TECHNICAL MANUAL

OPERATOR'S, ORGANIZATIONAL, DIRECT SUPPORT, AND GENERAL SUPPORT MAINTENANCE MANUAL TRANSMISSION/REFLECTION TEST SET HEWLETT-PACKARD MODEL 8502A

SAFETY STEPS TO FOLLOW IF SOMEONE IS THE VICTIM OF ELECTRICAL SHOCK

DO NOT TRY TO PULL OR GRAB THE INDIVIDUAL

IF POSSIBLE, TURN OFF THE ELECTRICAL POWER

IF YOU CANNOT TURN OFF THE ELECTRICAL POWER, PULL, PUSH OR LIFT THE PERSON TO SAFETY USING A DRY WOODEN POLE OR A DRY ROPE OR SOME OTHER INSULATING MATERIAL

SEND FOR HELP AS SOON AS POSSIBLE

AFTER THE INJURED PERSON IS FREE OF

AWAY AND IMMEDIATELY START ARTIFICIAL

CONTACT WITH THE SOURCE OF ELECTRICAL SHOCK, MOVE THE PERSON A SHORT DISTANCE

RESUSCITATION

This manual contains copyright material reproduced by permission of the Hewlett-Packard Company, Valley Forge, PA 19482.

TM 11-6625-3067-14

Technical Manual

No. 11-6625-3067-14)

HEADQUARTERS DEPARTMENT OF THE ARMY Washington, DC, 3 June 1985

OPERATOR'S, ORGANIZATIONAL, DIRECT SUPPORT, AND GENERAL SUPPORT MAINTENANCE MANUAL

TRANSMISSION/REFLECTION TEST SET HEWLETT-PACKARD MODEL 8502A

SERIAL NUMBERS

This manual applies directly to HP Model 8502A with serial prefix numbers 1603A, 1616A, and 1918A.

For additional information about serial numbers, see INSTRUMENTS COVERED BY MANUAL in Paragraph 7.

REPORTING ERRORS AND RECOMM.ENDING IMPROVEMENTS

You can help improve this manual. If you find any mistakes or if you know of a way to improve the procedures, please let us know. Mail your letter, DA Form 2028 (Recommended Changes to Publications and Blank Forms), or DA Form 2028-2 located in the back of this manual direct to: Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSEL-ME-MP, Fort Monmouth, NJ 07703-5007.

In either case, a reply will be furnished direct to you.

TABLE OF CONTENTS

Section

0

Page

INTR	ODUCTION	
0-1	Scope	0-1
0-2	Consolidated Index of Army Publications and Blank Forms	0-1
0-3	Maintenance Forms, Records, and Reports	0-1
0-4	Reporting Equipment Improvement Recommendations (EIR)	0-1
0-5	Administrative Storage	0-1
0-6	Destruction of Army Electronics Materiel	0-1

ii

Table of Contents

CONTENTS

Page

1.	GENERAL INFORMATION	1
2.	Introduction	1
5.	Description	1
7.	Instruments Covered by Manual	1
9.	Input Level Caution	1
10.	Specifications	1
12.	Equipment Available	1
14.	Recommended Test Equipment	1
16.	INSTALLATION	3
17.	Initial Inspection	3
19.	Preparation for Use	3
20.	Mating Connectors	3
22.	Operating Environment	5
24.	Storage and Shipment	5
25.	Environment	5
27.	Packaging for Shipment	5
30.	OPERATION	5
31.	Panel Features	5
33.	Incoming Inspection	5

Paragraph

35.	PERFORMANCE TESTS	11
36.	Introduction	11
39.	Equipment Required	11
41.	Test Record	11
43.	Directivity Test	11
44.	Transmission Frequency Response Test	11
45.	Reflection Frequency Response Test	16
46.	TEST Port Open/Short Ratio Test	21
47.	TEST Port Return Loss Test	28
48.	Port Return Loss Tests	29
49.	ADJUSTMENTS	37
51.	REPLACEABLE PARTS	37
53.	Ordering Instructions	37
55.	SERVICE	42
56.	Module Exchange Program	42
59.	Case Disassembly	42
62.	Step Attenuator/Directional	
	Bridge Removal Procedure	42
71.	Troubleshooting.,,,	45

ILLUSTRATIONS

Figure

Page

1.	Model 8502A Transmission/Reflection Test Set	0
2	Serial Number Plate	1
3	HP Model 11851A Cable Accessory Set	3
4	8502A Front and Rear Panel Controls, Connecto	rs
	and Case Bottom	6
5	Incoming Inspection Test	8
6	Transmission Frequency Response Test Setup 12	2
7	Transmission Frequency Response Magnitude	14
8.	Transmission Frequency Response Phase	15
9.	Reflection Frequency Response Test Setup	16
10.	Reflection Frequency Response Magnitude	19
11.	Reflection Frequency Response Phase	20
12.	TEST Port Open/Short Ratio Test	21
13.	TEST Port Open/Short Ratio Magnitude >2 MHz	24
14.	Slope Peak-To-Peak Measurement	24
15.	TEST Port Open/Short Ratio Phase >2 MHz	26
16.	INCIDENT, REFLECTED, and RF INPUT	
	Port Return Loss Test Setups	30

Figure

Page 17. INCIDENT Port Return Loss (1000 to 1300 MHz)..... 32 18. INCIDENT Port Return Loss (100 to 1000 MHz)..... 33 19. INCIDENT Port Return Loss (2 to 100 MHz) 34 20. INCIDENT Port Return Loss (0.5 to 2 MHz) 34 21. Major Assemblies and Parts Locations 39 22. Type N Connector Assembly (08502-60001), Exploded View..... 40 23. 8502A Attaching Hardware 40 24. Model 8502A Case Disassembly 42 25. Model 8502A Simplified Block Diagram 43 26. Model 8502A Transmission/Reflection Test Set Troubleshooting Procedure 44 27. Model 8502A Transmission/Reflection Test Set Equivalent Circuit 47

28. Model 8502A Transmission/Reflection Test Set Major Assemblies Locations 47

TABLE

Tab	ble Pa	age	Table	Р	age
1. 2. 3. 4.	Model 8502A Specifications Model 8502A Supplemental Characteristics Recommended Test Equipment Connectors that Mate with 8502A Ports	2 2 4 5	5. Lo 6. Mo 7. 85	oss of Typical Coaxial Cable Used for 6-Ft. "Test" Cable odel 8502A Performance Test Record 602A Replaceable Parts	25 36 38

APPENDICES

Appendix

Α.	References	A-1
В.	Components of End Item List	B-1
C.	Additional Authorization List	
	(Not Applicable)	
D.	Maintenance Allocation	D-1
E.	Expendable Supplies and Material	
	List (Not Applicable)	
F.	Manual Changes	F-1

iv

SECTION 0 INTRODUCTION

0-1.SCOPE

This manual describes Transmission/Reflection Test Set, HP Model 8502A and provides instructions for operation and maintenance.

0-2. CONSOLIDATED INDEX OF ARMY PUBLICATIONS AND BLANK FORMS

Refer to the latest issue of DA Pam 310-1 to determine whether there are new editions, changes or additional publications pertaining to the equipment.

0-3. MAINTENANCE FORMS, RECORDS, AND REPORTS

a. Reports of Maintenance and Unsatisfactory Equipment. Department of the Army forms and procedures used for equipment maintenance will be those prescribed by DA Pam 738-750, as contained in Maintenance Management Update.

b. Report of Packaging and Handling Deficiencies. Fill out and forward SF 364 (Report of Discrepancy (ROD)) asprescribed in AR 735-11-2/DLAR 4140.55/ NAVMATINST 4355.73A/AFR 400-54/MCO 4430.3F.

c. Discrepancy in Shipment Report (DISREP)(SF 361). Fill out and forward Discrepancy in Shipment Report (DISREP)(SF 361) as prescribed in AR 55-38/ NAVSUPINST 4610.33C/AFR 75-18/MCO P4610.19D/DLAR 4500.15.

0-4. REPORTING EQUIPMENT IMPROVEMENT RECOMMENDATIONS (EIR)

If your equipment needs improvement, let us know. Send us an EIR. You, the user, are the only one who can tell us what you don't like about your equipment. Let us know why you don't like the design. Put it on an SF 368 (Quality Deficiency Report). Mail it to Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSEL-ME-MP', Fort Monmouth, NJ 07703-5007. We'll send you a reply.

0-5. ADMINISTRATIVE STORAGE

Administrative storage of equipment issued to and used by Army activities will have preventive maintenance performed in accordance with the PMCS charts for storing. When removing the equipment from administrative storage the PMCS should be performed to assure operational readiness. Disassembly and repacking of equipment for shipment or limited storage is covered in paragraph 24.

0-6. DESTRUCTION OF ARMY ELECTRONICS MATERIEL

Destruction of Army electronics materiel to prevent enemy use shall be in accordance with TM 750-244-2.

0-1

Figure 1. Model 8502A Transmission/Reflection Test Set

0-2

1. GENERAL INFORMATION

2. Introduction

3. This Operating and Service manual applies to the Hewlett-Packard Model 8502A Transmission/Reflection Test Set (Figure 1). It contains information necessary to operate, test, and service the HP Model 8502A

4. On the title page of this manual, below the manual part number, is a "Microfiche" part number. This number may be used to order a 4x 6inch microfilm transparency of this manual.

5. Description

6. The Hewlett-Packard Model 8502A Transmission/Reflection Test Set provides all of the RF hardware necessary to make simultaneous transmission and reflection measurements between 500 KHz and 1300 MHz. The test set consists of an RF power splitter to develop a reference or incident signal, a directional bridge to develop a reflected signal, and an attenuator to control the signal incident on the device under test.

7. Instruments Covered by Manual

8. Attached to the instrument is a serial number plate (Figure 2). The serial number is in two parts. The first four digits and the letter are the serial number prefix; the last five digits are the suffix. The prefix is the same for all identical instruments; it changes only when a change is made to the instrument. The suffix, however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the serial number prefix(es) listed under SERIAL NUMBERS on the title page. If your instrument does not have a serial number prefix that is listed on the title page, refer to the manual changes supplement, or contact your nearest HP office for change information.

9. Input Level Caution

Do not apply signals greater than listed below or damage to the test set circuits

may result. TEST port limits are +26 dBm and 30 Vdc. RF INPUT port limits are +30 dBm (1.0 watt) and 7.0 Vdc. BIAS INPUT port limits are 500 mA and 30 Vdc.

Figure 2. Serial Number Plate

10. Specifications

11. Instrument specifications are listed in Table 1. These specifications are the performance standards or limits against which the instrument may be tested. Table 2 lists supplemental characteristics. These are not specifications but are typical characteristics included as additional information for the user.

12. Equipment Available

13. Hewlett-Packard Cable Accessory Set 11851 A, shown in Figure 3, contains four doubleshielded and phase-matched cables for high accuracy measurements with the HP Model 8505A Network Analyzer and other instruments.

14. Recommended Test Equipment

15. Equipment required for performance testing and troubleshooting of the Hewlett-Packard Model 8502A Transmission/Reflection Test Set is listed in Table 3. Other equipment may be substituted if it meets or exceeds the critical specifications listed in the table.

Table 1. Model 8502A Specifications

SPECIFICATIONS 8502A TRANSMISSION/REFLECTION TEST SET				
Frequency Range: 500 kHz to 1.3 GHz	Phase: ≤±6° from 2 to 1000 MHz Magnitude: ≤+0.9 dB from 1000 to 1300 MHz			
Impedance: 50 ohms	Phase: $\leq \pm 7.5^{\circ}$ from 1000 to 1300 MHz Magnitude: $\leq \pm 1.25$ dB from 0.5 to 2 MHz Phase: $\leq \pm 10^{\circ}$ from 0.5 to 2 MHz			
Frequency Response:	Incident Port Return Loss*:			
Transmission:	 ≥25 dB (≤1.12 SWR) from 2 to 1000 MHz ≥23 dB (≤1.15 SWR) from 0.5 to 1300 MHz 			
Magnitude: ≤±0.8 dB ** Phase: ≤±8°	Reflection Port Return Loss*:			
Reflection:	≥25 dB (≤1.12 SWR) from 2 to 1000 MHz ≥23 dB (≤1.15 SWR) from 0.5 to 1300 MHz			
Magnitude: $\leq \pm 1.5$ dB from 0.5 to 1300 MHz Phase: $\leq \pm 15^{\circ}$ from 0.5 to 1300 MHz	RF Input Port Return Loss*:			
** Phase: $\leq \pm 10^{\circ}$ from 2 to 1300 MHz	≥23 dB (≤1.15 SWR)			
Port Match:	Maximum Operating Level: ≤+20 dBm TEST port: +26 dBm 30 Vdc Max			
Test Port Return Loss*:	RF INPUT port: +30 dBm (1W) 7 Vdc Max Bias: 30 Vdc 500 mA Max			
\geq 26 dB (\leq 1.11 SWR) from 2 to 1300 MHz \geq 20 dB (\leq 1.22 SWP) from 0.5 to 2 MHz	Damage Level: >1 watt (+30 dBm) CW			
≥20 dB (<1.22 SWK) from 0.5 to 2 Mil2	Dimensions: 101 mm wide, 61.5mm high, 204mm deep (7-1/2" x 2-7/16" x 8")			
Test Port Open/Short Ratio:	Weight:			
Magnitude: $\leq \pm 0.75$ dB from 2 to 1000 MHz	Shipping: 3.1 kg (7 lb.)			
*Other ports terminated in 50 ohms ±10% tolerance.	**± degrees, specified as deviation from linear phase.			

Table 2. Model 8502A Supplemental Characteristics

Test Port Return Loss: Typically 30 dB from 2 to 1300 MHz	RF Attenuator Range: 0 to 70 dB in 10-dB steps
Insertion Loss with Attenuator Set to Zero: Input to Test Port: 13 dB	DC Bias Input Range: ±30 Vdc, ±200 mA; some degradation in RF specifications from 500 kHz to 100 MHz. 500 mA maximum.
Input to Incident Port: 19 dB	RF Connectors: 50 ohm Type N Female
Input to Reflection Port with Short on Test Port: 19 dB	DC Bias Input Connector: Type BNC Female

Item	Name	Qty	HP Part No	Description
1	Cable Assembly Cable Assembly	3 1	8120-2292 8120-2793	Three 61 cm (24 in.) 50-ohm cables, phase matched to 4° at 1.3 GHz and one 86 cm (34 in.), with 50-ohm Type N Male connectors on each end.

Figure 3. HP Model 11851A Cable Accessory Set

16. INSTALLATION

17. Initial Inspection

18. Inspect the shipping container for damage.

If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. Procedures for checking electrical performance are given in Paragraph 35. If the contents of the shipment are incomplete or if the equipment is mechanically damaged, or does not pass the electrical performance test, notify the nearest Hewlett-Packard office. If, in addition, the shipping container is damaged or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for the carrier's inspection. At Hewlett-Packard's option, the HP office may arrange for repair or replacement without waiting for claim settlement.

19. Preparation for Use

20. Mating Connectors

21. The connectors that mate with the HP Model 8502A ports are shown in Table 4. This table identifies each connector and gives the HP Part Number and part numbers of alternative sources.

Instrument	Critical Specifications	Recommended Model	Use*			
Network Analyzer Dual Directional Coupler	Frequency Range: 0.5 - 1300 MHz Frequency Range: 100 - 1300 MHz Directivity: ≥ 36 dB, 0.1 - 1 GHz >32 dB, 1.0 - 1.3 GHz	HP 8505A HP 778D, Opt. 012	P, T P			
Directional Bridge'	Frequency Range: 0.5 - 100 MHz Directivity: ≥40 dB, I - 100 MHz >30 dB, .5 - I MHz	HP 8721A	Ρ			
3-Way Power Splitter	Tracking between any two ports: <u><</u> 0.1 dB Magnitude <u><</u> 1.5° Phase > 32 dB Output Source Match	HP 11850A	Ρ			
Termination	Impedance: 50Ω with Type N male	HP 909A, Opt. 012	Ρ			
Termination ²	Impedance: 5092 with Type N male	HP 909A, Opt. 012 and H69	P P			
Short	Type N male Connector	HP 11511 A HP 11512A	Р Р. Т			
Adapter	Type BNC male to N male	HP 1250-1473	P			
(2 required) Adapter	Type N female to SMA female	Cablewave Systems No. 721	т			
Adapter ⁴ (2 required)	Type N female to SMA male	Cablewave Systems No. 718	Т			
Cable	6 ft. 50 Ω coaxial cable, Type R6-214, with Type N male connectors on both ends	HP 11500A	Ρ			
Cable (2 required)	6 ft. 500 coaxial cable, Type RG-214, with Type N male connector on one end and Type N female connector on the other end	HP 11501 A	Ρ			
Cable Set ³	24 in. 50sf coaxial cable phase matched matched to a standard within $\pm 2^{\circ}$ at 1300 MHz with Type N male connectors on both ends	HP 11851A	Ρ			
 *P = Performance; T = Troubleshooting ¹This part is included in HP 11652A Transmission/Reflection Kit. ²These parts are included in HP 85032A 502 Type N Calibration Kit. ³These parts are included in HP 11851A RF Cable Kit. 4Part of HPI 1854A 50n BNC Accessory Kit 						

Table 3. Recommended Test Equipment

Connector J1	Industry Identification Type N male, UG-216/U	HP Part Number 1250-0882	Alternate Sources and Part Numbers Bendix, No. 30481-2 Specialty Connectors, No. 25P117-2	
J2 Bias	Type BNC male, UG-88/U	1250-0256	Amphenol, No. 31-202-1021	

Table 4. Connectors that Mate with 8502A Ports

22. Operating Environment

23. The operating environment should be within the following limits:

- a. Temperature: o0 C (+32° F) to **550** C (+131°F)
- b. Humidity: <959% relative
- c. Altitude (Barometric): <15,000 feet (4,600 meters)

24. Storage and Shipment

25. Environment

26. The Model 8502A should be stored in a clean, dry environment. The following environmental limitations apply to both storage and shipment:

- a. Temperature: --40 C (-400 F) to +750 C (+1670 F)
- b. Humidity: <95% relative
- c. Altitude (Barometric): <50,000 feet (15,300 meters)

27. Packaging for Shipment

28. Original Type Packaging. Containers and materials identical with those used in factory packing are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number and full serial number. Also, mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by the model number and full serial number.

29. Other Packaging. The following general instructions should be used for re-packaging with commercially available materials.

a. Wrap the instrument in heavy paper or plastic. If shipping to Hewlett-Packard office or service center, attach a tag indicating the type of service required, return address, model number, and full serial number.

b. Use a strong shipping container. A doublewall carton made of 350-pound test material is adequate.

c. Use enough shock-absorbing material (3 to 4inch layer) around all sides of the instrument to provide firm cushion and prevent movement inside the container. Protect the front of the instrument with cardboard.

d. Seal the shipping container securely.

e. Mark shipping container FRAGILE to assure handling.

f. In any correspondence, refer to instrument by model number and full serial number.

30. OPERATION

31. Panel Features

32. Front and rear panel controls and connectors are illustrated and functionally described in Figure 4.

33. Incoming Inspection

34. The test given in Figure 5 is primarily designed to meet the needs of incoming inspection.

The test will prove that the HP Model 8502A Transmission/Reflection Test Set is functioning correctly, and tests that the most critical specification, directivity, is within the specification.

If a test for each detailed specification is required, then go to the performance test section beginning with Paragraph 35 and run each test.

Figure 4. 8502A Front and Rear Panel Controls, Connectors and Case Bottom (1 of 2)

Figure 4. 8502A Front and Rear Panel Controls, Connectors and Case Bottom (2 of 2)

INCOMING INSPECTION TEST

NETWORK ANALYZER

EQUIPMENT:

Network Analyzer Type N Male Short 50r2 Type N Male Te	
*Part of	IIP 85032A 50S Type N Calibration Kit.
PROCEDURE:	
a. Set 8505A c	ontrols as follows:
A I Source/C OUT OUT INPL	onverter: PUT LEVEL dBm10 PUT LEVEL Vernier0 JT LEVEL MAX10
A2 Frequence RAN MODE LIN WIDTH SCAN TIME TRIGGER MARKER SW MARKER Ve FREQUENC FREQUENC	sy Control: IGE MHz LIN .5 - 1300 FULL START/STOP 1 SEC 11 witch 1 ernier. Mid-range Y MHz START. 0 Y MHz STOP. 1300

Figure 5. Incoming Inspection Test (1 of 3)

INCOMING INSPECTION TEST

PROC	CEDURE (Cont'd): A3 Signal Processor:	
	A/I INPUT	R G B
	MODEOF	F
	Electrical Length: MODEOF	F
b.	Set 8502A RF INPUT ATTENUATION control to 0 dB.	
С.	Connect equipment as shown in test setup with TEST port open.	
d.	On 8505A CRT display, depress REF LINE POSN pushbutton. Adjust CH I control until trace is p center of screen. Press REF LINE POSN pushbutton again to return system to normal operation.	ositioned to
e.	Place 8505A Frequency Control MARKER I on center graticule.	
f.	To calibrate the system for directivity measurements, attach short directly to 8502A TEST port. Processor Channel I press DISPLAY MKR then ZRO pushbuttons to place marker on reference digital readout.	On 8505A Signal e line and to zero
	NOTE The termination must be properly seated in the connector with the tightening nu correctly aligned. If the termination is not properly seated, low directivity will b measured, and the measurement will not be repeatable.	it e
g.	To measure the directivity of the 8502A, remove the short and replace it with a 50Ω termination 012 and H69. The SWR of the termination must be <1.005 (>52 dB Return Loss).	HP 909A, Option
	(1) Move 8505A Frequency Control MARKER I control to worst-case directivity as indicated on closest to calibration line as shown in the waveform).	CRT (the point
	(2) Read worst-case directivity from 8505A Signal Processor Channel 1 digital display. The indic ≥40 dB below the 0 dB reference level (-40 dB or below).	cation should be
	Figure 5. Incoming Inspection (2 of 3)	
	0	

Figure 5. Incoming Inspection Test (3 of 3)

35. PERFORMANCE TESTS

36. Introduction

37. The procedures in this section test the electrical performance of the instrument using the specifications of Table 1 as the performance standards. All tests can be performed without access to the interior of the instrument. A simpler incoming inspection test is included in Paragraph 33.

38. The performance test procedures should be performed in the sequence given. If a function fails to operate, go to Paragraph 71, Troubleshooting to find which major assembly or cable has failed.

39. Equipment Required

40. Equipment required for the performance tests is listed in the Recommended Test Equipment in Table 3. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model.

41. Test Record

42. Results of the performance tests may be tabulated on the Test Record at the end of the procedures (Table 6). The Test Record lists all of the tested specifications and their acceptable limits. Test results recorded at incoming inspection can be used for comparison in troubleshooting and after repairs.

PERFORMANCE TESTS

NOTE

Allow one hour warm-up time on 8505A Network Analyzer before making the Performance Tests.

43. DIRECTIVITY TEST

SPECIFICATION:

Directivity: >40 dB

DESCRIPTION:

Directivity is tested using the internal coupler to measure the reflection coefficient of a standard termination. The termination return loss is much greater than the directivity, therefore the resultant measurement is the approximate coupler directivity.

The Directivity Test has been used for the Incoming Inspection Test. The test setup, equipment and procedures needed to test the directivity specifications are found in Figure 5, Incoming Inspection Test.

44. TRANSMISSION FREQUENCY RESPONSE TEST

SPECIFICATION:

Transmission Frequency Response: $\leq \pm 0.8$ dB Mag $\leq \pm 8^{\circ}$ Phase (\pm degress tested as deviation from linear phase)

DESCRIPTION:

The frequency response of the 8505A Network Analyzer System is first recorded with a grease pencil on the CRT display. The 8502A is connected and the transmission frequency response is superimposed over the reference grease pencil trace. The difference in the two traces is the transmission frequency response of the 8502A.

Figure 6. Transmission Frequency Response Test Setup

EQUIPI	MENT:	Network Analyzer 3-Way Power Splitter 5052 Type N Male Termination Matched Type N Male Coaxial Cable Kit	HP 8505A HP 11850A HP 909A Option 012 HP 1851A
PROCE	EDURE:		
a.	Set 850	05A controls as follows:	
	A1 Sou	rce/Converter: OUTPUT LEVEL dBm OUTPUT LEVEL Vernier INPUT LEVEL MAX	-10 0 -10
A2 Fred	quency (Control: RANGE MHz MODE. WIDTH SCAN TIME SEC TRIGGER MARKERS Switch MARKER Vernier FREQUENCY MHz START FREQUENCY MHz STOP SCAN TIME SEC Vernier	
A3 Sigr	nal Proce Channe Channe	essor: el 1: INPUT MODE SCALE/DIV el 2:	B/R MAG 2 dB

INPUT	B/R
MODE	PHASE
SCALE/DIV	
Electrical Length: INPUT MODE	E

Display Section	n:	
BV	N 1	l0 kHz
Vie	deo Filter	OFF

b. Connect equipment as shown in Figure 6, Configuration A.

c. On 8505A CRT display, depress REF LINE POSN pushbutton. Adjust CH I and CH 2 controls until traces are positioned to center of screen. Press REF LINE POSN pushbutton again to return system to normal operation.

- d. On 8505A Signal Processor turn Channel 2 MODE switch to OFF.
- e. To determine the magnitude frequency response of the Network Analyzer, place 8505A Frequency Control MARKER I on center graticule:
 - (1) On the 8505A Signal Processor Channel 1 press DISPLAY MKR and ZRO pushbuttons to place marker on reference line and to zero digital readout.
 - (2) Grease pencil the trace on the CRT.
- f. To measure the transmission magnitude frequency response of the 8502A connect equipment as shown in Figure 6, Configuration B.
 - (1) Set 8502A RF INPUT ATTENUATION control to zero dB.
 - (2) On 8505A Signal Processor Channel 1 press REF OFFSET pushbuttons to center the display around the grease pencil magnitude trace.
 - (3) Measure the maximum difference between the grease pencil trace and the display trace (Figure 7). This measured value should be <0.8 dB.
- g. To determine the phase frequency response of the Network Analyzer connect equipment as shown in Figure 6, Configuration A:
 - (1) Remove CRT grease pencil traces from previous test.
 - (2) Turn 8505A Signal Processor Channel I MODE switch to OFF and Channel 2 MODE switch to PHASE.

Figure 7. Transmission Frequency Response Magnitude

- (3) On the 8505A Signal Processor Electrical Length, press the LENGTH pushbuttons and adjust VERNIER B control to display a horizontal trace on the CRT.
- (4) Set 8505A Signal Processor Channel 2 SCALE/DIV switch to 2 DEG.
- (5) On the 8505A Signal Processor Channel 2 press DISPLAY MKR and ZRO pushbuttons to place marker on reference line and to zero digital readout.
- (6) Grease pencil the trace on the CRT.
- h. To measure the transmission phase frequency response of the 8502A connect equipment as shown in Figure 6, Configuration B.
 - (1) Set 8505A Signal Processor Channel 2 SCALE/DIV switch to 90 DEG.
 - (2) On 8505A Signal Processor Electrical Length press the LENGTH pushbuttons and adjust VERNIER B control to display a horizontal trace on the CRT.
 - (3) Set 8505A Signal Processor Channel 2 SCALE/DIV switch to 2 DEG and repeat step h (2).
 - (4) On 8505A Signal Processor Channel 2 press MKR and ZRO pushbuttons.
 - (5) On 8505A Signal Processor Channel 2 press the REF OFFSET pushbuttons to center the display around the grease pencil phase trace.
 - (6) Measure the maximum difference between the grease pencil trace and the display trace (Figure 8). This measured value should be see

Figure 8. Transmission Frequency Response Phase

45. REFLECTION FREQUENCY RESPONSE TEST

SPECIFICATION:

 \leq ±1.5 dB Mag from 0.5 to 1300 MHz \leq ±15° Phase from 0.5 to 1300 MHz <+10° Phase from 2 to 1300 MHz

DESCRIPTION:

The reflection frequency response of the 8505A Network Analyzer system is first recorded with a grease pencil on the CRT display. The 8502A is connected and the reflection frequency response is superimposed over the reference grease pencil trace. The difference in the two traces is the reflection frequency response of the 8502A.

CONFIGURATION A

Figure 9. Reflection Frequency Response Test Setup (1 of 2)

45. REFLECTION FREQUENCY RESPONSE TEST (Cont'd)

Figure 9. Reflection Frequency Response Test Setu4p (2 of 2)

EQUIPMENT

Network Analyzer	HP 8505A
3-Way Power Splitter	HP I 850A
5052 Type N Male Termination	
Matched Type N Male Coaxial Cable Kit	HP 11851 A
Type N Male Short	HP 11512A

PROCEDURE:

a. Set 8505A controls as follows:

A1 Source/Converter:	
OUTPUT LEVEL dBm	10
OUTPUT LEVEL Vernier	0
INPUT LEVEL MAX	10

45. REFLECTION FREQUENCY RESPONSE TEST (Cont'd)

A2 Frequency Control:	
RANGE MHz	
MODE	LIN FULL
WIDTH	START/STOP 1
SCAN TIME SEC	
TRIGGER	AUTO
MARKERS Switch	
MARKER Vernier	Mid-range
FREQUENCY MHz START	
FREQUENCY MHz STOP	

A3 Signal Processor:

Channel 1:	
INPUT	A/R
MODE	MAG
SCALE/DIV	5 dB

Channel 2:

INPUT	A/R
MODE	PHASE
SCALE/DIV	

Electrical Length:

INPUT	A
MODE	X1

- b. Connect equipment as shown in Figure 9, Configuration A.
- c. On 8505A CRT display, depress REF LINE POSN pushbutton. Adjust CH I and CH 2 controls until traces are positioned to center of screen. Press REF LINE POSN pushbutton again to return system to normal operation.
- d. On 8505A Signal Processor turn Channel 2 MODE switch to OFF.
- e. To determine the magnitude frequency response of the Network Analyzer move 8505A Frequency Control MARKER I to center graticule:
 - (1) On the 8505A Signal Processor Channel I press DISPLAY MKR and ZRO pushbuttons to place marker on reference line and to zero digital readout.
 - (2) Grease pencil the trace on the CRT.
- f. To measure the reflection magnitude frequency response of the 8502A connect equipment as shown in Figure 9, Configuration B with TEST port shorted.
 - (1) Set 8502A RF INPUT ATTENUATION control to 0 dB.
 - (2) On 8505A Signal Processor Channel 1 press REF OFFSET pushbuttons to center the display around the grease pencil magnitude trace.

45. REFLECTION FREQUENCY RESPONSE TEST (Cont'd)

(3) Measure the maximum difference between the grease pencil trace and the display trace (Figure 10). This measured value should be 1.5 dB for the entire 0.5 to 1300 MHz frequency range.

Figure 10. Reflection Frequency Response Magnitude

g. To determine the phase frequency response of the Network Analyzer for the full 0.5 to 1300 MHz frequency range connect equipment as shown in Figure 9, Configuration A:

- (1) Remove CRT grease pencil trace from previous test.
- (2) Turn 8505A Signal Processor Channel 1 MODE switch to OFF and Channel 2 MODE switch to PHASE.
- (3) On the 8505A Signal Processor Electrical Length, press the LENGTH pushbuttons and adjust VERNIER A control to display a horizontal trace on the CRT.
- (4) Set 8505A Signal Processor Channel 2 SCALE/DIV switch to 5 DEG and repeat step g (3).
- (5) On the 8505A Signal Processor Channel 2 press DISPLAY MKR and ZRO pushbuttons to place marker on reference line and to zero digital readout.
- (6) Grease pencil the trace on the CRT.
- h. To measure the reflection phase frequency response of the 8502A connect equipment as shown in Figure 9, Configuration B with TEST port open.
 - (1) Set 8505A Signal Processor Channel 2 SCALE/DIV switch to 90 DEG.
 - (2) On 8505A Signal Processor ELECTRICAL LENGTH press the LENGTH pushbuttons and adjust VERNIER A control to display a horizontal trace on the CRT.
 - (3) Set 8505A Signal Processor Channel 2 SCALE/DIV switch to 5 DEG and repeat step h (2).
 - (4) On 8505A Signal Processor Channel 2 press MKR and ZRO pushbuttons.

PERFORMANCE TESTS

45. REFLECTION FREQUENCY RESPONSE TEST (Cont'd)

- (5) On 8505A Signal Processor Channel 2 press the REF OFFSET pushbuttons to center the display around the grease pencil phase trace.
- (6) Measure the maximum difference between the grease pencil trace and the display trace (Figure 11). This measured value should be 6<15° for the entire 0.5 to 1300 MHz frequency range.</p>

Figure 11. Reflection Frequency Response Phase

- i. To determine the phase frequency response of the Network Analyzer for the 2 to 1300 MHz frequency range, connect equipment as shown in Figure 9, Configuration A:
 - (1) Remove CRT grease pencil trace from previous test.
 - (2) On 8505A Frequency Control set MODE switch to LIN EXPAND.
 - (3) Set 8505A Frequency Control FREQUENCY MHz START control to 2 and FREQUENCY MHz STOP control to 1300.
 - (4) Set 8505A Signal Processor Channel 2 SCALE/DIV switch to 90 DEG.
 - (5) Repeat steps g (3) through g (6).
- j. To measure the reflection phase frequency response of the 8502A connect equipment as shown in Figure 9, Configuration B with TEST port open.
 - (1) Repeat steps h (1) through h (5).
 - (2) Measure the maximum difference between the grease pencil trace and the display trace (Figure 11). This measured value should be < 10° for the 2 to 1300 MHz frequency range.</p>
 - (3) Remove grease pencil trace from CRT.

46. TEST PORT OPEN/SHORT RATIO TEST

SPECIFICATION:

Test Port Open/Short Ratio: < \pm 0.9 dB Mag and < \pm 7.5° Phase from 1000 to 1300 MHz < \pm 0.75 dB Mag and < \pm 6° Phase from 2 to 1000 MHz < \pm 1.25 dB Mag and < \pm 10° Phase from 0.5 to 2 MHz

DESCRIPTION:

Magnitude open/short ratio and Phase open/short ratio for frequencies above 2 MHz are measured using the reflections generated by a short through a 6-ft. coaxial cable which is connected to the 8502A TEST port. Peak-to-peak readings are taken from the CRT trace to determine the actual open/short ratio while the effect of the return loss of the cable used is accounted for. To compensate for the added line length on the 8502A TEST port, a 12-ft. coaxial cable is connected from the 8502A INCIDENT port to the 8505A R Channel. For frequencies below 2 MHz, the TEST port is directly shorted, then opened, and this ratio is read directly from the CRT trace.

46. TEST PORT OPEN/SHORT RATIO TEST (Cont'd)

EQUIPMENT:

Network Analyzer	HP 8505A
Type N Male Short	HP 11512A
6-Ft. Coaxial Cable, Type RG-214, with Type N Male	
Connector on One End and Type N Female Connector	
on the Other end (2 required)	HP 11501 A
6-Ft. Coaxial Cable, Type RG-214, with Type N Male	
Connectors on Each End	HP 11500A
24-In. 5052 Matched Coaxial Cable with Type N Male	
Connectors on Each End (3 required)	HP 11851A

PROCEDURE:

a. Set 8505A controls as follows:

All Source/Converter:

OUTPITT LEVEL dBm	1(
OUTPUJT LEVEL Vernie	er
INPUPT LEVEL MAX	1(

46. TEST PORT OPEN/SHORT RATIO TEST (Cont'd)

A2 Frequency Con RANGE M MODE WIDTH SCAN TIM TRIGGER FREQUEN FREQUEN MARKER	IE SEC NCY MHz START NCY MHz STOP	
A3 Signal Process Channel 1 INPUT MODE SCALE/DI	or: : V	A/R MAG 5 dB
Channel 2 INPUT MODE SCALE/DI	: 	A/R PHASE 5 DEG
Electrical Length: INPUT MODE		A X10

- b. Set 8502A RF INPUT ATTENUATION control to 20 dB.
- c. Connect equipment as shown in Figure 12, Configuration A.
- d. On 8505A CRT display, depress REF LINE POSN pushbutton. Adjust CH 1 and CH 2 controls until traces are positioned to center of screen. Press REF LINE POSN pushbutton again to return system to normal operation.
- e. On 8505A Signal Processor turn Channel 2 MODE switch to OFF.
- f. To measure the TEST port open/short magnitude ratio between 1000 and 1300 MHz move 8505A Frequency Control MARKER I to center graticule.
 - (1) On the 8505A Signal Processor Channel 1 press DISPLAY MKR and ZRO pushbuttons to place marker on reference line and to zero digital readout.

PERFORMANCE TESTS

46. TEST PORT OPEN/SHORT RATIO TEST (Cont'd)

Magnitude: 1000 to 1300 MHz = _____ dB

(2) Measure the maximum peak-to-peak variation on the display (Figure 13) and record the results:

MAX dB

Figure 13. TEST Port Open/Short Ratio Magnitude >2 MHz

NOTE

If a peak-to-peak measurement is made in an area where there is some slope, a corrected reading can be obtained by connecting two adjacent upper peaks with a dotted line. Extend a vertical line up from the lower peak until it intersects the dotted line. This constructed vertical line is the averaged or corrected peak-to-peak measurement to be used (Figure 14). Avoid making peak-to-peak measurements at extreme slope changes.

Figure 14. Slope Peak-To-Peak Measurement

46. TEST PORT OPEN/SHORT RATIO TEST (Cont'd)

g. Calculate the actual maximum open/short magnitude ratio for the 1000 to 1300 MHz frequency range by dividing the measured value (recorded previously) by the reflection coefficient of the test cable used (Table 5, Column 1000 MHz), or:

MEASURED VALUE dB REFLECTION COEFFICIENT= ACTUAL OPEN/SHORT RATIO MAGNITUDE OF TEST CABLE

The actual open/short ratio magnitude for 1000 to 1300 MHz should be <1.8 dB (< \pm -.9 dB).

	600 MHz	1000 MHz	
Cable Type	ρ for 12-Ft. (out & back)	ρ for 12 Ft. (out & back)	
RG-214/u	0.91	0.88	
RG-58/u	0.91	0.88	
RF-218/u	0.96	0.95	

Table 5. Loss of Typical Coaxial Cable Used for 6-Ft. "Test" Cable

- h. To measure the TEST port open/short phase ratio between 1000 and 1300 MHz:
 - (1) Set 8505A Signal Processor Channel 1 MODE switch to OFF and Channel 2 MODE switch to PHASE.
 - (2) On 8505A Signal Processor Channel 2 press DISPLAY MKR and ZRO pushbuttons to place marker on reference line and to zero digital readout.
 - (3) On 8505A Signal Processor ELECTRICAL LENGTH, press the LENGTH pushbuttons and adjust VERNIER A control to display a horizontal trace on the CRT. If necessary you can change 8505A Signal Processor Channel 2 SCALE/DIV switch to a lower sensitivity to position trace to a horizontal position, then return it to PHASE 5 DEG setting before going on with test.
 - (4) On 8505A Signal Processor Channel 2, press REF OFFSET pushbuttons to move trace to a readable position on the CRT.

46. TEST PORT OPEN/SHORT RATIO TEST (Cont'd)

(5) Measure the maximum peak-to-peak variation on the display (Figure 15) and record the results (See Figure 14):

Figure 15. TEST Port Open/Short Ratio Phase >2 MHz

i. Calculate the actual maximum open/short ratio phase for the 1000 to 1300 MHz frequency range by dividing the measured value (recorded above) by the reflection coefficient of the test cable used (Table 5, Column 1000 MHz), or:

MEASURED VALUE DEG REFLECTION COEFFICIENT = ACTUAL OPEN/SHORT RATIO PHASE OF TEST CABLE

The actual open/short ratio phase for 1000 to 1300 MHz should be < 15° (< $\pm 7.5^{\circ}$).

- j. To measure the TEST port open/short magnitude ratio between 2 and 1000 MHz:
 - (1) Set 8505A Frequency Control FREQUENCY MHz START control to 2 and FREQUENCY MHz STOP control to 1000.
 - (2) Set 8505A Signal Processor Channel 2 MODE switch to OFF and Channel 1 MODE switch to MAG.
 - (3) Repeat step f except that the measured value for the frequency range 2 to 1000 MHz = _____ dB.
 - (4) To calculate the actual open/short magnitude for the 2 to 1000 MHz frequency range, repeat step g except use the 600 MHz column in Table 5 to find the reflection coefficient of the test cable used. The actual open/short ratio magnitude for 2 to 1000 MHz should be 6 < 1.5 dB(< ± .75 dB).</p>

46. TEST PORT OPEN/SHORT RATIO (Cont'd)

- k. To measure the TEST port open/short ratio phase between 2 and 1000 MHz:
 - (1) Repeat step h except that the measured value for the frequency range 2 to 1000 MHz = _____ dB.
 - (2) To calculate the actual open/short ratio phase for 2 to 1000 MHz frequency range, repeat step i except use the 600 MHz column in Table 5 to find the reflection coefficient of the test cable used. The actual open/short ratio phase for 2 to 1000 MHz should be < 12° (<± 6°).</p>
- I. To measure magnitude and phase open/short ratios below 2 MHz connect equipment as shown in Figure 12, Configuration B with TEST port open.
 - (1) Set 8505A Frequency Control RANGE MHz switch to .5—13.
 - (2) Set 8505A Frequency Control FREQUENCY MHz START control to 00.50 and FREQUENCY MHz STOP control to 02.00.
 - (3) Set 8505A Signal Processor Channel 2 MODE switch to PHASE.
 - (4) On 8505A CRT display, depress REF LINE POSN pushbutton. Adjust CH 1 and CH 2 controls until traces are positioned to center of screen. Press REF LINE POSN pushbutton again to return system to normal operation.
 - (5) On 8505A Signal Processor Channel 1 and Channel 2 press MKR then ZRO pushbuttons to bring trace to onscreen position.
 - (6) On 8505A Frequency Control set Frequency Counter MHz MARKER 1 to beginning of sweep on CRT.
 - (7) On 8505A Signal Processor Channel 1 and Channel 2 press MKR then ZRO pushbuttons to place marker on reference line and to zero digital readout.
 - (8) Set 8505A Signal Processor Channel 2 MODE switch to OFF.
- m. To measure the TEST port open/short ratio magnitude between 0.5 and 2 MHz:
 - (1) Attach short directly to TEST port.
 - (2) 8505A Signal Processor Channel 1 MKR digital display should indicate < 2.50 dB (<± 1.25 dB).
- n. To measure the TEST port open/short ratio phase between 0.5 and 2 MHz:
 - (1) Remove the short from the 8502A TEST port.
 - (2) Set 8505A Signal Processor Channel 1 MODE switch to OFF and Channel 2 MODE switch to PHASE.

46. TEST PORT OPEN/SHORT RATIO TEST (Cont'd)

- (3) On 8505A Signal Processor Electrical Length, press the LENGTH pushbuttons and adjust A VERNIER A control to display a horizontal trace on the CRT. If necessary, change 8505A Signal Processor Channel 2 SCALE/DIV switch to a lower sensitivity to position trace to a horizontal position, then return it to PHASE 5 DEG setting before going on with test.
- (4) On 8505A Signal Processor Channel 2 press MKR then ZRO then DISPLAY REF pushbuttons.
- (5) On 8505A Signal Processor Channel 2 press REF OFFSET pushbuttons to indicate +180 DEG on digital display.
- (6) On 8505A Signal Processor Channel 2 press DISPLAY MKR pushbutton.
- (7) Attach short directly to 8502A TEST port.
- (8) Digital display should indicate $< 20^{\circ} (< \pm 10^{\circ})$.

47. TEST PORT RETURN LOSS TEST

SPECIFICATION:

TEST port return loss: > 26 dB from 2 to 1300 MHz > 20 dB from 0.5 to 2 MHz

DESCRIPTION:

Perform the Directivity (Incoming Inspection Test, Figure 5) and the Open/Short Ratio (Paragraph 46) Tests. These two tests confirm that the TEST port Return Loss of the 8502A is within specification. If a more direct and accurate test is required for the TEST port Return Loss specification, refer to the 8507A Accuracy Enhancement Program (AIM) procedure for the method of making an error-corrected return loss measurement. An 8542B Automatic Network Analyzer may also be used to make this measurement between 100 and 1300 MHz.

48. PORT RETURN LOSS TESTS

SPECIFICATIONS:

INCIDENT Port Return Loss:	> 23 dB from 1000 — 1300 MHz
	> 25 dB from 100 — 1000 MHz
	> 25 dB from 2 — 100 MHz
	> 23 dB from 0.5 — 2 MHz
REFLECTED Port Return Loss:	> 23 dB from 1000 — 1300 MHz
	> 25 dB from 100 — 1000 MHz
	> 25 dB from 2 — 100 MHz
	> 23 dB from 0.5 — 2 MHz
RF INPUT Port Return Loss:	> 23 dB from 100 — 1300 MHz
	> 23 dB from 0.5 — 100 MHz

DESCRIPTION:

The system is calibrated by shorting or opening the main line TEST port of the Directional Coupler to establish a 0 dB reference line on the CRT display. The INCIDENT, REFLECTED or RF INPUT port of the 8502A is then connected in place of the short to the Dual Directional Coupler or Directional Bridge with all other ports terminated in 50 ohms. The Return Loss is measured directly with the 8505A MARKER digital display and the CRT trace. When using this method to measure Return Loss, ambiguity due to "imperfect" directivity of the directional device is introduced. The ambiguity of the measurement may be as great as ± 2 dB. If a more direct and accurate test is required to the port Return Loss specifications, refer to the 8507A Accuracy Enhancement Program (AIM) procedure for the method of making an error-corrected Return Loss measurement.

48. PORT RETURN LOSS TESTS (Cont'd)

CONFIGURATION A (Frequency Range: 100 — 1300 MHz)

CONFIGURATION B (Frequency Range: 0.5 – 100 MHz)

Figure 16. INCIDENT, REFLECTED, and RF INPUT Port Return Loss Test Setups

PERFORMANCE TESTS

48. PORT RETURN LOSS TESTS (Cont'd)

EQUIPMENT:

HP 8505A
HP 778D
HP 8721A
HP 11850A
HP 11511A
HP 909A Option 012
HP 1250-1473 *

*Part of HP 11652A Transmission/Reflection Kit. **Part of HP 11854A 50Ω BNC Accessory Kit.

PROCEDURE:

a. Set 8505A controls as follows:

A1 Source/Converter

OUTPUT LEVEL dBm	10
OUTPUT LEVEL Vernier	0
INPUT LEVEL MAX	10

A2 Frequency Control

RANGE MHz	0.5 — 1300 MHz
MODE	LIN EXPAND
WIDTH	START/STOP 1
SCAN TIME SEC	
VERNIER	Counterclockwise
TRIGGER	AUTO
MARKERS Switch	
FREQUENCY MHz START	
FREQUENCY MHz STOP	
MARKER 1	

A3 Signal Processor:

A/R
MAG
OFF
OFF

b. Set 8502A RF INPUT ATTENUATION control to 20 dB.

c. For INCIDENT port return loss measurements connect equipment as shown in Figure 16, Configuration A with no connection to mainline TEST port of Directional Coupler.

48. PORT RETURN LOSS TESTS (Cont'd)

- d. On 8505A display, depress REF LINE POSN pushbutton. Adjust CH 1 control until trace is positioned to center of screen. Press REF LINE POSN pushbutton again to return system to normal operation.
- e. Set 8505A Frequency Control MARKERS switch to 2.
- f. Place 8505A Frequency Control MARKER 2 on center graticule.
- g. To calibrate the system for Return Loss measurement, attach short directly to Dual Directional Coupler mainline TEST port. On 8505A Signal Processor Channel 1, press DISPLAY MKR then ZRO pushbuttons to place MARKER 2 on reference line and to zero digital readout.
- h. To measure the INCIDENT port return loss for the frequency range 1000 to 1300 MHz:

(1) Remove short and connect Dual Directional Coupler directly to 8502A INCIDENT port with RF INPUT, REFLECTED, and TEST ports terminated.

(2) Move 8505A Frequency Control MARKER 2 control to worst-case, Return Loss between 1000 and 1300 MHz as indicated on CRT. (This is the point closest to calibration line right of 1000 MHz MARKER I as shown in Figure 17.)

Figure 17. INCIDENT Port Return Loss (1000 to 1300 MHz)

- (3) Read worst-case Return Loss from 8505A Signal Processor Channel 1digital display. The indication should be >23 dB below the zero dB reference level for the frequency range 1000 to 1300 MHz.
- i. To measure the INCIDENT port Return Loss for the frequency range 100 to 1000 MHz:
 - (1) Move 8505A Frequency Control MARKER 2 control to worst-case Return Loss between 100 and 1000 MHz as indicated on CRT. (The point closest to calibration line to left of 1000 MHz MARKER as shown in Figure 18.)

PERFORMANCE TESTS

48. PORT RETURN LOSS TESTS (Cont'd)

Figure 18. INCIDENT Port Return Loss (100 to 1000 MHz)

- (2) Read worst-case Return Loss from 8505A Signal Processor Channel 1 digital display. The indications should be >25 dB below the zero dB reference level for the frequency range 100 to 1000 MHz.
- j. To determine the INCIDENT port Return Loss for the frequency range 2 to 1000 MHz connect equipment as shown in Figure 16, Configuration B with LOAD port on Directional Bridge shorted. Set 8505A Frequency Control RANGE MHz switch to .5 — 130. Adjust FREQUENCY MHz START control to 002.0 and FREQUENCY MHz STOP control to 100.0.
- k. To calibrate the system for Return Loss measurements:
 - (1) On 8505A CRT display, push REF LINE POSN pushbutton and adjust CH 1 control until trace is positioned to center of screen. Press REF LINE POSN pushbutton again to return system to normal operation.
 - (2) Set 8505A Frequency Control MARKERS switch to 1 and adjust MARKER 1 control to center graticule.
 - (3) On 8505A Signal Processor Channel I press DISPLAY MKR and ZRO pushbuttons to place MARKER 1 on reference line and to zero digital readout.
- I. To measure the INCIDENT port Return Loss for 2 to 100 MHz:
 - Connect 8502A INCIDENT port directly to Directional Bridge LOAD Port with TEST, RF INPUT, and REFLECTED ports terminated.
 - (2) Move 8505A Frequency Control MARKER 1 control to worst-case Return Loss between 2 and 100 MHz as indicated on CRT. (This is the point closest to calibration line as shown in Figure 19.)

PERFORMANCE TESTS

48. PORT RETURN LOSS TESTS (Cont'd)

Figure 19. INCIDENT Port Return Loss (2 to 100MHz)

- (3) Read worst-case Return Loss from 8505A Signal Processor Channel I digital display. The indications should be > 25 dB below the zero dB reference level for the frequency range 2— 100 MHz.
- m. To determine INCIDENT port Return Loss for the frequency range 0.5 to 2 MHz:
 - Set 8505A Frequency Control RANGE MHz switch to .5 to 13. Adjust FREQUENCY START control to 00.50 and FREQUENCY STOP control to 02.00.
 - (2) Repeat steps k through I except that the indication should be >-23 dB below the zero dB reference level for the frequency range).5 to 2 MHz (Figure 20).

Figure 20. INCIDENT Port Return Loss (0.5 to 2 MHz)

48. PORT RETURN LOSS TESTS (Cont'd)

- n. For REFLECTED port Return Loss measurements repeat steps a m, except directly connect the REFLECTED port to the Dual Directional Coupler (Figure 16, Configuration A) or the Directional Bridge (Figure 16, Configuration B) with RF INPUT, INCIDENT, and TEST ports terminated in 50 ohms. The worst-case Return Loss measurements should be:
 - > 23 dB from 1000 1300 MHz
 - > 25 dB from 100 1000 MHz
 - > 25 dB from 2 100 MHz
 - > 23 dB from 0.5 2 MHz
- For RF INPUT port Return Loss measurements repeat steps a m, except directly connect the RF INPUT port to the Dual Directional Coupler (Figure 16, Configuration A) or the Directional Bridge (Figure 16, Configuration B) with REFLECTED, INCIDENT, and TEST ports terminated in 50 ohms. The worst-case Return Loss measurements should be:

> 23 from 100 — 1300 MHz > 23 from 0.5 — 100 MHz

Hew	lett-Packard Model 8502A Tes	st Performed B	y:	
Seria	al Number: Da	te:		
Para. No.	Description	Lower Limit	Measured Value	Upper Limit
43.	DIRECTIVITY TEST	40 dB		
44.	TRANSMISSION FREQUENCY RESPONSE TEST			
	f.(3) MAG: h.(6) PHASE:		·····	0 .8 dB 8°
45.	REFLECTION FREQUENCY RESPONSE TEST			
	f.(3) MAG: 0.5 – 1300 MHz h.(6) PHASE: 0.5 – 1300 MHz j.(2) PHASE: 2 – 1300 MHz			1.5 dB 15° 10°
46.	TEST PORT OPEN/SHORT RATIO TEST			
	g. MAG: 1000 - 1300 MHz i. PHASE: 1000 - 1300 MHz j.(4) MAG: 2 - 1000 MHz k.(2) PHASE: 2 - 1000 MHz m.(2) MAG: 0.5 - 2 MHz n.(8) PHASE: 0.5 - 2 MHz			1.8 dB 15° 1.5 dB 12° 2.5 dB 20°
47.	TEST PORT RETURN LOSS TEST			
	2 – 1300 MHz 0.5 – 2 MHz	26 dB 20 dB		
48.	PORT RETURN LOSS TESTS			
	Incident Port h.(3) 1000 1300 MHz i.(2) 100 1000 MHz 1.(3) 2 100 MHz m.(2) 0.5 - 2 MHz	23 dB 25 dB 25 dB 23 dB		
	Reflected Port h.(3) 1000 - 1300 MHz i.(2) 100 - 1000 MHz l.(3) 2 - 100 MHz m.(2) 0.5 - 2 MHz	23 dB 25 dB 25 dB 23 dB		
	RF Input Port h.(3), i.(2) 100 – 1300 MHz l.(3), m.(2) 0.5 – 100 MHz	23 dB 23 dB		

Table 6. Model 8502A Performance Test Record

49. ADJUSTMENTS

50. No adjustments are necessary for the HP Model 8502A Transmission/Reflection Test Set.

51. REPLACEABLE PARTS

52. Replaceable parts are listed in Table 7 and identified in Figure 21. Parts of Type N Connector Assembly (J3, J4, and J5) are shown in Figure 22. 8502A attaching hardware (screws, washers, etc.) is listed and identified in Figure 23.

53. Ordering Instructions

54. To order a part listed in Table 7 or Figure 23, quote the Hewlett-Packard part number, indicate quantity desired, and address the order to the nearest Hewlett-Packard office. Do not try to replace any parts not listed.

The 50-ohm Bridge/Power Splitter Assembly A1 and the Input Step Attenuator Assembly A2 are not field repairable and each must be replaced as an assembly.

Reference Designation	HP Part Number	Qty	Description
A1	5086-7228	1	50 Ohm Bridge/Power Splitter
Δ2	08558-60003	i i	$\Omega_{}$ 70 dB Input Step Attenuator
Π Δ	08405 60004		Postorod 08558 60003 Poquiros Exchange
10	1250 0092	1	Connector: RE RNC
	1250-0065		Connector, Assembly, Type N Female
J3, J4, J5	06502-60001	3	Connector. Assembly, Type N Female
	0070 0074		(See Figure 22)
	0370-2874		KNOD
MP2-MP5	08411-4003	4	Foot
MP6	08502-00007		Panel: Front Dress
NMP7	08502-00003	1	Deck: Main
MP8	08502-00004	1	Panel: Rear Sub
MP9	08502-00005	1	Panel: Rear
MP10	08502-20001	1	Case: Bottom Cover
MP11	08502-20002	1	Case: Top Cover
MP12, MPI3	08502-20007	2	Trim: Cabinet (Zipper Lock)
MD 15-MD 18	08502-20010	1	Spring Clip
	00502-20010	1	Cable: BE Reflected
10/2	08502-20003		Cable: RF Reliected
VVZ	00502-20004		Cable: RF Incluent
VV3	08502-20003		Cable: RF Input
W4	08502-20011	1	Cable: RF Attenuator
W5	08502-20006	1	Cable: RF Attenuator/Bridge
		38	

Table 7. 8502A Replaceable Parts

Figure 21. Major Assemblies and Parts Locations39

Figure 22. Type N Connector Assembly (08502-60001), Exploded View

Reference Designation	HP Part Number	Qty	Description
1	3030-0221	4	No. 4 Allen Screw
2	2360-0331	4	No. 6 Screw
3	2190-0815	4	No. 6 Flat Washer
4	950-0001	1	But
5	190-0016	1	Internal Lock Washer
6	190-0104	3	Internal Lock Washer
7	950-0132	3	Nut
8	200-0103	6	No. 4 Posi-Screw
9	050-0105	8	No. 4 Flat Washer
10	2200-0105	2	No. 4 Posi-Screw

Figure 23. 8502A Attaching Hardware (1 of 2)

Figure 23. 8502A Attaching Hardware (2 of 2)

55. SERVICE

56. Module Exchange Program

57. Factory repaired exchange modules are available for modules that are not field-repairable. In addition, repaired exchange modules are available for major subassemblies as an alternate method of repair. The factory repaired modules are available at a considerable savings in cost over the cost of a new model.

58. Those exchange modules should be ordered from the nearest Hewlett-Packard Sales/Service office using the part numbers in Table 7, Replaceable Parts.

59. Case Disassembly

60. Place the HP Model 8502A top side down on a flat surface. Squeeze top and bottom of case together by applying pressure at end being opened. Using a small screw driver, push each "zipper" lock toward the rear panel (Figure 24) until you are able to grasp it firmly with your thumb and index finger. Pull the "zippers" from the 8502A case, then lift the case bottom from the instrument. 61. To reassemble the HP Model 8502A, replace the case bottom and squeeze top and bottom of case, together at end being "zipped." Slide the "zippers" into their slots from the rear panel toward the front panel.

62. Step Attenuator and Directional Bridge Removal Procedure

63. Disassemble case as described in Paragraph 59 and proceed as follows:

- a. Remove attenuator knob using a .050 Allen wrench.
- Remove RF connector body (outer shell) and dress washer from TEST port using a special 9/16 open-end wrench (HP Part Number 8710-0877).
- c. Remove four pozi-drive screws from Main Deck (MP7).
- d. Remove cables W1, W2, and W3 from Directional Bridge A1. (See Figure 21.) Use 5/16 open-end wrench to loosen cable connectors.

Figure 24. Model 8502A Case Disassembly

Figure 25. Model 8502A Simplified Block Diagram

43/(44 blank)

APPENDIX A					
DA Pam 310-1	Consolidated Index of Army Publications and Blank Forms.				
DA Pam 738-750	The Army Maintenance Management System (TAMMS).				
TM 11-6625-3067-24P	Organizational, Direct Support and General Support Maintenance Manual, Including Repair Parts and Special Tools List for TRANSMISSION/REFLECTION TEST SET, HP MODEL 8502A.				
TM 750-244-2	Procedures for Destruction of Electronics Materiel to Prevent Enemy Use (Electronics Command).				
A-1/	(A-2 blank)				

APPENDIX B

COMPONENTS OF END ITEM LIST

Section I. INTRODUCTION

B-1. Scope

The appendix lists integral components of and basic issue items for Transmission/Reflection Test Set, HP Model 8502A to help you inventory items required for safe and efficient operation.

B-2. General

This components of End Item List is divided into the following sections:

<u>a.</u> <u>Section II.</u> <u>Integral Components of the End Item.</u> These items, when assembled, comprise the Transmission/Reflection Test Set, HP Model 8502A and must accompany it whenever it is transferred or turned in. The illustrations referenced will help you identify these items.

b. Section III. Basic Issue Items. Not applicable.

B-3. Explanation of Columns

- <u>a</u>. <u>Illustration</u>. This column is divided as follows:
 - (1) <u>Figure number.</u> Indicates the figure number of the illustration on which item is shown.
 - (2) <u>Item number</u>. The number used to identify item called out in the illustration.

<u>b</u>. <u>National Stock Number</u>. Indicates the National Stock Number assigned to the item and which will be used for requisitioning.

<u>c</u>. <u>Description</u>. Indicated the Federal item name and, if required, a minimum description to identify the item. The part number indicated the primary number used by the manufacturer, which controls the design and characteristics of the item by means if its engineering drawings, specifications, standards, and inspection requirements to identify an item or range of items. Following the part number, the Federal Supply Code for Manufacturers (FSCM) is shown in parentheses.

<u>d</u>. <u>Location</u>. The physical location of each item listed is given in the column. The lists are designed to inventory all items in one

B-1

area of the major item before moving in to an adjacent area.

- e. Usable on Code. Not applicable.
- <u>f.</u> <u>Quantity Required (Qty Reqd)</u>. This column lists the quantity of each item required for a complete major item.

g. <u>Quantity</u>. This column is left blank for use during the inventory. Under the Revd column, list the quantity you actually receive on your major item. The Date columns are for your use when you inventory the major item.

SECTION II. INTEGRAL COMPONENTS OF END ITEM

APPENDIX B

(1 ILLUS	I) TRATION	(2) NATIONAL	(3) DESCRIPTION	(4) LOCATION	(5) USUABLE	(6) QTY	(7) QUAN) TITY
(A)	(B)	STOCK			ON	REQD		DATE
FIG.	IIEM	NUMBER	PART NUMBER (FSCM)		CODE		RCVD	DATE
			TRANSMISSION/REFLECTION TEST S	ΞТ,				
			HP MO0DEL 8502A (28480)					
			B-3/(B-4 blank)				

APPENDIX D

MAINTENANCE ALLOCATION

Section I. INTRODUCTION

D-1. General

This appendix provides a summary of the maintenance operations for Transmission/Reflection Test Set HP Model 8502A. It authorizes categories of maintenance for specific maintenance function on repairable items and components and the tools and equipment required to perform each function. This appendix may be used as an aid in planning maintenance operations.

D-2. Maintenance Function

Maintenance functions will be limited to and defined as follows:

<u>a</u>. <u>Inspect</u>. To determine the serviceability of an item by comparing its physical, mechanical, and/or electrical characteristics with established standards through examination.

<u>b.</u> <u>Test</u>. To verify serviceability and to detect incipient failure by measuring the mechanical or electrical characteristics of an item and comparing those characteristics with prescribed standards.

<u>c</u>. <u>Service</u>. Operations required periodically to keep an item in proper operating conditions; ie., to clean (decontaminate), to preserve, to drain, to paint, or to replenish fuel, lubricants, hydraulic fluids, or compressed air supplies.

<u>d</u>. <u>Adjust</u>. To maintain, within prescribed limits, by bringing into proper or exact position, or setting the operating characteristics to specified parameters.

e. <u>Aline</u>. To adjust specified variable elements of an item to bring about optimum or desired performance.

<u>f</u>. <u>Calibrate</u>. To determine and cause corrections to be made or to be adjusted in instruments or test measuring and diagnostics equip-

ments use in precision measurement. Consists of comparison of two instruments, one in which is a certified standard of known accuracy of the instrument being compared.

j. <u>Install</u>. The act of emplacing, seating, or fixing into position an item, part, module (component or assembly) in a manner to allow the proper functioning of the equipment or system.

<u>h</u>. <u>Replace</u>. The act of substituting a serviceable like type part, subassembly, or module (component or assembly) for an unserviceable counterpart.

<u>i</u>. <u>Repair</u>. The application of maintenance services (inspect, test, service, adjust, aline, calibrate, replace) or other maintenance actions (welding, grinding, riveting, staightening, facing, remachining, or resurfacing) to restore serviceability to an item by correcting specific damage, fault, malfunction, or failure in a part, subassembly, module (component or assembly), end item, or system. This function does not include the trial and error replacement of running spare type items such as fuses, lamps, or electron tubes.

j. <u>Overhaul</u>. That maintenance effort (service/action) necessary to restore an item to a completely serviceable/operational condition as prescribed by maintenance standards (i.e., DMWR) in appropriate technical publications. Overhaul is normally the highest degree of maintenance performed by the Army. Overhaul does not normally return an item to like new condition.

<u>k</u>. <u>Rebuild</u>. Consists of thise services/actions necessary for the restoration of unserviceable equipment to a like new condition in accordance with original manufacturing standards. Rebuild is the highest degree of materiel maintenance applied to Army equipment. The rebuild operation includes the act of returning to zero those age measurements (hours, miles, etc.) considered in classifying Army equipments/components.

D-3. Column Entries

<u>a</u>. <u>Column 1, Group Number</u>. Column 1 lists group numbers, the purpose of which is to indentify components, assemblies, subassemblies,

and modules with the next higher assembly.

<u>b.</u> <u>Column 2, Component/Assembly</u>. Column 2 contains the noun names of components, assemblies, subassemblies, and modules for which maintenance is authorized,

<u>c</u>. <u>Column 3, Maintenance Functions</u>. Column 3 lists the functions to be performed on the item listed column 2. When items are listed without maintenance functions, it is solely for purpose of having the group numbers in the MAC and RPSTL coincide.

<u>d.</u> Column 4, Maintenance Category. Column 4 specifies, by the listing of a "work time" figure in the appropriate subcolumn(s), the lowest level of maintenance authorized to perform the function listed in column 3. This figure represents the active time required to perform that maintenance function at the indicated category of maintenance. If the number or complexity of the tasks within the listed maintenance function vary at different maintenance categories, appropriate "work time" figures will be shown for each category. The number of task-hours specified by the "work time" figure represents the average time required to restore an item (assembly, subassembly, components, module, end item or system) to a serviceable condition under typical field operating conditions. This time includes preparation time, troubleshooting time, and quality assurance/quality control time in addition to the time required to perform the specific tasks indentified for the maintenance function authorized in the maintenance allocation chart. Subcolumns of column 4 are as follows:

- C Operator/Crew
- O Organizational
- F Direct Support
- H General Support
- D- Depot

<u>e</u>. <u>Columns 5, Tools and Equipment</u>. Column 5 specifies by code, those common tools sets (not individual tools) and special tools, test, and support equipment required to perform the designated function.

f. <u>Column 6, Remarks</u>. Column 6 contains as alphabetic code which leads to the remark in section IV, Remarks, which is pertinent

to the item opposite the particular code.

D-4. Tool and Test Equipment Requirements (Sec III)

<u>a</u>. <u>Tool and Test Equipment Reference Code</u>. The numbers in this column coincide with the numbers used in the tools and equipment column of the MAC. The numbers indicate the applicable tool or test equipment for the maintenance functions.

<u>b</u>. <u>Maintenance Category</u>. The codes in this column indicate the maintenance category allocated the tool or test equipment.

c. <u>Nomenclature</u>. This column lists the noun name and nomenclature of the tools and test functions.

d. <u>National/NATO Stock Number</u>. This column lists the National/ NATO Stock Number of the specific tool or test equipment.

<u>e</u>. <u>Tool number</u>. This column lists the manufacturer's part number of the tool followed by the Federal Supply Code for manufacturers (5 digit) in parentheses.

D-5. Remarks (Sec IV)

<u>a</u>. <u>Reference Code</u>. This code refers to the appropriate item in section II, column 6.

<u>b</u>. <u>Remarks</u>. This column provides the required explanatory information necessary to clarify items appearing in section II.

SECTION II MAINTENANCE ALLOCATION CHART FOR TRANSMISSION/REFLECTION TEST SET

(1)	(2)	(3)		(4)			(5) TOOLS	(6)	
GROUP	COMPONENT/ASSEMBLY	MAINTENANCE	MAI	MAINTENANCE. CATEGOR		GORY	AND		
NUMBER		FUNCTION	С	0	F	Н	D	EQUIPMENT	REMARKS
00	TRANSMISSION/REFLECTION TEST SET HPB502A (MTBF=50,000 HRS)	Inspect Calibrate Replace Repair Test Repair Test		-1 -1		1.0 1.0 1.0	4.0 1.0	1-14 1-14 1-14	A B
01	BRIDGE, POWER SPITTER	Test Replace Repair D-5				1.0	1.0		

SECTION III TOOL AND TEST EQUIPMENT REQUIREMENTS FOR TRANSMISSION/REFLECTION TEST SET, 8502A

TOOL OR TEST EQUIPMENT REF CODE	MAINTENANCE LEVEL	NOMENCLATURE	NATIONAL/NATO STOCK NUMBER	TOOL NUMBER
1	н	RF CABLE KIT, HP11851A		
2	н	NETWORK ANALYZER, HP8505A		
3	н	DUAL DIRECTIONAL COUPLER, HP778D, OPT. 012		
4	н	TRANSMISSION/REFLECTION KIT, HP 11652A		
5	н	3-WAY POWER SPLITTER, HPI1850A		
6	н	TERMINATION (4 EA), HP9D09A, OPT. 012		
7	н	TYPE N. CALIBRATION KIT, HP85032A, 50 OHM		
В	н	TYPE N FEMALE CONNECTOR, HPSI511A		
9	н	TYPE N FEMALE CONNECTOR, HP11512A		
10	н	ADAPTER (2 EA.), BNC MALE HP1250-1473		
11	н	ADAPTER, SMA FEMALE CABLEWAVE SYSTEMS 0721		
12	н	ADAPTER (2 EA.), SMA MALE CABLEWAVE SYSTEMS #718		
13	н	CABLE, HP11500A		
14	н	CABLE (2 EA.) HP 11501A		
		D-6		

SECTION IV. REMARKS TRANSMISSION/REFLECTION TEST SET

REFERENCE CODE	REMARKS
A B	CALIBRATE IF REQUIRED AT THE ACRC AT G.S. ASSEMBLIES AI, A2, AND W1 THRU W5 ARE THROW-AWAYS. REPAIR CONSISTS OF REPLACEMENT OF SUBASSEMBLIES.
	D-7/(D-8 blank)
	1

MANUAL IDENTIFICATION -Model Number: 8502A Date Printed: OCTOBER 1979 Part Number: 08502-90001

This supplement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after the printing of the manual.

To use this supplement, make all ERRATA corrections and all appropriate serial number related changes indicated in the tables below.

SERIAL PREFIX OR NUMBER	MAKE MANUAL CHANGES	SERIAL PREFIX OR NUMBER	MAKE MANUAL CHANGES
2025A and 2028A	· 1		
<u></u>			

► NEW ITEM

ERRATA

▶ Page 2, Table 1:

Under Port Match: Change "Test Port Return Loss*:" to "Test Port Equivalent Source Match (Ratio Mode)*:".

▶ Page 28, PERFORMANCE TESTS: Change test heading 47 to read: TEST PORT EQUIVALENT SOURCE MATCH (RATIO MODE).

NOTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies, quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

Printed in U.S.A. 28 July 1982 2 Pages PACKARD

HEWLETT

ERRATA, Continued

Page 38,' Table 7:

Change A2 (first listing) to HP Part Number 5086-7363, CD9. Change A2 (second listing) description to: "Restored 5086-7363, Requires Exchange".

CHANGE 1

Page 38, Table 7:

Change MP6 to 08502-00013, CD4. Change MP7 to 08502-00012, CD3.

F-2

By Order of the Secretary of the Army:

Official:

JOHN A. . WICKHAM JR. General, United States Army Chief of Staff

DONALD J. DELANDRO Brigadier General, United States Army The Adjutant General

Distribution:

To be distributed in accordance with special list.

TM11-6625-3067-14

- e. Carefully slide Main Deck assembly out far enough to clear the three RF cables and turn it over.
- f. Remove four pozi-drive screws from Directional Bridge A1 and two pozi-drive screws from Step Attenuator A2.
- g. Carefully remove Main Deck with Front panel attached and set aside.
- h. remove cables W4 and W5 from Directional Bridge A1 and Step Attenuator A2. (see Figure 21.)
- i. If replacing Directional Bridge A1, unsolder bias input lead at terminal on A1.
- 64. Step Attenuator and Directional Bridge Installation Procedure
- 65. This procedure assumes that the 8502A has been disassembled as described in Paragraph 63. To reassembly 8502A, proceed as follows:
 - a. Connect cable W4 (longest of the two U-shaped cables) to connector farthest from control shaft on Step Attenuator A2. Do not tighten connection.
 - b. Connect cable W5 go connector closest to control shaft on Step Attenuator A2. Do no tighten connection.
 - c. Connect cables W4 and W5 to Directional Bridge A1 with control shaft of Step Attenuator and

TEST port (J1) of Directional Bridge facing the same direction. Tighten the four connectors on W4 and W5 with fingers only.

- d. Position Main Deck over top of A1/A2 assemblies and align Step Attenuator mounting holes on Main Deck. Fasten Step Attenuator using two 4-40 screws (HP Part Number 2200-0105) and two flat washers (HP Part Number 3050-0105). Make certain that bias input lead is not pinched between Step Attenuator and Main Dec.
- e. Install dress washer and RF connector body (outer shell) on TEST port and tighten with special 9/16 open-end wrench.
- f. Loosely fasten Directional Bridge to Main Deck using four 6-32 screws (HP Part Number 2360-0331) and four flat washers (HP Part Number 2190-0815).
- g. With thumb on end of TEST port and fingers at rear edge of Main Deck, apply a squeezing force to make certain that Front Panel is held tightly against Main Deck. Tighten Directional Bridge mounting screws while still squeezing.
- h. Turn Main Deck assembly over and carefully slide it into the 8502A top case (upside down on flat surface).
- . Connect cables W1, W2, and W3

to Directional Bridge A1. (See Figure 21).

Carefully tighten all RF connectors on A1 and A2 assemblies using a 9/16 openend wrench.

CAUTION

i.

Avoid damaging connectors. Tighten connect nuts until snug; do NOT overtighten

- k. Fasten Main Deck to 8502A case using four 4-40 screws (HP Part Number 2200-0103) and four flat washers (HP Part Number 3050-0105). Make certain that bias input lead is not pinched between main Deck and case.
- I. Solder bias input lead to terminal on Directional Bridge (feedthrough capacitor) if not already connected.
- m. Install knob on front-panel RF INPUT ATTENUATION dB control. If position of control is unknown, tighten one set screw in knob and rotate control to fully clockwise position. Loosen set screw and set knob.
- n. To reassemble 8502A case, refer to Paragraph 61.

- 69. The reflected signal from the unit under test is transmitted back through the 8502A TEST port and is coupled by an internal directional bridge to the REFLECTION port of the 8502A. This reflected current contains information such as source match, return loss, etc., of the unit under test.
- 70. A DC BIAS INPUT port can provide bias to the unit under test when bias is needed by coupling a DC signal to the center conductor of the TEST port.
- 71. Troubleshooting
- 72. A troubleshooting flow diagram (Figure 26) provides a step-by-step procedure to isolate the cause of malfunction and identify the defective assembly or component. An equivalent circuit diagram (Figure 27), and major assemblies locator (Figure 28), aid in troubleshooting to the component level.
- 73. After the defective component or assembly has been repaired or replaced, perform the incoming inspection test in Paragraph 33 (Figure 5) to confirm that the Model 8502A is again functioning properly.
- 74. test equipment and accessories required to troubleshoot and maintain the Model 8502A are listed in Table 3. If the equipment listed is not available, equipment that meets the minimum specifications shown may be substituted.

Figure 26. 8502A Transmission/Reflection Test Set Troubleshooting Procedure (1 of 2)

46

TM11-6625-3067-14

Figure 26. Model 8502A Transmission/Reflection Test Set Troubleshooting Procedure (2 of 2)

Figure 27. Model 8502A Transmission/Reflection Test Set Equivalent Circuit

72					Some	THING		WITH THIS	PUBLICATION?
	Ö,		THEN. J DOPE AB ORM, CA DUT, FOL	OUT DO OUT IT REFULI D IT AI	WN THE ON THIS LY TEAR II ND DROP I				
			N THE A	MIL'			SENT		
PUBLICAT	ION NUMBE	ER			PUBLICATIO	N DATE	PUBLICATION	ITLE	
PAGE NO.		FIGURE	TABLE NO.		HAT SHOUL	D BE DON	ie about it:		
PRINTED	IAME, GRADO	OR TITLE, A	NO TELEPH	IONE NUM	BER .	SIGN H	IERE:		

PIN: 057904-000