86632B MODULATION SECTION AM-FM

HP MANUAL SCANS

By

Artel Media

1042 Plummer Cir. SW Rochester, MN 55902

www.artekmedia.com

"High resolution scans of obsolete technical manuals"

ALL HP MANUALS ARE REPRODUCED
 WITH PERMISSION OF AGILENT TECHNOLOGIES INC.

Reproduction of this scanned document or removal of this disclaimer Will be considered in violation of both Agilent's and Artek Media's copy rights

If your looking for a quality scanned technical manual in PDF format please visit our WEB site at www.artekmedia.com or drop us an email at manuals@artekmedia.com and we will be happy to email you a current list of the manuals we have available.

If you don't see the manual you need on the list drop us a line anyway we may still be able to point you to other sources. If you have an existing manual you would like scanned please write for details, This can often be done very reasonably in consideration for adding your manual to our library.

Typically the scans in our manuals are done as follows;

1) Typed text pages are typically scanned in black and white at 300 dpi.
2) Photo pages are typically scanned in gray scale mode at 600 dpi
3) Schematic diagram pages are typically scanned in black and white at 600 dpi unless the original manual had colored high lighting (as is the case for some 70's vintage Tektronix manuals).

Thanks

Dave \& Lynn Henderson
Artek Media

86632B MODULATION SECTION AM-FM

SERIAL NUMBERS

This Manual applies directly to instruments with serial numbers prefixed 1634A.

With the changes described in Section VII, this manual also applies to instruments with serial numbers prefixed $1429 \mathrm{~A}, 1533 \mathrm{~A}$, and 1545 A .

For additional important information about serial numbers, see INSTRUMENTS COVERED BY MANUAL in Section I.

Copyright HEWLETT-PACKARD COMPANY 1975, 1976 1501 PAGE MILL ROAD, PALO ALTO, CALIFORNIA, U.S.A.
Section Page Section Page
I GENERAL INFORMATION 1-1
1-1. Introduction 1-1
1-7. Specifications 1-1
1-9. Instruments Covered by Manual 1-1
1-12. Manual Change Supplement. 1-1
1-15. Description 1-2
1-21. Compatibility 1-2
1-23. Equipment Required but not Supplied 1-2
1-24. Mainframes 1-2
1-26. RF Sections and Frequency Extension Modules 1-2
1-28. Equipment Available 1-2
1-2 $\dot{9}$. Accessories 1-2
1-31. Service Kit 1-2
1-33. Safety Considerations 1-2
1-37. Recommended Test Equipment 1-4
II INSTALLATION 2-1
2-1. Introduction 2-1
2-3. Initial Inspection 2-1
2-5. Preparation for Use 2-1
2-6. Meter Zeroing 2-1
2-8. Power Requirements 2-1
2-10. Operating Environment 2-1
2-14. Interconnections 2-1
2-16. Modifications 2-1
2-18. Storage and Shipment 2-2
2-19. Environment 2-2
2-21. Packaging $2-2$
III OPERATION 3-1
3-1. Introduction 3-1
3-4. Panel Features 3-1
3-6. Operator's Check 3-1
3-8. Operating Instructions 3-1
3-9. Local and Remote Modes 3-1
3-14. Ensuring Calibrated Modulation Level 3-1
3-19. Deviation Direction 3-1
3-21. Operator's Maintenance (Lamp Replacement) 3-2
IV PERFORMANCE TESTS 4-1
4-1. Introduction. 4-1
4-3. Equipment Required 4-1
$4-5$. Test Record 4-1
4-7. Internal Modulation Rates and Output Level 4-1
4-8. Amplitude Modulation Depth and Meter Accuracy 4-2
4-9. FM Deviation and Meter Accuracy $4-3$
4-10. Modulation Distortion 4-5
4-11. AM Input Level and Rate 4-5
4-12. FM Input Level and Rate 4-7
4-13. Remote Programming. 4-8
V ADJUSTMENTS 5-1
5-1. Introduction 5-1
5-3. Recommended Test Equipment $5 \cdot 1$
5-7. Factory Selected Components 5-1
5-9. Related Adjustments 5-1
5-11. Adjustment Locations 5-1
5-13. Safety Considerations. 5-1
5-19. Post-Repair Test and Adjustments 5-2
5-22. Modulation Oscillator Adjustment 5-2
5-23. Amplitude Leveling Adjustment. 5-3
$5-24$. Remote Modulation Signal Level and Meter Adjustments 5-4
5-24a. Alternate Meter Adjustment Procedure 5-5
$5-25$. Reduce Deviation Lamp Adjustment 5-6
5-26. FM Deviation Attenuator Adjustment $5 \cdot 7$
5-27. VCO Center Frequency Adjustment 5-8
VI REPLACEABLE PARTS 6-1
6-1. Introduction. 6-1
6-3. Abbreviations 6.1
6-5. Replaceable Parts List 6-1
6-7. Ordering Information 6-1
6-10. Spare Parts Kit 6-1
6-12. Direct Mail Order System 6-1
VII MANUAL CHANGES 7-1
7-1. Introduction. 7-1
7-3. Manual Changes 7-1
7.6. Manual Change Instructions. 7-1
VIII SERVICE 8-1
8-1. Introduction. 8-1
8.8. Safety Considerations. 8-1
8-12. Principles of Operation 8-1
8-15. Troubleshooting 8-1
8-16. System Troubleshooting 8-2
8-18. Modulation Section Troubleshooting 8-2
8-20. Troubleshooting Aids 8-2
8-27. Recommended Test Equipment 8.2
8-29. Repair. 8-2
8-30. General Disassembly Procedures 8-2
8-33. Post Repair Adjustments. 8-2
8-35. Principles of Systems Operation $8-2$
8-37. RF Signal Flow 8-6
8-39. Remote Operation 8-6
8-41. Local Operation 8-6

ILLUSTRATIONS

Figure Page
1-1. HP Model 86632B Modulation Section 1-0
2-1. Model 86632B Being Installed in Mainframe 2-2
3-1. Front and Rear Panel Controls, Connectors, and Indicators. 3-4
3-2. Operator's Check. 3-5
3-3. Frequency Modulation Spectrum
(Vertical Sensitivity $10 \mathrm{~dB} /$ Division 3-6
3-4. Front Panel Operating Instructions 3-7
4-1. Modulation Rate and Output Level Test Setup 4.1
4 -2. Amplitude Modulation Depth and Meter Accuracy Test Setup 4-2
4-3. FM Deviation and Meter Accuracy Test Setup. 4-4
4-4. AM Input Level and Rate Test Setup. $4-5$
4-5. FM Input Level and Rate Test Setup 4-7
4-6. Remote Programming Test Setup 4-8
5-1. Modulation Oscillator Adjustment Test Setup 5-2
$5-2$. Amplitude Leveling Adjustment Test Setup 5-3
5-3. Remote Modulation Signal Level and Meter Adjustment Test Setup 5-4
5-4. Reduce Deviation Lamp Adjustment Test Setup 5-6
5-5. FM Deviation Attenuator Adjustment Test Setup 5.7
5.6. VCO Center Frequency Adjustment Test Setup 5-8
8-1. Schematic Diagram Notes 8-3
8-2. Circuit Board Extended for Troubleshooting $8-5$
8-3. System Block Diagram 8.7
8-4. Troubleshooting Block Diagram 8-13
8-5. Simplified Switch Logic Block Diagram 8.15
8-6. A2 Switch Logic Assembly Component Locations 8-15
TABLES

SAFETY CONSIDERATIONS

GENERAL

This product and related documentation must be reviewed for familiarization with safety markings and instructions before operation. This product has been manufactured and tested in accordance with HP Standards.

SAFETY SYMBOLS

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage. (See Table of Contents.)

WARNING
The WARNING sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. Do not proceed beyond a CAUTION sign until the indicated conditions are fully understood and met.

SAFETY EARTH GROUND

This plug-in section is used in a Safety Class I product (provided with a protective earthing terminal). An uninterruptible safety earth ground must be provided from the main power source to the product input wiring terminals, power cord, or supplied power cord set. Whenever it is likely that the protection has been impaired, the product must be made inoperative and be secured against any unintended operation.

BEFORE APPLYING POWER

Verify that the mainframe is configured to match the available main power source per the input power configuration instructions provided in the mainframe manual.

SERVICING

WARNINGS

Any servicing, adjustment, maintenance, or repair of this product must be performed only by qualified personnel.

Adjustments described in this manual may be performed with power supplied to the product while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.

Capacitors inside this product may still be charged even when disconnected from its power source.

MODEL 86632B

Figure 1-1. HP Model 86632B Modulation Section

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This manual contains all information required to install, operate, test, adjust, and service the HP Model 86632B Modulation Section plug-in.

1-3. The various sections of this manual provide information as follows:
a. SECTION I, GENERAL INFORMATION, such as description, specifications, accessories, and recommended test equipment.
b. SECTION II, INSTALLATION, provides information relative to incoming inspection, preparation for use, mounting, packing and shipping.
c. SECTION III, OPERATION, provides information relative to operating the instrument.
d. SECTION IV, PERFORMANCE TESTS, provides information required to ascertain that the instrument is performing in accordance with published specifications.
e. SECTION V, ADJUSTMENTS, provides information required to properly adjust and align the instrument after repairs.
f. SECTION VI, REPLACEABLE PARTS, provides ordering information for all parts and assemblies.
g. SECTION VII, MANUAL CHANGES, contains backdating information to make documentation in this manual applicable to all earlier versions of this instrument.
h. SECTION VIII, SERVICE, includes information required to service the instrument.

1-4. Figure 1-1 shows the Modulation Section.
1-5. Packaged with this manual is an Operating Information Supplement. This is simply a copy of the first three sections of this manual. This supplement should stay with the instrument for use by the operator. Additional copies may be ordered separately through your nearest Hewlett-Packard office. The part number is listed on the title page of this manual.

1-6. On the title page of this manual, below the manual part number, is a "Microfiche" part number. This number may be used to order 4×6-inch microfilm transparencies of the manual. The microfiche package also includes the latest Manual Changes supplement as well as all pertinent Service Notes.

1-7. SPECIFICATIONS

1-8. Instrument specifications are listed in Table 1-1. These specifications are the performance standards, or limits against which the instrument may be tested.

1-9. INSTRUMENTS COVERED BY MANUAL

$1-10$. This instrument has a two-part serial number. The first four digits and the letter comprise the serial number prefix. The last five digits form the sequential suffix that is unique to each instrument. The contents of this manual apply directly to instruments having the same serial number prefix as listed under SERIAL NUMBERS on the title page.

1-11. For information concerning a serial number prefix not listed on the title page or in the Manual Changes supplement, contact your nearest HewlettPackard office.

1-12. MANUAL CHANGE SUPPLEMENT

1-13. An instrument manufactured after the printing of this manual may have a serial prefix that is not listed on the title page. This unlisted serial prefix indicates that the instrument is different from those documented in this manual. The manual for this instrument is supplied with a yellow Manual Changes supplement that contains "change information" that documents the differences.

1-14. In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, HewlettPackard recommends that you periodically request

MANUAL CHANGE SUPPLEMENT (Cont'd)

the latest Manual Changes supplement. The supplement for this manual is keyed to this manual's print date and part number, both of which appear on the title page. Complimentary copies of the supplement are available from Hewlett-Packard.

1-15. DESCRIPTION

1-16. The HP Model 86632B Modulation Section is one of several plug-in units available for use in a Model 8660-Series Synthesized Signal Generator System. This model features both amplitude and frequency modulation.

1-17. An internal oscillator provides modulation drive rates of 400 and 1000 Hz . The oscillator output is available at the front panel jack for test purposes or for a synchronizing trigger for an oscilloscope. External modulation signal sources are connected to the front panel jack and may be either ac coupled or dc coupled.

1-18. Amplitude modulation depth is continuously adjustable from 0 to 100% except as limited by the RF Section and the selected center frequency. Frequency modulation peak deviation is adjustable from dc to 1 MHz (2 MHz at center frequencies $\geqslant 1300 \mathrm{MHz}$) in three ranges. FM deviation is limited by the RF Section and center frequencies $<10 \mathrm{MHz}$.

1-19. Amplitude modulation rates are limited by the RF Section, system center frequency, and the mode of operation (external ac). FM rates may be used up to 1 MHz except as limited by the RF Section, system center frequencies $<10 \mathrm{MHz}$ and ac coupling of an external source.

1-20. Programmed inputs (remote mode) may be used to control all the functions of the Modulation Section. Programmed data is routed through the Mainframe to the Modulation Section storage registers. The decoded data selects mode, source, and modulation level. The FM/CF CAL function may also be programmed.

1-21. COMPATIBILITY

1-22. With the exception of certain unmodified mainframes, the Model 86632B is compatible with all instruments which make up the Synthesized Signal Generator System. If the Modulation Section is installed in an unmodified mainframe, the modulation level meter reading will be incorrect in the FM mode at center frequencies $\geqslant 1300 \mathrm{MHz}$.

Refer to the paragraph entitled Modifications in Section II.

1-23. EQUIPMEINT REQUIRED BUT NO T SUPPLIED

1-24. Mainframes

$1-25$. The HP Model 8660 -Series mainframe provides the power, control logic, and RF signal inputs needed to operate the Modulation Section, RF Section, and Frequency Extension Module plugins. The mainframe also serves to interconnect the plug-ins.

1-26. RF Sections and Frequency Extension Modules

1-27. The Model 86600 -series RF Section and the 11661-series Frequency Extension Module mix the RF inputs from the mainframe and Modulation Section to produce the system center frequency. Systems with maximum center frequency less than or equal to 160 MHz do not use a Frequency Extension Module.

1-28. EQUIPMENT AVAILABLE

1-29. Accessories

1-30. Extender cards for use in servicing the 8660 system are contained in the Rack Mount Kit (HP part number 08660-60070) which is supplied with the mainframe. A complete listing of the contents is found in Section I of the mainframe manual.

1-31. Service Kit

1-32. The HP 11672A Service Kit contains interconnecting cables, RF cables, various coaxial adapters, and an adjustment tool, all of which are useful in servicing the mainframe and plug-in units. Refer to HP 11672A Operating Note or the 8660series mainframe manual for a listing and details of the contents.

1-33. SAFETY CONSIDERATIONS

$1-34$. The Modulation Section has been manufactured and tested in accordance with HP standards.

1-35. Documentation for the Modulation Section and other sections of the Synthesized Signal Generator System should be received before operating or servicing. Anyone who operates or services the system should be familiar with safety markings and instructions. Refer to the Safety Considerations

Table 1-1. Specifications

SPECIFICATIONS

Functions: Internal and external AM or FM. Both modes are fully programmable.

Meter: 0-100\% AM. FM peak deviation $0-10,100$, and 1000 kHz for center frequencies $<1300 \mathrm{MHz}$; $0-20,200$, and 2000 kHz for center frequencies $\geqslant 1300 \mathrm{MHz}$.

Reduce Deviation Indicator: Lights when peak deviation exceeds approximately 110% of full scale.

FM-CF CAL: In the FM mode, pressing the front panel CF CAL button initiates a 5 -second internal calibration cycle to correct any VCO drift. This feature is also programmable.

Internal Modulation

Internal Rates: 400 Hz and $1 \mathrm{kHz} \pm 5 \%$.
AM: Continuously adjustable from 0 to 100% or maximum specified for RF Section installed.

FM:
Deviation: Adjustable from 0 to 1 MHz peak (2 MHz at center frequencies $\geqslant 1300 \mathrm{MHz}$) maximum specified for RF Section installed. Not to exceed $1 / 10$ of carrier frequency.
Distortion: Maintains minimum AM/FM distortion specified for RF Section used.
Modulating Signal Output: Selected internal modulation signal provided at front panel BNC connector at level of 200 mVrms minimum into 10 kilohm resistive load.

External Modulation

Input Level Required:
AC Mode: External modulating signal must be between 1 and 2 Vrms to provide proper leveling amplifier performance.
DC Mode: External modulating signal must be approximately 1.8 Vrms (2.0 Vrms maximum) to maintain full vernier range and calibrated remote programming of modulation level.
Input Impedance: 600 ohms.

AM:
Rate: DC to maximum specified for RF Section. 20 Hz minimum in AC mode.

Depth: 0 to maximum specified for RF Section.
Distortion: External modulating signal distortion must be less than 0.3% to meet RF Section specifications.
Indicated AM Accuracy (at 400 and 1000 Hz rates): ${ }^{1}$
$\pm 5 \%$ of full scale ($\pm 10 \%$ of full scale at center frequencies $\geqslant 1300 \mathrm{MHz}$).

FM:
Rate: DC to 1 MHz in DC mode, or 20 Hz to 1 MHz in AC mode. Not to exceed $1 / 10$ of carrier frequency. Maximum usable modulation rate depends on specifications for RF Section installed.
Deviation: 0 to 1 MHz peak for center frequencies below $1300 \mathrm{MHz}: 0$ to 2 MHz for center frequencies $\geqslant 1300 \mathrm{MHz}$. Maximum usable deviation depends on specifications for RF Section installed. Cannot exceed $1 / 10$ of carrier frequency.
Distortion: External modulation signal distortion must be less than 0.3% to meet RF Section specifications.
Indicated FM Accuracy: $\pm 5 \%$ of full scale up to 20 kHz rates.

Remote Programming

Modulation Setting Resolution: 1\% depth for AM; 1/50 of range selected for FM.

Modulation Setting Accuracy: $\pm 5 \%$ of setting or $1 / 2 \%$ of full scale, whichever is greater.

General

Size: Plug-in to fit all 8660 mainframes.
Weight: Net, $2.6 \mathrm{~kg}(6 \mathrm{lb})$.
${ }^{1}$ With $86601 \mathrm{~A}, \pm 5 \%<100 \mathrm{MHz} ; \pm 7 \% \geqslant 100 \mathrm{MHz}$.

SAFETY CONSIDERATIONS (Cont'd)

page found at the beginning of the manuals for a summary of safety information.

1-36. Safety information pertinent to the task at hand (installation, operation, performance testing, adjustments or service) is found throughout this manual.

1-37. RECOMMENDED TEST EQUIPMENT

1-38. Table 1-2 lists the test equipment and accessories recommended for use in testing, adjusting, and servicing the Modulation Section. If any of the recommended test equipment is unavailable, instruments with equivalent specifications may be used.

Table 1-2. Recommended Test Equipment

Item	Minimum Specifications	Suggested Model	Use*
Analyzer, Spectrum	Measurement Accuracy $\pm 2.0 \mathrm{~dB}$ from 10 MHz to 2600 MHz . Resolution bandwidth 0.3 to 100 kHz .	HP 140T with HP 8555A and HP 8552B plug-ins	P, S
Analyzer, Wave	1 to 2 kHz 200 Hz maximum bandwidth	HP 310A	P
Attenuator	3 dB pad	HP 8491A, Option 003	A, S
Cable, Extender	Part of HP 11672A Service Kit	HP 11672-60002	A
Counter, Frequency	Range 200 Hz to 30 MHz	HP 5340A	P, A, S
FM Discriminator	100 kHz to 10 MHz with 1 V sensitivity	HP 5210A, Option 010	P, A
Oscillator, Test	10 Hz to 1 MHz ; 1.0 to 2.0 Vrms into 600 ohms	HP 651B	P, A, S
Oscilloscope	DC to 1 MHz , delayed sweep, timẹ base 50 ns to 1 s	HP 180C with HP 1801A and HP 1821A plug-ins	P, A, S
Oscilloscope Divider Probe, 10:1	10:1 divider 10 Megohm 10 pF	HP 10004A	P, A, S
Programmer, Marked Card	Capable of programming BCD or HP-IB data	HP 3260A, Option 001	P
Resistor, 10K	$\pm 2 \%$	HP 0757-0442	P, S
Tee, Coaxial		HP 1250.0781 (BNC)	P
Voltmeter, Digital	Accuracy: $\pm 0.2 \%$ Range: 0.00 to $\pm 30 \mathrm{Vdc}$	HP 34740A with HP 34702A plug-in	S
Voltmeter, True RMS	$\pm 0.1 \mathrm{~dB}$ from 100 Hz to 1 MHz 1 mVrms to 1 Vrms	HP 3403C	A, S
* $\mathrm{A}=$ Adjustment, $\mathrm{P}=$ Performance, $\mathrm{S}=$ Service			

SECTION II
 INSTALLATION

2-1. INTRODUCTIOIN

2-2. This section provides information relative to initial inspection, preparation for use, and storage and shipment of the Model 86632B Modulation Section plug-in. Initial inspection provides instructions to be followed when an instrument is received in a damaged condition. Preparation For Use gives all necessary interconnection and installation instruction. Storage and Shipment provides instructions and environmental limitations pertaining to instrument storage; also provided are packing and packaging instructions which should be followed in preparing the instrument for shipment.

2-3. INITIAL INSPECTION

$2-4$. This instrument met all of its performance specifications when packaged for shipment. If the shipping container or cushioning material is damaged it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1. Procedures for checking electrical performance are given in Section IV. If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the electrical performance test, notify the nearest Hewlett-Packard office. If the shipping container is damaged or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping material for the carrier's inspection.

2-5. PREPARATION FOR USE

2-6. Meter Zeroing

2-7. With the power off, the Modulation Section meter indicator needle should be positioned on zero. If the needle is not on zero, turn the zero set screw adjustment counterclockwise to bring the needle below zero. Slowly rotate the zero set clockwise until the indicator is on zero. Rotate the zero set about 30 degrees counterclockwise.

2-8. Power Requirements

$2-9$. The power required for operation of the Modulation Section is furnished by the mainframe.

Power consumption of the Modulation Section is approximately 5 volt-amperes.

2-10. Operating Environment

2-11. Temperature. Cooling is provided to the Modulation Section by a fan in the mainframe. This assures the ambient temperature of the instrument stays within reasonable limits when the instrument is operated at temperatures between 0 and $55^{\circ} \mathrm{C}\left(32\right.$ to $\left.131^{\circ} \mathrm{F}\right)$.

2-12. Humidity. The instrument may be operated in environments with humidity up to 95%. However, the instrument should also be protected from temperature extremes which may cause condensation within the instrument.

2-13. Altitude. The instrument may be operated at altitudes up to 4500 m (15,000 feet).

> WARNING
> The multiple pin connector at the rear of the plug-in cavity in the mainframe will be exposed when the Modulation Section is removed. Avoid contact with these exposed pins even with the line (mains) voltage off and the power cord disconnected. Power supply voltages may still remain which, if contacted, may result in personal injury.

2-14. Interconnections

$2-15$. With the 8660 line power turned off, insert the Modulation Section into the left plug-in cavity in the mainframe and push it about half way in. The latch, at the lower right corner of the front panel, should be rotated to the left until it protrudes perpendicular to the front panel. Push the plug-in all the way in and rotate the latch to the right until it snaps into place. Refer to Figure 2-1.

2-16. Modifications

$2-17$. The frequency doubler function modification must be installed to ensure correct frequency modulation level readings at all center frequencies. Model 8660 A and 8660 B mainframes with serial

Modifications (Cont'd)

prefix 1503A and below must have a field update kit installed. For mainframe configurations other than Option 005 (BCD programming format), order kit number 08660-60306. For Option 005 mainframes (HP-IB format), order kit number 08660-60308.

2-18. STORAGE AND SHIPMENT

2-19. Environment

2-20. The storage and shipping environment of the Model 86632B should not exceed the following limits:

Temperature: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Humidity: Up to 95%
Altitude: Up to 7600 m (25,000 feet).
The instrument should also be protected from temperature extremes which may cause condensation within the instrument.

2-21. Packaging

2-22. Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number,
and full serial number. Also, mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by model number and full serial number.

2-23. Other Packaging. The following general instructions should be used for re-packaging with commercially available materials:
a. Wrap the instrument in heavy paper for plastic. If shipping to a Hewlett-Packard office or service center, attach a tag indicating the type of service required, return address, model number, and full serial number.
b. Use a strong shipping container. A doublewall carton made of 250 -pound test material is adequate.
c. Use enough shock-absorbing material (3to 4 -inch layer) around all sides of the instrument to provide firm cushion and prevent movement inside the container.
d. Seal the shipping container securely.
e. Mark the shipping container FRAGILE to assure careful handling.

Figure 2-1. Model 86632B Being Installed in Mainframe

SECTION III OPERATION

3-1. INTRODUCTION

3-2. This section provides operating instructions for the Hewlett-Packard Model 86632B Modulation Section.

3-3. The Modulation Section is designed to select AM, FM, or CW output from the RF Section.

3-4. PANEL FEATURES

$3-5$. Front and rear panel controls, indicators, and connectors of the Modulation Section are shown in Figure 3-1.

3-6. OPERATOR'S CHECK

3-7. An operator's check which gives reasonable assurance that the instrument is capable of normal performance is shown in Figure 3-2.

3-8. OPERATING INSTRUCTIONS

3-9. Local and Remote Modes

3-10. The Modulation Section may be operated by front panel controls in the local mode or externally programmed in the remote mode.

3-11. Local (Front Panel) Operation. Figure 3-4 provides local mode operating instructions for the Modulation Section.

3-12. Remote (Programmed) Operation. Application Note 164-1, "Programming the 8660A/B Synthesized Signal Generator" provides most of the information needed for remote operation using the BCD interface. AN-164-2 "Calculator Control of the $8660 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ Synthesized Signal Generator" provides programming information for the Hewlett-Packard Interface Bus (HP-IB). Information pertaining to remote operation is also included in abridged form in Section III of the Mainframe manuals.

3-13. Additional operating information is found in the appropriate manual. For example, in this manual BCD and HP-IB programming codes for the Model 86632B are found in Tables 3-1 and 3-2. Table 3-3 contains examples of programmed modu-
lation level and the actual modulation level at center frequencies above and below 1300 MHz .

3-14. Ensuring Calibrated Modulation Level

$3-15$. The information in the following paragraphs may be used to ensure calibrated modulation level readings under different operating modes and conditions.

3-16. Source Control Settings and External Inputs. The Modulation Section meter indicates the correct modulation level if the SOURCE selected is INTERNAL, or if the input to the front panel jack is 1 to 2 Vrms in the EXTERNAL AC mode, or if the input is $1.80 \pm 0.02 \mathrm{Vrms}$ in EXTERNAL DC mode.

3-17. FM DC Inputs. Due to internal signal inversion, the modulation meter circuit in the Modulation Section actually responds to the negative peaks of the input modulating signal. Therefore, for dc inputs, it is necessary to set the modulation level with a negative dc level. The value of this input should be $2.54 \pm 0.03 \mathrm{Vdc}$ (1.414 times 1.8 Vrms) which is the equivalent of the peak value of the specified input. Next, the MODULATION LEVEL control should be used to set the desired deviation. The polarity of the dc input may then be reversed and although the meter will indicate zero, the center frequency will be shifted in the opposite direction. After making this setup, programmed inputs are calibrated for dc modulation inputs.

3-18. Meter Driver Frequency Response. The modulation meter circuit responds properly to a dc input (negative) and to rates above 50 Hz . Between these limits the meter detector circuit will produce a low reading. To use the meter circuit properly, set the deviation desired at either dc or at rates above 50 Hz (to 100 Hz) and ignore the meter reading at the low rates.

3-19. Deviation Direction

3-20. In the FM mode, a positive going modulation signal causes the system center frequency to be increasing.

Table 3-1. BCD Programming

Data		Data Description	Command Function
D_{1}	D_{2}		
$\begin{aligned} & 0001 \\ & 0010 \\ & 0100 \\ & 1000 \end{aligned}$		$\begin{gathered} \text { INT } \quad 1 \mathrm{kHz} \\ 400 \mathrm{~Hz} \\ \text { EXT DC } \\ \text { AC } \end{gathered}$	Modulation Type: Source
	$\begin{aligned} & 0000 \\ & 0001 \\ & 0010 \\ & 0100 \\ & 1000 \end{aligned}$	$\begin{array}{ll} \text { OFF } & \\ \text { FM } & \text { X10 } \\ & \text { X1 } \\ & \text { X.1 } \\ \text { AM } & \end{array}$	Modulation Type: Mode
1111	0100		
$\begin{gathered} 0001 \\ 0010 \\ 0011 \\ \cdot \\ \cdot \\ \cdot \\ 0000 \\ 0001 \\ 0010 \\ \cdot \\ \cdot \\ \cdot \\ 1001 \\ 0000 \end{gathered}$	$\begin{gathered} 0000 \\ 0000 \\ 0000 \\ . \\ . \\ . \\ 0001 \\ 0001 \\ 0001 \\ . \\ . \\ . \\ 1001 \\ 1010 \end{gathered}$	$\begin{gathered} 1 \\ 2 \\ 3 \\ . \\ . \\ . \\ 10 \\ 11 \\ 12 \\ . \\ . \\ . \\ 99 \\ 100 \end{gathered}$	Modulation Level: AM\% or number of increments of $1 / 50 \mathrm{FM}$ full scale deviation (see Table 3-3).
1111	0101		
1111	0110		FM-CAL

1. Programming modulation level and modulation type requires two words each. Each word consists of two BCD digits. The first word is formed by taking one BCD digit from each column of the upper part of each section of the table. The second word (specified in the last line of each section of the table) consists of a transfer command and function address.
2. FM-CAL is programmed by inputting the two BCD digits (transfer command and function address) as shown.
3. Example. To program the internal 1 kHz source in the FM X1 range, 76 kHz peak deviation and FM-CAL, the following words are input:

00010010 INT 1 kHz ; FM X1
11110100 TRANSFER COMMAND; SOURCE/MODE ADDRESS
$1000 \quad 0011 \quad 76 \mathrm{kHz}$ peak deviation (38%)
11110101 TRANSFER COMMAND; MODULATION LEVEL ADDRESS
11110110 TRANSFER COMMAND; FM-CAL ADDRESS

Table 3-2. HP-IB Programming

Command			Data Description	Command Function
Data		Program Code		
$\begin{aligned} & 1 \\ & 2 \\ & 4 \\ & 8 \end{aligned}$		\$	$\begin{array}{\|cc} \text { INT } & 1 \mathrm{kHz} \\ & 400 \mathrm{~Hz} \\ \text { EXT } & \text { DC } \\ & \mathrm{AC} \end{array}$	Modulation Type: Source
	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 4 \\ & 8 \end{aligned}$		OFF FM X10 X1 AM X.1	Modulation Type: Mode
1 2 3 \cdot \cdot 0 1 2 \cdot $\dot{9}$ <blank $>$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & . \\ & . \\ & 1 \\ & 1 \\ & 1 \\ & . \\ & 9 \end{aligned}$	\%	$\begin{array}{r} 1 \\ 2 \\ 3 \\ \cdot \\ \cdot \\ \dot{9} \\ 10 \\ 11 \\ 12 \\ \cdot \\ 9 \\ 99 \\ 100 \end{array}$	Modulation Level: AM\% or number of increments of $1 / 50$ FM full scale deviation (see Table 3-3)
		\&		FM-CAL

1. Programming modulation level and modulation type requires a three character command for each. This command is formed by taking one character from each of the first three columns in each section of the above table.
2. FM-CAL is programmed by a one character command.
3. Example. To program the internal 1 kHz source in the FM X1 range, 76 kHz peak deviation and FM-CAL, the following command is sent: $83 \% 12 \$ \&$.

3-21. OPERATOR'S MAINTENANCE (LAMP REPLACEMENT)

$3-22$. The only operator's mainteriance is the REDUCE DEVIATION lamp replacement. To replace this bulb, proceed as follows:
a. Unscrew the orange lens covering the REDUCE DEVIATION lamp.
b. Remove the lamp and replace it with a new HP Part No. 2140-0092.
c. Replace the orange lens.

Table 3-3. AM Depth and Frequency Deviations for Remote Programmed Modulation Levels

Programmed Level	AM Depth	FM $\times 10$		FM $\times 1$		FM $\times 0.1$	
		$<1300 \mathrm{MHz}$	$\geqslant 1300 \mathrm{MHz}$	$<1300 \mathrm{MHz}$	$\geqslant 1300 \mathrm{MHz}$	$<1300 \mathrm{MHz}$	$\geqslant 1300 \mathrm{MHz}$
1\%	1\%	20 kHz	20 kHz	2 kHz	2 kHz	0.2 kHz	0.2 kHz
2\%	2\%	40 kHz	40 kHz	4 kHz	4 kHz	0.4 kHz	0.4 kHz
3\%	3\%	60 kHz	60 kHz	6 kHz	6 kHz	0.6 kHz	0.6 kHz
-	-
-	.	-	-	.	.	.	
-	.	.					
52\%	52\%	1.04 MHz	1.04 MHz	104 kHz	104 kHz	10.4 kHz	10.4 kHz
53\%	53\%	1.06 MHz	1.06 MHz	106 kHz	106 kHz	10.6 kHz	10.6 kHz
54\%	54\%	1.08 MHz	1.08 MHz	108 kHz	108 kHz	10.8 kHz	10.8 kHz
55\%	55\%		1.10 MHz	*	110 kHz		11.0 kHz
56\%	56\%		1.12 MHz		112 kHz		11.2 kHz
-
-							.
			-		-		-
98\%	98\%		1.96 MHz		196 kHz		19.6 kHz
99\%	99\%		1.98 MHz		198 kHz		19.8 kHz
100\%	100\%	*	2 MHz	*	200 kHz	*	20.0 kHz

* Overrange, reduce deviation warning light is on.

Figure 3-1. Front and Rear Panel Contrals, Connectors, and Indicators

OPERATOR'S CHECK

BEFORE CONNECTING THIS SYSTEM TO LINE (MAINS) VOLTAGE, the safety and installation instructions found in Sections II and III of the mainframe manual should be followed.

NDTE

If the Modulation Section is installed in older model 8660 A or 8660 B mainframes, the modulation level meter reading will be incorrect at center frequencies $\geqslant 1300 \mathrm{MHz}$. Refer to the paragraph entitled Modifications in Section II.
a. Connect equipment as shown above.
b. Set the Spectrum Analyzer controls as follows:

| Center Frequency $. ~ . ~$ |
| :--- |$. \quad . ~ 100 \mathrm{MHz}$

c. Set CENTER FREQUENCY on mainframe to 100 MHz .
d. Set the RF Section output level to 0 dBm .
e. Set Modulation Section SOURCE switch to INTERNAL 1000 and MODE switch to OFF (CW).
f. Verify the presence of the 100 MHz CW signal.
g. Change the Modulation Section MODE control to AM and adjust the MODULATION LEVEL control for an indication of 50% on the meter. Verify that the first sidebands are 12 dB down from the carrier.
h. Change the Spectrum Analyzer controls as follows:
Resolution Bandwidth 100 kHz
Frequency Span Per Division 0.1 MHz
Reference Level -10 dBm
Vertical Sensitivity per Division 10 dB

Figure 3-2. Operator's Check (1 of 2)

OPERATOR'S CHECK

i. Change the Modulation Section MODE switch to FM X10, SOURCE switch to INTERNAL 400, and adjust the MODULATION LEVEL control to 200 kHz peak deviation (meter reading of 20).
j. Verify that the display is similar to Figure 3-3.
k. Change the Modulation MODE switch to FMx1 and set the MODULATION LEVEL control for a meter reading of 100 (100 kHz peak deviation).

1. Change the Spectrum Analyzer controls as follows:

Resolution Bandwidth 10 kHz
Frequency Span per Division 0.05 MHz
m. Verify that the display is similar to Figure 3-3.
n. Change the Modulation Section MODE switch to FM X0.1.
o. Change the Spectrum Analyzer controls as follows:

Resolution Bandwidth 1 kHz
Scan width per division 5 kHz
p. Verify that the display is similar to Figure 3-3.

Figure 3-2. Operator's Check (2 of 2)

Figure 3-3. Frequency Modulation Spectrum (Vertical Sensitivity $10 \mathrm{~dB} /$ Division)

a. With mainframe LINE switch turned off, check position of needle on meter 1. If off zero, adjust screw 3 until meter indication is on zero. (Refer to Meter Zeroing in Section II.)

WARNING

BEFORE CONNECTING THIS SYSTEM TO THE LINE (MAINS) VOLTAGE, the safety and installation instructions found in Sections II and III of the mainframe manual should be followed.

NOTE

If the Modulation Section is installed in older model 8660A or 8660 B mainframes, the modulation level meter reading will be incorrect at center frequencies $\geqslant 1300 \mathrm{MHz}$. Refer to the paragraph entitled Modifications in Section II.
b. Turn on instrument.
c. Set modulation SOURCE switch

to either INTERNAL (black) or EXTERNAL (green) positions, as desired.

Figure 3-4. Front Panel Operating Instructions (1 of 2)

FRONT PANEL OPERATING INSTRUCTIONS

1. For INTERNAL positions, set to either 400 or 1000 Hz . In these positions, a modulation signal (200 mVrms minimum into $10 \mathrm{k} \Omega$ load) for oscilloscope synchronization is provided at the OUTPUT port 6 .
2. For EXTERNAL POSITIONS, the INPUT port 6 requires an external modulation signal.

Set SOURCE switch 4 to AC for modulating signals between 20 Hz and up to 1 MHz depending on the RF Section. The input signal should be $1.5 \pm 0.5 \mathrm{Vrms}$.

Set SOURCE switch 4 to DC for a modulating signal between DC and up to 1 MHz . Set the input signal to $1.8 \pm 0.1 \mathrm{Vrms}(1.80 \pm 0.02 \mathrm{Vrms}$ in the remote mode).
d. Set MODE switch (9) to AM, FM X0.1, FM X1, or FM X10. In AM the meter indicates percentage AMdepth. In FM the meter indicates peak frequency deviation in kHz when multiplied by the indicated range factor on the MODE switch (9) knob. Lights 2 and 10 indicate the correct range to use.
e. Adjust percentage AM depth and FM peak deviation with the MODULATION LEVEL control 1 .
f. In FM Mode, the FM CF CAL button (8) is pressed to lock the internal VCO to the mainframe reference oscillator. The calibration cycle takes about 5 seconds.

SECTION IV PERFORMANCE TESTS

4-1. INTRODUCTION

4-2. The procedures in this section are used to verify that the electrical performance of the Model 86632B Modulation Section meets the specifications listed in Table 1-1. All tests can be performed without access to the interior of the instrument. A simple operational test is included in Section III under Operator's Checks.

4-3. EQUIPMENT REQUIRED

4-4. Equipment required for the performance tests is listed in Table 1-2, Recommended Test Equip-
ment. Equipment that satisfies the critical specifications given in the table may be substituted for the equipment recommended.

4-5. TEST RECORD

$4-6$. Results of the performance tests may be tabulated on the Test Record at the end of the procedures. The Test Record lists all of the tested specifications and their acceptable limits. Test results recorded at incoming inspection may be used for comparison in periodic maintenance, troubleshooting, and after repairs or adjustment have been made.

PERFORMANCE TESTS

4-7. INTERNAL MODULATION RATES AND OUTPUT LEVEL

SPECIFICATION: An internal modulation signal of 400 Hz or $1000 \mathrm{~Hz} \pm 5 \%$ at a level of 200 mVrms minimum into a 10 K ohm load is provided at the front panel BNC connector.

DESCRIPTION: This test verifies the operation of the internal modulation oscillator. Both frequency and output level of the modulation plug-in are checked.

Figure 4-1. Modulation Rate and Dutput Level Test Setup

EQUIPMENT:	Oscilloscope HP 180C/1801A/1821A
	Frequency Counter HP 5340A
	Coaxial Tee (BNC)

PERFORMANCE TESTS

4-7. INTERINAL MODULATION RATES AND OUTPUT LEVEL (Cont'd)

PROCEDURE: 1. Connect the Modulation Section OUTPUT to the counter input.

2. Set the Modulation Section controls as follows: MODE to AM, SOURCE to 400. The counter should read $400 \pm 20 \mathrm{~Hz}$.
\qquad
Hz
3. Change the SOURCE control to 1000 . The counter should read $1000 \pm 50 \mathrm{~Hz}$.
\qquad Hz
4. Connect the Modulation Section OUTPUT to the oscilloscope through a Coaxial Tee. Load the remaining Coaxial Tee port with a 10 K ohm resistor. The signal displayed on the oscilloscope should be a minimum of 560 mVp -p (200 mVrms).
\qquad $m V p-p$
5. Change the SOURCE control to 400. The signal displayed on the oscilloscope should be a minimum of $560 \mathrm{mVp}-\mathrm{p}$ (200 mVrms).
\qquad

4-8. AMPLITUDE MODULATION DEPTH AND METER ACCURACY

SPECIFICATION: Modulation Depth: Continuously adjustable from 0 to 100% or maximum specified for RF Section installed. Meter: Range 0 to 100% modulation for 400 and 1000 Hz rates, accuracy is $\pm 5 \%$ of full scale ($\pm 10 \%$ of full scale for center frequencies $\geqslant 1300 \mathrm{MHz}$).

DESCRIPTION: This test verifies Amplitude Modulation Depth and meter accuracy at $20 \%, 50 \%$, and 90% modulation by measuring the amplitude modulation of the output signal.

Figure 4-2. Amplitude Modulation Depth and Meter Accuracy Test Setup
EQUIPMENT: Oscilloscope HP 180C/1801A/1821A
PROCEDURE: 1. Connect the equipment as shown in Figure 4-2.
2. Set the mainframe frequency to 10 MHz and the RF Section output level to 0 dBm .
3. Set the Modulation Section MODE control to OFF.

PERFORMANCE TESTS

4-8. AMPLITUDE MODULATION DEPTH AND METER ACCURACY (Cont'd)

4. Set the oscilloscope time base to 0.2 ms per division and the vertical sensitivity to 0.1 V per division. Adjust the RF Section VERNIER control for an oscilloscope display of 4 divisions peak-to-peak.
5. Set the Modulation Section MODE control to AM and the SOURCE control to INTERNAL 1000. Adjust the MODULATION LEVEL control to 2 divisions between peak and valley of the AM envelope display on the oscilloscope. See Figure 4-2 for a typical waveform.
6. Verify that the Modulation Section meter reads between 45 and 55%.
7. Adjust the MODULATION LEVEL control for an oscilloscope display with 0.8 division between peak and valley. The meter should read between 15 and 25%.
\qquad
8. Adjust the MODULATION LEVEL control for an oscilloscope display with 3.6 divisions between peak and valley. The meter should read between 85 and 95%.
9. Repeat steps 5 through 8 with the SOURCE control set to INTERNAL 400.
\qquad

4-9. FM DEVIATION AND METER ACCURACY

SPECIFICATION: Frequency Modulation:

Meter: Indicates peak FM deviation in three ranges, $10 \mathrm{kHz}, 100 \mathrm{kHz}$, and 1 MHz full scale for center frequencies from 1 to 1299.999999 MHz .

For center frequencies from 1300 to 2599.999998 MHz , the range of the meter is automatically changed to three ranges of $20 \mathrm{kHz}, 200 \mathrm{kHz}$, and 2 MHz full scale.

Meter Accuracy: $\pm 5 \%$ of full scale up to 20 kHz rates.
DESCRIPTION: This test verifies FM peak deviation and meter accuracy at deviations of 10 kHz and 100 kHz . The FM Discriminator detects the signal and the detected output (sensitivity $=1 \mathrm{Vpk} / 10 \mathrm{MHz}$) is measured with a wave analyzer.

PERFORMANCE TESTS

4-9. FM DEVIATION AND METER ACCURACY (Cont'd)

Figure 4-3. FM Deviation and Meter Accuracy Test Setup

NOTE

If a wave analyzer is not available, steps 1 through 7 of this test may be performed with a wideband voltmeter, such as the HP 400E.

EQUIPMENT: FM Discriminator HP 5210A
Wave Analyzer HP 310A
PROCEDURE: 1. Set the mainframe frequency to 9 MHz and the RF Section Output to +10 dBm .
2. Set the Modulation Section controls as follows: MODE control to FM X1, SOURCE control to INTERNAL 1000, and MODULATION LEVEL control for a meter indication of $100(100 \mathrm{kHz})$ and press the FM CF CAL switch.
3. Set the FM Discriminator to a sensitivity of 1 volt and a frequency range of 10 MHz ($1 \mathrm{Vpk} / 10 \mathrm{MHz}$ peak deviation).
4. Install a 20 kHz Lowpass Filter in the FM Discriminator output.
5. Calibrate the FM Discriminator output. (If the HP 5210A is used, refer to the 5210A Operating and Service Manual.)
6. Connect the equipment as shown in Figure 4-3.
7. Tune the Wave Analyzer to 1 kHz (absolute), 200 Hz bandwidth, and set Input Voltage Control to 0.3 V maximum. Verify that the Wave Analyzer indicates an output of $7.07 \pm 0.35 \mathrm{mVrms}$.
8. Set the Modulation Section MODE switch to FM X0.1 and the MODULATION LEVEL to $100(10 \mathrm{kHz})$.
9. Verify that the Discriminator output is $0.707 \pm 0.035 \mathrm{mVrms}$.

4-10. MODULATION DISTORTION

Internal: Maintains AM and FM distortion specified for RF Section used.
External: Partially determined by external modulating signal distortion. External modulating signal distortion must be less than 0.3% to meet RF Section distortion specification.

NOTES
Refer to Section IV of the RF Section in Operating and Service Manual for the distortion checks.

Typical distortion levels at the Modulation Section outputs are $<1 \%$ for $A M$ and $<1 \%$ for $F M$.

4-11. AM INPUT LEVEL AND RATE

SPECIFICATION: AC Coupled Mode: External modulating signal must be between 1.0 and 2.0 Vrms to provide full vernier range control and calibrated remote programming of modulation.
DC Coupled Mode: External modulation signal must be approximately 1.8 Vrms to maintain full vernier range control and $1.80 \pm 0.02 \mathrm{Vrms}$ for calibrated remote programming of AM depth.
AM Rate: DC to 100 kHz maximum in dc mode or 20 Hz to 100 kHz maximum in ac mode. Maximum usable modulation rate depends on specifications for the RF Section installed.

DESCRIPTION: The modulation depth as read on the meter is checked against the envelope displayed on the oscilloscope. This verifies proper AM operation at the extreme frequency and voltage limits of both and AC and DC coupled modes.

Figure 4-4. AM Input Level and Rate Test Setup
EQUIPMENT: Oscilloscope HP 180C/1801A/1821A
Test Oscillator HP 651B

PERFORMANCE TESTS

4-11. AM INPUT LEVEL AND RATE (Cont'd)

PROCEDURE: 1. Set the mainframe center frequency to 1 MHz and the RF Section OUTPUT to 0 dBm .
2. Set the Modulation Section MODE control to OFF.
3. Connect the equipment as shown in Figure 4-4.
4. Adjust the oscilloscope horizontal and vertical controls for a display of 4 divisions peak-to-peak.
5. Set the Test Oscillator to a frequency of 50 Hz with an output level of 2.0 Vrms .
6. Set the Modulation Section MODE control to AM and the SOURCE control to EXTERNAL DC.
7. Adjust the MODULATION LEVEL control until the AM envelope displayed on the oscilloscope shows 2 divisions between peak and valley. See Figure 4-2 and verify that the meter reading is between 45 and 55%.
\qquad
8. Set the SOURCE control to EXTERNAL AC and adjust the MODULATION LEVEL control until the AM envelope displayed on the oscilloscope shows 2 divisions between peak and valley. Verify that the meter still reads between 45 and 55%.
9. Set the Test Oscillator output signal level to 1.0 Vrms. Verify that the meter still reads between 45 and 55%, indicating that the Leveling Amplifier is working properly.
\%
10. Set the Test Oscillator frequency to 10 kHz with an output level of 1.0 Vrms .
11. Set the mainframe center frequency to 10 MHz and the Modulation Section MODE control to OFF.
12. Adjust the oscilloscope horizontal and vertical controls for a display of 4 divisions peak-to-peak.
13. Set the Modulation Section MODE control to AM. Adjust the MODULATION LEVEL control until the AM envelope displayed on the oscilloscope shows 2 divisions between peak and valley. Verify that the meter reads between 45 and 55%, indicating that the meter is calibrated for AM at the minimum rated input level and EXTERNAL AC coupling.
14. Set the Test Oscillator output to 1.8 Vrms.
15. Set the Modulation Section SOURCE control to EXTERNAL DC and repeat step 13.

PERFORMANCE TESTS

4-12. FM INPUT LEVEL AND RATE

SPECIFICATION: AC Coupled Mode: External modulating signal must be between 1 and 2 Vrms to provide full vernier control range and calibrated remote programming of modulation.

DC Coupled Mode: External modulation signal must be approximately 1.8 Vrms to maintain full vernier range in the local mode, and must be 1.8 Vrms ± 0.02 Vrms for calibrated remote programming of peak deviation.

FM Rate: DC to 1 MHz in DC mode, or 20 Hz to 1 MHz in AC mode. Maximum usable rate is limited by the RF Section installed and is limited to $1 / 10$ of selected center frequency below 10 MHz .

DESCRIPTION: This test verifies FM operation at 100 Hz and 10 kHz rates, 100 kHz and 1 MHz peak deviation. Correct operation is verified with external input levels of 1.0 Vrms and 2.0 Vrms.

Figure 4-5. FM Input Level and Rate Test Setup
EQUIPMENT: Spectrum Analyzer HP 140T/8555A/8552B
Test Oscillator HP 651B
PROCEDURE: 1. Connect the equipment as shown in Figure 4-5.
2. Set the mainframe center frequency to 10 MHz and the RF Section output to 0 dBm .
3. Set the Spectrum Analyzer controls as follows: center frequency to 10 MHz , resolution bandwidth to 3 kHz , frequency span per division to 0.05 MHz , input attenuation to 30 dB , and sweep time per division to 0.5 second.
4. Adjust the test oscillator controls for an output of 100 Hz at 1.8 Vrms.
5. Set the Modulation Section MODE switch to FM X1, the SOURCE switch to EXTERNAL DC and adjust the MODULATION LEVEL control to 100. Then press the FM CF CAL switch to calibrate the FM oscillator.
6. Verify the 100 kHz peak deviation on the Spectrum Analyzer display as shown by a display of $200 \pm 10 \mathrm{kHz}$. (See Figure $4-5$ for the typical waveform).

Bandwidth in kHz 190 210

PERFORMANCE TESTS

4-12. FM INPUT LEVEL AND RATE (Cont'd)

7. Set the Modulation Section SOURCE control to EXTERNAL AC. Readjust test oscillator to 2.0 Vrms and readjust the MODULATION LEVEL control to 100. The Spectrum Analyzer display should again show 200 kHz bandwidth.

Bandwidth in kHz 190 210
8. Set the MODE control to FM X10, the MODULATION LEVEL to 20, and push the FM CF CAL switch.
9. Readjust the Test Oscillator output to 10 kHz at 2.0 Vrms. Readjust the MODULATION LEVEL control for an indication of 20 on the meter.
10. Set the Spectrum Analyzer controls as follows: resolution bandwidth to 3 kHz , frequency span per division to 0.05 MHz , and sweep time per division to 0.5 s .
11. The peak deviation should be 200 kHz as shown by a display $400 \pm 20 \mathrm{kHz}$ wide.

Bandwidth in kHz 380 420
12. Readjust Test Oscillator output to 1.0 Vrms. Display should remain at 400 ± 20 kHz .

Bandwidth in kHz 380 \qquad 420

4-13. REMOTE PROGRAMMING

SPECIFICATION: Remote Modulation Setting Resolution: Modulation level can be remotely set in $\mathbf{1 \%}$ steps in the AM mode and $1 / 50$ of the range selected in the FM mode (refer to Table 3-2).

Remote Modulation Setting Accuracy: $\pm 5 \%$ of setting or $\pm 0.5 \%$ of full scale whichever is greater.

DESCRIPTION: Operation of the instrument in remote control mode is verified by programming a series of modulation functions with a remote device.

Figure 4-6. Remote Programming Test Setup
EQUIPMENT: Marked Card Programmer HP 3260A - Option 001
PROCEDURE: 1. Connect the Marked Card Programmer to the mainframe programming input connector (J3) on the rear panel of the mainframe. Refer to Section III of the mainframe manual for programming instructions.

PERFORMANCE TESTS

4-13. REMOTE PROGRAMMING (Cont'd)

2. Program the Modulation Section to FM X1 mode, Internal 400 source and a peak deviation of 0 kHz .
3. In sequence, on separate cards, program $1 \mathrm{kHz}, 10 \mathrm{kHz}$, and 100 kHz peak deviation into the Modulation Section. As each level is programmed into the system, verify that the change in meter reading is proportional to the change in the programmed level.

0.95	1.05 kHz
9.5	10.5 kHz
95	105 kHz

Table 4-1. Performance Test Record

Hewlett-Packard Model 86632B Modulation Section		Tested by		
Serial Number		Date		
Para. No.	Test	Results		
		Minimum	Actual	Maximum
47.	INTERNAL MODULATION RATES AND OUTPUT LEVEL $\begin{array}{lr} & 400 \mathrm{~Hz} \\ & 1000 \mathrm{~Hz} \\ 400 \mathrm{~Hz} \\ & 1000 \mathrm{~Hz}\end{array}$	$\begin{aligned} & 380 \mathrm{~Hz} \\ & 950 \mathrm{~Hz} \\ & 560 \mathrm{mVp}-\mathrm{p} \\ & 560 \mathrm{mVp}-\mathrm{p} \end{aligned}$		$\begin{aligned} & 420 \mathrm{~Hz} \\ & 1050 \mathrm{~Hz} \end{aligned}$
4-8.	MODULATION DEPTH AND METER $\begin{array}{lll}\text { ACCURACY } & 1000 \mathrm{~Hz} & 50 \% \\ & 20 \% \\ & 90 \% \\ & 400 \mathrm{~Hz} & 50 \% \\ & 20 \% \\ & & 90 \%\end{array}$	$\begin{aligned} & 45 \% \\ & 15 \% \\ & 85 \% \\ & 45 \% \\ & 15 \% \\ & 85 \% \end{aligned}$		$\begin{aligned} & 55 \% \\ & 25 \% \\ & 95 \% \\ & 55 \% \\ & 25 \% \\ & 95 \% \end{aligned}$
49.	FM DEVIATION AND METER ACCURACY	$\begin{gathered} 6.72 \mathrm{mVrms} \\ 0.672 \mathrm{mVrms} \end{gathered}$	\qquad	7.42 mVrms 0.742 mVrms
4-11.	AM INPUT LEVEL AND RATE Rate 50 Hz dc coupled input level 2.0 Vrms 50% ac coupled input level $2.0 \mathrm{Vrms} 50 \%$ ac coupled input level 1.0 Vrms 50% Rate 10 kHz ac coupled input level $1.0 \mathrm{Vrms} 50 \%$ dc coupled input level 2.0 Vrms 50%	$\begin{aligned} & 45 \% \\ & 45 \% \\ & 45 \% \\ & 45 \% \\ & 45 \% \end{aligned}$		55\% 55\% 55\% 55\% 55%
4-12.	FM INPUT LEVEL AND RATE 200 kHz Bandwidth 200 kHz Bandwidth 400 kHz Bandwidth 400 kHz Bandwidth	$\begin{aligned} & 190 \mathrm{kHz} \\ & 190 \mathrm{kHz} \\ & 380 \mathrm{kHz} \\ & 380 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 210 \mathrm{kHz} \\ & 210 \mathrm{kHz} \\ & 380 \mathrm{kHz} \\ & 380 \mathrm{kHz} \end{aligned}$
4-13.	REIMOTE PROGRAMMING $\begin{array}{r} 1 \mathrm{kHz} \\ 10 \mathrm{kHz} \\ 100 \mathrm{kHz} \end{array}$	$\begin{aligned} & 950 \mathrm{~Hz} \\ & 9.5 \mathrm{kHz} \\ & 950 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 1050 \mathrm{~Hz} \\ & 10.5 \mathrm{kHz} \\ & 1050 \mathrm{kHz} \end{aligned}$

SECTION V ADJUSTMENTS

5-1. INTRODUCTION

$5-2$. This section describes adjustments and checks required to return the Model 86632B to peak operating capability when repairs have been made.

5-3. RECOMMENDED TEST EOUIPMENT

5-4. Each adjustment procedure in this section contains a list of test equipment and accessories required to perform the procedure. Each test setup identifies test equipment and accessories by callouts.

5-5. To ensure that the Model 86632B is operating at peak capability, it is important that the test equipment used meets the minimum specifications stipulated in Table 1-2.

5-6. The HP 11672A Service Kit (see paragraph 1-29) includes cables and adapters for troubleshooting the Modulation Section. The extender boards (supplied with the mainframe) provide easy access to the circuit boards.

5-7. FACTORY SELECTED COMPONENTS

$5-8$. Factory selected components are identified on the parts list and schematics by an asterisk following the reference designator. The nominal values are listed on the parts list and schematics. Table 5-1 includes the basis for selection, the range of values, and the service sheet where the selected component is located.

5-9. RELATED ADJUSTMENTS

$5-10$. Because of the interaction of certain adjustable components, the Amplitude Leveling Adust-
ment must be performed before the Remote Modulation Signal Level and Meter Adjustments. Also, the Amplitude Leveling Adjustments must be performed before the FM Deviation Attenuator Adjustment.

5-11. ADJUSTMENT LOCATIONS

5-12. The location of each adjustable component is shown on the last foldout in the manual and on the service sheet referenced in each individual procedure.

NOTE

For all adjustments, the Modulation Section, with cover removed, should be connected to the mainframe with the extender cable (HP 11672-60002).

5-13. SAFETY CONSIDERATIONS

$5-14$. Although this instrument has been designed in accordance with international safety standards, this manual contains information and warnings which must be followed to ensure safe operation and to retain the instrument in a safe condition. Service and adjustments should be performed only by qualified service personnel.

5-15. Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved. The opening of

Table 5-1. Factory Selected Components

Reference Designator	Basis of Selection	Range of Values	Service Sheet
A6R32	The de offset tolerance at A6TP4 on the A6 Assembly must be 0 Vdc $\pm 12 \mathrm{mVdc}$ Test conditions: MODE-FM, SOURCE-DC, MODULATION LEVEL-full CW with no input. Increasing the value of the resistor decreases the voltage.	$6-24$ ohms	6
A7A3C17	With the input to A7A3Q7 grounded (at the insulated standoff) and the Frequency Control A7A3R10 set for an oscillator output of 20.000 MHz, the selected capaci- tor causes the voltage at A7A3TP1 to be $+6.0 \pm 0.5 \mathrm{Vdc}$.	1 to 82 pF	7

SAFETY CONSIDERATIONS (Cont'd)

covers, or removal of parts or plug-ins may expose live parts and also accessible terminals may be live.

5-16. Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

5-17. Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement in the mainframe. The use of repaired fuses and the short-circuiting of fuseholders must be avoided.
$5-18$. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended
operation by placing a tag over the mainframe on-off switch indicating the nature of the impairment.

5-19. POST-REPAIR TEST AND ADJUSTMENTS

$5-20$. The adjustments in this section should be performed when the troubleshooting information in Section VIII indicates that an adjustable circuit is not operating correctly. Perform the adjustments AFTER repairing or replacing the circuit. Allow the instrument to warmup one hour before making any adjustment.

5-21. After making the adjustments, the performance tests found in Section IV can be used to verify that the instrument is operating correctly.

ADJUSTMENTS

5-22. MODULATION OSCILLATOR ADJUSTMENT

REFERENCE: Service Sheet 3.

DESCRIPTION: The INTERNAL 400 and 1000 Hz oscillators are adjusted to the correct frequency by using a Frequency Counter.

Figure 5-1. Modulation Oscillator Adjustment Test Setup
EQUIPMENT: Frequency Counter HP 5340A
Extender Cable HP 11672-60002
PROCEDURE: 1. Connect the equipment as shown in Figure 5-1.
2. Set the MODE control to AM and the SOURCE control to 400 .
3. Adjust A5R15 for a counter reading of $400 \pm 4 \mathrm{~Hz}$.
4. Set the SOURCE control to 1000 .
5. Adjust A5R16 for a counter reading of $1000 \pm 10 \mathrm{~Hz}$.

5-23. AMPLITUDE LEVELING ADJUSTMENT

REFERENCE: Service Sheet 4.

DESCRIPTION: When properly adjusted, a constant output of 1.80 Vrms is provided by the leveling amplifier with an External AC input of 1 to 2 Vrms.

Figure 5-2. Amplitude Leveling Adjustment Test Setup

Unless A4U1 or an associated component has been replaced, A4R45, which has been adjusted at the factory, should not have to be readjusted.

1. Remove the A4 assembly and reinstall it, using an extender board and connect the equipment as shown in Figure 5-2.
2. Set the Modulation Section SOURCE control to EXTERNAL AC.
3. Set the Test Oscillator frequency to 10 kHz with an output level of 1.5 Vrms.
4. Set the oscilloscope vertical sensitivity to 0.1 volts per division.
5. Connect the oscilloscope to the negative side of A 4 C 11 (A4TPB) through a $10: 1$ divider probe.
6. Adjust A4R45 for maximum gain without oscillation.
7. Set the Modulation Section MODE switch to AM. Connect AC Voltmeter to A4TPB. Adjust A4R35 for a reading of 1.80 Vrms ± 0.01 Vrms on AC Voltmeter.

ADJUSTMENTS

5-24. REMOTE MODULATION SIGNAL LEVEL AND METER ADJUSTMENTS

REFERENCE: Service Sheet 5 .
DESCRIPTION: The following procedure requires a remote programming capability for adjusting the remote modulation signal level. The meter is first adjusted for mechanical zero. Then, the dc offset is adjusted for the best zero compromise above and below 1300 MHz . Next overall gain of the modulation signal is set and then the meter gain is adjusted. If remote programming is not available, and is not to be used, use the alternate procedure for adjusting the meter circuits beginning with step 1a.

Figure 5-3. Remote Modulation Signal Level and Meter Adjustment Test Setup
EQUIPMENT: True RMS Voltmeter HP 3403C
Test Oscillator HP 651B
Marked Card Programmer HP 3260A - Option 001
Extender Cable HP 11672-60002
PROCEDURE: 1. If the meter needle is not on zero, set the system LINE switch to STBY and turn the mechanical zero setscrew adjustment counterclockwise to bring the needle below zero. Slowly rotate the zero setscrew clockwise until the needle is on zero. Then rotate the zero setscrew about $1 / 12$ turn (30°) counterclockwise.
2. Connect the equipment as shown in Figure 5-3. Remove the A3 Assembly and reinstall it using an extender board.
3. Turn on the system and remotely program the Modulation Section for the FMX1 MODE and EXTERNAL DC SOURCE.
4. Program the mainframe center frequency to 1350 MHz .
5. Connect the true RMS voltmeter to A3TP1.
6. With no output or dc offset from the test oscillator, adjust A3R6 (ZERO ADJ) for an indication of 0 Vdc .

ADJUSTMENTS

5-24. REMOTE MODULATION SIGNAL LEVEL AND METER ADJUSTMENTS (Cont'd)

7. Program the mainframe center frequency to 1000 MHz and readjust A3R6 for 0 V .
8. Repeat steps 6 and 7 until an indication of $0 \pm 5 \mathrm{mVdc}$ is achieved at center frequencies greater and less than 1300 MHz . Disconnect the voltmeter.
9. Set the test oscillator to 10 kHz at 1.5 Vrms.
10. Program the Modulation Section for 90% amplitude modulation and EXTERNAL AC SOURCE. Program the mainframe center frequency to 1000 MHz .
11. Connect the true RMS voltmeter to A3TP2.
12. Adjust A3R 37 (GAIN ADJ.) for an indication of 0.90 ± 0.01 Vrms.
13. Adjust A3R36 (METER ADJ.) for an indication of 90% on the Modulation Section meter. Remove the extender board and reinstall the A3 Assembly.

5-24a. ALTERNATE MIETER ADJUSTMENT PROCEDURE

NOTE

Use of this procedure results in an uncalibrated programmed output although the meter will indicate the correct modulation level.

1a. Perform steps 1 and 2 except without the Marked Card Programmer.
2a. Set the mainframe LINE switch to ON, then set the Modulation Section MODE switch to FMX1 and the SOURCE switch to DC.

3a. Set the mainframe center frequency to 1350 MHz .
4a. Connect the true RMS voltmeter to A3TP1.
5a. With no output or dc offset from the test oscillator, adjust A3R6 (ZERO ADJ.) for an indication of 0 Vdc .

6a. Set the mainframe center frequency to 1000 MHz and readjust A3R6 for 0 Vdc .
7a. Repeat steps 5 a and 6 a until an indication of $0 \pm 5 \mathrm{mVdc}$ is achieved at center frequencies greater and less than 1300 MHz . Disconnect the voltmeter.

8a. Set the center frequency to 1000 MHz .
9a. Set the test oscillator to 10 kHz at 1.5 Vrms.
10a. Set the Modulation Section MODE control to AM and SOURCE switch to EXTERNAL AC.

ADJUSTMENTS

5-24a. ALTERNATE METER ADJUSTMENT PROCEDURE (Cont'd)

11a. Verify that a minimum voltage of 1.5 Vrms is attainable using the MODULATION LEVEL control. If necessary, adjust A3R 37 for the 1.5 Vrms level.

12a. Adjust the MODULATION LEVEL control for an indication of $0.90 \pm 0.01 \mathrm{Vrms}$ on the true RMS voltmeter.

13a. Adjust A3R36 (METER ADJ.) for an indication of 90% on the Modulation Section meter. Remove the extender board and reinstall the A3 Assembly.

5-25. REDUCE DEVIAT!ON LAMIP ADJUSTMENT

REFERENCE: Service Sheet 8.
DESCRIPTION: The REDUCE DEVIATION lamp is activated at approximately 110% of meter full scale. This procedure adjusts the level at which the lamp lights.

Figure 5-4. Reduce Deviation Lamp Adjustment Test Setup
EQUIPMENT: Test Oscillator HP 651B
Extender Cable HP 11672-60002
True RMS Voltmeter HP 3403C
PROCEDURE: 1. Connect the equipment as shown in Figure 5-4.
2. Set the Modulation Section MODE switch to FMX1 and SOURCE switch to AC.
3. Turn on the instruments and set mainframe center frequency to 1000 MHz .
4. Set the Test Oscillator for a 10 kHz output at 1.5 Vrms.
5. Adjust the Modulation Section MODULATION LEVEL control for an indication of 1.10 Vrms on the AC Voltmeter.

ADJUSTMENTS

5-25. REDUCE DEVIATION LAMP ADJUSTMENT (Cont'd)

6. Adjust A9R3 (REDUCE DEVIATION LAMP ADJ.) until the REDUCE DEVIATION lamp flickers and then readjust until the lamp just stays on.
7. Reduce the MODULATION LEVEL control and verify that the lamp goes out before a 1.06 Vrms indication is reached. If not, repeat steps 6 and 7.

5-26. FM DEVIATION ATTENUATOR ADJUSTMENT

REFERENCE: Service Sheet 6.

DESCRIPTION: The FM range selector circuit is set to 0 Vdc offset with no modulation input. The FM sensitivity is set for 1 MHz peak deviation.

Figure 5-5. FM Deviation Attenuator Adjustment Test Setup
EQUIPMENT: True RMS Voltmeter HP 3403C
Test Oscillator HP 651B
Oscilloscope HP 180C/1801A/1821A
Extender Cable HP 11672-60002
FM Discriminator HP 5210A
PROCEDURE: 1. Set the MODE switch to FM X0.1, the SOURCE switch to DC, and the MODULATION LEVEL control full clockwise. Connect equipment as shown in Figure 5-5.

ADJUSTMENTS

5-26. FM DEVIATION ATTENUATOR ADJUSTMENT (Cont'd)

NOTE

There is no input to the Modulation Section for the next two steps.
2. Connect the voltmeter to A6TP2 and adjust A6R20 "ZERO-1" for a reading of $0 \pm 1 \mathrm{mVdc}$.
3. Connect the voltmeter to A6TP3 and adjust A6R23 "ZERO-2" for a reading of $0 \pm 1 \mathrm{mVdc}$. Disconnect the voltmeter.
4. Set the FM Discriminator to a sensitivity of 1 V and a range of 10 MHz .
5. Install a 20 kHz low-pass filter at the discrimator output and calibrate the FM Discriminator output. (Refer to the Frequency Meter/FM Discriminator Operating and Service Manual for instructions.)
6. Set the mainframe center frequency to 8 MHz and the RF Section output to +10 dBm .
7. Set the MODE switch to FM X10 and the SOURCE switch to AC.
8. Set the Test Oscillator frequency to 1 kHz and an output amplitude of 1 Vrms.
9. Reconnect the equipment as shown in Figure 5-5.
10. Adjust the MODULATION LEVEL control for a reading of 80 on the meter.
11. Adjust A6R25 "FM-SEN" to show a 0.16 Vp -p display on the oscilloscope.

5-27. VCO CENTER FREOUENCY ADJUSTMENT

REFERENCE: Service Sheet 7.
DESCRIPTION: The 20 MHz VCO frequency is adjusted as the output of the RF Section is monitored with a frequency counter. In the FM mode (0 deviation), the counter readout should be the same as the mainframe center frequency $\pm 5 \mathrm{kHz}$. Control A7A1R13 is adjusted to reduce center frequency shift after an FM calibration cycle.

Figure 5-6. VCO Center Frequency Adjustment Test Setup

ADJUSTMENTS

5-27. VCO CENTER FREQUENCY ADJUSTMENT (Cont'd)

EQUIPMENT: Frequency Counter : . . . HP 5340A
Extender Cable HP 11672-60002
Attenuator (3 dB fixed) HP 8491A, Option 003
PROCEDURE: 1. Connect the equipment as shown in Figure 5-6.
2. Set the mainframe REF switch to EXT.
3. Remove the A7A3 VCO cover on the rear panel of the Modulation Section.
4. Turn the MODE switch OFF.
5. Set the mainframe center frequency to 10 MHz and the RF Section output to +10 dBm .
6. Set the MODE switch to FM X1 and the SOURCE switch to AC with no input applied.
7. Ground the teflon insulated standoff on A7A3 and record the counter reading.
\qquad
8. Remove the ground clip, replace the A7A3 cover with two screws, and record the counter reading.
\qquad MHz
9. Record the different frequency between step 7 and 8 . \qquad MHz
10. Remove the A7A3 cover. If the frequency in step 7 was higher than that in step 8 , adjust A7A3R8 for a reading on the counter of 10 MHz plus the difference frequency. If the frequency in step 7 was lower than that in step 8, adjust A7A3R8 for a reading on the counter of 10 MHz less the difference frequency.
11. Measure the voltage at A7A3TP1. If the voltage is $+6.0 \pm 0.5 \mathrm{Vdc}$, proceed to Step 14.
12. If the voltage is high, replace A7A3C17 with a higher value. With a low voltage, the value should be decreased.
13. Repeat Steps 7 through 12 until the A7A3TP1 voltage is within the required tolerance.
14. Replace the A7A3 cover and recheck the frequency. The counter readout should display $10.000 \mathrm{MHz} \pm 0.005 \mathrm{MHz}(\pm 5 \mathrm{kHz})$. If the frequency is not within tolerance, repeat Steps 7 through 13.
15. Push the CM CF CAL pushbutton. The counter should indicate 10.000000 MHz $\pm 1 \mathrm{~Hz}$ for 5 seconds. After the 5 seconds calibration cycle, note the new center frequency reading.
\qquad

ADJUSTMENTS

5-27. VCO CENTER FREQUENCY ADJUSTMENT (Cont'd)

16. If the difference frequency is greater than 100 Hz , carefully adjust A7A1R13 for a difference frequency of less than 100 Hz .
17. Repeat Steps 15 and 16 until the difference frequency is less than 100 Hz .

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list and throughout the manual. Table 6-2 lists all replaceable parts in reference designation order. Table 6-3 contains the names and addresses that correspond with the manufacturers' code numbers.

6-3. ABBREVIATIONS

6-4. Table 6-1 lists abbreviations used in the parts list, schematics and throughout the manual. In some cases, two forms of the abbreviations are used, one all in capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always all capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lower case and upper case letters.

6-5. REPLACEABLE PARTS LIST

6-6. Table 6-2 is the list of replaceable parts and is organized as follows:
a. Electrical assemblies and their components in alpha-numerical order by reference designation.
b. Chassis-mounted parts in alpha-numerical order by reference designation.
c. Miscellaneous parts.

The information given for each part consists of the following:
a. The Hewlett-Packard part number.
b. The total quantity (Qty) used in the instrument.
c. The description of the part.
d. A typical manufacturer of the part in a five-digit code.
e. The manufacturer's number for the part.

The total quantity for each part is given only once at the first appearance of the part number in the list.

6-7. ORDERING INFORMATION

6-8. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number, indicate the quantity required, and address the order to the nearest Hewlett-Packard office.
6-9. To order a part that is not listed in the replacable parts table, include the instrument model number, instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

6-10. SPARE PARTS KIT

6-11. Stocking spare parts for an instrument is often done to ensure quick return to service after a malfunction occurs. Hewlett-Packard has a Spare Parts Kit available for this purpose. The kit consists of selected replaceable assemblies and components for this instrument. The contents of the kit and the Recommended Spares list are based on failure reports and repair data, and parts support for one year. A Recommended Spares list for this instrument may be obtained on request and the Spare Parts Kit may be ordered through your nearest Hewlett-Packard office.

6-12. DIRECT MAIL ORDER SYSTEM

6-13. Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are as follows:
a. Direct ordering and shipment from the HP Parts Center in Mountain View, California.
b. No maximum or minimum on any mail order (there is a minimum order amount for parts ordered through a local HP office when the orders require billing and invoicing).
c. Prepaid transportation (there is a small handling charge for each order).
d. No invoices - to provide these advantages, a check or money order must accompany each order.

6-14. Mail order forms and specific ordering information is available through your local HP office. Addresses and phone numbers are located at the back of this manual.

Table 6-1. Reference Designations and Abbreviations (1 of 2)

REFERENCE DESIGNATIONS			
	$\begin{aligned} & \begin{array}{l} \text { e......miscellaneous } \\ \text { electrical part } \\ \ldots \ldots \ldots . . \end{array} \text { fuse } \end{aligned}$	electrical connector movable portion); plug	$\begin{aligned} & \text { U } \ldots \text { integrated circuit; } \\ & \text { v } \ldots \text { microcircuit } \end{aligned}$
$\underset{\text { Bt }}{\text { B }} \ldots \ldots . \ldots \ldots$. fan; motor	${ }_{\mathrm{HL}}^{\mathrm{FL}} \ldots \ldots \ldots \ldots \ldots$ filler	\ldots... ${ }^{\text {transistor: }} \mathbf{S C R}$;	VR voltage regulator:
${ }_{\text {Cr }}^{\text {Br }} \ldots \ldots \ldots \ldots \ldots .$. capacitor	Hy $\ldots \ldots \ldots \ldots$, ${ }_{\text {circulator }}$		cable: transmission
cP $\ldots \ldots \ldots \ldots$, coupler	J . . . electrical connector	RT $\ldots \ldots \ldots \ldots$ thermistor	path: wire
CR $\ldots \ldots$. . ${ }_{\text {diode }}$ diode; diode	(stationary portion); jack	\cdots.	X.............. socket
DC . . . $\begin{gathered}\text { thytistor; } \\ \text { directional coupler }\end{gathered}$		$\mathrm{TB}^{\mathrm{T}} \ldots \ldots \ldots$. terminal board	${ }_{\text {electric }}^{\text {crystal unit }}$ (puartz)
DL delay line	relay	TC thermocouple	tuned cavity: tuned
DS annunciator;	${ }_{\mathrm{M}}^{\mathrm{L}} \ldots \ldots \ldots, \ldots$ coil: inductor	TP test point	
(audible or visual);	MP miscellaneous		
ABBREVIATIONS			
A ampere	COEF coefficient	EDP electronic data	Int ${ }^{\text {internal }}$
ac \ldots.... alternating current	сом. common	processing	$\mathrm{kg}_{\text {kg }} \ldots{ }^{\text {kilogram }}$
${ }_{\text {ACCESS }}^{\text {ADJ }} \ldots \ldots . .{ }^{\text {a }}$ adiustment ${ }^{\text {a accesory }}$	${ }_{\text {COMP }}^{\text {COMPL }} \ldots . .$. . ${ }^{\text {composition }}$. complete	${ }_{\text {ENCAP }}^{\text {ELECT }} \ldots \ldots$ ene encapsulated	
A/D $\ldots .$. . analog-to-digital	CONN connector	ExT \ldots. external	kV kilovolt
AF audio frequency	$\mathrm{CP}^{\text {P }}$. \ldots. cadmium plate	F............ farad	1b............ pound
AFC automatic	CRT . . . cathode-ray tube	FET field-effect	LC inductance-
AGC ${ }_{\text {automatic gain }}$	transistor logic		LED . . light-emitting diode
AL control aluminum	CW continuous wave	FH flat head	LF $\ldots . .$. . low frequency
ALC \ldots..... automatic level	cm $\ldots \ldots \ldots \ldots$ centimeter	FM. .frequency modulation	
	D/A $\ldots .$. digital-to-analog	$\mathrm{FP}^{\text {P }} \ldots \ldots .$. front panel	Lim limit
			LIN \cdots in parts list)
	to 1 mw		lin \ldots. unear
	dc direct current	GE $\ldots . . .$. germanium	LK WASH . . . lock washer
	deg . . degree (temperature	GHz \ldots. gigahertz	LO . . low; local oscillator
control	interval or difference)	$\begin{aligned} & \text { GL. glass } \\ & \text { GRD } \end{aligned}$	LOG $\ldots \begin{gathered}\text {. } \\ \text { (used in in parts list) }\end{gathered}$
avg $\ldots \ldots \ldots \ldots$ average	. degree (plane	H : henry	$\log \ldots{ }^{\text {a }}$ logrithm(ic)
AWG $\underset{\text { gauge }}{\text { American wire }}$	$\bigcirc{ }^{\circ}$ angle)	h.............. hour	LPF low pass filter
	${ }_{\text {(centigrade }}$) ${ }^{\text {dels }}$	HEX $\ldots \ldots \ldots$, heterodyne ${ }_{\text {hexagonal }}$	${ }_{\mathrm{m}}^{\mathrm{LV}} \ldots \ldots \ldots$. ${ }_{\text {meter }}^{\text {low voltage }}$ (distance)
${ }_{\text {BCD }}^{\text {BAL }} \ldots \ldots . . .$. binary $^{\text {balance }}$	${ }_{0}^{\mathrm{F}}$ F degree Fahrenheit	HD head	mA milliampere
BD . $\ldots \ldots \ldots \ldots$ board			$\mathrm{MAX}^{\text {M }}$, $\ldots \ldots$ maximum
BECU $\underset{\text { copper }}{\text {.... }}$ beryllium	$\mathrm{CETC}_{\text {DET }} \ldots \ldots$. deposited carbon	HG $\ldots \ldots .$. high frequency	
	diam diameter		in parts list)
BFO beat frequency	DIA \ldots. diameter (used in	${ }_{\text {HPF }}^{\text {HP }} \ldots \ldots$ Hewlett-Packard	MET FLM \ldots... metal film
${ }_{\text {BKDN }}^{\text {BH }} \ldots \ldots \ldots . \begin{gathered}\text { binder head } \\ \text { breakdown }\end{gathered}$	DIFF AMPL , differential	HR hour (used in	MF \ldots mediun frequency;
${ }_{\text {BP }}^{\text {BKD }} \ldots \ldots \ldots$. . ${ }_{\text {breakdown }}^{\text {bandpass }}$	div division	HV high voltage	${ }_{\text {parts list) }}^{\text {mineremar }}$
BPF bandpass filter	DPDT $\ldots .$. double-pole,	Hz $\ldots{ }^{\text {c }}$ Hertz	MFR...... manufacturer
BRS brass	double-throw	IC integrated circuit	mg m milizram
BWO \ldots... oscillator bard-wave	DR drive drive	ID $\ldots \ldots$. inside diameter	
$\underset{\text { ccw }}{\text { CAL }} \ldots \ldots \ldots$. ${ }_{\text {counter-clockwise }}^{\text {calibrate }}$	DTL diode transistor	trequency	mho \ldots. mho
	logic	IMPG impregnated	Min minimum
	DVM . . . digital voltmeter	in inch	\min..... minute (time)
	ECL . . . emitter coupled	INCD incandescent	minute (plane
cm $\ldots \ldots . .$. centimeterCMOCOAX	EMF. . ${ }_{\text {logic }}^{\text {electromotive force }}$		minat angle)
		INP $\ldots \ldots \ldots$. insulation	${ }_{\mathrm{mm}}^{\mathrm{m}}$. millimeter
COAX coaxial	note		
	All abbreviations in the parts ist will be in upper-case.		

Table 6-1. Reference Designations and Abbreviations (2 of 2)

MOD modulator	OD outside diameter	PWV peak working
MOM momentary	OH oval head	voltage
MOS metal-oxide semiconductor	OP AMPL . . . operational amplifier	RC resistancecapacitance
ms millisecond	OPT option	HECT rectifier
MTG mounting	OSC oscillator	REF reference
TR . . . meter (indicating	OX oxide	REG regulated
device)	oz ounce	REPL replaceable
mV millivolt	ת ohm	RF radio frequency
mVac millivolt. ac	P peak (used in parts	RFI radio frequency
mVdc millivolt, dc	list)	interference
mVpk millivolt, peak	PAM . . . pulse-amplitude	RH round head; right
mVp-p . . . millivolt, peak-to-peak	modulation PC printed circuit	RLC resistance-
mVrms . . . millivolt, rms	PCM . . pulse-code modula-	inductance-
mW milliwatt	tion; pulse-count	capacitance
MUX multiplex	modulation	RMO . . . rack mount only
MY mylar	PDM pulse-duration	rms . . . root-mean-square
$\mu \mathrm{A}$. microampere	modulation	RND round
$\mu \mathrm{F}$. microfarad	pF picofarad	ROM . . read-only memory
$\mu \mathrm{H}$. microhenry	PH BRZ phosphor bronze	R\&P rack and panel
$\mu \mathrm{mho} \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}$.	PHL Phillips	RWV . . . reverse working
μ_{s}. microsecond	PIN . . . positive-intrinsic-	voltage
$\mu \mathrm{V}$. microvolt	negative	S ... scattering parameter
μ Vac microvolt, ac	PIV peak inverse	s second (time)
$\mu \mathrm{Vdc}$. microvolt, dc	voltage	. . ." . second (plane angle)
μ Vpk . . . microvolt, peak	pk peak	S-B slow-blow (fuse)
$\mu \mathrm{Vp}$-p . . . microvolt, peak-	PL phase lock	(used in parts list)
to-peak	PLO phase lock	SCR ... silicon controlled
μ Vrms microvolt. rms	oscillator	rectifier; screw
$\mu \mathrm{W}$. microwatt	PM phase modulation	SE selenium
nA nanoampere	PNP . . . positive-negative-	SECT sections
NC no connection	positive	SEMICON semicon-
N/C . . . normally closed	P/O part of	ductor
NE neon	POLY polystyrene	SHF superhigh fre-
NEG negative	PORC porcelain	quency
nF nanofarad	POS . . positive; position(s)	S1 silicon
NI PL nickel plate	(used in parts list)	SIL silver
N/O normally open	POSN position	SL slide
NOM nominal	POT potentiometer	SNR . . signal-to-noise ratio
NORM normal	p-p peak-to-peak	SPDT single-pole,
NPN . . . negative-positive-	PP . . . peak-to-peak (used	double-throw
negative	in parts list)	SPG spring
NPO . . . negative-positive	PPM pulse-position	SR split ring
zero (zero temperature coefficient)	modulation PREAMPL . . . preamplifier	SPST single-pole,
NRFR . . not recommended	PRF pulse-repetition	SSB single sideband
for field replace-	frequency	SST stainless steel
ment	PRR . . . pulse repetition	STL steel
NSR not separately replaceable	ps picosecond	SQ square SWR . . standing-wave ratio
ns nanosecond	PT point	SYNC synchronize
nW nanowatt	PTM pulse-time	T . . timed (slow-blow fuse)
OBD . . . order by descrip-	modulation	TA tantalum
tion	PWM pulse-width	TC temperature

NOTE

All abbreviations in the parts list will be in upper-case.

MULTIPLIERS

Abbreviation	Prefix	Multiple
T	tera	10^{12}
G	giga	10^{9}
M	mega	10^{6}
k	kilo	10^{3}
da	deka	10
d	deci	10^{-1}
c	centi	10^{-2}
m	milli	10^{-3}
μ	micro	10^{-6}
n	nano	10^{-9}
p	pico	10^{-12}
f	femto	10^{-15}
a	atto	10^{-18}

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A1	$86635-60003$	1	BOARD ASSY, FRONT HARNESS	28480	86635-60003
AlUR1 AlCRE	$1901-0039$ $1901-0039$	2	DIDOE-SWITCHING 50 l 300MA 8 SNS DIJDE-SWITCHING 50 V 300 MA 8NS	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 1901-0039 \\ & 1901-0039 \end{aligned}$
Alki Alsi	$0698-3437$ $0698-3437$	5		$\begin{aligned} & 24546 \\ & 24546 \end{aligned}$	$\begin{aligned} & \mathrm{C} 4-1 / 8-\mathrm{TO}-133 \mathrm{R}-\mathrm{F} \\ & \mathrm{C} 4-1 / 8-\mathrm{TO}-133 \mathrm{R}-\mathrm{F} \end{aligned}$
Alsi AlS2	$3100-3030$ $3100-3031$	1	$\begin{array}{ll}\text { SWITCH-RTRY } & \text {-POSITION (MODE) } \\ \text { SWITCH-RTRY } & 4-\text { POSITION (SOURCE) }\end{array}$	28480 28480	$3100-3030$ $3100-3031$
Alw 1	8120-1733	1	Cable assy 26awg 16-CNDCT	28480	8120-1733
A2	86632-60048	1	BOARD ASSY, SWITCH LOGIC	28480	86632-60048
A2C1	0180-0228	2		56289 28480	1500226×901582
A2Cl	0160-2055	41	CAPACITOR-FXD. O1UF +80-20\% 100WVDC CER	28480 28480	$0160-2055$
A2C3 AZC4	$0160-2055$ $0160-2055$		CAPACITOR-FXD .01UF +80-20\% 100 WVDC CER CAPACITOR-FXD .O1UF +80-20\% 100 WVDC CER	28480 28480	0160-2055
A2J1	1200-0507	1	SOCKET-IC 16-CONT DIP-SLDR-TERMS	06776	ICN-163-S3W
A<LI	$9140-0142$	1	COIL-MLD 2.2UH $108 \mathrm{Q}=32$.095DX.25LG	99800	1025-28
A2R1 A 2 R 2	$0698-0084$ $0757-0416$	15		24546 24546	C4-1/8-T0-2151-F C4-1/8-T0-511R-F
${ }^{\text {A2 } 2 \times 3}$	0757-0416		RESISTOR $5111 \% .125 \mathrm{~W}$ F TC $=0+-100$	24546	C4-1/8-T0-511R-F
A 2×4	0757-0416		RESISTOR 51118.125 W F T $6=0+-100$	24546	C4-1/8-T0-511R-F
A2RS	0757-0416		RESISTOR 511 1\% .125W F TC=0+-100	24546	C4-1/8-T0-511R-F
A2k6	0757-0416		RESISTOR 511 14.125W F TC=0+-100	24546	C4-1/8-T0-511R-F
A2k 7	0757-0416		RESISTOR 511 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-511R-F
A2ky	0757-0416		RESISTOR 511 1\%.125W F TC $=0+100$	24546	C4-1/8-T0-511R-F
A2k9	0757-0416		RESISTOR 511 1\% . 125 W F TC=0+-100	24546	C4-1/8-T0-511R-F
A 201	1820-0710	2	IC-JIGITAL 93L22DC TTL L QUAO 2	07263	93L22DC
A 202	1820-0328	2	$\begin{array}{llll}\text { IC-DIGITAL } & \text { SN7402N TTL } \\ \text { IC-DIGITAL } & \text { SN7404 } \\ \text { STI }\end{array}$	01295	SN7402N
A2U3 A2U4	$1820-0174$ $1820-0328$	4	$\begin{array}{lll}\text { IC-DIGITAL } & \text { SN7404N TTL } \\ \text { IC-JIGITAL } \\ \text { SN7402N } \\ \text { TTL }\end{array}$	01295 01295	SN7404N SN7402N
A2U5	1820-0059	4	IC-DIGITAL 93L000C TTL L D-TYPE	07263	93L000:
${ }^{\text {a } 2066}$	$1820-0659$ $1820-0710$		IC-DIGITAL 93L000C TTL L D-TYPE	07263 07263	9310006 9312206
A2U8	1820-0256	2	IC-JIGITAL MC858P DTL QUAD 2 NAND	04713	MC858P
AZu9	1820-0659		IC-JIGITAL 93LOODC TTL L D-TYPE	07263	93LOODC
AzU10	1820-0659		IC-DIGITAL 93LOOOC TTL L D-TYPE	07263	93LOODC
A2U11	1820-0174		IC-DIGITAL SN7404N TIL HEX 1	01295	SN7404N
A 2012	1820-0256		IC-DIGITAL MC858P DTL QUAD 2 NAND	04713	MC858P
A 2013	1820-0174		IC-DIGITAL SN7404N ITL HEX 1	01295	SN7404N
A2U14	1820-0174		IC-DIGIJAL SN7404N TTL HEX 1	01295	SN7404N
A2U15	1820-0535	3	IC-JIGITAL SNT5451BP TTL DUAL 2 AND	01295	SN75451 BP
A2U16	1820-0535		IC-DIGITAL SN75451BP ITL DUAL 2 AND a2 miscellaneous	01295	SN75451BP
	0360-1514	8	terminal-stud sgl-pin press-mtg	28480	0360-1514
	1480-0073	9	PIN: DRIVE 0.250" LG	00000	080
	4040-0748	11	EXTRACTOR-PC BD BLK POLYC . O62-BD-THKNS	28480	4040-0748
	4040-0750	1	EXTRACTOR-PC BO RED POLYC . O62-8D-THKNS	28480	4040-0750
A3	86632-60050	1	board assy, remote attenuator	28480	86632-60050
${ }_{\text {A }}{ }^{\text {A } 361}$	0160-2055		CAPACITOR-FXD .01UF +80-205 100WVDC CER	28480 56289	0160-2055
A3C2	0180-0116	12	CAPACITOR-FXD 6.8UFF-102 35 VOC TA	56289	1500685×903532
A3C3 A3C4	$0160-2055$ $0160-2055$		CAPACITOR-FXD .01UF +80-20\% 100 WVOC CER CAPACITOR-FXD .01UF +80-20\% 100 WVDC CER	28480 28480	0160.-2055 $0160-2055$
${ }_{\text {A3C4 }}$	$0160-2055$ $0160-2055$		CAPACITOR-FXD .01UF +80-20\% 100 WVDC CER CAPACITOR-FXD .O1UF +80-20\% 100 WVOC CER	28480 28480	$0160-2055$ $0160-2055$
A3C6	0160-4084	4	CAPACITOR-FXD -1UF +-20\% 50 WVOC CER	28480	0160-4084
A3C7	0160-4084		CAPACITOR-FXD . 14 F +-20\% 50NVOC CER	28480	0160-4084
A3C8	0160-4084		CAPACITOR-FXO .1UF +-20\% 50WVOC CER	28480	0160-4084
A3C9	0160-3876	1	CAPACITOR-FXD 47PF +-20\% 200WVOC CER	28480	0160-3876
A3C10	0180-1715	1	CAPACITOR-FXO 150UF+-10\% 6VOC TA	56289	1500157 ${ }^{\text {P9006R2 }}$
A3C11	0100-4247	2	CAPACITOR-FXD .047UF +-20\% 50WVOC CER	28480	0160-4247
${ }^{\text {A } 3 C 12}$	0160-4247		CAPACITOR-FXD .047UF +-20\% 50WVOC CER	28480	0160-4247
A3C13	0160-3874	2	CAPACITOR-FXD 10PF +-.5PF 200wVOC CER	28480	0160-3874
A3C 14	0160-3874		CAPACITOR-FXD 10PF +-.5PF 200wVDC CER	28480	0160-3874
$\begin{aligned} & A 3 C R 1 \\ & \text { A3CR2 } \end{aligned}$	$\begin{aligned} & 1901-0040 \\ & 1901-0040 \end{aligned}$	49	DIDDE-SWITCHING 30V 5OMA 2NS DO-35 DIDDE-SWITCHING 3OV 50MA 2NS DO-35	28480 28480	$1901-0040$ $1901-0040$
A3CR3	1901-0040		DIDOE-SWITCHING 3OV 50MA ZNS DO-35	28480	1901-0040
A3CR4	1901-0040		DIDDE-SWITCHING 30V 50MA 2NS OO-35	28480	1901-0040
A3CRs	1901-0040		DIODE-SWITCHING 30V 50MA 2NS OO-35	28480	1901-0040

See introduction to this section for ordering information

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A3CR6	19 C1-0040	917	DIJOE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040
A 36k7	1901-0040		DIDDE-SWITCHING 3OV 50MA 2NS DO-35	28480	1901-0040
	$19 \mathrm{Cl}-0440$		DIODE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040
A3CR9 A3CR1J	$19 \mathrm{Cl}-0040$ $1901-0040$		DIODE-SWITCHING 30 V 50MA 2NS DO-35 DIDOE-SWITCHING 30 V 50MA $2 N S$ do- 35	28480 28480	1901-0040
A3CR1J	1901-0040		dIDOE-SWITCHING 30V 50MA $2 N S$ do-35	28480	1901-0040
A3ckil	19C1-0040		DIODE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040
A3Ch12	19.C1-0040		DIDDE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040
A3CR13	1901-0440		DIODE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040
A3CR14 A 3 CR15	$1901-0040$ $1901-0040$		DIODE-SHITCHING 30V 50MA 2 NS DO-35 DIDJE-SWITCHING 30 V 50MA $2 N S$ DO-35	28480 28480	$1901-0040$ $1901-0040$
A3ckl 6	1901-0040		DIDDE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040
A3k 1	0490-0916		RELAY-REED 1A .5A 50V CONT 5V-COIL	28480	0490-0916
A3K2	0450-1013		RELAY-REED 1C 250MA 28VAC 5VOC-COIL 3VA	28480	0490-1013
A3K3	0490-1013		RELAY-REED 1C 250MA 28VAC 5VDC-COIL 3VA	28480	0490-1013
A3k 4	$0490-1013$ $0490-1013$		$\begin{array}{llllll}\text { RELAY-REED } & 1 \mathrm{C} & 250 \mathrm{MA} & 28 \mathrm{VAC} & 5 \mathrm{VDC}-\mathrm{COIL} \\ \text { RELAY-REEO } & \text { 3VA } \\ \text { 250 }\end{array}$	28480 28480	$0490-1013$ $0490-1013$
43 K 5	0490-1013		RELAY-REEO 1C 250MA 28VAC 5VDC-COIL 3VA	28480	0490-1013
A3K6	0490-1013		RELAY-REED 1C 250ma 28VAC 5VdC-COIL 3VA	28480	0490-1013
A3k 7	0490-1013		RELAY-REED 1C 250ma 28VAC 5VdC-COIL 3VA	28480	0490-1013
A3K8	0450-1013		RELAY-REED 1C 25ama 28VAC 5VDC-COIL 3VA	28480	0490-1013
A 3×9 A 3×10	$0490-1013$ $0490-0916$		RELAY-REED 1C RELAY-REED 1 LA	28480 28480	$0490-1013$ $0490-0916$
A3K11	0490-1013		RELAY-REED 1C 250Ma 28VaC 5VdC-COIL 3VA	28480	0490-1013
A3K12	$0450-1013$		RELAY-REED 1C 250ma 28VAC 5VDC-COIL 3VA	28480	0490-1013
A3K13	0490-1013		RELAY-REED 1C 25ama 28VAC 5VOC-COIL 3VA	28480	0490-1013
A3x 14	0490-1013		RELAY-REED 1C 250MA 28VAC 5VOC-COIL 3VA	28480	0490-1013
A3L1	9140-0179	12	COIL-MLD 22UH 10\% Q=75 . 155DX. 375 LG	24225	15/222
A3L2	9140-0179		COIL-MLD 22UH 10\% $0=75.1550 X \cdot 375 \mathrm{LG}$	24226	15/222
A3L 3	9140-0179		COIL-MLD 22UH 10\% $Q=75$. 155DX.375LG	24226	15/222
A301	1853-0050	1	TRANSISTOR PNP SI TO-18 PD=360MH	28480	1853-0050
A3 42	1853-0020	8	TKANSISTOR PMP SI PD=300MW FT= 150MHZ	28480	1853-0020
Ases	1854-0071	15	TRANSISTOR NRN SI PD=300MW FT=200MHZ	28480	1854-0071
A304	1854-0071		TRANSISTOR NPN SI PD=300MH FT $=200 \mathrm{MHZ}$	28480	1854-0071
A345	1854-0071		TRANSISTOR NPN SI PD=300MH FT $=200 \mathrm{MHZ}$	28480	1854-0071
A3K1	0757-0418	3		24546	C4-1/8-T0-619R-F
A3R2	$0757-0418$			24545	C4-1/8-T0-619R-F
A3k 3	0683-6855	4		01121	C86855
A3k A 325	$0757-0288$ $0698-4037$	4		19701 24546	$\begin{aligned} & \text { MF4C1/8-T0-9091-F } \\ & \text { C4-1/8-T0-46R4-F } \end{aligned}$
A3R6	2100-2632	1	RESISTOR-TRMR 100 10\% C SIDE-ADJ 1-TRN	30983	ET50×101
A3R 7	0757-0288		RESISTOR 9.09K 1\% .125W F TC=0+-100	19701	MF4C1/8-T0-9091-F
АЗк8	0698-0083	2	RESISTOR 1.96K 1\% .125W F TC $=0+-100$	24546	C4-1/8-T0-1961-F
A3R9	0698-3444	15	RESISTOR 316 1\% . 125W F TC $=0+-100$	24546	C4-1/8-T0-316R-F
A3k10	0757-0401	9		24546	C4-1/8-T0-101-F
A3R11	0698-3446	21	RESISTOR 38318.125 W F TC=0+-100	24546	C4-1/8-T0-383R-F
A 3 K 12	0757-0420		RESISTOR 750 12.125 H F TC $=0+-100$	24546	C4-1/8-T0-751-F
A 3×13	0757-1094	4	RESISTOR 1.47K 1\% -125W F TC=0+100	24546	C4-1/8-T0-14.71-F
A3R14 A 3×15	$0757-0280$ $0698-3153$	13 2	RESISTOR 1 K 18.125W F TC=0+-100 RESISTOR 3.83K 18 . 125 H F TC $=0+-100$	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-3831-F
43 K 16	0757-0440	2		24546	C4-1/8-T0-7501-F
A3R17	0698-3156	3	RESISTOR RESISTOR 14.	24546	C4-1/8-T0-1472-F
A3k18	0757-0401			24546	C4-1/8-T0-101-F
A 3×19A 3 R 20	0757-0294	1		19701	MF4C1/8-T0-17R8-F
	0757-0394	1	RESISTOR 51.1 18.125W F TC $=0+-100$	24545	C4-1/8-T0-51R1-F
Ask21	0098-3437		RESISTOR 133 1\% . 125 H F TC=0+-100 RESISTOR 1K 18 . 125W F TC=0+-100	24545	C4-1/8-T0-133R-F
A3R22	0757-0280	1		24546	C4-1/8-T0-1001-F
A 3×23	0698-3439			24546	C4-1/8-T0-178R-F
A3K24	0757-0416			24546	C4-1/8-T0-511R-F
A3R 25	0757-0317	2	RESISTOR 1.33K 18.125 W F $\mathrm{IC}=0+100$	24546	C4-1/8- ${ }^{\text {- }}$-1331-F
АЗк2b	0757-0442	11	RESISTOR 10 K 18 . 125 W F TC=0+100	24546	C4-1/8-T0-1002-F
A3k27	0698-3444			24546	C4-1/8-T0-316R-F
A3¢28	0698-3443		RESISTOR 316 12. 125W F TC=0+-100 RESISTOR 287 1\% . 125W F TC=0+-100	24545	C4-1/8-T0-287R-F
АЗК29	0698-3446	1	RESISTOR 38318.125 W F TC=0+-100	24546	C4-1/8-T0-383R-F
A3k 30	0757-0274	2	RESISTOR 1.21K 1\% .125H F TC=0+-100	24545	C4-1/8-50-1213-F
A 3×31 43×32	$0698-7<29$ $0683-1555$	1		24546	
${ }_{\text {A }} \times 3 \times 32$	$0683-1555$ $0757-0442$			01121 24546	```CB1555 C4-1/8-T0-1 002-F```
A 3 R 34	0757-0280	1	RESISTOR 1K 1\% .125W F TC=0+-100	24546	C4-1/8-70-1 001-F
АЗк35	0757-0424		RESISTOR 1.1K 1\% .125W F TC=0 +-100	24546	C4-1/8-T0-1101-F
A3K36 A 3 K 37	$2100-2574$ $2100-2413$	12121		30983 30983	$\begin{aligned} & \text { ET50×501 } \\ & \text { ET50×201 } \end{aligned}$
A3K38	0698-3495		RESISTOR 866 1\% . 125w F TC= $0+-100$	24546	C4-1/8-T0-866R-F
A3^39	0698-4055		RESISTOR 1K. $25 \pm .125 \mathrm{~W}$ F TC $=0+100$	03888	PME 55-1/8-T 0 -1001- -
A3R40	0698-0082		RESISTOR $4641 \% .125 \mathrm{~W}$ F TC= $0+-100$	24546	C4-1/8-T0-4640-F

Table 6－2．Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number		
A3K41	0698－4055	81	RESISTOR 1K ． 25% ．125W F TC $=0+-100$ RESISTOR 1．78K 1\％．125W F TC＝0＋100 RESISTOR 31.61% ． 125 W F $T C=0 .+100$ RESISTOR 1．78K 17 ．125W F TC $=0+100$ RESISTOR 10017 ．125W F TC＝0＋－100	$\begin{aligned} & 03888 \\ & 24546 \\ & 24545 \\ & 24546 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { PME } 55-1 / 8-T 0-1001-C \\ & \text { C4-1/8-TO-1 } 781-F \\ & \text { C4; T-0 } \\ & \text { C4-1/8-T0-1 781-F } \\ & \text { C4-1/8-T0-1 01-F } \end{aligned}$		
A3R42	0757－0278						
A 3 K 43 A 3 K 44	$0757-0190$ $0757-0278$						
A 3×45	0757－0401						
A3K46	0757－0280						
A3J1	1826－0089	1	IC HA 2525 OP AMP IC UA $110 C$ COMPARATUR	3437101295	$\begin{aligned} & \text { HA2-2525-5 } \\ & \text { SN72710N } \end{aligned}$		
A3J2	1820－0398						
A3VRL AJVR2	$1902-3193$ $1902-3059$	221	DIJDE－ZNR $13.3 V 5 \%$ DO－7 PD $=.4 \mathrm{~W}$ TC $=+.0598$ DIDDE－ZNR 3．83V 54 DO－7 PD＝．4W TC＝－． 0512 A3 misCellaneous	$\begin{aligned} & 04713 \\ & 15818 \end{aligned}$	$\begin{array}{ll} \text { SZ } & 10939-218 \\ \text { CD } & 35586 \end{array}$		
	0360－1514		terminal－stud sgl－pin press－mtg PIN：DRIVE 0．250＂LG EXTRACTOR－PC 80 BLK POLYC ．062－BD－THXNS EXTRACTOR－PC BD ORN POLYC ．O62－BD－THKNS	$\begin{aligned} & 28480 \\ & 00000 \\ & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 0360-1514 \\ & 080 \\ & 4040-0748 \\ & 4040-0751 \end{aligned}$		
	1480－0073						
	4040－0748						
A4	80632－60005	1	BOARD ASSY，LEVEL AMPLIFIER	28480	86632－60005		
A4C1	0100－2204	1	CAPACITOR－FXD 100PF＋5\％300WVDC MICA CAPACITOR－FXD 6．8UF＋－102 35VDC TA	28480	$0160-2204$		
A4C2	0180－0116			56289	1500685×903582		
A463	0180－0116			56289	1500685×903582		
A464	0180－0058	1		5628956289	$\begin{aligned} & 30 D 506 G 025 C C 2 \\ & 292 P 10492 \end{aligned}$		
A465	0160－0153	1	CAPACITOR－FXD 50UF＋75－10\％25VDC AL CAPACITOR－FXD ．IUF＋－10\％200WVDC POLYE				
A460	0180－2215	4	CAPACITOR－FXD 17OUF＋75－10\％15VDC AL	56289	30D17760150D2		
A4C7	0180－1743	1.	CAPACITOR－FXD．1UF＋－10\％ 35 VDC TA ${ }^{\text {che }}$	56289	$1500104 \times 9035 \mathrm{~A} 2$		
A4L8	0180－0291	3		56289	1500105×9035A2		
A4Ly	0160－2150	3	CAPACITOR－FXD CAPACITOR－FXD 1 3	2848028480	$\begin{aligned} & 0160-2150 \\ & 0160-2150 \end{aligned}$		
A4C10	0160－2150		CAPACITOR－FXO 33PF＋5\％300wVDC MICA				
A4C11	0180－2215			56289	3001776015002		
A4612	0160－2453	1		28480	$0160-2453$3001076025002		
A4C13	0180－0094	5		56289			
A4614	0180－0229	2	CAPACITOR－FXD 33UF＋－10\％1OVDC TA CAPACITOR－FXD 33 PF＋－52 300WVDC MICA	56289	$30010760250 D 2$ 1500336×901082		
44C15	0160－2150			28480	$0160-2150$		
A4C16	0140－0196	1	CAPACITOR－FXD 150PF＋－5\％300WVDC MICA CAPACITOR－FXD 100UF＋75－10』 25 VDC AL	$\begin{aligned} & 72135 \\ & 56289 \end{aligned}$	DM15F151J0300wVICR 30D1076025002		
A4C17	0130－0094						
A4CR1	1901－0022	3	DIGDE－STABISTOR LOV 250MA DIODE－STABISTOR IOV 250MA	28480	1901－0022		
A4CR2	1901－0022			28480	1901－0022		
A4CR3	19C1－0022		DIDDE－STABISTOR IOV 250MA	28480	1901－0022		
A4CR4	1901－0025	2	DIODE－GEN PRP 100 V 200MA DO－7DIDDE－GEN PRA 100V 200MA DO－7	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 1901-0025 \\ & 1901-0025 \end{aligned}$		
A4CR5	1901－0025						
A 4 Cr6 6	1901－0047	4	DIODE－SWITCHING 2OV 75MA IONS	28480			
A4CK7	1901－0047		dIDDE－SWITCHING 2OV 75MA IONS DIDDE－SWITCHING 2OV 75AA LONS	2848028480	1901－0047		
A4LR8	19C1－0047				1901－0047		
A4CR9	1901－0047		DIODE－SWITCHING 2OV 75MA IONS DIJDE－SWITCHING 2OV 75MA LONS	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	1901－0047		
A4K1	0490－1013		RELAY－REED 1C 250MA 28VAC 5VDC－COIL 3VA		0490－1013		
A4L1	9140－0179		$\begin{array}{lllll} \text { COIL-MLD } & 22 U H & 10 \% & Q=75 & .1550 \times .375 L G \\ \text { COIL-MLD } & 22 U H & 108 & Q=75 & .1550 \times .375 L G \end{array}$$\text { COIL-MLD 22UH 10ः } Q=75.1550 \times .375 \mathrm{LG}$	28480	$\begin{aligned} & 15 / 222 \\ & 15 / 222 \\ & 15 / 222 \end{aligned}$		
A4L2	9140－0179			$\begin{aligned} & 24225 \\ & 24226 \\ & 24225 \end{aligned}$			
A4L3	9140－0179						
A401	1853－0001	1	TRANSISTOR PNP SI TO－39 PD＝600MH TRANSISTOR PNP SI PD＝300MW FT $=150 \mathrm{MHZ}$	28480	$\begin{aligned} & 1853-0001 \\ & 1853-0020 \end{aligned}$		
A402	1853－0020			2848028480			
	1205－0011	1	HEAT SINK TO－5／TO－39－PKGTRANSISTOR PAP SI PD＝300MH FT $=150 \mathrm{MHZ}$		$\begin{aligned} & 1853-0020 \\ & 1205-0011 \end{aligned}$		
A4，${ }^{3}$	1853－0020			$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	1853－0020		
A4， 4	1854－0404	11	TRANSISTOR NPN SI TU－18 PD＝360MW				
A445	1854－0071				1854－0071		
A400	1854－0071			2848028480	1854－0071		
A447	1854－0071				1854－0071		
A4 488 A 498	$1853-0020$ $1854-0071$			TRANSISTOR NPN SI PD＝300MN FT $=200 \mathrm{MHZ} \quad 28480 \quad 18540071$			
A4010	1854－0071		TRANS ISTOR NPN SI PD＝300MW FT＝200MHZ TRANSISTOR NPN SI TO－18 PD＝360MW IRANSISTOR NPN SI PD＝300MW $F T=200 \mathrm{MHZ}$	$\begin{aligned} & 28480 \\ & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 1854-0071 \\ & 1854-0404 \\ & 1854-0071 \end{aligned}$		
A4011	1854－0404						
A4．12	1854－0071						
A4K1	0757－0421	1	RESISTOR 825 1\％．125W F TC $=0+-100$ RESISTOR 1K 1% ．125W F TC＝0＋－100 RESI STOR 3．16K 1世 ．125 F FTC $=0+-100$ RESISTOR 10K 1\％．125W F TC＝0＋－100 RESISTOR 1K 1\％．125W F TC＝0＋－100	$\begin{aligned} & 24546 \\ & 24546 \\ & 24546 \\ & 24546 \\ & 24546 \end{aligned}$	$\begin{aligned} & \mathrm{C} 4-1 / 8-\mathrm{T} 0-825 R-F \\ & \mathrm{C} 4-1 / 8-\mathrm{TO}-1001-\mathrm{F} \\ & \mathrm{C} 4-1 / 8-\mathrm{T} 0-3161-\mathrm{F} \\ & \mathrm{C} 4-1 / 8-\mathrm{TO}-10.02-\mathrm{F} \\ & \mathrm{C} 4-1 / 8-\mathrm{TO} 0-1001-\mathrm{F} \end{aligned}$		
A4R2	0757－0280						
A4k3	0757－0279	6					
${ }^{\text {A } 4 \times 24}$	0757－0442						
A4RS	0757－0く80						
A4KO	0696－3156		RESISTOR 14．7K 18 ． 125 W F TC $=0+100$ RESISTOR 14．7K 14 ．125W F TC＝0＋－100 RESISIOR 38．3K 18 ． 125 W F TC $=0+-100$ RESISTOR 3.48 K 18 ． 125 W F TC＝0＋－100 RESISTOR 2．15K 1\％．125W F TC＝0＋－100	$\begin{aligned} & 24546 \\ & 24546 \\ & 24545 \\ & 24546 \\ & 24546 \end{aligned}$	$\begin{aligned} & \mathrm{C} 4-1 / 8-\mathrm{T} 0-1472-\mathrm{F} \\ & \mathrm{C} 4-1 / 8-\mathrm{T} 0-1472-\mathrm{F} \\ & \mathrm{C} 4-1 / 8-\mathrm{TO}-3832-\mathrm{F} \\ & \mathrm{C} 4-1 / 8-\mathrm{TO} 0-3481-\mathrm{F} \\ & \mathrm{C} 4-1 / 8-\mathrm{T} 0-2151-\mathrm{F} \end{aligned}$		
A4к 7	0698－3155						
A4K8	0698－3161	2					
A4K9	0693－3152	4					
A4K10	0698－0684						

See introduction to this section for ordering information

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A4R11	0698-0084		RESISTOR 2.15K 1\% .125W F TC=0+-100	24546	C4-1/8-T0-2151-F
A4R1<	0698-3152		RESISTOR 3.48 K 1\% . 125 WW F TC $=0+-100$	24545	C4-1/8-T0-3481-F
A4613	0757-0280		RESISTIOR 1K 1\% . 125 W F TC=0+-100	24546	C4-1/8-T0-1001-F
A 4 R 14 A 4 R 15	$1990-0322$ $0698-3155$	1	RAYISTOR	28480 24545	1990-0322
	068-315				C4-118-10-4641
A4K16	0757-0419	1	RESISTOR 681 1\% -125W F TC $=0+100$	24546	C4-1/8-T0-681R-F
A 4 R 17	0698-3152		RESISTOR 3.48 KK 18.125 W F TC $=0+100$	24545	C4-1/8-T0-3481-F
A4K18	0698-0044		RESISTOR 2.15 K 1\% . 125 W F TC=0+-100	24546	C4-1/8-T0-2151-F
A $4 \mathrm{~K} \times 19$ $\mathrm{~A} R<0$	$0757-0416$ $0757-0438$	2	RESISTOR 5111% \% 125 W F $\mathrm{TC}=0+-100$ RESISTOR $5.11 \mathrm{~K} 1 \% .125 \mathrm{~W} \quad \mathrm{TC}=0+-100$	24546 24546	C4-1/8-TJ-511R-F $\mathrm{C} 4-1 / 8-\mathrm{T} 0-5111-\mathrm{F}$
A4Kく0	0757-0438				
A4R21	0757-0346	4	RESISTOR 10 1\% . 125 W F TC=0+-100	24545	C4-1/8-T0-10R0-F
A4k22	0757-0467	2	RESISTOR 121K 1\%.125W F TC $=0+100$	24546	C4-1/8-T0-1213-F
A4R<3	0757-0280		RESISTOR 1K 18.125W F TC $=0+-100$	24546	C4-1/8-T0-1 001-F
A $4 \mathrm{R}<4$	0757-0274		RESISTOR 1.21 K RESISTOR $21.51 \% .125 W ~ F ~ T C=~$	24546	C4-1/8-T0-1213-F PME 5 -1/8-T $0-21 R 5-F$
A4R25	0098-3430	1	RESISTOR 21.5 1\% .125W F Ti=0+-100	03888	PME 55-1/8-T 0-21R5-F
A4R26	0757-0400	1	RESISTOR 90.9 1\% . 125 W F TC= $=0+-100$	24546	C4-1/8-T0-90R9-F
A4*27	0757-0346		RESISTOR $10.1 \%-125 \mathrm{~W}$ F TC $=0+-100$	24545	C4-1/8-T0-10RO-F
A4k28	0757-0346		RESISTOR 1018.125 W F TC $=0+100$	24546	C4-1/8-T0-1 0RO-F
A4R29	0757-0199	3	RESISTOR 21.5K 1\% .125N F TC=0+100	24546	C4-1/8-T0-2152-F
A4R30	0698-0084		RESISTOR 2.15K 1\% .125W F TC= $0+-100$	24546	C4-1/8-T0-2151-F
A4R31	0757-0279		RESISTOR 3.16K 16 . 125 W F TC=0+-100	24546	C4-1/8-T0-3161-F
A $4 \mathrm{R} 3<$	0698-4037		RESISTOR 46.41%. 125 W F TC $=0+-100$	24546	C4-1/8-T0-46R4-F
A4K33	0698-3454	2	RESISTOR 215K 12.125 W F TC=0+-100	24545	C4-1/8-T0-2153-F
A4K34	0698-3155		RESISTOR 4.64 K 16.125 WF TC $=0+100$	24546	C4-1/8-50-4641-F
A4K35	2100-1758	1	RESISTOR-TRMR $1 \mathrm{~K} 5 \% \mathrm{WW}$ SIDE-ADJ 1 -TURN	68027	CT-106-4
A4R36	0698-3155		RESISTOR 4.64K 18 . 125 W F TC= $0+-100$	24546	C4-1/8- T0-4641-F
A4R37	0757-0465	1	RESISIOR 100K 18.125 W F TC= $0+-100$	24546	C4-1/8-T0-1003-F
A4R38	0698-3452	1	RESISTOR 147K 1\% -125W F TC $=0+-100$	24546	C4-1/8-T0-1473-F
A4R39	0757-0467		RESISTOR 121K 1\% . 125 W F TC $=0+-100$	24545	C4-1/8-T0-1213-F
A4K40	0698-3154	5	RESISTOR 4.22K 1\% .125W F TC=0+100	24546	C4-1/8-T0-4221-F
A4R41	0698-3454		RESISTOR 215 K 12 . 125 W F TC=0t-100	24546	C4-1/8-T0-2153-F
A4R42	0757-0441	1	RESISTOR 8.25K 18.125 W F TC $=0+100$	24546	C4-1/8-T0-8251-F
A4R43	0757-0278		RESISTOR 1.78K 1\% .125W F TC=0+-100	24546	C4-1/8-T0-1781-F
A 4×44	0698-3160	4	RESISTOR 31.6K 1\% . 125 W F TC $=0+100$	24546	C4-1/8-T0-3162-F
A4R45	2100-0942	1	RESISTOR-TRMR 50K 20% MG SIDE-ADJ 1-TURN	84048	156-4
A4K40	0698-3160		RESISTOR 31.6K 1\% . 125 W F TC= $=0+-100$	24545	C4-1/8- T0-3162-F
A4R47	0698-3157	6	RESISTOR 19.6K 1\% .125N F TC $=0+100$	24546	C4-1/8-50-1962-F
A4R48	0757-0438		RESISTOR 5.11K 12.125 W F TC= $0+-100$	24546	C4-1/8-10-5111-F
A4K49	0757-0401		RESISTOR 10018.125 W F TC=0+-100	24546	C4-1/8-T0-101-F
A401	$1820-0223$	4	IC LM 301A OP AMP	27014	Lm301ah
A4U2	$1820-0223$		IC LM 301A OP AMP	27014	LM301AH
A4VR1	1902-3139		DIODE-ZNR 8.25V 5\% DO-7 PD=.4W TC=t.053\%	04713	SZ 10939-158
A4VR2	1902-3149	1	DIDJE-ZNR 9.09V 5\% DO-7 PD=.4W TC=+.057\%	04713	SZ 10939-170
A4VR3	1902-3059		DISDE-ZNR 3.83V 5\% DO-7 PD=.4W TC=-.051\%	15818	CD 35586
			A4 miscellaneous		
	0360-1514		TERMINAL-STUD SGL-PIN PRESS-MTG	28480	0360-1514
	4040-0748		EXTRACTOR-PC BD BLK POLYC -062-BD-THKNS	28480	4040-0748
	4040-0752		EXTR-PC BD YEL POLYC . OO2-BD-THKNS	28480	4040-0752
	1480-0073	3	PIN-DRIVE $0.250^{\prime \prime}$ LG	00000	OBD
A5	86632-60009	1	BOARD ASSY, 400/1K OHM OSCILLATOR	28480	86632-60009
A5C1	0160-2055		CAPACITOR-FXD. OLUF +80-20\% 100WVDC CER	28480	0160-2055
A5C2	0180-0094		CAPACITOR-FXD 100UF+75-10* 25 VOC AL	56289	3001076025302
A5C3	0180-0094		CAPACITOR-FXD 100UF+75-10\% 25VDC AL	56289	3001076025002
A5C4	0180-0116		CAPACITOR-FXD 6. 8 UFF-109 35VDC TA	56289	1500685×9035B2
ASC5	0180-0291		CAPACITOR-FXD 1UF+-10\% 35VDC TA	56289	1500105×9035A2
A5c6	0160-2199	3	CAPACITOR-FXD 30PF +-5\% 300WVDC MICA	28480	0160-2199
A5c7	0180-2206	1	CAPACITOR-FXD 60UF+-102 6 VDC TA	56289	1500606×900682
A5C8	0180-2205	1	CAPACITOR-FXD . 33 UF+-102 35VDC TA	56289	1500334×9035A2
A569	0160-0937	1	CAPACITOR-FXD 1000PF +-2\% 300WVDC MICA	28480	0160-0937
A5C10	0160-2671	1	CAPACITOR-FXD . 10 F +-5\% 80WVDC POLYE	56289	292P1045R8
ASC11	0180-2215		CAPACITOR-FXD 170UF+75-10\% 15VOC AL	56289	3001776015002
ASC 12	0160-2226	1	CAPACITOR-FXD 2200PF +-5\% 300WVDC MICA	28483	0160-2226
A5C13	0180-0291		CAPACITOR-FXD LUF+-10\% 35VDC TA	56289	1500105×903542
A5C14	0180-1704	2	CAPACITOR-FXD 47UF+-10\% OVDC TA	56289	1500476×900682
A5CR1	1901-0040		drode-switching 30V 50MA 2NS DO-35	28480	1901-0040
A5CR2	1901-0040		OLDOE-SWITCHING 30V 50MA 2NS OO-35	28483	1901-0040
${ }^{\text {A } 56 R 3}$	1901-0040		DIDDE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040
A5CR4 A5Ckj	1901-0040		DIODE-SWITCHING 30 V 50MA 2 NS DO-35 DIOOE-SWITCHING 30 V 50 MA 2NS DO-35	28480	1901-0040
A5Ckj	1901-0040		DI OJE-SWITCHLNG 30V 50MA 2NS DO-35	28480	1901-0040
A5cre	1901-0040		DIODE-SWITCHING 3OV 50MA 2NS DO-35	28480	1901-0040
A5CR7	1901-0040		DIDDE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040
A5CR8	1901-0040		DIODE-SWITCHLNG 30V SOMA 2NS DO-35	28480	1901-0040
A5CR9	1901-0040		DIODE-SWITCHING 30V 50MA 2 NS DO-35	28480	1901-0040

Table 6-2. Replaceable Parts

See introduction to this section for ordering information

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
AGCRIL AGCR12	$19 \mathrm{Cl}-0040$ $1901-0040$		DIODE-SWITCHING $30 V$ DIODE-SWITCHING 30V SOMA SOMA	28480 28480	1901-0040
AGLKLS	1901-0040		DIODE-SHITCHING 3OV 50MA 2NS DO-35	28480	1901-0040
A6J 1	$\begin{aligned} & 1250-1377 \\ & 2190-0326 \end{aligned}$	1	CUNNEC TOR-RF SMB FEM PC WASHER-FL NM NO.-4 .115-IN-ID . 188-IN-DD	$\begin{aligned} & 2 K 497 \\ & 28480 \end{aligned}$	$\begin{aligned} & 700214 \\ & 2190-0326 \end{aligned}$
A6K 1 Aok 2	$0490-0916$ $0490-0916$			28480 28480	0490-0916 $0490-0916$
A6K3	0490-0916		Relay-reed 1a .5A 50V Cont 5v-coil	28480	0490-0916
A6K 4	0490-0916		RELAY-REED 1A -5A 50V CONT 5V-COIL	28480	0490-0916
A6L1	9140-0158	1	COIL-MLD 1UH 10\% Q=32 .0950X.25LG	24226	10/101
A6L2	9140-0179		COIL-MLD 22UH 10\% $\mathrm{Q}=75$. 155DX.375LG	24226	15/222
A6L 3	$9140-0114$	6	COIL-MLD 10UH 10\% $Q=55$. 1550X.375LG	99800	1537-36
A6L 4	9100-1629	2	COIL-MLD 47UH 5\% $\mathrm{Q}=55.1550 \mathrm{X} .375 \mathrm{LG}$	24226	15/472
A6L5	9140-0144	14	COIL-FXD MOLDED RF CHOKE 4.7UH 10\%	24225	10/471
Ablo	9140-0144		COIL-FXD MOLDED RF CHOKE 4. TUH 10\%	24226	10/471
Abl 7	9140-0144		COIL-EXD MOLDED RF CHOKE 4. 7 HH 10\%	24225	10/471
Abl 8	9140-0144		COIL-FXD MOLDED RF CHOKE 4.7UH 109	24225	10/471
A6L9	9140-0114		COIL-MLD 10UH 102 $\mathrm{Q}=55.155 \mathrm{DX} .375 \mathrm{LG}$	99800	1537-36
AOLI 10	9140-0114		COIL-MLD 10UH 108 $\mathrm{Q}=55.1550 \mathrm{X} .375 \mathrm{LG}$	99800	1537-36
A6L11	9140-0114		COIL-MLD 10UH 10\% Q =55 . 1550X.375LG	99800	1537-36
A601	1853-0020		TRANSISTOR PNP SI PD=300M FT $=150 \mathrm{MHZ}$	28480	1853-0020
A602	1854-0071		TRANSISTOR NPN SI PD $=300 \mathrm{MW}$ FT= 200 MHZ	28480	1854-0071
A643	1853-0020		TRANSISTOR PNP SI PD=300MN FT= 150MHZ	28480	1853-0020
A644 4605	$1854-0071$ $1854-0071$		$\begin{array}{cc}\text { TRANSISTOR NPN SI } \\ \text { TRD }=300 \mathrm{MH} & \mathrm{FT}=200 \mathrm{MHZ} \\ \text { NSI }\end{array}$	28480 28480	$\begin{aligned} & 1854-0071 \\ & 1854-0071 \end{aligned}$
$\begin{aligned} & \text { A606 } \\ & \text { A607 } \end{aligned}$	$\begin{aligned} & 1854-0071 \\ & 1854-0071 \end{aligned}$		TRANSISTOR NRN SI PD $=300 \mathrm{MH} \quad \mathrm{FT}=200 \mathrm{MHZ}$ TRANSISTOR NPN SI PD=300MM FT=200MHZ	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 1854-0071 \\ & 1854-0071 \end{aligned}$
AGR 1 AGR 2	0757-0279 $0698-3447$	6		24546 24546	C4-1/8-T0-3161-F $\mathrm{C} 4-1 / 8-\mathrm{TO}$
AGR3	0698-3155	6	RESISTOR 4.64K 1\% .125W F TC $=0+100$	24545	C4-1/8-T0-4641-F
A6R4	0757-0280		RESISTOR 1K 1\% .125w F TC=0+-100	24546	C4-1/8-T0-1001-F
AGK5	0698-3228	1	RESISTOR 49.9K 1\% -125w F TC $=0 \pm 100$	24546	C4-1/8-50-4992-F
A6R6	0698-3161		RESISTOR 38.3K 17 .125W F TC=0+-100	24546	C4-1/8-T0-3832-F
A6k 7	0698-3153		RESISTOR 3.83K 12.125 W F TC= $=0+-100$	24546	C4-1/8-70-3831-F
AGR8	0698-3444		RESISTOR 316 1\% .125w F TC= $0+100$	24546	C4-1/8-T0-316R-F
A6K9	0698-3440	2	RESISTOR 196 18.125 W F TC $=0+100$	24545	C4-1/8-T0-196R-F
A6K10	0757-0280		RESISTOR 1K 17 .125W F TC= $=0+100$	24546	C4-1/8-T0-1 001-F
A6R11	0698-3157		RESISTOR 19.6K 12.125W F TC=0+100	24546	C4-1/8-T0-1962-F
A6R12	0698-3157		RESISTOR 19.6K 1\% .125N F TC $=0+100$	24546	C4-1/8-T0-1962-F
A6R13	0757-0278		RESISTOR 1.78K 18.125 W F TC $=0+100$	24545	C4-1/8-T0-1781-F
A6R14	0757-0278		RESISTOR 1.78 K 12.125 W F TC $=0+100$	24546	C4-1/8-T0-1781-F
A6R15	0757-0280		RESISTOR 1K 18 . 125 W F TC=0+-100	24545	C4-1/8-T0-1001-F
A6K16	0757-0278		RESISTOR 1.78K 1\% .125W F TC=0+100	24546	C4-1/8-T0-1781-F
A6R17	0698-3136	2	RESISTOR 17.8K 12.125 W F TC $=0+100$	24546	C4-1/8-T0-1782-F
A6K18	0698-3136		RESISTOR 17.8K 12 -125W F TC= ${ }^{\text {P }}$	24546	C4-1/8-T0-1782-F
A6R19 AGR20	$0757-0442$ $2100-1761$		RESISTOR 10K 18 . 125 W F TC=0+-100 RESISTOR-TRMR 10K 5% WH SIDE-ADJ 1-TRN	24545 84048	C4-1/8-T0-1002-F CT-106-4
A6R21	0757-0442		RESISTOR 10K 15.125 H F TC= $0+-100$	24546	C4-1/8-T0-1002-F
A6R22	0757-0199		RESISTOR 21.5K 1\% .125W F TC= $0+-100$	24546	C4-1/8-T0-2152-F
A6R23	2100-1755	1	RESIS TOR-TRMR $1005 \pm$ WW SIDE-ADJ 1 -TRN	84048	CT-106-4
AGR<4	0757-0290	2	RESISTOR 6.19 K 12.125 HF TC= $=0+100$	19701	MF4C1/8-T0-6191-F
AGR25	2100-1759	1	RESISTOR-TRMR $2 \mathrm{~K} 5 \% \mathrm{WW}$ SIDE-ADJ 1-TURN	GB027	CT-106-4
A6R26	0757-0317		RESISTOR 1.33K 1\% -125W F TC= $0+-100$	24546	C4-1/8-T0-1331-F
A6K27	0698-3437		RES I STOR 13318.125 NF TC $=0+-100$	24545	C4-1/8-T0-133R-F
A6R28	0698-3428	1	RESISTOR 14.7 12 -125W F TC $=0 .+-100$	03888	PME55-1/8-T0-14R7-F
A6R 29 A 6 P 30	$0698-3132$ $0698-3447$	1		24545 24546	C4-1/8-T0-2610-F $\mathrm{C} 4-1 / 8-\mathrm{TO}$
A6R31	0757-0279		RESISTOR 3.16K 1\% . 125w F TC=0+-100	24546	C4-1/8-T0-3161-F
A6R32*	0757-0379	1	RESISTOR 12.1 1\% . 125 W F TC $=0+-100$ *FACTORY SELECTED PART	19701	MF4C1/8-T0-12R1-F
$\begin{aligned} & \text { A6R33 } \\ & \text { A6R34 } \end{aligned}$	$\begin{aligned} & 0698-3437 \\ & 0757-0279 \end{aligned}$		RESISTOR 1331%. 125 W F TC $=0+100$ RESISTOR 3.16K 1\% .125W F TC $=0+100$	$\begin{aligned} & 24546 \\ & 24546 \end{aligned}$	$\begin{aligned} & \mathrm{C} 4-1 / 8-\mathrm{TO}-133 \mathrm{R}-\mathrm{F} \\ & \mathrm{C} 4-1 / 8-\mathrm{TO}-3161-\mathrm{F} \end{aligned}$
A6R35 A 6 R 36	$0698-3447$ $0757-0278$		RESISTOR 422 18. 125W F TC $=0+-100$ RESISTOR 1.78 K 17 .125W F TC $=0+100$	24545 24546	C4-1/8-T0-422R-F C4-1/8-T0-1781-F
A6R37	0757-0279		RESISTOR 3.16 K 18.125 HF TC $=0+100$	24546 24546	C4-1/8-T0-3161-F
AGR38	0698-7212	2	RESISTOR 10018.05 W F TC $=0+100$	24546	C3-1/8-T0-1 00R-6
A6R39	0698-7212		RESISTOR 10018.05 W F TC=0+-100	24546	C3-1/8-T0-1 00R-6
A6R40	0757-0401		RESISTOR 10018.125 M F TC=0+-100	24545	C4-1/8-T0-1 01-F
$\begin{aligned} & \text { AGU1 } \\ & \text { AGUZ } \end{aligned}$	$\begin{aligned} & 1858-0008 \\ & 1820-0068 \end{aligned}$	1	IC MHQ 6001 XSTR ARRAY IC-DIGITAL SN741ON TTL TPL 3 NAND	$\begin{aligned} & 04713 \\ & 01295 \end{aligned}$	MH06001 SN7410N
			A6 miscellaneous		
	$\begin{aligned} & 0360-1514 \\ & 1480-0073 \\ & 4040-0748 \\ & 4040-0754 \end{aligned}$	1	terminal-stud sgl-pin press-mtg PIN:DRIVE 0.250" LG EXTRACTOR-PC BD BLK POLYC .062-BD-THKNS EXTRACTOR-PC BD BLU POLYC .062-BD-THKNS	28480 00000 28480 28480	$\begin{aligned} & 0360-1514 \\ & \text { OBD } \\ & 4040-0748 \\ & 4040-0754 \end{aligned}$

Table 6-2. Replaceable Parts

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A7A2J1	1250-1255	1	CONNECTOR-RF SMB M PC 50-OHM	98291	51-051-0.000
A7A2K 1	0490-1013		RELAY-REED 1C 250MA 28VAC 5VDC-COIL 3VA	28480 28480	$0490-1013$
A7A2K2 A7A 2×3	$0490-0916$ $0490-1013$			28480 28480	$\begin{aligned} & 0490-0916 \\ & 0490-1013 \end{aligned}$
A7A2x4	0490-1013		RELAY-REED IC 250MA 28 VAC 5VDC-COIL 3 VA	28480	0490-1013
ATAELI	9140-0144		COIL-FXD MOLDED RF Choke 4.7UH 10\%	24226	10/471
A7A<LL	914000144		COIL-FXD MOLDED RF CHOKE 4.7UH 10\%	24226	10/471
A7A2L3	9140-0144		COIL-FXD MOLDED RF CHOKE 4.7UH 108	24225	10/471
A7A2L A7A2L5	$9140-0144$ $9140-0144$		COIL-FXD MOLDED RF CHOKE 4.7UH 10\% COIL-FXD MOLDED RF CHOKE 4.7UH 10\%	24226 24226	$10 / 471$ $10 / 471$
	9140-0144		COIL-FXD MOLDED RF CHOKE 4. 7 HH 108		$10 / 471$
A7A2L6	9140-0144		COIL-FXD MOLDED RF CHOKE 4.7UH 10\%	24226	$10 / 471$
A 7A2L 7	$9140-0144$		COIL-FXD MOLOED RF CHOKE 4.7UH 10%	24225	10/471
A7A3	86632-60002	1	BOARD ASSY, 20 MHZ , VCO	28480	86632-60002
A7A3C1	0180-0197		CAPACITOR-FXD 2.2UF+-10\% 20VDC TA	56289	1500225×902042
A7A3C2	0180-0116		CAPACITOR-FXD 6.8UF+-10\% 35VDC TA	56289	1500685×903582
A7A3C3	$0180-0228$		CAPACITOR-FXD 22UF+-10\% 15 VDC TA	56289	1500226×901582
A7A3C4	0160-2055		CAPACITOR-FXD . $014 \mathrm{~F}+80-20 \%$ 100WVDC CER	28480	0160-2055
A7A3C5	0180-0116		CAPACITOR-FXD 6.8UF+-102 35VDC TA	56287	1500685×903582
A7A3C6	0160-2055		CAPACITOR-FXD .OIUF +80-20\% 100WVOC CER	28480	0160-2055
A7A3C7	0180-0116		CAPACITOR-FXD 6.8UF+-10\% 35VDC TA	56289	1500685×903582
A7A3C8 A7A3C9	$0160-2055$ $0160-2199$		CAPACITOR-FXD -01UF +80-20\% 100 WVDC CER CAPACITOR-FXD 30PF $+-5 \% 300$ WVOC MICA	28480 28480	$0160-2055$ $0160-2199$
A7A3Cio	0160-2055		CAPACITOR-FXD .OIUF +80-20\% 100WVDC CER	28480	0160-2055
A7A3C11	0180-0094		CAPACITOR-FXD 100UF+75-10\% 25VDC AL	56289 28480	3001076025002
A7A3C12 A7A3C13	$0150-0059$ $0160-2055$		CAPACITOR-FXD 3. 3 PF +-.25PF 500WVDC CER CAPACITOR-FXD $01 U F+80-20 \%$ 100WVDC CER	28480 28480	$\begin{aligned} & 0150-0059 \\ & 0160-2055 \end{aligned}$
A7A3C14	0160-0945	1	CAPACITOR-FXD 910PF +-5\% 100WVDC MICA	28480	0160-0945
A7A3Cls	0160-2266	1	CAPACITOR-FXD 24PF +-5\% 500WVDC CER	28480	0160-2266
A7A3C1S	0160-2055		CAPACITOR-FXD . O1UF +80-20\% 100WVDC CER	28480	0160-2055
A7A3C17*	0150-0059	2	CAPACITOR-FXD 3.3PF +-.25PF 500WVDC CER *FACTORY SELECTED PART	28480	0150-0059
A7A3C18	0160-2253	2	CAPACITOR-FXO 6.8PF +-. 25PF 500WVDC CER	28480	0160-2253
A7A3C19	0160-2253		CAPACITOR-FXD 6.8PF +-. 25PF 500WVDC CER	28480	0160-2253
A7A3C20	0160-2055		CAPACITOR-FXD .01UF +80-20\% 100 WVOC CER	28480	0160-2055
A7A3C21 A7A3C22	$0160-2201$ $0160-2055$	1		28480 28480	$0160-2201$ $0160-2055$
A7A3C22	0160-2055		CAPACITOR-FXD . O1UF +80-20\% 100WVDC CER	28480	0160-2055 1500685×903582
A7A3C24	0180-0374		CAPACITOR-FXD 6.8 UF+-10\% 35 VDC TA CAPACITOR-FXD $10 U \mathrm{~F}+-10 \% 20 \mathrm{VDC} \mathrm{TA}$	56289	1500106 X902082
A7A3C25	0160-2055		CAPACITOR-FXD . O1UF +80-20\% 100WVDC CER	28480	0160-2055
A7A3C26	0160-3536	2	CAPACITOR-FXD 620PF +-58 100WVDC MICA	28480	0160-3536
A7A3C27	0160-3536		CAPACITOR-FXD 620PF *-5\% 100WVOC MICA	28480	0160-3536
A7A3C28 A7A3C29	0160-2055		CAPACITOR-FXD -OLUF $+80-20 \%$ 100WVDC CER NOT ASSIGNED	28480	0160-2055
$\begin{aligned} & \text { A7A3C } 30 \\ & \text { A7A3C } 31 \end{aligned}$			NOT ASSIGNED NOT ASSIGNED		
A7A3C32	0160-2055		CAPACITOR-FXD . 01 l ($+80-20 \% 100 W V D C ~ C E R ~$	28480	0160-2055
A7A3633	0160-3184	1	CAPACITOR-FXO .47UF +-20250WVDC POLYSTY	28480	0160-3184
A7A3CR1	1901-0040		DIDOE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040
A7A3CR2	1901-0040		DIDOE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040
A7A3CR3	1901-0040		DIDDE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040
A7A3CR4	19C1-0040		DIDDE-SWITCHING 30V 5OMA 2NS DO-35	28480	1901-0040
A7A3cks	1901-0040		DIDDE-SWITCHING 3OV 50MA 2 NS DO-35	28480	1901-0040
A7A3CR6 A7A3CR7	$1901-0040$ $1901-0040$		DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480	
A7A3CR7 A7A3CR8	1901-0040		DIDDE-SWITCHING 30V 50MA 2NS DO-35	28480 28480	1901-0040
A7A3CR9	$0122-0065$	3	DIODE-VVC $29 \mathrm{RF} /-3 \mathrm{~V}$ 30WV,HYPERABRUPT	284813	1901-0040
a7abcrio	0122-0065		DI ODE-VVC 29 RF/-3V 30WV,HYPERABRUPT	04713	
A7A3CR11 A7A3CR12	$\begin{aligned} & 0122-0065 \\ & 19 \mathrm{Cl}-0040 \end{aligned}$		DIODE-VVC 29PF/-3V 30WV,HYPERABRUPT DIDDE-SWITCHING 30V 50MA 2NS DO-35	$\begin{aligned} & 04713 \\ & 28480 \end{aligned}$	1901-0040
A7A3K 1 A7A3K 2	$0490-0782$ $0490-0916$	1	RELAY-REED 1A -1A 250V CONT 9V-COIL RELAY-REED 1A .5A 5OV CONT 5V-COIL	$\begin{aligned} & 28480 \\ & 28480 \end{aligned}$	$\begin{aligned} & 0490-0782 \\ & 0490-0916 \end{aligned}$
A7A3LI A7A3L2	$9140-0179$ $9100-1629$		COIL-MLD 22UH 10\% $Q=75$. 155DX.375LG COIL-MLD 47UH 5\% Q=55 - 155DX.375LG	24226 24226	$\begin{aligned} & 15 / 222 \\ & 15 / 472 \end{aligned}$
A7Ajls	9100-2816	1	COIL IUH 5\% Q =125 -3120X1.047LG	28480	9100-2816
A7A3L4	9140-0180	1	COIL-MLD 2.7UH 10\% Q =33 .1550X.375LG	24226	15/271
A7A3L5	9140-0114		COIL-MLD 10UH 10\% Q=55.155DX.375LG	99800	1537-36
A7A3Lo	9140-0114		COIL-MLD LOUH 10\% Q = 55 . 155 DX .375 LG	99800	1537-36
A7A301 A7A302	$\begin{aligned} & 1855-0081 \\ & 1854-0404 \end{aligned}$	1	TRANSI STOR J-FET $2 N 5245$ N-CHAN D-MODE SI TRANSISTOR NPN SI TO-18 PD=360MW	$\begin{aligned} & 01295 \\ & 28480 \end{aligned}$	$\begin{aligned} & 2 N 5245 \\ & 1854-0404 \end{aligned}$
atajes	$1854-0345$	1	TRANSISTOR NPN 2N5179 SI TO-72 PD=200MM	04713	2N5179
A7A304	1853-0020		TRANSISTOR PNP SI PD $=300 \mathrm{MH} \mathrm{FT}=150 \mathrm{MHZ}$	28480	1853-0020
A7A305	1854-0404		TRANSISTOR NPN SI TO-18 PD=360MW	28480	1854-0404

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A7A300 A7A307 A7A398	$\begin{aligned} & 1854-0404 \\ & 1855-0098 \\ & 1251-1556 \\ & 1654-0404 \end{aligned}$	1 3	TRANSISTOR NRN SI TO-18 PD=360MW TRANSISTOR P-CHAN E-MODE TO-72 SI CONNECTOR-SGL CONT SKT .O18-IN-BSC-SZ TRANSISTOR NRN SI TO-18 PD=360MW	28480 28480 28480 28480	$\begin{aligned} & 1854-0404 \\ & 1855-0098 \\ & 1251-1556 \\ & 1854-0404 \end{aligned}$
A7A3R1	0757-0<00		RESISTOR 5.62K 12 .125W F TC=0+-100	24545	C4-1/8-T0-5621-F
A7A3R2	0757-0444	3	RESISTOR 12.1K 1\% .125W F TC $=0+100$	24546	C4-1/8-10-1212-F
A7A3RS	0757-0416		RESISTOR 51118.125 W F TC $=0+-100$	24545	C4-1/8-10-511R-F
A7A3K 4 $A 743 R 5$	0698-3160		RESISTOR 31.6K 1\% .125W F TC $=0++100$	24546 24546	C4-1/8-T0-3162-F
A7A3K5	0757-0444		RESISTOR 12.1K 1\% .125W F TC=0+100	24546	$C 4-1 / 8-10-1212-F$
A7A3ko	0757-0444		RESISTOR 12.1K 12 .125W F TC=0+-100	24546	C4-1/8-10-1212-F
A7A3K7	0757-0200		RESISTOR 5.62K 12 .125W F TC $=0+100$	24546	C4-1/8-70-5621-F
A7A3K8	2100-1776	1	RESISTOR-TRMR 10K 59 WW TOP-ADJ $1-T R N$	84048	CT-100-4
ATASR9	0757-0440		RESISTOR 7.5K 18.125 W F TC $=0+-100$	24546 24546	C4-1/8-T0-7501-F
ATAskio	0757-0280		RESISTOR 1K 1\% -125W F TC= $0+-100$	24546	$\mathrm{C} 4-1 / 8-10-1001-F$
A7A3K11	0698-3151	1	RESISTOR 2.87K 12 .125世 F TC=0+-100	24545	C4-1/8-T0-2871-F
A7ASR12	0757-0401		RESISTOR $1001 \% .125 \mathrm{~W}$ F TC $=0+-100$	24546	C4-1/8-T0-101-F
A7A3R1s	0698-3157		RESISTOR 19.6K 17 .125W F TC=0+100	24546	C4-1/8-T0-1962-F
A7ASK14 AJA3R1S	0757-0238		RESISTOR 9.09 K RESISTOR 21.5K 1\%	19701 24546	$\begin{aligned} & \text { MF4C1/8-T0-9091-F } \\ & \text { C4-1/8-TO-2152-F } \end{aligned}$
A7ASK16	0698-3440		RESISTOR 1961%. 125W F TC=0+-100	24546	C4-1/8-T0-196R-F
A7A3R17	0757-1094		RESISTOR 1.47K 1\% .125W F \quad T $=00+100$	24546	C4-1/8-10-1471-F
A7A3ki8	0757-0398	1	RESISTOR 75 1\% . 125W F TC=0+-100	24546	C4-1/8-10-75RO-F
A7A3k 19	0757-0470	1	RESISTOR 162K 1\% -125W F TC $=0+-100$	24546	C4-1/8-10-1 623-F
A7A3R2S	0683-7545	1	RESISTOR 750K 5\% . 25 W FC TC $=-800 /+900$	01121	CB7545
A7A3R21	0698-3447		RESISTOR 422 17.125N F TC=0+-100	24546	C4-1/8-10-422R-F
A7A3R2L	0698-3447		RESISTOR 4221%, 125W F TC $=0+-100$	24546	C4-1/8-T0-422R-F
A7A3R23	0757-0200		RESISTOR 5.62K 1\% -125N F TC $=0+100$	24546	C4-1/8-T0-5621-F
A7A3R24 A7A	$0698-3154$ $0757-0280$			24546 24546	$\begin{aligned} & C 4-1 / 8-T 0-4221-F \\ & C 4-1 / 8-10-1001-F \end{aligned}$
A7A3R20	0698-3154		RESISTOR 4.22K 12 .125w F TC=0ヶ100	24546	C4-1/8-T0-4221-F
A7A3k27	0757-0401		RESISTOR 100 1\% .125N F TC $=0+-100$	24546	C4-1/8-T0-101-F
A7A3\%28	0757-0<00		RESISTOR 5.62K 1\% .125W F TC $=0+100$	24546	C4-1/8-T0-5621-F
A7A3RCg	0757-0401		RESISTOR 100 1\%.125M F TC $=0+-100$	24546	C4-1/8-T0-101-F
A7Askisu	06 58-3444		RESISIOR 31612.125 W F TC= $=0+100$	24546	C4-1/8-T0-316R-F
A7A3R31	0698-3444		RESISTOR 31618 .125W F TC=0+-100	24546	C4-1/8-T0-316R-F
A7A3R32	0698-3444		RESISTOR $3161 \% .125 W$ F TC $=0++100$	24546	C4-1/8-T0-316R-F
A7A3R33	0698-3444		RESISTOR 31612.125 W F TC $=0+100$	24546	C4-1/8-T0-316R-F
atajus	1820-0223		IC LM 301 A OP AMP	27014	LM301AH
A7A3vkl	1902-3193		DIDDE-2NR 13.3V 5\% DO-7 PD=.4W TC=+.059\%	04713	SZ 10939-218
A7A3VR2	1902-3104	1	DI	15818 04713	CD SZ 35634 10939-158
A7A3VR3	1902-3139		DIDDE-ZNR 8.25V 5\% DO-7 PD=.4W TC $=+.053 \%$	04713	SZ 10939-158
A8	86635-60006	1	BOARD ASSY, MOTHER	28480	86635-60006
ABC 1	0160-3456		CAPACITOR-FXD 1000PF +-10\% 1000wVOC CER	28480	0160-3456
A8C2	0160-3455		CAPACITOR-FXD 470PF +-10\% 1000WVDC CER	28480	0160-3455
A8C 3	0160-3455		CAP AC I TOR-FXD 470PF t-10\% 1000 WVDC CER	28480	0160-3455
A8C4	0160-3456		CAPACITOR-FXD 1000PF +-102 1000WVDC CER	28480	0160-3456
A8L5	0160-3455		CAPACITOR-FXD 470PF -10\% 1000WVDC CER	28480	0160-3455
A8L6	0160-3455		CAPACITOR-FXD 470PF +-10\% 1000WVDC CER	28480	0160-3455
A8C7	0160-3456		CAPACITOR-FXD 1000PF +-108 1000WVOC CER	28480	0160-3456
A8L8	0160-3456		CAPACITOR-FXD 1000PF +-10z 1000WVOC CER	28480	0160-3456
A8C9	0160-3456			28480	0160-3456 $0160-3456$
A8C10	0160-3456		CAPACITOR-FXD 1000PF +-10\% 1000WVDC CER	28480	0160-3456
A8cil	0160-3455		CAPACITOR-FXD 470PF +-10\% 1000 WVDC CER	28480	0160-3455
A8C12	0160-3456		CAPACITOR-FXD 1000PF +-10\% 1000WVDC CER	28480	0160-3456
A8C13	0160-2055		CAPACITOR-FXD .OIUF $+80-208100 \%$ VDC CER	28480	0160-2055
A8L 14	$0160-2055$ $0160-2055$			28480 28480	0160-2055 $0160-2055$
A8L15	0160-2055		CAPACITOR-FXD .OIUF +80-20\% 100 WVOC CER	28480	0160-2055
ABCRI	1910-0016	1	DIODE-GE GOV GONA IUS DO-7	28480	1910-0016
ABLI	9140-0144		COIL-FXD MOLDED RF CHOKE 4.7UH 10%	24226	10/471
A8L2	9140-0144		COIL-FXD MOLDED RF CHOKE 4.7UH 10\%	24225	10/471
ABL 3	9100-2259	1	CUIL-FXD MOLDED RF CHOKE 1.5UH 10\%	24226	10/151
ABL4	9140-0144		COIL-FXD MOLDED RF CHOKE 4.7UH 10%	24226	10/471
A8R1 A8R2	$0698-7219$ $0698-7210$	1	RESISTOR 196 1*.05W F TC=0+-100	24546 24545	
A8R2	0698-7210	5 5		24545 24546	$\begin{aligned} & \text { C3-1/8-T00-82R5-G } \\ & \text { C3-1/8-T0-121R-G } \end{aligned}$
ABKS A AK	$0698-7<14$ $0688-7210$	5		24546 24546	$\begin{aligned} & \mathrm{C} 3-1 / 8-\mathrm{TO}-121 R-6 \\ & \mathrm{C} 3-1 / 8-\mathrm{T} 00-82 R 5-6 \end{aligned}$
ABRS	0698-7210		RESISTOR 82.5 1\% .05W F TC $=0++100$	24546	C3-1/8-T00-82R5-G
A8ko	0698-7214		RESISTOR 121 1\% .05W F TC=0+-100	24546	C3-1/8-T0-121R-G
A8k7	0698-7214		RESISTOR 12112.05 W F TC=0+-100	24546	C3-1/8-T0-121R-G
A8R8	0698-7114		RESISTOR 12112.05 W F TC= $=0+100$	24545	C3-1/8-T0-121R-G
А8к9	0698-7214		RESISTOR 121 1\%.05W F TC=0+-100	24546	C3-1/8-T0-1 21R-G
A8R10	0698-7210		RESISTOR 82.5 1\% .05W F TC= $0+100$	24546	C3-1/8-T00-82R5-6

See introduction to this section for ordering information

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
A8R11	0698-7<10		RESISTOR 82.5 1\% .05W F TC=0+-100	24546	C3-1/8-T00-82R5-G
A8xAL	1251-2026	1	COVNECTOR-PC EDGE 18-CONT/ROW 2-ROWS	71785	252-18-30-300
A8×A3 $A 8 \times 44$	$1251-2035$ $1251-2035$	4	CONNECTOR-PC EDGE CONNECTOR-PC EDGE 15-CONT/RON 15-CONT/ROW 2-ROWS	71785 71785	$252-15-30-300$ $252-15-30-300$
ABXAS	1251-2035		CUNNECTOR-PC EDGE 15-CONT/ROW 2-ROWS	71785	252-15-30-300
ABXAb	1251-2035		CUNNECTOR-PC EDGE 15-CONT/ROW 2-ROWS	71785	252-15-30-300
A8×A9	1251-2034	1	CONNECTOR-PC EDGE 10-CONT/ROW 2-ROWS	71785	252-10-30-300
A9	86632-60049	1	buard assy, deviation detectar	28480	86632-60049
${ }^{\text {A9C }}$ A 12	$0180-0116$ $0180-0374$		CAPACITJR-FXO $6.8 U F+-10 \% 35 \mathrm{VDC}$ TA CAPACITOR-FXD $10 U \mathrm{~F}+-10 \%$ 20VDC TA	56289 56289	1500685×903582 1500105×902082
A9C3	$0160-4084$		CAPACITOR-FXD .1UF +-20\% 50WVDC CER	28480	0160-4084
A964	0180-1704		CAPACITOR-FXD 47UF+-10\% 6VOC TA	56289	1500476×9006B2
A9CR1	1901-0040		DIDDE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040
A9CR2	1901-0040		DIODE-SWITCHING 30V SOMA 2NS DO-35	28480	1901-0040
A9LI	9140-0179		COIL-MLD 22UH 108 $0=75.1550 \times .375 \mathrm{LG}$	24226	15/222
A9L2	9140-0179		COIL-MLD 22UH 10\% $0=75$. 155 DX .375 LG	24226	15/222
A901	1853-0007	1	TRANSISTOR PNP 2 N3251 SI TO-18 PD=360MM	04713	2N3251
A9R A9 2	$0757-0290$ $0698-3447$		RESISTOR 6.19K 14 . 125 W F TC=0+100 RESISTOR 42212 . 125 W F TC=0t-100	19701	$\begin{aligned} & \text { MF4C1/8-T0-6191-F } \\ & \text { C4-1/8-T0-422R-F } \end{aligned}$
A9R3	2100-2413		RESISTOR-TRMR 200 10\% C SIDE-ADJ 1-IRN	30983	ET50x201
A9K4	0658-3160		RESISTOR 31.6K 1\% . 125 W F TC=0+100	24545	C4-1/8-10-3162-F
A9RS	0757-0278		RESISTOR 1.78K 19, 125w F TC=0+-100	24546	C4-1/8-T0-1781-F
$\begin{aligned} & \text { A9R6 } \\ & \text { A9R7 } \end{aligned}$	$\begin{aligned} & 0757-1094 \\ & 0757-0346 \end{aligned}$		RESISTOR 1.47K 1\% . 125 W F TC=0+-100 RESISTOR 10 1\% . 125W F TC=0+-100	$\begin{aligned} & 24546 \\ & 24545 \end{aligned}$	$\begin{aligned} & \mathrm{C} 4-1 / 8-\mathrm{TO} \text {-1471-F } \\ & \text { C4-1/8-T0-10RO-F } \end{aligned}$
A901 A9U2	$1820-0704$ $1820-0535$	1	IC-DIGITAL SN74122N TTL MONOSTBL IC-DIGITAL SN75451BP TTL	01295 01295	SN74122N SN754518P
A903	1826-0013	1	IC 741 OP AMP	28480	1826-0013
			A9 miscellaneous		
	0360-1514		TERMINAL-STUD SGL-PIN PRESS-MTG	28480	0360-1514
	4040-0748		EXTRACTOR-PC BD BLK POLYC .062-BD-THKNS	28480	4040-0748
	$1480-0073$ $4040-0756$	1	PIN:DRIVE 0. $250{ }^{\prime \prime}$ LG EXTRACTOR-PC BD WHT POLYC . $062-B D-T H K N S$	00000 28480	OBD ${ }_{4040-0756}$
			CHASSIS PARTS		
OS1	$2140-0356$ $1450-0394$	2	LAMP-INCAND 7683 5VDC GOMA T-1-BULB	28480 71744	$2140-0358$
DS2	$1450-0394$ $2140-0356$	2	LAMPHOLDER DG-SKT SLDR-LUG-TERM LAMP-INCAND 7683 SVOC GOMA T-1-BULB	71744 28480	$\begin{aligned} & \text { CM 21-1 } \\ & 2140-0358 \end{aligned}$
	1450-0394		LAMPHOLDER DC-SKT SLDR-LUG-TERM	71744	CH 21-1
DS3	2140-0092	1	LAMP-INCAND 685 5VDC 60MA T-1-BULB	71744	CM685
	1450-0153	1	LIGHT-IND LANPHOLDER	08717	102S-R BODY
	1450-0371	1	LENS CAP AMB-TL .219-DIA 12-40 THO	08717	102-A-STD LENS
	2950-0052	1	NUT-HEX-DBL-CHAM 1/4-40-THD .062-THK	28480	2950-0054
J1	1250-0913	1	CONNECTOR-RF BNC FEM SPCL-MTG 50-OHM	28480	1250-0913
H1	1120-0559	1	METER,	28480	1120-0559
P5	$\begin{aligned} & 86632-60024 \\ & 1251-3087 \end{aligned}$	11	CONNECTOR ASSY, REARTP/O A7;INCL W1,2,3) CONTACT-CONN FEN CRP .O62-CONT-SZ	$\begin{aligned} & 28480 \\ & 81312 \end{aligned}$	$\begin{aligned} & 86632-60024 \\ & 100-09085 \end{aligned}$
	$1251-3087$ $5040-0381$	16	CONTACT-CONN FEN CRP ${ }^{\text {Con }}$-062-CONT-S2	81312 28480	$100-0908 \mathrm{~S}$ $\mathbf{5 0 4 0 - 0 3 8 1}$
	5040-0380	,	CONNECTOR, 42-PIN	28480	5040-0380
$k 1$	2100-2728	1	RESISTOR-VAR CONTROL C IK 202 LIN	28480	2100-2728
S1	3101-0044	1	SWITCH-PB SPST-NO MOM . 14 A 115VAC	81073	39-1 N. 0.
W1	86632-60014	1	CABLE ASSY, 20 MHZ INPUT, WHITE/GRAY (PART OF P5)	28480	86632-60014
	1251-0546	4	CUNTACTER \mathcal{E} P CONNECTOR, RECTANGULAR	81312	111170545
	1250-0885	2	CONNECTOR-RF SMB FEM UNMTD	2 K 497	700405
w 2	86632-60023	1	CABLE ASSY, AM OUTPUT, WHITE/BLUE (PART OF P5)	28485	86632-60023
	1251-0546		CONTACT:R 6 P CONNECTOR, RECTANGULAR	81312	11117054 S
W3	86632-60019	1	CABLE ASSY, 20 MHZ OUTPUT,WHITE/RED (PART OF P5)	28480	86632-60019
	1251-0546		CONTACT:R \& R CONNECTOR, RECTANGULAR	81312	111170545
	1250-0885		COVNECTOR-RF SMB FEN UNMTD	2×497	700405
W4	$\begin{aligned} & 86635-60012 \\ & 1250-0872 \end{aligned}$	1	CABLE ASSY, fM MODULATION, GRAY CONNECTOR-RF SMB FEM UNMTD	$\begin{aligned} & 28480 \\ & 24931 \end{aligned}$	$\begin{aligned} & 86635-60012 \\ & 32 P 101-1 \end{aligned}$
			miscellaneous parts		
	0370-1091	1	KNOB-BASE-RNO . 5 IN JGK SGI-DECAL (MODULATIOM LEVEL)	28480	0370-1091
	0370-2499	1	KNOB, ROUND, SKIRTED, JADE GRAY (SOURCE)	28480	0370-2499
	0370-2195	1	KNOB, RND SKIRTED, JADE GRAY (MODE)	28480	0370-2195

See introduction to this section for ordering information

Table 6-2. Replaceable Parts

See introduction to this section for ordering information

Table 6-3. Code List of Manufacturers

Mfr Code	Manufacturer Name	Address	Zip Code
${ }^{69027}$	neotim	Englan	
${ }^{0} 00000$	U.S.A. ComMON		${ }_{53212}$
	(ExAA INSTR INC SEMICONO EMPNT OIV	datas tx in il	7323!
03888 0	K01 PYOOPTLM CORP	${ }^{\text {a }}$	- 897901
${ }^{0} 04560$	Matorola temiconoutior prooucts	NNOGALES ${ }^{\text {a }}$	
-0676		NEWALBANY IN	- 940450
- 88817	StoAN Co THe TELEDYE SEMICNOUCTOR	SUV VALEE CAM	91352 94040 180
			76007 06473
224429 2426 2454	CABEENAVE SYSTEM INC	Nont maven ct	0.047 16070 1
		aradroro pa in	10709
27014	NATANAL SEMICONOUCTOR CORP	SATA Clara ${ }^{\text {Sal }}$	${ }^{9} 950504$
¢		Sat	- 92221
34371 56289	(tarais semicon oty harris-inteatype		-32901
${ }^{7} 7174.85$	Cote	ChITAGO IL	60600 60007
72136	价		06226
	- BEEKMAN INSTRUMENTS INC HELIPOT OIV	Fullerpon ca	-92634
${ }_{8}^{81312}$	CRINHELTER ELEK OfV Lition ino ine		-
		ST PETERSURG FL	
988981		$\xrightarrow{\text { Mamatoneck }}$ AURORA NY	1054 14052 1

SECTION VII MANUAL CHANGES

7-1. INTRODUCTION

7-2. This section contains information for adapting this manual to instruments for which the content does not apply directly.

7-3. MANUAL CHANGES

7-4. To adapt this manual to your instrument, refer to Table 7-1 and make all of the manual changes listed opposite your instrument serial
number. Perform these changes in the sequence listed.

7-5. If your instrument serial number is not listed on the title page of this manual or in Table 7-1 below, it may be documented in a yellow MANUAL CHANGES supplement. For additional important information about serial number coverage refer to INSTRUMENTS COVERED BY MANUAL in Section I.

Table 7-1. Manual Changes by Serial Number

Set Prefix or Number	Make Manual Changes
1429A and 1533A	$\mathrm{C}, \mathrm{B}, \mathrm{A}$
1545A00281 to 00370	C, B
1545A00371 to 00460	C

7-6. MANUAL CHANGE INSTRUCTIONS

CHANGE A

Table 6-2 and Service Sheet 5:
Change A3 to 86635-60005.

NOTE

The new part number, 86632-60050, is directly interchangeable with the 86635-60005. 8663260050 is the preferred replacement.

CHANGE B

Table 6-2 and Service Sheet 6:
Change A6C 9 to $0180-2214$, CAPACITOR-FXD 90 UF $+75-10 \% 16$ VDC AL.
Change A6R 5 to $0757-0458$, RESISTOR $51.1 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TUBULAR.

CHANGE C

Table 6-2 and Service Sheet 5:
Change A3R26 to 0757-0280, RESISTOR $10 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TUBULAR.

SECTION VIII SERVICE

8-1. INTRODUCTION

8-2. This section contains troubleshooting and repair information for the Modulation Section plugin. Circuit operation and troubleshooting information is provided. Personnel safety considerations are also described.

8-3. The service sheets normally include principles of operation and troubleshooting information, a component location diagram, and a schematic, all of which apply to a specific portion of circuitry within the instrument.

8-4. Information related to operation of the Modulation Section plug-in as part of the 8660 -series Synthesized Signal Generator System is provided prior to Service Sheet 1.

8-5. Service Sheet 1 includes an overview of Modulation Section operation, troubleshooting on an assembly or stage level, and a troubleshooting block diagram. The block diagram serves as an index for the remaining service sheets.

8-6. The Schematic Diagram Notes, Figure 8-1 aid in interpreting the schematics.

8-7. The last foldout in the manual includes a table which cross-references all pictorial and schematic locations of each assembly, chassis mounted component, and adjustable component. The figure is a pictorial representation of the Modulation Section and shows location of the aforementioned parts.

8-8. SAFETY COINSIDERATIONS

8-9. Although this instrument has been designed in accordance with international safety standards, this manual contains information, cautions, and warnings which must be followed to ensure safe operation and to retain the instrument in safe condition (see Sections II, III, and V). Service and adjustments should be performed only by qualified service personnel.

8-10. Any adjustment, maintenance and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable,
should be carried out only by a skilled person who is aware of the hazard involved.

8-11. Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

> WARNING
> The service information is often used with power supplied and protective covers removed from the instrument. Energy available at many points may constitute a shock hazard.

8-12. PRINCIPLES OF OPERATION

8-13. The Principles of System Operation explains how the Modulation Section Operates within the Synthesized Signal Generator System, i.e., how other sections affect the Modulation Section and in turn how they are affected by the Modulation Section. Control functions in both local and remote modes are also explained. A systems block diagram is included.

8-14. Overall operation of the Modulation Section is discussed in Service Sheet 1. The remaining service sheets are concerned only with sections and/or circuit assemblies within the Modulation Section plug-in.

8-15. TROUBLESHOOTING

NOTE

When a malfunction occurs, refer to Section VIII of the HP Model 8660-series mainframe Operating and Service manual to begin troubleshooting (System Troubleshooting Guide). Then, if that information does not isolate the problem to an instrument, proceed to the Systems Troubleshooting information in Service Sheet 1 of the RF Section Manual. This information may be used to isolate the defect to the Modulation Section, another plug-in, or the mainframe. If the problem is in this plug-in, turn to Service Sheet 1 for further troubleshooting information.

8-16. System Troubleshooting

8-17. The System Troubleshooting information in Section VIII of the HP 8660 -series mainframe manual should be used when first attempting to isolate a circuit defect. If the defect cannot be isolated to an individual instrument in the system, the technician is normally directed to the System Troubleshooting in the RF Section manual. The problem may then be isolated to the RF Section, Modulation Section, Frequency Extension Module, or the mainframe.

8-18. Modulation Section Troubleshooting

8-19. When the defect has been isolated to the Modulation Section, refer to Service Sheet 1. This information is used to isolate the problem to a section or assembly.

8-20. Troubleshooting Aids

8-21. Circuit Board Aids. Test points are physically located on the circuit boards as metal posts or circuit pads and usually have either a reference designator (such as TP1) or a label which relates to the function (AM, Pulse, ID, etc.). Transistor emitters, diode cathodes, the positive lead of electrolytic capacitors, and pin 1 of integrated circuits may be indicated by an E, a diode symbol, + , and a tear-drop shaped pad respectively. Also, a square circuit pad (as opposed to a round pad) may be used in place of any of the previously mentioned symbols.

8-22. Service Sheet Aids. RF levels, ac voltages, waveforms, and dc voltages are often shown on schematic diagrams. Integrated circuit connection diagrams plus diagrams of relays and printed circuit connectors help to locate specific inputs and outputs. Notes are used to explain certain circuits or mechanical configurations not easily shown on the schematic.

8-23. The locations of individual components mounted on printed circuit boards are found on individual service sheets on the pictorial representaation of the circuit boards. Chassis mounted parts, major assemblies, and adjustable components locations are found on the last foldout in this manual.

8-24. Figure 8-1, Schematic Diagram Notes, provides information relative to symbols and values shown on the schematic diagrams.

8-25. Service Kit and Extender Boards. The HP 11672A Service Kit contains interconnect cables, RF cables, various coaxial adapters, and an adjust-
ment tool, all of which are useful in servicing the Modulation Section plug-in. Refer to the HP 11672A Operating Note for a listing and pictorial representation of the contents. A list of the service kit contents is also found in the test equipment and accessories list in Section I of the mainframe manual.

8-26. Circuit board extenders are provided with the mainframe. These extender boards enable the technician to provide easy access to components and test points. Refer to the list found under Accessories Supplied in Section I of the mainframe manual.

8-27. RECOMMENDED TEST EQUIPMENT

8-28. Table 1-2 lists the test equipment and accessories recommended for use in servicing the instrument. If any of the recommended test equipment is unavailable, instruments with equivalent specifications may be used.

8-29. REPAIR

8-30. General Disassembly Procedures

8-31. Procedures for removing the Modulation Section plug-in from the mainframe and the plug-in covers are found on the left-hand foldout page immediately preceding the last foldout in the manual. Front and rear panel disassembly procedures explaining how to gain access to the internal assemblies are also provided.

8-32. The machine screws used throughout the plug-in have a Pozidriv head. Pozidriv is very similar in appearance to the Phillips head, but using a Phillips screwdriver may damage the Pozidriv screw head.

8-33. Post Repair Adjustments

8-34. After a defective circuit is repaired, refer to Section V and perform the adjustment procedure(s) for circuits which may be affected by the change. Consider the instructions under paragraphs entitled Related Adjustments and Post Adjustment Tests.

8-35. PRINCIPLES OF SYSTEMS OPERATION

8-36. The Model 86632B Modulation Section controls the CW, amplitude, and frequency modulation modes of the signal generator system (refer to Figure 8-3). The modulation drive signal originates

SCHEMATIC DIAGRAM NOTES

Inductance is in microhenries, resistance is in ohms and capacitance is in microfarads unless otherwise noted.

* Asterisk denotes a factory-selected value. Value shown is typical. Part may be omitted. See Table 5-1.

Screwdriver Adjustment
Encloses Front Panel
designations
Circuit assembly border line.

○ Panel Control
 「-ー- Encloses Rear Panel designations

Other assembly border line.

Wiper moves toward CW with clockwise rotation of control as viewed from shaft or knob.
Encloses wire color code. Code used (MIL-STD-681) is the same as the resistor color code. First number identifies the base color, second number the wider stripe, and the third number the narrower stripe. Example: 947 denotes white base, yellow wide stripe, violet narrow stripe.

Indicates an output from a schematic that goes to an input identified as K on Service Sheet 6.
Indicates an input to a schematic that comes from an output identified as A on Service Sheet 2.

Indicates circuit ground.
Numbers in stars on circuit assemblies show locations of test points with a measurement aid (metal post, circuit pad, etc.) provided.

Letters in stars on circuit assemblies show locations of test points with no measurement aid provided.

Optically coupled isolator (light sensitive resistor).

On-page connector. This point is connected to another point on this page with the symbol

Relays are shown in the unenergized position. Arrow indicates direction of armature travel.

Figure 8-1. Schematic Diagram Notes (2 of 3)

Figure 8-1. Schematic Diagram Notes (3 of 3)

Figure 3-2. Circuit Board Extended for Troubleshooting

PRINCIPLES OF SYSTEMS OPERATION (Cont'd)

in an internal oscillator (400 or 1000 Hz), or in an external source. The external modulation drive signal is coupled into the system through the front panel jack. The modulation level is normally controlled from the front panel veriner. In the AM mode, the modulation signal is routed directly to the RF Section of the system. In the FM mode, the modulation signal modulates the 20 MHz voltagecontrolled oscillator (VCO).

8-37. RF Signal Flow

$8-38$. A 20 MHz reference signal from the system mainframe is connected to the Modulation Section. In the OFF (CW) and AM modes the reference signal is simply passed through the Modulation Section and on into the RF Section. In the FM mode, the 20 MHz VCO output is connected to the RF Section; the system's RF output is not phaselocked. The output is momentarily phase-locked to the 20 MHz reference by depressing the front panel FM CF CAL switch. The purpose of the FM CF CAL cycle is to reduce the frequency drift of the 20 MHz VCO to a minimum.

8-39. Remote Operation

8-40. In the remote mode, the LCL/RMT digital control input is low. This enables the storage registers to accept data being transmitted to the Modulation Section. The storage register selection circuit in the mainframe causes an address (in the form of a clock pulse train) to be transmitted synchronously with the programmed data. In this way selection of the mode and source is transmitted from an external programming source (such as a calculator or computer) through the mainframe DCU to one of the storage registers. Modulation level data is transmitted to the other register. The stored information is coupled to digital circuitry which selects the mode and source functions and modulation level.

8-41. Local Operation

8 -42. In the local mode, the LCL/RMT digital control input is high. The MODE and SOURCE front panel switches are enabled and provide inputs to the digital control circuits in place of the storage registers. The analog Modulation Level control is used in place of the remote modulation level control circuits.

Figure 8-3. System Block Diagram

SERVICE SHEET 1

Abstract

NOTE When a malfunction occurs, refer to Section VIII of the Model 8660 -series mainframe Operating and Service Manual to begin troubleshooting. If this indicates trouble in the Model 86632B Modulation Section, refer to this Service Sheet for overall troubleshooting procedures. Service Sheet 1 is keyed to all other Service Sheets.

TROUBLESHOOTING BLOCK DIAGRAM

A composite of all printed circuit board assemblies is shown in block diagram form on this Service Sheet. Use the block diagram and troubleshooting procedures following the principles of Operation to isolate a trouble to a specific assembly. Then turn to the Service Sheet for that assembly and isolate the trouble to a specific component.

The large numbers in the lower right corner of each of the major blocks identify the Service Sheet which provides schematics and principles of operation for that particular assembly.

PRIINCIPLES OF OPERATION

General

The Hewlett-Packard Model 86632B Modulation Section is a plug-in unit designed to provide either AM (amplitude modulation) or FM (frequency modulation) for the 8660 series Synthesized Signal Generator System. The modulation signal may originate in an external source or in the internal $400 / 1000 \mathrm{~Hz}$ oscillator. The modulation level is adjustable and the level is indicated on a meter. All front panel functions are remotely programmable through the mainframe.

The input to the Remote Attenuation Assembly must be held at a constant level without a dc offset voltage to ensure full VERNIER range control and calibrated system modulation level. For this reason, the internal modulation oscillator output and EXTERNAL AC input are coupled to the leveling amplifier input. The leveling amplifier is ac coupled and corrects for variations in input level within the specified range.

In the EXTERNAL DC mode, the external input is connected directly to the Remote Attenuation Assembly. Inputs without dc offset produce a calibrated meter reading and may be adjusted at
the external source or the VERNIER control. A dc offset always produces erroneous modulation level meter readings. In the FM mode the dc offset causes a frequency offset in the A7A3 VCO and subsequently in the system's counter frequency.

In the FM mode, 20 MHz from the VCO is output to the RF Section in place of the 20 MHz reference signal. Because the VCO is not phase locked, over a period of time some frequency drift occurs. The error frequency may be compensated for at any time by pressing the front panel FM CF-CAL switch or programming the FM CF-CAL address.

During the resulting timed sequence, relays which control the events of center frequency calibration are switched at certain intervals. First a flag is sent to the mainframe which inhibits the system's reception of programmed information; then the frequency modulation signal to the VCO is removed, the VCO is phase locked to the 20 MHz reference signal, and a voltage is stored which holds the VCO frequency at 20 MHz .

The Frequency Doubler logic inputs from the mainframe control the indication of meter range and the output amplitude of the frequency modulation drive signal to the RF Section.

A1 Front Harness Assembly (Service Sheet 2)

In the FM mode, the frequency doubler logic input from the mainframe causes the lamp indicating the $0-100$ range to be illuminated at center frequencies $<1300 \mathrm{MHz}$. The lamp indicating the $0-200$ range is illuminated at center frequencies $\geqslant 1300$ MHz . In the AM mode the lamp indicating the $0-100$ range is always illuminated.

A2 Switch Logic Assembly (Service Sheet 2)

An input on this assembly selects either front panel control or programmed control from the mainframe. In the remote mode, one shift register stores the coded data for modulation signal source, one register stores modulation mode data, and two registers store modulation level data. Logic circuits then decode the stored data to control Modulation Section function. In local mode, the MODE and SOURCE switches control the Modulation Section operation.

A5 Modulation Oscillator Assembly (Service Sheet 3)

This oscillator is the internal modulation source for either 400 or 1000 Hz . A buffer amplifier provides

A5 Modulation Oscillator (Service Sheet 3) (Cont'd) isolation to a front panel connector. For an external modulation source, the internal oscillator is turned off and the front panel jack becomes the input connection.

A4 Leveling Amplifier Assembly (Service Sheet 4)

 The output of the leveling amplifier is maintained at a constant amplitude with an input from the modulation oscillator. In the EXTERNAL AC mode, the leveling amplifier output signal will be leveled provided the input is within the specified limits of frequency and amplitude. The output level is held constant by a negative feedback loop. The leveling amplifier is not used in the external DC mode.
A3 Modulation Level Control Assembly (Service Sheet 5)

The A3 assembly determines the modulation level for amplitude or frequency modulation. Relays switch the output either to the RF Section (AM mode) or to the A6 assembly (FM mode). In the remote mode, the modulation level may be programmed in 100 steps by eight relays and a network of resistive attenuators. In the local mode, the modulation level is controlled by the front panel MODULATION LEVEL control.

During the FM CF-CAL sequence, the modulation signal is removed from the VCO by grounding the input to the remote attenuation circuits.

In the frequency modulation mode and at center frequencies $\geqslant 1300 \mathrm{MHz}$, the frequency doubler logic input causes the gain of the remote attenuation input amplifier to be halved.

A6 FM Attenuator Assembly (Service Sheet 6)

 The A6 FM Attenuator Assembly provides relay switching for three ranges of frequency modulation.The FM CF-CAL circuit is also included in this assembly. When the FM CF CAL switch is pressed, the monostable multivibrator is triggered to begin the VCO calibration sequence. Due to delay elements introduced into the associated voltage translation circuits, the control voltages are output in a specific timed sequence. After the multivibrator has remained in its unstable state for approximately 5 seconds, it returns to the stable state. At this time the control voltages return to their original levels in the same sequence but with slightly altered timing to end the calibration cycle.

A7A1 20 MHz Mixer Assembly (Service Sheet 7)
The A7A1 assembly contains the phase detector which compares the frequency of the 20 MHz VCO with the 20 MHz reference frequency during the FM CF-CAL sequence. A dc error voltage is produced which draws the VCO frequency back to 20 MHz .

A7A2 20 MHz Switch Assembly (Service Sheet 7)

The A7A2 assembly contains relays which serve to route the 20 MHz reference signal back to the System's RF Section in the OFF or AM modes. In the FM mode, the 20 MHz reference is coupled to the A7A1 phase detector through a series of relays. The only time the signal actually reaches the phase detector is during the FM CF-CAL sequence.

A7A3 20 MHz Voltage Controlled Oscillator Assembly (Service Sheet 7)

The A7A3 assembly contains the 20 MHz VCO , isolation amplifiers, and error voltage amplifier for the phase lock loop.

Normally, a stored dc voltage at the error amplifier input holds the VCO output very close to 20 MHz . Over a period of time the stored voltage will leak away causing a progressively greater output frequency deviation. During the FM CF CAL sequence, a dc error voltage produced by the phase difference between the 20 MHz reference and the VCO output is passed through a relay to the error voltage amplifier. Its output causes the VCO frequency to come closer to the reference frequency. After the two frequencies have reached a minimum difference, the calibration cycle ends and the relay opens. The quiescent dc voltage which holds the VCO output at 20 MHz is stored at the error amplifier input.

A8 Mother Board Assembly

The A8 Mother Board Assembly provides interface between plug-in circuit boards and the connector to the mainframe. Inductors and capacitors on this board form filters for both dc supply lines and logic lines from the mainframe. This assembly is shown in part, on the left and right hand portions of each service sheet schematic.

A9 Deviation Detector Assembly (Service Sheet 8)

The deviation detector circuits compare the peak modulation drive signal to a dc level which corresponds to 110% of the full scale meter indication.

A9 Deviation Detector (Service Sheet 8) (Cont'd) If the modulation level is set too high, a one-shot multivibrator is triggered. This causes the front panel REDUCE DEVIATION lamp to be illuminated and a BUSY FLAG to be output to the mainframe. The busy flag inhibits the input of programmed data to the system.

TROUBLESHOOTING

Malfunctions which appear to be a Modulation Section problem may, in fact, be due to a defect in the mainframe, RF Section, or Frequency Extension Module. Begin troubleshooting by returning to Section VIII of the mainframe manual.

The Modulation Section receives all dc power $(+20$, +5.25 , and -10 Vdc) from the mainframe. A 20 MHz reference signal is generated in the mainframe and is coupled to the Modulation Section. Remote programming information is transferred to the Modulation Section by a pulse train address from the mainframe. Amplitude modulation occurs in the RF Section while FM takes place in the Modulation Section.

Make the initial tests before removing the Modulation Section from the mainframe for further troubleshooting.

Initial Test Conditions

The Modulation Section must be installed in a compatible Model 8660-mainframe along with an RF Section and, if necessary, a Frequency Extension Module. Set the system center frequency to 100 MHz at an output level of -10 dBm . Set the Modulation Section's MODE switch to AM, SOURCE switch to 400 Hz , and center the MODULATION LEVEL control or set it for a meter indication of 50 if the meter is reading correctly. If the problem is present in the remote mode only, program the same functions and levels.

Initial Tests

The initial tests will help to isolate a defect to a section of the instrument. The internal measurements isolate to a service sheet or a stage.

Test Equipment

OscilloscopeHP 180C/1801A/1821A
Spectrum Analyzer HP 8555A/8552B/140T
Test Oscillator.
.HP 651B

Note the presence of modulation drive on the oscilloscope, the presence of AM sidebands on the spectrum analyzer, and the meter indication. Switch to FM and note FM modulation on the analyzer, the meter indication, and FM mode indicator on the mainframe. If a further test is required, connect a test oscillator to the INPUT/OUTPUT jack on the front panel of the Modulation Section and change the SOURCE control to EXTERNAL DC. This bypasses the internal oscillator and leveling amplifier. If a problem is indicated in the Modulation Section, continue with the next step.

Initial Test Conditions for Internal Measurements

Turn off instrument. Unplug the Modulation Section from mainframe, remove covers, and reconnect module to mainframe using extender cable. See last foldout in this manual for procedures and cautions. Set the front panel MODE switch to AM, SOURCE switch to 400 Hz , and center the MODULATION LEVEL control or set it for a meter reading of 50 .

Test Equipment

OscilloscopeHP 180C/1801A/1821A
Digital Voltmeter HP 3480A/3482A
Extender Cable HP 11672-60002

Test 1: Logic

Using a digital voltmeter, check A2TP2 for a logic low. If the level is incorrect or if other logic problems are encountered, go to Service Sheet 2 for further tests.

Test 2: Modulation Oscillator

Use oscilloscope to check A5TP1 for the modulation signal as shown on the block diagram. A5TP1 is located at the bottom of the upper center slot on the right hand side of the Modulation Section assembly. If the signal is not present go to Service Sheet 3 for further tests.

Test 3: Leveling Amplifier

Leveling Amplifier problems are indicated by insufficient modulation drive signal or clipping of the drive signal. Use oscilloscope to check A4TPB for the voltage indicated on the block diagram. If the signal is incorrect go to Service Sheet 4 for further tests.

SERVICE SHEET 1 (Cont'd)

Test 4: Level Control

Use oscilloscope to check A3TP1 for the signal shown on the block diagram. If the signal is incorrect go to Service Sheet 5 for further tests.

Test 5: FM Modulation Drive Signal

Use oscilloscope to check A6TP4 for the signal shown on the block diagram. If this signal is incorrect go to Service Sheet 6; if correct go to Service Sheet 7 .

Test 6: Deviation Indicators

REDUCE DEVIATION indicator should not come on unless modulation meter is greater or equal to 110% of full scale. Indicator should be on if UNCAL flag to mainframe is low. Output at A3TPA must be +2.0 V or higher at 110% of full scale. If incorrect, go to Service Sheet 5. If corect but indicator/flag is incorrect, go to Service Sheet 8.

WARNINGS

The opening of covers and removal of parts is likely to expose live parts, and also accessible terminals may be live. Any adjustment, maintenance, and repair of the opened instrument with voltage applied should be avoided as much as possible and, if inevitable, should be carried out only by a skilled person who is aware of the hazard involved.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

If an instrument must be stored in an inoperative condition, attach a tag giving the type of malfunction and warning of any potential hazards.

Table 8-1. Assembly Information Index

Assembly Numbers and Description ${ }^{1}$	Service Sheet Number ${ }^{2}$	Photograph Figure 8-
A1 Front Harness Assembly	2	25
A2 Switch Logic Assembly	2	6
A3 Remote Attenuation Assembly	5	13
A4 Leveling Amplifier Assembly	4	10
A5 Modulation Oscillator Assembly	3	8
A6 FM Attenuator Deviation Assembly	6	16
A7A1 20 MHz Mixer Assembly	7	18
A7A2 20 MHz Switch Assembly	7	18
A7A3 20 MHz VCO Assembly	7	19
A8 Mother Board Assembly	-	24
A9 Deviation Detector Assembly	8	21
1 See the last foldout for assembly location information.		
2 Assembly principles of operation, troubleshooting, and component location photographs are shown on the Service Sheet		
along with the schematic		

SERVICE SHEET 2

NOTE
Begin overall troubleshooting by first following the procedures given in Section VIII of the Model 8660 series mainframe Operating and Service Manual. After the mainframe Operating and Service Manual. After the
trouble has been isolated to the $86632 B$ Modulation trouble has been isolated to the $86632 B$ Modulation this manual on Service Sheet 1. After both of these this manual on Service Sheet 1. After both of these isolated to the A2 Switch Logic Assembly, the following troubleshooting procedure is recommended.

A2 SWITCH LOGIC ASSEMBLY

PRINCIPLES OF OPERATION

The Switch Logic Assembly (A2) provides the interface capabilities to operate the Model 86632 B from either front-panel controls or remotely programmed data (see Figure 8-5)

Local Mode Operation

In the local mode of operation all functions of the Model 86632B are controlled by front-panel controls. These consist of:

The MODE switch selects modulation of OFF, AM, FM X0.1, FM X1, or FM X10.
The SOURCE switch selects INTERNAL, $400 \mathrm{~Hz}, 1000 \mathrm{~Hz}$; or EXTERNAL AC or DC inputs.
The MODULATION LEVEL control sets the AM or FM modulation as a percentage of full-scale indication on the meter.
The FM CF CAL switch temporarily locks the internal VCO (Voltage Controlled Oscillator) to a 20 MHz reference signal from the mainframe.
Refer to the Switch Logic Assembly Schematic, Figure 8-7, when reading the following discussion.
In the local (front-panel) mode the LCL-RMT line input is high, which enables NOR gate U2A and inhibits Shift Registers A2U5/A2U6 and A2U9/ A2U10. The High level to pin 1 of A2U1 and A2U7 Multiplexers inhibits the inputs from the shift registers and enables the local inputs, pins $3,6,13$, and 10 from the front-panel switches. The High LCL-RMT voltage is also coupled to relays on the A3 Assembly which enable the front-panel MODULATION LEVEL control and inhibit the remote attenuator.

When a particular MODE or SOURCE function is chosen, the front-panel control is rotated to the proper position and the switch couples a High dc level $(>+2.4 \mathrm{~V})$ to the appropriate multiplexer. The other inputs to the multiplexers are Low dc levels $(<+0.8 \mathrm{~V})$. Because the local mode inputs to multi-
plexers have been enabled by the High level from the LCL-RMT control line plexers have been enabled by the High level from the LCL-RMT control line to pins 1 , the multiplexer input levels appear at their corresponding outputs.

Mode Control

The A2U1 multiplexer outputs are inverted and the outputs from the A2 assembly are coupled to relays in the A3 assembly where AM or MF mode is selected and the A6 assembly where the FM range is selected (see Table 8-2).

SERVICE SHEET 2 (Cont'd)

FM Sense Circuit

A Low output from A2U2D pin 13, the FM SENSE circuit, indicates that FM has been selected as the mode of operation.

FM Control (FMC) Circuit

The FM SENSE output is coupled through buffer A2U15A to activate three 20 MHz FM-CW relays on the A7A2 assembly and the VCO turn-on relay in A7A3.

FM Mode Circuit

A High FM SENSE output is coupled to A2U12D pin 13 when any FM range is selected. The normally High input (FM CF CAL FLAG) from the FM center-frequency calibration timing circuit in the A6 Assembly plus the High from FM SENSE causes A2U12D pin 11 to go Low. This Low causes a High output at A2U11C pin 6 and causes the FM MODE lamp on the mainframe front panel to light. During the FM center frequency calibration cycle the FM CF CAL input from the A6 Assembly is Low, the output to the mainframe is Low, and the FM MODE lamp is off.

Mode Sense Circuit

When either AM or FM MODE is selected, the A2U2C NOR gate has a Low output which enables NOR gates A2U4A, A2U4B, A2U4C and A2U4D. If the OFF MODE is selected, the output of A2U2C goes High, which inhibits A2U4A, A2U4B, A2U4C and A2U4D. The outputs of A2U8A, A2U8C, A2U11D, and A2U11F are held High (off).

Meter Range and Indicator Circuit

In FM MODE, the High output from A2U3B pin 4 enables gates A2U12A, B and D and the High output from A2U8B pin 4 enables gates A2U12C and A2U16A. If the system is operating below 1300 MHz a High input is applied at A2U13D pin 9 and A2U12B pin 6. This High input results in Low output at A2U16A pin 3 and a high output at A2U16B pin 5. The Low at A2U16A pin forwardbiases A1CR1 and provides the ground to turn meter 0-100 indicator DS1 on. The High at A2U16B pin 5 reverse-biases A1CR2 to cut off the $0-200$ indicator DS2 current path. For frequencies $\geqslant 1300 \mathrm{MHz}$ the output polarity of A2U16A and B is reversed and DS2 is on and DS1 is off. The output of A2U12A pin 3 is also applied to A2U12C pin 4. A2U12C inverts the A2U12A output and A2U14F inverts the A2U12C output. Thus A2U14F and A2U12A outputs have identical polarity and when DS2 $(\geqslant 1300 \mathrm{MHz})$ is on, the GAIN CONTROL output from A2U14F is Low. This signal is used in A5 to halve the modulation gain during $\geqslant 1300 \mathrm{MHz}$ operation. In AM MODE, gates A2U12A, B, and D are disabled. A Low from A2U8B pin 4 is applied to DS1 through gate A2U16A and A1CR1 to turn on the $0-100$ indicator. The Low from A2U8B pin 4 is sent out through A2U12C and A2U14F as a Low GAIN CONTROL signal.

SERVICE SHEET 2 (Cont'd)

Source Control Circuit

As long as A2TP1 (MODE SENSE) is Low, the SOURCE outputs from A2 Switch Logic Assembly are dependent upon the state of the outputs of the A2U7 Multiplexer. The LEVELING AMP ON output turns the A4 Leveling Amplifier on (low) in any SOURCE mode except EXTERNAL DC. The EXTERNAL DC, INTERNAL 400, and INTERNAL 1000 control output lines from the A2 Assembly are inverted with respect to the A2U7 Multiplexer Assembly are inverted with respect to the A2U7 Multiplexer
output pins 7,12 , and 9 respectively. These outputs are Low output pins 7,12 , and 9 respectively. These outputs are Low
$(<+0.8 \mathrm{Vdc})$ when they are selected as the SOURCE mode. These $(<+0.8 \mathrm{Vdc})$ when they are selected as the
outputs activate relays on A3, A4, and A6.

THE EXTERNAL AC output is independent of the MODE SENSE circuit. Inverting amplifier A2U11A inverts the A2U7 pin 4 output. This output is coupled to a relay in the A5 Assembly which selects either INTERNAL (High input) or EXTERNAL AC (Low input) modulation sources.

Remote Mode Operation

Remote programming data is first entered into temporary registers in the mainframe from the rear-panel REMOTE INPUT jack. Upon receipt of an address command, the data is clocked, least significant digit first, into the selected plug-in's corresponding registers.

Mod. Level Shift Register. Shift register A2U9 and A2U10 convert the serial BCD data at XA2 pins A, 1, B, and 2 into a pair of four-line parallel outputs to control the AM\% depth of modulation or the FM\% of full-scale meter frequency deviation. This information is clocked from the mainframe temporary storage register by a series of ten clock pulses on XA2 pin 7. Since only two digits are required to program AM\%-FM Deviation, the first eight clock pulses will be ignored. When the ninth clock pulse appears, the data is transferred to the input of A2U10. When the tenth clock pulse appears, the first digit is transferred to the output of A2U10 and the next digit in the serial chain is transferred to the output of A2U9 (input of A2U10).

A negative RESET pulse at XA2 pin 9 clears (sets all outputs Low) A2U9, A2U5, A2U10 and A2U6 when the instrument is first turned on.

Mode/Source Shift Register. Shift registers A2U5 and A2U6 are also connected in parallel to the serial BCD data at XA2 pins A, 1, B, and 2. This data controls, through shift registers A2U5 and A2U6, the choice of MODE (CW, AM, or FM) and SOURCE (INTERNAL 400 or 1000 , or EXTERNAL AC or DC). This information is clocked from the mainframe storage registers in the same manner as the MOD. LEVEL previously discussed.

In Local mode the LCL-RMT input at XA2 pin V is High and the output of AND gate A2U15B is High. This makes the output of U2A Low. The Low is connected to the CLEAR (MR) terminals of the shift registers and holds the registers clear in Local mode.

Digitally Remastered by ArtekMedia © 2002-2006

SERVICE SHEET 2 (Cont'd)

Source Control Circuit

As long as A2TP1 (MODE SENSE) is Low, the SOURCE outputs from A2 Switch Logic Assembly are dependent upon the state of the outputs of the A2U7 Multiplexer. The LEVELING AMP ON output turns the A4 Leveling Amplifier on (low) in any SOURCE mode except EXTERNAL DC. The EXTERNAL DC, INTERNAL 400, and INTERNAL 1000 control output lines from the A2 Assembly are inverted with respect to the A2U7 Multiplexer output pins 7,12 , and 9 respectively. These outputs are Low $(<+0.8 \mathrm{Vdc})$ when they are selected as the SOURCE mode. These outputs activate relays on A3, A4, and A6.

THE EXTERNAL AC output is independent of the MODE SENSE circuit. Inverting amplifier A2U11A inverts the A2U7 pin 4 output. This output is coupled to a relay in the A5 Assembly which selects either INTERNAL (High input) or EXTERNAL AC (Low input) modulation sources.

Remote Mode Operation

Remote programming data is first entered into temporary registers in the mainframe from the rear-panel REMOTE INPUT jack. Upon receipt of an address command, the data is clocked, least significant digit first, into the selected plug-in's corresponding registers.

Mod. Level Shift Register. Shift register A2U9 and A2U10 convert the serial BCD data at XA2 pins A, 1, B, and 2 into a pair of four-line parallel outputs to control the AM\% depth of modulation or the FM\% of full-scale meter frequency deviation. This information is clocked from the mainframe temporary storage register by a series of ten clock pulses on XA2 pin 7. Since only two digits are required to program AM\%-FM Deviation, the first eight clock pulses will be ignored. When the ninth clock pulse appears, the data is transferred to the input of A2U10. When the tenth clock pulse appears, the first digit is transferred to the output of A2U10 and the next digit in the serial chain is transferred to the output of A2U9 (input of A2U10).

A negative RESET pulse at XA2 pin 9 clears (sets all outputs Low) A2U9, A2U5, A2U10 and A2U6 when the instrument is first turned on.

Mode/Source Shift Register. Shift registers A2U5 and A2U6 are also connected in parallel to the serial BCD data at XA2 pins A, 1, B, and 2. This data controls, through shift registers A2U5 and A2U6, the choice of MODE (CW, AM, or FM) and SOURCE (INTERNAL 400 or 1000, or EXTERNAL AC or DC). This information is clocked from the mainframe storage registers in the same manner as the MOD. LEVEL previously discussed.

In Local mode the LCL-RMT input at XA2 pin V is High and the output of AND gate A2U15B is High. This makes the output of U2A Low. The Low is connected to the CLEAR (MR) terminals of the shift registers and holds the registers clear in Local mode.

SERVICE SHEET 2 (Cont’d)

In Remote mode the LCL-RMT input at XA2 pin V is Low and the output of AND gate A2U15B is Low. These Lows make the output of A2U2A High, allowing the shift registers to receive data.

Multiplexers. In Remote mode the Low at LCL-RMT input is also applied to Multiplexers A2U1 and 7 at pin 1. This Low disconnects the Multiplexers from the Local mode input terminals (pins $3,13,6$, and 10) and connects them to the Remote terminals (pins 2,5,14, and 11). The front-panel controls are not disabled, but their inputs are not connected to the outputs.

TROUBLESHOOTING

It is assumed that a problem has been isolated to the A2 Switch Logic Assembly as a result of using the Troubleshooting on Service Sheet 1. Troubleshoot by using the test equipment and procedures specified below.

Test Equipment

Digital Voltmeter
HP 3480A/3482A Extender Cable . HP 11672-60002

Initial Test Conditions

Model 86632B removed from mainframe but connected by an extender cable, covers removed, and the A2 Switch Logic Assembly Board installed on extender board (see Figure 8-3)

Test Procedure 1: Manual Operation

Before troubleshooting the A2 Assembly, verify that the powersupply voltages are present ($\pm 0.25 \mathrm{Vdc}$). If the Model 8660 system is being operated in the local mode and the malfunctioning component has been isolated to the A2 Assembly, proceed to test 1-b

Test 1-a. Change from remote mode to local mode and set the front-panel controls to correspond to the programmed functions. If the instrument functions properly in local mode, proceed to Procedure (2). If the problem remains, proceed to test 1-b.

Test 1-b. Set the 86632B front-panel controls to the malfunctioning position. Measure the voltage at A2TP2. If the voltage is Low ($<+0.8 \mathrm{Vdc}$), proceed to Test 1-c. If the voltage is not Low, measure the dc voltage at A2U15B pin 6. If the voltage is High $(>+2.4 \mathrm{Vdc}$, correct for local mode), verify that the dc level at A2U15B pin 5 is $>+2.4 \mathrm{Vdc}$. If this voltage is incorrect, A2U15B or A2U11E or U2A, or associated component is defective. If this voltage is correct, A2U2A or an associated component is defective.

Test 1-c. Verify that the correct dc voltage exists at A2TP1. The level should be High in OFF (CW) mode and Low in AM or FM mode. If the voltages are correct, proceed to Test 1-e. If one or both voltages are incorrect, proceed to Test 1-d

SERVICE SHEET 2 (Cont'd)

Test 1-d. Meacure the dc voltages at A2U1 outputs pins 4, 7, 9, and 12. Refer to Table 8-3. If all voltages are correct, proceed to Test 1-g. If any of the voltages are incorrect, check the voltage level at the corresponding input. If the corresponding input voltages at pins $3,6,10$ and 13 are correct, A2U1 is probably defective. If an input voltage is incorrect, the MODE control switch A1S2, the XA2 connector, or the wiring is defective.

Test 1-e. Verify that the correct dc levels are found at A2U8B pin 4 , A2U3E pin 10, A2U3A pin 2 , and A2U14C pin 6 by referring to Table 8-2. If a voltage from A2U8 is incorrect, A2U8 is probably defective. If a voltage from A2U3 is incorrect, probably A2U3 is defective. If a voltage from A2U14 is incorrect, probably A2U14 is defective.

Test 1-f. Measure the outputs of A2U7 at pins 4, 7, 9, and 12. Refer to Table 8-3. If the voltages are correct, proceed to Test 1-h. If an output voltage is incorrect, measure the corresponding input voltages to A2U7 at pins $3,6,10$, and 13. Refer to Table $8-3$. If an input voltage is correct but the corresponding output voltage is incorrect, probably A2U7 is defective.

Test 1-g. Measure voltage at A2U2C pin 9. Voltage should be $<+0.8 \mathrm{~V}$ in the OFF or AM modes and $>+2.4 \mathrm{~V}$ in the FM mode. If these voltages are correct, A2U2 is probably defective. If the voltages are incorrect, A2U2 or A2U12 probably is defective.

Test 1-h. Refer to Table 8-4 and check voltages on A2U11D pin 8, A2U11A pin 2, A2U8A pin 3, A2U11F pin 2, and A2U8C pin 10. If the voltages are correct, proceed to Test 1 -j. If A2U11A pin 2 output is incorrect, probably A2U11 is defective. If any other voltages are incorrect, proceed to Test 1-j

Test 1-i. Refer to the schematic on Service Sheet 2 and check the input voltage to the last circuit element (inverter or NAND gate) on the malfunctioning line. If this voltage is correct, the last circuit element is defective. If this voltage is incorrect, one of the proceeding NOR gates is defective or the input to the output gate is shorted.

Test 1-j. Verify that the voltage at A2U15A pin 3 is correct. The voltage should be $>+2.4 \mathrm{~V}$ in OFF and AM modes and $<+0.8 \mathrm{~V}$ in the FM mode. If the voltages are correct, proceed to test $1-\mathrm{k}$. If the voltages are incorrect, probably A2U15A is defective.

Test 1-k. Verify that the mainframe panel lamp, FM MODE, is lighted in the FM mode and is extinguished in the OFF and AM modes and during the FM CF CAL cycle. If the lamp is operating correctly, proceed to Test 1-m. If the lamp is not operating correctly, proceed to Test 1-1

Table 8-2. Truth Table for MODE Functions

MODE	AM ON(5)*	FM X0.1(M)	FM X1(12)	FM X10(N)	FMC(16)	FM MODE(10)
OFF	H	H	H	H	H	L
AM	L	H	H	H	H	L
FM X0.1	H	L	H	H	L	L
FM X1	H	H	L	H	L	H
FM X10	H	H	H	L	H	
*XA2 Pin No.						

Table 8-3. Truth Table for SOURCE Functions

MODE	SDURCE	AMP(11)*	EXT AC(L)	EXT DC(15)	INT 400(17)	INT 1000(T)
OFF	any	H	X	H	H	H
AM	EXT AC	L	L	H	H	H
or	DC	H	H	L	H	H
FM	INT 400	L	H	H	L	H
	1000	L	H	H	H	L

*XA2 Pin No.
X may be H or L . Level is dependent upon SOURCE setting only. $\mathrm{H}=>+2.4 \mathrm{~V}, \mathrm{~L}=<+0.8 \mathrm{~V}$

Test 1-I. Check the voltage at A211C pin 6. The voltage should be $<+0.8 \mathrm{~V}$ in the OFF and AM modes and during the FM CF CAL cycle, and $>+2.4 \mathrm{~V}$ in the FM mode. If the voltage is correct, proceed to Test 1-m. If the voltage is not correct, verify that the voltage at U12D pin 12 is $>+2.4 \mathrm{~V}$ in FM mode and $<+0.8 \mathrm{~V}$ during the FM CF CAL cycle. If the voltages are incorrect, the A6 FM CF CAL timing circuit, associated components on the A8 Assembly, or continuity between A6 and A2 is the cause (see Service Sheet 6). If the voltages are correct, probably A2U12 or A2U11 is defective.

Test 1-m. Verify that the correct dc voltages exist at A2U16A pin 3, A2U16B pin 5 and A2U14F pin 12. In AM mode, A2U14F pin 12 and A2U16A pin 3 should be $<+0.8 \mathrm{~V}$ and A2U16B pin 5 $>+2.4 \mathrm{~V}$. In $<1300 \mathrm{MHz}$ FM mode A2U14F pin 12 and A2U16B pin 5 should be $>+2.4 \mathrm{~V}$ and A2U16A pin $3<+0.8 \mathrm{~V}$. In >1300 FM mode, A2U14F pin 12 and A2U16B pin 5 should be $<+0.8 \mathrm{~V}$ and A 2 U 16 A pin $3>+2.4 \mathrm{~V}$. If voltages are correct proceed to Test 1-o, otherwise proceed to Test 1-n.

Test 1-n. If voltage at A2U14F pin 12 is not correct but A2U16 pins 3 and 5 are correct, prob-
ably A2U14 is defective. If A2U14F pin 12 is correct but either A2U16 pins 3 and 5 are not correct, probably A2U16 is defective. If A2U14F pin 12 and A2U16B pin 5 are not correct but A2U16A pin 3 is correct, probably A2U13 is defective. If all three output pins are not correct, probably A2U12 is defective.

Test 1-0. If there is still a malfunction associated with a specific input or output, check the connectors, printed circuits, and wiring for continuity. When an output or input has components on the A1 or A8 Assembly, they should be checked for proper operation.

Test Procedure 2: Remote Operation

Program the mainframe for remote operation. The following tests assume that the instrument functions normally in the manual mode. If not, go to Test Procedure (1).

Test 2-a. Verify that the dc voltage at A2TP2 is $>+2.4 \mathrm{~V}$. If the voltage is correct, go to Test 2 -d. If the voltage is incorrect, proceed to Test 2-b.

Test 2-b. Check the voltage at A2U11E pin 11 for $>+2.4 \mathrm{~V}$ to make sure the shift registers are not

SERVICE SHEET 2 (Cont'd)

being held permanently in a clear state. If the level is $>+2.4 \mathrm{~V}$, proceed to Test $2-\mathrm{c}$. If the voltage is $<+2.4 \mathrm{~V}$, check continuity to the mainframe from A2U11E pin 11, and, check that the components on A8 Assembly are operating properly. If there is a problem with the components or the cables and connectors, repair or replace the defective part. If everything is correct, refer to the DCU Troubleshooting in the mainframe manual.

Test 2-c. Measure the voltage at A2U2A pin 2. If the voltage is $<+0.8 \mathrm{~V}, \mathrm{~A} 2 \mathrm{U} 2$ is probably defective. If the voltage is not $<+0.8 \mathrm{~V}$, measure the voltage at A2U15B pin 6. This voltage should be $<+0.8 \mathrm{~V}$. If this voltage is correct, A2U15B or an associated component is defective. If the voltage is incorrect, check A8 components, resistance to ground and the continuity to the mainframe from A2U15 pin 6. If continuity is broken or is grounded, repair or replace the defective component. If continuity is unbroken and not grounded, refer to DCU Troubleshooting in the mainframe manual.

Test 2-d. Remove short from J3 pin 5 (Remote inputs) jack on the back of the mainframe and then reconnect the short. (This sends a clear pulse to all shift registers.) Measure the voltage at the outputs of A2U9. A2U5, A2U10, and A2U6, pins $12,13,4$, and 15 . All of these voltages should be $<+0.8 \mathrm{~V}$. If any output is not $<0.8 \mathrm{~V}$, the integrated circuit whose output is incorrect is probably defective. If all the outputs are correct, proceed to Test 2 -e.

Test 2-e. Measure the voltage at the outputs of A2U13 pins 2, 4, 6, and 12, and A2U14 pins 2, 4, 8 , and 10 . All of these voltages should be $>+2.4 \mathrm{~V}$. If any output is not $>+2.4 \mathrm{~V}$, the integrated circuit whose output is incorrect is probably defective. If all of the outputs are $>+2.4 \mathrm{~V}$, proceed to Test 2 -f.

Test 2-f. Measure the voltage at the outputs of A2U1 and A2U7 pins 4, 7, 12, and 9. All of these voltages should be $<+0.8 \mathrm{~V}$. If true, proceed to Test $2-\mathrm{g}$. If any output is not $<+0.8 \mathrm{~V}$, the integrated circuit whose output is incorrect is probably defective.

Test 2-g. Connect +5 Vdc to A2U9 pins 4, 5, 6, and 7. Momentarily connect +5 Vdc to A2U9 pin 10 twice. Repeat with A2U5 pin 10. This action clocks Highs throughout all shift registers. Trace the malfunctioning circuit through the shift registers. All outputs of both shift registers should be $>+2.4 \mathrm{~V}$. If the outputs are correct, proceed to Test 2 -h. If A2U9 and A2U10 have corresponsing outputs incorrect, probably A2U9 is defective. If A2U5 and A2U6 have corresponding outputs incorrect, A2U5 is probably defective. If only A2U10 or only A2U6 has an incorrect output, probably the integrated circuit whose output is incorrect is defective.

Test 2-h. Measure the outputs of A2U13 pins 2, 4, and 6 , and A2U14 pins 4, 8, and 10 . They should be $<+0.8 \mathrm{~V}$. If any output is not $<+0.8 \mathrm{~V}$, the integrated circuit whose output is incorrect is probably defective. If all outputs are correct, proceed to Test 2-i.

Test 2-i. Measure the outputs of A2U1 and A2U7, pins $4,7,9$ and 12 . They should all be $<+0.8 \mathrm{~V}$. If any output is not $<+0.8 \mathrm{~V}$, the integrated circuit whose output is incorrect is probably defective. If all outputs are correct, proceed to Test $2-\mathrm{j}$.

Test 2-j. Verify that continuity to the mainframe exists from all shift register inputs and that the associated components on the A8 Assembly are operating properly. If continuity does exist and the components on the A8 Assembly are operating properly, go to the DCU Troublehooting in the mainframe manual. If continuity does not exist, if the circuit is grounded, or the components on the A8 Assembly are defective, repair or replace the defective component.

Figure 8-5. Simplified Switch Logic Block Diagram

Figure 8-6. A2 Switch Logic Assembly Component Locations

SERVICE SHEET 3

NOTE

When a malfunction occurs, refer to Section VIII of the Model 8660-series mainframe Operating and Service Manual to begin troubleshooting. If this indicates trouble in the Model 86632B Modulation Section, proceed to Service Sheet 1 of this manual. Service Sheet 1 gives overall troubleshooting and is keyed to all other Service Sheets.

A5 MODULATION OSCILLATOR

PRINCIPLES OF OPERATION

The A5 Modulation Oscillator Assembly contains the 400 Hz or 1000 Hz oscillator circuit and related relay switching. This oscillator generates the internal drive to the A4 Leveling Amplifier Assembly. In the INTERNAL SOURCE switch positions, a buffer amplifier provides isolation coupling between the internal oscillator and the front-panel OUTPUT connector. The internal oscillator is turned off in both the OFF and EXT modes. In EXT mode the external input is routed to the output by the switching relay.

Oscillator Control Circuit

All control logic for the A5 Modulation Oscillator Assembly is derived from the A2 Logic Control Assembly. A logic low at either XA5 pin $1(400 \mathrm{~Hz} \mathrm{ON})$ or XA5 pin $2(1000 \mathrm{~Hz} \mathrm{ON})$ will turn on both A5Q1 and A5Q2, thus coupling -9 Vdc to the modulation oscillator A5U1. A logic low at XA5 pin 2 will also close relay A5K1, changing the oscillator frequency from 400 Hz to 1000 Hz .

Modulation Oscillator

The A5U1 oscillator consists of two feedback loops which control frequency and output amplitude. The frequency sensitive bridgedTee network selects the frequency of minimum feedback (400 Hz or 1000 Hz). The other feedback circuit through A5R14 provides positive feedback required for oscillation. A5CR5 through A5CR8 form an automatic gain control circuit limiting the amplitude of the oscillator output to about $2.8 \mathrm{Vp}-\mathrm{p}$ or 1 volt rms. In INTERNAL mode buffer amplifier A5Q3 provides isolation and signal coupling to front panel connector J1.

TROUBLESHOOTING

It is assumed that a problem has been isolated to the Modulation Oscillator Assembly as a result of using the procedures on Service Sheet 1. Troubleshoot the A5 Modulation Oscillator by using the test equipment and procedures given below.

SERVICE SHEET 3 (Cont'd)

Test Equipmen

Digital Voltmeter HP 34740A/34702A Test Oscillator. HP 651B Oscilloscope HP 180C/1801A/1821A 10:1 Oscilloscope Probe HP 10004A Extender Cable HP 11672-60002

Initial Test Conditions

Turn off instrument. Unplug the Modulation Sec tion from mainframe, remove covers, install A5 Modulation Oscillator Assembly board on extender board (see Figure 8-2) and reconnect module to mainframe using extender cable. See last foldout in this manual for procedures and cautions. Set front panel SOURCE control to 400 Hz . Turn on instrument and allow 10 minute warm up.

NOTE

Perform adjustment procedure entitled Modulation Oscillator Adjustment in Section V after making repairs to any part of the modulation oscillator circuits.

Test Procedures

Test 1: Power Supplies
Verify that the power supply voltages at XA5 pins H, F, and E are as shown on the schematic diagram. Verify that the $+10 \mathrm{VF},+5.25 \mathrm{VF}$, and -9 VF are within $\pm 0.25 \mathrm{Vdc}$. If the -9 VF is absent, check XA5 pin 1 for a logic low at the anode of A5CR1 with SOURCE control set to 400 Hz or 1000 Hz .

Test 2: Logic Switching

Monitor -9 VF with voltmeter while changing front panel SOURCE control positions. The -9 VF should be present in the 400 Hz and 1000 Hz modes and off in the OFF and EXT modes. If the voltage is incorrect check A5Q1, A5Q2, and associated components.

Test 3: A5U1 Oscillator Circuit

First use oscilloscope to check both ac level and dc offset at A5U1 pin 6 for the voltage shown on the schematic diagram and proceed to the next appropriate step.

Test 3a: Incorrect Amplitude

If the oscillation is present but has the incorrect amplitude the problem is in the dc feedback loop. Check A5C8 for a signal level of about one-half the value found at A5U1 pin 6. Check A5C7 for a dc voltage of about +0.8 Vdc. Turn-off mainframe power, remove the A5 Assembly board from eextender card. Check the components in the dc feedback loop starting in area where incorrect voltage was found. Replace the defective component.

Test 3b: Incorrect Frequency

If the signal is present but cannot be adjusted to correct frequency, turn off mainframe power and remove the A5 Assembly board from extender card. If the 400 Hz signal is incorrect, use ohmmeter to check A5R8, A5R12, A5R15, or A5R18 for value change. If only the 1000 Hz signal is incorrect, the defective component is A5K1, A5R13, A5R16, or A5CR4.

Test 3c: No Signal

Turn-off mainframe power, remove the A5 Assembly board from extender card and check A5C9 and A5C12 for shorts and A5R14 for a high value or open. If these components are good, A5U1 is probably defective and needs replacing.

Test 4: Output Amplifier

Use the digital voltmeter to check the base and emitter of A5Q3 for the voltages given on the schematic diagram. If no voltage is present at the emitter, A5Q3 is open. If the dc voltages are correct, use the oscillosocpe to check the signal at the emitter of A5Q3. If correct check toward the front panel jack, if not, check back toward the oscillator to locate the defective component.

Figure 8-8. A5 Modulation Oscillator Assembly Component Locations

Figure 8-9. A5 Modulation Oscillator Assembly Schematic Diagram

SERVICE SHEET 4

NOTE

When a malfunction occurs, refer to Section VIII of the Model 8660-series mainframe Operating and Service Manual to begin troubleshooting. If this indicates trouble in the Model 86632B Modulation Section, proceed to Service Sheet 1 of this manual. Service Sheet 1 gives overall troubleshooting and is keyed to all other Service Sheets.

A4 LEVELING AMPLIFIER ASSEMBLY

PRINCIPLES OF OPERATION

The A5 Leveling Amplifier maintains a constant output voltage for internally generated signals or for external ac-coupled signals in the range of 1.0 to 2.0 Vrms. The specified frequency range of the external source is 20 Hz to 100 kHz .

Leveling Amplifier Control Circuits

The Leveling Amplifier is turned on only in the INTERNAL or EXTERNAL AC coupled SOURCE modes. A logic low is coupled to XA4 pin 9 from the A2 Logic Control Assembly in these positions. This turns off A4Q12 and turns on A4Q11. Turning on A4Q11 applies positive supply voltages to the Leveling Amplifier. In a similar manner, A4Q3 is turned off and A4Q4 is turned on, which applies negative supply voltages to the Leveling Amplifier.

In the EXTERNAL DC mode, the voltage at pin 9 is High, which turns off the Leveling Amplifier. At the same time the voltage at XA4 pin M (DC CONTROL) is Low. This actuates relay A4K1, connecting the INPUT/ OUTPUT jack through the A4 Assembly to the A3 Modulation Level Control Assembly.

Modulation Signal Amplifier

The modulation signal amplifier section of the Leveling Amplifier Assembly is a five stage transistor amplifier. The input stage consists of A4Q10 buffer amplifier. A4R14 is an optically coupled isolator which controls the overall gain. A4Q6 is a buffer amplifier with a voltage gain <1. A4Q5 and A4Q7 are voltage amplifiers with a gain of about 30 . A4Q7 drives the complementary pair A4Q8 and A4Q9 to provide a low impedance output.

Detector and Feedback Amplifier

The output signal from the modulating signal amplifier is coupled to a peak detector circuit consisting of A4CR7, A4CR8, and A4CR9. The detected dc level is coupled to A4U2. The output of A4U2 (pin 6) is coupled to summing amplifier A4U1 through variable resistor A4R45. The offset voltage (A4TPE) and the output of A4U2 are summed, amplified and inverted by A4U1. The gain of A4U1 (nominally X1) is determined by gain control A4R45. The output of A4U1 is coupled through A4R47 to A4Q1 and A4Q2, the optical isolator drivers.

SERVICE SHEET 4 (Cont'd)

As the input signal to the modulation amplifier increases, the driving current to A4R14 photo-resistor is decreased. The signal coupled through the optically coupled isolator is decreased and the amplifier provides a constant output level of 1.80 ± 0.02 Vrms.

TROUBLESHOOTING

It is assumed that a problem has been isolated to the Leveling Amplifier Assembly as a result of using the procedures on Service Sheet 1. Troubleshoot the A4 Leveling Amplifier by using the test equipment and procedures given below. Refer to Table 1-2 for a list of recommended test equipment.

Test Equipment

Digital Voltmeter	HP 3470A/34702A
Test Oscillator.	.HP 651B
Oscilloscope	.HP 180C/1801A/1821A
10:1 Oscilloscope Probe	HP 10004A
Extender Cable	HP 11672-60002

Initial Test Conditions

Turn off instrument. Unplug the Model 86632B module from mainframe, remove covers, install A4 Leveling Amplifier Assembly board on extender board (see Figure 8-2), and reconnect module to mainframe using extender cable. See last foldout in this manual for procedures and cautions. Set front panel SOURCE control to 400 Hz . Turn on instrument and allow 10 minute warm up.

NOTE

Perform adjustment procedures entitled Amplitude Leveling Adjustment in Section V after making repairs to any part of the leveling amplifier circuits.

Test Procedures

Test 1: Power Supplies

Verify that the power supply voltages at XA4 pins 6, 7, and E are shown on the schematic diagram. Verify that the $+20 \mathrm{VF},+10 \mathrm{VF}$, and the -10 VF are correct $\pm 0.25 \mathrm{Vdc}$. If any of these voltages are absent, verify that XA4 pin 9 is at a logic low (with front panel SOURCE control not in DC) and then locate the faulty component by checking the dc voltages shown on the schematic diagram.

SERVICE SHEET 4 (Cont'd)

Test 2: Modulation Signal Amplifier

Use oscilloscope to verify input at XA4 pin N about $2.8 \mathrm{Vp-p}$) and then check the output at XA4 pin B (about $5.2 \mathrm{Vp}-\mathrm{p}$). If no output signal is present, move the probe to A 4 TPB and if the signal is present at this point relay A 4 K 1 or associated circuits are at fault. If no signal is present or if the signal is not to specifications, proceed to the next test.

Test 2a: Input Stage

Move the oscilloscope probe to test point A (about $1.3 \mathrm{Vp}-\mathrm{p}$) and then to the emitter of A 4 Q 10 . If a signal is incorrect, turn off mainframe power and use ohmmeter to locate faulty component. If the signal at the emitter of A4Q10 is correct, use digital voltmeter to check A4TPE and A4U2 pin 3 for the dc voltages indicated on the schematic diagram. If these tests fail to locate the fault proceed to the next step.

Test 2b: Open Loop Troubleshooting

Use an external signal generator to feed a 400 Hz signal (about 0.1 Vp-p) into the front panel jack of the Modulation Section. Set the SOURCE con-
trol to EXTERNAL AC. Use a clip lead to short across capacitor A4C17. The A4 Assembly is now ready for open loop testing.

Check A4TP1 (about -0.8 Vdc); if no voltage, check A4Q1 and A4Q2 for open. Use oscilloscope to check signal at A4TPB (about 5.2 Vp-p). If correct, proceed to test 2 d ; if incorrect, proceed to test 2c.

Test 2c: Signal Amplifier

Move the probe to A4TP3 (about $0.18 \mathrm{Vp}-\mathrm{p}$). Locate the faulty component by continuing to check half-way between the last correct and first incorrect signal. When the fault has been isolated to a stage, use digital voltmeter to check dc voltages given on the schematic diagram.

Test 2d: Detector/Feedback Amplifier

First check test points C, D, E, and F for the voltages indicated using a digital voltmeter. Check any voltage given for the stage preceding the first incorrect reading and then disconnect power and use ohmmeter to locate the faulty component.

After repairs, remove the clip lead and perform adjustment found in Section V.

A4 ASSEMBLY

Figure 8-10. A4 Leveling Amplifier Assembly Component Locations

SERVICE SHEET 5

NOTE

When a malfunction occurs, refer to Section VIII of the Model 8660-series mainframe Operating and Service Manual to begin troubleshooting. If this indicates trouble in the Model 86632B Modulation Section, proceed to Service Sheet 1 of this manual. Service Sheet 1 gives overall troubleshooting and is keyed to all other Service Sheets.

A3 REMOTE ATTENUATION ASSEMBLY

PRINCIPLES OF OPERATION

The A3 Modulation Level Control Assembly contains relays for selecting amplifier gain, local or remote operation, AM or FM mode, FM CF CAL, and remote modulation level. The output of the assembly is either an AM or FM modulating signal. All switching control voltages are derived from the A2 Logic Control Assembly. A meter drive circuit, located on this circuit board, provides meter current and originates the REDUCE DEVIATION indicator signal.

FM CF CAL Decoupling Switch

When in FM mode and the front panel FM CF CAL control is depressed, relay A3K11 is energized and the modulation input at pin N is disconnected from A3Q3. During normal AM or FM mode operation, the input at pin 13 is high and the signal input at pin N is applied by relay A 3 K 11 to audio amplifier A3Q3.

Local/Remote Switching

Relays A3K13 and A3K14 control the Local/Remote switching. In Local mode the relays are not energized and the audio modulation signal is routed to the front panel MODULATION LEVEL control. In the remote programming mode, these relays transfer the control of the modulation level to the Remote Modulation Level Control relays. Note that both relays must be active for the modulation signal to be present at the output.

Remote Modulation Level Control

Remote programming of the modulation level is achieved through control of relays A3K2 through A3K9 and resistors A3R10 through A3R25. Relays are selected by a $1,2,4,8,10,20,40,80$ code for percent. For example, if relays $1,8,10$, and 80 are selected the modulation will be 99%. If the 20 and 80 relays are selected the modulation will be 100%.

Meter Drive

The meter drive amplifier consists of voltage comparator A3U2, transistor A3Q4 and associated components. The $0-1$ Vrms attenuated modulation signal at pin 3 of A 3 K 12 and 13 is the input to the meter drive amplifier. The signal is peak detected and stored on A3C10. The stored voltage sets the current flow to the meter. A feedback loop from A3Q4 emitter couples the voltage to the inverting input of A3U2. A3R33 slowly discharges A3C10,

SERVICE SHEET 5 (Cont'd)

lowering the dc voltage coupled to the inverting input. As the next peak of the input signal turns on the comparator, A3C10 is again charged to the peak voltage. The meter is calibrated by adjusting A3R36 which is in both the meter circuit and the feedback loop. An output is taken from the emitter of A3Q4 through A3R46. This output is the DEVIATION DETECTOR SIGNAL used in A9 to generate the REDUCE DEVIATION indicator signal.

Figure 8-12. Voltage Comparator

Amplifier Gain Control

The gain control circuit changes the gain of the FM deviation drive signal when switching from lower to higher frequency bands. In FM mode, the GAIN CONTROL input at pin 14 goes from High to Low if the system operating frequency is switched from $<1300 \mathrm{MHz}$ ($0-100$ meter range) to a frequency $\geqslant 1300 \mathrm{MHz}$ ($0-200$ meter range). The reverse is true when dropping from $\geqslant 1300 \mathrm{MHz}$ to $<1300 \mathrm{MHz}$.

When Low, GAIN CONTROL energizes A3K1, located in the feedback loop of amplifiers A3U1 and Q1. When energized A3K1 bypasses feedback loop resistor A3R39, and in effect divides the amplifier gain in half. GAIN ADJ A3R7 is adjusted to obtain 3.6 Vrms (meter full scale) at A3TP1 at frequencies $<1300 \mathrm{MHz}$ and 1.8 Vrms at $\geqslant 1300 \mathrm{MHz}$. A2 logic switches on the $0-100$ meter indicator for frequencies $<1300 \mathrm{MHz}$ or the $0-200$ meter indicator for $\geqslant 1300 \mathrm{MHz}$.

In AM mode, GAIN CONTROL remains Low, however A2 logic selects $0-100$ indicator since AM is read in percent.

AM/FM Selection

Relay A3K12 switches the modulation signal output from FM to AM when XA3 pin P of the circuit board goes low. Amplifier A3Q1 preserves the proper phase for driving the RF Section Modulator. Transistor A3Q5 inverts the AM control input logic so that A3K10 grounds the AM output when in FM mode.

SERVICE SHEET 5 (Cont'd)

TROUBLESHOOTING

It is assumed that a problem has been isolated to the Modulation Level Control Assembly as a result of using the procedures listed on Service Sheet 1. Troubleshoot the A3 Modulation Level Control Assembly by using the test equipment and procedures given below.

Test Equipment

Digital Voltmeter HP 34740A/34702A
OscilloscopeHP 180C/1801A/1821A
10:1 Oscilloscope Probe HP 10004A
Test Oscillator. .HP 651B
Extender Cable HP 11672-60002

Initial Test Conditions

Turn off instrument. Remove the Modulation Section module from the mainframe, remove cover, connect to mainframe with extender cable. See last foldout in this manual for procedures and cautions. Remove the A3 Remote Attenuator Assembly board and reinstall using the extender board (see Figure 8-2). Turn on instrument and allow 10 minute warm up.

NOTE

Perform adjustment procedures entitled Amplitude Leveling and Meter Adjustment in Section V after making repairs to any part of the modulation level control circuits.

Test Procedures

Test 1: Power Supplies

Verify that the dc power-supply voltages are as shown on the schematic diagram and are within $\pm 0.25 \mathrm{Vdc}$. If not, check the supply lines back through the A8 Mother Board to the mainframe and repair the malfunction.

Test 2: Modulation Amplifier

Set SOURCE control on front panel to 400 Hz and FM mode. Check A3TP1 with voltmeter for 3.6 V rms with system frequency at 1200 MHz . Then switch to 1400 MHz and check for 1.8 V rms . If the signal is incorrect, check for same signal level at base of A3Q1 to isolate the problem to one stage. Refer to Section V for adjustment of A3R37. Verify correct levels at pins 13 and 14.

Test 3: Controls

Move the voltmeter probe to A3TP2. An incorrect signal indicates a problem in A3K13, A3K14, the front panel Modulation Level control R1 in the local mode, or the Remote Modulation Level Control section of the A3 Board in the remote mode. Troubleshoot the remote level control circuits by programming through the mainframe and observing the level at A3TP2.

Test 4: Meter Driver

With 1.0 Vrms at A3TP2, check emitter of A3Q4 for $\approx 1.33 \mathrm{Vdc}$. If this voltage is incorrect, first check the collector of A3Q4 for power supply voltage and if this is present, adjust A3R36 by following the procedure given in Section V. If the fault has not been identified at this point, check A3U2 pins 11 and 6 for the supply voltages listed o on the schematic. If these are correct, the fault lies with A3U2, A3Q4 or associated components.

Test 5: FM Output

Set MODE control to FM X1 and check XA3 pin 12 with voltmeter for 1 Vrms signal. If no signal, probable cause is A3K12 or logic on the A2 Assembly.

Test 6: AM Output
Set MODE control to AM and check XA3 pin M for 1 Vrms signal. If no signal, probable cause is A3K10, K12, or logic in A2 Assembly.

Figure 8-13. A3 Remote Attenuation Assembly Component Locations

Digitally Remastered by ArtekMedia © 2002-2006

SERVICE SHEET

NOTE

Begin overall troubleshooting by first following the procedures given in Section VIII of the Model 8660 series mainframe Operating and Service Manual. After the trouble has been isolated to the $86632 B$ Modulation Section, perform the troubleshooting given in this manual on Service Sheet 1. After both of these steps have been performed and the malfunction has been isolated to the A6 FM Attenuator Assembly the following troubleshooting procedure is recommended.

A6 FM ATTENUATOR ASSEMBLY

PRINCIPLES OF OPERATION

The A6 FM Attenuator Assembly contains the FM range circuits. These cir cuits attenuate the amplitude of the modulating signal to predetermined levels with FM range switch settings. The A6 Assembly also contains the FM center-frequency calibration (FM-CF-CAL) timing circuits.

FM Range Control

The attenuated FM modulating signal from the A3 Remote Attenuator Assembly is coupled to the Complementary Emitter-Followers, A6U1B/ U1C. The signal is then coupled to the FM range selector

In the FM X10 range, the signal is coupled through resistor A6R25 and relay A3K1 to U1A and U1D emitter-follower. In the FM X1 and FM X 0.1 ranges the output amplitude (to U1A) is respectively $1 / 10$ th and $1 / 100$ th of the output of the FM X10 range

The output from the A6 Assembly is coupled to the A7 Assembly, to frequency modulate the 20 MHz VCO. In EXT DC mode a Low at pin energizes relay A6K4 to bypass capacitor A6C23 in the output line.

FM CF CAL Circuit

In OFF or AM MODE, U2A pins 1,2 , and 13 are High ($>+2.4 \mathrm{Vdc}$) which causes the output pin 12 to go Low ($<+0.8 \mathrm{Vde}$). This Low is coupled the base of transistor A6Q6 by A6CR2. The Low at the base of A6Q6 makes it impossible to trigger the A6Q4/Q5 multi-vibrator. In any FM MODE, U2A pin 12 is High but the Low at U2C pin 8 continues to keep the multivibrator from triggering. When the FM CF CAL front-panel switch is closed or when a High calibration clock pulse is received at U2B pins 3,4 , and 5 U2B pin 6 goes Low. This Low sends pin 8 of U2C High, which turns A6Q6 on.

When A6Q6 is turned on, several events occur:
a. Multi-vibrator A6Q4/Q5 is triggered, Transistor A6Q5, which is normally conducting, is turned off and A6Q4 is turned on. This condition A6Q5 and the voltage or Acco bucr 5 th the returns to its steady state condition. Cycling time for this operation approximately 5 seconds.

SERVICE SHEET 6 (Cont'd)

b. Transistor A6Q3 is turned on, changing the collector voltage (normally -10 Vdc) to approximately +1.2 Vdc . This voltage, fed to the hold-control relay over the HLC line, closes this relay in the A7 Assembly
c. Transistors A6Q1, and A6Q2 are turned on, causing the FM CAL FLAG output to go Low. This output to the mainframe inhibits transfer of programmed data for the 86632B from the mainframe. This output also goe to the 86632B A2 Switch Logic Assembly and is transformed to a signal to the mainframe (FM MODE). This signal turns off the FM MODE light in the mainframe for the duration of the calibration cycle.
d. When A6Q5 turns off, its collector goes High. Capacitor A6C11 begins to charge through A6R3, A6R10, and A6CR4. After approximately $10 \mathrm{~ms}, \mathrm{~A} 6 \mathrm{Q} 7$ turns on and the collector goes Low which activates:

1. FM Cal Relay 2 in the A3 Assembly grounding the input.
2. FM Cal Relay 1 in the A7 Assembly which couples the 20 MHz reference signal to the phase detector

When the multi-vibrator A6Q4/Q5 returns to its steady state, the HLC output immediately returns to its normal level. The FM Cal Relay 1 and 2 and FM Cal Flag outputs take about 50 ms to return to their normal operating state because the voltage on A6C11 now discharges through reached, A6Q7 turns off and the FM Cal Relays return to their normal state.

TROUBLESHOOTING

It is assumed that a problem has been isolated to the FM Deviation Attenuation Assembly as a result of using the Troubleshooting of Service Sheet 1. Troubleshoot by using the test equipment and procedures outlined below.

Test Equipment

Digital Voltmeter Oscilloscope HP 180A/1801 10:1 Oscilloscope Probe . HP 10004A AC Voltmeter . HP 400GL

Initial Test Conditions

Model 86632B removed from mainframe but connected with an extender cable, covers removed, and A6 FM Attenuator Assembly installed on an extender board (see Figure 8-3).

Set the Model 86632B to FM MODE and either INTERNAL SOURCE or EXTERNAL AC with an input of 0.2 to 2 Vrms and the frequency within the FM frequency limits for the malfunctioning switch position.

SERVICE SHEET 6 (Cont'd)

Figure 8-15. FM Center Frequency Calibration Time Sequence

NOTE

After making repairs in any part of the FM Attenuator circuits, adjustment procedures specified in Section V should be performed to ensure proper operation of the instrument.

Some of the circuit functions occur only for a period of five seconds after pressing the FM CF CAL pushbutton. Press this pushbutton before making any measurement controled by this within five seconds after pressing the pushbutton.

Before attempting to troubleshoot the A6 Assembly, verify that the power supply voltages are within 0.25 volt of the values shown on the schematic.

SERVICE SHEET 6 (Cont'd)

If the modulation meter does not indicate, the malfunction concerns modulation (go to Test Procedure (1). If the modulation meter indicates, but either continues to indicate when the FM CF CAL pushbutton is pressed or goes to zero and does not return, the malfunction is in the operation of the FM CF CAL pushbutton or associated circuits (go to Test Procedure (2)).

Test Procedure 1: Modulation Operation

Test 1-a. Set the Model 86632B for INTERNAL SOURCE FM X1 modulation with either 400 Hz or 1000 Hz modulation. Measure the ac voltage at A6TP2 with an ac voltmeter. If this voltage is correct at approximately 0.7 Vrms, go to Test 1-b. If this voltage is incorrect, trace the modulation signal back to Service Sheet 5 .

Test 1-b. Measure the ac voltage at A6TP3. If this voltage is correct at approximately 0.7 Vrms , go to Test 1-c. If this voltage is incorrect, check A6U1B and C and associated circuitry.

Test 1-c. Measure the ac voltage at A6TP4. The voltages with different switch positions should be as follows:

Switch Setting

FM X10
FM X1
FM X0.1

Voltage

approximately 0.7 Vrms approximately .07 Vrms approximately .007 Vrms

If these voltages are correct, trace the signal to Service Sheet 7. If any voltage is incorrect, go to Test 1-d.

Test 1-d. Check continuity between pins 1 and 4 on the following relays with the following MODE switch settings:

Switch Position
 Test Relay
 FM X10
 A6K1
 FM X1
 A6K2
 FM X0.1
 A6K3

If pins 1 and 4 on the appropriate relays are closed, check the associated resistors. If the relays are not closed, go to Test 1-e.

Test 1-e. Check for a Low ($<+0.8$ Vdc) at the following XA6 connector pins with the following MODE switch settings:

Switch Position
FM X10
FM X1
FM X0.1
If these voltages are correct, replace the malfunctioning relay. If these voltages are incorrect, trace the incorrect voltage back to Service Sheet 2 .

Test Procedure 2: FM CF CAL Pushbutton Operation

Refer to Figure 8-16 for the waveforms associated with this test procedure.

Test 2-a. Set the MODE switch to the malfunctioning FM multiplier position. Measure the voltage at A6TP1 with an oscilloscope within 5 seconds after pressing the FM CF CAL pushbutton. See Figure $8-15$. This voltage should rise to approximately +1.2 Vdc . If this voltage is correct, go to Test $2-\mathrm{g}$. If voltage is incorrect, go to Test 2-b.

Test 2-b. Measure the voltage at the collector of A6Q6, while pressing the FM CF CAL pushbutton. This voltage should be +5 Vdc and drop to approximately 0.8 Vdc . If this voltage is correct, probably A6Q3 or associated circuitry is defective. If this voltage is not correct, go to Test 2-c.

Test 2-c. Measure the voltage at the emitter of A6Q6, while pressing the FM CF CAL pushbutton. This voltage should be approximately +0.26 Vdc and drop to approximately +.06 Vdc . If this voltage is correct, check A6Q3 and A6Q6. If this voltage is incorrect, go to Test $2-\mathrm{d}$.

Test 2-d. Measure the voltage at A6U2C pin 8, while pressing the FM CF CAL pushbutton. This voltage should go High ($>+2.4 \mathrm{Vdc}$). If this voltage is correct, check A6CR1. If this voltage is incorrect, go to Test $2-\mathrm{e}$.

Test 2-e. Check inputs to A6U2C while pressing FM CF CAL pushbutton. Pin 10 should be Low $(<+0.8 \mathrm{Vdc})$ while pins 9 and 11 should be High ($>+2.4 \mathrm{Vdc}$). If these voltages are correct, go to Test 2 -f. If these voltages are incorrect, trace incorrect voltage back to source, repair or replace faulty component.
Test 2-f. Measure the voltage at pin 12 of A6U2A. This voltage should be High ($>+2.4 \mathrm{Vdc}$). If this voltage is correct, check A6CR2. If this voltage is incorrect, measure the voltages at pins 1,2 , and 8 of U2A. One of these voltages should be Low

SERVICE SHEET 6 (Cont'd)

(depending upon FM multiplier switch setting) and the other two High. If these voltages are correct, replace A6U2A. If these voltages are incorrect, trace the incorrect signal to its source and repair or replace the faulty component.

Test 2-g. Measure the voltage at the collector of A6A7 while pressing the FM CF CAL pushbutton. This voltage should drop from +5 Vdc to approximately 0 volts. If these voltages are correct, go to Test 2-i. If these voltages are incorrect, go to Test 2-h.

Test 2-h. Measure the votlage at the base of A6Q7 while pressing the FM CF CAL pushbutton. This voltage should go to $>+0.6 \mathrm{Vdc}$. If this voltage is incorrect, check A6Q7, A6CR8 and 9, and associated circuitry. If this voltage is incorrect, check A6Q4 and 5, A6CR4 and 5, and associated circuitry.

Test 2-i. Perform VCO Center Frequency Adjustment in Section V. If the center frequency will not adjust, go to Test 2 -j. If the center frequency will adjust, go to Test 2-1.

Test $2 \cdot \mathrm{j}$. With an ohmmeter, measure continuity across pins 3 and 4 of A3K11 when the FM CF CAL pushbutton is pressed. Repeat the measurement across pins 3 and 4 of both relays A7A2K3 and 4 in series by measuring between Test locations A7A2TPD and A7A2TPF (the A7A2 board must be removed to measure each relay individually). If either relay does not operate, go to Test $2-\mathrm{k}$. If there is continuity between the Test locations, both relays are operating.

Test 2-k. Trace the circuit to the malfunctioning relay and its power supply. If the circuit is proper and the voltage is $+5 \pm 0.5 \mathrm{Vdc}$, replace the malfunctioning relay. If the circuit is not proper or if the voltage is not proper, fix or replace the faulty component.

Test 2-I. Measure the voltage at XA6 pin 11 as the FM CF CAL pushbutton is pressed. This voltage should go Low ($<+0.8 \mathrm{Vdc}$). If this voltage does go Low, trace the voltage through A8 and A2 (Service Sheet 2) to the mainframe. If this voltage does not go Low, check A6Q1 and 2 and associated circuitry.

$\dagger J 1$ located on circuit side

Figure 8-16. A6 FM Attenuator Assembly Component Locations

SERVICE SHEET 7

NOTE

Begin overall troubleshooting by first following the procedures given in Section VIII of the Model 8660 series mainframe Operating and Service Manual. After the trouble has been isolated to the $86632 B$ Modulation Section, perform the troubleshooting given in this manual on Service Sheet 1. After both of these steps have been performed and the malfunction has been isolated to the A7A1 20 MHz Mixer Assembly, the A7A2 20 MHz Switch Assembly, or the A7A3 20 MHz VCO Assembly the following troubleshooting procedure is recommended.

PRINCIPLES OF OPERATION

A7A1 20 MHz Mixer Assembly

The 20 MHz VCO output, at a level of about 480 mVp -p, is coupled to amplifiers A7A1Q1 and 2 and their output is coupled to the phase detector circuit.

During the FM center-frequency calibration cycle, the 20 MHz reference, at a level of about $480 \mathrm{mVp}-\mathrm{p}$, from the mainframe is coupled to A7A1Q4 and 3. Both of these signals are combined in the phase detector.

The phase detector consists of A7A1T1, A7A1CR1 and 2, and a low-pass filter. The two 20 MHz signals are compared in the phase-detector circuit and the dc output is coupled to the A7A3C33 error-voltage storage capacitor in A7A3.

A7A2 20 MHz Switch Assembly

During the OFF and AM modes the 20 MHz reference signal from the mainframe is coupled through relays A7A2K1 and A7A2K3 to the RF Section. In FM mode, the frequency-modulated 20 MHz VCO signal is coupled through A7A2K1 to the RF Section and the 20 MHz reference is coupled to A7A2K4 via A7A2K3. During the FM center frequency calibration cycle, relay A7A2K4 couples the 20 MHz reference signal from the mainframe to the phase detector on A7A1. A7A2K2 grounds the AM output line during FM mode.

A7A3 20 MHz VCO Assembly

During FM-CF-CAL operation, a dc error voltage from A7A1 Mixer is stored on A7A3C33.. This voltage is amplified by A7A3U1 and is coupled to the varactor diodes A7A3CR9, 10, and 11 in the VCO. This voltage is used to phase lock the VCO center frequency to the 20 MHz reference signal

The frequency-modulating signal from the A6 FM Attenuator Assembly is coupled to the varactor diodes through A7A3L4 and A7A3C15. The change in voltage on the varactors changes their capacitance and therefore changes the VCO frequency at a rate determined by the modulating frequency. The amplitude of the

SERVICE SHEET 7 (Cont’d)

modulating signal determines the modulation level (peak deviation) of the RF output from the RF Section.

The VCO circuit consists of oscillator A7A3Q3 and a tuned circuit consisting of A7A3L3, A7A3CR9 to 11, and A7A3C17. While capacitors A7A3C18 and 19 do add some capacitance to the tuned circuit, they are mainly used to couple the VCO output to A7A3Q1. Capacitor A7A3C14 is a trimmer capacitor which helps to linearize the frequency-versus-voltage curve. When a dc voltage is coupled to the varactor diodes the capacitance, and therefore the frequency of the VCO, changes.

The VCO tuned circuit is coupled to A7A3Q1. Positive feedback from the A7A3Q1 source terminal is coupled to the emitter of A7A3Q3. The output from the drain terminal of A7A3Q1 is coupled to buffer amplifier A7A3Q2. The output of the buffer is coupled to the A7A1 20 MHz Mixer Assembly and to the A7A3Q6 and Q5 output amplifiers. The 20 MHz output from A7A3Q5 is coupled to the RF Section through the A7A2 20 MHz Switch Assembly.

TROUBLESHOOTING

It is assumed that a problem has been isolated to the A7A1, A7A2, and A7A3 Assemblies as a result of using the Troubleshooting of Service Sheet 1. Troubleshoot by using the test equipment procedures specified below and refer to the A7 schematic and component location diagrams.

Test Equipment

Digital Voltmeter . HP 3480A/3482A Oscilloscope . $180 \mathrm{HP} / 1801 \mathrm{~A} / 1821 \mathrm{~A}$ 10:1 Oscilloscope Probe . HP 10004A Extender Cable . HP 11672-60002

Initial Test Conditions

Model 86632B removed from mainframe but connected by extender cable, covers removed, and rear-panel assembly opened to allow access to suspected assembly.

NOTE

After making repairs in any part of the rear-panel assembly, adjustment procedures specified in Section V should be performed to ensure proper operation of the instrument.

Before attempting to troubleshoot the A7 Assemblies, verify that the power supply voltages are within 0.25 volt of the values shown on the schematic. Set the Model 86632A for FM X10 MODE INTERNAL SOURCE 400, and MODULATION LEVEL to an indication of 50 on the meter.

SERVICE SHEET 7 (Cont'd)

Test Procedure 1: A7A1 Assembly

Test 1-a. With an oscilloscope, measure voltage at the primary of A7A1T1 when FM CF CAL pushbutton is pressed. This voltage should be approximately $2.6 \mathrm{Vp}-\mathrm{p}$. If this voltage is correct, proceed to Test 1-d. If this voltage is incorrect, proceed to Test 1-b.

Test 1-b. With an oscilloscope, measure voltage at Test location "VCO" on A7A1. This voltage should be approximately 4880 mV p-p. If this voltage is incorrect, proceed to Test 1-c. If this voltage is correct, A7A1Q1, 2, or an associated component is defective.
Test 1-c. Verify that continuity exists between Test locations A7A3TPC and "VCO" on A7A1. If connection is good, proceed to Test Procedure (3). If continuity does not exist, repair connection.
Test 1-d. Measure the 20 MHz reference voltage at the centertap of A7A1T1 during the FM CF CAL calibration cycle. Connect oscilloscope probe with sweep-speed set to 0.5 seconds/division. Press FM CF CAL pushbutton and take measurement within 5 seconds If this voltage is approximately $2.6 \mathrm{Vp}-\mathrm{p}$ amplitude, proceed to Test 1-g. If this voltage is incorrect, proceed to Test 1-e.

Test 1-e. Measure the reference input (REF) voltage at A7A1C4 within 5 seconds after pressing the FM CF CAL pushbutton. If this voltage is correct (approximately $480 \mathrm{mVp}-\mathrm{p}$) the malfunction is caused by A7A1Q3, 4, or an associated component. If this voltage is not correct, proceed to Test 1-f.

Test 1-f. Verify Reference Signal continuity from A7A2TPF to A7A1C4. If continuity exists, proceed to Test Procedure (2). If continuity does not exist, or is grounded, repair the interconnection.

Test 1-g. Connect an oscilloscope to A7A1TP1 and verify that 0V (phase lock) occurs during the five-second FM CF CAL cycle. If an ac voltage is found, proceed to Test Procedure (3). If zero voltage (phase lock) is observed on the oscilloscope, perform the VCO center-frequency adjustment given in Section V. If phase lock cannot be obtained by this adjustment, go to Test 1-h.

Test 1-h. Disconnect the Model 86632B from the extender cable. Measure continuity between A7A1TP1 to A7A3TPA (tie point at A7A3K1 and A7A3Q8). If continuity exists, go to Test Procedure (3). Otherwise, repair or replace the defective item. Reconnect adapter cable.

Test Procedure 2: A7A2 Assembly

Test 2-a. If the malfunction occurs in the FM Mode, go to Test 2-c. If the malfunction occurs in the AM or OFF Mode, measure the reference signal to A7A2TPD. (Remove coaxial cable and measure at the center conductor of the cable.) If voltage is approximately $480 \mathrm{mVp}-\mathrm{p}$ at this point, proceed to Test 2 -b. If not, trace the reference signal from the mainframe.

A6 FM Attenuation Assembly SERVICE SHEET 6

SERVICE SHEET 7 (Cont'd)

Test 2-b. With the MODE switch set to AM or OFF, measure the voltage at A7A2TPE. If this voltage is approximately $480 \mathrm{mVp}-\mathrm{p}$, trace this voltage to the RF Section. If this voltage is incorrect, trace this voltage through A7A2K3, 2, and 1.

Test 2-c. With the MODE switch set to FM, measure the voltage at A7A2TPE. If this voltage is correct, approximately $340 \mathrm{mVp}-\mathrm{p}$, proceed to Test 2 -d. If this voltage is incorrect, proceed to Test Procedure (3).

Test 2-d. In the FM Mode, press the FM CF CAL pushbutton and note within 5 seconds the reference signal at A7A1C4. This voltage should be approximately 480 mVp -p. If this voltage is incorrect, check the reference signal through A7A2K3 and 4.

Test Procedure 3: A7A3 Assembly

Test 3-a. Measure the voltage at A7A3TP1. This voltage should be $+6 \pm 1 \mathrm{Vdc}$. If the voltage is correct, proceed to Test 3 -d. If the voltage is incorrect, proceed to Test 3-b.

Test 3-b. Measure the voltage at A7A3U1 pin 3. This voltage should be between +3 and +5 Vdc . If this voltage is incorrect, proceed to Test 3 -c. If this voltage is correct A7A3U1 or an associated component is defective.

Test 3-c. Ground the teflon-insulated tiepoint at the input to A7A3Q7. Measure the voltage at A7A3U1 pin 3. This voltage should be between +3 and +5 Vdc . If the voltage is correct, A7A3K1, Q8, or an associated component is defective. If this voltage is incorrect, transistor A7A3Q7 is defective. Remove the ground from the tiepoint.

Test 3-d. Set the Model 86632B for FM X10 MODE, INTERNAL SOURCE, and adjust MODULATION LEVEL control for an indication of 50
on the meter. Measure the Modulating Signal Input at the Modulating Signal Input tiepoint marked "FM". This voltage should be approximately 1.0 Vp-p. If this voltage is correct, proceed to Test 3 -f. If this voltage is incorrect, proceed to Test 3 -e.

Test 3-e. Verify that continuity exists between A6 and A7A3 Modulating Signal Input testpoint marked "FM". If continuity exists, proceed to the Troubleshooting on Service Sheet 5. If continuity does not exist, repair it.

Test 3-f. With an oscilloscope, measure the output at A7A3TPB. This voltage should be approximately $330 \mathrm{mVp}-\mathrm{p}$. If the voltage is correct, go to Test 3 -g. If the voltage is incorrect, go to Test 3-h.

Test 3-g. Verify that continuity exists between Tiepoing VCO on the A7A2 Assembly and tiepoint on A7A3TPB on A7A3 Assembly. If continuity does not exist, go to Test Procedure (2). If continuity does not exist, repair it.

Test 3-h. Measure the A7A3 VCO signal with an oscilloscope at Testpoint C on A7A3. The voltage should be approximately 480 mVp -p. If this voltage is not correct, go to Test $3-\mathrm{i}$. If this voltage is correct, transistors A7A3Q5, 6, or an associated component is defective.

Test 3 -i. With an oscilloscope, measure the peak-topeak ac voltage at the drain of A7A3Q1. This voltage should be approximately $480 \mathrm{mVp}-\mathrm{p}$. If this voltage is not correct, proceed to Test 2 -j. If this voltage is correct, transistor A7A3Q2 or an associated component is defective.

Test $3-\mathrm{j}$. With a voltmeter, measure the dc voltage at the drain of A7A3Q1. This voltage should be approximately -1.8 Vdc . If the voltage is correct, a component associated with the VCO is defective. If the voltage is incorrect, probably A7A3K2, A7A3Q1, or an associated component is defective.

Figure 8-18. A7A1 20 MHz Mixer and A7A2 Switch Assembly Component Locations

Figure 8-19. A7A3 20 MHz VCO Assembly Component Locations

SERVICE SHEET 8

NOTE

When a malfunction occurs, refer to Section VIII of the Model 8660 series mainframe Operating and Service Manual to begin troubleshooting. If this indicates trouble in the Model 86632 Modulation Section, refer to Service Sheet 1 of this manual. Service Sheet 1 provides overall troubleshooting and is keyed to all other Service Sheets.

A9 DEVIATION DETECTOR ASSEMBLY

PRINCIPLES OF OPERATION

This assembly monitors the meter drive circuit in the A3 Assembly. If the positive input from A3 exceeds a set level, the circuit generates a signal to turn on the REDUCE DEVIATION indicator. A flag output taken from the same signal, is sent to the mainframe and to the A2 Assembly logic.

A reference input to comparator A9U3 pin 3 is set to +1.4 V with resistor A9R3. If the input to A9U3 pin 2 exceeds the reference level, A9U3 pin 6 goes Low. This Low is applied through AND gate A9U2A to lamp driver A9Q1. The Low level turns on A9Q1. When A9Q1 conducts, REDUCE DEVIATION lamp DS3 is turned on. A9U2B, also connected to the output of A9U2A, is used to send a Low flag to the mainframe and to disable the FM MODE output in A2.

Retriggerable one-shot A9U1 is triggered each time a Low appears at A9U3 pin 6. A9U1 generates a 0.5 -second Low output with each trigger. Since the output of A9U1 is connected to A9U2A pin 1, A9U1 assures that the minimum time the output of U2A remains Low is 0.5 of a second.

TROUBLESHOOTING

It is assumed that a problem has been isolated to the Deviation Detector Assembly as a result of using the Troubleshooting of Service Sheet 1. Troubleshoot by using the test equipment and procedures outlined below.

Test Equipment

Digital Voltmeter . HP 3480A/3482A Extender Cable HP 11672/60002

SERVICE SHEET 8 (Cont'd)

Initial Test Conditions

Model 86632B removed from mainframe but con nected by an extender cable, covers removed, and the A9 Deviation Detector Assembly installed on an extender board.

NOTE

After making repairs in any part of the deviation detector assembly circuits, the adjustment procedures specified in Section V for the deviation detector should be performed to ensure proper operation of the instrument.

Test Procedure

Before troubleshooting the A9 Assembly, verify that the power supply voltages $(+20 \mathrm{~V},+5.25 \mathrm{~V}$, -10 V) are present ($\pm 0.25 \mathrm{Vdc}$). Set the mainframe center frequency to 1000 MHz . Set the Modulation Section SOURCE control to 1000 Hz , the MODE control to FM X1 and adjust MODULATION LEVEL control to obtain 110% full scale indica tion on modulation meter.

Test 1-a. Verify input of +1.5 V at A9TP1, then proceed to Test 1-b (further adjustment of MODULATION LEVEL control may be required to obtain +1.5 V). If input is not present, a continuity defect exists between A3 and A9. If so, remove disconnect extender cable, make continuity checks and repair.

Test 1-b. Verify Low ($<+0.8 \mathrm{~V}$) at A9TP2. If Low and DS3 does not light, Q1, R7, or DS3 are defective. If A9TP2 is High and DS3 lights, A9U2 is defective. If A9TP2 is High and DS3 does not light proceed to test 1-c. If A9TP2 is Low and DS3 lights but for periods less than $1 / 2$ a second, proceed to test $1-\mathrm{e}$.

Test 1-c. Verify +1.4 V at A9U3 pin 3, adjust A9R3 as necessary and proceed to test 1 -d. If unable to obtain $+1.4 \mathrm{~V}, \mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3$ or U3 is defective. Replace defective part.

Test 1-d. Verify Low at A9U3 pin 6. If not Low, replace A9U3. If Low replace A9U2.

Test 1-e. Verify Low at A9U1 pin 6. If not Low replace A9U1.

SERVICE SHEET 8 (Cont'd)

Initial Test Conditions

Model 86632B removed from mainframe but connected by an extender cable, covers removed, and the A9 Deviation Detector Assembly installed on an extender board.

NOTE

After making repairs in any part of the deviation detector assembly circuits, the adjustment procedures specified in Section V for the deviation detector should be performed to ensure proper operation of the instrument.

Test Procedure

Before troubleshooting the A9 Assembly, verify that the power supply voltages $(+20 \mathrm{~V},+5.25 \mathrm{~V}$, -10 V) are present ($\pm 0.25 \mathrm{Vdc}$). Set the mainframe center frequency to 1000 MHz . Set the Modulation Section SOURCE control to 1000 Hz , the MODE control to FM X1 and adjust MODULATION LEVEL control to obtain 110% full scale indication on modulation meter.

Test 1 -a. Verify input of +1.5 V at A9TP1, then proceed to Test 1-b (further adjustment of MODULATION LEVEL control may be required to obtain +1.5 V). If input is not present, a continuity defect exists between A3 and A9. If so, remove disconnect extender cable, make continuity checks and repair.

Test 1-b. Verify Low ($<+0.8 \mathrm{~V}$) at A9TP2. If Low and DS3 does not light, Q1, R7, or DS3 are defective. If A9TP2 is High and DS3 lights, A9U2 is defective. If A9TP2 is High and DS3 does not light proceed to test 1 -c. If A9TP2 is Low and DS3 lights but for periods less than $1 / 2$ a second, proceed to test 1-e.

Test 1-c. Verify +1.4 V at A9U3 pin 3, adjust A9R3 as necessary and proceed to test 1 -d. If unable to obtain $+1.4 \mathrm{~V}, \mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3$ or U3 is defective. Replace defective part.

Test 1-d. Verify Low at A9U3 pin 6. If not Low, replace A9U3. If Low replace A9U2.

Test 1-e. Verify Low at A9U1 pin 6. If not Low replace A9U1.

Figure 8-21. A9 Deviation Detector Assembly Component Locations

MAINFRAME INTERCONNECT JACK

Figure 8-23. Mainframe Interconnect Jack

GENERAL REMOVAL AND DISASSEMBLY PROCEDURES

CAUTION

Before removing Modulation Section plug-in from the mainframe, remove the power by disconnecting the instrument's power cable from the power outlet.

Plug-in Module Removal

a. Press latch in lower right corner of the module towards the center of the module and pull latch forward.
b. Pull extended latch towards you to remove plug-in from mainframe.

Model 86632B Modulation Section Disassembly

a. With a small Pozi-driv screwdriver, remove eight screws in each side cover and remove both covers.
b. Remove two screws in top teflon guide and remove the top guide. (If access is required to A8, A7A1, or A7A2 circuit boards, also remove two screws in bottom guide and remove guide).
c. If board is to be removed is one of A2 through A6, simultaneously pull up on both plastic arms associated with that card.

A1 Front Panel Disassembly

a. Remove two screws holding front panel at top and one screw holding bottom (rotate latch fully to reach bottom screw).
b. Remove knurled ring nut holding INPUT/OUTPUT jack using a knurled nut wrench. Pull front panel forward. The ribbon connector may be disconnected at A2 board.

A7A1 and A7A2 Access

a. Remove top screw on each side of rear housing. Rotate rear housing backwards.
b. Remove screws holding cover plate and remove cover plate.

Reassembly Procedure

Reassemble in the reverse order of disassembly. Replace the teflon guide before replacing the two covers. The extra notch in the cover must face the rear. These notches provide clearance for screws holding the guides in the mainframe when reinserting the module. If the Modulation Section will not go all the way into the mainframe, check that these notches in the covers face to the rear.

A9 Deviation Detector Assembly
 SERVICE SHEET 8

Figure 8-24. A8 Mother Board Assembly Component Locations

Table 8-4. Assembly, Chassis Mounted Parts, and Adjustable Component Locations

Reference Designator	Service Sheet	Figures	Remarks
A1 Assembly A2 Assembly A3 Assembly A3R37 Meter Adj	$\begin{aligned} & 1,2 \\ & 1,2 \\ & 1,5 \\ & 5 \end{aligned}$	$\begin{aligned} & 8-25 \\ & 8-6,25 \\ & 8-13,25 \\ & 8-13,25 \end{aligned}$	rear view of front panel
A4 Assembly A4R35 Level Adj A4R45 Gain Adj	$\begin{aligned} & 1,4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 8-10,25 \\ & 8-10,25 \\ & 8-10,25 \end{aligned}$	
$\begin{aligned} & \text { A5 Assembly } \\ & \text { A5R15 } 400 \mathrm{~Hz} \mathrm{Adj} \\ & \text { A5R16 } 1000 \mathrm{~Hz} \text { Adj } \end{aligned}$	$\begin{aligned} & 1,3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 8-8,25 \\ & 8-8,25 \\ & 8-8,25 \end{aligned}$	
A6 Assembly A6R6 FM Sensitivity Adj	$\begin{aligned} & 1,6 \\ & 6 \end{aligned}$	$\begin{aligned} & 8-16,25 \\ & 8-16,25 \end{aligned}$	
A7 Assembly A7A1 Assembly A7A1R13 A7A2 Assembly A7A3 Assembly A7A3R8 Freq Adj	$\begin{aligned} & 1,7 \\ & 1,7 \\ & 7 \\ & 1,7 \\ & 1,7 \\ & 7 \end{aligned}$	$\begin{aligned} & 8-25 \\ & 8-18,25 \\ & 8-18,25 \\ & 8-19 \\ & 8-19 \end{aligned}$	Access by removing rear panel cover. Access through rear panel cover.
A8 Assembly A9 Assembly A9R3 Reduce Deviation Lamp Adj	$\begin{aligned} & 2-8 \\ & 1,8 \\ & 8 \end{aligned}$	$\begin{aligned} & 8-24 \\ & 8-21,25 \\ & 8-21,25 \end{aligned}$	8-25 top view
$\begin{aligned} & \text { DS1 } \\ & \text { DS2 } \\ & \text { DS3 } \end{aligned}$	$\begin{aligned} & 1,2 \\ & 1,2 \\ & 1,8 \end{aligned}$	$\begin{aligned} & 8-25 \\ & 8-25 \\ & 8-25 \end{aligned}$	$\}$ rear view of front panel
$\begin{aligned} & \text { J1 } \\ & \text { M1 } \\ & \text { P5 } \\ & \text { R1 } \\ & \text { S1 } \end{aligned}$	$\begin{aligned} & 1,3 \\ & 1,5 \\ & 1,2,5-8 \\ & 1,5 \\ & 1,6 \end{aligned}$	$\begin{aligned} & 8-25 \\ & 8-25 \\ & 8-19,23,25 \\ & 8-25 \\ & 8-25 \end{aligned}$	bottom view rear view of front panel rear view of front panel rear view of front panel
W1 W2 W3 W4	$\begin{aligned} & 1,7 \\ & 1,5 \\ & 1,7 \\ & 1,6,7 \end{aligned}$	$\begin{aligned} & 8-25 \\ & 8-25 \\ & 8-25 \\ & 8-25 \end{aligned}$	

REAR VIEW OF FRONT PANEL

