
O C T O B E R 1 9 8 O

H E W J O U R N A L

I

ÃTf f fTTÃ

6 4 2 5 2 A E M U L A T I O N P R O B E
H E W L E T T â € ¢ P A C K A R D

U S E W I T H 6 4 2 5 1 A C O N T R O L B O A R D

© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D J O U R N A L
T e c h n i c a l I n f o r m a t i o n f r o m t h e L a b o r a t o r i e s o f H e w l e t t - P a c k a r d C o m p a n y

OCTOBER 1980 Volume 31 â€¢ Number 10
Contents:

L o g i c D e v e l o p m e n t S y s t e m A c c e l e r a t e s M i c r o c o m p u t e r S y s t e m D e s i g n , b y T h o m a s A .
Saponas and B r i an W. Ke r r Rad i ca l a r ch i t ec tu re suppo r t s t he t eam app roach t o des i gn

that 's needed in the age of very large-scale in tegrat ion.

Resource Shar ing in the Log ic Deve lopment Sys tem, by A lan J . DeVi lb iss Here 's how s ix p ro
cessors share as many as e igh t d isc dr ives and a pr in ter .

E m u l a t o r s f o r M i c r o p r o c e s s o r S y s t e m D e v e l o p m e n t , b y J a m e s B . D o n n e l l y , G o r d o n A .
Green ley , and Mi lo E . Mute rspaugh To the sys tem under deve lopment the emu la to r l ooks

l i k e a d e b u g g i n g y e t t h e d e s i g n e r h a s c o m p l e t e a n a l y s i s a n d d e b u g g i n g f a c i l i t i e s .

T h e P a s c a l / 6 4 0 0 0 C o m p i l e r , b y I z a g m a I . A l o n s o - V e l e z a n d J a c q u e s G r e g o r i B o u r q u e
The s t ruc tu red p rog ramming fea tu res o f Pasca l a re augmen ted fo r m ic rop rocesso r code

development .

P rogram Debugg ing w i th Pasca l /64000 , by P . A lan McDon ley Expanded l i s t i ngs show the
compi ler output in ter leaved wi th the source s ta tements to make i t easy to t race execut ion.

T h e 6 4 0 0 0 L i n k e r , b y J a m e s B . S t e w a r t T a b l e - d r i v e n a r c h i t e c t u r e s u p p o r t s a v a r i e t y o f
microprocessors.

An Assemb le r f o r A l l M ic rop rocesso rs , by B rad E . Yack le I n add i t i on t o gene ra t i ng code
f o r s t anda rd m i c rop rocesso rs , t h i s t ab l e -d r i ven assemb le r a l l ows t he use r t o c rea te an

assembler fo r a cus tom ch ip .

V i e w p o i n t s â € ” C h u c k H o u s e o n t h e E l e c t r o n i c B e n c h V L S I w i l l c r e a t e b o t h a n e e d f o r
new analys is and synthes is too ls and a way to rea l ize them.

In this Issue:
We are now in the age of LSI â€” large-scale integration â€” and are about to enter the age of

VLSI â€” very large-scale integrat ion. LSI has given us the microcomputer, a complete com
puter complex cir tiny chip of silicon smaller than a fingertip, and many other complex integrated cir
cui ts In tens of thousands of t ransistors and logic gates on a chip. In the age of VLSI we' l l
see circui ts with hundreds of thousands or mi l l ions of logic elements on a single chip. We' l l
see them, that is, once we're able to solve the formidable problems of designing such com-
plex devices and wr i t ing sof tware for them. Beginning on page 30, Chuck House discusses
the problems and the l ikely solut ions. Instead of a single talented designer, we' l l have teams

of designers working on a chip. These designers wil l need new tools that automate many of the steps we now do
manually. analyzers have to be able to call up various computer-aided design tools and different kinds of analyzers
at the analysis of a button. The system that will give them these advanced analysis and synthesis tools is something
Chuck need VLSI electronic bench. It doesn't exist yet; in fact, we'll need VLSI to make it a reality. Only with VLSI
wil l enough enough it to make analyzers and other instruments small enough and inexpensive enough to make it
pract ica l to bui ld an e lectronic bench crammed fu l l o f them.

That Development us to the subject of this issue, Model 64000 Logic Development System. The 64000 is a tool for
developing hardware and sof tware for products based on commerc ia l microcomputers. Whi le i t 's a long way
from the share bench, i t 's a f i rst step towards that goal . I t a l lows up to s ix designers to share a common data
base, computer built in. each designer a work station with a dedicated computer and a dedicated logic analyzer built in.
I ts archi tecture and capabi l i t ies are d iscussed in the ar t ic les on pages 3, 13, 20, and 28.

Our cover wi th shows a basic 64000 System consist ing of work stat ion, d isc dr ive and pr inter , a long wi th a
c lose-up of one of the pods that in ter face the 64000 to the system under development .

-R. P. Do/an

Editor, Richard P. Dolan â€¢ Associate Editor, Kenneth A. Shaw â€¢ Art Director, Photographer, Arvid A. Danielson
I l lustrator, Nancy S. Vanderbloom â€¢ Administrat ive Services, Typography, Anne S. LoPrest i â€¢ European Product ion Manager, Dick Leeksma

2 H E W L E T T - P A C K A R D J O U R N A L O C T O B E R 1 9 8 0 Â © H e w l e t t - P a c k a r d C o m p a n y 1 9 8 0 P n n l e d i n U . S . A .

© Copr. 1949-1998 Hewlett-Packard Co.

Logic Development System Accelerates
Microcomputer System Design
This expandable , f lex ib le system of fers a complete set o f
fac i l i t ies fo r genera t ing and debugg ing microprocessor -
sys tem hardware and sof tware. I t ' s des igned wi th next -
generat ion VLSI c i rcui ts in mind.

by Thomas A. Saponas and Br ian W. Kerr

MICROPROCESSORS HAVE PROVIDED signifi
cant improvements in the performance and flex
ibility of much of today's electrical and mechani

cal hardware. One consequence is that our approach to
designing products has had to change, and so have the
skills of the engineers responsible for these products. The
design team of a microprocessor-based product might be
more than half software designers. It is not unusual for a
product's definition to change in the very late design stages
in spite of excellent research and definition at the begin
ning. Then the flexibility of the software is the vehicle for
accommodating such changes.

Because the microprocessor is only one piece of a com
plete system, it represents a software design problem unlike
most computer systems. The processor is usually an inte
gral part of some hardware that has nothing to do with
computation. In some cases it is simply being used as a
programmable logic element or for control of the human
interface with some process. These differences make the
conventional tools for generating and debugging hardware
and software incomplete for the task facing the micro
processor system designer. The 64000 Logic Development
System was meant to provide a complete solution to this
task in one package, and to make significant contributions
to the efficiency of designers' time.

Architecture
A basic 64000 Logic Development System consists of one

Model 64100A Development Station with a Model 64940A
Magnetic Tape Cartridge Unit installed, compatible HP
hard disc and printer, and software packages to edit, assem
ble, link, and store program modules. Adding an emulator
option and up to 64K bytes of independent emulation
memory adds the download function through emulation,
which is the standard tool for exercising, debugging, and
integrating hardware and software in the early develop
ment phases. Further assistance in troubleshooting the
target system is gained by adding Model 64300A Logic
Analyzer, which monitors activity on the address, data, and
control buses of the target microprocessor system. As pro
gram modules are completed, they may be mapped into the
target system's random-access memory, or with Model
64500A PROM Programming System, they can be down
loaded into one of many widely used programmable read
only memories (PROMs). The system may be expanded to
accommodate larger design teams or multiple design efforts

by adding up to five more development stations (see Fig. 1).

Development Stat ion
The development station keyboard and display (see Fig.

2) provide the interface between the operator and the logic
development system. Operating systems, input/output,
keyboard, display, and the development station bus are
managed by the independent host processor and memory.

641 OOA

641 OOA

641 OOA

641 OOA

641 OOA

Fig . 1 . The 64000 Log ic Deve lopment System cons is ts o f a t
least one 641 OOA Development Station, a hard disc, and a line
p r in te r . The sys tem can be expanded to as many as s ix s ta
t ions. Each stat ion has i ts own processor .

OCTOBER 1980 HEWLETT-PACKARD JOURNALS

© Copr. 1949-1998 Hewlett-Packard Co.

C R T p r o v i d e s 2 5 r o w s
b y 8 0 c o l u m n s o f
charac te rs . (D isp lay can be
sh i f ted to revea l addi t iona l
co lumns .)

D i rec ted syntax fo r
on - l ine documenta t ion
is p rov ided th rough
sof tkeys that a re
de f ined by the
opera t ing sys tem

Modu la r power supp ly i s
eas i ly exchanged in the f ie ld .

Ten card s lo ts a re ava i lab le
for opt ions.

Fu l l ASCI I keyboard w i th
add i t iona l cont ro l keys and
spec ia l sof tkeys def ined
under p rogram cont ro l .

Host p rocessor sys tem
implemented wi th 16-b i t
p rocessor , 64K o f hos t
memory , and I /O cont ro l
manages the opera t ing
system, I /O t ransact ions , and
sys tem da ta t rans fers on the
deve lopment s ta t ion bus .

P R O M p r o g r a m m e r c o n s i s t s
o f u n i v e r s a l p r o g r a m m e r
c o n t r o l c a r d a n d P R O M
personal i ty inter face uni t .

Tape car t r idge un i t w i th
225K-byte capac i ty fo r source
f i l e backup , sys tem program
ent ry and f i le backup.

F i g . 2 . M o d e l 6 4 1 0 0 A D e v e l o p
men t S ta t i on i nc ludes keyboard ,
d i s p l a y , a n d h o s t p r o c e s s o r . O p
t ions inc lude PROM programmers
a n d e m u l a t o r s f o r v a r i o u s m i c r o
processors , a log ic ana lyzer , and
a tape contro l ler and dr ive.

The host processor in each 64 100 A Development Station is
a field-proven 16-bit processor manufactured by HP.1 Much
of the other hardware is adapted from other HP products.
However, the emulator option and the PROM programmer
are new and are discussed in detail elsewhere in this issue.

The development station's easily accessed card cage has
slots to house the circuitry for the various system options.
The first three slots of the card cage are occupied by the
three cards of the host system, leaving the remaining ten
slots available for system options. The development station
bus is universal, and options may be placed in any slot. The
development station bus carries address, data, and control
signals between the host processor system and option card
positions.

Each option card can identify itself to the host processor.
Thus the option software is self-configuring. Communica
tion with the options is via a 32K-byte memory address
space window. When a card is addressed by the host one of
three bank switch modes is also set, thereby expanding this
window to an effective 96K bytes per option card.

Fig. 3 is a map of the entire 128K-byte address space of the
host processor including the 32K-byte window. The dis
play memory is an integral part of the program RAM, mak
ing possible the rapid display update required for such
things as tracking softkeys and a screen-mode editor. The
ROM space in the system is used for the bootstrap programs,
for some frequently used utilities, and for the mainframe
self-test software. In the current version of the 64000 A sys
tem, 16K bytes of ROM is unused and reserved for future
enhancements. All of the operating software resides in the
RAM area and is segmented so that only the current task is
in memory.

The emulation system uses a separate emulation bus be

tween emulation control, emulation memory, and analysis
cards. A second high-speed bus connects emulation con
trol and emulation memory, and a third bus may be re
quired for input/output in some modules and configura
tions (see Fig. 4).

Archi tecture Advantages
The architecture of the 64000 Logic Development System

offers several advantages. Each user has a dedicated proces
sor and memory, not just a terminal. Therefore, as stations
are added, so is computing power. By contrast, with
timesharing systems the user is required to buy sufficient
computing power with the very first terminal to support the
ultimate size of the system. Philosophically, it is also more

Bootstrap and
Utilities

Performance
Veri f icat ions

Opt ion
Card

Communicat ion

Program
Memory

32K-Byte ROM

32K-By te I /O

64K-Byte RAM

F ig . 3 . Hos f p rocessor memory map .

4 H E W L E T T - P A C K A R D J O U R N A L O C T O B E R 1 9 8 0

© Copr. 1949-1998 Hewlett-Packard Co.

Disc,
L i n e P r i n t e r s , -

Other 64100As
; i a i : M M : U g * M

Emulat ion Bus as Required

I /O Display Control Bus

S lo t #2

HP-IB/RS-232-C
Keyboard Cnt l
Interrupt Cntl
Opt ion Card

Select

iuÂ¿umÂ£uii9
3 2 K W o r d s R A M /

Display
Controller

CPU
16K Words ROM

â€¢Slot
Option
Card
Slots

Development Stat ion Bus 16 Address/16 Data/Control /Suppl ies

Opt ion Cards
Tape Contro l ler and Dr ive (Uses I /O Bus)
Emulator (Uses Emulat ion Bus)
Emulat ion Memory and Contro l (Uses Emulat ion Bus)
Analysis (Uses Emulat ion Bus)
PROM Programmer

Fig. have buses host processor and the microprocessor being emulated have independent buses
and can emulation. simultaneously. Thus software development can be concurrent with emulation.

reasonable to present to the user a response time that is
more a function of the task, which is the case with distrib
uted processing, than to have the response time determined
by the total system loading, as in a timesharing system. The
64000 network can also be expanded to include large cen
tral data bases or additional 64000 clusters using the
RS-232-C port contained in each station.

By sharing peripherals, it is much easier to justify
higher-performance units than when each user has a dedi
cated set. Users get not only higher performance but also the
ability to develop software jointly sharing the same data
base. Experience has shown that as the software tools im
prove and the efficiency of programmers increases, the
need for disc space rapidly outpaces the original estimates
of capacity. Also, with the text editing features of the system
providing a convenient way to maintain documentation, a
further burden is placed on disc capacity. At HP's Colorado
Springs Division, for example, we are now using two to five
megabytes of disc space per user per year, compared to
approximately one megabyte before these tools were avail
able. The 64000 System expands easily to accommodate
such changes.

Operat ion
At power-up the host processor interrogates a rear-panel

switch to determine the ROM program to execute. There are
four selectable modes: system bus, local mass storage,
ROM, or performance verification. The performance verifi
cation mode exercises all of the mainframe hardware, in
cluding the memory, tape drive, RS-232-C port, and system
bus. The other three modes are bootstrap programs from
three sources. The normal mode of operation is to boot from
the hard disc, which is on the system bus. The program that
is loaded then performs a poll to determine all of the devices

on the bus, configures the software I/O drivers based on that
poll, and displays a system map. Eight softkey labels are
displayed at the bottom of the display indicating the vari
ous functions available. The system is now awaiting a
command and a status message indicates that state. To
perform an assembly of a source file, for example, the
softkey labeled assemble is pushed, followed by the name of
the file to be assembled. The editor, compiler, and linker all
use this same syntax.

Emulation
A challenging aspect of microprocessor system design is

the lack of a friendly run time environment for debugging
software and hardware. If, for example, the user is develop
ing a microprocessor-controlled meat scale, the product
will not have peripherals such as CRT, keyboard, disc, and
printer to help the debugging process. Because of the direct
interaction of hardware and software, the techniques used
in computer development â€” halting, single-stepping,
dumping registers, and software tracing â€” might so perturb
the system that the measurement obtained is meaningless.
Because the completed system is usually read-only-
memory-based, a convenient software prototyping envi
ronment is also essential so that software can be tested and
developed before being committed to ROM.

The 64000 emulator option is designed to imitate the
microprocessor in the user's system and provide all the
necessary debugging facilities. The emulator is used by
removing the microprocessor to be emulated from the user's
hardware and plugging in the probe from the 64000 System
in its place. The user then specifies the memory area to be
taken from the user system and that to be provided by the
emulator. The answers to these configuration questions are
automatically stored in a file so that when the emulator is

OCTOBER 1980 HEWLETT-PACKARD JOURNAL 5

© Copr. 1949-1998 Hewlett-Packard Co.

used later with the same configuration only the file name
needs to be specified. The emulator can be used before any
user hardware exists by s imply specifying the internal
clock and all emulation memory. Because the emulator has
access to the display, disc, printer, and keyboard, much
so f tware deve lopment can t ake p lace be fo re the use r
hardware is ready.

In the 64000 System, we have completely separated the
emulation processor bus from the host environment (see
Fig. 4). This allows passive monitoring of the execution of
software without stopping the process. Because of this sep
arat ion i t i s a lso possible to cont inue emulat ion while
software development is occurring on the same station, thus
potentially doubling the use. The two buses are so inde
pendent that the prototype containing the emulator probe
can be powered down and then up without affecting the
host system. Even the data stored in the emulation memory
remains unchanged and the processor simply goes through
its normal power-up sequence.

Another important benefit of this architecture is the fu
ture expandability of emulation. The host processing sys
tem puts no restrictions on the speed or word length of the
processor being emulated. Future microprocessors will cer
tainly be faster and more powerful, so it is important to
al low for this to preserve the capi tal investment in the
development system.

The emulator option for the 64000 Logic Development
System is described in the article beginning on page 13.

Directed-Syntax Softkeys Provide Fr iendly Inter face
Since a substantial part of a microprocessor system de

signer's time is spent at the keyboard of a microprocessor

F ig . 5 . Cons t ruc t i ng a command us ing the 64000 Sys tem 's
d i rec ted syntax sof tkeys. (a) The user has pressed ETC and
now sees the softkey labels shown here, (b) The user presses
directory and sees these new labels, (c) The user continues to
construct the command by pressing aiiâ€”tnes. (d) The complete
syn tac t i ca l l y co r rec t command ca l l s fo r a l i s t i ng o f a l l f i l es
modi f ied a f ter August 28, 1980.

development system, ease of use is very important . By
means of directed-syntax softkeys, the 64000 leads the new
user through an often bewildering maze of tools. The use of
a random-access display further simplifies the operator in
terface to provide a feeling that the human is in control and
not the machine.

Eight unmarked keys immediately below the CRT are
labeled by the CRT. These softkeys reflect the complete set
of allowable entries and change with each keystroke to
reflect the next expected keyword or data in a command. If
the user en ters only the informat ion prompted by the
softkeys the syntax is guaranteed correct. Conversely, any
entry not shown in the softkey labels will result in a syntax
error. Thus the processor is always telling the user what it
expects, avoiding the usual guessing game, "You enter a
command and I ' l l te l l you i f i t ' s r ight ." In addi t ion to
eliminating the guessing game, the softkeys provide exactly
the same interface for all operations.

Fig. 5a shows an example using the directory command,
which can consist simply of the keyword directory or several
options. In Fig. 5b the directory softkey has been pushed and
the next allowable alternatives are shown:

<FILE> use r f i l e name
all f i les all disc files
rec files all recoverable files
tapefi les al l tape f i les
l i s t f i le specify an a l ternate l i s t ing f i le .

In Fig. 5c', the all-files option is selected and the labels
again change to reflect other options. The complete com
mand shown in Fig. 5d calls for all of the files modified after
August 28, 1980 to be listed on the line printer.

If the cursor is moved to edit the command, the labels
change to reflect the options available at that point in the
line. If a softkey is pressed when the cursor is under any
character in a keyword, the entire keyword is replaced by
the new one and the l ine is expanded or contracted to
accommodate the new entry.

Software
Just as important as the hardware architecture in a com

plete solution is the software package. 64000 software cur
rently available includes the following modules, some of
which come in several versions to accommodate different
microprocessors and languages: monitor, multiprocessing
operating system, f i le manager, editor, assembler, com
piler, linker, emulator, PROM programmer, and hardware
self test.

Since users of the system can range everywhere from the
expert digital hardware designer to one with no previous
software experience, the 64000 system is designed to pro
vide considerable capability for the experienced software
des igner , and th rough the use o f the d i rec ted-syn tax
softkeys, to give the new user access to the full capability of
the system, not just the subset that is frequently used and
remembered. To further enhance the convenience of the
system an effort was made to provide a uniform syntax and
feature set in al l aspects of the development tools. For
example, numeric constants can be specified in decimal,
hexadecimal, octal, or binary in the assembler, compiler,
linker, emulator, PROM programmer, monitor, and editor.

6 H E W L E T T - P A C K A R D J O U R N A L O C T O B E R 1 9 8 0

© Copr. 1949-1998 Hewlett-Packard Co.

The rules for variable names are the same for the assembler,
compiler, linker, and emulator. The feature set for all of the
above modules also remains the same for each micropro
cessor, so that the learning curve for a new processor is
much shorter. In some cases the same person has to work
with more than one processor type simultaneously, so this
approach becomes essential to reduce confusion.

With these features combined with the performance of a
16-bit processor per user and a high-speed hard disc, the
turnaround cycle for changes is substantially reduced. As
an example, it is possible to edit a file to make corrections,
assemble that file, link it to other modules , and then execute

the new code on the emulator in one minute. This level of
performance encourages proper maintenance of source
programs instead of memory patching to fix a problem.
The Edi tor

Perhaps the most important part of a development sys
tem's operator interface is the editor. The functioning of the
editor provides the most convincing argument for a random
access display. The ability to modify the text by inserting,
deleting, or overtyping and see the changes on a key-by-key
basis gives the confident feeling of absolute control.

The importance of a symmetric instruction set is just
being understood in the microprocessor world, but the

Resource Sharing in the Logic Development System

by Alan J . DeVi lb iss

A 64000 Logic Development System is ordered as Model 64001 S,
with consists, options wanted listed separately. A 64001 S System consists,
at a minimum, of one 641 OOA Development Stat ion, a disc memory,
and a magne t i c t ape ca r t r i dge d r i ve . A max imum o f s i x 641 OOA
Deve lopment S ta t ions , a p r in te r , and e igh t d isc d r ives can be con
nected on a s ing le I /O bus.

The operat ing system sof tware execut ing in the host processor of
each 641 OOA is implemented asa single-tasking system, responding
to i ts keyboard inputs independent ly of any other 641 OOA stat ions,
excep t when two o r mo re s t a t i ons r equ i r e access t o a sha red re
s o u r c e o f (e . g . , a d i s c m e m o r y o r t h e p r i n t e r) . T h e u s e o f
these shared resources must be coordinated. The sharing protocol is
s imple , min imiz ing overhead in the operat ing system and reduc ing
the number of operat ions that must be recovered in case of a system
faul t . Speci f ica l ly , the shared resources are:
1 . Access to a d isc memory (exc ludes d i rec to ry)
2 . Access to read o r mod i f y a d i sc d i rec to ry
3 . Access to the p r in te r .

The mechanical and electr ical protocol used on the 64000 I /O bus
is compat ib le w i th the HP In ter face Bus, o r HP- IB (IEEE Standard
488-1978) . However , i n the 64000 Sys tem con tex t , messages a re
res t r i c ted to those needed fo r sys tem opera t ion . For example , I /O
drivers and message protocols that would al low direct user control of
interface message generat ion are not avai lable. Therefore, only sup
ported disc memories and printers and other 641 OOA stations may be
connected to a 64100A s ta t ion.

The HP- IB s t anda rd was se l ec ted because o f t he ex i s t ence o f
c o m p a t i b l e d i s c m e m o r i e s a n d p r i n t e r s a n d a r e l a t e d f a m i l y o f
re l iab le components (in tegra ted in ter face e lec t ron ics , connectors ,
and cables) .

Each 641 OOA station can operate on the HP- 1 B as an active control
ler, talker, or l istener. The current active control ler monitors the state
of the network â€” that is , which 641 OOA stat ions are us ing or are
wait ing to use a shared resource. The act ive control ler has the exclu
sive right to use the I/O bus until control is passed to another 641 OOA.
However, a resource reserved by another 641 OOA may not be used.
Disc accesses not involving a disc directory access may be made by
the act ive control ler wi thout restr ict ion. Directory and pr inter access
es are the on ly two resources that must be reserved. Use o f these
resources is regulated by queues resident in the act ive control ler for
each function. The HP-IB address (from 2 to 7) corresponding to each
641 OOA is used as a name in the queues, with 0 serving as the nul l
en t r y . The head o f each queue has the exc lus i ve r i gh t t o use the
resource. Addresses within the queue indicate 641 OOA stat ions wait

ing for the resource. Only the act ive control ler can modify the queue
by removing i ts address from the head of the queue. Al l other entr ies
are moved up by one posi t ion when the act ive contro l ler is f in ished
with the resource. The act ive control ler can also replace the f i rst nul l
entry in the queue with its own address when it requires the resource.

The ac t ive cont ro l le r may modi fy the queues and make one d isc
access (a read o r wr i te o f up to 4096 by tes , t yp ica l l y) and f i l l t he
printer buffer if it is at the head of the printer queue. Then control must
be passed if any other 641 OOA has a pending I/O request. The active
control ler conducts a paral le l pol l . I f no other 64100A responds, the
current act ive contro l ler remains act ive contro l ler and can cont inue
wi th i ts own I /O as requi red. Af f i rmat ive pol l response f rom another
641 OOA indicates a request to become active control ler. If more than
one 641 OOA responds, the address of the responding 641 OOA next
h igher (modulo 8) than the current act ive contro l ler is se lected.

The selected 641 OOA is sent an eight-byte message indicating the
current s tate of the d i rectory and pr inter queues, and then the Take
Con t ro l i n te r face message i s sen t to tha t 641 OOA. The se lec ted
641 OOA becomes act ive contro l ler and may use the I /O bus and/or
modi fy the queues.

On each 64000 system, one and only one 641 OOA is designated as
master act iv i ty This uni t is responsib le for in i t ia t ing system act iv i ty
by becoming the f i rs t act ive contro l ler when the system is powered-
on. Only this unit may assert the Interface Clear message, and there
fore i t a responsib le for restar t ing a system that has exper ienced a
par t ia l power fa i lure or a d isrupt ive hardware or sof tware faul t .

When a 641 OOA powers on, i t must f i rst load i ts operat ing system
f rom the sys tem d i sc a t I /O address 0 , un i t 0 . To accomp l i sh th i s
without disturbing a functioning system if this 641 OOA is entering late,
the nonact ive contro l ler s tatus is selected at power-up, and I /O bus
control is requested by aff irmative response to any paral lel pol l by an
a c t i v e u n t i l I f t h e u n i t i s n o t m a s t e r c o n t r o l l e r , i t m u s t w a i t u n t i l
control is passed to i t from another 641 OOA. If the 641 OOA is desig
na ted wors t - con t ro l le r , i t wa i t s fo r abou t th ree seconds (a wors t -
c a s e a n d f o r a f u n c t i o n i n g s y s t e m) , a s s e r t s I n t e r f a c e C l e a r a n d
becomes the act ive contro l ler .

O n c e a 6 4 1 0 0 A s t a t i o n h a s b e c o m e a n a c t i v e c o n t r o l l e r a n d
l oaded i t ope ra t i ng sys tem so f tware f rom sys tem d i sc memory , i t
executes a program to ident i fy al l other devices connected to the I /O
bus a t tha t t ime. The resu l ts o f tha t p rocedure are used to cont ro l
generat ion o f tab les in the d isc , pr in ter , and network I /O dr ivers to
make proper use o f the dev ices a t tached to the network .

Each uni t memory ident i f ied is cataloged by I /O address, disc uni t
number, type (7905, 7906, 791 0, 7920, 7925), directory location and

OCTOBER 1980 HEWLETT-PACKARD JOURNAL 7

© Copr. 1949-1998 Hewlett-Packard Co.

s i ze , and reco rd s i ze . A l og i ca l un i t number i s ass igned fo r each
disc. The results of the I/O identification are listed on the 641 00 display
fo r re fe rence and to a id in debugg ing a mal func t ion ing sys tem.

Th is arch i tecture makes i t easy to change the number o f 64100A
deve lopment s ta t ions , the number and /o r t ype o f d i sc d r i ves , and
the p r i n te r . To e f f ec t a change , t he sys tem i s powered o f f , r econ
nected and powered back on. No user-directed change in software is
needed.

Fault Recovery
Recovery features have been implemented to lessen the effects of

s ys tem on Fo r examp le , i t wou ld be undes i r ab l e i f l ow powe r on
one 641 OOA station aborted an edit session on another station. All I/O
operat ions have t ime-outs ass igned, w i th appropr ia te recovery pro
cedures in the event of mal funct ion. Disc operat ions that can ' t com
p le te a re re t r i ed . I f a pass o f con t ro l doesn ' t comp le te w i th in the
a l l o t t ed t ime , t he p rocess i s abo r ted and the p rev ious ac t i ve con
t ro l ler resumes control status.

T h e m a s t e r c o n t r o l l e r a s s u m e s a s y s t e m m o n i t o r f u n c t i o n .
Whenever the master control ler passes control a three-second t imer
is started. I f th is t imer expires, control must be requested by af f i rma
t ive pol l response, even i f the master contro l ler has no pending I /O
request. If another three seconds go by without a response, the active
c o n t r o l l e r i s p r e s u m e d t o h a v e c r a s h e d o r p o w e r e d o f f , a n d t h e
master contro l ler asserts the Inter face Clear message and becomes
act ive control ler .

Whenever the master control ler becomes act ive control ler by Inter
face Clear, the network queues are initialized to the null state, a restart

f lag is set and the queues and control are passed around the network
one time, independent of I/O requests. The restart f lag inhibits normal
I /O activi ty. Each 641 OOA is given the opportunity to take either the
directory or the printer queue head if i ts internal state indicates it had
this ef fects before the restart . This process minimizes the ef fects of
the loss of network state information by a crash of the active controller
while printer. 641 OOA is modifying the directory or using the printer.
When contro l is returned to the master contro l ler , the restar t f lag is
c leared and normal operat ion resumes. Time-outs in the pr inter and
network drivers of 641 OOA stations that were waiting for the directory
o r the in cause them to reen te r the ne twork queues . The o rder in
the queues may be changed but everyone u l t imate ly is serv iced.

,

Alan J. DeVi lbiss
Al DeVi lb iss has been a c i rcu i t and
software designer wi th HP since 1965.
A na t ive o f Roanoke, Lou is iana, he re
ceived his BSEE degree from Louisiana
Tech Univers i ty in 1960 and h is MSEE
degree f rom Cal i forn ia Inst i tute of
Techno logy in 1961. Before coming to
HP he des igned f l igh t computers fo r
four years. Two patents, on e lect ronic
igni t ion and vert ical ampl i f ier c i rcui ts,
have resul ted f rom his work. Al is mar
r ied, has two chi ldren, and l ives in Col
orado Spr ings, Colorado.

same motivation also exists for symmetry in an editor com
mand set. The first step in the editing process is usually
positioning to an area in the file of interest. In the 64000
there are no artificial constraints on file size or workspace
use, and positioning can be performed by rolling the text up
or down, moving the cursor up or down, paging up or
down, randomly by specifying a line number, or searching
for a character string in the forward or reverse direction. All
operations involving a group of lines, such as deleting,
extracting, copying, listing, or performing character re
placement are done starting with the line containing the
cursor thru or until (inclusive or exclusive) a line number, a
character string, the start of the file, the end of the file or the
entire of With directed-syntax softkeys the availability of
these symmetrical options is always obvious to the user.

The memory space available to the editor can be viewed
as two double-ended queues (Fig. 6). These two queues
share the same memory space, so when one contracts the
other can expand into available memory. Another way to
view this memory is as a single circular buffer with a dis
play window. When an edit session is started two scratch
files are created. Since more than one 64100A Development
Station may be using copies of the editor at the same time,
the names of these files are made unique by appending the
bus address of the station. These files serve as temporary
storage for text that will not fit in memory.

When the original source file is opened, enough lines to
fill the display are read and placed on the CRT screen. More
of the source file is read into queue A. The amount of text
read is limited to produce a reasonable response time. Many
edit sessions do not extend over the entire source program,
and a long initial delay can be annoying. Only for very short

Editor Fi le Structure

Double-Ended
Queues

Fig . 6 . The 64000 ed i to r ' s memory space can be v iewed as
t w o d o u b l e - e n d e d q u e u e s t h a t o c c u p y t h e s a m e m e m o r y
space, so that when one expands the other contracts. Scratch
f i les are created when an edi t sess ion is s tar ted.

8 H E W L E T T - P A C K A R D J O U R N A L O C T O B E R 1 9 8 0

© Copr. 1949-1998 Hewlett-Packard Co.

64500 PROM Programmer

A un iversa l deve lopment sys tem l i ke the 64000 mus t be ab le to
p r o g r a m a w i d e v a r i e t y o f P R O M s (p r o g r a m m a b l e r e a d - o n l y
memories) to store object code for prototypes and l imited product ion
runs. types semiconductor industry currently has many memory types
avai lab le: b ipolar ROMs, u l t rav io let - l ight -erasable MOS ROMs, and
combinat ion ch ips conta in ing both a MOS ROM and a microproces
sor . Many speed ranges and memory s izes are of fered to sui t d i f fer
ent users ' requi rements . The goal o f the 64500 PROM Programmer
des ign was to c rea te a p rog ramming sys tem tha t wou ld accommo
date 64000 widest variety of popular PROMs, be easy to use in the 64000
system, and be low in cost. Low cost means both in i t ia l cost and the
i n c r e m e n t a l c o s t o f a d d i n g f a c i l i t i e s t o p r o g r a m o t h e r t y p e s o f
PROMs

A study was init iated to catalog all currently available PROMs. Size,
p i n o u t s , p o w e r s u p p l y r e q u i r e m e n t s , s p e e d , a n d p r o g r a m m i n g
spec i f i ca t ions were compared to assess the d i f f i cu l ty o f bu i ld ing a
t ru ly emerged. system. From th is point , a design st rategy emerged.
The result ing system consists of a control card occupying one slot in
t he 641 OOA ma in f rame and a socke t modu le t ha t r es i des i n t he
641 OOA pane l inser t . The cont ro l card conta ins ad jus tab le power
suppl ies and general input/output dr iver c i rcui ts, as wel l as a 64000
ma in f rame in te r face . The ind iv idua l socke t modu les match PROM
pinouts and tai lor the control card's general s ignals to meet speci f ic
P R O M p r o g r a m m i n g s p e c i f i c a t i o n s . C u r r e n t l y , e i g h t s o c k e t
modules are avai lable.

To further simpl i fy the hardware requirements of the control ler and
the socket module, a l l sequence t iming and pulse width cont ro l are
done by software in the PROM driver. Only pulse ampli tudes and r ise
and fa l l t imes a re se t by hardware c i r cu i t s on the socke t modu le .
Software control makes programming the memory chips easier. Each
socket module has an ident i f icat ion code that is read by the dr iver .
From this code, the appropriate programming rout ines and tables for
the PROM fami ly are automat ica l ly se lected. I f a s ingle-socket mod
ule can program more than one PROM type, the available choices are
d isp layed on sof tkeys for user se lect ion.

-Roger Cox

files is the entire file read before the user is allowed to issue
commands.

As various commands cause more of the source file to be
read the data is brought into memory and shuffled between
the two double-ended queues. When the internal memory
space is filled records are written to scratch file B in the
forward direction. Should a command require moving to an
earlier line of text the records are written to scratch file A
and read from scratch file B. The original source file is never
overwritten.

When the end command is issued a destination file is
created. The text is written from scratch file B, the internal
buffer space, scratch file A, and the source file into this
destination file. The original source file is then purged and
the destination file renamed as source. The original file has
then been placed in a deleted file list by the 64000 file
manager and can be recovered. When the scratch files are
closed they are deleted from the disc directory by the file
manager.

A particular problem in the microprocessor world is the
use of different assemblers and cross assemblers for the
same microprocessor, sometimes from the same manufac
turer. The text editor is a tool that usually bridges this gap,

and in a few cases, dedicated conversion programs are
available. To try to accommodate source programs written
for a variety of assemblers, the 64000 editor extends the
normal string replacement capabilities shown in Fig. 7. By
allowing for the recognition of unknown characters or vari
able length strings of characters terminated by known
characters, more generalized editing commands can be is
sued. The notation used is somewhat like the pattern recog
nition languge SNOBOL.2 The example in Fig. 8 shows a
statement that reverses the order of the operands in two-
operand 8080 instructions. This string replacement capa
bility is further augmented by the ability to specify the
columns over which the replacement should apply. The
columns are specified in the same manner as the tabset, that
is, either by specifying the column numbers or editing a line
reflecting the current range specification.

Fi le Management
The heart of all modern software development tools is the

file management system. While automatic space allocation
is a part of almost all systems, in the 64000 system this
facility is significantly extended to include the ability to
recover accidently purged files or previous copies of edited

1 8 4 n o v n , E
I K I N X H
1 8 6 n o v D . n
1 0 7 L D f l L E T T E R

C P I f l S C I I . L T
JNZ NEXT1

l i e n v i e . d
111 JMP NEXT3

N E U M O V D , n

H E U I N X H

N E U D C R B
â€¢n.- NEXTI CPI nscii-GT

1 1 6 J N Z N E X T 2
1 1 7 M V I B , l

116 NEXT3 STfl GT.LT

119 NEXT2 LXI H, STORE

STflTUS: Editing CONTROLATS .

SET UP THE PflPflMETERS

GET LETTER FOP COMPflRISON

CHECK FOR "LESS THflN" Â«ODE

NOT -LESS THflN"

"LESS THflN" MODE

CHECK FOR "GREflTER THflN" MODE

NOT "GPEflTER THflN"

"GREATER THflN" MODE

SET THE FLflG

SET UP THE POINTER

-GREflTER THflN REF fl"A thru 117_

IK nov n,B
1 0 3 I N X N

104 nov n,E
i I N X H

106 nov D.n
1 0 7 L O f l L E T T E R
1 0 8 C P I f l S C I I . L T
1 0 9 J N Z N E X T 1
1 1 0 n v i O . f l
111 jnP NEXT3
NEU nov D.n
N E U I N X N

N E U D C R B
â€¢IV NEXTI CPI flSCII-GT
116 JN2 NEXT3
117 nvi fl, 1
118 NEXT3 STfl GT.LT

119 NEXTZ LXI H. STORE

SET UP THE PflRflnETERS

SET LETTER FOR COHPflRISON

CHECK FOR "LESS THflN" nODE
NOT "LESS THflN"

"LESS THflN" MODE

CHECK FOR "GREflTER THflN REF fl" MODE
NOT "GREflTER THflN PEF fl"
"GREflTER THflN REF fl" MODE

SET THE FLflG

S E T U P T H E P O I N T E R

S T f l T U S i S t r i n j t e t " -

_ r t p l Â » c e " " G R E f l T E R T H f l N " " w i t h ' " G R E f l T E R T H f l N R E F f l " A t h r u 1 1 7

F ig . 7 . Us ing s imp le cha rac te r s t r i ng rep lacement , (a) The
command executes from the current posit ion (indicated by the
l ine number in inverse v ideo) to the pos i t ion speci f ied in the
command , (b) The s ta tus l i ne repo r t s t he rep lacemen t pe r
formed.

OCTOBER 1980 HEWLETT-PACKARD JOURNAL 9

© Copr. 1949-1998 Hewlett-Packard Co.

187 LDfl LETTER

1 0 8 C P I d S C I I . L T

189 JN2 NEXT1

ne Mvi n.e
111 JMP NEXT3

N E U M O V n , D

N E U I N X H

N E U D C R B

115 NEXT1 CPI OSCII-GT

1 1 6 J N Z N E X T 2

1 1 7 H V I l . B

118 NEXT3 STfl GT.LT

; NExra LXI STORE, H

SET UP THE PflRflNETERS

GET LETTER FOR COMPflRlSON

CHECK FOR "LESS THflN" MODE

NOT "LESS THflN"

"LESS THflN" MODE

CHECK FOR "GREflTER THflN REF 0" NODE

NOT "GPEflTER THflN REF fl"

"GREflTER THflN REF fl" MODE

SET THE FLflG

SET UP THE POINTER

ith "f.S A thru 102

F i g . 8 . P o w e r f u l t e x t m o d i f i c a t i o n u s i n g S N O B O L - l i k e f e a
tu res , (a) By us ing the spec ia l charac te rs "anys t r ing" ([s])
a n d " a n y c h a r a c t e r " ([c]) t h e o p e r a n d f i e l d o f t h i s 8 0 8 0
code can be reversed , (b) The tex t changes v i r tua l l y ins tan
taneously and the status l ine reports seven replacements were
per formed.

files up to the time when the space is needed for new files . A
further enhancement aimed at managing the increased
number of files being used is the user identification added
to files names. By entering a user ID at the beginning of a
session all operations will be carried out on files under that
name. The directory list defaults to listing only the files
under that ID.

Further enhancements offered by the 64000 file manager
come in the directory, including a listing of space available
and comprehensive data on file use. Monitoring revisions
to programs is made easy since the date and time of last
access and modification of each file are automatically main
tained and shown in the directory list. The linking loader
also specifies in the load map the date and time of the last
update of each relocatable module loaded. The significance
of this record keeping in a multiple-design project where
program modules are independently maintained cannot be
overstated.

Another important function for the file system is the
ability to submit a stream of system commands contained in
a file. This capability, available on many systems, makes
performing a long series of tasks almost foolproof. An ex

tension to this function in the 64000 allows parameters to be
passed to one of these command files in a manner similar to
assembly language macros. Then more generalized com
mand files can be created, thus reducing the number of files
created and used. For example, a command file could be
created that automatically sequences through the opera
tions of assembly, linking, loading, and emulating, and
only the source file(s) need be specified at the time the
command file is invoked. Also, by including a learn mode
for building command files the full aid of the directed-
syntax softkeys is made available in constructing command
files.

Page Structure
The 64000 file management system has a linked list struc

ture. Each of the files consists of blocks of sectors called
pages. The number of sectors per page is constant for a
given disc but may vary for different discs to optimize
certain file management operations. The pages of a file are
linked in both forward and backward directions (see Fig. 9).
This symmetry is used to its greatest advantage in the 64000
editor. Editor operations such as rolling, paging, and string
searching can be done with equal efficiency either forward
or backward through the text.

When a file is being updated the same sectors on the disc
are used. If the size of the file is increased the file manager
allocates another page to the file, linking it to the end of the
last page. The list of available pages is kept in much the
same way as a file. It is a doubly linked list of pages. Free
pages are taken from the front of the list when they are
allocated to files. This approach allows files to grow easily
without bound and precludes the need for a user-invoked
disc packing program. The disc remains continuously
packed by the nature of the file structure.

Directory Format
As with most file management systems the keys to locat

ing a file on the disc are kept in a separate area called the
directory. The 64000 directory is organized as a hash coded
list. Hash coding minimizes the amount of searching re
quired to locate the directory entry for a given file. The
hashed value of the file name indicates the directory sector
on which the file information is most likely to reside. The

F i l e P a g e s

Fig. allows 64000 file structure. The linked list organization allows
for f lexible f i le size.

1 0 H E W L E T T - P A C K A R D J O U R N A L O C T O B E R 1 9 8 0

© Copr. 1949-1998 Hewlett-Packard Co.

64000 Command Parsing

Commands a re in te rp re ted in the 64000 Sys tem us ing an LALR
(look-ahead, le f t - to-r ight) pars ing technique. The syntax of the com
mands PROM an application module such as the monitor, editor, or PROM
p r o g r a m m e r i s d e s c r i b e d i n a c o n c i s e a n d r e a d a b l e f o r m a t b y a
grammar. An example of this is the editor 's delete command shown in
Fig. 1 . The complete grammar is given as input to a parser generator
program, and the result is a table that is used by the 64000 parser to
parse the text that the user types on the command l ine.

a) de le te

thru
until

< l i n e # >
< s t r i n g >

start
end

b) < D E L E T E _ C O M M A N D >

< R A N G E _ S P E C >

< L I M I T >

< d e l e t e > < R A N G E _ S P E C >

< E M P T Y >
< t h r u > < L I M I T >
< u n t i l > < L I M I T >

all

< S T R I N G >
< N U M B E R >

end
start

< d e l e t e > : : = d e l e t e
< t n r u > : : = t h r u
< u n t i l > : : = u n t i l

Fig . 1 . Syn tax o f the ed i to r ' s de le te command, (a) Conc ise
s y n t a x , (b) B N F - l i k e g r a m m a r u s e d t o d r i v e s e m a n t i c a n d
softkey routines.

LALR pars ing prov ides a conven ient s t ruc ture fo r 64000 app l ica
t i o n p r o g r a m s . W h e n a c o m m a n d i s p a r s e d i t i s d e c o m p o s e d i n
exact ly the same manner as the grammar used to create the parsing
t a b l e s . E a c h l i n e o f t h e g r a m m a r i s a n o p p o r t u n i t y t o p e r f o r m a
semant i c func t ion . Thus the 64000 parser ac ts as a d r i ve r fo r the
var ious funct ions a program per forms.

The same features of LALR pars ing that dr ive the execut ing func
t ions o f 64000 p rograms a re used to d r i ve the so f tkeys . As a com
mand is typed into the command l ine the characters are continuously
s c a n n e d b y t h e 6 4 0 0 0 p a r s e r . A s t h e v a r i o u s s t a t e m e n t s o f t h e
grammar are appl ied to the character str ing the corresponding level
of sof tkeys is se lected. This parse cont inues up to the present posi
t ion o f the cursor in the command l ine . At the end o f the parse the
sof tkeys corresponding to the cursor pos i t ion are d isp layed. In th is
way the user is shown a l l o f the avai lab le choices at that t ime.

S i n c e t h e c o m m a n d l i n e i s s c a n n e d a l m o s t c o n t i n u o u s l y t h e
sof tkeys are a lways consis tent wi th the cursor posi t ion. Because of
t h i s t h e c u r s o r c a n b e m o v e d t o a n y p o s i t i o n i n t h e l i n e a n d t h e
softkeys wil l track the syntax. Also, the correct softkey level is depen
den t a on the cha rac te rs con ta ined i n the command and no t on a
sequence of user act ions. For users who choose to type ins tead of
u s i n g t h e s o f t k e y s a n d f o r c o m m a n d s t h a t a r e r e c a l l e d i n t o t h e
command l ine the sof tkey t rack ing s t i l l works.

LALR pars ing i s de te rmin is t i c in the de tec t ion o f syn tax e r ro rs .
When a s t r ing o f charac te rs does no t cor respond to a permiss ib le
sequence as defined by the grammar it is detected as an error. At that

STATUS: Ed i t ing F ILEX
m e r g e
< F I L E > f r o m t h r u

STATUS: Ed i t ing F ILEX
merge FILEZ f rom 2S thru 45

ERROR: Inval id l ine number
m e r g e F I L E Z f r o m 2 $ _ t h r u 4 5

 t h r u

F ig . 2 . When a syn tax e r ro r i s de tec ted an ins t ruc t i ve mes
sage is displayed and the cursor is placed under the error. The
sof tkeys are consistent wi th the cursor posi t ion.

t ime the posi t ion of the error in the command and the set of correct
syn tax e lements a re known. The 64000 convent ion i s to p lace the
cursor at the position of the error and report the error in a manner that
spec i f ies what was expected. The so f tkey pars ing is re in i t ia ted as
well , so that the softkeys are again labeled with the available choices
for the current cursor posi t ion (see Fig. 2) .

F l e x i b i l i t y i s a b o n u s o f t h e L A L R p a r s i n g t e c h n i q u e . W h e n a
change or add i t ion to the syntax o f a program is des i red, i t can be
made quickly wi th a minimum of impact on other features. Tables for
t he new g rammar a re gene ra ted and , i f r equ i r ed , a so f t key l eve l
template is added or changed. A new message may be added to the
table of error messages. The general structure of the softkey parsing
is shown in Fig. 3.

-Br ian Kerr

Keyboard
Scanner

Fig. 3. Sof tkey operat ion. In teract ions between the main pro
gram and the sof tkeys are wel l -def ined and sui table for many
appl icat ions.

OCTOBER 1980 HEWLETT-PACKARD JOURNAL 11

© Copr. 1949-1998 Hewlett-Packard Co.

data on that sector will indicate if the file exists or if another
directory sector should be searched. As long as the direc
tory is only partially full the file should either be found or
proved nonexistent with only one disc read. Directory size
has been chosen to correspond to the size of the disc. This
guarantees that the directory will not be too full for efficient
file lookup.

Each directory entry gives the name, user identification,
and type of the file. Each entry contains pointers to the first
and last pages of the file. This is the necessary information
for accessing and deleting the file. In addition, two dates
and times are kept for each file. One is the date and time that
the file was last accessed. This is modified with the system
date and time whenever the file is opened. The other is the
date and time that the file was last modified. It is updated
when the file is closed after records have been added or
rewritten. These dates provide the user with convenient
records of file use. The directory list and cassette backup
commands use the dates as qualifiers for operations. For
example, the user can store all recently changed files with
the command store allâ€”files modified after 5/31/80.

Recover ing Deleted Fi les
The linked list file structure allows for a special feature of

the 64000 file management system. Since deleted files are
added to the end of the free list they are still intact until the
entire free list has been allocated to other files. When a file is
deleted its directory information is transferred to a special
section of the directory. This is a circular list of files that
have been deleted. A user who has made a mistake and
deleted the wrong file can issue a recover command. This
routine searches the recoverable file list for the file and if
the file is found checks to insure that its pages have not been
allocated to another file. If they have not, the file is restored
to the directory of active files. Since the 64000 editor always
purges the original file and creates a new copy, the user can
recover previous versions.

Fi le Format
All user-accessible files have a similar data format. The

data is stored in variable-length records. The number of
words of data in a record is placed in the bytes immediately
preceding and following the data. Again, this symmetry
allows for bidirectional access. It also provides a means for
insuring the integrity of the file data. If the two lengths of a
record are not the same then a data read or write error can be
assumed.

Program modules such as the editor, assembler, and
linker are called by the 64000 monitor using a system of
overlays. When a module has been selected by the user or
the currently running module an operating system routine
is called to bring the correct file from the disc. Files of this
sort are kept in a special non-record format. They are stored
as memory images that can be read directly into the location
in memory where they will be executed. It is desirable that
this operation be performed as quickly as possible so as to
be transparent to the user. To accomplish this the disc is
organized in a special way. Normally sectors that are logi
cally adjacent in a file management system are also physi
cally adjacent on the disc. In the 64000 this is not the case.
Logically adjacent sectors are spaced some distance apart
depending on the particular type of disc. When a sector is

read the disc continues to rotate while the data is being
transmitted over the system bus and placed in the 64000
memory. By the time the next sector is requested the disc
has rotated so that the physical sector is in the correct
position to be read. In this way many disc rotations are
eliminated.

Acknowledgments
The first impression of a new product is often based on its

appearance, but long-term satisfaction is usually based on
reliability and ease of maintenance. Bill Fischer and Don
Miller were responsible for meeting both of these objectives
by designing an attractive yet functional package that is
easy to manufacture and service and has good thermal de
sign to improve reliability. Steve Shepard directed all of the
hardware design and was responsible for the difficult task
of coordinating the many pieces going into a large complex
system. Paul Sherwood and Pete Rawson were responsible
for the design of a flexible high-performance mainframe to
support the broad spectrum of accessories needed in this
measurement area.

If one person were to be credited for the whole product
there would be little doubt by anyone on the design team
that it should be George Haag. He was a major contributor to
the system architecture and the primary source of the
human interface design. He served as section manager for
much of the project and provided the basis for the introduc
tion of a major new product from the division.

Brian W. Kerr
Brian Kerr at tended Rice Univers i ty in
Houston, Texas, receiv ing h is BSEE
and MEE degrees in 1976 and 1977.
With HP since 1977, his responsibi l i t ies
have included the 64000 editor and f i le
manage r and op t i on pe r fo rmance ve r
i f icat ion. Br ian was born in Sal isbury,
Maryland. He's single, l ives in Colorado
Springs, Colorado, and enjoys Softbal l ,
b r idge , vo l leyba l l , bowl ing , and c ross
country ski ing.

Thomas A . Saponas
' , Tom Saponas received BSEE/CS and

MSEE degrees f rom the Univers i ty o f
Co lorado in 1972 and jo ined HP the
same year . He's done sof tware design
for data acquisi t ion systems and circui t
and software design for logic analyzers
(1607Aand 1611A) . In i t ia l l y so f tware
project leader for the 64000 System, he
la ter became sect ion manager . He 's a
member of IEEE and has authored ar t i
c les in IEEE and Audio Engineer ing
Soc ie ty pub l ica t ions . Tom was born in
Water town, Sou th Dako ta . He 's mar
r ied, has two chi ldren, and has l ived in
Colorado Spr ings for most of h is l i fe .

H e ' s a c a r o f t h e r e g i o n a l s c i e n c e f a i r a n d i s i n t e r e s t e d i n c a r
repa i r , photography, br idge, and cross-count ry sk i ing .

1 2 H E W L E T T - P A C K A R D J O U R N A L O C T O B E R 1 9 8 0

© Copr. 1949-1998 Hewlett-Packard Co.

References
1. W. D. Eads and D. S. Maitland, "High-Performance NMOS LSI
Processor," Hewlett-Packard Journal, June 1976.

2. R.E. Griswold, J.F. Ponge, and I.P. Polonsky, "The SNOBOL 4
Programming Language," Prentice-Hall, 1971.

An HP Logc Deve lopment Sys tem order shou ld be e

system musÃ -nckJde at toast
6 4 9 4 0 A T a p e C a r M g e U n Ã A l t

dec is ordered, operating system software musÃ be entered as Opfcn 800 to 64001 Sax

d t o l o r m a c l u s t e r b y s u b r n i l l i n g a 6 4 0 0 i S o r d e r Â «
n A total of sn stations may be contgured as a dust

not options.

Adcttonat stakons may be adc

with each Station contamng any
Most ol These options may be added to me system orvsrte after irWiaJ refalaban These

producÃs may be ordered by subsystem product number and are shipped w*h appropriate
software documentation and cables

O R D E R I N G I N F O R M A T I O N
H P M o d e l 6 4 0 0 0 L o g i c D e v e l o p m e n t S y s t e m

MANUFACTURING DIV IS ION: COLORADO SPRINGS DIV IS ION
P.O. Box 21 97
Colorado Spr ings. Colorado 80901 U.S.A.

Emulators for Microprocessor System
Development
by James B. Donnel ly , Gordon A. Greenley , and Mi lo E . Muterspaugh

SIM -U- LATE vt: to pretend, feign. EM-U-LATEvt:
to equal. Until recently, the development and de
bugging of software for new processor-based sys

tems was frequently done with the aid of simulators, which
are programs running on a large host computer and having
the property of simulating the instruction set and the pro
gramming model of the new or target processor. After the
software was initially debugged using the simulator, fur
ther debugging of the software-hardware system was done
with the aid of debug programs and various hardware and
software facilities that provided breakpoints, single-step
ping, and other capabilities. More recently, logic analyzers
have also aided in the process.

With the introduction of microprocessor development
systems, a new tool has been made available to the designer
in the form of the microprocessor emulator. Today's
emulators combine many powerful software and hardware
development tools into one convenient, easy-to-use system
and greatly facilitate the process of integrating the
hardware and software components of newly developed

microprocessor-based systems. At the user interface, the
hardware portion of the emulator replaces the microproces
sor, and in keeping with the definition of emulation, at
tempts to be as much like the actual microprocessor as
possible, both functionally and electrically.

The advantages of using an emulator include the ability
to develop software on the actual processor to be used, the
ability to load the newly developed programs into emula
tion memory and execute those programs in the develop
ment hardware in real time without having to use PROMs,
thus speeding the development cycle, and the ability to
debug hardware and software under very controlled condi
tions by being able to run, halt, and step the processor at
will and to examine and modify registers and memory. An
additional advantage is the ease with which the emulator is
connected to the user system: it simply plugs into the socket
where the microprocessor would normally go.

Design Object ives
In developing the emulators for the 64000 Logic De-

OCTOBER 1980 HEWLETT-PACKARD JOURNAL 13

© Copr. 1949-1998 Hewlett-Packard Co.

User System Emulat ion System

T High-Speed Emulat ion Bus

Memory
Emulator
Control
Board

Emulation
Memory

Board

Mainframe Bus

Host
Processor

Host
Memory

I
Analysis

Board

B B

F ig . 1 . The 64000 emu la to r sub
system cons is ts o f a microproces
sor emulator , a memory emulator ,
a l og i c ana l yze r , and a so f twa re
suppor t package.

velopment System, the principal objective was to maximize
transparency to the user and the user's system. This objec
tive was applied to both the functional and the electrical
aspects of the emulator.

Functionally, transparency was defined to mean that the
user must not be deprived of or restricted in the use of any
address space, instructions, interrupt systems, or other fea
tures normally available in the microprocessor being emu
lated.

Electrically, transparency means that the design of the
emulator must minimize degradation in timing and electri
cal loading, so that the emulator will operate in the user's
system as much like the emulated processor as possible.

System Descr ipt ion
In the 64000 System, a complete emulation system con

sists of the microprocessor emulator, the memory emulator,
a logic analyzer, and a software support package that inte
grates the hardware components into a powerful, easy-to-
use development tool (see Fig. 1).

The emulator system is partitioned into three interfaces:
1) the user interface, which is defined by the specifications
of the processor being emulated, 2) the emulation bus, a
high-speed bus that connects the processor emulator, the
memory emulator, and the logic analyzer, and 3) the
641 OOA mainframe bus, which provides for control and
communication between the mainframe host processor and
the emulation system.

This architecture provides complete separation of the
host processor and memory from the emulation system.
This allows the host processor to run the emulation support
software independently of the emulator, thus relieving the
emulation processor of the burden of that overhead and
helping to meet the design goal of functional transparency.

The Microprocessor Emula tor
The microprocessor component of the emulation system

is divided into two subassemblies, a pod external to the
64 100 A mainframe and a control board contained in the
64100A card cage (see Fig. 2).

The emulator pod contains a high-speed version of the
emulated microprocessor, interface buffers, buffer con
trol circuitry, and an internal clock source. A fully buf
fered architecture is used. Some of the advantages of this
configuration are the minimization of potential damage
from the user's breadboard and the ability of the 64000
system to gain control of the emulation processor and con
tinue to function even though an electrical fault may exist
in the user system. The combination of less than maximum
capacitive loading on the processor provided by the isola
tion of the buffers and the use of high-speed versions of the
processors gives the emulator the ability to operate with
little or no degradation of timing specifications in most
cases. The pod is connected to the user's microprocessor
socket by a 30-cm dual flat cable and a 40-pin plug. Each
signal wire in the cable is isolated from adjacent signals by
alternating ground wires with the signal wires to minimize
coupling. The pod connects to the emulator control board
by two by twisted-pair flat cables. This cable is driven by
Schottky TTL buffers and is terminated in its characteristic
impedance with one wire of each pair grounded to insure
good high-speed signal quality.

The emulator control board consists of a timing section,
which converts the timing signals of a given microproces
sor into the standardized timing requirements of the 64000
emulation bus, various status and control registers, a 256-
byte memory referred to as the background memory,
background memory access control circuitry, a state
machine called the background controller, and an illegal
opcode detector. The function of the control board is to
provide timing signals for the emulation memory and logic
analyzer units and to provide the status and control inter
face between the emulation processor and the 64000 host
processor.

The Universal Approach
Early in the emulator design phase, it appeared that it

might be possible to identify certain functions of the control
board that could be considered independent of micro
processor type and that these functions could be designed

1 4 H E W L E T T - P A C K A R D J O U R N A L O C T O B E R 1 9 8 0

© Copr. 1949-1998 Hewlett-Packard Co.

User Microprocessor Emulator
Control Board

Address

Emulation
Bus

Data

C o n t r o l I 4 Â«no
To

Memory
â€¢ and

. A n a l y s i s

Status
and

Control
Background

Memory
b ^ B

Timing
and

Background
Controller

Mainframe
Bus

Background
Access

Control ler

A d d r e s s D a t a C o n t r o l

into a universal architecture, which could then become the
core of several emulators. The result of this effort became
known as the breeder board. It consists of a printed ciruit
board containing the interface buffers, status and control
registers, background memory and access control,
background controller, and illegal opcode detector, plus an
undefined wirewrap section to be used by the designer in
breadboarding the timing section, which is the principal
difference between the various microprocessors. To date,
the breeder board has been the basis for three control boards
that serve a total of five distinct microprocessors depending
on the pod selected.

For HP, this approach has had the obvious advantage of
more efficient use of engineering resources and shortened
design cycles. The customer has also benefited by virtue of
the fact that a common architecture results in a degree of
consistency and continuity in the operating characteristics
of the various emulators, thus reducing learning time. In
addition, this approach has made it possible for some con
trol boards to serve more than one microprocessor by just
changing the pod.

Functional Descript ion
In operation, the emulator exists in one of two states,

foreground or background. In the foreground state, the
emulator appears to the user system as a standard micro
processor and executes user-written code, which may be
physically resident in either user memory or emulation
memory or a mixture of both, depending on how the user's
memory space has been mapped. It is worthwhile to note
that even though physical memory such as ROM may exist
at a given address space in a user's system, it is possible to
overlay that memory with 64000 emulation memory for
code patching and debugging purposes.

In the background state, execution in the user system is
suspended and the processor appears halted to the user

F i g . 2 . T h e 6 4 0 0 0 e m u l a t o r a n d
h o s t p r o c e s s o r h a v e s e p a r a t e
buses so the hos t p rocessor can
r u n t h e e m u l a t i o n s o f t w a r e i n d e
p e n d e n t l y o f t h e e m u l a t o r , t h u s
helping to make the emulator func
tionally transparent to the user and
the user 's system.

system. The apparent halted state at the user interface is
synthesized by manipulation of the pod buffers while the
processor is actually running under 64000 system control
in background memory. While in background, all inputs
from the user system are inhibited to prevent possible user
system interference with the execution of emulator
background tasks.

Two important features of the 64000 emulators are key to
the achievement of the functional transparency design ob
jective. The first is the concept of background memory and
the second is the means by which control is transferred
between the user system and the 64000 system, that is,
between foreground and background.

Background memory is a 256-byte RAM resident on the
emulator control board. This memory is physically distinct
from any memory either in the user system or on the emula
tion memory board (see "Emulation Memory" below), and
does not occupy any of the user's address space. The
background memory is accessible to both the emulation
processor and the 64000 host processor and serves as the
primary communication link between the two. The 64000
host processor loads various register unloading and register
and memory read/modify routines into background mem
ory and these routines are then executed by the emulation
processor when it is transferred from foreground to
background.

Transfer of the emulation processor from foreground to
background is initiated by the occurrence of a break condi
tion. A break may originate in any one of four sources. It
may come from the logic analyzer unit after a specified
condition has been met, from the emulation memory unit
because of an illegal memory reference or write to ROM,
from the processor emulator control board as a result of an
illegal opcode fetch, or from the host processor, for example
when the user enters a keyboard command for the emulator
to stop.

OCTOBER 1980 HEWLETT-PACKARD JOURNAL 15

© Copr. 1949-1998 Hewlett-Packard Co.

Program
Execution

Background
C o n t r o l l e r P r o c e s s o r E m u l a t i o n

S t a t e A d d r e s s A d d r e s s

Executing
User

Program
Foreground

Jam Background

Execut ing
Background

Program
Id le Background

Executing
User

Program

t
Exi t Background

i ~ ~
Foreground

1CF4
1CF5
1CF6
1CF7
1CF8
1CF9
1CFA
1CFB
1CFC
3000
3001
5020
5021

5030

5031

5032

t
5 0 F 7
5 0 F 8
5 0 F 9

1 C F A
1 C F B

1 C F 4
1 C F 5
1 C F 6
1 C F 7
1 C F 8
1 C F 9
XXOO
X X 0 1
X X 0 2
X X 0 3
X X 0 4
5 0 2 0
5 0 2 1

1

Fetch Opcode
Memory Reference
Memory Reference
Fetch Opcode
Memory Reference
Memory Reference
Fetch Call

20
50

Stack Upper Ret . Addr .
Stack Lower Ret . Addr .
Fetch Opcode
Memory Reference

5030

5031

5032

* .
50F7
50F8
50F9
1CFA
1CFB

Fetch JMP (Trap)
30
50

Fetch JMP (Exi t)
FA
1C

Fetch Opcode
Memory Reference

! I I l

Break
Condit ion

I

I

Fig. 3. The emulator exists in one
o f t w o s t a t e s , f o r e g r o u n d o r
b a c k g r o u n d . T h e b a c k g r o u n d
c o n t r o l l e r , a f o u r - s t a t e s t a t e
mach ine , con t ro ls the t rans fe r o f
t h e e m u l a t o r p r o c e s s o r f r o m
f o r e g r o u n d t o b a c k g r o u n d a n d
v i ce ve r sa . Th i s cha r t shows de
ta i ls o f the background ent ry /ex i t
process.

A prime consideration in choosing the means for trans
ferring control of the processor was the need to have some
method that is independent of processor type, since the
universal architecture of the control board was intended to
work with a variety of processors. For example, a nonmask
able interrupt (NMI) might be a reasonable way to seize
control of a processor, but some, such as the 8080, have no
NMI. This need led to the use of a technique of jamming
addresses independent of the addresses being generated by
the processor onto the emulation background memory ad
dress bus at the appropriate time in the processor instruc
tion cycle. This causes the opcode fetch to be returned to the
processor from background memory.

The jamming process is synchronized by the background
controller to the first opcode fetch cycle following the oc-
curence of a break condition. This process simultaneously
inhibits the user interface buffers and the address buffers
from the processor to the background memory while en
abling the jam address counter onto the bus. The jam ad
dress counter generates consecutive addresses starting at
OOH for the length of one full instruction cycle. The length
of the jam count is elastic, since state transitions of the
controller occur on opcode fetch cycles and so the count
length is a function of the instruction loaded into address
OOH. Typically, a call instruction is used in the background
code as the first instruction. The use of this type of instruc
tion serves two purposes. First, the processor responds by
placing the program counter on the stack. The stack is
always in the same two locations in background memory
regardless of where the processor stack pointer is set be

cause the address bus is being jammed by the jam counter.
This information is later used to determine where to send
the processor when the emulator is returned to the fore
ground state. Second, the program counter is changed to the
starting address of the background program, which results
in transferring program control to the background memory
when the jam cycle is terminated on the next opcode fetch.
Functionally, this process may be viewed as a hardware
implementation of a nonmaskable interrupt that is inde
pendent of processor type (Fig. 3).

The background controller is a state machine having four
states: jam background, idle background, exit background,
and foreground (see Fig. 4). State transitions occur at the
beginning of opcode fetch cycles that are coincident with
other qualifying events.

The background controller enters the idle background
state on the next fetch following the beginning of the jam
cycle previously described. This returns control of the ad
dress bus to the emulator processor which begins executing
the background entry program. During this time, registers
are unloaded, return addresses are computed, and so on.
Following the completion of these tasks, the processor en
ters a jump self loop called TRAP where it awaits further
direction from the host processor.

The host processor communicates with and controls the
emulator processor indirectly through the medium of the
background memory. This is possible because the memory
is designed so that the host processor can read or modify
background memory at the same time the emulator proces
sor is executing code in that memory. The method of control

1 6 H E W L E T T - P A C K A R D J O U R N A L O C T O B E R '

© Copr. 1949-1998 Hewlett-Packard Co.

Break

Fig. 4 . Background cont ro l le r t rans i t ion d iagram.

involves the host processor loading a program or programs
into background memory and then changing the jump ad
dress of TRAP on the fly to coincide with the starting ad
dress of the desired background program. The emulator
processor reads the new jump address and transfers to that
point.

The exit background state is initiated when the host pro
cessor causes the emulator processor to make an opcode
fetch from a dedicated background address called EXIT. The
background controller recognizes the fetch from EXIT and
makes the state transition. The opcode loaded into location
EXIT is a jump instruction and the following bytes contain
the address of the desired foreground entry point.

The transition from the exit background state to fore
ground immediately follows on the next opcode fetch cycle.
At this point, the program counter of the emulator processor
has been transferred to the foreground entry address by
virtue of the previous jump instruction. The background
controller hardware simultaneously enables the user inter
face buffers and switches the program source from
background memory to foreground memory, which may be
either user memory or emulation memory as determined by
the memory mapper.

The process of entering and exiting background described
here is employed in all cases where it is necessary for the
host system to control the emulator processor. An example
of this is single-stepping, where the emulator is returned to
foreground for a single instruction cycle and then immedi
ately jammed into background. Continuous stepping and
non-real-time analysis are done in a similar manner.

Emulat ion Memory
The emulation memory consists of the memory emulator

control board and from one to four emulation memory
boards. Each fully loaded memory board contains 32K bytes

of static memory.
The memory controller interfaces the emulation memory

to the mainframe and the emulator system. The emulator
has the full bandwidth of the emulation memory. If the
mainframe wants to access the emulation memory, the
mainframe cycles are held off until the emulator completes
its memory cycle. A mainframe cycle is then attempted and
a flag is set if there was sufficient time to complete the
mainframe memory read. (Only mainframe read cycles are
allowed while the emulator is accessing the emulation
memory, since write cycles may not be interrupted.) This
feature lets the user dynamically watch the memory while
the emulation processor is running, provided that sufficient
dead time is available.

The memory controller provides mapping of the target
processor's address space into 64 blocks of equal size. This
is accomplished by placing a mapper RAM in series with
the six highest-order address lines from the emulator. Each
block can contain from 256 bytes to 32 ,768 bytes depending
on the address bus size and whether the data bus is 8 or 16
bits wide for the processor being emulated. The mapping
feature allows the available memory (as little as 8K bytes) to
be placed anywhere in the emulated processor's address
space. For an 8-bit processor, such as the 8080, each availa
ble block of memory can be placed anywhere from 0 to 64K
in IK increments. The mapper also provides status bits for
each block of memory. The status bits tell the emulator
whether that block of memory is RAM, ROM or undefined.

The memory controller sends a break to the emulator if an
illegal memory operation is performed, such as a write to
ROM.

Emulator Software
The purpose of the emulator software is to provide a

friendly interface for the user to verify program code in a
hardware configuration that emulates the end product, a
microprocessor-based system. Hardware resources used by
the 64000 System emulator software include the processor
emulator, the memory emulator (up to 64K bytes), and the
logic analyzer unit, which provides 256 states of address,
data, status, and count data.

The first task for the user is configuration assignment,
that is, specifying the configuration of the hardware (see
Fig. 5). This includes
1. Processor clock (internal or external)
2. Illegal opcode detection (enable or disable)
3. Real-time run control (enable or disable)
4. Memory assignment for 64 equal address ranges. Each

range can be assigned as emulation memory, user mem
ory, or illegal, and as RAM or ROM.

5. Simulated I/O control addresses for display, printer,
keyboard, RS-232-C interface, and disc file(s).

Once the hardware configuration has been set up, the in
formation can be stored in a user-specified file so that re
peated emulate sessions can be initialized without repeat
ing the configuration assignment task.

The next user task is loading program code. This is ac
complished by specifying the file name of the user program
code file. The configuration and/or load-memory file names
may be specified when the emulate command is initiated.
For example, the following command may be given:

OCTOBER 1980 HEWLETT-PACKARD JOURNAL 17

© Copr. 1949-1998 Hewlett-Packard Co.

in s lot Â« 5. Memori , s lot â€¢ 7. Analssis Â«l C O U N T T I M E A B S O L U T E

-eee -4ee -aae
RUM

4 R O M R O M R O M R O M C

5 â € ” R O M R O M R O M R O M D

6 E

Â«TER 00B0H je 0599H
+eei 88B3H CULL 063EH

+882 063EH LXI H, 3778H

+003 0641H fIDV A, M

+064 0642H MOV M, H

Â«ees ee43H am a
Â»ee6 0644H RNZ
+ e e ? O T B 6 H L D A F B C 6 H
+00B 00B9H XRI ceH
""> eeBBH JM een7H
+eie 0eA7H LDO 7AC0H
ten eeoDH MOV B, n
+012 00flBH LXI H, 3779H

+013 eeeEH XRA M
+ei4 eeAFH RRC
Â « 0 1 5 e e B 0 H J C 0 5 9 9 H

S T f l T U S : 8 0 S 0 R u n n i n g

sp-1 37FFH (sp-l,sp-2) 00B6H

hi 377SH (hi) 37H

hi 3778H (hi) 37H

sp 37FEH (sp,sp+l> 00B6H

a 34H

hi 3779H (hi) 77H

F ig . 5 . To use the emu la to r , t he use r mus t f i r s t spec i f y the
hardware and memory con f igura t ion .

F i g . 6 . A t y p i c a l t r a c e d i s p l a y s h o w i n g p r o g r a m f l o w i n
mnemonic form.

emulate CONFIG load memory PROGNAME

This command brings in the emulate software, initializes
the hardware resources (processor, memory, etc.) as previ
ously stored in CONFIG, and then loads memory with code
from PROGNAME.

After the emulator has been configured and program code
loaded, the user can start an emulate session. There are a
variety of ways for the user to debug program flow. These
include:
1. Execution control, such as run, step, stop, trace com

mands
2. Display options, such as registers, memory, trace
3. Modify options, such as registers or memory
4. Simulated I/O control.

Execut ion Control
Upon entry to the emulate module, the status of the pro

cessor emulator is ' 'ready' ' and the module is waiting for the
next command. Commands that may be used include run,
step and stop. These commands have the following syntax:

run [from address] [until term]

step [number instructions]

stop processor

run processor at current
program counter or speci
fied address. A stop term
may be specified,
step processor one instruc
tion or specified number
of instructions
stop processor

The processor may be stopped by an illegal opcode (if
enabled), an illegal memory reference, completion of the
analysis, or a user command.

Rea l -T ime T race Command
The trace command allows the user to view program

flow. The command is simply:

provided for user convenience. This means that any expres
sion may contain symbolic references. For example, the
following trace specification may be given:

trace after SYMBOL

The user may also make the following type of trace
specification:

trace after register c = 3

This causes the system to single-cycle the emulator proces
sor and perform the specified trace. The emulator software
tries to do the specified task in real time, but if the user
makes a specification beyond the real-time analysis
capabilities of the system, then the emulator processor is
cycled to perform the specification. The trace command can
be a complex specification. For example consider the fol
lowing trace commands:

trace in sequence OAOCH then 063EH
trigger after OOA7H

This specification can be accomplished in a pseudo-run

COUNT TIME ABSOLUTE

SEQN 8A0CH ADI tÂ»

SEQN 063EH LXI H, Â«Â»Â»*

AFTER 00A7H LOR 7KC0H

+0ei 00AAH MOV B,n
+002 eeflBH LXI H, 3779H

83 B0SEH XRfl U

94 00AFH RRC

9 5 0 0 B 0 H J C 0 5 9 9 H

+ 0 0 6 0 0 B 3 H C U L L 0 6 3 E H

+007 B63EH LXI H, 377BH

98 0641H MOV A, M

â€¢Â»39 eS42H MOV M.H

+ e i 0 0 S 4 3 H M W A

+011 0644H RNZ

+012 e0B6H LDi) FBC0H

+ 8 1 3 0 0 B 9 H X R I C

3778H (hi) 37H

3778H (hi) 37H

trace

The resultant trace display shows program flow in
menomic form and may look as shown in Fig. 6.

When the program code is loaded, the symbol file is also

i c e 0 f l 0 C H t h e n 0 6 3 E H t r

Fig . 7 . A t race d isp lay fo r a complex t race spec i f i ca t ion .

1 8 H E W L E T T - P A C K A R D J O U R N A L O C T O B E R 1 9 8 0

© Copr. 1949-1998 Hewlett-Packard Co.

K Â » (â € ¢
FÂ« J t l MOTH

mo 30 un TRON
MW 47 IW B.Â«

~ 21 IXI H. 377Â»
Â«c Â«n n
~ w c
D A J C Â « 5 9 9 H

I C D C f l U . Â « 6 3 E N
Â « 6 3 E 2 1 L X I H . 3 7 7 9 1
Â « 6 4 1 T E I O V O . n
Â « 4 2 7 4 M O V n . H
Â«643 Â«7 Â«NÂ« A
Â « 6 4 4 C e B N Z
 1 3 f l U Â » F B C e H

, J E E X R I C 8 H

77 FÂ»
7 7 F e

77 77 FÂ»
77 77 FÂ»
77 77 FÂ»
M 7 7 F Â »
Â«e 77 re
ee 77 Fe
ee 77 FÂ»
M 77 Fe

37 77 Fe

37 77 FB

37 77 Fe

37 77 Fe

2e 77 Fe

Ee 77 re

37 78 U * 1

37 78 18 t 1

37 78 IB (1

37 78 1* â€¢ 1

37 79 1* â€¢ 1

37 79 et â€¢ 1

3 7 7 9 e i e i e
37 79 ei â€¢ i e

Fig . 8 . A d isp lay o f the emula tor processor reg is ters .

mode, that is, the processor can run in real time to OAOCH
and stop, then run in real time to 063EH, and so on. The
displayed trace might be as shown in Fig. 7.

Display Options
The display options include registers, memory, and trace.

An example of a display of the processor registers is as
shown in Fig. 8.

Memory displays can be of any assigned memory. Modes
of display include absolute, mnemonic, offset, and
dynamic. The absolute mode displays memory in hexadec
imal and ASCII, as shown in Fig. 9. The mnemonic mode
displays memory as opcodes, mnemonically, as shown in
Fig. 10.

In the offset mode, displayed addresses are offset by a
specified value. The dynamic mode displays memory using
a sampled mode (not real time).

Trace displays show the results of analysis data. Modes of
display include:
1. Mnemonic, to display opcodes mnemonically
2. Absolute, to display all data in hexadecimal
3. Packed, to group data by opcode
4. Unpacked, to display all data without grouping
5. Address offset, to display addresses offset by a specified

3 0 C 9 7 0 4 7
er DO 99 95
C9 FB EE C9

E6 4Â» C2 07

79 2C 78 CD

ee 38 21 07
DO 32 Â«2 CO

DO OC 90 CD
37 7E 57 FE

FE 38 D8 FE
70 ZÂ£ 85 07

CD IB ec C2
82 DO BO 91
2F 32 ee 2C
3F zr 32 ei
3D 65 37 CE

21 79 37 BE

CD 3E ee 30

n 07 98 47

ee 21 63 37

75 99 78 31

Â«9 E5 FE 13

F7 81 FE 17

DF 92 21 63

26 DO 5B 92

3C C8 30 C0

FO E7 9B 77

63 91 78 FE

30 67 37 3D

30 66 37 C6

2C 32 7D 37

e e y 3 2 "

: Ã z G ! (T .
\~ . \ - \ M>1 :
ÃÃnÃ z'HG
<Â«B' Â»!c7
P . p n u * Â « i
Â » 8 ! ' * e ^
22ÃJ Â«1V4
Z . V r t _ V c
7 ~ U - Ã Z I f .
"8X~ <H;Â«
z . V Z 3 < Â «
M W B c l x ~
V Z V l : 3 7 -
/ 2 Â » , : f 7 F
' / 2 l , 2) 7

T r e c e c o m p l e t e

Fig . 9 . An abso lu te-mode memory d isp lay , showing memory
in hexadec imal and ASCI I .

F i g . 10 . A mnemon i c -mode memory d i sp lay , show ing mem
ory as opcodes.

value. This feature allows the user to view program code
with addresses as they are on the assembler listing.

Modify Opt ions
The modify commands include:

1. modify register, to modify any specified register
2. modify memory, to modify any specified memory to a

specified value.

Simulated I /O
Simulated I/O control allows the user to use 64000 input/

output facilities until the real I/O system can be interfaced to
the processor. Since this is done in a sampled mode, not in
real time, it is called simulated I/O. The general procedure is
to give the control address for the I/O device desired, fol
lowed by a status byte specifying the type of request. Any
additional parameters are placed after the control address.

The standard I/O devices are display, printer, RS-232-C
interface, keyboard, and disc files. Display requests are
open, close, roll lines 1-18 up and write to line 18, set row
(1-18) and column (1-80), and write to row/column. Printer
requests are open, close, and write line. RS-232-C requests
are set controls/modes, read status, read/write single byte,
and read/write buffer data. Keyboard requests are open,
close, set mode, read line, and read special keystrokes. Disc
file to are create (up to 6 files), open, close, position to
record, read/write record, and change file name.

Conclusion
The 64000 emulation system, with wholly separate host

and emulation processor architecture, buffered pod for iso
lation and protection from the user system, the background
memory concept, and a novel method of host and emulation
system interaction, provides a new level of transparency to
the user system and offers unrestricted use of the full ad
dress the interrupt systems, and all other functions of the
microprocessor being emulated. This, coupled with flexi
ble memory mapping, real-time analysis unit and an inte
grated software support package, provides a powerful emu
lation tool in a new microprocessor development system.

O C T O B E R 1 9 8 0 H E W L E T T - P A C K A R D J O U R N A L 1 9

© Copr. 1949-1998 Hewlett-Packard Co.

James B. Donnel ly
J im Donne l ly came to HP in 1967 w i th
s ix years exper ience as an e lec t ron ic

jg des ign eng ineer . He 's cont r ibu ted to
the design of several osci l loscopes and
t h e 1 6 1 0 A L o g i c A n a l y z e r , a n d d e
s igned the 8080, 8085, and 6800
emulators for the 64000 System. He 's
now a group leader in the 64000 lab .
J im was born in Pueb lo , Co lorado. He
served in the U.S. Air Force from 1 953 to
1957, then at tended Colorado State
Univers i ty , graduat ing in 1961 wi th a
BSEE degree. He 's a member o f IEEE
and a res ident o f Co lorado Spr ings,
Co lo rado . He ' s mar r i ed , has a daugh
ter , and en joys b icyc l ing and runn ing.

Gordon A. Greenley
Gordon Green ley came to HP in 1964
af ter rece iv ing h is MSEE degree f rom
the Univers i ty o f Colorado. He 's done
c i rcu i t des ign fo r sampl ing osc i l l o
scopes, sof tware deve lopment for the
1610A Log ic Ana lyzer , and so f tware
deve lopment fo r the 64000 Sys tem. A
native of Moline, Il l inois, he received his
BSEE degree in 1957 f rom the Univer
s i ty o f Colorado and worked severa l

Ã years as a service engineer before com
ing to HP. Gordon i s a pho tographer
who does al l of his own developing and
pr in t ing , both co lor and b lack-and-
wh i te . He a lso en joys swimming and

camping. He 's mar r ied , has two daughters , and l i ves in Co lorado
Springs.

Acknowledgments
Thanks go to Tom Saponas and Roger Cox, who contrib

uted their ideas in the early definition phase. Paul Sher
wood was responsible for the electrical design of the Z-80
emulator. Kip Stewart and Brad Yackle wrote the software
packages for the 6800 and Z-80 emulators, respectively.
Mechanical design of the emulator pods was done by Carl
Glitzke, Bobby Self and Bill Fisher. Special thanks go to the
production engineers and technicians and all the support
people without whom this project would not have been
possible.

Milo E. Muterspaugh
Milo Muterspaugh is a nat ive o f C leve
land, Ohio. He received the BSEE and
MSEE degrees f rom the Univers i ty o f
Arizona in 1 966 and 1 968, joined HP in
1968, and des igned the emula t ion
memory and tape casset te fo r the
64000 system. Mi lo spent four years in
the U.S. Air Force from 1959 to 1963. He
and h is wi fe l ive in Colorado Spr ings,
Colorado, and his interests inc lude ten
n is , b icyc l ing and amateur spor ts car
racing.

The Pascal /64000 Compi ler
by Izagma I . Alonso- Velez and Jacques Gregor i Bourque

PASCAL IS A STRUCTURED computer programming
language rich in control and data structures that
make programming natural, that is, the Pascal struc-

stures are close to the way one would express the same
concepts in English. The block structure of Pascal encour
ages the programmer to write modular and well-structured
programs, and features such as type checking force the
programmer to understand the program logic in detail be
fore and during program development. The fact that the
program is well structured and written in a way that is
natural to the programmer makes understanding of the
program easier, both at the time it is being developed (for
debugging purposes) and later when it needs to be changed
(for maintenance purposes). In summary, Pascal makes
program development easier and more enjoyable all the
way from the moment of conceptualization, through writ
ing and debugging the program, to maintaining it at a later
time.

Pascal/64000
A compiler is a program that translates a high-level com

puter programming language into low-level machine lan
g u a g e a E f f e c t i v e l y , t h e c o m p i l e r s i m u l a t e s a
high-level language machine.

The Pascal/64000 compiler is designed to translate pro
grams written in Pascal into code for microprocessors. It is
implemented as a subset of the language definition given by
Jensen and Wirth,1 but several options and extensions have
been added to the language to make it more appropriate for
microprocessor programming.

Extensions include type-changing capabilities, an
OTHERWISE clause for the CASE statement, the BYTE stan
dard type (for microprocessors with byte addressing
capabilities), some standard procedures such as SHIFT and
SHIFTC for manipulating data and ADDR for getting at the
address of a variable, separate compilation of modules (in
standard Pascal the whole program has to be compiled in a

2 0 H E W L E T T - P A C K A R D J O U R N A L O C T O B E R 1 9 8 0

© Copr. 1949-1998 Hewlett-Packard Co.

single module), constant expressions, and HEX, OCTAL and
BINARY bases.

One of the options available in the compiler allows the
user to declare variables and procedures as GLOBAL or EX
TERNAL for separate compilation. This also permits the use
of routines not written in Pascal. These routines can be
declared as EXTERNAL in the Pascal program and, as long as
the parameter passing is compatible with the Pascal calling
sequence, they can then be called and used from the Pascal
source program. The Pascal compiler subroutine calling
sequence is fully documented to allow the programmer to
use non-Pascal routines.

O t h e r i m p o r t a n t o p t i o n s i n c l u d e t h e c a p a b i l i t y o f
separating data from program code (for example, data can
be allocated to RAM and program code to ROM) and the
accessing of absolute addresses (can be used to implement
memory mapped I/O).

The following is a list of compiler options and a short
description of each. I t is important to note that the pro
grammer who prefers standard Pascal can ignore all the
options and extensions and write portable standard Pascal
programs.

$ANSI ON$, $ANSI OFF$
ON causes a warning message to be issued for any feature
of Pascal/64000 that is not part of standard Pascal. De
fault: OFF.

ASM_FILE
This option causes the compiler to create a source file
containing the equivalent assembler source information
of the program being compiled. This source file (named
ASM8085) is acceptable to the assembler for the 8085
microprocessor. If the LISTâ€”CODE option is ON the
ASM8085 file also contains intermixed Pascal source lines
as assembler comments. Default: OFF.

SDEBUG ON$, $DEBUG OFF$
ON causes all arithmetic operations with bytes and inte
gers to call external library routines, which insure that no
overflow, underflow, or divide-by-zero operations occur.
Default: OFF.

SEMITâ€”CODE ON$, $EMIT_CODE OFF$
ON specifies that executable code is to be emitted to the
relocatable code file. Default: ON.

SENDâ€” ORG$
Used after the ORG option to return the variable allocation
to the previous mode.

SEXTENSIONS ON$, EXTENSIONS OFF$
ON allows the programmer to use the microprocessor-
oriented extensions to the Pascal language. OFF disallows
the use of these language extensions. The extensions
include functional type changing, the address function,
the BYTE data type, built-in functions, SHIFT and SHIFTC,
and nondecimal constant representations. EXTENSIONS
ON turns RECURSIVE OFF and vice versa. Default: OFF.

SEXTVAR ON$, $EXTVAR OFF$
ON causes al l variables defined unti l the subsequent

EXTVAR OFF is encountered to be declared EXTERNAL. No
local storage is allocated in this module for such vari
ables. Default: OFF.

SGLOBPROC ON$, SGLOBPROC OFF$
ON causes all main-block procedures defined until the
subsequent GLOBPROC OFF is encountered to be declared
GLOBAL so they may be accessed by other modules. De
fault: OFF.

SGLOBVAR ON$, SGLOBVAR OFF$
ON causes all main-block variables defined until the sub
sequent GLOBVAR OFF is encountered to be declared
GLOBAL so they may be accessed by other modules. De
fault: OFF.

$LIST ON$, $LIST OFF$
ON causes the source file to be copied to the list file. OFF
suppresses the listing except for lines that contain errors.
Default: ON.

$LISTâ€”CODE ON$, SLIST^CODE OFF$
ON specifies that the program list file will contain the
symbolic form (assembly language) of the code produced
intermixed with the source lines. Default: OFF.

$OPTIMIZE ON$, SOPTIMIZE OFF$
ON causes certain run time checks to be ignored, such as
prechecking the range values of a CASE statement. This
mode will typically produce somewhat smaller and faster
modules that are susceptible to bad (out of range) data at
run t ime. This opt ion should only be used for wel l -
s t ruc tu red p rog rams tha t have been tho rough ly de
bugged. Default: OFF.

$ORG number$
All variables declared until END ORG is encountered
will be allocated sequential absolute addresses starting
from the number specified.

SPACES
Causes a form feed to be output to the listing file. Default:
NULL.

SRECURSIVE ON$, SRECURSIVE OFF$
ON causes all procedures declared until the subsequent
RECURSIVE OFF is encountered to be compiled to allow
recursive or reentrant calling sequences. OFF causes pro
cedures to be compiled in a static mode which does not
allow for recursive or reentrant calling sequences. De
fault: ON.

SSEPARATE ON$, SSEPARATE OFF$
ON enables the separation of program, constants, and
data, such that program code and constants are put in the
PROG relocatable area and data is put in the DATA relocat
able area. OFF puts all program code, constants, and data
into the PROG relocatable area. Default: OFF.

$TITLE "string"$
The first 50 characters of the string are moved into the
header line printed at the top of each subsequent page.
Default: NULL.

OCTOBER 1980 HEWLETT-PACKARD JOURNAL 21

© Copr. 1949-1998 Hewlett-Packard Co.

Program Debugging with Pascal/64000

by P . A lan McDonley

High - l eve l l anguages a l l ow a p rog rammer t o c rea te a lgo r i t hms
logical ly wi thout concern for processor-dependent steps. Dur ing the
d e b u g p h a s e o f p r o g r a m d e v e l o p m e n t u s i n g t h e t a r g e t m a c h i n e
emulator , a programmer must t race the program in machine code, a
language d i f ferent f rom the source code language, such as Pascal ,
tha t was used to des ign the a lgor i thm.

Pasca l /64000 generates re locatab le symbol ic in format ion dur ing
the code generat ion pass (pass 2) to help the user debug programs.
In par t icu lar , the user can request an expanded l is t ing (see Fig. 1) .
Th is l i s t ing conta ins the assembly language source s ta tements cor
responding to the machine code p laced in the re locatable f i le , in ter
mixed wi th the or ig ina l Pasca l source l ines. A l l o f the symbols and
labe ls used in the comp i le r -genera ted assemb ly l anguage source
lines from available during emulation to ease the user's translation from
the original Pascal to the machine code seen when tracing execution.

In Fig. 1, the lef tmost number is the source l ine number. Next is a
re locatable of fset , and next a level number. Below each l ine are the

Ã 0 0 0 0
2 0 0 0 0

Ãš I j O O

OÃšOO
OÃ) 00
, 'â€¢ '-, O
0 0 0 0
0 0 0 0

9 0 0 0 0
1 0 C ' O O O
i 1 0 0 C 1
1 2 0 0 0 1

" 3 0 8 5 "
P R Ã ¼ Ã ¼ R H M D R I V E R ;

0 0 0 0

V f l R
ÃœRG 340QH

D I S P L A Y 1 .
Â£H[._OftG
Ã E X T V A R U N *

HHSWER :EYTE;
oaoo

Ã E X T V A R O F F *
DISPLrtY_INDEX Â¡BÃ¯TE;

Â«GLOBPROC*
PROCEDURE [> ISPLAV_AM3t t lE i f i j

BEGIN
n M u o D J S P L A V _

NAME "DRIVER Pascal"

0] O F B Y T E ;

0 0 0 0
Ã š 0 0 3 C D

0009 EB

OOOrt CD

00 OD 1 1

0010 19

001 1 7A

0014 7?

IF DISPL

00 t 5 -3 H

|J O I D C A

ELSE D I 3

0020

0023

Ãš025

0 026

Ãœ 02 B

O 02B

ÃšG2E

LDlÂ·l

CALL

0 0 L X I

XCHG

CALL

3 4 L X I

DAD

? ? L O A

MOV

INDEX Ã SO THEN

LDA

MVI

DRIVEfi_D

Zbtoint
D, 1

Zinfcsub

Ãº, 34 Ã¼ Ori

D

flNSWER

D I S P L A V _ I N Â £ > E X : = D I S P L r t Y _ I N D e x - t)
C' R I VÂ£f i_[i
L , S O

1 8 0 0 0 0
1 9 0 0 0 0

0 0 3 0

E N D ;
0 0 3 0
0 0 3 1
. . -
O 0-7 1

0 0 3 1

SI
0 0 3 1
0 0 3 1
0 0 3 2
0 0 3 2
Ã š 0 3 2
0 0 3 2
0 0 3 2
0 0 3 2

LDR DRIVER_D

H L ' I 1

STA DRiVER_D

DISPLAY_AHSK_Li :

LXI H,DRIVER_P

MVI M, 1

DISPLAY AHSW L2 :

RET

L)ISPLAY_flNSWE_C .

DISPLAY_AHSWE_E :

DISPLAY AN3WE C>:

DRIVER;

DRIVEft_C:

DRIVER_E:

EXT

EXT

E "

END

DRIVER

Zbytele

Fig. 1 . Expanded l is t ing of re locatable code produced by the
P a s c a l / 6 4 0 0 0 c o m p i l e r c o n t a i n s a s s e m b l y l a n g u a g e s t a t e
ments in termixed wi th the or ig ina l Pasca l source l ines . Th is
makes p rog ram debugg ing eas ie r .

re locatable of fset , opcode and mnemonic equivalent of the code put
in the relocatable f i le,

The user in teracts wi th the emulator us ing s tatements such as:

or
r u n (r o m D I S P L A Y A N S W E R u n t i l L I N E _ 1 7

d isp lay memory ANSWER

where DISPLAY_ANSWER is the name of a global procedure in the listing
above, LINE_I? is a local symbol that the compiler generated for l ine
1 7 of the source, and ANSWER is the name of a global variable. Using
th is l i s t ing , the programmer can modi fy var iab les and execute seg
ments of a procedure or program separate ly , so that each par t may
be proved cor rect and the in teract ions more c lose ly fo l lowed.

G loba l and ex te rna l var iab les may be accessed by name dur ing
emulat ion, Local var iables are renamed by the compi ler and may be
inspected and modi f ied us ing the new name found in the expanded
listing. In the listing above DRIVER_D is the local name of DISPLAY_IN-
DEX. may use specific variables for debugging purposes, the user may
declare them to be GLOBAL. This option causes the symbol name (up
to 15 characters) to be sent to the l inker as a g loba l symbol in the
relocatable f i le.

T rad i t i ona l l y , when e r ro rs a re de tec ted du r i ng execu t i on , i n te r
mediate resul ts are pr inted at run t ime and errors are narrowed to a
f ew l i nes o f sou rce code , wh i ch can t hen be p roved i nco r rec t by
hand execut ion . Much t ime can be spent w i th th is type o f p rogram
development.

Run t ime l i b ra r y r ou t i nes may have f ea tu res t o a i d t he use r i n
d e b u g g i n g p r o g r a m s o r m a y b e d e s i g n e d f o r f i n a l p r o d u c t u s e ,
where would are not expected. A DIVISION BY o error message would
mean l i t t le to the grocery store c lerk at tempt ing to weigh tomatoes.

T h e P a s c a l / 6 4 0 0 0 d e b u g l i b r a r y p r o v i d e s t h e u s e r w i t h r a n g e
check ing f o r a r i t hme t i c ope ra t i ons , p ro tec t i on aga ins t m i suse o f
dynamic memory space, and detect ion o f some other types o f non-
fata l errors. When an error occurs, program execut ion is suspended
to a l l ow the inpu t pa ramete rs and p rogram f low a t the e r ro r to be
examined. By l isting local symbols in a fi le called Derrors, the value of
each reg is ter and the address o f the ca l l ing rout ine are d isp layed.
F ig. 2 an a sample l is t ing of the local symbols in Derrors. When an
e r ro r i s de tec ted , the p rog ram coun te r address a t wh ich p rog ram
execut ion s tops is d isp layed. Match ing th is address wi th the upper
addresses in the middle column of the Derrors listing reveals the type of
errorthat caused execution to stop. The lower entr ies in the r ightmost
co lumn of the l is t ing show the values of the regis ters passed to the

Z END PRÃœkKÃ±M
Z_ERK CASE

L ERR DIY BT 0

zlERRJFUTURE"

Z E.KR HEAP

Z_LRR_DVERFLOU
Z E R R l s E T
Z_Â£RRJJNDERFLOU
Z_P5W_FLAGS
Z_REG_A
Z _ R E G _ B
Z R E G C
Z_REG_D
Z _ R E G _ E
Z _ R E G _ H
Z _ K E G _ L
Z _ Z C A L L E R H
Z Z C A L L E R ~ L

O E B F H
ÃœEA7H
O E 9 C H
O E E 6 H
O E B 7 H
ÃœE94H

O E E A H
O E E D H
O e t t C H
O E E F H
O E E F . H
O E E 7 H
O E E 6 H

Ã œ :

H'.
, . - , .
. , : i
. B H
0 8 H
; i :
Ã’EH
A 4 H
.â€¢- ;

. M
' : :

â € ¢ -

â€¢:â€¢

F i g . 2 . A t y p i c a l l i s t i n g o f l o c a l s y m b o l s , p r o g r a m c o u n t e r
addresses, and register contents at the point where an error is
de tec ted . Knowing the address a t wh ich p rogram execut ion
stops, the user can determine the type of error f rom this listing.

2 2 H E W L E T T - P A C K A R D J O U R N A L O C T O B E R 1 9 8 0

© Copr. 1949-1998 Hewlett-Packard Co.

rout ine that detected the error .
B y v i e w i n g t h e s t a c k , t h e c u r r e n t s t a t e o f e a c h r e c u r s i o n i n t o

procedures and funct ions can also be determined. In al l . with the aid
of the 64000 emulators ai id Pascal , the product iv i ty of microproces
so r so f twa re des igne rs i s ra i sed subs tan t i a l l y . Pasca l /64000 has
been con f ig to suppor t the user w i thou t knowing the user ' s con f ig
u r a t i o n , p r o v i d i n g t h e t o o l s n e e d e d t o c o d e e f f i c i e n t l y f o r m i c r o
processors in a h igh- level language.

P . A l a n M c D o n l e y
A I McDon ley rece i ved h i s BSME de
gree from New Mexico State Universi ty
in 1 976. He joined HP the same year as
a p roduc t des igne r fo r t he 64000 Sys
tem, and he's now a software designer,
work ing on run t ime l ibrar ies for the
Pasca l /64000 compi le r . He 's taught
courses in compute r p rogramming in
APL. BASIC, FORTRAN, and Pascal .
Born in Oakland, California, AI is single
and l i ves in Co lo rado Spr ings , Co l
orado. His interests inc lude sai l ing,
a rchery , pho tography , p ipe o rgans ,
count ry danc ing, s tereo systems,
e lectr ic vehic les, e lectronics,

- and compu te r s .

$WARN OFF$, $WARN OFF$
ON specifies that the warning messages will be displayed
and written to the listing file. OFF specifies that only error
messages will be displayed and listed. Default: ON.

SWIDTH number$
The number determines the number of significant charac
ters in the source line. Additional characters are ignored.
Default: 120.

In accordance with the 64000 design philosophy, the
Pascal compiler is designed to be easy to use and have
capabilities that, combined with emulation, provide power
ful debugging tools. Any global procedure or variable can
be addressed by name from emulation, and program state
ments can be accessed by their Pascal program source line
numbers.

The compiler is evoked by pressing the softkey labeled
compile. The softkeys then guide the user to the available
options. The first line of the source program is a special
compiler directive that indicates to the compiler which
microprocessor it is to compile for. The microprocessor
name appears embedded in quotes: "8085", "Z80", and so
on. During compilation the status line of the 64100A dis
plays the compiler status at each point.

Implementat ion
Pascal/64000 is implemented in two passes (Fig. 1). The

first pass reads the Pascal source program and checks for
errors. If no errors are found the compiler generates data for
the second pass or code generator. This data consists of an
intermediate language (IL), which contains the information
from the source program that the second pass needs to
generate code for the given microprocessor. The code
generator then reads the IL and from it produces the relocat
able code to perform the operations described by the pro
grammer in the original Pascal source program.

If errors are found during the first pass, the compiler
writes the errors to the display. At the end of compilation
the display also makes available to the programmer a sum
mary of the meaning of each error found in the program. If a
list file has been indicated, the compiler includes informa

tion even errors in the list file as well. Errors are listed even
if the NOLIST option is on. In the event of errors the com
piler does not generate relocatable code; the code generator
is not evoked and only the listing second pass is executed.

Intermediate Languages
Intermediate languages have been implemented as zero-

address, one-address, two-address, and three-address
forms. Only the three-address form can explicitly describe
each of the source and result operands of a binary operation.
Each of the other methods has some implicitly specified
operands.

The zero-address form uses a data stack, where all source
and result operands are implicitly found. Loads and stores
are equivalent to stack push and pop operations. Binary
operations assume that both source operands are on the
stack before the instruction. They are popped after the oper
ation and the result is pushed onto the stack. This form of IL
is generally well suited to top-down or recursive-descent
compilers, since it allows for the generation of an IL for a
particular language construct at the first possible moment
after semantic recognition. It is the IL used in the popular
P-code versions of the portable Pascal compiler.

The one-address form uses a single implicit register as
part of each IL instruction. All operations may operate on
this single register or on this register and memory.

The two-address form uses a fixed number of registers
and allows an IL instruction to operate explicitly on a pair of

R e l o c a t a b l e
C o d e

Pascal

Fig . 1 . Pasca l /64000 is a two-pass compi le r . The f i rs t pass
r e a d s t h e P a s c a l s o u r c e p r o g r a m , c h e c k s f o r e r r o r s , a n d
p roduces an i n te rmed ia te l anguage (I L) . The second pass
genera tes code fo r a spec i f ied mic roprocessor .

OCTOBER 1980 HEWLETT-PACKARD JOURNAL 23

© Copr. 1949-1998 Hewlett-Packard Co.

registers or on a register and memory. A pair of operands
may be specified for each instruction and the result of an
operation goes into one of the specified operands (usually
one of the explicit registers).

By allowing each source and result operand to be
explicitly described, the three-address form permits the IL
description of a program to be more suitable for translation
to target processors with any type of stack or register ar
chitecture. The other three forms with their implicit result
operands are more conveniently translated to target
machines with a stack architecture (zero-address IL),
single-register architecture (one-address IL), or multiple-
register architecture (two-address IL).

Pascal /64000 Intermediate Language
The Pascal/64000 compiler generates relocatable object

code for microprocessors from an intermediate language
(IL) temporary file created by the compiler during pass 1.
This IL file is logically equivalent to the original source
program. The code generator module (pass 2) creates the
machine-specific object code relocatable file from this IL
file.

The Pascal/64000 compiler uses a three-address (or qua
druples) IL. The four parts of a quadruple are the instruction
or operation, the leftmost source item, the rightmost source
item, and the result. For example, the Pascal expression:

A: = B-C;

would cause generation of the intermediate language
quadruple:

SUB B,C,A Subtract C from B, store result in A.

For comparison, the equivalent code using a zero-address
IL (the P-code portable Pascal compilers use this form)
would generate the following IL instructions:

LOAD B Push va lue o f B on to s tack
LOAD C Push va lue o f C on to s tack
S U B S u b t r a c t f i r s t s t a c k i t e m f r o m s e c o n d , p o p

both, push result onto stack
S T O R E A P o p s t a c k i n t o A .

F o r a o n e - a d d r e s s I L t h e f o l l o w i n g i n s t r u c t i o n s a r e
equivalent:

LOAD B Load accumula to r wi th B
S U B C S u b t r a c t C f r o m a c c u m u l a t o r
STORE A Store accumulator into A.

For a two-address IL the following instructions are equiva
lent:

LOAD r,B Load register r with B
SUB r ,C Subt rac t C f rom reg is te r
STORE r,A Store register into A.

For this example the number of IL instructions for each
form of IL is in the ratio of 4:3:3:1 for zero-address, one-
address , two-address and three-address forms, respec
tively. Some important results for optimization can be in

ferred from the compactness of quadruple IL representa
tions. It is time-consuming for a code generator to analyze
multiple IL instructions to detect patterns for optimization.
Since the quadruple form of IL packs more information in a
s ingle ins t ruc t ion , i t s impl i f ies the ef for t to genera te
reasonably efficient object code for a specific target micro
processor.

Each operand of a Pascal/64000 intermediate language
quadruple has an explicit operand type, which specifies its
addressing mode as a memory location (absolute, relocata
ble or external) or as an implied address (immediate con
stant or temporary pseudo-address). The mapping of these
operand types to a specific microprocessor instruction set is
left to the code generator. Some processors with limited
memory accessing modes use a purely static (but relocata
ble) form for all explicit memory references. For these pro
cessors recurs ion i s suppor ted by addi t ional run t ime
routines to permit safe recursive calling sequences. For
other processors with more sophisticated memory access
ing modes (par t i cu la r ly i f reg i s te r and s tack re la t ive
addressing is available) data and parameters are allocated to
the stack in a more traditional dynamic local memory allo
cation scheme.

Most optimizations implemented by the Pascal/64000
compiler are local optimizations performed by the pass 2
code generator specific to the target processor. However,
some optimization of expression evaluation is done during
pass 1. Expressions are built into trees as they are being
parsed . The IL genera tor t raverses these t rees before
generating the IL instructions and attempts to minimize the
number of temporary results needed to evaluate the expres
sion. These expression trees are also used to discover con
stant expressions, which are folded into a single constant
before any IL is generated. It is possible to perform some
global optimizations during pass 1 , and this may allow for a
reduction in the size of the IL file.

Code Generat ion
The intermediate language representation of Pascal/

64000 contains all the information needed to create
processor-specific code equivalent to the source program.
The translation of the intermediate language to relocatable
code for a specific target microprocessor is guided by the
limitations of the target processor's instruction set.

All programs must eventually fit into a system that has
been implemented in a specific hardware configuration,
usually with some fixed memory size. Generally, if more
memory is required in a specific implementation, it will
cost more to design and produce that system. The speed of
program execution is generally less important, in the sense
that specific program modules that consume a large
percentage of program execution time can almost always be
reprogrammed to execute faster. With these observations
concerning the relative importance of memory use and
execution time, code generation patterns have been chosen
to minimize memory use rather than execution time where
obvious tradeoffs can be made.

Two areas where the memory minimization objective can
have a significant impact on the structural form of the code
generation patterns are the use of static versus dynamic
allocation of memory for parameters and local variables and

2 4 H E W L E T T - P A C K A R D J O U R N A L O C T O B E R 1 9 8 0

© Copr. 1949-1998 Hewlett-Packard Co.

The 64000 Linker

by James B. Stewart

The 64000 l inker takes re locatab le ob jec t f i les generated by the
assemb le r o r Pasca l comp i l e r and comb ines t hem to p roduce an
execu tab le abso lu te f i l e . The l i nker reso lves symbo l i c re fe rences
between relocatable f i les (l inking). It also assigns relocatable code to
an absolute locat ion in the target processor 's logical address space
and changes memory re fe rences to re fe r to the abso lu te memory
l oca t i ons (r e l oca t i on) . The l i nke r was des igned w i t h t h ree ma jo r
goals: to support a wide variety of microprocessors, to be easy to use,
and to prov ide the user wi th a complete set o f features to fac i l i ta te
l ink ing re locatab le modules for complex microprocessor sys tems.

The des igne r o f a m ic rop rocesso r sys tem needs to con t ro l t he
locat ions of code and data in memory. Before the widespread use of
l inkers, th is was done by coding the ent i re system in one assembly
language program wi th f ixed absolute addresses. A smal l change in
the code requ i red tha t the ent i re sys tem be reassembled. Bes ides
being t ime-consuming, this made i t d i f f icul t for mult ip le designers to
work concurrent ly on the same sof tware.

A r e l o c a t i n g l i n k e r o v e r c o m e s t h e s e p r o b l e m s . E a c h p r o g r a m
s e g m e n t m a y b e d e v e l o p e d a n d a s s e m b l e d i n d e p e n d e n t l y . T h e
designer speci f ies to the assembler that the code i -s re locatable. At
l ink t ime, the relocatable code from mult iple f i les is concatenated into
one cont inuous p iece o f memory .

The 64000 assemb le r and l i nke r p rov ide t he use r w i t h seve ra l
re locatable areas. The assembly language statements ORG, PROG,
DATA, to COMN define the repeatabil i ty of code. ORG defines code to
be absolute or nonrelocatable. PROG and DATA are general-purpose
relocat ion counters that al low the user to part i t ion code to be loaded
at different memory locations, for example all program in ROM and all
data in RAM. COMN specif ies that the data be relocated to the same
starting address as the COMN from all other relocatable modules. This
is s imi lar to unnamed COMMON in PORTAN. When the re locatab le
modules are l inked, the user provides the start ing addresses for the
PROG. DATA, and COMN relocatable code. To provide greater flexibility,
the user may define several PROG, DATA, and COMN areas. For exam pie
the PROG, DATA, and COMN areas for files A and B may start at memory
locat ions 1000H, 2000H, and 3000H respect ively, and for f i les C and
D at locat ions 8000H, EOOOH, and 3000H.

A load map and a cross-reference table may be generated for each
l ink. The load map (Fig. 1) describes the final memory locations of all
r e loca tab le f i l es . The l i nke r a l so keeps t rack o f memory use and
warns mes user i f any conf l ic ts exist . A "memory over lap" error mes
sage i s g i ven fo r any memory tha t has been a l l oca ted more than
once.

A feature of the 64000 l inker known as no- load al lows the user to
d e s i g n f i l e s i n t o t h e s y s t e m . A n y s u b s e t o f t h e r e l o c a t a b l e f i l e s
may be declared to be no-loaded. This subset is l inked and relocated
wi th the f i les that are not no- loaded. The only d i f ference is that the
a b s o l u t e f i l e g e n e r a t e d b y t h e l i n k e r c o n t a i n s n o c o d e f r o m t h e
no-loaded relocatable f i les. For example, suppose the user has 6000
bytes I t code and data , but on ly 4000 by tes o f phys ica l memory . I t
may be p ieces to use over lays to par t i t ion the program in to p ieces
t ha t w i l l f i t i n 4000 by tes . Th i s i s done by c rea t i ng two sepa ra te
absolute f i les. The f i rst contains one set of relocatable rout ines plus
the shared rou t ines and da ta . The second con ta ins the rema in ing
relocatable routines, also l inked to the shared routines and data. The
s h a r e d r o u t i n e s a n d d a t a w o u l d b e n o - l o a d e d i n t h e c a s e o f t h e
second absolute f i le.

A l l 64000 emula tors a l low the user to debug programs us ing the
symbols f rom the source code. This is part icular ly useful when deal
i ng w i th the re loca ted code , s ince the use r doesn ' t have to know

1000

2000

3000 j

Program A

Program B

Common
A, B, C, D

8 0 0 0

EOOO

Program C

F ig . 1 . A l oad map may be genera ted each t ime the 64000
l inker is used. The map shows the f inal memory locations of al l
relocatable f i les.

where in memory the l inker put the code. Any location in memory may
b e r e f e r r e d t o b y i t s s y m b o l i c n a m e o r i t s a b s o l u t e a d d r e s s . T o
accompl ish th is , the assembler outputs the ent i re symbol tab le fo r
each source program. When the relocatable code is l inked, i ts reloca
t i o n t o a r e s a v e d s o t h e y m a y b e u s e d d u r i n g e m u l a t i o n t o
f i nd t he abso lu te va lues o f symbo ls . The l i nke r a l so gene ra tes a
symbol f i le of global symbols. This f i le has two uses. It is used by the
emulator , a long wi th assembler symbol tab les , to prov ide symbol ic
debugg ing. I t may a lso be used in subsequent l inks to pre load the
l inker 's symbol table. This feature has uses in over lays and in reduc
ing l ink ing and download t ime in la rge systems.

A table-dr iven architecture al lows the l inker to support a var iety of
t a r g e t t h e I n f o r m a t i o n i n e a c h r e l o c a t a b l e f i l e d e f i n e s t h e
in tended target processor . Each suppor ted processor cor responds
to a system disc file. This file is used by the linker to configure itself for
the par t icu lar processor .

The conf igurat ion f i les contain two basic types of information: gen
e r a l i n f o r m a t i o n s u c h a s w o r d w i d t h a n d a d d r e s s i n g s p a c e , a n d
tables or sequences of instruct ions forthe l inker. The dif ferent instruc
t i on t ypes and address ing modes a l l owed in the ta rge t p rocesso r
correspond to entry points in the l inker tab le.

Wi th in the assembler -genera ted re loca tab le f i les , each operand
address is tagged as ei ther absolute (no relocat ion), PROG relocata
ble, DATA relocatable, COMN relocatable, or EXTernal reference. Re
locatable and external tags contain a reference to an entry point in the
processor-dependent l inker tab le . Knowing the re locatab i l i ty o f the
operand, the l inker f i rst computes i ts absolute address, independent
o f the l inker processor . I t then fo l lows the inst ruct ions in the l inker
tab le to genera te the ac tua l operand. The tab le a l lows opera t ions
such as sh i f t s , masks and compares , wh ich may be per fo rmed on
var ious operands such as the absolute address, the current program
counter , or constants. In the 6800 microprocessor, for example, the
d i rec t add ress ing mode requ i res tha t an ins t ruc t i on ' s operand ad
dress be in the range 0Â«address=s255. The l inker table for handling
the d i rec t address ing mode per forms the fo l lowing operat ions:

OCTOBER 1980 HEWLETT-PACKARD JOURNAL 25

© Copr. 1949-1998 Hewlett-Packard Co.

L O A D W O R D = A B S O L U T E _ A D D R E S S
TEMP = OFFH
IF LOADWORD > TEMP THEN "Address ou t o f range"
OUTPUT = LOBYTE (LOADWORD)
PROGRAMâ€”COUNTER = PROGRAMâ€”COUNTER + 1
RETURN

The var ious inst ruct ion formats and address ing modes for a l l sup
p o r t e d o f a r e i m p l e m e n t e d u s i n g s i m i l a r s e q u e n c e s o f
s imple instruct ions. The obvious advantages are the speed and ease
wi th which the l inker can be conf igured to support addi t ional proces
s o r s . T y p i c a l l i n k e r t a b l e s a r e g e n e r a t e d w i t h 2 0 t o 5 0 l i n e s o f
p rocessor -spec i f i c code.

James B. Stewart
Software designer Kip Stewart came to
HP in 1977. He was born in B ingham-
ton, New York and attended the Univer
si ty of Colorado, receiving a BA degree
in mathemat ics in 1976. Current ly on
leave from HP, he's serving as a visiting
instructor in e lectr ical engineer ing at
Nor th Caro l ina Agr icu l tura l and Techni
cal State University. Kip is married, has
one ch i ld , and makes h is permanent
home in Colorado Spr ings, Colorado.
Outs ide of work he spends t ime wi th a
chu rch you th g roup and en joys vo l
leybal l , swimming and sk i ing.

the use of run time library subroutines to perform many
relatively simple operations. The 8085 microprocessor, for
example, is able to access memory directly as bytes or words
with immediate two-byte absolute (relocatable) addresses,
and it may access bytes of memory indirectly through regis
ter pairs. Dynamic allocation of local data using stack rela
tive addressing must be performed by in-line code or
through subroutine calls using the stack offset value as a
parameter. A static allocation scheme permits access to
local variables or parameters with an arbitrary offset from
some (relocatable) label with a direct access instruction
which requires only three bytes. This permits access to both
byte and word simple variables. Since Pascal programs
must access many variables, this reduction of code size by
40 to 50% for each variable access can save a significant
amount of memory in a large program. This static allocation
of local variables does add additional code and run time
overhead for the user requiring recursive calling sequences.
These additional memory and time considerations are a
reminder to use recursion only where absolutely necessary.

The 8085 instruction set does not support arithmetic for
16-bit signed numbers. IF I, J, and K are type INTEGER, the
statement:

K:=I-J-K

generates the following 8085 code, calling library routine
Zintsub to perform the subtraction operation:

LHLD TEST1_D
XCHG
LHLD TESTl_D+2
CALL Zintsub
XCHG
T.HT.DTEST1 D + 4
CALL Zintsub
SHLDTESTl_D+4

put I in register HL
move I to register DE
put J in HL
subtract J from I
put result in DE
get K
subtract K from (I-J)
store the result to K.

The 16-bit subtraction routine from the non-debug library
is a relatively short program:

Zintsub PUSH PSW SAVE ACCUMULATOR
OCX H
MOV A,H
CMA
MOV H,A
MOV A,L
CMA

TWO'S COMPLEMENT REG HL (Y)
COMPLEMENT HIGH BYTE

COMPLEMENT LOW BYTE

MOV L,A
POP PSW GET BACK ACCUMULATOR

AND FLAGS
DAD D X+(-Y) ADD DE AND HL
RET

Using in-line code it would take eight bytes of code to
perform the integer subtraction operation each time it is
needed. Using the library approach above, it takes eleven
bytes for the library routine and only three additional bytes
for the subroutine call each time a subtraction is required.
After only three integer subtractions the program is already
four bytes smaller. For ten subtractions in-line code genera
tion would have added 80 bytes of code to the program,
while library calls add only 41 bytes.

This comparison of in-line code versus library sub
routines for even simple operations accounts for a signifi
cant memory savings when applied to the most commonly
used operations that cannot be accomplished in a few bytes
of instructions on the target machine.

When the linker creates an absolute file, it tries to find any
unsatisfied symbols or routines in a specified library file. It
only needs to append run time library routines that have
been specifically requested. The actual code size added to
an absolute file from the run time library is typically much
smaller then the 4K bytes required for loading the entire
library.

If a user feels the need for a run time library routine that
performs some special operations or is otherwise tailored to
the specific application, the user can write another version
of any run time library routine using the same name as that
used in the library. The new relocatable file is then loaded
with the linker in a specific location and the linker will not
load the library module of the same name. Thus the run time
library serves as a basis for the user's program environment
and may be used or improved as the program requirements
evolve.

Performance
A certain amount of overhead is expected whenever a

high-level language is used. One can hardly claim that it is
possible to write all programs in Pascal in such a way that
the code generated by the compiler will be as efficient as the
code that would have been obtained by direct assembly
coding. However, as described above, some optimization
has been implemented to generate efficient code: the con-

2 6 H E W L E T T - P A C K A R D J O U R N A L O C T O B E R 1 9 8 0

© Copr. 1949-1998 Hewlett-Packard Co.

Low
Memory Compi ler Nucleus (2K)

8085 Pass 2 (5K)

Cross
Reference

(1K)

Pass 1 (14K)
IL Generator

(32K of RAM)

Code
Generator

(12K)

I n i t i a l - O p t i o n s C o n s t a n t E r r o r
i z a t i o n H a n d l e r E v a l u a t i o n H a n d l e r

(1 K) (1 K) (1 K) (1 K)

Pass 1 Symbol Table Space (7K)

Relocatable
Generator

(2K)

Not Used
(10K)

Cross
Reference

Symbol
Tab le
Space
(21 K)

Pass 2 Symbol Tab le Space
(5K)

High
Memory

Operat ing System (8K)

F i g . 2 . T h e P a s c a l / 6 4 0 0 0 c o m
pi ler uses only 24K words of mem
ory. Parts of the compiler are over
laid by other parts as shown by this
d iagram. The compi ler nuc leus is
n o t o v e r l a i d . (T h e 8 K o p e r a t i n g
sys tem memory is no t par t o f the
compi ler area.)

tents of registers are remembered over operations, short
jumps are implemented for predefined labels that are
within range, the overhead for parameter passing is in the
receiving routine, and so on. In short, the Pascal/64000
compiler generates good space-efficient code.

The speed of the compiler is 400-600 lines per minute,
depending on the way the programmer writes the program
and what kind of program is being written. The compiler
speed may also vary from microprocessor to microproces
sor, since it depends on the level of difficulty and the
amount of work required to generate code for the given
microprocessor.

By overlaying different parts of the compiler, it was made
to fit in 24K words of storage without degrading its perfor
mance. A diagram of the compiler overlay structure is given
in Fig. 2.

Conclusion
Because of the inherent inefficiencies involved in using a

high-level language, users of small computers have in the
past written their programs almost totally in assembly lan
guage. Pascal/64000 is an alternative. It has all the well-
known advantages of a high-level language in addition to
space-efficient code generation.

The Pascal/64000 compiler is implemented as a subset of
the basic definition of standard Pascal with extensions and
options that make it possible for microprocessor program
mers to use a high-level language efficiently. The pro
grammer can ignore the extensions and options and write
standard Pascal, if desired.

Currently the 8080/8085 and Z80 microprocessors are
supported and others will be supported in the future.

Acknowledgments
We wish to thank Martin Smith for major contributions to

the development of the Pascal/64000 compiler. He is the
principal designer and implementer of the intermediate
language and the first pass of the compiler. Early efforts in

J a c q u e s G r e g o r i B o u r q u e
Greg Bourque has been a pr inc ipa l de
ve loper o f the Pascal /64000 compi ler
s ince he jo ined HP in 1977. A nat ive of
Amityvi l le, New York, he received a BS
degree in astronomy from Cal i fornia In
stitute of Technology in 1 968 and an MA
degree in astronomy from the University
of Cal i forn ia at Los Angeles in 1970.
Be fo re jo in ing HP he worked as a nu
clear astrophysicist and as a scientif ic
programmer and computer consul tant .
He 's a member o f AAAS and the HP
Pascal s tandard task force, and has
lectured in FORTRAN at Colorado State
Univers i ty . Greg is marr ied, has two

chi ldren, and l ives in Colorado Spr ings, Colorado. He f i l ls h is spare
t ime with rais ing his fami ly, gardening, landscaping, astronomy, and
working on his PhD thesis, which he expects to complete next year.

Izagma I. Alonso- VÃ©lez
I zagma A lonso-Ve lez was bo rn i n Co
lumbus, Georgia and grew up in San
Juan, Puerto Rico. She graduated from
the Univers i ty of Puerto Rico in 1974
w i th a BS degree in mathemat ics and
worked as a sc ient i f i c p rogrammer fo r
the nex t th ree years . In 1978 she re
ce ived an MS degree in compute r sc i
ence f rom Georgia Inst i tute of Technol
ogy and jo ined HP's Colorado Spr ings
Div is ion as a sof tware development en
g ineer . She 's been respons ib le for
major por t ions of the Pascal /64000
compi ler . Izagma l ives in Colorado
Spr ings, but has t raveled a l l over the

wor ld . She 's f luent in Spanish and Engl ish and has some fac i l i ty in
four craf ts languages. Her in terests inc lude current events, craf ts
(lea ther , macrame, d rawing, sewing) , danc ing , and p lay ing cards .

OCTOBER 1980 HEWLETT-PACKARD JOURNAL 27

© Copr. 1949-1998 Hewlett-Packard Co.

the compiler design phase were greatly aided by an HP
3000-based Pascal compiler obtained from Roger Ison of
Desktop Computer Division. Co-op students Cheryl Brown
and Cheryl Fallander were helpful in testing the compiler
and in implementing the run time libraries.

We wish to recognize the HP Pascal Standard Task Force
for its efforts in defining a standard Pascal language for

applications programming. This language standard will
assure the continued use of Pascal on HP products within
HP and by its customers.

Reference
1. K. Jensen and N. Wirth, "Pascal User Manual and Report,"
Springer-Verlag, 1974.

An Assembler for All Microprocessors
by Brad E . Yack le

THE FIRST PRACTICAL PROGRAMMING TOOL
offered to the software designer was the assembler.
It is a very basic level of programming, since each

instruction usually controls a single function of the proces
sor. Then higher-level languages were introduced, allow
ing programmers to generate software faster and easier, and
making code more readable and transportable. However,
assemblers will always be part of a computer system, espe
cially a microprocessor system. Assembly-level program
ming is very close to the machine language of the processor
and is therefore good for interacting with hardware and I/O
devices. Since assembler code allows complete control of
the processor, the assembly language programmer can gen
erate the most efficient code possible. Assembly-level pro
gramming is the only practical programming tool for cus
tom or bit-slice processors.

The number of microprocessors on the market and being
developed by industry is very large. Each processor has a set
of instructions that control its functions. Unfortunately,
each processor is different; it has different instructions,
registers, speed, memory size, and so on. One assembler
cannot possibly be general enough to understand the as
sembly languages of all processors, so typically a new as
sembler must be generated for each.

The prospect of generating a new assembler for each
processor's assembly language is highly undesirable. First
there is the problem of writing the basic assembler to handle
the syntax of assembly language programming. The assem
bler must handle I/O operations as well as parse the operand
fields. It must be able to handle expressions , generate object
code, and give error messages when necessary. All as
semblers have the same basic syntax for instructions. In
general, assemblers expect an optional label field followed
by an opcode and then some type of operand. However,
each assembler must recognize a different set of instruc
tions along with register and/or address-type operands.
Therefore, code must be added and/or modified to handle
each new processor. Each time this is done, there is a possi
bility of generating new errors in the common assembler
functions. Later, if modifications or changes are necessary,
all of the assemblers may have to be modified.

Thus, a new assembler for each new processor language

introduces two software problems, arising from the dupli
cation of code. One is the introduction of new errors when
translating code from the basic assembler to each new one,
and the second is the problem of software update which is
multiplied with each duplication of code.

64000 Assembler
The assembler for the 64000 Logic Development System

is designed to be flexible enough to understand the instruc
tion set of any processor's assembly language. This means
that the 64000 assembler contains some processor-
dependent code to handle the variety of instruction sets.
However, the problem of software duplication is minimized
by making the majority of code processor-independent and
putting the dependent code in tables that the assembler
reads to understand the instructions. An assembler like this
is known as a table-driven assembler. Its main functions are
the same for all languages, and it contains additional infor
mation in the form of tables to understand processor-
dependent instructions.

The common functions of the assembler cover the in
teraction with the host computer system. This includes
reading and parsing the source file. The assembler handles
all of the input and output file operations dealing not only
with the source file but the relocatable and list files as well.
It parses the source lines and identifies the instructions for
the particular language. It keeps a symbol table containing
symbols along with associated values and symbol types. It
checks operand fields and flags errors if syntax and/or ad
dress rules are violated. The assembler is designed to be as
general as possible to allow for the minor differences in the
syntaxes of different processors' assembly languages.

The part of the 64000 assembler that interprets table code
to understand each processor's instruction set consists of a
set of routines that use standard assembler functions but
read the table code to decide which functions to perform.
Thus the assembler can be redefined simply by reading
different table code.

Assembler Operat ion
The 64000 assembler reads the first line of the source file

and expects to find a key that tells it which type of processor

2 8 H E W L E T T - P A C K A R D J O U R N A L O C T O B E R 1 9 8 0

© Copr. 1949-1998 Hewlett-Packard Co.

language is in the file. It then reads another file that con
tains the table code for the language. The table code can be
broken into two parts, the opcode set and the set of rules
governing the operand field.

Each processor has a set of instructions, which are given
names by the designers. These names are commonly called
the opcode or mnemonic set of the processor, and are gener
ally abbreviations of the functions performed. For example,
let us suppose we have a processor that has an accumulator
and an instruction to load data into it. An assembly lan
guage statement to do this might look like the following:

LDA DATA

where the opcode is LDA, which means load (LD) the ac
cumulator (A) with data found at the address pointed to by
the symbol DATA. The opcode set of the processor is com
posed of all of its opcodes, including a set of standard
opcodes that control program listing, external and global
symbols, the macro facility, and other functions.

Once an opcode is identified the assembler checks to see
whether it is an instruction that requires table code to un
derstand the operand. If so, control is transferred to the
special routines that use the table code to control the as
sembler. The tables instruct the assembler how to parse the
operand field, what values to expect, how to generate the
object code, and what error messages to generate, if any.

Since a set of tables is the only requirement necessary for
the assembler to recognize different languages, we decided
to make this capability available to the user. A user can
generate an assembler for a custom chip or bit-slice proces
sor, or enhance existing assemblers with custom instruc
tions. To generate a custom assembler the user must de
scribe the syntax of each instruction and how to generate
the object code. The 64000 assembler will take care of all
system overhead. It will generate relocatable files that can
be handled by the system linker and will produce list files
like any of the other system assemblers.

Table Processor
The part of the assembler that handles the table code is

really a type of simple processor itself. It takes the specially
coded table information and decodes it into instructions for
the assembler. These instructions call assembler functions,
such as expression handlers and object code generators.
They also allow for arithmetic operations and testing of the
results.

The best way to show how the process works is to give a
simple example. Let us suppose that we have a processor
that has two instructions that have the same type operand
and addressing modes. We will call them LDA and STA, for
load accumulator and store accumulator. The object code
forms of these instructions are both 8-bit opcodes and re
quire one register as their operand. The value of the register
is combined with the eight bits of opcode and resides in the
third and fourth bit positions as follows:

OOrrOOOO

The user will predefine to the assembler the registers that
are legal for the instructions, and will give these registers a

value and a type. Let us assume that the user makes the
obvious choice and defines the registers as type "register."

REGISTERS
A = 00
B = 01
C = 10
D = 11

The object code that the assembler is expected to produce is
also defined:

LDA = 10000000
STA = 11000000

The assembler will now recognize these mnemonics on
source lines and pass the defined object code to the next set
of table instructions for processing. The table instructions
process the code as follows.

EXPRESSION General-purpose expression
parser

IF TYPE <> REGISTER THEN GOTO OPERANDâ€”
ERROR

Get the register number
Move to proper position
Combines with opcode value
Generate the code

LOAD VALUE
SHIFTâ€”LEFT 4
OR OBJECTâ€”CODE
GEN_CODE ABS 8,

ACCUMULATOR
DONE

OPERANDâ€”ERROR
ERROR IO_ERR
DONE

Signal to return to assembler

Invalid operand found
Return

This routine first calls a general-purpose expression
handler designed to parse expressions and return a value
and a type. Next it checks the type returned to make sure it is
one of the predefined registers. If the operand is legal the
value of the register is shifted left four bits and combined
with the object code passed by the main assembler. Line 6
generates eight bits of absolute data to the relocatable file
which is the desired result of the instruction. If an error is
found then an error message is generated from the instruc
tion in the ninth line.

B r a d E . Y a c k l e
Brad Yackle joined HP in 1 977 after re
ce iv ing the MS degree in computer sc i
ence from the University of California at
San ta Barba ra . He a l so has a BS de
gree in computer sc ience f rom Cal i fo r
n ia Polytechnic Univers i ty in San Luis
Ob ispo. Brad des igns so f tware a t HP
and en joys sk i ing , sw imming and rac-
quetball as outside activit ies. A native of
Abbington, Pennsylvania, he 's marr ied
and l i ves in Co lo rado Spr ings , Co l
orado.

OCTOBER 1980 HEWLETT-PACKARD JOURNAL 29

© Copr. 1949-1998 Hewlett-Packard Co.

Conclusion
In conclusion, the 64000 assembler is a very general

table-driven assembler. It is easy to maintain and expand to
handle new processors. This increases its reliability, since
the majority of its code is processor-independent and well
tested. This also aids in software update, since we are not

faced with duplication of code. Assembler tables can be
changed without affecting the main assembler, and the user
has the ability to enhance existing assemblers or generate
others for new languages.

Viewpoints

Chuck House on the Electronic Bench

THE ELECTRONICS INDUSTRY is entering the age of VLSI
(very large-scale integration). The potential of VLSI is
staggering. For example, we'll have extremely powerful

32-bit parallel computers with one-megabyte instruction rates on a
single chip for a few hundred dollars within a very few years. We'll
go from 16K to 64K to 256K to 1M RAM chips in the same time
frame. We'll also be facing some great design challenges because of
these be advances. The software crisis is already said to be
upon us, since the cost of developing correct code for ROM-based
designs far outweighs the cost of the silicon for even relatively
high-volume products. The 64000 Logic Development System de
scribed in this issue was created to address these problems.

The 64000 System and the needs of VLSI portend a dramatic shift
in emphasis in the types of tools available for designers. For years,
instrumentation has provided analysis capability for use after the
initial design was realized. We are now starting to create synthesis
tools, which aid the designer in realizing products faster, more
accurately, and more productively. This shift from analysis tools to
synthesis tools is fundamental to our ability to take advantage of
the "macro" power of VLSI. It is conceptually impossible to realize
effective designs with millions of gates and millions to billions of
coded instructions in software without new automated techniques
to replace the "brute force" techniques employed in our industry so
far.

A quick example might be the familiar rectangle layouts for
emitter, base, and collector of a transistor. They are replicated
many times, and relocated in tedious fashion by a designer or
draftsman as a function of the desired electrical circuit. True, this
process has been automated in recent years, primarily with
computer-aided artwork generators that include checking al
gorithms to assure that the process design rules are followed. This
has eliminated some of the drafting and spatial relations tedium,
but it has had little impact upon the creative design process. A
more of step might be the macro-cell approach: a series of
functional cells is preprocessed in silicon, and a simple design
algorithm for interconnecting cells creates the mask set to realize
the equivalent custom gate array required.

At a much higher synthesis level, it's conceivable that the
mathematical transfer function of the desired 1C could be entered
into a mask design tool, which would generate the mask
sets to create the 1C. This is the goal of the California Institute of

Technology "Bristleblocs" project, which has both industrial and
academic sponsors. The premise of these attempts to work at a
macro level is that the view of the forest allows a better perspective
for the designer than a consistent and unremitting examination of
each it, in the forest, or as some frustrated designers express it,
"Chewing on the tree bark incessantly, trying to find the forest."

Adoption of the premise that such high-level design is desirable
and practical is necessarily rooted in two major assumptions. First,
tools constructs exist that translate the designer's high-level constructs
into correct, effective, low-level realizations. These are the syn
thesis tools mentioned above. Second, analysis tools must be
adapted to this environment, which means that they must provide
analysis functions at every hierarchical level from high to low,
much as a microscope or TV camera has pan or zoom capability.

One additional requirement is imposed by the magnitude of the
task, since many projects are designed, produced, and maintained
by increasingly large teams of people. Thus, synthesis and analysis
tools are increasingly obliged to link to each other simultaneously,
across and distances, across cultural and educational barriers , and
even across time.

These are stiff requirements, but then so are the challenges facing
designers if these requirements are not satisfied. How might they
be met? I think that we can see the day, not too distant, when
engineers will have an electronic bench, much as we discuss elec
tronic mail and electronic offices and electrÃ²nic homes. Such an
electronic bench will satisfy the three requirements of synthesis,
analysis, and linking.

To illustrate this concept, Fig. 1 portrays a typical product life
cycle for a digital product, along with the classical design aids and
analysis tools used by most companies today. There are several
points worth noting. First, virtually all design aids and analysis
tools in use today are not linked in any data base or even
measurement-interactive manner. Second, the level of synthesis
capability in the design aids is extremely primitive. Third, the level
of zoom from high-level analysis to low- level is likewise primitive.
Fourth, the operator interface is variable, and quite formidable.
from that piece of equipment to another. Examining the needs that
VLSI design imposes, these conditions are clearly unacceptable.

There are some current examples of the electronic bench concept
at such places as automotive design research centers, airframe
manufacturers, and the larger computer and semiconductor design

3 0 H E W L E T T - P A C K A R D J O U R N A L O C T O B E R 1 9 8 0

© Copr. 1949-1998 Hewlett-Packard Co.

Specification

1C Layout Systems
PC Layout Systems

Software
Design

Computers
Software Terminals

Emulators

Integration

T

w C o m p u t e r s

Hardware
Design

Osci l loscopes
Timing Analyzers
Word Generators

End-User
Support

Parallel State
Analyzers

T iming Analyzers
Oscil loscopes

Serial State Analyzers
Software Performance

Analyzers
Logic Analyzers

1C Testers
Circuit Testers
System Analyzers
Osci l loscopes

Network Monitors
Diagnost ic Testers
Digital Mult imeters
Osci l loscopes

Fig. 1 . Design aids and analysis tools used at var ious points
in the l i fe cyc le of a typ ica l d ig i ta l product .

centers. These centers, usually built around computer-aided draft
ing systems, are very expensive, but also very productive and
cost-effective. Just as the computer mainframe and minicomputer
manufacturers have developed precursors of the type of software
development system exemplified by the 64000 System, these CAA
and CAD centers point the way toward the electronic bench.

In effect, the solution will embody an intelligent terminal or
work station that can provide the capabilities of any required de
sign aid or analysis function. Work performed at this work station
will automatically link to a shared data base for the entire program,
which includes the R&D functions, production test, service diag
nostics, and documentation. Likewise, environmental and life test
data will become the beginning of a library of service data that links
with lab analysis, production data, and user performance data to
promote design improvements and better field-support diagnostic
procedures.

It is not hard to postulate such capabilities or their desirability.
What has been difficult is a cost-effective and performance-
effective realization. There are three major handicaps in this regard
when we examine the realities of existing digital analysis tools, to
say nothing of the shortage of effective synthesis tools.
1. The user interface of most instruments is very complex, and the
commonality of terms, functions, and operations is very low. For
example, the specific functions available by name on the front
panel serial a storage oscilloscope, a logic timing analyzer, and a serial
data front analyzer bear little resemblance to each other. Each front
panel takes considerable "getting used to" for a beginning
operator, and knowing one of them well can often seem more a
handicap than a help when trying the next machine.
2. Today's realizations of this equipment are sophisticated,
reasonably expensive, and relatively bulky. The thought of creat
ing an not solution has historically been dismissed as not
practical in terms of size, heat, weight, and cost.
3. Linking of many measurement hierarchies (the zoom concept)
has not been required or practical because of the available in
strumentation, and because the problems being tackled could be

solved by "brute force" techniques.
The 64000 architectural concept may serve to illustrate how

these handicaps might be diminished. The foremost problem, the
human interface, is addressed via a standard typewriter keyboard,
along of the guided syntax and softkey format. The versatility of
screen graphics for menu selections or guided prompting is well
established in instrumentation by now. It is a simple extension to
provide conversion from one type of equipment to another. The
difficulty with such a concept is the reality of its implementation.

Let's consider the manner in which the guided syntax structure
operates. The guided syntax softkeys represent another important
enhancement of the softkey-with-"help" approach embodied in
several of HP's more recent computer systems. Not only do these
keys but prompting of the next correct or allowable entries , but
they also allow full flexibility for system reconfiguration as the
resident operating system module is swapped from the disc.

Notice the significance of this architecture. The stored program
that the the machine character is t ics that appear to the
operator is totally resident on disc. Thus, redefining the instrument
is easy, and the operating system reconfiguration time is about
one-third of a second! Moreover, the guided syntax approach re
moves the need for a different set of keycaps on the front panel, and
the user is never faced with relearning the panel functions as the
instrument changes.

Thus, the 64000 has a system architecture that links all data files,
provides redefinition of effective functions at each work station,
and allows easy operator interaction with those significant
changes. The major remaining tasks are two-fold: to provide ex
tended operating system enhancements in the guided syntax for
mat, and to provide data acquisition modules for specific functions
that may be required.

This for might be employed as an emulating terminal for
any computer system, as the following whimsical softkey choices
illustrate.

64000S HP 1000
TERM

H P 3 0 0 0
T E R M

IBM
TERM

D E C A P P L E
T E R M T E R M

H P 8 5 A E T C

When 64000S is pressed the choices would be (the current wakeup
mode):

EDIT COMPILE ASSEMBLE LINK EMULATE PROM PGM (CMDFILE) ETC

When EDIT is pressed, the EDIT module is brought in from the system
disc, and these become the key labels:

I N S E R T R E V I S E D E L E T E F I N D R E P L A C E < L I N E # > E N D ETC

An obvious set of choices under an Analyzer key choice might be:

L o g i c L o g i c
S t a t e T i m i n g
A n a l y z e r A n a l y z e r

Serial
State
Ana l yze r

A n a l o g D i g i t a l N e t w o r k
O ' scope O ' scope Ana lyze r

Spectrum
Analyzer

ETC

The trace point conditions for the state analyzer, the timing
analyzer and the scope could be the same, providing the zoom
capability mentioned earlier. It becomes practical to consider mi-
croprogrammable measurement intelligence, which could modify
the degree of zoom or pan according to dynamic decisions about
the observed data. Obviously, the data base linkage methods could
also admit software control of multiple measurements at multiple
stations for simultaneous analysis of major system problems.
Perhaps the most productive improvements will come with high-
level software analyzers, linked to the greatly improved code gen
eration capabilities described herein. These tools must not only
provide code generation, editing, and debug aid, but also valida
tion, verification, optimization, and maintenance functions. The
64000 already provides an important enhancement for these needs.
Further extensions are imperative for the effective reduction of the
software bottleneck in our industry.

OCTOBER 1980 HEWLETT-PACKARD JOURNAL 31

© Copr. 1949-1998 Hewlett-Packard Co.

The technology that allows us to consider the true possibility of
such the system is based heavily upon the VLSI extensions that the
system intends to support. For example, by reducing major equip
ment such as a sophisticated logic state analyzer to a one or two-
card module allows zoom potential, because several different
modules can be resident in the card cage of a work station. Also, a
cluster network can be composed of different configurations in
each work station, and potentially could even include a desktop
computer for information graphics or management information
systems. A significant problem in terms of computer power â€” 1C
cell layout and lead routing, or PC board layouts â€” could be routed
to a major computer network from the cluster as well.

The 64000 described in this issue already takes a significant step
in microcomputer software development integration by virtue of
its LSI computer support in each work station, guided syntax
interaction to allow conversion from one function to another, and
four-bus interaction capability, which allows significant data base
and measurement networking. The programming effectiveness for
designers developing structured code on this system, debugging it
in breadboard systems, and moving toward final product is dra
matic, and it is a contribution to synthesis, more than to analysis.
This shows up most dramatically in larger project teams, where the
linked files and the data base management system help to mitigate
the classic communication difficulties of large teams. Hardware
system synthesis, whether at an 1C or PC board level, should be
amenable to similar enhancement. The hardest task in my view is
the question of effective benchmarking of simulations, which con
ceptually is possible, but realistically seems relatively difficult to
attain.

The next few years should see significant development of tools to
enable the electronic bench concept to be realized. This electronic
bench link encompass the necessary synthesis, analysis, and link

ing functions. Clearly the costs of such powerful automated design
centers will be dramatically reduced, concurrent with substan
tially improved combinational performance. With the aid of such
instrumentation concepts, we hope to support the design and
analysis requirements of the VLSI era.

Char les H. House
I Chuck House has been invo lved wi th

HP logic systems for a decade, f i rs t as
an R&D pro ject engineer , then as R&D
manager , and now as opera t ions man
ager . He rece ived the four th annual
Award of Achievement from Electronics

' Magazine for the or ig inal HP logic
analyzer program. With HP since 1962,
and In Colorado Spr ings s ince 1964,
Chuck is beginning to th ink he's a Col-

' orado nat ive (h is wi fe and mother are
both f rom Denver) . He's been Involved

i in many civic activities â€” Colorado Air
I Pollution Control Commission, County

Park and Recreation Board, science fair
board, engineering advisory committee of the university of Colorado,
county arboretum and hor t icu l tura l group pres ident . Co-author o f
"Logic Circuits and Microcomputer Systems" (McGraw-Hil l 1 980), he
has contr ibuted to seven books and twenty- f ive technical papers In
the past decade. Chuck has a BS degree in sol id-state physics f rom
Cali fornia Inst i tute of Technology, an MSEE from Stanford University,
and an MA in the history of science from the University of Colorado.
He 's marr ied and has four ch i ldren.

Hewle t t -Packard Company , 1501 Page Mi l l
Road, Palo Al to , Cal i forn ia 94304

H E W L E T T - P A C K A R D J O U R N A L

Bulk Rate
U.S. Postage

Paid
Hewlett-Packard

Company

OCTOBER 1980 Volume 31 â€¢ Number 10

T e c h n i c a l I n f o r m a t i o n f r o m t h e L a b o r a t o r i e s o f
H e w l e t t - P a c k a r d C o m p a n y

Hewle t t -Packard Company , 1501 Page M i l l Road
Palo Al to, Cal i forn ia 94304 U.S A.

Hewle t t -Packard Cent ra l Ma i l ing Depar tment
Van Heuven Goedhar t laan 121

1 1 80 AM Amste lveen The Nether lands
Yokogawa-Hewle t t -Packard L td . . Sug inami -Ku

Tokyo 168 Japan

FPDADIVES PESFARCH CENTER

,. CODE BLDG N 744-7
MOFFETT FIELD CA 94035

/ ~ \ I de le te A ou r I p l ease Send * ' ~ \ I â€ ” A r " ^ I â€ ”N T~) p O O â€¢ To change you r add ress o r de le te you r name f rom ou r ma i l i ng l i s t p l ease send us you r o l d add ress l abe l . Send
W M / A I N P a g e V _ / r " / A L / L / F l t Z O O . c h a n g e s t o H e w l e t t - P a c k a r d J o u r n a l . 1 5 0 1 P a g e M i l l R o a d , P a l o A l t o . C a l i f o r n i a 9 4 3 0 4 U . S . A . A l l o w 6 0 d a y s

© Copr. 1949-1998 Hewlett-Packard Co.

	Logic Development System Accelerates Microcomputer System Design
	Resource Sharing in the Logic Development System
	64500 PROM Programmer
	64000 Command Parsing
	Emulators for Microprocessor System Development
	The Pascal/64000 Compiler
	Program Debugging with Pascal/64000
	The 64000 Linker
	An Assembler for all Microprocessors
	Viewpoints Chuck House on the Electronic Bench

