Notice

Hewlett-Packard to Agilent Technologies Transition

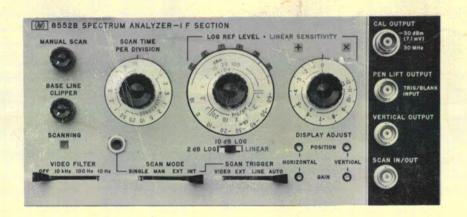
This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. To reduce potential confusion, the only change to product numbers and names has been in the company name prefix: where a product name/number was HP XXXX the current name/number is now Agilent XXXX. For example, model number HP 8648 is now model number Agilent 8648.

Contacting Agilent Sales and Service Offices

The sales and service contact information in this manual may be out of date. The latest service and contact information for your location can be found on the Web at:

http://www.agilent.com/find/assist

If you do not have access to the Internet, contact your field engineer. In any correspondence or telephone conversation, refer to your instrument by its model number and full serial number.


SPECTRUM ANALYZER IF SECTION

8552B

H01-8552B

H02-8552B

H04-8552B

SAFETY

This instrument has been designed and tested according to IEC Publication 348, "Safety Requirements for Electronic Measuring apparatus," and has been supplied in safe condition. This is a Safety Class I instrument. To ensure safe operation and to keep the instrument safe, the information, cautions, and warnings in this manual must be heeded. Refer to Section I for general safety considerations applicable to this instrument.

CERTIFICATION

The Hewlett-Packard Company certifies that this instrument was thoroughly tested and inspected and found to meet its published specifications when it was shipped from the factory. The Hewlett-Packard Company further certifies that its calibration measurements are traceable to the U.S. National Bureau of Standards to the extent allowed by the Bureau's calibration facilities, or to the calibration facilities of other International Standards Organization members.

WARRANTY AND ASSISTANCE

This Hewlett-Packard product is warranted against defects in materials and work-manship. This warranty applies for one year from the date of delivery. Hewlett-Packard will repair or replace products which prove to be defective during the warranty period provided they are returned to Hewlett-Packard. No other warranty is expressed or implied. We are not liable for consequential damages.

Service contracts or customer assistance agreements are available for Hewlett-Packard products that require maintenance and repair on-site.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

OPERATING AND SERVICE MANUAL

SPECTRUM ANALYZER IF SECTION 8552B

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 1410A.

With changes described in Section VII, this manual also applies to instruments with serial numbers prefixed 971-, 974-, 977-, 1050A, 1107A, 1121A, 1131A, 1137A, 1144A, 1209A, 1210A, 1217A, 1234A, 1250A, 1311A, 1335A, and 1345A.

For additional important information about serial numbers, see INSTRUMENTS COVERED BY MANUAL in Section I.

Copyright HEWLETT-PACKARD COMPANY 1971 3273 Airway Drive, Santa Rosa, California, U.S.A.

MANUAL PART NO. 08552-90088

Microfiche Part No. 08552-90089

Operating Supplement Part No. 08552-90091

Printed: JUNE 1974

CONTENTS

Secti	on	Page	Section	Page
I	GENERAL INFORMATION	1-1	V ADJUSTMENTS (cont'd)	
	1-1. Introduction		5-11. HP 11592A Service Kit	5.1
	1-8. Instruments Covered by Manual		5-14. Extender Cable Installation	
	1-12. Description			
	1-16. Options			
	1-21. Equipment Required but not Supplied			5-2
				5-2
			•	5-2
	1-25. Display Section		•	5-3
	1-27. Equipment Available			5-3
	1-29. Recommended Test Equipment			5-4
II	INSTALLATION	2-1		5-6
	2-1. Shipping Information	2-1	F	5-8
	2-3. Initial Inspection		5-31. Log/Linear Amplifier Check and	
	2-4. Mechanical Check		Adjustment	5-11
	2-6. Performance Check		5-32. 300 kHz Bandpass Filter Adjustment .	5-14
			5-33. LC Filter Adjustment	5-15
	2-8. Claims for Damage		5-34. Crystal Filter Fine Adjustment	5-16
	2-10. Power Requirements		5-35. Crystal Filter Coarse Adjustment	5-20
	2-12. Connections			5-22
	2-14. Installation Check		5-37. 47 MHz LO Automatic Phase Lock	
	2-16. Storage and Shipment		Check and Adjustment	5-25
	2-17. Original Packaging		5-38. 50 MHz IF Bandpass Check and	
	2-21. Other Packaging Materials		-	5-29
III	OPERATION	3-1		5-32
	3-1. Introduction	3-1	5-40. 30 MHz Calibration Oscillator	0-02
	3-3. Panel Features	3-1		5-34
	3-5. Operator's Checks	3-1		
	3-8. Operational Adjustments	3-1	5-41. Analogic Check and Adjustment	5-37
	3-10. H01/H02 Instruments	3-1	VI REPLACEABLE PARTS	6-1
	3-12. H04 Instruments	3-1		
	3-14. Operating Instructions	3-1	VII MANUAL CHANGES	7-1
	3-16. Operating Tips	3-1	7-1. Introduction	7-1
	3-19. Operator's Maintenance	3-2	7-5. Manual Change Instructions	
IV	PERFORMANCE TESTS	4-1	1-0. Manual Change Instructions	1-4
	4-1. Introduction			
	4-5. Front Panel Checks		VIII SERVICE	8-1
	4-7. Performance Tests	4-1	8-1. Introduction	8-1
	4-12. Front Panel Check Procedure		8-3. Line Voltage Requirements	
			8-5. Maintenance Aids	
	•		8-7. Test Equipment and Accessories Required.	
	4-16. Display Section Adjustments		8-10. Adjustments	
	4-17. IF Section Display Adjustments			8-2
	4-18. Ampl Cal Adjustment RF Section	4-3		8-2
	4-19. Ampl Cal Check for Linear	4.0		
	Sensitivity Accuracy			8-2
	4-23. Calibrator Output		•	8-4
	4-24. Bandwidth Accuracy			8-5
	4-25. Bandwidth Selectivity	4-9		8-6
	4-26. Switching Between Bandwidths		8-33. Switching Information	8-6
	Accuracy	4-11	SERVICE SHEETS	
	4-27. Amplitude Display Accuracy	4-12		8-20
	4-28. Scan Time Accuracy		2. RF Section/IF Section/Display Section	
	·			8-22
V	ADJUSTMENTS	5-1		8-24
	5-1. Introduction	5.1	4. 47 MHz Automatic Phase Control and	J 4 T
	5-3. Equipment Required			8-26
	5-5. Posidriv Screwdrivers		_	8-28
			- _ -	o-20 8-30
		5-1	6. 3 MHz Amplifier (Sheet 1)	
	5-9. Blade Tuning Tools	5-1	7. 3 MHz Amplifier (Sheet 2)	8-32

CONTENTS (cont'd)

SERV	VICE SHEETS (cont'd)		14.	Deflection Amplifier	Q	16
8.	LC Bandwidth Filter 8-	34	15.	Scan Generator and Trigger Circuits		
9.	Amplifier Filter Control Circuits 8-		16.	Scan Driver and Pen Lift Driver	. 0	50
10.		38	17.	Analogic Circuit		
11.		40	18.	Reference Oscillator & LOG REFERENCE	. 0	-52
12.	Log/Linear Amplifier (Sheet 1) 8-		10.		0	4
12. 13.	Log/Linear Amplifier (Sheet 1) 8-		10	Index Light Circuit	٠ 8	5-54
10.				Power Supply	. 8	5-56
		_USTRA	OITA	NS		
Figur	re	Page	Figur	e		Page
1-1.	Model 8552B Spectrum Analyzer IF Section .	1-0	7-9.	Log/Linear Amplifier Partial Schematic		
1-2.	HP 11592A Service Kit Required			(Part of Change U)		7-19
	for Maintenance	1.7	7-10.	Log/Linear Amplifier Partial Schematic		
2-1.	Model 8552B Spectrum Analyzer IF Section			(Part of Change U)		7-19
	with 8553B RF Section and 141T		7-11.	50 MHz Converter		
	Display Section	2-0		$(Part of Change X) \dots \dots \dots \dots$		7-24
3-1.	8552B Spectrum Analyzer IF Section Controls,		7-12.	Power Supply Partial Schematic		
	Indicators and Connectors	3-3		(Part of Change Y)		7-25
4-1.		4-2	8-1.	8552B IF Section with Circuit Board		
4-2.	Vertical Gain Adjustment	4-2		Extended for Maintenance		8-1
4-3.	Calibrator Amplitude Test Setup		8-2.	Diagram of Modular Exchange Program		8-3
4-4.	Calibrator Frequency Check Test Setup		8-3.	Examples of Diode and Transistor		
4-5.	10 kHz Bandwidth Accuracy Test Setup	4-8		Marking Methods		8-5
4-6.	Scan Time Accuracy Test Setup	4-13	8-4.	Integrated Circuit Packaging		
1 -7.	Scan Time Modulation Peaks	4-14	8-5.	Evolution of Straight-Line Switch Presentation		8-7
5-1.	Power Supply Check & Adjustment Test Setup.	5-3	8-6.	Three Positions of Typical Switch Wafers		8-7
5-2.	Scan Generator Check & Adjustment Test Setup.	5-4	8-7.	Wafer Switch Presentation Versus		
5-3.	Scan Voltage Waveform Measurement	5-5		Straight-Line Presentation		8-8
5-4.	5	5-6	8-8.	8553B Component, Assembly and		
5-5.				Adjustment Locations		8-19
	Log/Linear Amplifier Check and Adjustment			Simplified Block Diagram		
	Test Setup	5-11	8-10.	8552B Block Diagram		8-21
5-7.	Crystal Filter Fine Adjustment Test Setup	5-17	8-11.	Video Filter Assembly A11		8-22
	Crystal Filter Bypass Network		8-12.	Log Reference Level Switch Assembly A10 .		8-22
	3 MHz IF Gain Adjustment Test Setup	5-22		Scan Time Switch Assembly A9		8-22
5-10.	47 MHz LO Automatic Phase Lock Test Setup .	5-26		RF Section/IF Section/Display Section		
5-11.	Search Waveform	5-28		Interconnections		8-23
5-12.	50 MHz IF Bandpass Adjustment Test Setup	5-30	8-15.	50 MHz Bandpass Filter A3A1,		
5-13.	50 MHz Bandpass Display for 10 MHz			Component Identification		
	and 3 MHz Sweeps			47 MHz LO A3A2 Component Identification		8-25
	50 MHz Bandpass Flatness Display		8-17.	50 MHz Converter A3 Component		
	44 MHz Rejection Adjustment Test Setup	5-33		Identification		
5-16.	30 MHz Calibration Amplitude Adjustment		8-18.	50 MHz Converter, Schematic Diagram		8-25
	Setup	5-35		47 MHz APC A12 Component Identification.		8-27
7-1.	Power Supply Partial Schematic			2 MHz VTO A13 Component Identification .		8-27
	$(Part of Change F) \dots \dots \dots \dots$	7-5	8-21.	47 MHz Automatic Phase Control and		
7-2.	Deflection Amplifier A7 Component			2 MHz Voltage Tuned Oscillator		8-27
	Identification (Part of Change H)		8-22.	P/O Power Supply A5 Component		
	Deflection Amplifier (Part of Change H)	7-13		Identification		8-29
7-4.	Log/Linear Amplifier Partial		8-23.	2 MHz VTO Shaping Circuit		8-29
	Schematic (Part of Change J)	7-14	8-24.	P/O 3 MHz Amplifier A2 Component		
7-5.	Log/Linear Amplifier Partial			Identification		8-31
	Schematic (Part of Change J)	7-14	8-25.	3 MHz Amplifier (Sheet 1 of 2)		8-31
7-6.	Deflection Amplifier A7			P/O 3 MHz Amplifier A2 Component		
	Component Identification (Part of Change O).	7-16		Identification		8-33
7-7.	Deflection Amplifier Partial Schematic		8-27.	3 MHz Amplifier (Sheet 2 of 2)		8-33
	(Part of Change O)	7-17		LC Filter A1 Component Identification		8-35
7-8.	Deflection Amplifier Partial Schematic			LC Bandwidth Filter		8-35
	(Part of Change O)			Amplifier/Filter Control Circuits		8-37
				- · · · · · · · · · · · · · · · · · · ·		

Model 8552B Table of Contents

ILLUSTRATIONS (cont'd)

Figur	e	Page	e Figure	9	Page
	P/O Crystal Filter A4 Component		8-42.	P/O Scan Generator A6	
	Identification	8-39)	Component Identification	8-49
8-32.	Crystal Filter (1 of 2)	8-39	8-43.	Scan Generator and Trigger Circuits	
8-33.	P/O Crystal Filter A4		8-44.	P/O Scan Generator A6	
	Component Identification	8-41	l	Component Identification	8-51
8-34.	Crystal Filter (2 of 2)			Scan Driver and Pen Lift Driver	8-51
8-35.	Simplified Diagram, Log Mode of Operation.	8-42	2 8-46.	P/O Power Supply A5	
	P/O Log/Linear Amplifier A8			Component Identification	8-53
	Component Identification	8-43	8-47.	Analogic Circuit	
8-37.	Log/Linear Amplifier (1 of 2)			P/O Scan Generator A6	
	P/O Log/Linear Amplifier A8,			Component Identification	8-55
	Component Identification	8-45	8-49.	Reference Oscillator and LOG REFERENCE	
8-39.	Log/Linear Amplifier (2 of 2)			Index Light Circuit	8-55
8-40.	Deflection Amplifier A7		8-50.	P/O Power Supply A5	
	Component Identification	8-47	7	Component Identification	8-57
8-41.	Deflection Amplifier			Power Supply	8-57
Table	?	I	Page Table		Page
1-1.	8552B Specifications		1-3 6-3.	Manufacturer's Code List	6-3
1-2.	Test Equipment and Accessories		1-4 7-1.	Manual Changes by Serial Number	
4-1.	Front Panel Checks	. 4	1-4 7-2.	Summary of Changes by Component	
4-2.	Bandwidth Checks	. 4	1-8 7-3.	Replaceable Parts (Part of Change H)	
4- 3.	Bandwidth Selectivity Checks	. 4	4-10 7-4.	Replaceable Parts (Part of Change X)	
4-4.	Modulation Frequencies for Checking Scan Tir	ne 4	1-14 8-1.	Etched Circuit Soldering Equipment	
4-5.	Performance Check Test Record		4-15 8-2.	System Test and Troubleshooting Procedure.	8-9
5-1.	Modulation Frequencies for Checking Scan Tim		5-7 8-3.	Schematic Diagram Notes	
5-2.	Analogic Threshold Adjustment		5-37 8-4 <i>.</i>	IF Section Assy & Component Location	
5-3.	Display Calibration Conditions		00.	Gain Changes when LOG REF LEVEL Switch	
5-4.	Factory Selected Components		5-39	is Adjusted	8-21
5-5.	Check and Adjustment Test Record	. !	5-40 8-6.	IF-to-RF Sections Interconnecting Jack	
6-1.	Reference Designators and Abbreviations			Identification	8-23
	Used in Parts List	. (S-1 8-7.	IF-to-Display Sections Interconnecting	
6-2.	Replaceable Parts	. (5-2	Plug Identification	8-23
	· ·				

General Information Model 8552B

Figure 1-1. Model 8552B Spectrum Analyzer IF Section

Model 8552B General Information

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

- 1-2. This manual contains pertinent information required to install, operate, test, adjust and service the Hewlett-Packard Model 8552B Spectrum Analyzer IF Section. This section covers instrument identification, description, accessories, specifications and other basic information. A more complete discussion of overall operation of the Spectrum Analyzer system is given in RF Section manuals.
- 1-3. Figure 1-1 shows the Hewlett-Packard Model 8552B Spectrum Analyzer IF Section.
- 1-4. The various sections in this manual provide information as follows:

SECTION II, INSTALLATION, provides information relating to inspection, power requirements, mounting, packing and shipping, etc.

SECTION III, OPERATION, provides information relative to operating the equipment.

SECTION IV, PERFORMANCE TESTS, provides information required to ascertain whether the instrument is performing in accordance with published specifications.

SECTION V, ADJUSTMENTS, provides information required to properly adjust and align the instrument.

SECTION VI, REPLACEABLE PARTS, provides ordering information for all replaceable parts and assemblies.

SECTION VII, MANUAL CHANGES, provides back-dating information.

SECTION VIII, SERVICE, provides information required to service the instrument.

- 1-5. On the title page of this manual, below the manual part number, is a "Microfiche" part number. This number may be used to order 4×6 -inch microfilm transparencies of the manual. Each microfiche contains up to 60 photo-duplicates of the manual pages. The microfiche package also includes the latest Manual Changes supplement as well as all pertinent Service Notes.
- 1-6. Instrument specifications are listed in Table 1-1. These specifications are the performance standards, or limits against which the instrument

may be tested. Table 1-1 also lists supplemental characteristics. Supplemental characteristics are not specifications but are typical characteristics included as additional information for the user.

1-7. INSTRUMENTS COVERED BY MANUAL

- 1-8. This instrument has a two-part serial number. The first four digits and the letter or the first three digits and the hyphen comprise the serial number prefix. The last five digits form the sequential suffix that is unique to each instrument. The contents of this manual apply directly to instruments having the same serial number prefix(es) as listed under SERIAL NUMBERS on the title page.
- 1-9. An instrument manufactured after the printing of this manual may have a serial prefix that is not listed on the title page. This unlisted serial prefix indicates that the instrument is different from those documented in this manual. The manual for this instrument is supplied with a yellow Manual Changes supplement that contains "change information" that documents the differences.
- 1-10. In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is keyed to this manual's print date and part number, both of which appear on the title page. Complimentary copies of the supplement are available from Hewlett-Packard.
- 1-11. For information concerning a serial number prefix not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

1-12. DESCRIPTION

- 1-13. The HP Model 8552B Spectrum Analyzer IF Section was designed to be used in conjunction with an RF Section and a Display Section.
- 1-14. The complete analyzer is a highly sensitive superheterodyne receiver with spectrum scanning capabilities determined by the RF Section. Output video from the receiver circuits is applied to the CRT in the display section; thus, a signal or group of signals can be analyzed in the frequency

General Information Model 8552B

domain. Input signals are plotted on the CRT as a function of amplitude versus frequency. The amplitude (Y-axis) of the CRT is calibrated in absolute units of power (dBm) or voltage ($\mu V/mV$); accordingly, absolute and relative measurements of both amplitude and frequency can be made.

1-15. The instrument controls are arranged for easy operation. For wide spectrum analysis, the operator can use the preset scan of the RF Section used, or for a more detailed study, the spectrum width can be progressively narrowed. The frequency scan can be stopped to allow use of the instrument as a fixed frequency receiver. The RF Section's widest bandwidth is automatically selected for preset scan operation; for variable scan and fixed frequency operation, narrower bandwidths can be selected by the operator.

1-16. OPTIONS

- 1-17. The standard 8552B provides -30 ± 0.3 dBm calibrator output (7.07 mV into 50 ohms) at 30 ± 0.003 MHz. A standard BNC connector is used.
- 1-18. Option H01. The calibrator output impedance is 75 ohms with an output of 8.66 mV (—30 dBm). The CAL OUTPUT Connector is equivalent to the Western Electric WE-560A.

1-19. Option H02. The calibrator output impedance is 75 ohms with an output of 8.66 mV (-30 dBm). The CAL OUTPUT connector is a BNC.

1-20. Option H04. The Log Amplitude reference is calibrated in dB μ V (0 dB μ V is 1 μ V across 50 ohms).

1-21. EQUIPMENT REQUIRED BUT NOT SUPPLIED

1-22. The Model 8552B must be mated with a standard 8550 series RF Section and a 140 series Display Section before it can function as a spectrum analysis system.

1-23. RF Sections

1-24. The available 8552B Options must be mated with the following RF Sections:

1)	8552B-H01	 				8553B-H01
2)	8553B-H02	 				8553B-H02
3)	8552B-H04	 8553	3, 8	554,	855	5 (standard)
				855	6A-F	III (special)

1-25. Display Sections

1-26. The 140 Display Sections are equipped with a fixed-persistence, non-storage CRT. 141T Display Sections are equipped with a variable persistence, storage CRT. The 143 Display Sections have a large screen (8 x 10 inch) fixed-persistence, non-storage CRT.

Model 8552B General Information

Table 1-1. 8552B Specifications

SPECIFICATIONS

FREQUENCY

Resolution:

Bandwidth: IF bandwidths of 10 Hz to 300 kHz provided in a 1, 3 sequence.

Bandwidth Accuracy: Individual IF bandwidths' 3 dB points calibrated to ±20% (10 kHz bandwidth ±5%).

Bandwidth Selectivity: 60 dB/3 dB IF bandwidth ratio <11:1 for IF bandwidths from 10 Hz to 3 kHz and <20:1 for IF bandwidths from 10 kHz to 300 kHz, 60 dB points separated by <100 Hz for 10 Hz bandwidth.

AMPLITUDE

Absolute Amplitude Calibration Range:

Log: From -130 to +10 dBm, 10 dB/div on a 70 dB display or 2 dB/div expand below LOG reference.

H04: From -23 to +117 dBV, 10 dB/div on a 70 dB display or 2 dB/div expand below LOG reference.

Calibrator Output:

Amplitude: $-30 \text{ dBm} \pm 0.3 \text{ dB}$; $+77 \text{ dB}\mu\text{V}$ (H04) **Standard/H04-8552B:** 7.07 mV into 50 ohms **H01/H02-8552B:** 8.66 mV into 75 ohms

Amplitude Accuracy:

Switching between bandwidths (at 20° C):	Log	Linear
0.1 - 300 kHz 0.03 - 300 kHz 0.01 - 300 kHz Amplitude Display	$\pm 0.5 \text{ dB}$ $\pm 1.0 \text{ dB}$ $\pm 1.5 \text{ dB}$ $\pm 0.25 \text{ dB/dB}$ but not more than $\pm 1.5 \text{ dB}$ over full 70	±5.8% ±12.0% ±19.0% ±2.8% of full 8 div. deflection
	dB display range	

GENERAL

Scan Time: 16 internal scan rates from 0.1 ms/div to 10 sec/div in a 1, 2, 5 sequence, or Manual Scan.

Scan Time Accuracy:

 $0.1 \text{ ms/div to } 20 \text{ ms/div: } \pm 10\%$ $50 \text{ ms/div to } 10 \text{ sec/div: } \pm 20\%$

Power Requirements: 115 or 230 volts ±10%, 50 to 60 Hz, normally less than 225 watts for complete analyzer (varies with plug-in units used).

Weight: Model 8552B IF Section: Net 9 lb., 11 oz., (4.4 kg.)

Scan Characteristics

Scan Mode:

Internal: Analyzer repetitively scanned by internally generated ramp; synchronization selected by Scan Trigger.

Single: Single scan actuated by front panel pushbutton.

External: Scan determined by 0 to +8 volt external signal; scan input impedance >10 k Ω .

Blanking: -1.5V external blanking signal required.

Manual: Scan controlled by position of Manual Scan knob.

Scan Trigger: For Internal scan mode, select between:

Auto: Scan free runs.

Line: Scan synchronized with power line frequency.

External: Scan synchronized with >2 volt (20V max) trigger signal. Polarity selected by internal switch (on assembly A6) of 8552B IF Section. Scan triggers with negative impulse when switch in NORMAL position.

Video: Scan internally synchronized to envelope of RF input signal (signal amplitude of 1.5 major divisions peak-to-peak required on display section CRT).

Penlift Characteristics

Penlift output: 0 to +14 volts (0V pen down). Available in Internal and Single Scan modes and Auto, Line and Video Scan Trigger.

General Information Model 8552B

1-27. EQUIPMENT AVAILABLE

- 1-28. The following equipment is recommended for maintenance purposes:
- a. HP 11592A Service Kit (shown in Figure 1-2).
- b. Six-pin extender board (not included in HP 11592A Service Kit) HP Part Number 5060-5914.

1-29. RECOMMENDED TEST EQUIPMENT

1-30. Table 1-2 lists the test equipment and accessories required to check, adjust and repair the 8552B Spectrum Analyzer IF Section. If substitute equipment is used, it must meet the Minimum Specifications listed in Table 1-2.

Table 1-2. Test Equipment and Accessories

Item	Minimum Specifications or Required Features	Suggested Model	Note*
Amplifier	Frequency Range: 3 to 30 MHz Gain: 20 dB Input and Output Impedance: 50 ohms Flatness: ±1 dB	HP 8447A	Р, А
Attenuator	Frequency Range: 0 - 30 MHz Flatness: ±0.5 dB Steps: 1 dB from 0 to 12 dB	HP 355C	A
Attenuator	Frequency Range: 0 - 30 MHz Flatness: ±0.5 dB Steps: 10 dB - 0 to 110 dB	HP 355D	A
Audio Oscillator	Frequency Range: 10 kHz Output Amplitude: 2V rms Frequency Accuracy: ±2% Output Impedance: 600 ohms	HP 200CD	P, A
Digital Voltmeter	Voltage Accuracy: $\pm 0.2\%$ Range Selection: Manual or Automatic Voltage Range: $1-1000$ Vdc full scale Input Impedance: 10 megohms Polarity: Automatic Indication	HP 3440A Digital Voltmeter with HP 3443A Plug-in	P, A, T
Crystal Detector	Frequency: $1-50~\mathrm{MHz}$ Sensitivity: $>0.04~\mathrm{mV}/\mu\mathrm{W}$ Frequency Response: $\pm 0.2~\mathrm{dB}$ Polarity: Negative	HP 423A Crystal Detector	A
Frequency Counter	Frequency Range: 100 kHz — 50 MHz Accuracy: ±0.001% Sensitivity: 30 mV rms Readout Digits: 7	HP 5245L Frequency Counter with HP 5261A Plug-in	P, A
Oscilloscope	Frequency Range: Dc to 50 MHz Time Base: 1 \mu s/div to 10 ms/div Time Base Accuracy: \pm 3\% Dual Channel, Alternate Operation Ac or dc Coupling External Sweep Mode Voltage Accuracy: \pm 3\% Sensitivity: 0.005 V/div	HP 180A with HP 1801A Vertical Amplifier and HP 1821A Horizontal Amplifier HP 10004A 10:1 Divider Probes (2)	А, Т

Performance = P; Adjustment = A; Troubleshooting = T

Model 8552B General Information

Table 1-2. Test Equipment and Accessories (cont'd)

Item	Minimum Specifications or Required Features	Suggested Model	Note*
Ohmmeter	Resistance Range: 1 ohm to 100 megohms Accuracy: ±10% of Reading	HP 412A	Т
Power Supply	Output Voltage: Variable, $0-30~\rm Vdc$ Output Current: $0-400~\rm mA$ Meter Resolution: $<5~\rm mV$	HP 6217A Power Supply	A
Signal Generator	Frequency Range: 1 — 30 MHz Output Amplitude: >0 dBm Amplitude Accuracy: ±1% Frequency Accuracy: ±1% Output Impedance: 50 ohms Modulation: External to 100%	HP 606B HF Signal Generator	A
Signal Generator	Frequency Range: 30 to 50 MHz Output Amplitude: >-20 dBm Amplitude Accuracy: ±1% Output Impedance: 50 ohms Modulation: External Pulse or CW to 100%	HP 608F VHF Sig- nal Generator	Р, А, Т
Oscillator Synchro- nizer	Frequency Range: 50 kHz — 310 MHz Input Signal Level: 50 kHz — 20 MHz; 0.1 — 2V rms into 50 ohms, 10 — 310 MHz; 180 — 500 mV rms into 50 ohms. Frequency Reference Stability: Short term, 5 x 10 ⁻⁸ /minute Frequency Control Output: Frequency control voltage directly compatible with HP 606B and HP 608F signal generators; output voltage range, -2 to -32 Vdc (maximum)	HP 8708A Synchro- nizer	A
Sweep Oscillator	Frequency Range: $1-60~\mathrm{MHz}$ Output Flatness: $\pm 0.25~\mathrm{dB}$ over full band Output Impedance: 50 ohms Sweep Width: Up to $10~\mathrm{MHz}$ Output Amplitude: At least $0~\mathrm{dBm}$.	HP 8601A Genera- tor/Sweeper	A
Pulse Generator	Rep Rate: 10 kHz to 100 kHz Pulse Width: 0.5 to 5 msec Pulse Amplitude: 2V	HP 222A	A
RF Voltmeter	Frequency Range: 3 MHz to 50 MHz Amplitude Range: 0 to 40 dBm Accuracy: ±5%	HP 3406A	Т
Tunable RF Volt- meter	Bandwidth: 1 kHz Frequency Range: 1 — 50 MHz Sensitivity: 10 mV — 1V rms Input Impedance: ≥0.1 megohms	HP 8405A Vector Voltmeter	P, A, 7
Extender Board	6-Pin	HP 5060-5914	А, Т
50-ohm Tee	Type N female connectors on two ports, with the third port able to accept HP 8405A probe tips.	HP 11536A 50-ohm Tee	P, A

Performance = P; Adjustment = A; Troubleshooting = T

General Information Model 8552B

Table 1-2. Test Equipment and Accessories (cont'd)

Item	Minimum Specifications or Required Features	Suggested Model	Note*
50-ohm Termination	Frequency Range: Dc — 310 MHz VSWR: 1.1 Power Rating: 0.5 Watt Connector: Type N Male	HP 908A Coaxial Termination	P, A
Variable Voltage Transformer	Range: 102 – 127 Vac Voltmeter Range: 103 – 127 Vac ±1 volt	General Radio W5MT3A or Superior Electric UC1M	A
BNC Tee (2)	Two BNC Female Connectors; one Male BNC Connector	UG-274B/U HP 1250-0781	P, A, T
Adapter	BNC Male to Type N Female	UG-349A/U HP 1250-0077	A
Adapter	BNC Male to Binding Post	HP 10110A	A
Adapter (3)	BNC Female to Type N Male	UG-201A/U HP 1250-0780	P, A
Voltage Probe	Dual Banana Plug-to-Probe Tip and Clip (Ground) Lead	HP 10025A Straight-thru Voltage Probe	А, Т
Cable Assy (6)	Male BNC Connectors, 48 inches long	HP 10503A	P, A, T
Cable Assy	BNC Male to Dual Banana Plug, 45 inches long	HP 11001A	P, A, T
Cable Assy	Dual Banana Plug to Clip Leads, 45 inches long	HP 11002A	А, Т
Cable Assy	Dual Banana Plug to Dual Banana Plug, 44 inches long	HP 11000A	A, T
Cable Assy	BNC Male to one end only; 44 inches. (Attach Test Clips to Shield and Center Conductor.)	HP 10501A	A, T
Tuning Tool, Slot	Nonmetallic, 6-inch shaft	Gowanda PC9668	А, Т
Screwdrivers	Pozidrive No. 1 (small) Stanley No. 5531	HP 8710-0899	А, Т
Tuning Tool, Slot	Nonmetallic, 2.5-inch shaft	HP 8710-0095	А, Т
Capacitor	8200 pF (approx.), See paragraph 5-38	HP 0140-0184	A, T
Adapter	Type N Female Connector to Type N Female Connector	UG-29B/U HP 1250-0777	А, Т
Adapter	Type N Female to BNC Female Adapter	FXR 21850	А, Т
Adapter	Type NBC Plug-to-Plug Adapter	UG-491B/U HP 1250-0216	A, T
	Fluted Tip, Siemans Halske B63399-B004-X000	HP 8710-0957	A

Note

Performance = P; Adjustment = A; Troubleshooting = T

Model 8552B General Information

Table 1-2. Test Equipment and Test Accessories (cont'd)

Item	Minimum Specifications or Required Features	Suggested Model	Note
Service Kit	Contents: 140/141 Display Section to Spectrum Analyzer Plug-in Extender Assembly (HP 11592-60015)	HP 11592A Service Kit	Adjustment, Trouble- shooting
	IF to RF Unit Interconnection Extender Cable Assembly (HP 11592-60016)		
	Selectro Female to BNC Male Test Cable, Three each, 36 inches long (HP 11592-60001)		
	Selectro Male to Selectro Female Test Cable, Two each, 8 inches long (HP 11592-60003)		
	Selectro Female to Selectro Female Cable, One each, 8 inches long (HP 11592-60002)		
	Extender Board Assembly, 15 pins, 30 conductors, for Plug-in Circuit Boards (HP 11592-60011)	7/0	
	Fastener Assembly, 8553 Circuit Board Extender, Two each (HP 11592-20001 and HP 1390-0170)		
	Selectro Jack-to-Jack Adapter (HP 1250-0827)		
	Wrench, open end, 15/64 inch (HP 8710-0946)		
	BNC Jack-to-OSM Plug Adapter (HP 1250-1200)		
	OSM Plug-to-Plug Adapter (HP 1250-1158)		
	Cable Assembly, R and P Connector (HP 11592-60013)		

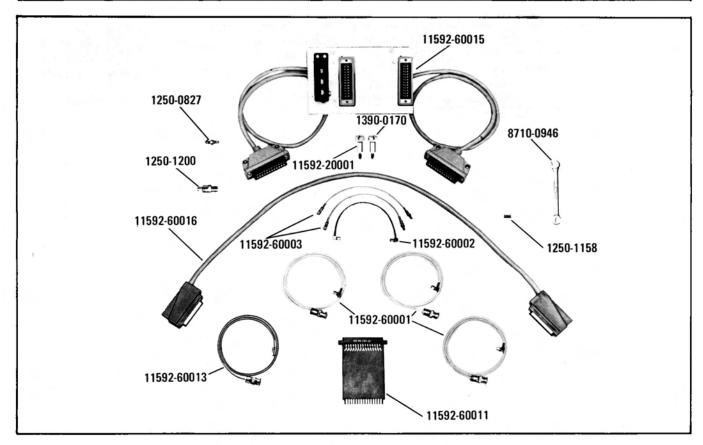


Figure 1-2. HP 11592A Service Kit Required for Maintenance

Installation Model 8552B

Model 8552B Installation

SECTION II

2-1. SHIPPING INFORMATION

2-2. Because of individual customer requirements, shipping configurations are flexible. Initial inspection is based on the premise that the RF and IF Sections are installed in the Display Section; thus the instrument is physically and functionally complete for test. Since the RF and IF Sections are received separately, the plug-ins must be mechanically fitted together, electrically connected, and inserted in a Display Section.

2-3. INITIAL INSPECTION

2-4. Mechanical Check

2-5. If shipping carton is damaged, ask that agent of carrier be present when instrument is unpacked. Inspect instrument for mechanical damage such as scratches, dents, broken knobs, or other defects. Also, check cushioning material for signs of severe stress.

2-6. Performance Check

2-7. As soon as possible after receipt, the instrument should be checked in accordance with the Performance Tests in Section IV.

2-8. CLAIMS FOR DAMAGE

2-9. If the Spectrum Analyzer IF Section is mechanically damaged or fails to meet the specified performance tests, immediately notify the carrier and the nearest Hewlett-Packard Sales and Service office. (A current list of sales and service offices appears at the back of this manual.) Retain shipping carton and padding material for inspection by the carrier. Any Hewlett-Packard Sales and Service office will arrange for instrument repair or replacement without waiting for a claim settlement with the carrier.

2-10. POWER REQUIREMENTS

2-11. The IF Section receives its power from the Display Section. Before connecting the analyzer to a line power source, perform the installation procedures given in the Display Section manual.

2-12. CONNECTIONS

2-13. Since the RF and IF Sections are shipped separately, the plug-ins must be mechanically fitted

together, electrically connected, and then inserted into the Display Section mainframe. To make these connections refer to the RF Section Manual.

2-14. INSTALLATION CHECK

2-15. After installing the IF/RF Sections in the Display Section, the installation procedures given in Section II of the RF Section manual should be performed.

2-16. STORAGE AND SHIPMENT

2-17. Original Packaging

- 2-18. The same containers and materials used in factory packaging can be obtained through the Hewlett-Packard Sales and Service offices listed at the rear of this manual.
- 2-19. If the instrument is being returned to Hewlett-Packard for servicing attach a tag indicating the type of service required, return address, model number and full serial number. Also mark the container FRAGILE to assure careful handling.
- 2-20. In any correspondence refer to the instrument by model number and full serial number.

2-21. Other Packaging Materials

- 2-22. The following general instructions should be used for repackaging with commercially available materials.
- a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard Service office or center, attach a tag indicating the type of service required, return address, model number and full serial number.)
- b. Use a strong shipping container. A double-wall carton made of 350 pound test material is adequate.
- c. Use enough shock-absorbing material (three to four inch layer) around all sides of the instrument to provide firm cushion and prevent movement inside the container. Protect the control panel with cardboard.
 - d. Seal the shipping container securely.
- e. Mark the shipping container FRAGILE to assure careful handling.

Model 8552B Operation

SECTION III OPERATION

3-1. INTRODUCTION

3-2. This section provides operating instructions for the HP 8552B IF Section. The panel features are described in Figure 3-1, Operator's Checks are outlined in Figure 3-2, and Operating Instructions are provided in the appropriate RF Section manual. Operator's Maintenance provides instructions for maintenance that can be done by the operator.

3-3. PANEL FEATURES

3-4. The panel features of the 8552B are shown and explained in Figure 3-1, 8552B Spectrum Analyzer IF Section Controls, Connectors and Indicators.

3-5. OPERATOR'S CHECKS

- 3-6. The Operator's Checks are designed to familiarize the operator with the 8552B and give him an understanding of the instrument capabilities.
- 3-7. The FRONT PANEL CHECK PROCEDURE and Table 4-1, (in Section 4), provide the Operator's Checks for the 8552B.

NOTE

When the 8552B-H04 is being used, the adjustments of paragraph 3-14 should be substituted for those in Section IV.

3-8. OPERATIONAL ADJUSTMENTS

3-9. During checkout at the factory, the IF Section is adjusted for proper operation. Upon receipt of the instrument the operator must perform the front panel adjustments as shown in the RF Section manual.

3-10. H01/H02 Instruments

3-11. For H01/H02 instruments it should be recalled that at -30 dBm, the equivalent voltage is 8.66 mV (75 ohms). Perform the tests and adjustments as shown in the RF Section Manual.

3-12. H04 Instruments

3-13. The $-30~\mathrm{dBm}$ CAL OUTPUT signal is used to calibrate the analyzer. However, since $0~\mathrm{dB}\mu\mathrm{V}$ (across 50 ohms) = $-107~\mathrm{dBm}$, the $-30~\mathrm{dBm}$ signal corresponds to $+77~\mathrm{dB}\mu\mathrm{V}$. To achieve correct log calibration, LOG REF LEVEL is set to $80~\mathrm{dB}\mu\mathrm{V}$

and AMPL CAL is set so that the signal peaks 3 dB below the LOG REF graticule line. And since -30 dBm = 7.07 mV (across 50 ohms), AMPL CAL is fine-adjusted for 7.1 mV ($\approx 7.07 \text{ mV}$) on the CRT display.

Use the following procedure as a supplement to the procedures specified in Section IV and the RF Section manuals for AMPL CAL adjustment.

NOTE

When the 8556A RF Section is used, the correct adjustment procedure is located in the RF Section manual.

- 1. Make VERTICAL GAIN and POSITION adjustments as specified in the manuals.
- 2. Set LOG REF LEVEL to 80 dBμV (check that LOG/LINEAR is set to 10 dB LOG, LOG REF LEVEL Vernier is set to 0, and CAL OUTPUT is connected to RF INPUT).
- 3. Adjust AMPL CAL to set the 30 MHz calibrator signal 3 dB *below* the top (0 dB) graticule line on the CRT.
- 4. Step INPUT ATTENUATION and LOG REF LEVEL through their ranges. The signal should increase or decrease 10 dB per step.
- 5. Set LOG/LINEAR to LINEAR and LINEAR SENSITIVITY to 1 mV/div. Adjust AMPL CAL to set the 30 MHz calibrator signal for 7.1 divisions on the CRT.

3-14. OPERATING INSTRUCTIONS

3-15. Refer to the RF Section manuals for specific operating instructions.

3-16. OPERATING TIPS

- 3-17. When using the 10 Hz Bandwidth, use a scan time of 1 second or slower. Special provision is made in the 8552B IF Section to increase the stability of the 50 MHz Converter during the slow scans.
- 3-18. When using MANUAL SCAN or EXTERNAL SCAN, the DISPLAY UNCAL lamp warns if the combination of control settings being used degrades the calibration. Do not sweep the analyzer any faster than it would be swept by an internal scan with the control settings selected.

Operation Model 8552B

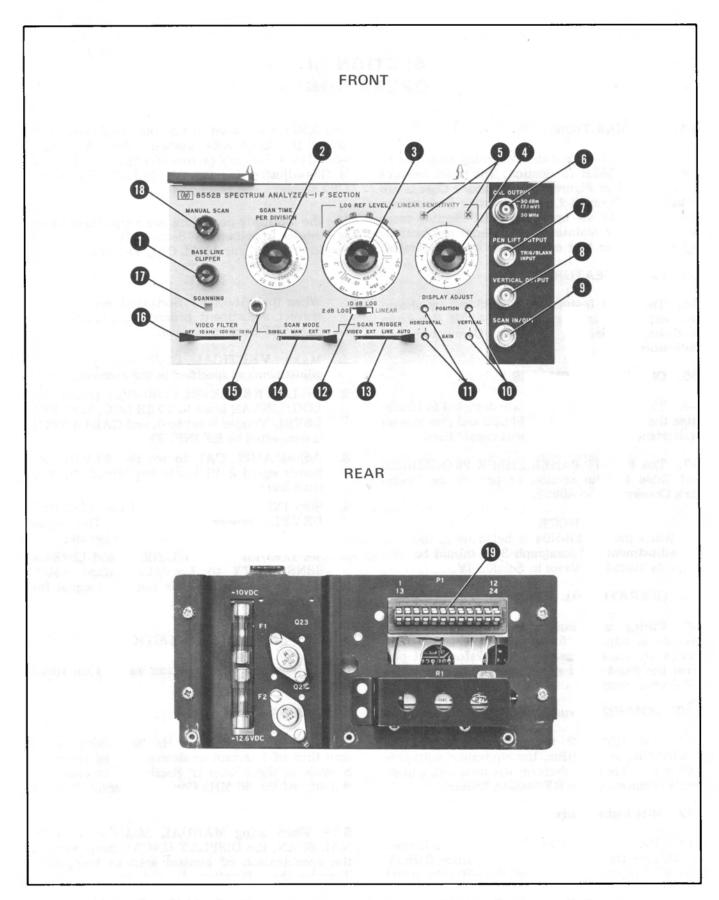


Figure 3-1. 8552B Spectrum Analyzer IF Section Controls and Connectors Indicators

FRONT AND REAR PANEL CONTROLS AND CONNECTORS

- 1 BASE LINE CLIPPER. Blanks lower part of trace to blank baseline noise. Blanking function also prevents blooming with a variable-persistence storage display section.
- 2 SCAN TIME PER DIVISION. Controls scan time.
- LOG REF LEVEL · LINEAR SENSI-TIVITY Ranges. When the Log-Linear Mode Switch is in either of the Log positions and the vernier dial to the right is set at black zero, the black number under any illuminated index lamp indicates the power level at the display's LOG REF LEVEL. With the Log-Linear Mode Switch in the LINEAR position, the blue number under any illuminated index lamp indicates the per division multiplier for calibrated voltage amplitude, provided the vernier is set to blue 1. If the LOG REF LEVEL switch carries a third red scale, these numbers apply only when an 8556 RF Section is used.
- 4 LOG REF LEVEL · LINEAR SENSITI-VITY Vernier. Indicates 1-dB increments for logarithmic amplification; indicates multiplication factors up to unity for linear amplification.
- 5 LOG REF LEVEL LINEAR SENSITIVITY Mode Indicators.
 - "+" indicates the amplitude is to be read in dB-Log mode (the Range, Vernier and Display levels are to be added algebraically).
 - "x" indicates the amplitude is to be read in volts-linear mode (the Range, Vernier and Display levels are to be multiplied together).
- 6 CAL OUTPUT. Provides a 30-MHz signal at -30 dBm for amplitude calibration of spectrum analyzer.
- Provides penlift output 0 to 14 Vdc (0 Vdc while scanning) to compatible TTL HP recorders (HP 7005, 7035, 7004 and 7034). Blanking input when SCAN MODE is set to EXT (-15 Vdc required). Trigger Input of > 2 Vpk maximum) when SCAN MODE is set to INT and SCAN TRIG is set

- to EXT. (Polarity depends on position of internal switch A6S1, NORM-negative and REV-positive; factory set in the NORM (normal) position.
- 8 VERTICAL OUTPUT. Detected video output proportional to vertical deflection on CRT.
- 9 SCAN IN/OUT. Scan Output of -5 to +5 Vdc for 10-divisions of horizontal deflection on CRT (1k ohm output impedance). Scan Input 0 to +8 Vdc for 10-divisions of horizontal deflection on CRT (10k ohm input impedance).
- **WERTICAL.** Adjusts vertical position and gain of deflection amplifier.
- HORIZONTAL. Adjusts horizontal position and gain of deflection amplifier.
- Log-Linear Mode Switch. Selects log (2 or 10 dB) or linear display modes.
- 13 SCAN TRIGGER. Selects scan trigger mode. Operable only when SCAN MODE is in the INT position.
- SCAN MODE. Selects an internally generated ramp scan voltage in SINGLE or INT. The manual scan voltage is set by the MANUAL SCAN control. The EXT. scan voltage must be provided by an external generator.
- SINGLE. Press to initiate or stop scan with SCAN MODE switch set to SINGLE.
- VIDEO FILTER. May select 10 Hz, 100 Hz, 10 kHz or OFF sections of low-pass filter for detected video.
- SCANNING. Lights for duration of each scan.
- MANUAL SCAN. Controls scan in MAN position of SCAN MODE (14).
- 19 P1. Connects to display section.

NOTE

Do NOT make any VERTICAL GAIN or POSITION adjustments in the 2 dB LOG mode as the front panel calibration will become invalid.

Figure 3-1. 8552B Spectrum Analyzer IF Section Controls, Connectors and Indicators (cont'd)

Operation Model 8552B

3-19. OPERATOR'S MAINTENANCE

3-20. Operator's maintenance involves changing the -12.6 and -10 Vdc fuses, which are located on the rear panel of the 8552B.

3-21. Both fuses (F1 and F2), may be ordered under HP part number 2110-0001.

3-22. If the fuse is replaced and it immediately burns out again, a competent technician should be called to troubleshoot the instrument, or it should be returned to Hewlett-Packard for servicing. Refer to Section II under STORAGE AND SHIPMENT.

Model 8552B Performance Tests

SECTION IV PERFORMANCE TESTS

4-1. INTRODUCTION

- 4-2. Perform tests in procedural order with the test equipment called for, or with its equivalent. Specifications of test equipment and accessories required to performance-test the analyzer are given in Table 1-2.
- 4-3. Front panel checks for routine inspection are given in Table 4-1. Procedures for verifying that the instrument meets specifications are given in Paragraphs 4-23 through 4-28, and a test card in Table 4-5 contains data spaces for recording test results.
- 4-4. During any performance test, all shields and attaching hardware must be in place and the RF and IF Section plug-ins must be installed in the display section. The analyzer must be allowed to warm up at least one-half hour before being tested or adjusted.

4-5. FRONT PANEL CHECKS

4-6. Before proceeding to the front panel checks, the instrument must be adjusted and all the controls set as specified in the preset adjustment instructions in paragraph 4-13. After the instrument is set up, proceed with the checks. The instrument should perform as called out in the procedure (paragraphs 4-12 through 4-21) before going on to the performance tests.

4-7. PERFORMANCE TESTS

4-8. The performance tests given in this manual are suitable for incoming inspection, trouble-shooting or preventive maintenance. The tests are designed to verify published instrument specifications. Perform the tests in the order given, and record data on the test card (Table 4-5) at the end of this section. These tests assume the use of an 8553B RF Section and a 141T Display Section unless otherwise noted. If another RF Section is used the procedure must be adjusted accordingly: the frequencies used may change and some bandwidths will not be available for checking. If another Display Section is used, the tests that require variable persistence can be performed using an X-Y Recorder.

4-9. The tests are arranged in the following order:

Para.	Test Description
4-23	Calibrator Output
4-24	Bandwidth Accuracy
4-25	Bandwidth Selectivity
4-26	Switching between Bandwidths Accuracy
4-27	Amplitude Display Accuracy
4-28	Scan Time Accuracy

- 4-10. Each test is arranged so that the specification is written out as it appears in the Table of Specifications. Next, a description of the test and any special instructions or problem areas is included. Each test that requires test equipment has a test setup drawing and a list of required equipment. Each procedure gives control settings required for that particular test. Data spaces are included in each test procedure, and the spaces are repeated in the Performance Test Card at the end of this section.
- 4-11. Required specifications for test equipment are detailed in Table 1-2 in Section I. If substitute test equipment is to be used, it must meet the specifications listed in order to check the analyzer.

4-12. FRONT PANEL CHECK PROCEDURE

4-13. Preset Adjustments

4-14. Turn analyzer ON and preset the INTEN-SITY & FOCUS to approximately I o'clock. While the analyzer is warming up make the following control settings:

•
RANGE MHz 0-110
FREQUENCY 40 MHz
FINE TUNE Centered
BANDWIDTH 300 kHz
SCAN WIDTH 0-100 MHz
SCAN WIDTH PER DIVISION 10 MHz
INPUT ATTENUATION 10 dB
TUNING STABILIZER On
BASELINE CLIPPER ccw
SCAN TIME PER DIVISION 5 MILLISECONDS
LOG REF LEVEL10 dBm
LOG REF LEVEL Vernier 0
LOG·LINEAR 10 dB LOG
VIDEO FILTER 10 kHz
SCAN MODE INT
SCAN TRIGGER AUTO

4-15. Connect CAL OUTPUT to RF INPUT using a BNC-to-BNC cable. The display on your analyzer should be similar to Figure 4-1.

Performance Tests Model 8552B

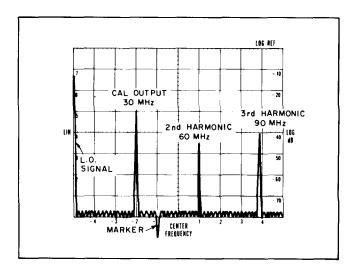


Figure 4-1. 30 MHz Calibrator Signal & Harmonics

4-16. Display Section Adjustments

- a. Set LOG REF LEVEL max ccw.
- b. Set SCAN TIME PER DIVISION to 10 SECONDS and adjust FOCUS and ASTIGMATISM for the smallest round spot possible.
- c. Reset SCAN TIME PER DIVISION to 5 MILLISECONDS. Adjust TRACE ALIGN so that horizontal base line of the CRT trace is exactly parallel to the horizontal graticule lines.

4-17. IF Section Display Adjustments

- a. Adjust VERTICAL POSITION so that the horizontal base line of the CRT trace is exactly on the bottom horizontal graticule line of the CRT. Set LOG REF LEVEL to 0 dBm.
- b. Adjust HORIZONTAL POSITION so display is centered on CRT. Then adjust HORIZONTAL GAIN until the displayed scan width is exactly 10 divisions. Some interaction between HORIZONTAL POSITION and GAIN may occur, requiring slight readjustment of the controls.

The display on your CRT should now match Figure 4-1 almost exactly. (The amplitudes of the individual signals may be slightly different.)

c. Note the inverted marker below the bottom graticule line. This marker indicates the display center frequency of the ZERO and SCAN WIDTH PER DIVISION tuning modes. Adjust the FREQUENCY control to place this marker exactly under the signal three divisions from the left.

This signal is the 30 MHz calibrator signal. Tune the marker carefully to null the signal.

NOTE

The other signals on the display are the "zero frequency" First LO feedthrough and the 60 MHz and 90 MHz harmonics of the calibrator signal.

- d. Set the SCAN WIDTH PER DIVISION control to .05 MHz and the BANDWIDTH to 10 kHz.
- e. Switch the red SCAN WIDTH control to the PER DIVISION position. The BANDWIDTH, SCAN WIDTH PER DIVISION, and Center Frequency are now those selected in steps c and d. (The marker makes it easy to select any signal in 0—100 MHz scan and expand the display about that signal.)
- f. Adjust FREQUENCY tuning to center 30 MHz calibrator signal, if necessary. Then reduce SCAN WIDTH PER DIVISION to 10 kHz. Use FINE TUNE to center the signal on the display. (The analyzer's First LO is automatically phase-locked to a crystal oscillator reference for the blue color-coded SCAN WIDTH positions since the TUNING STABILIZER was set on. Therefore, the FREQUENCY control which tunes the First LO— should not be used to tune the analyzer; frequency would tune in 100 kHz steps.)
- g. Adjust the LOG REF LEVEL controls so the maximum signal amplitude is exactly on the -70 dB graticule line. Rotate LOG REF LEVEL control seven steps in the clockwise direction. The amplitude of the signal should increase in increments of one division per 10-dB step (see Figure 4-2).
- h. Adjust VERTICAL GAIN to place maximum signal amplitude exactly on LOG REF (top) graticule line (Figure 4-2). Repeat steps g and h to obtain optimum adjustment of VERTICAL GAIN (increments as close to one division per 10 dB step as possible).

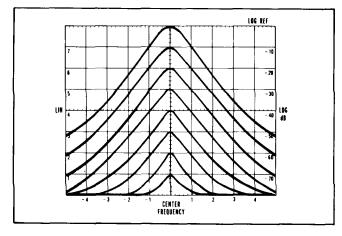


Figure 4-2. Vertical Gain Adjustment

Model 8552B Performance Tests

4-18. Ampl. Cal Adjustment RF Section

- a. Set the LOG REF LEVEL controls to -30 dBm (-30 + 0).
- b. Adjust AMPL CAL so that the signal amplitude (-30 dBm) is exactly on the LOG REF (top) graticule line of the CRT.

The analyzer is now calibrated in the LOG display mode.

4-19. Ampl Cal Check for Linear Sensitivity Accuracy

4-20. In the LINEAR display mode the vertical display is calibrated in absolute voltage. For LINEAR measurements the LIN scale factors on the left side of the CRT and the blue color-coded scales of the LINEAR SENSITIVITY controls are used. The signal voltage is the product (note lighted "x" lamp) of the CRT deflection and LINEAR SENSITIVITY control settings. It is usually most convenient to normalize the LINEAR SENSITIVITY vernier by setting it to "1" (blue scale).

a. Set the LOG-LINEAR switch to LINEAR. Set LINEAR SENSITIVITY to 1 mV/div (1 mV x 1).

Since the -30 dBm calibrator output is $\cong 7.1$ mV (across 50 ohms), the CRT deflection should be $\cong 7.1$ divisions.

NOTE

For standard options H01/H02 the CRT deflection should be \approx 8.7 mV across 75 ohms.

b. Adjust AMPL CAL on RF Section for a ≅7.1 div CRT deflection, if necessary. (LINEAR display is more expanded than the compressed LOG display, so adjustment of the AMPL CAL control can be made with more resolution in LINEAR without noticeable effect on the LOG calibration.)

The analyzer is now calibrated for both the LOG and LIN display modes.

4-21. Set controls as follows:
SCAN WIDTH 0-100 MHz
SCAN WIDTH PER DIVISION 10 MHz
BANDWIDTH 10 kHz
LOG·LINEAR 10 dB LOG
LOG REF LEVEL10 dBm
TUNING STABILIZER On

Perform tests in Table 4-1, Front Panel Checks.

NOTE

Make NO Front Panel adjustments with LOG·LINEAR set to 2 dB LOG.

Performance Tests Model 8552B

Table 4-1. Front Panel Checks

Function	Procedure	Result
Base Line Clipper	 Turn BASE LINE CLIPPER cw. Return clipper to ccw. 	At least the bottom 2 divisions should blank.
Scan	3. Tune SCAN TIME across its range.4. Return to 5 ms/div.	3. Scan should occur in all positions.
Scan Width	5. Turn SCAN WIDTH to PER DIVISION.6. Center CAL OUTPUT signal on display.	5. 30 MHz signal and harmonics visible. DISPLAY UNCAL light comes on.
	7. Reduce SCAN WIDTH PER DI- VISION to 20 kHz; use FINE TUNE to center display.	7. Signal remains on-screen, centered
Phase Lock	8. With TUNING STABILIZER on, slowly turn the FREQUENCY control.	8. Signal jumps to left or right hand edges of CRT (±100 kHz). This corresponds to the 100 kHz reference oscillator in the automatic phase control circuit.
	9. Turn TUNING STABILIZER to OFF; use FREQUENCY to center display.	9. Signal should tune continuously.
	10. Turn TUNING STABILIZER on, use FINE TUNE to center display.	10. Signal should not jump 100 kHz.
Bandwidth and Display Uncal Light	11. Reduce BANDWIDTH, SCAN TIME PER DIVISION, and SCAN WIDTH PER DIVISION, using FINE TUNE to center display.	11. Display should be stable, and viewable as long as DISPLAY UNCAL is unlit.
	12. Return BANDWIDTH to 10 kHz, SCAN WIDTH PER DIVISION to 20 kHz and SCAN TIME PER DI- VISION to 5 MILLISECONDS.	
Calibration	13. Lit index light on LOG REF LEVEL. LINEAR SENSITIVITY corresponds to top line of graticule; with input attenuation at 20 dB and LOG REF LEVEL at -10 dBm, signal level is -30 dBm.	13. Calibrator signal is -30 dBm level (2 divisions down from top of graticule).
Gain Vernier	14. Turn LOG REF LEVEL·LINEAR SENSITIVITY vernier cw.	14. Signal level increases by amount marked on vernier dial.
Attenuators	15. Turn INPUT ATTENUATION and LOG REF LEVEL·LINEAR SEN-SITIVITY in 10 dB steps.	15. Signal increases or decreases one vertical division per 10 dB step.

Model 8552B Performance Tests

PERFORMANCE TESTS

4-23. Calibrator Output

SPECIFICATION:

Amplitude: $-30 \text{ dBm } \pm 0.3 \text{ dB}$ Frequency: $30 \text{ MHz } \pm 3 \text{ kHz}$

DESCRIPTION: The Calibrator's amplitude accuracy is checked by comparing the 30 MHz fundamental signal with a source of known accuracy. The frequency is checked by amplifying the signal and measuring it with a frequency counter.

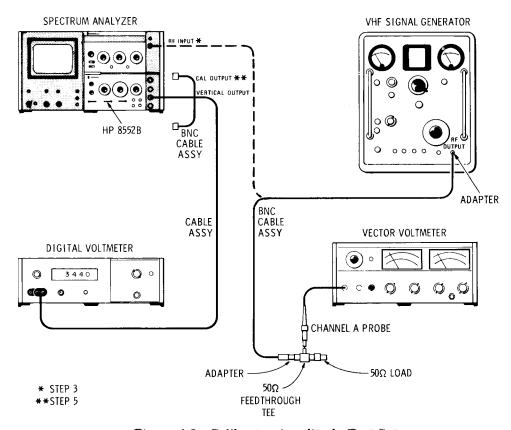


Figure 4-3. Calibrator Amplitude Test Setup

EQUIPMENT:															
SIGNAL GENERATOR														H	IP 608F
CABLE ASSEMBLY (2)											٠.			. HP 1	10503A
CABLE ASSEMBLY														. HP :	11001A
50-OHM TEE														. HP :	11536A
ADAPTER (2)														. UG-2	201A/U
50-OHM TERMINATION															
AMPLIFIER															
FREQUENCY COUNTER															
VECTOR VOLTMETER															8405A
DIGITAL VOLTMETER												ŀ	IΡ	3440A	/3443A

4-23. Calibrator Output (cont'd)

1. Connect the equipment as shown in Figure 4-3 and make the following settings: ANALYZER: RANGE MHz **FREQUENCY** BANDWIDTH SCAN WIDTH SCAN TIME PER DIVISION LOG·LINEAR LINEAR SENSITIVITY OFF INT SCAN MODE SCAN TRIGGER **AUTO** 8405A: FREQ. RANGE -MC20 - 40CHANNEL -30 608F: MODULATION . . . 3440A: **AUTO** Use signal generator ATTENUATOR VERNIER to set generator amplitude to exactly -30 dBm (7.22 mV for Options H01/H02) as read on vector voltmeter. Disconnect the signal generator from the vector voltmeter; connect signal generator to analyzer RF

- INPUT. Center the signal on the CRT display with analyzer FREQUENCY control.
- Set SCAN WIDTH to ZERO and peak the trace with analyzer FREQUENCY control. Use analyzer LINEAR SENSITIVITY vernier to set signal level (as read on digital voltmeter) to 700 ±0.4 mV. Do not change LINEAR SENSITIVITY vernier during remainder of check.
- Disconnect the signal generator from RF INPUT and connect CAL OUTPUT to RF INPUT. Peak trace with FREQUENCY control. Signal level (as read on digital voltmeter) should be between 670 and 731 $mV (\pm 0.3 dB)$:

670	731	7
010	101	m v

Model 8552B Performance Tests

PERFORMANCE TESTS

4-23. Calibrator Output (cont'd)

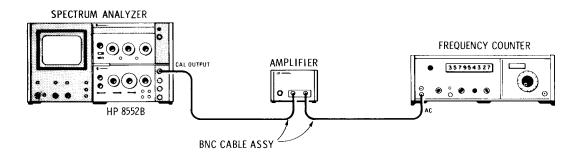


Figure 4-4. Calibrator Frequency Check Test Setup

6. Connect the equipment as shown in Figure 4-4 and make the following settings:

	HP 5245L: SAMPLE RATE TIME BASE FUNCTION																										o'clo ENC	1s
7.	Read CAL OUTPUT	on	th	e f	req	[ue	ncy	7 C	oui	nte	er,	30	M	Hz	±	3 1	κHz	z.	29	9.9	97				3	0.00	3 MI	Ηz

4-24. Bandwidth Accuracy

SIGNAL GENERATOR

BASE LINE CLIPPER

LOG·LINEAR

SPECIFICATION: Individual IF bandwidth 3 dB points calibrated to ±20% (10 kHz bandwidth ±5%).

DESCRIPTION: While observing a signal on the CRT display, all bandwidths except 10 kHz are verified by measuring the half-power points of the signal. The 10 kHz bandwidth is measured by using a frequency counter to monitor the input signal generator frequency as it is tuned between the IF filter half-power points.

EQ	ΙI	ΙP	·М	\mathbf{F}	N	т	٠
D Q	\circ	TT	TAT	12	Τ.	1	٠

	FREQUENCY COU	JNTER																	H	IP 5245.	L
	CABLE ASSEMBL	Y (2)																	HP	' 10503 <i>i</i>	A
	ADAPTER																	_		-201A/U	
1.	Make the following	analyzer	con	tro	ol s	ett	ing	s:													
	RANGE — MHz .																			0 - 11	0
	FREQUENCY .																			30 MH	\mathbf{z}
	BANDWIDTH .																			300 kH	\mathbf{z}
	SCAN WIDTH .																P	ER	D	IVISIO!	N
	SCAN WIDTH PER	DIVISI	ON																	.05 MH	\mathbf{z}
	INPUT ATTENUA	TION																		. 10 d	В
	SCAN TIME PER I																			ECOND	
	TUNING STABILI	ZER .																		O	

. . . Max ccw

4-24. Bandwidth Accuracy (cont'd)

Analyzer control settings (cont'd)

LINEAR SENSITIVIT	$^{\circ}Y$														2 mV/Div
VIDEO FILTER .															10 kHz
SCAN MODE															
SCAN TRIGGER .															AUTO

- 2. Connect CAL OUTPUT to RF INPUT.
- 3. Use LINEAR SENSITIVITY vernier control to adjust for 5.7 divisions signal amplitude.
- 4. Measure the bandwidth at the half-power points at the 4.0 division line. Bandwidth should be 300 ± 60 kHz (4.8 to 7.2 divisions).

NOTE 4.8 ______7.2 div

The bandwidth checks (Table 4-2), assume the use of the 8553B RF Section and 141T Display Section. With other RF Sections, some bandwidths aren't used; on bandwidths that are used it may be impossible to achieve the resolution needed to take the reading.

5. Repeat steps 3 and 4 to measure the bandwidths listed in Table 4-2, and set the controls as indicated in the table. (When checking .03 and .01 kHz bandwidths: set SCAN MODE to SINGLE, PERSISTENCE to MAX and push single scan button. When finished, set SCAN MODE to INT, PERSISTENCE to MIN.)

Table 4-2. Bandwidth Checks

BANDWIDTH	SCAN WIDTH PER DIVISION	SCAN TIME PER DIVISION	3 dB Bandwidth
100 kHz	20 kHz	5 MILLISECONDS	4.0 6.0 div
30 kHz	5 kHz	5 MILLISECONDS	4.87.2 div
3 kHz	0.5 kHz	10 MILLISECONDS	4.87.2 div
1 kHz	0.2 kHz	10 MILLISECONDS	4.06.0 div
0.3 kHz	.05 kHz	10 MILLISECONDS	4.87.2 div
0.1 kHz	.02 kHz	0.2 SECONDS	4.06.0 div
.03 kHz	.02 kHz	1 SECONDS	1.21.8 div
.01 kHz	.02 kHz	1 SECONDS	0.40.6 div
I		1	

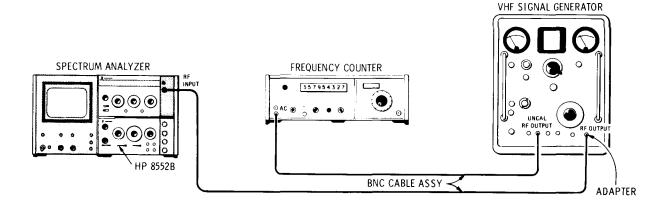


Figure 4-5. 10 kHz Bandwidth Accuracy Test Setup

6.	To check the 10 kHz bandwidth, connect the control settings.	test setup show	n in F	igure	4-5 a	ınd	mak	e the	following
AN	ALYZER: BANDWIDTH					•	 5 M). LLIS	0.05 MHz ECONDS
608				 		· · ·			30 -30 dBm CW B
524	5L: SENSITIVITY (VOLTS RMS)								
	FUNCTION		• •			•	•	I IUE	QCEITC I
7.	Fine adjust the signal generator frequency to co								QULITOI
		enter the 30 MHz	z signa	l on th	ie CR	RT d	lispl	ay.	
8.	Fine adjust the signal generator frequency to countries Using FINE TUNE to keep the display centered	enter the 30 MHz ed, reduce SCAN FER to 10 Hz.	z signa WIDT	l on th	ie CR R DI'	RT d	lispl: ION	ay. to 20) kHz. Set
8.	Fine adjust the signal generator frequency to control Using FINE TUNE to keep the display centered SCAN WIDTH to ZERO scan. Set VIDEO FILTONE and adjust Ledisplay.	enter the 30 MHz ed, reduce SCAN FER to 10 Hz. INEAR SENSIT	z signa WIDT IVITY	l on th	ie CR R DI'	RT d	lispl: ION	ay. to 20) kHz. Set
7. 8. 9.	Fine adjust the signal generator frequency to control Using FINE TUNE to keep the display centered SCAN WIDTH to ZERO scan. Set VIDEO FILTONE and adjust L display.	enter the 30 MHz ed, reduce SCAN FER to 10 Hz. INEAR SENSIT	z signa WIDT IVITY 3 dB p he 5.0	l on the	ie CR R DI'	RT o	lispla ION ol fo	to 20 or a 7.) kHz. Set 1 division
8. 9. 10.	Fine adjust the signal generator frequency to consider the Using FINE TUNE to keep the display centered SCAN WIDTH to ZERO scan. Set VIDEO FILTONE and adjust Leadisplay. Steps 10 and 11 check to Decrease HP 608F frequency until the base	enter the 30 MHz ed, reduce SCAN FER to 10 Hz. INEAR SENSITE NOTE apper and lower a line drops to to L Frequency Cou	z signa WIDT IVITY 3 dB p he 5.0 anter.	I on the PEI Verni coints.	ier co	NT o	lispla ION ol fo	to 20 or a 7.	kHz. Set division the signal MHz e. Record
8.9.10.11.	Fine adjust the signal generator frequency to consider the Using FINE TUNE to keep the display centered SCAN WIDTH to ZERO scan. Set VIDEO FILT Peak the signal using FINE TUNE and adjust Ledisplay. Steps 10 and 11 check to Decrease HP 608F frequency until the base generator frequency as read from the HP 5245. Increase HP 608F frequency until the base limited in the property of	enter the 30 MHz ed, reduce SCAN FER to 10 Hz. INEAR SENSITE NOTE apper and lower a line drops to to L Frequency Counter the peaks and the	z signa WIDT IVITY 3 dB p he 5.0 unter.	l on the PEI Verni coints. divis	e CR R DIV	NT o	ilisplation in the second seco	to 20 or a 7.	kHz. Set 1 division the signal MHz e. Record MHz

4-25. Bandwidth Selectivity

SPECIFICATION:

- 60 dB/3 dB IF bandwidth ratio <20:1 for IF bandwidths from 10 kHz to 300 kHz.
- 60 dB/3 dB IF bandwidth ratio <11:1 for IF bandwidths from 10 Hz to 3 kHz.
- 60 dB points separated by <100 Hz for 10 Hz bandwidth.

DESCRIPTION: Bandwidth selectivity is verified by observing the CAL OUTPUT signal in the LOG mode on the CRT and measuring the bandwidth at the -60 dB points using the analyzer's calibrated scan widths. The ratio of this bandwidth to the 3 dB bandwidths defines the analyzer selectivity.

Performance Tests Model 8552B

PERFORMANCE TESTS

Connect CAL OUTPUT to RF INPUT and make the following control settings:

4-25. Bandwidth Selectivity (cont'd)

ANALYZER: RANGE - MHz FREQUENCY 30 MHz 300 kHz BANDWIDTH 0 dBSCAN WIDTH LOG·LINEAR BASE LINE CLIPPER VIDEO FILTER 100 Hz INT SCAN MODE **AUTO**

- 2. Tune FREQUENCY to center the CAL OUTPUT signal on the CRT display; adjust LOG REF LEVEL Vernier to peak the signal on the top graticule line.
- 3. Compute the bandwidth at the -60 dB graticule line (SCAN WIDTH PER DIVISION setting times the number of divisions separating the signal's slopes). Compute the 60 dB/3 dB IF bandwidth ratio using the 3 dB bandwidth found in Paragraph 4-24.

60 dB bandwidth	_ 20	
3 dB bandwidth	1	

_____ 20:1

NOTE

If the DISPLAY UNCAL lamp is illuminated in any of the steps shown in table 4-3, it may be disregarded.

4. To check the remaining BANDWIDTH settings, refer to Table 4-3 for control settings and test limits. Compute the 60 dB/3 dB IF bandwidth ratios using the 3 dB bandwidths found in Table 4-2. (When checking 0.03 and 0.01 bandwidths, set SCAN MODE to INT, PERSISTENCE to MIN.)

Table 4-3	Bandwidth	Selectivity	Checks
LUUIC TO.	Dunawaan	Detection	Uncens

BANDWIDTH	SCAN WIDTH	SCAN TIME	60 dB BANDWIDTH	RATIO FREQUENCY
	PER DIVISION	PER DIVISION	DIVISIONS	60 dB/3 dB BANDWIDTHS
100 kHz 30 kHz 10 kHz 3 kHz 1 kHz 0.3 kHz 0.1 kHz .03 kHz	0.5 MHz 0.1 MHz 0.05 MHz 5 kHz 2 kHz 0.5 kHz 0.2 kHz 0.05 kHz 0.05 kHz	50 MILLISECONDS 50 MILLISECONDS 50 MILLISECONDS 50 MILLISECONDS 0.1 SECONDS 0.2 SECONDS 0.2 SECONDS 0.2 SECONDS 0.5 SECONDS		

*10 Hz 60 dB bandwidth must be less than the 11:1 ratio and the 60 dB points separated by less than 100 Hz.

4-26. Switching Between Bandwidths Accuracy

SPECIFICATION: At 20°C,	Log	Linear
0.1 - 300 kHz	$\frac{\text{Log}}{\pm 0.5 \text{ dB}}$	±5.8%
0.03 – 300 kHz	$\pm 1.0~\mathrm{dB}$	$\pm 12.0\%$
0.01 - 300 kHz	$\pm 1.5~\mathrm{dB}$	±19.0%

DESCRIPTION: Relative bandwidth amplitude accuracy is verified by observing the amplitude of the CAL OUTPUT signal while switching IF bandwidths. The display is observed in the LINEAR mode for best amplitude resolution.

1.	Connect CAL OUTPUT to RF INPUT and set analyzer controls as follows:
	RANGE — MHz
	FREQUENCY
	FINE TUNE
	BANDWIDTH
	SCAN WIDTH
	SCAN WIDTH PER DIVISION
	INPUT ATTENUATION
	SCAN TIME PER DIVISION
	BASE LINE CLIPPER
	LOG·LINEAR
	LINEAR SENSITIVITY
	TUNING STABILIZER
	VIDEO FILTER
	SCAN MODE
	SCAN TRIGGER

- 2. Adjust FREQUENCY to center CAL OUTPUT signal on CRT.
- 3. Set LINEAR SENSITIVITY controls for a 7.0 division display; set SCAN TIME PER DIVISION to 0.2 SECONDS, SCAN WIDTH PER DIVISION to .05 MHz.
- 4. Progressively switch BANDWIDTH from 300 kHz through 1 kHz. Note the signal amplitude at each BANDWIDTH setting.

NOTE

Steps 5 and 6 require use of a 141 type variable persistence Display Section.

- 5. Set SCAN WIDTH to .05 kHz; set SCAN TIME PER DIVISION to 1 SECOND.
- 6. Progressively switch BANDWIDTH from 0.3 kHz to 0.01 kHz. Again note the signal amplitude at each BANDWIDTH setting. The maximum deviation between any two bandwidths (100 Hz to 300 kHz) should be less than 0.8 division. The maximum deviation between any two bandwidths (30 Hz to 300 kHz) should be less than 1.6 division. The maximum deviation between any two bandwidths (10 Hz to 300 kHz) should be less than 2.6 division.

100 Hz to 300 kHz: ₋	0.8 div
30 Hz to 300 kHz:	1.6 div
10 Hz to 300 kHz:	2.6 div

4-27. Amplitude Display Accuracy

SPECIFICATION:

 $\pm 0.25~dB/dB$ but not more than $\pm 1.5~dB$ over the full 70 dB display range.

DESCRIPTION: A full eight division signal is displayed on the CRT in the LOG mode. The LOG REF LEVEL is then changed 70 dB in 10 dB steps. The error of the CRT display is measured at each step. It is assumed that the IF Section Display Adjustments in Paragraph 4-17 have been performed.

1. Connect CAL OUTPUT to RF INPUT.

2.	Sat /	Analyzer con	trole as fo	allowe																								
۵.	R.A.N	IGE – MHz)110 W 5																							0-110	0
	FRE	QUENCY																									30 MH	z
	FINI	TUNE .																									Centered	d
		DWIDTH																									100 kH	Z
		N WIDTH																						P	EF	l D	OIVISION	N
		N WIDTH P	ER DIVIS	SION						•											•		•		•		0.5 MH	Z
		JT ATTENU																										_
	SCA	N TIME PE	R DIVISIO	NC	•			•	•	•	•		•		•	•	•	٠	•	•	•	•	5 .	Ml	LL	ııs	ECOND	\mathbf{S}
		E LINE CLI	PPER .		•			•	٠	•	•	•	•		•	•	٠	•	٠	٠	٠	٠	٠	•	•		Max ccv	N
		LINEAR			•			•	•	•	•	•	•		•	•	٠	٠	•	٠	٠	•	٠	٠	•	10) ar for	į
		REF LEVE																										n
		EO FILTER																										
		N MODE																										-
	SCA	N TRIGGEI	₹		•	•	•	•	٠	•	٠	•	•		•	•	•	•	•	•	٠	•	•	٠	•	•	AUI	J
3. 4.	LEV Char	st FREQUE EL Vernier nge the LOG even division	for a full REF LE	eight (VEL t	divis to re	sion	ve	rtic	al	dis	pla	у.																
																			6.8	85.			_				_7.15 di	V
5.		nge the LOC lay range.	G REF LE	EVEL	to 1	redi	uce	the	e si	gn;	al a	m	plit	ude	in	10) d	Вs	tep	os t	to '	ver	ify	tl t	he	en	tire 70 d	В
	a.	-20 dB	5.85		_		_6	.15	div	v	d		-5	50 d	В			2	2.8	5_							_3.15 div	r
	b.	-30 dB	4.85				_5	.15	di	v	e.		-6	60 d	В			ĵ	1.8	5_							_2.15 div	7
	c.	-40 dB	3.85	<u></u>			_4	.15	di	V	f.			70 d	В			(8.0	5_				_			_1.15 div	7

4-28. Scan Time Accuracy

SPECIFICATION:

 $0.1 \text{ ms/div up to } 20 \text{ ms/div } \pm 10\%.$

 $50 \text{ ms/div to } 10 \text{s/div } \pm 20\%$.

DESCRIPTION: A sine wave modulated RF signal is connected to the RF INPUT. The demodulated signal is displayed on the analyzer CRT and its peaks aligned with the CRT graticule by adjusting the modulation frequency. Scan time is verified by measuring the period average of the modulation signal using a frequency counter.

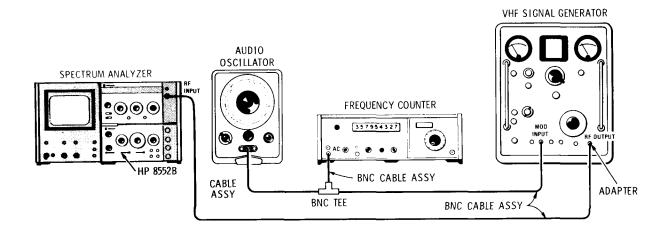


Figure 4-6. Scan Time Accuracy Test Setup

AUDIO OSCILLATOR SIGNAL GENERATOR	 	e following control	 HP 200CD HP 608F HP 10503A
ANALYZER:			0.440
	 		 Centered
BANDWIDTH	 		 300 kHz
SCAN WIDTH	 		 ZERO
INPUT ATTENUATION	 		 10 dB
SCAN TIME PER DIVISION	 		 2 MILLISECONDS
BASE LINE CLIPPER	 		 Max ccw
LOG·LINEAR	 		 LINEAR
VIDEO FILTER	 		 10 kHz
SCAN MODE	 		 INT
SCAN TRIGGER	 		 VIDEO

4-28	3. Scan Time Accur	асу (cor	nt'd)																					
608	F:																									
	MEGACYCLES . ATTENUATION MODULATION . FREQUENCY RA						 		:	•	:	:	:	•				•	:	•		•	•	-4 E2	10 d XT	dBn ' AM
524	5L: SENSITIVITY (VC FUNCTION TIME BASE																Ρ.	ER	JO	\mathbf{D}	A١	VE.	$\mathbf{R}A$	AG	E -	-(10)
	CD: RANGE Frequency Dial .		•	•	•	٠,	 •	•	•		· ·															₹10(. {

- 2. Adjust the HP 200CD AMPLITUDE for 90% modulation as indicated on the HP 608F panel meter.
- 3. Fine tune the HP 608F Signal Generator for maximum signal indication of the analyzer CRT. Adjust LINEAR SENSITIVITY Vernier control for a convenient display height.
- 4. Position the first modulation peak directly on the -5 graticule line by adjusting the HORIZONTAL POSITION control.
- 5. Adjust the audio oscillator modulation frequency to align the tenth modulation peak with the +4 graticule line (see Figure 4-7). Total scan time is read on the HP 5245L and should be 2.0 ±0.2 ms.
 - 1.8_____2.2 ms
- 6. Repeat steps 4 and 5 to verify the SCAN TIME PER DIVISION positions as listed in Table 4-4. The approximate HP 200CD frequency settings and HP 5245L PERIOD AVERAGE tolerances are also contained in Table 4-4.

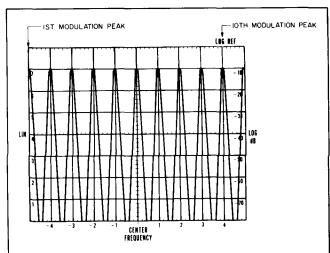


Figure 4-7. Scan Time Modulation Peaks

Table 4-4. Modulation Frequencies for Checking Scan Time

SCAN TIME PER DIVISION	HP 200CD Frequency	Sca	n Time
0.1 MILLISECONDS	10 kHz	90	110 μs
0.2 MILLISECONDS	5 kHz	180	220 μs
0.5 MILLISECONDS	$2~\mathrm{kHz}$	450	550 μs
1 MILLISECOND	1 kHz	0.9	1.1 ms
2 MILLISECONDS	500 Hz	1.8	2.2 ms
5 MILLISECONDS	200 Hz	4.5	5.5 ms
10 MILLISECONDS	100 Hz	9.0	11.0 ms
20 MILLISECONDS	50 Hz	18.0	22.0 ms
50 MILLISECONDS	20 Hz	40.0	60.0 ms
0.1 SECONDS	$10~\mathrm{Hz}$	80.0	120.0 m
0.2 SECONDS	5 Hz	160	240.0 m

Model 8552B Performance Tests

Table 4-5. Performance Check Test Record

	ett-Packard Model 8552B rum Analyzer IF Section	. .	by:
Serial	No		
Para. No.	Test Description	Measurement Unit	Min Actual Max
4-23	Calibrator Output Amplitude: -30 dBm ±0.3 dB Frequency: 30 MHz, ±3 kHz	millivolts MHz	676 724 29.997 30.003
4-24	Bandwidth Accuracy Bandwidths: ±20% 10 kHz Bandwidth: ±5% 300 kHz Bandwidth 100 kHz Bandwidth 30 kHz Bandwidth 10 kHz Bandwidth 1 kHz Bandwidth 1 kHz Bandwidth 1 kHz Bandwidth 03 kHz Bandwidth 1 kHz Bandwidth 1 kHz Bandwidth Bandwidth 100 kHz Bandwidth	divisions divisions divisions kHz divisions divisions divisions divisions divisions ratio ratio ratio	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4.00	30 kHz 10 kHz 1 kHz 0.3 kHz 0.1 kHz 0.03 kHz 0.01 kHz 0.01 kHz	ratio ratio ratio ratio ratio ratio ratio ratio ratio Hz	20:1 20:1 20:1 20:1 11:1 11:1 11:1 11:1
4-26	Switching Between Bandwidths ±0.5 dB 100 Hz to 300 kHz ±1.0 dB 30 Hz to 300 kHz ±1.5 dB 10 Hz to 300 kHz	divisions divisions divisions	0.8 1.6 2.6
4-27	Amplitude Display Accuracy at -10 dB: ±.15 dB -20 dB: ±.15 dB -30 dB: ±.15 dB -40 dB: ±.15 dB -50 dB: ±.15 dB -60 dB: ±.15 dB -70 dB: ±.15 dB	divisions divisions divisions divisions divisions divisions divisions	6.85 7.15 5.85 6.15 4.85 5.15 3.85 4.15 2.85 3.15 1.85 2.15 0.85 1.15

Performance Tests Model 8552B

Table 4-5. Performance Check Test Record (cont'd)

Para. No.	Tes	t Description	Measurement Unit	Min	Actual	Max
4-28	Scan Time				•	
-	Accuracy at	0.1 MILLISECONDS	μs	90 .		110
		0.2 MILLISECONDS	μs	180 .		220
ļ !	}	0.5 MILLISECONDS	μs	450 .		550
		1 MILLISECONDS	ms	0.9		1.1
		2 MILLISECONDS	ms	1.8		2.2
		5 MILLISECONDS	ms	4.5		5.5
		10 MILLISECONDS	ms	9.0		11.0
1		20 MILLISECONDS	ms	18.0		22.0
		50 MILLISECONDS	ms	40.0		60.0
		0.1 SECONDS	ms	80		120
		0.2 SECONDS	ms	160		240

Model 8552B Adjustments

SECTION V ADJUSTMENTS

5-1. INTRODUCTION

5-2. This section describes adjustments and checks required to return the analyzer IF section to peak operating condition when repairs are required. Included in this section are test setups, procedures, and tips about tools and test equipment. Adjustment location photographs are located on fold-outs at the back of the manual. A test record for recording data taken during adjustment procedures is included at the end of this section. The analyzer must warm up one hour before any adjustments are attempted.

5-3. EQUIPMENT REQUIRED

5-4. A complete list of test equipment and a list of accessories are contained in Table 1-2. In addition, each test procedure contains a list of test equipment and identifies all test equipment and accessories by call-outs. Any equipment substituted for the instruments or accessories listed must meet the minimum specifications in order to calibrate the analyzer.

5-5. Posidriv Screwdrivers

5-6. Many screws in the instrument appear to be Phillips, but are not. The table of accessories gives the name and number of the Posidriv screwdrivers designed to fit these screws. To avoid damage to the screw slots, the Posidriv screwdrivers should be used.

5-7. Slug Tuning Tools

5-8. Use HP 8710-1010 and HP 8710-0957 tuning tools for tuning the slugs in the ferrite inductors in the IF Section. No other tools should be used for this purpose.

5-9. Blade Tuning Tools

5-10. For adjustments requiring a nonmetallic metal-blade tuning tool, use the General Cement Model No. 5003 (HP 8730-0013). It may be necessary to cut away part of the plastic on the tuning blade end to use the tool on all the adjustments. In situations not requiring nonmetallic tuning tools, an ordinary small screwdriver or other suitable tool is sufficient. No matter what tool is used, never try to force any adjustment control in the analyzer. This is especially critical when tuning variable slugtuned inductors and variable capacitors.

5-11. HP 11592A Service Kit

5-12. The HP 11592A Service Kit is an accessory item available from Hewlett-Packard for use in maintaining the spectrum analyzer. No attempt to adjust the analyzer should be made unless the user has the service kit. The kit can be obtained by contacting your nearest Hewlett-Packard Sales and Service office. A list of HP field offices is included at the back of this manual.

5-13. Table 1-2 contains a detailed description of the contents of the service kit. Any item in the kit may be ordered separately if desired. The wiring in the 11592-60015 Extender Assembly is especially critical and fabrication should not be attempted. Other items in the kit may be built if desired.

5-14. Extender Cable Installation

5-15. Plug-in Removal. Push the front panel latch in the direction indicated by the arrow until the latch disengages and pops out from the panel. Pull the plug-ins out of the instrument. Locate the black press-to-release button on the left side of the RF Section. Press the button and firmly pull the two sections apart.

5-16. When the two sections separate at the front panel, raise the upper section until it is above the lower section by two or three inches at the front panel. Disengage the metal tab-slot connection at the rear of the plug-ins and separate the two sections.

5-17. Plug-In Cover Removal

5-18. Remove the bottom cover from the IF Section. Do not remove the shield covers from the A1/A12, A13 and A8 assemblies in the IF Section until those assemblies are to be adjusted.

WARNING

"Some of the maintenance and servicing operations described herein are performed with power supplied to the instrument while protective covers are removed. Be careful when performing these operations. Line voltage is always present on terminals including the power input connector, fuse holder, power switch, etc. In addition, when the in-

Adjustments Model 8552B

strument is on, energy available at many points may result in personal injury or death when contacted."

5-19. Extender Connections

5-20. Place the plate end of the HP 11592-60015 Extender Assembly in the display section and press firmly into place so that both plugs make contact. The plate and plugs cannot be installed upside down as the plate has two holes corresponding to two guide rods in the mainframe.

5-21. Connect the upper cable plug to the RF Section and the lower cable plug to the IF Section. The plugs are keyed so that they will go on correctly and will not make contact upside down. Connect the HP 11592-60016 Interconnection Cable Assembly between the RF and IF Sections. The connectors are keyed by the shape of the plug and the arrangement of the pins. Press the connectors firmly together and extend the instrument sections as far apart as the cables will allow without putting stress on the connectors.

5-22. FACTORY SELECTED COMPONENTS

5-23. Table 5-4 contains a list of factory selected components by reference designation, basis of selection, and schematic diagram location on which the component is illustrated. Factory selected components are designated by an asterisk (*) on the schematic diagrams in Section VIII of this manual.

5-24. RELATED ADJUSTMENTS

5-25. The adjustment procedures are arranged in numerical order. Many adjustments are directly re-

lated to preceding or following ones. The following sets of adjustments are related, and if one adjustment in the set is made, the other procedures in that set should be checked or adjusted.

Power Supply Checks and Adjustments (para. 5-27).

Scan Circuits

- 1. Horizontal Scan Checks and Adjustments (para. 5-28).
- 2. Final Scan Checks (para. 5-29).

Log/Linear Amplifier Circuits

- Vertical Deflection Amplifier Checks (para. 5-30).
- 2. Log/Linear Amplifier Checks and Adjustments (para. 5-31).

3 MHz IF Circuits

- 1. 300 kHz Bandpass Filter Adjustment (para. 5-32).
- 2. LC Filter Adjustments (para. 5-33).
- 3. Crystal Filter Fine Adjustment (para. 5-34).
- 4. 3 MHz IF Gain Adjustment (para. 5-36).

Converter Circuits

- 1. 47 MHz Local Oscillator Automatic Phase Lock Check and Adjustment (para. 5-37).
- 2. 50 MHz IF Bandpass Check and Adjustment (para. 5-38).
- 3. 44 MHz Rejection Adjustment (para. 5-39).

30 MHz Calibration Oscillator Check and Adjustment (para. 5-40).

Analogic Check and Adjustment (para. 5-41).

5-26. CHECKS AND ADJUSTMENTS

5-27. Power Supply Check and Adjustment

REFERENCE: Schematic 19.

DESCRIPTION: The spectrum analyzer IF Section regulates power fed from the display section. These checks verify and validate the display section power supply voltages and the regulated voltages in the spectrum analyzer plug-ins.

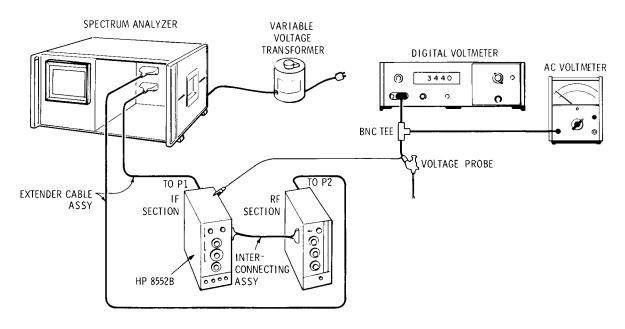


Figure 5-1. Power Supply Check and Adjustment Test Setup

EQUIPMENT:

EXTENDER ASSEMBLY				 				HP 11592-60015
DIGITAL VOLTMETER				 				HP 3440A/3443A
INTERCONNECTION ASSEMBLY				 				. HP 11592-60016
STRAIGHT-THROUGH VOLTAGE PROBE	1							HP 10025A
VARIABLE VOLTAGE TRANSFORMER				 				W5MT3A
AC VOLTMETER								HP 400E
BNC TEE								

Connect the test setup shown in Figure 5-1. Measure the dc display voltages with the HP 3440A/3443A
 Digital Voltmeter while the analyzer plug-ins are installed on extender cables.

Test Point (to Chassis)	Wire Color	Voltage
P1-9	red	+250 ±3 Vdc
P1-4, P2-2	wht/red	+100 ±1 Vdc
P1-6, P2-6	vio	-100 ±1 Vdc
F1, F2	wht/vio	-12.6 ±1 Vdc

2. If the display section supplies need adjustment, refer to the manual provided with the display section for instructions.

5-27. Power Supply Check and Adjustment (cont'd)

3. Connect the digital voltmeter to the IF Section XA5-11 (wht/blk/red lead, Figure 8-8) and measure +20 ±0.10 Vdc. Ripple should be < 0.5 mV rms. These tolerances should be maintained as the line voltage is varied between 103.5 Vac and 126.5 Vac using the variable voltage transformer.

+19.90____+20.10 Vdc

- 4. If the +20 Vdc supply is out of tolerance, adjust A5R16 +20V ADJ on the power supply assembly for $+20V \pm 0.1$ Vdc.
- 5. Connect the digital and ac voltmeters to the IF Section XA5-8 (wht/blk/vio) and measure -10 ± 0.01 Vdc. Ripple should be <0.5 mV rms. These tolerances should be maintained as the line voltage is varied between 103.5 Vac and 126.5 Vac using the variable voltage transformer.

-9.99 _____-10.01 Vdc

6. If the -10 Vdc supply is out of tolerance, adjust A5R32 -10V ADJ on the power supply assembly for -10V ± 0.01 Vdc.

5-28. Horizontal Scan Check and Adjustment

REFERENCE: Schematic 15, 16.

DESCRIPTION: The SCAN OUT voltage is measured and pre-set in this procedure. The Final Scan Check (paragraph 5-29) is then performed. The SCAN OUT voltage waveform is observed and adjustments made, if necessary, to obtain the proper waveform.

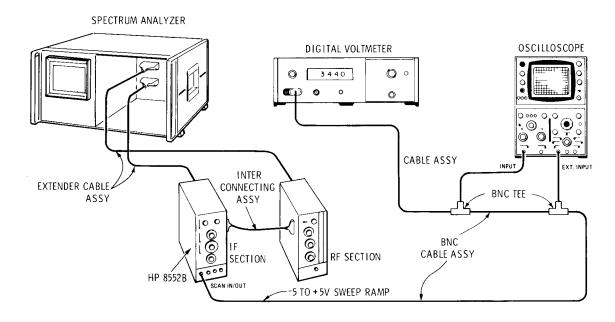


Figure 5-2. Scan Generator Check and Adjustment Test Setup

5-28. Horizontal Scan Check and Adjustment (cont'd)

EQUIPMENT:

OSCILLOSCOPE .													HF	18	30A/	180	1A/	1821	lΑ
DIGITAL VOLTMETE	\mathbf{R}														. HI	34	40/	3443	3A
EXTENDER ASSEMB	LY														. HP	115	592	-600	15
INTERCONNECTION	ASS	3EN	1BI	Υ											. HP	115	592	-600	16
BNC Tee (2)																			
CABLE ASSEMBLY (4	ł)															. H	P 1	0503	3A
CABLE ASSEMBLY																. H	P 1	1001	lΑ

1. Connect the test setup shown in Figure 5-2 and make the following control settings:

ANALYZER:

BASE LINE CLIPPER															Ma	x ccw
SCAN TIME PER DIVISION											5	MJ	LL	$_{\rm IS}$	ECO	ONDS
SCAN MODE																INT
SCAN TRIGGER															I	AUTO

180A/1801A/1821A:

HORIZONTAL SCALE .											10	mi	lliseconds/division
VERTICAL SENSITIVITY													. 2 volts/division
EXTERNAL TRIGGER										tri	gger	on	external dc signal

3440A/3443A:

SAMPLE RATE															9 o'clock
RANGE	 														AUTO

- 2. Synchronize the oscilloscope horizontal scan with the signal from the analyzer SCAN IN/OUT jack.
- 3. Observe and measure the SCAN IN/OUT waveform and compare it against the waveform shown in Figure 5-3. Rise time should be 54 ± 4 milliseconds.

50_____58 ms

- 4. If rise time of the scan voltage is out of tolerance, adjust A6R12 SCAN TIME control. Then proceed with the remainder of the scan generator adjustments given below.
- 5. Set the analyzer SCAN TRIGGER to EXT. Use the digital voltmeter to measure the dc voltage level at the SCAN IN/OUT jack. Voltage should be -5.0 ±0.02 Vdc.

-4.98 _____-5.02 Vdc

6. If the voltage is out of tolerance, adjust A6R50 -5V ADJ control on the scan generator assembly.

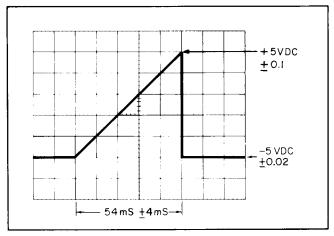


Figure 5-3. Scan Voltage Waveform Measurement

- 7. Turn the SCAN TIME PER DIVISION control to 10 SECONDS, SCAN MODE to SINGLE; push the SINGLE button. (Note: This requires 100 seconds to reach peak.)
- 8. Observe the SCAN IN/OUT voltage as the scan reaches the right-hand edge of the graticule. The highest reading should be +5.0 ±0.1 Vdc. Repeat this operation several times to make sure the voltage reading is correct.

 +4.9 ______+5.1 Vdc
- 9. If the voltage is out of tolerance, adjust A6R46 SCAN AMPL control on the scan generator assembly and repeat steps 5 through 8 until both readings are correct.

Adjustments Model 8552B

ADJUSTMENTS

5-29. Final Scan Check

REFERENCE: Schematics 15, 16.

DESCRIPTION: A modulated RF signal is connected to the RF INPUT. The demodulated signal on the analyzer display is used to fine-adjust scan time circuits. Then, the operation of remaining scan circuits is checked. The analyzer's front panel calibration procedure (see paragraph 4-12) must be performed before these checks and adjustments are made.

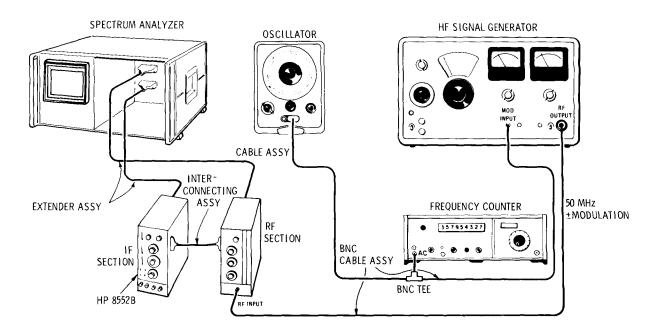


Figure 5-4. Final Scan Time Adjustment Test Setup

EQUIPM	MENT:																							
FRI	EQUENCY	CO	JNT	ER																				HP 5245L
OSC	CILLATOI	₹.																						HP 200CD
SIG	SNAL GEN	ERA	TOL	3																				. HP 606B
CA	BLE ASSE	MBL	Y (2	2)																				HP 10503A
	BLE ASSE		_																					HP 11001A
INT	FERCONN	ECT	NG	ASS	SEN	ИΒ	LY	•														HP	1:	1592-60016
EX	TENDER A	ASSE	MB	LY																		HP	1.	1592-60015
BNO	C Tee .																							UG-274B/U
															VVIII	.12 (LULV	<i>)</i> 1 2	CU		⊵ ი.			
ANALY			up		,,,,		* -8	,		 	 			,,,,		-6				•	5			
ANALY FRI	ZER: EQUENCY		•				Ì													,				. 50 MHz
ANALY FRI FIN	ZER: EQUENCY NE TUNE	7 .																						. Centered
ANALY FRI FIN BAI	ZER: EQUENCY NE TUNE NDWIDTH	 I .										•	• •	· ·			 							. Centered . 300 kHz
ANALY FRI FIN BAI SCA	ZER: EQUENCY NE TUNE NDWIDTH AN WIDTH	7 . I .							 	 	 	•	• •	 			 					 •		. Centered . 300 kHz . ZERO
ANALY FRI FIN BAI SCA INP	ZER: EQUENCY VE TUNE NDWIDTH AN WIDTH PUT ATTE	Z . I . I . NUA	Tio	· · · · · · · · · · · · · · · · · · ·					 	 	 	•	• •	 			 					 		. Centered . 300 kHz . ZERO . 0 dB
ANALY FRI FIN BAI SCA INP BAS	ZER: EQUENCY NE TUNE NDWIDTH AN WIDTH	Z . I . II . NUA	· · · · · · TIO	 N					 	 	 	•	• •	· · · · · ·			 					 		. Centered . 300 kHz ZERO 0 dB . Max ccw
ANALY FRI FIN BAI SCA INP BAS	ZER: EQUENCY NE TUNE NDWIDTH AN WIDTH PUT ATTE SE LINE (Y	TIO ER	 N					 	 	 	•	• •				 							. Centered . 300 kHz . ZERO . 0 dB

Model 8552B Adjustments

ADJUSTMENTS

5-29	Final Scan Check (cont'd)
AN	LYZER Control settings (cont'd)
	VIDEO FILTER
606	: FREQUENCY
524	L: SENSITIVITY
2.	Adjust the HP 200CD Audio Oscillator AMPLITUDE for 90 percent modulation as indicated on the HP 606B Signal Generator.
3.	ine tune the signal generator for maximum signal indication on the analyzer. Adjust LINEAR

- SENSITIVITY controls for a convenient display height.
- 4. Adjust the audio oscillator modulation frequency to give a 1.0 ms HP 5245L Period Average reading.

SCAN TIME PER DIVISION	HP 200CD Frequency	HP 5245L Period Average
1 MILLISECOND 5 MILLISECONDS 10 MILLISECONDS 50 MILLISECONDS 0.1 SECOND	$\begin{array}{ll} \approx & 1~\mathrm{kHz} \\ \approx & 200~\mathrm{Hz} \\ \approx & 100~\mathrm{Hz} \\ \approx & 20~\mathrm{Hz} \\ \approx & 10~\mathrm{Hz} \end{array}$	$1.0 \pm 1 \text{ ms}$ $5.0 \pm 0.5 \text{ ms}$ $10.0 \pm 1 \text{ ms}$ $50.0 \pm 10 \text{ ms}$ $100.0 \pm 20 \text{ ms}$

Table 5-1. Modulation Frequencies for Checking Scan Time

- 5. Position the first modulation peak directly on the -5 graticule line by adjusting the HORIZONTAL POSITION control.
- 6. If the tenth modulation peak does not align with the +4 graticule line, adjust the SCAN TIME control A6R12 on the Scan Generator Assembly (see Figure 4-7).
- 7. Check the scan time limits of the SCAN TIME PER DIVISION positions as listed in Table 5-1 by setting the first modulation peak in alignment with the -5 graticule line. Then align the tenth modulation peak with +4 graticule line by slightly changing, if necessary, the modulation frequency from the audio oscillator (one peak per division). The HP 5245L Period Average readings should be within the tolerances as listed in Table 5-1. If they are not, readjust A6R12 SCAN TIME for the best compromise at all SCAN TIME PER DIVISION settings.

5-29. Final Scan Check (cont'd)

9. Use the HORIZONTAL POSITION control to set the first modulation peak on the -5 graticule line. Adjust, if necessary, the audio oscillator modulation frequency to position the tenth modulation peak on the +4 graticule line. The peaks should align with each graticule line ±0.1 division.

Graticule	Min	Actual	Max	Graticule	Min	Actual	Max
-5	-0.1		+0.1	CENTER FREQUENCY	-0.1 _		+0.1
-4	-0.1		+0.1	+1	-0.1 _		+0.1
-3	-0.1		+0.1	+2	-0.1 _		+0.1
-2	-0.1		+0.1	+3	-0.1 _		+0.1
-1	-0.1		+0.1	+4	-0.1 _		+0.1

10.	Switch to each position of the SCAN TRIGGER switch and make sure that the scan triggers.	To verify
	the EXT position, place an ac signal (5 Hz to 50 kHz) at the TRIGGER/BLANK INPUT.	

EXT Trigger:	2	20 V	p-p
--------------	---	------	-----

11.	To	check	VIDEO	trigger	operation,	reduce	the	modulated	signal	input	slowly	to 3	1.5	divisions	of
	ver	tical de	flection.	The scar	n should co	ntinue t	o tri	gger down to	o this le	evel.	·				

VIDEO TRIGGER	: 1.5 divisions	

12.	To check	k the EX	KT positio	on of th	e SCAN	MODE	switch,	connect	an 8-vol	t peak-to-p	oeak,	1 kHz
	sine-wave	e signal fr	om the H	IP 200C	D Oscilla	tor to th	e SCAN	IN/OUT	jack. A	horizontal	trace s	should
	appear of	n the CRT	Γ display.									

EXT SCAN MODE: 8	V	g-g	
------------------	---	-----	--

13.	To check MAN	position of the	SCAN MODI	E switch, ro	tate MANUAL	SCAN from ful	l ccw to f	ull cw.
	The trace should	d sweep across t	he CRT displa	v from left	to right (at leas	st 10 full division	ns).	

0 (_	-,	
MANU	JAL S	CAN:	10	divisi	on	S	

5-30. Vertical Deflection Amplifier Check

REFERENCE: Schematic 14.

DESCRIPTION: The A4 Crystal Filter Assembly is removed from the IF Section. A 3 MHz signal of known amplitude is applied at the input (XA4-14) of the LOG REF LEVEL·LINEAR SENSITIVITY attenuator. The VERTICAL POSITION and VERTICAL GAIN controls and 2 dB LOG mode are then checked. A time domain waveform is then placed on the analyzer by an AM modulated 3 MHz signal at XA4-14. Operation of the BASE LINE CLIPPER is checked visually on the display.

5-30. Vertical Deflection Amplifier Check (cont'd)

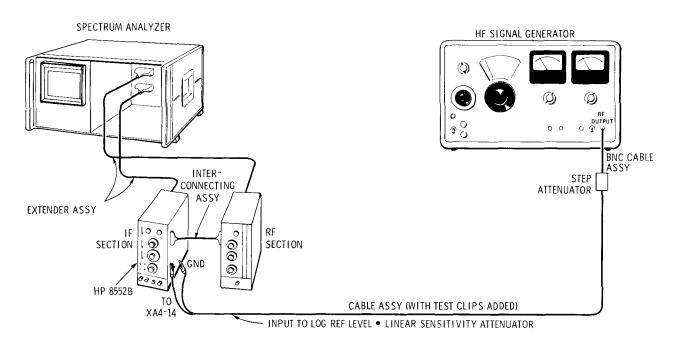


Figure 5-5. Vertical Deflection Amplifier Test Setup

EQ	UIPMENT: SIGNAL GENERATOR CABLE ASSEMBLY (with test clips installed) INTERCONNECTION ASSEMBLY EXTENDER ASSEMBLY HP 11592-60015 HP 10503A CABLE ASSEMBLY HP 10503A
1.	With the analyzer power off, remove the A4 Crystal Filter board from the 8552B.
2.	Connect the test setup shown in Figure 5-5, turn analyzer power ON, and set controls as follows:
AN	ALYZER: INPUT ATTENUATION
606	BE: FREQUENCY

5-30	Vertical Deflection Amplifier Check (cont'd)
355	D: ATTENUATION
3.	With an input signal at -100 dBm, adjust the front-panel VERTICAL POSITION control. The trace should move ±2 vertical divisions as the control is moved through its range. -2+2 div
4.	Reset the trace to the bottom vertical graticule line. Then increase the signal level to -50 dBm at XA4-14.
5.	Switch LOG·LINEAR to LINEAR. Observe the display as the VERTICAL GAIN control is turned through its full range. The trace should move at least two vertical divisions.
6.	Set LOG-LINEAR to 10 dB LOG; set 606B to -100 dB. Set trace to bottom graticule line with VERTICAL POSITION.
7.	Set 355D to 70 dB; using 606B VERNIER and ATTENUATOR, adjust trace to -70 dB graticule on CRT.
8.	Set $355D$ to $0~dB$. Set trace to LOG REF graticule with VERTICAL GAIN. Check trace alignment and adjust if necessary.
9.	Repeat steps 6 through 8 until trace is split by graticule in each step.
10.	Set 355 D to 0 dB. Switch LOG-LINEAR to 2 dB LOG and adjust A7R35 2 dB OFFSET (see Figure 8-8) to set trace to LOG REF graticule.
11.	Set 355D to 10 dB. Note the difference between the trace and the -50 dB graticule; adjust A7R35 2 dB GAIN to move the trace to the -50 dB graticule.
12.	Repeat steps 10 and 11 until the trace is at LOG REF graticule at 0 dB and a -50 dB graticule at -10
	dB. LOG REF at 0 dB: $()$ -50 dB at -10 dB: $()$
13.	Make the following control settings:
	ANALYZER: LOG·LINEAR
	606B: MODULATION SELECTOR
	ATTENUATION
14.	Turn the BASE LINE CLIPPER until the signal is blanked. The control arrow should indicate between 8 and $12\ o$ 'clock.
15.	Increase the 355D to 50 dB. Set the SCAN TRIGGER to VIDEO.
16.	The scan should trigger on the video signal. Turn the BASE LINE CLIPPER fully clockwise and check signal clipping.
17.	The clipping circuit should function so that two to eight divisions of signal above the base line are blanked when the BASE LINE CLIPPER is fully clockwise.
	8 div

5-31. Log Linear Amplifier Check and Adjustment

REFERENCE: Schematics 12, 13.

DESCRIPTION: A 3 MHz signal is applied at the input to the LOG REF LEVEL·LINEAR SENSITIVITY attenuator (XA4-14). The log and linear amplifier circuits are calibrated by varying the signal amplitude by known increments.

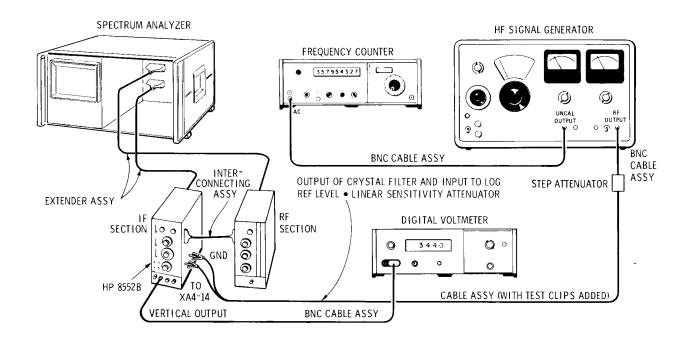


Figure 5-6. Log-Linear Amplifier Check and Adjustment Test Setup

EQUIPMENT:	
SIGNAL GENERATOR	HP 606B
	HP 5245L
CABLE ASSEMBLY (install test clips on unterminated end)	HP 10501A
	Gowanda PC-9668
STRAIGHT-THROUGH VOLTAGE PROBE	HP 10025A
	. : HP 3440A/3443A
INTERCONNECTING ASSEMBLY	
EXTENDER ASSEMBLY	
	HP 11001A
ATTENUATOR	
CABLE ASSEMBLY (3)	HP 10503A
 With the analyzer power off, remove A4 Crystal Filter board Make the following control settings and then connect the test 	
ANALYZER:	
LOG·LINEAR	

5-3	1. Log·Linear Amplifier Check and Adjustment (cont'd)
AN	ALYZER control settings (cont'd)
	SCAN TIME PER DIVISION BASE LINE CLIPPER VIDEO FILTER SCAN MODE SCAN TRIGGER
344	80A/3443A: SAMPLE RATE
606	B: RANGE
52 4	SAMPLE RATE
355	C: ATTENUATION
3.	Turn the analyzer power on and connect a 3 MHz ±1 kHz CW signal from the 606B to pin XA4-14. With an input signal of -110 dBm adjust the VERTICAL POSITION control to set the base line on the bottom graticule line.
4.	Increase the signal generator level to -40 dBm and adjust A8L12 detector tuning on Service Sheet 13 for maximum vertical deflection on the trace. Repeat -110 dBm adjustment if necessary.
	NOTE
	Steps 5 and 6 may require iteration.
5.	Increase the signal level to +10 dBm. Adjust the VERTICAL GAIN control for eight divisions of vertical deflection.
6.	Decrease the signal generator level to -60 dBm and set ATTEN VERNIER on 606B for 1.0 division deflection of the vertical display. Retain this ATTEN VERNIER setting through step 14.
7.	Repeat steps 5 and 6, then increase the signal level 20 dB (do not move 606B ATTEN VERNIER) and set LOG-LINEAR to LINEAR.
8.	Adjust A8R52, LINEAR GAIN (sets basedrive to Linear Scale Factor Amplifier) for 7.07 divisions of vertical deflection. Measure the dc voltage present at the VERTICAL OUTPUT jack with a digital voltmeter. Record the voltage. VERTICAL OUTPUT Voltage:
9.	Set the HP 355C attenuation to 4 dB and turn LINEAR SENSITIVITY to 20 μ V/DIV. Adjust 4 dB ADJ A8R63 to the reference voltage in step 8, ±6 mVdc. Repeat step 8 if necessary.
10.	With the analyzer power off, remove the A7 Deflection Amplifier Assembly.

5-31. Log·Linear Amplifier Check and Adjustment (cont'd)

- 11. Set the HP 355C to 0 dB; set the HP 606B Signal Generator 3 MHz level to -110 dBm, and set LOG·LINEAR to 10 dB LOG (LOG REF LEVEL at -20 dBm).
- 13. Increase the signal generator level to +10 dBm. The signal level at XA8-14 should be -800 ±40 mVdc.

 -840_____-760 mV
- 14. Decrease the signal generator level in 10 dB steps (to -60 dBm). For each 10 dB reduction, the dc level at XA8-14 should change by 100 ±40 mVdc.

Signal Generator Level at XA4-14	DC Level at XA8-14	Signal Generator Level at XA4-14	DC Level at XA8-14
0 dBm -10 dBm -20 dBm -30 dBm	-740 mVdc660 -640 mVdc560 -540 mVdc460 -440 mVdc360	-40 dBm -50 dBm -60 dBm	-340 mVdc260 -240 mVdc160 -140 mVdc 60

- 15. Turn the analyzer power off and re-install the A7 Deflection Amplifier assembly.
- 16. Turn the analyzer power on. Check vertical position, Step 3. Set the LOG·LINEAR switch to LINEAR. Set the signal generator output to -30 dBm.
- 17. Adjust the generator output level vernier for a full eight division display on the analyzer.
- 18. Carefully reduce the signal input to the analyzer at XA4-14 by the amounts shown in the table below using the HP 355C and HP 606B output attenuators. Deflection should be ±0.2 division for the levels indicated.

Input at XA14-14	CRT Display: Deflection in Divisions
Reference: -30 dBm (approx.) Add: 6 dB attenuation Add: 6 dB attenuation Add: 8 dB attenuation Add: 10 dB attenuation Add: 40 dB attenuation	$\begin{array}{c} 8.0 \\ 4.0 & \pm 0.2 \\ 2.0 & \pm 0.2 \\ 0.8 & \pm 0.2 \\ 0.25 & \pm 0.2 \\ 0 & \pm 0.2 \end{array}$

19. Reinstall A4 Crystal Filter Assembly.

5-32. 300 kHz Bandpass Filter Adjustment

REFERENCE: Schematics 6, 7.

DESCRIPTION: The 300 kHz bandpass filter is adjusted for symmetry and center frequency. Then the 300 kHz bandwidth is checked.

EQUIPMENT:

CABLE ASSEMBLY										H	IP 10503A
INTERCONNECTING ASSEMBLY										. HP 11	592-60016
EXTENDER ASSEMBLY										. HP 11	592-60015
TUNING TOOL											

1. Install the analyzer plug-ins on the two extender cable assemblies, connect CAL OUTPUT to RF INPUT and make the following control settings:

ANALYZER:

ALYZEK:																						
INPUT ATTENUAT	CION																				20 d	lΒ
BANDWIDTH .																					3 kF	Ιz
SCAN WIDTH .										٠.							P	ER	D	ΙV	ISIO	N
SCAN WIDTH PER	DIV	ISI	[O]	N																	5 kF	$^{\mathrm{Iz}}$
FREQUENCY .																				3	0 MF	Ηz
FINE TUNE																				Ce	nter	ed
SCAN TIME PER I	DIVIS	IO	N												10	0 7	ΜI	LL	ιS	EC	ONI	S
VIDEO FILTER																				1	.0 kI	Ηz
TUNING STABILIZ	ZER																				. ()n
SCAN MODE .																						
SCAN TRIGGER																					LIN	1E
LINEAR SENSITIV	ITY																		1	m	V/D	ĮV
BASE LINE CLIPP	${ m ER}$																			Ma	ax co	2W

- 2. Place the A2 3 MHz Amplifier assembly on an extender and install it in the analyzer. Center the signal on the CRT display with the FINE TUNE control.
- 3. Set BANDWIDTH to 300 kHz and SCAN WIDTH PER DIVISION to .05 MHz.
- 4. Adjust A2A1L2, A2A1L4 and A2R1 for a smooth, symmetrical wave shape *centered* on the CRT display.
- 5. Set SCAN WIDTH PER DIVISION to 5 kHz and BANDWIDTH to 3 kHz. The display should remain centered. Return these controls to .05 MHz and 300 kHz, respectively.
- 6. Install the circuit board without the extender. Readjust A2R1 IMP if necessary.
- 7. Check 300 kHz bandwidth, paragraph 4-24: 300 kHz ±60 kHz

240	360	kH_2
440	 000	L/ T T Z

- 8. If necessary, repeat adjustment procedure.
- 9. Switch BANDWIDTH to 10 kHz. The peak amplitude should remain the same ±0.4 division. If not, perform the LC Filter Adjustment, paragraph 5-33.

5-33. LC Filter Adjustment

REFERENCE: Schematic 8.

DESCRIPTION: The LC Filter circuits (100, 30 and 10 kHz bandwidths) are peaked and centered. The 10 kHz gain control is set so that the 10 kHz bandwidth has the same gain as the 300 kHz bandwidth. Then the gain and bandwidth of the filters are checked.

EQUIPMENT:

CABLE ASSEMBLY										HP 10503A
TUNING TOOL										HP 8710-0095
INTERCONNECTING ASSEMBLY										. HP 11592-60016
EXTENDER ASSEMBLY										. HP 11592-60015

1. Install the analyzer plug-ins on the two extender cable assemblies; connect CAL OUTPUT to RF INPUT, and make the following control settings:

ANALYZER:

٠,		
	FREQUENCY	MHz
	BANDWIDTH	kHz
	SCAN WIDTH	
	SCAN WIDTH PER DIVISION	kHz
	INPUT ATTENUATION	0 dB
	TUNING STABILIZER	On
	SCAN TIME PER DIVISION	NDS
	LOG·LINEAR	EAR
	LINEAR SENSITIVITY	/DIV
	VIDEO FILTER	
	SCAN MODE	INT
	SCAN TRIGGER	UTO

- 2. Center the signal as carefully as possible on the CRT display with the FINE TUNE control.
- 3. Set BANDWIDTH to 10 kHz and SCAN WIDTH to ZERO. Peak A1C4, A1C10, A1C16 and A1C22 for maximum trace deflection on the display.
- 4. a. If one of the PEAK capacitors is at the end of its range (or if an inductor has been replaced) remove the circuit board from the analyzer.
 - b. Free the related inductor core with acetone and center the capacitor.
 - c. Install the circuit board on the extender. Perform steps 1 through 3 except tune the inductor, rather than the capacitors.
 - d. Re-glue the inductor, using Duco cement, and re-install the circuit board without the extender.
 - e. Again perform steps 1 through 3.
- 5. Set SCAN WIDTH to PER DIVISION and BANDWIDTH to 300 kHz. Use LINEAR SENSITIVITY to set signal for a 7.0 division display.
- 6. Set BANDWIDTH to 10 kHz and adjust A1R35 10 kHz ADJ for a 7.0 division display.
- 7. Install the shield cover and check the change in signal amplitude on the display as BANDWIDTH is switched from 300 kHz to 10 kHz. Deflection at these bandwidths should be within ± 0.4 division of 300 kHz.

5-33. LC Filter Adjustment (cont'd)		
	300 kHz:	Reference
	100 kHz:	-0.4+0.4 div
	30 kHz:	-0.4+0.4 div
	10 kHz:	-0.4+0.4 div
8. Set BANDWIDTH to 3 kHz. Again the signal a if it does, perform the crystal filter adjustment	amplitude should not change t, paragraph 5-34.	more than ± 0.4 divisions;
	300 kHz:	Reference
	3 kHz:	-0.4+0.4 div
9. Check 100, 30 and 10 kHz bandwidths, paragr	raph 4-24.	
	100 kHz Bandwidth:	80120 kHz
	30 kHz Bandwidth:	24 36 kHz
	10 kHz Bandwidt	h: 9.510.5 kHz
10. If necessary, repeat adjustment procedure.		
5-34. Crystal Filter Fine Adjustment		
REFERENCE: Schematics 10 and 11.		
DESCRIPTION: This procedure fine adjusts the component changes are made, Coarse Adjustment frequency of the last four stages is referenced to the bandwidth amplitudes are set. Finally, the filters are	ent (paragraph 5-35) may k	width and amplitude. If
		ages are nulled. Next, the
EQUIPMENT:		ages are nulled. Next, the
SIGNAL GENERATOR OSCILLATOR SYNCHRONIZER FREQUENCY COUNTER CABLE ASSEMBLY (6) INTERCONNECTING ASSEMBLY EXTENDER ASSEMBLY	re checked for bandwidth and	ages are nulled. Next, the d amplitude.
SIGNAL GENERATOR OSCILLATOR SYNCHRONIZER FREQUENCY COUNTER CABLE ASSEMBLY (6) INTERCONNECTING ASSEMBLY EXTENDER ASSEMBLY OSCILLOSCOPE	re checked for bandwidth and	ages are nulled. Next, the d amplitude.

5-34. Crystal Filter Fine Adjustment (cont'd)

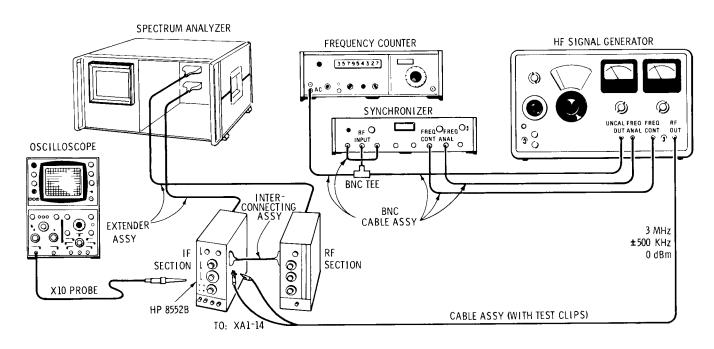


Figure 5-7. Crystal Filter Fine Adjustment Test Setup

ANALYZER control settings (cont'd) LINEAR SENSITIVITY	. 10 Hz LINEAR . INT
606B: RANGE	. 3 MHz CW 30
8708A: FREQUENCY RANGE	lit lamp . CW Centered
5245L:	o'clock 1 s

5-34. Crystal Filter Fine Adjustment (cont'd)

52 4	I5L settings (con FUNCTION SENSITIVITY																																
180)A:																																
	VOLTS/DIV																																
	TIME/DIV .		•	٠	•	•	•	•	•	•	•	•		٠	•		٠	•	•							•			•		1	MS	SEC
2.	Tune the synchronizer for											ί, (con	ne	ect	os	cil	los	co _]	pe	pı	ob	e	to	A	4T	P6.	, t	her	ı t	un	e t	he

- 3. Remove the probe from TP6 and reduce LINEAR SENSITIVITY until trace appears on analyzer's CRT display. Adjust A4C30, 43, 57 and 70 for maximum trace deflection.
- 4. Repeat steps 2 and 3. Then remove the clip leads at XA1-14 and install A2 3 MHz Amplifier Assembly.
- 5. Connect CAL OUTPUT to RF INPUT and make the following control settings:

ANALYZER:

BANDWIDTH																		. 3 kHz
SCAN TIME PER DI	VIS	ION											10	0	ΜI	LL	ISI	ECONDS
LINEAR SENSITIVI	ΓY																1	mV/DIV
VIDEO FILTER .																		10 kHz

- 6. Center signal on display with FREQUENCY control and reduce SCAN WIDTH PER DIVISION to 1 kHz.
- 7. Adjust A4C19, 34, 47, 61 and 74 to null the signal. Set the signal to the 7 graticule line with LINEAR SENSITIVITY vernier.
- 8. Set BANDWIDTH to 1 kHz; signal level should not change more than ±0.3 division.
- 9. If signal is out of limits, repeat steps 6 and 7.
- 10. Set SCAN WIDTH to ZERO and make the BANDWIDTH changes and adjustments indicated below. Re-peak the signal with FINE TUNE every time BANDWIDTH is changed.

BANDWIDTH	Adjust for 7.0 Divisions
0.3 kHz	A4R129 300 Hz
0.1 kHz	A4R126 100 Hz
.03 kHz	$\rm A4R122 \qquad 30~Hz$
.01 kHz	A4R115 10 Hz

5-34. Crystal Filter Fine Adjustment (cont'd)

11. Repeat steps 8 through 10 until the bandwidth amplitude variations from 3 kHz through 0.1 kHz are as shown below:

3 kHz:	Set for 7 div	
1 kHz:	6.77.3 div	7
0.3 kHz:	6.77.3 div	7
0.1 kHz:	6.7 7.3 div	7
0.03 kHz:	6.57.5 div	7
0.01 kHz:	6.07.0 div	7

- 12. Place the A4 Crystal Filter Assembly on an extender. Set BANDWIDTH to 3 kHz, peak the trace with FINE TUNE and set the trace to the 7 graticule with LINEAR SENSITIVITY vernier.
- 13. Set BANDWIDTH to 300 kHz and adjust A4R133 to set the trace to the 7 graticule line.
- 14. Install the A4 Crystal Filter Assembly without the extender. Repeat steps 12 through 14 until the bandwidth amplitude variation between 3 kHz to 300 kHz is less than ±0.3 divisions.

6.7_____7.3 div

15. Perform the bandwidth checks for the 3 kHz through .01 kHz bandwidths, paragraphs 4-24, 4-25:

BANDWIDTH	3 dB B	andwidth	60 dB/3 dB Bandwidth Ratio
3 kHz 1 kHz 0.3 kHz 0.1 kHz .03 kHz .01 kHz	4.8	7.2 div 6.0 div 7.2 div 6.0 div 1.8 div 0.6 div	11:1 div 11:1 div 11:1 div 11:1 div 11:1 div

16. If necessary, repeat adjustment procedure.

5-35. Crystal Filter Coarse Adjustment

REFERENCE: Schematics 10 and 11.

DESCRIPTION: This procedure adjusts A4C18, 32, 45, 59 and 73; it coarse adjusts A4C19, 34, 47, 61 and 74. It should be performed only if component changes that would affect the crystal alignment are made. The crystal filter circuits are adjusted, in turn, by bypassing all but the stage being adjusted; they are adjusted for center frequency, symmetry and null.

NOTE

This procedure can be difficult and time consuming and should not be attempted unless the Fine Adjustment procedure will not align the filters.

EQUIPMENT:

CRYSTAL FILTER BYPASS NETWORK (4)										.(See Step 9)
CABLE ASSEMBLY										. HP 10503A
INTERCONNECTING ASSEMBLY								. F	ΗP	11592-60016
EXTENDER ASSEMBLY								. I	ΗP	11592-60015

1. Install the analyzer plug-ins on the two extender cable assemblies, connect CAL OUTPUT to RF INPUT, and make the following control settings:

ANALYZER:

ALIZER.	
FREQUENCY	
BANDWIDTH	Z
SCAN WIDTH	J
SCAN WIDTH PER DIVISION	\mathbf{z}
INPUT ATTENUATION	3
TUNING STABILIZER	n
SCAN TIME PER DIVISION	
LOG·LINEAR	
LOG REF LEVEL	n
VIDEO FILTER	Z
SCAN MODE	Γ
SCAN TRIGGER)

- 2. Place the A4 Crystal Filter Assembly on an extender board and install it in the analyzer. Place the four Crystal Filter Bypass Networks across: TP2 to TP7, TP3 to TP8, TP4 to TP9 and TP5 to TP10.
- 3. Center the signal on the CRT display with the FREQUENCY control. Use the LOG REF LEVEL controls to set signal peak at LOG REF graticule.
- 4. Tune A4C19 and A4C18 respectively for signal null and symmetrical skirts (60 dB down).

NOTE

Oscillations sometimes occur when the Crystal Filter board is on the Extender board and the Crystal Filter Bypass Networks are being used. Place your fingers across the last Crystal Filter Bandpass Network. This will dampen the oscillations while the adjustments are being made.

5. Perform Step 4 for each of the Filter stages in turn, as indicated:

5-35. Crystal Filter Coarse Adjustment (cont'd)

Place Bypass Networks Across Test Points	Tune for null and symmetrical skirts (60 dB down)
1 and 6, 3 and 8 4 and 9, 5 and 10	A4C34 and A4C32
1 and 6, 2 and 7 4 and 9, 5 and 10	A4C47 and A4C45
1 and 6, 2 and 7 3 and 8, 5 and 10	A4C61 and A4C59
1 and 6, 2 and 7 3 and 8, 4 and 9	A4C74 and A4C73

- 6. Repeat steps 4 and 5.
- 7. Remove the Bypass Networks and install A4 assembly without an extender.
- 8. Perform Crystal Filter Fine Adjustment, paragraph 5-34.
- 9. Assemble four Crystal Filter bypass networks from parts listed below:
 - a. 4 capacitors .047 microfarad 10% HP 0170-0040
 - b. 4 resistors 3.3 ohm 5% HP 0683-0335
 - c. 8 receptacles for .040 inch pin HP 1200-0063

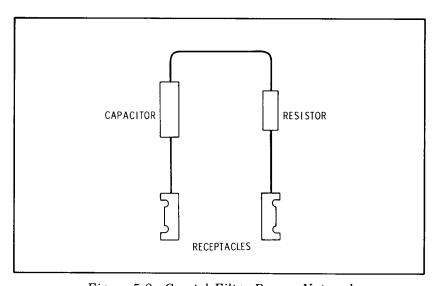


Figure 5-8. Crystal Filter Bypass Network

5-36. 3 MHz IF Gain Adjustment

REFERENCE: Schematics 6, 7, 8.

DESCRIPTION: The amplifier gain controls are adjusted for various positions of the LOG REF LEVEL attenuator and then the remaining positions of the LINEAR SENSITIVITY dial are checked. The VERTICAL OUTPUT circuit adjustment is set for output voltage with full-scale display deflection.

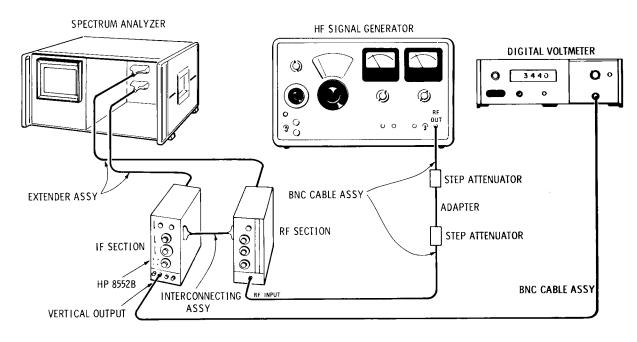


Figure 5-9. 3 MHz IF Gain Adjustment Test Setup

EΩ	UIPMENT:																												
_ ~	SIGNAL GENERA	TOR																									. H	IP 60	06B
	DIGITAL VOLTM	ETER																										./344	
	ATTENUATOR																										. F	IP 3	55C
	ADAPTER																								.]	ΗP	12	58-0	216
	INTERCONNECTI																							,]	ΗP	11	59	2-60	016
	EXTENDER ASSE	MBLY																						.]	ΗP	11	59	2-600	015
	ATTENUATOR																										. F	IP 35	55D
	CABLE ASSEMBL	Y(3)																								. I	łР	1050)3A
1	Remove the cover	shield	fro	m	the	e /	\l	LO	;	Fil	ter	A	ssei	mb	ly,	co	nne	ect	th	e ·	tes	t s	etı	ıр	sh	ow	n iı	n Fig	gure
1. AN	5-9 and make the				tro	ol s	etí	in	gs:															-					
AN	5-9 and make the sale ALYZER:	followir	ng c	con				•																				30 N	
AN	5-9 and make the sale ALYZER:	followir	ng c	con				•																					
AN	5-9 and make the : ALYZER: FREQUENCY .	followir IZER	ng c	eon																									MHz On
AN	5-9 and make the : ALYZER: FREQUENCY TUNING STABILI	followir IZER	ng (con																	•					•	•	 100 1	MHz On kHz
AN	5-9 and make the : ALYZER: FREQUENCY TUNING STABILI BANDWIDTH .	followir 	ng (con										• •		•												 100 1 . ZE . 0	MHz On kHz CRO dB
AN	5-9 and make the : ALYZER: FREQUENCY . TUNING STABILI BANDWIDTH . SCAN WIDTH .	followir IZER TION												• •										: : 2	MI	: : : LL	ISE	 100 1 . ZE . 0	MHz On kHz CRO dB NDS
AN	5-9 and make the state of the s	followir IZER ATION DIVISI												• •										: 2	MI	LL	. : ISE 1 1	 100 1 . ZE . 0 CON nV/1	MHz On kHz CRO dB NDS DIV
AN	5-9 and make the state of the s	followir IZER TION DIVISION VITY	ng o	·										• •										: : : :	MI	LL :	ISE 1 1	 100 1 . ZE . 0	MHz On kHz CRO dB VDS DIV

5-36. 3 MHz IF Gain Adjustment (cont'd)
ANALYZER control settings (cont'd) SCAN MODE INT SCAN TRIGGER AUTO VIDEO FILTER OFF
606B: 30 MHz FREQUENCY 30 MHz ATTENUATOR (dBm) -20 RANGE 5 MODULATION SELECTOR CW VERNIER Set for 0 dB on meter
3440A/3443A: 9 o'clock SAMPLE RATE 9 o'clock RANGE AUTO
355C and 355D: ATTENUATION
2. Adjust FREQUENCY control for maximum trace deflection.
3. Adjust signal generator output so that VERTICAL OUTPUT voltage is -1.000 ± 0.005 Vdc.
4. Increase test attenuators by 12 dB.
5. Turn LOG REF LEVEL vernier to -12 dB.
6. Adjust A2R44 12 dB ADJ for -1.000 ±0.005 Vdc.
7. Decrease test attenuators by 12 dB.
8. Turn LOG REF LEVEL vernier to 0 dB.
9. Adjust A2R51 0 dB ADJ for -1.000 ±0.005 Vdc.
10. Repeat adjustments in steps 4 through 9 to minimize interaction between controls.
11. Set test attenuator to 6 dB.
12. Turn LOG REF LEVEL vernier to -6. Note error from 1.000 Vdc and adjust HP 606B output for -1.000 Vdc minus error.
13. Set test attenuator to 12 dB and repeat steps 5 through 10.

5-36. 3 MHz IF Gain Adjustment (cont'd)

14. Measure the LOG REF LEVEL vernier accuracy at each dB mark by the substitution method employed in steps 4 through 9. The VERTICAL OUTPUT voltage at each step should be -1.000 ± 0.04 Vdc.

-1	dB	-0.96	_1.04 Vdc	-7 dB	-0.96	1.04	Vdc
-2	dB	-0.96	1.04 Vdc	-8 dB	-0.96	1.04	Vdc
-3	dB	-0.96	1.04 Vdc	-9 dB	-0.96	-1.04	Vdc
-4	dB	-0.96	1.04 Vdc	-10 dB	-0.96	1.04	Vdc
-5	dB	-0.96	1.04 Vdc	-11 dB	-0.96	-1.04	Vdc
-6	dB	-0.96	1.04 Vdc	-12 dB	-0.96	1.04	Vdc

15. Change the control settings as follows:

Δ	N	Δ	T	\mathbf{v}	7	\mathbf{F}	R	•

	INPUT ATTENUAT	IOI	V																. 1	.0 d]	В
	LOG REF LEVEL																		0	dBr	n
	LOG·LINEAR .																				
	20 0. 22	•	•	•	•	-	-	-													
_																					

606B:

ATTENUATOR (dBm)		•	•		•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	0
355D and 355C:																					

ATTENUATION									•					•	•	•	•			•	•					•	٠		•	10) d	E
-------------	--	--	--	--	--	--	--	--	---	--	--	--	--	---	---	---	---	--	--	---	---	--	--	--	--	---	---	--	---	----	-----	---

- 16. Tune FREQUENCY control for maximum trace deflection.
- 17. Note reference voltage at VERTICAL OUTPUT.

Reference Voltage <- 600 mV (more negative):

18. Adjust 3 MHz IF Gain positions as follows:

Test Attenuator	LOG REF LEVEL	Adjust	Error Limit: ±2 mVdc (from Reference Voltage)
10 dB	-10 dBm	A1R59	-2+2 -2+2 -2+2 -2+2 -2+2
20 dB	-20 dBm	A1R58	
30 dB	-30 dBm	A2R21	
40 dB	-40 dBm	A2R24	
50 dB	-50 dBm	A2R27	

Model 8552B Adjustments

ADJUSTMENTS

5-36. 3 MHz IF Gain Adjustment (cont'd)

- 19. Check the remaining attenuator steps as follows:
 - a. Connect a shorting strap between the green and blue wires on the LOG REF LEVEL switch A10S1-2R.
 - b. Set LOG'LINEAR control to LINEAR and test attenuators to 43 dB.
 - c. Set LINEAR SENSITIVITY to 0.1 mV/DIV with INPUT ATTENUATION at 10 dB.
 - d. Measure the voltage at the VERTICAL OUTPUT jack.

Reference	Voltage:	_
-----------	----------	---

e. Check the remaining LINEAR SENSITIVITY positions according to the table below:

Test Attenuator	LINEAR SENSITIVITY	Error Limit: ±15 mVdc
43 dB 33 dB 23 dB 13 dB 3 dB	0.1 mV/DIV 0.2 mV/DIV 1.0 mV/DIV 2.0 mV/DIV 10.0 mV/DIV	-15+15 -15+15 -15+15 -15+15

f. Remove the shorting strap installed in step a on page 5-24.

5-37. 47 MHz LO Automatic Phase Lock Check and Adjustment

REFERENCE: Schematics 3, 4, 5.

DESCRIPTION: The oscillator levels are set and checked and the phase lock loop is checked. The summing and shaping circuits are then adjusted by applying dc offsets and adjusting for a linear 47 MHz LO sweep.

5-37. 47 MHz LO Automatic Phase Lock Check and Adjustment (cont'd)

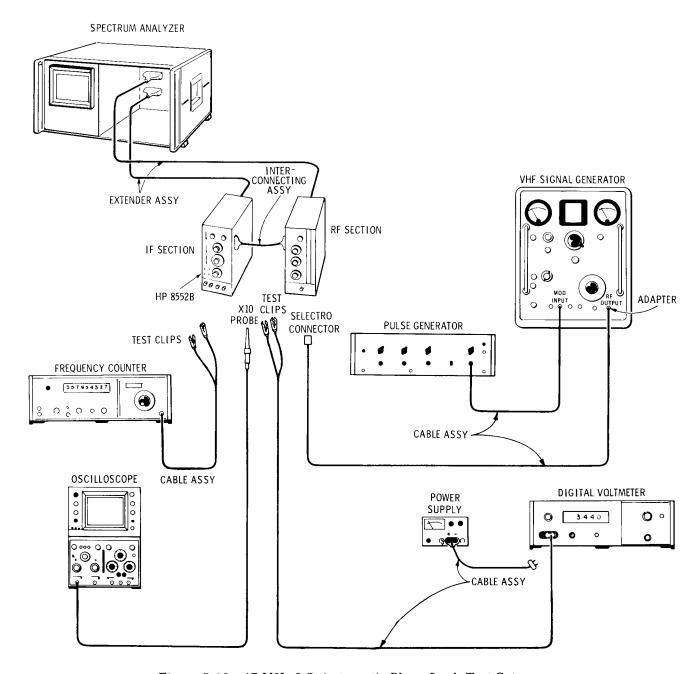


Figure 5-10. 47 MHz LO Automatic Phase Lock Test Setup

EQUIPMENT:																
FREQUENCY COUNTER													F	ΗP	52	45L/5261A
OSCILLOSCOPE											HP	' 1	.80	lΑ	/18	01A/1820A
SIGNAL GENERATOR .																HP 608F
PULSE GENERATOR																HP 222A
POWER SUPPLY																HP 6217A
6-PIN EXTENDER BOARD		_	_						_						HF	5060-5914

5-37	47 MHz LO Automatic Phase Lock Check and Adjustment (cont'd)
	IPMENT (cont'd) HP 11592-60015 EXTENDER ASSEMBLY HP 11592-60016 INTERCONNECTING ASSEMBLY HP 11592-60001 CABLE ASSEMBLY HP 10503A CABLE ASSEMBLY (w/test clips) HP 10501A DIGITAL VOLTMETER HP 3440A/3443A ADAPTER UG-201A/U CABLE ASSEMBLY HP 11000A CABLE ASSEMBLY (w/test clips) HP 11002A ALIGNMENT TOOL HP 8710-0957
1.	Connect the test setup in Figure 5-10. Remove the A1/A12 Assemblies cover shield and the A13 2 MHz VTO Assembly, and make the following control settings:
,	LYZER: Centered FINE TUNE Centered SCAN TIME PER DIVISION 50 MILLISECONDS BANDWIDTH 1 kHz FUNING STABILIZER OFF SCAN WIDTH PER DIVISION SCAN WIDTH PER DIVISION 20 kHz VIDEO FILTER OFF
	SCAN MODE INT SCAN TRIGGER AUTO LOG·LINEAR 10 dB LOG LOG REF LEVEL -40 dBm
,	A/1801/1820: VOLTS/DIV
;	5L/5261A: SENSITIVITY PLUG IN SAMPLE RATE ccw FIME BASE 1 s FUNCTION FREQUENCY SENSITIVITY (PLUG-IN) 30 mV RMS
	MODULATION EXT PULSE ATTENUATION -20 dBm MEGACYCLES 50
	A: REF RATE
	Attach oscilloscope probe to A12TP2. Adjust A12T1 for maximum; signal level should be 650 \pm 200 mV p-p.
	450850 mV p-p

5-37. 47 MHz LO Automatic Phase Lock Check and Adjustment (cont'd)

3. Remove oscilloscope probe and attach frequency counter to A12TP2. 45 MHz Crystal Oscillator frequency should be 45 MHz ±10 kHz.

44.990_____45.010 MHz

4. Attach oscilloscope probe to feedthrough capacitor C8 (see Figure 8-8) and set oscilloscope VOLTS/DIV to 0.2 and TIME/DIV to 5 msec. Search waveform should be as shown in Figure 5-11 with amplitude from 8.5 to 11.5 V p-p.

8.5_____11.5 V p-p

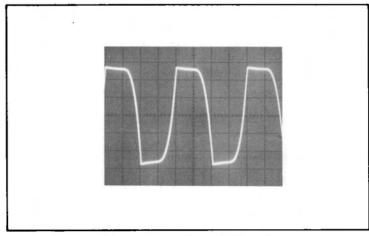


Figure 5-11. Search Waveform

5. Remove oscilloscope probe from C8 and attach to J8 (see Figure 8-8); set oscilloscope VOLTS/DIV to .05 and TIME/DIV to 5 msec. The 47 MHz LO level should be 2.0 V ± 0.5.

1.5V _____2.5 V p-p

6. Remove oscilloscope probe from J8 and re-attach to feedthrough C8. Insert A13 2 MHz VTO Assembly into 8552B on 6-pin extender board. 47 MHz LO phase lock will be indicated by the 50 Hz square wave becoming steady dc.

NOTE

If square wave does not become steady dc, adjust 47 MHz LO (A3A2L1) as specified in step 16. Then repeat steps 4 through 6.

7. Remove oscilloscope probe from C8 and attach to A13TP1. Set oscilloscope VOLTS/DIV to .02 and TIME/DIV to 5 msec. Adjust A13R5 VTO LEVEL ADJ for 900 ±250 mV p-p.

650_____1150 mV p-p

8. Disconnect oscilloscope probe and attach frequency counter to A13TP1. Switch analyzer SCAN WIDTH to ZERO. With alignment tool, adjust A13T1 for 2 MHz ±2 kHz. (FINE TUNE must be centered and TUNING STABILIZER must be off.)

1998_____2002 kHz

5-37. 47 MHz LO Automatic Phase Lock Check and Adjustment (cont'd)

9. Remove A13 2 MHz VTO and re-install in 8552B without extender.

NOTE

The following steps of this paragraph should be omitted if the RF Section being used is an 8554 or 8555.

Turn analyzer POWER off. Unsolder yellow wire at 8552B XA5 pin 3 and connect power supply positive lead to XA5 pin 3 (connect negative lead to chassis ground.) Adjust power supply for +7.50 V with digital voltmeter.

- 10. Connect pulse generator to frequency counter. Adjust REP RATE VERNIER for 20.000 kHz, then connect pulse generator to signal generator. Disconnect W7-50 MHz, white coax at J6 (see Figure 8-8). Connect the signal generator output to J6. Set analyzer SCAN WIDTH to PER DIVISION (SCAN WIDTH PER DIVISION should be 20 kHz).
- 11. Turn analyzer POWER on and observe signal on Display Section CRT.
- 12. Adjust A5R45 SHAPING ADJ for optimum linearity, aligning the pulses of the modulated signal on the vertical graticule lines. Adjust frequency of signal generator to keep pulses aligned on graticule lines as adjustment is made. Pulses should not deviate more than ±0.75 minor divisions from graticule lines across entire display.

Max. deviation. 0.750.75 minor of	Max. deviation:	0.75	$_{-0.75}$	minor	div
-----------------------------------	-----------------	------	------------	-------	-----

13. Change power supply to put -7.50V at XA5 pin 3. Adjust A5R71 OFFSET ADJ for optimum linearity, aligning pulses on vertical graticule lines and adjusting signal generator frequency as necessary to keep pulses on graticule lines. Pulses should not deviate more than ±0.75 minor divisions from graticule lines across entire display.

Max.	deviation	0.7	5		0.	7	5	minor	div
------	-----------	-----	---	--	----	---	---	-------	-----

14. Set the power supply to 0V and check to see that the pulses do not deviate more than ±0.75 minor divisions from vertical graticule lines across entire display.

Max.	deviation	0.75	(0.75	minor	div
------	-----------	------	---	------	-------	-----

- 15. Repeat steps 8 through 14 until no further adjustments are necessary to meet the specifications in each step. (Yellow wire at XA5 pin 3 can remain unsoldered until adjustments are completed.)
- 16. Set analyzer SCAN WIDTH to ZERO and attach DVM to feedthrough C8. Phase lock error signal should be +4 ±0.4V. If not, adjust A3A2L1 (accessible through hole in A3A2 cover).

+3.6	+	4.	4	V	•
------	---	----	---	---	---

17. Turn the analyzer POWER off, reconnect W6 to J6 and re-solder yellow wire to XA5 pin 3. Remove test equipment connections from analyzer and re-install the cover shields to the A13 and A1/A12 Assemblies.

5-38. 50 MHz IF Bandpass Check and Adjustment

REFERENCE: Schematic 3.

DESCRIPTION: The 50 MHz IF bandpass is checked by manually sweeping the 47 MHz Local Oscillator over a 200 kHz range and viewing the analyzer display for flatness. For adjustment, the 50 MHz IF is swept using a flat external source. The output is detected, filtered and displayed on an oscilloscope. The bandpass filter is adjusted for frequency, amplitude, width and flatness.

Adjustments Model 8552B

ADJUSTMENTS

5-38. 50 MHz IF Bandpass Check and Adjustment (cont'd)

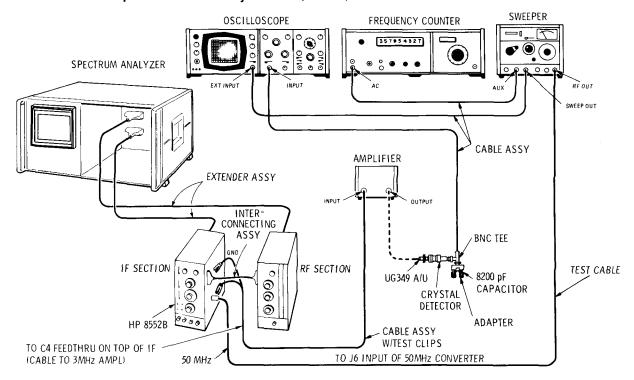


Figure 5-12. 50 MHz IF Bandpass Adjustment Test Setup

EQUIPMENT:	
GENERATOR/SWEEPER	. HP 8601A
OSCILLOSCOPE with 1801A/1821A PLUG-INS	. HP 180A
FREQUENCY COUNTER	. HP 5245L
AMPLIFIER	. HP 8447A
CRYSTAL DETECTOR	. HP 423A
CABLE ASSEMBLY	HP 10501A
CABLE ASSEMBLY (3)	HP 10503A
, , , , , , , , , , , , , , , , ,	P 11592-60001
	P 11592-60015
INTERCONNECTING ASSEMBLY	P 11592-60016
ADAPTER	HP 10110A
ADAPTER	
BNC Tee	UG-274B/U
ADAPTER	,
CAPACITOR	0 PF (approx.)

1. Connect the test setup as shown in Figure 5-12. Make the following control settings:

ANALYZER:

3 MHz Amplifier Assembly A2 removed.

8601A:

FREQUENCY .																50	MHz	
RANGE																	. 110	
SWEEP																		
OUTPUT LEVEL.																		
SWEEP MODE .																		
1 kHz MODE		•															\mathbf{OFF}	

Model 8552B Adjustments

ADJUSTMENTS

5-38. 50 MHz IF Bandpass Check and Adjustment (cont'd)

180A/1801A:																						
MAGNIFIER																						X5
POSITION																	(se	e	Fig	ure	5	-13)
VOLTS/DIV (Channel A)																						.05
POLARITY																						UP
INPUT																						DC
DISPLAY	•	•		•	•	•	•		•	•	•	•	•		٠	•						Α
5245L:																						
SAMPLE RATE																				9 (c]	lock
SENSITIVITY (volts rms)																						0.1
TIME BASE																					10	ms
FUNCTION																		F	RЕ	QU	ΕN	1CY

- 2. Adjust Generator/Sweeper and oscilloscope to display a 10 MHz swept signal centered on 50 MHz. (See Figure 5-13.)
- 3. If the bandpass is not flat (±2 mV) at least 0.3 MHz on either side of 50 MHz, adjust A3A1C5, 6, 9 and 10 for maximum amplitude and flatness.
- 4. Select 3 MHz sweep width on the HP 8601A and observe oscilloscope display for a bandpass as shown in Figure 5-13. Repeat Step 3 as required to obtain desired bandpass.
- 5. Remove power from display section and install 3 MHz Amplifier Assembly A2.
- 6. Remove cable assembly from Generator/Sweeper.
- 7. Perform 44 MHz Rejection Check, paragraph 5-39. If capacitors A3C11, 14 or 19 are adjusted, repeat steps 1 through 4 above.

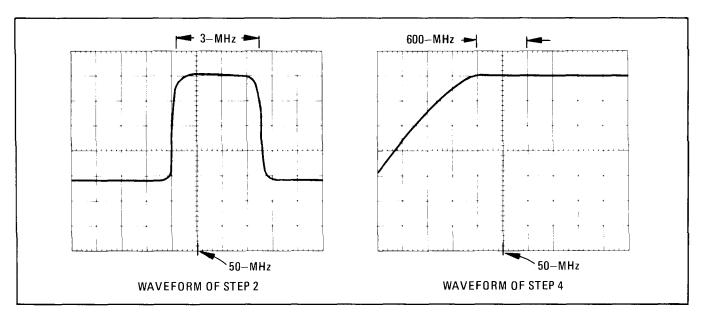


Figure 5-13. 50 MHz Bandpass Display for 10 MHz and 3 MHz Sweeps

5-38. 50 MHz IF Bandpass Check and Adjustment (cont'd)

8. Connect a test cable from CAL OUTPUT to RF INPUT and make the following control settings:

ANALYZER: FREQUENCY 30 MHz FINE TUNE Full cw INPUT ATTENUATION . . . TUNING STABILIZER BANDWIDTH 10 kHz SCAN WIDTH PER DIVISION SCAN WIDTH PER DIVISION 100 kHz BASE LINE CLIPPER . . . Max ccw SCAN TIME PER DIVISION 2 MILLISECONDS LINEAR SENSITIVITY Set for full scale display VIDEO FILTER SCAN MODE . . INT SCAN TRIGGER LINE LOG·LINEAR . . LINEAR

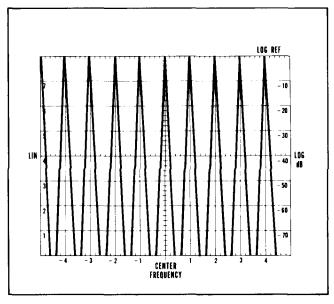


Figure 5-14. 50 MHz Bandpass Flatness Display

- 9. Tune FREQUENCY for display indicated in Figure 5-14 when FINE TUNE is rotated in 100 kHz steps.
- 10. Reduce LINEAR SENSITIVITY Vernier to a seven division vertical deflection. Rotate FINE TUNE through its range while observing display for flatness. Display should be flat ±0.2 division across the 1.0 MHz FINE TUNE range.

-0.2 ___+0.2 div

5-39. 44 MHz Rejection Adjustment

REFERENCE: Schematic 3.

DESCRIPTION: A 50 MHz reference is established, then 44 MHz is fed into the 47 MHz converter and nulled 70 dB below the reference level. The 50 MHz IF Bandpass Check and Adjustment must be repeated after the 44 MHz rejected controls are adjusted.

Adjustments

ADJUSTMENTS

5-39. 44 MHz Rejection Adjustment (cont'd)

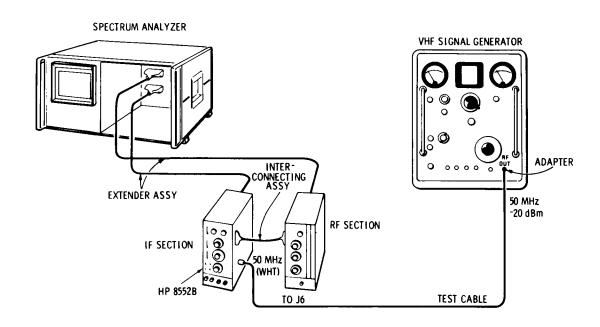


Figure 5-15. 44 MHz Rejection Adjustment Test Setup

INTERCONNECTING ASSEMBI EXTENDER ASSEMBLY	Y .				
ANALYZER:					
					0 dB
					Centered
					OFF
					10 kHz
					PER DIVISION
					20 kHz
					Max ccw
					2 MILLISECONDS
LOG REF LEVEL controls					
					OFF
					INT
					LINE
					10 dB LOG
608F:					
					CW

5-39	. 44 MHz Rejection Adjustment (cont'd)
608	F control settings (cont'd) MEGACYCLES
2.	Adjust LOG REF LEVEL controls for a full-scale signal display. Use the signal generator frequency control to center the display.
3.	Establish a reference by observing the position of the LOG REF LEVEL control with reference to the lit indicator light.
4.	Tune the signal generator to 44 MHz and peak the AMPL TRIMMER. Use the LOG REF LEVEL control to once more get an on-screen display, but without disturbing the vernier. If necessary, use the signal generator frequency control to center the display.
5.	Increase the signal level on the display while keeping track of the number of LOG REF LEVEL 10-dB steps. Use LOG REF LEVEL vernier for the final small adjustment.
6.	Add up total attenuation. The level of the 44 MHz signal in step 5 should be at least 70 dB below the level in step 2.
	44 MHz Rejection: 70 dB
7.	If the rejection is not at least 70 dB, adjust the 44 MHz capacitors A3C11, 14, and 19 on the A3 50 MHz Converter assembly for minimum 44 MHz signal indication on the analyzer display.
8.	When the 44 MHz rejection adjustment is completed, repeat the check and adjustment procedure in the 50 MHz IF Bandpass Check and Adjustment, paragraph 5-38.

5-40. 30 MHz Calibration Oscillator Check and Adjustment

REFERENCE: Schematic 18.

DESCRIPTION: The CAL OUTPUT at the front panel is measured and adjusted for 30 MHz at -30 dBm. The amplitude is measured on the analyzer CRT by comparing it to a calibrated signal. The frequency is amplified and measured with a counter.

ADJUSTMENTS

5-40. 30 MHz Calibration Oscillator Check and Adjustment (cont'd)

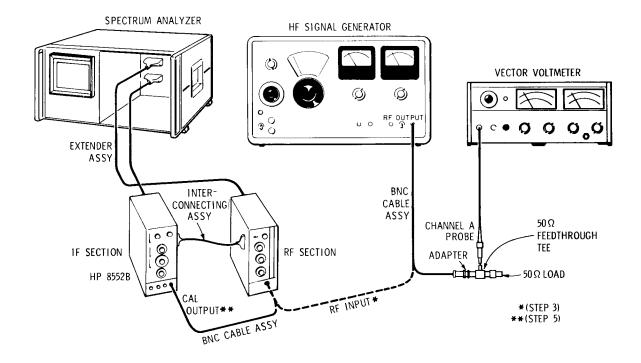


Figure 5-16. 30 MHz Calibration Amplitude Adjustment Setup

EQUIPMENT:				
				HP 8405A
CABLE ASSEMBLY (2)				HP 10503A
EXTENDER ASSEMBLY				HP 11592-60015
INTERCONNECTING ASSEMBL	. Y			HP 11592-60016
ADAPTER				*****
SIGNAL GENERATOR				HP 606B
bidithe deliberation				
1. Connect the equipment shown in ANALYZER:	Figure 5	-16 and make	the following con	trol settings:
1. Connect the equipment shown in ANALYZER:	J		the following con	
1. Connect the equipment shown in ANALYZER: FREQUENCY				30 MHz 30 kHz
1. Connect the equipment shown in ANALYZER: FREQUENCY				30 MHz 30 kHz PER DIVISION
1. Connect the equipment shown in ANALYZER: FREQUENCY				30 MHz 30 kHz PER DIVISION 20 kHz
1. Connect the equipment shown in ANALYZER: FREQUENCY				30 MHz 30 kHz PER DIVISION On
1. Connect the equipment shown in ANALYZER: FREQUENCY				30 MHz 30 kHz PER DIVISION On

ADJUSTMENTS

5-40	0. 30 MHz Calibration Oscillator Check and Adjustment (con't.)
AN	ALYZER control settings (cont'd) LOG'LINEAR
840	05A: FREQUENCY RANGE — MHz 20—40 CHANNEL A AMPLITUDE RANGE — dB -30
606	BE: RANGE
2.	Set amplitude of signal generator (as read on vector voltmeter) to exactly -30 dBm with ATTENUATOR VERNIER.
3.	Disconnect signal generator from vector voltmeter and connect to analyzer RF INPUT. Adjust analyzer FINE TUNE control to center signal.
4.	Adjust signal with LINEAR SENSITIVITY vernier for a 7.0 division reference on CRT display.
5.	Disconnect signal generator from RF INPUT. Connect CAL OUTPUT to RF INPUT.
6.	Signal Amplitude should be 7.0 division ±0.2 divisions. 6.87.2 div
7.	If it is out of limits, peak signal with A6C15 and set signal level to 7.0 division with A6R54 CAL LEVEL.
	NOTE A6 must not be operated on extender board for this adjustment.
8.	Measure the Calibrator frequency (see paragraph 4-23). Frequency limits: 29.997 30.003 MHz
9.	If frequency is out of limits, replace A6Y1 and repeat steps 1 through 8.

Model 8552B Adjustments

ADJUSTMENTS

5-41. Analogic Check and Adjustment

REFERENCE: Schematic 17.

DESCRIPTION: The A5R75 THRESH control is adjusted so that under the conditions specified in this test, the DISPLAY UNCAL light comes on. Check the remaining positions of the switches in the table to verify operation of the DISPLAY UNCAL switch matrix.

1. Install the analyzer plug-ins on the two extender cable assemblies, and make the following control settings:

ANALYZER:

VIDEO FILTER														. OF	F
SCAN TIME PER DIVISION .										1	M	IL	LIS	SECON	ID
SCAN WIDTH											P	ER	\mathbf{D}	IVISIC	N
SCAN WIDTH PER DIVISION														1 MI	Ηz
BANDWIDTH														30 kF	\mathbf{Iz}

- 2. With the controls set as in step 1 above, the DISPLAY UNCAL light should be on. If not, adjust A5R75 THRESH control until the light just comes on.
- 3. Use Table 5-2 below to complete adjusting the THRESH control:

Table 5-2. Analogic Threshold Adjustment

SCAN TIME PER DIVISION	BANDWIDTH	SCAN WIDTH PER DIVISION	DISPLAY UNCAL Light
1 ms	30 kHz	1 MHz	On
2 ms	30 kHz	1 MHz	Off
10 s	1 kHz	10 MHz	On
10 s	1 kHz	5 MHz	Off

CHECKS AND ADJUSTMENTS

5-41. Analogic Test and Adjustment (cont'd)

4. Check operation of DISPLAY UNCAL light using Table 5-3. When the table indicates the DISPLAY UNCAL light to be "off", it is acceptable for light to be "on" if the light subsequently goes "off" when either the SCAN TIME PER DIVISION or the SCAN WIDTH PER DIVISION control is switched one position counterclockwise.

Table 5-3. Display Calibration Conditions

Table 5-3. Display Calibration Conditions							
SCAN TIME PER DIVISION	BANDWIDTH	SCAN WIDTH PER DIVISION	DISPLAY UNCAL Light				
1 ms	300 kHz	10 MHz	Off				
1 ms	100 kHz	10 MHz	On				
1 ms	100 kHz	5 MHz	Off				
1 ms	30 kHz	5 MHz	On				
5 ms	30 kHz	$2~\mathrm{MHz}$	Off				
5 ms	10 kHz	2 MHz	On				
20 ms	10 kHz	1 MHz	Off				
20 ms	3 kHz	1 MHz	On				
0.1 s	3 kHz	0.5 MHz	Off				
0.1 s	1 kHz	0.5 MHz	On				
0.5 s	1 kHz	0.2 MHz	Off				
0.5 s	$0.3~\mathrm{kHz}$	0.2 MHz	On				
2 s	0.3 kHz	0.1 MHz	Off				
2 s	$0.1~\mathrm{kHz}$	0.1 MHz	On				
10 s	0.1 kHz	.05 MHz	Off				
10 s	.05 kHz	.05 MHz	On				
5 s	0.1 kHz	20 kHz	Off				
2 s	0.1 kHz	20 kHz	On				
2 s	0.1 kHz	10 kHz	Off				
1 s	0.1 kHz	10 kHz	On				
1 s	0.1 kHz	5 kHz	Off				
0.5 s	0.1 kHz	5 kHz	On				
0.5 s	0.1 kHz	2 kHz	Off				
0.2 s	0.1 kHz	2 kHz	On				
0.2 s	0.1 kHz	1 kHz	Off				
0.1 s	0.1 kHz	1 kHz	On				
0.1 s	0.1 kHz	0.5 kHz	Off				
50 ms	0.1 kHz	0.5 kHz	On				
50 ms	0.1 kHz	0.2 kHz	Off				
20 ms	0.1 kHz	0.2 kHz	On				

Model 8552B Adjustments

Table 5-4. Factory Selected Components

Component	Service Sheet	Basis of Selection
A1R16	8	Adjusts 10 kHz Bandwidth amplitude: 750 to 1200 ohms.
A1R38	8	Adjusts 300 kHz Bandwidth amplitude: 10 to 50 ohms.
A3R3	3	Adjusts 47 MHz LO level: 1.5K to 2.15K ohms.
A3R9	3	Adjusts 50 MHz Converter Gain: 18 to 52 ohms (4 ohm/dB change).
A4R125	11	Adjusts overall gain of 8552B for full deflection to Log Ref graticule with -13 dBm input at J6 (LOG REF LEVEL at -10 dBm): 200 to 700 ohms.
A6C13	15	Adjusts scan time at 0.2 to 10 sec/div: 0 to 15 microfarads.
A8R3	12	Optimizes 10 dB gain step: 1.47K to 2.37K.
A10R8 A10R9	11	Insures 10 dB/step attenuation: R8, 6.81K to 16.2K; R9, 21.5K to 51.1K.
A4R25 A4R26	11	Adjusts crystal filter skirt width. If out of specifications, change both resistors. Possible value ranges: R25, 19.6K to 23.7K; R26, 42.2K to 51.1K.
A4R44 A4R45	11	Adjusts crystal filter skirt width. If out of specifications, change both resistors. Possible value ranges: R44, 23.7K to 26.1K; R45, 51.1K to 56.2K.
A4R70 A4R71	11	Adjusts crystal filter skirt width. If out of specifications change both resistors. Possible value ranges: R70, 23.7K to 26.1K; R71, 51.1K to 56.2K.
A4R81 A4R82	11	Adjusts crystal filter skirt width. If out of specifications change both resistors. Possible value ranges: R81, 23.7K to 26.1K; R82, 51.1K to 56.2K.
A12R14	4	Adjusts search loop gain: 0 to 1K ohm.

Table 5-5. Check and Adjustment Test Record

Hewlett-Pa	ackard Mo	del 8552
Spectrum	Analyzer I	F Section

Test Performed	by	
Data		

Serial No.____-

Para. No.	Test Description	Measurement Unit	Min	Actual	Max
5-27	Power Supply Checks and Adjustments 103.5 — 126.5 Line Voltage:				
	+20 Vdc supply	Vdc	+19.90		+20.10
	Ripple	mVrms			0.5
	-10 Vdc supply	Vdc	- 9.99		-10.01
	Ripple	mVp-p			0.02
5-28	Horizontal Scan Checks & Adjustments SCAN IN/OUT voltage:				!
	Rise Time	ms	50		58
	SCAN TRIGGER EXT	Vdc	- 4.98		- 5.02
	Scan Amplitude	Vdc	+ 4.9		+ 5.1
5-29	Final Scan Checks				
	Scan Linearity Graticule:				
	-5	divisions	- 0.1		+ 0.1
	-4	divisions	- 0.1		+ 0.1
	-3	divisions	- 0.1		+ 0.1
	-2	divisions	- 0.1		+ 0.1
	-1	divisions	- 0.1		+ 0.1
	0	divisions	- 0.1		+ 0.1
	+1	divisions	- 0.1		+ 0.1
ļ	+2	divisions	- 0.1		+ 0.1
	+3	divisions	- 0.1		+ 0.1
	+4	divisions	- 0.1		+ 0.1
	SCAN TRIGGER EXT	Vp-p	2		20
	EXT SCAN MODE: voltage required for trace	Vp-p	8		
İ	VIDEO TRIGGER: voltage required for trace	divisions	1.5		
	MANUAL SCAN	divisions	10		
5-30	Vertical Deflection Amplifier Checks				
	VERTICAL POSITION control check	divisions	- 2		+ 2
	VERTICAL GAIN control check	divisions	2		
	2 dB LOG: at 0 dB	LOG REF			(√)
ŀ	at -10 dB	-50 dB			(√)
	BASE LINE CLIPPER Check: full CW	divisions	2		8

Table 5-5. Check and Adjustment Test Record (cont'd)

		i Test Recora (cor	· · · /		
Para. No.	Test Description	Measurement Unit	Min	Actual	Max
5-31	Log/Linear Amplifier Checks & Adjustments VERTICAL OUTPUT voltage: 7.07 div deflection Input Level Output at at XA4-14 XA8-14	Vdc			
	- 100 dBm	mVdc mVdc mVdc mVdc mVdc mVdc mVdc mVdc	-840 -740 -640 -540 -440 -340 -240 -140		-6 -760 -660 -560 -460 -360 -260 -160 - 60
5-32	300 kHz Bandpass Filter Adjustment Bandwidth	kHz	240		360
5-33	### Company of Company	divisions divisions divisions divisions kHz kHz kHz	-0.4 -0.4 -0.4 -0.4 80 24 9.5		+0.4 +0.4 +0.4 +0.4 120 36 10.5
5-34	Crystal Filter Fine Adjustment Gain Check: 3 kHz: set for 7 div 1 kHz 0.3 kHz 0.1 kHz 0.03 kHz 0.03 kHz	divisions divisions divisions divisions divisions divisions	6.7 6.7 6.7 6.5 6.0		7.3 7.3 7.3 7.3 7.5 7.0

Table 5-5. Check and Adjustment Test Record (cont'd)

Para. No.	Test Description	Measurement Unit	Min	Actual	Max
5-34 (cont)	Between 3 kHz and 300 kHz Bandwidth Check:				
	3 kHz	divisions	4.8		7.2
	1 kHz	divisions	4.0		6.0
	0.3 kHz	divisions	4.8		7.2
	0.1 kHz	divisions	4.0		6.0
	.03 kHz	divisions	1.2		1.8
	.01 kHz	divisions	0.4		0.6
	60 dB/3 dB Bandwidth Ratio				
	3 kHz	Ratio			11:1
	1 kHz	Ratio			11:1
	$0.3~\mathrm{kHz}$	Ratio			11:1
	0.1 kHz	Ratio			11:1
	.03 kHz	Ratio			11:1
	.01 kHz	Ratio			11:1
5-35	Crystal Filter Coarse Adjustment				
	If necessary	(√)			
5-36	3 MHz If Gain Log Adjustments				
	LOG REF LEVEL vernier: -0	Vdc	-0.96		+1.04
	-1	Vdc	-0.96		+1.04
	-2	Vdc	-0.96		+1.04
	-3	Vdc	-0.96		+1.04
	-4	Vdc	-0.96		+1.04
	-5	Vdc	-0.96		+1.04
	-6	Vdc	-0.96		+1.04
	-7	Vdc	-0.96		+1.04
	-8	Vdc	-0.96		+1.04
	-9	Vdc	-0.96		+1.04
	-10	Vdc	-0.96		+1.04
	-11	Vdc	-0.96		+1.04
	-12	Vdc	-0.96		+1.04
	VERTICAL OUTPUT voltage: 7.07 div deflection	Vdc			

Model 8552B Adjustments

Table 5-5. Check and Adjustment Test Record (cont'd)

Para. No.	Test	t Description		Measurement Unit	Min	Actual	Max
5-36 (cont)	Test Atten.	LOG REF LEVEL	Error Limit				
	10 dB	-10 dBm	2 mVdc	mVdc	-2		+2
	20 dB	-20 dBm	2 mVdc	mVdc	-2		+2
	30 dB	-30 dBm	2 mVdc	mVdc	-2		+2
	40 dB	-40 dBm	2 mVdc	mVdc	-2		+2
	50 dB	-50 dBm	2 mVdc	mVdc	-2		+2
	Test Atten.	LINEAR SENSITIVIT	Error Limit				
	43 dB 0	.1 mV/DIV	±15 mVdc	mVdc	-15		+15
		.2 mV/DIV	±15 mVdc	mVdc	-15		+15
	23 dB	1 mV/DIV	±15 mVdc	mVdc	-15		+15
	13 dB	2 mV/DIV	$\pm 15\ mVdc$	mVdc	-15		+15
	3 dB 3	10 mV/DIV	±15 mVdc	mVdc	-15		+15
5-37	47 MHz LO Lock Check	Automatic and Adjust					
	Level at A1	2TP2		mV p-p	450		850
	Frequency	at A12TP2		MHz	44.990		45.010
	Level at C8			V p-p	8.5		11.5
	Level at J8			V p-p	1.5		2.5
	Level at A1	.3TP1		mV p-p	650		1150
,	Frequency	at A13TP1		kHz	1998		2002
:	Frequency	<u>-</u>	ositive Offset	divisions	0.75		0.75
	i		legative Offset	divisions	0.75		0.75
			lo Offset	divisions	0.75		0.75
			APC Error at C8	V dc	+3.6		+4.4
5-38		•	k & Adjustment				
		0.2 vertical ontal divisions	divisions over	divisions	-0.2		+0.2
5-39	44 MHz Rejec	ction Adjusti	ment				
	44 MHz Re	ejection >70	dB	dB	70		
5-40	30 MHz Calib & Adjustm		ator Check				
	Amplitu	de		divisions	6.8		7.2
	Frequen	cy		MHz	29.997		30.003

Table 5-5. Check and Adjustment Test Record (cont'd)

Para. No.	Test Description	Measurement Unit	Min	Actual Max
Para. No. 5-41	Test Description Analogic Check and Adjustment SCAN SCAN BAND- DISPLAY TIME WIDTH WIDTH UNCAL 1 ms 1 MHz 30 kHz On 2 ms 1 MHz 30 kHz Off 10 s 10 MHz 1 kHz On 10 s 5 MHz 1 kHz Off	Measurement		Actual Max

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. This section contains information for ordering parts. Table 6-1 is a list of exchange assemblies and Table 6-2 lists abbreviations used in the parts list and throughout the manual. Table 6-3 lists all replaceable parts in reference designator order. Table 6-4 contains names and addresses that correspond to the manufacturer's code numbers.

6-3. EXCHANGE ASSEMBLIES

6-4. Table 6-1 lists assemblies within the instrument that may be replaced on an exchange basis, thus affording considerable cost savings. Exchange, factory-repaired and tested assemblies are available only on a trade-in basis, therefore the defective assemblies must be returned for credit. For this reason, assemblies required for spare parts stock must be ordered by the new assembly part number.

6-5. ABBREVIATIONS

6-6. Table 6-2 gives a list of abbreviations used in the parts list, schematics, and throughout the manual. In some cases, two forms of the abbreviation are given, one all capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always all capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lower case and upper case letters.

6-7. REPLACEABLE PARTS LIST

- 6-8. Table 6-3 is the list of replaceable parts and is organized as follows:
- a. Electrical assemblies and their components in alpha-numerical order by reference designation.

- b. Chassis-mounted parts in alpha-numeric order by reference designation.
 - c. Miscellaneous parts.
- d. Illustrated parts breakdown, if appropriate.

The information given for each part consists of the following:

- a. The Hewlett-Packard part number.
- b. The total quantity (Qty) in the instrument.
 - c. The description of the part.
- d. The typical manufacturer of the part in a five-digit code.
 - e. Manufacturer code number for the part.

The total quantity for each part is given only once—at the first appearance of the part number in the list.

6-9. ORDERING INSTRUCTIONS

- 6-10. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number, indicate quantity required, and address the order to the nearest Hewlett-Packard office.
- 6-11. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

Table 6-1.	Assemblies	Available	for Module	Exchange
I WOW O I.	1100011101100	21 Cuttucte	ioi mounic	Dachunet

Assembly	New Part No.	Exchange Part No
A2 3 MHz Amplifier	08552-60139	08552-60116
A3 50 MHz Converter	08552-60149	08552-60140
A4 Crystal Filter	08552-60141	08552-60111
A8 Log Amplifier	08552-6056	08552-6007
A12 47 MHz APC	08552-60145	08552-60115

^{*}For module exchange procedure, see Paragraph 8-10.

Replaceable Parts Model 8552B

Table 6-2. Reference Designations and Abbreviations

REFERENCE DESIGNATIONS

A assembly
AT attenuator; isolator;
termination
B fan; motor
BT battery
C capacitor
CP coupler
CR diode; diode
thyristor; varactor
DC directional coupler
DL delay line
DS annunciator;
signaling device
(audible or visual);
lamp; LED

E miscellaneous
electrical part
F fuse
FL filter
H hardware
HY circulator
J electrical connector
(stationary portion);
jack
K relav
L coil; inductor
M meter
MP miscellaneous
mechanical part

Ρ.				_	-	rical connector able portion);
		p!	lu	g		
\mathbf{Q} .					tı	ransistor: SCR;
		tr	i	od	le	thyristor
R.						resistor
RT						thermistor
S.						switch
Т.						. transformer
TB						terminal board
TC						thermocouple
TP						test point

U integrated circuit;
V electron tube
VR voltage regulator;
breakdown diode
W cable; transmission
path; wire
X socket
Y crystal unit (piezo-
electric or quartz)
Z tuned cavity; tuned circuit

ABBREVIATIONS

A ampere
ac alternating current
ACCESS accessory
ADJ adjustment
A/D analog-to-digital
AF audio frequency
AFC automatic
frequency control
AGC automatic gain
control
AL aluminum
ALC automatic level
control
AM amplitude modula-
tion
AMPL amplifier
APC automatic phase
control
ASSY assembly
AUX auxiliary
avg average
AWG American wire
gauge
BAL balance
BAL balance BCD binary coded
decimal
BD board
BE CU beryllium
copper
BFO beat frequency
oscillator
BH binder head
BKDN breakdown
BKDN breakdown
BRDN breakdown BP bandpass
BRDN breakdown BP bandpass BPF bandpass filter
BRDN breakdown BP bandpass BPF bandpass filter BRS brass
BKDN breakdown BP bandpass BPF bandpass filter BRS brass BWO backward-wave
BRDN breakdown BP bandpass BPF bandpass filter BRS brass BWO backward-wave oscillator
BRDN breakdown BP bandpass BPF bandpass filter BRS brass BWO backward-wave oscillator CAL calibrate
BRDN breakdown BP bandpass BPF bandpass filter BRS brass BWO backward-wave oscillator CAL calibrate ccw counter-clockwise
BRDN breakdown BP bandpass BPF bandpass filter BRS brass BWO backward-wave oscillator CAL calibrate ccw counter-clockwise CER ceramic
BRDN breakdown BP bandpass BPF bandpass filter BRS brass BWO backward-wave oscillator CAL calibrate ccw counter-clockwise CER ceramic CHAN channel
BRDN breakdown BP bandpass BPF bandpass filter BRS brass BWO backward-wave oscillator CAL calibrate ccw counter-clockwise CER ceramic CHAN channel cm centimeter
BRDN breakdown BP bandpass BPF bandpass filter BRS brass BWO backward-wave oscillator CAL calibrate ccw counter-clockwise CER ceramic CHAN channel

COEF coefficient
COM common
COMP composition
COMPL
COMPL complete CONN connector
CP cadmium plate
CP cadmium plate
CRT cathode-ray tube CTL complementary
transistor logic
CW continuous wave
cw clockwise
cm centimeter
D/A digital-to-analog
dB decibel
dBm decibel referred
to 1 mW
$dc \dots direct \; current$
deg degree (temperature
interval or differ-
ence) degree (plane angle)
degree (plane
angle)
C degree Celsius
(Centigrade)
F degree Fahrenheit K degree Kelvin
DEPC deposited carbon
DET detector
diam diameter
DIA diameter (used in
parts list)
DIFF AMPL differential
amplifier
div division
DPDT double-pole,
DrD1 double-pole,
double-throw
DR drive
DSB double sideband DTL diode transistor
logic
DVM digital voltmeter
DVM digital voltmeter ECL emitter coupled
logic EMF . electromotive force
EMF electromotive force

EDP electronic data
processing ELECT electrolytic
ELECT electrolytic
ENCAP encapsulated
EXT external
F farad
FET field-effect
transistor
$\begin{array}{cccc} & transistor \\ F/F & \dots & flip-flop \end{array}$
FH flat head
FIL H fillister head
FM, frequency modulation
FP front panel
FREQ frequency
FXD fixed
GHz gigahertz
GL glass
GRD ground(ed)
H henry h hour
h hour
HET heterodyne
HEX hexagonal
HD head
HDW hardware
HF high frequency
HG mercury
HI high
HP Hewlett-Packard
HPF high pass filter
HR hour (used in
parts list)
IC integrated circuit
ID inside diameter
IF intermediate
frequency
IMPG impregnated
in inch
INCD incandescent
INCL include(s)
INP input
INS insulation

INT internal
kg kilogram kHz kilohertz
kHz kilohertz
$\mathbf{k}\Omega$ kilohm
kV kilovolt
lb pound
LC inductance-
capacitance
LED light-emitting diode
LF low frequency
LG long
LH left hand
LIM limit
LIN linear taper (used
in parts list)
lin linear LK WASH lock washer
LK WASH lock washer
LO low; local oscillator
LOG logrithmic taper
(used in parts list)
log logrithm(ic)
LPF low pass filter
LV low voltage
m meter (distance)
mA milliampere
MAX maximum
$M\Omega$ megohm
MEG meg (10^6) (used
in parts list)
MET FLM metal film
MET OX metallic oxide
MF medium frequency;
microfarad (used in
parts list)
MFR manufacturer
mg milligram MHz megahertz
MHz megahertz
mH millihenry
mho mho
MIN minimum
min minute (time)
min minute (time) ' minute (plane
angle)
MINAT minature
mm millimeter

NOTE

All abbreviations in the parts list will be in upper-case.

Table 6-2. Reference Designations and Abbreviations (cont'd)

MOD modulator	OD outside diameter	PWV peak working	TD time dela
MOM momentary			
MOS metal-oxide	OH oval head	voltage	TERM termin
	OP AMPL operational	RC resistance-	TFT thin-film transist
semiconductor	amplifier	capacitance	TGL tog
ms millisecond	OPT option	RECT rectifier	THD thre
MTG mounting	OSC oscillator	REF reference	THRU throu
MTR meter (indicating	OX oxide	REG regulated	TI titaniı
device)	oz ounce	REPL replaceable	TOL toleran
mV millivolt	\$2ohm	RF radio frequency	TRIM trimm
mVac millivolt, ac	P peak (used in parts	RFI radio frequency	TSTR transist
mVdc millivolt, dc	list)	interference	TTL transistor-transist
mVpk millivolt, peak	PAM pulse-amplitude	RH round head; right	logic
mVp-p millivolt, peak-	modulation	hand	TV televisi
to-peak	PC printed circuit	RLC resistance-	TVI television interferen
mVrms millivolt, rms	PCM pulse-code modula-	inductance-	TWT traveling wave tu
mW milliwatt	tion; pulse-count	capacitance	U micro (10^{-6}) (us
MUX multiplex	modulation	RMO rack mount only	in parts list)
MY mylar	PDM pulse-duration		
μΑ microampere	-	rms root-mean-square	UF microfarad (used
	modulation	RND round	parts list)
μF microfarad	pF picofarad	ROM read-only memory	UHF ultrahigh frequen
uH microhenry	PH BRZ phosphor bronze	R&P rack and panel	UNREG unregulat
Umho micromho	PHL Phillips	RWV reverse working	V v
Us microsecond	PIN positive-intrinsic-	voltage	VA voltamp
UV microvolt	negative	S scattering parameter	Vac volts,
UVac microvolt, ac	PIV peak inverse	s second (time)	VAR varial
UVdc microvolt, dc	voltage	" . second (plane angle)	VCO voltage-control
UVpk microvolt, peak	pk peak	S-B slow-blow (fuse)	oscillator
UVp-p microvolt, peak-	PL phase lock	(used in parts list)	Vdc volts,
to-peak	PLO phase lock	SCR silicon controlled	VDCW volts, de, worki
UVrms microvolt, rms	oscillator	rectifier; screw	(used in parts li
UW microwatt	PM phase modulation	SE selenium	V(F) volts, filter
nA nanoampere	PNP positive-negative-	SECT sections	VFO variable-frequen
NC no connection	positive		-
	-	SEMICON semicon-	oscillator
N/C normally closed	P/O part of	ductor	VHF very-high f
NE neon	POLY polystyrene	SHF superhigh fre-	quency
NEG negative	PORC porcelain	quency	Vpk volts, pe
nF nanofarad	POS positive; position(s)	SI silicon	Vp-p volts, peak-to-pe
NI PL nickel plate	(used in parts list)	SIL silver	Vrms volts, r
N/O, normally open	POSN position	SL slide	VSWR voltage stand
NOM nominal	POT potentiometer	SNR signal-to-noise ratio	wave ratio
NORM normal	p-p peak-to-peak	SPDT single-pole,	VTO voltage-tur
NPN negative-positive-	PP peak-to-peak (used	double-throw	oscillator
negative	in parts list)	SPG spring	VTVM vacuum-tu
NPO negative-positive	PPM pulse-position	SR split ring	voltmeter
zero (zero tempera-	modulation	SPST single-pole,	V(X) volts, switch
ture coefficient)	PREAMPL preamplifier	single-throw	W w
NRFR not recommended	PRF pulse-repetition	SSB single sideband	W/ w
for field replace-			
•	frequency	SST stainless steel	WIV working inve
ment	PRR pulse repetition	STL steel	voltage
NSR not separately	rate	SQ square	WW wirewou
replaceable	ps picosecond	SWR standing-wave ratio	W/O with
ns nanosecond	PTpoint	SYNC synchronize	YIG yttrium-iron-gar
nW nanowatt	PTM pulse-time	T timed (slow-blow fuse)	Z _o characteris
OBD order by descrip-	modulation	TA tantalum	impedance
tion	PWM pulse-width	TC temperature	
	modulation	compensating	

NOTE

All abbreviations in the parts list will be in upper-case.

MULTIPLIERS

Abbreviation	Prefix	Multiple
T	tera	10^{12}
G	giga	109
M	mega	106
k	kilo	10^{3}
da	deka	10
d	deci	$_{10}^{-1}$
c	centi	10^{-2}
m	milli	10^{-3}
μ	micro	10^{-6}
n	nano	109
p	pico	10-12
f	femto	10^{-15}
a	atto	1018

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
Al	08552-60109	1	BOARD ASSY:LC FILTER	28480	08552-60109
A1C1	C16C-2055	92	C:FXD CER 0.01 UF +80-20% 100VDCW	56289	C023F101F103ZS22-CDH
A1C2	0160-2055		C:FXD CER 0.01 UF +80-20% 100VDCW	56289	C023F101F103ZS22-CDH
A1C3 A1C4 A1C5 A1C6 A1C7	0160-3024 0121-0105 0160-3132 0160-2055 0160-2055	4 9 4	C:FXD MICA 1700 PF 1% 100VDCW C:VAR CER 9-35 PF NPO C:FXD CER 200 PF 10% 500VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW	28480 28480 00656 56289 56289	016C-3924 0121-0105 CN-19-201K N750 CC23F101F103ZS22-CDH CC23F101F103ZS22-CDH
A1C8	0160-2055		C:FXD CER 0.01 UF +80-20% 100VDCW	56289	C023F101F103ZS22-CDH
A1C9	0160-3024		C:FXD MICA 1700 PF 1% 100VDCW	28480	0160-3024
A1C10	0121-0105		C:VAR CER 9-35 PF NPO	28480	0121-0105
A1C11	0160-3132		C:FXD CER 200 PF 10% 500VDCW	00656	CN-19-201K N750
A1C12	0160-2055		C:FXD CER 0.01 UF +80-20% 100VDCW	56289	C023F101F103ZS22-CDH
A1C13	0160-2055		C:FXD CER 0.01 UF +80-20% 1CCVDCW	56289	C023F101F1C3ZS22-CDH
A1C14	0160-2055		C:FXD CER 0.01 UF +80-20% 1COVDCW	56289	C023F101F103ZS22-CDH
A1C15	0160-3024		C:FXD M1CA 1700 PF 1% 1COVDCW	28480	016C-3024
A1C16	0121-0105		C:VAR CER 9-35 PF NPO	28480	0121-0105
A1C17	0160-3132		C:FXD CER 200 PF 10% 5COVDCW	00656	CN-19-2C1K N750
A1C18	0160-2055		C:FXD CER 0.C1 UF +80-20% 10CVDCW	56289	C023F101F103ZS22-C0H
A1C19	0160-2055		C:FXD CER 0.01 UF +80-20% 100VDCW	56289	C023F101F103ZS22-CDH
A1C20	0160-2055		C:FXD CER 0.01 UF +80-20% 100VDCW	56289	C023F101F103ZS22-CDH
A1C21	0160-3024		C:FXD MICA 1700 PF 1% 100VDCW	28480	016C-3024
A1C22	0121-0105		C:VAR CER 9-35 PF NPO	28480	C121-0105
A1C23	0160-3132	17	C:FXD CER 200 PF 10% 500VDCW	00656	CN-19-201K N750
A1C24	0160-2055		C:FXD CER 0→01 UF +80-20% 100VDCW	56289	CO23F101F103ZS22-CDH
A1C25	0180-0116		C:FXD ELECT 6-8 UF 10% 35VDCW	56289	15CD685X9O35B2-DYS
A1C26	0180-0116		C:FXD ELECT 6-8 UF 10% 35VDCW	56289	15CD685X9O35B2-DYS
A1C27	0160-2055		C:FXD CER 0→01 UF +80-20% 100VDCW	56289	CO23F101F103ZS22-CDH
A1028 A1029 A1030	0160-2055 0160-2055		C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW NOT ASSIGNED	56289 56289	CC23F101F103ZS22-CDH CC23F101F103ZS22-CDH
A1C31	0160-2055		C:FXD CER 0.01 UF +80-20% 100VDCW	56289	C023F101F103ZS22-CDH
A1C32	0160-2055		C:FXD CER 0.01 UF +80-20% 100VDCW	56289	C023F101F103ZS22-CDH
A1C33	0160-2055	4	C:FXD CER 0.01 UF +80-20% 100VDCW	56289	C023F101F103ZS22-CDH
A1C34	0160-2055		C:FXD CER 0.01 UF +80-20% 100VDCW	56289	C023F101F103ZS22-CDH
A1C35	0160-2051		C:FXD MICA 51 PF 5%	72136	RDM15E510J1C
A1C36	0160-2055		C:FXD TER 0.01 UF +80-20% 100VDCW	56289	C023F101F103ZS22-CDH
A1C37	0160-2150		C:FXD MICA 33 PF 5%	28480	0160-2150
A1C38	0160-2055	16	C:FXD CER 0.01 UF +80-20% 100VDCW	56289	C023F101F103ZS22-CDH
A1C39	0160-3460		C:FXD CER 0.05 UF +80-20% 100VDCW	56289	C023E101L503ZS22-CDM
A1C40	0160-2150		C:FXD MICA 33 PF 5%	28480	0160-2150
A1C41	0160-3460		C:FXD CER 0.05 UF +80-20% 100VDCW	56289	C023E101L503ZS22-CDM
A1C42	0160-3460		C:FXD CER 0.05 UF +80-20% 100VDCW	56289	C023E101L503ZS22-CDM
A1C43 A1C44 A1CR1 A1CR2 A1CR3	0160-3060 0160-3460 1901-0040 1901-0040 1901-0040	10 86	C:FXD CER 0.1 UF 20% 25VDCW C:FXD CER 0.05 UF +80-20% 100VDCW DIODE:SILICON 50 MA 30 WV DIODE:SILICON 50 MA 30 WV DIODE:SILICON 50 MA 30 WV	56289 56289 07263 07263 07263	3C42A-CML CO23E101L503ZS22-CDM FDG1088 FDG1088 FDG1088
A1CR4	1901-0040		DIODE:SILICON 50 MA 30 WV	07263	FDG1088
A1CR5	1901-0040		DIODE:SILICON 50 MA 30 WV	07263	FDG1088
A1CR6	1901-0040		DIODE:SILICON 50 MA 30 WV	07263	FDG1088
A1CR7	1901-0040		DIODE:SILICON 50 MA 30 WV	07263	FDG1088
A1CR8	1901-0040		DIODE:SILICON 50 MA 30 WV	07263	FDG1088
A1CR9 A1CR10 A1CR11 A1CR12 A1CR13	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIODE:SILICON 50 MA 30 WV	07263 07263 07263 07263 07263	FDG1088 FDG1088 FDG1088 FDG1088 FDG1088
A1CR14 A1CR15 A1CR16 A1CR17 A1CR18	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIODE:SILICON 50 MA 30 WV	07263 07263 07263 07263 07263	FDG1088 FDG1088 FDG1088 FDG1088 FDG1088
A1CR19	1901-0040	11	DIODE:SILICON 50 MA 30 WV	07263	FDG1088
A1CR20	1901-0040		DIODE:SILICON 50 MA 30 WV	07263	FDG1088
A1CR21	1901-0040		OIODE:SILICON 50 MA 30 WV	07263	FNG1088
A1CR22	1901-0040		DIODE:SILICON 50 MA 30 WV	07263	FDG1088
A1L1	9140-0237		COIL:FXD 200 UH 5%	28480	9140-0237
A1L2 A1L3 A1L4 A1L5 A1L6	9140-0237 68552-6025 08552-6025 08552-6025 08552-6025	4	COIL:FXD 200 UH 5% INDUCTOR:LC FILTER INDUCTOR:LC FILTER INDUCTOR:LC FILTER INDUCTOR:LC FILTER	28480 28480 28480 28480 28480	9140-0237 08552-6025 08552-6025 08552-6025 08552-6025

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number		Description	Mfr Code	Mfr Part Number
A1L7 A1L8 A1L9 A1L10 A101	9140-0137 9100-1630 9140-0237 9140-0210 1854-0071	2 2 5 39	COIL:FXD RF 1000 UH 5% COIL/CHOKE 51.0 UH 5% COIL/CHOKE 200 UH 5% COIL/CHOKE 100 UH 5% TSTR:SI NPN(SELECTED FROM 2N3704)	28480 28480 28480 82142 28480	9140-0137 9100-1630 9140-0237 15-1315-12J 1854-0071
A102 A103 A104 A105 A106	1854-0071 1854-0071 1854-0071 1854-0071 1853-0020	27	TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3702)	28480 28480 28480 28480 28480	1854-0071 1854-0071 1854-0071 1854-0071 1853-0020
A1Q7 A1R1 A1R2 A1R3 A1R4	1854-0019 0757-0438 0757-0428 0757-0428 0698-3153	12 21 8	TSTR:SI NPN R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD MET FLM 1.62K OHM 1% 1/8W R:FXD MET FLM 1.62K OHM 1% 1/8W R:FXD MET FLM 3.83K OHM 1% 1/8W	28480 28480 28480 28480 28480	1854-0C19 0757-C438 0757-0428 0757-0428 0698-3153
A1R5 A1R6 A1R7 A1R8 A1R9	0698-3445 0757-0401 0757-0421 0698-0084 0698-0084	7 26 2 14	R:FXD MET FLM 348 GHM 1% 1/8W R:FXD MET FLM 100 GHM 1% 1/8W R:FXD MET FLM 825 GHM 1% 1/8W R:FXD MET FLM 2.15K GHM 1% 1/8W R:FXD MET FLM 2.15K GHM 1% 1/8W	28480 28480 28480 28480 28480	C698-3445 C757-0401 O757-0421 C698-0084 O698-0084
A1R10 A1R11 A1R12 A1R13 A1R14	0757-0438 0757-0428 0698-3153 0757-0428 0698-3445		R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD MET FLM 1.62K OHM 1% 1/8W R:FXD MET FLM 3.83K OHM 1% 1/8W R:FXD MET FLM 1.62K OHM 1% 1/8W R:FXD MET FLM 348 OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0438 0757-0428 0698-3153 0757-0428 0698-3445
A1R15 A1R16 A1R16 A1R17 A1R18	0757-0401 0757-0421 0698-0084 0698-0084	3	R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 825 OHM 1% 1/8W FACTORY SELECTED PART R:FXD MET FLM 2.15K OHM 1% 1/8W R:FXD MET FLM 2.15K OHM 1% 1/8W	28480 28480 28480 28480	0757-0401 0757-0421 0698-0084 0698-0084
A1R19 A1R20 A1R21 A1R22 A1R23	0757-0438 0757-0428 0698-3153 0757-0428 0698-3445	:	R:FXD MET FLM 5-11K OHM 1% 1/8W R:FXD MET FLM 1-62K OHM 1% 1/8W R:FXD MET FLM 3.83K OHM 1% 1/8W R:FXD MET FLM 1-62K OHM 1% 1/8W R:FXD MET FLM 348 OHM 1% 1/8W	28480 28480 28480 28480 28480	C757-0438 C757-0428 0698-3153 C757-0428 2698-3445
A1R24 A1R25 A1R26 A1R27 A1R28	0757-0401 0757-0421 0698-0084 0698-0084 0757-0438		R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 825 OHM 1% 1/8W R:FXD MET FLM 2.15K OHM 1% 1/8W R:FXD MET FLM 2.15K OHM 1% 1/8W R:FXD MET FLM 5.11K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0401 0757-0421 0698-0384 0698-084 0757-0438
A1R29 A1R30 A1R31 A1R32 A1R33	0757-0428 0698-3153 0757-0428 0757-0420 0698-3445	8	R:FXD MET FLM 1.62K OHM 1% 1/8W R:FXD MET FLM 3.83K OHM 1% 1/8W R:FXD MET FLM 1.62K OHM 1% 1/8W R:FXD MET FLM 750 OHM 1% 1/8W R:FXO MET FLM 348 OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0428 0698-3153 0757-0428 0757-0420 0698-3445
A1R34 A1R35 A1R36 A1R37 A1R38	0757-0401 2100-1757 0698-0084 0698-0084 0698-4087	4	R:FXO MET FLM 100 OHM 1% 1/8W R:VAR WW 5CO OHM 5% TYPE V 1W R:FXD MET FLM 2-15K OHM 1% 1/8W R:FXD MET FLM 2-15K OHM 1% 1/8W R:FXD MET FLM 2-15K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0401 2100-1757 0698-0084 0698-0084 0698-4087
A1R38 A1R39 A1R40 A1R41 A1R42	0757-0438 0757-0438 0698-0084 0757-0440	10	FACTORY SELECTED PART RIFXD MET FLM 5.11K OHM 1% 1/8W RIFXD MET FLM 5.11K OHM 1% 1/8W RIFXD MET FLM 2.15K OHM 1% 1/8W RIFXD MET FLM 7.50K OHM 1% 1/8W	28480 28480 28480 28480	0757-0438 0757-0438 0698-084 0757-0440
A1R43 A1R44 A1R45 A1R46 A1R47	0757-0401 0757-0401 0757-0401 0757-0280 0757-0421	39	R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 825 OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0401 0757-0401 0757-0401 0757-0401 0757-0280 0757-0421
A1R48 A1R49 A1R50 A1R51 A1R52	0757-0440 0757-0438 0757-0438 0698-3157 0698-3442	6 1	R:FXO MET FLM 7.50K OHM 1% 1/8W R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD MET FLM 19.6K OHM 1% 1/8W R:FXD MET FLM 237 OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0440 0757-0438 0757-0438 0698-3157 0698-3442
A1953 A1R54 A1R55 A1R56 A1R57	0757-0416 0698-3429 0757-0401 0698-4037 0757-0280	10 2 1	R:FXO MET FLM 511 OHM 1% 1/8W R:FXD MET FLM 19.6 OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 46.4 OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0416 0698-3429 0757-0401 0698-4037 0757-0280
A1R58 A1R59 A1R60 A1R61 A1R62	2100-1755 2100-1756 0698-3443 0757-0280 0757-0280	4 3 3	R:VAR WW 100 OHM 5% TYPE V 1W R:VAR WW 200 OHM 5% TYPE V 1W R:FXD MET FLM 287 OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W	28480 28480 28480 28480 28480	2100-1755 2100-1756 0698-3443 0757-0280 0757-0280
A1TP1 THRU A1TP5	0360-1514	26	TERMINAL PIN:SQUARE	28480	0360-1514

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A2 A2 A2C1 A2C2	08552-60116 08552-60139 0380-0863 0180-0116	1 1 2	BOARD ASSY:3 MHZ AMPLIFIER EXCHANGE ASSY:3 MHZ AMPLIFIER STANDOFF:1/8* LG C:FXD ELECT 6.8 UF 10% 35VOCW C:FXD ELECT 6.8 UF 10% 35VOCW	28480 28480 06540 56289 56289	08552-60116 08552-60139 9531-125-86440-0 1500685X903582-0YS 150D685X903582-DYS
A 203 A 204 A 205 A 206 A 209	C160-2055 C160-2055 O160-2055		C:FXD CER 0.C1 UF +80-20% 1C0VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW	56289 56289 56289	C023F101F1037S22-CDH C023F101F103ZS22-CDH C023F101F103ZS22-CDH
A2C10 A2C11 A2C12 A2C13 A2C13	0160-2055 0180-0291 0160-2055 0122-9221 0140-0205	4 2 7	C:FXD CER 0.G1 UF +80-20% 100VDCW C:FXD ELECT 1.0 UF 10% 35VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:VOLTAGE VAR 100 PF 10% 30VDCW C:FXD MICA 62 PF 5% 300VDCW	56289 56289 56289 28480 00853	C023F101F103ZS22-CDH 150D105X9035A2-DYS C023F101F103ZS22-CDH C122-0221 PDM15E620J3C
A 2C 15 A 2C 16 A 2C 17 A 2C 18 A 2C 19	C122-0211 C122-0221 O160-2055 O160-2055 O160-2055	1	C:VOLTAGE VAR 39 PF 1N4810A C:VOLTAGE VAP 100 PF 10% 30VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW	2848C 28480 56289 56289 56289	C122-0211 C122-0221 C023F101F103ZS22-CDH C023F101F103ZS22-CDH C023F101F103ZS22-CDH
A 2020 A 2021 A 2022 A 2023 A 2024	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055		C:FXD CER 0.01 UF +80-20% 100VDCW	56289 56289 56289 56289 56289	C023F101F103ZS22-CDH C023F101F103ZS22-CDH C023F101F103ZS22-CDH C023F101F103ZS22-CDH C023F101F103ZS22-CDH
A 2025 A 2026 A 2027 A 2028 A 2029	0140-0205 0160-2257 0160-2055 0160-2055 0140-0205	3	C:FXD MICA 62 PF 5% 300VDCW C:FXD CER 10 PF 5% 500VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD MICA 62 PF 5% 300VDCW	00853 72982 56289 56289 00853	PDM15F620J3C 301-000-C0H0-100J C023F101F103Z522-CDH C023F101F103Z522-CDH RDM15E620J3C
A2C30 A2C31 A2C32 A2C33 A2C34	0160-2055 0122-0043 0122-0044 0160-2055 0160-2055	2 2	C:FXD CER 0.01 UF +80-20% 10CVDCW C:VOLTAGE VAR 39-17.95PF 2% 4-25VDCW C:VOLTAGE VAR 100-45.9PF 2% 4-25VDCW C:FXD CER 0.01 UF +80-20% 10CVDCW C:FXD CER 0.01 UF +80-20% 1COVDCW	56289 28480 28480 56289 56289	C023F101F103ZS22-CDH 0122-0043 0122-0044 C023F101F103ZS22-CDH C023F101F103ZS22-CDH
A2C35 A2C36 A2C37 A2C33 A2C39	C180-0291 C160-2C55 O160-2C55 C16C-2O55		C:FXD ELECT 1.0 UF 10% 35VDCW C:FXD CER 0.01 UF +80-20% 1C0VDCW NOT ASSIGNED C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER C.01 UF +80-20% 100VDCW	56289 56289 56289 56289	1500105X9035A2-DYS C023F101F103ZS22-CDH C023F101F103ZS22-CDH C023F101F103ZS22-CDH
A 2C 4 1 A 2C 4 1 A 2C 4 2 A 2C 4 3 A 2C R 1	0122-0043 0122-0044 0160-2055 0160-2055 1901-0040		C:VOLTAGE VAR 39-17.95PF 2% 4-25VDCH C:VOLTAGE VAR 100-45.9PF 2% 4-25VDCH C:FXD CER 0.01 UF +80-20% 100VDCH C:FXD CER 0.01 UF +80-20% 100VDCH DIODE:SILICON 50 MA 30 HV	28480 28480 56289 56289 07263	0122-0043 0122-0044 C023F101F103ZS22-CDH C023F101F103ZS22-CDH FDG1088
A 2C R 2 A 2C R 3 A 2C P 4 A 2C R 5 A 2C P 6	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIODE:SILICON 50 MA 30 HV DIODE:SILICON 50 MA 3C HV DIODE:SILICON 50 MA 30 HV DIODE:SILICON 50 MA 30 HV DIODE:SILICON 50 MA 30 HV	07263 07263 07263 07263 07263	FDG1088 FDG1088 FDG1088 FDG1088 FDG1088
A 20 R 7 A 20 R 8 A 20 R 9 A 20 R 10 A 20 R 11	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIODE:SILICON 50 MA 30 WV DIODE:SILICON 50 MA 30 WV DIODE:SILICON 50 MA 30 WV DIODE:SILICON 50 MA 30 WV DIODE:SILICON 50 MA 30 WV	07263 07263 07263 07263 07263	FDG1088 FDG1088 FDG1088 FDG1088 FDG1088
A 20 R 1 2 A 2 L 1 A 2 L 2 A 2 L 3 A 2 L 4	1901-0040 9140-0237 9140-0237 9140-0237 9140-0237		DIODE:SILICON 50 MA 30 WV COIL:FXD 200 UH 5% COIL:FXD 200 UH 5% COIL:FXD 200 UH 5% COIL:FXD 200 UH 5%	07263 28480 28480 28480 28480	FDG1088 9140-0237 9140-0237 9140-0237 9140-0237
A2L5 A2L6 -	9140-0237		COIL:FXO 200 UH 5%	28480	9140-0237
A2L9 A2L10 A2L11	9100-1611 9100-1636	2 2	NOT ASSIGNED COIL:FXD 0.22 UH 20% COIL/CHOKE 110 UH 5%	28480 28480	9100-1611 9100-1636
A2L12 A2L13 A2Q1 A2Q2 A2Q3	9140-0137 9100-1611 1854-0092 1853-0010	2 9	COIL:FXD RF 1000 UH 5% COIL:FXD 0.22 UH 20% TSTR:SI NPN TSTR:SI PNP(SELECTED FROM 2N3251) TSTR:SI PNP(SELECTED FROM 2N3251)	28480 28480 80131 28480 28480	9140-0137 9100-1611 2N3563 1853-0010
A 204 A 205 A 206 A 207 A 208	1854-0092 1853-0010 1853-0010 1854-0071 1853-0010		TSTR:SI NPN TSTR:SI PNP(SELECTED FROM 2N3251) TSTR:SI PNP(SELECTED FROM 2N3251) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP(SELECTED FROM 2N3251)	80131 28480 28480 28480 28480	2N3563 1853-0010 1853-0010 1854-0071 1853-0010

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A209 A2017 A201 A2R2 A2R3	1853-0010 1854-0071 2100-1755 0698-3151 0757-0199	1 8	TSTR:SI PNP(SELECTED FROM 2N3251) TSTR:SI NPN(SELECTED FROM 2N3704) R:VAR WW 100 DHM 5% TYPE V 1W R:FXD MET FLM 2.87K OHM 1% 1/8W R:FXD MET FLM 21.5K OHM 1% 1/8W	28480 28480 28480 28480 28480	1853-0010 1854-0071 2100-1755 0698-3151 0757-0199
A284 A285 A286 A287 A288	0757-0447 0757-0442 0757-0442 0698-3162 0757-1094	4 13 5 4	R:FXD MET FLM 16.2K OHM 1% 1/8W R:FXD MET FLM 10.0K OHM 1% 1/8W R:FXD MET FLM 10.0K OHM 1% 1/8W R:FXD MET FLM 46.4K OHM 1% 1/8W R:FXD MET FLM 1.47K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0447 0757-0442 0757-0442 0698-3162 0757-1094
A 209 A 35 10 A 29 11 A 29 12 A 28 13	0757-0401 0757-0279 0757-0346 0698-3446 0757-0442	14 8 10	R:FXD MET FLM 100 DHM 1% 1/8W R:FXD MET FLM 3.16K DHM 1% 1/8W R:FXD MET FLM 10 DHM 1% 1/8W R:FXD MET FLM 383 DHM 1% 1/8W R:FXD MET FLM 10.0K DHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0401 0757-0279 C757-0346 0698-3446 0757-0442
A 2R14 A 2R15 A 2R16 A 2R17 A 2R18	C698-3428 0757-0346 0757-0280 0757-0199 0757-0276	2	R:FXD MET FLM 14.7 OHM 1% 1/8W R:FXD MET FLM 10 OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 21.5K OHM 1% 1/8W R:FXD MET FLM 61.9 OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-3428 0757-0346 0757-0280 0757-0199 0757-0276
A 2R19 A2R20 A2R21 A2R22 A2R23	0757-1094 0757-0418 2100-1757 0757-0280 0698-3441	6	R:FXD MET FLM 1.47K OHM 1% 1/8W R:FXO MET FLM 619 OHM 1% 1/8W R:VAR WW 500 OHM 5% TYPE V 1W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 215 OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-1094 0757-0418 2100-1757 0757-0280 0698-3441
A 2P 24 A 2R 25 A 2R 26 A 2R 2 7 A 2P 2 8	2100-1755 C757-0280 C757-0276 2100-1754 C757-0280	1	R:VAR WW 100 OHM 5% TYPF V 1W R:FXO MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 61.9 OHM 1% 1/8W R:VAR WW 50 OHM 5% TYPF V 1W R:FXD MET FLM 1K OHM 1% 1/8W	28480 28480 28480 28480 28480	2109-1755 0757-0280 0757-0276 2100-1754 0757-0280
A 29 29 A 28 30 A 28 31 A 29 32 A 28 33	0698-0084 0698-3441 0757-0346 0698-3446 0757-0346		R:FXD MET FLM 2.15K OHM 1% 1/8W R:FXD MET FLM 215 OHM 1% 1/8W R:FXD MET FLM 10 OHM 1% 1/8W R:FXD MET FLM 383 OHM 1% 1/8W R:FXD MET FLM 10 OHM 1% 1/8W	28480 28480 28480 28480 28480	C698-0084 C698-3441 O757-0346 C698-3446 O757-0346
A2R34 A2R35 A2R26 A2R37 A2R38	0757-0420 0757-0199 0757-0460 0757-1094 0757-0346	6	R:FXO MET FLM 750 OHM 1% 1/8W R:FXO MET FLM 21.5K OHM 1% 1/8W R:FXO MET FLM 61.9K OHM 1% 1/8W R:FXO MET FLM 1.47K OHM 1% 1/8W R:FXO MET FLM 10 OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0420 0757-0199 0757-0460 0757-1094 0757-0346
A 2R 39 A 2R 40 A 2R 41 A 2R 42 A 2R 43	0698-3446 0757-0346 0698-3428 0757-0199 0757-0401		R:FXD MET FLM 383 OHM 1% 1/8W R:FXD MET FLM 10 OHM 1% 1/8W R:FXD MET FLM 14.7 OHM 1% 1/8W R:FXD MET FLM 21.5X OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-3446 0757-0346 0698-3428 0757-0199 0757-0401
A2R44 A2R45 A2R46 A2R47 A2R48	2100-1760 0698-0084 0757-0442 0757-0442 0757-0288	1	R:VAR WW 5K OHM 5% TYPE V 1W R:FXD MET FLM 2.15K OHM 1% 1/8W R:FXD MET FLM 10.0K OHM 1% 1/8W R:FXD MET FLM 10.0K OHM 1% 1/8W R:FXD MET FLM 9.09K OHM 1% 1/8W	28480 28480 28480 28480 28480	2100-1760 0698-0084 0757-0442 0757-0442 0757-0288
A 2R 49 A 2R 50 A 2R 51 A 2R 52 A 2R 53	C757-0280 0757-0442 2100-1758 0757-0280 0757-0401	2	R:FXD MET FLM 1K DHM 1% 1/8W R:FXD MET FLM 10.0K DHM 1% 1/8W R:YAR WW 1K DHM 5% TYPE V 1W R:FXD MET FLM 1K DHM 1% 1/8W R:FXD MET FLM 100 DHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0280 0757-0442 2100-1758 0757-0280 0757-0401
A2R54 A2R55 A2R56 A2R57 A2R5R	0757-0199 0698-3162 0698-3162 0757-0401 0757-0280		R:FXD MET FLM 21.5K OHM 1% 1/8W R:FXD MET FLM 46.4K OHM 1% 1/8W R:FXD MET FLM 46.4K OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0199 0698-3162 0698-3162 0757-0401 0757-0280
A2R59 A2R60 A2R61 A2TP1 THRU	0757-0401 0757-0401		NOT ASSIGNED R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W	28480 28480	0757-0401 0757-0401
A2TP4 A2Z1	0360-0124 9170-0847	25	TERMINAL:SOLDER LUG CORE, MAG, SHIELDING BEAD .130D.047 ID	28480 02114	0360-0124 56-590-65/38
A2A1 A2A1C1 A2A1C2	C8552-60129 C160-3046 0160-3047	1 1 1	BDARD ASSY:300 KHZ C:FXD MICA 250 PF 1% 100VDCW C:FXD MICA 3280 PF 1% 100VDCW	28480 28480 28480	08552-60129 0160-3046 0160-3047
A2A1C3 A2A1C4 A2A1L1 A2A1L2 A2A1L3	0160-3045 0160-3048 9100-2744 08552-6012 9100-2476	1 2 1 1	C:FXD MICA 53.8 PF 1% 100VDCW C:FXD MICA 8000 PF 1% 100VDCW COIL/CHOKE 7.8 UH 2% INDUCTOR:300 KHZ FILTER #2 COIL/CHOKE 52.3 UH 1%	28480 28480 82142 28480 82142	0160-3045 0160-3048 10132-17 08552-6012 10176-40

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A2A1L4 A2A1MP1 A2A1MP2 A7A1MP3 A3	08552-6011 08552-00113 08552-00112 08552-00123 08552-60149	1 1 1 1	INDUCTOR:300 KHZ FILTER #1 FILTER CAN ASSY:300 KHZ FILTER COVER ASSY:300 KHZ INSULATOR:300 KHZ FILTER BOARD ASSY:50 MHZ CONVERTER	28480 28480 28480 28480 28480	08552-6011 08552-00113 08552-00112 08552-00123 08552-60149
A 3 A 3 C 1 A 3 C 2 A 3 C 3 A 3 C 4	08552-60140 0160-3456 0160-3456 0160-3456 0180-0116	1 21	EXCHANGE ASSY:50 MHZ CONVERTER C:FXD CER 1000 PF 10% 250VDCW C:FXD CER 1000 PF 10% 250VDCW C:FXD CER 1000 PF 10% 250VDCW C:FXD ELECT 6.8 UF 10% 35VDCW	28480 56289 56289 56289 56289	08552-60140 C067F251F102KS22-CDH CC67F251F1C2KS22-CDH C067F251F102KS22-CDH 1500685X903582-DYS
A3C5 A3C6 A3C7 A3C8 A3C9	0180-0116 0160-3456 0160-3456 0160-2142	1	NOT ASSIGNED C:FXD ELECT 6.8 UF 10# 35VDCW C:FXD CER 1000 PF 10# 250VDCW C:FXD CER 1000 PF 10# 250VDCW C:FXD CER 1500 PF +100-0# 500VDCW	56289 56289 56289 91418	150D685X903582-DYS C067F251F102KS22-CDH C067F251F102KS22-CDH TYPE SM
A3C10 A3C11 A3C12 A3C13 A3C14	0160-2307 0121-0059 0160-2254 0160-2254 0121-0059	1 4 3	C:FXD MICA 47 PF 5% C:VAR CER 2-8 PF 300VDCW C:FXD CER 7.5 PF 500VDCW C:FXD CER 7.5 PF 500VDCW C:FXD CER 7.5 PF 500VDCW C:VAR CER 2-8 PF 300VDCW	28480 28480 72982 72982 28480	0160-2307 0121-0059 3C1-000-C0H0-759C 301-003-C0H0-759C 0121-0059
A3C15 A3C16 A3C17 A3C18 A3C19	0160-3456 0160-3456 0160-2201 0160-3456 0121-0059		C:FXD CER 1000 PF 10% 250VDCW C:FXD CER 1000 PF 10% 250VDCW C:FXD MICA 51 PF 5% C:FXD CER 1000 PF 10% 250VDCW C:VAR CER 2-8 PF 300VDCW	56289 56289 72136 56289 28480	C067F251F102KS22-CDH C067F251F102KS22-CDH RDM15E510J1C C067F251F102KS22-CDH 0121-0059
A 3C 2O A 3C R 1 A 3C P 2 A 3C R 3 A 3C R 4	0160-2254 1901-0050 1901-0050 1901-0050 1901-0050	7	C:FXD CER 7.5 PF 500VDCW DIODE:SI 200 MA AT 1V DIODE:SI 200 MA AT 1V DIODE:SI 200 MA AT 1V DIODE:SI 200 MA AT 1V	72982 07263 07263 07263 07263	301-000-CCH0-759C FDA 6308 FDA 6308 FDA 6308 FDA 6308
A 3L 1 A 3L 2 A 3L 3 A 3L 4	9140-0114 9140-0129 9140-0129 9100-0346	2 4 1	COIL:FXD RF 10 UH COIL:FXD RF 220 UH COIL:FXD RF 220 UH COIL:FXD C.05 UH 20%	28480 28480 28480 36196	9140-0114 9140-0129 9140-0129 H-10886
A3L5 A3L6 A3L7 A3L8 A3L9	9140-0096 9140-0096 9140-0114 9140-0096 9140-0096	4	COIL/CHOKE 1.00 UH 10% COIL/CHOKE 1.00 UH 10% COIL:FKD RF 10 UH COIL:FKD RF 10 UH 10% COIL/CHOKE 1.00 UH 10% COIL/CHOKE 1.00 UH 10%	99800 99800 28480 99800 99800	1537-12 1537-12 9140-0114 1537-12 1537-12
A301 A302 A3R1 A3R2 A3R3	1854-0247 1853-0089 0757-0438 0698-3155 0757-0420	1 1	TSTR:SI NPN TSTR:SI PNP R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD MET FLM 4.64K OHM 1% 1/8W R:FXD MET FLM 750 OHM 1% 1/8W	28480 80131 28480 28480 28480	1854-0247 2N4917 0757-0438 0698-3155 0757-0420
A3R4 A3R5 A3R6 A3R7 A3R8	0757-0159 0698-3429 0698-3441 0757-1092 0698-3438	1 1 2	R:FXD MET FLM 1000 OHM 1% 1/2W R:FXD MET FLM 19.6 OHM 1% 1/8W R:FXD MET FLM 215 OHM 1% 1/8W R:FXD MET FLM 287 OHM 1% 1/2W R:FXD MET FLM 147 OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0159 0698-3429 0698-3441 0757-1092 0698-3438
A3R8 A3R9 A3R9 A3R10 A3R11	0698-3433 0757-0180 0757-0394	1 1 8	FACTORY SELECTED PART R:FXD MET FLM 28.7 OHM 1% 1/8W FACTORY SELECTED PART R:FXD MET FLM 31.6 OHM 1% 1/8W R:FXD MET FLM 51.1 OHM 1% 1/8W	28480 28480 28480	0698-3433 0757-0180 0757-0394
A3P12 A3R13 A3R14 A3R15 A3R16	0757-0394 0757-0394 0757-0394 0757-0398 0698-0082	1 3	R:FXD MET FLM 51-1 OHM 1% 1/8W R:FXD MET FLM 51-1 OHM 1% 1/8W R:FXD MET FLM 51-1 OHM 1% 1/8W R:FXD MET FLM 75 OHM 1% 1/8W R:FXD MET FLM 464 OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0394 0757-0394 0757-0394 0757-0398 0698-0082
A3R17 A3T1 A3T2 A3T3 A3T4	0757-0465 08552-80105 08552-6044 08552-80105 08552-6044	12 2 2	R:FXD MET FLM 190K OHM 1% 1/8W TRANSFORMER:RF 5 PIN TRANSFORMER:RF 5 PIN TRANSFORMER:RF 5 PIN TRANSFORMER:RF 5 PIN	28480 50436 50436 50436 50436	0757-0465 08552-80105 08552-6044 08552-80105 08552-6044
A3A1 A3A1 A3A1C1 A3A1C2 A3A1C3	08552-60148 0160-0778 0160-2236 0160-0145	1 2 1 2	FILTER ASSY:50 MHZ SEALED UNIT:NRFR C:FXD CER 56 PF 10% 500VDCW C:FXD CER 1.0 PF 5D0VDCW C:FXD MICA 82 PF 2% 100VDCW	50436 01121 72982 84171	08552-60148 FR28 301-000-COKO-109C RDM15E820G1S
A3A1C4 A3A1C5 A3A1C6 A3A1C7 A3A1C8	0160-2258 0121-0036 0121-0036 0160-2258 0160-2258	10	C:FXD CER 11 PF 5% 500VDCW C:VAR CER 5.5-18 PF C:VAR CER 5.5-18 PF C:FXD CER 11 PF 5% 500VDCW C:FXD CER 11 PF 5% 500VDCW	72982 28480 28480 72982 72982	301-000-C060-110J 0121-0036 0121-0036 301-000-C060-110J 301-000-C060-110J

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A3A1C9 A3A1C10	0121-0036 0121-0036	ļ	C:VAR CER 5.5-18 PF C:VAR CER 5.5-18 PF	28480 28480	0121-0036 0121-0036
A3A1C11 A3A1C12 A3A1C13	0160+2258 0160-0145 0160-0778	,	C:FXD CER 11 PF 5% 500VDCW C:FXD MICA 82 PF 2% 100VDCW C:FXD CER 56 PF 10% 500VDCW	72982 84171 01121 98291	301-000-C0G0-110J RDM15E820G1S F82B
A3A1J1 A3A1L1 A3A1L2 A3A1L3 A3A1MP1	1250-0829 08552-6023 08552-6017 08552-6023 08552-00127	1 2 7 1	CONNECTOR:RF 50-OHM SCREW ON TYPE INDUCTOR ASSY:AIR CORE INDUCTOR ASSY:50 MHZ INDUCTOR ASSY:AIR CORE SHIELD CAN:50 MHZ FILTER	28480 28480 28480 28480 28480	50-045-4610 08552-6023 08552-6017 08552-6023 08552-00127
A3A1MP2 A3A1MP3 A3A2 A3A2	08552-0022 08552-0023 08552-60112 0380-0810	2 2 1 4	SHIELD COVER:47 MHZ OSC INSULATOR:47 MHZ OSC OSCILLATOR ASSY:47 MHZ SEALED UNIT:NRFR STANDOFF:0-437* LG	28480 28480 50436	08552-0022 08552-0023 08552-60112 153087/16-11
A 3 A 2 C 1 A 3 A 2 C 2 A 3 A 2 C 3 A 2 A 2 C 4 A 3 A 2 C 5	0122-0263 0160-3456 0160-2200 0160-3456 0180-0116	1 1	C:VOLTAGE VAR 47 PF 10% 60WV C:FXD CER 1000 PF 10% 250VDCW C:FXD MICA 43 PF 5% C:FXD CER 1000 PF 10% 250VDCW C:FXD ELECT 6.8 UF 10% 35VDCW	04713 56289 72136 56289 56289	1N5148 C067F251F102KS22-CDH RDM15E430J3C C067F251F102KS22-CDH 150D685X903582-DYS
A3A2C6 A3A2C7 A3A2C8 A3A2C9 A3A2C10	0160-2261 0160-2265 0160-3456 0160-3456 0160-3456	1 2	C:FXD CER 15 PF 5% 500 VDCH C:FXD CER 22 PF 5% 500 VDCH C:FXD CER 1000 PF 10% 250 VDCH C:FXD CER 1000 PF 10% 250 VDCH C:FXD CER 1000 PF 10% 250 VDCH	72982 72982 56289 56289 56289	3C1-NPO-15 PF 3C1-NPO-22PF CO67F251F102KS22-CDH CO67F251F102KS22-CDH CC67F251F102KS22-CDH
A3A2C11 A3A2C12 A3A2C13 A3A2C14 A3A2C15	0160-3456 0160-3456 0160-3456 0160-0134 0160-2199	2 2	C:FXD CER 1000 PF 10% 250VDCW C:FXD CER 1000 PF 10% 250VDCW C:FXD CER 1000 PF 10% 250VDCW C:FXD MICA 220PF 5% 300VDCW C:FXD MICA 30 PF 5% 300VDCW	56289 56289 56289 14655 28480	C067F251F102KS22-CDH C067F251F102KS22-CDH C067F251F102KS22-CDH RDM15F221J3C 0160-2199
A3A2CR1 A3A2CR2 A3A2CR3 A3A2J1 A3A2L1	1901-0040 1902-0041 1902-0041 1250-1194 08552-80103	2 1 1	DIODE:SILICON 50 MA 30 MV DIODE:BREAKDOWN 5.11V 5% DIODE:BREAKDOWN 5.11V 5% CONNECTOR:RF BULKHEAD RECEPTACLE INDUCTOR ASSY:47 MHZ OSCILLATOR	07263 04713 04713 98291 28480	FDG1088 SZ10939-98 SZ10939-98 52-045-4610 08552-80103
A 3A 2L 2 A 3A 2MP1 A 3A 2MP2 A 3A 2MP3 A 3A 2MP4	9100-2258 0340-0038 0340-0039 08552-00114 08552-0022	1 5 5 1	COIL/CHOKE 1.20UH 10% FEEDTHRU:TERMINAL INSULATOR:BUSHING SHIELD CAN:47 MC OSCILLATOR SHIELD COVER:47 MHZ OSC	28480 28480 28480 28480 28480	9100-2258 0340-0038 0340-0039 08552-00114 08552-0022
A 3 A 2 M P 5 A 3 A 2 Q 1 A 3 A 2 Q 2 A 3 A 2 Q 3 A 3 A 2 Q 3	08552-0023 1854-0238 1853-0038 1854-0019 1205-0037	1 1 2	INSULATOR:47 MHZ OSC TSTR:SI NPN TSTR:SI PNP TSTR:SI NPN HEAT SINK:TRANSISTOR	28480 80131 28480 28480 28480	08552-0023 2N3933 1853-0038 1854-0019 1205-0037
A 3A 2Q4 A 3A 2Q4 A 3A 2R1 A 3A 2R2 A 3A 2R3	1854-0019 1205-0037 0698-3157 0757-0465 0757-0278	2	TSTR:SI NPN HEAT SINK:TRANSISTOR R:FXD MET FLM 19.6K OHM 1% 1/8W R:FXD MET FLM 100K OHM 1% 1/8W R:FXD MET FLM 1.78K OHM 1% 1/8W	28480 28480 28480 28480 28480	1854-0019 1205-0037 0698-3157 0757-0465 0757-0278
A 3A 2R4 A 3A 2R5 A 3A 2R6 A 3A 2R7 A 3A 2R8	0757-0405 0698-3441 0757-0279 0757-0401 0757-0403	1	R:FXD MET FLM 162 OHM 1% 1/8W R:FXD MET FLM 215 OHM 1% 1/8W R:FXD MET FLM 3-16K OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 121 OHM 1% 1/8W IF REPLACING EITHER/OR A3A2R7,8, REPLACE BOTH	28480 28480 28480 28480 28480	0757-0405 0698-3441 0757-0279 0757-0401 0757-0403
A3A2R9 A3A2R10 A3A2R11 A3A2R12 A3A2R13	0757-0417 0757-0280 0757-0279 0757-0280 0757-0379	1	R:FXD MET FLM 562 OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 31.6K OHM 1% 1/8W R:FXD MET FLM 31.6K OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0417 0757-0280 0757-0280 0757-0280 0757-0379
A 3A 2R14 A 3A 2R15 A 3A 2R16 A 3A 2T1 A4	0757-0401 0757-0402 0698-3441 08552-80102 08552-60111	3 1 1	R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 110 OHM 1% 1/8W R:FXD MET FLM 215 OHM 1% 1/8W INDUCTOR ASSY:47 MHZ OUT BOARD ASSY:CRYSTAL FILTER	28480 28480 28480 28480 28480	0757-0401 0757-0402 0698-3441 08552-80102 08552-60111
A4 A4C1 A4C2 A4C3 A4C4	08552-60141 0150-0121 0160-2055 0160-2055 0160-2055	1 3	EXCHANGE ASSY:CRYSTAL FILTER C:FXD CER 0-1 UF +80-20% 50VDCW C:FXD CER 0-01 UF +80-20% 100VDCW C:FXD CER 0-01 UF +80-20% 100VDCW C:FXD CER 0-01 UF +80-20% 100VDCW	28480 56289 56289 56289 56289	08552-60141 5C508IS-CML C023F101F103ZS22-CDH C023F101F103ZS22-CDH C023F101F103ZS22-CDH
A4C5 A4C6 A4C7 A4C8 A4C9	0180-0197 0180-0291 0180-1745 0160-2055 0160-2055	15 1	C:FXD ELECT 2.2 UF 10% 20VDCW C:FXD ELECT 1.0 UF 10% 35VDCW C:FXD ELECT 1.5 UF 10% 20VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW	56289 56289 28480 56289 56289	150D225X9020A2-DYS 150D105X9035A2-DYS 0180-1745 C023F101F103ZS22-CDH C023F101F103ZS22-CDH

Replaceable Parts Model 8552B

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A4C10 A4C11 A4C12 A4C13 A4C14	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055		C:FXD CER 0.Cl UF +80-20% 109VDCW C:FXD CER 0.01 UF +80-20% 100VDCW	56289 56289 56289 56289 56289	CC23F101F103ZS22-C0H CO23F101F103ZS22-C0H CO23F101F103ZS22-C0H CC23F101F103ZS22-C0H CC23F101F103ZS22-C0H
A4C15 A4C16 A4C17 A4C18 A4C19	0160-2308 0160-2202 0180-0197 0121-0443 0121-0105	1 1 5	C:FXD MICA 36 PF 5% C:FXD MICA 75 PF 5% C:FXD ELECT 2-2 UF 10% 20VDCW C:VAR CER 3-9 PF 160VDCW C:VAR CER 3-35 PF NPO	28480 28480 56289 28480 28480	0160-2308 0160-2202 150D225X9020A2-DYS 0121-0443 0121-0105
A4C20 A4C21 A4C22 A4C23 A4C24	0160-3460 0160-3060 0160-2055 0160-2055 0160-3460		C:FXD CER 0.05 UF +80-20% 100VDCW C:FXD CER 0.1 UF 20% 25VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.05 UF +80-20% 100VDCW	56289 56289 56289 56289 56289	CC23E101L503Z522-CDM 3C42A-CML CC23F101F103Z522-CDH C023F101F103Z522-CDH C023E101L503Z522-CDM
A4C25 A4C26 A4C27 A4C28 A4C29	C160-2055 C140-0191 O160-2055 O160-2055 O140-0205	5	C:FXD CER 0.01 UF +80-20% 100VDCN C:FXD MICA 56 PF 5% 300VDCN C:FXD CER 0.01 UF +80-20% 100VDCN C:FXD CER 0.01 UF +80-20% 100VDCN C:FXD MICA 62 PF 5% 300VDCN	56289 19701 56289 56289 00853	C023F101F103ZS22-CDH RDM15E560J 300V C023F101F103ZS22-CDH C023F101F103ZS22-COH RDM15F629J3C
A 4C 30 A 4C 31 A 4C 32 A 4C 33 A 4C 34	0121-0036 0180-0197 0121-0443 0160-3460 0121-0105		C:VAR CER 5.5-18 PF C:FXD ELECT 2.2 UF 10% 20VDCW C:VAR CER 3-9 PF 160VDCW C:FXD CER 0.05 UF +80-20% 10CVDCW C:VAR CER 9-35 PF NPO	28480 56289 28480 56289 28480	G121-0036 150D225X9020A2-DYS 0121-0443 C023E101L5037522-COM 0121-0105
A4C35 A4C36 A4C37 A4C38 A4C39	0160-2055 0160-2055 0160-3460 0160-2055 0140-0191		C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.05 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD MICA 56 PF 5% 300VDCW	56289 56289 56289 56289 19701	C023F101F103ZS22-CDH C023F101F103ZS22-CDH C023E101L503ZS22-CDH C023E101F103ZS22-CDH RDM15E560J 300V
A4C40 A4C41 A4C42 A4C43 A4C44	0160-2055 0160-2055 0140-0205 0121-0036 0180-0197		C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD MICA 62 PF 5% 300VDCW C:YAR CER 5.5-18 PF C:YAR CER 5.5-18 PF C:FXD ELECT 2.2 UF 10% 20VDCW	56289 56289 00853 28480 56289	C023F101F103ZS22-CDH C023F101F103ZS22-CDH R0M15E620J3C 0121-0036 15C0225X9020A2-DYS
A4C45 A4C46 A4C47 A4C48 A4C49	0121-0443 0160-3460 0121-0105 0160-3060 0160-2055		C:VAR CER 3-9 PF 160VDCW C:FXD CER 0.05 UF +80-20% 100VDCW C:VAR CER 9-35 PF NPO C:FXD CER 0.1 UF 20% 25VDCW C:FXD CER 0.01 UF +80-20% 100VDCW	28480 56289 28480 56289 56289	0121-0443 C023E101L503ZS22-CDM 0121-G105 3C42A-CML C023F101F103ZS22-CDH
A4C50 A4C51 A4C52 A4C53 A4C54	0160-3460 0160-2055 0160-2055 0160-2055 0160-2055		C:FXD CER 0.05 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW	56289 56289 56289 56289 56289	CC23E101L503Z522-CDM C023F101F103Z522-CDH C023F101F103Z522-CDH CC23F101F103Z522-CDH C023F101F103Z522-CDH
A4C55 A4C56 A4C57 A4C58 A4C59	0140-0191 0140-0205 0121-0036 0180-0197 0121-0443		C:FXD MICA 56 PF 5% 300VDCW C:FXD MICA 62 PF 5% 300VDCW C:VAR CER 5.5-18 PF C:FXD ELECT 2.2 UF 10% 20VDCW C:VAR CER 3-9 PF 160VDCW	19701 00853 28480 56289 28480	RDM15E560J 300V RDM15E62CJ3C 0121-0036 1500225X9020A2-DYS 0121-0443
A4C60 A4C61 A4C62 A4C63 A4C64	0160-3460 0121-0105 0160-3060 0160-2055 0160-2055		C:FXD CER 0.05 UF +80-20% 100VDCW C:VAR CER 9-35 PF NPO C:FXD CER 0.1 UF 20% 25VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW	56289 28480 56289 56289 56289	C023E101L503ZS22-CDM 0121-0105 3C42A-CML CC23E101F103ZS22-CDH C023F101F103ZS22-CDH
A4C65 A4C66 A4C67 A4C68 A4C69	0160-3460 0140-0191 0160-2055 0160-2055 0140-0205		C:FXD CER 0.05 UF +80-2C% 100VDCW C:FXD MICA 56 PF 5% 309VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER C.01 UF +80-20% 100VDCW C:FXD MICA 62 PF 5% 300VDCW	56289 19701 56289 56289 00853	CC23F101L503Z522-CDM ROM15F560J 300V C023F101F1C3Z522-CDH C023F101F103Z522-CDH ROM15E62QJ3C
A4C70 A4C71 A4C72 A4C73 A4C74	0121-0036 0160-2055 0180-0197 0121-0443 0121-0105		C:VAR CER 5.5-18 PF C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD ELECT 2.2 UF 10% 20VDCW C:VAR CER 3-9 PF 160VDCW C:VAR CER 9-35 PF NPD	28480 56289 56289 28480 28480	0121-0036 C023F101F103ZS22-CDH 1500225X9020A2-DYS G121-0443 0121-0105
A4C75 A4C76 A4C77 A4C78 A4C79	0160-3060 0160-3460 0160-2055 0160-3460 0160-2055		C:FXD CER 0-1 UF 20% 25VDCW C:FXD CER 0-05 UF +80-20% 100VDCW C:FXD CER 0-01 UF +80-20% 100VDCW C:FXD CER 0-05 UF +80-20% 100VDCW C:FXD CER 0-01 UF +80-20% 100VDCW	56289 56289 56289 56289 56289	3C42A-CML CC23E101L503Z522-C0M CC23F101F103Z522-CDM C023E101L503Z522-CDM C023F101F103Z522-CDM
A4C80 A4C81 A4C82 A4C83 A4C84	0160-2055 0160-2055 0160-2055 0160-2150 0160-2257		C:FXD CER 0.01 UF +80-20% 100VDCM C:FXD CER 0.01 UF +80-20% 100VDCM C:FXD CER 0.01 UF +80-20% 100VDCM C:FXD MICA 33 PF 5% C:FXD CER 10 PF 5% 500VDCM	56289 56289 56289 28480 72982	CC23F101F103ZS22-CDH CC23F101F103ZS22-CDH CC23F101F103ZS22-CDH 0160-2150 3C1-000-CDHO-100J

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
∆ 4C85	0160-2055		C:FXD CER 0.01 UF +80~20% 100VDCW	56289	CC23F101F103ZS22-CDH
A4C86	0160-3460		C:FXD CER 0.05 UF +80-20% 100VDCW	56289	C023E101L503ZS22-CDM
A4C87	0160-2150		C:FXD MICA 33 PF 5%	28480	0160-2150
A4C88	0180-0197		C:FXD ELECT 2.2 UF 10% 2CVDCW	56289	1500225X9020A2-DYS
A4C89	0160-2055		C:FXD CER C.01 UF +80-20% 100VDCW	56289	C023F101F103ZS22-CDH
44090	0160-3460		C:FXD CER 0.05 UF +80-20% 10CVDCW	56289	C023E101L503Z522-CDM
44091	0160-2055		C:FXD CER 0.01 UF +80-20% 10CVDCW	56289	G023F101F103Z522-CDH
44092	0160-2055		C:FXD CER 0.01 UF +80-20% 10CVDCW	56289	G023F101F103Z522-CDH
44093	0160-2055		C:FXD CER 0.01 UF +80-20% 10CVDCW	56289	G023F101F103Z522-CDH
44094	0160-2055		C:FXD CER 0.01 UF +80-20% 10CVDCW	56289	G023F101F103Z522-CDH
A4C95	0160-2055		C:FXD CER 0.01 UF +80~20% 100VDCW	56289	C023F101F103ZS22-CDH
A4C96	0160-3060		C:FXD CER 0.1 UF 20% 25VDCW	56289	3C42A-CML
A4CR1	1901-0040		DIODE:SILICON 50 MA 30 WV	07263	FDG1088
A4CR2	1901-0040		DIODE:SILICON 50 MA 30 WV	07263	FDG1088
A4CR3	1901-0040		DIODE:SILICON 50 MA 30 WV	07263	FDG1088
A4CR4 A4CR5 A4CR6 A4CR7 A4CR8	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIODE:SILICON 50 MA 30 MV	07263 07263 07263 07263 07263	FDG1088 FDG1088 FDG1088 FDG1088 FDG1088
A4CR9	1901-0040	5	DIODE:SILICON 50 MA 30 MV	67263	FDG1088
A4CR11	1901-0040		DIODE:SILICON 50 MA 30 MV	67263	FDG1088
A4CR11	1901-0639		DIODE:PIN 1MHZ TO 1GHZ	28480	1901-0639
A4CR12	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
A4CR13	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
A4CR14	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
A4CR15	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1098
A4CR16	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1098
A4CR17	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
A4CR18	1901-0639		DIODE:PIN 1MHZ TO 1GHZ	28480	1901-0639
A4CR19 A4CR27 A4CR21 A4CR22 A4CR23	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIODE:SILICON 50 MA 30 MV	07263 07263 07263 07263 07263	FDG1088 FDG1088 FDG1088 FDG1038 FDG1038
A 4CR 24	1901-0040		DIODE:SILICON 50 MA 30 WV	07263	FDG1088
A 4CR 25	1901-0639		DIODE:PIN 1MHZ TO 1GHZ	28480	1901-0639
A 4CR 26	1901-0040		DIODE:SILICON 50 MA 30 WV	07263	FDG1088
A 4CR 27	1901-0040		DIODE:SILICON 50 MA 30 WV	07263	FDG1088
A 4CR 28	1901-0040		DIODE:SILICON 50 MA 30 WV	07263	FDG1088
A 4C P 29	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
A 4C R 30	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
A 4C R 31	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
A 4C R 32	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
A 4C R 33	1901-0639		DIODE:PIN 1MHZ TO 1GHZ	28480	1901-0639
A4CP 34	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
A4CR 35	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
A4CR 36	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
A4CR 37	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
A4CP 38	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
A 4CR 39	1901-0040	·	DIODE:SILICON 50 MA 30 MV	07263	FDG1988
A 4CR 4C	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1988
A 4CR 41	1901-0639		DIODE:PIN 1MHZ TO 1GHZ	28480	1901-0639
A 4CR 42	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
A 4CR 43	1901-0040		OIODE:SILICON 50 MA 30 MV	07263	FDG1088
14CR44	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
4CP45	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
14CR46	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
4CR47	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
4CR48	1901-0040		DIODE:SILICON 50 MA 30 MV	07263	FDG1088
A4CP49	1901-0040	6	DIODE:SILICON 50 MA 30 MV	07263	FDG1088
A4L1	9100-1648		COIL/CHOKE 560 UH 5%	82142	19-1331-29J
A4L2	9100-1648		COIL/CHOKE 560 UH 5%	82142	19-1331-29J
A4L3	9140-0129		COIL:FXD RF 220 UH	28480	9140-0129
A4L4	9100-1629		COIL/CHOKE 47.0 UH 5%	28480	9100-1629
A4L5 A4L6 A4L7 A4L8 A4L9	9100-1629 9100-1648 9100-1648 9100-1648 9100-1648		COIL/CHOKE 47.0 UH 5% COIL/CHOKE 560 UH 5% COIL/CHOKE 560 UH 5% COIL/CHOKE 560 UH 5% COIL/CHOKE 560 UH 5%	28480 82142 82142 82142 82142	9100-1629 19-1331-29J 19-1331-29J 19-1331-29J 19-1331-29J
A4L17 A4L11 A4L12 A4L13 A4L14	9100-1629 9100-1622 9100-1622 9100-1629 9100-1622	10	COIL/CHOKE 47.0 UH 5% COIL/CHOKE 24.0 UH 5% COIL/CHOKE 24.0 UH 5% COIL/CHOKE 47.0 UH 5% COIL/CHOKE 47.0 UH 5% COIL/CHOKE 24.0 UH 5%	28480 28480 28480 28480 28480	9100-1629 9100-1622 9100-1622 9100-1629 9100-1622

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A4L15 A4L16 A4L17 A4L18 A4L19	9100-1622 9100-1629 9100-1622 9100-1622 9100-1629		COIL/CHOKE 24.0 UH 5% COIL/CHOKE 47.0 UH 5% COIL/CHOKE 24.0 UH 5% COIL/CHOKE 24.0 UH 5% COIL/CHOKE 24.0 UH 5%	28480 28480 28480 28480 28480	9100-1622 9100-1622 9100-1622 9100-1622 9100-1629
A4L 20 A4L 21 A4L 22 A4L 23 A4L 24	9100-1622 9100-1622 9100-1629 9100-1622 9100-1622		COIL/CHOKE 24.0 UH 5% COIL/CHOKE 24.0 UH 5% COIL/CHOKE 47.0 UH 5% COIL/CHOKE 24.0 UH 5% COIL/CHOKE 24.0 UH 5%	28480 28480 28480 28480 28480	9100-1622 9100-1622 9100-1629 9100-1622 9100-1622
A4L25 A4L26 A4MP1 A4MP10 A4Q1	9100-1629 9140-0210 0360-0124 0360-0124 1854-0071		COIL/CHOKE 47.0 UH 5% COIL/CHOKE 100 UH 5% TERMINAL:SOLDER LUG TERMINAL:SOLDER LUG TSTR:SI NPN(SELECTED FROM 2N3704)	28480 82142 28480 28480 28480	9100-1629 15-1315-12J 0360-0124 0360-0124 1854-0071
A4Q2 A4Q3 A4Q4 A4Q5 A4Q6	1853-0020 1853-0020 1854-0019 1854-0071 1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI NPN TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP(SELECTED FROM 2N3702)	28480 28480 28480 28480 28480	1853-0020 1853-0020 1854-0019 1854-0071 1853-0020
A407 A408 A409 A4010 A4011	1853-0020 1854-0019 1854-0071 1853-0020 1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI NPN TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI PNP(SELECTED FROM 2N3702)	28480 28480 28480 28480 28480	1853-0020 1854-0019 1854-0071 1853-0020 1853-0020
A4012 A4013 A4014 A4015 A4016	1854-0019 1854-0071 1853-0020 1853-0020 1854-0019		TSTR:SI NPN TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI NPN	28480 28480 28480 28480 28480	1854-C019 1854-C071 1853-C02C 1853-002C 1854-C019
A4017 A4018 A4019 A4020 A4021	1854-0071 1853-0020 1853-0020 1854-0019 1854-0071		TSIR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI NPN TSTR:SI NPN(SELECTED FROM 2N3704)	28480 28480 28480 28480 28480	1854-0071 1853-0020 1853-0020 1854-0019 1854-0071
A4Q22 A4Q23 A4Q24 A4R1 A4R2	1853-0020 1854-0071 1854-0019 0698-7253 0698-7223	3 5	TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN R:FXD MET FLM 5-11K OHM 2% 1/8W R:FXD FLM 287 OHM 2% 1/8W	28480 28480 28480 28480 28480	1853-0020 1854-0071 1854-0119 0698-7253 0698-7223
A4R3 A4R4 A4R5 A4R6 A4R7	0698-7267 0698-7212 0698-7260 0698-7267 0698-7212	5 13 3	R:FXD MET FLM 19.6K OHM 2% 1/8W R:FXD FLM 100 OHM 2% 1/8W R:FXD FLM 10K OHM 2% 1/8W R:FXD MET FLM 19.6K OHM 2% 1/8W R:FXD FLM 100 OHM 2% 1/8W	28480 28480 28480 28480 28480	0693-7267 0698-7212 0698-7260 0698-7267 0698-7212
A4RB A4R9 A4R10 A4R11 A4R12	0698-7260 C698-7268 0698-7260 0698-7212 0698-7213	1	R:FXD FLM 10K 0HM 2% 1/8W R:FXD FLM 21.5K 0HM 2% 1/8W R:FXD FLM 10K 0HM 2% 1/8W R:FXD FLM 100 0HM 2% 1/8W R:FXD FLM 110 0HM 2% 1/8W	28480 28480 28480 28480 28480	0698-7260 0698-7268 0698-7260 0698-7212 0698-7213
A4R13 A4R14 A4R15 A4R16 A4R17	0698-7212 0698-7209 0698-7212 0698-7212 0698-7236	1	R:FXD FLM 100 OHM 2% 1/8W R:FXD FLM 75 OHM 2% 1/8W R:FXD FLM 100 OHM 2% 1/8W R:FXD FLM 100 OHM 2% 1/8W R:FXD FLM 1K OHM 2% 1/8W	28480 28480 28480 28480 28480	0698-7212 0698-7209 C698-7212 C698-7212 C698-7236
A4R18 A4R19 A4R20 A4R21 A4R22	0698-3334 0698-7284 0698-7231 0698-7227 0698-7202	1 2 14 6 5	R:FXD MET FLM 178 OHM 1% 1/2W R:FXD FLM 100K OHM 2% 1/8W R:FXD FLM 619 OHM 2% 1/8W R:FXD FLM 422 OHM 2% 1/8W R:FXD FLM 38.3 OHM 2% 1/8W	28480 28480 28480 28480 28480	0698-3334 0698-7284 0698-7231 0698-7227 0698-7202
A4R23 A4R24 A4R25 :: A4R26 :: A4R27	C698-7231 C698-7214 C698-7269 C698-7277 C698-7236	5	R:FXO FLM 619 OHM 2% 1/8W R:FXD FLM 121 OHM 2% 1/8W R:FXD FLM 23.7K OHM 2% 1/8W(FACTORY SELECT) R:FXD FLM 51.1K OHM 2% 1/8W(FACTORY SELECT) R:FXD FLM 1K OHM 2% 1/8W	28480 28480 28480 28480 28480	0698-7231 0698-7214 0698-7269 6698-7277 0698-7236
A 4F 2B A 4R 29 A 4R 30 A 4R 31 A 4R 32	0698-7223 0698-7227 0698-7236 0698-7200 0698-7212	5	R:FXD FLM 287 OHM 2% 1/8W R:FXD FLM 422 OHM 2% 1/8W R:FXD FLM 1K OHM 2% 1/8W R:FXD FLM 31.6 OHM 2% 1/8W R:FXD FLM 31.6 OHM 2% 1/8W	28480 28480 28480 28480 28480	0698-7223 0698-7227 0698-7236 0698-7200 0698-7212
A4R33 A4R34 A4R35 A4R36 A4R37	0698-7240 0698-7244 0698-7244 0698-7256 0698-7244	6 18 4	R:FXD MET FLM 1.47K OHM 2% 1/8W R:FXD FLM 2.15K OHM 2% 1/8W R:FXD FLM 2.15K OHM 2% 1/8W R:FXD FLM 6810 OHM 2% 1/8W R:FXD FLM 6810 OHM 2% 1/8W	28480 28480 28480 28480 28480	0698-7240 0698-7244 0698-7244 0698-7256 0698-7244

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
44R38	0757-1060	1	R:FXD MET FLM 196 OHM 1% 1/2W	28480	0757-1060
44R39	C698-7231		R:FXD FLM 619 OHM 2% 1/8W	28480	0698-7231
44R40	0698-7231		R:FXD FLM 619 OHM 2% 1/8W	28480	0698-7231
44R41	0698-7202		R:FXD FLM 38.3 OHM 2% 1/8W	28480	0698-7202
44R42	0698-7231		R:FXD FLM 38.3 OHM 2% 1/8W	28480	0698-7231
A 4R 4 3 A 4P 4 4	C698-7214 C698-7270 0698-7278 0698-7236 0698-7223	3 3	R:FXO FLM 121 OHM 2% 1/8W R:FXO FLM 26.1K DHM 2% 1/8W(FACTORY SELECT) R:FXO FLM 56.2K OHM 2% 1/8W(FACTORY SELECT) R:FXO FLM 1K OHM 2% 1/8W R:FXO FLM 287 OHM 2% 1/8W	28480 28480 28480 28480 28480	7698-7214 0698-7270 0698-7278 6698-7236 0698-7223
14848 14849 14853 14853 14853 14853	0698-7227 0698-7236 0698-7200 0698-7212 0698-7240		R:FXD FLM 422 OHM 2% 1/8W R:FXD FLM 1K OHM 2% 1/8W R:FXD FLM 31.6 OHM 2% 1/8W R:FXD FLM 100 OHM 2% 1/8W R:FXD MET FLM 1.47K OHM 2% 1/8W	28480 28480 28480 28480 28480	0698-7227 0698-7236 0698-7200 0698-7212 0698-7240
A4R53	0698-7244	3	R:FXD FLM 2.15K OHM 2% 1/8W	28480	0698-7244
A4R54	0698-7244		R:FXD FLM 2.15K OHM 2% 1/8W	28480	0698-7244
A4R55	0698-7256		R:FXD FLM 6810 OHM 2% 1/8W	28480	0698-7256
A4R56	0698-7244		R:FXD FLM 2.15K OHM 2% 1/8W	28480	0698-7254
A4R57	0757-1090		R:FXD MET FLM 261 OHM 1% 1/2W	28480	0757-1090
A4R58	0698-7231		R:FXD FLM 619 OHM 2% 1/8W	28480	0698-7231
A4R59	0698-7231		R:FXD FLM 619 OHM 2% 1/8W	28480	0698-7231
A4R60	0698-7202		R:FXD FLM 38.3 OHM 2% 1/8W	28480	0698-7202
A4R61	0698-7231		R:FXD FLM 619 OHM 2% 1/8W	28480	0698-7231
A4R62	0698-7214		R:FXD FLM 121 OHM 2% 1/8W	28480	0698-7231
A4R63	0698-7236		R:FXD FLM 1K OHM 2% 1/8W	28480	0698-7236
A4R64	0698-7227		R:FXD FLM 422 OHM 2% 1/8W	28480	0698-7227
A4P65	0698-7236		R:FXD FLM 1K OHM 2% 1/8W	28480	0698-7236
A4R66	0698-7240		R:FXD MET FLM 1.47K OHM 2% 1/8W	28480	0698-7240
A4R67	0698-7244		R:FXD FLM 2.15K OHM 2% 1/8W	28480	0698-7244
A4R68	0698-7257	1	R:FXO FLM 7.5K OHM 2% 1/8W	28480	0698-7257
A4R69	0698-7244		R:FXO FLM 2.15K OHM 2% 1/8W	28480	0698-7244
A4R70 ×	0698-7270		R:FXO FLM 26.1K OHM 2% 1/8W(FACTORY SELECT)	28480	0698-7270
A4R71 ×	0698-7278		R:FXO FLM 56.2K OHM 2% 1/8W(FACTORY SELECT)	28480	0698-7278
A4R72	0698-7223		R:FXO FLM 287 OHM 2% 1/8W	28480	0698-7223
A4R73	0698-7212		R:FXO FLM 100 OHM 2% 1/8W	28480	0698-7212
A4R74	0698-7200		R:FXO FLM 31.6 OHM 2% 1/8W	28480	0698-7200
A4R75	0698-7244		R:FXO FLM 2.15K OHM 2% 1/8W	28480	0698-7244
A4R76	0757-1090		R:FXO MET FLM 261 OHM 1% 1/2W	28480	0757-1090
A4R77	0698-7231		R:FXO FLM 619 OHM 2% 1/8W	28480	0698-7231
A4R78	0698-7231		R:FXD FLM 619 OHM 2% 1/8W	28480	0698-7231
A4R79	0698-7202		R:FXD FLM 38.3 OHM 2% 1/8W	28480	0698-7202
A4R80	0698-7231		R:FXD FLM 619 OHM 2% 1/8W	28480	0698-7231
A4R81 #	0698-7270		R:FXD FLM 26.1K OHM 2% 1/8W(FACTORY SELECT)	28480	0698-7270
A4R82 #	0698-7278		R:FXD FLM 56.2K OHM 2% 1/8W(FACTORY SELECT)	28480	0698-7278
A4R83	0698-7214		R:FXD FLM 121 OHM 2% 1/8W	28480	0698-7214
A4R84	0698-7223		R:FXD FLM 287 OHM 2% 1/8W	28480	0698-7223
A4R85	0698-7212		R:FXD FLM 100 OHM 2% 1/8W	28480	0698-7212
A4R86	0698-7236		R:FXD FLM 1K OHM 2% 1/8W	28480	0698-7236
A4R87	0698-7200		R:FXD FLM 31.6 OHM 2% 1/8W	28480	0698-7200
A4R88	0698-7244		R:FXD FLM 2.15K OHM 2% 1/8W	28480	0698-7244
A4R89	0698-7227		R:FXD FLM 422 OHM 2% 1/8W	28480	0698-7227
A4R90	0698-7236		R:FXD FLM 1K OHM 2% 1/8W	28480	0698-7236
A4P91	0757-1090		R:FXD MET FLM 261 OHM 1% 1/2W	28480	0757-1090
A4R92	0698-7240		R:FXD MET FLM 1.47K OHM 2% 1/8W	28480	0698-7240
A4293	0698-7244		R:FXD FLM 2.15K OHM 2% 1/8W	28480	0698-7244
A4894	0698-7231		R:FXD FLM 619 OHM 2% 1/8W	28480	0698-7231
A4895	0698-7231		R:FXD FLM 619 OHM 2% 1/8W	28480	0698-7231
A4896	0698-7256		R:FXD FLM 6810 OHM 2% 1/8W	28480	0698-7256
A4897	0698-7244		R:FXD FLM 2.15K OHM 2% 1/8W	28480	0698-7244
A4R98	0698-7202	1	R:FXD FLM 38.3 OHM 2% 1/8W	28480	0698-7202
A4R99	0698-7231		R:FXD FLM 619 OHM 2% 1/8W	28480	0698-7231
A4R100	0698-7212		R:FXD FLM 100 OHM 2% 1/8W	28480	0698-7212
A4R101	0698-7214		R:FXD FLM 121 OHM 2% 1/8W	28480	0698-7214
A4R102	0698-7267		R:FXD MET FLM 19.6K OHM 2% 1/8W	28480	0698-7267
A4R103	0698-7236		R:FXD FLM 1K OHM 2% 1/8W	28480	0698-7236
A4R104	0698-7253		R:FXD MET FLM 5.11K OHM 2% 1/8W	28480	0698-7253
A4R105	0698-7227		R:FXD FLM 422 OHM 2% 1/8W	28480	0698-7227
A4R106	0698-7236		R:FXD FLM 1K OHM 2% 1/8W	28480	0698-7236
A4R107	0698-7267		R:FXD MET FLM 19.6K OHM 2% 1/8W	28480	0698-7267
A4R108	0698-7240	1	R:FXD MET FLM 1.47K OHM 2% 1/8W	28480	0698-7240
A4R109	0698-7244		R:FXD FLM 2.15K OHM 2% 1/8W	28480	0698-7244
A4R110	0698-7265		R:FXD FLM 16.2K OHM 2% 1/8W	28480	0698-7265
A4R111	0698-7284		R:FXD FLM 100K OHM 2% 1/8W	28480	0698-7284
A4R112	0698-7256		R:FXD FLM 6810 OHM 2% 1/8W	28480	0698-7256

See introduction to this section for ordering information $^{\rm H}$ RECOMMENDED REPLACEMENT, SEE PAGE 5-39.

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A4R113	C698-7244		R:FXD FLM 2.15K OHM 2% 1/8W	28480	0698-7244
A4R114 A4R115 A4R116 A4R117	0698-7224 0698-7212 2100-2574 0698-7244	1	R:FXD FLM 316 OHM 2% 1/8W R:FXD FLM 100 OHM 2% 1/8W R:VAR CERMET 500 OHM 10% LIN 1/2W R:FXD FLM 2.15K OHM 2% 1/8W	28480 28480 28480 28480	0698-7224 0698-7212 2100-2574 0698-7244
A4P118 A4R119 A4R120 A4R121 A4R122	0698-7236 0698-7212 0698-7244 0698-3403 0698-7236	1	R:FXD FLM 1K OHM 2% 1/8W R:FXD FLM 100 OHM 2% 1/8W R:FXD FLM 2.15K OHM 2% 1/8W R:FXD MET FLM 348 OHM 1% 1/2W R:FXD FLM 1K OHM 2% 1/8W	28480 28480 28480 28480 28480	0698-7236 0698-7212 0698-7244 0698-3403 0698-7236
A4R123 A4R124 A4R125 A4R125 A4R126	2100-2633 0698-7236 0698-7229 0698-7240	1	R:VAR CERMET 1K OHM 10% LIN 1/2W R:FXO FLM 1K OHM 2% 1/8W R:FXD FLM 511 OHM 2% 1/8W FACTORY SELECTED PART R:FXD MET FLM 1.47K OHM 2% 1/8W	28480 28480 28480 28480	2100-2633 0698-7236 0698-7229 0698-7240
A4R127 A4R128 A4R129 A4R130 A4R131	0698-7244 0698-7253 2100-2522 0698-7244 0698-7188	2	R:FXD FLM 2-15K OHM 2% 1/8W R:FXD MET FLM 5-11K OHM 2% 1/8W R:VAR CERMET 10K OHM 10% LIN 1/2W R:FXD FLM 2-15K OHM 2% 1/8W R:FXD MET FLM 10 OHM 2% 1/8W	28480 28480 28480 28480 28480	7698-7244 0698-7253 2100-2522 0698-7244 0698-7188
A4R132 A4R133 A4TP1 THRU A4TP10 A4W1	2100-2489 2100-1788 0360-0124 0360-0124 08552-60128	2 1 2	R:VAR FLM 5K OHM 10% LIN 1/2W R:VAR FLM 50C OHM 10% LIN 1/2W TERMINAL PIN:ROUND TERMINAL PIN:ROUND CABLE ASSY:CRYSTAL	28480 28480 28480 28480 28480	2100-2489 2100-1788 0360-0124 0360-0124 08552-60128
A4W2 A4Y1 A4Y2 A4Y3 A4Y4	08552-60128 0410-0404	1	CABLE ASSY:CRYSTAL CRYSTAL:QUARTZ,MATCHED SET OF FIVE N.S.R. PART OF A4Y1 N.S.R. PART OF A4Y1 N.S.R. PART OF A4Y1	28480 00136	08552-69128 0419-0404
A4Y5 A5	08552-60107	1	N.S.R. PART OF A4Y1 ROARD ASSY:POWER SUPPLY	28480	08552-60107
A5C1 A5C2	0160-0163 0180-0116	2	C:FXD MY 0.033 UF 10% 200VDCW C:FXD ELECT 6.8 UF 10% 35VDCW	56289 56289	192P33392-PTS 150D685X903582-DYS
A5C3 A5C4 A5C5 A5C6 A5C7	0160-2208 0180-1747 0160-0162 0180-0116 0180-1747	1 2 5	C:FXD MICA 330 PF 5% 300VDCW C:FXD ELECT 150 UF 20% 15VDCW C:FXD MY 0.022 UF 10% 200VDCW C:FXD ELECT 6.8 UF 10% 35VDCW C:FXD ELECT 150 UF 20% 15VDCW	28480 28480 56289 56289 28480	0160-2203 0180-1747 192P22392-PTS 1500685X903592-DYS 0180-1747
A5C8 A5C9 A5C10 A5C11 A5C12	0180-0116 0160-0153 0180-0197 0150-0121 0180-0197	4	C:FXD ELECT 6.8 UF 10% 35VDCW C:FXD MY 0.001 UF 10% 200VDCW C:FXD ELECT 2.2 UF 10% 20VDCW C:FXD ELECT 2.2 UF 10% 20VDCW C:FXD ELECT 2.2 UF 10% 20VDCW	56289 56289 56289 56289 56289	1500685X9035B2-DYS 192P10292-PTS 1500225X9020A2-DYS 5C5CB1S-CML 1500225X9020A2-DYS
A5C13 A5C14 A5C15 A5C16 A5C17, C18	0160-2211 0180-0058 0180-0058 0180-2215 0160-2055	1 3	C:FXD MICA 510 PF 5% 300VDCW C:FXD AL ELECT 50 UF +75-10% 25VDCW C:FXD AL ELECT 50 UF +75-10% 25VDCW C:FXD AL ELECT 17C UF +75-10% 170VDCW C:FXD CER 0.01 UF +80-20% 100VDCW	28480 56289 56289 56289 56289	0160-2211 3C0506G025CC2-DSM 3O0506G025CC2-DSM 3G0177G015D02-DSM C023F101F103ZS22-CDH
A5C19 A5C20 A5CR1 A5CR2 A5CR3	0180-0058 0160-2055 1901-0416 1902-3104 1901-0416	8 1	C:FXD AL ELECT 50UF +75-10% 25VDCW C:FXD CER 0.01 UF +80-20% 100VDCW DIODE:SILICON 200PIV 3A DIODE:BREAKDOWN 5.62V 5% DIODE:SILICON 200PIV 3A	56289 56289 28480 04713 28480	30D506G025CC2-DSM C023F101F103ZS22-CDH 1901-0416 SZ10939-110 19C1-0416
A5CR4 A5CR5 A5CR6 A5CR7 A5CR8	1884-0012 1902-3268 1902-0033 1901-0416 1901-0416	2 1 2	RECTIFIER:SILICON CONTROLLED 2N3528 DIODE BREAKDOWN:26.1V 5% DIODE:BREAKDOWN 6.2V DIODE:SILICON 200PIV 3A DIODE:SILICON 200PIV 3A	02735 28480 04713 28480 28480	2N3528 1902-3268 1N823 1901-0416 1901-0416
A5CR9 A5CR10 A5CR11 A5CR12 A5CR13	1901-0416 1884-0012 1902-3256 1902-0040 1901-0416	1	DIODE:SILICON 200PIV 3A RECTIFIER:SILICON CONTROLLED 2N3528 DIODE:BREAKDOWN SILICON 23-7V 5% DIODE BREAKDOWN:14-0V 5% DIODE:SILICON 200PIV 3A	28480 02735 28480 28480 28480	1901-0416 2N3528 1902-3256 1902-0040 1901-0416
A5CR14 A5CR15 A5CR16 A5CR17 A5CR18	1902-0033 1901-0416 1901-0025 1902-3070 1902-3070	13 2	DIODE:BREAKDOWN 6-2V DIODE:SILICON 200PIV 3A DIODE:SILICON 100MA/1V DIODE:BREAKDOWN 4-22V 5% DIODE:BREAKDOWN 4-22V 5%	04713 28480 07263 04713 64713	1N823 1901-0416 FD 2387 5210939-74 5210939-74
A5Q1 A5Q2 A5Q3 A5Q4 A5Q5	1854-0071 1853-0020 1854-0071 1854-0071 1854-0071		TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PMP(SELECTED FROM 2N3702) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704)	28480 28480 28480 28480 28480	1854-0071 1853-9020 1854-0971 1854-0071 1854-0071

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A506 A507 A508 A509 A5010	1854-0071 1854-0071 1854-0071 1854-0071 1854-0071	2	TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(REPL_BY 2N4044)	28480 28480 28480 28480 28480	1854-0071 1854-0071 1854-0071 1854-0071 1854-0221
A5011 A5012 A5012 A5013 A5014	1853-0020 1853-0020 1853-0020 1854-0221 1854-0071		TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI NPN(REPL.BY 2N4C44) TSTR:SI NPN(SELECTED FROM 2N3704)	28480 28480 28480 28480 28480	1853-0020 1853-0020 1853-0020 1854-0221 1854-0071
A5015 A5016 A5017 A5018 A5019	1853-0006 1853-0020 1853-0020 1854-0071 1854-0071	1	TSTR:S(PNP TSTR:S(PNP)(SELECTED FROM 2N3702) TSTR:S(PNP(SELECTED FROM 2N3702) TSTR:S(NPN(SELECTED FROM 2N3704) TSTR:S(NPN(SELECTED FROM 2N3704)	80131 28480 28480 28480 28480	2N3134 1853-0020 1853-0020 1854-0071 1854-0071
A5020 A5021 A5022 A5023 A5024	1854-0071 1854-0071 1853-0020 1854-0071 1853-0020		TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP(SELECTED FROM 2N3702)	28480 28480 28480 28480 28480	1854-0071 1854-0071 1853-0020 1854-0071 1853-0020
A5025 A5026 A5027 A5R1	1854-0071 1854-0003 1853-0020	1	TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELFCTED FROM 2N1711) TSTR:SI PNP(SELECTED FROM 2N3702) NOT ASSIGNED	28480 28480 28480	1854-0071 1854-0003 1853-0020
A5R2 A5R3 A5R4 A5R5 A5R6 A5R7	0698-3420 0764-0018 0757-0276 0757-0416 0757-0405 0698-3408	1	R:FXD MET FLM 34.8K OHM 1% 1/2W R:FXD MET FLM 4700 OHM 5% 2W R:FXD MET FLM 61.9 OHM 1% 1/8W R:FXD MET FLM 511 OHM 1% 1/8W R:FXD MET FLM 162 OHM 1% 1/8W R:FXD MET FLM 2.15K OHM 1% 1/2W	28480 28480 28480 28480 28480 28480	0698-3420 0764-0918 0757-0276 9757-0416 0757-0405 0698-3408
A5R8 A5R9 A5R1J A5R11 A5R12	0699-0001 0757-0278 0757-0280 0757-0460 0698-3150	2	R:FXD COMP 2.7 DHM 10% 1/2W R:FXD MET FLM 1.78K OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 61.9K OHM 1% 1/8W R:FXD MET FLM 2.37K OHM 1% 1/8W	01121 28480 28480 28480 28480	EB 27G1 0757-C278 0757-0280 0757-0460 0698-3150
A5R13 A5R14 A5R15 A5R16 A5R17	0698-3136 0757-0460 0698-0089 2109-1756 0757-0420	5 1	R:FXD MET FLM 17.8K OHM 1% 1/8W R:FXD MET FLM 61.9K OHM 1% 1/8W R:FXD MET FLM 1780 OHM 1% 1/2W R:VAR WW 200 OHM 5% TYPE V 1W R:FXD MET FLM 75C OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-3136 0757-0460 0698-0289 2100-1756 0757-0420
A5R18 A5R19 A5R20 A5R21 A5R22	0757-0276 0698-3419 0698-0084 0757-0405	17	NOT ASSIGNED R:FXD MET FLM 61.9 OHM 1% 1/8W R:FXD MET FLM 31.6K OHM 1% 1/2N R:FXD MET FLM 2.15K OHM 1% 1/9W R:FXD MET FLM 162 OHM 1% 1/8W	28480 28480 28480 28480	0757-0276 0698-3419 0698-0084 0757-0405
A5R23 A5R24 A5R25 A5R26 A5R27	0757-0416 0757-0280 0757-0317 0699-0001 0757-0199	1	R:FXD MET FLM 511 OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 1-33K OHM 1% 1/8W R:FXD COMP 2-7 OHM 10% 1/2W R:FXD MET FLM 21-5K OHM 1% 1/8W	28480 28480 28480 01121 28480	0757-0416 0757-0280 0757-0317 EB 27G1 0757-0199
A5R 28 A5R 29 A5R 30 A5R 31 A5R 32	0757-0441 0757-0418 0757-0199 0698-3446 2100-1756	4	R:FXD MET FLM 8.25K OHM 17 1/8W R:FXD MET FLM 619 OHM 17 1/8W R:FXD MET FLM 21.5K OHM 17 1/8W R:FXD MET FLM 383 OHM 17 1/8W R:VAR WW 200 OHM 5% TYPE V 1W	28480 28480 28480 28480 28480	0757-0441 0757-0418 0757-0199 0698-3446 2100-1756
A5R33 A5R34 A5R35 A5R36 A5R37	0757-0420 0757-0199 0757-0465 0757-0465 0698-3453	5	R:FXD MET FLM 750 OHM 1% 1/8W R:FXD MET FLM 21.5K OHM 1% 1/8W R:FXD MET FLM 100K OHM 1% 1/8W R:FXD MET FLM 100K OHM 1% 1/8W R:FXD MET FLM 196K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0420 0757-0199 0757-0465 0757-0465 0698-3453
A5R38 A5R39 A5R40 A5R41 A5R42	0698-3453 0698-4519 0698-3458 0698-3453 0698-3447	1 1	R:FXD MET FLM 196K OHM 1% 1/8W R:FXD FLM 140K OHM 1% 1/8W R:FXD MET FLM 348K OHM 1% 1/8W R:FXD MET FLM 196K OHM 1% 1/8W R:FXD MET FLM 422 OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-3453 0698-4519 0698-3458 0698-3453 0698-3447
A5R43 A5R44 A5R45 A5R46 A5R47	0757-0444 0757-0441 2100-1760 0698-3444 0757-0400	1 5	R:FXD MET FLM 12.1K OHM 1% 1/8W R:FXD MET FLM 8.25K OHM 1% 1/9W R:VAR WW 5K OHM 5% TYPE V 1W R:FXD MET FLM 316 OHM 1% 1/8W R:FXD MET FLM 90.9 OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0444 0757-0441 2100-1760 0698-3444 0757-0400
A5R48 A5R49 A5R50 A5R51 A5R52	C698-3450 O757-0401 O698-3162 O757-0402 O757-0458	6	R:FXD MET FLM 42.2K OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 46.4K OHM 1% 1/8W R:FXD MET FLM 110 OHM 1% 1/8W R:FXD MET FLM 51.1K OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-3450 0757-0401 0698-3162 0757-0402 0757-0458

Replaceable Parts Model 8552B

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A5R53 A5R54 A5R55 A5R56 A5R56 A5R57	0757-0403 0757-0459 0698-3437 0757-0460 0698-3438	1 3	R:FXD MET FLM 121 OHM 1% 1/8W R:FXD MET FLM 56.2K OHM 1% 1/8W R:FXD MET FLM 133 OHM 1% 1/8W R:FXD MET FLM 61.9K OHM 1% 1/8W R:FXD MET FLM 147 OHM 1% 1/8W	28480 28480 28480 28480 28480	C757-C403 0757-0459 0698-3437 0757-C460 C698-3438
A5R58 A5R59 A5R60 A5R61 A5R62	0757-0461 0757-0405 0757-0462 0757-0438 0698-0085	3 1 3	R:FXD MET FLM 68.1K OHM 1% 1/8W R:FXD MET FLM 162 OHM 1% 1/8W R:FXD MET FLM 75.0K OHM 1% 1/8W R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD MET FLM 2.61K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0461 9757-0405 0757-0405 0757-0438 0698-0385
A5R63 A5R64 A5R65 A5R66 A5R66	0757-0401 0698-3439 0757-0463 0698-3440 0757-0464	1 3 4 2	R:FXD MET FLM 100 OHM 1* 1/8W R:FXD MET FLM 178 OHM 1* 1/8W R:FXD MET FLM 82-5K OHM 1* 1/8W R:FXD MET FLM 196 OHM 1* 1/8W R:FXD MET FLM 90.9K OHM 1* 1/8W	28480 28480 28480 28480 28480	0757-C401 0698-3439 0757-C463 0698-3440 0757-0464
A5R68 A5R69 A5R70 A5R71 A5R72	0757-0416 0757-0465 0698-3150 2100-1760 0698-3150		R:FXD MET FLM 511 OHM 1% 1/8W R:FXD MET FLM 100K OHM 1% 1/8W R:FXD MET FLM 2-37K OHM 1% 1/8W R:VAR WW 5K OHM 5% TYPE V 1W R:FXD MET FLM 2-37K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0416 0757-0465 0698-3150 2100-1760 0698-3150
A5R73 A5R74 A5R75 A5R76 A5R77	0757-0453 2100-2489 0757-0122 0757-0442	1	NOT ASSIGNED R:FXD MET FLM 30.1K OHM 1% 1/8W R:VAR FLM 5K OHM 10% LIN 1/2W R:FXD MET FLM 27.1K OHM 1% 1/8W R:FXD MET FLM 10.0K OHM 1% 1/8W	28480 28480 28480 28480	0757-0453 2100-2489 0757-0122 0757-0442
A5R78 A5R79 A5TP1 A5TP2 A5TP3	0757-0279 0757-0795 0360-1514 0360-1514 0360-1514	1	R:FXO MET FLM 3-16K OHM 1% 1/8W R:FXO MET FLM 75 OHM 1% 1/2W TERMINAL PIN:SQUARE TERMINAL PIN:SQUARE TERMINAL PIN:SQUARE	28480 28480 28480 28480 28480	0757-0279 0757-0795 0360-1514 0360-1514 0360-1514
A5U1, U2 A5Z1 A5Z2 A6	1826-0013 9170-0016 9170-0029 08552-60137	5 1 1 1	IC:LINEAR BEAD, MAGNETIC SHIELDING CORE, MAG, SHIELDING BEAD .1380D .047 ID BOARD ASSY:SCAN GENERATOR(DELETE-OPT H01-02)	28480 02114 02114 28480	1826-0013 56-590-65/38 56-590-65A2/4A 08552-60137
A6 A6C1 A6C2 A6C3 A6C4 A6C5	08552-62006 0180-1743 0140-0198 0180-0116 0160-2218 0180-0116	1 1 1	BOARD ASSY:SCAN GEN(OPT H01-H02 ONLY) C:FXD ELECT C.1 UF 10% 35VDCW C:FXD MICA 200 PF 5% C:FXD ELECT 6.8 UF 10% 35VDCW C:FXD MICA 1000 PF 5% C:FXD ELECT 6.8 UF 10% 35VDCW	28480 56289 72136 56289 28480 56289	08552-62006 150D104X9035A2-DYS R0M15F201J3C 150D685X9035B2-DYS 0160-2218 150D685X9035B2-DYS
A6C6 A6C7 A6C8 A6C9 A6C10	0180-0116 0160-2055 0160-2055 0169-0939 0160-0168	1 1	C:FXD ELECT 6.8 UF 10% 35VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD WICA 430 PF 5% 300 VDCW C:FXD MY 0.1 UF 10% 200VDCW	56289 56289 56289 28480 56289	150D685X903582-DYS C023F101F103ZS22-CDH C023F101F103ZS22-CDH 016C-0939 192P10492-PTS
A6C11 A6C12 A6C13 A6C13 A6C14	0160-0153 0180-0116 0180-2195 0180-2268	1 1	C:FXD MY 0.001 UF 10% 200VDCW C:FXD ELECT 6.8 UF 10% 35VDCW C:FXD ELECT 15 UF 10% 35VDCW FACTORY SELECTED PART C:FXD TA ELECT 140 UF 10% 30VDCW	56289 56289 28480 56289	192P10292-PTS 150D685X903582-DYS 0180-2195 109D147X9030T2-DYP
A6C15 A6C16 A6C17 A6C18 A6C19	0121-0059 0150-0050 0160-2205 0150-0050 0160-2257	3 1	C:VAR CFR 2-8 PF 300VDCW C:FXD CER 1000 PF +80-20% 1000VDCW C:FXD MICA 120 PF 5% C:FXD CER 1000 PF +80-20% 1000VDCW C:FXD CER 10 PF 5% 500VDCW	2848C 56289 2848C 56289 72982	0121-0059 C067B102E102ES26-CDH 0160-2205 C067B102E102ES26-CDH 3C1-000-CDHO-100J
A6C20 A6C21 A6C22 A6CR1 A6CR2	0160-2238 0150-0050 0160-2055 1902-3171 1901-0025	1	C:FXD CER 1.5 PF 500VDCW C:FXD CER 1000 PF +80-20% 1000VDCW C:FXD CER 0.01 UF +80-20% 100VDCW DIODE BREAKDOWN:11.0V 5% DIODE:SILICON 100MA/1V	72982 56289 56289 28480 07263	301-000-C0K0-159C C067B102E102ZS26-C0H C023F101F103ZS22-C0H 1902-3171 FD 2387
A6CR3 A6CR4 A6CR5 A6CR6 A6CR7	1901-0025 1901-0025 1901-0025 1901-0025 1901-0025		DIODE:SILICON 100MA/1V DIODE:SILICON 100MA/1V DIODE:SILICON 100MA/1V DIODE:SILICON 100MA/1V DIODE:SILICON 100MA/1V	07263 07263 07263 07263 07263	FD 2387 FD 2387 FD 2387 FD 2387 FD 2387
A6CR8 A6CR9 A6CR10 A6CR11 A6CR12	1901-0025 1901-0025 1901-0025 1901-0025 1902-0785	1	DIODE:SILICON 10CMA/1V DIODE:SILICON 10OMA/1V DIODE:SILICON 10OMA/1V DIODE:SILICON 10OMA/1V DIODE:BREAKDOWN 9.09V 5%	07263 07263 07263 07263 04713	FD 2387 FD 2387 FD 2387 FD 2387 1N936
A6CR13 A6CR14 A6CR15 A6CR16 A6L1	1902-0202 1902-0556 1901-0025 1901-0025 9140-0210	1	DIODE BREAKDOWN:15.0V 5% 1W DIODE:BREAKDOWN 20.0V 5% 1W DIODE:STLICON 100MA/IV DIODE:STLICON 100MA/IV COIL/CHOKE 100 UH 5%	28480 28480 07263 07263 82142	1902-0202 1902-0556 FD 2387 FD 2387 15-1315-12J

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A6L2 A6L3 A6L4 A6L5 A6MP1	9140-0210 9140-0210 9100-2267 9100-2259 08552-0024	1 1 1	COIL/CHOKE 100 UH 5% COIL/CHOKE 100 UH 5% COIL/CHOKE 18 UH COIL/CHOKE 1.50 UH 10% SHIELD:CAN,SCAN GENERATOR	82142 82142 28480 99800 28480	15-1315-12J 15-1315-12J 9100-2267 1025-24 08552-0024
A6Q1 A6Q2 A6Q3 A6Q4 A6Q5	1854-0071 1854-0071 1853-0020 1854-0071 1854-0039	2	TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN	28480 28480 28480 28480 80131	1854-0071 1854-0071 1853-0020 1854-0071 2N3053
A6Q6 A6Q7 A6Q8 A6Q9 A6Q10	1853-0020 1854-0071 1853-0020 1854-0071 1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP(SELECTED FROM 2N3702)	28480 28480 28480 28480 28480	1853-0020 1854-0071 1853-0020 1854-0071 1853-0020
A6011 A6012 A6013 A6014 A6015	1854-0071 1854-0232 1853-0020 1853-0020 1854-0071	12	TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3440) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI NPN(SELECTED FROM 2N3704)	28480 28480 28480 28480 28480	1854-0071 1854-0232 1853-0020 1853-0020 1854-0071
A6016 A6017 A6018 A6R1 A6R2	1854-0071 1854-0019 1854-0019 0757-0438 0757-0346		TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN TSTR:SI NPN R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD MET FLM 10 OHM 1% 1/8W	28480 28480 28480 28480 28480	1854-2071 1854-0019 1854-0019 0757-0438 0757-0436
A6R3 A6R4 A6R5 A6R6 A6R7	0757-0461 0698-3154 0757-0463 0757-0438 0757-0418	6	R:FXD MET FLM 68.1K OHM 1% 1/8W R:FXD MET FLM 4.22K OHM 1% 1/8W R:FXD MET FLM 82.5K OHM 1% 1/8W R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD MET FLM 619 OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0461 0698-3154 0757-0463 0757-0438 0757-0418
A6R8 A6R9 A6R10 A6R11 A6R12	0757-0418 0757-0280 0698-3136 0757-0441 2100-1760		R:FXD MET FLM 619 OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 17.8K OHM 1% 1/8W R:FXD MET FLM 8.25K OHM 1% 1/8W R:VAR WW 5K OHM 5% TYPE V 1W	28480 28480 28480 28480 28480	0757-0418 0757-0280 0698-3136 0757-0441 2100-1760
A6R13 A6R14 A6R15 A6R16 A6R17	0698-3455 0757-0290 0757-0416 0757-0465 0757-0438	2 6	R:FXD MET FLM 261K OHM 1% 1/8W R:FXD MET FLM 6.19K OHM 1% 1/8W R:FXD MET FLM 511 OHM 1% 1/8W R:FXD MET FLM 100K OHM 1% 1/8W R:FXD MET FLM 5.11K OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-3455 0757-0290 0757-0416 0757-0465 0757-0438
A6R18 A6R19 A6R20 A6R21 A6R22	0698-3136 0698-3454 0698-3162 0757-0418 0757-0442	2	R:FXD MET FLM 17.8K OHM 1% 1/8W R:FXD MET FLM 215K OHM 1% 1/8W R:FXD MET FLM 46.4K OHM 1% 1/8W R:FXD MET FLM 619 OHM 1% 1/8W R:FXD MET FLM 10.0K OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-3136 0698-3454 0698-3162 0757-0418 0757-0442
A6R23 A6R24 A6R25 A6R26 A6R27	0757-0280 0757-0123 0698-3451 0698-3154 0698-3451	3 3	R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 34.8K OHM 1% 1/8W R:FXD MET FLM 133K OHM 1% 1/8W R:FXD MET FLM 4.22K OHM 1% 1/8W R:FXD MET FLM 133K OHM 1% 1/8W	28480 28480 28480 28480 28480 28480	0757-0280 0757-0123 0698-3451 0698-3154 0698-3451
A6R2B A6R29 A6R30 A6R31 A6R32	0757-0123 0757-0280 0698-3454 0757-0290 0698-3158	2	R:FXD MET FLM 34.8K OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 215K OHM 1% 1/8W R:FXD MET FLM 6.19K OHM 1% 1/8W R:FXD MET FLM 23.7K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0123 0757-0280 0698-3454 0757-0290 0698-3158
A6R33 A6R34 A6R35 A6R36 A6R37	0757-0416 0698-3152 0698-3156 0698-3136 0757-0290	6 2	R:FXD MET FLM 511 OHM 1% 1/8W R:FXD MET FLM 3-48K OHM 1% 1/8W R:FXD MET FLM 14-7K OHM 1% 1/8W R:FXD MET FLM 17-8K OHM 1% 1/8W R:FXD MET FLM 6-19K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0416 0698-3152 0698-3156 0698-3136 0757-0290
A6R38 A6R39 A6R40 A6R41 A6R42	0757-0123 0757-0442 0757-0418 0757-0438 0698-0083	6	R:FXD MET FLM 34.8K OHM 1% 1/8W R:FXD MET FLM 10.0K OHM 1% 1/8W R:FXD MET FLM 619 OHM 1% 1/8W R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD MET FLM 1.96K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0123 0757-0442 0757-0418 0757-0438 0698-0083
A6R43 A6R44 A6R45 A6R46 A6R47	0698-3136 0757-0289 0698-3451 2100-1758 0698-3160	1 2	R:FXO MET FLM 17-8K OHM 1% 1/8W R:FXD MET FLM 13.3K OHM 1% 1/8W R:FXO MET FLM 133K OHM 1% 1/8W R:YAR WH 1K OHM 5% TYPE V 1W R:FXO MET FLM 31.6K OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-3136 0757-0289 0698-3451 2100-1758 0698-3160
A6R48 A6R49 A6R50 A6R51 A6R52	0698-0085 0698-0085 2100-1757 6698-0083 0757-0438	}	R:FXD MET FLM 2.61K OHM 1% 1/8W R:FXD MET FLM 2.61K OHM 1% 1/8W R:VAR WW 500 OHM 5% TYPE V 1W R:FXD MET FLM 1.96K OHM 1% 1/8W R:FXD MET FLM 5.11K OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-0085 0698-0085 2100-1757 0698-0083 0757-0438

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A6R 53 A6R 54 A6R 55 A6R 56 A6R 57 A6R 57 A6 R 58	0698-3154 2100-1757 0698-7232 0698-7230 0698-7236 0698-7236 0757-0398	1	R:FXD MET FLM 4-22K OHM 1% 1/8W R:VAR WW 500 OHM 5% TYPE V 1W R:FXD FLM 681 OHM 2% 1/8W R:FXD FLM 31-6 OHM 2% 1/8W R:FXD FLM 1X OHM 2% 1/8W(DELETE FOR H01-02) R:FXD 1.1K OHM 2% 1/8W(OPT H01-02) R:FXD 75 OHM 1% 1/8W(OPT H01-02 ONLY)	28480 28480 28480 28480 28480 28480 28480	0698-3154 2100-1757 0698-7232 0698-7200 0698-7236 0698-7236 0757-0398
46R58 46R59 46R60 46R61 46R62	0698-7205 0698-7238 0698-7243 0757-0438 0757-0465	1 1 1	R:FXD FLM 51.1 OHM 2% 1/8W(DELETE FOR H01-0) R:FXD FLM 1.21K OHM 2% 1/8W R:FXD FLM 1.96K OHM 2% 1/8W R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD MET FLM 5.11K OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-7205 0698-7238 0698-7243 0757-0438 0757-0465
A6S1 A6TP1 THRU A6TP5 A6U1 A6U2	3101-0973 0360-1514 0360-1514 1826-0013	1	SWITCH:SLIDE DPDT C.5A 125V AC/DC TERMINAL PIN:SQUARE TERMINAL PIN:SQUARE IC:LINEAR IC:LINEAR	79727 28480 28480 28480 28480	G126-0018 0360-1514 0360-1514 1826-0013 1826-0013
A6Y1 A7	0410-0301 08552-60084	1 1	CRYSTAL:QUARTZ 30 MHZ BOARD ASSY:DEFLECTOR AMPLIFIER	28480 28480	0410-0301 08552-60084
A7C1 A7C2	0180-0116 0180-0116		C:FXD ELECT 6.8 UF 10% 35VDCW C:FXD ELECT 6.8 UF 10% 35VDCW	56289 56289	1500685X903582-DYS 1500685X903582-DYS
A7C3 A7C4 A7C5 A7C6 A7C7	0160-2265 0180-0269 0160-3448 0140-0194 0160-2246	1 1 3 2	C:FXD CER 22 PF 5% 500VDCW C:FXD ELECT 1.0 UF +50-10% 150VDCW C:FXD CER 1000 PF 10% 1000VDCW C:FXD MICA 110 PF 5% C:FXD CER 3.6+/-0.25 PF 500VDCW	72982 56289 56289 72136 72982	301-NPO-22PF 300105F150BA2-DSM CO67B25IF102KS25-CDH RDM15F111J3C 301-000-CDJ0-369C
A7C8 A7C9 A7C10 A7C11 A7C12	0160-2246 0160-0153 0160-0194 0160-2201 0180-0197	2	C:FXD CER 3.6+/-0.25 PF 500V0CW C:FXD MY 0.001 UF 10% 200VDCW C:FXD MY 0.015 UF 10% C:FXD MICA 51 PF 5% C:FXD ELECT 2.2 UF 10% 20VDCW	72982 56289 56289 72136 56289	301-000-C0JN-369C 192P10292-PTS 192P15392-PTS RDM15E510J1C 1500225X9020A2-DYS
A7C13 A7C14 A7C15 A7C16 A7C17	0160-3450 0180-0197 0140-0194 0180-1746 0160-2256	3 2	C:FXD CER 5000 PF 10% 250VDCW C:FXD ELECT 2.2 UF 10% 20VDCW C:FXD MICA 110 PF 5% C:FXD ELECT 15 UF 10% 20VDCW C:FXD CER 9.1 PF 500VDCW	56289 56289 72136 28480 72982	C067B251H502KS25-CDH 1500225X9020A2-DYS RDM15F111J3C 0180-1746 3C1-000-COKO-919C
A7C18 A7C19 A7C20 A7CR1 A7CR2	0160-2256 0160-2201 0160-0155 1901-0096 1901-0081	1 2 8	C:FXD CER 9.1 PF 500VDCW C:FXD MICA 51 PF 5% C:FXD MY 0.0033 UF 10% 200VDCW DIODE:SILICON 120V DIODE:SILICON 50 VOLTS WORKING	72982 72136 56289 01295 07263	301-000-C0K0-919C RDM15E510J1C 192P33292-PTS UG-88B FD1415
A7CP3 A7CR4 A7CR5 A7CR6 A7CR7	1901-0081 1901-0096 1901-0081 1901-0081 1901-0081		DIODE:SILICON 50 VOLTS WORKING DIODE:SILICON 120V DIODE:SILICON 50 VOLTS WORKING DIODE:SILICON 50 VOLTS WORKING DIODE:SILICON 50 VOLTS WORKING	07263 01295 07263 07263 07263	FD1415 UG-888 FD1415 FD1415 FD1415
A7CR8 A7CR9 A7CR10 A7CR11 A7CR12	1902-0683 1902-0683 1901-0081 1901-0081 1902-0025	2	DIODE BREAKDOWN:100V 2% DIODE BREAKDOWN:100V 2% DIODE:SILICON 50 VOLTS WORKING DIODE:SILICON 50 VOLTS WORKING DIODE;BREAKDOWN:10.0V 5% 400 MW	28480 28480 07263 07263 28480	1902-0683 1902-0683 F01415 F01415 1902-0025
A7CR13 A7CR14 A7CR15 A7CR16 A7CR17	1901-0040 1901-0040 1901-0040 1901-0081 1901-0040		DIODE:SILICON 50 MA 30 MV DIODE:SILICON 50 MA 30 MV DIODE:SILICON 50 MA 30 MV DIODE:SILICON 50 VOLTS WORKING DIODE:SILICON 50 MA 30 MV	07263 07263 07263 07263 07263	FDG1088 FDG1088 FDG1088 FD1415 FDG1088
A7CR1R A7CR19 A7CR20 A7K1 A7L1	1901-0040 1901-0040 1901-0040 0490-0399 9140-0129	1	DIODE:SILICON 50 MA 30 MV DIODE:SILICON 50 MA 30 MV DIODE:SILICON 50 MA 30 MV RELAY:REED ASSY, 1200 OHM 12VOC COIL:FXO RF 220 UH	07263 07263 07263 28480 28480	FDG1088 FDG1088 FDG1088 0490-0399 9140-0129
A7MP1 A7MP2 A701 A702 A703	1205-0011 1205-0011 1853-0034 1854-0404 1853-0007	2 2 4 3	HEAT DISSIPATOR:FOR TO-5 AND TO-9 CASES HEAT DISSIPATOR:FOR TO-5 AND TO-9 CASES TSTR:SI PNP(SELECTED FROM 2N3251) TSTR:SI NPN TSTR:SI PNP	98978 98978 28480 28480 80131	TXAF-032-025B TXBF-032-025B 1853-0034 1854-0404 2N3251
A7Q4 A705 A706 A707 A7Q8	1854-0232 1854-0232 1854-0232 1854-0232 1854-0232		TSTR:SI NPN(SELECTED FROM 2N3440)	28480 28480 28480 28480 28480	1854-0232 1854-0232 1854-0232 1854-0232 1854-0232
A709 A7010 A7011 A7012 A7013	1854-0232 1854-0404 1854-0404 1854-0232 1854-0232		TSTR:SI NPN(SELECTED FROM 2N3440) TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN(SELECTED FROM 2N3440) TSTR:SI NPN(SELECTED FROM 2N3440)	28480 28480 28480 28480 28480	1854-0232 1854-0404 1854-0404 1854-0232 1854-0232

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A7014 A7015 A7016 A7017 A7018	1854-0232 1853-0007 1853-0007 1854-0232 1854-0232		TSTR:SI NPN(SELECTED FROM 2N3440) TSTR:SI PNP TSTR:SI PNP TSTR:SI NPN(SELECTED FROM 2N3440) TSTR:SI NPN(SELECTED FROM 2N3440)	28480 80131 80131 28480 28480	1854-0232 2N3251 2N3251 1854-0232 1854-0232
A7019 A7R1 A7R2 A7R3 A7R4	1854-0404 0757-0447 0757-0443 0698-3152 0698-0082	7	TSTR:SI NPN R:FXD MET FLM 16-2K OHM 1% 1/8W R:FXD MET FLM 11-0K OHM 1% 1/8W R:FXD MET FLM 3.48K OHM 1% 1/8W R:FXD MET FLM 464 OHM 1% 1/8W	28480 28480 28480 28480 28480	1854-0404 0757-0447 0757-0443 0698-3152 0698-0082
A7R5	0757-0464	2	R:FXD MET FLM 90.9K NHM 1% 1/8W	28480	0757-0464
A7R6	0698-3152		R:FXD MET FLM 3.48K OHM 1% 1/8W	28480	0698-3152
A7R7	0698-3444		R:FXD MET FLM 316 OHM 1% 1/8W	28480	0698-3444
A7R8	0698-3418		R:FXD MET FLM 26.1K OHM 1% 1/2W	28480	0698-3418
A7R9	0757-0443		R:FXD MET FLM 11.0K OHM 1% 1/8W	28480	0757-0443
A7R1C	0698-3418	1	R:FXD MET FLM 26-1K OHM 1% 1/2W	28480	0698-3418
A7R11	0757-0439		R:FXD MET FLM 6-81K OHM 1% 1/8W	28480	0757-0439
A7R12	0757-0280		R:FXD MET FLM 1K OHM 1% 1/8W	28480	0757-0280
A7R13	0698-3444		R:FXD MET FLM 316 OHM 1% 1/8W	28480	0698-3444
A7R14	0698-3154		R:FXD MET FLM 4-22K OHM 1% 1/8W	28480	0698-3154
A7R15	0757-0460	1	R:FXD MET FLM 61.9K OHM 1% 1/8W	28480	0757-0460
A7R16	0757-0470		R:FXD MET FLM 162K OHM 1% 1/8W	28480	0757-0470
A7R17	0698-3158		R:FXO MET FLM 23.7K OHM 1% 1/8W	28480	0698-3158
A7R18	0698-3444		R:FXD MET FLM 316 OHM 1% 1/8W	28480	0698-3444
A7R19	0698-3445		R:FXD MET FLM 348 OHM 1% 1/8W	28480	0698-3445
A7R20	0698-3421	1	R:FXD MET FLM 38.3K DHM 1% 1/2W	28480	0698-3421
A7R21	0757-0279		R:FXD MET FLM 3.16K DHM 1% 1/8W	28480	0757-0279
A7R22	0698-3444		R:FXD MET FLM 316 DHM 1% 1/8W	28480	0698-3444
A7R23	0698-3455		R:FXD MET FLM 261K DHM 1% 1/8W	28480	0698-3455
A7R24	0698-3453		R:FXD MET FLM 196K DHM 1% 1/8W	28480	0698-3455
A7R25 A7R26 A7R27 A7R28 A7R29	0757-0460 0757-0463 0757-0443 0698-3132 0757-0290	1	R:FXD MET FLM 61.9K OHM 1% 1/8W R:FXD MET FLM 32.5K OHM 1% 1/8W R:FXD MET FLM 11.0K OHM 1% 1/8W R:FXD FLM 261 OHM 1% 1/8W R:FXD FLM 261 OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0460 0757-0463 0757-0443 0757-0443 0698-3132 0757-0290
A7R30 A7R31 A7R32 A7R33 A7R34	0757-0290 0757-0280 0757-0280 0698-3152 0757-0465		R:FXD MET FLM 6.19K OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 3.48K OHM 1% 1/8W R:FXD MET FLM 100K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0290 0757-0280 0757-0280 0757-0280 0698-3152 0757-0465
A7R35 A7R36 A7R37 A7R38 A7R39	210C-2514 0757-0421 2100-2413 0698-3152 0757-0290	1 2	R:VAR CERMET 20K OHM 10# LIN 1/2W R:FXD MET FLM 825 OHM 1# 1/8W R:VAR FLM 200 OHM 10# LIN 1/2W R:FXD MET FLM 3.48K OHM 1# 1/8W R:FXD MET FLM 6.19K OHM 1# 1/8W	28480 28480 28480 28480 28480	2100-2514 0757-0421 2100-2413 0698-3152 0757-0290
A7R40	0757-0400		R:FXD MET FLM 90.9 DHM 1% 1/8W	28480	0757-0400
A7R41	0757-0279		R:FXD MET FLM 3.16K DHM 1% 1/8W	28480	0757-0279
A7R42	0698-3453		R:FXD MET FLM 196K DHM 1% 1/8W	28480	0698-3453
A7R43	0757-0443		R:FXD MET FLM 11.0K DHM 1% 1/8W	28480	0757-0443
A7R44	0757-0459		R:FXD MET FLM 56.2K DHM 1% 1/8W	28480	0757-0459
A 7R45	0757-0465		R:FXD MET FLM 100K OHM 1% 1/8W	2848C	0757-0465
A 7R46	0698-3157		R:FXD MET FLM 19.6K OHM 1% 1/8W	2848C	0698-3157
A 7R47	0757-0443		R:FXD MET FLM 11.0K OHM 1% 1/8W	28480	0757-0443
A 7R48	0757-0420		R:FXD MET FLM 75C OHM 1% 1/8W	28480	0757-0420
A 7R49	0757-0443		R:FXD MET FLM 11.0K OHM 1% 1/8W	28480	0757-0443
A7R50	0757-0420	2 2	R:FXD MET FLM 750 OHM 1% 1/8W	28480	0757-0420
A7R51	0698-3450		R:FXD MET FLM 42-2K OHM 1% 1/8W	28480	0698-3450
A7R52	0698-3450		R:FXD MET FLM 42-2K OHM 1% 1/8W	28480	0698-3450
A7R53	0764-0012		R:FXD MET FLM 6800 OHM 5% 2W	28480	0764-0012
A7R54	0757-0436		R:FXD MET FLM 4-32K OHM 1% 1/8W	28480	0757-0436
A 7R55 A 7R56 A 7R57 A 7R58 A 7R59	0757-0436 0698-3150 0757-0442 0698-0083 0698-0083		R:FXD MET FLM 4.32K OHM 1% 1/8H R:FXD MET FLM 2.37K OHM 1% 1/8H R:FXD MET FLM 10.0K OHM 1% 1/8H R:FXD MET FLM 1.96K OHM 1% 1/8H R:FXD MET FLM 1.96K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0436 6698-3150 0757-0442 0698-0083
A7R60	0698-3446		R:FXD MET FLM 383 OHM 1% 1/8W	28480	0698-3446
A7R61	0698-3446		R:FXD MET FLM 383 OHM 1% 1/8W	28480	0698-3446
A7U1	1821-0001	2	TSTR ARRAY:SI NPN	02735	CA 30 46
A7 U2	1821-0001		TSTR ARRAY:SI NPN	02735	CA 30 46
A7U3	1826-0081		IC:LINEAR OPERATIONAL AMPLIFIER	12040	LM 318H
A8	08552-6007	1	BOARD ASSY:LOG AMPL(DELETE FOR OPT H01-02) BOARD ASSY:LOG AMPL(OPT H01-H02 ONLY)	28480	08552-6007
A8	08552-62003	1		28480	08552-62003

Table 6-3. Replaceable Parts

Reference	LID Dout Niveska		Description	Mfr	Man Done Normale
Designation	HP Part Number	Qty	Description	Code	Mfr Part Number
AR ARC1 ARC2 ARC3 ARC4 ARC5 ARC6 ARC7 ARC8	C8552-6056 0160-3208 0160-3208 0160-3208 0160-0162 0160-0162 0160-3208 0160-3208 0160-3208	1 19	EXCHANGE ASSY:LOG AMPLIFIER C:FXD CER 0.025 UF +80-20% 100VDCW C:FXD CER 0.025 UF +80-20% 100VDCW C:FXD CER 0.025 UF +80-20% 100VDCW C:FXD MY 0.022 UF 10% 200VDCW C:FXD MY 0.022 UF 10% 200VDCW C:FXD CER 0.025 UF +80-20% 100VDCW C:FXD CER 0.025 UF +80-20% 100VDCW C:FXD MICA 534 PF 1% C:FXD CER 0.025 UF +80-20% 100VDCW	28480 84411 84411 56289 56289 84411 28480 84411	08552-6056 TA TA TA 192P22392-PTS 192P22392-PTS TA TA 0160-0339
48C10 A8C11 A8C12 A8C13 A8C14	0160-2207 0160-3208 0160-2207 0160-3208 0160-2207	8	C:FXD MICA 300 PF 5% C:FXD CER 0.025 UF +80-20% 100VDCW C:FXD MICA 300 PF 5% C:FXD CER 0.025 UF +80-20% 100VDCW C:FXD MICA 300 PF 5%	28480 84411 28480 84411 28480	0160-2207 TA 0160-2207 TA 0160-2207
A8C15 A8C16 A8C17 A8C18 A8C19	0160-3208 0160-2207 0160-3208 0160-2207 0160-3208		C:FXD CER 0.025 UF +80-20% 100VDCW C:FXD MICA 300 PF 5% C:FXD CER 0.025 UF +80-20% 100VDCW C:FXD MICA 300 PF 5% C:FXD CER 0.025 UF +80-20% 100VDCW	84411 28480 84411 28480 84411	TA 0160-2207 TA 0160-2207 TA
A8C20 A8C21 A8C22 A8C23 A8C24	0160-0162 0160-3208 0160-3208 0160-3208 0160-3208		C:FXD MY 0.022 UF 10% 200VDCW C:FXD CER 0.025 UF +80-20% 100VDCW C:FXD CER 0.025 UF +80-20% 100VDCW C:FXD CER 0.025 UF +80-20% 100VDCW C:FXD CER 0.025 UF +80-20% 100VDCW	56289 84411 84411 84411 84411	192P22392—PTS TA TA TA TA
A 8C 25 A 9C 26 A 8C 27 A 9C 28 A 8C 29	0160-2207 0160-0162 0160-3208 0160-2207 0160-3208		C:FXD MICA 300 PF 5% C:FXD MY 0.022 UF 10% 200VDCW C:FXD CER 0.025 UF +80-20% 100VDCW C:FXD MICA 300 PF 5% C:FXD CER 0.025 UF +80-20% 100VDCW	28480 56289 84411 28480 84411	C160-2207 192P22392-PTS TA 016C-2207 TA
A8C3C A8C31 A8C32 A8C33 A8C34	0160-3208 0160-3048 0160-3208 0160-2207 0180-0197		C:FXD CER 0.025 UF +80-20% 100VDCW C:FXD MICA 8000 PF 1% 100VDCW C:FXD CER 0.025 UF +80-20% 100VDCW C:FXD MICA 300 PF 5% C:FXD ELECT 2.2 UF 10% 20VDCW	84411 28480 84411 28480 56289	TA 0160-3048 TA 0160-2207 1500225X9020A2-DYS
ABC35 ABC36 ABC37 ABC3B ABCR1	0150-0121 0160-2199 0140-0194 0140-0193 1901-0050	1	C:FXD CER 0.1 UF +80-20% 50VDCW C:FXD MICA 30 PF 5% 300VDCW C:FXD MICA 110 PF 5% C:FXD MICA 82 PF 5% DIQDE:SI 200 MA AT 1V	56289 28480 72136 28480 07263	5C50BIS-CML 0160-2199 R0M15F111J3C 0140-0193 FDA 6308
ARCR2 A8CR3 A8CR4 A8CR5 A8L1	1901-0050 1901-0179 1901-0179 1901-0028 9100-2474	2 1 1	DIODE:SI 200 MA AT 1V DIODE:SILICON 15MV DIODE:SILICON 15MV DIODE:SILICON 0.75A 400PIV COIL/CHOKE 5.6 UH 1%	07263 28480 28480 04713 82142	FDA 6308 1901-0179 1901-0179 SR1358-9 10133-4
A8L2 A8L3 A8L4 A8L5 A8L6	9100-1641 9100-1641 9100-1641 9100-1641 9100-1641	10	COIL:MOLDED CHOKE 240.0 UH	28480 28480 28480 28480 28480	9100-1641 9100-1641 9100-1641 9100-1641 9100-1641
ABL7 ABL8 ABL9 ABL10 ABL11	9100-1641 9100-1641 9100-1641 9100-1641 9100-1641		COIL:MOLDED CHOKE 240.0 UH	28480 28480 28480 28480 28480	9100-1641 9100-1641 9100-1641 9100-1641 9100-1641
ABL12 ABL13 ABL14 ABQ1 ABQ2	08552-6013 9100-1636 9100-1644 1854-0351 1854-0351	1 1 25	INDUCTOR ASSY:VAR 10T COIL/CHOKE 110 UH 5% COIL/CHOKE 330 UH 5% TSTR:SI NPN TSTR:SI NPN	28480 28480 28480 04713 04713	08552-6013 9100-1636 9100-1644 2N3904 2N3904
A8Q3 A8Q4 A8Q5 A8Q6 A8Q7	1854-0351 1854-0351 1854-0351 1854-0351 1854-0351		TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN	04713 04713 04713 04713 04713	2N3904 2N3904 2N3904 2N3904 2N3904
A8Q8 A8Q9 A8Q10 A8Q11 A8Q12	1854-0351 1854-0351 1854-0351 1854-0351 1854-0351		TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN	04713 04713 04713 04713 04713	2N3904 2N3904 2N3904 2N3904 2N3904
A8Q13 A8Q14 A8Q15 A8Q16 A8Q17	1854-0351 1854-0351 1854-0351 1854-0351 1854-0351		TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN	04713 04713 04713 04713 04713	2N3904 2N3904 2N3904 2N3904 2N3904
A8Q18 A8Q19 A8Q20 A8Q21 A8Q22	1854-0351 1854-0351 1854-0351 1854-0351 1854-0351		TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN	04713 04713 04713 04713 04713	2N3904 2N3904 2N3904 2N3904 2N3904

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A8Q23 A8Q24 A8Q25 A8Q26 A8Q27	1854-0351 1854-0351 1853-0010 1854-0039 1854-0351		TSTR:SI NPN TSTR:SI NPN TSTR:SI PNP(SELECTED FROM 2N3251) TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN	04713 04713 28480 80131 04713	2N3904 2N3904 1853-0010 2N3053 2N3904
A8Q28 A8Q29 A8R1 A8R2 A8R3	1853-0010 1853-0010 0757-0280 0757-0280 0698-0083		TSTR:SI PNP(SELECTED FROM 2N3251) TSTR:SI PNP(SELECTED FROM 2N3251) R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXO MET FLM 1.96K OHM 1% 1/8W	28480 28480 28480 28480 28480	1853-0010 1853-0010 0757-0280 0757-0280 0698-0083
A8R3 A8R4 A8R5 A8R6 A8R7	0698-3440 0757-0401 0698-3419 0698-6694	8	FACTORY SELECTED PART R:FXD MET FLM 196 OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 31.6K OHM 1% 1/2W R:FXD MET FLM 178 OHM 0.25% 1/8W	28480 28480 28480 28480	0698-3440 0757-0401 0698-3419 0698-6694
A8R8 A8R9 A8R10 A8R11 A8R12	0698-3419 0698-6696 0757-0279 0757-0279 0757-0401	7	R:FXD MET FLM 31.6K OHM 1% 1/2W R:FXD MET FLM 619 OHM 0.25% 1/8W R:FXD MET FLM 3.16K OHM 1% 1/8W R:FXD MET FLM 3.16K OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-3419 0698-6696 0757-0279 0757-0279 0757-0401
A8R13 A8R14 A8R15 A8R16 A8R17	0757-0280 0698-3419 0698-6694 0698-3419 0698-6696		R:FXD MET FLM 1K OMM 1% 1/8W R:FXD MET FLM 31.6K OHM 1% 1/2W R:FXO MET FLM 178 OHM 0.25% 1/3W R:FXD MET FLM 31.6K OHM 1% 1/2W R:FXD MET FLM 619 OHM 0.25% 1/8W	28480 28480 28480 28480 28480	0757-0280 0698-3419 0698-6694 0698-3419 0698-6696
A 8R 18 A 8R 19 A 8R 20 A 8R 21 A 8R 22	0757-0280 0757-0440 0757-0279 0757-0401 0757-0280		R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 7.50K OHM 1% 1/8W R:FXD MET FLM 3.16K OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0280 0757-0440 0757-0279 0757-0401 0757-0280
A8R23 A8R24 A8R25 A8R26 A8R27	0698-3419 0698-6694 0698-3419 0698-6696 0757-0280		R:FXD MET FLM 31.6K OHM 1% 1/2W R:FXD MET FLM 178 OHM 0.25% 1/8W R:FXD MET FLM 31.6K OHM 1% 1/2W R:FXD MET FLM 619 OHM 0.25% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-3419 0698-6694 0698-3419 0698-6696 0757-0280
A 8 R 2 8 A 8 R 2 9 A 8 R 3 0 A 8 R 3 1 A 8 R 3 2	0757-0440 0757-0279 0757-0401 0757-0280 0698-3419		R:FXD MET FLM 7.50K OHM 1% 1/8W R:FXD MET FLM 3.16K OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 31.6K OHM 1% 1/2W	28480 28480 28480 28480 28480	0757-0440 0757-0279 0757-0401 0757-0280 0698-3419
A8R33 A8R34 A8R35 A8R36 ABR37	0698-6694 0698-3419 0698-6696 0757-0280 0757-0440		R:FXO MET FLM 178 OHM 0.25% 1/8W R:FXD MET FLM 31.6K OHM 1% 1/2W R:FXD MET FLM 619 OHM 0.25% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 7.50K OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-6694 0698-3419 0698-6696 0757-0280 0757-0440
ABR 38 ABR 39 ABR 40 ABR 41 ABR 42	0757-0279 0757-0401 0757-0280 0698-3419 0698-6694		R:FXD MET FLM 3.16K OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 31.6K OHM 1% 1/2W R:FXD MET FLM 178 OHM 0.25% 1/8W	28480 28480 28480 28480 28480	0757-0279 0757-0401 0757-0280 0698-3419 0698-6694
ABR43 ABR44 ABR45 ABR46 ABR47 ABR49 ABR50 ABR51 ABR51 ABR51 ABR51 ABR52 ABR53 ABR54 ABR55 ABR55 ABR55	0698-3419 0698-6696 0757-0280 0757-0240 0698-3446 0757-0279 0757-0280 0698-3132 0698-3140 0757-0405 2100-2213 0698-3417 0698-6696 0698-3419 0698-3419	2	R:FXD MET FLM 31.6K OHM 1% 1/2W R:FXD MET FLM 619 OHM 0.25% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 7.50K OHM 1% 1/8W R:FXD MET FLM 383 OHM 1% 1/8W R:FXD MET FLM 383 OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD 383 OHM 1% 1/8W(DELETE FOR H01-02) R:FXD 383 OHM 1% 1/8W(OPT H01-02 ONLY) R:FXD 162 OHM 1% 1/8W(OPT H01-02 ONLY) R:FXD 162 OHM 1% 1/8W(OPT H01-02 ONLY) R:FXD MET FLM 23.7K OHM 1% 1/8W R:FXD MET FLM 23.7K OHM 1% 1/8W R:FXD MET FLM 619 OHM 0.25% 1/8W R:FXD MET FLM 31.6K OHM 1% 1/2W R:FXD MET FLM 31.6K OHM 1% 1/2W R:FXD MET FLM 31.6K OHM 1% 1/2W	28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	0698-3419 C698-6696 C757-0280 0757-0440 0698-3446 0757-0279 0757-0280 0698-3446 0698-3132 0698-3440 0757-0405 2100-2413 0698-3417 0698-6696 0698-3419 0698-3419
A8R58 A8R59 A8R60 A8R61 A8R62 A8R62 A8R63 A8R64 A8R65 A8R66 A8R67	0698-3417 0757-0280 0757-0440 0698-3446 0698-3440 0698-3447 2100-1755 0698-0084 0698-3159 0757-0401 0698-3152	1	R:FXD MET FLM 23.7K OHM 1% 1/2W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 7.50K OHM 1% 1/8W R:FXD MET FLM 383 OHM 1% 1/8W R:FXD 196 OHM 1% 1/8W(DELETE FOR H01-02) R:FXD 133 OHM 1% 1/8W(OPT H01-02 ONLY) R:FXD MET FLM 2.15K OHM 1% 1/8W R:FXD MET FLM 26.1K OHM 1% 1/8W R:FXD MET FLM 26.1K OHM 1% 1/8W R:FXD MET FLM 3.48K OHM 1% 1/8W R:FXD MET FLM 3.48K OHM 1% 1/8W	28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	0698-3417 0757-0280 0757-0440 0698-3446 0698-3446 0698-3437 2100-1755 0698-0084 0698-3159 0757-0401

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A8R68	0757-0401		P:FXD MET FLM 10C OHM 1* 1/8W	28480	c757-0401
A8R69 A8R70 A8R71 A8R72	0757-0280 0698-6696 0698-6694 0698-3419		R:FXO MET FLM 1K OHM 1% 1/8W R:FXO MET FLM 619 OHM 0-25% 1/8W R:FXO MET FLM 178 OHM 0-25% 1/8W R:FXO MET FLM 31-6K OHM 1% 1/2W	28480 28480 28480 28480 28480	0757-0280 0698-6696 0698-6694 0698-3419
ABR73 ABR74 ABR75 ABR76 ABR77	0698-3419 0757-0280 0757-0440 0757-0279 0757-0401		R:FXD MET FLM 31.6K OHM 1% 1/2W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 7.50K OHM 1% 1/8W R:FXD MET FLM 3.16K OHM 1% 1/8W R:FXD MET FLM 10C OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-3419 0757-0280 0757-0440 0757-0279 0757-0401
A8R78 A8R79 A8R80 A8R81 A8R82	0757-0280 0757-0420 0698-6694 0698-3419		R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 750 OHM 1% 1/8W R:FXD MET FLM 178 OHM 0.25% 1/8W R:FXD MET FLM 31.6K OHM 1% 1/2W R:FXD MET FLM 31.6K OHM 1% 1/2W	28480 28480 28480 28480 28480	0757-0280 0757-0420 0698-6694 6698-3419 0698-3419
ASR83 ASR84 ASR85 ASR86 ASR87	0757-0279 0757-0280 0698-3446 0757-0346 0757-0416		R:FXD MET FLM 3.16K OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXO MET FLM 383 OHM 1% 1/8W R:FXD MET FLM 10 OHM 1% 1/8W R:FXD MET FLM 511 OHM 1% 1/8W	28480 28480 28480 28480 28480	C757-C279 C757-O280 C698-3446 O757-O346 O757-C416
A8R88 A3R89 A8R90 A8R91 A8R92	0757-0416 0757-0401 0698-3450 0698-3154 0698-3156		R:FXD MET FLM 511 OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 42_2K OHM 1% 1/8W R:FXD MET FLM 4_22K OHM 1% 1/8W R:FXD MET FLM 14_7K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0416 0757-0401 0698-3450 0698-3154 0698-3156
A8R93 A8R94 A8R95 A8R96 A8R97	0764-0012 0757-0394 0757-0424 0757-0440 0698-3154	1	R:FXD MET FLM 6800 0HM 5% 2W R:FXD MET FLM 51-1 0HM 1% 1/8W R:FXD MET FLM 1-10K 0HM 1% 1/8W R:FXD MET FLM 7-50K 0HM 1% 1/8W R:FXD MET FLM 4-22K 0HM 1% 1/8W	28480 28480 28480 28480 28480	0764-0012 0757-C394 0757-0424 0757-0440 0698-3154
ARR98 ARTP1 THRU ARTP5 A9 A9C1	0757-0438 0360-0124 0360-0124 08552-60123 0180-2125	1	R:FXD MET FLM 5.11K OHM 1% 1/8W TERMINAL:SOLDER LUG TERMINAL:SOLDER LUG SWITCH ASSY:SCAN TIME C:FXD ELECT 15 UF 5% 20VOCW	28480 28480 28480 28480 28480	0757-C438 0360-C124 0360-C124 C8552-60123 C18C-2125
A9C2 A9C3 A9C4 A9C5 A9R1	018C-2126 0180-2127 0160-3017 0180-0116 0757-0459	1 1 1	C:FXD ELECT 1.5 UF 5% 35VDCW C:FXD ELECT 0.15 UF 5% 35VDCW C:FXD MY 0.015 UF 5% 200VDCW C:FXD ELECT 6.8 UF 10% 35VDCW R:FXD MET FLM 56.2K OHM 1% 1/8W	28480 28480 28480 56289 28480	018C-2126 0180-2127 0160-3017 1500685X9C3582-0YS 0757-0459
A9R2 A9R3 A9R4 A9P5 A9R6	0698-3449 0757-0443 0683-3355 0757-0485 0698-3450	1 1 1	R:FXD MET FLM 28.7K OHM 1% 1/8W R:FXD MET FLM 11.0K OHM 1% 1/8W R:FXD COMP 3.3 MEGOHM 5% 1/4W R:FXD MET FLM 681K OHM 1% 1/8W R:FXD MET FLM 62.2K OHM 1% 1/8W	28480 28480 01121 28480 28480	0698-3449 0757-C443 CB 3355 0757-0485 0698-3450
A9R7 A9R8 A9R9 A9R10 A9R11	0698-3153 0698-3260 0698-3260 0698-3260 0698-3260	7	R:FXD MET FLM 3.83K OHM 1% 1/8W R:FXD MET FLM 464K OHM 1% 1/8W	28480 28480 28480 28480 28480	C698-3153 O698-3260 O698-3260 O698-3260 O698-3260
A9R12 A9R13 A9R14 A9R15 A9R16	0698-3260 0698-3260 0698-3260 0698-3271 0698-3271	6	R:FXD MET FLM 464K DHM 1% 1/8W R:FXD MET FLM 464K DHM 1% 1/8W R:FXD MET FLM 464K DHM 1% 1/8W R:FXD MET FLM 115K DHM 1% 1/8W R:FXD MET FLM 115K DHM 1% 1/8W	28480 28480 28480 28480 28480	0698-3260 0698-3260 0698-3260 0698-3271 0698-3271
A9R17 A9R18 A9R19 A9R2C A9R21	0698-3157 0698-3157 0698-3271 0698-3271 0698-3271		R:FXD MET FLM 19.6K OHM 1% 1/8W R:FXD MET FLM 19.6K OHM 1% 1/8W R:FXD MET FLM 115K OHM 1% 1/8W R:FXD MET FLM 115K OHM 1% 1/8W R:FXD MET FLM 115K OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-3157 0698-3157 0698-3271 0698-3271 0698-3271
A9R22 A9R23 A9S1 A1C A10L1	0698-3271 0757-0438 3100-2656 08552-60134 9100-1630	1 1	R:FXD MET FLM 115K OHM 1% 1/8W R:FXD MET FLM 5.11K OHM 1% 1/8W SWITCH:ROTARY 16 POSITION SWITCH ASSY:REF LEVEL COIL/CHOKE 51.0 UH 5%	28480 28480 28480 28480 28480	0698-3271 0757-0438 3100-2656 08552-60134 9100-1630
A10R1 A10R2 A10R3 A10R4 A10R5	0698-6310 0698-5401 0698-6311 0698-0082 0757-1094	1 1 1	R:FXD MET FLM 78.41 OHM 0.25% 1/8W R:FXD MET FLM 247.50 OHM 0.25% 1/8W R:FXD MET FLM 139.8 OHM 0.25% 1/8W R:FXD MET FLM 464 OHM 1% 1/8W R:FXD MET FLM 1.47K OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-6310 0698-5401 0698-6311 0698-0082 0757-1094
A10R6 A10R7 A10R8 A10R9 A10R10	0698-6941 0757-0440 0757-0442 0698-3160 0757-0001	1	R:FXD MET FLM 114.6 GHM 0.25% 1/BW R:FXD MET FLM 7.59K OHM 1% 1/BW R:FXD MET FLM 10.0K OHM 1% 1/BW R:FXD MET FLM 31.6K OHM 1% 1/BW R:FXD MET FLM 13.3 OHM 1% 1/2W	28480 28480 28480 28480 28480	0698-6941 0757-0440 9757-0442 C698-3160 0757-0001

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1051	3100-2092	1	SWITCH: ROTARY	28480	3100-2092
A11	08552-60106	1	SWITCH ASSY: VIDEO FILTER	28480	08552-60106
A11C1	C180-0374	1	C:FXD TANT. 10 UF 19% 20VDCW	56289	1500106X902082-DYS
A11C2 A11C3 A11R1 A11R2 A11R3	0160-0161 0180-0291 0757-0454 0698-4507 0698-4207	1 1 1	C:FXD MY 0-01 UF 10% 200VDCW C:FXD ELECT 1-0 UF 10% 35VDCW R:FXD MET FLM 33-2K 0HM 1% 1/8W R:FXD MET FLM 76-8K 0HM 1% 1/8W R:FXD MET FLM 44-2K 0HM 1% 1/8W	56289 56289 28480 28480 28480	192P10392-PTS 1500105X9035A2-DYS 0757-C454 0698-4507 0698-4207
A1151	3100-2673	1	SWITCH:LEVER 4 POSITION	28480	3100-2673
A12	08552-60115	1	BOARD ASSY:47 MHZ APC	28480	08552-60115
A12	08552-60145	1	EXCHANGE ASSY: 47 MHZ APC	28480	08552-60145
A12C1 A12C2 A12C3 A12C4 A12C5	0160-3456 0140-0191 0160-3456 0160-0134 0140-0200	2	C:FXD CER 1000 PF 10% 250VDCW C:FXD MICA 56 PF 5% 300VDCW C:FXD CER 1000 PF 10% 250VDCW C:FXD MICA 220PF 5% 300VDCW C:FXD MICA 2300 PF 5%	56289 19701 56289 14655 72136	C067F251F102KS22-C0H RDM15E560J 300V C067F251F102KS22-CDH RDM15F22LJ3C RDM15F391-J3C
A12C6 A12C7 A12C8 A12C9 A12C10	0140-0200 0160-0153 0160-0298 0160-0302 0180-0197	1	C:FXD MICA 390 PF 5% C:FXD MY 0.001 UF 10% 200VDCW C:FXD MY 0.0015 UF 10% 200VDCW C:FXD MY 0.018 UF 10% 200VDCW C:FXD ELECT 2.2 UF 10% 20VDCW	72136 56289 56289 56289 56289	PDM15F391-J3C 192P10292-PTS 192P15292-PTS 192P18392-PTS 150D225X9020A2-DYS
A12C11 A12C12 A12C13 A12C14	0160-0163 0180-0197 0160-3456 0160-3456		C:FXD MY 0.033 UF 10% 200VDCW C:FXD ELECT 2.2 UF 10% 20VDCW C:FXD CER 1000 PF 10% 250VDCW C:FXD CER 1000 PF 10% 250VOCW	56289 56289 56289 56289	192P33392-PTS 15GD225X9020A2-DYS C067F251F102K522-CDH C067F251F102KS22-CDH
A12CR1 A12E1 A12E2 A12L1 A12L2	1902-0025 10534C 10534C 9140-0098 9140-0098	2	DIODE, BREAKDOWN:10.0V 5% 400 MW MIXER:200 MHZ MIXER:200 MHZ CDIL/CHOKE 2.20 UH 10% COIL/CHOKE 2.20 UH 10%	28480 28480 28480 99800 99800	1902-0025 10534C 10534C 1537-20 1537-20
A12L3 A12L4 A12L5 A12L6 A12L7 A12Q1 A12Q2 A12P1 A12R2 A12P2 A12P3 A12R4	9100-1621 9100-1618 9100-1618 9140-0237 9140-0129 1854-0019 1853-0034 0757-0316 0757-0402 0757-0438	1 2	COIL/CHOKE 18.0 UH 10% COIL:MOLDED CHOKE 5.60 UH COIL:MOLDED CHOKE 5.60 UH COIL:FXD 200 UH 5% COIL:FXD,MOLDED RF CHOKE 220UH 5% TSTR:SI NPN TSTR:SI PNP(SELECTED FROM 2N3251) R:FXD MET FLM 42.2 OHM 1% 1/8W R:FXD MET FLM 110 OHM 1% 1/8W R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD MET FLM 5.11K OHM 1% 1/8W	99800 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	1537-42 9100-1618 9100-1618 9140-0237 9140-0129 1854-0019 1853-0034 0757-0316 0757-0402 0757-0438
A12P5 A12R6 A12R7 A12R8 A12R9	0757-0382 0757-0397 0757-0382 0757-0438 0757-0394	2	R:FXD MET FLM 16.2 OHM 1% 1/8W R:FXD MET FLM 68.1 OHM 1% 1/8W R:FXD MET FLM 16.2 OHM 1% 1/8W R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD MET FLM 51.1 OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0382 0757-0397 0757-0382 0757-0438 0757-0394
A12R10 A12R11 A12R12 A12R13 A12R14	0698-0084 0757-0465 0757-0465 0757-0280 0757-0416		R:FXD MET FLM 2.15K OHM 1% 1/8W R:FXD MET FLM 100K OHM 1% 1/8W R:FXD MET FLM 10CK OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 511 OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-0084 0757-0465 0757-0465 0757-0280 0757-0416
A12R15 A12R16 A12Y1 A12Y1 A12YP1 A12U1	0757-0465 0757-0280 08552-80101 0360-1514 1826-0013	1	R:FXD MET FLM 100K 0HM 1% 1/8W R:FXD MET FLM 1K 0HM 1% 1/8W INDUCTOR ASSY:45 MHZ 0SC TERMINAL PIN:SQUARE IC:LINEAR	28480 28480 50436 28480 28480	0757-0465 0757-0280 08552-80101 0360-1514 1826-0013
A12XA13 A12Y1	1251-0478 0410-0406	1	CONNECTOR:PC (2 X 6) 12 CONTACTS CRYSTAL:QUARTZ 45 MHZ	71785 28480	252-06-30-340 0410-0406
A13	08552-60117	1	BOARD ASSY: 2 MHZ OSCILLATOR	28480	C8552-60117
A13C1 A13C2 A13C3 A13C4	0122-0951 0122-0051 0180-1746 0160-0194	2	DIODE:TUNING 100 PF 5% DIODE:TUNING 100 PF 5% C:FXD ELECT 15 UF 10% 20VDCW C:FXD MY 0.015 UF 10%	28480 28480 28480 28480 56289	0122-0051 0122-0051 0180-1746 192P15392-PTS
A13C5 A13C6 A13C7 A13C8 A13C9	0160-3060 0160-2055 0160-3060 0160-3060 0160-3060		C:FXD CER 0.1 UF 20% 25VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.1 UF 20% 25VDCW C:FXD CER 0.1 UF 20% 25VDCW C:FXD CER 0.1 UF 20% 25VDCW	56289 56289 56289 56289 56289	3C42A-CML C023F101F103Z522-CDH 3C42A-CML 3C42A-CML 3C42A-CML

Replaceable Parts Model 8552B

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A13010	C180-2207	1	C:FXD ELECT 100 UF 10% 10VDCW	56289	1500101X9010R2-DYS
A13011	0180-0197		C:FXD ELECT 2-2 UF 10% 20VDCW	56289	1500225X9020A2-DYS
A13012	0180-1746		C:FXD ELECT 15 UF 10% 20VDCW	28480	0180-1746
A13L1	9140-0237		COIL:FXD 200 UH 5%	28480	9140-0237
A13L2	9140-0237		COIL:FXD 200 UH 5%	28480	9140-0237
A1301	1853-0050	1	TSTR:SI PNP	28480	1853-9050
A1302	1854-0071		TSTR:SI NPN(SELECTED FROM 2N3704)	28480	1854-0071
A1303	1853-0012		TSTR:SI PNP	80131	2N2904A
A1304	1854-0071		TSTR:SI NPN(SELECTED FROM 2N3704)	28480	1854-0071
A13R1	0757-0447		R:FXD MET FLM 16.2K OHM 1% 1/8W	28480	0757-0447
A13R2	0757-0442		R:FXD MET FLM 10.0K OHM 1% 1/8W	28480	0757-0442
A13R3	0698-3445		R:FXD MET FLM 348 OHM 1% 1/8W	28480	C698-3445
A13R4	0698-0083		R:FXD MET FLM 1.96K OHM 1% 1/8W	28480	0698-0083
A13R5	2100-2522		R:VAR CERMET 10K OHM 10% LIN 1/2W	28480	2100-2522
A13R6	0757-0447		R:FXD MET FLM 16.2K OHM 1% 1/8W	28480	0757-C447
A13R7	0698-3450		R:FXD MET FLM 42.2K OHM 1% 1/8W	28480	0698-3450
A13R8	0698-3445		R:FXD MET FLM 348 OHM 1% 1/8W	28480	0698-3445
A13R9	0757-0394		R:FXD MET FLM 51.1 OHM 1% 1/8W	28480	0757-0394
A13R10	0698-3157		R:FXD MET FLM 19.6K OHM 1% 1/8W	28480	0698-3157
A13R11	0757-0442		R:FXD MET FLM 10.0K OHM 1% 1/8W	28480	0757-0442
A13R12 A13R13 A13P14 A13R15 A13R16	0698-3441 0757-0394 0698-3441 0698-3435 0698-3430	1 1	R:FXD MET FLM 215 OHM 1% 1/8W R:FXD MET FLM 51-1 OHM 1% 1/8W R:FXD MET FLM 215 OHM 1% 1/8W R:FXD MET FLM 38-3 OHM 1% 1/8W R:FXD MET FLM 21-5 OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-3441 0757-0394 0698-3441 0698-3435 0698-3430
A13R17	0698-0083	1	R:FXD MET FLM 1-96K OHM 1% 1/8W	28480	0698-0083
A13T1	08552-80104		INDUCTOR ASSY:2 MH7 VTO	50436	08552-80104
A13TP1	0360-1514		TERMINAL PIN:SQUARE	28480	0360-1514

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
C1 C2 C3 C4	0160-2049 0160-3219 0160-2049 0160-3219	2 3	CHASSIS PARTS C:FXD CER FEED-THRU 5000 PF +80-20% C:FXD FEED-THRU 100 PF C:FXD CER FEED-THRU 5000 PF +8C-20% C:FXD FEED-THRU 100 PF	28480 28480 28480 28480	0160-2049 0160-3219 0160-2049 0160-3219
C5 C6 C7 C8 C9	0150-0093 0160-2437 0160-2437 0160-2436 0160-2437	1 4	C:FXD CER 0.01 UF +80~20% 100VDCW C:FXD CER 5000 PF +80~20% 200VDCW C:FXD CER 5000 PF +80~20% 20CVDCW C:FXD CER 10 PF 20% 200VDCW C:FXD CER 5000 PF +80~20% 200VDCW	72982 72982 72982 72982 72982	8C1-K80C011 2425-00C-X5V-5C2P 2425-00C-X5V-5C2P 2425-00C-X5P-10CG 2425-00C-X5V-5C2P
C10	0160-2437		C:FXD CER 5000 PF +80-20% 200VDCW	72982	2425-000-X5V-502P
C11 C18 C19 CR1	0160-3219 1901-0416		NOT ASSIGNED C:FXO FEED-THRU 100 PF DIODE:SILICON 200PIV 3A	28480 28480	0160-3219 1901-0416
0\$1 0\$2 0\$3 0\$4 0\$5	2140-0058 2140-0058 2140-0058 2140-0058 2140-0058	6	LAMP:INCANDESCENT 10.0V 0.04 AMPS	08806 08806 08806 08806 08806	367 367 367 367 367
D56 D57 D57 D57 D58	2140-0058 2140-0258 5040-0235 08552-8002 2140-0258	2 3 1	LAMP:INCANDESCENT 10.0V 0.04 AMPS LAMP:INCANDESCENT 10V BASE:LAMPHOLDER LAMPHOLOER:IMES LAMP:INCANDESCENT 10V	08806 71744 28480 28480 71744	367 CM-2107 5C49-C235 08552-8092 CM-2107
DS8 DS8 DS9 DS9 DS9	5040-0235 08552-8001 2140-0022 5040-0234 5040-0235	1 1 1	BASE:LAMPHOLDER LAMPHOLDER:PLUS LAMP:GLOW 1.C MILLIAMPS 0.1W LAMPHOLDER BASE:LAMPHOLDER	28480 28480 08806 28480 28480	5040-0235 08552-8001 A9A(NE-2E) 5040-0234 5040-0235
F1 F2 J1 J1 J2	2110-0001 2110-0001 1250-0252 1250-0118	2 1 3	FUSE:1 AMP 250V FUSE:1 AMP 250V BODY:R CONNECTOR BULKHEAD RECEPTACLE (CAL DUT) P/O W4 CONNECTOR:BNC	75915 75915 28480 24931	312001. 312001. 1250-0252 28JR 128-1
J2 J3 J3 J4	1251-2080 1250-0118	1	(PEN LIFT OUT, TRIG IN) COMNECTOR:41 FEMALE CONTACT (INTERCONNECTING PLUG, RF/IF) CONNECTOR:BNC	83148 24931	DOMF-43W2S 28JR 128-1
J5 J5 J6 J6 J7	1250-0118 1250-0830 1250-0830	2	(VERTICAL OUT) CONNECTOR:BNC (SCAN IN, OUT) CONNECTOR:RF (RF INPUT) CONNECTOR:RF	24931 98291 98291	28JR 128-I 50-047-0000 50-047-0000
J7 J8 L1 L2 L3	1250-0828 9140-0142 9140-0142 9140-0142	1 3	(47 MHZ OUTPUT) CONNECTOR:RF 50-OHM SCREW ON TYPE COIL:FXD RF 2.20 UH 10% COIL:FXD RF 2.20 UH 10% COIL:FXD RF 2.20 UH 10%	98291 82142 82142 82142	50-043-4610 09-4436-4K 09-4436-4K 09-4436-4K
L4 P1 Q1	9100~1615 1251~0055	1	COIL/CHOKE FXD 1.20 UH 10% CONNECTOR: MALE 24 CONTACTS	28480 28480	9100-1615 1251-0055
Q22 Q23	1853~0052	1	NOT ASSIGNED IN CHASSIS PARTS TSTR:SI PNP	80131	2N3740
023 023 024 024 024	0340-0162 1200-0168 1854-0341 0340-0162 1200-0168	2 2	INSULATOR:TSTR FOR TO-66 SOCKET:TRANSISTOR TSTR:SI NPN INSULATOR:TSTR FOR TO-66 SOCKET:TRANSISTOR	13103 28480 28480 13103 28480	A0340-0162-1 1200-0168 1854-0341 A0340-0162-1 1200-0168
R1 R2 R3 R4 R5	0811-2501 0683-3315 0683-3315 2100-2492 2100-2488	1 2 2 2	R:FXD WW 180 DHM 3% 50H R:FXD COMP 330 DHM 5% 1/4W R:FXD COMP 330 DHM 5% 1/4W R:YAR COMP 5K DHM 20% LIN 1/2W R:YAR COMP 10K DHM 20% LIN 1/2W	28480 01121 01121 28480 28480	0811-2501 CB 3315 CB 3315 2100-2492 2100-2488
R6 R7 R8 R9 R10	0757-0441 0767-0010 0767-0010 0757-0461 2100-2806	2	R:FXD MET FLM 8.25K OHM 1% 1/8W R:FXO MET FLM 15K OHM 5% 3W R:FXD MET FLM 15K OHM 5% 3W R:FXD MET FLM 68.1K OHM 1% 1/8W R:YAR COMP 2.5K OHM 20% LIN 1/2W	28480 28480 28480 28480 28480	0757-0441 0767-0010 0767-0010 0757-0461 2100-2806
R11 R12 R13 R14 R15	2100-2661 2100-2501 0698-3399 0698-3400 2100-2488	1 1 1	R:VAR COMP 1K OHM 20% LIN 1/2W R:VAR WM 2K OHM 20% LIN 1.5W R:FXD MET FLM 133 OHM 1% 1/2W R:FXD MET FLM 147 OHM 1% 1/2W R:VAR COMP 10K OHM 20% LIN 1/2W	28480 28480 28480 28480 28480	2100-2661 2100-2501 0698-3399 0698-3400 2100-2488

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
R16	0687-2731				
R17 R18 R19 R20	0812-0100 0811-1666 0683-1045 2100-2492	1 1 1	R:FXD COMP 27K OHM 10% 1/2W R:FXD WW 2K OHM 5% 5W R:FXD WM 1-C OHM 5% 2W R:FXD COMP 100K OHMS 5% 1/4W R:VAR COMP 5K OHM 20% LIN 1/2W	01121 28480 28480 01121 28480	ER 2731 G812-0100 O811-1666 CB 1045 210C-2492
\$1 \$1 \$2 \$3 \$4	3101-0897 3101-0052 08552-60105 08552-60135	1 1 1	SWITCH:SLIDE DP3T 0.5 AMP (LOG/LINEAR) SWITCH:PUSHBUTTON SPST SWITCH ASSY:SCAN MODE SWITCH ASSY:SCAN TRIGGER	79727 82389 28480 28480	G-128S-0021 961 LESS HWD 08552-60105 08552-60135
W1 W2 W3	8120-1110 8120-1111 08552-6015 08552-60118	1 1 1 1	CABLE:RF(GREEN) CABLE:RF(BLUE) CAPLE ASSY:GRAY CABLE ASSY:CAL OUT(DELETE FOR OPT H01-02)	28480 28480 28480 28480	8120-1110 812C-1111 08552-6015 08552-60118
W4 W4 W5	08552-62001 08552-62004 08552-60136	1 1 1	CABLE ASSY:CAL OUT(OPT H01 ONLY) CABLE ASSY:CAL OUT(OPT H02 ONLY) CABLE ASSY:ORANGE	28480 28480 28480	08552-62001 08552-62004 08552-60136
W6 W7 W8 W9 W10	08552-60119 08552-6038 08552-6039 08552-60122 08552-60132	1 1 1 1	CABLE ASSY:VERTICAL OUTPUT CABLE ASSY:50 MHZ CABLE ASSY:47 MHZ(YELLOW STRIPE) CABLE ASSY:47 MHZ APC CABLE ASSY:BLUE	28480 28480 28480 28480 28480	08552-60119 08552-6038 08552-6039 08552-60122 08552-60132
W11 W12 W13 XA1 XA2	08552-60131 08552-6028 08552-60083 1251-0135 1251-0135	1 1 1 4	CABLE ASSY:SHIELDED CABLE ASSY:RED CABLE ASSY: 3 MHZ CONNECTOR:PC EDGE 15 CONTACT CONNECTOR:PC EDGE 15 CONTACT	28480 28480 28480 95354 95354	08552-60131 08552-6028 08552-60083 91-6915-1500-00 91-6915-1500-00
XA3 XA4 XA5 XA6 XA7	1251-0194 1251-0135 1251-0159 1251-0159 1251-0159	1	CONNECTOR:PC EDGE 15 CONTACT CONNECTOR:PC EDGE 15 CONTACT CONNECTOR:PC EDGE 2 X 15 CONTACT CONNECTOR:PC EDGF 2 X 15 CONTACT CONNECTOR:PC EDGF 2 X 15 CONTACT	95354 95354 71785 71785 71785	91-6915-1113-00 91-6915-1500-00 251-15-30-261 251-15-30-261 251-15-30-261
X48 XF1 XF2	1251-0135 2110-0087 2110-0087	2	CONNECTOR:PC EDGE 15 CONTACT FUSEHOLOER:OPEN TYPE FUSEHOLDER:OPEN TYPE	95354 28480 28480	91-6915-1500-00 2110-0087 2110-0087
			MISCELLANEOUS		
	0370-0151 0370-0432 0403-0026 0510-0048	2 3 8 2	KNOB:ROUND FOR 0.125" DIA SHAFT KNOB:BLACK LEVER GLIDE:NYLON FASTENER:6-32 THREADED HOLE	28480 28480 28480 16585	0370-0151 0370-0432 0403-0026 T710065-632
	0590-0159 1400-0093 1460-0931 1490-0838 2190-0057	4 6 1 2 4	NUT:HEX FOR 0160-3219 CAPACITOR CLAMP:CABLE FOR 1/4" DIA HOLE SPRING:EXTENSION STUD:LATCHING #8-32 THREAD WASHER:LOCK FOR #12 HDW	72982 00000 00000 28480 00000	2499-202 GBO GBO 1490-0838 GBO
	3050-0381 6960-0016 03950-4001 08552-0016 08552-0015	4 4 1 1	WASHER:THRUST(DELRIN) PLUG:NYLON 0.125* DIA HOLE EXTRACTOR:TOOL DIAL-KNOB ASSY:LOG REF. FINE DIAL-KNOB ASSY:SCAN TIME	28480 00000 28480 28480 28480	3050-0381 080 03950-4001 08552-0016 08552-0015
	08552-0025 08552-4006 08552-6017 08552-2016 08552-60133	9 1 1 1	INSULATOR:VERTICAL INDICATOR UNIT:IF GAIN INDUCTOR ASSY:50 MHZ RETAINER:BULB CHASSIS ASSY:MAIN BODY	28480 28480 28480 28480 28480	08552-0025 08552-4006 08552-6017 08552-2016 08552-60133
	08552-90013 08552-90014 0360-0268 5000-0230 08552-0018	1 1 15 1 2	GRATICULE:OVERLAY GRATICULE:OVERLAY TERMINAL SOLDER:LUG INSULATOR:P.C. BOARD BRACKET:SHIELD	28480 28480 78189 28480 28480	08552-90013 08552-90014 2103-06-00 5000-0230 08552-0018
	08552-2017 0460-0114 08552-0014 08552-02002 08552-0027	6 1 1 1	CONTACT:LAMPHOLDER P/O A10 TAPE:POLYURETHANE 1-1/4 IN WIDE DIAL-KNOB ASSY IF LEVEL(DELETE FOR H01-02-04 DIAL-KNOB ASSY IF LEVEL(OPT H01-02 ONLY) DIAL-KNOB ASSY IF LEVEL(OPT H04 ONLY)	28480 85471 3) 28480 28480 28480	08552-2017 TESAMOLL-2 08552-0014 08552-02002 08552-0027
	08552-00131 08552-02005	1 1	PLATE:CONNECTOR(DELETE FOR OPT H01-02) PLATE:CONNECTOR(OPT H01-02 ONLY)	28480 28480	08552-00131 08552-02005

Model 8552B Replaceable Parts

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
			CABINET PARTS		
	08552-0003 C8552-0009 08552-00104 08552-00106 C8552-00107	1 1 1 1	PANEL:REAR COVER:SHIELO PLATE:CONNECTOR PANEL:FRONT PANEL:SUB	28480 28480 28480 28480 28480	08552-0003 08552-0009 08552-00104 08552-00106 08552-00107
	08552-00108 08552-00109 08552-00111 08552-00124 08552-00132	1 1 1 1	BRACE COVER:VTG COVER:PHASE LOCK COVER:BOTTOM PANEL:FRONT, MINT GRAY	28480 28480 28480 28480 28480	08552-00108 08552-00109 08552-00111 08552-00124 08552-00132
	08552-00131 08552-0014 08552-0013 08552-0018 08552-2044	1 1 1	PLATE: CONNECTOR, OLIVE BLACK DIAL-KNOB ASSY: IF LEVEL BRACKFT: POT BRACKET: SHIELD BAR LATCH	28480 28480 28480 28480 28480	08552-00131 08552-0014 08552-0013 08552-0018 08552-2044
	08552-4001 08552-0004 08552-0005 08552-0006 08552-0007	1 1 1 1 6	HANDLE:LATCH DECK:PLUG-IN DECK:RIGHT SIDE DECK:LEFT SIDE DECK:DIVIDER	28480 28480 28480 28480 28480	08552-4001 08552-0004 08552-0005 08552-0006 08552-0007
	08552-00121 08552-00125 08552-0017	1 1 1	PHASE LOCK BOX ASSY DECK:BRACE DECK:REAR DIVIDER	28480 28480 28480	08552-00121 08552-00125 08552-0017

Table 6-4. Code List of Manufacturers

MFR NO.	MANUFACTURER NAME	ADDRESS	CODE
0000	U.S.A. COMMON	ANY SUPPLIER OF U.S.A.	
00136	MC COY ELECTRONICS CO.	MT. HOLLY SPRINGS, PA.	17065
00656	AEROVOX CORP.	NEW BEDFORD, MASS.	02745
00853	SANGAMO ELECTRIC CO.PICKENS DIV.	PICKENS. S.C.	29671
01121	ALLEN BRADLEY CO.	MILWAUKEE, WIS.	53204
01255	LITTON INDUSTRIES INC. (USECO)	BEVERLY HILLS, CALIF.	90210
01295	TEXAS INSTRUMENTS INC. SEMICONDUCTOR COMPONENTS DIV.	DALLAS. TEX.	75231
02114	FERROXCUBE CORP.	SAUGERTIES, N.Y.	12477
02735	RCA SOLID STATE & RECEIVING TUBE DIV.	SOMERVILLE, N.J.	08876
04713	MOTOROLA SEMICONDUCTOR PROD.INC.	PHOENIX, ARIZ.	85008
06540	AMATOM ELECT. HARDWARE CO. INC.	NEW ROCHELLE, N.Y.	10801
37263	FAIRCHILD CAMERA & INST. CORP. SEMICONDUCTOR DIV.	MOUNTAIN VIEW, CALIF.	94040
30880	G.E. CO. MINIATURE LAMP DEPT.	CLEVELAND, OHIO	44112
12040	NATIONAL SEMICONDUCTOR CORP.	DANBURY, CONN.	06810
13103	THERMALLOY CO.	DALLAS, TEX.	75247
14655	CORNELL DUBLIER ELECT. DIV.FEDERAL PACIFIC ELECT. CO.	NEWARK, N.J.	07105
16585	BOOTS AIRCRAFT NUT CORP. WESTERN DIV.	PASENDENA, CALIF.	91100
19701	ELECTRA/MIDLAND CORP.	MINERAL WELLS, TEX.	76067
24931	SPECIALTY CONNECTOR CO. INC.	INDIANAPOLIS, IND.	46227
23480	HEWLETT-PACKARD CO. CORPORATE HQ	YOUR NEAREST HP OFFICE	
36196	STANWYCK COIL PROD. LTD.	HAWKSBURY ONTARIO, CANADA	
50436	HEWLETT-PACKARD CO. MICROWAVE DIV	PALO ALTO, CALIF	94304
56289	SPRAGUE ELECTRIC CO.	N. ADAMS, MASS.	01247
71744	CHICAGO MINIATURE LAMP WORKS	CHICAGO, ILL.	60640
71785	CINCH MFG. CO. DIV TRW INC.	ELK GROVE VILLAGE, ILL.	
72136	ELECTRO MOTIVE MFG. CO. INC.	WILLIMANTIC, CONN.	06226
72982	ERIE TECHNOLOGICAL PROD. INC.	ERIE, PA.	16512
75915	LITTELFUSE INC.	DES PLAINES, ILL.	60016
78189	SHAKEPROOF DIV. ILLINOIS TOOL WORKS	ELGIN, ILL.	60120
79727	CONTINENTAL-WIRT ELECTRONICS CORP.	WARMINSTER, PA.	18974
80131	ELECTRONIC INDUSTRIES ASSOCIATION	WASHINGTON D.C.	20006
82142	AIRCO SPEER ELECT. COMP.	DU BOIS, PA.	15801
82389	SWITCHCRAFT INC.	CHICAGO, ILL.	60630
83148	ITT WIRE & CABLE DIV.	LOS ANGELES, CALIF.	90031
84171	ARCO ELECT. INC.	GREAT NECK, N.Y.	11022
84411	TRW CAPACITOR DIV.	OGALLALA, NEBR.	69153
85471	BOYD A.B. CO.	SAN FRANCISCO, CALIF.	94103
91418	RADIO MATERIALS CO.	CHICAGO, ILL.	60646
95354	METHODE MFG. CO.	ROLLING MEADOWS, ILL.	60008
98291	SEALECTRO CORP.	MAMARONECK, N.Y.	10544
98978	INTERNATIONAL ELECT. RESEARCH CORP.	BURBANK, CALIF.	91502
99800	DELEVAN ELECTRONICS CORP.	E. AURORA, N.Y.	14052

SECTION VII MANUAL CHANGES

7-1. INTRODUCTION

- 7-1. This section contains information for adapting this manual to instruments for which the content does not apply directly.
- 7-3. To adapt this manual to your instrument, refer to Table 7-1 and make all of the manual changes listed opposite your instrument serial number. Per-

form these changes in the sequence listed.

7-4. If your instrument serial number is not listed on the title page of this manual, or in Table 7-1, it may be documented in a yellow MANUAL CHANGES supplement available from Hewlett-Packard. For additional important information about serial number coverage, refer to INSTRUMENTS COVERED BY MANUAL in Section I.

Table 7-1. Manual Changes by Serial Number

Serial Prefix or No.	Make Manual Changes
1345A	A
1335A04961 to 05360	A, B
1335A04861 to 04960	A, B, C
1311A	A through D
1250A	A through E
1234A02983 to 03210	A through F
1217A	A through G
1210A	A through H
1209A	A through I
1144A01311 to 01810	A through J
1144A01211 to 01310	A through K
1137A	A through L
	1

Make Manual Changes
A through M
A through N
A through 0
A through P
A through Q
A through R
A through S
A through T
A through U
A through V
A through W
A through X

Table 7-2. Summary of Changes by Component (1 of 2)

Changes	А	В	С	D	E	G	Н	ı	J	К
A1	L7	R4, R7, R12, R21, R25, R26, R30, R44, R45, R70, R71, R81, R82			R60					
A2			Z1							
A3										
A3A2										
A4								R36 R55 R96 R112		R122
A5				C20 R18						
A6					R57			-		
A7							Note 2			
A8									R98	
A10						_				
A11										
A12										
A13								-		
W13									W13	
CHASSIS PARTS										

Table 7-2. Summary of Changes by Component (2 of 2)

Changes	L	N	o	Р	R	s	T	V	W	x	Y
A1									R38		
A2											
A3										Note1	
A3A2									C15, R3 R7, R8, R13, R14		
A 4				CR48 CR49	CR11 CR18 CR25 CR33 CR41			R115 R122	R10, R44, R45, R70 R71, R81, R82, R102, R115, R117 R122, R126 R132		
A5				Z1				U1 U2			C14,15 C19
A6								C13			
A7	C4, R7		Q2,Q9 R7,R20 R21,R24 R25, CR23 R12				Q10 Q19	R23 R24			
A8											
A10						R10					
A11							R1				
A12		C1 C3 C13 C14									L4, L5 L6 R14 R16
A13										L2	
W13	<u> </u>										
CHASSIS PARTS						R13	XF1 XF2				

NOTES

- 1. Extensive changes in A3 assembly. New parts list and schematic for instruments with serial prefix 974- and lower.
- 2. The instrument contains a new A7 board assembly. Section 7 of this manual contains the information contained on Service Sheet 14 for instruments with serial number prefixes 1217A and lower.

Manual Changes Model 8552B

7-5. MANUAL CHANGE INSTRUCTIONS

CHANGE A

Page 6-23, Table 6-3:

Delete A12L7 (entire line).

Page 8-27, Figure 8-19 (Service Sheet 4):

Delete L7 on lead from "+20" to "TO C10" on right-hand side of A12 assembly.

Page 8-21 (Service Sheet 4):

Add A12L7 between "+20 V" on A12 Assembly and C10 feedthrough capacitor.

CHANGE B

Page 6-5, Table 6-3:

Change A1R7 and A1R25 to 0757-0421, R: FXD MET FLM 909 OHM 1% 1/8W, 28480, 0757-0422.

Change A1R4, A1R12, A1R21, and A1R30 to 0757-0434, R: FXD MET FLM 3.65K OHM 1% 1/8W, 28480, 0757-0434.

Page 6-12, Table 6-3:

Change A4R25 to 0698-7267, R: FXD MET FLM 19.6K OHM 2% 1/8W, 28480, 0698-7267.

Change A4R26 to 0698-7275, R: FXD FLM 42.2K OHM 2% 1/8W, 28480, 0698-7275.

Page 6-13, Table 6-3:

Change A4R44, A4R70, and A4R81 to 0698-7269, R: FXD FLM 23.7K OHM 2% 1/8W, 28480, 0698-7269.

Change A4R45, A4R71, and A4R82 to 0698-7277, R: FXD MET FLM 51.1K OHM 2% 1/8W, 28480, 0698-7277.

Page 8-35, Figure 8-29 (Service Sheet 8):

Change A1R4, A1R12, A1R21, and A1R30 to 3.65K ohms.

Page 8-39, Figure 8-32 (Service Sheet 10):

Change A4R25* to A4R25 19.6K ohms.

Change A4R26* to A4R26 42.2K ohms.

Change A4R44†* to A4R44† 23.7K ohms.

Change A4R45†* to A4R45† 51.1K ohms.

Page 8-41, Figure 8-34 (Service Sheet 11):

Change A4R70†* to A4R70† 23.7K ohms.

Change A4R71†* to A4R71† 51.1K ohms.

Change A4R81†* to A4R81† 23.7K ohms.

Change A4R82†* to A4R82† 51.1K ohms.

CHANGE C

Page 6-7, Table 6-3:

Delete A2Z1 (entire line).

Page 6-16, Table 6-3:

Delete A5Z2 (entire line).

Page 8-31, Figure 8-25 (Service Sheet 6):

Delete shielding bead A2Z1 adjacent to A2C10.

Page 8-57, Figure 8-51 (Service Sheet 19):

Delete A5Z2 at base lead of A5Q23 (top left-hand side of schematic).

CHANGE D

Page 6-14, Table 6-3:

Delete A5C20 (entire line).

Page 6-15, Table 6-3:

Add A5R18, 0757-0416, R: FXD MET FLM 511 OHM 1% 1/8W, 28480, 0757-0416.

Page 8-57, Figure 8-50, (Service Sheet 19):

Change C20 to R18 on A5 Power Supply.

Page 8-57, Figure 8-51 (Service Sheet 19):

Delete A5C20 .01 μ F (lower left-hand portion of schematic).

Add A5R18 511 ohms in place of A5C20 (from gate to cathode of A5CR10).

CHANGE E

Page 6-5, Table 6-3:

Change A1R60 to 0698-3438, R: FXD MET FLM 147 OHM 1% 1/8W, 28480, 0698-3438.

Page 8-35, Figure 8-29 (Service Sheet 8):

Change the value of R60 to 147 ohms.

CHANGE F

Page 8-23, Table 8-5 (Service Sheet 2):

Delete under connector J3: Pin 22, Wire Color Code, 90; Function, Scanwidth Ground.

Page 8-29, Figure 8-23 (Service Sheet 5):

Change the diagram as shown in the partial schematic.

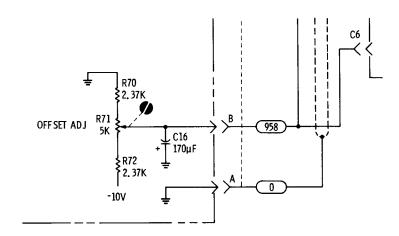


Figure 7-1. Power Supply Partial Schematic (Part of Change F)

CHANGE G

Page 6-18, Table 6-3:

Change A6R57 to 0757-0274, R: FXD 1.21K OHM 1% 1/8W (OPT H01-02 ONLY), 28480, 0757-0274.

Page 8-55, Figure 8-49 (Service Sheet 18):

Change Note 1 to: R57 is 1.1K ohms for Options H01/H02.

CHANGE H

Table 6-3:

Change parts list of A7 assembly to the list of Table 7-3.

Service Sheet 14 Component Locations:

Change to Figure 7-10.

Service Sheet 14 Schematic:

Change the figure as shown by Figure 7-11.

Service Sheet 14 Text:

Replace the text material with the information contained under the heading SERVICE SHEET 14 TEXT.

SERVICE SHEET 14 TEXT (Part of Change H)

It is assumed that the video signal from the Log/ Lin assembly and dc supply voltages are present and correct but that the vertical deflection output signals are not correct.

TROUBLESHOOTING PROCEDURE

When trouble has been isolated to the Deflection Amplifier assembly, the assembly should be removed from the chassis and re-installed using an extender board to provide easy access to components. Test procedures follow the technical discussions of individual circuits.

EQUIPMENT REQUIRED

CONTROL SETTINGS

Unless otherwise specified in individual tests.

SCAN WIDTH PER DIVISION 2 MHz
LOG REF LEVEL30 dBm
VIDEO FILTER OFF
SCAN TRIGGERLINE
INPUT ATTENUATION 0 dB
LOG-LINEAR
SCAN MODE INT
SCAN TIME PER DIVISION . 1 MILLISECOND
CAL OUTPUT connected to RF INPUT
FREQUENCY 30 MHz

1 BLANKING AND BLANKING CONTROL CIRCUITS

Operation of the blanking preamplifier Q12/Q21 is controlled by the scan generator in the INT (internal) mode of operation and by an external source (via J2) in the EXT (external) mode. In the SINGLE mode a -12.6V dc level is applied to the trigger circuit in the scan generator to enable the circuit for one scan only. In the MANUAL mode, blanking is not used.

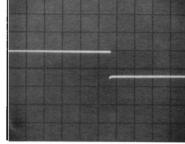
Q12/Q21 act as a switch to control the operation of Q11. When Q11 is turned off the CRT is blanked. Blanking is also partially controlled by the baseline clipper and clipper override circuits. See step 2

TEST PROCEDURE 1

Connect the HP 180A/1801A/1821A to TP A (Q11-e) and observe the waveforms shown in A and B below.

CONTROL SETTINGS:

(Waveform A)


Oscilloscope: 5V/Div 2 msec/Div

10:1 Probe

Analyzer: BASE LINE CLIPPER ccw

Waveform GOOD: Proceed to waveform B.

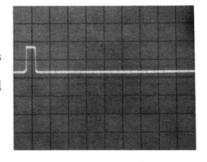
Waveform BAD: Check Q11/Q12/Q21 and associated components.

SERVICE SHEET 14 TEXT (cont'd)

(Part of Change H)

CONTROL SETTINGS:

(Waveform B)


Oscilloscope: Same as A.

Analyzer: Same as above except rotate BASE LINE CLIPPER

full cw.

If waveform A was GOOD and B was BAD, trouble should be in the baseline clipper circuits.

If correct waveforms were obtained, blanking circuits and baseline clipper circuit is functioning properly. Proceed to step 2

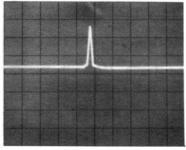
2 BASELINE CLIPPER AND CLIPPER CIRCUIT

Q3/Q13 operates as a comparator in which the video signal is compared to a reference level established by the BASE LINE CLIPPER control and the clipper override circuit.

When R10 is turned fully ccw and marker signals are not present, Q13 conducts heavily and the dc level at the junction of CR5/CR6 reaches approximately +14 volts dc. Under these conditions Q3 cannot conduct and the display CRT is unblanked except when blanking pulses are present.

When the BASE LINE CLIPPER control is turned in a clockwise direction, Q13 conduction decreases, the dc level at the junction of CR5/CR6 decreases, and Q3 conducts when the negative-going deflection pulses are more positive than the established threshold. When Q3 conducts the CRT display is blanked. When a marker signal appears, Q20 inverts the marker and the dc level at the base of Q13 rises. Q13 conduction increases and holds Q3 off while the marker is present regardless of the position of the BASE LINE CLIPPER control.

TEST PROCEDURE 2


Operation of the BASE LINE CLIPPER is verified by the test procedure in step 1 To verify

operation of the clipper override circuit, connect the HP 180A/1801A/1821A to TP B (Q20-c) and observe the waveform.

CONTROL SETTINGS:

Oscilloscope: 0.1 V/Div 2 msec/Div 10:1 probe

Analyzer: SCAN WIDTH: preset SCAN

Rotate the BASE LINE CLIPPER control and observe that marker signal remains regardless of BASE LINE CLIPPER control position.

Waveform GOOD: Clipper override functions properly.

Waveform BAD: Check Q20. (After verifying presence of marker input.)

2 dB LOG AND VERTICAL PREAMPLIFIER CIRCUITS

Q15, Q16 and associated circuitry comprise an operational amplifier; when S1 (LOG-LINEAR switch) is in the 10 dB LOG position the amplifier's gain is 1. When S1 is in the 2 dB LOG position, K1 is energized by Q25. This adds a feedback divider and an offset to the amplifier to increase its gain to 5 and re-reference the maximum signal point to the CRT LOG REF graticule. Q24 is used as a dual diode and prevents any signal on the CRT display from going below the base line.

Q5, Q6, Q7 and associated circuitry comprise an operational amplifier with a gain of approximately 10. VERTICAL GAIN control, R11, controls the amplifier's feedback and thus its gain.

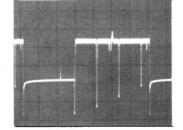
TEST PROCEDURE 3

3a. With LOG-LINEAR in 10 dB LOG, switch LOG REF LEVEL to -20 dBm to put the signal peak at the -10 dB graticule on the CRT display. Switch LOG-LINEAR to 2 dB LOG; signal should drop approximately to the -50 dB graticule.

Test GOOD: Proceed to 3b.

Test BAD: Check Q15, Q16, Q24, Q25 and associated circuitry.

3b. Connect HP 180A/1801A/1821A to TP C (Q5-c) and observe the waveform.


Manual Changes Model 8552B

SERVICE SHEET 14 TEXT (cont'd)

(Part of Change H)

CONTROL SETTINGS

Oscilloscope: 0.1 V/Div 2 msec/Div 10:1 probe

Analyzer:

Same as basic except:

SCAN WIDTH			. 0	_	100 MHz
SCAN TIME PER DIVISION	1	\mathbf{M}	L	I	SECOND
LOG REF LEVEL					-10 dBm
FREQUENCY				•	50 MHz

Note negative-going video and positive-going marker pulses. Rotate vertical gain control to verify proper operation.

Waveform GOOD: Proceed to step

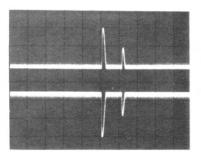
Waveform BAD: Check Q5, Q6, Q7 and associated circuity.

NOTE

If repairs to the 2 dB LOG and vertical preamplifier circuits are required, the adjustments specified in paragraphs 5-30 of Section V should be performed.

VERTICAL DEFLECTION POWER AMPLIFIERS

The vertical deflection signals from the vertical preamplifier are dc coupled through VR1 and R34 to output drive stage Q2. VR1 also provides a dc offset level for the vertical signals and Q1 provides a temperature compensation for the voltage control circuit. Q8 inverts the deflection signals to provide negative-going signals at the Q8 collector to drive one of the CRT deflection plates. Q8 also provides a non-inverted signal which is emitter coupled to Q18. Q18 does not invert the signal and it appears at the collector of Q18 as a positive-going deflection signal. Thus the signals at the emitters and bases of Q8 and Q18 are in phase and the collector signals are 180 degrees out of phase to provide push-pull deflection. VERTICAL POSITION control R15 controls the vertical position of the CRT trace by controlling the dc level of the pedestal on which the vertical deflection signals are applied to the CRT deflection plates.


TEST PROCEDURE 4

Connect the HP 180A/1801A/1821A Channel A probe to TP D (Q8-e) and the Channel B probe to TP E (Q18-e), and observe the waveforms.

CONTROL SETTINGS

Oscilloscope: 1 V/Div 2 msec/Div 10:1 probes

Analyzer: Same as basic except:

Waveform GOOD: Proceed to step 5

Waveform BAD: Check Q1, VR1, VR2, Q2, Q8, Q9, Q10, Q18, Q19 and associated components.

5 HORIZONTAL DEFLECTION AMPLIFIER

Driver stage Q23 inverts the scan ramp and applies it to the base of Q22. Q22 inverts the signal and supplies the positive-going deflection signal. The scan ramp is also emitter coupled to Q14 which supplies the negative-going deflection signal. The signals at the emitters and bases of Q14 and Q22 are in phase but the collector signals are 180 degrees out of phase and provide push-pull deflection signals to the horizontal deflection plates of the CRT. Controls are provided to vary the width and position of the CRT trace.

TEST PROCEDURE 5

Connect the HP 180A/1801A/1821A Channel A input to TP G (Q22-c) and the Channel B input to TP H (Q14-c) and observe the waveforms.

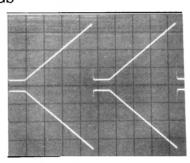
Waveform GOOD: Assembly functions properly.

If neither waveform is good, check Q1/Q2/Q8/Q10 and associated components.

If Channel A waveform is good and Channel B waveform is bad, check Q9/Q18/Q19 and associated components.

NOTE

If repairs to the deflection amplifier assembly are required, the Front Panel Check Procedure, paragraph 4-12 of Section IV, should be performed.


SERVICE SHEET 14 TEXT (cont'd)

(Part of Change H)
CONTROL SETTINGS

Oscilloscope:

2V/Div 5 msec/Div 10:1 probe

Waveform GOOD: Unit functions properly

Waveform A GOOD and B BAD check Q4/Q14 and associated components.

Both waveforms BAD check Q23/Q22 and associated components.

CHANGE I

Table 6-3:

Change:

A4R36, R55, R96 and R112 to 0698-7257, R: FXD FLM 7.5K OHM 2% 1/8W, 28480, 0698-7257.

Service Sheet 11 and 12 Schematics:

Change:

A4R36, R55, R96 and R112 to 7500 OHMS.

Table 7-3. Replaceable Parts (Part of Change H) (1 of 2)

Reference Designation			Mfr Code	Mfr Part Number	
A7 A7 A7C1 A7C2 A7C3 A7C4	.08552-60144 08552-60144 0180-0116 0180-0116 0160-2265 0180-0269	1 1 1	BOARD ASSY:DEFLECT AMPLIFIER EXCHANGE ASSY:DEFLECT AMPLIFIER C:FXD ELECT 6.8 UF 10% 35VDCW C:FXD ELECT 6.8 UF 10% 35VDCW C:FXD CER 22 PF 5% 500VDCW C:FXD ELECT 1.0 UF +50-10% 150VDCW	28480 28480 56289 56289 72982 56289	08552-60108 08552-60144 1500685X9035B2-DYS 1500685X9035B2-DYS 301-NPO-22PF 300105F150BA2-DSM
A7C5 A7C6 A7C7 A7C8 A7C9	0150-0050 0140-0194 0140-0194 0180-1746 0140-0194	1	C:FXD CER DISC 1000 PF +80-20% 1000VDCW C:FXD MICA 110 PF 5% C:FXD MICA 110 PF 5% C:FXD ELECT 15 UF 10% 20VDCW C:FXD MICA 110 PF 5%	56289 72136 72136 28480 72136	CO678102E102ZE19-CDH RDM15F111J3C RDM15F111J3C 0180-1746 RDM15F111J3C
A7C10 A7C11 A7C12 A7C13 A7C14	0160-0155 0160-2246 0160-2246 0160-0155 0160-2246	3 2 4	C:FXD MY 0.0033 UF 10% 200VDCM C:FXD CER 3.6+/-0.25 PF 500VDCM C:FXD CER 3.6+/-0.25 PF 500VDCM C:FXD MY 0.0033 UF 10% 200VDCM C:FXD CER 3.6+/-0.25 PF 500VDCM	56289 72982 72982 56289 72982	192P33292-PTS 301-000-C0JO-369C 301-000-C0JO-369C 192P33292-PTS 301-000-C0JO-369C
A7C15 A7C16 A7C17 A7C18 A7CR1	0160-2246 0160-0153 0140-0190 0160-0194 1901-0096		C:FXD CER 3.6+/-0.25 PF 500VDCW C:FXD MY 0.001 UF 10% 200VDCW C:FXD MICA 39 PF 5% C:FXD MY 0.015 UF 10% DIDDE:SILICON 120V	72982 56289 72136 56289 01295	301-000-C0JO-369C 192P10292-PTS RDM15E390J3C 192P15392-PTS UG-888
A7CR2 A7CR3 A7CR4 A7CR5 A7CR6	1901-0081 1901-0081 1901-0096 1901-0081	1 2 4 15	DIODE:SILICON 50 VOLTS WORKING DIODE:SILICON 50 VOLTS WORKING DIODE:SILICON 120V DIODE:SILICON 50 VOLTS WORKING DIODE:SILICON 50 VOLTS WORKING	07263 07263 01295 07263 07263	F01415 FD1415 UG-888 F01415 F01415
ATCRT ATCRB ATCR9 ATCR10 ATCR11	1901-0081 1901-0081 1901-0096 1901-0081		DIODE:SILICON 50 VOLTS WORKING DIODE:SILICON 50 VOLTS WORKING OIODE:SILICON 120V DIODE:SILICON 50 VOLTS WORKING DIODE:SILICON 50 VOLTS WORKING	07263 07263 01295 07263 07263	F01415 F01415 UG-888 F01415 FD1415
A7CR12 A7CR13 A7CR14 A7CR15 A7CR16	1901-0081 1901-0081 1901-0081 1901-0081 1901-0096		DIODE:SILICON 50 VOLTS WORKING DIODE:SILICON 50 VOLTS WORKING DIODE:SILICON 50 VOLTS WORKING DIODE:SILICON 50 VOLTS WORKING DIODE:SILICON 100 VOLTS WORKING	07263 07263 07263 07263 07263	FD1415 FD1415 FD1415 FD1415 UG-888
A7CR17 A7CR18 A7CR19 A7CR20 A7CR21	1902-0683 1901-0081 1901-0081 1902-0683 1901-0081	2	DIDDE BREAKDOWN:100V 2% DIDDE:SILICON 50 VOLTS WORKING DIODE:SILICON 50 VOLTS WORKING DIODE BREAKDOWN:100V 2% DIODE:SILICON 50 VOLTS WORKING	28480 07263 07263 28480 07263	1902-0683 FD1415 FD1415 1902-0683 FD1415
A7CR22 A7CR23 A7K1 A7L1 A7L2	1901-0518 1902-0785 0490-0399 9140-0129 9140-0129	1	DIODE:HOT CARRIER DIODE:BREAKDOWN 9.09V 5% RELAY:REED ASSY, 1200 OHM 12VDC COIL:FXD RF 220 UH COIL:FXD RF 220 UH	28480 04713 28480 28480 28480	1901-0518 1N936 0490-0399 9140-0129 9140-0129
A701 A702 A703 A704 A705	1854-0232 1853-0050 1854-0232 1853-0020 1854-0071	5	TSTR:SI NPN(SELECTED FROM 2N3440) TSTR:SI PNP TSTR:SI NPN(SELECTED FROM 2N3440) TSTR:SI PNP(SELECTED FROM 2N3702) TSTR:SI NPN(SELECTED FROM 2N3704)	28480 28480 28480 28480 28480	1854-0232 1853-0050 1854-0232 1853-0020 1854-0071
A7Q6 A7Q7 A7Q8 A7Q8 A7Q8 A7Q9	1853-0050 1853-0050 1854-0234 1205-0011 1853-0050	2 2	TSTR:SI PNP TSTR:SI PNP TSTR:SI NPN HEAT DISSIPATOR:FOR TO-5 AND TO-9 CASES TSTR:SI PNP	28480 28480 80131 98978 28480	1853-0050 1853-0050 2N3440 TXBF-032-025B 1853-0050
A7Q10 A7Q11 A7Q12 A7Q13 A7Q14	1854-0232 1854-0232 1854-0232 1854-0071 1854-0232		TSTR:SI NPN(SELECTED FROM 2N3440) TSTR:SI NPN(SELECTED FROM 2N3440) TSTR:SI NPN(SELECTED FROM 2N3440) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3440)	28480 28480 28480 28480 28480	1854-0232 1854-0232 1854-0232 1854-0271 1854-0232
A7Q15 A7Q16 A7Q17 A7Q18 A7Q18	1854-0221 1853-0034 1854-0071 1854-0234 1205-0011	2	TSTR:SI NPN(REPL.BY 2N4044) TSTR:SI PNP(SELECTED FROM 2N3251) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN HEAT DISSIPATOR:FOR TO-5 AND TO-9 CASES	28480 28480 28480 80131 98978	1854-0221 1853-0034 1854-0071 2N3440 TXBF-032-0258
A7019 A7020 A7021 A7022 A7023	1854-0232 1854-0071 1854-0071 1854-0232 1853-0020		TSTR:SI NPN(SELECTED FROM 2N3440) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI NPN(SELECTED FROM 2N3440) TSTR:SI NPN(SELECTED FROM 2N340)	28480 28480 28480 28480 28480	1854-0232 1854-0071 1854-0071 1854-0232 1853-0020
A7Q24 A7Q25 A7R1 A7R2 A7R3	1854-0221 1853-0020 0757-0447 0757-0443 0698-3152	4	TSTR:SI NPN(REPL.BY 2N4044) TSTR:SI PNP(SELECTED FROM 2N3702) R:FXD MET FLM 16.2K OHM 1% 1/8W R:FXD MET FLM 11.0K OHM 1% 1/8W R:FXD MET FLM 3.48K OHM 1% 1/8W	28480 28480 28480 28480 28480	1854-0221 1853-0020 0757-0447 0757-0443 0698-3152

Table 7-3. Replaceable Parts (Part of Change H) (2 of 2)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A7R4	0698-0082		R:FXD MET FLM 464 DHM 1% 1/8W	28480	0698-0082
A7R5 A7R6 A7R7 A7R8	0757-0464 0698-3152 0698-3444 0698-3418	2	R:FXD MET FLM 90.9K OHM 1% 1/8W R:FXD MET FLM 30.9K OHM 1% 1/8W R:FXD MET FLM 316 OHM 1% 1/8W R:FXD MET FLM 26.1K OHM 1% 1/2W	28480 28480 28480 28480 28480	0757-0464 0698-3152 0698-3444 0698-3418
A7R9 A7R10 A7R11 A7R12 A7R13	0757-0443 0698-3418 0757-0439 0698-3445 0698-3444	1	R:FXD MET FLM 11.0K OHM 1% 1/8W R:FXD MET FLM 26.1K OHM 1% 1/2W R:FXD MET FLM 6.81K OHM 1% 1/8W R:FXD MET FLM 348 OHM 1% 1/8W R:FXD MET FLM 316 OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0443 0698-3418 0757-0439 0698-3445 0698-3444
A7R14 A7R15 A7R16 A7R17 A7R18	0698-0083 0698-3454 0757-0424 0757-0290 0757-0463	2	R:FXD MET FLM 1.96K OHM 1% 1/8W R:FXD MET FLM 215K OHM 1% 1/8W R:FXD MET FLM 1.10K OHM 1% 1/8W R:FXD MET FLM 6.19K OHM 1% 1/8W R:FXD MET FLM 82.5K OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-0083 0698-3454 0757-0424 0757-0290 0757-0463
A7R19 A7R20 A7R21 A7R22 A7R23	0698-0084 0757-0441 2100-2521 0698-3152 0757-0421	1	R:FXD MET FLM 2-15K DHM 1% 1/8W R:FXD MET FLM 8-25K DHM 1% 1/8W R:VAR FLM 2000 DHM 10% LIN 1/2W R:FXD MET FLM 3-48K DHM 1% 1/8W R:FXD MET FLM 825 DHM 1% 1/8W	28480 28480 28480 28480 28480	0698-0084 0757-0441 2100-2521 0698-3152 0757-0421
ATR24 ATR25 ATR26 ATR27 ATR28	2100-2413 0757-0441 0757-0420 0698-3157 0757-0443	2	R:VAR FLM 200 OHM 10% LIN 1/2W R:FXD MET FLM 8.25K OHM 1% 1/8W R:FXD MET FLM 750 OHM 1% 1/8W R:FXD MET FLM 75.6K OHM 1% 1/8W R:FXD MET FLM 11.0K OHM 1% 1/8W	28480 28480 28480 28480 28480	2100-2413 0757-0441 0757-0420 0698-3157 0757-0443
A7R29 A7R30 A7R31 A7R32 A7R33	0757-0394 0757-0420 0698-3153 0757-0858 0757-0464	3 2	R:FXD MET FLM 51.1 OHM 1% 1/8W R:FXD MET FLM 750 OHM 1% 1/8W R:FXD MET FLM 3.83K OHM 1% 1/8W R:FXD MET FLM 90.9K OHM 1% 1/2W R:FXD MET FLM 90.9K OHM 1% 1/8W	28480 28480 28480 28480 28480 28480	0757-0394 0757-0420 0698-3153 0757-0858 0757-0464
A7R34 A7R35 A7R36 A7R37 A7R38	0757-0438 0683-1555 0698-3647 0698-3444 0698-3416	2 1 2	R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD COMP 1.5 MEGOHM 5% 1/7W R:FXD MET OX 15K OHM 5% 2W R:FXD MET FLM 316 OHM 1% 1/8W R:FXD MET FLM 21.5K OHM 1% 1/2W	28480 01121 28480 28480 28480	0757-0438 CB 1555 0698-3647 0698-3444 0698-3416
A7R39 A7R40 A7R41 A7R42 A7R43	0764-0020 0698-3153 0764-0006 0698-3444 0698-3416	1	R:FXD MET FLM 5600 DHM 5% 2W R:FXD MET FLM 3.83K DHN 1% 1/8W R:FXD MET DX 18K DHM 5% 2W R:FXD MET FLM 316 DHM 1% 1/8W R:FXD MET FLM 21.5K DHM 1% 1/2W	28480 28480 28480 28480 28480	0764-0020 0698-3153 0764-0006 0698-3444 0698-3416
A7R44 A7R45 A7R46 A7R47 A7R48	0757-0858 0683-1555 0757-0460 0757-0470 0698-3444	1	R:FXD MET FLM 90.9K OHM 1% 1/2W R:FXD COMP 1.5 MEGOHM 5% 1/4W R:FXD MET FLM 61.9K OHM 1% 1/8W R:FXD MET FLM 162K OHM 1% 1/8W R:FXD MET FLM 316 OHM 1% 1/8W	28480 01121 28480 28480 28480	0757-0858 CB 1555 0757-0460 0757-0470 0698-3444
A7R49 A7R50 A7R51 A7R52 A7R53	0698-3455 0698-3158 0698-3421 0757-0460 0698-3453	1	R:FXD MET FLM 261K OHM 1% 1/8W R:FXD MET FLM 23.7K OHM 1% 1/8W R:FXD MET FLM 38.3K OHM 1% 1/2W R:FXD MET FLM 61.9K OHM 1% 1/8W R:FXD MET FLM 196K OHM 1% 1/8W	28480 28480 28480 28480 28480	0698-3455 0698-3158 0698-3421 0757-0460 0698-3453
A7R54 A7R55 A7R56 A7R57 A7R58	0757-0279 0698-3444 0698-3455 0757-0400 0757-0428		R:FXD MET FLM 3-16K CHM 1% 1/8W R:FXD MET FLM 316 CHM 1% 1/8W R:FXD MET FLM 261K CHM 1% 1/9W R:FXD MET FLM 90.9 CHM 1% 1/8W R:FXD MET FLM 1.62K CHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0279 0698-3444 0698-3455 0757-0400 0757-0428
A7R59 A7R60 A7R61 A7R62 A7R63	0757-0290 0698-3444 0757-0438 0698-3444 0757-0279		R:FXD MET FLM 6.19K OHM 1% 1/8W R:FXD MET FLM 316 OHM 1% 1/8W R:FXD MET FLM 5.11K OHM 1% 1/8W R:FXD MET FLM 316 OHM 1% 1/8W R:FXD MET FLM 3.16K OHM 1% 1/8W	28480 28480 28480 28480 28480	0757-0290 0698-3444 0757-0438 0698-3444 0757-0279
A7R64 A7R65 A7TB1 A7VR1 A7VR2	0757-0280 0698-3454 08552-20108 1940-0021 1940-0021	1 2	R:FXO MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 215K OHM 1% 1/8W BOARD:BLANK PC TUBE:ELECTRON 103V REF TYPE TUBE:ELECTRON 103V REF TYPE	28480 28480 28480 74276 74276	0757-0280 0698-3454 08552-20108 Z103R2 Z103R2
				Ì	

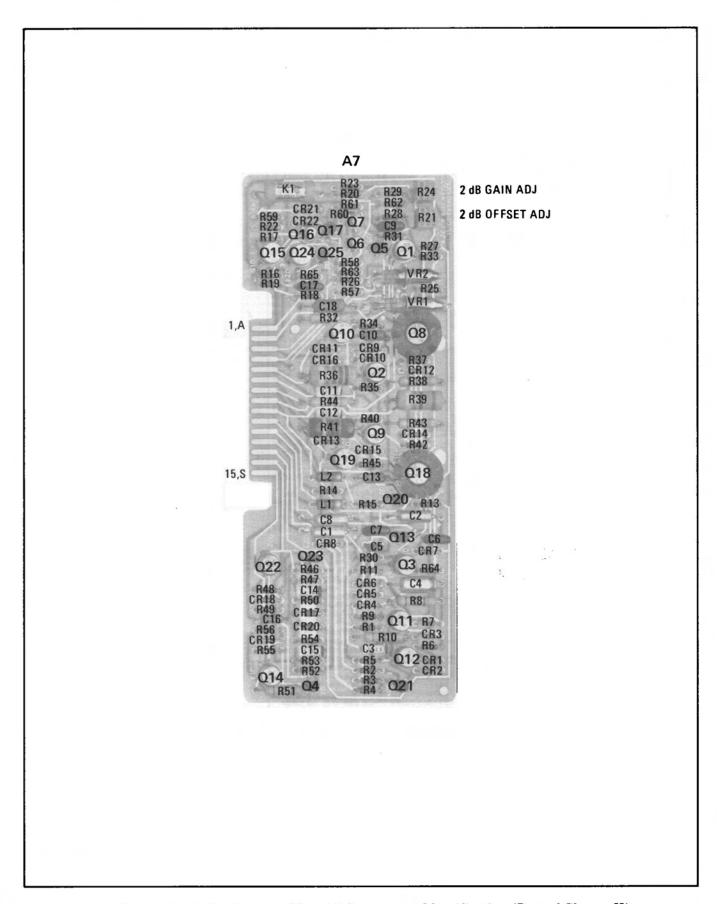


Figure 7-2. Deflection Amplifier A7 Component Identification (Part of Change H)

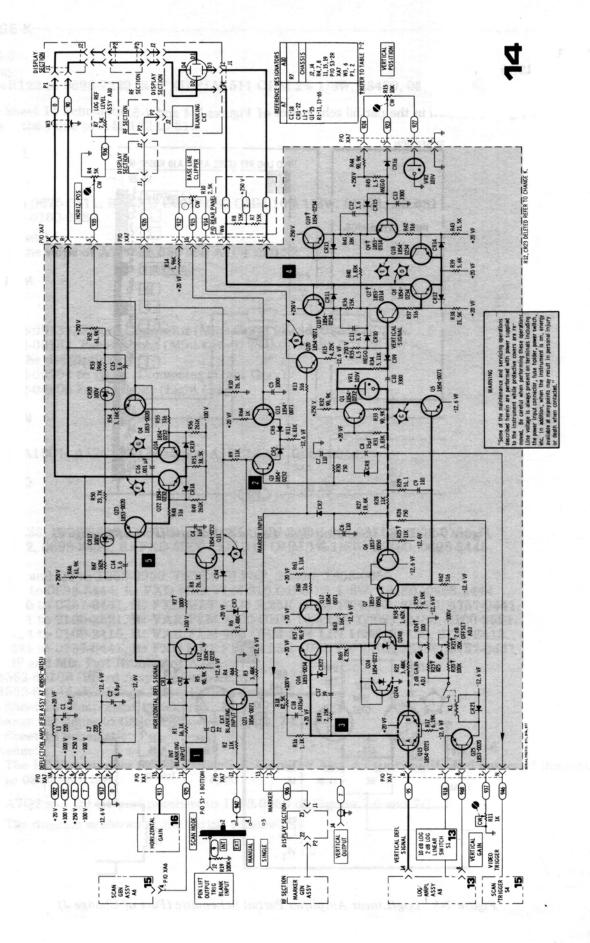


Figure 7-3. Deflection Amplifier (Part of Change H)

Manual Changes Model 8552B

CHANGE J

Table 6-3:

Delete A8R98 and W13.

Service Sheet 13 Schematic:

Change the figure as shown in the partial schematics of Figures 7-4 and 7-5.

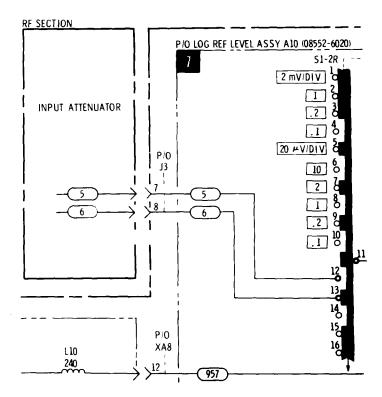


Figure 7-4. Log/Linear Amplifier Partial Schematic (Part of Change J)

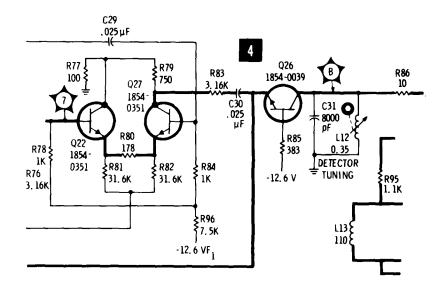


Figure 7-5. Log/Linear Amplifier Partial Schematic (Part of Change J)

CHANGE K

Table 6-3:

Change:

A4R122 to 0698-7229, R: FXD FLM 511 OHM 2% 1/8W, 28480, 0698-7229.

Service Sheet 11 Schematic:

Change the value of A4R122 to 511.

CHANGE L

Table 6-3:

Change:

A7R7 to 0675-6811, R: FXD COMP 680 OHM 10% 1/8W, 01121, BB 6811.

A7C4 to 0160-0380.

Service Sheet 14:

Change the value of A7R7 to 680 and A7C4 to 0.22.

CHANGE M

Table 6-3:

Add:

08552-00131, Plate: Connector (Mint Gray) 28480, 08552-00131.

08552-00132, Panel: Front (Mint Gray), 28480, 08552-00132.

Change the description of:

08552-00104 to Plate: Connector (Light Gray).

08552-00106 Panel: Front (Light Gray).

CHANGE N

Table 6-3:

Change A12C1, A12C3, A12C13 and A12C14 to: 0150-0050.

CHANGE O

Table 6-3:

Add:

A7CR23, 1902-0785, DIODE: BREAKDOWN 9.09V 5%, 04713, 1902-0785.

A7R12, 0698-3445, R: FXD MET FLM 348 OHM 1% 1/8W, 28480, 0698-3445.

Change:

A7Q2 and Q9 to 1853-0050, TSTR: SI PNP, 28480, 1853-0050.

A7R7 to 0698-3444, R: FXD MET FLM 316 OHM 1% 1/8W, 28480, 0698-3444.

A7R20 to 0757-0441, R: FXD MET FLM 8.25K OHM 1% 1/8W, 28480, 0757-0441.

A7R21 to 2100-2521, R: VAR FLM 2000 OHM 10% LIN 1/2W, 28480, 2100-2521.

A7R24 to 2100-2415. R: VAR FLM 200 OHM 10% LIN 1/2W, 28480, 2100-2413.

A7R25 to 0757-0441, R: FXD MET FLM 8.25K OHM 1% 1/8W, 28480, 0757-0441.

Change HP and Mfr. Part Number of A7 to:

08552-60108 (Board Assy: Deflect Amp).

08552-60144 (Exchange Assy: Deflect Amp).

Service Sheet 14 Component Locations:

Change the figure to the one shown in Figure 7-5.

Service Sheet 14 Schematic:

Change:

The HP Part number for the Deflection Amplifier Assy A7 (upper left-hand corner of the schematic) to 08552-60108.

A7Q2 and Q9 HP part numbers to 1853-0050 of Figures 7-6 and 7-7.

The diagram as shown in the partial schematics.

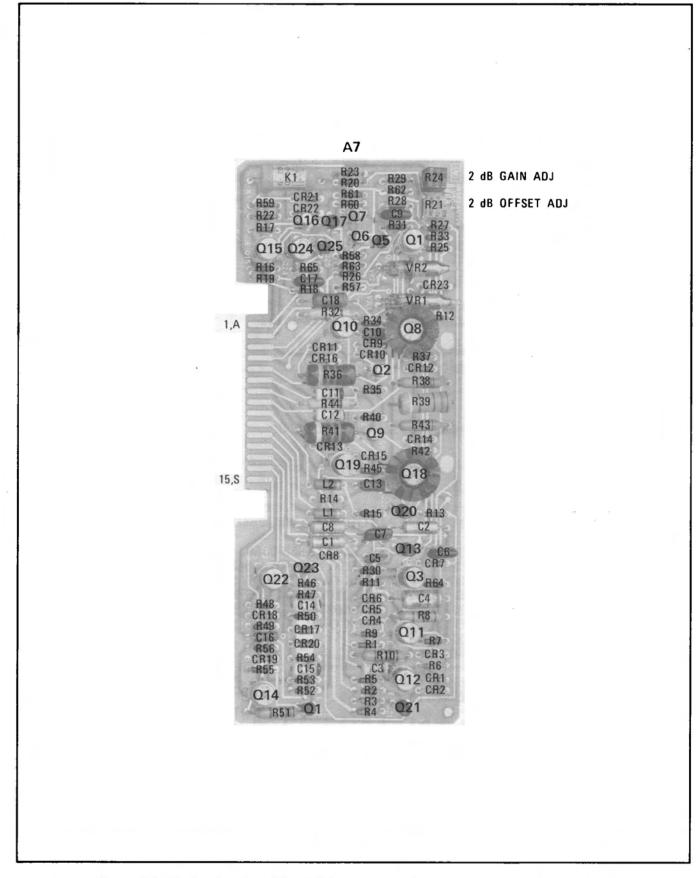


Figure 7-6. Deflection Amplifier A7 Component Identification (Part of Change O)

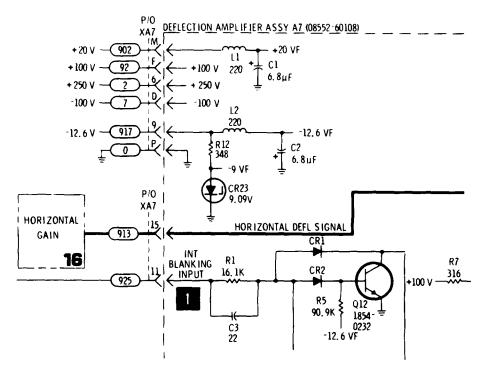


Figure 7-7. Deflection Amplifier Partial Schematic (Part of Change O)

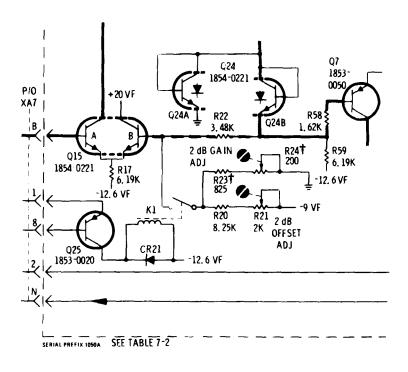


Figure 7-8. Deflection Amplifier Partial Schematic (Part of Change O)

Manual Changes Model 8552B

CHANGE P

Table 6-3 and Service Sheet 19 Schematic:

Delete A5Z1.

Table 6-3 and Service Sheet 10 Schematic:

Delete A4CR48 and CR49.

CHANGE Q

Table 1-1:

Change the AMPLITUDE SPECIFICATIONS:

Amplitude Accuracy:

Switching between bandwidths (at 20°.C)

	LOG	LINEAR
0.03 - 300 kHz	$\pm 0.05 dB$	\pm 5.8%
0.01 - 300 kHz	± 1.0 dB	$\pm19.0\%$

CHANGE R

Table 6-3:

Change:

A4CR11, CR18, CR25, CR33 and CR41 to 1901-0040, DIODE SI 30 MA 30 WV, 07263, FDG 1088.

CHANGES

Table 6-3:

Change:

R13 to 0698-3400, R: FXD MET FLM 147 OHM 1% 1/2W, 28480, 0698-3400.

Delete: A10R10.

Service Sheet 13 Schematic:

Change: R13 value to 147.

Delete: A10R10 and show the -12.6 Vdc supply voltage connected directly to the switch contact.

CHANGE T

Table 6-3:

Change:

A7Q10 and Q19 to 1854-0232, TSTR: SI NPN (Selected 2N3440), 28480, 1854-0232.

A11R1 to 0757-0123, R: FXD MET FLM 34.8K OHM 1% 1/8W, 28480, 0757-0123.

XF1 to 2100-0281, FUSE HOLDER: DUAL CLIP, 28480, 2110-0281.

Delete: XF2.

Service Sheet 14:

Change: A7Q10 and Q19 to 1854-0232.

Service Sheet 17:

Change: A11R1 to 34.8K.

CHANGE U

Service Sheet 13 Schematic:

Change the diagram as shown in the partial Schematics, Figure 7-9 and 7-10.

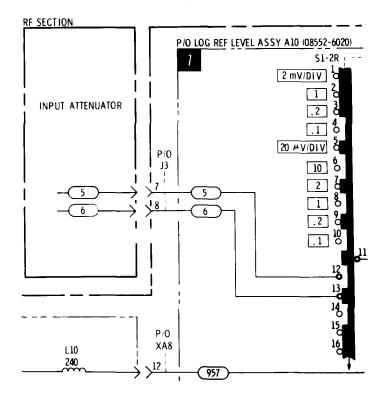


Figure 7-9. Log/Linear Amplifier Partial Schematic (Part of Change U)

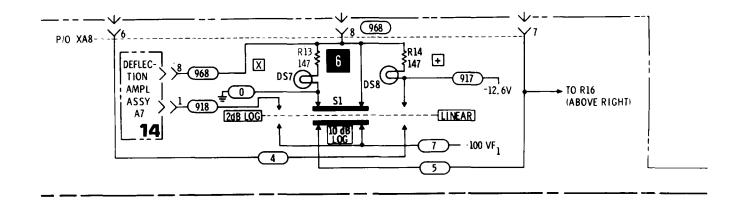


Figure 7-10. Log/Linear Amplifier Partial Schematic (Part of Change U)

Manual Changes Model 8552B

CHANGE V

Table 6-3:

Change:

A4R115 to 0698-7216 R: FXD MET FLM 147 OHM 2% 1/8W, 28480, 0698-7216. A4R122 to 0698-7236 R: FXD MET FLM 1K OHM 2% 1/8W, 28480, 0698-7236.

A5U1 and U2 to 1820-0216.

A6C13 to 0180-0116, C: FXD ELECT 12 UF 10% 35 VDCW, 28480, 0180-0116. A6U1 and U2 to 1820-0216.

A7R23 to 0757-0422 R: FXD MET FLM 909 OHM 1% 1/8W, 28480, 0757-0422. A7R24 to 2100-2631 R: VAR FLM 100 OHM 10% LIN 1/2W, 28480, 2100-2632. A12U1 to 1820-0216.

Service Sheet 4 Schematic:

Change: A12U1 HP Part number to 1820-0216.

Service Sheet 5 Schematic:

Change: A5U1 and U2 HP part numbers to 1820-0216.

Service Sheet 11 Schematic:

Change the value of:

A4R115 to 147.

A4R122 to 1000.

Service Sheet 14 Schematic:

Change:

The value of A7R23 to 909. A7R24 to 100 ohm potentiometer.

Service Sheet 15 Schematic:

Change:

The value of A6C13 to 12. A6U1 and U2 HP part numbers to 1820-0216.

CHANGE W

Table 6-3:

Change:

A1R38 to 0757-0394. R:FXD MET FLM 51.1 OHM 1% 1/8W, 28480, 0757-0394. A3A2 C15 to 0140-0190, C:FXD MICA 39 ρF 5%, 72136, RDM 15E390J3C. A3A2R3 to 0698-0084, R:FXD MET FLM 2.15K OHM 1% 1/8W, 28480, 0698-0084. A3A2R7 to 0698-3438, R:FXD MET FLM 147 OHM 1% 1/8W, 28480, 0698-3438. A3A2R8 to 0757-0276, R:FXD MET FLM 61.9 OHM 1% 1/8W, 28480, 0757-0276. A3A2R13 to 0698-3430, R:FXD MET FLM 21.5 OHM 1% 1/8W, 28480, 0698-3430. A3A2R14 to 0757-0400, R:FXD MET FLM 90.9 OHM 1% 1/8W, 28480, 0757-0400. A4R44, A4R70 and A4R81 to 0698-7267, R:FXD MET FLM 19.6K OHM 20% 1/8W, 28480, 0698-7267.

A4R45, A4R71 and A4R82 to 0698-7275 R:FXD FLM 42.2K OHM 2% 1/8W, 28480, 0698-7275.

A4R102 to 0698-7262, R:FXD FLM 12.1K OHM 2% 1/8W, 28480, 0698-7262.

A4R115 to 0698-7205, R:FXD FLM 51.1 OHM 2% 1/8W, 28480, 0698-7205.

A4R117 to 0698-7240, R:FXD FLM 1.47K OHM 2% 1/8W, 28480, 0698-7240.

A4R122 to 0698-7229, R:FXD FLM 511 OHM 2% 1/8W, 28480, 0698-7229.

A4R126 and R128 to 0698-7236, R:FXD FLM 1K OHM 2% 1/8W, 28480, 0698-7236.

A4R132 to 2100-2522, R:VAR CER MET 10K OHM 10% LIN 1/2W, 28480, 2100-2522.

A12R10 to 0698-0084, R:FXD MET FLM 2.15K OHM 1% 1/8W, 28480, 0698-0084.

CHANGE W (cont'd)

Service Sheet 3 Schematic: Change the value of: A3A2C15 to 39 A3A2R3 to 2150 A3A2R7 to 147 A3A2R8 to 61.9 A3A2R13 to 21.5 A3A2R14 to 90.9. Service Sheet 4 Schematic: Change the value of A4R10 to 2.15K. Service Sheet 8 Schematic: Change the value of A1R38 to 51.1. Service Sheet 10 Schematic: Change the value of: A4R44 to 19.6K A4R45 to 42.2K. Service Sheet 11 Schematic: Change the value of: A4R70 and A4R81 to 19.6K A4R71 and A4R82 to 42.2K A4R102 to 12.1K A4R115 to 51.1 A4R122 to 511 A4R126 and R128 to 1K A4R132 to 10K. **CHANGE X** Table 6-3: Change the parts list for the A3 assembly to that shown on Table 7-4. Ă12L4 and A12L5 to 9140-0105, COIL: MOLDED CHOKE 8.2 μH 10%, 28480, 9140-0105. A12R14 to 2100-1986, R:VAR CER MET 1000 OHM 10% LIN 1/2W, 28480, 2100-1986. A13L2 to 9100-1625, COIL/CHOKE 33.0 µH 5%, 99800, 1537-52. Delete: A12L6. Service Sheet 3 Schematic Diagram: Change the schematic to the one shown in Figure 7-11. Service Sheet 4 Schematic Diagram: Change the value of: A12L4 and A12L5 to 8.2.

A12R14 to a 1000 ohm variable resistor.

A12R16 to 26.1 A13L2 to 33.0

Delete: A12L2.

Table 7-4. Replaceable Parts (Part of Change X)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A3 A3C1 A3C2	08552-60114 0150-0050 0150-0050	1 24	8DARD ASSY:50 PHZ CONVERTER C:FXD CER DISC 1000 PF +80-20% 1000VDCW L:FXD CER DISC 1000 PF +80-20% 1000VDCW	28480 56289 56289	08552-60114 C0678102E102ZE19-CDH C0678102E102ZE19-CDH
A3C3 A3C4 A3C5	0150-0050 0180-0116		C:FXD CER DISC 1GOO PF +80-20% 1000VDCW C:FXD ELECT 6.8 UF 10% 35VDCW NOT ASSIGNED	56289 56289	C067#102E102ZE19-CDH 150#685X903582-DYS
A3C6 A3C7	0180-0116 0150-0050		C:FXD ELECT 6.8 LF 10% 35VDCW C:FXD CER DISC 1000 PF +80-20% 1000VDCW	56289 56289	150D685X9035B2-DYS C067B102E102ZE19-CDH
A3C8 A3C9 A3C10 A3C11 A3C12	0150-0050 0160-2142 0160-2307 0121-0059 0160-2254	1 1 4 3	C,:FXD CER DISC 1000 PF +80-20% 1000VDCW C:FXD CER 1500 PF +100-0% 500VDCW C:FXD MICA 47 PF 5% C:VAK CER 2-8 PF 300VDCW C:FXD CER 7-5 PF 500VDCW	56289 91418 28480 28480 72982	C067B102E102ZE19-CDM TYPE SM 0160-2307 0121-0059 301-000-C0H0-759C
A3C13 A3C14 A3C15 A3C16 A3C17	0160-2254 0121-0059 0150-0050 0150-0050 0160-2201		C:FXD CER 7.5 PF 500VECW C:VAR CER 2-8 PF 3COVDCW C:FXD CER DISC 1000 PF +80-20% 1000VECW C:FXD CER DISC 1000 PF +80-20% 1000VECW C:FXD MIGA 51 PF 5%	72982 28480 56289 56289 72136	301-000-00HU-759C 0121-0059 C0678102E102ZE19-CDH C0678102E102ZE19-CDH RDM15E510J1C
A3C18 A3C19 A3C20 A3CR1 A3CR2	0150-0050 0121-0059 0160-2254 1901-0050 1901-0050	7	C:FXD CER DISC 1COO PF +80-20% 100CVDCW C:VAR CER 2-8 PF 300VDCW C:FXD CER 7.5 PF 500VDCW DICDE:SILICCN 75V DICDE:SILICGN 75V	56289 28480 72982 14433 14433	C067B102E102ZE19-CDM 0121-0059 301-000-C0HO-759C S270 5270
A3CR3 A3CR4 A3CR5 A3L1 A3L2	1901-0050 1901-0050 1901-0050 9140-0114 9140-0129	2 5	DICDE:SILICCN 75V DICDE:SILICCN 75V DICDE:SILICCN 75V COIL:FXD RF 10 UH COIL:FXD RF 220 UH	14433 14433 14433 28480 28480	S270 S270 S270 9140-0114 9140-0129
A3L3 A3L4 A3L5 A3L6 A3L7	9140-0129 9100-0346 9140-0096 9140-0096 9140-0114	1 4	CUIL:FXD RF 220 UH COIL:FXD GF 1 UH CUIL:FXD RF 1 UH CUIL:FXD RF 1 UH CUIL:FXD RF 1 UH	25480 36196 26480 25480 28480	9140-0129 H-10886 9140-0096 9140-0096 9140-0114
A31 d A31 y A361 A362 A381	9140-0096 9140-0096 1854-0247 1853-0089 0757-0438	ì ì	CUIL:FXD RF 1 UH CUIL:FXD RF 1 UH TSTR:SI NPN TSTR:SI PNP R:FXC MET FLM 5-11K 1% 1/8W	28480 26480 28480 80131 14674	9140-0096 9140-0096 1854-0247 2N4917 C4
A 3 R 2 A 3 R 3 A 3 R 4 A 3 R 5 A 3 R 6	0698-3155 0757-0420 0757-0159 0698-3429 0698-3441	Ţ	R:FXD MET FLM 4.64K 1% 1/8W R:FXD MET FLM 75C CHM 1% 1/8W R:FXD MET FLM 1000 CHM 1% 1/2W R:FXD MET FLM 19.6 CHM 1% 1/8W R:FXD MET FLM 215 CHM 1% 1/8W	91 637 14674 28480 28480 91637	MFF-1/10-32 C4 0757-0159 0698-3429 MF-1/10-32
A3#7 A3#8 A3#8	0757-1092 0698-3438	1	K:FXD MET FLM 287 CHM 1% 1/2W K:FXD MET FLM 147 CHM 1% 1/8W FACTORY SELECTED PART	28480 28480	0757-1092 0698-3438
PAEA PREA	0698-3433	1	R:FXD MET FLM 28.7 OHM 1% 1/8W FACTURY SELECTED PART	28480	0698-3433
A3R10 A3R11 A3R12 A3R13 A3R14	0757-0180 0757-0394 0757-0394 0757-0394 0757-0394	1	R:FXD MET FLM 31.6 GHM 1% 1/8W R:FXD MET FLM 51.1 GHM 1% 1/8W	28480 14674 14674 14674 14674	0757-0180 C4 C4 C4 C4 C4
A3R15 A3R16 A3R17 A3T1 A3T2	0757-0398 0698-0082 0757-0465 08552-6618 08552-6644	1 3 10 2 2	R:FXD MET FLM 75 OHM 1% 1/8W R:FXD MET FLM 464 OHM 1% 1/8W K:FXD MET FLM 100K 1% 1/8W TRANSFCAMER:FK (CCDE-REC) TRANSFCRMER:RF (5 PIN)	28480 14674 14674 28480 28480	0757-0398 C4 C4 08552-6018 08552-6044
A3T3 A3T4 A3TB1 A3A1 A3A1C1	08552~6018 06552~6044 08552~20114 08552~6009 0160~0778	1 1 2	TRANSFORMER:RF(CODE=RED) TRANSFORMER:RF (5 PIN) 80 ARD:8LANK PC FILTER ASSY150 MHZ C:FXD CER 56 PF 10% 500VDCW	28480 28480 28480 28480 01121	08552-6018 08552-6044 08552-20114 08552-6009 F#28
A3 A1 C2 A3 A1 C3 A3 A1 C4 A3 A1 C5 A3 A1 C6	0160-2236 0160-0145 0160-2258 0121-0036 0121-0036	1 2 4 9	C:FXC CER 1-0 PF 500VDCW C:FXD MICA 82PF 2% 100VDCW C:FXD CER 11 PF 5% 500VDCW C:VAR CER 5.5-18 PF C:VAR CER 5.5-18 PF	72982 04062 72982 28480 28480	301-000-C0KG-109C RDM15E820G6S 301-000-C0GG-110J 0121-0036
A3A1C7 A3A1C8 A3A1C9 A3A1C10 A3A1C11	0160-2258 0160-2258 0121-0036 0121-0036 0160-2258		C:FXD CER 11 PF 5% 500VDCW C:FXD CER 11 PF 5% 500VDCW C:VAR CER 5.5-18 PF C:VAR CER 5.5-18 PF C:FXD CER 11 PF 5% 500VDCW	72982 72982 28480 26480 72982	301-000-C0G0-110J 301-000-C0G0-110J 0121-0036 301-000-C0G0-110J

Table 7-4. Replaceable Parts (Part of Change X)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A3A1C12 A3A1C13 A3A1L1 A3A1L1 A3A1L2	0160-0145 0160-0778 1250-0829 08552-6023 08552-6017	1 2 7	C:FXD MICA 82PF 2% 100 WDCW C:FXD CER 56 PF 10% 500 WDCW CCNNECTOR:RF INDUCTOR ASSY:AIR CORE INDUCTOR ASSY:50 MHZ	04062 01121 98291 28480 28480	RDM15E820 G6S Fb26 50-045-0600 08552-6023 08552-6017
A3A1L3 A3A1MP1 A3A1MP2 A3A1MP3 A3A1T61	08552-6023 08552-0021 08552-0022 08552-0023 08552-2042	1 2 2 1	INDUCTOR ASSY:AIR CORE SHIELD CAN:50 PHZ FILTER SHIELD COVER:47 MHZ OSC INSULATOR:47 MHZ OSC BUARD:8LANK PC	28480 28480 28480 28480 28480	08552-6023 08552-0021 08552-0022 08552-0023 08552-2042
A3A1T61 A3A2 A3A2 A3A2 A3A2C1	08552-6642 08552-66112 08552-60113 0380-0810 0122-0263	1 1 4 1	BOARD ASSY:5C MHZ FILTER OSCILLATOR ASSY:47 MHZ BOARD ASSY:47 MHZ CSCILLATOR SIANDOFF:0-437" LG C:VOLTAGE VAR 47 PF 104 60WV	26480 26480 26480 08145 04713	08552-6042 08552-60112 08552-60113 1530077/16-11 1N5148
A3A2C2 A3A2C3 A3A2C4 A3A2C5 A3A2C6	0150-0050 0160-2200 0150-0050 0180-0116 0160-2261	1	C:FXD CER DISC 100C PF +80-20% 1000VDCW C:FXD MICA 43 PF 5% C:FXD CER DISC 1000 PF +80-20% 1000VDCW C:FXD ELECT 6_8 LF 10% 35VDLW C:FXD CER 15 PF 5% 500VDCW	56289 72136 50289 56289 72982	L067B102E102EE19-CUH RDM15E43GJ3C C0676102E102ZE19-CDH 15GU685X9G35B2-UYS 3G1-MPU-15 PF
A3A2C7 A3A2C8 A3A2C9 A3A2C1 0 A3A2C1 1	0160-2265 0150-0050 0150-0050 0150-0050 0150-0050	2	C:FXC CER 22 FF 54 500VDCW C:FXD CER DISC 1000 PF +80-20% 1000VDCW C:FXD CER DISC 1000 PF +80-20% 1000VDCW C:FXD CER CISC 1000 PF +80-20% 1000VDCW C:FXD CER DISC 1000 PF +80-20% 1000VDCW	72982 56289 56289 56289 56289	301-NPO-22PF 50676102E1022E19-CDH C0676102E102ZE19-CDH C0676102E102ZE19-CDH C0676102E102ZE19-CDH
A3A2C12 A3A2C13 A3A2C14 A3A2CH1 A3A2CH1	0150-0050 0150-0050 0160-0134 1901-0040 1902-0041	2	C:FXD CER DISC 1000 PF +80-20% 1000VDCW C:FXD CER DISC 1000 PF +80-20% 1000VDCW C:FXD MICA 220PF 5% 300VDCW DICDE:SLICCA 30MA 30MV DICDE:BREAKCCWN 5-11V 5%	50289 50289 14055 07263 04713	CO678102£102£E19-CDH CO678102£102£E19-CDH RDM15F221J3C FDG1088 5216939-98
#3A2CR3 #3A2J1 #3A2L1 #3A2L2 #3A2MP1	1902-0041 1250-1194 08552-80103 9100-2258 0340-0038	1 1 1 5	DICOE:BREAKCONN 5-11V 5% CONNECTUR:RF BULKHEAD RECEPTACLE INDUCTOR ASSY:47 MHZ OSCILLATOR COIL/CHOKE 1.2CUH 10% FEEDTHRU:TERMINAL	04713 98291 28480 28480 28480	5210939-98 52-045-4610 08552-80103 9100-2258 0340-0038
A3A2MP2 A3A2MP3 A3A2MP4 A3A2MP5 A3A2Q1	0340-0039 08552-00114 08552-0022 08552-0023 1854-0238	5 1	INSULATORIBLSHING SHIELD CAN:47 PC USCILLATOR SHIELD COVER:47 MHZ OSC INSULATOR:47 MHZ OSC TSTR:51 NPN	28480 28480 28480 28480 80131	0340-0039 08552-00114 08552-0022 08552-0023 2N3933
A3A2Q2 A3A2Q3 A3A2Q3 A3A2Q4 A3A2Q4	1853-0038 1854-0019 1205-0037 1854-0019 1205-0037	3	TSTR:SI PNP TSTR:SI NPN HEAT SINK:TRANSISTOK TSTR:SI NPN HEAT SINK:TRANSISTOK	28480 28480 28480 28480 28480 28480	1853-0038 1854-0019 1205-0037 1854-0019 1205-0037
A3A2R1 A3A2K2 A3A2R3 A3A2R4 A3A2R5	0698-3157 0757-0465 0698-0084 0757-0405 0698-3441	4	R:FXD MET FLM 19.6K 1% 1/8W R:FXD MET FLM 100K 1% 1/8W R:FXD MET FLM 2.15K 1% 1/8W R:FXD MET FLM 162 OHM 1% 1/8W R:FXD MET FLM 215 OHM 1% 1/8W	14674 14674 14674 28480 91637	C4 C4 C4 O757-0405 MF-1/10-32
A3A2R6 A3A2R7 A3A2R8 A3A2R9 A3A2R1 O	0757-0279 0698-3438 0757-0276 0757-0417 0757-0280	1	K:FXD MET FLM 3.16K OHM 1% 1/8W R:FXD MET FLM 147 OHM 1% 1/8W R:FXD MET FLM 61.9 OHM 1% 1/8W K:FXD MET FLM 562 OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W	14674 26480 26480 14674 14674	C4 0698-3438 0757-0276 C4
A3A2R11 A3A2R12 A3A2R13 A3A2R14 A3A2R15	0757-0219 0757-0280 0698-3430 0757-0400 0757-0402	2 3 3	R:FXD MET FLM 3.16K OHM 1% 1/8W R:FXD MET FLM 1K OHM 1% 1/8W R:FXD MET FLM 21.5 OHM 1% 1/8W R:FXD MET FLM 90.9 OHM 1% 1/8W R:FXD MET FLM 110 CHM 1% 1/8W	14674 14674 28480 01295 28480	C4 C4 O698-3430 MC550 O757-0402
A3A2R16 A3A2T1 A3A2TB1	0698-3441 08552-80102 08552-20113	1	R:FXD MET FLM 215 CHM 14 1/8W INDUCTOR ASSY:47 MHZ OUT BOARD:BLANK FC	91 63 7 26 480 28 480	MF-1/10-32 06552-60102 08552-20113

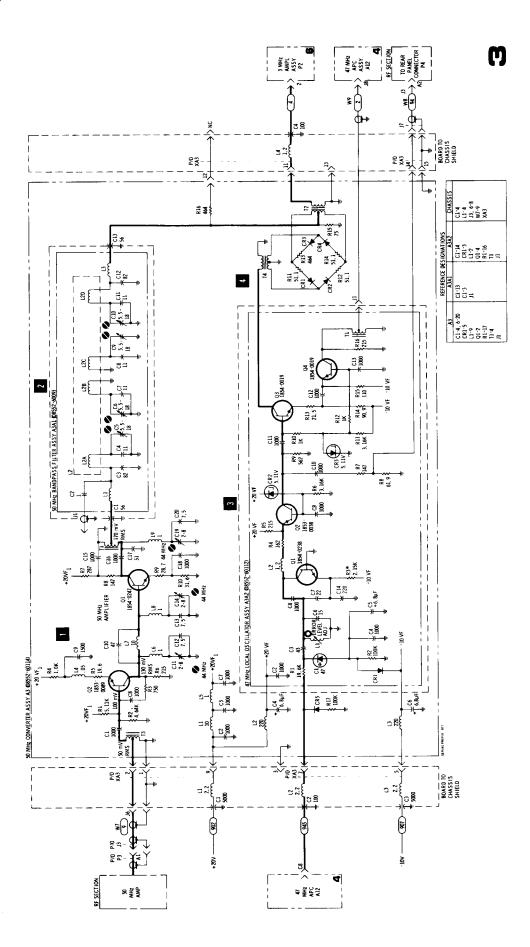


Figure 7.11. 50 MHz Converter (part of Change X)

CHANGE Y

Table 6-3:

Change

 $\breve{\rm A}5$ C14 to 0180-0049, C:FXD ELECT 40 μF +75-10% 50 VDCW, 56289, 30D206 G 050CC2-DSM. A5C15 to 0180-0098, C:FXD ELECT 100 μF 2% 20VDCW, 56289, 150D 107X 002OS2-DYS.

Delete: A5C19.

Service Sheet 5 Schematic Diagram:

Change the Schematic as shown in Figure 7-12.

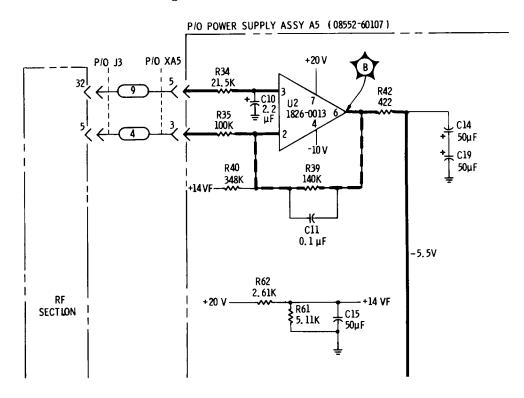


Figure 7-12. Power Supply Partial Schematic Diagram (Part of Change Y)

SECTION VIII SERVICE

8-1. INTRODUCTION

8-2. This section provides instructions for trouble-shooting and repair of the HP 8552B Spectrum Analyzer IF Section.

8-3. LINE VOLTAGE REQUIREMENTS

8-4. During adjustment and testing, the Spectrum Analyzer must be installed with an RF Section into a 140 Series Display Section which is connected to a source of power which is 50 to 60 Hz and 115 or 230 Vac ±10%. If adjustment of the dc voltage regulators is necessary, the Spectrum Analyzer should be connected to the ac power source through a variable auto transformer and then be adjusted to check regulator action when the line voltage varies as much as 10%.

WARNING

"Some of the maintenance and servicing operations described herein are performed with power supplied to the instrument while protective covers are removed. Be careful when performing these operations. Line voltage is always present on terminals including the power input connec-

tor, fuse holder, power switch, etc. In addition, when the instrument is on, energy available at many points may result in personal injury or death when contacted."

8-5. MAINTENANCE AIDS

8-6. Servicing aids provided on circuit boards include holes to fit the board removal tool, numbered test points (on some boards), transistor designators, adjustment callouts, and assembly stock numbers.

8-7. TEST EQUIPMENT AND ACCESSORIES REQUIRED

- 8-8. Test equipment and accessory requirements are listed in the System Test and Troubleshooting Procedure, the individual Service Sheets, and in the Test Equipments and Accessories list, Table 1-2. Test instruments other than those listed may be used if their performance equals or exceeds that of the equipment listed.
- 8-9. Two circuit board extenders are required to service the 8552B IF Section. A 15-pin extender is supplied with the HP 11592A Service Kit. It may be used to extend the A1 through A8 Assemblies. In addition, a 6-pin extender (HP 5060-5914) is required to extend the A13 Assembly.

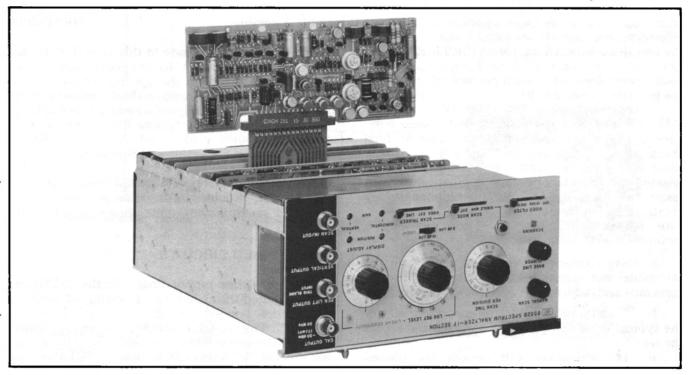


Figure 8-1. 8552B IF Section with Circuit Board Extended for Maintenance

Service Model 8552B

8-10. ADJUSTMENTS

8-11. The procedures contained in these sections do not include calibration or adjustment. Service Sheets which contain adjustable components refer to procedures in the Performance and Adjustment Sections which should be performed after repairs are accomplished.

8-12. GENERAL PROCEDURES

- 8-13. The troubleshooting procedure is divided into two maintenance levels. The first, System Test and Troubleshooting Procedure, is designed to quickly isolate the cause of a malfunction to a circuit or assembly. The second provides circuit analysis and test procedures to aid in isolating faults to a defective component. Circuit descriptions and test procedures for the second maintenance level are located on the page facing the schematic diagram of the circuit to be repaired.
- 8-14. After the cause of a malfunction has been located and remedied in any circuit containing adjustable components, the applicable procedure specified in the Performance and Adjustment Section should be performed.

8-15. GENERAL SERVICE INFORMATION

- 8-16. Part Location Aids. The locations of chassismounted parts and major assemblies are shown in Figure 8-8. The locations of individual components mounted on printed circuit boards or other assemblies are shown on the appropriate schematic diagram page or on the page opposite it. The part reference designator is the assembly designator plus the part designator. (Example: A10R9 is R9 on the Log Reference Assembly A10). For specific component description and ordering information refer to the parts list in Section VI.
- 8-17. Factory Selected Components. Some component values are selected at the time of final checkout at the factory (see Table 5-4). Usually these values are not extremely critical; they are selected to provide optimum compatibility with associated components. These components are identified on individual schematics by an asterisk. The recommended procedure for replacing a factory-selected part is as follows:
- a. Try the original value, then perform the calibration test specified for the circuit in the performance and adjustment sections of this manual.
- b. If calibration cannot be accomplished, try the typical value shown in the parts list and repeat the test.
- c. If calibration still cannot be accomplished, perform the calibration test using various values until calibration is accomplished.

- 8-18. Modular Exchange Program. Circuit boards for the 8552B Spectrum Analyzer IF Section are available on an exchange basis at a considerable savings in cost. Simply contact the Hewlett-Packard office nearest you and make your requirements known. The local Hewlett-Packard office will arrange for immediate airmail shipment to minimize equipment downtime. At least 90% of the orders for exchange modules (circuit boards) received by an HP Field Sales office will be shipped the same day either from the sales office itself or from service center.
- 8-19. An exchange module should be ordered by the "Exchange Assembly" part number listed under the assembly designation in Table 6-3, Replaceable Parts. Upon receiving the exchange module, the faulty module should be returned in the same special carton in which the exchange module was received. A flow diagram of the Modular Exchange Program is shown in Figure 8-2.
- 8-20. System Test and Troubleshooting Procedure. Table 8-2 provides information that will, in most cases, isolate the causes of a malfunction to a circuit or assembly, RF Section, or Display Section. This procedure should be used in conjunction with the block diagrams and text located on Service Sheet 1. The test equipment required follows:

RF Voltmeter .											
Oscilloscope			HP	18	0	A /:	18	01	A/1	821	$^{L}\mathbf{A}$
Signal Generator									ΗP	608	3F
Service Kit								HP	11	592	^{2}A
Adapter							J.	JG-	20	$\mathbf{L}\mathbf{A}_{\cdot}$	/U
Cable Assembly											

- 8-21. No attempt is made in this procedure to isolate causes of trouble to the component level. Reference is made to the specific Service Sheet which describes the circuits and test procedures for the portion of the analyzer to which the malfunction has been isolated. Where RF or Display Section maintenance is indicated, refer to the RF or Display Section Operating and Service manual.
- **8-22.** Diagram Notes. Table 8-3, Schematic Diagram Notes, provides information relative to symbols and measurement units shown in schematic diagrams.

8-23. ETCHED CIRCUITS

8-24. The etched circuit boards in the 8552B are of the plated-through type consisting of metallic conductors bonded to both sides of insulating material. The metallic conductors are extended through the component mounting holes by a plating process. Soldering can be done from either side of the board with equally good results. Table 8-1 lists recommendations and precautions pertinent to

Model 8552B

The module exchange program described here is a fast, efficient, economical method of keeping your Hewlett-Packard instrument in service. A. Locate defective module using troubleshooting procedures and service sheets in this manual. Rebuilt-exchange modules are shipped individually in boxes like this. In addition to the circuit module, the Install the replacement YES Is a replacement module box contains: module. Keep the defective on hand? Module repair report module for return to HP. Return Address label Tape for resealing box NO В. Order the rebuilt-exchange Order the rebuilt-exchange module from HP. Refer to module from HP. Refer to the Replaceable Parts Secthe Replaceable Parts Section for part numbers. tion for part numbers. Open box carefully - it will be used to return defective module to HP. Complete repair report. Place it and defective module in box. Be sure to remove enclosed return address label. Put rebuilt-exchange mod-Swap replacement module C. and defective module. ule in spares stock. Return defective module Return defective module to HP. to HP. Seal box with tape provided. Inside U.S.A.*, stick preprinted return address label over label already on box, and return box to HP. Outside U.S.A., do not use address label: instead, address box to the nearest HP *HP pays postage on boxes mailed office. in U.S.A.

Figure 8-2. Diagram of Modular Exchange Program

Service Model 8552B

etched circuit repair work.

- a. Avoid unnecessary component substitution; it can result in damage to the circuit board and/or adjacent components.
- b. Do not use a high-power soldering iron on etched circuit boards. Excessive heat may lift a conductor or damage the board.
- c. Use a suction device (Table 8-1) or wooden toothpick to remove solder from component mounting holes. DO NOT USE A SHARP METAL OBJECT SUCH AS AN AWL OR TWIST DRILL FOR THIS PURPOSE. SHARP OBJECTS MAY DAMAGE THE PLATED-THROUGH CONDUCTOR.
- d. After soldering, remove excess flux from the soldered areas and apply a protective coating to prevent contamination and corrosion. See Table 8-1 for recommendations.

8-25. Etched Conductor Repair. A broken or burned section of conductor can be repaired by bridging the damaged section with a length of tinned copper wire. Allow adequate overlap and remove any varnish from etched conductor before soldering wire into place.

8-26. COMPONENT REPLACEMENT.

a. Remove defective component from board.

NOTE

Axial lead components, such as resistors and tubular capacitors, can be replaced without unsoldering. Clip leads near body of defective component, remove component and straighten leads left in board. Wrap leads of replacement component one turn around original leads. Solder wrapped connection, and clip off excess lead.

Use Specification

Item	Use	Specification	Item Recommended		
Soldering tool	Soldering Unsoldering	Wattage rating: $47\% - 56\%$ Tip Temp: 850 – 900 degrees	Ungar #776 Handle with *Ungar #4037 Heating Unit		
Soldering *Tip	Soldering Unsoldering	*Shape: pointed	*Ungar #PL111		
De-soldering Aid	To remove molten solder from connection	Suction device	Soldapullt by Edsyn Co. Arleta, California		
Resin (flux) Solvent	Remove excess flux from soldered area before application of protective coating	Must not dissolve etched circuit base board material or conductor bonding agent	Freon Acetone Lacquer Thinner		
Solder	Component replacement Circuit board repair Wiring	Resin (flux) core, high tin content (60/40 tin/lead), 18 gauge (SWG) preferred			
Protective Coating	Contamination, corrosion protection	Good electrical insulation, corrosion-prevention properties	Silicone Resin such as GE DRI-FILM**88		

^{*}For working on 8552B Boards: for general purpose work, use Ungar No. 1237 Heating Unit (37.5W, tip temperature of 750-800 degrees) and Ungar No. PL113 1/8" chisel tip.

^{**}General Electric Co., Silicone Products Dept., Waterford, New York, U.S.A.

b. If component was unsoldered, remove solder from mounting holes, and position component as original was positioned. DO NOT FORCE LEADS INTO MOUNTING HOLES; sharp lead ends may damage plated-through conductor.

8-27. Transistor Replacement

- 8-28. Solid state transistors are in many physical forms. This sometimes results in confusion as to which lead is the collector, which is the emitter, and which is the base. Figures 8-3 and 8-4 show epoxy and metal case transistors and integrated circuits and the means of identifying the leads.
- 8-29. To replace a transistor, proceed as follows:
- a. Do not apply excessive heat; see Table 8-1 for recommended soldering tools.
- b. Use long-nose pliers between transistor and hot soldering iron as a heat sink. The instant

solder is melted, use pliers to pull lead free of board.

- c. When installing replacement transistor, ensure sufficient lead length to dissipate soldering heat by using about the same length of exposed lead as used for original transistor.
- d. Integrated circuit replacement instructions are the same as those for transistors.
- 8-30. Some transistors are mounted for good heat dissipation. This requires good thermal contact with mounting surfaces. To assure good thermal contact for a replacement transistor, coat both sides of the black insulator with Dow Corning No. 5 silicone compound or equivalent before fastening the transistor to the chassis. Dow Corning No. 5 compound is available in 8-oz. tubes from Hewlett-Packard; order HP Part No. 8500-0059.

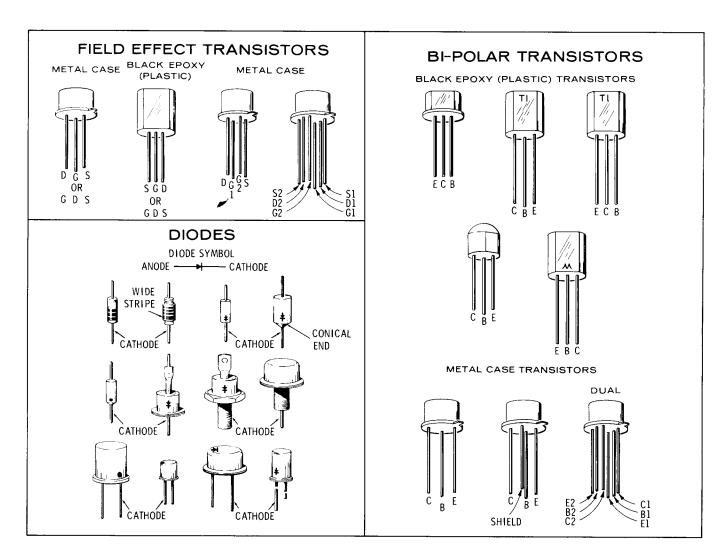


Figure 8-3. Examples of Diode and Transistor Marking Methods

Service Model 8552B

8-31. Diode Replacement

8-32. Solid state diodes are in many physical forms. This sometimes results in confusion as to which lead or connection is for the cathode (negative) or anode (positive), since not all diodes are marked with the standard symbols. Figure 8-3 shows examples of some diode marking methods. If doubt exists as to polarity, an ohmmeter may be used to determine the proper connection. It is necessary to know the polarity of the ohms lead with respect to the common lead for the ohmmeter used. (For the HP Model 410B Vacuum Tube Voltmeter, the ohms lead is negative with respect to the common; for the HP Model 412A DC Vacuum Tube Voltmeter, the ohms lead is positive with respect to the common.) When the ohmmeter indicates the least diode resistance, the cathode of the diode is connected to the ohmmeter lead which is negative with respect to the other lead.

NOTE

Replacement instructions are the same as those listed for transistor replacement.

8-33. SWITCHING INFORMATION

8-34. The manner in which switch wafers are schematically presented in this manual is distinctly dif-

ferent from that used in previous Hewlett-Packard manuals. If the following information concerning the evolution of this system of switch presentation is carefully studied, it will be seen that circuits are more easily understood and much more easily traced.

8-35. One of the major objections to drawing switch wafer symbols as the wafer appears is that many lines must cross other lines on the schematics. This problem has not been completely eliminated by use of straight-line presentation, but it has been minimized and circuits are much easier to follow once the basic principles are understood.

8-36. Figure 8-5 illustrates the evolution of straight-line switch presentation from the pictorial view of a switch wafer. Part A shows the wafer as it actually appears. In parts B and C, when the wafer is viewed as being a flexible, stretchable material, the transition from wafer to straight-line presentation begins to be obvious. In part D the transition is complete and the wafer now appears to be a slide type switch. In part E the final result is shown. Note that those contacts which maintain contact with the metallic portion of the rotor regardless of switch position (in the illustration contact 7) are moved to the other side for clarification. Note too that lead lines and arrows to switch contacts are no longer required.

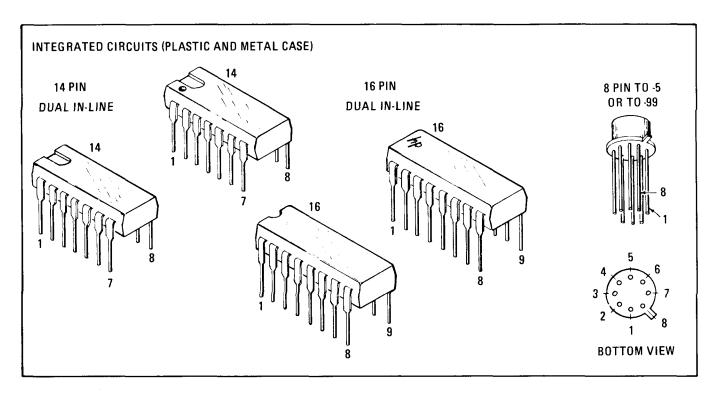


Figure 8-4. Integrated Circuit Packaging

Model 8552B Service

8-37. In all schematics in this manual, the switches are shown in the maximum ccw position, unless otherwise noted. The physical layout of the switches are shown as well as a straight-line presentation of switch action. In Figure 8-6 note that the straight

line rotor contact moves from the bottom to the top when the switch moves one step in a cw direction. Figure 8-7 illustrates the difference between the old method of switch presentation and the straight line presentation.

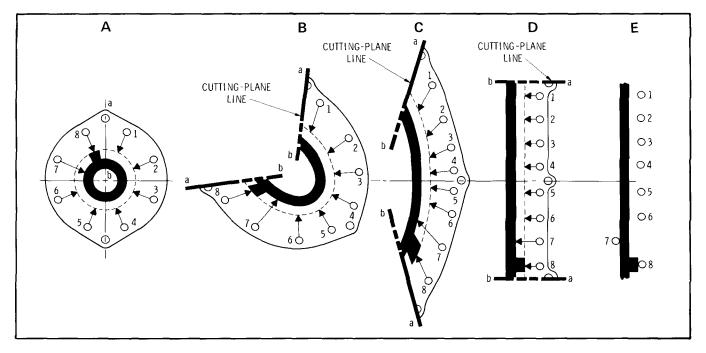


Figure 8-5. Evolution of Straight-Line Switch Presentation

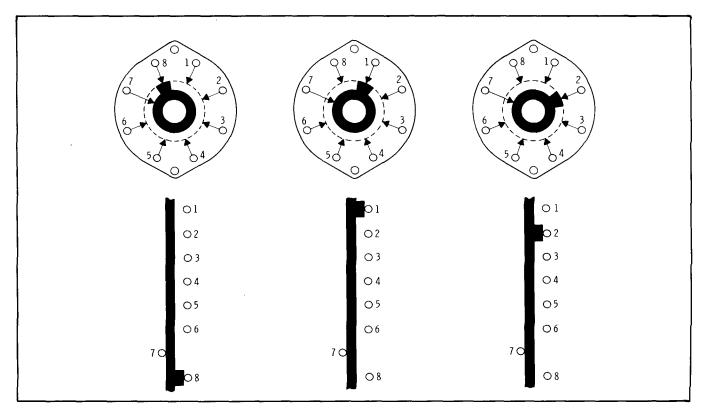


Figure 8-6. Three Positions of Typical Switch Wafers

Service Model 8552B

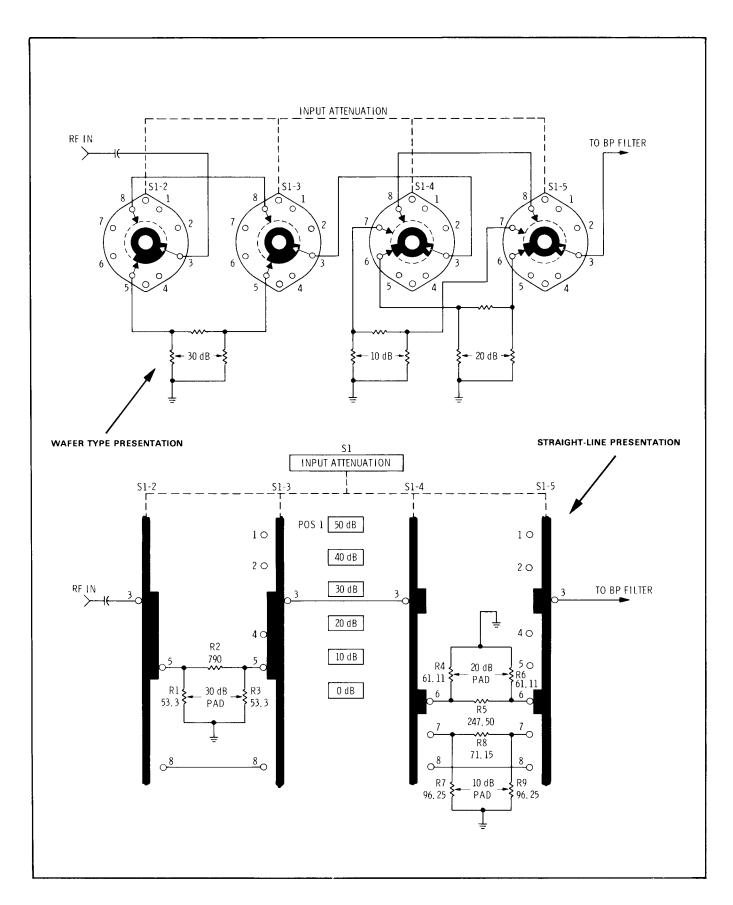


Figure 8-7. Wafer Switch Presentation Versus Straight-Line Presentation

Table 8-2. System Test and Troubleshooting Procedure

TEST	FAULT	PROCEDURE
 Set POWER switch to ON. Power lamp on, fan operates. Proceed to test 2. 	Light not on and/or fan inoperative	Check Display Section
2. Rotate INPUT ATTENUA- TION control and observe LOG REF LEVEL index lights.	None of the lights illuminate	Check the -12.6 volt supply from Display Section. If voltage is present see Service Sheet 18. If voltage is not present, check the Display Section power supply.
Lights operate properly.	Some but not all lights illuminate	Check light bulbs on Service Sheet 18.
Proceed to test 3.		
3. Set Analyzer controls as follows: SCAN TIME PER DIVISION . 5 ms SCAN MODE INT SCAN TRIGGER AUTO	SCANNING light does not illuminate	Check power supply circuits on Service Sheet 19. If the power supply circuits are operating
and observe SCANNING light.		properly, proceed to test 4.
Light operates normally. Proceed to test 4.		
4. Adjust Display Section for a baseline trace.	Trace does not appear	Connect the oscilloscope to the SCAN IN/OUT jack on the front panel of the analyzer and observe the waveform.
		Oscilloscope control settings: 0.2V/Div 10 msec/Div 10:1 probe
Baseline trace is normal, Proceed to test 5		If the waveform is not present, check the scan amplifier and the scan generator (Service Sheets 15 and 16). If the waveform is present, check the horizontal deflection amplifier, Service Sheet 14. If trouble persists, check Display Section.

Table 8-2. System Test and Troubleshooting Procedure (cont'd)

TEST	FAULT	PROCEDURE
5. Set analyzer controls as follows: FREQUENCY 30 MHz BANDWIDTH 10 kHz FINE TUNE Centered SCAN WIDTH PER DIVISION SCAN WIDTH PER DIVISION 1 MHz INPUT ATTENUATION 10 dB TUNING STABILIZER On BASE LINE CLIPPER ccw LOG REF LEVEL 0 dBm LOG REF LEVEL Vernier ccw LOG·LINEAR 10 dB LOG VIDEO FILTER OFF SCAN TIME PER DIVISION 2 MILLISECONDS Connect CAL OUTPUT to RF INPUT and observe display. The 30 MHz signal should appear close to the center of the display CRT at a level of -30 dBm. If signal is correct, proceed to test 8.	Signal does not appear on Display Section CRT Signal appears but sweeps back and forth about ±1 Div on CRT.	
6. Set analyzer controls as follows: BANDWIDTH 10 kHz FINE TUNE Centered SCAN WIDTH PER DIVISION SCAN WIDTH PER DIVISION 20 kHz INPUT ATTENUATION 0 dB TUNING STABILIZER OFF BASELINE CLIPPER ccw LOG REF LEVEL30 dBm LOG REF LEVEL Vernier	If signal is correct	IF Section operating correctly. Trouble in RF Section. See Systems Test and Troubleshooting Procedure in RF Section Manual.
Connect a 50 MHz -33 dBm signal from the signal generator to J6 on the top of the 8552B using the 11592-60001 cable. Tune the signal generator slightly around 50 MHz until the signal is centered. With AMPL CAL centered the signal should read -30 dBm ±2 dBm.	Signal is missing	Proceed to test 7

NOTE

For steps 7a through 7g connect CAL OUTPUT to RF INPUT and set the analyzer controls as specified in step 6.

Model 8552B Service

Table 8-2. System Test and Troubleshooting Procedure (cont'd)

TEST	FAULT	PROCEDURE
7. Perform the following sub-tests until a malfunction has been found and corrected, then repeat test.		
7a. Connect the RF voltmeter to terminal labeled 3 MHz (C4) on the top of the 8552B. Tune frequency for maximum signal around 30 MHz. Signal should be about 8 mV rms. If signal is correct, proceed to test 7b.	Signal is missing or incorrect	Refer to Service Sheet 3 and repair the 50 MHz Converter.
7b. Connect the RF voltmeter to the 3 MHz terminal (C4), peak FRE-QUENCY, then set SCAN TIME PER DIVISION to 1 SECOND. Meter should fluctuate with peaks at about 8 mV rms. If signal is correct set SCAN TIME PER DIVISION to 2 MILLISECONDS and proceed to test 7c.	Meter does not fluctuate	Refer to Service Sheet 4 and check the 47 MHz APC and the 2 MHz VTO circuits. If trouble persists, check the 2 MHz Shaping circuits (Service Sheet 5).
7c. Set SCAN WIDTH to ZERO, connect the RF voltmeter to XA2 pin 14 and tune FREQUENCY for maximum. Signal level should be about 38 mV rms. Rotate AMPL CAL and LOG REF vernier cw; signal should increase. If signal is correct, re-center AMPL CAL, set vernier ccw and proceed to test 7d.	Signal is missing or incorrect	Refer to Service Sheets 6 and 7 and repair the 3 MHz Amplifier.
7d. Connect the RF voltmeter to XA1 pin 2 and tune FRE-QUENCY and FINE TUNE for maximum. Signal level should be about 230 mV rms. If signal is correct, proceed to test 7e.	Signal is missing or incorrect	Refer to Service Sheet 8 and repair the LC Filter.
7e. Connect the RF voltmeter to XA4 pin 14 and tune FRE-QUENCY and FINE TUNE for maximum. Signal should be about 930 mV rms. Set BANDWIDTH to 3 kHz and peak signal with FINE TUNE. Signal should remain about the same. If signal is correct, proceed to test 7f.	Signal is missing or incorrect	Refer to Service Sheets 10 and 11 and repair the Crystal Filter.

Table 8-2. System Test and Troubleshooting Procedure (cont'd)

TEST	FAULT	PROCEDURE
7f. Set SCAN WIDTH to PER DI-VISION and connect oscilloscope channel A probe to SCAN IN/OUT jack and the channel B probe to XA7, pin B. Oscilloscope control settings: Time/Div 0.5 msec/div Channel A 0.5 V/div Channel B 02 V/div 10:1 probes If waveform is correct, proceed to test 7g.	Waveform B is missing or incorrect	Refer to Service Sheet 12 and 13 and repair the Log·Linear Amplifier circuits.
7g. Connect the oscilloscope channel A input to XA7 pin 5 and the channel B input to XA7 pin E with analyzer set as in 7f. Oscilloscope control settings: VOLTS/DIV	Either wave- form is missing or incorrect	Refer to Service Sheet 14 and repair the vertical deflection circuit.
8. Set analyzer controls as follows: FREQUENCY 40 MHz FINE TUNE Centered BANDWIDTH 300 kHz SCAN WIDTH 0—100 MHz SCAN WIDTH PER DIVISION 10 MHz INPUT ATTENUATION 10 dB RANGE — MHz 0—110 TUNING STABILIZER On BASE LINE CLIPPER ccw SCAN TIME PER DIVISION 2 MILLISECONDS LOG REF LEVEL -10 dBm LOG REF LEVEL Vernier 0 LOG'LINEAR 10 dB LOG VIDEO FILTER OFF SCAN MODE INT SCAN TRIGGER AUTO Connect CAL OUTPUT to RF IN- PUT using a BNC to BNC cable. The display should be similar to that shown in the procedure column.	Sweep does not extend to full width of graticule Not all signals present or properly spaced	CAL OUTPUT 30 MHz 3rd HARMONIC 90 MHz 60 MHz 30 MHz 3rd HARMONIC 90 MHz 100 100 100 100 100 100 100 100 100 10

Table 8-2. System Test and Troubleshooting Procedure (cont'd)

TEST	FAULT	PROCEDURE
Test 8 (cont'd) Vary VERTICAL position to center baseline trace on bottom CRT graticule. Signal amplitude is unimportant in this test. Proceed to test 9.	Baseline trace does not vary	See Service Sheet 14. Check vertical deflection circuit
9. Set LOG REF LEVEL maximum ccw. Set SCAN TIME PER DI-VISION to 10 SECONDS and adjust focus and astigmatism. Adjust trace align to center trace on bottom CRT graticule. Proceed to test 10.	Focus and astigmatism inoperative or trace will not align	Refer to Display Section Manual and repair as required.
10. Turn FREQUENCY control and observe marker. Marker should move as FREQUENCY is tuned. Proceed to test 11.	Marker is missing	See System Test and Troubleshooting Procedure in RF Section Manual.
11. Tune FREQUENCY control to move the marker exactly under the signal three divisions from the left. The signal will null when the marker is tuned to the exact frequency of the signal. Set SCAN WIDTH PER DIVISION control to 0.05 MHz, BANDWIDTH to 10 kHz, and SCAN WIDTH to PER DIVISION. 30 MHz signal should appear close to the center graticule on the CRT. If correct signal is observed, proceed to test 12.	30 MHz sig- nal does not appear on CRT	Check calibration and alignment of the analyzer.
12. Adjust FREQUENCY to center the 30 MHz signal on CRT, then reduce SCAN WIDTH PER DIVISION to 10 kHz and recenter the display with FINE TUNE control. Signal centers properly. Proceed to test 13.	Signal is unstable. FINE TUNE does not vary signal position	Refer to System Test and Troubleshooting Procedure in RF Section manual. See Service Sheet 5. Check 2 MHz VTO Shaping Circuit.
13. Turn LOG REF LEVEL fully ccw. Top of signal should be -70 dB graticule. Rotate LOG REF LEVEL seven steps cw. CRT display should be as shown in the figure. The fault column lists these steps in numerical order beginning with the first step from the ccw position.	Each of the first 4 steps: no increase in gain, not 10 dB gain or loss of signal.	See Service Sheet 11.

Table 8-2. System Test and Troubleshooting Procedure (cont'd)

TEST	FAULT	PROCEDURE							
Set INPUT ATTENUATION to 30 dB and rotate LOG REF LEVEL cw for remaining two steps. Signal amplitude should again reach the top CRT graticule. INPUT ATTENUATION to 10 dB, LOG REF LEVEL to 0 dBm. Rotate LOG REF LEVEL Vernier to full cw. Signal shown should increase by 12 dB. Proceed to test 14.	Steps 5 and 6 same as above Steps 7, 8 and 9 same as above All or most levels incorrect and cannot be corrected by adjustment. No change in signal level or change is incorrect.	Check 3 MHz step gain amplifier, Service Sheets 6 and 9. Check Lin/Log amplifier, Service Sheets 12, 13. Check variable gain amplifier, Service Sheet 7.							
14. Set LOG REF LEVEL to -30 dBm (-30 +0). Adjust AMPL CAL so that the top of the signal is exactly on the LOG REF (TOP) graticule of the CRT. Proceed to test 15.	AMPL CAL does not vary signal level.	See Service Sheet 6. Check calibration amplifier.							
15. Set LOG·LINEAR to 2 dB LOG. Signal should remain at LOG REF graticule on CRT. Set LOG REF LEVEL to -20 dBm. Signal should drop to about -50 dB graticule on CRT. Proceed to step 16.	Either level incorrect	See Service Sheet 14. Check 2 dB Log Amplifier.							

Table 8-2. System Test and Troubleshooting Procedure (cont'd)

TEST	FAULT	PROCEDURE
16. Set LOG·LINEAR to LINEAR and LINEAR SENSITIVITY to 1 mV/DIV. The CRT deflection should be adjusted by the AMPL CAL control to 7.1 divisions. If display is correct, proceed to test 17.	AMPL CAL cannot be adjusted for 7:1 division display.	See Service Sheets 12 and 13. Probable trouble is in linear amplifier compensation circuit or linear scale factor circuit.
17. Set analyzer controls as follows:		See Service Sheets 14, 15, and 16.
SCAN WIDTH 0—100 MHz SCAN WIDTH PER DIVISION 10 MHz BANDWIDTH 10 kHz LOG·LINEAR 10 dB LOG LOG REF LEVEL10 dBm		
Turn BASE LINE CLIPPER full ccw.	Bottom 2 divisions of CRT not blanked.	Check base line clipper circuit.
Switch SCAN TIME PER DI- VISION through its range. Return SCAN TIME PER DI-	Scan does not occur in all positions	Check scan generator circuit.
VISION to 2 MILLISECONDS.		
Set SCAN WIDTH to PER DI- VISION,	DISPLAY UNCAL does not illuminate	Refer to System Test and Troubleshooting Procedure in RF Section Manual and Service Sheet 17. Probable cause of trouble is in the analogic circuit or switching circuits.
Set SCAN TIME PER DIVISION to 2 SECONDS, SCAN MODE to SINGLE and push the button; a dot should appear on the CRT display moving from left to right. Push the SINGLE scan button again; the dot should disappear.	Display incorrect	Refer to Service Sheet 15 and repair the scan control flip-flop or S2.
Set SCAN MODE to MAN and rotate the MANUAL SCAN knob. Knob should control the dot on the CRT.	Display incorrect	Refer to Service Sheet 16 and check the manual scan circuits.
Set SCAN MODE to INT and SCAN TRIGGER to LINE. The scan circuits should trigger and sweep normally.	No sweep on CRT.	Refer to Service Sheet 15 and check the scan trigger circuits.

	SCHEMATIC DIAGRAM NOTES
	Resistance in ohms, capacitance in picofarads, and inductance in microhenries unless otherwise noted.
	P/O = part of.
	*Asterisk denotes a factory-selected value. Value shown is typical. Capacitors may be omitted or resistors jumpered.
•	Screwdriver adjustment. O Panel control.
	Encloses front panel designations. [Encloses rear panel designation.
	Circuit assembly borderline.
	Other assembly borderline.
	Heavy line with arrows indicates path and direction of main signal.
	Heavy dashed line with arrows indicates path and direction of main feedback.
<u> </u>	Wiper moves toward CW with clockwise rotation of control as viewed from shaft or knob.
$\mathbf{\dot{\Omega}}$	Numbers in stars on circuit assemblies show locations of test points.
	Encloses wire color code. Code used (MIL-STD-681) is the same as the resistor color code. First number identifies the base color, second number the wider stripe, and the third number identifies the narrower stripe. E.g., 947 denotes white base, yellow wide stripe, violet narrow stripe.

Table 8-3. Schematic Diagram Notes

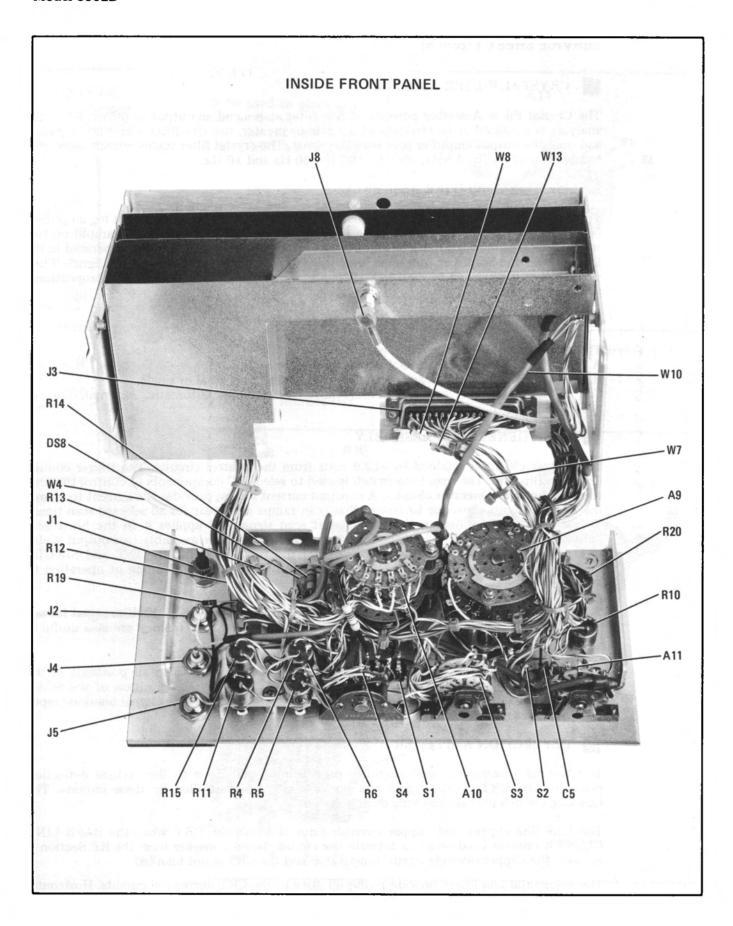
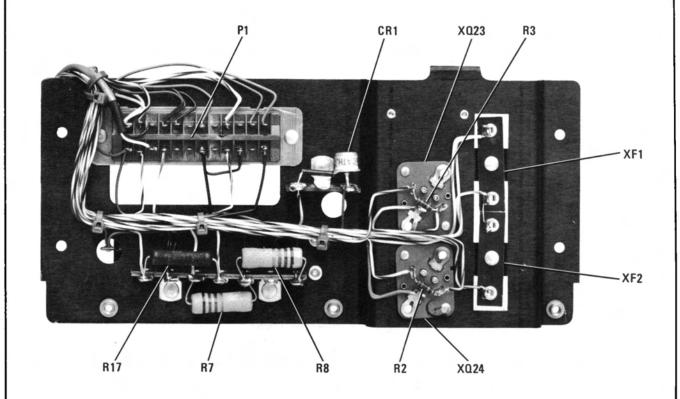
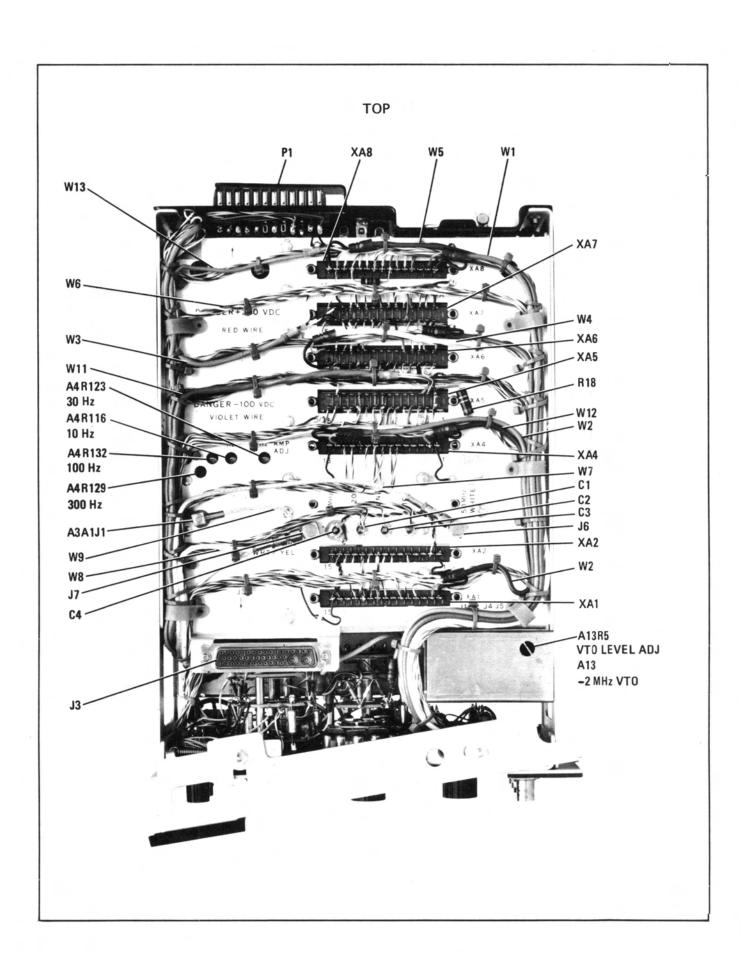

Model 8552B Service

Table 8-4. IF Section Assembly and Component Location


Assembly	Service Sheet	Photo
A1 LC Filter A2 3 MHz Amplifier A3 50 MHz Converter A4 Crystal Filter A5 Power Supply A6 Scan Generator A7 Deflection Amplifier A8 Log Amplifier A9 Scan Time Switch A10 Log Ref Level A11 Video Filter Switch A12 47 MHz APC A13 2 MHz VTO (requires 6-pin extender)	8 6, 7 3 10, 11 5, 17, 19 15, 16, 18 14 12, 13 5, 15, 17 6, 9, 11, 13, 18 13, 17 4	Figure 8-28 Figure 8-24, 8-26 Figure 8-17 Figure 8-31, 8-33 Figure 8-22, 8-46, 8-50 Figure 8-42, 8-44, 8-47 Figure 8-40 Figure 8-36, 8-38 Figure 8-13 Figure 8-12 Figure 8-11 Figure 8-19 Figure 8-20
Component	Service Sheet	Photo/Location
C1 - 4 C5 C6 - 10 CR1 DS 1 - 6 LOG REF Index Lights DS 7 X DS 8 + DS 9 SCANNING F1, 2 J1 CAL OUTPUT J2 PEN LIFT OUTPUT J3 IF Section/RF Section J4 VERTICAL OUTPUT J5 SCAN IN/OUT J6 50 MHz input J7 47 MHz output J8 L1 - 4 P1 IF Section/Display Section Q23, 24 R1 - R3 R4 HORIZONTAL POSITION R5 HORIZONTAL GAIN	3 15 4 17 18 13 13 15 17 18 14, 15, 16 1, 3, 5, 6, 8, 9, 14, 16 17, 18, 19 14 16 3 3 4 3 2, 14, 17, 19 19 19 19 14 16	Chassis Top Front Panel Chassis Bottom Rear Panel Front Panel Front Panel Front Panel Front Panel Rear Panel Front Panel Chassis Top Front Panel Chassis Top Chassis Top Chassis Top Chassis Bottom On XA 3 Rear Panel Rear Panel Rear Panel Front Panel Front Panel Front Panel


Table 8-4. IF Section Assembly and Component Location (cont'd)

	Component	Service Sheet	Photo/Location
R6		14, 16	Front Panel
R7, 8		14	Rear Panel
R9		15	Front Panel
R10	BASE LINE CLIPPER	14	Front Panel
R11	VERTICAL GAIN	14	Front Panel
R12	Vernier	7	Front Panel
R13, 14	l .	13	Front Panel
R15	VERTICAL POSITION	14	F r ont Panel
R16		13	Front Panel
R17		12	Rear Panel
R18		19	Chassis Top
R19		14, 15, 16	Front Panel
R20	MANUAL SCAN	16	Front Panel
S1	LOG·LINEAR	13, 14	Front Panel
S2	SINGLE SCAN	15	Front Panel
S3	SCAN MODE	15, 16, 17	Front Panel
S4	SCAN TRIGGER	15, 16	Front Panel
W1	Green	11, 12	Figure 8-8
W2	Blue, shielded	11	Figure 8-8
W3	Horiz Output	14	Figure 8-8
W4	Cal Output	18	Figure 8-8
W5	Orange	13	Figure 8-8
W6	Vert Output	14	Figure 8-8
W7	50 MHz Input	3	Figure 8-8
W8	47 MHz Output	3	Figure 8-8
W9	47 MHz APC	3, 4	Figure 8-8
W10	Blue, Twisted Pair	4, 5	Figure 8-8
W11	Blue, Shielded Pair	4, 5	Figure 8-8
W12	Red	8, 10	Figure 8-8

INSIDE REAR PANEL

WARNING

"Some of the maintenance and servicing operations described herein are performed with power supplied to the instrument while protective covers are removed. Be careful when performing these operations. Line voltage is always present on terminals including the power input connector, fuse holder, power switch, etc. In addition, when the instrument is on, energy available at many points may result in personal injury or death when contacted."

BOTTOM A8 R52 LINEAR GAIN A8 R63 4 dB A8 L12 FREQ. A8 LOG/LINER AMPLIFIER ASSY A7 DEFLECTION AMPLIFIER ASSY A6 R50 5V A7 R35 2 dB OFFSET-A7 R37 2 dB GAIN-A6 R46 SCAN AMPL A6 SCAN GENERATOR ASSY-A6 R12 SCAN TIME-A5 R32 -10 A6S1 EXT TRIGGER POLARITY--A5 R16 +20 A5 R75 THRESH A5 POWER SUPPLY ASSY -A5 R71 OFFSET--A4C57 A5 R5 SHAPING -A4C74 A4 CRYSTAL FILTER ASSY-- A4C70 A4C19 -A4C34 A4C61 A4C30 A4C43 A4C47 -- A3A2 L1 A3 50 MHz CONVERTER ASSY A3 C11 -A2 3 MHz AMPLIFIER ASSY A3 C14-A2 R27 50 dB A3 C19-A2 R51 0 dB A2 R44 12 dB A3A1 C5 A2 R24 40 dB A3A1 C6 -A2 R21 30 dB A3A1J1 A3A1 C9-A1 L/C FILTER ASSY A3A1 C10-C9 A2R1 IMP-**C8** C10 - C7 C6 A12 47 MHz APC ASSY A12T1 A1R58 A1R59 J5 A1R35 A1C22 A1C16 A1C10 A1C4 20 dB 10 dB R11 10 kHz R5 PEAK S4 J8 PEAK S3 PEAK **PEAK** A11

Figure 8-8. 8552B Component, Assembly, and Adjustment Locations

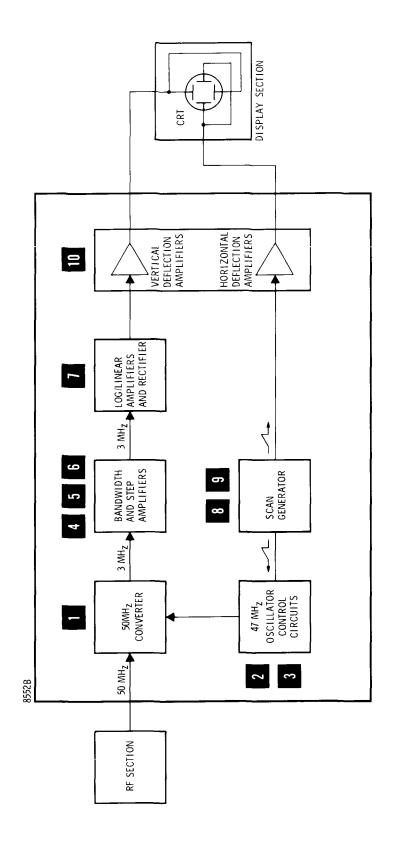


Figure 8-9. Simplified Block Diagram

50 MHz CONVERTER ASSEMBLY

The 50 MHz Converter assembly consists of an IF amplifier, a bandpass filter, a 47 MHz oscillator, and a double balanced mixer. The broadband IF amplifier provides 10 dB of gain. The 47 MHz oscillator is varactor controlled; the frequency is fixed or swept depending on the control voltage received from the APC Assembly.

POWER SUPPLY ASSEMBLY

The summing and offset amplifiers combine dc levels and a ramp received from the RF Section. (The dc levels eventually set the center frequency of the 47 MHz VTO — the ramp will sweep it symmetrically about that frequency). The RF Section inputs may or may not be present, depending upon the RF Section used and its switch positions. The shaping network converts the linear input into an exponential ramp which controls the 2 MHz VTO. This will cause the 2 MHz VTO output frequency to sweep linearly.

The light driver is controlled by the IF Section VIDEO FILTER and SCAN TIME PER DIVISION switches, and the RF Section SCAN WIDTH PER DIVISION and BANDWIDTH switches. When the switch settings prevent accurate amplitude calibration of the analyzer the light driver turns on and lights the DISPLAY UNCAL lamp in the RF Section.

3 47 MHz APC

The automatic phase control circuits lock the 47 MHz VTO to a stable reference: the 45 MHz crystal oscillator plus the 2 MHz VTO. The 47 MHz VTO frequency is mixed with the 45 MHz reference, filtered and the nominal 2 MHz result is compared to the 2 MHz VTO frequency (which may or may not be sweeping). Any phase difference is detected and used to correct the 47 MHz VTO.

4 3 MHz IF AMPLIFIER

The 3 MHz IF Amplifier consists of a bandpass filter, the calibrate amplifier, the 30/40/50 dB step amplifier, a 0 to 12 dB variable amplifier and an emitter follower output stage. The input bandpass filter is tuneable and is adjusted to provide a 300 kHz bandpass centered at 3 MHz.

5 LC BANDWIDTH FILTER ASSEMBLY

The LC Bandwidth Filter Assembly contains four tuned filter circuits, the 10/20 dB step amplifier and an output circuit to provide a low impedance source to the crystal filter input circuit. The bandwidth of individual filter stages is controlled by the RF Section BANDWIDTH switch which forward biases diodes to place resistors in parallel in the signal path. When the analyzer is operated in the 300 kHz bandwidth mode the four tuned stages are bypassed and only the output stage and the step amplifier process the signal. The four tuned stages provide selectable bandwidths of 100 kHz, 30 kHz, and 10 kHz.

Service Model 8552B

SERVICE SHEET 1 (cont'd)

6 CRYSTAL FILTER ASSEMBLY

The Crystal Filter Assembly consists of five filter stages and an output amplifier. When the analyzer is operated at bandwidths of 10 kHz or greater, the five filter stages are bypassed and only the output amplifier processes the signal. The crystal filter stages provide selectable bandwidths of 3 kHz, 1 kHz, 300 Hz, 100 Hz, 30 Hz and 10 Hz.

LOG/LIN AMPLIFIER ASSEMBLY

The Log/Lin Amplifier Assembly consists of an input emitter follower, eight log amplifiers (six of these amplifiers are used in the LINEAR mode), a linear scale factor amplifier, two summing and isolation amplifiers, and a linear detector. When the analyzer is operated in the LOG mode, the amplifier output is logarithmically proportional to the input signal. When the analyzer is operated in the LINEAR mode, the amplifier output is directly proportional to the input signal.

8 SCAN CONTROL AND TRIGGER CIRCUITS

These circuits control the operation of the analyzer's scan.

- A. SCAN TIME PER DIVISION selects internal scan time.
- B. SCAN MODE selects scan source: internal, external, manual or single.
- C. SCAN TRIGGER selects internal-scan trigger source: automatic, external, line, or video.

9 SCAN GENERATOR ASSEMBLY

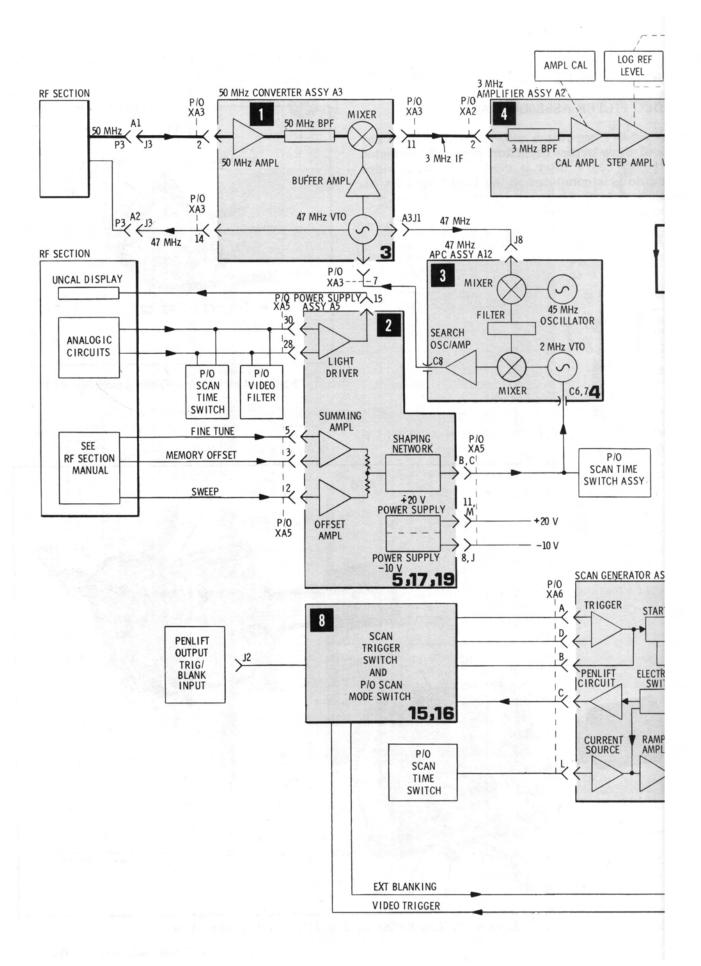
The trigger circuit is enabled by -12.6 volts from the control circuits. The trigger circuits drive the flip-flop. The scan time switch is used to select RC components to control the scan time of the scan generator circuits. A constant current source provides the current to charge the selected ramp capacitor to ensure that scan ramps are linear for all selected scan times. The scan ramp amplifier amplifies the input scan signal and applies it to the horizontal deflection amplifier and the RF Section scan width attenuator assembly. An output is also provided at the SCAN IN/OUT connector, on the front panel, in the INT and SINGLE modes of operation. The connector may also be used in the EXT mode of operation to apply a signal from an external scan generator.

The calibration oscillator is crystal controlled and provides a 30 MHz, -30 dBm signal for use in calibrating the analyzer. The harmonics of the fundamental frequency are also useful in evaluating analyzer performance.

The penlift circuit provides penlift operation to recording devices in all positions of the SCAN TRIGGER switch except EXT and in the INT and SINGLE position of the SCAN MODE switch. In the EXT position of the SCAN MODE switch an external blanking input of -1.5 volts is required to blank the CRT.

DEFLECTION AMPLIFIER ASSEMBLY

The vertical preamplifier and amplifier provide push-pull drive to the vertical deflection plates of the CRT. Vertical gain and position are also controlled by these circuits. The blanking circuits provide blanking during the retrace cycle.


The base line clipper and clipper override circuits blank the CRT when the BASE LINE CLIPPER control is adjusted to activate the circuit. When a marker from the RF Section is present, the clipper override circuit is activated and the CRT is not blanked.

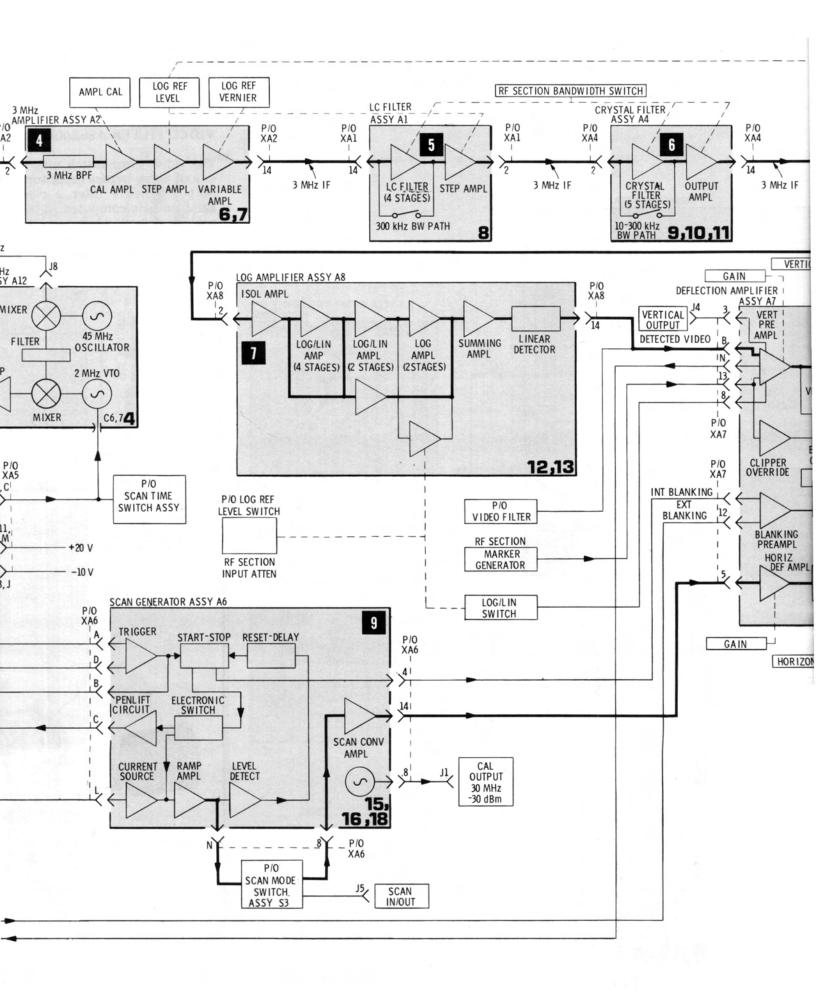

The horizontal amplifiers provide push-pull drive to the CRT horizontal circuits. Horizontal gain and position are also controlled by these circuits.

Table 8-5. Gain Changes When LOG REF LEVEL Switch is Adjusted

S	EF LEVEL witch sitions	LO	LOG REF LEVEL Assy Atten (dB)					
-60)		30	20	0	0			
-50		20	20	0	0			
-40		10	20	0	0			
-30	Log 0	0	20	0	0	Total IF system gain		
-20	Positions	0	10	0	0			
-10		0	0	0	0	(-10 dB) into LOG AMPLIFIER		
0		0	0	-10				
10		0	0	0	-20			
1	Linear	0	0	0	-30			
j	Positions	0	0	0	-40			

^{*}Individual 3 MHz IF assembly gains resulting in a constant IF system gain (-10 dB) into LOG AMPLIFIER when LOG REF LEVEL switch is in logarithmic display positions.

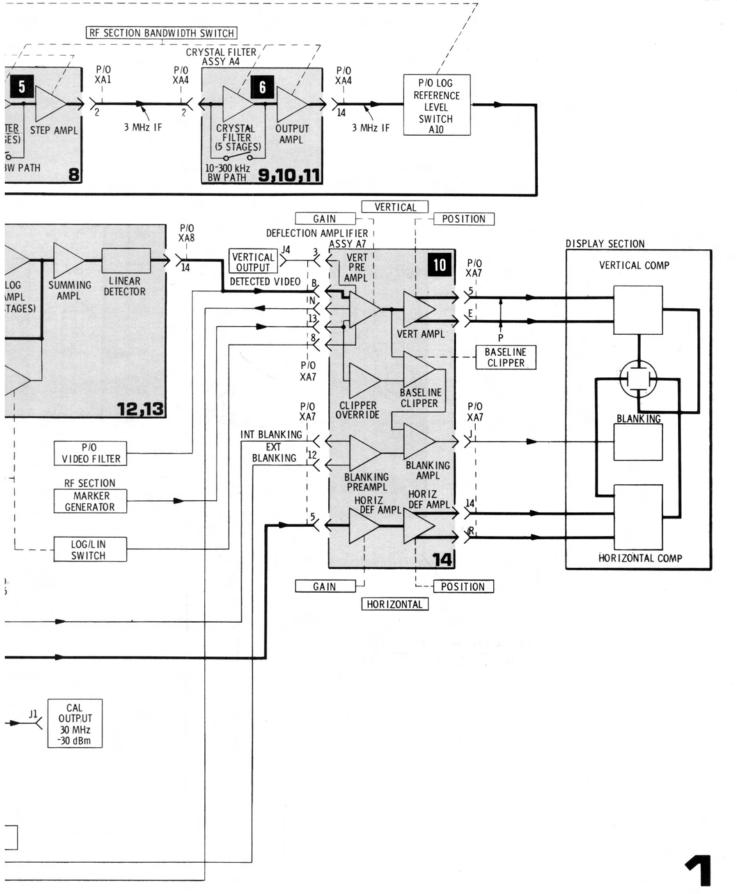


Figure 8-10. 8552B Block Diagram

VIDEO FILTER ASSEMBLY A11

The video filter switch may be used to place any one of three bypass capacitors across the detected output. When a filter is used the reduced video bandwidth is computed in the DISPLAY UNCAL analogic summing buss.

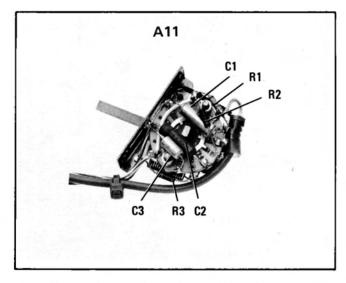


Figure 8-11. Video Filter Assembly A11

LOG REFERENCE LEVEL SWITCH ASSEMBLY A10

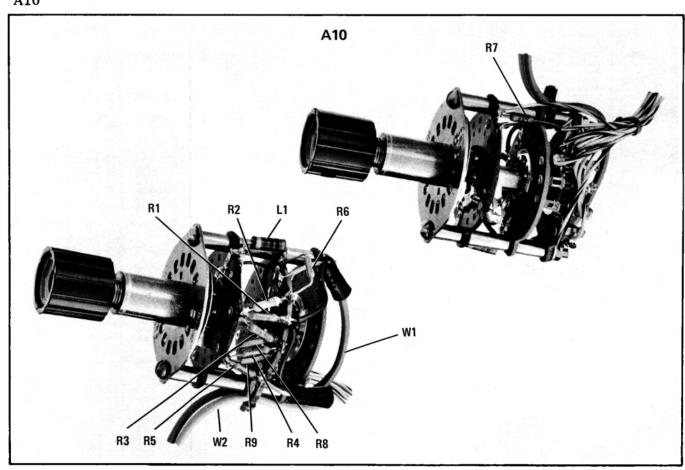


Figure 8-12. Log Reference Level Switch Assembly A10

SERVICE SHEET 2 (cont'd)

Switch wafers S1-1F, S1-2F, and S1-1R connect the 3 MHz IF Signal from the crystal filter circuit to the Log/Lin amplifier and provide attenuation to this signal when required.

Switch wafer S1-2R, in conjunction with the RF Section INPUT ATTENUATION control, programs the gain compensation function of the linear scale factor amplifier in the Log/Lin amplifier when the analyzer is operating in the LINEAR mode.

Switch wafers S1-3F and S1-3R provide dc levels to enable or disable diode switches which, in turn, enable or disable step gain amplifiers in the 3 MHz IF and LC Filter Assemblies.

SCAN TIME SWITCH ASSEMBLY A9

The various functions of the scan time switch assembly are as follows:

S1-1F selects the capacitor to be charged to generate the scan ramp.

S1-2R connects (or removes) a ground to R10 to partially control the operational parameters of constant current source Q6.

S1-2F selects the resistor to be used in the emitter circuit of constant current source Q6.

S1-1R selects the resistor (or resistors) to control the sweep reset (dead time) of the scan generator and switches a filter into the shaping circuit output on slow scan times.

S1-3F and S1-3R provide current to the analogic scanning buss to aid in illuminating the DISPLAY UNCAL lamp when switch settings are not compatible with analyzer calibration requirements.

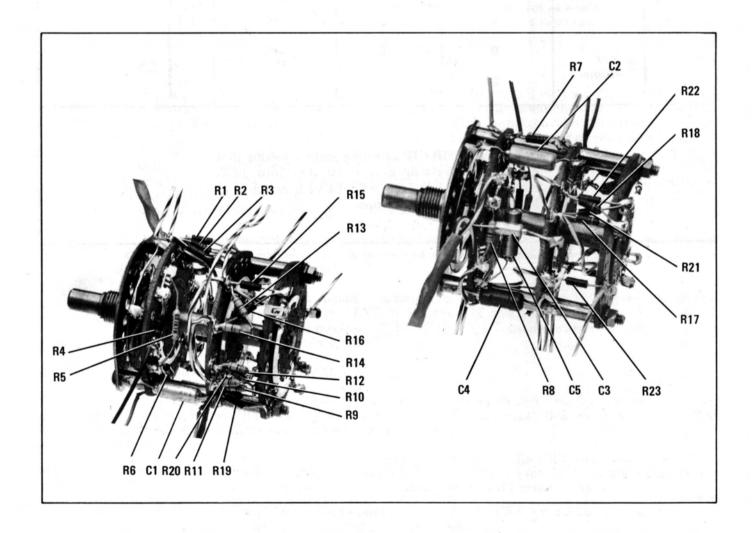
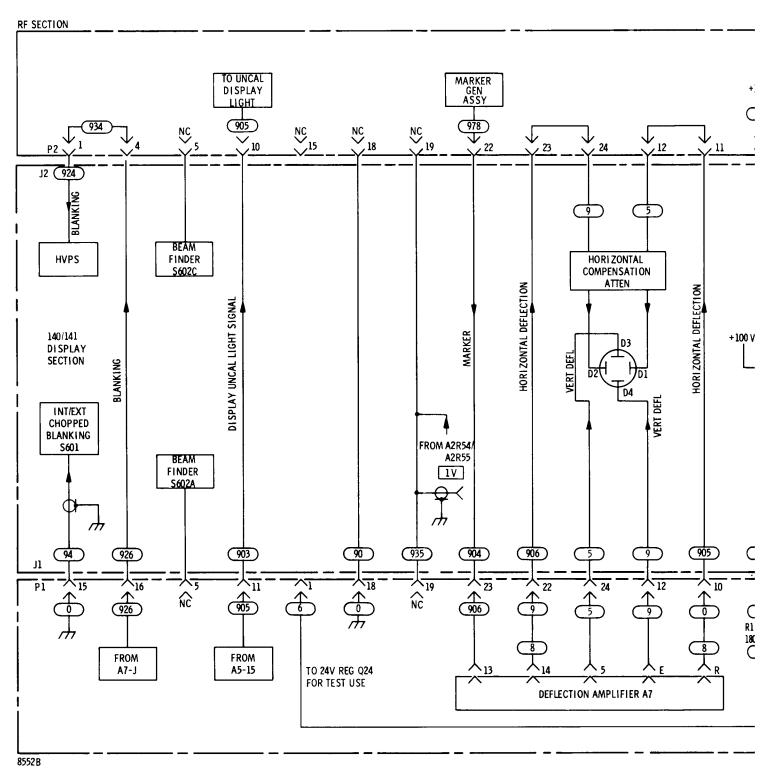



Figure 8-13. Scan Time Switch Assembly A9

Table 8-6. IF-to-RF Sections Interconnecting Jack Identification

Table 8-7. IF-to-Display Sections Interconnecting Plug Identification

J3 Pın No.	Wire Color	Circuit Function	P1 Pin No.	Wire Color	Circuit Function
ļ	Code	001H B 1 1H		Code 6	+20V
Pin 1	912	.03 kHz Bandwidth	Pin 1	3	+20V +100V
2	913	0.1 kHz Bandwidth	2	3	
3	914	0.3 kHz Bandwidth	3	00	Open
4	915	1 kHz Bandwidth	4	92	·+100V
5	4	Phase Lock Compensation	5	7	Open —100V
6	3	Preset Scan Voltage	6	7	
7	5	Linear Compensation Control Voltage	7	0	Open Ground
8	6	Linear Compensation Control Voltage	8 9	$\frac{0}{2}$	+250V
9	938	Log Ref Level Lamp No. 4	10	0	Horizontal Deflection
10	945	Log Ref Level Lamp No. 5	ļ	i -	
11	946	Log Ref Level Lamp No. 6	11	905	Display Uncal Light
12	90	Sensing Ground	12	5	Vertical Deflection
13	8	Blanking for Tracking Generator	13	1	6.3 Vac
14	925	.01 kHz Bandwidth	14		Open
15	902	+20 Volts for connector J3	15	0	Ground
22	90	Scanwidth Ground	16	926	Blanking
23	8 (cable)	3 MHz IF	17	}	Open
24	8 (cable)	Ground	18	0	Ground
25	916	10 kHz Bandwidth	19		Open
26	927	30 kHz Bandwidth	20		Open
27	918	100 kHz Bandwidth	21	97	-12.6V
28	923	300 kHz Bandwidth	22	9	Horizontal Deflection
29	96	Ampl Cal Adjustment	23	906	Marker
30	957	Normal Analogic Line	24	9	Vertical Deflection
31	934	Scan Voltage to Shaping Ckt.		1	
32	9	Fine Tune Voltage to Shaping Ckt.			
33	935	Log Ref Level Lamp No. 1			
34	936	Log Ref Level Lamp No. 2			
35	937	Log Ref Level Lamp No. 3			
36	907	-10 Volts			
37	902	+20 Volts			
38	956	Video Filter Analogic Line			
39	958	Zero Scan Analogic Disable Line			
40	968	Log/Linear Sense			
41	928	0 to 8V ramp-scan control to tracking generator			
A1	9	W7 50 MHz IF		1	
A2	6	47 MHz Auxiliary Line			
<u></u>					

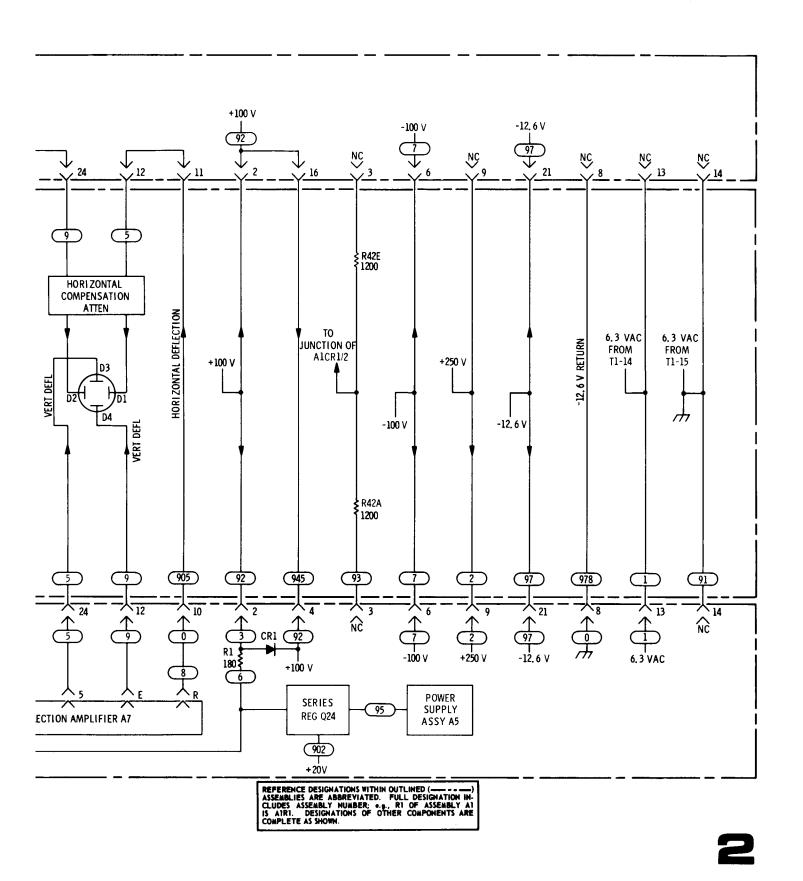


Figure 8-14. RF Section/IF Section/Display Section Interconnections

It is assumed that the procedures in Paragraphs 5-37, 5-38, and 5-39 of Section V could not be satisfactorily conducted. It is further assumed that the tuning input from A12, the 50 MHz input, and the correct operating voltages are present.

TROUBLESHOOTING PROCEDURE

When a malfunction has been isolated to the 50 MHz converter assembly, it should be removed from the mainframe and reinstalled using the extender board to provide easy access to all components. Both ground flanges will have to be connected to chassis ground. Connect CAL OUTPUT to 8447A INPUT and 8447A OUTPUT to RF INPUT. Test procedures follow the circuit description in each of the steps below.

EQUIPMENT REQUIRED

AMPLIFIER		 							HP 8447A
SERVICE KIT		 							HP 11592A
VECTOR VOLTMETER .		 							HP 8405A
FREQUENCY COUNTER		 						ΗP	5245L/5251A

CONTROL SETTINGS

Unless otherwise specified in individual tests.

SCAN WIDTH														ZERO
BANDWIDTH														300 kHz
FREQUENCY														
INPUT ATTEN	UATION	J.												0 dB
TUNING STAE	BILIZER													OFF

50 MHz AMPLIFIER

Broadband amplifier Q1/Q2 has built in 44 MHz traps to suppress image responses. (44 MHz mixed with the 47 MHz oscillator signal would produce a false 3 MHz IF signal). Input and output signals are applied through isolation transformers. Gain of the two-stage amplifier is typically $10~\mathrm{dB}$.

TEST PROCEDURE

With a 30 MHz, -10 dBm signal applied to the analyzer RF INPUT, and the HP 8405A connected to XA3-2, tune the analyzer FREQUENCY control for maximum signal. Nominal reading is 44 mV rms. Next, connect the HP 8405A to the 50 MHz amplifier output (input feedthru capacitor C1 to the 50 MHz bandpass filter, adjacent to T1). Meter should indicate a typical value of approximately 150 mV rms.

If the 50 MHz amplifier output is correct, proceed to step 2

If the 50 MHz amplifier is not providing the correct output, check $\mathrm{Q}1/\mathrm{Q}2$ and associated components.

NOTE

After making repairs to the 50 MHz amplifier circuit proceed to step 4. If the test procedure in step 4 is satisfactorily concluded, steps 2 and 3 may be omitted. If repair to the 50 MHz amplifier is required the 44 MHz Rejection Adjustments defined in paragraph 5-39 of Section V should be made.

SERVICE SHEET 3 (cont'd)

50 MHz BANDPASS FILTER

The 50 MHz Bandpass Filter consists of four tuned circuits wound on a common coil form. C5, C6, C9 and C10 are adjusted for maximum amplitude and flatness (± 2 mV) at least 0.3 MHz on either side of 50 MHz.

TEST PROCEDURE 2

With a 30 MHz, -10 dBm signal applied to the analyzer RF INPUT, and the HP 8405A connected to the bandpass filter output (feedthru capacitor C13 at the output of bandpass filter) tune the analyzer FREQUENCY control for maximum signal. Nominal voltage is 90 mV rms.

If bandpass filter output signal voltage is correct, proceed to step 3

If bandpass filter output signal is low or missing, first try realignment in accordance with Paragraph 5-38 of Section V. If this does not correct the malfunction, replace the Bandpass Filter.

After bandpass filter replacement and adjustment is completed, proceed to step 4. If the test results in step 4 are satisfactory, step may be omitted.

NOTE

If bandpass filter replacement is necessary, the new filter should be adjusted in accordance with paragraph 5-38 of Section V.

3 47 MHz LOCAL OSCILLATOR

Depending on the RF Section used, the 47 MHz oscillator is operated at a fixed frequency of 47 MHz or is swept. See the appropriate RF Section manual for information on the modes of operation for the oscillator.

TEST PROCEDURE 3

Connect the HP 8405A Channel A probe to the 47 MHz local oscillator output at XA3-14 (use 50 ohm load) and the Channel B probe to the input of T4 (second feedthru from bottom of board on the local oscillator cover). Channel A should read approximately -7 dBm (100 mV into 50 ohms) and Channel B should read approximately 670 mV rms (approximately +10 dBm). Connect the HP 8405A Channel A probe to J8 (47 MHz input to APC Assy A12). Voltmeter should read approximately +10 dBm.

If the meter readings are correct proceed to step 4

The 47 MHz local oscillator is a sealed unit and field repairs are not practical. If the above readings are not obtained, replace the 47 MHz Local Oscillator Assembly A3A2.

Service Model 8552B

SERVICE SHEET 3 (cont'd)

Check the oscillator frequency by connecting the 5245L/5251A to XA3-14. Vary R42 on A5 to adjust the oscillator to 47 MHz.

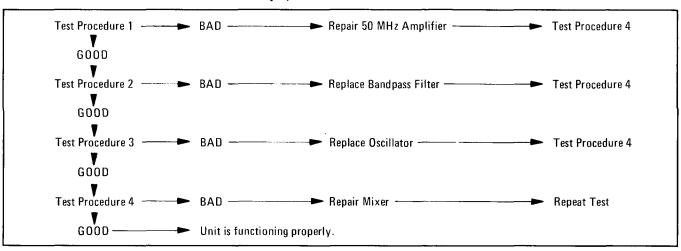
NOTE

If it is necessary to replace the 47 MHz Oscillator Assembly, the checks and adjustments in Paragraph 5-37 of Section V should be performed.

MIXER

The 50 MHz IF signal mixes with the 47 MHz local oscillator output to produce a 3 MHz IF signal containing all of the modulation components of the 50 MHz signal. The 3 MHz IF is coupled out through T2 to the 3 MHz IF Amplifier Assembly. loss through mixer Conversion the approximately 7 dB.

TEST PROCEDURE 4



With a 30 MHz, -10 dBm signal applied to the analyzer RF INPUT, and the HP 8405A connected to the mixer output at 3 MHz feedthru under chassis (C4), tune the analyzer FREQUENCY control for maximum. Typical signal level is 44 mV rms.

If the proper signal level is not present check the mixer circuit.

If the proper signal level is present, the unit is functioning properly.

Simplified Test Procedure Tree

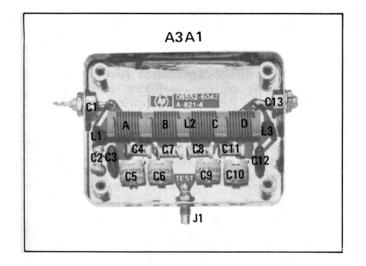


Figure 8-15. 50 MHz Bandpass Filter A3A1 Component Identification

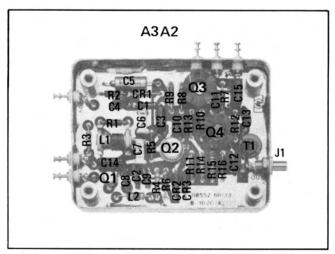


Figure 8-16. 47 MHz LO A3A2 Component Identification

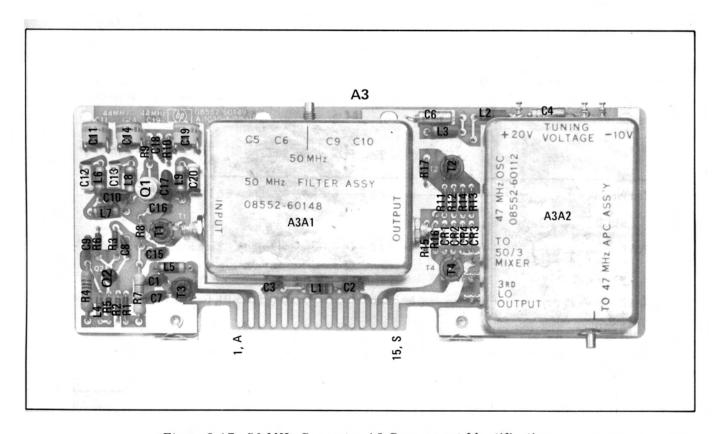
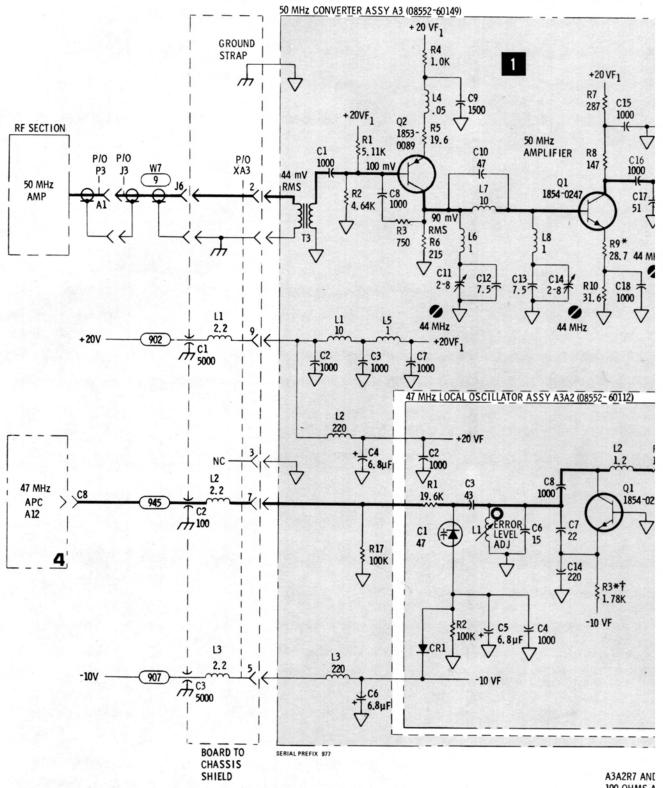
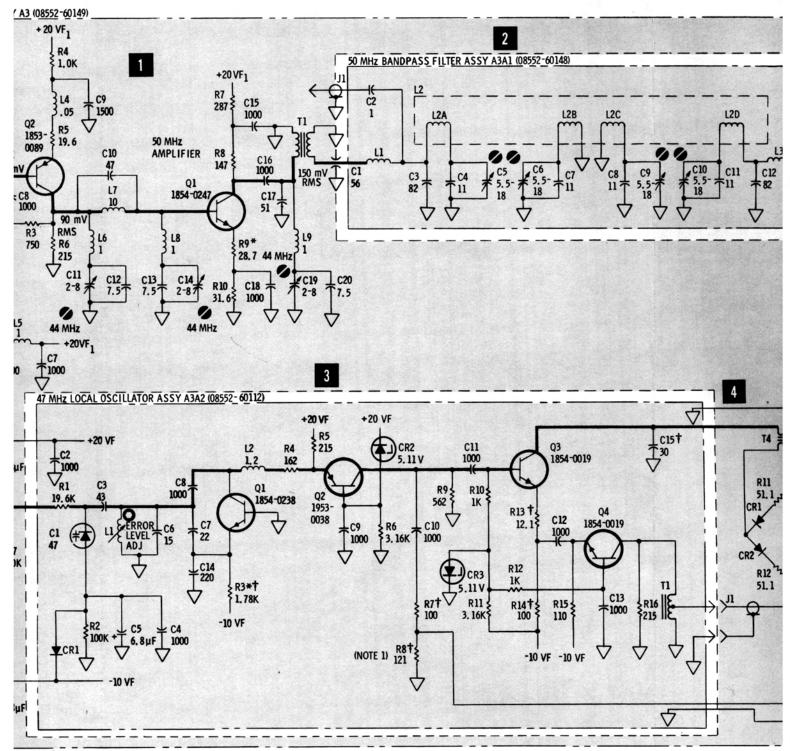




Figure 8-17. 50 MHz Converter A3 Component Identification

100 OHMS A IF REPLACE REPLACE B(

NOTE 1,
A3A2R7 AND A3A2R8 MAY BE 133 OHMS AND 90, 9 OHMS RESPECTIVELY.
100 OHMS AND 121 OHMS, RESPECTIVELY, ARE PREFERRED VALUES,
IF REPLACEMENT OF A3A2R7 OR A3A2R8 BECOMES NECESSARY,
REPLACE BOTH COMPONENTS WITH PREFERRED VALUES.

	REFERENCE
A3	A3A1
C1-4, 6-20	C1-13
CR1-5	C1-3
L1-9	J1
Q1-2	
R1-17	
T1-4	
11	

TREFER TO TABLE 7-2

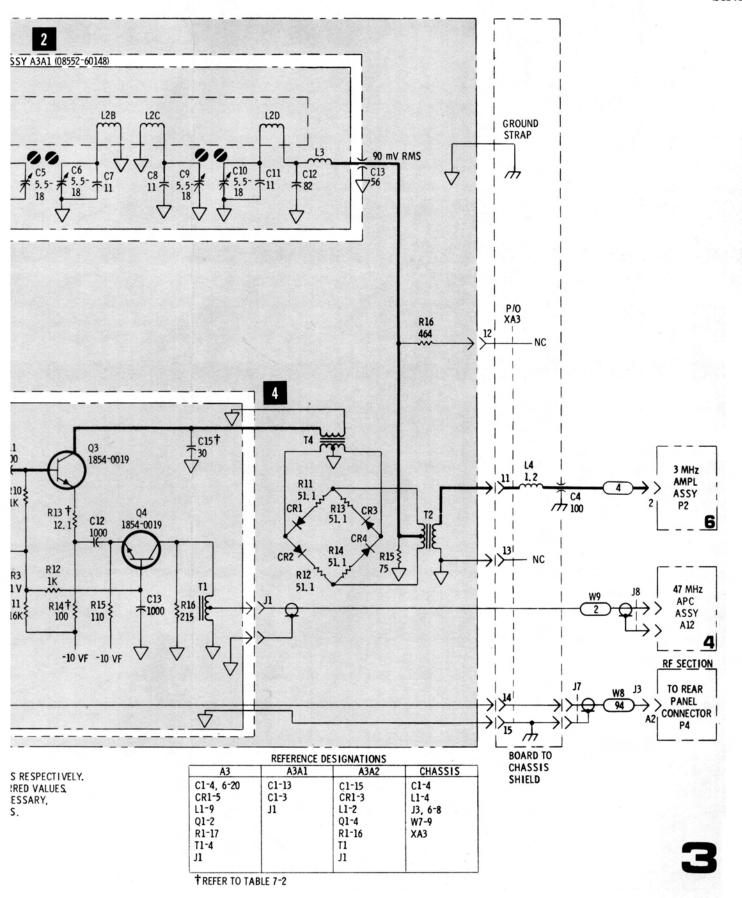


Figure 8-18. 50 MHz Converter

It is assumed that input DC voltages, the 47 MHz input and the 2 MHz VTO Shaping Circuit input are all correct and present.

TEST PROCEDURE

When trouble has been isolated to the 47 MHz Automatic Phase Lock Control circuits, remove the cover shield from the A13 and A1/A12 assemblies to provide access to components and test points.

EQUIPMENT REQUIRED

OSCILLOSCOPE	 HP 180A/1801A/1821A
SERVICE KIT	 HP 11592A
VECTOR VOLTMETER .	 HP 8405A

CONTROL SETTINGS

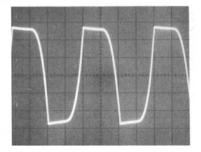
SPECTRUM ANALYZER	Any
-------------------	-----

SEARCH OSCILLATOR/AMPLIFIER AND PHASE DETECTOR

The Automatic Phase Control Circuits control the 47 MHz VTO in a phase lock loop. 45 MHz from a crystal oscillator is mixed with the nominal 47 MHz from the 47 MHz VTO to give a nominal 2 MHz difference frequency. This difference frequency is compared with the nominal 2 MHz VTO output in a phase detector. Any phase difference produces a dc error voltage that is amplified by the search oscillator/amplifier and fed back to correct the 47 MHz VTO. If the search oscillator/amplifier loses its lock, it will search at about a 50-Hz rate until it brings the 47 MHz VTO frequency into coincidence with the sum of the frequencies from the 45 MHz oscillator and the 2 MHz VTO.

TEST PROCEDURE 1

When the Search Oscillator/Amplifier is locked on and controlling the 47 MHz VTO, its output is approximately steady dc. When the phase loop is broken the Search Oscillator/Amplifier output (≈50 Hz) is as shown in waveform. Connect the oscilloscope to TP B (feedthrough C8) and disconnect W9 (red coax) at A3J1.


CONTROL SETTINGS

Oscilloscope:

0.2 V/Div 5 msec/Div 10:1 probe

Waveform GOOD: Reconnect W9 at A3J1 and proceed to step 2

Waveform BAD: Check E2, U1 and associated components

A3, A3A1, A3A2 50 MHz Converter SERVICE SHEET 3

SERVICE SHEET 4 (cont'd)

2 45 MHz CRYSTAL OSCILLATOR AND MIXER

Q2 and associated components form a crystal oscillator that feeds 45 MHz to mixer E1. Nominal 47 MHz from the 47 MHz VTO is fed to E1 by isolation amplifier Q1.

TEST PROCEDURE 2

2a. Connect the vector voltmeter to TP2 (45 MHz oscillator output).

CONTROL SETTINGS

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Voltmeter should read about +1 dBm.
Reading GOOD: Proceed to 2b.
Reading BAD: Check Q2 and associated components.
2b. Connect the vector voltmeter to TP A (E1 output).
CONTROL SETTINGS
Vector Voltmeter: FREQ RANGE MHz 1-5

Voltmeter should read about -2 dBm.

Reading GOOD: proceed to step 3

Reading BAD: Check Q1, E1 and associated components.

AMPLITUDE (dB) 0

3 2 MHz VTO ASSY A13

The exponential control voltage from the 2 MHz VTO Shaping Circuit is fed to varactors C1 and C2. C1, C2, and T1 form a tank circuit that controls the 2 MHz VTO, Q1. Because varactors have an exponential voltage-capacitance relationship, the frequency out of the oscillator is linear with respect to the RF Section control voltage (see Service Sheet 5).

The output frequency is amplified by Q2 and Q3 and fed to the phase detector E2. Q4 provides temperature compensation.

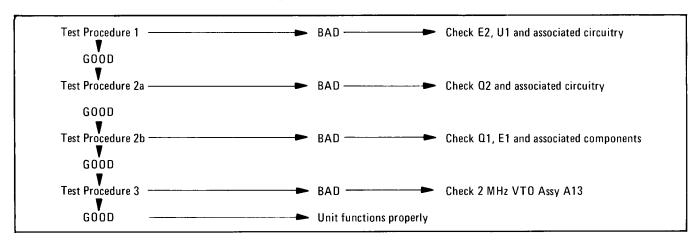
TEST PROCEDURE

Attach the vector voltmeter probe to A12 TP1 (2 MHz VTO Assy output).

CONTROL SETTINGS

Vector Voltmeter:	
$FREQ RANGE - MHz \dots 1$	-5
AMPLITUDE (dB) +	10

Voltmeter should read about +5 dBm.


Reading GOOD: Assembly functions properly.

Reading BAD: Check 2 MHz VTO Assy A13.

NOTE

When repairs are required, the Adjustment specified in paragraph 5-37 should be performed.

Simplified Test Procedure Tree

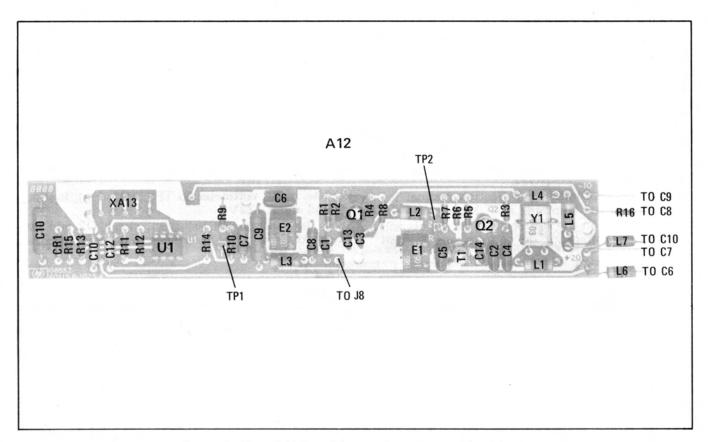


Figure 8-19. 47 MHz APC A12 Component Identification

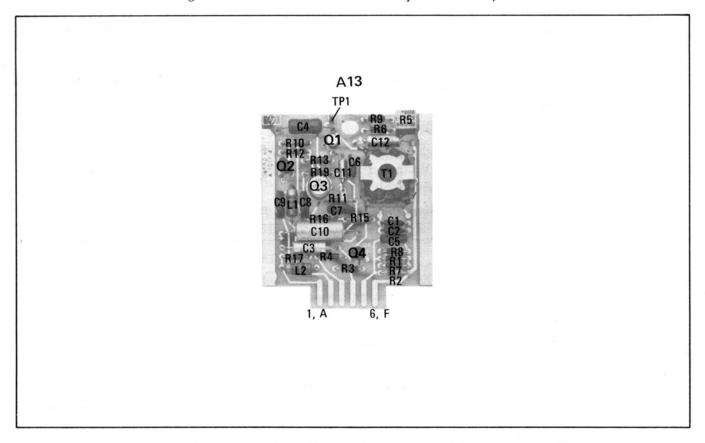
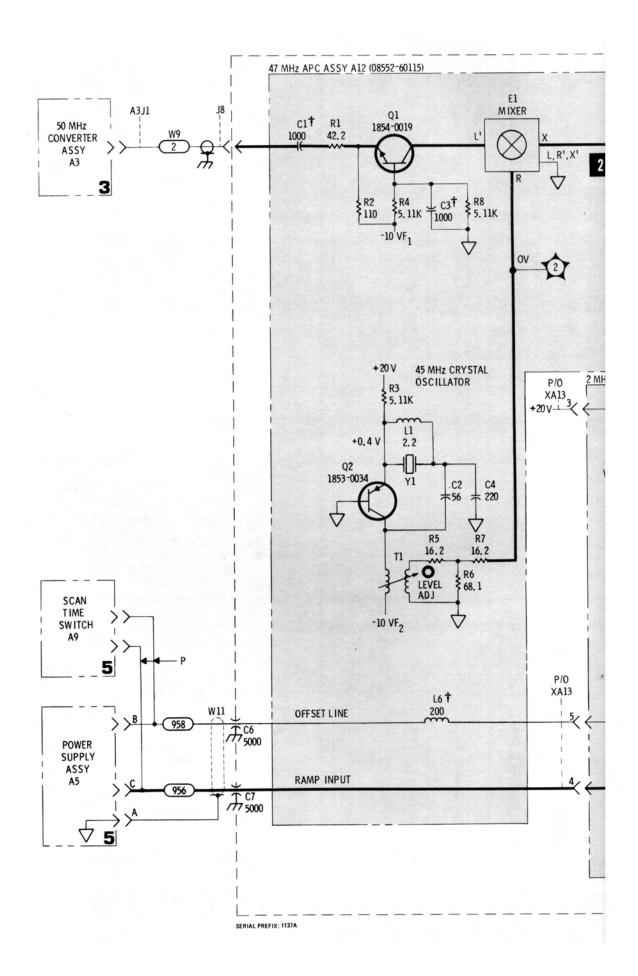
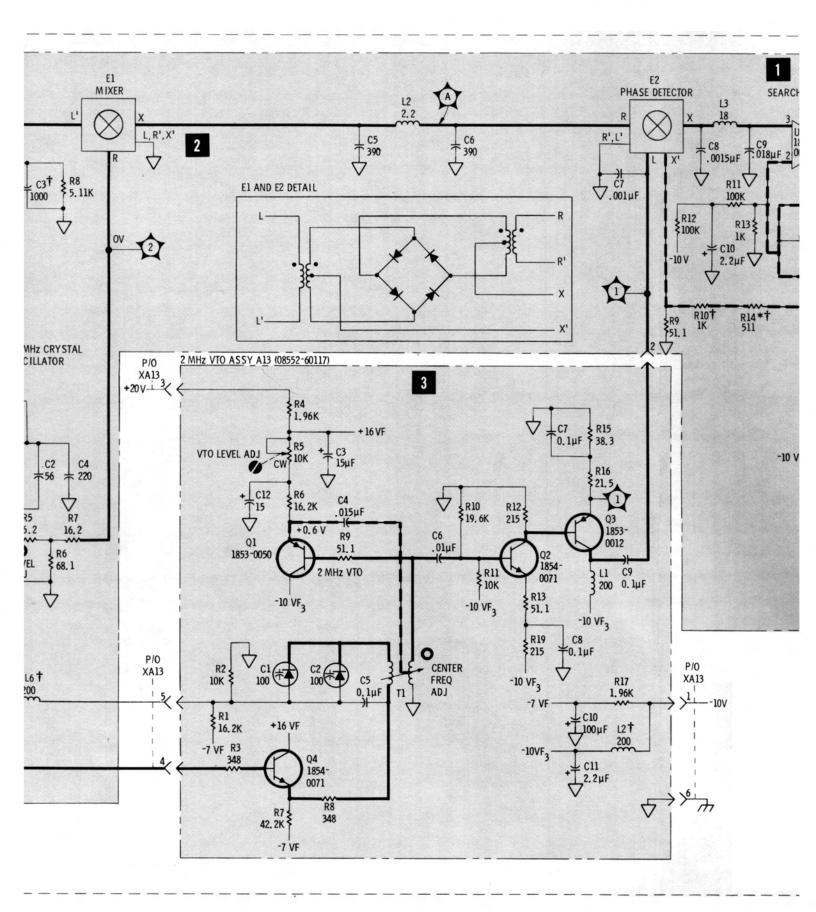




Figure 8-20. 2 MHz VTO A13 Component Identification

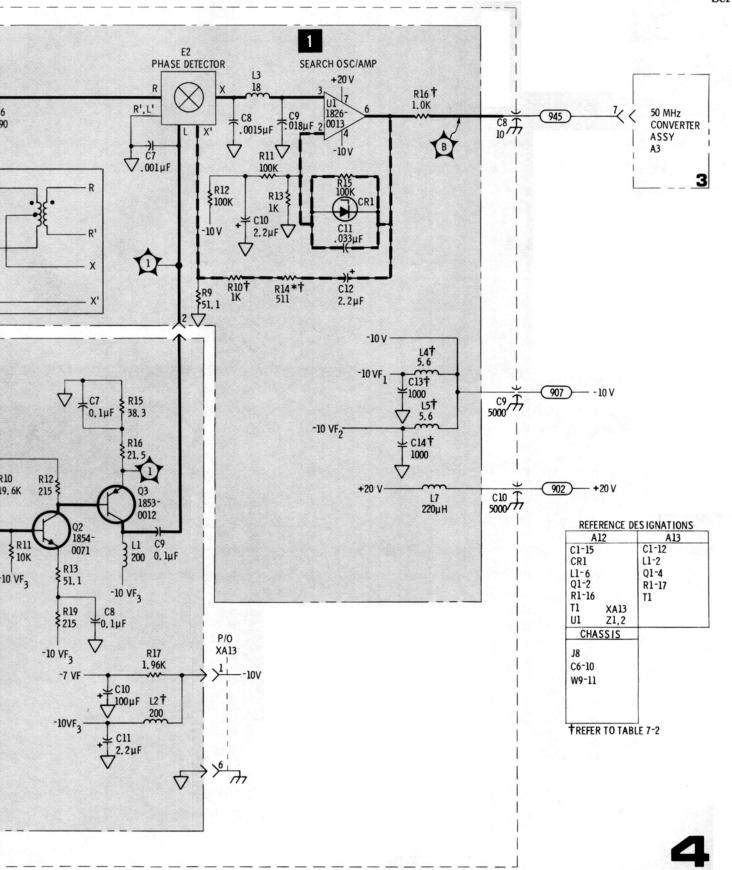


Figure 8-21. 47 MHz Automatic Phase Control and 2 MHz Voltage Tuned Oscillator

SERVICE SHEET 5

It is assumed that input voltages are present and correct.

TROUBLESHOOTING PROCEDURE

When trouble has been isolated to the 2 MHz VTO Shaping Circuit remove power supply assembly A5 and reinstall it on the extender board to provide access to components and test points.

NOTE

See the appropriate RF Section manual for inputs to the summing and shaping circuits. Depending on the RF Section, the inputs will be a dc voltage or dc voltages and a ramp voltage.

EQUIPMENT REQUIRED

DIGITAL VOLTMETER HP 3440A/3443A

CONTROL SETTINGS:

Any

SUMMING AND COMBINING CIRCUITS

In all 8552B/RF Section combinations, the RF Section, in some way, controls the 47 MHz VTO. The 47 MHz VTO may be just set to some fixed frequency or it may be set to some frequency and swept. In any case, the control inputs from the RF Section are summed and combined by U1, U2 and associated circuitry. U1 is an offset amplifier; U2 is a summing amplifier. U1 and U2 outputs are combined across R43 and R44 and fed to the shaping circuit.

TEST PROCEDURE 1

Disconnect the RF Section and the 8552B (but leave both connected to the Display Section). Ground XA5 pin 2 (input to U1) to chassis; attach the voltmeter to TP A (U1, pin 6). Voltmeter should read about +5V. Ground XA5 pins 5 and 3

to chassis; attach voltmeter to TP B. (U2, pin 6). Voltmeter should read about -5.5V.

If the voltage at U1 or U2 was incorrect, check the IC and associated circuitry.

If the voltages were correct, reconnect the 8552B and the RF Section and proceed to step 2

2 CONSTANT CURRENT SOURCE

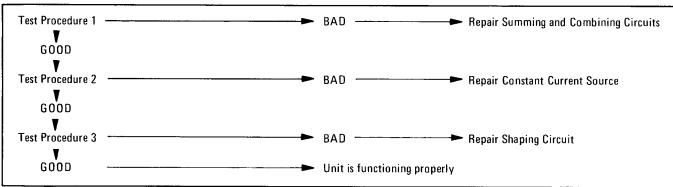
Q2 and associated circuitry supplies current to the shaping circuit.

TEST PROCEDURE 2

Attach the voltmeter to TP C (Q2 - e); it should read about +14V.

If the voltage was incorrect, check Q2 and associated circuitry. If the voltage was correct, proceed to step 3

3 SHAPING CIRCUIT


The shaping circuit converts any linear input into an exponential output. Q21 is always on and provides temperature compensation. Q1, Q3—Q9, Q14 and Q20 are used as diodes (collector-base junctions) and turn on in sequence, from right to left, as the input goes from positive to negative. The exponential output is fed to the 2 MHz VTO. At scan times of 1 second or slower it is filtered by C5 on the Scan Time Switch Assembly A9; this filtering eliminates any low frequency components that might frequency modulate the 2 MHz VTO (and thus modulate the 47 MHz VTO) when narrow bandwidths and slow scan times are being used.

TEST PROCEDURE 3

Testing the shaping circuit consists of checking the transistors for proper diode action and checking the resistors for proper resistance.

NOTE

When repairs are required, the Adjustments specified in paragraph 5-37 should be performed.

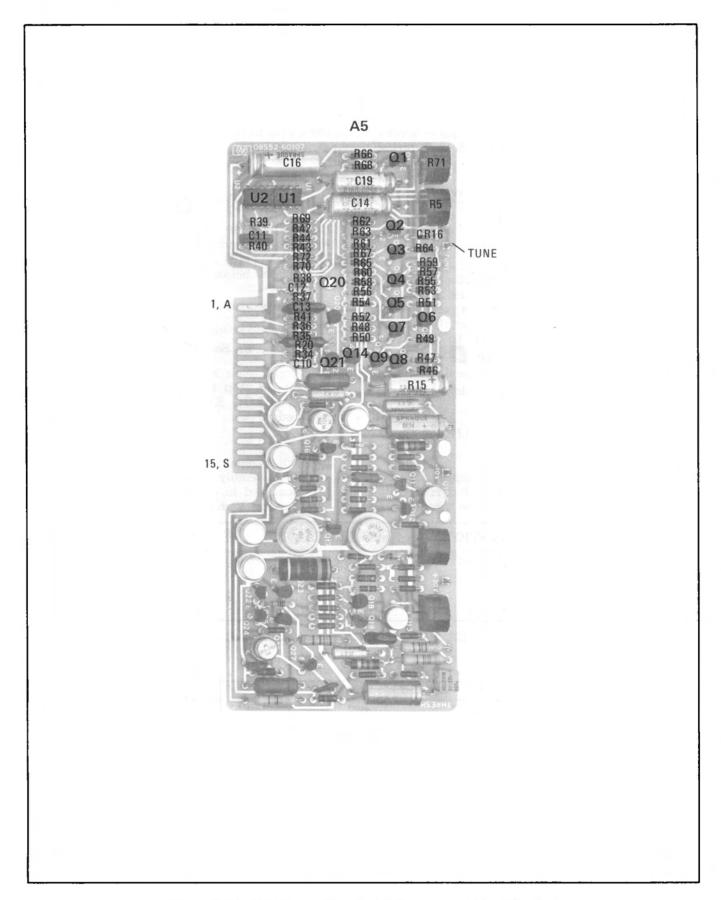
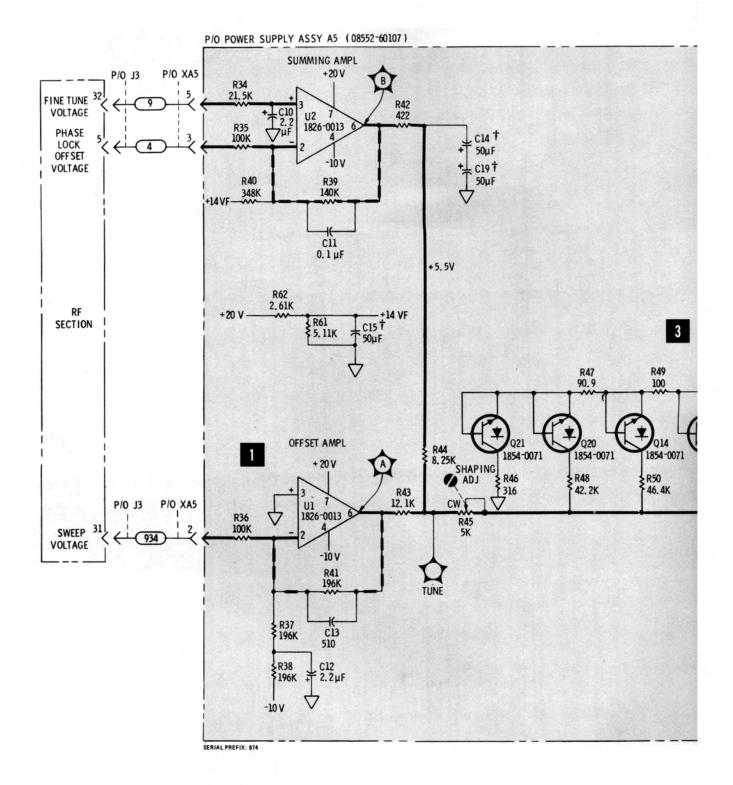
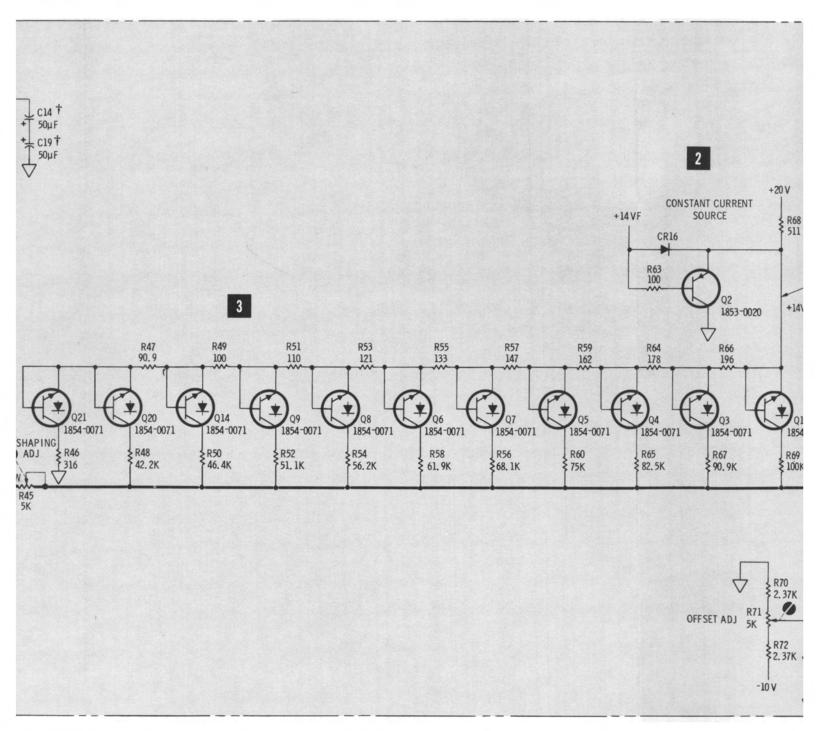




Figure 8-22. P/O Power Supply A5 Component Identification

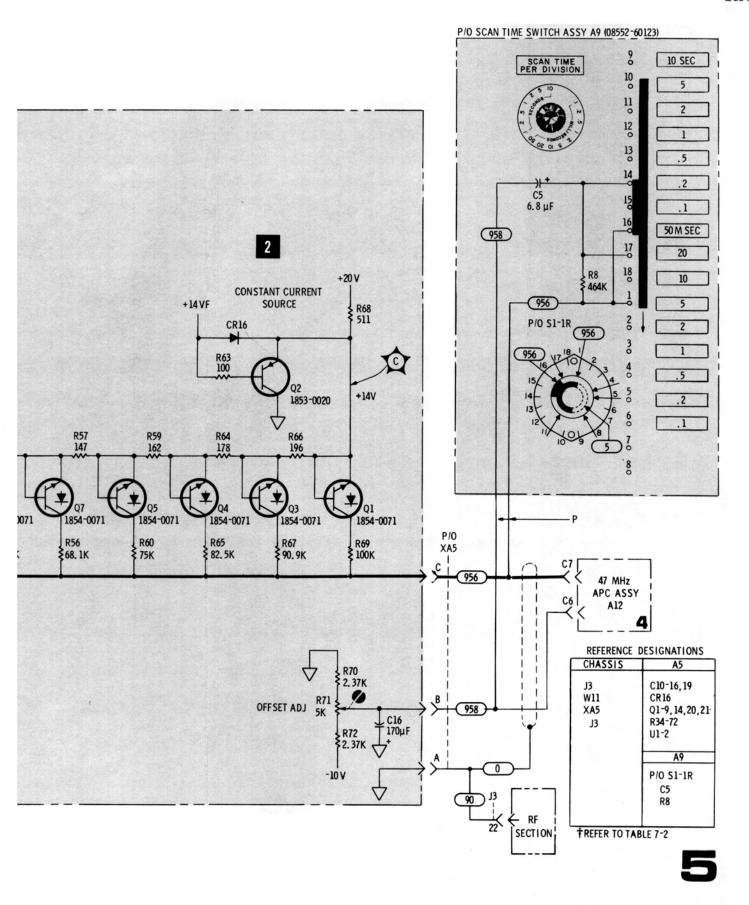


Figure 8-23. 2 MHz VTO Shaping Circuit

SERVICE SHEET 6

It is assumed that the 3 MHz input signal and the correct dc input voltages are present and that the output signal is missing or out of tolerance.

TROUBLESHOOTING PROCEDURE

When a malfunction has been isolated to the 3 MHz IF amplifier A2, the board should be removed and reinstalled using the extender board to provide access to components. Connect the CAL OUTPUT to the RF INPUT.

NOTE

Part of the 3 MHz IF amplifier circuit is shown on Service Sheet 7. It will be necessary to utilize both service sheets to verify proper operation of the amplifier after repairs are completed.

EQUIPMENT REQUIRED

VECTOR VOLTMETER													HP 8405A	
SERVICE KIT]	HP 11592A	

CONTROL SETTINGS

Unless otherwise specified in individual tests.

INPUT ATTENUATION	 		 10 dB
SCAN WIDTH PER DIVISION	 		 20 kHz
LOG REF LEVEL	 		 -10 dBm
SCAN WIDTH			
LOG·LINEAR			
FREQUENCY	 		 30 MHz

3 MHz AMPLIFIER ASSEMBLY (General)

The 3 MHz amplifier assembly consists of a bandpass filter, the amplitude calibration amplifier, the 30, 40, 50 dB step amplifier, a variable 0 to 12 dB amplifier, and an emitter follower output stage. The 0 to 12 dB amplifier and the emitter follower output stage are shown on Service Sheet 7.

3 MHz BANDPASS FILTER

The 3 MHz bandpass filter is a two-section adjustable filter which is adjusted to provide a bandpass of 300 kHz centered at 3 MHz.

TEST PROCEDURE

Connect the HP 8405A to TP A (Q1-b) and tune the analyzer for maximum signal. Meter should indicate approximately 6.0 mV rms. If the signal level is correct proceed to step 2. If the signal is low or missing, check the bandpass filter and R1.

NOTE

If the bandpass filter circuit required repairs the adjustment procedure specified in paragraph 5-32 of Section V should be performed.

A5, A9
2 MHz VTO Shaping Circuit
SERVICE SHEET 5

SERVICE SHEET 6 (cont'd)

2 AMPLITUDE CALIBRATION AMPLIFIER

The gain of the amplitude calibration amplifier, Q1, Q2, and Q3 is controlled by a variable capacitive voltage divider. The variable capacitive elements are varactors which are controlled by a dc level from the RF Section front panel screwdriver adjustment. This circuit is adjusted during the analyzer alignment procedure to compensate for overall gain requirements and to provide absolute amplitude calibration of the displayed signal. Circuit gain is nominally 10 dB and is adjustable by approximately ± 4 dB.

TEST PROCEDURE 2

Connect the HP 8405A to TP 1 (Q3-c) and tune analyzer for maximum signal. Meter reading is typically 30 mV rms. If this level is present turn the AMPL CAL adjustment to verify proper operation, return control setting to the level observed first, and proceed to step $\fbox{3}$. If signal is missing or level is not as specified, check Q1/Q2/Q3 and associated components.

3 30, 40, 50 dB STEP AMPLIFIER AND CONTROL CIRCUITS

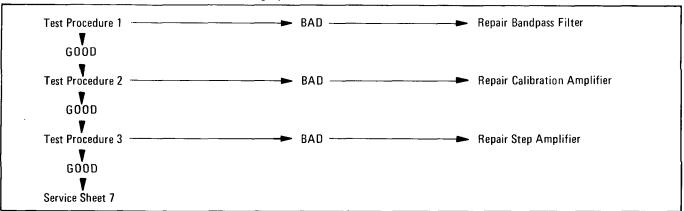
Q4, Q5 and Q6 form a feedback amplifier whose gain is controlled by the feedback divider circuits in the emitter circuit of Q4. These circuits are

controlled by the LOG REF LEVEL switch. When all of the diodes (CR1-6) are reverse biased, the amplifier's gain is unity. When the 30 dB divider is switched into the feedback path, the amplifier's gain is 10 dB; when the 40 dB divider is activated, the gain is 20 dB and when the 50 dB divider is activated, the gain is 30 dB. R21, R24 and R27 are adjusted to calibrate the amplifier's gain steps.

TEST PROCEDURE 3

Connect the HP 8405A to TP2 and tune the analyzer for maximum signal. Rotate the INPUT ATTENUATION and LOG REF LEVEL controls as indicated below and observe meter readings.

Signal levels shown are typical.


If correct levels are observed proceed to step on Service Sheet 7.

If correct levels are not obtained check the 30, 40, 50 dB step amplifier, feedback divider networks or LOG REF LEVEL switch assembly as required.

NOTE

When repairs are required to the 3 MHz IF assembly the tests and adjustments specified in paragraphs 5-32 and 5-36 of Section V should be performed.

INPUT ATTENUATION	LOG REF LEVEL*	TP 2
0 dB	-30 dBm	-15 dBm
10 dB	-30 dBm	-15 dBm
20 dB	-30 dBm	-15 dBm
30 dB	-30 dBm	-15 dBm

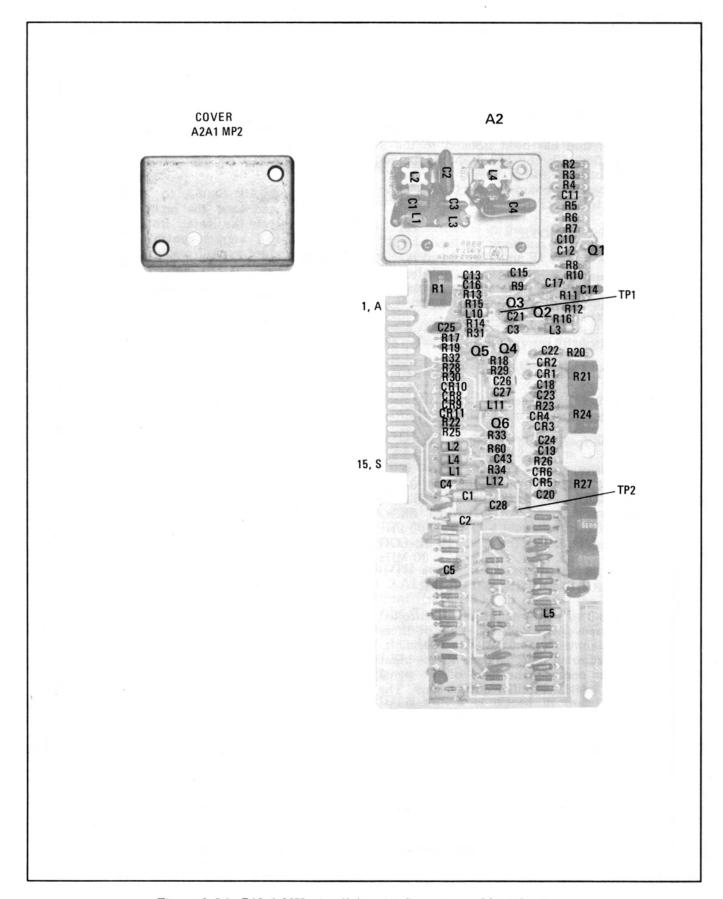
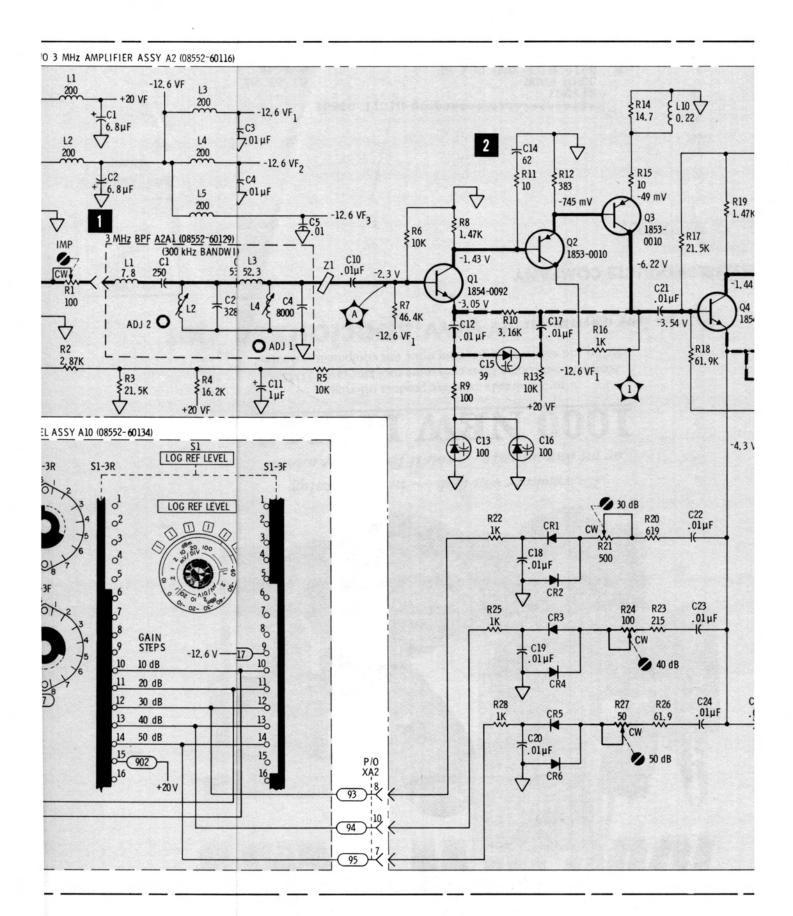



Figure 8-24. P/O 3 MHz Amplifier A2 Component Identification

← 924

84

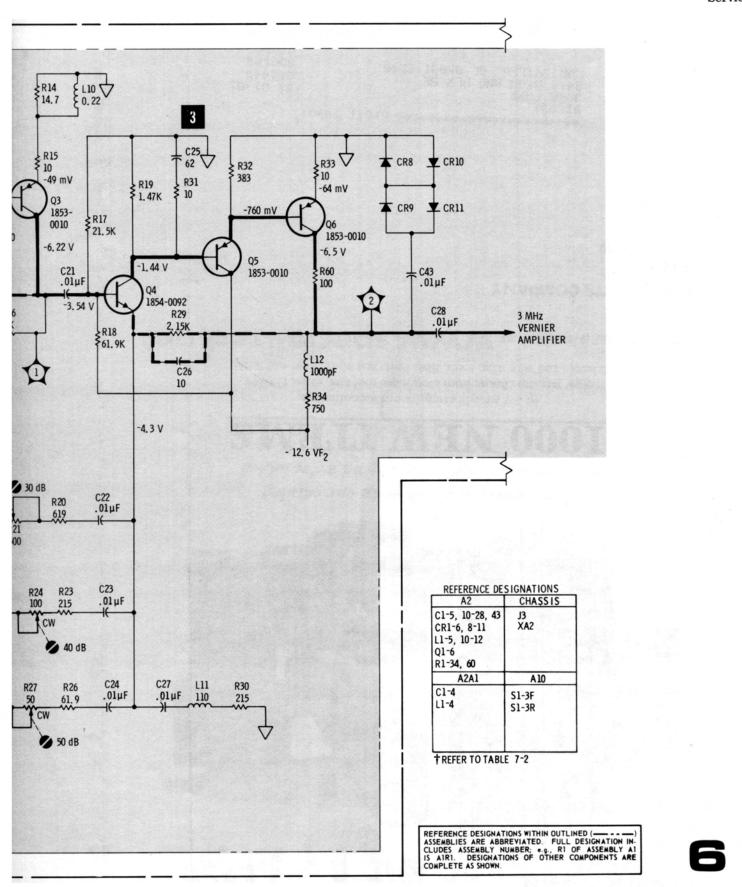


Figure 8-25. 3 MHz Amplifier (1 of 2)

SERVICE SHEET 7

It is assumed that the 3 MHz input signal and the circuit dc input voltages are present and that the output signal is missing or out of tolerance.

TROUBLESHOOTING

When a malfunction has been isolated to the 3 MHz IF amplifier A2, the board should be removed and reinstalled using the extender board to provide access to components. Connect the CAL OUTPUT to the RF INPUT.

NOTE

Part of the 3 MHz IF amplifier circuit is shown on Service Sheet 6. It will be necessary to utilize both service sheets to verify proper operation of the amplifier after repairs are completed.

EQUIPMENT REQUIRED

VECTOR	VOLTMETER	HP 8405A
SERVICE	KIT	HP 11592A

CONTROL SETTINGS

Unless otherwise specified in individual tests.

INPUT ATTENUATION	. 0 dB
SCAN WIDTH PER DIVISION	20 kHz
LOG REF LEVEL	10 dBm
SCAN WIDTH	ZERO
BANDWIDTH 3	300 kHz
LOG·LINEAR 10 d	ib Log
FREQUENCY	30 MHz

1 12 dB VARIABLE GAIN AMPLIFIER

The gain of the 0 to 12 dB amplifier is controlled by two varactor voltage dividers. One of these voltage dividers controls the level of the degenerative feedback from the output stage to the input stage; the other controls the level of the signal applied to the 3 MHz amplifier output stage. The LOG REF LEVEL·LINEAR SENSITIVITY vernier control, R12, on the front panel controls the gain of the variable gain amplifier. R12 is calibrated by adjustments located on the 3 MHz IF amplifier assembly. R44 calibrates the 12 dB maximum and R51 calibrates the 0 dB minimum.

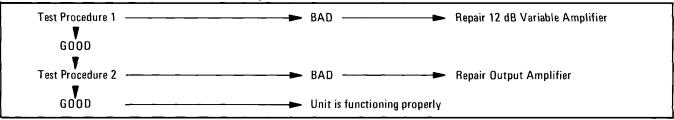
TEST PROCEDURE

Connect the HP 8405A to TP B (junction of C40/C41) and tune the analyzer for maximum signal level on the meter. Rotating the LINEAR SENSITIVITY vernier control to both extremes should produce typical readings of 30 mV rms to 130 mV rms. If the meter readings are correct proceed to step 2.

If the meter readings are not correct, repair the variable gain amplifier and repeat the test.

3 MHz IF AMPLIFIER OUTPUT CIRCUIT

The 3 MHz IF amplifier output circuit consists of an emitter follower. The purpose of this stage is to provide isolation between the variable gain IF amplifier and the LC Filter assembly.


TEST PROCEDURE

Connect the HP 8405A to TP 4 and tune the analyzer for maximum signal level on the meter. Typical reading is 30 mV rms with LOG/LIN vernier CCW.

If the meter reading is incorrect check Q10 and associated components.

NOTE

When repairs are required, the tests specified in paragraph 5-36 of Section V should be performed.

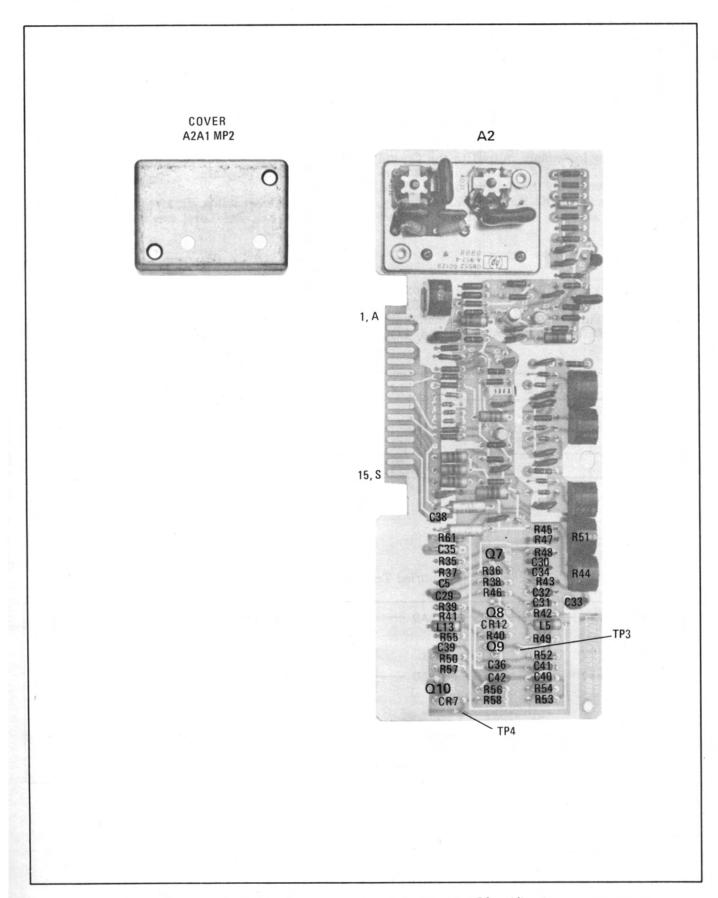
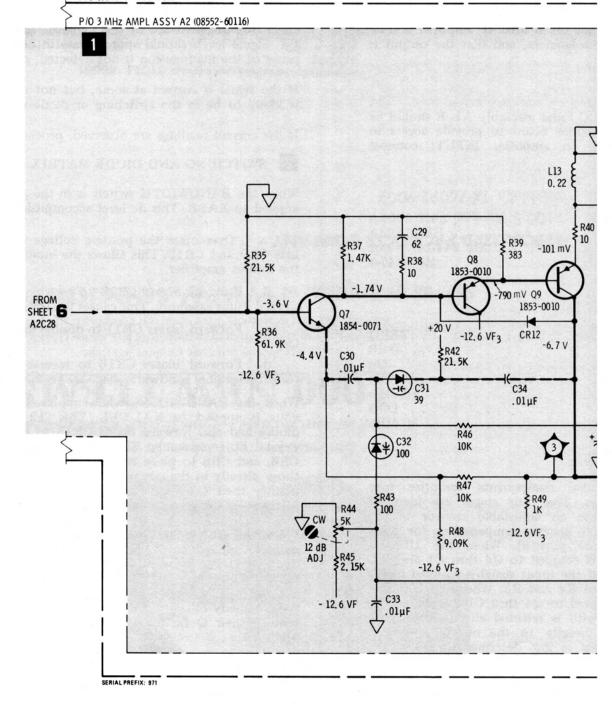
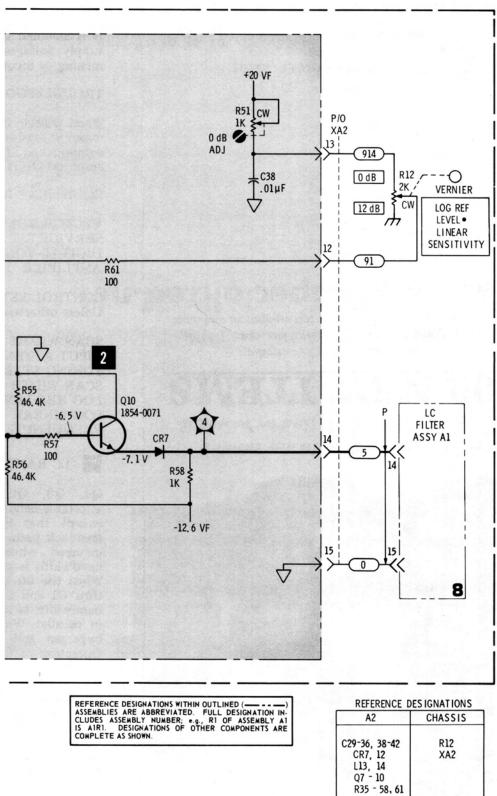




Figure 8-26. P/O 3 MHz Amplifier A2 Component Identification

REFERENCE DESIGNATIONS WITHIN OUTLINED (— ASSEMBLIES ARE ABBREVIATED. FULL DESIGN CLUDES ASSEMBLY NUMBER; e.g., R1 OF ASS IS AIR1. DESIGNATIONS OF OTHER COMPON COMPLETE AS SHOWN.

A2	CHASSIS
C29-36, 38-42 CR7, 12 L13, 14 Q7 - 10 R35 - 58, 61	R12 XA2
TREFER TO TABLE	7-2

SERVICE SHEET 8

It is assumed that the 3 MHz signal from the 3 MHz IF amplifier and dc supply voltages are present and within tolerances, and that the output is missing or incorrect.

TROUBLESHOOTING PROCEDURE

When trouble has been isolated to the LC Filter assembly A1, it should be removed and reinstalled using the extender board to provide access to components. Connect CAL OUTPUT to amplifier INPUT; connect amplifier OUTPUT to RF INPUT.

EQUIPMENT REQUIRED

VECTOR VOLTMETER												HP 8405A
SERVICE KIT												. HP 11592A
DIGITAL VOLTMETER	.`									HF	,	3440A/3443A
AMPLIFIER												HP 8447A

CONTROL SETTINGS

Unless otherwise specified in individual tests.

SCAN WIDTH ZERO
INPUT ATTENUATION
TUNING STABILIZER On
SCAN WIDTH PER DIVISION 20 kHz
LOG REF LEVEL10 dBm
LOG·LINEAR LOG
FREQUENCY 30 MHz

LC BANDWIDTH FILTER STAGES

Q4, Q3, Q2 and Q1 with associated components comprise four selectable-bandwidth, unity gain stages. The four stages are identical except that the fourth stage (Q1) has an adjustable resistor in the feedback path. This resistor is adjusted to provide compensation for losses incurred when narrow bandwidths are selected. When the 10 kHz bandwidth is selected the input signal is coupled to Q4 thru C1 and R4. When the $30~\mathrm{kHz}$ bandwidth is selected the input signal is coupled to $\mathrm{Q4}$ thru C1 and the parallel combination of R4 and R3. When the 100 kHz bandwidth is selected the signal is coupled to Q4 thru C1/R4 and C2/R5 in parallel. When the 300 kHz bandwidth is selected all four stages are bypassed and the signal is coupled directly to the output amplifier. Operation of Q3, Q2 and Q1 is identical to that described for Q4.

TEST PROCEDURE

With a 30 MHz, -10 dBm signal applied to the analyzer RF INPUT, connect the HP 8405A to TP 1, Q1 emitter. Tune the analyzer for maximum with the BANDWIDTH switch in the 10 kHz position. Typical meter reading is 300 mV rms.

Rotate the BANDWIDTH switch to the 30, 100 and 300 kHz positions. The meter reading should be approximately the same for bandwidths of 10, 30, and 100 kHz, and drop to approximately 0 volt in the 300 kHz BANDWIDTH position.

If the signal is not present at any of the BANDWIDTH settings the trouble is likely to be in one of the four stages. To isolate to a defective stage

SERVICE SHEET 8 (cont'd)

check for the presence of the signal at the emitter of Q2, then Q3, then Q4. Signal levels should approximate those specified for Q1 emitter. If the cause of the malfunction is not detected, proceed to step 2

If the signal is correct at some, but not all, bandwidth selections, trouble is likely to be in the switching or diode matrix. Proceed to step 2

If the correct readings are observed, proceed to step 3

2 SWITCHING AND DIODE MATRIX

When the BANDWIDTH switch is in the 300 kHz position, -12.6 volts are applied to XA1-8. This dc level accomplishes the following:

- a. Overcomes the positive voltage applied through R42 to forward bias CR9 and CR12. This allows the input signal to be coupled directly to the output amplifier.
- b. Forward biases CR13 to provide a dc level to the diodes in the Crystal Filter assembly. This causes the Crystal Filter circuits to be bypassed.
- c. Forward biases CR11 to disable the first selectable bandwidth stage Q4.
- d. Forward biases CR16 to reverse bias CR17 and disconnect the fourth selectable bandwidth stage Q1 from the output stage.

When the BANDWIDTH switch is placed in the 100 kHz position, -12.6 volts is applied to XA1-10/L. This -12.6 volts is applied to LC Filter diodes and also forward biases CR15 to operate the bypass circuit in the Crystal Filter assembly. The diode bias voltage forward biases CR2, CR4, CR6, and CR8 to place resistors R5, R14, R23, and R33 in parallel with those already in the signal path. This effectively swamps the LC circuits to modify their Q factor and provide a bandpass of 100 kHz centered at 3 MHz.

When the BANDWIDTH switch is placed in the 30 kHz position, -12.6 volts is applied to XA1-12/N. This -12.6 volts is applied to LC Filter diodes and also forward biases CR14 to operate the bypass circuit in the Crystal Filter assembly. The diode bias voltage forward biases CR1, CR3, CR5 and CR7 to place resistances R3, R11, R20, and R31 in parallel with those already in the signal path. This effectively swamps the LC circuits to modify their Q factors and provide a bandpass of 30 kHz centered at 3 MHz.

When the BANDWIDTH switch is placed in the 10 kHz position the switching diodes are not used for signal steering and the LC filter provides a 10 kHz bandpass centered at 3 MHz.

TEST PROCEDURE

Use the HP 3440A/3443A to check for voltages shown in the chart for XA1 contacts on Service Sheet 9, step 2

If the correct readings are obtained at XA1 pins 6, 12, 10, and 8, check the diode matrix. If correct readings are not obtained, check the BANDWIDTH switch, SCAN WIDTH switch, CR1, CR2, CR3, wiring, etc.

When correct readings are obtained, recheck step 1 then proceed to step 3

A2
3 MHz Amplifier (2 of 2)
SERVICE SHEET 7

SERVICE SHEET 8 (cont'd)

3 0 dB, 10 dB, 20 dB STEP AMPLIFIER

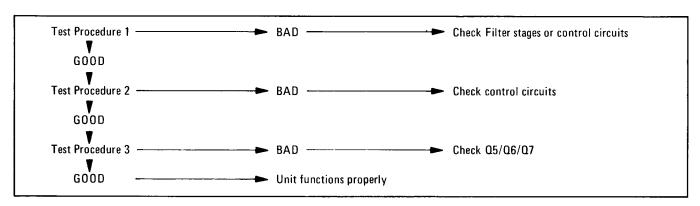
Q5, Q6, Q7 and associated components comprise a feedback amplifier which provides unity gain, 10 dB of gain or 20 dB of gain depending on the position of the LOG REF LEVEL control. When operated as a unity gain amplifier it provides isolation and a low impedance output to the Crystal Filter assembly. Gain of the amplifier is controlled by networks in the emitter of Q5. When switched on by the LOG REF LEVEL assembly, these circuits control the amplifier's negative feedback.

TEST PROCEDURE 3

With a 30 MHz, -10 dBm signal applied to the analyzer RF INPUT, connect the HP 8405A to TP 6 (Q7-e). Tune the analyzer for maximum, rotate the INPUT ATTENUATION and LOG

REF LEVEL controls as indicated below and observe meter readings. Signal levels shown are typical.

If signal levels are correct, the step amplifier and diode-switched networks are functioning properly.


If signal levels are incorrect, check Q5/Q6/Q7 and associated components.

If the diode enabling dc levels are not present, check the Log Ref Level assembly, Service Sheet 9.

NOTE

When repairs are required the tests specified in paragraphs 5-33 and 5-36 of Section V should be performed.

INPUT ATTENUATION	LOG REF LEVEL*	TP6						
0 dB 10 dB 20 dB	-10 dBm -10 dBm -10 dBm	0 dBm 0 dBm 0 dBm						
*Read at lit index lamp								

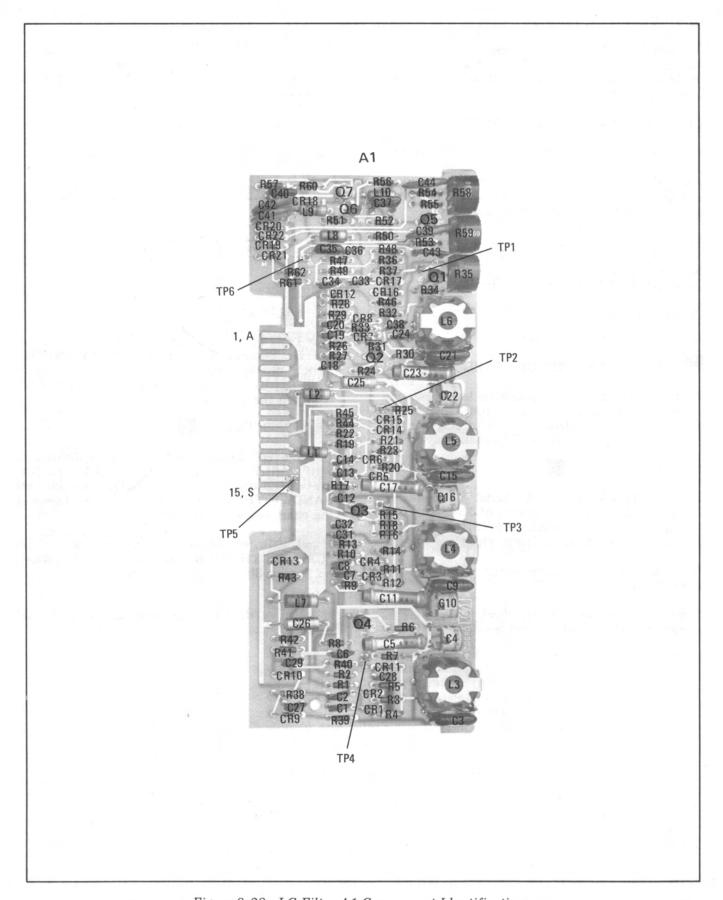
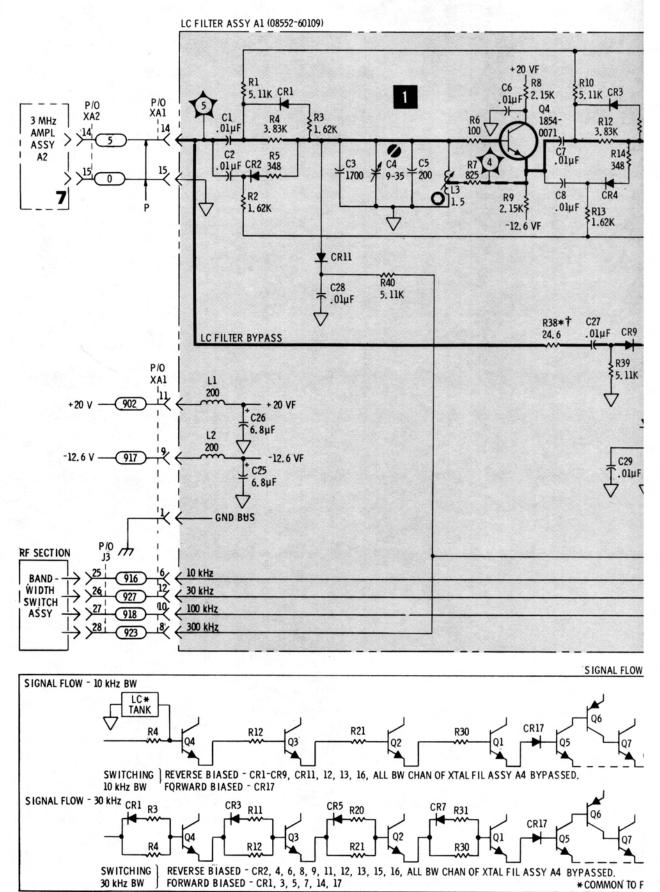
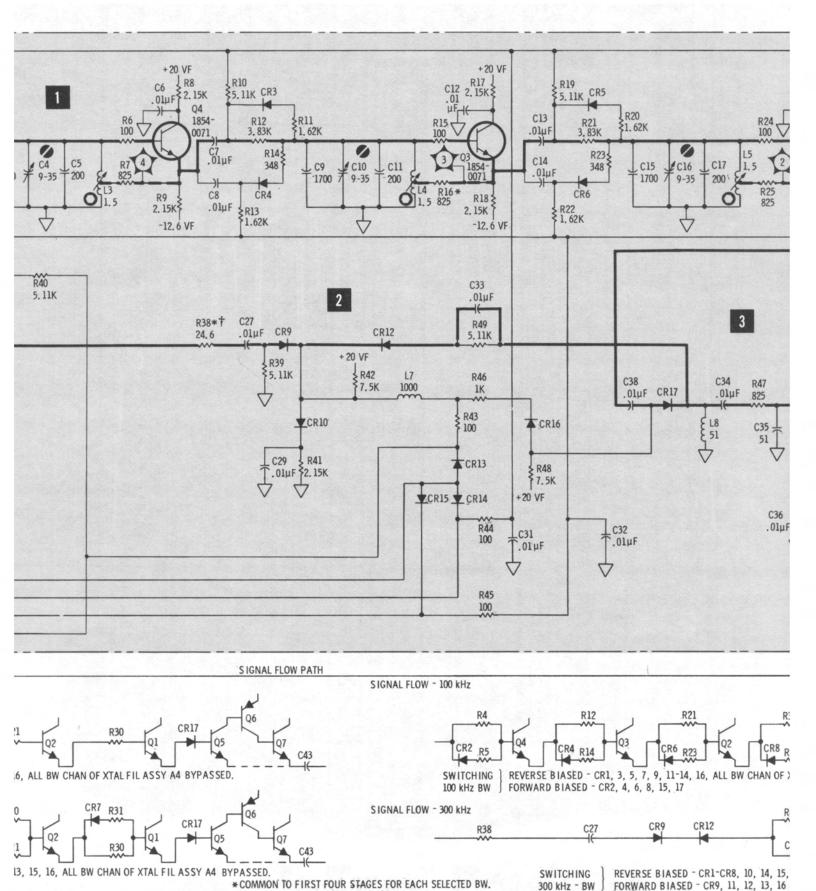




Figure 8-28. LC Filter A1 Component Identification

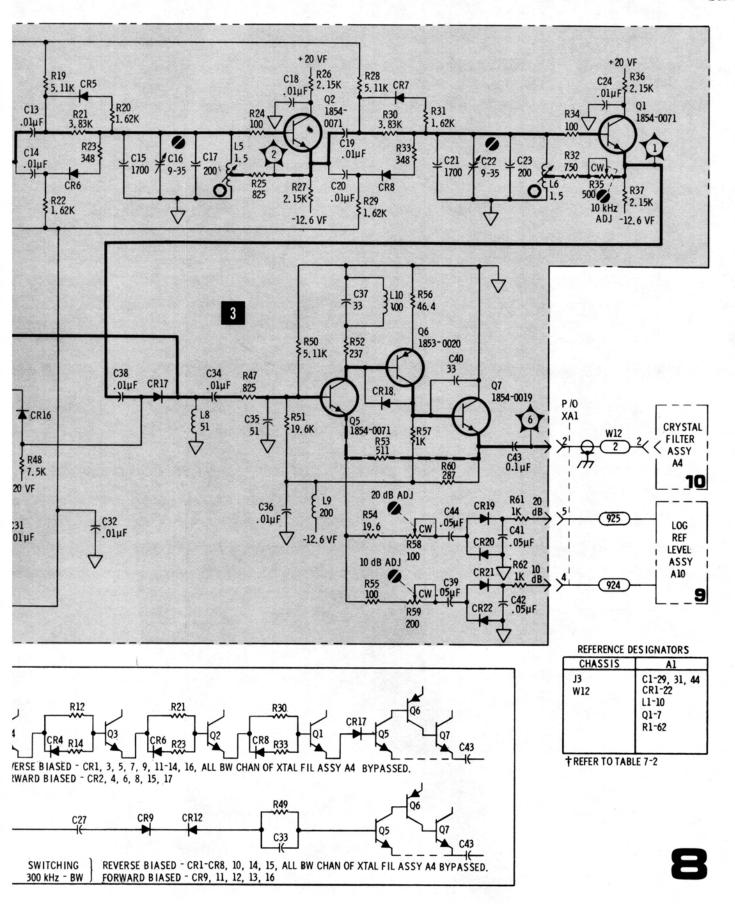


Figure 8-29. LC Bandwidth Filter

SERVICE SHEET 9

Normally, malfunctions which occur in the switching circuits will be detected and corrected while troubleshooting circuits shown on Service Sheets 6 and 8.

TROUBLESHOOTING PROCEDURE

Since these switches function for voltage switching only, all components and wiring can be checked by monitoring voltage levels at the input connector to the 3 MHz IF amplifier, LC Filter assembly, and the Crystal Filter assembly.

EQUIPMENT REQUIRED

CONTROL SETTINGS

As required to check dc levels

This portion of the log reference level assembly applies +20 volts or -12.6 volts to enable or disable switches to control the gain of stages in the 3 MHz IF amplifier and LC Filter assembly.

TEST PROCEDURE 1

Use the HP 3440A/3443A Digital Voltmeter to verify switching voltages at pins of XA1 and XA2 for operation of LOG REF LEVEL switch. The voltages shown in the adjacent chart are typical.

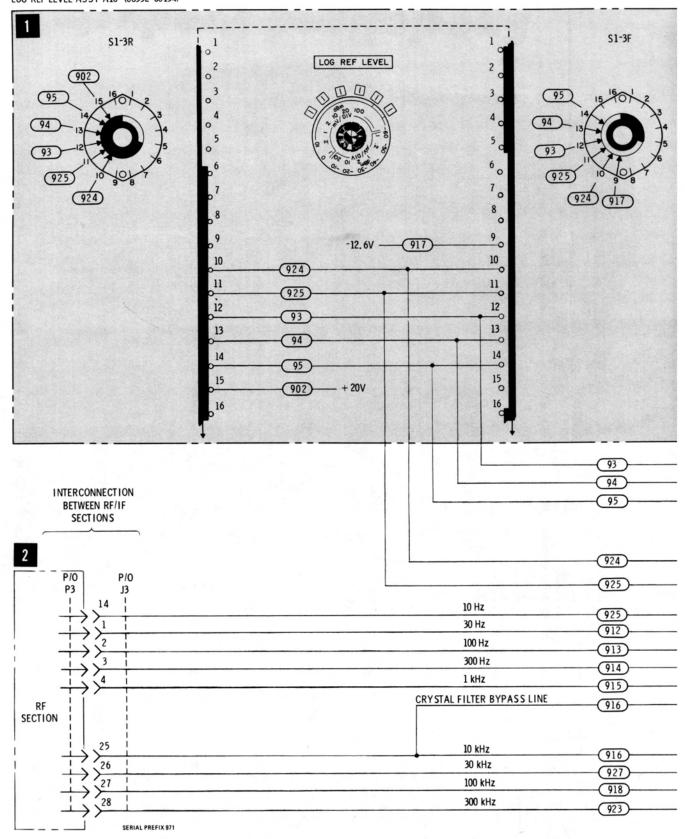
If voltages are correct, the switch section is functioning properly.

If voltages are not correct, check voltage inputs to switch, switch contacts and wiring.

Pin of		Log Ref L	evel Switc	h Settings	(dBm) *					
XA2	-10	-20	-30	-40	-50	-60				
8	+20	+20	+20	-12.6	-12.6	-12.6				
10	+20	+20	+20	+20	- 12.6	-12.6				
7	+20	+20	+20	+20	+20	-12.6				
Pin of XA1										
4	+20	-12.6	-12.6	-12.6	-12.6	-12.6				
5	+20	+20	-12.6	-12.6	-12.6	-12.6				
	*Read at left index lamp.									

2 BANDWIDTH CONTROL

Pins 1-4, 14, and 25-28 of J3 make contact with the RF Section. The RF Section BANDWIDTH switch provides positive or negative voltages to add, bypass or remove bandwidth shaping elements in the signal path.


TEST PROCEDURE 2

Use the HP 3440A/3443A Digital Voltmeter to verify switching voltages at pins of XA1 and XA4 for operation of SCAN WIDTH switch and BANDWIDTH switches. The voltages shown in the chart below are typical.

If all voltages are correct the portions of the SCAN WIDTH and BANDWIDTH switches shown on Service Sheet 9 are functioning properly.

If negative dc levels are missing, check the RF Section.

Pin of		Bandwidth Switch Settings (kHz)											
XA1	.01/.05	.03/.05	0.1	0.3	1	3	10	30	100	300			
8* 8** 10* 10** 12* 12** 6* 6**	+ 5 -10 +20 +20 +20 +20 + 5 - 9	+ 5 - 10 +20 +20 +20 +20 + 5 - 9	+ 5 - 10 +20 +20 +20 +20 + 5 - 9	+5 - 10 +20 +20 +20 +20 + 5 - 9	+ 5 -10 +20 +20 +20 +20 + 5 - 9	+ 5 - 10 +20 +20 +20 +20 + 5 - 9	+ 5 - 10 +20 +20 +20 +20 - 10 - 9	+ 5 - 10 +20 +20 - 10 0 - 10	+ 5 - 10 - 10 - 3 +20 +20 - 10 - 9	- 10 - 10 +20 +20 +20 +20 - 10			
Pin of XA4													
13* 13** 11* 11** 10** 8* 8** 7* 7** 6* 6**	+ 5 - 9 +20 +20 +20 +20 +20 +10 +1.2 - 10 +0.5	+ 5 - 9 +20 +20 +20 +20 +20 -10 +1.2 +20 +20	+ 5 - 9 +20 +20 +20 +20 - 10 +0.9 +20 +20 +20 +20 +20	+ 5 - 9 +20 +20 - 10 +0.8 +20 +20 +20 +20 +20 +20	+ 5 - 9 +20 +20 +20 +20 +20 +20 +20 +20	+ 5 - 9 +20 +20 +20 +20 +20 +20 +20 +20	- 9 - 9 +20 +20 +20 +20 +20 +20 +20 +20 +20 +20	- 9 - 9 +20 +20 +20 +20 +20 +20 +20 +20	9 +20 +20 +20 +20 +20 +20 +20 +20 +20 +20	- 9 - 9 +20 +20 +20 +20 +20 +20 +20 +20			
	*2	ZERO or PER	DIVISION m	ode	**P	reset mode							

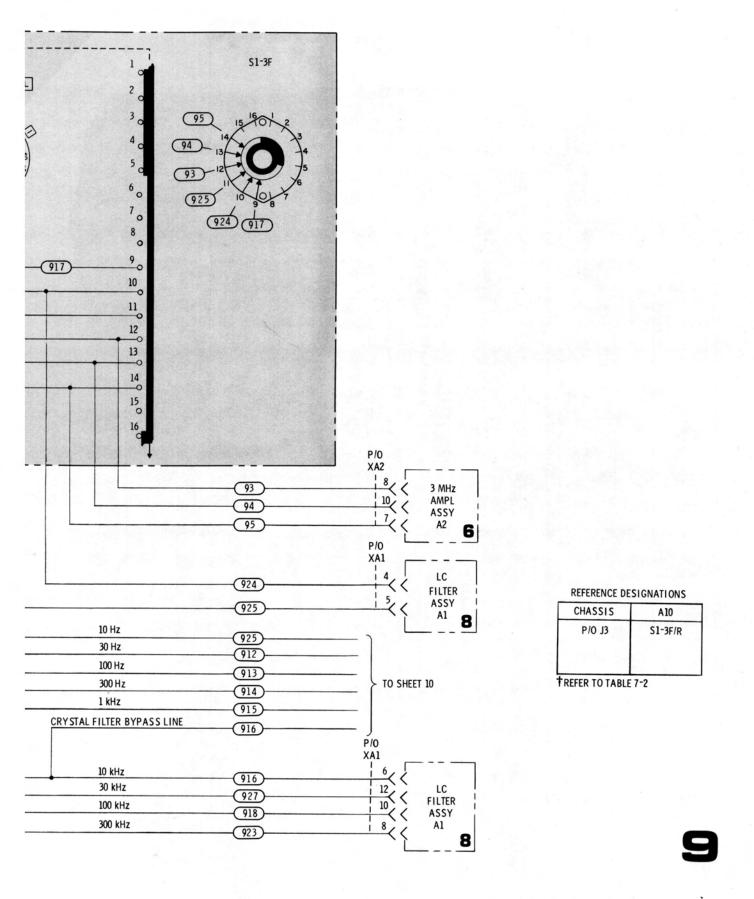


Figure 8-30. Amplifier/Filter Control Circuits

SERVICE SHEET 10

It is assumed that the 3 MHz IF signal from the LC Filter and the dc operating voltages are present and correct and that the 3 MHz output is missing or out of tolerance.

TROUBLESHOOTING PROCEDURE

When trouble has been isolated to the 3 MHz Crystal Filter assembly, the assembly should be removed and reinstalled using the extender board to provide access to components. Test procedures follow descriptions of individual circuits.

NOTE

Some of the Crystal Filter circuits are shown on Service Sheet 11.

EQUIPMENT REQUIRED

VECTOR VOLTMETER	 HP 8405A
CONTROL SETTINGS	
TAIDIIM AMMINII AMION	0.40

INPUT ATTENUATION												. 1	0 dB
BANDWIDTH													
LOG REF LEVEL												 30	dBm
SCAN WIDTH													
LOG·LINEAR													
FREQUENCY												30	MHz

1 SELECTABLE BANDWIDTH CRYSTAL FILTER STAGES

Filter stages Y1-3 (and Y4 and 5 on Service Sheet 11) are unity gain, selectable bandwidth crystal filters; their basic bandwidth is 3 kHz. Bandwidth can be narrowed in steps (1, 0.3, 0.1, .03 and .01 kHz) by enabling resistive networks that are in parallel with each stage's output.

All five stages are basically the same: Q1, Q2 and Q4 comprise a unity-gain feedback amplifier with high input impedance at 3 MHz. Q3 and C18 null out the parasitic (holder) capacitance of Y1. L11, L12 and C19 form a tank that tunes out stray capacitance to give Y1 a pure resistive load at 3 MHz. The selectable resistive networks at Y1's output control the filter's bandwidth, by decreasing Y1's output load, without drastically effecting the amplitude of the 3 MHz signal. C30 and 43 (and C57 and 70 on Service Sheet 11) tune the center frequency of crystal stages Y2-5 to equal the center frequency of the first stage.

SERVICE SHEET 10 (cont'd)

TEST PROCEDURE 1

With CAL OUTPUT connected to RF INPUT, measure the signal level at TP 10 (on Service Sheet 11) at bandwidths of 1 kHz, 0.3 kHz, 0.1 kHz, .03 kHz, and .01 kHz with the HP 8405A. Readjust FINE TUNE for maximum signal during each measurement. Meter readings should be about 150 mV rms.

NOTE

FINE TUNE adjustment is very critical at narrow bandwidths and extreme care will be required to obtain correct measurements.

If the signal were correct at all bandwidths, proceed to step 3. If the signal were incorrect at some, but not all bandwidths, proceed to step 2.

If the signal were incorrect at all bandwidths, isolate the faulty stage by measuring the signal at TP6 and TP7 (and TP8 and TP9 on Service Sheet 11). Meter readings should be about the same as TP10.

2 DIODE SWITCHING AND BANDWIDTH CONTROL NETWORKS

There are five switching and bandwidth control networks, one for each of the five crystal filter

stages. When the analyzer is operated in the 3 kHz BANDWIDTH mode all of the switching diodes are reverse biased and the inherent characteristics of the filter plus the fixed output load determines the filter bandwidth. The bandwidth is decreased as resistive networks are switched in parallel with the output load of each crystal filter stage. For example, R68 and C54 are switched across the output of Y3 when the BANDWIDTH switch is placed in the 1 kHz position; CR25 is forward biased by -12.6 volts.

TEST PROCEDURE 2

Using the digital voltmeter, check the five control lines. There should be about -12.6 volts on the line selected by the BANDWIDTH switch and about +20 volts on the unselected lines.

If the voltages are incorrect, see Service Sheet 9.

If the voltages are correct, use step 2 and step to find the faulty stage and resistive network.

3 CRYSTAL FILTER BYPASS CIRCUIT

Described on Service Sheet 11.

NOTE

After repairing any of the circuits on the Crystal Filter Assembly, the assembly should be adjusted in accordance with Paragraph 5-34 of Section V.

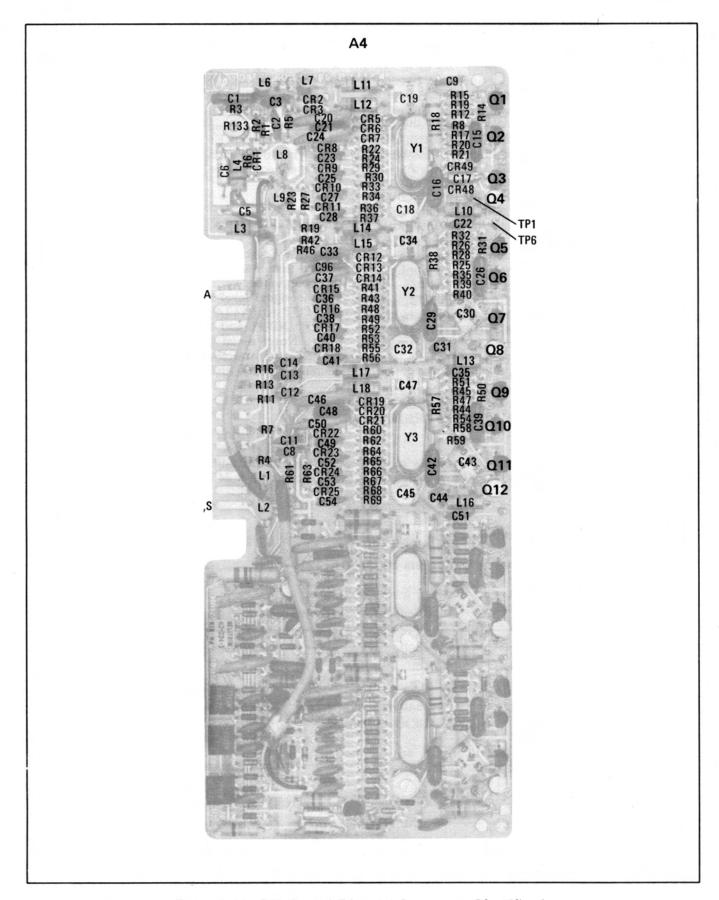
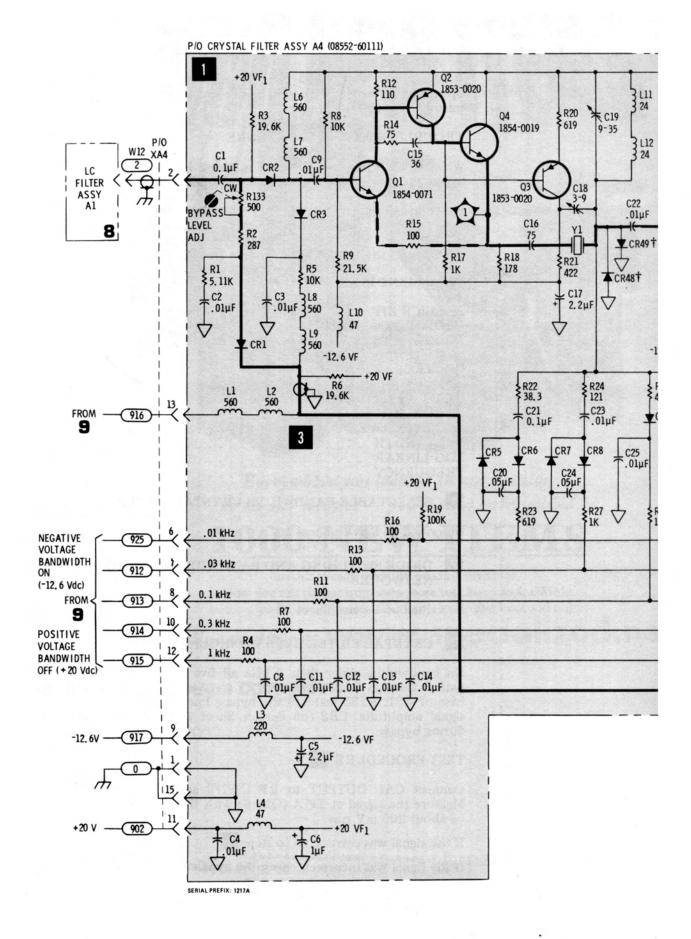
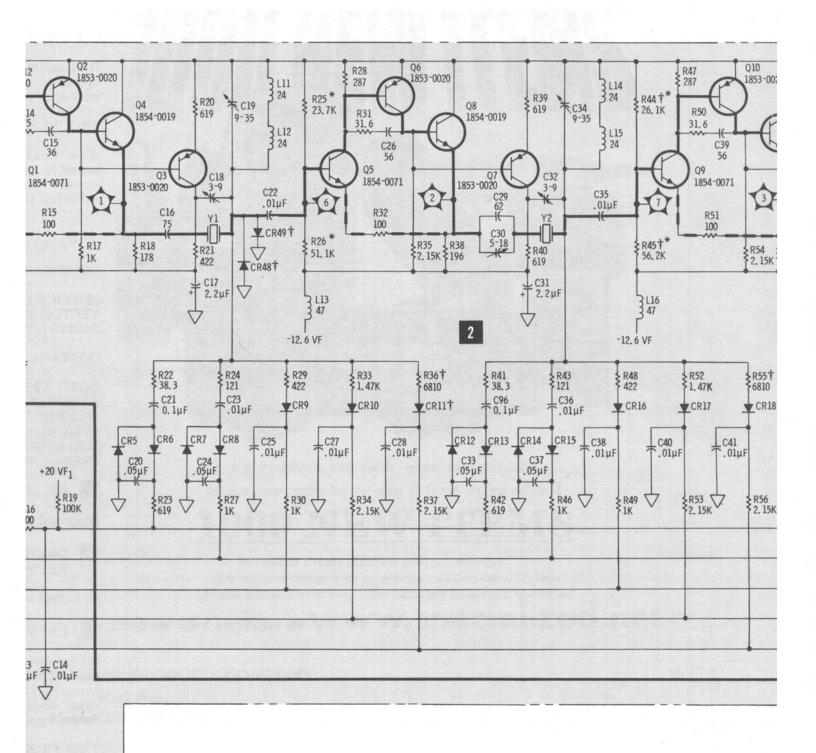
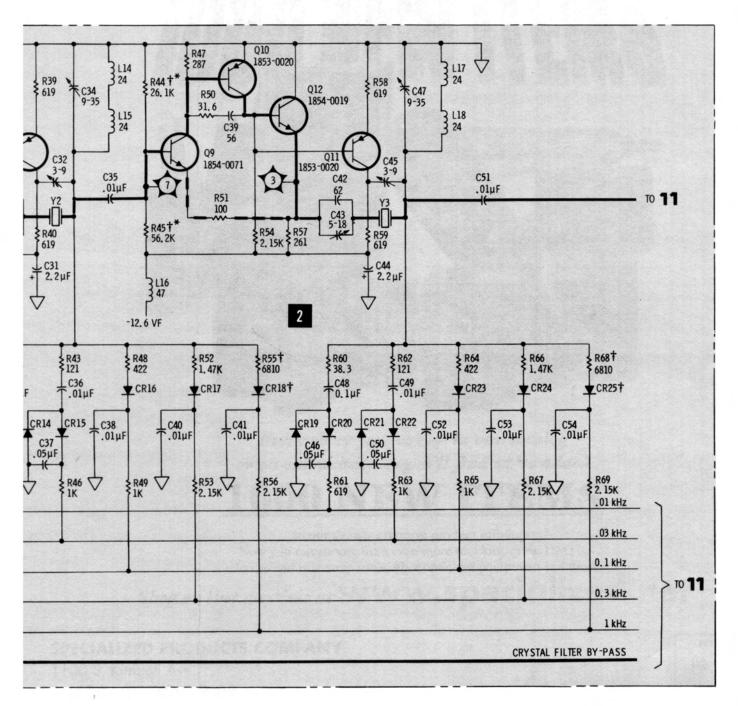





Figure 8-31. P/O Crystal Filter A4 Component Identification

REFERENCE DESIGNATIONS

A4 CHASSIS C1-6,8,9 11-54,96 CR1-3,5-25, 48,49 W12 P/O XA4	
11-54,96 CR1-3,5-25,	
L1-4, 6-18 Q1-12 R1-9, 11-69, 133 Y1-3	

10

Figure 8-32. Crystal Filter (1 of 2)

It is assumed that the 3 MHz IF signal from the LC Filter and the dc operating voltages are present and correct and that the 3 MHz output is missing or out of tolerance.

TROUBLESHOOTING PROCEDURE

When trouble has been isolated to the 3 MHz Crystal Filter assembly, the assembly should be removed and re-installed using the extender board to provide access to components. Test procedures follow descriptions of individual circuits.

NOTE

Some of the Crystal Filter circuits are shown on Service Sheet 10.

EQUIPMENT REQUIRED

SERVICE KIT													HP 11592A
VECTOR VOLTMETER													
DIGITAL VOLTMETER										Η	P	3	440A/3443A

CONTROL SETTINGS

INPUT ATTENUATION 0 dB
BANDWIDTH 3 kHz
LOG REF LEVEL
SCAN WIDTH ZERO
LOG·LINEAR
FREQUENCY 30 MHz

1 SELECTABLE BANDWIDTH CRYSTAL FILTER STAGES

Described on Service Sheet 10.

DIODE SWITCHING AND BANDWIDTH CONTROL NETWORKS

Described on Service Sheet 10.

3 CRYSTAL FILTER BYPASS CIRCUIT

On bandwidths wider than 3 kHz all five crystal filters are bypassed. The path is through R133, R2 and CR1 (on Service Sheet 10) and CR26 to the base of Q21. R133 matches the bypass line's signal amplitude to the filter's signal amplitude. CR2 (on Service Sheet 10) and CR38 isolate the filters during bypass.

TEST PROCEDURE 3

Connect CAL OUTPUT to RF INPUT and set BANDWIDTH to 3 kHz. Measure the signal at TP A (Q21-6) with the HP 8405A; signal level should be about 200 mV rms.

If the signal was correct, go to step 4

If the signal was incorrect, check the bypass circuit.

A4
Crystal Filter (1 of 2)
SERVICE SHEET 10

Service Model 8552B

SERVICE SHEET 11 (cont'd)

4 OUTPUT AMPLIFIER GAIN AND COMPEN-SATION CIRCUIT

The output amplifier compensates for any bandwidth-gain differences in the filter stages for bandwidths 0.3 kHz and below. Q23 isolates the last filter stage from the compensation amplifier, Q21, 22 and 24. The compensation amplifier is feedback controlled and has a basic gain of four. As the narrow bandwidth control networks are switched into the filters, a corresponding feedback control network is switched into the amplifier. The legs of the networks are adjustable and the amplitudes of the narrower bandwidths (0.3, 0.1, .03 and .01 kHz) are referenced to the 3 kHz amplitude.

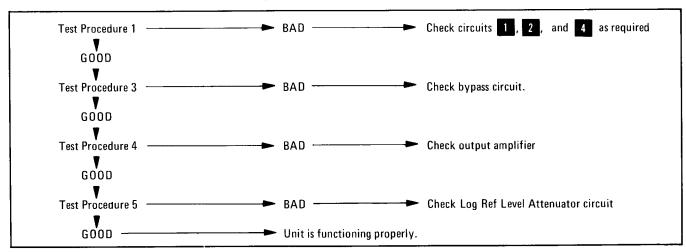
TEST PROCEDURE 4

With CAL OUTPUT connected to RF INPUT, connect the HP 8405A to TP B (XA4-14) and tune the analyzer for maximum with BANDWIDTH set to 3 kHz. Meter should read about 900 mV rms. Check the 0.3, 0.1, .03, and .01 kHz bandwidths; meter should read the same (peak signal with FINE TUNE at each bandwidth).

5 IF ATTENUATOR (P/O) LOG REFERENCE LEVEL ASSEMBLY A10

The portion of the Log Reference Level assembly shown on Service Sheet 11 is the IF Attenuator.

8552B IF signal gain, from the 50 MHz input to the Log Amplifier, is unity when LOG REF LEVEL is set to -10 dBm (read at left index light). When LOG REF LEVEL is rotated clockwise (-20 dBm, -30 dBm, etc.) 10 dB of IF amplification is added with each step (see Service Sheets 6 through 9). When LOG REF LEVEL is rotated counterclockwise (0 dBm, 10 dBm, etc.) 10 dB of attenuation is added with each step by the IF Attenuator.


TEST PROCEDURE 5

Place the Crystal Filter assembly back in the chassis and install the Lin/Log Amplifier Assembly A8 on the extender board. Use the HP 8405A to monitor the signal level at TP C (XA8-2). Attach CAL OUTPUT to 8447A INPUT and 8447A OUTPUT to RF INPUT and set LOG REF LEVEL to -10 dBm. Note signal level and rotate LOG REF LEVEL counterclockwise. Signal level should decrease 10 dB with each step.

NOTE

After repairing any of the circuits on the Crystal Filter Assembly, the assembly should be adjusted in accordance with paragraph 5-34 of Section V.

Simplified Test Procedure Tree

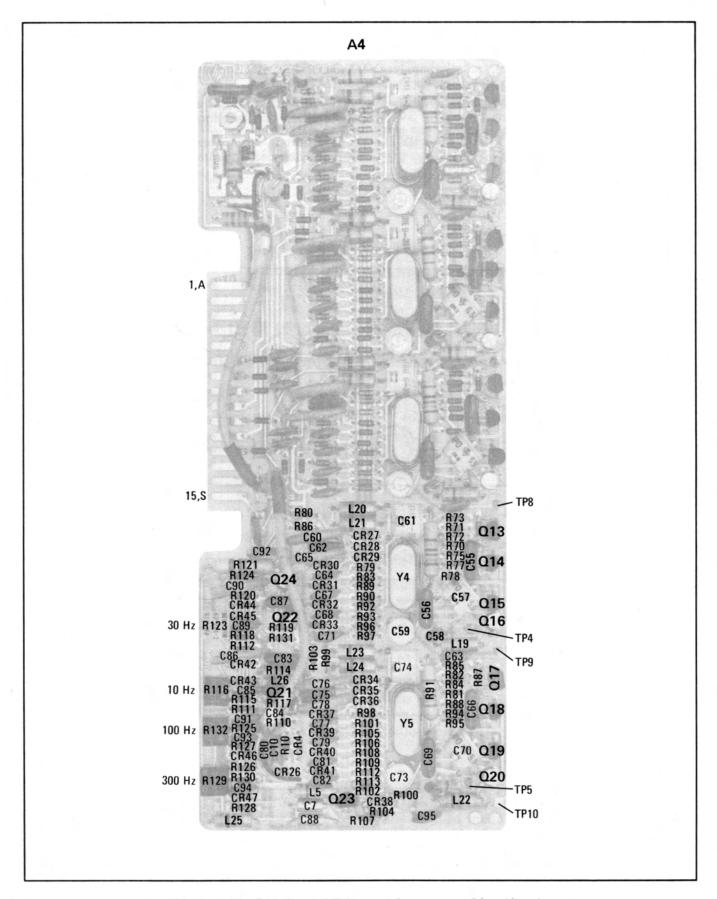
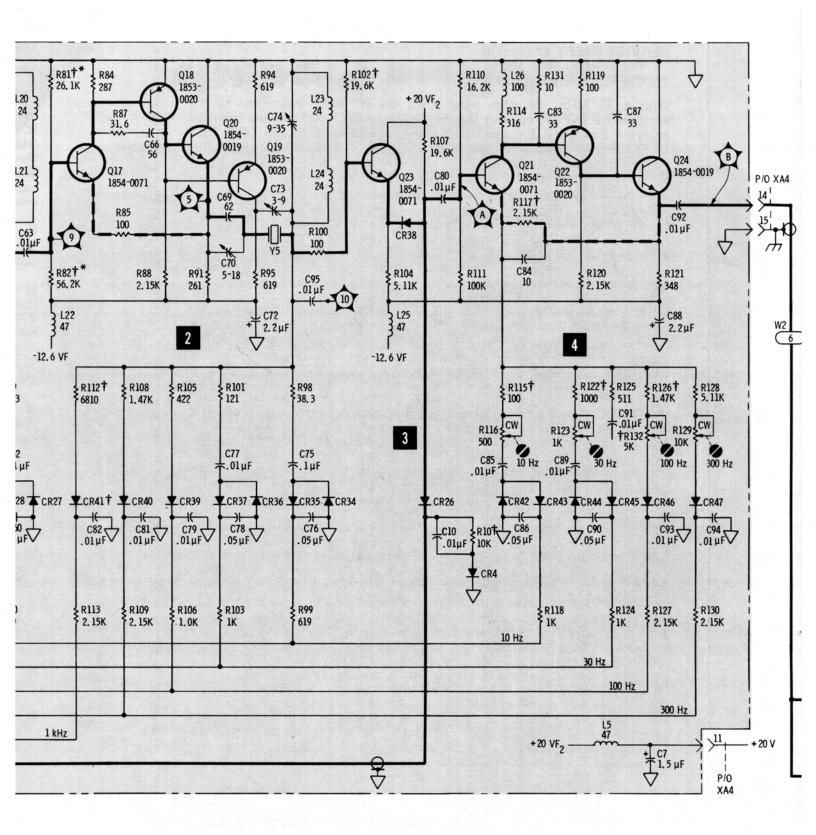



Figure 8-33. P/O Crystal Filter A4 Component Identification

It is assumed that the 3 MHz signal from the crystal filter and dc operating voltages are present and correct, and that the output signal is not present or is out of tolerance.

TROUBLESHOOTING PROCEDURE

When trouble has been isolated to the Log/Lin Amplifier assembly, A8, it should be removed from the chassis and re-installed on the extender board to provide access to components. After repairing the assembly the procedures specified in paragraphs 5-30 and 5-31 of Section V should be performed.

NOTE

Since parts of the circuit appear on Service Sheet 13, Service Sheets 12 and 13 should be used jointly in troubleshooting the assembly.

EQUIPMENT REQUIRED

SERVICE KIT														
VECTOR VOLTMETER											HP	84	405	A
SIGNAL GENERATOR											Η	\mathbf{P}	608	F

CONTROL SETTINGS

Unless otherwise specified in individual tests.

SCAN WIDTH ZEI	RO
INPUT ATTENUATION 0	dB
SCAN MODE I	
FREQUENCY 30 M	
BANDWIDTH 300 k	
SCAN TRIGGER AU'	ГО
LOG·LINEAR	ЭG

1

LIN/LOG AMPLIFIER AND CONTROL CIRCUITS (General)

This general discussion covers operation of circuits shown schematically on Service Sheets 12 and 13. The assembly is designed to provide one of two different types of video outputs. Most of the circuit elements are common to both modes of operation.

When the analyzer is operated in the LINEAR mode the Lin/Log amplifier provides a video output which varies in amplitude in direct proportion to the amplitude of of the input rf voltage. The CRT display is calibrated in terms of volts (mV or μ V).

When the analyzer is operated in the LOG mode the output video signal has a logarithmic relationship to the input rf signal. The CRT display is calibrated in terms of power (dBm).

2 EMITTER FOLLOWER INPUT STAGE Q24

Emitter follower Q24 provides a high impedance input which prevents loading the output of the crystal filter assembly and also provides isolation between the input and the first Lin/Log amplifier.

SERVICE SHEET 12 (cont'd)

TEST PROCEDURE 2

With a 30 MHz, -60 dBm signal from the HP 608F connected to the analyzer RF INPUT, connect the HP 8405A to TP A (Q24-e) and tune the analyzer frequency for maximum meter deflection with the LOG REF LEVEL control set to -60 dBm.

Typical meter reading is 608 mV rms. If correct reading is obtained, proceed to step 3.

If correct reading is not obtained, check Q24 and associated components. If Q24 and associated components check good and signal is still not present, check Q25 (see step 3).

3 LIN/LOG AMPLIFIERS IN LOG MODE

When the analyzer is operated in the LOG mode the Lin/Log amplifier has eight cascaded amplifier stages. The first seven amplifiers consist of a differential amplifier followed by an emitter follower. The output of the eighth differential amplifier is applied to the summing amplifier Q26 (see step 4 on Service Sheet 13).

Operation of the first seven cascaded amplifier stages is identical, so only the first stage will be described. The output of the differential amplifier is split and applied to the emitter follower and, at a much lower level, to the base of the output half of the differential amplifier in the following stage. A 100 ohm resistor (R5) from the low level signal path to ground prevents parasitic oscillation. The emitter follower output of each stage provides the input signal to the following stage and signal currents to the summing bus.

The logarithmic relationship of the output signal to the input signal is provided by controlled limiting and saturation (in 10 dB steps) of the eight amplifiers in reverse order. A relatively low level signal (approximately -70 dBm) will saturate the last amplifier stage. An increase of 10 dB in the input signal will cause the seventh stage to saturate. Preceding amplifier stages saturate at each 10 dB increase in the rf input. Finally the first amplifier saturates when the input signal is equal to the LOG REF LEVEL control setting as referenced to the lit index light.

The gain of each stage is 9 dB. When the last stage is saturated the total output of the eight stages consists of the output of the last stage plus the summing bus currents from all preceding stages. As preceding stages saturate each supplies a maximum of 3 mA to the summing bus. This corresponds to a 10 dB increase in power input. In this manner, the combination of sequential amplifier limiting and current summing provides amplitude compression to force the output signal to remain logarithmically proportional to the input signal.

The simplified diagram below shows signal paths and major circuit components.

TEST PROCEDURE 3

Connect the output of the HP 608F to the analyzer RF INPUT and adjust the signal generator for a 30 MHz, -60 dBm signal. Connect the HP 8405A to TP 1, set the analyzer LOG REF LEVEL control to -30 dBm, and tune the analyzer frequency for maximum signal level on the HP 8405A. Typical level is 58 mV rms.

SERVICE SHEET 12 (cont'd)

If the signal is not present check Q23, Q1, Q2 and associated components.

If the correct signal is present, disconnect the HP 8405A and connect it to TP B (Q26-c Service Sheet 13). Rotate the LOG REF LEVEL control and observe the meter readings. Note that readings change by approximately 6 mV rms at adjacent steps.

If readings are correct, the Log portion of the Lin/Log amplifiers and the summing circuits are functioning properly.

If the readings are not correct isolate the defective stage by checking the signal level at TP2, TP3, etc., until the defective stage is found. After repairs are made, repeat the test.

If correct readings are obtained, proceed to step 4.

If not, proceed to following steps on Service Sheets 12 and 13 and repeat this step after repairs are made.

4 SUMMING AND ISOLATION AMPLIFIERS

Q25 sums the output current from the input emitter follower and the output currents from the first four stages of the Lin/Log amplifier. It also provides isolation between the first four Lin/Log stages and following circuits.

Q26 (shown in Service Sheet 13) sums the output from Q25, the output currents from the fifth, sixth and seventh Lin/Log amplifiers and the signal output from the last Lin/Log amplifier. It also provides isolation between the Lin/Log amplifiers and the linear detector.

TEST PROCEDURE 4

Connect the output of the HP 608F to the analyzer RF INPUT and adjust the signal generator for

Service Model 8552B

SERVICE SHEET 12 (cont'd)

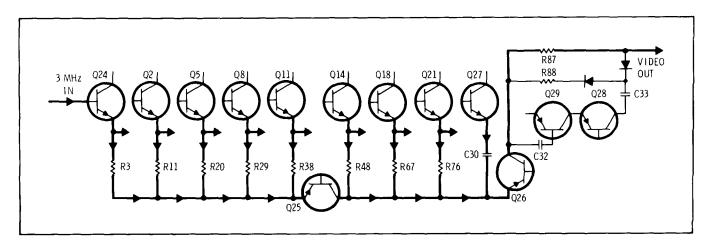
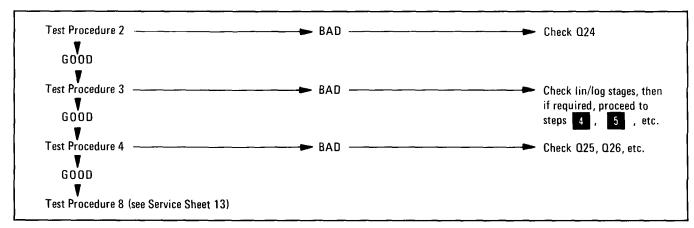
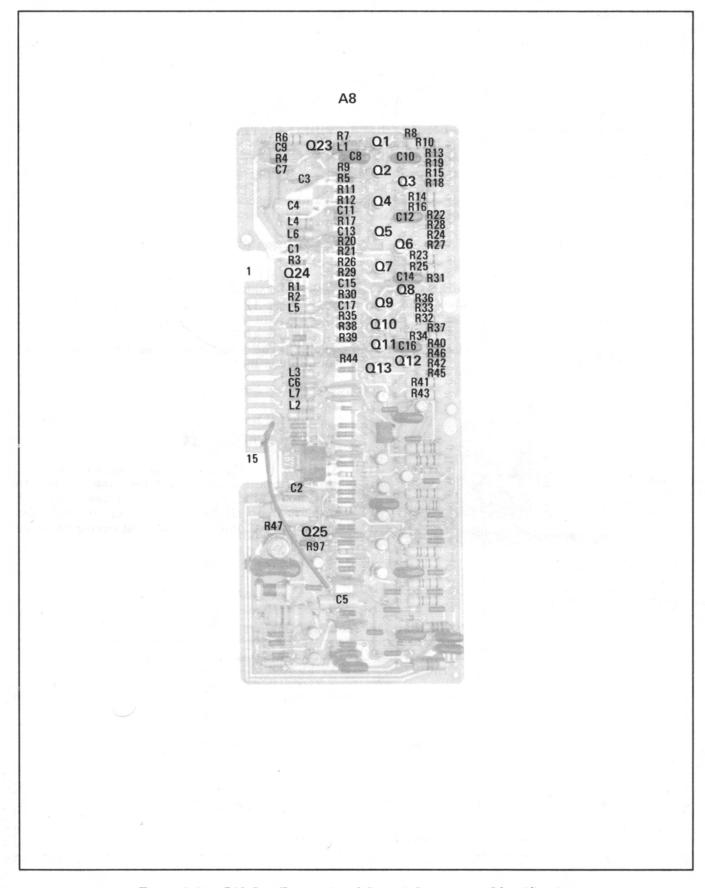
a 30 MHz, -60 dBm signal output. Connect the HP 8405A to TP C (Q25-e), set the analyzer LOG REF LEVEL control to -60 dBm, and tune the analyzer for maximum signal level on the HP 8405A. Typical level is 9 mV rms.

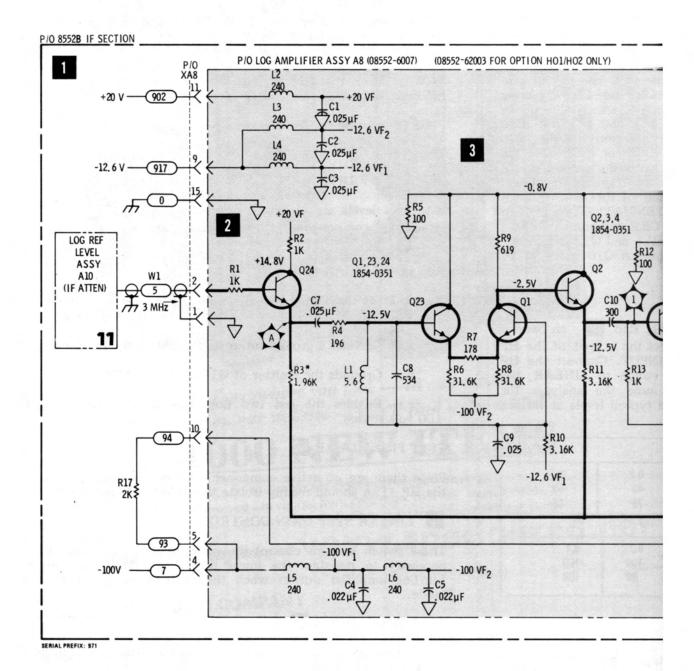
Check the signal level at TP D (Q25-c) with the HP 8405A. Typical level is 33 mV rms.

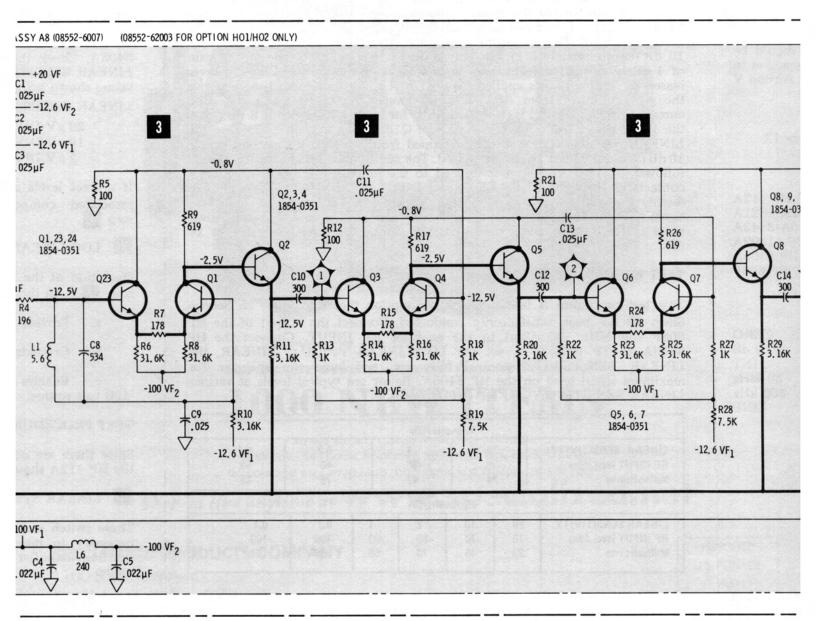
Check the signal level at TP B (Q26-c Service Sheet 13) with the HP 8405A. Typical level is 50 mV rms.

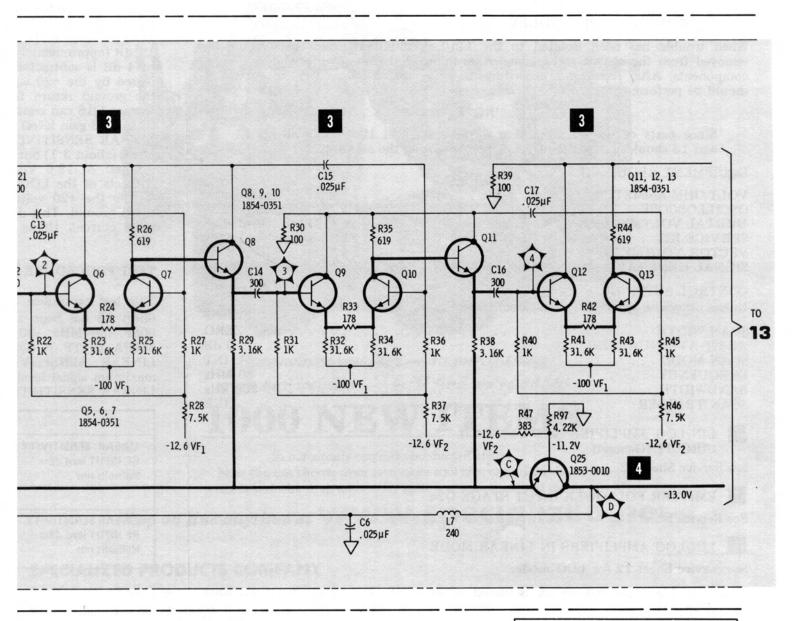
If correct readings are obtained the summing amplifiers are functioning properly.

If readings are incorrect, check Q25, Q26 and associated components.


Figure 8-35. Simplified Diagram - Log Mode of Operation


Simplified Test Procedure Tree


Figure~8-36.~~P/O~Log/Linear~Amplifier~A8~Component~Identification

	REFERENCE	DESIGNATION	S
--	-----------	-------------	---

A8	CHASSIS
C1-17 L1-7 R1-47,97 Q1-13,23-25	R17 W1 XA8
	8

REFERENCE	DESIGNATION	S

A8	CHASSIS
C1-17	R17
L1-7	Wl
R1-47,97	XA8
Q1-13,23-25	
	80
	9900
1	

12

Figure 8-37. Log/Linear Amplifier (1 of 2)

It is assumed that the 3 MHz signal from the crystal filter and dc operating voltages are present and correct, and that the output signal is not present or is out of tolerance.

TROUBLESHOOTING PROCEDURE

When trouble has been isolated to the Lin/Log amplifier assembly it should be removed from the chassis and reinstalled on the extender board to provide access to components. After repairs the procedures in paragraphs 5-30 and 5-31 of Section V should be performed.

NOTE

Since parts of the circuit appear on Service Sheet 12, Service Sheets 12 and 13 should be used jointly in troubleshooting the assembly.

EQUIPMENT REQUIRED

VOLT-OHM-AMMETER HP 412A
OSCILLOSCOPE
DIGITAL VOLTMETER
SERVICE KIT
VECTOR VOLTMETER HP 8405A
SIGNAL GENERATOR HP 608F

CONTROL SETTINGS

Unless otherwise specified in individual tests.

SCAN WIDTH ZERO	o
INPUT ATTENUATION	
SCAN MODE	
FREQUENCY 30 MH	
BANDWIDTH	
SCAN TRIGGER LIN	Ł

LIN/LOG AMPLIFIER AND CONTROL CIRCUIT (General)

See Service Sheet 12.

2 EMITTER FOLLOWER INPUT STAGE Q24

See Service Sheet 12.

3 LIN/LOG AMPLIFIERS IN LINEAR MODE

See Service Sheet 12 for LOG mode.

When the LOG/LINEAR switch is placed in the LINEAR position it accomplishes the following:

- a. Supplies -12.6 Vdc to illuminate the LINEAR lamp, DS7.
- b. Disables the last two log amplifiers by removing their -100 volt source.
- c. Provides an added current source to Q15/Q17 to prevent the stage from saturating.
 - d. Enables Q16, the linear scale factor amplifier.

Operation of the Lin/Log amplifiers for those stages ahead of Q15 is identical for LINEAR and LOG modes of operation. The output of current amplifier Q16 is 180 degrees out of phase with the signals in the summing bus and of sufficient amplitude to cancel them. In the LINEAR mode only the Q16 output drives the summing and isolation stage Q26.

SERVICE SHEET 13 (cont'd)

Since the analyzer IF amplifier and attenuator are calibrated in 10 dB increments, compensation must be provided to maintain a linear relationship between the input RF signal and the output from the Lin/Log amplifier. The attenuator selector for the linear mode is calibrated in 1/2/10/20 steps so a fixed amount of compensation cannot be used for all steps. When the LINEAR SENSITIVITY control is stepped from 1 to 2, the current gain is 10 dB (approximately 3:1), but only 6 dB (2:1) is required. The surplus gain of 4 dB is subtracted from the gain of Q16 as follows: Diode CR2 is reverse biased by the +20 volts applied through R64 and R65 to effectively remove the ground return from R63. R63 no longer shunts R50 and the total current Q16 can control is decreased 4 dB for a total variation of 8 dB (from the 14 dB gain level). The current gain of Q16 is thus 2:1, or 6 dB. When the LINEAR SENSITIVITY control is stepped from 2 to 10 the current gain is 10 dB (about 3:1) but 14 dB is required. The additional 4 dB gain is provided as follows: A -12.6 Vdc level is applied to the junction of R64/R65 through contacts of the LOG REF LEVEL and INPUT ATTENUATION controls to disable the +20 volts from R65 and forward bias CR2 to connect R63 to signal ground. This decreases the collector load of Q16 and Q16 can deliver more current. Under these conditions the current gain of Q16 is 5:1 or 14

TEST PROCEDURE 3

This test procedure is based on the assumption that step 3 on Service Sheet 12 has been satisfactorily conducted. Connect the output of the HP 608F (30 MHz, -30 dBm) to the analyzer RF INPUT. Connect the HP 8405A to TP B (Q26-c), set the LOG·LINEAR switch to LINEAR, the LINEAR SENSITIVITY control fully cw, and tune the analyzer for maximum signal level on the HP 8405A. Below are typical levels at various LINEAR SENSITIVITY and RF INPUT levels.

		Millivo	olts /Div			
LINEAR SENSITIVITY RF INPUT level dBm Millivolts rms		2 30 24	1 -30 47		0.2 -40 78	0.1 -50 45
		Micro	volts/Div		-	
LINEAR SENSITIVITY RF INPUT level dBm Millivolts rms	20 -70 23	10 -70 45	2 -80 70	1 -90 50	0.2 -100 90	0.1 -100 108

If correct signal levels are observed, proceed to step 8. If not, check Q15/Q17/Q18 and associated components and proceed to steps 5. and 7. , if required. After repairs repeat this test.

- 4 See Service Sheet 12 for information about Q26.
- 5 LINEAR SCALE FACTOR AMPLIFIER Q16

Operation of Q16 is described as part of step 3

SERVICE SHEET 13 (cont'd)

TEST PROCEDURE 5

Connect the output of the HP 608F to the analyzer RF INPUT and adjust the signal generator for a 30 MHz, -80 dBm signal output. Connect the HP 8405A to TP E (Q16-b), set the analyzer LINEAR SENSITIVITY control to 20 μ V/DIV, and tune the analyzer for maximum signal level on the HP 8405A. Check the 3 MHz signal level at base and emitter of Q16 with the LINEAR SENSITIVITY control set to 20, 10 and 2 μ V/DIV for the typical values shown below.

LINEAR SENSITIVITY	Q16 Base	Q16 Emitter
$20~\mu ext{V/DIV}$	6 mV rms	4 mV rms
$10~\mu\mathrm{V/DIV}$	38 mV rms	24 mV rms
$2~\mu V/DIV$	70 mV rms	40 mV rms

If correct levels are observed, proceed to step 6. If not, check Q16 and associated components, then proceed to step 6 and if required, step 7

6 LOG·LINEAR SWITCH

Operation of the LOG·LINEAR switch in the LINEAR mode is discussed in step 3 . In the LOG mode the switch does the following:

- a. Provides a ground return to illuminate the (LOG) lamp DS8.
- b. Grounds the emitter of Q16 to disable Q16.
- c. Enables the last two Log amplifiers by connecting them to the -100 volt source.

TEST PROCEDURE 6

Since there are no active components in the assembly, continuity tests with the HP 412A should readily isolate the defective components.

1 LINEAR STEP GAIN CONTROL

These switch sections control the compensation gain steps of Q16 which are necessary to maintain the linear relationship between input rf signal and Lin/Log amplifier output when the analyzer is operated in the LINEAR mode.

TEST PROCEDURE 7

Since there are no active components in the assembly, continuity tests with the HP 412A should readily isolate defective components.

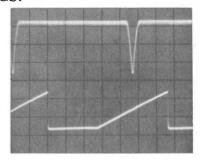
8 LINEAR DETECTOR

The linear detector includes a high gain amplifier with a high level of negative feedback. The feedback loop ensures that the detected output current is linear in relationship to input current to enhance the accuracy of the calibrated display. The output of Q28 is applied to CR3 and CR4 180

Service Model 8552B

SERVICE SHEET 13 (cont'd)

degrees out of phase with the signals applied to CR3 and CR4 by the output of Q26. The result is that positive half cycles from the collector of Q26 are cancelled when the inverted signal from Q28 forward biases CR3. When the Q26 output is negative the inverted signal from Q28 reverse biases CR3 and the negative signal from Q26 becomes the video output. Simultaneously CR4 is forward biased and the result is improved linearity of the output signal.


L13/C36 and L14/C37/C38 filter out the rf components of the video output.

TEST PROCEDURE 8

Connect the HP 608F set for 30 MHz, -30 dBm to the analyzer RF INPUT. Connect the HP 180A/1801A/1821A Channel A input to TP G (XA8-14) and the Channel B input to the SCAN IN/OUT jack on the front of the analyzer and observe the waveform.

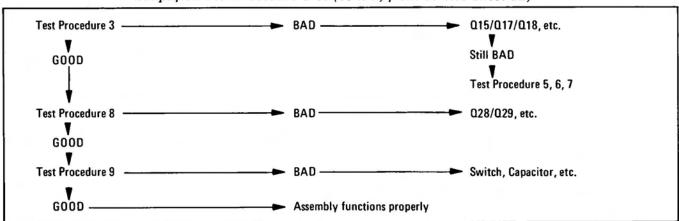
CONTROL SETTINGS:

Oscilloscope: Channel A: .02 V/Div Channel B: 0.5 V/Div TIME/DIV: 5 msec/DIV

Analyzer: SCAN WIDTH PER DIVISION PER DIVISION 20 kHz BANDWIDTH 30 kHz LOG REF LEVEL -10 dBm LOG·LINEAR 10 dB LOG

If the waveforms are correct the Lin/Log amplifier assembly should be functioning properly. If not, check Q28, Q29, CR3, CR4 and associated components.

VIDEO FILTER OFF


9 VIDEO FILTER ASSEMBLY

The video filter switch is a lever type two-pole, four position switch. The section shown on Service Sheet 13 switches bypass capacitors in the video circuit to bypass signal components down to 10 kHz (0.01 μ f) 100 Hz (1.0 μ f) or 10 Hz (10 μ f). The remainder of the video filter switch assembly is shown on Service Sheet 17.

TEST PROCEDURE 9

Use the HP 412A to make point-to-point continuity measurements. Switching the filters into the circuit produces an obvious change in the CRT display. If no change in display occurs when the switch is used, check for an open circuit or faulty capacitor.

Simplified Test Procedure Tree (cont'd) from Service Sheet 12)

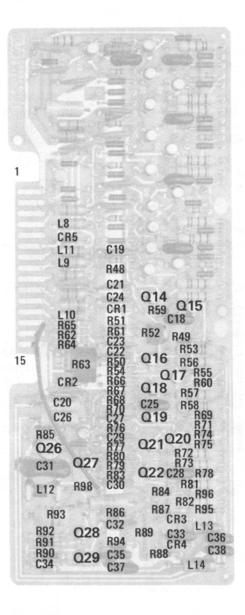
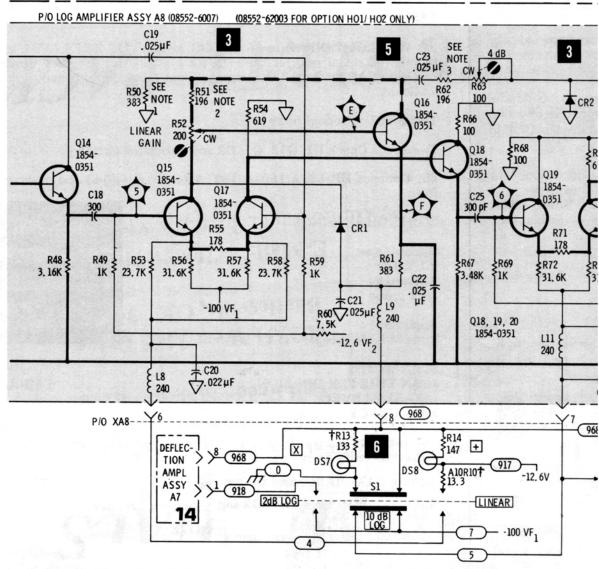
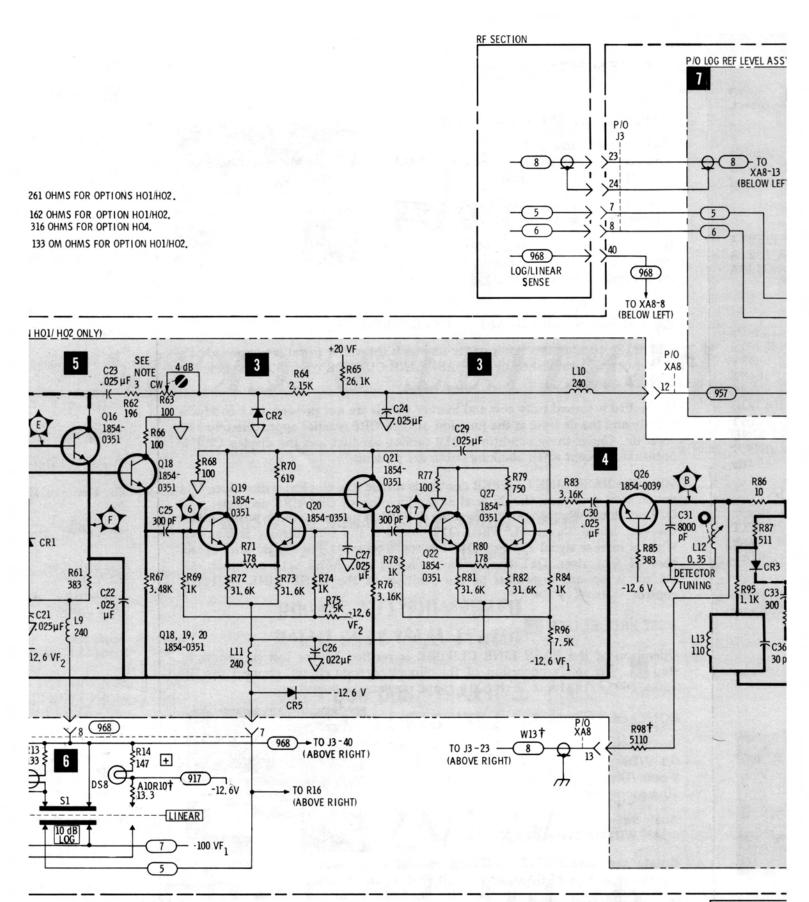


Figure 8-38. P/O Log/Linear Amplifier A8 Component Identification

REFERENCE DESIGNATIONS


A8	All
C18-38 CR1-5 L8-14 R48-98 Q14-22,26-29	S1-1F C1-3
A10	CHASSIS
S1-2R R10	DS7,8 R13,14,16 S1 W5,13


TREFER TO TABLE 7-2

NOTES

- 1. R50 IS 261 OHMS FOR OPTIONS HOLHO2.
- 2. R51 IS 162 OHMS FOR OPTION HO1/HO2. R51 IS 316 OHMS FOR OPTION HO4.
- 3. R62 IS 133 OM OHMS FOR OPTION H01/H02.

P/O 8552B IF SECTION

REFERENCE DESIGN ASSEMBLIES ARE AI CLUDES ASSEMBLY IS AIR1. DESIGNA COMPLETE AS SHOW

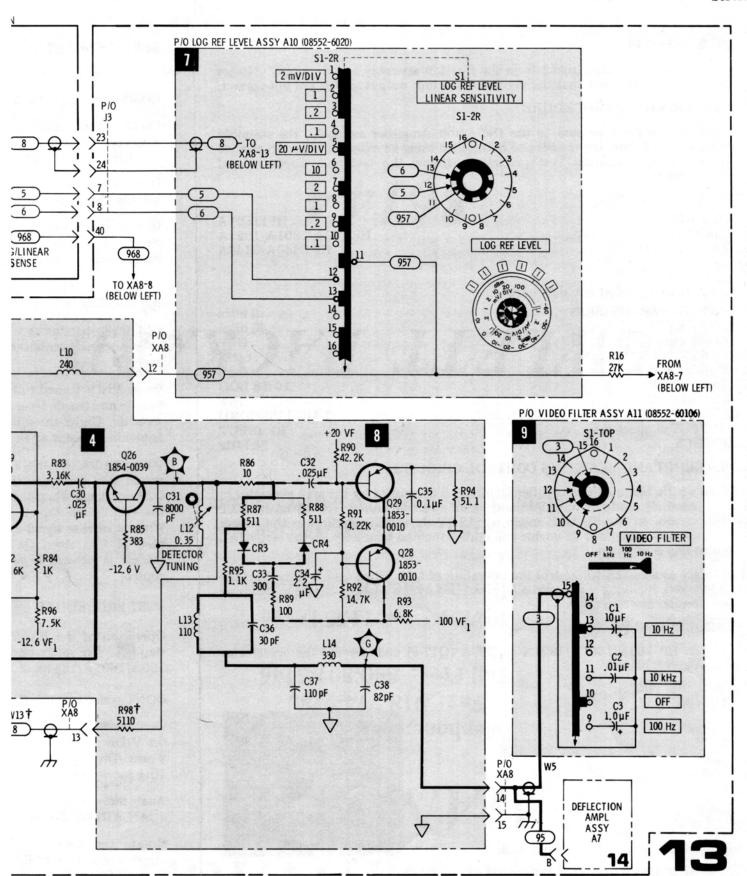


Figure 8-39. Log/Linear Amplifier (2 of 2)

It is assumed that the video signal from the Log/Lin assembly and dc supply voltages are present and correct but that the vertical deflection output signals are not correct.

TROUBLESHOOTING PROCEDURE

When trouble has been isolated to the Deflection Amplifier assembly, the assembly should be removed from the chassis and re-installed using an extender board to provide easy access to components. Test procedures follow the technical discussions of individual circuits.

EQUIPMENT REQUIRED

SERVICE KIT											HP11591A
OSCILLOSCOPE										. HP	180A/1801A/1821A
DIGITAL VOLTMETER											. HP 3440A/3443A

CONTROL SETTINGS

Unless otherwise specified in individual tests.

SCAN WIDTH PER DI																
LOG REF LEVEL .																
VIDEO FILTER																
SCAN TRIGGER																
INPUT ATTENUATIO																
LOG-LINEAR																
SCAN MODE																
SCAN TIME PER DIV																
CAL OUTPUT connect																
FREQUENCY	 •														30 N	ИHz

BLANKING AND BLANKING CONTROL CIRCUITS

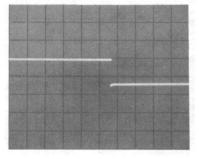
Operation of the blanking preamplifier Q19/Q18 is controlled by the scan generator in the INT (internal) mode of operation and by an external source (via J2) in the EXT (external) mode. In the SINGLE mode a -12.6V dc level is applied to the trigger circuit in the scan generator to enable the circuit for one scan only. In the MANUAL mode, blanking is not used.

Q19/Q18 act as a switch to control the operation of Q17. When Q17 is turned off the CRT is blanked. Blanking is also partially controlled by the baseline clipper and clipper override circuits. See step 2

TEST PROCEDURE

Connect the HP 180A/1801A/1821A to TP A (Q17-e) and observe the waveforms shown in A and B below.

CONTROL SETTINGS:


(Waveform A)

Oscilloscope: 5V/Div 2 msec/Div 10:1 Probe

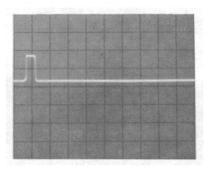
Analyzer: BASE LINE CLIPPER ccw

Waveform GOOD: Proceed to waveform B.

Waveform BAD: Check Q17/Q18/Q19 and associated components.

SERVICE SHEET 14 (cont'd)

CONTROL SETTINGS: Waveform B


Oscilloscope: Same as A.

Analyzer: Same as above except rotate BASE

LINE CLIPPER full cw.

If waveform A was GOOD and B was BAD, trouble should be in the baseline clipper circuits.

If correct waveforms were obtained, blanking circuits and baseline clipper circuit is functioning properly. Proceed to step

2 BASELINE CLIPPER AND CLIPPER CIRCUITS

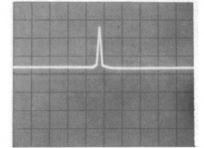
Q11/Q12 operates as a comparator in which the video signal is compared to a reference level established by the BASE LINE CLIPPER control and the clipper override circuit.

When R10 is turned fully ccw and marker signals are not present, Q11 conducts heavily and the dc level at the junction of CR5/CR6 reaches approximately +14 volts dc. Under these conditions Q12 cannot conduct and the display CRT is unblanked except when blanking pulses are present.

When the BASE LINE CLIPPER control is turned in a clockwise direction, Q11 conduction decreases, the dc level at the junction of CR5/CR6 decreases, and Q12 conducts when the negative-going deflection pulses are more positive than the established threshold. When Q12 conducts the CRT display is blanked. When a marker signal appears, Q10 inverts the marker and the dc level at the base of Q11 rises. Q11 conduction increases and holds Q12 off while the marker is present regardless of the position of the BASE LINE CLIPPER control.

TEST PROCEDURE 2

Operation of the BASE LINE CLIPPER is verified by the test procedure in step 1. To verify operation of the clipper override circuit, connect the HP 180A/1801A/1821A to TP B (Q10-c) and observe the waveform.


CONTROL SETTINGS:

Oscilloscope: 0.1 V/Div

2 msec/Div 10:1 probe

Analyzer:

SCAN WIDTH: Preset SCAN

Rotate the BASE LINE CLIPPER control and observe that marker signal remains regardless of BASE LINE CLIPPER control position.

Waveform GOOD: Clipper override functions properly.

Waveform BAD: Check Q10. (After verifying presence of marker input.)

SERVICE SHEET 14 (cont'd)

2 dB LOG AND VERTICAL PREAMPLIFIER CIRCUITS

U1 and associated circuitry comprise an operational amplifier; when S1 (LOG-LINEAR switch) is in the 10 dB LOG position the amplifier's gain is 1. When S1 is in the 2 dB LOG position, K1 is energized by Q3. This adds a feedback divider and an offset to the amplifier to increase its gain to 5 and re-reference the maximum signal point to the CRT LOG REF graticule. The transistor associated with pins 6-8 of U2 is used as a diode to raise the signal level 0.7 V. The transistors associated with pins 1-5 of U2 are used as a clipper to prevent the signal on the CRT from going below the base line. The transistor associated with pins 9-11 drop the clipped signal level to the level of the signal out of the input operational amplifier.

U3 is an operational amplifier that has a gain of approximately 10. VERTICAL GAIN control R11 controls the amplifier's feedback and thus its gain.

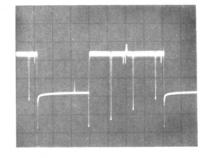
TEST PROCEDURE 3

3a. With LOG-LINEAR in 10 dB LOG, switch LOG REF LEVEL to -20 dBm to put the signal peak at the -10 dB graticule on the CRT display. Switch LOG-LINEAR to 2 dB LOG; signal should drop approximately to the -50 dB graticule.

Test GOOD: Proceed to 3b

Test BAD: Check U1, Q13, Q1, U2 and associated circuitry.

3b. Connect HP 180A/1801A/1821A to TP C (U3-6) and observe the waveform.


CONTROL SETTINGS

Oscilloscope: 0.1 V/Div 2 msec/Div

10:1 probe

Analyzer:

Same as basic except:

SCAN WIDTH													
SCAN TIME PER DI	VISIO	NC									1	MILLISECONI)
LOG REF LEVEL													
FREQUENCY												50 MH	Z

Note negative-going video and positive-going marker pulses. Rotate vertical gain control to verify proper operation

Waveform GOOD: Proceed to step 4

Waveform BAD: Check U2, U3 and associated circuitry.

NOTE

If repairs to the 2 dB LOG and vertical preamplifier circuits are required, the adjustments specified in paragraphs 5-30 of Section V should be performed.

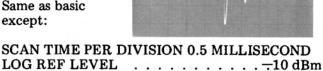
A8, A10, A11
Log/Linear Amplifier (2 of 2)

SERVICE SHEET 13

SERVICE SHEET 14 (cont'd)

VERTICAL DEFLECTION POWER AMPLIFIERS

The negative-going signal from U3 is applied to the vertical driver amplifier. Q4 inverts the signal and applies it to Q6 where it is again inverted and applied to one of the CRT vertical deflection plates. Q4 also applies a non-inverted signal to Q5 which applies it to Q7 where it is inverted and applied to the other CRT vertical deflection plate. Thus, a push-pull signal is applied to the CRT. VERTICAL POSITION control R15 controls the vertical position of the CRT trace by controlling the dc level of the pedestal on which the vertical deflection signals are applied to the CRT deflection plates.


TEST PROCEDURE 4

Connect the HP 180A/1801A/1821A Channel A probe to TP D (Q6-b) and the Channel B probe to TP E (Q7-b), and observe the waveforms.

CONTROL SETTINGS

Oscilloscope: 1 V/Div 2 msec/Div 10:1 probes

Waveform GOOD: Proceed to step 5

Waveform BAD: Check Q4 through Q9 and associated components.

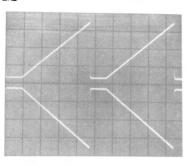
5 HORIZONTAL DEFLECTION AMPLIFIER

Driver stage Q16 inverts the scan ramp and applies it to the base of Q13. Q13 inverts the signal and supplies the positive-going deflection signal. The scan ramp is also emitter coupled to Q14 which supplies the negative-going deflection signal. The signals at the emitters and bases of Q14 and Q13 are in phase but the collector signals are 180 degrees out of phase and provide push-pull deflection signals to the horizontal deflection plates of the CRT. Controls are provided to vary the width and position of the CRT trace.

TEST PROCEDURE 5

Connect the HP 180A/1801A/1821A Channel A input to TP F(Q13-c) and the Channel B input to TP G(Q14-c) and observe the waveforms.

Note


If repairs to the deflection amplifier assembly are required, the Front Panel Check Procedure, paragraph 4-12 of Section IV, should be performed.

CONTROL SETTINGS

Oscilloscope:

2V/Div 5 msec/Div 10:1 probe

Waveform GOOD: Unit functions properly

Waveform A GOOD and B BAD check Q14, 15 and associated components.

Both waveforms BAD check A13, 16 and associated components.

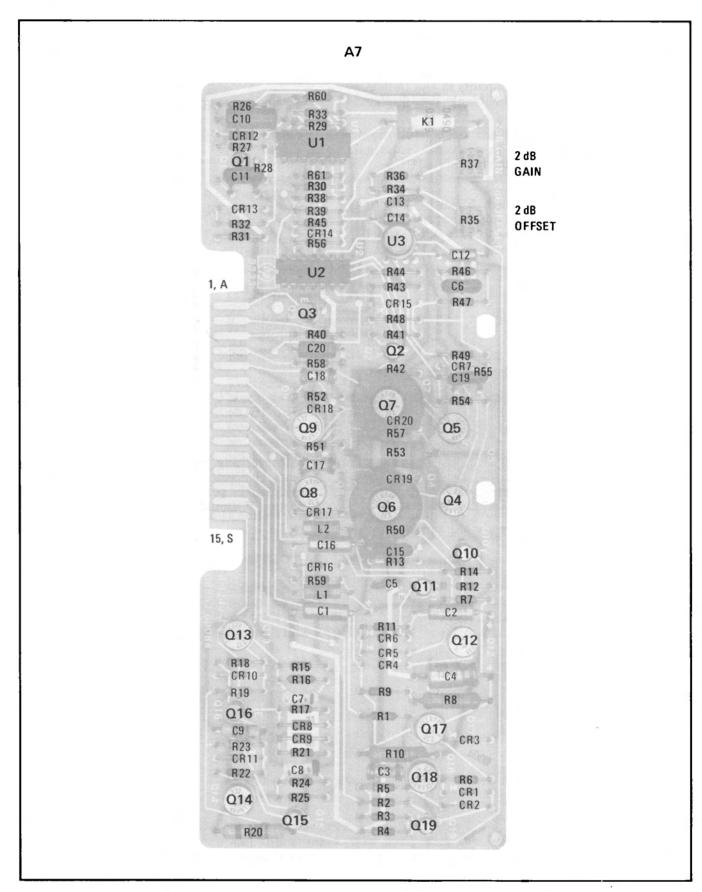
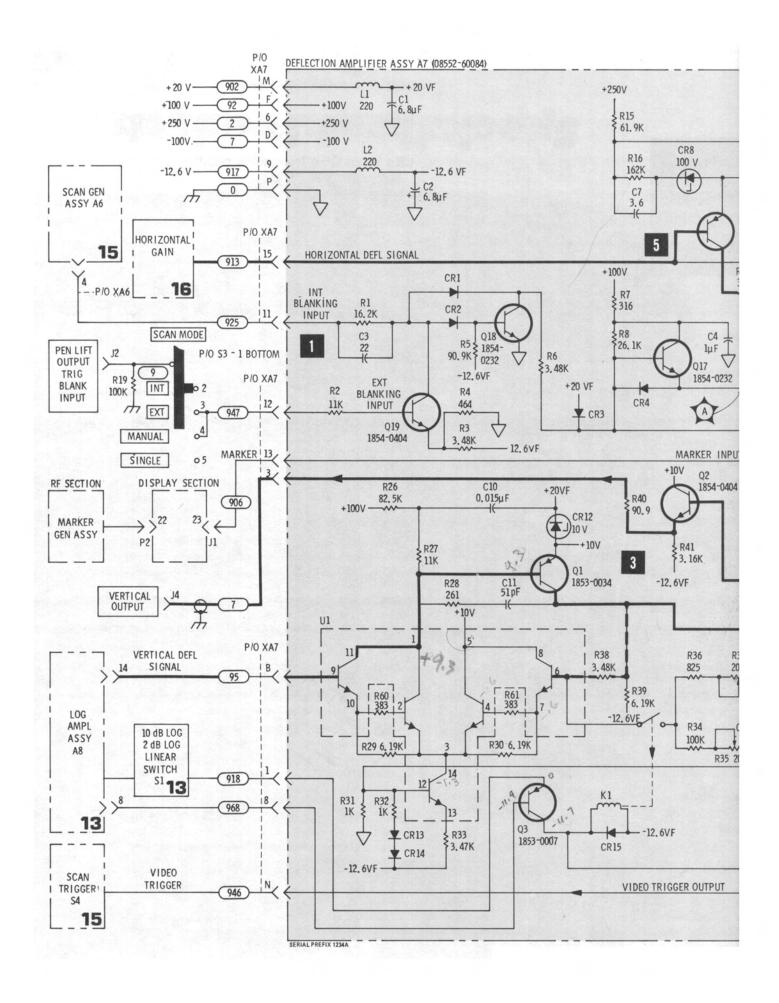
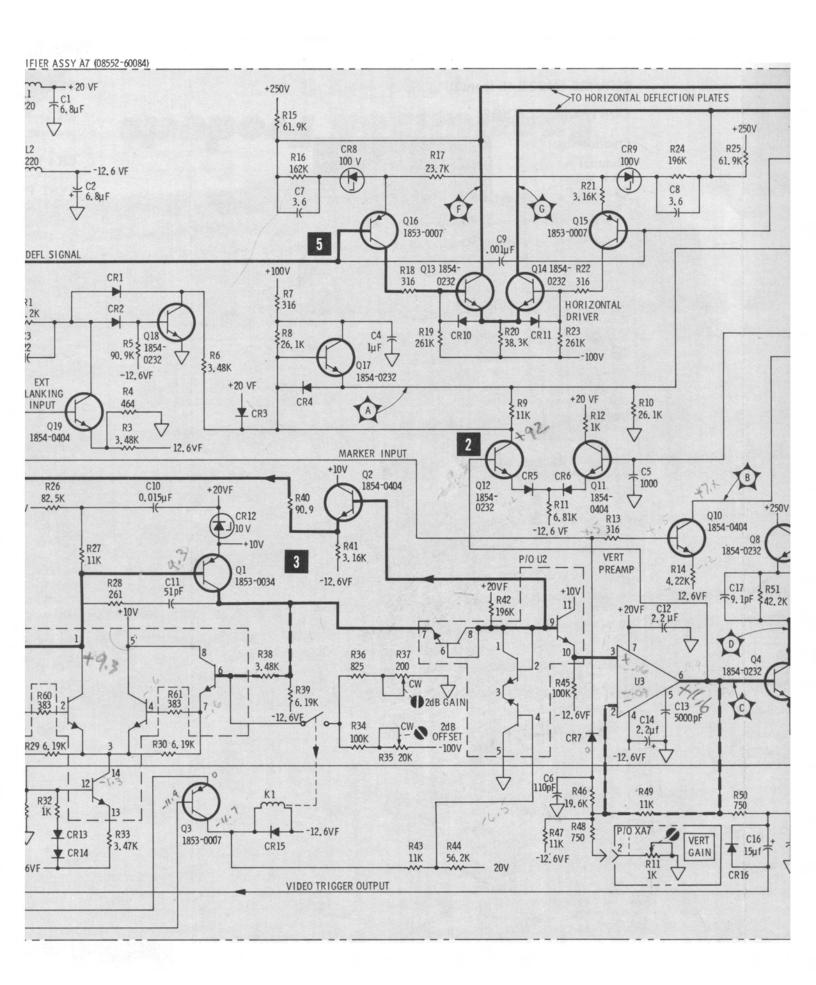




Figure 8-40. Deflection Amplifier A7 Component Identification



Figure 8-41. Deflection Amplifier

It is assumed that the scan generator is not being triggered properly and that the correct operating voltages are present.

TROUBLESHOOTING PROCEDURE

When trouble has been isolated to the Scan Generator Assembly A6, it should be removed from the chassis and reinstalled using the extender board to provide easy access to components. Troubleshooting information follows the technical discussion of circuit operation.

NOTE

The Scan Generator is a loop circuit and the failure of some components will prevent a scan being generated. If this is the case, set SCAN MODE to SINGLE and use the nominal voltages shown to check the generator.

EQUIPMENT REQUIRED	
OSCILLOSCOPE	HP 180A/1801A/1821A
SERVICE KIT	
VOLT-OHM-AMMETER	HP 412A
DIGITAL VOLTMETER	HP 3440A/3443A

CONTROL SETTINGS

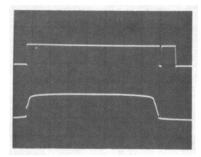
Specified in individual tests.

TRIGGER GENERATOR

These circuits control the operation of flip-flop Q15 and Q16 in the scan generator. When S3 is in the INT (internal) position and S4 is in the AUTO (automatic) position a dc level (-12.6 Vdc) forward biases CR10 to provide an enable signal to the scan control flip-flop. The trigger generator Q2/Q3 is passive in this mode and the scan generator cycle is controlled by the scan generator circuits only. With either switch in any other position the -12.6 volts is removed from CR10 and a trigger must be provided to initiate the scan cycle. In the SINGLE scan mode closing the SINGLE pushbutton switch applies the -12.6 volts to the junction of R23 and R22. The abrupt change in the dc level at the junction of R23 and R22 is coupled through C22 to enable the scan generator for one scan only, or coupled through C8 to defeat the scan.

When the SCAN MODE switch is in the INT position and the SCAN TRIGGER switch is in the LINE, EXT, or VIDEO positions, Q2/Q3 provides the required triggers to initiate the scan generator cycle. Input triggering to the trigger circuit may be either positive or negative. Input triggers are inverted by Q3 and applied to Q2. Q2 functions as a phase splitter and the output may be taken from collector or emitter. When the input trigger is positive, Q2 is operated as an emitter follower to provide triggers of the right polarity to the scan generator circuit. Q1 disables the trigger circuits during the scan period.

TEST PROCEDURE 1


Connect the HP 180A/1801A/1821A Channel A probe to Q3-base and the Channel B probe to TP 1 and observe the waveforms. If neither waveform is present first check switching, then Q2 circuit.

SERVICE SHEET 15 (cont'd)

CONTROL SETTINGS:

Oscilloscope:

Channel A: 0.1 V/Div Channel B: 0.5 V/Div 10 msec/Div 10:1 probes

Analyzer:

SCAN TRIGGER: LINE

SCAN MODE: INT

SCAN TIME PER DIVISION: 0.1 msec

If the Channel A waveform is correct and Channel B waveform is not, check Q2 circuit. If both waveforms are present and the scan generator is not being triggered check scan control flip-flop.

Correct operation of Q2 should be verified by momentarily placing the NORM REV switch in the REV position. The Channel B waveform should be reversed in polarity. (180 degrees out of phase with Channel A). All switch contacts and wiring can be checked with the HP 412A Ohmmeter for continuity after removal of A6 and A7 assemblies.

2 SCAN CONTROL FLIP-FLOP

The scan control flip-flop controls the scan cycle. Whenever Q15 is on, a scan ramp is being generated. Whenever Q16 is on (Q15 off) the Scan Generator is off. When Q15 is triggered on, it turns off the discharge switch and the R/C network on the Scan Time Switch A9 begins to charge. When the charge (scan ramp) reaches a predetermined level, the level detector turns on and turns Q15 off through the scan reset circuits.

TEST PROCEDURE 2

If any circuit in the scan generator loop is faulty, no waveforms will be present at the test points. To troubleshoot, set SCAN MODE to SINGLE and check the loop circuits for the typical voltages shown on the schematic.

RAMP DISCHARGE SWITCH

When Q15/Q16 is in the rest state (Q15 off), Q9 and Q13 are both conducting and the ramp capacitor discharges through Q9. When Q15/Q16 returns to the scan state Q9 and Q13 are turned

SERVICE SHEET 15 (cont'd)

off and the ramp capacitor begins to charge and provide the ramp signal to the ramp amplifier.

CR4 keeps Q6-e from going negative.

TEST PROCEDURE 3

See Step 2

4 CONSTANT CURRENT SOURCE AND RAMP CHARGE NETWORK

The R/C network selected by the Scan Time Switch Assembly A9, wafers 1-F, 2F and 2R, determines the ramp slope (or time). Constant current source Q6 keeps the ramp linear by keeping its conduction constant as the voltage on its collector rises.

TEST PROCEDURE 4

See step 2

5 RAMP AMPLIFIER AND RAMP LEVEL DETECTOR CIRCUITS

U1 is a low gain linear amplifier. The high input impedance of the circuit prevents loading of the constant current source, Q6. The output ramp voltage is applied to the SCAN MODE switch. The output ramp from U1 also turns on transistor switch Q7 when the ramp voltage reaches a point high enough to overcome the voltage breakdown point of zener diode CR12 through the base-emitter junction of Q7. When Q7 conducts it turns on Q8 to turn off Q10 in the reset circuit.

TEST PROCEDURE 5

See Step 2

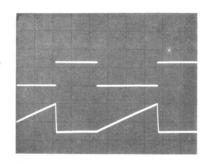
6 SCAN RESET CIRCUIT

When the level detector turns on, it turns off the scan reset circuits which turns off Q15 to stop the scan ramp. When the scan reset circuits turn off, C10 charges up and holds them off until it discharges; the discharge time of C10 is determined by a resistor (or resistors) selected by Scan Time Switch Assembly A9. When C10 has discharged, the scan reset circuits turn on and Q15 turns on (or waits for the next trigger).

SERVICE SHEET 15 (cont'd)

During the scan reset off time, Q15 cannot be triggered on, the ramp capacitor on S1-1F is fully discharged and the blanking circuits in the Deflection Amplifier Assembly A7 blank the display CRT.

TEST PROCEDURE 6


See Step 2 .

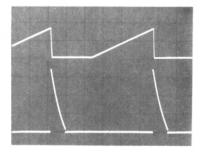
The waveforms at TP2 through 5 can be used to verify proper Scan Generator operation. Attach the oscilloscope Channel A probe to TP2 and Channel B probe to TP 3.

CONTROL SETTINGS

Analyzer:	
SCAN TRIGGER	LINE
SCAN MODE	
SCAN TIME PER DIVISIO	

Oscilloscope: Channel A: 1V/Div Channel B: 0.5V/Div 5 msec/Div 10:1 probes

Attach Channel A probe to TP4 and Channel B probe to TP5.


CONTROL SETTINGS

Analyzer:

SCAN TRIGGER																				
SCAN MODE			•	•	•	•	•	•	•					•					IN	Г
SCAN TIME								_									~ .	_		~
PER DIVISION	N				•	•	2	2	N	11	L	Л	4	S	ŀ)()(J	ND	S

Oscilloscope:

Channel A & B: 0.5 V/Div 5 msec/Div 10:1 probes

NOTE

Whenever any repairs are required to the Scan Generator circuits the procedures specified in paragraphs 5-28 and 5-29 of Section V should be performed.

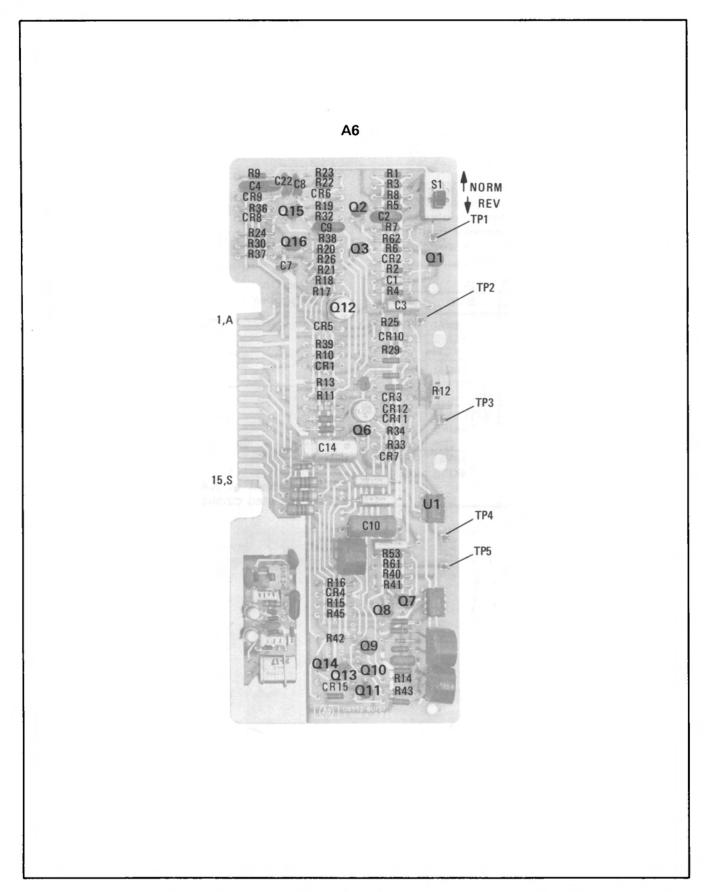
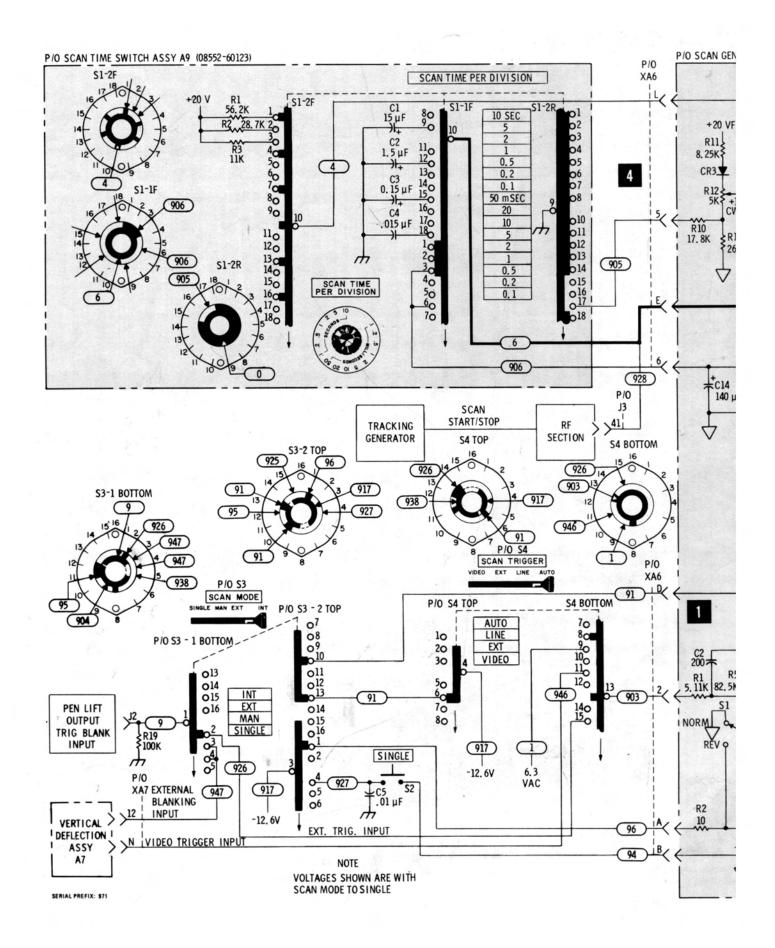
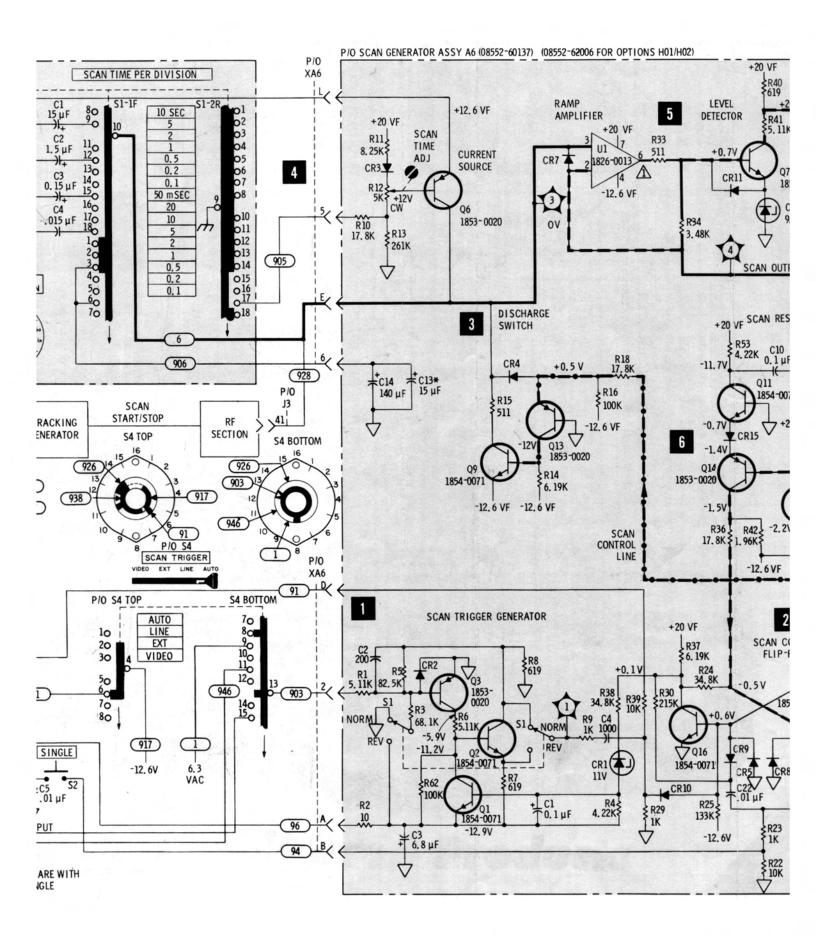




Figure 8-42. P/O Scan Generator A6 Component Identification

Service

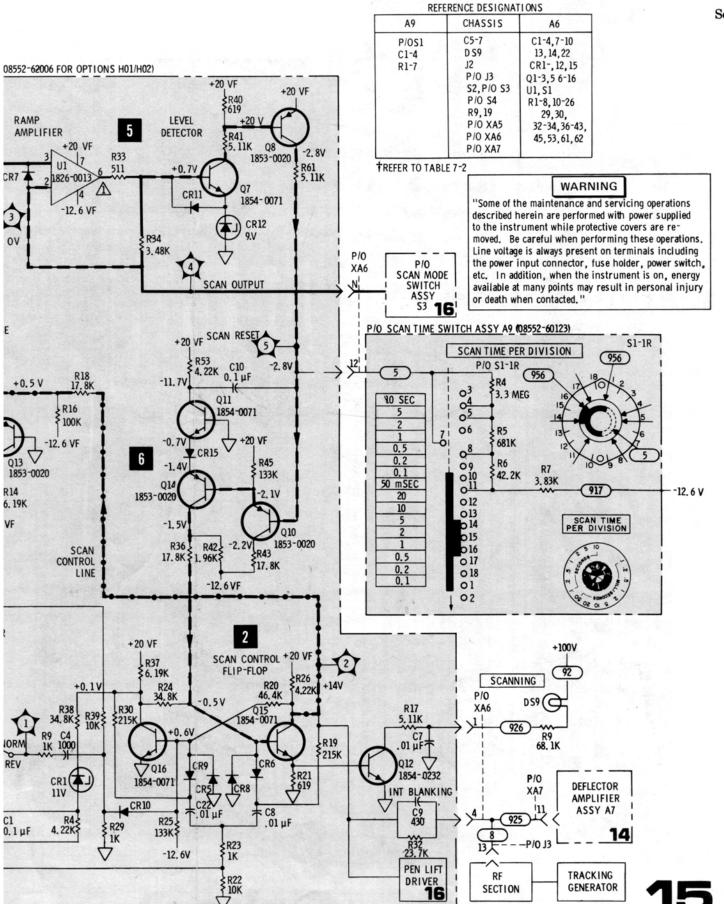


Figure 8-43. Scan Generator and Trigger Circuits

SERVICE SHEET 16

It is assumed that all dc voltages and the waveforms at TP 2 and 4 (see Service Sheet 15) are present and correct.

TROUBLESHOOTING PROCEDURE

When trouble has been isolated to the scan driver or pen lift driver circuits, the Scan Generator Assembly A6 should be removed from the chassis and reinstalled using the extender board to provide easy access to components. Troubleshooting information follows the technical discussion of circuit operation.

EQUIPMENT REQUIRED

OSCILLOSCOPE								H	IP	18	0A	/1	801A/1821A
SERVICE KIT													HP 11592A
DIGITAL VOLTMETER											HP	3	3440A/3443A

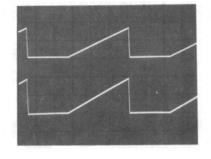
CONTROL SETTINGS

Specified in individual tests.

1 SCAN DRIVER

The scan driver, U2, amplifies a generated scan and feeds it to the Scan Mode switch, the RF Section, and the Deflection Amplifier. With SCAN MODE in INT or SINGLE, the scan is generated by the Scan Generator (see Service Sheet 15); with SCAN MODE in EXT, the scan is provided by an external source. When SCAN MODE is in MANUAL, the conduction of U2 is determined by the position of R20, MANUAL SCAN knob.

TEST PROCEDURE


Connect the oscilloscope Channel A probe to XA6 pin P and Channel B probe to XA6 pin 14 and observe the waveforms.

CONTROL SETTINGS

Analyzer:		
SCAN MODE		 INT
SCAN TRIGGER		 LINE
SCAN TIME PER DIVIS	ON	 2 MILLISECONDS

Oscilloscope:

Both Channels: 0.5V/Div 5 msec/Div 10:1 probes

If both waveforms are bad, check S3, SCAN MODE switch. If the amplifier's input was good and the output was bad, check U2 and associated circuitry.

> Scan Generator and Trigger Circuits **SERVICE SHEET 15**

Service Model 8552B

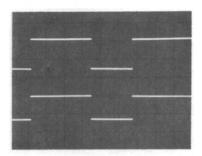
SERVICE SHEET 16 (cont'd)

PEN LIFT DRIVER

During the scan ramp, Q4 is off and Q5 is on and the pen lift driver's output is approximately 0V. When the scan stops, and as long as Q15 (on Service Sheet 15) is off, Q4 turns on, turning off Q5 which puts approximately +14V at the driver output.

When the driver output goes to 0V, CR13 and CR14 prevent the pen lift coil counter EMF voltage from damaging Q5. The table below describes the function of J2 for the various positions of SCAN MODE and SCAN TRIGGER switches.

SCAN TRIGGER		SCAN MODE		011101.5
Switch	INT	EXT	MAN	SINGLE
AUT0	PEN LIFT OUT	EXTERNAL BLANKING IN	EXTERNAL BLANKING IN	PEN LIFT OUT
LINE	PEN LIFT OUT	EXTERNAL BLANKING IN	EXTERNAL BLANKING IN	PEN LIFT OUT
EXT	EXTERNAL TRIGGER IN	EXTERNAL BLANKING IN	EXTERNAL BLANKING IN	PEN LIFT OUT
VIDEO	PEN LIFT OUT	EXTERNAL BLANKING IN	EXTERNAL BLANKING IN	PEN LIFT OUT


TEST PROCEDURE 2

Connect the oscilloscope Channel A probe to TP 2 and Channel B probe to XA6 pin C and observe the waveforms.

CONTROL SETTINGS

Analyzer:									
SCAN MODE	 								INT
SCAN TRIGGER									
SCAN TIME PER									

Oscilloscope:
Both channels:
1V/Div
5 msec/Div
10:1 probes

If the output at XA6-C is BAD, check Q4, Q5 and associated circuitry.

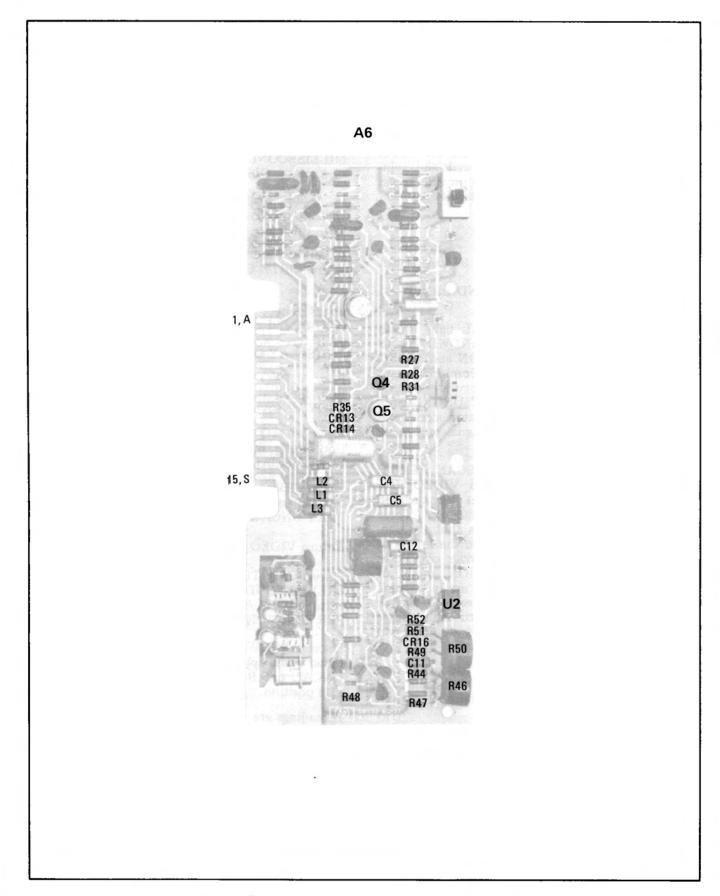
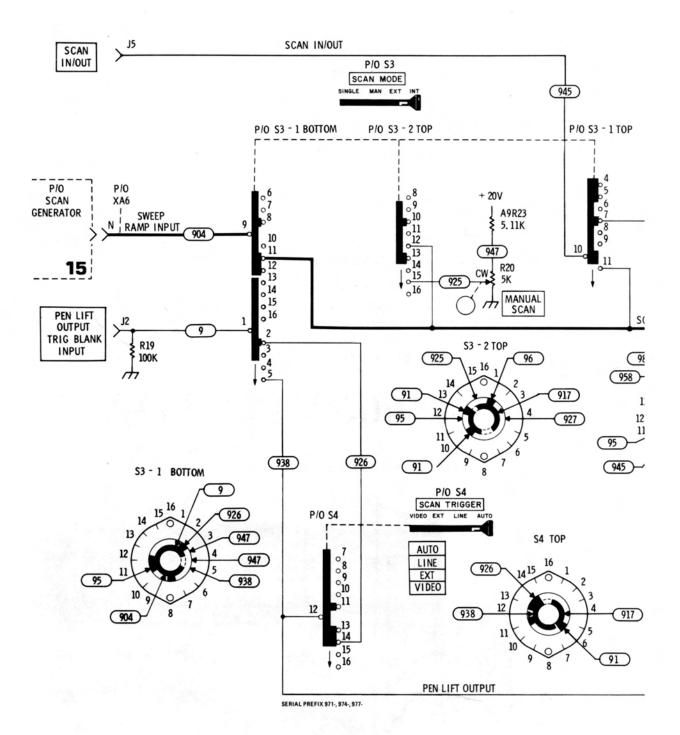
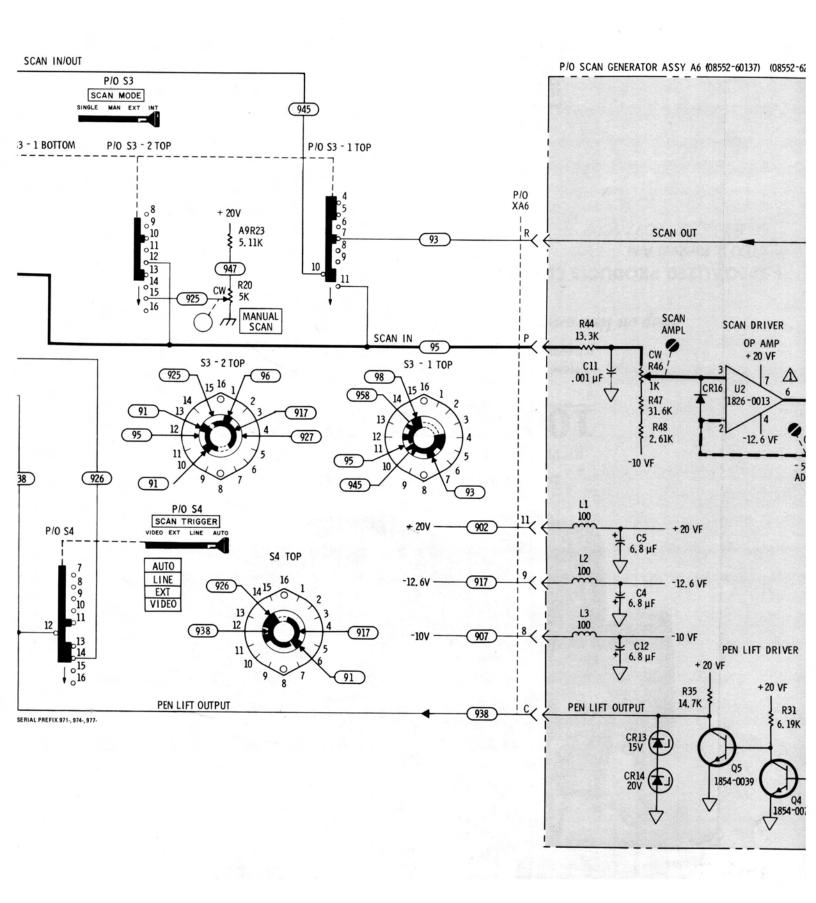




Figure 8-44. P/O Scan Generator A6 Component Identification

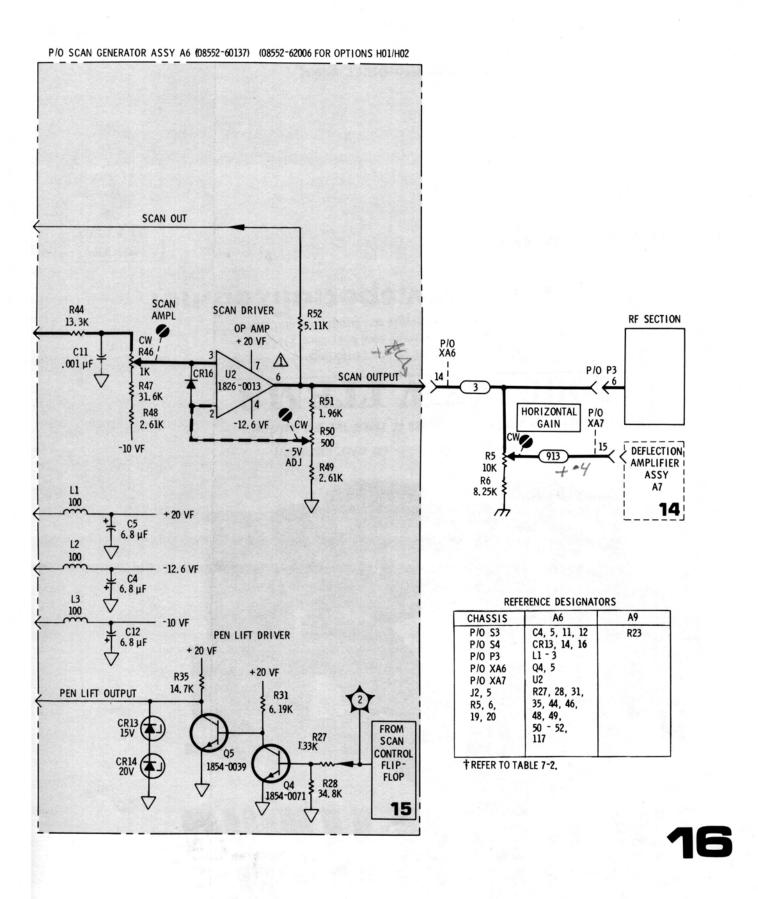


Figure 8-45. Scan Driver and Pen Lift Driver

Service Model 8552B

SERVICE SHEET 17

It is assumed that the DISPLAY UNCAL lamp is operating erratically or not at all and that the adjustment procedure in paragraph 5-41 of Section V will not correct the problem.

TROUBLESHOOTING PROCEDURE

When a malfunction has been isolated to the analogic light driver or switching matrix, the Power Supply Assembly should be removed and reinstalled using the extender board to provide access to components in the light driver circuit.

EQUIPMENT REQUIRED

ANALOGIC THRESHOLD AND LIGHT DRIVER CIRCUIT

The RF Section DISPLAY UNCAL light illuminates when the SCAN WIDTH, BANDWIDTH, IF Section SCAN TIME PER DIVISION and VIDEO FILTER switches are set at any combination of positions which do not permit accurate calibration of the analyzer. The DISPLAY UNCAL lamp is caused to illuminate by a simulated signal and has no actual connection to the signal processing circuits.

The SCAN TIME switch, the SCAN WIDTH switch, BANDWIDTH switch, and VIDEO FILTER switch all have wafers that are devoted exclusively to the analogic function. These switches control resistive networks that are connected from the -10 Vdc supply to the inputs of the analogic threshold and light driver circuit. In the SCAN WIDTH PER DIVISION mode of operation, these resistive networks are in parallel. At any time that the total resistance between the -10 Vdc supply and either input to the analogic circuit is low enough to bias Q24 or Q27 into conduction the light driver is enabled.

In the preset scan mode of operation only the SCAN TIME PER DIVISION switch and the VIDEO FILTER switch control the analogic circuit.

In the ZERO scan mode the analogic circuit is inoperative. (The VIDEO FILTER switch is still in the circuit but cannot, by itself, bias Q24 into conduction.)

TEST PROCEDURE

The voltmeter should read about +580 mVdc — DISPLAY UNCAL lamp off.

Place VIDEO FILTER switch in 10 kHz position. Meter should read about +10 mVdc — DISPLAY UNCAL lamp on. Return VIDEO FILTER to OFF.

Place SCAN TIME PER DIVISION switch in 0.5 MILLISECOND position. Meter should read about -2.4 volts — DISPLAY UNCAL lamp on.

If meter readings are correct but DISPLAY UNCAL does not illuminate, check Q22, Q24, Q26, the lamp, and associated components.

If voltages are incorrect, check switches, resistors, wiring, CR17, CR18, etc.

1b. Connect the HP 3440A/3443A to TP B (Q27-b) and set the Analyzer controls as initially set in test 1-a. Meter should read about +265 mVdc — DISPLAY UNCAL off.

Place VIDEO FILTER switch in the 10 kHz position. Meter should read about +50 mVdc — DIS-PLAY UNCAL on.

Place VIDEO FILTER switch in the 100 Hz position. Meter should read about -163 mVdc — DIS-PLAY UNCAL on.

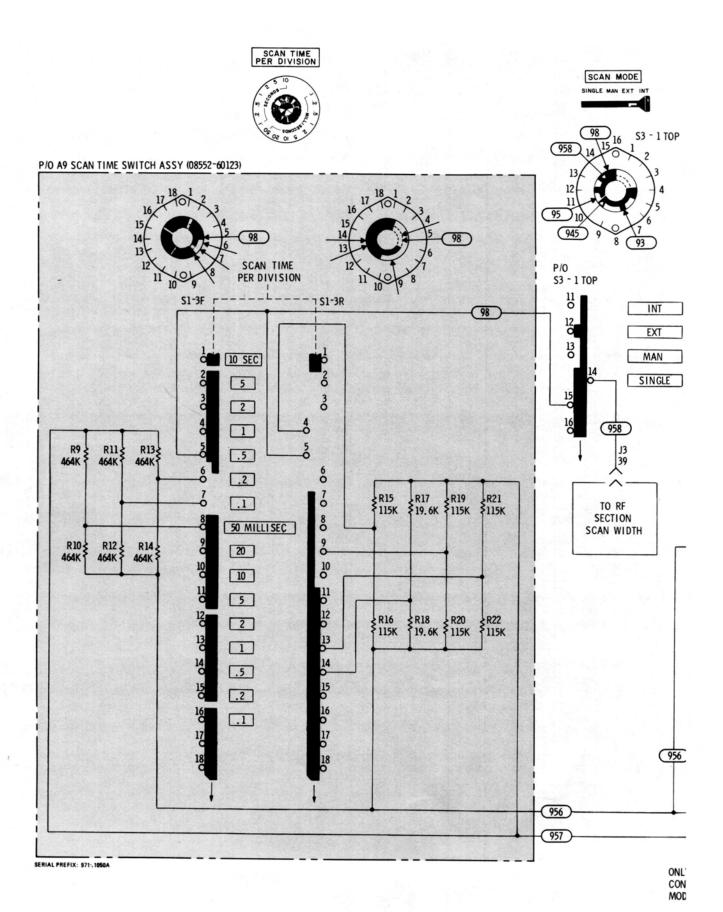
Place VIDEO FILTER switch in the 10 Hz position. Meter should read about -300 mVdc — DIS-PLAY UNCAL on.

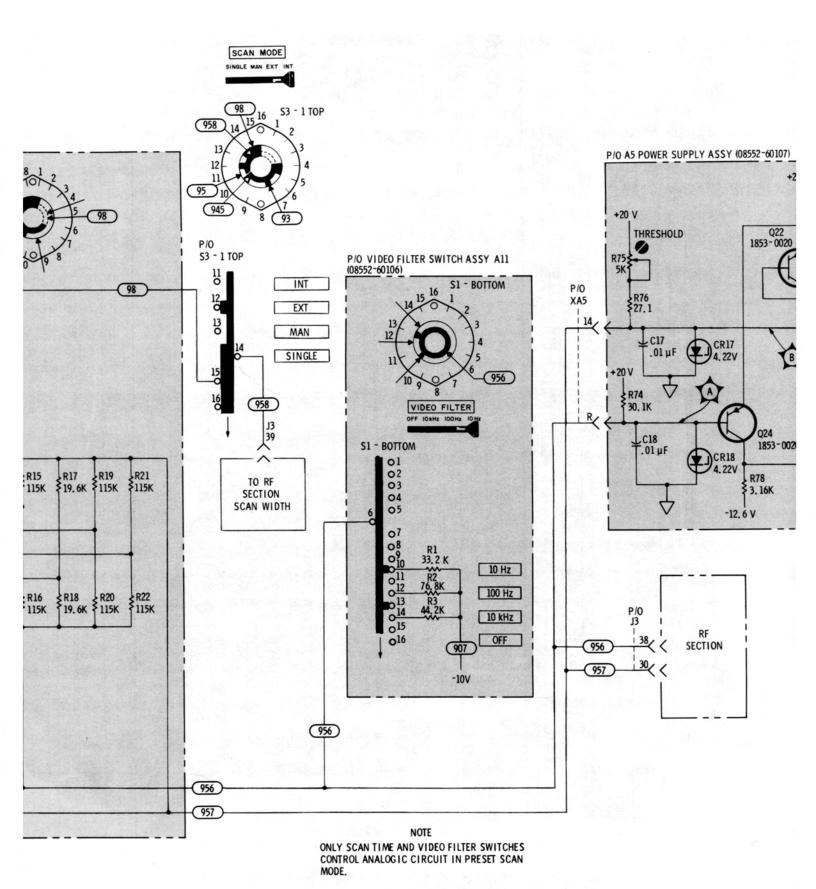
Return VIDEO FILTER switch to OFF.

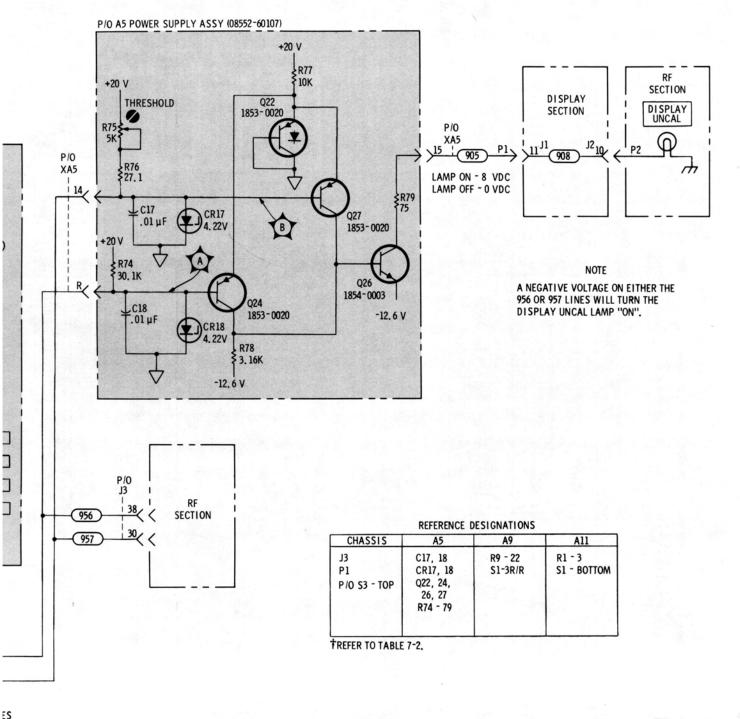
Place SCAN TIME PER DIVISION switch to 0.5 MILLISECOND. Meter should read about -2.0 volts — DISPLAY UNCAL on. Return SCAN TIME PER DIVISION switch to 1 MILLISECOND.

Place BANDWIDTH switch to 3 kHz position. Meter reads approximately -58 mVdc — DISPLAY UNCAL on. Return BANDWIDTH switch to 10 kHz position.

If readings are correct but DISPLAY UNCAL does not illuminate, check Q27, the lamp, and associated components.


If readings are incorrect, check switches, resistors, wiring, etc.


NOTE


A further aid to troubleshooting is Table 5-3 of Section V. Using the table in conjunction with the schematic should aid in localizing cause of malfunction to specific components.

A5 1, A 15, S

Figure 8-46. P/O Power Supply A5 Component Identification

17

Service Model 8552B

SERVICE SHEET 18

It is assumed that the 30 MHz signal at the CAL OUTPUT jack is out of tolerance (and cannot be brought into tolerance by performing procedures specified in paragraph 5-40 of Section V) or missing.

TROUBLESHOOTING PROCEDURE

When it has been determined that the 30 MHz CAL OUTPUT signal is out of tolerance or missing the Scan Generator Assembly A6 should be removed from the frame and reinstalled on the extender board to provide access to components.

EQUIPMENT REQUIRED

SERVICE KIT			. H	IP 11592A
DIGITAL VOLTMETER		HP	344	0A/3443A
VOLT-OHM-AMMETER				HP 412A

CONTROL SETTINGS

Any

30 MHz CALIBRATION OSCILLATOR

Q17 and associated components comprise a simple, crystal controlled oscillator designed to provide a stable, 30 MHz, -30 dBm signal. The signal and its harmonics are used to calibrate and check the analyzer. Q18 provides temperature compensation.

TEST PROCEDURE 1

Use the ohmmeter and digital voltmeter to check the oscillator. After repairing the circuit, adjust the oscillator by performing the procedures in paragraph 5-40 of Section V.

2 LINEAR AMPLIFIER COMPENSATION SELECTOR S1-R1

RF connections to J3 pin 7 and 8 are part of an amplifier compensation programming circuit for 10 dB steps of INPUT ATTENUATION control when the analyzer is operated in the LINEAR mode. Refer to Service Sheets 12 and 13 for detailed circuit description.

INDEX LIGHT SELECTOR WAFER

Index light selection wafer on the RF Section IN-PUT ATTENUATION control selects the index light associated with the LOG REF LEVEL/ LINEAR SENSITIVITY control in the analyzer IF Section. In LOG mode, the selected index lamp is opposite the scale factor on the LOG REF LEVEL control that corresponds to full-scale deflection on the display. In LINEAR mode, the selected index light is opposite the LINEAR SENSITIVITY volts per division scale factor. Lights DS1 through DS6 provide a moveable index point, positioned by the RF Section INPUT ATTENUATION control, thus the analyzer's amplitude calibration is maintained for any INPUT ATTENUATION control setting.

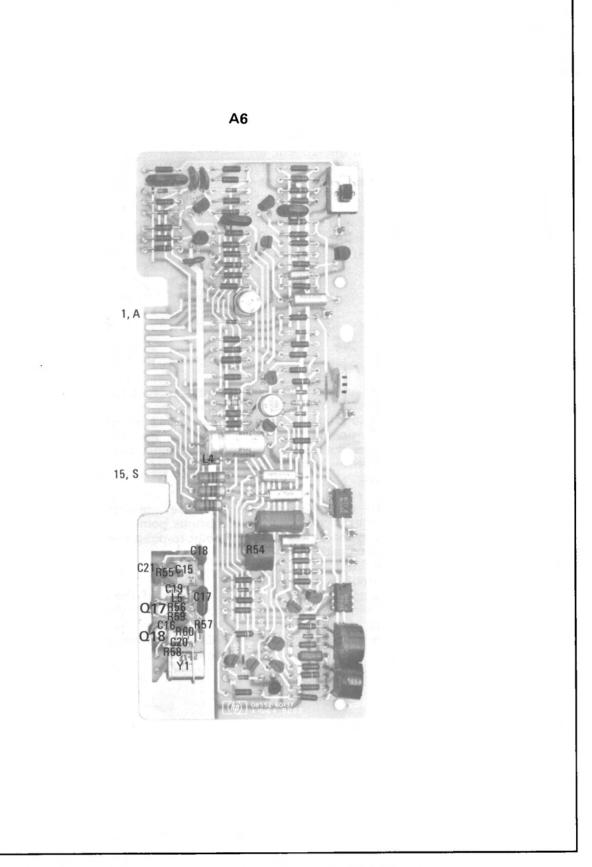
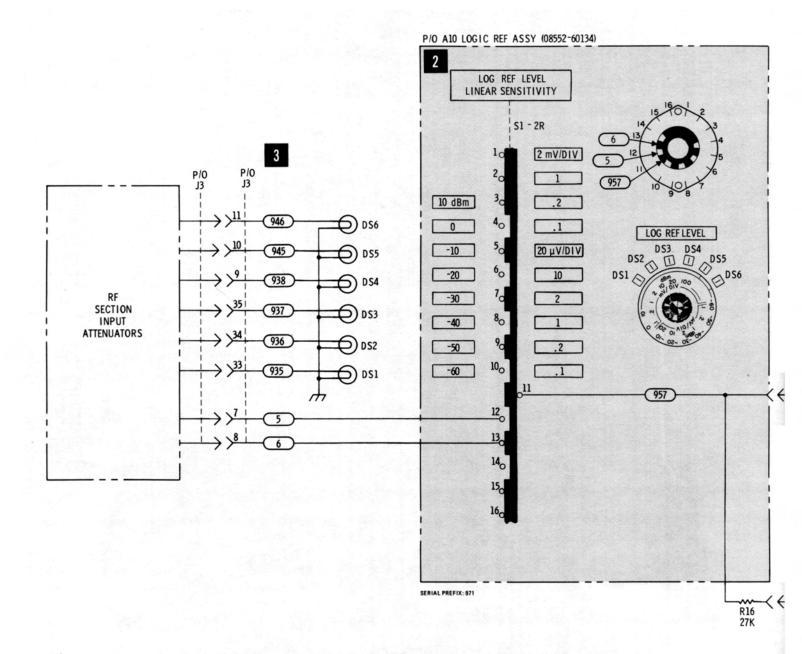
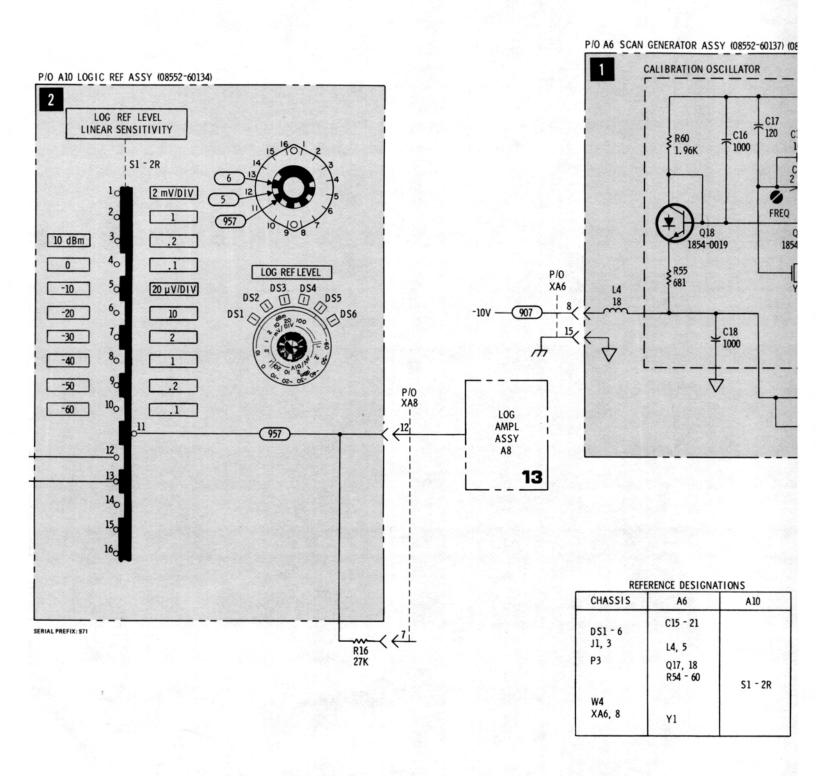
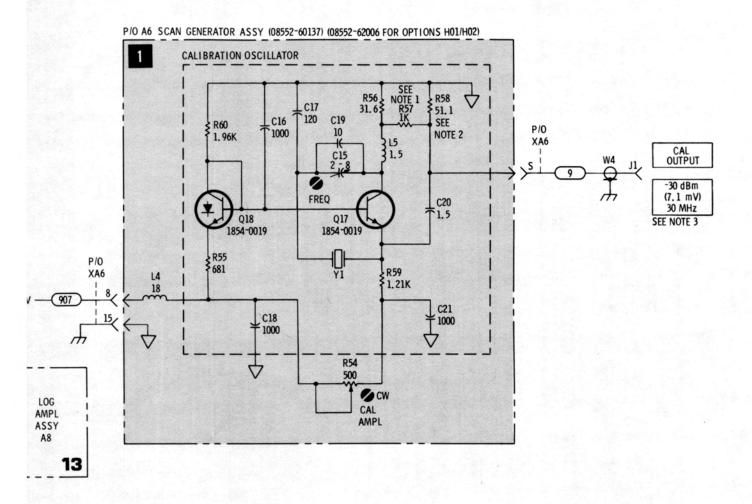





Figure 8-48. P/O Scan Generator A6 Component Identification

REFERENCE	DESIGNATIONS	:

	KENCE DESIGNA	10113
CHASSIS	A6	A10
DS1 - 6	C15 - 21	
J1, 3	L4, 5	
P3	Q17, 18	
	R54 - 60	S1 - 2R
W4		
XA6, 8	Y1	
		Association and

NOTES:

- 1. R57 IS 1.1K OHMS FOR OPTIONS H01/H02.
- 2. R58 IS 75 OHMS FOR OPTIONS H01/H02.
- CHANGE 7.1 mV TO 8.7 mV FOR OPTIONS H01/H02.

18

Figure 8-49. Reference Oscillator and LOG REFERENCE Index Light Circuit

SERVICE SHEET 19

It is assumed that the -12.6 volt, -100 volt, and +100 volt inputs from the display unit are present and that one or more of the outputs (-12.6 volts, -10 volts, and +20 volts) is missing or out of tolerance.

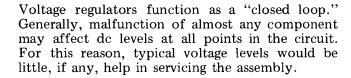
TROUBLESHOOTING PROCEDURE

When trouble has been isolated in the -10 Vdc or +20 Vdc regulators, the Power Supply assembly A5 should be removed and reinstalled on the extender board to provide access to components.

EQUIPMENT REQUIRED

CONTROL SETTINGS Any

1 VOLTAGE REGULATOR


The +20 and -10 volt regulators are conventional voltage regulation circuits. In each of them, a voltage divider from the output to ground is used as a sensing circuit to provide one input to a comparison amplifier. The other input to the comparison amplifier is a reference level established by diode clamping circuits.

When the current requirements of the external circuit increases, the regulated output voltage will decrease and cause a reduction in the dc input to the comparison amplifier. The comparison amplifier detects the unbalanced condition between its two inputs and provides an output to change the operating bias of the control amplifier. The control amplifier then causes the series regulator to conduct more heavily, providing more current to the external circuit to allow the voltage to return to the proper level.

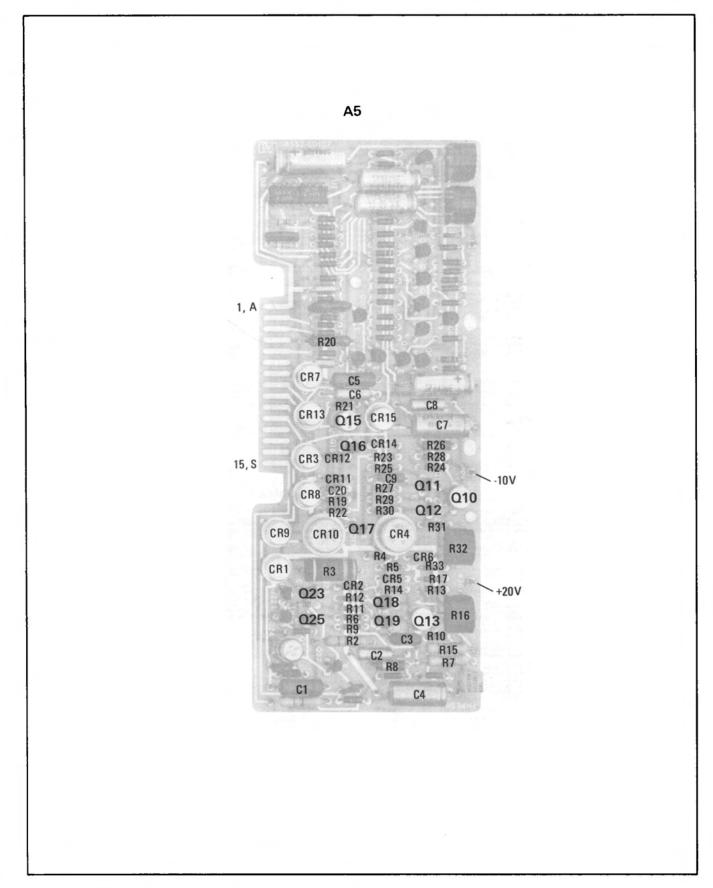
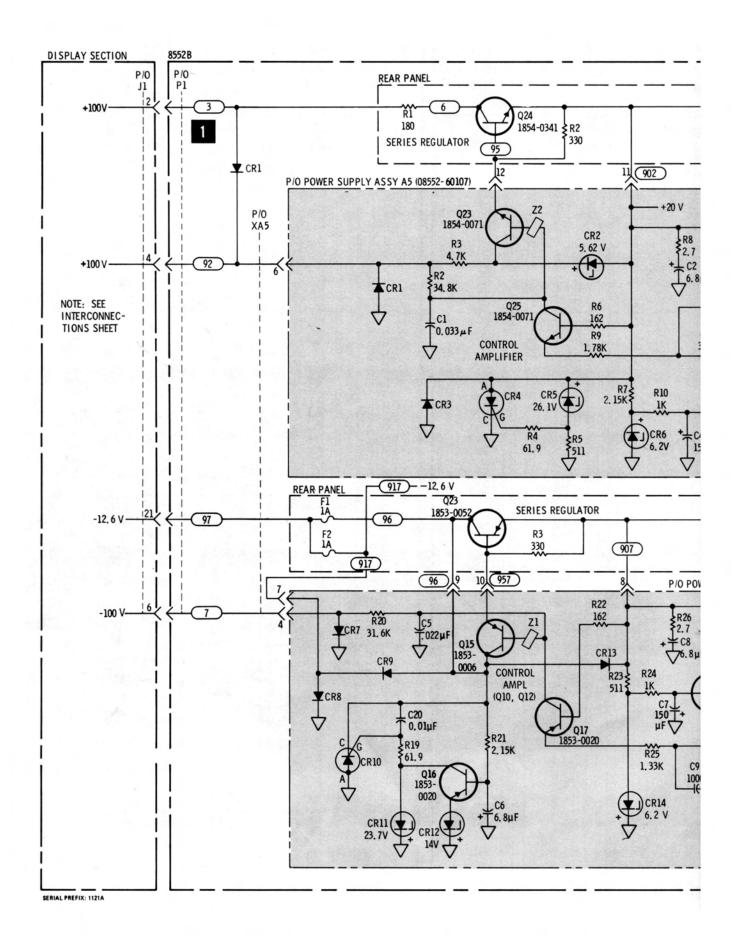
The series regulator acts like a variable resistance in series with the power supply output. When the external circuit requires more current (as evidenced by a decrease in output voltage) the series regulator is caused to present less impedance to the current flow.

The Silicon Control Rectifiers CR4 and CR10 act as "crowbar" protectors to protect external circuits in the event of a shorted series regulator. Should a series regulator short, the output voltage would be limited only by the output of the rectifier and the current in the external circuit would increase in proportion to the increase in output voltage. When this occurs, the SCR's are turned on and they short out the regulator output voltage. The SCR's remain in conduction until the regulator output voltage has reached zero.

TEST PROCEDURE 1

The HP 3440A/3443A should be used to check for the presence or absence of dc levels at obvious points. The HP 412A should be used for point-to-point resistance measurements.

Generally, if the output is completely missing or consistently high, the series regulator should be checked first for an open or shorted condition. Also, if voltage is high the SCR crowbar should be checked.

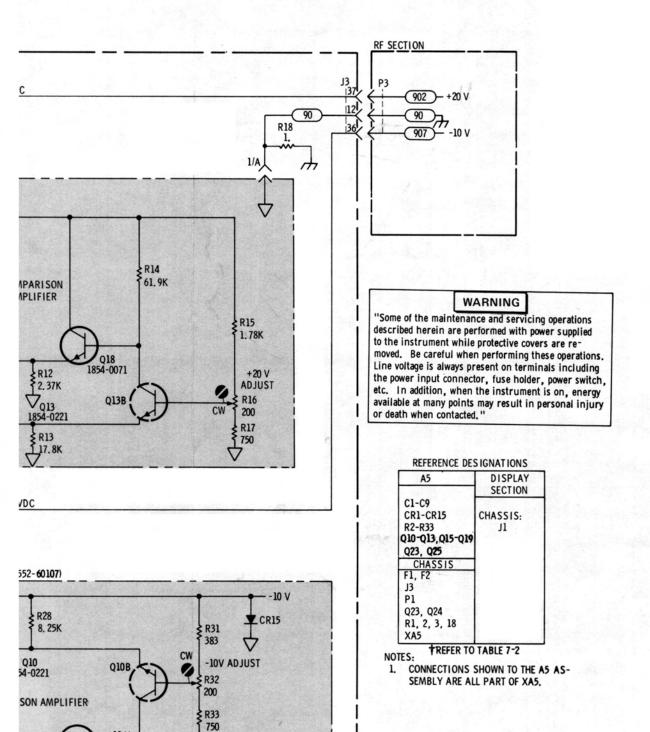


Figure 8-50. P/O Power Supply A5 Component Identification

- -10 V Q12 1853-0020

> R30 21, 5K

19

Figure 8-51. Power Supply

HEWLETT · PACKARD

ELECTRONIC INSTRUMENTATION SALES AND SERVICE

UNITED STATES, CENTRAL AND SOUTH AMERICA, CANADA

UNITED STATES

ALABAMA 8290 Whitesburg Dr., S.E. P.O. Box 4207 Hunstville 35802 Tel: (205) 881-4591 TWX: 810-726-2204

ARIZONA 2336 E. Magnolia St. Phoenix 85034 Tel: (602) 244-1361 TWX: 910-951-1330

2424 East Aragon Rd. Tucson 85706 Tel: (602) 889-4661

CALIFORNIA 1430 East Grangethorpe Ave. Fullerton 92631

3939 Lankershim Boulevard North Hollywood 91604 Tel: (213) 877-1282 TWX: 910-499-2170

6515 Arizona Place Los Angeles 90045 Tel: (213) 776-7500 TWX: 910-328-6148

1101 Embarcadero Road Palo Alto 94303 Tel: (415) 327-6500 TWX: 910-373-1280

2220 Watt Ave. Sacramente 95825 Tel: (916) 482-1463 TWX: 910-367-2092

9606 Aero Drive P.O. Box 23333 San Diego 92123 Tel: (714) 279-3200 TWX: 910-335-2000

COLORADO 5600 South Ulster P Englewood 80110 Tel: (303) 771-3455 TWX: 910-935-0705

CONNECTICUT 12 Lunar Drive New Haven 06525 Tel: (203) 389-6551 TWX: 710-465-2029

FLORIDA P O. Box 24210 2806 W. Oaktand Park Blvd. Ft. Lauderdale 33307 Tel: (305) 731-2020 TWX: 510-955-4099

P.O. Box 13910 6177 Lake Ellenor Dr. Orlando, 32809 Tel: (305) 859-2900 TWX: 810-850-0113

GEORGIA P.O. Box 28234 450 Interstate North Atlanta 30328 Tel: (404) 436-6181 TWX: 810-766-4890

HAWA!I 2875 So. King Street Honolulu 96814 Tel: (808) 955-4455

ILLINOIS 5500 Howard Street Skokie 60076 Tel: (312) 677-0400 TWX: 910-223-3613

INDIANA 3839 Meadows Drive Indianapolis 46205 Tel: (317) 546-4891 TWX: 810-341-3263

IOWA 1902 Broadway lowa City 52240 Tel: (319) 338-9466 Night: (319) 338-9467

LOUISIANA P. O. Box 840 3239 Williams Boulevard Kenner 70062 Tel: (504) 721-6201 TWX: 810-955-5524 MARYLAND 6707 Whitestone Road Baltimore 21207 Tel: (301) 944-5400 TWX: 710-862-9157

20010 Century Blvd. Germantown 20767 Tel: (31) 428-0700 P.O. Box 1648 2 Choke Cherry Road Rockville 20850 Tel: (301) 948-6370 TWX: 710-828-9684

MASSACHUSETTS 32 Hartwell Ave. Lexington 02173 Tel: (617; 861-8960 TWX: 710-326-6904

MICHIGAN 23855 Research Drive Farmington 48024 Tel: (313) 476-6400 TWX: 810-242-2900

MINNESOTA 2459 University Avenue St. Paul 55114 Tel: (612) 645-9461 TWX: 910-563-3734

MISSOURI 11131 Colorado Ave. Kansas City 64137 Tel: (816) 763-8000 TWX: 910-771-2087

148 Weldon Parkway Maryland Heights 63043 Tel: (314) 567-1455 TWX: 910-764-0830

*NEVADA Las Vegas Tel: (702) 382-5777

NEW JERSEY W. 120 Century Rd. Paramus 07652 Tel: (201) 265-5000 TWX: 710-990-4951

NEW MEXICO

Station C 6501 Lomas Boulevard N.E. Albuquerque 87108 Tel: (505) 265-3713 TWX: 910-989-1665

156 Wyatt Drive Las Cruces 88001 Tel: (505) 526-2485 TWX: 910-983-0550

NEW YORK NEW YORK 6 Automation Lane Computer Park Albany 12205 Tel: (518) 458-1550 TWX: 710-441-8270

1219 Campville Road Endicett 13760 Tel: (607) 754-0050 TWX: 510-252-0890

New York City Manhattan, Bronx Contact Paramus, NJ Office Tel: (201) 265-5000 Brooklyn, Queens, Richmond Contact Woodbury, NY Office Tel: (516) 921-0300

82 Washington Street Poughkeepsie 12601 Tel: (914) 454-7330 TWX: 510-248-0012 39 Saginaw Drive Rechester 14623 Tel: (716) 473-9500 TWX: 510-253-5981

5858 East Molloy Road Syracuse 13211 Tel: (315) 454-2486 TWX: 710-541-0482

1 Crossways Park West Woodbury 11797 Tel: (516) 921-0300 TWX: 510-221-2168

NORTH CAROLINA P.O. Box 5188 1923 North Main Street High Point 27262 Tel: (919) 885-8101 TWX: 510-926-1516

SOUTH CAROLINA 6941-0 N. Trenholm Road **Columbia** 29260 Tel: (803) 782-6493

OHIO 16500 Sprague Road Cleveland 44130 Tel: (216) 243-7300 Night: 243-7305 TWX: 810-423-9431

330 Progress Rd. Dayton 45449 Tel: (513) 859-8202 TWX: 810-459-1925 6665 Busch Blvd. Columbus 43229 Tel: (614) 846-1300

OKLAHOMA P.O. Box 32008 Oklahoma City 73132 Tel: (405) 721-0200 TWX: 910-830-6862

OREGON 17890 SW Boones Ferry Road Tualatin 97062 Tel: (503) 620-3350 TWX: 910-467-8714

PENNSYLVANIA 111 Zeta Drive Pittsburgh 15238 Tel: (412) 782-0400 Night: 782-0401 TWX: 710-795-3124

1021 8th Avenue King of Prussia Industrial Park King of Prussia 19406 Tel: (215) 265-7000 TWX: 510-660-2670

RHODE ISLAND 873 Waterman Ave. East Providence 02914 Tel: (401) 434-5535 TWX: 710-381-7573

*TENNESSEE Memphis Tel: (901) 274-7472 TEXAS P.O. Box 1270 201 E. Arapaho Rd. Richardson 75080 Tel: (214) 231-6101 TWX: 910-867-4723

P.O. Box 27409 6300 Westpark Drive Suite 100 Houston 77027 Tel: (713) 781-6000 TWX: 910-881-2645 231 Billy Mitchell Road San Antonio 78225 Tel: (512) 434-4171 TWX: 910-871-1170

UTAH 2890 South Main Street Salt Lake City 84115 Tel: (801) 487-0715 TWX: 910-925-5681 TWX: 910-925-5681 VIRGINIA P.O. Box 9854 2914 Hungary Springs Road Richmend 23228 Fel: (804) 285-3431 TWX: 710-956-0157

WASHINGTON Bellefield Office Pk, 1203 - 114th SE Bellevue 98004 Tel: (206) 454-3971 TWX: 910-443-2446

*WEST VIRGINIA Charleston Tel: (304) 345-1640 WISCONSIN 9431 W. Beloit Road Suite 117 Milwaukee 53227 Tel: (414) 541-0550

FOR U.S. AREAS NOT LISTED: Contact the regional office near-est you. Atlanta, Georgia... North Hollywood, Callfornia... Paramus, New Jersey... Skokle, Illinois. Their complete ad-dresses are listed above.

CENTRAL AND SOUTH AMERICA

ARGENTINA
Hewlett-Packard Argentina
S.A.C.e.!
Lavalle 1171 - 3°
Buenos Aires
Tel: 35-0436, 35-0627, 35-0341
Telex: 012-1009
Cable: HEWPACK ARG

BOLIVIA Stambuk & Mark (Bolivia) LTDA, Av. Mariscal, Santa Cruz 1342 La Paz Tel: 40626, 53163, 52421 Telex: 3550014 Cable: BUKMAR

BRAZIL
Hewlett-Packard Do Brasil
I.E.C. Ltda.
Rua Frei Caneca 1119
01307-Sao Paulo-SP
Tel: 288-7111, 287-5858
Telex: 309151/2/3
Cable: HEWPACK Sao Paulo

Hewlett-Packard Do Brasil I.E.C. Ltda. T.E.C. Ltda.
Praca Dom Feliciano, 78
90000-Porto Alegre-RS
Rio Grande do Sul (RS) Brasil
Tel: 25-8470
Cable: HEWPACK Porto Alegre Hewlett-Packard Do Brasil I.E.C. Ltda. Rua da Matriz, 29 2000-Rio de Janeiro-GB Tel: 266-2643 Telex: 210079 HEWPACK Cable: HEWPACK Rio de Janeiro

CHILE CHILE Héctor Calcagni y Cia, Ltda. Casilla 16.475 Santiago Tel: 423 96 Cable: CALCAGNI Santiago

COLOMBIA Instrumentación Henrik A. Langebaek & Kier S.A. Carrera 7 No. 48-59 Apartado Aéreo 6287 Begota, 1 D.E. Tel: 45-78-06, 45-55-46 Cable: AARIS Bogota Telex: 444001NSTCO

COSTA RICA Lic. Alfredo Gallegos Gurdián Apartado 10159 San José Tel: 21-86-13 Cable: GALGUR San José ECUADOR Laboratorios de Radio-ingenieria Calle Guayaquil 1246 Post Office Box 3199 Quito Tel: 212-496; 219-185 Cable: HORVATH Quito

EL SALVADOR
Electronic Associates
Apartado Postal 1682
Centro Comercial Gigante
San Salvador, El Salvador C.A.
Paseo Escalon 4669-4° Piso
Tel: 23-44-60, 23-32-37
Cable: ELECAS

GUATEMALA IPESA IPESA Avenida La Reforma 3-48, Zona 9 Guatemala Tel: 63627, 64736 Telex: 4192 TELTRO GU

MEXICO Hewiett-Packard Mexicana, S.A. de C.V. Torres Adalid No. 21, 11° Piso Col. del Valle

NICARAGUA Roberto Terán G. Apartado Postal 689 Edificio Terán Managua managua Tel: 3451, 3452 Cable: ROTERAN Managua

PANAMA Electrónico Balboa, S.A. P.O. Box 4929 Ave. Manuel Espinosa No. 13-50 Bidg. Alina
Panama City
Tel: 230833
Telex: 3481103, Curunda, Canal Zone Cable: ELECTRON Panama City

PARAGUAY
Z. J. Melamed S.R.L.
Division: Aparatos y Equipos
Medicos
Division: Aparatos y Equipos Division: Aparatos y Equipo Scientificos y de Investigacion P.O. Box 676 Chile, 482, Edificio Victoria Asuncion Tel: 4-5069, 4-6272 Cable: RAMEL

PERU Compañia Electro Médica S.A. Ave. Enrique Canaual 312 San Isidro Casilla 1030 Lima Tel: 22-3900 Cable: ELMED Lima

PUERTO RICO
San Juan Electronics, Inc.
P.O. 80x 5167
Ponce de Leon 154
Pda. 3-PTA de Tierra
San Juan 093-75-3342, 722-3342
Cable: SATRONICS San Juan
Telex: SATRON 3450 332

URUGUAY Pablo Ferrando S.A. Comercial e Industrial Avenida Italia 2877 Casilla de Correo 370

VENEZUELA Hewlett-Packard de Venezuela C.A. C.A. Apartado 50933 Apartado busso Edificio Segre Tercera Transversal Los Ruices Norte Caracas 107 Tel: 35-00-11 Telex: 21146 HEWPACK Cable: HEWPACK Caracas

FOR AREAS NOT LISTED, CONTACT: Hewlett-Packard Hewlett-Packard
Inter-Americas
3200 Hillview Ave.
Palo Alto, California 94304
Tei: (415) 493-1501
TWX: 910-373-1267
Cable: HEWPACK Palo Alto
Telex: 034-8300, 034-8493

CANADA

ALBERTA Hewlett-Packard (Canada) Ltd. 11748 Kingsway Ave. Edmonton TSC 0X5 Tel: (403) 452-3670 TWX: 610-831-2431

Hewlett-Packard (Canada) Ltd. 915-42 Avenue S.E. Calgary T2G 1Z1 Tel: (403) 262-4279

BRITISH COLUMBIA Hewlett-Packard (Canada) Ltd. 837 E. Cordova Street Vancouver V6A 3R2 Tel: (604) 254-0531 TWX: 610-922-5059

MANITOBA Hewlett-Packard (Canada) Ltd. 513 Century St. St. James St. James Winnipeg R3H 0L8 Tel: (204) 786-7581 TWX: 610-671-3531

NOVA SCOTIA Hewlett-Packard (Canada) Ltd. 2745 Dutch Village Rd. Halifax B3L 4G7 Tel: (902) 455-0511 TWX: 610-271-4482

ONTARIO
Hewlett-Packard (Canada) ttd.
1785 Woodward Dr.
Ottawa K2C 0P9
Tel: (613) 225-6530
TWX 610-562-8968

Hewlett-Packard (Canada) Ltd. 6877 Goreway Drive Mississauga L4V 1L9 Tel: (416) 678-9430 TWX: 610-492-4246

QUEBEC Hewielt-Packard (Canada) Ltd. 275 Hymus Boulevard Pointe Claire H9R 107 Tel: (518) 561-5520 TWX: 610-422-3022 Telex: 05-821521 HPCL Hewlett-Packard (Canada) Ltd. 2376 Galvani Street Ste-Foy GIN 4G4 Tel: (418) 688-8710

FOR CANADIAN AREAS NOT LISTED: Contact Hewlett-Packard (Can-ada) Ltd. in Mississauga

HEWLETT · PACKARD

ELECTRONIC INSTRUMENTATION SALES AND SERVICE

EUROPE, AFRICA, ASIA, AUSTRALIA **EUROPE**

AUSTRIA Hewlett-Packard Ges.m.b.H Handelska 52/3 P.O. Box 7 A-1205 Vienna Tel: (0222) 33 66 06 to 09 Cable: HEWPAK Vienna Telex: 75923 hewpak a

BELGIUM Hewlett-Packard Benelux S.A./N.V. Avenue de Col-Vert, 1, (Groenkraaglaan) B-1170 Brussels Tel: (02) 72 22 40 Cable: PALOBEN Brussels Telex: 23 494 paloben bru

DENMARK Hewlett-Packard A/S Datavej 38 DK-3460 Birkered Tel: (01) 81 66 40 Cable: HEWPACK AS Telex: 156 40 hp as

Hewlett-Packard A/S Torvet 9 DK-8600 SHkeberg Tel: (06) 82-71-66 Telex: 166 40 hp as Cable: HEWPACK AS

FINLAND Hewlett-Packard Oy Bulevard: 26 P.O. Box 12185 SF-00120 Melsimbi 12 Tel: (90) 13730 Cable: HEWPACKOY Helsinki Telex: 12-15363 hel

FRANCE
Hewlett-Packard France
Quartier de Courtaboeuf
Botte Postale No. 6
F-91401 Orsay
(-1) 907 78 25
Cable: HEWPACK Orsay
Telex: 60048

Hewlett-Packard France Agence Regional 4 Quai des Etroits F-69321 Lyon Cedex 1 Tel. (78) 42 63 45 Cable: HEWPACK Lyon Telex: 31617

Hewlett-Packard France Zone Aéronautique Avenue Clement Ader F-31770 Colomiers Tel: (61) 86 81 55 Telex: 51957

Hewlett-Packard France Agence Régionale Boulevard Ferato-Gamar Boite Postale No. 11 F-13100 Luynes Tel: (47) 24 00 66 Telex: 41770

Hewlett-Packard France Agency Régionale 63, Avenue de Rochester F-35000 Rennes Tel: (99) 36 33 21 Telex: 74912 F

Hewlett-Packard France Agence Régionale 74. Allée de la Robertsau F-67000 Strasbourg Tel: (88) 35 23 20/21 Telex: 89141 Cable: HEWPACK STRBG

Cable: HEWPACK STRBG
GERMAN FEDERAL
REPUBLIC
Hewlett-Packard GmbH
Vertriebszentrale Frankfurt
Bernerstrass 117
Postiach 560 150
D-6000 Frankfurt 56
Tel: (0611) 50 04-1
Cable: HEWPACKSA Frankfurt
Telex: 41 32 49 fra Hewlett-Packard GmbH Vertriebsbüro Böblinge herrenbergerstrasse 110 D-7030 Böblingen, Württe Tel: (07031) 66 72 87 Cable: HEPAK Böblingen Telex: 72 65 739 bbn

Hewlett-Packard GmbH Vertriebsbüro Düsseldorf

Vogelsanger Weg 38 D-4000 Büsselderf Tel: (0211) 63 80 31/38 Telex: 85/86 533 hpdd d

Hewlett-Packard GmbH Vertriebsbüro Hamburg Wendenstr. 23 D-2000 Hamburg 1 Tel: (040) 24 13 93 Cable: HEWPACKSA Ham Telex: 21 63 032 hphh d

Hewiett-Packard GmbH Vertriebsbüro Hannover Meilendorfer Strasse 3 D-3000 Hannover-Kleefeld Tel: (0511) 55 96 26

Hewlett-Packard GmbH Vertriebsburo Nuremberg Hersbruckerstrasse 42 D-8500 Nuremberg Tel: (0911) 57 10 66 Telex: 623 860

Hewlett-Packard GmbH Vertriebsbüro München Unterhachinger Strasse 28 ISAR Center D-8012 Ottobrunn Tel: (089) 601 30 61/7 Telex: 52 49 85 Cable: HEWPACKSA Müchen

(West Berlin) Hewlett-Packard GmbH Vertriebsbüro Berlin Wilmersdorfer Strasse 113/114 D-1000 Berlin W. 12 Tel: (030) 3137046 Telex: 18 34 05 hpbin d

GREECE Kostas Karayannis

18, Ermou Street GR-Athens 126 Tel: 8080337, 8080359, 8080429, 8018693 Cable: RAKAR Athens Telex: 21 59 62 rkar gr

Hewlett-Packard S.A. Mediterranean & Middle East Operations 35 Kolokotroni Street Platia Kefallarion Gr-Kifissia-Athens Tel: 8080337, 8080358, 8080429, 8018693

IRELAND Hewlett-Packard Ltd. 224 Bath Road GB-Sleugh, SL1 4 DS, Bucks Tel: Slough (0753) 33341 Cable: HEWPIE Slough Telex: 848413

Hewlett-Packard Ltd. The Graftons Stamford New Road Altrincham, Cheshire Tel: (061) 928-9021 Telex: 668068

TRALY Hewlett-Packard Italiana S.p.A. Via Amerigo Vespucci 2 1-20124 Milan Tel: (2) 6251 (10 lines) Cable: HEWPACKIT Milan Telex: 32046

Hewlett-Packard Italiana S.p.A Vicolo Pastori, 3 (-35100 Padeva Tel: (49) 66 40 62 Telex: 32046 via Milan

Hewlett-Packard Italiana SPA Via Medaglie d'Oro, 2 1-56100 Pisa Tel: (050) 500022

Hewlett-Packard Italiana S.p.A Via Colli, 24 I-10129 Turin Tel: (11) 53 82 64 Telex: 32046 via Milan

LUXEMBURG Hewlett-Packard Benelux Hewlett-Packard Benelux S.A./N.V. Avenue de Col-Vert, 1, (Groenkraaglaan) B-1170 Brussefs Tel: (03/02) 72 22 40 Cable: PALOBEN Brussels Telex: 23 494

Hewlett-Packard Benelux/N./ Weerdestein 117 P.O. Box 7825 NL-Amsterdam, 1011 Tel: 5411522 Cable: PALOBEN Amsterdam Telex: 13 216 hepa ni

NORWAY Hewlett-Packard Norge A/S Nesveien 13 80x 149 N-1344 Haslum Tel: (02) 53 83 60 Telex: 15621 hpnas n

PORTUGAL
Telectra-Empresa Técnica de
Equipamentos Eléctricos S.a.r.l.
Rua Rodrigo da Fonseca 103
P.O. 80x 2531
P.Lisben 1
Tel: (19) 68 60 72
Cable: TELECTRA Lisbon
Telex: 1598

SPAIN Hewlett-Packard Española, S.A. Jerez No 8 E-Madrid 16 Tel: 458 26 00 Telex: 23515 hpe

Hewlett-Packard Española, S.A. Milanesado 21-23 E-Barcelena 17 Tel: (3) 203 62 00 Telex: 52603 hpbe e

Hewlett-Packard Espanola S.A. Av Ramon y Cajal, 1 Edificio Sevilla I, planta °9 E-Saville

SWEDEN
Hewlett-Packard Sverige AB
Enighetsvägen 1-3
Fack
S-161 20 Bremma 20
Tel: (08) 730 0550
Cable: MEASUREMENTS
Stockholm
Telex: 10721

Hewlett-Packard Sverige AB Hagakersgatan 9C S-431 41 Māladai Tel: (031) 27 68 00/01 Telex: Via Bromma

SWITZERLAND SWITZERLAND Hewlett Packard (Schweiz) AG Zürcherstrasse 20 P.O. Box 64 CH-9952 Schlieren Zurich Tel: (01) 98 18 21/24 Cable: HPAG CH Telex: 53933 hpag ch

Hewlett-Packard (Schweiz) AG 9, Chemin Louis-Pictet CH-1214 Vernier—Geneva Tel: (022) 41 4950 Cable: HEWPACKSA Geneva Telex: 27 333 hpsa ch

TURKEY
Telekom Engineering Bureau
Saglik Sok No. 15/1
Ayaspasa-Beyoglu
P.O. Box 437 Beyoglu
TR: Jstanbul
Tel: 49 40 40
Cable: TELEMATION Istanbul

UNITED KINGDOM Hewlett-Packard Ltd. 224 Bath Road 58-Sieegin, St.1 4 DS, Bucks Tel: Slough (0753) 33341 Cable: HEWPIE Slough Telex: 848413

Hewlett-Packard Ltd.
"The Graftons"
Stamford New Road
GB-Altrincham, Cheshire
Tel: (061) 928-9021
Telex: 668068

Hewlett-Packard, Ltd.
c/o Makro
South Service Wholesale Centre
Amber Way
Halesowen Industrial Estate
G8-Wercs.
Tel: Birmingham 7860 Hewlett-Packard Ltd's registered address for V.A.T. purposes

only: 70, Finsbury Pavement Lenden, EC2A1SX Registered No: 690597

SOCIALIST COUNTRIES PLEASE CONTACT: Hewlett-Packard Ges.m.b.H. Handelskal 52/3 P.O. 80x 7 A-1205 Vienna Ph: (0222) 33 66 06 to 09 Cable: HEWPACK Vienna Telex: 75923 hewpak a

ALL OTHER EUROPEAN
COUNTRIES CONTACT:
Hewlett-Packard S.A.
Rue du Bois-du-Lan 7
P.O. Box 85
CH-1217 Meyrin 2 Geneva

AFRICA, ASIA, AUSTRALIA

ANGOLA
Telectra-Empresa Tecnica
de Equipamentos Electricos
SARL
Rua de Barbosa, Rodrigues,
42-1°, Dr.
P.O. Box 6487
Luanda
Cable: TELECTRA Luanda

AUSTRALIA Hewlett- Packard Australia Pty. Ltd., 31-51 Joseph Street Victoria, 3130 Tel: 89 6351 Coble: HEWPARD Melbourne Telex: 31 024

Hewlett-Packard Australia Pty. Ltd. 31 Bridge Street Pymble, New South Wales, 2073 Tel: 449 6566

Cable: HEWPARD Sydney
Hewlett-Packard Australia
Pty. Ltd.
97 Churchili Road
Prespect 5082
South Australia
Tel: 44 8151
Cable: HEWPARD Adelaide

Hewlett-Packard Australia Pty. Ltd. Casablanca Buildings 196 Adelaide Terrace Perth, W.A. 6000 Tel: 25-6800 Cable: HEWPARD Perth

Hewlett-Packard Australia Pty. Ltd. 10 Woolley Street P.O. Box 191 Dicksen A.C.T. 2602 Tel: 49-8194 Cable: NEWPARD Canberra ACT

Hewiett-Packard Australia Pty. Ltd. 2nd Floor, 49 Gregory Terrace Brisbane, Queensland, 4000 Tel: 29 1544

CEYLON United Electricals Ltd. P.O. Box 681 50, Park St. Colombo 2 Tel: 26696 Cable: HOTPOINT Colombo

CYPRUS Kypronics 19 Gregorios &) P.O. Box 1152 Tel: 45628/29 Cable: KYPRONICS PANDEHIS ETHIOPIA
African Salespower & Agency
Private Ltd., Co.
P. O. Box 718
58/59 Cunningham St.
Addis Ababa
Tel: 12255
Cable: ASACO Addisababa

HONG KONG Schmidt & Co. (Hong Kong) Ltd. P.O. Box 297

INDIA Blue Star Ltd

Blue Star Ltd.
Kasturi Buildings
Jamshedji Tata Rd.
Bembay 400 020
Tel: 29 50 21
Telex: 3751
Cable: BLUEFROST

Prabhadevi Bombay 400 025 Tel: 45 78 87 Telex: 4093 Cable: FROSTBLUE

Blue Star Ltd. Band Box House Prabhadevi Bombay 400 025 Tel: 45 73 01 Telex: 3751 Cable: BLUESTAR

Blue Star Ltd. 14/40 Civil Lines Kampur 208 001 Tel: 6 88 82 Cable: BLUESTAR Blue Star, Ltd.
7 Hare Street
P.O. Box 506
Calcutta 700 001
Tel: 23-0131
Telex: 655
Cable: BLUESTAR

Blue Star Ltd.
Blue Star House,
34 Ring Road
Lajpat Nagar
Mew Delhi 110 024
Tel: 62 32 76 Telex: 2463 Cable: BLUESTAR

P.O. Box 297
Connalight Centre
39th Floor
Connaught Road, Central
Heag Kong
Tel: 240168, 232735
Telex: HK4766
Cable: SCHMIDTCO Hong Kong

Blue Star Ltd. Sahas 414/2 Vir Savarkar Marg Prabhadevi

Blue Star, Ltd. Blue Star House 11/11A Magarath F Bangalore 560 025 Bangalere 560 02 Tel: 55668 Telex: 430 Cable: BLUESTAR

Blue Star, Ltd. 1-1-117/1 1-1-117/1 Sarojini Devi Road Secundarahad 500 003 Tel: 7 63 91, 7 73 93 Cable: BLUEFROST Telex: 459

Biue Star, Ltd. 23/24 Second Line Beach Madras 600 001 Tel: 23954 Telex: 379 Cable: BLUESTAR

Cable: BLUESTAR
Blue Star, Ltd.
Nathraj Mansions
2nd Floor Bistupur
Jamshedpur 831 001
Tel: 38 04
Cable: BLUESTAR
Telex: 240

Ielex: 240
INDONESIA
Bah Bolon Trading Coy. N.V.
Djalah Merdeka 29
Bandung
Tel: 4915; 51560
Cable: ILMU
Telex: 08-809

IRAN
Multi Corp International Ltd.
Avenue Soraya 130
P.O. 80x 1212
JR. Teheran
Tel: 83 10 35-39
Cable: MultiTiCORP Tehran
Telex: 2893 MCI TN

Teles: 2893 MCI IN

ISRAEL
Electronics & Engineering
Div. of Motorola Israel Ltd.
17 Aminadav Street
Tal-Aviv
Tal: 38941 (3 lines)
Cable: 885TEL Tel-Aviv
Teles: 33569

JAPAN JAPAN
Yokogaw-Hewlett-Packard Ltd.
Ohashi Bullding
1-59-1 Yoyogi
Shibuya-ku, Yekye
Tel: 03-370-2281/92
Telex: 23-2024/HP
Cable: YHPMARKET TOK 23-724

Yokogawa-Hewlett-Packerd Ltd. Nisei ibaragi Bidg. 2-2-8 Kasuga ibaragi-Shi Osaka Osaka Tel: (0726) 23-1641 Telex: 5332-385 YHP OSAKA

Yokogawa-Hewlett-Packard Ltd. Nakamo Building No. 24 Kamisasazima-cho Nakamura-ku, Nageya City Tel: (052) 571-5171

Yokogawa-Hewlett-Packard Ltd. Nitto Bidg. 2-4-2 Shinohara-Kita 2-9-2 Shindhara-Kita Kohoku-ku Y**ekehama** 222 Tel: 045-432-1504 Telex: 382-3204 YHP YOK

Yokogawa-Hewlett-Packard Ltd. Chuo Bldg. Rm. 603 3, 2-Chome IZUMI-CHO, Mitte, 310 Tel: 0292-25-7470

KENYA Kenya Kinetics P.O. Box 18311 Nairabi, Kenya Tel: 57726 Cable: PROTON

KOREA American Trading Company

American Trading Company Korea, I.P.O. Box 1103 Dae Kyung Bidg., 8th Floor 107 Sejong-Ro, Chongro-Ku, Sepul Tel: (4 lines) 78-8924-7 Cable: AMTRACO Secul

LEBANON
Constantin E. Macridis
P.O. Box 7213
RL-Beirut
Tel: 220846
Cable: ELECTRONUCLEAR Beirut

MALAYSIA MECOMB Malaysia Ltd. 2 Lorong 13/6A Section 13 Petaling Jaya, Selanger Cable: MECOMB Kuala Lumpur

MOZAMBIQUE Lourence Marques Tel: 27091, 27114 Telex: 6-203 Negon Mo Cable: NEGON

NEW ZEALAND
Hewlett-Packard (N.Z.) Ltd.
94-96 Dixon Street
P.O. Box 9443
Courten-y Place,
Wellington
Tel: 59-559
Telex: 3898
Cable: HEWPACK Wellington

Hewlett-Packerd (N.Z.) Ltd. Pakuranga Professional Centri 257 Pakuranga Highway Box 51092 Pakuranga Tel: 559-651 Cable: HEWPACK, Auckland NIGERIA
The Electronics Instrumentations Ltd. (TEIL)
144 Agege Motor Rd., Mushin P.O. Box 6645
Lages
Cable: THETEIL Lagos The Electronics Instrumenta-tions Ltd. (TEIL) 16th Floor Cocoa House P.M.B. 5402 Ibadan Tel: 22325 Cable: THETEIL Ibadan

PAKISTAN
Mushko & Company, Ltd.
Oosman Chambers
Abdullah Haroon Road
Karachl 3
Tel: 511027, 512927
Cable: COOPERATOR Karachl Mushko & Company, Ltd. 38B, Satellite Town

Rawalpindi Tel: 41924 Cable: FEMUS Rawalpindi

PHILIPPINES
Electromex, inc.
6th Floor, Amalgemated
Development Corp. Bidg.
Ayala Avenue, Makkit, Rical
C.C.P.O. Box 1028
Makkit, Rical
TE: 86-18-87, 87-76-77,
87-86-88, 87-18-45, 88-91-71,
83-81-12, 83-82-12 83-81-12, 83-82-12 Cable: ELEMEX Manila

SINGAPORE
Mechanical & Combustion
Engineering Company Pte.,
Ltd.
10/12, Jalan Kilang
Red Hill Industrial Estate

Singapore, 3 Tel: 647151 (7 fines) Cable: MECOMB Singapore Capie: MECOMB Singapore
Hewlett-Packard Far East
Area Office
P.O. 80x 87
Alexandra Post Office
Singapore 3
Tef: 633022
Cable: HEWPACK SINGAPORE

SOUTH AFRICA Hewlett Packard South Africa (Pty.), Ltd. Hewlett-Packard House Daphne Street, Wendywood, Sandten, Transvaal 2001 Tel: 407641 (five lines)

Tel: 407841 (five lines)
Hewlett Packard South Africa
(Pty.), Ltd.
Breecastle House
Bree Street
Cape Teven
Tel: 2-5841/2/3
Tel: 2-5841/2/3 Cable: HEWPACK Cape Town Telex: 0006 CT

Hewiett Packard South Africa (Pty.), Ltd. 641 Ridge Road, Durban P.O. Box 99 Overpart, Nata) Tel: 88-6102 Telex: 567954 Cable: HEWPACK

TAIWAN Hewlett Packard Talwan 39 Chung Shiao West Road 39 Chung Shiac West Ros Sec. 1 Overseas Insurance Corp. Bidg. 7th Floor Taipei Tei: 389160,1,2, 375121, Ext. 240-249 Teiex: TPB24 HEWPACK Cable: HEWPACK Taipei

THAILAND UNIMESA Co., Ltd. Chongkoinee Buliding 56 Suriwongse Road Bangkek Tel: 37956, 31300, 31307,

37540 Cable: UNIMESA Bangkok UGANDA
Uganda Tele-Electric Co., Ltd.
P.O. Box 4449
Kampala
Tel: 57279
Cable: COMCO Kampala

VIETNAM Peninsular Trading Inc. P.O. Box H-3 216 Hien-Vuong Saigen Tef: 20-805, 93398 Cable: PENTRA, SAIGON 242

ZAMBIA
R. J. Tilbury (Zambla) Ltd.
P.O. Box 2792
Lusaka
Zambia, Central Africa
Tel: 73793
Cable: ARJAYTEE, Lusaka

MEDITERRANEAN AND MIDDLE EAST COUNTRIES NOT SHOWN PLEASE CONTACT:

Hewlett-Packard S.A.
Mediterranean and Middle
East Operations
35, Kolokotroni Street—
Platia Kefallariou
GR.Kijissia—Athems
Cable: HEWPACKSA Athens
Telex: 21-6588

OTHER AREAS NOT LISTED, CONTACT: Hewlett-Packard Export Trade Company 3200 Hillview Ave. Palo Alto, California 94304 Tel: (415) 493-1501 TWX: 910-373-1267

HP Part No. 08552-90088

Printed in U.S.A.