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In this Issue: 
We are now in the age of LSI â€” large-scale integration â€” and are about to enter the age of 

VLSI â€” very large-scale integrat ion. LSI has given us the microcomputer,  a complete com 
puter complex cir tiny chip of silicon smaller than a fingertip, and many other complex integrated cir 
cui ts In tens of  thousands of  t ransistors and logic gates on a chip.  In the age of  VLSI we' l l  
see circui ts with hundreds of thousands or mi l l ions of logic elements on a single chip. We' l l  
see them, that is,  once we're able to solve the formidable problems of designing such com- 
plex devices and wr i t ing sof tware for  them. Beginning on page 30, Chuck House discusses 
the problems and the l ikely solut ions. Instead of a single talented designer, we' l l  have teams 

of designers working on a chip. These designers wil l  need new tools that automate many of the steps we now do 
manually. analyzers have to be able to call up various computer-aided design tools and different kinds of analyzers 
at the analysis of a button. The system that will give them these advanced analysis and synthesis tools is something 
Chuck need VLSI electronic bench. It doesn't exist yet; in fact, we'll need VLSI to make it a reality. Only with VLSI 
wil l  enough enough it to make analyzers and other instruments small enough and inexpensive enough to make it 
pract ica l  to  bui ld  an e lectronic bench crammed fu l l  o f  them. 

That Development us to the subject of this issue, Model 64000 Logic Development System. The 64000 is a tool for 
developing hardware and sof tware for  products  based on commerc ia l  microcomputers.  Whi le  i t 's  a  long way 
from the share bench, i t 's  a f i rst  step towards that goal .  I t  a l lows up to s ix designers to share a common data 
base, computer built in. each designer a work station with a dedicated computer and a dedicated logic analyzer built in. 
I ts  archi tecture and capabi l i t ies are d iscussed in the ar t ic les on pages 3,  13,  20,  and 28.  

Our cover wi th shows a basic 64000 System consist ing of  work stat ion,  d isc dr ive and pr inter ,  a long wi th a 
c lose-up of  one of  the pods that  in ter face the 64000 to  the system under  development .  

-R.  P.  Do/an 
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Logic Development System Accelerates 
Microcomputer System Design 
This  expandable ,  f lex ib le  system of fers  a  complete  set  o f  
fac i l i t ies  fo r  genera t ing  and debugg ing microprocessor -  
sys tem hardware and sof tware.  I t ' s  des igned wi th  next -  
generat ion VLSI c i rcui ts in mind.  

by Thomas A.  Saponas  and Br ian  W.  Kerr  

MICROPROCESSORS HAVE PROVIDED signifi 
cant improvements in the performance and flex 
ibility of much of today's electrical and mechani 

cal hardware. One consequence is that our approach to 
designing products has had to change, and so have the 
skills of the engineers responsible for these products. The 
design team of a microprocessor-based product might be 
more than half software designers. It is not unusual for a 
product's definition to change in the very late design stages 
in spite of excellent research and definition at the begin 
ning. Then the flexibility of the software is the vehicle for 
accommodating such changes. 

Because the microprocessor is only one piece of a com 
plete system, it represents a software design problem unlike 
most computer systems. The processor is usually an inte 
gral part of some hardware that has nothing to do with 
computation. In some cases it is simply being used as a 
programmable logic element or for control of the human 
interface with some process. These differences make the 
conventional tools for generating and debugging hardware 
and software incomplete for the task facing the micro 
processor system designer. The 64000 Logic Development 
System was meant to provide a complete solution to this 
task in one package, and to make significant contributions 
to the efficiency of designers' time. 

Architecture 
A basic 64000 Logic Development System consists of one 

Model 64100A Development Station with a Model 64940A 
Magnetic Tape Cartridge Unit installed, compatible HP 
hard disc and printer, and software packages to edit, assem 
ble, link, and store program modules. Adding an emulator 
option and up to 64K bytes of independent emulation 
memory adds the download function through emulation, 
which is the standard tool for exercising, debugging, and 
integrating hardware and software in the early develop 
ment phases. Further assistance in troubleshooting the 
target system is gained by adding Model 64300A Logic 
Analyzer, which monitors activity on the address, data, and 
control buses of the target microprocessor system. As pro 
gram modules are completed, they may be mapped into the 
target system's random-access memory, or with Model 
64500A PROM Programming System, they can be down 
loaded into one of many widely used programmable read 
only memories (PROMs). The system may be expanded to 
accommodate larger design teams or multiple design efforts 

by adding up to five more development stations (see Fig. 1). 

Development  Stat ion 
The development station keyboard and display (see Fig. 

2) provide the interface between the operator and the logic 
development system. Operating systems, input/output, 
keyboard, display, and the development station bus are 
managed by the independent host processor and memory. 

641 OOA 

641 OOA 

641 OOA 

641 OOA 

641 OOA 

Fig .  1 .  The 64000 Log ic  Deve lopment  System cons is ts  o f  a t  
least one 641 OOA Development Station, a hard disc, and a line 
p r in te r .  The  sys tem can  be  expanded to  as  many  as  s ix  s ta  
t ions.  Each stat ion has i ts  own processor .  
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C R T  p r o v i d e s  2 5  r o w s  
b y  8 0  c o l u m n s  o f  
charac te rs .  (D isp lay  can  be  
sh i f ted  to  revea l  addi t iona l  
co lumns . )  

D i rec ted  syntax  fo r  
on - l ine  documenta t ion  
is  p rov ided  th rough  
sof tkeys  that  a re  
de f ined  by  the  
opera t ing  sys tem 

Modu la r  power  supp ly  i s  
eas i ly  exchanged in  the  f ie ld .  

Ten  card  s lo ts  a re  ava i lab le  
for  opt ions.  

Fu l l  ASCI I  keyboard  w i th  
add i t iona l  cont ro l  keys  and  
spec ia l  sof tkeys  def ined  
under  p rogram cont ro l .  

Host  p rocessor  sys tem 
implemented  wi th  16-b i t  
p rocessor ,  64K  o f  hos t  
memory ,  and  I /O  cont ro l  
manages  the  opera t ing  
system,  I /O  t ransact ions ,  and  
sys tem da ta  t rans fers  on  the  
deve lopment  s ta t ion  bus .  

P R O M  p r o g r a m m e r  c o n s i s t s  
o f  u n i v e r s a l  p r o g r a m m e r  
c o n t r o l  c a r d  a n d  P R O M  
personal i ty  inter face uni t .  

Tape  car t r idge  un i t  w i th  
225K-byte  capac i ty  fo r  source  
f i l e  backup ,  sys tem program 
ent ry  and f i le  backup.  

F i g .  2 .  M o d e l  6 4 1 0 0 A  D e v e l o p  
men t  S ta t i on  i nc ludes  keyboard ,  
d i s p l a y ,  a n d  h o s t  p r o c e s s o r .  O p  
t ions inc lude PROM programmers 
a n d  e m u l a t o r s  f o r  v a r i o u s  m i c r o  
processors ,  a  log ic  ana lyzer ,  and 
a tape contro l ler  and dr ive.  

The host processor in each 64 100 A Development Station is 
a field-proven 16-bit processor manufactured by HP.1 Much 
of the other hardware is adapted from other HP products. 
However, the emulator option and the PROM programmer 
are new and are discussed in detail elsewhere in this issue. 

The development station's easily accessed card cage has 
slots to house the circuitry for the various system options. 
The first three slots of the card cage are occupied by the 
three cards of the host system, leaving the remaining ten 
slots available for system options. The development station 
bus is universal, and options may be placed in any slot. The 
development station bus carries address, data, and control 
signals between the host processor system and option card 
positions. 

Each option card can identify itself to the host processor. 
Thus the option software is self-configuring. Communica 
tion with the options is via a 32K-byte memory address 
space window. When a card is addressed by the host one of 
three bank switch modes is also set, thereby expanding this 
window to an effective 96K bytes per option card. 

Fig. 3 is a map of the entire 128K-byte address space of the 
host processor including the 32K-byte window. The dis 
play memory is an integral part of the program RAM, mak 
ing possible the rapid display update required for such 
things as tracking softkeys and a screen-mode editor. The 
ROM space in the system is used for the bootstrap programs, 
for some frequently used utilities, and for the mainframe 
self-test software. In the current version of the 64000 A sys 
tem, 16K bytes of ROM is unused and reserved for future 
enhancements. All of the operating software resides in the 
RAM area and is segmented so that only the current task is 
in memory. 

The emulation system uses a separate emulation bus be 

tween emulation control, emulation memory, and analysis 
cards. A second high-speed bus connects emulation con 
trol and emulation memory, and a third bus may be re 
quired for input/output in some modules and configura 
tions (see Fig. 4). 

Archi tecture Advantages 
The architecture of the 64000 Logic Development System 

offers several advantages. Each user has a dedicated proces 
sor and memory, not just a terminal. Therefore, as stations 
are added, so is computing power. By contrast, with 
timesharing systems the user is required to buy sufficient 
computing power with the very first terminal to support the 
ultimate size of the system. Philosophically, it is also more 

Bootstrap and 
Utilities 

Performance 
Veri f icat ions 

Opt ion 
Card 

Communicat ion 

Program 
Memory  

32K-Byte  ROM 

32K-By te  I /O  

64K-Byte  RAM 

F ig .  3 .  Hos f  p rocessor  memory  map .  
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Disc, 
L i n e  P r i n t e r s ,  -  

Other  64100As 
; i a i : M M : U g * M  

Emulat ion Bus as Required 

I /O Display Control  Bus 

S lo t  #2  

HP-IB/RS-232-C 
Keyboard Cnt l  
Interrupt Cntl  
Opt ion Card 

Select 

iuÂ¿umÂ£uii9 
3 2 K  W o r d s  R A M /  

Display 
Controller 

CPU 
16K Words ROM 

â€¢Slot 
Option 
Card 
Slots 

Development  Stat ion Bus 16 Address/16 Data/Control /Suppl ies 

Opt ion Cards 
Tape Contro l ler  and Dr ive  (Uses I /O Bus)  
Emulator  (Uses Emulat ion Bus)  
Emulat ion  Memory  and Contro l  (Uses Emulat ion  Bus)  
Analysis  (Uses Emulat ion Bus)  
PROM Programmer  

Fig. have buses host processor and the microprocessor being emulated have independent buses 
and can emulation. simultaneously. Thus software development can be concurrent with emulation. 

reasonable to present to the user a response time that is 
more a function of the task, which is the case with distrib 
uted processing, than to have the response time determined 
by the total system loading, as in a timesharing system. The 
64000 network can also be expanded to include large cen 
tral data bases or additional 64000 clusters using the 
RS-232-C port contained in each station. 

By sharing peripherals, it is much easier to justify 
higher-performance units than when each user has a dedi 
cated set. Users get not only higher performance but also the 
ability to develop software jointly sharing the same data 
base. Experience has shown that as the software tools im 
prove and the efficiency of programmers increases, the 
need for disc space rapidly outpaces the original estimates 
of capacity. Also, with the text editing features of the system 
providing a convenient way to maintain documentation, a 
further burden is placed on disc capacity. At HP's Colorado 
Springs Division, for example, we are now using two to five 
megabytes of disc space per user per year, compared to 
approximately one megabyte before these tools were avail 
able. The 64000 System expands easily to accommodate 
such changes. 

Operat ion 
At power-up the host processor interrogates a rear-panel 

switch to determine the ROM program to execute. There are 
four selectable modes: system bus, local mass storage, 
ROM, or performance verification. The performance verifi 
cation mode exercises all of the mainframe hardware, in 
cluding the memory, tape drive, RS-232-C port, and system 
bus. The other three modes are bootstrap programs from 
three sources. The normal mode of operation is to boot from 
the hard disc, which is on the system bus. The program that 
is loaded then performs a poll to determine all of the devices 

on the bus, configures the software I/O drivers based on that 
poll, and displays a system map. Eight softkey labels are 
displayed at the bottom of the display indicating the vari 
ous functions available. The system is now awaiting a 
command and a status message indicates that state. To 
perform an assembly of a source file, for example, the 
softkey labeled assemble is pushed, followed by the name of 
the file to be assembled. The editor, compiler, and linker all 
use this same syntax. 

Emulation 
A challenging aspect of microprocessor system design is 

the lack of a friendly run time environment for debugging 
software and hardware. If, for example, the user is develop 
ing a microprocessor-controlled meat scale, the product 
will not have peripherals such as CRT, keyboard, disc, and 
printer to help the debugging process. Because of the direct 
interaction of hardware and software, the techniques used 
in computer development â€” halting, single-stepping, 
dumping registers, and software tracing â€” might so perturb 
the system that the measurement obtained is meaningless. 
Because the completed system is usually read-only- 
memory-based, a convenient software prototyping envi 
ronment is also essential so that software can be tested and 
developed before being committed to ROM. 

The 64000 emulator option is designed to imitate the 
microprocessor in the user's system and provide all the 
necessary debugging facilities. The emulator is used by 
removing the microprocessor to be emulated from the user's 
hardware and plugging in the probe from the 64000 System 
in its place. The user then specifies the memory area to be 
taken from the user system and that to be provided by the 
emulator. The answers to these configuration questions are 
automatically stored in a file so that when the emulator is 
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used later with the same configuration only the file name 
needs to be specified. The emulator can be used before any 
user  hardware exists  by s imply specifying the internal  
clock and all emulation memory. Because the emulator has 
access to the display, disc,  printer,  and keyboard, much 
so f tware  deve lopment  can  t ake  p lace  be fo re  the  use r  
hardware is ready. 

In the 64000 System, we have completely separated the 
emulation processor bus from the host environment (see 
Fig. 4). This allows passive monitoring of the execution of 
software without stopping the process. Because of this sep 
arat ion i t  i s  a lso possible  to  cont inue emulat ion while  
software development is occurring on the same station, thus 
potentially doubling the use.  The two buses are so inde 
pendent that the prototype containing the emulator probe 
can be powered down and then up without affecting the 
host system. Even the data stored in the emulation memory 
remains unchanged and the processor simply goes through 
its normal power-up sequence. 

Another important benefit of this architecture is the fu 
ture expandability of emulation. The host processing sys 
tem puts no restrictions on the speed or word length of the 
processor being emulated. Future microprocessors will cer 
tainly be faster and more powerful,  so it  is important to 
al low for  this  to  preserve the capi tal  investment  in  the 
development system. 

The emulator option for the 64000 Logic Development 
System is described in the article beginning on page 13. 

Directed-Syntax Softkeys Provide Fr iendly  Inter face 
Since a substantial part of a microprocessor system de 

signer's time is spent at the keyboard of a microprocessor 

F ig .  5 .  Cons t ruc t i ng  a  command  us ing  the  64000  Sys tem 's  
d i rec ted syntax sof tkeys.  (a)  The user  has pressed ETC and 
now sees the softkey labels shown here, (b) The user presses 
directory and sees these new labels, (c) The user continues to 
construct the command by pressing aiiâ€”tnes. (d) The complete 
syn tac t i ca l l y  co r rec t  command  ca l l s  fo r  a  l i s t i ng  o f  a l l  f i l es  
modi f ied  a f ter  August  28,  1980.  

development system, ease of use is  very important .  By 
means of directed-syntax softkeys, the 64000 leads the new 
user through an often bewildering maze of tools. The use of 
a random-access display further simplifies the operator in 
terface to provide a feeling that the human is in control and 
not the machine. 

Eight unmarked keys immediately below the CRT are 
labeled by the CRT. These softkeys reflect the complete set 
of allowable entries and change with each keystroke to 
reflect the next expected keyword or data in a command. If 
the  user  en ters  only  the  informat ion  prompted  by  the  
softkeys the syntax is guaranteed correct. Conversely, any 
entry not shown in the softkey labels will result in a syntax 
error. Thus the processor is always telling the user what it 
expects, avoiding the usual guessing game, "You enter a 
command and I ' l l  te l l  you i f  i t ' s  r ight ."  In  addi t ion to  
eliminating the guessing game, the softkeys provide exactly 
the same interface for all operations. 

Fig. 5a shows an example using the directory command, 
which can consist simply of the keyword directory or several 
options. In Fig. 5b the directory softkey has been pushed and 
the next allowable alternatives are shown: 

<FILE>  use r  f i l e  name  
all    f i les all  disc files 
rec   files all recoverable files 
tapefi les  al l  tape f i les  
l i s t f i le  specify  an a l ternate  l i s t ing f i le .  

In Fig. 5c', the all-files option is selected and the labels 
again change to reflect other options. The complete com 
mand shown in Fig. 5d calls for all of the files modified after 
August 28, 1980 to be listed on the line printer. 

If the cursor is moved to edit the command, the labels 
change to reflect the options available at that point in the 
line. If a softkey is pressed when the cursor is under any 
character in a keyword, the entire keyword is replaced by 
the  new one and the  l ine  is  expanded or  contracted to  
accommodate the new entry. 

Software 
Just as important as the hardware architecture in a com 

plete solution is the software package. 64000 software cur 
rently available includes the following modules, some of 
which come in several versions to accommodate different 
microprocessors and languages: monitor, multiprocessing 
operating system, f i le manager,  editor,  assembler,  com 
piler, linker, emulator, PROM programmer, and hardware 
self test. 

Since users of the system can range everywhere from the 
expert digital hardware designer to one with no previous 
software experience, the 64000 system is designed to pro 
vide considerable capability for the experienced software 
des igner ,  and  th rough  the  use  o f  the  d i rec ted-syn tax  
softkeys, to give the new user access to the full capability of 
the system, not just the subset that is frequently used and 
remembered. To further enhance the convenience of the 
system an effort was made to provide a uniform syntax and 
feature set  in al l  aspects  of  the development tools.  For 
example, numeric constants can be specified in decimal, 
hexadecimal, octal, or binary in the assembler, compiler, 
linker, emulator, PROM programmer, monitor, and editor. 
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The rules for variable names are the same for the assembler, 
compiler, linker, and emulator. The feature set for all of the 
above modules also remains the same for each micropro 
cessor, so that the learning curve for a new processor is 
much shorter. In some cases the same person has to work 
with more than one processor type simultaneously, so this 
approach becomes essential to reduce confusion. 

With these features combined with the performance of a 
16-bit processor per user and a high-speed hard disc, the 
turnaround cycle for changes is substantially reduced. As 
an example, it is possible to edit a file to make corrections, 
assemble that file, link it to other modules , and then execute 

the new code on the emulator in one minute. This level of 
performance encourages proper maintenance of source 
programs instead of memory patching to fix a problem. 
The Edi tor  

Perhaps the most important part of a development sys 
tem's operator interface is the editor. The functioning of the 
editor provides the most convincing argument for a random 
access display. The ability to modify the text by inserting, 
deleting, or overtyping and see the changes on a key-by-key 
basis gives the confident feeling of absolute control. 

The importance of a symmetric instruction set is just 
being understood in the microprocessor world, but the 

Resource Sharing in the Logic Development System 

by Alan J .  DeVi lb iss 

A 64000 Logic Development System is ordered as Model 64001 S, 
with consists, options wanted listed separately. A 64001 S System consists, 
at a minimum, of one 641 OOA Development Stat ion, a disc memory, 
and  a  magne t i c  t ape  ca r t r i dge  d r i ve .  A  max imum o f  s i x  641  OOA 
Deve lopment  S ta t ions ,  a  p r in te r ,  and  e igh t  d isc  d r ives  can be  con 
nected on a s ing le  I /O bus.  

The operat ing system sof tware execut ing in the host  processor of  
each 641 OOA is implemented asa single-tasking system, responding 
to i ts keyboard inputs independent ly of  any other 641 OOA stat ions,  
excep t  when  two  o r  mo re  s t a t i ons  r equ i r e  access  t o  a  sha red  re  
s o u r c e  o f  ( e . g . ,  a  d i s c  m e m o r y  o r  t h e  p r i n t e r ) .  T h e  u s e  o f  
these shared resources must be coordinated. The sharing protocol is 
s imple ,  min imiz ing overhead in  the operat ing system and reduc ing 
the number of operat ions that must be recovered in case of a system 
faul t .  Speci f ica l ly ,  the shared resources are:  
1 .  Access  to  a  d isc  memory  (exc ludes  d i rec to ry )  
2 .  Access  to  read  o r  mod i f y  a  d i sc  d i rec to ry  
3 .  Access  to  the  p r in te r .  

The mechanical  and electr ical  protocol  used on the 64000 I /O bus 
is  compat ib le  w i th  the  HP In ter face Bus,  o r  HP- IB ( IEEE Standard  
488-1978) .  However ,  i n  the  64000  Sys tem con tex t ,  messages  a re  
res t r i c ted  to  those needed fo r  sys tem opera t ion .  For  example ,  I /O 
drivers and message protocols that would al low direct user control of 
interface message generat ion are not avai lable.  Therefore,  only sup 
ported disc memories and printers and other 641 OOA stations may be 
connected to  a  64100A s ta t ion.  

The  HP- IB  s t anda rd  was  se l ec ted  because  o f  t he  ex i s t ence  o f  
c o m p a t i b l e  d i s c  m e m o r i e s  a n d  p r i n t e r s  a n d  a  r e l a t e d  f a m i l y  o f  
re l iab le  components  ( in tegra ted in ter face e lec t ron ics ,  connectors ,  
and cables) .  

Each 641 OOA station can operate on the HP- 1 B as an active control 
ler, talker, or l istener. The current active control ler monitors the state 
of  the network â€”  that  is ,  which 641 OOA stat ions are us ing or  are 
wait ing to use a shared resource. The act ive control ler has the exclu 
sive right to use the I/O bus until control is passed to another 641 OOA. 
However, a resource reserved by another 641 OOA may not be used. 
Disc accesses not involving a disc directory access may be made by 
the act ive control ler  wi thout restr ict ion. Directory and pr inter access 
es  are  the on ly  two resources that  must  be reserved.  Use o f  these 
resources is regulated by queues resident in the act ive control ler for 
each function. The HP-IB address (from 2 to 7) corresponding to each 
641 OOA is used as a name in the queues, with 0 serving as the nul l  
en t r y .  The  head  o f  each  queue  has  the  exc lus i ve  r i gh t  t o  use  the  
resource. Addresses within the queue indicate 641 OOA stat ions wait 

ing for the resource. Only the act ive control ler can modify the queue 
by removing i ts address from the head of the queue. Al l  other entr ies 
are moved up by one posi t ion when the act ive contro l ler  is  f in ished 
with the resource. The act ive control ler can also replace the f i rst nul l  
entry in the queue with its own address when it requires the resource. 

The ac t ive  cont ro l le r  may modi fy  the  queues and make one d isc  
access  (a  read  o r  wr i te  o f  up  to  4096  by tes ,  t yp ica l l y )  and  f i l l  t he  
printer buffer if it is at the head of the printer queue. Then control must 
be passed if any other 641 OOA has a pending I/O request. The active 
control ler  conducts a paral le l  pol l .  I f  no other 64100A responds,  the 
current  act ive contro l ler  remains act ive contro l ler  and can cont inue 
wi th i ts  own I /O as requi red.  Af f i rmat ive pol l  response f rom another  
641 OOA indicates a request to become active control ler. If  more than 
one 641 OOA responds, the address of the responding 641 OOA next 
h igher  (modulo 8)  than the current  act ive contro l ler  is  se lected.  

The selected 641 OOA is sent an eight-byte message indicating the 
current  s tate of  the d i rectory and pr inter  queues,  and then the Take 
Con t ro l  i n te r face  message  i s  sen t  to  tha t  641  OOA.  The  se lec ted  
641 OOA becomes act ive contro l ler  and may use the I /O bus and/or  
modi fy  the queues.  

On each 64000 system, one and only one 641 OOA is designated as 
master  act iv i ty  This  uni t  is  responsib le for  in i t ia t ing system act iv i ty  
by becoming the f i rs t  act ive contro l ler  when the system is powered- 
on. Only this unit  may assert  the Interface Clear message, and there 
fore i t  a  responsib le  for  restar t ing a system that  has exper ienced a 
par t ia l  power fa i lure or  a d isrupt ive hardware or  sof tware faul t .  

When a 641 OOA powers on, i t  must f i rst  load i ts operat ing system 
f rom the  sys tem d i sc  a t  I /O  address  0 ,  un i t  0 .  To  accomp l i sh  th i s  
without disturbing a functioning system if this 641 OOA is entering late, 
the nonact ive contro l ler  s tatus is  selected at  power-up,  and I /O bus 
control is requested by aff irmative response to any paral lel pol l  by an 
a c t i v e  u n t i l  I f  t h e  u n i t  i s  n o t  m a s t e r  c o n t r o l l e r ,  i t  m u s t  w a i t  u n t i l  
control is passed to i t  from another 641 OOA. If  the 641 OOA is desig 
na ted  wors t -  con t ro l le r ,  i t  wa i t s  fo r  abou t  th ree  seconds  (a  wors t -  
c a s e  a n d  f o r  a  f u n c t i o n i n g  s y s t e m ) ,  a s s e r t s  I n t e r f a c e  C l e a r  a n d  
becomes the act ive contro l ler .  

O n c e  a  6 4 1 0 0 A  s t a t i o n  h a s  b e c o m e  a n  a c t i v e  c o n t r o l l e r  a n d  
l oaded  i t  ope ra t i ng  sys tem so f tware  f rom sys tem d i sc  memory ,  i t  
executes a program to ident i fy al l  other devices connected to the I /O 
bus a t  tha t  t ime.  The resu l ts  o f  tha t  p rocedure  are  used to  cont ro l  
generat ion o f  tab les in  the d isc ,  pr in ter ,  and network I /O dr ivers  to  
make proper  use o f  the  dev ices a t tached to  the network .  

Each uni t  memory ident i f ied is cataloged by I /O address, disc uni t  
number, type (7905, 7906, 791 0, 7920, 7925), directory location and 
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s i ze ,  and  reco rd  s i ze .  A  l og i ca l  un i t  number  i s  ass igned  fo r  each  
disc. The results of the I/O identification are listed on the 641 00 display 
fo r  re fe rence and to  a id  in  debugg ing a  mal func t ion ing  sys tem.  

Th is  arch i tecture makes i t  easy to  change the number  o f  64100A 
deve lopment  s ta t ions ,  the  number  and /o r  t ype  o f  d i sc  d r i ves ,  and  
the  p r i n te r .  To  e f f ec t  a  change ,  t he  sys tem i s  powered  o f f ,  r econ  
nected and powered back on. No user-directed change in software is 
needed.  

Fault  Recovery 
Recovery features have been implemented to lessen the effects of 

s ys tem on  Fo r  examp le ,  i t  wou ld  be  undes i r ab l e  i f  l ow  powe r  on  
one 641 OOA station aborted an edit session on another station. All I/O 
operat ions have t ime-outs  ass igned,  w i th  appropr ia te  recovery  pro  
cedures in  the event  of  mal funct ion.  Disc operat ions that  can ' t  com 
p le te  a re  re t r i ed .  I f  a  pass  o f  con t ro l  doesn ' t  comp le te  w i th in  the  
a l l o t t ed  t ime ,  t he  p rocess  i s  abo r ted  and  the  p rev ious  ac t i ve  con  
t ro l ler  resumes control  status.  

T h e  m a s t e r  c o n t r o l l e r  a s s u m e s  a  s y s t e m  m o n i t o r  f u n c t i o n .  
Whenever the master control ler  passes control  a three-second t imer 
is started. I f  th is t imer expires, control  must be requested by af f i rma 
t ive pol l  response,  even i f  the master  contro l ler  has no pending I /O 
request. If another three seconds go by without a response, the active 
c o n t r o l l e r  i s  p r e s u m e d  t o  h a v e  c r a s h e d  o r  p o w e r e d  o f f ,  a n d  t h e  
master contro l ler  asserts the Inter face Clear message and becomes 
act ive control ler .  

Whenever the master control ler  becomes act ive control ler  by Inter 
face Clear, the network queues are initialized to the null state, a restart 

f lag is set and the queues and control are passed around the network 
one time, independent of I/O requests. The restart f lag inhibits normal 
I /O activi ty. Each 641 OOA is given the opportunity to take either the 
directory or the printer queue head if i ts internal state indicates it had 
this ef fects before the restart .  This process minimizes the ef fects of  
the loss of network state information by a crash of the active controller 
while printer. 641 OOA is modifying the directory or using the printer. 
When contro l  is  returned to the master  contro l ler ,  the restar t  f lag is  
c leared and normal operat ion resumes. Time-outs in the pr inter  and 
network drivers of 641 OOA stations that were waiting for the directory 
o r  the  in  cause  them to  reen te r  the  ne twork  queues .  The  o rder  in  
the  queues may be changed but  everyone u l t imate ly  is  serv iced.  

, 
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same motivation also exists for symmetry in an editor com 
mand set. The first step in the editing process is usually 
positioning to an area in the file of interest. In the 64000 
there are no artificial constraints on file size or workspace 
use, and positioning can be performed by rolling the text up 
or down, moving the cursor up or down, paging up or 
down, randomly by specifying a line number, or searching 
for a character string in the forward or reverse direction. All 
operations involving a group of lines, such as deleting, 
extracting, copying, listing, or performing character re 
placement are done starting with the line containing the 
cursor thru or until (inclusive or exclusive) a line number, a 
character string, the start of the file, the end of the file or the 
entire of With directed-syntax softkeys the availability of 
these symmetrical options is always obvious to the user. 

The memory space available to the editor can be viewed 
as two double-ended queues (Fig. 6). These two queues 
share the same memory space, so when one contracts the 
other can expand into available memory. Another way to 
view this memory is as a single circular buffer with a dis 
play window. When an edit session is started two scratch 
files are created. Since more than one 64100A Development 
Station may be using copies of the editor at the same time, 
the names of these files are made unique by appending the 
bus address of the station. These files serve as temporary 
storage for text that will not fit in memory. 

When the original source file is opened, enough lines to 
fill the display are read and placed on the CRT screen. More 
of the source file is read into queue A. The amount of text 
read is limited to produce a reasonable response time. Many 
edit sessions do not extend over the entire source program, 
and a long initial delay can be annoying. Only for very short 

Editor Fi le Structure 

Double-Ended 
Queues 

Fig .  6 .  The 64000 ed i to r ' s  memory  space can be  v iewed as  
t w o  d o u b l e - e n d e d  q u e u e s  t h a t  o c c u p y  t h e  s a m e  m e m o r y  
space, so that when one expands the other contracts. Scratch 
f i les are created when an edi t  sess ion is  s tar ted.  
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64500 PROM Programmer 

A un iversa l  deve lopment  sys tem l i ke  the  64000 mus t  be  ab le  to  
p r o g r a m  a  w i d e  v a r i e t y  o f  P R O M s  ( p r o g r a m m a b l e  r e a d - o n l y  
memories) to store object code for prototypes and l imited product ion 
runs. types semiconductor industry currently has many memory types 
avai lab le:  b ipolar  ROMs, u l t rav io let - l ight -erasable MOS ROMs, and 
combinat ion  ch ips  conta in ing  both  a  MOS ROM and a  microproces 
sor .  Many speed ranges and memory s izes are of fered to sui t  d i f fer  
ent  users '  requi rements .  The goal  o f  the 64500 PROM Programmer 
des ign  was  to  c rea te  a  p rog ramming  sys tem tha t  wou ld  accommo 
date 64000 widest variety of popular PROMs, be easy to use in the 64000 
system, and be low in cost.  Low cost means both in i t ia l  cost and the 
i n c r e m e n t a l  c o s t  o f  a d d i n g  f a c i l i t i e s  t o  p r o g r a m  o t h e r  t y p e s  o f  
PROMs 

A study was init iated to catalog all currently available PROMs. Size, 
p i n o u t s ,  p o w e r  s u p p l y  r e q u i r e m e n t s ,  s p e e d ,  a n d  p r o g r a m m i n g  
spec i f i ca t ions  were  compared to  assess the  d i f f i cu l ty  o f  bu i ld ing  a  
t ru ly  emerged.  system. From th is  point ,  a design st rategy emerged.  
The result ing system consists of a control  card occupying one slot in 
t he  641  OOA ma in f rame  and  a  socke t  modu le  t ha t  r es i des  i n  t he  
641 OOA pane l  inser t .  The cont ro l  card  conta ins  ad jus tab le  power  
suppl ies and general  input/output dr iver c i rcui ts,  as wel l  as a 64000 
ma in f rame in te r face .  The  ind iv idua l  socke t  modu les  match  PROM 
pinouts and tai lor  the control  card's general  s ignals to meet speci f ic 
P R O M  p r o g r a m m i n g  s p e c i f i c a t i o n s .  C u r r e n t l y ,  e i g h t  s o c k e t  
modules are avai lable.  

To further simpl i fy the hardware requirements of the control ler and 
the socket  module,  a l l  sequence t iming and pulse width cont ro l  are 
done by software in the PROM driver. Only pulse ampli tudes and r ise 
and  fa l l  t imes  a re  se t  by  hardware  c i r cu i t s  on  the  socke t  modu le .  
Software control  makes programming the memory chips easier.  Each 
socket  module has an ident i f icat ion code that  is  read by the dr iver .  
From this code, the appropriate programming rout ines and tables for 
the PROM fami ly  are automat ica l ly  se lected.  I f  a  s ingle-socket  mod 
ule can program more than one PROM type, the available choices are 
d isp layed on sof tkeys for  user  se lect ion.  

-Roger  Cox 

files is the entire file read before the user is allowed to issue 
commands. 

As various commands cause more of the source file to be 
read the data is brought into memory and shuffled between 
the two double-ended queues. When the internal memory 
space is filled records are written to scratch file B in the 
forward direction. Should a command require moving to an 
earlier line of text the records are written to scratch file A 
and read from scratch file B. The original source file is never 
overwritten. 

When the end command is issued a destination file is 
created. The text is written from scratch file B, the internal 
buffer space, scratch file A, and the source file into this 
destination file. The original source file is then purged and 
the destination file renamed as source. The original file has 
then been placed in a deleted file list by the 64000 file 
manager and can be recovered. When the scratch files are 
closed they are deleted from the disc directory by the file 
manager. 

A particular problem in the microprocessor world is the 
use of different assemblers and cross assemblers for the 
same microprocessor, sometimes from the same manufac 
turer. The text editor is a tool that usually bridges this gap, 

and in a few cases, dedicated conversion programs are 
available. To try to accommodate source programs written 
for a variety of assemblers, the 64000 editor extends the 
normal string replacement capabilities shown in Fig. 7. By 
allowing for the recognition of unknown characters or vari 
able length strings of characters terminated by known 
characters, more generalized editing commands can be is 
sued. The notation used is somewhat like the pattern recog 
nition languge SNOBOL.2 The example in Fig. 8 shows a 
statement that reverses the order of the operands in two- 
operand 8080 instructions. This string replacement capa 
bility is further augmented by the ability to specify the 
columns over which the replacement should apply. The 
columns are specified in the same manner as the tabset, that 
is, either by specifying the column numbers or editing a line 
reflecting the current range specification. 

Fi le  Management  
The heart of all modern software development tools is the 

file management system. While automatic space allocation 
is a part of almost all systems, in the 64000 system this 
facility is significantly extended to include the ability to 
recover accidently purged files or previous copies of edited 

1 8 4  n o v  n , E  
I K  I N X  H  
1 8 6  n o v  D . n  
1 0 7  L D f l  L E T T E R  

C P I  f l S C I I . L T  
JNZ NEXT1 

l i e  n v i  e . d  
111 JMP NEXT3 

N E U  M O V  D , n  

H E U  I N X  H  

N E U  D C R  B  
â€¢n.- NEXTI CPI nscii-GT 

1 1 6  J N Z  N E X T 2  
1 1 7  M V I  B , l  

116 NEXT3 STfl GT.LT 

119 NEXT2 LXI H, STORE 

STflTUS: Editing CONTROLATS . 

SET UP THE PflPflMETERS 

GET LETTER FOP COMPflRISON 

CHECK FOR "LESS THflN" Â«ODE 

NOT -LESS THflN" 

"LESS THflN" MODE 

CHECK FOR "GREflTER THflN" MODE 

NOT "GPEflTER THflN" 

"GREATER THflN" MODE 

SET THE FLflG 

SET UP THE POINTER 

-GREflTER THflN REF fl"A thru 117_ 

IK nov n,B 
1 0 3  I N X  N  

104 nov n,E 
i  I N X  H  

106 nov D.n 
1 0 7  L O f l  L E T T E R  
1 0 8  C P I  f l S C I I . L T  
1 0 9  J N Z  N E X T 1  
1 1 0  n v i  O . f l  
111 jnP NEXT3 
NEU nov D.n 
N E U  I N X  N  

N E U  D C R  B  
â€¢IV NEXTI CPI flSCII-GT 
116 JN2 NEXT3 
117 nvi fl, 1 
118 NEXT3 STfl GT.LT 

119 NEXTZ LXI H. STORE 

SET UP THE PflRflnETERS 

SET LETTER FOR COHPflRISON 

CHECK FOR "LESS THflN" nODE 
NOT "LESS THflN" 

"LESS THflN" MODE 

CHECK FOR "GREflTER THflN REF fl" MODE 
NOT "GREflTER THflN PEF fl" 
"GREflTER THflN REF fl" MODE 

SET THE FLflG 

S E T  U P  T H E  P O I N T E R  

S T f l T U S i  S t r i n j t  e t " -  

_ r t p l Â » c e  " " G R E f l T E R  T H f l N " "  w i t h  ' " G R E f l T E R  T H f l N  R E F  f l " A  t h r u  1 1 7  

F ig .  7 .  Us ing  s imp le  cha rac te r  s t r i ng  rep lacement ,  (a )  The  
command executes from the current posit ion ( indicated by the 
l ine number in  inverse v ideo)  to  the pos i t ion speci f ied in  the 
command ,  (b )  The  s ta tus  l i ne  repo r t s  t he  rep lacemen t  pe r  
formed. 
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187 LDfl LETTER 

1 0 8  C P I  d S C I I . L T  

189 JN2 NEXT1 

ne Mvi n.e 
111 JMP NEXT3 

N E U  M O V  n , D  

N E U  I N X  H  

N E U  D C R  B  

115 NEXT1 CPI OSCII-GT 

1 1 6  J N Z  N E X T 2  

1 1 7  H V I  l . B  

118 NEXT3 STfl GT.LT 

; NExra LXI STORE, H 

SET UP THE PflRflNETERS 

GET LETTER FOR COMPflRlSON 

CHECK FOR "LESS THflN" MODE 

NOT "LESS THflN" 

"LESS THflN" MODE 

CHECK FOR "GREflTER THflN REF 0" NODE 

NOT "GPEflTER THflN REF fl" 

"GREflTER THflN REF fl" MODE 

SET THE FLflG 

SET UP THE POINTER 

ith "f.S A thru 102 

F i g .  8 .  P o w e r f u l  t e x t  m o d i f i c a t i o n  u s i n g  S N O B O L - l i k e  f e a  
tu res ,  (a )  By  us ing  the  spec ia l  charac te rs  "anys t r ing"  (  [ s ]  )  
a n d  " a n y c h a r a c t e r "  (  [ c ]  )  t h e  o p e r a n d  f i e l d  o f  t h i s  8 0 8 0  
code can  be  reversed ,  (b )  The  tex t  changes  v i r tua l l y  ins tan  
taneously and the status l ine reports seven replacements were 
per formed.  

files up to the time when the space is needed for new files . A 
further enhancement aimed at managing the increased 
number of files being used is the user identification added 
to files names. By entering a user ID at the beginning of a 
session all operations will be carried out on files under that 
name. The directory list defaults to listing only the files 
under that ID. 

Further enhancements offered by the 64000 file manager 
come in the directory, including a listing of space available 
and comprehensive data on file use. Monitoring revisions 
to programs is made easy since the date and time of last 
access and modification of each file are automatically main 
tained and shown in the directory list. The linking loader 
also specifies in the load map the date and time of the last 
update of each relocatable module loaded. The significance 
of this record keeping in a multiple-design project where 
program modules are independently maintained cannot be 
overstated. 

Another important function for the file system is the 
ability to submit a stream of system commands contained in 
a file. This capability, available on many systems, makes 
performing a long series of tasks almost foolproof. An ex 

tension to this function in the 64000 allows parameters to be 
passed to one of these command files in a manner similar to 
assembly language macros. Then more generalized com 
mand files can be created, thus reducing the number of files 
created and used. For example, a command file could be 
created that automatically sequences through the opera 
tions of assembly, linking, loading, and emulating, and 
only the source file(s) need be specified at the time the 
command file is invoked. Also, by including a learn mode 
for building command files the full aid of the directed- 
syntax softkeys is made available in constructing command 
files. 

Page Structure 
The 64000 file management system has a linked list struc 

ture. Each of the files consists of blocks of sectors called 
pages. The number of sectors per page is constant for a 
given disc but may vary for different discs to optimize 
certain file management operations. The pages of a file are 
linked in both forward and backward directions (see Fig. 9). 
This symmetry is used to its greatest advantage in the 64000 
editor. Editor operations such as rolling, paging, and string 
searching can be done with equal efficiency either forward 
or backward through the text. 

When a file is being updated the same sectors on the disc 
are used. If the size of the file is increased the file manager 
allocates another page to the file, linking it to the end of the 
last page. The list of available pages is kept in much the 
same way as a file. It is a doubly linked list of pages. Free 
pages are taken from the front of the list when they are 
allocated to files. This approach allows files to grow easily 
without bound and precludes the need for a user-invoked 
disc packing program. The disc remains continuously 
packed by the nature of the file structure. 

Directory Format 
As with most file management systems the keys to locat 

ing a file on the disc are kept in a separate area called the 
directory. The 64000 directory is organized as a hash coded 
list. Hash coding minimizes the amount of searching re 
quired to locate the directory entry for a given file. The 
hashed value of the file name indicates the directory sector 
on which the file information is most likely to reside. The 

F i l e  P a g e s  

Fig. allows 64000 file structure. The linked list organization allows 
for f lexible f i le size. 
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64000 Command Parsing 

Commands  a re  in te rp re ted  in  the  64000  Sys tem us ing  an  LALR 
( look-ahead,  le f t - to-r ight)  pars ing technique.  The syntax of  the com 
mands PROM an application module such as the monitor, editor, or PROM 
p r o g r a m m e r  i s  d e s c r i b e d  i n  a  c o n c i s e  a n d  r e a d a b l e  f o r m a t  b y  a  
grammar. An example of this is the editor 's delete command shown in 
Fig. 1 . The complete grammar is given as input to a parser generator 
program, and the result is a table that is used by the 64000 parser to 
parse the text  that  the user  types on the command l ine.  

a)  de le te  

thru 
until 

< l i n e # >  
< s t r i n g >  

start 
end 

b )  < D E L E T E _ C O M M A N D >  

< R A N G E _ S P E C >  

< L I M I T >  

< d e l e t e > <  R A N G E _ S P E C >  

< E M P T Y >  
< t h r u > < L I M I T >  
< u n t i l > < L I M I T >  

all 

< S T R I N G >  
< N U M B E R >  

end 
start 

< d e l e t e >  : : =  d e l e t e  
< t n r u >  : : =  t h r u  
< u n t i l >  : : =  u n t i l  

Fig .  1 .  Syn tax  o f  the  ed i to r ' s  de le te  command,  (a )  Conc ise  
s y n t a x ,  ( b )  B N F - l i k e  g r a m m a r  u s e d  t o  d r i v e  s e m a n t i c  a n d  
softkey routines. 

LALR pars ing prov ides a  conven ient  s t ruc ture  fo r  64000 app l ica  
t i o n  p r o g r a m s .  W h e n  a  c o m m a n d  i s  p a r s e d  i t  i s  d e c o m p o s e d  i n  
exact ly the same manner as the grammar used to create the parsing 
t a b l e s .  E a c h  l i n e  o f  t h e  g r a m m a r  i s  a n  o p p o r t u n i t y  t o  p e r f o r m  a  
semant i c  func t ion .  Thus  the  64000  parser  ac ts  as  a  d r i ve r  fo r  the  
var ious funct ions a program per forms.  

The same features of  LALR pars ing that  dr ive the execut ing func 
t ions  o f  64000  p rograms a re  used  to  d r i ve  the  so f tkeys .  As  a  com 
mand is typed into the command l ine the characters are continuously 
s c a n n e d  b y  t h e  6 4 0 0 0  p a r s e r .  A s  t h e  v a r i o u s  s t a t e m e n t s  o f  t h e  
grammar are appl ied to the character  str ing the corresponding level  
of  sof tkeys is  se lected.  This  parse cont inues up to the present  posi  
t ion  o f  the  cursor  in  the command l ine .  At  the  end o f  the  parse the 
sof tkeys corresponding to  the cursor  pos i t ion are d isp layed.  In  th is  
way the user  is  shown a l l  o f  the avai lab le choices at  that  t ime.  

S i n c e  t h e  c o m m a n d  l i n e  i s  s c a n n e d  a l m o s t  c o n t i n u o u s l y  t h e  
sof tkeys are a lways consis tent  wi th the cursor  posi t ion.  Because of  
t h i s  t h e  c u r s o r  c a n  b e  m o v e d  t o  a n y  p o s i t i o n  i n  t h e  l i n e  a n d  t h e  
softkeys wil l  track the syntax. Also, the correct softkey level is depen 
den t  a  on  the  cha rac te rs  con ta ined  i n  the  command  and  no t  on  a  
sequence of  user  act ions.  For  users  who choose to  type ins tead of  
u s i n g  t h e  s o f t k e y s  a n d  f o r  c o m m a n d s  t h a t  a r e  r e c a l l e d  i n t o  t h e  
command l ine the sof tkey t rack ing s t i l l  works.  

LALR pars ing  i s  de te rmin is t i c  in  the  de tec t ion  o f  syn tax  e r ro rs .  
When a  s t r ing  o f  charac te rs  does  no t  cor respond to  a  permiss ib le  
sequence as defined by the grammar it is detected as an error. At that 

STATUS:  Ed i t ing  F ILEX 
m e r g e    
< F I L E >  f r o m  t h r u  

STATUS:  Ed i t ing  F ILEX 
merge FILEZ f rom 2S thru 45 

ERROR: Inval id  l ine  number  
m e r g e  F I L E Z  f r o m  2 $ _ t h r u  4 5    

    t h r u  

F ig .  2 .  When  a  syn tax  e r ro r  i s  de tec ted  an  ins t ruc t i ve  mes  
sage is displayed and the cursor is placed under the error. The 
sof tkeys are consistent  wi th the cursor  posi t ion.  

t ime the posi t ion of  the error  in  the command and the set  of  correct  
syn tax  e lements  a re  known.  The 64000 convent ion  i s  to  p lace  the  
cursor at the position of the error and report the error in a manner that 
spec i f ies  what  was expected.  The so f tkey  pars ing  is  re in i t ia ted  as  
well ,  so that the softkeys are again labeled with the available choices 
for  the current  cursor  posi t ion (see Fig.  2) .  

F l e x i b i l i t y  i s  a  b o n u s  o f  t h e  L A L R  p a r s i n g  t e c h n i q u e .  W h e n  a  
change or  add i t ion  to  the syntax  o f  a  program is  des i red,  i t  can be 
made quickly wi th a minimum of impact on other features.  Tables for 
t he  new  g rammar  a re  gene ra ted  and ,  i f  r equ i r ed ,  a  so f t key  l eve l  
template is  added or  changed.  A new message may be added to the 
table of error messages. The general structure of the softkey parsing 
is shown in Fig.  3.  

-Br ian Kerr  

Keyboard 
Scanner 

Fig.  3.  Sof tkey operat ion.  In teract ions between the main pro 
gram and the sof tkeys are wel l -def ined and sui table for  many 
appl icat ions.  
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data on that sector will indicate if the file exists or if another 
directory sector should be searched. As long as the direc 
tory is only partially full the file should either be found or 
proved nonexistent with only one disc read. Directory size 
has been chosen to correspond to the size of the disc. This 
guarantees that the directory will not be too full for efficient 
file lookup. 

Each directory entry gives the name, user identification, 
and type of the file. Each entry contains pointers to the first 
and last pages of the file. This is the necessary information 
for accessing and deleting the file. In addition, two dates 
and times are kept for each file. One is the date and time that 
the file was last accessed. This is modified with the system 
date and time whenever the file is opened. The other is the 
date and time that the file was last modified. It is updated 
when the file is closed after records have been added or 
rewritten. These dates provide the user with convenient 
records of file use. The directory list and cassette backup 
commands use the dates as qualifiers for operations. For 
example, the user can store all recently changed files with 
the command store allâ€”files modified after 5/31/80. 

Recover ing Deleted Fi les 
The linked list file structure allows for a special feature of 

the 64000 file management system. Since deleted files are 
added to the end of the free list they are still intact until the 
entire free list has been allocated to other files. When a file is 
deleted its directory information is transferred to a special 
section of the directory. This is a circular list of files that 
have been deleted. A user who has made a mistake and 
deleted the wrong file can issue a recover command. This 
routine searches the recoverable file list for the file and if 
the file is found checks to insure that its pages have not been 
allocated to another file. If they have not, the file is restored 
to the directory of active files. Since the 64000 editor always 
purges the original file and creates a new copy, the user can 
recover previous versions. 

Fi le  Format  
All user-accessible files have a similar data format. The 

data is stored in variable-length records. The number of 
words of data in a record is placed in the bytes immediately 
preceding and following the data. Again, this symmetry 
allows for bidirectional access. It also provides a means for 
insuring the integrity of the file data. If the two lengths of a 
record are not the same then a data read or write error can be 
assumed. 

Program modules such as the editor, assembler, and 
linker are called by the 64000 monitor using a system of 
overlays. When a module has been selected by the user or 
the currently running module an operating system routine 
is called to bring the correct file from the disc. Files of this 
sort are kept in a special non-record format. They are stored 
as memory images that can be read directly into the location 
in memory where they will be executed. It is desirable that 
this operation be performed as quickly as possible so as to 
be transparent to the user. To accomplish this the disc is 
organized in a special way. Normally sectors that are logi 
cally adjacent in a file management system are also physi 
cally adjacent on the disc. In the 64000 this is not the case. 
Logically adjacent sectors are spaced some distance apart 
depending on the particular type of disc. When a sector is 

read the disc continues to rotate while the data is being 
transmitted over the system bus and placed in the 64000 
memory. By the time the next sector is requested the disc 
has rotated so that the physical sector is in the correct 
position to be read. In this way many disc rotations are 
eliminated. 
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Emulators for Microprocessor System 
Development 
by James B.  Donnel ly ,  Gordon A.  Greenley ,  and Mi lo  E .  Muterspaugh 

SIM -U- LATE vt: to pretend, feign. EM-U-LATEvt: 
to equal. Until recently, the development and de 
bugging of software for new processor-based sys 

tems was frequently done with the aid of simulators, which 
are programs running on a large host computer and having 
the property of simulating the instruction set and the pro 
gramming model of the new or target processor. After the 
software was initially debugged using the simulator, fur 
ther debugging of the software-hardware system was done 
with the aid of debug programs and various hardware and 
software facilities that provided breakpoints, single-step 
ping, and other capabilities. More recently, logic analyzers 
have also aided in the process. 

With the introduction of microprocessor development 
systems, a new tool has been made available to the designer 
in the form of the microprocessor emulator. Today's 
emulators combine many powerful software and hardware 
development tools into one convenient, easy-to-use system 
and greatly facilitate the process of integrating the 
hardware and software components of newly developed 

microprocessor-based systems. At the user interface, the 
hardware portion of the emulator replaces the microproces 
sor, and in keeping with the definition of emulation, at 
tempts to be as much like the actual microprocessor as 
possible, both functionally and electrically. 

The advantages of using an emulator include the ability 
to develop software on the actual processor to be used, the 
ability to load the newly developed programs into emula 
tion memory and execute those programs in the develop 
ment hardware in real time without having to use PROMs, 
thus speeding the development cycle, and the ability to 
debug hardware and software under very controlled condi 
tions by being able to run, halt, and step the processor at 
will and to examine and modify registers and memory. An 
additional advantage is the ease with which the emulator is 
connected to the user system: it simply plugs into the socket 
where the microprocessor would normally go. 

Design Object ives 
In developing the emulators for the 64000 Logic De- 
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User  System Emulat ion System 

T High-Speed Emulat ion Bus 

Memory 
Emulator  
Control  
Board 

Emulation 
Memory  

Board 

Mainframe Bus 

Host  
Processor 

Host 
Memory  

I 
Analysis 

Board 

B B  

F ig .  1  .  The  64000  emu la to r  sub  
system cons is ts  o f  a  microproces 
sor  emulator ,  a memory emulator ,  
a  l og i c  ana l yze r ,  and  a  so f twa re  
suppor t  package.  

velopment System, the principal objective was to maximize 
transparency to the user and the user's system. This objec 
tive was applied to both the functional and the electrical 
aspects of the emulator. 

Functionally, transparency was defined to mean that the 
user must not be deprived of or restricted in the use of any 
address space, instructions, interrupt systems, or other fea 
tures normally available in the microprocessor being emu 
lated. 

Electrically, transparency means that the design of the 
emulator must minimize degradation in timing and electri 
cal loading, so that the emulator will operate in the user's 
system as much like the emulated processor as possible. 

System Descr ipt ion 
In the 64000 System, a complete emulation system con 

sists of the microprocessor emulator, the memory emulator, 
a logic analyzer, and a software support package that inte 
grates the hardware components into a powerful, easy-to- 
use development tool (see Fig. 1). 

The emulator system is partitioned into three interfaces: 
1) the user interface, which is defined by the specifications 
of the processor being emulated, 2) the emulation bus, a 
high-speed bus that connects the processor emulator, the 
memory emulator, and the logic analyzer, and 3) the 
641 OOA mainframe bus, which provides for control and 
communication between the mainframe host processor and 
the emulation system. 

This architecture provides complete separation of the 
host processor and memory from the emulation system. 
This allows the host processor to run the emulation support 
software independently of the emulator, thus relieving the 
emulation processor of the burden of that overhead and 
helping to meet the design goal of functional transparency. 

The Microprocessor  Emula tor  
The microprocessor component of the emulation system 

is divided into two subassemblies, a pod external to the 
64 100 A mainframe and a control board contained in the 
64100A card cage (see Fig. 2). 

The emulator pod contains a high-speed version of the 
emulated microprocessor, interface buffers, buffer con 
trol circuitry, and an internal clock source. A fully buf 
fered architecture is used. Some of the advantages of this 
configuration are the minimization of potential damage 
from the user's breadboard and the ability of the 64000 
system to gain control of the emulation processor and con 
tinue to function even though an electrical fault may exist 
in the user system. The combination of less than maximum 
capacitive loading on the processor provided by the isola 
tion of the buffers and the use of high-speed versions of the 
processors gives the emulator the ability to operate with 
little or no degradation of timing specifications in most 
cases. The pod is connected to the user's microprocessor 
socket by a 30-cm dual flat cable and a 40-pin plug. Each 
signal wire in the cable is isolated from adjacent signals by 
alternating ground wires with the signal wires to minimize 
coupling. The pod connects to the emulator control board 
by two by twisted-pair flat cables. This cable is driven by 
Schottky TTL buffers and is terminated in its characteristic 
impedance with one wire of each pair grounded to insure 
good high-speed signal quality. 

The emulator control board consists of a timing section, 
which converts the timing signals of a given microproces 
sor into the standardized timing requirements of the 64000 
emulation bus, various status and control registers, a 256- 
byte memory referred to as the background memory, 
background memory access control circuitry, a state 
machine called the background controller, and an illegal 
opcode detector. The function of the control board is to 
provide timing signals for the emulation memory and logic 
analyzer units and to provide the status and control inter 
face between the emulation processor and the 64000 host 
processor. 

The Universal  Approach 
Early in the emulator design phase, it appeared that it 

might be possible to identify certain functions of the control 
board that could be considered independent of micro 
processor type and that these functions could be designed 
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A d d r e s s  D a t a  C o n t r o l  

into a universal architecture, which could then become the 
core of several emulators. The result of this effort became 
known as the breeder board. It consists of a printed ciruit 
board containing the interface buffers, status and control 
registers, background memory and access control,  
background controller, and illegal opcode detector, plus an 
undefined wirewrap section to be used by the designer in 
breadboarding the timing section, which is the principal 
difference between the various microprocessors. To date, 
the breeder board has been the basis for three control boards 
that serve a total of five distinct microprocessors depending 
on the pod selected. 

For HP, this approach has had the obvious advantage of 
more efficient use of engineering resources and shortened 
design cycles. The customer has also benefited by virtue of 
the fact that a common architecture results in a degree of 
consistency and continuity in the operating characteristics 
of the various emulators, thus reducing learning time. In 
addition, this approach has made it possible for some con 
trol boards to serve more than one microprocessor by just 
changing the pod. 

Functional  Descript ion 
In operation, the emulator exists in one of two states, 

foreground or background. In the foreground state, the 
emulator appears to the user system as a standard micro 
processor and executes user-written code, which may be 
physically resident in either user memory or emulation 
memory or a mixture of both, depending on how the user's 
memory space has been mapped. It is worthwhile to note 
that even though physical memory such as ROM may exist 
at a given address space in a user's system, it is possible to 
overlay that memory with 64000 emulation memory for 
code patching and debugging purposes. 

In the background state, execution in the user system is 
suspended and the processor appears halted to the user 

F i g .  2 .  T h e  6 4 0 0 0  e m u l a t o r  a n d  
h o s t  p r o c e s s o r  h a v e  s e p a r a t e  
buses  so  the  hos t  p rocessor  can  
r u n  t h e  e m u l a t i o n  s o f t w a r e  i n d e  
p e n d e n t l y  o f  t h e  e m u l a t o r ,  t h u s  
helping to make the emulator func 
tionally transparent to the user and 
the user 's system. 

system. The apparent halted state at the user interface is 
synthesized by manipulation of the pod buffers while the 
processor is actually running under 64000 system control 
in background memory. While in background, all inputs 
from the user system are inhibited to prevent possible user 
system interference with the execution of emulator 
background tasks. 

Two important features of the 64000 emulators are key to 
the achievement of the functional transparency design ob 
jective. The first is the concept of background memory and 
the second is the means by which control is transferred 
between the user system and the 64000 system, that is, 
between foreground and background. 

Background memory is a 256-byte RAM resident on the 
emulator control board. This memory is physically distinct 
from any memory either in the user system or on the emula 
tion memory board (see "Emulation Memory" below), and 
does not occupy any of the user's address space. The 
background memory is accessible to both the emulation 
processor and the 64000 host processor and serves as the 
primary communication link between the two. The 64000 
host processor loads various register unloading and register 
and memory read/modify routines into background mem 
ory and these routines are then executed by the emulation 
processor when it is transferred from foreground to 
background. 

Transfer of the emulation processor from foreground to 
background is initiated by the occurrence of a break condi 
tion. A break may originate in any one of four sources. It 
may come from the logic analyzer unit after a specified 
condition has been met, from the emulation memory unit 
because of an illegal memory reference or write to ROM, 
from the processor emulator control board as a result of an 
illegal opcode fetch, or from the host processor, for example 
when the user enters a keyboard command for the emulator 
to stop. 
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Fig.  3.  The emulator exists in one 
o f  t w o  s t a t e s ,  f o r e g r o u n d  o r  
b a c k g r o u n d .  T h e  b a c k g r o u n d  
c o n t r o l l e r ,  a  f o u r - s t a t e  s t a t e  
mach ine ,  con t ro ls  the  t rans fe r  o f  
t h e  e m u l a t o r  p r o c e s s o r  f r o m  
f o r e g r o u n d  t o  b a c k g r o u n d  a n d  
v i ce  ve r sa .  Th i s  cha r t  shows  de  
ta i ls  o f  the  background ent ry /ex i t  
process.  

A prime consideration in choosing the means for trans 
ferring control of the processor was the need to have some 
method that is independent of processor type, since the 
universal architecture of the control board was intended to 
work with a variety of processors. For example, a nonmask 
able interrupt (NMI) might be a reasonable way to seize 
control of a processor, but some, such as the 8080, have no 
NMI. This need led to the use of a technique of jamming 
addresses independent of the addresses being generated by 
the processor onto the emulation background memory ad 
dress bus at the appropriate time in the processor instruc 
tion cycle. This causes the opcode fetch to be returned to the 
processor from background memory. 

The jamming process is synchronized by the background 
controller to the first opcode fetch cycle following the oc- 
curence of a break condition. This process simultaneously 
inhibits the user interface buffers and the address buffers 
from the processor to the background memory while en 
abling the jam address counter onto the bus. The jam ad 
dress counter generates consecutive addresses starting at 
OOH for the length of one full instruction cycle. The length 
of the jam count is elastic, since state transitions of the 
controller occur on opcode fetch cycles and so the count 
length is a function of the instruction loaded into address 
OOH. Typically, a call instruction is used in the background 
code as the first instruction. The use of this type of instruc 
tion serves two purposes. First, the processor responds by 
placing the program counter on the stack. The stack is 
always in the same two locations in background memory 
regardless of where the processor stack pointer is set be 

cause the address bus is being jammed by the jam counter. 
This information is later used to determine where to send 
the processor when the emulator is returned to the fore 
ground state. Second, the program counter is changed to the 
starting address of the background program, which results 
in transferring program control to the background memory 
when the jam cycle is terminated on the next opcode fetch. 
Functionally, this process may be viewed as a hardware 
implementation of a nonmaskable interrupt that is inde 
pendent of processor type (Fig. 3). 

The background controller is a state machine having four 
states: jam background, idle background, exit background, 
and foreground (see Fig. 4). State transitions occur at the 
beginning of opcode fetch cycles that are coincident with 
other qualifying events. 

The background controller enters the idle background 
state on the next fetch following the beginning of the jam 
cycle previously described. This returns control of the ad 
dress bus to the emulator processor which begins executing 
the background entry program. During this time, registers 
are unloaded, return addresses are computed, and so on. 
Following the completion of these tasks, the processor en 
ters a jump self loop called TRAP where it awaits further 
direction from the host processor. 

The host processor communicates with and controls the 
emulator processor indirectly through the medium of the 
background memory. This is possible because the memory 
is designed so that the host processor can read or modify 
background memory at the same time the emulator proces 
sor is executing code in that memory. The method of control 
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Break 

Fig.  4 .  Background cont ro l le r  t rans i t ion  d iagram.  

involves the host processor loading a program or programs 
into background memory and then changing the jump ad 
dress of TRAP on the fly to coincide with the starting ad 
dress of the desired background program. The emulator 
processor reads the new jump address and transfers to that 
point. 

The exit background state is initiated when the host pro 
cessor causes the emulator processor to make an opcode 
fetch from a dedicated background address called EXIT. The 
background controller recognizes the fetch from EXIT and 
makes the state transition. The opcode loaded into location 
EXIT is a jump instruction and the following bytes contain 
the address of the desired foreground entry point. 

The transition from the exit background state to fore 
ground immediately follows on the next opcode fetch cycle. 
At this point, the program counter of the emulator processor 
has been transferred to the foreground entry address by 
virtue of the previous jump instruction. The background 
controller hardware simultaneously enables the user inter 
face buffers and switches the program source from 
background memory to foreground memory, which may be 
either user memory or emulation memory as determined by 
the memory mapper. 

The process of entering and exiting background described 
here is employed in all cases where it is necessary for the 
host system to control the emulator processor. An example 
of this is single-stepping, where the emulator is returned to 
foreground for a single instruction cycle and then immedi 
ately jammed into background. Continuous stepping and 
non-real-time analysis are done in a similar manner. 

Emulat ion Memory 
The emulation memory consists of the memory emulator 

control board and from one to four emulation memory 
boards. Each fully loaded memory board contains 32K bytes 

of static memory. 
The memory controller interfaces the emulation memory 

to the mainframe and the emulator system. The emulator 
has the full bandwidth of the emulation memory. If the 
mainframe wants to access the emulation memory, the 
mainframe cycles are held off until the emulator completes 
its memory cycle. A mainframe cycle is then attempted and 
a flag is set if there was sufficient time to complete the 
mainframe memory read. (Only mainframe read cycles are 
allowed while the emulator is accessing the emulation 
memory, since write cycles may not be interrupted.) This 
feature lets the user dynamically watch the memory while 
the emulation processor is running, provided that sufficient 
dead time is available. 

The memory controller provides mapping of the target 
processor's address space into 64 blocks of equal size. This 
is accomplished by placing a mapper RAM in series with 
the six highest-order address lines from the emulator. Each 
block can contain from 256 bytes to 32 ,768 bytes depending 
on the address bus size and whether the data bus is 8 or 16 
bits wide for the processor being emulated. The mapping 
feature allows the available memory (as little as 8K bytes) to 
be placed anywhere in the emulated processor's address 
space. For an 8-bit processor, such as the 8080, each availa 
ble block of memory can be placed anywhere from 0 to 64K 
in IK increments. The mapper also provides status bits for 
each block of memory. The status bits tell the emulator 
whether that block of memory is RAM, ROM or undefined. 

The memory controller sends a break to the emulator if an 
illegal memory operation is performed, such as a write to 
ROM. 

Emulator  Software 
The purpose of the emulator software is to provide a 

friendly interface for the user to verify program code in a 
hardware configuration that emulates the end product, a 
microprocessor-based system. Hardware resources used by 
the 64000 System emulator software include the processor 
emulator, the memory emulator (up to 64K bytes), and the 
logic analyzer unit, which provides 256 states of address, 
data, status, and count data. 

The first task for the user is configuration assignment, 
that is, specifying the configuration of the hardware (see 
Fig. 5). This includes 
1. Processor clock (internal or external) 
2. Illegal opcode detection (enable or disable) 
3. Real-time run control (enable or disable) 
4. Memory assignment for 64 equal address ranges. Each 

range can be assigned as emulation memory, user mem 
ory, or illegal, and as RAM or ROM. 

5. Simulated I/O control addresses for display, printer, 
keyboard, RS-232-C interface, and disc file(s). 

Once the hardware configuration has been set up, the in 
formation can be stored in a user-specified file so that re 
peated emulate sessions can be initialized without repeat 
ing the configuration assignment task. 

The next user task is loading program code. This is ac 
complished by specifying the file name of the user program 
code file. The configuration and/or load-memory file names 
may be specified when the emulate command is initiated. 
For example, the following command may be given: 
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in  s lot  Â« 5.  Memori ,  s lot  â€¢ 7.  Analssis Â«l  C O U N T  T I M E  A B S O L U T E  

-eee -4ee -aae 
RUM 

4    R O M  R O M  R O M  R O M  C    

5 â € ”  R O M  R O M  R O M  R O M  D    

6    E    

Â«TER 00B0H je 0599H 
+eei 88B3H CULL 063EH 

+882 063EH LXI H, 3778H 

+003 0641H fIDV A, M 

+064 0642H MOV M, H 

Â«ees ee43H am a 
Â»ee6 0644H RNZ 
+ e e ?  O T B 6 H  L D A  F B C 6 H  
+00B 00B9H XRI ceH 
""> eeBBH JM een7H 
+eie 0eA7H LDO 7AC0H 
ten eeoDH MOV B, n 
+012 00flBH LXI H, 3779H 

+013 eeeEH XRA M 
+ei4 eeAFH RRC 
Â « 0 1 5  e e B 0 H  J C  0 5 9 9 H  

S T f l T U S :  8 0 S 0    R u n n i n g  

sp-1 37FFH (sp-l,sp-2) 00B6H 

hi 377SH (hi) 37H 

hi 3778H (hi) 37H 

sp 37FEH (sp,sp+l> 00B6H 

a 34H 

hi 3779H (hi) 77H 

F ig .  5 .  To  use  the  emu la to r ,  t he  use r  mus t  f i r s t  spec i f y  the  
hardware  and memory  con f igura t ion .  

F i g .  6 .  A  t y p i c a l  t r a c e  d i s p l a y  s h o w i n g  p r o g r a m  f l o w  i n  
mnemonic  form.  

emulate CONFIG load memory PROGNAME 

This command brings in the emulate software, initializes 
the hardware resources (processor, memory, etc.) as previ 
ously stored in CONFIG, and then loads memory with code 
from PROGNAME. 

After the emulator has been configured and program code 
loaded, the user can start an emulate session. There are a 
variety of ways for the user to debug program flow. These 
include: 
1. Execution control, such as run, step, stop, trace com 

mands 
2. Display options, such as registers, memory, trace 
3. Modify options, such as registers or memory 
4. Simulated I/O control. 

Execut ion Control  
Upon entry to the emulate module, the status of the pro 

cessor emulator is ' 'ready' ' and the module is waiting for the 
next command. Commands that may be used include run, 
step and stop. These commands have the following syntax: 

run [from address] [until term] 

step [number instructions] 

stop processor 

run processor at  current 
program counter or speci 
fied address. A stop term 
may be specified, 
step processor one instruc 
tion or specified number 
of instructions 
stop processor 

The processor may be stopped by an illegal opcode (if 
enabled), an illegal memory reference, completion of the 
analysis, or a user command. 

Rea l -T ime  T race  Command  
The trace command allows the user to view program 

flow. The command is simply: 

provided for user convenience. This means that any expres 
sion may contain symbolic references. For example, the 
following trace specification may be given: 

trace after SYMBOL 

The user may also make the following type of trace 
specification: 

trace after register c = 3 

This causes the system to single-cycle the emulator proces 
sor and perform the specified trace. The emulator software 
tries to do the specified task in real time, but if the user 
makes a specification beyond the real-time analysis 
capabilities of the system, then the emulator processor is 
cycled to perform the specification. The trace command can 
be a complex specification. For example consider the fol 
lowing trace commands: 

trace in sequence OAOCH then 063EH 
trigger after OOA7H 

This specification can be accomplished in a pseudo-run 

COUNT TIME ABSOLUTE 

SEQN 8A0CH ADI tÂ» 

SEQN 063EH LXI H, Â«Â»Â»* 

AFTER 00A7H LOR 7KC0H 

+0ei 00AAH MOV B,n 
+002 eeflBH LXI H, 3779H 

83 B0SEH XRfl U 

94 00AFH RRC 

9 5  0 0 B 0 H  J C  0 5 9 9 H  

+ 0 0 6  0 0 B 3 H  C U L L  0 6 3 E H  

+007 B63EH LXI H, 377BH 

98 0641H MOV A, M 

â€¢Â»39 eS42H MOV M.H 

+ e i 0  0 S 4 3 H  M W  A  

+011 0644H RNZ 

+012 e0B6H LDi) FBC0H 

+ 8 1 3  0 0 B 9 H  X R I  C  

3778H (hi) 37H 

3778H (hi) 37H 

trace 

The resultant trace display shows program flow in 
menomic form and may look as shown in Fig. 6. 

When the program code is loaded, the symbol file is also 

i c e  0 f l 0 C H  t h e n  0 6 3 E H  t r  

Fig .  7 .  A  t race  d isp lay  fo r  a  complex  t race  spec i f i ca t ion .  
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K  Â »  ( â € ¢  
FÂ«  J t l  MOTH 

mo 30  un  TRON 
MW 47 IW B.Â« 

~ 21 IXI H. 377Â» 
Â«c Â«n n 
~  w c  
D A  J C  Â « 5 9 9 H  

I  C D  C f l U .  Â « 6 3 E N  
Â « 6 3 E  2 1  L X I  H .  3 7 7 9 1  
Â « 6 4 1  T E  I O V  O . n  
Â « 4 2  7 4  M O V  n .  H  
Â«643 Â«7 Â«NÂ« A 
Â « 6 4 4  C e  B N Z  
  1  3 f l  U Â »  F B C e H  

, J  E E  X R I  C 8 H  

77 FÂ» 
7 7  F e  

77  77  FÂ»  
77  77  FÂ»  
77  77  FÂ»  
M  7 7  F Â »  
Â«e 77 re 
ee 77 Fe 
ee 77 FÂ» 
M 77 Fe 

37 77 Fe 

37 77 FB 

37 77 Fe 

37 77 Fe 

2e 77 Fe 

Ee 77 re 

37 78 U * 1 

37 78 18 t 1 

37 78 IB ( 1 

37 78 1* â€¢ 1 

37 79 1* â€¢ 1 

37 79 et â€¢ 1 

3 7  7 9  e i  e  i  e  
37 79 ei â€¢ i e 

Fig .  8 .  A  d isp lay  o f  the  emula tor  processor  reg is ters .  

mode, that is, the processor can run in real time to OAOCH 
and stop, then run in real time to 063EH, and so on. The 
displayed trace might be as shown in Fig. 7. 

Display Options 
The display options include registers, memory, and trace. 

An example of a display of the processor registers is as 
shown in Fig. 8. 

Memory displays can be of any assigned memory. Modes 
of display include absolute, mnemonic, offset, and 
dynamic. The absolute mode displays memory in hexadec 
imal and ASCII, as shown in Fig. 9. The mnemonic mode 
displays memory as opcodes, mnemonically, as shown in 
Fig. 10. 

In the offset mode, displayed addresses are offset by a 
specified value. The dynamic mode displays memory using 
a sampled mode (not real time). 

Trace displays show the results of analysis data. Modes of 
display include: 
1. Mnemonic, to display opcodes mnemonically 
2. Absolute, to display all data in hexadecimal 
3. Packed, to group data by opcode 
4. Unpacked, to display all data without grouping 
5. Address offset, to display addresses offset by a specified 

3 0  C 9  7 0  4 7  
er DO 99 95 
C9 FB EE C9 

E6 4Â» C2 07 

79 2C 78 CD 

ee 38 21 07 
DO 32 Â«2 CO 

DO OC 90 CD 
37 7E 57 FE 

FE 38 D8 FE 
70 ZÂ£ 85 07 

CD IB ec C2 
82 DO BO 91 
2F 32 ee 2C 
3F zr 32 ei 
3D 65 37 CE 

21 79 37 BE 

CD 3E ee 30 

n 07 98 47 

ee 21 63 37 

75 99 78 31 

Â«9 E5 FE 13 

F7 81 FE 17 

DF 92 21 63 

26 DO 5B 92 

3C C8 30 C0 

FO E7 9B 77 

63 91 78 FE 

30 67 37 3D 

30 66 37 C6 

2C 32 7D 37 

e e  y  3 2  "  

: Ã  z G  ! ( T .  
\~ . \ - \  M>1 :  
ÃÃnÃ z'HG 
<Â«B' Â»!c7 
P . p n  u * Â « i  
Â » 8 ! '  * e ^  
22ÃJ Â«1V4 
Z . V r t  _ V c  
7 ~ U -  Ã Z I f .  
"8X~ <H;Â« 
z . V  Z 3 < Â «  
M W B  c l x ~  
V Z V l  : 3 7 -  
/ 2 Â » ,  : f 7 F  
' / 2 l  , 2 ) 7  

T r e c e  c o m p l e t e  

Fig .  9 .  An abso lu te-mode memory  d isp lay ,  showing memory  
in  hexadec imal  and ASCI I .  

F i g .  10 .  A  mnemon i c -mode  memory  d i sp lay ,  show ing  mem 
ory  as  opcodes.  

value. This feature allows the user to view program code 
with addresses as they are on the assembler listing. 

Modify  Opt ions 
The modify commands include: 

1. modify register, to modify any specified register 
2. modify memory, to modify any specified memory to a 

specified value. 

Simulated I /O 
Simulated I/O control allows the user to use 64000 input/ 

output facilities until the real I/O system can be interfaced to 
the processor. Since this is done in a sampled mode, not in 
real time, it is called simulated I/O. The general procedure is 
to give the control address for the I/O device desired, fol 
lowed by a status byte specifying the type of request. Any 
additional parameters are placed after the control address. 

The standard I/O devices are display, printer, RS-232-C 
interface, keyboard, and disc files. Display requests are 
open, close, roll lines 1-18 up and write to line 18, set row 
(1-18) and column (1-80), and write to row/column. Printer 
requests are open, close, and write line. RS-232-C requests 
are set controls/modes, read status, read/write single byte, 
and read/write buffer data. Keyboard requests are open, 
close, set mode, read line, and read special keystrokes. Disc 
file to are create (up to 6 files), open, close, position to 
record, read/write record, and change file name. 

Conclusion 
The 64000 emulation system, with wholly separate host 

and emulation processor architecture, buffered pod for iso 
lation and protection from the user system, the background 
memory concept, and a novel method of host and emulation 
system interaction, provides a new level of transparency to 
the user system and offers unrestricted use of the full ad 
dress the interrupt systems, and all other functions of the 
microprocessor being emulated. This, coupled with flexi 
ble memory mapping, real-time analysis unit and an inte 
grated software support package, provides a powerful emu 
lation tool in a new microprocessor development system. 
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The Pascal /64000 Compi ler  
by Izagma I .  Alonso-  Velez  and Jacques Gregor i  Bourque 

PASCAL IS A STRUCTURED computer programming 
language rich in control and data structures that 
make programming natural, that is, the Pascal struc- 

stures are close to the way one would express the same 
concepts in English. The block structure of Pascal encour 
ages the programmer to write modular and well-structured 
programs, and features such as type checking force the 
programmer to understand the program logic in detail be 
fore and during program development. The fact that the 
program is well structured and written in a way that is 
natural to the programmer makes understanding of the 
program easier, both at the time it is being developed (for 
debugging purposes) and later when it needs to be changed 
(for maintenance purposes). In summary, Pascal makes 
program development easier and more enjoyable all the 
way from the moment of conceptualization, through writ 
ing and debugging the program, to maintaining it at a later 
time. 

Pascal/64000 
A compiler is a program that translates a high-level com 

puter programming language into low-level machine lan 
g u a g e  a  E f f e c t i v e l y ,  t h e  c o m p i l e r  s i m u l a t e s  a  
high-level language machine. 

The Pascal/64000 compiler is designed to translate pro 
grams written in Pascal into code for microprocessors. It is 
implemented as a subset of the language definition given by 
Jensen and Wirth,1 but several options and extensions have 
been added to the language to make it more appropriate for 
microprocessor programming. 

Extensions include type-changing capabilities, an 
OTHERWISE clause for the CASE statement, the BYTE stan 
dard type (for microprocessors with byte addressing 
capabilities), some standard procedures such as SHIFT and 
SHIFTC for manipulating data and ADDR for getting at the 
address of a variable, separate compilation of modules (in 
standard Pascal the whole program has to be compiled in a 
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single module), constant expressions, and HEX, OCTAL and 
BINARY bases. 

One of the options available in the compiler allows the 
user to declare variables and procedures as GLOBAL or EX 
TERNAL for separate compilation. This also permits the use 
of routines not written in Pascal.  These routines can be 
declared as EXTERNAL in the Pascal program and, as long as 
the parameter passing is compatible with the Pascal calling 
sequence, they can then be called and used from the Pascal 
source program. The Pascal compiler subroutine calling 
sequence is fully documented to allow the programmer to 
use non-Pascal routines. 

O t h e r  i m p o r t a n t  o p t i o n s  i n c l u d e  t h e  c a p a b i l i t y  o f  
separating data from program code (for example, data can 
be allocated to RAM and program code to ROM) and the 
accessing of absolute addresses (can be used to implement 
memory mapped I/O). 

The following is a list of compiler options and a short 
description of each. I t  is  important to note that  the pro 
grammer who prefers standard Pascal can ignore all  the 
options and extensions and write portable standard Pascal 
programs. 

$ANSI ON$, $ANSI OFF$ 
ON causes a warning message to be issued for any feature 
of Pascal/64000 that is not part of standard Pascal. De 
fault: OFF. 

$ASM_FILE$ 
This option causes the compiler to create a source file 
containing the equivalent assembler source information 
of the program being compiled. This source file (named 
ASM8085) is acceptable to the assembler for the 8085 
microprocessor. If the LISTâ€”CODE option is ON the 
ASM8085 file also contains intermixed Pascal source lines 
as assembler comments. Default: OFF. 

SDEBUG ON$, $DEBUG OFF$ 
ON causes all arithmetic operations with bytes and inte 
gers to call external library routines, which insure that no 
overflow, underflow, or divide-by-zero operations occur. 
Default: OFF. 

SEMITâ€”CODE ON$, $EMIT_CODE OFF$ 
ON specifies that executable code is to be emitted to the 
relocatable code file. Default: ON. 

SENDâ€” ORG$ 
Used after the ORG option to return the variable allocation 
to the previous mode. 

SEXTENSIONS ON$, EXTENSIONS OFF$ 
ON allows the programmer to use the microprocessor- 
oriented extensions to the Pascal language. OFF disallows 
the use of these language extensions.  The extensions 
include functional type changing, the address function, 
the BYTE data type, built-in functions, SHIFT and SHIFTC, 
and nondecimal constant representations. EXTENSIONS 
ON turns RECURSIVE OFF and vice versa. Default: OFF. 

SEXTVAR ON$, $EXTVAR OFF$ 
ON causes al l  variables defined unti l  the subsequent 

EXTVAR OFF is encountered to be declared EXTERNAL. No 
local storage is allocated in this module for such vari 
ables. Default: OFF. 

SGLOBPROC ON$, SGLOBPROC OFF$ 
ON causes all main-block procedures defined until the 
subsequent GLOBPROC OFF is encountered to be declared 
GLOBAL so they may be accessed by other modules. De 
fault: OFF. 

SGLOBVAR ON$, SGLOBVAR OFF$ 
ON causes all main-block variables defined until the sub 
sequent GLOBVAR OFF is encountered to be declared 
GLOBAL so they may be accessed by other modules. De 
fault: OFF. 

$LIST ON$, $LIST OFF$ 
ON causes the source file to be copied to the list file. OFF 
suppresses the listing except for lines that contain errors. 
Default: ON. 

$LISTâ€”CODE ON$, SLIST^CODE OFF$ 
ON specifies that the program list file will contain the 
symbolic form (assembly language) of the code produced 
intermixed with the source lines. Default: OFF. 

$OPTIMIZE ON$, SOPTIMIZE OFF$ 
ON causes certain run time checks to be ignored, such as 
prechecking the range values of a CASE statement. This 
mode will typically produce somewhat smaller and faster 
modules that are susceptible to bad (out of range) data at 
run t ime.  This  opt ion should  only  be  used for  wel l -  
s t ruc tu red  p rog rams  tha t  have  been  tho rough ly  de  
bugged. Default: OFF. 

$ORG number$ 
All variables declared until END   ORG is encountered 
will be allocated sequential absolute addresses starting 
from the number specified. 

SPACES 
Causes a form feed to be output to the listing file. Default: 
NULL. 

SRECURSIVE ON$, SRECURSIVE OFF$ 
ON causes all procedures declared until the subsequent 
RECURSIVE OFF is encountered to be compiled to allow 
recursive or reentrant calling sequences. OFF causes pro 
cedures to be compiled in a static mode which does not 
allow for recursive or reentrant calling sequences. De 
fault: ON. 

SSEPARATE ON$, SSEPARATE OFF$ 
ON enables the separation of program, constants, and 
data, such that program code and constants are put in the 
PROG relocatable area and data is put in the DATA relocat 
able area. OFF puts all program code, constants, and data 
into the PROG relocatable area. Default: OFF. 

$TITLE "string"$ 
The first 50 characters of the string are moved into the 
header line printed at the top of each subsequent page. 
Default: NULL. 
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Program Debugging with Pascal/64000 

by P .  A lan  McDonley  

High - l eve l  l anguages  a l l ow  a  p rog rammer  t o  c rea te  a lgo r i t hms  
logical ly  wi thout  concern for  processor-dependent steps.  Dur ing the 
d e b u g  p h a s e  o f  p r o g r a m  d e v e l o p m e n t  u s i n g  t h e  t a r g e t  m a c h i n e  
emulator ,  a  programmer must  t race the program in machine code,  a 
language d i f ferent  f rom the source code language,  such as Pascal ,  
tha t  was used to  des ign the a lgor i thm.  

Pasca l /64000 generates re locatab le  symbol ic  in format ion dur ing 
the code generat ion pass (pass 2) to help the user debug programs. 
In par t icu lar ,  the user  can request  an expanded l is t ing (see Fig.  1) .  
Th is  l i s t ing conta ins  the assembly  language source s ta tements  cor  
responding to the machine code p laced in  the re locatable f i le ,  in ter  
mixed wi th  the or ig ina l  Pasca l  source l ines.  A l l  o f  the symbols  and 
labe ls  used  in  the  comp i le r -genera ted  assemb ly  l anguage  source  
lines from available during emulation to ease the user's translation from 
the original Pascal to the machine code seen when tracing execution. 

In Fig.  1,  the lef tmost number is the source l ine number.  Next is  a 
re locatable of fset ,  and next  a level  number.  Below each l ine are the 
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DRIVER; 
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DRIVER_E: 
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E " 

END 

DRIVER 
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Fig.  1 .  Expanded l is t ing of  re locatable code produced by the 
P a s c a l / 6 4 0 0 0  c o m p i l e r  c o n t a i n s  a s s e m b l y  l a n g u a g e  s t a t e  
ments  in termixed wi th  the  or ig ina l  Pasca l  source l ines .  Th is  
makes  p rog ram debugg ing  eas ie r .  

re locatable of fset ,  opcode and mnemonic equivalent  of  the code put 
in the relocatable f i le, 

The user  in teracts  wi th  the emulator  us ing s tatements such as:  

or 
r u n  ( r o m  D I S P L A Y  A N S W E R  u n t i l  L I N E _ 1 7  

d isp lay  memory  ANSWER 

where DISPLAY_ANSWER is the name of a global procedure in the listing 
above, LINE_I? is a local symbol that the compiler generated for l ine 
1 7 of the source, and ANSWER is the name of a global variable. Using 
th is  l i s t ing ,  the  programmer  can modi fy  var iab les  and execute  seg 
ments of  a  procedure or  program separate ly ,  so that  each par t  may 
be proved cor rect  and the in teract ions more c lose ly  fo l lowed.  

G loba l  and  ex te rna l  var iab les  may be  accessed by  name dur ing  
emulat ion,  Local  var iables are renamed by the compi ler  and may be 
inspected and modi f ied us ing the new name found in  the expanded 
listing. In the listing above DRIVER_D is the local name of DISPLAY_IN- 
DEX. may use specific variables for debugging purposes, the user may 
declare them to be GLOBAL. This option causes the symbol name (up 
to  15 characters)  to  be sent  to  the l inker  as  a  g loba l  symbol  in  the 
relocatable f i le. 

T rad i t i ona l l y ,  when  e r ro rs  a re  de tec ted  du r i ng  execu t i on ,  i n te r  
mediate resul ts are pr inted at  run t ime and errors are narrowed to a 
f ew  l i nes  o f  sou rce  code ,  wh i ch  can  t hen  be  p roved  i nco r rec t  by  
hand execut ion .  Much t ime can be spent  w i th  th is  type o f  p rogram 
development.  

Run  t ime  l i b ra r y  r ou t i nes  may  have  f ea tu res  t o  a i d  t he  use r  i n  
d e b u g g i n g  p r o g r a m s  o r  m a y  b e  d e s i g n e d  f o r  f i n a l  p r o d u c t  u s e ,  
where would are not expected. A DIVISION BY o error message would 
mean l i t t le to the grocery store c lerk at tempt ing to weigh tomatoes. 

T h e  P a s c a l / 6 4 0 0 0  d e b u g  l i b r a r y  p r o v i d e s  t h e  u s e r  w i t h  r a n g e  
check ing  f o r  a r i t hme t i c  ope ra t i ons ,  p ro tec t i on  aga ins t  m i suse  o f  
dynamic memory space,  and detect ion o f  some other  types o f  non-  
fata l  errors.  When an error  occurs,  program execut ion is  suspended 
to  a l l ow the  inpu t  pa ramete rs  and  p rogram f low a t  the  e r ro r  to  be  
examined. By l isting local symbols in a fi le called Derrors, the value of 
each reg is ter  and the address o f  the ca l l ing  rout ine are  d isp layed.  
F ig.  2  an a sample l is t ing of  the local  symbols  in  Derrors.  When an 
e r ro r  i s  de tec ted ,  the  p rog ram coun te r  address  a t  wh ich  p rog ram 
execut ion s tops is  d isp layed.  Match ing th is  address wi th  the upper  
addresses in the middle column of the Derrors listing reveals the type of 
errorthat caused execution to stop. The lower entr ies in the r ightmost 
co lumn of  the l is t ing show the values of  the regis ters passed to the 
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F i g .  2 .  A  t y p i c a l  l i s t i n g  o f  l o c a l  s y m b o l s ,  p r o g r a m  c o u n t e r  
addresses, and register contents at the point where an error is 
de tec ted .  Knowing  the  address  a t  wh ich  p rogram execut ion  
stops, the user can determine the type of error f rom this listing. 
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rout ine that  detected the error .  
B y  v i e w i n g  t h e  s t a c k ,  t h e  c u r r e n t  s t a t e  o f  e a c h  r e c u r s i o n  i n t o  

procedures and funct ions can also be determined. In al l .  with the aid 
of  the 64000 emulators ai  id Pascal ,  the product iv i ty  of  microproces 
so r  so f twa re  des igne rs  i s  ra i sed  subs tan t i a l l y .  Pasca l /64000  has  
been con f ig  to  suppor t  the  user  w i thou t  knowing  the  user ' s  con f ig  
u r a t i o n ,  p r o v i d i n g  t h e  t o o l s  n e e d e d  t o  c o d e  e f f i c i e n t l y  f o r  m i c r o  
processors in  a h igh- level  language.  

P .  A l a n  M c D o n l e y  
A I  McDon ley  rece i ved  h i s  BSME de  
gree from New Mexico State Universi ty 
in 1 976. He joined HP the same year as 
a  p roduc t  des igne r  fo r  t he  64000  Sys  
tem, and he's now a software designer,  
work ing on run t ime l ibrar ies for  the 
Pasca l /64000 compi le r .  He 's  taught  
courses  in  compute r  p rogramming  in  
APL.  BASIC,  FORTRAN, and Pascal .  
Born in Oakland, California, AI is single 
and  l i ves  in  Co lo rado  Spr ings ,  Co l  
orado.  His interests inc lude sai l ing,  
a rchery ,  pho tography ,  p ipe  o rgans ,  
count ry  danc ing,  s tereo systems,  
e lectr ic  vehic les,  e lectronics,  

-  and  compu te r s .  

$WARN OFF$, $WARN OFF$ 
ON specifies that the warning messages will be displayed 
and written to the listing file. OFF specifies that only error 
messages will be displayed and listed. Default: ON. 

SWIDTH number$ 
The number determines the number of significant charac 
ters in the source line. Additional characters are ignored. 
Default: 120. 

In accordance with the 64000 design philosophy, the 
Pascal compiler is designed to be easy to use and have 
capabilities that, combined with emulation, provide power 
ful debugging tools. Any global procedure or variable can 
be addressed by name from emulation, and program state 
ments can be accessed by their Pascal program source line 
numbers. 

The compiler is evoked by pressing the softkey labeled 
compile. The softkeys then guide the user to the available 
options. The first line of the source program is a special 
compiler directive that indicates to the compiler which 
microprocessor it is to compile for. The microprocessor 
name appears embedded in quotes: "8085", "Z80", and so 
on. During compilation the status line of the 64100A dis 
plays the compiler status at each point. 

Implementat ion 
Pascal/64000 is implemented in two passes (Fig. 1). The 

first pass reads the Pascal source program and checks for 
errors. If no errors are found the compiler generates data for 
the second pass or code generator. This data consists of an 
intermediate language (IL), which contains the information 
from the source program that the second pass needs to 
generate code for the given microprocessor. The code 
generator then reads the IL and from it produces the relocat 
able code to perform the operations described by the pro 
grammer in the original Pascal source program. 

If errors are found during the first pass, the compiler 
writes the errors to the display. At the end of compilation 
the display also makes available to the programmer a sum 
mary of the meaning of each error found in the program. If a 
list file has been indicated, the compiler includes informa 

tion even errors in the list file as well. Errors are listed even 
if the NOLIST option is on. In the event of errors the com 
piler does not generate relocatable code; the code generator 
is not evoked and only the listing second pass is executed. 

Intermediate  Languages 
Intermediate languages have been implemented as zero- 

address, one-address, two-address, and three-address 
forms. Only the three-address form can explicitly describe 
each of the source and result operands of a binary operation. 
Each of the other methods has some implicitly specified 
operands. 

The zero-address form uses a data stack, where all source 
and result operands are implicitly found. Loads and stores 
are equivalent to stack push and pop operations. Binary 
operations assume that both source operands are on the 
stack before the instruction. They are popped after the oper 
ation and the result is pushed onto the stack. This form of IL 
is generally well suited to top-down or recursive-descent 
compilers, since it allows for the generation of an IL for a 
particular language construct at the first possible moment 
after semantic recognition. It is the IL used in the popular 
P-code versions of the portable Pascal compiler. 

The one-address form uses a single implicit register as 
part of each IL instruction. All operations may operate on 
this single register or on this register and memory. 

The two-address form uses a fixed number of registers 
and allows an IL instruction to operate explicitly on a pair of 

R e l o c a t a b l e  
C o d e  

Pascal 

Fig .  1  .  Pasca l /64000 is  a  two-pass compi le r .  The f i rs t  pass 
r e a d s  t h e  P a s c a l  s o u r c e  p r o g r a m ,  c h e c k s  f o r  e r r o r s ,  a n d  
p roduces  an  i n te rmed ia te  l anguage  ( I L ) .  The  second  pass  
genera tes  code fo r  a  spec i f ied  mic roprocessor .  
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registers or on a register and memory. A pair of operands 
may be specified for each instruction and the result of an 
operation goes into one of the specified operands (usually 
one of the explicit registers). 

By allowing each source and result operand to be 
explicitly described, the three-address form permits the IL 
description of a program to be more suitable for translation 
to target processors with any type of stack or register ar 
chitecture. The other three forms with their implicit result 
operands are more conveniently translated to target 
machines with a stack architecture (zero-address IL), 
single-register architecture (one-address IL), or multiple- 
register architecture (two-address IL). 

Pascal /64000 Intermediate  Language 
The Pascal/64000 compiler generates relocatable object 

code for microprocessors from an intermediate language 
(IL) temporary file created by the compiler during pass 1. 
This IL file is logically equivalent to the original source 
program. The code generator module (pass 2) creates the 
machine-specific object code relocatable file from this IL 
file. 

The Pascal/64000 compiler uses a three-address (or qua 
druples) IL. The four parts of a quadruple are the instruction 
or operation, the leftmost source item, the rightmost source 
item, and the result. For example, the Pascal expression: 

A: = B-C; 

would cause generation of the intermediate language 
quadruple: 

SUB B,C,A Subtract C from B, store result in A. 

For comparison, the equivalent code using a zero-address 
IL (the P-code portable Pascal compilers use this form) 
would generate the following IL instructions: 

LOAD B Push  va lue  o f  B  on to  s tack  
LOAD C Push  va lue  o f  C  on to  s tack  
S U B  S u b t r a c t  f i r s t  s t a c k  i t e m  f r o m  s e c o n d ,  p o p  

both, push result onto stack 
S T O R E  A  P o p  s t a c k  i n t o  A .  

F o r  a  o n e - a d d r e s s  I L  t h e  f o l l o w i n g  i n s t r u c t i o n s  a r e  
equivalent: 

LOAD B Load  accumula to r  wi th  B  
S U B  C  S u b t r a c t  C  f r o m  a c c u m u l a t o r  
STORE A Store accumulator into A. 

For a two-address IL the following instructions are equiva 
lent: 

LOAD r,B Load register  r  with B 
SUB r ,C  Subt rac t  C  f rom reg is te r  
STORE r,A Store register into A. 

For this example the number of IL instructions for each 
form of IL is in the ratio of 4:3:3:1 for zero-address, one- 
address ,  two-address  and  three-address  forms,  respec  
tively. Some important results for optimization can be in 

ferred from the compactness of quadruple IL representa 
tions. It is time-consuming for a code generator to analyze 
multiple IL instructions to detect patterns for optimization. 
Since the quadruple form of IL packs more information in a 
s ingle  ins t ruc t ion ,  i t  s impl i f ies  the  ef for t  to  genera te  
reasonably efficient object code for a specific target micro 
processor. 

Each operand of a Pascal/64000 intermediate language 
quadruple has an explicit operand type, which specifies its 
addressing mode as a memory location (absolute, relocata 
ble or external) or as an implied address (immediate con 
stant or temporary pseudo-address). The mapping of these 
operand types to a specific microprocessor instruction set is 
left to the code generator. Some processors with limited 
memory accessing modes use a purely static (but relocata 
ble) form for all explicit memory references. For these pro 
cessors  recurs ion  i s  suppor ted  by addi t ional  run  t ime 
routines to permit safe recursive calling sequences. For 
other processors with more sophisticated memory access 
ing  modes  (par t i cu la r ly  i f  reg i s te r  and  s tack  re la t ive  
addressing is available) data and parameters are allocated to 
the stack in a more traditional dynamic local memory allo 
cation scheme. 

Most optimizations implemented by the Pascal/64000 
compiler are local optimizations performed by the pass 2 
code generator specific to the target processor. However, 
some optimization of expression evaluation is done during 
pass 1. Expressions are built into trees as they are being 
parsed .  The  IL  genera tor  t raverses  these  t rees  before  
generating the IL instructions and attempts to minimize the 
number of temporary results needed to evaluate the expres 
sion. These expression trees are also used to discover con 
stant expressions, which are folded into a single constant 
before any IL is generated. It is possible to perform some 
global optimizations during pass 1 , and this may allow for a 
reduction in the size of the IL file. 

Code Generat ion 
The intermediate language representation of Pascal/ 

64000 contains all the information needed to create 
processor-specific code equivalent to the source program. 
The translation of the intermediate language to relocatable 
code for a specific target microprocessor is guided by the 
limitations of the target processor's instruction set. 

All programs must eventually fit into a system that has 
been implemented in a specific hardware configuration, 
usually with some fixed memory size. Generally, if more 
memory is required in a specific implementation, it will 
cost more to design and produce that system. The speed of 
program execution is generally less important, in the sense 
that specific program modules that consume a large 
percentage of program execution time can almost always be 
reprogrammed to execute faster. With these observations 
concerning the relative importance of memory use and 
execution time, code generation patterns have been chosen 
to minimize memory use rather than execution time where 
obvious tradeoffs can be made. 

Two areas where the memory minimization objective can 
have a significant impact on the structural form of the code 
generation patterns are the use of static versus dynamic 
allocation of memory for parameters and local variables and 
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The 64000 Linker 

by James B.  Stewart  

The 64000 l inker  takes re locatab le  ob jec t  f i les  generated by  the 
assemb le r  o r  Pasca l  comp i l e r  and  comb ines  t hem to  p roduce  an  
execu tab le  abso lu te  f i l e .  The  l i nker  reso lves  symbo l i c  re fe rences  
between relocatable f i les ( l inking). It  also assigns relocatable code to 
an absolute locat ion in the target  processor 's logical  address space 
and  changes  memory  re fe rences  to  re fe r  to  the  abso lu te  memory  
l oca t i ons  ( r e l oca t i on ) .  The  l i nke r  was  des igned  w i t h  t h ree  ma jo r  
goals: to support a wide variety of microprocessors, to be easy to use, 
and to prov ide the user  wi th  a complete set  o f  features to  fac i l i ta te 
l ink ing re locatab le  modules for  complex microprocessor  sys tems.  

The  des igne r  o f  a  m ic rop rocesso r  sys tem needs  to  con t ro l  t he  
locat ions of  code and data in memory. Before the widespread use of  
l inkers,  th is  was done by coding the ent i re system in one assembly 
language program wi th f ixed absolute addresses.  A smal l  change in 
the  code requ i red tha t  the  ent i re  sys tem be reassembled.  Bes ides 
being t ime-consuming, this made i t  d i f f icul t  for mult ip le designers to 
work concurrent ly  on the same sof tware.  

A  r e l o c a t i n g  l i n k e r  o v e r c o m e s  t h e s e  p r o b l e m s .  E a c h  p r o g r a m  
s e g m e n t  m a y  b e  d e v e l o p e d  a n d  a s s e m b l e d  i n d e p e n d e n t l y .  T h e  
designer speci f ies to the assembler that  the code i -s re locatable.  At  
l ink t ime, the relocatable code from mult iple f i les is concatenated into 
one cont inuous p iece o f  memory .  

The  64000  assemb le r  and  l i nke r  p rov ide  t he  use r  w i t h  seve ra l  
re locatable areas. The assembly language statements ORG, PROG, 
DATA, to COMN define the repeatabil i ty of code. ORG defines code to 
be absolute or nonrelocatable. PROG and DATA are general-purpose 
relocat ion counters that al low the user to part i t ion code to be loaded 
at different memory locations, for example all  program in ROM and all 
data in RAM. COMN specif ies that the data be relocated to the same 
starting address as the COMN from all other relocatable modules. This 
is  s imi lar  to  unnamed COMMON in  PORTAN. When the re locatab le  
modules are l inked, the user provides the start ing addresses for the 
PROG. DATA, and COMN relocatable code. To provide greater flexibility, 
the user may define several PROG, DATA, and COMN areas. For exam pie 
the PROG, DATA, and COMN areas for files A and B may start at memory 
locat ions 1000H, 2000H, and 3000H respect ively, and for f i les C and 
D at locat ions 8000H, EOOOH, and 3000H. 

A load map and a cross-reference table may be generated for each 
l ink. The load map (Fig. 1 ) describes the final memory locations of all 
r e loca tab le  f i l es .  The  l i nke r  a l so  keeps  t rack  o f  memory  use  and  
warns mes user i f  any conf l ic ts exist .  A "memory over lap" error  mes 
sage  i s  g i ven  fo r  any  memory  tha t  has  been  a l l oca ted  more  than  
once. 

A feature of  the 64000 l inker known as no- load al lows the user to 
d e s i g n  f i l e s  i n t o  t h e  s y s t e m .  A n y  s u b s e t  o f  t h e  r e l o c a t a b l e  f i l e s  
may be declared to be no-loaded. This subset is l inked and relocated 
wi th the f i les that  are not  no- loaded.  The only  d i f ference is  that  the 
a b s o l u t e  f i l e  g e n e r a t e d  b y  t h e  l i n k e r  c o n t a i n s  n o  c o d e  f r o m  t h e  
no-loaded relocatable f i les. For example, suppose the user has 6000 
bytes  I t  code and data ,  but  on ly  4000 by tes  o f  phys ica l  memory .  I t  
may be p ieces to  use over lays to  par t i t ion the program in to  p ieces 
t ha t  w i l l  f i t  i n  4000  by tes .  Th i s  i s  done  by  c rea t i ng  two  sepa ra te  
absolute f i les.  The f i rst  contains one set of  relocatable rout ines plus 
the  shared  rou t ines  and  da ta .  The  second  con ta ins  the  rema in ing  
relocatable routines, also l inked to the shared routines and data. The 
s h a r e d  r o u t i n e s  a n d  d a t a  w o u l d  b e  n o - l o a d e d  i n  t h e  c a s e  o f  t h e  
second absolute f i le.  

A l l  64000 emula tors  a l low the user  to  debug programs us ing the 
symbols f rom the source code.  This is  part icular ly  useful  when deal  
i ng  w i th  the  re loca ted  code ,  s ince  the  use r  doesn ' t  have  to  know 

1000 

2000 

3000 j 

Program A 

Program B 

Common 
A,  B,  C,  D 

8 0 0 0  

EOOO 

Program C 

F ig .  1 .  A  l oad  map  may  be  genera ted  each  t ime  the  64000  
l inker is used. The map shows the f inal memory locations of al l  
relocatable f i les. 

where in memory the l inker put the code. Any location in memory may 
b e  r e f e r r e d  t o  b y  i t s  s y m b o l i c  n a m e  o r  i t s  a b s o l u t e  a d d r e s s .  T o  
accompl ish  th is ,  the  assembler  outputs  the  ent i re  symbol  tab le  fo r  
each source program. When the relocatable code is l inked, i ts reloca 
t i o n  t o  a r e  s a v e d  s o  t h e y  m a y  b e  u s e d  d u r i n g  e m u l a t i o n  t o  
f i nd  t he  abso lu te  va lues  o f  symbo ls .  The  l i nke r  a l so  gene ra tes  a  
symbol f i le of global symbols. This f i le has two uses. It  is used by the 
emulator ,  a long wi th  assembler  symbol  tab les ,  to  prov ide symbol ic  
debugg ing.  I t  may a lso  be used in  subsequent  l inks  to  pre load the 
l inker 's symbol table.  This feature has uses in over lays and in reduc 
ing l ink ing and download t ime in  la rge systems.  

A table-dr iven architecture al lows the l inker to support  a var iety of 
t a r g e t  t h e  I n f o r m a t i o n  i n  e a c h  r e l o c a t a b l e  f i l e  d e f i n e s  t h e  
in tended target  processor .  Each suppor ted processor  cor responds 
to a system disc file. This file is used by the linker to configure itself for 
the par t icu lar  processor .  

The conf igurat ion f i les contain two basic types of information: gen 
e r a l  i n f o r m a t i o n  s u c h  a s  w o r d  w i d t h  a n d  a d d r e s s i n g  s p a c e ,  a n d  
tables or sequences of instruct ions forthe l inker. The dif ferent instruc 
t i on  t ypes  and  address ing  modes  a l l owed  in  the  ta rge t  p rocesso r  
correspond to entry  points  in  the l inker  tab le.  

Wi th in  the  assembler -genera ted  re loca tab le  f i les ,  each operand 
address is tagged as ei ther absolute (no relocat ion),  PROG relocata 
ble, DATA relocatable, COMN relocatable, or EXTernal reference. Re 
locatable and external tags contain a reference to an entry point in the 
processor-dependent  l inker  tab le .  Knowing the re locatab i l i ty  o f  the 
operand, the l inker f i rst  computes i ts absolute address, independent 
o f  the l inker  processor .  I t  then fo l lows the inst ruct ions in  the l inker  
tab le  to  genera te  the  ac tua l  operand.  The  tab le  a l lows  opera t ions  
such  as  sh i f t s ,  masks  and  compares ,  wh ich  may  be  per fo rmed on  
var ious operands such as the absolute address, the current program 
counter ,  or  constants.  In  the 6800 microprocessor,  for  example,  the 
d i rec t  add ress ing  mode  requ i res  tha t  an  ins t ruc t i on ' s  operand  ad  
dress be in the range 0Â«address=s255. The l inker table for handling 
the d i rec t  address ing mode per forms the fo l lowing operat ions:  
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L O A D W O R D  =  A B S O L U T E _ A D D R E S S  
TEMP = OFFH 
IF  LOADWORD >  TEMP THEN "Address  ou t  o f  range"  
OUTPUT =  LOBYTE (LOADWORD)  
PROGRAMâ€”COUNTER = PROGRAMâ€”COUNTER + 1 
RETURN 

The var ious inst ruct ion formats and address ing modes for  a l l  sup 
p o r t e d  o f  a r e  i m p l e m e n t e d  u s i n g  s i m i l a r  s e q u e n c e s  o f  
s imple instruct ions. The obvious advantages are the speed and ease 
wi th which the l inker  can be conf igured to support  addi t ional  proces 
s o r s .  T y p i c a l  l i n k e r  t a b l e s  a r e  g e n e r a t e d  w i t h  2 0  t o  5 0  l i n e s  o f  
p rocessor -spec i f i c  code.  

James B.  Stewart  
Software designer Kip Stewart came to 
HP in  1977.  He was born  in  B ingham-  
ton, New York and attended the Univer 
si ty of  Colorado, receiving a BA degree 
in mathemat ics in  1976.  Current ly  on 
leave from HP, he's serving as a visiting 
instructor  in e lectr ical  engineer ing at  
Nor th  Caro l ina Agr icu l tura l  and Techni  
cal State University. Kip is married, has 
one ch i ld ,  and  makes  h is  permanent  
home in  Colorado Spr ings,  Colorado.  
Outs ide of  work he spends t ime wi th a 
chu rch  you th  g roup  and  en joys  vo l  
leybal l ,  swimming and sk i ing.  

the use of run time library subroutines to perform many 
relatively simple operations. The 8085 microprocessor, for 
example, is able to access memory directly as bytes or words 
with immediate two-byte absolute (relocatable) addresses, 
and it may access bytes of memory indirectly through regis 
ter pairs. Dynamic allocation of local data using stack rela 
tive addressing must be performed by in-line code or 
through subroutine calls using the stack offset value as a 
parameter. A static allocation scheme permits access to 
local variables or parameters with an arbitrary offset from 
some (relocatable) label with a direct access instruction 
which requires only three bytes. This permits access to both 
byte and word simple variables. Since Pascal programs 
must access many variables, this reduction of code size by 
40 to 50% for each variable access can save a significant 
amount of memory in a large program. This static allocation 
of local variables does add additional code and run time 
overhead for the user requiring recursive calling sequences. 
These additional memory and time considerations are a 
reminder to use recursion only where absolutely necessary. 

The 8085 instruction set does not support arithmetic for 
16-bit signed numbers. IF I, J, and K are type INTEGER, the 
statement: 

K:=I-J-K 

generates the following 8085 code, calling library routine 
Zintsub to perform the subtraction operation: 

LHLD TEST1_D 
XCHG 
LHLD TESTl_D+2 
CALL Zintsub 
XCHG 
T.HT.DTEST1 D + 4 
CALL Zintsub 
SHLDTESTl_D+4 

put I in register HL 
move I to register DE 
put J in HL 
subtract J from I 
put result in DE 
get K 
subtract K from (I-J) 
store the result to K. 

The 16-bit subtraction routine from the non-debug library 
is a relatively short program: 

Zintsub PUSH PSW SAVE ACCUMULATOR 
OCX H 
MOV A,H 
CMA 
MOV H,A 
MOV A,L 
CMA 

TWO'S COMPLEMENT REG HL (Y) 
COMPLEMENT HIGH BYTE 

COMPLEMENT LOW BYTE 

MOV L,A 
POP PSW GET BACK ACCUMULATOR 

AND FLAGS 
DAD D X+(-Y) ADD DE AND HL 
RET 

Using in-line code it would take eight bytes of code to 
perform the integer subtraction operation each time it is 
needed. Using the library approach above, it takes eleven 
bytes for the library routine and only three additional bytes 
for the subroutine call each time a subtraction is required. 
After only three integer subtractions the program is already 
four bytes smaller. For ten subtractions in-line code genera 
tion would have added 80 bytes of code to the program, 
while library calls add only 41 bytes. 

This comparison of in-line code versus library sub 
routines for even simple operations accounts for a signifi 
cant memory savings when applied to the most commonly 
used operations that cannot be accomplished in a few bytes 
of instructions on the target machine. 

When the linker creates an absolute file, it tries to find any 
unsatisfied symbols or routines in a specified library file. It 
only needs to append run time library routines that have 
been specifically requested. The actual code size added to 
an absolute file from the run time library is typically much 
smaller then the 4K bytes required for loading the entire 
library. 

If a user feels the need for a run time library routine that 
performs some special operations or is otherwise tailored to 
the specific application, the user can write another version 
of any run time library routine using the same name as that 
used in the library. The new relocatable file is then loaded 
with the linker in a specific location and the linker will not 
load the library module of the same name. Thus the run time 
library serves as a basis for the user's program environment 
and may be used or improved as the program requirements 
evolve. 

Performance 
A certain amount of overhead is expected whenever a 

high-level language is used. One can hardly claim that it is 
possible to write all programs in Pascal in such a way that 
the code generated by the compiler will be as efficient as the 
code that would have been obtained by direct assembly 
coding. However, as described above, some optimization 
has been implemented to generate efficient code: the con- 
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Low 
Memory Compi ler  Nucleus (2K)  

8085 Pass 2  (5K)  

Cross 
Reference 

(1K) 

Pass 1 (14K) 
IL Generator 

(32K of  RAM)  

Code 
Generator  

(12K) 

I n i t i a l -  O p t i o n s  C o n s t a n t  E r r o r  
i z a t i o n  H a n d l e r  E v a l u a t i o n  H a n d l e r  

( 1 K )  ( 1 K )  ( 1 K )  ( 1 K )  

Pass 1  Symbol  Table  Space (7K)  

Relocatable 
Generator  

(2K) 

Not  Used 
(10K) 

Cross 
Reference 

Symbol  
Tab le  
Space 
(21 K) 

Pass  2  Symbol  Tab le  Space  
(5K) 

High 
Memory 

Operat ing System (8K)  

F i g .  2 .  T h e  P a s c a l / 6 4 0 0 0  c o m  
pi ler  uses only 24K words of  mem 
ory. Parts of the compiler are over 
laid by other parts as shown by this 
d iagram. The compi ler  nuc leus is  
n o t  o v e r l a i d .  ( T h e  8 K  o p e r a t i n g  
sys tem memory  is  no t  par t  o f  the  
compi ler  area.)  

tents of registers are remembered over operations, short 
jumps are implemented for predefined labels that are 
within range, the overhead for parameter passing is in the 
receiving routine, and so on. In short, the Pascal/64000 
compiler generates good space-efficient code. 

The speed of the compiler is 400-600 lines per minute, 
depending on the way the programmer writes the program 
and what kind of program is being written. The compiler 
speed may also vary from microprocessor to microproces 
sor, since it depends on the level of difficulty and the 
amount of work required to generate code for the given 
microprocessor. 

By overlaying different parts of the compiler, it was made 
to fit in 24K words of storage without degrading its perfor 
mance. A diagram of the compiler overlay structure is given 
in Fig. 2. 

Conclusion 
Because of the inherent inefficiencies involved in using a 

high-level language, users of small computers have in the 
past written their programs almost totally in assembly lan 
guage. Pascal/64000 is an alternative. It has all the well- 
known advantages of a high-level language in addition to 
space-efficient code generation. 

The Pascal/64000 compiler is implemented as a subset of 
the basic definition of standard Pascal with extensions and 
options that make it possible for microprocessor program 
mers to use a high-level language efficiently. The pro 
grammer can ignore the extensions and options and write 
standard Pascal, if desired. 

Currently the 8080/8085 and Z80 microprocessors are 
supported and others will be supported in the future. 
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An Assembler for All  Microprocessors 
by Brad E .  Yack le  

THE FIRST PRACTICAL PROGRAMMING TOOL 
offered to the software designer was the assembler. 
It is a very basic level of programming, since each 

instruction usually controls a single function of the proces 
sor. Then higher-level languages were introduced, allow 
ing programmers to generate software faster and easier, and 
making code more readable and transportable. However, 
assemblers will always be part of a computer system, espe 
cially a microprocessor system. Assembly-level program 
ming is very close to the machine language of the processor 
and is therefore good for interacting with hardware and I/O 
devices. Since assembler code allows complete control of 
the processor, the assembly language programmer can gen 
erate the most efficient code possible. Assembly-level pro 
gramming is the only practical programming tool for cus 
tom or bit-slice processors. 

The number of microprocessors on the market and being 
developed by industry is very large. Each processor has a set 
of instructions that control its functions. Unfortunately, 
each processor is different; it has different instructions, 
registers, speed, memory size, and so on. One assembler 
cannot possibly be general enough to understand the as 
sembly languages of all processors, so typically a new as 
sembler must be generated for each. 

The prospect of generating a new assembler for each 
processor's assembly language is highly undesirable. First 
there is the problem of writing the basic assembler to handle 
the syntax of assembly language programming. The assem 
bler must handle I/O operations as well as parse the operand 
fields. It must be able to handle expressions , generate object 
code, and give error messages when necessary. All as 
semblers have the same basic syntax for instructions. In 
general, assemblers expect an optional label field followed 
by an opcode and then some type of operand. However, 
each assembler must recognize a different set of instruc 
tions along with register and/or address-type operands. 
Therefore, code must be added and/or modified to handle 
each new processor. Each time this is done, there is a possi 
bility of generating new errors in the common assembler 
functions. Later, if modifications or changes are necessary, 
all of the assemblers may have to be modified. 

Thus, a new assembler for each new processor language 

introduces two software problems, arising from the dupli 
cation of code. One is the introduction of new errors when 
translating code from the basic assembler to each new one, 
and the second is the problem of software update which is 
multiplied with each duplication of code. 

64000  Assembler  
The assembler for the 64000 Logic Development System 

is designed to be flexible enough to understand the instruc 
tion set of any processor's assembly language. This means 
that the 64000 assembler contains some processor- 
dependent code to handle the variety of instruction sets. 
However, the problem of software duplication is minimized 
by making the majority of code processor-independent and 
putting the dependent code in tables that the assembler 
reads to understand the instructions. An assembler like this 
is known as a table-driven assembler. Its main functions are 
the same for all languages, and it contains additional infor 
mation in the form of tables to understand processor- 
dependent instructions. 

The common functions of the assembler cover the in 
teraction with the host computer system. This includes 
reading and parsing the source file. The assembler handles 
all of the input and output file operations dealing not only 
with the source file but the relocatable and list files as well. 
It parses the source lines and identifies the instructions for 
the particular language. It keeps a symbol table containing 
symbols along with associated values and symbol types. It 
checks operand fields and flags errors if syntax and/or ad 
dress rules are violated. The assembler is designed to be as 
general as possible to allow for the minor differences in the 
syntaxes of different processors' assembly languages. 

The part of the 64000 assembler that interprets table code 
to understand each processor's instruction set consists of a 
set of routines that use standard assembler functions but 
read the table code to decide which functions to perform. 
Thus the assembler can be redefined simply by reading 
different table code. 

Assembler  Operat ion 
The 64000 assembler reads the first line of the source file 

and expects to find a key that tells it which type of processor 

2 8  H E W L E T T - P A C K A R D  J O U R N A L  O C T O B E R  1 9 8 0  

© Copr. 1949-1998 Hewlett-Packard Co.



language is in the file. It then reads another file that con 
tains the table code for the language. The table code can be 
broken into two parts, the opcode set and the set of rules 
governing the operand field. 

Each processor has a set of instructions, which are given 
names by the designers. These names are commonly called 
the opcode or mnemonic set of the processor, and are gener 
ally abbreviations of the functions performed. For example, 
let us suppose we have a processor that has an accumulator 
and an instruction to load data into it. An assembly lan 
guage statement to do this might look like the following: 

LDA DATA 

where the opcode is LDA, which means load (LD) the ac 
cumulator (A) with data found at the address pointed to by 
the symbol DATA. The opcode set of the processor is com 
posed of all of its opcodes, including a set of standard 
opcodes that control program listing, external and global 
symbols, the macro facility, and other functions. 

Once an opcode is identified the assembler checks to see 
whether it is an instruction that requires table code to un 
derstand the operand. If so, control is transferred to the 
special routines that use the table code to control the as 
sembler. The tables instruct the assembler how to parse the 
operand field, what values to expect, how to generate the 
object code, and what error messages to generate, if any. 

Since a set of tables is the only requirement necessary for 
the assembler to recognize different languages, we decided 
to make this capability available to the user. A user can 
generate an assembler for a custom chip or bit-slice proces 
sor, or enhance existing assemblers with custom instruc 
tions. To generate a custom assembler the user must de 
scribe the syntax of each instruction and how to generate 
the object code. The 64000 assembler will take care of all 
system overhead. It will generate relocatable files that can 
be handled by the system linker and will produce list files 
like any of the other system assemblers. 

Table  Processor  
The part of the assembler that handles the table code is 

really a type of simple processor itself. It takes the specially 
coded table information and decodes it into instructions for 
the assembler. These instructions call assembler functions, 
such as expression handlers and object code generators. 
They also allow for arithmetic operations and testing of the 
results. 

The best way to show how the process works is to give a 
simple example. Let us suppose that we have a processor 
that has two instructions that have the same type operand 
and addressing modes. We will call them LDA and STA, for 
load accumulator and store accumulator. The object code 
forms of these instructions are both 8-bit opcodes and re 
quire one register as their operand. The value of the register 
is combined with the eight bits of opcode and resides in the 
third and fourth bit positions as follows: 

OOrrOOOO 

The user will predefine to the assembler the registers that 
are legal for the instructions, and will give these registers a 

value and a type. Let us assume that the user makes the 
obvious choice and defines the registers as type "register." 

REGISTERS 
A = 00 
B = 01 
C = 10 
D = 11 

The object code that the assembler is expected to produce is 
also defined: 

LDA = 10000000 
STA = 11000000 

The assembler will now recognize these mnemonics on 
source lines and pass the defined object code to the next set 
of table instructions for processing. The table instructions 
process the code as follows. 

EXPRESSION General-purpose expression 
parser 

IF TYPE <> REGISTER THEN GOTO OPERANDâ€” 
ERROR 

Get the register number 
Move to proper position 
Combines with opcode value 
Generate the code 

LOAD VALUE 
SHIFTâ€”LEFT 4 
OR OBJECTâ€”CODE 
GEN_CODE ABS 8, 

ACCUMULATOR 
DONE 

OPERANDâ€”ERROR 
ERROR IO_ERR 
DONE 

Signal to return to assembler 

Invalid operand found 
Return 

This routine first calls a general-purpose expression 
handler designed to parse expressions and return a value 
and a type. Next it checks the type returned to make sure it is 
one of the predefined registers. If the operand is legal the 
value of the register is shifted left four bits and combined 
with the object code passed by the main assembler. Line 6 
generates eight bits of absolute data to the relocatable file 
which is the desired result of the instruction. If an error is 
found then an error message is generated from the instruc 
tion in the ninth line. 
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Conclusion 
In conclusion, the 64000 assembler is a very general 

table-driven assembler. It is easy to maintain and expand to 
handle new processors. This increases its reliability, since 
the majority of its code is processor-independent and well 
tested. This also aids in software update, since we are not 

faced with duplication of code. Assembler tables can be 
changed without affecting the main assembler, and the user 
has the ability to enhance existing assemblers or generate 
others for new languages. 

Viewpoints 

Chuck House on the Electronic Bench 

THE ELECTRONICS INDUSTRY is entering the age of VLSI 
(very large-scale integration). The potential of VLSI is 
staggering. For example, we'll have extremely powerful 

32-bit parallel computers with one-megabyte instruction rates on a 
single chip for a few hundred dollars within a very few years. We'll 
go from 16K to 64K to 256K to 1M RAM chips in the same time 
frame. We'll also be facing some great design challenges because of 
these be advances. The software crisis is already said to be 
upon us, since the cost of developing correct code for ROM-based 
designs far outweighs the cost of the silicon for even relatively 
high-volume products. The 64000 Logic Development System de 
scribed in this issue was created to address these problems. 

The 64000 System and the needs of VLSI portend a dramatic shift 
in emphasis in the types of tools available for designers. For years, 
instrumentation has provided analysis capability for use after the 
initial design was realized. We are now starting to create synthesis 
tools, which aid the designer in realizing products faster, more 
accurately, and more productively. This shift from analysis tools to 
synthesis tools is fundamental to our ability to take advantage of 
the "macro" power of VLSI. It is conceptually impossible to realize 
effective designs with millions of gates and millions to billions of 
coded instructions in software without new automated techniques 
to replace the "brute force" techniques employed in our industry so 
far. 

A quick example might be the familiar rectangle layouts for 
emitter, base, and collector of a transistor. They are replicated 
many times, and relocated in tedious fashion by a designer or 
draftsman as a function of the desired electrical circuit. True, this 
process has been automated in recent years, primarily with 
computer-aided artwork generators that include checking al 
gorithms to assure that the process design rules are followed. This 
has eliminated some of the drafting and spatial relations tedium, 
but it has had little impact upon the creative design process. A 
more of step might be the macro-cell approach: a series of 
functional cells is preprocessed in silicon, and a simple design 
algorithm for interconnecting cells creates the mask set to realize 
the equivalent custom gate array required. 

At a much higher synthesis level, it's conceivable that the 
mathematical transfer function of the desired 1C could be entered 
into a mask design tool, which would generate the mask 
sets to create the 1C. This is the goal of the California Institute of 

Technology "Bristleblocs" project, which has both industrial and 
academic sponsors. The premise of these attempts to work at a 
macro level is that the view of the forest allows a better perspective 
for the designer than a consistent and unremitting examination of 
each it, in the forest, or as some frustrated designers express it, 
"Chewing on the tree bark incessantly, trying to find the forest." 

Adoption of the premise that such high-level design is desirable 
and practical is necessarily rooted in two major assumptions. First, 
tools constructs exist that translate the designer's high-level constructs 
into correct, effective, low-level realizations. These are the syn 
thesis tools mentioned above. Second, analysis tools must be 
adapted to this environment, which means that they must provide 
analysis functions at every hierarchical level from high to low, 
much as a microscope or TV camera has pan or zoom capability. 

One additional requirement is imposed by the magnitude of the 
task, since many projects are designed, produced, and maintained 
by increasingly large teams of people. Thus, synthesis and analysis 
tools are increasingly obliged to link to each other simultaneously, 
across and distances, across cultural and educational barriers , and 
even across time. 

These are stiff requirements, but then so are the challenges facing 
designers if these requirements are not satisfied. How might they 
be met? I think that we can see the day, not too distant, when 
engineers will have an electronic bench, much as we discuss elec 
tronic mail and electronic offices and electrÃ²nic homes. Such an 
electronic bench will satisfy the three requirements of synthesis, 
analysis, and linking. 

To illustrate this concept, Fig. 1 portrays a typical product life 
cycle for a digital product, along with the classical design aids and 
analysis tools used by most companies today. There are several 
points worth noting. First, virtually all design aids and analysis 
tools in use today are not linked in any data base or even 
measurement-interactive manner. Second, the level of synthesis 
capability in the design aids is extremely primitive. Third, the level 
of zoom from high-level analysis to low- level is likewise primitive. 
Fourth, the operator interface is variable, and quite formidable. 
from that piece of equipment to another. Examining the needs that 
VLSI design imposes, these conditions are clearly unacceptable. 

There are some current examples of the electronic bench concept 
at such places as automotive design research centers, airframe 
manufacturers, and the larger computer and semiconductor design 
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Fig. 1 .  Design aids and analysis tools used at var ious points 
in  the l i fe  cyc le of  a  typ ica l  d ig i ta l  product .  

centers. These centers, usually built around computer-aided draft 
ing systems, are very expensive, but also very productive and 
cost-effective. Just as the computer mainframe and minicomputer 
manufacturers have developed precursors of the type of software 
development system exemplified by the 64000 System, these CAA 
and CAD centers point the way toward the electronic bench. 

In effect, the solution will embody an intelligent terminal or 
work station that can provide the capabilities of any required de 
sign aid or analysis function. Work performed at this work station 
will automatically link to a shared data base for the entire program, 
which includes the R&D functions, production test, service diag 
nostics, and documentation. Likewise, environmental and life test 
data will become the beginning of a library of service data that links 
with lab analysis, production data, and user performance data to 
promote design improvements and better field-support diagnostic 
procedures. 

It is not hard to postulate such capabilities or their desirability. 
What has been difficult is a cost-effective and performance- 
effective realization. There are three major handicaps in this regard 
when we examine the realities of existing digital analysis tools, to 
say nothing of the shortage of effective synthesis tools. 
1. The user interface of most instruments is very complex, and the 
commonality of terms, functions, and operations is very low. For 
example, the specific functions available by name on the front 
panel serial a storage oscilloscope, a logic timing analyzer, and a serial 
data front analyzer bear little resemblance to each other. Each front 
panel takes considerable "getting used to" for a beginning 
operator, and knowing one of them well can often seem more a 
handicap than a help when trying the next machine. 
2. Today's realizations of this equipment are sophisticated, 
reasonably expensive, and relatively bulky. The thought of creat 
ing an not solution has historically been dismissed as not 
practical in terms of size, heat, weight, and cost. 
3. Linking of many measurement hierarchies (the zoom concept) 
has not been required or practical because of the available in 
strumentation, and because the problems being tackled could be 

solved by "brute force" techniques. 
The 64000 architectural concept may serve to illustrate how 

these handicaps might be diminished. The foremost problem, the 
human interface, is addressed via a standard typewriter keyboard, 
along of the guided syntax and softkey format. The versatility of 
screen graphics for menu selections or guided prompting is well 
established in instrumentation by now. It is a simple extension to 
provide conversion from one type of equipment to another. The 
difficulty with such a concept is the reality of its implementation. 

Let's consider the manner in which the guided syntax structure 
operates. The guided syntax softkeys represent another important 
enhancement of the softkey-with-"help" approach embodied in 
several of HP's more recent computer systems. Not only do these 
keys but prompting of the next correct or allowable entries , but 
they also allow full flexibility for system reconfiguration as the 
resident operating system module is swapped from the disc. 

Notice the significance of this architecture. The stored program 
that  the  the machine character is t ics  that  appear  to  the  
operator is totally resident on disc. Thus, redefining the instrument 
is easy, and the operating system reconfiguration time is about 
one-third of a second! Moreover, the guided syntax approach re 
moves the need for a different set of keycaps on the front panel, and 
the user is never faced with relearning the panel functions as the 
instrument changes. 

Thus, the 64000 has a system architecture that links all data files, 
provides redefinition of effective functions at each work station, 
and allows easy operator interaction with those significant 
changes. The major remaining tasks are two-fold: to provide ex 
tended operating system enhancements in the guided syntax for 
mat, and to provide data acquisition modules for specific functions 
that may be required. 

This for might be employed as an emulating terminal for 
any computer system, as the following whimsical softkey choices 
illustrate. 

64000S HP 1000 
TERM 

H P  3 0 0 0  
T E R M  

IBM 
TERM 

D E C  A P P L E  
T E R M  T E R M  

H P  8 5 A  E T C  

When 64000S is pressed the choices would be (the current wakeup 
mode): 

EDIT COMPILE ASSEMBLE LINK EMULATE PROM PGM (CMDFILE)  ETC 

When EDIT is pressed, the EDIT module is brought in from the system 
disc, and these become the key labels: 

I N S E R T  R E V I S E  D E L E T E  F I N D  R E P L A C E  < L I N E  # >  E N D  ETC 

An obvious set of choices under an Analyzer key choice might be: 

L o g i c  L o g i c  
S t a t e  T i m i n g  
A n a l y z e r  A n a l y z e r  

Serial  
State 
Ana l yze r  

A n a l o g  D i g i t a l  N e t w o r k  
O ' scope  O ' scope  Ana lyze r  

Spectrum 
Analyzer 

ETC 

The trace point conditions for the state analyzer, the timing 
analyzer and the scope could be the same, providing the zoom 
capability mentioned earlier. It becomes practical to consider mi- 
croprogrammable measurement intelligence, which could modify 
the degree of zoom or pan according to dynamic decisions about 
the observed data. Obviously, the data base linkage methods could 
also admit software control of multiple measurements at multiple 
stations for simultaneous analysis of major system problems. 
Perhaps the most productive improvements will come with high- 
level software analyzers, linked to the greatly improved code gen 
eration capabilities described herein. These tools must not only 
provide code generation, editing, and debug aid, but also valida 
tion, verification, optimization, and maintenance functions. The 
64000 already provides an important enhancement for these needs. 
Further extensions are imperative for the effective reduction of the 
software bottleneck in our industry. 
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The technology that allows us to consider the true possibility of 
such the system is based heavily upon the VLSI extensions that the 
system intends to support. For example, by reducing major equip 
ment such as a sophisticated logic state analyzer to a one or two- 
card module allows zoom potential, because several different 
modules can be resident in the card cage of a work station. Also, a 
cluster network can be composed of different configurations in 
each work station, and potentially could even include a desktop 
computer for information graphics or management information 
systems. A significant problem in terms of computer power â€” 1C 
cell layout and lead routing, or PC board layouts â€” could be routed 
to a major computer network from the cluster as well. 

The 64000 described in this issue already takes a significant step 
in microcomputer software development integration by virtue of 
its LSI computer support in each work station, guided syntax 
interaction to allow conversion from one function to another, and 
four-bus interaction capability, which allows significant data base 
and measurement networking. The programming effectiveness for 
designers developing structured code on this system, debugging it 
in breadboard systems, and moving toward final product is dra 
matic, and it is a contribution to synthesis, more than to analysis. 
This shows up most dramatically in larger project teams, where the 
linked files and the data base management system help to mitigate 
the classic communication difficulties of large teams. Hardware 
system synthesis, whether at an 1C or PC board level, should be 
amenable to similar enhancement. The hardest task in my view is 
the question of effective benchmarking of simulations, which con 
ceptually is possible, but realistically seems relatively difficult to 
attain. 

The next few years should see significant development of tools to 
enable the electronic bench concept to be realized. This electronic 
bench link encompass the necessary synthesis, analysis, and link 

ing functions. Clearly the costs of such powerful automated design 
centers will be dramatically reduced, concurrent with substan 
tially improved combinational performance. With the aid of such 
instrumentation concepts, we hope to support the design and 
analysis requirements of the VLSI era. 
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