
JANUARY 1973 

HEWLETTPACKARD JOURNAL 

© Copr. 1949-1998 Hewlett-Packard Co.



An Economical Full-Scale Multipurpose 
Computer System 
This is the f i rst  16-bi t  computer system to have 
a hardware stack archi tecture and v i r tual  memory.  
I t  handles t ime-shar ing,  batch process ing,  and rea l  
t ime operat ions in several  languages concurrent ly.  

by Bert E. Forbes and Michael D. Green 

THE HP 3000 COMPUTER SYSTEM is Hewlett- 
Packard's first  full-scale multipurpose compu 

ter  system. I ts  primary objective is  to provide,  at  
low cos t ,  a  genera l -purpose  computer  sys tem ca  
pable of concurrent batch processing, on-line termi 
nal processing, and real-t ime processing, all  with 
the same software.  Many users can access the sys 
tem simultaneously using any of several  program 
ming languages and applications library programs. 

The HP 3000 (Fig. 1) is an integrated software- 
hardware  des ign.  I t  was  developed by engineers  
and programmers to provide a small  computer  ca 
pable of  mult iprogramming.  Unlike many compu 
ters  of  the past ,  i t  was not  buil t  by the engineers 
and turned over  to  the  programmers  to  see  what  
they could do with it.  

Helping def ine the object ives  for  the  HP 3000 
was HP's long experience with both customer and 
internal  use of 2100-Series Computers and 2000- 
Series Time-Shared Systems. These computers and 
systems have been widely used in educational,  in 
strumentation, industrial,  and commercial applica 
t ions .  These  are  a lso  expected to  be  the  pr imary 
applications areas for the HP 3000 (see page 7). 

A comprehensive  se t  of  sof tware  and the  hard  
w a r e  t o  s u p p o r t  i t  h a s  b e e n  d e v e l o p e d  f o r  t h e  
HP 3000. Software includes the Multiprogramming 
Executive operating system, several programming 
language translators,  and an applications l ibrary.  

Architectural  Features 
The scope  of  the  sof tware  for  the  HP 3000  re  

quires certain capabilities in the computer on which 
the software is  to  run.  Among these are  eff icient  
program segmentation, relocation, reentrancy, code 

' " G e n e r a l - p u r p o s e "  m e a n s  t h a t  a  u s e r  i s  n o t  r e s t r i c t e d  t o  a  s i n g l e  a p p l i c a t i o n ,  b u t  
c a n  r e a d i l y  w r i t e  p r o g r a m s  t o  f i t  h i s  o w n  a p p l i c a t i o n ,  w h a t e v e r  i t  m i g h t  b e .  

sharing, recursion, user protection, code compres 
sion, efficient execution, and dynamic storage allo 
cation. All are provided in the HP 3000 design. 

Efficient program segmentation makes it possible 
to  run programs which are  much larger  than the  
avai lable memory without  incurr ing a large over  
head. Much of the power and flexibility of the HP 
3000 comes from the virtual  memory that  results  

C o v e r :  A l t h o u g h  i t  c o u l d  
be  mis taken fo r  an  organ is t  
i n  c o n c e r t ,  t h i s  p h o t o  a c t u  
a l ly  shows the new HP 3000 
C o m p u t e r  S y s t e m  h a r m o n i  
o u s l y  c o o r d i n a t i n g  t h e  a c  
t ivit ies of several users â€” it 
h a n d l e s  m u l t i p l e  p r o c e s s  
i n g  m o d e s ,  u s e r s ,  a n d  l a n  
guages al l  at  the same t ime. 
T h e  p a n e l s  w i t h  t h e  r e d  

l ights  in  the foreground are cont ro l  panels  used 
for  hardware maintenance and system checkout.  

In this issue: 
A n  E c o n o m i c a l  F u l l - S c a l e  M u l t i p u r  
p o s e  C o m p u t e r  S y s t e m ,  b y  B e r t  E .  
F o r b e s  a n d  M i c h a e l  D .  G r e e n  .  .  .  

Cen t ra l  Bus  L inks  Modu la r  HP  3000  
H a r d w a r e ,  b y  J a m s h i ' d  B a s i j i  a n d  
A r n d t  B .  B e r g h    
Software tor  a Mul t i l ingual  Computer,  
b y  W i l l i a m  E .  F o s t e r    
Sing le  Opera t i ng  Sys tem Serves  A / I  
HP 3000 Users,  by Thomas A.  Blease 
and  A lan  Hewer  

page 2 

page 9 

page 15 

page 20 

P R I N T E D  I N  U .  S .  A .  

© Copr. 1949-1998 Hewlett-Packard Co.



from the segmentation capabilities of the system. 
Swapping of programs and data is made easier 

by an automatic relocation technique that is part 
of the addressing structure of this multiprogram 
ming computer. The operating system doesn't have 
to take time to adjust all addresses in a program, 
nor does it have to put something in the same phys 
ical location every time. 

Reentrancy is a property of HP 3000 code. It 
makes it possible for a given sequence of instruc 
tions to be used by several processes without hav 
ing to be concerned about the code being changed 
or temporary variables being destroyed by the 
other processes. 

Automatic relocation and reentrancy make code 
sharing possible. It would be extremely wasteful 
of main memory to keep multiple copies of pro 
grams in memory. In the HP 3000, one copy of a 
program can be shared by many processes. 

Another consequence of reentrancy is recursion, 
or the ability to have a routine call itself. The hard 
ware stack architecture of the HP 3000 plays an 
important role in recursive calls. 

One of the key items in designing a multipro 
gramming operating system is that of user isolation 
and system protection. If the operating system and 
the users are not completely protected from the in 
tentional or unintentional destructive actions of 
another user, the system will crash so often as to 

F i g .  1 .  H P  3 0 0 0  C o m p u t e r  S y s  
t e m  h a s  m u l t i l i n g u a l  a n d  m u l t i  
p rogramming capabi l i t ies  usua l ly  
found  on  much la rger  sys tems.  

be unusable. HP 3000 protection covers programs, 
data, and files that exist in the system. 

In a small-word-size machine, the amount of 
addressable memory is limited. To take full advan 
tage of it, the HP 3000 has dynamic storage alloca 
tion. All temporary and local variables are assigned 
physical memory only when needed at procedure 
or block entry and are deallocated upon exit. 

The HP 3000's unified real-time, terminal-orien 
ted, and batch environment is accomplished with 
out the use of fixed or variable memory partitions. 
Instead, priorities are used to control system re 
sources. Partitioning, it was felt, places arbitrary 
restrictions on memory, the most valuable resource 
in a multiprogramming system. 
Mult iprogramming Execut ive Operat ing System 

The HP 3000 has a single operating system called 
the Multiprogramming Executive (MPE). MPE is a 
general-purpose system that can handle three 
modes of operation concurrently. In time-sharing, 
one or more users can interactively communicate 
with the system via computer terminals. In batch 
processing, users can submit entire jobs to be per 
formed by the system with no interaction between 
the system and the user. In real-time operations, 
tasks are dependent upon the occurrence of exter 
nal events and must be performed within critical 
time periods. 

MPE also provides many services to users, such 

© Copr. 1949-1998 Hewlett-Packard Co.



as input/output handling, file management, mem 
ory management, and system resource allocation 
and scheduling. 

There are many advantages to an operating sys 
tem of this sort. For example, subsystems (com 
pilers, applications programs, etc.) need not be cus 
tomized for different operating systems or configu 
rations. In fact, the same subsystem can be used 
concurrently by an interactive user and by a batch 
user. Another advantage is that software can be 
generated much more efficiently because the oper 
ating system already performs many of the more 
difficult tasks. Also, with a single operating sys 
tem, it is easier to attain consistency throughout 
the various software subsystems, thereby simplify 
ing the user/system interface. 

Although there is only a single operating system 
on the HP 3000, it can be adapted to operate in a 
number of different hardware configurations, each 
tailored to the needs of its users (Fig. 2). Thus, one 
installation may run only small batch processing 
jobs using a card reader and a line printer, while 
another may add a number of time-sharing termi 
nals. The same software is used by all these in 
stallations. 

Programming Languages 
Several different programming languages have 

been developed for the HP 3000. Most important 
of these is SPL, the Systems Programming Lan 
guage. This is a higher-level programming language 
designed specifically for systems programming. Al 
most all of the HP 3000 software has been devel 
oped using SPL, the few exceptions being some of 
the applications programs. 

The reasons for using a higher-level language 
rather than an assembly language for systems pro 
gramming are much the same as those for using a 
higher-level language for applications program 
ming. It's possible to write and debug programs 
more quickly, to modify them more easily, and to 
make them more reliable and easier to read and 
understand. Furthermore, programs often perform 
better because more time can be spent on general 
methods than on coding details. Improving pro 
grams by rewriting substantial sections of code is 
not distasteful, as it often is when programs are 
written in assembly language. In general, in a given 
period of time much more software can be devel 
oped by using SPL than by using a lower-level as 
sembly language. 

Since SPL is designed for HP 3000 systems pro 
gramming, it was necessary to give SPL program 
mers easy access to all the features of the central 
processor. For this reason, much of the syntax is 

based on these features, and the machine code gen 
erated by the compiler is related in an obvious way 
to the higher-level statements in the language. 

Other programming languages which have been 
developed for the HP 3000 are FORTRAN, COBOL, 
and BASIC. SPL, BASIC, and FORTRAN are all 
recursive, that is, programs, procedures, and sub 
routines can call themselves. HP 3000 software 
also includes scientific and statistical applications 
program libraries, and text editing and formatting 
facilities. 

Program Environment 
Traditionally, 16-bit computers have been von 

Neumann-like machines with little or no distinc 
tion between program code and data. In a multi 
programming environment there is much to be 
gained from separating the two. In the HP 3000, a 
typical user's environment consists of one or more 
program code segments and a data segment (Fig. 3). 
All code is nonmodifiable while active in the sys 
tem. Overlay techniques can therefore be used (that 
is, new code can be written over old code) without 
having to write the old code back out on the swap 
ping disc, since an exact copy already exists there. 
The data area consists of global data (data common 
to several procedures) and a push-down stack that 
is handled automatically by the hardware. 

Code Segmentat ion 
In the HP 3000, code is grouped into logical en 

tities called segments, each consisting of one or 
more procedures. Each segment may be up to 16K 
words long. Programs are normally broken into 
segments by the user, although he may choose not 
to do this and his program will run as a single seg 
ment unless it is too large, in which case an error 
message will be generated. 

There is a master directory, the Code Segment 
Table (CST), that contains one entry for each seg 
ment that is currently active on the system. The 
CST is maintained by the operating system and is 
used by the central processor for procedure entry 
and exit. The table doesn't occupy a fixed position 
in memory but its address is always stored in abso 
lute location 0. 

Each two-word CST entry contains the beginning 
address and the length of the code segment. There 
are also four bits that are used by the central proc 
essor. One of these, the reference bit, is used to 
implement a software least-recently-used overlay 
algorithm. Another, the trace bit, causes a proce 
dure call to the trace routine if set. The mode bit 
specifies whether the segment will be run in privi 
leged or user mode. The absent-from-main-memory 

© Copr. 1949-1998 Hewlett-Packard Co.



H P  3 0 0 0  C O M P U T E R  S Y S T E M  

3 0 0 0 0 A  M A I N F R A M E  DISCS 
INCLUDES: CPU, cabinets,  power suppl ies,  card cages,  mul t ip lexer  channel .  
64K  by tes  co re ,  memory  con t ro l l e r ,  sys tem con t ro l  desk ,  conso le / t e rm ina l  

interface, internal  system clock. 

â€¢ AC Power Options for total system: 
S tandard-120/208V.  3  phase,  60  Hz 
â€¢015-230V. Single Phase. 50 Hz 
â€¢025- 120 /240V. Split Phase. 60 Hz 

â€¢ Color Options-System Accent 
Standard-Sun Gold  
-050 Woodgrain 
â€¢051 Marine Blue 
-052 Red 

â€¢ Additional Memory Options- 
total  system capabi l i ty in bytes. 
-101 64K,  2  mcu-no in ter leav ing 
-120 80K.  2  mcu-no in ter leav ing 
â€¢140 96K. 2 mcu-no interleaving 
â€¢160 112K, 2 mcu-no interleaving 
â€¢180 128K. 2 mcu-no interleaving 
- 1 8 1  1 2 8 K . 2 m c u - 2 w a y  

inter leaving 
â€¢182 128K, 4 mcu-no interleaving 
- 1 8 3  1 2 8 K , 4 m c u - 4 w a y  

inter leaving 
(mcu  =  modu le  con t ro l  un i t )  

Required I tems 
1 Magnet ic  Tape Dr ive 
1 Disc 

1 Console 

C O N S O L E S  A N D  
T E R M I N A L S  

Cartr idge (Racked) 
â€¢ 30110A49MByteCar 

tndge Disc and 4 
dr ive interface 
-010 Addi t iona l  dr ive 

Fixed Head (Racked) 
â€¢ 30103A IMByteand 

interface 
-001 2MByte tota l .  
-002 4MByte to ta l  

11  H igh  D isc  Removab le  
â€¢ 30102A47MByte drive 

and 8 Drive Interface. 
-010 Addi t ional  Dr ives 

M A G N E T I C  T A P E  U N I T S  

â€¢  30123A CRT Conso le /Te rm ina l  â€¢  30124A ASR-33-Conso le /Te rm ina l  

9 Track (Racked) 
â€¢ 30115A800cpi ;45 ips 

drive and 4 drive 
interface 
-100 1600 cpi:  45 ips. 
Master  dr ive and 4 
dr ive inter face 
- 2 0 0 8 0 0 c p i :  
45 ips drive. 
Addi t ional  Uni t .  
-300 1600 cpi: 45 ips. 
Master dr ive. 
Addi t ional  Uni t .  

-400 1600 cpi :  45 ips.  
Slave1 drive 
Addi t ional  Uni t .  
"(Must be used with 
1600 cpi  master  on 
same interface) 

7  Track (Racked)  
â€¢ 30117A 200/556/800 

cpi, 45 ips drive and 
4 dr ive inter face.  
-010  200 /  556 /800  bp i ,  
45 ips drive. 
Addi t ional  Uni t .  

P A P E R  T A P E  C A R D  P U N C H E S  

Reader (Racked) 
â€¢ 30104A Reader and 

interface. 

Punch (Racked) 
â€¢ 30105A Punch and 

interface. 

C A R D  R E A D E R S  L I N E  P R I N T E R S  

â€¢ 301 12A Punch: 
250 cpm 

T I M E  S H A R I N G ,  P E R F O R M A N C E ,  R T E ,  A N D  
O T H E R  O P T I O N A L  E Q U I P M E N T  

.  30106A 600  cpm 

.  30107A  1200  cpm 
-001 Dual Read Station 

â€¢ 30032A Asynchronous Multi 
p lexer  16 termina ls  hardwi red 
-001 103 Data Set 
-002 103 and 202 Data Sets 
(order ei ther 001 or 002. 
not  both)  

â€¢ 30055A Synchronous Single 
Line Control ler.  201 or 208 
Data Sets. 9600 bps 
with cable 

â€¢ 30030A First High Speed 
Channel 

-001 Second High Speed 
Channel 

â€¢ 30390A Expansion Bay 
(Above normal  requ i rements)  

â€¢ 30050A Universal Interface 
(Ul):  Ground Level True. TTL 
-001 Universal  in ter face (Ul )  
Posit ive Level True. TTL 

â€¢ 30051A Universal Interface (Ul) 
Dif ferent ial  Levels 

â€¢ 30031A Second Clock 

.  30108A 200 Ipm;  
64 Char 
-001 1301pm. 
96 Char 

â€¢ 30109A 600 Ipm 
64 Char 
â€¢001 400 Ipm: 
96 Char 

S O F T W A R E  P R O D U C T S  

32OOOA MPE/3000 ( inc ludes 
Systems Diagnost ic  Moni tor  

30000.  Compi ler  L ibrary .  
Ut i l i t ies) 
3 2 1 0 0 A  S P L / 3 0 0 0  
3 2 1 0 1 A  B A S I C / 3 0 0 0  
32102A FORTRAN/  3000 

3 2 2 0 1 A  E D I T / 3 0 0 0  
3 2 2 0 2 A  F O R M A T T E R / 3 0 0 0  
32204 A STAR/  3000 
32205A SCIENTIFIC LIBRARY 
Standard Sof tware 
Opt ional  Software 

Fig .  to  var ie ty  3000 Computer  Systems are  modular  and can be conf igured to  t i t  a  var ie ty  o t  
a p p l i c a t i o n s .  T h e  s a m e  s o f t w a r e  i s  u s e d  b y  a l l  c o n f i g u r a t i o n s .  

© Copr. 1949-1998 Hewlett-Packard Co.



Code 
Segment 

(Program Base) 

(Program Counter) 

PL-Register 

(Data Base) 

(Stack Marker) 

(Program Limit) 

~~| Increasing 
Addresses 

V  

(Top-of-Stack in Memory) 

Displacement 
=  0 , 1 , 2 , 3 , 4  

(Logical Top-of-Stack) 

(Stack Limit) 

Data 
Segment 

-Global Variables 
and Pointers 

)â€¢ Parameters 
 Local Variables 

>- Temporary 
>  Var iab les  

F i g .  3 .  C o d e  a n d  d a t a  a r e  k e p t  
s e p a r a t e  i n  t h e  3 0 0 0  C o m p u t e r  
Sys tem.  Code  i s  neve r  mod i f i ed  
a n d  c a n  b e  s h a r e d  b y  s e v e r a l  
use rs .  Code  segmenta t ion  g i ves  
the  sys tem v i r tua l  memory  capa  
b i l i t y .  D a t a  s e g m e n t s  a r e  o r g a  
n i zed  as  pushdown  s tacks .  

bit causes a procedure call to the make-present 
routine if set, and it implies that the second word 
of the GST descriptor is a disc address. The maxi 
mum number of entries in the CST is 255. 

Every procedure call must go through the Code 
Segment Table and must check the absent-from- 
main-memory bit. This is part of the virtual mem 
ory implementation of the HP 3000. If the proce 
dure called is in a program segment that isn't in 
main memory, the required segment is automati 
cally brought in. When a segment is given control 
of the central processor, the program base (PB) and 
program limit (PL) registers are set from the CST 
entry of that segment. 

While code segmentation is normally specified 
by the user, data segmentation is handled by the 
MPE/3000 operating system. A normal user has 
only one data segment, which is limited to 32K 
words. Additional data segments may be requested. 

Relocatable  Code 
Relocation is the normal mode of operation in 

the HP 3000 because of its relative addressing 
capability. All addressing is relative to hardware 
registers. 

Fig. 4 shows the memory reference instruction 
format. The address mode bits have been Huffman- 
coded to give the maximum displacement range 
on the most frequently used codes. 

In the code segment, normal addressing is rela 
tive to the program counter register (P). Indirect 

addressing is similar except that the content of the 
indirect cell is assumed to be relative to its own 
location. 

In the data segment, the addressing modes are 
designed to match the types of data encountered 
in a procedure-oriented language. Fig. 3 shows the 
organization and common use of the data area. 
Global variables and pointers are stored relative 
to the data base (DB) register. The DB+ mode has 
a direct range of up to 255 words without index 
ing or a 64K word range with indexing. 

Stack Operat ion 
The stack concept, which on the HP 3000 is 

fully used for the first time in a 16-bit machine, 
allows dynamic storage allocation on a procedure 
level. The stack is the area of a user's data seg 
ment between the DB register and the stack pointer 
(S). 

Local stack storage in a procedure is allocated 
only upon entry and is automatically freed upon 
exit. This allows reuse of that area of memory by 
other parts of the program. The stack also provides 
automatic temporary storage of intermediate re 
sults until they are needed later in a computation. 
This is transparent to the programmer, and the 
compiler doesn't have to be concerned with saving 
and restoring registers. 

Parameters that are passed to procedures are 
*A  s tack  i s  a  l i nea r  co l l ec t i on  o f  da ta  e l emen ts  wh i ch  i s  no rma l l y  accessed  f r om one  
e n d  o n  a  p l a t e  b a s i s .  A n  e v e r y d a y  e x a m p l e  i s  a  s t a c k  o f  p l a t e s  i n  a  p l a t e  
warmer  i n  a  ca fe te r i a .  

© Copr. 1949-1998 Hewlett-Packard Co.



A Computer for All Reasons 
Educa t ion  and  Ins t rumen ta t ion  a re  t rad i t i ona l  f i e lds  fo r  HP,  
a n d  t h e  H P  3 0 0 0  C o m p u t e r  S y s t e m  s i g n i f i c a n t l y  e n h a n c e s  
the  company ' s  capab i l i t i es  i n  t hese  a reas .  The  new sys tem 
i s  a l s o  w e l l  s u i t e d  t o  a d v a n c e d  i n d u s t r i a l  a n d  c o m m e r c i a l  
appl icat ions.  

modu le  i s  the  r i gh t  s i ze  fo r  a  te rm p ro jec t .  

Education 
H P  c o m p u t e r s  e n t e r e d  t h e  e d u c a t i o n  f i e l d  i n  1 9 6 8 .  T h e  

H P  2 0 0 0 A  T i m e - S h a r e d  B A S I C  S y s t e m ,  a l o n g  w i t h  i t s  s u c  
cessors ,  p rov ided  cos t -e f fec t i ve  compute r  a ided  ins t ruc t ion  
(CAI ) ,  p rob lem-so lv ing ,  and  compu te r  sc ience  educa t i on .  A  
m a t h  d r i l l  a n d  p r a c t i c e  p r o g r a m ,  a n  i n s t r u c t i o n a l  d i a l o g  f a  
c i l i t y ,  and an ins t ruc t iona l  management  fac i l i t y  a re  ava i lab le  
to  the  teacher  fo r  use  on  the  HP 2000 .  These  p rog rams  a re  
w r i t t e n  i n  H P  B A S I C  a n d  a r e  t h e r e f o r e  u p w a r d  c o m p a t i b l e  
w i t h  t he  HP  3000 .  I n  add i t i on  t o  t hese  p rog rams ,  t he re  a re  
o the r  CA I  packages  ava i l ab l e  f o r  use  on  bo th  HP  sys tems .  

I n  a d d i t i o n  t o  t h e  t i m e - s h a r e d  C A I  u s e  o f  t h e  H P  3 0 0 0 ,  
t h e  M u l t i p r o g r a m m i n g  E x e c u t i v e  o p e r a t i n g  s y s t e m  a l l o w s  
s i m u l t a n e o u s  b a t c h  m o d e  c o m p u t a t i o n .  T h i s  p e r m i t s  a  
schoo l  t o  use  the  compu te r  f o r  admin i s t ra t i ve  t asks  concu r  
ren t l y  w i th  CAI ,  g i v ing  a  more  cos t -e f fec t i ve  so lu t i on  to  the  
needs  o f  schoo l  sys tems.  Many  secondary  schoo ls  w i l l  a l so  
be  ab le  t o  t each  p rog ramming  and  o the r  compu te r  s c i ence  
c o n c e p t s  u s i n g  t h e  m u l t i p r o g r a m m i n g  c a p a b i l i t y  o f  t h e  H P  
3000. 

J u n i o r  c o l l e g e s  a n d  s m a l l  f o u r - y e a r  c o l l e g e s ,  t o  k e e p  
c o s t s  d o w n ,  o f t e n  f i n d  i t  n e c e s s a r y  t o  h a v e  o n l y  o n e  c o m  
puter  fo r  a l l  the i r  ac t i v i t ies .  The HP 3000,  w i th  i t s  s imu l tane 
o u s  m u l t i l i n g u a l  t i m e - s h a r i n g  a n d  b a t c h  o p e r a t i n g  m o d e s ,  
h a s  t h e  a b i l i t y  t o  t a c k l e  d i v e r s e  c o m p u t i n g  n e e d s .  I n  a d d i  
t i on  to  these  two  modes ,  rea l - t ime exper iments  may  a lso  be  
h a n d l e d  b y  t h e  o p e r a t i n g  s y s t e m ,  a n d  t h i s  m a k e s  t h e  s y s  
tem usefu l  to  un ivers i ty  sc ien t i f i c  depar tments .  

B e c a u s e  t h e  H P  3 0 0 0  w a s  d e s i g n e d  a r o u n d  t h e  l a t e s t  
concep ts  i n  compute r  sc ience ,  i t  has  many  fea tu res  in  ha rd  
w a r e  a n d  s o f t w a r e  t h a t  u n i v e r s i t y  p r o f e s s o r s  h a v e  b e e n  
t e a c h i n g  i n  r e c e n t  y e a r s .  T h e  3 0 0 0  s h o u l d  p r o v i d e  a  c o m  
pu te r  sc i ence  depa r tmen t  w i t h  a  mach ine  t ha t  can  be  used  
n o t  o n l y  a s  c a s e  s t u d y  o f  a d v a n c e d  a r c h i t e c t u r e ,  b u t  a l s o  
as  a  veh i c l e  f o r  ope ra t i ng  sys tem s tudy .  The  modu la r  s t ruc  
t u r e  o f  t h e  s o f t w a r e  a l l o w s  s t u d e n t s  t o  r e w r i t e  s m a l l  p o r  
t i o n s  o f  t h e  s y s t e m  a s  p r o j e c t s  a n d  t h e n  t r y  t h e m  i n  t h e  
o p e r a t i n g  s y s t e m .  I t  w o u l d  b e  t o o  l a r g e  a  t a s k  t o  w r i t e  a  
w h o l e  s y s t e m  i n  a  s e m e s t e r ,  b u t  a  s m a l l  s e l f - c o n t a i n e d  

Instrumentation 
Whi le  the  educa t i on  f i e ld  i s  ma in l y  i n te res ted  i n  t he  t ime  

s h a r i n g  a n d  b a t c h  m o d e s  o f  o p e r a t i o n  u n d e r  t h e  M u l t i p r o  
g ramming  Execu t i ve  (MPE) ,  the  ins t rumenta t ion  f ie ld  makes  
e x t e n s i v e  u s e  o f  t h e  c o m p a t i b l e  r e a l - t i m e  c a p a b i l i t y .  P r e  
v i o u s  s y s t e m s  g e n e r a l l y  h a d  o n e  o r  t h e  o t h e r ,  b u t  n o t  a l l  
t h ree  i n  a  un i f i ed  env i ronmen t .  

MPE p rov ides  the  ab i l i t y  t o  co l l ec t  da ta  and  con t ro l  p roc  
e s s e s  i n  r e a l  t i m e  w h i l e  a l l o w i n g  t h e  d a t a  s o  g e n e r a t e d  t o  
b e  a c c e s s e d  t h r o u g h  t h e  c o m m o n  f i l e  s y s t e m  b y  t e r m i n a l -  
o r i e n t e d  a n d  b a t c h  m o d e  p r o g r a m s .  T h i s  m u l t i - m o d e  c a p a  
b i l i t y  i s  a  natura l  ex tens ion and combinat ion  o f  the  rea l - t ime 
e x e c u t i v e  a n d  t i m e - s h a r i n g  s y s t e m s  t h a t  u s e  t h e  H P  2 1 0 0  
fami ly  o f  computers .  

Industrial /  Commercial  
T h e  H P  3 0 0 0  w i l l  f i n d  m a n y  i n d u s t r i a l  a n d  c o m m e r c i a l  

a p p l i c a t i o n s .  O n e  r e a s o n  i s  t h a t  i t  i s  d e s i g n e d  t o  s u p p o r t  
h i e r a r c h i c a l  c o m p u t i n g  s y s t e m s .  T h e  d a t a - b a s e  h a n d l i n g  
c a p a b i l i t i e s  o f  M P E ,  a l o n g  w i t h  a  p o w e r f u l  a n d  w i d e - b a n d  
w i d t h  I / O  s t r u c t u r e ,  m a k e  t h e  3 0 0 0  a  g o o d  m i d d l e m a n  
c o m p u t e r .  I t  w i l l  h a v e  e x t e n s i v e  d a t a  c o m m u n i c a t i o n  f a c i l i  
t i e s  f o r  c o n n e c t i o n  t o  a  l a r g e  g e n e r a l - p u r p o s e  c o m p u t e r  
a n d  w i l l  b e  a b l e  t o  c o n t r o l  s e v e r a l  m i n i c o m p u t e r s  o n  t h e  
o ther  end  o f  the  h ie ra rchy .  

There  w i l l  be  many  ins tances  o f  t h i s  compu te r - to -compu-  
t e r  c o n n e c t i o n  i n  t h e  f u t u r e .  S t a n d a r d  s o f t w a r e  p r o t o c o l s  
a n d  h a r d w a r e  i n t e r f a c e s  a r e  b e i n g  d e v e l o p e d  f o r  t h e  H P  
3000 to  suppor t  these systems.  The HP 2100 fami ly  prov ides 
c o m p a t i b l e  m i n i c o m p u t e r  f a c i l i t i e s  i n  s y s t e m s  w h e r e  t h e  
3 0 0 0  i s  t h e  h o s t  c o m p u t e r .  I n t e r c o m p u t e r  l i n k s  m a y  b e  b y  
d i r e c t  c o n n e c t i o n  o r  b y  m o d e m s  o v e r  c o m m o n  c a r r i e r  
faci l i t ies. 

C o m m e r c i a l l y  o r i e n t e d  l a n g u a g e s  a n d  d a t a  b a s e  m a n  
agemen t  sys tems  cu r ren t l y  i n  deve lopmen t  w i l l  g i ve  HP the  
a b i l i t y  t o  d e v e l o p  a n d  s u p p o r t  c o m m e r c i a l  a p p l i c a t i o n s  
s u c h  a s  o n - l i n e  i n v e n t o r y  m a n a g e m e n t ,  o r d e r  e n t r y  a n d  
p r o d u c t i o n  c o n t r o l .  T h e  h i e r a r c h i c a l  c o m p u t i n g  c a p a b i l i t y  
c o m b i n e d  w i t h  t h i s  b u s i n e s s  d a t a - p r o c e s s i n g  s o f t w a r e  w i l l  
m a k e  t h e  H P  3 0 0 0  m o r e  a n d  m o r e  u s e f u l  i n  i n d u s t r y  a n d  
commerce,  par t i cu la r ly  i f  the  s t rong t rend toward  d is t r ibu ted 
p rocess ing  con t inues  as  expec ted .  

pushed onto the stack before the procedure call. 
When the procedure call occurs the status of the 
presently executing code segment is stored on the 
stack and the Q register is set to point at the top 
of the stack (S). Parameters are then accessed by 
Q â€” addressing, while the local variables used by 
the procedure are accessed by Q+ addressing, as 
shown in Fig. 3. 

Upon exiting from a procedure the operating sys 
tem retrieves the status of the previously executing 
code segment from the stack and returns control 
to the instruction following the procedure call. 

Addressing in the negative direction with re 

spect to the stack pointer (S) register is useful for 
accessing temporary results left on the stack dur 
ing processing. The area between the data limit 
(DL) register and DB may be addressed only in 
directly and is used for such purposes as storing 
symbol tables and the like. 

Reentrant  Code 
The separation of code and data, the use of a 

pushdown stack with Q+ and Qâ€” addressing 
modes and the nonmodification of code make re 
entrant code the natural way to write HP 3000 pro 
grams. Reentrant code, in conjunction with the 

© Copr. 1949-1998 Hewlett-Packard Co.



F i g .  4 .  M e m o r y  r e f e r e n c e  i n s t r u c t i o n  f o r m a t .  A H  a d d r e s s  
i n g  i s  r e l a t i v e  t o  h a r d w a r e  r e g i s t e r s ,  m a k i n g  c o d e  a n d  
da ta  eas i l y  re loca tab le .  

use of the Code Segment Table as the master direc 
tory of all active segments, allows code segments 
to be shared between users. Control is transferred 
through the CST to the proper segment number of 
the shared code as determined by the loader when 
the segment was made active. Thus only one copy 
of a compiler or a library or the operating system 
intrinsics need be available, saving valuable space 
in main memory. 
Protect ion Features 

User isolation and protection takes several forms 
on the HP 3000. Programs may execute in one of 
two modes: privileged or user. In privileged mode 
no bounds checking is done except for stack over 
flow (S>Z), and all instructions are available for 
use. All system interrupts including external (I/O) 
interrupts are handled on a separate interrupt con 
trol stack so the user running when the interrupt 
occurs is fully protected. In user mode, access is 
limited to within the user's own code and data 
areas. 

In addition to the hardware memory protection, 
files are protected by the MPE/3000 file manage 
ment system. Access to files may be controlled at 
several levels which range from unrestricted access 
by anyone to controlled access available only to 
the creator of the file. 
Modular Hardware Organization 

HP 3000 hardware is organized on a modular ba 
sis. A major feature is the central data bus, which 
can service up to seven independent and asynchro 
nous modules. These can be central processors, 
memory modules, and/or various types of input/ 
output channels including a high-speed selector 

channel capable of transferring data at a rate of 
2.8 megabytes per second. 

Modules attached to the bus are technology- 
independent. Thus the memories may be magnetic 
core, semiconductor, or anything else. Up to four 
memory modules can be attached to the bus, and 
these can be interleaved (two-way or four-way).ff 

Bert E. Forbes 
Ber t  Forbes has been des ign ing computers  for  HP s ince 
1 967. He was project  manager for  the HP 3000 CPU and 
has several  patents pending as a resul t  of  that  project .  
He 's  a member of  ACM and the author  o f  ar t ic les on 
computer  a rch i tec tu re  and  in tegra ted  c i rcu i t s  fo r  m in i  
computers.  Now at  HP's Geneva,  Swi tzer land,  data center ,  
he 's  suppor t ing the European in t roduct ion of  the HP 3000.  
Bert  received his B.  S.  degree in e lectr ica l  engineer ing 
f rom Massachuset ts  Ins t i tu te  o f  Technology in  1966 and 
h is  M.S.E.  E.  degree f rom Stanford in  1967.  He's a lso 
done work towards the Ph.  D.  degree.  He's  an amateur  
photographer  and a connoisseur  o f  f ine wines,  and is  
ac t ive  in  church youth  and soc ia l -ac t ion  groups.  

Michael  D.  Green 
Mike Green came to  HP in  1966.  He 's  been pro ject  
manager  fo r  ALGOL/2116 ,  2000A T ime-Shared  BASIC ,  
and BASIC/3000,  and  he 's  cur ren t l y  p ro jec t  manager  fo r  
MPE/3000.  Mike  graduated  f rom Co lumbia  Un ivers i ty  in  
1964 wi th a B.S.  degree in mathemat ics,  then got  h is M.S. 
degree in  computer  sc ience at  Stanford Univers i ty  in  1966.  
He 's  a  member of  ACM. For  re lax ing away f rom the wor ld  
o f  computers ,  he favors  b icyc le  tour ing and chess.  

© Copr. 1949-1998 Hewlett-Packard Co.



Central Bus Links Modular 
HP 3000 Hardware 
Shar ing the bus can be one or  more CPU's,  I /O 
processors ,  memory modules,  h igh-speed I /O channels ,  
and spec ia l  dev ices.  The microprogrammed CPU's  
have a procedure-or iented stack archi tecture. 

by Jamshid Basij i  and Arndt B. Bergh 

ON THE HARDWARE LEVEL, the HP 3000 
Computer System consists of independently 

functioning modules communicating over a high 
speed multiplexed central data bus (Fig. 1). The 
modules may include one or more central process 
ing units (CPUs) and input/output (I/O) processors, 
one to four memory modules, one or more selector 
channels for high-speed input/output, and one or 
more special-purpose modules. Hardware modu 
larity makes the system flexible and expandable, 
and leaves the door open for future performance 
improvements through new technologies such as 
faster memories. 

The memory now available is a magnetic core 
memory that has a cycle time of 960 nanoseconds. 
Optional is an interleaved addressing capability 
that places sequential addresses in different mem 
ory modules. Memory modules can operate concur 
rently. With interleaving, the system can support a 
5.7 megahertz byte data rate. 

The 3000 CPU is a microprogram-controlled 
processor. It has a stack architecture and special 
hardware to make procedure execution very effi 
cient. Instructions are implemented in micropro 
grammed read-only memories, making possible a 
powerful instruction set with some instructions 
resembling those of higher-level languages. 

The data for each user is organized as a data 
stack. In general, a stack is a storage area in core 
memory where the last item stored in is always the 
first item taken out. The stack structure provides 
an efficient mechanism for parameter passing, dy 
namic allocation of temporary storage, efficient 
evaluation of arithmetic expressions, and recursive 
subroutine or procedure calls. In addition, it en 
ables rapid context switching â€” 21 microseconds to 
establish a new environment when an interrupt 

occurs. In the HP 3000, all features of the stack (in 
cluding checking for overflow and underflow) are 
implemented in hardware. 

Bus Operation 
The central data bus is a high-speed synchronous 

bus that can service up to seven modules. The 
transfer cycle time of the central data bus is equiv 
alent to the cycle time of the system master clock, 
175 nanoseconds. During each transfer cycle six 
teen bits of data plus parity and eight bits of 
source-destination addresses and operation code 
are transmitted from the source module to the des 
tination module. 

Control of the bus is distributed among the mod 
ules; there is no central control. The bus control 
and interface logic for a given module is in the 
module control unit (MCU) for that module. 

Bus cycles are granted to a transmitting module 
when two conditions are met. First, the transmit 
ting module must request a bus cycle from its MCU 
and the destination module must be willing to ac 
cept the message in the next cycle. The willingness 
of a module to accept a message is indicated by the 
logical state of its "Ready" line. There are seven 
"Ready" lines in the central data bus, one for each 
module. 

The second condition that must be met before a 
module is granted a bus cycle is that there must not 
be any higher priority module seeking to obtain the 
next bus cycle. Module priority is a function of 
data transfer urgency. Memory modules have the 
highest priority, and the high-speed selector chan 
nel has a higher priority than the CPU or input/ 
output processor (IOP). A module, when ready to 
transmit a message, blocks lower priority modules 
by lowering its "Enable" line. There are seven ded- 

9 

© Copr. 1949-1998 Hewlett-Packard Co.



C e n t r a l  D a t a  B u s  

M a x i m u m  M e m o r y  S i z e  
i s  1 2 8 K  B y t e s  

( 4  M o d u l e s ,  3 2 K  B y t e s  E a c h )  

S e l e c t o r  
C h a n n e l  

Bus  

M u l t i p l e x e r  
C h a n n e l  

Bus  

C P U  =  C e n t r a l  P r o c e s s i n g  U n i t  
I O P  =  I n p u t / O u t p u t  P r o c e s s o r  
M C U  =  M o d u l e  C o n t r o l  U n i t  

V e r y  H i g h  
S p e e d  D e v i c e  

C o n t r o l l e r  
(SIO) 

M u l t i p l e x e r  
C h a n n e l  

( S I O )  

N o n  S I O  
Dev ice  

C o n t r o l l e r  

I O P  B U S  

F i g .  1 .  C e n t r a l  d a t a  b u s  o f  H P  
3 0 0 0  s e r v e s  u p  t o  s e v e n  i n d e  
p e n d e n t  m o d u l e s .  7 6  b i t s  o f  
d a t a  p l u s  p a r i t y  a n d  e i g h t  b i t s  
o f  a d d r e s s  a n d  o p e r a t i o n  c o d e  
a r e  t r a n s f e r r e d  i n  1 7 5  n a n o s e c  
onds. 

icated "Enable" lines, one for each module, in the 
central data bus. Each MCU checks the status of 
all higher priority modules prior to granting the 
next bus cycle to its host module. 

With this bus-cycle allocation scheme, the "hand 
shaking" mode of operation is not necessary, so 
data transfer speed is improved. 

The central processing unit and the input/output 
processor share a module control unit. Thus the 
CPU and IOP share a single port on the central data 
bus. The IOP has a higher priority for bus access 
than the CPU, although both have independent ac 
cess to the bus. The IOP provides the I/O devices 
with a direct path to memory through a buffered 
connection between the central data bus and the 
I/O bus. 

The Central  Processor 
Because it provides a great deal of instruction 

power very economically, the microprogrammed 
read-only memory (ROM) method of logic control 
was chosen for the HP 3000. The central processing 
unit, Fig. 2, has a general-purpose microprocessor 
structure with some special features to aid the 
stack architecture. The 170 individual instructions 
are implemented by sequences of microinstructions 
stored in the control ROM. 

In the CPU are approximately 30 registers. Those 
of most interest to the user are the four top-of-stack 
data registers (A, B, C, D), three code-segment reg 
isters (PB, P, PL), a status register, an I/O mask 
register, an index register (X), and six stack pointer 

registers (DL, DB, Q, SM, SR, Z). The DB register 
is the base of the stack, and the S register, defined 
as SM + SR, is the top of the stack. The area be 
tween Q and S is for local variables of the current 
procedure or routine. The top-of-stack registers are 
logical extensions of the stack area in core and 
their use greatly improves instruction execution 
time. The SR register tells how many of these regis 
ters are filled. 

To improve the efficiency of handling data in 
the CPU, a two-stage "pipelined" data path struc 
ture is used. In the first stage, data is selected from 
the source registers and fed onto the two data 
buses (R and S) and into the bus storage registers 
shown in Fig. 2. These storage registers are the 
pipeline holding registers and serve as the data 
source for the second stage. In the second stage 
this data is processed through the arithmetic logic 
unit and a shift network, and the result is option 
ally tested and stored in selected destination reg 
isters. New data is entered into the stream on each 
clock pulse to keep the pipeline full and maximize 
throughput. The 175 ns clock time achieved with 
this structure is much lower than would have been 
possible if the whole source-to-destination process 
ing were done in one clock period. 

Communication paths from the CPU to outside 
modules include a path to memory through the 
MCU and central data bus, a path to device con 
trollers through the I/O processor and I/O bus, and 
a path to the control panel through a special panel 
interface. 

10 

© Copr. 1949-1998 Hewlett-Packard Co.



CPU Operat ion 
The CPU performs tasks by sequentially enabling 

the appropriate logic to pass data through the proc 
essing structure and to perform other non-data 
path functions. For each sequential step a 32-bit 
ROM word, divided into seven coded control fields, 
enables the required functions. Each 32-bit ROM 
word constitutes a microinstruction. As shown in 
Fig. 3, the seven fields in each microinstruction are 
the R and S bus source register fields, the operation 
or function field, the shift field, the register store 
field, the test field, and a special field for executing 
non-data-related tasks. 

Because each control field can, in general, select 
only one meaningful field option at a time, it was 
possible to encode them with little loss of capabil 
ity. For a slight reduction in speed, field encoding, 
or "vertical microprogramming," offers consider 
able ROM cost savings over the one-bit-per-option 
method. 

Branching capability is provided by redefining 
the R bus, shift, and special fields to be interpreted 

as a branch address when a Jump or Jump Subrou 
tine instruction occurs in the function field. Con 
stants also are generated by redefining fields when 
a function field designator occurs. 

Programs and Microprograms 
As the CPU executes a user program, it sequen 

tially fetches software instructions from main 
memory. From the binary pattern of each instruc 
tion, a combination ROM lookup table and decod 
ing logic generates a ROM address and stores it in a 
presettable indexing ROM address register. This 
register is used first to access and then to step 
through the sequence of microinstructions, or mi 
croprogram, that causes the software instruction to 
be executed. There is a microprogram in ROM for 
each of the 170 machine instructions. 

The CPU executes a software program in the nor 
mal sequence of phases, that is, instruction fetch, 
data fetch, and execute. In the HP 3000 these phases 
are more accurately described as instruction pre 
fetch, optional data address computation or hard- 

C P U  
R e g i s t e r s  

f - H  

tr 
R - B u s  R e g i s t e r  

S - B u s  R e g i s t e r  

A r i t h m e t i c /  
L o g i c  U n i t  

a n d  S h i f t e r  

C P U  O u t p u t  
R e g i s t e r  

R O M  L o o k u p  T a b l e  
a n d  D e c o d i n g  L o g i c  

C u r r e n t  I n s t r u c t i o n  
R e g i s t e r  

N e x t  I n s t r u c t i o n  
R e g i s t e r  

R O M  
A d d r e s s  
R e g i s t e r  

T o / F r o m  C P U  R e g i s t e r s  

R O M  
O u t p u t  

Reg is te r  1  
a n d  

R , S  D e c o d e  

R O M  
O u t p u t  

R e g i s t e r  2  
a n d  

F i e l d  D e c o d e  

I / O  E x e c u t i o n  

C e n t r a l  P r o c e s s i n g  U n i t  ( C P U )  

I n p u t / O u t p u t  P r o c e s s o r  ( I O P )  

E x t e r n a l  
I n t e r r u p t s  

I    

E x t e r n a l  I n t e r r u p t s  

I n t p u t / O u t p u t  

I / O  D e v i c e s  

Fig.  s t ructure specia l  processor  has a genera l -purpose microprocessor  s t ructure wi th  specia l  
fea tu res  to  a id  s tack  opera t ion .  

11 

© Copr. 1949-1998 Hewlett-Packard Co.



ware stack register preadjust, and instruction exe 
cution. Instruction prefetch is an automatic hard 
ware activity that gets the next instruction during 
the execution of the present instruction, thus avoid 
ing the normal instruction fetch time. For memory 
reference instructions, hardware has been provided 
to compute the absolute memory address, that is, to 
add the displacement and index to the appropriate 
base register. A general bounds-testing routine in 
ROM then checks the computed address for valid 
ity before the individual instruction microprogram 
is used. Instructions that use only top-of-stack data 
normally (90% of the time) don't require a data 
fetch, but if necessary, these instructions are first 
routed through a microprogram that fills the ap 
propriate number of hardware stack registers from 
the equivalent logical locations in core. 

Interrupts 
As the execution of each instruction is completed 

a microprogram control signal is issued that starts 
the execution of the next instruction unless an in 
terrupt is requesting service. If an interrupt has oc 
curred, a force to an interrupt microprogram takes 
place. This causes the status of the present user 
program to be stored on the stack. Then if the in 
terrupt is not directly user related, the micropro 
gram transfers the status to a system interrupt stack 
and calls the first instruction of the software pro 
gram serving that interrupt. After the interrupt has 
been serviced control is returned to the MPE oper 
ating system. 

T O S  H a r d w a r e  
To achieve faster execution of instructions that 

reference the top elements of the stack, special 
hardware has been provided. Up to four of the top 
elements of the stack can be kept in four top-of- 
stack hardware registers, and manipulation of these 
registers by the microcode has been made as easy 
as possible. The TOS hardware includes the four 
registers and renaming logic that allows each of the 
four registers to assume any of the four positions 
relative to the top of the stack. Thus, the stack can 
be logically shifted up or down by simply renaming 
the registers, without moving the contents of one 
register to another. The number of stack elements 
that currently reside in the TOS hardware registers 
is kept in the TOS register pointer, SR. 
Memory 

Memory modules on the HP 3000 are designed to 
be self-contained asynchronous units of up to 64K 
bytes each. The maximum memory limit is 128K 
bytes in up to four modules. The modules interface 
with the system through an MCU port on the cen 

tral data bus. Only data transmissions to the system 
have to be synchronized with the system clock; all 
other memory timing and control is contained 
within each module. Since no fixed response time 
is required, faster memories can be interfaced as 
they become available. 

Memory commands include read, write, and a 
special multiprocessor semaphore function: read 
and write all 1's within one memory cycle. 

The present memory is a 960-nanosecond three- 
wire 3D magnetic core memory using the same core 
stack and phased X-Y drive current arrangement as 
is used in the HP 2100A Computer.1 A basic module 
consists of one timing, control, and MCU interface 
card, one X-Y switch and inhibit-current load card 
and one to four 8K word stack cards. Because the 
sense amplifiers, X-Y drivers and inhibit drivers 
all are on the stack card, memory expansion only 
requires the addition of one stack card for each 
additional 16K bytes. 
Input/Output Processor 

The functions of the I/O processor have been dis 
tributed between a kernel processor attached to the 
CPU and one or more multiplexer channels on the 
I/O bus. The kernel processor controls the I/O bus, 
which is the data path from external devices to 
memory and the communication path between ex 
ternal devices and the CPU. The multiplexer chan 
nel does the bookkeeping for block transfers of 
data to and from memory for up to 16 devices. 
When needed, additional multiplexer channels may 
be added to the system. 

Input/output operations in the HP 3000 are di 
vided into three categories: direct I/O, programmed 
I/O and interrupt processing. Programmed I/O 
operations have priority on the I/O bus over other 
types. 

Direct I/O operations take place as a result of the 
execution of an I/O instruction by the CPU. These 
operations either exchange a word of information 
between the top-of-stack register (TOS) in the CPU 
and the I/O device controller, or cause a control 
function to take place in the I/O system. During the 
execution of I/O instructions the CPU microproc 
essor performs the basic control functions such as 
assembling the I/O command, checking the status 
of the I/O device controller, and exchanging a word 
of information between the TOS register and the 
I/O device via the I/O bus. 

Programmed I/O operations are aimed at trans 
ferring blocks of data between I/O devices and the 
memory. This type of operation begins for an I/O 
device when the CPU issues an SIO instruction for 
that device. The device controller in conjunction 

12 

© Copr. 1949-1998 Hewlett-Packard Co.



with the multiplexer channel then executes the I/O 
control program for that device without further 
CPU intervention. This allows the CPU and I/O 
processing to carry on in parallel. 

The interrupt structure is a multilevel priority 
network that allows the processing of CPU pro 
grams or lower-level interrupts to be preempted by 
higher-level interrupts. This assures a prompt re 
sponse to critical external processes. A "polling" 
scheme is used in the priority network. Up to 253 
devices are allowed on the interrupt poll line, and 
the interrupt priority of a device is determined by 
its logical proximity to the CPU on the interrupt 
poll line. A 16-bit mask register is provided for the 
purpose of masking off groups of interrupts. Any 
number of devices can be assigned to any particular 
mask group. 

I/O bus transfer cycles are granted to multiplexer 
channels based on their priorities. A polling scheme 
similar to the interrupt polling is used to resolve 
priority among the multiplexer channels. However, 
the data poll line is separate from the interrupt poll 
line, so the data priority of a channel can be dif 
ferent from its interrupt priority. 

Selector  Channel  
High-speed devices may communicate directly to 

the central data bus through a selector channel. Un 
like the multiplexer channel, the selector channel is 
designed to service one device at a time for the 
duration of the execution of the I/O control pro 
gram for that device. This eliminates the time-slice 
multiplexing overhead, thereby allowing the SEL 
channel to achieve higher data transfer rates than 
are possible with the MUX channel. The selector 
channel is a part of the SEL module, which is an 
independent system module that contains up to 
four selector channels and has an independent port 
to the central data bus (see Fig. 1). This port enables 
the selector channels to fetch and execute their 
own I/O command words and transfer data be 
tween the memory and the I/O devices independ 
ently of the I/O processor. Each selector channel 
has its own SEL bus and can interface up to eight 
devices through this bus. 

Special  Devices 
Ports on the central data bus are not device-de 

pendent. Therefore, they can be used for special 
custom devices should the system application war 
rant their use. An example of such a device might 
be a communications processor. 

Acknowledgments  
B y  R i c h a r d  E .  T o e p f e r  
E n g i n e e r i n g  S e c t i o n  M a n a g e r ,  
M u l t i p r o g r a m m i n g  C o m p u t e r  S y s t e m s  

The design of a system like the HP 3000 requires 
the contributions of a large group of people. The 
following list represents the members of the Data 
Systems Development Laboratory who were prin 
cipally concerned with the design and realization 
of the hardware and its associated diagnostic soft 
ware. Mainframe Electronics Design: HarÃan An 
drews, Jim Basiji, Arne Bergh, Bill Berte, Wally 
Chan, Ken Check, John Dieckman, Mauro Di- 
Franceso, Bert Forbes, Gordon Goodrich, Barney 
Greene, John Grimaldi, Jim Hamilton, Marty Ka- 
shef, Jim Katzman, Walt Lehnert, Frank McAninch, 
Joe Olkowski, Mike Raynham, Gene Stinson, Tak 
Watanabe, Steve Wierenga, Dennis Wong. Main 
frame Mechanical Design: George Canfield, Bob 
Dell, Joe Dixon, Bill Gibson, Gary Lepianka, Larry 
Peterson, Bob Pierce, Don Reeves, Fred Reid. Mass 
Storage Subsystems: Naresh Aggarwal, Ole Eske- 
dal, Karl Helness, Ed Holland, Jake Jacobs, Earl 
Kieser, Harry Klein, Stan Mintz, Malcolm Neill, 
Cliff Wacken. I/O Subsystems: Mitch Bain, Oty 
Blazek, Vince Emma, Ron Kolb, Tom Kornei, Rick 
Lyman, Al Marston, Joe Mixsell, Bill Murrin, Jack 
Noonan, Jim Obriant, Ken Pocek, Willard Reed, 
Willis Shanks, Elio Toschi, Lloyd Summers. Diag 
nostic Software: Bob Bellizzi, Gary Curtis, Hank 
Davenport, Dan Gibbons, Pete Graziano, Tony 
Hunt, Walt Wolff, Tom Ellestad. 

Particular credit must be given to the following 
individuals and groups whose special talents great 
ly contributed to the success of our development 
effort. Coordinators â€” Karl Balog and Ollie Saun- 
ders. Printed circuit layout â€” Bob Jones and staff. 
Industrial Design â€” Gerry Priestly and staff. Mate 
rial and Reliability Engineering â€” Bernie Levine and 
staff. Publications â€” Joe Kintz and staff. System 
Management â€” Dave Crockett and staff. Â£ 

Reference 
1. Hewlett-Packard Journal, October 1971. 

Bits: 
Fields: 

F i g .  3 .  7 7 0  H P  3 0 0 0  i n s t r u c  
t i o n s  a r e  i m p l e m e n t e d  b y  s e  
q u e n c e s  o t  m i c r o i n s t r u c t i o n s  
s t o r e d  i n  r e a d - o n l y  m e m o r i e s .  
Each 32-b i t  m ic ro ins t ruc t ion  has  
seven  coded  f i e lds .  

© Copr. 1949-1998 Hewlett-Packard Co.



S P E C I F I C A T I O N S  
H P  3 0 0 0  C o m p u t e r  S y s t e m  

D E S C R I P T I O N  
M u l t  i p r o f l  r a m m e d  g e n e  r a l  - p u r p o s e  c o m p u t e r  s y s t e m  i m p l e m e n t e d  
w i t h  c o m p l e m e n t a r y  h a r d w a r e  a n d  s o f t w a r e  p r o v i d i n g  f o r  c o n c u r  
r e n t  r e a l - t i m e ,  b a t c h ,  a n d  l i m e  s h a r i n g  p r o c e s s i n g .  

C E N T R A L  P R O C E S S O R  
A R C H I T E C T U R E  

Hardware-implemented stack 
S e p a r a t i o n  o r  c o d e  a n d  d a t a  
N o n m o d i t i a b i e .  r e e n t r a n t  c o d e  
V a r i a b l e - l e n g t h  c o d e  s e g m e n t a t i o n  
V i r t u a l  m e m o r y  
D y n a m i c  r e l o c a t a b i h t y  o f  p r o g r a m s  

I M P L E M E N T A T I O N  
M i c r o p r o g r a m m e d  C P U  

j c t i o n  t m  
i l  / a u t o  r e s t a r t  M e m o r y  p r o t e c t ,  p a r i t y  c h e c k i n g ,  p o w  

P r o t e c t i o n  b e t w e e n  u s e r s  
C e n t r a l  d a t a  b u s  
C o n c u r r e n t  I / O  a n d  C P U  o p e r a t i o n s  

I N S T R U C T I O N S  
1 7 0  i n s t r u c t i o n s  
1 6  b i t s  p e r  w o r d  
1 6 - b i t  a n d  3 2 - b i t  i n t e g e r ;  3 2 - b i t  f l o a t i n g  p o m t  h a r d *  

metÃ c 
T r i p l e - w o r d  s h i f t s  t o  a i d  4 0 - b i t  f l o a t i n g  p o i n t  s o f t w a r e  

M E M O R Y  
T e c h n o l o g y  i n d e p e n d e n t ,  s p e e d  i n d e p e n d e n t  
U p  t o  f o u r  m o d u l e s  
I n t e r l e a v i n g  
A d d r e s s a b l e  t o  6 5 K  w o r d s  ( 1 3 1 , 0 7 2  b y t e s )  
1 7  b i t s  i n c l u d e s  p a r i t y  b i t  

I / O  A N D  P E R I P H E R A L S  
G E N E R A L  

P r i v i l e g e d  c o n t r o l  o f  I / O  

C o n c u r r e n t  I / O  o p e r a t i o n s  
T h r e e  w a y s  t o  i m p l e m e n t  I / O  
D i r e c t  m e m o r y  a c c e s s  b y  a l l  c h a n n e l s  
D e v i c e - i n d e p e n d e n t  I / O  p r o g r a m  e x e c u t i o n  
U p  t o  2 5 3  d e v i c e s  

I / O  S Y S T E M  
M u l t i p l e x e r  c h a n n e l  
S e l e c t o r  c h a n n e l  
D i r e c t  I / O  

I N T E R R U P T  S Y S T E M  
U p  l o  2 5 3  e x t e r n a l  i n t e r r u p t s  

M i c r o p r o g r a m m e d  e n v i r o n m e n t  s w i t c h i n g  
C o m m o n  s t a c k  f o r  i n t e r r u p t  p r o c e s s i n g  
1 7  i n t e r n a l  i n t e r r u p t s  p l u s  7  t r a p s  

P E R I P H E R A L S  
M a s s  S t o r a g e :  

F i x e d  H e a d  D i s c :  1 ,  2  o r  4  m e g a b y t e ,  4 9 6  k H z  b y t e  t r a n s f  
R e m o v a b l e  M e d i a :  4 7  m e g a b y t e s .  3 2 0  k H z  b y t e  t r a n s f e r  r  

4  9  m e g a b y t e s ,  2 4 5  k H z  b y t e  t r a n s f e r  
M a g n e t i c  T a p e .  7  T r a c k â € ”  4 5  i p s .  2 0 0 ,  5 5 6  o r  8 0 0  b p i  

9  T rackâ€”  45  ips ,  800  o r  1600  bp t  
C a r d  R e a d e r s :  6 0 0  o r  1 2 0 0  c a r d s  p e r  m i n u t e  
C a r d  P u n c h e s :  3 5  o r  2 5 0  c a r d s  p e r  m i n u t e  
L i n e  P r i n t e r :  2 0 0  o r  6 0 0  l i n e s  p e r  m i n u t e ,  6 4  o r  

9 6  c h a r a c t e r  s e t s ;  1 3 2  c o l u m n s  
P a p e r  T a p e  R e a d e r :  5 0 0  c p s  
P a p e r  T a p e  P u n c h :  7 5  c p s  
C o n s o l e s :  C R T  o r  A S R - 3 3  

S O F T W A R E  
M U L T I P R O G R A M M I N G  E X E C U T I V E  

B a t c h  p r o c e s s i n g  

R e a l  t i m e  p r o c e s s i n g  
P r o d u c t i o n  c o n t r o l  
A u t o m a t i c  t e s t i n g  

P r o c e s s  c o n t r o l  
I n f o r m a t i o n  r e t r i e v a l  
D a t a  a c q u i s i t i o n  

S Y S T E M S  P R O G R A M M I N G  L A N G U A G E  I S P L i  
H i g h - l e v e l  s y n t a c t i c  s t r u c t u r e  
A b i l i t y  t o  a d d r e s s  h a r d w a r e  r e g i s t e r s  e x p l i c i t l y  
B i t  m a n i p u l a t i o n  
B r a n c h e s  b a s e d  e x p l i c i t l y  o n  h a r d w a r e  s t a t u s  
U s e  o f  a l l  h a r d w a r e  d a t a  t y p e s  a n d  o p e r a t o r s  

P R O G R A M M I N G  L A N G U A G E S  
F O R T R A N :  e x t e n d e d  v e r s i o n  o f  A N S I  S t a n d a r d  F O R T R A N  

(X3 .9 -1966 )  
B A S I C ;  m o s t  p o w e r f u l  c u r r e n t l y  a v a i l a b l e  
C O B O L :  h i g h e s t  l e v e l  o f  F e d e r a l  G o v e r n m e n t  S t a n d a r d  

D A T A  M A N A G E M E N T  

S U P P O R T  S O F T W A R E  
E D I T :  e d i t i n g  o f  s o u r c e  o r  t e x t  f i l e s  
S O R T :  s o r t  a n d / o r  m e r g e  o f  m u l t i p l e  f i l e s  
T R A C E :  d e b u g g i n g  t o o l  f o r  F O R T R A N  a n d  S y s t e m s  P r o g r a m  

S C I E N T I F I C  S O F T W A R E  
S c i e n t i f i c  L i b r a r y  
S T A R  â € ”  S t a t i s t i c a l  A n a l y s i s  R o u t i n e s  

D I A G N O S I S  O F  H A R D W A R E  

S t a n d - a l o n e  d i a g n o s t i c s  
M i c r o d i a g n o s t i c s  

s y s t e m  t o  o v e r  $ 5 0 0 , 0 0 0  f o r  l a r g e  P R I C E  I N  U S A :  $ 1 2 5 , 0 0 0  f o i  
s y s t e m .  

M A N U F A C T U R I N G  D I V I S I O N :  H P  D a t a  S y s t e m s  
1 1 0 0 0  W o l f e  R o a d  
C u p e r t i n o ,  C a l i f o r n i a  9 5 0 1 4  

Jamshid Basij i  
Since coming to  HP in  1969,  J im Basi j i  has worked on 
h igh -speed  I /O  p rocess ing  techn iques ,  deve loped  the  
arch i tecture of  the I /O system and centra l  data bus for  the 
HP 3000,  and he lped des ign  the  I /O processor  and 
cent ra l  processor  modules for  the HP 3000.  A graduate o f  
the Univers i ty  of  Cal i forn ia at  Berkeley,  J im received h is  
B.S.E.E. degree in 1965 and his M.S.E.E. degree in 1966. 
Be fore  jo in ing  HP,  he  worked on  computer  deve lopment  
and advanced comput ing  techn iques  fo r  IBM.  H is  idea  
of  a fasc inat ing way to spend h is  f ree moments is  wi th a 
good  book .  

Arndt B. Bergh 
With HP since 1 956. Arne Bergh has had a var iety of  
research  and deve lopment  respons ib i l i t ies  as  a  member  
o f  HP Laborator ies  and var ious operat ing Div is ions.  H is  
p ro jec ts  have inc luded ins t ruments ,  magnet ic  dev ices ,  
memor ies ,  and computers ,  the la tes t  be ing the hardware 
design of  the HP 3000.  He holds four  patents and has 
o thers  pend ing on the HP 3000 and on a  1024-b i t  b ipo lar  
ROM. Arne rece ived the A.B.  degree in  chemis t ry  f rom 
St .  Olaf  Col lege in  1947 and the M.S.  degree in  physics 
f rom the Univers i ty  o f  Minnesota in  1950.  He 's  a  member  
of  ACM and IEEE. He has a pr ivate p i lo t 's  l icense,  but  h is  
real  passion is  f ly ing over  the water ,  rac ing h is  Daysai ler  
sa i lboat  in  loca l ,  reg ional  and nat iona l  compet i t ion.  

14 

© Copr. 1949-1998 Hewlett-Packard Co.



Software for a Multi l ingual Computer 
SPL is a high- level  language that produces code 
that 's as eff icient as other systems' assembly-language 
code.  Other  3000 languages are  FORTRAN, BASIC and 
COBOL.  

by William E. Foster 

PROGRAMMING LANGUAGES NOW AVAIL 
ABLE FOR THE HP 3000 USER are FOR 

TRAN, BASIC, and SPL (Systems Programming 
Language). COBOL will be available in summer 
1973. The system will support all these languages 
simultaneously. 

Systems Programming Language 
SPL is an ALGOL-like language. Its objective is 

to provide systems programming capability from a 
high-level language rather than the traditional as 
sembly language. The benefits are faster coding and 
easier debugging. Virtually all the HP 3000 soft 
ware is written in SPL. 

It's imperative, of course, that a systems pro 
gramming language produce efficient object code, 
and this was another major objective of SPL. Code 
optimization has been achieved through the logic 
of the compiler and through close correlation be 
tween the SPL syntax and the 3000 instruction set. 

A significant aspect of SPL is that it may be used 
as either a machine independent or a machine de 
pendent programming language. At the machine 
independent level, the syntax of SPL closely re 
sembles that of ALGOL. It isn't necessary for the 
programmer to understand the architecture of the 
3000 to program at this level. 

The machine dependent programmer is one who 
has some knowledge of the 3000 architecture (in 
struction set, stack, status register, etc.); the greater 
his knowledge, the more he is able to make use of 
the machine dependent features of SPL. The effect 
of using these features of SPL is improved object 
code. 

Fig. 1 illustrates the two levels of SPL applied to 
the same programming problem. Fig. 2 is an exam 
ple of a more typical SPL program. 

F O R T R A N / 3 0 0 0  
FORTRAN is one of the most widely used and 

oldest programming languages. Initial specifications 
for the language date back to 1954. FORTRAN/3000 
is an ANSI-standard compiler with extensions that 
enhance the capability of the language and use the 
features of the HP 3000. Among these features are 
CHARACTER variables, which were added to the 
language to provide the capability of string manipu 
lation. Additionally, a great deal of power is pro 
vided in the area of input/output operations. 
â€¢ Free-field I/O. Variables may be input and out 

put in a free-field manner, without the specifica 
tion of a FORMAT statement. 

â€¢ Output expressions. Expressions may be includ 
ed in the output list (Fig. 3). For example, 

WRITE (3,10) I*S,A + B 
is a legal FORTRAN/3000 statement. 

â€¢ Logical unit table. A global table is created by 
the compiler and built by the loader that is used 
to associate FORTRAN logical unit (storage de 
vice) numbers with internal file numbers. The 
FORTRAN programmer has the capability, with 
the use of library routines, to tailor this table to 
his own needs. For instance, he may explicitly 
open a file through a call to the file system in 
trinsic FOPEN, then set the returned file number 
to correspond to a particular FORTRAN unit 
number (say unit #7). Subsequent READ or 
WRITE statements using unit #7 would, in fact, 
be referencing this file. 

â€¢ FORMAT specification. Two important specifi 
cations have been added to the FORMAT state 
ment: the T-specification, which positions the 
format scanner to specific locations in the record, 
and the S-specification, which outputs character 
data with a field width that corresponds to the 

15 

© Copr. 1949-1998 Hewlett-Packard Co.



Machine independent method 
The conventional approach, used in most program 
ming languages, would be to use a temporary vari 
able in making the exchange: 

SPL statement 
TEMP:  =  A ;  

A:  = B;  

B :  =  TEMP;  

Purpose 
Store  the  va lue  o f  
A  i n  T E M P .  
S to re  the  va lue  o f  
B in A.  
S to re  the  o r ig ina l  
va lue  o f  A  in  B .  

Generated Code 
LOAD A 

STOR TEMP 

LOAD B 

STOR A 

LOAD TEMP 

STOR B 

Machine dependent method 
A more efficient approach would be to use the spe 
cial  SPL symbol TOS. When used in place of an 
identifier, this symbol denotes the current top of 
stack. 

SPL statement Purpose 
T O S :  =  A ;  P u s h  t h e  v a l u e  o f  

A  on to  the  s tack .  
A :  =  B ;  S t o r e  t h e  v a l u e  o f  

B in A.  
B :  =  T O S ;  S t o r e  t h e  c u r r e n t  

va lue  tha t  i s  on  the  
top  o f  the  s tack  in to  
B ,  then  pop the  s tack .  

Generated Code 
L O A D  A  

L O A D  B  
S T O R  A  
S T O R  B  

F ig .  1 .  An  SPL  p rog ram to  swap  t he  va l ues  o f  two  i n t ege r  
v a r i a b l e s ,  A  a n d  B ,  i l l u s t r a t i n g  t h e  m a c h i n e  d e p e n d e n t  
and  mach ine  i ndependen t  l eve l s  o !  t he  l anguage .  

length of the associated list element (Fig. 3). 
â€¢ Direct-access I/O. Disc files may be referenced 

as direct access devices. For example, the state 
ment 

READ (3@RECNUM] A,B 
reads from logical unit #3 the record specified by 
RECNUM, and transmits the data to the list ele 
ments A and B. 
Other extensions of standard FORTRAN are 

mixed-mode arithmetic, free format program entry 
for more convenient usage from terminals, removal 
of restrictions on indexing and DO-loops, and an 
interactive debugging facility. 

Machine dependent characterist ics of  FOR 
TRAN/3000 are that programs are recursive and 
reentrant. In the HP 3000, code and data are stored 
separately, and code is never altered. This means 
that programs can be shared by several jobs. If one 
job is using a program and is interrupted by another 
job that uses the same program, the first job can 
later reenter the program and continue from the 
point of interruption. Thus programs are reentrant. 
Recursive means that programs can call  them 
selves. Another machine dependent feature is 
that storage for local variables is allocated on the 
stack dynamically when functions or subroutines 
are entered, and deallocated upon exit. 

F ig .  2 .  A  ma t r i x  i nve rs ion  rou t i ne  f rom the  HP 3000  Sc ien  
t i f i c  L i b r a r y ,  w r i t t e n  i n  S P L .  T h e  c o m p i l e r  o u t p u t  s h o w n  
he re  i nc ludes  much  op t iona l  i n fo rmat ion  (shown in  co lo r ) ,  
such  as  sequence  numbers ,  PB- re la t i ve  address  o f  source  
s t a t e m e n t s ,  a  B E G I N / E N D  c o u n t ,  a  s y m b o l  t a b l e  d u m p ,  
a n d  a  m a c h i n e  c o d e  d u m p .  

16 

© Copr. 1949-1998 Hewlett-Packard Co.



B A S I C / 3 0 0 0  
The HP 3000 BASIC subsystem runs as an inter 

preter rather than a compiler, which means that 
programs are not translated into machine code that 
is directly executable, but into an intermediate 
language that is executed by control routines. 

The primary reasons for having an interpreter 
instead of a compiler are faster development and 
greater debugging facilities. The interactive debug 
ging mode in BASIC provides the following capa 
bilities: 
â€¢ Tracing of the path of execution through a pro 

gram and changes in the values of variables 
â€¢ Interactively displaying the dynamic nesting 

structure of a program, that is, the order in which 
programs and functions are called 

â€¢ Displaying and modifying the values of variables 
â€¢ Altering the execution sequence of a program. 

One aspect of an interpreter is that programs are 
really data to the interpreter. Therefore, BASIC 
programs do not execute as code segments and so 
are not sharable. For this reason, HP is currently 
developing a BASIC compiler that accepts the in 
ternal file generated by the interpreter and gener 
ates executable code. In this way, BASIC programs 
will not only run as sharable code segments, but 
will also execute faster. 

The BASIC/3000 language is a superset of HP 
2000 BASIC, incorporating many extensions: 

2 0 0 0  
26 numeric arrays 
26 string variables 
one data type (32-bit real) 

3000 
286 numeric arrays 
286 strings or string arrays 
four data types (16-bit integer, 32-bit real, 48-bit 
real, 64-bit complex) 

Other extensions include compound statements 
(Fig. 4), mixed-mode arithmetic, multiple-line func 
tions, string-valued functions, access to all MPE 

WRITE(6 ,10 )  "PRESSURE" ,  P  
W R I T E ( 6 , 1 0 )  " T E M P E R A T U R E " ,  2 * T  

10  FORMAT ( "  THE  VALUE FOR " ,  S ,  " IS " ,  F7 .3 )  

Result: (assume P = 1.0339 and T = 55.87) 

THE VALUE FOR PRESSURE IS  1 .034  
T H E  V A L U E  F O R  T E M P E R A T U R E  I S  1 1 1 . 7 4 0  

DO- 
DOEND 
Pairs 

1 0  I F A > B T H E N 6 0  
2 0  E L S E  D O  
3 0  I F  B  <  =  C T H E N  B  =  C  +  1  

- M O  I F  C  #  D  T H E N  D O  
5 0  C  =  C  +  F N K ( D , D * A , C )  
6 0  D  =  Z  +  A  

> 7 0  D O E N D  
8 0  E L S E  1 1 0  
9 0  D O E N D  

F i g .  4 .  A n  e x a m p l e  o l  a  B A S I C / 3 0 0 0  c o m p o u n d  s t a t e  
ment. 

files and peripheral devices, capability of calling 
SPL procedures, many additional predefined string 
and numeric functions, string arrays, program over 
lays, picture I/O formatting, statement execution 
frequency reporting, dynamic array redimension- 
ing, handling of non-BASIC files, and additional 
file commands. 

SPL, BASIC, and FORTRAN are all recursive, 
that is, programs, procedures, and subroutines can 
call themselves. Fig. 5 illustrates this property. 

F ig .  3 .  FORTRAN/3000  p rog ram i l l us t ra t i ng  t he  use  o f  an  
e x p r e s s i o n  i n  a n  o u t p u t  l i s t ,  a n d  t h e  " S "  s p e c i f i c a t i o n  i n  
the FORMAT s ta tement .  

C O B O L / 3 0 0 0  
COBOL (COmmon Business Oriented Language) 

is the result of an effort to establish a standard pro 
gramming language for business processing. The 
original specifications were drawn up in 1959 by 
CODASYL (the Conference on DAta SYstems Lan 
guages). COBOL/3000 conforms to the highest level 
of Federal Government Standard COBOL and has 
the added capability of interprogram communica 
tions. 

COBOL is a structured language that consists of 
Indentification, Environment, Data, and Procedure 
divisions. A feature of COBOL that makes it attrac 
tive in commercial applications is that it provides 
fixed-point arithmetic up to 18 digits; this elimi 
nates the problem of round-off error which exists 
in "floating-point" formats. 

Switching Languages Made Easy 
HP 3000 languages share many common attri 

butes that aid the user in switching from one lan 
guage to another. Among the areas of compatibility 
are: 
â€¢ Program-to-program communication. SPL, FOR 

TRAN, and COBOL programs can all call pro 
grams written in either SPL, FORTRAN, or 
COBOL. BASIC programs can call SPL, FOR 
TRAN, or COBOL programs as well as other 
BASIC programs. Files written in one language 
are accessible by other languages. 

â€¢ Compiler construction. The command languages 
for all of the compilers are consistent. For ex- 

17  

© Copr. 1949-1998 Hewlett-Packard Co.



SPL 
I N T E G E R  P R O C E D U R E  F A C  ( N ) ;  V A L U E  N ;  I N T E G E R  N ;  
F A C : =  I F N  < =  1  T H E N  1  E L S E  N * F A C  ( N - 1 ) ;  

FORTRAN 
I N T E G E R  F U N C T I O N  F A C  ( N )  
IF (N .  GT .  1 )  GO TO 10  
F A C  =  1  
RETURN 

1 0  F A C  =  N  â € ¢  F A C  ( N - 1 )  
RETURN 
END 

BASIC 
100  DEF INTEGER FNF ( INTEGER N)  
1 1 0  I F N  < =  1  T H E N  R E T U R N  1  
1 2 0  E L S E  R E T U R N  N  *  F N F  ( N - 1 )  
130  FNEND 

R e t u r n  t h e  A n s w e r  

R e t u r n  t h e  A n s w e r  N  x  F A C  ( N - 1 )  

F i g .  5 .  S P L ,  B A S I C / 3 0 0 0 ,  a n d  F O R T R A N / 3 0 0 0  p r o g r a m s  
t o  c a l c u l a t e  i n t e g e r  f a c t o r i a l s .  A l l  t h r e e  l a n g u a g e s  h a v e  
recurs ive  capab i l i t ies .  

ample, the commands that tell the compiler to 
merge a source fi le with an update f i le are 
identical for each compiler. Also, the language 
translators share the same system library rou 
tines. These library routines are used both during 
compilation and as run-time routines to imple 
ment the language features. For example, the 
program that converts a character string into an 
internal binary number is used both by SPL at 
compile time and by the FORTRAN formatter at 
execution time. This modularity not only simpli 
fies the task of making changes to common pro 
grams, but also reduces the development cost by 
eliminating duplication of effort. The steps in 
compiling and executing programs are as follows 
(Fig. 6): 

1) The source program (main program plus sub 

routines) is compiled into relocatable modules 
that are stored in the user's subprogram file 
(USL). If the programmer decides to change any 
part of his program, he can recompile any sub 
routine, or the main program, into the USL file 
and the old copy of that subroutine will be de 
activated. (It will still exist in the file, and could 
later be reactivated.) The relocatable modules 
can be added, deleted, activated, or deactivated 
from the USL. Also, these modules can be copied 
from one USL to another. 

2) Next, the USL file is prepared into a Program 
File. Preparation consists of segmenting the code 
and defining the initial stack size. 

3] Now, the Program File can be allocated/exe 
cuted. The segments are allocated into virtual 
memory, external references are satisfied from 
the libraries, and the program is scheduled for 
execution according to its priority. 

General -Purpose Appl icat ions Software 
Several general-purpose software packages are 

now available for the HP 3000. There is a scientific 
library, an interactive statistical package, a text 
editor, and a text formatter. Other packages will 
be available in the future. 

Scientific Library. The scientific library consists of 
a collection of SPL procedures that reside in the 
system library. The initial capabilities include: 
error function/complimentary error function, gam 
ma and loge gamma functions, exponential, sine- 
cosine, Fresnel integrals, elliptic integrals and ellip 
tic functions, Bessel functions, and statistical pro 
cedures including elementary statistics (kurtosis, 
means, etc.], one-way frequency distribution, cor 
relation, and multiple linear regression. This library 

Compi ler  Compi ler  Segmenter 

Segmenter 

Loader . 

A l l o c a t i o n /  
E x e c u t i o n  

- Libraries 

F i g .  6 .  H P  3 0 0 0  c o m p i l a t i o n / e x e c u t i o n  p r o c e s s .  

18 

© Copr. 1949-1998 Hewlett-Packard Co.



will be kept open for future enhancement. 

Interactive Statistical Analysis Package (STAR). 
This subsystem provides the user with the capabil 
ity of performing various kinds of statistical analy 
sis in an interactive (question-answer] mode. This 
package may also be used in a batch mode. All of 
the statistical capabilities that exist in the scientific 
library are available to the STAR user, along with 
the following additions: data file manipulation 
(creation, editing, etc.], scatter diagrams, histo 
grams, and variable transformation. 

The output from STAR may be to the user's ter 
minal, or to a line printer. All results are displayed 
in an easily readable, tabular form. The data may 
be input directly from the terminal, or from the 
batch input device, or from a file created by a FOR 
TRAN, SPL, or BASIC program. 

In keeping with the modular structure of the 
HP 3000 system, STAR makes use of the scientific 
and compiler libraries in performing its functions. 
As new capabilities are added to the scientific li 
brary, these capabilities will be easily extendable 
to STAR merely by adding the necessary input/out 
put routines and calling on the scientific library to 
perform the calculations. 

Text Editor. EDIT/3000 is a general-purpose utility 
that provides the user with the capability of easily 
creating and manipulating files of upper and lower 
case ASCII characters. Lines and characters can be 
inserted, deleted, replaced, searched for, and so on. 
The files to be edited can be FORTRAN, SPL, BA 
SIC, or COBOL source files, or textual material 
such as reports. 

One feature of this program not usually found in 
text editors is its ability to selectively modify text 
depending on conditions found within the text it 
self. When this is done, the "edit language" has an 
ALGOL-like structure with the metacommands 
WHILE, NOT, and OR acting upon statements that 
can be compound statements (groups of statements 
enclosed by a BEGIN-END pair]. These commands 
and statements can be nested indefinitely. Interac 
tive users can write an edit program to send mes 
sages to the terminal and place input from the user 
in appropriate places within the text file. Together, 
these features make the editor a powerful tool for 
many applications other than simple program edit 
ing. 

Text Formatter. This program lists ASCII files un 
der the control of format records imbedded in the 
text file. FORMAT/3000 may also be used with the 
text editor. The formatter provides the capability 
of preparing simple documents to be listed on line 

printers or other ASCII devices. 

Acknowledgments  
The following people were directly involved in 

the implementation of the languages and general- 
purpose products: 

SPL: Doug Jeung, Gerry Bausek, Tom Blease. 
FORTRAN: Jerry Smith, Terry Hamm, Jim Hew 

lett, John Couch 
BASIC: Mike Green, Terry Opdendyk, John Ship- 

man 
COBOL: Steve Ng, Waldy Haccou, John Welsch, 

John Yu, Paul Rosenfeld, Gerry Bausek 
STAR, Scientific Libraries: Paul Rosenfeld, Dave 

Johnson 
Editor/Formatter: Fred Athearn. 

Credit is also due the many people in software QA 
and publications who have done such a great job.ff 

Will iam E. Foster 
As sect ion manager for  systems sof tware,  Bi l l  Foster  is  
respons ib le  fo r  p rogramming languages  and opera t ing  
systems for  2100.  2000,  and 3000 Computer  Systems.  Bi l l  
received h is  B.A.  degree in  mathemat ics f rom Cal i forn ia  
State Universi ty at  San Jose in 1966, then spent the next 
three years developing sate l l i te  orb i t  predic t ion,  t rack ing,  
and reentry sof tware.  In 1969 he got  h is  M.S.  degree in 
appl ied mathemat ics f rom the Univers i ty  of  Santa Clara 
and jo ined HP as a sof tware pro ject  manager .  He became 
a sect ion manager  in  1971 and assumed h is  present  job 
in  1972.  A  member  o f  ACM and the  Amer ican 
Management  Assoc ia t ion,  B i l l  is  now a candidate for  the 
M.B.A. degree at  Santa Clara.  He enjoys gol f ,  tennis,  
b icyc l ing,  basketba l l ,  hydrop lan ing (he bu i l t  h is  own 
boat ) ,  and explor ing the Bay Area by motorcyc le ,  and 
he 's  now tak ing f ly ing lessons.  

19 

© Copr. 1949-1998 Hewlett-Packard Co.



Single Operating System 
Serves All HP 3000 Users 
The Mul t iprogramming Execut ive operat ing system takes 
care of  command in terpretat ion,  f i le  management ,  
memory  management ,  schedu l ing  and d ispatch ing ,  
and input /output  management  for  t ime-shar ing,  batch,  
and real-t ime users. 

by Thomas A.  Blease and Alan Hewer 

MULTIPROGRAMMING EXECUTIVE (MPE/ 
3000) is a general-purpose disc-based operat 

ing system that supervises the operation of the HP 
3000 Computer System and its variety of users. 

MPE/3000 allows users to access the system con 
currently in three distinct but compatible modes: 
batch processing, time sharing, and real-time proc 
essing. MPE is designed to take maximum advan 
tage of system resources, to make the system easy 
to use, and to relieve the user of the need for de 
tailed knowledge of the internal hardware or direct 
interaction with it. Each user's environment is pro 
tected; program protection is provided by hardware 
and data protection by any of several software fa 
cilities depending on the degree of security desired. 

MPE/3000 has a modular organization that makes 
it more convenient to check out and maintain, and 
provides a flexible base on which additional capa 
bilities may later be developed. Users interact with 
the 3000 System through the command interpreter, 
one of the functional units of MPE. Programming 
access to the hardware is provided by system rou 
tines called MPE intrinsics. Uniform access to disc 
files and input/output devices is provided by the 
MPE file system. MPE also has memory manage 
ment, an input/output system, and scheduling for 
dynamic allocation of resources. 

Process Structure 
Underlying the modularity of MPE/3000 and its 

ability to support three kinds of users concurrently 
is its process structure. Except for a few specialized 
system controls such as the dispatcher and inter 
rupt structure, all operating-system and user func 
tions are performed as a series of processes. 

A process is the basic entity that can be executed 
by the central processor. While a program identi 

fies a static sequence of instructions and data, a 
process denotes the dynamically changing sequence 
of states of an executing program. Under MPE/ 
3000, a process consists of: 
â€¢ A unique process control block which describes 

and controls the process, 
â€¢ A private [stack] data segment, accessible only 

by the process, for data operation and storage, 
and 

â€¢ An instruction in a code segment which may be 
private to the process or may be shared with 
other processes. 
Processes are organized hierarchically in a tree 

structure as shown in Fig. 1. Each process has only 
one immediate ancestor, but may have several 
immediate descendants. Control and information 
flows are restricted to proceed only along branches 
of this logical tree structure. The primary interac 
tions which are provided for are creation, deletion, 
control, and intercommunication. 

The root process is the progenitor. All immediate 
descendants of the progenitor are system processes. 
They include: 

â€¢ I/O system controller processes, which queue, 
initiate, and complete all input/output requests 
for all devices configured under the operating 
system. 

â€¢ The make-a-process-present (MAPP) process, 
which schedules the allocation of memory re 
sources to data segments belonging to active pro 
cesses. 

â€¢ The device recognition [DREG) process, which 
performs the administrative tasks of allocating 
input/output devices and also verifying and initi 
ating new users under the operating system. 

â€¢ The user controller (UCOP) process, which is 

20 

© Copr. 1949-1998 Hewlett-Packard Co.



System 
Processes 

Sessions Jobs T a s k s  

F i g .  1  M u l t i p r o g r a m m i n g  E x e c u t i v e  ( M P E )  o p e r a t i n g  s y s  
tem to r  HP 3000 has  a  p rocess  s t ruc tu re .  A l l  func t ions  a re  
per formed as  a  ser ies  o t  p rocesses.  

defined as the ancestor of all user processes cur 
rently running under MPE/3000. The primary re 
sponsibility of UCOP is to create, supervise, and 
delete user process tree structures. 
Of these system processes, the most important is 

UCOP, the root process of the user structure. An 
immediate descendant, created by UCOP, is called 
a main process, and the code executing under it is 
normally the command interpreter. The process 
tree structure originating at a main process defines 
a job (job/session/task). A basic feature of a job 
is its complete independence from all other jobs 
currently existing. 

Apart from the progenitor and several specific 
system processes which together constitute the op 
erating system and which must exist, the process 
tree structure is completely dynamic, expanding 
and contracting as operating system and user re 
quirements change. 

Memory  Management  
The primary function of MPE/3000 memory man 

agement is the allocation of main memory to meet 
the demands of users. "Main memory" is core mem 
ory as opposed to disc memory. The memory man 
agement module is also responsible for code seg 
ment table entries, data segment table entries, and 
overlay disc storage for data segments. 

Main Memory Organizat ion 
Main memory is organized into three contiguous 

areas (Fig. 2). The first area contains system tables, 
interrupt procedures, and MPE intrinsics which 
must be core resident, that is, always present and 
accessible in main memory. 

The second area is of variable length and is used 
to satisfy requests from users for core resident 
storage. This area is dynamically expanded and con 
tracted and can be of zero length. 

The remaining main memory is referred to as 
Jinked memory. Linked memory is composed of 
free (not currently being used] and assigned (allo 
cated for a code or data segment) areas of varying 
sizes. Areas not currently in use are linked together 
and form the free space list. Similarly, the assigned 
areas are linked together and form the assigned 
space list. Each area contains an information header 
defining its size. If the area is assigned, the header 
also contains information about disposition (I/O 
pending, etc.), segment type (code or data with in- 

L o c a t i o n  0  

A s s i g n e d  
S e g m e n t  = 0  

Free  
S e g m e n t  =  

A s s i g n e d  
S e g m e n t  = 2  

A s s i g n e d  
S e g m e n t  = 1  

Free  
S e g m e n t  = 2  

A s s i g n e d  
S e g m e n t  = 3  

Free  
S e g m e n t  = 0  

Locat ion  
1 7 7 7 7 7 8  

A s s i g n e d  F r e e  
H e a d  H e a d  

P o i n t e r  P o i n t e r  

R e s e r v e d  C o r e  
( C o r e  R e s i d e n t  

U s e r  A r e a )  

F ig .  2  Ma in  memory  i s  o rgan i zed  i n to  rese rved  and  l i nked  
m e m o r y .  L i n k e d  m e m o r y  c o n s i s t s  o t  t r e e  a n d  a s s i g n e d  
areas. 

21 

© Copr. 1949-1998 Hewlett-Packard Co.



Relocatable Binary Module y 

Virtual Memory 

C o d e  S e c o n d a r y  
S e g m e n t ^  M e m o r y  

C o m  
piler 

O Code 
Source 

F i g .  3  P r o g r a m  s e g m e n t a t i o n  g i v e s  t h e  H P  3 0 0 0  v i r t u a l  
memory .  MPE au toma t i ca l l y  b r i ngs  i n to  ma in  memory  on l y  
t h o s e  c o d e  s e g m e n t s  t h a t  a r e  c u r r e n t l y  n e e d e d .  T h u s  a  
u s e r ' s  p r o g r a m  m a y  b e  m u c h  l a r g e r  t h a n  m a i n  m e m o r y .  

dex into code segment table or data segment table), 
disc address, priority, and frequency of access. This 
additional information is used in the selection of 
assigned areas to overlay when a request cannot 
be satisfied from the free area list. 

Vir tua l  Memory 
Virtual memory consists of main memory plus an 

area of mass storage called secondary memory, or 
the swapping area (Fig. 3). The swapping area is on 
disc or drum memory, although not necessarily on 
a single device; it may include areas of several de 
vices. In the swapping area is a collection of pieces 
of code or data defined as segments. As a program 
executes, segments are swapped in and out of main 
memory by the operating system. Whether a seg 
ment is in main memory or absent, it is neverthe 
less part of virtual memory. Thus from the point of 
view of a user, he is working with a memory that 
appears to be many times larger than the actual 
physical size of main memory. His own program 
may exceed the 65K-word maximum main memory 
capacity and still allow space for many other users 
on the same machine. 

As shown in Fig. 3, code is entered into the com 

puter in some source language, is translated to bi 
nary form by a compiler, and is stored in the file 
area. Each compiled program or subprogram exists 
in the file area as a relocatable binary module. 

When the user is ready to execute his program, 
the appropriate command is given and the operat 
ing system loads the binary modules of his program 
into the swapping area of virtual memory. Simul 
taneously with this transfer, the binary modules 
are formed into segments as specified by the user. 
In some cases no actual change takes place; for ex 
ample, a small program may consist of just one 
segment and the loader will probably not move it 
from a file disc onto the system disc unless the user 
wants this done. 

Data segments are allocated dynamically when a 
program is loaded, and are always on the system 
disc. 

Schedul ing/Dispatching 
To accommodate the different modes of opera 

tion which may coexist under MPE/3000, the sched 
uling system is based upon a priority structure. All 
processes are logically organized into a linear mas 
ter scheduling queue in order of their priority. 

The dispatcher is responsible for allocating the 
central processor to the active processes in the 
scheduling queue. A process is considered active if 
it requires access only to the central processor. 
Otherwise, it is considered inactive, awaiting some 
other resource. 

The basic organization of the scheduling queue 
is shown in Fig. 4. System processes are scheduled 
directly onto the master queue. Subqueues are used 
to schedule processes belonging to users. Note that 
since processes are scheduled independently, not 
all processes in a job are necessarily entered in the 
same subqueue. 

There are five standard subqueues. Three are 
linear in structure. In a linear (sub)queue, the high 
est priority active process is given access to the 
central processor by the dispatcher, and it main 
tains this access until it becomes inactive or until 
it is preempted when a higher priority process be 
comes active. The three linear subqueues are for 
core-resident processes, real-time processes, and 
low-priority (idle) processes. 

The other two subqueues are circular subqueues. 
These are for time-share processes and batch proc 
esses. In a circular subqueue, all processes are con 
sidered to be of equal priority and each active proc 
ess accesses the central processor for a certain time 
interval. At the end of this time interval, the proc 
ess releases the CPU and the next active process 
in the subqueue is dispatched. This continues in a 

22 

© Copr. 1949-1998 Hewlett-Packard Co.



HighRank-4 - -  â€”^ Low Rank 

High Priority 

I  
Low Priority 

Core Resident 

Real Time 

I/O Bound 

Compute Bound 

I/O Bound 

Compute Bound 
Batch 

Idle 

Subqueues 

Fig .  4  MPE schedu les  processes on the  bas is  o f  p r io r i t ies .  
P r o c e s s e s  a r e  o r g a n i z e d  i n t o  a  l i n e a r  m a s t e r  q u e u e  a n d  
f ive  subqueues.  

round-robin manner. 
Each of the two circular subqueues is composed 

of two subqueues â€” a higher priority subqueue con 
taining I/O-bound processes and a lower priority 

Please complete the above ana mai l  this sect ion 
with address label  on reverse side to:  

File System I/O 

Privileged I/O 

Real-Time I/O User-Supplied 
Driver 

~~*m ~~*â‚¬ g! 

F ig .  5  Bas i c  HP  3000  i npu t / ou tpu t  access  me thods .  

subqueue containing compute-bound processes. The 
dynamic rescheduling of processes between the 
dual subqueues is performed by MPE/3000. In the 
case of highly interactive time-share processes, 
this arrangement provides quicker response at the 
terminal. 

I /O  System 
The purpose of the MPE/3000 I/O system is to 
perform input/output operations for the file sys 
tem. The user doesn't interact directly with the I/O 
system, but indirectly via the file system. However, 
privileged users may access the I/O system directly, 
and users with real-time capability may bypass 
both the file system and the I/O system for direct 
access to specific devices. Fig. 5 shows the basic 
I/O access methods. 

In a typical I/O operation the sequence of opera 
tions is as follows. An executing user process gen 
erates a file request to the file system. The file 
system calls the attach-I/O intrinsic. Attach-I/O 
allocates an I/O queue entry and links it into the 
queue for the device specified. When all earlier 
requests for the device have been completed and 
the I/O monitor process has the highest priority 
among all other processes, the I/O monitor process 
begins execution of this request. There is one I/O 
monitor process for each device controller. 

The I/O monitor process first assures that the 
data buffer is frozen in memory. The initiator sec 
tion and the I/O program issue an SIO instruction 
to the device controller and return control to the 
I/O monitor process. Data is then transferred 
between the I/O device and the data buffer. 

When the I/O monitor process is again dispatch- 

23 

© Copr. 1949-1998 Hewlett-Packard Co.



ed, it recognizes that an interrupt has occurred and 
calls the completion section of the device driver. 
The completion section checks for successful com 
pletion and returns the results of the I/O operation 
to the file system via the I/O control block. The 
user's process is activated upon I/O completion. 

When the user process is again dispatched, re 
turn is made to the point following the file request. 

Acknowledgments  
The following people were directly involved in 

the design and implementation of MPE/3000: HarÃan 
Andrews, Larry Birenbaum, Terry Branthwaite, 
Jean-Michel Gabet, Jack MacDonald, Bob Miya- 
kusu, Chris Larson, Tom Ellestead, Paul Rosenfeld, 
Steve Brown, and Myron Zeissler.5 

Thomas A.  Blease 
Tom B lease 's  career  in  so f tware  des ign  and  
implementat ion got  i ts  s tar t  in  1960 when he rece ived h is  
B.A.  in  mathemat ics f rom the Univers i ty  o f  Cal i forn ia at  
Berke ley.  In  the ensuing years  he he ld  pos i t ions in  that  
f ie ld  wi th  severa l  organizat ions in  F lor ida and Cal i forn ia .  At  
HP s ince  1969 ,  he  par t i c ipa ted  in  the  des ign  and  imp le  
menta t ion  o f  SPL and MPE fo r  the  HP 3000.  He 's  a  mem 
ber  o f  ACM and he en joys a  good h ike on h is  days o f f .  

Alan Hewer  
Alan Hewer received h is  B.A.  and M.A.  degrees in  
mathemat ics  f rom Chr is t ' s  Co l lege,  Cambr idge Univers i ty ,  
England in  1960 and 1963,  respect ive ly .  Between 1960 
and  1970  he  worked  on  so f tware  des ign  and  imp lementa  
t ion wi th  var ious companies in  England and the Uni ted 
States.  When he jo ined HP in 1970, he was f i rs t  
involved in the hardware design of  the HP 3000.  Later  in  
the pro ject  he took on h is  recent  responsib i l i t ies in  
t he  des ign  and  imp lemen ta t i on  o f  MPE/3000 .  

A d d r e s s  C o r r e c t i o n  R e q u e s t e d  
H e w l e t t - P a c k a r d  C o m p a n y .  1 5 0 1  P a g e  M i l l  

R o a d ,  P a l o  A l t o .  C a l i f o r n i a  9 4 3 0 4  

HEWLETT-PACKARD JOURNAL 
JANUARY 1973  Vo lume  24  â€¢  Numbe rs  

Technica l  In format ion f rom the  Laborator ies  ot  
Hewle t t -Packard  Company  

H e w l e t t - P a c k a r d  S  A  C H - 1  2 1  7  M e y r i n  2  
G e n e v a  S w i t z e r l a n d  

Y o k a g a w a - H e w l e t t - P a c K a r d  L t d  .  S h i b u y a - K  
T o k y o  1 5 1  J a p a n  

Editorial Director â€¢ Howard L Roberts 
Managing Editor â€¢ Richard P Dolan 

Contributing Editors â€¢ Ross H. Snyder, 
Laurence O.  Shergal is  

Art Director. Photographer â€¢ Arvid A Daniels 
Art Assistant â€¢ Erica R Helstrom 

Administrative Services â€¢ Ruth G Pa 

B u l k  R a t e  
U .S .  Pos tage  

Paid 
H e w l e t t - P a c k a r d  

C o m p a n y  

© Copr. 1949-1998 Hewlett-Packard Co.


	An Economical Full-Scale Multipurpose Computer System
	A Computer for All Reasons
	Central Bus Links Modular HP 3000 Hardware
	Software for a Multilingual Computer
	Single Operating System Serves all HP 3000 Users

