

Programming Note

NOVEMBER 1980

8566A/8568A/9835/9845-1

SUPERCEDES: NONE

Introductory Operating Guide for the 8566A/8568A Spectrum Analyzers with the 9835/9845 Desktop Computers

©HEWLETT-PACKARD CO. 1980

By Artek Media

1042 Plummer Cir. SW Rochester, MN 55902

www.artekmedia.com

"High resolution scans of obsolete technical manuals"

ALL HP MANUALS ARE REPRODUCED WITH PERMISSION OF AGILENT TECHNOLOGIES INC.

Reproduction of this scanned document or removal of this disclaimer Will be considered in violation of both Agilent's and Artek Media's copy rights

If your looking for a quality scanned technical manual in PDF format please visit our WEB site at <u>www.artekmedia.com</u> or drop us an email at <u>manuals@artekmedia.com</u> and we will be happy to email you a current list of the manuals we have available.

If you don't see the manual you need on the list drop us a line anyway we may still be able to point you to other sources. If you have an existing manual you would like scanned please write for details, This can often be done very reasonably in consideration for adding your manual to our library.

Typically the scans in our manuals are done as follows;

- 1) Typed text pages are typically scanned in black and white at 300 dpi.
- 2) Photo pages are typically scanned in gray scale mode at 600 dpi
- Schematic diagram pages are typically scanned in black and white at 600 dpi unless the original manual had colored high lighting (as is the case for some 70's vintage Tektronix manuals).

Thanks

Wave & Lynn Hendeson

Dave & Lynn Henderson Artek Media

Introduction

This note is an introductory guide to remote operation and programming of 8566A and 8568A Spectrum Analyzers using either the 9835 or 9845 Desktop Computer. Included in this guide are system connections for remote operation and several example programs with descriptions of each step.

The 8566A and 8568A are microprocessor-controlled, general purpose spectrum analyzers which are compatible with the Hewlett-Packard Interface Bus (HP-IB). When used with any HP-IB controller, such as the 9835 or 9845, these instruments become fully automated spectrum analyzers featuring:

- * Precise, stable LO tuning
- * High sensitivity and resolution
- * Wide dynamic range

Related Documents

Complete operating information for the 8566A/8568A analyzers can be found in:

- 1. 8566A/8568A Spectrum Analyzer Operation (P/N 08566-90002 or 08568-90002)
- 2. 8566A/8568A Spectrum Analyzer Remote Operation (P/N 08566-90003 or 08568-90003)
- 3. 8566A/8568A Spectrum Analyzer Pull-Out Information Cards

Information on operating the 9835 and 9845 controllers can be found in:

- 1. System 35/45 Operating and Programming Manual
- 2. System 35/45 Beginner's Guide
- 3. System 35/45 Reference Guide
- 4. System 35/45 I/O ROM Programming

A description of interface programming and hardware can be found in:

1. BASIC Language Interfacing Concepts (P/N 09835-90600)

Equipment Required

To perform the examples in this note, you will need the following equipment and accessories:

- 1. 8566A or 8568A Spectrum Analyzer
- 2. 9835A/B Desktop Computer with 98332A I/O ROM, or
 - 9845B/T Desktop Computer with 98412A I/O ROM (Option 312)
- 3. 98034A HP-IB Interface*

Setup

Figure 1 shows the system connections and switch setting for the 98034A HP-IB Interface. To connect the system as shown, follow these steps:

* revised cards only

- 1. Turn off power to the 9835/9845.
- 2. Install the I/O ROM in any available socket (in front on the 9835, or in the left side drawer on the 9845).
- 3. Install the 98034A in any available socket on the rear of the 9835/9845. Be sure the 98034A seats securely in the socket; this has occurred when the latch on top of the interface pops up, locking the card into the socket.
- 4. Set the rotary switch located on top of the 98034A to position 7. Seven is the select code of the interface for all programs in this guide.
- 5. Connect the 24-pin connector at the free end of the 98034A cable to the rear panel of the 8566A/8568A (see Figure 1). The connector is shaped to ensure proper orientation.

CAUTION

Do not attempt to mate silver English threaded screws on one connector with black metric threaded nuts on another connector, or vice versa, as damage to the hardware may result. A metric conversion kit which will convert one cable and one or two instruments to metric hardware may be obtained by ordering HP P/N 5060-0138.

Figure 1. System connection.

Check-Out

After making AC power line connections to the analyzer, the STANDBY lights on both the RF and display sections should be illuminated. Switch on the 9835/9845 and set the analyzer to LINE ON.

Upon LINE ON, the analyzer will perform an automatic internal instrument check, designated by the red INSTR CHECK indicators. Both LED's will turn on momentarily during the brief check routine and, if the instrument is operating properly, will go off and remain off during operation, except when another instrument check is triggered by an Instrument Preset. If one or both LED's remain on, refer to the 8566A/8568A Operating and Service Manual, Section II.

Verify that the analyzer's address is set to 18. The read/write address of the 8566A or 8568A can be determined and altered from the front panel by using the shift function P:

sets the address to 18.

When the analyzer is turned on from a cold state, crt messages OVEN COLD and REF UNLOCK may appear. These will go off typically ten minutes after AC power is connected. Type the following commands on the controller keyboard:

ABORTIO 7 (Press EXECUTE) REMOTE 718 (Press EXECUTE).

If ADRS'D and REM light up on the analyzer's front panel, proceed to the programming examples. If either ADRS'D or REM do not light, check to make sure that the 98034A select code is set to 7, the interface cables are properly connected, and the address in the REMOTE statement matches the address of the 8566A/8568A. Although 18 is the factory-set address and the address used in the following examples, other addresses are possible.

If both ADRS'D and REM still do not light, consult the 8566A/8568A Operating and Service Manual, the System 35/45 Test Manual, and the 98034A Installation and Service Manual for troubleshooting information.

Programming Examples

The following examples illustrate some of the ways to operate the 8566A/8568A using the 9835/9845 controller.

The examples illustrate setting front panel controls remotely and outputting their values, outputting marker values, and outputting trace data. An example harmonic distortion measurement program incorporates some of these techniques in a typical application.

EXAMPLE 1: PROGRAMMING FRONT-PANEL FUNCTIONS

To preset the analyzer, and set center frequency to 100 MHz and span to 10 MHz, enter the following on the keyboard of the 9835/9845 controller: OUTPUT 718; "IP CF100MZ SP10MZ"

Executing this statement initiates the sequence of operations shown above. The final crt display with a 100 MHz signal present should look like this:

The last function activated, SPAN, will appear with its current value on the analyzer crt as shown in the shaded box.

NOTE

An important concept in analyzer programming is worthy of special note here. The sequence of operations executed above could have been entered manually from the front panel of the analyzer to yield the same result. In fact, a manual sequence of keystrokes is usually developed first and then used as a basis for executing the same procedure under program control. This simple technique is recommended as a powerful tool for software development with the automatic spectrum analyzer.

EXAMPLE 2: OUTPUTTING A FUNCTION OR MARKER VALUE

In the first case, a BASIC program is shown which directs the analyzer to activate center frequency, and to prepare to output the current value in a subsequent statement. The value is then transferred into the variable F and printed. The END statement, line 50, terminates the program.

```
10OUTPUT 718;"CF OA"! Activate center frequency, prepare20! to output value of active function.30ENTER 718;F! Transfer value to F.40PRINT "Center Frequency =";F;"Hz"! Print value.50END
```

To enter the program, press:

EDIT [Press EXECUTE].

10 _

should appear. Type a line and press STORE. Now

20 _

should appear. Continue entering program code line by line. After storing the last line, END, press RUN to execute the program.* (Omit annotation which begins with "!" on each line, or entire lines which contain only annotation; these comments are provided for the reader's clarification only. Note that your line numbers will not in general correspond to those in this guide.)

A typical output would be:

Center Frequency = 100000000 Hz

Next, we would like to output both the amplitude and frequency of the active marker. To illustrate this, connect the analyzer's CAL OUTPUT to the RF INPUT. Type SCRATCH A and press EXECUTE to clear the program memory, and enter the following program:

```
OUTPUT 718; "IP FA75MZ FB150MZ S2 TS E1"
10
20
                              ! Instrument preset, set start and stop freq's,
30
                              ! single sweep, take sweep, peak search.
40
     OUTPUT 718; "MA"
                                        ! Prepare to output marker amplitude.
50
     ENTER 718;A
                                        ! Transfer amplitude into variable A.
     OUTPUT 718; "MF"
                                        ! Prepare to output marker frequency.
60
70
     ENTER 718; F
                                        ! Transfer frequency into variable F.
                     ";F/1E6;"MHz"
     PRINT A;"dBm
80
                                        ! Print A and F (scaled to megahertz).
90
     END
```

*For a brief introduction to the controller editing facilities, refer to the Editing Section of the chapter entitled Keyboard Operations in the System 35/45 Operating and Programming Manual.

The first line presets the analyzer, sets start and stop frequencies to 75 MHz and 150 MHz, and then instructs the analyzer to use the single sweep mode. To ensure that a trace is displayed which corresponds to the current instrument control settings, a take sweep command ("TS") is used. This triggers a sweep and prevents the analyzer from accepting further commands until the trace is complete.

Upon completion of this sweep, the peak search ("E1") command is invoked, placing a marker on the largest signal displayed. Lines 40 and 50 instruct the analyzer to output the amplitude value in dBm into the variable A, and lines 60 and 70 cause the frequency value in hertz to be transferred into F. These two values are then printed with appropriate units. Note that the frequency in hertz has been divided by one million to yield megahertz.

Pressing RUN yields typical output:

-10.4 dBm 100.2 MHz

EXAMPLE 3: OUTPUT TRACE DATA

An important capability of an automatic spectrum analyzer is to transfer trace amplitude data into an array in the controller for subsequent manipulation. A direct approach is shown in the first program:

10	DIM A(1000)	! Dimension array A from 0 to 1000
20		! (1001 points total).
30	OUTPUT 718;"S2 TS 03 TA"	! Using 03 format (reference level units),
40	·	! prepare to output trace A.
50	FOR N=0 TO 1000	! Begin FOR-NEXT loop.
60	ENTER 718;A(N)	! Transfer formatted data one point at a time
70		! into A array.
80	NEXT N	! End of FOR-NEXT loop.
90	FOR N=0 TO 1000 STEP 100	!
100	PRINT N, A(N)	! Print every one-hundredth point
110	NEXT N	!
120	END	

After dimensioning the array, four commands are sent to the analyzer in the OUTPUT 718 statement. First, the analyzer is set to the single sweep mode, followed by a take sweep command. The single sweep mode ("S2") is especially important when outputting trace data because it provides a static display while the values are being accessed. Following the TS command (discussed in Example 2) there is an output format command O3. (This is the letter O for Output, not zero!) The analyzer in this mode scales the display units from the ADC (analog-to-digital converter) to reference level units (in this example, dBm), and re-formats these values into a sequence of ASCII characters which will be transmitted over the interface bus. TA specifies trace A data, which are subsequently transferred one point at a time into the A array using the ENTER 718 statement repeated 1001 times.

Finally, to show what has happened, several data values are printed.

0	-91.9
100	-85.2
200	-86.4
300	-85.5
400	-82.1
500	-10.9
600	-77
700	-81.8
800	-87.8
900	-84.3
1000	-87

1000

125

The running time for this program using a 9835 is about 26 seconds. To achieve a faster transfer, we can avoid rescaling the ADC values and re-formatting into ASCII code by using O2 instead of O3 output format. We can then achieve a very efficient means of transferring the trace data as unformatted binary values through the use of a byte-by-byte fast handshake command.

In the case below, a sequence of 8-bit bytes is transferred into the integer-valued A array. Note that the values in the A array are two bytes or sixteen bits long, as are the binary values to be transferred from the analyzer in the O2 format mode. Therefore, we have specified that 2002 bytes be transferred, which corresponds exactly to 1001 values. The values which are printed from the A array are in display units. These range from 0 to 1023, and may be accessed as such for further processing. A typical execution time for this transfer using the 9835/9845 is 200 milliseconds.

```
! Dimension A array from 0 to 1000
10
     INTEGER A(1000)
                                               ! (1001 points total).
20
                                        ! Single sweep, take sweep, using format 02
     OUTPUT 718;"S2 TS 02 TA"
30
                                          (binary units) prepare to output trace A.
                                        Í.
40
     ENTER 718 BFHS 2002 NOFORMAT; A(*)
                                            ! Transfer data into array using byte-
50
                                            ! by-byte fast handshake, no format.
60
     FOR N=0 TO 1000 STEP 100
70
     PRINT N, A(N)
                                          Print every one-hundredth point.
                                        ١
8Й
     NEXT N
90
100
     END
                     108
Ø
100
                     133
200
                     126
300
                     124
400
                     186
500
                     890
600
                     249
700
                     119
                     153
800
                     149
900
```

This program illustrates how more advanced BASIC programming techniques can be implemented to produce significantly higher performance in the area of automatic instrument control. Such topics as advanced transfer techniques are treated in the System 35/45 I/O ROM Programming manuals.

NOTE

Correct format usage when transferring data and commands to and from the analyzer is essential for proper operation under remote control. Errors in formatting are a frequent cause of program failure; study the format codes if you are not certain of correct usage when debugging a program under development.

Data are transferred over the interface bus one 8-bit byte at a time. These may be ASCII-encoded alphanumeric characters, or binary values. For example, when the O3 format has been specified (this is the default mode on instrument preset) and a trace value is output from the analyzer, a sequence of ASCII characters is transmitted across the bus, as many as needed to specify the value of interest. The analyzer automatically performs the necessary formatting from an internally stored binary value to an ASCII string, and the controller reverses this process on receipt of such a string. As the number of characters transferred is variable, a free field format is required in the control program. Alternatively, data values themselves may be transferred in 8-bit bytes (two bytes will be necessary to retain the full 10-bit precision of values stored in the analyzer). Here, the analyzer may be in the O2 format, and the controller in an unformatted or binary formatted mode (i.e., ASCII formatting must not occur). This is illustrated in the second trace output example involving the byte-by-byte fast hand shake transfer mode.

See the Spectrum Analyzer Remote Operation manual for further information on input/output formats.

EXAMPLE 4: HARMONIC DISTORTION MEASUREMENT

An example program which illustrates some of the techniques demonstrated above is included here. This program makes a harmonic distortion measurement by locating and measuring a signal's second and third harmonics and calculating the percent distortion relative to the fundamental. The technique suggested in Example 1 - converting a manual sequence of keystrokes into a program to perform the same functions - was used in developing the present example.

```
! HARMONIC DISTORTION MEASUREMENT
10
20
     ! REV A, 801024
ЗÒ
     - 1
40
     OUTPUT 718; "IP"
50
     LOCAL 718
     DISP "Set analyzer to display the fundamental signal."
60
70
     PAUSE
     DISP ""
80
     OUTPUT 718;"SP 03 0A"
90
                                 Prepare to output the current span.
    ENTER 718;Span
                                  ! Transfer value (in hertz) to "Span".
100
    Span=MIN(Span,1E5)
                                  ! Use current value or 100 kHz,
110
120
                                  ! whichever is smaller.
130 OUTPUT 718;"S2 TS E1 MT1 SP", Span, "HZ TS MT0 E4 TS E1 E3 MA"
              .! Acquire signal with peak search, auto-zoom, marker to reference
140
               ! level, peak search; enter CF STEP SIZE with E3 command; use MA
150
               ! to prepare to output fundamental amplitude.
160
170 ENTER 718: Fund
                                  ! Transfer marker amplitude to "Fund".
180 OUTPUT 718; "MF"
                                  ! Prepare to output marker frequency.
190 ENTER 718; Freq
                                  ! Transfer marker freq to "Freq"
                                  ! Scale frequency to megahertz.
200 Freg=Freg/1E6
210 OUTPUT 718;"CF UP TS EI MA" ! Increment center freq by fundamental freq.
220 ENTER 718; Second
                                  ! Transfer marker amplitude to "Second".
230 OUTPUT 718; "CF UP TS E1 MA" ! Increment center freq by fundamental freq.
240 ENTER 718; Third
                                  ! Transfer marker amplitude to "Third".
250
    Dist=100*SQR(FNLin(Second)^2+FNLin(Third)^2)/FNLin(Fund)
260
                                  ! Compute root-sum-of-the-squares
265
                                   ! total harmonic distortion using "Lin"
270
                                   ! function defined below.
280
290 Format1: IMAGE 4A, XSDDD.DX, "dBm", XXXKX, "MHz" !
300 PRINT USING Format1; "Fund", Fund, Freq
                                                                 Formatted
310 Format2: IMAGE 2(4A, XSDDD.DX, "dBm", /)
                                                                  output.
320 PRINT USING Format2; "2nd ", Second, "3rd ", Third
330 PRINT USING "K, DDD. DD. K//"; "Harmonic Distortion = "; Dist; "%"
340
350 DEF FNLin(X)=10^(X/20)
                                  ! Function to compute linear value from dB's.
360
    END
370
```

Line 50 places the analyzer under front panel control allowing the operator to tune the analyzer to position the signal on screen. The span must be chosen such that the signal of interest is the largest response on the screen. When ready, the operator presses CONTinue. The program determines the present span and compares it to 100 kHz, choosing the smaller value. Then, a sweep is taken in single sweep mode, and peak search places the marker on the largest signal, i.e., the fundamental. Marker track is invoked to perform an Auto-Zoom to the span selected above. The signal is then moved to the reference level, the center frequency step size is set to the fundamental frequency, and the amplitude and frequency are output to the controller.

In line 210, the center frequency is incremented once to place the second harmonic on screen. Peak search locates the response and the marker amplitude is output. The same procedure is performed on the third harmonic in line 230.

In line 250, the percent distortion is computed as the root sum of the squares normalized to the fundamental amplitude. As linear values are required in this calculation, a function has been defined in line 350 which converts the dBm values to linear values. The results are finally printed according to the output formats in lines 290–330*.

A typical harmonic distortion measurement might yield the following output:

```
Fund -10.1 dBm 100.0004 MHz
2nd -41.6 dBm
3rd -50.8 dBm
Harmonic Distortion = 2.82%
```

*A discussion of PRINT and IMAGE statements can be found in the System 35/45 Operating and Programming Manual.

Introductory Operating Guide

8568A PROGRAMMING CODE LIST

- FRONT PANEL COMMANDS -

ΔΤ	Input attenuation	67	GHz	Keh	Bāsitivo poak det	action	LØ	Display line off
* A1	Clear-write trace A	* HD	Hold	KSc	$A + B \rightarrow A$	ection	* MC0	Marker frequency count
A2	Max Hold trace A	HZ	Hz	KSd	Negative peak de	tection		off
A3	Store and view trace A	IP	Instrument preset	KSe	Sample detection	1	MC1	Marker frequency count
A4	Store and blank trace A	11	Left RF input	KSf	Power on in last s	state	MS	msec
BL	B – DL → B	* 12	Right RF input	KSg	CRT beam off		MV	mV
B1	Clear-write trace B	KS	Shift front panel keys	KSh	CRT beam on	-	* MTØ	Marker signal track off
B2	Max hold trace B	" KSA	Amplitude in dBm	KSi	Exchange B and	С	MT1	Marker signal track on
B3 * D4	Store and black trace B	KSC	Amplitude in dBriv	KSj	View trace C		MZ	MHz
* CA	Coupled input attenuation	KSD	Amplitude in voltage	KSK	Blank trace C		* M1	Marker off
CF	Center frequency	KSE	Title	KSm	Graticule blanker	4	M2	Marker normal
* CB	Coupled resolution BW			* KSn	Graticule on		M3	Marker A
+ CS	Coupled step size	KSF	Measure sweep time	KSo	Characters blank	ed	M4	Marker zoom
* CT	Coupled sweep time	KSG	Video averaging on	* KSp	Characters on		HB	Resolution Bw
* CV	Coupled video BW	* KSH	Video averaging off	KSq	Step gain off			Reference level
*C1	A – B off	KSI	Extended reference I	evel KSr	Service request 1	02		sec
C2	A – B→A		range	KSt	Continue sweep f	rom	SP	Frequency span
DB	dB	KSJ	Manual DAC control		marker		SS	Center frequency step
DL	Display line	KSK	Count pilot IF at mark	ker KSu	Stop at marker, s	ingle		size
	oBm Stop down	KOL * KOM	Noise level off	140	sweep		ST	Sweep time
	Label terminator	KSN	Count VTO at marker	KSV	Inhibit phase lock	(n data	SV	Save
FF	Enable number entry	KSO	Enter A - snan	KOW KOV	Display correctio	n uata	* S1	Sweep continuous
FK	Enable DATA knob	KSP	Set HP-IB address	KSV	normal VID trigge	er er	S2	Sweep single
* EM	Erase trace C memory	KSQ	Count signal IF	KS7	Display storage a	address	TH	Enter threshold
EX	Exchange A and B	KSR	Diagnostics on	KS.	Mixer level		* 10	I hreshold off
E1	Peak Search	* KSS	Second LO auto	KS –	Negative entry		* 11	Trigger free run
E2	Enter marker into	KST	Second LO down	KS =	Counter resolution	n	12	Trigger external
50	center frequency	KSU	Second LO up	KS(Save registers lo	cked	TA	Trigger video
E3	froquency-step size	KSV	Frequency offset	KS)	Save registers un	nlocked	μP	Step up
E1	Enter marker amplitude	KSW	Error correction rout	ine KS >	Preamp gain, inp	ut 2	ŬR	Upper right
L4	⇒reference level	KOX	De pot une correction data	KS <	Preamp gain, inp	ut 1	US	μsec
+ FA	Start frequency	NO I	data	' KSĮ	Display storage v	vrite	UV	μV
* FB	Stop frequency	KSZ	Amplitude offset	*16	Enter log scale		VB	Video BW
FS	0 - 1.5 GHz span	* KSa	Normal detection		Línear scale		0 to 9	0 to 9
							•	Decimal point or period
			OUTPU	T COMMAN	IDS			
	DR Read display and		MF Mar	ker frequency		* O3	Output f	ormat ASCII
	increment address		out	tput			param	eter or
	EE Enable number entry	4	OA Outp	out active function		04	Instrun Output f	ormations 8 bit
	KS123 ¹⁰		OL Outp	out learn string		04	bipary	byto
			01 Out	out format ASCII di	icolay	ТΔ	Output t	
	words			ite	spidy	TB	Output t	race B
			O2 Outr	nut format two 8 bi	t	UR	Upper ri	aht recorder
	MA Marker amplitude ou	utput	bin	arv bytes	•	•	output	3
		r.						
					MANDS -			
			DIOFERTIN					
1	* DA Diamlau address		GR	Graph		PR	Plot rela	tive
	 DA Display address DD Display write 		IB	Input trace B, bina	ary	PS	Skip to r	next display page
1	DW Write into display an	dincremen	KS125 ₁₀	Input up to 1001 di	isplay memory	PU	Pen up	
1	address	amoromen		words		SW	Skip to r	next control instruction
1	* D1 Display size normal		LB	Label		15	rake sw	eeh
1	D2 Display size full CRT		PA *PD	PIOT adsolute				
1	D3 Display size expand		" P D					
<u> </u>			SERVICE REG	QUEST COM	MANDS -			<u></u>
•	R1 Allow only SRO 140	1		SRO	Command	Bit	C	Definition
1	R2 Allow SRQ 140 and	104		102	R4	1	units k	ey pressed
	* R3 Allow SRQ 140 and	110		104	R2	2	end of	sweep
	R4 Allow SRQ 140 and	102		110	R3	3	hardwa	are broken
I				140	all	5	illegal	command
				1xx		6	univer	sal HP-IB service
1								

* selected with instrument preset

8566A PROGRAMMING CODE LIST

FRONT PANEL COMMANDS								
AT Inpu	ut attenuation	• HD	Hold		KSf	Power on in last state	*LG	Enter log scale
*A1 Clea	ar-write trace A	HZ	HZ		KSg	CHI beam off	LL	Lower Left
A2 Max	x Hold trace A	K C	Shift front panel keys		KSh	CHI Deam on		Linear scale
	re and black trace A	* K20	Amplitude in dRm		K01	Exchange B and C	LU	msec
RI 8-	$DI \rightarrow B$	KSB	Amplitude in dBmV		KOL	Plank trace C	MV	mV
B1 Clea	ar-write trace B	KSC	Amplitude in dBuV		KSI	Trace B→trace C	* NATO	Marker signal track off
B2 Max	k hold trace B	KSD	Amplitude in voltage		KSm	Graticule blanked	MT1	Marker signal track on
B3 Stor	re and view trace B	KSE	Title	•	KSn	Graticule on	MZ	MHz
*B4 Stor	re and blank trace B	KSF	Measure sweep time		KSo	Characters blanked	*M1	Marker off
*CA Cou	pled input attenuation	KSG	Video averaging on	•	KSp	Characters on	M2	Marker normal
CF Cen	ter frequency	* KSH	Video averaging off		KSq	Step gain off	М3	Marker ∆
*CR Cou	pled resolution BW	KSI	Extended reference l	evel	KSr	Service request 102	M4	Marker zoom
+ CS Cou	ipled step size		range		KSt	Band lock	PP	Preselector peak
	ipied sweep time ipled video RW	KSJ	DAC control		KSU	Stop at marker, single	RB	Resolution BW
*C1 A-	Boff	KSK	Marker to next peak		KSv	Signal identifier ev	RC	Recall
C2 A-	B→A	KSL	Noise level off		NOV	mixer	· RL	Reference level
DB dB		" KSM	Noise level on		KSw	Display correction data	SC	Sec
DL Dist	play line	- KGU	Fotor A - span		KSx	normal EXT trigger	5r cc	CE step size
DM dBn	n	KOD VOO	Set HP-IR address		KSy	normal VID trigger	53 57	Sween time
DN Ster	p down	KSO	Band unlock		KSz	Display storage address	SV	Save
DT Lab	el terminator	KSR	Diagnostics on		KS,	Mixer level	* S1	Sweep continuous
EE Ena	ble number entry	KSS	Fast HP-IB		KS=	Factory preselecto	v S2	Sweep single
EK Ena	ble DATA knob	KST	Fast preset 2 - 22 G	iHz		setting	ŤĤ	Enter threshold
EM Eras	se trace C memory	KSU	External mixer preset	t	KS –	Negative entry	* T0	Threshold off
EX EXC	nange A and B	KSV	Frequency offset		KS(Save registers locked	* T1	Trigger free run
	n oedi uli ar marker into contor	KSW	Error correction routi	ine	KS)	Save registers unlocked	T2	Trigger line
		KSX	Use correction data		KS	Display storage write	<u>T3</u>	Trigger external
E2 E-4	nequency	KSY	Do not use correction	า	KS#	Turns off YTX	T4	Trigger video
	er marken/A	407	data Amplitudo offost		KC'	self-heating correctio	IN UP	Step up
F4 Entr	equency - step size	KSZ * KS2	Amplitude offset		KS/	Manual Preselector pea	K UH	upper right
	eference level	KCH	Positive neak detection	on	NO<8	Enter DI TH MO MO		μsec uV
*FA Star	rt frequency	KSc	$A + B \rightarrow A$	011		display units		Video BW
*FB Stor	p frequency	KSd	Negative peak detect	tion	κz	kHz	0 to 9	0 to 9
GZ GH	z	KSe	Sample detection		LF	Preset 0 — 2.5 GHz	•	Decimal point or period
	····-		— ОПТРПТ	со	MM/	ANDS		
DR	Read display and		MA	Mark	er amp	litude output	*O3	Output format ASCII
	increment address		MF	Mark	er freg	uency output		parameter or
EE	Enable number entry		OA	Outp	ut activ	e function	~ .	instrument units
KS<91>	Output amplitude erro	Or	OL	Outp	ut learr	string	04	Output formatione 8 bit
KS<94>	Output code for	hinan	OT	Outp	ut displ	ay text	T •	Output troop 1
KG-100-	Display read binary	binary	01	Outp	ut form	at ASCII display		Output trace A
KS < 123>	 Display read binary Output every nthiseling 	ie of trec	e oa	unit	S ut form	at two 8 bit	18	Upper right recorder
	Lower left recorder a	so or tide	~ U2	bing	uciorm ary byte		UH	output
LL	Lower left recorder o	Julput		0110 7117				ouput
			DISPLATIN	-01	COL	MMANUS		
*DA	Display address		GR	Grap	bh	*PD	Pen	down
DD	Display write		IB	Inpu	t trace	B, Dinary PR	Plot	relative
DW	Write into display and	Increme	nt KS<39>	⊢ast	Binary	DALLOW PS	Skip	to next display page
	address Display size narm-1		KS<125>	Disp	iay writ	e binary PU	Peni	up to next control instruction
	Display size normal		KO< 12/>	Lahe	icty Willi ⊳I	TS	onip Take	SWEED
D2 D3	Display size full CR1 Display size expand		PA	Plot	absolut	ie is	Takt	энсер
55	Sispiay Size expand							
		S	SERVICE REQ	UES	SIC	UMMANDS -	••	
R1	Allow only SRQ 140				SRQ	Command B	it	Definition
R2	Allow SRQ 140 and 10	04			102	R4	l ur	nits key pressed
*R3	Allow SRQ 140 and 11	10			102	KS<43>	l fre	equency limit exceeded
R4	Allow SRQ 140 and 10	J2			104	R2 :	2 er	nd of sweep
KS<43>	Allow SHQ 140 and 10	52			110	R3	3 ha	ardware broken
					140	all	5 Ille 5 ur	egal command
					IXX		J UI	IIVEISALTEND SELVICE

* selected with instrument preset

For more information, call your local HP Sales Office or nearest Regional Office: Eastern (201) 265-5000; Midwestern (312) 255-9800; Southern (404) 955-1500; Western (213) 970-7500; Canadian (416) 678-9430. Ask the operator for instrument sales. Or write Hewlett-Packard, 1501 Page Mill Road, Palo Alto, CA 94304. In Europe: Hewlett-Packard S.A., 7, rue du Bois-du-Lan, P.O. Box, CH 1217 Meyrin 2, Geneva, Switzerland. In Japan: Yokogawa-Hewlett-Packard Ltd., 29-21, Takaido-Higashi 3-chome, Suginami-ku, Tokyo 168.

1