86603A RF SECTION 1-2600 M Hz

Including Options 001, 002, and 003

SERIAL NUMBERS
This manual applies directly to instruments with serial numbers prefixed 1921A.

With changes described in Section VII, this manual also applies to instruments with serial numbers prefixed $1417 \mathrm{~A}, 1501 \mathrm{~A}, 1505 \mathrm{~A}, 1515 \mathrm{~A}, 1521 \mathrm{~A}$, $1533 \mathrm{~A}, 1539 \mathrm{~A}, 1543 \mathrm{~A}, 1550 \mathrm{~A}, 1625 \mathrm{~A}, 1637 \mathrm{~A}$ $1638 \mathrm{~A}, 1639 \mathrm{~A}, 1640 \mathrm{~A}, 1653 \mathrm{~A}, 1734 \mathrm{~A}, 1816 \mathrm{~A}$, 1834 A , and 1847 A

For additional important information about serial numbers, see INSTRUMENTS COVERED BY MANUAL in Section I.
© HEWLETT-PACKARD COMPANY 1975, 1977, 1978, 1980
EAST 24001 MISSION AVENUE, TAF C-34, SPOKANE, WASHINGTON, U.S.A. 99220

HP MANUAL SCANS

By

Artel Media

1042 Plummer Cir. SW Rochester, MN 55902

www.artekmedia.com

"High resolution scans of obsolete technical manuals"

ALL HP MANUALS ARE REPRODUCED
 WITH PERMISSION OF AGILENT TECHNOLOGIES INC.

Reproduction of this scanned document or removal of this disclaimer Will be considered in violation of both Agilent's and Artek Media's copy rights

If your looking for a quality scanned technical manual in PDF format please visit our WEB site at www.artekmedia.com or drop us an email at manuals@artekmedia.com and we will be happy to email you a current list of the manuals we have available.

If you don't see the manual you need on the list drop us a line anyway we may still be able to point you to other sources. If you have an existing manual you would like scanned please write for details, This can often be done very reasonably in consideration for adding your manual to our library.

Typically the scans in our manuals are done as follows;

1) Typed text pages are typically scanned in black and white at 300 dpi.
2) Photo pages are typically scanned in gray scale mode at 600 dpi
3) Schematic diagram pages are typically scanned in black and white at 600 dpi unless the original manual had colored high lighting (as is the case for some 70's vintage Tektronix manuals).

Thanks

Dave \& Lynn Henderson
Artek Media

CONTENTS

Section Page
I GENERAL INFORMATION 1-1
1-1. Introduction 1-1
1-7. Specifications 1-1
1-9. Instruments Covered by Manual 1-1
1-12. Manual Change Supplements 1-1
1-15. Description 1-6
1-20. Options $1-6$
1-25. Compatibility 1-6
1.28. Equipment Required but not Supplied $1-7$
1-29. System Mainframe 1-7
1-32. Frequency Extension Module 1.7
1-34. Auxiliary Section 1.7
1-36. Modulation Section Plug-ins $1-8$
1-38. Equipment Available 1-8
1.41. Safety Considerations $1-8$
1-44. Recommended Test Equipment $1-8$
II INSTALLATION 2-1
2-1. Introduction 2-1
2-3. Initial Inspection 2-1
2-5. Preparation for Use 2-1
2-6. Power Requirements 2-1
2-8. Interconnections 2-1
2-10. Rear Panel Test Switch Setting 2-1
2-12. Modifications 2-1
2-16. Operating Environment 2-2
2-18. Installation Instructions 2-2
2-20. Storage and Shipment 2 -2
2-21. Environment 2-2
2-23. Packaging 2-2
III OPERATION 3-1
3-1. Introduction 3-1
3-3. Panel Features 3-1
3-5. Operator's Checks 3-1
3-8. Operating Instructions 3-1
3-10. Operator's Maintenance
(Option 003 only) 3-1
IV PERFORMANCE TESTS 4-1
4-1. Introduction 4-1
4-3. Equipment Required 4-1
4-5. Test Record 4-1
4-7. Performance Tests 4-1
4-9. Frequency Range 4-2
4-10. Frequency Accuracy and Stability 4-3
4-11. Frequency Switching Time 4-3
4-12. Output Level Switching Time 4-5
4-13A. Output Accuracy 4-6
Section Page
4-13B. Output Accuracy - Alternate
Procedure 4-11
4-14. Output Flatness 4-14
4-15. Harmonic Signals, Sub-Harmonic, and Sub-Harmonic Multiples 4-14
4-16. Pulse Modulation Risetime 4-16
4-17. Pulse Modulation On/Off Ratio 4-17
4-18. Amplitude Modulation Depth and 3 dB Bandwidth 4-18
4-19. Frequency Modulation Rate and Deviation 4-21
4-20. Output Impedance Test 4-22
4-21. Signal-to-Phase Noise Ratio $4-23$
4-22. Signal-to-AM Noise Ratio 4-26
4-23. Residual FM 4-27
4-24. Amplitude Modulation Distortion 4-28
4-25. Incidental Phase Modulation 4-30
4-26. Frequency Modulation Distortion 4-31
4-27. Incidental AM 4-32
4-28. Spurious Signals, Narrowband 4-34
4-29. Spurious Signals, Wideband 4-36
4-30. Phase Modulation Peak Deviation Test 4-37
4-31 A. Phase Modulation Distortion 4-37
4-31B. Phase Modulation Distortion - Alternate Procedure $4-39$
V ADJUSTMENTS 5-1
5-1. Introduction 5-1
5-4. Equipment Required 5-1
5-8. Safety Considerations 5-1
5-12. Factory Selected Components 5-1
5-14. Related Adjustments 5-1
5-18. Adjustment Locations 5-2
5-20. Adjustments 5-2
5-22. Post Adjustment Tests 5-2
5-24. RF Output Level Adjustment 5-3
5-25. 1 dB Step Attenuator Adjustments 5-4
5-26. Amplitude Modulation Input Circuit Adjustment 5-5
5-27. Doubler Power Supply Adjustment 5-7
5-28. Filter Driver Assembly Adjustment 5-8
5-29. Phase Modulator Driver Frequency Response Adjustments 5-9
$5-30$ A. Phase Modulation Level and Distortion Adjustments 5-11
$5-30 B$. Phase Modulation Level and Distortion Adjustments - Alternate Procedure 5-13

\square

CONTENTS (Cont'd)

ILLUSTRATIONS (Cont'd)

Figure Page
7-4. Service Sheet 9 Schematic (P / O Change I) $7-10$
7-5. Service Sheet 11 Partial Schematic (P / O Change K) 7-11
7-6. A9 Attenuator Driver Assembly Component Locations (Part of Change N) 7-14
7-7. Attenuator Section Schematic Diagram (Part of Change N) 7-15
8-1. LO Signal Circuits Repair 8-4
8-2. A22 Frequency Doubler Assembly Repair 8-7
8-3. Rear Panel Disassembly $8-10$
8-4. Schematic Diagram Notes $8-12$
8 -5. System Test Point Locations 8-21
8-6. Mainframe Interconnect Jack 8-21
8-7. System Troubleshooting Block Diagram $8-21$
8-8. RF Section Simplified Block Diagram 8-23
8-9. Main Troubleshooting Block Diagram 8.23
8-10. Logic Troubleshooting Block Diagram 8-25
8-11. A7 Mixer Assembly's Subassembly and Component Locations 8.27
8-12. Mixer Section Schematic Diagram 8-27
8-13. A16 Phase Modulator Driver Assembly
Component and Test Point Locations 8-29
8-14. A17 Phase Modulator Assembly Component Locations 8.29
8-15. Phase Modulation Section Schematic Diagram (Option 002) $8-29$
8-16. A4 Detector Amplifier Assembly Component and Test Point Locations 8-31
8-17. 1-1300 MHz Amplifier/Detector
Amplifier Schematic Diagram 8-31FigurePage
8-18. A22 Frequency Doubler Subassembly and Test Point Locations 8-33
8-19. Frequency Doubler Assembly Schematic Diagram 8.33
8-20. A3 ALC Amplifier Assembly Component and Test Point Locations 8-34
8-21. A10 Reference Assembly Component Locations 8-35
8-22. A2 ALC Mother Board Assembly Component Locations 8.35
8-23. ALC Section Schematic Diagram 8.35
8-24. A9 Attenuator Driver Assembly Component Locations 8-37
8-25. Attenuator Section Schematic Diagram 8-37
8-26. Summing Amplifier 8-38
8-27. A21 Filter Driver Assembly Component and Test Point Locations 8-39
8-28. A21 Filter Driver Assembly Schematic Diagram $8-39$
8-29. A11 Logic Assembly Component Locations 8-41
8-30. A11 Logic Assembly Schematic Diagram 8-41
8-31. A20 Doubler Power Supply Assy Component and Test Point Locations 8-43
8-32. A20 Doubler Power Supply and Option 003 Circuits Schematic Diagram. $8-43$
8-33. Assemblies, Chassis Mounted Parts, and Adjustable Component Locations $8-45$

TABLES

Table Page
1-1. Models 86603A/11661 Specifications 1-2
1-2. Model 86603A RF Section Compatibility 1-7
1-3. Test Equipment and Accessories List 1.9
3-1. Operating Instructions 3-7
4-1. Narrowband Spurious Signals Checks 4-35
4-2. Wideband Spurious Signals Checks 4-37
4-3. Performance Test Record 4-42
5-1. Factory Selected Components 5-2
5-2. Center Frequency vs Filter Driver Output 5.9

SERVICE SHEETS

Service Sheet Page Service Sheet Page
1 System Troubleshooting 8-21
2 Main Troubleshooting 8-23
3 Logic Troubleshooting $.8-25$
4 Mixer Section 8-27
5 Phase Modulation Section 8-29
$6 \quad 1-1300 \mathrm{MHz}$ Amplifier/Detector
Amplifier 8-31
7 Frequency Doubler Assembly 8-33
8 ALC Section Schematic Diagram 8-35
9 Attenuator Section 8-37
10 A21 Filter Driver Assembly 8-39
11 A11 Logic Assembly 8-41
12 A20 Doubler Power Supply and Option 003Circuits8-43

This instrument was constructed in an ESD (electro-static discharge) protected environment. This is because most of the semi-conductor devices used in this instrument are susceptible to damage by static discharge.
Depending on the magnitude of the charge, device substrates can be punctured or destroyed by contact or mere proximity of a static charge. The results can cause degradation of device performance, early failure, or immediate destruction.

These charges are generated in numerous ways such as simple contact, separation of materials, and normal motions of persons working with static sensitive devices.

When handling or servicing equipment containing static sensitive devices, adequate precautions must be taken to prevent device damage or destruction.

Only those who are thoroughly familiar with industry accepted techniques for handling static sensitive devices should attempt to service circuitry with these devices.
In all instances, measures must be taken to prevent static charge build-up on work surfaces and persons handling the devices.

SAFETY CONSIDERATIONS

GENERAL

This product and related documentation must be reviewed for familiarization with safety markings and instructions before operation. This product has been designed and tested in accordance with international standards.

SAFETY SYMBOLS

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage (refer to Table of Contents).

Indicates hazardous voltages.

Indicates earth (ground) terminal.

WARNING

CAUTION

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. Do not proceed beyond a CAUTION sign until the indicated conditions are fully understood and met.

SAFETY EARTH GROUND

This plug-in section is used in a Safety Class I product (provided with a protective earthing terminal). An uninterruptible safety earth ground must be provided from the main power source to the product input wiring terminals. Whenever it is likely
that the protection has been impared, the product must be made inoperative and be secured against any unintended operation.

BEFORE CONNECTING THIS SYSTEM TO LINE (MAINS) VOLTAGE

Verify that the product is configured to match the available main power source per the input power configuration instructions provided in this manual.

If this system is to be energized via an autotransformer make sure the common terminal is connected to the neutral (grounded side of mains supply). The safety and installation instructions found in Sections II and III of the mainframe should be followed.

SERVICING

WARNINGS

Any servicing, adjustment, maintenance, or repair of this product must be performed only by qualified personnel.

Adjustments described in this manual may be performed with power supplied to the product while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.

Capacitors inside this product may still be charged even when disconnected from its power source.

To avoid a fire hazard, only fuses with the required current rating and of the specified type (normal blow, time delay, etc.) are to be used for replacement in the mainframe.

CAUTIONS

COIMPATIBILITY

Damage to the synthesized signal generator system may result if the RF Section is used with unmodified Model 8660A or 8660B mainframes with serial prefixes 1349A and below.

CAUTIONS (Cont'd) PERFORMANCE TESTING

To avoid the possibility of damage to the instrument or test equipment, read completely through each test before starting it. Then make any preliminary control settings necessary before continuing with the procedure.

PLUG-IN REMOVAL

Before removing the RF Section plug-in from the mainframe, remove the line (Mains) voltage by disconnecting the power cable from the power outlet.

SEMI-RIGID COAX

Slight but repeated bending of the semirigid coaxial cables will damage them very quickly. Bend the cables as little as
possible. If necessary, loosen the assembly to release the cable.

FLUX REMOVER

Do not use flux remover anywhere near the A22 assembly. The monoblock capacitors may be damaged by this chemical. If absolutely necessary, use only freon or methanol.

EXPOSED LOW VOLTAGE

The Model 86603A RF Section, when used with early model mainframes, has -32 Vdc exposed on the A20 Assembly and Q1 whenever the mainframe LINE switch is set to STBY. During adjustment and maintenance, do not contact these parts with metal tools. Damage can occur to the mainframe power supply, the A20 Assembly, and/or Q1. Models 8660A and 8660C with serial prefixes 1508A and below, and all 8660B's have this characteristic. ARTEK MEDIA DN: $\mathrm{Cn}=A R T E K$ MEDIA, MEDIA c=US, $o=D C$ Henderson Date: 2007.03.04 22:56:10-06'00'

Figure 1-1. HP Model 86603A RF Section (Option 002 Shown)

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This manual contains all information required to install, operate, test, adjust and service the Hewlett-Packard Model 86603A RF Section plugin, also referred to as the RF Section. For information concerning related equipment, such as the Hewlett-Packard Model 8660 -series mainframes or the Model 11661 Frequency Extension Module, refer to the appropriate manual or manuals.

1-3. This manual is divided into eight sections which provide information as follows:
a. SECTION I, GENERAL INFORMATION, contains the instrument description and specifications as well as the accessory and recommended test equipment list.
b. SECTION II, INSTALLATION, contains information relative to receiving inspection, preparation for use, mounting, packing, and shipping.
c. SECTION III, OPERATION, contains operating instructions for the instrument.
d. SECTION IV, PERFORMANCE TESTS, contains information required to verify that instrument performance is in accordance with published specifications.
e. SECTION V, ADJUSTMENTS, contains information required to properly adjust and align the instrument after repair.
f. SECTION VI, REPLACEABLE PARTS, contains information required to order all replacement parts and assemblies.
g. SECTION VII, MANUAL CHANGES, contains backdating information to make documentation in this manual applicable to all earlier versions of this instrument.
h. SECTION VIII, SERVICE, contains descriptions of the circuits, schematic diagrams, parts location diagrams, and troubleshooting procedures to aid the user in maintaining the instrument.

1-4. Figure $1-1$ shows the Option 002 RF Section.
1-5. Packaged with this manual is an Operating Information Supplement. This is simply a copy of the first three sections of this manual. This supplement should stay with the instrument for use by the operator. Additional copies of the Operating Information Supplement may be ordered separately through your nearest Hewlett-Packard office. The part number is listed on the title page of this manual.

1-6. On the title page of this manual, below the manual part number, is a "Microfiche" part number. This number may be used to order 4 x 6 -inch microfilm transparencies of the manual. Each microfiche contains up to 60 photo-duplicates of the manual pages. The microfiche package also includes the latest Manual Changes supplement as well as all pertinent Service Notes.

1-7. SPECIFICATIONS

1-8. Instrument specifications are listed in Table 1-1. These specifications are the performance standards, or limits against which the instrument may be tested.

1-9. INSTRUMENTS COVERED BY MANUAL

1-10. This instrument has a two-part serial number. The first four digits and the letter comprise the serial number prefix. The last five digits form the sequential suffix that is unique to each instrument. The contents of this manual apply directly to instruments having the same serial number prefix(es) as listed under SERIAL NUMBERS on the title page.

1-11. For information concerning a serial number prefix not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

1-12. MANUAL CHANGE SUPPLEMENTS

1-13. An instrument manufactured after the printing of this manual may have a serial prefix that is not listed on the title page. This unlisted

SPECIFICATIONS

FREQUENCY CHARACTERISTICS

Range: 1.0 to 1299.999999 MHz selectable in 1 Hz steps. 1300 to 2599.999998 MHz selectable in 2 Hz steps. Frequencies from 200 kHz to 1 MHz may also be selected with some degradation in specifications.

Accuracy and Stability ${ }^{1}$: CW frequency accuracy and long term stability are determined by the aging rate of the time base (internal or external) and its sensitivity to changes in temperature and line voltage. Internal reference oscillator accuracy $= \pm$ aging rate $\pm 3 \times 10^{-10} /^{\circ} \mathrm{C} \pm 3 \times 10^{-10} / 1 \%$ change in line voltage.

Switching Time: 6 ms to be within 50 Hz of any new frequency selected from 1 to $1300 \mathrm{MHz}, 6 \mathrm{~ms}$ to be within 100 Hz of any new frequency selected $\geqslant 1300 \mathrm{MHz} .100 \mathrm{~ms}$ to be within 5 Hz of any new frequency selected from 1 to $1300 \mathrm{MHz} ; 100 \mathrm{~ms}$ to be within 10 Hz of any new frequency $\geqslant 1300 \mathrm{MHz}$.

Largest Digit Charged	Error at:	
	1 ms	5 ms
1 Hz 10 Hz	$<1 \mathrm{~Hz}$	$<1 \mathrm{~Hz}$
100 Hz	$<100 \mathrm{~Hz}$	$<1 \mathrm{~Hz}$
1 kHz 10 kHz	$<500 \mathrm{~Hz}$	$<10 \mathrm{~Hz}$
100 kHz 1 MHz	$<500 \mathrm{~Hz}$	$<50 \mathrm{~Hz}$
10 MHz	$<500 \mathrm{~Hz}$	$<50 \mathrm{~Hz}$
100 MHz, 1 GHz	Undefined	$<50 \mathrm{~Hz}$

Typical 86603A/11661
Frequency Switching Characteristics
(Below 1300 MHz)

[^0]Harmonic Signals: For center frequencies $<1300 \mathrm{MHz}$, all harmonically related signals are at least 30 dB below the desired output signal for output la vels $\leqslant+3 \mathrm{dBm} ;-25 \mathrm{~dB}$ for output levels above +3 dBm .

For center frequencies $\geqslant 1300 \mathrm{MHz}$, all harmonically related signals are at least 20 dB below the desired output signal for output levels $\leqslant+3 \mathrm{dBm}$ (slightly higher from +3 to +7 dBm).

Sub-Harmonics and Multiples ($\mathbf{f}, \mathbf{3 f}$, etc. $)^{\mathbf{2}}$: At center

22

frequencies $\geqslant 1300 \mathrm{MHz}$, all sub-harmonics and multiples are at least 20 dB below the desired output signal for output levels $\leqslant+3 \mathrm{dBm}$ (slightly higher from +3 to +7 dBm.)

Spurious Signals (CW, AM and ϕM only):

At center frequencies $<1300 \mathrm{MHz}$ all non-harmonic-
ally related spurious signals are:
80 dB down from carrier at frequencies $<700 \mathrm{MHz}$
80 dB down from carrier within 45 MHz of the carrier at frequencies $\geqslant 700 \mathrm{MHz}$
70 dB down from carrier $>45 \mathrm{MHz}$ from carrier at frequencies $\geqslant 700 \mathrm{MHz}$
50 dB down from carrier on the +10 dBm range.
At center frequencies $\geqslant 1300 \mathrm{MHz}$ all non-harmonically
related spurious signals are:
74 dB down from carrier within 45 MHz of the carrier ${ }^{3}$.
64 dB down from carrier $>45 \mathrm{MHz}$ from carrier ${ }^{3}$.

All Power Line Related spurious signals are 70 dB down from carrier at center frequencies $<1300 \mathrm{MHz}$; 64 dB down $\geqslant 1300 \mathrm{MHz}$.

Signal-to-Phase Noise Ratio (CW, AM, and ϕ M only):
Greater than 45 dB in a 30 kHz band centered on the carrier and excluding a 1 Hz band centered on the carrier at center frequencies $<1300 \mathrm{MHz} ;>39 \mathrm{~dB}$ in a 30 kHz band centered on the carrier and excluding a 1 Hz band centered on the carrier at center frequencies $\geqslant 1300 \mathrm{MHz}$.

[^1]Table 1-1. Models 86603A/11661 Specifications (2 of 4)

Typical SSB Phase Noise Curve:

Typical 86603A Phase Noise Below 1300 MHz (6 dB higher at $\geqslant 1300 \mathrm{MHz}$)

Signal-to-AM Noise Ratio: Greater than 65 dB in a 30 kHz bandwidth centered on the carrier and excluding a 1 Hz band centered on the carrier.

OUTPUT CHARACTERISTICS

Level: Continuously adjustable from +10 to -136 dBm (0.7 Vrms to $0.03 \mu \mathrm{Vrms}$) into a 50Ω resistive load at center frequencies $<1300 \mathrm{MHz}$; from +7 to -136 dBm (0.5 V to $0.03 \mu \mathrm{Vrms}$), into a 50 ohm resistive load at center frequencies $\geqslant 1300 \mathrm{MHz}$. Output attenuator calibrated in 10 dB steps from 1.0 V full scale $(+10 \mathrm{dBm}$ range) to $0.1 \mu \mathrm{Vrms}$ full scale $(-130 \mathrm{dBm}$ range). Vernier provides continuous adjustment between attenuator ranges. Output level indicated on output level meter calibrated in volts and dBm into 50 ohms.

Accuracy: (Local and remote modes)
$\pm 2.5 \mathrm{~dB}$ to $-76 \mathrm{dBm}^{4} ; \pm 3.5 \mathrm{~dB}$ from -77 to
-136 dBm at meter readings between +3 and -6 dB .
Flatness: Output level variation with frequency is less than $\pm 2.0 \mathrm{~dB}$ from $1-2600 \mathrm{MHz}$ at meter readings between +3 and -6 dB .

[^2]Level Switching Time: In the remote mode any level change can be accomplished in less than 50 ms . Any change to another level on the same attenuator range can be accomplished in less than 5 ms .

Impedance: 50Ω.
VSWR: <2.0 on +10 and 0 dBm ranges; <1.3 on -10 dBm range and below.

MODULATION CHARACTERISTICS (With compatible Modulation Sections)

Amplitude Modulation:

Depth: At center frequencies $<1300 \mathrm{MHz}, 0-90 \%$
for RF output level meter readings from +3
to -6 dB and only at +3 dBm and below.
At center frequencies $\geqslant 1300 \mathrm{MHz}, 0-50 \%$ for RF output level meter readings from +3 to -6 dB and only at +3 dBm and below.

AM 3 dB Bandwidth:

Center Frequency	AM 3 dB Bandwidth		
	$\mathbf{0}$ to 30\% AM	$\mathbf{0}$ to 70\% AM	$\mathbf{0}$ to 90\% AM
$<10 \mathrm{MHz}$ $\geqslant 10 \mathrm{MHz}$ and $<1300 \mathrm{MHz}$ $\geqslant 1300 \mathrm{MHz}$	10 kHz	6 kHz	10 kHz
\geqslant	5 kHz		

Center Frequency	AM Total Harmonic Distortion ${ }^{5}$		
	AT 30\% AM	AT 70\% AM	AT 90\% AM
$1-1300 \mathrm{MHz}$	$<1 \%$	$<3 \%$	$<5 \%$
1300.			
2600 MHz	$<5 \%$	N/A	N/A

[^3]Table 1-1. Models 86603A/11661 Specifications (3 of 4)

Typical AM Distortion (Center Frequency $<10 \mathrm{MHz}$)

Typical AM Distortion
(Center Frequency $>10 \mathrm{MHz}$ but $<1300 \mathrm{MHz}$)

Incidental PM.

Frequency Range	Incidental PM (radians peak at 30\% AM)
$1-1300 \mathrm{MHz}$	<0.2
$1300-2600 \mathrm{MHz}$	<0.4

Incidental FM:

Frequency Range	Incidental FM (in Hz at 30\% AM)
$1-1300 \mathrm{MHz}$	$<0.2 \times$ Fmod
$1300-2600 \mathrm{MHz}$	$<0.4 \times$ Fmod

FREQUENCY MODULATION

Rate: DC to 200 kHz with the 86632 B and 86635 A . 20 Hz to 100 kHz with the 86633B.

Deviation (peak):

From $1-1300 \mathrm{MHz}, 200 \mathrm{kHz}$-peak with the 86632 B and 86635 A and 100 kHz -peak with the 86633B. From $1300-2600 \mathrm{MHz}, 400 \mathrm{kHz}$-peak with the 86632 B and 86635 A and 200 kHz -peak with the 86633 B .

Incidental AM: AM sidebands are $>60 \mathrm{~dB}$ below the carrier with 75 kHz peak deviation at a 1 kHz rate.

Residual FM (FM XO. 1 mode): less than 10 Hz -rms in a post detection 300 Hz to 3 kHz band at center frequencies less than 1300 MHz ; less than $20 \mathrm{~Hz}-\mathrm{rms}$ at center frequencies greater than 1300 MHz .

FM Total Harmonic Distortion, (at rates up to 20 kHz): $<1 \%$ up to 200 kHz deviation (center frequencies $<1300 \mathrm{MHz}$). $<1 \%$ up to 400 kHz deviation (center frequencies $\geqslant 1300 \mathrm{MHz}$). (External modulating signal distortion must be less than 0.3%.)

Typical FM Distortion Curve ($<1300 \mathrm{MHz}$)

PULSE MODULATION

(With the 86631B Auxiliary Section only)

Source: External
Rise/Fall Time: 50 ns .

ON/OFF Ratio: At least 40 dB from 1 to 1300 MHz and 60 dB from 1300 to 2600 MHz (with modulation level control at maximum).

Input Level Required: $-10 \pm 0.5 \mathrm{Vdc}$ turns RF on.

PHASE MODULATION
(Option 002 Instruments only)
Rate:
With 86635A dc to 1 MHz
With 86634A:
dc to 1 MHz at center frequencies less than 100 MHz
dc to 10 MHz at center frequencies greater or equal to 100 MHz .

Maximum Peak Deviation:

0 to 100 degrees peak at center frequencies $<1300 \mathrm{MHz}$. May be overdriven to 2 radians $\left(115^{\circ}\right)$ in Modulation Section external dc mode.

0 to 200 degrees peak at center frequencies $\geqslant 1300 \mathrm{MHz}$. May be overdriven to 4 radians (230°) in Modulation Section external de mode.

ϕ M Total Harmonic Distortion:

$<5 \%$ up to 1 MHz rates
$<7 \%$ up to 5 MHz rates
$<15 \%$ up to 10 MHz rates
(External modulation signal distortion must be less than 0.3% to meet this specification.)

REMOTE PROGRAMMING

(Through the 8660 -series mainframes)
Frequency: Programmable in 1 Hz steps at center frequencies $<1300 \mathrm{MHz}$ and in 2 Hz steps from 1300 to 2600 MHz .

Output Level: Programmable in 1 dB steps from +10 to -136 dBm at center frequencies $<1300 \mathrm{MHz}$; +7 to -136 dBm at center frequencies $\geqslant 1300 \mathrm{MHz}$.

Modulation: See specifications for modulation section installed.

GENERAL

Leakage: Meets radiated and conducted limits of MIL-I-6181D.
Size: Plug-in to fit 8660 -series mainframe.
Weight: Net $5 \mathrm{~kg}(11 \mathrm{lb})$.
serial prefix indicates that the instrument is different from those documented in this manual. The manual for this instrument is supplied with a yellow Manual Changes supplement that contains "change information" that documents the differences.

1-14. In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is keyed to this manual's print date and part number, both of which appear on the title page. Complimentary copies of the supplement are available from Hewlett-Packard.

1-15. DESCRIPTION

1-16. The HP Model 86603A RF Section is one of several RF Sections available for use in an 8660 -series Synthesized Signal Generator System. This RF Section plug-in is used with an option 100 8660 -series mainframe (Frequency Extension Module installed). The RF Section provides precisely tuned RF output frequencies over the 1 to 2600 MHz range with 1 Hz frequency resolution up to 1300 MHz and 2 Hz resolution above 1300 MHz . (8660 -series option 004 instruments have resolutions of 100 and 200 Hz respectively.) Frequencies from 200 kHz to 1 MHz can also be generated with some degradation in the amplitude leveling and other related specifications.

1-17. The output power can be set to any level between +10 and $-136 \mathrm{dBm}(+7$ and -136 dBm at center frequencies $\geqslant 1300 \mathrm{MHz}$) by means of the front panel VERNIER and calibrated OUTPUT RANGE controls. A front panel-mounted meter and the OUTPUT RANGE switch indicate the output power and voltage levels delivered by the RF Section to any external load having a characteristic impedance of 50 ohms. Output power levels are maintained within $\pm 2 \mathrm{~dB}$ of selected values through internal leveling of the output signal over the full frequency range of the instrument.

1-18. Amplitude, frequency, phase, or pulse modulation of the RF OUTPUT signal can be accomplished within the RF Section by using the appropriate Auxiliary or Modulation Section plug-in.

1-19. External programming permits remote selecion of the output signal frequency in 1 or 2 Hz steps (100 or 200 Hz for option 004 mainframes) and the output power in 1 dB steps over the full operating range of the instrument. External programming is accomplished via the mainframe computer-compatible interface and digital control unit circuits.

1-20. OPTIONS

1-21. This RF Section has three options available. They affect the instrument's RF output level, phase modulation, and frequency doubling capabilities.

1-22. Option 001. The RF output attenuator is removed which limits the RF output level range. The output range is +10 to -6 dBm at center frequencies $<1300 \mathrm{MHz} ;+7$ to -6 dBm at or above 1300 MHz .

1-23. Option 002. Circuits are added to provide the phase modulation capability. A compatible modulation section is required.
$\mathbf{1 - 2 4}$. Option 003. Added circuitry and a switch provides means of front panel control of frequency doubling when the RF Section is used in a mainframe other than a Model 8660C.

1-25. COMPATIBILITY

Damage to the mainframe can result when the RF Section is used with Model 8660A having serial prefix 1349A and below or Model 8660B having serial prefix 1349A and below. To perevent damage install Field Update Kit (0866060273 or $08660-60274$ for $50 / 400 \mathrm{~Hz}$).
1-26. Many combinations of instruments may be used with the RF Section as part of the Synthesized Signal Generator System. Table 1-2 indicates which RF Section options are compatible to specific mainframes and to the capabilities of the Modulation Sections. Combining option 001 with the types of RF Sections listed does not affect the compatibility.

1-27. The Modulation Sections have various combinations of modulation capabilities depending on the one selected for use with a particular RF Section. In some cases they are partially compatible. For example, when a standard RF Section is installed in an 8660C mainframe along with an $\mathrm{FM} / \phi \mathrm{M}$ Modulation Section, only FM is operable.

Table 1-2. Model 86603A RF Section Compatibility

	AM	FM	Pulse	Phase
Except Options 002 and/or 003	8660C (only)	$8660 \mathrm{C}^{3}$	8660C	NO
Option 002	8660C (only)	$8660 \mathrm{C}^{3}$	8660C	8660C
Option 003	$\begin{aligned} & 8660 \mathrm{~A} / \mathrm{B}^{1,2} \\ & 8660 \mathrm{C} \end{aligned}$	$\begin{aligned} & 8660 \mathrm{~A} / \mathrm{B}^{1,2,3} \\ & 8660 \mathrm{C}^{3} \end{aligned}$	$\begin{aligned} & 8660 \mathrm{~A} / \mathrm{B}^{1,2} \\ & 8660 \mathrm{C} \end{aligned}$	NO
Option 002/003	$\begin{aligned} & 8660 \mathrm{~A} / \mathrm{B}^{1,2} \\ & 8660 \mathrm{C} \end{aligned}$	$\begin{aligned} & 8660 \mathrm{~A} / \mathrm{B}^{1,2,3} \\ & 8660 \mathrm{C}^{3} \end{aligned}$	$\begin{aligned} & 8660 \mathrm{~A} / \mathrm{B}^{1,2} \\ & 8660 \mathrm{C} \end{aligned}$	$\begin{aligned} & 8660 \mathrm{~A} / \mathrm{B}^{1,2} \\ & 8660 \mathrm{C} \end{aligned}$
${ }^{1}$ Compatible with new 8660 A and 8660 B mainframe and modified mainframes of serial prefix 1349 A and below. Refer to the paragraph entitled Modification in Section II. ${ }^{2}$ Compatible with new 8660A and 8660 B mainframes and modified mainframes of serial prefix 1503 A and below. Refer to the paragraph entitled Modification in Section II. ${ }^{3}$ Older model Modulation Sections with FM capability will indicate one-half the actual peak FM deviation at center frequencies $\geqslant 1300 \mathrm{MHz}$.				

1-28. EQUIPMENT REQUIRED BUT NOT SUPPLIED

1-29. System Mainframe

1-30. The mainframe uses phase-locked loops to accurately generate clock, reference, and tuning signals required for operation of the Synthesized Signal Generator System. Front panel-mounted mainframe controls are used to digitally tune two phase-locked loops in the Frequency Extension Module which, in turn, produce two high-frequency output signals that are applied to the RF Section. The RF Section mixes the two signals and presents their frequency difference (twice the difference at center frequencies $\geqslant 1300$ MHz) at the front panel OUTPUT jack. The output frequency is either the value selected by the mainframe front panel controls or externally programmed.

1-31. The mainframe power supply provides all dc operating voltages required by the RF Section, Frequency Extension Module, and Modulation Section plug-ins. Remote programming of the plug-ins is accomplished via the mainframe interface and digital control unit circuits.

1-32. Frequency Extension Module

1-33. The Frequency Extension Module plug-in extends the output frequency range of the mainframe to meet the input requirements of the

RF Section. The Frequency Extension Module plug-in contains two high-frequency phase-locked loops which receive digital tuning signals, variable synthesized signals, and fixed synthesized signals from the mainframe. The phase-locked loops use the mainframe signals, in conjunction with the output frequency from a 4.43 GHz oscillator that is common to both loops, to produce two high-frequency output signals that are supplied to the RF Section. One output signal is generated by a phase-locked loop using a Voltage Controlled Oscillator (VCO) that is tuneable in 1 Hz steps (100 Hz steps for option 004 mainframe) over the 3.95 to 4.05 GHz range. The other output signal is generated by a phase-locked loop using a Yittrium-Iron-Garnet (YIG) oscillator that is tunable in 100 MHz steps over the 3.95 to 2.75 GHz range. The two outputs from the Frequency Extension Module plug-in are applied to the RF Section for mixing, amplification of the converted signal, frequency doubling at center frequencies $\geqslant 1300 \mathrm{MHz}$, and final output power level control.

1-34. Auxiliary Section

1-35. The Auxiliary Section plug-in provides a means of applying externally generated amplitude or pulse modulation drive signals to modulate the RF Section's output carrier.

1-36. Modulation Section Plug-ins

$1-37$. The Model 86630 -series Modulation Section plug-ins can accept external modulation drive signals or generate internal drive signals to amplitude, frequency, phase or pulse modulate the RF Sections output signal.

1-38. EQUIPMENT AVAILABLE

1-39. Extender cables, coaxial adapters, and an adjustment tool are available for use in performance testing, adjusting and maintaining the RF Section. Each piece may be ordered separately or as part of the 11672A Service Kit.

1-40. Extender cards for use in servicing the RF Section and a type N to BNC adapter for use on the front panel RF OUTPUT connector are contained in the HP Extender Board Kit, Part Number 5001-0161 that is supplied with the mainframe.

1-41. SAFETY CONSIDERATIONS

1-42. This instrument has been designed in accordance with international safety standards and has been supplied in safe condition.

1-43. Although this instrument has been designed in accordance with international safety standards, this manual contains information, cautions, and warnings which must be followed to retain the instrument in safe condition. Be sure to read and follow the safety information in Sections II, III, V, and VIII.

1-44. RECOMMENDED TEST EQUIPMENT

$1-45$. Table 1-3 lists the test equipment and accessories recommended for use in testing, adjusting, and servicing the RF Section. If any of the recommended test equipment is unavailable, instruments with equivalent specifications may be used.

Table 1-3. Test Equipment and Accessories List (1 of 4)

Item	Critical Specifications	Suggested Model	Use*
Adapter (Male Type N to GR874)	Frequency range 100 MHz to 2.0 GHz	HP 1250-0847	P
Adapter, SMA-to-BNC	2 required	OSM 21190	P
Adapter, SMA-to-OSM Right Angle		OSM 219	P
Adapter, Type N-toSMA		OSM 21040	P
Amplifier, 20 dB	$\approx 20 \mathrm{~dB}$ gain at 30 MHz Input VSWR <1.7	HP 8447A	P
Amplifier, 40 dB	Low Noise	$\begin{aligned} & \text { HP 08640-60506 } \\ & \text { (P/O Kit, HP 86602-60050) } \end{aligned}$	P
Analyzer, Modulation	150 kHz to $1300 \mathrm{MHz}, \mathrm{AM}, \mathrm{FM}$, and $\phi \mathrm{M}$ measurement capability	HP 8901	P, A
Analyzer, Spectrum	Measurement Accuracy $\pm 2.0 \mathrm{~dB}$ from 1 kHz to 110 MHz	HP 8553B with HP 8552B and HP 140T	P, A
Analyzer, Spectrum	Measurement Accuracy $\pm 2.0 \mathrm{~dB}$ from 10 MHz to 8 GHz	HP 8555A with HP 8552B and HP 140T	P, A, T
Analyzer, Wave	Center frequencies 20 to 40 kHz Resolution bandwidth $\leqslant 3 \mathrm{~Hz}$ Bandpass shape factor $10: 1$ Analog output 0 to 5 V Noise level at 11 kHz center frequency with a 3 Hz bandwidth $<-150 \mathrm{dBV}$	HP 3581A	P
Attenuator, 3 dB Fixed	3 dB	HP 8491A , Option 003	P
Attenuator, 10 dB Step	Calibrated at 30 MHz ; refer to calibration curve	HP 355D-H38 (only)	P, A
Attenuator, 40 dB Fixed	40 dB	HP 8491A, Option 040	P
Cables, Double Shielded	Minimum input $\leqslant 300 \mathrm{mVrms}$ (5 required)	HP 08708-6033	P
Capacitor, 1500 pF		HP 0160-2222	P
Capacitor, $100 \mu \mathrm{~F}$		HP 0180-2207	P
*Use: $\mathbf{P}=$ Performance Tests, $\mathbf{A}=$ Adjustments, $\mathbf{T}=$ Troubleshooting			

Table 1-3. Test Equipment and Accessories List (2 of 4)

Item	Critical Specifications	Suggested Model	Use*
Connector, BNC Panel Mount		HP 1250-0118	T
Counter, Computing	50 kHz to 50 MHz with a 1 ms gate time and external trigger; 1 Hz resolution	HP 5360A with HP 5365A plug-in	P
Counter, Frequency	Range $0.2-2600 \mathrm{MHz}$ Resolution 1 Hz 10 MHz external reference output 7.2 Vrms output into 170 ohms	HP 5340A	P
Coupler, Directional	Frequency range 100 MHz to 2.9 GHz	HP 778D Opt. 12	P
Detector, Crystal	1 to 1200 MHz	HP 8471A	P
Detector, Crystal	10 MHz to 2.6 GHz	HP 423A	P, A
Distortion Measurement Set	20 Hz to 20 kHz Capable of measuring $<0.1 \%$ distortion	HP 339A	P
Filter Kit	Accessory for HP 5210A	HP 10531A	P, A
Filter, Low Pass, 15 kHz	Cut-off frequency 15 kHz	HP 86602-60054 (P/O Kit HP 86602-60050)	P
Filter, Low Pass 4 MHz	Cutoff frequency 4 MHz	$\begin{aligned} & \text { CIR-Q-TEL } \\ & \text { FLTT/21B-4-3/50-3A/3B } \end{aligned}$	P
Filter, Low Pass, 2200 MHz	Cutoff frequency 2200 MHz	HP 360C	P
Filters, Low Pass 100 kHz	100 kHz at 50 and 600 ohms	Specials (see Figure 1-2)	A
Filters, Low Pass 1 MHz	$1 \mathrm{MHz}-50$ and 600 ohms	Specials (see Figure 1-2)	P, A
Filters, Low Pass 5 and 10 MHz	5 and $10 \mathrm{MHz}-50$ ohms	Specials (see Figure 1-2)	P
Generator, Pulse	Output - 10 Vpk with $\leqslant 10$ ns risetime in 600 ohms	HP 8013B	P
Generator, Sweep	Sweep Width 0.1 to 100 MHz Output Level +20 to -80 dBm Flatness $\pm 0.25 \mathrm{~dB}$	HP 8601A	A
*Use: $\mathrm{P}=$ Performance Tests, $\mathrm{A}=$ Adjustments, $\mathbf{T}=$ Troubleshooting.			

Table 1-3. Test Equipment and Accessories List (3 of 4)

Item	Critical Specifications	Suggested Model	Use*
Generator, Synthesized Signal	$\pm 1 \mathrm{~Hz}$ from 1 MHz to 1300 MHz $\pm 2 \mathrm{~Hz}$ from 1300 to 2600 MHz +7 dBm output 10 MHz Reference Frequency output $>0.5 \mathrm{~V}$ into 170 ohms	HP 8660 C with HP 86631B and HP 86603A plug-ins	P, A
Mixer, Double Balanced	1 MHz to 110 MHz	HP 10514A	A
Mixer, Double Balanced	300 to 2000 MHz	Watkins-Johnson MIJ	P
Oscillator, Test	1 kHz to 10 MHz 1.0 to 2.0 Vrms into 600 or 50 ohms Distortion less than 0.3%	HP 651B	P, A
Oscilloscope	Vertical: Bandwidth 50 MHz with sensitivity of $5 \mathrm{mV} /$ division minimum Horizontal: Sweep time 10 ns to 1 s Delayed sweep External triggering to 100 MHz	HP 180C with HP 1801A and HP 1821A plug-ins	P, A, T
Oscilloscope, 10:1 divider probes	10:1 divider, input impedance 10 megohm shunted by 10 pF	HP 10004	P, A, T
Power Meter/Sensor	Range: -10 to +10 dBm from 10 MHz to 2.6 GHz	HP 435A/8481A	P, A, T
Power Supply, DC	0-10 volts	HP 6215A	P
Programmer, Marked Card	Capable of programming BCD or HP-IB data	HP 3260A Opt 001	P, A
Probe, Logic	TTL compatible	HP 10525T	T
Resistor, 1000 ohm	$\pm 2 \%$	HP 0757-0280	P, A
Resistor, 10K ohm	$\pm 2 \%$	HP 0757-0442	P
Resistor, 100 K ohm	$\pm 2 \%$	HP 0698-7284	P
Service Kit	Interconnect cables, adapters, and coaxial cables compatible to 8660 -series plus and jacks	HP 11672A (See Operating Note or mainframe manual for parts list)	A, T
Stub, Adjustable	Frequency range 100 MHz to 2.0 GHz	General Radio 874-D50L	P
*Use: $\mathrm{P}=$ Performance Tests, $\mathrm{A}=$ Adjustments, $\mathrm{T}=$ Troubleshooting			

Table 1-3. Test Equipment and Accessories List (4 of 4)

Item	Critical Specifications	Suggested Model	Use*
Tee, Coaxial	2 required	HP 1250-0781 (BNC)	P,A
Termination, 50 ohm Feedthru	50 ohm	HP 11048C	P
Termination, 50 ohm	50 ohm (2 required)	HP 11593A	P
Test Set, Phase Modulation	Input Frequency Range 250 to 450 MHz Distortion $<2.0 \%$ up to 2 MHz rates $<3.5 \%$ up to 5 MHz $<5.0 \%$ up to 10 MHz	HP 8660C-K10 (only)	P
Voltmeter, AC	Accuracy $\pm 2 \%$ of full scale from 1 Hz to 1 MHz 1 mVrms to 10 Vrms full scale	HP 403B	P, A, T
Voltmeter, Digital	Range 0.00 to 60.00 volts DC Accuracy $\pm(0.3 \%$ of reading $+0.01 \%$ of range) AC Accuracy $\pm(0.25 \%$ of reading $+0.05 \%$ of range) 45 Hz to 20 kHz	HP 3466A	P, A, T

* Use: $\mathrm{P}=$ Performance T ests, $\mathrm{A}=$ Adjustments, $\mathrm{T}=$ Troubleshooting

LOW PASS FILTERS

100 kHz - 50 ohms			100 kHz - 600 ohms		
C1, C4	$0.015 \mu \mathrm{~F}$ Myler	0160-0194	C1, C4	1300 pF	0160-2221
C2	$0.027 \mu \mathrm{~F}$ Myler	0170-0066	C2	3000 pF	0160-2229
C3	$0.022 \mu \mathrm{~F}$ Myler	0160-0162	C3	1100 pF	0160-2219
L1, L2	$100 \mu \mathrm{H}$	9140-0210	L1, L2	$1200 \mu \mathrm{H}$	9100-1655
1 MHz - 50 ohms			1 MHz - 600 ohms		
C1, C4	1500 pF	0160-2222	C1, C4	130 pF	0140-0195
C2	3300 pF	0160-2230	C2	300 pF	0160-2207
C3	1600 pF	0160-2223	C3	110 pF	0140-0194
L1, L2	$10 \mu \mathrm{H} \pm 10 \%$	9140-0114	L1, L2	$120 \mu \mathrm{H}$	9100-1637

5 MHz - 50 ohms

C1, C2, C4	300 pF	$0160-2207$
C3	680 pF	$0160-3537$
L1, L2	$2 \mu \mathrm{H}$	$9100-3345$

$10 \mathrm{MHz}-50$ ohms

C1, C4	150 pF	$0140-0196$
C2	330 pF	$0160-2208$
C3	160 pF	$0160-2206$
L1, L2	$1 \mu \mathrm{H} \pm 10 \%$	$9140-0096$

NOTE

Unless otherwise noted, tolerance of components is $\pm 5 \%$ and capacitors are mica. Part numbers are Hewlett-Packard.

Figure 1-2. Low Pass Filters

SECTION II INSTALLATION

2-1. INTRODUCTION

2-2. This section provides information relative to initial inspection, preparation for use, and storage and shipment of the Model 86603A RF Section plug-in. Initial Inspection provides instructions to be followed when an instrument is received in a damaged condition. Preparation For Use gives all necessary interconnection and installation instructions. Storage and Shipment provides instructions and environmental limitations pertaining to instrument storage. Also provided are packing and packaging instructions which should be followed in preparing the instrument for shipment.

2-3. INITIAL INSPECTION

$2-4$. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1, and procedures for checking electrical performance are given in Section IV. If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the electrical performance test, notify the nearest Hewlett-Packard office. If the shipping container is damaged, or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for carrier's inspection.

2-5. PREPARATION FOR USE

2-6. Power Requirements

2-7. All power required for operation of the RF Section is furnished by the mainframe. This RF Section requires approximately 50 volt-amperes.

2-8. Interconnections

2-9. Prior to installing the RF Section plug-in into the mainframe, verify that the Frequency Extension Module plug-in and interconnecting cable assemblies have been installed in accordance with
the instructions contained in the Frequency Extension Module manual.

2-10. Rear Panel Test Switch Setting

2-11. Before inserting the RF Section into the mainframe, set the rear panel Frequency Doubler Test Switch to the proper position. When used with the Model 8660C mainframe, the switch is set to the 8660 C position. When used with Models 8660 A or 8660 B (option 003), the switch is set to $8660 \mathrm{~A} / \mathrm{B}$. With options other than 003 , the switch is set to $8660 \mathrm{~A} / \mathrm{B} \mathrm{X} 1$ or X 2 .

2-12. Modifications

2-13. Modifications to older versions of Model 8660 A and 8660 B mainframes are required if they are to be used with the RF Section.

Damage to the synthesized signal generator system may result if the RF Section is used with an older unmodified Model 8660A or 8660B mainframe.

2-14. Power Supply Modification. Due to the increased power consumption of the RF Section in the doubled mode and/or with the phase modulation option, the Model 8660A and 8660B mainframes with serial prefixes 1349A and below must be modified by installing a Field Update Kit. For mainframe configurations other than option 003 (60 Hz line operation), order kit number 0866060273. For option 003 mainframes $(50-400 \mathrm{~Hz}$ line operation) order kit number 08660-60274.

NOTE

Verify that a new higher current fuse, HP Part Number 2110-0365, 4A, Slow Blow, is used in mainframes with the power supply modification.

2-15. Frequency Doubler Function Modification. To ensure proper operation of the frequency doubler function of option 003 RF Sections, a

Field Update Kit must be installed in Model 8660A and 8660 B mainframes of serial prefix 1503 A and below. For mainframe configurations other than option 005 (BCD programming format), order kit number 08660-60306. For option 005 mainframes (HP-IB format), order kit number 08660-60308.

2-16. Operating Environment

2-17. The RF Section is designed to operate within the following environmental conditions:
Temperature . 0° to $+55^{\circ} \mathrm{C}$ Humidity less than 95%, relative Altitude less than 15,000 feet

2-18. Installation Instructions

WARNING

The multi-pin connector which provides interconnection from mainframe to RF Section, will be exposed with the RF Section removed from the right-hand mainframe cavity. With the Line (Mains) Voltage off and power cord disconnected, power supply voltages may still remain which, if contacted, may constitute a shock hazard.

2-19. Insert the plug-in approximately half-way into the right cavity of the mainframe. Rotate the latch (lower right corner) to the left until it protrudes perpendicular to the front panel. Refer to Figure 2-1, which shows the plug-in partially inserted into the mainframe and the latch rotated to a position that is perpendicular to the plug-in front panel. Push the plug-in all the way into the mainframe cavity and then rotate the latch to the right until it snaps into position.

2-20. STORAGE AND SHIPMENT

2-21. Environment

$2-22$. The storage and shipping environment of the RF Section should not exceed the following limits:

Temperature 40° to $+75^{\circ} \mathrm{C}$ Humidity less than 95%, relative Altitude less than 25,000 feet

2-23. Packaging

2-24. Original Type Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also, mark the container FRAGILE to assure careful handling. In any correspondence refer to the instrument by model number and full serial number.

2-25. Other Packaging. The following general instructions should be used for re-packaging with commercially available materials:
a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard office or service center, attach a tag indicating the type of service required, return address, model number, and full serial number.)
b. Use a strong shipping container. A double-wall carton made of 350 -pound test material is adequate.
c. Use enough shock-absorbing material (3 to 4 -inch layer) around all the sides of the instrument to provide firm cushion and prevent movement inside the container. Protect the control panel with cardboard.
d. Seal the shipping container securely.
e. Mark the shipping container FRAGILE to assure careful handling.

Figure 2-1. RF Section Partially Inserted into Mainframe

SECTION III OPERATION

3-1. INTRODUCTION

$3-2$. This section contains information which will enable the operator to learn to operate and quickly check for proper operation of the RF Section plug-in as part of the Synthesized Signal Generator System.

3-3. PANEL FEATURES

3-4. The front and rear panel controls, connectors, and indicators of the RF Section and its options are described by Figure 3-1, 3-2, and 3-3.

3-5. OPERATOR'S CHECKS

3-6. The RF Section, as part of the Synthesized Signal Generator System, accepts inputs from the rest of the system but controls only the RF Output level. Even though the controlled circuits for most other functions are within the RF Section, the actual checks are found in the manual of the instrument which controls that function.

3-7. The Operator's Checks in this manual are intended to verify proper operation of the circuits which control and are controlled by the RF output level controls. This includes the meter, the

VERNIER control, the OUTPUT RANGE switch, and the Output Range Attenuator when operating in the local mode. When the system is being remotely controlled, the 1 dB and 10 dB remote step attenuator switches are checked in place of the VERNIER control and OUTPUT RANGE switch. Refer to Figure 3-4.

3-8. OPERATING INSTRUCTIONS

$3-9$. In this system, the mainframe and plug-ins contain the controls for frequency, modulation, and RF level selection. The mainframe controls frequency, the Modulation Section plug-in controls modulation type and level, and the RF Section plug-in controls RF output level. The Operating Instructions for the RF Section plug-in are included in Table 3-1.

3-10. OPERATOR'S MAINTENANCE (Option 003 Only)

3-11. Maintenance responsibility for Option 003 RF Sections consists of changing the FREQ DOUBLER indicator lamp if it burns out. The lens is turned counterclockwise until it can be removed and the defective lamp is removed and discarded. The lamp HP part number is 2140-0092.

FRONT PANEL FEATURES

86603A
EXCEPT OPTION 003

NOTE

The front panel of the option 002 instrument is shown. The standard instrument does not have the term PHASE MODULATION after 1-2600 MHz. The option 001 instrument has an OUTPUT RANGE switch which shows only the +10 and 0 dBm ranges.

1 Meter. Indicates the RF output level in Vrms and $\mathrm{dBm}(50 \Omega)$ with the scale reference indicated by the OUTPUT RANGE switch.

2 Mechanical Meter Zero Control. Sets the panel meter indicator to zero when the Mainframe LINE switch is set to STBY.
(3) OUTPUT RANGE Switch. Sets the output level range of all except option 001 instruments from +10 to $-130 \mathrm{dBm}(50 \Omega)$ in 10 dB steps. For option 001 instruments, +10 and 0 dBm ranges only.

4 OUTPUT Jack. Type-N female coaxial connector. RF output level +10 to $-136 \mathrm{dBm} \quad(0.7 \mathrm{Vrms}$ to $0.03 \mu \mathrm{Vrms}$) at center frequencies $<1300 \mathrm{MHz} ;+7$ to $-136 \mathrm{dBm}(0.5 \mathrm{Vrms}$ to $0.03 \mu \mathrm{Vrms}$) at $\geqslant 1300 \mathrm{MHz}$.
(5) VERNIER Control. RF output continuously variable within the useable range (+3 to -6 dB) as indicated by the meter.

Figure 3-1. Front Panel Controls, Connectors, and Indicators (Except Option 003 Instruments)

NOTE

The front panel of the option 002/003 instrument is shown. The option 003 instrument does not have the term PHASE MODULATION after 1-2600 MHz. The option 001/003 has an OUTPUT RANGE switch which shows only the +10 and 0 dBm ranges.
(1) Meter. Indicates the RF output level in Vrms and $\mathrm{dBm}(50 \Omega)$ with scale reference indicated by the OUTPUT RANGE switch.

2 Mechanical Meter Zero Control. Sets the panel meter indicator to zero when the Mainframe LINE switch is set to STBY.
3) OUTPUT RANGE Switch. Sets the output level range of all except option 001/003 instruments from +10 to $-130 \mathrm{dBm}(50 \Omega)$ in 10 dB steps. For option $001 / 003,+10$ and 0 dBm ranges only.
(4) FREO DOUBLER Lamp. Lamp is illuminated when the output frequency is doubled $(\geqslant 1300 \mathrm{MHz})$ in Model 8660A or 8660B mainframes.

5 OUTPUT Jack. Type-N female coaxial connector. RF output level to +10 to $-136 \mathrm{dBm}(0.7 \mathrm{Vrms}$ to 0.03 $\mu \mathrm{Vrms})$ at center frequencies $\leqslant 1300 \mathrm{MHz} ;+7$ to $-136 \mathrm{dBm}(0.5 \mathrm{Vrms}$ to $0.03 \mu \mathrm{Vrms}$) at $\geqslant 1300 \mathrm{MHz}$.
(6) VERNIER Control. RF output continuously variable within the useable range (+3 to -6 dB) as indicated by the meter.
(1) FRED DOUBLER Switch. Controls frequency doubling capability from the front panel. This function is performed automatically when the RF Section is used with an 8660C mainframe or in 8660A and 8660 B mainframes in the remote mode.

Figure 3-3. Rear Panel Controls, Connectors, and Indicators

BEFORE CONNECTING THIS SYSTEM TO LINE (MAINS) VOLTAGE, the safety and installation instructions found in Sections II and III of the mainframe manual should be followed.

CAUTION

Damage to the signal generator system may occur if the RF Section is used with unmodified 8660A and 8660B mainframe with serial prefix 1349A and below. See the paragraph entitled Power Supply Modification in Section II.

NOTE
Refer to the paragraphs entitled Compatibility (Section I), and Rear Panel Test Switch Setting and Installation (Section II).

1. Set the System controls as follows:

Mainframe:
LINE Switch ON
REFERENCE SELECTOR EXT
CENTER FREQUENCY 500 MHz
Modulation Section Plug-in:
MODE Switch OFF
RF Section Plug-in:
OUTPUT RANGE Switch 0 dBm
VERNIER Control +3 dB meter reading
2. Connect the RF Section OUTPUT to the power sensor input. Verify that the amplitude of the 500 MHz signal is approximately +3 dBm .
3. Set the OUTPUT RANGE Switch to +10 dBm and adjust the VERNIER control for a -3 dB reading. Verify that the output level is approximately +7 dBm .

Figure 3-4. Operator's Checks (1 of 2)

OPERATOR'S CHECKS

4. Connect the RF Section OUTPUT to the frequency counter input through the 3 dB attenuator. Verify that the output frequency is 500.000000 MHz plus or minus one count.
5. Set the Signal Generator System center frequency to 1400 MHz . For 8660 A or 8660 B mainframes (Option 003 RF Section) set the center frequency to 700 MHz and press the RF Section FREQ DOUBLER switch. Verify that the front panel X2 lamp is illuminated and the frequency output is 1400 MHz .

NOTE

Programming center frequencies $\geqslant 1300 \mathrm{MHz}$ is not possible with unmodified Model 8660A and 8660B mainframes of serial prefix 1503A and below. Refer to paragraph entitled Frequency Doubler Function Modification in Section II.
6. To check the remote control capabilities of the RF Section, connect a control unit to the mainframe. Repeat steps 1 through 5 while the system is remotely programmed from the external source. Application Note 164-1 "Programming the 8660A/B Synthesized Signal Generator" provides the information needed for remote BCD operation of this system. Application Note 164-2 "Calculator Control of the 8660A/B/C Synthesized Signal Generator" provides the information needed for calculator controlof the system using the HP-IB (option 005). Section III of the mainframe manual contains the same information in abridged form.

NOTE

For 8660 A and 8660 B mainframes, entry into the frequency doubling mode is not automatic and therefore must be programmed. To program center frequencies less than 1300 MHz , program the center frequency, the center frequency address, and the $X 1$ frequency range address. To program center frequencies $\geqslant 1300 \mathrm{MHz}$, program exactly one-half the desired center frequency, the center frequency address, and the X2 frequency range address.

Frequency Range Addresses

Center Frequency Range	BCD Address	HP-IB Address
$<1300 \mathrm{MHz}$ (X1)	$9(1001)$	I
$\geqslant 1300 \mathrm{MHz}$ (X2)	$7(0111)$	G

Figure 3-4. Operator's Checks (2 of 2)

OPERATING INSTRUCTIONS

TURN ON

WARNING

BEFORE CONNECTING THIS SYSTEM TO THE LINE (MAINS) VOLTAGE, the safety and installation instructions found in Sections II and III of the mainframe manual should be followed.

CAUTIOIN

Damage to the signal generator system may occur if the RF Section is used with an unmodified 8660A and 8660B mainframe of serial prefix 1349A and below. See the paragraph entitled Power Supply Modification in Section II.

NOTE
Refer to the paragraphs entitled Compatibility (Section I) and Rear Panel Test Switch Setting and Installation (Section II)

1. On the mainframe front panel, set the LINE switch to ON; on the rear panel, set the REFERENCE SELECTOR switch to INT. Wait for the mainframe "oven" indicator to go out.

FREQUENCY SELECTION

2. Refer to Section III of the mainframe operating and service manual for information on system frequency selection.
a. When used with 8660 C mainframes, the RF Section's rear panel Frequency Doubler Test Switch should always remain in the 8660C position.
b. The desired frequency range must be selected if the RF Section is used with the 8660A or 8660B mainframes. The RF Section's Frequency Doubler Test Switch should be set to the $8660 \mathrm{~A} / \mathrm{B}$ position.
(1) For center frequencies $<1300 \mathrm{MHz}$, the front panel FREQ DOUBLER switch should be pressed and released and the front panel FREQ DOUBLER lamp should be off.
(2) For center frequencies $\geqslant 1300 \mathrm{MHz}$, the front panel FREQ DOUBLER switch is pressed and the FREQ DOUBLER lamp should be illuminated. The selected center frequency must be exactly half the desired center frequency.

RF OUTPUT LEVEL

3. DBM. Set the OUTPUT RANGE switch to within +3 and -6 dB of the desired output level. Adjust the VERNIER control for a meter reading which when added to the OUTPUT RANGE switch indication equals the desired output level.

Table 3-1. Operating Instructions (2 of 2)

OPERATING INSTRUCTIONS

4. VOLTS. To set the RF output level in rms volts, the OUTPUT RANGE switch selects the full scale meter reading and the VERNIER control is adjusted for the correct voltage reading on the meter. The voltage level for meter scale 1.0 should not be set below 0.32 of full scale. The voltage level should not be set below 1 when using the meter scale of 3 .

NOTE

In order to achieve the output level accuracy specified, the level selected must be $\leqslant+10 \mathrm{dBm}$ below 1300 MHz and $\leqslant+3 \mathrm{dBm}$ at or above 1300 MHz . Also, the RF Section front panel meter reading must be as stated above.
5. Connect the RF Output to the Device Under Test. The front panel meter reading of RF Output level will be correct only if the input impedance of the Device Under Test is 50Ω.

MODULATION SELECTION

6. Refer to Section III of the Modulation Section plug-in operating and service manual for information relating to selection of modulation type and level.

REMOTE OPERATION

NOTE

Programming center frequencies $\geqslant 1300 \mathrm{MHz}$ is not possible with unmodified Model 8660A and 8660B mainframes of serial prefix 1503A and below. Refer to paragraph entitled Frequency Doubler Function Modification in Section II.
7. Application Note 164-1 "Programming the 8660A/B Synthesized Signal Generator" provides most of the information needed for remote BCD operation of this system. AN 164-2 "Calculator Control of the 8660A/B/C Synthesized Signal Generator" provides information for remote HP-IB operation of this system. In abridged form, Section III of the mainframe manuals contain the same information.

NOTES

1. Front panel control by Option 003 RF Sections is inhibited in the remote operating mode or when installed in an 8660C mainframe.
2. Special BCD and HP-IB addresses must be used to select the frequency doubling mode when modified 8660 A or 8660 B mainframes are being used.
a) For center frequencies $<1300 \mathrm{MHz}$ program the center frequency, the center frequency address, and the X1 frequency range address. The BCD address for the X1 range is " 9 " (1001). The HP-IB character is " I ".
b) For center frequencies $\geqslant 1300 \mathrm{MHz}$, program exactly one-half the desired center frequency, the center frequency address, and the $X 2$ frequency range address. The $B C D$ address for the $X 2$ range is " 7 " (0111). The HP-IB character is " G ".

SECTION IV PERFORMANCE TESTS

4-1. INTRODUCTION

$4-2$. The procedures in this section test the instrument's electrical performance using the specifications of Table 1-1 as the performance standards. All tests can be performed without access to the interior of the instrument. A simpler operational test is included in Section III under Operator's Checks.

4-3. EOUIPMENT REOUIRED

4-4. Equipment required for the performance tests is listed in the Recommended Test Equipment table in Section I. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model(s).

4-5. TEST RECORD

$4-6$. Results of the performance tests may be tabulated on the Test Record at the end of these procedures. The Test Record lists all of the tested specifications and their acceptable limits. Test
results recorded at incoming inspection can be used for comparison in periodic maintenance and troubleshooting, and after repairs or adjustments.

4-7. PERFORMANCE TESTS

$4-8$. For each test, the specifications are written exactly as they appear in the Specification table in Section I. Next, a description of the test and any special instructions or problem areas are included. Most tests that require test equipment have a setup drawing; each has a list of required equipment. The initial steps of each procedure give control settings required for that particular test.

CAUTION

To avoid the possibility of damage to the instrument or test eauipment, read completely through each test before starting it. Then make any preliminary control settings before continuing with the procedure.

PERFORMANCE TESTS

4-9. FREQUENCY RANGE

SPECIFICATION:

1 to 1299.999999 MHz selectable in 1 Hz steps; 1300 to 2599.999998 MHz selectable in 2 Hz steps. Frequencies from 200 kHz to 1 MHz may also be selected with some degradation in specifications.

DESCRIPTION:

The Synthesized Signal Generator System RF OUTPUT is monitored by a frequency counter which supplies a common time base reference signal. The frequencies are checked at the extremes. Any specified frequency may be checked.

Figure 4-1. Frequency Range Test Setup
EQUIPMENT:
Frequency Counter HP 5340A
3 dB Fixed Attenuator HP 8491A Opt 003

NOTE

In the following procedure, allow for accuracy of counter used. Model recommended is specified at ± 1 count.

1. Connect frequency counter 10 MHz output reference signal to mainframe EXT REF input as shown in Figure 4-1 and set mainframe rear panel REF switch to EXT.
2. Set the RF Section OUTPUT RANGE switch to 0 dBm ; set the VERNIER control full CW.
3. Set mainframe center frequency to 1.000000 MHz and check RF section output frequency with counter. Record the frequency.

$$
0.999999
$$ 1.000001 MHz

4. Set mainframe center frequency to 1299.999999 MHz (Option 004 mainframe set to 1299.9999 MHz) and check RF Section output frequency with counter. Record the frequency.

$$
1299.999998
$$

5. Set mainframe center frequency to 2599.999998 MHz (Option 004 mainframe set to 2599.9998 MHz) and check RF Section output frequency with the counter. Record the frequency.

4-10. FREQUENCY ACCURACY AND STABILITY

SPECIFICATION:

CW frequency accuracy and long term stability are determined by, the aging rate of the time base (internal or external) and its sensitivity to changes in temperature and line voltage. Internal reference oscillator accuracy $= \pm$ aging rate $\pm 3 \times 10^{-10} /{ }^{\circ} \mathrm{C} \pm 3 \times 10^{-10} / 1 \%$ change in line voltage. (Aging rate for the time base in the standard mainframe is $3 \times 10^{-8} /$ day; for option 001 mainframes, $3 \times 10^{-9} /$ day.)

NOTE
If there is any reason to doubt the mainframe crystal oscillator accuracy or stability, refer to the performance test in Section IV of the mainframe manual.

4-11. FREQUEINCY SWITCHING TIME

SPECIFICATION:

6 ms to be within 50 Hz of any new frequency selected up to $1300 \mathrm{MHz}, 6 \mathrm{~ms}$ to be within 100 Hz of any new frequency selected $\geqslant 1300 \mathrm{MHz}$. 100 ms to be within 5 Hz of any new frequency selected up to 1300 $\mathrm{MHz} ; 100 \mathrm{~ms}$ to be within 10 Hz of any new frequency selected $\geqslant 1300 \mathrm{MHz}$.

DESCRIPTION:

A change in the Synthesized Signal Generator System's frequency is remotely programmed; after a preset time interval the frequency is measured. A trigger pulse from the programming device is first coupled to the oscilloscope. The pulse is delayed a preset interval by the oscilloscope and then coupled to the computing counter at which time the frequency is measured.

NOTE
The frequencies were selected for worst-case conditions (longest switching time). Due to the frequency doubling circuits, the equivalent worst-case conditions above 1300 MHz will produce exactly twice the frequency deviation for the specified switching time.

Figure 4-2. Frequency Switching Time Test Setup

PERFORMANCE TESTS

4-11. FREQUENCY SWITCHING TIME (Cont‘d)

EQUIPMENT:

PROCEDURE:

1. Connect the dc power supply +5 volt output through a 1000 ohm resistor to pin 17 of the mating connector for J3. Pin 17 (flag) of the Marked Card Programmer output connector is also connected to the oscilloscope ext trigger input.
2. Connect the marked card programmer to mainframe rear panel connector J3.
3. Connect oscilloscope delayed sweep output through a BNC TEE to oscilloscope channel A vertical input and to computing counter rear panel external time measurement input.
4. Set counter controls as follows: rear panel switch to trigger; " B " channel to X 1 sensitivity; module switch pressed; digits displayed for necessary resolution; measurement time to 1 ; counter gate time to 1 ms .
5. Program the System for 19.999999 MHz . Set the mainframe rear panel reference switch to external.
6. Set oscilloscope controls as follows: trigger to ac slow; ext, negative slope, trigger level at about 9:00 o'clock; sweep mode auto; delay trigger auto; main sweep 1 ms ; delay sweep $0.1 \mu \mathrm{~s}$; main sweep mode.
7. Set oscilloscope trace to start at left vertical graticule line. Use oscilloscope delay control to delay spike 5.5 divisions from CRT left graticule line.
8. Switch oscilloscope sweep mode from auto to normal.
9. Program the system for 30.000000 MHz . Frequency displayed on computing counter should be $30 \mathrm{MHz} \pm 50 \mathrm{~Hz}$. Record the frequency.
29.999950
10. Program the system for 29.999999 MHz . Frequency displayed on counter should again be within $\pm 50 \mathrm{~Hz}$ of programmed frequency.
29.999949 30.000049 MHz
11. Set Oscilloscope normal sweep for 10 ms and delay sweep to $1 \mu \mathrm{~s}$.
12. Set Oscilloscope sweep mode to auto and delay control for a delay spike 9.5 divisions from the CRT left graticule line.
13. Set Oscilloscope main trigger to normal and computing counter gate time to 10 ms .

PERFORMANCE TESTS

4-11. FREQUENCY SWITCHING TIME (Cont'd)

14. Program the System for 30.000000 MHz . Frequency displayed on computing counter should be within $\pm 5 \mathrm{~Hz}$ of programmed frequency.
29.999995
30.000005 MHz
15. Program the System for 29.999999 MHz . Frequency Displayed on computing counter shoud be within $\pm 5 \mathrm{~Hz}$ of programmed frequency.
29.999994 \qquad 30.000004 MHz

NOTE

To reduce the effect of random errors, steps 5 through 10 and 13 through 15 may be repeated several times (5 minimum). Record the average frequency.

4-12. OUTPUT LEVEL SWITCHING TIME

SPECIFICATION:

In remote mode, any level change can be accomplished in less than 50 ms . Any change to another level on the same attenuator range can be accomplished in 5 ms .

DESCRIPTION:

The Synthesized Signal Generator System RF OUTPUT level (attenuation) is remotely programmed while the RF OUTPUT is detected and monitored by an oscilloscope. Because the oscilloscope is triggered by the programming device, the time needed to effect the level change may be measured directly on the oscilloscope CRT.

Figure 4-3. Output Level Switching Time Test Setup
EQUIPMENT:
Marked Card Programmer
Oscilloscope
.

PERFORMANCE TESTS

4-12. OUTPUT LEVEL SWITCHING TIME (Cont'd)

PROCEDURE:

1. Connect equipment as illustrated in Figure 4-3. Note that +5 volt output from DC Power Supply is connected through a 1000 ohm resistor to pin 17 of mating connector to J 3 and to Oscilloscope external trigger input.
2. Connect RF Section OUTPUT through crystal detector to oscilloscope Channel A input.
3. Set Oscilloscope controls as follows: Main Time/Div, 5 ms ; Vertical input, dc coupled, $0.2 \mathrm{~V} / \mathrm{Div}$; Normal Sweep; Ext Trigger, negative slope, AC slow, Trigger level about 9:00 o'clock.
4. Program the System's center frequency for 500 MHz and 10 dB attenuation of the RF output signal. Reprogram for 19 dB attenuation. Switching time should be less than 5 ms . Record switching time.

10 to 19 dB \qquad 5 ms
5. Program the RF Section attenuation for 10 dB , then for 30 dB . Switching time should be less than 50 ms .

10 to 30 dB _ 50 ms
6. Repeat steps 4 and 5 with center frequency set to 1 MHz .

10 to 19 dB \qquad 5 ms
7. Repeat step 4 with the center frequency set to 2599 MHz .

10 to 19 dB \qquad 5 ms

4-13A. OUTPUT ACCURACY

SPECIFICATIONS:

$\pm 2.5 \mathrm{~dB}$ to $-76 \mathrm{dBm} ; \pm 3.5 \mathrm{~dB}$ to -136 dBm . (Maximum specified levels +10 dBm at center frequencies $<1300 \mathrm{MHz} ;+3 \mathrm{dBm}$ with slightly degraded accuracy from +3 to +7 dBm , at center frequencies $\geqslant 1300 \mathrm{MHz}$.)

DESCRIPTION:

The RF level accuracy for the +10 and 0 dBm ranges is measured with a power meter. For the lower ranges, an IF substitution measurement technique is used.

RF level (attenuation) measurements using IF substitution is accomplished by 1) converting the RF output to a low frequency IF signal, 2) offsetting the decrease in RF level (increase in attenuation) by an equal decrease in IF attenuation. This maintains a fairly constant output level at the IF load. The intermediate frequency is selected on the basis of availability of a precision attenuator. Therefore, any variation in output level from an established reference is primarily due to the RF attenuator.

PERFORMANCE TESTS

4-13A. OUTPUT ACCURACY (Cont'd)

Figure 4-4A. Output Accuracy Test Setup
EQUIPMENT:

PERFORMANCE TESTS

4-13A. OUTPUT ACCURACY (Cont'd)

PROCEDURE:

1. Set the System Under Test Controls for a center frequency of 2000.000000 MHz and an output level of +10 dBm .
2. Set the power meter controls for the +15 dBm range.
3. Connect the power sensor to the RF Section OUTPUT jack of the System Under Test.
4. Set the RF Section controls as shown in the table below and verify that the RF output level is within the specified tolerance.

Synthesized Signal Generator System		Power Meter Reading (dBm)
OUTPUT RANGE Switch (dBm)	Panel Meter Reading (dB)	
+10*	0	+7.5 ${ }^{\text {_ }}+12.5$
+10*	-3	+4.5 +9.5
+10*	-6	+1.5 _ + +6.5
0	-6	$-8.5-3.5$
0	-3	$-5.5 \longrightarrow 0.5$
0	0	$-2.5 _+2.5$
0	+3	+0.5 _ +5.5

NOTE
Be careful not to vary the RF Section's VERNIER control setting throughout the rest of this procedure.
5. Connect the 40 dB attenuator directly to the OUTPUT jack of the RF Section in place of the power sensor.
6. Connect the " R " port of the mixer directly to the 40 dB attenuator using the Type N-to-SMA adapter and the SMA-to-OSM right angle adapter.
7. Connect the 4 MHz Low Pass Filter to the "I" port of the mixer with a SMA-to-BNC adapter.
8. Connect the cable from the Reference System output to the " L " port of the mixer with a SMA-to-BNC adapter.

NOTE

Be sure all connections are tight to prevent $R F$ leakage
9. Set the reference system controls for a center frequency of 2000.011000 and an output level of +7 dBm . Set the rear panel reference selector to external.

PERFORMANCE TESTS

4-13A. OUTPUT ACCURACY (Cont'd)

10. Set the 10 dB Step Attenuator to 50 dB .
11. Set the wave analyzer controls as follows: frequency 11 kHz , resolution bandwidth 3 Hz , sweep mode off, $\mathrm{dBv} / \mathrm{LIN}-\mathrm{dBm} 600 \Omega$ switch to $\mathrm{dBv} / \mathrm{LIN}$, amplitude reference level -40 dB , AFC switch unlock and scale 10 dB .
12. Connect the other equipment which follows the 4 MHz Low Pass Filter as shown in Figure 4-4A.
13. Tune the wave analyzer frequency control for the maximum meter reading. Adjust the input sensitivity and vernier controls for a midscale meter reading. Press the AFC control for frequency lock.
14. Wait 30 seconds for the DVM reading to stabilize. Record the DVM reading. This is the reference level equivalent to the last power meter reading ($\approx+3 \mathrm{dBm}$).
15. Use the following formula to calculate the obsolute RF output level from the System Under Test:
$\mathrm{dBm}=\mathrm{dBm}_{1}-\Delta \mathrm{dB}+2\left(\mathrm{~V}-\mathrm{V}_{\mathrm{ref}}\right)$
dBm is the RF output level
dBm_{1} is the actual RF level measured at the $+3 \mathrm{dBm}(0 \mathrm{dBm}$ OUTPUT RANGE setting) in Step 4.
$\Delta \mathrm{dB}$ is the difference in 10 dB step attenuator setting.
V is the DVM reading for each individual OUTPUT RANGE. Vref is the reference DVM reading.

NOTE

The wave analyzer recorder output sensitivity is $2 \mathrm{~dB} /$ volt.
16. Set the RF Section OUTPUT RANGE switch to -10 dBm ; Set the 10 dB step attenuator to 40 dB . Wait 30 seconds for the reading to stabilize. Record the DVM reading in the table following step 17. Calculate and record the RF level in the table.

$$
\text { Example: } \begin{aligned}
\mathrm{dBm}= & \mathrm{dBm}_{1}-(\mathrm{dB})+2\left(\mathrm{~V}_{1}-\mathrm{V}_{\mathrm{ref}}\right) \\
\mathrm{dBm} & =2.8 \mathrm{dBm} \\
\Delta \mathrm{~dB} & =10 \mathrm{~dB} \\
\mathrm{~V}_{1} & =2.388 \mathrm{Vdc} \\
\mathrm{~V}_{\mathrm{ref}} & =2.433 \mathrm{Vdc}(\text { from step } 14) \\
\mathrm{dBm} & =2.8-(10)+2(2.388-2.433) \\
& =2.8-10+2(-0.045) \\
& =-7.29 \mathrm{dBm}
\end{aligned}
$$

17. Continue as in step 16, to measure, record and calculate the DVM reading and RF level for each OUTPUT RANGE Setting as shown in the following table.

PERFORMANCE TESTS

4-13A. OUTPUT ACCURACY (Cont'd)

OUTPUT RANGE Switch (dBm)	10 dB Step Attenuator (dB)	DVM Reading (Vdc)	Absolute RF Output Level (dBm)		
		Min.	Actual	Max.	
0	50	-	+0.5	-	+5.5
-10	40	-	-9.5	-4.5	
-20	30	-	-19.5	-	-14.5
-30	20	-	-29.5	-	-24.5
-40	10	-	-39.5	-	-34.5
-50	0	-	-49.5	-	-44.5

18. Set the 10 dB step attenuator to 50 dB .
19. Remove the 40 dB attenuator and connect the mixer directly to the OUTPUT jack of the system under test.
20. Increase the wave analyzer's input sensitivity by 10 dB . If necessary, adjust the input sensitivity vernier for a midscale meter reading.
21. Transfer the last calculated RF output level on the preceding table to the first line on the following table. Wait 30 seconds and record the new DVM reading.
22. Use the formula and the new $\mathrm{V}_{\text {ref }}$ level to calculate the RF level for each range shown in the table.

OUTPUT RANGE Switch (dBm)	10 dB Step Attenuator (dB)	DVM Reading (Vdc)	Absolute RF Output Level (dBm)		
			Min.	Actual	Max.
-50	50		-49.5		-44.5
-60	40		-59.5		-54.5
-70	30		-69.5		-64.5
-80	20		-80.5		-73.5
-90	10		-90.5		-83.5
-100	0		-100.5		-93.5

23. Set the wave analyzer's AFC switch to unlock (off). Adjust the frequency control for the peak reading equal to the last recorded DVM reading on the previous table.
24. Set the 10 dB step attenuator to 30 dB .
25. Set the wave analyzer amplitude reference level to -60 dB . Increase the input sensitivity 10 dB .
26. Transfer the last RF output level reading on the preceding table to the first line of the following table. After 30 seconds record the new DVM reference on the first line of the following table.

PERFORMANCE TESTS

4-13A. OUTPUT ACCURACY (Cont'd)

27. Measure, calculate, and record the DVM reading and RF level for each OUTPUT RANGE Setting as shown in the following table. Due to the high noise levels evident on this test, there is appreciable deviation in the wave analyzer and DVM readings. Record the average reading.

OUTPUT RANGE Switch (dBm)	10 dB Step Attenuator (dB)	DVM Reading (Vdc)	Absolute RF Output Level (dBm)		
		Min.	Actual	Max.	
-100	30	-	-100.5	-	-93.5
-110	20	-	-110.5	-	-103.5
-120	10	-	-120.5	-	-113.5
-130	0	-	-130.5	-	-123.5

NOTE

Output level accuracy may be checked at any frequency between 300 and 2000 MHz using this procedure. This procedure may also be used at the frequency extremes if a well shielded mixer specified for the desired frequency range is used in place of the Watkins-Johnson M1J.

4-13B. OUTPUT ACCURACY - ALTERNATE PROCEDURE

SPECIFICATION:

$\pm 2.5 \mathrm{~dB}$ to $-76 \mathrm{dBm} ; \pm 3.5 \mathrm{~dB}$ to -136 dBm . (Maximum specified levels +10 dBm at center frequencies $<1300 \mathrm{MHz} ;+3 \mathrm{dBm}$ with slightly degraded accuracy from +3 to +7 dBm , at center frequencies $\geqslant 1300 \mathrm{MHz}$.)

DESCRIPTION:

The RF level Accuracy for the +10 and 0 dBm ranges is measured with a power meter. A reference level is established and accuracy is checked from 0 dBm to -80 dBm by comparing the RF Section attenuation against a calibrated 10 dB step attenuator.

NOTE

This procedure checks all sections of the RF Section Attenuator separately. Also, the $10 \mathrm{~dB}, 20 \mathrm{~dB}$, and 40 dB sections are checked in all possible combinations. The sum of the -70 dBm inaccuracy and the change in accuracy at -80 dBm shall not exceed $\pm 1.0 \mathrm{~dB}$.

PERFORMANCE TESTS

4-13B. OUTPUT ACCURACY - ALTERNATE PROCEDURE (Cont'd)

Figure 4-4B. Output Accuracy Test Setup (Alternate Procedure)

EQUIPMENT:

Spectrum Analyzer HP 8555A/8552B/140T
Power Meter/Sensor. HP 435A/8481A
10 dB Step Attenuator
20 dB Amplifier HP 355D Option H38

PROCEDURE:

1. Set the system controls for a frequency of 30 MHz and an output level of +10 dBm .
2. Connect the power sensor to the RF Section's OUTPUT jack.
3. Set the RF Output Level as shown in the table below and verify that the level is within the specified tolerance.

NOTE

Do not change the RF Section VERNIER control setting until this procedure is completed.

PERFORMANCE TESTS

4-13B. OUTPUT ACCURACY - ALTERNATE PROCEDURE (Cont'd)

4. Set the spectrum analyzer controls as follows: center frequency 30 MHz , frequency span per division 5 kHz , resolution bandwidth 3 kHz , input attenuation 10 dB , vertical sensitivity per division 2 dB , and sweep time per division 5 ms .
5. Set the 10 dB Step attenuator switch to 80 dB .
6. Connect the equipment as shown in Figure 4-4B.
7. Adjust the reference level range and vernier to establish a reference level on the analyzer display.
8. On the first line of the following table, record the power meter reading shown on the preceding table for the OUTPUT RANGE setting of 0 dBm and the panel meter reading of +3 dB . This is the absolute RF level which corresponds to the display reference.
9. Set the OUTPUT RANGE switch and the 10 dB Step Attenuator range switch settings as shown on each line of the following table. Record the display variation from the established reference.
10. Calculate the RF level using the following formula:
$\mathrm{dBm}=\mathrm{dBm}{ }^{1}-\triangle \mathrm{dB}_{10}+\triangle \mathrm{dB}$
dBm is the RF output level
dBm^{1} is the RF level measured at $+3 \mathrm{dBm}(0 \mathrm{dBm}$ OUTPUT RANGE setting) in step 3.
$\Delta \mathrm{dB}_{10}$ is the change in 10 dB Step Attenuator level
$\triangle \mathrm{dB}$ is the variation from the established display reference for each OUTPUT RANGE setting.
For example, results of the first step are:
$\mathrm{dBm}_{1}=+2.8$
$\Delta \mathrm{dB}_{10}=10$
$\Delta \mathrm{dB}=-0.2$
$\mathrm{dBm}=+2.8 \mathrm{dBm}-10 \mathrm{~dB}+(-0.2) \mathrm{dB}$ $=-7.4 \mathrm{dBm}$

OUTPUT RANGE Switch (dBm)	10 dB Step Attenuator (dB)	RF Output Level (dBm)		
		Min.	Measured	Max.
0	80	+0.5		+5.5
-10	70	-9.5	-	-4.5
-20	60	-19.5	-	-14.5
-30	50	-29.5	-	-24.5
-40	40	-39.5	-	-34.5
-50	30	-49.5	-	-44.5
-60	20	-59.5	-	-64.5
-70	10	-69.5	-	-73.5
-80	0	-80.5	-	

11. Subtract the two levels obtained for OUTPUT RANGES of -70 and -80 dBm . The level change should be $10 \pm 1 \mathrm{~dB}$.

PERFORMANCE TESTS

4-14. OUTPUT FLATNESS

SPECIFICATION:

Output level variation with frequency is less than $\pm 2.0 \mathrm{~dB}$ from $1-2600 \mathrm{MHz}$. (Applicable at the following RF levels: +10 to -136 dBm at center frequencies $<1300 \mathrm{MHz} ;+3$ to -136 dBm with slight degradation in flatness from +3 to +7 dBm at center frequencies $\geqslant 1300 \mathrm{MHz}$.)

DESCRIPTION:

After an output level reference is established, power level measurements are made at various frequencies across the range of the Synthesized Signal Generator System. The output levels must fall within the limits specified.

EQUIPMENT:

Power Meter/Sensor
HP 435A/8481A

PROCEDURE:

1. Zero the Power Meter.
2. Set the system center frequency to 1500 MHz .
3. Set the Power Meter range switch to 0 dBm ; set the RF Section OUTPUT RANGE Switch and VERNIER Control for an output level of -2.0 dBm as read on the power meter.
4. Measure and record the power level indicated by the Power Meter at the following center frequencies: $1 \mathrm{MHz}, 10 \mathrm{MHz}, 100 \mathrm{MHz}, 500 \mathrm{MHz}, 1000 \mathrm{MHz}, 1299 \mathrm{MHz}, 2000 \mathrm{MHz}$, and 2599 MHz .

1 MHz	-4.0	0.0 dBm
10 MHz	-4.0	0.0 dBm
100 MHz	-4.0	0.0 dBm
500 MHz	-4.0	0.0 dBm
1000 MHz	-4.0	0.0 dBm
1299 MHz	-4.0	0.0 dBm
2000 MHz	-4.0	0.0 dBm
2599 MHz	-4.0	0.0 dBm

4-15. HARMONIC SIGNALS, SUB-HARMONIC, AND SUB-HARMONIC MULTIPLES

SPECIFICATION:

For center frequencies $<1300 \mathrm{MHz}$, all harmonically related signals are at least 30 dB below the desired output signal for output levels $\leqslant+3 \mathrm{dBm}$.) (-25 dB for output levels above +3 dBm .)
At or above 1300 MHz , all harmonically related signals are at least 20 dB below the desired output signal for levels $\leqslant+3 \mathrm{dBm}$ (slightly higher from +3 to +7 dBm .)
At center frequencies $\geqslant 1300 \mathrm{MHz}$, all sub-harmonics and multiples are at least 20 dB below the desired output signal for output signals $\leqslant+3 \mathrm{dBm}$. (Slightly higher from +3 to 7 dBm .)

NOTE
Below 1300 MHz sub-harmonics and multiples do not exist.

PERFORMANCE TESTS

4-15. HARMONIC SIGNALS, SUB-HARMONIC, AND SUB-HARMONIC MULTIPLES (Cont'd)

DESCRIPTION:

A spectrum analyzer is used to measure the relative levels of the second and third carrier harmonics and the sub-harmonics and their multiples with respect to the carrier fundamental at various center frequencies.

EQUIPMENT:
Spectrum Analyzer
HP 8555A/8552B/140T

PROCEDURE:

1. Set the system center frequency to 1299 MHz ; set the RF Section OUTPUT RANGE switch and VERNIER control for an output level of $\mathbf{+ 1 0} \mathrm{dBm}$.
2. Connect the power meter/sensor to the system RF OUTPUT jack.
3. Readjust the VERNIER control for a power meter reading of +10 dBm .
4. Set the spectrum analyzer input attenuation to 30 dB . Connect the RF Section OUTPUT jack to the spectrum analyzer RF input.
5. Set the other spectrum analyzer controls for convenient viewing of the carrier. Adjust the controls as necessary to view the second and third harmonics. Record the harmonic levels relative to the fundamental signal.
$1299 \mathrm{MHz} \geqslant 25 \mathrm{~dB}$ down Second Third
6. Repeat steps 1 through 5 at the other frequencies listed. Record the levels.

$1000 \mathrm{MHz} \geqslant 25 \mathrm{~dB}$ down	Second
$500 \mathrm{MHz} \geqslant 25 \mathrm{~dB}$ down	
$100 \mathrm{MHz} \geqslant 25 \mathrm{~dB}$ down	
$10 \mathrm{MHz} \geqslant 25 \mathrm{~dB}$ down	-

7. Set the system center frequency to 100 MHz ; set the RF Section OUTPUT RANGE Switch to 0 dBm and the VERNIER control for a front panel meter reading of +3 dB . Record the harmonic levels.

$$
100 \mathrm{MHz} \geqslant 30 \mathrm{~dB} \text { down } \quad \text { Second Third }
$$

8. Set the system center frequency to 1400 MHz .
9. Adjust spectrum analyzer controls to display the carrier. Readjust the controls to view the second and third harmonics. The harmonic signals should be $\geqslant 20 \mathrm{~dB}$ down with respect to the fundamental signal.

$$
1400 \mathrm{MHz} \geqslant 20 \mathrm{~dB} \text { down } \quad \text { Second Third }
$$

10. Set the system center frequency to 2500 MHz . Repeat step 8 and record the signal levels.

$$
2500 \mathrm{MHz} \geqslant 20 \mathrm{~dB} \text { down } \xrightarrow{\text { Second } \quad \text { Third }}
$$

PERFORMANCE TESTS

4-15. HARMONIC SIGNALS, SUB-HARMONIC, AND SUB-HARMONIC MULTIPLES (Cont‘d)

11. Set the system's fundamental (center) frequency as shown in the table. Adjust the spectrum analyzer controls to display the sub-harmonics and their multiples. Set the RF Section VERNIER control for a panel meter reading of -6 dB when measuring the $\mathrm{f} / 2$ sub-harmonics and +3 dB when measuring the $3 f / 2$ sub-harmonics. These signals should be $\geqslant 20 \mathrm{~dB}$ down from the fundamental.

Fundamental $(\mathrm{f}$ in MHz)	Sub-Harmonic Multiples	
	$(\mathrm{f} / \mathbf{2}$ in MHz)	(3f/2 in MHz)
	700	2100
2500	1250	3750

4-16. PULSE MODULATION RISETIME

SPECIFICATION:

50 nanoseconds.

DESCRIPTION:

The extemal pulse generator output is coupled to the RF Section plug-in through the Model 86631B Auxiliary Section. The pulse modulated signal is detected and the rise time measured with an oscilloscope.

Figure 4-5. Pulse Modulation Risetime Test Setup
EQUIPMENT:
Pulse Generator
HP 8013 B
Oscilloscope HP 180C/1801A/1821A
Crystal Detector HP 423A
Termination, 50Ω Feedthru HP 11048C

PERFORMANCE TESTS

4-16. PULSE MODULATION RISETIME (Cont'd)

PROCEDURE:

1. Set System center frequency to 1200 MHz .
2. Set the RF Section OUTPUT RANGE switch and VERNIER control for an output of +10 dBm .
3. Set the Auxiliary Section external modulation switch to pulse; set pulse level control full cw .
4. Adjust pulse generator output for -10 Vpk (into 50Ω) with risetime $\leqslant 10 \mathrm{~ns}$; set pulse repetition rate and width to convenient values.
5. Connect equipment as illustrated in Figure 4-5.
6. Adjust oscilloscope to display leading edge of detected pulse modulated RF signal. Risetime, as measured between the 10% and 90% amplitude points on leading edge, should be 50 nanoseconds or less.
\qquad

4-17. PULSE MODULATION ON/OFF RATIO

SPECIFICATION:

At least 40 dB for center frequencies $<1300 \mathrm{MHz}$; at least 60 dB for center frequencies $\geqslant 1300 \mathrm{MHz}$.

DESCRIPTION:

An HP Model 86631B Auxiliary Section is inserted in the left cavity of the mainframe. A dc level of -9.5 Vdc (pulse-on) and 0.0 Vdc (pulse-off) is applied to the Auxiliary Section. The RF output of the system is monitored on a spectrum analyzer. The ratio of the pulse-on to pulse-off level is the on-off ratio.

EQUIPMENT:
Spectrum Analyzer HP 8555A/8552B/140T
Power Supply HP 6215A

PROCEDURE:

1. Set System center frequency to 500 MHz, RF Section OUTPUT RANGE switch and VERNIER control for an output level +10 dBm , and Auxiliary Section external modulation switch to PULSE.
2. Set the spectrum analyzer input attenuation to 30 dB ; connect the RF Section OUTPUT to the analyzer RF input.
3. Connect -9.5 Vdc from the power supply to the Auxiliary Section input.
4. Adjust the analyzer controls for a CRT display of the carrier. Establish the reference by positioning the carrier peak on the top horizontal graticule line.
5. Set the power supply output to 0.0 Vdc . Set the Pulse Level control fully clockwise. The signal displayed should be $>40 \mathrm{~dB}$ down from the reference.
\qquad

PERFORMANCE TESTS

4-17. PULSE MODULATION ON/OFF RATIO (Cont'd)

6. Set the System center frequency to 2000 MHz . Repeat steps 3 through 5 and record the RF level. The level should be down $>60 \mathrm{~dB}$.

60 dB down \qquad

4-18. AMPLITUDE MODULATION DEPTH AND 3 dB BANDWIDTH

SPECIFICATION:

Depth: At center frequencies $<1300 \mathrm{MHz}, 0-90 \%$ for RF output meter readings from +3 to -6 dB and only at +3 dBm and below.
Rate: At center frequencies $<10 \mathrm{MHz}$
10 kHz from $0-30 \%$ AM
6 kHz from 0-70\% AM
5 kHz from 0-90\% AM
At center frequencies $\geqslant 10$ to $<1300 \mathrm{MHz}$
100 kHz from $0-30 \% \mathrm{AM}$
60 kHz from 0-70\% AM
50 kHz from $0-90 \%$ AM
At center frequencies $\geqslant 1300 \mathrm{MHz}$
5 kHz from $0-50 \% \mathrm{AM}$

NOTE

To check AM accuracy, refer to Section IV of the appropriate Modulation Section Operating and Service Manual.

DESCRIPTION:

The system RF output is amplitude modulated. The signal is demodulated by a peak detector in a spectrum analyzer (the frequency-span width is set to zero). The ac and dc components are measured with a voltmeter at the detector (vertical) output. First, the dc component is set to -283 mVdc plus a detector offset correction. Then, the ac component is measured. The AM level (\%) is $1 / 2$ (one half) the rms output.
Because of the required measurement accuracy, the accuracy of the spectrum analyzer's detector offset must be known to $\pm 2 \mathrm{mVdc}$. The offset voltage is calculated by measuring the change in the detector output for a change in the RF input and assuming a linear detector over the range of the levels used.

4-18. AMPLITUDE MODULATION DEPTH AND 3 dB BANDWIDTH (Cont'd)

Figure 4-6. Amplitude Modulation Depth and 3 dB Bandwidth Test Setup
EQUIPMENT:

PROCEDURE:

1. Connect the equipment as shown in Figure 4-6 (step 1).
2. Set the synthesized signal generator controls as follows: center frequency 30 MHz , OUTPUT RANGE -10 dBm , VERNIER control for a panel meter reading of 0 dB , and AM off.
3. Let the spectrum analyzer warm up for 1 hour to minimize drift of the spectrum analyzer detector output. Set 10 dB step attenuator to 10 dB attenuation.
4. Set the spectrum analyzer center frequency to 30 MHz , frequency span per division 5 MHz , resolution bandwidth 300 kHz ; input attenuation to 20 dB , and vertical sensitivity per division 10 dB . Adjust the center frequency control to center the display. Set the frequency span to zero and tune to peak the trace.

PERFORMANCE TESTS

4-18. AMPLITUDE MODULATION DEPTH AND 3 dB BANDWIDTH (Cont‘d)

NOTE

Throughout this test, continually check that the signal is peaked for maximum deflection. Tune the center frequency control for maximum signal deflection.
5. Set the vertical scale to linear and adjust the reference level vernier for a digital voltmeter reading of -200 mVdc.
6. Set the 10 dB step attenuator to 0 dB and record the digital voltmeter reading.
mVdc
7. Set the 10 dB Step Attenuator to 20 dB and record the digital voltmeter reading.
mVdc
8. Calculate the offset voltage using the following formula:

$$
\mathrm{V}_{\mathrm{off}}=\frac{\mathrm{mVdc}+200 \alpha}{1-\alpha}
$$

where $\quad V_{\text {off }}$ is the offset voltage in millivolts mVdc is the DVM reading in millivolts α is 3.16 (step 6) or 0.316 (step 7).
For example:
$\mathrm{mVdc}=-687$ in step 6.
therefore $\mathrm{V}_{\text {off }}=\frac{-687+200(3.16)}{1-(3.16)}=+25.5 \mathrm{mVdc}$
9. Find the value of $\mathrm{V}_{\text {off }}$ for step 7. The difference between the two should be $<4 \mathrm{mVdc}$. Use the average value of $V_{\text {off }}$.
10. Set the 10 dB step attenuator to 10 dB .
11. Set the system center frequency to 500 MHz , the modulation mode to AM , the modulation source to external, and a modulation level of 30% (0.3 Vrms input to an Auxiliary Section; 1.5 Vrms to a Modulation Section) at a 1 kHz rate.
12. Set the spectrum analyzer center frequency control to 500 MHz , frequency span to zero, and peak the trace. Set the reference level vernier for a digital voltmeter reading of $-283 \mathrm{mVdc}+\mathrm{V}_{\text {off }}$. See Steps 8 and 9.
13. Set the DVM controls to measure the peak detector's ac component. The modulation level (\%) is $1 / 2$ (one-half) the DVM reading (Vrms). Record the reading for 30% AM.

50 mVrms \qquad 70 mVrms
14. Set the modulation section (test oscillator) controls for $70 \% \mathrm{AM}$. Record the DVM reading.

$$
130 \mathrm{mVrms} _\quad 150 \mathrm{mVrms}
$$

PERFORMANCE TESTS

4-18. AMPLITUDE MODULATION DEP「TH AND 3 dB BANDWIDTH (Cont'd)

15. Set the modulation section (test oscillator) controls for 90% AM. Record the DVM reading 170 mVrms \qquad 190 mVrms
16. Set the system center frequency to 1500 MHz ; set the modulation mode switch to OFF.
17. Set the spectrum analyzer controls to display the 1500 MHz signal. Set the frequency span to zero. Adjust the center frequency control to peak the trace.
18. Set the system modulation mode to AM, an external source, and a modulation level of 50% (0.5 Vrms input to an auxiliary section; 1.5 Vrms to a modulation section) at a 1 kHz rate.
19. Set the spectrum analyzer's reference level to give a digital voltmeter reading of $-283 \mathrm{mVdc}+\mathrm{V}_{\text {off }}$. See Steps 8 and 9 .
20. Set the DVM controls to measure the ac component of the peak detector output. Record the reading for $50 \% \mathrm{AM}$.

$$
80 \mathrm{mVrms} \quad 120 \mathrm{mVrms}
$$

21. Connect the crystal detector to the RF Section OUTPUT jack.
22. Set the modulation section and test oscillator controls for an AM level of 30% (0.3 Vrms input to an auxiliary section; 1.5 Vrms to a modulation section) at a 1 kHz rate.
23. Set the oscilloscope controls for a 5 division peak-to-peak display of the demodulated signal.
24. Increase the test oscillator frequency to 5 kHz . The signal amplitude should be $\geqslant 3.5$ divisions peak-to-peak.

3.5 div $\mathrm{p}-\mathrm{p}$

\qquad
25. Repeat steps 22 through 24 with center frequency set to 500 MHz . Increase the test oscillator frequency from 5 to 100 kHz . Record the signal amplitude.

$$
3.5 \text { div } \mathrm{p}-\mathrm{p}
$$

\qquad
26. Install the 1500 pF capacitor as shown in Figure 4-6.
27. Repeat steps 22 through 24 with center frequency set to 9 MHz . Increase the test oscillator frequency from 5 to 10 kHz . Record the signal amplitude.

$$
3.5 \mathrm{div} \mathrm{p}-\mathrm{p}_{-}
$$

4-19. FREQUENCY MODULATION RATE AND DEVIATION

SPECIFICATION:

Rate: DC to 200 kHz with the 86632 B or the $86635 \mathrm{~A}: 20 \mathrm{~Hz}$ to 100 kHz with the 86633 B .

PERFORMANCE TESTS

4-19. FREQUENCY MODULATION RATE AND DEVIATION (Cont'd)

Maximum Deviation (Peak):
At center frequencies $<1300 \mathrm{MHz}, 200 \mathrm{kHz}$ with the 86632 B or the $86635 \mathrm{~A} ; 100 \mathrm{kHz}$ with the 86633 B
At center frequencies $\geqslant 1300 \mathrm{MHz}, 200 \mathrm{kHz}$ with the 86632 B or the $86635 \mathrm{~A}, 200 \mathrm{kHz}$ with the 86633 B .

NOTE

To check the frequency modulation rate and deviation, refer to the performance test in Section IV of the applicable modulation section manual.

4-20. OUTPUT IMPEDAINCE TEST

SPECIFICATION:

Impedance: 50Ω
VSWR: <2.0 on +10 and 0 dBm ranges; <1.3 on -10 dBm range and below.

DESCRIPTION:

The Synthesized Signal Generator System's output signal is reflected back into the RF OUTPUT jack by a coaxial short at the end of an adjustable stub (a variable length of air-line). This reflected signal is rereflected by any mismatch at the jack. The re-reflected signal combines with the output signal according to the relative phase and magnitude of the two signals. The combined signal is monitored by a cirectional coupler and then measured by a voltmeter or spectrum analyzer. Maximum and minimum power levels are noted as the electrical length of the stub is varied (i.e., the electrical distance from the RF OUTPUT jack to the coaxial short is varied). The maximum allowable change in voltage or dB is calculated from the following formulas.

$$
\begin{aligned}
& \mathrm{VSWR}=\frac{V_{\max }}{V_{\min }} \\
& \mathrm{dB}=20 \log \left(\frac{V_{\max }}{V_{\min }}\right) \\
& \mathrm{dB}=20 \log (\mathrm{VSWR})
\end{aligned}
$$

Figure 4-7. Output Impedance Test Setup

PERFORMANCE TESTS

4-20. OUTPUT IMPEDANCE TEST (Cont'd)

EQUIPMENT:

Adapter (Male Type N to GR 874) Adjustable Stub Spectrum Analyzer 50Ω Termination HP 1250-0847 General Radio HP 8555A/855 HP 11593A	

PROCEDURE:

1. Set the Synthesized Signal Generator system center frequency to 500 MHz , the OUTPUT RANGE switch to +10 dBm , and the VERNIER control for a panel meter reading of 0 dB .
2. Set up the equipment as shown in Figure 4-7.
3. Set the spectrum analyzer controls for a convenient display of the signal. Set the vertical sensitivity to 2 dB per division
4. Adjust the stub for a minimum indication on the spectrum analyzer display. Adjust the reference level range and vernier controls for a convenient reference level.
5. Adjust the stub for a maximum indication on the display. The signal level increase should be $<6 \mathrm{~dB}$ (VSWR <2.0).
\qquad
6. Set the system's OUTPUT RANGE switch to 0 dBm . Adjust the VERNIER control for a panel meter reading of +3 dB .
7. Repeat steps 3 and 4. The signal level increase should be $<6 \mathrm{~dB}$ (VSWR <2.0).
\qquad
8. Set the system's OUTPUT RANGE switch to -10 dBm .
9. Repeat steps 3 and 4. The signal level increase should be $<2.3 \mathrm{~dB}$ (VSWR <1.3).
10. If desired, repeat at other frequencies between 100 MHz and 2 GHz .

NOTE

The steps given above effectively check VSWR at all settings of the output attenuator.

4-21. SIGNAL-TO-PHASE NOISE RATIO

SPECIFICATION:

In the CW, AM, and $\phi \mathrm{M}$ modes, greater than 45 dB in a 30 kHz band centered on the carrier and excluding a 1 Hz band centered on the carrier at center frequencies $<1300 \mathrm{MHz} ;>39 \mathrm{~dB}$ in a 30 kHz band centered on the signal excluding a 1 Hz band centered on the carrier at center frequencies $\geqslant 1300 \mathrm{MHz}$.

PERFORMANCE TESTS

4-21. SIGNAL-TO-PHASE NOISE RATIO (Cont'd)

DESCRIPTION:

AC voltage measurements proportional to carrier amplitude and residual carrier phase deviation are compared for the signal-to-phase noise ratio. The Synthesized Signal Generator System's reference and RF OUTPUT (carrier) signals are mixed and the difference frequency is monitored by an oscilloscope and ac voltmeter. The mixer output (proportional to the carrier amplitude) is noted. The two signals are then frequency synchronized with phase difference of 180°. (This phase difference provides maximum resolution for voltage measurements at the mixer output which are proportional to the change of phase of the RF OUTPUT signal.) This ac voltage is proportional to the phase noise and when compared to the carrier voltage yields the signal-to-phase noise ratio.

NOTE

A $3 d B$ correction factor takes into account the non-correlated noise contribution of the reference system. The noise levels of the reference system and system under test are assumed to be equal.

Figure 4-8. Signal-to-Phase Noise Ratio Test Setup

EQUIPMENT:

PERFORMANCE TESTS

4-21. SIGNAL-TO-PHASE NOISE RATIO (Cont'd)

PROCEDURE:

1. Set the controls of the system under test as follows: center frequency 500.001000 MHz and the output level to -47 dBm (OUTPUT RANGE switch set to -50 dBm).
2. Set the controls of the reference system as follows: center frequency 500.000000 MHz and the output level to +7 dBm .
3. Connect the equipment as shown in Figure 4-8.
4. Record the relative ac voltmeter reading.
dB
5. Set the system under test OUTPUT RANGE switch to $-10 \mathrm{dBm}(-7 \mathrm{dBm}$ output level).
6. Adjust the oscilloscope display of the 1 kHz signal for an amplitude of eight divisions. Set the oscilloscope vertical input to ground and adjust the vertical position control so the trace lies over the center horizontal line of the graticule. Set the vertical input to dc coupled.
7. Set the system under test center frequency to 500.000001 MHz and note that oscilloscope baseline trace alternately rises and falls over eight-division display. (500.0001 MHz ; Option 004).
8. Reset the center frequency to 500.000000 MHz at a time that causes the oscilloscope baseline trace to stop within $\pm 1 / 10$ division of the center horizontal line of the graticule.
9. Read the noise level on the ac voltmeter. Signal-to-phase noise ratio equals the sum of the attenuator change and the reference system noise contribution minus the change in the voltmeter reading. Signal-to-phase noise ratio $=40 \mathrm{~dB}+3 \mathrm{~dB}-(\pm \triangle \mathrm{dB})$. For example, the voltmeter reading is 8 dB below the reference $(-8 \mathrm{~dB})$. Therefore, the Signal-to-phase noise ratio $=40+3-(-8)=51 \mathrm{~dB}$ down. Record the ratio.

45 dB down \qquad
10. Set the controls of the system under test as follows: center frequency 1500.001000 MHz and the output level to -37 dBm (OUTPUT RANGE -40 dBm).
11. Set the controls of the reference system as follows: center frequency 1500.000000 MHz and the output level to +7 dBm .
12. Record relative $\mathbf{A C}$ voltmeter reading.
13. Set the system under test OUTPUT RANGE switch to -10 dBm . (-7 dBm output level).
14. Adjust the oscilloscope display of the 1 kHz signal for an amplitude of eight divisions. Set the oscilloscope vertical input to ground and adjust the vertical position control so the trace lies over the center horizontal line of the graticule. Set the vertical input to dc coupled.
15. Set the system under test center frequency to 1500.000002 MHz and note that oscilloscope baseline trace alternately rises and falls over eight-division display. (1500.0002 MHz ; Option 004).

PERFORMANCE TESTS

4-21. SIGNAL-TO-PHASE NOISE RATIO (Cont'd)

16. Reset the center frequency to 1500.000000 MHz at a time that causes the oscilloscope baseline trace to stop within $\pm 1 / 10$ division of the center horizontal line of the graticule.
17. Read the noise level on the ac voltmeter. Signal-to-phase noise ratio $=33 \mathrm{~dB}-(\pm \Delta \mathrm{dB})$.

39 dB down \qquad

4-22. SIGNAL-TO-AM NOISE RATIO

SPECIFICATION:

Greater than 65 dB in a 30 kHz bandwidth centered on the carrier excluding a 1 Hz band centered on the carrier.

DESCRIPTION:

A comparison of voltage measurements proportional to carrier amplitude and AM noise yields the signal-to-AM noise ratio. First, a carrier reference level is determined by measuring the detected AC voltage for $30 \% \mathrm{AM}$ (the detected signal is 10.5 dB below the carrier level). Then the AM noise level is measured and the signal-to-AM noise ratio is determined.

Figure 4-9. Signal-to-AM Noise Ratio Test Setup.

EQUIPMENT:

```
10 dB Step Attenuator . . . . . . . . . . HP 355D Option H38
40 dB Amplifier . . . . . . . . . . . . . HP 08640-60506
15 kHz Low Pass Filter . . . . . . . . . . HP 86602-60054
Crystal Detector . . . . . . . . . . . . . HP 423A
Test Oscillator . . . . . . . . . . . . . . HP 651B
50\Omega Termination . . . . . . . . . . . . HP 11593A
Coaxial Tee (2 required) . . . . . . . . . . HP 1250-0781
AC Voltmeter . . . . . . . . . . . . . . HP 403B
```


PERFORMANCE TESTS

4-22. SIGNAL-TO-AM NOISE RATIO (Cont'd)

PROCEDURE:

1. Set the 10 dB step attenuator to 50 dB .
2. Set the system center frequency to 500 MHz and the RF output level to $+3 \mathrm{dBm}(0 \mathrm{dBm}$ OUTPUT RANGE).
3. Connect the equipment as shown in Figure 4-9.
4. Set the system's modulation section controls for the AM mode and an external modulation source. The modulation level control and/or the test oscillator controls are set for a modulation level of 30% (0.3 Vrms to an auxiliary section; 1.5 Vrms to a modulation section) at a 1 kHz rate.

NOTE

The ac voltmeter can be used to monitor the modulation or auxiliary section input voltage while it is being set.
5. Record the ac voltmeter reading of the 40 dB amplifier output in dB .
\qquad
6. Set the system's modulation mode to off.
7. Set the 10 dB step attenuator to 0 dB .
8. Record the ac voltmeter reading.
\qquad
9. The signal-to-AM noise ratio is equal to the sum of the change in attenuation level and the level of the 30% AM level relative to the carrier minus the change in ac voltmeter reading in dB . Therefore, signal-to-AM noise ratio $=50 \mathrm{~dB}+10.5 \mathrm{~dB}-(\pm \Delta \mathrm{dB})$. For example, the ac voltmeter reading is 12 dB down (below) the reference level and the signal-to-AM noise ratio $=50+10.5-(-12)$ or 72.5 dB down.
10. Record the ratio.

65 dB down \qquad
11. Repeat the entire procedure using a system center frequency of 2 GHz . Record, the signal-to-AM noise ratio.

65 dB down \qquad

4-23. RESIDUAL FM

SPECIFICATION:

In the FM X0.1 Mode, $<10 \mathrm{~Hz}$-rms average in a 300 Hz to 3 kHz post-detection band at center frequencies $<1300 \mathrm{MHz} ;<20 \mathrm{~Hz}-\mathrm{rms}$ average at center frequencies $\geqslant 1300 \mathrm{MHz}$.

PERFORMANCE TESTS

4-23. RESIDUAL FM (Cont'd)

DESCRIPTION:

The RF output of the synthesized signal generator in FM mode with no modulating signal applied is measured with a modulation analyzer and residual FM is read directly.

Figure 4-10. Residual FM Test Setup

EQUIPMENT:

Modulation Analyzer HP 8901A

PROCEDURE:

1. Set the synthesized signal generator to 1200.0 MHz , output level to +10 dBm , modulation mode to FM x 0.1 , and modulation source to external ac (leveled). There should be no input to the modulation section front panel connector. Turn the modulation level control full clockwise.
2. Measure FM using the modulation analyzer with 300 Hz high pass and 3 kHz low pass filters enabled. Reading (avg.) should be less than 10 Hz .

4-24. AMPLITUDE MODULATION DISTORTION

SPECIFICATION:

For center frequencies $<1300 \mathrm{MHz}$, AM distortion at $30 \% \mathrm{AM}$ is $<1 \%$, at $70 \% \mathrm{AM}$ is $<3 \%$, and at $90 \% \mathrm{AM}$ is $<5 \%$. For center frequencies $\geqslant 1300 \mathrm{MHz}, \mathrm{AM}$ distortion at 30% is $<5 \%$.

NOTES

1. The $A M$ distortion specification applies only at 400 and 1000 Hz rates, with a front panel meter indication of 0 to +3 dB , and at OUTPUT RANGE switch settings of $\leqslant 0 \mathrm{dBm}$. At a meter indication of -6 dB , the distortion approximately doubles. The modulating signal distortion must be $<0.3 \%$ for the system performance to meet the specifications.
2. If the signal generator system does not meet the $A M$ distortion specification, refer to the Systems Troubleshooting information in Section VIII (Service Sheet 1) in this manual.

PERFORMANCE TESTS

424. AMPLITUDE MODULATION DISTORTION (Cont'd)

DESCRIPTION:
The output of the synthesized signal generator is amplitude modulated. A modulation analyzer demodulates the output signal and distortion of the demodulated signal is measured.

Figure 4-11. Amplitude Modulation Distortion Test Setup

EQUIPMENT:

$$
\begin{aligned}
& \text { Modulation Analyzer HP 8901A } \\
& \text { Distortion Measurement Set HP 339A }
\end{aligned}
$$

PROCEDURE:

1. Connect the equipment as shown in Figure 4-11.
2. Set the synthesized signal generator center frequency to 1000.0 MHz , output level to -20 dBm and modulation mode to AM with external ac coupled source.
3. Set the distortion measurement set to 1000 Hz . If an 86632 or 86633 modulation section is being used, set the oscillator output level to 1.5 Vrms and adjust the modulation section level control to give a 30% reading on the meter. If an 86631 modulation section is being used, set the oscillator output level to 0.3 Vrms.
4. Set the modulation analyzer to AM mode. Use 50 Hz high pass and 15 kHz low pass post detection filters. Measure distortion of the modulation output signal. Distortion should be less than 1%.
5. Repeat the distortion measurement at AM modulation depths of 70% and 90% (oscillator output levels of 0.70 Vrms and 0.90 Vrms into an 86631). Distortion should be less than 3% and 5%, respectively.

PERFORMANCE TESTS

4-25. INCIDENTAL PHASE MODULATION

SPECIFICATION:

At $30 \% \mathrm{AM}<0.2$ radians at center frequencies $<1300 \mathrm{MHz},<0.4$ radians at center frequencies $\geqslant 1300 \mathrm{MHz}$.

DESCRIPTION:

The synthesized signal generator is amplitude modulated and incidental phase modulation is measured directly on the modulation analyzer.

Figure 4-12. Incidental Phase Modulation Test Setup

EQUIPMENT:

> Modulation Analyzer HP 8901A
> Test Oscillator HP 651B

PROCEDURE:

1. Connect the equipment as shown in Figure 4-12.
2. Set the synthesized signal generator to 500 MHz center frequency and -10 dBm output level.
3. Set the test oscillator frequency to 1000 Hz . If an 86632 or 86633 modulation section is used, set the test oscillator output level to 1.5 Vrms. Set the modulation mode to AM and modulation source to external dc. Adjust the modulation level control for a meter reading of 30%. If an 86631 auxiliary section is being used, set the test oscillator output level to 0.30 Vrms.
4. Measure phase modulation on the modulation analyzer with the 50 Hz high pass and 15 kHz low pass filters enabled. The reading should be less than 0.2 radians.

PERFORMANCE TESTS

4-26. FREQUENCY MODULATION DISTORTION

SPECIFICATION:

Total harmonic distortion for modulation rates up to $20 \mathrm{kHz},<1 \%$ up to 200 kHz peak deviation for center frequencies $<1300 \mathrm{MHz} ;<1 \%$ up to 400 kHz peak deviation for center frequencies $\geqslant 1300 \mathrm{MHz}$. Distortion from an external source must be $<0.3 \%$ to meet these specifications.

NOTES

1. In the FM mode, typical Residual FM in a 0.3 to 3 kHz audio bandwidth is $<15 \mathrm{~Hz}$ and may limit minimum Noise and Distortion measurement at deviations $<2 \mathrm{kHz}$ peak.
2. If the signal generator system does not meet the FM distortion specification, refer to the System's Troubleshooting information in Section VIII (Service Sheet 1) in this manual.

Typical FM Distortion Curve

DESCRIPTION:

The output of the synthesized signal generator is phase modulated. A modulation analyzer demodulates the signal generator output signal and distortion of the demodulated signal is measured.

Figure 4-1 3. Frequency Modulation Test Setup

PERFORMANCE TESTS

4-26. FREQUENCY MODULATION DISTORTION (Cont'd)

EQUIPMENT:

> Modulation Analyzer HP 8901A
> Distortion Measurement Set HP 339A

PROCEDURE:

1. Connect equipment as shown in Figure 4-13.
2. Set the synthesized signal generator center frequency to 500.0 MHz , output level to +7 dBm , modulation mode to $\mathrm{FM} \times 10$ ($\mathrm{FM} \times 1$ on 86633) and modulation source to external ac coupled.
3. Set the distortion measurement set to 10 kHz frequency and audio oscillator output level to 1.50 Vrms.
4. Adjust the modulation level control on the signal generator to give a modulation section meter reading of 200 kHz (100 kHz with a 86633 modulation section).
5. Set the modulation analyzer to FM mode. Use 50 Hz high pass and no low pass post-detection filters. Measure distortion of the modulation output signal. Distortion should be less than 1%.

4-27. INCIDENTAL AM

SPECIFICATION:
AM side bands $>60 \mathrm{~dB}$ down from carrier with FM peak deviation of 75 kHz at a 1 kHz rate.

DESCRIPTION:

The synthesized signal generator is frequency modulated and incidental AM is measured directly by the modulation analyzer.

Figure 4-14. Incidental AM Test Setup

PERFORMANCE TESTS

4-27. INCIDENTAL AM (Cont'd)

EQUIPMENT:

> Modulation Analyzer HP 8901A

PROCEDURE:

1. Connect the equipment as shown in Figure 4-14.
2. Set the synthesized signal generator to center frequency 100 MHz , output level +3 dBm , modulation mode FM x 1 and modulation source internal 1000. Adjust the modulation level control for a modulation section meter reading of 75 kHz .
3. Set the modulation analyzer to AM mode and enable the 50 Hz high pass and 15 kHz low pass filters. Reading should be less than 0.2%.

PERFORMANCE TESTS

4-28. SPURIOUS SIGNALS, NARROWBAND

SPECIFICATION:

At center frequencies $<1300 \mathrm{MHz}$ all narrowband non-harmonically related spurious signals in the CW, AM, and $\phi \mathrm{M}$ modes are:

80 dB down from carrier at frequencies $<700 \mathrm{MHz}$
80 dB down from carrier within 45 MHz of the carrier at frequencies $\geqslant 700 \mathrm{MHz}$
50 dB down from carrier on the +10 dBm range.
At center frequencies $\geqslant 1300 \mathrm{MHz}$ all narrowband non-harmonically related spurious signals in the CW, AM, and $\phi \mathrm{M}$ modes are:

74 dB down from carrier within 45 MHz of the carrier for output levels $\leqslant+3 \mathrm{dBm}$; slightly higher from +3 to +7 dBm .
ALL power line related spurious signals are 70 dB down from the carrier at center frequencies
$<1300 \mathrm{MHz} ; 64 \mathrm{~dB}$ down from the carrier at center frequencies $\geqslant 1300 \mathrm{MHz}$.

DESCRIPTION:

The outputs of two Synthesized Signal Generator Systems which use the same time base reference are mixed and the difference frequency is amplified and coupled to the wave analyzer. A reference level is established, various selected frequencies are then set on the two generator systems, and the spurious signal levels are measured.

Figure 4-15. Narrowband Spurious Signal Test Setup
EQUIPMENT:
Synthesized Signal Generator HP 8660C/86603A/86631B
Double Balanced Mixer Watkins-Johnson M1J
Wave Analyzer HP 3581A
40 dB Amplifier HP 08640-60506

PROCEDURE:

1. Connect the equipment as illustrated in Figure 4-15.
2. Connect the rear panel Reference Output (Reference System) to System Under Test rear panel Reference Input. Set the Reference Selector switch of the systems to internal and external respectively.
3. On reference system, set the center frequency to 500.001 MHz , the OUTPUT RANGE switch to +10 dBm , and adjust VERNIER control to a -3 dB meter reading.

PERFORMANCE TESTS

4-28. SPURIOUS SIGNALS, NARROWBAND (Cont'd)

4. On system under test, set mainframe center frequency to 500 MHz , Model 86603A OUTPUT RANGE switch to -80 dBm , and adjust VERNIER control to 0 dB indication on meter scale.
5. Set wave analyzer scale switch to 90 dB , amplitude reference to $-60, \mathrm{dBv}$ mode, resolution bandwidth 3 Hz , display smoothing to max, and AFC to on.
6. Set wave analyzer frequency control to 1 kHz and adjust the input sensitivity for a 0 dB indication on meter scale.
7. On system under test, set the OUTPUT RANGE switch to -10 dBm and adjust VERNIER to 0 dB indication on meter scale.
8. On reference system and system under test, set mainframe center frequency values to those listed in Table 4-2 below 1300 MHz and verify that levels of corresponding spurious signals are in accordance with specification. The corrected reading of spurious level relative to carrier is $70 \mathrm{~dB}-(\pm$ difference level), therefore a reading of -13 dB relative to the reference level (step 6) gives the spurious signal . level. $70 \mathrm{~dB}-(-13 \mathrm{~dB})=83 \mathrm{~dB}$ down.

NOTE

It may be necessary to slightly readjust the Wave Analyzer Frequency control to locate the spurious signal.

Table 4-1. Narrowband Spurious Signals Checks

System Under Test	Reference System	Level Measured (dB down)
100.280000 MHz	100.561000 MHz	80 dB
200.280000 MHz	200.561000 MHz	80 dB
409.720000 MHz	409.441000 MHz	80 dB
509.720000 MHz	509.441000 MHz	80 dB
1109.720000 MHz	1109.441000 MHz	80 dB
1209.720000 MHz	1209.441000 MHz	80 dB
2400.000000 MHz	2400.101000 MHz	74 dB
2400.000000 MHz	2400.201000 MHz	74 dB
2400.000000 MHz	2400.301000 MHz	74 dB
2400.000000 MHz	2400.401000 MHz	74 dB

9. Repeat steps 3 and 7 with a reference system center frequency of 2400.001 MHz and a System Under Test center frequency of 2400 MHz .
10. Repeat step 8 using the center frequencies $\geqslant 1300 \mathrm{MHz}$ as shown in Table 4-2.

PERFORMANCE TESTS

4-29. SPURIOUS SIGNALS, WIDEBAND

SPECIFICATION:

At center frequencies $<1300 \mathrm{MHz}$, all wideband non-harmonically related spurious signals in the CW, AM, and $\phi \mathrm{M}$ modes are:

80 dB down from carrier at frequencies $<700 \mathrm{MHz}$
70 dB down from carrier $>45 \mathrm{MHz}$ from carrier at frequencies $\geqslant 700 \mathrm{MHz}$
50 dB down from carrier on the +10 dBm range.
At center frequencies $\geqslant 1300 \mathrm{MHz}$ all wideband non-harmonically related spurious signals in the CW, AM, and $\phi \mathrm{M}$ modes are:

64 dB down from carrier $>45 \mathrm{MHz}$ from carrier for output levels $\leqslant+3 \mathrm{dBm}$; slightly higher from +3 to +7 dBm .

DESCRIPTION:

The RF OUTPUT of the Synthesized Signal Generator System is monitored by a spectrum analyzer after being passed through a 2200 MHz lowpass filter. Selected signals which fall within the specified range are measured.

Figure 4-16. Wideband Spurious Signal Test Setup

EQUIPMENT:

Spectrum Analyzer HP 8555A/8552B/140T
Low Pass Filter (2200 MHz) HP 360C

PROCEDURE:

1. Connect equipment as illustrated in Figure 4-16.
2. With Model 86603A OUTPUT RANGE switch set to +10 dBm and VERNIER control adjusted for 0 dB meter indication, set mainframe center frequency to those values listed in Table 4-3 below 1300 MHz and adjust the Spectrum Analyzer to measure corresponding spurious signal level relative to the carrier.
3. Remove the low pass filter and set the RF Section output level to $+3 \mathrm{dBm}(0 \mathrm{dBm}$ range).
4. Set the System Center Frequency to those values listed in Table $4-3$ above 1300 MHz . Adjust the spectrum analyzer controls to measure the spurious signals relative to the carrier.

PERFORMANCE TESTS

4-29. SPURIOUS SIGNALS, WIDEBAIND (Cont'd)

Table 4-2. Wideband Spurious Signals Checks

Mainframe Frequency	Spurious Frequency	Level Measured
1299.9 MHz	150 MHz 1150 MHz 1450 MHz	50 dB down 50 dB down 50 dB down 1000 MHz 999.9 MHz950 MHz 1050 MHz
950 MHz 1050 MHz	50 dB down 50 dB down 800.0 MHz 799.9 MHz down 2000 MH down 1999.9 MHz	750 MHz 850 MHz

4-30. PHASE MODULATION PEAK DEVIATION TEST

SPECIFICATION:

0 to 100 degrees peak at center frequencies $<1300 \mathrm{MHz}$. May be overdriven to 2 radians (115°) in Modulation Section external dc mode. 0 to 200 degrees peak at center frequencies $\geqslant 1300 \mathrm{MHz}$. May be overdriven to 2 radians (230°) in Modulation Section external dc mode.

NOTE
To check Phase Modulation peak deviation, refer to Section IV of the appropriate Modulation Section Operating and Service Manual.

4-31A. PHASE MODULATION DISTORTION

SPECIFICATION:

$<5 \%$ up to 1 MHz rates
$<7 \%$ up to 5 MHz rates
$<15 \%$ up to 10 MHz rates
Modulation distortion from an external source must be less than 0.3% to meet these specifications.

PERFORMANCE TESTS

4-31A. PHASE MODULATION DISTORTION (Cont'd)

NOTES

1. Using this procedure, the proof of performance for phase modulation distortion is valid only when the HP Model 86635A Modulation Section is being used in the signal generator system. The change in distortion level from the 20 Hz rate, as used in this procedure, to the maximum 1 MHz rate is minimal. This procedure is, however, not a complete check for the Model 86634A which can use modulation rates up to 10 MHz .
2. If the signal generator system does not meet the ϕM distortion specification, refer to the Systems Troubleshooting information in Section VIII (Service Sheet 1) in this manual.

DESCRIPTION:

The output of the synthesized signal generator is frequency modulated. A modulation analyzer demodulates the signal generator output signal and distortion of the demodulated signal is measured.

Figure 4-17A. Phase Modulation Distortion Test Setup
EQUIPMENT:
Modulation Analyzer HP 8901A
Distortion Measurement Set HP 339A

PROCEDURE:

1. Connect equipment as shown in Figure 4-17A
2. Set the synthesized signal generator center frequency to 10.0 MHz , output level to +3 dBm , modulation mode to $\Phi \mathrm{M}$, and modulation source to external ac.
3. Set the distortion measurement set to 200 Hz and audio oscillator output level to 1.50 Vrms.
4. Adjust the modulation level control on the signal generator to give a modulation section meter reading of 100°.
5. Set the modulation analyzer to $\Phi \mathrm{M}$ mode. Use 50 Hz high pass and 15 kHz low pass post detection filters. Measure distortion of the modulation output signal. Distortion should be less than 5%.

PERFORMANCE TESTS

4-31B. PHASE MODULATION DISTORTION - ALTERNATE PROCEDURE

SPECIFICATION:

$<5 \%$ up to 1 MHz rates
$<7 \%$ up to 5 MHz rates
$<15 \%$ up to 10 MHz rates

NOTES

1. The HP Model 86635A Modulation Section has a maximum specified phase modulation rate of 1 MHz . Therefore, only the $<5 \%$ distortion specification is applicable. Because the maximum modulation rate of the Model 86634 A is 10 MHz , all the specified distortion levels apply.
2. If the signal generator system does not meet the ϕM distortion specification, refer to the Systems Troubleshooting information in Section VIII (Service Sheet 1) in this manual.

DESCRIPTION:

The phase modulated output of the System Under Test is demodulated using a phase modulation test set. The harmonic levels are measured with a spectrum analyzer and the total harmonic distortion is calculated. A low pass filter is used between test oscillator and modulation section to insure that the modulation drive signal has less than 0.3% distortion.

Figure 4-17B. Phase Modulation Distortion Test Setup (Alternate Procedure)

[^4]
PERFORMANCE TESTS

4-31B. PHASE MODULATION DISTORTION - ALTERNATE PROCEDURE (Cont'd)

EQUIPMENT:

PROCEDURE:

1. Set the Test Oscillator to 1 MHz , connect a 1 MHz low pass filter (50 ohm for $86634 \mathrm{~A}, 600 \mathrm{ohm}$ for 86635A) to appropriate test oscillator output and adjust for 1.7 Vrms output. Connect the rest of the equipment as shown in Figure 4-17B.
2. Set the system under test for 300 MHz center frequency and +3 dBm output (0 dBm range). Connect the RF output jack directly to the RF input of the phase modulation test set.
3. Set the system under test controls for $\phi \mathrm{M}$ with a modulation level of 100° peak deviation.
4. View the signal generator output on the spectrum analyzer display. Record the level of the second and third harmonics of the demodulated output signal with respect to the fundamental.
5. Use Table 4-1 to obtain power ratios of the harmonics. Then use Table $4-1$ to find the dB level corresponding to sum of the two ratios. The resultant level should be $<5 \%$ or $\geqslant 26 \mathrm{~dB}$ down.

$$
\begin{aligned}
& \text { 86634A } 26 \mathrm{~dB} \text { down } \\
& \text { 86635 } 26 \mathrm{~dB} \text { down }
\end{aligned}
$$

6. Set the center frequency of the system under test to 299.9 MHz .
7. Set the test oscillator to $1 \mathrm{MHz}(10 \mathrm{MHz})$, connect the $1 \mathrm{MHz}(10 \mathrm{MHz})$ low pass filter to the appropriate oscillator output (50 or 600Ω) and adjust for an output of 1.7 Vrms.
8. Repeat steps 3, 4 and 5. Total harmonic distortion should be $<5 \%$ or $\geqslant 26 \mathrm{~dB}$ down ($<15 \%$ or $\geqslant 16.5 \mathrm{~dB}$ down).

86634A 16.5 dB down \qquad
86635A 26 dB down \qquad
9. Set the center frequency of the system under test to 1900 MHz . Connect the mixer and the reference system as shown in Figure 4-16B.
10. Set the reference system center frequency to 1600 MHz with an RF output level of +7 dBm .
11. Increase the RF output level of the system under test (if necessary) until the phase modulation test set phase locks.

PERFORMANCE TESTS

4-31B. PHASE MODULATION DISTORTION - ALTERNATE PROCEDURE (Cont'd)

12. Set the test oscillator frequency to $1 \mathrm{MHz}(5 \mathrm{MHz})$. Connect the $1 \mathrm{MHz}(5 \mathrm{MHz})$ low pass filter (50 or 600Ω) to the oscillator output. Adjust the test oscillator output level to 1.7 Vrms . Set the system under test modulation level to 200° peak deviation.
13. Repeat steps 3,4 and 5. Total harmonic distortion should be $<5 \%$ or $\geqslant 26 \mathrm{~dB}$ down ($<7 \%$ or $\geqslant 23.1 \mathrm{~dB}$ down).

86634A 23.1 dB down \qquad
86635A 26 dB down \qquad

Table 4-3. Performance Test Record (1 of 7)

Table 4-3. Performance Test Record (2 of 7)

Para. No.	Test	Results		
		Min.	Actual	Max.
4-13A.	OUTPUT ACCURACY OUTPUT RANGE Front Panel Meter Reading	$+7.5 \mathrm{dBm}$ $+4.5 \mathrm{dBm}$ $+1.5 \mathrm{dBm}$ $-8.5 \mathrm{dBm}$ $-5.5 \mathrm{dBm}$ $-2.5 \mathrm{dBm}$ $+0.5 \mathrm{dBm}$ $-9.5 \mathrm{dBm}$ $-19.5 \mathrm{dBm}$ $-29.5 \mathrm{dBm}$ $-39.5 \mathrm{dBm}$ $-49.5 \mathrm{dBm}$ $-59.5 \mathrm{dBm}$ $-69.5 \mathrm{dBm}$ $-80.5 \mathrm{dBm}$ $-90.5 \mathrm{dBm}$ $-100.5 \mathrm{dBm}$ $-110.5 \mathrm{dBm}$ $-120.5 \mathrm{dBm}$ $-130.5 \mathrm{dBm}$		$+12.5 \mathrm{dBm}$ $+9.5 \mathrm{dBm}$ $+6.5 \mathrm{dBm}$ $-3.5 \mathrm{dBm}$ $-0.5 \mathrm{dBm}$ $+2.5 \mathrm{dBm}$ $+5.5 \mathrm{dBm}$ $-4.5 \mathrm{dBm}$ $-14.5 \mathrm{dBm}$ $-24.5 \mathrm{dBm}$ $-34.5 \mathrm{dBm}$ $-44.5 \mathrm{dBm}$ $-54.5 \mathrm{dBm}$ $-64.5 \mathrm{dBm}$ $-73.5 \mathrm{dBm}$ $-83.5 \mathrm{dBm}$ $-93.5 \mathrm{dBm}$ $-103.5 \mathrm{dBm}$ $-113.5 \mathrm{dBm}$ $-123.5 \mathrm{dBm}$
4-13B.	OUTPUT ACCURACY - ALTERNATE PROCEDURE OUTPUT RANGE Front Panel Meter Reading Level change from the -70 to -80 dBm OUTPUT RANGE	$\begin{array}{r} 7.5 \mathrm{dBm} \\ 4.5 \mathrm{dBm} \\ 1.5 \mathrm{dBm} \\ -8.5 \mathrm{dBm} \\ -5.5 \mathrm{dBm} \\ -2.5 \mathrm{dBm} \\ 0.5 \mathrm{dBm} \\ -9.5 \mathrm{dBm} \\ -19.5 \mathrm{dBm} \\ -29.5 \mathrm{dBm} \\ -39.5 \mathrm{dBm} \\ -49.5 \mathrm{dBm} \\ -59.5 \mathrm{dBm} \\ \hline \end{array}$		12.5 dBm 9.5 dBm 6.5 dBm -3.5 dBm -0.5 dBm 2.5 dBm 5.5 dBm -4.5 dBm -14.5 dBm -24.5 dBm -34.5 dBm -44.5 dBm -54.5 dBm -64.5 dBm -73.5 dBm

*Output accuracy above +3 dBm is only specified below 1300 MHz .

Table 4-3. Performance Test Record (3 of 7)

Para. No.	Test	Results		
		Min.	Actual	Max.
4-14.	OUTPUT FLATNESS Reference level is -2.0 dBm at 1500 MHz . $\begin{aligned} & 1 \mathrm{MHz} \\ & 10 \mathrm{MHz} \\ & 100 \mathrm{MHz} \\ & 500 \mathrm{MHz} \\ & 1000 \mathrm{MHz} \\ & 1299 \mathrm{MHz} \\ & 2000 \mathrm{MHz} \\ & 2599 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & -4.0 \mathrm{dBm} \\ & -4.0 \mathrm{dBm} \end{aligned}$	च Z \square \square	0.0 dBm 0.0 dBm
4-15.	HARMONIC SIGNALS OUTPUT RANGE $=+10 \mathrm{dBm}$ Step 51299 MHz Second Harmonic Third Harmonic Step 61000 MHz Second Harmonic Third Harmonic Step 6500 MHz Second Harmonic Third Harmonic Step $6 \quad 100 \mathrm{MHz}$ Second Harmonic Third Harmonic Step $6 \quad 10 \mathrm{MHz}$ Second Harmonic Third Harmonic OUTPUT RANGE $=0 \mathrm{dBm}$ Step $7 \quad 100 \mathrm{MHz}$ Second Harmonic Third Harmonic Step $9 \quad 1400 \mathrm{MHz}$ Second Harmonic Third Harmonic Step $10 \quad 2500 \mathrm{MHz}$ Second Harmonic Third Harmonic Step 10 - Sub-Harmonics \& Multiples $1400 \mathrm{MHz} \mathrm{f} / 2$ 3f/2 $2500 \mathrm{MHz} \mathrm{f} / 2$ 3f/2	25 dB down 25 dB down 30 dB down 30 dB down 20 dB down 20 dB down 20 dB down		

Table 4-3. Performance Test Record (4 of 7)

Table 4-3. Performance Test Record (5 of 7)

Para. No.	Test	Results		
		Min.	Actual	Max,
4-20.	OUTPUT IMPEDANCE Center Frequency 500 MHz OUTPUT RANGE +10 dBm $\mathrm{dB}=20 \log (\mathrm{VSWR})$ $\mathrm{dB}=6$ for VSWR $=2.0$ OUTPUT RANGE 0 dBm $\mathrm{dB}=6$ for $\mathrm{VSWR}=2.0$ OUTPUT RANGE -10 dBm $\mathrm{dB}=2.3$ for $\mathrm{VSWR}=1.3$			$\begin{aligned} & 6 \mathrm{~dB} \\ & 6 \mathrm{~dB} \\ & 2.3 \mathrm{~dB} \end{aligned}$
4-21.	SIGNAL-TO-PHASE NOISE RATIO Step 9 Noise Level Step 17 Noise Level	45 dB down 39 dB down		
4-22.	SIGNAL-TO-AM NOISE RATIO Step 10 Noise Level Step 11 Noise Level	65 dB down 65 dB down		
4-23.	RESIDUAL FM Center frequencies $<1300 \mathrm{MHz}<10 \mathrm{~Hz}$-rms average			
4-24.	AMPLITUDE MODULATION DISTORTION Center frequencies $<1300 \mathrm{MHz}$ 30% AM Total Distortion ($<1 \%$) 70% AM Total Distortion ($<3 \%$) 90% AM Total Distortion ($<5 \%$)			1\% 3% 5\%
4-25.	INCIDENTAL PHASE MODULATION <0.2 radians-pk $\left(11.5^{\circ} \mathrm{pk}\right)<1300 \mathrm{MHz}$		-	$11.5^{\circ} \mathrm{pk}$
4-26.	FREQUENCY MODULATION DISTORTION Total Distortion < 1%			1\%
4-27.	INCIDENTAL AM Incidental AM		-	0.2\%

Table 4-3. Performance Test Record (6 of 7)

Para. No.	Test	Results		
		Min.	Actual	Max.
4-28.	SPURIOUS SIGNALS, NARROWBAND (All spurious signals down from carrier 80 dB minimum) Step 8 Spurious Response	80 dB down 74 dB down 74 dB down 74 dB down 74 dB down		
4-29.	SPURIOUS SIGNALS, WIDEBAND (All spurious signals down from carrier 50 dB , minimum.)	50 dB down 64 dB down 64 dB down 64 dB down 64 dB down		
4-31A.	PHASE MODULATION DISTORTION Distortion $(<5 \%) \leqslant 1 \mathrm{MHz}$ rate	<5\%		

Table 4-3. Performance Test Record (7 of 7)

SECTION V
 ADJUSTMIENTS

5-1. INTRODUCTION

5-2. This section contains adjustment procedures required to assure peak performance of the Model 86603A RF Section. The RF Section should be adjusted after any repair or if the unit, in conjunction with the Frequency Extension Module, fails to meet the specifications listed in Section IV of this manual. Prior to making any adjustments, allow the RF Section to warmup for 30 minutes.
$5-3$. The order in which some adjustments are made to the RF Section is critical. Perform the adjustments under the conditions presented in this section. Do not attempt to make adjustments randomly to the instrument. Prior to making any adjustments to the RF Section, refer to the paragraph entitled Related Adjustments.

5-4. EQUIPMENT REQUIRED

5-5. Each adjustment procedure in this section contains a list of test equipment and accessories required to perform the adjustment. The test equipment is also identified by callouts in the test setup diagrams included with each procedure.

5-6. If substitutions must be made for the specified test equipment, refer to Table 1-3 for the minimum specifications of the test equipment to be used in the adjustment procedures. Since the Synthesized Signal Generator System is extremely accurate, it is particularly important that the test equipment used in the adjustment procedures meets the critical specifications listed in the table.

5-7. The HP 11672A Service Kit is an accessory item available from Hewlett-Packard for use in maintaining the RF Section. A detailed listing of the items contained in the service kit is provided in the 11672 A Operating Note and in Section I of the mainframe manuals. Any item in the kit may be ordered separately.

5-8. SAFETY CONSIDERATIONS

5-9. Although this instrument has been designed in accordance with international safety standards, this manual and the system mainframe manual contain information, cautions, and warnings which must be followed to ensure safe operation and to retain the complete system in safe condition. Service adjustments should be performed only by qualified service personnel.

NOTE

Refer to the mainframe manual for safety information relating to ac line (Mains) voltage, fuses, protective earth grounding, etc.
$5-10$. Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved.

5-11. Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

WARNING

Adjustments described herein are performed with power supplied to the instrument while protective covers are removed. Energy available at many points may constitute a shock hazard.

5-12. FACTORY SELECTED COMPONENTS

5-13. Factory selected components are identified on the schematics and parts list by an asterisk which follows the reference designator. The normal value of the components are shown. The manual change sheets will provide updated information pertaining to the selected components. Table 5-1 lists the reference designator, the criterion used for selecting a particular value, the normal value range, and the service sheet where the component part is shown.

5-14. RELATED ADJUSTMENTS

5-15. The RF Output Level and 1 dB Step Attenuator Adjustments interact. The Amplitude Modulation Input Circuit Adjustment is dependent on and should be performed after the previously mentioned Adjustments. The Phase Modulation Level and Distortion Adjustment is affected by and should be performed after the Phase Modulator Driver Frequency Response Adjustment. All other adjustments are independent.

5-16. If the RF Output Level Adjustment is performed, the 1 dB Step Attenuator Adjustment should follow immediately. Repeat these procedures until the RF levels are within the stated limits without further adjustment. Then perform the Amplitude Modulation Input Circuit Adjustment. If the Phase Modulator Driver Frequency Response Adjustment is performed, the Phase Modulation

Level and Distortion Adjustment should be performed.

5-17. If the RF Output Level and 1 dB Step Attenuator Adjustments are not performed, the Amplitude Modulation Input Circuit Adjustment may be considered independent. If the Phase Modulator Driver Frequency Response Adjustment is not performed, the Phase Modulation Level and Distortion Adjustment may be considered independent.

If the RF Section is reinserted into the mainframe for adjustments, the mainframe top and/or right side covers must be removed. Refer to the lefthand foldout page immediately preceding the last foldout in this manual for procedures explaining how to remove the RF Section from the mainframe, the RF Section cover removal, and how to interconnect the RF Section and mainframe for adjustments.

Table 5-1. Factory Selected Components

Reference Designator	Selected For	Normal Value or Range	Service Sheet
A4R17	Accurately set the 10 dB difference in the power output between OUTPUT RANGE switch settings of +10 and 0 dBm (the VERNIER control is not moved). Increasing the values will increase the difference.	237Ω	6
A16R5	Sets the adjustment range of the Gain Tracking Control A16R4. Refer to the Phase Modulator Driver Adjustments Procedure.	10-316,	5
A21R26	Sets offset current level for A21U7 so that fine tune adjustments will have full travel.	$100 \mathrm{~K}-300 \mathrm{~K} \Omega$	10
A21R36	Limits current in R1, R2, and R3 of the 50 MHz High Pass Filter. Measure the voltage (Vdc) to ground at the junction of A7L1 and A7C1. If $\mathrm{Vdc} \leqslant 11.0$, no resistor is needed. If $11.0<\mathrm{Vdc}<14.0$, select a 1.96 K resistor. If $\mathrm{Vdc} \geqslant 14.0$, select a 1.0 K resistor.	None to $1.96 \mathrm{~K} \Omega$	10

CAUTION

The Model 86603A RF Section, when used with early model mainframes, has -32 Vdc exposed on the A20 Assembly and on O 1 whenever the mainframe LINE switch is set to STBY. During adjustment and maintenance, do not contact these parts with metal tools. Damage can occur to the mainframe power supply, the A20 Assembly and/or Q1. Models 8660A and 8660C with serial prefixes 1508A and below, and all 8660B's have this characteristic.

NOTE

It may be necessary to remove the upper guide rail to gain access to some of the adjustable components.

5-18. ADJUSTMENT LOCATIONS

5-19. The last foldout in this manual contains a table which cross-references all pictorial and schematic locations of the adjustable controls. The figure accompanying the table shows the locations of adjustable controls, assemblies, and chassismounted parts.

5-20. ADJUSTMENTS

5-21. Before performing the adjustment procedures (1) disconnect the mainframe (Mains) Power Cable, (2) remove the RF Section from the mainframe, and (3) remove the RF Section covers. At this point, the RF Section is either reinserted into the mainframe of connected to the mainframe with interconnection cables supplied in the Service Kit.

5-22. POST ADJUSTMENT TESTS

5-23. After adjustments are performed verify that the system performance is within the parameters specified for the RF Section and Frequency Extension Module. Perform the applicable performance test(s) found in Section IV.

WARNING

The multi-pin plug connector (on mainframe), which provides interconnection to the RF Section, will expose power supply voltages which may remain on the pins after the RF Section is removed and after the (Mains) power cable is disconnected from the mainframe. Be careful to avoid contact with the pins during interconnection with the RF Section.

ADJUSTMENTS

5-24. RF OUTPUT LEVEL ADJUSTMENT

REFERENCE:

Service Sheet 6.

DESCRIPTION:

The Meter and Detector Bias controls are adjusted alternately at specific RF Output levels until the VERNIER'S control of the RF Output is linear across the control range.

Figure 5-1. RF Output Level Adjustment Test Setup

EQUIPMENT:

Power Meter/Sensor HP 435A/8481A
PROCEDURE:

NOTE

Prior to performing the procedure, clean the meter face with antistatic glass cleaner.*

1. Extract the RF Section from the mainframe. Remove the mainframe top cover and the RF Section covers. Insert the RF Section into the mainframe.
2. Zero the external Power Meter.
3. Interconnect the equipment as illustrated in Figure 5-1.
4. Set the system center frequency to 1000 MHz and the OUTPUT RANGE switch to the 0 dBm position.
5. Adjust the VERNIER control for a +3.5 dBm indication on the external Power Meter.
6. Adjust the MTR potentiometer A4R26 for a +3.0 dB indication on the front panel meter.
7. Adjust the VERNIER control for a front panel meter indication of -6.0 dB .
8. Adjust the BIAS potentiometer A4R13 for a -5.5 dBm indication on external Power Meter.
9. Repeat steps 5 through 8 until the RF Section's front panel meter indicates power levels that are within $\pm 0.3 \mathrm{~dB}$ of the external Power Meter indication with no further adjustment.

5-24. RF OUTPUT LEVEL ADJUSTMENT (Cont'd)

NOTE

The output level is offset by 0.5 dB in this prodedure. This ensures the output level is centered on the selected value over the entire frequency range.

5-25. 1 dB STEP ATTENUATOR ADJUSTMENT

REFERENCE:

Service Sheet 8.

DESCRIPTION:

RF Level and RF Linearity controls are adjusted alternately at specific RF Output levels until the programmed 1 dB step control of RF Output is linear across the range (10 dB).

Figure 5-2. 1 dB Step Attenuator Adjustment Test Setup

EQUIPMENT:

> Marked Card Programmer Power Meter/Sensor HP 3260A Opt 001 P HP 435A/8481A

PROCEDURE:

1. Connect the equipment as illustrated in Figure 5-2.
2. Zero the external Power Meter.
3. Use a Marked Card Programmer to program the mainframe for a center frequency of 1000 MHz and the RF Section for an output power level of +3 dBm .
4. Adjust the RF Section's RF Level Control A10R7 for a +3.5 dBm indication on power meter.
5. Use the Marked Card Programmer to program the RF Section for an output power level of -6 dBm .
6. Adjust the Linearity control A3R4 for a -5.5 dBm indication on the power meter.
7. Repeat steps 3 through 6 until the programmed output power levels are within $\pm 0.3 \mathrm{~dB}$ of the required power meter indication.
8. Recheck the power meter readings for the RF Output Level Adjustments. If necessary, perform the adjustments again. Then check the power meter readings for this procedure. Alternately perform one procedure and check the power meter readings on the other until the RF levels are within tolerance without further adjustment.

5-25. 1 dB STEP ATTENUATOR ADJUSTMENT (Cont'd)

9. Perform the Amplitude Modulation Input Circuit Adjustments.

5-26. AMPLITUDE MODULATION INPUT CIRCUIT ADJUSTMENT

REFERENCE:

Service Sheet 8.

DESCRIPTION:

A specific modulation drive level is coupled to the RF Section. The RF output signal is demodulated by a peak detector in a spectrum analyzer (when the frequency-span width is set to zero). The ac and dc components are measured with a voltmeter at the detector (vertical) output. First, the dc component is set to -283 mVdc plus the detector offset correction. Then, the ac component is measured. The AM level (\%) is $1 / 2$ (one half) the rms output.

Because of the required measurement accuracy, the accuracy of the spectrum analyzer's detector offset must be known to $\pm 2 \mathrm{mVdc}$. The offset voltage is calculated by measuring the change in the detector output for a change in the RF input and assuming a linear detector over the range of the levels used.

Figure 5-3. Amplitude Modulation Input Circuit Adjustment Test Setup

EQUIPMENT:

ADJUSTMENTS

5-26. AMPLITUDE MODULATION INPUT CIRCUIT ADJUSTIMENT (Cont‘d)

PROCEDURE:

1. Remove the RF Section from the mainframe. Remove the mainframe top cover and the RF Section covers. Insert the RF Section into the mainframe.
2. Connect the equipment as shown in Figure 5-3.
3. Set the synthesized signal generator controls as follows: center frequency 30 MHz , OUTPUT RANGE 0 dBm , VERNIER control for a panel meter reading of +3 dB , and $A M$ off.
4. Let the spectrum analyzer warm up for 1 hour to minimize drift of the spectrum analyzer detector output. Set the 10 dB attenuator to 10 dB attenuation.
5. Set the spectrum analyzer center frequency to 30 MHz , frequency span per division 5 MHz , resolution bandwidth 300 kHz ; input attenuation to 20 dB , and vertical sensitivity per division 10 dB . Adjust the center frequency control to center the display. Set the frequency span to zero and tune to peak the trace.

NOTE

Throughout this test, continually check that the signal is peaked for maximum deflection. Tune the center frequency control for maximum signal deflection.
6. Set the vertical scale to linear and adjust the reference level vernier for a digital voltmeter reading of -200 mVdc .
7. Set the 10 dB step attenuator to 0 dB and record the digital voltmeter reading.
\qquad mVdc
8. Set the 10 dB step attenuator to 20 dB and record the digital voltmeter reading.
mVdc
9. Calculate the offset voltage using the following formula:

$$
\mathrm{V}_{\mathrm{off}}=\frac{\mathrm{mVdc}+200 \alpha}{1-\alpha}
$$

where
$\mathrm{V}_{\text {off }}$ is the offset voltage in millivolts mVdc is the DVM reading in millivolts. α is 3.16 (step 7) and 0.316 (step 8).
For example:

$$
\mathrm{mVdc}=-687 \text { in step } 7
$$

therefore $\quad \mathrm{V}_{\text {off }}=\frac{-687+200(3.16)}{1-(3.16)}=+25.5 \mathrm{mVdc}$
10. Find the value of $\mathrm{V}_{\text {off }}$ for step 8 . The difference between the two should be $<4 \mathrm{mVdc}$. Use the average value of $V_{\text {off }}$.

11. Set the 10 dB step attenuator to 10 dB .

ADJUSTMENTS

5-26. AMPLITUDE MODULATION INPUT CIRCUIT ADJUSTMENT (Cont‘d)

12. Set the system center frequency to 1000 MHz , the modulation mode to AM , the modulation source to external, and a modulation level of 50% (0.5 Vrms input to an Auxiliary Section) at a 1 kHz rate.
13. Set the spectrum analyzer center frequency control to 1000 MHz , and set the reference level vernier for a digital voltmeter reading of $-283 \mathrm{mVdc}+\mathrm{V}_{\text {off }}$. See Step 10.
14. Set the DVM controls to measure the peak detector's ac component. The modulation level (\%) is $1 / 2$ (one-half) the DVM reading (Vrms). Adjust the AM CAL Control A10R5 for a reading of 100 mVrms .
15. Set the RF Section's VERNIER control for a front panel meter reading of -6 dB .
16. Set the DVM to monitor the dc vertical output. Reset the DVM reading of $-283 \mathrm{mVdc}+\mathrm{V}_{\text {off }}$.
17. Set the DVM to monitor the ac vertical output. Adjust the AM Linearity control A10R2 for a DVM reading of 100 mVrms .
18. Repeat steps 13 through 17 until the DVM reading is $100 \pm 2 \mathrm{mVrms}$ at RF Section meter readings of +3 and -6 dB without further adjustment.

5-27. DOUBLER POWER SUPPLY ADJUSTMENT

REFERENCE:

Service Sheet 12.
DESCRIPTION:
A digital voltmeter monitors the output while the DOUBLER VOLTAGE control is adjusted for the correct output voltage.

Figure 5-4. Doubler Power Supply Adjustment Test Setup

EQUIPMENT:

Digital Voltmeter
HP 3466A

PROCEDURE:

1. Remove the RF Section from the mainframe. Remove the mainframe top cover and the RF Section covers. Insert the RF Section into the mainframe.
2. Connect the digital Voltmeter probe to A20TP1.
3. Set the system center frequency $\geqslant 1300 \mathrm{MHz}$.
4. Adjust the DOUBLER VOLTAGE control (A20R7) for an indication of $+22.0 \pm 0.1 \mathrm{Vdc}$.

ADJUSTMENTS

5-28. FILTER DRIVER ASSEMBLY ADJUSTMENT

REFERENCE:

Service Sheet 10.
DESCRIPTION:
A Digital Voltmeter is used to monitor the Filter Driver Assembly output. Adjustable pretune controls are set for specified output voltages at specific center frequencies.

Figure 5-5. Filter Driver Assembly Adjustment Test Setup

EQUIPMENT:

| Digital Voltmeter | . | . | . | . | . | . | HP 3466A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Extender Cables HP 11672-60001 (Part of | | | | | | | |
| | | | | | | | |

PROCEDURE:

1. Remove the RF Section from the mainframe. Remove the RF Section covers.
2. Connect the equipment as shown in Figure 5-5.
3. Set the mainframe center frequencies and adjust the pretune controls to the correct output voltage at A21TP1 as shown in Table 5-2.

ADJUSTMENTS

5-28. FILTER DRIVER ASSEMBLY ADJUSTMIENT (Cont'd)

Table 5-2. Center Frequency versus Filter Driver Output

Center Frequency (MHz)	Pretune Control	A21TP1 (Vdc)	
		Min.	Max.
1300	A21R7	-0.19	-0.23
2599	A21R13	-33.0	-37.0
1300	A21R7	-0.19	-0.23
1400	A21R1	-0.50	-0.70
1600	A21R2	-3.6	-2.0
1800	A21R3	-3.4	-4.2
2000	A21R4	-5.8	-6.9
2200	A21R5	-9.5	-10.5
2400	A21R6	-17.5	-19.5
1500	A21R8	-1.0	-1.2
1700	A21R9	-2.5	-2.9
1900	A21R10	-4.5	-5.5
2100	A21R11	-7.5	-8.5
2300	A21R12	-12.3	-13.7

5-29. PHASE MODULATOR DRIVER FREQUENCY RESPONSE ADJUSTMIENTS

REFERENCE:

Service Sheet 5

DESCRIPTION:

The output of a sweep generator is connected to the A16 Phase Modulator Driver Assembly input while a spectrum analyzer monitors the system's phase modulated RF output. The frequency response control is adjusted for maximum flatness to $\pm 40 \mathrm{MHz}$ and for minimum peaking at 80 MHz .

Figure 5-6. Phase Modulator Driver Frequency Response Adjustment Test Setup

5-29. PHASE MODULATOR DRIVER FREQUENCY RESPONSE ADJUSTMENTS (Cont'd)

EQUIPMENT:

$$
\begin{aligned}
& \text { Sweep Generator . } . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ H P ~ 8601 A ~ \\
& \text { Spectrum Analyzer HP } 8555 \mathrm{~A} / 8552 \mathrm{~B} / 140 \mathrm{~T} \\
& \text { Digital Voltmeter }
\end{aligned}
$$

PROCEDURE:

1. Remove the RF Section from the mainframe. Remove the mainframe top cover and the RF Section covers and top guide rail.
2. Remove cable W 12 from the $\phi \mathrm{M}$ Input A 16 J 1 and wrap the connector with insulating tape. Connect 11672-60005 (from the Service Kit) to A16J1. Route the BNC end of cable into the cavity and out through the top of the mainframe. Carefully reinstall the RF Section so as not to damage the cables.
3. Set the sweep generator controls as follows: sweep range to 110 MHz , frequency to 100 MHz , output level to -10 dBm , sweep the video, sweep mode to free-slow, and sweep vernier fully clockwise.
4. Connect the equipment as shown in Figure 5-6.
5. Set the synthesized signal generator controls for a center frequency of 1.05 GHz and an output level of 0 dBm .
6. On the spectrum analyzer, set the controls for center frequency of 1.05 GHz , frequency span per division of 20 MHz , resolution bandwidth to 300 kHz , input attenuation of 30 dB , vertical sensitivity per division linear, and sweep time per division at 2 ms .
7. On the RF section, center the Gain Tracking Adj control (A16R27).
8. Set the Second Harmonic Adj control for +7.0 Vdc on A16TP2.
9. Remove the DVM connection to A16TP2.
10. Set the Third Harmonic control (A16R1) and the Gain Adj control (A16R2) to fully counterclockwise positions.
11. Adjust the sweep generator output level until the sidebands are approximately 34 dB below the carrier level.
12. Adjust the Frequency Response Control (A16C7) for maximum flatness within 40 MHz of the carrier and for minimum peaking at frequencies from 60 to 80 MHz .
13. Disconnect the sweep generator from the A16 Assembly. On the signal generator, set the LINE switch to STBY.
14. Carefully remove the RF Section as damage to the cables could occur. Reconnect W12 to A16J1.

5-30A. PHASE MODULATION LEVEL AND DISTORTION ADJUSTMENTS

REFERENCE:

Service Sheet 5.

DESCRIPTION:

The phase modulated signal from the synthesized signal generator is monitored by a spectrum analyzer and is adjusted to the modulation level indicated by the modulation level meter. The phase modulated signal is then demodulated by the modulation analyzer and the modulation output is connected to the spectrum analyzer. The adjustments are set to minimize harmonic distortion. The modulation level and distortion adjustments are repeated until both are within the required accuracy.

Figure 5-7A. Phase Modulation Level and Distortion Adjustment Test Setup

EQUIPMENT:

Spectrum Analyzer HP 8553B/8552B/140T
Test Oscillator HP 651B
Modulation Analyzer HP 8901A
Low Pass Filters (100 kHz at 50Ω or 600Ω)

PROCEDURE:

1. Extract the RF Section from mainframe. Remove the mainframe top cover, the RF Section covers, and the top guide rail. Insert the RF Section back into the mainframe.
2. Connect the equipment as shown in Figure 5-7A. Connect the output of the signal generator directly to the spectrum analyzer RF input. Be sure to use the correct impedance test oscillator output and the correct low pass filter.
3. Set the test oscillator output to 100 kHz at 1.5 Vrms.
4. Set the signal generator center frequency to 100 MHz with 0 dBm OUTPUT level.
[^5]
ADJUSTMENTS

5-30A. PHASE MODULATION LEVEL AND DISTORITON ADJUSTMENTS (Cont'd)

5. Set the spectrum analyzer controls for a center frequency of 100 MHz , resolution bandwidth of 10 kHz , frequency span per division of 0.5 MHz , sweep time per division of 10 ms , input attenuation of 30 dB , vertical scale per division to 2 dB and adjust the reference level to a readable level.
6. Set the Modulation Section controls for $\Phi \mathrm{M}$ mode, external AC source, and a modulation level of exactly 82° as read on the front panel meter.
7. Adjust A16R2 so the carrier and first sidebands are of equal amplitude.
8. Step the System Under Test center frequency down 1 Hz to 99.999999 MHz . Adjust A16R27 so the carrier and first sidebands are equal.
9. Set the Modulation Analyzer to AUTOMATIC OPERA'TION and FM mode. Switch in the 300 Hz HP filter.
10. Set the spectrum analyzer controls for a center frequency of 100 kHz , resolution bandwidth to 3 kHz , frequency span per division 100 kHz , input attenuation to $0 \mathrm{~dB}, \log$ reference level to a convenient level, vertical sensitivity per division to 10 dB , and scan time per division to 20 ms .
11. Set the signal generator center frequency to 100 MHz ; set the modulation level to 100° as read on the front panel meter.
12. Refer to Figure 5-7A and connect the signal generator output to the Modulation Analyzer input. Connect the Modulation Analyzer MODULATION OUTPUT to the spectrum analyzer RF input.
13. Adjust the spectrum analyzer's reference level control so the peak of the fundamental 100 kHz signal is viewed on the CRT dispaly at the log reference graticule line.
14. Adjust A16R36 to null the second harmonic level; adjust A16R1 to null the third harmonic level.

NOTE

Observing harmonic distortion of a ΦM signal after passing it through an $F M$ discriminator results in an increase in level of $6 d B$ per octave. Therefore, the measured second harmonic level will be $6 d B$ higher and the third harmortic level 9.5 dB higher than with a phase demodulator.
15. Step the signal generator center frequency down 1 Hz . Note the direction and amount of readjustment of A16R36 and R1 necessary to null the second and third harmonics.
16. Set A16R36 and R1 for the best compromise (minimum second and third harmonic levels) at both center frequency settings of 99.999999 and 100.000000 MHz .
17. Set the signal generator center frequency to 100 MHz ; set the modulation level to 82 degrees as indcated on the Modulation Section meter.
18. Reconnect the signal generator output directly to the spectrum analyzer input.

19 Adjust A16R2 for equal carrier and first sideband levels.

5-30A. PHASE MODULATION LEVEL AND DISTORTION ADJUSTMEINTS (Cont'd)

20. Step center frequency down 1 Hz to 99.999999 MHz and adjust A16R27 for equal amplitude carrier and first sidebands.
21. Repeat steps 4 through 20 until all the conditions below are met without further adjustment.
a. Carrier and first sidebands are equal within 0.5 dB when changing Center Frequency of System Under Test between 100 and 99.999999 MHz (Steps 7-8).
b. Second harmonic levels are equal within 4 dB or $>40 \mathrm{~dB}$ down from the fundamental as indicated by the spectrum analyzer at center frequencies of 100 and 99.999999 MHz (Step 17).
c. Third harmonic levels are equal within $4 \mathrm{~dB}>35 \mathrm{~dB}$ down from the fundamental as indicated by the spectrum analyzer at center frequencies of 300 and 299.999999 MHz (Step 17).
22. Replace the RF Seciton top guide rail and covers, and the mainframe cover.

5-30B. PHASE MODULATION LEVEL AND DISTORTION ADJUSTMENTS - ALTERNATE PROCEDURE

REFERENCE:

Service Sheet 5.

DESCRIPTION:

The phase modulated signal from the synthesized signal generator is monitored by a spectrum analyzer and is adjusted to the modulation level indicated by the modulation level meter. The phase modulated signal is then mixed down, the difference frequency is connected to a phase demodulator, and the detected output is connected to the spectrum analyzer. The adjustments are set to minimize harmonic distortion. The modulation level and distortion adjustments are repeated until both are within the required accuracy.

ADJUSTMENTS

5-30B. PHASE MODULATION LEVEL AND DISTORTION ADJUSTMENTS - ALTERNATE PROCEDURE (Cont'd)

Figure 5-7B. Phase Modulation Level and Distortion Adjustment Test Setup (Alternate Procedure)

EQUIPMENT:

PROCEDURE:

1. Extract the RF Section from mainframe. Remove the mainframe top cover, the RF Section covers, and the top guide rail. Insert the RF Section back into the mainframe.
2. Connect the equipment as shown in Figure 5-7B. Connect the output of the System Under Test directly to the spectrum analyzer RF input. Be sure to use the correct impedance test oscillator output and the correct low pass filter*.
3. Set the test oscillator output to 100 kHz at 1.5 Vrms.
4. Set the System Under Test center frequency to 100 MHz with a 0 dBm OUTPUT level.
5. Set the spectrum analyzer controls for a center frequency of 100 MHz , resolution bandwidth of 10 kHz , frequency span per division of 0.5 MHz , sweep time per division of 10 ms , input attenuation of 30 dB , vertical scale per division of 2 dB , and adjust the reference level to a readable level.
6. Set the Modulation Section controls for $\phi \mathrm{M}$ mode, external AC source, and a modulation level of exactly 82 degrees as read on the front panel meter.
7. Adjust A16R2 so the carrier and first sidebands are of equal amplitude.
[^6]
ADJUSTMENTS

5-30B. PHASE MODULATION LEVEL AND DISTORTION ADJUSTMENTS - ALTERNATE PROCEDURE (Cont'd)

8. On the System Under Test, step the center frequency down 1 Hz to 99.999999 MHz . Adjust A16R27 until the carrier and first sidebands are equal.
9. On the spectrum analyzer, set the controls for a center frequency of 2 MHz , a resolution bandwidth to 30 kHz , frequency span per division to 0.5 MHz , input attenuation to 30 dB , log reference level to a convenient level, vertical sensitivity per division to 10 dB , and scan time per division to 10 ms .
10. On the System Under Test, set the center frequency to 300 MHz with a modulation level of 100 degrees as read on the front panel meter.
11. Connect the phase modulation test set between the signal generator output and the spectrum analyzer input as shown in Figure 5-7B.
12. Adjust the reference level on the spectrum analyzer until the peak of the fundamental 1 MHz signal is viewed on the CRT display at the log reference graticule line.
13. Adjust A16R36 to null the second harmonic level; adjust A16R1 to null the third harmonic level.
14. On the System Under Test, step the center frequency down 1 Hz . Note the direction and amount of readjustment of A16R36 and R1 necessary to null the second and third harmonics.
15. Set A16R36 and R1 for the best compromise (minimum second and third harmonic levels) at both center frequency settings of 299.999999 and 300 MHz .
16. On the System Under Test, set the center frequency to 100 MHz ; set the modulation level to 82 degrees as indicated on the Modulation Section meter.
17. Reconnect the RF Section output directly to the spectrum analyzer input.
18. Adjust A1R2 for equal carrier and first sideband levels.
19. Step the center frequency down 1 Hz to 99.999999 MHz and adjust A16R27 for equal amplitude carrier and first sidebands.
20. Repeat steps 4 through 20 until all the following conditions are met without further adjustment.
a. When changing the center frequency of the System Under Test between 100 and 99.999999 MHz (steps 7 and 8), the carrier and first sideband should be equal within 0.5 dB .
b. Second harmonic levels are equal within 4 dB or $>46 \mathrm{~dB}$ down from the fundamental at center frequencies of 300 and 299.999999 MHz (step 15).
c. Third harmonic levels are equal within 4 dB or $>46 \mathrm{~dB}$ down from the fundamental at center frequencies of 300 and 299.999999 MHz (step 15).
21. Replace the $R F$ section top guide rail and covers and the mainframe cover.

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. This section contains information for ordering parts. Table 6-1 is a list of exchange assemblies, and Table 6-2 lists abbreviations used in the parts list and throughout the manual. Table 6-3 lists all replaceable parts in reference designator order. Table 6-4 contains the names and addresses that correspond to the manufacturer's code numbers.

6-3. EXCHANGE ASSEMBLIES

6-4. Table 6-1 lists assemblies within the instrument that may be replaced on an exchange basis, thus affording a considerable cost saving. Exchange, factory-repaired and tested assemblies are available only on a trade-in basis; therefore, the defective assemblies must be returned for credit. For this reason, assemblies required for spare parts stock must be ordered by the new assembly part number.

6-5. ABBREVIATONS

6-6. Table 6-2 lists abbreviations used in the parts list, schematics and throughout the manual. In some cases, two forms of the abbreviation are used, one all in capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always all capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lower case and upper case letters.

6-7. REPLACEABLE PARTS LIST

$6-8$. Table $6-3$ is the list of replaceable parts and is organized as follows:
a. Electrical assemblies and their components in alpha-numerical order by reference designation.
b. Chassis-mounted parts in alphanumerical order by reference designation.
c. Miscellaneous parts.

The information given for each part consists of the following:
a. The Hewlett-Packard part number.
b. Part number check digit (CD).
c. The total quantity (Qty) found in the instrument.
d. The description of the part.
e. Typical manufacturer of the part in a fivedigit code.
f. Manufacturer's code number for the part. The total quantity for each part is given only once at the first appearance of the part number in the list.

6-9. ORDERING INFORMATION

$6-10$. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number, indicate the quantity required, and address the order to the nearest Hewlett-Packard office. The check digit will ensure accurate and timely processing of your order.
6-11. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

6-12. SPARE PARTS KIT

6-13. Stocking spare parts for an instrument is often done to ensure quick return to service after a malfunction occurs. Hewlett-Packard has a "Spare Parts Kit" available for this purpose. The kit consists of selected replaceable assemblies and components for this instrument. The contents of the kit and the "Recommended Spares" list are based on failure reports and repair data, and parts support for one year. A Recommended Spares list or the Spare Parts Kit (which contains the list) may be ordered through your nearest Hewlett-Packard office.

6-14. DIRECT MAIL ORDER SYSTEM

6-15. Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are as follows:
a. Direct ordering and shipment from the HP Parts Center in Mountain View, California.
b. No maximum or minimum on any mail order (there is a minimum order amount for parts ordered through a local HP office when the orders require billing and invoicing).
c. Prepaid transportation (there is a small handling charge for each order).
d. No invoices - to provide these advantages, a check or money order must accompany each order.

6-16. Mail order forms and specific ordering information is available through your local HP office. Addresses and phone numbers are located at the back of this manual.

Table 6-1. Part Numbers for Exchange Assemblies

Reference Designation	Description		Part Number*	
		Exchange Assembly	New Assembly	
A13	Attenuator Assembly	$86601-60109$	$86603-60043$	
A22	Frequency Doubler Assembly	$86603-60054$	$86603-60053$	

[^7]Table 6-2. Reference Designations and Abbreviations

REFERENCE DESIGNATIONS

AT assembly attenuator; isolator; termination	
fan; motor	fan; motor	
BT		
C capacitor		
CP coupler		
CR ${ }_{\text {thyristor }}^{\text {diode }}$ varactor		
DC . . . directional coupler		
DL delay line		
DS	annunciator:	
	naling device	
	(audible or visual);	
	lamp; LED	

E miscellaneous electrical part
F	fuse
FL	filter
H	hardware
HY	circulator
J .	electrical connector (stationary portion); jack
K relay
L	coil; inductor
M	meter
MP	ellaneous
	mechanical part

P	electrical connector (movable portion); plug
Q	. . . transistor: SCR triode thyristor
R	resistor
RT	thermistor
S	switch
T	transformer
тB	minal board
TC	thermocouple
TP	test point

U	. . integrated circuit; microcircuit
v	electron tube
R	. . voltage regulator; breakdown diode
w	cable; transmission path; wire
x socket
Y	stal unit (piezo-
	electric or quartz)
z	. tuned cavity; tuned

ABBREVIATIONS

A ampere	
	alternating current
ACCESS accessory	
ADJ	adjustment
A/D analog-to-digital	
AF audio frequency	
AFC automatic	
AGC $\underset{\substack{\text { control }}}{\ldots \text { automatic gain }}$	
AL aluminum	
ALC automatic level	
AM . . . amplitude modula-	
AMPL amplifier	
APC automatic phase	
ASSY assembly	
AUX	
avg average	
AWG American wire	
BD	
BE CU beryllium	
BFO beat frequency	
BKD bindeakdown	
BP bandpass	
BPF bandpass filter	
BRS brass	
BWO backward-wave	
CAL	calibrate
cew . . counter-clockwise	
CER ceramic	
CHAN channel	
cm centimeter	
CMO . . cabinet mount only	
COAX	. coaxial

EDP electronic data processing	INT internal kg kilogram
ELECT electrolytic	kHz kilohertz
ENCAP . . . encapsulated	k ${ }^{\text {a }}$. kilohm
EXT external	kV , . kilovolt
E farad	lb pound
FET field-effect transistor	LC inductancecapacitance
F/F flip-flop	LED . . light-emitting diode
FH flat head	LF low frequency
FIL H fillister head	LG long
FM. . frequency modulation	LH left hand
FP front panel	LIM limit
FREQ frequency	LIN . . . linear taper (used
FXD fixed	in parts list)
g gram	lin linear
GE germanium	LK WASH . . . lock washer
GHz gigahertz	LO . . . low; local oscillator
GL glass	LOG logarithmic taper
GRD ground(ed)	(used in parts list)
H henry	log logrithm(ic)
h hour	LPF low pass filter
HET heterodyne	LV low voltage
HEX hexagonal	m meter (distance)
HD head	mA milliampere
HDW hardware	MAX maximum
HF high frequency	$\mathrm{M} \Omega$. megohm
HG mercury	MEG meg (10 ${ }^{6}$) (used
HI high	in parts list)
HP Hewlett-Packard	MET FLM metal film
HPF high pass filter	MET OX . . metallic oxide
HR hour (used in parts list)	MF . . . medium frequency; microfarad (used in
HV high voltage	parts list)
Hz Hertz	MFR manufacturer
IC integrated circuit	mg milligram
ID inside diameter	MHz megahertz
IF intermediate	mH millihenry
frequency	mho mho
IMPG impregnated	MIN minimum
in inch	min minute (time)
INCD incandescent minute (plane
INCL include(s)	angle)
INP input	MINAT miniature
INS insulation	mm millimeter

All abbreviations in the parts list will be in upper-case.

Table 6-2. Reference Designations and Abbreviations (cont'd)

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathbf{C} \\ & \mathbf{D} \end{aligned}$	Oty	Description	Mfr Code	Mfr Part Number
${ }^{4} 1$	80003000004	5	1	MUDULATOR FILTER ASSY	28480	8600300004
A1 J A 1 J 2	$0300-1514$ $03000-1514$	7		TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESSMMG	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 0360=1514 \\ & 0300-1514 \end{aligned}$
$A_{1} L 1$ $\Delta_{1} L$	914000158 914000158	6	3		$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 9140=0158 \\ & 9140-0158 \end{aligned}$
$A_{1} P_{1}$	1251-3172	7	4	CONNECTOR-SGL CONT SKT . O3-IN-BSC-SZ RND	28480	1251-3172
$\mathrm{AlP}^{1} \mathrm{P}$	1251-3172	7		CONNECTOR-SGL CONT SKT .03-INOBSC-SZ RND	28480	1251-3172
A1P3	1251-3172	7		CONNECTOR-SGL CONT SKT .03-INABSC-S2 RND	28480	1251-3172
4194	1251-3172	7		CONNECTOR-SGL CONT SKT.03-IN-8SC-SZ RND	28480	125103172
Δ_{2}	80003060001	2	1	alc mother board assy	28480	80603060001
	$0160-2204$ $0160-3457$	0	2	CAPACITOR-FXD 100PF +05X 300VDC MICA CAPACITOR-FXD 2000PF +-10x 250VDC CER	28480 28480	$\begin{aligned} & 0160-2204 \\ & 0160-3457 \end{aligned}$
$\Delta_{2} \mathrm{~J}_{1}$	1250-1255	1	1	CONNECTOR-RF SMB M PC 50-0HM	28480	1250-1255
$A_{2} \mathrm{~K}_{1}$	0490-0916	0	9	RELAYOREED 1A 500ma 5ovdc svococoil lova	28480	0490-0910
$\begin{aligned} & \triangle 2 P_{1} \\ & \Delta Z P^{2} \end{aligned}$	$\begin{aligned} & 0362=0063 \\ & 0362=0063 \end{aligned}$	3 3	2	CONNECTOR-SGL CONT ODISC-FEM CONNECTOR-SGL CONT QDISC-FEM	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 0302=0003 \\ & 036200003 \end{aligned}$
$\mathrm{A}_{2} \mathrm{O}_{1}$	1854.0404	0	6	TRANSISTOR NPN SI TO-18 PD $=360 \mathrm{Mm}$	28480	1854-0404
$44^{2} \mathrm{R}_{1}$	0698-0084	9	1		24546	C4-1/8-70-2151-5
$\triangle 2 \mathrm{Rz}$	0757-1060	9	1	RESISTOR 190 1 x . 5 W F TCa0+0100	28480	0757-1000
$\triangle 2 R 3$	0757-0441	8	1	RESISTOR 8, 25K 1%, 125 W F $\mathrm{TC}=0+0100$	24546	C4-1/8-70-82510F
${ }^{\text {A } 2 \mathrm{~F} 4}$	0698-3405	4	1	RESISTOR 422 1 x , 5W F TC $=0 \$-100$	28480	0698-3405
$\triangle 2 \mathrm{R} 5$	0757-0438	3	10	RESISTOR 5.11K 1\% .125W F TCE0+-100	24546	C4-1/8-T0-5111-F
$42 \mathrm{R6}$	0757-0438	3		RESISTOR 5.11k 1\% 125 W F TC=0+-100	24546	C4-1/8-T0-5111-F
$\triangle 2 \mathrm{~F} 7$	075700401	${ }^{3}$		RESISTOR 1001%, 125w F TC $=0 \pm-100$	24546	C4-1/8-T0-101-F
	$0698-3403$ $0764-0013$	2	1		28480 28480	$0698-3403$ $0764-0013$
A PVR1	190203139	7	1	DIODE-2NR 8.25V 5x DO-7 PDE.4n TCE +.053x	28480	1902-3139
$\triangle_{2} \times 13$	1251-1626	2	4	CONNECTOR-PC EDGE 12 -CUNT/ROW $2-R O W S$	28480	1251-1626
A5xA4	1251-1620	2		CONNECTOR-PC EDGE 12-CONT/ROW 2-ROWS	28480	1251.1626
42x49	1251-1626	2		CONNECTOR-PC EDGE IZ-CONT/ROW Z-ROWS az miscellaneous	28480	1251-1626
	0360-1514	7	23	TERMINAL-STUD SGL-PIN PRESS-MTG	28480	0360-1514
A3	$80003-60040$	9	1	ALC AMPLIFIER ASSY	28480	80003060040
${ }_{4} 3^{4} 1$	0180-0058	0	2	CAPACITOR-FXD 50UF+75-10\% 25VOC AL	56289	$3005066025 C C 2$
${ }^{4} 3 \mathrm{C} 2$	018000058	0		CAPACITOR-FXD 50UF+75-10X 25VDC AL	50289	$3005066025 C C 2$
4363	014000193	0	,	CAPACITOR-FXD 82PF $005 \% 300 \mathrm{VDC} \mathrm{MICA}$	72136	DM15E820J0300wVICR
$\triangle 3 \mathrm{Ca}$	0160-2199	2	2	CAPACITOR-FXO 30PF +-5\% 300VDC MICA	28480	0160-2199
A 3 C5	0160-2199	2		CAPACITOREFXD 30PF +05\% 300VDC MICA	28480	0160-2199
${ }^{\triangle} 3 \mathrm{Cb}_{6}$	016000302	5	1	CAPACITOR-FXD .018UF +-10x 200VDC POLYE	28480	0160-0302
$\triangle 3 C 7$ $\triangle 3 C 8$	016003468 0160.2204	0	1	CAPACITOR-FXD 12 Cl + 10×8 80VDC POLYE	28480	$0160-3468$ 016002204
$\triangle 3 C 8$ $\triangle 3 C O$	$0160-2204$ $0160-2238$	0	1	CAPACITREFXD 100PF \$05\% 300VCC MICA	28480 28480	$0160-2204$ $0160-2238$
$\triangle 3 C R 1$	190100047	8	3	DIODE-SWITCHING 20V 75MA 10 NS	28480	190100047
$\triangle 3 C R 2$	190100047	8		DIODE-SWITCHING 2OV 75MA 10 NS	28480	190100047
$\triangle 3 C R 3$	19010047	8		DIODE-SWITCHING 2OV 75MA 10 NS	28480	1901-0047
A3CR4	1901-0050	3	2	DIODE-SWITCHING BOV 200MA 2NS DO-35	28480	1901-0050
A3k ${ }_{1}$	049000916	6		RELAY-REED 1a 500 ma Sovdc svoc-coil lova	28480	0490-0916
$43 L 1$ $43 L 2$	$9140-0237$ $9140-0237$	2 2	4		28480 28480	914000237 914000237
A 312 $43 L 3$	914000237 $9140-0105$	3	2		28480 28480	9140000237 914000105
4301 4362	$\begin{aligned} & 1853=0.020 \\ & 1854=0404 \end{aligned}$	4	16	TRANSISTOR PNP SI PDE300Mm FTEISOMHZ TRANSISTOR NPN SI TO-18 PDZ360MN	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 1853=0020 \\ & 1854=0404 \end{aligned}$
4363	18550020	8	1	TRANSISTOR JOFET N-CHAN D=MODE TO-18 31	28480	185500020
4304	185300034	0	5	TRANSISTOR PNP SI TO-18 PDE360MW	28480	18530034
$\triangle 305$	185300020	4		TRANSISTOR PNP SI PDE300Mm FTEISOMHZ	28480	1853-0020
4306 4307	$\begin{aligned} & 1853-0034 \\ & 1854-0404 \end{aligned}$	0		TRANSISTOR PNP SI TRANSISTOR NPN SI SIO-18 TR	28480 28480	$\begin{aligned} & 1853=0034 \\ & 1854=0404 \end{aligned}$
4368	185400404	0		TRANSISTOR NPN SI TO-18 PDE 360 MW	28480	185400404
4309	185300034	0		TRANSISTOR PNP SI TO-18 PDE 360 MW	28480	185300034
43010	1854.0221	-	2	TRANSISTOR-DUAL NPN PDE 750 MW	28480	1854-0221

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\left\|\begin{array}{l} C \\ D \end{array}\right\|$	Oty	Description	Mfr Code	Mfr Part Number
43611	1854-0053	5	1	TRANSISTOR NPN 2N2218 SI TO-5 PD:800Mm	04713	2N2218
${ }_{4}^{4 k 1}$	0098.3154	0	3	RESISTOR 4.22 K 1\% , 125N F TC=04-100	24546	C4-1/8-10-42210F
$\triangle_{3} \mathrm{R}_{2}$	$0757-0394$	0	3	RESISTOR 51.1 $1 \% .125 \mathrm{~W}$ F TC $=0+0.100$	24546	
$\triangle 383$ $\Delta 3 R 4$	069800083 $2100-2517$	4	17		24546	C4-1/8-10-19610F
$43 \mathrm{K4}$ 4325	$\begin{aligned} & 2100-2517 \\ & 0757-0438 \end{aligned}$	4 3	5		30983 24546	$\begin{aligned} & E 550 \times 503 \\ & C 4-1 / 8-T 0-5111-F \end{aligned}$
$\triangle 3 \mathrm{Rb}$	0757-0482	7	1	RESISTOR 511K 1\%, 125w F TC=0*-100	28480	0757-0482
${ }^{4} 3{ }^{1} 7$	0757-0416	7	3	RESISTOR 511 1 x , 125w F TCE0t-100	24546	C4-1/8-T0-511R-F
$\triangle 388$	075700438	3		RESISTOR 5.11k 1%, 125w F TC=0 0100	24546	C4-1/8-10-5111-F
4329 43210	0757.0442 0757.0438	9	5		24546 24546	$\mathrm{C} 4=1 / 8-\mathrm{T} 0-1002-\mathrm{F}$ $\mathrm{C} 4-1 / 8-\mathrm{T} 0-5111-F$
43210	0757-0438	3		RESISTOR 5.11K 1\% .125N F TCa0*-100	24546	C4-1/8.T0-51110F
43211	0757-0416	7		RESISTOR 511 1\% .125w F TC=0*-100	24546	C4-1/8-T0-511R-F
431212 03213	0698.3440	7	6	RESISTOR 190 14.125 W F TC $=0+0100$	24540	C4-1/8-10-196R-F
43813 43814	0698.3450 $0757-0399$	5	2		24546 24546	$C 4-1 / 8-T 0-4222-F$ $C 4-1 / 8-T 0-82 R 50 F$
- 3 215	0098.0083	5		RESISTOR $1.96 \mathrm{~K} 1 \chi^{\circ} .125 \mathrm{NF} T C=0+0100$	24546	C4-1/8-10-1961-F
43816 $\Delta 3417$	0098.3154 $0757-0280$	0			24546	C4-1/8-10-4221-F
${ }^{4} 3{ }^{1} 17$	075702880		15	RESISTOR 1 K 1\% . 125 F F TCEO+-100	24546	C4-1/8-10-10016F
$\triangle 3 R 18$ $\Delta 8 R 19$	075700340 075700442	2 2 9	1		24546 24546 2456	$C 4=1 / 8-T 0-10 R 0-F$ $C 4-1 / 8-T 0-1002-F$
A3K20	0757-0280				24546	C4-1/8-10-1001-F
$\triangle 3$ fr ${ }^{4}$	0757-0438	3		RESISTOR 5.11K 1x -125w F TC=0+0100	24546	C4-1/8-T0-5111-F
43872	0695.3440	7		RESISTOR 190 $14.125 \mathrm{wF} \mathrm{TC=0+0100}$	24546	C $4=1 / 8.10-196 \mathrm{R}$ -
43 Sc	0757-0442	9		RESISTOR 10K 1% \% 125 WF TCEO+0100	24546	C4-1/8-T0-1002-F
$\triangle 3424$ $A 3 * 25$	07570399 0698.0083	¢			24546 24546	$C 4-1 / 8-T 0-82850 F$ $C 4.1 / 8-T 0.19010 F$
43826	0757-0198	2	1	RESISTOR 1001%. 5 W F TCEO+-100	28480	0757-0198
43 kr 43929	075700394	0		RESISTOR 51.1 1%. 125 W F TC= $0+0.100$	24546	C4-1/8-10-51R1-F
43829 03529	075703304 0757	0			24546	C4-1/8-T0-51R1-F
43×30	07570438 075700280	3			24546 24546	$C 4-1 / 8-T 0-51110 F$ $\mathrm{C} 4-1 / 8-50-1001-\mathrm{F}$
A3231	0757-0438	3		RESISTOR 5.11K 1\% .125w F TC=0+0100	24546	C4-1/8-T0-5111-F
A3VR1	190203036	3	1	DIODEEZNR 3.16V 5X DO.7 PDE.4W TCE..064X a3 MISCELLANEOUS	28480	1902-3036
	030001514	7		TERMINAL-STUD SGL-PIN PRESS-MTG	28480	036001514
	148000073	6			28480	1480.0073
	404000748 $4040-0749$	3 4	5	EXTRACTOR-PC BOARD BLK POLYC EXTRACTOR•PC BOARD BRN POLYC	28480 28480	$4040=0748$ $4040-0749$
	-			Extractororc boaro brn molyc	28.	-40.0.074
44	80002000003	3	1	detector amplifier assy	28480	80602.60003
$\triangle A C 1$	018000116	1	4	CAPACITOR -5×0 6.8UF+010\% 35VDC TA	56289	1500685×903582
$\triangle \triangle C ?$	018000116	1		CAPACITOREFXD 6. BUF + -10x 35VDC TA	56289	1500685×903582
$\triangle \triangle C 3$	0100-2207	3		CAPACITOR-FXD 300PF +-5\% 300VOC MICA	28480	0160-2207
$\triangle \triangle C A$ $\triangle A C 5$	$0160-2244$ $0180-1743$	8 8 2	2		28480 56289	
AaC5	0180.1743	2	1	CAPACITOR-FXD .1UF+-10\% 35VDC TA	56289	150D104×9035A2
$\triangle \triangle C O$	010002244	8		CAPACITOReFXD 3PF +0.25PF 500VDC CER	28480	0160.2244
$\triangle \triangle C R 1$	1901-0050	3		DIODE-SWITCHING 80 V 200ma $2 \mathrm{NS} \mathrm{DO-35}$	28480	190100050
$\Delta_{4} \mathrm{~K}_{1}$	049000916	\bigcirc		RELAY-REED 14 500ma Sovoc 5vocecoil lova	28480	0490.0916
A4L 1	914000237	2		COILeMLD 200UH 5x 0265 .1550x.375LGoNOM	28480	914000237
AUL?	914000237	2		COILeMLD 200UH 5\% $0=65$.1550x.375LGeNOM	28480	9140.0237
Aus 1	1853 -0034	0		TRANSISTOR PNP SI TO-18 PD=300Mm	28480	1853 -0034
Auct	125300034	0		TRANSISTOR PNP SI TO-18 PD= 360 Mm	28480	185300034
4063	185400221	-		TRANSISTOR-DUAL NPN PD=750Mm	28480	1854-0221
4454	185400404	0		TRANSISTOR NPN SI TO-18 PD= 300 Mm	28480	1854.0404
A405	1853-0020	4		TRANSISTOR PNP SI PDE 300 Mm FTzi50Mnz	28480	185300020
Aut 1	0098-3453	2	5	RESISTOR 196K 1\%.125N F TC $=0+0100$	24540	C4-1/8-10-1963-F
	0098.3453	2		RESISTOR 190k 1\% .125W F TCE040100	24546	C4-1/8-10-19630F
AUK3	0757-0405	\bigcirc	2	RESISTOR 100k $1 \% .125 \mathrm{~W}$ F TC $=0+0100$	24546	C4-1/8-T0-10030F
A ARA A 4 S	$0757-0438$ 0098.3453	3			24546 24546	$C 4-1 / 8-T 0-51110 \%$ $C 4-1 / 8-T 0-19630 F$
Dukb	0098-3155	1	1	RESISTOR 4.04K it , 125W F TCzo40100	24540	C4-1/8-70-4041-F
4IET	0757-0438	3	1	RESISTOR 5.11k ix : 125 WF F $\mathrm{C}=0+0100$	24540	C4-1/80.90-51110F
A MRa	0757-0465	0		RESISTOR 100 K 1\%. 125 WF F TC $00+0.100$	24546	C4-1/8-T0-1003-F
AURO	0098.5844	5	1	RESISTOR 4.3M 5\%.25w FC TC= $=900 /+1100$	01121	${ }^{\text {C84355 }}$
AUK10	0098.3159	5	1	RESISTOR 26.1K 1\% .125w F TC=0*-100	24546	C4-1/8-T0-2012-F
Aukil	0098.3440	7		RESISTOR 190 1\% . 125 W F TC $=0+0100$	24546	C4-1/8-T0-190R-F
-4ヶハ?	0698.3453	2		RESISTOR 190K 1\%.125w F TC=0*-100	24546	C4-1/8-10-1963-F
A4213	210002517	4		RESISTOR-TRMR 50k 10x C SIOE-ADJ 1-TRN	30983	E 550×503
Autil	0757 -0420	3	1		24546	C4-1/8-70-751-F
$\Delta 4 \mathrm{~F} / 5$	109800083	8		RESISTOR 1.96K 1\% .125N F TCatolot	24546	C4-1/8-10-1901-F

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\left\|\begin{array}{l} C \\ D \end{array}\right\|$	Qty	Description	Mfr Code	Mfr Part Number
47	$80003-60023$	8	1	MIXER ASSY (OPTION 002 ONLY)	28480	$80603-60023$
$\triangle 761$	0101)4082	-	1	CAPACITOR-FDTHRU 1000PF 20X 200V CER	28480	0160-4082
$\Delta 7 \mathrm{~J}$ 47 ja	$80002-20022$ $80002-20022$	2 2	6	CONNECTOR, BULKHEAD CONNECTOR, BULKHEAD	28480 28480	80002020022 80602020022
	$80002-2002 ?$?		CONNECTOR, BULKHEAD	28480	80002-20022
A 7 ,	$9100-1000$	9	1	COILEMLD 3.6MH 5X Q $=70$.2150X.56LGoNOM A7 MISCELLANEUUS	28480	9100-1600
	034000044 $0300-0124$	4	2	TERMINAL-STUD DBL-TUR PRESS-MTG CONNECTOR-SGL CONT PIN O4-IN-BSC-SI RND	28480 28480	034000044 $0360-0124$
	030000124 50010002	3 1		CONNECTOR-SGL CONT PIN . $04-I N-B S C=S Z ~ R N D ~$ COVER, FILTER	28480 28480	036000124 50010002
	$80002-00003$ $80002-20026$	7		COVER, MIXER, SMALL	28480 28480	80602000003 $80602-20026$
	80002-20026	-		bushing	28480	80602-20026
	$80002-20029$ $80013=0005$	9		SUPPRESSOR COVER, MIXER, LARGE	28480 28480	$\begin{aligned} & 80602-20029 \\ & 86003=00005 \end{aligned}$
	80003-20024	5		HOUSING, MIXER	28480	$80003-20024$
A A_{1}	80002-20009	5	2	balun mixer assy	28480	80002-20009
44^{4}	80002-00008	8	2	balance mixer assy	28480	86002-60008
$\triangle 7 \Delta>C R 1$	5080-0271	2	2	diode quad	28480	5080-0271
4, 43	5086-7006	9	2	LOw pass filter assy, 1.45 GHz	28480	5086-7060
ATAS	80003 -20023	4	2	transition assembly	28480	86003 -20023
4785	$80003-60010$	3	1	Low pass filter assy, 50 mHz	28480	86003-60010
$\triangle 705 C_{1}$	0100-4303		2	CAPACITOR-FXD . O2TUF +-10\% 50VDC CER	26654	$38 \times 505273 \mathrm{~K}$
$47 \triangle 5 C ?$	0100-4305	${ }_{6}^{6}$	1	CAPACITOR-FXD $47 P F$ tolox loovoc CER	28480	0160-4305
$\triangle 745 C 3$	$0100-4308$	9	1	CAPACITOR-FXD 33PF *-10x 100 VDC CER	10546	N100BC330k(PD/AG)
$\triangle 7 \Delta 5 C 4$	$0160-4247$ $0100-4303$	5	13	CAPACITOR-FXD .047UF +-20\% 100 VOC CER	28480	0160-4247
4745C5	0100-4303	4		CAPACITOR-FXD .027UF +-10\% 50VDC CER	26654	36x505273k
A 705 Co	0100-0575	4	5	CAPACITOREFXD.047UF +-20X 50VDC CER	28480	0160-0575
A7A5CRy	1901-0639	4	2	OIODE-PIN 110 V	28480	5082-3080
A745CR2	1901-0039	4		DIODEAPIN 110 V	28480	5082-3080
A70561	80003 -80001	4	2	INDUCTOR, TOROID	28480	$80603-80001$
A745t?	80003-80001	4		INDUCTOR, TOROID	28480	86003-80001
$\triangle 78581$	0698-7222	1	2	RESISTOR 261 1\% . 05 W W F TC=0 0 - 100	24546	C3-1/8-T0-261R-G
474502	0098-7222	1		RESISTOR 201 $1 \% .05 \mathrm{~W}$ F TC $=0+100$	24546	C3-1/8-T0-261R-6
474593	0698.7229	8	3	RESISTOR 511 1\%.05w F TCE0*-100	24546	C3-1/8-10-511R-G
48	80003 -07003	8	,	4 GHZ AMPLIFIER ASSY(EXCEPT OPT OO2)	28480	86003 -67003
As	80003067001	\bigcirc	1	4 GHZ AMPLIFIER ASSY(OPTION OOZ ONLY)	28480	80003 -67001
$00 \dagger$	$80001-00129$	3	1	ATTENUATOR DRIVER ASSEMBLY (EXCEPT OPTION 001)	28480	80601-60129
$\triangle C^{4} 1$	0100-0127	2	7	CAPACITOR-FXD IUF +-20\% 25VOC CER	28480	010000127
$\triangle C^{\circ} \mathrm{C}$	01000127	2		CAPACITOR-FXD IUF +-20\% 25VDC CER	28480	016000127
$\triangle O C 3$	0160-0127	2		CAPACITOR-FXD IUF +-20\% 25VDC CER	28480	016000127
$\triangle 9 C 4$	0100-0127	2		CAPACITOR-FXD IUF +-20\% 25VOC CER	28480	0160-0127
AOMD ${ }^{\text {a }}$	148000073	\bigcirc		PIN-ROLL . O62-IN=DIA . 25-IN-LG BE-CU	28480	$1480-0073$
$\triangle 9 M F$?	1480-0073	\bigcirc		PIN-ROLL 002 -IN-OIA . 25-IN-LG BE-CU	28480	148000073
A9MP3	404000752 $4040-0752$	9	2	EXTRACTOR-PC BOARD YEL POLYC EXTRACTOR-PC BOARD YEL POLYC	28480 28480	$4040-0752$ $4040-0752$
AOMD_{4}	404000752	9		EXTRACTOR-PC BOARD YEL POLYC	28480	4040-0752
4961	1853-0213	7	4	TRANSISTOR PNP 2 NU236 SI TO-5 PDEIN	04713	2N4236
49w?	185400361 18535021	8	,	TRANSISTOR NPN 2 N4239 SI TO-5 PD $=800 \mathrm{Mm}$	04713	2N4239
	$1853-0213$ $1854-0361$	7 8 8		TRANSISTOR PNP $2 N 4236$ SI TO-5 PD 21 N TRANSISTOR NPN 2N4239 SI	04713 04713	$2 N 4236$ $2 N 4239$
49.64 4965	185400361 189400071	8	10		04713 28480	2Na39 1854.0071
4904 4067	$1853-0020$ $1854-0071$	7		TRANSISTOR PNP SI PDE 300 MW FTE150MmZ	28480	185300020
$\triangle 967$	1854-0071	7		TRANSISTOR NPN SI PDE 300 MW FTE200MHZ	28480	185400071
49158 8960	$1853-0020$ 18530213	4			28480 04713	$1853-0020$ $2 N 4236$
$\triangle 0610$	185400361	8		TRANSISTOR NPN $2 N 4239$ SI T0.5 PD $=800 \mathrm{MW}$	04713 04713	$2 N 4236$ $2 N 4239$
	$1453-0213$ 18540361	7		TKANSISTOR PNP $2 N 4236$ SI TO-5 PDziw TRANSISTOR NPN $2 N 4239$ SI TO-5 PD:800Mw	04713 04713	$2 N 4236$ $2 N 4239$
49613	1854.0071	7		TRANSISTOR NPN S! PD= 300 MN FTE200MHZ	28480	185400071
49614 $\triangle 9015$	$1853-0020$ 195400071	4			28480 28480	$1853-0020$ $1854=0071$

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	Oty	Description	Mfr Code	Mfr Part Number
410	80002060006	\bigcirc	1	REFERENCE Assy	28480	86602-60006
${ }_{4} 10061$ $4106 ?$	0180-0291	3	2	NOT ASSIGNED CAPACITOREFXD IUF+-10\% 35VDC TA	56289	1500105×903542
410×1 410×2	0490-0916	${ }_{6}^{6}$		RELAY-REED 1 A SOOMA SOVDC SVOC-COIL LOVA	28480 28480	$0490-0916$ 049000916
410×2 410×3	04900916 0490.0916	6		RELAY-REED 1A SOOMA SOVOC SVOC-COIL IoVa	28480 28480	049000916
410×4	0490-0916	-		RELAY-REED iA 500 ma SOVOC 5VOC-COIL lova	28480	0490-0916
410ks	0490-0916	-		RELAY-REED 1a 500 ma SOVOC SVOC-COIL lova	28480	0490-0916
A1wks	0490 -0910	\bigcirc		RELAY-REED 14 500ma Sovdc sudcecoil lova	28480	0490-0916
A10, 1	1853 -0020	4		TRANSISTOR PNP SI PD= 300 MW FTE 150 MHz	28480	185300020
41062	1853-0020	4		TRANSISTOR PNP SI PDE 300 MN FTE150MHZ	28480	18530020
41032	1853.0020	4		TRANSISTOR PNP SI PD= 300 MW FT= 150 MHz	28480	185300020
41008	185300020	4		TRANSISTOR PNP SI PD=300M FTEISOMHZ	28480	1853-0020
A1005	1853 -0020	4		TRANSISTOR PNP SI PDE 300 Mm FTE 150 MHz	28480	1853-0020
41000	1853 -0020	4		TRANSISTOR PNP SI PDE300MW FTEISOMHZ	28480	18530020
${ }^{1} 1007$	1853 -0020	4		TRANSISTOR PNP SI PDE 300 MW FTEISOMHZ	28480	185300020
${ }^{4} 10.58$	1853.0020	4		TRANSISTOR PNP SI PDE 300 MH FTE 150 MHz	28480	185300020
41099	185300020	4		TRANSISTOR PNP S! PD=300MN FTEI50MmZ	28480	185300020
410.30	1854-0404	0		TRANSISTOR NPN SI TO-18 PD=360Mn	28480	1854-0404
A10011	1855-0082	2	1	transistor jofet pachan domode si	28480	1855-0082
\triangle_{102}	0757-0279	0	1	RESISTOR 3.16K 1\% .125N F TCE0+0100	24546	C4-1/8-70-3101.F
${ }^{4} 1082$	2100-2517	4		RESISTOR-TRMR 50K 10x C SIDE-ADJ 1-TRN	30983	ET50×503
${ }^{4} 1023$	0757-0280	3		RESISTOR 1K 1\%, 125 W F TCEOt-100	24546	C4-1/8-50-1001-F
41044 41085	$0757-0817$ $2100-2033$	2	$\frac{1}{3}$		28480 30983	075700817 $E T 50 \times 102$
$\triangle 102 \mathrm{C}$	0757-0443	0	1	RESISTOR 11\% 1\% .125w F TC=0+0100	24546	CH-1/8-T0-1102-F
41027	2100.2633	5		RESISTOR-TRMR IK 10x C SIDE-ADJ 1-TRN	30983	ET50×102
410.es	0757-0410	7		RESISTOR 511 $1 \% .125 \mathrm{~W}$ F TC $=0+-100$	24546	C4-1/8-T0-511R-F
$\triangle 10 \mathrm{Fa}$	0757-0280	3		RESISTOR 1 K 1\% .125 F F TCEO+-100	24546	C4-1/8-T0-1001-F
410810	0098-3260	9	2	RESISTOR 464K 1\%.125W F TC=0*-100	28480	0698-3260
A10211	0098.3200	9		RESISTOR 464K 1\% .125w F TC=0+-100	28480	0698-3260
${ }^{\text {A }} 10 \mathrm{~L} 12$	0098-3453	2			24546	C401/8-T0-1963-F
${ }^{4} 10 \mathrm{~F} 13$	0757-0439	4		RESISTOR 6.81K 1%, 125W F TCEO+-100	24546	C4-1/8-T0-68110F
$410 \% 14$ 410215	$0083-1065$ $0757-0280$	7	1		01121 24546	CB1065 C4-1/8-T0-1001-F
AluF10	0098.3450	9		RESISTOR 42.2K 1x .125N F TC=0+0100	24546	C4-1/8-10-4222-F
410017	0757-0280	3		RESISTOR 1K 1%, 125 FF F TCOO+-100	24546	$C 4=1 / 8-10-1001-F$
410018	0098-0083	8		RESISTOR 1.96 K ix .125w F TCE0+-100	24546	C $4=1 / 8-10-1961$-F
410219	0098.0083	8		RESISTOR 1.96K 1\% .125NF TC=0 + - 100	24546	C 4 -1/8-10-1961-F
410820	0098-0083	8		RESISTOR 1.96K 1\% .125w F TCsotolo	24546	C4-1/8-10-19010F
A10R21	0098.4406	7	2	RESISTOR 115 1\% .125w F TC=0+0100	24546	C4-1/8-T0-115R-F
A1UR22	0098-4482	9	1	RESISTOR 17.4K 1\% 125N F TCEO+-100	03888	PME55-1/8-10-1742-F
A10823	0698-4400	7		RESISTOR $1151 \%, 125 \mathrm{~F}$ F TCEO\$ -100	24546	C4-1/8-T0-115R-F
410424	$0098-0083$ $0098-0083$	8			24546 24546	$C 4=1 / 8-T 0-19610 F$ $C 4=1 / 8=T 0-19010 F$
410275	0098-0083	8		RESISTOR 1.96K 1\% .125NF TC=0+0100	24546	C4-1/8-10-1961-F
A10420	0098-3480	1	2	RESISTOR 23214.125 W F TCE0*-100	24546	C4-1/8-T0-232R-F
410827	0698-3498	5	1	RESISTOR 8.66K 1\%, 125w F TC=0 0 - 100	24546	C4-1/8-T0-800R-F
A1UR?	0098-3486	1		RESISTOR 232 1\% 125 W F TC $=0+0100$	24546	C4-1/8-T0-232R-F
A) 10870	0098.0083	8		RESISTOR 1.96k 1%. 125 W F TC=04-100	24546	C4-1/8-T0-1961-F
A1UR30	0098-0083	8		RESISTOR 1.96K 1\% .125w F TCE0+0100	24546	C4-1/8-T0-1961-F
A10F31	0098-3510	2	2	RESISTOR 453 1x . 125 W F TC=0+-100	24546	C4-1/8-10-453R-F
410032	0698-3154	0		RESISTOR 4, 22k 1%, 125w F TCE0t-100	24546	C4-1/8-T0-42210F
410033	0698-3510	2			24546	C4-1/8-T0-453R-F
A10 P3a $A 10035$	$0698-0083$ 06980083	8			24546 24546	$C 4-1 / 8-T 0-1961-F$ $C 4-1 / 8-T 0-19610 F$
A10435	0698-0083	8			24546	C4-1/8-10-1961-F
A) 10230	0698.3495	2	2	RESISTOR 806 1\% . 125 W F TC $=0+-100$	24546	C4-1/8-T0-800R-F
A) OR37	0098-4430	7	1	RESISTOR $1.91 \mathrm{~K} 1 \%, 125 \mathrm{~W}$ F TC=0+-100	24540	C4-1/8-T0-19110F
410938	0098-3495	2		RESISTOR 860 1\% .125w F TC $=0+-100$	24546	C4-1/8-T0-860R-F
410239	0757-0280	3			24546 24546	$C 4=1 / 8-T 0=10010 F$ $C 4-1 / 8-T 0-10020 F$
410040	0757-0442	9		RESISTOR 10K 1\%.125W F TC $=0+0100$	24546	C4-1/8-T0-1002-F
410291	0757-0442	9		RESISTOR 10K 1\% . 125 W F TC=0+-100	24546	C4-1/8-T0-1002-F
A10:31	1820-0081	0	1	IC 318 OP AMP T0.99	27014	LM318H
Alovki	1902-0041	4	3	$\begin{gathered} \text { DIDDE-ZNR 5.11V 5\% DO.7 PDE.4W TCE=.009x } \\ \text { A1O MISCELLANEOUS } \end{gathered}$	28480	190200041
	$\begin{aligned} & 4040-0753 \\ & 1480-0073 \end{aligned}$	0	2	EXTRACTOR-PC BOARD GRN POLYC PINaROLL .O62-IN-DIA ,25-IN-LG BE-CU	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 4040=0753 \\ & 1480=0073 \end{aligned}$

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	Qty	Description	Mfr Code	Mfr Part Number
A1011	$9140-0158$	6			28480	9140-0158
A1001	1853-0075	9	2	TRANSISTOR D DUAL PNP PD= 400 Mm	28480	1853-0075
41002	1854-0295	7	1	TRANSISTOR=DUAL NPN PD 3400 MW	28480	1854-0295
A1003	$1853-0075$	9		TRANSISTOR=DUAL PNP PD=400MW	28480	1853-0075
A1078 41065	185500327 185400457	8 3	1	TRANSISTOR J-FET 2N4416 N-CHAN D-MODE TRANSISTOR-DUAL NPN PD $=400 \mathrm{MW}$	01295 28480	$2 N 4416$ 1854 c-045
41005	1850.0457	3		TRANSISTOR-DUAL NPN PD=400		
A1000	1853-0352	5	1	TRANSISTOR PNP SI T0-92 PD=350MW FTa 16 HZ	28480	1853-0352
A1007	1854.0013	7	1	TRANSISTOR NPN 2N22184 31 T0-5 PD=800MW	04713	2N22184
41008	1853 -0012	4	2	TRANSISTOR PNP 2N2904A SI TO-39 PD=600MN	01295	2N2904A
${ }^{1} 1009$	185300451	5	1	TRANSISTOR PNP 2 N3799 SI TO-18 PD=360MW	01295	2N3709
41010	1854-0023	9	2	TRANSISTOR NPN SI TO-18 PD= 360 MW	28480	1854-0023
A10k,	2100-3095	5	2	RESISTOR-TRMR 200 10\% C SIDE=ADJ 17-TRN	02111	43 P 201
A10F?	2100-3095	5		RESISTOR-TRMR 200 10\% C SIDE-ADS 17-TRN	02111	43 P 201
A1023	0098-7236	7	8	RESISTOR 1 K 1\% . O5W F ic $=0+0100$	24540	C3-1/8-10-1001-6
A16R4 ${ }^{\text {A }}$ (025\%	$0698-7241$ 0098.7236	4	1	RESISTOR 1.62k ix .05W F TCEOt-100	28480 24546	$0698-7241$ $63-1 / 8.70-1001-6$
A10R5\%	0698-7236	7		RESISTOR 1K 1\% .05W F TCE0+0100	24546	C3-1/8-10-1001-6
A 1056	0098-7234	5	1	RESISTOR 825 1x .05w F TC=0*-100	24546	C3-1/8-10-825R-6
41027	0698-7236	7		RESISTOR 1 K 1 L , 05W F TCEO\$ $=100$	24546	C3-1/8-10-1001-6
A 10 R 8	0698-7220	5	1	RESISTOR 383 1x.05W F TCaOt-100	24546	C3-1/8-10-383R-6
A10R9	0098.7230	7		RESISTOR 1K 1\%, 05W F TC=0+-100	24546	C3-1/8-10-1001-6
A10F10	009807216	3	1	RESISTOR 147 1\%.05w F TCEO+-100	24546	C3-1/8-10-147R-6
A10R11	0698-7260	7	10	RESISTOR 10K 1\% .05w F TC $=0+0100$	24546	C3-1/8-10-1002-6
A10R1?	0698-7217	4	2	RESISTOR 162 1x .05W F TC=0 + - 100	24546	C3-1/8-10-162R-6
A10R13	0698-7212	9	7	RESISTOR 100 ix .05w F TCEO+0100	24546	C3-1/8-10-100R-6
A10R14	0698.7260	7		RESISTOR 10K 1\%,05W F TCEO+ 100	24546	C3-1/8-10-1002-6
A10R15	0098-0083	8		RESISTOR 1.96k 1\% . 125 W F TCE0 +0100	24546	C4-1/8-10-1961-F
A10R16	0698.7200	5	3		24546	C3-1/8-T00-3126-6
A10217	0098-7221	0	2	RESISTOR 237 1\% .05W F TC=0*-100	24546	C3-1/8-10-237R-6
$A_{1} 6 \mathrm{R}_{1} 8$	0098.7260	5		RESISTOR 10K 1\%, 05W F TC $30+0.100$	24546	C3-1/8-70-1002-6
A10R19	0098-7200	5			24546 24546	C $3-1 / 8-100-31 R 6-6$ $\mathrm{C} 3-1 / 8-10-237 R=G$
Al0R20	0098-7221	0		RESISTOR 237 1\% .05W F TC=0+-100	24546	C3-1/8-10-237R-G
A10R21	0698.7260	7		RESISTOR 10K $1 *$. 05w F TCEO*-100	24546	C3-1/8-10-1002-6
Alorez	0698-7217	4		RESISTOR 162 1x,05W F TCE0 0 - 100	24546	C3-1/8-10-162R-6
A162 3	0098-7212	9			24546	C3-1/8-10-100R-6
Aloras	0098-7209	4	1	RESISTOR 751%, 05 W F TCE0\$-100	24546	$C 3-1 / 8-100-75 R 0-6$ $C 4=1 / 8-90-1961-F$
A10225	0698-0083	8		RESISTOR 1.96K 1\% .125W F TC $=0+0100$	24546	C4-1/8-10-1961-F
A16R20	0098-7213	0	3		24546	C3-1/8-10-110R-G
A16R27	2100-2033	5		RESISTOR-TRMR 1 K 10 C C SIDE-ADJ 1-TRN	30983	ET50x102
A16R28	0098-0083	8		RESISTOR $1.96 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC $=0+0.100$	24546	C4-1/8-70-19610F
A16R29	0098.7213	0		RESISTOR 110 1x.05W F TC $=0+0.100$	24546	C3-1/8-T0-110R-G
A10230	0698.7219	0	2	RESISTOR 196 1\% .05w F TC=0*-100	24546	C3-1/8-T0-190R-G
A16R31	0698.7236	7		RESISTOR 1K 1\%, O5W F TC $=0+0100$	24546	C3-1/8-10-1001-6
A10R32	0098-7248	1	3		24546	C3-1/8-10-3161-6
A10R33	0698.7219	\bigcirc		RESISTOR 1901%, O5W F TC $=0 \pm-100$	24546	C3-1/8-10-196R-6
A10F34	0098.7243	0	1	RESISTOR 1.96K 1\% O5W F TC=0tol00	24546	C3-1/8-10-1961-6
416235	0757-0418	9	1	RESISTOR 619 1x . 125 W F TC=0+0100	24546	C4-1/8-T0-619R-F
410230	2100-3123	0	1	RESISTOR-TRMR 500 10X C SIDE-ADJ 17-TRN	02111	$43 P 501$
A10237	0757-0421	4	1	RESISTOR $8251 \% .125 \mathrm{~W}$ TC=0+-100	24546	C4-1/8-10-825R-F
410238	0098-7213	0		RESISTOR 110 $1 \% .05 \mathrm{~W}$ F TC $=0+0100$	24546	C3-1/8-T0-110R-G
A10R39	0698.7233	4	1	RESISTOR 750 1\%, 05W F TCE0*-100	24546	C3-1/8-10-750R-6
Alorao	0698-7202	7	1	RESISTOR 38.3 1\%.05W F TC $=0+0100$	24546	C3-1/8-T00-38R3-6
A10R41	0098-7212	9			24546	C3-1/8-10-100R-G
A10R42	0757-0280	3		RESISTOR 1 K 1 L , 125w F TC=0+0100	24546	C4-1/8-10-1001-F
A10R43	0098.7212	9		RESISTOR 100 1x, 05W F TCE04-100	24546	C3-1/8-10-100R-6
Aloras	0698-7236	7		RESISTOR 1K 1\% .05W F TCEO\$-100	24546	C3-1/8-10-1001-6
A16R45	0698-0085	0	1	RESISTOR 2.61K 1\% .125WF TC=0+0100	24546	C4-1/8-10-2611.F
A16R40 A16R47	$0698-7195$ $0698-7188$	7 8	2		24546 24546	$\begin{aligned} & C 3-1 / 8-T 00-19 R G-G \\ & C 3-1 / 8-T 00-10 R=G \end{aligned}$
A10Ras	0698-7188	a		RESISTOR 10 ix, OSW F TCEO+0100	24546	C3-1/8-100-10R-6
A10R49	0098-7236	7		RESISTOR 1 K 1 X , 05W F TC=0+0100	24546	C3-1/8-10-1001-6
A10250	0698.7248	1		RESISTOR 3.16K ix .05w F TCe 0 + $=100$	24546	C3-1/8-10-3161-6
A16R51	0698-7195	7		RESISTOR 19.6 1\% .05W F TCEO\$-100	24546	C3-1/8-T00-19R6-6
A16RT!	0839-0004	3	1	THERMISTOR BEAD 2K-OHM TCE-3.4x/C-DEG	28480	0839-0004
A10TP1	0300-0124	3		CONNECTOR-SGL CONT PIN . O4-IN-BSC-SZ RND	28480	036000124 036000124
A16TP2	0300-0124	3		CONNECTOR-SGL CONT PIN .04-INaBSC-SZ RND	28480	0360-0124
A10u1	1858-0032	8	1	TRANSISTOR ARRAY	01928	CA3146E
A 10 VR1 A 10 R 2	$\begin{aligned} & 1902-0554 \\ & 1902-0579 \end{aligned}$	4	1	$\begin{aligned} & \text { OIODE-ZNR } 10 \mathrm{~V} 5 \% \text { DO-15 PDEIN TCE\$.06X } \\ & \text { DIODEZNR 5.1IV 5\% DO-15 PDZIW TCEE.009X } \end{aligned}$	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 1902-0554 \\ & 1902-0579 \end{aligned}$
				A16 MISCELLANEOUS		
	$\begin{aligned} & 4040-0748 \\ & 1480=0073 \\ & 4040-0750 \\ & 1480=0073 \end{aligned}$	3 6 7 6	1	EXTRACTOR-PC BOARD BLK POLYC PIN-ROLG .062-IN-DIA .25-IN-LG BE-CU EXTRACTOR-PC BOARD RED POLYC PINaROLL .062-IN-DIA .25-IN-LG BE-CU	$\begin{aligned} & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 4040-0748 \\ & 1480-0073 \\ & 4040-0750 \\ & 1480-0073 \end{aligned}$

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	Qty	Description	Mfr Code	Mfr Part Number
42241	86603060006	7	1	DOUBLER/FILTER ASSY	28480	86603060000
azzaz†	80603-00027	2	1	DOUBLER AMPLIFIER ASSY NO. 1	28480	$80603-60027$
a 2 2a3才	86003060047	6	1	DOUBLER AMPLIFIER ASSY NO. 2	28480	86003060047
A2204	80003000008	9	1	Output detector assy	28480	80603-60008
42285	$80003-60030$	7	1	relay assy	28480	$86003-60030$
423	80003-00034	1	1	DOUBLER SWITCH ASSY (OPTION OO3 ONLY)	28480	86003000034
42301	1854-0071	7		TRANSISTOR NPN SI PDE 300 Mm FTE200mHz	28480	1854-0071
42381	0757-0439	4		RESISTOR 0.81K 1\% . 125 W F TCEO*-100	24546	C4-1/8-70-6811.F
${ }^{4} 351$	3101-1299	0	1	SWITCH-PB OPOT ALTNG.45A 115VAC	28480	3101-1299
A23U1	1820-0054	5		IC gate til nand quad zoinp	01295	SN7400N
A^{4}	$80603-60045$	4	1	FREQUENCY DOUBLER TEST SNITCH ASSY (OPTION 003 ONLY)	28480	$86003-00045$
A24CR1	1910-0010	0	4	OIODE-GE GOV GOMA IUS DO-7	28480	191000010
$\triangle{ }^{\text {a }}$ CRE2	1910-0016	0		DIODE-GE GOV GOMA IUS OO-7	28480	191000010
$424 C R 3$	1910-0016	0		DIODEGE GOV GOMA IUS DO-7	28480	1910-0010
$4)^{4} 51$	3101-0903	1	2	SWITCH-SL DPST-NS MINTR . Sa l25VACIDC	28480	3101-0903
				CHASSIS PARTS		
$\triangle T 1$	0900-0084	${ }^{6}$	1	ISOLATOR	28480	0900-0084
ATt	0955-0058	3	1	COAXIAL ATTENUATOR,3DB(OPTION 002 ONLY)	28480	0955-0058
${ }_{C}{ }_{1}$					28480	$0160-2437$
C_{2}	016002437	1		CAPACITOR=FDTHRU 5000PF $+80-20 \% 200 \mathrm{~V}$ (EXCEPT OPTION OO1)	28480	$0160-2437$
C3	0160-2437	1		CAPACITOR-FDTHRU 5000PF \& 80 -20\% 200 V (EXCEPT OPTION 001)	28480	0100-2437
Cu_{4}	$0160 \cdot 2437$	1		CAPACITOR-FDTHRU SOOOPF $+80-20 \% 200 V$ (EXCEPT OPTION OO1)	28480	0160-2439
C5	$0160-2437$	1		CAPACITOR-FDTHRU 5000PF $\$ 80-20 \% 200 \mathrm{~V}$ (EXCEPT OPTION OO1)	28480	016002439
Cb	0100-2437	1		CAPACITOR-FDTHRU 5000PF +80-20X 200V	28480	016002437
$\begin{aligned} & c 7 \\ & c 8 \end{aligned}$	$\begin{aligned} & 0100-2436 \\ & 0180-0116 \end{aligned}$		5	CAPACITOR-FDTHRU 10PF 20\% 200V CER CAPACITOR-FXD 6.8UF $+=10 X$ 35VDC TA	28480 50289	$\begin{aligned} & 0100-2430 \\ & 1500085 \times 903582 \end{aligned}$
$C 8$ $C O$	018000116 018000116	1		CAPACITOR-FXD CAPACITOR-FXD G, BUF	56289 56289	$\begin{aligned} & 1500685 \times 903582 \\ & 1500085 \times 903582 \end{aligned}$
C_{10}	$0100 \cdot 2430$	0		CAPACITOR-FDTHRU $10 P F 20 \% ~ 200 V ~ C E R ~$ (OPTION 003 ONLY)	28480	$0100 \cdot 2436$
C_{11}	0160-2436	0		CAPACITOR•FDTHRU 1OPF 20\% 2ODV CER (OPTION 003 ONLY)	28480	0160-2436
C_{12}	0100-2436	0		CAPACITOR-FDTHRU 1OPF 20Z 200 V CER (OPTION 003 ONLY)	28480	0160-2436
C 13	0100-2436	0		CAPACITOR-FDTHRU IOPF 20\% 2OOV CER (OPTION 003 ONLY)	28480	0160-2436
CR 1	191000016	0		DIODE-GE GOV GOMA IUS DO.7 (EXCEPT OPTION OOI)	28480	1910-0016
DS1	214000092	0	1	LAMP-INCAND 685 5VDC $60 M A$ T-I-BULB (OPTION 003 ONLY)	00003	685 TIP ENO
	$\begin{aligned} & 1450-0371 \\ & 1450-0153 \end{aligned}$	4	1	LENS CAP AMB-TL. 219 -DIA $12-40$ THD LAMPHOLDER MOGT-SC-FLG-SKT TUR-TERM	28480 28480	$\begin{aligned} & 1450-0371 \\ & 1450-0153 \end{aligned}$
FLI	91350009	5	1	FILTER-ELEC BP: पGHz CTR FREQ	28480	91350009
J J1				```OUTPUT JACK, TYPE NCEXCEPT ODTION OOI! P/O A13;SEE MP1) OUTPUT JACK,TYPE NCOPTION OOI ONLYIINCL MPZ THRU MPQ)```		
$\stackrel{1}{+}^{\dagger}$	9100-1040	9	1	COILeMLD 100UH 5\% 0 065 .155DX.375LGONOM	28480	9100-1640
L2 \dagger	9100-1629	4	1	COIL-MLD 47UH 5\% 0x55.1550x.375LG-NOM	28480	9100-1629
L3	911000499	1	2	CORE-TOROID AL=2135-NH/T	28480	9170-0499
$6_{4} \dagger$	9170-0499	1		CORE-TOROID ALE2135-Nm/T	28480	9170-0499
$\cdots 1$	112000543	3	1	meter meteri lmal 2.5-IN Casel 147 OHM	28480	112000543
MP 1 MP	08731-210	2		NUT, LOCK(EXCEPT OPT 001, P/O J1)	28480	$08731-210$
MP?	295000132	0	1	$\begin{aligned} & \text { NUTOHEX-OBL-CHAM } 7 / 10-28-T M D .094-I N-T H K \\ & \text { (OPT OOI ONLY, P/O J1) } \end{aligned}$	00000	ORDER BY DESCRIPTION
MP 3	1250-0914	7	1	CONNECTOR-RF $\triangle P C-N$ FEM UNMTD $50-0 H M$ (OPT OO1 ONLY, P/O J1)	28480	1250-0914

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
MP4	1250-0915	8	1	CONTACTARF CONN GER APC-N FEMALE (OPT OOL ONLY, P/O JI)	02600	131-149
MP5	5040-0306	0	1	INSULATOR (OPT OOI ONLY, P/O J1)	28480	5040-0306
MPo	08555-20093	5	1	CONTACT, JACK (OPT OOI ONLY, P/O J1)	28480	08555-20093
MP 7	08701-2029	4	1	INSULATOR (OPT 001 ONLY, P/O J1)	28480	08761-2029
mpy	08555-20094	6	1	BODY, BULKHEAD (OPT OO1 ONLY, P/O J1)	28480	08555-20094
mpq	2190-0104	0	1	WASHER-LK INTL Y 7/16 IN .439-IN-ID (OPT OOI ONLY, P/O JI)	28480	$2190-0104$
MP10	125100546	3	1	CONN: R\&P CONT: RECT SERI CUAXSKT (P/O W17, W2O, \&W211 2 EACH)	81312	111-17054s
MP11	1250-1193	6	3	CONNECTOR-RF SM-SLD FEM UNMTO 50 -OHM (P/O w9, w12, w18, w191 1 EACH)	28480	1250-1193
MP12	1250-1221	1	1	CONNECTOR-RF SM-SLD M SGL-HOLE-REC (PIO W3 W11, IEA.IINCLUDES P1, PZ)	28480	1250.1221
MP13	1250-0872	-	1	CONNECTOR-RF SMB FEM UNMTD 50-OMM (P/O W15, 1 EA.IP/O W14 W161 2 EA)	28480	125000872
MP 14	1250-1227	7	1	CONNECTOR-RF SMA M UNMTD $50-0 \mathrm{HM}$ (P/O W3,W11, W15) : EACH)	28480	1250-1227
MP15	0302-0387	4	1	SLEEVE-METAL :179-00 CU .138-ID .375-LG (P/O W3, W11, W14, W15, \& W101 2 EA)	28480	0362-0387
P1 p^{2} p^{\prime}				NSR, P/O MP12 NSR, P/O MP12		
P_{3}	1251-2293	1	4	CONNECTOR-SGL CONT SKT .032-IN-BSC-SZ	28480	1251-2293
${ }^{-4}$	1251-2293	1		CONNECTOR-SGL CONT SKT .032-IN-ESC-S2	28480	125102293
P5	1251-2293	1		CONNECTOR-SGL CONT SKT .032-IN-BSC-SZ (PART OF AIA)	28480	1251-2293
P_{6}	$\begin{aligned} & 80003-60011 \\ & 5040-0382 \\ & 5040-0383 \\ & 1251-1911 \\ & 1251-3087 \end{aligned}$	3	1 1 1 8	```CONNECTOR ASSY(INCL W8, W9, W17-W2I) CONNECTOR BODY CONNECTOR FACE CONTACT-CONN FEM CRP .OOZ-IN-CONT-SZ CONTACT-CONN U/W-RECT PEM CRP```	28480 28480 28480 28480 28480	$\begin{aligned} & 80603=60011 \\ & 5040-0382 \\ & 5040-0383 \\ & 1251-1911 \\ & 1251=3087 \end{aligned}$
P7	1251-2293	1		CONNECTOR-SGL CONT SKT .O32-IN-BSC-SZ (PART OF A14)	28480	1251-2293
PR P12 P13				NOT ASSIGNED		
P13	1251-2202	4	1	CONNECTOR-PC EDGE 10-CONTIROW 2-RUWS (PART OF A14)	28480	1251-2202
p_{14}	1251-2500	3	1	CONNECTOR-PC EDGE O-CONTIRON 2-ROWS (PART OF A14)	28480	1251-2500
01	$\begin{aligned} & 1854-0072 \\ & 80003020048 \end{aligned}$	8 3	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	TRANSISTOR NPN 2N3054 SI TO-60 PDE25N INSULATOR, TRANSISTOR TO-60	01928 28480	$\begin{aligned} & 2 N 3054 \\ & 86003-20048 \end{aligned}$
R1 R2	2100.3113 0698.3430	5	1	RESISTOR-VAR CONTROL CCP 2.5K 10X 10Cw RESISTOR 21.5 1\% .125 F TCEO+-100	01121 03888	WA46036S252A2 PME55-1/8-T0-21R5-F
S1	3100-3050	3	1	SWITCH-ROTARY SW-RTRY (EXCEPT OPTION OO1)	28480	3100-3050
S 1	3100-3088	7	1	SWITCH, ROTARY (OPTION 001 ONLY)	28480	310003088
s2	310100903	1		SWITCHAKL DP3T-NS MINTR .5A 125VACIDC (EXCEPT OPTION 003)	28480	310100903
Te, 1	0300-1780	9	1	TERMINAL STRIP 5-TERM PHEN 1.25-IN-L	28480	0300-1780
W1	80603-20012	1	1	CABLE ASSY, FILTER OUTPUT(OPT OOZ ONLY)	28480	80603-20012
${ }^{*} 1$	80003-20038	1	1	CABLE ASSY, FILTER OUTPUT (EXCEPT OPTION 002)	28480	86603-20038
W2 W2	$86603-20037$ $86003-20014$	0	1	CABLE ASSY, MIXER INPUT(EXCEPT OPT OO2) CABLE, MIXER LO INPUT (OPT OOZ ONLY)	28480 28480	$80603-20037$ $80603-20014$
W2	86003-20014	3	i	CABLE, MIXER LO INPUT(OPT OO2 ONLY)	28480	$80003-20014$
W3	$80603-60013$	-	1	CABLE ASSY, RF input (INCLUDES MP12, MP14 AND MP15)	28480	80603000013
wa	86003-20016	5	1	CABLE ASSY, ISOLATOR OUTPUT	28480	80003-20016
W5	$80003-20015$ $80603-20017$	4	1	CABLE ASSY MIXER RF INPUT	28480	$86603-20015$
wo	86603-20017	6	1	cable assy, mixer output	28480	86003-20017
W7	$86603-20021$	2	1	CABLE ASSY, OUTPUT (EXCEPT OPT OOI)	28480	
W7 w	$80603-20031$ $80002-60012$	4	1	CABLE ASSY, OUTPUT (OPTION OOI ONLY) CABLE ASSY, AM INPUT: GRAY/YELLOW (INCLUDES MP10, P/O Po)	28480 28480	$86603-20031$ $86002-60012$
w9	80002-60021	5	1	cable assy, pulse input, whiteggreen (INCLUDES MPIO \& MPII, P/O Po)	28480	86002000021
W10 wil	$86003-20013$ 80003.60014	2	1	CABLE,4GHZ AMPLIFIER INPUT(OPT 002 ONLY) CABLE ASSY, LO INPUT	28480 28480	$80603-20013$ $80603-00014$
W11 wil	$80003-60014$ $80003-60015$	8	1	(INCLUDES MP12, MP14 AND MP15) CABLE PHASE MOD DRIVER INPUTCOPT 002 ONL INCLUDES MP10 AND MP13)	28480 28480	$86003-60014$ $86603-60015$

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
Wis	$86003-20036$	9	1	CABLE ASSY, CIRCULATOR INPUT (OPTION 002 ONLY)	28480	86603-20036
W14	$86003-00012$	5	1	CABLE, PHASE DRIVER OUTPUTCOPT 002 ONLY, INCLUDES MPI3 AND MP15)	28480	86003060012
H1s	$80003-60017$	0	1	CABLE, 1.3 AMPL OUTPUT INCLUDES MP13, MP14 AND MP15)	28480	86003000017
$W 10$ $W 17$	$80003-00016$ $80602-60049$	9	1	CABLE ASSY, DOUBLER INPUT IINCL MPI3\&MPI5 CABLE ASSY, 100 MHZ , WHITE/BROWN	28480 28480	$\begin{aligned} & 86603-60010 \\ & 86602-60049 \end{aligned}$
W17	80602-60049	7	1	CABLE ASSY, 100 MHZ , WHITE/BROWN (P/O PGI SEE MPIO)	28480	$86602-60049$
${ }^{18}$	$80002-60034$	0	1	CABLE ASSY, 20 MHZ OUTPUT, WHITE/RED (P/O Pb, INCLUDES MPIO AND MPII)	28480	86602-60034
W19	$86002-60033$	\bigcirc	1	CABLE ASSY, 20 MHZ INPUT, WHITE/BLUE (P/O PG, INCLUDES MPIO AND MPII)	28480	86002-60033
w 20	$80002-60047$	5	1	CABLE ASSY,20/30 MHZ, WHITE/ORANGE (P/O POI SEE MPIO)	28480	86002060047
W21	$80002-60048$	6	1	CABLE ASSY, $360 / 450 \mathrm{MHZ}$, WHITE/YELLOW (P/O Pb) SEE MP10)	28480	80002-60048
x 421	1251 -0194	7	1	CONNECTOR-PC EDGE 15-CONT/ROW I-ROW (P/O A14)	28480	125100194
				MISCELLANEOUS PARTS		
	$0340-0189$ $0370-1089$	8 2	1	INSULATOR-COVER NEOPRENE KNOB-BASE $1 / 2$ JGK 125-IN-ID	28480 28480	034000189 $0370-1089$
	0370-2994	0	1	```KNOB-BASE-PTR-AND-BAR 1/2 JK .25-IN-ID (OPTION 001 ONLY)```	28480	0370-2994
	0370-2794	8	1	KNOB, OUTPUT RANGE SWITCH(EXCEPT OPT OO1)	28480	0370-2794
	0380.0045	9	2	SPACER-RND .875-IN-LG .114-IN-ID (OPTION 003 ONLY)	28480	038000045
	$\begin{aligned} & 1251-1911 \\ & 2190.0067 \end{aligned}$	8 4		CONTACT-CONN FEM CRP. 062-IN-CONT-32 WASHEROLK INTL T $1 / 4$ IN . 256-INOID	28480	125101911 21900007
	$2190-0067$	4	1	WASHER=LK INTL T $1 / 4$ IN . $256-I N O I D$ (OPTION 003 ONLY)		210000067
	2950-0052	9	1	NUT-HEX-DBL-CHAM 1/4-40-THD .062-IN-THK (OPTION OO3 ONLY)	00000	ORDER BY DESCRIPTION
	3050-0029	3	4	WASHER-FL MTLC 3/8 IN.378-IN-ID	28480	3050-0029
	3050-0090	8	1	WASHER-SPR WAVY 5/8 IN .64-IN-ID (EXCEPT OPTION OOI)	28480	3050-0090
	$\begin{aligned} & 86001-00013 \\ & 86601-00014 \end{aligned}$	8	1	LATEH BRACKET, ATTENUATOR (EXCEPT OPTION OOI)	28480 28480	$\begin{aligned} & 86601=00013 \\ & 86601=00014 \end{aligned}$
	80001-00034	3	1	PANEL, FRONT (EXCEPT OPTION OO1)	28480	86001-00034
	$80001-00036$ $86001-00052$	5	1 2	MOUNT, METER COVER, HALF	28480 28480	$\begin{aligned} & 86001=00036 \\ & 86601=00052 \end{aligned}$
	$80001-20017$	4	1	HOUSING, FRONT (EXCEPT OPTION OO3)	28480	86601020017
	80001 -20019	6	1	STUD LATCH	28480	80601-20019
	$80001-20020$ $86001-20069$	9	1	WASHER LATCH	28480 28480	$\begin{aligned} & 86601-20020 \\ & 86001-20069 \end{aligned}$
	86601-20080	1	2	GUIDE, PLUG-IN	28480	80601-20080
	86001 -40018	7	1	SCREW, METER ADJUST	28480	$86601-40018$
	86002-00005	9	1	SUPPORT, TOP	28480	86002-00005
	86002000006 8600200007	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	1	SUPPORT, BOTTOM PANEL, FRONT (OPTION OOI ONLY)	28480 28480	$\begin{aligned} & 86602-00006 \\ & 86602=00007 \end{aligned}$
	$80602-20019$	7	2	PLATE, FRONT SUPPORT	28480	86002-20019
	80002-20028	8	2	GUIDE, CONNECTOR	28480	86602-20028
	$86003-00001$	6	1	SUPPORT, RIGHT FRONT	28480	86003-00001
	$\begin{aligned} & 86603-00002 \\ & 86003-00003 \end{aligned}$	7	1	SUPPORT, RIGHT REAR SUPPORT, MIXER	28480 28480	$\begin{aligned} & 86603=00002 \\ & 86003-00003 \end{aligned}$
	80603000008	3	1	SUPPORT, LEFT	28480	86003000008
	86003 -00009	4	1	CLAMP (OPTION OO2 ONLY)	28480	86603000009
	8600300011	8	1	PANEL, FRONT (OPTION 003 ONLY)	28480	86603-00011
	$\begin{aligned} & 86603-20018 \\ & 86603-20020 \\ & 86603-20025 \\ & 86003-20026 \\ & 86603-20028 \end{aligned}$	7 1 6 7 9	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	SUPPORT, DOUBLER HOUSING WINDOW (EXCEPT OPTION OOZ) PANEL, REAR HOUSING, ERONT (OPTION OOJ ONLY) PLATE, REAR SUPPORT	$\begin{aligned} & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 86603-20018 \\ & 86603-20020 \\ & 86603-20025 \\ & 86603-20026 \\ & 86603-20028 \end{aligned}$
	80003-20035	8	1	WINDOW (OPTION 002 ONLY)	28480	86003-20035

Table 6-4. Code List of Manufacturers

SECTION VII
 MAINUAL CHANGES

7-1. INTRODUCTION

7-2. This section contains manual change instructions for backdating this manual for HP Model 86603A RF Sections that have serial number prefixes that are lower than the last prefix listed on the title page.

7-3. MANUAL CHANGES

7-4. To adapt this manual to your instrument, refer to Table 7-1 and make all of the manual changes listed opposite the instruments serial number or prefix. The manual changes listed in
serial number sequence and should be made in the sequence listed. For example, Change A should be made after Change B; Change B should be made after Change C , etc. Table $7-2$ is a summary of changes by component.
$7-5$. If the serial number of the instrument is not listed on the title page of this manual, or in Table 7-1, it may be documented in a yellow MANUAL CHANGES supplement. For additional important information about serial number coverage, refer to INSTRUMENTS COVERED BY MANUAL in Section I.

Table 7-1. Manual Changes by Serial Number

Serial Prefix or Number	Make Manual Changes
1417A	R thru A
1501A	R thru B
1505A	R thru C
1515A	R thru D
$\begin{aligned} & \text { 1521A0091 thru } \\ & \text { 1521A00220 } \end{aligned}$	R thru E
$\begin{aligned} & \text { 1521A00221 thru } \\ & 1521 \mathrm{~A} 00240 \end{aligned}$	R thru F
1533A	R thru G
1539A	R thru H
1543A	R thru I
1550A00311 thru 1550A00431, 1550A00433 thru 1550A00437, 1550A00439 thru 1550A00462, 1550A00470 thru 1550A00474, 1550A00476,	R thru J

Serial Prefix or Number	Make Manual Changes
1550A00478 and 1550A00479	R thru J (cont'd)
1550A00463 thru 1550A00469, and 1550A00477	R thru K
1625 A	R thru L, J
1637 A	R thru K
1638 A	R thru M, K
1639 A	R thru L
1640 A	R thru M
1653 A	R thru O
1734 A	R thru P
1816 A	R, Q
1847 A	R
1921 A	

Table 7-2. Summary of Changes by Component

Change	A2	A9	A11	A16	A17	A17A1	A20	A21	A22	A22A2	A22A3	Chassis
A										Ass'y Part No.	Ass'y Part No.	
B												$\begin{aligned} & \mathrm{C} 8, \mathrm{C} 9 \\ & \mathrm{~L} 1, \mathrm{~L} 2 \end{aligned}$
C											Ass'y Part No.	
D		$\begin{aligned} & \text { R5, R6, } \\ & \text { R15, R16, } \\ & \text { R25. R26 } \end{aligned}$										
E								U8				
F												L2
G				Assembly Part No.								
H					$\begin{aligned} & \text { C1, C2 } \\ & \text { C3, CR1, } \\ & \text { CR2 } \end{aligned}$	Assembly Part No.						
I		$\begin{aligned} & \text { R9, R10, } \\ & \text { R19, R29, } \\ & \text { R30, R40 } \end{aligned}$										
J											R3, R7	
K			U7									
L							R15		R3		$\begin{array}{\|l} \text { R3, R7, } \\ \text { R8, R11 } \\ \hline \end{array}$	
M										C1, C13	C1	
N		Assembly Part No.										
0												L3
P												L4
Q								R36				
R	R9											
NOTE Be sure to check the serial number of your instrument against Table 7-1 to see which changes apply.												

MANUAL CHANGES

7-6. MANUAL CHANGE INSTRUCTIONS

CHANGE A

Table 6-3 and Service Sheet 7:
Change the part numbers of A22A2 and A22A3 to 86603-60005.

CHANGE B

Page 6-14, Table 6-3:
Change C8 to 0160-3451, CAP-FXD 0.01 UF $+80-20 \% 100$ WVDC CER, 28480, 0160-3451.
Change C9 to 0180-2141, CAP-FXD 3.3 UF $\pm 10 \% 50$ VDC TA, 56289 , 150D335X9050B2.
Change L1 and L2 to 9140-0210, COIL FXD MOLDED RF CHOKE 100 UH 5\%, 24226, 15/103.
Service Sheet 6:
Show C8 (now 0.01 UF) connected from the junction of L1 and L2 to ground.
Change C9 to 3.3 UF.

CHANGE C

Table 6-3 and Service Sheet 7:
Change the part number of A22A3 to 86603-60047.

CHANGE D

Page 6-9, Table 6-3:
Change A9R5, R6, R15, R25, and R26 to 0811-2815, RESISTOR 1.5 OHM $5 \%, 0.5$ W TUBULAR, 91637, RS1/2-T2-IR5-J.

Service Sheet 9:
Change the value of A9R5, R6, R15, R16, R25 and R26 to 1.5 ohm .

CHANGE E

Table 6-3 and Service Sheet 10:
Change the part numbers of A21U8 to 1826-0013.

CHANGE F

Page 6-15, Table 6-3:
Change L2 to COIL-FXD MOLDED RF CHOKE 160 UH 5\%.
Page 8-31, Figure 8-17 (Service Sheet 6):
Change the value of L2 to 160 UH .

CHANGE G

Page 5-9, Figure 5-6:
Replace figure with Figure 7-1.
Page 5-10, paragraph 5-29:
Delete from the equipment list "Digital Voltmeter HP 34740A/34702A."
Change the procedure as follows:
3. Set the sweep generator controls as follows: sweep range to 110 MHz , frequency to 80 MHz , output level at -10 dBm , sweep video, and sweep mode free-slow.

MANUAL CHANGES

CHANGE G (Cont'd)

Figure 7-1. Phase Modulator Driver Frequency Response Adjustment Test Setup (Change G)
Page 5-10, procedures (cont'd):
6 . Set the spectrum analyzer controls for center frequency of 1.05 GHz , frequency span per division 20 MHz , resolution bandwidth 300 kHz , input attenuation 30 dB , vertical sensitivity per division 10 dB , and sweep time per division 2 ms .
7. Adjust the sweep generator output level so the sidebands are approximately 34 dB below the carrier level.
8. Set the spectrum analyzer vertical sensitivity per division to 2 dB .
9. Adjust the Frequency Response control (A16C8) for maximum flatness within 40 MHz of the carrier and for the minimum peaking at 80 MHz .
10. Disconnect the sweep generator from the A16 Assembly and set the signal generator LINE switch to STBY.
11. Carefully remove the RF Section. Be careful not to damage the cables. Reconnect W12 to A16J1.

Page 5-11, Figure 5-8:
Change the reference "step 15 " to step " 13 " in two places.
Page 5-11, paragraph 5-30:
Change the last sentence of step 2 to: "Be sure to use the correct test oscillator output and the correct low pass filter".

Page 5-12, paragraph 5-30:
Change the procedure as follows:
8. Set the spectrum analyzer controls for a center frequency of 100 MHz , resolution bandwidth of 10 kHz , frequency span per division of 0.5 MHz , sweep time per division 10 ms , input attenuation of 30 dB , vertical scale per division to 2 dB , and adjust the reference level to a readable level.

MANUAL CHANGES

CHANGE G (Cont'd)

9. Adjust A16R4 one-eighth turn counterclockwise. If A16R4 is in contact with the ccw stop, increase the value of A16R5.

NOTE

The normal value range is 10 to 316 ohms.
Set the frequency of the System Under Test to 100 MHz and repeat steps 7 and 8.
10. Adjust A16R4 one-eighth turn clockwise. If A16R4 is in contact with the cw stop, decrease the value of A16R5.

NOTE

The normal value range is 10 to 316 ohms.
Set the frequency of the System Under Test to 100 MHz and repeat steps 7 and 8.
11. Set the FM discriminator controls for the 10 MHz range, and 0.1 V sensitvity. Insert an internal 1 MHz low pass filter.
12. Set the spectrum analyzer controls for a center frequency of 200 kHz , resolution bandwidth to 3 kHz , frequency span per division to 50 kHz , input attenuation to 0 dB , log reference level to a convenient level, vertical sensitivity per division to 10 dB , and scan time per division to 10 ms .
13. Set the Reference System controls for a center frequency of 309 MHz and an output level of +7 dBm .
14. Set the System Under Test center frequency to 300 MHz with a modulation level of 100° as read on the front panel meter.

Page 5-13, paragraph 5-30:
Change the procedure as follows:
15. Refer to Figure 5-8 and connect the System Under Test OUTPUT to the RF input of the mixer. Connect the FM Discriminator output to the spectrum analyzer RF input.
16. Adjust the spectrum analyzer reference level control until the peak of the fundamental 100 kHz signal is viewed on the CRT display at the log reference graticule line.
17. Adjust A16R3 to null the second harmonic level; adjust A16R1 to null the third harmonic level.

NOTE

After passing through an FM discriminator, the harmonic distortion of a ϕM signal will increase in level of $6 d B$ per octave. Therefore, the second harmonic will be 6 dB higher and the third harmonic 9.5 dB higher than with a phase demodulator.
18. Step the System Under Test center frequency down 1 Hz . Note the direction and amount of readjustment of A16R3 and R1 necessary to null the second and third harmonics.

CHANGE G (Cont'd)

19. Set A16R3 and R1 for the best compromise (minimum second and third harmonic levels) at both center frequency settings of 299.999999 and 300 MHz .
20. Repeat steps 4 through 20 until all the following conditions are met without further adjastment.
a. Carrier and first sidebands equal within 0.5 dB when changing Center Frequency of System Under Test between 100 and 99.999999 MHz (steps 7 and 8).
b. Second harmonic levels are equal within 4 dB or $>40 \mathrm{~dB}$ down from the fundamental as indicated by the spectrum analzyer at center frequencies of 300 and 299.999999 MHz (Step 19).
c. Third harmonic levels are equal within 4 dB or $>35 \mathrm{~dB}$ down from the fundamental as indicated by the spectrum analyzer at center frequencies of 300 and 299.999999 MHz (Step 19).
21. Replace the mainframe cover and wait 10 minutes. Check that the conditions outlined in step 20 are still met. If not, repeat steps 4 through 20 .

Delete steps 22 and 23.
Page 5-14, Figure 5-9:
Change the reference "step 11" to "step 13".
Change the second sentence of step 2 to "Be sure to use the correct test oscillator output and the correct low pass filter."

Page 5-15, paragraph 5-31:
Change the procedure as follows:
8. Adjust A16R2 until the carrier and first sidebands are of equal amplitude.
9. Step the System Under Test center frequency down 1 Hz to 99.999999 MHz . The carrier and first sidebands should be within 0.5 dB . If the difference is less than or equal to 0.5 dB , proceed to step 11. If the difference is greater than 0.5 dB , and if the $\phi \mathrm{M}$ deviation is $<82^{\circ}$ (first sideband is of lower amplitude than the carrier) proceed to step 9 . If the $\phi \mathrm{M}$ deviation is $>82^{\circ}$ proceed to step 10.
10. Adjust A16R4 one-eight turn clockwise. If A16R4 is in contact with the cw stop, decrease the value of A16R5.

NOTE

The normal value range is 10 to 316 ohms.
Set the frequency of the System Under Test to 100 MHz and repeat steps 7 and 8.
11. Set the spectrum analyzer controls for a center frequency of 2 MHz , resolution bandwidth to 30 kHz , frequency span per division to 0.5 MHz , input attenuation to 0 dB , log reference level to a convenient level, vertical sensitivity per division to 10 dB , and scan time per division to 10 ms .
12. Set the System Under Test center frequency to 300 MHz with a modulation level of 100° as read on the front panel meter.

MANUAL CHANGES

CHANGE G (Cont'd)

13. Connect the phase modulation test set between the signal generator output and the spectrum analyzer input as shown in Figure 5-9.
14. Adjust the spectrum analyzer reference level until the peak of the fundamental 1 MHz signal is viewed on the CRT display at the log reference graticule line.
15. Adjust A16R3 to null the second harmonic level; adjust A16R1 to null the third harmonic level.
16. Step the System Under Test center frequency down 1 Hz . Note the direction and amount of readjustment of A16R3 and R1 necessary to null the second and third harmonics.
17. Set A16R3 and R1 for the best compromise (minimum second and third harmonic levels) at both center frequency settings of 299.999999 MHz and 300 MHz .
18. Repeat steps 4 through 17 until all the following conditions are met without further adjustment.
a. Carrier and first sidebands are equal within 0.5 dB when changing center frequency of System Under Test, between 100 and 99.999999 MHz (steps 7 and 8).
b. Second harmonic levels are equal within 4 dB or $>40 \mathrm{~dB}$ down from the fundamental at center frequencies of 300 and 299.999999 MHz (step 17).
c. Third harmonic levels are equal within 4 dB or $>35 \mathrm{~dB}$ down from the fundamental at center frequencies of 300 and 299.999999 MHz (step 17).
19. Replace the mainframe cover and wait 10 minutes. Check to see if the conditions outlined in step 18 are still met. If not, repeat steps 4 through 18.

Delete steps 20 and 21.
Page 6-2, Table 6-1:
Add A22A2 (reference designation), Doubler Amplifier Assembly No. 1 (Description), 86603-60031
(Exchange Assembly), and 86603-60027 (New Assembly).
Page 6-11, Table 6-3:
Change the parts list for the A16 Assembly as shown in this section.
Page 8-29, Figure 8-15 (Service Sheet 5):
Replace Figure 8-15 with Figure 7-2.

CHANGE H

Page 6-12, Table 6-3:
Change:
A 17 C 1 to A 17 A 1 C 1
A17C2 to A17A1C2
A17C3 to A17A1C3
A17CR1 to A17A1CR1
A17CR2 to A17A1CR2
Add A17A1, 86603-60003, 1, PHASE MODULATOR BOARD ASSY, 28480, 86603-60003.

Figure 7-2. Phase Modulation Section Schematic Diagram (Option 002) (P/O Change G)

MANUAL CHANGES

CHANGE H (Cont'd)

Page 8-29, Figure 8-17 (Service Sheet 5):
Change the diagram as shown in the partial schematic.

Figure 7-3. Phase Modulator Assembly (P/O Change H)

CHANGE I

Page 6-9, Table 6-3:
Add A9R9, 0698-4002, RES: $5 \mathrm{~K} 1 \% 0.125 \mathrm{~W}$ F TC=0 $\pm 100,16299, \mathrm{C} 4-1 / 8-\mathrm{TO}-5001-\mathrm{F}$ A9R10, 0698-4002, RES: $5 \mathrm{~K} 1 \% 0.125 \mathrm{~W}$ F TC $=0 \pm 100,16299, \mathrm{C} 4-1 / 8-\mathrm{TO}-5001-\mathrm{F}$ A9R19, 0698-4002, RES: $5 \mathrm{~K} 1 \% 0.125 \mathrm{~W}$ F TC $=0 \pm 100,16299, \mathrm{C} 4-1 / 8-\mathrm{TO}-5001-\mathrm{F}$ A9R20, 0698-4002, RES: $5 \mathrm{~K} 1 \% 0.125 \mathrm{~W}$ F TC $=0 \pm 100,16299, \mathrm{C} 4-1 / 8-\mathrm{TO}-5001-\mathrm{F}$ A9R29, 0698-4002, RES: $5 \mathrm{~K} 1 \% 0.125 \mathrm{~W}$ F TC $=0 \pm 100,16299, \mathrm{C} 4-1 / 8-\mathrm{TO}-5001-\mathrm{F}$ A9R30, 0698-4002, RES: $5 \mathrm{~K} 1 \% 0.125 \mathrm{~W}$ F TC $=0 \pm 100,16299, \mathrm{C} 4-1 / 8-\mathrm{TO}-5001-\mathrm{F}$ A9R39, 0698-4002, RES: $5 \mathrm{~K} 1 \% 0.125 \mathrm{~W}$ F TC $=0 \pm 100,16299, \mathrm{C} 4-1 / 8-\mathrm{TO}-5001-\mathrm{F}$ A9R40, 0698-4002, RES: $5 \mathrm{~K} 1 \% 0.125 \mathrm{~W}$ F TC $=0 \pm 100,16299, \mathrm{C} 4-1 / 8-\mathrm{TO}-5001-\mathrm{F}$

Page 8-37, Figure 8-25 (Service Sheet 9):
Replace Figure 8-25 with Figure 7-4.

CHANGE J

Page 8-33, Figure 8-19 (Service Sheet 7):
Change A22A3R3 and A22A3R7 to 162 ohms.

MANUAL CHANGES

CHANGE K

Page 6-10, Table 6-3:
Change A11U7 to 1820-0639.
Page 8-41, Figure 8-30 (Service Sheet 11):
Change the diagram as shown in the partial schematic.

Figure 7-5. Service Sheet 11 Partial Schematic (P/O Change K)

CHANGE L

Page 6-13, Table 6-3:
Change A20R15 to 0698-7241, 1, RESISTOR 1.62K $2 \% 0.05 \mathrm{~W}$ F TC=0 $\pm 100,16299$, C3-1/8-TO-1621-G.
Page 8-33, Figure 8-19 (Service Sheet 7):
Change A22A3R3 and A22A3R7 to 162 ohms.
Change A22A3R8 and A22A3R11 to 909 ohms.
Add a 26.1 ohm resistor (A22R3) in the line between A22A2C12 and A22A3C12.
Page 8-43, Figure 8-32 (Service Sheet 12):
Change A20R15 to 1620 ohms.

CHANGE M

Page 8-33, Figure 8-19 (Service Sheet 7):
Change A22A2C1 and A22A3C1 to 2.2 pF .
Delete A22A2C13.

CHANGE N

Page 6-8 and 6-9, Table 6-3:
Replace the parts list for A9 Attenuator Driver Assy with Table 7-3 Replaceable Parts (Part of Change N).

Page 8-37, Figure 8-24:
Replace the figure with Figure 7-6, Component Locations Diagram (Part of Change N).
Page 8-37, Figure 8-25 (Service Sheet 9):
Replace the schematic with Figure 7-7, Schematic Diagram (Part of Change N).

CHANGE O

Page 6-15, Table 6-3:
Delete L3 under CHASSIS PARTS.
Page 8-27, Figure 8-12 (Service Sheet 4):
Delete L3 between A12P13 pins 9, K and P5.

CHANGE P

Page 6-15, Table 6-3:
Delete L4 under CHASSIS PARTS.
Page 8-43, Figure 8-32 (Service Sheet 12):
Delete L4 between green (5) wire and base of Q1.
Table 7-3. Replaceable Parts (Part of Change N) (1 of 2)

49	$80002-00040$	8	1	ATTENUATOR (EXCEPT		VER ASSY ON OO1)	28480	80002000040
\triangle CR1	1901-0025	2	8	DIDOE-GEN P	PRP 10	$100 \mathrm{~V} 200 \mathrm{MA} \mathrm{DO.7}$	28480	1901-0025
49 CR?	1901-0025	2		DIODE-GEN P	PRP 10	$100 \mathrm{~V} 200 \mathrm{MA} \mathrm{D0.7}$	28480	1901-0025
$\triangle G C Q 3$	1901-0025	2		DIODE GEN P	PRP 10	100V $200 \mathrm{MA} \mathrm{DO-7}$	28480	1901-0025
\triangle ACRA	1901-0025	2		DIODE GEN P	PRP 10	$100 \mathrm{~V} 200 \mathrm{MA} \mathrm{DO-7}$	28480	1901-0025
$\triangle Q C 5$	1901-0025	2		DIODE-GEN P	PRP 10	$100 \mathrm{~V} 200 \mathrm{MA} \mathrm{DO-7}$	28480	$1901-0025$
$\triangle Q C R_{0}$	1901-0025	2		DIODE-GEN P	PRP 10	$100 \mathrm{~V} 200 \mathrm{MA} \mathrm{00.7}$	28480	$1901=0025$
$\triangle 9 C 27$	1901-0025	2		DIODE=GEN P	PRD 10	$100 \mathrm{~V} 200 \mathrm{MA} \mathrm{00.7}$	28480	1901-0025
\triangle CRR	$1901=0025$	2		DIODE-GEN P	PRP 1	$100 \mathrm{~V} 200 \mathrm{MA} \mathrm{DO-7}$	28480	1901-0025
$\triangle \mathrm{QWa}$	1253-0213	7	4	TRANSISTOR	PNP	2N4236 SI TO-5 POE1W	04713	2N4236
\triangle Qw?	1854.0301	8	4	TRANSISTOR		2N4239 SI T0.5 PD=800 Mm	04713	2N4239
$\triangle 703$	185300020	4	8	TRANSISTOR	PNP	SI PD $=300 \mathrm{MN} \quad F T=150 \mathrm{MHZ}$	28480	185300020
$\triangle 9$ isd	1854-0071	7	4	TRANSISTOR	NPN	SI PD= $300 \mathrm{MW} F T=200 \mathrm{MmZ}$	28480	1854.0071
AQLS	1854-0404	0	4	TRANSISTOR	NPN	SI TO-18 PD= 300 Mm	28480	185400404
$\triangle Q^{\circ} \mathrm{A}$	1853-0020	4		TRANSISTOR	PNP	SI PD $=300 \mathrm{MW}$ FT $=150 \mathrm{MHZ}$	28480	1853-0020
$\triangle Q^{\text {ct }}$	1853-0213	7		TRANSISTOR	PNP	2N4230 SI TO-5 PDEIW	04713	2N4236
$\triangle 0^{10} 2$	1854.0361	8		TRANSISTOR	NPN	2 N 4239 SI TO-5 PD 2800 MW	04713	2N4239
$4 Q 60$	1853-0020	4		TRANSISTOR	PNP	SI PO $=300 \mathrm{MW} F T=150 \mathrm{MHZ}$	28480	1853-0020
- ¢	$1854-0071$	7		TRANSISTOR	NPN	SI PD=300MN FTE200MHZ	28480	1854-0071
A9011	$1854=0404$	0		TRANSISTOR	NPN	SI TO-18 PD $=300 \mathrm{MW}$	28480	1854.0404
1901?	1853-0020	4		TRANSISTOR		SI PD=300Mn FTE 150 MHZ	28480	1853 -0020
$\triangle 9013$	$1953-0213$	7		TRANSISTOR	PNP	2N4230 SI TO-5 PD=1 W	04713	2N4236
$\triangle 9014$	1854.0301	8		TRANSISTOR	NPN	2N4239 SI TO-5 PD=800Mm	04713	2N4230
$\Delta 9015$	1853-0020	4		TRANSISTOR	PNP	SI PD $=300 \mathrm{MNFF}=150 \mathrm{MmZ}$	28480	1853-0020

Table 7-3. Replaceable Parts (Part of Change N) (2 of 2)

A9 ASSEMBLY

Figure 7-6. A9 Attenuator Driver Assembly Component Locations (Part of Change N)

CHANGE Q

Table 5-1:
Delete the entry for A21R36.
Table 6-3 and Service Sheet 10 (schematic):
Delete A21R36.

CHANGE R

Table 6-3:
Change A2R9 to 0757-0276 RESISTOR 61.9 1\%
.125 W F TC $=0+-100$.
Service Sheet 8 (schematic):
Change the value of A2R9 to 61.9 ohms.

SECTION VIII
 SERVICE

8-1. INTRODUCTION

8-2. This section contains troubleshooting and repair information for the RF Section plug-in. Safety of technical personnel is considered. Circuit operation and troubleshooting on system, plug-in and assembly levels is provided.

8-3. The service sheets normally include principles of operation and troubleshooting information, a component location diagram, and a schematic, all of which apply to a specific portion of circuitry within the instrument.

8-4. Information related to operation of the RF Section plug-in as part of the 8660 -series Synthesized Signal Generator System is provided in Service Sheet 1 .

8-5. Service Sheets 2 and 3 include an overview of RF Section operation, troubleshooting on an assembly or stage level, and a troubleshooting block diagram. The block diagrams also serve as an index for the remaining service sheets.

8-6. The Schematic Diagram Notes, Figure 8-1, aid in interpreting the schematics.

8-7. The last foldout in the manual includes a table which cross-references all pictorial and schematic locations of each assembly, chassis mounted component, and adjustable component. The figure is a pictorial representation of the RF Section and shows location of the aforementioned parts.

8-8. SAFETY CONSIDERATIONS

8-9. Although this instrument has been designed in accordance with international safety standards, this manual contains information, cautions, and warnings which must be followed to ensure safe operation and to retain the instrument in safe condition (see Sections II, III, and V). Service and adjustments should be performed only by qualified service personnel.

8-10. Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved.

8-11. Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

> WARNING
> The service information is often used with power supplied and protective covers removed from the instrument. Energy available at many points may, constitute a shock hazard.

8-12. PRINCIPLES OF OPERATION

$8-13$. The Principles of System Operation explains how the RF Section operates within the Synthesized Signal Generator System, i.e., how other sections affect the RF Section and in turn how they are affected by the RF Section. Control functions in both local and remote modes are also explained.

8-14. Service Sheet 1 includes a block diagram and an explanation of system operation with respect to the RF Section.
$8-15$. Overall operation of the RF Section is discussed in Service Sheet 2 and 3. The remaining service sheets are concerned only with sections and/or circuit assemblies within the RF Section plug-in.

8-16. TROUBLESHOOTING

NOTE

When a malfunction occurs, refer to Section VIII of the HP Model 8660series mainframe Operating and Service Manual to begin troubleshooting (System Troubleshooting Guide). Then, if that information indicates possible problems in the RF Section, refer to the Systems Troubleshooting information in Service Sheet 1. This information may be used to isolate the defect to the RF Section, another plug-in, or the mainframe. If the problem is in this plug-in, turn to Service Sheet 2 for further troubleshooting information.

8-17. System Troubleshooting

$8-18$. The System Troubleshooting information in Section VIII of the HP 8660 -series mainframe manual should be used when first attempting to isolate a circuit defect. If the defect cannot be isolated to an individual instrument in the system, the technician is normally directed to the System Troubleshooting in the RF Section manual (Service Sheet 1). The problem may then be isolated to the RF Section, Modulation Section, Frequency Extension Module, or the mainframe.

8-19. RF Section Troubleshooting

$8-20$. When the defect has been isolated to the RF Section, refer to Service Sheet 2. This information is used to isolate the problem to a section or assembly.

8-21. Troubleshooting Aids

8-22. Circuit Board Aids. Test points are physically located on the circuit boards as metal posts or circuit pads and usually have either a reference designator (such as TP1) or a label which relates to the function (AM, Pulse, ID, etc.). Transistor emitters, diode cathodes, the positive lead of electrolytic capacitors, and pin 1 of integrated circuits are indicated by a variety of symbols such as E , a diode symbol, +, and a tear-drop shape respectively. Also, a square circuit pad (as opposed to the round pad) may be used in place of any of the previously mentioned symbols.

8-23. Service Sheet Aids. RF levels, ac voltages, and dc voltages are often shown on schematic diagrams. Integrated circuit connection diagrams plus diagrams of relays and printed circuit connectors help to locate specific inputs and outputs. Notes are used to explain certain circuits or mechanical configurations not easily shown on the schematic.
$8-24$. The locations of individual components mounted on printed circuit boards are found on individual service sheets on the pictorial representation of the circuit boards. Chassis mounted parts, major assemblies, and adjustable components locations are found on the last foldout in this manual.

8-25. Table 8-1, Schematic Diagram Notes, provides information relative to symbols and values shown on the schematic diagrams.

8-26. Service Kit and Extender Boards. The HP 11672A Service Kit contains interconnect cables RF cables, various coaxial adaptors, and an adjustment tool, all of which are useful in servicing the RF Section plug-in. Refer to the HP 11672A Operating Note for a listing and pictorial representation of the contents. A list of the service kit contents is also found in the Test Equipment and accessories list in Section I of the mainframe manual.

8-27. Circuit board extenders are provided with the mainframe. These extender boards enable the technician to extend plug-in boards clear of the assembly to provide easy access to components and test points. Refer to the list found under Accessories Supplied in Section I of the mainframe manual.

8-28. RECOMMENDED TEST EQUIPMENT

8 -29. Table 1-2 lists the test equipment and accessories recommended for use in servicing the instrument. If any of the recommended test equipment is unavailable, instruments with equivalent specifications may be used.

8-30. REPAIR

8-31. General Disassembly Procedures

> The Model 86603A RF Section, when used with early model mainframes, has -32 Vdc exposed on the A20 Assembly and on $\mathrm{Q1}$ whenever the mainframe LINE switch is set to STBY. During adjustment and maintenance, do not contact these parts with metal tools. Damage can occur to the mainframe power supply, the A20 Assembly and/or Q1. Models 8660A and 8660C with serial prefixes 1508A and below, and all 8660B's, have this characteristic.

8-32. Procedures for removing the RF Section plugin from the mainframe and the covers from the plugin are found on the left-hand foldout page immediately preceding the last foldout in the manual.

8-33. The machine screws used throughout the plugin have a Pozidriv head. Pozidriv is very similar in appearance to the Phillips head, but using a Phillips screwdriver may damage the Pozidriv screw head.

8-34. Non-Repairable Assemblies

$8-35$. Repairs should not be attempted on the following assemblies if any is found to be defective during troubleshooting:

A5 Modulator Assembly
A6 1-1300 MHz Amplifier Assembly
A8 4 GHz Amplifier Assembly
A13 Attenuator Assembly
A15 20 MHz Amplifier Assembly
A18 Circulator Assembly
A19 3.9-4.1 GHz Isolator Assembly
AT1 Isolator
AT2 3 dB Attenuator
FL1 4 GHz Band Pass Filter
NOTE
The A22 Frequency Doubler Assembly is a partially repairable assembly. Refer to the paragraph entitled Repair Procedures for more information.

8-36. Module Exchange Program

8-37. The following restored assemblies may be ordered as replacements under the Module Exchange Program:

A13 Attenuator Assembly
A22 Frequency Doubler Assembly

Eefer to Section VI for ordering information.

8-38. Repair Procedures

8-39. LO Signal Circuits Repair Procedure. Refer to Figure 8-1. This procedure is used in conjunction with Service Sheet 2 for isolating circuit defects which are evident as a phase modulation problem
or an incorrect LO signal level (Option 002 instruments only). Perform the procedure if one of the following components is suspected of being defective: W1, W2, W10, W13, W14, A7, A8, A17, A18, A19, or AT2.

8-40. The A22 Frequency Doubler Assembly Repair Procedure. Refer to Figure 8-2. This procedure is used after it has been determined that the problem is in the A22A2 Assembly, A22A3 Assembly, or elsewhere in the A22 Assembly. Refer to Service Sheet 7 for A22 Assembly troubleshooting procedures.

8-41. Front Panel Housing Disassembly and Repair Procedure. Circuits and parts located in the Front Panel Housing are the meter, output range switch, and vernier control, and (in option 003 instruments) the A23 Doubler Logic Assembly. Perform the procedure in Table 8-1 to gain access to these circuits for purposes of repair.

8-42. Rear Panel Disassembly Procedure. To gain access to assemblies and parts mounted on or behind the rear panel, refer to Figure 8-3. The A12 Logic Mother Board, A15 20 MHz Amplifier, Frequency Doubler Test Switch, A24 Frequency Doubler Test Switch Assembly (option 003 only) and the P6 Interconnect Plug are accessible only after removing the panel.

8-43. Post Repair Adjustments

8-44. After a defective circuit is repaired, refer to Section V and perform the adjustment procedure(s) for circuits which may be affected by the change. Consider the instructions under paragraphs entitled Related Adjustments and Post Adjustment Tests.

L.O. SIGNAL CIRCUITS REPAIR

Abstract

NOTE In conjunction with this procedure, use the troubleshooting information on Service Sheet 2 to isolate a circuit malfunction to one of the following assemblies, circuits, or cables: A7, A8, A18, A19, AT2, W1, W2, W10, or W13 (RF problem); A17 or W14 (phase modulation problem). The procedure applies for option 002 instruments only.

a. Set the mainframe LINE switch to STBY.
b. Remove screws (2), 7 and (14) to release the A17 Phase Modulator (3) and A18 Circulator 5 Assemblies.
c. With a $5 / 16$ " open end wrench, loosen the SMA connectors (6) 8 , and (9) Carefully pull the assemblies 3 and away from the aluminum decking until A17 3 slips past AT1 1 .

Figure 8-1. L.O. Signal Circuits Repair (1 of 3)
d. Phase Modulation Problems. Separate A17 and A18 at connectors 4 and (11) Set the system LINE switch to ON. Measure the output of W14 at connector (12).
e. Set the system LINE switch to STBY, replace the defective part of the assembly. Reassemble the items in the reverse order given for disassembly.

CAUTION

Be sure W14 13 runs under connector (11) and is not crushed under A17 7 .
f. RF Problems. To measure the LO signal at the output of A18 (10) , remove the SMA connectors (6) and 8 , and set the System LINE switch to ON.
g. If the output from A18 is correct, proceed to step h. Otherwise, determine which of A18, W13, A19, or W1 is defective by measuring the outputs of W13, A19, and W1. Refer to Service Sheet 2.

CAUTION

With the LINE switch in the STBY position, the +32 Vdc unregulated voltage may be connected to the RF Section A20 Assembly and Q1. During maintenance, care must be taken not to contact these parts. Damage to the mainframe power supply may occur.
h. Disconnect the System's line (mains) power. Release the A20 Assembly by removing the screws (one each where circuit board and aluminum decking meet). Lift the assembly straight up. Connect a ground lead from the chassis to the angle bracket which is connected to the ground point on the circuit board.
i. Remove cable W2 at the A8 Assembly output. (The A8 output jack is closer to the top of the RF Section).
j. Reconnect the System's line (mains) power. Measure the output level from A8 (refer to Service Sheet 2). If the output level is correct, determine if cable W2 or the A7 Mixer Assembly is defective. If the level is incorrect, proceed to step k.
k. Remove the three screws which secure the A8 Assembly. Remove the cable connector (9) at the output of A18. Carefully pull A8 away from the decking so the end of AT2 (connected to the input of A8) is exposed.

1. With the wrench, loosen and remove AT2 from A8. Carefully remove W10 and AT2 from between the decking.
m. Reconnect the cable to the output of A18 (10. Check the outputs from AT2 and W10 to determine if AT2, W10, or A8 is defective (refer to Service Sheet 2).

Figure 8-1. L.O. Signal Circuits Repair (2 of 3)
n. Discard the defective part or assembly. Reassemble the items removed in the reverse order (leave A20 till last).

CAUTION

When tightening the coaxial connectors, be sure the other end of the cable can be connected without bending the cable. Be sure all connectors are tightened but only enough to ensure a good connection. Excessive bending of semi-rigid coax or excessive tightening of the connectors may damage the cables and/or connectors beyond repair.

FREQUENCY DOUBLER ASSEMBLY REPAIR

If the entire A22 Assembly is to be replaced, proceed as follows:
a. Disconnect the semi-rigid output cable W7 and the coupler 1. DO NOT attempt to turn the coupler with the $1 / 4$ " wrench. Loosen the SMA connector 2 with the 5/16" wrench.
b. Remove the black cable W16 (4) by pulling the slide-on connectors, at each end of the cable, away from the jack.
c. Remove black cable W15 3 at the input to the A22 Assembly by pulling the slide-on connector away from the jack.
d. Remove the Pozidriv screws at either end of the A22 Assembly (2 at the rear panel and 2 at the bracket on rear of Front Panel Housing).
e. Remove the A21 Filter Drive Assembly
f. Remove the screws which hold the printed circuit board connector 5 in place.
g. Unsolder the wires to the feed through capacitors. (Wire colors are shown in the illustration).
h. Refer to Section VI for new or exchange part numbers. For exchange assemblies, DO NOT send the W16 cable in with the casting. BE SURE the covers are included.
i. To reinstall the A 22 Assembly, follow the procedure in the reverse order.

```
CAUTION
```

When reinstalling the assembly DO NOT crush any wires between the A13 and A22 Assembly.

If the A22A2 or A22A3 Assemblies are to be replaced, proceed as follows:
a. Remove the six screws which hold circuit board in place.

CAUTIONS

1. Do not use flux remover anywhere near the A22

Assembly. The monoblock capacitors may be damaged by this chemical. If absolutely necessary, use only freon or methanol.
2. In using a soldering iron to remove the $A 22 A 2$ or A22A3 Assemblies, care must be taken to avoid damage to the transistors, diodes, and monoblock capacitors, some of which are extremely heat sensitive.
b. Unsolder the input and output connections to the board being replaced on the adjacent circuit boards.
c. If replacing the A 22 A 3 circuit board, unsolder the +24 Vdc power supply connection from the feedthrough capacitor.
d. On the board being replaced, unsolder the resistor which is connected to the other amplifier circuit board.
e. Lift the circuit board straight up and out of its cavity.
f. Unsolder the input and output wire connectors. Be sure to save the plastic insulators.
g. To install the circuit board, follow the preceding steps in the reverse order except solder the input and output wire connectors into place after putting the board into the cavity and installing the six screws.

Figure 8-2. A22 Frequency Doubler Assembly Repair (2 of 2)

FRONT PANEL HOUSING DISASSEMBLY AND REPAIR

a. Place the RF Section in the normal upright position.
b. With a Pozidriv screwdriver, remove the two screws which hold the top of the front panel to the housing.
c. Turn the plug-in over with the bottom up. Remove the screw which is seen through the curved cutout slot in the latch when it is in the closed or latched position.
d. With a knurled nut wrench, loosen the knurled nut on the OUTPUT jack. Remove the nut by hand.
e. Pull the front panel away from the housing.
f. Determine what part or assembly is defective and replace it.
g. Reinstall the front panel by followint the preceding steps in the reverse order. Be careful not to crush any wires between the front panel and the chassis.

REAR PANEL DISASSEMBLY

a. On the rear panel, remove the screws 1 and 2 which hold the A22 Assembly in place.
b. Remove the screws (3) and which hold the A13 Assembly in place.
c. Remove the screws (9) and (10) which hold the top rear deck to the rear panel.
d. In Option 003 instruments, remove the two screws 1 and which hold the top rear deck to the bulkhead.

CAUTION

To avoid damage to the rear panel switch, carefully slide the deck to the right while twisting it just enough to bring it out from under the rear panel lip. DO NOT FORCE the deck out.
e. Remove the screws (5) and (6) which hold the rear panel to the left rear deck. Carefully pull the rear panel back and away to expose the assemblies and parts.

SCHEMATIC DIAGRAM NOTES

Resistance in ohms, capacitance in microfarads, inductance in microhenries unless otherwise noted.

Asterisk denotes a factory-selected value. Value shown is typical. Part might be omitted. See Table 5-1.

Indicates backdating. Refer to Table 7-2.
Tool-aided adjustment.

Manual control.

Encloses front-panel designation.
「---コ Encloses rear-panel designation.

$\xi \mathrm{CW}$
Circuit assembly borderline.

- — - - Other assembly borderline. Also used to indicate mechanical interconnection (ganging).

Heavy line with arrows indicates path and direction of main signal.
Heavy dashed line with arrows indicates path and direction of main feedback.

Wiper moves toward CW with clockwise rotation of control (as viewed from shaft or knob).

Numbered Test point. Measurement aid provided.

Encloses wire color code. Code used is the same as the resistor color code. First number identifies the base color, second number identifies the wider strip, third number identifies the narrower stripe. E.g., 947 denotes white base, yellow wide stripe, violet narrow stripe.

A direct conducting connection to the earth or a structure that has a similar function (e.g., the frame of an air, sea, or land vehicle). or a conducting connection to a chassis or frame.

Coaxial or shielded cable.

Stripline (i.e., RF transmission line above ground).

SCHEMATIC DIAGRAM NOTES

Arrows on relays indicate direction of arm movement when energized.

Filters. Specific type indicated by crosses on curved lines.

Example of Highpass Filter.

SWITCH DESIGNATIONS

EXAMPLE: A3S1AR(2-1/2)

A3S1 $=$ SWITCH S1 WITHIN ASSEMBLY A3

A $=1$ ST WAFER FROM FRONT (A=1ST, ETC)

R = REAR OF WAFER (F=FRONT)
(2-1/2) $=$ TERMINAL LOCATION (2-1/2) (VIEWED FROM FRONT)

Figure 8-4. Schematic Diagram Notes (3 of 3)

SERVICE SHEET 1

NOTE

When a malfunction occurs, refer to Section VIII of the HP Model 8660series mainframe Operating and Service Manual to begin troubleshooting (System Troubleshooting Guide). Then, if that information indicates possible problems in the RF Section, refer to the Systems Troubleshooting information in this manual (Service Sheet 1). This information may be used to isolate the defect to the RF Section, another plug-in, or the mainframe. If the problem is in this plug-in, refer to Service Sheet 2 for further troubleshooting information.

RF SECTION OPERATION IN THE SYNTHESIZED SIGNAL GENERATOR SYSTEM

In order to understand the operation of the RF Section or to effectively troubleshoot it, the entire Synthesizer Signal Generator System must be understood. The emphasis here is on the RF Section and its relationship with the other units which make up the system.

PRINCIPLES OF OPERATION

The HP Model 86603A RF Section plug-in (as part of the HP 8660 -series Synthesized Signal Generator System) has an RF Output of +7 to -136 dBm across 50Ω from 1 to 2599.999998 MHz . The RF signals coupled from mainframe to the Frequency Extension Module are converted to two phaselocked outputs which are coupled to the RF Section. The signals are mixed, amplified, and coupled to the OUTPUT jack through the RF Attenuator.

The RF detector produces a dc output proportional to the RF output signal. The dc output is compared to a reference voltage. Any difference in dc levels produces an error current which drives the PIN diode modulator. The current flow through the PIN diodes controls the RF output level. The negative feedback loop described, is an ALC loop which holds the RF output level constant.

Output Frequency Selection

The desired output frequency is selected by the Digital Control Unit (DCU) in the mainframe. Control logic levels to the mainframe RF circuits set the frequencies of the signals to the Frequency

Extension Module. Other logic levels are coupled to the extension module from the mainframe to set the frequency of the generated RF outputs which are coupled to RF Section. The signals are mixed and the converted signal is coupled to the Frequency Doubler. In the X1 mode ($<1300 \mathrm{MHz}$) the signal is passed directly to the RF Attenuator and on to the OUTPUT jack. In the X2 mode, the converted signal frequency is doubled before being input to the RF Attenuator.

Modulation Selection

Depending on the Auxiliary or Modulation Section, amplitude, frequency, phase, or pulse modulation may be selected.

NOTE

In the $F M$ and ϕM modes, frequency and phase deviation is doubled in the Frequency Doubler Assembly at center frequencies $\geqslant 1300 \mathrm{MHz}$ ($X 2$ mode).
a. The amplitude modulation drive signal is coupled to the RF Section from the Modulation Section. The drive signal is superimposed on the reference level which controls the ALC loop. Thus, the ALC loop causes the RF output level to change at the modulation signal rate.
b. Frequency modulation is accomplished by setting the modulation mode control to FM. The modulation drive signal frequency modulates a 20 MHz VCO signal which is generated in the Modulation Section. This signal is coupled to the RF Section, amplified, and coupled on to the Frequency Extension Module. The extension module circuits transfer the frequency modulation information from the 20 MHz signal to the 3.95 to 2.75 GHz oscillator signal. This signal is then coupled to the RF Section circuits.
c. Phase modulation occurs when the selected modulation mode is set to $\phi \mathrm{M}$. The modulation drive signal from the modulation section is applied to the LO signal so its phase deviation varies with the drive signal amplitude.
d. The Pulse ID logic input opens the ALC loop so there is no RF output without a pulse modulation drive signal. A -10 volt peak pulse will momentarily bias the RF output on.

SERVICE SHEET 1 (Cont'd)

RF Output Level Selection

The RF output level is selected by the front panel OUTPUT RANGE switch and the VERNIER control. The VERNIER control (in conjunction with the front panel meter) is used to set the output within a usable range of 10 dB . The OUTPUT RANGE switch controls the output level range by inserting attenuation in 10 dB steps to 140 dB .

Remote Operation

In remote mode the frequency, modulation, and RF output levels are programmed into the DCU. Through parallel BCD PI (plug-in) control lines, an input is sent to the various storage registers. A one-of-six address selects the register which will accept the information. Frequency information is routed into one of 3 registers: center frequency, step (except 8660A), and sweep (except 8660A). Modulation information is routed to either the Modulation Mode/Source register or the Modulation Level register. RF output level (attenuation) information is routed to the attenuation storage register in the RF Section by addressing the ATTN CLK.

The attenuation information is stored in the register until new data is received. Until that time the stored information is connected through various logic and decoding circuits and applied to the relays and switches which set the RF output level to the desired value. The RF Section front panel controls are inoperative in the remote mode.

SYSTEM TROUBLESHOOTING

When a malfunction occurs, refer to Section VIII of the HP Model 8660 -series mainframe Operating and Service Manual to begin troubleshooting (System Troubleshooting Guide). Then, if that information indicates possible problems in the RF Section, return to this service sheet and perform the following tests which may help isolate the problem to an instrument (mainframe or a plug-in).

Preparing the RF Section for Troubleshooting

Follow the Removal and Disassembly Procedures on the foldout page which just preceeds the last foldout in the manual. Follow the directions for removing the RF Section from mainframe, removing its covers, and making the interconnections from mainframe to RF Section for troubleshooting purposes.

Output Level Incorrect

The following steps check the signal levels input to the RF Section from the Frequency Extension Module. Also, the attenuation data input to the RF Section must be checked if the instrument is being operated in the remote mode.
a. Disconnect the RF cable connected to P2 (on rear panel below the multi-pin connector P6). Measure the level of the 3.95 to 2.75 GHz signal from the cable with a spectrum analyzer ($>+10 \mathrm{dBm}$). Reconnect the cable to P 2 .
b. Disconnect the RF cable connected to P1 (on rear panel below the multi-pin connector). Measure the level of the 3.95 to 4.05 GHz signal from the cable with a spectrum analyzer ($>-6 \mathrm{dBm}$). Reconnect the cable to P1.
c. If either signal level from the extension module is incorrect, the problem is either in the extension module or the interconnections to the RF Section. Check the continuity of the cables and, if necessary, refer to the extension module manual for further troubleshooting information.
d. If both signal levels are correct and the system is being operated in the remote mode, switch to local (front panel) control. If the problem is still evident, refer to Service Sheet 2 for further troubleshooting information.
e. If the problem disappears, check continuity of the input data lines (PI-1, PI-2, PI-4, and PI-8) and the ATTN CLK input to the mainframe. If continuity exists, proceed to Section VIII of the mainframe manual and troubleshoot the DCU. Otherwise, refer to Service Sheet 3.

Frequency Problems

The mainframe center frequency readout is correct but the frequency at the RF Section's front panel jack is incorrect. The mainframe, extension module, and RF Section have controlled frequency sections. [If the problem is related to frequency doubling mode ($\geqslant 1300 \mathrm{MHz}$), the problem is in the RF Section or DBL-L input from the mainframe (proceed to step d).] If the RF frequencies to the extension module are incorrect or the levels are low, the circuit defect is in the mainframe or the RF Section interconnections to the extension module (including the A15 20 MHz Amplifier

SERVICE SHEET 1 (Comera)

Assembly). If these levels and frequencies are all correct, the extension module is malfunctioning or the data input from the mainframe DCU is incorrect.

NOTE

If coaxial test cable 11672-60008 (for checking outputs from the multi-pin connector J6) is not available, proceed to step b.
a. Check the low frequency RF inputs to the RF Section. Set the mainframe Line switch to standby (STBY), disconnect the interconnect cable from the multi-pin connector P6 on the RF Section rear panel. Return the mainframe line switch to the ON position. Check the frequencies and levels according to the tables with a Spectrum Analyzer and a frequency counter. If the levels and frequencies are all correct, the same signals must be checked to ensure continuity into the Frequency Extension Module. Refer to the Troubleshooting Information in the extension module manual. Otherwise, proceed to step b.
b. Check the RF signal levels and frequencies at their assembly outputs in the mainframe. Refer to the Section VIII of the mainframe manual. Check the 20 MHz FM/CW signal at A4J7, 100 MHz at A4J8, and 360 to 450 MHz at A4J12. The 20 to 30 MHz signal is found on the A2 Mother Board Assembly which is located directly beneath the A4 Assembly. The tables of levels and frequencies still apply for these measurements. If any of the outputs are incorrect, refer to the appropriate troubleshooting information relating to the circuits which generate that particular frequency in Section VIII of the mainframe manual.
c. If all inputs (step b) are correct and if any of the J6 outputs (step a) were incorrect, check continuity of the interconnections to the RF Section. In the case of problems with the 20 MHz CW/FM signal, refer to the Modulation Section manual. If all inputs (step b) are correct and the J6 outputs to the RF Section were not checked, proceed to the extension module for further troubleshooting information.

NOTE

If the problem is not in the RF Section or interconnections, the information in
the Frequency Extension Module will determine if the problem is in the digit 8,9 , and 10 logic control inputs from the mainframe or the frequency controlled circuits in the extension module.
d. If the problem is related to frequency doubling, be sure the rear panel Frequency Doubler Test Switch is in the proper position. Then recheck for correct operation.

NOTE

The test switch normally will be set to the 8660C position. If the RF Section is being tested for proper operation in either a Model 8660 A or 8660 B mainframe, the switch should be in either the $X 1$ or X2 position depending on which mode seems to be defective.

CAUTION

Model 8660A and 8660B mainframes of serial prefix 1349A and below must be modified before RF Sections can be used in the X 2 frequency mode or if the RF Section has the phase modulation capability. Refer to the paragraph entitled Modifications in Section II.
e. If necessary, change the test switch position and insert the RF Section into another mainframe. If another mainframe is not available, proceed to step g .

RF Signal Levels

Pin Numbers J6 (Mainframe) or Interconnect Cable	Frequency* (MHz)	Signal Level (dBm)
62	$20 \mathrm{MHz} \pm 1 \mathrm{~Hz}$	$>-7 \mathrm{dBm}$
63	20 to $30 \mathrm{MHz} \pm 1 \mathrm{~Hz}$	$>-7 \mathrm{dBm}$
64	360 to $450 \mathrm{MHz} \pm 1 \mathrm{~Hz}$	$>+10 \mathrm{dBm}$
65	$100 \mathrm{MHz} \pm 1 \mathrm{~Hz}$	$>+10 \mathrm{dBm}$
*To achieve the $\pm 1 \mathrm{~Hz}$ tolerance, the System mainframe and the frequency counter must share a common timebase.		

Center Frequency Versus Frequency of 20 to 30 MHz Signal*

Center Frequency Readout (MHz)	Exact Frequency (20 to 30 MHz Signal) (MHz)	Center Frequency Readout (MHz)	Exact Frequency (20 to 30 MHz Signal) (MHz)	Center Frequency Readout (MHz)	Exact Frequency (20 to 30 MHz Signal) (MHz)
0.000000	30.000000	0.000400	29.999600	0.080000	29.920000
0.000001	29.999999	0.000500	29.999500	0.090000	29.910000
0.000002	29.999998	0.000600	29.999400	0.100000	29.900000
0.000003	29.999997	0.000700	29.999300	0.200000	29.800000
0.000004	29.999996	0.000800	29.999200	0.300000	29.700000
0.000005	29.999995	0.000900	29.999100	0.400000	29.600000
0.000006	29.999994	0.001000	29.999000	0.500000	29.500000
0.000007	29.999993	0.002000	29.998000	0.600000	29.400000
0.000008	29.999992	0.003000	29.997000	0.700000	29.300000
0.000009	29.999991	0.004000	29.996000	0.800000	29.200000
0.000010	29.999990	0.005000	29.995000	0.900000	29.100000
0.000020	29.999980	0.006000	29.994000	1.000000	29.000000
0.000030	29.999970	0.007000	29.993000	2.000000	28.000000
0.000040	29.999960	0.008000	19.992000	3.000000	27.000000
0.000050	29.999950	0.009000	29.991000	4.000000	26.000000
0.000060	29.999940	0.010000	29.990000	5.000000	25.000000
0.000070	29.999930	0.020000	29.980000	6.000000	24.000000
0.000080	29.999920	0.030000	29.970000	7.000000	23.000000
0.000090	29.999910	0.040000	29.960000	8.000000	22.000000
0.000100	29.999900	0.050000	29.950000	9.000000	21.000000
0.000200	29.999800	0.060000	29.940000	9.999999	20.000001
0.000300	29.999700	0.070000	29.930000		
*This table does not contain all possible frequency steps.					

f. If the RF Section works properly in the new mainframe, refer to Section VIII of the mainframe manual and troubleshoot the original mainframe. If the RF Section is at fault, proceed to Service Sheet 2.
g. Check the DBL-L input to the RF Section at J6 pin 36. If the input is correct, proceed to Service Sheet 2 for further troubleshooting information. Otherwise, turn to Section VIII of the mainframe manual and troubleshoot the DCU (Digital Control Unit).

SERVICE SHEET 1 (Cont'd)

Center Frequency Versus
Frequency of 360 to 450 MHz Signal

Center Frequency Readout	Actual Frequency (350 to 450 MHz Signal)
0.00 GHz	450 MHz
0.01	440
0.02	430
0.03	420
0.04	410
0.05	400
0.06	390
0.07	380
0.08	370
0.09	360
0.10	350

Modulation Problems

Amplitude, Frequency, and Phase Modulation. Defects in modulation circuits can usually be classed as either accuracy or distortion problems. In each case it must be determined if the problem is in the Modulation Section, RF Section, or (in FM mode only), the Frequency Extension Module.
a. System modulation accuracy is checked by performing the appropriate performance test in Section IV of the modulation section manual. If the results indicate a problem exists, check the modulation section output with a full scale level
setting. The table indicates where to make the measurement, the type of measurement, and the normal signal measured. A coaxial cable from the 11672A Service Kit, the 11672-60008 is used to interconnect the signal from the J6 (the main-frame-to-RF Section interconnect jack).
If the measured signal shows the output modulation signal is incorrect, perform the appropriate adjustment in Section V of the modulation section manual. If the signal cannot be properly adjusted, refer to Section VIII of the modulation section manual for further troubleshooting information. Once the adjustment is satisfactorily made, recheck the system modulation accuracy.

If the system accuracy is still incorrect, perform the appropriate adjustment procedure in Section V of the RF Section manual. If this adjustment cannot satisfactorily be made, refer to the troubleshooting information of Service Sheet 2.
b. Modulation distortion problems are verified by performing the appropriate distortion test determined by the modulation type (refer to Section IV of this manual). If the test indicates an excessive distortion level is present in the RF output signal, the source must be determined.

Measurements of the signals from the Modulation Section may be made at the J6 connector after the RF Section has been removed. For each modulation type, the output distortion is typically $<1 \%$. If the distortion is excessive, refer to the trouble-

Modulation Accuracy Test Levels

Modulation Type	Measurement Location	Signal Parameter Measured	Measured Signal (for Full Scale) Modulation Level
Amplitude ${ }^{1}$	A12 Assembly at test point labeled AM. (Right side rear of plug-in or J6 pin 55.	AC Voltage	2.8 Vp-p (1.0 Vrms) at 1 kHz rate
Frequency ${ }^{2}$	Pin 62 of J6	Frequency Deviation (peak)	$20 \mathrm{MHz} \pm 10 \mathrm{kHz}$ (FM x 1 range) at 1 kHz rate
Phase ${ }^{1}$	A16 Assembly input (white/ green cable) or J6 pin 59	AC Voltage	4.2 Vp-p (1.5 Vrms) at 1 kHz rate
' If the input is very low or non-existant, verify that continuity of the input exists back to the modulation section. If continuity exists, refer to Service Sheet 2. ${ }^{2}$ If no frequency modulation of the RF Signal is present or if the RF signal is incorrect only in the FM mode, refer to Section VIII of the modulation section manual for further troubleshooting information.			

SERVICE SHEET 1 (Cont'd)

shooting information in Section VIII of the modulation section manual. Otherwise, perform the appropriate adjustment procedures in Section V of the RF Section manual.

Recheck the performance test in Section IV of this manual. If necessary, refer to the troubleshooting information in Service Sheet 2.

Unusual Phase Modulation Level Problems. If phase modulation level accuracy varies excessively with system center frequency, check the gain tracking inputs (Digit 8) for the correct logic level for the selected center frequency. If the logic levels are incorrect, refer to the mainframe manual for further troubleshooting information. If the inputs are correct, refer to Service Sheet 2.

Puise Modulation Problems. Pulse Modulation of the Signal Generator System is accomplished by
using the HP Model 86631B Auxiliary Section and an external pulse generator.
a. Set the Auxiliary Section external modulation control to Pulse. To the input jack couple an external pulse of -10 Vpk with the "pulse off" voltage set to 0 Vdc .
b. Measure the voltage on the test point labeled PULSE (located on a circuit board at the right side rear of the plug-in). This voltage should be about +5 Vdc . Also, check the pulse input from the white-green cable where it enters the A2 Assembly. If either the signal or dc voltage is not present, check continuity back to the Auxiliary Section. If necessary, refer to the HP Model 86631B Operating Note and troubleshoot the Auxiliary Section. Otherwise, refer to Service Sheet 2 for more troubleshooting information.

RF SECTION TEST POINTS

RIGHT SIDE VIEW

LEFT SIDE VIEW

Figure 8-5. System Test Point Locations

MAINFRAME INTERCONNECT JACK

Figure 8-6. Mainframe Interconnect Jack

SERVICE SHEET 2

SERVICE SHEET 2 (Cont'd)

NOTE

When a malfunction occurs, refer to Section VIII of the HP Model 8660-series mainframe Operating and Service Manual to begin troubleshooting (System Troubleshooting Guide). Then, if that information indicates possible problems in the RF Section, refer to the System Troubleshooting information (Service Sheet 1) in this manual. This information may be used to isolate the defect to the RF Section, another plug-in, or the mainframe. If the problem is in this plug-in, return to this
service sheet for further troubleshooting information. service sheet for further troubleshooting information.

ANALOG CIRCUITS

PRINCIPLES OF OPERATION

General

The LO and RF input signals from the frequency Extension Module are mixed and the difference frequency output (1 to 1300 MHz) is amplified and coupled to the Frequency Doubler Assembly. The signal is either coupled directly to the OUTPUT jack, or to a frequency doubler circuit and tracking bandpass filter. In the latter case, the harmonic signal is amplified before being coupled to the OUTPUT jack. Thus, frequencies between 1 and 2600 MHz may be selected.
The RF output voltage level is sampled and compared to a stable reference. The resultant error voltage is used to control the level of the RF signal as it is passed through the Modulator assembly. Therefore, this ALC (Automatic Level Control) loop maintains the output level relatively constant across the system's specified output range.
The RF output level may be either locally controlled (front panel operation) or remotely controlled (programmed input). In either case, the logic control input is coupled to the Logic Section. This input data is manipulated so it selects the level of attenuation of the RF output signal by controlling the 10 and/or 1 dB Step Attenuators.
A power supply, RF interconnections, and a 20 MHz amplifier are contained in the RF Section. They supply the power and RF signals which operate the Frequency Extension Module.

Phase Modulator Section

The phase modulation drive signal from the Modulation section is coupled to the A16 Phase Modulation Driver Assembly where it passes through a gain tracking circuit (frequency variable attenuator). This circuit keeps the modulation level constant with change in system center frequency because the sensitivity of the phase modulator circuitry changes with respect to the LO frequency. The signal is then amplified and coupled to the Phase Modulator Assembly.
Phase modulation of the LO signal occurs when the signal (which passes through the Circulator Assembly to the Phase Modulator Assembly) is reflected back into the circulator. The phase of the reflected signal with respect to the incident signal is dependent on the instantaneous modulation drive voltage present at the phase modulator. The LO signal is first passed through the isolator, through port 1 (J1) to port 2 (J2) of the circulator, and on to the phase modulator. The reflected signal is
passed from port 2 to port $3(\mathrm{~J} 3)$ where it is again reflected from the phase modulator with additional phase shift approximately equal to that which occurred at port 2 . The signal is passed from port 3 to port 4 (J4) and through the 3 dB attenuator to the 4 GHz Amplifier Assembly.

In other than option 002 instruments (no phase modulation circuits), the LO signal is coupled directly from FL1 to the A8 4.0 GHz Amplifier Assembly.

Mixer Section

The mixer output is derived from mixing the LO and RF inputs. The phase modulated or cw LO signal is amplified and coupled to the Mixer Assembly. The RF signal passes through the Isolator (20 dB reverse isolation) to the Modulator Assembly where it encounters variable series attenuation. The series attenuation is controlled by the bias signal from the ALC feedback loop. The modulator's RF output signal is coupled directly to the Mixer where it is mixed with the LO signal. The difference frequency output is coupled to the 1-1300 MHz Amplifier.

Frequency Doubler Section

With desired center frequencies less than 1300 MHz , the Frequency Doubler Assembly input signal is passed directly to the 10 dB Step Attenuator. At center frequencies greater or equal to 1300 MHz , the input frequency to the doubler is exactly half the selected center frequency. The second harmonic signal is passed through a frequency doubler and tracking bandpass filter, is amplified, and is connected to the 10 dB Step Attenuator.

Amplifier/Detector Amplifier Section

The difference frequency output from the Mixer Section is coupled to the $1-1300 \mathrm{MHz}$ Amplifier, increased in level by $\approx 41 \mathrm{~dB}$, and then is coupled to the Frequency Doubler Assembly.

The Frequency Doubler Assembly actually contains the RF Detector circuit. It produces a dc voltage which is proportional to the peak RF output voltage. This signal, which is amplified to drive the front panel meter and the AM Gain compensation circuits in the Reference Assembly, is also coupled to the ALC Amplifier Assembly.

ALC Section

Reference Assembly. In the Local Mode, the RF output level is set by the front panel controls. The unmodulated RF output level follows the ALC loop's dc reference voltage which, in turn, follows the VERNIER control setting.

In the AM mode the modulation drive signal is superimposed on the reference voltage. The average amplitude of the RF output is dependent on the average dc level (which is equal to the dc reference voltage) while the instantaneous RF output voltage and its rate of
change (modulation characteristics) are dependent on the superimposed modulation drive signal.

In the remote mode, the entire system responds to programmed inputs; the front panel controls of all instruments are inhibited. In the RF Section, the reference output is coupled to the ALC Assembly through the 1 dB Step Attenuator. Therefore, the vernier function is controlled by the 1 dB Step Attenuator.

ALC Amplifier. The ALC Amplifier compares the Detector Amplifier Assembly output to the Reference Assembly output. Any change in the detected RF level or the reference level is immediately reflected at the ALC assembly output. This output is coupled to the A5 Modulator Assembly as the Modulator Bias signal. Because the front panel RF output level is directly proportional to the Modulator RF output level (which is controlled by the series attenuation and consequently the Modulation Bias Signal), the ALC feedback loop is completed.

Pulse Modulation Circuits. During Pulse Modulation, the ALC loop is opened at the ALC Amplifier output. With no signal input, a positive bias voltage to the A5 Modulation Assembly causes the RF signal output to be at least 40 dB down (60 dB down at center frequencies $\geqslant 1300 \mathrm{MHz}$) from the "on-condition". A -10 Vdc pulse biases the RF "on".

Attenuation Section

The Attenuator Section operates identically in local and remote modes. The inputs from the Logic Section (10D, 20D, 40D, and 80D) select the desired attenuation level.

TROUBLESHOOTING

It is assumed that a problem has been isolated to the RF Section as a result of using the System Troubleshooting Guide found in Section VIII of the HP Model 8660 -series mainframe Operating and Service Manual and the information entitled System Troubleshooting Service Sheet 1. Troubleshoot the RF Section using the test equipment information, and procedures which follow.

Test Equipment
Spectrum Analyzer Oscilloscope.

HP 8555A/8552B/140T HP 180C/18

Test 1. It is good practice to first check the power supply inputs to the RF Section and at the same time, it may help to check AM, Pulse ID or any other inputs which relate to the problem. The inputs may be checked at the A12 Assembly test points on the right-side rear of this plug-in. Refer to Figure 8-5.

SERVICE SHEET 2 (Cont'd)

change (modulation characteristics) are dependent on the superimposed modulation drive signal

In the remote mode, the entire system responds to programmed inputs; the front panel controls of all instruments are inhibited. In the RF Section, the reference output is coupled to the ALC Assembly through the 1 dB Step Attenuator. Therefore, the vernier function is controlled by the 1 dB Step Attenuator

ALC Amplifier. The ALC Amplifier compares the Detector Amplifier Assembly output to the Reference Assembly output. Any change in the detected RF level or the reference level is immediately reflected at the ALC assembly output. This output is coupled to the A5 Modulator Assembly as the Modulator Bias signal. Because the front panel RF output level is directly proportional to the Modulator RF output level (which is controlled by the series attenuation and consequently the Modulation Bias Signal), the ALC feedback loop is completed.

Pulse Modulation Circuits. During Pulse Modulation, the ALC loop is opened at the ALC Amplifier output. With no signal input, a positive bias voltage to the A5 Modulation Assembly causes the RF signal output to be at least 40 dB down (60 dB down at center frequencies $\geqslant 1300 \mathrm{MHz}$) from the "on-condition". A -10 Vdc pulse biases the RF "on"

Attenuation Section

The Attenuator Section operates identically in local and remote modes. The inputs from the Logic Section (10D, 20D, 40D, and 80D) select the desired attenuation level.

TROUBLESHOOTING

It is assumed that a problem has been isolated to the RF Section as a result of using the System Troubleshooting Guide found in Section VIII of the HP Model 8660 -series mainframe Operating and Service Manual and the information entitled System Troubleshooting Service Sheet 1. Troubleshoot the RF Section using the test equipment, information, and procedures which follow.

Test Equipment
Spectrum Analyzer HP 8555A/8552B/140T
Oscilloscope HP 180C/1801A/1821A
Digital Voltmeter HP 3466A

Digital Voltmeter HP 3466A

Test 1. It is good practice to first check the power supply inputs to the RF Section and at the same time, it may help to check AM, Pulse ID or any other inputs which relate to the problem. The inputs may be checked at the A12 Assembly test points on the right-side rear of this plug-in. Refer to Figure 8-5.

SERVICE SHEET 2 (Cont'd)

A12 Assembly Test Points

-10 V	$-10.0 \pm 0.1 \mathrm{Vdc}$
+20 V	$+20.0 \pm 0.1 \mathrm{Vdc}$
$-20 \mathrm{~V}_{\mathrm{u}}$	$-21.0 \pm 0.2 \mathrm{Vdc}$
$+20 \mathrm{~V}_{\mathrm{u}}$	$+21.0 \pm 0.2 \mathrm{Vdc}$

Test 2. If the problem is related to incorrect output level, proceed to Test 3. If it is a unique type problem such as amplitude modulation, noise, etc., refer to the following items for additional troubleshooting hints.
a. Frequency Problems. In the RF Section, a frequency problem may be caused by a malfunction in the frequency doubling circuitry or its logic control circuitry. If the logic inputs are incorrect, refer to Service Sheet 3; otherwise, refer to Service Sheet 7.
b. Spurious Signals. May be isolated by checking for signal at various locations in the RF Section. Setting the A4S1 switch to Test may help to isolate the problem to the RF circuitry or ALC loop. Check for oscillations in the A22A2 and A22A3 Assembly amplifiers (refer to Service Sheet 7) and for the Doubler Amplifier Drive Voltage (refer to Service Sheet 12).
c. Noise. Generally, noise originates in Frequency Extension Module or the A15 20 MHz Amplifier Assembly.
d. Harmonic Signals. In the RF Section, harmonic signals are usually generated in the Frequency Doubler Assembly. Check the logic inputs. Refer to Service Sheet 3 or 7 .
e. Amplitude Modulation. Verify that the AM signal reaches the A10 Reference Assembly.

If amplitude modulation level changes with an RF level change check the RF Section front panel meter reading versus measured RF OUTPUT level. If the panel meter reading is correct, refer to Service Sheet 8 (check AM Gain input and related circuits). Otherwise, check the meter driver amplifier and related components shown on Service Sheet 6.

Distortion problems may be caused by defective components associated with the ALC Bandwidth Input. Check the logic inputs from Service Sheet 3. Then refer to Service Sheet 3,6 , or 8 .

If the amplitude modulation level differs from the level shown, perform the related adjustment procedures in Section V to see if the error is corrected. Be sure the fault isn't in the Modulation Section. An input of 1.0 Vrms to the A10 Reference Assembly should equal 100% AM level.
f. Phase Modulation. The output of the A16 Phase Modulator

SERVICE SHEET 2 (Cont'd)

Driver Assembly is a distorted sinusoidal waveform of approximately 7.5 Vp-p for a full scale Modulation Section meter indication. If the output is incorrect, check the output of the cable, W12, to determine if W12 or A16 is defective. The output should be 1.5 Vrms. If the output of the A16 assembly is correct, either W14 or A17 is defective. Refer to the paragraph entitled L.O. Signal Circuits Repair procedure in Section VIII of this manual for disassembly and repair procedures.

Phase modulation distortion problems in the RF section will generally be caused by the A16 Phase Modulator Driver Assembly or the A17 Phase Modulator Assembly. Refer to Service Sheet 5.

NOTE

Excessive incidental AM during phase modulation may be caused by incorrect operation of the 50 MHz Low Pass Filter. Check the control input and the RF output level of the filter. Refer to Service Sheet 4
g. Pulse Modulation. Problems may be isolated by checking Pulse In and Pulse ID inputs. Also, check continuity from A5 Modulator Assembly inputs from Auxiliary Section.
h. Incorrect Front Panel Meter Reading. Refer to Test 3.

Test 3. If the RF output level is incorrect by more than 1 or 2 dB , proceed to Test 4. Otherwise check the 10 H input to the A10 Assembly related components. Refer to Service Sheet 3 if the input is incorrect. If necessary, refer to Section V and perform the RF Output Level and 1 dB Step Attenuator Adjustment procedures. If the Adjustments cannot be done or do not correct the tracking across the VERNIER range, check the Meter Driver and Meter circuitry, and the AM Gain circuits. Refer to Service Sheets 6 and 8 respectively. Also check the circuits in the A4 Assembly which are influenced by the 10 H input.

Test 4. Proceed to Test 5 if the RF output level is higher than normal. The RF outputs listed in each step of this test (4) are lower than normal. The three voltages shown in parentheses are Modulator Bias Signal ranges. They indicate that the ALC loop (1) is holding the RF output low, (2) is trying to increase the RF output or (3) that a quiescent level, although incorrect, has been reached. Refer to the block diagram for the normal range of Modulator Bias Signal levels.
a. The RF output is low but the ALC loop is trying to increase the level ($\geqslant-3 \mathrm{Vdc}$). Check the RF outputs of FL1, A7, A6, and A22 to isolate the problem to Service Sheet 4 (for other than option 002 instruments), Service Sheets 4 or 5 (option 002 instruments only), Service Sheet 6, or Service Sheet 7 respectively.

If the output of FL1 is correct and the output of A7 is incorrect, the SERVICE SHEET 1

SERVICE SHEET 2 (Cont'd)

problem may be on either Service Sheets 4 or 5 in option 002 instruments. In this case, refer to the LO Signal Circuits Repair procedure and the Troubleshooting Block Diagram to isolate the problem to an assembly or cable.

On instruments other than option 002 instruments, if the output of A7 is defective, refer to Service Sheet 4.

Each of these assemblies and circuits, if defective, must be replaced as a unit with the exception of A7. If A7 is defective, refer to Service Sheet 4 for further troubleshooting information.
b. The RF output is low and the ALC loop is holding the Modulator Bias Signal level low $\geqslant+10$ Vdc). First, check the A10 Reference Assembly output with the VERNIER control set to the CW and CCW position with A4S1 in the Normal position. If the output is abnormal, refer to the troubleshooting information on Service Sheet 8. A normal output indicates the defect is either on the A3 ALC Assembly, A22 Frequency Doubler Assembly, or the A4 Detector Amplifier Assembly.

Set the A 4 S 1 switch to the Test position. If the Modulator Bias Signal exhibits the same response as shown in the following table, the problem is either in the A22 Frequency Doubler Assembly which contains the detector or the A4 Detector Amplifier Assembly. (Check the Detector Signal input at A4 pin 11.) Otherwise, Service Sheet 8 contains the necessary troubleshooting information.

Modulator Bias Signal

A4S1 Switch	Vernier Control Settings			
	CW		CCW	
	904	907	904	907
Normal	$+0.2 \mathrm{Vdc}$	+0.4 Vdc	$\left\|\begin{array}{c} +1 \text { to }+11 \\ \text { Vdc } \end{array}\right\|$	+0.8 Vdc
Test	-4 Vdc	$-3.0 \mathrm{Vdc}$	+0.3 Vdc	+0.5 Vdc

c. The Modulator Bias Signal is at a quiescent level but is lower (more positive) than normal. Check the A10 Reference Assembly output level.

If the output is lower (more positive than normal), check the $1 \mathrm{~A}, 2 \mathrm{~A}, 4 \mathrm{~A}$, and 8 A inputs to the A 10 Assembly (remote mode only). If they are correct or the instrument is in local mode, refer to Service Sheet 8. If the remote inputs are incorrect or the problem is associated with the 10 dB Step Attenuator, refer to troubleshooting information on Service Sheet 3. Otherwise, check the detector output and reference at A4 pin 10 and 11. Refer to either Service Sheet 6 or 7.

Test 5. The RF outputs listed in each step of this test are higher than normal. The voltages enclosed in parentheses are Modulator Bias Signal ranges. They indicate that the ALC loop (1) is holding the RF output high, (2) is trying to decrease the output level or (3) that a quiescent level, although incorrect, has been reached. Refer to the block diagram for normal values of Modulator Bias Signal.
a. High RF output level; the ALC has increased the level $\geqslant-3 \mathrm{Vdc})$. Check the A10 Reference Assembly output. If the response to VERNIER control settings is abnormal, refer to Service Sheet 8 and troubleshoot the A10 Assembly. If the response is normal, set the A4S1 switch to test. If the Modulator Bias Signal responds to the VERNIER control settings as indicated by the table of Test 4 b , check that the detector output responds properly to the increased RF signal level (check A4 pin 10 and 11) and refer to either Service Sheet 6 or 7 . Otherwise, turn to Service Sheet 8 and continue troubleshooting.
b. High RF output level; the ALC is trying to decrease the level $(\geqslant+10 \mathrm{Vdc})$. The A5 Modulator Assembly or associated circuitry is probably defective (refer to Service Sheet 4).
c. The Modulator Bias Signal is at a quiescent level but higher (more negative) than normal. Check the A10 Reference Assembly output. If the A10 output is more negative than normal, check the $1 \mathrm{~A}, 2 \mathrm{~A}, 4 \mathrm{~A}$, and 8 A inputs to the A 10 assembly (remote mode only). If the A10 outputs are correct or the instrument is in local mode, refer to Service sheet 8. If the remote inputs are incorrect or the problem is associated with the 10 dB Step Attenuator, refer to the troubleshooting information on Service Sheet 3. Otherwise, check that the detector output responds properly to the increased RF signal level (check A4 pins 10 and 11). Refer to either Service Sheet 6 or 7.

SERVICE SHEET 3

NOTE

When a malfunction occurs, refer to Section VIII of the HP Model 8660-series mainframe Operating and Service Manual to begin troubleshooting (System Troubleshooting Guide). Then, if that information indicates possible problems in the RF Section, refer to the System Troubleshooting information in Service Sheet 1. This information may be used to isolate the defect to the RF Section, another plug-in, or the mainframe. If the problem is in this plug-in, return to Service Sheet 2 for further troubleshooting information.

LOGIC CIRCUITRY

PRINCIPLES OF OPERATION

General

In this instrument, the logic inputs to the analog circuits control functions such as frequency doubling and attenuation of the RF output signal. These inputs also influence the phase modulation and ALC bandwidth.

In the remote mode, all control signals are external to the RF Section. In the local mode, the OUTPUT RANGE switch selects the range by using a binary coded hexadecimal output with an extra overrange line. Also, the VERNIER control is analog in nature in the local mode.

Filter Driver Assembly

The eighth, ninth, and tenth digit BCD inputs from the mainframe ($10 \mathrm{MHz}, 100 \mathrm{MHz}$, and 1 GHz) are used in the frequency doubling mode. These inputs are applied to digital-to-analog converters. The converter's outputs are input to summing amplifiers to produce an analog output which drives a tracking bandpass filter. The filter separates the second harmonic of the RF signal from its fundamental and other harmonics to produce the desired output frequency.

A decoder circuit determines when the frequency output from the A7 Assembly is greater than 100 MHz . The A7A5 50 MHz High Pass Filter is switched on effectively trapping any low frequency phase modulation drive signals which would otherwise be amplified and passed on to the RF output.

Logic Assembly

Local operation of the 10 dB Step Attenuator is selected by a logic high on the LCL/RMT input. Thus, control of the 10 dB Step Attenuator by the inputs from the front panel OUTPUT RANGE switch is enabled while the remote inputs are inhibited.

In Remote mode, a logic low in the LCL/RMT inputs inhibits front panel control and enables data information flow from the mainframe

SERVICE SHEET 3 (Cont'd)

to the Logic Assembly. The ATTN CLK controls the data inputs on the PI-1, PI-2, PI-4, and PI-8 lines to the Logic Assembly. The OUTPUTS to the 10 dB Step Attenuator (10L, 20L, 40L, 80L), the over-range $(10 \mathrm{H})$, and the 1 dB Step Attenuator outputs ($1 \mathrm{~A}, 2 \mathrm{~A}$, $4 \mathrm{~A}, 8 \mathrm{~A}$) are all controlled by external programming in the Remote Mode. A safety feature, the RESET input, sets the 10 dB Step Attenuator to the maximum attenuation when the Remote mode of operation is first initiated.

Attenuator Driver Assembly

The inputs from the Logic Assembly (10L, 20L, 40L, and 80L) switch the equivalent attenuator drive outputs (10D, 20D , 40D, and 80D). These outputs provide the higher voltages and current needed to drive the relays in the Attenuator Assembly.

Doubler Power Supply Assembly

This assembly provides three outputs which are selected by two inputs from the mainframe. The inputs are set by the system center frequency. At $\geqslant 1300 \mathrm{MHz}$ (X2 range), the Doubler Power Supply output connects the +22 Vdc to two RF amplifiers in the Frequency Doubler Assembly. Also, at or above $1300 \mathrm{MHz},+12 \mathrm{Vdc}$ is connected to a relay in the Frequency Doubler Assembly. The Bandwidth Control is switched at center frequencies of 10 MHz or 1300 MHz .

Option 003 Instruments

In option 003 instruments, the A23 Doubler Logic and A24 Frequency Doubler Test Switch Assemblies are added. These circuits allow front panel selection of the frequency range (X 1 and X 2) when the RF Section is used with 8660A or 8660B mainframes.

TROUBLESHOOTING

Malfunctions in the RF Section which appear to be a logic problem may be an analog circuit problem. Refer to Service Sheet 2 to begin troubleshooting.

Test Equipment
Oscilloscope HP 180C/1801A/1821A
Digital Voltmeter HP 3466A
Logic Probe HP 10525 T

General

If the malfunction is isolated to the logic circuits, the related inputs must be checked before an attempt is made to troubleshoot the individual circuit assemblies. The control levels are fixed and may change when a new center frequency or mode of operation (local or remote) has been selected. The clocked or momentary inputs, PI (plug-in), ATTN CLK, and RESET occur only at the instant the center frequency or mode change is made.

SERVICE SHEET 3 (Cont'd)

Local Mode

In local mode, the inputs mentioned in the preceding paragraph are not used. The $1 \mathrm{~A}, 2 \mathrm{~A}, 4 \mathrm{~A}$, and 8A outputs are also not used. (VERNIER control replaces the 1 dB step attenuator.) Check the $1 \mathrm{~F}, 2 \mathrm{~F}, 4 \mathrm{~F}, 8 \mathrm{~F}$, and 1 H inputs against the levels shown for the S 1 switch in the diagram.

Remote Mode

Check the Logic Assembly PI, ATTN CLK, and RESET inputs. Switch to the local mode and then back to the remote mode of operation. Verify that the attenuation level has reset to 150 dB by checking the $10 \mathrm{~L}, 20 \mathrm{~L}, 40 \mathrm{~L}, 80 \mathrm{~L}$, and 10 H outputs $[10 \mathrm{H}$ and 10 L should be low ($<+0.8 \mathrm{Vdc}$) while $20 \mathrm{~L}, 40 \mathrm{~L}$, and 80 L should be high $(>+2.0$ Vdc)]. The momentary low input (0 Vdc as compared to the normal +5 Vdc) may be observed on an oscilloscope at the instant of switching. A logic probe may also be used to verify the presence of the reset pulse. To verify that the PI (data) and

ATTN CLK inputs are correct, program the information shown in the table at the bottom of this page. Check each output for the correct level. If any level is incorrect, the presence of the data and/or the ATTN CLK inputs may be checked at the instant of programming with an oscilloscope or logic probe.

Check the A9 Attenuator Drive Assembly outputs against the inputs.

NOTE

If the problem is isolated between the inputs and outputs of an assembly, refer to the appropriate Service Sheet as indicated on the diagram.

Frequency Doubling Malfunction in the A23 or A24 Assembly (Option 003 Instruments)

Refer to Service Sheet 12 for troubleshooting information.

Programmed Attenuation	RF Output Level	Outputs								
		$\begin{gathered} 1 \mathrm{~A} \\ 1 \mathrm{~dB} \end{gathered}$	$\begin{gathered} 2 \mathrm{~A} \\ 2 \mathrm{~dB} \end{gathered}$	$\begin{gathered} 4 \mathrm{~A} \\ 4 \mathrm{~dB} \end{gathered}$	$\begin{gathered} 8 \mathrm{~A} \\ 8 \mathrm{~dB} \end{gathered}$	$\begin{gathered} 10 \mathrm{~L} \\ 10 \mathrm{~dB} \end{gathered}$	$\begin{aligned} & 20 \mathrm{~L} \\ & 20 \mathrm{~dB} \end{aligned}$	$\begin{gathered} 40 \mathrm{~L} \\ 40 \mathrm{~dB} \end{gathered}$	$\begin{gathered} 80 \mathrm{~L} \\ 80 \mathrm{~dB} \end{gathered}$	$\begin{gathered} 10 \mathrm{H} \\ 10 \mathrm{~dB} \end{gathered}$
7 dB	$+6 \mathrm{dBm}$	H	H	H	L	L	L	L	L	L
87 dB	-74 dBm	H	H	H	L	H	H	H	L	H
98 dB	$-85 \mathrm{dBm}$	L	L	L	H	L	L	L	H	H
$\begin{aligned} & \mathrm{H}=\text { Attenuation }=>+2.0 \mathrm{Vdc} \\ & \mathrm{~L}=\text { No Attenuation }=<+0.8 \mathrm{Vdc} \end{aligned}$										

SERVICE SHEET 4

NOTE

When a malfunction occurs, refer to Section VIII of the HP Model 8660-series mainframe Operating and Service Manual to begin troubleshooting (System Troubleshooting Guide). Then, if that information indicates possible problems in the RF Section, refer to the Systems Troubleshooting information (Service Sheet 1). This information may be used to isolate the defect to the RF Section, another plug-in, or the mainframe. If the problem is in this plug-in, refer to Service Sheet 2 for further troubleshooting information.

MIXER SECTION

PRINCIPLES OF OPERATION

General

The LO signal is filtered and amplified to drive the mixer. The RF signal is leveled and may be amplitude modulated at the A5 Modulator Assembly. After passing through the Modulator, the RF Signal and LO Signal are mixed; the difference frequency is passed on for further amplification.

4 GHz Bandpass Filter/Amplifier

Unwanted sidebands are eliminated from the LO signal by passing the signal through a bandpass filter. In option 002 instruments, the LO signal is coupled to the phase modulation circuits before being input to the 4 GHz Amplifier. The signal is amplified to a high level to drive the mixer.

Isolator

The 3.95 to 2.75 GHz RF Signal is passed through the Isolator to the Modulator Assembly. Reverse signal attenuation is about 20 dB .

Modulator Assembly

The effect of the PIN Diode Modulator on the RF Signal is that of a variable attenuator. The level of attenuation and therefore the modulator RF output is dependent on the Modulator Bias Signal dc level.

The PIN Diode Modulator has dynamic attenuation range of $>50 \mathrm{~dB}$. A more positive modulator bias signal turns off the series diodes while the shunt diodes are forward biased. The shunt diodes and the series resistor form a voltage divider which attenuates the RF Signal. As the bias voltage goes more negative, the impedance of the shunt diodes increases while the series diodes impedance decreases. Therefore, the RF signal attenuation decreases. The shunt diodes effectively control the attenuation from 12 to $>50 \mathrm{~dB}$ down while the series diodes are effective only to about 12 dB down.

SERVICE SHEET 4 (Cont'd)

The RF output level at the front panel jack is directly proportional to the Modulator Assembly RF output. The Modulator Bias Signal controls the A5 Modulator Assembly output and is dependent on an error voltage derived from comparing the RF detector output to the reference dc level.

Mixer Assembly

The RF Signal is passed through a low pass filter and attenuator before leaving the Modulator Assembly. Then the RF signal is mixed with the LO signal in the Mixer Assembly, the mixer output passes through a low pass filter, and the difference frequency is a $1-1300 \mathrm{MHz}$ phase-locked signal with frequency resolution of 1 Hz .

At center frequencies $\geqslant 100 \mathrm{MHz}$, the High Pass Filter Control input to the A7A5 Assembly causes the mixer output to pass through the 50 MHz High Pass Filter. This reduces incidental AM distortion generated by the phase modulated signal in the balanced mixer.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheet 2 was used to isolate a circuit defect to the assemblies or cables shown on the accompanying diagram. Troubleshoot the Mixer Section by using the test equipment and procedures given below.

NOTE

In Option 002 instruments, a defect cannot easily be isolated to circuits
shown on this schematic diagram. Refer to Service Sheet 2 and the repair procedure entitled LO Signal Circuits Repair.

Test Equipment

Spectrum Analyzer . . HP 8555A/8552B/140T Power Meter HP 435A/8481A
Digital Voltmeter .
HP 3466A
Service Kit
HP 11672A
Test 1. Check the power supply inputs to the A8 Assembly (+20 V and -10 V). If correct, proceed to Test 2. Otherwise check for continuity of interconnections to mainframe or an A8 Assembly defect.

CAUTION

Slight but repeated bending of semi-rigid coaxial cables will damage them very quickly. Bend the cables as little as possible. If necessary, loosen the assembly to release the cable.

Test 2. If the RF power output is greater than normal (refer to the schematic), the A5 Modulator Assembly is probably defective. If the power output is less than normal, checking the difference assembly outputs will quickly isolate the defective assembly or cable.

NOTE

Defects in the A15 20 MHz Amplifier Assembly and RF interconnections from mainframe to Frequency Extension Module (through the RF Section) normally will be isolated by using the Systems Troubleshooting (Service Sheet 1).

Figure 8-11. A7 Mixer Assembly's Subassembly and Component Locations

A8 4 GHz AMPLIFIER ASSY

ReFERENCE DESIGNATIONS		
NO PREFIX	A2 ASSY	A7A5 ASSY
ATl	Pl, 2	$\begin{aligned} & \hline \mathrm{Cl}-6 \\ & \mathrm{CR1,2} \\ & \mathrm{LIL,2} \\ & \mathrm{R1}-3 \end{aligned}$
	A7 ASSY	
P1,2, 5 -7, 13	Cl	
$\underset{\substack{\text { W2-6, } 11,13, 17-21}}{ }$		Al2 ASSY
	A7A2 ASSY	C2
${ }^{\text {J1, }}$ 2	CR1	A15 ASSY
L1,2		
Pl-4		נ1,2

Notes (CONT.)
4. THE PART NUMBERS OF WI AND WZ ARE UNIQUE FOR OPTION OO2 INSTRUMENTS.
VOLTAGES WHICH CHANGE IN RELATION TO THE SETING 5. VOLTAGES WHICH CHANGE IN RELATION TO THE SETING
OF AASI AND THE VERNIER CONTROL ARE SHOWN IN THE BROED ABBLES
\dagger BACKDATING INFORMATION IN SECTION VII.

SERVICE SHEET 5

NOTE

When a malfunction occurs, refer to Section VIII of the HP Model 8660-series mainframe Operating and Service Manual to begin troubleshooting (System Troubleshooting Guide). Then, if that information indicates possible probems in the RF Section, refer to the Systems Troubleshooting information which precedes Service Sheet 1. This information may be used to isolate the defect to the RF Section, another plug-in, or the mainframe. If the problem is in this plug-in, refer to Service Sheet 1 for further troubleshooting information.

PRINCIPLES OF OPERATION

General

The phase modulation drive signal from the modulation section is coupled to the A16 Phase Modulation Driver Assembly. The signal is predistorted and the overall gain is varied (with respect to LO frequency) to compensate for the frequency sensitivity of the A17 Phase Modulator Assembly. The signal is amplified before being connected to the phase modulator.

With minimal loss, the LO signal passes through the A19 3.9-4.1 GHz Isolator Assembly to the A18 Circulator Assembly. The signal passes from port 1 to port 2 and on to the phase modulator.

In the phase modulator, the varactor diode, A17CR1, reactively terminates the stripline transmission line which reflects the LO signal. Changing the bias voltage applied to the varactor diode changes the termination reactance. This cuases the reflected signal to shift in phase with respect to the incident input signal.
The reflected LO signal travels back down the transmission line and through port 2 to port 3, where it again enters the phase modulator. The same sequence of events occurs. Thus, the phase shift of the LO signal reflected back to port 3 is approximately doubled.

The phase modulated LO signal continues from port 3 to port 4 , through the AT2 3 dB Attenuator and on to the A8 4 GHz Amplifier Assembly. Due to the high input reflection coefficient of the 4 GHz Amplifier, a large portion of the signal is reflected back to port 4, through to port 1, and on to the Frequency Extension Module. The AT2 3 dB Attenuator and A19 3.9-4.1 GHz Isolator Assemblies reduce the level of the reflected signal to minimize the interference created in the extension module VCO circuits.

A16 Phase Modulator Driver Assembly

The shunt capacity of W12 and A16L1 forms a low pass filter which improves the frequency response of the input modulation drive signal up to 10 MHz .

SERVICE SHEET 5 (Cont'd)

Diode Shaping Network. The shaping network introduces third order distortion to higher level input signals (when the A16CR2 diode begins to conduct). The level of distortion is adjusted with A16R1 to compensate for the third order distortion inherent in the phase modulator transfer characteristics. The demodulated third order phase modulation sidebands are minimized by adjusting A16R1, the Third Harmonic Adjust control.

Gain Tracking. Gain tracking of the modulation drive signal is intro duced to compensate for the phase modulator's inability to produce a constant phase deviation at different LO frequencies. At higher LO frequencies, the phase modulator sensitivity is lower and a higher level modulation drive signal is required to produce the same phase deviation. The modulation drive signal level is changed, with respect to the LO frequency, by the digitally controlled attenuator A16U1 and differential amplifiers A16Q1 and Q2. At system center frequen cies where digit $8(10 \mathrm{MHz}$ steps) is zero (LO frequency is 3.95 MHz) logic lows $(<+0.8 \mathrm{Vdc})$ are present at inputs to A16U1. Lows caus cause the attenuator stage to be off with minimum attenuation of the signal at the junction of A16R12, R13. The differential voltage across the bases of A16Q1 is essentially zero and the gain is unity When an input to A16U1 is high the transistor stage is turned on current flows from the modulator drive signal path through either A16R4, R6, R8, or R10. Any difference in amplitude between the bases of A16Q1 is amplified and coupled to A16Q2 where it is fur ther amplified. The differential output voltage across A16R27 is coupled to the gate of A16Q4. The gain control, A16R2, sets the modulation level at 3.95 GHz (unity gain). The Gain Tracking con trol adjusts the rate of change of attenuation with respect to the LO frequency by setting the phase modulation level at 4.05 GHz (maxi mum gain).

J-FET Shaping Circuit. The J-FET A16Q4 is biased so it introduce second order distortion to the modulation drive signal. Thi distortion compensates for the second order distortion in the transfe characteristics of the phase modulator. The transfer characteristics of the phase modulator are varied by changing the dc output from the A16 Assembly. The Second Harmonic Adjust Control A16R36 sets the second order distortion level of A16Q4 (by controlling the drain current flow) and the dc output from A16 (which is proportional to the A16Q4 drain voltage). The distortion level is set by demodulating the system's RF output and nulling the second order harmoni distortion

Modulation Driver Amplifier. The J-FET output is coupled to the discrete component operational amplifier made up of A16Q5 through Q7 and their associated components. The amplifier's high frequency rolloff is set by A16C7. The gain of approximately 10 is determined primarily by A16R49, 1000Ω, and A16R38, 110Ω The network of A16RT1, A16R38 and R39 aid in reducing gain changes due to J-FET drift with temperature.

SERVICE SHEET 5 (Cont'd)

A17 Phase Modulator Assembly

In the phase modulator, the LO signal passes through the blocking capacitors and down the stripline transmission lines to the varactor diode terminations, A17CR1 and CR2. The amount of phase shift between the incident and reflected signals is determined by the varactor capacitance.

The varactor capacitance is voltage variable. The dc bias input sets the quiescent phase shift. The instantaneous phase shift is dependent on the sum of the dc bias and the ac modulation drive signal input to the phase modulator.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheet 2 and the LO Signal Circuits Repair procedure were used to isolate the defect to one of the Assemblies. Troubleshoot the A16 or A17 Assemblies by using the following procedure.

Test Equipment

Digital Voltmeter . HP 3466A
Oscilloscope. . .
Spectrum Analyzer
HP 180C/1801A/1821A

Assembly circuit malfunctions usually result in incorrect or no modulation drive, incorrect gain tracking, or unwanted distortion. Distortion may be due to misadjusted or defective components.

Set the system's modulation section switches for $\phi \mathrm{M}$ mode, internal 1 kHz source, and adjust the modulation level control for a full scale meter reading (100° or 200°). Refer to the schematics for the typical voltages.

A1 Modulator Filter Assembly
A2 ALC Mother Board Assembly
A5 Modulator Assembly
A7 Mixer Assembly
A8 4 GHz Amplifier Assembly
A12 Logic Mother Board Assembly A12 Logic Mother Board Assembly A15 20 MHz
AT1 Isolator
FL1 4 GHz Band Pass Filter
FL1 4 GHz Band Pass
SERVICE SHEET 4

SERVICE SHEET 5 (Cont'd)

A16 Assembly

Test 1. Check the power supply inputs to the A16 Assembly.

Test 2. Check the peak-to-peak ac voltages at the various points as indicated on the schematic. If all seem to be correct, refer to Section V and readjust the phase modulation circuits.

Test 3. If the output of the discrete component operational amplifier is defective, check the dc output and compare it to the dc inputs. If the change in dc output voltage from normal does not follow the change in input dc voltage, the problem is probably in Q4 thru Q10 or their associated
components. For example, the output voltage is more positive than normal.

Test 4. Check the de voltages on A16Q1 through Q3 and Q11.

Test 5. If the gain tracking is incorrect, check and compare the inputs and outputs of A16U1 and U2.

A17 Assembly

Test 1. Remove the assembly cover. Check for the presence of the dc bias and ac voltage on the varactor diodes, A17CR1 and CR2.

Test 2. Verify that A 17 C 1 and C 3 are not defective.

Figure 8-13. A16 Phase Modulator Driver Assembly Component and Test Point Locations

Figure 8-14. A17 Phase Modulator Assembly Component Locations

NOTE

When a malfunction occurs, refer to Section VIII of the Model 8660-series mainframe Operating and Service Manual to begin troubleshooting (Systems Troubleshooting Guide). Then, if that information indicates possible problems in the RF Section, refer to the Systems troubleshooting information in Service Sheet 1 in this manual. This information may be used to isolate the defect to the RF Section, another plug-in, or the mainframe. If the problem is in this plug-in, refer to Service Sheet 2 for further troubleshooting information.

PRINCIPLES OF OPERATION

1-1300 MHz Amplifier Assembly

The A6 1-1300 MHz Amplifier Assembly contains an RF Preamplifier and Amplifier which are separated by an elliptic low pass filter. The combined RF gain is approximately 41 dB .

Detector Amplifier Assembly

A small bias current through the RF Detector and Reference Diodes in the A22 Assembly is set by the A4R13 Detector Bias Adjustment for maximum detector sensitivity. Beyond the initial bias current, any further change in current flow is due to temperature variations. Because the two diodes are located in the same thermal environment, an increase in current flow through the RF Detector Diode is matched by an equal increase in current flow through the Reference Diode. The Reference Diode current is coupled to the non-inverting input of the Detector Amplifier (a discrete operational amplifier comprised of A4Q3, A4Q2, A4Q1 and associated components) while the RF Detector Diode output is coupled to the inverting input. Therefore, any change in current flow due to a change in temperature is cancelled in the operational amplifier which leaves the output level dependent only on the peak RF output from the A22 Assembly.

At center frequencies of $<10 \mathrm{MHz}$ and $\geqslant 1300 \mathrm{MHz}$, the ALC Bandwidth Control input causes A4Q4 to be biased on which connects A4C3 in parallel with the 47 pF capacitor found in the A22A4 Assembly. As the center frequency is decreased, the detector output needs to be retained for a longer period of time so the leveling circuit responds to the average RF level rather than the instantaneous level. In the doubled frequency mode ($\geqslant 1300 \mathrm{MHz}$) the ALC bandwidth must be reduced to insure ALC loop stability.

In output ranges of $\leqslant 0 \mathrm{dBm}$, the Detector Amplifier is coupled directly to the A3 ALC Amplifier Assembly. The output is compared

SERVICE SHEET 6 (Cont'd)

to a dc reference level and an error signal result which is coupled to the A5 Modulator Assembly to complete the ALC loop. When OUTPUT RANGE switch is set to +10 dBm , the 10 H logic input goes high ($\approx+5 \mathrm{Vdc}$) and turns A4Q5 off. Relay A4K1 opens and the dc voltage is attenuated 10 dB by A4R19, A4R20, A4R21, and resistors on the A3 assembly. The RF output signal increases 10 dB which brings the dc output to the A3 ALC Amplifier input back to the quiescent level present before switching to the +10 dBm range.

Amplifier A4U1 functions as an active low pass filter because of A4R23 and A4C5 which are connected in the feedback loop. The amplifier drives the meter and provides a compensating dc level which varies the AM drive input to keep the amplifier modulation level constant with change in RF output level (VERNIER Control setting).

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheet 2 was used to isolate a circuit defect to the assemblies shown on the accompanying diagram. Troubleshoot the Detector Amplifier Assembly by using the test equipment and procedures given below.

Test Equipment
Spectrum Analyzer
Digital Voltmeter .
HP 8555A/8552B/140T
Digital Voltmeter . HP 3466A

Test 1. If the circuit problem is associated with the meter and AM Gain output rather than the RF Output level, proceed to Test 2. Check the Detector Output, Detector Amplifier Output A4TP1, and output to ALC Amplifier to see if they are tracking the RF output level. Set A4S1 to the test position. If the RF Amplifier output remains low, the A6 assembly or an associated cable is probably defective. If the RF output increases, measure the detector and A4TP1 and A4TP2 voltages. If the detector output doesn't respond properly, the A22 assembly or an associated input component on the A4 assembly, is probably defective. If the detector output increases but the A4TP1 voltage doesn't go more negative, the detector amplifier or an associated component is probably defective.

If the RF output level is incorrect only in the +10 dBm range or is correct only in the +10 dBm range, and the 10 H input is correct for all ranges, the 10 dB attenuator, the relay (A4K1), or an associated component is probably defective.

Test 2. Monitor the RF output with a Spectrum Analyzer. If the modulation level changes with respect to the RF carrier amplitude (change the VERNIER control to three or four different settings), A4U1 or associated components are probably defective. Otherwise, the meter control is misadjusted or the meter connections or an associated component is probably defective.

A16 Phase Modulator Driver Assembly
A17 Phase Modulator Assembly
A18 Circulator Assembly
A19 3.9-4.1 GHz Isolator Assembly
AT2 3 dB Attenuator
SERVICE SHEET 5 (Option 002)

Figure 8-16. A4 Detector Amplifier Assembly Component and Test Point Locations

SERVICE SHEET 7

NOTE

When a malfunction occurs, refer to Section VIII of the Model 8660-series mainframe Operating and Service Manual to begin troubleshooting (Systems Troubleshooting Guide). Then, if that information indicates possible problems in the RF section, refer to the Systems troubleshooting information on Service Sheet 1 in this manual. This information may be used to isolate the defect to the RF Section, another plug-in, or the mainframe. If the problem is in this plug-in refer to Service Sheet 2 for further troubleshooting information.

PRINCIPLES OF OPERATION (A22 FREQUENCY DOUBLER

 ASSEMBLY)The input RF signal to the frequency doubler is connected directly to the A22A5 Relay Assembly. In the X1 mode, the $1-1300 \mathrm{MHz}$ signal is switched to the A22A4 Output Detector Assembly and on through A22A4R3 and C2 to the 10 dB Step Attenuator Assembly.

In the X2 mode, a logic high (+12 Vdc) appears on the Doubler Relay Control input. This causes the relay A22A5K1 to switch the input signal (650 to $<1300 \mathrm{MHz}$) to the A22A1 Doubler/Filter Assembly. The signal passes through a balun to the bridge rectifier Frequency Doubler, A22A1CR1. The balanced doubler suppresses the fundamental input and odd harmonics while generating a large second harmonic component. A22A1L1 provides a ground return for the dc component of the output signal and R1, R2, and R3 provide RF termination. The output signal passes to the tracking filter. The lead inductance and voltage variable capacitance of the varactor form a series resonant circuit. The Filter Drive input causes the resonant frequency to track the doubled input frequency. The fundamental, odd harmonics, and even harmonics ($\geqslant 4$ th) are further attenuated but the second harmonic, ($\geqslant 1300$ to $<2600 \mathrm{MHz}$) is passed on to the A22A2 Doubler Amplifier Assembly.

In both the A22A2 and A22A3 amplifiers, the doubled RF signal is amplified by at least 10 dB . The A22A3 output is coupled back through the A22A5 and A22A4 Assemblies and on to the 10 dB Step Attenuator.

The RF signal level is detected and a relative dc level proportional to the RF level is coupled to the inverting differential amplifier in the A4 Detector Amplifier Assembly. The reference diode, which is in the same thermal environment as the detector diode, provides temperature compensation for the detector diode because it is coupled to the non-inverting input of the differential amplifier.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheet 2

SERVICE SHEET 7 (Cont'd

was used to isolate a circuit defect to the assem blies and cables shown on the schematic diagrams. Troubleshoot the frequency doubler circuits by using the test equipment and procedures given below.

Test Equipment
Spectrum Analyzer . . HP 8555A/8552B/140T
BNC Connector
Digital Voltmeter .
HP 1250-0118

Set the system center frequency to 2 GHz with an output level of +3 dBm . Use the BNC connector as a probe to measure the RF signals at the various locations indicated by the test points.

Put the center conductor of the probe on the
connection between circuit boards and press the outer conductor ground against the A22 Assembly housing.

Check the power supply inputs to A22A2 and A22A3 if they are suspected of malfunctioning.

NOTE

If A22A2 or A22A3 are defective they must each be replaced as a complete assembly. If a problem exists elsewhere in the A22 Assembly, the entire assembly must be replaced. Refer to the A22 Assembly Repair procedure in Section VIII preceding the service sheets. Section VI contains ordering information for new or restored assemblies.

Figure 8-18. A22 Frequency Doubler Subassembly and Test Point Locations

SERVICE SHEET 8

NOTE

When a malfunction occurs, refer to Section VIII of the Model 8660-series mainframe manual to begin troubleshooting (Systems Troubleshooting Guide). If the information then indicates possible problems in the RF Section, refer to the Systems Troubleshooting information which preceeds Service Sheet 1 in this manual. This information may be used to isolate the defect to the RF Section, another plug-in, or the mainframe. If the problem is in this plug-in, refer to Service Sheet 2 for further troubleshooting information.

PRINCIPLES OF OPERATION

General

The RF Detector signal output from the A4 Detector Amplifier Assembly is coupled into the A3 ALC Amplifier Assembly where it is compared to the reference input. Any difference in dc input levels causes an error output signal (i.e., a change from the loop quiescent state) at the difference amplifier output A3TP1. The error signal is coupled through the Gain-Shaping Amplifier to the A5 Modulator Assembly which controls the RF output level. The change in RF output level is reflected in dc level change at the input to the dc amplifier. The change serves to balance the original error output signal at A3TP1.

A10 Reference Assembly

The Reference Assembly output is coupled to the ALC circuit where it is compared to the Detector Amplifier output. An error signal is generated which causes the RF signal to follow the reference dc level or, in AM mode, a low frequency ac signal which is superimposed on the reference dc output.

A reference dc level is established by A10VR1. This dc level is coupled to the inverting input of A10U1 where (in the +10 dBm range only) a small RF Detector Diode linearity compensation current is added from the 10 H input through resistor A10R14. The output of A10U1 passes through a remotely controlled attenuator or an adjustable voltage divider which includes R1 VERNIER Control. This provides fine adjustment of the reference output, i.e., the RF Output level over a 10 dB range.

The Amplitude Modulation drive signal is input at the non-inverting input of A10U1. The AM Gain input is a dc compensation signal which effects the level of the AM drive input. As the VERNIER control is rotated cw, the dc level goes more negative which increases the RF Output level. At the same time a negative change of the AM Gain compensation increases the modulation drive signal attenuation of the AM drive signal input to A10U1. The resulting increase in modulation drive signal at the output of A10U1 tends to keep the percentage modulation level constant with change in RF output level.

In the remote mode, the front panel VERNIER control of the RF output level is inhibited and the 1 dB step attenuator assumes "vernier" control over

SERVICE SHEET 8 (Cont'd)

a 10 dB range. A logic low ($<+0.8 \mathrm{Vdc}$) on the LCL/RMT input lines biases A10Q10 off, which opens the contacts of A10K6 and isolates the VERNIER control. At the same time, A10Q1 is biased on which closes the contacts of A10K5 and enables the 1 dB step attenuator. With no attenuation (RF vernier maximum) the $1 \mathrm{~A}, 2 \mathrm{~A}, 4 \mathrm{~A}$, and 8 A inputs are all logic lows. Programmed attenuation levels will cause a logic high to appear on the appropriate input. For example, if 1 dB of attenuation is programmed (equivalent to a +2 dB front panel meter reading), a voltage of +5 Vdc will be found on A12XA10 pin J. This voltage biases A10Q9 off. Relay A10K1 opens which causes the reference to be attenuated through A10R21 and A10R22 (which is coupled to ground through A10Q8). When A10Q9 is turned off, bias current is supplied through A10R20 from the negative supply to turn A10Q8 on. Transistor A10Q8 is baised through the base-to-collector junction instead of the normal base-to-emitter junction.

Each step of attenuation is operated in the same manner. The values of the resistors in the voltage divider network are weighted for greater attenuation of voltage output to the ALC circuits as the programmed attenuation levels are increased.

ALC Amplifier Assembly

The Detector Amplifier output, which is proportional to the RF output level, is compared to the Reference output in the ALC Amplifier Assembly.

The detector signal is coupled to the non-inverting input of the discrete operational amplifier (A3Q10, A3Q9, and associated components) while the reference input is coupled to the inverting input. Under normal operating conditions a change in reference input causes an error output signal at A3TP1. This signal passes through the Gain-Shaping Amplifier where it is coupled to the A5 Modulator Assembly. This change in Modulation Bias Signal causes the RF output to change. The change is reflected in the Detector Amplifier input to the ALC loop. This change serves to balance the error signal at A3TP1 and a new quiescent voltage is established. In a similar fashion, the change in RF output loading or a change in signal level input from the Frequency Extension Module is compensated for in the ALC loop. For example, a decrease in output level due to increased loading causes a positive change in the Detector Amplifier output to the ALC Amplifier. The resultant change in Modulator Bias Signal is negative which decreases the A5 Modulator Assembly Attenuation of the RF Signal and subsequently increases the RF output level.

At $<10 \mathrm{MHz}$ and $\geqslant 1300 \mathrm{MHz}$, a logic high $(>+4.0 \mathrm{Vdc})$ at the ALC BW Control input biases A3Q5 off, A3Q2 is biased off, and A3Q3 is turned on. A3C6 is now coupled to ground which effectively reduces the bandwidth of the ALC loop. This occurs so the ALC loop does not respond to individual cyclic variations in the RF Signal but rather to the relatively long term peak output of the RF Detector at center frequencies $<10 \mathrm{MHz}$. At or above 1300 MHz , the reduced bandwidth ensures ALC loop stability.

Gain-Shaping Amplifier

The Gain-Shaping Amplifier is a discrete operational amplifier made up of A3Q7, A3Q8, A3Q6, A3Q11, A3Q4, and their associated components. The gain-shaping component is A3CR1. When A3CR1 is reverse biased the gain

SERVICE SHEET 8 (Cont'd)

of the amplifier is unity. As the instantaneous base voltage of A3Q6 is increased (by either positive dc level or positive excursions of an AM drive signal) A3CR1 is forward biased and the amplifier gain is dependent on the ratio of A3R3 and the effective resistance of A3CR1. This variable gain is used to compensate for the non-linearity of the A5 Modulator Assembly's input voltage to RF attenuation transfer function.

Pulse Modulation

In the Pulse Modulation mode (HP Model 86631B Auxiliary Section is used in place of a Modulation Section), a PULSE ID logic high ($\approx+5 \mathrm{Vdc}$) turns A3Q1 off which opens A3K1 and thus opens the ALC loop. At the same time, the PULSE ID input biases A2Q1 on, closes A2K1, and connects the Pulse In through A2R9, A2C2, and A2VR1 to the A5 Modulator Assembly. Without a pulse input, the positive bias through A2R8 biases the Modulator for maximum attenuation and reduces the power output to a minimum ($>40 \mathrm{~dB}$ down). A -10 Vdc input pulse is required to cause the Moduator to exhibit minimum attenuation to the RF Signal.

TROUBLESHOOTING

It is assumed that the Troubleshooting information on Service Sheet 1 was used to isolate a circuit defect to the assemblies shown on the accompanying diagram. Troubleshoot the Reference and ALC Amplifier Assemblies and pulse modulation circuits by using the test equipment and procedures given below.

Test Equipment

Digital Voltmeter HP 3466A

Test 1. Check the power supply inputs to the A3 and A10 assemblies at A2XA3 pin $5(+20 \mathrm{~V})$, pin $3(+5 \mathrm{~V})$, and pin $8(-10 \mathrm{~V})$ and A12XA10 pin D $(+20 \mathrm{~V})$, pin $\mathrm{C}(+5 \mathrm{~V})$, and pin $5(-10 \mathrm{~V})$. If the voltages are correct proceed to Test 2. If incorrect, check the continuity of the inputs from the A12 Assembly.

Test 2. Check the Reference Output at P14 Pin E. If the output level is incorrect for the extreme settings of the vernier control or 1 dB Step Attenuator settings (see schematic for levels), proceed to Test 3. If the output is correct, set A4S1 and check the levels at A3TP1 with the VERNIER (or 1 dB Step Attenuator) set to one extreme and then the other. If the output levels are normal, the Gain-Shaping Amplifier or the Modulator Bias Signal resistors are probably defective. Also check the Pulse ID input and the relays. Otherwise, the Difference Amplifier is probably defective.

SERVICE SHEET 8 (Cont'd)

Test 3. Check the reference diode A10VR1, and Reference Amplifier A10U1 and their associated components. If the unit responds only to the local control or responds to remote control and not to the VERNIER, check the LCL/RMT input and the relay. If the reference output is incorrect in remote mode only, check the 1 dB Step Attenuator,
relays, transistor switches, and other associated components. Small changes in RF Output level may be traceable to defective components coupled to the 10 H input. If it was found that the amplitude modulation level varies with RF Output level, check the components associated with the AM Gain input. If the AM drive signal is reaching the RF Section, verify that it is reaching the A10 Assembly circuitry. Determine which component or part is defective, repair or replace it.

A3 ASSEMBLY

SERVICE SHEET 8 (Cont'd)

Test 3. Check the reference diode A10VR1, and Reference Amplifier A10U1 and their associated components. If the unit responds only to the local control or responds to remote control and not to the VERNIER, check the LCL/RMT input and the relay. If the reference output is incorrect in remote mode only, check the 1 dB Step Attenuator,
relays, transistor switches, and other associated components. Small changes in RF Output level may be traceable to defective components coupled to the 10 H input. If it was found that the amplitude modulation level varies with RF Output level, check the components associated with the AM Gain input. If the AM drive signal is reaching the RF Section, verify that it is reaching the A10 Assembly circuitry. Determine which component or part is defective, repair or replace it.

Figure 8-21. A10 Reference Assembly Component Locations

Figure 8-22. A2 ALC Mother Board Assembly Component Locations

Figure 8-23. ALC Section Schematic Diagram

SERVICE SHEET 9

NOTE

When a malfunction occurs, refer to Section VIII of the Model 8660 -series mainframe manual to begin troubleshooting (System Troubleshooting Guide). If the information then indicates possible problems in the RF Section, refer to the Systems Troubleshooting information in Service Sheet 1 of this manual. This information may be used to isolate the defect to the RF Section, another plugin or the mainframe. If the problem is in this plug-in refer to Service Sheet 2 for further troubleshooting information before returning here.

PRINCIPLES OF OPERATION

Logic high inputs ($>+2.0 \mathrm{Vdc}$) from the A11 Logic Board Assembly will cause the driver transistors to supply current to switch the appropriate attenuator section in the A13 Attenuator Assembly. For example, if 10 dB of attenuation is desired, the 10L input goes high, A9Q15 is biased on; A9Q11 is also biased on and supplies driving current to switch A13K1. The relay arms all drop down into the lower position. The RF Signal flow is now through attenuator section AT1 (10 dB). The two lower relay arms provide a latching function for the relay. This means that until a drive current of the correct polarity is input to the A9 Attenuator Drive Assembly, the relay is latched in its present state. Also, no current flows after the switching has been completed. A9R6 and A9VR1 provide the proper bias level for the input transistors so they will respond correctly to the inputs.

The other attenuator sections function the same way as the 10 dB section. However, the 80 dB section actually uses two 40 dB sections in parallel.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheet 2 was used to isolate a circuit defect to the assemblies shown on the accompanying diagram. Troubleshoot the Attenuator and Attenuator Driver Assemblies using the test equipment and procedures given below.

Test Equipment

Digital Voltmeter HP 3466A
The malfunction may be isolated to either the A13 or A9 Assemblies by measuring the 10D, 20D, 40 D , and 80 D control lines and determining if they are correct. If the problem is in the A13 Assembly DO NOT attempt to repair it. It is not a field repairable unit.

NOTE

A13 Assembly is not a field repairable unit. If a problem occurs in this assembly, DO NOT attempt to repair it.

DC voltage checks should be sufficient to quickly isolate a defective component in the A9 Assembly. Remember, current flows through the drive transistors only until latching of the relays in A13 is completed.

A9 ASSEMBLY

SERVICE SHEET 10

NOTE

When a malfunction occurs, refer to Section VIII of the Model 8660-series mainframe manual to begin troubleshooting (Systems Troubleshooting Guide). If the information then indicates possible problems in the RF Section, refer to the Systems Troubleshooting information in Service Sheet 1 of this manual. This information is used to isolate the defect to the RF Section, another plug-in, or the mainframe. If the problem is in this plug-in, refer to Service Sheet 2 for preliminary troubleshooting information.

PRINCIPLES OF OPERATION

General

The A21 Filter Driver Assembly provides two independent filter control functions. The first is a simple switching circuit. The High Pass Filter Switch output switches a 50 MHz high pass filter into the $1-1300 \mathrm{MHz}$ signal path at system center frequencies greater or equal to 100 MHz . The second circuit performs digital-to-analog conversion of center frequency and voltage. The Filter Drive output voltage controls the frequency of a tracking band pass filter which is found in the A22 Frequency Doubler Assembly.

The digital input to the A21 Assembly is dependent on the center frequency eighth, ninth, and tenth digits (10 and 100 MHz , and 1 GHz respectively). Below 1300 MHz , the selected center frequency and the digital input are the same. Bear in mind that at center frequencies of 1300 MHz or above (as shown on the table and on the schematics), the digital control inputs are one half the center frequency.

The Frequency Decoder circuits respond with an output whenever the selected

Center Frequency (MHz)	PreDoubled Frequency (MHz)	Logic Control Inputs					OUTPUTS					
							$\begin{array}{\|c\|} \hline \text { U3B } \\ \hline \text { (12) } \end{array}$	U3A	BCD-to-Dec. Decoder			
		D10	D9-8	D9-4	D9-2	D9-1		(11)	(10)	9	8	7
0	*	L	L	L	L	L	H	H	L	H	H	H
100	*	L	L	L	L	H	H	H	H	H	H	H
1000	*	H	L	L	L	L	H	H	L	H	H	H
1100	*	H	L	L	L	H	H	L	H	H	H	H
1300	650	L	L	H	H	L	H	H	H	H	H	H
1400	700	L	L	H	H	H	H	H	H	H	H	L
1600	800	L	H	L	L	L	H	H	H	H	L	H
1800	900	L	H	L	L	H	H	H	H	L	H	H
2000	1000	H	L	L	L	L	H	H	L	H	H	H
2200	1100	H	L	L	L	H	H	L	H	H	H	H
2400	1200	H	L	L	H	L	L	H	H	H	H	H

[^8]
SERVICE SHEET 10 (Cont'd)

center frequency is within a segment controlled by the A21 Assembly circuits. The outputs are coupled directly or through inverters to the High Pass Filter Switch and the Filter Drive circuits.

Frequency Decoders and Hex Inverters

Each of the one-of-six Frequency Decoder outputs is coupled in parallel to two CMOS hex inverters. The U2 inverter outputs provide either 0 Vdc or a reference +5 Vdc to six of the seven Final Summing Amplifier inputs. The A21U4 inverter outputs provide 0 Vdc or the +5 Vdc reference to six of the seven Fine Tune Summing Amplifier inputs.

High Pass Filter Switch

The High Pass Filter Switch output is controlled by the D10 digital control line and the inverted " 0 " output from the BCD-to-Decimal Decoder. At center frequencies equal to or greater than 1 GHz , the level on the D10 line holds the HPF Switch output low ($\approx-8 \mathrm{Vdc}$). At center frequencies less than 1 GHz , control is passed to the inverted " 0 " control line. Only at center frequencies $<100 \mathrm{MHz}$ does the combination of inputs cause the output to go high ($\approx+10 \mathrm{Vdc}$). At these frequencies the 50 MHz High Pass Filter is removed from the RF signal path.

Filter Drive Circuits

The Filter Drive digital-to-analog converter is made up of three summing amplifiers and a programmable resistor divider network. The Final Summing Amplifier's adjustable inputs control the 200 MHz steps (1400, 1600, 1800 MHz , etc.). Because the frequency-to-voltage curve is logarithmic, each adjustment is made individually.

The Fine Tune Summing Amplifier provides an output equivalent to 200 MHz steps into which the 40 MHz steps are inserted. The Increment Voltage Divider Network is connected between the output of the Fine Tune Summing Amplifier and the input to the Increment Summing Amplifier. This network allows the linear interpolation of the 40 MHz steps between the 200 MHz steps because the eighth digit digital input controls the voltage level actually coupled to the Increment Summing Amplifier.

Eighth Digit Digital Inputs

Frequency Step (MHz)	Predoubled Frequency (MHz)	Logic Inputs*			
		D8-8	D8-4	D8-2	
0	0	L	L	L	
40	20	L	L	H	
80	40	L	H	L	
120	60	L	H	H	
160	80	H	L	L	

*The low inputs (L) are at ground potential. The high inputs (H) are normally one-half the voltage found on pin 8 of U6C.

SERVICE SHEET 10 (Cont'd)

center frequency is within a segment controlled by the A21 Assembly circuits. The outputs are coupled directly or through inverters to the High Pass Filter Switch and the Filter Drive circuits.

Frequency Decoders and Hex Inverters

Each of the one-of-six Frequency Decoder outputs is coupled in parallel to two CMOS hex inverters. The U2 inverter outputs provide either 0 Vdc or a reference +5 Vdc to six of the seven Final Summing Amplifier inputs. The A21U4 inverter outputs provide 0 Vdc or the +5 Vdc reference to six of the seven Fine Tune Summing Amplifier inputs.

High Pass Filter Switch

The High Pass Filter Switch output is controlled by the D10 digital control line and the inverted " 0 " output from the BCD-to-Decimal Decoder. At center frequencies equal to or greater than 1 GHz , the level on the D10 line holds the HPF Switch output low ($\approx-8 \mathrm{Vdc}$). At center frequencies less than 1 GHz , control is passed to the inverted " 0 " control line. Only at center frequencies $<100 \mathrm{MHz}$ does the combination of inputs cause the output to go high $(\approx+10 \mathrm{Vdc})$. At these frequencies the 50 MHz High Pass Filter is removed from the RF signal path.

Filter Drive Circuits

The Filter Drive digital-to-analog converter is made up of three summing amplifiers and a programmable resistor divider network. The Final Summing Amplifier's adjustable inputs control the 200 MHz steps (1400, 1600, 1800 MHz , etc.). Because the frequency-to-voltage curve is logarithmic, each adjustment is made individually.

The Fine Tune Summing Amplifier provides an output equivalent to 200 MHz steps into which the 40 MHz steps are inserted. The Increment Voltage Divider Network is connected between the output of the Fine Tune Summing Amplifier and the input to the Increment Summing Amplifier. This network allows the linear interpolation of the 40 MHz steps between the 200 MHz steps because the eighth digit digital input controls the voltage level actually coupled to the Increment Summing Amplifier.

Eighth Digit Digital Inputs

Frequency Step (MHz)	Predoubled Frequency (MHz)	Logic Inputs*			
	D8-8	D8-4	D8-2		
0	0	L	L	L	
40	20	L	L	H	
80	40	L	H	L	
120	60	L	H	H	
160	80	H	L	L	

SERVICE SHEET 10 (Cont'd)

Summing Amplifiers

There are three summing amplifiers in this Digital-to-Analog Converter. In order to gain an understanding of how each works, a basic summing amplifier is first explained. Then, information which applies to each individually is included.

General. Each input to a summing amplifier is independent. The output due to each input is the product of the voltage input and the individual gain for that input. The total summing amplifier output is determined by the summation of the output due to each input. For example, in the Summing Amplifier shown below, the output voltage due to each input is determined by the following equation:

$$
\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{in}}\left(-\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{in}}}\right)
$$

where

$$
\begin{aligned}
& V_{o} \text { is the output voltage } \\
& V_{i n} \text { is the input voltage } \\
& R_{f} \text { is the feedback resistance } \\
& R_{\text {in }} \text { is the input resistance } \\
& \left(-\frac{R_{f}}{R_{i n}}\right) \text { is the gain }
\end{aligned}
$$

The negative gain implies 180° phase shift. The same formula is applicable for offset voltage inputs.

Figure 8-26. Summing Amplifier
The offset voltage as shown in the figure is:

$$
\begin{aligned}
& \mathrm{V}_{\text {off }}=(-10 \mathrm{Vdc})\left(-\frac{1000}{10 \mathrm{~K}}\right) \\
& \mathrm{V}_{\text {off }}=(-10 \mathrm{Vdc}) \quad\left(-\frac{1}{10}\right) \\
& \mathrm{V}_{\text {off }}=+1 \mathrm{Vdc}
\end{aligned}
$$

SERVICE SHEET 10 (Cont'd)

The input and output voltage and input gains are shown in the following table.

$\mathbf{V}_{\text {in }}$ $(\mathbf{V d c})$	Gain	$\mathbf{V}_{\mathbf{o}}$
-10	-0.1	+1.0
+10	-0.05	-0.5
+5	-0.2	-1.0
-2	-1.0	+2.0

The amplifier output is equal to the sum of the outputs or +1.5 Vdc. If, for instance, the offset voltage is set to zero the offset input contribution to the amplifier output would be:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{o}}=(0 \mathrm{Vdc})\left(-\frac{1000}{10 \mathrm{~K}}\right) \\
& \mathrm{V}_{\mathrm{o}}=0
\end{aligned}
$$

The amplifier output would now be +0.5 Vdc .
Final Summing Amplifier. This circuit operates almost the same as a normal summing amplifier except for the addition of Q2. Q2 provides the additional voltage range needed to drive the tracking generator circuit. The phase inversion is also due to Q2.

Of the seven inputs, the six from the inverters set the voltage for each 200 MHz step. At each step, only one of the six inputs from the hex inverters is high (+5 Vdc). The seventh input (from the Increment Summing Amplifier) controls the voltage offset for the 40 MHz steps.

Increment Summing Amplifier. The output voltage of the Increment Summing Amplifier depends on an offset input (through R26) and the three inputs from the Fine Tuning Summing Amplifier which are selected by the eighth digit digital inputs. At the even 200 MHz steps, all the D8 inputs are low ($<+0.8 \mathrm{Vdc}$). This causes the selected inputs to the Increment Voltage Generator to be at ground potential. Therefore, the output is dependent only on the offset input. As shown in the Eighth Digit Digital Inputs table, the different inputs are activated at the various 40 MHz steps across each 200 MHz step. A high logic input causes the hex inverter output to the resistor divider network to float. This occurs because the inverters are open collector types. When this happens, the output from the Unity Gain Inverter is coupled through the series resistors (either 8000, 4000 , or 2000 ohms) to the Increment Summing

Amplifier. The amplifier output is now dependent on the sum of the offset voltage and the voltage change due to the selected inputs.

Fine Tune Summing Amplifier. The output of this amplifier is unique for each 200 MHz segment. Like the Final Summing Amplifier, the inputs from the inverters control the voltage output for each segment. The seventh input, the 1300 MHz Adjust (offset) sets the voltage for the 1300 MHz to $<1400 \mathrm{MHz}$ segment. The adjustable inputs are made at a common 40 MHz step (same eighth digit digital input for each 200 MHz step).

TROUBLESHOOTING

It is assumed that the troubleshooting information in Service Sheet 3 was used to isolate a circuit defect to the A21 Assembly. Troubleshoot the circuits using the test equipment and information which follows.

Test Equipment

Digital Voltmeter HP 3466A
Before proceeding with the troubleshooting information, check the power supply inputs to the assembly.

Quickly step through the frequencies from 0 to 2400 MHz in 100 MHz steps. The only voltage change at the High Pass Filter Switch output should occur when switching between frequencies $\geqslant 100 \mathrm{MHz}$ and $<100 \mathrm{MHz}$.

To check the Filter Drive output, set the center frequency to 1300 MHz . Note the output voltage at TP1. Increase the center frequency to 1320 MHz and verify a small negative voltage increase. Increase the frequency in 40 MHz steps to 2560 MHz . A nonlinear negative increase in voltage should occur at each step.

A 200 MHz step which is completely incorrect is probably due to a malfunction or incorrect adjustment in the U1, U2 or U3 circuits or their associated components. An individual 40 MHz step which is incorrect is probably due to a malfunction in U7 or R16. If the 200 MHz steps are correct but the 40 MHz steps are offset within one 200 MHz step U1, U3, U4, U6 (C or D) or an associated component is probably misadjusted or defective. If the 200 MHz steps are correct but all the 40 MHz steps are offset at all steps, U6 (A or B) or an associated component is probably defective. See Filter Driver Adjustment procedure in Section V for correct output voltages.

Figure 8-27. A21 Filter Driver Assembly Component and Test Point Locations
\qquad
 2 SWITH
$<100 \mathrm{MHz}=+10 \mathrm{Vdc}$ $<100 \mathrm{MHz}=+10 \mathrm{Vdc}$
$\geq 100 \mathrm{MHz}=-8 \mathrm{Vdc}$
LOGIC
ONTROL CONTRO
TSRR $\substack{\text { CON FROM } \\ \text { OUISROM } \\ \text { AINRAME } \\>+2.0 \mathrm{Vdc} \\<+0.8 \mathrm{Vdc}}$ AINFRRME
$>+2.0 \mathrm{VdC}$
$<+0.8 \mathrm{Vda}$

$$
-40 \mathrm{~V} 4(1)-(7)<-40 \mathrm{~V}
$$

8-8 5G-(937) 14
885 ©

$\mathrm{HIGH}>+2.0 \mathrm{Vdc}$
LOW $<+0.8 \mathrm{Vdc}$

> 21 FILTER DRIVER ASSEMBLY (86603-60007) - -

SERVICE SHEET 11

NOTE

When a malfunction occurs, refer to Section VIII of the Model 8660-series mainframe manual to begin troubleshooting (Systems Troubleshooting Guide). If the information then indicates possible problems in the RF Section, refer to the Systems Troubleshooting information in Service Sheet 1 of this manual. This information is used to isolate the defect to the RF Section, another plug-in, or the mainframe. If the problem is in this plug-in, refer to Service Sheet 2 for preliminary troubleshooting information.

PRINCIPLES OF OPERATION

Local (Front panel) Control

The front panel OUTPUT RANGE switch provides a binary coded hexadecimal input ($1 \mathrm{~F}, 2 \mathrm{~F}, 4 \mathrm{~F}, 8 \mathrm{~F}$) and an over range input (1 H) to the A11 Assembly in the local mode. The LCL/RMT input is logic high ($>+1.3 \mathrm{Vdc}$) which causes the switch inputs to be gated directly to the outputs to the attenuator driver circuits and the 10 H output. The following table shows the logic states of the inputs from the OUTPUT RANGE switch S1. The input signals are all active highs (attenuation) as are the outputs

OUTPUT RANGE Switch Setting	Binary Coded Hexadecimal Input*				Over-Range Input*
	8F	4F	2F	1F	1H
+10	L	L	L	L	L
0	L	L	L	L	H
-10	L	L	L	H	H
-20	L	L	H	L	H
-30	L	L	H	H	H
-40	L	H	L	L	H
-50	L	H	L	H	H
-60	L	H	H	L	H
-70	L	H	H	H	H
-80	H	L	L	L	H
-90	H	L	L	H	H
-100	H	L	H	L	H
-110	H	L	H	H	H
-120	H	H	L	L	H
-130	H	H	L	H	H
${ }^{\text {L }}=<+0.8$	=				

SERVICE SHEET 11 (Cont'd)

Remote Operation

In the remote mode, 3 digits of BCD attenuation information are clocked into the A11 Assembly Shift Registers from the System mainframe. On the ATTN CLK input, a series of 10 pulses are received at pin K. These pulses are coupled to the trigger (T) input to the shift registers. The data input, which is synchronized with the pulses, contain no usable information for the first seven pulses. On the eighth pulse, units information is clocked into the left-handed column of registers with logic highs indicating data ones and lows indicating zeroes. On the ninth pulse, the units information is shifted to the center column of registers while tens information is entered into the left hand registers. On the tenth pulse, the units word is shifted into and stored in the right hand column, the tens information in the center registers, and the hundreds information in the left registers.

The BCD information stored in the units registers is coupled to the 1 dB Step Attenuator on the A10 Reference Assembly. (In local mode these outputs are not used. The VERNIER control is used for fine control of output level.)

The other two digits of BCD information are coupled to the BCD-to-Binary Decoder. The binary tens line actually bypasses the decoder because it expresses odd or even value in either the BCD or binary coded hexadecimal format. The second digit (20, 40 and 80) and third digit (100) in BCD format are output from the BCD-to-Binary Decoder in a 20,40 , and 80 binary format. With the tens level, these outputs are binary coded hexadecimal. In order to obtain the over-range output $(10 \mathrm{H})$, the $10,20,40$ and 80 coded signals are inverted and coupled to a four input nand gate. The nand gate (over-range) output is low only with zero input attenuation (i.e., all the BCD-to-Binary Decoder output lines are low). The over-range level is coupled to A11 U5C and therefore to the 10 H output. It is also coupled to the Full Adder along with the $10,20,40$, and 80 lines. The inputs to the adder are connected so a value of 10 is subtracted from the input with the Over-Range inactive (high); when the over-range line is low the output follows the input directly. The following tables express the assembly inputs and outputs, the BCD-to-Binary converter inputs and outputs, and the Full Adder inputs and outputs. In each case, a level of $>+2.0 \mathrm{Vdc}$ is a logic high and $<+0.8 \mathrm{Vdc}$ is logic low.

SERVICE SHEET 11 (Cont'd)

Remote Operation

In the remote mode, 3 digits of BCD attenuation information are clocked into the A11 Assembly Shift Registers from the System mainframe. On the ATTN CLK input, a series of 10 pulses are received at pin K. These pulses are coupled to the trigger (T) input to the shift registers. The data input, which is synchronized with the pulses, contain no usable information for the first seven pulses. On the eighth pulse, units information is clocked into the left-handed column of registers with logic highs indicating data ones and lows indicating zeroes. On the ninth pulse, the units information is shifted to the center column of registers while tens information is entered into the left hand registers. On the tenth pulse, the units word is shifted into and stored in the right hand column, the tens information in the center registers, and the hundreds information in the left registers.

The BCD information stored in the units registers is coupled to the 1 dB Step Attenuator on the A10 Reference Assembly. (In local mode these outputs are not used. The VERNIER control is used for fine control of output level.)

The other two digits of BCD information are coupled to the BCD-to-Binary Decoder. The binary tens line actually bypasses the decoder because it expresses odd or even value in either the BCD or binary coded hexadecimal format. The second digit (20,40 and 80) and third digit (100) in BCD format are output from the BCD-to-Binary Decoder in a 20,40 , and 80 binary format. With the tens level, these outputs are binary coded hexadecimal. In order to obtain the over-range output $(10 \mathrm{H})$, the $10,20,40$ and 80 coded signals are inverted and coupled to a four input nand gate. The nand gate (over-range) output is low only with zero input attenuation (i.e., all the BCD-to-Binary Decoder output lines are low). The over-range level is coupled to A11 U5C and therefore to the 10 H output. It is also coupled to the Full Adder along with the $10,20,40$ and 80 lines. The inputs to the adder are connected so a value of 10 is subtracted from the input with the Over-Range inactive (high); when the over-range line is low the output follows the input directly. The following tables express the assembly inputs and outputs, the BCD-to-Binary converter inputs and outputs, and the Full Adder inputs and outputs. In each case, a level of $>+2.0 \mathrm{Vdc}$ is a logic high and $<+0.8 \mathrm{Vdc}$ is logic low.

SERVICE SHEET 11 (Cont’d)

Logic Assembly Inputs Versus Outputs

Programmed Attenuation Input						OUTPUT RANGE Decimal (dBm)	Logic Assembly Output				
Decima (dB)	2-Digit BCD						80L	40L	20L	10L	Over-range$10 \mathrm{H}$
	100	80	40	20	10						
0	L	L	L	L	L	+10	L	L	L	L	H
10	L	L	L	L	H	0	L	L	L	L	L
20	L	L	L	H	L	-10	L	L	L	H	L
30	L	L	L	H	H	-20	L	L	H	L	L
40	L	L	H	L	L	-30	L	L	H	H	L
50	L	L	H	L	H	-40	L	H	L	L	L
60	L	L	H	H	L	-50	L	H	L	H	L
70	L	L	H	H	H	-60	L	H	H	L	L
80	L	H	L	L	L	-70	L	H	H	H	L
90	L	H	L	L	H	-80	H	L	L	L	L
100	H	L	L	L	L	-90	H	L	L	H	L
110	H	L	L	L	H	-100	H	L	H	L	L
120	H	L	L	H	L	-110	H	L	H	H	L
130	H	L	L	H	H	-120	H	H	L	L	L
140	H	L	H	L	L	-130	H	H	L	H	L
150*	H	L	H	L	H	-140*	H	H	H	L	L
* For safety purposes, the shift registers are set for 150 dB attenuation upon initiation the remote mode of operation.											

BCD-To-Binary Converter

Input					Output		
$\mathbf{1 0 0}$	$\mathbf{8 0}$	$\mathbf{4 0}$	$\mathbf{2 0}$	$\mathbf{8 0}$	$\mathbf{4 0}$	$\mathbf{2 0}$	
L	L	L	L	L	L	L	
L	L	L	H	L	L	H	
L	L	H	L	L	H	L	
L	L	H	H	L	H	H	
L	H	L	L	H	L	L	
H	L	L	L	H	L	H	
H	L	L	H	H	H	L	
H	L	H	L	H	H	H	

Full Adder

Inputs					Outputs			
A_{4}	A_{3}	A_{2}	A_{1}	$\mathrm{C}_{0}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}$	${ }^{\Sigma} 4$	Σ_{3}	Σ_{2}	${ }^{\Sigma} 1$
80	40	20	10	Over-range	80	40	20	10
L	L	L	L	L	L	L	L	L
L	L	L	H	H	L	L	L	L
L	L	H	L	H	L	L	L	H
L	L	H	H	H	L	L	H	L
L	H	L	L	H	L	L	H	H
L	H	L	H	H	L	H	L	L
L	H	H	L	H	L	H	L	H
L	H	H	H	H	L	H	H	L
H	L	L	L	H	L	H	H	H
H	L	L	H	H	H	L	L	L
H	L	H	L	H	H	L	L	H
H	L	H	H	H	H	L	H	L
H	H	L	L	H	H	L	H	H
H	H	L	H	H	H	H	L	L
H	H	H	L	H	H	H	L	H
H	H	H	H	H	H	H	H	L

Local Remote Multiplex

The LCL/RMT input is a logic low in the remote mode. This enables the gates which are connected to the remote attenuation inputs (Full Adder and Over-range) so the remote signals drive the 10 dB Step Attenuator. At the same time logic inputs from the OUTPUT RANGE switch are inhibited.

TROUBLESHOOTING

It is assumed that the troubleshooting information on Service Sheet 3 was used to isolate a circuit defect to the assembly shown on the accompanying diagram. Troubleshoot the Logic Assembly by using the test equipment and procedures given below.

Test Equipment
Digital Voltmeter . . . HP 3466A
If the problem is evident only in the local mode of operation, check the OUTPUT RANGE switch, continuity of the connections to the A11 assembly, and the Local/Remote Multiplexer. Refer to
the table showing the OUTPUT RANGE switch output. If the defect is evident only in the remote mode of operation, check the shift registers, the BCD-to-Binary Decoder, the Full Adder, and the Local/Remote Multiplexer for proper operation. Use the tables showing inputs versus outputs as a tool to isolate the defective component.

If the defect is evident in both the Local and Remote modes, the Local/Remote Multiplexer or an associated component is probably defective.

NOTE

If the inputs and outputs of the A11 Logic Assembly are correct, check the 10 dB Step Attenuator (Service Sheet 6) in all ranges, the 10 dB Attenuator in the A4 Detector Amplifier Assembly, and the $1 d B$ Step Attenuator in the A10 Reference Assembly (also the 10 H inputs and associated components). Also, check the 1 dB and 10 dB Step Attenuator outputs with attenuation inputs of $1,2,4$, and 8 dB and $10,20,40$, and 80 dB .

Figure 8-29. A11 Logic Assembly Component Locations

Digitally Remastered by ArtekMedia © 2002-2006

NOTE

When a malfunction occurs, refer to Section VIII of the HP Model 8660-series mainframe Operating and Service Manual to begin troubleshooting (System Troubleshooting Guide). If that information indicates possible problems in the $R F$ Section, refer to the Systems Troubleshooting information in Service Sheet 1. This information may be used to isolate the defect to the RF Section, another plug-in, or the mainframe. If the problem is in this plug-in, return to Service Sheet 2 for further troubleshooting information.

PRINCIPLES OF OPERATION

General

The system center frequency controls the RF Section's frequency doubling mode and the ALC loop bandwidth. This is accomplished by means of the DBL-L and Code 1 logic inputs which are connected from the mainframe DCU to the A20 Doubler Power Supply Assembly in the RF Section.

In Option 003 RF Sections, the DBL-L input may be controlled from the front panel. This allows frequency doubling with Models 8660A and 8660B mainframes (Frequency Doubler Test Switch A24S1 is set to the $8660 \mathrm{~A} / \mathrm{B}$ position). In modified A and B mainframes, remote control of frequency doubling is possible. (Refer to the paragraph entitled Required Modifications in Section I.)

When the option 003 RF Section is used in an 8660C mainframe (A24S1 is set to the 8660C position), front panel control of frequency doubling is inhibited. The doubling mode is automatically entered whenever center frequencies $\geqslant 1300 \mathrm{MHz}$ are selected. This occurs in both the local or remote control modes.

The OP-1 and OP-2 outputs to the mainframe serve to identify the RF Section model to the mainframe DCU. This information allows proper response of the mainframe frequency limiting logic circuits.

A20 Doubler Power Supply Assembly

The DBL-L and Code 1 inputs to the A20 Assembly control the frequency doubling mode and ALC loop bandwidth. The DBL-L exerts direct control over the Doubler Amplifiers and Doubler Relay Control outputs. Both inputs influence the ALC Bandwidth Control output. The following table lists pertinent center frequencies with the resulting A20 Assembly inputs and outputs.
+24 V Regulator. In the frequency doubling mode, the Doubler Amplifiers Control output is +22 Vdc. A20U1 is a self contained voltage regulator. The +22 V Adj, A20R7 controls the amount of voltage feedback to the regulator and therefore sets the output voltage. A20Q1 is an external transistor which drives the series pass transistor Q1.

SERVICE SHEET 12 (Cont'd)

A20 Assembly Inputs and Outputs

Center Frequency	Inputs		Control Outputs		
	DBL-L	Code 1	Doubler Amplifiers	ALC BW	Doubler Relay
$<10 \mathrm{MHz}$ $\geqslant 10 \mathrm{MHz}$ but $<1300 \mathrm{MHz}$ $\leqslant 1300 \mathrm{MHz}$	H	H	0 Vdc	$>+4.0 \mathrm{Vdc}$	0 Vdc

* $\mathrm{H}=>+2.0 \mathrm{Vdc} \quad \mathrm{L}=<+0.8 \mathrm{Vdc}$

Power Supply Switch. When A20Q2 is biased "on," the drive current to the regulator transistors (both internal and external to A20U1) is removed. This causes the regulator output to go to ground potential. This occurs only with the DBL-L input high ($>+2.0 \mathrm{Vdc}$).

Relay Driver. When the system is operating in the frequency doubling mode, the DBL-L input is low. Therefore, A20Q3 is biased off, A20Q4 is biased on, and approximately +12 Vdc appears at the Doubler Relay Control output.

ALC Bandwidth Control. At center frequencies $<10 \mathrm{MHz}$, the Code 1 input is high. A20Q5 is biased on, A20Q6 is biased off, and the ALC BW Control output increases until it is limited by A20VR2 $(\approx+5 \mathrm{Vdc})$. At center frequencies $\geqslant 1300 \mathrm{MHz}$, the override voltage from the Doubler Relay Control output (connected to A20Q5 through A20CR2 and A20R16) cancels the effect of the Code 1 low input. The ALC BW Control again increases to $\approx+5 \mathrm{Vdc}$.

Frequency Doubler Test Switch (Except Option 003 Instruments)

When used in an 8660C mainframe, the Frequency Doubler Test Switch $S 1$ should be left in the 8660 C position. The other two switch positions are strictly for test purposes. The diode CR1 isolates the DBL-L input from ground in the $8660 \mathrm{~A} / \mathrm{B}$ X2 position.

The grounded OP-2 output (in the 8660 C position of S 2) indicates to the mainframe DCU that the Center frequency limit of the RF Section is 2600 MHz . In the other positions, a limit of 1300 MHz is indicated by the grounded OP-1 output.

Option 003 Instruments

Option 003 instruments are intended to be used with 8660 A or 8660B mainframes to provide the frequency doubling capability. The Frequency Doubler Test Switch, A24S1 should be set to the $8660 \mathrm{~A} / \mathrm{B}$ position. The OP-1 output to the mainframe is grounded indicating a maximum frequency of 1300 MHz . In the doubling mode, the mainframe center frequency readout indicates one-half the actual output frequency.

SERVICE SHEET 12 (Contd)

Front panel operation (local mode) is enabled by a high input ($>+2.0 \mathrm{Vdc}$) on the LCL/RMT line. (The NC mnemonic at A23U1A pin 2 indicates no connection which ensures an equivalent high input for this particular integrated circuit.) Pressing the FREQ DOUBLER switch passes the low output to A23U1D. In LCL mode the input to A23U1D pin 12 is always high. Therefore, the output of A23U1D goes high which biases A23Q1 on and DS1 (which indicates the frequency doubling mode) is illuminated. The low output from A23U1C is coupled through A24CR3 to the DBL-L input of the A20 assembly.

When the remote control mode is initiated, a low input appears on the LCL/RMT line. This action inhibits the front panel switch control of the DBL-L output while enabling remote control by ensuring that a high input always occurs at A23U1D pin 13. The DBL-L input from the mainframe now governs the lamp indication and the A20 Assembly DBL-L input.

If an option 003 RF Section is used with an 8660 C mainframe, the Frequency Doubler Test Switch must be placed in the 8660 C position. Front panel control of doubling is inhibited by the low input to A23U1A through A24CR2. A24CR1 isolates the LCL/RMT control line from the grounded input. The open (high) input to A23U1D pin 12 ensures that the front panel lamp remains off. A24CR3
isolates the output of A23U1C from the DBL-L input from the mainframe to the A20 Assembly.

TROUBLESHOOTING

It is assumed that the troubleshooting information in Service Sheet 3 was used to isolate a circuit defect to the circuits represented on the schematic. Troubleshoot the circuits using the test equipment and information which follows.

Test Equipment
 Digital Voltmeter HP 3466A

Before troubleshooting the circuit boards shown by the schematic, verify that the power supply inputs to the circuit boards are all correct.

The logic levels should not change unless a change in center frequency is made. Check the outputs and inputs of the A20 Assembly against the levels shown by the table. If the inputs are correct the defect is in the A20 Assembly circuitry. One or more incorrect outputs will isolate the defective stage. If the inputs are incorrect, a defective switch, diode, or wiring is responsible. In option 003 instruments, the time to isolate the defect may be reduced by using the Frequency Doubler Test Switch. If necessary, point-by-point measurements of voltage will aid quick identification of a defective stage and $f o r ~ c o m p o n e n t . ~$

DISASSEMBLY AND INTERCONNECTION PROCEDURES

CAUTION
Before removing the RF Section plug-in from the mainframe, remove the line (Mains) voltage by disconnecting the power cable from the power outlet.

RF Section Plug-in Removal

a. Release the latch below the front panel OUTPUT jack.
b. Pull the latch out while rotating it to the left until it is perpendicular to the front panel. This separates the mating plug and jack (plug-in to mainframe).
c. Grasp the latch and pull the plug-in straight out from mainframe.

Plug-in Cover Removal

a. Remove the 16 pozidriv screws from both covers.
b. Loosen the 4 screws which hold the teflon/aluminum plug-in guide in place.
c. Remove the covers and set them aside.
d. If necessary, remove the plug-in guides by removing the screws.

Interconnection of RF Section to Mainframe for Troubleshooting Purposes

After the RF Section is removed from the mainframe and its covers have been removed, the RF Section must be reconnected to the mainframe with interconnecting extender cables before troubleshooting can begin.

WARNING

With the mainframe top cover removed, power is supplied to the system during troubleshooting. Energy available at many points may, if contacted, constitute a shock hazard.
a. Remove the mainframe top cover. First remove the 4 Pozidriv screws; then slide the cover back and off the mainframe siderails.

NOTE

The interconnect cables and adapters are parts found in the HP 11672A Service Kit. They may all be ordered in the kit or as individual pieces. Refer to the 11672A Operating Note for a pictorial cross reference.

DISASSEMBLY AND INTERCONNECTION PROCEDURES (Cont'd)

b. Make connection from J6 (mainframe) to P6 (RF Section rear panel) with the 11672-60001 multi-pin interconnect cable.

WARNING

To avoid contact with the line voltage, remove the line (main) power cable from the power outlet before removing or connecting cables to the Frequency Extension Module.
c. Connect the 1250-1236 adapter to the 11672-60005 gray coaxial cable. Insert the adapter into P2 (on RF Section rear panel above the multipin connector).
d. Remove the gray-blue cable from the jack on the rear side of the Frequency Extension Module. Connect the gray coaxial cable to the extension module jack.
e. Take the 11672-60004 red coaxial cable and connect it to P1 (RF Section rear panel below the multi-pin connector).
f. Disconnect the gray cable from the other extension module output jack. Connect the red coaxial cable to the jack.
g. Reconnect the mainframe line (Main) power cable to the power outlet and set the mainframe line switch to ON.

Installation and Reassembly Procedures

To reinstall the RF Section covers, follow the procedure steps in reverse order. Be sure the cover notches are to the rear. Instructions for installing the RF Section into the mainframe may be found in Section II.

After troubleshooting, be sure the Frequency Extension Module output cables are connected to the correct output jacks by following the interconnection procedure steps in the reverse order.

Table 8-2. Assemblies, Chassis Mounted Parts, and Adjustable Component Locations (1 of 2)

Reference Designator	Service Sheets	Figures	
A1 Assembly	2,4	-	Remarks
A2 Assembly			Circuit Board, mounted on aluminum deck opposite the A5 Assembly.
A3 Assembly	$2,4,8$	$8-22,33$	A3, A4, and A16 plug into connectors
mounted on A2.			

Table 8-2. Assemblies, Chassis Mounted Parts, and Adjustable Component Locations (2 of 2)

Reference Designator	Service Sheets	Figures	Remarks
$\begin{aligned} & \text { CR11 } \\ & \text { DS1 } \\ & \text { FL1 } \\ & J 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3,12 \\ & 12 \\ & 2,4 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 8-33 \\ & 3-2 \\ & 8-33 \\ & 8-33 \\ & \hline \end{aligned}$	8-33 Rear Panel Option 003 instruments only 8-33 Right Side View
L1, 2	6		Mounted on TB1 (see 8-33 Top View)
M1	2,6	8-33	8-33 Front Panel Internal
$\begin{aligned} & \hline \text { P1, } \\ & \text { P3, } \\ & \text { P5 } \\ & \text { P6 } \end{aligned}$	$\begin{aligned} & \hline 2,4 \\ & 6 \\ & 4 \\ & 2,3,4,5,8-12 \\ & \hline \end{aligned}$	$\begin{aligned} & 3-3,8-33 \\ & 3-3,8-33 \end{aligned}$	$3-3, \mathrm{P} 2$ is (1); P1 is (2) Not shown, +20 V inputs to A 6 . Not shown, +20 V input to A 8 $3-3, \mathrm{P} 6$ is (2)
$\begin{aligned} & \hline \text { P7 } \\ & \text { P13 } \\ & \text { P14 } \end{aligned}$	$\begin{aligned} & 4 \\ & 2,4,6,8,9 \\ & 2,6,9 \end{aligned}$	$\begin{array}{r} 8-33 \\ 8.33 \\ \hline \end{array}$	Not shown, -10 V input to A8
Q1	12	8-33	
$\begin{aligned} & \hline \mathrm{R} 1 \\ & \mathrm{R} 2 \end{aligned}$	$\begin{aligned} & \hline 2,8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.33 \\ & 8.33 \\ & \hline \end{aligned}$	8-33, Front Panel Internal View 8-33, Front Panel Internal View
$\begin{aligned} & \hline \text { S1 } \\ & \text { S2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,11 \\ & 3,12 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.33 \\ & 8.33 \\ & \hline \end{aligned}$	8-33, Front Panel Internal View 8-33, Rear Panel Internal View
TB1	6	8-33	Top View
$\begin{aligned} & \text { W1* } \\ & \text { W2* } \\ & \text { W3 } \\ & \text { W4* } \\ & \text { W5* } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2,5 \\ & 2,4 \\ & 2,4 \\ & 2,4 \\ & 2,4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8-33 \\ & 8-33 \\ & 8-33 \\ & 8-33 \\ & 8-33 \\ & \hline \end{aligned}$	Right Side View, FL1 Output Top View A8, Output AT1 Input, grey/blue AT1 Output Top View, A5 Output
$\begin{aligned} & \text { W6* } \\ & \text { W7* } \\ & \text { W8 } \\ & \text { W9 } \\ & \text { W10* } \end{aligned}$	$\begin{aligned} & \hline 2,4,6 \\ & 2,7,9 \\ & 2,8 \\ & 2,8 \\ & 2,5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8-33 \\ & 8.33 \\ & 8-33 \\ & 8-5,33 \\ & 8-33 \\ & \hline \end{aligned}$	Top View, A6 Input A13 Input AM Inpt to A12, grey/yellow Pulse Inpt to A12, white/green A18 Output
$\begin{aligned} & \hline \text { W11 } \\ & \text { W12 } \\ & \text { W13* } \\ & \text { W14 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2,4 \\ & 2,5 \\ & 2,4,5 \\ & 2,5 \end{aligned}$	$\begin{aligned} & \hline 8-33 \\ & 8-5,33 \\ & 8-33 \\ & 8.33 \\ & \hline \end{aligned}$	FL1 Input, grey ϕ M Inpt to A16, white/violet A18 Input Right side view, A16 Output, grey
W15 W16 W17 W18	$\begin{aligned} & 2,6,7 \\ & 2,7 \\ & 2,4 \\ & 2,4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8-33 \\ & 8-33 \\ & 8-33 \\ & 8-33 \\ & \hline \end{aligned}$	Black, A22 Input Black, A22 Interconnect P6 Interconnect cable, white/brown A15 Output to P6, white/red
$\begin{aligned} & \text { W19 } \\ & \text { W20 } \\ & \text { W21 } \end{aligned}$	$\begin{aligned} & 2,4 \\ & 2,4 \\ & 2,4 \end{aligned}$	$\begin{aligned} & \hline 8-33 \\ & 8-33 \\ & 8-33 \end{aligned}$	A15 Input from P6, white/blue P6 Interconnect cable, white/orange P6 Interconnect cable, white/yellow
XA21	10	-	Printed Circuit connector for A21.

*Indicates semi-rigid coaxial cable.

REAR PANEL INTERNAL VIEW

Figure 8-33. Assemblies, Chassis Parts, and Adjustable Component Locations

[^0]: ${ }^{1}$ Aging rate for the time base of standard mainframes is $3 \times 10^{-8} /$ day; for option 001 mainframes, $3 \times 10^{-9} /$ day .

[^1]: ${ }^{2}$ Below 1300 MHz sub-harmonics and multiples do not exist.
 ${ }^{3}$ For output levels +3 dBm and below, slightly higher from +3 to +7 dBm .

[^2]: 4 At frequencies $\geqslant 1300 \mathrm{MHz}$, output accuracy and flatness will be slightly degraded at levels from +3 to +7 dBm .

[^3]: 5 Applies only at 400 Hz and 1 kHz rates with the RF Section front panel meter indicating from 0 to +3 dBm . At a meter indication of -6 dB the distortion approximately doubles. The modulating signal distortion must be $<0.3 \%$ for the system performance to meet these specifications.

[^4]: * In Figure 4-17B the test oscillator output impedance and Low Pass Filter impedance is 50 ohms when the modulation section is a Model 86634 A and 600 ohms with a Model 86635A.

[^5]: * In Figure 5-7 A, the test oscillator output and low pass filter impedances are 50Ω when the modulation section being used is a Model 86634 A and 600Ω when used with an 86635 A .

[^6]: *In Figure 5-7B the test oscillator output and low pass filter impedances are 50 ohms when the modulation section being used is a Model 86634A and 600 ohms when used with an 86635 A .

[^7]: *When ordering extra assemblies for spare parts stock, use new assembly part number only. Exchange assemblies require trade-ins

[^8]: *Output frequency is not doubled at center frequencies $<1300 \mathrm{MHz}$

