
CR	$=$	diode
DL	$=$	delay line
DS	$=$	device signaling (lamp)
E	$=$	misc electronic part

REFERENCE DESIGNATORS								
F	$=$	fuse	MP	=	mechanical part	V	=	vacuum, tube, neon
FL	=	filter	P	=	plug			bulb, photocell, etc.
IC	=	integrated circuit	Q	=	transistor	VR	=	voltage regulator
J	=	jack	R	=	resistor	W		cable
K	=	relay	RT	=	thermistor	X	=	socket
L	=	inductor	S	=	switch	Y		crystal
LS	=	loud speaker	T	=	transformer	Z	=	tuned cavity,
M	$=$	meter	TB	$=$	terminal board			network
MK	$=$	microphone	TP	=	test point			

A	$=$ amperes
AFC	$=$ automatic frequency control
AMPL	$=$ amplifier
BFO	$=$ beat frequency oscillator
BE CU	$=$ beryllium copper
BH	$=$ binder head
BP	$=$ bandpass
BRS	$=$ brass
BWO	$=$ backward wave oscillator
CCW	$=$ counter-clockwise
CER	$=$ ceramic
CMO	$=$ cabinet mount only
COEF	$=$ coefficient
COM	$=$ common
COMP	$=$ composition
COMPL	$=$ complete
CONN	$=$ connector
CP	$=$ cadmium plate
CRT	$=$ cathode-ray tube
CW	$=$ clockwise
DEPC	$=$ deposited carbon
DR	$=$ drive
ELECT	$=$ electrolytic
ENCAP	$=$ encapsulated
EXT	$=$ external
F	$=$ farads
FH	$=$ flat head
FIL H	$=$ fillister head
FXD	$=$ fixed
G	$=$ giga (10 ${ }^{9}$)
GE	$=$ germanium
GL	$=$ glass
GRD	$=$ ground(ed)
01194-13	
O2293-1	

ABBREVIATIONS					
H	$=$ henries	N/O	= normally open	RMO	= rack mount only
HDW	= hardware	NPO	= negative positive zero	RMS	= root-mean square
HEX	= hexagonal		(zero temperature	RWV	= reverse working
HG	= mercury		coefficient)		voltage
HR	= hour(s)	NPN	$=$ negative-positivenegative	S-B	= slow-blow
HZ	$=$ hertz			SCR	screw
		NRFR	= not recommended for field replacement	SE	= selenium
IF	$=$ intermediate freq			SECT	$=$ section(s)
IMPG	= impregnated	NSR	$=$ not separately	SEMICON = semiconductor	
INCD	= incandescent			SI	= silicon
INCL	= include(s)				
INS	= insulation(ed)			SIL	= silver
INT	= internal	OH	$=$ oval head	SL	= slide
				SPG	= spring
K	$=$ kilo	OX	$=$ oxide	SPL	= special
				SST	= stainless steel
LH	$=$ left hand	P	= peak	SR	= split ring
LIN	= linear taper	PC	= printed circuit	STL	= steel
LK WASH	= lock washer	PF	$=\underset{\text { picofarads }=10}{\text { farads }}$		
LOG	$=$ logarithmic taper			TA	tantalum
LPF	= low pass filter	PH BRZ = phosphor bronze		TD	= time delay
		PHL	$=$ Phillips	TGL	$=$ toggle
M	$=$ milli $=10^{-3}$	PIV	$=$ peak inverse voltage	THD	= thread
MEG	$=\mathrm{meg}=10^{6}$	PNP	$=$ positive-negative-	TI	= titanium
MET FLM	$=$ metal film		positive	TOL	= tolerance
MET OX	= metallic oxide	P/O	= part of	TRIM	= trimmer
MFR	= manufacturer	POLY	= polystyrene	TWT	$=$ traveling wave tube
MHZ	= mega hertz	PORC	= porcelain		
MINAT	$=$ miniature	POS	$=$ position(s)	U	$=$ micro $=10^{-6}$
MOM	= momentary	POT	= potentiometer	VAR	= variable
MTG	$=$ mounting	PP	= peak-to-peak	VDCW	= dc working volts
MY	= "mylar"	PT	= point	W/	$=$ with
		PWV	= peak working voltage	W	= watts
N	$=$ nano (10^{-9})	RECT	$=$ rectifier	WIV	= working inverse
N/C	= normally closed	RF	$=$ radio frequency		voltage
NE	= neon	RH	$=$ round head or	WW	$=$ wirewound
NI PL	$=$ nickel plate		right hand	W/O	$=$ without

Table 6-1. Reference Designation Index

Reference Designation	hp Stock No.	Description \#	Note
A1	08406-6001	BOARD ASSY., ETCHED CIRCUIT	
A1C1	0160-0174	C:FXD CER 0.47UF +80-20\% 25VDCW	
A1C2	0160-0127	C:FXD CER 1WF 20\% 25VDCW	
A1C3	0160-0134	C:FXD MICA 220PF 5\% 300VDCW	
A1C4	0160-0194	C:FXD MY 0.01SUF 10\%	
A1C5	0150-0050	C:FXD CER 1000PF 600 VDCW	
A1C6	0140-0145	C:FXD MICA 22 PF 5\% 500 VDCW	
A1C7	0121-0127	C:VAR A1R 1.7-14PF	
A1CS	0150-0121	C:FXD CER 0.1UF +80X-20\% 50VDCW	
A1C9	0150-0093	C:FXD CER 0.01UF +80-20\% 100VDCW	
A1C10	0140-0192	C:FXD MICA 68PF 5\% 300VDCW	
A1C11	0160-0179	C:FXD MICA 33PF 5\% 300VDCW	
A1C12	0140-0192	C:FXD MICA 68PF 5\% 300VDCW	
A1C13	0150-0096	C:FXD CER 0.05UF 100VDCW	
A1C14	0150-0121	C:FXD CER 0.1LUF +80\%-20\% 50VDCW	
A1C15	0140-0204	C:FXD MICA 47PF 5\% NPO 500VDCW	
A1C16	0140-0232	C:FXD MICA 460PF 1\% 300VDCW	
A1C17	0160-0178	C:FXD MICA 27PF 5\% 300VDCW	
A1C18	0121-0127	C:VAR A1R 1.7-14PF	
A1C19	0140-0176	C:FXD MICA 100 PF 2\% 300 VDCW	
A1C20	0150-0050	C:FXD CER 1000PF 600 VDCW	
A1C21	0140-0204	C:FXD MICA 47PF 5\% NPO 500VDCW	
A1C22	0150-0093	C:FXD CER 0.01UF +80-20\% 100VDCW	
A1C23	0150-0121	C:FXD CER 0.1UF +80\%-20\% 50VDCW	
A1C24	0160-0340	C:FXD MICA 600 PF 1\% 300VDCW	
A1C25	0150-0050	C:FXD CER 1000PF 600 VDCW	
A1C26	0180-0119	C:FXD ELECT 1UF -10+100\% 25VODC	
A1C27	0150-0050	C:FXD CER 1000PF 600 VDCW	
A1C28	0140-0209	C:FXD MICA 5PF 10\% 500VDCW	
A1C29	0160-2197	C:FXD MICA 10PF 5\%	
A1C30	0150-0050	C:FXD CER 1000PF 600 VDCW	
A1C31	0150-0050	C:FXD CER 1000PF 600 VDCW	
A1C32	0140-0209	C:FXD MICA 5PF 10\% 500VDCW	
A1C33	0140-0232	C:FXD MICA 460PF 1% 300VDCW	
A1C34	0150-0050	C:FXD CER 100PF 600 VDCW	
A1C35	0180-0138	C:FXD ELECT 100UF -10+100\% 40VDCW	
A1C36	0180-0059	C:FXD ELECT 10UF -10\%+100\% 25VDCW	
A1C37	0180-0059	C:FXD ELECT 10UF -10\%+100\% 25VDCW	
A1C38	0180-0059	C:FXD ELECT 10UF -10\%+100\% 25VDCW	
A1C39	0121-0127	C:VAR A1R 1.7-14PF	
A1C40	0150-0050	C:FXD CER 1000PF 600 VDCW	
A1C41	0160-2140	C:FXD CER 470 PF +80-2Y $1 / 41000 \mathrm{VDCW}$	
A1CR1	1901-0040	DIODE:SILICON 30 MA AT IV 30 PIV	
A1CR2	1912-0007	DIODE:TUNNEL EIA TYPE 1N3714	
A1CR3	1901-0026	DIODE:SILICON 200 PIV 0.5 AMP	
A1CR4	1901-0026	DIODE:SILICON 200 PIV 0.5 AMP	
A1CR5	1901-0025	DIODE:JUNCTION:5MA AT IV 100 PIV	
A1CR6	1901-0025	DIODE:JUNCTION:5MA AT IV 100 PIV	
A1CR7	1901-0025	DIODE:JUNCTION:5MA AT IV 100 PIV	
A1L1	9140-0131	COIL:FXD RF 10 MH	

\# See list of abbreviations in introduction to this section

Table 6-1. Reference Designation Index (Cont'd)

Reference Designation	hp Stock No.	Description \#	Note
A1L2	9140-0131	COIL:FXD RF 10 MH	
A1L3	9140-0131	COIL:FXD RF 10 MH	
A1L4	9140-0181	COIL:FXD RF 22UH 5\%	
A1L5	9140-0210	COIL:FXD RF 100 UH 5\%	
A1L6	9140-0210	COIL:FXD RF 100 UH 5\%	
A1L7	9140-0210	COIL:FXD RF 100 UH 5\%	
A1LS	9140-0158	COIL:FXD 1.0UH 10\%	
A1L9	9100-1612	COIL:FXD RF 0.33 UH 20\%	
A1L10	9140-0210	COIL:FXD RF 100 UH 5\%	
A1L11	9100-1613	COIL:FXD RF 0.47 UH 20\%	
A1Q1	1854-0005	TRANSISTOR:2N708 NPN SILICON	
A1Q2	1854-0005	TRANSISTOR:2N708 NPN SILICON	
A1Q3	1850-0099	TRANSISTOR:GERMANIUM 2N964 PNP	
A1Q4	1854-0019	TRANSISTOR:SILICON NPN	
A1Q5	1854-0073	TRANSISTOR:SILICON NPN 2N3478	
A1Q6	1850-0062	TRANSISTOR:GERMANIUM PNP 2N404	
A1Q7	1854-0073	TRANSISTOR:SILICON NPN 2N3478	
A1Q8	1850-0062	TRANSISTOR:GERMANIUM PNP 2N404	
A1Q9	1850-0064	TRANSISTOR:GERMANIUM PNP 2N1183	
A1R1	0698-3156	R:FXD MET FLM 14.7K OHM 1\% 1/8W	
A1R2	0757-0439	R:FXD MET FLM 6.81K OHM 1\% 1/8W	
A1R3	0698-0082	R:FXD MET FLM 464 OHM 1\% 1/8W	
A1R4	0698-3441	R:FXD MET FLM 215 OHM 1\% 1/8W	
A1RS	0698-0083	R:FXD MET FLM 1960 OHM 1\% 1/8W	
A1R6	0757-0465	R:FXD MET FLM 100K OHM 1\% 1/8W	
A1R7	0698-0082	R:FXD MET FLM 464 OHM 1\% 1/8W	
A1R8	0757-0280	R:FXD MET FLM 1.00K OHM 1\% 1/8W	
A1R9	0698-3136	R:FXD MET FLM 17.8K OHM 1\% 1/8W	
A1R10	07?57-0439	R:FXD MET FLM 6.81K OHM 1\% 1/8W	
A1R1L	0698-0082	R:FXD MET FLM 464 OHM 1\% 1/8W	
A1R12	0698-3441	R:FXD MET FLM 215 OHM 1\% 1/8W	
A1R13	0698-0084	R:FXD MET FLM 2150 OHM 1\% 1/8W	
A1R14	0698-0084	R:FXD MET FLM 2150 OHM 1\% 1/8W	
A1R15	0757-0280	R:FXD MET FLM 1.00K OHM 1\% 1/8W	
A1R16	0757-1094	R:FXD MET FLM 1.47K OHM 1\% 1/8W	
A1R17	0757-0401	R:FXD MET FLM 100 OHM 1\% 1/8W	
A1R18	0698-3441	R:FXD MET FLM 215 OHM 1\% 1/8W*	
A1R19	0757-0401	R:FXD MET FLM 100 OHM 1\% 1/8W	
A1R20	0757-0441	R:FXD MET FLM 8.25 K OHM 1\% 1/8W	
A1R21	0698-3154	R:FXD MET FLM 4220 OHM 1\% 1/8	
A1R22	0757-0417	R:FXD MET FLM 562 OHM 1\% 1/8W	
A1R23	0698-3440	R:FXD MET FLM 196 OHM 15 1/8W	
A1R24	0698-3441	R:FXD MET FLM 215 OHM 1\% 1/8W	
A1R25	0698-3430	R:FXD MET FLM 21.5 OHM 1\% 1/8W	
A1R26	0698-3430	R:FXD MET FLM 21.5 OHM 1\% 1/8W	
A1R27	0757-0346	R:FXD MET FLM 10.0 OHM 1\% 1/8W	
A1R28	0698-0084	R:FXD MET FLM 2150 OHM 1\% 1/8W	
A1R29	0698-0084	R:FXD MET FLM 2150 OHM 1\% 1/8W	
A1R30	0757-0346	R:FXD MET FLM 10,0 OHM 1\% 1/81	
A1R31	0698-3445	R:FXD MET FLM 348 OHM 1\% 1/8W	
A1R32	0757-0416	R:FXD MET FLM 511 OHM 1\% 1/8W	
A1T1	08406-6013	TRANSFORMER:RF(OSCILLATOR)	

\# See list of abbreviations in introduction to this section

Table 6-1. Reference Designation Index

Reference Designation	hp Stock No.	Description \#	Note
A1T2	08406-6014	TRANSFORMER:RF(AMPLIFIER)	
A1VR1	1902-0055	DIODE BREAKDOWN:SILICON 14.7V 10\%	
A1XY1	1200-0028	SOCKET:CRYSTAL 2-CONTACT	
A1Y1	.0410-0013	CRYSTAL UNIT:QUARTZ 1000KC	
A1Y2	0410-0109	CRYSTAL:QUARTZ 10 MC	
A1Y3	0410-0108	CRYSTAL:QUARTZ 100 MC	
	5000-0011	CLIP:ELECTRICAL RETAINING	
C1	0150-0097	C:FXD CER 6800 PF 1000 VDCW	
C2	0150-0019	C:FXD CER 1000PF 20\%	
C3	0150-0019-	C:FXD CER 1000PF 20\%	
C4	0150-0097	C:FXD CER 6800 PF 1000 VDCW	
CR1	08406-6002		
	1901-0169	SEMICON DEVICE:DIODE	
	08551-2041	POST: DIODE	
	$1150-0014$ $1250-0016$	CONTACT:OUTER N MALE CONNECTOR	
	1250-0016	RING:LOCKING FOR TYPE N CONNECTOR	
	5020-0306	NUT:CONNECTOR	
	08406-2002	BODY: DIODE HOLDER	
	08406-2003	CENTER CONDUCTOR	
DS1	2140-0047	LAMP:GLOW 1/10W 0.8 MA 68K OHM	
F1	2110-0040	FUSE:CARTRIDGE 1/16 AMP SLOW BLOW	
J1	1250-0001	CONNECTOR:BNC	
J2	1250-0001	CONNECTOR:BNC	
J3	1251-0148	CONNECTOR:POWER 3 PIN MALE	
J4		NSR PART OF STEP DIODE ASSY.	
J5	08406-2004	CONNECTOR: PANEL	
L1	9170-0019	CORE:TOROID	
L2	9170-0019	CORE:TOROID	
P1		NSR PART OF ATTENUATOR ASSY	
R1	2100-0350	R:VAR COMP 1.SK OHM 20% LIN 1/2W	
R2	0687-6831	R:FXD COMP 68K OHM 10\% 1/2W	
R3	2100-0350	R:VAR COMP 1500 OHM 20 LIN 1/2W	
S1	5101-0186	SWITCH:PUSHBUTTON(FREQUENCY)	
S2	5101-0033	SWITCH:SLIDE DPDT 115V-230V	
S3		NOT ASSIGNED	
S4		NSR PART OF R3	
T1	9100-1680	TRANSFORMER:POWER	
XF1	1400-0084	HOLDER:FUSE POST TYPE 3AG	
Z1	08406-6012	ATTENUATOR PAD ASSEMBLY INCLUDES:	
	1460-0297	SPRING:COMPRESSION	
	08491-6000	CARTRIDGE ASSEMBLY	
	08491-2101	CONNECTOR:FEMALE	
	08491-2102	Spacer, 2 ea.	

\# See list of abbreviations in introduction to this section

Table 6-1. Reference Designation Index (Cont'd)

\# See list of abbreviations in introduction to this section

Table 6-1. Reference Designation Index (Cont'd)
Reference
Designation hp Stock No.

000-8-29

MODULE
SIZE 29

5060-0703
1490-0031
5040-0700
5060-0727
5020-0700
5000-0703
5060-0709
5060-0706
5060-0715
5060-0712
5000-0711
5000-0714
SEE MAT'L. LIST
SEE MAT'L.. LIST

	MODULE SIZE 29
CABINET PARTS	

FRAME ASSEMBLY
STAND: TILT
HINGE
FOOT ASSEMBLY'
SPACER
COVER:SIDE
COVER ASSEMBLY TOP
UNPERFORATED FULL RECESS
UNPERFORATED HALF RECESS
PERFORATED FULL RECESS
PERFORATED HALF RECESS
8

9
10
\# See list of abbreviations in introduction to this section

Table 6-2. Replaceable Parts (Cont'd)

hp Stock No.	Description\#	Mfr.	Mfr. Part No.	TQ	
0121-0127	C:VAR AIR 1.7-14PF	28480	0121-0127	3	
0140-0145	C:FXD MICA 22 PF 5\% 500 VDCW	04062	RDM15C220J5C	1	
0140-0176	C:FXD MICA 100 PF 2\% 300 VDCW	04062	RDM15F101G3C	1	
0140-0192	C:FXD MICA 68PF 5\% 300VDCW	04062	RDM15E680J3C	2	
0140-0204	C:FXD MICA 47PF 5\% NPO 500VDCW	04062	RDM15E470J5C	2	
0140-0209	C:FXD MICA 5PF 10\% 500VDCW	04062	RDM15C050D5C	2	
0140-0232	C:FXD MICA 460PF 1\% 300VDCW	04062	RDM15F461F3C	2	
0150-0019	C:FXD CER 1000PF 20\%	72982	327005XUL0102M	2	
0150-0050	C:FXD CER 1000PF 600 VDCW	84411	TYPE E	8	
0150-0093	C:FXD CER 0.01UF +80-20\% 100VDCW	91418	TA	2	
0150-0096	C:FXD CER 0.05UF 100VDCW	91418	-TA	1	
0150-0097	C:FXD CER 6800 PF 1000 VDCW	91418	B	2	
0150-0121	C:FXD CER 0.1UF +80\%-20\% 50VDCW	56289	5050A	3	
0160-0127	C:FXD CER 1UF 204 25VDCW	56289	5013	1	
0160-0134	C:FXD MICA 220PF 5\% 300VDCW	14655	RDM15F221J3C	1	
0160-0174	C:FXD CER 0.47UF +80-20\% 25VDCW	56289	5C11A	1	
0160-0178	C:FXD MICA 27PF 5\% 300VDCW	04062	RDM15E270J3S	1	
0160-0179	C:FXD MICA 33PF 5\% 300VDCW	04062	ROM15E330J3S	1	
0160-0194	C:FXD MY 0.015UF 10\%	28480	0160-0194	1	
0160-0340	C:FXD MICA 600 PF 1\% 300VDCW	04062	RDM15F601F3C	1	
0160-2140	C:FXD CER 470 PF +80-20\% 1000VDCW	91418	TYPE B	1	
0160-2197	C:FXD MICA 10PF 5\%	28480	0160-2197	1	
0180-0059	C:FXD ELECT 10UF - $10 \%+100 \%$ 25VDCW	56289	30D106G025BB4	5	
0180-0119	C:FXD ELECT 1UF -10+100\% 25VDCW	56289	30D105G025AA4	1	
0180-0138	C:FXD ELECT 100UF - 10+100\% 40VDCW	56289	036254	1	
0570-0103	KNOB:BLACK ROUND	28480	0370-0103	2	
0370-0118	KNOB:GRAY PUSHBUTTON 11/16" DIA	28480	0370-0118	4	
0410-0013	CRYSTAL UNIT:QUARTZ 1000KC	28480	0410-0013	1	
0410-0108	CRYSTAL:QUARTZ 100 MC	28480	0410-0108	1	
0410-0109	CRYSTAL:QUARTZ 10 MC	28480	0410-0109	1	
0687-68351	R:FXD COMP 68K OHM 10\% 1/2W	01121	EB-6831	1	
0698-0082	R:FXD MET FLM 464 OHM 1\% 1/8W	28480	0698-0082	3	
0698-0083	R:FXD MET FLM 1960 OHM 1\% 1/8W	28480	0698-0083	1	
0698-0084	R:FXD MET FLM 2150 OHM 1\% 1/8W	28480	0698-0084	4	
0698-3136	R:FXD MET FLM 17.8KOHM 1% 1/8W	28480	0698-3136	1	
0698-3154	R:FXD MET FLM 4220 OHM 1\% 1/8W	28480	0698-3154	1	
0698-3156	R:FXD MET FLM 14.7KOHM 1\% 1/8W	28480	0698-3156	1	
0698-3430	R:FXD MET FLM 21.5 OHM 1\% 1/8W	28480	0698-5430	2	
0698-3440	R:FXD MET FLM 196 OHM 1\% 1/8W	28480	0698-3440	1	
0698-3441	R:FXD MET FLM 215 OHM 1\% 1/8W	28480	0698-3441	4	
0698-3445	R:FXD MET FLM 348 OHM 1\% 1/8W	28480	0698-3445	1	
0757-0280	R:FXD MET FLM 1.0KOHM 1\% 1/8W	28480	0757-0280	2	
0757-0346	R:FXD MET FLM 10.0 OHM 1\% 1/8W	28480	0757-0346	2	
0757-0LwUo	R:FXD MET FLM 100 OHM 1\% 1/8W	28480	0757-0401	2	
0757-0416	R:FXD MET FLM 511 OHM 1\% 1/8W	28480	0757-0416	1	
0757-0417	R:FXD MET FLM 562 OHM 1\% 1/8W	28480	0757-0417	1	
0757-0439	R:FXD MET FLM 6.81K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0439	2	
0757-0441	R:FXD MET FLM 8.25KOHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0441	1	
0757-1094	R:FXD MET FLM 1.47K OHM 1\% 1/8W	28480	0757-1094	1	
1200-0028	SOCKET:CRYSTAL 2-CONTACT	91662	430 BC	1	
1250-0014	CONTACT:OUTER N MALE CONNECTOR	28480	1250-0014	1	
1250-0016	RING:LOCKING FOR TYPE N CONNECTOR	28480	1250-0016	1	
1250-0001	CONNECTOR:BNC	28480	1250-0001	2	
1251-0148	CONNECTOR:POWER 3 PIN MALE	60427	H-1061-2	1	
1400-0064	HOLDER:FUSE POST TYPE 3AG	75915	342014	1	

\# See list of abbreviations in introduction to this section

Table 6-2. Replaceable Parts (Cont'd)

\# See list of abbreviations in introduction to this section

Table 6-2. Replaceable Parts (Cont'd)

\# See list of abbreviations in introduction to this section

TABLE 6-3.

CODE LIST OF MANUFACTURERS
The following code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1 (Name to Code) and H4-2 (Code to Name) and their latest supplements. The date of revision and the date of the supplements used appear at the bottom of each page. Alphabetical codes have been arbitrarily assigned to suppliers not appearing in the H4 Handbooks.

Code No.	Manufacturer Adress
00000	$\because . S . A . C o m m o n ~ A n y ~ s a p p l i e r ~ o f ~ U . S . ~$
00136	McCoy Electronics Mount Holly Springs, Pa.
00213	Sage Electronics Corp. Rochester, N. Y.
C0287	Cemcolac. Davielson, Corn.
00334	Humidia Colton, Calif.
00348	Niciotioa Co., Inc. Valley Stıam, N.Y.
00373	Gatlock inc., Electronics Praducis Div. Camden, N.J.
00656	Aerovox Corp. New Bediard, Mass.
D0179	Amp.inc. Hamsburg, P_{3}.
00781	Aurciaft Radio Coro. \quad Socnton, N.J.
00815	Northern Eng neeling Laboratories, inc. Burlingtor. Mis.
00853	Sangamo Electuc Co.. Pickens Div. Pickens, S.C.
00865	Goe Engineeriag Co. Los Angeles. Calil.
0 0891	Cail E. Holmes Corp. Los Angeles, Calit.
30929	Microlab inc. Livingston, N.J.
D1002	Gereral Electri: Co. Casacitcr Depl. Hudson Falls, N.Y.
31009	Alder Products Co. Brocxion, Mass.
01121	Allen Bradey Co. Milwaukee, Wis.
01255	Litton Industries, Inc. Beverly Hills, Calit.
01281	TRW Semiconductors, Inc. Lawndale, Calif.
01295	Texas instuments, inc. Transisior Products Div. Dallas, Texas
01349	The Alliance Mfg . Co. Alliance, Ohio
01589	Pacific Relays, Inc. Van Nuys, Cal.f.
01930	Amerock Co:p. Rockiord, M!
01961	Pulse Engineering Co. Santa Clara, Calif.
02114	Ferroxcube Corp. of America Saugerties, N.Y.
02116	Whee lock Signals, inc. Long Branch, N.J.
02286	Cole Rubber and Plastics inc. Sunnyvale, Calif.
02660	Amphenol-Zorg Election cs Corp. Chicago. Il.
02735	Radio Corp. ol America, Semiconductor and Materials Div. Somerville, N.J.
02771	Vocaline Co. of America. Inc. Gld Sayrook, Conn.
62777	Hopkins Engineering Co. San Fermanco, Calit.
03538	G. E. Semiconductar Prod. Dept. Syracuse, N.Y.
03705	Apex Machine \& Tool Co. Cayton, Ohio
03797	Eldema Corp. Complon, Calit.
03877	Transition Electric Corp. Wakefield, Mass.
03838	Pyrofimmesistor Co., Irc. Cedarknolls N.J.
03954	Singer Co., Diehl Div. Finderne Plant Sumervilie, N.J.
04009	Arrow, Hart and Hegeman Ele:t. Co. Hartiord, Conn.
04013	Taurus Corp. Lamberlville, N. J.
04222	Hi-Q Division of Aerovox Myrtle Beach, \$.C.
34354	Precision Paper Tube Co. Chicago, III.
04404	Dyme: Division of Hewlett.Packard Co. Palo Alto, Calif.
04651	Sy'vana Electric Prodacts. Mictonave Device Div. Mounazin View, Calif.
04713	Mototola, lac., Semiconducte Prod. Div.
	Phoenix, Arizona
04732	Fitron Co., Inc. Western Div.
04773	Automalic Electric Cor Culver City, Calit.
04796	Sequoia Wire Co. Redwood Cily. Calif.
04811	Precision Eorl spring Ca. El Monte, Calif.
04870	P.M. Molor Company Westchester, III.
04919	Component mig. Seryice Co. W. Bridgewale:, Mass.
05006	iwentueth Ceatury Flastics, Inc.
	Los Angeles. Calif.
05277	Hestinghotse Electric Corp. Semi-Concuctor Dept. Youngwood, Pa .
05347	Ultronix, Inc. San Malec, Calis.

Code No.	Manufacturers: Address
05397	Union Catbide Colp., Linoe Div., Keme: Dept. C'eveland, Ohio
05593	Ilfumitronic Engineering Cc. Sunnyule, Calif.
05616	
05624	Gatber Colman Co. Rockiord, III.
C5728	Tiffen Oplical Co. Roslyn Heights, Long Isiand. N. Y.
05129	Metro-Tel Corp. Hestbury, N. Y.
05783	Stewart Engineering Co. Santa Cruz. Calif.
C5820	Hiakefield Engireerng inc. Wiakefield, Mass.
06004	Bassick Eo., The Bridgeport, Conn.
06090	Raychem Colp. Redwood City, Calit.
36175	Bausch and Lomb Cotical Co. Rochester, N.Y.
06402	E. - A. Products Co. of America Chicago, III.
06540	Amatam Election c Habiware Co., Irc. New rocnelle, N. Y.
06555	Beede Electrical !nsltument Co., Inc.
	Penacook, N.t.
06666	General Devices Co., Inc. Indianapolis, ind.
06751	Semcor Div. Components Inc. Phoenix. Ariz.
06812	Tortirgton Mig. Co., Mest Div.
	Van Nuys, Caill
06980	Vatian Assoc. Eimac Dir. San Cattos. Calit.
07088	Kelvin Electric Co. Van Muys, Calif.
03126	Digilian Co. Fasacena, Calif.
07.37	Transistor Election cs Corp. Mineapolis, Ninn.
07138	Westinghouse Electric Corp. Electronic Tabe Div. Elmita, N.Y.
07149	Filmohr Corp. New York, N.Y.
07233	Canch-Graphik Co. Sity of Industiy, Calif.
07251	Avnet Corp. - Culve! Cily, Calif.
07263	Faichild Camera \& Inst. Corp. Semiconducto: Div. Mountan View, Calit.
07322	Minnesota Rubber Co. Mınneapalis, Minn.
07387	Butcher Coip., The Monterey Park, Calif.
07397	Sylvana Elect. Prod. inc., Mt. View Operations Mountaia View, Calif.
07700	Technical wire Products Inc. Cranford, N..
07913	Continental Device Cotp. Hawthorme, Calit.
07933	Raytheon MIg. Co.. Semicondactor Civ. Mcuntain View, Calif.
01980	Hewlelt-Packat Co., Boantor Radio Div.
	Rackaway, N.J.
08145	U.S. Engineertrg Co. Los Angeles. Calif.
08289	Blinn. De bert Ca. Pomona, Calif.
08358	Burgess Battery Co. Niagara Falls, Ontario. Canada
08524	Deulsch Faslener Corp. Lcs Angeles, Catit.
08664	Brislal Co. The Haterbuly, Conn.
08717	Sloan Comfany Sun Valley, Calil.
08718	ITT Camon Electus: Inc., Phoentx Div.
	Proelix, A:zzona
08792	CBSElectionics Semicorduclor
	Operalicns, dir of C. E.S. Inc.
	Lowell, Mass.
08984	Mel-Kain Iadianapolis. Ind.
09026	Babcock relays Diy. Cosla Mesa, Calif.
09134	Texas Capacitor Co. Houston, Texas
09145	Atohm Electronics Sun Valiey. Calif.
09250	Electic Assertylies, Inc. Chicago, III.
09569	Mallory Battery Co. of Canada, Etd. Toronte, Ontario, Canada
10214	General Tiansistor Western Corp.
	Los Angeles, Calif.
10411	Ti.Tal. Inc. Berkeley, Calif.
19646	Caioorindum Co. Niagara Falls, N.Y.
11236	CTS of Berre, Inc. Berne, ird.
11237	Chicago Telepoone of Calitornia, Inc.
	So. Fasadena, Calif.

Code No.	Monufacturer Address
11242	Bay State Electronics Corf. Waltram, Mass.
11312	Teledyne Inc. Microwave Div. Palo Allo. Calil.
11534	Duacan Electroncs Inc. Cosla Mesa, Calif.
11711	General Instrumen! Corp., Semicondustor Div., Products Group Newark, N.J.
$117: 7$	Imperial Electronic. Inc. Buena Park, Calif.
11870	Melabs, Inc. Palo Alto, Ca'il.
12136	Philadelpha Handie Co. Cancen, N...
12361	Grove $\mathrm{Hfg}_{\mathrm{g}}$. Ca.. inc. Shady Grove, Pa.
12574	Gution ind. Inc., CG Elect. Div
	Albuquerque, N.M.
12697	Clarostat Mlg. Co. Dover, N.H.
12128	Elmar filter Corp. W. Haven, Conn.
12859	Nippon Electric Co., Lid. Tokyo. Japan
12881	Metex Elechonics Coip. Clark, N.j.
12930	Delta Sere condector If.c. Newport Beach, Galif.
12954	Dickson Electronics Corp. Scottsdale, Arizora
13103	Thermolloy Dallas. Texas
23396	Telefloken (GmbH) Hanover, Germany
13835	Micland-Yifght Div. of Pacilic Industries, ac. Kansas City, Kansas
14099	Sem-Tech Newbury Park, Catif.
:4193	Calil. Resisto: Corp. Sanla Mor ca, Calit.
14298	American Components, Inc Conshohocken, Pa.
14433	ITT senicenductor. A Div. of int. Telephone \& Telegraph Colp. Wesi Palm Beach, Fla.
14493	Hewlett-Packard Company Love and, Colo.
14655	Corne ${ }^{\text {c }}$ Oublier Electric Cord. Newark, N.J.
14674	Cornirg Glass Morks Corning, N. Y .
:9752	Electro Cube lic. So. Pasadena, Calif.
14960	Williams Mig. Co. San Jose, Cahi.
15203	Yebster Electronics Co. New York, N.Y.
15287	Scionics Corf. Northrige, Catii.
15291	Adjus:3ble Bushang Co. N. Hollywood, Calit.
-5558	Vicron Electronics
	Garden City, Long island, N. Y.
15566	Ancrabe Insi. Corb. Lyabroak, N. Y.
15531	Cabletuctics Costa Mesa, Calit.
15772	Twentieth Century Coil Spring Co.
	Santa Clara, Calil.
15818	Amelco inc. Mt. Vien, Calif.
15939	Daven Div. Thomas A. Edison Ind. McGraw-Edison Co. Long ishand Ciky, S. Y.
16037	Spruce Pire tilca Co. Spruce Fine, N.C.
16179	Omm-Spectrainc. Detroit, III.
16352	Cornpule: Dicde Corp. Ladi, N.J.
16688	Ideal Prec. Mete: Co., Inc. Oe Jur Meter Div. Brcaklyn, N. Y.
26758	Delcc Radio Civ. 0^{+}G.U. Corf. Kokoma Ind.
17109	Thermonetics Irc. Canoga Park, Calif.
17474	T'anex Company Mountain View, Calif.
17675	Katlin Metal Products Corp Akron, Ohio
:7745	Angstrohm Prec. Inc. No. Hollywood, Calil.
18042	Fower Design Pacific Inc. Falo Alto, Calif.
18083	Clevite Corp., Semiconduclo Div.
	Palo Alto, Calif.
18475	Ty-Cartig. Co., Inc. Holiston, Mass.
18486	Trw Elect. Como. Div. Des Plames, il!
18583	Cutis Irsturrent, Inc. MI. Kiscc, N.Y.
18873	E.I. Qupont and Co., Inc. Wilmington Del.
185	Durast M1g. Co. Milwaukee, Wis.
19315	Gendix Colp. The Echese-Poinee Div. Teterboro, N.J.
19500	Thotias A. Edison Indestities, Div. of $\mathrm{H}=\mathrm{Gram}$-Edisor Co. West Ciange, N.J.
19589	Concoa Baldwin Park, Calif.
19644	LRC Ele:tionics Horseheads. N.Y.
19701	Electramig. Co. Independence, Kansas
20183	Geperal Atronics Corp. Philadelphia, Pa.
21226	Execitone, inc. Lorg islano City, N.Y.

```
From: ESC. Handbcok Supglepents
H4-: Dated ALGUST 1966
H4-2 Dated NOV 1962
```

02293-2

Code No.	Monufacturer Address	Code No.	Manufacturer Address	Code No.	Manufacturer Address
21335	Fainir Bearing Co., The New Britain, Conn,	71450	CTS Corp. Elkharl, Ind.	77075	Pacific Metals Co. San Fiancisco, Calif.
21520	Fansteel Metallurgical Corp. N. Chicago, Ill.	71468	ITT Cannon Electric Inc. Los Angeles, Calit.	77221	Phanostran Instrument and Electronic
23783	British Radio Electronics Lid. Washington, D.C.	71471	Cinema, Div. Aerovox Coro. Burbank, Calif.		South Pasadena, Calif.
24455	G. E. Lamp Division	71482	C.P. Clare \& Co. Chicago, lll.	77252	Philadelphia Steel and Wire Corp.
	Nela Park, Cleveland, Ohio	71590	Centialab Div. of Globe Union Inc.		ladelphia, Pa.
24655	General Radia Co. West Concord, Mass.		Milwaukee, Wis.	71342	Ameritan Machine \& Foundry Co. Potter
26365	Gries Reproducer Corp. New Rochelle, N.Y.	71616	Commercial Plastics Co. Chicago, III.		\& Brumfield Div. Princeton, Ind.
26462	Grobet File Co. of America, Inc.	71700	Cornish Fire Co., The New York, N. Y.	77630	TRW Electronic Components Div. Camden, N.J.
	Carlstadt, N.J.	71707	Colo Coil Ca.. Inc. Providence, R.I.	17638	General Instrument Cosp., Rettifier Div.
26392	Hamiltor Watch Co. Lancaster, Pa.	71744	Chicago Miniature Lamp Works Chicago, Ill.		Brooklyn, N. Y.
28480	Hewlett-Packard Co. Palo Alto, Calif.	71753	A.O. Smith Corp., Crowley Div.	77764	Resistance Products Co. Hatrisburg, Pa.
28520	Heyman Mfg. Co. Kenilworth, N.J.		West Orange, N.J.	77969	Rubbercrall Corp. of Calil. Tolrance, Calif.
33173	G.E. Receiving Tube Dept. Owensborb, Ky.	71785	Cinch Mig. Co., Howard B. Jones Div.	78189	Shakeproof Division of Illinois Tool Works
35434	Lectrohm Inc. Chicago, III.		Chicago, III.		Elgin, Ill.
36196	Stanwyck Coil Products Lidd.	71984	Dow Corning Corp. Midiand, Mich.	78283	Signal Indicator Corp. New York, N.Y.
	Hawkesbury, Ontario, Canada	72136	Electro Motive Mig. Co.. Inc. Villimantic, Conn.	78290	Struthers-Dunn Inc. Pitman, N.J.
36287	Cunningham, W.H. \& Hill, Lid. Toronta Ontario, Canada	72354	John E. Fast Co.. Div. Victoreen Instr. Co.	$\begin{aligned} & 78452 \\ & 78471 \end{aligned}$	Thompson-Bremer \& Co. Chicago, Ill, Tilley Mig. Co. \quad Fancisco, Calif.
37942	P. R. Mallory \& Co. Inc. Indianapolis, Ind.	72619	Dialight Corp. Brooklyn, N.Y.	78488	Stackpole Carbon Co. St. Marys, Pa.
39543	Mechanical Industries Prod. Co. Akron, Dhio	72656	Indiana General Corp.. Electronics Div.	78493	Slandard Thomson Corp. Waltham, Mass.
40920	Miniature Pretision Bearings, int. Keene, N.H.		Keasby, N.J.	38553	Tinnerman Products, Inc. Cleveland, Ohio
42190	Muter Co. Chicago, III.	12699	General instrument Corp., Cap. Div. Newák, N.J.	78790	Transformer Engineers San Gabriel, Calif.
43990	C. A. Norgren Co. Englewood, Colo.	72765	Drake Mfg. Co. Chicago, II.	78947	Ucinite Co. Newtonville, Mass.
44655	Ohmile Mig. Co. Skokie, III.	12825	Hugh H. Eby lnc. Phiadelpaia, Pa,	19136	Waldes Kahinoor inc. Long Island City, N. Y.
46384	Penn Eng. \& Mfg. Corp. Doylestown, Pa,	12928	Gudeman Co. Chicago, 111.	79142	Veeder Root, Inc. Hartford, Conn.
47904	Polaroid Corp. Cambridge, Mass.	72964	Robert M. Hadley Co. Los Angetes, Calif.	79251	Henco Mfg. Co. Chicago, Ill.
48620	Precision Thermometer \& Inst. Co. Southampton, Pa.	$\begin{aligned} & 72982 \\ & 73062 \end{aligned}$	Etie Technological Ploducts, Inc. Erie, Pa. Hansen Mig. Co. . Inc. Plinceton, ind.	19727	Continental-Wist Electronics Corp. $\mathrm{Philadelphia}, \mathrm{Pa}$.
49956	Microwave \& Power Tube Div. Waltham, Mass.	73076	H.M. Harper Co. Chicago, lli.	79963	Zierick Mlg. Corp. New Rochelle. N.Y.
52090	Rowan Controller Co. Westminster, Md.	73138	Helipot Div. of Beckman Inst. , Inc.	80031	Mepco Division of Sessions Clock Co.
52983	Sanborn Company Waltham, Mass.		Fullerton, Calif.		Morristown, N. ${ }^{\text {d. }}$
54294	Shallcross Mfg. Co. Selma, N.C.	73293	Hughes Producls Division of Hughes	80120	Schnitzer Alloy Praducts Co. Elizabeth, N.J.
55026	Simpson Electuic Co. Chicago, III.		Aitcralt Co. Newport Beach, Calif.	80131	Electronic Industries Association. Any brand
55933	Sonotone Corp. Elmsford. N.Y.	73445	Amperex Electronic Co., Div. of North American		Tube meeting E\|A Standards-Washington, DC.
55938	Raytheon Co. Commercial Apparatus \& Syslems Div. So. Norwalk, Conn.	73506	Phillips Co., Inc. Hicksville, N. Y. Bradley Semiconductor Corp. New Haven, Conn.	80207	Unimax Switch, Diy. Maxon Electronics Corp. Wallingford, Conn.
56137	Scaulding Fibre Co., Inc. Tonawanda, N.Y.	13559	Caring Electric, Inc. Hartford, Conn.	80223	United Yranslormer Coip. New York, N. Y.
56289	Sprague Electrit Co. North Adams, Mass.	73586	Circle F Mfg. Co. Trenton, N.J.	80248	Oxford Electic Corp. Chicago, III.
59446	Telex, lac. St. Paul, Minn.	73682	George K. Garrett Co. , Div. MSL	80294	Bourns inc. Riverside, Calif.
59730	Thomas \& 8etts Co. Elizabeth, N.J.		Industies Inc. Philadelphia, Pa.	80411	Acro Div. of Robertshaw Controls Co.
60741	Triplett Electrical inst. Co. Blufflon, Ohio	73734	Federal Screw Products Inc. Chicago, III.		Columbus, Ohio
61775	Union Switch and Signal. Diy. of Westinghouse Air Brake Co. Pittsburgh, Pa .	$\begin{aligned} & 73743 \\ & 73793 \end{aligned}$	Fischer Special MIg. Co. Cincinnati, Ohio General Industries Co., The Elyria, Ohio	$\begin{aligned} & 80486 \\ & 80509 \end{aligned}$	All Star Producls Inc. \quad Defiance, Ohio Avery Adhesive Label Coto. Monrovia, Calif.
62119	Universal Electuc Co. Owosso, Mich.	73846	Goshen Stamping \& Tool Co. Goshen, Ind.	80583	Hammarjund Co., Inc. New York, N.Y.
63743	Waro-Leonard Electric Co. Mt. Vernon, N.Y.	73899	JFD Electranics Corp. Brooklyn, N.Y.	80640	Stevens, Arnold, Co., Inc. Boston, Mass.
64959	Western Electric Co. . inc. New York, N. Y.	73905	Jennings Radio Mig. Corp. San Jose, Calif.	81030	inteinational instruments tinc. Olange, Conn.
65092	Weston inst. Inc. Weston-Newark Mewark, N.J.	74275	Signalite inc. Neptune, N.J.	81073	Grayhill Co. Lagrange, Ill.
66295	Wittek MIg. Co. Chicago, Ilt.	74455	J.H. Winns, and Sons Winchester, Mass.	81095	Triad Translormer Corp. Venice, Calif.
66346	 Mfg. Co. St. Paul, Mina.	$\begin{aligned} & 74863 \\ & 74868 \end{aligned}$	Industrial Condenser Corp. Chicago, III. R. F. Products Division of Amphenol-Borg	81312	Winchester Elec. Div. Litton Ind., Inc. Oakville, Conn.
70276	Allen Mig. Co. Hartiord, Conn.		Electronics Corp. Danbury, Conn.	81349	Military Specification
30309	Allied Control New York, N.Y.	74970	E.F. Johnson Co. Waseca, Minn.	81483	International Reclifier Corp. El Segundo, Calif.
70.118	Allmelal Screw Product Co., Inc. Garden City, N. Y.	$\begin{aligned} & 75042 \\ & 75378 \end{aligned}$	International Resistance Co. Philadelphia, Pa. CTS Knights Inc. Sandwich, III.	$\begin{aligned} & 81541 \\ & 81860 \end{aligned}$	Airpax Electranics, inc. Cambridge, Mass. Barry Controls. Div. Barry Wright Corg.
70485	Allantic India Rubber Works, Inc. Chicago, III.	75382	Kuika Electric Corporation Mt. Vernon, N. Y.		Waterlown, Mass.
70563	Amperite Co., Inc. Union City, N.J.	75818	Lenz Electric Mig. Co. Chicago, III.	82042	Carter Precision Electric Co. Skokie, III.
70674	ADC Products Inc. Minneapolis. Minn.	75915	Littlefuse, lnc. Des Plaines, Ill.	82047	Sperti Faraday Inc., Coppet Hewilt
70903	Belden Mfg. Co. Chicago, III.	76005	Lord Mfg. Co. Efie, Pa.		Electric Div. Hoboken, N.J.
70998	Bird Electronic Corp. Cleveland, Ohio	76210	C.W. Marwedel San Francisco, Calit.	82142	Jeflers Electronics Division of Speet
71002	Brinbach Radio Co. New York, N.Y.	76433	General Instrument Corp., Micamold Division		Carbon Co. Du Bois, Pa.
71041	Boston Gear Works Div. of Murray Co. of Texas Quincy, Mass.	76487	James Millen Mfg. Co., inc. Mewark, N.J.	82170	Farchild Camera \& Inst. Corp. . Defense Prod. Division Cliflon, N.J.
71218	Bud Radio. Inc. Willoughby, Qhio	76493	J.W. Miller Co. Los Angeles, Calif.	82209	Maguire Industries, Inc. Greenwich, Conn.
71286	Camloc Fastener Corp. Paramus. N.J.	76530	Cinch-Monadnock, Div. of United Carr	82219	Sylvania Electric Prod. Inc.
71313	Cardwell Condenser Corp. Lindenhurst L.J., N.Y.	76545	Fastener Corp. San Leandra, Calif. Mueller Electric Co. Cleveland, Ohia	82376	Electronic Tube Division Emporium, Pa. Astron Corp. Eas! Newark, Harrison, N, J,
71400	Bussmann Mig. Div. of McGraw-Edison Co.	76703	National Union Newark, N.J.	82389	Switchcrafl, Inc. Chicago. III.
	St. Louis, Mo.	76854	Oak Manutacturing Co. Crystal Lake, III.	82647	Metals \& Cantiols Inc. Spencer Products
71436	Chicago Condenser Corg. Chatago, lll.	77068	Bendix Carp., The		Attleboro, Mass.
71447	Calil. Spring Co. Inc. Pico-Rivera, C.alif.		Bendix Pacific Div. N. Hollywood, Calif.	82168	Phillips-Advance Control Co. Joliet, III.

TABLE 6-3.

CODE LIST OF MANUFACTURERS (Cont'd)

TABLE 6-4. PART NUMBER - NATIONAL STOCK NUMBER CROSS REFERENCE INDEX

TABLE 6-4. PART NUMBER - NATIONAL STOCK NUMBER CROSS REFERENCE INDEX (Continued)

PART NUMBER	FSCM	NATIONAL STOCK NUMBER	PART NUMBER	FSCM	NATIONAL STOCK NUMBER
1250-0001	28480	5935-00-027-6759	5040-0700	28480	5340-00-978-7859
1250-0016	28480	5365-00-937-0638	5060-0703	28480	6625-00-412-1207
1250-0083	28480	5935-00-804-5144	8120-0078	28480	5995-00-995-9822
1251-0148	28480	5935-00-058-9423	8120-1348	28480	6150-01-004-8773
1251-2357	28480	5935-00-233-6728	9100-1612	28480	5950-00-438-4376
1400-0084	28480	5920-00-881-4636	9100-1613	28480	5950-00-431-3189
1850-0040	28480	5961-00-872-0882	9100-1680	28480	5950-00-107-6071
1850-0062	28480	5961-00-988-7630	9140-0131	28480	5950-00-431-3938
1853-0051	28480	5961-00-979-0108	9140-0158	28480	5950-00-059-5920
1854-0005	28480	5961-00-853-7942	9140-0210	28480	5950-00-431-3215
1901-0025	28480	5961-00-978-7468			
1901-0026	28480	5961-00-060-8638			
1901-0040	28480	5961-00-965-5917			
1912-0007	28480	5961-00-904-0298			
2N708	07263	5961-00-866-4810			
2100-0067	28480	5905-00-850-6556			
2100-0350	28480	5905-00-351-6128			
2140-0047	28480	6240-00-912-5186			
2140-0244	28480	6240-00-951-3376			
30D106G025BB4	56289	5910-00-889-4854			
3101-0033	28480	5930-00-977-1760			
3101-1234	28480	5930-00-406-8746			
3101-1248	28480	5930-00-476-9679			
342014	75915	5920-00-881-4636			
5C11A	56289	5910-00-883-0838			
5020-0306	28480	5935-00-931-0420			
5040-0234	28480	6250-00-910-8305			
5040-0235	28480	6250-00-933-7369			

6-14

SECTION VII

SCHEMATIC DIAGRAMS

7-1. INTRODUCTION.

7-2. This section contains schematic diagrams. Figure 7-1 lists notes and symbols which apply to all schematic diagrams. Each diagram follows the guide lines listed below.
a. Schematics in this manual are meant to show electrical circuit operation and not intended as wiring diagrams.
b. Assembly sections of schematics may or may not be shaded as in the example shown.

7-3. REPLACEMENT INFORMATION.

7-4. For repair and replacement information, refer to the MAINTENANCE section of this manual which is Section V. For specific component descriptions refer to page 6-1.

Figure 7-1. Schematic Information Illustration

SECTION VIII

BACKDATING INFORMATION

This manual applies to instruments with Serial Prefixes 649-, and 737-. Listed below are changes to be made to the manual so that it will apply directly to Prefixes 532-, and 541-.

Instrument
Serial No. Prefix
Change Number

$541-$	1
$532-$	1 and 2

CHANGE 1:

CHANGE 2:

$\begin{aligned} & \hline \text { Table 6-1 } \\ & \text { Page } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Table 6-2 } \\ \hline \text { Page } \end{array}$	Schematic Page	Delete, Change, or add	Circuit Ref.	Stk No.	Item Description
6-2	6-7	7-3/7-4	Change	A1C7	0121-0031	$\begin{aligned} & \text { C: Var } \\ & 1.85-10.38 \mathrm{pF} \end{aligned}$
"	"	"	"	A1C18	"	"
"	"	"	"	A1C39	"	"
6-7	6-7	7-3/7-4	Change	A1C29	0160-0370	$20 \mathrm{pF} 5 \%$
6-3		"	"	A1L11	9100-1612	$0.33 \mu \mathrm{H}$
"		"	"	A1Q5	1854-0031	2N2865
"		"	"	A1Q7	1854-0031	2N2865
"		"	"	A1R20	0698-3156	$14.7 \mathrm{~K} \Omega$
"		"	"	A1R21	0698-3155	4640Ω
"		"	"	A1R22	0698-0084	2150Ω
6-2		"	Delete	A1C41	-	-
6-3		"	"	A1R31	-	-
"		"	"	A1R32	-	-

MANUAL IDENTIFICATION	
Model Number:	8406A
Date Printed:	JUNE 1967
Part Number:	$08406-90001$

This supplement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after the printing of the manual.

To use this supplement:
Make all ERRATA corrections
Make all appropriate serial number related changes indicated in the tables below.

S37-00386 thru $7.37-00555$	$1,2$	961-, 0961A	$3,4,5$
$\begin{aligned} & 737.00556 \text { thru } \\ & 737.00585 \end{aligned}$	1, 2, 3	1145A	3, 4, 5, 6
$\begin{aligned} & 737.00586 \text { thru } \\ & 737-00675 \end{aligned}$	2, 3, 4	1441A01266 thru 1441 A01275	3, 4, 5, 6, 7
- NEW ITEM		1441 A 01276 thru 1441A Prefix	3, 4, 5, 6, 7, 8
ERRATA		1628A, 1632A	$3,4,5,6,7,8,9$

Page 1-1. General Information: Add the following information preceding Paragraph 1-1.

1-A. SAFETY CONSIDERATIONS

General

This instrument has been designed and tested according to IEC Publication 348, "Safety Requirements for Electronic Measuring Apparatus," and has been supplied in safe condition. This is a Safety Class I instrument.

Operation

BEFORE APPLYING POWER, make sure the instrument's ac input is set for the available ac line voltage, that the correct fuse is installed, and that all normal safety precautions have been taken.

Service

Although the instrument has been designed in

NOTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

AUGUST 1976
Printed in U.S.A.

ERRATA (Cont'd)

accordance with international safety standards, the information, cautions, and warnings in this manual must be followed to ensure safe operation and to keep the instrument safe. Service and adjustments should be performed only by qualified service personnel.

Adjustment or repair of the opened instrument with the ac power connected should be avoided as much as possible and, when inevitable, should be performed only by a skilled person who knows the hazard involved.

Capacitors inside the instrument may still be charged even though the instrument has been disconnected from its source of supply.

Make sure only fuses of the required current rating and type (normal blow, time delay, etc.) are used for replacement. Do not use repaired fuses or short circuit the fuse holders.

Whenever it is likely that the protection has been impaired, make the instrument inoperative and secure it against any unintended operation.

ERRATA (cont'd)

Page 5-3, Table 5-2 step e:
Change 10-MC to read 1 MC .
Page 6-3 Table 6-1.
Change to read:
A1T1 08406-6013 Transformer: RF (Oscillator)
Page 6-4 Table 6-1.
Change to read:
A1T2 08406-6014 Transformer: RF (Amplifier)
Page 6-4, Table 6-1 and page 6-9, Table 6-2
Add to Z1 Attenuator Pad Assy: Spacer 2 ea 08491-2102
Page 6-4, Table 6-1 and page 6-7. Table 6-2
Change J1, J2 to read: 1250-0001 Connector: BNC
Page 6-4, Table 6-1 page 6-7, Table 6-2 and page 7-3/7-4, Figure 7-2:
Change R1 to read: 2100-0350 R:VAR COMP 1.5K OHM 20\% LIN 1/2W
Page 6-9, Table 6-2.
Add: 08406-6013 Transformer: RF (Oscillator)
08406-6014 Transformer: RF (Amplifier)

CHANGE 1

Page 6-2, Table 6-1 Page 6-7 Table 6-2 Page 7-3/7-4, Figure 7-2 Change A1C17 to C: FXD MICA 33 pF 300 V 5\% 0160-0179

CHANGE 2

Page 6-4, Table 6-1 Page 6-8 Table 6-2 Page 7-3/7-4, Figure 7-2 Change R1 to R:VAR COMP' 1500 OHM 20\% LIN 1/2W 2100-0350

CHANGE 3

Page 6-3 Table 6-1 Page 7-5/7-6, Fiqure 7-3
Change to read: A1Q8 1850-0040 Transistor: Germanium PNP A1Q9 1853-0051 Transistor: Silicon 2N4037
A1R30 0683-0395 R:FXD COMP 3.9 OHM 5\% 1/4W
Page 6-4 Table 6-1
Change to read:
A1VR1 1902-320C3 DIODE BREAKDOWN: SILICON.14.7V 5\% 400 mW Add:

A1MP1 1205-0011 HEAT DISSIPATOR: TO-5/9 CASE USED ON A1Q9

CHANGE 4

Page 6-2 Table 6-1 Page 7-3/7-4, Fiqure 7-2
Change to read: A1C7 0120-0166 C:VAR AIR, 2.4 TO 24.5 pF A1C17 0160-2263 C: FXD CER, 18 pF 5\% 500 VDCW A1C18 0121-0166 C:VAR, AIR 2.4 TO 24.5 pF

CHANGE 5

Page 6-4 Table 6-1. Change to read:

DS1 2140-0244 LAMP: GLOW 1.0 mA TYPE A1H P/0 S3
F1 2110-0311 FUSE: CARTRIDGE $1 / 16$ AMP TYPE MDL-1/16
J3 1251-2357 CONNECTOR: POWER 3 PIN MALE
R1 2100-0067 R:VAR COMP 2.5K OHM 20\% LIN 1/2W
S1 3101-1248 SWITCH: PUSHBUTTON (LINE)
S2 3101-1234 SWITCH: SLIDE DPDT 115/230V
Page 6-5 Table 6-1.
Change 8120-0078 to read: 8120-1348 CABLE ASSY: POWER
Delete: 5040-0234 LAMPHOLDER
5040-0235 BASE: LAMPHOLDER
Page 6-6 Table 6-1.
Change to read: $908406-0015$ PANEL: REAR
10 08406-00016 PANEL: FRONT
Page 7-5/7-6, Figure 7-3.
Change schematic as indicated below:

P/O Figure 7-3. (Change 5)

Page 6-2, Table 6-1 and Page 7-3/7-4, Figure 7-2:
Change A1C17 to C: FXD MICA 60 pF 300 V 5\% 0140-0214 (*) Factory Selected Component.
Page 6-5 Table 6-1.
Add: 0370-1400 KNOB: MINT GRAY PUSHBUTTON 11116 IN DIA 1MC, 10MC, 100MC EXT TRIG.
Page 6-6, Table 6-1 Cabinet Parts:
Change items 6 through 10 to read:
6 5000-8565 COVER: SIDE (OLIVE GRAY) 5000-0703 COVER: SIDE (BLUE GRAY)

7 5060-8555 COVER ASSEMBLY:TOP (OLIVE GRAY) 5060-0709 COVER ASSEMBLY:TOP (BLUE GRAY)

8 5000-8571 COVER ASSEMBLY:BOTTOM (OLIVE GRAY) 5000-0700 COVER ASSEMBLY:BOTTOM (BLUE GRAY)

9 08406-00015 PANEL: REAR
10 08406-00017 PANEL: FRONT (MINT GRAY) 08406-00016 PANEL: FRONT (LIGHT GRAY)

CHANGE 7

Page 6-4 Table 6-1.
Change RI to 2100-2769, R:VAR 2.5 K OHM $20 \% 2 \mathrm{~W}$.

CHANGE 8

Page 6-2 Table 6-1.

Change A1C6 to 0160-2306, C:FXD CER 27 pF 5\% 300 V, Factory Selected Part.
Change A1C17 to 0140-0145, C: FXD MICA 22 pF 5\% 500 VDCW, Factory Selected Part.
Page 7-3 Figure 7-2
Change the value of A1C6 to A1C6* 27 pF .
Change the value of A1C17* to 22 pF .
>CHANGE 9
Page 1-1, Table 1-1.
Change "Peak amplitude*" to "Typical amplitude*".

8-7/(8-8 blank)

APPENDIX A
 REFERENCES

The following publications contain information applicable to the operation and maintenance of the SG1129/U (HP-8406A) Frequency Comb Generator.

TM 11-6625-2781-14\&P

TM 11-6625-700-10

TM 11-6625-573-14

TM 11-6625-1633-12

TM 11-6625-320-12

TM 11-6625-444-14-1

TM 11-6625-524-14

AR 55-38
AR735-11-2
DA PAM 310-4

DA PAM 310-7
MIL-F-14702
SB 11-573

Operator's, Organizational, Direct Support, and General Support Maintenance Manual Including Repair Parts and Special Tools List: Spectrum Analyzer IP1216(P)/GR (HP-141T)

Operator's Manual: Digital Readout, Electronic Counter AN/USM-207

Operator's, Organizational, Direct Support, and General Support Maintenance Manual: Generator Signal AN/GRM-50

Operator's and Organizational Maintenance Manual Including Repair Parts and Special Tools List: Generator, Signal AN/URM-149

Operator's and Organizational Maintenance Manual: Voltmeter, Meter ME-30()/U

Operator's, Organizational, Direct Support, and General Support Maintenance Manual Including Repair Parts and Special Tools List: Voltmeter Digital AN/GSM64B

Operator's, Organizational, and Field Maintenance Manual: Voltmeter, Electronic AN/URM-145

Reporting of Transportation Discrepancies in Shipment
Reporting of Item Discrepancies Attributable to Shippers
Index of Technical Publications: Technical Manuals, Technical Bulletins, Supply Manuals (Types 7, 8 and 9), Supply Bulletins, and Lubrication Orders

US Army Equipment Index of Modification Work Orders
Finishes for Ground Signal Equipment
Painting and Preservation Supplies Available for Field Use for Electronics Command Equipment

SB 38-100

SB 700-20

TB SIG 222
TM 38-750
TM 750-244-2

Preservation, Packaging and Packing Materials, Supplies and Equipment Used by the Army

Army Adopted/Other Items Selected for Authorization/List of Reportable Items

Solder and Soldering
The Army Maintenance Management System (TAMMS)
Procedures for Destruction of Electronics Materiel to Prevent Enemy Use (Electronics Command)

A-2

APPENDIX D

MAINTENANCE ALLOCATION

Section I. INTRODUCTION

D-1. General

This appendix provides a summary of the maintenance operations for the SG-1129/U (HP-8406A). It authorizes categories of maintenance for specific maintenance functions on repairable items and components and the tools and equipment required to perform each function. This appendix may be used as an aid in planning maintenance operations.

D-2. Maintenance Function

Maintenance functions will be limited to and defined as follows:
a. Inspect. To determine the serviceability of an item by comparing its physical, mechanical, and/or electrical characteristics with established standards through examination.
b. Test. To verify serviceability and to detect incipient failure by measuring the mechanical or electrical characteristics of an item and comparing those characteristics with prescribed standards.
c. Service. Operations required periodically to keep an item in proper operating condition, i.e., to clean (decontaminate), to preserve, to drain, to paint, or to replenish fuel, lubricants, hydraulic fluids, or compressed air supplies.
d. Adjust. To maintain, within prescribed limits, by bringing into proper or exact position, or by setting the operating characteristics to the specified parameters.
e. Align. To adjust specified variable elements of an item to bring about optimum or desired performance.
f. Calibrate. To determine and cause corrections to be made or to be adjusted on instruments or test measuring and diagnostic equipments used in precision measurement. Consists of comparisons of two instruments, one of which is a certified standard of known accuracy, to detect and adjust any discrepancy in the accuracy of the instrument being compared.
g. Install. The act of emplacing, seating, or fixing into position an item, part, module (component or assembly) in a manner to allow the proper functioning of the equipment or system.
h. Replace. The act of substituting a serviceable like type part, subassembly, or module (component or assembly) for an unserviceable counterpart.
i. Repair. The application of maintenance services (inspect, test, service, adjust, align, calibrate, replace) or other maintenance actions (welding, grinding, riveting, straightening, facing, remachining, or resurfacing) to restore serviceability to an item by correcting specific damage, fault, malfunction, or failure in a part, subassembly, module (component or assembly), end item, or system.
i. Overhaul. That maintenance effort (service/action) necessary to restore an item to a completely serviceable/operational condition as prescribed by maintenance standards (i.e. DMWR) in appropriate technical publications. Overhaul is normally the highest degree of maintenance performed by the Army. Overhaul does not normally return an item to like new condition.
k. Rebuild. Consists of those services/actions necessary for the restoration of unserviceable equipment to a like new condition in accordance with original manufacturing standards. Rebuild is the highest degree of material maintenance supplied to Army equipment. The rebuild operation includes the act of returning to zero those age measurements (hours, miles, etc.) considered in classifying Army equipments/components.

D-3. Column Entries.

a. Column 1, Group Number. Column 1 lists group numbers, the purpose of which is to identify components, assemblies, subassemblies, and modules with the next higher assembly.
b. Column 2, Component/Assembly. Column 2 contains the noun names of components, assemblies, subassemblies, and modules for which maintenance is authorized.
c. Column 3, Maintenance Functions. Column 3 lists the functions to be performed on the item listed in column 2. When items are listed with-out maintenance functions, it is solely for the purpose of having the group numbers in the MAC and RPSTL coincide.
d. Column 4, Maintenance Category. Column 4 specifies, by the listing of a "work time" figure in the appropriate subcolumn(s), the lowest level of maintenance authorized to perform the function listed in column 3. This figure represents the active time required to perform that maintenance function at the indicated category of maintenance. If the number or complexity of the tasks within the listed maintenance function vary at different maintenance categories, appropriate "work time" figures will be shown for each category. The number of task-hours specified by the "work time" figure represents the average time required to restore an item
(assembly, subassembly, component, module, end item or system) to a serviceable condition under typical field operating conditions. This time includes preparation time, troubleshooting time, and quality assurance/quality control time in addition to the time required to perform the specific tasks identified for the maintenance functions authorized in the maintenance allocation chart. Subcolumns of column 4 are as follows:

C - Operator/Crew
O- Organizational
F - Direct Support
H - General Support
D - Depot
e. Column 5, Tools and Equipment. Column 5 specifies by code those common tool sets (not individual tools) and special tools, test, and support equipment required to perform the designated function.
f. Column 6, Remarks. Column 6 contains an alphabetic code which leads to the remark in Section V, Remarks, which is pertinent to the item opposite the particular code.

D-4. Tool and Test Equipment Requirements (Section III)

a. Tool or Test Equipment Reference Code. The numbers in this column coincide with the numbers used in the tools and equipment column of the MAC. The numbers indicate the applicable tool or test equipment for the maintenance functions.
b. Maintenance Category. The codes in this column indicate the maintenance category allocated the tool or test equipment.
c. Nomenclature. This column lists the noun name and nomenclature of the tools and test equipment required to perform the maintenance functions.
d. National/NATO Stock Number. This column lists the National/NATO stock number of the specific tool or test equipment.
e. Tool Number. This column lists the manufacturer's part number of the tool followed by the Federal Supply Code for manufacturers (5 -digit) in parentheses.

D-5. Remarks (Section V)

a. Reference Code. This code refers to the appropriate item in Section II, column 6.
b. Remarks. This column provides the required explanatory information necessary to clarify items appearing in Section II

D-4

SECTION II. MAINTENANCE ALLOCATION CHART FOR
 HP 8406A Frequency Comb Generator

SECTION III. TOOL AND TEST EQUIPMENT REQUIREMENTS
FOR
HP 8406A Frequency Comb Generator

By Order of the Secretary of the Army:

Official:
J. C. PENNINGTON

Major General, United States Army
The Adjutant General

Distribution:
Active Army:
HISA (Ft Monmouth) (21)
USAINSCOM (2)
COE (1)
TSG (1)
DARCOM (1)
TRADOC (2)
OS Maj Comd (4)
TECOM (2)
USAACC (4)
MDW (1)
Armies (2)
Corps (2)
Svc Colleges (1)
USASIGS (5)
USAADS (2)
USAFAS (2)
USAARMS (2)
USAIS (2)
E. C. MEYER

General, United States Army Chief of Staff

NG: None
USAR: None
For explanataion of abbreviations used see, AR 310-50.

USAES (2)
USAICS (3)
MAAG (1)
USARMIS (1)
USAERDAW (1)
Ft Carson (5)
Ft Gordon (10)
Ft Gillem (10)
Ft Richardson (CERCOM Ofc) (2)
Army Dep (1) except
SAAD (30)
TOAD (14)
SHAD (2)
USA Dep (1)
Sig Sec USA Dep (1)
Units org under fol TOE: (2)
29-207
29-610

Figure 7-2. Generator

COPYRIGHT 1965 HEWLETT-PACKARO COMPANY
4506A-PS-532

