

Introduction

A large number of switching power supply inductors with extended high frequency characteristics have recently been developed. The reason for this is the increase in the switching frequency to reduce size of switching power supplies which are being built using electronic components which are more compact than are conventional components. However, if components which are not suitable for high frequency are used, the increase in the frequency lowers the efficiency of the switching power supply and creates electrical noise. Consequently, lower noise components and circuits for use at higher frequencies must be developed for future switching power supply designs.

Inductors are one of the easiest components to reduce in size by raising the frequency and will require the development of low-loss, low leakage cores. The development and production of such inductors requires DC current biased inductance measurements to evaluate the inductance characteristics under actual operating conditions.

This application note describes DC current biased inductance measurements that are more accurate and made over a wider frequency range than was previously possible.

Problems concerning DC current biased inductance measurements

DC current biased inductance measurements involve the following problems.

- Measurement preparations and procedures are time-consuming
- An external bias circuit is required
- Setting and confirming current values are troublesome
- Automation of measurement procedures is difficult
- Safety problems
- Frequency range is insufficient
- Not enough bias current can be generated
- Measurement accuracy is not guaranteed

Solutions offered by the Agilent E4980A or 4284A and Agilent 42841A

The E4980A or 4284A precision LCR meter (with Option E4980A-002/4284A-002 current bias interface) in combination with the 42841A bias current source ensures simple and safe DC current biased inductance measurements. The E4980A and 4284A allow for DC current biased inductance measurements with the following advantages.

- Wide 20 Hz to 2 MHz (E4980A), 1 MHz (4284A) frequency range measurements
- DC current biased inductance measurements up to 40 A using two the 42841As,
- Basic accuracy of 1%
- List sweep function for bias sweep measurements of up to 10 points
- The bias current is easily set using the 4284A's front panel keys or by using an external controller via GPIB.
- The $42842 \mathrm{~A} / \mathrm{B}$ bias current test fixtures which protect the operator and instrument are provided.
- Built-in memory function and removable memory (USB memory for E4980A, memory card for 4284A) for storing instrument setups

Measurement Preparation

Accessories required

When DC current biased inductance measurements are made using an E4980A or 4284A, the accessories required depend on the maximum bias current to be used. Table 1 is a list of what accessories are required. Figures 1, 2, and 3 show the external appearance of the 42842A bias current test fixture, the E4980A or 42843A bias current cable and the 16048A test leads.

Table 1. Measurement instruments
\(\left.$$
\begin{array}{lll}\text { Instruments } & \begin{array}{l}\text { Max. bias current } \\
\mathbf{2 0 ~ A}\end{array} & \begin{array}{l}\text { Max. bias current } \\
\mathbf{4 0} \mathbf{~ A}\end{array}
$$

\hline LCR meters \& E4980A \& E4980A

\& (with Option E4980A-002) \& (with Option E4980A-002)

\& 4284A \& (with Option 4284A-002)\end{array}\right)\) (with Option 4284A-002) | | Two 42841A units | |
| :--- | :--- | :--- |
| Bias current source | 42841 A | $42842 \mathrm{~B}^{1}$ |
| Bias current test fixture | 42842A | 42843 A |
| Bias current cable | Not required | 16048 A |

Figure 1. 42842A bias current test fixture

Figure 2. 42843A bias current cable

Figure 3. 16048A test leads

[^0]
Connections

The table shows which accessories are to be connected for maximum bias currents of 20 A and 40 A . The 42841A is connected to the E4980A or 4284A by plugging in the provided interface cable. The E4980A and 4284A use the 16048A test leads to connect to the 42842A/B. Two 42841A units have to be connected parallel when making bias current measurement up to 40 A. (See Figure 4)

The 42842A/B are equipped with a voltage monitor terminal for connecting a digital voltmeter (DVM) to monitor the bias voltage applied to the device under test directly. Only a DVM with an input impedance of $10 \mathrm{M} \Omega$ or more should be connected to the voltage monitor terminal, since the output monitor has $10 \mathrm{k} \Omega$ resistance. The DC resistance (DCR) of the device under test can be derived from this bias voltage measurement according to the following formula.

DCR $=\frac{V_{\text {MON }}}{I_{\text {BIAS }}}-3 \times 10^{-3}[\Omega]$
$\mathrm{V}_{\text {MON }}$ is the bias voltage measurement value (unit is V), IBIAS is the bias current (unit is A) setup value and the $3 \times 10^{-3}[\Omega]$ in the formula is the residual DCR of the fixture. Refer to 'Appendix A' for information on the accuracy of DCR measurements using this method.

Figure 4. Measurement configuration

Measurement safety

Large DC current biased measurements have to be conducted with utmost care. The spike voltages caused by accidental removal of the device under test from the measurement terminals while a DC biased current is applied are particularly hazardous. If current exceeding the rating is run through a device under test (DUT), the heat generated may cause a fire or smoke. Following precautions should be taken when DC current biased measurements are being made.

- The bias current must be switched off before the DUT is disconnected.
- Make sure that the test leads between the DUT and the LCR meter are securely connected to prevent accidental disconnections.
- Check at all times that not too much current is put through the DUT to prevent abnormally high temperatures. (Check for heat or smoke.)
- The bias current must be turned off after a bias sweep operation is made with the list sweep function. (If the bias current is not turned off, the last bias current sweep value will continue to flow through the DUT.)

The 42842A is provided with the following safety features.

- Components are automatically discharged when the protective cover is opened, to ensure the safety of the operator while disconnecting a DUT.
- Transparent protective covers are used to facilitate monitoring the DUT during a measurement.
- Protective circuits are built in to prevent damage to the LCR meter from voltage spikes.
- The bias current is automatically cut off if the temperature in the fixture becomes abnormally high (i.e. $200^{\circ} \mathrm{C}$ in the DUT and $70^{\circ} \mathrm{C}$ at the measuring terminal.)

Compensation

Since the residual impedance caused by the 42841A is negligible, no compensation is required for normal inductance measurements. However, when measuring devices with an inductance lower than $10 \mu \mathrm{H}$ use the E4980A or 4284A's short compensation function to reduce errors.

Measurement Results

The purpose of measuring the DC current biased inductance of inductors is to derive the current rating from the measured inductance versus DC current biased (L-IDC) characteristics. The current rating is defined as the value of the bias current when the inductance is decreased by 10% (or 30% to 50%).

The E4980A and 4284A can measure L-IDC characteristics and the measurements can be easily automated by using an GPIB interface and the bias sweep function (list sweep) are used. Actual measurement examples and the information required for such measurements are given in the following paragraphs.

L-IDC characteristics measured with the list sweep function

The list sweep function of the E4980A and 4284A can be used to sweep up to 201 bias (E4980A) or 10 bias (4284A) current points. Figure 5 shows the rough L-IDC characteristics and the rated current. The E4980A and 4284A automatically waits until the bias current has settled (settling time) at the specified current value before starting a measurement. Since the meter wait for the optimum moment to start ordinary measurements or list sweep measurements, the settling time need not be considered when the bias current is changed. Consequently, measurements are always made after the bias current has settled.

However, temporary discrepancies in the measured values result after bias current changes during measurement of the device that are slow to respond to changes in the bias current. This occurs when transient response of the device is longer than the settling time of E4980A or 4284A. A suitable delay time should be set with the E4980A or 4284A to compensate for this.

Always make sure to turn off the bias current to ensure that no current is flowing through the DUT after a bias sweep operation.

Measurements of L-IDC characteristics using an external controller

Since bias current values can be controlled by an external GPIB controller when the 42841A bias current source is used together with the E4980A or 4284A, it is possible to perform L-IDC measurements automatically. Furthermore, the wide measurement frequency range of E4980A or 4284A make it possible to check the L-IDC characteristics per frequency as shown in Figure 6.

The result shown in Figure 6 shows that there are differences in the L-IDC characteristics depending on the frequency used. The program (running on an HP 9000 series 300 computer) used to conduct these measurements is described in 'Appendix B'.

Measurements up to 40 A

DC current biased inductance measurements up to 40 A require the use of two 42841A units. Figure 7 shows the measured L-IDC characteristics when DC current bias up to 40 A is used.

<LIST SWEEP	DISPLAY $>$		SYS MENU
MODE : SEO			
BIAS [A]	Ls [H]]	Rs []
100.00m	544.933 u	0.11931	
200.00 m	545.282 u	0.11863	
500.00 m	544.529 u	0.11723	
1.000	538.915 u	0.11503	
2.000	522.914 u	0.11138	
5.000	444.466 u	0.09126	
10.000	330.656 u	0.06747	
12.000	296.950 u	0.06206	
15.000	258.190 u	0.05593	
20.000	213.129 u	0.04150	

Figure 5. Measurement result using the list sweep function

Figure 6. Frequency characteristics of L-IDC

Conclusion

The E4980A and 4284A equipped with the Option E4980A-002/4284A-002 and the 42841A bias current source will permit highly accurate and efficient DC current biased inductance measurements up to the 1 MHz frequency range. All of these combine to promote the development and production of high frequency switching power supply inductors.

Figure 7. Measurement results up to 40 A

Appendix A. Accuracy of DCR Measurements (Typical Values)

Accuracy of DCR measurements are as follows.
Here $I_{\text {BIAS }}$ is the bias current set value.
When $\mathrm{I}_{\text {BIAS }} \leq 1 \mathrm{~A}$
$\pm\left\{\left(1.2+\frac{0.5}{I_{\text {BIAS }}}\right) \%+\frac{5}{I_{\text {BIAS }}} \mathrm{m} \Omega\right\}$

When $1 \mathrm{~A}<\mathrm{I}_{\mathrm{BI} A S} \leq 5 \mathrm{~A}$
$\pm\left\{2.2 \%+\frac{0.5}{I_{\text {BIAS }}} \mathrm{m} \Omega\right\}$

When $I_{\text {BIAS }}>5 \mathrm{~A}$
$\pm\left\{3.2 \%+\frac{5}{I_{\text {BIAS }}} \mathrm{m} \Omega\right\}$

Note that the input impedance of the DVM must be more than $10 \mathrm{M} \Omega$.

Appendix B. 1. Agilent E4980A Sample program list

1000	DIM Xp $(100,20), \mathrm{Yp}(100,20)$!
1010	DIM Work\$ [100]	!
1020	DIM Bias (200), Freq (20), A (200, 20), B (200,20)	!
1030	DIM Xyz (3)	!
1040	DIM Axis (3, 3) , Axis\$ (3) [10]	!
1050		!
1060	Ler $=717$! Address of E4980A
1070	ASSIGN @Work TO "C:\work.txt"	! Assign I/O path to store data
1080	Min_bias=0	! Min. bias value is OA
1090	Max_bias=20	! Max. bias value is 20A
1100	Step_bias=1	! Step of bias sweep
1110	READ Nfreq	! read number of frequency
1120	FOR Ifreq=1 TO Nfreq	!
1130	READ Freq(Ifreq)	! read meas. frequency
1140	NEXT Ifreq	$!$!
1150	Nbias= (Max_bias-Min_bias)/Step_bias+1	! calc. number of bias points
1160	IF Nbias>200 THEN STOP	! check number of bias points
1170	FOR Ibias=1 TO Nbias	!
1180	Bias (Ibias) =Min_bias+Step_bias*(Ibias-1)	! set bias value
1190	NEXT Ibias	!
1200		! << E4980A initialization>>
1210	OUTPUT Lcr;"TRIG:SOUR BUS"	! Trigger mode is Bus trigger
1220	OUTPUT Lcr;"FUNC:IMP LSRS"	! Meas function is Ls-Rs
1230	OUTPUT Lcr;"INIT: CONT ON"	!
1240	OUTPUT Lcr;"DISP:PAGE MEAS"	! Display page is Meas. page
1250	OUTPUT Lcr;"INIT"	! Initialize
1260	OUTPUT Lcr;"BIAS:STAT ON"	! Bias ON
1270		! <<Meas. routine>>
1280	FOR Ifreq=1 TO Nfreq	! Freq. sweep loop <--
1290	OUTPUT Lcr;"FREQ "\&VAL\$(Freq(Ifreq))	!
1300	FOR Ibias=1 TO Nbias	! Top of bias. sweep loop <
1310	OUTPUT Lcr;"BIAS:CURR "\&VAL\$(Bias(Ibias))	! Set bias
1320	OUTPUT Lcr;"*TRG"	! Triggering
1330	ENTER Lcr;Work\$! Enter Meas. data
1340	A (Ibias, Ifreq) =VAL (Work\$ [1, 12])	!
1350	NEXT Ibias	! Bottom of bias loop <-
1360	NEXT Ifreq	! Bottom of freq. loop <
1370	OUTPUT Lcr;"BIAS:STAT OFF"	! Bias OFF
1380	OUTPUT @Work;Nfreq,Nbias	! Store meas. condition
1390	FOR Ifreq=1 TO Nfreq	!
1400	FOR Ibias=1 TO Nbias	!
1410	OUTPUT @Work;A(Ibias,Ifreq)	! Store meas. data
1420	NEXT Ibias	!
1430	NEXT Ifreq	!
1440		! <<Graphic initialize>>
1450	CLEAR SCREEN	! Clear screen
1460	GOSUB Trans_init	! Initialize Trans subroutine
1470	WINDOW -2,2,-2,2	! Set graphic window
1480	GOSUB Axis	! Draw axes
1490	Amax $=$ MAX (A (*))	! Find max. value of meas. data
1500	FOR Ifreq=1 TO Nfreq	! <<Calc. graphic data>>
1510	FOR Ibias=1 TO Nbias	!
1520	XYz (1) =LOG (Freq (Ifreq)) /LOG (Freq (Nfreq))	!
1530	Xyz (2) =Bias (Ibias)/Bias (Nbias)	!
1540	Xyz (3) =A (Ibias, Ifreq) /Amax	!
1550	GOSUB Trans	! Make graphic data of 3D
1560	Xp (Ibias, Ifreq) = Xyz (1)	$!$!
1570	Yp(Ibias,Ifreq) =Xyz (2)	$!\quad!$
1580	NEXT Ibias	!
1590	NEXT Ifreq	!
1600	MOVE Xp $(1,1), \mathrm{Yp}(1,1)$! <<Draw graphic>>

Appendix B. 1. Agilent E4980A Sample program list continued...

1610	FOR Ifreq=1 TO Nfreq	! Top of freq. loop <------
1620	FOR Ibias=1 TO Nbias	! Top of bias loop <-------+
1630	DRAW Xp (Ibias, Ifreq), Yp (Ibias, Ifreq)	! Draw graph
1640	NEXT Ibias	! bottom of bias loop ------
1650	MOVE Xp (1, Ifreq+1) , Yp (1, Ifreq+1)	!
1660	NEXT Ifreq	! bottom of freq. loop -...-
1670	MOVE Xp $(1,1), \operatorname{Yp}(1,1)$!
1680	FOR Ibias=1 TO Nbias	!
1690	FOR Ifreq=1 TO Nfreq	!
1700	DRAW Xp(Ibias,Ifreq), Yp (Ibias, Ifreq)	! Draw grid
1710	NEXT Ifreq	!
1720	MOVE Xp(Ibias+1, 1), Yp (Ibias+1, 1)	!
1730	NEXT Ibias	!
1740	STOP	!
1750	Trans_init:!	! <<Init.routine for Trans>>
1760	$\mathrm{Xd}=.5$!
1770	Y ${ }^{\text {d }}=1$!
1780	RETURN	!
1790		!
1800	Trans:	! <<Make 3D graph data>>
1810	$\mathrm{Xxx}=\mathrm{Xyz}$ (1)	!
1820	Xyz (1) $=\mathrm{Xyz}$ (2) - Xxx*Xd	!
1830	Xyz (2) =Xyz (3)-Xxx*Yd	!
1840	RETURN	!
1850		!
1860	Axis:	! <<Draw axes>>
1870	Axis\$ (1) = "FREQ."	! Label of Y axis
1880	Axis\$ (2) = "BIAS"	! Label of X axis
1890	Axis\$ (3) = "INDUCTANCE"	! Label of Z axis
1900	MAT Axis=(0)	! Init. axes data
1910	FOR Iax=1 TO 3	!
1920	Axis (Iax, Iax) $=1.2$!
1930	NEXT Iax	!
1940	MAT XYz= 0)	!
1950	GOSUB Trans	! Make 3D graph data of zero
1960	Xzero=Xyz (1)	!
1970	Yzero=Xyz (2)	!
1980	FOR Iax=1 TO 3	!
1990	MAT Xyz=Axis (Iax, *)	!
2000	GOSUB Trans	! Make 3D graph data of axes
2010	MOVE Xzero,Yzero	!
2020	DRAW Xyz (1), Xyz (2)	! Draw axis
2030	LABEL Axis\$(Iax)	! plot label
2040	NEXT Iax	!
2050	RETURN	!
2060		! <<Meas. freq. data>>
2070	DATA 17	! Number of data
2080	DATA $20,50,100,200,500,1 \mathrm{E} 3,2 \mathrm{E} 3,5 \mathrm{E} 3,1 \mathrm{E} 4,2 \mathrm{E} 4,5 \mathrm{E}$, 1E5, 2E5, 3E5, 4E5, 5E5, 7E5
2090	END	

Appendix B. 2. Agilent 4284A Sample program list

1000	DIM Xp $(100,20), \mathrm{Yp}(100,20)$	
1010	DIM Work\$ [100]	
1020	DIM Bias (200), Freq (20), A (200, 20), B (200,20)	
1030	DIM Xyz (3)	
1040	DIM Axis (3, 3) , Axis\$ (3) [10]	
1050	!	
1060	Agt4284a=717	Address of 4284A
1070	ASSIGN @Work TO "C:\work.txt"	Assign I/O path to store data
1080	Min_bias=0	Min. bias value is OA
1090	Max_bias=20	Max. bias value is 20A
1100	Step_bias=1	Step of bias sweep
1110	READ Nfreq !	read number of frequency
1120	FOR Ifreq=1 TO Nfreq !	
1130	READ Freq(Ifreq)	read meas. frequency
1140	NEXT Ifreq !	
1150	Nbias=(Max_bias-Min_bias)/Step_bias+1	calc. number of bias points
1160	IF Nbias>200 THEN STOP	check number of bias points
1170	FOR Ibias=1 TO Nbias !	
1180	Bias (Ibias) =Min_bias+Step_bias*(Ibias-1)	set bias value
1190	NEXT Ibias !	
1200	!	<< 4284A initialization>>
1210	OUTPUT Agt4284a;"TRIG:SOUR BUS"	Trigger mode is Bus trigger
1220	OUTPUT Agt4284a;"FUNC:IMP LSRS"	Meas function is Ls-Rs
1230	OUTPUT Agt4284a;"INIT:CONT ON"	
1240	OUTPUT Agt4284a;"DISP:PAGE MEAS"	Display page is Meas. page
1250	OUTPUT Agt4284a;"INIT"	Initialize
1260	OUTPUT Agt4284a;"BIAS:STAT ON"	Bias ON
1270	!	<<Meas. routine>>
1280	FOR Ifreq=1 TO Nfreq	Freq. sweep loop
1290	OUTPUT Agt4284a;"FREQ "\&VAL\$(Freq(Ifreq)) !	
1300	FOR Ibias=1 TO Nbias !	Top of bias. sweep loop <---
1310	OUTPUT Agt4284a;"BIAS:CURR "\&VAL\$(Bias (Ibias))	Set bias
1320	OUTPUT Agt4284a;"*TRG"	Triggering
1330	ENTER Agt4284a;Work\$	Enter Meas. data
1340	A (Ibias,Ifreq) =VAL (Work\$ [1,12]) !	
1350	NEXT Ibias	Bottom of bias loop <--
1360	NEXT Ifreq	Bottom of freq. loop
1370	OUTPUT Agt4284a;"BIAS:STAT OFF"	Bias OFF
1380	OUTPUT @Work;Nfreq,Nbias	Store meas. condition
1390	FOR Ifreq=1 TO Nfreq	
1400	FOR Ibias=1 TO Nbias	
1410	OUTPUT @Work;A(Ibias,Ifreq)	Store meas. data
1420	NEXT Ibias	
1430	NEXT Ifreq	
1440	!	<<Graphic initialize>>
1450	CLEAR SCREEN !	Clear screen
1460	GOSUB Trans_init	Initialize Trans subroutine
1470	WINDOW -2,2,-2,2	Set graphic window
1480	GOSUB Axis	Draw axes
1490	Amax=MAX (A *) ! !	Find max. value of meas. data
1500	FOR Ifreq=1 TO Nfreq !	<<Calc. graphic data>>
1510	FOR Ibias=1 TO Nbias	!
1520	Xyz (1) =LOG (Freq (Ifreq)) /LOG (Freq (Nfreq)))
1530	Xyz (2) =Bias (Ibias)/Bias (Nbias)	!
1540	Xyz (3) =A (Ibias, Ifreq) /Amax	!
1550	GOSUB Trans	! Make graphic data of 3D
1560	Xp (Ibias, Ifreq) $=\mathrm{Xyz}$ (1)	$!$!
1570	Yp(Ibias, Ifreq) = Xyz (2)	!
1580	NEXT Ibias	!
1590	NEXT Ifreq	!

Appendix B. 2. Agilent 4284A Sample program list continued...

1600	MOVE $\operatorname{Xp}(1,1), \operatorname{Yp}(1,1)$! <<Draw graphic>>
1610	FOR Ifreq=1 TO Nfreq	! Top of freq. loop <-
1620	FOR Ibias=1 TO Nbias	! Top of bias loop <--------†
1630	DRAW Xp(Ibias,Ifreq), Yp (Ibias,Ifreq)	! Draw graph
1640	NEXT Ibias	! bottom of bias loop ------t
1650	MOVE Xp(1,Ifreq+1), Yp (1,Ifreq+1)	
1660	NEXT Ifreq	! bottom of freq. loop
1670	MOVE $\operatorname{Xp}(1,1), \mathrm{Yp}(1,1)$	
1680	FOR Ibias=1 TO Nbias	!
1690	FOR Ifreq=1 TO Nfreq	
1700	DRAW Xp(Ibias,Ifreq), Yp(Ibias,Ifreq)	! Draw grid
1710	NEXT Ifreq	
1720	MOVE Xp(Ibias+1,1), Yp(Ibias+1,1)	!
1730	NEXT Ibias	!
1740	STOP	!
1750	Trans_init:	!
		! <<Init.routine for Trans>>
1760	$\mathrm{Xd}=.5$!
1770	$\mathrm{Yd}=1$!
1780	RETURN	!
1790		!
1800	Trans:	! <<Make 3D graph data>>
1810	$\mathrm{Xxx}=\mathrm{Xyz}$ (1)	!
1820	Xyz (1) $=\mathrm{Xyz}$ (2) - Xxx*Xd	!
1830	XYz (2) $=\mathrm{XYz}$ (3)-Xxx*Yd	!
1840	RETURN	!
1850		!
1860	Axis:	! <<Draw axes>>
1870	Axis\$(1)="FREQ."	! Label of Y axis
1880	Axis\$ (2) ="BIAS"	! Label of X axis
1890	Axis\$ (3) = "INDUCTANCE"	! Label of Z axis
1900	MAT Axis=(0)	! Init. axes data
1910	FOR Iax=1 TO 3	!
1920	Axis $(\operatorname{Iax}, \operatorname{Iax})=1.2$!
1930	NEXT Iax	!
1940	MAT Xyz= 0)	!
1950	GOSUB Trans	! Make 3D graph data of zero
1960	Xzero=Xyz (1)	
1970	Yzero=Xyz (2)	!
1980	FOR Iax=1 TO 3	!
1990	MAT Xyz=Axis(Iax,*)	!
2000	GOSUB Trans	! Make 3D graph data of axes
2010	MOVE Xzero,Yzero	!
2020	DRAW Xyz (1), Xyz (2)	! Draw axis
2030	LABEL Axis\$(Iax)	! plot label
2040	NEXT Iax	!
2050	RETURN	!
2060		! <<Meas. freq. data>>
2070	DATA 17	! Number of data
2080	DATA $20,50,100,200,500,1 \mathrm{E} 3,2 \mathrm{E} 3,5 \mathrm{E} 3,1 \mathrm{E} 4,2 \mathrm{E} 4,5 \mathrm{E}$	E5, 3E5, 4E5, 5E5, 7E5
2090	END	

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

Agilent
Open

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

LXI

www.Ixistandard.org

LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements. For information regarding self maintenance of this product, please contact your Agilent office.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance, onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:
www.agilent.com/find/removealldoubt

Product specifications and descriptions in this document subject to change without notice.
www.agilent.com
www.agilent.com/find/Icrmeters
For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada	$(877) 894-4414$
Latin America	3052697500
United States	$(800) 829-4444$

Asia Pacific

Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Thailand	1800226008

Europe \& Middle East

Austria	013602771571
Belgium	$32(0) 24049340$
Denmark	4570131515
Finland	$358(0) 108552100$
France	0825010700^{*}
	${ }^{*} 0.125 € /$ minute
Germany	070314646333
Ireland	1890924204
Israel	$972-3-9288-504 / 544$
Italy	390292608484
Netherlands	$31(0) 205472111$
Spain	$34(91) 6313300$
Sweden	$0200-882255$
Switzerland	0800805353
United Kingdom	$44(0) 1189276201$
Other European Countries:	
www.agilent.com/find/contactus	
Revised: October 6, 2008	

© Agilent Technologies, Inc. 2001, 2003, 2006, 2008
Printed in USA, November 21, 2008
5950-2367

[^0]: 1. The 42842B can be used for both 20 A and 40 A DC current biased measurements.
