
JIM 1977

HEWLE1TPACKARD JOURNAL

\
m

: ; i â€¢ Â», "ik, >

© Copr. 1949-1998 Hewlett-Packard Co.

Smal l Computer System Suppor ts
Large-Scale Mul t i -User APL
Power fu l , in terac t ive APL is now ava i lab le fo r the mul t i
l i ngua l HP 3000 Ser ies I I Computer Sys tem. A spec ia l
te rmina l d isp lays the APL character set .

by Kenneth A . Van Bree

APL (A PROGRAMMING LANGUAGE) is an
interactive language that allows access to the full

power of a large computer while maintaining a user
interface as friendly as a desktop calculator. APL
is based on a notation developed by Dr. Kenneth
Iverson1 of IBM Corporation over a decade ago, and
has been growing in popularity in both the business
and scientific community. The popularity of APL
stems from its powerful primitive operations and
data structures , coupled with its ease of programming
and debugging.

Most versions of APL to date have been on large and
therefore expensive computers. Because of the ex
pense involved in owning a computer large enough to
run APL, most of the use of APL outside of IBM has
been through commercial timesharing companies.
The introduction of APL 3000 marks the first time a
large-machine APL has been available on a small
computer. APL 3000 is a combination of software for
the HP 3000 Series II Computer System2 and a CRT
terminal, the HP 2641A, that displays the special
symbols used in APL. The terminal is described in the
article beginning on page 25.

Although the HP 3000 is normally considered a
small computer, APL \3000 is not a small version of
the APL language (see page!4). As a matter of fact,
APL 3000 has many features that have never been
available before, even on the large computers. For
example, although APL \3000 looks to the user just
like an interpreter, it is actually a dynamic compiler.
Code is compiled for each statement as it is encoun
tered; on subsequent executions of the statement, if
the compiled code is valid, it is re-executed. By
eliminating the interpretive overhead, a speedup on
the order of a factor of ten can be obtained in some
cases, although the speedup is dependent on the
amount of computation involved in the statement.

The basic data type of APL is an array, which is an
ordered collection of numbers or characters. Sub
script calculus, as defined by Philip Abrams,3 is a
method of selecting portions of an array by man
ipulating the descriptors that tell how the array is
stored. The use of subscript calculus in the dynamic

compiler allows computation to be avoided in many
cases, and eliminates the need for many temporary
variables to store intermediate results.

One problem that has always plagued APL users is
the limited size of most APL workspaces. A work
space in APL is a named data area that contains all the
data variables and functions that relate to a particular

C o v e r : I n t h e f o r e g r o u n d ,
M o d e l 2 6 4 1 A A P L D i s p l a y
S t a t i o n d e m o n s t r a t e s i t s
r o l e a s t h e p r i n c i p a l u s e r
i n t e r f a c e f o r A P L 3 0 0 0 , a n
enhanced vers ion o f APL (A
P r o g r a m m i n g L a n g u a g e)
tha t i s now ava i lab le on the
HP 3000 Ser ies I I Computer

System in the background.

In this Issue:

S m a l l C o m p u t e r S y s t e m S u p p o r t s
La rge -Sca le Mu l t i -Use r APL , by Ken
neth A. Van Bree . . page 2
A P L D a t a : V i r t u a l W o r k s p a c e s a n d
S h a r e d S t o r a g e , b y G r a n t J . M u n s e y p a g e 6
A P L G O L : S t r u c t u r e d P r o g r a m m i n g
F a c i l i t i e s f o r A P L , b y R o n a l d L .
J o h n s t o n p a g e 1 1
A P L 3 0 0 0 S u m m a r y p a g e 1 4

A Dynamic I nc remen ta l Comp i l e r f o r
a n I n t e r p r e t i v e L a n g u a g e , b y E r i c
J . V a n D y k e p a g e 1 7
A C o n t r o l l e r f o r t h e D y n a m i c C o m p i l e r , b y
Kenneth A. Van Bree, page 21.

E x t e n d e d C o n t r o l F u n c t i o n s f o r I n t e r a c t i v e
Debugging, by Kenneth A. Van Bree, page 23.

CRT Termina l Prov ides bo th APL and
ASCII Operat ion, by Warren W. Leong page 25

Printed in U.S.A. Â©Hewlett-Packard Company, 1977

© Copr. 1949-1998 Hewlett-Packard Co.

Dedicated APL System Mult i l ingual System

- g 3 h

I 2

S 1 oc

2.16

1.04

f 3

I

2.98 3.06

2.32

1.74

1 . 8

Standard Mix
51 2K Bytes

16 Terminals

A Scr ipts
B Scripts
C Scr ipts
D Scr ipts
E Scripts
F Scripts

Light Mix
3 8 4 K B y t e s

12 Terminals

5 A S c r i p t s
3 B S c r i p t s
2 C S c r i p t s
1 E S c r i p t
1 F S c r i p t

5 1 2 K B y t e s 3 8 4 K B y t e s 3 8 4 K B y t e s 5 1 2 K B y t e s

1 6 T e r m i n a l s 1 2 T e r m i n a l s 1 2 T e r m i n a l s 1 3 T e r m i n a l s

4 FORTRAN
4 BASIC
8 APL

6 BASIC

6 APL

3 FORTRAN

3 BASIC

6 APL

A Scr ip t
B Script
C Scr ip t
D Scr ipt
E Script
F Script

A Scr ip t
B Scr ipt
C Scr ipt
D Scr ipt
E Script
F Script

A Scr ip t
B Scr ipt
C Scr ip t
D Scr ipt
E Script
F Script

1 COBOL
12 APL

2 A S c r i p t s
2 B S c r i p t s
2 C S c r i p t s
2 D S c r i p t s
2 E S c r i p t s
2 F S c r i p t s

APL Scr ipts

A Ed i t i n te rac t i ve p rogram and execu te .
B Ed i t s imp le ca lcu la t ion p rogram and execu te .
C Ass ignmen ts and add i t i on i n ca l cu la to r mode .

D C o m p u t e b o u n d l a r g e w o r k s p a c e s w a p p i n g p r o g r a m .
E Compu te bound s imp le ca l cu la t i ons .
F C o m p u t e b o u n d p r i m e s p r o g r a m .

F i g . 1 . A v e r a g e r e s p o n s e t i m e s
for a range of ac t iv i t ies on an HP
3000 Ser ies I I Sys tem used on ly
f o r A P L a n d s i m i l a r d a t a f o r a
range of APL act iv i t ies on a mul t i
l ingual HP 3000 Ser ies I I System.
A system with 51 2 K bytes of main
memory wi l l suppor t up to 16 APL
terminals.

problem or application. Most other APL systems limit
a workspace to 100,000 bytes or less. APL 3000
eliminates this limitation by giving each user a vir
tual workspace. A workspace is limited only by the
amount of on-line disc storage available.

APL 3000 is the first APL system to include
APLGOL4 as an integral part. APLGOL is a block-
structured language that uses keywords to control the
program flow between APL statements. To facilitate the
editing of APLGOL programs, and to provide an en
hanced style of editing for APL programs and user data,
a new editor was added to the APL system. This editor
can be used on both programs and character data, and
includes many features never available before in APL.

One of the features of APL that makes program de
velopment easier is that program debugging can be
done interactively. When an error is encountered in an
APL program, an error message is displayed along with
a pointer to the place where the error was detected.
Execution is suspended at this point, and control is
returned to the user. In other versions of APL, the user is
allowed to reference or change only the variables that
are accessible within the function in which the error
occurred, and must resume execution within that func
tion. APL \3000 has implemented a set of extended
control functions that allow the user to access or change

any variable in the workspace and resume execution
within any function that has not yet completed execu
tion. These extended control functions can be used to
implement advanced programming techniques that
were previously difficult or impossible to implement in
APL. An example is backtracking, which involves sav
ing the control state at various points in the computa
tion and returning to a previously saved control state
when an error is detected.

The new features of APL 3000 are described in detail
in the articles that follow.

Performance Data
An HP 3000 Series II System with 512K bytes of main

memory will support a maximum of 16 terminals using
APL, or a combination of terminals using APL and other
languages. Fig. 1 shows typical response times for vari
ous combinations of terminal types, APL program
loads, and memory sizes.

Acknowledgments
The authors wish to acknowledge the contributions

of John Walters and Rob Kelley , without whose efforts
APL 3000 would never have become a product. John
served as project leader during the development stage
and was responsible for many of the technological

3

© Copr. 1949-1998 Hewlett-Packard Co.

innovations that are included in the final product.
Rob participated in the design of the incremental
compiler and his expertise in APLGOL helped make
this facility an integral part of APL 3000.

Many people contributed to the initial discussions
that led to the design of the incremental compiler. In
particular, Dick Sites was most responsible for
sketching out the compiling techniques. Larry Breed
and Phil Abrams helped us develop new techniques
for compiling APL while maintaining compatibility
with the original philosophy of APL. Jeff Misch-
kinsky was responsible for the implementation of
APLGOL and the design of the APL 3000 editor.
Alan Marcum offered design suggestions from a
user's point of view that helped us refine the product.

Our special thanks must go to Jim Duley, Paul Stoft,
and Ed McCracken, whose long-standing support of
our efforts helped us transform our ideas from a re
search project into a product. S

References
1. K.E. Iverson, "A Programming Language," John Wiley
and Sons, New York, 1967.
2. L.E. Shar, "Series II General-Purpose Computer Sys
tems," Hewlett-Packard Journal, August 1976.
3 . P .S. Abrams, "An APL Machine, "PhD disser ta t ion,

SLAG Report No. 114, Stanford University, February 1970.
4. R.A. Kelley and J.R. Walters, "APLGOL-2, a Structured
Programming System for APL," IBM Palo Alto Scientific
Center, Technical Report G320-3318, 1973.

Kenneth A. Van Bree
Ken Van Bree rece ived h is
bachelor 's degree in e lect r ica l
engineering from the Universi ty of
Michigan in 1 967, his master 's de
gree from Massachusetts Inst i tute
o f Techno logy in 1969, and the
degree of Electrical Engineer, also
f rom MIT, in 1971. Dur ing the
summer o f 1970 he he lped de
ve lop a computer -a ided des ign
p rog ram fo r t he HP 2100A Com
puter. Since joining HP Laboratories
fu l l - t ime in 1971 , he 's done com
puter -a ided dev ice model ing and
mask layout for a 4K RAM, and

he lped des ign and implement the APLX3000 compi le r . He 's a
member of IEEE. Ken was born in Newark, New Jersey and grew
up in the state of Michigan. He's single, l ives in Mountain View,
Cal i fornia, and enjoys backpacking, scubadiv ing, motorcycles,
photography, gourmet cooking, and designing and bui ld ing his
own furniture.

Introduction to APL

A P L (a n a b b r e v i a t i o n f o r A P r o g r a m m i n g L a n g u a g e) i s a
concise high- level language noted for i ts r ich var iety of bui l t - in
(p r i m i t i v e) f u n c t i o n s a n d o p e r a t o r s , e a c h r e p r e s e n t e d b y a
symbol , and i ts except ional fac i l i ty for manipulat ing arrays.

APL uses power fu l symbo ls i n sho r thand fash ion to de f ine
comple te func t ions in very few s ta tements o r charac te rs . For
examp le , t he sums o f each o f t he rows i n a ve ry l a rge t ab le
ca l l ed T a re + /T . The sums o f t he co lumns a re + / [1]T . The
grand to ta l o f a l l numbers in the tab le is s imp ly + / ,T . Sor t ing
and add ing t ab les and o the r common ope ra t i ons a re j us t as
simple.

These charac te r i s t i cs , combined w i th min ima l da ta dec la ra
t ion or other language requi rements, he lp substant ia l ly reduce
programming ef for t . Typical interact ive APL programs take only
10-30% as long to wr i te as would equivalent programs in other
languages, such as FORTRAN or BASIC.

APL was invented by Dr . Kenneth E. Iverson a t Harvard Uni
vers i ty . In 1962 a descr ipt ion of h is mathemat ical notat ion was
pub l i shed . By 1966 , IBM had re f i ned t he no ta t i on i n t o a l an
guage and imp lemented the f i r s t ve rs ion o f APL on an exper i
menta l t imeshar ing system. By 1969 APL was an IBM program
produc t and severa l independent t imeshar ing serv ices began
providing i t .

Because APL is both easy to use and t remendously powerfu l
i t has ga ined widespread acceptance. A large, swi f t ly growing
APL t imeshar ing industry has developed. Approximately 70% of
IBM's internal t imeshar ing is done in APL. Over 50 North Ameri
can un ivers i t ies inc lud ing Ya le , MIT , UCLA, Syracuse, Un iver
s i t y o f Massachuse t ts (Amhers t) , York , and Whar ton have in -
h o u s e s y s t e m s . P o p u l a r i t y h a s g r o w n i n E u r o p e , e s p e c i a l l y
Scandanav ia and France.

Al though in i t ia l ly designed for scient i f ic environments, APL's
f ea tu res p roved t o be i dea l f o r p rocess ing bus iness da ta i n
tabu la r fo rmats . Now, most t imeshar ing serv ices f ind approx i
mately 80% of thei r APL business is in the commercia l appl ica
t ions area.

APL Character ist ics
A symbo l i c language w i th a la rge number o f power fu l p r im i t i ve func
tions.
U s e s b e t o l e f t h i e r a r c h y (a s o p p o s e d t o p r e c e d e n c e) t h a t c a n b e
overr idden by parentheses.
Designed to deal wi th arrays of numbers as easi ly as other languages
deal wi th indiv idual i tems.
Min imum language const ra in ts : very few syntax ru les ; un i fo rm ru les
f o r a l l o f t y p e s a n d r e p r e s e n t a t i o n s ; a u t o m a t i c m a n a g e m e n t o f
data s torage and representat ion.

APL Advantages
Programs can be deve loped in 10 -30% o f t he t ime and code space
requ i red by languages l i ke FORTRAN, ALGOL, and BASIC.
Concep ts o f a p rogram can o f ten be more qu ick ly g rasped because
o f the brev i ty and conc iseness o f APL code.
V e r y a n d p r o g r a m s e a s y t o c h a n g e ; d a t a v e r y a c c e s s i b l e a n d
easy to rearrange.

Fig . 1 . Charac te r i s t i cs and advantages o f APL

© Copr. 1949-1998 Hewlett-Packard Co.

BASIC
10 DIM A(100)
20 READ N
3 0 S = 0
4 0 F O R 1 = 1 T O N
50 READ A(l)
60 S=S+A(I)
70 NEXT I
80 PRINT S
90 END

FORTRAN
DIMENSION A (100)
READ (5, 10) N

10 FORMAT (13)
READ (5,20) (A(l), 1 = 1, N)

20 FORMAT (8E10.3)
S = 0 . 0
DO 30 1 = 1, N

3 0 S = S + A (I)
WRITE (6,40)S

40 FORMAT (E12.3)
END

ALGOL

REAL S;

INTEGER I, N;

GET N:

BEGIN

REAL ARRAY A (1:N);

S:=0.0;

FOR l: = 1 TO N DO
BEGIN

GET A(l) ;
S : = S + A (I) ;

END:
PUTS;

END;

A P L

Fig. numbers. Comparison of steps required to read and sum a list of numbers.

Given:

R = Revenues by p roduc t and sa lesman

J o h n v e r V a n s t o n D a n b r e e

Tea
Coffee
Water
Milk

190
325
682
829

MO
19
14

140

Tea
Coffee
Water
Milk

120
300

50
67

65
10

299
254

1926
293
852
609

E = Expenses by p roduc t and sa lesman

J o h n v e r V a n s t o n D a n b r e e

890
23

1290
89

V a n s e y M u n d y k e

14
1491

56
1 20

Vansey

54
802

12
129

143
162
659

67

Mundyke

430
235
145

76

Find:

Find each sa lesman's to ta l commiss ion where the formula for
commiss ion is 6 .2% of p ro f i t , no commiss ion fo r any product
to total less than zero.

Answer: Commission
Johnver

92
Vanston

5
Danbree

113
V a n s e y M u n d y k e

4 5 3 2

Explanat ion of APL Code Required:
. 0 6 2 x + / O f R - E

â€¢ Stepl. Subtract each item in matrix E from each item in matrix R
â€¢ Step 2. Find maximum of each item in resultant matrix versus the value of zero

S tep 3 . Sum ove r new resu l t an t ma t r i x by rows
â€¢ Step 4. Multiply individual items in resultant vector by .062

S tep 5 . Au tomat i ca l l y p r in t new resu l tan t vec to r

Compar ison o f APL Code Requi red Wi th BASIC Code Requi red:
APL

. 0 6 2 x + / O f R - E
BASIC

10 FILES DATA
20 DIMENSION R(4,5) , E(4,5) , T(5)
30 MAT READ #1 ; R ,E
4 0 M A T T = Z E R
50 FOR P = 1 TO 4
60 FOR S = 1 TO 5
7 0 T (S) = T (S) + . 0 6 2 * (R (P , S) - E (P , S)) M A X O
80 NEXT S
90 NEXT P

100 MAT PRINT T
110 END

F ig . 3 . Exp lana t ion o f APL code us ing t yp ica l examp le

© Copr. 1949-1998 Hewlett-Packard Co.

APL Data : V i r tua l Workspaces and
Shared Storage
by Grant J . Munsey

MUCH OF THE POPULARITY of APL can be
attributed to the convenient way it handles

data. Most other programming languages treat vari
ables as volatile "scratchpad" areas that are occupied
by meaningful data only while programs are execut
ing. Before programs can run, they must load the
variables with data, usually by reading a file. During
program execution the data is accessed by referring
to variable names. When execution is completed,
the meanings of the variables are lost unless the pro
grams explicitly save their data in another file. APL,
on the other hand, provides direct access to named
data items, large or small, without forcing the con
cept of a file on the programmer. Once values are
assigned to APL variables, they are accessible by
name either in program execution mode or in calcula
tor mode. The relationship between the data and the
name is preserved until the programmer chooses to
purge the data. The variables and the functions that
operate upon them are preserved together, which
means that APL applications need not go to files to
access and save data.

In APL a unique name is attached to each distinct
set of data by means of the assignment arrow:

DATE<-7 4 1776

OCCASION̂ - 'INDEPENDENCE DAY'
APL 3000 variables may be either scalar (single-

element) or array-shaped with up to 63 dimensions.
Though conceptually there are only two data types in
APL, character and numeric, APL 3000 actually
stores its data in a variety of ways for efficiency. APL
differs from most other programming languages in
that an APL programmer is never involved in specify
ing or choosing these machine-dependent internal
representations; the APL system automatically
chooses both the most efficient and the most accurate
representation for any given set of data.

Likewise, an APL programmer never writes decla
rations specifying the shape, size, or amount of stor
age that will be required for a variable. Variables are
declared by assigning data to them, and the APL sys
tem allocates the appropriate storage in which to re
tain the data. Readers familiar with languages requir
ing declaration of variables (e.g., FORTRAN, BASIC,
COBOL) will recognize that the task of setting up such
declarations can often take a substantial amount of
programming time.

An interesting and useful feature of APL is that a

particular variable name may, at different points in
time, refer to different types and shapes of data, as the
following sequence illustrates:

AÂ«-3.5

A < - 2 4 6 8

A^'WHAT WOULD WE APPRECIATE?'
A Â « - 2 3 p l 2 3 4 5 6

A

1 2 3

4 5 6

In this example, A is first assigned the numeric scalar
3.5. Then A is assigned the numeric vector 2468.
Next, A is assigned the character vector 'WHAT WOULD
WE APPRECIATE?'. Finally, A is assigned a two-row,
three-column array of numbers, then printed. Notice
that each statement whose result is not explicitly as
signed causes the result to be automatically printed.

The Workspace Concept
As functions and data are created, they remain as

sociated with their user-assigned names in an area
called the active workspace. This area can be named
and saved for later use by entering the system com
mand:

JSAVE WSID

where WSID is a user-specified workspace name. This
saves a "snapshot" of all currently defined functions
and data items. A saved workspace may be later re
activated by entering the system command:

)LOAD WSID
The concept of workspaces provides a convenient

means for working on several different problems,
each of which has its own set of pertinent data. For
example, an accountant might have several custom
ers for whom he is keeping payrolls. Several work
spaces might be maintained, each containing payroll
information for a particular client. Whenever a salary
report is needed for a client, the appropriate work
space could simply be loaded and the report gener
ated. Notice that workspaces are much like folders in
a filing system; each holds the information required
for a specific job.

Since all functions and data for a problem are stored
in a single workspace, workspaces tend to grow very
large as problem size increases. Yet most existing
APL implementations have limited the size of work
spaces, typically to less than 100,000 bytes. This con
straint either imposes an artificial limit on the size of

6

© Copr. 1949-1998 Hewlett-Packard Co.

applications attempted, or forces the more deter
mined programmer to seek additional storage outside
of the workspace by explicit use of a file system, a
definite violation of the general spirit of APL pro
gramming.

The HP 3000 is a small computer with a limited
amount of main storage. Yet APL 3000 has avoided
the traditional workspace size restrictions by employ
ing two strategies: shared data storage and virtual
workspaces.

Shared Data Storage
Shared data storage helps solve the workspace size

problem by conserving storage. Multiple copies of the
same data are avoided in many cases by allowing
arbitrary numbers of variables to share the same data
area. Consider the following two statements:

A^ 1 2 5 6 9 10
B^A

The first statement creates a data area for A, while the
second specifies that B is to be assigned whatever is in
A. While one could naively make a second copy of the
data and attach it to B, this is completely unnecessary
and is a waste of storage; B should be able to share the
original data with A.

A potential problem is: if A and B share the same
data area, what happens if either of the variables
changes part of its values? Does this affect the other
variable? For instance, the subscripted assignment

B [3] ^ 2 0

should not have the effect of also making A[s]'s value
20.

Copy-on-Wri te
APL \3000 solves this problem by attaching a re

ference count to every data area, and keeping track of
how many variables are referring to it. Partial changes
to a data area (e.g., B[s]<-2o) are allowed only if its
reference count is 1 (i.e., it is unshared). A data area
whose reference count is greater than 1 is never
changed, since more than one variable is referring to
it. Instead, a "copy-on-write" policy is adopted: the
variable to be written into is given its own private
copy of the data, the reference count of the original
shared data area is decreased by 1, and the original
data remains unchanged.

Shared data storage is useful in that it frequently
allows the APL system to avoid making multiple
copies of identical data. But this is really only a wel
comed side effect of the real purpose of shared stor
age: allowing the dynamic compiler to implement
certain selection functions and operators by applying
Abrams' subscript calculus.2 This technique is used
to improve the performance of APL 3000, providing
a two-fold justification of shared storage: space and
speed.

Subscript calculus places another requirement on
the APL system besides shared data areas: a variable's
data area must be decoupled from its accessing in
formation. That is, the data area itself must not de
scribe the method of storing the data therein. To un
derstand why this is required to perform subscript
calculus, the attributes of APL data must be recalled:
it has some actual collection of values, and it has a
particular size and shape. Consider a numeric vari
able ABC whose data is arranged in two rows and three
columns:

ABC
1 2 4

0 5 9

The storage for ABC contains six data elements that the
user thinks of as a two-dimensional array. At the
machine level, however, storage is actually accessed
in a linear fashion, as if it were a vector. To access any
given element of ABC, the APL system takes a set of
user indexes, consisting of a number for each dimen
sion in ABC, and calculates a linear address into the
data area holding ABC's values.

It has been common practice to store data in what is
called row major order. In this scheme, data is stored
with the rightmost subscript varying the fastest. For
example, the actual linear layout of the variable ABC
stored in this order would be:

1 2 4 0 5 9
ABC[0 ABC[0 ABC[0 ABC[l ;o] ABC[l ; l] ABC[l ;2J

Notice that zero-origin indexing was used (the first
element in any dimension is index 0). Zero origin will
be used in all formulas and examples hereafter.

When data is stored in row major order, one can
map a set of user indexes into a machine address by
employing the formula:1

ADDRESS = l [j] x f] SHAPE [K] (1)

where I is the set of user indexes. In addition to the
user indexes, this formula requires some information
about the data's exact size and shape: RANK is the
number of dimensions in the array, and SHAPE is a
vector of the sizes of each of the dimensions. Together
RANK and SHAPE make up the variable's row major
access information.

Applying equation 1 to calculate the actual address
of the element ABC [o;2J:

I : 0 2

R A N K : 2

S H A P E : 2 3

ADDRESS = (I[OJ x SHAPE [l]) + (l[l] x 1)

= (O x 3) + (2 x 1)

= 2

Referring back to the description of how ABC is
stored, it can be seen that ABC [o is indeed at loca
tion 2. Thus for data stored in row major order, all that

© Copr. 1949-1998 Hewlett-Packard Co.

is needed to calculate the actual storage address of an
array element from a set of user indexes is the RANK
and SHAPE of the data.

In APL systems not concerned with performing
subscript calculus, this accessing information is tra
ditionally stored with the data itself, which makes
every data area self-describing. Subscript calculus, on
the other hand, wants to view data in many different
ways without physically rearranging it . The opera
tion of subscripting (e.g., ABC [i;i]), and the functions
TAKE, DROP, REVERSAL, TRANSPOSE, and RESHAPE Can be
implemented so that they rearrange data without ac
tually moving or copying it, but only if the data area's
accessing information is not an integral part of the
data. Consider, for example, the APL function that
reverses the columns of an array.

ABC
1 2 4

0 5 9

RABC

RABC

c|)ABC

4 2 1

9 5 0

If the result of the reversal must always be stored in
row major order, then nothing can be done except to
make a second copy of ABC'S data for RABC, with its
order rearranged. But if one can depart from row
major storage order in this case, one can generate new
access information for RABC, and it can share ABC'S
data area with no data movement required. This re
quires generalizing the storage mapping function de
veloped above to allow other storage arrangements
than row major. The new formula will be:

ADDRESS = OFFSET l [l] x DEL [l] (2)

This generalized formula makes explicit something
that equation 1 was able to imply by knowing that
data was stored in row major order: OFFSET is always
zero; and DEL [j] is always

R A N K - l

H SHAPE [K].
K = J + 1

The new formula requires that both of these be
made part of a variable's data accessing information.
Equation 2 can be checked by again calculating the
address of element ABC [o;2J:

I
RANK

SHAPE

DEL

OFFSET

o 2
2

2 3

3 1

0

ADDRESS = OFFSET + (l[o] x DEL [o]) + (l[l] x DEL [l])
= 0 + (O x 3) + (2 x 1)

= 2

This is the same address calculated by applying equa

tion 1, so equation 2 seems to work, at least on row
major data. This new formula can be used to share
ABC's data with RABC:

1 2 4 0 5 9

A B C [0 A B C [0 A B C [0 A B C [l ; d] A B C [l ; l] A B C [l ; 2]

RABC [0 :2] RABC [0 RABC [0 RABC [l ;2] RABC [l ; l] RABC [l ;o]

By changing both the DEL vector and the OFFSET as
shown below, RABC can be totally described by its
accessing information. As a check, equation 2 can be
used to calculate the storage address of element RABC
[0:2]:

I : 0 2

R A N K : 2

S H A P E : 2 3

D E L : 3 - 1

O F F S E T : 2

ADDRESS = OFFSET + (l[o] x DEL [o]) + (l[l] x DEL [l])

= 2 + (O x 3) + (2 X (- 1))
= 0

Referring back to the data area shared by ABC and
RABC, it can be seen that RABC [o;2] is indeed at address
0 of the shared data area.

Thus by including the DEL vector and the OFFSET in
a variable's set of accessing information, data areas
can be shared among variables whose conceptual or-
derings differ. Notice, though, that each variable must
have its own private set of accessing information for
this to work, otherwise the shared data area can only
be interpreted as one shape and storage method.
Using a set of transformations to the DEL vector and
the OFFSET in the above manner to rearrange data
without actually moving it is the essence of subscript
calculus.

Vir tual Workspaces
The ws FULL message is well-known to most APL

programmers. In specific terms, it means that the ac
tive workspace has filled up and program execution
has stopped. In more general terms, it usually means
that the programmer is going to have to do a lot of
work to circumvent the problems of limited work
space size.

APL 3000 uses a technique called virtual storage
to remove the workspace size limit. This allows the
user to create and maintain workspaces containing
millions of bytes of data. In fact, workspaces are lim
ited in size only by the amount of disc storage avail
able on the machine, the same limit that would apply
to data stored explicitly as files.

Two layers of virtual workspace implementation
make this possible. The first layer creates, by means of
microcode routines, a very large linearly addressed
data space. The second layer maintains this address
space in many smaller variable-length segments.

To provide the large address space required to sup
port virtual workspaces, APL 3000 uses a set of nine

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 1. APL 3000 uses a v i r tual memory scheme to g ive each
user whatever s ize workspace is needed, instead of imposing
a f i xed max imum workspace s i ze as mos t APL sys tems do .
The v i r tua l memory is par t i t ioned in to 2M pages of 2N words
e a c h w h e r e N + M = 3 2 .

virtual memory instructions that have been added to
the HP 3000 Series II instruction set. These instruc
tions are added by installing eight read-only memory
(ROM) integrated circuits in the CPU when APL 3000
is installed. The virtual memory instructions take a
small amount of main computer storage plus a large
disc file and create what looks like one large linearly
addressed memory. This is done using what is known
as a least recently used (LRU) virtual memory scheme.

The logical addresses used by APL 3000 are 32-bit
quantities. The M most significant bits of the address
are considered the page address and the N least sig
nificant bits the word-in-page address. Thus the vir
tual memory is partitioned into 2M pages of 2N
words each (see Fig. 1). The values for N and M are
determined by APL 3000 to provide efficient use of
the computer hardware. N plus M must add up to 32,
so the virtual memory can contain up to 232 words
(4,294,967,296 words). This is the only theoretical
limit to workspace size.

The HP 3000 main computer store is set up to con
tain a number of 2N-word pages from the virtual mem
ory along with a small status table for each main-
store-resident page. Each status table contains the
following information:
â€¢ The virtual memory address of the first word in

the page

â€¢ A link that points to the next status table
â€¢ An indicator that tells whether data in the page

has been modified since the page was brought into
main storage from the disc

â€¢ The main storage address of the words in the page.
Fig. 2 shows how these status tables are arranged in

main store along with the data from the pages. The
status tables are arranged in a list with each status
table pointing to the next status table. This list is
always arranged so the status table for the most re
cently used page is the first entry in the list.

Operation of the virtual memory instructions can
be illustrated by describing the execution of a VIRTUAL
LOAD instruction (see Fig. 3). This instruction re
quires a 32-bit virtual address as its operand and
returns the word stored at that location in virtual
memory. To accomplish this the first task is to deter
mine the page in which the word resides (the page
address). This is done by taking the M most signifi
cant bits of the virtual memory address. The second
operation is to find where the required page resides.
This is done by first searching down the list of status
tables to see if the page is in main storage. If the page
is found in the list then the word requested is already
in main storage and all that need be done is to use the

f l ^ b

Split Virtual
Address in to

Page and Word-
in-Page Parts

Set Up to
Search List of

Status Tables for
Requi red Page

Move to Next
Status Table

in Chain

the Current
Page the One

Required

Get the Word
Using the Status

Table Pointer to the
Page and the Word-

in-Page Address.

Yes

Cal l Fault
Sof tware to Get
Requested Page

from Disc.

Fig . 2 . A t a g iven t ime, the ma in computer s to re con ta ins a
number of 2N -word pages from the virtual memory along with a
smal l s tatus table for each of these pages. The status tables
a r e a r r a n g e d i n a l i s t w i t h t h e t a b l e f o r t h e m o s t r e c e n t l y
accessed page a t the top o f the l i s t .

© Copr. 1949-1998 Hewlett-Packard Co.

Start ing Vir tual Memory
Address of Page

Pointer to Next
Status Table

Fig. 3. I f the page that conta ins the word addressed is not in
main storage, the system br ings in the required page from the
d i sc , swapp ing i t f o r t he page whose s ta tus t ab le i s a t t he
bot tom of the l is t , that is , the least recent ly used page.

word-in-page part of the virtual address to access it. If
the end of the s ta tus table l is t is reached without
encoun te r ing the r equ i r ed page then a so f tware
rou t ine i s ca l l ed f rom the v i r tua l ins t ruc t ion mi
crocode. This routine decides which of the current
main-store-resident pages can be overwritten with
the data from the new page, stores the current page on
the disc if it has been altered since being loaded, and
reads in the new page.

APL 3000 always chooses the least recently used
page as the one that can be removed. This is the page
whose status table is the last one in the status table
list, since the list is maintained with the most recently
used page first. This method is critical to the efficient
operation of virtual memory, because it causes the
pages that are used frequently by APL 3000 to re
main in main storage where they can be rapidly ac
cessed while the infrequently used pages migrate to
the disc.

Vir tual Segmentat ion
For this large linearly addressable virtual memory

to be useful in creat ing vir tual workspaces the ad
dress space must be broken up into several smal l
b locks of memory, each of which can be indepen
dently expanded or contracted in size. In APL 3000
this is accomplished by three software routines. The

first routine allocates blocks of memory ; it is given the
required number of words and it returns the starting
virtual address of the block allocated. The second
routine returns previously allocated blocks of mem
ory to the free list where they are available for later
reallocation. The third routine can be instructed to
expand or contract the size of a currently allocated
block of memory.

The virtual storage allocation routines work with a
data structure called the free storage list (FSL). The
FSL contains an entry for each block of unused stor
age in the virtual workspace. Each entry in the FSL
contains the following items:
i A 32-bit virtual memory address that is the begin

ning of a free block of virtual memory
â€¢ The number of words in the free block of memory.

When a block of storage is returned to the FSL by
the software a description of the block is put into the
FSL so that no two FSL entries describe adjacent areas
of memory. In this way the free storage available in a
workspace is represented by the minimum number of
FSL entries.
Conclusion

APL is a convenient language because i ts work
space concept allows the programmer to use variables
rather than files. APL 3000 has extended its useful
ness by allowing workspaces to be extremely large.
Also, storage use and speed have been optimized by
means of shared data areas and subscript calculus.

Acknowledgments
Mention should be made of three people who con

tributed to the design of the data handling portion of
APL 3000. Jim Duley produced some of the initial
ideas for the virtual memory system, John Sell worked
day and night to get the microcode running, and Doug
Jeung helped tune the code for the HP 3000. E

References
1. D.E. Knuth,"The Art of Computer Programming, Vol. I
Addison Wesley, 1968.
2. P.S. Abrams, "An APL Machine," PhD dissertation,
SLAG Report No. 114, Stanford University, February 1970.

Grant J . Munsey
Grant Munsey was born in Los
Angeles and at tended the nearby
University of Cali fornia at Irvine,
graduat ing in 1971 wi th a BSEE
degree. For the next 31/2 years he
prov ided sof tware suppor t for
HP's Neely Sales Region, then
jo ined HP Laborator ies to work in
so f twa re resea rch and deve lop
ment , main ly on APL. He 's a
member o f ACM. Grant i s s ing le
and l ives in Sunnyvale, Cal i fornia.
He's interested in aerobatic f lying,
photography, and spor ts cars .

10

© Copr. 1949-1998 Hewlett-Packard Co.

APLGOL: St ructured Programming
Facil i t ies for APL
by Ronald L . Johnston

OVER A PERIOD OF YEARS the computer science
community has developed a set of programming

disciplines for systematic program design that have
become widely known as structured programming.
One very important component of this science is a set
of interstatement control structures for clearly ex
pressing the flow of control. These control structures
are embodied in such block-structured languages as
ALGOL or PASCAL, and therefore these languages
have been widely used in teaching computer science
in colleges and universities. One control structure
that has received much criticism as unstructured
and harmful is the GOTO of FORTRAN and other
languages.1'7'8 The use of the GOTO, it is argued, is
to be avoided because it can render program flow
unintelligible, unmaintainable, and impossible to
prove correct.

APL is a modern language with array-oriented
functions, but only a single branching construct is
available: -^expression, where "expression," how
ever complex, evaluates to a statement number to
which control is transferred. This construct is the
rough equivalent of a computed GOTO which, as men
tioned previously, is not considered a good struc
tured programming tool. Many APL enthusiasts, in
defense of the language, have argued that its rich set
of array functions reduces the necessity of including
explicit loop constructs in an APL program, thereby
minimizing the importance of good control structures
in this particular language. Nevertheless, empirical
studies2 of APL programs have shown that the fre
quency of branching per line is greater in APL than in
FORTRAN, although there are fewer branches per
equivalent function. Furthermore, as a consequence
of having only one branching construct the control
flow even within well structured APL programs can
often be obscure.

Many attempts have been made to improve the
readability and understandability of the APL branch
function. Saal and Weiss2 relate that APL program
mers use various stylized forms of branching with
great frequency in an attempt to impart some regular
ity to the branch construct. These constructs have
become much-used idioms of the language. Other
APL programmers,3'4'5 dissatisfied with even these

stylized branching constructs, have invented special
packages of APL functions that attempt to provide
more acceptable control structures like IF-THEN-ELSE,
WHILE-DO, CASE, and REPEAT-UNTIL. However, these
special functions have discouraged their own use be
cause they occupied storage in workspaces that were
already too small, and because the function calls im
posed a run-time speed penalty on the user. The only
acceptable solution lay in enhancing the language
itself, so that APL programmers could use the grow
ing body of structured programming techniques
without incurring the penalties inherent in the solu
tions to date.

Solut ion: APLGOL
APL3000 inc ludes an a l t e rna te l anguage ,

APLGOL, which enhances standard APL in the area of
branching. Based on the work of Kelley and Walters6,
APLGOL is a fully-supported language that adds
ALGOL-like control structures to APL to provide the
needed structured programming facilities. Program
mers writing in APLGOL can make use of such famil
iar constructs as IF-THEN-ELSE, WHILE-DO, REPEAT-
UNTIL, and CASE. Some constrained forms of struc
tured branching are also included; they are LEAVE,
ITERATE, and RESTART. The resultant programs are
much easier to read, understand, and maintain than
the equivalent programs written in standard APL.
These qualities are essential in production pro
gramming environments.

Another language facility, ASSERT, has been incor
porated to encourage programmers to assert correct
ness properties of algorithms as they write them,
hopefully to foster the proof-of-correctness approach
to programming that Dijkstra has recognized as so
important to the production of error-free pro
grams.8'9'10 Using ASSERT statements the pro
grammer states properties and conditions that must
be true if the program being written is to work prop
erly. For example, suppose a function uses the vari
able A as a divisor and the programmer expects that
no element of A should ever be zero. The following
assertion might be included in the function ahead of
the division:

ASSERT 1: A/AÂ¿0;

11

© Copr. 1949-1998 Hewlett-Packard Co.

[o] L I S T F N S

[l] n PRINTS TEXT OF ALL FUNCTIONS IN WORKSPACE EXCEPT ITSELF

[2] D l O ^ O

[3] FNL^FNL[Ã65i^DAV 1 FNLÂ«-ONL 3 4:] n GET SORTED FNS LIST

[4] - . (O ^ X / p F N L j / H A V E F N S

[5] D- ' (NO FUNCTIONS IN WORKSPACE) '

[6] - , 0

[7] H A V E F N S : 0 - ') F N S ' , D R . , F N L , ' ' n P R I N T) F N S L I S T

[a] INX^o
[9] N E X T N A M E : - (I N X > l T p F N L) / 0

0] FNAME-(FNAME,Ã ' ') /FNAME-,FNL[lNX;] f l DE-BLANK NAME

l] G - (2 p D R) , ' ' . F N A M E , ' '

2] NLINES^ltpCR-DCR FNAME n GENERATE CANONICAL REP

3J Dâ€” '['.(((flOÂ»NLINES),0)Ã¯(NLINES.l)|> INLINES).']', ' ',CR

4] I N X ^ I N X + 1

5] ^ N E X T N A M E

APLGOL:
[0] PROCEDURE LISTFNS,LISTFNS.FNL,FNAME,DlO.NLINES.INX;

[l] n PRINTS TEXT OF ALL FUNCTIONS IN WORKSPACE EXCEPT ITSELF n

[3] F N L < - F N L [A 6 5 i t * [] A V l F N L - D N L 3 4 n G E T S O R T E D F N S L I S T n

[4] I F 0 - x / p F N L T H E N

[5] Q - ' (N O F U N C T I O N S I N W O R K S P A C E) '

[6] E L S E

[7] B E G I N

[s] D~')FNS'.DR..FNL.' '; Â» PRINT)FNS LIST n
[9] I N X - O ;

[l o] W H I L E I N X < l t p F N L D O

[l l] B E G I N

[1 2] n ') / F N A M E - , F N L [l N X ;] ; n D E - B L A N K N A M E n

[1 3] D ~ (2 p D R) . ' ' . F N A M E , ' " " â € ¢ ' ;

[1 4] N L I N E S - l T p C R < - O C R F N A M E ; n G E N E R A T E C A N O N I C A L R E P n

[1 5] ' , C R ; ' , C R ;

[1 6] I N X ^ I N X + l :

[1 7] E N D ;

[1 8] E N D ;

[l9J END PROCEDURE

Fig. 1. An APL funct ion and i ts APLGOL counterpart . The two
funct ions are nearly identical, but the APLGOL funct ion makes
use o f ALGOL- i i ke con t ro l s t ruc tu res tha t make i t eas ie r to
read, unders tand, and mainta in .

In this fashion the programmer lets the correctness
proof and the program grow hand in hand. Each AS
SERT statement contains a relational expression that is
evaluated dynamically each time control reaches it. If
the assertion proves false, execution is halted to per
mit the programmer to choose an appropriate course
of action. Assertion statements can be conditionally
executed, based on a level number in each assertion.
One useful way to employ assertions is to have all
assertions checked during initial program writing
and debugging. Later, as the program reaches produc
tion status, assertion checking is turned off. If at some
future date the program exhibits erroneous behavior,
checking of assertions can be easily reinitiated,
greatly facilitating debugging efforts. Using asser
tions in this fashion, there is no run-time penalty
during production use of the programs; only during
debugging stages are the assertions checked.

A workspace may contain both APL and APLGOL

functions, which may call each other without restric
tion. (However, any given function must be entirely
APL or entirely APLGOL.) APLGOL expressions are
exactly the same as APL expressions, following the
same set of syntax and semantic rules. A function
originally developed in APL can be easily modified to
become an APLGOL function, and vice versa. The
only differences between APL and APLGOL func
tions lie in the specific syntax of the function headers,
the control structures, the use of the lamp symbol (n)
as a comment terminator, and the fact that APLGOL,
like ALGOL, terminates statements with a semicolon.
Fig. 1 contrasts an APL function with its equivalent
APLGOL function, illustrating how nearly identical
the two functions are.

Canonical Forms
For run-time efficiency, it has been customary for

APL interpreters to translate functions from character
form into an internal form, whereupon the original
character source is discarded. Subsequent requests
for display of the functions are satisfied by translating
the internal form back to a canonical character form.
APL programmers have become accustomed to this
canonical form of their programs being slightly dif
ferent from what they originally input, in that un
necessary blanks have been compressed out, labels
"undented", and the formats of numeric constants
perhaps changed. The short function shown below
illustrates how the original and canonical forms may
differ for APL:

Original APL
[0] R ^ P A R T P E R C E N T W H O L E

[1] R ^1E2 x PART-?- WHOLE
Canonical APL

[0] R ^PART PERCENT WHOLE

[1] R^IOOXPART^WHOLE

In similar fashion, APLGOL translates to internal
form and back-translates to a stylized canonical form.
However, APLGOL canonical form may be markedly
different from the original. APLGOL can be input
free-form with many statements per line, but the ca
nonical form always has one statement per line, with
indenting for each layer of nesting. As Fig. 2 shows,
the canonical form of this function offers the advan
tage of making the control structures more obvious by
indenting the IF-THEN-ELSE statements.

One consequence of the APLGOL control structures
is that the keywords of these structures (IF, THEN, etc.)
are reserved and cannot be used as variable or func
tion names in APLGOL functions. This is not usually
a severe limitation to the programmer.

Important Design Considerat ions
APLGOL is a fully-supported language, not an

add-on to APL. The decision was made early in the

12

© Copr. 1949-1998 Hewlett-Packard Co.

Original APLGOL
[0] PROCEDURE A CONFORMS BOF (V/l = (x/pA).x/pB ITHEN

[i] 'CONFORMABLE - SCALAR/UNIT EXTENSION' ELSE IF (pPA)=ppB
[2] THEN IF (pA) A.=pB THEN'CONFORMABLE - SAME SHAPE' ELSE

[3] 'NOT CONFORMABLE - LENGTH ERROR'

5]

ELSE NOT CONFORMABLE - RANK ERROR ;

END PROCEDURE

Canonical APLGOL
[0] PROCEDURE A CONFORMS B;
[l] IF (v / l = (x /pA) ,x /pB)THEN
[2] 'CONFORMABLE - SCALAR/UNIT EXTENSION'
[3 j E L S E

[4] I F (p p A) = p p B T H E N

[5] I F (p A) A . = p B T H E N

[B] 'CONFORMABLE - SAME SHAPE'
[7] E L S E

[B] ' N O T C O N F O R M A B L E - L E N G T H E R R O R '

[9] E L S E

[1 0] ' N O T C O N F O R M A B L E - R A N K E R R O R ' ;

[l l] END PROCEDURE

Fig . 2 . User inpu ts in APLGOL are t rans la ted to an in te rna l
fo rm and back- t rans la te to a canon ica l fo rm. The canon ica l
form makes the control structures more obvious by indent ing.

design stages that it was to be as convenient to use as
APL and should require no extra steps for the pro
grammer. It was to suffer no significant speed or space
penalties , but should offer itself as a viable alternative
to programming in APL.

One important design decision was to use the same
dynamic incremental compiler for both APL and
APLGOL (see article, page 17). Once a function has
been translated to internal form (S-code), its incre
mental compilation and execution is handled by a
single mechanism that is common to both languages.
The most obvious payoff from this approach is that
only one such system needed to be implemented,
resulting in lower development costs than if two
separate compilers had been written. A second, less
obvious advantage is that this guarantees that there
are no insidious semantic differences in the way each
language evaluates its expressions. That is, an ex
pression like + / gives the same result (DOMAIN
ERROR in some systems, including ours; 0 in other
systems) in both languages. Finally, it guarantees that
the execution speed of both languages is the same,
except in functions dominated by branching over
head. In these cases APLGOL tends to be slightly
faster, because it generates more efficient branching
code. APLGOL branches don't have to be range-
checked at run time as APL branches do, since all
APLGOL branches are generated and guaranteed in-
range by the chara cter-to-internal translator when the
function is created.

These considerations continually influenced the
design of APL 3000, most often having the effect of

complicating internal code assignments, data struc
tures, and support routines. The result, however, is a
system that honestly supports both APL and APLGOL
without noticable favoritism of either. Â¿"

References
1. E.W. Dijkstra. "GOTO Statement Considered Harmful,"
Communications of the ACM, 11 (1968), pp. 147-148.
2. H.J. Saal and S. Weiss, "An Empirical Study of APL
Programs," IBM Israel Scientific Center, Technion City,
Haifa, Israel.
3. J.P. Dorocak, "APL Functions which Enhance APL
Branching," IBM Corp., Federal Systems Division, Oswego,
New York, APL 76 Proceedings (1976), pp. 99-105.
4. W.K. Giloi and R. Hoffman, "Adding a Modern Control
Structure to APL without Changing the Syntax," APL 76
Proceedings (1976), pp. 189-194.
5. L.R. Harris, "A Logical Control Structure for APL," APL
Congress 1973, American Elsavier, New York, 1973, pp.
203-210.
6. R.A. Kelley and J.R. Walters, "APLGOL-2, A Structured
Programming System for APL," IBM Palo Alto Scientific
Center, Technical Report No. G320-3318, 1973.
7. "The GOTO Controversy," SIGPLAN Notices (Special
Issue on Control Structures in Programming Languages),
Vol. 7, No. 11, 1972.
8. E.W. Dijkstra, "The Humble Programmer," 1972 Turing
Lecture, Communications of the ACM, Vol. 15 No. 10, Oc
tober 1972.
9. E.W. Dijkstra, O.J. Dahl, and C.A.R. Hoare, "Structured
Programming," Academic Press, London, October 1972.
10. R.W. Floyd, "Assigning Meanings to Programs," Pro
ceedings of Symposium on Applied Mathematics, Ameri
can Mathematical Society, Vol. 19, 1967, pp 19-32.

Ronald L . Johnston
Ron Johnston graduated f rom the
Universi ty of Cal i fornia at Santa
Barbara in 1 973 with a BS degree
in e lect r ica l engineer ing and
compute r sc ience . He jo ined HP
Labora to r ies tha t same year , de
s igned a CRT-based in terac t ive
tex t ed i t o r , and then he lped de
s ign and imp lemen t APL3000 .
He's now APL pro ject manager. A
native of Southern Cali fornia, Ron
is marr ied, has a two-year-o ld
daughter , and l ives in Sunnyvale,
Cal i forn ia. Besides APL, Ron's
pass ions a re o f f - road moto r

cycling and music â€” he plays guitar and sings in a duo, the other
half of which is his wife. He also serves as counselor for a church
youth group and as tour d i rec tor fo r a youth cho i r .

13

© Copr. 1949-1998 Hewlett-Packard Co.

© Copr. 1949-1998 Hewlett-Packard Co.

APLGOL Cont ro l S t ruc tures
ASSERT INTEGER EXPRESS/OX: BOOLEAN' EXPRESSION

BEGIN' STATEMENT LIST END

CASE INTEGER EXPRESSION OF INTEGER CONSTANT

BEGIN
CASE LABEL: STATEMENT:

CASE LABEL: STATEMENT:

CASE LABEL: STATEMENT:

{DEFAULT: STATEMENT:}

END CASE

EXIT {EXPRESSION}
FOREVER DO STATEMENT
HALT {EXPRESSION}
IF BOOLEAN EXPRESSION DO STATEMENT
IF BOOLEAN EXPRESSION THEN STATEMENT

ELSE STATEMENT
ITERATE: CONTROL STRUCTURE NAME LIST
LEAVE: CONTROL STRUCTURE NAME LIST
NULL
PROCEDURE HEADER; STATEMENT LIST END PROCEDURE

REPEAT STATEMENT LIST UNTIL BOOLEAN EXPRESSION

RESTART: CONTROL STRUCTURE NAME LIST

WHILE BOOLEAN EXPRESSION DO STATEMENT

Notes:
{a}: a Is Optional

CONTROL STRUCTURE NAME LIST: List of Control Structure Names

among CASE, FOREVER, IF, PROCEDURE, REPEAT, or WHILE.

E.g.: IF.CASE

HEADER: Standard APL Function Header, except that Local Variables

Are Preceded by a Comma instead of a Semicolon.
STATEMENT: One of the Above Control Structures, or an APL Expression.

STATEMENT LIST: One or More Statements, Each Terminated by a Semicolon.

Comments Have the Form: n COMMENT TEXTfl

E d i t o r C o m m a n d s
A J D D) A l l o w s E n t r y o f N e w T e x t

B J R I E F } C h a n g e s M e s s a g e s t o B r i e f M o d e (S h o r t)

C { H A N G E } S u b s t i t u t e s O n e S t r i n g f o r A n o t h e r

C O { P Y } C o p i e s T e x t f r o m O n e L o c a t i o n t o A n o t h e r

C U { R S O R } C h a n g e s t h e L i n e P o i n t e r

D J E L E T E } D e l e t e s L i n e s i n t h e E d i t T e x t

D E L T { A } C h a n g e s t h e L i n e I n c r e m e n t

E N D E x i t s E d i t o r , M a k i n g T e x t i n t o a F u n c t i o n

F { I N D } L o c a t e s a S t r i n g i n t h e T e x t

H { E L P } P r i n t s I n f o r m a t i o n a b o u t E d i t o r C o m m a n d s

L { I S T } P r i n t s L i n e s o f T e x t

L O C K S i m i l a r t o E N D , b u t L o c k s t h e F u n c t i o n

M A T J R I X } E x i t s E d i t o r , C r e a t i n g a C h a r a c t e r M a t r i x

M f O D I F Y } M o d i f i e s t h e C o n t e n t s o f a L i n e

Q U I T E x i t s E d i t o r , D i s c a r d i n g t h e C h a n g e s

R { E P L A C E } R e p l a c e s L i n e s o f t h e T e x t

RESEQUENCE} Renumbers and Moves Text Lines

U J N D O } N e g a t e s t h e E f f e c t s o f t h e L a s t C o m m a n d s

V E C J T O R } E x i t s E d i t o r , C r e a t i n g a C h a r a c t e r V e c t o r

VERJBOSE} Changes Messages t o Ve rbose Mode (Long)

Note:
{a}: a Is Optional. Commands May Be Abbreviated.

Â¡BIND

(CLEAR

ICONTINVE

)COPYWSID {NAME LIST}
IDEPTH {INTEGER}
)DROP WSID
(EDIT {OBJECT NAME}

)ERASE NAME LIST

(EXIT

)FILES {GROUP {.ACCOUNT}}
)FNS {LETTER}
)HELP {COMMAND NAME}

)LANGUAGE {APL OR APLGOL}

(LIB {GROUP {.ACCOUNT}}
(LOAD WSID

)MPE

)OFF

(PCOPY WSID {NAME LIST}

(RESET {ENVIRONMENT NUMBER}

(RESUME

(SAVE {WSID}
(SI (ENVIRONMENT NUMBER}
(SIV (ENVIRONMENT NUMBER }

(TERM {TERMINAL TYPE }
(TERSE

(TIME

(VARS {LETTER}

) VERBOSE

System Commands
Turns Bind ing Messages O\ o r

OFF
Obtains New. Clean Workspace

(WS)

Leaves APL. Saving WS in Work

space CONTINUE

Obtains Part or All of a Stored WS

Sets the Execution Stack Size

Deletes a Stored WS

Enters Editor, Working on OB/ECT

NAME

Deletes Objects in NAME LIST

from Active WS

Leaves APL

Lists Stored Files

Lists Functions in Active WS

Prints Information about System

Commands
Specifies Default Language Pro

cessor

Lists Stored APL Workspaces

Makes a Copy of a Stored WS the

Active WS

Break from APL to MPE Command
Interpreter

Leaves APL

Like COPY, but Doesn't Replace

Objects

Sets an Environment to the Empty

Environment

Resumes Execution of Suspended

Function

Stores the Active Workspace

Prints the State Indicator

Prints the State Indicator Stack,

with Local Variables
Sets the Terminal Type

S e t s M e s s a g e s t o T e r s e M o d e

(Short)

Turns Calcula tor Mode Timing

ON/OFF

Prints the Variables in the Active

WS
Sets Messages to Verbose Mode

(Long)

Changes the Active WS's Name (WSID {WSID}
Notes:
{a}: a is optional

WSID: Workspace Identification

TERMINAL TYPE: One of AJ, ASCII, BP, CDI, CP, DM, GS1. or HP.

All Commands May Be Abbreviated.

Circu lar Funct ions
B

R
arc tanh B

arc cosh B

arc sinh B

(~1+B*2)Â«.5

arc tan B

arc cos B
arc sin B

R

sin B

cos B

tan B

4 (1 + B Â « 2) * . 5

5 s i n h B

6 c o s h B

tanh B

0 (1 - B * 2) * . 5

© Copr. 1949-1998 Hewlett-Packard Co.

S P E C I F I C A T I O N S A N D F E A T U R E S
APIA3000 (Language Subsystem 321 05A)

A P L 3 0 0 0 i s a l a n g u a g e s u b s y s t e m t h a t r u n s u n d e r t h e c o n t r o l o f M u l t i
p rogramming Execut ive (MPE) on the HP 3000 Ser ies I I Computer .
COMPATIBIL ITY: APLSV compat ib le , i nc lud ing sys tem func t ions and var iab les ,

s h a r e d v a r i a b l e m e c h a n i s m , F o r m a t (*) , E x e c u t e (Â ») , S c a n () , a n d M a t r i x
Invers ion and Div is ion (E) .

F ILE (MPE) Fu l l access t o t he Mu l t i p rog ramming Execu t i ve (MPE) f i l e sys tem
allows communica or shared f i les via the Shared Variable mechanism, communica
t ion with other language subsystems, access to peripheral devices (l ine pr inters,
card readers, magnet ic tapes, d iscs, etc .) .

APLGOL: An a l te rna te language tha t p rov ides modern ALGOL- l i ke con t ro l s t ruc
t u r e s i n a n A P L e n v i r o n m e n t . I F - T H E N - E L S E , B E G I N - E N D , W H I L E - D O ,
REPEAT-UNTIL , CASE, and ASSERT are among the cons t ruc ts ava i lab le .

EDITOR: Fu l l f unc t ion and tex t ed i t i ng fac i l i t i es a re p rov ided fo r by a power fu l
new editor. Includes features never before avai lable to APL programmers, among
them the ab i l i t y t o c rea te and ed i t ma t r i ces and vec to rs . P rov ides such com
m a n d s a s C H A N G E , C O P Y , F I N D , R E S E Q U E N C E , a n d U N D O , a s w e l l a s
a HELP fac i l i ty for the nov ice or occas ional user .

C O N C E P T U A L D A T A T Y P E S : C h a r a c t e r a n d N u m e r i c .
A C T U A L i n t e r n a l T Y P E S : A P L a u t o m a t i c a l l y c h o o s e s t h e a p p r o p r i a t e i n t e r n a l

representat ion for data f rom the fo l lowing types:
CHARACTER: represented by 8-b i t codes fo l low ing the code ass ignments ou t

l ined by DAV. Codes include lower-case ASCII alphabetics, control codes.
BIT: va lues 0 and 1 packed 16 per mach ine word for data o f rank 1 (vector) or

greater (array).
INTEGER: integer values wi th in the range -32768 to 32767 are stored as 16-bi t

s igned integers.
REAL : rea l va lues w i t h i n t he range Â±(2~256 , 2 + 256) a re s to red as 64 -b i t

f loat ing po int numbers. 16 dec imal d ig i t accuracy.
M A X I M U M A R R A Y R A N K : 6 3 d i m e n s i o n s .
M A X I M U M A R R A Y S I Z E : 3 2 , 7 6 7 e l e m e n t s .
A R I T H M E T I C P R O G R E S S I O N V E C T O R S : I n t e g e r v e c t o r s t h a t c a n b e d e

s c r i b e d b y t h e f o r m A + B x i C a r e s t o r e d a s A r i t h m e t i c P r o g r e s s i o n V e c t o r s
(APV's) , which requi re no data areas.

SHARED same AREAS: Var iables of rank 1 (vector) or greater can share the same
da ta da ta avo id ing mu l t i p l e cop ies o f t he same da ta . Sha red da ta a reas a re
dupl icated only i f one of the shar ing var iab les at tempts to change i ts data.

WORKSPACE SIZE: L imi ted only by the amount of on- l ine d isc s torage avai lab le.
In i t i a l s i ze : 32 ,767 by tes . Au tomat i ca l l y made la rge r as necessary . P rac t i ca l
l imi t : 400,000,000 bytes.

TERMINAL SUPPORT: Accep ts te rm ina ls , w i th o r w i thou t an APL charac te r se t ,
t ha t baud . a s tanda rd ASCI I i n te r face a t speeds f rom 110 to 2400 baud . P ro
v i s i o n s m a d e f o r b o t h b i t a n d c h a r a c t e r p a i r i n g t e r m i n a l s . S p e c i a l s u p p o r t
given features. the HP 2641 A Display Station to take advantage of its special features.
T h e f o l l o w i n g o t h e r t e r m i n Ã ¡ i s h a v e b e e n t e s t e d : A n d e r s o n J a c o b s o n 6 3 0 ,
Compu te r Dev i ces Te le te rm 1030 , Da ta Med ia E l i t e 1520 , Gen -Corn Sys tem
Model 300.

E N V I R O N M E N T : R u n s a s a s t a n d a r d s u b s y s t e m u n d e r c o n t r o l o f M u l t i p r o
g r a m m i n g E x e c u t i v e (M P E) . A l l o w s b a t c h A P L j o b s , s i m u l t a n e o u s u s e o f
f i ve o ther languages (BASIC, COBOL, FORTRAN, RPG, and SPL) , ne tworked
access to o ther HP 3000 's .

S Y S T E M R E Q U I R E M E N T S A N D P E R F O R M A N C E : T h e m i n i m u m s y s t e m r e
quired II; an HP 3000 Series II with 256K bytes of memory operating under MPE II;
for mul t i l ingual operat ion, a t least 384K bytes of memory is needed. Operat ion
w i t h 1 0 o r m o r e t e r m i n a l s r e q u i r e s f u l l m e m o r y (5 1 2 K b y t e s) . M a x i m u m
recommended number o f s imu l taneous APL users i s 16 .

INSTALLATION: APL 3000 i nc ludes ha rdware m ic rocode and mus t be i ns ta l l ed
by a fac to ry au thor ized Cus tomer Eng ineer . Ins ta l la t ion i s inc luded in the l i s t
price.

O R D E R I N G I N F O R M A T I O N : 3 2 1 0 5 A A P L 3 0 0 0 S u b s y s t e m . I n c l u d e s t h e
d y n a m i c c o m p i l e r , h a r d w a r e m i c r o c o d e , a n d t h e A P L 3 0 0 0 R e f e r e n c e
Manual (32105-90002) . A l l so f tware suppl ied in ob jec t code form on ly .

PRICE IN U.S.A. : $15,000.
M A N U F A C T U R I N G D I V I S I O N : G E N E R A L S Y S T E M S D I V I S I O N

5303 Stevens Creek Bou levard
Santa Clara, Cal i forn ia 95050 U.S.A.

S P E C I F I C A T I O N S
HP Mode l 2641A APL D isp lay S ta t ion

General
S C R E E N S I Z E : 1 2 7 m m (5 i n) x 2 5 4 m m (1 0 i n)
SCREEN CAPACITY : 24 l i nes x 80 co l umns (1 ,920 cha rac te r)
C H A R A C T E R G E N E R A T I O N : 7 x 9 e n h a n c e d d o t m a t r i x ; 9 x 1 5 d o t c h a r a c t e r

cel l ; non- inter laced raster scan
C H A R A C T E R S I Z E : 2 . 4 6 m m (. 0 9 7 i n) x 3 . 1 7 5 m m (. 1 2 5 i n)
C H A R A C T E R S E T : 1 2 8 c h a r a c t e r A P L ; 6 4 c h a r a c t e r u p p e r - c a s e R o m a n ; 6 4

c h a r a c t e r A P L o v e r s t r i k e . (N o t e : t h e 2 6 4 1 A s u p p o r t s o n l y o n e a d d i t i o n a l

character set.)
CURSOR: B l ink ing under l ine
DISPLAY MODES: Whi te on b lack; b lack on whi te (inverse v ideo) , b l ink ing, ha l f -

bright, underl ine.
REFRESH RATE: 60 Hz (50 Hz op t iona l)
T U B E P H O S P H O R : P 4
IMPLOSION PROTECTION: Bonded imp los ion pane l
MEMORY: MOS ROM: 24K by tes (p rogram) ; RAM: s td . 4096 by tes ; 12 k i loby tes

max. {16K inc lud ing max. data comm. buf fer)
OPTION SLOTS: 5 ava i lab le
KEYBOARD: Detachable, fu l l APL/ASCII code b i t -pa i r ing keyboard, user-def ined

sof t numer ic and 18 add i t iona l cont ro l and ed i t ing keys; ten-key numer ic pad;
cursor cable. mult ispeed auto-repeat, N-key rol l -over; 1.22m (4 foot) cable.

CARTRIDGE TAPE (op t i on) : Two mechan isms
READ/WRITE SPEED: 10 ips
SEARCH/REWIND SPEED: 60 i ps
RECORDING: 800 bp i
MINI CARTRIDGE: 110 k i lobyte capac i ty (max imum per car t r idge)

Data Communicat ions
DATA RATE: 110, 150, 300, 1200, 2400, 4800, 9600 baud, and ex terna l . Swi tch

s e l e c t a b l e . (1 1 0 s e l e c t s t w o s t o p b i t s) . O p e r a t i n g a b o v e 4 8 0 0 b a u d i n A P L
mode may requi re nul ls or handshake protocol to insure data in tegr i ty .

S T A N D A R D A S Y N C H R O N O U S C O M M U N I C A T I O N S I N T E R F A C E : E I A s t a n
da rd RS232C; fu l l y compat ib le w i th Be l l 103A modems; compat ib le w i th Be l l
202C/D/S/T modems. Choice of main channel or reverse channel l ine turnaround
for hal f duplex operat ion.

O P T I O N A L C O M M U N I C A T I O N S I N T E R F A C E S (s e e 1 3 2 6 0 A / B / C / D C o m m u n i
cat ions data sheet for detai ls) :

Current loop, sp l i t speed, custom baud rates
Asynchronous Mul t ipo in t Communicat ions
Synchronous Mul t ipo in t Communicat ions - B isync

TRANSMISSION MODES: Fu l l o r ha l f dup lex , asynchronous
OPERATING MODES: On- l ine ; o f f - l ine ; charac ter , b lock
PARITY: Swi tch se lec tab le ; even, odd, none

Environmental Condi t ions
T E M P E R A T U R E , F R E E S P A C E A M B I E N T :

NON-OPERATING: -40 to +75Â°C (-40 to + 167Â°F)
OPERATING: 0 to 55Â°C (+32 to +131Â°F)

T E M P E R A T U R E , F R E E S P A C E A M B I E N T (T A P E) :
NON-OPERATING: -10 to 60Â°C (-15 to +140Â°F)

OPERATING: 5 to 40Â°C (+41 to 104Â°F)
HUMIDITY: 5 to 95% (non-condens ing)
ALTITUDE:

NON-OPERATING: Sea leve l to 7620 met res (25 ,000 fee t)
OPERATING: Sea leve l to 4572 met res (15,000 feet)

VIBRATION AND SHOCK (Type tested to qual i fy for normal shipping and handl ing
in or iginal shipping carton):

V IBRATION: 37 mm (0 .015 in) pp , 10 to 55 Hz, 3 axes
SHOCK: 30g, 11ms, 1 /2 s ine

Physical Specif icat ions
DISPLAY MONITOR WEIGHT: 19 .6 kg (43 pounds)
KEYBOARD WEIGHT: 3 .2 kg (7 I bs)
D I S P L A Y M O N I T O R D I M E N S I O N S : 4 4 4 m m W x 4 5 7 m m D x 3 4 2 m m H

(17 .5 i n W x 18 i n D x 13 .5 i n H) .
648 mm D (25.5 in D) inc lud ing keyboard.

K E Y B O A R D D I M E N S I O N S : 4 4 4 m m W x 2 1 6 m m D x 9 0 m m H (1 7 . 5 i n W
x 8.5 Â¡n D x 3.5 in H)

Power Requirements
INPUT VOLTAGE: 115 (+ 10% -23%) a t 60 Hz (Â±0.2%)

230 (+ 10% -23%) at 50 Hz (Â±0.2%)
POWER CONSUMPTION: 85 W to 1 40 W max.

Product Safety
P R O D U C T M E E T S : U L r e q u i r e m e n t s f o r E D P e q u i p m e n t , o f f i c e a p p l i a n c e s ,

t e a c h i n g e q u i p m e n t ; C S A r e q u i r e m e n t s f o r E D P e q u i p m e n t ; U . L . a n d C S A
labels are appl ied to equipment sh ipped to the U.S. and Canada.

Order ing Example
Here lower case example for ordering a 2641A Terminal with upper and lower case
Roman cha rac te r se t s , l i ne d raw ing cha rac te r se t , ca r t r i dge t ape capab i l i t y
and f ive ext ra car t r idges to be operated over phone l ines:

2 6 4 1 A A P L D i s p l a y S t a t i o n
- 0 0 1 A d d s L o w e r C a s e R o m a n C h a r a c t e r S e t
- 0 0 7 A d d s C a r t r i d g e T a p e C a p a b i l i t y
- 0 1 3 A d d s F i v e M i n i C a r t r i d g e s
- 2 0 2 A d d s L i n e D r a w i n g C h a r a c t e r S e t

1 3 2 3 2 N A d d s 1 0 3 / 2 0 2 M o d e m C a b l e â € ” 1 5 f t .
PRICE IN U.S.A. : 2641A, $4100. 2641A as above, $6115.
M A N U F A C T U R I N G D I V I S I O N : D A T A T E R M I N A L S D I V I S I O N

1 9400 Homestead Road
Cupert ino, Cal i forn ia 95014 U.S.A.

16

© Copr. 1949-1998 Hewlett-Packard Co.

A Dynamic Incrementa l Compi ler for an
Interpret ive Language
by Er ic J . Van Dyke

A PL OFFERS THE USER a rich selection of primi
t i v e f u n c t i o n s a n d f u n c t i o n / o p e r a t o r c o m

posites. Powerful data structuring, selection, and
arithmetic computation functions are provided, and
their definitions are extended over vectors, matrices,
and arrays of larger dimension, as well as scalars.

Evaluation of complex expressions built from such
terse operations is necessarily quite involved. Code
must be generated and executed to apply primitive
funct ions to one another and to data a toms, with
whatever type checks and representation conversions
are required. Nested iteration loops must be created to
extend the scalar functions over multidimensional
array arguments, and these must include data con
formity and index range checks.

All of this gathering and checking of information
c o n c e r n i n g d a t a / f u n c t i o n i n t e r a c t i o n a n d l o o p
structure â€” and its high overhead expense â€” is, in the
typical naive APL interpreter, simply thrown away
after the execution of a statement. This is because the
nature of APL is dynamic. Attributes of names may be
arbitrarily changed by programmer or program. Size,
shape, data type, even the simple meaning of a name
(whether a data variable, shared variable, label, or
function), are all subject to change (Fig. 1). Assump
tions cannot be bound to names at any time and be
counted on to remain valid on any subsequent loop
iteration or function invocation. For this reason, APL
has t radi t ional ly been considered too unstable to
compile.

From this dilemma â€” high cost and wasted over
head that penalize interpretation but instability that
prevents compilation â€” grew the dynamic incremen
tal compiler of APL 3000.

Compi le Only as Required
The APL \3000 dynamic incremental compiler is

an interact ive compiler / interpreter hybrid. I t is a
compiler that generates and saves executable object
code from a tree representat ion of each new APL
expression for which none already exists. (In general,
each assignment statement, branch, or function invo
cation is considered an expression.) It is also an in
terpreter that immediately evaluates every expression
of a statement or function. Whenever possible, previ
ously compiled and saved code for an expression is
re-executed. Only when absolutely necessary is new
code generated. Thus s table expressions are com

piled, while those with dynamically varying at tr i
butes and those that are executed only once are, in
essence, interpreted. The overhead of new code gen
erat ion is borne only when necessary, of ten only
once. This scheme of infrequent overhead provides
justification for costly optimizations, including the
dragalong and beating discussed below, that lead to
more efficient code.

A balance between compiling and interpretation is
accomplished through the generation and execution
of signature code, binding instructions that are emit
ted before the code for an expression. Their purpose is
to specify and check the attributes that are bound into
the following code, that is, constraints that may not
change if the compiled code is to be re-executed.
Signature instructions are generated that test index
origin (0 or 1), meaning of names (whether data vari
able, shared variable, or otherwise), type and dimen
sions of expressions (representation, size, and shape),
access information for data (origin and steps on each
dimension), and run-time index bounds checks.

These signature instructions are bypassed on the
first execution after compilation, when all assump
tions are guaranteed satisfied. On subsequent execu
tions, the signature code is used to test the validity of
the code that follows. If these assumptions are found
to be inval id , the code "breaks" . Execut ion is re
turned to the compiler and code with a new set of
assumptions is generated (Fig. 2). On recompilation,
an express ion is assumed unstable and a not-so-

A N S < - A + B

Integer Scalar Variable
Dyadic Pr imit ive Funct ion
Integer Scalar Variable

[A Numeric Value]

A N S < - A + B

Real Vector Var iable
Dyadic Primit ive Funct ion
Character Matr ix Var iable

[A Domain Error]

A N S < - A + B

Monadic User-Def ined Funct ion
Monadic Primitive Function â€”
Ni ladic User-Def ined Funct ion

[A Numeric Value]

Fig. 1. APL is dynamic. Attr ibutes of names may be arbi t rar i ly
changed by the programmer or by a program. For this reason,
APL has been cons idered imposs ib le to compi le .

1 7

© Copr. 1949-1998 Hewlett-Packard Co.

New
Expression

Previously
Compi led

Expression

Compi le and
Save Code

and S ignature
Instructions

Test
Signature

Instructions

I
Code Breaks

1
Compi le Less-
Spec i f ic Code

and New S igna ture
Instruct ions

Execute
Code

Execute
Code

F i g . 2 . I n A P L 3 0 0 0 , e x p r e s s i o n s a r e c o m p i l e d w h e n f i r s t
encountered. Along wi th the compi led code s ignature code is
generated, speci fy ing constraints that must be met i f the code
i s t o be re -execu ted . Th i s s i gna tu re code i s t es ted on sub
sequent invocat ions of the express ion, and i f the const ra in ts
are not met , recompi la t ion is requ i red.

specific but somewhat slower and less dense form of
code is generated. Further changes may not force a
recompilation.

Wait as Long as Possib le ; Do as L i t t le as Necessary
The secret to compiling efficient code is in gather

ing, retaining, and exploiting as much information
about the entire expression as possible before generat
ing code. The more context that can be recognized,
the more specific "smarts" can be tailored into the
code. For this reason, the APL 3000 compiler oper
ates in two distinct functional passes: context gather
ing and code generation.

The context gathering, or foliation, phase of compi
lation is a complete bottom-up traversal of the expres
sion tree. Fig. 3 shows an example of such a tree.
Description information is associated with each of the
constant and variable data nodes â€” the leaves of the
tree. These descriptions are then "floated" up to in
teract with the parent node. Descriptions are revised
and attached to the corresponding node as necessary
to suit the result. This process continues as descrip
tions are gathered and carried up through each func
tion or operator node toward the root. Attached to the
final assignment or branch node will be a context
description for the entire expression. Fig. 4 shows the
foliated tree for the expression of Fig. 3.

The information created by this foliation process
consists of a set of auxiliary description nodes at
tached to each node in the expression tree. Each of
these description groups contains the attributes of the
result of the expression to which it is attached, as
modified by that function and those below. First in
the set of descriptor nodes is a single RRR node, which

ANS

1.1

2 3

E x p r e s s i o n T r e e t o r A N S Â « - 1 . 1 + 2 3 p i e

F i g . 3 . T h e t r e e r e p r e s e n t a t i o n o f a n e x p r e s s i o n . T h e
APL 3000 compi ler t raverses this t ree twice, once for. context
gather ing and once for code genera t ion .

describes the general structure of the current expres
sion: RANK (number of dimensions â€” for scalar, 0),
REPRESENTATION (internal data type), and RHOs (size of
each dimension â€” for scalar, there is none). Linked to
the RRR node is a chain of DELOFF nodes , or data access
descriptions, at least one for each non-scalar data item
in the expression. A DELOFF node indicates the order
in which an item is accessed and stored â€” row major,
for example â€” by means of an OFFSET (origin), and a
DEL (step) for each coordinate. Notice that these de
scriptions are independent of the data; storage need
not be accessed during this foliation process.

Frequently, data storage is shared. In such cases,
multiple descriptors are created, perhaps with differ
ing access schemes. Each addresses the same shared
area. A common form of vector data created by the
INDEX GENERATOR function is the arithmetic progres
sion vector (APV). This vector may be completely rep
resented by its descriptor; no data area is necessary at
all. For example, 2 + 3x14 requires only the descriptor:

R H O : 4 O F F S E T : 5 D E L : 3

to represent the values 5 8 11 14.

Dragalong and Beat ing
It is the gathering and manipulation of these data-

independent descriptors, following the dragalong
and beating strategies developed by Abrams,1 that
makes possible the extensive optimizations incorpo
rated in APL 3000.

Dragalong, the strategy of deferring actual evalua
tion as far as possible up the expression tree by gather
ing descriptions, avoids the naive interpreter's usual
one-function-at-a-time "pinhole" evaluation. In
stead, the code for a collection of parallel functions,
including their associated loops, can be generated
and executed simultaneously. Fig. 5 compares naive
with dragged code.

Beating, the application of Abrams' subscript cal-

18

© Copr. 1949-1998 Hewlett-Packard Co.

R A N K 2 (M a t r i x)
T O N R e a l

2 (Matrix)
A N S

/ f R A N K
Q R R R ^

f
D E L O F F % f 3 Â °

IDEL-
Real

R A N K 0 (S c a l a r)
R E P R E S E N T A T I O N R e a l

1 O F F S E T n l i R A N K ' < V e c l o r >
D E L O F F (Â £ Q , K R E P R E S E N T A T I O N I n t e g e r } R R R 2 3

' 1 R H O 0 2 /

R A N K 1 (V e c t o r)
R R R < R E P R E S E N T A T I O N : A P V

R H O 0 6

R A N K 2 (M a t r i x)
B O B R E P R E S E N T A T I O N R e a l â € ž . _ _ _ P I â € ž
R R R R H O 0 2 / D E L O F F < D E L 0

R H O 1 3 ^ D E L 1

, B B O RANK 0 (Sca la r)
REPRESENTATION In teger

Foliated Expression Tree for ANS <â€” 1.1 + 2 3 p l 6

Fig. 4. compilation. expression tree results from the context gathering phase of compilation. Auxiliary
descr ip t ion nodes conta in the a t t r ibutes o f the sub-express ion to which they are a t tached.

culus to a deferred expression when evaluation is
finally required, produces the desired results for cer
ta in APL funct ions by descr ip t ion manipula t ion
alone. In such cases, the original data is shared with
the beaten result, making it unnecessary to copy the
data in a different form. Thus data is touched only
when and only as much as necessary. (Data sharing is
described in more detail in the article beginning on
page 6.) SUBSCRIPTION, RESHAPE, RAVEL, TAKE, DROP,
REVERSAL, and monadic and dyadic TRANSPOSE are the
funct ions to which beat ing opt imizat ions may be
applied (see Fig. 6).

The dragalong and beating strategies can signifi
cantly reduce the amount of data access and storage,

computation and looping overhead, and often tempo
rary storage required in the evaluation of an expression.

An independent context ga ther ing pass dur ing
compilation provides an opportunity for a number of
specific optimizations in addition to dragalong and
beating. For example, a pair of adjacent monadic RHO
nodes can be recognized as a new internal RANK func
tion. The result is merely the rank of the argument as
indicated by its description, eliminating the need for
an intermediate rho vector (see Fig. 7). Similarly,
successive CATENATE nodes can often be incorporated
into a new multi-argument POLYCAT function, elimi
nating the superfluous data moves and intermediate
storage that would normally be required (Fig. 8).

Naive

I N I T I A L I Z E I N D E X 1 A N D L I M I T

W H I L E I N D E X 1 Â ¿ L I M I T D O

B E G I N

TEMPORARY INDEX 1] â€” B\ INDEX Ã | xC INDEX 1

I N C R E M E N T I N D E X 1

E N D

I N I T I A L I Z E I N D E X 2

W H I L E I N D E X 2 Â ¿ L I M I T D O

B E G I N

A N S \ I N D E X 2] ~ A \ I N D E X 2] + T E M P O R A R Y [l N D E X 2]

I N C R E M E N T I N D E X 2

E N D

Dragged

I N I T I A L I Z E I N D E X A N D L I M I T

W H I L E I N D E X ? L I M I T D O

B E G I N

8[/WDÂ£X xC|/WDÂ£XJ

I N C R E M E N T I N D E X

E N D

F i g . 5 . E v a l u a t i o n o f a n e x p r e s
s i o n i s d e f e r r e d a s l o n g a s p o s
s ib le . Th i s s t ra tegy , ca l l ed d rag -
along, makes i t poss ib le to gener
a t e a n d e x e c u t e t h e c o d e f o r a
number of paral le l funct ions s imul
t a n e o u s l y , a v o i d i n g t h e n a i v e i n
terpreter 's one- funct ion-at -a- t ime
eva lua t ion . Shown here i s a com
p a r i s o n o f n a i v e w i t h d r a g g e d
code for ANS^A+BXC. A, e , and c
are conformable vectors .

19

© Copr. 1949-1998 Hewlett-Packard Co.

R R R

2 3

R R R

2 2

:RANK: 2 (Matrix)
REPRESENTATION: Integer 1
R H O O 2 f
RHO 1: 3

2 3 p 16

RANK: 2 (Matr ix)
REPRESENTATION: In teger !

DELOFF
OFFSET. 0
D E L 0 3
DEL 1 1

[OFFSET: 0
D E L O F F (D E L 0 . 3

1 DEL 1: 1

" Beaten Result

2 3

RRR

2 2

2 2 f 2 3 p 1 6

RANK: 2 (Matr ix)
REPRESENTATION In teger

Beaten Result N

Beaten Resu

2 3

< () 2 2 t 2 3 p 1 6

F ig . 6 . W/ ien eva lua t ion i s f i na l l y requ i red , bea t ing , o r the
appl icat ion of the subscr ipt calculus to a deferred expression,
may produce resul ts by descr ip t ion manipulat ion a lone. Here
TAKE (Ã) and REVERSAL (cj>) are applied to descriptions for a
s imp le exp ress ion . The d raga long (see F ig . 5) and bea t ing
s t ra teg ies can s ign i f icant ly reduce the computat ion and s tor
age requi red in the eva luat ion of an express ion.

APL3000's target machine is a software/firmware
emulator implemented on the HP/3000. The instruc
tion set, in addition to loads, stores, and loop and
index controlling instructions, includes a set of high-
level opcodes that match the APL primitive scalar
functions. Code generation from an expression fol
lows a recursive descent of the tree: an instruction to
set up a storage area for the result (typically a tempor
ary) is emitted, followed by a reverse Polish sequence
of data loads and operations, and finally a store into
the result, all nested within the necessary loops.

Any instruction that has the potential to fail carries
within it a syllable number that provides the machine
with a pointer to the original source in case of an
error, allowing for recompilation on binding errors or
message generation on user errors.

The descriptions at the root node completely de
scribe all index variables and iteration loops to be
generated. Each DELOFF node, with optimizations
beaten in, describes the initialization (OFFSET) and
stepping (DEL) of an index register. The loops, one for
each dimension of the result, in general, are derived
from the RRR in conjunction with a selected DELOFF.
Loops are all of a basic structure:

INITIALIZE ALL INDEX REGISTERS
INITIALIZE LIMIT REGISTER
WHILE CHOSEN INDEX / LIMIT DO

BEGIN
INITIALIZE LIMIT REGISTER
WHILE CHOSEN INDEX * LIMIT DO

BEGIN

(Indexed Expression Code)

INCREMENT ALL INDEX REGISTERS
END

INCREMENT ALL INDEX REGISTERS
END

Equality, unlike > and <, is a consistent termina
tion condition for loops that may run in any direction.
For each loop, a DELOFF node is selected to serve as the
loop-controlling induction variable. Because of their
special uses, certain indexes are not eligible (those for

Code Generat ion
When the compiler is finally forced to materialize

an expression â€” either the root has been reached, or
the compiler can drag no farther for one reason or
another â€” code is emitted. This code generation pass
is a second independent walk of the foliated tree with
dragged and beaten descriptions attached, this time
from the top down, generating and saving executable
code for the expression. By exploiting the context
descriptions that have been gathered up the tree from
each node, specifically tailored code can be gener
ated. Because APL in general deals with arrays, this
process also usually involves the construction of
loops.

I
O

(RAN

!

Expression Expression

Fig . 7 . The con tex t ga ther ing pass p rov ides an oppor tun i t y
for speci f ic opt imizat ions, such as recogniz ing a pai r o f ad ja
cent monadic RHO nodes as the new internal RANK funct ion.

2 0

© Copr. 1949-1998 Hewlett-Packard Co.

A Controller for the Dynamic
Compiler

by Kenneth A . Van Bree
The con t ro l le r fo r the dynamic compi le r per fo rms a l l o f the

tasks an interpreter for APL must perform, such as handling user
i n p u t a n d e d i t i n g , s e q u e n c i n g b e t w e e n l i n e s o f a f u n c t i o n ,
cal l ing and returning from user-def ined funct ions, and handl ing
er ro rs . In add i t ion , the cont ro l le r hand les the genera t ion and
re-execut ion o f compi led code for APL s ta tements .

One of the guiding assumptions in the design of the control ler
was that code for a part icular statement could be compiled once
a n d w o u l d r e m a i n v a l i d f o r m a n y r e - e x e c u t i o n s o f t h a t
statement. This assumpt ion was based on the observat ion that
m o s t A P L p r o g r a m m e r s d o n o t t a k e f u l l a d v a n t a g e o f t h e
d y n a m i c c a p a b i l i t i e s o f A P L . C h a n g e s i n t h e v a l u e o r s i z e
(number of elements) of a variable are frequent, but changes in
t h e s h a p e o r r e p r e s e n t a t i o n o f a v a r i a b l e a r e r a r e . F o r t h i s
reason , t he con t ro l l e r has been des igned to re -execu te com
p i led code as qu ick ly as poss ib le , wh i le s t i l l ma in ta in ing the
f l e x i b i l i t y n e e d e d t o p e r f o r m a l l t h e o t h e r d u t i e s r e l a t e d t o
cont ro l l ing an in teract ive language such as APL.

The controller consists of f ive interacting modules as shown in
t h e d i a g r a m . E a c h m o d u l e p e r f o r m s a s u b s e t o f t h e d u t i e s
re lated to contro l l ing the compi ler , and any module can cal l on
any other module to perform a task that i t cannot do i tsel f . The
normal f low of control for an APL expression input by the user (in
ca lculator mode) is as fo l lows:

Text for the expression is input by the user through the user
i n p u t a n d e d i t i n g m o d u l e . T h i s m o d u l e i s i n c h a r g e o f a l l
i n t e r a c t i o n s w i t h t h e u s e r , a n d b e f o r e c o n t r o l l e a v e s t h i s
module, al l text that the user enters is converted into an internal
form cal led S-code. S-code is a compact form of the text , wi th
e a c h i d e n t i f i e r r e p l a c e d b y a n i n t e r n a l s h o r t n a m e f o r e a s y
reference. The actual text that the user enters is not saved, but is
regenerated f rom S-code i f needed.

Once S-code has been created, contro l is passed to the l ine
statement sequencing module, which handles the dynamic f low
o f c o n t r o l b e t w e e n l i n e s a n d s t a t e m e n t s i n A P L . A s e a c h
statement is executed, this module checks to see whether i t has
been executed before. I f a statement has never been executed
b e f o r e , a s y n t a x a n a l y s i s i s d o n e o n t h e S - c o d e f o r t h a t
statement. The result of the syntax analysis is one or more syntax
t r ees o f D - t r ees . Each D - t r ee rep resen t s t he l a rges t pa r t o f
a n A P L s t a t e m e n t t h a t c a n b e g u a r a n t e e d t o h a v e n o s i d e

e f f e c t s . F o r e x a m p l e , i n t h e s t a t e m e n t A < - B + C . i f C i s a
user-def ined funct ion, then the statement wi l l be broken up into
two t rees . The f i r s t t ree w i l l mater ia l i ze the func t ion C in to a
temporary variable, and the second tree wil l add the results of C
to B and ass ign the sum to A.

As soon as D-trees have been created for a statement, control
is passed to the executable code creat ion/sequencing module.
With in th is module, each D-tree for a statement is examined in
s e q u e n c e , a n d i f i t d o e s n o t r e p r e s e n t a f u n c t i o n c a l l , i t i s
p a s s e d t o t h e d y n a m i c c o m p i l e r . T h e c o m p i l e r t u r n s e a c h
D - t r e e i n t o a b l o c k o f e x e c u t a b l e c o d e c a l l e d E - c o d e . T h e
comp i le r ca l l s the execu t ion mach ine d i rec t l y to execu te the
E-code that i t has created.

Once a val id block of E-code has been created from a D-tree
the executab le code creat ion /sequenc ing module is in charge
of storing that E-code block for later reference. As each D-tree is
c o m p i l e d , t h e E - c o d e b l o c k c r e a t e d i s u s e d t o r e p l a c e t h e
D- t ree. When a l l t rees for a s ta tement are compi led there wi l l
ex is t a On o f E-code b locks tha t represent the s ta tement . On
subsequent execut ions o f a s ta tement , the E-code b locks are
re t r i eved and g iven d i rec t l y to the execu t ion mach ine . I f t he
code contains a non-fatal error such as a change in representa
t i o n o r r a n k o f a v a r i a b l e , t h e e x e c u t i o n m a c h i n e r e t u r n s a
n o n - f a t a l e r r o r i n d i c a t i o n t o t h e e x e c u t a b l e c o d e c r e a t i o n /
sequenc ing module , wh ich ca l ls the non- fa ta l er ror handler to
co r rec t the p rob lem. The non- fa ta l e r ro r hand le r rec rea tes a
D- t ree fo r the par t o f the s ta tement a f fec ted by the non- fa ta l
e r r o r . N e w E - c o d e i s t h e n c o m p i l e d w i t h t h e n o n - f a t a l e r r o r
cor rec ted , and the new E-code b lock i s saved in p lace o f the
one in which the er ror was found.

I f the executab le code creat ion/sequenc ing module detec ts
that a part icular D-tree represents a function cal l , then control is
passed to the user-def ined funct ion ca l l and re turn module . I f
the l ine statement sequencing module detects a funct ion return,
i t can also pass control direct ly to the user-defined function cal l
and return module.

I f any of the other modules detects a fa ta l er ror , such as an
undefined variable ora syntax error, control is passed direct ly to
the fatal error handler . This module suspends execut ion, pr ints
an er ror message for the user , and then re turns cont ro l to the
user input and ed i t ing module to wai t for input f rom the user .

Controller
User Input

and Edit ing

Line
Statement

Sequencing

Executable Code
Creat ion/Sequencing

User Def ined
Function

Call /Return

Fatal
Error

Handler

Syntax
Analysis

Dynamic
Compi ler

Execution
Machine

Non-Fatal
Error

Handler

Syntax
Analysis

Execution
Machine

21

© Copr. 1949-1998 Hewlett-Packard Co.

Expression

Expression Expression Expression â€¢ â€¢ Expression â€¢ â€¢ Expression

F ig . 8 . Ano the r op t im iza t i on tha t
c a n b e e f f e c t e d d u r i n g c o n t e x t
g a t h e r i n g i s c o m b i n i n g s u c c e s
sive CATENATE nodes into a new in
ternal POLYCAT function.

single-element arrays that will never be incremented,
for example, or the left indexes of COMPRESS and EX
PAND, which are incremented asynchronously).

A limit for each loop, calculated as OFFSET + RHO x
DEL (on the appropriate coordinate, from the chosen
induction variable) plus the current induction vari
able, is also created in a register. Except for the outer
most (or only) loop limit, which may be constant, the
limit value must be calculated at execution time. In
itialization values and increments for all indexes cor
respond to the OFFSETS and DELS of their associated
DELOFF descriptors. Fig. 9 shows the code generated
for a vector expression.

A number of optimizations are performed prior to
the generation of loops. Except for actual display, an
expression represented as an arithmetic progression
vector (APV) requires no evaluation loop at all; its
description completely specifies the result. Redun
dant index variables, which would run in parallel, are
shared by collecting those DELOFF nodes having iden
tical attributes into a single register. If, according to
the descriptors, a loop is unnecessary, as is often the
case with row-major compact storage, it is collapsed,
subsumed by the next outer loop.

In addition, certain improvements in the code can
be made. Unlike larger data structures, in which data
can be partially destroyed if an error is encountered,
scalar and single-element expressions can be gener
ated without assignment to an intermediate tempor
ary variable, eliminating the setup, some use of stor
age area, and the resulting data swap. Occasionally,
when the result produced from such a unit expression
involves itself, a new data area need not be set up at
all. Instead, the old name is retained for the result of
the expression. Subexpressions yielding a scalar or
single-element array within the scope of a loop can
frequently be materialized, or assigned into a tempor
ary cell, outside the loop, eliminating their repeated
evaluation. The more complex argument to an OUTER
PRODUCT operator can similarly be constrained to an
outer code loop, affording it less frequent evaluation.

Hard and Sof t Code
The code generated by APL 3000 is of two types.

Initially, hard or tight code is produced. In this style
of code, the RHOs, OFFSETS, and DELS, as well as RANK
and REPRESENTATION are bound into the instructions
as constants. If this specific form of code has broken
and a recompilation is required, more general soft or
loose code is generated, in which only the RANK and
REPRESENTATION are bound. RHOs, DELS, and OFFSETS
may be calculated in registers at run time. Thus the
dimensional attributes of an array may dynamically
change without invalidating the code again.

S E T U P S T O R A G E A R E A F O R R E S U L T T E M P

I N I T I A L I Z E S T O R I N G I N D E X T O 0

(O F F S E T F O R A N S A N D T E M P)

I N I T I A L I Z E V E C T O R A C C E S S I N G I N D E X T O 2

(O F F S E T F O R V E C T O R B E A T E N B Y < (,)

I N I T I A L I Z E A P V A C C E S S I N G I N D E X T O 1

(O F F S E T F O R 1 3)

I N I T I A L I Z E L I M I T T O 3
(R H O X D E L + O F F S E T - i - S T O R I N G I N D E X)

W H I L E S T O R I N G I N D E X ? L I M I T D O

B E G I N

L O A D A P V A C C E S S I N G I N D E X

I N T E G E R L O A D O F V E C T O R [V E C T O R A C C E S S I N G I N D E X]

I N T E G E R M U L T I P L Y

C O N V E R T T O R E A L

R E A L L O A D O F C O N S T A N T 1 . 1

R E A L A D D

R E A L S T O R E I N T O T E M P [S T O R I N G I N D E X]

I N C R E M E N T S T O R I N G I N D E X B Y 1

(D E L F O R A N S " A N D T E M P)

I N C R E M E N T V E C T O R A C C E S S I N G I N D E X B Y " 1

(D E L F O R V E C T O R B E A T E N B Y < (;)

I N C R E M E N T A P V A C C E S S I N G I N D E X B Y 1

(D E L F O R 1 3)

E N D

S W A P T E M P I N T O A N S

Fig. 9 . When the compi ler can drag no far ther i t emi ts code.
The code generat ion phase is a second t raversal o f the (now
fo l ia ted) express ion t ree. Because APL in genera l deals wi th
a r rays , code genera t ion usua l ly invo lves the cons t ruc t ion o f
loops. Shown here is the code genera ted fo r the express ion
ANS-1.1 + ($VECTOR)x\3. VECTOR is an integer vector of length 3.

2 2

© Copr. 1949-1998 Hewlett-Packard Co.

Hard

S E T U P S T O R A G E A R E A F O R R E S U L T T E M P

I N I T I A L I Z E S T O R I N G I N D E X T O 0

I N I T I A L I Z E V E C T O R A C C E S S I N G I N D E X T O 2

I N I T I A L I Z E L I M I T T O 3

W H I L E S T O R I N G I N D E X * L I M I T D O

BEGIN
LOAD 1
L O A D V E C T O R [V E C T O R A C C E S S I N G I N D E X]

ADD
S T O R E I N T O T E M P [S T O R I N G I N D E X)

I N C R E M E N T S T O R I N G I N D E X B Y 1

I N C R E M E N T V E C T O R A C C E S S I N G I N D E X B Y

E N D

S W A P T E M P I N T O A N S

Soft

S E T U P S T O R A G E A R E A F O R R E S U L T T E M P

I N I T I A L I Z E S T O R I N G I N D E X T O 0

I N I T I A L I Z E V E C T O R A C C E S S I N G I N D E X T O

(R H O - 1) x D E L - > - O F F S E T F R O M V E C T O R

I N I T I A L I Z E V E C T O R A C C E S S I N G I N C R E M E N T T O

~ D E L F R O M V E C T O R

I N I T I A L I Z E L I M I T T O R H O F R O M V E C T O R

W H I L E S T O R I N G I N D E X Â ¿ L I M I T D O

BEGIN
LOAD 1
LOAD VECTOR [VECTOR ACCESSING INDEX]
ADD
S T O R E I N T O T E M P [S T O R I N G I N D E X]

I N C R E M E N T S T O R I N G I N D E X B Y 1

I N C R E M E N T V E C T O R A C C E S S I N G I N D E X B Y

VECTOR ACCESSING INCREMENT

E N D

S W A P T E M P I N T O A N S

Fig. 10. Code generated is of two
t y p e s . I n i t i a l l y , h a r d c o d e i s p r o
duced . I f t h i s code l a te r b reaks ,
mo re gene ra l so f t code i s gene r
a ted . Shown he re i s ha rd ve rsus
s o f t c o d e f o r t h e e x p r e s s i o n
ANS-(^VECTOR) + 1. VECTOR is an in
teger vector of length 3.

For this more flexible form of instruction a price is
paid in terms of speed and code bulk, but this over
head cost rarely approaches that of an entire recompi-
lation every time a RHO, OFFSET, or DEL changes.
Notice that RANK and REPRESENTATION must always be
bound hard. RANK, which specifies the maximum
number of loops tobe generated, must have a constant
value at compile time. REPRESENTATION must be
known to determine the data type of the instructions
issued. A change in either of these attributes always
forces a new compilation.

Fig. 10 compares hard and soft code emitted for a
vector expression.^?

Reference
1. P.S. Abrams, "An APL Machine," PhD dissertation,
SLAG Report No. 114, Stanford University, February 1970.

Er ic J . Van Dyke
Er ic Van Dyke began wr i t ing com
pilers right after he received his BA
degree in in format ion sc iences
from the Universi ty of Cal i fornia at
Santa Cruz in 1974. Af ter jo in ing
HP in 1975, he helped implement
the dynamic incrementa l compi ler
fo r APL 3000. Er ic is a Ca l i fo rn ia
nat ive, born in Palo Al to, and now
l ives in Los Altos. He's single, and
has a pass ion for w i lderness
moun ta inee r ing , i nc lud ing c l imb
ing, h ik ing, sk i ing, and leading

* S i e r r a C l u b t r a i l m a i n t e n a n c e a n d
clean-up tr ips. He's also a student

o f Amer ican fo lk mus ic and jazz and fo lk and modern dance .

Extended Control Functions for
Interactive Debugging

by Kenneth A . Van Bree

Severa l sys tem func t ions fac i l i ta te debugg ing and program
d e v e l o p m e n t i n A P L . U s i n g t h e f u n c t i o n C s s (s e t s t o p) i t i s
poss ib le to s top on any or each l ine o f a funct ion or on re turn
f rom the funct ion. The DST (set t race) funct ion a l lows the last
result calculated on a l ine to be displayed along with the function
name and l i ne number . Th is i s he lp fu l fo r observ ing p rogram

f low. The DSM (set monitor) funct ion al lows the user to monitor
the number o f t imes tha t a func t ion and /o r l i ne has been exe
cuted, along with the amount of CPU time spent in each l ine, and
the total CPU t ime spent in the function. These functions can be

(con t inued on page 24)

2 3

© Copr. 1949-1998 Hewlett-Packard Co.

used to determine where the major i ty of the CPU t ime is being
spent on a part icular problem and which l ines of a program have
neve r been execu ted . A l l o f t he mon i t o r i ng f ac i l i t i e s can be
tu rned on or o f f and quer ied under p rogram cont ro l .

One reason tha t p rogram deve lopment i s so easy in APL is
t h a t t h e e n t i r e p o w e r o f A P L i s a v a i l a b l e t o t h e u s e r d u r i n g
program debugging. When the APL system detects an error in a
user program (for example , an a t tempt to read a var iab le that
hasn ' t been g iven a va lue) , the program is hal ted and an error
message is writ ten on the user terminal. The error message tel ls
the user the type of error (a VALUE ERROR in this example) along
with a pointer to where the error was detected. The APL system
then returns control to the terminal so the user can try to correct
the error. At this point the state indicator (SI) may be displayed.
The s ta te i nd i ca to r i s a pushdown l i s t (i . e . , s t ack) o f a l l t he
user -def ined funct ions that have been ca l led but have not ye t
completed execut ion. The s tate ind icator d isp lays not on ly the
names of the funct ions that have been cal led, but a lso the l ine
number on which execution was suspended. In addit ion, a l ist of
al l the local variables can be obtained for each function that has
been ca l led but not completed. The funct ion in which the error
was found i s the topmos t en t r y on the S I and i s ca l l ed a sus
pended funct ion. Other funct ions on the SI are ca l led pendant
functions.

Whi le computat ion is suspended, the user has the fu l l power
of APL avai lable to h im for debugging. The suspended funct ion
(or any other funct ion that is not pendant) may be ed i ted, and
any variable that is avai lable within the suspended funct ion may
be interrogated or redefined . A new computation may be started
by ca l l i ng ano the r f unc t i on , o r i n mos t cases the suspended
c o m p u t a t i o n m a y b e r e s u m e d f r o m t h e l i n e a t w h i c h i t w a s
suspended or any other l ine. I f for some reason the user does
no t w ish to f i x t he e r ro r , t he S I can be c lea red , o r the en t i re
workspace inc lud ing the SI can be saved fo r la te r re fe rence.

The f lex ib i l i ty and power ava i lab le to the user dur ing debug
g i n g m a k e i t p o s s i b l e t o d e t e c t a n d c o r r e c t m u l t i p l e e r r o r s
during the course of the computat ion. This means that programs
of ten run to complet ion the f i rs t t ime they are ca l led, because
mos t o f can be f i xed as they a re de tec ted . A recen t s tudy o f
APL in Europe1 showed tha t the conc iseness o f APL coup led
w i t h i t s e a s e o f d e b u g g i n g p r o d u c e d a 3 : 1 i m p r o v e m e n t i n
p r o g r a m m e r p r o d u c t i v i t y o v e r s u c h l a n g u a g e s a s P L / I a n d
COBOL.

In this environment the value of variable v is whatever has been
assigned within funct ion G. The value of v within funct ion F has
been shadowed (by the l oca l va r i ab le v w i th in G) and i s no t
access ib le w i th in the cu r ren t f unc t i on . A l l names access ib le
f rom func t ion G make up the env i ronment o f G, and the loca l
var iable v of funct ion F is not in the envi ronment of G. Fur ther
more, it is not possible to resume execution of function F without
f i r s t a f u n c t i o n G , s i n c e t h e S I o p e r a t e s s t r i c t l y o n a
last-in-first-out basis.

T h r o u g h t h e u s e o f t h e e x t e n d e d c o n t r o l f u n c t i o n s o f
APL 3000 i t is poss ib le to access var iab les and resume execu
t ion in env i ronments o ther than the cur ren t env i ronment . The
concept of mul t ip le envi ronments is not new,2 but i t has never
been imp lemen ted in APL be fo re . APL \3000 a l l ows up to 16
environments to be available at one t ime. Each environment has
i t s own s ta te i nd i ca to r , and con t ro l can be passed f rom one
environment to another through the use of the extended execute
(Ã) function. Although the normal SI in APL obeys a str ict stack
d isc ip l ine , the env i ronments o f APL \3000 may c rea te one o r
more compu ta t i on t rees . Th i s a l l ows the c rea t i on o f env i ron
ments no share a port ion of their SI. When this happens, i t is no
longer possible to maintain a stack discipline for the SI , and a set
of pointers must be maintained that l inks each function call to its
c a l l i n g f u n c t i o n . T h e e x t e n d e d c o n t r o l f u n c t i o n s m a i n t a i n a
s t a c k a f o r t h e S I u n l e s s t h e u s e r e x p l i c i t l y c a l l s f o r a
t ree- l ike contro l s t ructure. The overhead paid for the extended
control capabi l i ty is minimal unless i t is invoked by the user. In
the above example , the env i ronment w i th in func t ion F can be
cap tu red by us ing the sys tem func t i on DCSE (cap tu re s tack
environment).

F[2]

DCSE

)SIV

n Capture second func t ion name on SI
n The envi ronment number is 1
f l Display the SI for environment 1

Environment 1 now shares a part of i ts SI (namely the function
F and its local variable v) with the current environment displayed
ea r l i e r . Any a rb i t r a r y exp ress ion can be eva lua ted i n t he en
v i r o n m e n t o f f u n c t i o n F t h r o u g h t h e u s e o f t h e e x t e n d e d
execute funct ion. For example, the var iable v wi th in funct ion F
may be ass igned the va lue 3 as fo l lows:

Extended Contro l Funct ions
The state of an APL computat ion can be displayed at any t ime

by i n te r rup t i ng the compu ta t i on (by send ing the ATTENTION
character) and displaying the state indicator through the use of
the commands is i o r >s iv . The s ta te ind ica tor shows a l l o f the
f unc t i ons t ha t have been ca l l ed bu t have no t ye t comp le ted
execut ion, a long wi th the var iab les that are local to those func
t ions. The current environment consists of the variables that can
be accessed within the topmost function on the stack, along with
the cha in o f con t ro l rep resen ted by the func t ion ca l l s tha t ap
pear on the SI . Normal ly , wi th in APL, any computat ion must be
done in the current envi ronment. For example, i f the funct ion F
(which has local variable v) calls function G (which also has local
variable v), and computation is suspended within G, the SI might
appear as fo l lows:

)SIV
G [3] . V
F [2] V

Evaluat ing an expression in environment 1 (or any other envi
ronment) is equivalent to evaluating the expression in calculator
mode with execut ion suspended in that environment. Execut ion
can be resumed wi th in funct ion F by evaluat ing an express ion
that resul ts in a branch. For example:

The extended cont ro l funct ions in APL 3000 can be used for
pu rposes o the r t han debugg ing . S ince env i ronmen ts can be
captured (using CCSE) and released (using GRSE) under program
c o n t r o l , i t i s p o s s i b l e t o i m p l e m e n t s u c h a d v a n c e d p r o
g ramming concep ts as back t rack ing , co - rou t ines , and so on ,
wh i ch have been d i f f i cu l t o r imposs ib le t o imp lemen t i n APL
before.

References
1. Y. LeBorgne, "APL Usage in Europe. Scope and Value, " Proceedings of APL 76,
Ot tawa, Canada. September 1976. pp . 259-266.
2 . D G Mu l t i p l e and B Wegbre i t , "A Mode l and S tack Imp lemen ta t i on o f Mu l t i p l e
Env i ronmen ts , " Commun ica t i ons o f t he ACM, Vo l 16 . No . 10 . Oc tobe r 1973 , pp .
591-603

2 4

© Copr. 1949-1998 Hewlett-Packard Co.

CRT Termina l Prov ides both APL and
ASCII Operat ion
by Warren W. Leong

MODEL 2641A APL DISPLAY STATION (Fig. 1)
is a special CRT terminal designed to serve as

the principal user interface for APL 3000. APL opera
tion plus extensive data communications capabilities
allow the terminal to be used with APL interpreters/
compilers that exist on a variety of computer systems,
especially the HP 3000. ASCII operation is provided
to retain compatibility with HP 2640-Series CRT
Terminals.

The 2641A provides a superset of the functions
available with the 2645A Display Station. These in
clude dual cartridge tape units, extended editing fea
tures, extended data communications, modular
firmware implementation, and eight user-defined
soft keys. A new, faster microprocessor provides the
control for the standard as well as the extended fea
tures.

APL Features
Major features of the 2641A APL Display Station

are: display of the APL character set, display of the
APL overstrike character set* , display of APL under
lined characters, and non-destructive spaceover.
These features are accessible during the terminal's
APL mode.

The high-resolution display of 2640 Series Ter
minals1'2 provides a clear and easily readable ren
dition of the standard APL characters as well as the
more intricate overstrike characters (Fig. 2). There are
two separate APL character sets: a 128-character APL
graphics set and a 64-character APL overstrike

*Many APL ove rs t r i k - f unc t i ons a re ca l l ed by s t r i k i ng one APL symbo l , t hen backspac ing and ove rs t r i k -
Â ¡ n g t h e s y m b o l . s y m b o l w i t h a s e c o n d s y m b o l . T h e c o m b i n a t i o n f o r m s a n e w A P L s y m b o l . T h e A P L
o v e r s t r i k e c h a r a c t e r s e t m a k e s i t p o s s i b l e f o r t h e 2 6 4 1 A t o d i s p l a y s u c h c o m b i n a t i o n s o f b a s i c A P L
s y m b o l s .

Fig. 1. Model 2641 A APL Display
Station is designed to serve as the
p r i n c i p a l u s e r i n t e r f a c e f o r
A P L 3 0 0 0 a n d o t h e r A P L s y s
tems . I t has bo th APL and ASCI I
modes of operat ion.

2 5

© Copr. 1949-1998 Hewlett-Packard Co.

1EDIT TRAPEZOIDAL

APL60L FUHCTIOM

>LIST ALL

CO] PROCEDURE R-X TRAPEZOIDAL TI DT, I ,U,Â»T,DIO;

RÂ«-X,tOIÂ«rÂ»/Tl_DT),fX)rtIO*I<-0;

UÂ»<xttfA)'.*lltfAÂ¡
AT-(iU-.5iA'Tl DT[1]H.'U*.5>A"T1 DTII);

yHIUEdtpRJH-I+l 00

RtlÂ¡]Â»XÂ»AT+.Â»XÂ¡
1 6 1 E N D P R O C E D U R E
>EHD

<nVÂ«Â·LFI6Â·).C2|.D(!),OVRÂ·AriBÂ·
PROCEDURE R-LFIB N,I;

R-MI.DIOÂ»!; l * t l
W H I L E N I K - l + l D O

RI I !Â»*/Â«[1-1 ZlÂ¡
RÂ«-~itR(

END PROCEDURE

R-AFIB NiOlOiAPV
D I O - 0
R - * / A P Â « ! N * - t + A P V . Â « I N Â » a

Fig. 2. Standard 2641 A character sets are the 128-character
APL set, a 64-character APL overstr ike set, anda 64-character
upper-case Roman set . An opt ional four th character set may
be a ma thema t i ca l s ymbo l se t , a l i ne d raw ing se t , a l a rge
character set , or a user-des igned set .

graphics set (Fig. 3). Each set is programmed into
bipolar ROMs. The APL graphics set follows com
monly accepted industry standard code assignments.
The APL overstrike graphics set is used internally by
the terminal to display the overstrike characters and
its code assignment is dependent on terminal re
quirements. As each valid overstrike keystroke se
quence is completed the proper overstrike character
is displayed on the screen. However, the actual over-
strike character sequence is transmitted to the com
puter when in character mode or is stored in the
display memory for later transmission when in block
mode.

The 2640 Series Terminals can support up to four
independent character sets. Since the 2641A APL
Terminal includes as standard the APL set, the APL
overstrike set, and the ASCII set, it has room for one
additional character set. Currently this additional set
can be a mathematical symbol set, a line drawing set,

a large character set, or a set of the customer's own
design.

The keycaps have APL legends on their top faces
and ASCII legends, when they differ, on the front
faces (Fig. 4). This allows unambiguous operation
whether operating in APL or ASCII mode. The
keyboard code assignment is bit pairing* , rather than
typewriter pairing*, to retain compatibility with the
2640B and 2645A Terminals. The shift 0 (zero) posi
tion is re-assigned to mean A in APL and in ASCII;
this provides full APL compatibility for users when
switching between bit and typewriter pairing layouts .

Firmware
The controlling feature of the 2641A APL Display

Station is the firmware, or microprograms stored in
ROM. All of the characteristics of the terminal are
defined by microprogramming the internal micro
processor. These characteristics include switch selec
tion or computer selection via escape sequence of the
two operating modes, APL or ASCII, overstrikes that
are recognized by the terminal, block transfers of APL
program and data statements, and editing features
during APL mode.

The first consideration was how to integrate the
APL operational requirements into the base product,
the 2645A. Since many of the features of APL were
distinctly different from normal operation, it made
sense to define an APL mode for APL operations. In
APL mode the APL character set is normally dis
played instead of the ASCII character set. Any attempt
to overstrike an APL character results in the display of
a character from the overstrike set. Underlining of
APL characters is done by means of shift F. Block
transfers (via the ENTER key) take into account the
overstrike character set and decompose these into
APL characters separated by a backspace control
code.

APL systems recognize several overstrikes. With

* B i t p a i r i n g : s h i f t c o d e s d i f f e r f r o m u n s h i f t c o d e s b y o n e b i t .
T y p e w r i t e r p a i r i n g : c o d e s f o l l o w a n i n d u s t r y s t a n d a r d f o r c e r t a i n t y p e w r i t e r t e r m i n a l s .

H Ã ¼ M ! i Â » f 1 ! ! / \ e * S Â · t l ! ! * t Â « Â « 0 Â · B B ! > H B B B B H B B ! Ã œ B B O
X < > T ! ! Â » V f H) t l ! ! Â « Â « T \ Â ¥ Â £ S * M Â « n S B I I H B ! ! H * 0 ! ! ! ! ! ! ! !

W Â » * t * 0 % t V t " H M M S S % 1 , W i M * W % * " - < Ã = l > X v) C . + . / 0 1 2 3 4 5 6 7 8 9 H ; - : \
Â « - Â « i n l c _ Â » Â » x . ' Q | T O * ? P r ~ J u Â « 3 t c > - A (i A - , A B C D E F G H I J K L M N O P Q R S T U V W X Y Z - Â ») + â € ¢

â € ¢ M A * < * * 0 % * V W V l M l V t l V t * W i % * Â « V k ! " Â » * I Â » ' 0 Â « * , - . / 0 1 2 3 4 5 6 7 8 9 : : < â € ¢ > ?
â € ¢ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z t \] " _ Â « a b e d e f g h i j k I m n o p q r s t u v w x y z < I > - â € ¢

' 8008020 0300008

F i g . 3 . S t a n d a r d 2 6 4 1 A c h a r a c
ter sets.

2 6

© Copr. 1949-1998 Hewlett-Packard Co.

F i g . 4 . 2 6 4 1 A k e y s h a v e A P L l e g e n d s o n t o p a n d A S C I I
legends, when they d i f fer , on the f ront faces.

the 2641A, these overstrikes can be done at any time
or in any order. Overstriking poses several complica
tions for a raster-scan CRT terminal that dynamically
allocates its memory and uses separate graphics sets
for the normal and overstrike characters. An APL user
may type several characters, then backspace to the
beginning of the line and overstrike the required
characters, or the user may complete each overstrike
before proceeding to the next character. Backspacing,
using the backspace key, does not delete characters
previously entered and forward spacing using the
space bar does not erase characters that are being
spaced over.

The basic algorithm for overstrikes directs the ter
minal to monitor each byte that it writes to the dis
play. In APL mode, the terminal checks the current
and new characters being typed in the same display
position and determines whether the new character
just overwrites the old (only when the old character is
a blank), whether the old character is replaced by a
new character from the overstrike set, or whether the
old character remains unchanged (the new character
is a blank). Overstrikes are allowed only in APL
character fields. If the cursor is in a non-APL field,
such as Roman, then the terminal performs ASCII
operations rather than APL operations, although the
operating mode is APL.

When the old and new characters form a valid over-
strike such as and ., then the composite ' is dis
played. If an invalid pair is overstruck, then an OUT
character is displayed, providing a clear indication
that an error has been made.

The underline overstrike (shift F) for APL is nor
mally restricted by APL systems to the alphabetic
characters and a few of the special characters. The
2641A can underline any APL character. The under

line overstrikes are not a part of the character ROMs.
Instead, the underline feature of the terminal's dis
play enhancement section is used to simulate the
underline overstrike.

The underlining process begins when an APL
character is displayed and the cursor is repositioned
to the character. When the underline character (shift
F) is typed, the firmware provides the proper en
hancements to underline the character.

Data Transfer
All display information, overstrikes, and under

lines can be stored on the cartridge tape units, printed
on a printer, or block transmitted to a computer sys
tem.

Block transfers during APL mode, from the display
or the tape units, take into account the overstrike set
and underline enhancements. In the case of over-
strikes, the code from the overstrike ROM is used as
an index into a look-up table for the two components
of the overstrike. These two components are then
transmitted with a backspace separating them. The
underlined characters are transmitted with the proper
codes: the character, then backspace, then underline.
The OUT character is treated as a special case and
causes five characters to be output: 0 backspace U
backspace T.

Two types of printers are available for APL: bit
pairing or typewriter pairing. Distinguishing the two
are the code assignments of 19 of the characters. The
2641A allows the user to select either translation
when directing APL data to a printer.

User-Def ined Soft Keys
The 2641A has eight special-function user-defin

able soft keys, fi through f8. These keys hold up to
80 ASCII characters that are specified by the user.
This specification may be done interactively, with the
old contents displayed while updates are done. The
specification may also be done by escape sequence
from a computer system or from the optional car
tridge tape units.

After logging onto an HP/3000 Computer System
having an APL \3000 subsystem, the user specifies
the terminal type to be a 2641A by means of the
)TERM HP command, and the system downloads the
soft keys with the following commands:

Now the user can invoke frequently typed system
calls with a single keystroke. For instance, to edit a
function named APLi, the user can press fe to call the

2 7

© Copr. 1949-1998 Hewlett-Packard Co.

system editor, then type APLi, followed by RETURN,
and be ready to edit. The user may also redefine these
soft keys very simply.

Key fs contains the ATTN command, which is useful
during line editing. Suppose the user has typed a line
of data but notices a mistake. To correct the error,
the user first backspaces the cursor to the incorrect
character:

A B C F E

Using the 2641A and APL \3000, the user then hits
ATTN, which causes the APL terminal driver to send
an escape sequence to clear the rest of the line:

ABC _
The user continues typing from this point to complete
the data statement:

ABCDE _
The traditional method of editing is to position the
cursor under the incorrect character, then send a line
feed to the computer and type the correct characters,
producing a display like:

ABCFE
DE

Note that the display can be confusing to read if
several corrections have to be made in this manner.
However, both methods of correction are allowed by
the subsystem and the 2641A.

Extended Features
Editing features have been expanded to include

character wraparound when the terminal is doing
character delete or insert operations. Left and right
margins may also be set. Extended I/O operations
with the cartridge tape option include write, back
space, read, data comparisons, and data logging.

The data communications facility allows data rates
up to 9600 baud, and multipoint capabilities that
allow up to 32 terminals to share a single communi

cations line. Self-test has been expanded to allow
testing of the optional cartridge tapes and associated
electronics as well as the multipoint communica
tions option, cabling, and terminating instrumenta
tion. Multipoint communications can even be tested
up to the remote modem from the terminal keyboard.

Acknowledgments
This product relied on the flexible base provided by

the designers of the 2645A Display Station: Tom
Waitman, Ed Tang, Rick Palm, Greg Garland, Gary
Staas and Bill Woo. Dave Goodreau, Jim Elliott, and
Hans Jeans provided additional product definition
assistance. E

References
1. J.A. Doub, "Cost-Effective, Reliable CRT Terminal Is
First of a Family," Hewlett-Packard Journal, June 1975.
2. R.G. Nordman, R.L. Smith, and L.A. Witkin, "New CRT
Terminal Has Magnetic Tape Storage for Expanded Ca
pability," Hewlett-Packard Journal, May 1976.

Warren W. Leong
Warren Leong has been invo lved
wi th the f i rmware and character
set design for the 2640B/C/N/S
and 2645R/S CRT Termina ls and
the 2641 A APL Display Stat ion.
He 's been wi th HP s ince 1975.
Born in San Francisco, Warren
at tended the Ci ty Col lege of San
Francisco and the Univers i ty of
Cal i forn ia at Berkeley, graduat ing
f rom the la t ter in 1975 wi th a
BS degree in e lec t r i ca l eng ineer
ing and computer sc ience. He 's
s ingle, a tennis p layer , and l ives
in Sunnyvale, Cali fornia.

Hewle t t -Packard Company , 1501 Page Mi l l
Road, Palo Al to , Cal i forn ia 94304

'CKARD JOURNAL
JULY 1977 Volume 28 â€¢ Numb

Technica l in format ion f rom the Laborator ies of
Hewle t t -Packard Company

Hewle t t -Packard Cent ra l Ma i l ing Depar tment
Van Heuven Goedhar t laan 121

Amste lveen-1134 The Nether lands
Yokogawa-Hewle t t -Packard L td . , Sh ibuya-Ku

Tokyo 151 Japan

Edi tor ia l D i rector . Howard L . Roberts
Manag ing Ed i tor . R ichard P . Do lan

Ar t D i rector , Photographer . Arv id A . Danie lson
I l lustrator . Susan E. Wr ight

Admin is t ra t ive Serv ices , Typography . Anne S . LoPrest i
European Product ion Manager . D ick Leeksma

Bulk Rate
U.S. Postage

Paid
Hewlet t -Packard

Company

* P . C A BLACKBURN
HOPKINS UMIV

_rcn PHYSIC*: L Ã F
H O P K I N S R D

L A u f t f T L M D 2 0 8 1 0

' M O H N I A A A B R O W A A . A 1 8 1

_ O O , l i s t you r your address o r de le te your name f rom our ma i l i ng l i s t p lease send us your o ld address labe l (i t pee ls o f f) .
) , Send Cal i forn ia to Hewlet t -Packard Journal , 1501 Page Mi l l Road, Palo Al to, Cal i forn ia 94304 U.S.A. Al low 60 days.

© Copr. 1949-1998 Hewlett-Packard Co.

	Small Computer System Supports Large-Scale Multi-User APL
	Introduction to APL
	APL Data: Virtual Workspaces and Shared Storage
	APLGOL: Structured Programming Facilities for APL
	A Dynamic Incremental Compiler for an Interpretive Language
	A Controller for the Dynamic Compiler
	Extended Control Functions for Interactive Debugging
	CRT Terminal Provides both APL and ASCII Operation

