FREQUENCY EXTENSION MODULE 11661B

HEWLETT hp PACKARD

HP MANUAL SCANS

By

Artel Media

1042 Plummer Cir. SW Rochester, MN 55902

www.artekmedia.com

"High resolution scans of obsolete technical manuals"

ALL HP MANUALS ARE REPRODUCED
 WITH PERMISSION OF AGILENT TECHNOLOGIES INC.

Reproduction of this scanned document or removal of this disclaimer Will be considered in violation of both Agilent's and Artek Media's copy rights

If your looking for a quality scanned technical manual in PDF format please visit our WEB site at www.artekmedia.com or drop us an email at manuals@artekmedia.com and we will be happy to email you a current list of the manuals we have available.

If you don't see the manual you need on the list drop us a line anyway we may still be able to point you to other sources. If you have an existing manual you would like scanned please write for details, This can often be done very reasonably in consideration for adding your manual to our library.

Typically the scans in our manuals are done as follows;

1) Typed text pages are typically scanned in black and white at 300 dpi.
2) Photo pages are typically scanned in gray scale mode at 600 dpi
3) Schematic diagram pages are typically scanned in black and white at 600 dpi unless the original manual had colored high lighting (as is the case for some 70's vintage Tektronix manuals).

Thanks

Dave \& Lynn Henderson
Artek Media

FREQUENCY EXTENSION MODULE 11661B

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 1439A.

For additional important information about serial numbers, see INSTRUMENTS COVERED BY MANUAL in Section I.

CONTENTS

Section Page Section Page
1-1. GENERAL INFORMATION 1-1
1-1. Introduction 1-1
$1-6$. Specifications 1-1
1-8. Instruments Covered by Manual 1-1
1-13. Description 1-2
1-16. Accessories Supplied 1-2
1-18. Equipment Required But Not Supplied 1-2
1-21. Equipment Available 1.2
1-24. Recommended 'Test Equipment 1-2
1-26. Safety Considerations 1.2
II INSTALLATION 2-1
2-1. Introduction $2-1$
2-3. Initial Inspection 2-1
2-5. Preparation for Use 2-1
2-6. Power Requirements 2-1
2-8. Interconnections $2-1$
2-10. Operating Environment $2 \cdot 1$
2-12. Installation Instructions 2-1
2-15. Storage and Shipment 2-2
2-16. Environment 2-2
2-18. Packaging 2.2
III OPERATION 3.1
3-1. Introduction 3.1
IV PERFORMANCE TESTS 4-1
$4-1$. Introduction 4-1
V ADJUSTMENTS 5-1
5-1. Introduction 5-1
5-5. Equipment Required 5-1
5-10. Safety Considerations 5-1
5-14. Factory-Selected Components 5-2
5-16. Related Adjustments 5-2
5-22. Adjustment Locations 5-2
5-24. Adjustments 5-2
5-27. Abbreviated Adjustment of Frequency
Extension Module 5-3
$5-28$. $\quad 4.43 \mathrm{GHz}$ Oscillator Adjustment 5-5
$5-29 . \quad 20 \mathrm{MHz}$ IF Amplifier Adjustment 5-5
5-30. $\quad 3.95$ to 4.05 GHz VCO Bias Adjustment 5-7
5-31A. YIG Pretune Driver Adjustment (8660A Mainframes) 5-8
5-31B. YIG Pretune Driver Adjustment (8660B/C Mainframes) 5-11
5-32. YIG Loop Phase Detector Adjustments 5-14
5-33. YIG Loop Gain and Bandwidth Adjustment 5-15
5-34. Sum Loop Pretune Adjustment 5-17
5-35. Sum Loop Bandwidth Adjustment 5-18
VI REPLACEABLE PARTS 6-1
6-1. Introduction 6-1
6-3. Abbreviations 6-1
6-5. Replaceable Parts List 6-1
6-7. Ordering Instructions 6-1
6-10. Parts Provisioning 6-1
VII. MANUAL CHANGES 7-1
7-1. Introduction 7-1
VIII SERVICE 8-1
8-1. Introduction 8-1
8-6. Safety Considerations 8-1
8-10. Principles of Operation 8-1
8-12. Troubleshooting 8-1
8-14. Troubleshooting Aids 8-1
8-21. Recommended Test Equipment 8-2
8-23. Repair $8-2$
8-24. Non-Repairable Assemblies 8-2
8-26. Removal and Disassembly Procedures 8-2

ILLUSTRATIONS

Figure Page Figure Page
1-1. HP Model 11661B and Accessories Supplied 1-0
2-1. Accessory Cable Installation 2-3
2-2. Extension Module Installation 2-4
5-1. Abbreviated Adjustment Test Setup 5-3
$5-2$. 4.43 GHz Oscillator Adjustment Test Setup 5-5
5-3. $\quad 20 \mathrm{MHz}$ IF Amplifier Adjustment Test Setup 5-6
5-4. 3.95 to 4.05 GHz VCO Bias Adjustment Test Setup 5-7
5-5. YIG Pretune Driver Adjustment Test Setup $5 \cdot 8$
5-6. YIG Loop Phase Detector Adjustment Test Setup 5-14
5-7. YIG Loop Gain and Bandwidth Adjustment Test Setup 5-16
5-8. Sum Loop Pretune Adjustment Test Setup 5-17
5-9. Sum Loop Bandwidth Adjustment Test Setup 5-19
8-1. Schematic Diagram Notes 8-3
8-2. Simplified Block Diagram 8-9
8-3. Troubleshooting Block Diagram 8-9
8-4. A5 Yig Loop Pretune Assembly Component and Test Point Locations 8-11
8-5. Yig Loop Pretune SectionSchematic Diagram8-11
8-6. A1 Oscillator/Mixer Housing Assembly Component and Test Point Locations 8-13
8-7. Oscillator/Mixer Section Schematic Diagram $8-13$
8-8. A7 Yig Loop Phase Detector Assembly Component and Test Point Locations 8-15
8-9. Yig Loop Phase Detector Section Schematic Diagram 8-15
8-10. A6 FM Driver Assembly Component and Test Point Locations 8-17
8-11. Yig Loop FM Driver/Oscillator Section Schematic Diagram 8-17
8-12. A3 Sum Loop Phase Detector Assembly Component Locations 8-19
8-13. Sum Loop Phase Detector Section Schematic Diagram 8-19
8-14. A4 Sum Loop Pretune Assembly Component Locations $8-21$
8-15. Sum Loop Pretune Section Schematic Diagram 8-21
8-16. Location of Extractor and Servicing Screws 8-22
8-17. Assemblies, Chassis Mounted Parts, Adjustment Locations and Test Point Locations 8-23

TABLES

Table Page
1-1. Recommended Test Equipment 1-3
5-1. Factory Selected Components 5-2
5-2. Preliminary Resistance Settings of
YIG Pretune Driver Adjustment Potentiometers 5-9
5-3. YIG Pretune Drive Digital-To-Analog Convertor Adjustments 5-10
5-4. Center Frequency versis YIG Loop Output 5-11
Table Page
5-5. Sum Loop Pretune Potentiometer Adjustment 5-18
6-1. Reference Designations and Abbreviations 6-2
6-2. Replaceable Parts List 6-4
6-3. Code List of Manufacturers 6-12
8-1. YIG Loop Output Frequency Versus Mainframe Tuning 8-7
8-2. Assemblies, Chassis Mounted Parts, and Adjustment Locations $8-22$

WARNINGS

SAFETY

Although this instrument has been designed in accordance with international safety standards, this manual contains information, cautions, and warnings which must be followed to retain the instrument in safe condition. Be sure to read and follow the safety information in Sections II, V, and VIII.

BEFORE CONNECTING THIS SYSTEM TO LINE (MAINS) VOLTAGE, the safety and installation instructions found in Sections II and III of the mainframe manual should be followed.

HIGH VOLTAGE

To avoid contact with the line voltage, remove the line (main) power cable from the power outlet before removing or connecting the Frequency Extension Module.

Capacitors inside the instrument may still be charged even if the system has been disconnected from its source of supply.

Adjustments and troubleshooting are often performed with power supplied to the instrument while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.

The multi-pin plug connector (on mainframe), which provides interconnection to the Extension Module will expose power supply voltages which may remain on the pins after the Extension Module is removed and after the (Mains) power cable is disconnected from the mainframe. Be careful to avoid contact with the pins during interconnection with the Extension Module.

PERFORMANCE TESTING

To avoid the possibility of damage to the instrument or test equipment, read completely through each test before starting it. Then make any preliminary control settings necessary before continuing with the procedure.

PLUG-IN REMOVAL
Before removing the RF Section plug-in from the mainframe, remove the line (Mains) voltage by disconnecting the power cable from the power outlet.

Figure 1-1. HP Model 11661B and Accessories Supplied

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This manual contains all information required to install, operate, test, adjust and service the Hewlett-Packard 11661B Frequency Extension Module plug-in, hereinafter referred to as the Extension Module. For more information on related instruments such as the Model 8660 -series mainframes, 86600 -series RF Section plug-ins, or 86630 -series Modulation Section plug-ins, refer to the appropriate manual.

1-3. This manual is divided into eight sections which provide information as follows:
a. SECTION I, GENERAL INFORMATION, contains the instrument description as well as the accessory and recommended test equipment test.
b. SECTION II, INSTALLATION, contains information relative to receiving inspection, preparation for use, mounting, packing, and shipping.
c. SECTION III, OPERATION, provides information relative to instrument operation.
d. SECTION IV, PERFORMANCE TESTS, provides information required to ascertain that the instrument is performing in accordance with published specifications.
e. SECTION V, ADJUSTMENTS, contains information required to properly adjust and align the instrument after repair.
f. SECTION VI, REPLACEABLE PARTS, contains information required to order all parts and assemblies or effect exchange of assemblies.
g. SECTION VII, MANUAL CHANGES, normally contains backdating information to make this manual compatible with earlier equipment configurations.
h. SECTION VIII, SERVICE, contains descriptions of the circuits, schematic diagrams, parts location diagrams, and troubleshooting procedures to aid the user in maintaining the instrument.

1-4. Figure $1-1$ shows the Extension Module with included accessories.

1-5. On the title page of this manual, below the manual part number, is a "Microfiche" part number. This number may be used to order 4×6-inch microfilm transparencies of the manual. Each microfiche contains up to 60 photo-duplicates of the manual pages. The microfiche package also includes the latest Manual Changes supplement as well as all pertinent Service Notes.

1-6. SPECIFICATIONS

1-7. Specifications for the Extension Module and RF Section plug-ins are combined. Refer to the RF Section manual for the combined specifications.

1-8. INSTRUMENTS COVERED BY MANUAL

1-9. This instrument has a two-part serial number. The first four digits and the letter comprise the serial number prefix. The last five digits form the sequential suffix that is unique to each instrument. The contents of this manual apply directly to instruments having the same serial number prefix (es) as listed under SERIAL NUMBERS on the title page.
$1-10$. An instrument manufactured after the printing of this manual may have a serial prefix that is not listed on the title page. This unlisted serial prefix indicates that the instrument is different from those documented in this manual. The manual for this instrument is supplied with a yellow Manual Changes supplement that contains "change information" that documents the differences.

1-11. In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is keyed to this manual's print date and part number, both of which appear on the title page. Complimentary copies of the supplement are available from Hewlett-Packard.

1-12. For information concerning a serial number prefix not listed on the title page or in the Manual Changes supplement, contact your nearest HewlettPackard office.

1-13. DESCRIPTION

1-14. The HP Model 11661B Frequency Extension Module plug-in extends the output frequency range of the mainframe to meet the input requirements of high-frequency RF Section plug-ins ($>160 \mathrm{MHz}$). The Extension Module contains two high-frequency phase-locked loops which receive digital tuning signals, variable synthesized signals, and fixed synthesized signals from the mainframe. The phase-locked loops use the mainframe signals in conjunction with a 4.43 GHz oscillator output that is common to both loops to produce two high-frequency output signals. One output signal is generated by a phase-locked summing loop using a Voltage Controlled Oscillator (VCO) that is tuneable in 1 Hz steps (100 Hz steps for option 004 mainframe) over the 3.95 to 4.05 GHz range. The other output signal is generated by a phase-locked loop using a Yittrium-Iron -Garnet (YIG) oscillator that is tunable in 100 MHz steps over the 2.75 to 3.95 GHz range. Since both phase-locked loops use the same 4.43 GHz oscillator, variations in the oscillator frequency do not affect the frequency difference between the summing loop and YIG loop outputs. The two output signals from the Extension Module are coupled to the RF Section plug-ins for mixing, amplification of the converted signal, and final output power level control.

1-15. Frequency modulation (FM) of the YIG loop output can be effected by supplying a frequency modulated reference signal instead of a fixed reference signal, to a phase detector in the phase-locked YIG loop. Thus, as the frequency modulated reference signal varies, the YIG loop output frequency varies accordingly.

1-16. ACCESSORIES SUPPLIED

1-17. Two coaxial cables, HP Part Numbers 11661-60026 (Gray-blue) and 11661-60028 (Gray), are supplied with the Extension Module. The cables are used to interconnect the YIG and SUM loop outputs to the RF Section inputs. The accessories are shown with the Extension Module in Figure 1-1.

1-18. EQUIPMENT REQUIRED BUT NOT SUPPLIED

1-19. Each Frequency Extension Module is installed in a plug-in cavity within an 8660 -series mainframe. Logic control inputs, RF inputs, and power supply inputs are connected directly from the mainframe or through a compatible 86600 -series RF Section plug-in to the Extension Module. The Extension Module outputs are connected to the RF Section.

1-20. The Synthesized Signal Generator System requires installation of an Auxiliary or Modulation Section. The only direct interaction between a Modulation Section and the Extension Module occurs when a frequency modulated RF output is selected. A 86630 -series plug-in with FM capability couples a frequency modulated RF signal to the Extension Module. The FM portion of this signal is superimposed on an RF output to the RF Section.

1-21. EQUIPMENT AVAILABLE

1-22. An extender cable, HP Part Number 11672-60002, is required to extend the Extension Module for maintenance purposes. The extender cable is part of the HP 11672A Service Kit but may be ordered separately.

1-23. Extender cards used in servicing the Extension Module are contained in the HP Rack Mount Kit, HP Part Number 08660-60070, which is supplied with the mainframe.

1-24. RECOMMENDED TEST EOUIPMENT

1-25. Table 1-1 lists the test equipment and accessories recommended for use in testing, adjusting, and servicing the Extension Module. If any of the recommended test equipment is unavailable, instruments with equivalent specifications may be used.

1-26. SAFETY CONSIDERATIONS

1-27. This instrument has been designed in accordance with international safety standards and has been supplied in safe condition.

1-28. Although this instrument has been designed in accordance with international safety standards, this manual contains information, cautions, and warnings which must be followed to retain the instrument in safe condition. Be sure to read and follow the safety information in Sections II, V, and VIII.

Table 1-1. Recommended Test Equipment

Item	Critical Specifications	Suggested Model	Use*
Digital Voltmeter	Accuracy: $\pm 0.2 \%$ Range: 0.00 to 60 Volts	HP 34740 with HP 34702A	A, T
Oscilloscope	Vertical: Bandwidth 50 MHz with sensitivity of $5 \mathrm{mV} /$ division minimum Horizontal: Sweep time 10 ns to 1 s Delayed sweep External triggering to 100 MHz	HP 180A with HP 1801A and HP 1821A plug-ins	A.T
10:1 divider probe	10:1 divider 10 Megohm 10 pF	HP 10004	A,T
Spectrum Analyzer	Absolute Accuracy $\pm 1.6 \mathrm{~dB}$ from 10 MHz to 1.3 GHz Measurement Accuracy $\pm 2.6 \mathrm{~dB}$ from 10 MHz to 1.3 GHz	HP 8555A with HP 8552B and HP 140T	A,T
Test Oscillator	1 kHz to 20 kHz 0.2 to 2.0 Vrms into 50Ω	HP 651B	A
Microwave Frequency Counter	Range: $0.2-1300 \mathrm{MHz}$ Resolution: 1 Hz	HP 5340A	A,T
Frequency Synthesizer	20 to 30 MHz settable in 1 Hz increments Phase Modulation ± 3 radians deviation	HP 5105A/5110B	A
VHF Oscillator	10 to 30 MHz Leveled Output	HP 8654A	A
Extender Board	24 Contact (2×12 pins) Supplied with mainframe rack mounting kit.	HP 5060-0258	A,T
Step Attenuator $(10 \mathrm{~dB})$	0 to 120 dB in 10 dB steps Range: 10 to 550 MHz Accuracy: $\pm 1.5 \mathrm{~dB}$ to 90 dB	HP 355D	A
Service Kit	Interconnect cables, adaptors coaxial cables compatible to 8660 -series plugs and jacks	HP 11672A (see Operating Note or mainframe manual for parts list)	A, ${ }^{\text {T }}$
* $\mathrm{A}=$ Adjustments; $\mathrm{T}=$ Troubleshooting			

SECTION II
 INSTALLATION

2-1. INTRODUCTION

2-2. This section contains information related to the initial inspection, preparation for use, and storage and shipping instructions for the Frequency Extension Module.

2-3. INITIAL INSPECTION

NOTE

If the Extension Module has been received as part of a signal generator system (8660-series Option 100), for mechanical inspection purposes the module should be considered part of the mainframe. Refer to the RF Section manual for information related to electrical inspection.

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1, and procedures for checking electrical performance are given in the RF Section manual. If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the electrical performance test, notify the nearest Hewlett-Packard office. If the shipping container is damaged, or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for carrier's inspection. The HP office will arrange for repair or replacement without waiting for claim settlement.

2-5. PREPARATION FOR USE

2-6. Power Requirements

2-7. The power consumed by the Frequency Extension Module during normal operation is 50 VA maximum.

2-8. Interconnections

2-9. Installing the Extension Module into the mainframe plug-in cavity ensures all necessary connections are made to the mainframe and the Modulation Section plug-in. Two coaxial cable accessories also must be installed to complete necessary connections to the RF Section plug-in.

2-10. Operating Environment

2-11. The Extension Module is designed to operate a mainframe which is operating within the following environment conditions:

Temperature 0 to $55^{\circ} \mathrm{C}$
(+32 to $+131^{\circ} \mathrm{F}$)
Humidity less than 95% relative Altitude less than 15,000 feet

2-12. Installation Instructions

2-13. Safety Considerations. During installation of the Extension Module, the top and bottom protective covers of the mainframe are removed. Energy available at many points may, if contacted, result in personal injury.

WARNINGS

1. Disconnect line (Mains) power cable from mainframe to remove available energy.
2. Capacitors inside the instrument may still be charged even if the system has been disconnected from its source of supply.
3. The multi-pin connector (mounted on mainframe) which provides interconnection to the Extension Module exposes power supply voltages which may remain after the power cable is disconnected from mainframe.

2-14. Order of Installation Procedures. If the Extension Module is being installed in the mainframe for the first time, perform the following
procedures in the order listed. To reinstall the Extension Module, perform only the Extension Module Installation.
a. Accessory Cable Installation, Figure 2-1.
b. Extension Module Installation, Figure 2-2.
c. Abbreviated Adjustment procedure in Section V.

2-15. STORAGE AND SHIPMENT

2-16. Environment

2-17. The storage and shipping environment of the Extension Module should not exceed the following limits:

Temperature $\quad . \quad . \quad . \quad-40^{\circ}$ to $+75^{\circ} \mathrm{C}$
Humidity less than 95%, relative Altitude less than 25,000 feet

2-18. Packaging

2-19. Original Type Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-

Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also, mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by model number and full serial number.

2-20. Other Packaging. The following general instructions should be used for re-packaging with commercially available materials:
a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard office or service center, attach a tag indicating the type of service required, return address, model number, and full serial number.)
b. Use a strong shipping container. A double-wall carton made of 350 -pound test material is adequate.
c. Use enough shock-absorbing material (3to 4 -inch layer) around all sides of the instrument to provide firm cusion and prevent movement inside the container.
d. Seal the shipping container securely.
e. Mark the shipping container FRAGILE to assure careful handling.

BULKHEAD MOUNTING OF ACCESSORY CABLES

WARNING

Before installing the cables, read the paragraphs under the heading "Installation Instructions" in this section.
a. Take the grey Coaxial Cable (1) and place the Flat Washer 3 on the Sealectro Bulkhead Connector 2 .
b. Insert the connector through the Spacer (4) which is mounted in a hole on the Bulkhead. The grey cable is mounted below the multi-pin connector (refer to Figure 2-2).
c. Place the Flat Washer (5) and the Lock Washer (6) over the protruding end of the Bulkhead Connector.
d. Secure the connector by threading and tightening the Hex Nut 1 onto the connector. The connector should have approximately $1 / 32$-inch play in all directions.
e. Follow steps a. through d. in mounting the grey-blue cable in the Bulkhead above the multi-pin connector.

EXTENSION MODULE INSTALLED IN MAINFRAME

WARNING

Before installing the Extension Module read the paragraphs under the heading "Installation Instructions" in this Section.
a. Position the Frequency Extension Module above the plug-in cavity with the multipin connector of the Extension Module below and on the right (as viewed from rear of mainframe). J1 and J2 should face the rear of the mainframe (refer to figure).
b. Lower the Extension Module into place in the mainframe.
c. Make sure the multi-pin connector mates properly with the mainframe connector and press the Extension Module into place.
d. Secure the Module in place with 5 Pozi-driv screws, 3 from the top as shown in the figure and 2 from the bottom of the mainframe.
e. Press the free end of the grey accessory cable into J 1 and the grey-blue cable into J2 as shown in the figure.

SECTION III OPERATION

3-1. INTRODUCTION

3-2. The operation of the Frequency Extension Module is dependent on the Model 8660 -series mainframe (frequency control) and the Model 86630 -series Modulation Section plug-in. Refer to Section III of the appropriate manual for operating information.

SECTION IV PERFORMANCE TESTS

4-1. INTRODUCTION

4-2. The performance of RF Sections which have a high frequency limit greater than 160 MHz is dependent on the performance of the Frequency Extension Module. Refer to Section IV of the appropriate RF Section Operating and Service Manual for combined performance tests.

SECTION V ADJUSTMENTS

5-1. INTRODUCTION

5-2. This section contains adjustment procedures which will return the Frequency Extension Module to peak operating condition. An abbreviated procedure is included to adjust an Extension Module the first time it is used with a mainframe so they will operate with each other in the system.

5-3. The Extension Module should be adjusted after any repair or if the unit, in conjunction with the RF Section, fails to meet the performance tests of Section IV in the RF Section manual. Prior to making any adjustment, let the complete system warm up for 15 minutes.

5-4. The order in which the adjustments are made is critical. Perform the adjustments in sequence and under the conditions presented in this section. DO NOT attempt to make random adjustments to the instrument. The Abbreviated Adjustments are independent and are to be performed only under special conditions. Prior to making any adjustments to the Frequency Extension Module, refer to the paragraph entitled Related Adjustments.

5-5. EQUIPMENT REQUIRED

5-6. Each adjustment procedure in this section contains a list of test equipment and accessories required to perform the adjustment. The test equipment is also identified by callouts in the test setup diagrams included with each procedure.

5-7. If substitutions must be made for the specified test equipment, refer to Table 1-1 for the minimum specifications of the test equipment to be used in the adjustment procedures. Since the Synthesized Signal Generator System is extremely accurate, it is particularly important that the test equipment used in the adjustment procedures meets the critical specifications listed in Table 1-1.
$5-8$. The HP 11672A Service Kit is an accessory item available from Hewlett-Packard for use in maintaining the Frequency Extension Module. A detailed listing of the items contained in the service kit is provided in the HP 11672A Operating Note and the mainframe manual. Each item may be ordered separately.

5-9. Extender cards used in servicing the Extension Module are contained in the HP Rack Mount Kit, HP Part Number 08660-60070, which is supplied with the mainframe.

5-10. SAFETY CONSIDERATIONS

$5-11$. Although this instrument has been designed in accordance with international safety standards, this manual and the system mainframe manual contain information, cautions, and warnings which must be followed to ensure safe operation and to retain the complete system in safe condition. Service adjustments should be performed only by qualified service personnel.

NOTE

Refer to the mainframe manual for safety information relating to ac line (Mains) voltage, fuses, protective earth grounding, etc.
$5-12$. Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved.
$5-13$. Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

WARNINGS

1. Adjustments described herein are performed with power supplied to the instrument while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.
2. The multi-pin plug connector (on mainframe), which provides interconnection to the Extension Module will expose power supply voltages which may remain on the pins after the Extension Module is removed and after the (Mains) power cable is disconnected from the mainframe. Be careful to avoid contact with the pins during interconnection with the Extension Module.

5-14. FACTORY-SELECTED COMPONENTS

5-15. Factory-selected components are identified on the schematics and parts list by an asterisk which follows the reference designator. The nominal value of the components are normally shown. The manual change sheets will provide updated information pertaining to the selected components. Table 5-1 lists the reference designator, the criterion used for selecting a particular value, the normal value range, and the service sheet where the component part is shown.

5-16. RELATED ADJUSTMENTS

$5-17$. The adjustment procedures found in this section are normally performed in sequence. The Abbreviated Adjustment procedure is independent and is performed only when an Extension Module is being used with a mainframe for the first time.
$5-18$. If the 4.43 GHz Oscillator is adjusted, the procedures which follow must all be performed.

5-19. If the 20 MHz IF Amplifier Adjustment is performed, the YIG Pretune Driver Adjustment, the YIG Loop Phase Detector Adjustment, and the YIG Loop Gain and Bandwidth Adjustment must be performed in sequence.
$5-20$. If the 3.95 to 4.05 GHz VCO Bias Adjustment is performed, the Sum Loop Pretune Adjust-
ment and the Sum Loop Bandwidth Adjustment must be performed in sequence.

5-21. Only the Abbreviated Adjustment, the YIG Loop Gain Bandwidth Adjustment, and the Sum Loop Bandwidth Adjustment are independent of other procedures. The final checks of the Abbreviated Adjustment procedure indicate if the other procedures need to be performed.

5-22. ADJUSTMENT LOCATIONS

$5-23$. The last foldout in this manual contains a table which cross-references all pictorial and schematic locations of the adjustable controls. The figure accompanying the table shows the locations of assemblies, chassis mounted parts, adjustable components, and test points.

5-24. ADJUSTMENTS

$5-25$. Prior to performing the adjustments on the Extension Module, remove the mainframe and Extension Module top covers. Refer to the disassembly procedures found on the lefthand foldout page which preceeds the last foldout in this manual.

5-26. Prior to performing the COMPLETE adjustment procedures remove the five circuit board assemblies (A3 through A7).

Table 5-1. Factory Selected Components

Reference Designator	Selected For	Normal Value	Service Sheet
A4C8*	Sum Loop Bandwidth (3 dB down) of $500 \pm 150 \mathrm{kHz}$ with cen- ter frequency set to 1.095 GHz . Increasing capacitance increases bandwidth.	200 to 330 pF	7
A3L2	Phase lock with an increase in center frequency (10 MHz steps). Monitor A3TP1 with an oscilloscope. A dc level is observed if Sum Loop is phase locked as opposed to an ac signal when un- locked. Dc level should be observed in each of the following cases: set system center frequency to 99.9 MHz; then to 109.9 MHz. Set to 299.9 MHz; then 309.9 MHz. Set to 399.9 MHz; then 409.9 MHz. Set to 799.9 MHz; then 809.9 MHz.	5.6 to $12.0 \mu \mathrm{H}$	6
A6C7	Selected for YIG loop bandwidth of $\pm 150 \mathrm{kHz}$ (increased capa- citance increases bandwidth),	100 to 1000 pF $(200 \mathrm{pF}$ nom.)	7

ADJUSTMENTS

5-27. ABBREVIATED ADJUSTMENT OF FREQUENCY EXTENSION MODULE

REFERENCE:

Service Sheets 5 and 7.

DESCRIPTION:

Each time a Frequency Extension Module is inserted into a different mainframe, minor adjustments must be made to the Extension Module to ensure proper operation of the entire signal generator system. Mainframe power supplies are checked and adjustments are made if necessary. An adjustment of the 4.43 GHz oscillator is done. The Sum Loop Pretune Assembly Outputs are adjusted and rechecked along with the 4.43 GHz oscillator. The dc voltage levels at A6TP1 of the YIG Loop Pretune Assembly are measured at specific preset frequencies.

Figure 5-1. Abbreviated Adjustment Test Setup
EQUIPMENT:
Microwave Frequency Counter
HP 5340A
Digital Voltmeter
HP 37470A/34702A

PROCEDURE:

1. Check the regulated power supply voltages in the mainframe (refer to Section VIII of the mainframe manual for the figure entitled Assembly Locations).

NOTE
DO NOT adjust the voltages if they are within tolerance.

Mainframe Test Point	Voltage and Tolerance (Vdc)
A5TP1	-40.00 ± 0.02
A5TP2	-10.00 ± 0.01
A5TP3	$+20.000 \pm 0.005$
A5TP4	$+5.25 \pm 0.02$

ADJUSTMENTS

5-27. ABBREVIATED ADJUSTMENT OF FREQUENCY EXTENSION MODULE (Cont'd)

2. Connect the RF SIGNAL OUTPUT from J2 of the Extension Module to the high frequency input of the microwave frequency counter.
3. Set the mainframe center frequency to 1200 MHz .
4. Set the R1 Control for an output from J 2 (monitored by the microwave frequency counter) of $2750.000 \pm 0.100 \mathrm{MHz}$. (This indirectly sets the frequency of the 4.43 GHz Oscillator.)
5. Set the mainframe LINE switch control to STNDBY and place the A4 Assembly on an extender board.
6. Return the LINE switch to ON and Monitor the dc voltage on A3TP1 with a digital voltmeter.
7. As shown by the table, set the center frequency and adjust the appropriate control for a reading of $11.0 \pm 0.5 \mathrm{Vdc}$ on the digital voltmeter.

Center Frequency	Adjustable Control	
	Name	Reference Designator
5 MHz	B Adj	A4R6
15 MHz	1 Adj	A4R10
25 MHz	2 Adj	A4R16
35 MHz	3 Adj	A4R20
45 MHz	4 Adj	A4R23
55 MHz	5 Adj	A4R26
65 MHz	6 Adj	A4R29
75 MHz	7 Adj	A4R32
85 MHz	8 Adj	A4R35
95 MHz	9 Adj	A4R38

8. Recheck the voltage readings at each center frequency setting (step 7).
9. Recheck the 4.43 GHz Oscillator frequency (see steps 3 and 4). If necessary, repeat steps 3 through 9 .
10. Monitor the dc voltage on A6TP1 with the DVM while programming in 100 MHz steps from 0 (zero) to 1200 MHz (i.e., $0 \mathrm{MHz}, 100 \mathrm{MHz}, 200 \mathrm{MHz} \ldots 1200 \mathrm{MHz}$). The dc voltage should be 0.0 ± 0.3 Vdc for each frequency setting.

NOTE

If the voltage at any frequency setting is $> \pm 0.5 \mathrm{Vdc}$, perform the rest of the adjustment procedures in this section.

ADJUSTMENTS

5-28. 4.43 GHz OSCILLATOR ADJUSTMENT

REFERENCE:

Service Sheet 3

DESCRIPTION:

The 4.43 GHz Oscillator output is monitored by a frequency counter while the frequency is adjusted.

Figure 5-2. 4.43 GHz Oscillator Adjustment Test Setup
EQUIPMENT:

> Microwave Frequency Counter Extender Cable.

PROCEDURE:

1. Interconnect equipment as illustrated in Figure 5-2.
2. Connect microwave frequency counter input to the 4.43 GHz OUT connector A1J3.
3. Adjust potentiometer R 1 for $4.4300 \pm 0.0005 \mathrm{GHz}$ as indicated by the microwave frequency counter.

5-29. 20 MHz IF AMPLIFIER ADJUSTMENT

REFERENCE:

Service Sheet 3

DESCRIPTION:

A 20 MHz signal from the mainframe is attenuated and injected at the input of the 20 MHz IF amplifier. The output is monitored with an oscilloscope and the 20 MHz ADJ control is set for the peak signal output.

ADJUSTMIENTS

5-29. 20 MHz IF AMPLIFIER ADJUSTMENT (Cont'd)

Figure 5-3. 20 MHz IF Amplifier Adjustment Test Setup

EQUIPMENT:

PROCEDURE:

1. Remove the A1A1, A1A3, and A1A4 Assemblies' cover. Refer to the disassembly procedures on the lefthand foldout page which preceeds the last foldout.
2. Disconnect W4 from A1J4; W3 from A1J2.
3. Set the step attenuator controls for 20 dB attenuation.
4. Connect the equipment together as shown in Figure 5-3.
5. Set the oscilloscope controls to monitor the 20 MHz signal (amplitude normally about $1 \mathrm{Vp}-\mathrm{p}$).
6. Peak the 20 MHz output as seen on the oscilloscope display by adjusting the A 1 A 1 Cl control.
7. Disconnect the equipment, connect W 4 to A 1 J 4 , connect W 3 to A 1 J 2 , and replace the $\mathrm{A} 1 \mathrm{~A} 1, \mathrm{~A} 1 \mathrm{~A} 3$, and A1A4 Assemblies' cover. Reconnect the correct cable to the 20 MHz OUTPUT on the mainframe A4A4 Assembly.

ADJUSTMENTS

5-30. 3.95 to 4.05 GHz VCO BIAS ADJUSTMENT

REFERENCE:

Service Sheet 3

DESCRIPTION:

The VCO Bias Adj control sets the bias voltage of the 3.95 to 4.05 GHz oscillator.

Figure 5-4. 3.95 to 4.05 GHz VCO Bias Adjustment Test Setup
EQUIPMENT:
Digital Voltmeter HP 34740A/34702A
Extender Cable HP 11672-60002

PROCEDURE:

1. Remove the top cover from the A1A2 Assembly.
2. Connect Digital Voltmeter to pin 2 of A1U2. Refer to the Extension Module Troubleshooting Block Diagram in Section VIII for A1U2 pin locations.
3. Adjust the VCO bias potentiometer A1A2R3 for +10.0 Vdc as indicated on the Digital Voltmeter.
4. Replace the top cover of the A1A2 Assembly.

ADJUSTMENTS

5-31A. YIG PRETUNE DRIVER ADJUSTMENT (8660A MAINFRAMES)

REFERENCE:

Service Sheet 2.

DESCRIPTION:

Adjustments are made to the YIG Pretune Driver controls while the YIG drive voltage and YIG output are monitored by a DVM and an oscilloscope respectively. The GAIN ADJ control sets the range of the YIG drive voltage with the mainframe center frequency set to 0.0 GHz (less significant digits do not affect the adjustment). The digital-to-analog converter controls are then adjusted for specific YIG oscillator output frequencies which correspond to preset center frequencies.

NOTE

Due to hysteresis of the YIG oscillator, different adjustment procedures are provided depending on the frequency control capabilities of the mainframe.

Figure 5-5. YIG Pretune Driver Adjustment Test Setup
EQUIPMENT:
Digital Voltmeter HP 34740A/34702A
Microwave Frequency Counter HP 5340A

PROCEDURE:

1. Prior to installing the A5 YIG Pretune Driver Assembly into the Extension Module, center the adjustment potentiometers so the DVM indicates resistance values in accordance with those listed in Table 5-2. Measure the resistance on the resistance scales of the DVM.

5-31A. YIG PRETUNE DRIVER ADJUSTMENT (8660A MAINFRAMES) (Cont'd)

Table 5-2. Preliminary Resistance Settings of YIG Pretune Driver Adjustment Potentiometers

Potentiometer	Function	Centered Value
A5R39	Gain Adj	100 Ohms
A5R29	Offset Adj	100 Ohms
A5R13	"1"Adj	1000 Ohms
A5R15	"2"Adj	500 Ohms
A5R17	" Adj	250 Ohms
A5R19	" 8 "Adj	100 Ohms
A5R21	$" 10 " A d j$	100 Ohms

2. Install the A5 circuit board in the Extension Module (A6 should NOT be installed at this time).
3. Connect the microwave frequency counter to the Extension Module output jack J2.
4. Set the system center frequency to 0 (zero) GHz .
5. Adjust the Gain Adj. control A5R39 for an output frequency from J2 of $3.950 \pm 0.001 \mathrm{GHz}$. Record the frequency to 5 significant digits.
\qquad GHz
6. Set the center frequency to 1 GHz and record the J 2 output frequency to 5 significant digits.
\qquad GHz
7. Calculate the difference frequency from the recorded values of steps 5 and 6 . If the frequency is $1.0000 \pm 0.0005 \mathrm{GHz}$, proceed to the step 11 .
8. If the tolerance of the difference frequency is not achieved, set the Offset control A5R29 for a frequency output of $2.950 \pm 0.001 \mathrm{GHz}$. Record the frequency to 5 significant figures.
\qquad GHz
9. Set the Center frequency back to 0 (zero) GHz . Record the difference frequency to five significant figures.
\qquad
10. Calculate the difference frequency from those recorded in steps 8 and 9 . If the frequency difference is $1.0000 \pm 0.0005 \mathrm{GHz}$ proceed to step 11. If the difference frequency tolerance is not achieved, repeat steps 5 through 9 until the tolerance is achieved.

NOTE
The following series of adjustments must be performed in the exact manner stated in order to eliminate errors due to YIG hysteresis.

ADJUSTMENTS

5-31A. YIG PRETUNE DRIVER ADJUSTMENT (8660A MAINFRAMES) (Cont'd)

11. Set the system center frequency to 0 (zero) MHz .
12. Set the center frequency to 100 MHz and adjust the appropriate control for the correct output frequency from J2 (refer to Table 5-3). Repeat this process at 200 , 400 , and 800 MHz ALWAYS INCREASING the frequency to the next setting. Record the frequency to five significant digits.

NOTE

If any one of the " 1 " through " 8 " controls needs more range (set full CW or CCW) the " 10 Adj" control, which is normally centered, may be reset to bring the frequencies within the required tolerance. (To increase the frequency, the " 10 Adj" control A5R21 should be set more CCW.) If the " 10 Adj" Control is reset, repeat steps 11 and 12.

Table 5-3. YIG Pretune Drive Digital-To-Analog Convertor Adjustments

Center Frequency (MHz)	Adjust	J2 Output Frequency and Tolerance (GHz)	Actual Frequency in GHz
100	A5R13	3.8500 ± 0.0010	-
200	A5R15	3.7500 ± 0.0010	-
400	A5R17	3.5500 ± 0.0010	-
800	A5R19	3.1500 ± 0.0010	-
1100	A5R13	2.8500 ± 0.0010	-
1200	A5R15	2.7500 ± 0.0010	

13. INCREASE the center frequency to 1100 MHz . If the frequency is close to the tolerance limit or out of tolerance, set the A5R13 control for a frequency closer to the desired frequency shown in Table 5-3.
14. Set the center frequency to 0 (zero) MHz; then to 100 MHz . Check the frequency from J2. Knowing how much the frequency changed from the original 100 MHz setting, reset the A6R13 control so the actual frequency is as close to the desired frequency (Table 5-3) as possible for both the 100 and 1100 MHz center frequencies.
15. Set the center frequency to 1200 MHz . Repeat steps 13 and 14 for the 200 and 1200 MHz center frequencies.
16. Set the system center frequency to 0 MHz , then to the frequencies listed in Table $5-4$. Verify the output frequency from J2 is within tolerance. If any of the frequencies are not within tolerance, repeat this entire procedure.

ADJUSTMENTS

5-31A. YIG PRETUNE DRIVER ADJUSTMENT (8660A MAINFRAMES) (Cont'd)

Table 5-4. Center Frequency versus YIG Loop Output

Center Frequency (MHz)	YIG Loop Output Frequency From J2 (GHz)
0	3.9500 ± 0.0015
100	3.8500 ± 0.0015
200	3.7500 ± 0.0015
300	3.6500 ± 0.0015
400	3.5500 ± 0.0015
500	3.4500 ± 0.0015
600	3.3500 ± 0.0015
700	3.2500 ± 0.0015
800	3.1500 ± 0.0015
900	3.0500 ± 0.0015
1000	2.9500 ± 0.0015
1100	2.8500 ± 0.0015
1200	2.7500 ± 0.0015

5-31B. YIG PRETUNE DRIVER ADJUSTMENT (8660B/C MAINFRAMES)

REFERENCE:

Service Sheet 2.

DESCRIPTION:

Adjustments are made to the YIG Pretune Driver controls while the YIG drive voltage and YIG output are monitored by a DVM and an oscilloscope respectively. The GAIN ADJ control sets the range of the YIG drive voltage with the mainframe center frequency set to 0.0 GHz (less significant digits do not affect the adjustment). The digital-to-analog converter controls are then adjusted for specific YIG oscillator output frequencies which correspond to preset center frequencies.

NOTE

Due to hysteresis of the YIG Oscillator, slightly different adjustment procedures are performed depending on the frequency control capabilities of the mainframe.

EQUIPMENT:

> Digital Voltmeter . HP 534740A Microwave Frequency Counter

ADJUSTMENTS

5-31B. YIG PRETUNE DRIVER ADJUSTMEINT (8660B/C MAINFRAMES) (Cont'd)

PROCEDURE:

1. Prior to installing the A5 YIG Pretune Driver Assembly into the Extension Module, center the adjustment potentiometers so the DVM indicates resistance values in accordance with those listed in Table $5-2$. Measure the resistance on the resistance scales of the DVM.
2. Install the A5 circuit board in the Extension Module (A6 should NOT be installed at this time).
3. Connect the microwave frequency counter to the Extension Module output jack J2.
4. Set the system center frequency to 0 MHz . Note the frequency of the signal from J 2 .
\qquad
5. Set the center frequency to 1000 MHz in one step. Adjust the Gain Adj control A5R39 for a frequency difference of $1000 \pm 1 \mathrm{MHz}$. Record the frequency.
\qquad
6. Repeat steps 5 and 6 until the frequency difference is consistently $1000 \pm 1 \mathrm{MHz}$ with each 1000 MHz change in center frequency.

NOTE

Turning A5R39 ccw increases the change in frequency, $c w$ rotation decreases the frequency change.
7. Set the center frequency to 0 MHz in one step.
8. Set the Offset Adj control A5R29 for a frequency reading of $3950 \pm 1 \mathrm{MHz}$.
9. Set the Gain Adj control A5R39 for a frequency reading of $3970 \pm 1 \mathrm{MHz}$.
10. Set A5R 29 for $3950 \mathrm{MHz} \pm 200 \mathrm{kHz}$.
11. Set the center frequency to 0 MHz . In 100 MHz steps, step the center frequency to 1200 MHz . Then step the frequency back to 0 MHz in 100 MHz steps. Verify the frequency reading (at 0 MHz) of $3949.000 \mathrm{MHz} \pm 200 \mathrm{kHz}$. Readjust A5R29 if necessary.
12. Step the frequency in 100 MHz steps to 1200 MHz . Adjust the controls at the appropriate step as shown in the following table. The controls are to be adjusted only when increasing the frequency in 100 MHz steps from 0 MHz .

NOTE

If a frequency selection mistake is made, in 100 MHz steps, step up to 1200 MHz , down to 0 GHz , and then up to the desired frequency.

ADJUSTMENTS

5-31B. YIG PRETUNE DRIVER ADJUSTMENT (8660B/C MAINFRAMES) (Cont'd)

Center Frequency (MHz)	Frequency Adj Controls	Yig Loop Output Frequency (MHz)	
	Min	Max	
0	Offset Adj	3948.500	3949.500
100	"1"Adj	3850.800	3851.800
200	"2"Adj	3750.800	3751.800
400	$4 " \mathrm{Adj}$	3550.800	3551.800
800	"8"Adj	3150.800	3151.800
1000	$10 " \mathrm{Adj}$	2950.800	2951.800

NOTE

If any of the " 1 " Adj, " 2 " Adj, " 4 " Adj, or " 8 " Adj controls is out of range, the " 10 " Adj control must be reset. If the control in question is against the clockwise stop, reset " 1 " Adj $21 / 2$ turns counterclockwise. If the control is full counterclockwise, reset " 10 " Adj $21 / 2$ turns clockwise. If necessary, repeat the procedure beginning with step 4.
13. Step the center frequency from 0 to 1200 MHz and back to 0 MHz in 100 MHz steps. After each step verify that each frequency falls within the tolerance shown in the table. If necessary, repeat step 12.

Center Frequency (MHz)	Yig Loop Output Frequency (MHz)	
	Min	Max
0	3947	3953
100	3847	3853
200	3747	3753
300	3647	3653
400	3547	3553
500	3447	3453
600	3347	3353
700	3247	3253
800	3147	3153
900	3047	3053
1000	2947	2953
1100	2847	2853
1200	2747	2753

14. Step the center frequency to 1200 MHz and back to 0 MHz in a 1200 MHz step. The frequency measured at a center frequency of 1200 MHz should be $2750+6 \mathrm{MHz}$. The frequency measured at a center frequency of 0 MHz should be $3950 \pm 6 \mathrm{MHz}$.

ADJUSTMENTS

5-32. YIG LOOP PHASE DETECTOR ADJUSTMENTS

REFERENCE:

Service Sheets 4 and 5.

DESCRIPTION:

The YIG phase lock loop feedback path is opened by removing the 20 MHz signal (which is obtained by mixing and sampling the YIG Oscillator output). The YIG Feedback Loop Gain control is centered, the Phase Ref Adj control is set to trigger the search signal on, and the DC Offset Adj centers the search waveform about 0 Vdc. The feedback path is closed and the Offset Adj on the YIG Pretune Driver Assembly sets the locked search output (a dc level) as close to ground potential as possible. The phase Adj control is set to obtain 90° phase shift between the 20 MHz REF signal and the 20 MHz IF signal. (The quadrature phase detector output is at a maximum negative de level at 90° phase shift).

The 4.43 GHz Oscillator frequency control is readjusted to obtain a 3.95 GHz output from the YIG Oscillator with the center frequency set to 0.0 GHz (less significant digits do not affect the adjustment).

Figure 5-6. YIG Loop Phase Detector Adjustment Test Setup
EQUIPMENT:
Microwave Frequency Counter HP 5340A
Oscilloscope HP 180A/1801A/1821A
10:1 Divider Probe HP 10004

PROCEDURE:

1. Connect YIG FM Driver board assembly A6 to an extender board and insert into the Extension Module.
2. Adjust YIG loop gain potentiometer A7R20 to the center of its range.
3. Connect oscilloscope probe to A7TP1 and adjust A7C2 for most negative dc voltage (typically $\mathbf{- 1 . 5}$ Vdc) as observed on the oscilloscope.

ADJUSTMENTS

5-32. YIG LOOP PHASE DETECTOR ADJUSTMENTS (Cont'd)

5. Disconnect 20 MHz output cable W 4 from A1J4.
6. Connect oscilloscope probe to A6TP1. Adjust oscilloscope to display a triangular waveform of approximately 2.5 volts peak-to-peak with a period of approximately 1.5 milliseconds. If waveform is not present, rotate potentiometer A7R17 ccw, and then, cw as necessary to turn search waveform generator (located on A6) on. When search waveform generator is turned on, oscilloscope should display typical waveform illustrated in Figure 5-6.
7. Adjust potentiometer A7R17 until search waveform generator is just triggered to produce waveform illustrated in Figure 5-6.
8. Adjust DC Offset potentiometer A6R6 so triangular search waveform is centered across 0 Vdc reference line on oscilloscope.
9. Reconnect 20 MHz output cable W4 A1J4. The triangular waveform displayed on oscilloscope should change to $0 \pm 0.5 \mathrm{Vdc}$.
10. Set the system center frequency to 0 (zero) MHz . Then step the frequency in 100 MHz steps to 1200 MHz and verify correct adjustment of A7R17, (that the loop remains locked). If loop unlocks or false locks, slightly readjust A7R17 cw until loop again locks at all frequencies (0 to 1200 MHz in 100 MHz steps). Then turn A7R17 1/8 turn cw for safety margin.

NOTE

When false lock occurs, the output is locked and stable but the output frequency is incorrect.
11. Set the center frequency to 0 (zero) MHz . Then step the frequency in 100 MHz steps to 1200 MHz to verify that loop remains locked at all frequencies. If loop unlocks or false locks readjust A7R17 cw until loop again locks.
12. Set the center frequency to 0 (zero) MHz. While monitoring the YIG loop output at J1 with frequency counter, adjust R1 so the YIG loop output frequency is $3.9500 \pm 0.0005 \mathrm{GHz}$.
13. Set the center frequency to 0 (zero) MHz and then to 1200 MHz while monitoring de level at A6TP1. Adjust offset potentiometer A5R29 for best compromise setting that makes A6TP1 level as close to 0 volts as possible for all center frequency settings of 0 to 1200 MHz (100 MHz steps).

5-33. YIG LOOP GAIN AND BANDWIDTH ADJUSTMENT

REFERENCE:

Service Sheet 4

DESCRIPTION:

To simulate phase modulation, a manually swept 19 to 21 MHz signal is superimposed on the 20 MHz second IF signal. The output signal from the RF Section plug-in is monitored by a Spectrum Analyzer. The YIG loop Gain is set for the maximum flatness across the 1 MHz bandwidth.

ADJUSTMENTS

5-33. YIG LOOP GAIN AND BANDWIDTH ADJUSTMENT (Cont'd)

Figure 5-7. YIG Loop Gain and Bandwidth Adjustment Test Setup
EQUIPMENT:

PROCEDURE:

1. Interconnect equipment as illustrated in Figure 5-7. The TEE connection is made as follows:
a. disconnect W4 from A1J4.
b. connect W4 to one port of TEE connector.
c. connect one port of TEE connector to A1J4.
d. connect variable attenuator to remaining port of TEE connector.
2. Set Step Attenuator for 60 dB attenuation.
3. Adjust VHF Oscillator output to 19 MHz and set output Vernier to mid-range.
4. Adjust Synthesized Signal Generator mainframe and RF Section output to 400 MHz at -10 dBm .
5. Calibrate Spectrum Analyzer to make attenuation measurement.

ADJUSTMENTS

5-33. YIG LOOP GAIN AND BAINDWIDTH ADJUSTMENT (Cont'd)

6. Adjust Spectrum Analyzer for logarithmic display of 400 MHz fundamental plus both sidebands out to 500 kHz from fundamental. Adjust Spectrum Analyzer as follows: BANDWIDTH, $10 \mathrm{kHz} ;$ SCAN WIDTH, 200 kHz ; SCAN TIME, 5 microseconds; and INPUT ATTENUATION, 20 dB . Use Spectrum Analyzer level controls to adjust display so fundamental peak is near top reference level line.
7. Vary signal generator output frequency from 19 to 21 MHz .
8. Adjust YIG loop gain potentiometer A7R20 until flatness of sidebands (about 40 dB below fundamental) is $\leqslant 3 \mathrm{~dB}$ within $\pm 500 \mathrm{kHz}$ of fundamental. Refer to Figure 5-7 for illustration of typical waveform.

5-34. SUM LOOP PRETUNE ADJUSTMENT

REFERENCE

Service Sheet 6

DESCRIPTION:

The Sum Loop PHase Error output voltage is set by adjusting the Sum Loop Pretune resistance ladder controls (part of the digital-to-analog convertor).

Figure 5-8. Sum Loop Pretune Adjustment Test Setup
EQUIPMENT:
Digital Voltmeter HP 34740A/34702A

PROCEDURE:

1. Install Sum Loop Phase Detector board assembly A3 into the Extension Module.
2. Center all adjustment potentiometers, including " B " potentiometer, on the A4 Assembly.
3. Connect the A4 Assembly circuit board to an extender board and install it into the Extension Module.
4. Connect Digital voltmeter to A3TP1.

ADJUSTMENTS

5-34. SUM LOOP PRETUNE ADJUSTMENT (Cont'd)

5. Set Synthesized Signal Generator System center frequency to 5 MHz and adjust A4R5 for a voltage at A3TP1 of $+11.0 \pm 0.5 \mathrm{Vdc}$.
6. Set the center frequency in 10 MHz steps from 5 to 95 MHz . Adjust appropriate potentiometer for +11.0 volts level at A3TP1 in accordance with Table 5-5. Adjust potentiometers as close to +11.0 volts as possible.

Table 5-5. Sum Loop Pretune Potentiometer Adjustment

Center Frequency (MHz)	Potentiometer	Function	A3TP1 Level* (Volts)	Sum Loop Frequencies (GHz)
05	A4R5	0 Adj	$+11.0 \pm 0.5$	3.955
15	A4R11	1 Adj	$+11.0 \pm 0.5$	3.965
25	A4R16	2 Adj	$+11.0 \pm 0.5$	3.975
35	A4R20	3 Adj	$+11.0 \pm 0.5$	3.985
45	A4R23	4 Adj	$+11.0 \pm 0.5$	3.995
55	A4R26	5 Adj	$+11.0 \pm 0.5$	4.005
65	A4R29	6 Adj	$+11.0 \pm 0.5$	4.015
75	A4R32	7 Adj	$+11.0 \pm 0.5$	4.025
85	A4R35	8 Adj	$+11.0 \pm 0.5$	4.035
95	A4R38	9 Adj	$+11.0 \pm 0.5$	4.045

7. Repeat step 6 to verify that all adjustments are within voltage level tolerance.

5-35. SUM LOOP BANDWIDTH ADJUSTMENT

REFERENCE:

Service Sheets 6 and 7.

DESCRIPTION:

A Spectrum Analyzer is used to monitor the RF Section RF OUTPUT while a 25 to 26 MHz signal is injected at the 20 to 30 MHz input to the Frequency Extension Module. The " 0 " control A4R5 is adjusted to obtain a 3 dB bandwidth equal to the Yig Loop 3 dB bandwidth $\pm 150 \mathrm{kHz}$, as observed on the Spectrum Analyzer. Then, the " B " control A4R6 is adjusted to maintain approximately +11 Vdc at A3TP1. The external 25 MHz signal is removed from the 20 to 30 MHz input and 20 to 30 MHz signal from the mainframe is reconnected. With the mainframe center frequency set to 1.005 GHz , the A14R2 control is adjusted to vary the 4.43 GHz oscillator frequency until the VCO output is $3.9550 \pm 0.0001 \mathrm{GHz}$. The "B" control A4R6 is readjusted to obtain $+11.0 \pm 0.5 \mathrm{Vdc}$ at A3TP1. Finally, the center frequency is stepped from 1.005 GHz to 1.095 GHz to 1.095 GHz in $0.010 \mathrm{GHz}(10 \mathrm{MHz})$ steps and the appropriate control listed in Table $5-5$ is set to maintain the A3TP1 voltage at $+11.0 \pm 0.5 \mathrm{Vdc}$ at each frequency.

ADJUSTMENTS

5-35. SUM LOOP BANDWIDTH ADJUSTMENT (Cont'd)

Figure 5-9. Sum Loop Bandwidth Adjustment Test Setup
EQUIPMENT:

Spectrum Analyzer	.HP 8555A/8552B/140T
Signal Generator	HP 8654A
Frequency Counter	HP 5340A
Coaxial Tee .	HP 1250-0781
Digital Voltmeter	HP 34740A/34702A

PROCEDURE:

1. Remove the left side cover of the mainframe and disconnect the white/orange cable W23 from the A2 Assembly connector. Reconnect, the cable through a coaxial tee connector. Connect the signal genenator to the open port of the tee.
2. Set the signal generator controls for an output of -50 dBm at 25 MHz .
3. Set the mainframe center frequency to $1.085 \mathrm{GHz}, \mathrm{RF}$ Section OUTPUT RANGE switch to 0 dBm , and adjust the VERNIER control for a 0 dB meter indication.
4. Adjust the spectrum analyzer controls for center frequency 1.085 GHz , frequency span per division 0.2 MHz , resolution bandwidth 30 kHz , input attenuation 20 dB , vertical sensitivity per division 2 dB , reference level +10 dBm , sweep time per division 1 ms , video filter off, scan mode internal and trigger auto.
5. Adjust the signal generator for sidebands approximately 40 dBm from the carrier as observed on the spectrum analyzer display. Tune the frequency from 25 to 26 MHz while observing the sidebands. The 3 dB bandwidth should match the Yig Loop bandwidth $\pm 150 \mathrm{kHz}$.

ADJUSTMENTS

5-35. SUM LOOP BANDWIDTH ADJUSTMENT (Cont'd)

6. If the 3 dB bandwidth is not correct, select A 4 C 8 for the correct response. The normal value range is 200 to 560 pF . (The bandwidth increases with an increased capacitance.)
7. Set the mainframe center frequency to 1.005 GHz .
8. Adjust the spectrum analyzer frequency to 1.005 GHz .
9. Connect the DVM to A3TP1.
10. Tune the signal generator frequency from 25 to 26 MHz while observing the sidebands displayed on the spectrum analyzer.
11. Adjust the " 0 " control A4R5 to obtain a 3 dB bandwidth the same as the Yig Loop bandwidth $\pm 150 \mathrm{kHz}$. It may be necessary at this point to adjust the " B " control A4R6 for an indication of $+11.0 \pm 0.5 \mathrm{Vdc}$ on the DVM to achieve the 3 dB bandwidth.
12. Adjust the " B " control for $+11.0 \pm 0.5 \mathrm{Vdc}$ at A 3 TP 1 .
13. Disconnect the signal generator and coaxial tee from W23 and reconnect the cable to the jack of the mainframe's A2 Assembly.
14. Disconnect the gray cable where it connects to jack J1 on the 11661B. Connect the frequency counter to J1.
15. Adjust A14R2 for a frequency output of $3.9550 \pm 0.0001 \mathrm{GHz}$ as indicated by the frequency counter.
16. Disconnect the frequency counter and reconnect the gray cable to $J 1$.
17. Adjust the " B " control A4R6 for a reading of $+11.0 \pm 0.5 \mathrm{Vdc}$ at A3TP1.
18. Step the center frequency from 1.005 to 1.095 GHz in $0.010 \mathrm{GHz}(10 \mathrm{MHz})$ steps. Adjust the appropriate sum loop pretune controls for a reading of $+11.0 \pm 0.5 \mathrm{Vdc}$ at A3TP1 as shown in Table 5-5.

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. This section contains information for ordering replacement parts for the HP Model 11661B Frequency Extension Module. Table 6-1 lists abbreviations used in the parts list and throughout the manual. Table 6-2 lists all replaceable parts in reference designator order. Table 6-3 contains the names and addresses that correspond to the manufacturer's code number.

6-3. ABBREVIATIONS

6-4. Table 6-1 gives a list of abbreviations used in the parts list, schematics, and throughout the manual. In some cases, two forms of the abbreviations are given, one all capital letters and one partial or no capitals. This occurs because the abbreviations in the parts list are always all capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lower case and upper case letters.

6-5. REPLACEABLE PARTS LIST

$6-6$. Table $6-2$ is the list of replaceable parts and is organized as follows:
a. Electrical assemblies and their components in alpha-numeric order by refereace designation.
b. Chassis-mounted parts in alpha-numeric order by reference designation.
c. Miscellaneous parts.
d. Illustrated parts breakdown.

The information given for each part consists of the following:
a. The Hewlett-Packard part number.
b. The total quantity (Qty) used in the instrument.
c. The description of the part.
d. Typical manufacturer of the part in a five-digit code.
e. Manufacturer code number for the part.

The total quantity for each part is given only once; at the first appearance of the part number in the list.

6-7. ORDERING INSTRUCTIONS

6-8. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number, indicate quantity required, and address the order to the nearest Hewlett-Packard office.

6-9. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

6-10. PARTS PROVISIONING

6-11. Stocking spare parts for an instrument is often done to insure quick return to service after a malfunction occurs. Hewlett-Packard has a "Spare Parts Kit" available for this purpose. The kit consists of selected replaceable assemblies and components for this instrument. The contents of the kit and the "Recommended Spares" list are based on failure reports and repair data, and parts support for one year. A complimentary "Recommended Spares" list for this instrument may be obtained on request, and the "Spare Parts Kit" may be ordered through your nearest HewlettPackard office.

REFERENCE DESIGNATIONS			
A assembly AT . . attenuator; isolator; termination	$\begin{aligned} & \text { E miscellaneous } \\ & \text { electrical part } \\ & \text { F tuse } \end{aligned}$	P . . . electrical connector (movable portion); plug	$\begin{aligned} & \text { U integrated circuit; } \\ & \text { vicrocircuit } \\ & \text { V electron tube } \end{aligned}$
B fan; motor	FL filter	Q transistor: SCR ;	VR voltage regulator;
BT battery	H hardware	triode thyristor	breakdown diode
C capacitor	HY circulator	R resistor	W . . . cable; transmission
CP coupler	J ... electrical connector	RT thermistor	path; wire
CR diode; diode	(stationary portion); jack	S	X socket Y crystal unit (piezo-
DC . . . directional coupler		TB terminal board	electric or quartz)
DL delay line DS annunciator:	K relay L coil; inductor	TC thermocouple TP test point	Z tuned cavity; tuned circuit
signaling device	M meter		
(audible or visual); lamp; LED	MP miscellaneous mechanical part		
ABBREVIATIONS			
A ampere	COEF coefficient	EDP electronic data	INT internal
ac. . . alternating current	COM common	processing	kg kilogram
ACCESS accessory ADJ adjustment	COMP composition	ELECT electrolytic ENCAP encapsulated	kHz kilohertz k Ω............ . kilohm
A/D analog-to-digital	CONN connector	EXT external	kV kilovolt
AF audio frequency	CP cadmium plate	F farad	lb pound
AFC automatic frequency control	CRT . . . cathode-ray tube CTL complementary	FET field-effect	LC inductancecapacitance
AGC automatic eain	transistor logic	F/F flip-flop	LED . . light-emitting diode
control	CW continuous wave	FH flat head	LF low frequency
AL aluminum	cw clockwise	FIL H fillister head	LG long
ALC automatic level	cm centimeter	FM. .frequency modulation	LH left hand
control	D/A . . . digital-to-analog	FP front panel	LIM limit
AM... amplitude modula-	dB decibel dBm decibel referred	FREQ frequency FXD fixed	LIN ... linear taper (used in parts list)
AMPL amplifier	to 1 mW	g gram	lin linear
APC automatic phase	dc direct current	GE germanium	LK WASH . . . lock washer
control	deg . . degree (temperature	GHz gigahertz	LO ... low; local oscillator
ASSY assembly AUX auxiliary	interval or difference)	GL glass GRD ground (ed)	LOG logarithmic taper
Avg a average degree (plane	H henry	log logrithm(ic)
AWG American wire	angle)	h hour	LPF low pass filter
BAL balance	C degree Celsius	HET heterodyne	LV low voltage
BCD binary coded	${ }_{0}^{\circ} \mathrm{F}$. . . . degree Fahrenheit	HD head	mA milliampere
decimal	K degree Kelvin	HDW hardware	MAX maximum
BD board	DEPC . . deposited carbon	HF high frequency	M
BE CU beryllium copper	DET detector diam diameter	HG mercury HI high	MEG meg (10^{6}) (used in parts list)
BFO beat frequency oscillator	DIA ... diameter (used in parts list)	HP Hewlett-Packard HPF high pass filter	MET FLM metal film MET OX . . metallic oxide
BH binder head BKDN breakdown	DIFF AMPL . . differential amplifier	HR hour (used in	MF . . . medium frequency ; microfarad (used in
BP bandpass	div division	HV high voltage	
BPF BRS bandpass filter	DPDT double-pole, double-throw	Hz Hertz IC integrated circuit	MFR manufacturer mg miligram
BWO backward-wave	DR drive	ID inside diameter	MHz megahertz
oscillator	DSB double sideband	IF intermediate	mH millihenry
CAL calibrate	DTL diode transistor	frequency	mho mho
ccw . . counter-clockwise	logic	IMPG impregnated	MIN ninimum
CER ceramic	DVM . . . digital voltmeter	in inch	min minute (time)
CHAN channel	ECL emitter coupled	INCD incandescent minute (plane
cm centimeter	logic	INCL include(s)	ancle)
CMO . . cabinet mount only COAX coaxial	EMF . . electromotive force	INP \ldots. input INS	MINAT miniature mm millimeter
	All abbreviations in the pa	st will be in upper-case.	

Table 6-1. Reference Designations and Abbreviations (2 of 2)

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
41	11661-60019	1	OSCILLATDR/MIXER HOUSING ASSY	28480	11661-60019
A1C1	0160-2437	6	CAPACITOR-FXD 5000 PF +80-20\% 200WVDC CER	28480	0160-2437
AlC 2	0160-2437		CAPACITOR-FXD 5000PF +80-20\% 200WVDC CER	28480	0160-2437
AlC 3	0160-2437		CAPACITOR-FXD 5000 PF +80-20\% 200WVDC CER	28480	0160-2437
$\triangle 1 C 4$	0160-2437		CAPACITOR-FXD 5000PF +80-20\% 200WVDC CER	28480	0160-2437
A1C5	$0160-4023$ $0360-1155$	1 2	CAPACITOR-FXD 680PF +-209 500WVDC CER TERMINAL, SLDR LUG, 12 SCR, .25/.093 ID	28480 79963	$\begin{aligned} & 0160-4023 \\ & 110 \end{aligned}$
4166	0160-2437	7	CAPACITDR-FXO 5000PF +80-20\% 200WVDC CER	28480	0160-2437
A1C.7	0160-2437		CAPACITOR-FXD 5000PF +80-20\% 200WVDC CER	28480	0160-2437
AlJ ${ }_{\text {Al }}$	$1250-0901$ $1250-0901$		CONNECTOR-RF SM SLO M SGL HOLE FR CONNECTOR-RF SM SLD M SGL HOLE FR	$2 K 497$ 2×497	700166 700166
AlJ 3	$1250-0901$		CONNECTOR-RF SM SLD M SGL HoLe FR	2 K 497	700166
AlJ 4	1250-0901		CONNECTOR-RF SM SLD M SGL HOLE FR	2 K 497	700166
A1J5	1250-0901		CONNECTOR-RF SM SLD M SGL HOLE FR	2K497	700166
AlJ6	1250-0901		CONNECTOR-RF SM SLD M SGL HOLE FR	2 K 497	700166
A1J7	1250-0901		CONNECTOR-RF SM SLD M SGL HOLE FR	2K497	700166
A1F1	0757-0401	3	RESISTOR 100 OHM 1\% 12.125 W F TUBULAR	24546	
A1R2	0598-7192	1	RESISTOR 14.7 OHM $2 \% .05 \mathrm{NF}$ TUBULAR	24546	C3-1/8-T00-14R7-G
A1P3	0698-7217	2	RESISTOR 162 OHM 2\% .05W F TUBULAR	24546	C3-1/8-T0-162R-G
Alul	5086-7055	1	SAMPLER, 1.8 GHZ LOH PASS FILTER ASSY	28480	5086-7055
Alu2	5086-7054	1	VCO/MIXER ASSY	28480	5086-7054
A1U3	5086-7053	1	4.43 GHZ OSC/MIXER ASSY	28480	5086-7053
			Al miscel laneous		
	$\begin{aligned} & 0360-1155 \\ & 11661-00004 \end{aligned}$	1	TERMINAL, SLOR LUG, $12 \mathrm{SCR}, .25 / .093$ ID COVER, YIG LOOP	79963 28480	$\begin{aligned} & 110 \\ & 11661-00004 \end{aligned}$
	11661-00006	2	CLAMP, MICROCIRCUIT OSCILLATOR	28480	11661-00006
	11561-00016	1	COVER, FILTER	28480	11661-00016
	11661-00008	1	CLMP, SAMPLER-FILTER	28480	11661-00008
	11661-00009	1	COVER, SUM LOOP	28480	11661-00009
	0380-0793	2	SPACER-RNO . 156-LG .093-ID . 125-0D BRS	76854	$15525-610$
Alal	11661-60007	1	20 MHZ IF AMPLIFIER ASSY	28480	11661-60007
Alalct	0121-0448	1	CAPACITOR: VAR; TRMR: CER: 2.5/5PF	00865	5S-TRIKO-03, 2.5-
Alalcz	0160-3878	10	CAPACITOR-FXD 1000 PF +-20\% 100WVDC CER	28480	0160-3878
AlAlC 3	0160-3878		CAPACITOR-FXD 1000PF +-20\% 100WVDC CER	28480	0160-3878
AlA 164	0160-3878		CAPACITOR-FXD 1000 PF +-208 100 WVDC CER	28480	0160-3878
Alaics	0160-3879	18	CAPACITJR-FXD . ${ }^{\text {SIUF }}+\mathbf{- 2 0 \%} 100 \mathrm{WVDC} \mathrm{CER}$	28480	0160-3879
Alf 166	0160-3879		CAPACITOR-FXD .01UF +-20\% 100WVDC CER	28480	0160-3879
AlA IC 7	0160-3879		CAPACITOR-FXD . $01 \mathrm{ULWF}+-20 \%$ 100WVDC CER	28480	0160-3879
AlA 168	0160-3879		CAPACITOR-FXD . O1UF +-20\% 100HVDC CER	28480	0160-3879
Alalco	0160-3879		CAPACITOR-FXD . $016 F+$-20\% 100WVDC CER	28480	0160-3879
AlAlCrl	1901-0040	11	DIDDE-SWITCHING 2NS 30V 50MA	28480	1901-0040
A1AILI	9140-0144	5	COIL ; FXD; MOLDED RF CHOKE; 4.7UH 10%	24226	10/471
A1A1L2	9100-1618	1	COIL ; FXD; MOLDED RF CHOKE; 5.6UH 108	24226	15/561
AlAll 3	9140-0144		COIL : FXD; MOLDED RF CHOKE; 4.7UH 10\%	24226	10/471
A14101	1853-0015		TRANSISTOR PNP SI CHIP PD=200MW		1853-0015
A1A102	1854-0009	1	TRAVSISTER NPN 2 N709 SI TO-18 PD=300M	28480	1854-0009
A14103	1855-0081	1	TRANSISTOR; J-FET N-CHAN, D-MDDE SI	01295	2N5245
AIAIR1	0698-7260	7	RESISTOR 1OK 2\% .05w F TUBULAR	24546	C3-1/8-T0-1 002-G
A1412?	0698-7236	11	RESISTOR 1K 2\%.05W F TUBULAR	24546	C3-1/8-T0-1001-G
AlA 123	0698-7243	5	RESISTOR $1.96 \mathrm{~K} 2 \% .05 \mathrm{~W}$ F TUBULAR	24546	C3-1/8-T0-1961-G
A1A1R4	0698-7212	6	RESISTOR 100 DHM $2 \% .05 \mathrm{~W}$ F TUBULAR	24546	C3-1/8-T0-1 00R-G
A1A125	0698-7243		RESISTOR 1.96K 2\% .05W F TUBULAR	24546	C3-1/8-T0-1961-G
AlAlR 6	0698-7247	2	RESISTOR 2.87 K 2\% .05W F TUBULAR	24546	C3-1/8-T0-2871-G
AlAlR 7	0698-7195	2	RESISTOR 19.6 OHM 29.05 W F TUBULAR	24546	C3-1/8-T00-19R6-G
AlAIR 3	0698-7234	1	RFSISTOR 825 OHM $2 \% .05 \mathrm{~W}$ F TUBULAR	24546	C3-1/8-T0-825R-G
A1AIR 9	0698-7219	8	RESISTOR 196 OHM $2 \% .05 \mathrm{H}$ F TUBULAR	24546	C3-1/8-T0-1 96R-G
A 1 Alp 10	0698-7245	2	RESISTOR 2.37K 2\%.05W F TUBULAR	24546	C3-1/8-T0-2371-6
AlAlR11	0698-7205	3	RESISTOR 51.1 OHM 28.05W F TUBULAR	24546	C3-1/8-T00-51R1-G
4142	11661-60008	1	380-480 MHZ IF AMPLIFIER ASSY	28480	11661-60008
A 14 2ClA 1 $2 ¢, 2$	0180-0197	71	CAPACITOR-FXD; $2.2 \mathrm{UFF+-10} \mathrm{\%}$ 20VDC TA	56289	1500225×902042
	0180-1746		CAPACITRR-FXD; $15 \mathrm{UF+-10} \mathrm{\%} 20 \mathrm{VDC}$ TA-SOLID	56289	1500156×902082
A1A2C 3	0160-3878		CAPACITOR-FXD 1000 PF +-208100 WVDC CER	28480	0160-3878
$\begin{aligned} & \text { A1A } 2 C 4 \\ & \text { A1A C } 5 \end{aligned}$	0160-2266	2	CAPACITOR-FXD 24PF +-5\% 500HVDC CER O+	28480	0160-2266
	0160-2256		CAPACITJR-FXD 24PF +-5\% 500WVOC CER $0+$	28480	0160-2266
A 142 Cb	0160-3878	1	CAPACITOR-FXD 1000PF +-20\% 100wVDC CER	28480	0160-3878
A1A 2 C 3	0160-3878		CAPACITOR-FXD 1000PF +-20\% 100WVDC CER	28480	0160-3878
	0160-2257		CAPACITOR-FXD 10PF +-5\% 500WVDC CER $0+$	28480	0160-2257

See introduction to this section for ordering information

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A 1A 2L 1	O140-0144		COIL ; FXD; MOLDED RF CHOKE: 4.7UH 10\%	24226	10/471
A1A $2 L 2$ A1A 2 L	08660-80009 $08660-80009$	2	INDUCTOR INDUCTOR	28480 28480	08660-80009 $08660-80009$
A 14201	1854-0540	2	TRANSISTOR NPN SI TO-72 PD=200M	28480	1854-0540
A 14202	1854-0540		TRANSISTOR NPN SI TO-72 PD $=200 \mathrm{MW}$	28480	1854-0540
A 1A 281	0698-3440	4	RESISTDR 196 OHM 1\% .125w F TUBULAP	16299	C4-1/8-T0-196R-F
A1A2R 2	0698-3429	1	RESISTOR 19.6 OHM 19, 125 W F TUBULAR	03888	PME 55-1/8-T0-19R6-F
A1A2R 3	2100-1984	1	RESISTOR; VAR; TRMR; 100 OHM 10\% C	30983	ET50w101
A14.294	0698-7256	2	RESISTOR 6.91K 29.05W F TUBULAO	24546	C3-1/8-T0-6311-G
A1A2R 5	0698-7248	3	RESISTOD 3.16K $2 \% .05 \mathrm{~W}$ F TUBULAR	24546	[3-1/8-T0-3161-G
A1A2P6	0698-7219		RESISTOR 196 DHM 2\%.05W F TUBULAR	24546	C3-1/8-T0-1 96R-G
A1A2R7	0698-7256		RESIISTOR 6.81K 2\% -05N F TUBULAR	24546	C3-1/8-T0-8811-G
A1A2R ${ }^{\text {a }}$	0698-7248		RESISTOR 3.16 K 28.05 W F TUBULAR	24546	C3-1/8-T0-3161-G
A1A2R9	0698-7219		RESIS ${ }^{\text {P }}$ OR 196 OHM 29.05 W F TUBULAR	24546	C3-1/8-T0-196R-G
A1A3	11661-60014	1	4 GHZ LOW PASS FILTER ASSY	28480	11661-60014
A1A4	11661-60012	1	4.43 GHZ OSCILLATOR TUNING ASSY	28480	11661-60012
A1A4C1	0180-0197		CAPACITOR-FXD; 2.2UF+-10\% 20VOC TA	56289	1500225×902042
A1A4C2	0180-0197		CAPACITJR-FXD; 2.2UF+-108 20VDC TA	56289	1500225×902042
A1A4C3	0180-0197		CAPACITOR-FXD: 2.2UC+-109 20VDC TA	56289	1500225×902042
A $144 R 1$ $A 1 A 4 R 2$	$0698-7195$ $0757-0405$		RESISTOR 19.6 OHM $2 \% .05 \mathrm{~W}$ F TUBULAR RESISTOR 162 OHM	24546 24546	C 3-1/8-T00-19RS-G C4-1/8-T0-1 crem
A1A4R2	0757-0405	1	RESISTOR 162 OHM 1\% .125W F TUBULAR	24546	
A1A4VRI	1901-1034	1	DIODE-STABISTOR 90V	03508	MPD 400
A2	11661-60006	1	MOTHER BOARD ASSY	28480	11661-60006
A 2 Cl 1	0160-2055	9	CAPACITOR-FXD .01UF +80-20\% 100WVOC CER	28480	0160-2055
${ }^{\text {A } 2 C 2}$	0160-2055		CAPACITOR-FXD .01UF +80-20\% 100WVDC CER	28480	0160-2055
A2C3	0160-2055		CAPACITOR-FXD .OLUF +80-20\% 100WVDC CER	28480	0150-2055
A2J1	1250-1377	5	CONNECTOR-RF SMB FEM PC	2 K 497	700214
42 J 2	1250-1377		CONNECTIR-RF SMB FEM PC	2 K 497	700214
A2J3	1250-1377		CONNECTOR-RF SMB FEM PC	2 K 497	700214
A 214	1250-1377		CONNECTOR-RF SMB FEM PC	2K497	700214
- 2 J 5	1250-1377		CONNECTOR-RF SMB FEM PC	2 K 497	700214
A 2×13	1251-1626	5	CONNECTOR; DC EDGE; 12-CONT; DIP SOLDER	71785	252-12-30-300
${ }^{42 \times 144}$	1251-1626		CONNECTOR; PC EDGE; 12-CONT; DIP SOLDER	71785	252-12-30-300
12×45	1251-1626		CONNECTOR; PC EDGE; 12-CONT; DIP SOLDER	71785	252-12-30-300
92×46	1251-1626			71785	252-12-30-300
A2XA7	1251-1626		CONNECTOR: PC EDGE; 12-CONT: DIP SOLDER	71785	252-12-30-300
A 3	11661-60004	1	SUM LSOP Phase detector assy	28480	11661-60004
A3C1	0180-2208	2	CAPACITIRR-FXD; 220UF+-10\% 10VDC TA	56289	1500227×901052
${ }^{4} 3 \mathrm{C} 2$	0180-2208		CAPACITTRR-FXD; 220UF+-10\% 10VDC TA	56289	1500227×901052
$\triangle 3 \mathrm{C} 3$	0160-3879		CAPACITOR-FXD .01UF +-20\% $100 W$ VDC CER	28480	0160-3879
${ }^{4} 3 \mathrm{C} 4$	0160-3879		CAPACITOR-FXD .01UF +-20\% 100WVDC CER	28480	0160-3879
$\triangle 3 \mathrm{C} 5$	0160-3879		CAPACITOR-FXD .01UF +-20\% 100WVDC CER	28480	0160-3879
A3C6	0160-3878		CAPACITOR-FXD 1000 PF $+-20 \% 100 \mathrm{WVDC}$ CER	28480	0160-3878
$\triangle 3 C 7$ $43 C 8$	0160-3878		CAPACITOR-FXD 1000PF +-20\% 100 WVDC CER	28480	0160-3878
$\triangle 3 C 8$ $\triangle 3 C 9$	0160-3879		CAPACITOR-FXD 0 IUF +-20\% 100 WVDC CER	28480	0160-3879
$\triangle 3 C 9$ A $3 C 10$	0160-3878 $0160-3879$		CAPACITOR-FXD 1000PF +-20\% 100WVDC CER CAPACITOR-FXD $.01 \mathrm{FF}+-20 \% 100 \mathrm{VVOC}$ CER	28480 28480	0160-3878 $0160-3879$
43C.11	0160-3878		CAPACITOR-FXD 1000PF +-20\% 100WVDC CER	28480	0160-3878
A 3C12	0160-3873	3	CAPACITOR-FXD 4.7PF +-.5PF 200WVDC CER	28480	0160-3873
${ }^{\text {A 3 }} 13$	0160-3873		CAPACITOR-FXD 4.7PF +-.5PF 200WVOC CER	28480	0160-38 ${ }^{\text {P3 }}$
A 3C14	0160-3873		CAPACITMR-FXD 4.7PF + -.5PF 200WVDC CER	28480	0160-3873
A 3C 15	0160-3875	4	CAPACITOR-FXD 22PF +-5\% 200WVDC CER 0+	28490	0160-3875
A 3C 16	0160-3875		CAPACITJR-FXD 22PF +-5\% 200WVDC CER 0+	28480	0160-3875
A3C17	0160-3875		CAPACITOR-FXD 22PF +-58 200WVDC CER 0+	28480	0160-3875
${ }^{4} 3 \mathrm{Cl} 18$	0160-3875		CAPACITRR-FXD 22PF +-5\% 200WVDC CER O+	28480	0160-3875
A $3 C 19$ A $3 C 20$	0160-3548 $0160-3094$	2	CAPACITOR-FXD CAPACITOR-FXD -	28480 28480	$0160-3548$ $0160-3094$
A 3C20	0160-3094	8	CAPACITOR-FXD . 1 UF +-10\% 100WVDC CER	28480	0160-3094
A $3 C 21$ $43 C 22$	0160-3094		CAPACITOR-FXD -1UF +-10\% 100WVOC CER	28480	0160-3094
A 3C22	0160-3879		CAPACITOR-FXD . $01 \mathrm{LUF}+-203100 \mathrm{WVDC} \mathrm{CER}$	28480	0160-3879
A 3C. 23	016n-3094		CAPACITOR-FXD .1UF +-108 100WVDC CER	28480	0160-3094
${ }^{\text {A 3 C } 24}$	0160-2306	1	CAPACITOR-FXD 27PF +-5\% 300WVDC MICA	28480	0160-2306
A3C 25	0160-3548		CAPACITOR-FXD .01UF +-12 100WVDC MICA	28480	0160-3548
A3L 1	9140-0179	1	COIL: FXD: MOLDED RF CHOKE; 22UH 10%	24226	15/222
A3L2*	9140-0105	1	COIL: FXD; MOLDED RF CHOKE; 8. 2UH 10\% *FACTORY SELECTED PART	24226	15/821
A 3L 3	9100-2551	1	COIL ; FXD; MDLDED RF CHOKE; 12UH 108	06560	15S-120K
A3L4	$9140-0238$ $9140-0238$	2	COIL COIL; FXD; FXD; MOLDED	24226 24226	$15 / 822$ $15 / 822$

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mifr Part Number
4301	1853-0007	15	TRANSISTOR PNP 2N3251 SI CHIP	04713	2N3251
A 302	1853-0007		TRANSISTOR PNP 2 N3251 SI CHIP	04713	2N3251
$\triangle 303$	1854-0221	2	TRANSISTER NPN DUAL 200\%-HFE 10 MV -VBE	28480	1854-0221
¢ 304	1855-0049	1	TRANSISTOR; JFET:DUAL; N-CHAN D-MODE SI	28480	1855-0049
4305	1853-0007		TRANSISTOR PNP 2 N3251 SI CHIP	04713	2N3251
A3F 1	0698-7236		RESISTOR 1K 2\%.05W F TUBULAR	24546	C3-1/8-T0-1 001-G
A 3P 2	0698-7236		RESISTOR 1K 2\%.05W F TUBULAR	24546	C3-1/8-T0-1001-G
A3P 3	0698-7236		RESISTOR 1K 2\% .05W F TUBULAR	24546	C3-1/8-T0-1 001-G
A3R 4	0698-7236		RESISTOR 1 K 28.05 W F TUBULAR	24546	C3-1/8-T0-1 001-G
A3P 5	0698-7224	8	RESISTOR 316 OHM 28.05 W F TUBULAR	24546	C3-1/8-T0-316R-G
A3R 6	0698-7222	3	RESISTOR 261 OHM 22.05 H F TUBULAR	24546	C3-1/8-10-261R-G
A387	0698-7224		RESISTOR 316 OHM 28.05 W F TUBULAR	24546	C3-1/8-T0-316R-G
A38 8	0698-7222		RESISTOR 261 OHM 25.05 H F TUBULAR	24546	C3-1/8-70-261R-G
- 38.9	0698-7225	4	RESISTOR 348 OHM 28.05 H F TUBULAR	24546	C3-1/8-T0-348R-6
A 3R 10	0698-7225		RESISTOR 348 OHM 28.05 W F TUBULAR	24546	C3-1/8-70-348R-G
A 3811	0698-7218	2	RESISTOR 178 OHM 28.05 N F TUBULAR	24546	C3-1/8-10-178R-6
A 3812	0698-7224		RESISTOR 316 OHM 28.05 W F TUBULAR	24546	C3-1/8-70-316R-6
A35 13	0698-7253		RESISTOR $5.11 \mathrm{~K} 2 \%$. 05 W F TC $=0+-100$	24546	C3-1/8-T0-5111-G
A 3214	0698-7224		$\begin{array}{llllll}\text { RESISTOR } & 316 & \text { OHM } & 2 \% \\ \text { RESISTOR } & 316 & \text { OHM } & 2 \% & 05 \mathrm{~W} & \text { F TUBURAR }\end{array}$	24546 24546	C3-1/8-T0-316R-G $\mathrm{C}-1 / 8-\mathrm{TO-316R-G}$
$\triangle 3 \mathrm{R} 15$	0699-7224		RESISTOR 316 OHM 2\% .05W F TUBULAR	24546	C3-1/8-50-316R-G
A 38.16	0698-7253		RESISTOR 5.11K 2\% .05W F TC=0+-100	24546	C3-1/8-70-5111-G
A3817	0698-7244	7	RESISTOR 2.15K 2\% .05W F TUBULAR	24546	C3-1/8-T0-2151-G
A 3818	0698-7244		RESISTOR 2.15K $2 \% .05 \mathrm{~W}$ F TUBULAR	24546	C3-1/8-70-2151-6
A 3R 19	0698-7244		RESISTOR 2.15K 27.05 NF TUBULAR	24546	C3-1/8-70-2151-6
A 38 20	0698-7244		RESISTOR 2.15K 2%.05N F TUBULAR	24546	C3-1/8-70-2151-G
A 3221	0698-7253	4	RESISTOR 5.11K $2 \% .05 \mathrm{~N}$ F TUBULAR	24546	C3-1/8-70-5111-6
A 3822	0698-7244		RESISTOR 2.15K 2\% .05N F TUBULAR	24546 24546	$\mathrm{C3-1/8}-\mathrm{TO-2151-6}$ $\mathrm{C} 3-1 / 8-\mathrm{T} 0-2151-6$
A 38.23	0698-7244		RESISTOR 2.15 K 2\% 0 .05W F TUBULAR	24546	C3-1/8- ${ }^{\text {c }}$ - $3-1 / 8151-6$
A 30.24	0698-7188	5	RESISTOR 10 OHM 28.05 W F TUBULAR	24546	C3-1/8-T00-10R-G
- 3925	0693-7277	2	RESISTOR 51.1K 28 .05W F TUBULAR	24546	C3-1/8-10-5112-G
A 3R 26	0698-7188		RESISTOR 10 OHM 28.05 N F TUBULAR	24546	C3-1/8-T00-10R-G
A 3027	0698-7205		RESISTOR 51.1 OHM 28.05 W F TUBULAR	24546	C3-1/8-T00-51R1-6
43828	0698-7260		RESISTOR 10K 28.05W F TUBULAR	24546	C3-1/8- T0-1002-G
A 3029	0698-7249	2	RESISTOR $3.48 \mathrm{~K} \quad 2 \%$.05W F TUBULAR	24546	C3-1/8-T0-3481-6
A 3P 30	0698-7205		RESISTOR 51.1 OHM 28.05 W F TUBULAR	24546	C3-1/8-100-51R1-G
A 3 R 31	0698-7241	2	RESISTOR 1.62K 28.05 F F TUBULAR	16299	C3-1/8-50-1621-6
A 38 32.	0698-7277		RESISTOR 51.1 K 28.05 W F TUBULAR	24546	C3-1/8-10-5112-6
A 3833	0698-7253		RESISTOR 5.11K 2\% .05W F TUBULAR	24546	C3-1/8-70-5111-6
A 3834	0698-7260		RESISTOR 10K 28.05 HF TUBULAR	24546	C3-1/8- T0-1 002-G
A38 35	0698-3154	1	RESISTOR 4.22K 1\% .125\% F TUBULAR	16299	C4-1/8-70-4221-E
A3U1	1820-0681	2	IC DGTL SN74S 00 N GATE	01295	SN74500N
4342	1820-0685	1	IC DGTL SN74S 10 NGATE	01295	SN74S10N
A $3 \cup 3$	1820-0681		IC DGTL SN74S 00 NGATE	01295	SN74S00N
			a3 miscellaneous		
	$0360-0124$ $1490-0073$		TERMINAL, STUD ${ }^{\text {a }}$. $040 "$ PIN: DRIVE $0.250{ }^{\text {c }}$ LG	28480 00000	$\begin{aligned} & 0360-0124 \\ & 080 \end{aligned}$
	$1490-0073$ $4040-0748$	10	PIN: DR IVE O. $250 \times$ LG EXTRACTOR, P.C. BOARD, BLACK	00000 28480	080 $4040-0748$
	4040-0753	5	EXTRACTOR-PC BOARD, GREEN	28480	4040-0753
A4	11661-60005	1	SUM LOOP PRETUNE ASSY	28480	11661-60005
A4C. 1	0160-0127	6	CAPACITOR-FXD 1UF +-20\% 25WVDC CER	28480	0160-0127
$\mathrm{A}_{4} \mathrm{C} 2$	0160-0127		CAPACITOR-FXO 1UF +20\% 25WVDC CER	28480	0160-0127
A4C3	0180-0183	1	CAPACITOR-FXD; 10UF+75-108 50VDC AL	56289	$3001065050 C 82$
A4C4	0160-2254	1	CAPACITOR-FXD 7.5PF +-25PF 500WVDC CER	28480	0160-2254
44 C 5	0160-3879		CAPACITOR-FXD .OLUF +-20\% 100WVDC CER	28480	0160-3879
A4C6	0160-3094		CAPACI TOR-FXD .1UF +-10\% 100WVDC CER	28480	0160-3094
$\triangle 4 C 7$	0160-3879		CAPACITOR-FXD .01UF +-20\% 100 VVDC CER	28480	0160-3879
A4C ${ }^{*}$	0140-0199	1	CAPACITOR-FXD 240PF $+5 \%$ 300WVDC MICA *FACTORY SELECTED PART	72136	DM15F241J0300WVICR
A4CR1	1901-0050	1	DIODE-SWITCHING 2NS 80V 200MA	28480	1901-0050
A4L 1	9140-0138	1		24226	$15 / 183$
442	9100-2261	1	COIL ; FXD; MOLDED RF CHOKE; 2.7UH 10\%	99800	1025-30
A401	1853-0007		TRANSISTOR PNP 2N3251 SI CHIP	04713	2N3251
A402	1853-0007		TRANSISTOR PNP 2 N3251 SI CHIP	04713	2N3251
A403	1853-0007		TRAVSISTOR PNP 2 N3251 SI CHIP	04713	2N3251
- 404	1853-0007		TRANSISTOR PNP 2N3251 SI CHIP	04713	2N3251
$\triangle 405$	1853-0007		TRANSISTOR DNP 2 N3251 SI CHIP	04713	2N3251
4406	1953-0007		TRANSISTOR PNP 2N3251 SI CHID	04713	2N3251
$\triangle 407$	1853-0007		TPANSISTOR PNP $2 N 3251$ SI CHIP	04713	2N3251
A408	1853-0007		TRAVSISTOR ONP 2N3251 SI CHIP	04713	2N3251
4409	1853-0007		TRANSISTOR PNP 2N3251 SI CHIP	04713	2N3251
A4010	1853-0007		TRANSISTOR PNP 2N3251 SI CHIP	04713	2N3251

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
44011 44012	$1853-0007$ $1853-0007$		TRANSISTOR PNP $2 N 3251$ SI CHIP TRANSISTOR PNP $2 N 3251$ SI CHID	$\begin{aligned} & 04713 \\ & 04713 \end{aligned}$	$\begin{aligned} & \text { 2N3251 } \\ & \text { 2N3251 } \end{aligned}$
A4R 1	0698-7188		RESISTOR 10 OHM 2\% .05W F TUBULAR	24546	C3-1/8-T00-10R-G
A4R 2	0757-0441	1	RESISTOR $8.25 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TUBULAR	24546	C4-1/8-T0-8251-F
4483	0698-7217		RESISTIR 162 OHM $2 \% .05 \mathrm{H}$ F TUBULAR	24546	C3-1/8-T0-162R-G
A4R 4 A4R 5	$0698-7240$ $2100-1986$	2	RESISTOR 1.47 K 28.05 F F TUBULAR RESISTOR; VAR; TRMR; $1 \mathrm{IKOHM} 10 \% \mathrm{C}$	24546 30983	$\begin{aligned} & \text { C3-1/8-T0-1471-G } \\ & \text { ET50W102 } \end{aligned}$
	2100-1966				
A4R 6 $A 4 R$	$2100-1986$ $0698-3101$	1		30983 03888	ET50H102 PME $65-1 / 2-T 0-2871-F$
A4R 8	0698-7212		RESISTOR 100 OHM $2 \% .05 \mathrm{~F}$ F TUBULAR	24546	C3-1/8-T0-100R-G
A4R9	0698-7218		RESISTOR 178 DHM 28.05 W F TUBULAR	24546	C3-1/8-T0-178R-G
$\triangle 4 \mathrm{R} 10$	0698-7241		RESISTOR 1.62K 28.05 H F TUBULAR	16299	C3-1/8-T0-1621-G
A4R11	2100-2061	4	RESISTOR; VAR: TRMR: 200 OHM 10\% C	30983	ET50H201
A4P12	0698-7258	1	RESISTDR 8.25 K 28.05 W F TUBULAR	24546	C3-1/8-T0-8251-G
A48 13	0698-7212		RESISTOR 100 OHM 28.05 W F TUBULAR	24546	C3-1/8-T0-1 002-G
A 4214	0698-7219		RESISTOR 196 OHM 2\%.05W F TUBULAR	24546	C3-1/8-T0-1 96R-G
A4R15	0698-7242	1	RESISTOR 1.78K $2 \% .05 \mathrm{H}$ F TUBULAR	24546	C3-1/8-70-1781-G
A 4R 16	2100-2061		RESISTOR; VAR; TRMR; 200 OHM 109 C	30983	ET50W201
A4R 17	0698-7276	1	RFSISTOR $46.4 \mathrm{~K} 2 \mathrm{2z} .05 \mathrm{~W}$ F TUBULAR	24546	C3-1/8-T0-4642-G
A4R18	0698-7220	1	RESISTOR 215 OHM 22.05 W F TUBULAR	24546	C3-1/8-TO-215R-G
A 4219	0698-7243		RESISTOR 1.96 K 2\% .05W F TUPULAR	24546	C3-1/8-T0-1961-G
A4R20	2100-2061		RESISTOR; VAR; TRMR; 200 OHM 10\% C	30983	ET504201
A4R 21	0698-7221	1	RESISTOR 237 OHM 2\%.05W F TUBULAR	24546	C3-1/8-T0-237R-G
A4P 22	0698-7244		RESISTER 2.15K 2\% .05W F TUBULAR	24546	C3-1/8-T0-2151-G
A4R23	2100-1788	2	RESISTOR; VAR; TRMR; 500 CHM 10\% C	30983	ET50W501
A4F 24	0698-7222		RESISTOR 261 OHM 28.05 W F TUBULAR	24546	C3-1/8-T0-261R-G
A4R 25	0698-7245		RESISTOR 2.37K 28.05 W F TUBULAR	24546	C3-1/8-T0-2371-G
A4R26	2100-1788		RESISTOR; VAR: TRMR; 500 OHM 108 C	30983	ET50W501
44827	0698-7223	2	RESISTOR 287 OHM 2\%.05W F TUBULAR	24546	C3-1/8-T0-287R-6
A4R 28	0698-7246	1	RESISTOR 2.61 K 28.05 F F TUBULAR	24546	C3-1/8-T0-2611-G
A 4229	2100-1986		RESISTOR; VAR; TRMR; 1 KOHM 102 C	30983	ET504102
A4R 30	0698-7224		RESISTOR 316 OHM 28.05W F TUBULAR	24546	C3-1/8-T0-316R-6
A 4231	0698-7247		RESISTOR 2.87K 25 . 05 H F TUBULAR	24546	C3-1/8-T0-2871-G
A4R32	2100-1986		RESISTOR; VAR; TRMR; 1 KOHM 10\% C	30983	ET504102
A4R 33	0698-7225		RESISTOR 348 OHM 28.05 N F TUBULAR	24546	C3-1/8-T0-348R-6
A 4 R 34 A 235	$0698-7248$ $2100-1986$		RESISTOR 3.16 K 2\% 28.05 F F TUBULAR RESISTOR; VAR; TRMR; 1 KDHM 10\% C	24546 30983	C3-1/8-T0-3161-G ET50W102
A4R 36	0698-7226	1	RESISTOR 383 OHM 28.05 W F TUBULAR	24546	C3-1/8-T0-383R-G
A4R 37	0698-7249		RESISTOR 3.48K 2 m . 05 WH F TUBULAR	24546	C3-1/8-T0-3481-G
A4R 39	2100-2497	1	RESISTOR; VAR; TRMR; 2 KOHM 10\% C	19701	ET50W202
A401	1820-0214	1	IC OGTL SN74 42 N DECODER	01295	SN7442N
			A4 Miscellanedus		
	1480-0073		PIN: DRIVE 0.250" LG	00000	ObD
	4040-0748		EXTRACTOR, P.C. BOARD, BLACK	28480	4040-0748
	4040-0752	1	EXTRACTOR-PC BOARD, YELLOW	28480	4040-0752
45	11661-60001	1	YIG LOOP PRETUNE ASSY	28480	11661-60001
45C1	0180-2207	1	CAPACITITR-FXD; $100 \mathrm{UF}+-109$ 10VDC TA	56289	1500107×901 OR2
45 C 2	0180-2206	2	CAPACITOR-FXD: $600 \mathrm{Ft}-108$ 6VDC TA-SOLID	56289	1500606×900682
$\triangle 5 \mathrm{C} 3$	0160-2204	1	CAPACITOR-FXD 100PF +-5\% 300WVDC MICA	28480	0160-22 04
A 5C4	0160-3456	1	CAPACITOR-FXD 1000PF +-10\% 1000HVDC CER	28480	0160-3456
A 5C5	0160-3094		CAPACITOR-FXD . $1 \mathrm{UF}+$ +-10\% 100WVDC CER	28480	0160-3094
$45 C 6$	0160-2055		CAPACITOR-FXD . OLUF +80-20\% 100WVDC CER	28480	0160-2055
$\triangle 5 C 7$	0160-3094		CAPACITOR-FXD . $1 \mathrm{UF}+$ +-10\% 100WVDC CER	28480	0160-3094
A5C8	0180-0291	8	CAPACITOR-FXD; 1UF+10\% 35VDC TA-SOLID	56289	$1500105 \times 9035 A 2$
A5CR1	1901-0376	2	DIDOE-GEN PRP 35V 50Ma	28480	1901-0376
$\triangle 5 C R 2$	1901-0376		DIODE-GEN PRP 35V 50MA	28480	1901-0376
A501	1854-0071	5	TRANSISTOR NPN SI PD $=300 \mathrm{MH} \quad \mathrm{FT}=200 \mathrm{MHZ}$	28480	1854-0071
A 502	1854-0071		TRANSISTOR NPN SI PD $=300 \mathrm{MH} \mathrm{FT}=200 \mathrm{MHZ}$	28480	1854-0071
A 503	1854-0071		TRANSISTOR NPN SI PD $=300 \mathrm{MH} \mathrm{FT}=200 \mathrm{MHZ}$	28480	1854-0071
A 504	1854-0071		TRANSISTOR NPN SI PD=300MH FT $=200 \mathrm{MHZ}$	28480	1854-0071
A 505	1854-0071		TRANSISTOR NPN SI PD=300MH FT= 200 MHZ	28480	1854-0071
A 506	1854-0221		TRANSISTOR NDN DUAL 2008-hfe 10 MV -VBE	28480	1854-0221
A507	1855-0020	2	TRANSISTOR: J-FET N-CHAN, D-MODE SI	28480	1855-0020
A 508	1854-0062	2	TRANSTSTOR NPN 2N1701 SI PD=25W	04713	2N3055
4509	1854-0062		TRANSISTOR NPN 2N1701 SI PD= 25 W	04713	2N3055
$\triangle 5 \mathrm{R} 1$	0757-0421	1	RESISTOR 825 OHM 1\% .125W F TUBULAR	24546	C4-1/8-T0-825R-F
A5R2	0698-7229	5	RESISTOR 511 OHM 2\%.05W F TUBULAR	24546	C3-1/8-T0-511R-G
A 583	0698-7229		RESISTOR 511 OHM 2\%.05W F TUBULAR	24546	C3-1/8-T0-511R-G
A5R4	0698-7229		RESISTOR 511 OHM 2\%.05W F TUBULAR	24546	C3-1/8-T0-511R-G
A5R 5	0698-7229		RESISTOR 5110 OHM 28.05 W F TUBILAR	24546	C3-1/8-T0-511R-G

Table 6－2．Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A506	0698－7229	5	RESISTOR 511 OHM $2 \% .05 \mathrm{~W}$ F TUBULAR	24546	C3－1／8－T0－511R－G
A5P7	0698－7272		RESISTOR 31．6K 28.05 H F TUBULAR	24546	C3－1／8－TO－3162－G
4528	0698－7272		RESISTOR 31.6 K 28 28.05 W F TUBULAR	24546	C3－1／8－T0－3162－G
A529	0698－7272		RESISTOR 31．6K 27.05 W F TUBULAR	24546	C3－1／8－T0－3162－G
45810	0698－7272		RESISTOR 31．6K 28.05 W F TUBULAR	24546	C3－1／8－TO－3162－G
A 5811	0698－7272	2	RESISTOR 31．6K 2\％．05W F TUBULAR	24546	C3－1／8－T0－3162－G
45 F 12	0757－0280			24546	C4－1／8－10－1001－F
45 P 13	2100－3109	1	RESISTOR 1K 18． 125 N F TUBULARRESISTOR－VAR TRMR 2KOHMRESISTOR C	32997	3006P－1－202
A5R14	－0698－8553	2		03888 32997	PME5 5S 3006 P－I－102
A 5R 15	2100－3154		RESISTOR 40K 0．5\％．125W F TC $=0 \pm 15$ RESISTOR－VAR TRMR 1KOHM 10\％C SIDE ADJ	32997	3006P－1－1 02
A5P 16	0698－8552	2	RESISTOR 20K 0．5\％．125W F TC＝ 0 ± 15	03888	PME55S
A 5P17	2100－3154	1	RESISTOR－VAR TRMR 1 K OHM 108 C SIDE ADJ	32997	3006P－1－102
A5R18	0698－8551	2	RESISTOR 10K $0.5 \% .125 \mathrm{~W}$ F TC $=0 \pm 15$ RESISTOR－VAR TRMR 500 OHM 10\％C SIDE ADJ	03888	PME5 5S
－ 5819	2100－3123	2		32997	3006P－1－501
45820	0698－8548		RESISTOR 5K 0．5\％．125W F TC＝0 55	07716	MAR－5－993
$A 5 R 21$ $A 5 R 22$	2100－3123	2	RESISTOR－VAR TRMR 500 OHM 10\％C SIDE ADS RESISTOR 4 K	32997	3006P－1－501
$\triangle 5 R 22$ 5 S 23	0698－8547		RESI STOR 4 KRESISTOR	07716 03888	MAR－5－993
A $5 ¢ 23$ A 524	$0698-8553$ $0698-8552$			03888 03888	PME 55 S PME5 5S
A 5825	0698－8551		RESISTOR 2OK 0．5\％．125W F TC $=0 \pm 15$ RESISTOR 10K 0．5\％．125W F TC＝0さ15	03888	PME 555
A50 26	0698－8548		RESISTOR 5K 0．5\％．125W F TC＝0 5	07716	MAR－5－993
A5R 27	0698－8547			07716	MAR－5－993
A5P28	0698－8550	2	RESISTOR $4 \mathrm{~K} 0.5 \% \quad .125 \mathrm{~W}$ F TC＝0さ5 RESISTOR 1K 0．5\％．125W F TC＝0さ5	07716	MAR－5－993
A 5829 45830	210n－3229		RESISTOR－VAR TRMR 200 OHM 10\％C SIDE ADJ RESISTOR 1K 0．5\％．125W F TC＝0 55	32997	3006P－1－201
45 R 30	0698－8550	2		07716	MAR－5－993
A58 31	0698－0024			03888	PME 65－1／2－T0－2611－E
A 5832	0698－3457	2	RESISTOR 2．61K 1\％．5W F TUBULAR RESISTOR 316K 1\％• 125W F TUBULAR	19701	MF4C1／8－T0－3163－F
45933	0698－7284	4	RESISTOR 100K 2\％．05W F TUBULAR	24546	C3－1／8－10－1003－6
$\begin{aligned} & \text { A SR } 34 \\ & \text { A SR } 35 \end{aligned}$	0698－3457		RESISTOR 316K 1\％．125N F TUBULAR	19701	MF4C1／8－T0－3163－F
	0698－7284		RESISTOR 100K $2 \% .05 \mathrm{~W}$ F TUBULAR	24546	C3－1／8－TO－1003－6
A5R 36	0698－7260			24546	C3－1／8－T0－1002－6
A 5837	0698－7260		$\begin{array}{lllll} \text { RESISTOR } & 10 K & 2 \% & .05 \mathrm{~W} & \text { F TUBULAR } \\ \text { RESISTOR } & 10 \mathrm{~K} & 2 \% & .05 \mathrm{~F} & \text { TUBULAR } \\ \text { RESISTOR } & 10 \mathrm{~K} & 2 \% & .05 \mathrm{~W} & \text { F TUBULAR } \end{array}$	24546 24546	C3－1／8－${ }_{\text {C3－1 }}$ C3－1／8－10－1002－6
A 5R 38 45839	$0698-7260$ $2100-3229$			24546 32997	C3－1／8－10－1 $30068-1-201$
$\begin{array}{r}45839 \\ \hline 5840\end{array}$	$2100-3229$ $0698-8549$	1	RESISTOR 2．1K 0．5\％－125W F TC $=0 \pm 5$	32997 07716	3006P－1－201 MAR－5－993
A5P41	0698－7183		RESISTOR 10 OHM 28.05 N F TUBULAR	24546	C3－1／8－T00－10R－G
$\triangle 5 \mathrm{R} 42$	0698－7243		RESISTOR 1．96K 2% ．05W F TUBULAR	24546	C3－1／8－T0－1961－6
A 5R 43	0811－3256	2	RESISTOR 100 OHM 025% 3W PW TUBULAR	00213	12005
A5F44	0698－7189		RESISTOR 10 OHM 28.05 W F TUBULAR	24546	C3－1／8－T00－10R－G
A5R45	0811－3256		RESISTOR 100 OHM ．25\％3W PW TUBULAR	00213	12005
A 501	1820－0174	1	IC DGTL SN74 04 N INVERTER	01295	SN7404N
45U2	1820－0223	2	IC LIN LM301AH AMPLIFIER	27014	LM301A4
A5VR1	1902－1216	2	DIODE；LENER；9V VZ；． 5 W MAX PO	12954	1N938A
A5VR2	1902－0202	2	DIODE；ZENER； 15 V VZ； 1 W MAX PD	04713	S211213－191
45 VR3	1902－1216		DIDDE；LENER；9V V Z；．5W MAX PD	12954	1N938A
A5VR4	1902－0202		DIODE； ZENER ： 15 V VZ ； 1 IW MAX PD	04713	SZ11213－191
			A5 Miscellaneous		
	0360－0124	1	```TERMINAL, STUD .040'' PIN:DRIVE 0.250" LG EXTRACTOR, P.C. BOARD, BLACK EXTRACTOR-PC BD ORN LEXAN .062 BD THKNS```	28480	0360－0124
	1480－0073			00000	080
	$4040-0748$ $4040-0751$			28480 28480	$\begin{aligned} & 4040-0748 \\ & 4040-0751 \end{aligned}$
A6	11661－60002	1	FM DRIVER ASSY	28480	11661－60002
\triangle SC 1	0160－3879	2	CAPACITOR－FXD ．OIUF＋－20\％100WVDC CER CAPACITOR－FXD；1UF＋ 102 35VDC TA－SOLID	28480	0160－3879
${ }^{A} 6 C 2$	0180－0291			56289	1500105 ${ }^{\text {P9035A2 }}$
$\triangle 6 C 3$	0160－3879		CAPACITOR－FXD ． $0101 \mathrm{FF}+208100 \mathrm{WYDC}$ CER	28480	0160－3879
$\Delta \in C 4$	0180－0197		CAPACITOR－FXD； $2.2 \mathrm{UF}+10 \mathrm{~T}$ 20VDC TACAPACITOR－FXD； $3.3 \mathrm{UF}+10 \%$ 50VDC TA	56289	1500225×902042
46 C 5	0180－2141			56289	1500335×905082
${ }^{46 C 6}$	0180－2141	1	CAPACITOR－FXD；3．3UFt－102 5OVDC TA	56289	1500335×905082
$A^{\text {A C }}$ ？	0160－2025		CAPACITOR－FXD； $220 \mathrm{PF}+-5 \% 500$ WVDC MICA CAPACITOR－FXD；6OUFt－10\％GVDC TA－SOLID	28480	0160－2025
$A \in C 8$	0180－2206			58289	1500606×900682
$\triangle \in C 9$	0160－0166	1	CAPACITOR－FXD ．068UF +-108 200HVDC POLYE	56289	292P68392
\triangle AC 10	0160－3536	1	CAPACITOR－FXD 620PF＋－58 100WVDC MICA	28480	0160－3536
${ }^{46} \mathrm{C} 11$	0180－0197	1	CAPACITOR－FXD；2．2UF＋－10\％20VDC TA CAPACITOR－FXD ．O1UF＋80－208 100WVDC CER CAPACITOR－FXD ．01UF $+-20 \% 100 \mathrm{WVDC}$ CER CAPACITOR－FXD ．01UF＋－208 100WVOC CER CAPACITOR－FXD；IUF $+10 \%$ 35VDC TA－SOLID	56289	1500225×902042
$\triangle 6 C 12$ $\triangle 6 C 13$	$0160-3451$ $0160-3879$			28480	0160－3451
$\triangle{ }^{\triangle}$ C 13	0160－3879			28480	0160－3879
${ }^{\text {A SC }} 14$	0160－3879			28480	0160－3879
A6C 15	0180－0291			56289	150D105 X9035A2
$\begin{aligned} & A 6 C 16 \\ & \triangle 6 C 17 \end{aligned}$	0160－3094	1	CAPACITOR－FXD ．IUF＋－10\％100WVDC CER CAPACITOR－FXD IUF -20% 25WVDC CER	28480	0160－3094
	0160－0127			28480	0160－0127
C6C． 18	0160－0127		CAPACITOR－FXD IUF -20% 25WVDC CER CAPACITOR－FXD 1UF $+20 \%$ 25WVDC CER CAPACITOR－FXD 5600PF＋－10\％200WVDC POLYE CAPACITOR－FXD $1 U F+-20 \% 25$ WVDC CER	28480	0160－0127
\triangle AC 19	0160－0127			28480	0160－0127
A $6 C 20$$A 6 C 21$	$\begin{aligned} & 0160-0158 \\ & 0160-0127 \end{aligned}$			56289	292 P56292
				28480	0160－0127

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A6CR1	1910-0022	2		28480	1910-0022
$\triangle 6 C R 2$	1910-0022			28480	1910-0022
A GCR 3	1901-0040		DI ODE-SHITCHING 3.5NS 5V 60MA DIODE-SWITCHING 2NS 30V 50MA	28480	1901-0040
A6CR4	1901-0040			28480	1901-0040
ASCP5	1901-0040		DIODE-SWITCHING $2 N S$ 30V 50 MA DI ODE-SWITCHING $2 N S$ 30V 50 MA	28480	1901-0040
A6CD6	1901-0040			28480	1901-0040
A6CP7	1901-0040		DIODE-SHITCHING 2NS 30V 50MA DIODE-SHITCHING 2NS 30V 50MA	28480	1901-0040
AGCR8	1901-0040			28480	1901-0040
A6CR9	1901-0040		$\begin{aligned} & \text { DIODE-SWITCHING } 2 N S \text { 30V } 50 \mathrm{MA} \\ & \text { DIODE-SWITCHING } 2 N S \text { 30V } 50 \mathrm{MA} \end{aligned}$	23480	1901-0040
AGCR10	1901-0040		DIODE-SWITCHING 2NS 30V 50MA	28480	1901-0040
${ }^{\text {A6CR1 }} 1$	1901-0040		$\begin{aligned} & \text { DIODE-SWITCHING 2NS 30V } 50 \mathrm{MA} \\ & \text { DIODE-SWITCHING 2NS } 30 \mathrm{~V} 50 \mathrm{MA} \end{aligned}$	28480 28480	1901-0040
A6CR1 2	1901-0040			28480	$1901-0040$
A6L 1	9140-0144			24226	10/471
A601	1853-0034	1	TRANSISTOR PNP SI CHIP TO-18 PD=36OMW TRANSISTOR NPN $2 N 2218$ SI $P D=800 \mathrm{MW}$	28480	1853-0034
A602 8603	1854-0053	1		04713 04713	2N2218 2N2053
A 603	$1854-0039$ $1205-0011$	1	TRANSISTOR NPN 2N2218 SI $P D=800 \mathrm{MW}$ TRANSISTOR NPN $2 N 3053$ SI $P D=1 \mathrm{~W}$	04713 28480	2N3053 12050011
A604	1853-0209	1	TRANSISTDR PNP SI CHIP TO-39 PD= IW HEAT-DISSIPATOR SGL TO-5 PKG	28480	$1853-0209$
	1205-0011			28480	1205-0011
A 605	1853-0020	1	TRANSISTOR PNP SI CHIP PD=3004W TRANSISTOR; J-FET N-CHAN, D-MODE SI	28480	$1853-0020$
A 606	1855-0020			28480	1855-0020
AGR 1	0698-7215	2	RESISTOR 133 OHM 2\% .05W F TUBULAR	24546	C3-1/8-TO-1 33R-G
AGR ?	0698-7215		RESISTOR 133 OHM 2\%.05W F TUBULAR	24546	C3-1/8-T0-133R-G
$\triangle 6{ }^{4} 3$	0698-7219		RESISTOR 196 OHM 28.05 W F TUBULAR	24546	C3-1/8-T0-196R-G
A6R 4	0698-3405	1	RESISTOR 422 OHM 18.5 H F TUBULAR	19701	MF7C1/2-T0-422R-F
AGR 5	0698-7209	1	RESISTOR 75 OHM 28.05W F TUBULAR	24546	C3-1/8-T00-75RO-G
A6R6	2100-2520	1	RESI STOR: VAR: TRMR: 50 OHM 20\% C	19701	ET50x500
4687	0698-7211	1	RESISTOR 90.9 OHM 27.05 H F TUBULAR	24546	C3-1/8-T00-90R9-G
A6R 8	0698-7230	2	RESISTOR 562 OHM 2\% .05N F TUBULAR	24546	C3-1/8-TO-562R-G
A6R 9	0698-7224		RESISTOR 316 OHM 22 . O5N F TUBULAR	24546	C3-1/8-T0-316R-G
A6R 10	0698-7236		RESISTOR 1K 2\%.05W F TUBULAR	24546	C3-1/8-50-1001-G
A SR 11	0698-7260		RESISTOR 10K $2 \% .05 \mathrm{~F}$ F TUBULAR	24546	C3-1/8-T0-1 002-G
A6R 12	0698-7264	2	RESISTOR 14.7X 2\%.05W F TUBULAR	24546	C3-1/8-T0-1472-G
A6R 13	0698-7223		RESISTOR 287 OHM $2 \% .05 \mathrm{~W}$ F TUBULAR	24546	C3-1/8-T0-287R-G
A6R 14	0698-7284		RESISTOR 100K 2%. 05W F TUBULAR	24546	C3-1/8-T0-1 003-G
A GR 15	0698-7252	1	RESISTOR 4.64 K 28.05 W F TUBULAR	24546	C3-1/8-T0-4641-G
A GR 16	0698-7284		RESISTOR 100K 2\% .05W F TUBULAR	24546	C3-1/8-T0-1 003-G
AGR 17	0698-7264		RESISTOR 14.7 K 2\% .05W F TUBULAR	24546	$\text { C } 3-1 / 8-T 0-1472-G$
AGP 18	0698-7224		RESISTOR 316 OHM 28.05 W F TUBULAR	24546	C3-1/8-T0-316R-G
AGR 19	0698-7240		RESISTOR 1.47 K 28.05 W F TUBULAR	24546	C3-1/8-T0-1471-G
A 6R 20	0698-7236		RESISTOR 1K 28.05 W F TUBULAR	24546	C3-1/8-T0-1001-G
AGR 21	0698-7230		RESISTOR 562 DHM 2%.05W F TUBULAR	24546	C3-1/8-T0-562R-6
A 6822	0698-7236		RESISTOR 1K 2\% . 05 LW F TUBULAR	24546	C3-1/8-T0-1001-G
A6R 23	0698-7212		RESISTOR 100 OHM 28.05 W F TUBULAR	24546	C3-1/8-T0-1 00R-G
A6R 24	0698-7219		RESISTOR 196 OHM 2\%.05W F TUBULAR	24546	C3-1/8-T0-1 96R-G
A6R 25	0757-1094	1	RESISTOR 1.47K 18.125 W F TUBULAR	24546	C4-1/8-T0-1471-F
AGR 26	$0698-7236$ $0698-7236$		RESISTOR 1K 2\%.05W F TUBULAR RESISTOR $1 \mathrm{~K} 2 \% .05 \mathrm{~W}$ F TUBULAR	24546 24546	$\begin{aligned} & \text { C } 3-1 / 8-T 0-1001-G \\ & \text { C } 3-1 / 8-\text { T0-1 001-G } \end{aligned}$
A6R 27 A 628	0698-7236		RESISTOR 1 l RESISTOR 2\% R	24546 24546	C3-1/8-T0-1 001-G C3-1/8-TO-1
A6R 29	0698-7243		RESISTOR $1.96 \mathrm{~K} 2 \% .05 \mathrm{~W}$ F TUBULAR	24546 24546	C3-1/8-T0-1961-G
A6R 30	0698-7219		RESISTOR 196 OHM 28.05 W F TUBULAR	24546	C3-1/8-T0-196R-G
A6R 31 A GR 32	$0698-7236$ $0757-0280$		RESISTOR RESIS	24546 24546	C3-1/8-T0-1 001-G C4-1/8-T0-1
A $6 R 32$ A 6833	$0757-0280$ $0683-0475$	2	RESISTOR 1 LK 18.125 F F TUBULAR RESISTOR 4.7 OHM $5 \% .25 \mathrm{~W}$ CC TUBULAR	24546 01121	C4-1/8-T0-1001-F CB4765
A6R 34	0683-0475		RESISTOR 4.7 OHM 5\% .25 CC TUBULAR	01121	C84765
A 6835	0683-0275	1	RESISTOR 2.7 OHM 5\%. 25 W CC TUBULAR	01121	CB2765
A6R 36 A6P 37	$0698-3427$ $0757-0346$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	RESISTOR 13.3 OHM 1\%. . 125W F TUBULAR RESISTOR 10 DHM 1%-125W F TUBULAR	03888 24546	$\begin{aligned} & \text { PME55-1/8-T0-13R3-F } \\ & \text { C4-1/8-TO-1 ORO-F } \end{aligned}$
A6R 38	0698-3427		RESISTOR 13.3 OHM 15.125 NF TUBULAR	03888	PME 55-1/8-T 0-13R3-F
A6R 39	0693-3427		RESISTOR 13.3 OHM 1\% .125W F TUBULAR	03888	PME 55-1/8-T 0-13R3-F
A6R 40	0757-0795	1	RESISTOR 750 HM 1\% . 5 W F TUBULAR	19701	MF-1/2-T0-75RO-F
$\begin{aligned} & A 6 U 1 \\ & A 6 U 2 \end{aligned}$	$1821-0001$ $1820-0054$	1	IC LIN CA3046 TRANSISTOR ARRAY IC DGTL SN74 00 N GATE	$\begin{aligned} & 02735 \\ & 01295 \end{aligned}$	$\begin{aligned} & \text { CA3046 } \\ & \text { SN7400N } \end{aligned}$
AGVR1	1902-3048	1	DIODE-ZNR 3.48V 5\% DO-7 PD= $4 \mathrm{4W}$ TC=	04713	S2 10939-50
AGVR2	1902-3002	1	DIDDE-ZNR 2.37V 5\% DO-7 PD=.4W TC= A6 MISCELLANEOUS	04713	SZ 10939-2
	$\begin{aligned} & 0360-1514 \\ & 1480-0073 \\ & 4040-0748 \\ & 4040-0750 \end{aligned}$	4 1	TERMINAL: SLDR STUD PIN: DR IVE 0.250" LG EXTRACTOR, P.C. BOARD, BLACK EXTRACTOR-PC BOARD, RED	$\begin{aligned} & 28480 \\ & 00000 \\ & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 0360-1514 \\ & 080 \\ & 4040-0748 \\ & 4040-0750 \end{aligned}$

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
47	11661-60003	1	YIG LIOP Phase detector assy	28480	11661-60003
$\triangle 7 C 1$	0180-0291	1	CAPACTTOR-FXD: 1 UF+-109 35VDC TA-SOLID	56289	$1500105 \times 9035 A 2$
A 762	0121-0036		CAPACITNR; VAR; TRMR: CER; 5.5/18PF	73899	DV11PR18A
A 7 C 3	0160-2055		CAPACITOR-FXD . O1UF +80-20\% 100WVDC CER	28480	0160-2055 $0160-3879$
$47 C 4$ $47 C 5$	0160-3979		CAPACITOR-FXD .01UF +-208 100 NVDC CER	28480 56289	$0160-3879$ 1500225×902082
47C5	0180-0197		CAPACITOR-FXD; 2.2UF+-10\% 20VDC TA	56289	1500225 9002042
47 C 5	0160-2055		CAPACITOR-FXD .01UF +80-20\% 100WVDC CER	28480	0160-2055
$17 C 7$ 4	0180-0291		CAPACITOR-FXD; 1UF+-10\% 35VDC TA-SOLID	56289	1500105 X9035A2
A 7 C 8	0160-2055		CAPACITOR-FXD . O1UF +80-20\% 100WVDC CER	28480	0160-2055
$\triangle 7 C 9$	0180-0291		CAPACITOR-FXD; 1UF+ 108 35VDC TA-SOLID	56289	$1500105 \times 9035 A 2$
A7C 10	0190-0291		CAPACITOR-FXD; 1UF+-10\% 35VDC TA-SOLID	56289	$1500105 \times 9035 A 2$
47 C 11	0180-0291	11	CAPACITOR-FXD: 1UF -10235 VDC TA-SOL ID	56289	1500105×903542
${ }^{\text {A } 7 C 12}$	0180-0374		CAPACITOR-FXD; $100 \mathrm{~F}+-108$ 20VOC TA-SOLID	56289	1500106×902082
A7C 13	0160-3094		CAPACITOR-FXD . $14 F+-10 \% 100 W V D C$ CER	28480	0160-3094
${ }^{4} 7 \mathrm{Cl} 14$	0160-2055		CAPACITOR-FXD .O1UF +80-209 100WVDC CER	28480	0160-2055
A 7 C 15	0160-0161			56289	292P10392
A $7 \mathrm{C}, 16$	0160-2055	1	CAPACITOR-FXD . $010 \mathrm{~F}+80-20 \%$ 100WVOC CER	28480	0160-2055
A 7177	0160-0945	2	CAPACITOR-FXD 910PF +-59 100WVDC MICA	28480	0160-0945
A 7 C 18	0160-0939	1	CAPACITOR-FXD 430PF +-58 300WVOC MICA	28480	0160-0939
A $7 C 19$ $47 C 20$	$0140-0194$ $0160-0945$	1		72136 28480	DM15F111J0300NVICR
A7C 20	0160-0945		CAPACITOR-FXO 91OPF +-5\% 100WVDC MICA	28480	0160-0945
$\triangle 7 C R 1$	1901-0025	1	DIDDE-GEN PRP 100V 200MA	28480	1901-0025
A7L	9140-0144		COIL ; FXD; MOLDED RF CHOKE; 4.7UH 10\%	24226	$10 / 471$
4. 72	9140-0142	1	COIL ; FXD; MOLDED RF CHOKE; 2.2UH 10\%	24226	10/221
4701	1854-0019	4	TRANSISTOR NPN SI TO-18 PD=360M	28480	1854-0019
A 702 A 703 704	$1854-0019$ $1854-0019$			28480 28480	$1854-0019$ $1854-0019$
A 703 8704	$1854-0019$ $1854-0019$		TRANSISTOR NPN SI TRANSISTOR NPN SI TO-18 TOL	28480 28480	$1854-0019$ $1854-0019$
A 705	1853-0001	1	TRAVSISTOR PNP SI CHIP TD-39 PD $=600 \mathrm{MW}$	28480	1853-0001
	1205-0011	3	HFAT-DISSIPATOR SGL TO-5 PKG	28480	1205-0011
A7R1	0757-0416	2		24546 24546	$\begin{aligned} & C 4-1 / 8-T 0-511 R-F \\ & C 3-1 / 8-T 0-100 R-G \end{aligned}$
A7R 2 A 783	$0698-7212$ $0757-0401$		RESISTOR RESISTOR 100 100	24546 24546	$\begin{aligned} & C 3-1 / 8-T 0-100 R-G \\ & C 4-1 / 8-T 0-101-F \end{aligned}$
A7F4	0698-3444	4	RESISTOR 316 OHM 1\% .125w F TUBULAR	16299	C4-1/8-T0-316R-F
A7R. 5	0698-3440		RESISTOR 196 OHM 18.125W F TUBULAR	16299	C4-1/8-T0-196R-F
A 786	0698-7227	1	RESISTOR 422 OHM 28.05 H F TUBULAR	24546	C3-1/8- T0-422R-G
$\triangle 7 \mathrm{R} 7$	0757-0416		RESISTOR 511 OHM 18.125 F F TUBULAR	24546	C4-1/8- ${ }^{\text {c }}$ - $511 \mathrm{R}-\mathrm{F}$
A7R 8	0698-3388	1	RESISTOR 14.7 OHM 18.5H F TUBULAR	07716	CEC 1/2-T0-14R7-F
A7R9	0698-3440		RESISTOR 196 OHM $1 \% .125 \mathrm{~W}$ F TUBULAR	16299	C4-1/8-T0-1 96R-F
A7P 10	0757-0401		RESISTOR 100 OHM 18.125 N F TUBULAR	24546	C4-1/8-T0-101-F
A 7 R 11	0698-3440		RESISTOR 196 OHM $1 \% .125 \mathrm{~W}$ F TUBULAR	16299	$C 4-1 / 8-T 0-196 R-F$
47812 A 7813	0698-3447 $0698-3444$	1		16299 16299	$C 41 / 8-T 0-422 R-F$ $C 41 / 8-T 0-316 R-F$
A 7813 A 7814	0698-3444		RESISTOR 316 OHM $1 \% .125 \mathrm{~W}$ F TUBULAR RESISTOR 316 OHM R	16299 16299	$C 41 / 8-T 0-316 R-F$ $C 4-1 / 8-T 0-316 R-F$
A $\triangle 7 R 15$	$0698-3444$ $0698-7232$	1	RESISTOR 681 OHM $2 \% .05 \mathrm{H}$ F TUBULAR	24546	C3-1/ $\%$ - T0-681R-6
$\triangle 7816$	0698-7225		RESISTOR 348 OHM 28.05 W F TUBULAR	24546	C3-1/8-T0-348R-G
A7P17	2100-2574	1	RESISTIOR; VAR; TRMR; 500 OHM 10\% C	19701	ET50×501
A 7818	0698-7219		RESISTOR 196 OHM 28.05 H F TUBULAR	24546	C3-1/8-T0-196R-G
47819	0698-3444		RESISTOR 316 OHM 1\%. 125 W F TUBULAR	16299	C4-1/8-T0-316R-F
-7820	2100-2061		RESISTOR; VAR; TRMR; 200 OHM 108 C	30983	ET50W201
$\Delta 7{ }^{\text {T }} 1$	08552-8024	1	TRANSFORMER, RF YELLOW	28480	08552-6024
A 701	1820-0253	3	IT. DGTL MC 1035P SCHMITT TRIGGER	04713	MC1035P
4702	1820-0253		IC DGTL MC 1035P SCHMITT TRIGGER	04713	MC1035P
A703	1820-0253		IC DGTL MC 1035P SCHMITT TRIGGEQ	04713	MC1 035P
A 7114	1820-0145	1	IC DGTL MC 1010P GATE	04713	MC1 010 O
A7U5	1820-0223		IC LIN LM301AH AMPLIFIER	27014	LM301AH
ATU6	10534 C	1		28480	10534C
ATVO?	1902-0025	1	$\text { DIODE-ZNR 10V } 55 \text { DO-7 PD=.4W TC }=+.06 \%$		
$\triangle 7 \mathrm{VR} 3$	$1902-0041$ $1902-3059$	1		04713 04713	SZ SZ SZ 10939-98
			AT Miscellanedus		
	$\begin{aligned} & 0360-1514 \\ & 1480-0073 \\ & 4040-0748 \\ & 4040-0749 \end{aligned}$	1	TERMINAL: SLDR STUD PIN: DRIVE 0.250" LG EXTRACTOR, P.C. BOARD, BLACK EXTRACTOR-PC BOARD, BROWN	$\begin{aligned} & 28480 \\ & 00000 \\ & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 0360-1514 \\ & \text { OBD } \\ & 4040-0748 \\ & 4040-0749 \end{aligned}$
$\Delta 8$	11661-60074	1	50 MHZ FILTER ASSY (NON-REPAIRABLE)	28480	11661-60074
A9	11661-60073	1	20 MHZ FILTER ASSY (NON-REPAIRABLE)	28480	11661-60073

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A10 A10,	5086-7023	1	YIG OSCILLATOR ASSY NSR, MATES HITH AI 3PI	28480	5086-7023
${ }^{\text {a }} 11$	11661-60072	1	2.6-4.1 GHz bano pass filter ass	28480	11661-60072
411 MP1	1250-1295	1	connector, re sma m (papt of Aliwl)	16179	054531-3
			Nsp, Yig output cable, blackinncl Allimpli (INCLUOES MP2)		
${ }^{12}$	11661-60071	1	4.43 ghz bano pass filter assr	28480	11661-60071
			NSR,4.43GHZ BPF INPT,GRAY/RED(INCL MP 2) NSR,4.43GHZ BPF OUPT,GRAY/JRG, (INCL MP 2)		
${ }^{1} 13$	11661-60049	1	yig miring harness assy	28480	11661-60049
A $13 \mathrm{MP1}$	1251-2570	7	contact, conn, u/w micro ser, male	71468	031-9540-000
${ }^{\text {A } 13 P 1}$	1251-2581	1	houstng strip:g male contact	71468	CTA4-1p-9
			chass is parts		
11 32	- $\begin{aligned} & 1250-1221 \\ & 1250-1221\end{aligned}$	2		24931	
${ }^{\text {mp1 }}$	1251-0546	1	Contactir 6 P Connector, rectangular	${ }^{81312}$	111170545
MP2	1250-1193	1	CONNECTOR-RE SM SLD FEM 	98291	52-328-0019
mp3	1250-0885	1	CONNECTOR, RF SMB FEM (P/O m7)	2×497	700405
${ }^{\text {P4 }}$	$\begin{aligned} & 11661-60055 \\ & 5040000050 \\ & 50400380 \\ & 1251-3087 \end{aligned}$	1 1 1 1 1	CONNECTIR ASSY(INCL W1, W3, w6 ε н8) CONNECTOR BODY CONTACT, CONN, U/w rectangular ser, fem	$\begin{aligned} & 28480 \\ & \begin{array}{l} 28880 \\ 28880 \\ 81312 \end{array} \\ & 8131 \end{aligned}$	$\begin{aligned} & 11661-60055 \\ & 5040-0380 \\ & 5040-0381 \\ & 100-0908 S \end{aligned}$
${ }^{\text {R1 }}$	2100-2646	1	Resistor-var tryr 100 Ohm 108 C SIDe ADJ	32997	3059Y-1-101
${ }^{\text {w }}$	11661-60067	1	CABLE ASSV, 20 MHZ FM/CW REEFRENCE INPUT	28480	11661-60067
W2	11661-60064	1	CABLE ASSY,20 MHZ' FILTER DUTPUT, RED (INCLUDES MOD)	28480	11661-60064
${ }^{3}$	11661-60069	1	CABLE ASSY, 100 miz Reference input, WHITE/BROHN(P/O P4, INCLUNES MP1 8 MP2)	28480	11661-60069
${ }^{4}$	11661-60065	1		28480	11661-60065
${ }_{6}^{45}$	(1261-60066	1	C.ABLE ASSY, 50 MHZ FILTER INPUTIINCL MP2 CABLE ASSY, 360 TO 450 MHZ INPUT, WHITEI YELLOW (P/O P4; INCLUDES MPI \& MP2)	28480 28480	11661-60066
${ }^{W 7}$	11661-60056	1		28480	11661-60056
${ }^{48}$	11661-60068	1	CABLEASSY ${ }^{\text {Com }}$	28480	11661-60068
*9	11661-60057	1	CABLE ASSY, VCO CONTROL SIGNAL, BLUE (INCLUDES MP2)	28480	11661-60057
W10	11661-60058	1		28480	11661-60058
W11*	11661-60053	1		28480	11661-60053
w12	11661-60028	1		28480	11661-60028
${ }_{12} \mathrm{~J}_{1}$	1250-1373	2		28480	1250-1373
${ }^{12}$	11661-60026	1	CAbLE ASSY, Yig Loop int ERCONNECT, gray/blue (includes mpz)	28480	11661-60026
*13J1	1250-1373			28480	1250-1373

See introduction to this section for ordering information

Table 6-2. Replaceable Parts

Table 6-3. Code List of Manufacturers

Mfr Code	Manufacturer Name	Address	Zip Code
00000	U. S. 0. ¢TMMAN	ANY SUPPLIER DF USA	
00213	SAGE ELECPRONITS CAPD	ROCHESTEQ NY	14610
01121	allen bradler on	MILWA UKFF HI	53212
01295	texas insto int semicone cmpnt div	dallas tx	75231
02735 03508		STMMFRVILLE NJ	08876
- 03 Se 8	GYROFILM CORD	SYRAEUSE NY	13201 07981
04713	MnT 2 RLA SFMICJMnurtor prndurts	- HMENIX AZ	${ }_{85} 508$
06560	ATRCN SPEEP FLEK RIV IIR RDCN Cog	VDGALES AR	${ }^{85621}$
07715	CRWIVR PURLINGTNN DIV	RURLINGTON IA	52601 95252
14160	EnISNY CLEK DIV MGGRAH-CDISTN	Manchester MH	03130
16179	OMNI SPFCTRA INC	engmingtan mi	488024
16299 19701	CRPVIVGGL WK Flfer cmpnt niv	Rat flgh ve MiNEPAL Welle	27604 76067
2×497	TARI EWAVE SYSTEMS INC	NOOTH HAVEY CT	06473
24226	GOWANA FLECTRONICS PIRP	gowanda vy	14070
24545	CRENINGGLASS WROKS	Reanenro pa	$187{ }^{161}$
24931 27014	SPFCTALTY CONVERTOT CD INC	INDIANAPDLIS IV	46227 95051
28.480	hFwlett-packarn cn mopmate ho	Palo alto ca	94304
330983	MEPrn/FLEETPA PJod	can Diegs ja	92121
32097 5628		Q PRTH ADMS MA	01247
71468	itt Connm ellectric en	SANTA ANA SA	92702
71785	TR W ELFK COMPONENTS CINCH DIV	ELK GRJVE VILlage il	60007
73734	FFDERAL SCPEK PRODUCTS CO	CHICAGOIL	60618
73899	J F D Flectpnics rnod	BROOKLYN NY	$1121{ }^{\circ}$
76854	nak inn ine sw oiv	crystal lake il	60014
70963	2IFP ICK MEG ${ }^{\text {con }}$	MT KTSCO NV	10549
81312 95987	WTMCHESTER ELEK DIV LITTON IND INC	nakville ct	
95987 98291	WECKESSER TC INC SEALECTR COPD	CHICAGJ IL Mamarnveck ny	60641 10544
909 ¢0\%	Ampr drem inn ins delevan div	AUPO2A Vr	14052

SECTION VII MANUAL CHANGES

7-1. INTRODUCTION

7-2. This secion normally contains information for adapting this manual to instruments for which the content does not apply directly. Since this manual does not apply directly to instruments having serial numbers listed on the title page, no change information is given here. Refer to INSTRUMENTS COVERED BY MANUAL in Section I for additional important information about serial number coverage.

MANUAL IDENTIFICATION
Model Number: 11661B
Date Printed: November 1976
Part Number: 11661-90021

This supplement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after the printing of the manual.

To use this supplement:
Make all ERRATA corrections
Make all appropriate serial number related changes indicated in the tables below.

$\begin{aligned} & 1511 \mathrm{~A} \\ & 1515 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Make } \\ & 1 \\ & 1,2 \end{aligned}$	1545A 1604A	Make Ma 1 thru 7 1 thru 8
1533A	1, 2, 3	1619A	1 thru 9
1538A	1 thru 4	1729A	1 thru 10
1543A	1 thru 5	$-1734 \mathrm{~A}$	1 thru 11
1544A	1 thru 6		

- NEW ITEM

ERRATA

Page 5-2, Table 5-1:
Reference Designator A6C7 changes to (100 pF nom.) and is shown on Service Sheet 5 .

Page 6-6, Table 6-2:
Change A3U1 and A3U3 to 1820-2034 IC DGTL QUAD 2 INPUT NAND GATE.

Page 6-8, Table 6-2:

Change A5VR1 and A5VR3 to 1902-0685 DIODE ZENER 9V $\pm 2 \% .5 \mathrm{~W}$ MAX PD.
Change A6C7 to 0160-2204 CAPACITOR FXD $100 \mathrm{pF} \pm 5 \% 500$ WVDC MICA and add star (${ }^{*}$)
FACTORY SELECTED PART.

Page 6-9, Table 6-2:
Change A6R40 to $0698-5535$ RESISTOR $75 \Omega 1 \%$ 2W F TUBULAR.

Page 8-9, Figure 8-3 (Service Sheet 1):
Change the output from the A1A2 amplifier from 2ND IF to 1ST IF.

NOTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

ERRATA (Cont'd)

Page 8-13, Figure 8.7 (Service Sheet 3):
Change the A1A1 YIG Loop 2ND IF Output from © 3 to 4.
Show the -10 V 4. input (lower left corner of diagram) connected to the junction of A1R1 and A1C7.
A1R1 is still shown connected to A1C4 and A1C2.
Show the wire color " 92 " between R1 and A1C1.
Change the diagram as shown in the partial schematic, on page 2 of this manual changes supplement.
Page 8-15, Figure 8-9 (Service Sheet 4):
Change LEVELED to LOCKED and UNLEVELED to UNLOCKED.
Page 8-17, Figure 8-11 (Service Sheet 5):
Add star $\left(^{*}\right)$ to A 6 C 7 and change to 100.
Page 8-19, Figure 8-13 (Service Sheet 6):
Change A3U1 and A3U3 to 1820-2034.

Figure 8-7. Oscillator/Mixer Section Schematic Diagram (partial schematics; part of errata).

CHANGE 1

Page 6-4, Table 6-2:
Add to A1 miscellaneous, 11661-20040, Spring RFI, 28480, 11661-20040.
Change A1A2C8 to 0160-3874, CAPACITOR-FXD $10 \mathrm{pF} \pm 0.5 \mathrm{pF} 200 \mathrm{WVDC}$ CER, 28480, 0160-3874.

CHANGE 2

Page 5-12 and 5-13, paragraph 5-32:
Delete the second sentence of step 6.
Delete step 7.
Change step 8 to step 7 and step 9 to step 8 .
Delete step 10 and the note.
Delete the last sentence of step 11.
Change step 11 to step 9 , step 12 to step 10 , and step 13 to step 11.
Page 6-10, Table 6-2:
Add A7C21, 0160-0575, CAPACITOR-FXD . $047 \mu \mathrm{~F} \pm 20 \% 50$ WVDC CER, 28480, 0160-0575.
Add A7CR2, 1901-0639, DIODE-PIN 110V, 28480, 1901-0639.
Add A7R21 and R22, 0698-7236, RESISTOR $1 \mathrm{~K} 2 \% .05 \mathrm{~W}$ F TC $=0 \pm 100,24546, \mathrm{C} 3-1 / 8-\mathrm{TO}-1001-\mathrm{G}$.
Change A7C15 and C17 to 0160-3879, CAPACITOR-FXD . $01 \mu \mathrm{~F} \pm 20 \% 100$ WVDC CER, 28480, 0160-3879.
Change A7R17 to 0698-7229, RESISTOR 511 OHM $2 \% .05 \mathrm{~W}$ F TC $=0 \pm 100,24546, \mathrm{C} 3-1 / 8-\mathrm{TO}-511 \mathrm{R}-\mathrm{G}$.
Change A7U5 to 1826-0092, IC AMPLIFIER, 28480, 1826-0092.

Page 8-15, Figure 8-9 (Service Sheet 4):
Change the diagram as shown on the partial schematic found in this supplement.

CHANGE 3

Page 6-11, Table 6-2:
Add the following items under A12 miscellaneous
11661-00017, 2, Lid, Filter Housing
11661-00018, 1, Bracket, Filter
Change the HP Part Number of A12 to 11661-60076.

Page 6-12, Table 6-2:
Delete 11661-00010

CHANGE 4

Page 6-11, Table 6-2:
Change R1 to 2100-1482, RESISTOR TRMR 100 5\% WW SIDE-ADJ 10-TURN, 32997, 3070P

CHANGE 5

Page 5-12, paragraph 5-32:
Add a sentence in step 5 "Center the Search Width Adj control A6R20"
Delete the last two sentences of step 6
Delete step 7.
Page 5-13, paragraph 5-32:
Change step 8 to 7
Change step 9 to step 8. Change the last sentence to "The triangular waveform displayed on the oscilloscope should disappear".
Delete step 10
Change step 11 to step 9 after deleting the last sentence
Change step 12 to step 10 after changing J1 to J2
Change step 13 to step 11.
Page 5-14, paragraph 5-33:
Add a new step 5 "To initiate the YIG loop search, disconnect the 20 MHz reference (unplug and remove the Modulation Section)".
Add a new step 6 "Set the spectrum analyzer controls to display the effect of YIG loop search on the system's RF output signal".
Add a new step 7 "Set the Search Width Adj control A6R20 for a search width of $40 \pm 4 \mathrm{MHz}$ centered around 400 MHz . Change the original step 5 to step 8.

Page 5-15, paragraph 5-33:
Change steps 6, 7 , and 8 to 9,10 , and 11 respectively.
Add a sentence to the new step 11 "Record the Yig Loop 3 dB bandwidth". \qquad

Page 6.8, Table 6-2:
Change A6C5 and C6 to 0180-0100, CAPACITOR-FXD, 4.7 UF $\pm 10 \% 35$ VDC TA
Change A6C9 to 0160-0575, CAPACITOR-FXD, .047 UF $\pm 20 \% 50$ WVDC CER
Change A6C13 and C14 to 0160-0574, CAPACITOR-FXD . 022 UF $\pm 20 \% 100$ WVDC CER
Change A6R6 to 2100-2060, RESISTOR TRMR 5020% C TOP—ADJ 1-TURN
Change A6R20 to 2100-2216, RESISTOR-FXD TRMR 5K 10\% C TOP-ADJ 1-TURN
Add A6R41, 0698-7212, RESISTOR-FXD $1002 \% .05 \mathrm{~W}$ F TC=0 ± 100

Figure 8-9. Yig Loop Phase Detector Schematic Diagram (Part of Change 2)

CHANGE 5 (cont'd)

Page 8-齐, Figure 8-11:
Change A6C5 and C6 to 4.7 UF
Change A6C9 to 0.047 UF
Change A6R20 to a 5 K OHM Potentiometer with the wiper connected to the terminal on the right.
Add A6R41, 100 OHMS, in parallel with A6L1.
Page 6-6, Table 6-2:
Change A4C8* to 0160-2207, CAPACITOR-FXD $300 \mathrm{pF} \pm 5 \% 300$ WVDC, MICA
Page 6-8, Table 6-2:
Change A5R13 to 2100-3056, RESISTOR-TRMR 5K 10\% C SIDE-ADJ 17-TURN
Change A5R15 to 2100-3109, RESISTOR-TRMR 2K 10\% C SIDE-ADJ 17-TURN
Page 8-21, Figure 8-15 (Service Sheet 7):
Change A4C8* to 300 pF
Page 8-11, Figure 8-5 (Service Sheet 2):
Change A5R13 to 5000
Change A5R15 to 2000.

CHANGE 6

Page 5-4, paragraph 5-27:
Change in step 4, R1 to A14R2.

Page 5-5, paragraph 5-28:
Change in step 3, R1 to A14R2.
Page 5-7, Figure 5-4:
Change "TO A1U2, Pin 2" to "TO A1C6".

Page 5-7, paragraph 5-30:
Delete steps 1 through 3.
Add a new step 1 "Connect the digital voltmeter to the feedthrough capacitor A1C6. Refer to the last foldout for the location of A1C6".
Add a new step 2"Adjust the VCO bias control A14R3 for +9.5 Vdc as indicated on the DVM".
Page 5-13, paragraph 5-32 (step 12):
Change R1 to A14R2.
Page 6-4 Table 6-2:
Change the original A1R1 to A1R4
Add A1R1, 0698-3435, RESISTOR-FXD $38.31 \% 0.125 \mathrm{~W}$ F TC=0 ± 100
Change A1U2 to 11661-67002
Change A1U3 to 11661-67001
Change A1A2 to 11661-60079

Page 6-5, Table 6-2:
Change A1A2R1 to 0698-3429, RESISTOR-FXD $19.61 \% 0.125 \mathrm{~W}$ F $\mathrm{TC}=0 \pm 100$
Delete A1A2R3
Change A1A4 to 11661-60078
Delete A1A4R1 and A1A4VR1
Change A1A4R2 to A1A4R1, 0698-3429, RESISTOR-FXD $19.61 \% 0.125 \mathrm{~W}$ F TC=0 ± 100

CHANGE 6 (Cont'd)

Figure 8-3. Troubleshooting Block Diagram (Partial Schematic;
Part of Change 6).

CHANGE 6 (cont'd)

Page 6-11, Table 6-2:
Add:
A14, OSCILLATOR REGULATOR ASSEMBLY
A14C1 and C2, 0160-0575, CAPACITOR-FXD 0.047 UF $\pm 20 \% 50$ WVDC CER A14R1, 0698-3444, RESISTOR-FXD $3161 \% 0.125 \mathrm{~W}$ F TC=0 ± 100 A14R2 and R3, 2100-3154, RESISTOR-TRMR 1K 10\% C SIDE-ADJ 17-TURN A14R4, 0757-0438, RESISTOR-FXD $5.11 \mathrm{~K} 1 \% 0.125 \mathrm{~W}$ F TC=0 ± 100
A14R5 and R8, 0698-3440, RESISTOR-FXD $1961 \% 0.125 \mathrm{~W}$ F TC $=0 \pm 100$ A14R6 and R9, 0757-0279, RESISTOR-FXD 3.16K $1 \% 0.125 \mathrm{~W}$ F TC $=0 \pm 100$ A14R7 and R10, 0757-0401, RESISTOR-FXD $1001 \% 0.125 \mathrm{~W}$ F TC=0 0 ± 100 A14R11, 0698-3430, RESISTOR-FXD $21.51 \% 0.125 W$ F TC=0 ± 100 A14Q1 and Q3, 1853-0007, TRANSISTOR PNP 2N3251 SI TO-18 PD=360 MW P/O A14Q1 and Q3, 1205-0202 THERMAL-LINK DUAL TO-36 PKG A14Q2 and Q4, 1854-0210, TRANSISTOR, NPN 2N2222 SI TO-18 PD=500 MW A14 MISCELLANEOUS

0380-0636, STANDOFF-RVT—ON 0.25 LG 2-56 THRD, 0.156 OD BRS 0340-0447, INSULATOR, XSTR TO-18 0.02-THK
Delete R1
Add 11661-00019, OSCILLATOR-REGULATOR INSULATOR
Page 8-6, paragraph entitled 4.43 GHz Oscillator:
Change R1 to A14R2.
Page 8-9, Figure 8-3 (Service Sheet 1):
Change the figure as shown in the partial schematic of the Troubleshooting Block Diagram:

Page 8-13, Figure 8-7 (Service Sheet 3):
Change the figure as shown in the partial schematic of the Oscillator Mixer Section.

CHANGE 7

Page 6-7, Table 6-2:
Change A4R16 and A4R20 to 2100-1788, RESISTOR-TRMR 50010% C TOP-ADJ 1-TURN
Change A4R26 to 2100-1986, RESISTOR-TRMR 1K 10% C TOP-ADJ 1-TURN
Change A4R32 and R35 to 2100-2497, RESISTOR-TRMR 2K 10\% C TOP-ADJ 1-TURN
Change A4R38 to 2100-2216, RESISTOR-TRMR 5K 10% C TOP-ADJ 1-TURN.
Page 8-21, Figure $8-15$ (Service Sheet 7):
Change A4R16 and A4R20 to 500 ohms
Change A4R26 to 1000 ohms
Change A4R32 and A4R35 to 2000 ohms
Change A4R38 to 5000 ohms.

CHANGE 8

Page 6-11, Table 6-2:
Add L1, 9170-0499.
Page 6-12, Table 6-2:
Add 11661-60081, Shield Assy R. F.
Page 8-13, Figure 8-7:
Show an inductor L1 connected on the +20 V line (red wire) between the A2 Assembly and A1C3.

CHANGE 9

Page 6-4, Table 6-2:

Add to A1 miscellaneous, 11661-20044, Polyiron Sheet, 28480, 11661-20044.
Page 6-10, Table 6-2:
Change A8 HP Part Number to 11661-60081 and Mfr Part Number to 11661-60081.
Page 8-13, Figure 8-7 (Service Sheet 3):
Change A8 50 MHz Filter Assy to 11661-60081.

CHANGE 10

Page 6-10, Table 6-2:
Change A8 HP Part Number to 11661-60084 and Mfr Part Number to 11661-60084.
Page 8-13, Figure 8-7 (Service Sheet 3): Change A8 50 MHz Filter Assy to 11661-60084.

-CHANGE 11

Page 6-7, 'Table 6.2:
Change A4R35 to 2100-2216 RESISTOR VAR TRMR $5 \mathrm{~K} \Omega 10 \% \mathrm{C}$. Change A4R38 to 2100-1738 RESISTOR VAR TRMR $10 \mathrm{~K} \Omega 10 \% \mathrm{C}$.

Page 8-21, Figure 8-15 (Service Sheet 7):
Change R35 to 5000 and R38 to 10 K .

SECTION VIII SERVICE

8-1. INTRODUCTION

8-2. This section contains troubleshooting and repair information for the HP Model 11661B Frequency Extension Module. Safety considerations, principles of operation, and recommended test equipment are included.

8-3. The service sheets normally include principles of operation and troubleshooting information, a component location diagram, and a schematic, all relating to a specific portion of circuitry within the instrument.

8-4. Service Sheet 1 includes an overview of the instrument operation, troubleshooting to an assembly or stage level, and a troubleshooting block diagram. The block diagram also serves as an "index" for the other service sheets.

8-5. The last foldout in this section gives disassembly procedures, adjustment locations, test point locations, and a table which cross-references pictorial and schematic locations of each assembly and chassis mounted component.

8-6. SAFETY CONSIDERATIONS

8-7. Although this instrument has been designed in accordance with international safety standards, this manual contains information, catuions, and warnings which must be followed to ensure safe operation and to retain the instrument in safe condition (see Sections II, III, and V). Service and adjustments should be performed only by qualified service personnel.

8-8. Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved.

8-9. Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

WARNING

The service information is often used with power supplied and protective
covers removed from the instrument. Energy available at many points may, if contacted, result in personal injury.

8-10. PRINCIPLES OF OPERATION

$8-11$. Instrument operation is described under the Principles of Operation on the service sheets. Service Sheet 1, in conjunction with the Troubleshooting Block Diagram, describes overall operation of the Frequency Extension Module. Service Sheets 2 through 7 explain the function of each circuit within the unit. The particular circuit described is shown in schematic form on the accompanying circuit diagram.

8-12. TROUBLESHOOTING

NOTE

When a malfunction occurs, refer to Section VIII of the HP Model 8660series mainframe Operating and Service Manual to begin troubleshooting (see System Troubleshooting Guide). Then, if that information does not isolate the problem to a definite instrument, refer to the Systems Troubleshooting information which preceeds Service Sheet 1 in the RF Section manual. This information may be used to isolate the defect to the Frequency Extension Module, another plug-in, or the mainframe. If the problem is in this module, refer to Service Sheet 1 for further troubleshooting information.
$8-13$. Because feedback circuits extend over several assemblies for each of the phase lock loops, the major troubleshooting tests are on Service Sheet 1 with the Troubleshooting Block Diagram. Once the fault is localized, additional tests on the remaining Service Sheets help locate the defective component.

8-14. Troubleshooting Aids

8-15. Circuit Board Aids. Test points are physically located on the circuit boards as metal posts or circuit pads and usually have either a reference designator (such as TP1) or a label which relates to
the function ($+20 \mathrm{~V}, 20 \mathrm{MHz}$ IN, etc.) Transistor emitters, diode cathodes, the positive lead of electrolytic capacitors, and pin 1 of integrated circuits are indicated by some special symbol such as E , a diode symbol, + , a teardrop shape or square circuit pad.

8-16. Service Sheet Aids. Signal levels, dc voltages, and logic states are shown as an aid in troubleshooting on the schematic diagrams. Individual circuit areas are given descriptive names to identify functions and provide easy means for reference. Where needed, notes are used to explain circuits or mechanical configurations not easily shown on the schematic.

8-17. The locations of individual components mounted on printed circuit boards are shown on the pictorial representation of the circuit boards of the related service sheet. Chassis mounted parts, major assemblies, and adjustment locations are found on the last foldout in this manual.

8-18. Figure 8-1, Schematic Diagram Notes, provides information relative to symbols shown on the schematic diagrams.

8-19. Service Kit and Extender Boards. The HP 11672A Service Kit contains interconnect cables, RF cables, various coaxial adaptors, and an adjustment tool, all of which are useful in servicing the Frequency Extension Module. Refer to the HP 11672A Operating Note and the 8660 -series mainframe manual for a listing and pictorial representation of the contents.

8-20. Circuit board extenders are provided with the mainframe. These extender boards enable the technician to extend plug-in boards clear of the assembly to provide easy access to components and test points.

8-21. RECOMMENDED TEST EQUIPMENT

8-22. Table 1-1 lists the test equipment and accessories recommended for use in servicing the instrument. If any of the recommended test equipment is unavailable, instruments with equivalent specifications may be used.

8-23. REPAIR

8-24. Non-Repairable Assemblies

8-25. Repairs should not be attempted on the following assemblies if any is found to be defective during troubleshooting:

A1A3	4 GHz Low Pass Filter Assy
A1U1	Sampler/1.8 GHz Low Pass Filter Assy
A1U2	VCO/Mixer Assy
A1U3	4.43 GHz Oscillator/Mixer Assembly
A8	50 MHz Filter Assy
A9	20 MHz Filter Assy
A10	YIG Oscillator Assy
A11	$2.6-4.1 \mathrm{GHz}$ Bandpass Filter Assy
A12	4.43 GHz Bandpass Filter Assy

8-26. Removal and Disassembly Procedures

8-27. The procedures for removing the Frequency Extension Module from the mainframe, removing the cover, and gaining access to internal assemblies are found on the left hand foldout page which faces the last foldout in this manual.
$8-28$. The machine screws used throughout the Frequency Extension Module have a Pozidriv head. Pozidriv is very similar in appearance to the Phillips head, but using a Phillips screwdriver may damage the Pozidriv screw head. A Pozidriv screwdriver is recommended.

Figure 8-1. Schematic Diagram Notes (2 of 2)

SERVICE SHEET 1

NOTE

When a malfunction occurs, refer to Section VIII of the HP Model 8660series mainframe Operating and Service Manual to begin troubleshooting (see System Troubleshooting Guide). Then, if that information does not isolate the problem to a definite instrument, refer to the Systems Troubleshooting information which preceeds Service Sheet 1 in the RF Section manual. This information may be used to isolate the defect to the Frequency Extension Module, another plug-in, or the mainframe. If the problem is in this module, this Service Sheet contains troubleshooting procedures for isolating the problem to a circuit board or module.

FREQUENCY EXTENSION MODULE

TROUBLESHOOTING TESTS

Malfunctions in the Frequency Extension Module generally fall into one of the following three catagories as observed at the RF Section front panel output: no output; an unwanted FM or sluggish frequency change; wrong output frequency. The tests on this service sheet are designed for a logical sequence of tests to determine the part or parts that need replacement. It is therefore recommended that the tests be performed in the order given. Refer to the Simplified Block Diagram for the functional relationship of the Frequency Extension Module circuits.
a. No RF Output. After verifying that the power supply voltages are correct, troubleshooting begins by verifying that both RF outputs are present. If the Sum Loop voltage controlled oscillator (VCO), the YIG oscillator, or the 4.43 GHz local oscillator are not working, there will be no output at the RF Section output port. This is checked in Tests 2 and 3.
b. Unwanted FM or sluggish change of frequency. If the YIG Loop search circuits do not turn off, the output will include an FM sweep of about 40 MHz at one kilohertz rate. If the search circuit is inoperative, a change of frequency will appear sluggish. The search circuit is checked in Test 7.
c. Wrong Frequency. If only certain frequencies are wrong the fault is probably in one of the pretune sections. If these are among the 100 MHz steps (100 to 1200 MHz), the fault is probably in the YIG Loop Pretune Section, for smaller steps the fault is probably in the Sum Loop Pretune Section. Frequency problems are checked in tests 5 through 12 for the YIG Loop and tests 13 through 16 for the Sum Loop.

TROUBLESHOOTING BLOCK DIAGRAM

The troubleshooting block diagram on this Service Sheet shows the relationship between all printed circuit board assemblies and all modules. Use the block diagram and troubleshooting procedures following the principles of operation to isolate a trouble to a specific assembly. Then turn to the Service Sheet for that assembly and isolate the trouble to a specific component.

The large numbers in the lower right corner of each of the major blocks identify the Service Sheet which provides schematics and principles of operation for that particular assembly.

PRINCIPLES OF OPERATION

General

The Hewlett-Packard Model 11661B Frequency Extension Module (with a suitable RF Section) increases the frequency range of the Model 8660 mainframe above 160 MHz while maintaining 1 Hz frequency resolution. Four input signals from the mainframe are used to produce two output signals for the RF Section. These output signals are up-converted in frequency to ensure low spurious sidebands in the final output but still contain all frequency information selected in the mainframe.

A SUM phase lock loop combines 1 Hz step information, 10 MHz step information (from mainframe RF regerence signal and BCD coded logic), and the 4.43 GHz free-running internal local oscillator. A YIG phase lock loop combines a 100 MHz reference, 100 MHz steps from BCD coded logic, a 20 MHz reference (frequency modulated if FM is present), and the 4.43 GHz internal local oscillator frequency. Note that both output signals contain the 4.43 GHz oscillator frequency. This frequency component (including any drift) is cancelled in the RF Section mixer.

Power supply and RF interconnections between the Frequency Extension Module and the mainframe pass through the RF Section. The RF

Section also contains a 20 MHz amplifier for the $20 \mathrm{MHz} \mathrm{FM} / \mathrm{CW}$ reference signal. Digit 8,9 , and 10 BCD logic input lines do not pass through the RF Section but connect directly to the mainframe.

4.43 GHz Oscillator

The 4.43 GHz oscillator circuit is divided between the A1U3 and the A1A4 assemblies. The oscillator itself is located on the A1U3 module and receives two inputs from the A1A4 Oscillator Tuning Assembly: -10 Vdc filtered and an adjustable supply source derived from +20 Vdc whose value is adjusted by R1 to control the frequency of the oscillator. This oscillator is not phase locked as the 4.43 GHz frequency drift is cancelled out in the RF Section mixer.

Sum Loop

The Sum Loop inputs from the mainframe include 30 to 20 MHz (1 Hz steps), 450 to 360 MHz (10 MHz steps), and Digit 8 BCD code logic. The Digit 8 input logic to the A4 Sum Loop Pretune Assembly is converted to an analog voltage and then combined with a phase error signal to tune the Sum Loop VCO (voltage controlled oscillator). The 450 to 360 MHz is mixed in the A8 module with the Sum Loop 1st IF to produce a 30 to 20 MHz Sum Loop 2nd IF. This signal goes to the A3 Sum Loop Phase Detector Assembly where it is compared with the 30 to 20 MHz signal from the mainframe as part of the phase lock loop. The Sum Loop therefore contains all frequencies up to and including the first eight digits (0 to 99.999999 MHz in 1 Hz steps).

YIG Loop

The YIG Loop inputs from the mainframe include 20 MHz FM/CW reference, 100 MHz reference, and Digits 9 and 10 BCD code logic. The Digits 9 and 10 input logic to the A5 YIG Loop Pretune Assembly is converted to an analog current and used to drive the coarse tuning coil of the YIG oscillator. Part of the YIG output is fed back to the first mixer to produce YIG Loop 1st IF. The difference frequency between the 4.43 GHz oscillator and the YIG oscillator will be in the range of 480 MHz to 1680 MHz in 100 MHz steps. The step recovery diode on the A1U1 assembly generates harmonics of the 100 MHz reference input. The difference between one of these harmonics and the 1st IF will be 20 MHz which is the 2 nd IF. For example, if the 1 st IF is 680 MHz , the 7th harmonic of 100 MHz will produce the 20 MHz

2nd IF. This 20 MHz 2nd IF is locked to the $20 \mathrm{MHz} \mathrm{FM} / \mathrm{CW}$ reference from the mainframe in the YIG loop phase detector circuits. If phase locked, the phase difference produces a dc error for fine tuning the YIG oscillator. If not phase locked, logic circuit activates the search waveform generator in the FM Driver Assembly. The YIG loop output is frequency dependent on the 100 MHz reference harmonic, the 4.43 GHz oscillator, and the $20 \mathrm{MHz} \mathrm{FM} / \mathrm{CW}$ reference.

TROUBLESHOOTING

It is assumed that a problem has been isolated to the Frequency Extension Module as a result of using the System Troubleshooting Guide found in Section VIII of the HP Model 8660 -series mainframe Operating and Service Manual and the Systems Troubleshooting information preceeding Service Sheet 1 in the RF Section manual. Troubleshoot the Frequency Extension Module using the test equipment, information, and procedures which follow.

Test Equipment

Microwave Frequency Counter . . HP 5340A Spectrum Analyzer . HP 8555A/8552B/140T Oscilloscope . . . HP $180 \mathrm{C} / 1801 \mathrm{~A} / 1821 \mathrm{~A}$ 10:1 Divider Probe HP 10004 Digital Voltmeter . . . HP 34740A/34702A Extender Cable HP 11672-60002 Extender Board HP 5060-0258

Test 1. First check the power supply inputs to the Frequency Extension Module by removing the A3 printed circuit assembly (green extractor) and replacing it with the extender board. Check the voltages as listed below; the tolerance is ± 0.1 volt:

Power Supply Voltages at A3 Connector

Pin	C	E	F	H	J
Volts	Ground	+5.25	-40.0	-10.0	+20.0

Replace the A3 printed circuit assembly.

Always turn instrument power off before removing or installing any assembly.

Test 2. Turn the instrument off, remove the Frequency Extension Module from the mainframe, and reconnect using the extender cable.

Unplug the 20 MHz output cable (W4) from the A1J4. Connect an oscilloscope to test point A6TP1 and check for a +2.5 Vpk sawtooth ramp. Adjust A7R17 so the ramp just turns on. Reconnect the 20 MHz output cable. The signal at A6TP1 should now be $0.0 \pm 0.1 \mathrm{Vdc}$.

Tune mainframe from 0 to 1200 MHz center frequency in 100 MHz steps. Verify that the signal at A6TP1 remains at $0.0 \pm 0.1 \mathrm{Vdc}$. If the signals at A6TP1 are correct, check the YIG loop output frequencies at J 1 as given in Table 8-1. If these frequencies are correct go to test 3 to continue testing, if not, go to test 5 .

Test 3. If the YIG loop is operating at the correct output frequencies (Test 2), reconnect the counter to J1 and check the SUM loop output frequencies as follows: Tune mainframe from 0 to 90 MHz in 10 MHz steps and verify that the SUM loop output steps up from 3.95 GHz to 4.05 GHz matching the mainframe 10 MHz steps. If these frequencies are correct go to test 4 to continue testing, if not, go to test 13.

Test 4. If the results of tests 2 and 3 are good, use the spectrum analyzer to measure the power output as follows:

Power Outputs to RF Section

Output	Connector	Power Level
SUM LOOP	J1	$\geqslant-4 \mathrm{dBm}$
YIG LOOP	J2	$\geqslant+10 \mathrm{dBm}$

If the SUM loop power output is low go to Service Sheet 3 and troubleshoot the VCO circuit. If the YIG loop power output is low go to Service Sheet 5 and check the YIG oscillator output. If no problem has been encountered as a result of these tests, check the interconnecting cables to the RF Section as the Frequency Extension Module is working properly.

Test 5. Remove the A6 printed circuit assembly (red extractor). Tune the mainframe 0 to 1200 MHz center frequency as shown in Table 8-1 to check the YIG Pretune Driver circuits. Use the tolerance values for YIG Loop Unlocked.

If the YIG loop frequencies are within tolerance, proceed to test 6, if not check the pretune input logic levels as shown on the block diagram for A5 pins 1 through 5 . If the logic levels are correct go to SS2, if incorrect check interconnections and signals from the mainframe.

Test 6. Refer to the last foldout of this section for the procedure to gain access to W1 at A2J5. Use the frequency counter to measure the mainframe $20 \mathrm{MHz} \mathrm{FM} / \mathrm{CW}$ reference at Cable W1. Connect the mainframe 10 MHz reference output to the counter reference input. Also check the 100 MHz reference from the W3 cable at connector A1J2. If incorrect check interconnections and signals from the mainframe. If correct proceed to test 7.

Test 7. Reinstall the A6 printed circuit assembly (red extractor). Install a TEE between W1 and A2J5 and patch into A2J4 leaving W2 discon-

Table 8-1. YIG Loop Output Frequency Versus Mainframe Tuning

Center Frequency	YIG Loop Output Frequency	YIG Loop Pretune Tolerance	YIG Loop Locked Tolerance
0000 MHz	3.950 GHz	$\pm 5 \mathrm{MHz}$	$\pm 1.5 \mathrm{MHz}$
0100 MHz	3.850 GHz	$\pm 5 \mathrm{MHz}$	$\pm 1.5 \mathrm{MHz}$
0200 MHz	3.750 GHz	$\pm 5 \mathrm{MHz}$	$\pm 1.5 \mathrm{MHz}$
0300 MHz	3.650 GHz	$\pm 5 \mathrm{MHz}$	$\pm 1.5 \mathrm{MHz}$
0400 MHz	3.550 GHz	$\pm 5 \mathrm{MHz}$	$\pm 1.5 \mathrm{MHz}$
0500 MHz	3.450 GHz	$\pm 5 \mathrm{MHz}$	$\pm 1.5 \mathrm{MHz}$
0600 MHz	3.350 GHz	$\pm 5 \mathrm{MHz}$	$\pm 1.5 \mathrm{MHz}$
0700 MHz	3.250 GHz	$\pm 5 \mathrm{MHz}$	$\pm 1.5 \mathrm{MHz}$
0800 MHz	3.150 GHz	$\pm 5 \mathrm{MHz}$	$\pm 1.5 \mathrm{MHz}$
0900 MHz	3.050 GHz	$\pm 5 \mathrm{MHz}$	$\pm 1.5 \mathrm{MHz}$
1000 MHz	2.950 GHz	$\pm 5 \mathrm{MHz}$	$\pm 1.5 \mathrm{MHz}$
1100 MHz	2.850 GHz	$\pm 5 \mathrm{MHz}$	$\pm 1.5 \mathrm{MHz}$
1200 MHz	2.750 GHz	$\pm 5 \mathrm{MHz}$	$\pm 1.5 \mathrm{MHz}$

nected. This connects the $20 \mathrm{MHz} \mathrm{FM} / \mathrm{CW}$ reference into both sides of the phase detector for testing. Use a digital voltmeter to check A6TP1 for $0.0 \pm 0.1 \mathrm{Vdc}$. If incorrect proceed to test 8 , if correct proceed to test 10 .

Test 8. Check the dc voltage at A7 pin J (search control output) for 0 Vdc (not +3 Vdc). If correct proceed to Service Sheet 5 , if incorrect go to Service Sheet 4 and troubleshoot the A7 Assembly.

Test 9. Move the digital voltmeter probe to A7TP2 which should also give a reading of $0.0 \pm 0.1 \mathrm{Vdc}$. If this voltage is correct proceed to Service Sheet 5 and troubleshoot the A6 Assembly, if incorrect, proceed to Service Sheet 4 and troubleshoot the A7 Assembly.

Test 10. Connect the spectrum analyzer to A1J4 and measure the amplitude of the signal at 20 MHz . If the signal is less than -17 dBm , adjust A 1 A 1 C 1 to peak signal. If the signal is equal or greater than -17 dBm proceed to test 12 , if not go to test 11 .

Test 11. Set the mainframe center frequency to 500 MHz . Disconnect cable A11W3 at A1J1 and connect the cable to the spectrum analyzer. Check the signal at 3.45 GHz for an amplitude of -5 dBm or greater. Also check the high and low band edges for frequency and levels shown on the block diagram. If these signals are correct proceed to Service Sheet 3 and troubleshoot the A1 Assembly. If the signal level is incorrect, check the A10 output level at 3.45 GHz . If the level is +10 dBm or greater replace A11; if less proceed to Service Sheet 5 and troubleshoot the A10 Assembly.

Test 12. Connect the spectrum analyzer to the end of cable W2 where it connects to A2J4 and measure the 20 MHz output of the A9 Assembly. If the level is -6 dBm or more check for intermit-
tant or poor connections in the 2nd IF line. If the signal level is less than -6 dBm replace the A 9 assembly.

Test 13. If the frequencies measured in Test 3 were incorrect, check the digital pretune logic levels at A 4 pins $\mathrm{K}, \mathrm{L}, \mathrm{M}$, and N . If correct, disconnect W8 from A2J2 and connect the cable to the spectrum analyzer and check for the 20 to 30 MHz signal level of -5 to -8 dBm . Connect the spectrum analyzer to W 6 by disconnecting the cable at A8 J2 and check for an input level of from +13 to +15 dBm . If any measurement in this test is incorrect, trace the line back through the RF Section to the mainframe for continuity.

Test 14. Install a TEE between W8 and A2J2 and patch into A2J1. This connects the 20 to 30 MHz input from the mainframe to both sides of the SUM Loop phase detector for testing. Use a digital voltmeter to check A3TP1 for $+12 \pm 3$ Vdc. If this is out of range, proceed to Service Sheet 6 and troubleshoot the A3 Assembly. If the voltage is correct, remove the TEE and reconnect the cables and continue with test 15 .

Test 15. Connect the spectrum analyzer to A1J6. If the $480-380 \mathrm{MHz}$ signal has an amplitude of -6 dBm or more, replace the A8 Assembly. If the signal is incorrect go to test 16 .

Test 16. Use an extender board to gain access to the edge connector of the A4 Sum Loop Pretune Assembly. Connect a digital voltmeter to pin 1 of the extender board and measure the dc voltage while tuning the mainframe from 0 to 90 MHz in 10 MHz steps. The voltage should change from -10 Vdc to -26 Vdc as the frequency is stepped. If voltages are correct proceed to Service Sheet 2 and troubleshoot A1U2 and A1A2. If they are incorrect go to Service Sheet 7 and troubleshoot the A4 Sum Loop Pretune Assembly.

Figure 8-2. Simplified Block Diagram

SERVICE SHEET 2

NOTE

When a malfunction occurs, refer to Section VIII of the HP Model 8660-series mainframe Operating and Service Manual to begin troubleshooting (see System Troubleshooting Guide). Then, if that information does not isolate the problem to a definite instrument, refer to the Systems Troubleshooting information which preceeds Service Sheet 1 in the RF Section manual. This information may be used to isolate the defect to the Frequency Extension Module, another plug-in, or the mainframe. If the problem is in this module, refer to Service Sheet 1 for further troubleshooting information.

A5 YIG PRETUNE DRIVER ASSEMBLY

PRINCIPLES OF OPERATION

The A5 YIG Pretune Driver Assembly converts the binary logic of
 current to pretune the YIG oscillator. The assembly includes a digital to analog converter, current driver, and reference voltages for the converter.

Digital/Analog Converter

Five potentiometers are provided to adjust each logic line for binary weighted current necessary to correctly tune the YIG pretune circuit.

For example if 1 GHz is entered on the mainframe, a logic high will be present on XA5 pin 5 of the YIG Pretune Driver Assembly. The output of A5U1C pin 8 is at a logic low turning off A5Q5 which depletes current from the node at A5TP2.

Current Summing Node (A5TP2)

The sum of the current from the D/A converter and the feedback from the Current Sense Resistor is constant at summing node A5TP2. The magnitude of this sum is set by Offset Adjustment A5R29. The higher the frequency entered on the mainframe, the higher the D / A current into the node and therefore the lower the feedback current.

Current Driver

A5Q6, A5U2, and A5Q7 form an operational amplifier circuit. The non-inverting input at A5Q6 pin 6 is grounded and inverting input pin 2 connects to the current node. A5U2 provides high

SERVICE SHEET 2 (Cont’d)

open loop gain and source follower A5Q7 ensures little loading of the integrated circuit by the output amplifier.

Output Amplifier

Parallel transistors A5Q8 and A5Q9 drive the YIG main tuning coil. A5C6, A5C7 and A5R42 prevent noise from reaching the YIG coil. VR4, CR2, and A5C8 suppress switching transients from the YIG coil, preventing them from reaching the current driver amplifiers or power supplies. Resistors A5R43 and A5R45 sense the current through the YIG coil and provide the source for the current feedback.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheet 1 was used to isolate a circuit defect to the assemblies or cables shown on the accompanying diagram. Troubleshoot the YIG Pretune Driver Assembly by using the test equipment and procedures given below.

Test Equipment	Model
Spectrum Analyzer . . HP 8555A/8552B/140T	
Digital Voltmeter . . . HP 34740A/34702A	
Service Kit HP 11672A	

Test 1. Check the power supply inputs to the A5 Assembly (+20 V , -10 V , and -40 V). Also check the $+9 \mathrm{VF},+5 \mathrm{~V}$, and the anode of A5CR3 (-9 Vdc). If correct, proceed to Test 2. Otherwise check for continuity of interconnections to mainframe or an A5 Assembly defect.

Test 2. If only one of the stepping codes gives improper tuning to the YIG oscillator, the problem is probably in one of the input inverter-transistor circuits. Enter the frequency indicated on the input line and check the output of the inverter for a logic low. The associated transistor should be conducting (collector-emitter $=$ about 0.2 Vdc). Note that in this application the transistor collector acts as an emitter.

Test 3. If all steps give improper tuning, check the current driver section of the board. The collectors of A5Q6 and A5Q7 should be about +5 Vdc . At 0 GHz A5TP1 should be about 9.48 Vdc ; A5Q8 and A5Q9 should be about +10.2 Vdc on their bases; A5Q7 should be about +11 Vdc at the gate and about +20 Vdc at the drain. The most likely components in this circuit to fail are operational amplifier A5U2 or FET A5Q7.

SERVICE SHEET 3

NOTE

When a malfunction occurs, refer to Section VIII of the HP Model 8660 -series mainframe Operating and Service Manual to begin troubleshooting (see System Troubleshooting Guide). Then, if that information does not isolate the problem to a definite instrument, refer to the Systems Troubleshooting information which preceeds Service Sheet 1 in the RF Section manual. This information may be used to isolate the defect to the Frequency Extension Module, another plug-in, or the mainframe. If the problem is in this module, refer to Service Sheet 1 for further troubleshooting information.

OSCILLATOR/MIXER SECTION

PRINCIPLES OF OPERATION

The 4.43 GHz oscillator, IF filters, IF amplifiers, and the VCO for the SUM loop are included on this Service Sheet. Both outputs to the RF Section are also shown.

A11 2.6 - 4.1 GHz Bandpass Filter Assembly

This is a non-repairable unit which includes a directional coupler and a bandpass filter. The $3.95-2.75 \mathrm{GHz}$ signal passes through this unit to the RF Section. Part of this signal is filtered and sent to the mixer in the 4.43 GHz Oscillator Assembly.

A1A4 4.43 GHz Oscillator Tuning Assembly

This assembly provides interface connections for the A1U3 microcircuit oscillator and YIG Loop 1st IF mixer. Supply voltage for the 4.43 GHz oscillator is obtained from frequency adjustment potentiometer R1 which is mounted on the Frequency Extension Module frame. The voltage from R1 is filtered by A1A4C1, A1A4R2, and A1A4C3.

The oscillator frequency adjustment potentiometer R1 is mounted on the main Frequency Extension Module housing. This adjustment determines the dc supply voltage to set A1U3 microcircuit oscillator frequency to 4.43 GHz . The 4.43 GHz Oscillator Tuning Assembly contains filtering for this voltage and the oscillator -10 Vdc supply

Microcircuit A1U3 contains the 4.43 GHz oscillator and the mixer for the Sum Loop. The 4.43 GHz oscillator is free-running (not phase locked), but as this frequency is part of both the Sum and YIG loops any drift is exactly cancelled in the RF Section mixer. The microcircuit is mechanically attached to the A1 housing but interfaces electrically with the A1A4 assembly.

SERVICE SHEET 3 (Cont'd)

A1U3 4.43 GHz Oscillator/Mixer Assembly

This unit is a non-repairable microcircuit containing the 4.43 GHz oscillator and the YIG Loop 1st IF Mixer. An output of this oscillator is also used to drive SUM Loop 1st IF mixer which is part of the A1U2 microcircuit.

A1A3 4 GHz Low Pass Filter Assembly

This unit attenuates the level of the 4.43 GHz contained in the ouput of the YIG Loop 1st IF Mixer. It is a non-repairable assembly.

A1U1 Sampler/1.8 GHz Low Pass Filter Assembly

The output of the 4 GHz Low Pass Filter Assembly next passes through the 1.8 GHz Low Pass Filter in the A1U1 microcircuit. This attenuates the level of the 3.95 to 2.75 GHz decoupler RF contained in the YIG Loop 1st IF. A sampler generates the YIG Loop 2nd IF. It may be visualized as a harmonic mixer, in which a step recovery diode generates harmonics of the mainframe 100 MHz reference signal. This is combined with the 1st IF to produce many frequency products including the 20 MHz 2 nd IF frequency.

A1A1 20 MHz IF Amplifier Assembly

This assembly is a printed circuit board which serves as an interface for the A1U1 microcircuit and the YIG Loop 20 MHz second IF amplifier. Adjustable capacitor A1A1C1 with inductor A1A1L2 provides a 20 MHz parallel resonant filter circuit. In spite of this, the output of the 20 MHz IF amplifier contains considerable 100 MHz feedthrough. Therefore the amplitude of the 20 MHz signal should be determined using a spectrum analyzer.

A1U2 VCO/Mixer Assembly

This unit is a non-repairable microcircuit containing the $3.950 / 4.050 \mathrm{GHz}$ VCO and the Sum Loop 1st IF mixer. The output of the VCO is the Sum loop output to the RF Section (in the RF Section it serves as the local oscillator signal). The mixer combines the VCO signal with the 4.43 GHz signal from the A1U3 microcircuit to form the Sum Loop 1st IF.

A1A2 380-480 MHz IF Amplifier Assembly

This assembly is a printed circuit board which serves an interface for the A1U2 microcircuit and the Sum Loop 1st IF amplifier. A1A2R3 provides adjustment for the A1U2 VCO bias.

A12 4.43 GHz Bandpass Filter Assembly

This filter is a non-repairable assembly used to couple the 4.43 GHz oscillator output to the Sum Loop 1st IF mixer. This filter reduces spurious outputs between the two units.

SERVICE SHEET 3 (Cont'd)

A8 50 MHz Filter Assembly

This is also a non-repairable assembly and uses the Sum Loop 1st IF and the 450 to 360 MHz input from the mainframe to produce the Sum Loop 2nd IF. The 2 nd IF will be in the range of 30 to 20 MHz and contains the 1 Hz step information.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheet 1 was used to isolate a circuit defect to the assemblies or cables shown on the accompanying diagram. Troubleshoot the circuits using the test equipment and procedures given below.

Test Equipment			Model
Spectrum Analyzer	.	.	HP 8555A/8552B/140T
Digital Voltmeter	.	.	HP 34740A/34702A
Service Kit HP 11672A			

Test 1.Check the power supply inputs to assemblies where a defect has been indicated.

Test 2. If a problem is indicated in A1U2 SUM loop VCO (Service Sheet 1) check the inputs and outputs as shown on the schematic diagram including the dc voltages. If all inputs are correct and either output incorrect replace the unit.

Test 3. If the A1U2 SUM loop VCO is operating properly but a problem exists in the 1st or 2nd IF, first check the associated dc voltage levels and then the signal levels as indicated on the schematic diagram.

Test 4. If the A1U3 4.43 GHz oscillator has no output or cannot be properly adjusted, check the dc voltage inputs to the microcircuit. If there is no tuning voltage at pin 2 of A1U3, use a voltmeter to trace the circuit back to R1. Note that R1 is located on the Frequency Extension Module housing.

Test 5. Sampler $/ 1.8 \mathrm{GHz}$ Low Pass Filter Assembly A1U1 is also a non-repairable assembly. If the inputs are correct and no or low output, the unit must be replaced. The output at pin 4 of A1U1 should be greater than 50 millivolts peak-to-peak.

Test 6. If the signal into the A1A1 assembly is correct but the output at A1J4 is incorrect, use an oscilloscope to trace the signal through the amplifier. The output at A1J4 may have considerable 100 MHz signal present which is normal and should not cause a problem.

NOTE
Reference designators of components located on circuit board assemblies should be prefixed by the assembly reference designator.

SERVICE SHEET 4

NOTE

When a malfunction occurs, refer to Section VIII of the HP Model 8660-series mainframe Operating and Service Manual to begin troubleshooting (see System Troubleshooting Guide). Then, if that information does not isolate the problem to a definite instrument, refer to the Systems Troubleshooting information which preceeds Service Sheet 1 in the RF Section manual. This information may be used to isolate the defect to the Frequency Extension Module, another plug-in, or the mainframe. If the problem is in this module, refer to Service Sheet 1 for further troubleshooting information.

YIG LOOP PHASE DETECTOR SECTION

This Service Sheet includes the YIG loop 2nd IF filter and two phase detectors. A quadrature phase detector supplies a search control output when loss of phase lock occurs. Another phase detector supplies a dc voltage (A7TP2) proportional to the phase error between the 20 MHz 2 nd IF and the 20 MHz FM/CW reference signal.

A9 20 MHz Filter Assembly

This is a non-repairable assembly whose purpose is to remove the unwanted 100 MHz and other spurious signals on the YIG Loop 2nd IF signal. The 2nd IF signal is first processed by a 50 MHz low pass filter, then a 20 MHz bandpass filter, and then amplified by about 20 dB . The output of this assembly is an emitter follower which drives one input of the YIG Loop phase detector assembly.

A7 YIG Loop Phase Detector Assembly

The YIG Loop phase detector compares the 20 MHz 2 nd IF with the 20 MHz reference input from the mainframe. The output of this assembly includes a dc error signal during phase lock and a search control command during an unlocked condition.
90° Phase Shifter. The input circuit to A7Q4 shifts the phase of the 20 MHz reference signal about 90°. Capacitor A7C2 is used to adjust the exact phase so that the search command will not be turned on when the YIG loop is phase locked.

20 MHz Limiter/Amplifiers. Three integrated circuits are used to amplify and limit the 20 MHz signals: one for the 20 MHz reference, one for the 90° phase shifted 20 MHz reference, and one 20 MHz 2 nd IF.

> A1 Oscillator/Mixer Housing Assembly
> A8 50 MHz Filter Assembly
> A11 2.6-4.1 GHz Bandpass Filter Assembly
> A12 4.43 GHz Bandpass Filter Assembly
> SERVICE SHEET 3

SERVICE SHEET 4 (Cont'd)

Quadrature Phase Detector. The quadrature phase detector circuit compares the 20 MHz 2 nd IF with the 90° phase shifted 20 MHz reference to detect an unlocked condition. Two gates on A7U4 form an exclusive OR gate where the output is low only when the inputs are out of phase.

20 MHz Phase Detector. Phase Detector A7U6 is a balanced mixer type detector which compares the 20 MHz 2 nd IF with the 20 MHz reference. The output of the detector passes through a low pass filter to produce a dc voltage proportional to the phase difference.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheet 1 was used to isolate a circuit defect to the assembly or cables shown in the accompanying diagram. Troubleshoot the A7 YIG Loop Phase Detector Assembly by using the test equipment and procedures given below.

Test Equipment		Model	
Oscilloscope .	.	HP $180 \mathrm{C} / 1801 \mathrm{~A} / 1821 \mathrm{~A}$	
10:1 Divider Probe	.	.	.
Digital Voltmeter	.	HP 10004	
Service Kit	.	.	.
34740A/34702A			

Test 1. Check the power supply inputs to the A7 Assembly $(+20 \mathrm{Vdc}$ and $-10 \mathrm{Vdc})$. Also check the +10 Vdc from the zener diode A7VR1 and the regulated -5 Vdc. If incorrect troubleshoot these circuits. If correct proceed to Test 2.

Test 2. If there is either no or low output at J 2 of the A9 Assembly, check the input, cables, and -10 Vdc power supply input at A9C1. If no fault is found, replace the A9 Assembly.

Test 3. If the search control output was found faulty on Service Sheet 1, proceed as follows: With both RF inputs of the A7 Assembly driven from the 20 MHz reference, check pin 2 of A7U5 for about -1.2 Vdc . Pin 3 of A7U5 (or A7TP1) should be about -1.5 Vdc . (ECL logic levels are: on $=-0.7 \mathrm{Vdc}$, off $=-1.5 \mathrm{Vdc}$). If these inputs are correct A7U5 or A7VR3 is bad. If the voltage at A7TP1 is incorrect use an oscilloscope to check back to the RF inputs. The output of the Limiter Amplifiers (U1A pins 1 and 2, U3A pins 1 and 2) should be about 0.8 Vp -p.

Test 4. If the search control is working properly, compare the REF 20 MHz LIMITER/AMPL voltages and waveforms with the PHASE-SHIFTED 20 MHz LIMITER/AMPL voltages and waveforms. If one of the 20 MHz inputs is unplugged, the loop will be unlocked and the can be used for signal tracing through the phase detector and elliptic filter.

Figure 8-8. A7 Yig Loop Phase Detector Assembly Component and Test Point Locations

SERVICE SHEET 5

NOTE

When a malfunction occurs, refer to Section VIII of the HP Model 8660-series mainframe Operating and Service Manual to begin troubleshooting (see System Troubleshooting Guide). Then, if that information does not isolate the problem to a definite instrument, refer to the Systems Troubleshooting information which preceeds Service Sheet 1 in the RF Section manual. This information may be used to isolate the defect to the Frequency Extension Module, another plug-in, or the mainframe. If the problem is in this module, refer to Service Sheet 1 for further troubleshooting information.

A6 FM DRIVER ASSEMBLY

PRINCIPLES OF OPERATION

The FM Driver converts the dc error signal derived from the phase detector section to drive current for the YIG FM coil. In the FM mode, FM is added to the 20 MHz reference signal in the Modulation Section, routed through an amplifier in the RF Section, and is present on the YIG FM coil. If phase lock with the 20 MHz 2 nd IF is lost, the search control turns on the Search Waveform Generator.

DC Amplifier and Output Driver

Transistors A6U1, A6Q1, 2, 3, and 4 function as an operational amplifier. The non-inverting input is A6U1 pin 4 and the inverting input is A6U1 pin 2. The phase detector error signal from the YIG loop phase detector is connected to the non-inverting input. The output of this amplifier drives the FM coil in the YIG oscillator. Current sense resistor A6R37 developes a voltage proportional to the FM coil current. This voltage is fed back to the amplifier input at A6U1 pin 2.

Search Waveform Generator

When the YIG is unlocked, the search control input (+3 Vdc) enables the search waveform oscillator A6U2B and A6U2C. Gate A6U2A acts as an inverter turning on A6Q5 and FET A6Q6. The output of the search waveform oscillator is a squarewave and is connected to the FET drain through gate A6U2D. Resistor A6R18 and capacitor A6C11 convert the squarewave to a sawtooth for driving the inverting input to the amplifier section. The fine tune winding of the YIG will then sweep until the quaerature phase detector (search control) goes to zero. FET A6Q6 will then be cutoff but capacitor A6C11 will hold its charge long enough for the loop to lock.

SERVICE SHEET 5 (Cont'd)

A10 YIG Oscillator Assembly

The YIG Oscillator Assembly is non-repairable. The larger of two tuning coils is connected to the pretune circuit on the A5 Assembly. The smaller FM coil is connected to the A6 YIG FM Driver Assembly and is driven by the YIG phase detected error signal. The output of the YIG oscillator is therefore phase locked to the frequency digits 9 and $10(100 \mathrm{MHz}-1200 \mathrm{MHz})$ and contains the FM if present.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheet 1 was used to isolate a circuit defect to the assemblies or cables shown on the accompanying diagram. Troubleshoot the circuits using the test equipment and procedures given below.

Test Equipment		Model
Spectrum Analyzer	.	HP 8555A/8552B/140T
Oscilloscope	.	HP 180C/1801A/1821A
Digital Voltmeter	.	HP 34740A/34702A
Service Kit	.	.

Test 1. Check the power supply inputs to the A6 Assembly on the board. If any are missing, check for continuity of interconnections to the mainframe.

Test 2. To check the Search Waveform Generator proceed as follows. If the Search Control input is at a logic high, U2 pin 3 is low and A6Q5 will be turned ON. The output at U2 pin 11 will be a square wave, alternating between about 0 and 3.5 Vdc . The oscillator formed by A6U2B and A6U2C is ON at all times and has a period of about 5 milliseconds.

Test 3. Troubleshoot the amplifiers using the ramp waveform. With the search control active, use the oscilloscope to trace the ramp from U1 pin 2 (about 10 mV) to the output of the Output Driver. The signal amplitude at the base of A6Q3 should be about $10 \mathrm{Vp}-\mathrm{p}$.

Test 4. If the tests on Service Sheet 1 shows that the YIG oscillator is far off frequency or has a low output signal amplitude, check the power supply voltages and interconnecting cables using the schematic diagram. If the inputs to the A10 YIG Oscillator Assembly are good, replace the entire assembly.

A6 FM DRIVER ASSY (11661-60002)

$$
----\quad-\quad
$$

$$
[--
$$

2)

- DC AMPLIFIER-

SERVICE SHEET 6

NOTE

When a malfunction occurs, refer to Section VIII of the HP Model 8660-series mainframe Operating and Service Manual to begin troubleshooting (see System Troubleshooting Guide). Then, if that information does not isolate the problem to a definite instrument, refer to the Systems Troubleshooting information which preceeds Service Sheet 1 in the RF Section manual. This information may be used to isolate the defect to the Frequency Extension Module, another plug-in, or the mainframe. If the problem is in this module, refer to Service Sheet 1 for further troubleshooting information.

A3 SUM LOOP PHASE DETECTOR ASSEMBLY

PRINCIPLES OF OPERATION

The A3 Sum Loop Phase Detector compares the $30-20 \mathrm{MHz}$ (1 Hz steps) signal from the mainframe and the $30-20 \mathrm{MHz}$ Sum Loop 2nd IF signal and provides a phase error signal to the A4 assembly to accomplish phase lock.

Pulse Generators

The Sum Loop 2nd IF signal input is amplified by A3Q5. The output of A3Q5 drives the pulse forming circuit A3U3A to speed up the rise and fall time for the logic elements. Feedback inductor A3L2 allows gate A3U3A to operate more in its linear region and convert the small signal input to logic level pulses. A similar circuit is used for the 20 to 30 MHz input signal from the mainframe.

Digital Phase Detector and Low Pass Filters

The digital phase detector compares the phase relationship of two signals in the 20 to 30 MHz range and produces a dc error voltage proportional to the difference. Gates A3U3C and A3U2A are connected to form a flip-flop circuit. The output of gate A3U3C pin 8 is set to a logic high by the input signal. The 2nd IF flip-flop is reset by A3U2C only after both input signals have set their respective flip-flops. The duration of the logic high at the phase detector outputs therefore depends on the phase of the input signals. The dc level output of one lowpass filter will then be proportional to the phase difference of the input signals, while the other output is a constant low dc level. If in phase, both flip-flops reset immediately and both outputs will be a constant low dc level.

Active Filter/Integrator

The output circuit forms a differential amplifier. The two outputs of the phase detector are connected to the two inputs of this amplifier. Further filtering of the phase detector signal is accomplished by feedback resistor A3R21 and capacitor A3C19. If the loop is locked the amplifier output will be about +10 Vdc . If the 2 nd IF is absent, for example, the output of the assembly will be about +20 Vdc .

SERVICE SHEET 6 (Cont'd)

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheet 1 was used to isolate a circuit defect to the assemblies or cables shown on the accompanying diagram. Troubleshoot the circuits using the test equipment and procedures given below.

Test Equipment					Model
Oscilloscope	.	.	HP 180C/1801A/1821A		
Digital Voltmeter		.	.	.	HP 34740A/34702A
Service Kit

Test 1. Check the power supply inputs to the A3 Assembly on the board ($+20,+5.25$ and -40 Vdc). Also check the +5 Vdc filtered. If any voltages are incorrect, check continuity back to the mainframe. If correct proceed to test 2.

Test 2. Connect the two signal inputs to the $30-20 \mathrm{MHz}$ input from the mainframe as described in Test 14 on Service Sheet 1. Connect oscilloscope probe first to U3C pin 10 and then to U1B pin 4 comparing the waveforms ($30-20 \mathrm{MHz}$ pulses). If either of these two signals are missing, check back to the common input with the oscilloscope probe to identify the problem.

Test 3. Move the oscilloscope probe first to U3C pin 8 and then to U1B pin 6. If pulses are missing from either point, use a digital voltmeter to locate the problem.

Test 4. Use a digital voltmeter to compare the two halves of the output circuit. If the inputs are balanced, similar points should have the same dc voltage. Note that A3TP1 is about +10 Vdc for phase lock.

Figure 8-12. A3 Sum Loop Phase Detector Assembly Component Locations

NOTE

When a malfunction occurs, refer to Section VIII of the HP Model 8660-series mainframe Operating and Service Manual to begin troubleshooting (see System Troubleshooting Guide). Then, if that information does not isolate the problem to a definite instrument, refer to the Systems Troubleshooting information which preceeds Service Sheet 1 in the $R F$ Section manual. This information may be used to isolate the defect to the Frequency Extension Module, another plug-in, or the mainframe. If the problem is in this module, refer to Service Sheet 1 for further troubleshooting information.

A4 SUM LOOP PRETUNE ASSEMBLY

PRINCIPLES OF OPERATION

The A4 Sum Loop Pretune Assembly converts the binary logic of the 10 MHz steps (digit 8) to a dc bias for coarse tuning of the VCO. This assembly includes a BCD to decimal decoder, a $4.05-3.95 \mathrm{GHz}$ resistance ladder, and associated amplifiers. The pretune current is combined with the phase error signal from the A3 Assembly to produce the VCO control signal.

Logic Input

Inputs to XA4 pins N, M, L, and K are BCD code from the mainframe for digit $8(10 \mathrm{MHz})$. Integrated circuit U1 converts the input from BCD to 10 line decimal. U1 also acts as a logic inverter so that only one line is ON (near ground) at any one time. The remaining lines will be above 3 Vdc . The digit selected will turn on one of the transistors Q1 through Q10. An adjustment for each transistor is provided for weighting the current for each digit.

Phase Error Signal

Transistor Q12 provides coupling of the phase error signal from the A3 Sum Loop Phase Detector Assembly. Potentiometer R6 provides an adjustment for controlling loop bandwidth at the low frequency end of the VCO range. Note that the higher the selected frequency, the lower the VCO tuning voltage. Transistor Q11 improves the high frequency response of the phase error signal. The voltage range of the tuning is from about -10 Vdc to about -16 Vdc.

SERVICE SHEET 7 (Cont'd)

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheet 1 was used to isolate a circuit defect to the assembly or cables shown in the accompanying diagram. Troubleshoot the A4 Sum Loop Pretune Assembly by using the test equipment and procedures given below.

Test Equipment		Model	
Digital Voltmeter	.	HP 34740A/34702A	
Service Kit	.	.	.$H P 11672 \mathrm{~A}$

Test 1. Check the power supply inputs to the A4 Assembly (+20 V , $+5 \mathrm{~V},-10 \mathrm{~V}$, and -40 V). If incorrect check for continuity back to the mainframe. If correct proceed to test 2 .

Test 2. If a fault lies with the pretune logic decoding, check the collector of transistors A4Q1 through A4Q10 while exercising the digit 8 tuning on the mainframe (0 through 9). Each line should pull up to about 0 Vdc when the matching number is selected. If there is no change in the output of the A4 Assembly (pin 1) for the entire range of tuning, probably A 4 U 1 is bad.

Test 3. The output of the A4 Assembly (pin 1) should be at about -10 Vdc for 4.05 GHz and -26 Vdc for 3.95 GHz tuning of the VCO. If the voltages fall much outside of this range check A4Q11 and A4Q12 and associated components for short or open failures.

A4 ASSEMBLY

GENERAL REMOVAL AND DISASSEMBLY PROCEDURE

WARNING

To avoid contact with the line voltage, remove the line (Mains) power cable from the power outlet before removing or connecting cables to the Frequency Extension Module.
a. Remove the mainframe top cover by first removing the four Pozidriv screws; then slide the cover back and off the mainframe side rails.
b. If the Frequency Extension Module is to be removed from the mainframe, remove the bottom cover in a similar manner.

Model 11661B Module Removal

a. Remove the two cables connected to J1 and J2 as shown in Figure 2-2.
b. Remove the three securing screws shown in Figure 2-2 holding the Frequency Extension Module cover to the mainframe.
c. Remove the two bottom screws holding the Frequency Extension Module. These screws are accessible from the bottom of the mainframe.
d. Grip the plastic extractor shown in Figure 8-16 and lift straight up with a slight rotating action.

Interconnection of the Frequency Extension Module to the Mainframe for Troubleshooting Purposes

WARNING

With the mainframe top cover removed, power is supplied to the system during troubleshooting. Energy available at many points may, if contacted, result in personal injury.
a. Use extender cable HP 11672-60002 to connect J4 on the mainframe to P 4 on the Frequency Extension Module.
b. Reconnect the RF connecting cables to J1 and J2 on the rear of the Frequency Extension Module. Refer to Figure 2-2 for cable color code.

NOTE

The interconnect cables and adaptors are found in the HP 11672A Service Kit. They may all be ordered in the kit or as individual pieces. Refer to the 11672A Operating Note or the Mainframe Manual for a pictorial cross reference.

Figure 8-16. Location of Extractor and Servicing Screws

GENERAL REMOVAL AND DISASSEMBLY PROCEDURE (Cont'd)

c. Reconnect the mainframe line (Mains) power cable to the power outlet and set the mainframe line switch to ON.

Access To Internal Assemblies

a. For access to the circuit boards, remove the three screws securing the cover to the case. Circuit boards A3, A4, A5, A6, and A7 may be unplugged by simultaneously pulling up on both plastic arms associated with that board.
b. To open the Frequency Extension Module as shown in Figure 8-17 under Extension Module Internal View, remove the two screws on the side of the case marked "REMOVE FOR SERVICE" (shown in Figure 8-16).

CAUTION

Care must be exercised when removing plug-in boards with the module swung open. The printed circuit board guide bar is not rigid enough to use the extractor arm (black) on the open side without bending. To avoid damage, use a finger to lift the bottom edge of the board on the open side while using the color coded extractor arm on the far side.

Reassembly Procedure

Reassemble in reverse order of disassembly. Replace the two screws on the side of the case, replace the top cover after verifying all boards are in place, and then install in mainframe. Before replacing the instrument cover, verify that the two RF cables to J 1 and J 2 are properly installed as shown in Figure 2-2.

Table 8-2. Assemblies, Chassis Mounted Parts, and Adjustment Locations (1 of 2)

Reference Designator	Service Sheet(s)	Figure(s)
A1 Assembly A1A1 Assembly A1A1C1 20 MHz Adj A1A2 Assembly A1A2R3 VCO Bias Adj A1A3 Assembly A1A4 Assembly	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 8-6,8-17 \\ & 8-6,8-17 \\ & 8-6,8-17 \\ & 8-6,8-17 \\ & 8-6,8-17 \\ & 8-6,8-17 \\ & 8-6,8-17 \end{aligned}$
A2 Assembly A3 Assembly	$\begin{gathered} 2,3,4,5,6 \\ 6 \end{gathered}$	$\begin{aligned} & 8-17 \\ & 8-12,8-17 \end{aligned}$
A4 Assembly A4R5 O Adj A4R6 B Adj A4R11 1 Adj A4R16 2 Adj A4R20 3 Adj A4R23 4 Adj A4R26 5 Adj A4R29 6 Adj A4R32 7 Adj A4R35 8 Adj A4R38 9 Adj	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 8-14,8-17 \\ & 8-14 \\ & 8-14 \\ & 8-14 \\ & 8-14 \\ & 8-14 \\ & 8-14 \\ & 8-14 \\ & 8-14 \\ & 8-14 \\ & 8-14 \\ & 8-14 \end{aligned}$
A5 Assembly A5R13 "1" Adj A5R15 "2" Adj A5R17 "4" Adj A5R19 "8" Adj A5R21 " 10 " Adj A5R29 OFFSET Adj A5R39 GAIN Adj	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 8-4,8-17 \\ & 8-4,8-17 \\ & 8-4,8-17 \\ & 8-4,8-17 \\ & 8-4,8-17 \\ & 8-4,8-17 \\ & 8-4,8-17 \\ & 8-4,8-17 \end{aligned}$
$\begin{aligned} & \text { A6 Assembly } \\ & \text { A6R6 DC OFFSET Adj } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 8-10,8-17 \\ & 8-10,8-17 \end{aligned}$
A7 Assembly A7C2 Phase Adj A7R17 Phase Ref Adj A7R20 YIG Loop Gain Adj	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 8-8,8-17 \\ & 8-8,8-17 \\ & 8-8,8-17 \\ & 8-8,8-17 \end{aligned}$

8-22

Table 8-2. Assemblies, Chassis Mounted Parts, and Adjustment Locations (2 of 2)

Figure 8-1 7. Assemblies, Chassis Mounted Parts, Adjustment Location

