SYNTHESIZED SIGNAL GENERATOR 8660B

HEWLETT hp PACKARD

SYNTHESIZED SIGNAL GENERATOR

8660B

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 1208A.

For additional important information about serial numbers see INSTRUMENTS COVERED BY MANUAL in Section I.

HEWLETT-PACKARD COMPANY

1501 PAGE MILL ROAD, PALO ALTO, CALIFORNIA, U.S.A.

CONTENTS

Section Page
I GENERAL INFORMATION 1-1
1-1. Introduction 1-1
1-8. Instruments Covered by Manual 1-1
1-13. Technical Assistance 1-2
1-15. Description 1-2
1-24. Specifications 1-2
1-26. Supplemental Performance Characteristics 1-2
1-28. Options 1.5
1-30. Plug-In Sections 1-5
1-32. Accessories Supplied 1.5
1-34. Accessories Not Supplied $1-5$
1-36. Warranty $1-5$
1-38. Test Equipment and Accessories 1-5
II INSTALLATION
2-1. Initial Inspection 2-1
2-2. Mechanical Check 2-1
2-5. Electrical Check 2-1
2-7. Claims for Damage 2-1
2-10. Preparation for Use 2-1
2-11. Power Requirements $2-1$
2-13. Power Cable 2-1
2-16. Operating Environment 2-1
2-18. Bench Operation 2-1
2-20. Rack Operation 2-1
2-22. Storage and Shipment 2-2
2-24. Original Packaging 2-2
2-28. Other Packaging Material 2-2
III OPERATION 3-1
3-1. Introduction 3-1
3-4. Panel Features 3-1
3-6. Operating Principles 3-1
3-8. Local Operation 3-1
3-18. Remote Operation $3-4$
IV PERFORMANCE TESTS 4-1
4-1. Introduction 4-1
4-3. Purpose 4-1
4-6. Test Equipment Required 4-1
4-7. Front Panel Checks and Adjustments 4-1
4-8. Performance Tests 4-1
4-9. Internal Crystal Oscillator Aging Rate 4-1
4-10. Input Sensitivity for External Reference $4-2$
4-11. Reference Output Checks $4-3$
4-12. Sweep Output 4-4
V ADJUSTMENTS 5-1
5-1. Introduction 5-1
5-6. Recommended Test Equipment 5-1
5-9. HP 11672A Service Kit 5.1
5-12. Checks and Adjustments $5-1$
$5 \cdot 13$. Power Supply Checks and Adjustments 5-2
5-14. Reference Section, Checks and Adjustments 5-45-15. High Frequency Section Checks andAdjustments$5-8$
5-16. N1 Phase Lock Loop Checks and Adjustments 5-13
5-17. N2 Phase Lock Loop Checks and Adjustments 5.15
5-18. N3 Phase Lock Loop Checks and Adjustments 5-17
5-19. Summing Loop 2 Checks and Adjustments 5.18
5-20. Summing Loop 1 Checks and Adjustments 5-21
5-21. Digital Control Unit (Sweep Output)
Adjustment $5-23$
VI REPLACEABLE PARTS 6-1
6-1. Introduction 6.1
6-3. Exchange Assemblies 6.1
6-5. Abbreviations 6-1
6-7. Replaceable Parts List 6.1
6-9. Ordering Instructions 6-1
VII MANUAL CHANGES 7-1
7-1. Introduction 7-1
VII SERVICE 8-1
8-1. Introduction 8-1
8-3. Principles of Operation 8-1
8-5. Reference Section 8-1
8-7. High Frequency Loop 8-1
8.11. N1 Phase Lock Loop 8-1
8-13. N2 Phase Lock Loop 8-2
8-15. N3 Phase Lock Loop 8-2
8-17. Summing Loop 2 $8-2$
8-19. Summing Loop 1 8-2
8-21. Digital Control Unit $8-2$
8-22. Interface Circuits 8-2
8-23. RF Section 8.2
8.24. Modulation Section 8-2
8-25. Recommended Test Equipment $8-3$
8-27. Troubleshooting 8.3
8-33. Repair 8-3
8-34. Module Exchange 8.3
8-38. Line Voltage Requirements 8-3
8-39. Servicing Aids on Printed Circuit Board 8-3
8-40. Circuit Board Extenders $8-3$
8-41. Diagram Notes 8.3
8.42. Part Location Aids 8-3

ILLUSTRATIONS

Figure Page Figure Page
1-1. Model 8660B Equipment Supplied 1-0
1-2. Instrument Identification 1-1
3-1. Front and Rear Panel Controls, Indicators and Connectors 3-2
4-1. Crystal Oscillator Aging Rate Test Setup $4-1$
4-2. Input Reference Sensitivity Test 4-2
4 -3. Reference Output Test Setup 4-3
4-4. Sweep Output Test Setup 4-4
5-1. Power Supply Test Setup 5-2
5-2. Reference Accuracy Adjustment 5.4
5-3. Alternate Reference Accuracy Adjustment 5.5
$5-4$. 100 MHz Adjustment 5-5
5-5. RF Level Checks 5-6
5-6. Oscilloscope Level Checks 5-6
5-7. Phase Detector Response Adjustment 5-8
5-8. Voltage Controlled Oscillator Adjustments 5.9
5-9. Loop Gain Adjustment 5-11
$5-10.10 \mathrm{MHz}$ Trap Adjustment 5-12
5-11. Output Amplitude Check 5-12
5-12. N1 Loop Test Setup $5-13$
5-13. N2 Loop Test Setup $5-15$
5-14. N3 Loop Test Setup 5-17
5-15. SL1 and SL2 Test Setup 5.19
5-16. SL1 Test Setup 5-21
5-17. Sweep Ramp Test Setup 5-23
8-1. Model 8660B Simplified Block Diagram 8-0
8-2. Modular Exchange Procedure 8-8
8-3. Printed Circuit Board Connector Identification 8-9
84. Model 8660B with Circuit Board Extended for Maintenance 8-10
8-5. Basic Troubleshooting Tree 8-11
8-6. RF Loops Troubleshooting Tree 8-12
8-7. Model 8660B Block Diagram 8-15
TABLES
Table Page Table1-1. Model 8660B Specifications 15-7. N3 Oscillator Output Frequency Checks5.18
1-2. Model 8660B Supplemental Performance 5.8. SL2 Oscillator Output Frequency Adjustments 5-20
Characteristics 1.4
5-9. SL1 Oscillator Output Frequency Adjustments 5-22
1-3. Test Equipment and Accessories List 1.6
3-1. Storage Register Addresses 3-5
3-2. Model 8660 B Programming Examples 3.5
3-3. AM - FM Function Register Coding 3.8
3-4. Programming Connections to J3 3-8
3-5. Operator's Checks $3-9$
5-1. Unregulated Power Supplies 5-3
5-2. Regulated Power Supplies 5-3
5-3. Reference Section Output Levels 5-7
5-4. Pretune Adjustments $5-10$
5-5. N1 Loop Output Frequency Checks 5.14
5-6. N2 Oscillator Output Frequency Checks 5.16
5-10. Adjustments Test Record 5-24
6-1. Part Numbers for Assembly Exchange Orders 6-2
6-2. Reference Designations and Abbreviations 6-3
6-3. Replaceable Parts 6-5
6-4. Manufacturer's Code List 6-45
8-1. Troubleshooting by Replacement 8-4
8-2. Schematic Diagram Notes 8-6
8-3. Assembly Locations 8.7
8-4. Pretuning DC Levels 8-20
8-5. N1 Oscillator Test Point Measurements 8-28
8-6. N2 Frequency versus Voltage Chart 8-34
8-7. N3 Frequency versus Voltage Chart $8-38$
8 -8. SL2 Frequency versus Voltage Chart 8.42
8-9. SL1 Frequency versus Voltage Chart 8-46
8-10. Varactor Bias Versus Frequency SL1 8-48

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This manual contains all information required to install, operate, test, adjust and service the Hewlett-Packard Model 8660B Synthesized Signal Generator. This section covers instrument identification, description, specifications and other basic information.

1-3. Figure 1 -1 shows a front view of the instrument and the service kit required for maintenance purposes.

1-4. The various sections in this manual provide information as follows;
a. SECTION II, INSTALLATION, provides information relative to incoming inspection, power requirements, mounting, packing and shipping, etc.
b. SECTION III, OPERATION, provides information necessary to efficiently operate the instrument.
c. SECTION IV, PERFORMANCE TESTS, provides information required to ascertain that the instrument is performing in accordance with published specifications.
d. SECTION V, ADJUSTMENTS, provides information required to properly adjust and align the instrument after repairs are made.
e. SECTION VI, REPLACEABLE PARTS, provides ordering information for all parts and assemblies.
f. SECTION VII, MANUAL CHANGES, normally will contain no relevant information in the orginal issue of a manual. This section is reserved to provide backdated and up-dated information in manual revisions or reprints.
g. SECTION VIII, SERVICE, provides all information required to return the instrument to operation when a malfunction has occurred.

1-5. Packaged with this manual is an Operating Information Supplement. This is simply a copy of the first three sections of this manual. This supplement should stay with the instrument for use by the operator. Additional copies of the Operating Information supplement may be ordered through your nearest Hewlett-Packard office. The part
number is listed on the inside title page of the manual and on the supplement itself.

1-6. On the inside title page of this manual, below the manual part number, is a "Microfiche" part number. This number may be used to order 4 X 6 -inch microfilm transparencies of the manual. Each microfiche contains up to 60 photo duplicates of the manual pages. The microfiche package also includes the latest Manual Changes supplement as well as all pertinent Service Notes.

1-7. Instrument specifications are listed in Table 1-1. These specificatiosn are the performance standards or limits against which the instrument may be tested.

1-8. INSTRUMENTS COVERED BY MANUAL

1-9. This instrument has a two-part serial number plate (see Figure 1-2) on the back panel. The first four digits and the letter comprise the serial number prefix which denotes the instrument configuration and the country in which it was manufactured. The last five digits form the sequential suffix that is unique to each instrument. The contents of this manual apply directly to instruments having the same serial number prefix as listed under SERIAL NUMBERS on the inside title page.

Figure 1-2. Instrument Identification
1-10. An instrument manufactured after the printing of this manual may have a serial prefix that is not listed on the title page. This unlisted serial prefix indicates that the instrument is
different from those documented in this manual. The manual for this instrument is supplied with a yellow Manual Changes supplement that contains "change information" to document the differences.

1-11. In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is keyed to this manual's print date and part number, both of which appear on the title page. Complimentary copies of the supplement are available from Hewlett-Packard.

1-12. For information concerning a serial number prefix not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

1-13. TECHNICAL ASSISTANCE

1-14. Hewlett-Packard is prepared to provide technical assistance should problems arise which are not adequately covered in the manual or the manual changes supplement. All correspondence regarding such assistance should contain the complete serial number (prefix and suffix) of the instrument for which assistance is requested.

1-15. DESCRIPTION

1-16. The Hewlett-Packard 8660B Synthesized Signal Generator provides precise, digitally controlled rf signals which are used in plug-in sections to provide the desired output signal. Space for two front-panel plug-in units (a modulator and an rf unit) are provided in the instrument. All operating controls of the Model 8660 B and the plug-in units are readily accessible on the front panels. In addition to the two front panel plug-in units, space is provided internally for the Model 11661A Frequency Extension Module, which must be used when the output RF Section is capable of producing output frequencies higher than 160 MHz .

1-17. All of the signals generated in the Model 8660B are phase locked, directly or indirectly, to a 100 MHz master oscillator in the reference section. The 100 MHz master oscillator is phase locked to an internal 10 MHz temperature controlled crystal oscillator or to an external standard. Provisions are made for the internal reference to be used as a reference signal for other equipment.

1-18. The Model 8660 B uses synthesizer techniques to provide exact frequency control. When the Model 86601A RF Section is in use any
frequency within the range of .01 to 110 MHz may be selected in increments as small as one cycle. When the Model 86602A RF Section, and the Model 11661A Frequency Extension Module are in use, any frequency within the range of 1 to 1300 MHz may be selected in increments as small as one cycle.

NOTE

In Option 004 instruments the output rf frequency is selectable in 100 Hz increments.

1-19. Six rf loops, all phase locked to the 100 MHz master oscillator, are used to generate the precise rf signals used in the RF Section plug-in and the Microwave Extension Module plug-in to produce the desired final output signal.

1-20. The Model 8660 B has a front panel keyboard control for frequency selection. The keyboard control may also be used to set the rf output signal to sweep any sweep width desired, or to cause the rf output to step up or down in any frequency increment desired.

1-21. Manual tuning is also provided in the Model 8660B. A rotary pulse generator is used for this purpose. A selector switch directly above the TUNING knob determines rate of frequency change in $1 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 1 MHz increments, or in keyboard selected step size increments.

1-22. A sweep mode switch is provided to select sweep OFF, AUTO sweep, SINGLE sweep, or MANual sweep. Slow, medium or fast sweep rates are also selected by means of a selector switch.

1-23. Provisions are made to check keyboard entries before they are entered into the rf producing portions of the instrument. Before making the final entry into the keyboard, activating a pushbutton switch labeled KYBD to the left of the numerical readout will cause the readout to display the information stored in the keyboard circuits. Step increments and sweep width can also be displayed by activating push button switches.

1-24. SPECIFICATIONS

1-25. Specifications for the Model 8660B appear in Table 1-1.

1-26. SUPPLEMENTAL PERFORMANCE CHARACTERISTICS

1-27. Supplemental performance characteristics for the Model 8660B appear in Table 1-2.

SPECIFICATIONS

Frequency Selection: 10 digits selected by keyboard. Output frequency range is dependent on RF Section used.

Reference Oscillator:

Internal: 10 MHz quartz oscillator. Aging rate less than ± 3 parts in 10^{8} per 24 hours after 72 hour warmup. (± 3 parts in 10^{9} per 24 hours optional, Option 001.)

External: Rear panel switch allows operation from any $1 \mathrm{MHz}, 2 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}$, or 10 MHz signal at a level between 0.2 volt and 2 volts RMS into 170 ohms. Stability and spectral purity will be partially determined by the characteristics of the external reference oscillator. When using an external reference frequency below 5 MHz , spurious signals may be slightly higher than specified for the RF Section installed.

Reference Output: Rear panel BNC connector provides output of reference signal selected (INT) or (EXT) at the following levels:

Internal Reference: 0.5 v to 1 v rms into 170 ohms.
External Reference: 0.2 to 1 v rms into 170 ohms depending on amplitude of EXT reference signal.

Display:

Solid-state ten-digit numerical display of CW frequency is active in either local or remote mode. Momentary contact pushbuttons provide display of sweep width, selected step size, or characters being entered on the keyboard.

Remote Programming:

All front panel frequency, output level, and modulation functions are programmable.

Programming Input:
Connector type: 36-pin Cinch type 57 (mating connector supplied).

Logic: TTL compatible (negative true). "0" logic state corresponds to $>2 \mathrm{v}$, "1" logic state corresponds to $<0.8 \mathrm{v}$.

Internal Fan-in from Programming Connector: 10; (required current approximately 15 mA per line in the " 1 " state).

General:

Operating Temperature Range: 0° to $+55^{\circ} \mathrm{C}$.
Leakage: Meets radiated and conducted limits of MIL-I-6181D.
Power: 115 or 230 volts $\pm 10 \% 50$ to 60 Hz Approximately 200 watts.
Size: $163 / 4$ in.wide $\times 7$ in. high $\times 211 / 2 \mathrm{in}$. deep ($426 \times 178 \times 547 \mathrm{~mm}$); 19 in . deep behind rack mounting surface.
Weight: Net, $48 \mathrm{lb}(21,6 \mathrm{~kg})$.

Options:

001: $\pm 3 \times 10^{-9} / 24$ hours. Internal Reference Oscillator
002: No internal reference oscillator
003: Operation from 400 Hz line
004: 100 Hz frequency resolution
100: Internal Frequency Extension Module. Required for operation with 86602 RF Section.

Table 1-2. Model 8660B Supplemental Performance Characteristics

SUPPLEMENTAL PERFORMANCE CHARACTERISTICS

Synthesized Search:

Synthesized search dial changes the synthesized output frequency 180 steps per revolution corresponding to $180 \mathrm{~Hz}, 180 \mathrm{kHz}$, or 180 MHz or frequency change depending on frequency tuning switch position. Provides dial tuning of output frequency over entire range of $R F$ section installed.

Digital Sweep:

Type: Symmetrical about CW/center frequency. Sweep width is divided into 100 synthesized steps for fastest sweep speed or 1000 steps for slower sweeps.

Sweep Width: Continuously adjustable over range of RF section installed in 1 Hz or 10 Hz steps (depending on frequency resolution of RF section).

Sweep End Point Accuracy: Same as reference oscillator accuracy (e.g., $\pm 3 \times 10^{-8} / 24$ hours with standard reference oscillator).

Sweep Speed: Selectable $0.1 \mathrm{sec}, 1 \mathrm{sec}$, or 10 sec per sweep.

Sweep Output: 0 to 5 V stepped ramp; 100 or 1000 equal steps depending on sweep speed.

Manual Sweep: Synthesized search dial allows manual sweep over width selected in 1000 steps (display follows output frequency during manual sweep).

Single Sweep: Momentary contact pushbutton initiates single sweep.

Frequency Stepping:

After a step size has been entered on keyboard, depressing STEP \uparrow or STEP \downarrow button will increment frequency up or down by the desired step size.

Step Accuracy: Same as reference oscillator accuracy.

REMOTE PROGRAMMING

Functions:
All front panel frequency, output level, and modulation functions are programmable.

CW frequency, frequency STEPPING (STEP \uparrow, STEP \downarrow), output level, and modulation are programmable.

Frequency: CW freuqency is programmable over entire range with either 1 Hz or 10 Hz resolution depending on RF section installed.

Frequency step function may also be programmed to change output frequency by a previously selected step size.

Output Level: Programmable in 1 dB steps over the otuput range of the RF section installed. (For output level accuracy see RF section specifications.)

Miodulation: See specifications for modulation section and RF section installed.

1-28. OPTIONS

1-29. The following options are available for the Model 8660B:

Option 001: Reference oscillator is ± 3 parts in 10^{-9} per day.
Option 002: No internal reference oscillator.
Option 003: 400 Hz ac operation
Option 004: 100 Hz resolution (N3 and SL2 phase lock loops are removed).
Option 100: Frequency Extension Module Model 11661A installed. Required when the RF Section is capable of providing frequencies above 160 MHz .

1-30. PLUG-IN SECTIONS

1-31. The following plug-in modules are available for use with the 8660B:
a. Model 86601A, RF Section: Frequency range .01 to 109.999999 MHz in 1 Hz steps (8660B option 004100 Hz steps). Output level continuously adjustable from +13 to -146 dBm into 50 ohms.
b. Model 86602A, RF Section: Frequency range 1 to 1299.999999 MHz selectable in 1 Hz steps (8660 B option 004100 Hz steps). Output level adjustable from +13 to -146 dBm into 50 ohms.
c. Model 86631A, Auxiliary Section: Fits in Modulation drawer to complete required interconnections. Also provides a means of amplitude modulating the RF Section output with an external signal.
d. Model 86631B, Auxiliary Section: Same capabilities as the Model 86631 A plus a pulse modulation capability from an external source.
e. Model 86632A AM/FM Modulation Section: Internal and external AM and FM modulation selected by front panel switches. Meter indicates per cent AM or FM peak deviation.
f. Accessory number 11661A, Frequency Extension Module: This plug-in is an internal plug-in for the Model 8660B mainframe. It is required when the Model 86602A RF Section is used.

1-32. ACCESSORIES SUPPLIED

$1-33$. The following accessories are provided with the Model 8660B:
a. Detachable three-wire power cable,
b. Rack Mounting Kit,
c. Five circuit board extenders,
d. Type N to BNC adapter.

1-34. ACCESSORIES NOT SUPPLIED

1-35. A service kit, Hewlett-Packard part number 11672 A , is recommended for maintenance purposes. Contents of the service kit are listed in Table $1-3$. Individual items in the kit may be ordered separately if desired.

1-36. WARRANTY

1-37. Certification and warranty information for the Model 8660B appears on the inside front cover of this manual.

1-38. TEST EQUIPMENT AND ACCESSORIES

1-39. Table 1-3 lists the test equipment and accessories recommended to test, adjust and service the Model 8660B.

Table 1-3. Test Equipment and Accessories List

ITEM	DESCRIPTION	SUGGESTED MODEL	USE*
Digital Voltmeter	Voltage accuracy $\pm 0.2 \%$ Range: .0 V to 60 V	HP 3440A with HP 3443A plug-in	A,S
AC Microvoltmeter	$\begin{aligned} & 3 \mu \mathrm{~V} \text { to } 3 \mathrm{~V} \\ & \text { Tuneable to } 120 \mathrm{~Hz} \end{aligned}$	HP 3410A	A,S
Variable Voltage Transformer	Range 103 to 127 vac Meter Range 103-127 vac $\pm 1 \mathrm{~V}$	General Radio W4MT3A	A
VLF Comparator	Sensitivity $1 \mu \mathrm{~V}$ into 50 ohms; Compares 100 kHz input to NBS station WWVB	HP 117A	P,A
Oscilloscope	Frequency dc to 50 MHz Time base 10 Ns to 1 s Time base accuracy 3%	HP 180A with HP 1801A and HP 1821 plug-ins	P,A,S
20:1 divider probes	10:1 Divider 10 Megohm 10 pF	HP 10004A (2)	
Spectrum Analyzer	Frequency Range 10 to 600 MHz , Response ± 1 dB, Measurement Accuracy $\pm 2.0 \mathrm{~dB}$	HP 140/HP 8554L/ HP 8552B	A,S
Electronic Counter	Range 0-50 MHz, 0-500 MHz with plug-in. Accuracy ± 1 count \pm time base accuracy. External time base 10 MHz	HP 5245M with HP 5253B plug-in	P,A,S
Pulse Generator	Pulse rate 100 kHz Pulse width $.035 \mu \mathrm{Sec}$ Amplitude .5 v Polarity - Selectable	HP 222A	A
Signal Generator/ Sweeper	Frequency - 1 - 110 MHz Output Range +20 to -20 dBm Output CW or swept	HP 8601A	P,A, S
RF Voltmenter	Range 0.1 to 2 volts Freq. Range 1 to 10 MHz	HP 411A	P
Test Oscillator	Freq. Range 10 Hz to 1 kHz Output level +10 to -20 dBm	HP 651B	A,S
Frequency Synthesizer	Freq. Accuracy . 001% Freq. Stability ± 10 parts in 10^{6} per year	HP 3320B	P
* P= Performance Tests $\mathrm{A}=$ Adjustments $\mathrm{S}=$ Service			

Table 1-3. Test Equipment and Accessories List (cont'd)

Item	Description	Suggested Model	Use*
Service Kit	Consisting of: Extender Cable for output plug in Extender Cable for Modulator and accessory 11661A Adapter, Sealectro to 5 prong connector Coax adaptor, Sealectro to BNC (female) Coax adapter, Sealectro to BNC (male) Alignment tool Adapter, N plug to BNC Jack Sealectro Tee Connector Selectro cable, female to female 24" long Sealectro cable, Sealectro female to BNC male 36 ' long Sealectro cable, Sealectro male to female 24 " long. Sealectro cable, male to female 24" long Adaptor, OSM/OSM right angle Adaptor, OSM/BNC	HP 11672A $11672-60001$ $11672-60002$ $1250-0835$ $1250-1236$ $1250-1237$ $8830-0024$ $1250-0780$ $1250-0838$ $11672-60004$ $11672-60003$ $11672-60005$ $11672-60006$ $1250-1249$ $1250-1200$	S
* $\mathrm{P}=$ Performance Tests $\mathrm{A}=$ Adjustments $\mathrm{S}=$ Service			

SECTION II
 INSTALLATION

2-1 INITIAL INSPECTION

2-2. Mechanical Check

$2-3$. If the shipping carton shows visible signs of damage when received, the carrier's agent should be present when the instrument is unpacked. If the agent is not present, retain the packaging material to aid in evaluating the cause of damage if the instrument is physically damaged or is not functioning properly.

2-4. Inspect the instrument for physical damage such as bent or broken parts and dents or scratches. If damage is found refer to paragraph 2-7 for recommended claim procedures. If the instrument appears to be free of damage perform the electrical check (see paragraph 2-5). The packaging material should be retained for possible future use.

2-5. Electrical Check

2-6. The electrical check consists of performing the performance test procedures in Section IV of this manual. These procedures enable the operator to determine that the instrument is, or is not, operating within the specifications listed in Table 1-1. The initial performance and accuracy of the instrument are certified as stated on the inside front cover of this manual. If the instrument does not operate as specified, refer to paragraph 2-7 for the recommended claim procedure.

2.7. CLAIMS FOR DAMAGE

$2-8$. If physical damage is found when the instrument is unpacked notify the carrier and the nearest Hewlett-Packard Sales/Service Office immediately. The Sales/Service Office will arrange for repair or replacement without waiting for a claim to be settled with the carrier.
$2-9$. The warranty statement for the instrument is on the inside front cover of this manual. Contact the nearest Sales/Service Office for information relative to warranty claims.

2-10. PREPARATION FOR USE

CAUTION

Before applying power determine that the rear panel slide switch is in the correct position (115 or 230 volts).

2-11. Power Requirements

$2-12$. The instrument may be operated on 115 or 230 volts ac $\pm 10 \%$ at 60 cycles, single phase. Power required is approximately 200 watts. The $115 / 230$ volt slide switch on the rear panel of the instrument must be in the correct position to avoid damage. When shipped, the switch is set for 115 volt ac operation.

2-13. Power Cable

2-14. To protect operating personnel, the National Electrical Manufacturers Association (NEMA) recommends that the instrument panel and cabinet be grounded. This instrument is equipped with a detachable three-conductor power cable which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable three-prong connector is the ground connection. When using a three-prong to two-prong adapter the ground lead on the adapter should be grounded to preserve the safety feature.

2-15. The power cord and power input connector meet the specifications established by the International Electrotechnical Commission (IEC).

2-16. Operating Environment

$2-17$. The instrument is equipped with a fan which is capable of keeping the instrument ambient temperature within reasonable limits when the instrument is operated at room temperatures between 0 to $55^{\circ} \mathrm{C}$ (32 to $131^{\circ} \mathrm{F}$.).

2-18. Bench Operation

2-19. The instrument cabinet has plastic feet and a foldaway tilt stand for convenience in bench operation. The tilt stand permits inclining the instrument for ease in using front panel controls and indicators. The plastic feet are shaped to provide clearance for air circulation and to make modular cabinet width instruments self-aligning when stacked.

2-20. Rack Operation

2-21. The instrument may be rack mounted for stationary use. A rack mounting kit, complete with instructions, is shipped with the instrument.

2-22. STORAGE AND SHIPNIENT

2-23. If the instrument is to be stored for an extended period of time it should be enclosed in a clean sealed enclosure.

2-24. Original Packaging

$2-25$. The same containers and materials used in factory packaging can be obtained through the Hewlett-Packard Sales/Service Offices listed at the rear of this manual.

2-26. If the instrument is being returned to Hewlett-Packard for service attach a tag indicating the type of service required, return address, model number and full serial number. Also mark the container FRAGILE to assure careful handling.
$2-27$. In any correspondence refer to the instrument by model number and full serial number.

2-28. Other Packaging Material

2-29. The following general instructions should be followed when repackaging with commercially available materials.
a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard Service Office or Center, attach a tag indicating the type of service required, return address, model number and full serial number.)
b. Use a strong shipping container. A double-wall carton made of 350 pound test material is adequate.
c. Use enough shock-absorbing material (three to four inch layer) around all sides of the instrument to provide firm cushion and prevent movement inside the container. Protect the control panel with cardboard.
d. Seal the shipping container securely.
e. Mark the shipping container FRAGILE to assure careful handling.

SECTION III OPERATION

3-1. INTRODUCTION

3-2. This section provides operating instructions for the Hewlett-Packard Model 8660B Synthesized Signal Generator mainframe.
$3-3$. The Model 8660B is designed to provide precise digitally controlled signals for use in plug-in sections which provide the selected output frequency. It will be necessary to have the operating manuals for the plug-in sections being used in order to efficiently operate the instrument.

NOTE

If a modulation plug-in section is not used it will be necessary to have an Auxiliary Section in place in the modulation plug-in drawer. The Auxiliary Section completes a signal path from the mainframe to the RF Section plug-in and also provides a means of modulating the RF Section from an external source.

3-4. PANEL FEATURES

$3-5$. Front and rear panel controls, indicators and connectors of the 8660 B are shown, and their functions described, in Figure 3-1.

3-6. OPERATING PRINCIPLES

3-7. The 8660 B may be operated by front panel controls in the local mode or externally programmed in the remote mode.

NOTE

The remote mode is selected by the external programming device which places a ground on pin 5 of J3 on the rear panel of the 8660 B . In the remote mode, all front panel controls of the 8660 B are inhibited.

3-8. Local Operation

3-9. In the local mode of operation, all functions of the mainframe are controlled by front panel controls, except when an external standard is used. When an external standard is used the rear panel SELECTOR switch must be in the EXT position.
$3-10$. The 20 -key keyboard may be used to:
a. Select any center frequency within the range of the RF Section plug-in in 1 Hz increments (Opt 004 instruments provides 100 Hz increments).

NOTE

Abstract

Frequencies which are above the output frequency range of the RF Section, if selected, will be stored in the keyboard register, but the information will not be transferred to the center frequency register since it is above the output range of the RF Section. The center frequency register and the readout will retain the last valid input. Frequencies below the output frequency range of the RF Section will be transferred to the center frequency register and the readout register; the output frequency is still accurate, but the output amplitude is degraded. As an example, the Model 86601A RF Section has a specified lower frequency limit of 10 kHz , but typically will produce a useable rf output down to 3 kHz or less. When frequencies above the RF Section frequency range are selected the OUT OF RNG lamp flashes on one time. When frequencies below the RF Section frequency range are selected the OUT OF RNG lamp remains lit.

b. Select any desired sweep width within the frequency range of the RF Section in use. See paragraph 3-12 for further details of sweep mode operation.
c. Select any incremental step within the frequency range of the RF Section in use. See paragraph 3-15 for further details of incremental step operation.

3-11. Sweep Mode. In the sweep mode the sweep width is selected by the keyboard keys. The sweep width may be displayed on the CENTER FREQUENCY readout by pressing the SWP WIDTH pushbutton to the left of the readout. Only the center frequency is shown in the AUTO or SINGLE sweep modes. In the MAN sweep mode the actual rf output frequency of the RF Section will be displayed.

3-12. When the SWEEP MODE switch is placed in the AUTO position the output signal of the RF Section is swept about the selected center frequency by the sweep width stored in the sweep width storage register. (Example: center frequency 50 MHz , sweep width 20 MHz , the rf output is swept from 40 to 60 MHz .) The sweep rate, selected by the RATE switch, is as follows: FAST

Figure 3-1. Front and Rear Panel Controls, Indicators and Connectors (1 of 2)

1 KYBD pushbutton. When pressed, causes the information stored in the keyboard storage register to be displayed on the CENTER FREQUENCY readout.

2 STEP pushbutton. When pressed, causes the information stored in the step storage register to be displayed on the CENTER FREQUENCY readout.

3 SWP WIDTH pushbutton. When pressed, causes the information stored in the sweep width storage register to be displayed on the CENTER FREQUENCY readout.

4 LINE STBY - ON switch. In the STBY position, with the instrument connected to the ac line source, the reference oscillator oven temperature is maintained at the operating temperature to avoid the necessity of allowing for a warm up period each time the instrument is used.

5 CENTER FREQUENCY readout. Normally displays the output center frequency of the RF Section.

6 ANNUNCIATOR. Provides visual display of mode of operation, crystal oven temperature and out of range frequency selection.
(1) MANUAL MODE RESOLUTION. Works in conjunction with the TUNING control to step the rf output in steps of 1 Hz (FINE), 1 kHz (MED) and 1 MHz (COARSE). In the STEP position the TUNING control steps the rf output frequency by the step stored in the step register.

8 TUNING - MANUAL SWEEP. Works as specified in the MANUAL MODE RESOLUTION description. May also be used to set the rf output to any point within the limits stored in the sweep register when the SWEEP MODE switch is set to MAN.
9) Keyboard. Contains 20 keys which are used to enter data or instructions as follows:

Numerals 0 through 9
Decimal Point (.)
CLEAR KYBD. Clears keyboard register (does NOT clear other registers).
$\mathrm{GHz}, \mathrm{MHz}, \mathrm{kHz}$ and Hz select frequency in conjunction with numeric keys.

CF. Transfers keyboard storage register data to the center frequency register.

STEP. ^Transfers keyboard storage register data to the step registerand steps the center frequency up. May also be used to step the frequency up by the step stored in the step register without a new keyboard entry.

STEP. \downarrow Same as STEP \uparrow except that frequency is stepped down.

SWP WIDTH. Transfers the data in the keyboard storage register to the sweep register.
(10) SINGLE pushbutton. When pressed, causes the rf output to be swept, one time only, across the range stored in the sweep register.

11 OUTPUT ($0-5 \mathrm{~V}$). Provides a sweep ramp for use in external equipment (oscilloscopes, X•Y recorders, etc.) when operating in the swept mode.

12 RATE switch. The rage switch selects sweep rates as follows: FAST - 100 steps at 1 millisecond per step, MED - 1000 steps at 1 millisecond per step, and SLO -1000 steps at 10 milliseconds per step.

13 SWEEP MODE switch. With the sweep mode switch in the AUTO position sweep operation is automatic; the output rf is swept about the center frequency by the data stored in the sweep register at the rate selected by the RATE switch. In the SINGLE mode the rf output is swept once each time the SINGLE pushbutton is pressed. In the MAN mode the sweep is controlled by the MANUAL TUNE control and the data stored in the sweep register.

Line Module. Contains $115-230 \mathrm{~V}$ switch, fuse, line cable connector and filtering.
(15) REFERENCE INPUT. Used when an external standard of $1,2,2.5,5$ or 10 MHz is used.
(16) REFERENCE OUTPUT. Provides the capability of using the internal reference as a time base in external equipment.

SELECTOR. Selects INT or EXT reference.
REMOTE INPUTS. When the instrument is operated in the remote mode (pin 5 of this connector is grounded by the programming device), all functions of the instrument are controlled by the remote programming device. Front panel controls (except for LINE STBY-ON) have no effect on operation of the instrument.
(19) Air Filter. Should be cleaned periodically to ensure adequate airflow for instrument cooling.
-100 steps at 1 millisecond per step, MED - 1000 steps at 1 millisecond per step, and SLO - 1000 steps at 10 milliseconds per step.

3-13. When the SWEEP MODE switch is placed in the SINGLE position, pressing the SINGLE pushbutton causes the output of the RF Section to be swept one time. When the single sweep is completed, the output of the RF Section returns to the selected center frequency. The sweep width and sweep rate are selected in the same manner as they are in the AUTO mode.

3-14. When the SWEEP MODE switch is placed in the MAN position the step rate of the output frequency of the RF Section may be manually controlled by the MANUAL SWEEP control. In this mode the sweep width is still controlled by the information in the sweep register. The selected sweep width, in this mode, is divided by 1000 and the output of the RF Section may be controlled in frequency steps that are $1 / 1000$ of the sweep width. (Example: center frequency 40 MHz , sweep width 20 MHz , output may be stepped manually from 40 to 60 MHz in 20 kHz steps.)

3-15. Step Mode. The center frequency may be stepped up, or down, in any increment within the frequency range of the RF Section in use. The increment selected, including units, must be entered in the keyboard before the STEP \uparrow or STEP
\downarrow key is pressed. The step entered into the step register remains in the register until changed (or the instrument is placed in the standby mode) and may be displayed on the readout by pressing the STEP pushbutton.

3-16. Manual Mode. Manual mode operation is essentially the same as the step mode except that increments selected by the MANUAL MODE switch are 1 Hz (FINE), 1 kHz (MED) and 1 MHz (COARSE). These increments are controlled only by the TUNING control. The incremental steps stored in the increment register may also be controlled by the TUNING control when the MANUAL MODE switch is placed in the STEP position.

3-17. Combined Mode. The sweep mode, step mode and manual mode may all be used simultaneously. This feature allows the user to quickly
determine the frequency parameters of any device being tested.

3-18. Remote Operation

$3-19$. In the remote mode of operation the mainframe STEP register and the Center Frequency register are controlled by the programming device. All front panel controls are inhibited.

3-20. In remote operation two four-line parallel codes are applied to the instrument circuits through a rear panel connector. These inputs, if numeric data, are converted to 2 BCD digit serial information and clocked into a temporary storage register. If the inputs are address information they are used to direct a clock to strobe the data from the temporary storage register into the desired final storage register.
$3-21$. The input programming requirements of the 8660B dictate that BCD inputs are as follows: approximately 0 volts (TTL LOW) $=1$ and approximately +5 volts (TTL HIGH) $=0$ (sometimes referred to as negative logic or ground true logic). Another requirement is that the least significant data digit must be entered first, then the next least significant data digit, etc.
$3-22$. When all of the significant data entries have been stored in the temporary storage registers, input digit 1 is set to binary 15 to indicate that the digit 2 information is the address to which the information stored in the temporary storage register is to be transferred.
$3-23$. There are six final storage registers which may be programmed via the rear panel connector on the 8660B. These storage registers, their addresses, locations and functions are identified in Table 3-1.
$3-24$. Operation of the storage registers not located in the 8660B mainframe is detailed in the manuals for the plug-in sections in which they are physically located. Table 3-2 provides examples of programming the registers which may be programmed when the 8660 B mainframe is used.
$3-25$. In the remote mode, the temporary storage register is reset to zero each time information is transferred to a final storage register.

Table 3-1. Storage Register Addresses

Name of Register	Address $0=\text { High }, 1=\text { Low }$	Location	Function
Center Frequency	0000 (0)	Mainframe	To set Center Frequency
Step \uparrow	0001 (1)		To step center frequency up in any increment
Step \downarrow	0010 (2)	Mainframe DCU	To step center frequency down in any increment
Attenuator	0011 (3)	RF Section plug-in	Controls level of RF OUTPUT
AM-FM Function	0100 (4)	Modulation Section plug-in	Selects Modulation Function
AM-FM \%	0101 (5)	Modulation Section plug-in	Selects AM \% of Modulation or FM Deviation
FM CAL	0110 (6)	Modulation Section plug-in	Phase locks 20 MHz FM oscillator to the reference loop 20 MHz

Table 3-2. Model 8660B Programming Examples

EXAMPLE 1. Set $\mathbf{1 0 0 . 0 0 0 0 0 0 ~ M H z ~ C e n t e r ~ F r e q u e n c y ~}$		
(CF)		
0=High Input \quad 1=Low	Temporary Register	CF Register
Data $\quad \mathrm{D}_{1} 0001(1) \mathrm{D}_{2} 0000(0)$	0000000000	Last Input
Temporary Command	0100000000	Last Input
Address: $\mathrm{D}_{1} 1111(15) \mathrm{D}_{2} 0000(0)$	0100000000	Last Input
Transfer Command	0000000000	0100000000

Table 3-2. Model 8660 B Programming Examples (cont'd)

EXAMPLE 2. Set 107.654321 MHz Center Frequency (CF)		
$0=\text { High } \quad \text { Input } \quad 1=\text { Low }$	Temporary Register	CF Register
Data: $\quad D_{1} 0001$ (1) $\mathrm{D}_{2} 0010$ (2) Temporary Command Data: $\quad D_{1} 0011$ (3) $D_{2} 0100(4)$ Temporary Command Data: $\quad D_{1} 0101$ (5) $D_{2} 0110$ (6) Temporary Command Data: $\quad \mathrm{D}_{1} 0111$ (7) $\mathrm{D}_{2} 0000(0)$. Temporary Command Data: $\quad D_{1} 0001(1) D_{2} 0000(0)$ Temporary Command Address: $\mathrm{D}_{1} 1111$ (15) $\mathrm{D}_{2} 0000(0)$ Transfer Command	0000000000 2100000000 2100000000 4321000000 4321000000 6543210000 6543210000 0765432100 0765432100 0107654321 0107654321 0000000000	Last Input 0107654321
EXAMPLE 3. Set 120 dB Attenuation (RF SECTION) Below +13 dBm (1 volt)		
$0=\text { High } \quad \text { Input } \quad 1=\text { Low }$	Temporary Register	Atten Register
Data: $\quad D_{1} 0010$ (2) $D_{2} 0001$ (1) Temporary Command Address: $\mathrm{D}_{1} 1111$ (15) $\mathrm{D}_{2} 0011$ (3) Transfer Command	$\begin{aligned} & 0000000000 \\ & 1200000000 \\ & 1200000000 \\ & 0000000000 \end{aligned}$	Last Input Last Input Last Input 120
Note The attenuator is a three-digit register; only the three most significant digits are retained		

Table 3-2. Model 8660B Programming Examples (cont'd)

EXAMPLE 4. Set 7 dB Attenuation (RF SECTION) Below +13 dBm (1 volt)		
$\quad \mathbf{0 = \text { High Input }} \quad \mathbf{1 = \text { Low }}$ Data: $\quad D_{1} 0000(0) D_{2} 0111(7)$ Temporary Command Data: $\quad D_{1} 0000(0) D_{2} 0000(0)$ Temporary Command Address: $D_{1} 1111(15) D_{2} 0011(3)$ Transfer Command	Temporary Register 0000000000 7000000000 7000000000 0070000000 0070000000 0000000000	Atten Register Last Input 007
See note for Example 3		
EXAMPLE 5. Shut off Modulation (IMODULATION SECTION)		
$0=\text { High } \quad \text { Input } \quad \text { 1=Low }$	Temporary Register	Function Register
Address: $\mathrm{D}_{1} 1111$ (15) $\mathrm{D}_{2} 0100$ (4) Transfer Command	0000000000 0000000000	Last Input 00
NOTE: All digits are zero - no modulation		
EXAMPLE 6. Set 3\% AM Modulation, internal 1 kHz (MODULATION SECTION)		
$0=\text { High } \quad \text { Input } \quad 1=\text { Low }$	Temporary Register	AM-FM \% Register
Data: $\quad D_{1} 0011$ (3) $\mathrm{D}_{2} 0000(0)$ Temporary Command Address: $\mathrm{D}_{1} 1111$ (15) $\mathrm{D}_{2} 0101$ (5) Transfer Command Data $\quad D_{1} 0001$ (1) $\mathrm{D}_{2} 1000$ (8) Temporary Command Address: $\mathrm{D}_{1} 1111$ (15) $\mathrm{D}_{2} 0100$ (4) Transfer Command	0000000000 0300000000 0300000000 0000000000 0000000000 8100000000 8100000000 0000000000	Last Input Last Input Last Input 03 into \% Storage 81 into AM-FM Function Register Sets AM and 1 kHz
NOTE: See Table 3-3. for AM-FM Function Register Codes		

Table 3-2. Model 8660B Programming Examples (cont'd)

EXAMPLE 7. Set 10 MHz STEP \uparrow		
$0=\text { High } \quad \text { Input } 1=\text { Low }$	Temporary Register	INCR Register
Data: $\quad \mathrm{D}_{1} 0000(0) \mathrm{D}_{2} 0001$ (1) Temporary Command Data: $\mathrm{D}_{1} 0000(0) \mathrm{D}_{2} 0000(0)$ Temporary Command Address: $\mathrm{D}_{1} 1111$ (15) $\mathrm{D}_{2} 0001$ (1) Transfer Command	0000000000 1000000000 1000000000 0010000000 0010000000 0000000000	Last Input 0010000000

Table 3-3. AM - FM Function Register Coding

0=High	DIGIT 2 $\left(D_{2}\right)$	1=Low	0=High
AM	$1000(8)$	EXT. AC	1=Low
FM X .1	$0100(4)$	EXT. DC	$1000(8)$
FM X 1	$0010(2)$	INT. 400 Hz	$0100(4)$
FM X 10	$0001(1)$	INT. 1 kHz	$0010(2)$
OFF	$0000(0)$		$0001(1)$

Table 3-4. Programming Connections to J3

J3 Pin No.	To A3XA5 Pin No.	Signal	Other
1			To J3 pin 18
3	2	Error	
5	5	LCL-RMT	
9	11	Command	
13	15	Digit 1-8	
14	16	Digit 1-4	
15	17	Digit 1-2	
16	18	Digit 1-1	
17	A	Flag (Busy)	
24	J	Reset	
28	S	Digit 2-8	
29	T	Digit 2-4	
30	U	Digit 2-2	
31	Digit 2-1	Ground	
36	J3 pins not listed are also wired to A3XA5. See the rear interface board schematic		
diagram for wiring information.			

3-26. OPERATOR'S CHECKS

3-27. During final checkout at the factory the Model 8660B Synthesized Signal Generator mainframe is adjusted for proper operation. No adjustment should be required when the instrument is received. The operator's checks listed in Table 3-5 are based on the assumption that properly operating Model 86601A RF Section and Model 86632A AM-FM Modulation Section plug-ins sections are in place. If other plug-in sections are used, refer to the manuals for the specific plug-ins for operating parameters.

3-28. The steps listed in Table $3-5$ need not be followed in the sequence listed. Their purpose is to aid the operator in familiarizing himself with the instrument, and to provide assurance that all functions of the instrument are operating properly.

NOTE

Numbers shown in the "Result" column of Table 3-5 are those which should be displayed on the CENTER FREQUENCY readout.

Table 3-5. Operator's Checks

Step	Operation	Result
1	Initial Turn-on	
1-a	Set the rear panel line select switch in the power line module to be compatible with the available line power	
1-b	Connect the instrument to the power outlet; use ground pin adapter for electrical systems having no ground line	
NOTE		
The instrument should remain connected to the power source in the STBY (standby) mode when not in use. This will maintain constant temperature in the crystal oven and eliminate the need for a warm-up period.		
1-c	Place the LINE STBY/ON switch in the on position	Cooling fan starts CF 1.000000 MHz
2	Keyboard Register and Readout Checks	
2-a	Hold in KYBD pushbutton and enter 1.23456789 Note that readout input steps from right to left	Units lights (GHz , $\mathrm{MHz}, \mathrm{kHz}, \mathrm{Hz}$) are off. 1.23456789
2-b	With KYBD pushbutton held in: Press MHz key Press kHz key Press Hz key	$\begin{aligned} & 1.234567 \mathrm{MHz} \\ & 1.234 \mathrm{kHz} \\ & 1 \mathrm{~Hz} \end{aligned}$
2-c	Release KYBD pushbutton	1.000000 MHz
2-d	Press KYBD pushbutton	1 Hz
2-e	With KYBD pushbutton held in: Press kHz key Press MHz key Press GHz key Press CLEAR KYBD key	1.000 kHz 1.000000 MHz 1.000000000 GHz Readout blank
3	\dagger Step register and OUT OF RNG annunciator check	
3-a	Enter $109.000000 \cdot \mathrm{MHz}$ CF on the keyboard Enter 111111 Hz STEP \dagger on the keyboard	$\begin{aligned} & 109.000000 \mathrm{MHz} \\ & 109.111111 \mathrm{MHz} \end{aligned}$

Table 3-5. Operator's Checks (cont'd)

Step	Operation	Result
3-b	Press the KYBD pushbutton	111111 Hz
	Release the KYBD pushbutton	109.111111 MHz
$3-\mathrm{c}$	Press the STEP \dagger key until the readout shows	109.999999 MHz
	Note that readout has increased in steps of 111111 Hz	
3-c	Press the STEP \uparrow key one more time.	109.999999 MHz
		OUT OF RNG light flashes once
3-e	Place the MANUAL MODE switch in the STEP position and	readout decreases in
	turn the TUNING control counter-clockwise	111111 Hz steps
3-f	Enter 10 kHz CF on the keyboard	10.000 kHz
	Enter 1 Hz STEP \dagger on keyboard	10.001 Hz
	Press STEP pushbutton	1 Hz
	Press STEP \downarrow key twice	9.999 kHz
	NOTE: With the Model 86601A RF Section the specified lower frequency limit is 10 kHz	OUT OF RNG light stays on
	NOTE	
The Model 86601A RF Section lower frequency limit is specified at 10 kHz . However, the output frequency is accurate down to 1 Hz . The output power level is typically accurate down to 3 kHz or less.		
3-g	Enter 3 kHz CF on the keyboard	3.000 kHz
	Enter $100 \mathrm{~Hz} \mathrm{STEP} \downarrow$	2.900 kHz
	Repeatedly press the STEP \downarrow key. Note that the center frequency readout decreases in 100 Hz steps. The rf	OUT OF RNG light
	frequency readout decreases in 100 Hz steps. The rf output level will typically start to drop below 2 kHz .	
4	MANUAL MODE - MANUAL TUNING Check	
4-a	Set the SWEEP MODE switch to OFF and enter 0 MHz CF	. 000000 MHz
4-b	Set the MANUAL MODE switch to COȦRSE and rotate the	
	TUNING control clockwise until the readout indicates	109.000000 MHz
	Note that the readout steps in 1 MHz increments	
4-c	Set the MANUAL MODE switch to MED and rotate the	
	TUNING control clockwise until the readout indicates	109.999000 MHz
	Note that the readout steps in 1 kHz increments	
4-d	Set the MANUAL MODE switch to FINE and rotate the	
	TUNING control clockwise until the readout indicates	109.999999 MHz
	Note that the readout steps in 1 Hz increments	
	NOTE	
In the COARSE, MED and FINE manual modes the OUT OF RNG light flashes on when the upper frequency limit is passed. The system rejects overrange frequencies and the center frequency register retains the last valid entry.		

Table 3-5. Operator's Checks (cont'd)

Step	Operation	Result
5	Sweep Mode Checks	
	NOTE	
Proper operation of the instrument in the sweep mode is best verified with a spectrum analyzer as described in step 5-c. However, operation of the sweep function can be verified by front panel indications as described in steps 5 -a and 5 -b.		
5-a	Set CF to 5 kHz and SWP WIDTH to 10 kHz . Place the SWEEP MODE switch in the AUTO position and the RATE switch in the SLO position.	SWEEP and OUT OF RNG lights on. RF output meter level drops every 10 seconds
5-b	Set CF to 10 kHz . Other functions as in step 5-a	SWEEP light remains lit. OUT OF RNG light alternates, 5 seconds on, 5 off
5-c	Connect the rf output to the RF INPUT of the spectrum analyzer. Enter 10 MHz CF and 10 MHz SWP WIDTH and SWEEP MODE to AUTO. Position the RATE switch to MED and adjust the spectrum analyzer for a clear display. Enter 5 MHz STEP and step the frequency across the rf range.	Readout increases 5 MHz steps. Sweep continues to be 5 MHz on each side of the center frequency
6	Manual Sweep Check	
6-a	Enter 50 MHz CF and 10 MHz SWP WIDTH. Place the SWEEP MODE switch in the MAN position. Rotate the MANUAL SWEEP control through its range	Center frequency is tuneable from 45 to 55 MHz
7	Single Sweep Check	
7-a	Enter 50 MHz CF and 20 MHz SWP WIDTH and place the SWEEP MODE switch in the SINGLE position. Press SWP WIDTH pushbutton. Connect the rf output to the RF INPUT of the spectrum analyzer and tune the analyzer to display the 50 MHz signal. Press the SINGLE pushbutton.	50.000000 MHz 20.000000 MHz Spectrum analyzer display is swept once from 40 to 60 MHz

NOTE

The Operator's Checks specified in the manuals for the plug-in sections in use should also be performed.

3-29. If remote programming is to be used the examples shown in Table 3-2 as well as checks specified in manuals for the plug-in sections should be performed.

3-30. Table $3-4$ provides information relative to connections to the rear panel remote control connector.

3-31. OPERATOR'S MAINTENANCE

3-32. Operator's maintenance of the Model 8660B Synthesized Signal Generator mainframe is limited to fuse replacement and periodic cleaning of the air filter.

SECTION IV
 PERFORMANCE TESTS

4-1. INTRODUCTION

4-2. This section provides instructions for performance testing the Model 8660B Synthesized Signal Generator.

4-3. PURPOSE

4-4. The performance test procedures are used to check instrument performance for incoming inspection and periodic evaluation. The tests are designed to verify published specifications for the instrument. Each test applies directly to a listed specification (see Table 1-1).

4-5. Each performance test procedure begins by quoting the specification which it verifies. Next, a description of the test and any special instructions are listed.

4-6. Test Equipment Required. The test equipment required for performance testing are listed in Table 1-3 and in the individual tests. Test instruments other than those listed may be used providing their performance equals or exceeds the specifications listed in Table 1-3.

4-7. Front Panel Checks and Adjustments. Refer to paragraph 3-26. Operator's Checks.

4-8. PERFORMANCE TESTS

4-9. INTERNAL CRYSTAL OSCILLATOR AGING RATE

SPECIFICATION: 10 MHz quartz oscillaotr. Aging rate less than ± 3 parts in 10^{8} per day (± 3 parts in 10^{9} per day with option 001) after 72 hour warmup.

DESCRIPTION: This test verifies the reference oscillator againg rate by comparing it to the National Bureau of Standards signal from WWVB.

Figure 4-1. Crystal Oscillator Aging Rate Test Setup
RECOMMENDED TEST EQUIPMENT:
VLF Comparator
HP 117A
PROCEDURE:

1. Remove the Model 8660B top cover after the instrument has been connected to the ac line for 72 hours.

PERFORMANCE TESTS

4-9. INTERNAL CRYSTAL OSCILLATOR AGING RATE (cont'd)
2. Connect a cable from the 100 kHz output of the A 4 A 1 reference divider assembly to the VLF Comparator 100 kHz input.
3. Refer to Section III of the VLF Comparator Operating and Service Manual for Comparator operating instructions.
4. Aging rate is checked by noting the average offset between the two signals at two times several hours apart and dividing the offset difference by the hours between observations. The hourly offset is then converted to aging rate per day.

Example:
First reading +3 parts in 10^{10} at 10:00 AM
Second Reading +6 parts in 10^{11} at 4:00 PM
The difference is 2.4 parts in 10^{10} in 6 hours
$\frac{2.4}{6} \times 10^{10}=0.4$ parts in 10^{10} per hour

Frequency change is $0.96 \mathrm{X} 10^{9}$ per day.

4-10. INPUT SENSITIVITY FOR EXTERNAL REFERENCE

SPECIFICATION: 0.2 to 2 volts RMS at $1,2,2.5,5$ and 10 MHz .
DESCRIPTION: This test verifies that the Model 8660 B will operate with specified reference inputs.

Figure 4-2. Input Reference Sensitivity Test
RECOMMENDED TEST EQUIPMENT:
Electronic Counter
HP 5245M
RMS Voltmeter HP 411A
Synthesizer . HP 3320B

PERFORMANCE TESTS

4-10. INPUT SENSITIVITY FOR EXTERNAL REFERENCE (cont'd)

PROCEDURE:

1. Connect the Synthesizer to the Model 8660B REFERENCE INPUT (J1) and set the SELECTOR switch S1 to EXT.
2. Set the Synthesizer controls to provide an output of 1 MHz at .2 Vrms as indicated on the rms voltmeter.
3. Connect the Counter to the output of the RF Section in use and enter a 5 MHz center frequency. The Counter readout should be about 5 MHz . (Actual frequency will be determined by stability and settability of the Synthesizer used.)
4. Readjust the Synthesizer output to 2 Vrms. The counter readout should remain at about 5 MHz .
5. Repeat steps 2 through 4 with the Synthesizer set to $2,2.5,5$ and 10 MHz .

4-11. REFERENCE OUTPUT CHECKS

SPECIFICATION: About 1 Vrms in internal. When an external reference is used the output reference level will be approximately the same as the input from the external reference.

DESCRIPTION: This test verifies proper operation of the reference amplifier and relay switching circuits.

Figure 4-3. Reference Output Test Setup

RECOMMENDED TEST EQUIPMENT:

RMS Voltmeter .
Synthesizer 411A
HP

PROCEDURE:

1. Connect the RMS Voltmeter to the REFERENCE OUTPUT (J2) and the Synthesizer to the REFERENCE INPUT (J1).
2. With the SELECTOR switch (S1) set in the INT position the RMS Voltmeter should display a signal about 1 volt in amplitude.

PERFORMANCE TESTS

4-11. REFERENCE OUTPUT CHECK (cont'd)

3. Set the SELECTOR switch to EXT and the Synthesizer for a 1 MHz .0 .2 v rms output as indicated on the RMS Voltmeter (Voltmeter connected to the Synthesizer output with a BNC Tee).
4. Connect the RMS Voltmeter to the REFERENCE OUTPUT (J2) Voltmeter should indicate about 0.2 v rms.
5. Reset the Synthesizer for a 1 v output as indicated on the RMS Voltmeter (Voltmeter connected to the Synthesizer output with a BNC Tee).
6. Connect the RMS Voltmeter to the REFERENCE OUTPUT (J2) Voltmeter should indicate about 1 vrms .
7. Repeat steps 3 through 6 at 2, 2.5,5 and 10 MHz .

4-12. SWEEP OUTPUT

SPECIFICATION: 0 to +5 V stepped ramp output.
DESCRIPTION: This test verifies that the ramp at the OUTPUT $(0-5 \mathrm{~V})$ sweep ramp output is from 0 to +5 V .

Figure 4-4. Sweep Output Test Setup
RECOMMENDED TEST EQUIPMENT:
Oscilloscope (with 10:1 divider probe) HP 180A/1801A/1820A

PROCEDURE:

1. Connect the oscilloscope vertical input to the OUTPUT ($0-5 \mathrm{~V}$) jack on the front panel of the Model 8660B.
2. Set the oscilloscope vertical sensitivity to 2V/Div and the sweep speed to $20 \mathrm{mSec} / \mathrm{Div}$.
3. Enter a center frequency of 5 MHz in the Model 8660B keyboard, set SWEEP. MODE to AUTO and SWEEP MODE RATE switch to FAST.
4. The oscilloscope should display a sweep ramp from 0 to +5 V in 100 milliseconds.

SECTION V ADJUSTMENTS

5-1. INTRODUCTION

5-2. This section describes adjustments and checks required to return the Model 8660 B to peak operating capabilities when repairs have been made. Included in this section are test setups and procedures and a test table (Table 5-10) for recording initial data for future reference. Adjustment locations are identified pictorially on Section VIII foldout Service Sheets referred to in the individual tests.

5-3. Except for the power supply test procedures, which should be performed before repairs are made to any part of the instrument, the test procedures are arranged in the same sequence as the Service Sheets to which they refer.

5-4. Data taken while following the adjustment procedures should be recorded in Table 5-10 for comparison purposes when repairs are again required.
$5-5$. Generally, it will not be necessary to adjust any of the phase lock loops except the one in which the component failure occurred. An exception to this will be when adjustment to any phase lock loop has been attempted while the reference section is not functioning properly.

5-6. RECOMMENDED TEST EQUIPMENT

5-7. Each adjustment procedure in this section contains a list of test equipment and accessories required to perform the procedure. Each test setup identifies test equipment and accessories by callouts.
$5-8$. Minimum specifications for test equipment used in the adjustment procedures are detailed in Table 1-3. Because the Model 8660B is an extremely accurate instrument, minimum specifications in Table 1-3 are particularly important in performing these adjustment procedures.

5-9. HP 11672A SERVICE KIT

5-10. The HP 11672A Service Kit is an accessory item available from Hewlett-Packard for use in maintaining the Model 8660B Synthesized Signal Generator.

5-11. Table 1-3 contains a detailed description of the Service Kit. Any item in the kit may be ordered separately.

NOTES

a. An RF Sectionoutput plug-in must be in place during the tests.
b. If a Modulator Section plug-in is not available, the Model 86631A/B Auxiliary unit must be in place.
c. All tests in which a counter is used should be made with the Model 8660 B and the counter referenced to the same source. If the Hewlett-Packard Model 5245 M Electronic counter is used, the Model 8660B internal reference may be used as the source.

5-12. CHECKS AND ADJUSTMENTS

ADJUSTMENTS

5-13. POWER SUPPLY CHECKS AND ADJUSTMENTS

REFERENCE: Service Sheet 24.

DESCRIPTION: The power supplies in the Model 8660B provide regulated outputs of +20 volts, +5.25 volts, -10 volts and -40 volts. Unregulated supplies provide +30 volts, +21 volts, +4 volts and -21 volts. These checks verify proper operation of the power supplies.

```
RECOMMENDED TEST EQUIPMENT:
Digital Voltmeter
AC Microvoltmeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HP 3410A
Variable Voltage Transformer . . . . . . . . . . . . . . . . . General Radio W5MT3A
```


PROCEDURE:

1. Remove the top and bottom covers of the Model 8660 B and connect the instrument to the ac line through the variable voltage transformer.
2. Use the digital voltmeter and the ac microvoltmeter to check voltages, tolerances and ripple at A20 test points specified in Table 5-1. Adjust the variable voltage transformer to check tolerance of the power supplies at $\pm 10 \%$ line voltage variations.

Figure 5-1. Power Supply Test Setup

ADJUSTMENTS

5-13. POWER SUPPLY CHECK AND ADJUSTMENTS (cont'd)

Table 5-1. Unregulated Power Supplies

Test Location	Voltage at normal line	Tolerance high to low line (from normal line)	rms Ripple 120 Hz (at normal line)
+ side of A20 C7	Typical +4.4 V	Specified $\pm .6 \mathrm{~V}$	Specified 3 mV rms
+ side of A20C4	Actual	Actual	Actual
	Typical +20.5 V	Specified $\pm 2.4 \mathrm{~V}$	Specified 300 mV rms
-side of A20C5	Actual	Actual	Actual
	Typical -20.5 V	Specified $\pm 2.4 \mathrm{~V}$	Specified 300 mV rms
+side of A20C1	Actual	Actual	Actual
	Typical +33 V	Specified $\pm 4 \mathrm{~V}$	Specified 600 mV rms
	Actual	Actual	Actual

3. Use the digital voltmeter and the ac microvoltmeter to check for voltages, tolerances and 120 Hz ripple at A5 test points specified in Table 5-2. Adjust the de levels shown in Table 5-2 with controls specified in Table 5-2, then adjust the variable voltage transformer to check tolerance of the power supplies at $\pm 10 \%$ of the normal line voltage.

NOTE

If voltages are out of tolerance and cannot be brought into tolerance by adjustment, or if ripple is excessive, refer to Service Sheet 24 and repair as required. The power supply circuit boards are also available on an exchange basis. Troubleshooting to the board or assembly level may be accomplished with the aid of the troubleshooting tree for the power supplies.

Table 5-2. Regulated Power Supplies

Test Point	Adjust Control	Voltage at Normal Line Specified	Tolerance High to Low Line Specified	$\begin{gathered} \text { rms Ripple } \\ 120 \mathrm{~Hz} \\ \text { (Normal Line) } \end{gathered}$
A5TP4	A5R24	+5.25 V	$\pm 20 \mathrm{mV}$	$125 \mu \mathrm{~V}$
	+5 ADJ	Actual	Actual	Actual
A5TP2	A5R26	$-10.0 \mathrm{~V}$	$\pm 5 \mathrm{mV}$	$50 \mu \mathrm{~V}$
	-10 ADJ	Actual	Actual	Actual
A5TP3	A5R21	+20.0 V	$\pm \mathrm{mV}$	$50 \mu \mathrm{~V}$
	+20 ADJ	Actual	Actual	Actual
A5TP1	A5R28	-40.0 V	$\pm 20 \mathrm{mV}$	$50 \mu \mathrm{~V}$
	-40 ADJ	Actual	Actual	Actual

ADJUSTMENTS

5-14. REFERENCE SECTION, CHECKS AND ADJUSTMENTS

REFERENCE: Service Sheets 2 and 3.
DESCRIPTION: The reference section contains a voltage controlled master oscillator from which all rf signals generated in the Model 8660B mainframe are derived. The master oscillator is phase locked to an internal temperature controlled crystal oscillator or to an external standard. The reference section provides outputs of $500 \mathrm{MHz}, 100 \mathrm{MHz}, 20 \mathrm{MHz}, 10 \mathrm{MHz}, 2 \mathrm{MHz}, 400 \mathrm{kHz}$ and 100 kHz . These checks verify proper operation of the circuits within the reference section.

RECOMMENDED TEST EQUIPMENT:
VLF Comparator . HP 117A
Oscilloscope (with 10:1 divider probes) HP 180A/1801A/1820A
Spectrum Analyzer . HP 140/8554L/8552
Electronic Counter . HP 5245M/5253B

PROCEDURE:

1. Internal Reference Accuracy Adjustment (See Figure 5-2) (Allow adequate warm up time).
a. Remove the Model 8660 B top cover and connect the 100 kHz output from the A4A1 assembly to the 100 kHz input of the VLF Comparator.
b. Remove the left side panel from the Model 8660B.
c. Remove the cap screw to provide access to the adjustment point of the A21 Crystal oscillator assembly.
d. Refer to Section III of the VLF Comparator Operating and Service manual for operating instructions and align the Model 8660B A21 assembly.

Figure 5-2. Reference Accuracy Adjustment

NOTE

If the VLF Comparator is not available, and an accurate house standard is, the reference oscillator may be adjusted by using an oscilloscope for comparison of the two signals.
2. Alternate Reference Accuracy Adjustment (See Figure 5-3).
a. Use the house standard to trigger the oscilloscope and connect the reference output from the Model 8660B rear panel reference output to the oscilloscope vertical input.

ADJUSTMENTS

5-14. REFERENCE SECTION CHECKS AND ADJUSTMENTS (cont'd)

b. Observe the 10 MHz sine wave on the oscilloscope and adjust the A21 oscillator until the oscilloscope display stops drifting.
c. Set the oscilloscope to sweep at $.1 \mu \mathrm{Sec} /$ Division and the sweep magnifier to X10. If drift is observed readjust the A21 oscillator.

NOTE

When the oscilloscope display drift is less than 1 division in 10 seconds the Model 8660B reference is set within 1 part in 10^{9} of the house standard.

Figure 5-3. Alternate Reference Accuracy Adjustment
3. $\mathbf{1 0 0} \mathbf{M H z}$ Output Adjustment
a. Connect the electronic counter to the 100 MHz output on the A4A4 assembly. (See Figure 5-4).
b. If the internal reference is being used, place the rear panel INT/EXT switch in the EXT position to open the 100 MHz phase lock loop. (If an external reference is being used, disconnect the source).
c. Allow 15 minutes warmup time for the oscillator to stabilize and adjust A4A4C2 for a counter readout of $100.000 \mathrm{MHz} \pm 20 \mathrm{kHz}$. Disconnect the electronic counter.

Figure 5-4. 100 MHz Adjustment
d. Connect the Spectrum Analyzer RF INPUT to the 100 MHz output of the A4A4 assembly and tune the Spectrum Analyzer CENTER FREQUENCY to 100 MHz . The 100 MHz signal should be $>+10 \mathrm{dBm}$. (See Figure 5-5).

ADJUSTMENTS

5-14. REFERENCE SECTION CHECKS AND ADJUSTMENTS (cont'd)

Figure 5-5. RF Level Checks
e. Disconnect the Spectrum Analyzer and enable the 100 MHz phase lock loop by returning the INT/EXT switch to INT or by reconnecting the external standard.

4. 500 MHz Output Adjustment

a. Connect the Spectrum Analyzer RF INPUT to the 500 MHz output connector on the A4A4 assembly and tune the analyzer to 500 MHz . Set the analyzer scan width to 50 MHz per division and other analyzer controls for a clear display. (See Figure 5-5).
b. Adjust A4A4C17, A4A4C23 and A4A4C31 for a peak amplitude of the 500 MHz signal. The 500 MHz signal amplitude should be $>+3 \mathrm{dBm}$. The 400 MHz signal is typically $<-10 \mathrm{dBm}$. The 600 MHz signal is typically $<-20 \mathrm{dBm}$. Disconnect the analyzer.

$$
\begin{aligned}
& 500 \mathrm{MHz} \mathrm{dBm} \\
& 400 \mathrm{MHz} \mathrm{dBm} \\
& 600 \mathrm{MHz} \mathrm{dBm}
\end{aligned}
$$

5. 20 MHz Output Check

a. Connect the Spectrum Analyzer RF INPUT to the 20 MHz output on the A4A4 assembly and tune the analyzer to 20 MHz . The 20 MHz signal should be $>-6 \mathrm{dBm}$ and $<-2 \mathrm{dBm}$. Disconnect the analyzer.

$$
20 \mathrm{MHz} \mathrm{dBm}
$$

6. Reference Section Outputs Not Previously Checked.

a. Check the outputs listed in Table 5-3 for the levels shown (See Figure 5-6).

Figure 5-6. Oscilloscope Level Checks

5-14. REFERENCE SECTION CHECKS AND ADJUSTMENTS (cont'd)

Table 5-3. Reference Section Output Levels

Test Point	Frequency	Specified Level	Actual Level
A4A4JJ	10 MHz	$>1 \mathrm{vp} / \mathrm{p}$	-
A4A1J1	2 MHz	$>2.2 \mathrm{v} \mathrm{p} / \mathrm{p}$	-
A4A1J3	400 kHz	$>2.2 \mathrm{vp} / \mathrm{p}<5.0 \mathrm{v}$	-
A4A1J2	100 kHz	$>2.2 \mathrm{v} \mathrm{p} / \mathrm{p}<5.0 \mathrm{v}$	-
A4A1J4	100 kHz	$>2.2 \mathrm{vp} / \mathrm{p}<5.0 \mathrm{v}$	-

5-15. HIGH FREQUENCY SECTION CHECKS AND ADJUSTMENTS

REFERENCE: Service Sheets 4,5 and 6 .
DESCRIPTION: The High Frequency Section contains a voltage controlled oscillator which provides eleven discrete output frequencies from 350 to 450 MHz in 10 MHz steps. The output of the voltage controlled oscillator is phase locked to a 10 MHz reference derived from the master oscillator in the reference section. The output from the HF section is used in the RF section plug-in or in the internal extension plug-in module. These checks verify proper operation of the High Frequency Section circuits.

RECOMMENDED TEST EQUIPMENT:

Electronic Counter . HP 5245M/5253B
Digital Voltmeter . HP 3440A/3443A
Pulse Generator HP 222A
Spectrum Analyzer . HP 140/8554L/8552/8553
Oscilloscope (with 10:1 divider probes) HP 180A/1801A/1820A
Signal Generator/Sweeper . HP 8601A

PROCEDURE:

Preliminary: Remove the covers from the A4A7 phase detector assembly and the A4A6 pretune assembly. Tighten the screws holding the A4A5 voltage controlled oscillator assembly cover.

1. Phase Detector Response Adjustments.
a. Disconnect the coaxial cable from VCO INPUT A4A7J1. Connect the PULSE OUTPUT of the pulse generator to A4A7J1. Set the pulse generator for 100 kHz pulse rate, $.035 \mu \mathrm{sec}$ pulse width, .5 volt amplitude and + polarity.
b. Connect the Spectrum Analyzer RF INPUT to the phase error output of the A4A7 assembly (white wire going from the A4A7 assembly to the A4A6 assembly). Set the analyzer controls as follows:

CENTER FREQUENCY . 5 MHz
SCAN WIDTH . 1 MHz/Div
SCAN TIME . 1 Msec/Div
Gain and attenuation . as required

ADJUSTMENTS

5-15. HIGH FREQUENCY SECTION CHECKS AND ADJUSTMENTS (cont'd)

c. Adjust EFFiciency control A4A7R18 for a flat response to approximately 5 MHz with very slight peaking ($1 \mathrm{~dB} \pm 1 \mathrm{~dB}$). See the waveform in Figure 5-7 for typical response.
d. Disconnect the pulse generator and the Spectrum Analyzer.

2. Balance Adjustment.

a. Connect the digital voltmeter to the phase error output of the A4A7 assembly (white wire going from the A4A7 assembly to the A4A6 assembly).
b. Adjust the BALance control (A4A7R22) for a reading of 0 volts $\pm .05$ volt. Disconnect the digital voltmeter.

Figure 5-7. Phase Detector Response Adjustment
3. Voltage controlled oscillator adjustment. (See Figure 5-8).
a. With the output cable of the A4A5 assembly disconnected from the VCO OUTPUT, connect the digital voltmeter to the A4A6 FREQuency control output (white lead).
b. Adjust the A4A6 " 0 " control (A4A6R13) for a digital voltmeter reading of -34 volts (voltage should be adjustable from about -33 to -35 volts).
c. Connect the electronic counter to the A4A5 voltage controlled oscillator output, A4A5J1. Remove the cover from the A4A5 assembly.

5-15. HIGH FREQUENCY SECTION CHECKS AND ADJUSTMENTS (cont'd)

Figure 5-8. Voltage Controlled Oscillator Adjustments
d. Replace the A4A5 cover and hold firmly against the casting. The counter should display 450 $\mathrm{MHz} \pm 1 \mathrm{MHz}$. If the correct reading is obtained proceed to step f. If the frequency reading is not correct proceed to step e.
e. Adjust capacitor C 3 (on A4A5) for a $450 \mathrm{MHz} \pm 1 \mathrm{MHz}$ counter reading. Replace the A4A5 cover and hold firmly in place to take this reading.
f. Disconnect the electronic counter and reconnect the voltage controlled oscillator output to the phase detector. Fasten the A4A5 cover in place.
g. Connect the digital voltmeter to the lead labeled \emptyset from the A4A7 assembly to the A4A6 assembly. Connect the electronic counter to A4A5J2 ($350-450 \mathrm{MHz}$ OUTPUT).
h. Set the center frequencies as shown in Table 5-4 and set the digital to analog controls on the A4A6 assembly for 0 ± 0.1 volt for each frequency listed. Note that the counter displays the output frequency listed for each center frequency setting.

ADJUSTMENTS

5-15. HIGH FREQUENCY SECTION CHECKS AND ADJUSTMENTS (cont'd)

Table 5-4. Pretune Adjustments

Center Frequency	Adjust Control	Counter Readout
0 MHz	A4A6R13 "0"	450.000000 MHz
10 MHz	A4A6R60 " 1 "	440.000000 MHz
20 MHz	A4A6R56 " 2 "	430.000000 MHz
30 MHz	A4A6R52 " 3 "	420.000000 MHz
40 MHz	A4A6R48 " 4 "	410.000000 MHz
50 MHz	A4A6R40 " 5 "	400.000000 MHz
60 MHz	A4A6R40 "6"	390.000000 MHz
70 MHz	A4A6R35 "7"	380.000000 MHz
80 MHz	A4A6R28 " 8 "	370.000000 MHz
90 MHz	A4A6R22 "9"	360.000000 MHz
100 MHz	A4A6R15 " 10 "	350.000000 MHz

i. If any of the controls listed in Table 5-4 cannot be adjusted to 0 volts, adjust A4A6R20 "profile" to obtain additional range. Repeat all pretune adjustments until satisfactory results are obtained. Disconnect the digital voltmeter and the electronic counter.
4. Loop Gain Adjustment. (See Figure 5-9).
a. With the center frequency set to 0 MHz connect the Spectrum Analyzer RF INPUT to A4A5J2 ($350-450 \mathrm{MHz}$ OUTPUT) and set the analyzer controls as follows:

CENTER FREQUENCY . 450 MHz
BANDWIDTH . 30 kHz
SCAN WIDTH . 5 MHz/Div
SCAN TIME . 5 Msec/Div
b. Disconnect the reference input to A4A7J2 and reconnect it together with the rf output of the Signal Generator/Sweeper.
c. Set the Signal Generator/Sweeper to 11.5 MHz CW at -35 dBm and symmetrical sweep width to 3 MHz . The analyzer display should be approximately as shown in the typical waveform shown in Figure 5-9. Adjust the A4A6 GAIN control (A4A6R2) for the response shown.
d. Disconnect the Analyzer and the Generator/Sweeper. Reconnect the reference signal to A4A7J2.

5-15. HIGH FREQUENCY SECTION CHECKS AND ADJUSTMENTS (cont‘d)

Figure 5-9. Loop Gain Adjustment
5. 10 MHz Trap Adjustment. (See Figure 5-10).
a. Disconnect the coaxial cable from A4A5J1.
b. Disconnect the 10 MHz reference signal from A4A7J2 and reconnect it using a TEE connector. Connect the 10 MHz reference signal from the other TEE port to the \emptyset input of the A4A6 pretuning assembly (white wire from the A4A7 assembly).
c. Connect the Spectrum Analyzer RF INPUT to the A4A6 FREQuency control output (white-black-violet wire). Set the analyzer controls as follows:

d. Adjust A 4 A 6 C 5 for minimum amplitude of the 10 MHz signal.
e. Remove the input to the \emptyset input from A4A6 and the TEE connector. Reconnect the reference signal to A4A5J1 and disconnect the Spectrum Analyzer.
f. Replace all High Frequency Section covers.

ADJUSTMENTS

5-15. HIGH FREQUENCY SECTION CHECKS AND ADJUSTMENTS (cont'd)

Figure 5-10. 10 MHz Trap Adjustment
6. Output Frequency and Amplitude Check. (See Figure 5-11).
a. Connect the Spectrum Analyzer RF INPUT to A4A5J2. Set the analyzer controls as required to view the 450 MHz signal. (Center frequency 0 MHz). The output should be +13 dBm to +15 dBm .
dBm \qquad
b. Change center frequency in 10 MHz steps from 0 MHz to 100 MHz . The frequency should decrease in 10 MHz steps (amplitude remains at +13 dBm minimum).

440 MHz	dBm	430 MHz	dBm	420 MHz	dBm
410 MHz	dBm	400 MHz	dBm	390 MHz	dBm
380 MHz	dBm	370 MHz	dBm	360 MHz	dBm
350 MHz	dBm				

Figure 5-11. Output Amplitude Check

ADJUSTMENTS

5-16. N1 PHASE LOCK LOOP CHECKS AND ADJUSTMENTS

REFERENCE: Service Sheets 7 and 8.

DESCRIPTION: The N1 phase lock loop produces digitally controlled rf signals from 19.8 to 29.7 MHz in 100 kHz steps. The output frequency is selected by 100 kHz and 1 MHz steps. These checks verify proper operation of the loop circuits.

Figure 5-12. N1 Loop Test Setup

RECOMMENDED TEST EQUIPMENT:

Digital Voltmeter . HP 3440A/3443A
Electronic Counter . HP 5245M/5253B
PROCEDURE: (See Figure 5-12).

1. Enter 0 MHz center frequency and ground motherboard test point A2TP16 with one of the jumper plugs provided. Connect the digital voltmeter to A2TP18.
2. Adjust A17R31 or A17R28 for a voltmeter reading of -30 volts and disconnect the digital voltmeter.
3. Connect the electronic counter to the N 1 oscillator output on the A2 mother board and adjust A 17 C 17 for a counter reading as close as possible to 29.7 MHz (must be within $\pm 200 \mathrm{kHz}$).
4. Enter 500 kHz center frequency and adjust A17R28 or A17R31 for a counter reading of 29.2 MHz.
5. Enter 9.5 MHz center frequency and record the counter readout.

MHz \qquad
6. Determine the frequency difference between the readout for step 5 and 20.2 MHz and record.

MHz \qquad
7. Enter 500 kHz center frequency.
a. If the reading in step 5 was higher than 20.2 MHz adjust A17R28 for a counter readout of 29.2 MHz plus the difference frequency recorded in step 6 .

5-16. N1 PHASE LOCK LOOP CHECKS AND ADJUSTMENTS (cont'd)

b. If the reading in step 5 was lower than 20.2 MHz adjust A17R28 for a counter readout of 29.2 MHz minus the difference frequency recorded in step 6.
c. Adjust A17R31 for an output frequency readout of 29.2 MHz .
8. Repeat steps 5 through 7 until the counter readout is $29.2 \mathrm{MHz} \pm 20 \mathrm{kHz}$ for a 500 kHz center frequency and $20.2 \mathrm{MHz} \pm 20 \mathrm{kHz}$ for a 9.5 MHz center frequency.
9. Remove the ground jumper from A2TP16.
10. Disconnect the 400 kHz reference signal by disconnecting the cable from A4A1J3 and connect the digital voltmeter to A2TP17. Adjust A16R38 for a digital voltmeter readout of $0 \mathrm{v} \pm 10 \mathrm{mV}$. Reconnect the 400 kHz reference signal.
11. Enter center frequencies shown in Table 5-5. The counter readings should be as shown in the table.

Table 5-5. N1 Loop Output Frequency Checks

Center Frequency	Counter Readout
0	29.700000 MHz
1.1 MHz	28.600000 MHz
2.2 MHz	27.500000 MHz
3.3 MHz	26.400000 MHz
4.4 MHz	25.300000 MHz
5.5 MHz	24.200000 MHz
6.6 MHz	23.100000 MHz
7.7 MHz	22.000000 MHz
8.8 MHz	20.900000 MHz
9.9 MHz	19.800000 MHz

ADJUSTMENTS

5-17. N2 PHASE LOCK LOOP CHECKS AND ADJUSTMENTS

NOTE

Option 004 instruments use a different N 2 programmable divider designated as N2a. In the the following procedure the frequencies shown in parenthesis apply to N2a.

REFERENCE: Service Sheets 9 and 10.
DESCRIPTION: The N2 phase lock loop produces controlled rf signals from 19.80 to 29.79 MHz in 10 kHz increments. The output frequency selected by the $100 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 10 kHz steps. These checks verify proper operation of the loop circuits.

Figure 5-13. N2 Loop Test Setup

RECOMMENDED TEST EQUIPMENT:
 Digital Voltmeter
 HP 3440A/3443A
 Electronic Counter . HP 5245M/5253B

PROCEDURE: (See Figure 5-13).

1. Set the center frequency to 0 MHz and ground A2TP12 on the mother board with one of the jumper plugs provided.
2. Connect the digital voltmeter to A2TP9 and adjust A13R37 or A13R39 to -30 volts. Disconnect the digital voltmeter.
3. Connect the electronic counter to the N2 oscillator output at XA13-1-4. Adjust A13C19 for a counter reading as close as possible to 29.79 MHz (N 2 a 30.00 MHz) (must be within $\pm 200 \mathrm{kHz}$).
4. Set the center frequency to 5.5 kHz . Adjust A13R37 or A13R 39 for an output frequency reading of 29.250 MHz . (N 2 a 29.450 MHz).
5. Set the center frequency to 95.5 kHz and record the counter readout.

$$
\mathrm{MHz}
$$

6. Determine the frequency difference between step 5 and $20.25 \mathrm{MHz}(\mathrm{N} 2 \mathrm{a} 20.450 \mathrm{MHz}$) and record:

ADJUSTMENTS

5-17. N2 PHASE LOCK LOOP CHECKS AND ADJUSTMENTS (cont'd)

7. Set the center frequency to 5.5 kHz .
a. If the reading in step 5 was more than 20.25 MHz (N 2 a 20.45 MHz) adjust A13R39 to 29.25 MHz (N 2 a 29.45 MHz) plus the difference frequency recorded in step 6.
b. If the reading in step 5 was less than 20.25 MHz (N2a 20.45 MHz) adjust A13R39 to 29.25 MHz (N 2 a 20.45 MHz) minus the difference frequency recorded in step 6.
c. Adjust A13R 37 for an output frequency of $29.25 \mathrm{MHz}(\mathrm{N} 2 \mathrm{a} 29.45 \mathrm{MHz}$).
8. Repeat steps 4 through 7 until the counter readout is 29.25 MHz (N 2 a 29.45 MHz) $\pm 20 \mathrm{kHz}$ for a center frequency of 20.25 MHz (N 2 a 20.45 MHz) $\pm 20 \mathrm{kHz}$ for a center frequency of 95.5 kHz .
9. Remove the ground from A2TP12.
10. Set center frequency as shown in Table 5-6. The counter readings should be as shown in the table.

Table 5-6. N2 Oscillator Output Frequency Checks

Center Frequency	Counter Readout N2	Counter Readout N2a
0	29.790000 MHz	30.000000 MHz
11.1 kHz	28.680000 MHz	28.890000 MHz
22.2 kHz	27.570000 MHz	27.780000 MHz
33.3 kHz	26.460000 MHz	26.670000 MHz
44.4 kHz	25.350000 MHz	25.560000 MHz
55.5 kHz	24.240000 MHz	24.450000 MHz
66.6 kHz	23.130000 MHz	23.340000 MHz
77.7 kHz	22.020000 MHz	22.230000 MHz
88.8 kHz	20.910000 MHz	21.120000 MHz
99.9 kHz	19.800000 MHz	20.010000 MHz

5-18. N3 PHASE LOCK LOOP CHECKS AND ADJUSTMENTS

NOTE

Option 004 instruments do not include the N3 loop.
REFERENCE: Service Sheets 11 and 12.
DESCRIPTION: The N3 phase lock loop produces digitally controlled rf signals from 2.001 to 2.100 MHz in 1 kHz increments. The output frequency is selected by 1 Hz and 10 Hz steps. These checks verify proper operation of the loop circuits.

Figure 5-14. N3 Loop Test Setup

RECOMMENDED TEST EQUIPMENT:

Digital Voltmeter . HP 3440A/3443A
Electronic Counter . HP $5245 \mathrm{M} / 5253 \mathrm{~B}$
PROCEDURE: (See Figure 5-14).

1. Set center frequency to 0 and ground A2TP4 on the mother board with one of the jumper plugs provided.
2. Connect the counter to the N3 oscillator output at XA8-1-4 on the mother board. Adjust A8R26 or A8R24 for a counter readout of 2.100 MHz .
3. Set the center frequency to 5 Hz . Adjust A8R24 for a counter reading of 2.095 MHz . (Must be within $\pm 20 \mathrm{kHz}$).
4. Set the center frequency to 95 Hz , and record the frequency displayed on the counter.

$$
\mathrm{MHz}
$$

5. Determine the frequency difference between that recorded in step 4 and 2.005 MHz and record.

$$
\mathrm{MHz}
$$

6. Set the center frequency to 5 Hz .
a. If the reading in step 4 was less than 2.005 MHz adjust A8R24 to 2.095 MHz minus the frequency difference recorded in step 5.

ADJUSTMENTS

5-18. N3 PHASE LOCK LOOP CHECKS AIND ADJUSTMENTS (cont'd)

b. If the reading in step 4 was more than 2.005 MHz adjust A8R24 to 2.095 MHz plus the frequency difference recorded in step 5.
c. Adjust A8R26 for an output frequency of 2.095 MHz .
7. Repeat steps 3 through 6 until the counter readout is $2.095 \mathrm{MHz} \pm 20 \mathrm{kHz}$ for a 5 Hz center frequency, and $2.005 \mathrm{MHz} \pm 20 \mathrm{kHz}$ for a 95 Hz center frequency.
8. Remove the ground from A2TP4.
9. Set center frequencies as shown in Table 5-7. The counter readings should be as shown in the table.

Table 5-7. N3 Oscillator Output Frequency Checks

Center Frequency	Counter Readout
0 Hz	2.1000000 MHz
11 Hz	2.0890000 MHz
22 Hz	2.0780000 MHz
33 Hz	2.0670000 MHz
44 Hz	2.0560000 MHz
55 Hz	2.0450000 MHz
66 Hz	2.0340000 MHz
77 Hz	2.0230000 MHz
88 Hz	2.0120000 MHz
99 Hz	2.0010000 MHz

5-19. SUMMING LOOP 2 CHECKS AND ADJUSTMENTS

NOTE
Option 004 instruments do not include SL2
REFERENCE: Service Sheets 13 and 14.
DESCRIPTION: SL2 is a phase lock loop that provides a digitally controlled rf output to Summing Loop 1. This output, which is from 20.0001 to 30.000 MHz in 100 Hz steps, is controlled by $100 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 10 kHz steps; it is also indirectly controlled by 1 Hz and 10 Hz steps. These checks verify proper operation of the loop circuits.

ADJUSTMENTS

5-19. SUNIMING LOOP 2 CHECKS AND ADJUSTMENTS (cont'd)

Figure 5-15. SL1 and SL2 Test Setup
RECOMMENDED TEST EQUIPMENT:
Digital Voltmeter . HP 3440A/3443A
Electronic Counter . HP 5245M/5253B
Oscilloscope (with 10:1 divider probes) HP 180A/1801A/1820A
PROCEDURE: (See Figure 5-15).

1. Set center frequency to 55.5 kHz .
a. With the digital voltmeter connected to A2TP8, adjust A11R15 or A11R19 to 0.00 ± 10 millivolts.
b. With the oscilloscope connected to A2TP7 adjust A12R37 for 50/50 symmetry.
c. Disconnect the digital voltmeter and the oscilloscope.
2. Connect the digital voltmeter to varactor test point A2TP5, ground mother board test point A2TP8 with a clip lead, and set center frequency to 0 .
a. Adjust A11R15 or A11R19 to read -30 volts on the digital voltmeter and then disconnect the digital voltmeter.
b. Connect the counter to test point A2TP6 and adjust A11C17 for a counter readout as close to 30 MHz as possible (must be within $\pm 300 \mathrm{kHz}$).
3. Set center frequency to 4.5 kHz . Adjust A11R15 or A11R19 for a counter reading of 29.550 MHz .
4. Set center frequency to 94.5 kHz . Record the output at A2TP6 as read on the counter.

MHz \qquad
5. Determine the difference frequency between that recorded in step 4 and 20.5500 MHz and record.

MHz \qquad

ADJUSTMENTS

5-19. SUMMING LOOP 2 CHECKS AND ADJUSTMENTS (cont'd)

a. Set center frequency to 4.5 kHz .
b. If the frequency readout in step 4 was higher than 20.5500 MHz adjust A11R15 to 29.550 MHz plus the difference frequency determined in step 5 .
c. If the frequency readout in step 4 was lower than 20.5500 MHz adjust A11R15 to 29.550 MHz minus the difference frequency determined in step 5 .
d. Reset the frequency to 29.550 MHz with A11R19.
e. Repeat steps 3, 4 and 5 until the counter indicates $20.550 \mathrm{MHz} \pm 20 \mathrm{kHz}$ for a center frequency of 94.5 kHz and $29.5500 \mathrm{MHz} \pm 20 \mathrm{kHz}$ for a center frequency of 4.5 kHz .
6. Set center frequency as shown in Table 5-8. Adjust the controls listed for counter readouts shown.

Table 5-8. SL2 Oscillator Output Frequency Adjustments

Center Frequency	Adjust	Counter Readout
84.5 kHz	A11R39 " 8 "	$21.55 \mathrm{MHz} \pm 20 \mathrm{kHz}$
74.5 kHz	A11R54 "7"	$22.55 \mathrm{MHz} \pm 20 \mathrm{kHz}$
64.5 kHz	A11R60 "6"	$23.55 \mathrm{MHz} \pm 20 \mathrm{kHz}$
54.5 kHz	A11R67 "5"	$24.55 \mathrm{MHz} \pm 20 \mathrm{kHz}$
44.5 kHz	A11R73 "4"	$25.55 \mathrm{MHz} \pm 20 \mathrm{kHz}$
34.5 kHz	A11R77 "3"	$26.55 \mathrm{MHz} \pm 20 \mathrm{kHz}$
24.5 kHz	A11R83 "2"	$27.55 \mathrm{MHz} \pm 20 \mathrm{kHz}$
14.5 kHz	A11R90 " 1 "	$28.55 \mathrm{MHz} \pm 20 \mathrm{kHz}$

7. Disconnect the counter, remove the ground from A2TP8 and connect the oscilloscope to A2TP7.
8. Set center frequencies as shown in Table 5-8 and adjust the associated potentiometers for 50/50 symmetry as seen on the oscilloscope (all must be within 40/60).

ADJUSTMENTS

5-20. SUMMIING LOOP 1 CHECKS AND ADJUSTMENTS

REFERENCE: Service Sheets 15,16 and 17.

DESCRIPTION: SL1 is a phase lock loop that provides a digitally controlled rf output to the RF Section plug-in. This output, which is from 20.000001 to 30.000000 MHz in 1 Hz steps is pretuned by $1 \mathrm{MHz}, 100$ kHz and 10 kHz steps and is also indirectly controlled by 1 kHz to 1 Hz steps. These checks verify proper operation of the loop circuits.

NOTE
In Option 004 instruments the SL1 output is 100 Hz steps.

Figure 5-16. SL1 Test Setup

RECOMMENDED TEST EQUIPMENT:

Digital Voltmeter
HP 3440A/3443A
Electronic Counter . HP $5245 \mathrm{M} / 5253 \mathrm{~B}$
Oscilloscope (with 10:1 divider probes) HP 180A/1801A/1820A
PROCEDURE: (See Figure 5-16).

1. Set center frequency to 5.55 MHz .
a. With the digital voltmeter connected to A2TP14, adjust A19R3 or A19R9 to 0.00 volt ± 10 millivolts.
b. With the oscilloscope connected to A2TP13, adjust A15R14 for 50/50 symmetry.
c. Disconnect the digital voltmeter and the oscilloscope.
2. Connect the digital voltmeter to varactor test point A2TP21, ground mother board test point A2TP14 with the jumper provided, and set center frequency to 0 .
a. Adjust A19R3 or A19R9 to - 30 volts and disconnect the digital voltmeter.
b. Connect the counter to SL1 OSC at XA19-1-2 and adjust A19C18 for a counter readout as close as possible to 30 MHz (must be within $\pm 300 \mathrm{kHz}$).
3. Set center frequency to 450 kHz . Adjust A19R3 or A19R9 for a counter reading of 29.550 MHz .

ADJUSTMENTS

5-20. SUMMING LOOP 1 CHECKS AND ADJUSTMENTS (cont'd)

4. Set center frequency to 9.45 MHz . Record frequency of output at SL1 OSC at XA19-1-2.

MHz \qquad
5. Determine the difference frequency between that recorded in step 4 and 20.550 MHz and record:

MHz \qquad
a. Set center frequency to 450 kHz .
b. If the frequency readout in step 4 was higher than 20.550 MHz adjust A19R3 to 29.550 plus the difference frequency recorded in step 5.
c. If the frequency readout in step 4 was lower than 20.550 MHz adjust A19R3 to 29.55 MHz minus the difference recorded in step 5.
d. Reset the frequency to 29.550 MHz with A19R9.
e. Repeat steps 3 through 5 until the counter indicates $20.550 \mathrm{MHz} \pm 20 \mathrm{kHz}$ for a center frequency of 9.45 MHz and $29.550 \mathrm{MHz} \pm 20 \mathrm{kHz}$ for a center frequency setting of 450 kHz .
6. Set center frequency as shown in Table 5-9. Adjust controls listed for counter readouts shown.

Table 5-9. SL1 Oscillator Output Frequency Adjustments

Center Frequency	Adjust	Counter Readout
8.45 MHz	A18R35 " 8 "	$21.550 \mathrm{MHz} \pm 20 \mathrm{kHz}$
7.45 MHz	A18R40 " 7 "	$22.550 \mathrm{MHz} \pm 20 \mathrm{kHz}$
6.45 MHz	A18R44 "6"	$23.550 \mathrm{MHz} \pm 20 \mathrm{kHz}$
5.45 MHz	A18R51 " 5 "	$24.550 \mathrm{MHz} \pm 20 \mathrm{kHz}$
4.45 MHz	A18R55 " 4 "	$25.550 \mathrm{MHz} \pm 20 \mathrm{kHz}$
3.45 MHz	A18R62 "3"	$26.550 \mathrm{MHz} \pm 20 \mathrm{kHz}$
2.45 MHz	A18R67 "2"	$27.550 \mathrm{MHz} \pm 20 \mathrm{kHz}$
1.45 MHz	A18R74 "1"	$28.550 \mathrm{MHz} \pm 20 \mathrm{kHz}$

7. Disconnect the counter, remove the ground from A2TP14 and connect the oscilloscope to A2TP13.
8. Set center frequencies as shown in Table $5-9$ and adjust the controls listed for $50 / 50$ symmetry as seen on the oscilloscope. Disconnect the oscilloscope. (All settings must be within 40/60 symmetry.)

ADJUSTMENTS

5-21. DIGITAL CONTROL UNIT (Sweep Output) ADJUSTMENT

REFERENCE: Service Sheet

DESCRIPTION: The Model 8660B sweep output may be used to drive the horizontal sweep of an oscilloscope while the rf output is used to determine the characteristics of a device being tested. This procedure provides information required to properly adjust the sweep ramp.

Figure 5-17. Sweep Ramp Test Setup

RECOMMENDED TEST EQUIPMENT:

Oscilloscope (with 10:1 divider probes) HP 180A/1801A/1820A

PROCEDURE: (See Figure 5-17).

1. Connect the oscilloscope to the 8660 B mainframe OUTPUT ($0-5 \mathrm{~V}$). Set the oscilloscope vertical sensitivity to $2 \mathrm{~V} / \mathrm{Div}$ and the sweep speed to $20 \mathrm{Ms} / \mathrm{Div}$.
2. Set the Model 8660 B center frequency to 5 MHz , SWEEP MODE switch to AUTO and the SWEEP MODE RATE to FAST.
3. Sweep ramp should go from 0 to +5 volts in 100 milliseconds. Adjust A1A8R4 for a ramp peak of +5 V .
4. Set the SWEEP RATE switch to MED. Set the oscilloscope to $0.2 \mathrm{Sec} / \mathrm{Div}$. Sweep ramp should go from 0 to +5 volts in 1 second.
5. Set the SWEEP RATE switch to SLO. Set the oscilloscope to 1 Sec/Div. The sweep ramp should go from 0 to +5 volts in 10 seconds.

Table 5-10. Adjustments Test Record

Hewlett-Packard	Tests performed by
Model 8660B	
Synthesized Signal Generator	
Serial No.	Date

5-13. POWER SUPPLIES CHECKS AND ADJUSTMENTS
Power supply
$+4 \mathrm{~V}$
$+21 \mathrm{~V}$
$-21 \mathrm{~V}$
$+30 \mathrm{~V}$
$+5.25 \mathrm{~V}$
$-10 \mathrm{~V}$
$+20 \mathrm{~V}$
$-40 \mathrm{~V}$
5-14. REFERENCE SECTION CHECKS AND ADJUSTMENTS
Test 3-d.
Test 5-a.
Test 6-a.

A4A4J1	10 MHz
A4A1J1	2 MHz
A4A1J3	400 kHz
A4A1J2	100 kHz
A4A1J4	100 kHz

5-15. HIGH FREQUENCY SECTION CHECKS AND ADJUSTMENTS
Test 6-a. dBm

Test 6-b.		400 MHz	dBm	430 MHz	dBm	420 MHz	dBm
410 MHz	dBm	400 MHz	dBm	390 MHz	dBm	380 MHz	dBm
370 MHz	dBm	360 MHz	dBm	350 MHz	dBm		

SECTION VI
 REPLACEABLE PARTS

6-1. INTRODUCTION

$6-2$. This section contains information for ordering parts. Table 6-1 is a list of exchange assemblies and Table 6-2 lists abbreviations used in the parts list and throughout the manual. Table 6-3 lists all replaceable parts in reference designator order. Table 6-4 contains names and addresses that correspond to the manufacturer's code numbers.

6-3. EXCHANGE ASSEMBLIES

6-4. Table 6-1 lists assemblies within the instrument that may be replaced on an exchange basis, thus affording considerable cost savings. Exchange, factory-repaired and tested assemblies are available only on a trade-in basis, therefore the defective assemblies must be returned for credit. For this reason, assemblies required for spare parts stock must be ordered by the new assembly part number.

6-5. ABBREVIATIONS

6-6. Table 6-2 gives a list of abbreviations used in the parts list, schematics, and throughout the manual. In some cases, two forms of the abbreviation are given, one all capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always all capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lower case and upper case letters.

6-7. REPLACEABLE PARTS LIST

6-8. Table $6-3$ is the list of replaceable parts and is organized as follows:
a. Electrical assemblies and their components in alpha-numerical order by reference designation.
b. Chassis-mounted parts in alpha-numeric order by reference designation.
c. Miscellaneous parts.
d. Illustrated parts breakdown, if appropriate.

The information given for each part consists of the following:
a. The Hewlett-Packard part number.
b. The total quantity (Qty) in the instrument.
c. The description of the part.
d. The typical manufacturer of the part in a five-digit code.
e. Manufacturer code number for the part.

The total quantity for each part is given only once - at the first appearance of the part number in the list.

6-9. ORDERING INSTRUCTIONS

6-10. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number, indicate quantity required, and address the order to the nearest Hewlett-Packard office.

6-11. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

Table 6-1. Part Numbers for Assembly Exchange Orders

	Assembly	New Part No.	Exchange No.
A1A1	Sw. Cont. Assy.	08660-60107	08660-60246
A1A2	Key Cont. Assy.	08660-60106	08660-60245
A1A3	Readout Cont. Assy.	08660-60105	08660-60244
A1 A4	Rom Input Assy.	08660-60102	08660-60241
A1A5	Rom Output Assy.	08660-60103	08660-60242
A1 A6	Register Assy.	08660-60104	08660-60243
A1A7	ALU Assy.	08660-60108	08660-60247
A1 A8	Sweep Count Assy.	08660-60109	08660-60248
A1 A9	"A" Register Assy.	08660-60110	08660-60249
A1A10	Output Register Assy.	08660-60128	08660-60252
A1A12	Numeric Readout Assy.	08660-60111	08660-60250
A1A17	Manual Tuner Assy.	08660-60123	08660-60251
A3A1	Front Interface Board	08660-60028	08660-60222
A3A2	Rear Interface Board	08660-60029	08660-60223
A4A1	Reference Divider	08660-60003	08660-60203
A4A2	Reference Phase Detector	08660-60002	08660-60202
A4A3	Reference $\div 2$	08660-60004	08660-60204
A4A4	Reference VCO	08660-60001	08660-60201
A4A5	H.F. Loop VCO	08660-60005	08660-60205
A4A6	H.F. Loop Pretune Assembly	08660-60007	08660-60207
A4A7	H.F. Loop Phase Detector	08660-60006	08660-60206
A5	Voltage Control Assembly	08660-60023	08660-60220
A6A1	Preregulator Assembly	08660-60024	08660-60221
A8	N3 Oscillator	08660-60014	08660-60214
A10	N3 Phase Detector	08660-60013	08660-60213
A11	SL2 Oscillator	08660-60019	08660-60219
A12	SL2 Phase Detector	08660-60018	08660-60218
A13	N2 Oscillator	08660-60012	08660-60212
A14	N2 Phase Detector	08660-60011	08660-60211
A15	SL1 Phase Detector	08660-60016	08660-60216
A16	N1 Phase Detector	08660-60009	08660-60209
A17	N1 Oscillator	08660-60010	08660-60210
A18	SL1 Mixer	08660-60015	08660-60215
A19	SL1 Oscillator	08660-60017	08660-60217
A20	Rectifier Board Assembly	08660-60021	08660-60232
A22	Reference Switch Assembly	08660-60043	08660-60228
OPTION 004 INSTRUMENTS			
A1A1	Switch Cont. Assy.	08660-60162	08660-60254
A1A2	Key Cont. Assy.	08660-60161	08660-60253
A1A7	ALU Assy.	08660-60163	08660-60255
A14	N2 Phase Detector	08660-60039	08660-60236

Table 6-2. Reference Designations and Abbreviations (1 of 2)

Table 6-2. Reference Designations and Abbreviations (2 of 2)

Table 6－3．Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A1	06660－60120	1	DIGITAL CONTROL ASSY	23480	08660－60120
AlCl	016003448		C：FXD CER 1000 PF 109 1000VDCW	56289	C0678251F102KS25－CDH
A1J1	1250－0118	1	CUNNECTOR：BNC	24931	28JR 128－1
All	S10C－3254	1	COIL：FXO 4 UH	28480	9100－3354
alsi	3161－1655	1	SWITCH ROCKER：SPOT，SUBMINIATURE	09353	7101－JICX
A．1W1	08600－60116	1	CALLE ASSY：SHITCH	28480	08660－60116
A1W2	CE660－60117	1	CABLE ASSY：KEYBOARD	28480	09660－60117
A1w3	08660－60118	2	CABLE ASSY：READCUT	28.480 28480	08669－60118
A1W A1W	$08660-60118$ $08660-60124$	1	CABLE ASSY：READOUT D／A OUTPUT CABLE	28480 28430	$08660-60118$ C8660－60124
A1w6	08660゙－60126	1	WIRING HARNESS	28480	08660－60126
A1w A1X	C8660－60129	1	CABLE ASSY： $4 V$ FILTER MI SCELLANECUS	28480	08660－60129
f1x	c370－1131	1	KNOB：CONCENTKIC BAR，JADE GRAY	28480	0370－1131
A1x	0376－1303	1	knob：RUUND，Jade gray	28480	C370－1303
A1x	0370－2193	1	KNOB：MANUAL MODE SWITCH	28480	0370－2193
A1x	0370－2194	1	KNOB：SWEEP SWITCH	28.480	0370－2194
A1X	7120－3044	1	LABEL：IDENTIFICATION	28480	7120－3044
Al 11 A $1 x$	$08660-00056$ $08660-00101$	1.	SCREEN R．F．İ	28480 28480	$08660-00056$
A1X	08660－00101	1	SUPPORT：DIGITAL TOP	28480	08660－00101
A1x	08660－00102	1	FRONT PANEL：RIGHT SIDE	28480	08660－00102
A1x	08660－00103	1	SUPPORT：DIGITAL BOTTOM	28480	08660－00103
A1x	08660－00106	1	FRDiNT PAINEL：LEFT SIDE	28480	08660－00106
A1x	08660－00109	1	PLATE：FRONT WINOOW	28480	08660－00109
A1x	08660－00110	1	I NSULATOR：INTERCONNECT	29480	08660－0011C
A1x	cf 660－20121	1	SUB－PANEL：FRONT	28480	08660－20121
Alx	c8660－20122	1	WINDOW：FRONT	28480	08660－20122
A1x	08660－20152	1	FRUNT PANEL：KEYBOARD	28480	08660－20152
A1x	08660－20153	1	CLAMP：TOP KEYBOARD SWITCH	28480	08660－20153
A1X	08660－20154	1	CLAMP：BOTTOM KEYBOARD SWITCH	28480	08660－20154
A1x	08660－20160	2	RETAINER：PC BCARD	28480	08660－20160
Alx	08660－40004	1	BLOCK ：ANNUNCIATGR	28480	08660－40004
A1x	06060－40105	1	FREQUENCY RANGE INDICATOR	28480	08660－40105
A1x	08660－40107	1	PUSHBUTTON：SWEEP	28480	08660－40107
A1X	08660－40108	3	PUSHBUTTON：READOUT	28480	08660－40108
Alin	03650－501．07		BUARD ASSY：SWITCH CONTROL	28480	08660－60107
AlAlCl	0180－1714	2	C：FXO ELECT 330 UF 10\％EVOCW	28480	0180－1714
alalcz	0180－0197	61	C：FXD ELECT 2.2 UF 10% 20VCCW	56289	1500225x9020A2－DYS
Alalcz	$0180-0197$		C：FXD ELECT 2.2 UF 10\％ 20 VCCW	56289	150D225x9020A2－DYS
Alalc 4	0180－0197		C：FXD ELECT 2.2 UF 10\％20VECW	56289	150D225x9020A2－DYS
AiAlC5	0180－0197		C：FXD ELECT 2.2 UF 10% 2UVOCW	56289	$1500225 \times 9020 A 2-D Y S$
alalcg	8180－0197		C ：FXO ELECT 2.2 UF 108 20VCCW	56289	$15.00225 \times 9020 A 2-D Y S$
A1A1C7	0180－0197		C：FXD ELECT 2.2 UF 10% 20VCCW	56289	$1500225 \times 9020 A 2-D Y S$
Alalcz	0180－2206	j	C：FXD ELECT 60 UF 1086 VCCW	56289	1500606×900682 RDM15F621 JIC
alalcy	0160－3536	1	C：FXD MICA 620 PF 58 licovech	00853	RDM15F621JIC
A1A1CR1	1901－0040	84	UIODE：SILICON 30MA 30WV	07263	FDG1088
AlalR1	0698－7253	15	R：FXD MET FLM 5．11K OHM 2\％1／8W	28480	0699－7253
alalrz	0098－7253		R：FXD MET FLM 5．11K OHM 2\％ $1 / 8 \mathrm{~W}$	28480	0698－7253
Alair3	0698－7253		R：FXD MET FLit 5．11K OHM $2 \% 1 / 8 \mathrm{~W}$	28480	0698－7253
AlAIR4	0698－7272	1	R：FXD FLM 310sk OHM 2\％1／8W	28ヶ80	0698－7272
alatrs	0698－7228	4	R：FXD FLM 464 OHM $2 \% 1 / 8 \mathrm{~W}$	28480	0698－7228
Alalrg	0698－7212	3	R：FXD FLM 100 OHM 2\％1／3W	28480	0698－7212
AlAlR	0698－7253		K：FXD MET FLM 5．11K OHM $24.1 / 8 \mathrm{~W}$	28480	0698－7253
flalrb	0698－7253		R：EXD MET FLM 5．11K OHM 2\％1／8W	28480	0698－7253
fialrg	0698－7253		R：FXU MET FLM 5．11K OHM 2\％1／8W	28\％80	0698－7253
alalrio	c658－7253		R：FXD MET FLM 5．11K OHM 28 1／8W	284，80	0698－7253
Alairil	0698－7253		R：FXD MET FLY 3.11 K OHM 28 1／3W	28480	0698－7253
AlalR12	0698－7253		R：FXD MET FLM 5．11K OHM 2\％1／8W	28480	0698－7253
A1A1R13	0698－7253		R：FXD MET FLM 5．11K OHM 28 1／8W	28480	0698－7253
AlAR14	0698－7253		R：FXO YET FLM 5．11K OHM $2 \% 1 / 8 \mathrm{~W}$	28460	0698－7253
A1A1R15	0698－7253		R：FXO MET FLM 5．11K CHM 2\％1／8W	28480	0698－7253
A1A1216	C698－7253		R：FXD MET FLM 5011K OHM $28.1 / 8 \mathrm{~W}$	28480	C698－7253
AlA1R17	6698－7253		R：FXD MET FLM 5．11K OHM 2\％ $1 / 8 \mathrm{H}$	28ヶ80	0598－7253
－1A1R18	0698－7212		R：FXD FLM 100 OHM $2 \% 1 / 8 \mathrm{~W}$	284．80	0698－7212
AlA1R19	c698－7253		R：FXU MET FLM S．llK OHM 28 1／8W	28480	0698－7253
1141220	0699－7228		R：FXD FLM 464 UHM 28 1／8W	28480	0698－7228
A141R21	0698－7228		R：FXD FLM 464 OHM $281 / 8 \mathrm{~W}$	28480	0698－7223
A141R22	0698－7222	3	R：FXD FLM 261 UHM $281 / 8 \mathrm{~W}$	28480	0698－7222
A141R23	0098－7228		R：FXD FLM 464 OHM 28 1／8W	28480	0698－7228
Alaltpl	0360－0124．	4	TERMINAL：SOLDER LUG	28480	0360－0124
AlAltP2	0360－0124		terminal：Soleer lug	28480	0360－0124
Alallil	1820－0913	3	IC：Ttil lp monustable multivibrator	01295	SN7ALI22N
alaluz	1820－0174	16	IC：TTL HEX INVERTER	01295	SN740AN
alalu3	1320－0256	3	IC：Otl quad 2－input power gate	04713	MC 858 P
Alalu	1620－0600	5	IC：TtL lp decade counter	12040	DM85L90N

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A14105	1820.0600		IC:TtL LP decaioe counter	12040	DM85L90N
Alalub	1820-0500		IC:TTL LP DECADE COUNTER	12040	DM85L90N
A141U7	1820-0600		IC: TTL LP DECALE CCUNTER	12040	DM85L90N
Alalua	1820-0600		IC: TTL LP DECADE COUNTER	12040	DM85L90N
Alallda	1820-0054	61	IC:TtL Quad 2-InPt nand gate	01295	SN7400N
alatulo	1320-5595	7	IC:TTL LP dual jok master slave f/f	12040	DM74L73N
alaijul	1320-0174		IC:TTL HEX INVERTER	01295	SN7404N
A141012	1820-0372	,	IC:TTL TRIPLE 3-INPT AND GATE	28480	1820-0372
Alinlul3	1820-0587	5	IC: TTL LP TRIPLE 3-INPT NAND GATE	12040	DM74L10N
A141u14	1820-0596	6	IC:TTL LP DUAL EDGE TRIG, C F/F	12040	DM76L74N
A1A1015	1820-0595		ic:ttl lp dual jok master slave f/f	12040	DM74L73N
a1alulb	1820-0174		IC: TTL HEX INVERTER	01295	SN7404N
¢14ivir	1820-0374	2	IC:ITL HS DUAL $4-I N P T$ AND GATE	01295	SN74H21N
4141u18	1820-0511	13	IC: TTL OUAD 2-INPT AND GATE	01295	SN7408N
alalulg	1820-0596		IC: TTL LP DUAL EDGE TRIG, C F/F	12040	DM74L74N
Al41u20	1820-0587		IC:TTL LP TRIPLE 3-INPT NAND GATE	12040	DM74L10N
alaluel	1820-0545		IC:TTL LP. DUAL J-K MASTER SLAVE F/F	12040	DM74L73N
A141u22	1820-0328	10	IC:TTL QUAD 2-INPT NOR GATE	04713	SN7402N
Ala luz3 flaluer	$1820-0054$ $1820-0495$	4	IC:TTL QUAD 2-INPT NAND GATE IC:TTL 1 OF 16 DECODER	01295 01295	SN7400N SN74154N
Alalu25	1920-0654		IC:TTL QUAD 2-INPT Nand gate	01295	SN7400N
alaiuz	1820-0596		IC:TTL LP DUAL EDGE TRIG, [F/F	12040	DM74L74N
A1A1U27	1820-0661	12	IC: TTL QUAD 2-INPT OR GATE	01295	SN7432N
A1Alu28	1820-0054		IC:TTL QUAD 2-INPT NAND GATE	01295	SN7400N
Alalu29	1820-05.36		IC: JTL LP DUAL EDGE TRIG, C F/F	12040	DM74L74N
A1A1U30	1820-0511		IC:TTL QUAD 2-INPT AND GATE	01295	SN7408N
Clalxal	1200-0438	8	SOCKET: IC 10 CONTACT DUAL TYPE, BROWN	00779	583529-1
fial	06660-6J106	1	BOAFD ASSY:KEY CONTROL	28480	08660-60106
A1a2Cl	6160-3533	1	C:FXD MICA 470 PF 5\% 100VCCw	00853	RDM1 5F471J1C
4142 Cz	C16C-2234	13	C:FXD MICA 100PF 5\%	72136	RDM15F101J3C
A1A2C3	0160-0161	4	$C: F X D$ HY 0.01 UF 10\% 200VDCW	56289	192P10392-PTS
A1A2C4	0180-0197		C:FXD ELECT 2.2 UF 10\% 20VCCW	56289	1500225x9020A2-DYS
A1A2C5	0180-0197		C:FXD ELECT 2.2 UF 10\% 20VCCW	56289	150D225x9020A2-DYS
A1A2C6	0180-0197		C:FXD ELECT 2.2 UF 10\% 20VCCW	56289	$1500225 \times 9020 \mathrm{~A} 2$-DYS
4142 C 7	018c-0197		C:FXD ELECT 202 UF 10\% 20VECW	56289	$1500225 \times 9020 A 2-D Y S$
A142C8	0180-0197		C:FXD ELECT 2.2 UF 108 20VECW	56289	1500225x9020A2-DYS
A1A2C9	0180-0197		C:FXD ELECT 2.2 UF 10\% 20VCCW	56289	$1500225 \times 902042-D Y S$
A142Clo	-150-0197		C:FXD ELECT 2.2 UF 10\% 20VCCW	56289	$1500225 \times 902042-D Y S$
A142C11	0180-0197		C:FXD ELECT 2.2 UF 10\% 20VCCW	56289	1500225x9020A2-DYS
A1A2C12	c140-0199	1	C:FXD MICA 240 PF 5\%	28480	0140-0199
A14201	1853-0020	4.	TSTR:SI PNP(SELECTEO FRCM 2N3702)	28480	1853-0020
41a2R1	0757-0419	2	R:FXD MET FLM 681 OHM 1\% 1/8W	28480	0757-0419
A1A2R2	-0757-0423	23	R:FXD MET FL, 1.62 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0428
A142R3	0698-0082	34	R:FXD SET FL, 464 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-0082
A1A2R4	0757-0280	50	R:FXO MET FLM 1 K OHM $181 / 8 \mathrm{WW}$	28480	0757-0280
A1A2R5	6698-3430	10	R:FXD MET FLM 21.5 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3430
A1A2RG	0698-3430		R:FXC MET FLM 21.5 OHM $181 / 8 \mathrm{~W}$	28480	0698-3430
¢1azk 7	6,757-0280		R:FXD MET FLM 1 K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0280
alazkr	069\%-3430		R:FXD MET FLM 21.5 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3430
A1A2R9	0698-3430		R:FXD MET FLM 21.5 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3430
A142R10	9,757-c280		R:FXO MET FLM 1 K OHM 1\% 1/8N	28480	0757-0280
A1A2R11	0757-3438	12	R:FXD MET FL: 5011 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0438
A1A2R12	6757-Ј395	2	R:FXD MET FLM 56.2 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0395
A1A2R13	C698-3430		R:FXD MET FLM 21.5 OHM 1\% 1/8W	28480	0698-3430
A 1A2R14	-693-3160	2	R:FXD MET FLM 31.6 K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3160
Alatilis	W698-3160		R:FXD MET FLM 31.6K OHM 1\% 1/8W	28480	0698-3160
AlazRio	0698-3430		R:FXD MET FLM 21.5 OHM $131 / 8 \mathrm{~W}$	28480	0698-3430
A142R17	0593-3159	3	R:FXD MET FL, 26.1K OHM 1\% $1 / 8 \mathrm{~W}$	29480	0698-3159
Alazflí	0673-3159		R:FXD MET FLM 26.1 K OHM 1\% 1/8W	28480	0698-3159
alazkly	0757-3438		R:FXD MET FL 45.11 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0438
Alatrzo	voyb-3ij2	17	R:FXU FLH $26 i$	28480	0698-3132
4142821	C757-0438		R:FXD MET FLA 5011K OHM 1\% 1/8W	28480	0757-0438
Ala2kr2z	0757-0442	109	R:FXD MET FLM 10.0K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0442
A1A2R23	c757-0280		R:FXD MET FLM IK OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0280
A1A2k24	0698-3132		R:FXD FLM 261 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3132
A14. 225	0698-3132		R:FXD FLM 261 DiAM 1\% 1/8W	28480	0698-3132
AlA2TPi	0361-1514	2	TERMINAL PIN:SQUARE	28480	0360-1514
A1A2TP2	0369-1514		TERMINAL PIN: SUUARE	28480	0360-1514
alazui	1326-6114		IC:TTL HEX INVERTER	01255	SN7404N
¢1azu2	1820-0661		IC:TTL QUAD 2-INPT OR GATE	01295	SN7432N
alazuz	1620-0054		IC: ttil ouad 2-inpt nand gate	01295	SN7400N
A 142114	1826,0705	10	IC:TTL DUAL E-BIT SHIFT REG。	07263	U7893L2859X
Ala 215	1820-9659	17	IC: TTL. LOW POWER S-BIT SHIFT REGISTER	07263	SL17145
alazub	1c23-0709		IC: TTL DUAL 8-BIT SHIFT REG。	07263	U7B9 3L2859X
A1A207	1820-0595		IC:TTL LP dual jok master slave f/f	12040	DM74L73N

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A1A2U8	1820-0511		IC:TTL QUAD 2-INPT ANO GATE	01295	SN7408N
4142U9	$1820-0354$		IC:TTL QUAD 2-INPT NAND Gate	01255	SN7400N
alazulo	1820-0511		IC:ITL QUAD 2-INPT AND GATE	01295	SN7408N
f142011	1820-0710	7	IC:DIGITAL TTL+LUGIC 5V 5\%	07263	SL17315
-1A2U12	1820-0710		IC:DIGITAL TTL+LUGIC 5V 5\%	07263	SL17315
A 1 A 2013	1820-0659		IC:TTL,LCW POWER 4-EIT SHIFT REGISTER	07263	SL17145
A1A2U14	1820-0659		IC: TTL,LOW POWER --EIT SHIFT REGISTER	07263	SL17145
A 142015	1820-0710		IC:DIGITAL TTL+LOGIC 5V 5\%	07263	SL17315
A1A2U16	1820-0054		IC:TrL QUAD 2-INPT NAND GATE	01295	SN7400N
A1A2U17	1820-0596		IC:TTL LP dUAL EDGE TRIG, [F/F	12040	DM7aL74N
A 142018	1820-0174		IC:TTL HEX INVERTER	01295	SN7404N
A1A2U19	1820-0913		IC: TTL LP MONOSTABLE MULTIVIBRATOR	01295	SN74L122N
A 142 L 20	1826-0055	1	IC: LINEAR DUAL COMPARATOR	07263	U6A7711393
A1A2U21	1820-0069	6	IC: TTL DUAL 4-INPT POS NANC GATE	01295	SN7420N
A142U22	1820-0174		IC:TTL HEX INVERTER	01295	SN7404N
A142U23	1820-0214	7	IC:TtL BCD to dec. decoder	01295	SN7442N
A1A2U24	1820-0661		IC:TTL QUAD 2-INPT OR GATE	01295	SN7432N
-142U25	1820-0055	4	IC:TTL DECADE CUUNTER 10 MHL HIN.	01295	SN7490N
2142026	1820-049!	1	IC:TTL BCD/DEC. DECODER/CRIVER	01295	SN74145N
1143	08660-60105	$!$	board assy: READOUT CONTRCL	28480	08660-60105
-1A3C1	0180-0197		C:FXD ELECT 2.2 UF 10\% 20VCCW	56289	1500225×9020A2-DYS
Ala3C2	0180-0197		$\mathrm{C}:$ FXD ELECT 2.2 JF 10% 20VCCw	56289	1500225X9020A2-DYS
A1A3C3	0180-0197		C:FXD ELECT 2.2 UF 103 20VCCW	56289	1500225×902042-DYS
AlA3C4	0180-0197		C:FXD ELECT 2.2 UF 10% 20VCCH	56289	1500225x9020A2-DYS
A1A3C5	c180-0197		C:FXD ELECT 2.2 UF 10\% 20vCCH	56289	150D225×9020A2-DYS
A1A3C6	0180-0197		C:FXD ELECT 2.2 UF $10 \% 20 \mathrm{VCCW}$	56289	1500225×9020A2-DYS
A1A3C7	0130-0197		C:FXD ELECT 2.2 UF 10% 20VCCW	56289	$1500225 \times 9020 A 2-D Y S$
Ala3cs	0180-0197		C:FXD ELECT 202 UF 10\% 20VCCW	56289	$1500225 \times 9020 A 2-D Y S$
Alajcs	0160-3534	2	C:FXD MICA 51C PF 58 10CVLCW	00853	RDM15F511JIC
A1A3C10	0160-0161		C:FXD MY 0.01 UF 10\% 200VCCW	56289	192P10392-PTS
A1A3C11	0140-0196	22	C:FXD MICA 150 PF 5\%	72136	ROM15F151J3C
	$0573-3447$ $0698-3447$	22		28480 28480	0698-3447 $0698-3647$
Ala3R3	0693-3447		R:FXD MET FLM 422 OHM 1\% 1/8W	28480	0698-3447
A1A3R 4	0698-3447		R:FXD MET FLM 422 OHM 1\% 1/8W	28480	0698-3447
A1A3R5	0698-3447		R:FXD MET FLA 422 OHM 1\% 1/8W	28480	0698-3447
A1A3R6	0698-3447		R:FXD MET FL: 4 E2 OHM 1\% 1/EW	28480	0698-3447
A1A3R7	0698-3447		R:FXD MET FLM 422 OHM $181 / 8 \mathrm{~W}$	28480	0698-3447.
AlA3R8	0698-3447		R:FXD MET FLA 422 OHM 1\% 1/8W	28480	0698-3447
A1A3R9	0698-3447		R:FXD MET FLY 422 OHM 18 1/8W	28480	0698-3447
A1A3R10	0698-3447		R:FXD MET FLM $\% 22$ OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-344.7
A 1A3R11	0693-3159		R:FXD MET FLi4 26.1 K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3159
A $143 \mathrm{Fl2}$	0757-0401	30	R:FXU MET FLM 100 GHM 1\% 1/8W	29480	0757-0401
A1A3TP1	0360-0124		TERMINAL: SOLDER LUG	28480	0360-0124
Ala3tfl	0360-0124		TERMINAL:SOLDER LUG	28480	0360-0124
ala 301	1820-0661		IC:TTL OUAD 2-INPT OR GATE	01295	SN7432N
A1a3U2	1820-0710		IC:OIGITAL TTL+LOGIC 5V 5\%	07263	SL17315
ala3U3	1820-0725	1	IC:TTL 16-BIT RAM, 4 WORDS $\times 4$-BITS	01295	SN74170N
A1A3U4	1820-0054		IC:TTL QUAD 2-INPT Nand gate	01295	SN7400N
A1A3U5	1820-0054		IC:TTL QUAD 2-INPT Nand gate	01295	SNTAOON
ala3u6	1820-0174		IC:TTL HEX INVERTER	01295	SN7404N
114307	1820-3214		IC:TTL BCO TO DEC. DECOCER	01295	SN7442N
Ala3us	1820-0659		IC: TTL.LOW PGWER 4-BIT SHIFT REGISTER	07263	SL17145
Ala3u9	1820-0054		IC:TTL QUAD 2-INPT NANO GATE	01295	SN7400N
ala3ulo	1820-0913		IC:TTL LP MONOSTABLE MULTIVIBRATOR	01295	SN74L122N
A1A3U11	1820-0904	1	IC:TTL LP 5-BIT COMPARATOR	07263	U7B93L2459x
A143U12	1820-0661		IC:TTL QUAD 2-INPT OR GATE	01295	SN7432N
A1A3U13	1820-0328		IC:TTL QUAD 2-INPT NOR GATE	04713	SN7402N
A1A3U14	1820-0596		IC:TTL LP DUAL EDGE TRIG, C F/F	12040	DM74L74N
A1A3U15	1820-3054		IC: TTL QUAD 2-INPT Nand gate	01295	SNT400N
ala3ulo	1820-0054		IC:TTL QUAD z-INPT NAND GATE	01295	SN7400N
A1A3U17	1820-0710		IC:DIGITAL TTL+LOGIC 5V 5\%	07263	SL17315
A 143418	1820-0372		IC: TTL TRIPLE 3-INPT AND GATE	28480	1820-0372
A1A3U19	1820-0328		IC:TTL QUAD 2-INPT NOK GATE	04713	SN7402N
A1A3U20	1320-0055		IC: TTL decade countek $10 \mathrm{NHz} \mathrm{MIN}$.	01295	SN7490N
A1A3U21	1820-0661		IC:TTL QUAD 2-INPT OR GATE	01295	SN7432N
A1A3U22	1820-0372		IC:TTL TRIPLE 3-INPT AND GATE	28480	1820-0372
4143023	1820-0661		IC:TTL QUAD 2-INPT OR GATE	01295	SN7432N
A 1431424	1820-0174		IC:TTL HEX INVERTER	01295	SN7404N
A 143025	18?0-0511		IC: TTL QUAd 2-INPT ano gate	01295	SN7¢08N
A143426	1820-0256		IC:OTL QUAD 2-INPUT POWER GATE	04712	MC $858 \mathrm{8P}$
A143U27	1820-0659		IC: TTL. LOW POWER \&-EIT SHIFT REGISTER	07263	SL17145
A 143428	1820-0903	8	IC:TTL LP 8-BIT SERe IN PARALLEL	01295	SN74L164N
A143429	1820-0065	1	IC:TTL SINGLE PHASE J-K F/F	01295	SN7¢70N
A1A3U36	1820-0054		IC:TTL QUAD 2-INPT Nand gate	01295	SN7400N

See introduction to this section for ordering information

Table 6－3．Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A1A3U31	1820－0174		IC：TTL HEX Invefter	01295	SN7404N
Ala3u32	1820－0511		IC：TTL QUAD 2－INPT AND GATE	01295	SN7408N
A1Aごこう	1820－0065		IC：TTL OUAL 4－INPT PCS NANC GATE	01295	SN7420N
A143U34	1820－0054		IC：TTL OUAD 2－INPT NAND GATE	01295	SN7400N
A143U35	1820－C068	12	IC：TTL TRIPLE 3－INPUT PCS NAND GATE	12040	SN7410N
A143U36	1820－0903		IC：TTL LP 8－BIT SER．IN PARALLEL	01295	SN74L164N
A143U37	1820－6．903		IC：TTL LP 8－BIT SER．IN PARALLEL	01295	SN74L164N
A143038	1820－0963		IC：TTL LP 8－BIT SER．IN PARALLEL	01295	SN74L164N
A143U39 A1A4	$182 c-0659$ $08660-63102$	1	IC：TTL，LOW POWER 4－EIT SHIFT REGISTER BUARD ASSY：ROM INPUT	07263 28480	SL17145 $08660-60102$
	C8660－6J102	1	BUARD ASSY：ROM INPUT		08660－60102
A1A4Cl	0180－0197		C：FXD ELECT 2.2 UF 10\％20VOCW	56289	1500225x9020A2－DYS
A1A4C2	$0180-0197$		C：FXD ELECT 2.2 UF 10\％20VBCW	56289	$1500225 \times 902042-D Y S$
A1．A4C3	0180－0197		C：FXD ELECT 2.2 UF 10% 20VDCW	56289	$1500225 \times 9020 \mathrm{~A} 2-\mathrm{DYS}$
A1A4C4	0180－0197		C：FXD ELECT 2.2 UF 108 20VCCW	56289	150D225x9020A2－DYS
A1A4C5	0160－0197		C：FXD ELECT 2.2 UF 102 20VCCW	56289	1500225X9020A2－DYS
A1A4CR1	1901－5040		DIODE：SILICON 30MA 30wV	07263	FDG1088
A1A40S1	1990－0326	7	DIODE：VISIBLE LIGHT EMITTER	28480	1990－0326
－1A40S 2	1993－0326		DIODE：VISIBLE LIGHT EMITTER	28480	1990－0326
A1A4DS 3	1990－0326		DIDDE：VISISLE LIGHT EMITTER	28480	1990－0326
A1A40S4	1990－0326		DIOde：VISIBLE LIGHT EMITTER	28480	1990－0326
A1A40S5	1990－0326		didde：Visible light emitter	28480	1990－0326
A1440S6	1990－0326		DIODE：VISIBLE LIGHT EMITTER	28480	1990－0326
A1440S7	1996－0326		DIODE：VISIBLE LIGHT EMITTER	28480	1990－0326
AlatR1	0698－3153	17	R：FXD MET FLM 3．83K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698－3153
A1A4k2	0698－3445	35	R：FXD MET FLM 348 OHM 1\％1／8W	28480	0698－34／5
AlA4R3	0698－3153		R：FXU MET FLM 3.83 K OHM 1\％1／8W	28480	0698－3153
AlA4k 4	Coy8－5153		K：FXD MET FLM 3.83 K CHM $181 / 8 \mathrm{~W}$	28480	0698－3153
AlA4R5	0698－3153		R：FXD MET FLM 3．83K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698－3153
AlA4RO	0098－3445		R：FXD MET FLY 348 OHM 1＊ $1 / 8 \mathrm{EW}$	28480	0698－3445
AlA4R？	0598－3153		P．：FXD MET FLM 3083K OHM $181 / 8 \mathrm{~W}$	28480	0698－3153
A1A4R8	0698－3445		R：FXD MET FLM 348 CHM 1\％1／8W	28480	0698－3445
Alatkg	0098－3153		R：FXU MET FLM 3．83K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698－3153
A1A4R1G	0698－3445		R：FXD MET FLM 348 OHM 1\％ $1 / 8 \mathrm{~W}$	28480	0698－3445
A1A4R11	0698－3153		R：FXD MET FLM 3.83 K OHM $161 / 8 \mathrm{H}$	28480	0698－3153
A1A4R12	0698－3445		R：FXD MET FLM 348 OHM 1\％1／8W	23480	0698－3445
A1A4R13	0698－3153		R：FXD MET FLM 3．83K OHM $181 / 8 \mathrm{~W}$	28480	0698－3153
A1A4R14	0698－3445		R：FXD MET FLM 348 OHM 1\％1／8W	28480	0698－3445
A1A4R15	0698－3153		R：FXD MET FLM 3.83 K OHM $181 / 8 \mathrm{~W}$	28480	0698－3153
A1A4R16	0698－3445		R：FXD MET FLM 348 OHM 1\％ $1 / 8 \mathrm{~W}$	28480	0698－3445
A1A4R17	0698－3153		R：FXD MET FLM 3．83K OHM 1\％1／8W	28480	0698－3153
A1A4R18	0698－3445		R：FXD MET FLM 348 OHM $121 / 8 \mathrm{~W}$	28480	0698－3445
A1A4S1	3101－0137	4	SWITCH：SENSITIVE SPOT SUB－MINIATURE	91925	$15 \times 1-\mathrm{T}$
A1A4U1	1820－0070	5	IC：TTL 8－INPT POS NAND GATE	01295	SN7430N
A144112	1820－0511		IC：TTL QUAD 2－INPT AND GATE	01295	SN7408N
alatu3	1820－017＇4		IC：TTL HEX INVERTER	01295	SN7404N
A1441／4	1820－0076	4	IC：ITL DUAL J－K F／F w／PRESET CLOCK	01295	SN7476N
A1A4U5	1820－0076		IC：TTL DUAL J－K F／F W／PRESET CLOCK	01295	SN7476N
alatuo	1820－0076		IC：TTL DUAL J－K F／F W／PRESET CLOCK	01295	SN7476N
A144U7	1820－0076		IC：TTL DUAL J－K F／F W／PRESET CLOCK	01295	SN7476N
Ala 4 Ü	1820－0054		IC：TTL OUAD 2－INPT NAND GATE	01295	SN7400N
alatug	1820－0640	7	IC：TTL DATA SELECTOR／MULTIFLEXER	01295	SN74150N
alatule	1820－0214		IC：TTL BCD TO DEC．DECODER	01295	SN7442N
Alatuli	1816－0042	1	IC：RCM \＃1	28480	1816－0042
A144U12	1816－0043	1	IC：ROM \＃2	28480	1816－0043
A1．A4U13	1820－0174		IC：TTL HEX INVERTER	01295	SN7404N
A1A4U14	1820－0595		IC：TtL LP dual J－K master slave f／f	12040	DM74L73N
A144015	1820－0595		IC：TTL LP DUAL JK Master slave f／F	12040	DM74L73N
A1Atul6	1820－0595		IC：TTL LP DUAL J－K Master slave f／f	12040	DM74L73N
A1A4017	1816－0044	1	IC：RUM＊3	28480	1816－0044
1144418	1820－C64C		IC：TTL DATA SELECTOR／MULTIPLEXER	01295	SN74150N
A1A4019	1820－0640		IC：TTL DATA SELECTOR／MULTIPLEXER	01295	SN74150N
A144U2C	1820－0640		IC：TTL DATA SELECTOR／MULTIPLEXER	01295	SN74150N
A1441123	1820－0640		IC：TTL DATA SELECTOR／MULTIPLEXER	01295	SN74150N
1194U22	1820－0640		IC：TTL DATA SELECTOR／MULTIPLEXER	01295	SN74150N
A1A4U23	1320－0640		IC：TTL DATA SELECTOR／MULTIPLEXER	01295	SN74150N
4145	03660－60103	1	BOARD ASSY：ROM OUTPUT	28480	$08660-60103$
AlA5Cl	0180－0197		C：FXD EIECT 2.2 UF 10\％20VECW	56289	150D225x9020A2－DYS
A1A5C2	0180－0197		C：FXD ELECT 2.2 UF 10820 VCCW	56289	150D225x9020A2－DYS
alasc 3	0180－0197		C：FXD ELECT 202 UF 10% 20VOCW	56289	1500225x9020A2－DYS
A1A5C4	c180－0197		$\mathrm{C}:$ FXD ELECT 2．2 UF 10% 20VOCW	56289	$1500225 \times 9020 A 2-D Y S$
A1Asc． 5	0180－0197		C：FXD ELECT 2.2 UF 10\％20VECW	56289	1500225x9020A2－DYS
alasco	0180－0197		C：FXD ELECT 2.2 UF $10 \% 20 \mathrm{VCCW}$	56289	1500225x9020A2－DYS
alasul	1620－C661		IC：ITL QUAU 2－INPT CR GATE	01295	SN7432N
Ala 512	1820－0054		IC：TTL QUAD 2－INPT NAND GATE	01295	SN7400N
414503	1820－Uしら4		1C：TTL QUAD 2－INPT Nafio gate	01295	SN7400N

See introduction to this section for ordering information

Table 6－3．Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
414504	1820－0174		IC：TTL HEX INVERTER	01295	SN7404N
A1A5U5	1820－0068		IC：TTL TRIPLE 3－INPUT POS Nand gate	12040	SN7410N
A1A5U6	1820－0372		IC：TTL TRIPLE 3－INPT AND GATE	28480	1820－0372
A1A5U7	1820－0070		IC：TTL 3－INPT POS NAND GATE	01295	SN7430N
Alasus	1320－0495		IC：TTL 1 OF 16 DECODER	01295	SN74154N
Ala 509	1820－0068		IC：TTL TRIPLE 3－INPUT POS NAND GATE	12040	SN7410N
alasulo	1820－0174		IC：TTL HEX INVERTER	01295	SN7404N
A1A5U11	1820－0511		IC：TTL OUAD 2－INPT AND GATE	01295	SN7808N
A1A5U12	1820－0661		IC：TTL QUAD 2－INPT OR GATE	01295	SN7432N
A1A5u1 3	$1820-0511$		IC：TTL QUAD 2－INPT ANO GATE	01295	SN7408N
A1A5U14	1820－0669		IC：TTL DUAL－INPT PGS NANL GATE	01295	SNT420N
A1A5U15	1820－0079		IC：TTL 8－INPT POS NAND GATE	01295	SN7430N
A1A5U16	1820－0495		IC：TTL 1 OF 16 DECCDER	01295	SN74154N
A1A5U17	1820－0778	2	IC：TTL，LOW POWER 4－BIT SYN BIN COUNTER	07263	SL18325
Alasuls	1820－0054		IC：TTL QUAD 2－INPT NAND GATE	01295	SN7400N
Alasul9	1820－0587		IC：TTL LP TRIPLE 3－INPT NAND GATE	12040	DM74LION
A1A5420	1820－0587		IC：TTL LP TRIPLE 3－INPT NANC GATE	12040	DM7alion
－1A5U21	1820－0511		IC：TTL QUAD 2－INPT AND GATE	01295	SN7408N
AlASU22 alasuz3	$1820-0069$ $1820-0670$		IC：TTL DUAL ${ }^{\text {S－INOT POS }}$ NANC GATE IC：TTL 8－INPT POS NAND GATE	01295 01295	SNT420N SN7430N
A1A5U24	1820－0495		IC：TTL 1 OF 16 DECODER	01295	SN74154N
alab	C8660－60104	1	BOARD ASSY：REGISTER	28480	C8660－60104
A146Cl	0180－0197		C：FXD ELECT 2.2 UF 10\％ 20 VCCW	56289	1500225x9020A2－DYS
A1A6C2	0180－0197		C：FXD ELECT 2.2 UF $10 \% 20 \mathrm{VCCW}$	56289	1500225x9020A2－DYS
A1A6C3	0180－0197		C：FXD ELECT 2.2 UF 108 20vocw	56289	1500225x9020A2－DYS
A1A6C4	0180－0197		C：FXD ELECT 2.2 UF 10% 20VCCW	56289	1500225x9020A2－DYS
A1A6C5	0180－0197		C：FXD ELECT 2.2 UF 10\％20VOCW	56289	$1500225 \times 902042-D Y S$
A1AEC6	0180－0197		C：FXD ELECT 2.2 UF 10\％20VCCW	56289	$1500225 \times 902042-D Y S$
A1A6C7	$0180-0197$		C：FXD ELECT 2.2 UF 102 20VOCH	56289	1500225x9020A2－DYS
A1A6C8	0130－0197		C：FXD ELECT 2.2 Uf 102 20VCCW	56289	1500225X9020A2－DYS
A1A6C9	0180－1735	2	C：FXD ELECT 0.22 UF 10\％35VCCW	28480	0180－1735
A1A6Clo	0180－1735		C：FXD ELECT 0.22 UF 10835 VECW	28480	0180－1735
alagrl	0698－7236	5	R：FXD FLM 1 K OHM 2\％1／8W	28480	0698－7236
AlAGR2	069R－7236		R：FXD FLM 1K OHM 2\％1／8W	28480	0698－7236
alagul	1820－0903		IC：TTL LP 8－BIT SER．IN PAgALLEL	01295	SN74L164N
A146U2	1820－0903		IC：TTL LP 8－BIT SER．IN PARALLEL	01295	SNTAL164N
alagu3	1．20－0661		IC：TTL QUAD 2－INPT GR GATE	01295	SN7432N
A 146144	1820－0328		IC：TTL QUAD 2－INPT NOR GATE	04713	SN7402N
A146U5	1820－0769		IC：TTL DUAL 8－BIT SHIFT REG。	07263	U7893L2859X
alagug	1820－0709		IC：TTL DUAL B－BIT SHIFT REG。	07263	U7B93L2859X
A14607	1820－0709		IC：TTL DUAL 8－BIT SHIFT REG．	07263	U7B93L2859x
A146U8	1820－0372		IC：TTL TRIPLE 3－INPT ANO GATE	28480	$1820-0372$ S117315
Alabu9	1820－0710		IC：DIGITAL TTL＋LOGIC 5V 5\％	07263	SL17315
Alagulo	1820－0903		IC：TTL LP B－BIT SER．IN PARALLEL	01295	SN74L164N
alaguli	1820－0903		IC：TTL LP B－BIT SER．IN PARALLEL	01295	SN7aL164N
alagul 2	1820－0328		IC：TTL UUAD 2－INPT NOR GATE	04713	SN7402N
A1A6013	1820－0054		IC：TTL QUAD 2－INPT NAND GATE	01295	SN7400N
A1A6U14	1820－0709		IC：TTL DUAL 8－BIT SHIFT REG。	07263	U7893L2859x
Alabul 5	1820－0709		IC：TTL DUAL 8－BIT SHIFT REG。	07263	U7893L2859x
Alagul6	1820－0709		IC：TTL dUAL B－BIT SHIFT REG。	07263	U7B93L2859X
Alagult	1820－0068		IC：TTL TRIPLE 3－INPUT PCS NAND GATE	12040	SN7410N
Alaguls	1820－0054		IC：TTL UUAD 2－INPT NAND GATE	01295	SN7400N
Alabul9	1820－0511		IC：TTL QUAD 2－INPT AND GATE	01295	SN7408N
A146uzo	1820－0372		IC：TTL TRIPLE 3－INPT ANC GATE	28480	1820－0372
Alaguz	1820－0328		IC：TTL QUAD 2－INPT NCR GATE	04713	SN7402N
A1A6U22	1820－0583	4	IC：TTL LP QUAD 2－INPT NAND GATE	12040	DMTALOON
22abuz3	1320－0068		IC：TTL TRIPLE 3－INPUT PCS NANC GATE	12040	SN741 ON
A146U24	1820－0659		IC：TTL，LOW POWER－－EIT SHIFT REGISTER	07263	SL17145
A1AgU25	1820－0655		IC：TTL，LOW PJWER \＆－EIT SHIFT REGISTER	07263	SL17145
Al46U26	1820－C659		IC：TTL，LOW POWER \＆－EIT SHIFT REGISTER	07263	SL17145
A1A6U27	1820－0054		IC：TTL QUAO 2－INPT NAND GATE	01295	SN74．00N
alabu28	1820－0054		IC：TTL QUAD 2－INPT NAND GATE	01295	SN7400N
A1Agu2s	1820－0661		IC：TTL QUAD 2－INPT CR GATE	01295	SN7432N
A146U30	1820－0583		IC：TTL LP QUAD 2－INPT NAND GATE	12040	DM 74LOON
A146U31	1820－0587		IC：TtL lp triple 3－inpt nand gate	12040	DMT4L1 ON
A146U32	1820－0054		IC：TTL QUAD 2－INPT NAND GATE	01295	SNT4CON
A146U33	1820－0054		IC：TTL QUAD 2－INPT NAND GATE	01295	SN7400N
A1AOU34	1820－0659		IC：TTL，LOW POWER 4－EIT SHIFT REGISTER	07263	SL17145
Alabu35	1820－0659		IC：TTL，LIOW POWER 4－EIT SHIFT REGISTER	07263	SL17145
A1A6U36	1220－0659		IC：TTL，LOW PQWER \＆－EIT SHIFT REGISTER	07263	SL17145
AlA6U37	1820－0511		IC：TTL QUAD 2－INPT AND GATE	01295	SN74， 08 N
A1A6U38	1820－9174		IC：TTL HEX INVERTER	01295	SN7404N
A1A7	c8660－69109	1	BJARD ASSY：ALU	28480	08660－60108
Alalcl	0180－0197		C：FXD ELECT 2.2 UF 10\％20VCEW	56289	15 JD225X9020A2－DYS
Alatcz	0150－0197		C：FXU ELECT 2．2 UF 10\％20VECW	56289	$1500225 \times 902042-D Y S$

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A1ATC3	0180-0197		C:FXD ELECT 2.2 UF 10% 20VOCW	56289	1500225x9020A2-DYS
Alaprl	C757-0438		R:FXC MET FLM 5.11K OHM $181 / 8 \mathrm{~W}$	284 EC	0757-0438
A1A7k2	0757-0438		R:FXD MET FLM 5.11K OHM $181 / 8 \mathrm{~W}$	28480	0757-0438
AlAFR3 AIA	¢757-0438		$\begin{array}{lllllll}\text { R:FXD } & \text { MET } & \text { FLM } & 5.11 \mathrm{~K} & \text { OHM } \\ \text { R:FXD } & 18 \\ \text { MET } & \text { FLM } & 5.11 \mathrm{~K} & \text { OHM } \\ 18 & 1 / 8 \mathrm{~W}\end{array}$	28480	$0757-0438$ $0757-0438$
ala7ul	1820-0174		IC:TTL HEX INVERTER	01295	SN7404N
ala7uz	1820-0778		IC: TTL, LOW POWER 4-BIT SYN BIN COUNTER	07263	SL18325
ala7us	1820-0068		IC:TTL TRIPLE 3-INPUT POS NAND GATE	12040	SN7410N
A1A7U4	1820-0068		IC: TTL TRIPLE 3-INPUT PCS NAND GATE	12040	SN741 ON
ala7us	1820-0305	2	INTEGRATED CIRCUIT: BINARY FULL ADDER	01295	SN7483N
alatue	1820-0305		Integrated circuit:binary full adder	01295	SN7483N
A147U7	1820-0511		IC:TTL QUAD 2-INPT AND GATE	01295	SN7408N
ala 7 U8	1a20-07iu		IC:OIGITAL TTL+LOGIC 5V 5\%	07263	SL17315
A1A7UG $A 147410$	1816-0045	1	IC:ROM \#4 IC:TTL OUAD 2-INPT NAND GATE	28480 01295	1816-0045 SN7400N
alatulo	1820-0054		IC:THL QUAD 2-INPT NAND GATE	01295	SN7400N
A147Ull	1320-0063		IC:TTL TRIPLE 3-INPUT PCS NAND GATE	12040	SN7410N
A1A7012	1820-0740	2	IC:TTL H/S 4-BIT TRUE CGMPLIMENT	01295	SN74H87N
A147013	1820-0661		IC:TTL QUAD 2-INPT OR GATE	01295	SN7432N
A1A7U14 A1A7U15	$1820-0740$ $1820-0069$			01295 01295	SN74H87N SN7420N
A1ATU1S	1320-0054		IC:TTL SUAD 2-INPT NAND GATE	01295	SN7400N
114.7017	1320-0054		IC: TTL QUAD 2-INPT NAND GATE	01295	SN7400N
A147018	1920-0068		IC:TTL TRIPLE 3-INPUT PCS NAND GATE	12040	SN7410N
A1A7U19	1820-0077	4	IC:TTL DUAL D F/F	01295	SN7474N
A 147 U 20	1820-0054		ic:ttl quad 2-inpt nand gate	01295	SN7400N
A1A7xal	1200-0438		SOCKET:IC 16 CONTACT DUAL TYPE, BROWN	00779	583529-1
A1A8	08660-60109	1	BOARD ASSY: SWEEP CCUNT	28480	08660-60109
A A ABCl	0180-0197		C:FXD ELECT 2.2 UF 10% 20VOCW	56289	1500225x9020A2-DYS
AlABC2	0180-0127		C:FXD ELECT 2.2 UF 10% 20VCCW	56289	1500225x9020A2-DYS
Alabl3	0180-0218	1	C:FXD ELECT 0.15 UF 10\% 35 VCCW	28480	0180-0218
A1A801	1854-0671	13	TSTR:SI NPN(SELECTED FRCM 2N3704)	28480	1854-0071
AlABR1	0698-3154	21	R:FXD MET FLM 4022 K OHM 1\% 1/8W	28480	0698-3154
Alabrz	0698-3154		R:FXD MET FLM 4022K OHM $181 / 8 \mathrm{~W}$	28480	0698-3154
A1ABR3	0757-1100	2	R:FXD FLM 600 OHM 18 1/8W	28480	0757-1100
AlARR4	0698-3154		R:FXD MET FLM 4.22K OHM $181 / 8 \mathrm{~W}$	28480	0698-3154
AlABR5	0757-0465	6	R:FXD MET FLM 100K OHM $181 / 8 \mathrm{~W}$	28480	0757-0465
AlABR6	0757-0472	6	R:FXD MET FLM 200K OHM 19 1/8W	28480	0757-0472
$\triangle 148 \mathrm{k} 7$	0698-6248	3	R:EXD FLM 3K OHM $0.181 / 8 \mathrm{H}$	28480	0698-6248
AlAbrb	0698-6243		R:FXC FLM 3K OHM $0.151 / 8 \mathrm{~W}$	28480	0698-6248
Alabrs	0757-0439	13	R:FXD MET FLM 6.81K OHM $181 / 8 \mathrm{~W}$	28480	0757-0439
AlABRIO	0698-3151	9	R:FXD MET FLM 2.87 K OHM 181/8W	28480	0698-3151
A1ABK11	0757-0280		R:FXD MET FLY 1 K CHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0280
AIABR11	2100-1773	1	R:VAR WW 1K OHM 5\% TYPE H 1 W	28480	2100-1773
Alabril	0098-6248		R:FXD FLM 3K OHM $0.1811 / 8 \mathrm{~W}$	28480 28480	-0698-6248
AlAskl3	0757-1100		R:FXD FLM 600 OHM $181 / 8 \mathrm{~W}$	28480	0757-1100
A1A8R14	0757-0274	10	$R: F X D$ $R=F X D$	28480	0757-0274
AlAsR15	5757-2442		R:FXD MET FLM 10.0K OHM $181 / 8 \mathrm{~W}$	28480	0757-0442
A148R16	c757-0449	3	R:FXD FLM 20 OK OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0449
AlAOR17	0698-4008	1	R:FXD MET FLM $40 K$ CHM $181 / 8 \mathrm{~W}$	28480	0698-4008
alabrib	0698-3201	1	R:FXD FLM 80.0K OHM $181 / 8 \mathrm{~W}$	28480	0698-3201
ATABR2O	C6S8-3154		R:FXC MET FLM 4022 K OHM $1 * 1 / 8 \mathrm{~W}$	28480	0698-3154
$11 \mathrm{ABR21}$	6757-0280		R:FXD MET FLM 1 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0280
A1A8R22	0757-ن233	1	R:FXD MET FLM 2000K OHM 1\% 1/8W	28480	0757-0283
AlAFRRZ3	8693-5808	1	R:FXD MET FLM 4 K OHM 18 $1 / 8 \mathrm{~W}$	28480	0698-5808
AlAGR24	0698-3200	1	R:FXO FLM 8 K OHM $181 / 8 \mathrm{~W}$	28480	0698-3200
Alabr 25	0598-6104	1	R:FXO FLM 800 OHM $0.1 \% 1 / 8 \mathrm{k}$	28480	0698-6104
$\triangle 1 A B R 26$	3698-3154		R:FXD MET FLM 4022K OHM 18 1/8W	28480	0698-3154
A1AEk 27	0698-3154		R:FXD MET FLM 4. 22 K OHM 18 1/8W	28480	0698-3154
alabui	1826-0013	1	IC:LINEAR	28480	1826-0013
alabuz	1320-0583		IC:TTL LP Quad z-inpt nand gate	12040	DM ${ }^{\text {d4LOON }}$
alasuz	1820-0585		IC: TTL LP PUAD L-INPT NANO GATE	12040	DM74LOON
alabu4	1820-0070		IC:TTL 8-INPT POS NANC GATE	01295	SN7430N
A1A8U5	1820-0546	3	IC: DIGITAL TTL SYM 4-BIT BCD	28480	1820-0546
A148u6	1820-0068		IC:TTL TRIPLE 3-INPUT POS NAND GATE	12040	SN7410N
aladu7	1820-0577	3	IC:TTL HEX INVERTER/DRIVER W/OPEN COLL.	01295	SN7416N
alazusi	1820-.3546		IC:DIGITAL TTL SYNC 4-BIT BCD	28480 04713	1820-0546
A143u9	1820-0323		IC: TTL QUAD 2-INPT NOR GATE	04713	SN7402N
Alabul0 ${ }^{\text {ala }}$	$1820-0546$ $1820-0577$		IC:DIGITAL TTL SYNC 4-BIT BCD IC:TTL HEX INVERTER/DRIVER W/GPEN COLL.	28480 01295	$1820-0546$ SN7416N
Alakulz	1820-0328		IC:TTL QUAD 2-INPT NOR GATE	04713	SN7402N
$\begin{aligned} & A 1 A B U 13 \\ & A 1 A G \end{aligned}$	$\begin{aligned} & 1820-0577 \\ & 09660-60110 \end{aligned}$	1	IC:TTL HEX INVERTER/DRIVER W/OPEN COLL. buard assy:register "a"	$\begin{aligned} & 01295 \\ & 28480 \end{aligned}$	$\begin{aligned} & \text { SN7416N } \\ & 08660-60110 \end{aligned}$
Alajcl	c180-0197		C:FXD ELECT 2.2 UF 10% 20VCCW	56289	1500225x9020A2-DYS
alayc.z	0180-0197		C:FXD ELECT 2.2 UF 10% 2UVCCW	56289	1500225x9020A2-DYS
A1A9C3	0180-0197		C:FXD ELECT 2.2 UF 10\% 20VCCW	56289	1500225×9020A2-DYS

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1A9U1	1820-0709		IC:TTL DUAL 8-BIT SHIFT REG.	07263	U7B93L2859X
4149 U	1820-0709		IC:TTL DUAL 8-BIT SHIFT REG.	07263	U789312859X
A1A9U3	1820-0659		IC: TTL, LOW POWER 4-EIT SHIFT REGISTER	07263	SL17145
${ }^{\text {AlA9U4 }}$	1820-0659		IC:TTL,LOW POWER 4-EIT SHIFT REGISTER	07263	SL17145
alagus	1820-6659		IC:TTL.LOW POWER 4-EIT SHIFT REGISTER	07263	SL17145
A14906	1820-0659		IC:TTL, LOW POWER q-EIT SHICT REGISTER	07263	SL17145
alayut	1820-0659		IC: TTL.LOW POWER \&-EIT SHIFT REGISTER	07263	SL17145
alagus	1820-0054		IC: TTL QUAD 2-INPT NAND GATE	01295	SN7400N
alagug	1820-0372		IC:TTL TRIPLE 3-INPT AND GATE	28480	1820-0372
alagulo	1820-0372		IC:TTL TRIPLE 3-INPT AND GATE	28480	1820-0372
Alagull	1820-0054		IC:TTL QUAD 2-INPT NAND GATE	01295	SN7400N
AlA9012	1820-0054		IC:TTL QUAD 2-INPT NAND GATE	01295	SN7400N
Alayul3	1820-0054		IC:TTL QUAD 2-INPT NAND GATE	01295	SN7400N
alalo	08660-60128	1	BOARD ASSY: OUTPUT REGISTER	28480	08660-60128
Alalocl	0180-0197		C:FXD ELECT 2.2 UF 10820 VCCW	56289	1500225x9020A2-DYS
Alaloc 2	0140-0196		C:FXD MICA 150 PF 5%	72136	RDM1 5F151 J3C
AlAloc 3	0180-0197		C:FXD ELECT 2.2 UF 10\% 20VCCW	56289	1500225X9020A2-DYS
Alalorl	2698-0082		R:FXD MET FLM 464 OHM 1\% 1/8W	28480	0698-0082
AlA10R2	0698-0082		R:FXD MET FLM 464 OHM 18 1/6N	28480	0698-0082
A1Aloll	1920-0627	1	IC:TTL LP BCD TO OEC. DECOCER	07263	U7893L0159X
AlA10U2	1820-0535	1	1C:TTL OUAL PERI. $2-I N P T$ ANC DRIVER	01295	SN75451P
A1A10U3	1820-0054		IC:TTL QUAD 2-INPT NAND GATE	01295	SN7400N
Alalcus	1820-6614	5	IC:TTL CUAL 4-BIT LATCHILCW POWER)	07263	USN93L0859
AlAlOU5 Alaloub	$1820-0614$ $1820-0614$		IC:TTL DUAL 4-BIT LATCH(LCh POWER) IC:TTL DUAL 4-BIT LATCH(LCW POWER)	07263 07263	U6N93L0859 U6N93LC859
A1A10u7	1820-0614		IC: TTL DUAL 4-BIT LATCH(LCW POWER)	07263	U6N93L0859
alalova	1820-0614		IC:TIL DUAL 4-BIT LATCH(LCW POWER)	07263	U6N93L0859
A1A11	08660-60112	1	BOARD ASSY: INTERCONNECT	28480	C8660-60112
AlAl1C1 A1A11J1	$0160-3452$ $1200-0438$	1	C:FXD DISC CER O. 02 UF 20% 100VDCW SOCKET:IC 16 CONTACT DUAL TYPE, BROWN	56289 00779	$\begin{aligned} & \mathrm{C} 023 \mathrm{B101H2O3MS25-CDH} \\ & 583529-1 \end{aligned}$
A1411J2	1200-0438		SCGKET:IC 16 CCNTACT LUAL TYPE, CRCWN	00779	583529-1
c1allj3	1200-0438		SOCKET:IC 16 CONTACT DUAL TYPE, BROWN	00779	583529-1
A1A11J4	1250-1255	7	CONNECTOR:RF JACK, SERIES SMB	98291	51-051-0000
AlAl1J5 AlAllJS	1251-2361	69	CONNECTOR:PC WRAP-POST TYPE FOR MTG. (40 CONTACTS)	00779	86091-2
$\begin{aligned} & \text { AiAllJ } \\ & \text { A1A11J6 } \end{aligned}$	1251-2361		CONNECTOR:PC WRAP-POST TYPE FOR MTG. (2E CONTACTS)	00779	86091-2
alallxai-1	1251-2035	54	CONNECTOR:PC EDGE (2×15) 30 CONTACT	71785	252-15-30-300
A1A11×A1-2	1251-2026	8	CCNNECTOR:PC 30 CONTACT	71785	252-10-30-300
Alallxal01	1251-2035		CONNECTCR:PC ELGE (2×15) 30 CONTACT	71785	252-15-30-300
A1A11×A102	1251-2026		CGINJECTGK:PC 30 CONTACT	71785	252-10-30-300
A1A11XA2-1	1251-2C35		CONNECTCR:PC EOGE (2×15) 30 CONTACT	71785	$252-15-30-300$ $252-18-30-300$
A1A11×A2-2	1251-2C26		CONNECTOR:PC 36 CONTACT	71785	$252-18-30-300$ $252-15-30-300$
A1A11XA3-1 A1A1	1251-2035		CONNECTOR:PC EDGE (2 X 15$) 30$ CONTACT CONNECTOR:PC 36 CONTACT	71785 71785	$252-15-30-300$ $252-i \theta-30-300$
A1A11XA4-1	1251-2035		CONNECTOR:PC EDGE ($2 \times 15) 30$ CONTACT	71785	252-15-30-300
A1A11xA4-2	1251-2026		CONNECTOR:PC 36 CCNTACT	71785	252-19-30-300
alallxas-1	1251-2035		CONNECTOR:PC EDGE (2 X 15) 30 CONTACT	71785	252-15-30-300
A1A11×A5-2	1251-2026		CONNECTIOR:PC 36 CONTACT	71785	252-18-30-300
A1A11XA6-1	1251-2035		COINNECTCR:PC EDGE (2 x 15) 30 CONTACT	71785	252-15-30-300
A1A11XA6-2	1251-2026		CENNECTOR:PC 36 CONTACT	71785	252-10-30-300
A1A11XA7-1	1251-2035		CIINNECTOR:PG EDGE (2×15) 30 CONTACT	71785	252-15-30-300
A1AI1XA7-2	1251-2026		CONNECTITR:PC 36 CONTACT	71785	252-1 0-30-300
A1A11XA8-1	1251-2035		CCNNECTOR:PC EDGE ($2 \times 1515) 30$ CONTACT	71785	252-15-30-300
A1Al1×A9-1	1251-2035		CONNECTOR:PC EDGE (2×15) 30 CONTACT	71785	252-15-30-300
A1A12	08660-60111	1	boaro assy: Numeric readout	28480	08660-60111
A1A12C1	0180-0228	17	C:FXD ELECT 22 UF 1C\% 15VDCW	56289	$1500226 \times 901582-D Y S$
-iA12c2	0180-1714		C:FXD ELECT 330 UF 10% 6VCCW	28880	0180-1714
A1Al20sp	2140-0356	9	LAMP:INCANDESCENT T-1 BULB SV	71746	CM7-7683
A1A120S2	2140-0356		LAMP:INCANDESCENT T-1 BULB 5 V	71744	CM7-7.683
Alaizusj	2140-c 356		LA:AP: INCANOESCENT T-1 BULB SV	71744	CM7-7683
A1A120S 4	2140-0356		LAMP: INCANDESCENT T-1 BULB SV	71744	CM7-7683
-1A12.J1	1200-0438		SOCKET:IC 16 CONTACT DUAL TYPE, BROWN	00779	583529-1
-1412.J2	1200-0438		SIICKET:IC 16 CONTACT DUAL TYPE, BROWN	00779	583529-1
A1A1zol	1854-0492	18	TSTR:SI NPN	28480	1854-0492
A1A1202	1854-0492		TSTR:SI NPN	28480	1854-0492
A1A1203	1854-0492		TSTR:SI NPN	28480	1854-0492
4141204	1354-0492		TSTR:SI NPN	28480	1854-0492
A1A1205	1854-0492		TSTR:SI NPN	28480	1854-0492
A141206	1854-0492		TSTR:SI NPN	28480	1854-0492
A1A1207	1854-040?		TSTR:SI NPM	28480	1854-04.92
A1A1208	1854-0492		TSTR:SI NPN	284.80	1854-0492
A1A1209	1854-0492		TSTP:SI NPN	28480	1854-6492
A1A12010	1854-6492		TSTR:SI NPN	28480	1854-0492
A1A12012	1854-0482		TSTR:SI NPN	28480	1854-0492

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A1A12013	1854-0492		TSTR:SI NPN	28480	1854-0492
A1A12014	1854-0492		TSTR:SI NPN	28480	1854-0492
A1A12015	1854-0492		TSTR:SI NPN	28480	1854-0492
A1A12016	1954-0492		TSTR:SI NPN	28480	1854-0492
A1A12017	1654-0492		TSTR:SI NPN	28480	1854-0492
A1412018	1854-0492		TSTR:SI APN	28480	1854-0492
A1A12019	1854-0492		TSTR:SI NPN	28480	1854-0492
A1A12R1	0698-7236		R:FXD FLM 1K OHM $2 \pm 1 / 8 \mathrm{H}$	28480	0698-7236
A1A12R2 A 1412 S 3	C698-7236	3	R:FXD R:FXD FLM RL	28480 28480	$0698-7236$ $0698-7217$
AlAl2R4	0698-7217		R:FXD FLM 162 CHM 28 1/8w	28ヶ80	0698-7217
AlA12R5	C693-7217		R:FXD FLM 162 OHM $281 / 8 \mathrm{H}$	28480	0698-7217
AlAl2Rg	0698-7225	1	R:FXD FLM 348 OHM $281 / 8 \mathrm{H}$	28480	0698-7225
Alal2Si	3101-0137		SWITCH:SENSITIVE SPDT SUB-MINIATURE	91929	$15 \times 1-\mathrm{T}$
A1412S2	3101-0137		SWITCH: SENSITIVE SPDT SUB-MINIATURE	91929	1Sx1-T
41A12S3	3101-0137		SWITCH: SENSITIVE SPDT SUQ-MINIATURE	91929	$15 \times 1-\mathrm{T}$
A1412U1	1820-0571	2	IC:TTL NUMERIC DISPLAY CHARACTER GEN.	28480	1820-0571
A1A12U2 A1A12U3	1820-0571		IC:TTL NUMERIC OISPLAY CHARACTER GEN.	28480 28480	1820-0571
alali AlA12U3	$1990-0315$ $1990-0311$	1	NUMERIC OISPLAY, SITID STATE	28480 28480	$1990-0315$ $1990-0311$
A1A12U5	1820-0635	1	IC: DIGITAL	28480	1820-0635
A1A12XA3	1200-0481	2	SOCKET: INTEGRATED CIRCUIT	28480	1200-0481
A1A12XA4	1200-0481		SOCKET:INTEGRATEO CIRCUIT	28480	1200-0481
A1A13 AlA $130 \leq 1$	28660-60159	1		28480	$08660-60159$
A1A130St	2120.0356		LAMP:INCANDESCENT T-1 BULB 5V	71744	CM7-7683
AlA130S2	214040356		LAMP:INCANDESCENT T-1 BULB EV	71744	CM7-7683
-1A130S3	2140-0356		LAMP :INCANDESCENT T-1 BULB 5V	71744	CM7-7683
A1A13054	2140-0356		LAMP:INCANDESCENT T-1 BULB 5V	71744	CM7-7683
Alal3us 5	2140-0356		LAMP:INCANDESCENT T-1 BULB 5V	71744	CM7-7683
AlAL3TP1	0362-0063	6	TERMINATION:CRIMP LUG FOR 0.046 SO PIN	00000	OBD
A1A13TP2	0362-0063		TERMINATION:CRIMP LUG FOR 0.046S0 PIN	00000	OBD
AlA13TP3	0362-0063		TERMINATION:CRIMP LUG FOR 0.046SO PIN	00000	O8D
A1413TP4	0362-0063		TERMINATICN:CRIMP LUG FOR 0.04650 PIN	00000	OBD
AlA13TP5	0362-0063		TERMINATION:CRIMP LUG FOR 0.046SO PIN	00000	OBD
A1A13TP6	0362-0063		TERMINATICN:CRIMP LUG FOR 0.046SO PIN	00000	OBD
A1A13xAl	1251-1556	5	COINNECTOR:SINGLE CCNTACT	00779	2-330809-8
A1A13XA2	1251-1556		CONNIECTOR:SINGLE CONTACT	00779	2-330800-8
alal 3 xa3	1251-1556		CONNECTOR:SINGLE CONTACT	00779	2-330809-8
Alal3xa4	1251-1556		CONNECTOR:SINGLE CONTACT	00779	2-330808-8
Alal3xas	1251-1556		CONNECTOR:SINGLE CONTACT	00779	2-330808-8
A1A14	08660-60114	1	SWITCH ASSY:SWEEP	28480	08660-60114
A1A15	08600-50113	1	SWITCH ASSY: KEYBOARD	28480	08660-60113
21415	0570-2031	12	SCREW:RND HD SLOT DR 4-40 x 0.500" LG	00000	080
11415 41415	$5001-0109$ $5046-0364$	4	SPRING	28480 28480	$5001-0109$ $5040-0364$
A1A15	5040-0364	4	UPPER DECK	28480	5040-0364
A1A15	5040-6365	4	LUWER UECK	28480	5040-0365
A1A15	5040-0366	20	FLIPPER	28480	5040-0366
Alais	5040-0367	20	actuator	28480	5040-0367
A1A15	5040-6901	1	KEY: DEC POINT	28480	5040-6901
¢14.15	5040-6902	1	KEY: NUMBER 1	28480	5040-6902
A1425	5040-6903	1	KEY NUMBER 2	29480	5040-6903
A1A15	$5040-6904$	1	KEY NUMBER 3	28480	5040-6904
A)A15	$5540-6905$	1	KEY NUMBER 4	28480	5040-6905
A1A15 A1A15	$5040-6906$ $5040-6907$	1	KEY NUMBER 5 KEY NUMBER 6	28480 28480	$5040-6906$ $5040-6907$
41415	504C-6968	1	KEY NUNBER 7	28480	5040-6908
Alal5	5040-6909	1	KEY NUMBER 8	28480	5040-6909
A1A15	$5040-6910$	1	KEY NUMBER 9	28480	5040-6910
A1415	$5040-6911$	1	KEY NUMBER O	28480	5040-6911
A1A15	5040-6912	1	KEY:CLEAR KEYBOARD	28480	5040-6912
A1A15	5040-6,913		KEY: STEP UP	28480	5040-6913
A1A15	$504 C-6914$	1	KEY:STEP DOWIM	28480	5040-6914
A1415	5040-6915		KEY: SWEEP WIDTH	28480	5040-6915
-1415	$5040-6916$	1	KEY:CONTROL FREQUENCY	28480	5040-6916
alal5	5040-6917	1	KEY:HZ	28480	5040-6917
A1Al5	5040-6918	1	KEY: MHZ	28480	5040-6918
A1A15	5040-6919	1	KEY: KHZ	28480	5040-6919
A1A15 A1A15J1	$5040-6920$ $1200-0438$	1	KEY:GHZ ${ }^{\text {SOCKET:IC }} \mathbf{1 6}$ CONTACT DUAL TYPE, BROWN	28480	5040-6920
A1A15J1	1200-0438		SOCKET:IC 16 CONTACT DUAL TYPE, BROWN	00779	$583529-1$
alalb	08660)-60115	1	SWITCH ASSY: MANUAL MODE	28480	08660-60115
A1417	08666060123	1	TUNER ASSY: MANUAL MODE	28480	08660-60123
A2.	98660-6il020	1	30ARD ASSY:INTERCONNECTION	28480	08660-60020
$\pm 2 \mathrm{Cl}$	$01100-3456$	30	C:FXD CER 10C0 PF $10 \% 250 \mathrm{VOCW}$	56289	C067F251F102KS22-CDH
A2C?	C160-3456		C:FXD CER 1000 PF 10\% 250VDCW	56289	C067F251F102KS22-CDH
A2C3	0160-3456		C:FXD CER 1000 PF $10 \% 250 \mathrm{VDCW}$	56289	C067F251F102KS22-CDH

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A2C4	0160-3456		C:FXD CER 1000 PF $10 \% 250 \mathrm{VECW}$	56289	C067F251F102KS22-CDH
A2C5	0160-3456		C:FXD CER 1000 PF 102250 VOCW	56289	C067F251F102k S22-CDH
${ }^{\text {A2C }} \times 6$	0160-3456		C:FXO CER 1000 PF 10\% 250VOCW	56289 56289	C067F251F102KS22-CDH
A2C7 $A 2 C 8$	0160-3456 $0160-3456$		C:FXD CER C:FXD 1000 O	56289 56289	C067F251F102KS22-CDH
A2C9	0160-2055	159	C:FXI CER 0.01 UF +80-20\% 100VOCW	56289	C023F101F1032S22-CDH
A2C10	0160-2055		C:FXD CER 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
${ }^{4} 2 \mathrm{Cl1}$	0160-2055		C:FXD CER 0.01 UF +80-20\% 100VOCW	56289	C023F101F1032S22-CDH
${ }^{22 \mathrm{Cl}} 12$	0160-2055		C:FXD CER O. 01 UF $+80-208100 \mathrm{VDCW}$	56289	C023F101F1032S22-CDH
A2C13	0160-3456		C:FXD CER 1000 PF 10\% 250VCCW	56289	C067F251F102KS22-CDH
${ }_{42 \mathrm{Cl}}{ }^{2}$	0180-3456		C:FXD CER 1000 PF 10\% 250VECH	56289	C067F251F102kS22-CDH
$\stackrel{+2 C 15}{ }$	0160-3456		C:FXD CER 1000 PF 10\% 250VCCH	56289	C067F251F102KS22-CDH
${ }^{2} 2 \mathrm{Cl} 16$	C1 60-3456		C:FXD CER 1000 PF 108 250VOCW	56289	C067F251F102KS22-CDH
A2C.17	0160-3456		C:FXD CER 1000 PF 108 250VOCW	56289	C067F251F102KS22-CDH
A2C18	0160-3456		C:FXD CER 1000 PF $10 \% 250 \mathrm{VOCH}$	56289	C067F251F102KS22-CDH
${ }^{\text {A } 2 C 19}$	0160-3456		C: FXD CER 1000 PF 10\% 250VOCW	56289	C067F251F102KS22-CDH
A2C20	0160-3456		C : FXD CER 1000 PF $10 \% 250 \mathrm{VDCW}$	56289	C067F251F102kS22-CDH
${ }^{2} 2 \mathrm{C} 21$	0160-2055		C:FXD CER 0.01 UF +80-203 100VOCH	56289	C023F101F1032S22-CDH
${ }^{42 \mathrm{C} 22}$	0160-2055		C:FXD CER O.01 UF +80-208 100VOCW	56289	C023F101F1032S22-CDH
S2C23	0160-2055		C:FXD CER 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
A2C24	C160-2055		C:FXD CER 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
$42 \mathrm{C25}$	0160-3456		C:FXD CER 1000 PF 102 250VGCW	56289	C067F251F102KS22-CDH
A2C26	0160-3456		C:FXD CER 1000 PF $10 \pm 250 \mathrm{VDCW}$	56289	C067F251F102KS22-CDH
42 C 27	0160-3456		C:FXD CER 1000 PF $10 \pm 250 \mathrm{VOCH}$	56289	C067F251F102KS22-CDH
$42 \mathrm{C28}$	C160-2055		C:FXE CER 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
${ }^{\text {A2C29 }}$	0160-2055		C:FXD CER 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
A2C.30	0160-2055		C :FXD CER 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
${ }^{2} 2 \mathrm{C} 31$	0160-2055		C:FXD CER 0.01 UF +80-20x 100VDCW	56289	C023F101F1032S22-CDH
	$0160-3456$ $0160-3456$		C:FXD CER 1000 PF $10 \% ~ 250 V O C N$ C:FXD CER 1000 PF 10% 250VDCW	56289 56289	C067F251F102KS22-CDH C067F251F102KS22-COH
A2C34	0160-3456		C:FXD CER 1000 PF 103250 VOCW	56289	C067F251F102KS22-CDH
${ }^{2} 2 \mathrm{C} 35$	0160-3456		C:FXD CER 1000 PF 16\% 250VDCW	56289	C067F251F102KS22-CDH
A2C36	0160-3456		C:FXD CER 1000 PF 10\% 25 JVOCW	56289	C067F251F102KS22-CDH
${ }^{\text {ALC }} 38$	0160-3456		C:FXO CER 1000 PF 102 250VDCW	56289	C067F251F102KS22-CDH
A2C38	0160-3456		C :FXD CER 1000 PF $10 \% 250 \mathrm{VOCW}$	56289	C067F251F102KS22-CDH
A2C39	0160-3456		C:FXD CER 1000 PF 10\% 250VOCW	56289	C067F251F102KS22-CDH
A2C40	0160-3456		C : FXD CER 1000 PF 103250 VDCW	56289	C067F251F102KS22-CDH
$42 \mathrm{C41}$	-160-2055		C:FXD CER 0.01 UF +80-203 1COVDCW	56289	C023F101F1032S22-CDH
12 C 42	0160-2055		C:FXD CER O.01 UF +80-208 100VOCW	56289	C023F101F1032S22-CDH
A2C43	0160-2055		C:FXD CER 0.01 UF +80-202 100VOCW	56289	C023F101F1032S22-CDH
${ }^{42 \mathrm{C} 44}$	0160-2055 $1250-1255$		C:FXD CER 0.01 UF +80-209 100VDCW	56289 98291	CO23F101F1032S22-CDH
A 211	1250-1255		CONNECTOR:RF JACK, SERIES SMB	98291	$51-051-0000$
A2J2	1250-1255		CONNECTOR:RF JACK, SERIES SMB	98251	51-051-0000
A2J3	1250-1255		CONHECTOR:RF JACK, SERIES SMB	98291	$51-051-0000$ $51-051-0000$
A2J4	1250-1255		CONNECTGR:RF JACK, SERIES SMB	98291	51-051-0000
${ }^{\text {A2 }} 2$	03600-60080	2	CABLE ASSY:GRAY	28480 71785	
A2XA8	1251-2035		CONNECTUR:PC EDGE (2×15) 30 CONTACT	71785	252-15-30-300
${ }^{4} 2 \times 48$	1251-2035		CONNFCTOR:PC EDGE (2×15) 30 CONTACT	71785	252-15-30-300
A2X49	1251-2035		CONNECTOR:PC EDGE ($2 \times 15) 30$ CONTACT	71785	252-15-30-300
a $2 \times \mathrm{AI}$ io	1<01-<635		CGNNECTUR:PC EUGE (2×15) 30 CONTACT	71785	25-15-30-300
A 2×410	1251-3935		CONNECTOR:PC EDGE (2×15) 30 CONTACT	71785	252-15-30-300
A2xall	1251-2035		CCNNECTOR:PC EDGE ($2 \times 15) 30$ CONTACT	71785	252-15-30-300
a 2×411	1251-2035		CONNECTOR:PC EOGE (2×15) 30 CONTACT	71785	252-15-30-300
A 2×412	1251-2035		CONNECTOR:PC EDGE (2×15) 30 CONTACT	71785	252-15-30-300
A 2×12	1251-2035		CONNECTOR:PC EDGE (2×15) 30 CONTACT	71785	25-2-15-30-300
a 2×413	1251-2035		CONNECTOR:PC EDGE (2×15) 30 CONTACT	71785	252-15-30-300
A 2×1313	1251-2035		CONNECTOR:PC EDGE (2×15) 30 CONTACT	71785	252-15-30-300
A 2×14	1251-2035		CONNECTOR:PC EDGE (2×151 30 CONTACT	71785	252-15-30-300
a 2×14	1251-2035		CONNECTOR:PC EDGE ($2 \times 15) 30$ CONTACT	71785	252-15-30-300
A 2×415	1251-2035		CONNECTOR:PC EDGE ($2 \times 15) 30$ CONTACT	71785	252-15-30-300
A2xal 5	1251-2035		CONNECTOR:PC EDGE ($2 \times 15) 30$ CONTACT	71785	252-15-30-300
A 2×416	1251-2035		CONNECTOR:PC EDGE (2×15) 30 CONTACT	71785	252-15-30-300
a 2×416	1251-2035		CONNECTOR:PC EOGE (2×15) 30 CONTACT	71785	252-15-30-300
A2xal 7	1251-2035		CONHECTOR:PC EDGE (2×15130 CONTACT	71785	252-15-30-300
a 2×417	1251-2035		CONNECTOR:PC EDGE (2×15) 30 CONTACT	71785	252-15-30-300
A 2×418	1251-2035		CONNECTOR:PC EDGE ($2 \times 15) 30$ CONTACT	71785	252-15-30-300
A2xal8	1251-2.335		CONNECTOR:PC EDGE (2×15) 30 CONTACT	71785	252-15-30-300
${ }^{\text {a } 2 \times 479}$	1251-2635		CCANECTOF:SC ELGE ($2 \times 15) 30$ CCNTACT	71785	252-15-30-300
	1251-2035	1	CONNECTOR:PC EDGE (2×15) 30 CONTACT	71785	252-15-30-300
AsalCl	0160-0154	3	C:FXD MICA MY 0.0022 UF 10\% 200VDCW	56289	192P 22292-PTS
A3A1C2	0180-0197		C:FXD ELECT 2.2 UF 103 20vCCW	56289	150D225x9020A2-DYS
A3A1C3	0180-0197		C:FXD ELECT 2.2 UF 10\% 20VOCW	56289	$1500225 \times 902042-$ DYS
A3A1C4	0180-0197		C:FXD ELECT 2.2 UE 108 20VOCW	56289	1500225×902042-DYS
A3A1C5	0180-1745	3	C:FXD ELECT 15 UF 10\% 20VDCW	28480	0180-1746

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A3A1C6	0180-0373	1	C:FXD ELECT 0.63 UF $10 \% 35 \mathrm{VDCW}$	56289	$1500684 \times 9035 A 2-D Y S$
A3AICR1	1902-3059	1	OIODE BREAKDOWN:SILICON 3.83V 5%	28480	1902-3059
A3A1CR2	1901-0040		DIDCEE:SILICON 30MA 30WV	07263	FOG1088
A3A101	1853-0020		TSTR:SI PNP(SELECTED FROM 2N3702)	28480	1853-0020
A3A102	1854-0071		TSTR:SI NPN(SELECTED FRCM 2N3704)	28480	1854-0071
A3A103	1854-0671		TSTR:SI NPN(SELECTED FROM 2N3704)	28480	1854-0071
A34104	1854-0071		TSTR:SI NPN(SELECTED FROM 2N3704)	28480	1854-0071
A3A1R1	0698-3157	7	R:FXD MET FLM 1906K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3157
A3A1R2	6698-3157		R:FXD MET FLM 1906K OHM $181 / 8 \mathrm{H}$	28480	0698-3157
A3A1R3	0698-3435	2	R:FXD MET FLM 38.3 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3435
434184	6690-3435		K:FXD MET FLM 38.3 OHM 18 1/8W	28480	0698-3435
A3A1R5	0757-0279	34	R:FXD MET FLM 3.16K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0279
A3A1RG	0757-0442		R:FXD MET FLM 10.0K OHM 1\% 1/8W	28480	0757-0442
A3A1R7	0757-0442		R:FXD MET FLM 10.CK OHM $181 / 8 \mathrm{~W}$	28480	0757-0442
a3alR8	0757-0442		R:FXD MET FLM 10.0K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0442
93A1p9	0757-0442		R:FXD MET FLM 10.OK OHM $181 / 8 \mathrm{~W}$	28480	0757-0442
a3aikio	0757-0442		R:FXD MET FLM 10.0K CHM 1\% 1/8W	28480	0757-0442
A3A1R11	0757-0359	13	R:FDD MET FLY 82.5 OHM 1\% 1/3W	28480	0757-0399
A3A1R12	0757-0399		R:FXD MET FLM 82.5 OHM 18 1/8W	28480	0757-0399
A3A1k13	6757-0399		R:FXD MET FLM 32.5 OHM $181 / 8 \mathrm{~W}$	28480	0757-0399
A3A1R14	0757-0399		R:FXD MET FLM 82.5 OHM 18 1/8W	28480	0757-0399
A3A1R15	0757-0399		P: :FXD MET FLM 82.5 OHM 18 1/8W	28480	0757-0399
A3A1R16	C757-0394		R:FXD MET FLM 62.5 OHM 1818 BW	28480	0757-0399
A341R17	0757-0399		R:FXD MET FLM 82.5 OHM $181 / 8 \mathrm{~W}$	28480	0757-0399
A3A1k18	0757-0399		R:FXD MET FLM 82.5 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-03.99
A3A1×19	0757-0399		K:FXD MET FLM 32.5 OHM $141 / 8 \mathrm{~W}$	28480	0757-0399
a3alr20	0757-0278	6	R:FXD MET FLM 1.78K OHM 18 1/8w	28480	0757-0278
c3alus	1820-0174		IL:TTL HEX INVERTER	01295	SN7404N
a3aluz	1820-0077		IC:TTL DUAL D F/F	01295	SN7474N
434.1U3	1820-0069		IC:TTL DUAL 4-INPT POS NANC GATE	01295	SN7420N
A3A1U4	1820-0054		IC:TTL QUAD 2-INPT NAND GATE	01295	SN7400N
A3A1u5	1320-0214		IC : TTL BCD TO DEC. DECODER	01295	SN7442N
a3alu6	1820-0320		IC:TTL QUAO 2-INPT NOR GATE	04713	SN7402N
A3A1U7	1820-032		IC:TTL QUAD 2-INPT NOR GATE	04713	SN7402N
a3alua	1820-0207	1	IC:TtL monostable multivibrator	28480	1820-0207
f341199	1820-0072	$<$	IC:ITL LUAL 2 W 2 -INPT ANO/CR GATE	01295	SN7450N
-341410	1820-0072		IC:TTL DUAL 2W 2-INPT AND/CR GATE	01295	SN7450N
A3A 1×41	1251-1626	3	CONNECTOR:PC (2 $\times 12)$ 24 CONTACT	71785	252-12-30-300
A3A1XA2 S 31×42	125i-236i		CONNECTOR:PC WRAP-POST TYPE FOR MTG. (40 CONTACTS)	00779	86091-2
a3alxas	1251-2663	4	CONNECTOP. PC EDGE(2 $\times 18) 36$ CONTACT	05574	3VH18/1JNS
A3A1 $\times 14$	1251-1626		CONNECTOR:PC ($2 \times 12) 24$ CCNTACT	71785	252-12-30-300
A3A1 $\times 45$	1251-2663		CONNECTOR PC EDGE (2×18) 36 CONTACT	05574	3 VH1 8/1JNS
A3A2	08660-60029	1	BOARD ASSY:DIGITAL INT RR	28480 56289	08660-60029 $1500225 \times 9020 A 2-D Y S$
A342C1	018.0-0197		C:FXD ELECT 2.2 UF 10% 20VDCW	56289	1500225X9020A2-DYS
A3A2C2	0180-0197		C:fXD ELECT 2.2 UF 10\% 20VOCW	56289	1500225×9020A2-DYS
A342C3	0180-0157		C:FXD ELECT 2.2 UF 10% 20VCCW	56289	1500225x9020A2-DYS
43 A 2 C 4	0160-2219	1	C:FXD MICA 1100 PF 5\%	28480	0160-2219
A34201	1854-0071		TSTR:SI NPN(SELECTED FRCM 2N3704)	28480	1854-0071
A3A202	1854-3071		TSTR:SI NPN(SELECTED FROM 2N3704)	28480	1854-0071
A3A2R1	0757-0421	29	R:FXD MET FLM 825 OHM $181 / 8 \mathrm{~W}$	28480	0757-0421
-342k?	9698-3445		R:FXO MET FLM 348 OHM is 1/8W	28480	0698-3445
A342R3	0757-0279		R:FXD MET FLM 3. 16 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0279
A3A2R4	0698-3445		R:FXD HET FLM 349 OHM 1\% $1 / 8 \mathrm{BH}$	28480	0698-3445
H3A 2 k 5	0679-3445		R:FXD MET FLM 348 OHM 18 1/8W	28480	0698-3445
$\triangle 3 \mathrm{ARo}$	0698-3445		R:FXD MET FLM 348 OHM 18 1/8d	28480	0698-3445
A3A2R7	0693-3445		R:FXD MET FLM 348 OHM $181 / 8 \mathrm{~W}$	29480	0698-3445
A3A 2 R 8	0757-0275		R:FXD MET FLM 3.16 K CHM $181 / 8 \mathrm{~W}$	28480	0757-0279
A342R9	6757-0421		R:FXD MET FLM 825 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0421
A 342 k 10	0751-0421		R:FXD MET FLM 825 OHM 1\% 1/8W	28480	0757-0421
A3A2R11	c:57-642.1		P:FXD MET FLM 825 OHM 1\% 1/8W	28480	0757-0421
-3A>P12	0757-0421		F:FXD MET FLM 825 CHM 1\% 1/EW	29480	0757-0421
A 3 A 2×13	6698.3445		R:FXO MET FLM 348 OHM 18 1/8W	28480	0698-3445
A 3A 2×14	0593-3445		R:FXD MET FLM 348 OHM 1\% 1/8W	28480	0698-3445
A3A2R15	0698-3445		R:FXD MET FLM 348 OHM 1* 1/8W	28480	0698-3445
A3A2R16	0098-3445		R:FXD MET FLM 348 CHM 1\% 1/8W	28480	0698-3445
A342R17	c757-0421		K:FXU MET FLM BE5 UHM 1\% 1/8W	28460	0757-0421
A3A2R18	0757-0421		R:FXD MET FLM 825 OHM 18 1/8W	28480	0757-0421
A3A2R19	0757-0421		R:FXD MET FLM 825 OHM 18 1/8W	28480	0757-0421
A3A2R20	c75i-042.1		R:FXD MET FLM 825 CHM $181 / 8 \mathrm{~W}$	28480	0757-0421
A3A2R21	0757-3416	33	R:FXD MET FLM 511 OHM 1\% 1/8W	28480	0757-0416
A3A2R22	0757-0279		R:FXD MET FLM 3.16 K OHM 18 1/8W	28480	0757-0279
A3A2R23	0757-0279		R:FXD MET FLM 3.16K OHM 18 1/8W	28480	0757-027.9
A3E2F24	6957-0279		R:FXD MET FLA 3.15K OHM 1\% 1/8W	28480	0757-0279
1342R25	0757-0421		R:FXD MET FLM 825 OHM 1\% 1/8W	28480	0757-0421

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
4342 R 26	0757-0421		R:FXD MET FLM 825 OHM 1\% 1/8W	28480	0757-0421
A3A2R27	0757-0279		R:FXD MET FLM 3.16 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0279
A3A2R28	0757-0279		R:FXD MET FLM 3.16K OHM 1\% $1 / 8 \mathrm{BW}$	28480	0757-0279
A3A2R29	0696-3445		K :FXD MET FLA 348 OHM $181 / \mathrm{EW}$	28480	0698-3445
-3A2R30	-070-3445		R:FXD MET FLM 348 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3445
~3A2U1	1820-0054		IC: TTL Quad 2-INPT Nand gate	01295	SN7400N
a 3 A2U2	1820-0301	2	IC:TTL QUAD BI-STABLE D-LATCH	01295	SN7475N
A3A2U3	1820-0256		IC:DTL QUAD 2-INPUT POWER GATE	04713	MC 858 P
A3A 2114 $\Delta 343$	$1820-0301$ $68660-6002$	1	IC: TTL JUAD BI-STABLE D-LATCH BDARL ASSY:	01295 28480	SN7475N $08660-60025$
A 343					
-343J1	1250-1255		CONNECTOR:RF JACK, SERIES SMB	98291	51-051-0000
4343J2	1250-1255		CONNECTOR:RF JACK, SERIES SMB	98291	51-051-0000
${ }^{\text {A }} 4.4$	28660-60942	22		28880 72982	08660-60042 $2425-000-\times 5 V-502 P$
${ }_{44}$	0160-2437		$\mathrm{C}:$ FXD CER $5000 \mathrm{PF}+80-20 \% 200 \mathrm{VDCH}$	72982	2425-000-x5V-502P
A4C3	c160-2437		C:FXD CER 5000 PF +80-20\% 200VOCW	72982	2425-000-X5V-502P
A4C4	0160-2437		C:FXD CER 5000 PF +80-20\% 200VDCW	72982	2h25-000-X5V-502P
A4C5	C160-2437		C:FXD CER 5000 PF +80-20\% 200VDCW	72982	2425-000-X5V-502P
A4CO A 47	$0160-2437$ $0160-2437$		C:FXD CER 5000 PF +80-20\% 200 VOCH C:FXD CER 500C PF +80-20\% 200 VDCW	72982 72982	$2425-000-\times 5 \mathrm{~V}-502 \mathrm{P}$ $2425-000-\times 5 \mathrm{~V}-502 \mathrm{P}$
A4C8	0160-2437		C:FXD CER 5000 PF +80-209 200VOCW	72982	2425-000-X5V-502P
A4C9	01.60-3744	6	C : CER FEED-THRU 1000 PF 200 VDCW	72982	2425-000-×540-1022
A4C10	0160-2437		C:FXD CER 5000 PF +80-20\% 200 VOCW	72982	2425-000-x5v-502P
${ }^{8} 44 \mathrm{Cl12}$	0160-3744		C: CER FEEL-THRU 1000 PF 20 CVOCW C:FXD CER $5000 \mathrm{PF}+80-20 \pm 200 \mathrm{VDCW}$	72982 72982	$\begin{aligned} & 2425-000-\times 500-1022 \\ & 2425-000-\times 5 v-5029 \end{aligned}$
$04 \mathrm{Cl2}$	C160-2437		C:FXD CER 5000 PF +80-20\% 200VDCW	72982	2425-000-X5v-502P
A4C13	0160-3744		C:CER FEED-THRU 1000 PF 200VDCW	72982	2425-000-X500-1022
${ }^{4} 4 \mathrm{C} 14$	0160-2437		C:FXD CER 5000 PF +80-20\% 200VDCW	72982	2425-000-×5v-502P
A4C15	0160-3744		C:CER FEEO-THRU 1000 PF 200 VDCW	72982	2425-000-x500-1022
${ }^{4} 4 \mathrm{C16}$	0160-2437		C:FXC CER 500 C PF +80-20\% 200 VOCH	72982	$\begin{aligned} & 2425-000-\times 5 v-502 P \\ & 2425-000-\times 540-1022 \end{aligned}$
${ }^{44 C 17}$	0160-3744		C:CER FEED-THRU 1000 PF 20nVDCW	72982	2425-000-X5U0-102Z
${ }^{4} 4 \mathrm{Cl} 18$	0160-2437		C:FXD CER 5000 PF +80-20\% 200VDCW	72982	2425-000-x5V-502P
A4C19	0160-3744		C:CER FEED-THRU 1000 PF 200VDCW	72982	2425-000-X5U0-1022
A4C20	0160-2437		C:FXD CER 5000 PF +80-20\% 200VOCW	72982	2425-000-X5V-502P
A4C21	0160-2437		C:FXO CER 5000 PF +80-2C8 2COVDCW	72982	2425-000-X5V-502P
A4C22	0160-2437		C:FXD CER $5000 \mathrm{PF}+80-20 \% 200 \mathrm{VDCW}$	72982	2425-000-X5V-502P
A4.11	1250-0901	18	CONNECTOR:RF BULKHEAD	15558	1104/D
A4J2	1250-0901		CONNECTOR:RF BULKHEAD	15558	1104/D
A4, 3	1250-0901		CONNECTOR:RF BULKHEAD	15558	1104/0
A4, ${ }^{4}$	1250-0901		CONNECTOR:RF BULKHEAD	15558	1104/D
A4J5	1250-0901		CONNECTOR:RF BULKHEAD	15558	1104/0
A4J6	12.50-0901		CONNECTOR:RF BULKHEAD	15558	1104/D
A4.J7	1250-0901		CONNECTCR:RF BULKHEAD	15558	1104/0
44.8	1250-0901		CUNNECTUK:RF BULKHEAD	15558	1104/0
A4J9	1250-0301		CONNECTOR:RF BULKHEAD	15558	1104/0
14.110	1250-6901		Connectur:ri bulkhead	15558	1104/D
A4. 111	1.250-0901		CONNECTOR:RF BULKHEAD	15558	1104/D
A4.112	1250-0901		CORNECTUR: FF BULKHEAD	15558	1104/0
A4. 113	1250-0901		CONNECTOR:RF BULKHEAD	15558	1104/D
A4J14	1250-0901		CONNECTOR:RF BULKHEAD	15558	1104/0
A4W2	08660-60650	1	CABLE ASSY: Gray	28480	08660-60050
24w 3	08660-00n63	1	CABLE ASSY:GRAY	28480	08660-60063
A4W4	08660-6C055	1	CABLE ASSY:GRAY	26480	08660-60055
A42	08660-00014	1	COVER:REF. OSC.	28480	08660-00014
${ }^{4} 42$	08660-00015	1	COVER:REF. DIVIDER	28480	08660-00015
A4L	08660-00016	1	COVER:REF. PHASE DETECTOR	28480	08660-00016
A4L	08660-00017	1	COVER: DIVIDE BY TWO	28480	08660-00017
A42	03660-00.018	1	COVER:PRETUNE	28480	08660-00018
A42	08660-00019	1	COVER:VCO	28480	08660-00019
142	03660-00020	1	COVER:PHASE DETECTOR	28480	08660-00020
A42	08660-00063	1	HOUSING:H.F. LP	28480	08660-00063
A4A1	08660-60903	1	BUARD ASSY:REF. DIVIDER	23480 72136	$08660-60003$
A4A1C2	0180-0116	7	$\mathrm{C}:$ FXO ELECT O.J UF $10 \% 35 \mathrm{VECW}$	50289	1500685×903582-DYS
A441C. 3	c180-0229	13	C:FXD ELECT 33 UF 1C\% 1 CVDCW	28480	0180-0229
A4AlC.	0160-2199	1	C:FXD MICA 30 PF 53300 VOCW	28480	0160-2199
A4AlCs	0160-0154		C: FXD AICA HY 0.0022 UF 10\% 200 VDCW	56289	192P22292-PTS
a4AlC6	016i-0154		C:FXD MICA MY 0.0022 UF 102 200VDCW	56289	192P 22292 -PTS
4441.C7	0160-01297	2	C:FXD : $4 Y$ O, 0012 JF 13\% 200VDCH	56289	192P12292-PTS
A4A1CRI	19, ${ }^{\text {-0,004a }}$	1	didue: baEakdown bodiv 5\%	04713	SZ10939-134
A4A1L1	9100-1642	2	COILICHOKE 270.0 UF 5\%	28480	9100-1642
A4A1L2 A4AlL	$9100-1542$ $9140-014{ }^{\text {a }}$	3	COILICHCKE 27c.0 UF 5\% COIL:FXD RF 4.7 UH	28480 28480	$9100-1642$ $9140-0144$
A44101	91854-0019	15	TSTR:SI NPN	28480	1854-0019
A44102	1854-0019		TSTK:SI NPN	28480	1854-0019
A4A103	1854-0.045	4	TSTR:SI NPN	04713	2N956

Table 6－3．Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A4A1R1	0757－044．4	15	R：FXD MET FLM 1201K OHM 1\％1／8w	28480	0757－0444
14A122	6698－3622	1	R：FXD MET OX 120 CHM 5＊2w	28480	0698－3622
A4A183	$0098-0033$	40	R：FXD MET FLM 1．96K OHM 1\％1／8W	28480	0698－0083
A4A1R4	0757－0280		R：FXD MET FLM 1 K BHM $181 / 8 \mathrm{~N}$	28489	0757－0280
A4A1R5	0757－0394	28	R：FXD MET FLM 51．1 OHM 1\％1／8w	28480	0757－0394
A4A1R6	0757－0280		R：FXD MET FLM 1K OHM $121 / 8 \mathrm{~W}$	28480	0757－0280
A4A1RT	0698－0083		R：FXD HET FLM 1．96K OHM $181 / 8 \mathrm{~W}$	28480	0698－0083
A4A1R8	0757－0280		R：FXD MET FLM 1 K OHM 1\％ $1 / 8 \mathrm{~N}$	28480	0757－0280
A4A1R9	0757－0394		R：FXD MET FLM 51．1 OHM $181 / 8 \mathrm{~W}$	28480	0757－0394
A4A1R1O	0757－0280		R：FXD MET FLM 1 K CHM $1 \% 1 / 2 \mathrm{~W}$	28480	0757－0280
A4A1R11	0608－3441	16	R：FXD MET FLM 215 OHM 1\％1／8w	28480	0698－3441
A441k12	0698－3441		R：FXD MET FLiA 215 OHM 1\％1／3W	28480	0698－3441
A4AIR13	0698－3441		R：FXD MET FLY 215 OHM 1\％1／8W	28480	0698－3441
A4A1R14	0757－0401		R：FXD MET FLM 100 OHM 1\％1／8W	28480	0757－0401
A4Alul	1820－0054		IC：TTL QUAD 2－INPT NAND GATE	01295	SN7400N
A441U2	1820－0055		IC：TTL DECADE COUNTER IC MHZ MIN。	01295	SN7490N
A4A1U3	1820－0055		IC：TTL DECADEE COUNTER 10 MHZ MIN。	01295	SN7490N
A4A2	08660－60002	1	BCARD ASSY：REF．PHASE DETECTOR	28480	08660－60002
A4A2C1	0180－0100	1	C：FXD ELECT 4．7 UF 10\％35VOCW	56289 56289	$150 D 475 \times 9035 B 2-D Y S$ $1500685 \times 903582-$ DYS
1442C2．	0180－0116		C：FXD ELECT 6.8 UF 108 35VECW	56289	$1500685 \times 9035 B 2-D Y S$
A4A2C3	0180－0228		$\mathrm{C}:$ FXD ELECT 22 UF 10\％15VDCH	56289	1500226x901．582－DYS
14A2C4	0160－2055		C：FXD CER 0．01 UF $+80-208100 \mathrm{VDCW}$	56289	C023F101F1032S22－CDH
A4A2C5	0180－1746		C：FXD CLECT 15 UF 104 2CVDCW	28480	0180－1746
A4A2C6	0160－2055		C：FXD CEF U．01 UF＋80－20\％100VDCH	56289 56289	C023F101F1032S22－CDH
$4442 \mathrm{C7}$	0160－2055		C：FXD CER 0．01 UF＋80－20\％100VDCW	56289	C023F101F1032S22－CDH
A4A2C8	0160－2055		C：FXD CER 0.01 UF $\mathbf{+ 8 0 - 2 0 \% ~ 1 0 0 V O C W ~}$	56289	C023F101F1032S22－CDH
A4A2C9	$0180-0729$		C：FXD ELECT 33 UF 10% 10VCCW	28480	0180－0229
A4A2C10	0160－2055		C：FXD CER 0．01 UF＋80－20\％100VDCW	56289	C023F101F1032S22－COH
A4A2C11	$0140-0192$ $6160-2308$	1	C：FXD MICA C：FXD MICA 36 PF PF P\％	28480 28480	0140－0192 $0160-2308$
24A2G12	6160－2308				
A4A 2C13	0160－2055		C：FXD CER 0．01 UF＋80－20\％100VDCW	56289	C023F101F1032 S22－CDH
A4A2C14	0160－2055		C：FXD CER 0．01 UF＋80－20\％100VDCW	56289	C023F101F1032S22－CDH
A442C1． 5	0160－2055		C：FXD CER 0．01 UF＋30－208 100VOCW	56289	C023F101F1032S22－CDH
A4A2C16	c160－2055		C：FXD CER 0．01 UF＋80－20\％100VDCW	56289	C023F101F1032S22－CDH
A4A2C17	01．60－2055		C：FXD CER 0.01 UF＋80－20\％ 100 VDCW	56289	C023F101F1032S22－CDH
A4A2C18	0160－2055		C：FXU CER 0.01 UF $+80-20 \% 100 \mathrm{VOCW}$	56289	C023F101F1032S22－CDH
A4A 2C19	0150－2055		C：FXD CFR 0．01 UF＋80－20\％100VDCW	56289	C023F101F1032S22－CDH
A4A2C20	0160－2204		C：FXD MICA 100PF 5\％	72136	RDM15F101J3C
A4A2C21	0160－2055		C：FXD CER O．01 UF＋80－20\％100VDCW	56289	C023F101F1032S22－CDH
A4A2C22	0180－2205	1	C：FXD ELECT 0.33 UF 10\％35VECW	56289	1500334X9035A2－DYS
A4A2C23	0160－3537	2	C：FXD MICA 680 PF 5\％ 100 VCCW	72136	RDM15F681J1C
1442 C 24	0160－2205	3	C：FXD MICA 120 PF 5\％	28480	0160－2205
A442C25	0160－2218		C：FXD MICA 1000 PF 5\％	28480	0160－2218
A 4 A 2 C 20	0180－1745	2	C：FXD ELECT 1.5 UF 10\％20VCCW	28480	0180－1745
A4A2C 27	2160－2055		C：FXD CER 0．01 UF＋80－20\％100VDCW	56289	C023F101F1032S22－COH
A4A2CR1	1902－0049	1	DIODE：BREAKOOWN 6．19V 5\％	04713	S210939－122
14A2CR2	1901－204C		DIODE：SILICON 30MA 30w	07263	FDG1088
A4A2CR3	1901－0040		DIDOE：SILICON 30MA 30wV	07263	FDG1088
A4A2CR4	1901－0179	6	DIODE：SILICCN 15 WV	28480	1901－017．9
A4A2CR 5	1901－0179		DIDOE：SILICON 15wV	28480	1901－0179
A4A2L1	9100－1629	30	COIL／CHOKE 47．0 UH 5\％	28480	9100－1629
A4A2L2	9100－1629		COIL／CHOKE 47．0 UH 5\％	28480	9100－1629
A4A2L3	S1GC－2260	2	COIL：FXD 1080 UH 10%	82142	09－4436－3K
A4A2L4	9140－0129	2	COIL：FXD RF 220 UH	28480	9140－0129
A4S2L5	9140－0237	1	CCIL：FXD 200 UH 5\％	28480	9140－0237
44A201	1954－0019		TSTR：SI NPN	28480	1854－0019
A4A202	2．554－0．019		TSTR：SI NPN	28480	1954－0019
A4A203	1854－0019		TSTR：SI NPN	28480	1854－0019
A4A204	1854－0019		TSTR：SI NPN	28480	1854－0019
－4A205	1853－0015	7	TSTR：SI PNP	80131	2N3640
A4べ206	1854－0019		TSTR：SI NPN	28480	1854－0019
44A207	1853－0020		TSTR：SI PNP（SELECTED FROM 2N3702）	28480	1853－0020
A4A208	1854－0071		TSTR：SI INPIV（SELECTEC FRSN 2N3704）	28480	1854－0071
A41209	1854－0C71		TSTR：SI NPN（SELECTED FROM 2N3704）	28480	1854－0071
－4A2010：	1554－0071		TSTR：SI NPN（SELECTED FROM 2N3704）	28480	1854－0071
A4A2011．	1854－0019		TSTR：SI NPN	28480	1854－0．019
A4AR21	0757－04401		R：FXD MET FLM 100 CHM 1\％1／8W	28480	0757－0401
A4A2k2	0757－0401		R：FXD MET FL：4 100 OHM 1\％1／8W	28480	0757－0401
A4A2R 3	0757－0442		R：FXD MET FLM 10．OK OHM 1\％1／8W	28480	0757－0442
$\triangle 4 A 2 R 4$	c757－0441	17	R：FXD MET FLM 8025K OHM 1\％1／8W	28480	0757－0441
A4＾2R5	6757－0416		R：FXD MET FLM 511 OHM 1\％1／8W	28480	0757－0416
\＆ 4×286	6757－0230		R：FXO MET FLM 1 K CHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757－0280
A4A2k 7	c757－0401		R：FXD MET FLM 100 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757－0401
A4A2RS	cto8－0083		R：FXO MET FLiA 1．96K OHM 1\％ $1 / 8 \mathrm{~W}$	28480	0698－0083
A4A2k9	0757－0438		R：FXD MET FLM 5．11K OHM 1\％1／8W	28480	0757－0438

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A4A2R10	0698-3156	7	R:FXD MCI FLM 1s.7K OHM 1\% 1/8w	28480	0698-3156
14 A2R11	0698-3132		R:FXD FLM 261 OHM $181 / 8 \mathrm{~W}$	28480	0698-3132
A4A2R12	0757-0401		R:FXD MET FLM 100 OHM $1 \% 1 / 8 \mathrm{w}$	28480	0757-0401
A4A2R13	C693-0083		R:FXD MET FLM 1.96K OHM 1\% $1 / 3 \mathrm{~W}$	28480	0598-0083
A4A2R14	0757-0280		P: FXD MET FLM 1 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0280
A4A2R15	0757-0401		R:FXD MET FLM 100 OHM 1\% 1/8W	28480	0757-0401
A4A2R16	0698-0082		R:FXD MET FLM 464 OHM $181 / 8 \mathrm{w}$	28480	0698-0082
A4A2R17	c698-3441		R:FXD MET FLM 215 OHM 1\% 1/8W	28480	0698-3441
$14 A 2 R 18$ $442 R 19$	$0698-0 C 84$ $0757-0280$	13	R:FXU R:FXD MET	28480 28480	$\begin{aligned} & 0698-0084 \\ & 0757-0280 \end{aligned}$
A4A2R20	0698-3446	8	R:FXD MET FL. 383 OHM 1\% 1/8W	28480	0698-3446
A4A2R21	0757-0441		R:FXO MET FLM 8.25 K CHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-04.41
A4A2R22	0757-0441		R:FXD MET FLY 80 25 K OHM $1 \% 1 / 8 \mathrm{H}$	29480	0757-0441
A4A2R23	0698-3438	10	R:FXD MET FLM 147 OHM 1\% 1/8W	28460	0698-3438
A4A2R24	0757-0346	14	R:FXD MET FLM 10 UHM $161 / 8 \mathrm{~W}$	28480	0757-0346
A4A2R25	0757-0346		R:FXD MET FLM 10 OHM 1\% 1/8w	28480	c757-0346
A4A2R26	0698-3438		R:FXO MET FLM 147 OHM 1\% 1/8W	28480	0698-3438
A4A2R27	4757-0418	5	R:FXU MET FLM 619 GHM 1\% 1/8W	28480	0757-0418
A4A2R28	0698-3158	3	R:FXD MET FLM 23.7K OHM 1\% 1/8W	28480	0698-3158
A 4A2R29	0698-3154		R:FXO MET FLi4 4.22K OHM $181 / 8 \mathrm{~W}$	28480	0698-3154
A4A2R30	0698-3154		R:FXD MET FLM 4. 22 K OHM 18 $1 / 8 \mathrm{~W}$	28480	0698-3154
A4A2R31	0757-0442		R:FXD MET FLM 10.0K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0442
A4A2R32	0757-0346		R:FXD MET FLM 10 OHM 18 1/8W	28480	0757-0346
A4A2R33	0757-0340		R:FXD IAET FLM 10 CHM 1\% 1/8w	28480	0757-0346
A4A2R34	c698-3453	1	R:FXD MET FLM 196K OHM 18 1/6W	23480	0698-3453
A4A2R35	0608-3260	1	R:FXD MET FLM 464 K OHM $121 / 8 \mathrm{~W}$	28480	0698-3260
9442R36	j757-0438		R:FXD MET FLA 5.11K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0433
14A2R37	c658-0084		R:FXD MET FLM 2015K OHM 15 1/8W	284.80	0698-0084
A4A2R38	0698-3444	21	R:FXO MET FLM 316 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3448
A4A2R39	0757-0278		R:FXD MET FLM 1.78K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0278
A4A2R40	0699-3444		R:FXD MET FLM 316 OHM 1\% 1/8W	28480	0698-3444
A 4A2R41	0757-0288	6	R:FXD MET FLM 9.09K CHM 1\% $1 / 8 \mathrm{~N}$	28480	0757-0288
A4A 2 R 42	0757-0401		R:FXD MET FLM 100 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0401
A4A2R43	0757-0280		R:FXD MET FLM 1 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0280
A4A2R44	6757-64C1		K:FXD MET FLM 100 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0401
A4A2R45	0757-0419		R:FXD MET FLM 681 CHM $17 \% 1 / 8 \mathrm{~W}$	28480	0757-0ヶ19
A 4 A2R46	0757-0280		R:FXO MET FLM IK OHM 1\% 1/8W	28480	0757-0280
-4A2R47	0698-3446		R:FXU MET FL\% 333 OHH 18 1/8W	28480	0698-3446
-442R48	$0757-0280$		R:FXD MET FLM 1 K OHM 1\% 1/8W	28480	
A4A2T1	08552-6044	1	TRANSFORMER:RF 5 PIN	50436	08552-6044
A4A201	1820-0370	1	IC:TTL HS QUAD 2-INPT NANL GATE	01295	SN 74HOON
A4A3	65660-60C64	1	BDARD ASSY:REF. DIVIDE BY 2	28480	08660-60004
44 A 3 Cl	c160-2055			56289	C023F101F1032 S22-CDH
A4A3C2	0160-2204		C:FXD MICA 100PF 5\%	72136	RDM15F101J3C
A4A3C3	0160-2055		$\mathrm{C}: \mathrm{FXD}$ CER 0.01 UF +80-20\% 100VOCW	56289	C023F101F1032S22-CDH
A4A3C4	C160-2204		C:FXD MICA 100pF 5\%	72136	RDM1 5F101J3C
A4A3C5	0160-2055		C:FXD CER 0.01 UF $+80-20 \% 100 \mathrm{VOCW}$	56289	C023F101F1032S22-CDH
-443C6	0160-2055		C:FXD CER 0.01 UF +80-2C\% 100VDCW	56289	C023F101F1032S22-CDH
444307	0160-2055		C:FXD CEK 0.01 UF $+80-2 \mathrm{Cg}$ 100VDCW	56289	C023F101F1032S22-CDH
А4АЗС8	0160-2055		C:FXD CER 0.01 UF +80-20\% 100VDCW	56289	CO23F101F1032S22-CDH
A4A 3C9	0160-2055		C:FXD CER 0.01 UF $+80-20 \% 100 \mathrm{VOCW}$	56289	C023F101F1032S22-CDH
A4A3C10	0160-2055		C:FXD CER 0.01 UF $+30-20 \%$ 100VOCW	56289	C023F101F1032S22-CDH
A4A3C11	0160-0978	1	C:FXD MICA 1500 PF 1% 500VCCW	28480 00853	0160-0978
	$0160-2534$ $0160-2055$	1	C:FXO MICA 300 PF $1 \% 300 \mathrm{VOCW}$ C:FXD CER 0.01 UF +80-20\% 100 VOCW	00853 56289	RDM15F301F3S CO23F101F1032 S22-CDH
A4A3C14	C160-20.55		C:FXD CFR 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
A4A3C15	c160-2204		C:FXD MICA 100PF 5\%	72136	RDM15F101J3C
A4A3C16	$0140-\mathrm{C} 197$	1	C:FXD MICA 180 PF 5\% 300VCCW	14655	RDM15F1 S1J3C
A4A3C17	c160-2204		C:FXD MICA 100PF 5\%	72136	RDM15F101J3C
A4A 3C18	0160-2055		C:FXD CER 0.01 UF +80-20\% 100VOCW	56289	C023F101F1032S22-CDH
A4A3C19	0140-0194	1	C:FXD MICA 110 PF 5\%	72136	RDM15F111J3C
A4A3CR1	1902-6041	6	DICDE: BREAKDOWN 5.11V 5\%	04713	SZ10939-98
A4A3L1	9100-0348	2	COIL:FXD 10J UH 1\%	28480	9100-0348
A4A3L2	9100-0348		COIL:FXD 1.D UH 1\%	28480	9100-0348
A4A301	1854-0019		TSTR:SI NPN	28480	1854-0019
444302	1854-0019		TSTR:SI NPN	28480	1854-0019
144303	1854-0019		TSTR:SI NPN	28480	1854-0619
A4A304	1854-0017		TSTR:SI NPN	28480	1854-0019
A4A305	1854-0345	9	TSTR:SI NPN	80131	2 N 5179
A4A3R1	C757-0401		R:FXD MET FLA 100 OHM $1 \% 1 / 8 \mathrm{~m}$	28430	0757-0401
A4A3R2	C757-0444		R:FXD MET FLM 12.1K OHM $1 \% 1 / 8 \mathrm{w}$	288,80	0757-0644
A4A3R3	0757-0441		R:FXD MET FLP 8. 25 K OHM 18 1/8W	28480	0757-0441
A4A3k4	0757-0314	1	R:FXO MET FLA Sii UHM 1\% 1/2w	28480	0757-0814
-443R5	0757-0416		R:FXD MET FLM 511 OHM 14 1/8W	28480	0757-04,16
A4A3R6	0757-0420	6	R:FXO MET FLM 750 DHM $141 / 8 \mathrm{~W}$	234:90	0757-0420

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
	- 0757 -0270			28880	
	(797-0416	2			
	-	2		${ }_{28480}^{29890}$	-
	${ }^{0757-044.4}$			${ }_{2}^{284880}$	O757-0444
			(in		(
		1		284890 28480	-
${ }_{\text {24a }}^{243127}$	0757-0401		R:FFO MET FLM 100 OHM $12.1 / 8{ }^{\text {R }}$	28480	0757-0401
	-0757-0444				O757-0.44 O577-042
	O698-3440 O757-0419	${ }^{23}$			- $\begin{aligned} & \text { O699-3440 } \\ & 0757-0418\end{aligned}$
A 4443×22 4.43223	0757-0401		R:FXD MET FLM $100 \mathrm{CHM} 171 / 8 \mathrm{M}$	${ }^{28480}$	-757-0401
	-0757-0444			cock 288480	- $0757-0.444$
	- $\begin{aligned} & \text { 95777-0337 } \\ & \text { O757-0418 }\end{aligned}$	5			O5757-0397 0757 0.0418
¢44301	1820-0469	3	IC:Digital til hi-speed f/f	01295	SN74H102N
		1			
-				58289 7640 56298	
			c: FFX ELECT 22 UF 10815 VOCH		1500226x901582-DYS
${ }_{844465}$	$0160-0214$	1	$C_{C: F \times D} C$ CRR 10 PF 58500 V		
		16		72982 56298	- $301-000-6060-240 \mathrm{~J}$
${ }_{\text {a }}$	-			${ }_{56289}$	${ }_{\text {C023F }} 101515032522-\mathrm{COH}$
	- $\begin{aligned} & 0160-2055 \\ & 0160-2306\end{aligned}$				
${ }_{8444611}$	0140-0190	4		${ }_{72136}^{2846}$	
				56289 56289	
	0160-2055		C:FXD CER 0.01 UF +80-208 100VdCW		C023F101F1032522-COH
				ciscers 56289	
	cole	1		${ }_{2}^{56488}$	${ }_{0121-0046}^{023}$
${ }^{4} 444618$	-160-2055		C: FXD CER 0.01 UF	56289	C023F101F103252
	C160-2327 $8140-0190$	9		96733	
				${ }_{7} 72136$	
	coliti-2055 $0121-0451$			$\underset{\substack{56289 \\ 74970}}{ }$	
	c160-2327		C: FXD CER 1000 PF 208 100VOCW		${ }^{104048 \times 102 M}$
	(1200-2055			¢ 562898	
	-			${ }_{56289}$	${ }_{\text {cose }}$
4444C28	${ }^{1160-2055}$		C:FXX CER 0.01 UF +8U-2UZ 100 VOCH		C023F 101F1032522-COH
${ }^{3} 444629$	${ }^{1160-2055}$		C:FEXOCER 0.01 UF $+80-202$ Hoovoc	56289	
	${ }^{\text {a }}$			${ }^{564970}$	
			C: FXV CER 100c PF	96733 5629	
24,44634	- 3 ¢0-2055		C: EXO CER 0.01 UF +80-20z 100vocw	56289	C023F101F1032522-CDH
-		2	C:FXO MICA ${ }^{\text {che }}$	${ }_{2} 12136$	ROM15639033
${ }_{144423}$	-			26289 5629 2489	${ }_{\text {core }}$
4444650	С26\%-2205		C:FXD MICA 120 PF 5\%	28480	0160-2205
	(1160-22,95		C:FXO M1CA 120 PF 58	(28880	${ }_{\text {CO23F101F1032 }}^{\text {O200 }}$
	-122-9247	1	c: VOLLAGE MAR. 10 PF 108 Oz 60 WV	${ }^{504713}$	105140
		1	CiOL	¢98900	${ }_{\text {ST374 }}$
	$9160-1629$		COLLCHGKE 47.0 UH 5\%		9100-1629
	(${ }^{\text {che }}$				$\underset{\substack{910060-1629 \\ 0860002}}{ }$
		${ }_{3}$		28480 28480 2880	(0860-80009
2444L7	9100-2247			28480	9100-2247
		1	COIL:FXO RF No $_{0} 10$ UH 10 z corl:fx RF 1 UH 10\%	¢988800	- ${ }_{\text {9102-2247 }}$

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
${ }^{444401}$	1354-0019		TsTR:SI NPN	${ }_{2}^{28480}$	- 1854 -0019
	185403345 $1854-0345$ 1854		TsTR:SI	${ }_{80131}^{80131}$	205179 2 25179
	1854.0345 $1354-0540$	3	TSTR:SI	${ }_{0}^{804713}$	2N51799
${ }^{4} 444406$	1854-0431	${ }^{3}$		${ }_{2}^{288480}$	1854-0431
	1854-0431				-
-	(1854-0404				
4444R2	0757-0401		R:FFO MET FLA $1000 \mathrm{OHM} 181 / 8 \mathrm{~m}$	28480	0757-0401
${ }^{4} 444 \mathrm{AR3}$	0757-0418		R:FXD MET FLM 619 chm $18181 / 8 \mathrm{Nk}$	${ }^{28490}$	${ }^{0757-0418}$
	- $075757-0344$			${ }_{\substack{298980}}^{29898}$	
A4A4R6	0757-0394		R:FXO MET FLH 51.1 CHM 181818	28480	
	- 0 0798-0082				-0698-0082
	0757-0.421			${ }_{2}^{28450}$	- 0757 -0441
(tandio				cker 288880	- $06988-3153$
	-0757-0442			28480 28480	- $\begin{gathered}0757-0442 \\ 0698-3440\end{gathered}$
				${ }_{28460}^{20840}$	-0698-0083
	- $0757-0422$				- $\begin{gathered}\text { 0757-0422 } \\ 0757-0401\end{gathered}$
	-0757-1094	9		${ }_{28480}^{280}$	0757-1094
	-	3		哏28480	- 0 07987-3439
					- 076450033
	O698-3153		R:FXD MEE FLM 3.85 K OMM $181 / 18 \mathrm{~W}$	${ }_{2}^{284880}$	O698-3153
	- 0 O988-3440			cock	
	(\%)			28480 28480 280	
A4A4R27	0698-3155	17	R:FXO MET FLM 4.04 K OHM 181818 BW		0698-3155
	O698-3155 $06988-3440$				- $\begin{array}{r}0698-3155 \\ 0698-3450\end{array}$
				28480 28480	
			IC:DIGITAL Quinary civider		
		1 16		${ }_{\substack{288880 \\ 88031}}$	-
				¢	coick
	- $\begin{gathered}011100-3876 \\ 0160-3873\end{gathered}$			${ }_{8}^{80031}$	CV2059x7p102M
${ }_{\text {a }}$	${ }^{0160-2250}$	2	$\mathrm{C}: \times \mathrm{FXD}$ CER 5.1 PF 500vCCW	${ }^{72988}$	301-000-COHO-519E
	-			729828 72982	- $301-000-0000240 \mathrm{~S}$
244.5C9 $445 C 10$				${ }^{800312}$	
				${ }_{880031}^{88031}$	
	$0160-3378$ $6160-2266$			${ }_{7}^{809882}$	
	${ }_{0}^{6160-2266}$		C:FXX CER 24 Pf 55 5Joovoch	72982	301-000-CO60-2
边	-			${ }_{880031}^{80031}$	
	($\begin{gathered}\text { c160i-3878 } \\ 0160-3878\end{gathered}$			${ }_{8}^{80031} 8$	
	:16io-2260		C:FPX CER 24 Pf 5\% 500vccw		301-000-CO60-240,
	(1200-2266			${ }_{80031}^{72982}$	
			C CFXD CER 1000 PF 2008100 VCCW	${ }_{80031}$	CV2059 ${ }^{\text {a }}$ 10102M
${ }^{4445 C 23}$	c160-3878			${ }^{80031}$	CV2059x7R 102
	-		C:F×0 CER 1000 PF 206 200vock		CV2059x7R 102 M
	1901-1034		Cill	¢ 284880	(0122-0148
		$\frac{1}{7}$	FILTER:L 6000 MH2	${ }_{2}^{284880}$	- $08060-60038$
			$\xrightarrow{\text { İiductive }}$ inouctor	284800	-88660-8800
	(41002250		COILCCHOKE OOL 18 UH 10\%	28480	9100
			${ }_{\text {INOCL }}$	$\underset{28480}{2848}$	

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A4A5L8	08660-80006		I NDUCTOR	28480	08660-80006
A4A5L9	S100-2250		COIL/CHOKE 0.18 UH 108	28480	9100-2250
A4A5L10	$9160-2250$		COIL/CHCKE 0.18 UH 108	28480	9100-2250
9445L11	08000-30009		INDUCTJR	28480	08660-80009
A4A5t 12	cs $560-80309$		inductir	28480	08660-80009
A4A5L13	9100-2250		COILICHOKE O. 18 UH 10\%	28480	9100-2250
A4A5L14	9100-2250		COIL/CHOKE 0.18 UH 10\%	28480	9100-2250
A4A501	1354-0540		TSTR:SI NPN	04713	MM 8006
a4asuz	68660-80013	4	TSTR:SI NPN SELECTED FROM 2 N5179	28480	08660-80013
A4A503	08660-80013		TSTR:SI NPN SELECTED FRCM 2 N5179	28480	08660-80013
A4A504	V3660-80012	1	TSTR:SELECTED FROM 2N5179	28480	08660-80012
A4A505	0866:-80013		TSTR:SI NPN SELECTED FRCM 2 N5179	28480	08660-80013
A4A506	03569-30313		TSTR:SI NPN SELECTED FROM 2 N5179	28480	08660-80013
A4A507 A4ASR1	$1854-0540$ $0698-0084$		TSTR:SI R:FXD MET	$\begin{aligned} & 04713 \\ & 28480 \end{aligned}$	$\begin{aligned} & \text { MM } 8006 \\ & 0698-0084 \end{aligned}$
A4A5R2	0698-0084		R:fXD MET FLM 2.15K OHM 1\% 1/8W	28480	0698-0084
44A5k3	0757-0230		R:FXD MET FLM 1K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0280
A4A5R4	0757-1094		R:FXD MET FLM 1.47K OHM 1\% $1 / 8 \mathrm{~B}$	28480	0757-1094
$4445 R 5$	0698-7205	2	R:FXD FLM 51.1 OHM $281 / 8 \mathrm{~W}$	28480	0698-7205
A4A5R6	c757-0346		R:FXD MET FLY 10 OHM 18 1/8w	28480	0757-0346
A4A5R7	0698-7205		R:FXD FLM 51.1 OHM 2\% 1/8W	28480	0698-7205
A4A BKío	0757-0340		R:FXD MET FLM 10 OHM 1\% $1 /$ SW	28480	0757-0346
$\triangle 4 A 5 R 9$	0757-0416		R:FXD MET FLM Sll DHM 1: $1 / 8 \mathrm{~W}$	28480	0757-0416
A4ASR1O	2757-0416		R:FXD MET FLM 511 OHM $1 \% 1 / 8 \mathrm{~W}$	28480 28480	0757-0416 $0757-0439$
A4A5k11	0757-0439		R:FXD MET FLM 6.81K OHM 18 1/8W	28480	0757-0439
A4A5R12	0757-0279		R:FXD MET FLM 3.16K OHM 18 1/8W	28480	0757-0279
A4A5R13	0757-0439		R:FXD MET FLM 6. 81 K OHM 18 1/8W	28480	0757-0439
A4ASR14	0757-0279		R:FXD MET FLM 3. 16 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0279
A4ASR15 A4ASR16	0698-3442 $0658-3442$	12	$\begin{array}{lllllll}\text { R:FXD } & \text { MET } & \text { FLM } & 237 & \text { OHM } & 1 \% & 1 / 8 \mathrm{~W} \\ \text { R:FXD } & \text { MET } & \text { FLM } & 237 & \text { OHM } & 1 \% & 1 / 8 \mathrm{~W}\end{array}$	28480 28480	0698-3442 $0698-3442$
A445R17	C698-3428	4	R:FXD MET FLM 14.7 OHM $181 / 8 \mathrm{~W}$	28480	0698-3428
$\triangle 445 R 18$	0698-3445		R:FXD MET FLM 348 OHM $121 / 8 \mathrm{~W}$	28480	0698-3445
A4A5R19	6698-3428		R:FXD MET FLM 14.7 OHM 1\% 1/8W	28480	0698-3428
A445R20	0698-3445		R:FXD MET FLM 348 CHM 1\% 1/8W	28480	0698-3445
A4A5k21	0757-0434		R:FXD MET FLM 6.81K OHM 1\% 1/8W	28480	0757-0439
A4\&5R22	0757-0279		R:FXD MET FLM 3.16K OHM 18 1/8H	28480	0757-0279
A445R23	0757-0439		R:FXD MET FLM 6. 31 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0439
A4A5R24	0757-0279		R:FXO MET FLM 3016K OHM 1\% 1/8W	28480	0757-0279
A4A5R25	0698-3440		R:FXD MET FLM 196 OHM 18 1/8W	28480	0698-3440
A4A5R26	0698-3440		R:FXD MET FLM 196 OHM $181 / 88 \mathrm{~W}$	28480	0698-3440
A4A5R27	0698-3428		R:FXD MET FLM 14.7 OHM 12 1/8W	28480	0698-3428
A4A5R28	0690-3444		R:FXD MET FLY 316 OHM $181 / 8 \mathrm{~W}$	28480	0698-3444
A4A5R29	0698-3429		R:FXD MET FLM 14.7 OHM $181 / 8 \mathrm{~W}$	28480	0698-3428
A4ASR30 $A 4 A S R 31$	O698-3444			28480 28480	0698-3444 $0757-0439$
A4ASR31	0757-0439		R:FXD MET FLA 6.81K OHM 1\% 1/8W	28480	0757-0439
A4A5R32	0757-0279		R:FXD MET FLM 3.16K CHM 18 1/8W	28480	0757-0279
A4A5RE3	0757-0439		R:FXD MET FLH 6.81K OHM $181 / 8 \mathrm{H}$	28480	0757-0439
A4A5R34	0757-0279		R:FXD MET FLM 3.16 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0279
A4A5R35	C698-3438		R:FXD MET FLM 147 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3438
A4A5R36	0698-3438		R:FXD MET FLM 147 CHM 18 $1 / 8 \mathrm{BH}$	28480	0698-3438
A4A5R37	0757-0416		R:FXD MET FLM 511 OHM $181 / 8 \mathrm{~W}$	28480	0757-0416
A4A5R33	0757-0416		R:FXD MET FLM 511 CHM $181 / 8 \mathrm{~W}$	28490	0757-0416
A445R39	0757-0346		R:FXD MET FLM 10 OHM 18 1/8w	28480	0757-0346
A4A $5 R 40$ $A 4.5 R 41$	$0757-0346$ $0757-0416$		$\begin{array}{llllllllllll}\text { R:FXD } & \text { MET } & \text { FLY } & 10 & \text { CHM } & 18 & 1 / 8 \mathrm{~W} \\ \text { R:FXD } & \text { MET } & \text { FLM } & 512 & \text { CHM } & 1 \% & 1 / 8 \mathrm{~W}\end{array}$	28480 28480	0757-0346
A4A5R42	0757-0416		R:FXD MET FLM 511 OHM 1\% 1/8W	28480	0757-0416
A445t 1	08660-80003	1	TRANSFORMER:ISOLATOR	28480	08660-80003
A4A6	06660-60007	1	BOARD ASSY: PRETUNE	28480	08660-60007
8446 Cl	0160-2055		C:FXD CER 0.01 UF $+80-208100 \mathrm{VDCW}$	56289	C023F101F1032S22-CDH
$\triangle 4 a ́ c c 2$	0180-0133	6	$C: F X D$ AL ELECT 10 UF +75-108 SOVDCW	56289	300106G050CB2-DSM
A4AbC3	0180-0183		C:FXU AL ELECT 10 UF +75-1C\% 50VOCW	56289	300106G050CB2-DSM
A 4 AbC4	0180-0141	5	C:FXD ELECT 50 UF +75-10\% 50VDCW	56289	300506G0500D2-DSM
A4AGC5	C121-0452		C : VAR AIR 1.3 TO 504 PF $250 V D C W$	28480	0121-0452
	$0160-2263$ $0160-0174$	15	C:FXD CEK 18 PF S\% 500VDCW C:FXD CER O.	72982 56289	301-000-C090-180J 5C1187S-CML
$44 \mathrm{AbC7}$	0160-0174	15	C:FXD CER 0.47 UF +80-208 25 VDCW	56289	5C1187S-CML
A4AbCB	0180-0197		C:FXD ELECT 2.2 UF 10\% 2UVDCW	56289	1500225x9020A2-DYS
A4noc. 9	0160-2327		C:FXD CER 1000 PF $20 \% 100 \mathrm{VCCW}$	96733	B104B102M
$0446 C 10$	0180-0183		C:FXD AL ELECT 10 UF +75-10\% 50VOCW	56289	30D106G050CB2-DSA
$44 \sim 6 \mathrm{Cl1} 1$	$01801-3537$		C:FXD MICA 680 PF 5\% 100 VCCW	72136	RDM15F681J1C
A446CR1	1001-0033	2	DIJDE:SILICON LOOMA 180 WV	07263	FO3369
a4abli	9143-0178	1	CUIL:FKD 12 UH 10\%	28480	9140-0178
A4Abl?	910 101643	1	COIL/CHOKE 300 UH 5\%	28480	9100-1643
a4AGU1	1854-6:71		TSTR:SI NPN(SELECTEC FROM 2N3704)	28480	1854-0071
A4A602	1853-0007	13	TSTR:SI PNP	80131	2 N 3251
A4abi3	1853-2007		TSTR:SI PNP	80131	2N3251

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A4A604	1853-00. 7		TSTR:SI PNP	80131	2N3251
144605	1853-0007		TSTR:SI PNP	80131	2N3251
A44606	1853-0007		TSTR:SI PNP	90131	2N3251
A4A607	1853-0007		TSTR:SI PNP	80131	2N3251
A44608	1853-0007		TSTR:SI PNP	80131	2N3251
A4A609	1853-0007		TSTR:SI PNP	80131	2 N 3251
A4A6010	1853-0007		TSTR:SI PNP	80131	2N3251
A4A6011	1853-0C07		TSTR:SI PNP	80131	2N3251
A4Ab012	1853-0007		TSTK:SI PNP	80131	2N3251
A4A6013	1853-0007		TSTR:SI PNP	80131	2N3251
A4A6014	1854-0.71		TSTR:SI NPNISELECTEC FRCM 2N3704)	28480	1854-0071
A4AGR1	0757-0346		R:FXD MET FLM 10 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0346
A4A6R2	2100-2497	3	R:VAR FLM 2000 OHM 10\% LIN 1/2W	28480	2100-2497
A4A6R3	c757-0274		R:FXD MET FLM 1.21K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0274
A4A6R4	0757-0280		R:FXD MET FLM 1 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0280
A4AGR5	0757-0442		R:FXD MET FLM 10.CK CHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0442
A4AGRG	0757-0416		R:FXD MET FLM 511 OHM 1\% 1/8W	28480	0757-0416
A4A6R 7	0757-0214		R:FXD MET FLM 1.21K OHM $18.1 / 8 \mathrm{~W}$	28480	0757-0274
A4A6R A4AGR	$0757-1094$ $0757-0441$			28480 28480	0757-1094 $0757-0441$
A4A6R10	0757-0405	5	R:FXD MET FLM 162 OHM 1\% 1/BW	28480	0757-0405
A4AGR11	0698-3444		R:FXD MET FLM 316 UHM 1\% 1/8W	28480	0698-3444
A4A6R12	0757-1094		R:FXD MET FLM 1.47K OHM 1\% 1/8W	28480	0757-1094
A4A6R13	2100-2497		R:VAR FLM $2000 \mathrm{OHH}^{10 \%}$ LIN 1/2W	28480	2100-2497
A4A6R14	0757-0200	25	R:FXD MET FL.4 5.62K OHM 1\% 1/8W	28480	0757-0200
$\triangle 4 A 6 R 15$	2100-1984	5	R:VAR FLM 100 OHM 10\% LIN 1/2W	28480	2100-1984
A4AGR16	0698-3439	6	R:FXD MET FLM 178 OHM 1\% 1/8W	28480	0698-3439
A4AGR17	0757-0428		R:FXU MEY FLM 1.62 K UHM is $1 / 8 \mathrm{~W}$	28480	0757-0428
14A6R18	0698-3438		R:FXD MET FLM 147 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3438
A4A6R19	0698-3445		R:FXD MET FLM 3\%8 CHM 1\% 1/3W	28480	0698-3445
A4AOR2O	2100-1984		R:VAR FLM 100 OHM 10\% LIN 1/2W	28490	2100-1984
A4A6k21	0698-3409	1	R:FXD MET FLM 2.37 K OHM $1 \% 1 / 2 \mathrm{~W}$	28490	0698-3409
A4A6R22	2100-1984		R:VAR FLM 100 OHM 108 LIN 1/2W	28480	2100-1984
A4AGR23	0757-0401		R:FXD MET FLM 100 OHM is $1 / 8 \mathrm{~W}$	28480	0757-0401
A4A6R24	0698-344.)		R:FXD MET FLM 196 OHM 18 1/8W	28480	0698-3440
A4A6R25	9757-0278		R:FXD MET FLM 1.78K CHM 1\% 1/8W	28480	0757-0278
A4A6R26	9698-3440		R:FXD MET FLM 196 OHM 1\% 1/8W	28480	0698-3440
A4A6R27	0757-0346		R:FXD MET FLM 10 OHM $181 / 8 \mathrm{~W}$	28480	0757-0346
A4A6R28	2100-1984		R:VAR FLM 100 OHM 108 LIN 1/2W	2848 C	2100-1984
A4A6R29	0757-0836	1	R:FXD MET FLM 7.50K OHM $1 \% 1 / 2 \mathrm{H}$	28480	0757-0836
A4A6R 30	0757-0394		R:FXD MET FLA 51.1 OHM $181 / 8 \mathrm{~W}$	28480	0757-0394
A4A6K31	0698-3441		R:FXO MET FLM 215 OHM 1\% $1 / 8 \mathrm{NW}$	28480	0698-3441
A4A6R32	C698-0033		R:FXD MFT FLM 1.96 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-0083
A4A6R33	0698-3132		R:FXD FLM 261 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3132
A4A6R34	c757-0346		R:FXD MET FL, 10 OHM $181 / 8 \mathrm{~W}$	28480	0757-0346
A4A6R35	2100-1984		R:VAR FLM 100 OHM 108 LIN 1/2W	28480	2100-1984
A4AGR36	C698-3442		R:FXD MET FL' 237 OHM 1\% 1/8W	28480	0698-3442
A4A6R37	0698-0084		R:FXD MET FLM 2.15K OHM 1\% 1/8W	28480	0698-0084
$\triangle 4 \Delta 6 R 38$	C698-3444		R:FXD MET FLM 316 OHM $1 \% 1 / 8 \mathrm{~W}$	284,80	0698-3444
A4A6R39	0757-0440	8	R:FXO MET FLM 7.50K OHM $181 / 8 \mathrm{~W}$	28480	0757-0440
A4A6R40	2100-2061	2	R:VAR FLM $2000 \mathrm{OHM} 10 \%$ LIN 1/2W	28480	2100-2061
A4A6R41	0698-3132		R:FXD FLM 261 CHM 1\% 1/8W	28480	0698-3132
A4A6R42	C698-3150	8	R:FXD MET FLM 2.37 K OHM $1 * 1 / 8 \mathrm{~W}$	28480	O698-3150
A4A6R43	$0757-0416$		R:FXD NET FLY 511 CHM 1\% 1/8W	28480	$0757-0416$ $2100-2061$
A4A6R44	2100-2061		R:VAR FLM 200 OHM 10\% LIN 1/2W	28\%80	2100-2061
A4A6R45	0698-3443		R:FXD MET FLM 287 CHM 1\% 1/8W	28480	0698-3443
A4A6R46	C698-0085	14	R:FXD MET FLM 20.6lK OHM 1\% 1/8H	28490	0698-0085
A4A6R47	0757-0317	6	R:FXD MET FL. 1.33 K OHM $1 * 1 / 8 \mathrm{~W}$	28480	0757-0317
A 4 A6R48	2100-1788	2	R:VAR FLM 500 CHM 108 LIN 1/2W	28490	2100-1788
14A6R49	C598-3444		R:FXD MET FLM 316 OHM 1\% 1/8W	28480	0698-3444
A446R50	c698-3151		R:FXD MET FL.M 2.87K OHM 1\% 1/8W	28480	0698-3151
A4A6R51	0757-0317		R:FXD MET FLM 1.33K OHM 1\% 1/OW	28480	0757-0317
A 44 GR 5 ?	2100-1788		R:VAR FLM 500 OHM 10% LIN 1/2W	28480	2100-1788
1446853	0698-3445		R:FXD MET FLM 3\%, ${ }^{\text {CHM }} 181 / 8 \mathrm{~W}$	28480	0698-3445
A4A6R54	c757-0279		K:FXD MET FLM 3.16K OHM $14.1 / 8 \mathrm{~W}$	28480	0757-0279
A4A6R55	ce98-3150		R:FXD MET FL: 2037 K OHM 1\% 1/8W	28480	0698-3150
A4A6R56	2100-1986	3	R:VAR CERMET 1000 CHM 10\% LIN 1/2w	28480	2100-1986
A 406 R 57	13698-3446		R:FXC MET FLM 3E3 OHM $181 / 8 \mathrm{~W}$	28480	0698-3446
A4¢ 6 R 58	0698-3152	2	R:FXD MET FLM 3.f8K OHM 1\% 1/8W	28480	0698-3152
A4A6R59	0757-0440		R:FXD MET FLM 7.50K OHM 1\% 1/8W	28480	0757-0440
A4AGK60	2100-2497		R:VAR FLM 2000 OHM 10\% LIN 1/2W	28480	2100-2497
A4A6R61	0757-0447	5	R:FXD MET FLM 16. 2 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0447
A4A6R62	0698-3442		R:FXD MET FLM 237 OHM 1\% 1/8W	$28 今 80$	0698-3442
A4A6R63	0757-044?		R:FXD MET FLM 10.OK CHM 1\% 1/3W	28480	0757-0442
A4A6K64	0698-0094		R:FXD HET FLM 2015K OHM 1\% 1/8W	28480	0698-0084

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
E4.46U1	1820-0214		IC:TTL BCD TO DEC. DECODER	01295	SN7442N
4447	08660-60006	1	BOARD ASSY:PHASE DETECTOR	28480	08660-60006
A4A7Cl	016C-2327		C:FXD CER 1000 PF $20 \% 100 \mathrm{VOCW}$	96733	$8104 \mathrm{BX102M}$
14A7C2	-160-2327		C:FXD CER 1000 PF 20\% 100VCCW	96733	$8104 \mathrm{Bx102M}$
14A7C3	0180-2214	5	C:FXD ELECT 90 UF +75-10\% 15VDCW	56289	300906G015CC2-DSM
1427C4	c160-3878	1	C:FXD CER 0.01 UF 20\% 100VCCW	72982	8121-8112-X7R-103M
14A7C5	0160-2327		C:FXD CER 1000 PF $20 \% 100 \mathrm{VCCW}$	96733	B1048X102M
240\%C6	218C-2214		C:FXD ELECT 90 UF +75-102 15VDCW	56289	300906G015CC2-DSM
A447C7	C180-0049	8	$\mathrm{C}:$ FXD ELECT 20 UF +75-10\% 50VDCW	56289	300206G050CC2-DSM
A 47 CB	0160-2327		C:FXD CER 1000 PF 29\% 100 VCCW	96733	B104B $\times 102 \mathrm{M}$
A437C9	0160-0839	1	C:FXD MICA 110PF 1\%	28480	0160-0839
A4A7Cl0	0160-3064	1	C:FXD MICA 1000 PF 58300 VCW	00853	RDM19F102J3S
24ãCl1	0160-0182	2	C:FXD MICA 47 PF 59300 VCCW	14655	RDM15E470J3S
A4A7C12	0160-0132		C:FXD MICA 47PF 5\% 300VDCW	14655	RDM15E470J3S
$\triangle 4 \pm 7 \mathrm{Cl} 3$	2100-2250		C:FXD CER 5.1 PF 500VDCN	72982	301-000-COHO-519E
24A7C14	0160-2266		C:FXO CER 24 PF 5\% 500VDGW	72982	301-000-COGO-240J
A4s 7C15	-180-1745		C : FXD ELECT 1.5 UF 10% 20VCCW	29480	$0180-1745$
44A7C16	0150-2256		C:FXD CER 24 PF 5\% 500VDCW	72982	301-000-COGO-240J
A4A7C17	0160-2264	16	C:FXD CER 20 PF $5 \% 500 \mathrm{VCCW}$ C:FXD ELECT 1.0 UF $10 \% 35 \mathrm{VECW}$	72982 56289	$301-000-C O G O-200 J$ $1500105 \times 9035 A 2-D Y S$
44A7C18	0180-0291	16	C:FXD ELECT 1.0 JF 10% 35VECW	56289	1500105×9035 A2-DYS
A4A7C19	c: 80-0291		C:FXD ELECT 1.0 UF 109 35VOCW	56289	1500105x9035A2-DYS
A4A7C20	0180-6291		C:FXD ELECT 1.0 UF 10835 VCCW	56289	$1500105 \times 9035 A 2-D Y S$
A4A7C21	0180-0197		C:FXC ELECT 2.2 UF 10% 20VCCW	56289	1500 $225 \times 902042-0 Y S$
A4ATCE2	0180-0291		C:FXD ELECT 1.0 UF 10\% 35VOCW	56289	1500105×9035 A2-DYS
A4A7C23	0180-0197		C:FXD ELECT 2.2 UF 10\% 20VCCW	56289	1500225x9020A2-DYS
14A7C24	0!90-0291		C:FXO ELECT 1.0 UF 10\% 35VDCW	56289	$1500105 \times 9035 A 2-D Y S$
A447C25	0180-c133		C:FXD AL ELECT 10 UF +75-10\% 50VOCW	56289	300106G050CB2-DSM
A4, 7C26	0160-2266		C:FXD CER 24 PF 54 5COVOCW	72982	301-000-COGO-240J
d4at ${ }^{\text {chi }}$	1901-0189	1	DIDUE:SILICON MATCHED QUAD	28480	1901-0189
A4A 7 Ch 2	105148454	4	dIUDE:SILICON MATCHED QUAD	28480	10514-8454
A4A7CR3	10514-8454		DIODE:SILICON MATCHED QUAD	28480	10514-8454
A4A7CR4	$10514-8454$		DIODE:SILICON MATCHED QUAD	28480	10514-8454
A4mi 7 CR 5	10514-3454		DIODE:SILICON MATCHED OUAD	28480	10514-8454
A4ATCRG	1902-0041		DIOUE:BFEAKLOWN 5.11V 5\%	04713	SZ10939-98
А4А7Ск\% 7	1902-uC41		DIODE:BREAKDOWN 5.11V 5\%	04713	SZ10939-98
A4A 7CPa	1902-0041		DIUDE: BREAKDOWN 5.11V 5\%	04713	SZ10939-98
A4ATCR9	196<-0041		SICOE:BREAKDCWN J.11V 5\%	04713	SZ10939-98
$44.77 C R 10$	1901-0033		DIGDE:SILICUN 10GNA 180 WV	07263	FD3369
1447」1	1250-0836	1	CUINNECTOR:RF SUB-MINIATURE	98291	50-053-0000
9447L1	9140-0144		COIL:FXD RF 4.7 UH	28480	9140-0144
A447L2	9140-0210	2	COIL/CHOKE 100 UH 5\%	82142	15-1315-12J
A4A7L3	$9140-0210$		COIL/CHCKE 100 UH 5\%	82142	15-1315-12J
A4A7L4	9100-2260		COIL:FXD 1080 UH 10\%	82142	09-4436-3K
144725	$9160-2254$	1	COIL/CHOKE .39 UH 10\%	28480	9100-2254
A4A7L6	08660-8C005	2	I NDUC TOR	28480	08660-80005
ASATL7	08666-86005		I NDUC TUR	28480	08660-80005
A4A7N1	1254-0019		TSTR:SI NPN	28480	1854-0019
445702	1854-0019		TSTR:SI NPN	28480	1854-0019
644703	1853-0034	12	TSTR:SI PNP(SELECTED FRCM 2N:2251)	28480	1853-C034
$\triangle 44704$	1.155-0049	4	TSTR:SI FET N-CHANNEL DUAL	28480	1855-0049
44A705	1853-0007		TSTR:SI PNP	80131	2N3251
A4A706	1854-0023	1	TSTR:SI NPN(SELFCTED FRCM 2N2484)	28480	1854-0023
A4ATR1	9757-0398		R:FXD MET FLM 75 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0398
A447k2	0698-0.084		R:FXD MET FLM 2015K CHM 1\% 1/8W	28480	0698-0084
A447k3	0757-0280		R:FXD MET FLA 1 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0280
A4A7R4	0698-3440		R:FXD MET FLM 196 OHM 1\% 1/8w	28480	0698-3440
1447R5	C757-33.6		R:FXD MET FLM 10 OHM $1 \% 1 / 8 \mathrm{E}$	28480	0757-0346
A4A7R6	Co98-3437	5	R:FXD MET FLM 133 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3437
A4A7kT	C698-3443		R:FXD MET FLM 287 OHM 1\% $1 / 8 \mathrm{~W}$	29480	0693-3443
A4A7kS	0757-0346		P: FXD MET FLY 10 SHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0346
A4ATKg	c698-cc34		R:FXU MET FL, 2.15 K JHM 1\% 1/8W	28490	0698-0084
A4A 7 R10	0757-0280		R:FXD MET FLM 1 K CHM $181 / 8 \mathrm{~W}$	28480	0757-0280
24a7kil	C157-0276	1	R:FXD MET FLM 61.9 CHM 16 1/8w	28480	0757-0276
A447×12	6698-3438		R:FXD MET FLM 147 CHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3438
A4A7R13	c757-0394		R:FXD MET FL'4 51.1 OHM $181 / 8 \mathrm{~W}$	28480	0757-0394
A4ATR14	U757-0394		R:FXD MET FLM 51.1 OHM 12 1/8W	28480	0757-0394
$44 A 7 R 15$	1757-0334		R:FXD MET FLM 51.1 OHM 1\% 1/8W	28480	0757-0394
4447816	c757-0220		R:FXD MET FLM 1 K OHM $131 / 8 \mathrm{~W}$	28480	0757-0280
44M7217	C757-0280		R:FXU MET FLM 1 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0280
A4A7k16	2icc-188t		R:VAR CERMET 1000 OHM 10\% LIN 1/2W	28480	2100-1986
244.7219	4757-0394		R:FXD MET FLM 51.1 DHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0394
A4~7R20	$0757-0394$		R:FXD MET FLY 51.1 OHM $181 / 8 \mathrm{~W}$	28480	0757-0394
A4AアR21	0757-0442		R:FXD MET FLM 10. OK OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0442
A4A7R22	21c0-1986		R:VAF CEPMET 1000 CHM 10\% LIN 1/2W	28480	2100-1986
A4ArR23	0757-0442		R:FXD MET FLIM 100 OK OHM 1\% 1/8W	28480	0757-0442

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A4A7R24	0757-04.31		R:FXU MET FLM 100 OHM $181 / 8 \mathrm{~W}$	28480	0757-0401
A4A7K25	0757-044.2		R:FXD MFT FLM 10.0 K CHM $181 / 8 \mathrm{~W}$	28ヶ80	0757-0442
A4A7R26	0757-1094		R:FXD MET FLM 1.47K OHM 1\% 1/8W	28480	0757-1094
A4A7R27	0757-0394		K:FXD MET FLM 51.1 OHM 1\% 1/8W	28489	0757-0394
A4A7R28	0757-0401		$\mathrm{K}=\mathrm{FXD}$ MET FLM $100 \mathrm{CHM} 1 \% 1 / 8 \mathrm{~W}$	28480	0757-0401
A4A7P29	0698-3445		R:FXD MET FLM 348 CHM 1\% 1/8W	28480	0698-3445
A4A7R30	0757-0394		R:FXD MET FLM 51.1 CHM 1\% 1/8W	28480	0757-0394
A4A7R31	0698-3445		R:FXO MET FLM 36.8 CHM 1\% 1/8W	28480	0698-3445
A4A7R32 A4A 733	$0698-3101$ $0757-0416$	i	R:FXD R:FXD MET FLM FeT	28480 28480	$\begin{aligned} & 0698-3101 \\ & 0757-0416 \end{aligned}$
A4A7R33	0757-0416				0757-0416
A4A7R34	C757-0394		R:FXD MET FLM 51.1 OHM 16 1/8W	28480	0757-0394
A4A7T1	08660-80011	1	TRANSFORMER:TRIFILAR	28480	68660-80011
A4A7T2	08660-80010	1	TRANSFORMER: BIFILAR	28480	08660-80010
${ }^{15} 5$	0866J-60023	1	BOARD ASSY: REGULATOR $C: F X D ~ E L E C T ~$	28480 56289	C8660-60023
A5C1	0180-0291		C:FXD ELECT 1.0 UF 10\% 35 vECW	56289	$1500105 \times 9035 A 2-D Y S$
A5C2	0180-0291		C:FXD ELECT 1.0 UF 10% 35VDCW	56289	1500105×9035A2-DYS
A5C3	0180-0291		C:FXD ELECT 1.0 UF $10 \pm 35 \mathrm{VOCW}$	56289	$1500105 \times 9035 A 2-D Y S$
${ }^{4} 5 \mathrm{C}_{4}$	c180-0291		C:FXO ELEECT 1.0 UF $10 \% 35 \mathrm{VDCW}$	56289	1500105×9035 A2-DYS
A5C5 A5C6	$0160-2207$ $0180-1704$	7	C:FXD MICA 300 PF 5\% C:FXD ELECT 47 UF 108 SVDCW	28480 28480	0160-2207 $0180-170 \%$
A5C7	0180-0374	6	C:FXD TANT。 10 UF 102 20VCCH	56289	$150 \mathrm{D} 106 \times 9020 \mathrm{2} 2-\mathrm{DYS}$
A5C. 8	0180-0291		C:FXU ELECT 1.0 UF $10 \% 35 \mathrm{VCCW}$	56289	1500105×9035 A2-DYS
A5C9	0160-2208	2	C:FXD MICA 330 PF 5\% 300VCCW	28480	0160-2208
A5C10 A5C11	0180-17:04		C:FXD ELECT 47 UF $10 \% 6 V D C W$ NOT ASSIGNED	28480	0180-1704
A5C12	0160-2218		C:FXD MICA 1000 PF 5\%	28480	0160-2218
15 Cl 13	0180-0291		C:FXD ELECT 1.0 UF 10\% 35VCCW	56289	150D105×9035A2-DVS
$45 \mathrm{Cl4}$	-180-1704		C:FXD ELECT 47 UF $10 \% 6 \mathrm{VCCW}$	28480	0180-1704
$45 C 15$ $45 C 16$	0180-0269	2	C:FXD ELECT 1.0 UF +50-10\% 150VOCW NOT ASSIGNED	56239	30D105F1508A2-DSM
A5C17	0160-2218		C:FXD MICA 1000 PF 5\%	28480	0160-2218
A5C18	0180-0269		C:FXD ELECT 1.0 UF +50-10\% 150VOCW	56289	300105F1508A2-DSM
A5C19	0180-0058	15	C:FXD AL ELECT 50 UF +75-10\% 25VDCH	56289	30D506G025CC2-DSM
ASCR1	1902-3104	2	OIDDE: BREAKDOWN 5.62V 5\%	04713	S210939-110
A 501	1853-0037	5	TSTR:SI PNP	04713	SS 2109
A502	1853-0C50	17	TSTR:SI PNP	28480	1853-0050
A503	$1853-0037$		TSTR:SI PNP	04713	SS 2109
A504	1853-0050		TSTR:SI PNP	28480	1853-0050
A505	1853-0037		TSTR:SI PNP	04713	SS 2109
A506	1853-0326	1	TSTR:SI PNP	28480	1853-0326
A5R1	0757-0397		R:FXD MET FLM 68.1 DHM 1\% 1/8W	28480	0757-0397
A5R2	0757-0346		R:FXD MET FLM 10 OHM $1 \% 1 / 8 \mathrm{w}$	28480	0757-0346
$\Delta 5 R 3$	0693-3132		R:FXD FLM 261 OHM 1\% 1/8W	28480	0698-3132
A5R4	0757-0397		R:FXD MET FLM 68.1 OHM 1\% $1 / 8 \mathrm{BW}$	28480	0757-0397
A5R5	c757-0307		R:FXD MET FLM 68.1 JHM $181 / 8 \mathrm{~W}$	28480	0757-0397
A5R6	2757-0398		R:FXD MET FLM 75 GHM 1\% 1/EW	28480	0757-0398
A5R7	0757-0280		R:FXD MET FLM 1 K OHM 18 1/8w	28480	0757-0280
A5R8	0757-0401		R:FXD MET FLM 100 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0401
A5R9	0757-0397		R:FXD MET FLM 68.1 OHM 1\% 1/8W	28480	0757-0397
A5k 10	0698-008?		R:FXD MET FLM 464 OHis $181 / 8 \mathrm{~W}$	28480	0698-0082
A5R11	0757-0442		R:FXD MET FLM 10.0K OHM 19 1/8W	28480	0757-0442
A5k 12	0757-0280		R:FXD MET FLM 1 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0280
A5R13	0757-0394		R:FXD MET FLM 51.1 OH\% $1 \% 1 / 8 \mathrm{~W}$	29480	0757-0394
A5R14	0698-3161	11	R:FXD MET FLM 33.3K OHM 1\% 1/8W	28480 28480	-0698-3161
A5R1.5	0757-0424	19	R:FXD HET FLM 1.IUK OHM 1\% 1/8W	28480	0757-0424
A 5R16	0757-0394		R:FXD MET FLM 51.1 OHM 19 1/8W	28480	0757-0394
$\triangle 5817$	0698-3150		R:FXO MET FLM 2.37K OHM 1\% 1/8W	28480	0698-3150
A5R18	0698-3159		R:FXD MET FLM 2033K OHM 18 1/8W	28480	C698-3150
A5R19	0698-3136	3	R:FXD MET FLM 17.8K OHM 1\% 1/8W	28480	0698-3136
A5R20	0757-1094		R:FXD MET FLM 1.47K OHM 1\% 1/8W	28480	0757-1094
A5R21	2100-1973	1	R:VAR WW 200 OHM 10\% 1W	28480	2100-1973
A5k 22	0757-0278		R:FXD MET FLM 1.78K OHM 1\% 1/8W	28480	0757-0278
A5n 23	9598-3152		R:FXD MET FLM 3.48K OHM 1\% 1/8W	28480	0698-3152
A 5824	210c-1799	2	R:VAR WW 500 OHM $10 \% 1 \mathrm{~W}$	28480	2100-1799
A5R25	0757-0428		R:FXD MET FLM 1.62K OHM 1\% 1/8W	28\%80	0757-0428
A5R26	2100-1759		R:VAR WW 500 OHM 10\% 1W	28480	2100-1799
A5k 27	2698-3155		K:FXD MET FLM 4064 K OHM 1\% 1/8H	28480	0698-3155
A5R23	2100-2852	1	R:VAR Wh 1000 OHM 10% 1W	28480	2100-2852
A5R29	0698-3157		R:FXD MET FLM 1906K OHM 1\% 1/8W	28480	0698-3157
A5131	1826-0016	1	IC:LINEAR NEG. Voltage regulator	12040	LM204H
A 5112	1826-0004	1	IL: negative voltage regulator	12040	LM304H
A5113	1820-0247	2	IC: VOLTAGE REGULATOR 40 V max.	12040	LM305
4514	1820-0247		IC:VOLTAGE PEGULATOR \%OV MAX*	12040	LM305
AGA1	08660-6C024	1	BUARD ASSY: PRE-REGULATOR	28480	08660-60024
A6A1C1	0180-0141		$\mathrm{C}: \mathrm{FXD}$ ELECT 50 UF +75-10\% 50VOCW	56289	300506G050DD2-DSM

Table 6-3. Replaceable Parts

\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Reference \\
Designation
\end{tabular} \& HP Part Number \& Oty \& Description \& Mfr Code \& Mfr Part Number \\
\hline Agalcz \& 0180-7141. \& \& C:FXD ELECT 50 UF +75-10\% 50VDCW \& 56289 \& 30D506G050002-DSM \\
\hline A6A1C3 \& 0180-6039 \& 1 \& C:FXD AL ELECT 10 UF +50-10\% 150 VDCW \& 56289 \& 300106F150002-DSM \\
\hline DGA1C4 \& c1 50-6121 \& 55 \& C:FXD CER 0.1 UF +80-20* 50VOCW \& 56289 \& \(5 \mathrm{C5OBIS}-\mathrm{CML}\) \\
\hline AGAIC5 \& C150-0121 \& \& C:FXD CER 0.1 UF +80-209 50VDCW \& 56289 \& 5C508I S-CML \\
\hline Ágaico \& 0150-0121 \& \& \(\mathrm{C}:\) FXO CER O.1 UF + 80-208 50VDCW \& 56289 \& 5C508IS-CML \\
\hline A6A1C7 \& 0150-0121 \& \& C:FXD CER 0.1 UF + 90-20\% 50VDCW \& 56289 \& 5C50BIS-CML \\
\hline Abalcs \& 0150-0121 \& \& C:FXD CER O.1 UF +80-20* 50VOCW \& 56289 \& 5C50BIS-CML \\
\hline DGALCy \& c150-0121 \& \& C:FXD CER O.1 UF +20-2C8 ECVDCW \& 56289 \& 5C50BIS-CML \\
\hline AgAlCio \& \(0160-0013\) \& \& C:FXD MY O. 1 UF \(10 \% 400 \mathrm{VOCW}\) \& 56289 \& 160P 10494-PMD \\
\hline Agalcri \& 1902-3252 \& 1 \& DIODE BREAKDOWN:24.3V 5\% 400 MW \& 28480 \& 1902-3262 \\
\hline AGAICR2 \& 1902-3203 \& 1 \& DIODE BREAKDOWN:SILICON 14.7V 5\% \& 28480 \& 1902-3203 \\
\hline A6A1CR 3 \& 1902-3333 \& 1 \& DICDE BREAKDOWN:46.4V 52 \& 07910 \& CD35898 \\
\hline 464101 \& 1854-3072 \& 1 \& TSTR:SI NPN \& 80131 \& 2N3054 \\
\hline A6A102 \& 1853-6n52 \& 1 \& TSTR:SI PNP \& 80131 \& 2N3740 \\
\hline A04103 \& 1853-0037 \& \& TSTR:SI PNP \& 04713 \& SS 2109 \\
\hline abal04 \& 1854-0063 \& 3 \& TSTR:SI NPN \& 80131 \& 2N3055 \\
\hline datilus \& 1853-0059 \& 1 \& TSTR:SI PNP \& 80131 \& 2N3791 \\
\hline abal 06 \& 1853-0037 \& \& TSTR:SI PNP \& 047.13 \& SS 2109 \\
\hline A6A107 \& 1854-0063 \& \& TSTR:SI NPN \& 80131 \& 2N3055 \\
\hline 464108 \& 1854-0053 \& \& TSTR:SI NPN \& 80131 \& 2N3055 \\
\hline 464109 \& 1854-0003 \& 1 \& TSTR:SI NPN(SELECTED FROM 2N1711) \& 28480 \& 1854-0003 \\
\hline A6A1016 \& 1654-0313 \& 1 \& TSTR:SI NPN \& 80131 \& 2N3771 \\
\hline AGA1R1 \& 0698-3447 \& \& R:FXD MET FLM 422 OHM 1\% 1/8W \& 28480 \& 0698-3447 \\
\hline A64162 \& C698-5132 \& \& R:FXD FLM 261 DHM 1\% 1/8N \& 28480 \& 0698-3132 \\
\hline Aghir 3 \& 0757-0274 \& \& R:FXD MET FLM leziK OHM \(181 / 8 \mathrm{~W}\) \& 28480 \& 0757-0274 \\
\hline AbAlk 4 \& 0648-3447 \& \& R:FXD MET FLM 422 OHM 1\% 1/8W \& 28480 \& 0698-3447 \\
\hline AGA1R5 \& C698-3132 \& \& R:FXD FLM 261 OHM 1\% \(1 / 8 \mathrm{~W}\) \& 28480 \& 0698-3132 \\
\hline AOA1R6 \& c757-0274 \& \& R:FXD MET FLM 1.21 K OHM \(1 \% 1 / 8 \mathrm{~W}\) \& 28480 \& 0757-0274 \\
\hline A641R7 \& 0811-1849 \& 1 \& R:FXD WW 0.75 OHM 1095 W \& 28480 \& 0811-1849 \\
\hline abalra \& 0812-0019 \& 2 \& R:FXD WW 0.33 DHM 5\% 3W \& 28480 \& 0812-0019 \\
\hline C6A1R9 \& \(0812-0015\) \& \& \& 28480 \& 0812-0019 \\
\hline AGALR10 \& 0812-0021 \& 1 \& R:FXD WW
R:FXD WW
W.
C \& 28480
28480 \& \(0812-0021\)
\(0811-1670\) \\
\hline a \(641 \times 420\) \& 1251-1388 \& 1 \& CONNECTOR:PC (2 \(\times 15\)) 30 CCNTACT \& 71785 \& 252-15-30-008 \\
\hline A6A1L \& 0340-0162 \& 2 \& INSULATOR:TSTR FOR TO-66 \& 13103 \& A0340-0162-1 \\
\hline A6412 \& \(1200-0043\) \& 5 \& INSULLATOR:TSTR MOUNTING(TC-3) \& 71785 \& 293011 \\
\hline D6A12 \& 08660-20050 \& 1 \& HEAT SINK \& 28480 \& 08660-20050 \\
\hline A6A2
A6A2 \& 3160-0232 \& 1 \& FAN ASSY:SKELETON 115V 50/60HZ (FOR STANDARD INSTRUMENT CNLY) \& 28480 \& 3160-0232 \\
\hline \(\triangle 642\) \& 3160-0253 \& 1 \& FAN \& 28480 \& 3160-0253 \\
\hline A6A2 \& \& \& (FOR OPTION 03 ONLY) \& \& \\
\hline A7 \& 5060-1138 \& 1 \& POWER LINE MODULE \& 28480 \& 5060-1188 \\
\hline A7R1 \& C839-0006 \& 1 \& THERMISTJR:DISC TYPE 10 OHM 10\% AT 25C \& 03508 \& 20-754 \\
\hline A 88

88 \& 08660-60014 \& 1 \& | BOARD ASSY: N3 OSCILLATOR |
| :--- |
| FOR OPTION 004, UMIT A8 ASSEMBLY | \& 28480 \& 08660-60014

\hline ABCl \& 0180-0058 \& \& C:FXD AL ELECT 50 UF + $\mathbf{7 5 - 1 0 \%} \mathbf{2 5 V D C W}$ \& 56289 \& 300506G025CC2-DSM

\hline $\triangle 8 \mathrm{CL} 2$ \& 0180-1704 \& \& C:FXD ELECT 47 UF $10 \% 6 \mathrm{VCCW}$ \& 28480 \& 0180-1704

\hline A8C. 3 \& 0180-9223 \& \& C:FXD ELECT 22 UF 10\% 15VECH \& 56289 \& $1500226 \times 901582-D Y S$

\hline $\triangle H C S_{4}$ \& 0180-6049 \& \& C:FXD ELECT 20 UF +75-108 50VOCW \& 56289 \& 30D206G050CC2-DSM

\hline ARC5 \& 01.50-0121 \& \& C:FXU CER 0.1 UF +80-20\% 50VDCW \& 56289 \& 5C50BIS-CML

\hline $\triangle \mathrm{BCO}$ \& -160-3459 \& 6 \& C:FXD CER 0.02 UF 20\% 100VDCW \& 56289 \& C023F101H203MS22CDH

\hline \triangle AC7 \& 0150-3121 \& \& C:FXD CER O.1 UF + 80-208 50VDCW \& 56289 \& 5C50BIS-CML

\hline $\triangle \mathrm{ABCA}$ \& C150-0121 \& \& C:FXD CER D. 1 UF +80-20\% 50VDCW \& 56289 \& 5C50BI S-CML

\hline ABC.
$\triangle 8 C 10$ \& S1 $60-3459$
$\mathrm{G1} 60-0174$ \& \& C:FXD CER 0.02 UF 238100 VDCW
C:FXD CER 0.47 UF +80-20\% 25 VDCW \& 56289
56289 \& C023F101H203MS22CDH

\hline $\triangle 8 \mathrm{C} 10$ \& C160-0174 \& \& C:FXD CER 0.47 UF +80-203 25VDCW \& 56289 \& 5C1187S-CML

\hline د8c1. \& 016:3-2055 \& \& C:FXD CER 0.01 UF +80-20\% 100VOCW \& 56289 \& C023F101F1032S22-CDH

\hline $A 8 C 12$ \& 0160-0386 \& 15 \& C:FXD CER 3.3 TO 0.25 PF 500VDCW \& 72982 \& 301-000-S2HO-339C

\hline ${ }^{48 C 13}$ \& 0160-2204 \& \& C:FXD MICA 100PF 5\% \& 72136 \& RDM15F101J3C

\hline | A8C14 |
| :--- |
| 8 AC 15 | \& 0170-0082 \& 7 \& C:FXD MY 0.01UF 20\% 50VOCW NOT USED \& 84411 \& 601PE STYLE 1

\hline A8Cle \& 0160-0386 \& \& C:FXD CER 3.3 TO 0.25 PF 500VDCW \& 72982 \& 301-000-S2H0-339C

\hline $\triangle \mathrm{BCl} 7$ \& 0160-0336 \& \& C:FXD CER 3.3 TU 0.25 PF 50CVDCW \& 72982 \& 301-000-S2H0-339C

\hline ascia \& 2160-2055 \& \& C:FXD CER 0.01 UF +80-203 100VDCW \& 56289 \& C023F101F1032 S22-CDH

\hline A 86.19 \& 0160-2055 \& \& C:FXD CER 0.01 UF +80-20\% 100VDCW \& 56289 \& C023F101F1032S22-CDH

\hline axcze \& 0160-2055 \& \& C:FXD CER ก. D1 UF +80-208 100VDCW \& 56289 \& C023Fi01F1032S22-CDH

\hline AsC 21 \& 0160-2055 \& \& C:FXD CER 0.01 UF +80-20\% 100VDCW \& 56289 \& C023F101F1032S22-CDH

\hline A8C. 22 \& 010002655 \& \& C:FXU CER O.01 UF +80-20\% 100VDCW \& 56289 \& C023F101F1032S22-CDH

\hline ABCR1 \& 1c 31-0040 \& \& DIODE:SILICON 30MA 30WV \& 07263 \& FDG1088

\hline A8CE 2 \& 1701-0040 \& \& DIUDE:SILICEN 30MA 30w \& 07263 \& FDG1088

\hline ABCri3 \& 0122-0299 \& 1 \& C: VOLTAGE VAR 82 PF 5\% 20 wV \& 04713 \& SMV 389-299

\hline A8L1 \& 9100-1629 \& \& COIL/CHCKE 47.0 UH 5\% \& 28480 \& 9100-1629

\hline AfL? \& 9140-011.4 \& 13 \& COIL:FXO RF 10 UH \& 28480 \& 9140-0114

\hline AOL3 \& 9100-1629 \& \& COIL/CHCKE 47.0 UH 5\% \& 28480 \& 9100-1629

\hline Aril 4 \& 910:-1629 \& \& COIL/CHEKE 47.6 UH 5% \& 28480 \& 9100-1629

\hline A8L5 \& 9100-2815 \& 5 \& INDUCTOR:FXD 0.70 UH 5\% \& 73899 \& LF4W070

\hline
\end{tabular}

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A8L6	914000179	25	CCIL/CHOKE 22.C UH 10%	28480	9140-0179
A8L7	$4140-0179$		COIL/CHOKE 22.0 UH 10\%	28480	9140-0179
A801	1854-3C92	32	TSTR:SI NPN	80131	2N3563
A802	1854-0345		TSTR:SI NPN	80131	2N5179
A803	1853-0050		TSTR:SI PNP	28480	1853-0050
A804	1853-0050		TSTR:SI PNP	28480	1853-0050
A805	1853-005c		TSTR:SI PNP	28480	1853-0050
A806	1854-0087	8	TSTR:SI NPN	80131	2N3417
A807	1855-0081	5	TSTR:SI FET	80131	2N5245
A808	1853-0066	52	TSTR:SI PNP	80131	2N4250
4809	1853-0666		TSTR:SI PISP	80131	2N4250
A8010	1853-0066		TSTR:SI PNP	80131	2N4250
A8011	1853-0066		TSTR:SI PNP	80131	2N4250
A 8012 $A 8 R 1$	1854-0087		TSTR: SI NPN NOT USED	80131	2N3417
A8R2	0757-6428		R:FXD MET FLM 1.62K OHM 1\% 1/8W	28480	0757-0428
$\triangle 8 R 3$	0757-0428		R:FXD MET FLM 1.62 K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0428
ABR4	0757-0428		K:FXD MET FLM 1062K CHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0428
A $8 R 5$ $A 8 R 6$	$0757-0428$ $0757-0442$		$\begin{array}{lllll}\text { R:FXD } & \text { MET } & \text { FLM } & 1.62 \mathrm{~K} & \text { OHM } \\ \text { R:FXD } & \text { MET } & \text { FLM } & 1 / 8 \mathrm{~W} \\ \text { O.OK } & \text { OHM } & 18 & 1 / 8 \mathrm{~W}\end{array}$	28480 28480	0757-0428 $0757-0442$
- 0 ¢ 7	0757-0442		R:FXD MET ELY 1000 K OHM is 1/EW	28480	0757-0442
ABR 8	0757-0442		R:FXD MET FLM 10.OK OHM 1\% 1/8W	284880	0757-0442
ABR9	0757-0442		R:FXD MET FLY 10.0K OHM 18 1/8W	28480	0757-0442
A8k10	0757-0479	5	R:FXD MET FLM 392 K ÜM 12 l 1/8W	28480	0757-0479
A8R11	0757-0472		R:FXD MET FLM 200 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0472
ARR12	0757-0465		R:FXD MET FLM 100 K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0465
$48 \mathrm{R13}$	0098-3228	5	R:FXD MET FLM 49.9K OHM 1\% 1/8W	28480	0698-3228
ABR 14 A SR 15	C598-3155			28480	0698-3155
A8R16	0757-0442		R:FXD MET FLM 10.0K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0442
A8K17	2693-3151		R:FXD MET FLM 2.87K OHM 1\% 1/8W	28480	0698-3151
$\triangle 8 R 18$	0698-3157		R:FXD MET FLM 19.EK OHM 1\% 1/8W	28480	0698-3157
A8R19	0757-0200		R:FXO MET FLM 5.62K OHM 18 1/8W	28480	0757-0200
A8R20	0757-0199	6	R:FXD MET FLA 21.5 K OHM 1\% 1/8W	28480	0757-0199
$A 8 R 21$	0698-0085		R:FXD : $4 E T$ FLM 2.61 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-0085
A8R22	0757-0421		R:FXD MET FL. 825 OHM 1\% 1/8W	28480	0757-0421
28R23	0698-4037	3	R:FXD MET FLM 46.4 OHM 1\% 1/8H	28480	0698-4037
A8R24	2100-1760	6	R:VAR WW 5 K OHM 5\% TYPE V 1W	28480	2100-1760
48625	C757-0200		R:FXD MET FLM 5.62 K OHM 1\% $1 / 8 \mathrm{H}$	28480	0757-0200
A8R26	2100-1.759	5	R:VAR WW 2 K OHM 5% TYPE V 1W	28480	2100-1759
48 R 27	C698-3157		R:FXD MET FLY 1906K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3157
A8R28	C678-3158		R:FXD MET FL4 23.7 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3158
A8R29			NOT USED		
A8R30	0698-3156		K:FXI MET FLM 14.7K OHM 1\% 1/8W	28480	0698-3156
A8R31	0757-0441		P:FXD MET FLY 8025K OHM $161 / 8 \mathrm{~W}$	28480	0757-6441
Asp 32	0757-027 ${ }^{\circ}$		P.:FXD MET FLY 3.16K OHM 1\% 1/8W	28480	0757-0279
A8R33	C698-0082		R:FXD MET FLA 464 CHM $181 / 8 \mathrm{~W}$	28480	0698-0082
A8R34	0757-0443	2	R:FXD MET FLY 11.OK OHM 1\% 1/8W	28480	0757-0443
ARR35	0757-0199		R:FXD MET FLM 21.5 K OHM 1\% 1/8W	28480	0757-0199
A8R36	0757-0442		R:FXD MET FLM 10.OK OHM $151 / 8 \mathrm{~W}$	28480	0757-0442
A8R37			NOT USED		
А8к38	0757-0401		R:FXD MET FLM 100 OHM 1\% 1/8W	28480	0757-0401
:8R39	0683-8245	5	R:FXO CCMP 820K OHM $5 \% 1 / 4 \mathrm{~W}$	01121	CB 8245
य8K40	0696-3243	13	K:FXD MET FLM 178 K OHM $181 / 8 \mathrm{~W}$	28480	0698-3243
A8R41	0757-0442		R:FXD MET FLM 10.OK OHM 18 1/8W	28480	0757-0442
A8R42	0698-3440		R:FXD MET FLM 196 CHM 1\% 1/8W	28480	0698-3440
A3843	C598-0082		R:FXD MET FLY 464 OHM 1\% 1/8W	28480	0698-0082
A8R44	0757-0200		R:FXO MET FLM 5.62 K OHM 1\% 1/8W	28480	0757-0200
A8R45	0698-3154		R:FXD MET FLA 4.22 K OHM $181 / 8 \mathrm{~W}$	28480	0698-3154
A8846	0698-3445		R:FXD MET FLM 348 OHM 1\% 1/8W	28480	0698-3445
A8K47	0757-0403	4	R:FXD MET FLM 121 OHM 1\% 1/8W	28480	0757-0403
A8R4B	0693-3444		R:FXO MET FLA 316 OHM 1\% $1 / 88 \mathrm{~W}$	28480 28480	0698-3444
A8K49	0698-3445		R:FXD MET FL4 348 DHM $181 / 8 \mathrm{~W}$	28480	0698-3445
$\triangle 8 \times 50$ $A 801$	Cos6-343 $1820-0054$		E:FXD MET FLY 147 OHM 18 1/8W IC:TTL QUAD $2-I N P T$ NANO GATE	28480 01295	$\begin{aligned} & \text { 0698-3438 } \\ & \text { SN7400N } \end{aligned}$
A8U2	1820-0054		IC:TTL OUAD 2-INPT NAND GATE	01295	SN740CN
A8:13	1320-0450	15	IC:DIGITAL TTL	18324	N8290A
A9	06660-60045	1	CABLE ASSY: LOOP BOX	28480	C8660-60045
A9Wi	8120-1614	1	CABLE:RIBBUN, SPEC. PURPOSE	58346	3401
8941	08660-60037	1	BGARD ASSY: DIGITAL PROGRAM	28480	08660-60037
ughiei	0360-1036	1	TERMINAL:RIBBON CABLE 34 CCNTACTS	66346	3402
AYAIKI	0098-7210	28	K: FXi FLM 82.5 OHM $281 / 8 \mathrm{~W}$	28480	0698-7210
A9A1R2	c698-7210		R:FXD FLM 82.5 OHM 28 1/8w	28480	0698-7210
A9A1R3	2638-7210		R:FXO FLM 82.5 OHM 2% 1/8W	28480	0698-7210
AYAlR4	0698-7210		R:FXU FLM 82.5 OHM 26 1/8W	28380	0698-7210

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
cialks	Cís 98-7210		R:FXD FLM 82.5 CHM $2 \% 1 / 8 \mathrm{~W}$	28480	0698-7210
A9, 11 RG	0693-7210		R:FXD FLM 82.5 CHM 28 1/8W	28480	0698-7210
-9AlR7	$0698-7210$		R:FXD FLM 82.5 OHM $28.1 / 8 \mathrm{~W}$	28480	0698-7210
A9A1R8	0698-7210		R:FXO FLM 820 OHM 28 1/88	28480	0698-7210
ayalirg	0698-7210		R:FXD FLM 82.5 OHM $281 / 8 \mathrm{~W}$	28480	0698-7210
A9A1R10	0698-7210		R:FXD FLM 82.5 JHM $2 \% 1 / 8 \mathrm{~W}$	28480	0698-7210
A941211	0698-7210		R:FXD FLM 82.5 OHM 28 1/8W	28480	0698-7210
A9A1R12	0698-7210		R:FXD FLM 82.5 OHM 28 1/8W	28480	0698-7210
A9s1R13	0698-7210		R:FXD FLM 82.5 OHM 28 1/8W	28480	0698-7210
4941R14	0698-7210		R:FXD FLM 82.5 OHM $281 / 8 \mathrm{~W}$	28480	0698-7210
A9A1R15	0598-7210		R:FXD FL. 82.5 OHM $281 / 8 \mathrm{~W}$	28480	0698-7210
$9941 \mathrm{R16}$	$0698-7210$		R:FXD FLM 82.5 OHM 28 1/8 ${ }^{\text {R }}$	28480	0698-7210
A9A1R17	0698-7210		R:FXD FLM 82.5 OHM 2\% 1/8W	28480	0698-7210
A9AR18 c9AlR19	$0698-7210$ $9698-7210$		R:FXD FLM R:FXD FLM 32.5 OHM 28 OHM 2% $1 / 8 \mathrm{~W}$	28480 28480	0698-7210
A941R20	0608-7210		R:FXD FLM 82.5 OHM 28 1/8W	28480	0698-7210
1941R21	0598-7210		R:FXD FLM $82.50 \mathrm{HM} 2 \% 1 / 8 \mathrm{~W}$	28480	0698-7210
A9A1R22	3698-7210		R':FXD FLM 82.5 OHM 2\% 1/8W	28480	0698-7210
-941R23	6698-7210		R:FXD FLM 82.5 OHM 28 1/8W	28480	0698-7210
csalk24	$0050-1210$		K:FXD FLM $82.50 \mathrm{HM} 281 / 8 \mathrm{~W}$	28480	0698-7210
A9A1R25 A9A1R26	$0698-7210$ $0698-7210$		$\begin{array}{lllllllll}\text { R:FXD } & \text { FLM } & 82.5 & \text { OHM } & 2 \% & 1 / 8 \mathrm{~W} \\ \text { R:FXD } & \text { FLM } & 82.5 & \text { OHM } & 28 & 1 / 8 \mathrm{~W}\end{array}$	28480 28480	$0698-7210$ $0698-7210$
A9A1R27	0698-7210		R:FXD FLM $82.50 \mathrm{HM} 2 \% 118 \mathrm{~W}$	28480	0698-7210
A9A1R28	0698-7210		R:FXD FLM 82.5 OHM $281 / 8 \mathrm{~W}$	28480	0698-7210
$\Delta 10$	08660-60013	1	BOARD ASSY:N3 PHASE DETECTOR	28480	08660-60013
A10 A10CL	0i60-2055		FOR UPTION 00\%, OMIT A10 ASSEMBLY C:FXD CEF 0.01 UF $+80-20 \%$ 1COVDCW	56289	C023F 101F1032S22-CDH
${ }_{4}$	0160-2055		$\mathrm{C}: \mathrm{FXD}$ CER 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
A10C3	0180-0058		C:FXD AL ELECT 50 UF $+75-102$ 25VDCW	56289	3005066025CC2-DSM
A10C4	0180-2206		C:FXD ELECT 60 UF 10\% 6VDCw	56289	1500606×900682
Aloc5	0180-0228		C:FXD ELECT 22 UF 10\% 15VCCW	56289	$1500226 \times 9015 B 2-$ OYS
A10C6	$0150-0121$		C:FXD CER 0.1 UF +80-20\% 50VDCW	56289	5C50BIS-CML
A10C7	0150-0121		$\mathrm{C}:$ FXD CER 0.1 UF $+80-20850 \mathrm{VOCW}$	56289	5C50BIS-CML
A10C8	0160-0157	4	C:FXD MY 0.0047 UF $10 \% 200 \mathrm{VDCW}$	56289	192 P 47292 -PTS
A10C9	0160-2055		$\mathrm{C}:$ FXD CER 0.01 UF $+80-20 \% ~ 100 V D C W ~$	56289	C023F101F1032S22-CDH
A10c10	0150-0121		C:FXD CER 0.1 UF +80-203 50VDCW	56289	5C50BIS-CML
Alocle	0150-0121		C:FXD CER 0.1 UF +80-20\% 50VDCW	56289	5C50BIS-CML
410 Cl 2	0160-2055		C:FXD CER 0.01 UF $+80-208$ 100VDCW	56289	C023F101F1032S22-CDH
410 Cl 3	0140-0172	3	C:FXD MICA 3000 PF $1 \% 100 \mathrm{VDCW}$	28480	0140-0172
A10C14	0180-022		C : FXD ELECT 33 UF 10% lovDCw	28480	0180-0229
Alceis	0160-2055		C:FXD CER O.01 UF +80-20\% 100VOCW	56289	C023F101F1032S22-CDH
A10.616	0150-0122		C:FXD CER O.1 UF +80-208 50VDCW	56289	5C50BIS-CML
Alucl 7	0150-0121		C:FXD CER 0.1 UF $+80-20250 \mathrm{VOCW}$	56289	$5 C 50815-C M L$
Alocis	$0150-0121$		C:FXD CER 0.1 UF + 80-208 50VDCW	56289	5C50BIS-CML
A10c19	0160-2055		C:FXD CER 0.01 UF +80-20\% 100 VDCW	56289	C023F101F1032S22-CDH
610020	0160-2055		C:FXD CER 0.01 UF +80-20\% 100VOCW	56289	C023F101F1032S22-CDH
410621	0160-2055		C:FXD CER O.01 UF $+80-208$ 100VDCW	56289	C023F101F1032S22-CDH
A 10 C 22	$0165-3539$	4	C:FXD MICA 820 PF 5\% 100VCCW	28480	0160-3539
A10:23	$0150-2453$	3	C:FXD MY 0.22 UF 10\% 80VDCW	56289	192P2249R8-PTS
A 10Cz 2	6170-0040	3	C:FXD MY 0.047 UF 10\% 200VCCW	56289	192P47392-PTS
$\triangle 10 C R 1$ $A 10 C R 2$	$1901-0040$ $1901-0040$		DIODE: SILICON 30MA 30WV DIDDE:SILICON 30MA 30WV	07263 07263	FDG1088
A $10 C R 2$ $\triangle 10 C R 3$	$1901-0040$ $1901-0179$		DIODE:SILICON 15WV	28480	1901-0179
Alwiok	1001-0179		DIDDE:SILICON 15wV	28480	1901-0179
410L1	9100-1629		COIL/CHUKE 47.0 UH 5\%	28480	9100-1629
A10L2	9140-0114		COIL:FXD RF 10 UH	28480	9140-0114
A 1013	O100-1629		COILICHCKE 47.0 UH 5%	28480	9100-1629
11014	$9140-0179$		COIL/CHCKE 22.0 UH 10\%	28480	9140-0179
*10L5	9100-1650	3	COIL/CHOKE 680.0 UH 5%	99800	2500-20
A10L6	$914 i-0114$		COIL: FXD RF 10 UH	28480	9140-0114
Al0L7 Al0,	$5100-1652$ $1853-6634$	4	COIL/CHOKE 820 UH 5\% TSTR:SI PNP(SELECTES FROM 2N3251)	82142 28480	19-1331-33J
41002	1853-6034		TSTR:SI PNP(SELECTED FROM 2N3251)	28480	1853-0034
11003	1853-C034		TSTR:SI PNP(SELECTED FRCM 2N3251)	28480	1853-0034
Al004	1855-6049		TSTR:SI FET N-CHANNEL DUAL	28480	1855-0.049
Aluw	1854-0045		TSTR:SI NPN	04713	2N956
al, 000	1853-C015		TSTR:SI PNP	80131	2 N 3640
41007	1854-0092		TSTK:SI MPN	80131	2N3563
A10R1	0698-0082		R:FXD MET FLM 464 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-0082
A19R2	c757-0289	6	R:FXD MET FLA 13.3K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0289
A10t3	7757-0439		R:FXD MET FLY 6.81K OHM 1\% 1/8W	28480	0757-0439
410×4	0638-0085		R:FXD MET FLM 2061K OHM 1* 1/8W	28480	0698-0085
A10ヶ5	0757-0416		R:FXD MET FLM 511 OHM $1 \% 1 / 8 \mathrm{H}$	28480	0757-0416
410k6	0698-3446		R:FXD MET FLM 383 CHM 1\% 1/8W	28480	0698-3446
A10k7	C7E7-0424		R:FXD MET FLM 1.10K OHM $1 \% 1 / 8 \mathrm{w}$	28480	0757-0424

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
Al. ${ }^{\text {arg }}$	0757-C416		R:FXD MET FLM 511 OHM 1\% 1/8W	28480	0757-0416
C10R9	0757-6442		R:FXD MET FLM 10.OK OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0442
AlOR10	0757-0442		R:FXD MET FLM 10.OK OHM $181 / 8 \mathrm{~W}$	28480	0757-0442
A10R11	0698-3450	5	R:FXD MET FLM 42.2K OHM 1\% 1/8W	28480	0698-3450
AlOR12	0757-0447		R:FXD MET FLH 16.2K OHM 1\% 1/8W	28480	0757-0447
AlOR13	0757-0424		R:FXD MET FLM 1. 10 K OHM 1\% 1/8W	28480	c757-0424
AlOR14	0757-0416		R:FXD MET FLM 511 OHM 1\% $1 / 8 \mathrm{~B}$	28480	0757-0416
A16215	2757-0421		R:FXD MET FLM 825 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0421
Alorio	C757-0424		R:FXD MET FLM 101CK OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0424
Al0R17	0698-3430		R:FXD MET FLM 21.5 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3430
A10R18	0698-3447		R:FXD MET FLY 422 CHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3447
A10R19	0757-0279		R:FXU MET FLY 3.16K OHM 1\% 1/8W	28480	0757-0279
Al. 220	0757-0421		R:FXD MET FLM 825 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0421
AlOR21 A 10 k 22	0757-0442 $0757-0279$		R:FXD MET FLM R:FXD MET FLM 3016 CK OHM	28480 28480	$0757-0442$ $0757-0279$
A10R23	0757-0279		R:FXD MET FLM 3.16K OHM 1\% 1/8W	29480	0757-0279
Al0R24	0698-3153		R:FXD MET FLA 3083 K OHM 18 1/8W	28480	0698-3153
Al0R25	0757-0394		R:FXD MET FLM 51.1 OHM 1\% 1/8W	28480	0757-0394
AlOR26	0757-0394		R:FXD MET FLM 51.1 OHM 1\% 1/8W	28480	0757-0394
AlOR27	0757-0416		R:FXD MET FLM 511 OHM 1\% 1/8W	28480	0757-0416
A10R28	0757-0416		R:FXD MET FLM 511 CHM 1\% $1 / 8 \mathrm{~B}$	28480	0757-0416
A10R29	c757-0442		R:FXD MET FLM 10.0K OHM 1\% 1/8W	28480	0757-0442
A10R30	c757-0200		R:FXD MET FLH 5.62 K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0200
Al0r31	0757-0424		R:FXD MET FLM 1.10K OHM $18.1 / 8 \mathrm{H}$	28480	0757-0424
Al0r32	0757-0438		R:FXD MET FLM 5.11K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0438
A10R33	0757-0444		R:FXD MET FLM 12.1K OHM 1\% 1/8W	28480	0757-0444
A10R34	0757-0474		P: FXD MET FLS 1210 K OHM is $1 / \mathrm{OW}$	28480	0757-0424
A10R35	0757-0444		R:FXD MET FLM 12.1K OHM 18 1/8W	28480	0757-0444
Al0R30 dioti	$0757-0280$ $08660-90001$	4	R:FXD MET FLM 1 LK CHM $1 \% 1 / 8 \mathrm{w}$ TRANSFORMER:SAMPLER	28480 28480	$\begin{aligned} & 0757-0280 \\ & 08660-80001 \end{aligned}$
aloui	1320-0451	8	IC:TTL DUAL J-K F/F	04713	MC 306 2 P
alvuz	1820-0451		IC:ITL DUAL J-K F/F	04713	MC 3062 P
-10.33	1820-0204	4	IC:TTL TRIPLE 3-INPT AND GATE	04713	MC 3006P
A 1014	1820-0450		IC: DIGITAL TTL	18324	N8290A
A10U5	1820-0450		IC: digital ttl	18324	N8290A
A1046	1820-0450		IC:OIGITAL TTL	18324	N8290A
A1047	1820-0054		IC:TTL QUAD 2-INPT NAND GATE	01295	SN7400
A11	08660-60019	1	BDARD ASSY: SL2 OSCILLATOR	28480	08660-60019
All All	99660-60040	2	BOARD ASSY:SL2 DETECTOR/OSCILLATOR FOR OPTION 004, OMIT All ASSEMBLY	28480	c8660-60040
Allct	0150-0121		C:FXD CER 0.1 UF +80-20\% 50VDCW	56289	5C50BIS-CML
A11C2	1)130-0058		C:FXD AL ELECT 50 UF +75-109 25 VDCW	56289	30D506G025CC2-DSM
A11C3	0180-1704		C:FXD ELECT 47 UF 10\% 6 VOCW	29480	0180-1704
AllC.	C180-2214		C:FXD ELECT 90 UF +75-10\% 15VDCW	56289	30D906G015CC2-DSM
A11C5	$0150-0121$		$\mathrm{C}:$ FXD CER 0.1 UF $+80-20850 \mathrm{VDCW}$	56289	5C508IS-CML
$\triangle 11 \mathrm{C6}$	016c-0174		C: FXD CER 0.47 UF +80-20\% 25VDCW	56289	5C1187S-CML
A11C7	0180-0049		C:FXD ELECT 2 C UF + 75-10\% 50VDCW	56289	30D2C 6G050CC2-DSM
A11C8	0160-0174		C:FXD CER $0.47 \mathrm{UF}+80-20325 \mathrm{VDCW}$	56289	$5 \mathrm{Cl1B75-CML}$
AllCs	0180-0116		C:FXD ELECT 603 UF $10 \% 35 \mathrm{VCCW}$	56289	1500685×903582-DYS
Al1C10	0180-221.0	2	$C: F X D$ ELECT 2 UF $+50-10 \% 150 \mathrm{VDCW}$	28480	0180-2210
AllCil	0150-0121		C: FXO CĊR U.1 UF +80-208 50VOCW	56289	5C50BIS-CML
$411 \mathrm{Cl2}$	028c-0374		C:FXD TANT. 10 UF $10 \% 20 \mathrm{CCW}$	56289	1500106X902082-DYS
411C13	0160-2055		C:FXD CER O.VI UF +80-203 100VDCW	56289	C023F101F1032S22-CDH
AlıC14	0160-0336		C FFXD CER 3.3 TS 0.25 PF 500 VOCW	72982	301-000-S2HO-339C
A11C15	$0170-0082$		$C: F X D$ MY D. OlUF $20 \% 50 \mathrm{VDCW}$	84411	601PE STYLE 1
A11C16	0170-0082		C:FXD MY 0. O1UF 20\% 50vDCw	84411	601PE STYLE 1
A116:17	0121-0059	4	C: VAR CER 2-8 PF 300VDCW	28480	0121-0059
A11C18	0160-2204		C:FXD MICA 100 PF 5\%	72136	RDM15F101J3C
A11C19	0160-0386		C:FXD CER 3.3 TO 0.25 PF 500 VDCW	72982	301-000-52HO-339C
Allczo	0160-0386		C:FXD CER 3.3 TO 0.25 PF 500 VOCW	72982	3C1-000-S2H0-339C
-11C21	0160-2055		C:FXO CER O.01 UF + 80-20\% 100VOCW	56289	C023F101F1032S22-CDH
A11c. 22	0160-2055		C:FXD CER 0.01 UF $+80-20 \% 100 \mathrm{VDCW}$	56289	C023F101F1032S22-CDH
A11C23	0160-2055		C:FXD CER 0.01 UF +80-20\% 100VDCW	56289	CO23F101F1032S22-CDH
111C24	0100-2055		C:FXD CER 0.01 UF $+80-20 \% 100 \mathrm{VDCW}$	56289	C023F101F1032S22-CDH
Allc25	01 ชu-J228		$\mathrm{C}: \mathrm{FXD}$ ELECT 22 UF 10\% 15vCCW	56289	1500226x9015B2-DYS
Allc:26	0180-2207	4	C:FXD ELECT 100 UF 10% lovocw	56289	$1500101 \times 9010 R 2-D Y S$
A11C2\%	0180-0116		C:FXD ELECT 0.8 UF $10 \% 35 \mathrm{VCCH}$	56289	$1500585 \times 903582-D Y S$
Alliche	O160-2228	1	C:FXU MICA 2700 PF 5%	28480	0160-2228
Allcrl	1901-0040		DIODE:SILICON 3OMA 30WV	07263	FDG1088
Allcri	1901-0040		DIODE:SILICON 30MA 30WV	07263	FDG1088
A11CR2	1901-0040		DIGDE:SILICON 3OMA 30wV	07263	FDG1088
-11crer	1001-0040		DIUDE:SILICON 30MA 30 WV	07263	FDG1088
A11CR3	1901-0040		DIDDE:SILICON 30MA 30wV	07263	FDG1088
A11CR3	1901-0040		CIDDE:SILICCN 3UMA 30WV	07263	FOG1088
A11CR 4	1901-0040		DIODE:SILICON 30MA 30wV	07263	FDG1088

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A12cr 4	1901-0040		DIODE:SILICON 30MA 30wV	07263	FDG1088
AllCR 5	10n1-0040		DIODE:SILICON 30MA 30wV	07263	FDG1088
A11CR5	1901-0040		OIODE:SILICON 30MA 30WV	07263	FOG1088
Alicreg	1901-6040		DIODE:SILICON 30 MA 30WV	07263	FDG1088
Alicre	1901-0040		DIODE:SILICON 30MA 30wV	07263	FOG1088
Allcr 7	1901-0040		DIODE:SILICON 30MA 30wV	07263	FDG1088
Allcr 7	1001-0040		DIODE:SILICON 30MA 30WV	07263	FDG1088
Allcrs	1901-0040		OIODE:SILICON 30MA 30WV	07263	FDG1088
allcre	1901-0040		DIODE:SILICON 30MA 30WV	07263	FDG1088
Allcrg	1901-0040		DIODE:SILICON 30MA 30WV	07263	FDG1088
Al1CR9	1901-0640		DIODE:SILICON 30MA 30WV	07263	FDG1088
$\triangle 11 \mathrm{CKIC}$	1901-0040		OIODE:SILICON 30MA 30wV	07263	FDG1088
A11CR10	1901-0040		OIDOE:SILICON 30MA 30WV	07263	FDG1088
AllCR11 AllCR11	1901-0040		DIODE:SILICON 30MA 30 WV DIODE:SILICON 30 MA 30WV	07263 07263	FDG1088
Alicril	1901-c040			07263	FOG1088
A11CR12	1901-0043		DIUDE:SILICON 30MA 30wV	07263	FD61088
A11CR12	1901-0040		DIDDE: SILIICON 30MA 30WV	07263	FDG1088
-11CR13	0122-0263	4	C: VOLTAGE VAR 47 PF 108 60WV	04713	1N5148
AllCR14	0122-0261	4	C:VOLTAGE VAR. 39 PF 10860 VOCH	04713	1N5147
AllCR15	1901-0040		DIODE:SILICON 30MA 30wV	07263	FDG1088
A11CR15	1901-0040		DIODE:SILICON 3OMA 30WV	07263	FDG1088
A11CRI6	1901-0519	3	DIODE:HOT CARRIER	28480	1901-0518
AllCk16	1901-0518		DIDOEE:HOT CARRIER	28480	1901-0518
Al1L1	9100-1629		COIL/CHOKE 47.0 UH 5\%	28480	9100-1629
A11L2	9140-0114		COIL:FXD RF 10 UH	28480	9140-0114
21113	7100-1629		COIL/CHOKE 47.0 UH 5\%	28480	9100-1629
A1124	9100-1629		COIL/CHOKE 47.0 UH 5\%	28480	9100-1629
A11L5	9140-0179		COIL/CHOKE 22.0 UH 10\%	28480	9140-0179
A11L6	9140-0179		COIL/CHOKE 22.0 UH 10\%	28480	9140-0179
A11L7	9100-1629		CUIL/CHOKE 47.0 UH 5\%	28480	9100-1629
A11L8	9100-2815		INDUC TOR: FXD 0.70 UH 5\%	73899	LF4W070
Allla	9140-0179		COIL/CHOKE 220 UH 10\%	28480	9140-0179
211610	3140-0179		COIL/CHOKE 22.0 UH 10\%	28480	9140-0179
A11L11	9140-0129		COIL: FXO RF 220 UH	28480	9140-0129
A11L12	9100-0368	1	COIL:FXD 0. 33 UH 10%	36196	1A-3303M
41101	1854-0092		TSTR:SI NPN	80131	2N3563
41102	1855-0081		TSTR:SI FET	80131	2N5245
A1203	1854-C345		TSTR:SI NPN	80131	2N5179
11104	1853-0050		TSTR:SI PINP	28480	1853-0050
A1105	1853-0050		TSTR:SI PNP	28480	1853-0050
Aling	1854-0087.		TSTR:SI NPN	80131	2N3417
Aliot	1853-0,066		TSTR:SI PNP	80131	2N4250
41108	1853-0066		TSTR:SI PNP	80131	2N4250
A1.109	1853-0C66		TSTR:SI PNP TSTR:SI PNP	80131 80131	2N4250 2N4250
A11010	1353-0066		TSTR:SI PNP	80131	2N4250
A11011	1853-0666		TSTR:SI PNP	80131	2N4250
A11012	1853-0066		TSTR:SI PNP	80131	2N4250
A11013	1853-0066		TSTR:SI PNP	80131	2N4250
A111014 A11015	$1853-0066$ $1653-0050$		TSTR:SI PNP TSTR:SI PNP	80131 28480	2N4250
A1146	1853-0066		TSTR:SI PNP	80131	2N4250
A11017	1853-0066		TSTR:SI PNP	80131	2N4250
A11018	1853-0006		TSTR:SI PNP	80131	2N4250
A11019	1853-0066		TSTR:SI PNP	86131	2N4250
A11020	1853-0066		TSTR:SI PNP	80131	2N4250
Alinl	0693-0083		R:FXD MET FLY 1.96K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-0083
A11k2	0698-0083		R:FXD MET FLM 1.96K OHM 1\% 1/8W	28480	0698-0083
S11k3	C698-0083		R:FXD MET FLM 1.96K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-0083
A1184	0698-0083		R:FXD MET FLM 1.96K OHM 1\% 1/8W	28480	0698-0083
Allk 5	0757-0442		R:FXO MET FLM 10.0K OHM 1\% 1/8W	28480	0757-0442
Allkg	0757-0442		R:FXD MET FLM 10.0K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0442
A11\%7	0757-0442		R:FXD MET FLM 10.0K OHM $1 \times 1 / 8 \mathrm{~W}$	28480	0757-0442
Allke	2757-0442		R:FXD MET FLM 10.OK CHM it $1 / 8 \mathrm{~W}$	28480	0757-0442
A1129	0757-0479		R:FXD MET FLM 392K OHM 18 1/8W	28480	0757-0479
Allk 10	0757-0472		R:FXD MET FLM 200 K OHM is $1 / 8 \mathrm{~W}$	28480	0757-0472
A11k11	0757-0465		R:FXD MET FLM 100 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0465
611<12	C608-3228		K:FXD MET FLM 4909K OHM 1\% 1/8W	28480	0698-3228
Al1k13	0757-0274		R:FXD MET FLM 1021K OHM is 1/8W	28480	0757-0274
Al1R14	0757-02460	2	R:FXD MET FLM 61.9K OHM 1\% 1/8w	28480	0757-0460
A11R15	2100-1760		R:VAR WW 5K OHM 5\% TYPE V 1W	28480	2100-1760
Aliki6	0698-3156		R:FXD MET FLA 14.7K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3156
Al1R17	0698-0093		R:FXD MET FLM 1.96K OHM 1\% 1/8W	28480	0698-0083
Allinis	C757-0442		R:FXD MET FLiH I 0.0 OK UHM $181 / 8 \mathrm{~W}$	28480	0757-0442
411219 11120	$2100-1759$ $0757-0439$		R:VAR WH 2 K OHM 5% TYPE V IW R:FXD MET FLM 6.81K OHM $1 \% ~ 1 / 8 W$	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 2100-1759 \\ & 0757-0439 \end{aligned}$

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty		Description	Mfr Code	Mfr Part Number
AllRal	0757-0200		R:FXJ ;	; 1 ET FLM 5062K OHM 1\% 1/8W	28480	0757-0200
A11R22	0757-0442		R:FXD	MET FLM 10.0 N OHM $181 / 8 \mathrm{WW}$	28480	0757-0442
Al1R23	O598-3440		R:FXD	MET FLM 196 OHM 1\% 1/8W	28480	0698-3440
Al1R24	0698-3154		R:FXD M	MET ELA 40 $22 K$ UHM 18 1/8W	28480	0698-3154
Al1R25	0698-0083		R:FXD M	MET FLM 1.96K OHM 1\% 1/8W	28480	0698-0083
Allk 26	0757-0442		R:FXD M	MET FLM 10.0K CHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0442
A11R27	0757-0458	4	R:FXD	MET FLM 51.1K OHM $181 / 8 \mathrm{~W}$	28480	0757-0458
A11R28	n757-0461	4	P.:FXD M	MET FLM 68.1K OHM 18 1/8W	28480	0757-0461
A11R29	0757-0464	4	$R: F \times O$ $R: F X D$	MET FLM 90.9K OHM 1\% 1/8W	28480 28480	$0757-0464$ $0757-0467$
111P30	0757-046?	4	R:FXD M	MET FLM 123K OHM 1% 1/O'N	28480	0757-0467
AllR31	0757-0466	4	R:FXD	MET FLM 110K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0466
A11R32	0698-3243		R:FXD M	MET FLM 178K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3243
Al1R33	c698-3243		R:FXD	MET FLM 178K OHM 1\% 1/8W	28480	0698-3243
A11R34	0698-3266	8	R:FXD	MET FLM 237 K CHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3266
A11R35	0698-3266		R:FXD	MET FLM 237 K OHM $1 \% 1 / 3 \mathrm{~W}$	28480	0698-3266
AllR36	0698-3459	4	R:FXD M	MET FLM 383K OHM 1\% 1/8W	28480	0698-3459
A11R37	0698-3162	5	R:FXO M	MET FLM 46.4 K DHM $181 / 8 \mathrm{~W}$	28480	0698-3162
A11R38	c698-3155		R:FXD M	MET FLM 4064 K OHM $181 / 3 \mathrm{~W}$	28480	0698-3155
111839	2160-2574	4	R:VAR C	CERMET 5CO OHM 10% LIN $1 / 2 \mathrm{~W}$	28480	2100-2574
A11R40	0698-3155		R:FXD M	MET FLM 4-6々K OHM $181 / 8 \mathrm{w}$	28480	0698-3155
A11×41	0699-cc83		P: $\mathrm{R} \times \mathrm{XC}$	MET FLM 1.96K OHM is i/8W	28480	0698-0083
Al1R42	0757-0442		R:FXD M	MET FLM 10.GK OHM 18 1/8w	28480	0757-0442
A11R43	0693-3442		R:FXD	MET FLM 237 OHM 1\% 1/8W	28480	0698-3442
A11R44 Al1R45	-0698-3437		R:FXD f.:	$\begin{array}{lllll}\text { MET } & \text { FLM } & 133 & \text { OHM } & 18 \\ \text { MET } & 1 / 8 \mathrm{~W} \\ \text { FLM } & 162 & \text { OHM } & \text { is } & 1 / 8 \mathrm{~W}\end{array}$	28480 28480	$0698-3437$ $0757-0405$
A11R46	0698-3439		P.:FXD M	AET FLA 178 OHM 18 1/8W	28480	0698-3439
111.647	0608-3440		R: FXD	MET FLM 196 OHM 18 1/8W	28480	0698-3440
A11648	0698-3132		R:FXD F	FLM 261 万HM $181 / 8 \mathrm{H}$	28480	0698-3132
A11R49	0698-3443		R:FXD	MET FLA 287 OHM $181 / 8 \mathrm{H}$	28480	0698-3443
A11+50	0698-344.5		R:FXD M	MET FLM 348 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3445
A11. 51	6698-3447		R:FXD	MET FLM 422 OHM $181 / 8 \mathrm{~W}$	28480	0698-3447
- 11×52	0698-0482		R:FXD M	MET FLM 464 OHM $1.21 / 3 \mathrm{~W}$	28480	0698-0082
A11R53	9757-0317		R:FXD M	MET FIM 1.33 K OHM $181 / 3 \mathrm{~N}$	28480	0757-0317
A11R54	2100-2574		R:VAR C	CERMET 500 OHM 10% LIN $1 / 2 \mathrm{~W}$	28480 28480	$2100-2574$ $0698-3258$
A11k55	0698-3258	2	R:FXD M	MET FLy 5. 36 K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3258
Al1R50	0698-3132		R:FXD F	FLM 261 OHM 1\% 1/8W	28480	0698-3132
A11R57	0757-0834	4	R:FXD M	MET FLM 5062 K OHM 28 1/2W	28480 28480	$0757-0834$ $0698-0083$
A11R58	0698-0083		R:FXD M	MET FLM MET FLM $10.96 K$ OHM	28480 28480	0698-0083
A11R59 A11R60	$0757-0442$ $2100-2633$	6	R:FXD R:VAR		28480 28480	$0757-0442$ $2100-2633$
A11R61	c757-0290	6	R:FXD M	MET FLM 6. 19 K OHM 1\% 1/8W	28480	0757-0290
A11R6?	0757-0441		R:FXD	MET FLM 3. 25 K OHM $1 \pm 1 / 8 \mathrm{~W}$	28480	0757-0441
A11R63	0698-0083		R:FXD	MET FL, 1096K CHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-0083
211864	0757-0442		R:FXD	MET FLM 10.0K OHM 18188 W	28480	0757-0442
Al1ko	0757-0279		R:FXD	MET FLM 3.16K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0279
AllR60	0757-0442		R:FXD M	MET FLM 10.OK OHM $121 / 8 \mathrm{~W}$	28480	0757-0442
411R67	2100-2633		R:VAR	CERMET 1K OHM 10\% LIN $1 / 2 \mathrm{~W}$	28480	2100-2633
A11R68	0757-0440		R:FXD	MET FLM 7.50K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0440
A11R69	0757-0444		R:FXD M	MET FLM 1201K OHM $121 / 8 \mathrm{~W}$	28480	0757-0444
Al1R70	0698-0083		K:FXD M	MET FLM 1.96K CHM $181 / 8 \mathrm{~W}$	28480	0698-0083
Al1R71	0757-0442		R:FXD	MET FLM 10.0K OHM $181 / 8 \mathrm{~W}$	28480	0757-0442
411672	0693-3157		R:FXD	MET FLM 1906K OHM $1 \pm 1 / 8 \mathrm{~W}$	28480	0698-3157
$411 R 73$	2100-2521	4	R:VAR F	FLM 2000 OHM 10% LIN 1/2W	28480	2100-2521
A11R74	0757-0288		R:FXD	MET FLM 9.09K OHM 18 $1 / 8 \mathrm{~W}$	28480	0757-0288
Al1R75	0698-0083		R:FXD	MET FLi4 1.96K OHM $181 / 8 \mathrm{~W}$	28480	0698-0083
Al1R76	0757-0442		R:FXD M	MET FLM 1C.OK OHM 18 1/8W	28480	0757-0442
111k77	2100-2521		R:VAR F	FLM 2000 OHM 10% LIN $1 / 2 \mathrm{~W}$	28480	2100-2521
A12k73	0757-3444		R:FXD	MET FLM 12.1K OHM $181 / 8 \mathrm{~W}$	28480	0757-0444
A11R79	0698-0083		R:FXD	MET FLM 1.96K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-0083
AllR80	0757-0442		R:FXD	MET FLM 10.0K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0442
Al1k81	C685-8245		K:FXD	CCIP 820K OHM 5\% 1/4	01121	CB 8245
Al1R82	0698-3243		R:FXD	MET FLM 178 K OHM $181 / 8 \mathrm{~W}$	28490	0698-3243
Al1Ra3	2100-2489	2	R:VAR F	FLM 5K OHM 10% LIN 1/2W	28480	2100-2489
Allkd	0698-3136		R:FXD	MET FLM 17.8K OHM 1\% 1/8W	28480	0598-3136
A11R85	9698-3\%40		R:FXO	MET FLM 196 OHM $181 / 8 \mathrm{~W}$	28480	0698-3440
A11k86	0698-0082		R:FXD M	MET FLM 464 CHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-0082
411887	0693-0083		R:FXO M	MET FLM 1.96K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-0093
Al1.188	0757-0442		R:EXD M	MET FLY 10.0K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0442
Al1R89	0757-0200		R:FXD M	MET FLM 5062K OHM $181 / 8 \mathrm{H}$	28480	0757-0200
Al1k90	2100-2522	2	R:VAR C	CERMET 10K OHM 10\% LIN 1/2W	28480	2100-2522
AllRgl	0757-0123	2	R:FXO M	MET FLM 34.8K OHM 1\% $1 / 3 \mathrm{H}$	28480	0757-0123
Al1R92	0757-04:33		R:FXD M	MET FLM 121 CHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0103
Al1R93	0698-3154		R:FXD M	MET FLM 4.22 K OHM $131 / 8 \mathrm{~W}$	28480	0698-3154
A11R94	0698-3444		R:FXD	MET FLM 316 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3444
Allk95	0698-0085		R:FXD M	MET FLM 2.61 K OHM 12 $1 / 8 \mathrm{~W}$	28480	0698-0085

See introduction to this section for ordering information

Table 6－3．Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A11496	C757－0402	1	R：FXD MET FLM 110 OHM 1\％1／8w	23480	0757－0402
A11897	0757－0288		R：FXD MET FLM 9．09K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757－0288
A11R98	C693－0085		R：FXD MET FLM 2.61 K OHM $181 / 8 \mathrm{~W}$	28480	0698－0085
$\$ 11559$	0757－0421			28480 28480	0757－0421 $0757-0395$
Lilaticos	－737－0395		R：FXD MET FLM 56.2 OHM $181 / 8 \mathrm{~W}$	28480	0757－0395
cllelol	0698－3439		R：FXD MET FLM 178 OHM $181 / 8 \mathrm{~W}$	28480	0698－3439
－11．102	0573－3444		R：FXD MET FLM 310 OHM $181 / 8 \mathrm{~W}$	28480	0698－3444
$411 \mathrm{klu3}$	$0698-3438$		R：FXD MET FLM 147 CHM $181 / 8 \mathrm{~W}$	28480	0698－3438
¢11kic Allkius	0698－0082．		R：FXD MET R：FXD MET	28480 28480	0698－0082 $0757-0442$
Alymius	0757－0442		R：FXD MET FLM 10．0K OHM $181 / 8 \mathrm{~W}$	28480	0757－0442
A11． 100	0698－3441		R：FXU MET FLM 215 OHM 1\％1／8W	28480	0698－3441
A11R107	0757－0280		R：FXD MET FLM 1 K CHM 1\％ $1 / 8 \mathrm{~W}$	28480	0757－0280
4li．ul	1820－0054		IC：TTL QUAD 2－INPT NAND GATE	01295	SN7400N
41142	$1820-0214$ $1820-0054$		IC：TTL ECD TU OEC．CECODER IC：TYL OUAD 2－INPT NAND GATE	01295 01295	SN7442N SN7400N
${ }^{1103}$	1820－0054		IC：TIL OUAD 2－INPT NAND GATE	01295	SNT400N
${ }^{\text {A }} 12$	08660－60018	1	BOARD ASSY：SL2 DETECTOR	28480	08660－60018
412 812	08060－60040		BJARD ASSY：SL2 DETECTOR／OSCILLATOR FOR OPTION 004，OMIT A12 ASSEMBLY	28480	08660－60040
$\triangle 12 \mathrm{Cl}$	$0160-0174$		C：FXD CER 0.47 UF＋80－20\％ 25 VDCW	56289	$5 \mathrm{C11875-CML}$
412．${ }^{\text {c }}$	0180－2207		C：FXD ELECT 100 UF 10\％ 10 VCCW	56289	150D101X9010R2－DYS
A12C3	01．60－0174		C：FXD CER O．f？UF＋80－20\％25VOCW	56289	$5 \mathrm{C11875-CML}$
${ }^{012 \mathrm{C}} 4$	0160－0174		C：FXD CER 0．47 UF＋80－209 25VDCW	56289	$5 \mathrm{SC11875-CML}$
$\Delta 12 \mathrm{C} 5$	0160－0174		C：FXO CER 0．47 UF＋80－208 25VDCW	56289	5C1187S－CML
A12C6 A12C7	$0180-0058$ $0160-2055$		C：FXD AL ELECT 50 UF＋75－10\％25VOCW C：FXD CER 0.01 UF＋80－20\％ 100 VOCW	56289 56289	30D506G025CC2－DSM C023F101F1032S22－CDH
－12C7	0160－2055		C：FXD CER 0.01 UF＋80－208 100VOCW	56289	C023F101F1032S22－CDH
${ }^{\text {AIPCR }}$	$0150-0121$		C：FXD CER 0.1 UF＋80－208 50VDCW	56289	5C50BIS－CML
11.269	0160－0301	5	C：FXO MY 0.012 UF 10\％ 200 VOCW	56289	192P12392－PTS
A12C10	0160－2055		$C: F X D$ CER 0.01 UF $+80-20 \% 100 \mathrm{VOCW}$	56289	CO23F101F1032S22－COH
${ }_{+}^{4126.11}$	$0160-0301$ $0160-2261$	4	C：FXD MY 0.012 UF 108200 VCCW $C: F X D$ S	56289 72982	192P12392－PTS
${ }^{412 C 13}$	0160－2261		C：FXD CER 15 PF 5\％500VDCH	72982	301－NPO－15 PF
A12C14	0160－0174		C：FXU CER 0.477 UF $+80-20 \% 25 \mathrm{VOCW}$	56289	$5 \mathrm{C} 11875-\mathrm{CML}$
A12C15	0180－2141	1	C：FXD ÉLECT 303 UF 20\％50VECW	56289	1500335×905082－DYS
A128．16	6160－2C55		$\mathrm{C}:$ FXO CER 0.01 UF $+80-20 \% 100 \mathrm{VDCW}$	56289	CO23F101F1032S22－CDH
A12．17	6180－0058		C：FXD AL ELECT 50 UF＋75－102 25 VOCW	56289	30D506G025CC2－DSM
$412 \mathrm{C18}$	0160－0299	2	C：FXD MY 1800 PF 10\％200VOCW	56239	192P18292－PTS
A12019	C160－0939	1	C：FXD MICA 430 PF 5\％ 300 VECW	28480	0160－0939
A12C20	0160－0174		$\mathrm{C}:$ FXD CER $0.47 \mathrm{UF}+80-208 \mathrm{25VOCW}$	56289	5 C 1187 S －CAL
A12C21	0160－0299		C：FXO MY 1800 PF 108200 CVCW	56289	192P18292－PTS
212 C 22	0120－3291		$\mathrm{C}:$ FXD ELECT 1.0 UF $10 \% 35 \mathrm{vLCW}$	56289	1500105×9035A2－DYS
A1．26：23	0160－2055		C：FXC CER 0．01 UF＋80－20\％100VDCW	56289	C023F101F1032S22－CDH
A12C24	0160－3534		C：FXD MICA 510 PF 5\％100VCC＇	00853	RDM15F511JIC
${ }^{4} 12 \mathrm{C} 25$	0180－9291		C：FXD ELECT 1．0 UF $10 \% 35 \mathrm{VCCW}$	56289	1500105×9035 A2－DYS
A1241	10534 C	2	MI XER：OOUBLE BALANCE	50436 28480	$10534 C$ $9140-0179$
$\Delta 12 \mathrm{~L}$ 1	9140－0179		COIL／CHOKE 22．0 UH 10\％	28480	9140－0179
－121．2	9140－0114		COIL：FXD RF 10 UH	28480	9140－0114
112 L 3	5140－0179		CUIL／CHOKE 22．0 UH 10\％	28480	9140－0179
012 L 4	9100－1621	2	COILICHOKE 18．0 UH 10\％	99800	1537－42
A12L5	9140－0179		COIL／CHOKE 22．0 UH 10\％	28480	9140－0179
c12L6	9140－0179		COIL／CHOKE 22．0 UH 10\％	28480	9140－0179
A12L7	9100－1658	1	CUIL／CHOKE 1600 UH 5\％	99800	2500－38
¢12．01	1853－0025		TSTR：SI PNP	80131	2N3640
41202	1854－0092		TSTR：SI NPN	80131	2N3563
81203	1854－0092		TSTR：SI NPN	80131	2N3563
A1．204	1854－0092		TSTR：SI NPN	80131	2N3563
41205	1854－0092		TSTR：SI IPN	80131	2N3563
81206	1854－06．92		TSTR：SI NPN	80131	2N3563
112.07	1854－0n92		TSTA：SI INPN	80131	2N3563
A1208	1853－0066		TSTR：SI PNP	80131	2N4250
41209	1853－c．66		TSTK：SI PNP	80131	2N4250
A12016	1853－0066		TSTR：SI PNP	80131	2N4250
412011	1853－0066		TSTR：SI PNP	80131	2N4250
A12012	1854－7092		TSTR：SI NPN	80131	2 N 3563
A12R1	0757－0395		F：FXD MST FLM 82．5 OHM 1\％1／8W	28480	0757－0399
A12R2	0757－6400	3	R：FXD AET FLM 90．9 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757－0400
4125.3	0757－0399		R：FXD MET FLM 8ご．5 OHM 1 1\％ $1 / 8 \mathrm{~W}$	28480	0757－0399
${ }^{1} 1284$	C598－3151		K：FXO MET FLM 2．37K CHM 18 Z ：$/ 8 \mathrm{~W}$	28480	0698－3151
112：3	C698－3151		R：FXD MET FL： 2.87 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698－3151
Ai 2×6	0698－3445		R：FXD MET FLM 343 CHM $1881 / 8 \mathrm{~W}$	28480	0698－3445
A1．2k7	0757－0416		R：「X0 MET FLM 511 OHM $181 / 8 \mathrm{~W}$	28480	0757－0416
A12RO	0757－6441		R：FXD MET FLM 8025 K OHM 1\％1／8W	28480	0757－0441
f12k9	6757－0279		R：FXU MET FLM 3016K OHM $181 / 8 \mathrm{~W}$	23480	0757－0279
Al2kioio	－757－0420		R：FXU HET FLM 150 CHM 1\％1／8w	28480	0757－0420
A12k 11	0698－3442		R：FXD MET FLM 237 OHM $181 / 8 \mathrm{~W}$	28480	9698－34ヶ2
A12R12	0757－1440		R：FXD MET FLM 7.50 K OHM $161 / 8 \mathrm{~W}$	28480	0757－0440

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A12k 13	0757-0394		R:FXU MET FLM 51.1 OHM $181 / 8 \mathrm{~W}$	28480	0757-0394
412 R 14			NOT USED		
A12R15	0757-0294	2	R:FXO MET FLM 17. 8 CHM 1\% 1/8W	28480	0757-0294
A12R16	0757-0280		R:FXD MET FLM 1 K CHM 18 $1 / 8 \mathrm{~W}$	28480	0757-0280
A 12 R 17	0757-0280		R:FXD MET FLM 1 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0280
A12k 18	0757-0421		R:FXD MET FLM 825 CHM $181 / 8 \mathrm{~W}$	28480	0757-0421
A12k19	0757-6280		R:FXD MET FLM 1 K CHM $1 \% 1 / 3 \mathrm{~W}$	28480	0757-0280
$\Delta 12 \mathrm{R} 20$	0757-0421		R:FXO MET FLM $325 \mathrm{CHM} 181 / 8 \mathrm{~W}$	284,80	0757-0421
A $12 R 21$ $A 12 R 22$	c698-0082 $0698-0083$			28480 28490	0698-0082 $0698-0083$
A12R22	0698-0083		R:FXD MET FLM 1.96K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-0083
412 R 23	0698-0083		R:FXD MET FLM 1.96K OHM $181 / 8 \mathrm{~W}$	28480	0698-0083
412 R 24	0098-0083		R:FXO MET FLM 1096K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-0083
A12R25	0698-0083		R:FXU MET FLM 1.96K OHM 18 1/8W	28480	0698-0083
${ }^{\text {A }} 12 \mathrm{R} 27$	0757-0442		R:FXD MET FLM 100 OK OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0442
A12k28	0757-0442		R:FXD AET FLM 10.0K UHM $181 / 8 \mathrm{~W}$	28480	0757-0442
A12R29	0757-0442		R:FXD MET FLM 1C.CK OHM 18 1/8W	28ヶ80	0757-c64.
A12R29	0698-0082		R:FXD MET FLM 464 OHM $181 / 8 \mathrm{~W}$	29480	0698-0082
A12\%30	0757-0442		R:FXC MEET FL, 1 Couk OHM 19 $1 / 8 \mathrm{~W}$	28480	0757-0442
4128.31	0683-2055	2	R:FXD COMP 3.9 MEGOHM 5\% 1/4W	01121	CB 3055
A12R32	0683-2055	2	R:FXD COMP 2 MEGOHM $5 \% 1 / 4 \mathrm{~W}$	01121	CB 2055
¢12R33	0683-1055	2	R:FXD COMP 1 MEGOHM 5\% 1/4W	01121	CB 1055
A12R34	0698-3263	2	R:FXD MET FLM 500K CHM $181 / 8 \mathrm{~W}$	28480	0698-3263
A12R35	0757-0200		R:FXD MET FLM 5.62K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0200
A12R36	0698-3441		R:FXD MET FLM 215 CHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3441
A12R37	2100-2633		R:VAR CERMET 1K OHM 10% LIN $1 / 2 \mathrm{~W}$	28480	2100-2633
${ }^{\text {A } 12 R 38}$	0757-0200		R:FXD MET FLM 5.62 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0200
A12\%39	0698-3150		R:FXD MET FLM 2.37 K OHM $181 / 8 \mathrm{~W}$	28480	0698-3150
A12R40	0757-0418		R:FXD MET FLM 619 CHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0418
A12R41	0698-3155		R:FXD MET FLM 4064K OHM $181 / 8 \mathrm{~W}$	28480	6698-3155
A12R42	0757-0280		R:FXD MET FLM 1 K CHM $121 / 8 \mathrm{H}$	28480	0757-0280
A12K43	0757-0421		R:FXD MET FLM 825 CHM $181 / 8 \mathrm{~W}$	<8480	0757-0421
A12R44	0698-3443		R:FXO MET FLM 287 OHM 1\% 1/8W	28480	0698-3443
A12R45	0698-3151		R:FXD MET FLM 2.87 K OHM $181 / 8 \mathrm{~W}$	28480	0698-3151
Al2R46	0698-0084			28480 28480	$0698-0084$ $0757-0280$
112k47	0757-0280		P: FXXC MET FLM 1 K CHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0280
A12R48	0757-0280		R:FXD MET FLM 1K CHM 18 1/8w	28480	0757-0280
412 R 49	0698-0032		R:FXC MET FLM 454 OHM $181 / 8 \mathrm{~W}$	28480	0698-0082
$\Delta 12 \mathrm{So}$	0757-0401		R:FXD MET FLM 100 OHM $1 \% 1 / 9 \mathrm{~W}$	28480	0757-04.01
A12×51	0757-0280		R:FXD MET FLM 1 K OHM is $1 / 8 \mathrm{~W}$	23480	0757-0280
A12111	1820-c054		IC:TTL QUAd 2-INPT Nand gate	01295	SN7400N
A12112	1820-0077		IC:TTL DUAL D F/F	01295	SN7474N
412 U	1820-0054		IC:ttl quad 2-InPt nand gate	01295	SN7400N
A12114	1820-0054		IC:TTL QUAD 2-INPT NAND GATE	01295	SN7400N
A12U5	1820-0068		IC:TTL TRIPLE 3-INPUT PCS AAND GATE	12040	SN7410N
-12116	1820-0054		IC:TTL QUAD 2-INPT NAND GATE	01295	SN7400N
A12.17	1820-0054		IC: TTL OUAD 2-INPT NAND GATE	01295	SN7400N
012 U	1820-0054		IC:TTL QUAD 2-INPT NAND GATE	01295	SN7400N
A12019	1820-0450		IC: Digital TTL	18324	N8290A
A13	08660-60012	1	BGARD ASSY:N2 OSCILLATOR	284,80	C8660-60012
413 Cl	0180-0058		C:FXD AL ELECT 50 UF +75-10\% 25 VOCW	55289	3005066025CC2-DSM
$\triangle 13 \mathrm{C} 2$	0180-0228		C:FXU ELECT 22 UF 10\% 15VOCW	56289	$1500226 \times 901582-$ OYS
A13C3	0180-6049		C:FXD ELECT 20 UF + $75-10 \%$ SOVDCW	56289	$3002066050 C C 2-O S M$
A136.4	0180-2207		C:FXD ELECT 100 UFF 10% 10VECN	56289	1500101×9010R2-DYS
-13C5	$0150-6121$		C:FXD CER O.1 UF +80-20\% 50VDCW $C: F X D$	56289 56289	5C50BIS-CML 5C50BIS-CML
-13C6	0150-0121		C:FXD CER 301 UF +90-208 SOVOCW	56289	5C50BIS-CML
A1367	0150-0121		C:FXO CER 0.1 UF +80-20\% 50VOCW	56289	SC50BIS-CML
A13C8 A13C9	0160-3459		C:FXI CER 0.02 UF $20 \% 100 \mathrm{VCCW}$ NGT USED	56299	CO23F101H203MS22CDH
-13610	Ci $80-0<23$		$\mathrm{C}:$ FXD ELECT 22 UF $10 \% 15 \mathrm{VOCW}$	56289	1500226×9015B2-DYS
A13C.11	0180-0116		C :FXD F.LECT 60 8 UF 10\% 35 VECW	56289	1500685×903582-DYS
A1.3C12	0180-ن்228		C:FXD ELECT 22 UF 10\% 15VDCW	56289	1500226×901582-DYS
-136.13	0199-2210		C:FXE ELECT 2 UF $+50-10 \%$ 150VDCW	28480	0180-2210
A13C14	0180-0374		C:FXD TANT. 10 UF 10% 20VCCW	56289	$15001 \mathrm{C6} \times 5020 \mathrm{B2}$-OYS
A13C15	$01610-2055$ $0160-0286$			56289 72982	C023F101F1032S22-CDH $301-000-52 \mathrm{O}-339 \mathrm{C}$
A13C16	0160-0286		C:FXL CER 3.3 TO 0.25 PF 500VDCW	72982	301-000-S2H0-339C
4136.17	0160-2204		C:FAD MICA 100PF 5\%	72136	RDM1JF101J3C
113618	0170-0082		C:FXD AY O. OluF 203 50VDCW	84411	$601 P E$ STYLE 1
:13c19	-121-.0659		c: VAR Cer $2-8$ PF 300VdCW	28\%8C	0121-0059
A13C20			COT USED		
A 13 C 21	c160-2055		C:FXD CER O.Gi UF +80-20\% 10JVOCW	56289	C023F101F1032S22-CDH
A13C22	0160-0336		C:FXD CER 3.3 TC 0.25 PF 5ONVDCH	72982	301-000-52 $\mathrm{HO}-339 \mathrm{C}$
A13C23	0160-0386		C:FXD CER 3.3 TO 0.25 PF 500VDCW	72982	301-0CO-52HO-339C
¢13C24	0160-2055		C:FXN CES C.OL UF +80-20\% 100VDCW	56289	CO23F101F1032322-CDH
A13C25	0160-2055		C:FXO CER 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
A13C26	c: $60-2055$		$\mathrm{C}: \mathrm{FXO}$ CER OoOl UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A13627	0160-2055		C:FXD CER $0_{0} 01$ UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
-13C28	0160-3459		C : FXD CER 0.02 UF $20 \% 100 \mathrm{VDCW}$	56289	C023F101H203MS22CDH
+136.29	0160-0163	1	C:FXD MY O. 033 UF 10% 200VCCW	56289	192P 33392-PTS
A13CR2 A13CR2	1901-0040		UIODE:SILICON 3OMA 30WV NOT USED	07263	FOG1088
A13CR3	1901-0040		DIODF:SILICON 30MA 3GWV	07263	FDG1 088
$\triangle 13 \mathrm{CR} 4$	1901-0040		DIDDE:SILICON 30MA 30WV	07263	FDG1088
413 CR 5	1901-0040		DIODE:SILICON 30MA 30WV	07263	FDG1 088
Aljcro	1s61-0040		DIODE:SILICON 3OMA SOWV	07263	FOG1088
A13CR7	1901-0G40		UIODE:SILICON 30MA 30WV	07263	FDG1088
A13Ck8	0122-0263		C: VOLTAGE VAR 47 PF 10\% 60wV	04713	1N5148
A 13 Ckg Al3ckio	0122-0261		C: VOLTAGE VAR. 39 PF 10\% OOVDCW NOT USED	04713	IN5147
[13Ckl)	1901-0040		dioue:SIlicon 30ma 30wv	07263	FOG1088
413 CR 12	1901-0043		DIUOE:SILICON 30MA 30wV	07263	FDG1 088
A13CR13	1901-0040		DIODE:SILICON 3OMA 30WV	07263	FDG1088
A13CR14	1901-0040		DICDE:SILICON 30MA 30 WV	07263	FDG1088
A13CR15	1901-c040		DIODE:SILICON SOMA 3CWV	07263	FDG1088
A 13 CR16	1901-0040		DIODE:SILICEN 30MA 30WV	07263	FDG1088
4131.1	9100-1629		COIL/CHCKE 47.0 UH 5\%	28480	9100-1629
A13L2	9100-1629		COIL/CHOKE 47.0 UH 5\%	28480	9100-1629
2131.3	9100-1629		COIL/CHCKE 47.0 UH 5\%	28480	9100-1629
A13L4	9100-1629		COIL/CHSKE 47.0 UH 5\%	28480	9100-1629
A13L5	$9160-2215$		INLUUCTOR:FXD 0.70 UH 5\%	73899	LF4W070
A13L6	$9140-0179$		COIL/CHOKE 22.0 UH 10\%	28480	9140-0179
2231 ?	9140-0179		COIL/CHOKE 22.0 UH 10%	28480	9140-0179
A13L8	9100-1674	1	COIL/CHOKE 750C UH 58	28480	9100-1674
A1301	1854-0092		TSTR:SI NPN	80131	2N3563
41302	1354-0345		TSTR:SI NPN	80131	2N5179
11303	1353-0050		TSTR:SI PNP	28480	1853-0050
11304	1854-0087		TSTR:SI NPN	80131	2N3417
+1305	1853-0066		TSTR:SI PNP	80131	2N4250
A1306	1853-0066		TSTR:SI PNP	80131	2N4250
A1307	1853-0066		TSTR:SI PNP TSTR:SI PNP	80131 80131	2N4250 2N4250
A1308	1853-0066		TSTR:SI PNP	80131	2N4250
A1309	1355-:) 081		TSTR:SI FET	80131	2N5245
213010	1854-cce7		TSTK:SI NPN	80131	2 N 3417
\$13011	1853-0050		TSTR:SI PNP	28480	1853-0050
113012	1853-0050		TSTR:SI PNP	28480	1853-0050
A13013	1853-0066		TSTR:SI PNP	80131	2N4250
A13014	1853-0666		TSTR:SI PNP	80131	2N4250
¢13615	1853-0066		TSTR:SI PNP	80131	2 N 4250
413016	1853-4066		TSTR:SI PNP	80131	2 N 4250
A13R1	c757-0423		K:FXD MET FLM 1.62K OHM 18 1/8W	28480	0757-0428
413 k 2	0757-0428		R:FXD MET FLM 1.62K OH:M 1\% 1/8W	28480	0757-0428
-13R3	0757-0428		K:FXO MET FLM 1.62K OHM 18 1/8W	28480	0757-0428
A13k4	0757-0428		R:FXO MET FLM 1.62K OHM 18 1/8W	28480	0757-0428
A13k	0757-0428		K:FXD MET FLi 1.62 K OHM 1* 1/3W	28480	0757-0428
A13R6	0757-0428		R:FXO MET FLM 1.62K OHM 18 1/8W	28480	0757-0428
-13F. 7	0757-0428		R:FXD MET FLit legak ohm 18 1/8W	28480	0757-0428
A13F.,	0757-0428		R:FXO MET FL: 1.02 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0428
Al.jk9	c757-C442		R:FXD MET FL, 10.0 K OHM 1\% $1 / 8 \mathrm{BW}$	28480	0757-0442
A13610	0757-0442		R:FXD MET FLiA 10.OK OHM 1\% 1/8W	28480	0757-0442
A13 11	0757-0442		R:FXD MET FLM 1C.OK OHM I* 1/BW	28480	0757-0442
Al3kl2	0757-0442		R:FXD MET FLM 10.OK OHM 1\% 1/3W	28480	0757-0482
413623	0757-0442		R:FXD MET FLM 10.OK OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0442
A13R14	0757-0442		R:FXD MET FLM 10.CK OHM 1* 1/8W	28480	0757-0442
A13k 15	0757-0442		R:FXD MET FL, 10.OK OHM 1\% 1/8W	28480	0757-0442
A 23 Rio	0757-0442		R:FXD MET FLM 1C.OK CHM 18 1/8W	28480	0757-0442
*iכkij	075\%-0479		R:FXD MET FLM 392x OHM 18 1/8W	28480	0757-0479
A13P18	0757-0472		R:FXU MET FLiA 200 K CHA 2% 1/dw	28480	0757-0472
413 tis	c757-0465		R:FXD MET FLM 1COK OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0465
A13620	c698-3228		R:PXD MET FLA 490.9K OHM is 1/8W	28480	0698-3228
-13R21	0757-0124	2	R:FXD MFY FLM 20.2 K UHM 1\% 1/8W	28480	0757-0124
A1.3'22	0757-0449		R:FXD FLM 20 K CHiM $1 * 1 / 8 \mathrm{~W}$	28480	0757-0449
A13223	c757-1442		R:FXV MET FL! 1 1C.OK UHM 1* $1 / 8 \mathrm{~W}$	28480	0757-0442
A13k24	C698-4002	2	P:FXD MET FL, 5 K UHM 1\% 1/3W	28480	0698-4002
A13625	0757-0442		R:CXI SET FLM IU.UK OHM 1\% 1/8W	29480	0757-0442
A 13 R 26	0698-0085		R:FXD MET FLM 2.61K CHM 19 1/8W	28480	0698-0085
A13¢27	0757-0274		R:FXD MET FLM 1.21K OHM 18 1/8w	28480	0757-0274
413.228	0757-C200		R:FXD MET FLM 5.62K OHM $2: 1 / 8 \mathrm{~W}$	28480	0757-0200
A13R29	8757-0159		R:FXD MET FLM 21.5 K OHM 1\% 1/8W	28480	0757-0199
A13430	-757-0290		R:FXD MET FL1 6.19K OHIM 1\% 1/8W	28480	0757-0290
413×31	-658-3162		R:FXD MET FLM 460 K K DHM 16 1/3'd	28480	0698-3162
A13.322	C698-3155		R:FXC MET FLM 40SAKK OHM 1\% 1/8w	28430	0698-3155

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
${ }^{131333}$	0698-0085		R:FFXD MET FLM 2.61 KOHM 18 1/EH	28480	0698-0985
	¢0757-0421				- $\begin{aligned} & \text { O757-0421 } \\ & 069884037\end{aligned}$
				28480 28880	O698-3156 $2100-1759$
	- $2100-1700$				(2100-1760
	O757-0279 $0757-0317$			ciel	-0757-0279
	O757-0199 0757-0442			28880 28480	0757-0199 $0757-0462$
	0757-0442 07577 7854				-
	-			$\underset{\substack{288880 \\ 2880}}{ }$	O698-3459 O698-0882
	O698-3441 $0698-3266$			28480 28480 880	- $\begin{aligned} & 0698-3441 \\ & 0698-3268\end{aligned}$
	-			${ }_{28480}^{28480}$	-0698-3447
${ }_{\text {A } 13 \mathrm{~K} 52}$	-0443			28480	0757-0443
	06993326 $0696-3445$ 069			28480 28480	$0698-3266$ $0698-3445$
${ }_{\substack{413524 \\ 13255}}$	- 06968 -3443			${ }_{28480}^{26880}$	- 06988.3243
	- $\begin{array}{r}0698-3443 \\ 0757-0401\end{array}$		(ex	28880 28480	- $\begin{aligned} & \text { O698-344, } \\ & 0757-0401\end{aligned}$
${ }^{123558}$	0698-3243			28480 28480 180	-0698-3243
				288480	-
	\%			289880 01121	
${ }^{133663}$	-0988-3243			28480	${ }^{\text {0698-3243 }}$
	$0757-042$ $0757-0467$				-0757-0442
${ }^{135660}$	${ }_{6} \mathbf{6} 998-3439$			28480	- $\begin{aligned} & \text { O69893439 } \\ & 0698-3440\end{aligned}$
${ }_{\text {A13 }}$	${ }^{0} 0698-3440$			28480	0698-0082
¢				284880 28480 2080	- $0757-04645$
	(ersi-044,				
${ }^{413872}$					
	-0757-0200			28480 28480	-9757-0200
${ }^{133785}$	${ }^{8.8595-345}$				- 0 O999-3445
${ }_{\substack{138876 \\ 813877}}$	- $\begin{aligned} & \text { O757-04n3 } \\ & 0698-3444\end{aligned}$			288480	- $\begin{gathered}0757-0403 \\ 0698-3444\end{gathered}$
${ }^{\text {A } 137878}$	-0757-0448		R:FFOX MET FLM 51.1 K OHM $18.1 / 8 \mathrm{sk}$		0757-0458
A13879 Al3R80				$\underset{\substack{28480 \\ 28480}}{2480}$	
					- $\begin{aligned} & \text { O6989-34422 } \\ & 0757-0400\end{aligned}$
	边			${ }_{2}^{28480}$	
(13131					cock
11303	$1820-0054$		IC:TtL duad z-Inpt nand gate		740
	C8660-60011	1	EOARD ASSY:NE PHASE OETECTOR DAF GFTICN © OUt, UMIT 08660-60011-	28480	c8660-60011
${ }_{81451}^{814}$	c150-2055			56289	C023F 101F 1032522-CDH
	0180-0058			56289	$3005066025 C \mathrm{C} 2-0.5$
((1280-2206		cimx		${ }_{15}^{150006206 \times 90000882}$
	(180			56289 5629	${ }_{5 C 50815} \mathrm{Sc} \mathrm{CML}$
	${ }^{01800-0229}$		C:FXD ELECCT 33 UF 10% 10VCCW	28480 56289	- $0180-0229$
			C:FXO CER 0.1 UF +80-208 50 CODCW	56289 56298	
				56289 55299	
${ }^{414.12}$	${ }^{0150-0121}$		C:FFXD CER 0.1 UF +80-20\% 50VOCW		
- ${ }_{\text {A14c13 }}$	- $01160-2025$			$\underset{\substack{562989 \\ 2840 \\ \hline}}{ }$	
(144C15			C:FF\% CER U.Oi UF +60-20\% 100VOCW	58288 56298 5029	
${ }^{144616}$	0150-0121		C:FXE CER 0.1 UF +80-20\% 50VDCW		$5 \mathrm{C5081}$ S-CML

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
${ }^{114+177}$	$0^{150-0121}$		C:FXX CER Col UF +80-20X 50VDCH	56289	5c50815-CML
${ }^{124} 1218$	${ }^{0.150-0121}$			56289 56289	${ }^{5650815} 5-\mathrm{CHL}$
(14.cri9				56889 5689 56289 289	价
					0300-3539
	- $\begin{aligned} & 0160-3539 \\ & 01600-2453\end{aligned}$				
${ }^{1} 14426$	${ }_{\text {c180-374 }}$			${ }_{56289}^{26889}$	${ }_{1500106 \times 902082-0}$
				07263 07263	${ }_{\substack{\text { FOG61088 } \\ \text { fociose }}}$
${ }_{8} 1446$	${ }^{1} 11501-1060$	4	OILUEEOO.75 Ns		${ }^{1901}$
	(101-1066				- ${ }_{91000}^{1901-1026}$
	¢ 914000114		COIL:FXD RF 10 UH COILCHOKE 47.0 UH	${ }_{\substack{28880 \\ 28480}}$	9140-0114
	- $9140-12179$		COTLCCHKKE 22.00 uH 108	${ }_{\text {2 }}^{264880}$	${ }_{914000179}$
		2	COLEFXD RF 10 UH		${ }_{9}^{91400-0114}$
${ }^{1442}$	${ }^{91.00-1559}$		COIL $/$ CHUKE 680.00 UH 58	${ }^{99800}$	2500-20
					${ }_{\text {1853-0034 }}$
	(1853-034		TSTRSSI PNP (SEELECTEO RROM 2N3251)		ciss3-0034
${ }^{124} 4.34$	1855-3049		TStr:si fet n-channel dual	28480	1855-0049
	(1854-0645 ${ }_{\text {185 }}^{1853-0015}$		TsTR:SI	${ }_{80131}^{04713}$	2N35640
${ }^{41407}$	-			${ }_{80131}$	$\xrightarrow{2 \text { 2N3563 }}$
${ }^{414 \times 1}$	c757-0289			28480	0757-02
${ }_{\substack{414 \times 2 \\ 4143}}$					-0698-0082
¢				28880 $\substack{28480 \\ 2840}$	
				${ }_{28480}^{26880}$	-757-0616
${ }^{41447}$	0757-0442		R:FXX MET FLM 10.0 K OHM $181 / 8 \mathrm{BW}$	${ }^{28980}$	${ }^{0757-0442}$
	- 0 O69-3445			28880	- 0 O698-3446
${ }^{214410}$				2, 28880 28480 80	O757-0442 $0757-0424$
	0757-0416				
	(e)			284880 28480 2840	- 0 O998-3450
				284880 28480 288	O6988-3430 O757-0424
${ }^{214 \times 17}$	0757-0421		R:FXD MET FLM 825 OHM $181 / 8 \mathrm{BW}$	28480	0757-0921
	- 0 096-3447				- 06758 -3447
	(0757-0279				09577-0279 0757-0279
				cter 284880	-0698-3155
	(c)		(ex	288880 28480 280	
	- $015757-0394$				- 0757570394
¢ 814×278	O757-0416			28860 28480 80	-0757-0916
${ }^{1414 \times 29}$				coin	-07577-0.200
814×30 814×31				28480 28480 80	- 0 0757-0424 ${ }^{0757-0438}$
				$\underset{\substack{28480 \\ 28480}}{ }$	-0757-0444
${ }^{114434}$	0757-0424			${ }_{28480}^{2480}$	${ }^{0757}$
	- $7757-1094$			28880 28480	O757-1094 $0757-0416$
	c8660-80001		TrANSF ORMER:SAMPLER		08660-80
(124.41				204713 004713	
				01295 04713	SN74H102N MC $3062 P$
5, 4.416	(1820-0450			cier 18324	Ns2290A N82904
	$\begin{aligned} & 1820-0450 \\ & 1820-9054 \\ & 85660-00039 \end{aligned}$	1		18324 $\begin{array}{l}12395 \\ 28489\end{array}$ 180	SN7400N $08660-60039$

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A14			FOR OPTIUN 004 ONLY		
A1/ C1	0160-2055		C:FXD CER 0.01 UF +80-208 100VDCW	56289	C023F101F1032S22-CDH
Alt C2	0180-0058		C:FXD AL ELECT 50 UF +75-108\% 25 VOCW	56289	30D506G025CC2-DSM
A14 C3	0180-2206		C:FXD ELECT 60 UF 108 6VDCW	56289	1500606×900682
A14 C4	0180-0228		C:FXD ELECT 22 UF $10 \% 15 \mathrm{VDCW}$	56289	150D226X9015B2-DYS
A1* C5	0150-0121		C:FXO CER C. 1 UF +80-20\% 50VOCW	56289	5C508IS-CML
A14 C6	0160-2055		C:FXD CER 0.01 UF $+80-20 \%$ 100VDCW	56289	C323F101F1032S22-CDH
A14 C7	0150-0121		C:FXD CER 0.1 UF +80-20\% 50VDCW	56289	SC5031 S-CML
	0150-0121		C:FXD CER 0.1 UF +80-20\% 50VDCW	56289	5C50BIS-CML
$\triangle 14 \mathrm{C} 9$	0160-0157		C:FXD MY 0.0047 UF $10 \% 200 \mathrm{VOCW}$	56289	192P47292-PTS
A14 Clo	0160-2055		C:EXD CER D.01 UF +80-20\% 10JVOCW	56289	CO23F101F1032S22-CDH
${ }^{1} 14 \mathrm{Cl1}$	0150-0121		C:FXD CER 0.1 UF $+80-20 \% 50 \mathrm{VDCW}$	56289	5C50BIS-CML
A14. C12	$0150-0121$		C:FXD CER 0.1 UF +80-209 50VDCW	56289	5C50BIS-CML
A14 C13	$0150-0121$		C:FXD CER 0.1 UF $+80-20850 \mathrm{VOCW}$	56289	5C50BIS-CML
A14 C14	0160-2055		L:FXD CER 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
A14 C15	0140-0172		C:FXD MICA 3000 PF 18100 VCCW	28480	0140-0172
A14 C16	0180-02ą.y		C:FXD ELECT 33 UF 10\% 10VOCW	28480	0180-0229
${ }^{414} \mathrm{Cl7}$	0160-2055		C:FXD CER 0.01 UF +80-20\% 100 VDCW	56289	C023F $101 \mathrm{~L} 1032 \mathrm{~S} 22-\mathrm{CDH}$
${ }^{\text {A }} 14 \mathrm{C18}$	0150-0121		$\mathrm{C}: 5 \times \mathrm{CER}$ S $011 \mathrm{UF}+80-2085 \mathrm{CVUCW}$	56289	$5 \mathrm{C50BIS}$-CML
A14C19	0180-0374		C:FXD TANT. 10 UF 10\% 2CVCCW	56289	1500106×9020B2-DYS
A14 C20	0160-2055		C:FXD CER 0.01 UF +80-20\% 100VDCW	56289	CO23F101F1032S22-CDH
414 C21	0160-2055		C:FXD CER O.01 UF +80-20\% 1COVCCW	56289	C023F101F1032S22-CDH
${ }^{\text {A } 14} \mathrm{C} 22$	0180-0229		C:FXC ELECT 33 UF 108 10VDCW	28480	0180-0229
$\begin{array}{ll}\text { A14 } \\ \text { A } 14 & \text { C23 } \\ \\ \text { C24 }\end{array}$	$0160-3539$ $0160-2453$		C:FXD MICA 820 PF 58 100VDCW L:FXD MY 0.22 UF 10% 80VDCW	28480 56289	0160-3539 192P2249R8-PTS
A14 C25	9170-0040		C:FXD MY 0.047 UF 10\% 200VDCW	56289	192P47392-PTS
${ }^{\text {A }} 14 \mathrm{C} 26$	0160-2055		C:FXD CER 0.01 UF +80-20\% 100 VDCW	56289	CO23F101F1032S22-CDH
A14 CR1	1901-0040		DIODE:SILICON 30MA 30WV	07263	F0G1088
A14 A 14 CR2	$1901-1060$ $1901-1066$		DIUDE:0.75 NS DIGDE:0.75 NS	28480 28480	1901-1066 $1901-1066$
414 Ll	9100-1629		COIL/CHCKE 47.0 UH 5\%	28480	9100-1629
A14 12	914.0-0114		COIL:FXD RF 10 UH	28480	9140-0114
A14 13	9100-1629		COIL/CHOKE 47.0 UH 5\%	28480	9100-1629
A14 14	$9100-1650$		COIL/CHOKE 680.0 UH 5\%	99800	2500-20
A14 L5	9100-1652		COIL/CHOKE BZO UH 5\%	82142	19-1331-33J
${ }^{4} 14 \mathrm{~L} 6$	9140-0114		COIL:FXD RF 10 UH	28480	9140-0114
11401	1853-0034		TSTR:SI PNP(SELECTED FRCM 2N3251)	28480	1853-0034
A1402	185今-021C	2	TSTR:SI MPN	80131	2N2222
${ }^{41.4} 03$	1853-0034		TSTE:SI PNP(SELECTED FRCM 2N3251)	28480	1853-0034
A14 04	1853-0015		TSTK:SI PNP	80131	2N3540
A14 05	1854-0210		TSTR:SI : P IT	80131	2Nž222
A14. OS	1853-0034		TSTR:SI PNP(SELECTED FRCM 2N3251)	28480	1853-0034
${ }^{4} 14 \quad 07$	1855-0049		TSTR:SI FET N-CHANNEL DUAL	28480	1855-0049
${ }^{4} 14 \mathrm{R} 1$	0757-0440		R:FXD MET FLM 7.50K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0440
A14 R2	0757-0421		K:FXD MET FLY 825 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0421
A14. 83	0757-0280		R:FXD MET FLA 1 K OHM $151 / 8 \mathrm{~W}$	28480	0757-0280
A14 24	0757-0280		R:FXD MET FLA 1 K OHM $1 \% 1 / \mathrm{SW}$	28480	0757-0280
A14 25	0757-0442		R:FXD MET FLM 10.OK OHM :\% : 13 W	28480	0757-0442
${ }^{\text {A }} 14 \mathrm{Ro}$	0658-3446		K:FXU MET FLM 383 CHM 1\% 1/8W	28480	0698-3446
A1* R7	0698-0092		R:FXD MET FL. 464 OHM $181 / 8 \mathrm{~W}$	28480	0698-0082
$A 14 \mathrm{Rb}$	0757-c289			28480	0757-0289
A1.4 R9	0757-0439		R:FXD MET FLM 6.	28480	0757-0439
A14 R10	0757-0280		R:FXD MET FLM 1 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0280
A14 R11	0757-0442		R:FXD MET FLM 10.OK OHM 1\% 1/8W	28480	0757-0442
A14. R12	0757-0424		R:FXD MET FLY 1.1OK OHM 1\% 1/3W	28480	0757-0424
A 14 R13	0757-0416		R:FXD MET FLY 511 OHM 1\% 1/2'N	28480	0757-0416
A14 $\mathrm{Rl4}$	0757-0424		K:FXD MET FLM 1.10K OHM $18.1 / 8 \mathrm{~W}$	28480	0757-0424
A14 R15	0698-3430		R:FXD MET FLM 21.5 OHM $\mathrm{i}^{*} 1 / 3 \mathrm{~N}$	28480	0698-3430
A14 K 10	0757-0424			28490	0757-0424
Als K 17	c698-3450		R:FXD MET CLY 4202 K OH: $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3450
A14 ki8	0757-0447		R:FXD MET FL. 16.2 K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0447
A14. R19	0757-0421		R:FXD MET FLM 825 OHM $181 / 8 W^{\prime}$	28480	0757-0421
A1* 220	C598-34.47		R:FXD MET FLM 422 CHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3447
${ }^{1} 14 \mathrm{R} 21$	0757-0279		R:FXD MET FLM 3016 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480 28480	$0757-0279$ $0698-3155$
A14. R22	0698-3155		R:FXD MET FLM 4064 K UHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3155
014 R<3	0757-0290		R:FXD MET FLM 601SK CHM 16 1/8w	28480	0757-0290
A14 K2\%	0757-0279		E:FXD SET FLM 3.16K UHM 1* $1 / 3 \mathrm{~W}$	28480	0757-0279
${ }^{\text {A }} 14 \mathrm{R} 25$	0757-0279		K:FXD MLT FLM 3010K OHM 1\% 18 OW	28480	0757-0279
${ }^{\text {A } 14} 826$	0698-3150		R:FXD MES RLA 2.37K OHM $1631 / 8 \mathrm{~W}$	28480	0698-3150
A14 R27	0757-1694		R:FXD MET FLY 1.47K OHM 1\% 1/8W	28480	0757-1094
A1.4. 620	0757-0394		R:FXD MET FLM 51.1 DHM $161 / 8 \mathrm{C}$	28400	0757-0394
A1.4 R29	0757-0394		R:FXD MET FLM 5i.1 OHM 1\% 1/8W	28480	0757-0394
A14830	0757-0ヶ9?		S:EXD MET FL: 511 CH: $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0416
A14 R 31	0757-0416		R:FXD MET FL: 511 OHM 16 1/3W	28489	0757-0416
Al6 R32	-757-04.38		R:FXD MET FLM 5.1IK OHM 1 B 1/8w	28480	0757-0438

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
D14 R33	c757-0200		R:FXD MET FLM 5.62 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0200
A14 R34	0757-0273		R:FXD MET FLY 1.78 K OHM 1\% $1 / 8 \mathrm{~N}$	28480	0757-0278
114835	0757-0442		R:FXD MET FLM 10.OK OHM $181 / 8 \mathrm{EW}$	28480	0757-0442
A14 R36	0757-0.74/3		K:FXD MET FLM 12.1K OHM $18.1 / 8 \mathrm{~W}$	28480	0757-0444
114 R37	0757-0424		P: PFXD :AET FLM 1.10K OHM $18 \mathrm{~s} 1 / 8 \mathrm{~W}$	28480	0757-0424
A14 K 36	0757-0444		R:FXD MET FLM izoik OHM is 1/8W	28480	0757-0444
114 R39	6898-0085		R:FXD MET FLM 2.61K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-0085
114 K40	0757-0416		R:FXD MET FLM 511 OHM 1\% 1/3W	28480	0757-0416
A14.641	0698-3155		R:FXD MET FLM 4.64 K OHM $18 \mathrm{l} 1 / 8 \mathrm{~W}$	28480	0698-3155
A14 11	08600-80001		TRANSFORMER: SAMPLER	28480	08660-80001
A14 41	1820-0451		IC:TTL OUAL J-K F/F	04713	MC3062P
$\Delta 14$ U2	1820-0451		IC: TTL DUAL J-K F/F	04713	MC3062P
A14.43	1820-020分		IC:TTL TRIPLE 3-INPT AND GATE	04713	MC3006P
A1t 14	1820-0450		IC:DIGITAL TTL	18324 18324	N8290A N8290A
41413	1820-0450		IC:digital til	18324	N8290A
1146	1320-0450		IC:OIGITAL TTL	18324	N8290A
015 197	1820-0374		IC:TTL HS DUAL 4-INPT AND GAYE	01295	SN74H21N
$\Delta 15$	C8660-60016	1	BOARD ASSY:SLI DETECTOR	28480	08660-60016
21501	0160-2055		C:FXD CER 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
A15C2	0150-0121		C:FXD CER Jol UF +80-20\% 50VDCW	56289	5C50815-CML
${ }^{4} 15 C 3$	0160-0174		C:FXD CER 0.47 UF +80-20\% 25VDCW	56289	5 C 1187 S -CML
${ }^{1} 15 C^{4}$	01 50-0121			56289	$5 C 50815-C M L$
A15C5	0160-2955		C CFXD CER U.01 UF $+80-209$ 100VDCW	56289	C023F101F1032S22-CDH
21566	0160-3456		C:FXD CER 1000 PF $10 \% 250 \mathrm{VDCW}$	56289 56289	C067F251F102KS22-CDH
415 C	0180-0058		C:FXD al Elect 50 UF +75-10\% 25 VUOCW	56289	300506G025CC2-DSM
815 Ca	0180-2207		C:FXD ELECT 100 UF $10 \% 10 \mathrm{VOCH}$	56289	$1500101 \times 901022-$ DYS
A156.9	0180-0058		C:FXD AL ELECT 50 UF +75-10\% 25VOCW	56289	300506G025CC2-DSM
A15cio	0160-2261		C:FXD CER 15 PF 5\% 500VDCW	72982	301-NPO-15 PF
-15C11	0160-2261		C:FXD CER 15 PF 5\% 500VDCW	72982	$301-\mathrm{NPO}-15 \mathrm{PF}$
A 15 C 12	0160-2055		C:FXD CER C.Ol UF +80-20\% 100VOCW	56289	C023F101F1032S22-CDH
${ }^{415 C 13}$			NOT USED		
A15C14	0160-2055		C:FXD CER 0.01 UF +80-20\% 1c0VOCW	56289	C023F101F1032S22-CDH
A15. 15	0160-0298	2	C:FXD MY 0.0015 UF 20\% 200 VCCW	56289	192P 15292-PTS
A15C16	$0150-0121$		C:FXO CER O.1 UF +80-20\% 50VDCW	56289	5C50815-CML
A156.17	016:0298		C:FXD MY 0.0015 UF 108200 VDCW	56289	192P15292-PTS
415018	0150-0121		C: FXD CER O. 1 UF $+80-20 \% 50 \mathrm{VDCW}$	55239	5C50BI S-CML
A15C17	0180-0291		$C: F X D$ ELECT 1.0 UF $10 \% 35 \mathrm{VCCW}$	56289	1500105×9035A2-DYS
A15C20	0160-2055		C:FXD CER 0.01 UF +80-208 100VOCW	56289	C023F101F1032S22-CDH
A15C21	0160-2208		C:FXD MICA 330 PF 5\% 300VDCW	28480	0160-2208
A15C22	C16C-0174		C:FXD CER 0.67 UF +8U-20\% 25VDCW	56289	$5 \mathrm{C} 1187 \mathrm{~S}-\mathrm{CML}$
41511	$91.40-0179$		COIL/CHOKE 22.0 UH 10\%	28480	9140-0179
A15L2	9140-0179		COIL/CHCKE 22.0 UH 10\%	28480	9140-0179
A15L3	$9140-0114$		COIL:FXO RF 10 UH	28480	9140-0114
D15L4	$9140-0179$		COIL/CHUKE 22.0 UH 10\%	28480	9140-0179
A15L5	$9140-0114$		COIL: FXO RE 10 UH	28480	9140-0114
A15L6	9140-0179		COIL/CHOKE 22.0 UH 10\%	28480	9140-0179
1154	9100-1659	1	COIL/CHOKE 1.8 UH 5\%	92142	22-1312-25J
A15L8	9140-0179		COIL/CHUKE 22.0 UH 10\%	28480	9140-0179
215N1	1854-0032		TSTR:SI NPIN	80131	2N3563
A1502	1053-0015		TSTR:SI PNP	80131	2N3640
41503	1454-0052		TSTR:SI NPN	80131	2N3563
A1504	1854-0092		TSTR:SI NPN	80131	$2 N 3563$
${ }^{1} 1505$	1554-0092		TSTR:SI NPN	80131	2N3563
A1500	1854-0092		TSTR:SI NPN	80131	2 N 3563
A15k1	0757-0440		R:FXD MET FLY 7.50K OHM 1\% 1/8W	28480	0757-0440
A15R2	6698-0082		R:FXD MET HLM \%O4 GHM $1 \% 1 / 8 \mathrm{~W}$	28480	0699-0082
A1563	0757-0379	1	R:FXD MET FLM 12.1 OHM $181 / 8 \mathrm{~W}$	28480	0757-0379
A15R4	0757-22i0		K: FXU MET FLM 1 K LHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0280
A1585	6757-0280		R:FXD MET FLM 1 K OHM 18 1/8W	28480	0757-0280
A15Ro	1757-0280		R:FXD MET FLM 1K CH:A $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0280
A15k7	n757-0421		R:FXO MET FLM 625 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0421
41589	0757-0421		R:FXD MET FL/4 825 JHi4 18 1/3W	28480	0757-0421
215 kg	0698-J082		R:FXD MET FLM 464 OHM $181 / 3 \mathrm{~W}$	28480	0698-0082
AlSkio	0698-0082		R:FXD MET FLM 964 OHM $1 \% 1 / \mathrm{dW}$	28480	0698-0.082
415 k 11	0757-028C		R:FXD MET FLM 1 K OHM 1% I/Bw	28480	0757-0280
A15nl2	c757-0200		R:FXO MET FLM 5.62K OHM 1\% 1/8W	28480	0757-0200
A15k 13	0098-3441		R:FXD MET FL 1215 JHM 1\% 1/8N	28480	0698-3441
-15R14	2100-2633		K :VAR CESMET 1 K GHM 10\% LIN 1/2W	28480	2100-2633
415×15	0757-0200			28480	0757-0200
415816	cose-3150			28480	0698-3150
\$15k17	7757-0280		R:FXD MET FLM 1 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0280
A15R18	9698-3155		K:FXD MET FLM AOSAK OHM $181 / 3 \mathrm{~W}$	28480	0698-3155
Alsniy	6757-0260		R:FXD MET FL.M IK OHM $2 \% 1 / 8 \mathrm{~W}$	28480	0757-0280
A15k2.1	3757-0424			28480 28480	-0757-0424
A15k21	C757-0417	1	R:FXD MET FLM 562 OHM $181 / 8 \mathrm{~W}$	28480	

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A15R22	0698-3151		R:FXD MET FLM 2087K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3151
AlSR23	0757-0280		R:FXO MET FLM 1 K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0280
A15R24	c609-0084		K:FXD MET FLM 2.15K OHM 18 1/8w	28480	0698-0084
A15k25	0757-3431		R:FXC MET FLM 100 CHM 1\% 1/8W	28480	0757-0601
A15k26	0698-7236		R:FXD FLM 1 K CHM 2\% 1/8W	28480	0698-7236
A1501	1820-0054		IC:TTL QUAD 2-INPT NAND GATE	01295	SN7400N
A15U2	1820-0077		IC:ITL DUAL O F/F	01295	SN7474N
${ }^{2} 1543$	1820-0054		IC:TTL QUAD 2-INPT NAND Gate	01295	SN7600N
A1504	1820-0054		IC: TTL QUAD 2-INPT NAND GATE	01255	SNT400N
A1515	1820-0450		IC: DIGITAL TTL	18324	N8290A
${ }^{4} 1506$	1820-0450		IC:DIGITAL TTL	18324	N3299A
A15U7 A15U8	$1820-0068$ $1820-0054$		IC:TTL TRIPLE S-INPUT PCS NAND GATE IC:TTL QUAO 2-INPT NAND GATE	12040 01295	SN7410N SN7400N
¢1509	$1820-0054$		IC:TTL QUAD 2 -INPT NAND GATE	01295	SN7400N
1151110	1820-0.054		IC:TTL QUAD 2-INPT NAND GATE	01295	SN7400N
A16	08660-60009	1	BOARD ASSY:NI PHASE DETECTCR	28480	08660-60009
${ }^{4} 16 \mathrm{Cl}$	0160-2055		C:FXD CER C.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
A16C2	$0180-0658$		C:FXD AL ELECT 50 UF + 75-10\% 25 VOCW	56289	30D506G025CC2-DSM
A16C3	0180-2203		C:FXD ELECT OJ UF 10% 6VDCW	56289	1500605×900682
A16C4	0180-0228		C:FXD ELECT 22 UF 10\% 15VDCW	56289	1500225x901582-DYS
${ }^{416 C 5}$	0150-0121		C:FXD CER 0.1 UF + 80-20\% 50VOCW	56299	5C50BIS-CML
A16C6	c160-2055		C:EXD CER U.O1 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
A16C7	0150-0121		C:FXD CER 0.1 UF $+80-20 \% 50 \mathrm{VDCW}$	56289	5C50B1S-CML
Al6C8	0160-0297		C:FXD MY 0.0012 UF $10 \% 200 \mathrm{VDCW}$	56289	192P12292-PTS
A16C9	0160-2055		C:FXD CER 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
A16C.10	0150-0121		C:FXO CER 0.1 UF +80-20\% 50VOCW	56289	SC50BIS-CML
A16C11	0150-0121		C:FXD CER OOL UF + 30-20\% 50VOCW	56289	5C50BIS-CML
Al6C12	0160-2055		C:FXD CER 0.01 UF +80-20\% 1COVDCW	56289	CO23F101F1032S22-COH
A16C13	0160-0937	1	C:FXD MIICA 1000 PF 2%	14655	RDM19F102G3S
A16C. 14	0160-3459		C:FXD CER C.C2 UF $20 \% 100 \mathrm{VDCW}$	56289	C023F101H203MS22COH
A16C15	0150-0121		C:FXD CER O. 1 UF +80-20\% 50VDCW	56289	5C50BIS-CML
A16C. 16	0180-0197		C:FXD ELECT 2.2 UF $10 \% 20 \mathrm{VOCW}$	56289	1500225X9020A2-DYS
A16c17	0160-2055		$\mathrm{C}: 5 \mathrm{XU}$ CER O.UL UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
Alocls	0150-0121		C:FXD CER 0.1 UF +80-20\% 5OVDCW	56289	5C50BIS-CML
Aloc 19	0180-0228		C:FXD ELECT 22 UF 10\% 15VDCW	56289	150D226X901582-DYS
Aloczo	0100-2055			56289	C023F101F1032S22-CDH
Aloc2l	0161)-2.055		C:FXO CER U.OI UF +80-20\% 100VDCW	58289	C023F101F1032S22-CDH
A 160.22	0160-3539		C:FXD MICA 820 PF 5% luovdcw	28480	0160-3539
A18C23	0180-1746		C:FXU ELECT 15 UF 10\% 20VDCW	28480	0180-1746
f16C24	0180-0229		S:CXO ELECT 33 UF 10% lovdcw	28480	0180-0229
A1.6C25	0100-3459		C:FXD CER 0.02 UF 20\% 100VECW	56289	C023F101H203MS22CDH
A16C26	0130-0229		C:FXD ELECT 33 UF 10\% 10VDCW	28480	0180-0229
A16C27	0160-0134	1	C:FXD MICA 220PF 5\% 300VDCw	14655	RDM15F221J3C
Al6C28	0160-2307		C:FXD MICA 47 PF 5\%	28480	0160-2307
116629	0160-0302	1	C:FXD MY 0.018 UF 1C\% 200VCCW	56289	192P18392-PTS
A16C30	0160-0945	2	C:FXD MICA 910 Pr 5 \%	28480	0160-0945
-16C31	0140-0200	1	C:FXO MICA 390 PF 5\%	72136	RDM15F391-J3C
A16CR1	1902-3104		DIDOE: BREAKDOWN 5.62V 5\%	04713	SZ10939-110
Alocr 2	1901-0040		DID DE: SILICCON 3UMA 3OWV	07263	FDG1088
Al6CR3	1901-0040		DIOUE:SILICON 30 MA 30w	07263	FDG1088
d16CF4	1901-0179		DIODE:SILICCN 15 wV	28430	1901-0179
Al6C.R 5	1901-0179		DITDE:SILICTN 15WV	28480	1901-0179
Alocro	1902-0025	1	DIDOE, BREAKDONN: 1 OOOV 5\% 603 MW	28480	1902-0025
Alstl	9100-1029		COIL/CHOKE 47.0 UH 5\%	28480	9100-1629
Alst. 2	9140-0114		COILEFXD If L W U	28480	9140-0114
41663	9100-1629		COIL/CHCKE +7.0 UH 5\%	28480	9100-1629
A1614	9100-1614		COIL/CHCKE: 032 S UH 10\%	28480	9100-1614
A16L5	9100-2564	2	Inductor: Siticloeu 150 UH 10\%	82142	15S-151K
210 LS	7100-2504		INUUCTJR:SHIELUED 150 UH 1C\%	82142	15s-151K
A1601	1853-0034		TSTR:EI PEIP(SELECTEL FRCM 2N3251)	29480	1853-0034
A1602	1853-0034		TSTR:SI PNP(SELECTEC FROM 2N3251)	284.80	1853-0034
A1603	1855-C062	1	TSTR:SI FET P-CHANNEL	284,8	1855-0C82
A1603	1354-0092		TSTR:SI NPN	80131	2N3563
A1005	1853-0015		TSTR:SI PNP	80131	2N36\%0
Alown	1854-0045		TSTR:SI NPN	04713	2N956
AlGRI	0698-3155		R:FXD AET FLM \&o6ak OHM 1* 1/8w	28480	0698-3155
Alon 2	0757-0421		R:FXD MET FLA 825 CHM 1\% 1/8W	29430	0757-0121
Altr 3	2698-3155		R:FXD MET FLH 4064K CHM : $1 / 3 \mathrm{~W}$	28480	0698-3155
Alitr 4	0608-C082		R:FXU MET FLI 404 OHM 1* $1 / 8 \mathrm{~W}$	286,80	0698-0082
A1SE 5	0757-1092	1	R:FXD MET FLM 287 CHM 1\% 1/2W	28480	0757-1092
Aldigh	c757-0285		R:FXD MET FL4 1303K CHM 1\% 1/8w	29090	0757-0289
A16R7	0757-0439		K:FXD YET FLY ©oElK CHM 1\% 1/8w	28480	0757-0439
Alory	L75:-0416		R:FXD MET FLM $511 \mathrm{CHM} 1 \mathrm{IS}^{\text {S }} 1 / 8 \mathrm{n}$	28480	3757-0416
Alokg	0757-0420		R:FXD MET FLi 750 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-04,20
Alokió	C698-6035		R:FXO MĖT FLM 2.61K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0098-0085

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
AlGR11	0757-3416		R:FXD MET FLA 511 OHM $121 / 8 \mathrm{~W}$	28480	0757-0416
A 1.0 P 12	0757-0442		R:FXD 伝T FLM 10.0K OHM $121 / 8 \mathrm{~W}$	28480	0757-0442
Alokl3	6698-3446		R:FXD MET FLSY 383 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3446
A16214	0757-0424		R:FXD MET FLM 1.10K OHM $181 / 8 \mathrm{~W}$	28480 28480	0757-0424
Aloki 15	0757-0442		R:FXD MET FLM 10.0K OHM $181 / 8 \mathrm{H}$	28480	0757-0442
$416 \mathrm{kl} 6^{6}$	6757-0424		R:FXO MET FLM 1.10K OHM $181 / 8 \mathrm{~W}$	28480	0757-0424
A16R17	0757-0410		R:FXD MET FLM 511 OHM $181 / 8 \mathrm{~W}$	28480	0757-0416
A16R18	С698-3450		R:FXD MET FLM $\ddagger 2.2 \mathrm{~K}$ UHM $181 / 8 \mathrm{~W}$	28480	0698-3450
Althriy Alfr20	0757-0447			28480 28480	0757-0647 $0698-3430$
AlGR21	C757-0424		R:FXD MET FLM 1.IOK OHM $14.81 / 8 \mathrm{~W}$	28480	0757-0424
A 16 R 22	0757-0421		K:FXD MET FLM 825 OHM $181 / 8 \mathrm{~W}$	28480	0757-0421
A16R23	C698-3447		R:FXD MFT FLM 422 UHM 1\% 1/8W	28480	0698-3447
Al6R24	0757-0279		R:FXD MET FLM 3016 K OHM $181 / 8 \mathrm{H}$	28480	0757-0279
A16R25	c698-3153		R:FXD MET FL. 3083 K OHM $181 / 8 \mathrm{~W}$	28480	0698-3153
Alor26	2757-0279		R:FXD MET FLM 3.16K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0279
${ }^{4} 16827$	0757-0279		R:FXD MET FLM 3016K CHM $18.1 / 8 \mathrm{~W}$	28480	0757-0279
A16R28	0656-0684		R:FXD MET FLM 2.15K OHM 1\% 1/8W	28480	0698-0084
AlGR 29 Al 16830	$0757-0200$ $0757-0394$			28480 28480	0757-0200
alsk30					
A16R31	675\%-0394		R:FXD MET FLM 51.1 OHM $181 / 8 \mathrm{~N}$	28480	0757-0394
A16R32	0757-0280		R:FXD MET FLM 1K CHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0280
A16R33	0698-3162		R:FXD MET FLM 46.4 K OHM $181 / 8 \mathrm{~W}$	28480	0698-3162
A $16 R 34$ A 16×35	$0698-3450$ $0757-0420$		$\begin{array}{lllll}\text { R:FXD } & \text { MET } & \text { FLM } & 42.2 \mathrm{~K} & \text { CHM } \\ \text { R:FXD } & \text { MET } & 1 / 8 \mathrm{~W} \\ \text { FLM } & 750 & \text { OHM } & 1 \% & 1 / 8 \mathrm{~W}\end{array}$	28480 28480	$0698-3450$ $0757-0420$
А16к35	0757-0420			28480	
${ }^{\text {b }} 16 \mathrm{k} 36$	0696-3156		R:FXD MET FLM 14.7K OHM $181 / 8 \mathrm{~W}$	28480	0698-3156
A16R37	0757-0289		R:FXD MET FLM 13.3K OHM 18 1/8W	28480	0757-0289
A16k38	2100-1760		R:VAR WW 5K OHM 5% TYPE V IW	28480	2100-1760
A16R39	0757-0280		R:FXD MET FLM 1 K OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0280
A16R40	c757-3274		R:FXD MET FLM 1.21K OHM $161 / 8 \mathrm{~W}$	28480	0757-0274
A16R41	0693-3156		R:FXD MET FLM 14.7K OHM $181 / 8 \mathrm{~W}$	28480	0698-3156
A10R42	0757-1094		R:FXD MET FLM 1.47K OHM $161 / 8 \mathrm{~W}$	28480	0757-1094
A16R43	0698-3158		R:FXD MET FLM 23.7 K OHM 16 1/8W	28480	0698-3158
Aloik44	0757-9334		R:FXD MET FLM 51.1 CHM $161 / 8 \mathrm{~W}$	28480	6757-0394
215×45	0157-0420		R:FXD MET FLM 750 OHM $1 \% 1 / 8 W$	28480	0757-0420
Alok46	0757-0440		R:FXD MET FLM 7.50K OHM $121 / 8 \mathrm{~W}$	28480	0757-0440
A16247	0757-3441		R:FXD MET FLM 80 25 K OHM $281 / 8 \mathrm{H}$	28480	0757-0441
A16T1	08660-83001		TRANSFORMER:SAMPLER	28480	08660-80001
21601	1320-0058	1	IC:LIN. OP. AMP. 15K MIN. (TO-99)	07263	U58770939X
A10i32	1820-3431		IC: TTL DUAL J-K F/F	04713	MC30t2P
A 16113	182)-0451		IC:TTL DUAL J-K F/F	04713	MC3062P
A1614	1820-0469		IC:DIGITAL TTL HI-SPEED F/F	01295	SN74H102N
A16145	1820-0450		IC: DIGITAL TTL	18324	N8290A
${ }^{\text {a }} 16156$	1820-0450		IC:DIGITAL TTL	18324	N8290A
A1607	1820-0204		IC:TTL TRIPLE 3-INPT AND gate	04713	MC3006P
A17	08660-60010	1	BOARO ASSY:N1 OSCILLATOR	28480	08660-60010
$\triangle 17 \mathrm{Cl}$	0180-0053		C:FXD AL ELECT 50 UF $+75-10 \% 25 \mathrm{VOCW}$	56289	300506G025CC2-DSM
417 CL 2	0180-2225	1	C:FXD AL ELECT 170 UF +75-10\% 170VOCH	56289	3001776015002-DSM
Ai7c3	0183-904\%		$\mathrm{C}:$ FXG ELECT 20 UF +75-108 50VOCW	56289	3002066050CC2-DSM
8178.4	013i-1704		C:FXD ELECT 47 UF $20 \% 6 \mathrm{VDCW}$	28480	0180-1704
A17C5	0150-0121		C:FXD CER 0.1 UF +8C-20\% 50vocw	56289	5C50BIS-CML
21766	$0150-0121$		C:FXD CEP Col UF $+80-20850 \mathrm{VOCW}$	56289	5C50BI S-CML
A17C7	0160-2055		C:FXD CER 0.01 UF $+80-202$ 100VDCW	56289	C023F101F1032S22-CDH
117 CB	0180-0229		C:FXD ELECT 33 UF 10\% 10VOCW	28480	0180-0229
A17c9	9180-92?		C:FXD ELECT 22 UF $10 \% 15 \mathrm{VDCW}$	56289	1500226x901582-DYS
Aifcio	0180-0229		C: FXD ELECT 33 UF 10\% 10VOCW	28480	0180-0229
$\triangle 17611$	0180-0133		C:FXC AL ELECT LC UF +75-10\% 50VOCW	56289	$3001060050 C B 2-D S M$
A17c12	3130-0374		C:FXD TANT. 10 UF 10\% 2JVDCW	56289	$1500106 \times 902082-$ DYS
A17C13	315)-2055		C:FXD CER 0.01 UF $+80-20 \% 100 \mathrm{VDCW}$	56289	C023F101F1032S22-CDH
A17C14	clsu-3047	1	C:FXD MICA 3280 PF 1% luovoch	28480	0160-3047
aracks	0160 -0336		C:FXC CER 2.3 TC C. 2 E PF 500VOCW	72982	301-000-S2HO-339C
617c16	0170-0092		C :FXC Mir üoclur 208500 OCH	84411	601PE STYLE 1
A17C17	0121-0050		C:VAFR CER 2-8 PF SGUVOCW	28480	0121-0059
¢17ctás	8169-2204		C:FXO MICA 100 PF 5\%	72136	RDM15F101J3C
A176. ${ }^{\text {c }}$	ci60-2055		C:FXD CER 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
al\% 20	0160-0301		C:FXD MY 0.012 UF 10\% 200VDCW	56289	192P12392-PTS
417 C 21	2160-3c32	1	C:FXD MICA 1600 PF 18100 VCCW	14655	RDM19F162FIS
A17¢.23	0160 - 336		$C: C X D C E R 303$ TU U. 25 PF 500VDCW	72982	$301-000-52 \mathrm{HO}-339 \mathrm{C}$
A17c>4	0i60-0386		C:FXD CER 3.3 To 0.25 PF 500VDCW	72982	$301-000-52 \mathrm{HO}-339 \mathrm{C}$
A17C25	Cicc-2655		C:FAD CER U.01 UF +80-20\% 100VDCW	56289	CO23F101F1032S22-CDH
017 C 20	0160-2055		C:FXD CER O. 21 UF +80-20\% 10UVDCW	56289	C023F101F1032S22-CDH
817C?	9160-2C55		C:FXD CER 0.01 UF $+80-20 \%$ 100VDCW	56289	C023F101F1032S22-CDH
-17C28	0160-2C55		C: 5 AD CEn Ooul ut $+60-20 \%$ 100VUCW	56289	CO23F101F1032S22-CDH
A17629	0160-2055		C:FXE CER 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
alac30	0160-2C55		C:FXU CER 0.01 UF +80-20\% 200 VOCW	56289	C023F101F1032S22-CDH

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A17C31	0160-2055		C:FXD CER 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
A 17 C 32	0150-0121		C: FXO CER 0.1 UF $+80-20850 \mathrm{VOCW}$	56289	5C5081 S-CML
A17C33	0160-2055		C:FXD CER 0.01 UF $+80-20 \%$ 100VDCW	56289	C023F101F1032S22-CDH
A17C34	0160-2055		C:FXD CER 0.01 UF $+80-20 \%$ 100VDCW	56289	C023F101F1032S22-CDH
A17C35	c160-2055		C:FXD CER 0.01 UF $+80-20 \% 100 \mathrm{VDCW}$	56289	C023F101F1032S22-CDH
A17C, 2176 217	$0160-2055$ $0150-0162$	1	C:FXO CER 0.01 UF $+80-20 \% 100 \mathrm{VDCW}$ U:r XD MY 0.022 UF $10 \% 200 \mathrm{VCCW}$	56289 56289	C023F101F1032S22-CDH 192P 22392-PTS
A17C38	$0140-0210$	1	C:rXO MY	56289 28480	192P 22392 -PTS
$117 C 39$	$0160-2 C 55$		C:FXD CER U.O1 UF +80-20\% 100VOCW	56289	C023F101F1032S22-CDH
A17CR1	1901-0n4n		DIDDE:SILICON 30MA 30wV	C7263	FDG1088
2ilcin 2	1901-0c4C		DIDEE:SILICON 30MA 30wV	07263	FDG1088
A17CR3	1991-9040		DIDDE:SILICON 3JMA 3OWV	07263	FOG1088
A17CR4	1901-0040		DILUE:SILICON 30MA 30WV	07263	FDG1088
$\triangle 17 \mathrm{CR} 5$	1901-0040		DIODE:SILICON 30MA 3OWV	07263	FDG1088
Al7cri	0122-0263		C : VOLTAGE VAR 47 PF 10\% 60WV	04713	1N5148
A17CR7 A17CRB	$0122-0261$ $1901-0040$		C: VOLTAGE VARe 39 PF 10% 60VDCW DIODE:SILICON 30 MA 3 wV	04713 07263	1N5147 FDG1088
A17CR9	1901-6040		DIDDE:SILICON 30MA 30WV	07263	FDG1088
217 Crio	1901-0040		DIODE:SILICON 30MA 30wV	07263	FDG1088
A17CR11	1901-0040		DIODE:SILICON 30MA 30WV	07263	FDG1088
A17CR12	1901-0040		dIODE:SILICON 30MA 30wV	07263	FDG1088
A17CR13	1901-0040		DICDE:SILICOH 30MA 3JWV	07263	FDG1088
A17CR14	1901-0040		OIODE:SILICON 30MA 30WV	07263	FOG1088
A17CR15	1901-0040		JIJDE:SILICUN 30MA 3 JWV	07263	FDG1088
Al7CR16	1901-0040		didoes SILICON 30MA 30wv	07263	FOG1088
A17CR17	1901-0040		DIODE:SILICON 30MA 3UWV	07263	FDG1088
A17L1	9100-1629		COIL/CHCKE 4 ?. 0 UH 5%	28480	9100-1629
A17L2	9100-2562	2	INDUCTOR:SHIELDED 100 UH 10\%	82142	15s-101k
41713	9100-1629		COILSCHEKE 4.7.0 UH 5\%	28480	9100-1629
A17L4	9100-1629		COIL/CHOKE 47.0 UH 5\%	28480	9100-1629
A17L5	9140-0170		COILICHOKE 22.0 UH LÖ\%	28480	9140-0179
A17L6	910n-2815		INOUCTOR:FXO 0.70 UH 5\%	73899	LF4W070
41717	9100-1652		COIL/CHOKE 820 JH 5\%	82142	19-1331-33J
A17L8	9100-2566	1	INDUCTJR:SHIELDED 270 UH 10\%	82142	15S-271K
A17L9	9100-2568	1	INDUC TOR: SHIELDED 390 UH 10\%	82142	155-391K
41701	1854-0092		TSTR:SI NPN	80131	2N3563
11702	1853-0050		TSTR:SI PNP	28480	1853-0050
41703	1854-0345		TSTR:SI NPN	80131	2N5179
41704	1853-0050		TSTR:SI PNP	28480	1853-0050
A1705	1855-0081		TSTR:SI FET	80131	2N5245
81706	1854-0007		TSTR:SI NPN	80131	$2 N 3417$
21707	1853-0050		TSTR:SI PNP	28480	1853-c050
A1708	1854-0C92		TSTR:SI NPN	80131	2 N 3563
81709 817010	$1854-0087$ $1854-0092$		TSTR:SI TSTR SI NPN	80131 80131	2N3417 2N35
A17010	$1854-0092$		TSTR:SI NPN	80131	2N3533
417011	1853-0066		TSTR:SI PNP	80131	2 N 4250
177012	1853-0066		TSTR:SI PNP	80131	2N4250
A17013	1853-0066		TSTK:SI PNP	80131	2N4250
417014	1853-0066		TSTP:SI PNP TSTR:SI NPN	80131	$2 N 4250$ $2 N 3563$
A17015	1854-0092		TSTR:SI NPN	80131	2N3563
417016	1853-0066		TSTR:SI PNP	80131	2N4250
417019	1853-0066		TSTR:SI PNP	80131	2 N 4250
A17R1	0757-0428		R:FXD MET FLH 1.62 K OHM 1\% 1/8W	284880	6757-0428
¢17k2	0757-0428		R:FXD MET FLM R:FXD MET PL	28480	0757-0イ28
A17R3	0757-6428		R:FXD MET FL:4 1.62K OHM is 1/8N	23480	0757-0428
A17k4	0757-0428		R:FXD MET FLM letek OHM is 1/8W	28480	0757-0428
417 k 5	0757-0428		R:FXD MET FLM 1.62 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0428
A17k6	c757-0428		R:FXD MET FLM 1.62 K OHM is $1 / 8 \mathrm{~W}$	28480	0757-0428
A17R7	0757-0428		R:FXD MET FLM 062 K OHM 18 1/8W	28480	0757-0428
A17RE	0757-0429		R:FXC RIET FLM 1.02K OHM $181 / 8 \mathrm{~W}$	28480	0757-0428
Al7k9	0757-0442		R:FXD MET FLM 10.0K OHM $181 / 8 \mathrm{~W}$	29480	0757-0442
A17k10	6757-0442		R:FXD MET FLM 10.0K OHM 1\% 1/8W	284.80	0757-0442
A17k11	6157-C442		R:FXD MET FLM 10.0K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0442
A17k12	0757-0442		R:FXD MET FLM 10.0K OHM 181/8W	28480	0757-0442
A17R13	c757-c442		R:FXO MET FLM 10.0K OHM 1% 1/ÓN	28480	0757-04.42
A17814	0757-0442		R:FXD MET FL, 10.0 K CHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0442
A17R15	0757-0442		K:FXD MET FLM 1CoOK OHiA is 1/ow	28480	0757-0442
A17616	0757-0442		R:FXC MET FLM 10.0K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0442
A17517	6757-0479		K:FXD MET FLM 392 K OHM 1\% 1/8W	28480	0757-0479
A17¢18	C757-0472		R:FXD MET FLM 200 K OHM 1\% 1/8W	23490	0757-0472
A17R19	0757-0465		R:FXD MET FL, 1 look ohm $121 / 8 \mathrm{~W}$	28480	0757-0465
417 k 2 G	0698-3228		R:FXD MET FLM 4505 K OHM $121 / 8 \mathrm{~W}$	28480	0698-3228
A 17821	0757-0124		P:FXD MET FL. 3902 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0124
A17R22	0757-0449		R:FXD FLM 20 K OHM ${ }^{\text {ct }} 1 / 8 \mathrm{~W}$	28480	c757-0449
A17623	0757-0442		R:FXU MET FLM 10.CK OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0442

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designation \& HP Part Number \& Oty \& Description \& Mfr Code \& Mfr Part Number \\
\hline 177\%24 \& 0693-4002 \& \& R:FXD MET FLM 5K CHM 1\% 1/8W \& 28480 \& 0698-4002 \\
\hline \(117 \times 25\) \& 0757-0.0442 \& \& R:FXD MET FLM 10.0 K OHM iz I \(1 / 8 \mathrm{~W}\) \& 28480 \& 0757-0442 \\
\hline \begin{tabular}{l}
A17 \\
\(\substack{17 \times 26 \\
\hline 1.720}\)
\end{tabular} \& 06988341
06880085 \& \& \& 28480
28490 \& \(0698-3441\)
\(0698-0085\) \\
\hline \({ }_{\text {A } 1 / \mathrm{K} 2 \mathrm{~s}}\) \& 2100-1760 \& \& R:VAR WW 5 K OHM 58 TYPE V 1W \& 28480 \& 2100-1760 \\
\hline A17R24 \& 0658-3156 \& \& R:FXD MET FLM 14.7 TK OHM \(161 / 8 \mathrm{~W}\) \& 28480 \& 0698-3156 \\
\hline 117231 \& 2100-1759 \& \& K:VAR WN 2 K กHM 5\% TYPE V 1 lm \& 28480 \& 2100-1759 \\
\hline A17832 \& \(0757-0290\) \& \& R:FXIJ MET FLM 6.19 K OHM 18 1/8\% \& 28480 \& 0757-0290 \\
\hline 17783
817834
817 \& O757-02017
\(8757-0199\) \& \& \& 28480
28480 \& 0757-0200
\(0757-0199\) \\
\hline 217k35 \& C673-0085 \& \& R:FXD MET FLM 2.61 K OHM \(181 / 8 \mathrm{~m}\) \& 28480 \& 0698-0085 \\
\hline 117235 \& 0757-3274 \& \& R: \(5 \times \mathrm{XD}\) MET FLY 1.21 K OHM 1\% 1/3W \& 28480 \& 0757-0274 \\
\hline :17733 \& 0757-0421 \& \& R:FXD MET FLM 625 OHM \(18118 \%\) \& 22480 \& 0757-0421 \\
\hline \& \(0698-4037\)
\(0698-3162\) \& \& \& 28480
28480 \& 0698-4037
\(0698-3162\) \\
\hline 817*39 \& Oo48-3155 \& \& R:EXD MET FLM 18.64 K OHM \(1211 / 8 \mathrm{~W}\) \& 28480 \& 0698-3155 \\
\hline 217440 \& 0757-0441 \& \& \& 28480
28480 \& 0757-0441 \\
\hline \& 0757-0279
\(0757-0834\) \& \& \& 28480
28480 \& -0757-0279 \\
\hline A17843 \& 0757-021? \& \& \(\mathrm{K}:\) FXL MET FLM 1.33 K OHM \(1 \% 1 / 8 \mathrm{~W}\) \& 28480 \& 0757-0317 \\
\hline \(017 \times 44\) \& 0757-0190 \& \& K:FXU MET FL. 21.5 K OHM \(1 \% 1 / 8 \mathrm{~W}\) \& 28480 \& 0757-0199 \\
\hline A17R45
\(A 17 \times 46\) \& \(0757-0442\)
\(0698-3441\) \& \& \& 28480
28480 \& \(0757-0442\)
\(0698-3441\) \\
\hline \({ }^{4} 17847\) \& 0698-3459 \& \& R:FXD MET FLM 383 K CHM \(1 \% 1 / 8 \mathrm{~W}\) \& 28480 \& 0698-3459 \\
\hline 417k48 \& 0698-0032 \& \& R:FXD MIET FLM 464 DHM \(181 / 8 \mathrm{~W}\) \& 28480 \& 0698-0082 \\
\hline A17R49

Al7 \& 0757-0835 \& 1 \& \& 28480 \& 0757-0835

\hline \& $0698-3266$
$C 6 ¢ 8-3440$ \& \& R:FXD
R:FXU
MET \& 28480
28480 \& $0698-3266$
$0698-3440$

\hline 417×52 \& 0698-3447 \& \& R:FXU MET FLY 422 OHM $181 / 8 \mathrm{~W}$ \& 28480 \& 0698-3447

\hline 617853 \& C685-3206 \& \& R:FXD :4ET FL4 237 K DHM 18 1/8W \& 28480 \& 0698-3266

\hline | 417854 |
| :--- |
| 017855 | \& 069883445

$0698-324$ \& \& \& 28480
28480 \& -0698-3445

\hline | 177855 |
| :--- |
| $817 \% 56$ | \& $0698-3243$

$0688-3443$ \& \& K:FXD MET FLM
R:FXD MET
FLM
R \& 28480
28480 \& -06988-3243

\hline 417857 \& 3698-3243 \& \& R:FXD MET FLA 178 K OHM $181 / 8 \mathrm{~W}$ \& 28480 \& 0699-3243

\hline 417456 \& 0698-3132 \& \& R:FXD FLM 261 OHM $1881 / 8 \mathrm{~W}$ \& 28480 \& 0698-3132

\hline | A1785 |
| :--- |
| 17×60 | \& C757-0466

$0633-8245$ \& \& R:FXD MET FLM 110 K OHM $1 * 1 / 8 \mathrm{~W}$ R:FXD CCMP B2OK OHM 5\% $1 / 4 \mathrm{~h}$ \& 28480 \& | 0757-0466 |
| :--- |
| CB 8245 |

\hline Hijkt \& C $698- \pm 243$ \& \& R:FXD MET FLM 178 K CHM 1* $1 / 8 \mathrm{BW}$ \& 28480 \& 0698-3243

\hline ${ }_{617 \times 62}$ \& 6698-3440 \& \& R:FXD MET FLM 196 OHM $1811 / 8 \mathrm{~W}$ \& 28480 \& 0698-3440

\hline A17R63 \& 0698-3440 \& \& R: FXD MET FLT 196 OHM 281818 W \& 28480 \& 0698-3640

\hline 217\%64 \& 2698-0032 \& \& R:FXD MET FL.M 464 CHM 18 1/8W \& 28480 \& 0698-0082

\hline ¢178R65 \& c757-0467 \& \& \& 28480
28480 \& O757-0467
$0698-3439$

\hline ${ }_{\text {A17R67 }}$ \& -0757-0200 \& \& R:FXD MET FLM 5.62 K CHM $181 / 8 \mathrm{~S}$ \& 28480 \& 0757-0200

\hline 127668 \& 0698-3154 \& \& R:FXU MET FLY 4. 22 K OHM $181 / 8 \mathrm{~W}$ \& 28480 \& 0698-3154

\hline 417 k 6 s \& c757-0464 \& \& R:FXO MET FLY 90.9k CHM 18 I/5W \& 28480 \& 0757-0464

\hline 917870 \& 0698-3445 \& \& R:FXD MET FL4 348 OHM 181818 W \& 28480 \& 0698-3445

\hline \& $6757-0405$
$6757-0461$ \& \& \& 28480
28480 \& -0757-0405

\hline \& c757-6403 \& \& \& ${ }_{28480}$ \& 0757-0403

\hline 817×14 \& 0698-3444 \& \& R:FXD MET FLM 316 OHM 18 $1 / 8 \mathrm{~N}$ \& 28480 \& 0698-3444

\hline 217675 \& O698-3437
$0757-0458$ \& \& \& 28480
28480 \& - 0698983437

\hline ${ }_{\substack{117676 \\ \hline 17177}}$ \& $0757-0458$
06988442 \& \& R:FXO MET FL/
R FXX MET \& 28480
28480 \& - 06998 -3442

\hline A17878 \& 0757-0401 \& \& R:FXD MET FL. 100 OHM 1\% 1/3W \& 28480 \& 0757-0401

\hline 41747s \& cis7-czui \& \& K:FXO MET FLL 50.62 K OHM 12 $1 / 1 / 8 \mathrm{~W}$ \& 28480 \& 0757-0200

\hline | 617×80 |
| :--- |
| 17831 | \& -8757-0280 \& \& R:FXU MET FLA

R:FXO MET

RLM \& | 28480 |
| :--- |
| 28480 | \& -0757-0280

\hline A17R31
$A 17 R$ R \& c698-3154
$0757-0401$ \& \& \& 28480
28480 \& -0757-0401

\hline A17283 \& 0096-3132 \& \& R:FXD FLM 261 JHM 1\% 1/8W \& 28480 \& 0698-3132

\hline ${ }^{177 \times 84}$ \& 0698-3444 \& \& R:FXD MET FL: 316 OHM 18 1/8W \& 28480 \& 0698-3444

\hline 217825
417286 \& 069883444
$0757-0200$ \& \& \& 28880
28480 \& 06988-3844
$0757-0200$

\hline ${ }_{8}^{117 \times 88}$ \& $0757-0200$
$0698-3154$ \& \& ${ }_{\text {R:FXD }}$ \& 28460 \& 0698-3154

\hline A17\%88 \& - 0 ¢3-3444 \& \& R:FXO MET FLM 316 CHM 18 1/8W \& 28480 \& 0698-3444

\hline ${ }_{\substack{217634 \\ 617 \times 90}}$ \& $0098-3444$
$0698-3444$ \& \& \& 28480
28480 \& $0698-3444$
$0698-3444$

\hline ${ }^{817} 17 \times 90$ \& 66988444
0698343 \& $?$ \& \& 28480 \& 0698-3433

\hline ${ }^{177 \times 2}$ \& $\bigcirc 69883432$ \& 1 \& R:FXD MET FL, 26.1 OHM $181 / 8 \mathrm{l}$ \& 28480 \& 0698-3432

\hline A17\%93 \& 0698-3433 \& \& R:FXD MET FL, $28.7 \mathrm{EHM}^{18} 1818 \mathrm{~W}$ \& 28480 \& 0698-3433

\hline \& $0698-3154$
$068-9.64$ \& \& \& 28480
28980 \& - $0698-3154$

\hline 817k9 \& c757-0284 \& \& R:FXO MËT FLT $1 \mathrm{~K} 0 \mathrm{OHM} 181 / 9 \mathrm{~W}$ \& ${ }_{28480}$ \& -0757-0280

\hline 217*97 \& - 06 yot-315 \& \& \& 28480 \& 0698-3153

\hline 217 k 98 \& 0757-0442 \& \& R:FXD MET FL'4 10.0K OHM 1\% 1/8W \& 28480 \& 0757-0442

\hline
\end{tabular}

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A17R99	0698-3441		R:FXU MET FLM 215 OHM 1\% 1/8W	28480	0698-3441
A17U1	1820-C054		IC: TTL OUAD 2-INPT NAND GATE	01295	SN7400N
417 U	1820-0054		IC:TTL UUAD 2-INPT NAND GATE	01295	SN7GOON
418	08660-60015	1	BOARD ASSY:SL1 MIXER	28480	03660-60015
A18C1	0180-1704		$\mathrm{C}:$ FXD ELECT 47 UF 10\% 6VOCw	28480	0180-1704
418.2			NOT USED		
A18C3	0150-0121		C:FXD CER O. 1 UF +80-20\% 50VDCW	56289	5C508IS-CML
${ }^{18184}$			NOT USED		
$113 C 5$ 418 C	$0100-0174$		C :FXD CER 0.47 UF $+80-20 \%$ 25VDCW NOT USEC	56289	5C1187S-CML
A 1 ¢С7	C160-2055		C:FXD CER 0.01 UF +80-20\% 100VOCW	56289	C023F101F1032S22-CDH
A18Cs	0150-0121		C:FXD CER D. 1 UF +80-20\% 50 VDCW	56289	5C50bIS-CML
${ }^{\text {A18C9 }}$	0160-2055		C:FXD CER 0.01 UF $+80-203100 \mathrm{VDCW}$	56289	CO23F101F1032S22-CDH
A18C10	0160-0301		C:FXD MY 0.012 UF 108 200VOCW	56289 56289	192P 12392-PTS
Alecil	0160-0301		C:FXD MY 0.012 UF $10 \% 200 \mathrm{VCCW}$	56289	192P12392-PTS
418 Cl 12	0160-0174		C:FXD CER 0.47 UF +80-20\% 25VDCW	56289	$5 \mathrm{C1187S-CML}$
A18C13	0100-2055		C:FXD ĊR C.01 UF +80-20\% 100VDCW	56269	C023F101F1032S22-CDH
A18C14	0160-2055		C:FXD CER 0.01 UF +80-20\% 100 VDCW	56289	CO23F101F1032S22-CDH
A18C15	Ci50-C121		C:FXD CEK 0.1 UF +80-20\% 50VDCW	56289	$5 \mathrm{C} 50 \mathrm{BIS-CML}$
418 Cl 6	0280-2214		$\mathrm{C}:$ FXD ELECT 90 UF +75-10\% 15VDCW	56289	300906G015CC2-DSM
A18C17 18 Cl 18	0160-2327		C:FXD CER 1000 PF 20\% 100VDCW NOT USED	96733°	B104BX102M
AlsC19	0160-2055		C:FXD CER 0.01 UF +80-20\% 100VOCW	56289	C023F101F1032S22-CDH
A1BC20	C180-0141		C:FXD ELECT 50 UF $+75-10 \% 50 \mathrm{VOCW}$	56289	300506G050002-DSM
A18C21	0180-1819	1	C :FXD ELECT 100 UF $+75-10250 \mathrm{VDCW}$	28480	0180-1819
A 18C22	0180-0141		C:FXD ELECT 50 UF +75-10\% 50VOCW	56289	300506G050002-DSM
A18CR1	1901-0040		DIODE:SILICON 30MA 20 WV	07263	FDG1088
alscrz	1901-0518		DIODE: HOT CARRIER	28 A 80	1901-0518
Ll8el	10534 C			50436	10534C
418 L	9100-1629		COIL/CHOKE 47.0 UH 5\%	28480	9100-1629
${ }_{4}^{18 L 2}$	$9140-0114$		COIL:FXO RFF 10 UH	28480	9140-0114
${ }^{\text {A } 18 L 3}$	9140-0179		COIL/CHOKE 22.0 UH 10%	28480	9140-0179
${ }^{\text {A1814 }}$	9140-0179		COILCHOKE 22.0 UH 10\%	28480	9140-0179
A18L5	$9100-1621$		COIL/CHOKE 18.0 UH 10\%	99800	1537-42
A18L6	9140-0179		COIL/CHOKE 22.0 UH 10%	28480	9140-0179
11801	1854-0092		TSTR:SI NPV	80131	2N3563
11802	1854-c052		TSTR:SI NPN	80131	2 N 3563
11803	1853-0050		TSTR:SI PNP	28480	1853-0050
01804	1854-0087		TSTR:SI NPN	80131	2N3417 2N4250
A1805	1653-0066		TSTR:SI PNP	80131	2N4250
${ }^{41806}$	1853-0066		TSTR:SI PNP	80131	2N4250
01807	1853-0066		TSTR:SI PNP	80131	2N4250
41808	1853-0066		TSTR:SI PNP	80131	2N4250
01809	1853-0066		TSTR:SI PNP	80131	2 N 4250
A18010	1853-cC6t		TSTR:SI PNP	80131	2N4250
A 18011	1853-0060		TSTR:SI PNP	80131	2N4250
A18012	1853-0066		TSTR:SI PNP	80131	2N4250
418013	1853-6066		TSTR:SI PNP	80131	2N4250
A18014	$1854-0092$		TSTR:SI NPN	80131	2N3563
A18015	1854-0092		TSTR:SI NFN	80131	2N3563
418016	1853-0066		TSTR:SI PNP	80131	2N4250
A18017	1853-0066		TSTR:SI PNP	80131	2N4250
A18018	1854-0C92		TSTR:SI NPN	80131	2N3563
418019	1853-0066		TSTR:SI PNP TSTR:SI PNP	80131 80131	2N4250 2N§250
418020	1853-0666		TSTR:SI PNP	80131	2N4250
418021	1853-0066		TSTR:SI PNP	80131	2N4250
418022	1853-0066		TSTR:SI PNP	90131	2 N 4250
A18023	1853-C066		TSTR:SI PNP	80131	2N4250
${ }^{118024}$	1853-0666		TSTK:SI PNP R:FXD MET FLM 1.96K OHM 1% 1/8W	80131 28480	2N4250
A18R1	0698-0083		R:FXD MET FLM 1096K CHM 1\% 1/9W	28480	0648 -00゙83
A18R2	0698-0083		K:FXD MET FLA le96K OHM 1% 1/8W	28480	0698-0083
A1863	0698-0083		R:FXD MET FLH 1.96 K OHM 18 1/8W	28480	0698-0083
${ }^{\text {Al }} 18 \mathrm{R} 4$	0698-0083		R:FXD MET R:FXD MET	28480	0698-0083
A18R5 Al8R6	$6698-0083$ $0098-0083$			28480 28480	0698-0083
A18R7	0698-0083		R:FXD MET FLM 1.96K OHM 1\% 1/8W	28480	0698-0083
A18k8	0698-0083		R:FXD MET FLM 1.96K OHM 1\% $1 / 8 \mathrm{w}$	28480	0698-0083
flary	0757-0442			28480	0757-0442
A18k 10	0757-0442		K:FXD MET FL- 10.OK OHM 1: $1 / 8 \mathrm{~W}$	28480	0757-0442
AlRR11	0757-044?		R:FXD MCT FLA 16.0 OK OHM it $1 / \mathrm{OW}$	28480	0757-0442
$\triangle 18 \mathrm{R12}$	c757-0442		R:FXN MET FL, 10.OK OHM 1\% $1 / 8 \mathrm{~s}$	28480	0757-0442
A18R13	0757-0442		R:FXD MET FLM 10.0 K OHM $1 \% 1 / 8 \mathrm{~W}$	23480	0757-0442
A18R14	0757-0442		R:FXD MET FLM 10.0K OHM 18 1/8W	28480	0757-0442
A18R15	0757-0442		R:FXD MET FLM 10.0K OHM $1 \% 1 / 8 \mathrm{BW}$	28480	0757-0442
A18k16	0757-0442		\hat{n} :FXD MET FLY 1U0.OK OHM It $1 / 8 \mathrm{~W}$	28480	0757-0442

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mifr Part Number
A18ki7	0757-0479		R:FXD MET FLM 3S2K OHM 1\% 1/8W	28480	0757-0479
A1e6:8	c757-0472		$K: F A D$ MET FLM 200 K CHM $181 / 8 \mathrm{~W}$	28480	0757-0472
Albr 19	0757-0465		R:FXD MET FLM 100 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0465
Aldr20	CECb-j22e		R: TXD MET FLM 49.9 K OHM $181 / 8 \mathrm{~W}$	28480	CB 3959858
Al8R21	-6 83-3755		R:FXD CSMP 3.9 MEGOHM 5\% 1/4W	01121	CB 3955
A18R22	6683-2055		R:FXD COMP 2 MEGOHM 5\% 1/4W	01121	CB 2055
418×23	0683-1055		R:FXD CCMP 1 MEGOUM 5\% 1/4W	01121	CB 1055
A18R24	vo98-3263		R:FXD MET FL. 500 K UHM $181 / 8 \mathrm{~W}$	28480	0698-3263
A18R25	0698-0083		R:FXD MET FL: 1.0 OK UHM 2% 1/8W	28480 28480	0698-0083
A18R26	0757-0442		R:FXD MET FLM 10.0K OHM 1\% 1/8W		0757-0442
418 R 27	0757-0200		R:FXD MET FLY 5.62 K UHM is $i / 8 \mathrm{~W}$	28480	0757-0200
A18k28	0698-3154		R:FXO MET FLM 4. 22 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3154
A18R29	0698-3440		R:FXD MET FLA 196 OHM $181 / 8 \mathrm{~W}$	28480	0698-3440
A18R30 Al8R31	$0698-3154$ $698-3444$			28480 28480	$0698-3154$ $0698-3444$
A18R31	C698-3444		R:FXD MET FLY 316 OHM 18 1/8W	28480	0698-3444
A18R32	0698-3444		R:FXD MET FLY 316 CHM 1\% 1/8W	28480	0698-3444
A18R33	0698-0083		R:FXD MET FLH 1.96 K OHM $181 / 8 \mathrm{~W}$	28480	0698-0083
Al8R34	675i-6442		R:FXD MET FL: 1 CoOK OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0442
A18k 35	2100-2574		R:VAR CERMET 500 OHM 20% LIN 1/2W	28480	2100-2574
A 3.8836	0698-3155		R:FXD MET FLM 4064K OHM 1\% 1/8W	28480	0698-3155
418 R 37	cuse-ccez		K:FXL MCT FLA to\% OHM 1\% 1/8w	28480	0698-0082
Aldar 38	C098-0C83		R:FXD MET FL, 1.96K OHM $1 \% 1 / 8 \mathrm{~W}$	284.80	0698-0083
¢1.3639	0757-0442		R:FXD MET FLM 10.0K OHM 18 1/8W	28480	0757-0442
A18R40	2100-2574		R:VAR CERMET $500 \mathrm{OHM} 10 \%$ LIN $1 / 2 \mathrm{~W}$	28480	2100-2574
413 R 41	0658-3253		K:FXD MET FLA 5.36 K OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3258
A13R42	0693-0083		R:: X M MET FLM L.90K OHM 19 $1 / 8 \mathrm{~W}$	28480	0698-0083
A16k 43	0757-0442		K:FXD MET FLA 10.OK OHM 12 $1 / 8 \mathrm{H}$	28480	0757-0442
A18k45	6757-0290		R:FXD MET FLM 6.1yK UHM $1 \% 1 / 8 \mathrm{H}$	28480	0757-0290
A18R40	0757-0399		R:FXD MET FLM 82.5 OHM 18 1/8W	28480	0757-0399
A18R47	0757-0400		K:FXD MET FLM 90.9 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0400
A18R4B	0757-0399		R:FXD MET FLM 82.5 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0757-0399
A18R49	0698-0083		R:FXD MET FLM 1.96K OHM 18 1/8W	28480	0698-0083
A18R49	2150-2633		R:VAR CERMET 1 K OHM 10\% LIN $1 / 2 \mathrm{~W}$	28480	2100-2633
Al8850	6757-0442 $2100-2633$		R:FXD MET FLM 10.0 K OHM 18 1/8w R:VAR CERMET	28480 28480	0757-0442 $2100-2633$
A18251	2100-2633			28480	2100-2633
A18R52	3757-6440		K:FXD MET FLA 7.50K OHM $1 \% 1 / 8 \mathrm{w}$	28480	0757-0940
A18R53	0698-0083		R:FXD MET FLM 1.96 K OHM 18 1/8W	28480	0698-0083
A18R54	0757-0442		R:FXD MET FLY 16.0 OK OHM $181 / 8 \mathrm{~W}$	28480	0757-0442
A18R55	21. $\mathrm{CO}-2521$		R:VAP. FLM 2000 OHM 108 LIN 1/2W	28480	2100-2521
A1.3R5ó	0757-0288		R:FXD MET FLY 9039 K UHM 18 1/8W	28480	0757-0288
018857	0757-0394		R:FXO MET FLM 51. 1 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-0394
A131258	0690-3151		R:FXD MET FLY 2087 K OHM $1 \% 1 / 8 \mathrm{H}$	28480	0698-3151
A13659	0698-3151		R:FXD MET FL9 2.87K OHM 1\% 1/8W	28480	0698-3151
418 R 60	0698-0083		R:FXD MET FLM 1096K OHM $1 \% 1 / \mathrm{SH}$	28480	0698-0083
A 18 K 61	c757-0442		R:FXO MET FLM 10. CK OHM 16 1/8W	28480	0757-0442
A18R62	2100-2521		R:VAR FLM 2000 OHM 108 LIN 1/2W	28480	2100-2521
418 RG 3	c757-0444		R:FXD MET FLM 1201K OHM $1 \% 1 / 8 \mathrm{~W}$	284,80	0757-0444
Al8Ro4	0698-3445		R:FXD MET FLM 348 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3445
118 R 65	0757-0416		R:FXO MET FLA 511 OHM $1 \% 1 / 8 \mathrm{~N}$	28480	0757-0416
Al8R60	c608-0033		R:FXD MET FLM 1.96 K OHM $181 / 8 \mathrm{~W}$	28480	0698-0083
A186.57	0757-0442		R:FXD MET FLY 10.OK OHM $1 * 1 / 8 \mathrm{~W}$	28480	0757-0442
413 P 68	2100-2484		R:VAF FLM $5 K$ OHM 10\% LIN 1/2W	23480	2100-2489
AISR69	co93-3136		R:FXD MET FLY 1708K OHM 18 1/8 $1 / \mathrm{W}$	28480	0698-3136
A16R70	0757-6441		R:FXD MET FLY 3.25 K OHM $1: \% 1 / 8 \mathrm{H}$	28480	0757-0441
Aidx 71	0757-0279		$R: F X U$ MET FL 43.16 K OHM 18 1/8W	29480	0757-0279
Aldriz	c6s8-ECE		R:FXO MET FLM 2.56 K OHM 1\% 1/8W	28480	0698-0083
118 R 73	0757-0442		R:FXD MET FLA 10.0 KK OHM 1\% $1 / 8 \mathrm{~W}$	28480	0757-04,42
A13k74	2100-2522		R:VAR CERMET LOK CHM 10\% LIN 1/2w	28480	2100-2522
tiskrs	0757-0123		R:FXD MET FLi 3 303K OHM $1 \% 1 /$ \%	28480	0757-0123
A13*76	ก757-0.420		R:FXD MET FLY $750 \mathrm{CHM} 1 \% 1 / 8 \mathrm{~W}$	28480	0757-0420
413 k 77	ct99-344?		R:FXD MET FL, $237 \mathrm{CHM} 1 \% 1 / 8 \mathrm{~W}$	28480	0698-3442
A18878	0638-0085		R:FXD MET FLY 2.61 K OHM $161 / 8 \mathrm{~W}$	28480	0698-0085
$\triangle 18 \mathrm{~K}^{\text {7 }}$	0698-3442		R:FXD MET FLM 237 CHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-3442
A18280 $618 R 81$	C757-0286 $0698-0082$		R:FXD MET FLM 9009 K OHM $1 \% 1 / 8 \mathrm{~W}$ R:FXO MET FLM 464 OHM $1 \% 1 / 8 \mathrm{~W}$	28480 28480	0757-0288
Cl8Re1					
Alspr?	0698-0085		R:FXD MET FLM 2oflK OHM $181 / 8 \mathrm{~W}$	28480	0698-0085
A18R83	0698-6082		R:FXD MET FLM 464 OHM 1\% $1 / 8 \mathrm{~W}$	28480	0698-0082
Al8R84	0098-344J		R:FXD MET FLM 196 OHM 18 1/8W	28480	0698-3440
Aldras	0696-34,41		R:FXD MET FLM 215 OHM $1 \% 1 / 8 \mathrm{~W}$	28480	0698-3441
Alarrg	0757-0280		R:FXD MET FLM 1 K OHM $181 / 8 \mathrm{~W}$	28480	0757-0280
A18kat	0757-0401		R:FXD MET FLM 100 UHM $181 / 8 \mathrm{~W}$	28480	0757-0401
alsul	$1820-0054$		IC:TTL UUAD 2 -INPT NAND GATE	01295	SN7400N
A1842	1820-0064		IC: TTL OUAD 2-INPT nand gate	01295	SN7400N
A1813	1820-0214		IC:TTL BCO TO DEC. DECGDER	01295	SN7442N
Als	06660-60017	1	BOARD ASSY:SLI USCILLATOR	28480	08660-60017

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A19C1	0180-2049		C:FXD ELECT 20 UF +75-10\% 50VVCW	56289	300206G050CC2-DSM
A19C2	0180-0058		C:FXD AL ELECT 50 UF + 75-10\% 25 VDCW	56289	300506G025CC2-DSM
A19C3	0150-0121		C:FXD CER 9.1 UF $+80-20250 \mathrm{VDCW}$	56289	$5 C 50 B 15-C M L$
A19C4	0180-0228		C:FXD ELECT 22 UF 102 15VOCW	56289	1500226x991582-DYS
A19C5	$0150-0945$		C:FXD MICA 910 PF 5\%	29+80	0160-0945
A19C6	0150-0121		C:FXD CER O. 1 UF +80-20\% 50VDCW	56289	$5 C 5081 \mathrm{~S}-\mathrm{CML}$
81967	0230-2214		C:FXD ELECT 90 UF +75-10\% 15VDCW	56289	300906G015CC2-DSM
$\begin{array}{r}\text { A19Ca } \\ \hline 1969\end{array}$	0160-0174		C:FXD CER C:FXD CER O. O.	56289 56289	5C11B7S-CML
A1969 $A 19010$	$0160-2055$ $0160-0161$		C:FXD CER O.01 UF $+80-208$ 100VDCW C:FXO AY U.OL UF $10 \% 200 \mathrm{CCW}$	56289 56289	C023F101F1032S22-CDH 192P10392-PTS
$419 \mathrm{Cl1}$	0160-22\%u	1	C: FXD MICA 1200 PF $5 \% 300 \mathrm{~V}$	284.80	0160-2220
419612	0160-0161		C:FXD MY 0.01 UF 10\% ZOOVCCW	56289	192P10392-PTS
419 Cij	0160-0386		C:FXD CEP 3.3 TO 0.25 PF SOOVDC:	72982	301-000-S2HO-339C
A19C14	$0170-0 \mathrm{CB2}$		$\mathrm{C}: \mathrm{FXD}$ MY O.01UF $23 \% 50 \mathrm{VCW}$	84411	$601 P \mathrm{SE}$ STYLE 1
419 C. 15			C:FXD FLFCT 20 UF +75-10\% SOVDCW	56289	300206G050CC2-DSM
A196. 10	0130-0183		C:FXD AL ELECT 10 UF + 75-108 50VOCW	56289	30D106G05 OCB2-DSM
A19C17	$0170-0.82$		C:FXD MY O.01UF $20 \% 50 \mathrm{VDCW}$	84411	601PE STYLE 1
${ }^{419 C 18}$	c121-0059		C:VAR CER 2-8 PF 300VDCW	284.80	0121-0059
A18C19	$0160-2204$		C: FXD MLCA 100PF 5\%	72136	RDM15F101J3C
aislizu	$0100-0380$		L:FXD CER 3.3 TO 0.25 PF 500VDCW	72982	301-000-52H0-339C
A Cc 521	C1 60-0386		C:FXO CER 3.3 TO 0.25 PF 500VOCW	72982	301-000-52HO-339C
A19C22	0160-2055		C:FXD CER 0.01 UF $+80-20 \%$ 100VOCW	56289	C023F1C1F1032S22-CDH
A19C23	0160-2055		C:FXD CER 0.01 UF + 80-208 100VDCW	56289	C023F101F1032S22-CDH
A19C24 $A 19 C 25$	$0160-2055$ $0150-2055$		C:FXD CER 0.01 UF +80-20\% C:FXD CER O.01 UF +80-20\% l	56289 56289	C023F101F1032S22-CDH C023F101F1032S22-CDH
A19C26	0169-2055		C:FXU CER 0.01 UF +80-20\% 100VOCW	56289	CO23F101F1032S22-CDH
A19427	9150-2055		C:FXD CER 0.01 UF +90-20\% 100VDCW	56289	C023F101F1032S22-CDH
419 C 28	C160-2055		C:FXD CER 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
A19C29	0160-2055		C:FXU CER 0.01 UF $+80-208100 \mathrm{VDCW}$	56289	C023F101F1032S22-CDH
A $19 C 30$	0160-2055		C:FXD CER U.01 UF $+80-20 \%$ LOOVOCW	56289	C023F101F1032S22-CDH
219031	c160-2C55		C:FXD CER 0.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
A19632	c140-0195	1	C: PXD MICA 130 PF E\% 300VCCW	14655	DM15F131J-300V
119633	0160-2055		C:FXD CER O.01 UF +80-20\% 100VDCW	56289	C023F101F1032S22-CDH
419634	0160-2202	1	C:FXD MICA 75 PF 5\%	28480	0160-2202
A19C35	0160-2200	1	C:FXD MIVA 4. PF 5\%	72136	RDM15E430J3C
A19C36	0180-0223		C:FXD ELECT 33 UF 10% lovocw	28480	0180-0229
A19C37	0160 -0157		C: FXC MY 0.0047 UF $10 \% 200 \mathrm{VCCH}$	56289	192P47292-PTS
A19C38	01.60-0164	i	C:FXD MY C.039 UF 10\% 200V 0 CW	56289	192P39392-PTS
A1.9C39	0160-2204		C:FXD MICA 100PF 5\%	72136	RDM15F101J3C
Ascki	1901-0040		DIODE:SILICON 30 MA 30wV	07263	FDG1088
A19CR2 $A 19 C R 3$	$1901-0040$ $1901-0040$		DIODE:SILICON 30MA 30WV OIODE:SILICON 30 MA 30WV	07263 07263	FDG 1088
A19CR4	1901-4040		DI UUE:SILICON 3uma 3onv	07263	FDG1088
A19CRS	1901-0040		DIDOE:SILICON 30MA 30WV	07263	FDG 1088
AlgCro	1901-0040		DIOUE:SILICON 3UMA 30 WV	07263	FDG 1088
Aiycrit	1901-0040		DIODE:SILICON 30MA 30WV	07263	FDG 1088
Alscis	1901-0040		DIODE: SILICON SOMA 30WV	07263	FDG 1088
Alyirg	1901-0040		DIODE:SILICCN 30 MA JOWV	07263	FDG 1088
AIFCKIG	1901-304n		DICDE:SILICON 30MA 30w	07263	FDG 1088
Aigckli	1901-0.240		OTCDE:SILICEN SOMA उUWV	07263	FDG 1088
A19CR12	0122-0263		C : VOLTAGE VAR 47 PF 10\% 60WV	04713	IN5 148
A 19CR12	0122-0261		C: VOLTAGE VAR. 39 PF IC\% $60 V D C W$	04713	1N5 147
A19CR14	1501-0040		DICCE:SILICCN 30MA 30WV	07263	FDG 1088
AlyCk 15	1901-0040		OILDE:SILICON 3CMA SOWV	07263	FDG 1088
AlgCR16	1501-004C		digee:silicon 3oma jowv	07263	FDG1088
Alyll	9100-1629		COIL/CHOKE 47.0 UH 5\%	28480	9100-1629
A19L?	9100-2562		INDUCTOR:SHIELJED 100 UH 10\%	82142	15S-101K
A19L3	9100-1629		COIL/CHOKE 47.0 UH 58	28480	9100-1629
${ }^{1} 1914$	$9100-1629$		COIL/CHCKE 47.0 UH 5\%	28480	9100-1629
A19L5	9100-2572	1	INDUCTOR:SHIELDED $820 \mathrm{UH} 10 \%$	82142	15s-821K
A19L6	9100-2815		INDUCTOR:FXD 0.70 UH 5\%	73899	LFAW070
A1967	$9140-0175$		COIL/CHEKE 22.0 UH 10%	28480	9140-0179
A19L8	9140-0179		CCIL/CHCKE 22.0 UH 10\%	28480	9140-0179
A19L9	9100-1611	2	COIL:FXD 0. 22 UH 20\%	28480	9100-1611
A19L10	9100-1611		COIL:FXD 0. 22 UH 20\%	28480	9100-1611
01901	1354-3092		TSTR:SI NPN	80131	2N3563
41902	1654-0092		TSTR:SI NPN	80131	2N3563
41903	225450302		TSTRESI NPA	80131	2N3563
11904 81905	$1855-0081$ $1854-0345$		TSTR:SI FET TSTR:SI	80131 80131	2N5245 2N5179
-1960	1353-3コ5		TSTR:SI Pidp	28480	1853-0050
A1907	1353-0050		TSTR:SI PNP	28480	1853-0050
A1908	1854-0092		TSTR:SI NPN	80131	2N3563
A1909	1854-0092		TSTR:SI NPN	80131	2N3563
als010	1854-0022	1	TSTR:SI NPN	07263	S17843

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

\begin{tabular}{|c|c|c|c|c|c|}
\hline Reference Designation \& HP Part Number \& Oty \& Description \& Mfr Code \& Mfr Part Number \\
\hline \({ }^{\text {A19K1 }}\) \& 9698-3132 \& \& R:FXD FLM 260 OHM 181/8M \& 28480 \& 0698-3132 \\
\hline \({ }^{819 \times 2}\) \& 9698-3442 \& \& \& \& - 0 O998-3442 \\
\hline A11824
A19R5 \& - \& \& \& \begin{tabular}{l}
288880 \\
28480 \\
\hline
\end{tabular} \& OT577-0458
\(0.698-3437\) \\
\hline \& 0757-040 \& \& R:FXD MET FLM 61.9 K OHM 18 1/8w \& 28480 \& 0757-046 \\
\hline \({ }_{\text {cilart }}\) \& \& \& NOT USED \& \& 0757-040 \\
\hline \& \& \& \& 28480
\(\substack{28880 \\ 24890}\) \& \\
\hline \({ }^{19819} 1\) \& 0757-0200 \& \& \& 28480 \& 0757-0200 \\
\hline 115812

10×12 \& -7757-0405 \& \& \& \& -9757-0405

\hline ¢ 19×14 \& \& \& \& \&

\hline \& 万757-6467 \& \& R:FXJ MET FLM 121K UHM 18 1/8H \& 28480 \& 0757-0467

\hline \& \& \& \& \& 0769834640
$0757-0466$

\hline \& - $0757-0468$ \& \& \& \&

\hline \& \& \& , \& \&

\hline \& \& \& \& | 28480 |
| :---: |
| 28480 |
| 100 | \& O698-3243

$0698-344$

\hline ¢ \& (0757-0441 \& \& \& \&

\hline \& - \& \& \& $\underset{\text { 28480 }}{\substack{28880}}$ \& -

\hline \& \& \& \& 28880 \& -0698-3445

\hline \& \& \& (ex \& ${ }_{\substack{28480}}^{20880}$ \& -0998-3266

\hline A19429
119230 \& \& \& \& \& -0757-0442

\hline \& \& \& \& \&

\hline - \& - \& \& \& ${ }_{284680}^{23880}$ \& - $07597-0.0848$

\hline \& - 06986 -3459 \& \& \& $\underset{28480}{2380}$ \& O698-3459
O698-3162

\hline ${ }^{197936}$ \& ${ }^{0698-3157}$ \& \& \& 29480 \& 0698-3157

\hline \& (0757-0288 \& \& \& 288480 \& - $0757-0288$

\hline \& ${ }_{\text {c }}^{\text {c75757-0317 }}$ \& \& \& | 28840 |
| :--- |
| 28480 |
| 280 | \& O5757-0317

$0757-0442$

\hline ${ }^{\text {A19842 }}$ \& 0683-8245 \& \& R:FXI COMP 820K OHM $581 / 4 \mathrm{~N}$ \& \& CB 8245

\hline ${ }_{\text {1 } 19 \times 42}$ \& ¢698-3243 \& \& \& \& - 069883243

\hline Stisk. \& \& \& (emen \& \&

\hline ${ }^{198545}$ \& c757-0206 \& \& R:FXD MET FLM 5.62 K OHM 18218 m \& \& 0757-0200

\hline 819K46 \& - 069893154 \& \& \& \&

\hline ¢ \& - \& \& \& cone \& - $\begin{aligned} & \text { O6989-3444 } \\ & 0757-0401\end{aligned}$

\hline ${ }_{\substack{\text { aliskus } \\ 819 \times 50}}$ \& \& \& \& | 28480 |
| :--- |
| 28480 | \& $0757-0401$

$0698-3440$

\hline \& \% 1757702000 \& \& \& \& cictionco

\hline 边 \& \& \& \& \&

\hline - \& - 06088 -3154 \& \& \& ${ }_{28480}^{2889}$ \& -

\hline \& O696-3447 \& \& \& \& O698-3447

\hline \& \& \& \& cistien \& -

\hline \& ¢069-34.4. \& \& \& | 28480 |
| :--- |
| 28480 |
| 80 | \& $06988-3444$

$0698-0082$

\hline ${ }_{1}^{19761}$ \& 069800,0,2 \& \& \& \&

\hline - $\begin{gathered}\text { A19662 } \\ 819863\end{gathered}$ \& \& \& \& | 28480 |
| :---: |
| 28480 |
| 100 | \& O6987-0082

$0757-0180$

\hline - \& \& \& \& $\underset{\substack{284880 \\ 28480}}{2}$ \& - 0757 O7-0401

\hline \& -0757-0294 \& \& \& \& -0757-0294

\hline ${ }_{\text {A19 }}$ \& \& \& \& cinctise \& - 0 O697-343

\hline ${ }_{\substack{\text { R19\%69 } \\ 119870}}$ \& - $3805757-0274$ \& \& \& cock 288480 \&

\hline \& \& \& \& \&

\hline \& ${ }_{\substack{0757-0431 \\ 6860060021}}^{0}$ \& \& \& \&

\hline \& $$
\begin{aligned}
& c 8600-6002 \\
& 0180-2309 \\
& 0100-1960
\end{aligned}
$$ \& $\stackrel{1}{2}$ \& BOAFD ASSY:RECTIF!ER

C:FXD AL ELECT $36 C O U F+75-10 \% ~ \& O V O C W$ C C:FXD ELECT 18000 UF $+75-10215 \mathrm{VOCW}$ \& \begin{tabular}{c}
28480

56289

\hline

 \&

360362G040AB2B-DOB

32D183G015BB2B-DQB
\end{tabular}

\hline
\end{tabular}

See introduction to this section for ordering information

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A20C3	2130-2359		C:FXD AL ELECT 360C UF +75-10\% 40VDCH	56289	36D362G040AB2B-DQB
A20C4	0180-0034	2	$\mathrm{C}:$ FXD ELECT 300 UF $+20-15 \%$ EVDCW	28460	0180-0084
A20C 5	0180-0084		C:FXD ELECT 300 UF + 20-158 6 VOCW	28480	0180-0084
$\because 20 \mathrm{Co}$	0180-2334	1	$C: F X D$ AL ELECT 3900 UF +5C-109 75VCCH	55289	$360392 F 0758828-D 0 B$
A20C7	0180-2100	1	C:FXD ELECT 120GUF +75-10\% 15VOCW	56289	39D128G015FL4-DSB
A2nc8	0180-0058		C:FXD AL ELECT 50 UF + 75-10\% 25 VOCW	56289	300506G025CC2-DSM
A20C9	0180-0229		C:FXD ELECT 33 UF 10\% 10VOCW	28480	0180-0229
420 Cl 10	0180-0228		C:FXD ELECT 22 UF 10815 VCCW	56289	1500226X9015B2-DYS
-20C11	0180-02049		$\mathrm{C}: \mathrm{FXU}$ ELECT 20 UF $+75-10850 \mathrm{VOCW}$	56289	300206G050CC2-DSM
A20CR 1	1901-ט638	4	diode assy:SI full wave bridge	28480	1901-0638
A 20 CR 2			NGT USED		
A20CR3	$1901-0638$ $1901-0638$		DIODF ASSY:SI FULL WAVE BRIDGE	28480 28480	$1901-0638$ $1901-0638$
A20CR5	1901-0364	1	DICOE ASSY:SI 200PIV/CELL	28480	1901-0364
220 CR 6	1901-0638		dICDE ASSY:SI full wave bricge	28480	1901-0638
$\triangle 20 C R 7$	1884-0024	1	THYRISTOR:7.4A 200 PIV	04713	SCR 246
A20F1	2110-0036	1	FUSE:CARTRIDGE 8A 125 V	75915	312008
A20k 1	0490-6908	2	RELAY:4 FORM C 5 AMP	24796	R40-E1-X4-V800
A20K2 $\Delta 20 \mathrm{Kl}$	$0490-0908$ $0757-0442$		RELAY:4 FORM C 5 S AMP R $\mathrm{FXD}^{\text {MET FLM }} 10.0 \mathrm{~K}$ OHM $1 \% 1 / 8 \mathrm{~W}$	24796 28480	$\begin{aligned} & \text { R40-E1-X4-V800 } \\ & 0757-0442 \end{aligned}$
-20k2	0757-0442		R:FXD MET FLM 10. OK OHM 1\% $1 / 8 \mathrm{~B}$	28480	0757-0442
A20R3	0757-0442		R:FXD MET FLM 10.OK OHM 1. $1 / 8 \mathrm{~W}$	28480	0757-0442
A20R4	0757-34+2		R:FXD MET FL, 10.0 OK OHM $181 / 3 \mathrm{~W}$	28480	0757-0442
A20R5	0757-0442		R:FXD :MET FLM 10.0K OHM 16 1/3d	28480	0757-0442
-20R6	C757-0442		R:FKD MET FLM 10.JK OHM 1\% !/8W	29480	0757-0342
A $20 R 7$ 420×45	$0757-7193$ $1251-1626$	1		28480 71785	$\begin{aligned} & 0757-0198 \\ & 252-12-30-300 \end{aligned}$
¢20x45 4202	1251-1626	1	RELAY RETAINER:4/2 FORM C RELAYS	24796	R40-P33
A_{202}	4490-0907	1	SOCKET:RELAY W/4FORM C"SLIMLINE"	77342	R40-S420/W RET.
A21	0960-0151	1	CRYSTAL OSCILLATUR:10 MHz	28480	0960-0151
${ }_{\text {A2 }}{ }_{\text {A2 }}$	0950-0150	:	(FDR STANDARD INSTRUMENT ONLY) CRYSTAL OSCILLATUR: 10 MHZ	28480	0960-0150
121			(FOR OPTIGN 031 ONLY)		
A21			(OMIT A21 ASSY FOR CPTICN 002)		
A22	08660-60043	1	SWITCH ASSY:REFERENCE	28480	08660-60043
A22	08660-00609	1	COVER:SWITCH HOUSING	28480	08660-00009
A22	08660-20051	1	HOUSING:REF. SWITCH	28480	08660-20051
${ }^{2} 22 \mathrm{Cl}$	0160-2437		C:FXO CER 5000 PF $+80-208200 \mathrm{VDCW}$	72982	2425-000-x5V-502P
-22C. 2	1160-2437		L:FXD CER 5000 PF $+80-20 \%$ 200VOCW	72982	2425-C00-X5V-502P
A22C3	0160-2437		C:FXD CER 5000 PF +80-20\% 200VOCW	72982	2425-000-X5V-502P
${ }^{422 \mathrm{C}} 4$	0160-2437		C:FXD CER 5000 PF +80-20\% 200VDCH	72982	
A22C5 A22	$0160-2437$ $0160-2437$		C:FXD CER 5000 PF +80-20\% 200VOCW C:FXD CER $5000 \mathrm{PF}+8 \mathrm{C}-208$ 200VOCW	72982 72982	$2425-000-X 5 V-502 P$ $2425-000-X 5 V-502 P$
A22C6 A2J1	$0160-2437$ $1250-0901$		CONNECTCR:RF BULKHEAD	15558	1104/0
A22J 2	1250-0901		CONNECTER:RF BULXHEAD	15558	1104/0
42213	1250-0901		CUNNECTJR:RF BULKHEAD	15558	1104/0
122.14	1250-0001.		CUNNECTIOR:RF BULKHEAD	15553	1104/0
42241	28660-60027	1	BOARD ASSY:REF. SWITCH	28480	08660-60027
A2241.cl	0180-2055		C:FXD CER 0.01 UF +80-20\% 100VOCW	56289	C023F101F1032S22-CDH
A22A1C2	0160-2055		C:FXD CER 0.01 UF $+80-20 \% 100 \mathrm{VOCW}$	53289	C023F101F1032S22-CDH
A22A1C3 224164	$0160-2055$ 0150255		$C: F X C$ $C: F X E$	56289 56289	C023F101F1032S22-CDH C023F101F1032S22-CDH
A2241C4	0150゙-2355			56289 15636	C023F101F1032S22-CDH
A22A1K1	$0490-0916$ $6460-3916$	6	RELAY:REED RELAY:REES 1	15636 15636	RA30231051
Az2alk 3	0490-0916		RELAY:REED 1 FORM A D.5 AMP	15636	RA30231051
A22A2	08660-60026	1	BOARD ASSY:KEF. AMP. SWITCH	28480	
A22A2C1 22 A 2 C	$0160-2055$ c160-2055			56289 56289	C023F101F1032S22-CDH CO23F101F1032S22-CDH
122A2C2 $122 A 2 C 3$	c160-2055 $0160-2055$		C:FXD CER O.O1 UF +00-20\% louvocw	56289	C023F101F1032S22-CDH
:22A2C4	0160-2055		C:FXD CER 0.02 UF +30-20\% 100VDCW	56289	C023F101F1032S22-CDH
A22A2C5	0160-2055		C:FXD CER O.02 UF + $30-208$ IOOVOCW	56289	C023F101F1032S22-CDH
$\therefore 2242 \mathrm{C} 6$	0180-0291		C:FKD ELECT 1.0 UF :0\% 35 VCCW	56289	150D105×9035A2-DYS
A22A2C7	0180-0291		C:FXD ELECT 1.0 UF 10\% 35VCCW	56289	1500105×9035 A2-DYS
A22A2C8	0160-2055		C:FXD SER OO. Ji UF $+80-20 \%$ IJJVOCW	56289	C023F101F1032S22-CDH
A22A2C9	0160-2055		C:FXD CER 0.01 UF +80-20\% 100VOCW	56289	C023F101F1032S22-CDH
A22A2CR1	1901-0040		OIUDE:SILICCN 30MA 30nV	07263	FOG1088
A22A2CR2	1901-0040		OIODE:SILICCN 30MA 3.JWV	07263	FDG1088
A22A2K1	$0490-0915$		RELAY:REこ0 2 FURM A U05 AMF	15636	RA30231051
A22A2K2	0490-0916		RELAY:REED 1 FORM A O. 5 AMP	15636	RA30231051
A22A2K3	0 -3.7-7316		RFLAY:REED 1 FCRM A З.j AMP	15036	RA30231051
A22a2li	9itu-usio	1		28480	9140-0118
A224.2L2	$9140-\mathrm{C} 144$		CUIL:FXD RF \%o 7 UH	29480	9140-014/4
-22A.201	$2054-0071$		TSTR:SI NPN(SELECTEO FRCM 2N370\%)	28480	1854-0071
122.2.n2	1354-0071		TSTR:SI NPN(SELECTEU FRCM 2N3704)	28480	1854-0071
¢22A203	1853-0n20		TSTR:SI PNP(SELECTED FRCM 2N3702)	23480	1853-0020

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A22A2RI	0698-7227	1	R:FXD FLM 422 OHM 2 \% 1/8W	28480	0698-7227
t22ark2	0698-7222		R:FXD FLM 261 OHM $2 \% 1 / 8 \mathrm{~W}$	28480	0698-7222
¢ 2242 R 3	$0638-7240$	1	K:FXD MET FLM 1.47K CHM $281 / 8 \mathrm{M}$	28480	0698-7240
A2242R4	$0698-7248$ $0658-7222$	1	R:FXD FLM K:FXD FLM 261 OHM	28480 28480	$0698-7248$ $0698-7222$
A.2ALR 5	5658-7222		K:FXD FLM 261 OHM 26 1/8W		0698-7222
A22.aRE	Cos8-7212		R:FXD FLM 100 OHM $2 \% 1 / 8 \mathrm{~W}$	28480	0698-7212
A22ART	C658-7229	1	R:FXD FLM 511 OHM 2\% $1 / 8 \mathrm{~W}$	28480	9698-7229
	$0898-71 \varepsilon 8$ 069 9-71 88	2	$\begin{array}{lllllll}R: F X D & \text { MET } & \text { FLA } & 10 & \text { OHM } & 28 & 1 / 8 w \\ R: F X D & \text { MET } & \text { FLM } & 10 & \text { OHM } & 28 & 1 / 8 w\end{array}$	284.80 28480	$0698-7188$ $0698-7188$
423	$0866 i-61 . j 44$	1	WIKING HARNESS:HAIN	28480	08660-60044
423J	1251-1908	73	CUNTACT: 6 \& P CONNECTOR, MALE	81312	100-1022P
A23J	1251-2041	21	CCNTACT:CCAX	28480	1251-2041
A23J	1251-2663		CONNECTOR PC EDGE (2×18) 36 CONTACT	05574	3 VH18/1JNS
A2313	1251-0085	1	CONNECTOR:FEMALE 36-PIN MINAT	26480	1251-0085
A23.J4	1251-2531	1	BOCY:R \& P CONNECTOR PLUG 66 CONTACT	81312	MRAC-66P-G7
A2315	1251-2563	2	BODY:R \& P CONNECTUR 42 MALE CONTACT	81312	MRAC 42P-67
A23J6	1251-2563		BCOY:F \& P CONNECTOR 42 MALE CONTACT	81312	MRAC42P-G7
A23,7	1251-1017	2	CONNECTOR:2 PIN, MATES W/1251-1016	81312	JF 2 P-2 S-AB
${ }^{823} 53$	c3660-60054	1	CABLE ASSY:WHITE	28480	08660-60054
A 23 W6	08660-60056	1	CABLE ASSY: ORANGE	28480	08660-60056
A23m7	C8600-60058	1	CABLE ASSY:W/RED	28480	08660-60058
A23w8	C8660-6005?	1	CABLE ASSY:W/GREEN	28480	08660-60057
A23W9	08660-60071	1	CABLE ASSY: WHITE/BRCWN	28480	08660-60071
A 23 W 10	08660-60052	1	CABLE ASSY:RED	28480	08660-60052
A23W11	08660-60053	1	CAELE ASSY: BROWN	28480	08660-60053
A23W12	08600-60075	1	CABLE ASSY:GPEEN	28480	08660-60075
423613	09660-60967	1	CABLE ASSY:W/REO	28480	08660-60067
A 23 W14	08660-60066	1	CABLE ASSY:W/BLUE	28480	08660-60066
A23W15	68600-60059	1	CABLE ASSY:W/YELLOW	28480 28480	08660-60059
A23W16	09660-60091	1	CABLE ASSY:WHITE/RED	28480	08660-60081
A23W17	08660-60074	1	CABLE ASSY:WHITE/BROWN	28480	08660-60074
A23W18	08660-60072	1	CABLE ASSY:WHITEJORANGE	28480	08660-60072
A23W19	v8600-60073	1	CABLE ASSY: WHITE/YELLOW	28480	08660-60073
A23W20	68060-60076	1	CABLE ASSY:WHITE/BLACK	28480 28480	08660-60076
A23n21	08660-60077	1	CABLE ASSY:WHITE/GREY	28480	08660-60077
A 23W23	08660-60060	1	CABLE ASSY:W/ORANGE	28480	08660-60060
A232	C8660-20053		PIN:GUIDE	28480	08660-20053
-24	08660-60064	1	WIRING HARINESS	28480	08660-60064
A24.87	1251-1 017		CONNECTIR:2 PIN, MATES W/1251-1016	81312	JF 2 P- $2 \mathrm{Sa-AB}$
A 24.51	2101-1536	1	SWITCH:TOGGLE DPDT 3A 125VAC	95146	MSH-203N
A25	03660-60069	1	CABLE HARNESS LIGHTS	28480	$08660-60069$
F1	2110-0304		FUSE:CARTRIDGE 1.5 AMP 250V SLOW-BLOW	71400	MDX-1-1/2A
F2	2110-0332	1	FUSE:3A	71400	GMH 3
F3	$2110-03047$	3	FUSE:CARTRIDGE 1A	71400	TYPE GML-1
F 4	21.16-0047		FUSE:CARTRIDGE 1A	71400	TYPE GMW-1
F5	2110-.0047		FUSE: CARTRIDGE 1A	71400	TYPE GMW-1
nl	08660-60061	2	CABLE ASSY: GREY	28480	08660-60061
n2	68660-60061		CABLE ASSY:GREY	28480	08660-60061
${ }^{6} 4$	68600-600.43	1	CABLE ASSY:INTERFACE	28480	08660-60046
h 5	08660-60065	1	CABLE ASSY: ORANGE	28ヶ80	08660-60065
$\begin{aligned} & n 22 \\ & n 22 \end{aligned}$	08660-60062	1	CABLE ASSY:wifite FOR BPTION OO2, OMIT W22 CABLE ASSY	28480	08660-60062
	8120-1348	1	CABLE ASSY: POWER, DETACHABLE	70903	KHS-7041
	9100-3131	1	TRANSFORMER : POWER	28480	9100-3131
	500.0-0052	2	PLATE:FLUTED ALUMinum	28480	5000-0052
	5040-1485	3	CONOUCTOR ASSEMBLY:PLUG-IN JUMPER	28480	5040-1485
	506i)-0222	2	HANOLE ASSY:5H SIDE	28480	5060-0222
	5060-0767	5	FDOT ASSY:FM	28480	5060-0767
	$5060-8735$ C $9660-60001$	2	retainer handle assy:olive gray(sto) panel: Rear	28480 28480	$5060-8735$ $0860-00001$
	30650-00003	1	SUPPORT:6G PIN CCNNECTOR	28480	08660-00003
	0at6uj-00304	1	SUPPURT: 42 PIN CONNECTOR	28480	08660-00004
	00660-00205		BRACKET:INTERFACE, LEFT	28480	08660-00c05
	08603-00006	1	BKACKET:INTERFACE, RIGHT	28480	08660-00006
	06660-00007	1	SUPPURT:REF• OSCILLATOR	28480	$08660-00607$
	0560i-ulcus	1	CUVER:HEAT SINK	28480	08660-00008
	686660-00021		FILTER:SIDE	28480	08660-00021
	08669-0,024	3	COVER:SIDE	28480	08660-00024
	08660-06.025	1	COVER:RCTTIA	28480	08660-00025
	C860 000026	1	COVER:TUP	28480	08660-00026
	08600-00027	1	SUPPORT:LUOP BUX, REAR	28480	08660-00027
	C360.jocje	1	CLAMP:REF. OSC. (CPT U02)	28480	08660-00028
	U8000-U1́U29	1	BRACKET:LP EOX LT SC	28480	08660-00029
	$5.3660-00030$ $\sim 0660-n c o 31$.	1	COERR:SLI OSC® CCVER:SLI PHASE CETECTUK	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 08660-00030 \\ & 08660-00031 \end{aligned}$

See introduction to this section for ordering information

Table 6－3．Replaceable Parts

Table 6－4．Code List of Manufacturers

$\begin{aligned} & \text { MFR } \\ & \text { NO. } \end{aligned}$	MANUFACTURER NAME	ADDRESS	$\begin{aligned} & \text { ZIP } \\ & \text { CODE } \end{aligned}$
ccoon	NO M／F DESCRIPTION FOR THIS MFG NUMBER		
cc000	Un SoAe COMMON	ANY SUPPLIER OF $U_{0} S_{0} A_{0}$	
00779	AMP INC．（AIRCRAFT MARINE PROD．）	HARRISBURG，PA．	17101
00853	SANGAMO ELECTRIC CO．PICKENS DIV．	PICKENS，SoCo	29671
01121	ALLEN BRADLEY CO。	MILWAUKEE，WISo	53204
01295	TEXAS INSTRUMENTS INC．SEMICONDUCTOR COMPONENTS DIV＊	DALLAS，TEX．	75231
03508	G®E．CO．SEMICONDUCTOR PROD．DEPT．	SYRACUSE，$N_{c} Y_{0}$	13201
04713	MOTOROLA SEMICONDUCTOR PROD．INC．	PHOENIX，ARIZ．	85008
05574	VIKING IND．INC．	CHATSWORTH，CALIF。	91311
07263	FAIRCHILD CAMERA \＆INST．CORP．SEMICONDUCTOR DIV．	MOUNTAIN VIEH，CALIF。	94040
C7910	CONTINENTAL DEVICE CORP．	HAWTHORNE，CALIF。	90250
09353	C \＆K COMPONENTS INC．	NEWTON，MASS。	02158
12040	NATIONAL SEMI CONDUCTOR CORP．	DANBURY，CONN．	06810
13103	THER MALLOY CD．	DALLAS，TEX．	75247
14655	CORNELL DUBLIER ELECT．DIV，FEDERAL PACIFIC ELECT．CO．	NEWARK，No Jo	07105
15558	MICON ELECTRONICS INC．	GARDEN CITY LDNG IS．．No Y．	11530
15636	ELEC－TROL INC．	NORTHRIDGE，CAL IF．	91325
18324	SIGNETICS CORP	SUNNYVALE，CALIFo	94086
24796	PARELCO INC．	SAN JUAN CAPISTRANO，CALIF。	92675
24931	SPECIALTY CONNECTOR CD．INC．	INOIANAPOLIS，IND．	46227
28480	HEWLETT－PACKARD CO．CORPORATE HQ	YOUR NEAREST HP OFFICE	
36196	STANWYCK COIL PROD．LTD．	HAWKSBURY ONTARIO，CANADA	
50436	HEWLETT－PACKARD CO．MICROWAVE DIV	PALO ALTO．CALIF	94304
56289	SPRAGUE ELECTRIC CO．	No ADAMS，MASSo	01247
66346	MINNESOTA MINING \＆MFG＊CO．MINCOM DIV。	ST．PAUL，MINN．	55101
70903	BELDEN CDRP．	CHICAGO，ILL．	60644
71400	BUSSMANN MFG。 DIV．MC GRAW－EDISON CD＊	ST．LOUIS，MO．	63017
71590	GLOBE UNION INC．CENTRALAB DIVe	MILWAUKEE，WISC。	53201
71744	CHICAGO MINIATURE LAMP WORKS	CHICAGO，ILLO	60640
71785	CINCH MFG• CO．DIV TRW INC．	ELK GROVE VILLAGE，ILL．	
72136	ELECTRO MOTIVE MFGe CO．INC．	WILLIMANTIC，CONN	06226
72982	ERIE TECHNOLOGICAL PROD．INC．	ERIE，PA＊ BROOKL YN，	16512 11219
73899	JFO ELECTRONICS CORP．	BROOKL YN， $\mathrm{N}_{0} \mathrm{Y}_{0}$	11219
74970	JOHNSON E．Fe CO．	WASECA．MINNo	
75915 77342	LITTELFUSE INC。 AMERICAN MACHINE \＆FOUNDRY CO．POTTER \＆BRUMFIELD DIV．	DES PLAINES，ILL PR INCETON，IND．	60016 47570
77342 80031	MEPCO DIV。 SESSIONS CLOCK CO．	MORRISTOWN，No．J．	07960
80131	ELECTRONIC INOUSTRIES ASSOCIATION	WASHINGTON D．C．	20006
81312	WINCHESTER ELECTRONICS DIV．LITTON IND．INC．	OAKVILLE，CONN。	06779
82142	$\triangle I R C O$ SPEER ELECT．COMP．	DU BOIS，PA。	15801
84411	TRW CAPACITOR DIV．	OGALLALA，NEBR．	69153
¢1929	HONEYWELL INC MICRO SHITCH DIV．	FREEPORT，ILL。	61032
95146	ALCO ELFCTo PROD．INC．	LAWRENCE，MASS。	01843
96733	SAN FERNANDO ELECT．MFG• CD．	SAN FERNANDO，CALIF．	91341
¢8291	SEALECTRO CORP．	MA MARONECK，No Yo	10544
59800	DELEVAN ELECTROMIGS GORP．		14052

SECTION VII MANUAL CHANGES

7-1. INTRODUCTION

$7-2$. This section will be used in future issues or revisions of this manual to provide back-dating information.

7-3. In the interim, any necessary changes to the information contained in this manual will be documented in Manual Change sheets shipped with the manual.

Figure 8-1. Model 8660B Simplified Block Diagram

SECTION VIII SERVICE

8-1. INTRODUCTION

8-2. This section provides instructions for testing, troubleshooting and repairing the Hewlett-Packard Model 8660B Synthesized Signal Generator.

8-3. PRINCIPLES OF OPERATION

8-4. Figure 8-1, Simplified Block Diagram, and the following discussion illustrates the basic principles of operation of the Model 8660 B . More detailed information about principles of operation for the phase locked loops and the Digital Control Unit appears on Service Sheets 1 and 18 respectively. In addition, detailed information to the circuit level is provided on individual service sheets.

8-5. Reference Section. A 100 MHz voltage controlled oscillator which is phase locked to an internal reference, or an external standard, serves as a master oscillator. The internal reference is a 10 MHz temperature controlled crystal oscillator. The external standard may be $1,2,2.5,5$ or 10 MHz at 0.2 to 2 volts rms. All of the outputs from the reference section are derived from the 100 MHz master oscillator.

8-6. The reference section provides the following outputs:
a. $\quad 500 \mathrm{MHz}$ to the RF Output Section.
b. 100 MHz to the RF Output Section. This 100 MHz is coupled out of the RF Output Section for use in other circuits.
c. 20 MHz to the Modulator Section. This 20 MHz is coupled out of the Modulator Section for use in the RF Output Section and the Frequency Extension Module.
d. 10 MHz to the High Frequency Loop phase detector.
e. 2 MHz to the Digital Control Unit to be used as a clock.
f. 400 kHz to the N 1 loop for a reference signal.
g. Separate 100 kHz signals to the N 2 and N3 loops for a reference signal.

NOTE

In the following discussion the terms digit 1 , digit 2 , through digit 10 are used to refer to the ten digits of frequency selection. Digit 1 refers to the least significant digit (1 Hz increments). Digit numbers progress from right to left until digit 10 refers to the most significant digit (1 GHz Increment).

8-7. High Frequency Loop. The HF loop contains a voltage controlled oscillator which provides eleven discrete outputs between 350 and 450 MHz in 10 MHz steps when the Model 86601A RF Section is used. When other RF Sections are used the output of the HF loop will be ten discrete outputs between 360 and 450 MHz in 10 MHz steps.

8-8. The HF loop voltage controlled oscillator is pretuned to a frequency selected by digits 8 and 9 when the Model 86601A RF Section is used (digit 9 is set to 1 or 0 only). Only digit 8 is used to control the HF loop voltage controlled oscillator when a higher frequency RF Section is used.

8-9. Pretuning tunes the voltage controlled oscillator to a point within the capture range of the phase lock loop and the phase detector then causes the loop to be phase locked to the 10 MHz reference signal at the exact frequency selected.

8-10. When the Model 86601A RF Section is used the output of the HF loop is applied to the RF Output Section. When a higher frequency RF Section is used, the output of the HF loop is applied to the Frequency Extension Module.

8-11. N1 Phase Lock Loop. The N1 loop provides an output to Summing Loop 1 that is between 19.8 and 29.7 MHz in 100 kHz steps. The N1 voltage controlled oscillator is roughly pretuned by a digital to analog converter which is cohtrolled by digits 6 and 7 .
$8-12$. The N 1 sampling phase detector is driven by pulses derived from the N1 voltage controlled oscillator through a programmable divider and a pulse shaper. The programmable divider is controlled by digits 6 and 7 . When the loop is phase locked the 400 kHz reference input is sampled at a

100 kHz rate. The error signal from the phase detector is summed with the digital to analog converter output to precisely control the voltage controlled oscillator frequency.

NOTE

In option 004 instruments the N2A programmable divider is used. The N2 loop output is then between 20.01 and 30.00 MHz.

8-13. N2 Phase Lock Loop. The N2 loop provides an output to Summing Loop 2 that is between 19.80 and 29.79 MHz in 10 kHz steps. The N2 voltage controlled oscillator is roughly pretuned by a digital to analog converter which is controlled by digits 4 and 5 .

8-14. The N 2 sampling phase detector is driven by pulses derived from the N2 voltage controlled oscillator through a programmable divider and a pulse shaper. The programmable divider is controlled by digits 3,4 and 5 . When the loop is phase locked the 100 kHz reference signal input is sampled at a 10 kHz rate. The error signal from the phase detector is summed with the digital to analog converter output to predisely control the voltage controlled oscillator.

8-15. N3 Phase Lock Loop. The N3 loop provides an output to Summing Loop 2 that is between 2.001 and 2.100 MHz in 1 kHz steps. The N3 voltage controlled oscillator is roughly pretuned by a digital to analog converter which is controlled by digit 2.

8-16. The N3 sampling phase detector is driven by pulses derived from the N3 voltage controlled oscillator through a programmable divider and a pulse shaper. The programmable divider is controlled by digits 1 and 2 . When the loop is phase locked the 100 kHz reference signal is sampled at a 10 kHz rate. The error signal from the phase detector is summed with the digital to analog converter output to precisely control the voltage controlled oscillator frequency.

NOTE

In option 004 instruments SL2 is not used.

8-17. Summing Loop 2. SL2 provides an output to SL1 that is between 20.0001 and 30.0000 MHz in 100 Hz steps. The SL2 voltage controlled oscillator is roughly pretuned by a digital to analog converter which is controlled by digits 3,4 and 5 .

8 -18. The output from the SL2 voltage controlled oscillator is also applied to a mixer where it is
mixed with the output of the N2 loop. The output of this mixer is applied to one input of a digital phase detector through a pulse shaper. The other input to the digital phase detector is the divided by ten output of the N3 loop assembly in pulse form. When SL2 is phase locked the frequency ratio of the two inputs to the phase detector is always $1: 1$; the mixer output frequency must exactly match the divided by ten output of the N3 loop assembly (the pulses are received alternately).

NOTE

In option 004 instruments the SL1 output is from 20.0001 to 30 MHz .

8-19. Summing Loop 1. SL1 provides an output to the RF Output Section that is between 20.000001 and 30 MHz in 1 Hz steps. The SL1 voltage controlled oscillator is roughly pretuned by a digital to analog converter which is controlled by digits 5, 6 and 7 .
$8-20$. The output from the SL1 voltage controlled oscillator is also applied to a mixer where it is mixed with the output of the N1 loop. The output of this mixer is applied to one input of a digital phase detector through a pulse shaper. The other input to the digital phase detector is the divided by one hundred output of the SL2 voltage controlled oscillator in pulse form. When SL1 is phase locked the frequency ratio of the two inputs to the phase detector is $1: 1$; the mixer output frequency must exactly match the divided by one hundred output of the SL2 voltage controlled oscillator (the pulses are received alternately).

8-21. Digital Control Unit. In the local mode all functions of the Model 8660B are controlled by the DCU. These functions are itemized and described in Section III of this manual.

8-22. Interface Circuits. The interface circuits provide the capability of operating the Model 8660B with the DCU (local mode), or by a remote programming device (remote mode).

8-23. RF Section. An RF Section plug-in is required to produce a useable rf output. Figure 8-1 shows a simplified block diagram of the Model 8660B with a Model 86601A RF Section used in the system. All plug-in sections are covered by separate manuals.

8-24. Modulation Section. If a modulation section is not available, it will be necessary to have an Auxiliary Section in the modulator drawer to complete necessary connections.

8-25. RECOMMENDED TEST EQUIPMENT

$8-26$. Test equipment and accessories required to maintain the Model 8660B are listed in Table 1-3. If the equipment listed is not available, equipment that meets the minimum specifications shown may be substituted.

8-27. TROUBLESHOOTING

8-27. Troubleshooting procedures are divided into three maintenance levels in this manual.

8-29. The first maintenace level is a repair-bysubstitution method for the digital control unit only. If trouble developes in the digital control unit and a set of spare assemblies is on hand, refer to Table 8-1 for troubleshooting procedures.
$8-30$. The second maintenance level is designed to utilize the HP Module Exchange Program. A set of troubleshooting trees enable a relatively inexperienced technician to isolate the cause of a malfunction to a circuit board or assembly. A factory repaired replacement for the defective circuit board or assembly may be ordered through the nearest HP Sales/Service office using the special part numbers listed in Table 6-1. Refer to paragraph 8-34 and Figure 8-2 for additional information relative to the Module Exchange Program.

8 -31. The third maintenance level involves repairing the instrument to the component level. The troubleshooting trees, in addition to aiding in the detection of faulty circuit boards or assemblies, also refers the technician to Service Sheets to be used if repairs are to be accomplished to the component level. Circuit descriptions and test procedures for this maintenance level are located on the page facing the schematic diagram of the circuit to be repaired.
$8-32$. If the cause of a malfunction is found and remedied in any circuit containing adjustable components, the applicable adjustment procedure in Section V of the manual should be performed.

8-33. REPAIR

8-34. Module Exchange. This instrument, because of its modular design, may be repaired by simply replacing a defective module. Modular design is a method of construction that groups individual circuits on a replaceable assembly. Modular design, coupled with a factory-repaired module exchange program, eliminates the need to repair to the component level. Factory-repaired modules are available on an exchange-for-credit basis that reduces module cost substantially below the cost of a new module.
$8-35$. This manual provides a procedure which enables the technician to quickly isolate the cause of a malfunction to the defective module.

8-36. Exchange modules should be ordered by the exchange numbers shown in Table 6-1 from the nearest Hewlett-Packard Sales/Service Office.
$8-37$. Figure $8-2$ illustrates the module exchange procedure.

NOTE

Do not send a defective module to the HP office until the replacement module is received.

8-38. Line Voltage Requirements. During adjustment, testing and use, the Model 8660 B must be connected to a source of power capable ofdelivering about 200 watts of power at 115 or 230 volts ac $\pm 10 \%$, single phase. If adjustment of the dc voltage regulators is required, the Model 8660 B should be connected to the ac source through an adjustable auto-transformer. The line voltage may then be adjusted to check the Model 8660 B regulators when the line voltage is changed $\pm 10 \%$.

8-39. Servicing Aids on Printed Circuit Boards. Servicing aids on printed circuit boards include test points, transistor and integrated circuit reference designators, adjustment callouts and assembly stock numbers. Figure 8-3 illustrates the proper method to identify pin numbers on the circuit boards.

8-40. Circuit Board Extenders. Circuit board extenders are provided with the instrument. These extenders enable the technician to extend plug-in boards clear of the assembly to provide easy access to components and test points. See Figure 8-4 for a typical example of extender board use.

NOTE

Extending some circuit boards, particularly those containing oscillators, may cause a change in operating frequency. Adjustment of variable components should not be attempted, except as required for troubleshooting purposes, while the circuit boards are extended.

8-41. Diagram Notes. Table 8-2, Schematic Diagram Notes, provides information relative to symbols and values shown on schematic diagrams.

8-42. Part Location Aids. The locations of chassis mounted parts and major assemblies are shown in Figure 805. The location of individual components

Table 8-1. Troubleshooting by Replacement (1 of 2)

Test	Result	Procedure
1. Perform operator's checks 1 through 1-c	Readout does not display 1.000000 MHz	Check the 2 MHz and power supply inputs to the DCU. If present, proceed to step 1-a.
1-a. Ground the connector pin labeled PWR DET on the mother board	Readout displays 1.000000 MHz Readout display is not correct	Trouble is in the A3 interface assembly $\mathrm{A} 2, \mathrm{~A} 1, \mathrm{~A} 7, \mathrm{~A} 4, \mathrm{~A} 5, \mathrm{~A} 6, \mathrm{~A} 12$
2. Enter a center frequency (within the limits of the RF section in use) in Hz .	Readout correct. (It has been determined that the data out of the DCU is incorrect or Readout incorrect, but rf output is correct	$\mathrm{A} 9, \mathrm{~A} 10, \mathrm{~A} 1, \mathrm{~A} 5, \mathrm{~A} 4, \mathrm{~A} 7$ $\mathrm{A}, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 12$
3. Enter center frequencies in $\mathrm{GHz}, \mathrm{MHz}$, kHz (stay within limits of the RF section in use).	Readout does not justify properly	A3, A2, check wiring from the keyboard to the A1A11 mother board
4. Perform operator's checks 2 -a and 2-b	Readout does not justify properly	A3, A2, check wiring from the keyboard to the A1A11 mother board
5. Perform operator's check 2-c	Readout incorrect	A1, A4, A5
6. Perform operator's checks 2 -d and 2 -e	Readout does not blank when CLEAR KYBD is pressed	A2, check wiring between keyboard and A1A11 mother board
7. Perform operator's check 3 -a	STEP operation does not function properly	A2, A4, A5, A6, A7, check wiring between keyboard and A1A11 mother board
7-a. Check STEP down operation	STEP operation does not function properly	Same as step 7
8. Perform operator's check 3-b	STEP readout incorrect	A1, A4, A5, A7, check STEP pushbutton switch and wiring
9. Perform Operator's checks 3-c and 3-d	OUT OF RNG light does not clash	A6, A1, light bulb, a4. a5. a7. Check OPID lines as follows: Extend the A1A7 assembly and check the following lines on connector - 1

Table 8-1. Troubleshooting by Replacement (2 of 2)

| Test | Result | Procedure |
| :--- | :--- | :--- |$|$| (|
| :--- |

SCHEMATIC DIAGRAM NOTES

Inductance is in microhenries，Resistance is in ohms and Capacitance is in microfarads unless otherwise noted．

P／O part of

Screwdriver Adjustment

\bigcirc	Panel Control
Encloses Rear Panel	
designations	

Encloses Front Panel レー．－」」
designations
\qquad Circuit assembly borderline
－— —－－Other assembly borderline

Wiper moves toward CW with clockwise rotation of control as viewed from shaft or knob．

Numbers in stars on circuit assemblies show locations of test points．
Encloses wire color code．Code used（MIL－STD－681）is the same as the resistor color code．First number identifies the base color，second number the wider stripe，and the third number the narrower stripe．Example： 947 denotes white base，yellow wide stripe，violet narrow stripe．

A 2 Indicates an output from a schematic that goes to an input identified as \boldsymbol{A} on Service Sheet 2.

6 Indicates an input to a schematic that comes from an output identified as K on Service Sheet 6.
$\stackrel{\perp}{\perp} \quad$ Indicates Circuit ground
mounted on printed circuit boards or other assemblies are shown on the appropriate schematic page or the page opposite it. The part reference designator is the assembly designation plus the part designation. (Example: A10R1 is R1 on the A10 assembly). For specific component descriptions and
ordering information refer to the parts list in Section VI of this manual.

8-43. Table 8-3 lists all assemblies and provides location information for photos, schematics, etc.

Table 8-3. Assembly Locations

Assembly Numbers and Description	Service Sheet Number	Photo: Figure 8-
A1 Digital Control Unit	18-38	
A2 Loop Mother Board		5
A3 Interface Assembly	22, 23	5, 60, 62
A4 HF Loop Assembly	2, 3, 4, 5, 6	$5,13,14,16,17,19,21,23$
A5 Voltage Control Assembly	24	5,65
A6 Regulator Assembly	24	5,65
A7 AC Line Module	24	5
A8 N3 Oscillator	12	5,37
A9 Cable Loop Board	25	5
A10 N3 Phase Detector	11	5, 35
A11 SL2 Oscillator	14	5, 41
A12 SL2 Phase Detector	13	5, 39
A13 N2 Oscillator	10	5,33
A14 N2 Phase Detector	9, 9a	5, 29, 31
A15 SL1 Phase Detector	15	5,43
A16 N1 Phase Detector	7	5,25
A17 N1 Oscillator	8	5,27
A18 SL1 Mixer	16	5,45
A19 SL1 Oscillator	17	5,47
A20 Rectifier Assembly	24	5, 64
A21 Reference Oscillator	2	5,11
A22 Reference Switch Assembly	2	5,12

Module Exchange Repair Program

The module exchange program described here is a method of keeping your Hewlett-Packard instrument in service without repairing the instrument to the component level.

[^0]A.

Rebuilt-exchange modules are shipped individually in boxes like this. In addition to the circuit module, the box contains:

Modüle repair report
Return address label
Tape for resealing box
B.

Open box carefully - it will be used to return defective module to HP. Complete repair report. Place it and defective module in box. Be sure to remove enclosed return address label.
C.

Seal box with tape provided. Inside U.S.A.*, stick preprinted return address label over label already on box, and return box to HP. Outside U.S.A., do not use address label: instead, address box to the nearest HP office.

Figure 8-2. Modular Exchange Procedure

Figure 8-3. Printed Circuit Board Connector Identification

Figure 8-4. Model 8660B With Circuit Board Extended for Maintenance

This procedure is based on the assumption that the cause of trouble has been isolated to the Model 8660 A by performing the tests specified in the Modulation isolated to the Model
or RF Section Manual.

anel REFERENCE switch to EXT and
io MHz signal to the reference INPUT.
ignal at the end of the cable to the

	$\begin{array}{l}\text { Levels are as specified } \\ \text { but frequencies are not. }\end{array}$
scope and the Counter to check the 10	

scope and the Counter to check the 1
the A4A7 assembly. Should be greate
Frequency and level is as specified.

From Sheet 1.

 Use the plug provided
Counter to check the
The frequency should The frequency should
step $\pm 250 \mathrm{kHz}$. step $\pm 250 \mathrm{kHz}$.

 output at A p . For formula to calculate frequency
than 0.4 V .

$$
7
$$

Frequency is $\xrightarrow{\text { not as specified. }}$ SEE NOTE 5 .
Digitally remastered by ArtekMedia © 2002-2006

Use the Oscilloscope and Counter to check the N1 output at A2XA17-1 pin 2. Level should be greater
than 0.4 V p-p. For formula to calculate frequency SEE NOTE 5.

	Frequency and level are as specified.

se the plug provided to ground A2TP14. Use the Counter to check the SL1 output at A2TP22 SEE ${ }^{\mathrm{NH}} \mathrm{Hz}$
 $\xrightarrow[\text { not as specified. }]{ }$

Frequency is as specified.
Use the Counter to check the frequency at A2XA19-1
pin 2. Frequency should be as calculated for step above.

Use the DVM to check dc levels at A2XA18-2 pin R. The level is controlled by thumbwheels 5,6 and 7 . Thumbwheels set to 000 , level should be -25.5 V .

Frequency is

not as specified.

15 assembly is defective Order a replacement assem
Aly or refer to Service Sheet 15 and repair as required
Frequency
is as

tes
The output frequency of the SL2 loop may be determined by adding the N 2 output frequency to the divided-by-ten output of the N 3 loop assem bly. EXAMPLE: Programmed frequency is 107.654321 MHz .24 .36 $0.2079=24.5679$. Output frequency is 24.5679 MHz .
2. If there is no RF output, or if the RF level is low, the trouble is in th circuit board containing the voltage controlled oscillator and output cir cuits.
3. The output frequency of the N 2 loop is equal to 29.79 MHz less th setting of thumbwheel digits 5,4 and 3 . EXAMPLE: Thumbwheels set t MHz 29.79-5.43 $=24.36$. Output frequency is 24.36 MHz

The output frequency of the N 3 loop is equal to 2.100 MHz less the setting of thumbwheel digits 2 and 1 . EXAMPLE: Thumbwheels set to MHz.
5. The output frequency of the $N 1$ loop is equal to 29.7 MHz less th setting of thumbwheel digits 7 and 6 . EXAMPLE: Thumbwheels set to $107.654321 \mathrm{MHz}, 29.7-7.6=22.1$. Output Frequency is 22.1 MHz .
6. The outptit frequency of the SL1 loop may be determined by sub tracting the last seven digits of the programmed frequency from MHz.

The Hewlett-Packard Model 8660B is a signal generator which utilizes synthesizer techniques to produce precise rf output signals. These signals may be selected in increments as small as one Hz .

Each step in the generation of the output frequency is controlled by phase lock loops. This ensures that the output frequency is exactly phase lock loops. This ensures that the output

All of the seven phase lock loops (five loops in option 004) are referenced to a single source. This source may be the internal temperature controlled crystal oscillator or an external frequency standard of $1,2,2.5,5$, or 10 MHz .

The Model 8660B mainframe does not provide a direct rf output, except for the reference signal which may be used as a time base for external equipment. The signals generated within the mainframe are the selected output rf signals.

Reference Loop

The reference loop consists of four circuit boards mounted in the A4 troubleshooting information are provided by Service Sheets 2 and 3

All of the signals generated within the Model 8660B mainframe are derived from the 100 MHz master oscillator in the reference loop. The master oscillator is a voltage controlled oscillator which is phase A4A4 assembly.

Also included in the A4A4 assembly are divide-by-five and multiply-by-five circuits. The outputs from the A4A4 assembly are $500 \mathrm{MHz}, 100 \mathrm{MHz}$, and 20 MHz . The 20 MHz output from the A4A4 assembly is sampled in the reference loop phase detector to provide a phase correction signal to the master oscilator. The 20 by two to provide a 10 MHz signal for use in the A4A1 reference dividers and in the high frequency phase lock loop.

The reference loop input circuit (A4A2) converts the signal from the reference oscillator into sharp short-duration pulses to open a sampler gate which samples the 20 MHz signal from the A4A4 assembly. The sampled signal is used ${ }^{\text {ath }}$ generate an error signal which biases the varactor in the 100 MHz voltage controlled condition.

The A4A1 assembly divides the 10 MHz input from the A4A3 assembly by five to provide a 2 MHz clock for the digital control to the phase detector in the $\mathrm{N} 1 \mathrm{loc}_{\mathrm{p}}$. The 400 kHz is twice divided by two to provide 100 kHz signals to the phase detectors in the N 2 and N3 loops.

High Frequency Loop

The HF loop consists of three cir ${ }_{\text {cuit }}$ boards mounted in the A4 assembly. Schematics, a more conprehensive circuit analysis, and trou
6.

The HF loop provides digitally controlled rf signals between 350 and 450 MHz in precisely selected 10 MI z increments.

The sampling phase detector (A4A7) compares the voltage controlled oscillator (A4A5) output to a 10 M Hz signal from the reference loop and provides an output to phase lock the voltage controlled oscillato to the reference signal. The phase $d_{\text {etector assembly contains a pulse }}$ generator, a sampler and a signal processing circuit.

The frequency of the voltage controlled oscillator (A4A5) is roughly pretuned by a digital to analog converter located in the A4A6 assembly. The error signal from the A4A7 assembly is summed with locked condition. The A4A5 assen converter also contains two identical three-stage amplifiers. These amplifiers serve as buffers to isolate any extraneous signals at their outputs from the oscillator. One of the mplifiers provides an output to the rf plug-in; the other output goes o the HF loop sampling phase detector

The A4A6 pretuning circuit consist ${ }_{5}$ of a digital to analog converter which roughly pretunes the voltage controlled oscillator to the 10 MHz increment between 350 and 450 MHz selected by CF digits 8 by itself, set the voltage controlled (controls. The pretuning cannot does set the frequency within the capture range of the loop.

The A4A6 assembly also contains a summing circuit which sums the negative dc level from the digital to innalog converter with the current output from the summing circuit precisely controls the frequency of the voltage controlled oscillator

Divide By N Loop N1

The purpose of the N1 loop is to generate digitally controlled rf gnals in the range of 19.8 to 29.7 MHz in selectable 100 kHz increments. The voltage controlled oscillator is phase locked to a 400

SERVICE SHEET 1 (cont'd

kHz reference signal which is derived from the master oscillator in the reference loop. The output of the N1 loop is applied to summing loop 1.

The N1 loop circuits are mounted on two circuit boards, A16 and A17. Schematics, a more comprehensive circuit analysis, and troubleshooting information are provided by Service Sheets 7 and 8.
The A16 phase detector assembly contains a programmable divider, a sampling phase detector and a signal processing circuit.

The programmable divider divides by a number determined by CF digits 6 and 7 of the front panel (or remote) controls. The terminal count of the programmable divider is always 297. The actual number of cycles counted is determined by the count programmed into the divider prior to the start of each count cycle. The output of the programmable divider is always 100 kHz when the loop is locked

The output frequency of the N 1 loop may be determined by subtracting the CF digits 7 and 6 information from 29.7 MHz . As an example, if CF digits 7 and 6 are set The sampling phase detector programmable divider to sample the 400 kHz reference signal and
he signal processing circuit consists of an operational amplifier with lead and lag compensation

The A17 assembly contains a digital to analog converter, a voltage controlled oscillator and a summing circuit.
The digital to analog converter converts the digital inputs from CF digits 6 and 7 to a dc level which roughly pretunes the voltage ontrolled oscillator to a frequency within the capture range of the loop.

The summing circuit sums the current from the negative digital to nalog converter source with current from a +20 volt source and the error signal from the phase detector to precisely control the voltage controlled oscillator frequency.

Divide By N Loop N2

The purpose of the N 2 loop is to generate digitally controlled r gnals in the range of 19.80 to 29.79 MHz in selected 10 kHz increments.

NOTE

In option 004 instruments the N 2 loop output is from 20.01 to 30.00 MHz in 10 kHz increments.

The voltage controlled oscillator is phase locked to a 100 kHz eference which is derived from the master oscillator in the reference Summing loop 1 in option 004 instruments)

Digitally remastered by ArtekMedia © 2002-2006

SERVICE SHEET 2

P/O REFERENCE LOOP CIRCUITS

Normally, causes of malfunctions in the Model 8660B will be isolated to a circuit board or assembly as a result of performing the tests specified in the troubleshooting trees.
When repairing the reference loop only one of the four covers should be removed at any given time. Operating the instrument with the

NOTE

After making repairs in any part of the reference loop circuits the adjustment procedures specified in Section V paragraph $5-14$ should be performed to ensure proper operation of the instrument.

TEST EQUIPMENT REQUIRED (See Table 1-3)

Digital Voltmeter

$$
\begin{aligned}
& \text { Test Oscillator } \\
& 10: 1 \text { Oscilloscope probes (2) } \\
& \text { Floctronic Countor }
\end{aligned}
$$

Electronic Counter

Oscilloscope

REFERENCE LOOP GENERAL

The reference loop consists of four circuit boards located in the A assembly. This service sheet provides information about circui operation and test procedures for the reference oscillator, reference ampliferer and relays, the phase detector and the divide-by-five and formation for the voltage controlled oscillator and divide-by-two circuits appear on Service Sheet 3.

The accuracy and stability of all the signals generated in the Mode 8660B mainframe are traceable to the reference loop outputs.

The reference loop provides output frequencies of $500 \mathrm{MHz}, 100$ $\mathrm{MHz}, 20 \mathrm{MHz}, 10 \mathrm{MHz}, 2 \mathrm{MHz}, 400 \mathrm{kHz}$, and 100 kHz . These signals are used in other circuits in the mainframe and in the plug-in sections. All of the reference section outputs are derived from a 100 MHz master oscillator which is phase locked to a stable reference soure. The rillator or by an the ference signal may be $1,2,25,5$ or 10 MHz at a level of 0,2 to volts rms.

1 REFERENCE OSCILLATOR, AMPLIFIER AND RELAYS

The Model 8660B (except for option 002 instruments) contains a 10 MHz temperature controlled crystal oscillator which is used as a

SERVICE SHEET 2 (cont'd)

PHASE DETECTOR ASSEMBLY (A4A2) GENERAL:

The phase detector consists of three basic circuits; a pulse generator, a sampler and a circuit to process the error signal.

The pulse generator converts the reference signal to very sharp, short duration pulses. These pulses are used to forward bias the sampler gate diodes.

The sampler gate provides a means of comparing the pulses generated from the reference signal to the 20 MHz signal from the A4A3 assembly. An error signal is developed to control the voltage controlled oscillator in the A4A4 assembly when a phase error exists.

2 PULSE GENERATOR

The pulse generator consists of Q1 through Q5, U1, T1 and associated components.

The reference input to Q1 may be $1,2,2.5,5$ or 10 MHz . Q1 and Q2 act as an amplifier for low level signals and as a limiter for high level signals. Q3 acts as a limiter to ensure that the input to NAND gate U1A is always the same when the input reference signal is 0.2 to 2 volts rms. The output from Q3 is essentially a square wave with a slow rise time and a fast fall time; it is clipped, top and bottom, and is approximately 5 volts peak to peak.
U1, C11 and R20 are used as a pulse shaper. The output of U1A is differentiated by C11 and R20 and inverted by U1B. The sharp pulses (20 to 25 nanoseconds) are inverted by U1D to provide
positive-going pulses to drive Q4/Q5.

Q4/Q5 comprise a complementary emitter-follower pair; its purpose is to provide a low impedance drive to T1.

TEST PROCEDURE

Test 2-a. Composite waveform SS2-1 and trace 2 of composite waveform SS2-2 illustrate the development of the 10 MHz pulses derived from the internal reference signal. These pulses are used to drive the sampling phase detector diode gates: Observing the to quickly isolate a malfunction in the circuit to an individual stage or to the reference oscillator/switching circuits.

There are no loops or feedback circuits in the pulse generator circuit It is safe to assume when a correct waveform is observed that all preceding portions of the circuit are operating properly.

SERVICE SHEET 2 (cont'd)

reference source. Also included are switching relays and a buffe mplifier. The buffer amplifier serves to isolate the referenc oscillator when its output is used as a reference source for externa equipment.

TEST PROCEDURE

Test 1-a. Connect the oscilloscope to the Model 8660B rear panel REFERENCE OUTPUT connector. If the internal reference is being used the oscilloscope should display a 10 MHz signal at about 4 volt peak to peak. If an external reference is used the oscilloscope should display the reference frequency at about the same level as the reference signal input.

If the signal is present proceed to test 1-b. If the signal is not presen proceed to test 1-c.

Test 1-b. Disconnect the coaxial cable from A4J5 (REF INPUT) and connect the oscilloscope to the end of the cable. If the interna reference is being used the oscilloscope should display a 10 MH ignal at about 5 volts peak to peak. If an external reference is used the oscilloscope should display the input reference signal.

If the signal appeared in test 1-a, but does not appear in test 1-b, the cable between the A4A2 assembly and the reference relay/amplifie s probably defective.

f the correct signal is observed in test 1-b, proceed to TEST PROCEDURE

Test 1-c. If the signal was not present in test 1-a, tilt the A4 assembly out of the frame, disconnect the coaxial cable from the eference oscillator assembly and connect the reference oscillato signal at about 7 volts peak to peak
f the signal is not present, check for dc levels as follows: terminal 1 If the signal is not present, check for dc levels as follows: terminal 1 , +20 volts, terminal $2,+35$ volts (oven voltage) and terminal $6,+5.2$ volts (when present indicates thermostat is open, temperature stabilized). If the voltages are correct the reference oscillato assembly (A21) is defective.

NOTE

The reference oscillator assembly is not considered a ield repairable unit. Replacement is recommended

If the signal is present at the reference oscillator output check the SELECTOR switch, the relay assembly (A22A1) and the reference amplifier (A22A2).

SERVICE SHEET 2 (cont'd)

3 SAMPLER

Sampler diodes CR4 and CR5 are normally reverse biased. When the Sampler diodes CR4 and CR5 are normally reverse biased. When the sampling pulse appears across the secondary of T1 it is coupled
through C18 and C19 to forward bias CR4 and CR5. Since the gate pulses are equal in amplitude but opposite in polarity, they will cancel at the junction of R32, R33, R34, and C20.

To be supplied

To be supplied

While CR4 and CR5 are forward biased the sampling gate is open and the 20 MHz signal from the A4A3 assembly is sampled. If the 20 the 20 MHz signal from the A4A3 assembly is sampled. If the 20 derived from the reference signal an ac signal will appear on the base of Q7. The polarity of the signal at any given time depends on the polarity of the 20 MHz signal from the A4A3 assembly when the last sample was taken. The amplitude of the ac signal at any given time depends on what portion of the 20 MHz sine wave the last sample was taken from.

Each time CR4 and CR5 are forward biased the charge on C20 will change unless the phase relationship is the same as it was in the pre time between semples is never more than one microsecond, C20 cannot discharge appreciably between sampling pulses.

The reverse bias levels for CR4 and CR5 are maintained at the same levels (opposite polarities) by voltage divider networks.

SERVICE SHEET 2 (cont'd)

TEST PROCEDURE

Test 3-a. An oscilloscope loads the sampling circuit at TP3 and TP4 to a point where accurate analysis of the signal is not possible. However, observing the waveforms and comparing them to the typical waveforms shown in composite waveform SS2-2 will provide an adequate indication that the circuit is, or is not, functioning properly. The important points to observe are the two-to-one frequency ratio between the 20 MHz signal and the pulses, and the TP3 coincidence of the positive-going and negative-going pulses at
TPith the pulses at TP1.

4 ERROR SIGNAL AMPLIFIER

When a phase difference between the reference signal and the 20 MHz input exists, a signal appears on C20. This signal is amplified and used to correct the frequency of the voltage controlled oscillator in the A4A4 assembly.

Q7 and Q9 provide a high impedance input for the sampler output. Q8 and Q10 comprise a differential amplifier. Emitter-follower Q11 provides the output to the A4A4 assembly.

TEST PROCEDURE

Test 4-a. Connect an oscilloscope to the A4A2 output laveled VCO. With the input 10 MHz reference disconnected from A4J5, (REF INPUT) connect a test oscillator (output $0 \mathrm{dBm}, 3 \mathrm{kHz}$) to arbitrarily.)

Vary the output level of the test oscillator and note that the A4A2 output level displayed on the oscilloscope varies.

NOTE

If the A4A2 output does not vary when the test oscillator output is varied, use the oscilloscope to check back through the stages for a point in the circuit where the level does change with a change in the output level of the test oscillator. The following stage is probably defective.

5 REFERENCE DIVIDE-BY-FIVE AND DIVIDE-BY-TWO ASSEMBLY A4A1

The A4A1 assembly divides the 10 MHz input from the A4A3 assembly four times; two times by five and two times by two. The assembly provides a 2 MHz clock signal to the digital control unit, 100 kHz signals to the N 2 and N 3 loops and 400 kHz to the N1 loop.

SERVICE SHEET 2 (cont'd)

Q3 and CR1 reduce the +20 volt input to +5 volts for operation of all circuits in the assembly. This method of providing power is used to minimize the effect of ac ripple on the power supply.
Q1 isolates the circuit from the 10 MHz source. Q2 amplifies the 10 MHz input and NAND gate U1A shapes it into pulses to drive U2. U2 provides a divided-by-five 2 MHz output at pin 8 which is used as a clock signal in the digital control unit. The 2 MHz output is also available at pin 11 of U2 and is used to drive U3.

U3 divides the 2 MHz input from pin 11 of U 2 by five and provides outputs of 400 kHz at pins 8 and 11 . The 400 kHz output at U3 pin 8 is used as the phase detector reference in the N 1 loop. The 400 kHz at pin 11 of U3 is coupled to U3 pin 14 and divided by two. The 200 kHz output of U3 at pin 12 is coupled back to U2 pin 14 through NAND gate U1C and again divided by two. The 100 kHz output from U2 pin 12 is coupled through NAND gate NAND gate U1D to the phase detector in the N2 100

TEST PROCEDURE

Composite waveform SS2-3 illustrates the development of pulses from the 10 MHz reference input and the 2 MHz clock output to the digital control unit.

Composite waveform SS2-4 illustrates the development of the 400 kHz and 100 kHz N loop reference signals from the 2 MHz clock signals.

To be supplied

There are no loops or feed back paths in the circuit. It is safe to assume that when the proper waveform is observed at any point that preceding stages are functioning properly.

Observing the waveforms at the test points specified should enable the technician to quickly isolate the cause of a malfunction to a specific stage or component.
8-16

SERVICE SHEET 3

P/O REFERENCE LOOP CIRCUITS

Normally, causes of malfunctions in the Model 8660B will be solated to a circuit board or assembly as a result of performing the tests specified in the troubleshooting trees.

When repairing the reference loop only one of the four covers should be removed at any given time. Operation of the instrument with the voltage controlled oscillator cover removed may cause faulty or erratic performance after required repairs have been completed.

NOTE
After making repairs in any part of the reference After making repairs in any part of the reference
loop circuits the adjustment procedures specified in Section V paragraph $5-14$ should be performed to ensure proper operation of the instrument.

TEST EQUIPMENT REQUIRED (See Table 1-3)

Digital Voltmeter
Oscilloscope
Electronic Counte
10:1 probes (2)

REFERENCE LOOP GENERAL

The reference loop consists of four circuit boards located in the A4 assembly. Service Sheet 2 provides information about circuit operation and test procedures for the reference oscillator, reference amplifier and relays, the phase detector and the divide-by-five and divide-by-two circuits. Schematic diagrams, text and troubleshooting information for the voltage controlled oscillator and divide-by-two circuits appear on this service sheet

The accuracy and stability of all the signals generated in the Model 8660 B mainframe are traceable to the reference loop circuits.

The reference loop provides output frequencies of $500 \mathrm{MHz}, 100$ $\mathrm{MHz}, 20 \mathrm{MHz}, 10 \mathrm{MHz}, 2 \mathrm{MHz}, 400 \mathrm{kHz}$, and 100 kHz . These signal are used in other circuits in the mainframe and in the plug-in sections. All of the reference section outputs are derived from a 100 MHz master oscillator which is phase locked to a stable referenc ource. The reference signal may be supplied by the internal reference signal may be $1,2,2.5,5$ or 10 MHz at a level of 0.2 to 2 volts rms.

1 OSCILLATOR, POWER SPLITTER, 500 MHz AMP and
Q3 and associated components comprise a 100 MHz voltage ontrolled oscillator Varactor CR1 is biased by the output of the

SERVICE SHEET 3 (cont'd)

A4A2 phase detector to assure that the oscillator is phase locked to the reference signal at 100 MHz .

The oscillator output is capacitively coupled to the base of Q4 which functions as a power splitter

Q9 and associated components provide isolation from the +20 volt power supply for the oscillator and power splitter to minimize effects of ac power supply ripple or line variations.

The collector output of Q4 is capacitively coupled to A8, a 100 MHz tuned amplifier which functions as a buffer stage. The times five MHz output from the $\mathrm{Q7}$ tank circuit is capacitively coupled to Q 6 , another 500 MHz tuned amplifier which also provides isolation.

The emitter output of Q4 is capacitively coupled to the base of Q5 which functions as a 100 MHz tuned amplifier buffer stage. This utput is used in the Frequency Extension Module (accessory number 11661A).

TEST PROCEDURE

NOTE

If the signal frequency is close to that specified in the following tests but is erratic, or not exact, the rouble is probably in the Phase Detector circuit. Refer to Service Sheet 2

Test 1-a. With the A4A4 assembly cover removed use the counter and oscilloscope (separately) to check the 500 MHz output. The countar should indicate exactly 500 MHz and the oscilloscope should display a sine wave at about 0.2 volt peak to peak.

If the signal is present proceed to test 1 -d. If the signal is not present proceed to test 1-b.
Test 1-b. Connect the oscilloscope and the counter (separately) to Q4-c. The counter should indicate exactly 100 MHz and the Q4-c. The counter should indicate exactly 100 MHz

If the signal is present, but was not present in test 1-a, check Q6, Q7 Q8 and associatee components. If the signal is not present, proceed to test 1-c.
Test 1-c. Connect the oscilloscope and the counter (separately) to Q4-b. The counter should indicate exactly 100 MHz and the scope Qhould display a sine wave at about 0.4 volts.

SERVICE SHEET 3 (cont'd)

If the signal is present, but was not present in previous tests, Q4 is probably defective. If the signal is not present check Q3, Q9 and associated components.

Test 1-d. Use the oscilloscope and the counter (separately) to check the 100 MHz output. The counter should indicate exactly 100 MHz and the oscilloscope should display a sine wave at about 0.5 volts.
If the signal is not present, but was present in test 1-a, check Q5 and ssociated components. If the signal is present proceed to Test associated
Procedure

$2 \mathbf{2 0} \mathbf{~ M H z}$ OUTPUTS

A third 100 MHz signal is capacitively coupled from the oscillator tank circuit to the base of 100 MHz tuned amplifier Q2. The output of Q2 is used to drive a divide-by-five circuit (U1) which provides the
20 MHz output. The 20 MHz output is used to drive the divide-by-two circuit in the A4A3 assembly. The 20 MHz signal is also coupled to 20 MHz tuned amplifier Q1 for use in circuits external to the reference loop.

TEST PROCEDURE

 Test 2-a. Connect the oscilloscope to the 20 MHz output from Q1.The display should be similar to that shown in the center trace of composite waveform SS3-1. Proceed to test 2-b.

Test 2-b. Connect the oscilloscope to the 20 MHz output which goes to the A4A3 assembly. The display should be similar to that shown in the lower trace of composite waveform SS3-1.

If the correct signal is present, but was not present in test $2-\mathrm{a}$, check Q1 and associated components.

If the signal is not present proceed to test 2-c.

Test 2-c. Connect the oscilloscope to Q2-c. The oscilloscope display should be similar to the top trace in composite waveform SS3-1. If the signal is present, but was not present in test 2-b, U1 is probably defective

If the signal is not present at Q2-c, Q2 is probably defective.

3 DIVIDE-BY-TWO CIRCUIT A4A3

The A4A3 assembly provides 10 MHz outputs to the HF Loop (A4A7) phase detector, and to the divide-by-five and divide-by-two circuits (A4A1). It also provides a 20 MHz output for use in the reference loop phase detector A4A2

Q1 and Q2 amplify the 20 MHz signal from the A4A4 assembly and applies it to U1 which divides by two. The +5 volts required for operation of U1 is derived from the +20 volt supply by R4 and CR1 to minimize effects of power supply ac ripple and line variations.
The output from U1 is capacitively coupled out to the HF loops as a reference signal. It is also coupled through Q3 to 10 MHz tuned divide-by-five and divide-by-two circuits (A4A1)

The
Q5 to the A4A2 phase detector assembly

TEST PROCEDURE

Test 3-a. Connect the oscilloscope to the 10 MHz output to the A4A1 assembly. The oscilloscope display should be about as shown in the bottom trace of composite waveform SS3-2. Verify that the frequency is exactly 10 MHz with the counter.
If the signal is not present proceed to test 3 -b. If the signal is present, proceed to test 3 -d.

Test 3-b. Connect the oscilloscope to the 10 MHz output which goes to the A4A4 assembly. The oscilloscope display should be about shown in the next-to-the-bottom trace of composite waveform shown in the next-to-the-bottom trace of composite waveform
SS3-2. Verify that the frequency is exactly 10 MHz with the counter.
If the signal is present, but was not present in test 3 -a, check Q3, Q5 and associated components. If the signal is not present proceed to test 3 -c.
-

Test 3-c. Connect the oscilloscope to U1 pin 12. The oscilloscope display should be similar to the second from the top trace in composite waveform SS3-2

NOTE

The counter may be used to verify that the frequency is approximately 20 MHz . However, this point in the circuit is critical; the additional load on the circuit will probably disturb the phase lock loop balance.

If the display is correct, but was not correct in previous tests, U 1 is probably defective. If the display is not correct, check Q1, Q2 and associated components.

Test 3-d. Connect the oscilloscope and the counter (separately) to the 20 MHz output to the A4A2 assembly. The oscilloscope display should be similar to that shown in the top trace of composite waveform SS3-2. The counter readout should be exactly 20 MHz .

If the correct signal is not present check Q4 and associated components.

Reference Loop

SERVICE SHET 2

SERVICE SHEET 4

PRETUNING ASSEMBLY (A4A6)

Normally, causes of malfunctions in the Model 8660B will be isolated to a circuit board or assembly as a result of performing the tests specified in the troubleshooting trees.

The A4A6 assembly, a part of the three-assembly High Frequency Loop, is shown schematically and described on this service sheet. The other two assemblies, A4A5 and A4A7, are shown schematically and described on Service Sheets 5 and 6 .

NOTE

After making repairs in any parts of the HF Loop circuits the adjustment procedure specified in Section V paragraph 5-15 should be performed to ensure proper operation of the instrument.

TEST EQUIPMENT REQUIRED (see Table 1-3)

Digital Voltmeter

HIGH FREQUENCY LOOP GENERAL INFORMATION

The purpose of the HF loop is to provide a precise digitally controlled output frequency between 350 and 450 MHz in 10 MHz increments. This output is used in the internal extension module and in the plug-in RF Sections to provide the desired output signal.

Pretuning circuit

Q1 through Q11, U1 and associated components comprise a digital to analog converter which pretunes the A4A5 voltage controlled oscillator. The pretuning circuilt cannot, by itself, set the oscillator frequency precisely; it does set the frequency within the capture range of the loop.
Integrated circuit U1 is a decoder which converts the BCD input from CF digit 8 to individual select lines which turn on one of nine transistors connected in a resistive network. The transistor which is turned on effectively grounds one point in the resistive network. The voltage level output to the voltage controlled oscillator depends on which transistor is turned on. The voltage varies from about -7 volts (350 MHz) to about -34 volts (450 MHz).
A single input line, representative of BCD ' 1 ' from CF digit 9 drives Q1 to turn on Q11. Q11, the tenth transistor switch in the pretuning network, grounds the lowest resistance point in the network; it pretunes the voltage controlled oscillator to 350 MHz .

test procedure I

Test 1-a. With the digital voltmeter connected to the junction of R15, R18 and R19 set the CF as shown in table 8-3. The voltages shown in the table are typical; the actual voltage levels will depend on the characteristics of the varactor used in the voltage controlled oscillator.
If changing the setting of CF digit 8 through its range does not result in a change in the dc level at the junction of R15, R18 and R19, U1 may be defective.
Test 1-b. Use the digital voltmeter to check the A, B, C and \oplus inputs to U1 from CF digit 8. These inputs are binary 1248 positive true logic. (Example: with CF digit 8 set to a 3 , U1 pins 15 and 14 should be high, about +4 volts, and pins 12

Reference Loop VCO
SERVICE SHEET 3

SERVICE SHEET 4 (cont'd)

and 13 should be low, about 0.3 volt). If the $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D inputs to U 1 are correct, use the digital voltmeter to check the U1 output. (Example: if thumbwheel digit 8 is set to a 3 , Inputs A and B will be high and U1 pin 4 will go low.)

Operation of transistors Q2 through Q11 may be checked by checking the dc level at their collectors which are connected to the transistor shell. The numbers plated on the circuit board next to the potentiometers correspond to CF digits 8 and 9 . CF digit 8 controls Q2 through Q10 and CF digit 9 drives Q1 to control Q11. The metallic shell (collector) of the transistor selected goes low (0.1 volt or less).

summing circuit

Common base current source Q13 sums the output of the digital to analog converter, current from a +20 volt source (R13) and the error signal from the A4A7 sampling phase detector. The output of the digital to analog converter is partially controlled by common base current source Q14. Conduction of Q14 is controlled by a temperature sensitive stabistor diode on the voltage controlled oscillator circuit board. The current from Q14 is injected into the pretuning network to provide correct compensation for the voltage controlled oscillator drift characteristics. Q12 provides a means of coupling the error signal from the phase detector through C7 to the voltage controlled oscillator in the A4A5 assembly.

TEST PROCEDURE 2

Test 2-a. Connect the digital voltmeter to the A4A6 output labeled FREQ on the circuit board. Set the CF digits as shown in Table 8-3. The voltages shown are typical; actual voltage levels depend on the characteristics of the varactor in the voltage controlled oscillator.

If the voltages were correct in test 1-a, but are not in test 2-a, check Q12, Q13 and associated components.

Table 8-4. Pretuning DC Levels

Center Frequency	Test 1-a DC Level	Test 2-a DC Level
0000.010000 MHz	-34.7 volts	-34.5 volts
0010.010000 MHz	-28.3 volts	-29.3 volts
0020.010000 MHz	-23.1 volts	-25.0 volts
0030.010000 MHz	-18.7 volts	-21.4 volts
0040.010000 MHz	-14.9 volts	-18.4 volts
0050.010000 MHz	-11.6 volts	-15.7 volts
0060.010000 MHz	-8.9 volts	-13.5 volts
0070.010000 MHz	-6.5 volts	-11.6 volts
0080.010000 MHz	-4.5 volts	-9.9 volts
0090.010000 MHz	-2.6 volts	-8.4 volts
0100.010000 MHz	-1.1 volts	-7.2 volts

SERVICE SHEET 5

SAMPLING PHASE DETECTOR (A4A7)

Normally, causes of malfunctions in the Model 8660B will be isolated to a circuit board or assembly as a result of performing the tests specified in the troubleshooting trees.

The A4A7 assembly, a part of the three-assembly High Frequency Loop, is shown chematically and described on this service sheet. The other two assemblies, A4A and A4A6, are shown schematically and described on Service Sheets 4 and 6

NOTE

After making repairs in any part of the HF Loop circuits the adjustment procedure specified in Section V paragraph 5-15 should be performed to ensure proper operation of the instrument.

TEST EQUIPMENT REQUIRED (see Table 1-3)

Oscilloscope (with 10:1 divider probes)
Test Oscillator
Digital Voltmeter

HIGH FREQUENCY LOOP GENERAL INFORMATION

The purpose of the HF loop is to provide a precise digitally controlled output frequency between 350 and 450 MHz in 10 MHz increments. This output is used in the internal extension module and in the plug-in RF Sections to provide the desired output signal

The sampling phase detector compares the voltage controlled oscillator output to 10 MHz signal from the reference section. The output of the phase detector circuit is a beat note or a varying dc level. The phase detector assembly contains a pulse generator, a sampler, and a signal processing circuit.

1 PULSE GENERATOR

Q1 and Q2 comprise a non-saturating, limiting amplifier. It provides a constant amplitude square wave (about 6 volts) derived from the 10 MHz reference signal. The circuit is designed to minimize the sensitivity of the output ac swing to power supply ripple.

The output of Q2 is applied to Q3 which converts the signal to a stable current waveform. A two-to-one stepdown transformer (T1) is used in conjunction with waveform. A two-to-one stepdown transformer (T1) is used in conjunction with QR1

When Q3 conducts heavily CR1 is reverse biased by the signal which appears across the secondary winding of T1. When Q3 is turned off the collapsing

SERVICE SHEET 5 (cont'd)

inductive field of the T1 primary winding and the resonant circuit of L5 and C8 cause a flyback action which drives CR1 into conduction.

NOTE

One of the characteristics of a step-recovery diode, also called a charge-storage diode, is that the junction transition capaci tance accumulates a charge while the diode is forward biased

When the pulse which forward biased CR1 has ended, CR1 is again reverse biased; however, current will flow in the reverse direction until the charge stored in CR1 is depleted. When the charge stored in CR1 is depleted current flow stops abruptly; the sharp current transition causes L6 and L7 to develop large narrow voltages spikes of about 6 volts amplitude and one nanosecond in duration. The pulse is positive-going at L7 and negative-going at L6. These pulses are coupled through C10, C11 and balun T2 to forward bias the diodes in the sampler bridge Balun T2 improves amplitude balance of the pulses.

TEST PROCEDURE

Test 1-a. Composite waveform SS5-1 illustrates the correct waveforms for the three stages of the pulse generator

To be supplied

NOTE

Since an oscilloscope would load the remainder of the pulse generator circuit, and due to the short duration of the gate pulse, waveform analysis is not practicable. If the waveforms are as shown in SS5-1 and the loop does not phase lock, proceed to test procedure

2 SAMPLER AND SIGNAL PROCESSOR

The sampler is a matched quad diode gate which is normally reverse biased. When the step-recovery diode generates the gate pulse all four of the sampler gate diodes are simultaneously forward biased. When the sampler gate diodes are forward

SERVICE SHEET 5 (cont'd)

inductive field of the T1 primary winding and the resonant circuit of L5 and C8 cause a flyback action which drives CR1 into conduction.

NOTE

One of the characteristics of a step-recovery diode, also called a charge-storage diode, is that the junction transition capacitance accumulates a charge while the diode is forward biased.

When the pulse which forward biased CR1 has ended, CR1 is again reverse biased; however, current will flow in the reverse direction until the charge stored in CR1 is depleted. When the charge stored in CR1 is depleted current flow stops abruptly; the sharp current transition causes L6 and L7 to develop large narrow voltages spikes of about 6 volts amplitude and one nanosecond in duration. The pulse is positive-going at L7 and negative-going at L6. These pulses are coupled through C10, C11 and balun T2 to forward bias the diodes in the sampler bridge. Balun T2 improves amplitude balance of the pulses.

TEST PROCEDURE 1

Test 1-a. Composite waveform SS5-1 illustrates the correct waveforms for the three stages of the pulse generator.

To be supplied

NOTE

Since an oscilloscope would load the remainder of the pulse generator circuit, and due to the short duration of the gate pulse, waveform analysis is not practicable. If the waveforms are as shown in SS5-1 and the loop does not phase lock, proceed to test procedure

SAMPLER AND SIGNAL PROCESSOR

The sampler is a matched quad diode gate which is normally reverse biased. When the step-recovery diode generates the gate pulse all four of the sampler gate diodes are simultaneously forward biased. When the sampler gate diodes are forward

SERVICE SHEET 5 (cont'd)

biased a sample of the signal from the A4A5 voltage controlled oscillator is taken and stored in C12.

Q4 and Q5 comprise a differential amplifier. The non-inverting input (G2) is derived from the sampling circuit. The output is applied to emitter-follower Q6 which provides a low impedance phase error output. The output of Q6 is also fed back to the differential amplifier inverting input (G1) to close the loop at unity gain. The holding capacitor, C12 is connected directly between the two inputs to Q4; this bootstraps C12 to extend the sampler's frequency response.

CR8 and CR9 provide reverse bias voltages for the sampling gate diodes. These bias voltages are balanced and centered on the output signal to improve sampler efficiency.

R18 controls the response of the sampler by varying the amount of back-bias for the bridge; it is adjusted for maximum frequency response with minimum peaking.

R22 controls the quiescent output level to the summing circuit in A4A6; it should be adjusted for zero output with the input from the voltage controlled oscillator disconnected.
If the voltage controlled oscillator output is harmonically related to the reference signal the output of the phase detector is proportional to the sine of the difference in phase of the two signals. If the voltage controlled oscillator frequency is not harmonically related to the reference signal, the output of the phase detector is a beat note at the difference frequency.

TEST PROCEDURE

Test 2-a. Disconnect the input to the sampler gate from the A4A5 voltage controlled oscillator and substitute a $1 \mathrm{MHz}, 10 \mathrm{dBm}$ signal from the test oscillator. Connect the oscilloscope to the phase error output (labeled \emptyset on the circuit board). Varying the output level of the test oscillator should cause the oscilloscope display to follow the amplitude change.

If the oscilloscope display is not as specified proceed to test 2-b.
If the display is correct and the display for test 1-b was correct, check the step-recovery diode and associated components.

Test 2-b. With the oscilloscope connected as it was in test $2-\mathrm{a}$, inject the 1 MHz signal at Q4-G2. If the signal is now displayed on the oscilloscope and varies as the output of the test oscillator is varied, check the step-recovery diode, the sampler gate diodes and associated components.

If the signal is not displayed check Q4, Q5, Q6 and associated components.

SERVICE SHEET 6

VCO AND AMPLIFIERS (A4A5)

Normally, causes of malfunctions in the Model 8660B will be isolated to a circuit board or assembly as a result of performing the tests specified in the troubleshooting trees.

The A4A5 assembly, a part of the three-assembly HF Loop, is shown schematically and described on this service sheet. The other two assemblies, A4A6 and A4A7, are shown schematically and described on Service Sheets 4 and 5.

NOTE
After making repairs to any part of the HF Loop circuits the adjustment procedures specified in Section V paragraph 5-15 should be performed to ensure proper operation of the instrument.

TEST EQUIPMENT REQUIRED (See Table 1-3)

Digital Voltmeter
Spectrum Analyzer
Electronic Counter

HIGH FREQUENCY LOOP GENERAL INFORMATION

The purpose of the HF Loop is to provide a precise digitally controlled output frequency between 350 and 450 MHz in 10 MHz increments. This output is used in the Frequency Extension Module and in the plug-in RF Section to provide the desired output signal.

VCO AND AMPLIFIERS

Transistor A4 and associated components comprise a voltage controlled oscillator. The output frequency, when the loop is phase locked, is always a 10 MHz harmonic between 350 and 450 MHz . C3 is adjusted to set the high frequency end of the band. C 1 is part of the loop filter in the control path and also provides an ac ground for the varactor at the bias point.

The oscillator output (about .5 volts rms) is coupled through an isolation transformer to two identical three-stage buffer amplifiers. The isolation transformer splits the power equally to the two amplifiers and also eliminates feedthrough of extraneous signals from one amplifier to the other. The amplifiers provide outputs that are about 1 volt rms into 50 ohms.

Additional isolation from extraneous signals is provided by separate power supply inputs to the two amplifiers, extensive decoupling between stages, multiple grounding points for individual stages and separation of ground planes for individual stages.

CR2 is a stabistor used for temperature compensation for the voltage controlled oscillator. The forward voltage drop of the stabistor changes with the voltage controlled oscillator temperature and controls a current source (A4A6Q14) in the pretuning assembly.

SERVICE SHEET 7

N1 PHASE DETECTOR ASSEMBLY A16

Normally, causes of malfunctions in the Model 8660B will be isolated to a circuit board or assembly as a result of performing the tests specified in the troubleshooting trees
The A16 assembly, a part of the two-assembly N1 phase lock loop is shown schematically and described on this service sheet. The N1 Oscillator assembly, A17, is shown schematically
and described on Service Sheet 8 .

When trouble has been isolated to the A16 assembly it should be removed and reinstalled using two extender boards. This will provide easy access to test points and components.

NOTE

After making repairs in any part of the N1 loop circuits the adjustment procedures specified in Section V paragraph 5-16 should be performed to ensure proper operation of the instrument.

TEST EQUIPMENT REQUIRED (see Table 1-3)

Oscilloscope (with 10:1 divider probes)
Digital Voltmeter
Electronic Counter

N1 LOOP GENERAL INFORMATION

The purpose of the N1 loop is to generate digitally contolled rf signals in the range of 19.8 to 29.7 MHz in selectable 100 kHz increments. The voltage controlled oscillator is phase locked to a 400 kHz reference which is derived from the master oscillator in the reference section. The rf output from the N1 loop is applied to Summing Loop 1.

1 PROGRAMMABLE DIVIDER CIRCUIT

The integrated circuits in the A16 assembly, except for U1, are all used to count down the The integrom the N1 voltage controlled oscillator. When there is no BCD input (all inputs low) and the loop is locked, the input from the voltage controlled oscillator will be 29.7 MHz the programmable divider will divide by 297 and provide a 100 kHz output at TP3. U5 and U6 are preset by CF digits 6 and 7 and programmed to vary between start counts of 00 to 99. Operation of the circuit is as follows

Assume that initially there are no BCD input to decade dividers U5 and U6 and they have been preset to zero. Assume also that U2A pin $6(\bar{Q})$ and U2B pin $8(\bar{Q})$ are both low. U4 pin $6(\bar{Q})$, U3A pin $6(\bar{Q})$ and U3B pin $8(\bar{Q})$ are all high.

AND gate U7A functions as a Schmitt trigger to change the incoming positive half cycles of the sine wave from the voltage controlled oscillator to positive-going pulses. These pulse clock U5 when AND gate U7B is enabled. U5 pin 12 provides a divided-by-ten output to cock $U 6$ and also provides A and B (BCD 1 an 2) outputs. Th A 8 B will be discussed

U6 pin 12 provides a divided-by-one hundred output to clock U2A and also provides A and D (BCD 1 and 8) outputs to AND gate U7C. The A and D outputs have no effect on AND gate U7C until after U2B pin 8 (\bar{Q}) goes high at the count of 200
The D output of U6 (pin 12) goes high on the count of 8 (80 input pulses to U5). This output has no effect on U2A because U2A is clocked on negative-going pulses only
The D output of U6 (pin 12) goes low at the count of 10 (100 input pulses to U5) and clocks U2A. This causes U2A pin $6(\bar{Q})$ to go high. When the D output of U6 (pin 12) again gos on how to clock U2B When U2B pin $8(\bar{Q})$ goes high it provides a high input to AND gate U 7 C pin 11

SERVICE SHEET 7 (cont'd

Ninety input cycles after U2B pin $8(\bar{Q})$ goes high (290 input cycles) , U6 A and D outputs (BCD 1 and 8) go high and enable AND gate U7C and provide a high to J input 3 of U4, U4 still cannot be

Three input cycles after U4 pin 3 goes high (293 input cycles), the A and B outputs of U5 (BCD 1 and 2) go high and enable the J input to J-K flip-flop U4.
The 294th input cycle will clock U4 at pin 12 because all J and K inputs are high. When clocked, U4 \bar{Q} goes low and AND gate U7B is no longer enabled; the count, as far as U5, U6 and U2 are concerned, outputs go low and the Q outputs go high. When U3A pin $6(\bar{Q})$ goes low it is used to preset U5 and U6 to the start count programmed by CF digits 6 and 7 or by remote control; U2A and U2B \bar{Q} outputs are set low. When U5, U6, U2A and U2B are preset the J input to U4 is no longer enabled since the count is no longer at the 'sense' count of 293.

When U3B pin $9(Q)$ goes high the leading edge is used to generate the sampling pulse. The first pulse to the sampling phase detector is initiated by the 294th input cycle. Since three more cycles are required to restart the count cycle, following sampler pulses are 297 cycles apart.

The 295th input cycle will clock U4 and since U4 K is high, U4 $\overline{\mathrm{Q}}$ will go high. This Q high is applied to the K input of U3A (pin 2) and to pin 4 of AND gate U7B. AND gate U7B will not be enabled because U3B pin $8(\bar{Q})$ is holding AND gate U7B pin 5 low.
The 296th input cycle will clock U3A because the K input is now high. U3A pin $6(\bar{Q})$ will go high. This high \bar{Q} output is applied to high. U3A pin $6(Q)$ will go high. This high Q output is applied to
AND gate U7B pin 5 and the next count cycle is enabled through AND gate U7B.

When there is a preset input programmed into U5 and U6 pins 3,4 , 10 and 11 the terminal count is still 297 . However, the count starts at the number programmed into the BCD inputs. As an example, if the BCD input into U5 and U6 is 99, the first cycle would cause the same digital circuit changes that the 100th cycle caused in the discussion above (U2A would be clocked). The frequency division would be $297-99$, equal to division by 198. The phase lock loop operation would result in an input frequency to the programmable divider of 19.8 MHz . When divided by 198, the divider output at TP3 would again be 100 kHz .

The output from U3B at TP3 is always 100 kHz when the voltage controlled oscillator is phase locked to the reference signal.

Q6 and CR1 provide Vcc to U3 to minimize the effect of power supply ac ripple and line variations.

TEST PROCEDURE

Composite waveform SS7-1 illustrates the proper timing relationship between the 400 kHz reference input, the pulse output from the

SERVICE SHEET 7 (cont'd)

pulse generator and the sampling point on the 400 kHz reference signal when the loop is phase locked.

To be supplied

NOTE

In the following tests the CF is set to 0 unless otherwise noted
Test 1-a. Use the electronic counter to check for 400.000 kHz TP5

If the 400.000 kHz signal is displayed on the counter, verify that the ine wave at TP5 is as shown in trace 2 of composite waveform sine wave at TP5 is as shown in trace 2 of co
SS7-1. If the signal is as shown proceed to test 1-b.

If the 400 kHz signal cannot be counted or does not appear as show on the composite waveform for TP5, check the reference input XA16-1-2. The reference input signal should be about 4 volt peak-to-peak and 400 kHz as shown in trace 1 of composite waveform SS7-1. If the correct waveform is observed, but was not observed at TP5, check Q1, Q2 and associated components. If the correct waveform is not present, check the cabling to the referenc loop and, if necessary, the reference loop (See Service Sheet 3)

If trouble is found and corrected, perform the adjustment procedure specified in paragraph $5-16$ to verify proper operation of the loop

Test 1-b. Connect one oscilloscope channel and the counter to TP and the other oscilloscope channel to the junction of C20, R24 and T1. If the loop is locked the waveforms will be as shown in traces and 4 of composite waveform SS7-1 and the counter will displa 100.000 kHz .

Note that the waveform shown by trace 3 of the composit waveform may appear as shown even if the counter does not indicate 100.000 kHz . This is becuse the frequency sensitivity of the counter.

If the programmable divider and the pulse shaper are workin properly but the loop is not locked, trace 4 as shown in composit

SERVICE SHEET 7 (cont'd)

pulse generator and the sampling point on the 400 kHz reference signal when the loop is phase locked.

To be supplied

NOTE

In the following tests the CF is set to 0 unless otherwise noted.

Test 1-a. Use the electronic counter to check for 400.000 kHz at TP5.

If the 400.000 kHz signal is displayed on the counter, verify that the sine wave at TP5 is as shown in trace 2 of composite waveform SS7-1. If the signal is as shown proceed to test 1-b.

If the 400 kHz signal cannot be counted or does not appear as shown on the composite waveform for TP5, check the reference input at XA16-1-2. The reference input signal should be about 4 volts peak-to-peak and 400 kHz as shown in trace 1 of composite waveform SS7-1. If the correct waveform is observed, but was not observed at TP5, check Q1, Q2 and associated components. If the correct waveform is not present, check the cabling to the reference loop and, if necessary, the reference loop (See Service Sheet 3).
If trouble is found and corrected, perform the adjustment procedures specified in paragraph 5-16 to verify proper operation of the loop.
Test 1-b. Connect one oscilloscope channel and the counter to TP4 and the other oscilloscope channel to the junction of C20, R24 and T1. If the loop is locked the waveforms will be as shown in traces 3 and 4 of composite waveform SS7-1 and the counter will display 100.000 kHz .

Note that the waveform shown by trace 3 of the composite waveform may appear as shown even if the counter does not indicate 100.000 kHz . This is because the frequency sensitivity of the oscilloscope is not as exact as the frequency sensitivity of the counter.

If the programmable divider and the pulse shaper are working properly but the loop is not locked, trace 4 as shown in composite

SERVICE SHEET 7 (cont'd)

waveform SS7-1 may still show the pulses, but the signal between the pulses will be erratic

Test 1-c. If the pulses are not present at TP4 or the junction of C20, R24 and T1 and the counter counts randomly or not at all, connect the oscilloscope to TP3. The oscilloscope should display a waveform similar to that shown in trace 3 of the composite waveform SS7-1 at about half the amplitude.

If the pulses are not present at TP3 proceed to test 1-d.
If the pulses are present at TP3 but were not present at TP4, check Q4, Q5 and associated components. After repairs are made recheck test procedure 1-b.

If the pulses are now present at TP4 and the junction of C20, R24 and T1, but the four-cycle sine wave is not present as shown in trace 4 of composite waveform SS7-1, rotate R38 through its range to see if the proper waveform can be obtained. If the frequency displayed on the counter does change as R38 is rotated but phase lock cannot
be achieved, check Q3, the sampling diodes and associated be achieved,

Test 1-d. If the pulse is not present at TP3 in test 1-c connect the oscilloscope to AND gate U7B pin 6. The waveform should be as shown in the top trace of composite waveform SS7-2. If the correct signal is observed proceed to test 1-e.
If the correct signal is not observed connect the oscilloscope to TP1 The waveform should be as shown in the center trace of composite waveform SS7-2. If the signal is present, but was not present at AND gate U7B pin 6, use the digital voltmeter to check the voltage at pins 4 and 5 of AND gate U7B. The digital voltmeter should indicate about 4 volts. If the voltages are present AND gate U7B is defective.

To be supplied

If the voltages are not present at AND gate U7B pins 4 and 5 , ground pin 2 of U4. If the signal now appears at AND gate U7B pin 6, U3 and U7B are functioning properly. The trouble is probably in the gating circuit to U4. Proceed to test 1-e.

If the signal is not present at TP1, use the oscilloscope to check the input from the voltage controlled oscillator at XA16-2-15. The signa should be as shown in the lower trace in composite waveform SS7-2.

SERVICE SHEET 7 (cont'd)

If the signal is present AND gate U7A is probably defective. If the signal is not present, the A17 assembly or interconnections are defective.

Test 1 e . It is assumed in this test that the signal from the N 1 voltage controlled oscillator is present at U5 pin 8 . Composite waveform SS7-3 illustrates the correct waveforms at the points shown. All signals are about 4.5 volts

To be supplied

If none of the waveforms are present, U 5 is probably defective.
Note that the reset pulse in trace 5 is in time coincidence with the missing' pulse in trace 1 and that the reset pulse resets traces 2 and 4.

Test 1-f. Composite waveform SS7-4 illustrates the correct waveforms at the points shown. All signals are about 4.5 volts in amplitude. Sync the oscilloscope to TP3 for this test.

Note that U4 pin 8 goes high only when all of the Jinputs (U4 pins 3,4 and 5) are high.
If the waveforms for traces 2 and/or 3 are not present, U5 is probably defective
If the waveforms for traces 1,4 and 5 are not present, proceed to test $1-\mathrm{g}$.

Test 1-g. Composite waveform SS7-5 illustrates the correct waveforms at the points shown. All signals are about 4.5 volts in amplitude. Sync the oscilloscope to TP3 for this test.

HF Loop VCO
SF Loop VCO
SERVICE SHEET

SERVICE SHEET 7 (cont'd)

To be supplied

If the in puts to AND gate U7C are not as shown, U6 or U2 may be defective.
If the inputs are as shown but there is no output at AND gate U 7 C pin $8, \mathrm{U} 7$ is defective.

2 SAMPLING PULSE GENERATOR

The positive-going output from U3B pin 9 is used to generate the pulse required to open the sampler gate. Common base amplifier Q5 and emitter follower Q4 amplifies and couples the pulse to T1. CR2 and CR3 are used to minimize flyback action. CR3 also bypasses the negative-going pulse around the transformer primary to ensure that only the positive-going pulse is coupled to the transformer secondary.

A 400 kHz signal from the reference loop is applied to the secondary center tap of T1. L5 and C8 (along with C 7 in the reference loop A 4 A 1 assembly) comprise a low pass filter with a cut off frequency of about 500 MHz . The TTL input from the reference loop is reshaped into a sine wave by the low pass filter. L6 and C13 comprise a tuned circuit which bypasses unwanted signals and further filters the sine wave.

Sampler diodes CR4 and CR5 are normally reverse biased. When the sampling pulse appears across the secondary of T1 it is coupled through C20 and C21 to forward bias CR4 and CR5. Since the gate pulses are equal in amplitude but opposite in polarity, they will cancel at TP6.

While CR4 and CR5 are forward biased the sampling gate is open and the 400 kHz reference signal is sampled.

This type of sampling phase detector may be phase locked at virtually any point on the sine wave curve. Ideally, the zero crossover point of the sine wave should be used to improve the lock and hold-in capability of the loop.

If the divided down output of the voltage controlled oscillator in the A17 assembly (100 kHz pulses) is not phase locked to the 400 kHz reference signal an ac signal is developed at TP6. The polarity of the signal at any given time depends on the polarity of the 400 kHz reference signal at the time the last sample was taken. The amplitude of the signal at any given time depends on what portion of the sine wave the last sample was taken from. Each time CR4 and CR5 are forward biased the signal derived from the 400 kHz reference signal at T1 terminals 4 and 6 are coupled through the sampling gate to control the charge on C22.

When the sampling gate pulse ends, CR4 and CR5 are again reverse biased and the sampling gate is closed. Since Q3 is a high impedance device, the charge will remain on C22 until the next sampling pulse. The error signal from Q3 is applied to the summing amplifier in the A17 assembly through operational amplifier U1.

Test point 8 may be grounded to open the phase lock loop. Since the emitter of A17Q4 in the A17 assembly is also almost exactly at dc ground level, grounding this test point will not affect the pretuning circuit. With the loop open both the pretuning and the error signal may be checked.

SERVICE SHEET 8

N1 PRETUNING AND OSCILLATOR ASSEMBLY A17

Normally, causes of malfunctions in the Model 8660B will be isolated to a circuit board or assembly as a result of performing the tests specified in the troubleshooting trees.

The A17 assembly, a part of the two-assembly N1 phase lock loop is shown schematically and described on this service sheet. The N1 Phase Detecto Assembly, A16, is shown schematically and described on service sheet 7 .

When trouble has been isolated to the A17 assembly it should be removed and reinstalled using two extender boards. This will provide easy access to test points and components.

NOTE

After making repairs in any part of the N1 loop circuits the djustment procedures specified in Section V paragraph 5-16 should be performed to ensure proper operation of the instrument.

TEST EQUIPMENT REQUIRED (see Table 1-3)

Digital Voltmeter

Electronic Counter
Oscilloscope (with 10:1 divider probes

N1 LOOP GENERAL INFORMATION

The purpose of the N1 loop is to generate digitally controlled rf signals in the range of 19.8 to 29.7 MHz in selectable 100 kHz increments. The voltag controlled oscillator is phase locked to a 400 kHz reference which is derived from applied to Summing Loop 1

1 VOLTAGE CONTROLIED OSCILIATOR

Q3, Q5 and associated components comprise a voltage controlled oscillator. Two varactors (CR6 and CR7) are used in parallel to provide a high Q as well as the wide capacitance range required.

FET Q5 acts as a source follower in the feedback circuit; it provides high impedance at the gate and a low impedance at the source. The gain of the FET is capacitance back into the oscillator tank circuit.

Q1 amplifies the signal from the FET and applies it to two separate amplifiers Q1 amplifies the signal from the FET and applies it to two separate amplifiers, programmable divider in the A16 assembly.

Test 1-a. Connect the electronic counter to XA17-1-2 and set CF as shown in table 8-4. The counter readout should be as shown in the table. (Make allowances for counter accuracy)

If the counter does not display a frequency at, or close to, that specified, connect the oscilloscope to 1 P . The oscilloscope should display a sine wave at about volts peak-to-peak. If the sine wave is present at TP3 but there is no signal at XA17-1-2, check Q10, Q15 and associated components.
If there is no signal at TP3 check the bias level at TP2. The bias level should be about as shown in Table 8-4 for the front panel frequency setting. If the bias leve TP3 check range of app and associated components. If the bias voltage is within the range shown, proceed to 2-b.

If the counter displays the correct readout for some, but not all, of the fron panel settings, proceed to 2-a.

2 PRETUNING CIRCUIT

The frequency of the voltage controlled oscillator is roughly preset by the digita to analog converter (U1, U2, Q11 through Q14 and Q16 through Q19). Th digital to analog converter cannot, by itself, set the oscillator frequency precisely it does set the frequency within the capture range of the phase lock loop, Th inputs to U1 and U2 are BCD bits coded 8, 4, 2 and 1 . When any of the BCD inputs are high they cause the output of the NAND gate to which they ar connected to go low; the transistor connected to the NAND gate output switched on

When all of the BCD inputs are low Q9 is biased to provide approximately -25 volts at TP1 (Q7-e). With this dc level at TP1 the oscillator is roughly preset to 29.7 MHz

When any one or more of the BCD inputs go high the transistor associated with it saturates and the current through Q9 is reduced. The reduction in current flow negative (closer to dc ground level). Finally when the BCD input is 99 the voltage at TP1 is approximately -5.2 volts and the oscillator frequency is roughly preset to 19.8 MHz .

Q4 is a summing amplifier which combines the output of the digital to analog converter and the signal from the N1 phase detector. The summing point (Q4-e) sums the current from three sources; a current source from the +20 volts supply (TP1) and the error signal from the N1 phase detector The voltage at th summing point is always zero volts.

When TP1 is at approximately -25 volts (all inputs low), most of the curren from the +20 volts source flows through Q 7 , very little current flows through Q4. Under these conditions the voltage at Q4-c is about - 30 volts. As the voltage a TP1 decreases (gets closer to dc ground level), less current flows through Q7 more current flows through Q4, and the Q4 collector voltage goes less negative.

SERVICE SHEET 8 (cont'd)

CR3 through CR5, CR8 through CR15 and associated resistors are use the voltage applied to the voltage controlled oscillator so that the freq be linear with the applied voltage. When all BCD inputs are low, Q4-c i the resistive network are reverse biased. As the voltage at TP1 dere closer to -5.2 volts), current through Q4 increases and the Q4 collect goes less negative. As the Q4 collector voltage decreases first CR3 are forward biased. As the diodes are forward biased resistors are add with R38 and R39 to shape the rate at which the voltage decreases at
Q2 and Q5 are emitter followers which couple the output of Q4 to th Q2 provides a high impedance for the output of the summing amplifi 46, L7 and C14 comprise a 400 kHz trap to attenuate (15 to 20 detector. R51, L8, C20 and C21 comprise a low pass filter with frequency of about 200 kHz .

TEST PROCEDURE

Table 8-4 represents typical voltage levels for test points 1 and 2 $17-12$ for given settings of $C F$ digits six loop is locked

NOTE

While the voltages shown for TP2 are typical (they' will va from instrument to instrument due to differences in varac characteristics), they are representative of normal ratio of to TP1 voltages.

Test 2-a. With the digital voltmeter connected to TP1 select CF's $8-4$. The voltage level should approximately follow those shown in Tab

If the voltage at TP1 does not vary at all, first verify the presence of information to the NAND gates, then check Q7, Q9 and associated co
If the voltage at TP1 does not vary as shown, or some CF (or CF produce a change, first verify the presence of the input to gate/transistor combination affected, then check the NAND transistor.

If the voltages at TP1 are approximately as shown in Table 8-4 proce 2-b.

Test 2-b. Connect the digital voltmeter to TP2 and the counter to X he voltage at TP2 does not change about as shown in Table 8-4 CF's, or does not change at all, check Q2, Q4, Q6 and associated compo

If the voltage at TP2 varies approximately as shown in Table frequency at XA17-1-2 does not step (or there is no rf output), Procedure 1 and check the oscillator circuits.
ly, causes of malfunctions in the Model 8660B will be isolated to a circuit or assembly
shooting trees.

17 assembly, a part of the two-assembly N1 phase lock loop is shown tically and described on this service sheet. The N1 Phase Detecto ly, A16, is shown schematically and described on service sheet 7.
rouble has been isolated to the A17 assembly it should be removed and led using two extender boards. This will provide easy access to test points nponents.

NOTE

After making repairs in any part of the N 1 loop circuits the adjustment procedures specified in Section V paragraph $5-16$ should be performed to ensure proper operation of the instrument.

QUIPMENT REQUIRED (see Table 1-3)

Voltmeter
nic Counte
cope (with 10:1 divider probes

JP GENERAL INFORMATION

rpose of the N 1 loop is to generate digitally controlled rf signals in the f 19.8 to 29.7 MHz in selectable 100 kHz increments. The voltage ed oscilator is phase locked to a 400 kHz reference which is derived from to Summing Loop 1.

LTAGE CONTROLLED OSCILLATOF

and associated components comprise a voltage controlled oscillator. Two rs (CR6 and CR7) are used in parallel to provide a high Q as well as th pacitance range required

5 acts as a source follower in the feedback circuit; it provides high ace at the gate and a low impedance at the source. The gain of the FET is ; less than unity to minimize the miller effect which might reflect ance back into the oscillator tank circuit.
olifies the signal from the FET and applies it to two separate amplifiers. d Q15 provide the output to drive the SL1 mixer and Q8 drives the mable divider in the A16 assembly

Test 1-a. Connect the electronic counter to XA17-1-2 and set CF as shown in table 8-4. The counter readout should be as shown in the table. (Make allowances for counter accuracy)

If the counter does not display a frequency at, or close to, that specified, connect the oscilloscope to TP3. The oscilloscope should display a sine wave at about .3 volts peak-to-peak. If the sine wave is present at TP3 but there is no signal at XA17-1-2, check Q10, Q15 and associated components.
If there is no signal at TP3 check the bias level at TP2. The bias level should be about as shown in Table 8-4 for the front panel frequency setting. If the bias level TP3 check Q1,Q3,Q5 and associated components. If the bias voltage is not within the range shown, proceed to $2-\mathrm{b}$.

If the counter displays the correct readout for some, but not all, of the front panel settings, proceed to 2 -a.

2 PRETUNING CIRCUIT

The frequency of the voltage controlled oscillator is roughly preset by the digital to analog converter (U1, U2, Q11 through Q14 and Q16 through Q19). The digital to analog converter cannot, by itself, set the oscillator frequency precisely; it does set the frequency within the capture range of the phase lock loop, The inputs to U1 and U2 are BCD bits coded 8, 4,2 and 1 . When any of the BCD inputs are high they cause the output of the NAND gate to which they are connected to go low; the transistor connected to the NAND gate output is. switched on.

When all of the BCD inputs are low Q9 is biased to provide approximately -25 volts at TP1 (Q7-e). With this dc level at TP1 the oscillator is roughly preset to 29.7 MHz .

When any one or more of the BCD inputs go high the transistor associated with it saturates and the current through Q9 is reduced. The reduction in current flow through Q9 changes the bias on Q7 and causes the voltage at TP1 to go less negative (closer to dc ground level). Finally, when the BCD input is 99, the voltage at TP1 is approximately -5.2 volts and the oscillator frequency is roughly
preset to 19.8 MHz .

Q4 is a summing amplifier which combines the output of the digital to analog converter and the signal from the N 1 phase detector. The summing point (Q4-e) sums the current from three sources; a current source from the +20 volts supply through R31, R32 and R33, a negative source from the digital to analog converter (TP1) and the error signal from the N1 phase detector. The voltage at the summing point is always zero volts.

When TP1 is at approximately -25 volts (all inputs low), most of the current from the +20 volts source flows through Q7; very little current flows through Q4. from the +20 volts source flows through Q7; very little current flows through Q4
Under these conditions the voltage at Q4-c is about - 30 volts. As the voltage at TP1 decreases (gets closer to dc ground level), less current flows through Q7, more current flows through Q4, and the Q4 collector voltage goes less negative.

SERVICE SHEET 8 (cont'd)

CR3 through CR5, CR8 through CR15 and associated resistors are used to shape the voltage applied to the voltage controlled oscillator so that the frequency will linear with the applied voltage. When all BCD inputs are low, Q4-c is at about the resistive network are reverse biased. As the voltage at TP1 decreases (gets loser to -5.2 volts), current through Q4 increases and the Q4 collector voltage goes less negative. As the Q4 collector voltage decreases first CR3, then CR4 etc. re forward biased. As the diodes are forward biased resistors are added in parallel with R38 and R39 to shape the rate at which the voltage decreases at Q4-c.
Q2 and Q5 are emitter followers which couple the output of Q4 to the varactors. Q2 provides a high impedance for the output of the summing amplifier collector. kHz ripple which may be present from the reference signal used in the phase detector. R51, L8, C20 and C21 comprise a low pass filter with a cutoff frequency of about 200 kHz .

TEST PROCEDURE 2

Table 8-4 represents typical voltage levels for test points 1 and 2 and exact aren loop is locked.

NOTE

While the voltages shown for TP2 are typical (they will vary from instrument to instrument due to differences in varactor characteristics), they are representative of normal ratio of TP2 to TP1 voltages.

Test 2-a. With the digital voltmeter connected to TP1 select CF's shown in Table -4. The voltage level should approximately follow those shown in Table 8-4
ff the voltage at TP1 does not vary at all, first verify the presence of input digital information to the NAND gates, then check Q7, Q9 and associated components.
f the voltage at TP1 does not vary as shown, or some CF (or CF's) do not produce a change, first verify the presence of the input to the NAND ate/transistor combination affected, then check the NAND gate and th transistor.
f the voltages at TP1 are approximately as shown in Table 8-4 proceed to Test 2-b.

Test 2-b. Connect the digital voltmeter to TP2 and the counter to XA17-1-2. If the voltage at TP2 's, or does not change at all check $\mathrm{Q} 2, \mathrm{Q4}, \mathrm{Q} 6$ and associated component.
f the voltage at TP2 varies approximately as shown in Table 8-4, but the requency at XA17-1-2 does not step (or there is no rf output), refer to Test Procedure 1 and check the oscillator circuits.

SERVICE SHEET 8 (cont'd)

If the voltage at TP2 varies approximately as shown in Table 8-4 and the frequency readout of the counter approximately follows the table ($\pm 20-30 \mathrm{kHz}$) check Q8 and associated components.

Table 8-5. N1 Oscillator Test Point Measurements

Center Frequency MHz	Frequency At TP3 kHz	Voltage at TP1	Voltage at TP2
0000.100000	29600.000	-25.2 v	-29.2 v
0000.100000	29600.000	-25.0 v	-28.7 v
0000.200000	29500.000	-24.8 v	-28.2 v
0000.300000	29400.000	-24.6 v	-27.7 v
0000.400000	29300.000	-24.4 v	-27.1 v
0000.500000	29200.000	-24.2 v	-26.6 v
0000.600000	29100.000	-24.0 v	-26.2 v
0000.700000	29000.000	-23.8 v	-25.7 v
0000.800000	28900.000	-23.6 v	-25.2 v
0000.900000	28800.000	-23.4 v	-24.7 v
0001.000000	28700.000	-23.2 v	-24.3 v
0002.000000	27700.000	-21.2 v	-20.2 v
0003,000000	26700.000	-19.2 v	-16.6 v
0004,000000	25700.000	-17.2 v	-13.6 v
0005.000000	24700.000	-15.2 v	-11.9 v
0006.000000	23700.000	-13.2 v	-8.9 v
0007.000000	22700.000	-11.2 v	-7.1 v
0008.000000	21700.000	-9.2 v	-5.6 v
0009.000000	20700.000	-7.1 v	-4.3 v
0009.900000	19800.000	-5.3 v	-3.4 v

SERVICE SHEET 9

N2 PHASE DETECTOR ASSEMBLY A14

Normally, causes of malfunctions in the Model 8660B will be isolated to a circuit board or assembly as a result of performing the tests specified in the troubleshooting trees.

The A14 assembly, a part of the two-assembly N2 phase lock loop is shown schematically and described on this service sheet. The N2 Oscillator assembly, A13, is shown schematically and described on service sheet 10.
When trouble has been isolated to the A14 assembly it should be removed and reinstalled using two extender boards. This will provide easy access to test points and components

NOTE

After making repairs in any part of the N2 loop circuits the adjustment procedures specified in Section V paragraph 5-17 should be performed to ensure proper operation of the instrument.

TEST EQUIPMENT REQUIRED (see Table 1-3)

Oscilloscope (with 10:1 divider probes)

Digital Voltmeter
Electronic Counter

N2 LOOP GENERAL INFORMATION

The purpose of the N2 loop is to generate digitally controlled rf signals in the range of 19.80 to 29.79 MHz in selectable 10 kHz increments. The voltage controlled oscillator is phase locked to a 100 kHz reference which is derived from the master oscillator in the reference section. The rf output from the N2 loop is applied to Summing Loop 2.

PROGRAMMABLE DIVIDER CIRCUIT

All of the integrated circuits in the A14 assembly are used to count down the input from the N2 vठltage controlled oscillator.
When there is no BCD input to U5, U6 and U7 (all inputs low) the input from the oscillator will be 29.79 MHz ; the programmable divider will divide by 2979 to provide a 10 kHz output. U5, U6 and U7 may be preset by CF digits 3,4 and 5 and programmed to vary
between counts of 1980 and 2979 . Operation of the circuit is as follows:

Assume that initially there are no BCD inputs to U5, U6 and U7 (divide-by-ten decades) and they have all been preset to zero.
At the start of every count cycle, regardless of the BCD input, U1A pin 6 (\bar{Q}) and U1B pin 8 (\bar{Q}) are both low; U3 pin $6(\bar{Q})$, U4A pin $6(\bar{Q})$ and U4B pin $8(\bar{Q})$ are all high

NAND gate U8C functions as a Schmitt trigger and provides pulses derived from the N2 voltage controlled oscillator output to clock U7 when AND gate U2B is enabled. U7 provides a divide-by-ten output to clock U6 and also provides A and C (binary 1 and 4) outputs to J inputs of JK flip-flop U3. The A and C outputs have no effect on U3 until the count down reaches 2975

U6 provides a divide-by-ten output to clock U5 and also provides A, B and C (binary 1, 2 and 4) outputs to AND gates U2A and U2C. The A, B and C outputs have no effect on the circuit until the count down of 2970 is reached.
U5 provides a divide-by-ten output to clock U1A and also provides A and D outputs to NAND gate U8A. The A and D (binary 1 and 8) outputs have no effect on the circuit until the count down has reached 2900
The D output of U5 (pin 12) goes low on the 1000 th pulse input to U7 pin 8 and clocks U1 A. One thousand input cycles later U1A is again clocked and the negative-going \bar{Q} output

SERVICE SHEET 9 (cont'd)

of U1A (pin 6) clocks U1B. When U1B \bar{Q} goes high it provides a high to AND gate U2A. The count down has reached 2000.

When the count down reaches $2900, \mathrm{U} 5$ A and D outputs are high NAND gate U8A pin 3 goes low and NAND gate U8B pin 6 goes high.
When the count down reaches 2970, U6 A, B and C outputs are high The B and C outputs are applied to AND gate U2C pins 10 and 11 , 8 goes high. The pin 9 has been high since the count of 2900 , U2C pin the other two inputs to U2A are high, U2A pin 12 goes high and is applied to U3 J input pin 3.
When the count down reaches 2975, U7 A and C high outputs ar ppplied to U3 J input pins 4 and 5 . Since U3 J pin 3 is now held coincidence at 2975 cycles has been achieved.

When the count down reaches 2976, U3 is clocked and the U3 Q utput goes low. When U3 Q goes low, AND gate U2B is no longe enabled; the count, as far as U7, U6, U5 and U1 are concerned is ended. When U3 \bar{Q} goes low it also sets U4A and U4B; the \bar{Q} output go low and the Q outputs go high. When the \bar{Q} output of $U 4 B$ goe ow it presets UT, U, U and Ui. When U, U, U5 and $U 1$ are he coincident of 2975

When the U4B Q output goes high the leading edge of the pulse is used to generate the sampler pulse. The first pulse to the sampling phase detector is initiated by the 2976th input cycle. Since three more cycles are required to restart the count cycle, following sampler pulses will be 2979 cycles apart.
When the count down reaches 2977 , U3 is again clocked and since the K input is high and the J input is low, \bar{Q} will go high. This \bar{Q} high applied to the K input of U4A and to pin 4 of AND gate U2B U2B will not be enabled because U4B \bar{Q} is holding AND gate U2B pin 5 low.
When the count down reaches 2978 U4A is clocked because the K input is high. U4A \bar{Q} goes high and is applied to the K input of $U 4 B$. On the 2979th input cycle, U4B is clocked and the \bar{Q} output goes high. When U4B Q goes high the preset pulse is ended and AND gate U2B is enabled. The next input cycle will initiate the count cycle.

When there is a preset input programmed into U7, U6 and U5, the terminal count is still 2979 . However, the count down starts at the number programmed into the BCD inputs. As an example, if the binary input to U7, U6 and U5 is 999, the first input cycle would cause the same digital circuit changes that the 1000th input cycle caused in the discussion above (UlA would be clocked for the first division by 1980 The phase lock lop operation would requal to input frequency to the programmable divider of 1980 MHz . When the 1980 MHz is divided by 1980 the divider output would again be 10 kHz .
he output from U4B is always 10 kHz when the oscillator is phase ocked.

SERVICE SHEET 9 (cont'd)

TEST PROCEDURE

Composite Waveform SS9-1 illustrates the proper timing relationship between the 100 kHz reference input, the pulse output from th ulse generator and the sampling point on the 100 kHz reference when the loop is phase locked

NOTE

Center frequency is initially set to zero.

Test 1-a. Use the counter and the oscilloscope to check for a 100.000 kHz sine wave at approximately 5 volts p / p at TP 5 . The display should be similar to that shown in the second trace from the top in composite waveform SS9-1.

If the correct signal is present, proceed to test 1-b.
If the counter readout is 100.000 kHz but the sine wave is distorted check Q1, Q2 and associated components.

If the signal is not present, connect the counter and the oscilloscope to XA14-1-2. The counter readout should be 100.000 kHz and the oscilloscope display should be similar to that shown in the top trace of composite waveform SS9-1.

If the correct signal is observed but was not observed at TP5, check Q1, Q2 and associated components.

If the signal is not present at XA14-1-2 check interconnections to the reference loop and, if necessary, the reference loop.

To be supplied

Test 1-b. Connect the oscilloscope and the counter to TP4. The counter readout should be 10.000 kHz and the oscilloscope should display positive-going pulses as shown in composite waveform SS9-1 at about 7 volts amplitude.

SERVICE SHEET 9 (cont'd)

SERVICE SHEET 9 (cont'd)

TEST PROCEDURE

Composite Waveform SS9-1 illustrates the proper timing relationship between the 100 kHz reference input, the pulse output from the pulse generator and the sampling point on the 100 kHz reference signal when the loop is phase locked.

NOTE

Center frequency is initially set to zero.

Test 1-a. Use the counter and the oscilloscope to check for a 100.000 kHz sine wave at approximately 5 volts p / p at TP 5 . The display should be similar to that shown in the second trace from the top in composit
waveform SS9-1.

If the correct signal is present, proceed to test 1-b.
If the counter readout is 100.000 kHz but the sine wave is distorted, check Q1, Q2 and associated components.

If the signal is not present, connect the counter and the oscilloscope to XA14-1-2. The counter readout should be 100.000 kHz and the oscilloscope display should be similar to that shown in the top trace of composite waveform SS9-1.

If the correct signal is observed but was not observed at TP5, check Q1, Q2 and associated components.

If the signal is not present at XA14-1-2 check interconnections to the reference loop and, if necessary, the reference loop.

To be supplied

Test 1-b. Connect the oscilloscope and the counter to TP4. The counter readout should be 10.060 kHz and the oscilloscope should at about 7 volts amplitude.

If the signal is not present proceed to test 1-c. If the signal is present, connect the oscilloscope to the junction of R19 and C20. The trace of composite waveform SS9-1.

If the programmable divider and the pulse generator are working properly but the loop is not phase locked, the oscilloscope may still show the signals, but the relationship between the pulses and the sine wave will not be the same as shown in composite waveform SS9-1. If the voltage controlled oscillator and the summing circuits in the A13 assembly are known to be functioning properly proceed to test

Test 1-c. If the pulses are not present at TP5, and the counter counts randomly or not at all, connect the oscilloscope to TP3. The oscilloscope should display pulses at approximately 10 kHz and about 3.5 v p/p.

If the pulses are present at TP3, but were not present at TP4, check If the pulses are present at TP3, but
$\mathrm{Q} 6, \mathrm{Q} 7$ and associated components.

If the pulses are not present at TP3 proceed to test 1-d.
Test 1-d. If the pulse is not present at TP3 connect the oscilloscope to U2B pin 6. The waveform should be similar to that shown in the top trace of composite waveform SSO-2. If the signal is as shown proceed to test $1-\mathrm{e}$.

If there is no signal present at AND gate U2B pin 6 connect the oscilloscope to TP1. The waveform should be similar to that shown in the center trace of composite waveform SS9-2. If the signal is now present, use the digital voltmeter to check the voltage at AND gate U2B pins 4 and 5. The digital voltmeter should indicate about +3.7 volts; if it does, U2B is defective

If the voltages are not present at AND gate U2B pins 4 and 5 , ground
U3B pin 2. If the voltages now appear at AND gate U2B pins 4 and 5 and the signal appears at U2B pin 6 , U2B is functioning properly; the trouble is probably in the gating circuits to U3.
If the voltage is present at AND gate U2B pin 4 with U3 pin 2 grounded, but is not present at U2B pin $5, \mathrm{U} 4$ is probably defective.

If the voltages are not present at AND gate U2B pins 4 or 5 with U3 pin 2 grounded, U3 is probably defective.

If the signal is not present at TP1, use the oscilloscope to check the voltage controlled oscillator input at XA14-2-15. The display should be similar to the lower trace in composite waveform SS9-2. If the signal is present NAND gate U8C is probably defective. If the signal is not present check interconnections to the A13 assembly and, if necessary, the A13 assembly. ed 2000. D outputs are high , B and C outputs are high 10 pins 10 and 11 he count of 2900 , U2C pir AND gate U2A, and sinc

A and C high outputs ar ce U3 ${ }^{\circ} \mathrm{J}$ pin 3 is now hel c will
is clocked and the U3 ND gate U2B is no longe 5 and U1 are concerned i A and U4B; the \bar{Q} output U7, U6, U5 and U1 are e the count is no longer a
ading edge of the pulse is first pulse to the samplin input cycle. Since three -
again clocked and sirte will go high. This \bar{Q} higl ph of AND gate U2B
is clocked because the K ied to the K input of U4B ed and the \bar{Q} output goes ed and the Q output goes
lse is ended and AND gate iitiate the count cycle.
into U7, U6 and U5, the count down starts at the ts. As an example, if the ne first input cycle would d be clocked for the first 2979 minus 999 , equal to eration would result in ar ider of 19.80 MHz . Wher der output would again be
hen the oscillator is phase

2 SAMPLING PHASE DETECTOR

The positive-going output from U4B pin 9 is used to generate the pulse required to open the sampler gate. Common base amplifier Q6 and emitter follower Q7 amplifies and couples the pulse to T1. CR1 and CR2 are used to minimize transformer flyback action. CR2 also bypasses the negative-going pulse around the transformer primary to ensure that only the positive-going pulse is coupled to the transformer secondary.
A 100 kHz signal from the reference loop is applied to the secondary center tap of T1. L7 and C9 (along with C3 in the reference loop A4A1 assembly) comprise of about 150 kHz . The TTL input from the reference loop is reshaped into a sine wave by the low pass filter. L8 and C14 comprise a tuned circuit which bypasses unwanted high frequency signals and further filters the sine wave.
Sampler diodes CR3 and CR4 are normally reverse biased. When the sampling pulse appears across the secondary of T1 it is coupled through C20 and C21 to forward bias CR3 and CR4. Since the gate pulses are equal in amplitude but opposite in polarity, they will cancel at TP6.

While CR3 and CR4 are forward biased the sampling gate is open and the 100 kHz
reference signal is sampled. \rightarrow

SERVICE SHEET 9 (cont'd)

This type of sampling phase detector may be phase locked at virtually any point on the sine wave curve Ideally, the zero volt crossover point of the sine wave should be used to improve the lock and hold in capability of the loop.

If the divided down output of the voltage controlled oscillator in the A13 assembly (10 kHz pulses) is not phase locked to the 100 kHz reference signal an ac signal is developed at TP6. The polarity of the signal at any given time depends on the polarity of the 100 kHz sine wave at the time the last sample was taken. The amplitude of the signal at any given time depends on what portion of the sine wave the last sample wa taken from. Each time CR3 and CR4 are forward biased the signal derived from the 100 kHz reference signal at T1 terminals 4 and 6 are coupled through the sampling gate to control the charge on C22.
When the sampling gate pulse ends, CR3 and CR4 are again reverse biased and the sampling gate is closed. Since Q4 is a high input impedance device, the charge will remain in C22 until the next sampling pulse. The rror signal from Q4 is applied to the summing amplifier in the A13 assembly through emitter followers \mathbf{Q} and Q5.

Test Point 8 may be grounded to open the phase lock loop. Since the emitter of A13Q12 in the A13 assembly is also exactly at dc ground level, grounding this test point will not affect the pretuning circuit. With the loop open both the pretuning and the error signal may be checked.

TEST PROCEDURE 2

Test 2-a. Connect the oscilloscope to TP6. If the 100 kHz reference signal is present one of the sampling gate diodes (CR3 or CR4) is probably shorted. If the gate pulses are present one of the sampling gate diodes is probably open (Negative-going pulses CR4 - positive going pulses CR3). Proceed to test 2-b.
Test 2-b. With the oscilloscope connected to TP6, ground TP8. The signal displayed should be similar to that shown in Composite Waveform SS9.9, at about 4 volts. The frequency of the signal will be determined by the frequency difference detected by the sampling gate (typically 200 to 400 Hz).

If the signal is present at TP6, connect the oscilloscope to Q5-e. The sine wave should be about the same as that shown for TP6 except that the sampling points will not be as obvious.

If the signal is present at Q5-e the error amplifier and the sampling circuits are functioning properly.
If the signal is not present at Q5-e and was present at TP6, check Q3, Q4, Q5 and associated components. After repairs are made repeat the test and remove the ground from TP8.

NOTE

Operation of the circuit shown on Service Sheet 9-a is essentially the same as that shown on Service Sheet 9 . Reference designations differ. The count down is always 3000 .

N2 Phase Detector (1 of 2)

SERVICE SHEET 10

N2 OSCILLATOR ASSEMBLY A13

Normally, causes of malfunctions in the Model 8660 B will be isolated to a circuit board or assembly as a result of performing the tests specified in the troubleshooting trees.
The A13 assembly, a part of the two-assembly N2 phase lock loop is shown schematically and described on this service sheet. The N2 Phase Detector schematically and described on this service sheet. The N2 Phase
assembly, A14, is shown schematically and described on Service Sheet 9

When trouble has been isolated to the A13 assembly it should be removed and reinstalled using two extender boards. This will provide easy access to test points and components.

NOTE

> After making repairs to any part of the N2 loop circuits the adjustment procedures specified in Section V paragraph $5-17$ should be performed to ensure proper operation of the instrument.

TEST EQUIPMENT REQUIRED (See Table 1-3)

Digital Voltmeter
Electronic Counter

N2 LOOP GENERAL INFORMATION

The purpose of the N2 loop is to generate digitally controlled rf signals in the range of 19.80 to 29.79 MHz in selectable 10 kHz increments. The voltage controlled oscillator is phase locked to a 100 kHz reference which is derived from the master oscillator in the reference section. The rf output of the N 2 loop is applied to Summing Loop 2

1 VOLTAGE CONTROLLED OSCILLATOR

Varactors CR8 and CR9, transistors Q2 and Q9 and associated components comprise a voltage controlled oscillator. Two varactors are used in parallel to provide high Q as well as the wide capacitance range required. C18 provides isolation for the dc levels required to bias the varactors. C17 provides the feedback required to sustain oscillation. The resonant tank circuit is coupled to Q9 by means of capacitive divider C22 and C23. The FET acts as a source follower in the feedback circuit; it provides a high impedance at the gate and a low impedance at the source. The gain of the FET amplifier for the output signal is less than one; this minimizes the miller effect which might otherwise reflect capacitance back into the oscillator tank circuit.

Q1 amplifies the signal and applies it to U1A which functions as a Schmitt trigger. U1D inverts the output from U1A and applies it to the programmable divider in the A14 assembly. U1C inverts the output from U1A and applies it to the divide-by-one hundred circuit in Summing Loop 2.

TEST PROCEDURE

NOTE

Do not use long coax leads from the counter to TP3. Th capacitive loading may attenuate the signal below a useable

SERVICE SHEET 10 (cont'd)

Test 1 a. Connect the counter to TP3 and set Center Frequencies as shown in able $8-5$. The counter accuracy.)

NOTE

```
If the frequency readouts listed in Table 8-5 are not approximately as shown check the voltage levels shown for TP2 are incorect proceed to test procedure 2 ,
```

If the signal is present use the oscilloscope to check the outputs at XA13-1 pins 4 and 6 with center frequency set to zero. The signal at XA13-1-4 should be about 0.8 volt p / p and the signal at XA13-1-6 should be about 0.3 volt.
f the signal is present at TP3 but is not present at XA13-1 pins 4 and 6 check U1.
Test 1-b. If the signal is not present at TP3 use the oscilloscope to check the signal at the collector of Q1. The signal should be about 1 volt in amplitude
f the signal is not present at Q1-c use the oscilloscope to check the signal at th Q1 base. If the signal is now present (about 0.3 volt), Q 1 is probably defective.
If the signal is not present at Q1 base, check Q2, Q9 and associated components.

2 PRETUNING CIRCUIT

The frequency of the voltage controlled oscillator is roughly preset by the digital to analog converter (U2, U3, transistors connected to the outputs of the NAND gates and associated components). The digital to analog converter cannot, by itself, set the oscillator frequency precisely; it does set the frequency within the capture range of the loop. The inputs to U2 and U3 are BCD bits coded 8, 4, 2 and 1. When any of the BCD inputs are high they cause the output of the NAND gate with which they are associated to go low; the transistor associated with the NAND gate is switched on

When all of the BCD inputs are low Q4 is biased to provide approximately -25 volts at TP1 (Q3-e). With this dc level at TP1 the oscillator is roughly preset to 29.79 MHz .

When any one or more of the BCD inputs go high the transistor associated with it saturates and draws current through R34 and R35. The change in bias for Q4 causes the voltage at TP1 to go less negative (closer to ground level). Finally when the binary input is 99 , the voltage at TP1 is approximately -5.2 volts and the oscillator frequency is roughly preset to 19.80 MHz .
Q12 is a summing amplifier which combines the output of the digital to analog converter and the signal from the N2 phase detector. The summing point (Q12-e) ums the current from three sources; a current source from the +20 volt suppler TP1) and the signal from the N2 phase detector. The voltage at the summing point is always zero volts.

When TP1 is at approximately -25 volts (no BCD input), most of the current from the +20 volt supply flows through Q4 and Q3; very little flows through Q12. Under these conditions the voltage at Q12-c is about -30 volts. As the voltage a more current flows through Q12, and the Q12 collector voltage decreases.

N2a Phase Detector SERVICE SHEET 9 (2 of 2)

SERVICE SHEET 10 (cont'd)

CR4 through CR7, CR11 through CR16 and associated resistors are used to shape the voltage applied to the varactors in the voltage controlled oscillator circuit so that the frequency will be linear with the voltage change. The voltage at the junction of R 42 and R 47 is about -27.5 volts. When there is no BCD input (Q12-c is about -30 volts) all of the diodes in the shaper are reverse biased. As the voltage at TP1 decreases (gets closer to -5.2 volts) current through Q12 increases and the Q12 collector voltage also decreases. As the Q12-c voltage decreases first CR4, then CR5, etc. are forward biased. As the diodes are forward biased resistors are added in parallel with R31 and R32 to shape the voltage curve to the varactors.

Q11 and Q10 are emitter followers which couple the output of Q12 to the varactors. Q11 provides a high impedance for the output of the summing amplifier, Q12.

TEST PROCEDURE 2

Test 2-a. Use the digital voltmeter to check the voltages at TP1 and TP2. These dc levels should be about as shown in Table 8-5 for the center frequencies shown.

If the voltages at TP1 are about right, but those at TP2 are not, check Q12, Q11, Q10 and associated components.

If the voltages at TP1 are not approximately as shown in Table 8-5, check the components in the digital to analog converter.

NOTE

Also check the BCD input lines for the correct levels. With CF digits 4 and 5 set to a zero all eight input lines should be low. With CF digits 4 and 5 set to a 1 inputs at XA13-2 pins 11 and 9 should be high, etc..

Table 8-6. N2 Frequency versus Voltage Chart

Center Frequency	Counter Readout	TP1 Volts	TP2 Volts
00000 Hz	29.790000 MHz	-25	-31
11100 Hz	28.680000 MHz	-23	-26
22200 Hz	27.570000 MHz	-21	-21
33300 Hz	26.460000 MHz	-18.5	-16.8
44400 Hz	25.350000 MHz	-16.4	-13.4
55500 Hz	24.240000 MHz	-14.2	-10.6
66600 Hz	23.130000 MHz	-12	-8.3
77700 Hz	22.020000 MHz	-9.8	-6.4
88800 Hz	20.910000 MHz	-7.7	-4.8
99900 Hz	19.800000 MHz	-5.4	-3.6

SERVICE SHEET 11

N3 PHASE DETECTOR ASSEMBLY A10

Normally, causes of malfunctions in the Model 8660B will be isolated to a circuit board or assembly as a result of performing the tests specified in the troubleshooting trees.
The A10 assembly, a part of the two-assembly N3 phase lock loop is shown schematically and described on this service sheet. The N3 oscillator assembly, A8, is shown schematically and described on Service Sheet 12.
When trouble has been isolated to the A10 assembly it should be removed and reinstalled using two extender boards. This will provide easy access to test points and components.

NOTE
After making repairs to any part of the N3 loop circuits the adjustment procedures specified in Section V paragraph 5-18 should be performed to ensure proper operation of the instrument.

TEST EQUIPMENT REQUIRED (See Table 1-3)

Oscilloscope (with 10:1 divider probes)
Digital Voltmeter
Electronic Counter
N3 LOOP GENERAL INFORMATION
The purpose of the N 3 loop is to generate digitally controlled rf signals in the range of 20.01 o 21.00 MHz in selectable 10 kHz increments. The voltage controlled oscillator is phase locked to a 100 kHz reference which is derived from the master oscillator in the reference ection.
The rf output of the N3 voltage controlled oscillator is divided by ten before being applied to the SL2 assembly. The output to SL2 is 2.001 to 2.100 MHz in 1 kHz increments.

N3 PROGRAMMABLE DIVIDER CIRCUIT

All of the integrated circuits in the A10 assembly are used to count down the input from the N3 voltage controfled oscillator
When there are no BCD inputs to U5 and U6 (all inputs low), the input from the oscillator will be 21.00 MHz when the oscillator is phase locked; the programmable divider will divide by 2100 to provide a 10 kHz output at TP3. U5 and U6 are preset by CF digits 1 and 2 and programmed to vary between start counts of 00 and 99 . Operation of the circuit is as

Assume that initially all $B C D$ inputs are low and $\mathrm{U} 4, \mathrm{U} 5$ and U 6 have been preset to zero Assume also that U2A pin $6(\overline{\mathrm{Q}})$ and U2B pin $8(\overline{\mathrm{Q}})$ are both low. U1B pin $8(\overline{\mathrm{Q}})$ and U1A pin $6(\bar{Q})$ are both high
NAND gate U7C couples the input from the N3 oscillator to the clock input of U5. U5 provides a divided-by-ten output to clock U6 and also provides A, B and C (BCD 1, 2 and 4) outputs. The A, B and C outputs are not used until the count of 2097 has been reached.
U6 provides a divided-by-ten output to clock U4 and also provides A and D (BCD 1 and 8) outputs to AND gates U3A and U3C. The A and D outputs are not used until the count has reached 2090.

U4 provides a divided-by-ten output to clock U2A. At the count of 1000 U4 clocks U2A and the U2A Q output at pin 6 goes high. At the count of 2000 U4 again clocks U2A and the negative-going \bar{Q} output at pin 6 clocks U2B. When U2B is clocked \bar{Q} at pin 8 goes high and is applied to pins 2 and 13 of AND gate U3A.
At the count of 2090 the high A and D outputs of U6 are apptited to AND gates U3A and U3C. Since U3A pins 2 and 13 are both high, U3A is enabled and it places a high on pin 11 of AND gate U3C.

SERVICE SHEET 11 (cont'd)

At the count of 2097 the high A, B and C outputs of U5 are applied to AND gates U3B and U3C to provide a high at the Jinput of U1B at pin 11 .
At the count of 2098 U1B is clocked, U1B \bar{Q} (pin 8) goes low and sets U1A. U1A \bar{Q} (pin 6) goes low and presets U2, U4, U5 and U6; they are held in preset until the count is completed.
When U1A is set Q (pin 5) goes high and initiates the sampling pulse. The first pulse to the sampling phase detector is initiated by the 2098th input cycle. Since two more cycles are required to restart the count cycle, following sampler pulses are 2100 cycles apart when there is no BCD input.
At the count of 2099 U1B is again clocked and \bar{Q} (pin 8) goes high. The high at pin 8 is applied to the K input of U1A (pin 2).
At the count of 2100 U 1 A is clocked and pin $6 \overline{\mathrm{Q}}$ goes high to end the preset pulse. The next input to U5 initiates the next count cycle. When there is a BCD input programmed into U5 and U6 pins $3,4,10$ and 11 the terminal count is still 2100 . However, the count starts at the number programmed into the BCD inputs. As an example, if the BCD input to U5 and U6 is 99, the first input cycle would cause the ame digital circuit changes that the 100th input cycle caused in the discussion above (U4 would be clocked). The frequency division would be $2100-99$, equal to division by 2001 . The phase lock loop operation would result in an input frequency to the programmable divider of 20.01 MHz . When divided by 2001 , the divider output at TP3 would again be 10 kHz .

The output from U1A pin 5 is always 10 kHz when the oscillator is phase locked regardless of the oscillator frequency.

TEST PROCEDURE 1

Composite Waveform SS11-1 illustrates the proper timing elationship between the 100 kHz reference input, the pulse output from the pulse generator and the sampling point on the 100 kHz reference signal when the loop is locked.

NOTE
Center Frequency is initially set to zero
Test 1-a. Use the counter and the oscilloscope to check for a 100.000 kHz sine wave at approximately 5 volts p / p at TP5. The display should be similar to that shown in the second trace from the top of composite waveform SS11-1.

SERVICE SHEET 11 (cont'd)

If the counter readout is $100,000 \mathrm{kHz}$ but the sine wave is distorted, check Q1, Q2 and associated components.
f the signal is not present, connect the counter and the oscilloscope to XA10-1-2. The counter readout should be 100.000 kHz and the oscilloscope display should be similar to that shown in the top trace of composite waveform SS11-1.
If the correct signal is present at XA10-1-2, but was not present at TP5, check Q1, Q2 and associated components.
f the signal is not present at XA10-1-2 check interconnections to the reference loop and, if necessary, the reference loop.
Test 1-b. Connect the oscilloscope and the counter to TP4. The counter readout should be 100.000 kHz and the oscilloscope should display positive-going pulses as shown in composite waveform SS11-1 at about 7 volts amplitude. If the signal is not present, proceed to test 1-c.
If the signal is present, connect the oscilloscope to the junction of 19 and C20. The oscilloscope display should be similar to that shown in the lowest trace of composite waveform SS11-1.
If the programmable divider and the pulse generator are working properly but the loop is not phase locked, the oscilloscope may still display the signals at the junction of R19 and C20, but the relationship between the pulses and the sine wave will not be the
same as shown in composite waveform SS11-1. If the voltage sand ascillat and the summing circuit in the A8 assembly are known to be functioning properly, proceed to test procedure 2

Test 1-c. If the pulses are not present at TP4, and the counter count randomly or not at all, connect the oscilloscope to TP3. The oscilloscope display should be a series of pulses at approximately 10 kHz and about 3.5 volts in amplitude.
If the pulses are present at TP3, but were not present at TP4, check Q6, Q7 and associated components.

If the pulses are not present at TP3, proceed to test 1-d.
Test 1-d. If the pulse is not present at TP3 connect the oscilloscope to NAND gate U7C pin 8. The oscilloscope should display a slightly distorted sine wave at about 21 MHz and about 3 volts in amplitude. If the signal is not present at U7C pin 8 , connect the oscilloscope to
XA10-2-15. The 21 MHz signal should be about 0.1 volt in XA10-2-15. The 21 MHz signal should be about 0.1 voit in
amplitude. If the signal is present, U7 is probably defective. If the amplitude. If the signal is present, U7 is probably defective. If the if necessary the A8 assembly.

Test 1 e . It is assumed in this test that the signal input is present at U5 pin 8. Composite waveforms SS11-2 through SS11-6 illustrate the correct waveforms for the integrated circuit points shown.

- NOTE

These waveforms were taken with the oscilloscope triggered from TP3

SERVICE SHEET 11 (cont'd)

At the count of 2097 the high A, B and C outputs of U5 are applied to AND gates U3B and U3C to provide a high at the Jinput of U1B at pin 11 .
At the count of 2098 U1B is clocked, U1B \bar{Q} (pin 8) goes low and sets U1A. U1A \bar{Q} (pin 6) goes low and presets U2, U4, U5 and U6, they are held in preset until the count is completed.
When U1A is set Q (pin 5) goes high and initiates the sampling pulse. The first pulse to the sampling phase detector is initiated by the 2098th input cycle. Since two more cycles are required to restart the count cycle, following sampler pulses are 2100 cycles apart when there is no BCD input.
At the count of 2099 U1B is again clocked and $\overline{\mathrm{Q}}$ (pin 8) goes high. The high at pin 8 is applied to the K input of U1A (pin 2).
At the count of 2100 U 1 A is clocked and pin $6 \overline{\mathrm{Q}}$ goes high to end the preset pulse. The next input to U5 initiates the next count cycle.
When there is a BCD input programmed into U5 and U6 pins $3,4,10$ and 11 the terminal count is still 2100 . However, the count starts at the number programmed into the BCD inputs. As an example, if the BCD input to U5 and U6 is 99 , the first input cycle would cause the same digital circuit changes that the 100th input cycle caused in the discussion above (U4 would be clocked). The frequency division would be $2100-99$, equal to division by 2001 . The phase lock loop operation would result in an input frequency to the programmable divider of 20.01 MHz . When divided by 2001 , the divider output at TP3 would again be 10 kHz .
The output from U1A pin 5 is always 10 kHz when the oscillator is phase locked regardless of the oscillator frequency.

TEST PROCEDURE 1

Composite Waveform SS11-1 illustrates the proper timing relationship between the 100 kHz reference input, the pulse output from the pulse generator and the sampling point on the 100 kHz reference signal when the loop is locked.

> NOTE

Center Frequency is initially set to zero
Test 1-a. Use the counter and the oscilloscope to check for a 100.000 kHz sine wave at approximately 5 volts p / p at TP5 . The display should be similar to that shown in the second trace from the top of composite waveform SS11-1.

SERVICE SHEET 11 (cont'd)

If the counter readout is $100,000 \mathrm{kHz}$ but the sine wave is distorted, check Q1, Q2 and associated components.

If the signal is not present, connect the counter and the oscilloscope to XA10-1-2. The counter readout should be 100.000 kHz and the oscilloscope display should be similar to that shown in the top trace of composite waveform SS11-1.
If the correct signal is present at XA10-1-2, but was not present at TP5, check Q1, Q2 and associated components.
If the signal is not present at XA10-1-2 check interconnections to the reference loop and, if necessary, the reference loop.

Test 1-b. Connect the oscilloscope and the counter to TP4. The counter readout should be 100.000 kHz and the oscilloscope should display positive-going pulses as shown in composite waveform SS11-1 at about 7 volts amplitude. If the signal is not present, proceed to test 1-c.
If the signal is present, connect the oscilloscope to the junction of R19 and C20. The oscilloscope display should be similar to that shown in the lowest trace of composite waveform SS11-1.
If the programmable divider and the pulse generator are working properly but the loop is not phase locked, the oscilloscope may still display the signals at the junction of R19 and C20, but the relationship between the pulses and the sine wave will not be the same as shown in composite waveform SS11-1. If the voltage controlled oscillator and the summing circuit in the A8 assembly are known to be functioning properly, proceed to test procedure

Test 1-c. If the pulses are not present at TP4, and the counter counts randomly or not at all, connect the oscilloscope to TP3. The oscilloscope display should be a series of pulses at approximately 10 kHz and about 3.5 volts in amplitude.
If the pulses are present at TP3, but were not present at TP4, check Q6, Q7 and associated components.

If the pulses are not present at TP3, proceed to test 1-d.
Test 1-d. If the pulse is not present at TP3 connect the oscilloscope to NAND gate U7C pin 8. The oscilloscope should display a slightly distorted sine wave at about 21 MHz and about 3 volts in amplitude.

If the signal is not present at U7C pin 8, connect the oscilloscope to XA10-2-15. The 21 MHz signal should be about 0.1 volt in amplitude. If the signal is present, U7 is probably defective. If the signal is not present check interconnections to the A8 assembly and, if necessary the A8 assembly.

Test 1 e. It is assumed in this test that the signal input is present a U5 pin 8. Composite waveforms SS11-2 through SS11-6 illustrate the correct waveforms for the integrated circuit points shown.

NOTE

These waveforms were taken with the oscilloscope triggered from TP3.

SERVICE SHEET 11 (cont'd)

Follow the numerical sequence of the waveforms shown; when an IC output is missing the trouble is found. Replace the defective component and repeat test 1-b.

NOTE

If the output from U5 is not present proceed to test 1-f before replacing $U 5$.

Test 1-f. Composite waveform SS11-7 illustrates correct waveforms for a properly operating U1. In this test the oscilloscope was again triggered by TP3 and the sweep delay of the oscilloscope was used to center the pulses shown

If the waveforms in composite waveform SS11-7 cannot be observed (because an adequate oscilloscope is not available or other reasons) measure the voltage at U1 pin 6 , it should be about +3.7 volts; U1 pin 5 should be at about +100 millivolts. If the voltages are not as specified, ground U1 pin 10. The voltages should then be; U1 pin 6 about +130 millivolts and U1 pin 5 about +3.8 volts. If the voltages
are as specified in either case and there is no output from U5, U5 is are as specified in
probably defective.

If there is no change in the dc levels at U 1 pins 5 and 6 with U 1 pin 10 grounded U1 is probably defective.

To be supplied

To be supplied

SERVICE SHEET 11 (cont’d)

To be supplied

2 SAMPLING PHASE DETECTOR

The positive-going output from U1A Q (pin 5) is used to generate the pulse required to open the sampler gate. Common base amplifier Q6 and emitter follower Q7 amplifies and couples the pulse to T1. CR1 and CR2 are used to minimize transformer flyback action. CR2 also bypasses the negative-going pulse around the transformer primary to ensure that only the positive-going pulse is coupled to the transformer secondary.

A 100 kHz signal from the reference loop is applied through Q2 and Q1 to the secondary center tap of T1. L5 and C8 (along with C4 in the reference loop A4A1 assembly) comprise a low pass filter; it has an impedance of about 450 ohms and a cutoff frequency of about 150 kHz . The TTL input from the reference loop is reshaped into a sine wave by the low pass filter. Q2 and Q1 amplify the signal to the level required in the sampling phase detector. L7 and C13 comprise a tuned circuit which bypasses unwanted high frequency signals and further filters the sine wave.

Sampler diodes CR3 and CR4 are normally reverse biased. When the sampling pulse appears across the secondary of T1 it is coupled through C20 and C21 to forward bias CR3 and CR4. Since the gate pulses are equal in amplitude but opposite in polarity, they will cancel at TP6.

While CR3 and CR4 are forward biased the sampling gate is open and the 100 kHz reference input signal is sampled.

This type of sampling phase detector may be phase locked to virtually any point on the sine wave slope. Ideally, the zero crossover point of the sine wave should be used to improve the lock and lock hold capabilities of the loop.

If the divided down output of the voltage controlled oscillator (10 kHz pulses) is not phase locked to the 100 kHz reference signal an ac error signal will be developed at TP6. The polarity of the error signal at any given point in time depends on the polarity of the 100 kHz reference signal at the time the last sample was taken. The amplitude of the error signal at any given time depends on what part of the sine wave the last sample was taken from. Each time CR3 and CR4 are forward biased the 100 kHz reference signal at T1 terminals 4 and 6 are coupled through the sampling gate to control the charge on C22.

When the sampling gate pulse ends CR3 and CR4 are again reverse biased and the sampling gate is closed. Since Q4 is a high impedance input device, the charge will remain on C22 until the next sampling pulse. The current through Q4 is controlled by the difference in Gate-source voltage of the lower FET. Operation of the dual FET sets the output level at the lower FET drain to exactly the level at the upper FET gate. The output is coupled through two emitter followers to the summing amplifier in the A8 assembly.

SERVICE SHEET 12

N3 OSCILLATOR ASSEMBLY A8

Normally, causes of malfunctions in the Model 8660B will be isolated to a circuit board or assembly as a result of performing the tests specified in the troubleshooting trees. The A8 assembly, a part of the two-assembly N3 phase lock loop is shown
schematically and described on this service sheet. The N3 Phase Detector assembly, A10, is shown schematically and described on Service Sheet 11.

When trouble has been isolated to the A8 assembly it should be removed and reinstalled using two extender boards. This will provide easy access to test points and components.

NOTE
After making repairs to any part of the N3 loop circuits the adjustment procedures specified in Section V paragraph 5-18 should be performed to ensure proper operation of the instrument.

TEST EQUIPMENT REQUIRED (See Table 1-3
Digital Voltmeter
Electronic Counter

N3 LOOP GENERAL INFORMATION

The purpose of the N3 loop is to generate digitally controlled rf signals in the range of 20.01 to 21.00 MHz in selectable 10 kHz increments. The voltage controled oscillator is phase locked to a 100 kHz reference which is derived form controlled oscillator is divided by ten before it is applied to summing Loop 2. The output from the N3 assembly to SL2 is 2.001 to 2.100 MHz in selectable 1 kHz increments.

1 VOLTAGE CONTROLLED OSCILLATOR

Q2, Q7 and associated components comprise a voltage controlled oscillator. C14 and C17 provide isolation for the dc levels required to bias the varactor. C13 provides the feedback required to sustain oscillation. The resonant tank is co in the feedback circuit; it provides a high impedance at the gate and a low impedance at the source. The gain of the FET for the output signal at the drain is held at les than unity to minimize the miller effect which might otherwise reflec capacitance back into the oscillator tank circuit.

Q1 amplifies the voltage controlled oscillator output and applies it to U1A which Q1 amplifies the voltage controlled oscillator output and applies it to U1A which
functions as a Schmitt trigger. U1D provides the output to the N3 programmable divider in the A10 assembly. U1B and U3 provide a divided by ten output to Summing Loop 2.

SERVICE SHEET 12 (cont'd)

TEST PROCEDURE

NOTE

Do not use long coax leads from the counter to N3 test points. The capacitive loading may attenuate the signal below a useable level.

Test 1-a. Connect the counter to TP2. With the center freuqency set to zero the counter readout should be 21.00 MHz . Set CF digits 1 and 2 to the settings specified in Table 8-6. Frequency readouts on the counter should follow those specified in the table. (Make allowances for counter accuracy)

NOTE

If the frequency readouts listed in Table 8-6 are not approximately as shown, check the voltage levels shown for TP in the table. If the voltage levels are incorrect proceed to test procedure 2

If the signal is present use the oscilloscope to check the signal at points shown in composite waveform SS12-1. Signals shown are about 4 volts in amplitude.

To be supplied

If the signal is present at TP2 but is not present at U1 pin 11, U1 is probably defective; if the signal is not present at U3 pin 12, U1 or U3 may be defective.

If the signal is not present at TP2 use the oscilloscope to check for the signal at Q1-b. If the signal is present at Q1-b check Q1 and NAND gate U1A. If the signal is not present check Q2, Q7 and associated components.

2 PRETUNING CIRCUIT

The frequency of the voltage controlled oscillator is roughly preset by the digita to analog converter (U2 and Q8 through Q11). The digital to analog converter

SERVICE SHEET 12 (cont'd

cannot, by itself, set the oscillator frequency precisely; it does set the fr within the capture range of the phase lock loop. The inputs to U2 are B coded $1,2,4$ and 8 . When any one of the BCD inputs are high they cc output of the NAND gate to which they are connected to go low; the
connected to the NAND gate output is switched on

When all of the BCD inputs are low Q6 is biased to provide approximate volts at TP1 (Q5-e). With this dc level at TP1 the oscillator is roughly pres MHz (how close depends on adjustment of R24 and R26).

When any one or more BCD inputs go high the transistor associated saturates and the current through Q6 is reduced. The reduction of through Q6 changes the bias on Q5 and causes the voltage at TP1 to negative (closer to dc ground level). Finally, when the BCD input is 9 , at TP1 is approximately -6.7 volts and the oscillator is roughly preset t MHz (again depending on adjustment of R24 and R26).

Q3 is a summing amplifier which combines the output of the digital to converter and the error signal from the N3 Phase Detector. The summir Q3-e) sums the current from three sources; a current source from the ower supply through R19, R25 and R26, a negative source from the d at the summing point is always zero volts.

The output from Q3 is coupled through Q4 and Q12 to control the aractor CR5 and the frequency of the voltage controlled oscillator.

TEST PROCEDURE 2

Test 2-a. Use the digital voltmeter to check the voltages at TP1 and TP dc levels should be about as shown in Table 8-6 for the center frequencies

NOTE

These voltages are typical. They will vary from instrument to of differences in individual varacto characteristics.
f the voltages at TP1 are about right, but those at TP3 are not, check Q12 and associated components.

If the voltages at TP1 are not approximately as shown in Table 8-6, components in the digital to analog converter

NOTE

Also check the dc levels at the BCD input lines.

N3 Phase Detector
N3 Phase Detector
SERVICE SHEET

ICE SHEET 12

CILLATOR ASSEMBLY A

lly, causes of malfunctions in the Model 8660B will be isolated to a circuit or assembly as a result of performing the tests specified in the or assembly
eshooting trees.

8 assembly, a part of the two-assembly N3 phase lock loop is shown atically and described on this service sheet. The N3 Phase Detector ly, A10, is shown schematically and described on Service Sheet 11.
trouble has been isolated to the A8 assembly it should be removed and lled using two extender boards. This will provide easy access to test points mponents.

NOTE

After making repairs to any part of the N3 loop circuits the adjustment procedures specified in Section V paragraph 5-18 should be performed to ensure proper operation of the instrument.

EQUIPMENT REQUIRED (See Table 1-3)

oltmeter

ic Counter

OP GENERAL INFORMATION

arpose of the N3 loop is to generate digitally controlled rf signals in the of 20.01 to 21.00 MHz in selectable 10 kHz increments. The voltage lled oscillator is phase locked to a 100 kHz reference which is derived from lled oscillator is divided by ten before it is applied to summing Loop 2 . The from the N3 assembly to SL2 is 2.001 to 2.100 MHz in selectable 1 kHz ents.

LTAGE CONTROLLED OSCILLATOR

7 and associated components comprise a voltage controlled oscillator. C14 17 provide isolation for the dc levels required to bias the varactor. C13 es the feedback required to sustain oscillation. The resonant tank is coupled oy capacitive divider C16 and C17. The FET acts as a source follower in the arce. The gain of the FET for the output signal at the drain is held at less unity to minimize the miller effect which might otherwise reflect ance back into the oscillator tank circuit.
plifies the voltage controlled oscillator output and applies it to U1A which ins as a Schmitt trigger. U1D provides the output to the N3 programmable in the A10 assembly. U1B and U3 provide a divided by ten output to ing Loop 2 .

SERVICE SHEET 12 (cont'd)

TEST PROCEDURE

NOTE

Do not use long coax leads from the counter to N3 test points The capacitive loading may attenuate the signal below a useable level.

Test 1-a. Connect the counter to TP2. With the center freuqency set to zero the counter readout should be 21.00 MHz . Set CF digits 1 and 2 to the settings
 specified in the table. (Make allowances for counter accuracy)

NOTE

If the frequency readouts listed in Table $8-6$ are not approximately as shown, check the voltage levels shown for TP3 in the table. If the voltage levels are incorrect proceed to tes procedure

If the signal is present use the oscilloscope to check the signal at points shown in composite waveform SS12-1. Signals shown are about 4 volts in amplitude.

To be supplied

If the signal is present at TP2 but is not present at U1 pin 11, U1 is probably defective; if the signal is not present at U3 pin 12, U1 or U3 may be defective.

If the signal is not present at TP2 use the oscilloscope to check for the signal at Q1-b. If the signal is present at Q1-b check Q1 and NAND gate U1A. If the signal is not present check Q2, Q7 and associated components.

2 PRETUNING CIRCUIT

The frequency of the voltage controlled oscillator is roughly preset by the digital to analog converter (U2 and Q8 through Q11). The digital to analog converter

SERVICE SHEET 12 (cont'd)

cannot, by itself, set the oscillator frequency precisely; it does set the frequency within the capture range of the phase lock loop. The inputs to U2 are BCD bits coded $1,2,4$ and 8 . When any one of the BCD inputs are high they cause the utput of the NAND gate to which they are connected to go low; the transisto connected to the NAND gate output is switched on.

When all of the BCD inputs are low Q6 is biased to provide approximately -8.5 olts at TP1 (Q5-e). With this dc level at TP1 the oscillator is roughly preset to 21 MHz (how close depends on adjustment of R24 and R26)

When any one or more BCD inputs go high the transistor associated with it saturates and the current through Q6 is reduced. The reduction of current through Q6 changes the bias on Q5 and causes the voltage at TP1 to go less negative (closer to dc ground level). Finally, when the BCD input is 9, the voltage MHz (again depending on adjustment of R24 and R26).

Q3 is a summing amplifier which combines the output of the digital to analog converter and the error signal from the N3 Phase Detector. The summing point power supply through R19, R25 and R26, a negative source from the digital to analog converter (TP1), and the error signal from the phase detector. The voltage at the summing point is always zero volts.

The output from Q3 is coupled through Q4 and Q12 to control the bias on varactor CR5 and the frequency of the voltage controlled oscillator.

TEST PROCEDURE

Test 2-a. Use the digital voltmeter to check the voltages at TP1 and TP3. These de levels should be about as shown in Table 8-6 for the center frequencies shown.

NOTE

These voltages are typical. They will vary from instrument to beause of differences in individual varacto

 characteristics.If the voltages at TP1 are about right, but those at TP3 are not, check Q3, Q4, Q12 and associated components.

If the voltages at TP1 are not approximately as shown in Table 8-6, check the omponents in the digital to analog converter.

NOTE

Also check the dc levels at the BCD input lines

N3 Phase Detector SERVICE SHEET 11

SERVICE SHEET 12 (cont'd)

Table 8-7. N3 Frequency Versus Voltage Chart

Center Frequency	Counter Readout	TP1 Voltage	TP3 Voltage
00 Hz	21.000000 MHz	-8.5 V	-3.7 V
11 Hz	20.890000 MHz	-8.3 V	-3.6 V
22 Hz	20.780000 MHz	-8.1 V	-3.5 V
33 Hz	20.670000 MHz	-7.9 V	-3.4 V
44 Hz	20.560000 MHz	-7.7 V	-3.3 V
55 Hz	20.450000 MHz	-7.5 V	-3.2 V
66 Hz	20.340000 MHz	-7.3 V	-3.1 V
77 Hz	20.230000 MHz	-7.1 V	-3.0 V
88 Hz.	20.120000 MHz	-6.9 V	-2.9 V
99 Hz	20.010000 MHz	-6.7 V	-2.8 V

SERVICE SHEET 13

SUMMING LOOP 2 PHASE DETECTOR A12

Normally, causes of malfunctions in the Model 8660B will be isolated to a circuit board or assembly as a result of performing the tests specified in the troubleshooting trees.

The A12 assembly, a part of the two-assembly SL2, is shown schematically and described on this Service Sheet. The SL2 Oscillator Assembly (A11) is shown schematically and described on Service Sheet 14.

When trouble has been isolated to the A12 assembly it should be removed and reinstalled using two extender boards. This will provide easy access to test points and components.

NOTE

After making repairs to any part of the SL2 circuits the adjustment procedures in Section V paragraph 5-19 should be performed to ensure proper operation of the instrument.

TEST EQUIPMENT REQUIRED (See Table 1-3)

Oscilloscope (with 10:1 divider probes)
Digital Voltmeter
Electronic Counter

SUMMING LOOP 2 GENERAL

The puxpose of Summing Loop 2 (SL2) is to generate digitally controlled rf signals in the range of 20.0001 to 30.0000 MHz in selectable 100 Hz increments. The difference frequency between the SL2 voltage controlled oscillator and the input from the N2 loop is phase locked to the divided-by-ten output of the N3 assembly. The output of SL2 is applied
to SL1.

The portion of the pretuning circuit that appears on service sheet 13 (U8 and Q8 through Q11) is explained in the text for service sheet 14.

1 PHASE DETECTOR

There are three signal inputs to the phase detector assembly. They are the output of the N2 voltage controlled oscillator, the divided by ten output of the N3 voltage controlled oscillator and the output of the SL2 voltage controlled oscillator

The N2 and SL2 signals are mixed and the difference frequency is used as one input to the digital phase detector. The second input to the digital phase detector is the divided by ten digital phase detector. The sem
input from the N3 assembly.

The output of the N3 voltage controlled oscillator is divided by ten in the N3 assembly and again divided by ten by U9. Q12 and NAND gate U7A shape the-resulting pulses which vary in frequency (depending on programming to the N3 loop) from 0.2001 to 0.2100 MHz . The pulses at TP2 are negative-going.

SERVICE SHEET 13 (cont'd)

The inputs from the N2 loop and the SL2 voltage controlled oscillator are applied to double balanced mixer E1 R and L ports. The difference signal from the X port is amplified by $Q 5$ and $Q 4$ and shaped by Q3, Q7 and NAND gates U4B and U4C. When the loop is phase locked the negative-going pulses at TP3 are at the same coincidence; they are received alternately.

U7B, U7D, U4A and U4D comprise a coincidence gate which inhibits signals that appear simultaneously at TP2 and TP3. Normally, when signals are not present, TP2 and TP3 are both high. When a signal appears at TP2, U7B pin 6 and U4D pin 13 go high. If there is no signal at TP3 U5D pin 12 is also high; U4D pin 11 goes low, and U1B pin 6 goes high. The positive pulse at TP5 drives the clock generator and the sense circuit or phase detector. When a signal appears at TP3, U4A pin 3 and U7D pin 12 go high. If there is no signal at TP2, U7D pin 13 is also high; U7D pin 11 goes low, and U7C pin 8 goes high. The positive pulse at TP9 drives the clock generator and the sense the same time U7D pin 13 and U4D pin 12 go low, U7D pin 11 and U4D pin 11 remain high, and the signals cannot reach TP5 or TP9.

U1A, U1C, U1D and U5C comprise a clock generator which clocks U2A and U2B each time a signal appears at TP5 or TP9. With no signals present TP5 and TP9 are low. When a positive pulse appears at TP9 U1A pin 3 goes low, U1D pin 11 goes high and a negative-going pulse appears at TP6. When a positive pulse appears at TP5 operation of the circuit is the same except that U1C pin 8 goes low (rather than U1A pin 3). Since a clock pulse is generated for each input, the pulse frequency at TP6 is the sum of the frequencies at TP5 and TP9.

Since the sense circuit does not function when the loop is locked, operation of the phase detector will be discussed first.

When the loop is phase locked U2A \bar{Q} is held high to enable U3A and U3D. Assume that initially U2B Q is high, U3B pin 6 is low and U3C pin 8 is high. When a positive-going signal from TP9 appears at U3A pin 1, U3A pin 3 goes low and causes a change in state of flip-flop U3B/U3C; U3B pin 6 goes high and U3C pin 8 goes low. The high at U2B pin 12 sets the flip/flop and the positive-going trailing edge of the clock pulse causes U2B Q to go high. The following positive pulse changes the state of flip/flop U3B/U3C U3B pin 6 goes low and the clock pulse causes $U 2 B Q$ to again go high. This sequence continues as long as the signals at TP5 and TP9 are received alternately.

The signals at TP5 and TP9 are applied to the sense circuit even when the loop is phase locked. They have no effect on the circuit because of the relationship of the Q and Q outputs of U 2 B to the incoming signals

SERVICE SHEET 13 (cont'd

When U2B Q is high NAND gates U6A and U6C are enabled. When the signal from TP5 appears at U6C pin 9, U6C pin 8 goes low flip/flop U5A/U5B does not change state because U5B pin 3 is low. The signal at U6B has no effect because U2B \bar{Q} and U6B pin 4 are low.

When U2B \bar{Q} is high NAND gates U6B and U6D are enabled. When the signal at TP9 appears at U6D pin 13, U6D pin 11 goes low; The signal at pin 1 of U6A has no effect on the circuit because U2B Q and pin 2 of U6A are low.

When two or more consecutive pulses from either input (TP5 or TP9) occur between pulses from the other input the sense circuit functions to disable the phase detector until the frequency error is corrected.

As an example of circuit operation assume that two pulses from TP9 (SL2 signal) are received between two pulses from TP5 (N3 signal) indicating that the SL2 frequency is high. When the first pulse from TP9 is received U3A pin 3 goes low, U3B pin 6 goes high to set U2B and the clock pulse causes U2B Q to go high. When the second high Q output of U2B. U6A pin 3 goes low and causes flip/flop U5A/U5B to change state. When the D input of U2A goes low the clock pulse causes U2A \bar{Q} to go low and inhibit U3A and U3D. If a third SL2 signal is received prior to receipt of an N3 signal U6A pin 3 will again go low but will have no effect on flip/flop U5A/U5B because U5A pin 13 is low.

When an N3 pulse is received U2B Q is still high and U6C pin 8 will go low to change the state of flip/flop U5A/U5B. When the D input of U2A goes low the clock pulse causes U2A \bar{Q} to go high and enable
U3A and U3D. The propagation time of the signal through the sense circuit is long enough for the pulse from N3 (TP5) to have ended before U3D is enabled so the state of flip/flop U3B/U3C does not change.

The next pulse from SL2 will again cause U6A pin 3 to go low and change the state of flip/flop U5A/U5B. With the D input to U2A high again, the clock pulse again causes U2A \bar{Q} to go low and inhibit U3A and U3D. The signal applied to U3A has no effect on flip/flop U3B/U3C because U3B pin 5 is low.

The sense circuit continues operation in the manner described above The sense circuit continues operation in the manner described above
until two consectutive N3 pulses are received between two SL2 signals. When this occurs the first pulse causes U6C pin 8 to go low signals. When this occurs the first pulse causes U6C pin 8 to go low
and change the state of flip/flop U5A/U5B. With the D input to U2A low the clock pulse will cause U2A \bar{Q} to go high and enable U3A and U3D. Again, because of propagation time through the sense circuit

SERVICE SHEET 13 (cont'd)

When U2B Q is high NAND gates U6A and U6C are enabled. When the signal from TP5 appears at U6C pin 9, U6C pin 8 goes low flip/flop U5A/U5B does not change state because U5B pin 3 is low. The signal at U6B has no effect because U2B \bar{Q} and U6B pin 4 are low.

When U2B \bar{Q} is high NAND gates U6B and U6D are enabled. When the signal at TP9 appears at U6D pin 13, U6D pin 11 goes low flip/flop U5A/U5B does not change state becuase U5B pin 3 is low The signal at pin 1 of U6A has no effect on the circuit because U2B Q and pin 2 of $U 6 A$ are low.

When two or more consecutive pulses from either input (TP5 or TP9 occur between pulses from the other input the sense circuit function to disable the phase detector until the frequency error is corrected

As an example of circuit operation assume that two pulses from TP9 (SL2 signal) are received between two pulses from TP5 (N3 signal) indicating that the SL2 frequency is high. When the first pulse from TP9 is received U3A pin 3 goes low, U3B pin 6 goes high to set U2B and the clock pulse causes U2B Q to go high. When the second consecutive pulse is received from TP9 U6A has been enabled by the
high Q output of U2B. U6A pin 3 goes low and causes flip/flop high Q output of U2B. U6A pin 3 goes low and causes flip/flop U5A/U5B to change state. When the D input of U2A goes low the clock pulse causes U2A Q to go low and inhibit U3A and U3D. If a third SL2 signal is received prior to receipt of an N3 signal U6A pin 3 will again go low but will have no effect on flip/flop U5A/U5B because U5A pin 13 is low

When an N3 pulse is received U2B Q is still high and U6C pin 8 will go low to change the state of flip/flop U5A/U5B. When the D input of U2A goes low the clock pulse causes U2A \bar{Q} to go high and enable U3A and U3D. The propagation time of the signal through the sense circuit is long enough for the pulse from N3 (TP5) to have ended before U3D is enabled so the state of flip/flop U3B/U3C does not change.

The next pulse from SL2 will again cause U6A pin 3 to go low and change the state of flip/flop U5A/U5B. With the D input to U2A high again, the clock pulse again causes U2A Q to go low and inhibit U3A and U3D. The signal applied to U3A has no effect on flip/flop U3B/U3C because U3B pin 5 is low.

The sense circuit continues operation in the manner described above until two consectutive N3 pulses are received between two SL2 signals. When this occurs the first pulse causes U6C pin 8 to go low and change the state of flip/flop U5A/U5B. With the D input to U2A low the clock pulse will cause U2A \bar{Q} to go high and enable U3A and U3D. Again, because of propagation time through the sense circuit

SERVICE SHEET 13 (cont'd)

the pulse will have ended before U3D in enabled. The second consecutive N3 pulse again causes U6C pin 8 to go low but, because U5B pin 3 is low, no change in state occurs in flip/flop U5A/U5B Since U3D is now enabled, U3D pin 11 goes low and causes flip/flop U3B/U3C to change state. With the D input to U2B low, the clock pulse causes U2B Q output to go high. Phase lock has been achieved and the loop will remain locked as long as pulses at the sam frequency appear alternately at TP5 and TP9

When the SL2 frequency is low U2B Q is low. When the SL2 frequency is high U2B Q is high.

DC amplifier Q2, Q1, Q6 and associated components filter the Q output of U2B and applies it to a summing circuit in the A11 assembly to precisely control the voltage controlled oscillator.

TEST PROCEDURE 1

Test 1-a. Connect the oscilloscope input to test points shown by composite waveform SS13-1. This composite waveform illustrate correct waveforms and timing relationships for the points tested. Al signals are about 4 volts in amplitude.

NOTE

The oscilloscope was triggered from TP1 for these tests.

To be supplied

If the pulses are not present at TP2 proceed to test 1-b
If the pulses are not present at TP3 proceed to test 1-c.

If the pulses are present at TP2 and TP3, but opposite polarity pulses are not present at TP5 and/or TP9, check the NAND gates between TP2 and TP5 or TP3 and TP9 as appropriate.

SERVICE SHEET 13 (cont'd)

If the positive-going pulses are present at TP5 and TP9, but negative-going pulses are not present at TP6 for each of the pulses, check NAND gates U1A, U1C, U1D and U5C as appropriate.
If the pulses are approximately as shown in the top five traces of composite waveform SS13-1 but there is no square wave at TP7, use the oscilloscope to check the signal at NAND gate U3B pin 6. The display should be the same as that shown for TP7. If the signal is present, U2B is probably defective.

If the signal is not present at U3B pin 6 use the oscilloscope to check the signals at NAND gates U3D pin 11 and U3A pin 3. The signals should appear as they did at TP5 and TP9 except that they are inverted. If the signals are present U3B or U3C may be defective. If the signal is present at one of the NAND gate outputs but not at the other, replace U3.

If the signal is not present at U3D pin 11 or U3A pin 3, use the digital voltmeter to check the de level at U2A pin 6. The dc level should be about +4 volts. If U2A pin 6 is at about +4 volts, U3 is defective.

If the +4 volts is not present at U2A pin 6, ground U2A pin 1. If the voltage at U2A pin 6 does not go to about +4 volts, U 2 is defective.

If trouble still has not been found, connect the counter to TP3 and the digital voltmeter and the oscilloscope to NAND gate U5A pin 12. The counter readout should be about 210 kHz and U5A pin 12 should be low (about +60 millivolts). If the counter readout is lower or higher than 210 kHz and U5A pin 12 is high, slowly rotate A11R19 through its range while observing the counter and the oscilloscope. As the counter readout passes through the 210 kHz point the oscilloscope display should show a change in dc level; if it does not, U5 or U6 is probably defective.

Test 1-b. If there is no signal at TP2, or the signal is not approximately as shown in the top trace of composite waveform SS13-2, connect the oscilloscope first to TP1, then to U9 pin 8. TP1 and U9 pin 8 signals should be as shown in composite waveform SS13-2. All signal levels are about 4 volts.

SERVICE SHEET 13 (cont'd)

If the signal is as shown at TP1, U7A or Q12 may be defective.
If the signal is as shown at U 9 pin 8 but does not appear at TP1, U 9 is probably defective.
If the signal does not appear at U9 pin 8 check the interconnections to the N3 loop and, if necessary, the N3 loop.

Test 1-c. If there is no signal at TP3, or the signal is not approximately as shown in the top trace of composite waveform SS13-3, connect the oscilloscope, in turn, to the points shown in composite waveform SS13-3.

To be supplied

If the signal shown in the second trace from the top of composite waveform SS13-3 is not as shown check Q3, Q7, U4B, U4C and associated components.

If the signal does not appear at Q4-c but the signal at TP4 is present check Q5, Q4 and associated components.

If the signal is not present at TP4 check for signals shown at TP10 and TP11. If both signals are present mixer E1 is probably defective. If either TP10 or TP11 signals are not present, trouble is in the N2 Loop or the SL2 voltage controlled oscillator.

Test 1-d. To check operation of the dc amplifier connect the digital voltmeter to TP8 and rotate A11R19 through its range. The digital voltmeter readout should vary from about -1.5 volt to about +1.5 volt. If the voltage does not vary as A11R19 is adjusted, check Q2, Q1, Q6 and associated components.

Digitally remastered by ArtekMedia © 2002-2006

SERVICE SHEET 14

SUMMING LOOP 2 OSCILLATOR A11

Normally, causes of malfunctions in the Model 8660B will be isolated to a circuit board or assembly as a result of performing the tests specified in the troubleshooting trees.

The A11 assembly, a part of the two-assembly SL2, is shown schematically and described on this service sheet. The SL2 Phase Detector assembly (A12) is shown schematically and described on service sheet 13.

When trouble has been isolated to the A11 assembly it should be removed and reinstalled using two extender boards. This will provide easy access to test points and components.

NOTE

After making repairs to any part of the SL2 circuits the adjustment procedures in Section V paragraph $5-19$ should be performed to ensure proper operation of the instrument.

TEST EQUIPMENT REQUIRED (See Table 1-3)

Oscilloscope (with 10:1 divider probes)
Digital Voltmeter
Electronic Counter

SUMMING LOOP 2 GENERAL

The purpose of Summing Loop 2 (SL2) is to generate digitally controlled rf signals in the range of 20.0001 to 30.0000 MHz in selectable 100 Hz increments. The difference frequency between the SL2 voltage controlled oscillator and the input from the N2 loop is phase locked to the divided-by-ten output of the N3 assembly. The output of SL2 is applied to SL1.

1 PRETUNING AND OSCILLATOR

The A11 assembly contains a voltage controlled oscillator, a digital to analog converter and a circuit to combine the pretuning dc level with the output from the phase detector. The frequency of the voltage controlled oscillator is roughly preset by the pretuning signal from the digital to analog converter circuit. The pretuning signal cannot, by itself, set the oscillator precisely; it does set the frequency within the capture range of the phase lock loop.

U2 is a decoder which converts the BCD information from digit 5 to turn on one of nine transistors in a resistive network. Quad NAND gate U3 turns on one or more transistors (Q17 through Q20) when there is a BCD input from digit 4. Quad NAND gate U8 in the A12 assembly turns on one or more transistors (A12Q8 through A12Q11 also in the A12 assembly) when there is a BCD input from digit 3 .

When there is no BCD input (all inputs low), the voltage at TP3 is approximately -25 volts and the oscillator is roughly preset to 30.0000 MHz . As the digital to

SERVICE SHEET 14 (cont'd)

analog transistors are switched on the voltage at TP3 decreases (becomes less negative). When the BCD inputs are at 999 the voltage at TP3 is about -5 volts and the oscillator is roughly preset to 20.0001 MHz .

Q4 is a summing amplifier which combines the output of the digital to analog converter and the signal from the SL2 phase detector. The summing point (Q4-e) sums the current from three sources; a current source from the +20 volt supply through R19, R20 and R21, a negative source from the digital to analog converter (TP3) and the signal from the SL2 phase detector. The voltage at the summing point is always zero volts.

When TP3 is at approximately -25 volts (all BCD inputs low), most of the current from the +20 volt source flows through Q5, very little flows through Q4. Under these conditions the voltage at Q4-c is about -30 volts. As the voltage at TP3 decreases (gets closer to dc ground level) less current flows through Q5, more flows through Q4 and the voltage at Q4-c decreases.

CR2 through CR11 and associated resistors are used to shape the voltage curve applied to the voltage controlled oscillator tuning varactors to ensure that the frequency change is linear with the applied voltage. The voltage at the junction of R52 and R53 is about -27.5 volts. When all BCD inputs are low (Q4-c is at about -30 volts) all of the diodes in the shaper are reverse biased. As the voltage at TP3 decreases (gets closer to -5 volts), current through Q4 increases and the Q4 collector voltage decreases. As the Q4-c voltage decreases first CR11, then CR10, etc are forward biased. As the diodes are forward biased resistors are added in parallel with R37 and R38 to shape the voltage curve to the varactors. Q15 provides a low impedance output to drive the varactors.

Q1 drives U1A which functions as a Schmitt trigger. U1B inverts the signal and applies it to the SL1 phase detector. U1D also inverts the signal and applies it to the SL2 phase detector.

TEST PROCEDURE 1

Test 1-a. Connect the counter to TP4. With the center freuqency set to zero the counter readout should be 30.000000 MHz . Set CF to the settings specified in Table 8-7. Frequency readouts should follow those specified in the table. (Make allowances for counter accuracy).

NOTE

If the frequency readout listed in Table 8-7 are not as shown, check the voltage levels shown for TP5 in the table. If the voltages are incorrect proceed to test procedure 2

If the signal is present use the oscilloscope to check the signals at points shown by composite waveform SS14-1.
nalog transistors are switched on the voltage at TP3 decreases (becomes less negative). When the BCD inputs are at 999 the voltage at TP3 is about -5 volts and the oscillator is roughly preset to 20.0001 MHz .

Q4 is a summing amplifier which combines the output of the digital to analog converter and the signal from the SL2 phase detector. The summing point (Q4-e) sums the current from three sources; a current source from the +20 volt supply through R19, R20 and R21, a negative source from the digital to analog converter TP3) and the signal from the SL2 phase detector. The voltage at the summing point is always zero volts.

When TP3 is at approximately - 25 volts (all BCD inputs low), most of the current from the +20 volt source flows through Q5, very little flows through Q4.
Under these conditions the voltage at Q4-c is about -30 volts. As the voltage at Under these conditions the voltage at Q4-c is about - 30 volts. As the voltage at
TP3 decreases (gets closer to dc ground level) less current flows through Q5, more flows through Q4 and the voltage at Q4-c decreases.

CR2 through CR11 and associated resistors are used to shape the voltage curve applied to the voltage controlled oscillator tuning varactors to ensure that the applied to the voltage controlled oscillator tuning varactors to ensure that the R52 and R53 is about - 27.5 volts. When all BCD inputs are low (Q4-c is at about -30 volts) all of the diodes in the shaper are reverse biased. As the voltage at TP3 decreases (gets closer to -5 volts), current through Q4 increases and the Q4 collector voltage decreases. As the Q4-c voltage decreases first CR11, then CR10, etc are forward biased. As the diodes are forward biased resistors are added in parallides a low impedance output to drive the varactors. provides a low impedance output to drive the varactors.

Q1 drives U1A which functions as a Schmitt trigger. U1B inverts the signal and applies it to the SL1 phase detector. U1D also inverts the signal and applies it to the SL2 phase detector.

TEST PROCEDURE

Test 1-a. Connect the counter to TP4. With the center freuqency set to zero th counter readout should be 30.000000 MHz . Set CF to the settings specified in Table 8-7. Frequency readouts should follow those specified in the table. (Make allowances for counter accuracy).

NOTE

If the frequency readout listed in Table 8-7 are not as shown, check the voltage levels shown for TP5 in the table. If the voltages are incorrect proceed to test procedure

If the signal is present use the oscilloscope to check the signals at points shown by composite waveform SS14-1

If the signal is present at TP4 but is not present at XA11-1-2 or XA11-1-6, U1 is probably defective.

If the signal is not present at TP4, use the oscilloscope to check for the signal at Q1-b. If the signal in present at Q1-b, check Q1 and NAND gate U1B. If the signal is not present at Q1-b check Q2, Q3 and associated components.

TEST PROCEDURE

Test 2-a. Use the digital voltmeter to check the voltages at TP3, TP2 and TP5 These dc levels should be about as shown in Table 8-7 for the center frequencies shown.

NOTE

These voltages are typical. They will vary from instrument to instrument because of differences in individual varactor
characteristics.

If the voltage at TP3 does not change when CF digit 5 is changed to any position, U2 is probably defective. (Verify presence of BCD inputs). If the voltage at TP3 reaches about -25 volts when any CF digit 5 position is set (other than 0) the transistor associated with that number is probably open.

When the voltage at TP3 does not change with a change of the setting of CF digi 4 , U3 or the associated transistors may be defective.

When the voltage at TP3 does not change with a change in the setting of CF digi 3, A12U8 or associated transistors may be defective. (This portion of the digital to analog converter is located in the A12 assembly).

SERVICE SHEET 14 (cont'd)

If the voltages are approximately correct at TP3 but are not correct at either TP2 or TP5, check Q4, Q15 and associated components.

The counter is connected to TP4 for readouts specified in Table 8-7.

Table 8-8. SL2 Frequency Versus Voltage Chart

Center Frequency	Counter Readout	TP3	TP2	TP5
00000 Hz	30.000000 MHz	-25.1 V	-31.6 V	-30.9 V
11100 Hz	28.890000 MHz	-22.8 V	-25.5 V	-24.8 V
22200 Hz	27.780000 MHz	-20.5 V	-20.5 V	-19.9 V
33300 Hz	26.670000 MHz	-18.3 V	-16.4 V	-15.7 V
44400 Hz	25.560000 MHz	$-16 . \mathrm{V}$	$-13 . \mathrm{V}$	-12.4 V
55500 Hz	24.450000 MHz	-13.8 V	-10.3 V	-9.6 V
66600 Hz	23.340000 MHz	-11.7 V	$-8 . \mathrm{V}$	-7.3 V
77700 Hz	22.230000 MHz	-9.5 V	-6.2 V	-5.5 V
88800 Hz	21.120000 MHz	-7.3 V	-4.6 V	$-4 . \mathrm{V}$
99900 Hz	20.010000 MHz	-5.3 V	-3.4 V	-2.8 V

SERVICE SHEET 15

SUMMING LOOP 1 PHASE DETECTOR A15

Normally, causes of malfunctions in the Model 8660B will be isolated to a circuit board o assembly as a result of performing the tests specified in the troubleshooting trees.
The A15 assembly, a part of the three-assembly SL1, is shown schematically and described on this Service Sheet. The SL1 Oscillator Assembly (A19) is shown schematically an described on service sheet 17. The SL1 Mixer and D/A Converter Assembly (A18) is shown schematically and described on Service Sheet 16
When trouble has been isolated to the A15 assembly it should be removed and reinstalled using two extender boards. This will provide easy access to test points and components.
NOTE

After making repairs to any part of the SL1 circuits the adjustment procedures in Section V paragraph 5-20 should be performed to ensure proper operation of the instrument.

TEST EQUIPMENT REQUIRED (See Table 1-3)

Oscilloscope (with 10:1 divider probes)
Digital Voltmeter
Electronic Counter

SUMMING LOOP 1 GENERAL

The purpose of Summing Loop 1 (SL1) is to generate digitally controlled rf signals in the range of 20.000001 to 30.000000 MHz in selectable increments as low as 1 Hz . The SL1 voltage controlled oscillator is phase locked to the divided by one hundred output of the SL2 loop and the difference frequency of the N1 loop and the SL1 oscillator. The output of
1 PHASE DETECTOR ASSEMBLY A15
There are two signal inputs to the phase detector assembly. One is the input from the SL2 loop which is shaped by U10D and divided by 100 by U6 and U5. The output of U5 is again shaped by Q5 and U4A to provide negative-going pulses at TP2. The other input to the shaped by Q5 and U4A to provide negative-going pulses at TP2. The other input to the
phase detector is from the SL1 mixer and is the difference frequency between the N1 oscillator and the SL1 voltage controlled oscillator. Q6, U4B, Q4 and U4C shape the signal and provides negative-going pulses at TP3.
The pulse frequency at TP2 and TP3 varies (depending on programming) from 0.200001 to 0.300000 MHz . When the phase lock loop is locked the pulse frequency is the same at TP2 and TP3. The sampling ratio is 1:1.
U9A, U3B, U4D and U9B comprise coincidence gates which inhibit signals which appear simultaneously at TP2 and TP3. Normally, when signals are not present, TP2 and TP3 are both high

When a signal appears at TP2, U9A pin 3 and U3B pin 4 go high. If there is no signal at TP3, U3B pin 5 is also high; U3B pin 6 goes low and U3C pin 8 goes high. The positive pulse at TP4 drives the clock generator and the sense circuit or the phase detector.
When a signal appears at TP3, U4D pin 11 and U9B pin 5 go high. If there is no signal at TP2, U9B pin 4 is also high; U9B pin 6 goes low and U9D pin 11 goes high. The positive pulse at TP8 drives the clock generator and the sense circuit or the phase detector.
When signals appear simultaneously at TP2 and TP3, U9B pin 4 and U3B pin 5 go low: U9B pin 6 and U3B pin 6 remain high and the signals cannot reach TP4 or TP8.
U7C, U9C, U3D and U3A comprise a clock generator which clocks U2A and U2B each time a signal appears at TP4 or TP8. With no signals present TP4 and TP8 are low. When a positive pulse appears at TP8, U9C pin 8 goes low, U3D pin 11 goes high and a
negative-going pulse appears at TP5. When a positive pulse negative-going pulse appears at T5. Wen a positive pulse appears at TP4 operation of the

SERVICE SHEET 15 (cont'd)

pulse is generated for each input, the clock pulse frequency at TP5 is the sum of the pulse frequencies at TP4 and TP8. U2A and U2B are clocked by the positive-going trailing edge of the negative clock pulses.
Since the sense circuit does not function when the loop is locked, operation of the phase detector will be described first.

When the loop is phase locked U2A \bar{Q} is held high to enable U1A and U1B Assume that initially U2B Q is high U1D pin 11 is low and U1C pin 8 is high When a positive pulse from TP8 appears at U1A pin 1, U1A pin 3 goes low and causes a change in state of flip/flop U1D/U1C: U1D pin 11 goes high and U1C pin 8 goes low. The high at U1D pin 11 sets the D input to U2B and the clock pulse pin 5, U1B pin 6 goes low and changes the state of flip/flop U1D/U1C. U1D pin 11 goes low and the clock pulse causes U2B \bar{Q} to again go high. This sequence continues as long as the pulses at TP4 and TP8 alternate.
The signals at TP4 and TP8 are applied to the sense circuit even when the loop is phase locked. They have no effect on the circuit because of the relationship between the \bar{Q} and \bar{Q} outputs of U2B to the incoming signals.
When U2B is high, NAND gates U8A and U8C are enabled. When the signal from TP4 appears at U8C pin 9, U8C pin 8 goes low; flip/flop U7A/U7B does no change $U 2 B \bar{Q}$ and U8B pin 5 are low. because U2B Q and U8B pin 5 are low.

When two or more consecutive pulses from either input (TP4 or TP8) occur
between pulses from the other input, the sense circuits function to disable the between pulses from the other input, the sense circuits function to disable th phase detector until the frequency error has been corrected.

As an example of circuit operation, assume that two pulses from TP8 are received between two pulses from TP4, indicating that the SL1 frequency is too high When the first pulse from TP8 is received U1A pin 3 goes low, U1D pin 11 goes high to set the D input to U2B and the clock pulse causes U2B Q to go high When the second consecutive pulse is received from TP8, U8A has been enabled by the high Q output of U2B. U8A pin 3 goes low and causes flip/flop U7A/U7B $\frac{1}{Q}$ to go low and inhibit NAND gates U1A and U1B. If a third pulse from TP8 is received prior to receipt of a signal from TP4, U8A pin 3 will again go low but will not affect flip/flop U7A/U7B because U7A pin 13 is low.
When a pulse is received from TP4, U2B Q is still high and U8C pin 8 will go low and change the state of flip/flop U7A/U7B. When the D input to U2A goes low propagation time of the signal through the sense circuit is long enough for the pulse from TP4 to have ended before U1B is enabled so the state of flip/flop U1D/U1C does not change.
The next pulse from TP8 will again cause U8A pin 3 to go low and change the state of flip $/ \overline{\text { flop }}$ U7A/U7B. With the D input of U2A high again, the clock puls no effect on flip/flop U1D/U1C because U1D pin 12 is low.
The sense circuit continues operation in the manner described above until two consecutive pulses are received at TP4 between two pulses at TP8. When thi U7A/U7B. With the D input to U2A low the clock pulse will cause U2 flip/flo high and enable NAND gates U1A and U1B. Because of the propagation time through the sense cirucit, the pulse will have ended before U1B is enabled. The second consecutive pulse from TP4 again causes U8C pin 8 to go low, but because U7B pin 3 is now low, no change in state occurs in flip/flop U7A/U7B. Since U1B is enabled, U1B pin 6 goes low and causes flip/flop U1D/U1C to change state
With the D input of U2B low, the clock pulse will cause U2B \bar{Q} output to go high

SERVICE SHEET 15 (cont'd)

Phase lock has been achieved and the loop will remain locked as long the same frequency are received alternately at TP4 and TP8
hen the SL high, U2B Q is high

DC amplifier Q1, Q2, Q3 and associated components filter the Q out applies it to a summing circuit in the A19 assembly to precisely voltage controlled oscillator.

TEST PROCEDURE

Test 1-a. Connect the oscilloscope input to test points shown by aveform SS15-1. This composite waveform illustrates correct wa timing relationships for the points tes

NOTE

The oscilloscope was triggered from TP1 for all waveforms.
If the pulses are not present at TP2 proceed to test 1-b.
If the pulses are not present at TP3 proceed to test 1-c
If the pulses are present at TP2 and TP3, but opposite polarity pu present at TP4 and/or TP8, check the NAND gates between TP2 and and TP8 as appropriate.
If the positive-going pulses are present at TP4 and TP8, but negative are not present at TP5 for each of the pulses, check NAND gates U3A and U9C as appropriate.

To be supplied

If the pulses are approximately as shown in the top five traces of waveform SS15-1 but there is no square wave at TP6, use the os check the signal at NAND gate U1D pin 11. The display should be that shown for TP6. If the signal is present, U2B is probably defective.
If the signal is not present at U1D pin 11 use the oscilloscope to check at NAND gates U1A pin 3 and U1B pin 6. The signals should appear as TP4 and TP8 except that they are inverted. If the signals are present, U may be defective. If the signal is present at one of the NAND gates but other, replace $\mathbf{~} 1$.
If the signal is not present at U1A pin 3 or U1B pin 6, use the digital check the dc level at U2A pin 6. If U2A pin 6 is about +4 volts, $U 1$ is If the +4 volts is not present at U2A pin 6 , ground U2A pin 1 . If the U2A pin 6 does not go to about +4 volts, U 2 is defective
clock pulse frequency at TP5 is the sum of P8. U2A and U2B are clocked by the ive clock pulses.
ion when the loop is locked, operation of
\bar{Q} is held high to enable U1A and U1B U1D pin 11 is low and U1C pin 8 is high rs at U1A pin 1, U1A pin 3 goes low and S/U1C: U1D pin 11 goes high and U1C pin ts the D input to U2B and the clock pulse g positive pulse at TP4 is applied to U1B $\stackrel{s}{ }$ the state of flip/flop U1D/U1C. U1D pin hd TP8 alternate.
to the sense circuit even when the loop is n the circuit because of the relationshi the incoming signals.
nd U8C are enabled. When the signal from 8 goes low; flip/flop U7A/U7B does no The signal at U8B pin 4 has no effect
s from either input (TP4 or TP8) occur the sense circuits function to disable th has been corrected
ume that two pulses from TP8 are received ting that the SL1 frequency is too high U1A pin 3 goes low, U1D pin 11 goe the clock pulse causes U2B Q to go high. 3 goes low and causes flip/flop U7A/U7B U2A goes high, the clock pulse causes U2 A 11A and U8A in a third pulse from TP8 se U7A pin 13 is low.
$B \mathrm{Q}$ is still high and U8C pin 8 will go low U7B. When the D input to U2A goes low go high and enable U1A and U1B. The the sense circuit is long enough for the
U1B is enabled so the state of flip/flop
use U8A pin 3 to go low and change the input of U2A high again, the clock puls U1D pin 12 is low.
in the manner described above until two between two pulses at TP8. When this to go low and change the state of flip/flop W U1B. Because of the propagation time 1 have ended before U1B is enabled. The n causes U8C pin 8 to go low, but because n causes U8C pin 8 to go low, but because auses flip/flop U1D/U1C to change state. pulse will cause U2B \bar{Q} output to go high.

SERVICE SHEET 15 (cont'd)

Phase lock has been achieved and the loop will remain locked as long as pulses at the same frequency are received alternately at TP4 and TP8.
When the SL1 frequency is too low, U2B Q is low. When the SL1 frequency is too high, U2B Q is high.
DC amplifier Q1, Q2, Q3 and associated components filter the Q output of U2B and applies it to a summing circuit in the A19 assembly to precisely control the voltage controlled oscillator.

TEST PROCEDURE 1

Test 1-a. Connect the oscilloscope input to test points shown by composite waveform SS15-1. This composite waveform illustrates correct waveforms and timing relationships for the points tested. All signals are about 4 volts in amplitude.

NOTE

The oscilloscope was triggered from TP1 for all waveforms.
If the pulses are not present at TP2 proceed to test 1-b.
If the pulses are not present at TP3 proceed to test 1-c.
If the pulses are present at TP2 and TP3, but opposite polarity pulses are not present at TP4 and/or TP8, check the NAND gates between TP2 and TP4 or TP3 and TP8 as appropriate.
If the positive-going pulses are present at TP4 and TP8, but negative-going pulses are not present at TP5 for each of the pulses, check NAND gates U3A, U3D, U7C, and U9C as appropriate.

To be supplied

If the pulses are approximately as shown in the top five traces of composite waveform SS15-1 but there is no square wave at TP6, use the oscilloscope to check the signal at NAND gate U1D pin 11. The display should be the same as that shown for TP6. If the signal is present, U2B is probably defective.
If the signal is not present at U1D pin 11 use the oscilloscope to check the signals at NAND gates U1A pin 3 and U1B pin 6 . The signals should appear as they did at may be defective. If the signal is present at one of the NAND gates but not at the other, replace U1.
If the signal is not present at U1A pin 3 or U1B pin 6, use the digital voltmeter to check the dc level at U2A pin 6 . If U2A pin 6 is about +4 volts, U1 is defective.
If the +4 volts is not present at U2A pin 6 , ground U2A pin 1. If the voltage at U2A pin 6 does not go to about +4 volts, U 2 is defective.

SL2 VCO
SL2 VCO
SERVICE SHEET 14

SERVICE SHEET 15 (cont'd)
If the cause of trouble still has not been found, connect the counter to TP3 and the digital voltmeter and oscilloscope to NAND gate U7A pin 12. The counter readout should be about millivolts). If the counter readout is lower or higher than 300 kHz and U5A pin 12 is high slowly rotate A15R14 through its range while observing the counter and the oscilloscope As the counter readout passes through the 300 kHz point the oscilloscope display should show a change in level; if it does not, U7 or U8 is probably defective.
Test 1-b. If there is no signal at TP2 or the signal is not approximately as shown in the top trace of composite waveform SS15-2, connect the oscilloscope first to TP2, then U6 pin 12 which the correct signal is first observed is followed by the defective circuit. If the signal is not present at XA15-2-14, check the interconnections to the SL2 loop and, if necessary, the SL2 loop.

To be supplied

Test 1-c. If there is no signal at TP3 or the signal is not approximately as shown in the top trace fo composite waveform SS15-3 connect the oscilloscope first to U4 pin 6, then to U4 pin 4 or 5 and finally to-XA15-2-C.

To be supplied

In making the checks in the order shown, the point at which the signal is first observed is followed by the defective circuit. If the signal is not present at XA15-2-C check the interconnections to the A18 assembly and, if necessary, the A18 assembly.
Test 1-d. To check operation of the dc amplifier connect the digital voltmeter to Q3-e, ground TP7, and rotate A15R14 through its range. The digital voltmeter readout should adjusted, check Q1, Q2, Q3 and associated components.

SERVICE SHEET 16

SUMMING LOOP 1 MIXER AND D TO A A18

Normally, causes of malfunctions in the Model 8660B will be isolated to a circuit board or assembly as a result of performing the tests specified in the troubleshooting trees.
The A18 assembly, a part of the three-assembly SL1, is shown schematically and described on this service sheet. The SL1 Phase Detector Assembly (A15) is shown schematically and described on Service Sheet 15. The SL1 Oscillator Assembly (A19) is shown schematically and described on Service Sheet 17.
When trouble has been isolated to the A18 assembly it should be removed and reinstalled using two extender boards. This will provide easy access to test points and components.

NOTE

After making repairs to any part of the SL1 circuits the adjustment procedures in Section V paragraph 5-20 should be performed to ensure proper operation of the instrument.

TEST EQUIPMENT REQUIRED (See Table 1-3)

Oscilloscope (with 10:1 divider probes)
Digital Voltmeter
Electronic Counter

SUMMING LOOP 1 GENERAL

The purpose of Summing Loop 1 (SL1) is to generate digitally controlled rf The purpose of Summing Loop 1 (SL1) is to generate digitally controlled rf low as 1 Hz . The SL1 voltage controlled oscillator is phase locked to the divided by one hundred output of the SL2 loop and the difference frequency of the N output plug-in.

1 MIXER AND AMPLIFIERS

E1 is a double balanced mixer which mixes the output of the SL1 voltage controlled oscillator with the output of the N1 loop and provides an output which is the difference frequency of the two inputs.

Q14 and Q1 amplify the input from the SL1 voltage controlled oscillator.
Q2, Q15, Q18 and associated components amplify the output from the mixer before applying it to the phase detector circuit in the A15 assembly.

TEST PROCEDURE

Test 1-a. With the center frequency set to zero use the counter and the oscilloscope to check for the following (approximately sine wave) signals:

TP5 300.000 kHz at about 4 volts p / p
TP4 (oscillosçope only) 300 kHz at about 0.1 volt p / p
TP3 29.700000 MHz at about 0.5 volt p / p
Q1-e 30.000000 MHz at about 1.1 volt p / p
TP2 30.000000 MHz at about 0.5 volts p / p

SERVICE SHEET 16 (cont'd)

DIGITAL TO ANALOG CONVERTER

U3 is a decoder which converts the BCD inputs from digit 7 to an output that will turn on one of nine transistors in a resistive network. Quad NAND gates U2 and U1 turn on one or by digits 6 and 5 respectively.

The current flow through Q4 and the bias for Q3 is determined by which of the transistors in the resistive network are saturated. The dc level at TP1 is determined by which transistors are on. This dc level is applied to a summing circuit in the A19 assembly and used to roughly pretune the voltage controlled oscillator. When the BCD input is 000 the de level at TP1 is about -25 volts. When the BCD input is 999 the dc level is about -5 volts.

TEST PROCEDURE

Test 2-a. Connect the digital voltmeter to TP1 and the counter to TP5. Refer to Table 8-8 for CF settings, counter readouts, and approximate voltage levels.

NOTE

The voltage readings are typical and may vary greatly from that shown due to differences in varactor characteristics. The important point to note is the ratio of change as the center frequency is changed.

If the voltage ratio changes about as shown but the frequency requirements are not met, trouble is probably in the oscillator assembly or the phase detector assembly.

Table 8-9. SL1 Frequency Versus Voltage Chart

Center Frequency	Frequency TP5	Voltage TP1
0000000 Hz	300.000 kHz	-25.5 V
1110000 Hz	290.000 kHz	-23.4 V
2220000 Hz	280.000 kHz	-21.0 V
3330000 Hz	270.000 kHz	-18.8 V
4440000 Hz	260.000 kHz	-16.6 V
5550000 Hz	250.000 kHz	-14.3 V
6660000 Hz	240.000 kHz	-12.1 V
7770000 Hz	230.000 kHz	-9.9 V
8880000 Hz	220.000 kHz	-7.7 V
9990000 Hz	210.000 kHz	-5.4 V
9999999 Hz	200.000 kHz	-5.4 V

SERVICE SHEET 17

SUMMING LOOP 1 OSCILLATOR A19

Normally, causes of malfunctions in the Model 8660B will be isolated to a circuit board or assembly as a result of performing the tests specified in the troubleshooting trees.

The A19 assembly, a part of the three-assembly SL2, is shown schematically and described on this service sheet. The SL1 Mixer and D/A converter Assembly (A18) is shown schematically and described on Service Sheet 16. The SL1 Phase Detector Assembly (A15) is shown schematically and described on Service Sheet 15.

When trouble has been isolated to the A19 assembly it should be removed and reinstalled using two extender boards. This will provide easy access to test points and components.

NOTE

> After making repairs to any part of the SL1 circuits the adjustment procedures in Section V paragraph $5-20$ should be performed to ensure proper operation of the instrument.

TEST EQUIPMENT REQUIRED (See Table 1-3)

Oscilloscope (with 10:1 divider probes)
Digital Voltmeter
Electronic Counter

SUMMING LOOP 1 GENERAL

The purpose of Summing Loop 1 (SL1) is to generate digitally controlled rf signals in the range of 20.000001 to 30.000000 MHz in selectable increments as low as 1 Hz . The SL1 voltage controlled oscillator is phase locked to the divided by one hundred output of the SL2 loop and the difference frequency of the N1 loop and the SL1 oscillator. The output of SL1 is applied to the RF Section plug-in.

SUMMING AMPLIFIER

Q6 is a summing amplifier which combines the output of the digital to analog converter and the signal from the SL1 phase detector. The summing point (Q6-e) sums the current from three sources; a current source from the +20 volt supply through R9, R10 and R11, a negative source from the digital to analog converter through R3, R7 and R68, and the signal from the SL1 phase detector through R6. The dc level at the summing point is held at zero volts.

When the input at XA19-2-J is about - 25 volts (all BCD inputs to A18 low) most of the current from the +20 volt source flows through A18Q3; very little flows through Q6. Under these conditions the voltage at Q6-c is about - 30 volts. As the voltage at XA19-2-J decreases (becomes less negative), less current flows through A18Q3, more flows through Q6, and the voltage at Q6-c decreases (becomes less negative)

SERVICE SHEET 17 (cont'd)

CR1 through CR10 and associated resistors are used to shape the voltage curve applied to the voltage controlled oscillator tuning varactors to ensure that frequency change is linear with voltage change. The voltage at the junction of R32 and R39 is about -27.5 volts. When all BCD input to the A18 assembly are low, Q6-c is about -30 volts and all of the diodes in the shaper are reverse biased. As the voltage from the digital to analog converter decreases (gets closer to -5 volts) current through Q6 increases and the Q6 collector voltage decreases. As the Q6-c voltage decreases first CR10, then CR9, etc. are forward biased. As the diodes are forward biased resistors are added in parallel with R35 and R38 to shape the voltage curve to the varactors. Q7 provides a low impedance output to drive the varactors.

TEST PROCEDURE

Test 1-a. Connect the digital voltmeter to TP1 and set the center frequency as shown in Table 8-9

NOTE

The voltage readings are typical and may vary greatly from that shown due to differences in varactor characteristics. The important point to note is the ratio of change as the center frequency is changed.

If the voltage at TP1 does not change as the CF are changed check the input from the digital to analog converter (A18) at XA19-2-J. If the voltage levels at this point do not change as the CF is changed, trouble is probably in the A18 assembly.

If the voltage level from the digital to analog converter does change, but the level at TP1 does not, check Q6, Q7 and associated components.

2 VOLTAGE CONTROLLED OSCILLATOR AND AMPLIFIERS

Q5, Q4 and associated components comprise a voltage controlled oscillator. C17, C20 and C21 provide isolation for the dc levels required to bias the varactors. C19 provides the feedback necessary to sustain oscillation. The resonant tank circuit is coupled to Q4 by capacitive divider C20 and C21. The FET acts as a source follower in the feedback circuit; it provides a high impedance at the gate and a low impedance at the source.

Q3 is a power splitter which drives two two-stage amplifiers. One amplifier output is applied to the RF Section plug-in and the other is applied to the mixer in the A18 assembly.

TEST PROCEDURE 2

Test 2-a. Connect the oscilloscope to TP3 then to TP4. The sine wave at both test points should be about 0.3 volts p / p.

Model 8660B will be isolated to a circuit

 erforming the tests specified in thsembly SL2, is shown schematically and 1 Mixer and D/A converter Assembly ped on Service Sheet 16. The SL1 Phase
natically and described on Service Sheet

A19 assembly it should be removed and his will provide easy access to test points ation of the instrument.

ble 1-3)

 1) is to generate digitally controlled r000000 MHz in selectable increments as oscillator is phase locked to the divided and the difference frequency of the N1 t of SL1 is applied to the RF Section
ines the output of the digital to analog hase detector. The summing point (Q6-e urrent source from the +20 volt supply urce from the digital to analog converte rom the SL1 phase detector through R6 at zero volts.

5 volts (all BCD inputs to A18 low) most flows through A18Q3; very little flow: oltage negative), less current flows throug voltage at Q6-c decreases (becomes less

SERVICE SHEET 17 (cont'd

CR1 through CR10 and associated resistors are used to shape the voltage curve applied to the voltage controlled oscillator tuning varactors to ensure that nd R39 is about -27.5 volts. When all BCD input to the A18 assembly are low, Q6-c is about -30 volts and all of the diodes in the shaper are reverse biased. As he voltage from the digital to analog converter decreases (gets closer to -5 volts) current through Q6 increases and the Q6 collector voltage decreases. As the Q6-c oltage decreases first CR10, then CR9, etc. are forward biased. As the diodes are forward biased resistors are added in parallel with R35 and R38 to shape the voltage curve to the varactors. Q7 provides a low impedance output to drive the aractors.

TEST PROCEDURE

Test 1-a. Connect the digital voltmeter to TP1 and set the center frequency as shown in Table 8-9.

NOTE

The voltage readings are typical and may vary greatly from that shown due to differences in varactor characteristics. Th important point to note is the ratio of change as th center frequency is changed
f the voltage at TP1 does not change as the CF are changed check the input from he digital to analog converter (A18) at XA19-2-J. If the voltage levels at this point do not change as the CF is changed, trouble is probably in the A18 assembly.

If the voltage level from the digital to analog converter does change, but the level at TP1 does not, check Q6, Q7 and associated components.

VOLTAGE CONTROLLED OSCILLATOR AND AMPLIFIERS

Q5, Q4 and associated components comprise a voltage controlled oscillator. C17,
Q5, Q4 and associated components comprise a voltage controlled oscillator. C17, provides the feedback necessary to sustain oscillation. The resonant tank circuit is coupled to Q4 by capacitive divider C20 and C21. The FET acts as a source follower in the feedback circuit; it provides a high impedance at the gate and a low impedance at the source.

Q3 is a power splitter which drives two two-stage amplifiers. One amplifier output applied to the RF Section plug-in and the other is applied to the mixer in the A18 assembly

EST PROCEDURE 2

Test 2-a. Connect the oscilloscope to TP3 then to TP4. The sine wave at both test points should be about 0.3 volts p / p.

SERVICE SHEET 17 (cont'd)

If the signal is not present at either TP3 or TP4 connect the oscilloscope to Q3-b The signal level should be about 0.2 volts p / p. If the signal is present at $Q 3-b$ but present at Q3-b, check Q5, Q4 and associated components.

Test 2-b. Connect the counter to TP3 or TP4 and check for correct frequencies at the CF shown in Table 8-9

Table 8-10. Varactor Bias Versus Frequency SL1

Center Frequency	Frequency TP3 or TP4	Voltage TP1
0000000 Hz	30.000000 MHz	-30.7 V
1110000 Hz	28.890000 MHz	-25.3 V
2220000 Hz	27.780000 MHz	-21.2 V
3330000 Hz	26.670000 MHz	-17.2 V
4440000 Hz	25.560000 MHz	-13.4 V
5550000 Hz	24.450000 MHz	-10.6 V
6660000 Hz	23.340000 MHz	-8.2 V
7770000 Hz	22.230000 MHz	-6.3 V
8880000 Hz	21.120000 MHz	-4.7 V
9990000 Hz	20.010000 MHz	-3.3 V
9999999 Hz	20.000001 MHz	-3.2 V

Digitally remastered by ArtekMedia © 2002-2006

Figure 8-26. A1A1 Switch Control A

Figure 8-27. P/O A1A2 Key Control Assy (2 of 2)

Digitally remastered by ArtekMedia © 2002-2006

Digitally remastered by ArtekMedia © 2002-2006
P/O AIAG REG ITER ASSY 0860 -60100 (CF REGI ITER)

Digitally remastered by ArtekMedia © 2002-2006

[^0]: * HP pays postage on boxes mailed in U.S.A.

