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Smal l  Computer  System Suppor ts  
Large-Scale  Mul t i -User  APL 
Power fu l ,  in terac t ive  APL is  now ava i lab le  fo r  the  mul t i  
l i ngua l  HP 3000 Ser ies  I I  Computer  Sys tem.  A  spec ia l  
te rmina l  d isp lays the APL character  set .  

by  Kenneth  A .  Van  Bree  

APL (A PROGRAMMING LANGUAGE) is an 
interactive language that allows access to the full 

power of a large computer while maintaining a user 
interface as friendly as a desktop calculator. APL 
is based on a notation developed by Dr. Kenneth 
Iverson1 of IBM Corporation over a decade ago, and 
has been growing in popularity in both the business 
and scientific community. The popularity of APL 
stems from its powerful primitive operations and 
data structures , coupled with its ease of programming 
and debugging. 

Most versions of APL to date have been on large and 
therefore expensive computers. Because of the ex 
pense involved in owning a computer large enough to 
run APL, most of the use of APL outside of IBM has 
been through commercial timesharing companies. 
The introduction of APL 3000 marks the first time a 
large-machine APL has been available on a small 
computer. APL 3000 is a combination of software for 
the HP 3000 Series II Computer System2 and a CRT 
terminal, the HP 2641A, that displays the special 
symbols used in APL. The terminal is described in the 
article beginning on page 25. 

Although the HP 3000 is normally considered a 
small computer, APL \3000 is not a small version of 
the APL language (see page!4). As a matter of fact, 
APL 3000 has many features that have never been 
available before, even on the large computers. For 
example, although APL \3000 looks to the user just 
like an interpreter, it is actually a dynamic compiler. 
Code is compiled for each statement as it is encoun 
tered; on subsequent executions of the statement, if 
the compiled code is valid, it is re-executed. By 
eliminating the interpretive overhead, a speedup on 
the order of a factor of ten can be obtained in some 
cases, although the speedup is dependent on the 
amount of computation involved in the statement. 

The basic data type of APL is an array, which is an 
ordered collection of numbers or characters. Sub 
script calculus, as defined by Philip Abrams,3 is a 
method of selecting portions of an array by man 
ipulating the descriptors that tell how the array is 
stored. The use of subscript calculus in the dynamic 

compiler allows computation to be avoided in many 
cases, and eliminates the need for many temporary 
variables to store intermediate results. 

One problem that has always plagued APL users is 
the limited size of most APL workspaces. A work 
space in APL is a named data area that contains all the 
data variables and functions that relate to a particular 
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Dedicated APL System Mult i l ingual System 
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Standard Mix 
51 2K Bytes 

16 Terminals 

A Scr ipts 
B Scripts 
C Scr ipts 
D Scr ipts 
E Scripts 
F Scripts 

Light Mix 
3 8 4 K  B y t e s  

12 Terminals  

5  A  S c r i p t s  
3  B  S c r i p t s  
2  C  S c r i p t s  
1  E  S c r i p t  
1  F  S c r i p t  

5 1  2 K  B y t e s  3 8 4 K  B y t e s  3 8 4 K  B y t e s  5 1  2 K  B y t e s  

1 6  T e r m i n a l s  1 2  T e r m i n a l s  1 2  T e r m i n a l s  1 3  T e r m i n a l s  

4 FORTRAN 
4 BASIC 
8  APL 

6 BASIC 

6 APL 

3 FORTRAN 

3 BASIC 

6 APL 

A Scr ip t  
B Script  
C Scr ip t  
D Scr ipt  
E Script  
F Script 

A Scr ip t  
B Scr ipt  
C Scr ipt  
D Scr ipt  
E Script 
F Script 

A  Scr ip t  
B Scr ipt  
C Scr ip t  
D Scr ipt  
E Script 
F Script 

1  COBOL 
12 APL 

2  A  S c r i p t s  
2  B  S c r i p t s  
2  C  S c r i p t s  
2  D  S c r i p t s  
2  E  S c r i p t s  
2  F  S c r i p t s  

APL Scr ipts 

A Ed i t  i n te rac t i ve  p rogram and  execu te .  
B  Ed i t  s imp le  ca lcu la t ion  p rogram and  execu te .  
C  Ass ignmen ts  and  add i t i on  i n  ca l cu la to r  mode .  

D  C o m p u t e  b o u n d  l a r g e  w o r k s p a c e  s w a p p i n g  p r o g r a m .  
E  Compu te  bound  s imp le  ca l cu la t i ons .  
F  C o m p u t e  b o u n d  p r i m e s  p r o g r a m .  

F i g .  1 .  A v e r a g e  r e s p o n s e  t i m e s  
for  a  range of  ac t iv i t ies  on an HP 
3000  Ser ies  I I  Sys tem used  on ly  
f o r  A P L  a n d  s i m i l a r  d a t a  f o r  a  
range of  APL act iv i t ies  on a  mul t i  
l ingual  HP 3000 Ser ies I I  System. 
A system with 51 2 K bytes of main 
memory wi l l  suppor t  up to 16 APL 
terminals. 

problem or application. Most other APL systems limit 
a workspace to 100,000 bytes or less. APL 3000 
eliminates this limitation by giving each user a vir 
tual workspace. A workspace is limited only by the 
amount of on-line disc storage available. 

APL 3000 is the first APL system to include 
APLGOL4 as an integral part. APLGOL is a block- 
structured language that uses keywords to control the 
program flow between APL statements. To facilitate the 
editing of APLGOL programs, and to provide an en 
hanced style of editing for APL programs and user data, 
a new editor was added to the APL system. This editor 
can be used on both programs and character data, and 
includes many features never available before in APL. 

One of the features of APL that makes program de 
velopment easier is that program debugging can be 
done interactively. When an error is encountered in an 
APL program, an error message is displayed along with 
a pointer to the place where the error was detected. 
Execution is suspended at this point, and control is 
returned to the user. In other versions of APL, the user is 
allowed to reference or change only the variables that 
are accessible within the function in which the error 
occurred, and must resume execution within that func 
tion. APL \3000 has implemented a set of extended 
control functions that allow the user to access or change 

any variable in the workspace and resume execution 
within any function that has not yet completed execu 
tion. These extended control functions can be used to 
implement advanced programming techniques that 
were previously difficult or impossible to implement in 
APL. An example is backtracking, which involves sav 
ing the control state at various points in the computa 
tion and returning to a previously saved control state 
when an error is detected. 

The new features of APL 3000 are described in detail 
in the articles that follow. 

Performance Data 
An HP 3000 Series II System with 512K bytes of main 

memory will support a maximum of 16 terminals using 
APL, or a combination of terminals using APL and other 
languages. Fig. 1 shows typical response times for vari 
ous combinations of terminal types, APL program 
loads, and memory sizes. 
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Introduction to APL 

A P L  ( a n  a b b r e v i a t i o n  f o r  A  P r o g r a m m i n g  L a n g u a g e )  i s  a  
concise high- level  language noted for  i ts  r ich var iety of  bui l t - in 
( p r i m i t i v e )  f u n c t i o n s  a n d  o p e r a t o r s ,  e a c h  r e p r e s e n t e d  b y  a  
symbol ,  and i ts  except ional  fac i l i ty  for  manipulat ing arrays.  

APL  uses  power fu l  symbo ls  i n  sho r thand  fash ion  to  de f ine  
comple te  func t ions  in  very  few s ta tements  o r  charac te rs .  For  
examp le ,  t he  sums  o f  each  o f  t he  rows  i n  a  ve ry  l a rge  t ab le  
ca l l ed  T  a re  +  /T .  The  sums  o f  t he  co lumns  a re  +  / [ 1  ]T .  The  
grand to ta l  o f  a l l  numbers  in  the  tab le  is  s imp ly  +  / ,T .  Sor t ing  
and  add ing  t ab les  and  o the r  common  ope ra t i ons  a re  j us t  as  
simple. 

These  charac te r i s t i cs ,  combined  w i th  min ima l  da ta  dec la ra  
t ion or  other  language requi rements,  he lp substant ia l ly  reduce 
programming ef for t .  Typical  interact ive APL programs take only 
10-30% as long to wr i te as would equivalent  programs in other  
languages,  such as  FORTRAN or  BASIC.  

APL was invented by Dr .  Kenneth  E.  Iverson a t  Harvard Uni  
vers i ty .  In  1962 a descr ipt ion of  h is  mathemat ical  notat ion was 
pub l i shed .  By  1966 ,  IBM had  re f i ned  t he  no ta t i on  i n t o  a  l an  
guage  and  imp lemented  the  f i r s t  ve rs ion  o f  APL on  an  exper i  
menta l  t imeshar ing system.  By 1969 APL was an IBM program 
produc t  and severa l  independent  t imeshar ing  serv ices  began 
providing i t .  

Because APL is  both easy to use and t remendously powerfu l  
i t  has ga ined widespread acceptance.  A large,  swi f t ly  growing 
APL t imeshar ing industry has developed. Approximately 70% of 
IBM's internal  t imeshar ing is done in APL. Over 50 North Ameri  
can  un ivers i t ies  inc lud ing  Ya le ,  MIT ,  UCLA,  Syracuse,  Un iver  
s i t y  o f  Massachuse t ts  (Amhers t ) ,  York ,  and  Whar ton  have  in -  
h o u s e  s y s t e m s .  P o p u l a r i t y  h a s  g r o w n  i n  E u r o p e ,  e s p e c i a l l y  
Scandanav ia  and France.  

Al though in i t ia l ly  designed for  scient i f ic  environments,  APL's 
f ea tu res  p roved  t o  be  i dea l  f o r  p rocess ing  bus iness  da ta  i n  
tabu la r  fo rmats .  Now,  most  t imeshar ing  serv ices  f ind  approx i  
mately  80% of  thei r  APL business is  in  the commercia l  appl ica 
t ions area. 

APL Character ist ics 
A symbo l i c  language w i th  a  la rge  number  o f  power fu l  p r im i t i ve  func  
tions. 
U s e s  b e  t o  l e f t  h i e r a r c h y  ( a s  o p p o s e d  t o  p r e c e d e n c e )  t h a t  c a n  b e  
overr idden by parentheses.  
Designed to deal  wi th arrays of  numbers as easi ly as other languages 
deal  wi th indiv idual  i tems. 
Min imum language const ra in ts :  very  few syntax  ru les ;  un i fo rm ru les  
f o r  a l l  o f  t y p e s  a n d  r e p r e s e n t a t i o n s ;  a u t o m a t i c  m a n a g e m e n t  o f  
data s torage and representat ion.  

APL Advantages  
Programs  can  be  deve loped  in  10 -30% o f  t he  t ime  and  code  space  
requ i red  by  languages l i ke  FORTRAN,  ALGOL,  and BASIC.  
Concep ts  o f  a  p rogram can  o f ten  be  more  qu ick ly  g rasped  because  
o f  the  brev i ty  and conc iseness  o f  APL code.  
V e r y  a n d  p r o g r a m s  e a s y  t o  c h a n g e ;  d a t a  v e r y  a c c e s s i b l e  a n d  
easy to rearrange. 

Fig .  1 .  Charac te r i s t i cs  and  advantages  o f  APL 
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BASIC 
10 DIM A(100) 
20 READ N 
3 0 S = 0  
4 0  F O R  1 = 1  T O N  
50 READ A( l )  
60  S=S+A( I )  
70 NEXT I 
80 PRINT S 
90 END 

FORTRAN 
DIMENSION A (100)  
READ (5, 10) N 

10 FORMAT (13)  
READ (5,20) (A(l), 1 = 1, N) 

20 FORMAT (8E10.3)  
S = 0 . 0  
DO 30 1 = 1, N 

3 0 S = S + A ( I )  
WRITE (6,40)S 

40 FORMAT (E12.3)  
END 

ALGOL 

REAL S; 

INTEGER I, N; 

GET N: 

BEGIN 

REAL ARRAY A (1:N); 

S:=0.0; 

FOR l:  = 1 TO N DO 
BEGIN 

GET A(l) ;  
S : = S + A ( I ) ;  

END: 
PUTS;  

END; 

A P L  

Fig. numbers. Comparison of steps required to read and sum a list of numbers. 

Given: 

R =  Revenues  by  p roduc t  and  sa lesman  

J o h n v e r  V a n s t o n  D a n b r e e  

Tea 
Coffee 
Water 
Milk 

190 
325 
682 
829 

MO 
19 
14 

140 

Tea  
Coffee 
Water 
Milk 

120 
300 

50 
67 

65 
10 

299 
254 

1926 
293 
852 
609 

E  =  Expenses  by  p roduc t  and  sa lesman  

J o h n v e r  V a n s t o n  D a n b r e e  

890 
23 

1290 
89 

V a n s e y  M u n d y k e  

14 
1491 

56 
1 20 

Vansey 

54 
802 

12 
129 

143 
162 
659 

67 

Mundyke 

430 
235 
145 

76 

Find: 

Find each sa lesman's  to ta l  commiss ion where the formula  for  
commiss ion  is  6 .2% of  p ro f i t ,  no  commiss ion  fo r  any  product  
to total  less than zero. 

Answer:  Commission 
Johnver  

92 
Vanston 

5 
Danbree 

113 
V a n s e y  M u n d y k e  

4 5  3 2  

Explanat ion of  APL Code Required:  
. 0 6 2  x  +  /  O f  R - E  

â€¢ Stepl. Subtract each item in matrix E from each item in matrix R 
â€¢ Step 2. Find maximum of each item in resultant matrix versus the value of zero 

S tep  3 .  Sum ove r  new resu l t an t  ma t r i x  by  rows  
â€¢ Step 4. Multiply individual items in resultant vector by .062 

S tep  5 .  Au tomat i ca l l y  p r in t  new resu l tan t  vec to r  

Compar ison  o f  APL Code  Requi red  Wi th  BASIC Code  Requi red:  
APL 

. 0 6 2  x  +  /  O f  R - E  
BASIC 

10 FILES DATA 
20 DIMENSION R(4,5) ,  E(4,5) ,  T(5)  
30  MAT READ #1 ;  R ,E  
4 0  M A T  T  =  Z E R  
50  FOR P  =  1  TO 4  
60  FOR S  =  1  TO  5  
7 0  T ( S )  =  T ( S )  +  . 0 6 2 * ( R ( P , S ) - E ( P , S ) ) M A X O  
80 NEXT S 
90 NEXT P 

100 MAT PRINT T 
110 END 

F ig .  3 .  Exp lana t ion  o f  APL code  us ing  t yp ica l  examp le  
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APL Data :  V i r tua l  Workspaces  and 
Shared  Storage  
by Grant  J .  Munsey  

MUCH OF THE POPULARITY of APL can be 
attributed to the convenient way it handles 

data. Most other programming languages treat vari 
ables as volatile "scratchpad" areas that are occupied 
by meaningful data only while programs are execut 
ing. Before programs can run, they must load the 
variables with data, usually by reading a file. During 
program execution the data is accessed by referring 
to variable names. When execution is completed, 
the meanings of the variables are lost unless the pro 
grams explicitly save their data in another file. APL, 
on the other hand, provides direct access to named 
data items, large or small, without forcing the con 
cept of a file on the programmer. Once values are 
assigned to APL variables, they are accessible by 
name either in program execution mode or in calcula 
tor mode. The relationship between the data and the 
name is preserved until the programmer chooses to 
purge the data. The variables and the functions that 
operate upon them are preserved together, which 
means that APL applications need not go to files to 
access and save data. 

In APL a unique name is attached to each distinct 
set of data by means of the assignment arrow: 

DATE<-7 4 1776 

OCCASION̂ - 'INDEPENDENCE DAY' 
APL 3000 variables may be either scalar (single- 

element) or array-shaped with up to 63 dimensions. 
Though conceptually there are only two data types in 
APL, character and numeric, APL 3000 actually 
stores its data in a variety of ways for efficiency. APL 
differs from most other programming languages in 
that an APL programmer is never involved in specify 
ing or choosing these machine-dependent internal 
representations; the APL system automatically 
chooses both the most efficient and the most accurate 
representation for any given set of data. 

Likewise, an APL programmer never writes decla 
rations specifying the shape, size, or amount of stor 
age that will be required for a variable. Variables are 
declared by assigning data to them, and the APL sys 
tem allocates the appropriate storage in which to re 
tain the data. Readers familiar with languages requir 
ing declaration of variables (e.g., FORTRAN, BASIC, 
COBOL) will recognize that the task of setting up such 
declarations can often take a substantial amount of 
programming time. 

An interesting and useful feature of APL is that a 

particular variable name may, at different points in 
time, refer to different types and shapes of data, as the 
following sequence illustrates: 

AÂ«-3.5 

A < - 2  4 6 8  

A^'WHAT WOULD WE APPRECIATE?' 
A Â « - 2  3 p l 2 3 4 5 6  

A 

1 2 3  

4 5 6  

In this example, A is first assigned the numeric scalar 
3.5. Then A is assigned the numeric vector 2468. 
Next, A is assigned the character vector 'WHAT WOULD 
WE APPRECIATE?'. Finally, A is assigned a two-row, 
three-column array of numbers, then printed. Notice 
that each statement whose result is not explicitly as 
signed causes the result to be automatically printed. 

The  Workspace  Concept  
As functions and data are created, they remain as 

sociated with their user-assigned names in an area 
called the active workspace. This area can be named 
and saved for later use by entering the system com 
mand: 

JSAVE WSID 

where WSID is a user-specified workspace name. This 
saves a "snapshot" of all currently defined functions 
and data items. A saved workspace may be later re 
activated by entering the system command: 

)LOAD WSID 
The concept of workspaces provides a convenient 

means for working on several  different  problems, 
each of which has its own set of pertinent data. For 
example, an accountant might have several custom 
ers for whom he is keeping payrolls.  Several work 
spaces might be maintained, each containing payroll 
information for a particular client. Whenever a salary 
report is needed for a client,  the appropriate work 
space could simply be loaded and the report gener 
ated. Notice that workspaces are much like folders in 
a filing system; each holds the information required 
for a specific job. 

Since all functions and data for a problem are stored 
in a single workspace, workspaces tend to grow very 
large as problem size increases.  Yet most existing 
APL implementations have limited the size of work 
spaces, typically to less than 100,000 bytes. This con 
straint either imposes an artificial limit on the size of 

6 
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applications attempted, or forces the more deter 
mined programmer to seek additional storage outside 
of the workspace by explicit use of a file system, a 
definite violation of the general spirit of APL pro 
gramming. 

The HP 3000 is a small computer with a limited 
amount of main storage. Yet APL 3000 has avoided 
the traditional workspace size restrictions by employ 
ing two strategies: shared data storage and virtual 
workspaces. 

Shared Data  Storage 
Shared data storage helps solve the workspace size 

problem by conserving storage. Multiple copies of the 
same data are avoided in many cases by allowing 
arbitrary numbers of variables to share the same data 
area. Consider the following two statements: 

A^ 1 2  5  6  9  10 
B^A 

The first statement creates a data area for A, while the 
second specifies that B is to be assigned whatever is in 
A. While one could naively make a second copy of the 
data and attach it to B, this is completely unnecessary 
and is a waste of storage; B should be able to share the 
original data with A. 

A potential problem is: if A and B share the same 
data area, what happens if either of the variables 
changes part of its values? Does this affect the other 
variable? For instance, the subscripted assignment 

B [ 3 ] ^ 2 0  

should not have the effect of also making A[s]'s value 
20. 

Copy-on-Wri te  
APL \3000 solves this problem by attaching a re 

ference count to every data area, and keeping track of 
how many variables are referring to it. Partial changes 
to a data area (e.g., B[s]<-2o) are allowed only if its 
reference count is 1 (i.e., it is unshared). A data area 
whose reference count is greater than 1 is never 
changed, since more than one variable is referring to 
it. Instead, a "copy-on-write" policy is adopted: the 
variable to be written into is given its own private 
copy of the data, the reference count of the original 
shared data area is decreased by 1, and the original 
data remains unchanged. 

Shared data storage is useful in that it frequently 
allows the APL system to avoid making multiple 
copies of identical data. But this is really only a wel 
comed side effect of the real purpose of shared stor 
age: allowing the dynamic compiler to implement 
certain selection functions and operators by applying 
Abrams' subscript calculus.2 This technique is used 
to improve the performance of APL 3000, providing 
a two-fold justification of shared storage: space and 
speed. 

Subscript calculus places another requirement on 
the APL system besides shared data areas: a variable's 
data area must be decoupled from its accessing in 
formation. That is, the data area itself must not de 
scribe the method of storing the data therein. To un 
derstand why this is required to perform subscript 
calculus, the attributes of APL data must be recalled: 
it has some actual collection of values, and it has a 
particular size and shape. Consider a numeric vari 
able ABC whose data is arranged in two rows and three 
columns: 

ABC 
1 2 4  

0 5 9  

The storage for ABC contains six data elements that the 
user thinks of as a two-dimensional array. At the 
machine level, however, storage is actually accessed 
in a linear fashion, as if it were a vector. To access any 
given element of ABC, the APL system takes a set of 
user indexes, consisting of a number for each dimen 
sion in ABC, and calculates a linear address into the 
data area holding ABC's values. 

It has been common practice to store data in what is 
called row major order. In this scheme, data is stored 
with the rightmost subscript varying the fastest. For 
example, the actual linear layout of the variable ABC 
stored in this order would be: 

1 2 4 0 5 9  
ABC[0 ABC[0 ABC[0 ABC[l ;o]  ABC[l ; l ]  ABC[l ;2J  

Notice that zero-origin indexing was used (the first 
element in any dimension is index 0). Zero origin will 
be used in all formulas and examples hereafter. 

When data is stored in row major order, one can 
map a set of user indexes into a machine address by 
employing the formula:1 

ADDRESS = l [ j ]  x  f ]  SHAPE [K]  (1) 

where I is the set of user indexes. In addition to the 
user indexes, this formula requires some information 
about the data's exact size and shape: RANK is the 
number of dimensions in the array, and SHAPE is a 
vector of the sizes of each of the dimensions. Together 
RANK and SHAPE make up the variable's row major 
access information. 

Applying equation 1 to calculate the actual address 
of the element ABC [o;2J: 

I  :  0  2  

R A N K  :  2  

S H A P E  :  2  3  

ADDRESS = (I[OJ x SHAPE [l])  + ( l[ l ]  x 1)  

= (O x 3) + (2 x 1) 

= 2 

Referring back to the description of how ABC is 
stored, it can be seen that ABC [o is indeed at loca 
tion 2. Thus for data stored in row major order, all that 
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is needed to calculate the actual storage address of an 
array element from a set of user indexes is the RANK 
and SHAPE of the data. 

In APL systems not  concerned with performing 
subscript calculus, this accessing information is tra 
ditionally stored with the data itself,  which makes 
every data area self-describing. Subscript calculus, on 
the other hand, wants to view data in many different 
ways without physically rearranging it .  The opera 
tion of subscripting (e.g., ABC [i;i]), and the functions 
TAKE, DROP, REVERSAL, TRANSPOSE, and RESHAPE Can be 
implemented so that they rearrange data without ac 
tually moving or copying it, but only if the data area's 
accessing information is not an integral part of the 
data. Consider, for example, the APL function that 
reverses the columns of an array. 

ABC 
1 2 4  

0 5 9  

RABC 

RABC 

c|)ABC 

4 2 1  

9 5 0  

If the result of the reversal must always be stored in 
row major order, then nothing can be done except to 
make a second copy of ABC'S data for RABC, with its 
order rearranged. But if one can depart from row 
major storage order in this case, one can generate new 
access information for RABC, and it can share ABC'S 
data area with no data movement required. This re 
quires generalizing the storage mapping function de 
veloped above to allow other storage arrangements 
than row major. The new formula will be: 

ADDRESS = OFFSET l [l] x DEL [l] (2) 

This generalized formula makes explicit something 
that equation 1 was able to imply by knowing that 
data was stored in row major order: OFFSET is always 
zero; and DEL [j] is always 

R A N K - l  

H SHAPE [K]. 
K = J + 1 

The new formula requires that both of these be 
made part of a variable's data accessing information. 
Equation 2 can be checked by again calculating the 
address of element ABC [o;2J: 

I 
RANK 

SHAPE 

DEL 

OFFSET 

o 2 
2 

2  3  

3 1 

0 

ADDRESS = OFFSET + (l[o] x DEL [o]) + (l[l]  x DEL [l]) 
=  0  + (O x 3)  + (2  x  1)  

= 2  

This is the same address calculated by applying equa 

tion 1, so equation 2 seems to work, at least on row 
major data. This new formula can be used to share 
ABC's data with RABC: 

1 2 4 0 5 9  

A B C [ 0  A B C [ 0  A B C [ 0  A B C [ l ; d ]  A B C [ l ; l ]  A B C [ l ; 2 ]  

RABC [0 :2]  RABC [0  RABC [0  RABC [ l ;2]  RABC [ l ; l ]  RABC [ l ;o]  

By changing both the DEL vector and the OFFSET as 
shown below, RABC can be totally described by its 
accessing information. As a check, equation 2 can be 
used to calculate the storage address of element RABC 
[0:2]: 

I  :  0  2  

R A N K  :  2  

S H A P E  :  2  3  

D E L  :  3  - 1  

O F F S E T  :  2  

ADDRESS = OFFSET + (l[o]  x DEL [o])  + ( l[ l]  x DEL [l])  

=  2  +  ( O  x  3 )  +  ( 2  X  ( - 1 ) )  
=  0  

Referring back to the data area shared by ABC and 
RABC, it can be seen that RABC [o;2] is indeed at address 
0 of the shared data area. 

Thus by including the DEL vector and the OFFSET in 
a variable's set of accessing information, data areas 
can be shared among variables whose conceptual or- 
derings differ. Notice, though, that each variable must 
have its own private set of accessing information for 
this to work, otherwise the shared data area can only 
be interpreted as one shape and storage method. 
Using a set of transformations to the DEL vector and 
the OFFSET in the above manner to rearrange data 
without actually moving it is the essence of subscript 
calculus. 

Vir tual  Workspaces 
The ws FULL message is well-known to most APL 

programmers. In specific terms, it means that the ac 
tive workspace has filled up and program execution 
has stopped. In more general terms, it usually means 
that the programmer is going to have to do a lot of 
work to circumvent the problems of limited work 
space size. 

APL 3000 uses a technique called virtual storage 
to remove the workspace size limit. This allows the 
user to create and maintain workspaces containing 
millions of bytes of data. In fact, workspaces are lim 
ited in size only by the amount of disc storage avail 
able on the machine, the same limit that would apply 
to data stored explicitly as files. 

Two layers of virtual workspace implementation 
make this possible. The first layer creates, by means of 
microcode routines, a very large linearly addressed 
data space. The second layer maintains this address 
space in many smaller variable-length segments. 

To provide the large address space required to sup 
port virtual workspaces, APL 3000 uses a set of nine 
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Fig.  1.  APL 3000 uses a v i r tual  memory scheme to g ive each 
user whatever s ize workspace is needed, instead of  imposing 
a  f i xed  max imum workspace  s i ze  as  mos t  APL  sys tems  do .  
The v i r tua l  memory is  par t i t ioned in to 2M pages of  2N words 
e a c h  w h e r e  N + M  =  3 2 .  

virtual memory instructions that have been added to 
the HP 3000 Series II instruction set. These instruc 
tions are added by installing eight read-only memory 
(ROM) integrated circuits in the CPU when APL 3000 
is installed. The virtual memory instructions take a 
small amount of main computer storage plus a large 
disc file and create what looks like one large linearly 
addressed memory. This is done using what is known 
as a least recently used (LRU) virtual memory scheme. 

The logical addresses used by APL 3000 are 32-bit 
quantities. The M most significant bits of the address 
are considered the page address and the N least sig 
nificant bits the word-in-page address. Thus the vir 
tual memory is partitioned into 2M pages of 2N 
words each (see Fig. 1). The values for N and M are 
determined by APL 3000 to provide efficient use of 
the computer hardware. N plus M must add up to 32, 
so the virtual memory can contain up to 232 words 
(4,294,967,296 words). This is the only theoretical 
limit to workspace size. 

The HP 3000 main computer store is set up to con 
tain a number of 2N-word pages from the virtual mem 
ory along with a small status table for each main- 
store-resident page. Each status table contains the 
following information: 
â€¢ The virtual memory address of the first word in 

the page 

â€¢ A link that points to the next status table 
â€¢ An indicator that tells whether data in the page 

has been modified since the page was brought into 
main storage from the disc 

â€¢ The main storage address of the words in the page. 
Fig. 2 shows how these status tables are arranged in 

main store along with the data from the pages. The 
status tables are arranged in a list with each status 
table pointing to the next status table. This list is 
always arranged so the status table for the most re 
cently used page is the first entry in the list. 

Operation of the virtual memory instructions can 
be illustrated by describing the execution of a VIRTUAL 
LOAD instruction (see Fig. 3). This instruction re 
quires a 32-bit virtual address as its operand and 
returns the word stored at that location in virtual 
memory. To accomplish this the first task is to deter 
mine the page in which the word resides (the page 
address). This is done by taking the M most signifi 
cant bits of the virtual memory address. The second 
operation is to find where the required page resides. 
This is done by first searching down the list of status 
tables to see if the page is in main storage. If the page 
is found in the list then the word requested is already 
in main storage and all that need be done is to use the 

f l  ^ b  

Split  Virtual 
Address in to  

Page  and  Word-  
in-Page Parts 

Set  Up to  
Search List  of  

Status Tables  for  
Requi red  Page  

Move to  Next  
Status Table  

in Chain 

the Current  
Page  the  One  

Required 

Get  the  Word  
Using the Status 

Table  Pointer  to  the  
Page  and  the  Word-  

in-Page Address.  

Yes 

Cal l  Fault  
Sof tware  to  Get  
Requested  Page  

from Disc.  

Fig .  2 .  A t  a  g iven  t ime,  the  ma in  computer  s to re  con ta ins  a  
number of 2N -word pages from the virtual memory along with a 
smal l  s tatus table for  each of  these pages.  The status tables 
a r e  a r r a n g e d  i n  a  l i s t  w i t h  t h e  t a b l e  f o r  t h e  m o s t  r e c e n t l y  
accessed page a t  the  top  o f  the  l i s t .  
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Start ing Vir tual  Memory 
Address of  Page 

Pointer  to Next  
Status Table  

Fig.  3.  I f  the page that  conta ins the word addressed is  not  in  
main storage, the system br ings in the required page from the 
d i sc ,  swapp ing  i t  f o r  t he  page  whose  s ta tus  t ab le  i s  a t  t he  
bot tom of  the l is t ,  that  is ,  the least  recent ly  used page.  

word-in-page part of the virtual address to access it. If 
the end of  the s ta tus  table  l is t  is  reached without  
encoun te r ing  the  r equ i r ed  page  then  a  so f tware  
rou t ine  i s  ca l l ed  f rom the  v i r tua l  ins t ruc t ion  mi  
crocode. This routine decides which of the current 
main-store-resident pages can be overwritten with 
the data from the new page, stores the current page on 
the disc if it has been altered since being loaded, and 
reads in the new page. 

APL 3000 always chooses the least recently used 
page as the one that can be removed. This is the page 
whose status table is the last one in the status table 
list, since the list is maintained with the most recently 
used page first. This method is critical to the efficient 
operation of virtual memory, because it  causes the 
pages that  are  used frequently by APL 3000 to re  
main in main storage where they can be rapidly ac 
cessed while the infrequently used pages migrate to 
the disc. 

Vir tual  Segmentat ion 
For this large linearly addressable virtual memory 

to be useful  in creat ing vir tual  workspaces the ad 
dress  space must  be broken up into  several  smal l  
b locks  of  memory,  each of  which can be  indepen 
dently expanded or contracted in size. In APL 3000 
this is accomplished by three software routines. The 

first routine allocates blocks of memory ; it is given the 
required number of words and it returns the starting 
virtual address of the block allocated. The second 
routine returns previously allocated blocks of mem 
ory to the free list where they are available for later 
reallocation. The third routine can be instructed to 
expand or contract the size of a currently allocated 
block of memory. 

The virtual storage allocation routines work with a 
data structure called the free storage list (FSL). The 
FSL contains an entry for each block of unused stor 
age in the virtual workspace. Each entry in the FSL 
contains the following items: 
i A 32-bit virtual memory address that is the begin 

ning of a free block of virtual memory 
â€¢ The number of words in the free block of memory. 

When a block of storage is returned to the FSL by 
the software a description of the block is put into the 
FSL so that no two FSL entries describe adjacent areas 
of memory. In this way the free storage available in a 
workspace is represented by the minimum number of 
FSL entries. 
Conclusion 

APL is  a  convenient  language because i ts  work 
space concept allows the programmer to use variables 
rather than files. APL 3000 has extended its useful 
ness by allowing workspaces to be extremely large. 
Also, storage use and speed have been optimized by 
means of shared data areas and subscript calculus. 
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APLGOL:  St ructured Programming 
Facil i t ies for APL 
by Ronald L .  Johnston 

OVER A PERIOD OF YEARS the computer science 
community has developed a set of programming 

disciplines for systematic program design that have 
become widely known as structured programming. 
One very important component of this science is a set 
of interstatement control structures for clearly ex 
pressing the flow of control. These control structures 
are embodied in such block-structured languages as 
ALGOL or PASCAL, and therefore these languages 
have been widely used in teaching computer science 
in colleges and universities. One control structure 
that has received much criticism as unstructured 
and harmful is the GOTO of FORTRAN and other 
languages.1'7'8 The use of the GOTO, it is argued, is 
to be avoided because it can render program flow 
unintelligible, unmaintainable, and impossible to 
prove correct. 

APL is a modern language with array-oriented 
functions, but only a single branching construct is 
available: -^expression, where "expression," how 
ever complex, evaluates to a statement number to 
which control is transferred. This construct is the 
rough equivalent of a computed GOTO which, as men 
tioned previously, is not considered a good struc 
tured programming tool. Many APL enthusiasts, in 
defense of the language, have argued that its rich set 
of array functions reduces the necessity of including 
explicit loop constructs in an APL program, thereby 
minimizing the importance of good control structures 
in this particular language. Nevertheless, empirical 
studies2 of APL programs have shown that the fre 
quency of branching per line is greater in APL than in 
FORTRAN, although there are fewer branches per 
equivalent function. Furthermore, as a consequence 
of having only one branching construct the control 
flow even within well structured APL programs can 
often be obscure. 

Many attempts have been made to improve the 
readability and understandability of the APL branch 
function. Saal and Weiss2 relate that APL program 
mers use various stylized forms of branching with 
great frequency in an attempt to impart some regular 
ity to the branch construct. These constructs have 
become much-used idioms of the language. Other 
APL programmers,3'4'5 dissatisfied with even these 

stylized branching constructs, have invented special 
packages of APL functions that attempt to provide 
more acceptable control structures like IF-THEN-ELSE, 
WHILE-DO, CASE, and REPEAT-UNTIL. However, these 
special functions have discouraged their own use be 
cause they occupied storage in workspaces that were 
already too small, and because the function calls im 
posed a run-time speed penalty on the user. The only 
acceptable solution lay in enhancing the language 
itself, so that APL programmers could use the grow 
ing body of structured programming techniques 
without incurring the penalties inherent in the solu 
tions to date. 

Solut ion:  APLGOL 
APL3000  inc ludes  an  a l t e rna te  l anguage ,  

APLGOL, which enhances standard APL in the area of 
branching. Based on the work of Kelley and Walters6, 
APLGOL is a fully-supported language that adds 
ALGOL-like control structures to APL to provide the 
needed structured programming facilities. Program 
mers writing in APLGOL can make use of such famil 
iar constructs as IF-THEN-ELSE, WHILE-DO, REPEAT- 
UNTIL, and CASE. Some constrained forms of struc 
tured branching are also included; they are LEAVE, 
ITERATE, and RESTART. The resultant programs are 
much easier to read, understand, and maintain than 
the equivalent programs written in standard APL. 
These qualities are essential in production pro 
gramming environments. 

Another language facility, ASSERT, has been incor 
porated to encourage programmers to assert correct 
ness properties of algorithms as they write them, 
hopefully to foster the proof-of-correctness approach 
to programming that Dijkstra has recognized as so 
important  to the production of error-free pro 
grams.8'9'10 Using ASSERT statements the pro 
grammer states properties and conditions that must 
be true if the program being written is to work prop 
erly. For example, suppose a function uses the vari 
able A as a divisor and the programmer expects that 
no element of A should ever be zero. The following 
assertion might be included in the function ahead of 
the division: 

ASSERT 1: A/AÂ¿0; 
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[  o ]  L I S T F N S  

[ l] n PRINTS TEXT OF ALL FUNCTIONS IN WORKSPACE EXCEPT ITSELF 

[  2 ]  D l O ^ O  

[ 3] FNL^FNL[Ã65i^DAV 1 FNLÂ«-ONL 3 4:] n GET SORTED FNS LIST 

[  4 ]  - . ( O ^ X / p F N L j / H A V E F N S  

[5]  D- ' (NO FUNCTIONS IN WORKSPACE) '  

[ 6 ]  - , 0  

[  7 ]  H A V E F N S :  0 - '  ) F N S ' , D R . , F N L , '  ' n  P R I N T  ) F N S  L I S T  

[  a ]  INX^o 
[  9 ]  N E X T N A M E :  - ( I N X > l T p F N L ) / 0  

0]  FNAME-(FNAME,Ã '  ' ) /FNAME-,FNL[lNX;]  f l  DE-BLANK NAME 

l ]  G - ( 2 p D R ) , '  . . . . .  ' . F N A M E , '  . . . . . '  

2] NLINES^ltpCR-DCR FNAME n GENERATE CANONICAL REP 

3J Dâ€” '['.(((flOÂ»NLINES),0)Ã¯(NLINES.l)|> INLINES).']', ' ',CR 

4 ]  I N X ^ I N X + 1  

5 ]  ^ N E X T N A M E  

APLGOL:  
[ 0] PROCEDURE LISTFNS,LISTFNS.FNL,FNAME,DlO.NLINES.INX; 

[ l] n PRINTS TEXT OF ALL FUNCTIONS IN WORKSPACE EXCEPT ITSELF n 

[  3 ]  F N L < - F N L [ A 6 5 i t * [ ] A V l F N L - D N L  3  4  n  G E T  S O R T E D  F N S  L I S T  n  

[  4 ]  I F  0 -  x / p F N L  T H E N  

[  5 ]  Q - ' ( N O  F U N C T I O N S  I N  W O R K S P A C E ) '  

[  6 ]  E L S E  

[  7 ]  B E G I N  

[ s] D~' )FNS'.DR..FNL.' '; Â» PRINT )FNS LIST n 
[  9 ]  I N X - O ;  

[ l o ]  W H I L E  I N X < l t p F N L  D O  

[ l l ]  B E G I N  

[ 1 2 ]  n  ' ) / F N A M E - , F N L [ l N X ; ] ;  n  D E - B L A N K  N A M E  n  

[ 1 3 ]  D ~ ( 2 p D R ) . '  . . . . .  ' . F N A M E , '  " " â € ¢ ' ;  

[ 1 4 ]  N L I N E S - l T p C R < - O C R  F N A M E ;  n  G E N E R A T E  C A N O N I C A L  R E P  n  

[ 1 5 ]  ' , C R ;  ' , C R ;  

[ 1 6 ]  I N X ^ I N X  +  l :  

[ 1 7 ]  E N D ;  

[ 1 8 ]  E N D ;  

[l9J END PROCEDURE 

Fig.  1.  An APL funct ion and i ts  APLGOL counterpart .  The two 
funct ions are nearly identical,  but the APLGOL funct ion makes 
use  o f  ALGOL- i i ke  con t ro l  s t ruc tu res  tha t  make  i t  eas ie r  to  
read,  unders tand,  and mainta in .  

In this fashion the programmer lets the correctness 
proof and the program grow hand in hand. Each AS 
SERT statement contains a relational expression that is 
evaluated dynamically each time control reaches it. If 
the assertion proves false, execution is halted to per 
mit the programmer to choose an appropriate course 
of action. Assertion statements can be conditionally 
executed, based on a level number in each assertion. 
One useful way to employ assertions is to have all 
assertions checked during initial program writing 
and debugging. Later, as the program reaches produc 
tion status, assertion checking is turned off. If at some 
future date the program exhibits erroneous behavior, 
checking of assertions can be easily reinitiated, 
greatly facilitating debugging efforts. Using asser 
tions in this fashion, there is no run-time penalty 
during production use of the programs; only during 
debugging stages are the assertions checked. 

A workspace may contain both APL and APLGOL 

functions, which may call each other without restric 
tion. (However, any given function must be entirely 
APL or entirely APLGOL.) APLGOL expressions are 
exactly the same as APL expressions, following the 
same set of syntax and semantic rules. A function 
originally developed in APL can be easily modified to 
become an APLGOL function, and vice versa. The 
only differences between APL and APLGOL func 
tions lie in the specific syntax of the function headers, 
the control structures, the use of the lamp symbol (n) 
as a comment terminator, and the fact that APLGOL, 
like ALGOL, terminates statements with a semicolon. 
Fig. 1 contrasts an APL function with its equivalent 
APLGOL function, illustrating how nearly identical 
the two functions are. 

Canonical  Forms 
For run-time efficiency, it has been customary for 

APL interpreters to translate functions from character 
form into an internal form, whereupon the original 
character source is discarded. Subsequent requests 
for display of the functions are satisfied by translating 
the internal form back to a canonical character form. 
APL programmers have become accustomed to this 
canonical form of their programs being slightly dif 
ferent from what they originally input, in that un 
necessary blanks have been compressed out, labels 
"undented", and the formats of numeric constants 
perhaps changed. The short function shown below 
illustrates how the original and canonical forms may 
differ for APL: 

Original APL 
[ 0 ]  R ^  P A R T  P E R C E N T  W H O L E  

[1] R ^1E2 x PART-?- WHOLE 
Canonical APL 

[0] R ^PART PERCENT WHOLE 

[1] R^IOOXPART^WHOLE 

In similar fashion, APLGOL translates to internal 
form and back-translates to a stylized canonical form. 
However, APLGOL canonical form may be markedly 
different from the original. APLGOL can be input 
free-form with many statements per line, but the ca 
nonical form always has one statement per line, with 
indenting for each layer of nesting. As Fig. 2 shows, 
the canonical form of this function offers the advan 
tage of making the control structures more obvious by 
indenting the IF-THEN-ELSE statements. 

One consequence of the APLGOL control structures 
is that the keywords of these structures (IF, THEN, etc.) 
are reserved and cannot be used as variable or func 
tion names in APLGOL functions. This is not usually 
a severe limitation to the programmer. 

Important  Design Considerat ions 
APLGOL is a fully-supported language, not an 

add-on to APL. The decision was made early in the 
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Original APLGOL 
[ 0] PROCEDURE A CONFORMS BOF ( V/l = (x/pA).x/pB ITHEN 

[ i] 'CONFORMABLE - SCALAR/UNIT EXTENSION' ELSE IF (pPA)=ppB 
[ 2] THEN IF (pA) A.=pB THEN'CONFORMABLE - SAME SHAPE' ELSE 

[ 3] 'NOT CONFORMABLE - LENGTH ERROR' 

5 ]  

ELSE NOT CONFORMABLE - RANK ERROR ; 

END PROCEDURE 

Canonical  APLGOL 
[ 0] PROCEDURE A CONFORMS B; 
[  l ]  IF (v / l  =  (x /pA) ,x /pB)THEN 
[ 2] 'CONFORMABLE - SCALAR/UNIT EXTENSION' 
[  3  j  E L S E  

[  4 ]  I F  ( p p A ) = p p B  T H E N  

[  5 ]  I F  ( p A ) A . = p B T H E N  

[ B] 'CONFORMABLE - SAME SHAPE' 
[  7 ]  E L S E  

[  B ]  ' N O T  C O N F O R M A B L E  -  L E N G T H  E R R O R '  

[  9 ]  E L S E  

[ 1 0 ]  ' N O T  C O N F O R M A B L E  -  R A N K  E R R O R ' ;  

[l l]  END PROCEDURE 

Fig .  2 .  User  inpu ts  in  APLGOL are  t rans la ted  to  an  in te rna l  
fo rm and back- t rans la te  to  a  canon ica l  fo rm.  The canon ica l  
form makes the control  structures more obvious by indent ing. 

design stages that it was to be as convenient to use as 
APL and should require no extra steps for the pro 
grammer. It was to suffer no significant speed or space 
penalties , but should offer itself as a viable alternative 
to programming in APL. 

One important design decision was to use the same 
dynamic incremental compiler for both APL and 
APLGOL (see article, page 17). Once a function has 
been translated to internal form (S-code), its incre 
mental compilation and execution is handled by a 
single mechanism that is common to both languages. 
The most obvious payoff from this approach is that 
only one such system needed to be implemented, 
resulting in lower development costs than if two 
separate compilers had been written. A second, less 
obvious advantage is that this guarantees that there 
are no insidious semantic differences in the way each 
language evaluates its expressions. That is, an ex 
pression like + / gives the same result (DOMAIN 
ERROR in some systems, including ours; 0 in other 
systems) in both languages. Finally, it guarantees that 
the execution speed of both languages is the same, 
except in functions dominated by branching over 
head. In these cases APLGOL tends to be slightly 
faster, because it generates more efficient branching 
code. APLGOL branches don't have to be range- 
checked at run time as APL branches do, since all 
APLGOL branches are generated and guaranteed in- 
range by the chara cter-to-internal translator when the 
function is created. 

These considerations continually influenced the 
design of APL 3000, most often having the effect of 

complicating internal code assignments, data struc 
tures, and support routines. The result, however, is a 
system that honestly supports both APL and APLGOL 
without noticable favoritism of either. Â¿" 
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APLGOL Cont ro l  S t ruc tures  
ASSERT INTEGER EXPRESS/OX: BOOLEAN' EXPRESSION 

BEGIN' STATEMENT LIST END 

CASE INTEGER EXPRESSION OF INTEGER CONSTANT 

BEGIN 
CASE LABEL: STATEMENT: 

CASE LABEL: STATEMENT: 

CASE LABEL: STATEMENT: 

{DEFAULT: STATEMENT:} 

END CASE 

EXIT {EXPRESSION} 
FOREVER DO STATEMENT 
HALT {EXPRESSION} 
IF BOOLEAN EXPRESSION DO STATEMENT 
IF BOOLEAN EXPRESSION THEN STATEMENT 

ELSE STATEMENT 
ITERATE: CONTROL STRUCTURE NAME LIST 
LEAVE: CONTROL STRUCTURE NAME LIST 
NULL 
PROCEDURE HEADER; STATEMENT LIST END PROCEDURE 

REPEAT STATEMENT LIST UNTIL BOOLEAN EXPRESSION 

RESTART: CONTROL STRUCTURE NAME LIST 

WHILE BOOLEAN EXPRESSION DO STATEMENT 

Notes: 
{a}: a Is Optional 

CONTROL STRUCTURE NAME LIST: List of Control Structure Names 

among CASE, FOREVER, IF, PROCEDURE, REPEAT, or WHILE. 

E.g.: IF.CASE 

HEADER: Standard APL Function Header, except that Local Variables 

Are Preceded by a Comma instead of a Semicolon. 
STATEMENT: One of the Above Control Structures, or an APL Expression. 

STATEMENT LIST: One or More Statements, Each Terminated by a Semicolon. 

Comments Have the Form: n COMMENT TEXTfl 

E d i t o r  C o m m a n d s  
A J D D )  A l l o w s  E n t r y  o f  N e w  T e x t  

B J R I E F }  C h a n g e s  M e s s a g e s  t o  B r i e f  M o d e  ( S h o r t )  

C { H A N G E }  S u b s t i t u t e s  O n e  S t r i n g  f o r  A n o t h e r  

C O { P Y }  C o p i e s  T e x t  f r o m  O n e  L o c a t i o n  t o  A n o t h e r  

C U { R S O R }  C h a n g e s  t h e  L i n e  P o i n t e r  

D J E L E T E }  D e l e t e s  L i n e s  i n  t h e  E d i t  T e x t  

D E L T { A }  C h a n g e s  t h e  L i n e  I n c r e m e n t  

E N D  E x i t s  E d i t o r ,  M a k i n g  T e x t  i n t o  a  F u n c t i o n  

F { I N D }  L o c a t e s  a  S t r i n g  i n  t h e  T e x t  

H { E L P }  P r i n t s  I n f o r m a t i o n  a b o u t  E d i t o r  C o m m a n d s  

L { I S T }  P r i n t s  L i n e s  o f  T e x t  

L O C K  S i m i l a r  t o  E N D ,  b u t  L o c k s  t h e  F u n c t i o n  

M A T J R I X }  E x i t s  E d i t o r ,  C r e a t i n g  a  C h a r a c t e r  M a t r i x  

M f O D I F Y }  M o d i f i e s  t h e  C o n t e n t s  o f  a  L i n e  

Q U I T  E x i t s  E d i t o r ,  D i s c a r d i n g  t h e  C h a n g e s  

R { E P L A C E }  R e p l a c e s  L i n e s  o f  t h e  T e x t  

RESEQUENCE} Renumbers  and Moves  Text  Lines  

U J N D O }  N e g a t e s  t h e  E f f e c t s  o f  t h e  L a s t  C o m m a n d s  

V E C J T O R }  E x i t s  E d i t o r ,  C r e a t i n g  a  C h a r a c t e r  V e c t o r  

VERJBOSE}  Changes  Messages  t o  Ve rbose  Mode  (Long)  

Note: 
{a}: a Is Optional. Commands May Be Abbreviated. 

Â¡BIND 

(CLEAR 

ICONTINVE 

)COPYWSID {NAME LIST} 
IDEPTH {INTEGER} 
)DROP WSID 
(EDIT {OBJECT NAME} 

)ERASE NAME LIST 

(EXIT 

)FILES {GROUP {.ACCOUNT}} 
)FNS {LETTER} 
)HELP {COMMAND NAME} 

)LANGUAGE {APL OR APLGOL} 

(LIB {GROUP {.ACCOUNT}} 
(LOAD WSID 

)MPE 

)OFF 

(PCOPY WSID {NAME LIST} 

(RESET {ENVIRONMENT NUMBER} 

(RESUME 

(SAVE {WSID} 
(SI (ENVIRONMENT NUMBER} 
(SIV (ENVIRONMENT NUMBER } 

(TERM {TERMINAL TYPE } 
(TERSE 

(TIME 

(VARS {LETTER} 

) VERBOSE 

System Commands 
Turns  Bind ing  Messages  O\  o r  

OFF 
Obtains  New. Clean Workspace 

(WS) 

Leaves APL. Saving WS in Work 

space CONTINUE 

Obtains Part or All of a Stored WS 

Sets the Execution Stack Size 

Deletes a Stored WS 

Enters Editor, Working on OB/ECT 

NAME 

Deletes Objects in NAME LIST 

from Active WS 

Leaves APL 

Lists Stored Files 

Lists Functions in Active WS 

Prints Information about System 

Commands 
Specifies Default  Language Pro 

cessor 

Lists Stored APL Workspaces 

Makes a Copy of a Stored WS the 

Active WS 

Break from APL to MPE Command 
Interpreter 

Leaves APL 

Like COPY, but Doesn't Replace 

Objects 

Sets an Environment to the Empty 

Environment 

Resumes Execution of Suspended 

Function 

Stores the Active Workspace 

Prints the State Indicator 

Prints the State Indicator Stack, 

with Local Variables 
Sets the Terminal Type 

S e t s  M e s s a g e s  t o  T e r s e  M o d e  

(Short) 

Turns  Calcula tor  Mode Timing 

ON/OFF 

Prints the Variables in the Active 

WS 
Sets Messages to Verbose Mode 

(Long) 

Changes the Active WS's Name (WSID {WSID} 
Notes: 
{a}: a is optional 

WSID: Workspace Identification 

TERMINAL TYPE: One of AJ, ASCII, BP, CDI, CP, DM, GS1. or HP. 

All Commands May Be Abbreviated. 

Circu lar  Funct ions  
B 

R 
arc tanh B 

arc cosh B 

arc sinh B 

(~1+B*2)Â«.5 

arc tan B 

arc cos B 
arc sin B 

R 

sin B 

cos B 

tan B 

4  ( 1 + B Â « 2 ) * . 5  

5  s i n h  B  

6  c o s h  B  

tanh B 

0  ( 1 - B * 2 ) * . 5  
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S P E C I F I C A T I O N S  A N D  F E A T U R E S  
APIA3000  (Language Subsystem 321  05A)  

A P L  3 0 0 0  i s  a  l a n g u a g e  s u b s y s t e m  t h a t  r u n s  u n d e r  t h e  c o n t r o l  o f  M u l t i  
p rogramming Execut ive  (MPE)  on  the  HP 3000 Ser ies  I I  Computer .  
COMPATIBIL ITY:  APLSV compat ib le ,  i nc lud ing  sys tem func t ions  and  var iab les ,  

s h a r e d  v a r i a b l e  m e c h a n i s m ,  F o r m a t  ( * ) ,  E x e c u t e  ( Â » ) ,  S c a n ( ) ,  a n d  M a t r i x  
Invers ion and Div is ion (E) .  

F ILE  (MPE)  Fu l l  access  t o  t he  Mu l t i p rog ramming  Execu t i ve  (MPE)  f i l e  sys tem 
allows communica or shared f i les via the Shared Variable mechanism, communica 
t ion with other language subsystems, access to peripheral  devices ( l ine pr inters, 
card readers,  magnet ic  tapes,  d iscs,  etc . ) .  

APLGOL:  An  a l te rna te  language tha t  p rov ides  modern  ALGOL- l i ke  con t ro l  s t ruc  
t u r e s  i n  a n  A P L  e n v i r o n m e n t .  I F - T H E N - E L S E ,  B E G I N - E N D ,  W H I L E - D O ,  
REPEAT-UNTIL ,  CASE,  and  ASSERT are  among the  cons t ruc ts  ava i lab le .  

EDITOR:  Fu l l  f unc t ion  and  tex t  ed i t i ng  fac i l i t i es  a re  p rov ided  fo r  by  a  power fu l  
new editor.  Includes features never before avai lable to APL programmers, among 
them the  ab i l i t y  t o  c rea te  and  ed i t  ma t r i ces  and  vec to rs .  P rov ides  such  com 
m a n d s  a s  C H A N G E ,  C O P Y ,  F I N D ,  R E S E Q U E N C E ,  a n d  U N D O ,  a s  w e l l  a s  
a  HELP fac i l i ty  for  the nov ice or  occas ional  user .  

C O N C E P T U A L  D A T A  T Y P E S :  C h a r a c t e r  a n d  N u m e r i c .  
A C T U A L  i n t e r n a l  T Y P E S :  A P L  a u t o m a t i c a l l y  c h o o s e s  t h e  a p p r o p r i a t e  i n t e r n a l  

representat ion for  data f rom the fo l lowing types:  
CHARACTER:  represented  by  8-b i t  codes  fo l low ing  the  code ass ignments  ou t  

l ined by DAV. Codes include lower-case ASCII alphabetics, control codes. 
BIT:  va lues 0  and 1  packed 16 per  mach ine word for  data  o f  rank 1  (vector )  or  

greater (array). 
INTEGER: integer values wi th in the range -32768 to 32767 are stored as 16-bi t  

s igned integers.  
REAL :  rea l  va lues  w i t h i n  t he  range  Â±(2~256 ,  2  +  256 )  a re  s to red  as  64 -b i t  

f loat ing po int  numbers.  16 dec imal  d ig i t  accuracy.  
M A X I M U M  A R R A Y  R A N K :  6 3  d i m e n s i o n s .  
M A X I M U M  A R R A Y  S I Z E :  3 2 , 7 6 7  e l e m e n t s .  
A R I T H M E T I C  P R O G R E S S I O N  V E C T O R S :  I n t e g e r  v e c t o r s  t h a t  c a n  b e  d e  

s c r i b e d  b y  t h e  f o r m  A  + B  x  i C  a r e  s t o r e d  a s  A r i t h m e t i c  P r o g r e s s i o n  V e c t o r s  
(APV's) ,  which requi re  no data areas.  

SHARED same AREAS: Var iables of  rank 1 (vector)  or  greater can share the same 
da ta  da ta  avo id ing  mu l t i p l e  cop ies  o f  t he  same  da ta .  Sha red  da ta  a reas  a re  
dupl icated only  i f  one of  the shar ing var iab les at tempts to  change i ts  data.  

WORKSPACE SIZE:  L imi ted only  by the amount  of  on- l ine d isc s torage avai lab le.  
In i t i a l  s i ze :  32 ,767  by tes .  Au tomat i ca l l y  made  la rge r  as  necessary .  P rac t i ca l  
l imi t :  400,000,000 bytes.  

TERMINAL SUPPORT:  Accep ts  te rm ina ls ,  w i th  o r  w i thou t  an  APL charac te r  se t ,  
t ha t  baud .  a  s tanda rd  ASCI I  i n te r face  a t  speeds  f rom 110  to  2400  baud .  P ro  
v i s i o n s  m a d e  f o r  b o t h  b i t  a n d  c h a r a c t e r  p a i r i n g  t e r m i n a l s .  S p e c i a l  s u p p o r t  
given features. the HP 2641 A Display Station to take advantage of its special features. 
T h e  f o l l o w i n g  o t h e r  t e r m i n Ã ¡ i s  h a v e  b e e n  t e s t e d :  A n d e r s o n  J a c o b s o n  6 3 0 ,  
Compu te r  Dev i ces  Te le te rm 1030 ,  Da ta  Med ia  E l i t e  1520 ,  Gen -Corn  Sys tem 
Model  300.  

E N V I R O N M E N T :  R u n s  a s  a  s t a n d a r d  s u b s y s t e m  u n d e r  c o n t r o l  o f  M u l t i p r o  
g r a m m i n g  E x e c u t i v e  ( M P E ) .  A l l o w s  b a t c h  A P L  j o b s ,  s i m u l t a n e o u s  u s e  o f  
f i ve  o ther  languages  (BASIC,  COBOL,  FORTRAN,  RPG,  and  SPL) ,  ne tworked  
access to  o ther  HP 3000 's .  

S Y S T E M  R E Q U I R E M E N T S  A N D  P E R F O R M A N C E :  T h e  m i n i m u m  s y s t e m  r e  
quired II; an HP 3000 Series II with 256K bytes of memory operating under MPE II; 
for  mul t i l ingual  operat ion,  a t  least  384K bytes of  memory is  needed.  Operat ion 
w i t h  1 0  o r  m o r e  t e r m i n a l s  r e q u i r e s  f u l l  m e m o r y  ( 5 1  2 K  b y t e s ) .  M a x i m u m  
recommended number  o f  s imu l taneous  APL users  i s  16 .  

INSTALLATION:  APL  3000  i nc ludes  ha rdware  m ic rocode  and  mus t  be  i ns ta l l ed  
by  a  fac to ry  au thor ized  Cus tomer  Eng ineer .  Ins ta l la t ion  i s  inc luded in  the  l i s t  
price. 

O R D E R I N G  I N F O R M A T I O N :  3 2 1 0 5 A  A P L  3 0 0 0  S u b s y s t e m .  I n c l u d e s  t h e  
d y n a m i c  c o m p i l e r ,  h a r d w a r e  m i c r o c o d e ,  a n d  t h e  A P L  3 0 0 0  R e f e r e n c e  
Manual  (32105-90002) .  A l l  so f tware suppl ied in  ob jec t  code form on ly .  

PRICE IN U.S.A. :  $15,000.  
M A N U F A C T U R I N G  D I V I S I O N :  G E N E R A L  S Y S T E M S  D I V I S I O N  

5303 Stevens  Creek  Bou levard  
Santa Clara,  Cal i forn ia 95050 U.S.A.  

S P E C I F I C A T I O N S  
HP Mode l  2641A APL D isp lay  S ta t ion  

General  
S C R E E N  S I Z E :  1 2 7  m m  ( 5  i n )  x  2 5 4  m m  ( 1 0  i n )  
SCREEN CAPACITY :  24  l i nes  x  80  co l umns  (1 ,920  cha rac te r )  
C H A R A C T E R  G E N E R A T I O N :  7 x 9  e n h a n c e d  d o t  m a t r i x ;  9 x 1 5  d o t  c h a r a c t e r  

cel l ;  non- inter laced raster  scan 
C H A R A C T E R  S I Z E :  2 . 4 6  m m  ( . 0 9 7  i n )  x  3 . 1 7 5  m m  ( . 1 2 5  i n )  
C H A R A C T E R  S E T :  1 2 8  c h a r a c t e r  A P L ;  6 4  c h a r a c t e r  u p p e r - c a s e  R o m a n ;  6 4  

c h a r a c t e r  A P L  o v e r s t r i k e .  ( N o t e :  t h e  2 6 4 1 A  s u p p o r t s  o n l y  o n e  a d d i t i o n a l  

character set.) 
CURSOR: B l ink ing under l ine  
DISPLAY MODES: Whi te  on b lack;  b lack on whi te  ( inverse v ideo) ,  b l ink ing,  ha l f -  

bright, underl ine. 
REFRESH RATE:  60  Hz  (50  Hz  op t iona l )  
T U B E  P H O S P H O R :  P 4  
IMPLOSION PROTECTION:  Bonded  imp los ion  pane l  
MEMORY:  MOS ROM: 24K by tes  (p rogram) ;  RAM:  s td .  4096 by tes ;  12  k i loby tes  

max.  {16K inc lud ing max.  data comm. buf fer )  
OPTION SLOTS:  5  ava i lab le  
KEYBOARD: Detachable,  fu l l  APL/ASCII  code b i t -pa i r ing keyboard,  user-def ined 

sof t  numer ic  and 18 add i t iona l  cont ro l  and ed i t ing keys;  ten-key numer ic  pad;  
cursor cable. mult ispeed auto-repeat, N-key rol l -over; 1.22m (4 foot) cable. 

CARTRIDGE TAPE (op t i on ) :  Two  mechan isms  
READ/WRITE SPEED:  10  ips  
SEARCH/REWIND SPEED:  60  i ps  
RECORDING:  800 bp i  
MINI  CARTRIDGE:  110 k i lobyte  capac i ty  (max imum per  car t r idge)  

Data  Communicat ions 
DATA RATE:  110,  150,  300,  1200,  2400,  4800,  9600 baud,  and ex terna l .  Swi tch  

s e l e c t a b l e .  ( 1 1 0  s e l e c t s  t w o  s t o p  b i t s ) .  O p e r a t i n g  a b o v e  4 8 0 0  b a u d  i n  A P L  
mode may requi re nul ls  or  handshake protocol  to  insure data in tegr i ty .  

S T A N D A R D  A S Y N C H R O N O U S  C O M M U N I C A T I O N S  I N T E R F A C E :  E I A  s t a n  
da rd  RS232C;  fu l l y  compat ib le  w i th  Be l l  103A modems;  compat ib le  w i th  Be l l  
202C/D/S/T modems. Choice of main channel or reverse channel l ine turnaround 
for hal f  duplex operat ion. 

O P T I O N A L  C O M M U N I C A T I O N S  I N T E R F A C E S  ( s e e  1 3 2 6 0 A / B / C / D  C o m m u n i  
cat ions data sheet for detai ls) :  

Current  loop,  sp l i t  speed,  custom baud rates 
Asynchronous Mul t ipo in t  Communicat ions 
Synchronous Mul t ipo in t  Communicat ions -  B isync 

TRANSMISSION MODES:  Fu l l  o r  ha l f  dup lex ,  asynchronous  
OPERATING MODES:  On- l ine ;  o f f - l ine ;  charac ter ,  b lock  
PARITY:  Swi tch  se lec tab le ;  even,  odd,  none 

Environmental  Condi t ions 
T E M P E R A T U R E ,  F R E E  S P A C E  A M B I E N T :  

NON-OPERATING: -40 to  +75Â°C (-40 to  + 167Â°F) 
OPERATING: 0 to 55Â°C (+32 to +131Â°F) 

T E M P E R A T U R E ,  F R E E  S P A C E  A M B I E N T  ( T A P E ) :  
NON-OPERATING: -10 to  60Â°C ( -15 to  +140Â°F)  

OPERATING: 5 to 40Â°C (+41 to 104Â°F) 
HUMIDITY:  5  to  95% (non-condens ing)  
ALTITUDE:  

NON-OPERATING:  Sea leve l  to  7620 met res  (25 ,000 fee t )  
OPERATING:  Sea leve l  to  4572 met res  (15,000 feet )  

VIBRATION AND SHOCK (Type tested to qual i fy  for  normal  shipping and handl ing 
in or iginal  shipping carton):  

V IBRATION:  37  mm (0 .015 in )  pp ,  10  to  55  Hz,  3  axes  
SHOCK:  30g,  11ms,  1 /2  s ine  

Physical  Specif icat ions 
DISPLAY MONITOR WEIGHT:  19 .6  kg  (43  pounds )  
KEYBOARD WEIGHT:  3 .2  kg  (7  I bs )  
D I S P L A Y  M O N I T O R  D I M E N S I O N S :  4 4 4  m m  W  x  4 5 7  m m  D  x  3 4 2  m m  H  

( 17 .5  i n  W x  18  i n  D  x  13 .5  i n  H ) .  
648 mm D (25.5  in  D)  inc lud ing keyboard.  

K E Y B O A R D  D I M E N S I O N S :  4 4 4  m m  W  x  2 1 6  m m  D  x  9 0  m m  H  ( 1 7 . 5  i n  W  
x 8.5 Â¡n D x 3.5 in H) 

Power  Requirements  
INPUT VOLTAGE:  115  (  +  10% -23%)  a t  60  Hz  (Â±0.2%)  

230 (  + 10% -23%) at  50 Hz (Â±0.2%) 
POWER CONSUMPTION:  85  W to  1  40  W max.  

Product  Safety 
P R O D U C T  M E E T S :  U L  r e q u i r e m e n t s  f o r  E D P  e q u i p m e n t ,  o f f i c e  a p p l i a n c e s ,  

t e a c h i n g  e q u i p m e n t ;  C S A  r e q u i r e m e n t s  f o r  E D P  e q u i p m e n t ;  U . L .  a n d  C S A  
labels  are appl ied to  equipment  sh ipped to  the U.S.  and Canada.  

Order ing Example  
Here lower case example for ordering a 2641A Terminal with upper and lower case 
Roman  cha rac te r  se t s ,  l i ne  d raw ing  cha rac te r  se t ,  ca r t r i dge  t ape  capab i l i t y  
and f ive ext ra car t r idges to be operated over  phone l ines:  

2 6 4 1 A  A P L  D i s p l a y  S t a t i o n  
- 0 0 1  A d d s  L o w e r  C a s e  R o m a n  C h a r a c t e r  S e t  
- 0 0 7  A d d s  C a r t r i d g e  T a p e  C a p a b i l i t y  
- 0 1 3  A d d s  F i v e  M i n i  C a r t r i d g e s  
- 2 0 2  A d d s  L i n e  D r a w i n g  C h a r a c t e r  S e t  

1 3 2 3 2 N  A d d s  1 0 3 / 2 0 2  M o d e m  C a b l e â € ”  1 5 f t .  
PRICE IN U.S.A. :  2641A,  $4100.  2641A as  above,  $6115.  
M A N U F A C T U R I N G  D I V I S I O N :  D A T A  T E R M I N A L S  D I V I S I O N  

1 9400 Homestead Road 
Cupert ino,  Cal i forn ia 95014 U.S.A.  
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A Dynamic Incrementa l  Compi ler  for  an 
Interpret ive Language 
by Er ic  J .  Van Dyke 

A PL OFFERS THE USER a rich selection of primi 
t i v e  f u n c t i o n s  a n d  f u n c t i o n / o p e r a t o r  c o m  

posites.  Powerful  data structuring,  selection,  and 
arithmetic computation functions are provided, and 
their definitions are extended over vectors, matrices, 
and arrays of larger dimension, as well as scalars. 

Evaluation of complex expressions built from such 
terse operations is necessarily quite involved. Code 
must be generated and executed to apply primitive 
funct ions to  one another  and to  data  a toms,  with 
whatever type checks and representation conversions 
are required. Nested iteration loops must be created to 
extend the scalar functions over multidimensional 
array arguments,  and these must include data con 
formity and index range checks. 

All of this gathering and checking of information 
c o n c e r n i n g  d a t a / f u n c t i o n  i n t e r a c t i o n  a n d  l o o p  
structure â€” and its high overhead expense â€” is, in the 
typical naive APL interpreter, simply thrown away 
after the execution of a statement. This is because the 
nature of APL is dynamic. Attributes of names may be 
arbitrarily changed by programmer or program. Size, 
shape, data type, even the simple meaning of a name 
(whether a data variable, shared variable, label, or 
function), are all subject to change (Fig. 1). Assump 
tions cannot be bound to names at any time and be 
counted on to remain valid on any subsequent loop 
iteration or function invocation. For this reason, APL 
has t radi t ional ly been considered too unstable to  
compile. 

From this dilemma â€” high cost and wasted over 
head that penalize interpretation but instability that 
prevents compilation â€” grew the dynamic incremen 
tal compiler of APL 3000. 

Compi le  Only  as  Required 
The APL \3000 dynamic incremental compiler is 

an interact ive compiler / interpreter  hybrid.  I t  is  a  
compiler that generates and saves executable object 
code from a tree representat ion of  each new APL 
expression for which none already exists. (In general, 
each assignment statement, branch, or function invo 
cation is considered an expression.) It is also an in 
terpreter that immediately evaluates every expression 
of a statement or function. Whenever possible, previ 
ously compiled and saved code for an expression is 
re-executed. Only when absolutely necessary is new 
code generated.  Thus s table  expressions are  com 

piled,  while those with dynamically varying at tr i  
butes and those that are executed only once are, in 
essence, interpreted. The overhead of new code gen 
erat ion is  borne only when necessary,  of ten only 
once. This scheme of infrequent overhead provides 
justification for costly optimizations, including the 
dragalong and beating discussed below, that lead to 
more efficient code. 

A balance between compiling and interpretation is 
accomplished through the generation and execution 
of signature code, binding instructions that are emit 
ted before the code for an expression. Their purpose is 
to specify and check the attributes that are bound into 
the following code, that is, constraints that may not 
change if  the compiled code is  to be re-executed.  
Signature instructions are generated that test index 
origin (0 or 1), meaning of names (whether data vari 
able, shared variable, or otherwise), type and dimen 
sions of expressions (representation, size, and shape), 
access information for data (origin and steps on each 
dimension), and run-time index bounds checks. 

These signature instructions are bypassed on the 
first execution after compilation, when all assump 
tions are guaranteed satisfied. On subsequent execu 
tions, the signature code is used to test the validity of 
the code that follows. If these assumptions are found 
to  be  inval id ,  the  code "breaks" .  Execut ion is  re  
turned to the compiler and code with a new set of 
assumptions is generated (Fig. 2). On recompilation, 
an  express ion is  assumed unstable  and a  not-so-  

A N S < - A  +  B  

Integer Scalar  Variable 
Dyadic Pr imit ive Funct ion 
Integer Scalar  Variable 

[A Numeric Value]  

A N S < -  A + B  

Real  Vector  Var iable  
Dyadic Primit ive Funct ion 
Character  Matr ix  Var iable 

[A Domain Error]  

A N S < -  A + B  

Monadic  User-Def ined Funct ion 
Monadic Primitive Function â€” 
Ni ladic User-Def ined Funct ion 

[A Numeric Value]  

Fig. 1.  APL is dynamic. Attr ibutes of names may be arbi t rar i ly 
changed by the programmer or by a program. For this reason, 
APL has  been cons idered  imposs ib le  to  compi le .  

1 7  
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New 
Expression 

Previously 
Compi led 

Expression 

Compi le  and  
Save  Code  

and S ignature  
Instructions 

Test  
Signature 

Instructions 

I  
Code Breaks  

1  
Compi le  Less-  
Spec i f ic  Code 

and  New S igna ture  
Instruct ions 

Execute 
Code 

Execute 
Code 

F i g .  2 .  I n  A P L  3 0 0 0 ,  e x p r e s s i o n s  a r e  c o m p i l e d  w h e n  f i r s t  
encountered.  Along wi th the compi led code s ignature code is  
generated, speci fy ing constraints that must be met i f  the code 
i s  t o  be  re -execu ted .  Th i s  s i gna tu re  code  i s  t es ted  on  sub  
sequent  invocat ions of  the express ion,  and i f  the const ra in ts  
are not  met ,  recompi la t ion is  requ i red.  

specific but somewhat slower and less dense form of 
code is generated. Further changes may not force a 
recompilation. 

Wait  as  Long as  Possib le ;  Do as  L i t t le  as  Necessary  
The secret to compiling efficient code is in gather 

ing, retaining, and exploiting as much information 
about the entire expression as possible before generat 
ing code. The more context that can be recognized, 
the more specific "smarts" can be tailored into the 
code. For this reason, the APL 3000 compiler oper 
ates in two distinct functional passes: context gather 
ing and code generation. 

The context gathering, or foliation, phase of compi 
lation is a complete bottom-up traversal of the expres 
sion tree. Fig. 3 shows an example of such a tree. 
Description information is associated with each of the 
constant and variable data nodes â€” the leaves of the 
tree. These descriptions are then "floated" up to in 
teract with the parent node. Descriptions are revised 
and attached to the corresponding node as necessary 
to suit the result. This process continues as descrip 
tions are gathered and carried up through each func 
tion or operator node toward the root. Attached to the 
final assignment or branch node will be a context 
description for the entire expression. Fig. 4 shows the 
foliated tree for the expression of Fig. 3. 

The information created by this foliation process 
consists of a set of auxiliary description nodes at 
tached to each node in the expression tree. Each of 
these description groups contains the attributes of the 
result of the expression to which it is attached, as 
modified by that function and those below. First in 
the set of descriptor nodes is a single RRR node, which 

ANS 

1.1 

2  3  

E x p r e s s i o n  T r e e  t o r  A N S  Â « - 1 . 1 + 2  3  p i e  

F i g .  3 .  T h e  t r e e  r e p r e s e n t a t i o n  o f  a n  e x p r e s s i o n .  T h e  
APL 3000 compi ler t raverses this t ree twice, once for.  context 
gather ing  and once for  code genera t ion .  

describes the general structure of the current expres 
sion: RANK (number of dimensions â€” for scalar, 0), 
REPRESENTATION (internal data type), and RHOs (size of 
each dimension â€” for scalar, there is none). Linked to 
the RRR node is a chain of DELOFF nodes , or data access 
descriptions, at least one for each non-scalar data item 
in the expression. A DELOFF node indicates the order 
in which an item is accessed and stored â€” row major, 
for example â€” by means of an OFFSET (origin), and a 
DEL (step) for each coordinate. Notice that these de 
scriptions are independent of the data; storage need 
not be accessed during this foliation process. 

Frequently, data storage is shared. In such cases, 
multiple descriptors are created, perhaps with differ 
ing access schemes. Each addresses the same shared 
area. A common form of vector data created by the 
INDEX GENERATOR function is the arithmetic progres 
sion vector (APV). This vector may be completely rep 
resented by its descriptor; no data area is necessary at 
all. For example, 2 + 3x14 requires only the descriptor: 

R H O :  4  O F F S E T :  5  D E L :  3  

to represent the values 5 8 11 14. 

Dragalong and Beat ing 
It is the gathering and manipulation of these data- 

independent descriptors, following the dragalong 
and beating strategies developed by Abrams,1 that 
makes possible the extensive optimizations incorpo 
rated in APL 3000. 

Dragalong, the strategy of deferring actual evalua 
tion as far as possible up the expression tree by gather 
ing descriptions, avoids the naive interpreter's usual 
one-function-at-a-time "pinhole" evaluation. In 
stead, the code for a collection of parallel functions, 
including their associated loops, can be generated 
and executed simultaneously. Fig. 5 compares naive 
with dragged code. 

Beating, the application of Abrams' subscript cal- 
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R A N K  2  ( M a t r i x )  
T O N  R e a l  

2 (Matrix) 
A N S  

/  f  R A N K  
Q  R R R  ^  

f  
D E L O F F  %  f 3 Â °  

IDEL- 
Real 

R A N K  0  ( S c a l a r )  
R E P R E S E N T A T I O N  R e a l  

1  O F F S E T  n l i R A N K  '  < V e c l o r >  
D E L O F F  (  Â £  Q  ,  K  R E P R E S E N T A T I O N  I n t e g e r  }  R R R  2  3  

'  1  R H O  0  2  /  

R A N K  1  ( V e c t o r )  
R R R  <  R E P R E S E N T A T I O N : A P V  

R H O  0  6  

R A N K  2  ( M a t r i x )  
B O B  R E P R E S E N T A T I O N  R e a l  â € ž .  _ _ _  P I  â € ž  
R R R  R H O  0  2  /  D E L O F F  <  D E L  0  

R H O  1  3  ^  D E L  1  

,  B B O  RANK 0  (Sca la r )  
REPRESENTATION In teger  

Foliated Expression Tree for ANS <â€” 1.1 + 2 3 p l 6 

Fig. 4. compilation. expression tree results from the context gathering phase of compilation. Auxiliary 
descr ip t ion nodes conta in  the a t t r ibutes o f  the sub-express ion to  which they are a t tached.  

culus to a deferred expression when evaluation is 
finally required, produces the desired results for cer 
ta in  APL funct ions  by  descr ip t ion  manipula t ion  
alone. In such cases, the original data is shared with 
the beaten result, making it unnecessary to copy the 
data in a different form. Thus data is touched only 
when and only as much as necessary. (Data sharing is 
described in more detail in the article beginning on 
page 6.) SUBSCRIPTION, RESHAPE, RAVEL, TAKE, DROP, 
REVERSAL, and monadic and dyadic TRANSPOSE are the 
funct ions to which beat ing opt imizat ions may be 
applied (see Fig. 6). 

The dragalong and beating strategies can signifi 
cantly reduce the amount of data access and storage, 

computation and looping overhead, and often tempo 
rary storage required in the evaluation of an expression. 

An independent  context  ga ther ing pass  dur ing 
compilation provides an opportunity for a number of 
specific optimizations in addition to dragalong and 
beating. For example, a pair of adjacent monadic RHO 
nodes can be recognized as a new internal RANK func 
tion. The result is merely the rank of the argument as 
indicated by its description, eliminating the need for 
an intermediate rho vector (see Fig. 7).  Similarly, 
successive CATENATE nodes can often be incorporated 
into a new multi-argument POLYCAT function, elimi 
nating the superfluous data moves and intermediate 
storage that would normally be required (Fig. 8). 

Naive 

I N I T I A L I Z E  I N D E X  1  A N D  L I M I T  

W H I L E  I N D E X  1  Â ¿  L I M I T  D O  

B E G I N  

TEMPORARY INDEX 1 ]  â€”  B\ INDEX Ã  |  xC INDEX 1  

I N C R E M E N T  I N D E X  1  

E N D  

I N I T I A L I Z E  I N D E X  2  

W H I L E  I N D E X  2  Â ¿  L I M I T  D O  

B E G I N  

A N S  \ I N D E X 2  ]  ~ A \ I N D E X  2 ]  + T E M P O R A R Y [ l N D E X  2  ]  

I N C R E M E N T  I N D E X  2  

E N D  

Dragged 

I N I T I A L I Z E  I N D E X  A N D  L I M I T  

W H I L E  I N D E X  ?  L I M I T  D O  

B E G I N  

8[/WDÂ£X xC|/WDÂ£XJ 

I N C R E M E N T  I N D E X  

E N D  

F i g .  5 .  E v a l u a t i o n  o f  a n  e x p r e s  
s i o n  i s  d e f e r r e d  a s  l o n g  a s  p o s  
s ib le .  Th i s  s t ra tegy ,  ca l l ed  d rag -  
along,  makes i t  poss ib le  to  gener  
a t e  a n d  e x e c u t e  t h e  c o d e  f o r  a  
number of  paral le l  funct ions s imul  
t a n e o u s l y ,  a v o i d i n g  t h e  n a i v e  i n  
terpreter 's  one- funct ion-at -a- t ime 
eva lua t ion .  Shown here  i s  a  com 
p a r i s o n  o f  n a i v e  w i t h  d r a g g e d  
code for  ANS^A+BXC. A,  e ,  and c  
are conformable vectors .  
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R R R  

2  3  

R R R  

2  2  

:RANK: 2 (Matrix) 
REPRESENTATION: Integer 1 
R H O  O  2  f  
RHO 1:  3 

2 3 p 16 

RANK: 2 (Matr ix)  
REPRESENTATION:  In teger !  

DELOFF 
OFFSET. 0 
D E L  0  3  
DEL  1  1  

[  OFFSET:  0  
D E L O F F  (  D E L  0 .  3  

1 DEL 1:  1 

" Beaten Result  

2  3  

RRR 

2  2  

2  2 f 2  3  p  1 6  

RANK: 2 (Matr ix)  
REPRESENTATION In teger  

Beaten Result N 

Beaten Resu 

2  3  

< ( ) 2  2 t 2  3  p  1 6  

F ig .  6 .  W/ ien  eva lua t ion  i s  f i na l l y  requ i red ,  bea t ing ,  o r  the  
appl icat ion of the subscr ipt  calculus to a deferred expression, 
may produce resul ts  by descr ip t ion manipulat ion a lone.  Here 
TAKE (Ã) and REVERSAL (cj>) are applied to descriptions for a 
s imp le  exp ress ion .  The  d raga long  (see  F ig .  5 )  and  bea t ing  
s t ra teg ies  can s ign i f icant ly  reduce the computat ion and s tor  
age requi red in  the eva luat ion of  an express ion.  

APL3000's target machine is a software/firmware 
emulator implemented on the HP/3000. The instruc 
tion set,  in addition to loads, stores, and loop and 
index controlling instructions, includes a set of high- 
level opcodes that match the APL primitive scalar 
functions. Code generation from an expression fol 
lows a recursive descent of the tree: an instruction to 
set up a storage area for the result (typically a tempor 
ary) is emitted, followed by a reverse Polish sequence 
of data loads and operations, and finally a store into 
the result, all nested within the necessary loops. 

Any instruction that has the potential to fail carries 
within it a syllable number that provides the machine 
with a pointer to the original source in case of an 
error, allowing for recompilation on binding errors or 
message generation on user errors. 

The descriptions at the root node completely de 
scribe all index variables and iteration loops to be 
generated. Each DELOFF node, with optimizations 
beaten in, describes the initialization (OFFSET) and 
stepping (DEL) of an index register. The loops, one for 
each dimension of the result, in general, are derived 
from the RRR in conjunction with a selected DELOFF. 
Loops are all of a basic structure: 

INITIALIZE ALL INDEX REGISTERS 
INITIALIZE LIMIT REGISTER 
WHILE CHOSEN INDEX / LIMIT DO 

BEGIN 
INITIALIZE LIMIT REGISTER 
WHILE CHOSEN INDEX * LIMIT DO 

BEGIN 

(Indexed Expression Code) 

INCREMENT ALL INDEX REGISTERS 
END 

INCREMENT ALL INDEX REGISTERS 
END 

Equality, unlike > and <, is a consistent termina 
tion condition for loops that may run in any direction. 
For each loop, a DELOFF node is selected to serve as the 
loop-controlling induction variable. Because of their 
special uses, certain indexes are not eligible (those for 

Code Generat ion 
When the compiler is finally forced to materialize 

an expression â€” either the root has been reached, or 
the compiler can drag no farther for one reason or 
another â€” code is emitted. This code generation pass 
is a second independent walk of the foliated tree with 
dragged and beaten descriptions attached, this time 
from the top down, generating and saving executable 
code for the expression. By exploiting the context 
descriptions that have been gathered up the tree from 
each node, specifically tailored code can be gener 
ated. Because APL in general deals with arrays, this 
process also usually involves the construction of 
loops. 

I  
O  

(RAN 

! 

Expression Expression 

Fig .  7 .  The  con tex t  ga ther ing  pass  p rov ides  an  oppor tun i t y  
for  speci f ic  opt imizat ions,  such as recogniz ing a pai r  o f  ad ja 
cent monadic RHO nodes as the new internal RANK funct ion. 

2 0  
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A Controller for the Dynamic 
Compiler 

by  Kenneth  A .  Van  Bree  
The con t ro l le r  fo r  the  dynamic  compi le r  per fo rms a l l  o f  the  

tasks an interpreter for APL must perform, such as handling user 
i n p u t  a n d  e d i t i n g ,  s e q u e n c i n g  b e t w e e n  l i n e s  o f  a  f u n c t i o n ,  
cal l ing and returning from user-def ined funct ions, and handl ing 
er ro rs .  In  add i t ion ,  the  cont ro l le r  hand les  the  genera t ion  and 
re-execut ion o f  compi led code for  APL s ta tements .  

One of the guiding assumptions in the design of the control ler 
was that code for a part icular statement could be compiled once 
a n d  w o u l d  r e m a i n  v a l i d  f o r  m a n y  r e - e x e c u t i o n s  o f  t h a t  
statement.  This assumpt ion was based on the observat ion that  
m o s t  A P L  p r o g r a m m e r s  d o  n o t  t a k e  f u l l  a d v a n t a g e  o f  t h e  
d y n a m i c  c a p a b i l i t i e s  o f  A P L .  C h a n g e s  i n  t h e  v a l u e  o r  s i z e  
(number of elements) of a variable are frequent,  but changes in 
t h e  s h a p e  o r  r e p r e s e n t a t i o n  o f  a  v a r i a b l e  a r e  r a r e .  F o r  t h i s  
reason ,  t he  con t ro l l e r  has  been  des igned  to  re -execu te  com 
p i led  code  as  qu ick ly  as  poss ib le ,  wh i le  s t i l l  ma in ta in ing  the  
f l e x i b i l i t y  n e e d e d  t o  p e r f o r m  a l l  t h e  o t h e r  d u t i e s  r e l a t e d  t o  
cont ro l l ing an in teract ive  language such as APL.  

The controller consists of f ive interacting modules as shown in 
t h e  d i a g r a m .  E a c h  m o d u l e  p e r f o r m s  a  s u b s e t  o f  t h e  d u t i e s  
re lated to contro l l ing the compi ler ,  and any module can cal l  on 
any other module to perform a task that  i t  cannot do i tsel f .  The 
normal f low of control for an APL expression input by the user (in 
ca lculator  mode) is  as fo l lows:  

Text  for  the expression is  input  by the user  through the user  
i n p u t  a n d  e d i t i n g  m o d u l e .  T h i s  m o d u l e  i s  i n  c h a r g e  o f  a l l  
i n t e r a c t i o n s  w i t h  t h e  u s e r ,  a n d  b e f o r e  c o n t r o l  l e a v e s  t h i s  
module, al l  text that the user enters is converted into an internal 
form cal led S-code.  S-code is  a compact  form of  the text ,  wi th  
e a c h  i d e n t i f i e r  r e p l a c e d  b y  a n  i n t e r n a l  s h o r t  n a m e  f o r  e a s y  
reference. The actual text that the user enters is not saved, but is 
regenerated f rom S-code i f  needed.  

Once S-code has been created,  contro l  is  passed to the l ine 
statement sequencing module,  which handles the dynamic f low 
o f  c o n t r o l  b e t w e e n  l i n e s  a n d  s t a t e m e n t s  i n  A P L .  A s  e a c h  
statement is executed, this module checks to see whether i t  has 
been executed before.  I f  a statement has never been executed 
b e f o r e ,  a  s y n t a x  a n a l y s i s  i s  d o n e  o n  t h e  S - c o d e  f o r  t h a t  
statement. The result of the syntax analysis is one or more syntax 
t r ees  o f  D - t r ees .  Each  D - t r ee  rep resen t s  t he  l a rges t  pa r t  o f  
a n  A P L  s t a t e m e n t  t h a t  c a n  b e  g u a r a n t e e d  t o  h a v e  n o  s i d e  

e f f e c t s .  F o r  e x a m p l e ,  i n  t h e  s t a t e m e n t  A < - B + C .  i f  C  i s  a  
user-def ined funct ion, then the statement wi l l  be broken up into 
two t rees .  The  f i r s t  t ree  w i l l  mater ia l i ze  the  func t ion  C in to  a  
temporary variable, and the second tree wil l  add the results of C 
to  B and ass ign the sum to  A.  

As soon as D-trees have been created for a statement, control 
is  passed to the executable code creat ion/sequencing module.  
With in th is module,  each D-tree for  a statement is  examined in 
s e q u e n c e ,  a n d  i f  i t  d o e s  n o t  r e p r e s e n t  a  f u n c t i o n  c a l l ,  i t  i s  
p a s s e d  t o  t h e  d y n a m i c  c o m p i l e r .  T h e  c o m p i l e r  t u r n s  e a c h  
D - t r e e  i n t o  a  b l o c k  o f  e x e c u t a b l e  c o d e  c a l l e d  E - c o d e .  T h e  
comp i le r  ca l l s  the  execu t ion  mach ine  d i rec t l y  to  execu te  the  
E-code that  i t  has created.  

Once a val id block of  E-code has been created from a D-tree 
the executab le  code creat ion /sequenc ing module  is  in  charge 
of storing that E-code block for later reference. As each D-tree is 
c o m p i l e d ,  t h e  E - c o d e  b l o c k  c r e a t e d  i s  u s e d  t o  r e p l a c e  t h e  
D- t ree.  When a l l  t rees for  a  s ta tement  are  compi led there wi l l  
ex is t  a  On o f  E-code b locks  tha t  represent  the  s ta tement .  On 
subsequent  execut ions  o f  a  s ta tement ,  the  E-code b locks  are  
re t r i eved  and  g iven  d i rec t l y  to  the  execu t ion  mach ine .  I f  t he  
code contains a non-fatal  error such as a change in representa 
t i o n  o r  r a n k  o f  a  v a r i a b l e ,  t h e  e x e c u t i o n  m a c h i n e  r e t u r n s  a  
n o n - f a t a l  e r r o r  i n d i c a t i o n  t o  t h e  e x e c u t a b l e  c o d e  c r e a t i o n /  
sequenc ing module ,  wh ich ca l ls  the non- fa ta l  er ror  handler  to  
co r rec t  the  p rob lem.  The  non- fa ta l  e r ro r  hand le r  rec rea tes  a  
D- t ree  fo r  the  par t  o f  the  s ta tement  a f fec ted  by  the  non- fa ta l  
e r r o r .  N e w  E - c o d e  i s  t h e n  c o m p i l e d  w i t h  t h e  n o n - f a t a l  e r r o r  
cor rec ted ,  and  the  new E-code b lock  i s  saved in  p lace  o f  the  
one in  which the er ror  was found.  

I f  the  executab le  code creat ion/sequenc ing module  detec ts  
that a part icular D-tree represents a function cal l ,  then control is 
passed to  the user-def ined funct ion ca l l  and re turn  module .  I f  
the l ine statement sequencing module detects a funct ion return, 
i t  can also pass control direct ly to the user-defined function cal l  
and return module.  

I f  any of  the other  modules detects  a fa ta l  er ror ,  such as an 
undefined variable ora syntax error, control is passed direct ly to 
the fatal  error  handler .  This module suspends execut ion,  pr ints 
an er ror  message for  the user ,  and then re turns cont ro l  to  the 
user  input  and ed i t ing module  to  wai t  for  input  f rom the user .  

Controller 
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and Edit ing 
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Executable  Code 
Creat ion/Sequencing 

User Def ined 
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Error 

Handler 

Syntax 
Analysis 
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Expression 

Expression Expression Expression â€¢ â€¢ Expression â€¢ â€¢ Expression 

F ig .  8 .  Ano the r  op t im iza t i on  tha t  
c a n  b e  e f f e c t e d  d u r i n g  c o n t e x t  
g a t h e r i n g  i s  c o m b i n i n g  s u c c e s  
sive CATENATE nodes into a new in 
ternal POLYCAT function. 

single-element arrays that will never be incremented, 
for example, or the left indexes of COMPRESS and EX 
PAND, which are incremented asynchronously). 

A limit for each loop, calculated as OFFSET + RHO x 
DEL (on the appropriate coordinate, from the chosen 
induction variable) plus the current induction vari 
able, is also created in a register. Except for the outer 
most (or only) loop limit, which may be constant, the 
limit value must be calculated at execution time. In 
itialization values and increments for all indexes cor 
respond to the OFFSETS and DELS of their associated 
DELOFF descriptors. Fig. 9 shows the code generated 
for a vector expression. 

A number of optimizations are performed prior to 
the generation of loops. Except for actual display, an 
expression represented as an arithmetic progression 
vector (APV) requires no evaluation loop at all; its 
description completely specifies the result. Redun 
dant index variables, which would run in parallel, are 
shared by collecting those DELOFF nodes having iden 
tical attributes into a single register. If, according to 
the descriptors, a loop is unnecessary, as is often the 
case with row-major compact storage, it is collapsed, 
subsumed by the next outer loop. 

In addition, certain improvements in the code can 
be made. Unlike larger data structures, in which data 
can be partially destroyed if an error is encountered, 
scalar and single-element expressions can be gener 
ated without assignment to an intermediate tempor 
ary variable, eliminating the setup, some use of stor 
age area, and the resulting data swap. Occasionally, 
when the result produced from such a unit expression 
involves itself, a new data area need not be set up at 
all. Instead, the old name is retained for the result of 
the expression. Subexpressions yielding a scalar or 
single-element array within the scope of a loop can 
frequently be materialized, or assigned into a tempor 
ary cell, outside the loop, eliminating their repeated 
evaluation. The more complex argument to an OUTER 
PRODUCT operator can similarly be constrained to an 
outer code loop, affording it less frequent evaluation. 

Hard  and Sof t  Code 
The code generated by APL 3000 is of two types. 

Initially, hard or tight code is produced. In this style 
of code, the RHOs, OFFSETS, and DELS, as well as RANK 
and REPRESENTATION are bound into the instructions 
as constants. If this specific form of code has broken 
and a recompilation is required, more general soft or 
loose code is generated, in which only the RANK and 
REPRESENTATION are bound. RHOs, DELS, and OFFSETS 
may be calculated in registers at run time. Thus the 
dimensional attributes of an array may dynamically 
change without invalidating the code again. 

S E T  U P  S T O R A G E  A R E A  F O R  R E S U L T  T E M P  

I N I T I A L I Z E  S T O R I N G  I N D E X  T O  0  

( O F F S E T  F O R  A N S  A N D  T E M P )  

I N I T I A L I Z E  V E C T O R  A C C E S S I N G  I N D E X  T O  2  

( O F F S E T  F O R  V E C T O R  B E A T E N  B Y  < ( , )  

I N I T I A L I Z E  A P V  A C C E S S I N G  I N D E X  T O  1  

( O F F S E T  F O R  1 3 )  

I N I T I A L I Z E  L I M I T  T O  3  
( R H O  X  D E L  +  O F F S E T  - i -  S T O R I N G  I N D E X )  

W H I L E  S T O R I N G  I N D E X  ? L I M I T  D O  

B E G I N  

L O A D  A P V  A C C E S S I N G  I N D E X  

I N T E G E R  L O A D  O F  V E C T O R  [ V E C T O R  A C C E S S I N G  I N D E X ]  

I N T E G E R  M U L T I P L Y  

C O N V E R T  T O  R E A L  

R E A L  L O A D  O F  C O N S T A N T  1 . 1  

R E A L  A D D  

R E A L  S T O R E  I N T O  T E M P  [ S T O R I N G  I N D E X ]  

I N C R E M E N T  S T O R I N G  I N D E X  B Y  1  

( D E L  F O R  A N S "  A N D  T E M P )  

I N C R E M E N T  V E C T O R  A C C E S S I N G  I N D E X  B Y  " 1  

( D E L  F O R  V E C T O R  B E A T E N  B Y  < ( ; )  

I N C R E M E N T  A P V  A C C E S S I N G  I N D E X  B Y  1  

( D E L  F O R  1 3 )  

E N D  

S W A P  T E M P  I N T O  A N S  

Fig.  9 .  When the compi ler  can drag no far ther  i t  emi ts  code.  
The code generat ion phase is  a second t raversal  o f  the (now 
fo l ia ted)  express ion t ree.  Because APL in  genera l  deals  wi th  
a r rays ,  code genera t ion  usua l ly  invo lves  the  cons t ruc t ion  o f  
loops.  Shown here  is  the  code genera ted fo r  the  express ion  
ANS-1.1 + ($VECTOR)x\3. VECTOR is an integer vector of length 3. 

2 2  
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Hard 

S E T  U P  S T O R A G E  A R E A  F O R  R E S U L T  T E M P  

I N I T I A L I Z E  S T O R I N G  I N D E X  T O  0  

I N I T I A L I Z E  V E C T O R  A C C E S S I N G  I N D E X  T O  2  

I N I T I A L I Z E  L I M I T  T O  3  

W H I L E  S T O R I N G  I N D E X  *  L I M I T  D O  

BEGIN 
LOAD 1 
L O A D  V E C T O R [ V E C T O R  A C C E S S I N G  I N D E X ]  

ADD 
S T O R E  I N T O  T E M P [ S T O R I N G  I N D E X )  

I N C R E M E N T  S T O R I N G  I N D E X  B Y  1  

I N C R E M E N T  V E C T O R  A C C E S S I N G  I N D E X  B Y  

E N D  

S W A P  T E M P  I N T O  A N S  

Soft 

S E T  U P  S T O R A G E  A R E A  F O R  R E S U L T  T E M P  

I N I T I A L I Z E  S T O R I N G  I N D E X  T O  0  

I N I T I A L I Z E  V E C T O R  A C C E S S I N G  I N D E X  T O  

( R H O - 1 )  x  D E L  - > -  O F F S E T  F R O M  V E C T O R  

I N I T I A L I Z E  V E C T O R  A C C E S S I N G  I N C R E M E N T  T O  

~ D E L  F R O M  V E C T O R  

I N I T I A L I Z E  L I M I T  T O  R H O  F R O M  V E C T O R  

W H I L E  S T O R I N G  I N D E X  Â ¿  L I M I T  D O  

BEGIN 
LOAD 1 
LOAD VECTOR [VECTOR ACCESSING INDEX] 
ADD 
S T O R E  I N T O  T E M P [ S T O R I N G  I N D E X ]  

I N C R E M E N T  S T O R I N G  I N D E X  B Y  1  

I N C R E M E N T  V E C T O R  A C C E S S I N G  I N D E X  B Y  

VECTOR ACCESSING INCREMENT 

E N D  

S W A P  T E M P  I N T O  A N S  

Fig.  10.  Code generated is  of  two 
t y p e s .  I n i t i a l l y ,  h a r d  c o d e  i s  p r o  
duced .  I f  t h i s  code  l a te r  b reaks ,  
mo re  gene ra l  so f t  code  i s  gene r  
a ted .  Shown  he re  i s  ha rd  ve rsus  
s o f t  c o d e  f o r  t h e  e x p r e s s i o n  
ANS-(^VECTOR) + 1. VECTOR is an in 
teger  vector  of  length 3.  

For this more flexible form of instruction a price is 
paid in terms of speed and code bulk, but this over 
head cost rarely approaches that of an entire recompi- 
lation every time a RHO, OFFSET, or DEL changes. 
Notice that RANK and REPRESENTATION must always be 
bound hard. RANK, which specifies the maximum 
number of loops tobe generated, must have a constant 
value at compile time. REPRESENTATION must be 
known to determine the data type of the instructions 
issued. A change in either of these attributes always 
forces a new compilation. 

Fig. 10 compares hard and soft code emitted for a 
vector expression.^? 

Reference 
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Extended Control Functions for 
Interactive Debugging 

by  Kenneth  A .  Van  Bree  

Severa l  sys tem func t ions  fac i l i ta te  debugg ing  and program 
d e v e l o p m e n t  i n  A P L .  U s i n g  t h e  f u n c t i o n  C s s  ( s e t  s t o p )  i t  i s  
poss ib le  to  s top on any or  each l ine o f  a  funct ion or  on re turn 
f rom the funct ion.  The DST (set  t race)  funct ion a l lows the last  
result calculated on a l ine to be displayed along with the function 
name and  l i ne  number .  Th is  i s  he lp fu l  fo r  observ ing  p rogram 

f low. The DSM (set monitor)  funct ion al lows the user to monitor 
the  number  o f  t imes  tha t  a  func t ion  and /o r  l i ne  has  been exe  
cuted, along with the amount of CPU time spent in each l ine, and 
the total CPU t ime spent in the function. These functions can be 

(con t inued on  page 24)  
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used to determine where the major i ty  of  the CPU t ime is  being 
spent on a part icular problem and which l ines of a program have 
neve r  been  execu ted .  A l l  o f  t he  mon i t o r i ng  f ac i l i t i e s  can  be  
tu rned on  or  o f f  and  quer ied  under  p rogram cont ro l .  

One reason tha t  p rogram deve lopment  i s  so  easy  in  APL is  
t h a t  t h e  e n t i r e  p o w e r  o f  A P L  i s  a v a i l a b l e  t o  t h e  u s e r  d u r i n g  
program debugging. When the APL system detects an error in a 
user  program ( for  example ,  an a t tempt  to  read a  var iab le  that  
hasn ' t  been g iven a va lue) ,  the program is  hal ted and an error  
message is writ ten on the user terminal. The error message tel ls 
the user the type of error (a VALUE ERROR in this example) along 
with a pointer to where the error was detected. The APL system 
then returns control to the terminal so the user can try to correct 
the error. At this point the state indicator (SI) may be displayed. 
The  s ta te  i nd i ca to r  i s  a  pushdown  l i s t  ( i . e . ,  s t ack )  o f  a l l  t he  
user -def ined funct ions that  have been ca l led  but  have not  ye t  
completed execut ion.  The s tate ind icator  d isp lays not  on ly  the 
names of  the funct ions that  have been cal led,  but  a lso the l ine 
number on which execution was suspended. In addit ion, a l ist  of 
al l  the local variables can be obtained for each function that has 
been ca l led but  not  completed.  The funct ion in  which the error  
was  found  i s  the  topmos t  en t r y  on  the  S I  and  i s  ca l l ed  a  sus  
pended funct ion.  Other  funct ions on the SI  are ca l led pendant  
functions. 

Whi le computat ion is  suspended,  the user  has the fu l l  power 
of  APL avai lable to h im for  debugging.  The suspended funct ion 
(or  any other  funct ion that  is  not  pendant )  may be ed i ted,  and 
any variable that is avai lable within the suspended funct ion may 
be interrogated or redefined . A new computation may be started 
by  ca l l i ng  ano the r  f unc t i on ,  o r  i n  mos t  cases  the  suspended  
c o m p u t a t i o n  m a y  b e  r e s u m e d  f r o m  t h e  l i n e  a t  w h i c h  i t  w a s  
suspended or  any other  l ine.  I f  for  some reason the user  does 
no t  w ish  to  f i x  t he  e r ro r ,  t he  S I  can  be  c lea red ,  o r  the  en t i re  
workspace inc lud ing  the  SI  can be saved fo r  la te r  re fe rence.  

The f lex ib i l i ty  and power  ava i lab le  to  the user  dur ing debug 
g i n g  m a k e  i t  p o s s i b l e  t o  d e t e c t  a n d  c o r r e c t  m u l t i p l e  e r r o r s  
during the course of the computat ion. This means that programs 
of ten run to  complet ion the f i rs t  t ime they are  ca l led,  because 
mos t  o f  can  be  f i xed  as  they  a re  de tec ted .  A  recen t  s tudy  o f  
APL in  Europe1  showed tha t  the  conc iseness  o f  APL coup led  
w i t h  i t s  e a s e  o f  d e b u g g i n g  p r o d u c e d  a  3 : 1  i m p r o v e m e n t  i n  
p r o g r a m m e r  p r o d u c t i v i t y  o v e r  s u c h  l a n g u a g e s  a s  P L / I  a n d  
COBOL. 

In this environment the value of variable v is whatever has been 
assigned within funct ion G. The value of v within funct ion F has 
been  shadowed  (by  the  l oca l  va r i ab le  v  w i th in  G)  and  i s  no t  
access ib le  w i th in  the  cu r ren t  f unc t i on .  A l l  names  access ib le  
f rom func t ion  G make up  the  env i ronment  o f  G,  and the  loca l  
var iable v of  funct ion F is  not  in  the envi ronment  of  G.  Fur ther  
more, it is not possible to resume execution of function F without 
f i r s t  a  f u n c t i o n  G ,  s i n c e  t h e  S I  o p e r a t e s  s t r i c t l y  o n  a  
last-in-first-out basis. 

T h r o u g h  t h e  u s e  o f  t h e  e x t e n d e d  c o n t r o l  f u n c t i o n s  o f  
APL 3000 i t  is  poss ib le  to  access var iab les and resume execu 
t ion  in  env i ronments  o ther  than the  cur ren t  env i ronment .  The 
concept  of  mul t ip le  envi ronments is  not  new,2 but  i t  has never  
been  imp lemen ted  in  APL  be fo re .  APL  \3000  a l l ows  up  to  16  
environments to be available at one t ime. Each environment has 
i t s  own  s ta te  i nd i ca to r ,  and  con t ro l  can  be  passed  f rom one  
environment to another through the use of the extended execute 
(Ã) function. Although the normal SI in APL obeys a str ict stack 
d isc ip l ine ,  the  env i ronments  o f  APL \3000  may  c rea te  one  o r  
more  compu ta t i on  t rees .  Th i s  a l l ows  the  c rea t i on  o f  env i ron  
ments no share a port ion of their SI. When this happens, i t  is no 
longer possible to maintain a stack discipline for the SI , and a set 
of pointers must be maintained that l inks each function call to its 
c a l l i n g  f u n c t i o n .  T h e  e x t e n d e d  c o n t r o l  f u n c t i o n s  m a i n t a i n  a  
s t a c k  a  f o r  t h e  S I  u n l e s s  t h e  u s e r  e x p l i c i t l y  c a l l s  f o r  a  
t ree- l ike contro l  s t ructure.  The overhead paid for  the extended 
control  capabi l i ty is minimal unless i t  is  invoked by the user.  In 
the  above example ,  the  env i ronment  w i th in  func t ion  F  can be 
cap tu red  by  us ing  the  sys tem func t i on  DCSE (cap tu re  s tack  
environment).  

F[2] 

DCSE 

)SIV 

n  Capture  second func t ion  name on SI  
n The envi ronment  number is  1 
f l  Display the SI for  environment 1 

Environment 1 now shares a part of i ts SI (namely the function 
F and its local variable v) with the current environment displayed 
ea r l i e r .  Any  a rb i t r a r y  exp ress ion  can  be  eva lua ted  i n  t he  en  
v i r o n m e n t  o f  f u n c t i o n  F  t h r o u g h  t h e  u s e  o f  t h e  e x t e n d e d  
execute funct ion.  For example,  the var iable v wi th in funct ion F 
may be ass igned the va lue 3  as fo l lows:  

Extended Contro l  Funct ions 
The state of an APL computat ion can be displayed at any t ime 

by  i n te r rup t i ng  the  compu ta t i on  (by  send ing  the  ATTENTION 
character)  and displaying the state indicator  through the use of  
the  commands is i  o r  >s iv .  The s ta te  ind ica tor  shows a l l  o f  the  
f unc t i ons  t ha t  have  been  ca l l ed  bu t  have  no t  ye t  comp le ted  
execut ion,  a long wi th the var iab les that  are local  to  those func 
t ions. The current environment consists of the variables that can 
be accessed within the topmost function on the stack, along with 
the  cha in  o f  con t ro l  rep resen ted  by  the  func t ion  ca l l s  tha t  ap  
pear on the SI .  Normal ly ,  wi th in APL,  any computat ion must  be 
done in the current  envi ronment.  For  example,  i f  the funct ion F 
(which has local variable v) calls function G (which also has local 
variable v), and computation is suspended within G, the SI might 
appear as fo l lows:  

)SIV 
G [ 3 ] .  V  
F [ 2 ]  V  

Evaluat ing an expression in environment 1 (or any other envi  
ronment) is equivalent to evaluating the expression in calculator 
mode with execut ion suspended in that environment.  Execut ion 
can be resumed wi th in  funct ion F by evaluat ing an express ion 
that  resul ts  in  a branch.  For  example:  

The extended cont ro l  funct ions in  APL 3000 can be used for  
pu rposes  o the r  t han  debugg ing .  S ince  env i ronmen ts  can  be  
captured (using CCSE) and released (using GRSE) under program 
c o n t r o l ,  i t  i s  p o s s i b l e  t o  i m p l e m e n t  s u c h  a d v a n c e d  p r o  
g ramming  concep ts  as  back t rack ing ,  co - rou t ines ,  and  so  on ,  
wh i ch  have  been  d i f f i cu l t  o r  imposs ib le  t o  imp lemen t  i n  APL  
before. 
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CRT Termina l  Prov ides  both  APL and 
ASCII  Operat ion 
by Warren  W.  Leong 

MODEL 2641A APL DISPLAY STATION (Fig. 1) 
is a special CRT terminal designed to serve as 

the principal user interface for APL 3000. APL opera 
tion plus extensive data communications capabilities 
allow the terminal to be used with APL interpreters/ 
compilers that exist on a variety of computer systems, 
especially the HP 3000. ASCII operation is provided 
to retain compatibility with HP 2640-Series CRT 
Terminals. 

The 2641A provides a superset of the functions 
available with the 2645A Display Station. These in 
clude dual cartridge tape units, extended editing fea 
tures, extended data communications, modular 
firmware implementation, and eight user-defined 
soft keys. A new, faster microprocessor provides the 
control for the standard as well as the extended fea 
tures. 

APL Features 
Major features of the 2641A APL Display Station 

are: display of the APL character set, display of the 
APL overstrike character set* , display of APL under 
lined characters, and non-destructive spaceover. 
These features are accessible during the terminal's 
APL mode. 

The high-resolution display of 2640 Series Ter 
minals1'2 provides a clear and easily readable ren 
dition of the standard APL characters as well as the 
more intricate overstrike characters (Fig. 2). There are 
two separate APL character sets: a 128-character APL 
graphics set and a 64-character APL overstrike 

*Many  APL  ove rs t r i k -  f unc t i ons  a re  ca l l ed  by  s t r i k i ng  one  APL  symbo l ,  t hen  backspac ing  and  ove rs t r i k -  
Â ¡ n g  t h e  s y m b o l .  s y m b o l  w i t h  a  s e c o n d  s y m b o l .  T h e  c o m b i n a t i o n  f o r m s  a  n e w  A P L  s y m b o l .  T h e  A P L  
o v e r s t r i k e  c h a r a c t e r  s e t  m a k e s  i t  p o s s i b l e  f o r  t h e  2 6 4 1 A  t o  d i s p l a y  s u c h  c o m b i n a t i o n s  o f  b a s i c  A P L  
s y m b o l s .  

Fig.  1.  Model  2641 A APL Display 
Station is designed to serve as the 
p r i n c i p a l  u s e r  i n t e r f a c e  f o r  
A P L 3 0 0 0  a n d  o t h e r  A P L  s y s  
tems .  I t  has  bo th  APL  and  ASCI I  
modes of  operat ion.  
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1EDIT TRAPEZOIDAL 

APL60L FUHCTIOM 

>LIST ALL 

CO] PROCEDURE R-X TRAPEZOIDAL TI DT, I ,U,Â»T,DIO; 

RÂ«-X,tOIÂ«rÂ»/Tl_DT),fX)rtIO*I<-0; 

UÂ»<xttfA)'.*lltfAÂ¡ 
AT-(iU-.5iA'Tl DT[1]H.'U*.5>A"T1 DTII); 

yHIUEdtpRJH-I+l 00 

RtlÂ¡]Â»XÂ»AT+.Â»XÂ¡ 
1  6 1  E N D  P R O C E D U R E  
>EHD 

<nVÂ«Â·LFI6Â·).C2|.D(!),OVRÂ·AriBÂ· 
PROCEDURE R-LFIB N,I; 

R-MI.DIOÂ»!; l * t l  
W H I L E  N I K - l  +  l  D O  

RI I !Â»*/Â«[ 1-1 ZlÂ¡ 
RÂ«-~itR( 

END PROCEDURE 

R-AFIB NiOlOiAPV 
D I O - 0  
R - * / A P Â « ! N * - t + A P V . Â « I N Â » a  

Fig.  2.  Standard 2641 A character  sets are the 128-character  
APL set,  a 64-character APL overstr ike set,  anda 64-character 
upper-case Roman set .  An opt ional  four th  character  set  may 
be  a  ma thema t i ca l  s ymbo l  se t ,  a  l i ne  d raw ing  se t ,  a  l a rge  
character  set ,  or  a  user-des igned set .  

graphics set (Fig. 3). Each set is programmed into 
bipolar ROMs. The APL graphics set follows com 
monly accepted industry standard code assignments. 
The APL overstrike graphics set is used internally by 
the terminal to display the overstrike characters and 
its code assignment is dependent on terminal re 
quirements. As each valid overstrike keystroke se 
quence is completed the proper overstrike character 
is displayed on the screen. However, the actual over- 
strike character sequence is transmitted to the com 
puter when in character mode or is stored in the 
display memory for later transmission when in block 
mode. 

The 2640 Series Terminals can support up to four 
independent character sets. Since the 2641A APL 
Terminal includes as standard the APL set, the APL 
overstrike set, and the ASCII set, it has room for one 
additional character set. Currently this additional set 
can be a mathematical symbol set, a line drawing set, 

a large character set, or a set of the customer's own 
design. 

The keycaps have APL legends on their top faces 
and ASCII legends, when they differ, on the front 
faces (Fig. 4). This allows unambiguous operation 
whether operating in APL or ASCII mode. The 
keyboard code assignment is bit pairing* , rather than 
typewriter pairing*, to retain compatibility with the 
2640B and 2645A Terminals. The shift 0 (zero) posi 
tion is re-assigned to mean A in APL and   in ASCII; 
this provides full APL compatibility for users when 
switching between bit and typewriter pairing layouts . 

Firmware 
The controlling feature of the 2641A APL Display 

Station is the firmware, or microprograms stored in 
ROM. All of the characteristics of the terminal are 
defined by microprogramming the internal micro 
processor. These characteristics include switch selec 
tion or computer selection via escape sequence of the 
two operating modes, APL or ASCII, overstrikes that 
are recognized by the terminal, block transfers of APL 
program and data statements, and editing features 
during APL mode. 

The first consideration was how to integrate the 
APL operational requirements into the base product, 
the 2645A. Since many of the features of APL were 
distinctly different from normal operation, it made 
sense to define an APL mode for APL operations. In 
APL mode the APL character set is normally dis 
played instead of the ASCII character set. Any attempt 
to overstrike an APL character results in the display of 
a character from the overstrike set. Underlining of 
APL characters is done by means of shift F. Block 
transfers (via the ENTER key) take into account the 
overstrike character set and decompose these into 
APL characters separated by a backspace control 
code. 

APL systems recognize several overstrikes. With 

* B i t  p a i r i n g :  s h i f t  c o d e s  d i f f e r  f r o m  u n s h i f t  c o d e s  b y  o n e  b i t .  
T y p e w r i t e r  p a i r i n g :  c o d e s  f o l l o w  a n  i n d u s t r y  s t a n d a r d  f o r  c e r t a i n  t y p e w r i t e r  t e r m i n a l s .  

H  Ã ¼  M  ! i Â » f 1 ! ! / \ e * S Â · t l ! ! * t Â « Â « 0 Â · B B ! > H B B B B H B B !  Ã œ B B O  
X < > T ! ! Â » V f H ) t l ! ! Â « Â « T \ Â ¥ Â £ S * M Â « n S B I I H B ! ! H * 0  ! !  ! !  ! !  ! !  

W Â »  * t * 0 % t V t  " H M M S S  % 1 , W i M *  W % *  " - <  Ã  = l > X v ) C  .  +  . / 0 1 2 3  4 5 6 7 8 9 H  ; - : \  
Â « - Â « i n  l c _ Â » Â » x . '  Q | T O * ? P r  ~ J u Â « 3 t c > -  A ( i A - , A B C  D E F G H I J K  L M N O P Q R S  T U V W X Y Z -  Â » ) + â € ¢  

â € ¢ M A *  < * * 0 % * V W  V l M l V t l  V t * W i % *  Â « V k  ! " Â »  * I Â » ' 0 Â « *  , - . / 0 1 2 3  4 5 6 7 8 9 : :  < â € ¢ > ?  
â € ¢ A B C  D E F G H I J K  L M N O P Q R S  T U V W X Y Z t  \ ] " _ Â « a b e  d e f g h i j k  I m n o p q r s  t u v w x y z <  I  > - â € ¢  

' 8008020 0300008 

F i g .  3 .  S t a n d a r d  2 6 4 1  A  c h a r a c  
ter sets. 
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F i g .  4 .  2 6 4 1  A  k e y s  h a v e  A P L  l e g e n d s  o n  t o p  a n d  A S C I I  
legends,  when they d i f fer ,  on the f ront  faces.  

the 2641A, these overstrikes can be done at any time 
or in any order. Overstriking poses several complica 
tions for a raster-scan CRT terminal that dynamically 
allocates its memory and uses separate graphics sets 
for the normal and overstrike characters. An APL user 
may type several characters, then backspace to the 
beginning of the line and overstrike the required 
characters, or the user may complete each overstrike 
before proceeding to the next character. Backspacing, 
using the backspace key, does not delete characters 
previously entered and forward spacing using the 
space bar does not erase characters that are being 
spaced over. 

The basic algorithm for overstrikes directs the ter 
minal to monitor each byte that it writes to the dis 
play. In APL mode, the terminal checks the current 
and new characters being typed in the same display 
position and determines whether the new character 
just overwrites the old (only when the old character is 
a blank), whether the old character is replaced by a 
new character from the overstrike set, or whether the 
old character remains unchanged (the new character 
is a blank). Overstrikes are allowed only in APL 
character fields. If the cursor is in a non-APL field, 
such as Roman, then the terminal performs ASCII 
operations rather than APL operations, although the 
operating mode is APL. 

When the old and new characters form a valid over- 
strike such as and ., then the composite ' is dis 
played. If an invalid pair is overstruck, then an OUT 
character is displayed, providing a clear indication 
that an error has been made. 

The underline overstrike (shift F) for APL is nor 
mally restricted by APL systems to the alphabetic 
characters and a few of the special characters. The 
2641A can underline any APL character. The under 

line overstrikes are not a part of the character ROMs. 
Instead, the underline feature of the terminal's dis 
play enhancement section is used to simulate the 
underline overstrike. 

The underlining process begins when an APL 
character is displayed and the cursor is repositioned 
to the character. When the underline character (shift 
F) is typed, the firmware provides the proper en 
hancements to underline the character. 

Data Transfer  
All display information, overstrikes, and under 

lines can be stored on the cartridge tape units, printed 
on a printer, or block transmitted to a computer sys 
tem. 

Block transfers during APL mode, from the display 
or the tape units, take into account the overstrike set 
and underline enhancements. In the case of over- 
strikes, the code from the overstrike ROM is used as 
an index into a look-up table for the two components 
of the overstrike. These two components are then 
transmitted with a backspace separating them. The 
underlined characters are transmitted with the proper 
codes: the character, then backspace, then underline. 
The OUT character is treated as a special case and 
causes five characters to be output: 0 backspace U 
backspace T. 

Two types of printers are available for APL: bit 
pairing or typewriter pairing. Distinguishing the two 
are the code assignments of 19 of the characters. The 
2641A allows the user to select either translation 
when directing APL data to a printer. 

User-Def ined Soft  Keys 
The 2641A has eight special-function user-defin 

able soft keys, fi through f8. These keys hold up to 
80 ASCII characters that are specified by the user. 
This specification may be done interactively, with the 
old contents displayed while updates are done. The 
specification may also be done by escape sequence 
from a computer system or from the optional car 
tridge tape units. 

After logging onto an HP/3000 Computer System 
having an APL \3000 subsystem, the user specifies 
the terminal type to be a 2641A by means of the 
)TERM HP command, and the system downloads the 
soft keys with the following commands: 

Now the user can invoke frequently typed system 
calls with a single keystroke. For instance, to edit a 
function named APLi, the user can press fe to call the 

2 7  

© Copr. 1949-1998 Hewlett-Packard Co.



system editor, then type APLi, followed by RETURN, 
and be ready to edit. The user may also redefine these 
soft keys very simply. 

Key fs contains the ATTN command, which is useful 
during line editing. Suppose the user has typed a line 
of data but notices a mistake. To correct the error, 
the user first backspaces the cursor to the incorrect 
character: 

A B C F E  

Using the 2641A and APL \3000, the user then hits 
ATTN, which causes the APL terminal driver to send 
an escape sequence to clear the rest of the line: 

ABC _ 
The user continues typing from this point to complete 
the data statement: 

ABCDE _ 
The traditional method of editing is to position the 
cursor under the incorrect character, then send a line 
feed to the computer and type the correct characters, 
producing a display like: 

ABCFE 
DE 

Note that the display can be confusing to read if 
several corrections have to be made in this manner. 
However, both methods of correction are allowed by 
the subsystem and the 2641A. 

Extended Features 
Editing features have been expanded to include 

character wraparound when the terminal is doing 
character delete or insert operations. Left and right 
margins may also be set. Extended I/O operations 
with the cartridge tape option include write, back 
space, read, data comparisons, and data logging. 

The data communications facility allows data rates 
up to 9600 baud, and multipoint capabilities that 
allow up to 32 terminals to share a single communi 

cations line. Self-test has been expanded to allow 
testing of the optional cartridge tapes and associated 
electronics as well as the multipoint communica 
tions option, cabling, and terminating instrumenta 
tion. Multipoint communications can even be tested 
up to the remote modem from the terminal keyboard. 
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