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C o n t e n t s :  

A New V .  VLSI  Compute r  Fami l y :  Par t  I I â€ ”  So f tware ,  by  M ichae l  V .  He t r i ck  and  M ichae l  
L Kolesar Sophist icated sof tware had to be developed to take fu l l  advantage of  the features 

of fered by HP's  new VLSI  computer  ch ip  set .  
H P - U X :  S c o t t  o f  U N I X  o n  t h e  H P  9 0 0 0  S e r i e s  5 0 0  C o m p u t e r  S y s t e m ,  b y  S c o t t  
W. Y.  user  and Jef f  B.  L indberg Th is  enhanced vers ion o f  UNIX le ts  a  user  "por t "  sof tware 

f rom one HP 9000 Computer  to  another  and use sof tware deve loped on o ther  systems.  
An In te rac t i ve  Run-T ime  Compi le r  fo r  Enhanced  BASIC  Language  Per fo rmance ,  by  
David M. Landers,  T imothy W. Wi lson,  Jack D.  Cooley,  and Richard R.  Rupp This technique 

adds f r iend ly  language per formance whi le  re ta in ing BASIC'S f r iend ly  in terac t ive  features .  
A  L o c a l  H .  N e t w o r k  f o r  t h e  H P  9 0 0 0  S e r i e s  5 0 0  C o m p u t e r s ,  b y  J o h n  J .  B a l z a ,  H .  
M ichae l  Wenze l ,  and  James L  Wi l l i t s  LAN 9000 a l lows c lus te r ing  o f  HP 's  la tes t  computer  

worksta t ions for  computer -a ided des ign and shar ing o f  data  and resources.  
D a t a  V i n c e n t  f o r  a  3 2 - B i t  C o m p u t e r  W o r k s t a t i o n ,  b y  V i n c e n t  C .  J o n e s  B y  
emulat ing asynchronous termina ls ,  the Model  520 can exchange data wi th  o ther  systems.  
A General-Purpose Operat ing System Kernel  for  a 32-Bit  Computer System, by Dennis 
D .  G e o r g ,  B e n j a m i n  D .  O s e c k y ,  a n d  S t e p h e n  D .  S c h e i d  T h i s  k e r n e l  p r o v i d e s  a  c l e a n  

in ter face between an under ly ing sophis t icated hardware system and h igh- leve l  user  systems.  
The  Des ign  o f  a  Gene ra l -Pu rpose  Mu l t i p l e -P rocesso r  Sys tem,  by  Ben jam in  D .  Osecky ,  
Dennis processors Georg, and Robert J. Bury To coordinate the operation of symmetric processors 

requi res some specia l  hardware character is t ics  and hardware/sof tware t radeof fs .  
An  I /O  Subsys tem fo r  a  32 -B i t  Compute r  Opera t ing  Sys tem,  by  Rober t  M.  Lenk ,  Char les  
E.  Mear ,  J r . ,  and Marce l  E.  Meier  Th is  subsystem for  Ser ies  500 Computers  has two main  

components â€” a f i le system and a set of device drivers. 

Authors 

Viewpo in ts  â€”  Cop ing  w i th  Pr io r  Invent ion ,  by  Dona ld  L  Hammond What  do  you  do  when 
you f ind out  that  someone e lse invented your  new technology f i rs t?  

In this Issue: 
The solar  system on th is month 's cover represents the system sof tware for  the HP 9000 

Ser ies  issue,  Computers .  We f i rs t  to ld  you about  the HP 9000 in  our  August  1983 issue,  
which possible. devoted to the advanced technology that makes the Series 500 possible. You 
may recall reading about the HP 9000's five VLSI (very large-scale integration) chips â€” among 
them by 32-bit, 450,000-transistor central processor chip â€” made by a high-tech integrated 
c i rcu i t  process ca l led NMOS I I I .  To help manage the heat  generated by a l l  those densely  
packed circuits, a new kind of circuit board, called a f instrate, was developed. The f instrates 
in each holds 9000 Series 500 Computer are contained in a lunchpail-sized module that holds 

up to three centra l  processors.  These technologica l  developments make i t  possib le to  put  on an engineer 's  
desk a computer that has more power than some mainframe computers â€” "mainframe" being the name applied 
only  to  the largest  computers.  The HP 9000 Model  520 is  the desktop mainf rame.  Models  530 and 540 are,  
respect ively,  rack-mount and cabinet  vers ions designed to serve mul t ip le users.  

Al though great  lunchpai l -s ized module is  the beginning,  between i t  and that  desktop mainframe is a great  
d e a l  o f  t h e  i n  b o t h  h a r d w a r e  a n d  s o f t w a r e .  T h i s  m o n t h ' s  i s s u e  c o v e r s  t h e  s y s t e m  s o f t w a r e  d e v e l o p  
ment. we'l l  articles we'l l  cover the hardware development, and in future Issues, we'l l  carry articles on significant 
appl icat ions software packages. In this issue you can read about operat ing systems, languages, input/output,  
networking,  and mult iprocessor management.  An unusual  aspect of  the HP 9000 Ser ies 500 is that  there are 
two leve ls  o f  operat ing system. What  the user  sees is  e i ther  an advanced vers ion of  the HP BASIC system 
or an HP vers ion of  Bel l  Laborator ies '  UNIX operat ing system. Under ly ing those systems is the Ser ies 500's 
SUN operating system, whose name gave us the idea for our cover photo. The SUN concept proved invaluable 
in  the development of  the two user operat ing systems.  

-R.  P.  Do/an 
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A New 32-Bi t  VLSI  Computer  Fami ly  
Part IIâ€” Software 
Based on HP's proprietary 32-bit VLSI NMOS-III technology, 
the HP 9000 Ser ies 500 Computers use local  area 
networking and HP-UX, HP's enhanced version of UNIXâ„¢ 
An advanced version of BASIC that uses run-time compil ing 
is  avai lable on the Model  520 integrated workstat ion.  

by Michael  V.  Hetr ick and Michael  L.  Kolesar  

IN 1981 HEWLETT-PACKARD described the develop 
ment of a single-chip 32-bit processor1 fabricated with 
a new VLSI process technology called NMOS III.2 This 

new technology was also used to develop four other 32-bit 
chips that, coupled with the design of a special copper- 
cored circuit board called a finstrate, enable a powerful 
multiprocessor 32-bit computer system to be packaged 
within a module no larger than a loaf of bread. The design 
of the five chips, the module, and the finstrate, and the 
NMOS-III process were discussed in last August's issue. 

The compact module, called the Memory /Processor Mod 
ule, forms the heart of a desktop engineering computer 
workstation, the HP 9000 Computer, introduced by HP in 
1983. Now known as the HP 9000 Model 520, it contains 
a SVi-inch flexible disc drive, has four I/O slots, and has a 
choice of either a color or monochromatic 13-inch CRT 
display. Depending on the choice of the twelve finstrates 
possible in the Memory/Processor Module, up to three 
CPUs, three I/O processors, or 2.5M bytes of RAM can be 
installed. Available options include an internal thermal 
printer and an internal 10M-byte hard disc memory. 

A sophisticated internal operating system, called SUN, 
was developed to coordinate this compact multiprocessor 

computer system. A high-performance interactive high- 
level language system is required to allow a user to take 
full advantage of the features included in the Model 520. 
An enhanced version of BASIC and a run-time compiling 
technique were developed. This version was designed as 
a superset of the BASIC used on earlier HP desktop comput 
ers so that users could easily port existing software to the 
Model 520. 

In late 1983, the HP 9000 family of computers was de 
fined to include some earlier 16-bit technical desktop com 
puters,3 now known as the Series 200, and alternative pack 
ages for the Memory/Processor Module, which with the 
Model 520, form the Series 500. To simplify the porting of 
software developed by other companies to the HP 9000 
family, HP-UX, an enhanced version of UNIXâ„¢, was de 
veloped. LAN 9000 was developed to provide local area 
networking. 

Fig. 1 depicts all current HP 9000 models. The primary 
distinction between the Series 200 and Series 500 Comput 
ers is in their microprocessor, or central processing unit 
(CPU), and the ensuing system design. All Series 200 mod 
els are based on Motorola's 16/32-bit 68000 microprocessor, 
while all Series 500 models use HP's proprietary 32-bit 
UNIX is a U.S. t rademark of  Bel l  Laborator ies.  

HP 9000 Computers 
^^^m 

Series 200 
â€¢ MC 68000 Microprocessor 
â€¢ 16/32-Bit Architecture 

Series 500 
â€¢ HP's NMOS-III VLSI Chip Set 
â€¢ 32-Bit Architecture 

Model 540 
( H P  9 0 4 0 )  

Model  530 
( H P  9 0 3 0 )  

F i g .  1 .  T h e  H P  9 0 0 0  f a m i l y  o f  
c o m p u t e r s  i n c l u d e s  t h e  S e r i e s  
2 0 0  a n d  t h e  S e r i e s  5 0 0  C o m p u t  
e rs .  The  Ser ies  200  i s  based  on  
t h e  1 6 / 3 2 - b i t  6 8 0 0 0  m i c r o p r o  
c e s s o r  a n d  t h e  S e r i e s  5 0 0  i s  
based on  HP 's  p ropr ie ta ry  32-b i t  
VLSI NMOS-III chip set. The Series 
200 is lower in cost and the Series 
500 has h igher  per formance.  Pro 
grams developed in BASIC on the 
Se r i es  200  can  be  po r ted  t o  t he  
Mode l  520  o f  t he  Se r i es  500  f o r  
decreased computa t ion  t ime and  
other  per formance advantages.  
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Contrasting Project Management 
The  re l a t i ve  magn i t udes  o f  t he  BAS IC  and  HP-UX  p ro j ec t s  

c reated in terest ing and cont ras t ing sof tware management  tech 
n iques .  BASIC,  be ing  re la t i ve l y  sma l l  i n  code  s i ze  by  today ' s  
s tandards  ( less  than one megabyte)  was  imp lemented  en t i re ly  
wi th in HP's Fort  Col l ins Systems Div is ion (FSD).  A development 
env i ronment  known as  MODCAL,  wh ich  ran  on  p rev ious-gener  
at ion desktop computers,  was an ef fect ive tool  for  code develop 
m e n t .  S i n c e  t h e  p r o j e c t  w a s  e x e c u t e d  b y  a  f e w  e n g i n e e r i n g  
groups in  one department ,  coordinat ion among the design team 
was extremely eff ic ient.  

HP-UX deve lopment ,  on  the  o ther  hand,  was  much la rger  in  
scope; it resulted in approximately 1 0 megabytes of system code. 
Features such as mult ip le languages, graphics,  networking,  and 
fundamenta l  p rogram deve lopment  too ls  were  requ i red .  HP en  
t i t ies  outs ide of  FSD had the exper t ise to  cont r ibute in  some of  
these key areas. Thus, two Cal i fornia organizat ions â€” the Com 
puter  Language Labora to ry  (CLL)  and  the  Eng ineer ing  Produc  
t ivi ty Division (EPD) â€” along with the Colorado Networks Opera 
t ion (CNO) prov ided FSD wi th  major  sof tware subsystems.  CLL 
produced the FORTRAN and Pascal  compi lers ,  EPD developed 
HP's wel l -known two-  and three-d imensional  graphics l ibrar ies,  
and  CNO p rov i ded  mos t  o f  t he  da ta  commun i ca t i ons  and  ne t  
working software. 

FSD por ted the UNIX'"  commands and created the System I I I  
U N I X  F S D  t o  t h e  e x i s t i n g  S e r i e s  5 0 0  o p e r a t i n g  s y s t e m .  F S D  
was also responsible for coordinating the entire software develop 
ment and integrat ing al l  subsystems into a cohesive product.  

A s  t h e  H P - U X  a s y n c h r o n o u s  c o m m u n i c a t i o n s  s o f t w a r e  b e  
came funct ional ,  i t  was used to t ransmi t  messages and in ternal  
so f tware updates between d iv is ions.  FSD and CNO capi ta l ized 
on  h igh-speed loca l  a rea  ne twork  p ro to type hardware  and so f t  
ware to  update local  systems e lect ronica l ly .  

Thus,  many HP-UX sof tware subsystems became key develop 
ment tools even as they were being created. (The UNIX command 
set ,  C,  FORTRAN, and Pascal  compi lers,  and SCCS, the source 
code cont ro l  sys tem,  are  add i t iona l  examples . )  The i r  everyday 
use  no t  on l y  con t r i bu ted  to  ou r  deve lopmen t  p roduc t i v i t y ,  bu t  
a lso served as a pr ime example of  how internal  use of  what  wi l l  
become a  p roduc t  imp roves  the  p roduc t ' s  ove ra l l  qua l i t y  i n  a  
way that  is  not  otherwise possib le.  
'UNIX is  a U.S.  t rademark of  Bel l  Laborator ies 

-Michael  V.  Het r ick  
-M i chae l  L  Ko lesa r  

CPU chip set mentioned earlier. Highly compatible system 
software spans the lower-cost Series 200 and higher-perfor 
mance Series 500 workstations to provide a broad price/per 
formance product family. BASIC is offered on all but the 
Model 530 and Model 540; HP-UX is offered on all but the 
Model 216 and Model 226. A standard HP Pascal develop 
ment environment also appears on all Series 200 models. 

This issue discusses the development of the Series 500 
software systems with the exception of the multitasking, 
graphics, and I/O subsystems for Model 520 BASIC. They 
will be discussed with the hardware design of the Series 
500 in the May issue, which will conclude the story of the 
development of the HP 9000 Series 500 Computers. 

Software Organizat ion 
The software for the Series 500 is modular and is easily 

decomposed into smaller building blocks. The design kept 

the internal SUN operating system clearly distinct from 
the code for the BASIC language. This separation was 
necessary to provide the foundation for a true multilingual 
system. For example, we knew that the Series 500 with 
virtual memory would be an excellent FORTRAN engine. 

The separation or layering of the software made it neces 
sary to define a powerful and flexible set of operating sys 
tem entry points to support the real-time event-driven 
BASIC language needs. This set of underpinnings also 
serves as the basis for the HP-UX system. 

The SUN operating system hides most of the hardware 
details from the higher-level subsystems. The initial ver 
sion of SUN supports the Model 520's demanding 700- 
keyword BASIC language with its new run-time compiler. 
The support for multiple CPUs and I/O processors was 
designed in from the beginning. The BASIC language sys 
tem supports memory-resident programs and data, but does 
not support virtual memory. Besides the BASIC language 
mainframe code, several option packages extend its capa 
bilities by adding two- and three-dimensional color 
graphics, HP's IMAGE data base management and query 
system, extended I/O, extended mass storage with multiple 
disc formats, multitasking, advanced programming such as 
matrix manipulations, and I/O drivers for a variety of inter 
faces and devices. BASIC'S highly integrated human inter 
face causes it to be provided only on the Model 520, the 
integrated desktop version of the Series 500. Special 
hardware in the Model 520's display unit is used to achieve 
excellent performance for BASIC'S text and graphics win 
dow facilities. The Model 520 keyboard contains special 
control keys used in BASIC, such as RUN, STOP, STEP, and 
PAUSE, in addition to the keys normally found on a terminal 
keyboard. 

We chose UNIX as the best available environment to 
support FORTRAN and other standard languages. A second 
version of the SUN operating system was built using the 
modules from the first version, but with the important virtual 
memory feature added. The diagrams in Fig. 2 and Fig. 3 
show the similarity of the BASIC and HP-UX systems. This 
leverage paid off handsomely, because almost from the 
beginning, the terminals, discs and printers worked reliably 

B A S I C  U s e r  P r o g r a m s  

H P  9 8 3 5 / 4 5  
B A S I C  

S e r i e s  2 0 0  
B A S I C  

B A S I C  L a n g u a g e  S u b s y s t e m  

M u l t i -  I M A G E  
R u n - T i m e  T a s k i n g  D a t a  
C o m p i l e r  a n d  B a s e  

E v e n t s  M a n a g e m e n t  

Rea l -  
T i m e  2 - D  a n d  3 - D  
E v e n t  G r a p h i c s  

I /O 

S U N  O p e r a t i n g  S y s t e m  
V e r s i o n  I  ( n o  v i r t u a l  m e m o r y )  

M u l t i -  D y n a m i c  D y n a m i c  
C P U  P r o c e s s  M e m o r y  

S u p p o r t  M a n a g e m e n t  M a n a g e m e n t  

S D F / L I F / 4 5  
F o r m a t  

Fi le  
S y s t e m  

3 2 - B i t  V L S I  H a r d w a r e  S y s t e m  

D M A  C h a n n e l s  

C I O  I n t e r f a c e  C a r d s  

1 6 - B i t  H P - I B  R S - 2 3 2 - C  R J E  

Fig.  2 .  B lock d iagram of  the BASIC language system for  the 
HP 9000 Model  520 Computer .  
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for HP-UX. Also, the real-time and multiprocessor design 
carried over to HP-UX to give it a more solid basis for 
performance extensions, device I/O, and real-time than 
could be achieved with a ported system. 

A thin layer of code maps the HP-UX intrinsic calls into 
the underlying SUN intrinsics. The same HP Structured 
Directory Format (SDF) hierarchical file system used by 
BASIC is also used by HP-UX. It is almost indistinguishable 
from the System HI UNIX file system except that it is more 
reliable and less susceptible to corruption from power fail 
ures and system crashes. This layered design was a concern 
because it could lead to deviations from the UNIX seman 
tics defined by Bell Laboratories. Therefore, a set of exten 
sive and comprehensive kernel test programs was devised to 
determine if any detectable differences had been introduced. 
With only a small additional effort, the layered kernel 
passed the validation tests. The same set of test programs 
is being used to verify the Series 200 HP-UX kernel and 
future releases of the Series 500 kernel. 

The commands and libraries offered are selected from 
both the Bell Laboratories and the University of California 
at Berkeley versions of UNIX. Those most needed for pro 
gram transport and development are included. The three 
user program languages offered are C, Pascal, and FORTRAN 
77. The calling sequences allow mixing of languages at the 
subroutine level and the sharing of all library routines. 

The definition of HP-UX includes not just compatibility 
with Bell Laboratories' UNIX System III, but also HP exten 
sions. The current system offers IMAGE data base manage 
ment, AGP/DGL graphics, and local area networking based 
on ARPANET TCP/IP and Ethernet protocols with both file 

H P - U X  U s e r  P r o g r a m s  

F O R T H  A N T 7  1  H P  P a s c a l  I  C  I  S h e l l  

H P - U X  S u b s y s t e m  

H u H W n g u a l  L i b r a r i e s  

H P - U X  

S U N  

2 - 0  a n d  3 - D  
G r a p h i c s  
A G L D G L  

H P - U X  ( B e l l  S y s t e m  I I I )  I n t r i n s i c  S e m a n t i c  L a y e r  

S U N  O p e r a t i n g  S y s t e m  
V e r s i o n  I )  ( p a g e d  a n d  s e g m e n t e d  v i r t u a l  m e m o r y )  

M u l t i -  D y n a m i c  D y n a m i c  S D F  
C P U  P r o c e s s  F o r m a t  

S u p p o r t  M a n a g e m e n t  M e m o r y  F i l e  M  
M a n a g e m e n t  S y s t e m  

3 2 - B K  V L S I  H a r d w a r e  S y s t e m  

D y n a m i c  
B u f t e r  

M a n a g e m e n t  

C I O  I n t e r l a c e  C a r d s  

Fig.  3.  Block diagram of  the HP-UX operat ing system for  the 
HP 9000 Ser ies 500 Computers.  

and process services. 
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The Development of a BASIC Language Subsystem 
The deve lopment  o f  the  BASIC language  subsys tem fo r  the  

HP 9000 Model 520 Computer had one pr imary goal  â€” to al low 
th i s  new works ta t ion  to  be  a  comp le te  func t iona l  rep lacement  
f o r  t he  HP  9835  and  HP 9845  Compu te rs1  wh i l e  ach iev ing  a t  
leas t  ten  t imes the  per fo rmance o f  the  HP 9845 by  us ing  HP's  
new 32 -b i t  NMOS- I I I  cus tom VLSI  ch ip  se t .2  In  add i t i on ,  new 
fea tu res  were  needed  to  keep  pace  w i th  the  new app l i ca t ions  
t ha t  such  a  capab le  mach ine  wou ld  encompass .  The  deve lop  
ment  para l  fo r  th is  top-o f - the- l ine  BASIC mach ine  ran  in  para l  
le l  wi th the chip set  development.  

The design team decomposed these high-level goals into many 
c h a l l e n g i n g  t e c h n i c a l  g o a l s ,  u p p e r m o s t  b e i n g  t o  p r o v i d e  a  
growth path for HP's current BASIC language customers through 
a h igh degree of  compat ib i l i ty ,  and to  add new funct ions su i ted 
t o  t he  powe r  o f  t he  new  ha rdwa re .  The  BAS IC  l anguage  was  
uni f ied and extended in cooperat ion with the Series 200 Comput 
e rs3  language  team wh i le  re ta in ing  a  h igh  degree  o f  p rog ram 
compat ib i l i t y  w i th  the  ear l ie r  HP 9835 and HP 9845.  Thus,  p ro  
grams f rom ei ther  generat ion of  machines move easi ly  onto the 
Mode l  520 .  A lmos t  no  d i f fe rences  a re  no tab le  be tween Ser ies  
200 BASIC and Mode l  520  BASIC.  Even though most  HP 9845 
statements are retained, the uni formity of  the evolv ing language 
dictated that some differences would result. An optional translator 
for HP 9845 programs to achieve a more precise semantic match 
is available. 

The major  techn ica l  cont r ibu t ion  to  suppor t  the  per formance 
g o a l s  w a s  a  r u n - t i m e  c o m p i l e r  f o r  t h e  B A S I C  l a n g u a g e .  T h i s  
c o m p i l e r  a p p e a r s  t o  t h e  p r o g r a m m e r  t o  b e  t h e  s a m e  a s  o u r  

t radi t ional  interpret ive environment,  preserving such features as 
tracing, l ine stepping, execution of statements from the keyboard 
and  man ipu la t ion  o f  a  runn ing  p rog ram's  va r iab les .  A  runn ing  
p rog ram can  be  paused ,  l i nes  can  be  added ,  de le ted ,  o r  mod  
i f ied, and execut ion then cont inued from i ts point of  suspension. 
A l l  o f  these features are s t i l l  suppor ted even though the user 's  
p rogram is  no t  in te rp re ted ,  bu t  comp i led  in to  ob jec t  code  and  
direct ly executed. 

The result ing high-product iv i ty programming environment uses 
execut ion modes and t rap inst ruct ions bui l t  in to the new proces 
sor .  Para l le l  ch ip  se t  and so f tware  deve lopment  a l lowed many 
specia l ized instruct ions to be added to the processor in support  
of these interactive features as well  as the language itself.  These 
inc luded some of  the t raps,  the s t r ing manipu lat ion set ,  and b i t  
man ipu la t ion .  The  resu l t i ng  BASIC language  sys tem has  over  
700  keywo rds  t ha t  encompass  s i gn i f i can t  da ta  base  manage  
ment ,  graphics and I /O capabi l i t ies.  

The new compi led env i ronment  re ta ins the event -dr iven,  rea l  
t ime  p rog ram con t ro l  o f  t he  HP 9845  and  HP 9000  Mode l  226  
C o m p u t e r s .  P r o g r a m  b r a n c h i n g  a n d  f l o w  a r e  t i e d  t o  b o t h  
hardware and software events through the use of ON statements. 
These s tatements def ine the asynchronous branching that  is  to  
occur  when se lec ted events  happens.  

Also in support of the performance objectives, the new machine 
uses stan emerging IEEE binary f loat ing-point  mathematics stan 
dard instead of  the t radi t ional  decimal  mathemat ics.  In  addi t ion 
to making use of  the fast  microcoded f loat ing-point  on the micro 
p rocesso r ,  b i na ry  ma thema t i cs  i s  used  i n  new  a lgo r i t hms  f o r  
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comput ing  t ranscenden ta l  and  o the r  func t ions  wh ich  a re  bo th  
faster  and more accurate.  

Mu l t i task ing  was  added  to  improve  the  user ' s  access  to  the  
machine and to use the improved processor power. Simultaneous 
program execut ion  and deve lopment  are  now suppor ted .  Up to  
60 user  processes can be run s imul taneously .  These processes 
share the system resources and peripherals. For communciat ions 
and synchronizat ion they have "named-event" s ignal ing. Memory 
res iden t  vo lumes  and  f i l es  we re  added  fo r  r ap id  sha red -da ta  
access .  F i le  lock ing  a l lows fo r  a tomic  ( ind iv is ib le )  update  o f  a  
shared fi le. 

The system archi tecture provides for  mul t ip le ident ical  CPUs. 
Th i s  t ha t  was  i nco rpo ra ted  i n t o  t he  ope ra t i ng  sys tem so  t ha t  
t h e  p o w e r  o f  m a n y  p r o c e s s o r s  c o u l d  b e  d i r e c t e d  a t  r u n a b l e  
tasks.  The fundamental  design supports these mult ip le CPUs as 
homogeneous  and  anonymous  comput ing  resources .  S ince  a l l  
C P U s  h a v e  s y m m e t r i c  a c c e s s  t o  a l l  I / O ,  t h e r e  i s  n o  n e e d  t o  
introduce master-s lave relat ionships.  The only external ly  v is ib le 
e f fec t  o f  add ing more CPUs is  increased throughput .  

Ful l -screen edi t ing and mul t ip le user-def ined windows in both 
graph ics  and a lpha d isp lays were added to  improve the human 
interface. Both publ ic and pr ivate windows are supported, includ 
i ng  a rb i t ra ry  w indow ove r lap  and  las t  upda te  p r i o r i t y  d i sp lay .  
These windows act much l ike sheets of  paper on your desk, wi th 
the topmost  sheets occ luding the sheets below where they over  
lap. The window structure is dynamic â€” even the system message 
areas can be re located anywhere on the screen.  

An  examp le  o f  new  ha rdware  capab i l i t y  t ha t  mapped  i n to  a  
new set of language features is the internal, nonvolati le, real-t ime 
c lock,  which fac i l i ta tes us ing t ime to  schedule program events .  
The new f i le  sys tem a lso  uses  the  c lock  to  t ime-s tamp f i les  as  
they  are  c reated or  changed and the  l i s te r  da tes  hard  copy.  

The graphics def ini t ion was extended to support  mult ip le input 
devices wi th t racking and event  capture,  and the t ransformat ion 
p i p e l i n e  i n c l u d e s  b o t h  t w o -  a n d  t h r e e - d i m e n s i o n a l  m o d e l i n g  
modes. 

Development  Tools  
A very  accura te  emula t ion  p rogram tha t  mimicked the  execu 

t ion of the new machine's instruction set was written for execution 
on the distr ibuted HP 9845 workstat ions. This software emulat ion 
was so accurate  that  i t  took on ly  ten minutes f rom the t ime the 
f i rst  chip set was del ivered to the software team unt i l  the system 
was up  and runn ing  a  BASIC program in  compi led  code on  the  
new Model  520 hardware.  

The  ins t ruc t ion  se t4  o f  the  new VLSI  CPU ch ip  p rov ided  the  
hooks for  a  h igh ly  in teract ive symbol ic  debugging too l .  Th is  de 
bugger  p rov ided a  s imp le  t rans i t ion  be tween runn ing  and s tep  
p ing of  systems programs.  Procedure,  l ine,  and assembly  leve l  
s tepping are se lected on the f ly .  Program f low is  d isp layed sym 
bo l i ca l l y  a t  the  appropr ia te  leve l .  Var iab les  can be  re fe renced 
symbol ical ly.  

Pasca l  was  chosen  as  t he  sys tems  p rog ramming  l anguage  
w i t h  l a rge  f o r  sepa ra te  modu la r  comp i l a t i on  t o  suppo r t  l a rge  
team program development .  Th is  new language is  ca l led MOD- 
CAL  fo r  MODu la r  PasCAL.  MODCAL i s  ve ry  s im i l a r  t o  Wi r th ' s  
Modu la  I I ,  bu t  was  des igned independent ly  by  HP.  For  the  pro  
gramming environment, the UCSD (University of California at San 
Diego) p system was selected because i t  was wr i t ten in Pascal ,  
was easi ly  ported to the HP 9845, and had the other tools,  such 
as edi tors,  that  were needed.  

Ano the r  impo r tan t  dec i s i on  was  t o  sepa ra te  t he  BASIC  l an  
guage  f rom i t s  opera t ing  sys tem suppor t .  C lea r  separa t ion  o f  
the operat ing system provided code that  could be leveraged for  
the HP-UX project and reduced the cost of maintaining the Model 
520 BASIC system. The underpinnings for the HP 9000 mult ip le- 
C P U  H P - U X  s y s t e m  a r e  t h e  s a m e  o p e r a t i n g  s y s t e m  m o d u l e s  
used for  BASIC. 

O v e r  7 5 0 K  b y t e s  o f  c o d e  a r e  i n  t h e  B A S I C  s y s t e m  f o r  t h e  
Mode l  520 ,  f o rm ing  t he  mos t  powe r f u l  p rog ram deve lopmen t  
environment ever provided for  an HP desktop computer system. 
The  resu l t i ng  sys tem's  speed ,  g raph ics ,  and  rea l - t ime,  even t -  
dr iven I /O capabi l i ty  make i t  a very powerfu l  engineer ing tool .  A 
la rge  number  o f  HP 9845  and  Mode l  226  p rograms have  been  
eas i l y  moved on to  the  Mode l  520 .  Per fo rmance ga ins  average 
50 to 1 00 t imes the performance of the HP 9845B Computer and 
more than 10 t imes the performance of the HP 9845, opt ion 200, 
for  computat ion- l imi ted tasks.  The same computat ional  tasks av 
e rage 15  t imes  fas te r  than  on  the  BASIC vers ion  o f  the  Mode l  
226 Computer .  
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HP-UX: Implementation of UNIX on the 
HP 9000 Series 500 Computer Systems 
b y  S c o t t  W .  Y .  W a n g  a n d  J e f f  B .  L i n d b e r g  

AN IMPLEMENTATION of the UNIX1" operating sys 
tem kernel has been layered on top of an existing 
operating system kernel for the HP 9000 Series 500 

Computer Systems. The mapping of UNIX functional re 
quirements onto the capabilities of the underlying operat 
ing system is discussed in this article, along with the im 
plementation of UNIX commands and libraries. These 
pieces of UNIX, along with other extensions added by HP, 
make up the HP-UX operating system. 

The HP-UX operating system is compatible with Bell 
Laboratories' System III UNIX, and supports most of the 
standard UNIX commands and libraries. A number of ex 
tensions are available, including 

FORTRAN 77 
â€¢ HP Pascal 

C 
â€¢ HP's AGP three-dimensional and DGL two-dimensional 

graphics subroutines 
â€¢ LAN 9000, an Ethernet-compatible 10M-bit/s local area 

network 
The vi visual editor 
Virtual memory 
Shared memory 
HP's IMAGE data base management system 
Support of symmetric multiple CPUs. 

HP-UX Operat ing Environment  
There are three levels of software in a UNIX system: 

commands, libraries, and kernel intrinsics (Fig. 1). The com 
mands are user-level programs which can call libraries or 
kernel intrinsics. Some commands are provided with the 
operating system as standard utilities. One example is the 
command interpreter, or shell. Commands can also be writ 
ten as normal user programs by the user. Libraries are also 
user-level code, but can be called only from a programming 
UNIX is  a US. t rademark of  Bel l  Laborator ies.  

Hardware 

Fig. 1 . UNIX consists of three levels of software â€” commands, 
l ibrar ies, and kernel intr insics. 

language such as FORTRAN or C. Kernel intrinsics can be 
called (normally as functions) from user programs or li 
braries, and provide a fundamental set of operating system 
operations. 

UNIX Kernel  Overview 
A standard UNIX kernel provides support for I/O, file 

system access, process management, real-time clock access, 
memory allocation, etc. The set of kernel intrinsics is fairly 
small and simple; only basic operations are supported by 
the kernel. For example, file manipulation operations such 
as copying files are done by commands. The command 
interpreter shell is another capability that is implemented 
in a user program instead of inside the kernel. 
Process Management. The UNIX kernel supports the crea 
tion of asynchronous processes that run in the background 
while the user executes other interactive programs in the 
foreground. Intrinsics are provided for the creation, termi 
nation, and synchronization of processes. Special events 

Typical HP-UX Commands 

C o m m a n d s  i n  H P - U X  a r e  r u n  b y  e n t e r i n g  t h e  n a m e  o f  t h e  
command. For instance, to l ist the contents of the current working 
d i rectory ,  enter  Is .  Th is  causes a program by that  name (which 
may be located in one of several default directories) to be loaded 
in to  memory and to  begin  execut ing.  Other  examples of  HP-UX 
commands are :  

cddirpath 

pwd 

vi filename 

rm filename 
cp filename destdir 
cat filename 
cat filename I we 

I s - l  

Change the working directory to the 
directory indicated by dirpath 
Prints the ful l  path name (f i lename) of 
the current  work ing d i rectory 
Invoke the visual editor to edit file 
filename 
Remove file filename 
Copy file filename into directory destdir 
Print the contents of file filename 
Print the number of lines, words and 
characters contained in file filename, 
we is the word count command and its 
input, inthiscase, is the output of the 
cat command (due to the pipe created 
by i). 
L is t  the contents  o f  the cur rent  work  
ing  d i rec tory .  The - I  i s  an opt ion  
that tells the Is command to emit 
addi t ional  informat ion. Most com 
mands accept one or more options. 

- M i c h a e l  L  C o n n o r  
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are noted by sending signals to one or more processes from 
other processes or from the kernel. The kernel manages 
identification fields, such as process ID, user ID, and group 
ID, which uniquely identify a process or group of processes. 
The exec intrinsic loads a user program (code and data) 
into memory from an executable file. The memory model 
of UNIX is very simple. It consists of the user's program, 
an execution stack, and a dynamic heap which can be 
extended or contracted via a kernel intrinsic. 
File Manipulation. The UNIX file system is built around 
a hierarchical directory structure, allowing a directory to 
contain other directories as well as normal files. Kernel 
intrinsics are provided to create files, directories, and spe 
cial files (devices that are in the filename space). The kernel 
also supports creating and deleting links (alternate names) 
to files and getting or setting file access modes. A significant 
feature is the ability to mount a separate disc volume logically 
onto a directory in an on-line volume. This means that all 
on-line volumes are part of a single directory hierarchy. 
File Access. A single set of I/O intrinsics provides transpar 
ent access to files, devices, or the standard input of other 
processes. A program normally does not know whether its 
standard input is coming from a file, a device, or another 
process via an interprocess pipe. Standard operations are 
provided, including read, write, open, close and status. 
Special device control is provided via the Â¡octl intrinsic. 
Miscellaneous. Several other features are supported by the 
standard UNIX kernel, such as real-time clock access, log 
ging accounting information at process termination, and 
profiling the execution of user programs. The profiling and 
accounting facilities have not yet been added to HP-UX. 

SUN Operat ing System Kernel  
When the HP 9000 project began, the operating system 

designers took a different approach from that used on HP's 
previous desktop computers. Even though the first HP 9000 
language system was to be an extension of the BASIC lan 
guage system of the HP 9845 Computer, an objective of the 
operating system design was to allow other languages in 
later versions of the product. The system software was 
designed in a modular, layered fashion (see Figs. 2 and 3 
on pages 4 and 5 ). A central operating system kernel provides 
a high-level interface to the hardware and machine architec 
ture, while other subsystems provide more specific func 
tions layered on top of this kernel. This operating system 
kernel, called SUN, is described in detail in the article on 
page 28. 

SUN is written mainly in MODCAL, an enhanced version 
of Pascal. MODCAL supports information hiding via mod 
ules, an elegant error recovery mechanism, and systems 
programming extensions such as absolute addressing. A 
small part of SUN is written in assembly language. The 
SUN kernel is not visible to the user; instead, it relies on 
upper-level subsystems such as BASIC or HP-UX to provide 
a user interface. The major pieces of the SUN operating 
system kernel handle power-on initialization and memory 
and process management, and coordinate the file system, 
drivers, I/O primitives, real-time clock, and interprocess 
messages. 
"Information hiding is a software design approach where the inner workings of an individual 
s e c t i o n  o r  k e p t  " h i d d e n "  f r o m  o t h e r  s e c t i o n s .  T h i s  a l l o w s  a  s e c t i o n  t o  b e  c h a n g e d  o r  
updated wi th  min imal  concern about  i ts  e f fects  on other  sect ions.  

An unusual feature of the file and I/O system is the ability 
to add new directory format structures, device drivers and 
interface drivers. These modules can be added without 
affecting the existing SUN kernel code. 

Some key pieces are missing from SUN by design, notably 
the human interface and program loader. The BASIC sys 
tem provides its own human interface code, which uses 
the integrated CRT and keyboard of the Model 520, the 
desktop version of the HP 9000 Series 500 Computers. HP- 
UX provides a terminal-style human interface to communi 
cate with the user through the integrated CRT and keyboard 
as well as through normal terminals. HP-UX and BASIC 
also provide their own program loading facilities. 

HP-UX Kernel  Strategy 
The basic strategy of the HP-UX implementation is to 

layer the HP-UX kernel definition on top of the SUN kernel. 
The exact System III UNIX semantics and syntax are kept, 
but the HP-UX intrinsics are implemented using SUN ker 
nel support instead of porting the Bell Laboratories kernel 
implementation to the Series 500. 

A layer of code called the HP-UX layer resides just above 
(and in some cases beside) the SUN kernel, as does the 
BASIC subsystem. However, BASIC and HP-UX are mutu 
ally exclusive; only one can be loaded at a time. 

The HP-UX layer performs any necessary transforma 
tions between UNIX formats and the corresponding SUN 
formats (e.g., the real-time clock format). It calls procedures 
in SUN whenever appropriate, but still has full access to 
the hardware and architecture when needed. The HP-UX 
layer maintains a number of higher-level data structures 
to manage HP-UX user processes and user resources. 

This layering strategy has a significant impact on the 
implementation detail of the HP-UX layer. For example, 
MODCAL is used instead of C as the implementation lan 
guage. However, user-level code written for System III 
UNIX will run on HP-UX, unless it depends on certain 
internal implementation details such as the directory for 
mat structure or invisible internal system data structures. 

The advantages of this layering approach come in two 
main categories â€” leverage and opportunities for contribu 
tion. A large portion of hardware-dependent code was al 
ready written for the Series 500 and its peripherals. Using 
the SUN kernel made it unnecessary to rewrite this code 
for HP-UX. Existing modules used include device and in 
terface drivers â€” especially significant because of the com 
plexity of the HP-IB (IEEE 488) and the new HP CS-80 
discs â€” low-level memory management, power-up code, 
process scheduler, architecturally dependent utility rou 
tines, and other machine-dependent code. 

SUN has a number of features that are not present in 
UNIX;  these  fea tures  p rov ide  oppor tun i t i es  fo r  
HP-UX to make a contribution over other UNIX implemen 
tations. These include real-time performance in the area 
of interrupt response time and process switching, support 
for multiple CPUs, reliability in the face of system errors, 
support for variable-size independently managed dynamic 
memory segments, semaphores, and low-level device I/O 
capability. Also, HP's IMAGE data base management sys 
tem was already implemented on top of SUN for the BASIC 
system. This code was ported to the HP-UX environment 

8  HEWLETT-PACKARD JOURNAL MARCH 1984  

© Copr. 1949-1998 Hewlett-Packard Co.



What is UNIXâ„¢? 

The popular i ty of  the UNIXâ„¢ operat ing system developed by 
Be l l  Labora to r ies  has  been  inc reas ing  s ince  i t  became opera  
t i ona l  i n  1971 .  Today ,  i t  i s  rap id l y  becoming  the  mos t  popu la r  
operat ing system for mid-sized computers and runs on numerous 
mach ines  made  by  d i f f e ren t  manu fac tu re rs .  The re  have  even  
been those that  have l ikened UNIX's  ro le  in  operat ing systems 
today  to  FORTRAN'S ro le  in  computer  languages some twenty  
years ago. 

UNIX  was  deve loped  by  Ken  Thompson  and  Denn is  R i t ch ie  
o f  Be l l  Labora to r ies .  Bo th  men had  been work ing  on  a  p ro jec t  
cal led Mul t ics (an acronym for  mul t ip lexed informat ion and com 
put ing  serv ice) ,  wh ich  was a  la rge mul t iuser  opera t ing  sys tem 
that  was eventual ly  cancel led by Bel l  Laborator ies.  From there,  
Thompson,  and  then  R ich ie ,  went  on  to  deve lop  UNIX.  As  you  
might  expect ,  many of  the more desi rable features found in Mul  
t ics were incorporated in the UNIX design. In fact, even the UNIX 
name was adopted f rom a p layfu l  tw is t ing of  "Mul t ics . "  

As the years went by, the UNIX systems within Bell Laboratories 
evo lved unt i l  vers ion s ix  (V6)  was deve loped about  1975.  Th is  
version became quite popular in a number of universi t ies around 
the world, including the University of California at Berkeley (UCB). 

Vers ion seven was re leased in  1978 and quick ly  rep laced V6 
in  mos t  i ns ta l l a t i ons .  Th is  ve rs ion  i s  the  base  fo r  mos t  o f  the  
c o m m e r c i a l  U N I X  l o o k - a l i k e s ,  o f  w h i c h  t h e  X e n i x  s y s t e m  d e  
ve loped by  Microsof t  i s  probab ly  the best  known.  I t  i s  a lso  the 
vers ion on which UCB bu i l t  the i r  popular  enhanced vers ions o f  
U N I X .  E a c h  U C B  v e r s i o n  r e l e a s e d  c o n t a i n e d  a  f e w  e n h a n c e  
ments over the previous releases. UCB's versions are designated 
by  xBSD,  whe re  x  i s  t he  ve rs i on  number  and  BSD s tands  f o r  
Berkeley Software Distr ibut ion. 4.2BSD is the most recent.  

In early 1982, Bell Laboratories released System III UNIX. This 
vers ion is  the base for  HP-UX (HP's vers ion of  UNIX),  a l though 
HP-UX a l so  i nco rpo ra tes  some o f  t he  n i ce r  f ea tu res  found  i n  
UCB's 4.1 BSD version. 

Sys tem V  UNIX  was  re leased  by  Be l l  Labora to r ies  in  1983 .  
B e l l  w i l l  b e  t h a t  a l l  o f  t h e i r  f u t u r e  U N I X  v e r s i o n s  w i l l  b e  
compat ib le wi th System V.  

UNIX Popularity 
Exact ly  why UNIX has become so popular  is  a  hard quest ion 

to  answer,  but  the reasons probably  inc lude:  
S imp l ic i t y .  The UNIX sys tem can be  broken in to  fa i r l y  smal l  
i ndependent  p ieces .  Each  p iece  can  be  comprehended ind i  
vidually and at a pace that is comfortable for a user. Few users 
ever need to learn a l l  the features provided by UNIX.  

â€¢ Power. The pieces of the system can be connected synergis- 
t ical ly  and manipulated at  execut ion t ime, the I /O can be redi  
rec ted ,  t he  ou tpu t  o f  one  p rocess  can  be  connec ted  to  t he  
input pro another (forming a "pipel ine" of arbitrary length), pro 
cesses can be executed in  foreground or  background,  a  com 
mand l is t  can be developed and then executed when desi red 
and as of ten as desi red,  etc.  
F lex ib i l i t y .  P ieces  o f  the  UNIX  sys tem a re  eas i l y  added ,  re  
p l a c e d ,  o r  d e l e t e d .  S y s t e m  r e c o n f i g u r a t i o n  i s  q u i c k  a n d  
straightforward. 
Software. Bell Laboratories, Hewlett-Packard, and a lot of other 
companies and individuals have put a lot of effort  into develop 
ing a large software basethat runs in the UNIX environment. 

UNIX is a U.S. t rademark o( Bel l  Laborator ies. 

â€¢  Ease  o f  po r t i ng .  Mos t  o f  t he  UNIX  sys tem i s  w r i t t en  i n  a  
mach ine - independen t  manner .  I t  has  been  po r ted  to  a  num 
be r  o f  d i f f e ren t  compu te r  a r ch i t ec tu res  w i t h  r e l a t i ve l y  f ew  
problems. 

Features 
UNIX has many features.  Some of  them are:  

â€¢ The shel l .  The shel l  is a program that provides the interface 
be tween  the  user  and  the  UNIX  sys tem.  I t  i s  a  command in  
te rpre ter  tha t  takes  input  f rom the  user  and executes  the  re  
quested commands.  I t  can also take input  f rom an ASCII  com 
mand f i l e ,  wh ich  i s  genera l l y  re fe r red  to  as  a  "she l l  sc r ip t . "  
When a  command is  executed ,  i t  can  be  passed arguments ,  
have i ts  standard I /O f i les redirected,  and/or be placed in the 
background ,  a l l  t h rough  p rov is ions  bu i l t  i n to  the  she l l .  The  
shell also has f low control structures that al low condit ional and 
mult ip le execut ion of command l ists.  Because of the f lexibi l i ty 
o f  UNIX,  the shel l  can be replaced by a d i f ferent  program. In  
fac t ,  UCB has chosen to  do jus t  tha t  and prov ides the i r  own 
version of  the shel l  cal led the C shel l .  

â€¢ The C Language.  C was developed concurrent ly  wi th  UNIX 
at  Bel l  Laborator ies.  I t  is  a medium-level  language wi th many 
of the features found in Pascal and other high-level languages. 
I t  p r o v i d e s  a  p r o g r a m m e r  w i t h  a  l o t  o f  p o w e r  a n d  f e w  c o n  
s t ra in ts .  Most  imp lementa t ions  o f  the  UNIX kerne l  and most  
of the UNIX commands are written Â¡n C. 

â€¢ Other languages.  Current ly  HP-UX on HP's HP 9000 Ser ies 
500  and  Ser ies  200  Compu te rs  o f fe rs  comp i le rs  fo r  Pasca l  
and FORTRAN 77 in  addi t ion to  C.  
Full  set of commands. Commands to maintain the UNIX system 
and the  f i le  sys tem,  ed i to rs ,  tex t  p rocessors ,  and numerous  
other commands are included in HP-UX. The popular v i  edi tor  
f rom UCB is inc luded in th is  set .  

â€¢â€¢â€¢ A compute set of library routines. These include routines to compute 
common math funct ions,  to  per form format ted I /O,  to  access 
kernel  intr insics,  and, on the HP 9000 Ser ies 500 Computers,  
rout ines to manipulate vir tual memory objects, to do DGL/AGP 
graph ics ,  and to  access  an IMAGE data  base.  

â€¢ Data communicat ion support .  System I I I  and other vers ions 
o f  UNIX prov ide a  set  o f  UNIX- to-UNIX copy (uucp)  serv ices 
to  a l l ow the  user  to  pass  f i l es  f rom node  to  node  in  a  UNIX  
network.  A sophis t icated e lect ron ic  mai l  system has been im 
p lemen ted  by  us ing  these  se rv i ces .  To  these ,  t he  HP 9000  
Ser ies 500 Computers  add a loca l  area network (LAN 9000) ,  
general  terminal  emulator  capabi l i t ies,  and remote job entry.  

M Source code control system (SCCS). This is a set of commands 
tha t  he lps  the  p rogrammer  keep  t rack  o f  changes  to  source  
files. 

Further Reading 
1.  H.  McGi l ton  and R.  Morgan,  In t roduc ing  the  UNIX Sys tem,  McGraw-Hi l l ,  1983.  A  
good tutorial.  
2.  R Thomas and J. Yates, A User Guide to the UNIX System. OSBORNE/McGraw-Hi l l ,  
Berke ley.  1982 Another  good tu tor ia l  
3 .  Be l l  en t i re  Techn ica lJouma l ,  Vo l  57 ,  no .  6 ,  Pa r t  2 ,  Ju l y -Augus t  1978  The  en t i re  
issue is  dedicated to UNIX of  about  vers ion seven 
4  H P - U X  r e f e r  M a n u a l .  H e w l e t t - P a c k a r d  P u b l i c a t i o n  0 9 0 0 0 - 9 0 0 0 4  A  g o o d  r e f e r  
ence,  but  not  easy for  a  nov ice to  understand 
5.  HP-UX Selected Ar t ic les ,  Hewlet t -Packard Publ icat ion 97089-90002 Nineteen ar t i  
c les on some of  the large components found in  UNIX.  
6 .  S.R.  Bourne,  The UNIX System.  Addison-Wesley,  1983 A good in t roduct ion.  

- M i c h a e l  L  C o n n o r  
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to provide this important HP standard data base capability. 
An important concern was the performance of a layered 

implementation; the risk was that conversion between the 
SUN format and the HP-UX format would increase operat 
ing system overhead. The experience actually observed 
after the product was completed was that the HP-UX layer 
itself is responsible for approximately 10% of the CPU time 
used by the kernel, and nearly all of that time is spent 
doing useful work such as loading programs. This means 
that SUN is afairly good match f or the HP-UX requirements, 
because little time is wasted on conversion between SUN 
and HP-UX formats. 

Matching  SUN and HP-UX 
This section describes the areas of the SUN operating 

system that were changed or augmented to support the 
requirements of HP-UX. Only areas that are important to 
mapping the UNIX semantics onto the original SUN kernel 
are described in depth. 
File System. There was already a good match between the 
SUN operating system and HP-UX in the hierarchical direc 
tory structure of the file system. The existing directory 
format was modified to fit HP-UX semantics rather than 
implement the standard UNIX disc format in MODCAL. 
The fundamental operations such as read, write, open, and 
close were already supported in a satisfactory manner in 
SUN; no significant changes to these were necessary. 

However, the file system itself was the area that required 
the largest changes in SUN. One of the biggest additions 
was the support of device files, special files that map de 
vices such as printers or terminals into the same name 
space as regular files. The SUN file system expected device 
and file accesses to be made separately. Special checks had 
to be made for special file types; the new device file code 
performs operations for device files equivalent to those 
originally performed only for regular files. 

Another large change was support for mounting disc vol 
umes onto an on-line directory so that all accessible files 
and directories are part of a single directory hierarchy. 
Again, special code was added to check each directory 
access; if the directory has another volume mounted on it, 
the access is redirected to the root directory of the mounted 
volume. 

The third area of major change was file access protection 
semantics. The UNIX read/write/execute and user/group/ 
other mechanisms used to control access to files were not 
originally in the SUN file system protection scheme. This 
could have been added, along with the standard UNIX disc 
format structure, to a separate directory format module, 
since SUN supports multiple directory format structures. 
However, the characteristics of the existing format were so 
close to those desired that the SUN format and protection 
scheme were adapted to the HP-UX requirements instead. 

Changes were made in the SUN file system to support 
pipes and FIFO (first-in, first-out) files. In the early versions 
of HP-UX, pipes were implemented in the HP-UX layer. 
However, they have been moved inside the SUN file system 
for performance reasons. A number of minor HP-UX file 
system operations had to be added to SUN. These include 
changing the owner of a file, reading or changing file access 
modes, and duplicating an open file descriptor. 

Some operations are performed in the HP-UX layer. 
These include parsing multilevel path names, managing 
the user's open files table, and enforcing file size limits on 
extending files. 
I/O. In the area of device I/O, the existing SUN I/O system 
was a very good match for the needs of UNIX. Virtually no 
changes were made to the I/O primitives that provide the 
interface to the backplane and I/O processor, the bus 
bandwidth management code, the drivers for interface 
cards, or the disc and tape device drivers. 

The major changes came in the internal and external 
terminal support. The external terminal driver is based on 
the existing serial interface driver, but adds UNIX tty seman 
tics such as type-ahead, line buffering, mapping carriage 
return/line feed to newline, and sending the interrupt and 
quit signals. The Model 520 Computer's integrated keyboard 
and CRT device control code is based on the work done 
for the BASIC system's human interface. But the functional 
operation of the integrated "terminal" had to be completely 
redone to be compatible with HP terminals. 
Memory Management. Because of the simple memory 
model of HP-UX, the memory allocation intrinsics are eas 
ily supported on most operating systems, including the 
SUN kernel. The major changes in the SUN memory man 
agement system were required by the addition of virtual 
memory and shared memory, which are extensions rather 
than semantic requirements of UNIX. The HP-UX layer has 
the responsibility of keeping track of the user's memory 
use and deallocating this memory when a process or pro 
gram terminates. 
Program Loading. No explicit function for loading and 
executing programs is present in the SUN operating system, 
but the underlying support needed is there. The file system 
is used (with minor changes) to find and read the program 
file, and the memory management system provides the 
mechanism for allocation of code and data segments. No 
major changes were required in the SUN kernel to support 
program loading. 

The HP-UX layer manages shared code segments, which 
allow multiple processes to share a single copy of the code. 
The HP-UX layer also handles relocation of code and data 
segments at load time and meets the segment attribute re 
quirements requested by the object file format. 
Process Management. The HP-UX process management in 
trinsics are supported fairly well by the SUN kernel, but 
two areas required a significant effort: fork and signal. The 
fork system call creates a new process in the exact image 
of the calling process. It returns to both the parent and 
child processes, just after the fork call, at the point where 
the function return value distinguishes the child from the 
parent. Creating an exact copy of a process is not a typical 
operation supported by normal operating systems, includ 
ing the SUN kernel. 

At the SUN level, code was added to support the "clon 
ing" of a process. The cloning operation allocates memory 
for the child process and initializes SUN modules for the 
new process. It is also responsible for duplicating the con 
tents of the parent's segment table in the child's segment 
table and creating an exact image of all the parent's seg 
ments in the child's address space, including virtual mem 
ory segments and the stack segment. 
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The HP-UX layer then initializes the new process. This 
includes allocating an HP-UX process control block, copy 
ing some fields from the parent's process control block, 
and initializing other unique fields such as process ID and 
parent process ID. It also increments use counts on shared 
objects such as shared code segments and open files. Fi 
nally, the HP-UX layer returns the appropriate value to the 
parent (child's process ID) and to the child (zero). 
Signal Implementation. The implementation of signal, a 
mechanism for interprocess event notification and excep 
tion reporting, was a significant portion of the HP-UX layer 
development. SUN had no explicit support for sending 
asynchronous signals between processes, but did have most 
of the tools necessary to implement this feature. 

One tool is the ability of subsystems to install trap han 
dlers for most classes of traps possible on the Series 500 
Computers. Signal processing is initiated by triggering an 
Ml (machine instruction) trap in the target process, which 
causes the Ml trap handler to be entered on the next machine 
instruction executed. This handler is responsible for pro 
cessing the signal received and taking the specified action. 
This can be calling a user-specified signal handler, ter 
minating the process, or just ignoring the signal. 
Other Process Management. The process scheduler met 
the requirements of HP-UX in the original SUN implemen 
tation, but has been improved to allow dynamic process 
priority adjustment to reward interactive processes. (It is 
currently being enhanced to suspend low-priority pro 
cesses during heavy system loads.) SUN supports the cre 
ation of special system processes that can provide specific 
system services. These system processes communicate 
with user processes and each other via SUN's mailbox-style 
interprocess messages. Also, a sophisticated set of 
semaphore operations is provided for synchronization of 
all processes in the system. This is especially important in 
a multiple-CPU system; merely disabling interrupts does 
not ensure exclusive access to a shared data structure, be 
cause other processes may be running simultaneously on 
other CPUs. 

The following process management functional areas are 
implemented in the HP-UX layer: 
â€¢ Higher-level support of fork such as allocation and in 

itialization of a process control block for the new HP-UX 
process 

â€¢ Higher-level support of signal, including sending and re 
ceiving signals, and specifying action to be taken on 
receipt of a signal 

â€¢ Management of user, process, and group IDs 
â€¢ Process termination, including deallocation of resources 

owned by the user process 
â€¢ Wait for a signal or for termination of a child process 
â€¢ Management of HP-UX process control blocks. 

The functional areas listed below are completely sup 
ported by the SUN kernel, except for those changes noted. 
â€¢ Power-up 
â€¢ Multiple-CPU support 
â€¢ Trap handling 
â€¢ Real-time clock: the HP-UX layer performs the conver 

sion between SUN time format and HP-UX time format 
â€¢ Alarm clock: the HP-UX layer creates a system process 

that wakes up each second to see if any alarm signals 

need to be sent 
â€¢ CPU times; a minor change was made to the timer inter 

rupt service routine to increment the CPU time used by 
the current process. 

Upper-Level Software Strategy 
Working in parallel with the SUN and HP-UX kernel 

design groups was another group of software engineers 
who were responsible for the upper-level commands and 
libraries. The UNIX system from Bell Laboratories contains 
more than 300 commands and over 200 library subroutines. 
Consisting of more than 300,000 lines of C source lines, 
these constitute the bulk of the UNIX system. The majority 
of HP-UX upper-level software on the Series 500 Computers 
is based on these UNIX System III commands, plus several 
from the 4.1BSD version of UNIX from the University of 
California at Berkeley (UCB). 

For implementation priorities, the upper-level software 
team first categorized the commands and libraries into dif 
ferent groups based on their usefulness. For example, in 
itialization and file manipulation commands were all in 
the first group. Useful tools were in the second group and 
other commands and libraries, such as those used for text 
processing, were in the third group. Then the C source 
code of the first two groups was studied in some detail 
using a C cross referencer to determine which system intrin- 
sics and libraries were used. The data resulting from the 
study was stored in an HP 9845 IMAGE data base from 
which many useful reports were produced. For example, 
a system intrinsic implementation priority list was gener 
ated based on the highest-priority commands to guide the 
kernel group in their implementation. As new system in- 
trinsics were brought up, the upper-level software team 
was able to determine from the data base what additional 
commands could be brought up with the newly available 
intrinsics. 

Another IMAGE data base was used to keep track of all 
commands and libraries in terms of implementation prior 
ity, responsible engineer, porting status, source origin, etc. 
This proved to be very useful for managing the project and 
keeping other departments informed about the status of 
each command. 
Porting Commands and Libraries. Four major tools were 
necessary to port the upper-level software: a C-to-HP-9000 
cross compiler, an assembler, a linker, and a cross compi 
lation machine. The upper-level software team used a re 
motely accessible VAX/750 running UCB UNIX as the cross 
compiling environment. Other tools to move files to and 
from the VAX/750 were developed as necessary. 

After the initial system was up and running, the major 
focus was to make the C compiler resident on the Series 
500 by cross compiling it. We had a resident environment 
two months later. From that point on, all development 
work was done on a Model 520 Computer running the 
latest (sometimes experimental) kernel. The upper-level 
software development system then grew from one single- 
user system to two multiuser systems linked with a local 
area network. 

The majority of the commands and libraries were ported 
over to the Series 500 with little or no modification, that 
is, most of them ran after compilation. However, the follow 
ing types of changes were necessary. 
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HP-UX: A Corporate Strategy 

Wi th  t he  i n t roduc t i on  o f  HP-UX on  the  HP  9000  Se r i es  500  
Computers ,  Hewlet t -Packard has made a s t rong commitment  to  
the use of an enhanced version of UNIXâ„¢ as a standard operating 
system for i ts new computer products. Through this commitment, 
HP i s  make  to  e l im ina te  un ique  so f tware  a t t r i bu tes  tha t  make  
e n d - u s e r  p r o g r a m s  d i f f i c u l t  t o  " p o r t "  f r o m  o n e  c o m p u t e r  t o  
another .  Programmers can now des ign the i r  so f tware to  run on 
an  a r ray  o f  HP  mach ines ,  concen t ra t i ng  on  modu la r i z i ng  and  
scal ing thei r  appl icat ions to best  sui t  each computer 's  pr ice/per  
formance character is t ics.  

Why UNIX? 
Since any operating system standard would simplify the port ing 

p rocess  and  improve  p rogrammer  p roduc t i v i t y ,  why  was  UNIX  
selected as the heart  of  HP's sof tware st rategy? 

UNIX is  ga in ing wide acceptance as an indust ry  s tandard for  
1 6 - b i t  b e  3 2 - b i t  m i n i c o m p u t e r s .  I t s  p o p u l a r i t y  i s  p a r t i a l l y  b e  
cause i t  has been easy to implement  on a var ie ty  of  processors 
and computer  a rch i tec tures .  Th is  por tab le  charac ter is t i c  made 
UNIX an Â¡deal  choice as a compat ib le operat ing system for the 
dist inct  archi tectures of  current HP 9000 members:  the 16/32-bi t  
68000  m ic rop rocesso r -based  Se r i es  200  Compu te r s  (Mode l s  
220 and 236) and HP's propr ietary 32-bi t  VLSI-based Series 500 
Compute rs  (Mode ls  520 ,  530 ,  and  540) .  UNIX  i s  a l so  p lanned  
for  fu ture members of  the HP 9000 fami ly .  

The popular i ty  enjoyed by UNIX has a synerg is t ic  ef fect .  Sof t  
ware appl icat ions are being designed for  the UNIX envi ronment  
a t  an  inc reas ing  ra te ,  wh ich  in  tu rn  encourages  more  UNIX im 
plementat ions.  Most  of  th is  sof tware wi l l  run on HP-UX, thereby 
mak ing  HP 's  compu te rs  more  a t t rac t i ve  to  a  l a rge r  aud ience .  
Fur thermore ,  UNIX i s  s tud ied  and  taught  in  mos t  ma jo r  un iver  
s i t ies .  Today 's  computer  sc ience graduates wi l l  eventual ly  in f lu  
e n c e  o r  b e c o m e  t h o s e  w h o  s e l e c t  c o m p u t e r s  f o r  c o m m e r c i a l  
and  sc ien t i f i c  use .  UNIX-based  p roduc ts  a re  l i ke l y  t o  rece i ve  
s t rong considerat ion dur ing the se lect ion process.  

What  Is  HP-UX? 
HP-UX is  a  combinat ion of  Bel l  Laborator ies '  UNIX operat ing 

system, port ions of the University of Cali fornia at Berkeley (UCB) 
UNIX is a U.S. t rademark of  Bel l  Laborator ies.  

â€¢Kernel. Libraries 
â€¢C Compiler, vi 
â€¢Other Commands 
â€¢(System V Semantics) 

â€¢System III Kernel, Libraries 
and Command 

â€¢(System V Semantics) 

â€¢Graphics, Games 
â€¢Experimental Functions 
â€¢Seldom-Used Functions 

Key: 
(  )  D e f i n i t i o n  i n  

progress 

implementat ion of  UNIX and Hewlet t -Packard sof tware enhance 
ments. Through UNIX, HP-UX facil itates easy importation of UNIX- 
der ived programs and of fers  a consis tent ,  powerfu l  program de 
velopment environment.  Complementary extensions address the 
Manufac tu re r ' s  Produc t i v i t y  Ne twork  (MPN) ,  HP 's  v iew o f  how 
computer  sys tems can be used in  manufactur ing organ izat ions 
to improve product iv i ty .  

Rather than implement ing every funct ion of  Bel l  Laborator ies '  
Sys tem I I I  UNIX,  fea tu res  were  inc luded  based  on  the i r  impor  
t ance  i n  po r t i ng  s tanda rd  so f twa re  o r  t he i r  abso lu te  p rog ram 
d e v e l o p m e n t  v a l u e .  U s i n g  t h e s e  g u i d e l i n e s ,  a  c o m p a t i b i l i t y  
h i e r a r c h y  w a s  d e v e l o p e d  i n  w h i c h  k e r n e l  s e r v i c e s  b e c a m e  a  
" m u s t , "  l i b r a r y  s u b r o u t i n e s  a  " h i g h  w a n t , "  a n d  c o m m a n d s  a  
"want."  

As  a  resu l t  o f  t h i s  approach ,  HP-UX inc ludes  a l l  Sys tem I I I  
kernel intr insics and al l  l ibrar ies except for a handful of graphics 
subrou t ines .  More  than  125 o f  the  most  use fu l  Sys tem I I I  com 
m a n d s  a n d  a  s m a l l  b u t  i m p o r t a n t  n u m b e r  o f  U C B  c o m m a n d s  
are also offered. 

To  sa t i s f y  cus tomer  requ i remen ts ,  enhancemen ts  cove r i ng  
programming languages,  g raph ics ,  da ta  base management ,  de  
vice and instrumentat ion I /O, local  area networking, and fr iendly 
user interfacing are being standardized. These extensions, which 
appear as addi t ional  kernel  int r ins ics,  l ibrar ies,  and commands, 
will bridge the gap between HP's HP-UX and non-HP-UX computers. 

Addi t ional  enhancements assist  in  migrat ing appl icat ions sof t  
ware f rom current  propr ie tary  HP operat ing systems to  HP-UX.  
One of  these too ls ,  the Appl icat ions Migrat ion Package (AMP),  
converts the HP 1 000 Computer's RTE calls to HP-UX calls. AMP 
rev is ions are  p lanned as HP-UX is  expanded to  meet  rea l - t ime 
control  requirements.  

New so f tware  fea tu res  a re  no t  the  on ly  fo rm o f  HP enhance  
ments .  On-going t ra in ing a l lows sa les and technica l  suppor t  or  
ganizat ions to provide complete services before and after sales. 
Easy- to - read  tu to r ia l s  and  re fe rence  manua ls  a id  bo th  nov ice  
and experienced users. Exhaustive R&D software testing ensures 
re l iable operat ion and minimal  downt ime.  

S ince  HP-UX i s  p lanned  fo r  many  fu tu re  HP compute rs ,  HP 
w i l l  s u p  i n v e s t m e n t s  a l r e a d y  m a d e  i n  t h e s e  i m p o r t a n t  s u p  
port  areas.  By avoiding the massive re investments cont inuously 

â€¢is, Other Commands 
â€¢Network, Real-Time 

Support 
â€¢(C Shell, Mail) 

â€¢Memory Control 
â€¢Graphics, Games 
â€¢Hardware Dependencies 
â€¢System V Conflicts 
â€¢Seldom-Used Functions 

Not HP-UX 

â€¢Memory Control 
â€¢Local Area Network 
â€¢Graphics, Data Base Management, 

FORTRAN, Pascal  
â€¢(Localization) 
â€¢(Device I/O, Real-Time) 

F i g .  1 .  I n f l u e n c e  o f  B e l l  L a b  
o r a t o r i e s ,  U C B ,  a n d  H P  e x t e n  
sions on the direction of the HP-UX 
definition. 
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required of new software systems, HP can concentrate on improv 
ing al l  aspects of  HP-UX in the future.  

HP-UX Standards Enforcement  
Compliance with the HP-UX standard is enforced through com 

prehensive sets of val idation programs. Automated test programs 
mon i to r  p roper  opera t ion  o f  a l l  ke rne l  i n t r i ns i cs ,  Sys tem I I I  l i  
b r a r i e s ,  t w o - d i m e n s i o n a l  a n d  t h r e e - d i m e n s i o n a l  g r a p h i c s  l i  
b ra r ies ,  and  the  FORTRAN and Pasca l  compi le rs .  As  the  s tan  
dard evo lves,  add i t iona l  va l idat ion programs wi l l  be deve loped 
to ensure consis tency across a l l  HP-UX computers.  

Overa l l  management  o f  the s tandard is  the ongoing responsi  
b i l i ty  of  the HP-UX Steer ing Commit tee.  Consist ing of  represen 
tat ives f rom several  HP div is ions,  th is commit tee meets monthly 
to resolve pert inent HP-UX issues and to review the status of the 
var ious  HP-UX work ing groups.  These groups,  a lso  w i th  broad 
d iv is ional  representat ion,  cover  technica l ,  market ing,  documen 
tat ion, and customer support issues in more detai l .  Each division 
w o r k s  t h r o u g h  i t s  r e p r e s e n t a t i v e s  t o  p r o p o s e  a d d i t i o n s  o r  
changes to  the s tandard.  

Future Direction 
Perhaps the most crit ical issue in establishing the future course 

fo r  HP-UX is  i t s  degree  o f  compat ib i l i t y  w i th  Be l l  Labora to r ies  
and UCB.  Whi le  4 .2BSD UNIX (Rev is ion 4 .2  Berke ley Sof tware 
Distr ibut ion) is current ly the superior version, Bel l  is  developing 
improved versions that could eventual ly surpass 4.2BSD in capa 
bi l i ty and rel iabi l i ty.  In addi t ion, four microprocessor manufactur 
ers intend to of fer  System V, Bel l 's  latest  UNIX version,  on their  
microprocessor  products .  System V can potent ia l ly  become the 
most  a f fordable  UNIX and thus the UNIX of  cho ice for  por tab le  
appl icat ion programs.  
â€¢Intel, Motorola, National Semiconductor, and Zilog. 

In  cons iderat ion o f  these factors ,  the Bel l  System I I I  vers ion 
has been chosen as the base standard.  The compat ib i l i ty  h ierar  
chy wil l  determine which port ions of System V and i ts successors 
are HP-UX candidates.  

Extens ions beyond the Bel l  vers ions can be expected i f  they 
fa i l  to  meet  HP requ i rements  in  a  t ime ly  fash ion .  However ,  we 
pre fer  to  adopt  an ex is t ing  UNIX-based implementa t ion  ( i f  one 
ex is ts)  before embark ing an an or ig ina l  des ign pro ject .  A poten 
t ia l ly  r ich source of  enhancements current ly  under invest igat ion 
i s  UCB's  4 .2BSD vers ion .  We an t i c ipa te  add ing  such  UCB fea  
tures as the C shel l ,  mai ler ,  and selected kernel  int r ins ics.  

Microsof t 's  Xenix,  wi th i ts  large instal led base and potent ia l ly  
r i c h  t h e  o f  U N I X  a p p l i c a t i o n s  p r o g r a m s ,  c o u l d  i n f l u e n c e  t h e  
HP-UX standard.  Since Xenix and HP-UX are select ively adding 
Bell System V and UCB features to the same System III definit ion, 
conformance between the two systems is  l ike ly .  

Fig. and il lustrates the major influence of the HP extensions and 
the Bel l  releases on the HP-UX direct ion. I t  also recognizes UCB 
as a promis ing contr ibutor  of  addi t ional  funct ional i ty .  

In  suppor t  o f  low-cos t  computer  sys tems,  we are  examin ing  
methods of  subsett ing HP-UX without sacr i f ic ing compat ibi l i ty or 
easy growth to  the h igher -per formance sys tems.  Code compac 
t ion and reduct ion techniques for  both the operat ing system ker 
ne l  and  the  d isc  res ident  commands are  be ing  cons idered .  An  
exci t ing technique under invest igat ion is a high-performance dis 
t r ibu ted HP-UX operat ing sys tem,  which a l lows ind iv idua l  work  
stat ions to re ly  tota l ly  on shared network per ipherals.  Thus,  the 
cos t  per  sys tem is  d ramat ica l l y  reduced ,  bu t  loca l  p rocess ing  
power is maintained. 

HP-UX wil l  be modif ied to support several European languages 
and the  16-b i t  Kan j i  charac te r  se t .  Thus ,  loca l i zed  app l i ca t ion  
program solut ions wi l l  be possib le.  

â€¢Michael V. Hetrick 

A new system intrinsic entry point mechanism was de 
veloped because the kernel was written in MODCAL and 
the rest of the system was in C. 
Some data structures contained in the C header files 
needed to be modified to match the HP-UX layer data 
structures. (Header files contain data and structure decla 
ration statements for C programs.) The commands that 
needed these header files were examined in detail to see 
if modification was necessary. 
A few commands were rewritten completely because the 
kernel was not the original standard kernel. For example, 
fsck, the file system integrity checker and maintainer, 
was rewritten because the SDF (structured directory for 
mat) file system is physically different from the UNIX 
file system. The process status command ps was modified 
extensively because of data structure differences. 
Another example was the mknod command which creates 
special files to communicate with I/O devices. It was 
modified to match the UNIX semantics to HP-IB I/O de 
vices. However, all the commands were kept as compat 
ible as possible with System III UNIX commands. 
The Series 500 supports IEEE floating-point format; as 
a result, the UNIX math library was replaced with HP's 
own implementation. 
Twenty-one new commands were implemented that 
apply to the Series 500-based HP-UX. These deal primar 
ily with machine-dependent features such as disc boot 
area management, disc initialization, setting virtual 

memory parameters, and system installation and update. 
The handling of DC600 tape cartridge data on HP's new 
CS-80 discs also required special support. 

Problems During Porting. The problems encountered in 
porting the commands and libraries can be categorized in 
two areas â€” architecturally dependent and architecturally 
independent. Architecturally independent problems were 
mostly anomalies found in the original UNIX code. We 
logged over 281 new bug reports during the port project. 
Over 60% of these bugs were fixed. The others were either 
classified as not worth fixing or waiting to be fixed. 

Architecturally dependent problems were usually 
caused by dereferencing of nil pointers or dependency on 
the direction of stack growth. On the VAX/750 implemen 
tation of UNIX, a nil pointer dereference returns a zero. 
On the HP 9000 Series 500 HP-UX, a system trap occurs. 
This architectural dependency is relied on in many places 
in the standard UNIX commands and libraries, and each 
of these needed to be corrected. These usually manifested 
themselves in a memory fault error message. Fortunately, 
this error was relatively easy to fix in the source code. 

The stack grows towards high memory (up) on the Series 
500 and down on the VAX/750. For example, the printf sub 
routine in the standard I/O library can have a variable 
number of parameters and the pointer used to access the 
parameters on the stack is decremented rather than in 
cremented. Other architecturally dependent features in 
cluded the byte order swap of the VAX/750 hardware where 

MARCH 1984  HEWLETT-PACKARD JOURNAL 13  

© Copr. 1949-1998 Hewlett-Packard Co.



low and high bytes are reversed. This made reading cpio 
archive format tapes from the VAX/750 a chore in the be 
ginning. Now HP-UX defines a new -p option to the cpio 
command which does the byte swap. 

The upper-level software team did not have a user-level 
debugger available to debug the C programs. Instead, the 
kernel-level HP 9000 debugger was used to debug the com 
mands. It was cumbersome to set up the initial breakpoint, 
but quite effective after that. (A user-level symbolic debug 
ger is being developed.) 
Shared Libraries.  The Series 500 architecture supports 
shared code segments, thus allowing the implementation 
of a special shared library for major portions of the standard 
C library. That is, there is only one copy of the library in 
the system shared by all system commands that are linked 
in the standard C library. (The shared library feature is not 
currently available to user programs.) This saved typically 
7K bytes of code space for each command (just about all 
of  the commands used the C l ibrary).  This,  in turn,  im 
proved load-time performance and saved disc space. 
SCCS and the Build Process. UNIX is touted as one of the 
best  program development  environments  avai lable ,  be 
cause it  provides many software engineering tools. The 
source code control system (SCCS) is one such tool that 
the upper-level software team took advantage of throughout 
the project life cycle. The SCCS was brought up and used 
as  soon as  a l l  kernel  suppor t  was  avai lable .  The  Bel l  
Laboratories System III source code was put under SCCS 
as the baseline and all upper-level software changes were 
built on top of it. Each upper-level software team member 
adhered to a simple set of rules that applied to the access 
and update of the controlled source. This proved valuable 
for  day-to-day sof tware development ,  providing who,  
when, how, and why information about code changes. 

SCCS maintains revision numbers to allow access control 
and retrieval of any version of the source code.  I t  also 
supports checksums of the source files to check for corrup 
tion. This was important since code development was done 
in  para l le l  wi th  the  f i l e  sys tem deve lopment  and  the  
checksum is a simple physical integrity check. SCCS was 
indispensable later during quality assurance testing and 
the code freeze period just before each major system release. 

System build scripts were written to manage the compi 
lation of all the commands and libraries from the SCCS 
source directory automatically. The build procedure, along 
with the scripts, was able to handle compiler, assembler 
and linker updates, getting the source, and compiling the 
system in proper sequence. This was important for system- 
wide changes such as object file format changes or major 
updates in the compiler or other tools.  The scripts also 
controlled the target file system structure, setting file own 
erships, access permissions, etc. They also managed the 
SCCS update revision level of each system build such that 
any change occurring after the build started would be at a 
higher level and would not be included in the current build 
even if the build process had to be restarted for some reason. 
The build scripts evolved through the life of the project 
and became a major tool for system releases. The final build 
of the 3.3M-byte system took around 17 unattended hours 
to complete. 

Compatibil i ty 
The upper-level software porting experience indicated a 

high degree of compatibility between the HP-UX layered 
kernel and the UNIX System III kernel. Out of 126 ported 
commands from System III, 57 required no modification 
at all, 44 required less than 10 lines of modifications, 16 
required between 10 and 30 lines of modifications, and 9 
required more than 30 lines of modifications. Most modifi 
cations were to fix bugs. These commands do not include 
development tools such as a compiler, an assembler, and 
a linker, nor do they include UCB UNIX commands. 

Extensive effort was made to ensure compatibility with 
Bell Laboratories'  System III UNIX. First, a "minimum 
touch" strategy on the System III source code was used. 
The design team did whatever was necessary to make the 
commands and libraries work, but beyond that they did as 
little modification as possible. Temptations to clean up the 
code were strongly discouraged. Each reported bug was 
evaluated to determine whether it should be fixed and if 
so, how. 

Second, validation suitesf were used to ensure compati 
bility with System III. The priority for the validation suites 
was to validate the kernel first, then the libraries, and fi 
nally the commands. 100% of the kernel intrinsics were 
validated. A significant effort was invested in the kernel 
validation suite. It was run after each new kernel was built. 
92% of the subroutine libraries have validation tests and 
all are incorporated into an automatic test suite. 22% of 
released commands have validation tests. The validation 
suites were written with verification of the functionality 
in mind rather than exhaustive quality assurance testing. 

The automatic validation test suite is organized for ease 
of use. There are two types of tests â€” one related to the root 
user and the other related to the typical user. The automat 
ic test suites were provided to the software system integra 
tion team for testing commands and libraries with other 
major subsystems. 
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An Interactive Run-Time Compiler for 
Enhanced BASIC Language Performance 
by David M.  Landers,  T imothy W.  T i l lson,  Jack D.  Cooley,  and Richard R.  Rupp 

AT THE BEGINNING of the BASIC project for the HP 
9000 Model 520 Computer, the project team was 
faced with a major challenge. To take full advantage 

of the performance available in the Model 520 from the 
new 32-bit NMOS-III VLSI microprocessor,1 BASIC had to 
be implemented as a compiled language. Using traditional 
compiler technology, this would mean giving up many of 
the interactive features so popular with current HP 9845 
users. The challenge was to develop a new compiler tech 
nology that would support these interactive features while 
maintaining the performance advantage of a compiler. 

The breakthrough came in the form of two articles on 
"throwaway compiling," explained in two articles â€” one 
by P.J. Brown2 and one by J. Hammond.3 The throwaway 
or run-time compiling technique compiles each line the 
first time it is executed. As more of the program is compiled, 
the performance approaches that of a traditional compiled 
system. If the program runs out of memory, the current 
object code is discarded (hence the term "throwaway com 
piling") and the incremental compilation is restarted at the 
next line to be executed. 

The authors were looking for a way to run programs 
efficiently on machines with limited memory space, but 
the throwaway compiling technique looked like it could 
be adapted for a run-time compiler that would provide the 
desired interactive features. If the object code could be 
thrown away during the execution of a program and rebuilt 
without restarting, it could also be thrown away at arbitrary 
times such as when the user modifies the program. Within 
limits, the program reconstructed after throwaway could 
be different from the program before throwaway. This 

would support the pause, edit, and continue feature. Given 
that an intermediate form of the program is available to 
reconstruct the object code at run time, this intermediate 
code could be designed to contain enough information to 
support the interactive debugging features. Finally, if the 
object code could be constructed one line at a time and 
added to the object code at run time, the code for a single 
line could be constructed and immediately executed as 
well. This would allow asynchronous execution of single 
lines from the keyboard during program execution. 

Enhanced BASIC Language 
The BASIC language that Brown implemented as part of 

his research was a very minimal subset, whereas Model 
520 BASIC is a substantial language with several significant 
features beyond those supported by most other BASIC sys 
tems. Could these more advanced features be implemented 
in a run-time compiling environment? That was the ulti 
mate challenge facing the design team. Some of the lan 
guage features that presented the biggest challenge were: 
â€¢ Subprograms similar to FORTRAN routines, but support 

ing recursion. Both subroutine and function subpro 
grams are supported. 

â€¢ A COMMON statement similar to that used in FORTRAN. 
Both blank and labeled COMMON are supported. EQUIVA 
LENCE is not supported. 

â€¢ ON conditions; a mechanism for handling asynchronous 
interrupts within a BASIC program. The interrupt service 
routines are part of the program, accessible via GOTO, 
GOSUB or CALL statements. Normal program flow can be 
altered at any line boundary in response to one of these 
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in terrupts .  Examples  of  possible  in terrupts  include 
keyboard keystrokes, interrupts from I/O devices, soft 
ware signals, and real-time clock events. 

â€¢ Structured programming constructs such as IFATHEN/ 
ELSE, WHILE and REPEAT loops, and CASE. 

â€¢ A REDIM statement that can dynamically change array 
bounds. 

â€¢ Dynamic variable allocation/deallocation via the ALLO 
CATE and DEALLOCATE statements. 

User Code Structure 
The internal representation and management of the 

user's program in the Model 520 BASIC system provides 
insight into a complex and fascinating software architec 
ture. This representation is called the program chain, which 
is a collection of contexts, each of which represents a 
user-level subprogram. A context can either be compiled, 
or in a form from which the original source code can be 
reconstructed, called intermediate code (icode). Compiled 
contexts are created using the COMPILE command (not to 
be confused with the code compiled by the incremental 
run-time compiler), and are discussed in greater detail 
below. The icode contexts can be listed and modified at 
the source level by the user; the name comes from the fact 
that the source is represented internally in a form that is 
midway between source and object code. The icode con 
texts also contain the incrementally compiled object code 
produced by the run-time compiler as the program runs. 
Intermediate Code Contexts. An intermediate code context 
consists of two machine data segments: the icode segment 
and the symbol table segment (see Fig. 1). 

The context header holds information that describes the 
context and its relationship to the other contexts in the 
program. Also in the context header is a pointer to the 
corresponding symbol table segment and to the next and 
previous contexts in the program chain. The static object 
code contains many small code sequences needed to sup 
port running BASIC programs, including code to handle 
ON conditions, end the program, handle input responses, 
and other tasks. This static object code is always there, and 
the incrementally compiled object code branches to it when 
in need of some help for one of these tasks. 
'The def ine should be aware that  other ar t ic les in th is issue may def ine the term "context"  
differently. 

Icode Segment 

Context  Header 
(Includes static 

object code) 

F o r m a l  S c h e m a  A r e a  

Intermediate Code Area 

Incremental ly Compiled 
Statement Object  Code 

Free Space 

Segment  Transfer  Table 

Symbol  Table  Segment  

Symbol  Table Header  

Symbol  Table Area 

Prerun Object Code 

Free Space 

Segment Transfer  Table 

Fig. 1 . The icode context contains two segments as shown. 

The formal schema area holds a compact description of 
the parameter list for this subprogram. It describes the 
number and types of the parameters and is useful for sup 
porting the call linkages. The icode area holds the represen 
tation of the lines of the user's subprogram. Each line of 
source corresponds to one line of icode. Whenever the user 
modifies the intermediate code, the object code gets thrown 
away. The intermediate code can then grow or shrink with 
out having to move the object code. The incrementally 
compiled statement object code is the object code for the 
statements in the context. As the program runs, the object 
code builds up in this area. The segment is extended if 
necessary to make room for more object code. 

The free space contains all the unused space in each 
segment; all the other areas are directly adjacent. The object 
code for a keyboard command goes into this area. Since a 
command is a one-time event, and not part of the program, 
the object code for that command disappears after the com 
mand is executed. If there is not enough empty space to 
hold the command's object code, the segment is increased 
to make room. 

The segment transfer table holds the pointers to proce 
dures for calls into and out of a segment. During incremen 
tal run-time compilation, this table grows and may cause 
a segment extension. 

The symbol table header contains a pointer to the icode 
segment, the total size of the symbol table segment, and 
lengths of items in the symbol table. The symbol table area 
contains a series of entries, one for each identifier in the 
context. There are fields in the entry for the storage organi 
zation of the identifier (e.g., COMMON and ALLOCATED], the 
identifier representation such as DOUBLE or REAL, the 
number of dimensions (if an array), the type of identifier 
(label, numeric variable, subprogram, etc.), the offset into 
the value area of its definition, and the characters of the 
identifier name. If this area has to grow because the user 
enters new identifiers, it moves the prerun object code 
down, extending the segment if necessary. 

The prerun object code allocates space for the local vari 
ables of the context, and it also initializes any bounds that 
these variables need. This object code does not correspond 
to any program statement; it just sets up the variables that 
the statement object code will use. In BASIC, variables do 
not have to be declared explicitly; new variables can be 
defined by keyboard operations or even by modifying an 
executing program. This run-time implicit variable alloca 
tion can cause the prerun object code to grow so that the 
new variables can be initialized at the next activation of 
this context. 

The double segment approach facilitates the manage 
ment of all the dynamic edges. All areas except for the two 
headers must be able to grow. The icode area and the sym 
bol table area must grow at the same time during parsing. 
The statement object code area and the prerun object code 
area must grow simultaneously during program execution. 
Compiled Code Contexts. The user can compile any context 
currently in memory by using the COMPILE command and 
store the object code in a PROG format file. Two benefits 
accrue from the fact that compiled contexts contain no 
intermediate code. They require less memory when loaded, 
and it becomes possible to release programs without releas- 
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Context Header 
(Includes static 

object code) 

Parameter List 
Descriptor 

Source Text of Original 
Context Header 

Compiled Statement 
Object Code 

Prerun Object  Code 

Free Space 

Segment Transfer  Table 

Fig .  2 .  Mach ine  da ta  segment  fo r  compi led  code contex t .  

ing their source. Compiled and icode contexts can coexist 
in the same program. In this case the icode subprograms 
list normally, while the compiled ones list the source of 
their original context header. These lines begin with 
>Â»Â» to indicate that the subprogram code is compiled. 

Since compiled contexts have fewer dynamic edges than 
their intermediate code counterparts, they require only one 
machine data segment (see Fig. 2). 
Icode Format. Each context contains a block of inter 
mediate code that directly represents the source text of the 
original subprogram. There is one line of icode for each 
line in the source. A line of icode contains a header, fol 
lowed by a series of tokens that represent keywords, 
operators, constants, and symbol table entries. These to 
kens are of varying length and are generally in the same 
order as the elements they represent in the original source, 
except for expressions, which are in reverse Polish notation 
(RPN). The first byte of each icode token describes what 
type of entry it is and how many bytes the entry takes. 

The combination of RPN for expressions and source order 
for everything else in the intermediate code may seem 
strange. Since the Model 520's CPU uses a stack architec 
ture, RPN makes it easy for the compiler to generate optimal 
code for expressions. On the other hand, source order 
simplifies listing and nonexpression code generation, be 
cause the compiler can know what kind of statement it is 
dealing with at the beginning of the icode line. 

A line of icode is simply a series of bytes from 11 to 255 
bytes long. There are length fields in each line to allow the 
system to traverse the lines of icode either forwards or 
backwards. This last capability is useful when scrolling 
backwards in the editor. The system generally refers to a 
line of icode by specifying its offset in the icode area. 

The objective in the design of the intermediate code was 
to minimize the memory space it requires. Most program 
elements need just a single-byte entry to represent them. 
For numeric constants, studies have shown that most con 
stants are small integers. Thus, for integer constants in the 
range 0 to 9, single-byte icode entries are used. For the 
somewhat larger constants (up to 255), two-byte entries are 
used. Constants greater than 255 require five-byte entries. 
Floating-point constants are represented as character 
strings. Most real constants such as 5.3 only have a few 

characters, so storing them as characters takes fewer bytes 
of storage than if they were stored as an eight-byte real 
value. Keywords are arranged so that the most common 
ones have a single-byte icode representation. All other en 
tries take either two or three bytes. 

Symbol table entires have two possible forms. In BASIC 
programs, commonly referenced identifiers tend to have 
single-letter names such as I, J. and N, and represent 
numeric variables. Ten special locations are reserved in 
the symbol table for this type of identifier, and a special 
single-byte icode entry exists to represent them. All other 
identifiers need a two-byte icode entry. If there are more 
than ten single-character numeric variables, the first ten 
will use the single-byte representation, and the rest will 
use the two-byte representation. All nonnumeric iden 
tifiers, such as strings, labels, functions, and subprograms 
always use a two-byte icode representation. 

Two examples of icode program lines for two typical 
BASIC statements are shown in Fig. 3. 

Fundamental  Mechanisms 
The run-time compiler is an incremental compiler. That 

is, the program is compiled one piece at a time. In this case 
the unit of compilation is a BASIC program line and each 
line is compiled the first time it is executed. The simple 
program listed in Fig. 4a illustrates the fundamental 
mechanisms of the run-time compiler. As a programmer 
enters a program, it is translated from the BASIC source 
code to an intermediate code representation as discussed 
earlier. When the programmer presses the RUN key to exe 
cute the program, the system detects that the first line of 
the program is not yet compiled, so a bootstrap code se 
quence is emitted to invoke the compiler to compile the 
first line (Fig. 4b) and control is passed to it. Line 10 is 
then compiled and the compiler checks to see if the next 
line, line 20, has been compiled yet. It has not, so a code 
sequence to invoke the compiler for line 20 is appended 
to the end of the code for line 10. 

This new code overlays the initial bootstrap sequence, 
which is no longer needed (Fig. 4c), and control is trans 
ferred to the code for line 10, which is executed and then 

Original BASIC Line: 

1000 
Icode: 

P R I N T  R E V S ( A S & B S ) , A t P I  

2 3 2  O  2 5  O  2 8  1 6 0  2 4 6  1 6  1 7 0  1 4 0  1 8 0  1 5 1  
W  
B $  

W  I  
R E V S O  ,  PI 

Original BASIC Line: 

1 0 1 0  F i n i s h :  E N D  

I c o d e :  

!  e n d  

 I  /  
1010 Len 

0  1 9  2 4  0  3 1  2 4 6  1 0 5  2 5 4  7  2 2  3 2  1 0 1  1 1 0  1 0 0  
 /  I - *    c o m m e n t -  

0  3  2 4 2  3 2  2 1  2 2  1 5  
I   /  W  

C o l  F i n i s h  
S t a t u s  P o s  < l a b e l >  
( l a b e l  P r i o r  O c o d e  
h e r e )  L e n  O f f s e t  

(compiled) 

F i g .  3 .  T w o  e x a m p l e s  o f  i c o d e  r e p r e s e n t a t i o n s  o f  B A S I C  
program l ines.  

M A R C H  1 9 8 4  H E W L E T T - P A C K A R D  J O U R N A L  1 7  
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(a)  Example BASIC program 

1 0  P R I N T  " T a b l e  o f  S q u a r e s  a n d  S q u a r e  R o o t s "  
2 0  l =  1  
3 0  I F  I  1 0 0  T H E N  D o n e  
4 0  P R I N T  I , | A 2 , S Q R ( I )  
50 I = 1 + 1 
6 0  G O T O  3 0  
7 0  D o n e : E N D  

(b) RUN command bootstraps to begin execution 

call compiler(10) 

(c)  Line 10 compiled 

code for l ine 10 
call  compiler(20) 

(d)  Line 10 executed and l ine 20 compiled 

code for l ine 10 
code for l ine 20 

''call compiler(30) 

(e)  Line 20 executed and l ine 30 compiled 

code for l ine 10 
code for l ine 20 
code for l ine 30 

test  for  I  >  100 
true: call  compiler(70) 
false: call  compiler(40) 

( f )  Line 30 executed (test was false) and l ine 40 compiled 
code for l ine 10 
code for l ine 20 
code for l ine 30 

test  for  I  >  100 
true: call  compiler(70) 
false: code for l ine 40 

call compiler(SO) 

(g)  Line 40 executed and l ine 50 compiled 

code for l ine 10 
code for l ine 20 
code for l ine 30 

test  for  I  >  100 
true: call  compiler(70) 
false: code for l ine 40 

code for l ine 50 
call compiler(60) 

(h)  Line 50 executed and l ine 60 compiled 

code for l ine 10 
code for l ine 20 
code for l ine 30 

test  for  I  >  100 
true: call  compiler(70) 
false: code for l ine 40 

code for l ine 50 
branch to code for l ine 30 

( i )  Line 30 executed (test  was true) and l ine 70 compiled 

code for l ine 10 
code for l ine 20 
code for l ine 30 

test  for I  > 100 
true: branch to code for l ine 70 
false: code for l ine 40 

code for l ine 50 
branch to code for l ine 30 
code for l ine 70 
end program 

Fig. 4. Example of run-time compiling. See text for explanation. 

follows through to invoke the compiler for line 20. Simi 
larly, line 20 is compiled (Fig. 4d) and executed and the 
compiler is called to compile line 30. After line 30 is exe 
cuted, there are two different lines that may be executed 
next, depending on the results of the IF test. Therefore, the 
compiler emits code to invoke itself for both lines 40 and 
70, and the IF test will branch to one piece of code or the 
other (Fig. 4e). Because the initial value of I is 1, the test 
is false the first time line 30 is executed, so the compiler 
is called to compile line 40. Lines 40 and 50 are compiled 
and executed (Figs. 4f and 4g) and the compiler is then 
invoked to compile line 60. 

Line 60 is an unconditional transfer of control to line 
30, which the compiler realizes is already compiled. There 
fore, a branch instruction to the code for line 30 is all that 
is emitted for line 60 (Fig. 4h). The main loop in the program 
is now entirely compiled, so the next 99 times through the 
loop execute only compiled code, allowing the perfor 
mance of the system to be essentially the same as the per 
formance of a traditional compiled system. 

Once the value of I reaches 101, the test in line 30 is 
true, causing the compiler to be invoked to compile line 
70. In this case, the code for line 70 cannot directly overlay 
the call to the compiler, because doing so would overlay 
code for other program lines. Instead, the code of line 70 
is appended to the end of the rest of the compiled code 
and the call to the compiler for line 70 is replaced with a 
branch instruction to the code for line 70 (Fig. 4i). The 
program then terminates, but the compiled code is still 
present. If the user chooses to rerun the program, the RUN 
command now finds that the first line is already compiled 
and transfers control directly to it so that the second execu 
tion of the program executes only compiled code. 

Interactive Features 
In traditional interpretive systems, special checks for 

user interactions or tracing take place at the beginning of 
each line. Checking one or more flags can be done with 
just a few machine instructions, which require a very small 
overhead compared to the overall execution of the interpre 
ter. In a compiled environment even a few instructions can 
consume a large percentage of the total execution time of 
the program. The solution developed in cooperation with 
the CPU microcode team was the start-of-line-check in 
struction SOLC. This instruction is the first instruction of 
every compiled BASIC line. It performs two important 
tasks. One, it checks a word at the base of the stack for 
zero versus nonzero. If one or more bits in the word have 
been set, indicating that something special needs to occur, 
a trap occurs and the system takes the appropriate action. 
If the word is zero, execution proceeds to the next instruc 
tion. Second, the SOLC instruction writes its own address 
at a fixed location in the stack so that the system can always 
find out which line is being executed. 

A traditional interactive feature on HP desktop comput 
ers has been the live keyboard. The user can evaluate ex 
pressions, examine and modify program variables, and exe 
cute BASIC statements from the keyboard while the pro 
gram is running. When a Model 520 user presses the EXE 
CUTE key after typing in a command, one of the bits in the 
SOLC check word is set, causing a trap to occur at the next 
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SOLC instruction. The system then parses, compiles, and 
executes the interactive command before returning control 
to the program line that was interrupted. 

Another traditional HP interactive debugging feature is 
the ability to trace program flow by enabling the TRACE 
mode. This causes a message to be displayed on each nonse 
quential transfer of control, showing the source and desti 
nation line numbers. When a Model 520 programmer ena 
bles tracing, another bit in the SOLC check word is set 
which causes a trap on every SOLC instruction. The system 
can then determine whether or not the BASIC line cur 
rently being executed is immediately after the previously 
executed line, and display an appropriate message if it 
is not. 

Another important debugging capability is the ability to 
trace the assignments to program variables. When the pro 
grammer enables variable tracing, the system enters a mode 
where a trap occurs on every store into a memory location. 
The system can then determine if the location is the loca 
tion of a program variable, and if so, display a message 
with the new value of the variable and the line number of 
the line that changed the variable. 

Although enabling either or both of the tracing modes 
slows down program execution speed significantly, the 
program usually executes faster than the programmer can 
follow it unless the trace messages are slowed down with 
the TRACE WAIT statement, which causes a delay after every 
trace message is displayed. 

The occurrence of an asynchronous ON condition also 
causes a bit to be set in the SOLC check word. When the 
next SOLC instruction executes, a trap occurs and the sys 
tem sets up a branch to the specified service routine if the 
scope and priority conditions are satisfied. The system 
transfers control to a piece of static object code at the begin 
ning of a context, which in turn branches to the service 
routine if it is already compiled, or to a bootstrap sequence 
to invoke the compiler if it is not yet compiled. CALL or 
GOSUB branches invoked by the ON condition return to the 
point of interruption as directed by the static object code 
after handling the ON condition. 

Program Modif icat ion and Continuat ion 
While debugging a program, a programmer often wants 

to be able to make a fix to the program and resume execution 
without having to start the program over. The run-time 
compiler allows the Model 520 Computer to support this 
capability with a compiled system. As an example, suppose 
the author of the program in Fig. 4a decided during the 
execution of the program to calculate the squares and 
square roots for all integers up to 1000 instead of 100 as 
in the original program. Suppose that the program was at 
line 40 when the programmer entered the editor and 
changed line 30 (Fig. 5a). The compiled code for the pro 
gram is no longer valid, so it is thrown away. The system 
remembers that the program is currently at line 40. When 
the programmer continues the program, the system deter 
mines that line 40 is not compiled and sets up a bootstrap 
sequence for line 40 similar to the way in which the pro 
gram first began execution with line 10 (Fig. 5bj. Line 40 
is recompiled and executed, followed by line 50 and so 
forth (Figs. 5c to 5g). The compiled code is rebuilt a line 

at a time, just as it was constructed the first time. 
There are some restrictions on what lines can be changed 

while a program is running. Lines that have only partially 
been executed cannot be modified or deleted. For example, 
a line that invokes a multiline function or a subprogram 
cannot be changed, or the function or subprogram would 
lose the place it should return to. The SUB statement that 
defines an active subprogram cannot be modified or deleted 
until that subprogram returns to its caller. A similar restric 
tion holds for variable allocation statements such as DIM 
and COMMON statements in an active subprogram. These 
lines that cannot be changed are called busy lines. 

Even though a busy line cannot be changed, the compiled 
code for it may still be invalidated by an allowed change 
to the context containing the line. In the case of a line that 
invoked a multiline function, it must be recompiled when 
the function returns. It is clearly undesirable to have to 
check on every return from a function or subprogram to 
see if the return point is still compiled. Instead, when com 
piled code for a busy line is discarded, the return address 
in the execution stack is patched to point at an entry point 

(a)  Example BASIC program 

1 0  P R I N T  " T a b l e  o f  S q u a r e s  a n d  S q u a r e  R o o t s "  
2 0  I  =  1  
3 0  I F  I  1 0 0 0  T H E N  D o n e  
4 0  P R I N T  I . I  '  7 . S Q R I I )  
50 I  =  1  +  1  
60 GOTO 30 
7 0  D o n e i E N D  

(b) CONTINUE command bootstraps to resume execution 

(c)  Line 40 compiled 

code for l ine 40 
call compiler(SO) 

(d)  Line 40 executed and l ine 50 recompiled 

code for l ine 40 
code for l ine 50 
call compiler(60) 

(e)  Line 50 executed and l ine 60 recompiled 

code for l ine 40 
code for l ine 50 
code for line(30) 

(f )  Line 30 recompiled 

code for l ine 50 
code for l ine 30 

test for I  > 1 000 
true: call  compiler(70) 
false: branch to code for l ine 40 

(g)  Line 30 executed (test  was true) and l ine 70 compiled 

code for l ine 50 
code for l ine 30 

test f or I > 1000 
true: branch to code for l ine 70 
false: branch to code for l ine 40 

code for l ine 70 
end program 

Fig.  5.  Effect  of  interact ive program modif icat ion on run-t ime 
compi lat ion process.  See text  for  explanat ion.  
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Preserving Programming Investment 

An impor tan t  cons idera t ion  th roughout  the  des ign  o f  BASIC 
for  the HP 9000 Model  520 Computer  was upward compat ib i l i ty  
with BASIC for the HP 9845 and HP 9000 Series 200 Computers. 
Even though the Ser ies  200 appeared more than a  year  before  
the Model  520, the two BASIC language systems were designed 
concur rent ly .  A  compat ib i l i t y  commi t tee  composed o f  members  
f rom both design teams coordinated the two ef for ts.  As a resul t ,  
Model 520 BASIC is a nearly pure superset of Series 200 BASIC. 
Thus, almost any Series 200 program can run without modification 
on  t he  Mode l  520 .  The  mos t  s i gn i f i can t  change  i s  usua l l y  f o r  
d e v i c e  s e l e c t  c o d e s .  T h e  r e l a t i o n s h i p  b e t w e e n  H P  9 8 4 5  a n d  
Mode l  520  BASIC  i s  more  comp lex .  Some fea tu res  o f  t he  l an  
guage were redefined to improve the consistency of the language 
and to pave the way for future development. The most signif icant 
changes  a re  in  the  I /O  and  g raph ics  sub languages .  S ince  no t  
a l l  HP 9845 programs can run on a Model 520 Computer wi thout 
modi f icat ion,  a t ranslator  program was wr i t ten to assist  users in 
por t ing valuable ex is t ing sof tware to the Model  520.  

Exper ience  to  da te  w i th  t ranspor t ing  HP 9835  and  HP 9845  
programs to the Model 520 has been quite good. Many programs 
execute successful ly without modif icat ion, and most wi l l  execute 
correct ly af ter  manual  modi f icat ion of  a few syntact ical ly  inval id 
l ines .  In  sp i te  o f  the  success  ra te  o f  por t ing  p rograms w i thout  
the t ranslator ,  use of  the t ranslator  program is recommended as 
i nsu rance  aga ins t  some  sub t l e  seman t i c  changes .  The re  i s  a  
smal l  set  of  programs that  do require great  ef for t  to port .  These 
programs conta in a s igni f icant  number of  device-dependent  por  
t ions or  por t ions wr i t ten  in  assembly  language.  Inc luded in  the 
dev ice -dependen t  se t  a re  p rograms tha t  depend  heav i l y  on  d i  
r ec t l y  add ress ing  t he  CRT  d i sp l ay  and  on  ce r t a i n  uses  o f  i t s  
v ideo enhancement  opt ions.  

There are three basic di f ference categor ies that  the t ranslator 
program handles. First is where the Model 520 supports identical 
semantics, but by way of a di f ferent syntax. Second is where the 
M o d e l  5 2 0  s u p p o r t s  t h e  s a m e  s y n t a x ,  b u t  a s s i g n s  d i f f e r e n t  
semant ics  to  i t .  Th i rd  is  ne i ther  o f  the  above.  E lements  o f  th is  
l a s t  se t  r ange  f r om  a  s l i gh t  change  i n  seman t i c s ,  wh i ch  may  
af fect  program behavior  on ly  very  in f requent ly ,  to  features that  
have no equivalent  and require user understanding of  the intent  
o f  the program to make the changes.  The t rans lator  recognizes 
a lmost  a l l  o f  these ,  f lags  them,  and  g ives  sugges t ions  on  how 
to translate manual ly.  

The best example of f irst category is the modulo operator MOD, 
wh ich  has  been  changed  to  MODULO in  the  Mode l  520 .  Some 
others can result  in a single l ine expanding to mult iple l ines (see 
MAT INPUT example below), but the semantics are still preserved. 

The  mos t  pe rvas i ve  examp le  o f  t he  second  ca tego ry  i s  t he  
change from BCD to binary ar i thmetic.  In this case the translator 
i s s u e s  d i a g n o s t i c s  w h e n  i t  s e e s  p o t e n t i a l  p r o b l e m s  s u c h  a s  
noninteger numbers in FOR loop bounds and step s izes,  or  re la 
t ional  equal i ty tests where exact equal i ty was possible with BCD 
va lues,  but  w i l l  not  be wi th  b inary  va lues.  A second example is  
the change in precedence for  some operators.  For  example,  the 
NOT opera tor  has  lower  precedence on the  Model  520 than on 
the  HP 9835 and HP 9845 Computers .  

Translat ion Examples 
In  many cases ,  the  changed precedence does  no t  a f fec t  the  

r e s u l t s  o f  c o m p u t a t i o n s .  F o r  e x a m p l e ,  t h e  e x p r e s s i o n  - A x  B  
means (- A) x B on the HP 9835 and HP 9845, but i t  means -(AxB) 
on  the  Mode l  520 .  E i t he r  i n te rp re ta t i on  o f  t he  exp ress ion  p ro  
duces the same answer  (w i th  the rare  except ion o f  an over f low 
i n  a n  t h e  r e s u l t ) .  T h e r e  a r e  c a s e s ,  t h o u g h ,  w h e r e  t h e  

c h a n g e d  p r e c e d e n c e  d o e s  m a t t e r .  T h e  e x p r e s s i o n  - 3  M O D  2  
y ie lds  a  va lue  o f  one  on  the  HP 9835 and HP 9845 because i t  
is (-3) MOD 2. The expression -3 MODULO 2 yields a value of - 1 
on the Model 520, because it is interpreted - (3 MODULO 2). After 
passing through the translator,  the HP 9835 and HP 9845 expres 
s ions  appear  as  ( -A )x  B  and  ( -3 )  MODULO 2 .  The  -A  i s  pa ren  
thes ized unnecessar i ly ,  because o f  s impl i fy ing  assumpt ions in  
the  express ion  parser .  These s imp l i f y ing  assumpt ions  are  con 
servat ive â€” they may cause unnecessary parenthesizat ion, but 
wi l l  not  omit  any necessary parentheses.  

When the t ranslator  encounters the statement 

2 0  F O R  1  =  1  T O  2  S T E P  . 1  

i t  g ives the warning 

F O R  l o o p  w i t h  n o n - i n t e g e r  b o u n d s  o r  s t e p  s i z e  m a y  b e h a v e  d i f f e r e n t l y  d u e  
to binary ar i thmet ic .  

Mos t  o f  t he  i t ems  hand led  by  t he  t r ans la to r  cou ld  be  done  
manual ly ,  though at  the cost  o f  cons iderab le  ted ium.  For  exam 
p l e ,  i n p u t t i n g  a n  a r r a y  c a n  b e  d o n e  o n  t h e  H P  9 8 4 5  b y  t h e  
statement 

1 0 0  M A T  I N P U T  A  

The identical operation on a the Model 520 is accomplished by 

100 INPUT A(Â«)  

The HP 9845 also al lows the redimensioning of an array by an 
INPUT statement,  but  the Model  520 does not.  The statement 

1 0 0  M A T  I N P U T  A ( 3 , 5 )  

translates to 

1 0 0  R E D I M  A ( 3 , 5 )  
1 0 1  I N P U T  A ( * )  

Finally, consider an extreme case where the HP 9845 statement 
1 0 0  I F  X > 3  T H E N  M A T  I N P U T  A ( - N  D I V  M , - N  M O D  M )  

is  converted automat ical ly  by the t ranslator  to 

1 0 0  I F  X > 3  T H E N  
1 0 1  R E D I M  A ( ( - N )  D I V  M , ( - N )  M O D U L O  M )  
1 02 INPUT A(Â«) 
1 0 3  E N D  I F  

I f  adding new l ines creates dupl icate l ine numbers in  the pro 
gram source,  the t rans lator  issues a d iagnost ic ,  and correct ion 
o f  t h e  t h e  w i l l  r e q u i r e  u s e r  i n t e r v e n t i o n  a f t e r  g e t t i n g  t h e  
t r a n s l a t e d  s o u r c e .  N o  a t t e m p t  i s  m a d e  t o  r e n u m b e r  e x i s t i n g  
source l ines,  s ince that would also require f inding and changing 
any programming re ferences to  the af fected l ine numbers.  

O n e  o f  t h e  m o s t  c o m p l i c a t e d  t r a n s l a t i o n  e x a m p l e s  c a n  b e  
found in the CAT statement.  The HP 9845 statement 

1 0 0  C A T  T O  A $ ( * ) , S k i p , N  

translates to 

100 CAT "rmsus" TO A$(*) ;  SELECT "selector" ,SKIP Skip.COUNT N.NOHEADER 

Note is every parameter after A$(Â«) in the or iginal  statement is 
optional. Furthermore, with the exception of the f inal port ion (,1), 
each parameter is independent of al l  the others, and in the str ing 
selectormsus, either the selector or the :msus portion could appear 
w i thout  the  o ther .  In  a l l  cases the assoc ia ted parameter  in  the  
t rans la t ion  i s  le f t  ou t  o r  inc luded as  necessary .  The f ina l  ,1  i s  
what causes the NOHEADER port ion to appear in the translat ion. 
If this portion is ,o, the NOHEADER portion does not appear. If the 
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f i na l  po r t ion  i s  a  va r iab le ,  a  d iagnos t i c  i s  g iven  to  the  user  to  
check the s ta tement  for  poss ib le  manual  changes.  

Imp lemen ta t i on  
The t ranslator  implementat ion draws much f rom convent ional  

compi ler  technology.  I t  is  dr iven by a recurs ive descent  parser ,  
wh ich  in  tu rn  re l i es  on  a  scanner  to  bu i ld  l anguage  tokens  by  
r e a d i n g  t h e  i n p u t  s t a t e m e n t  o n e  c h a r a c t e r  a t  a  l i m e .  A t  f i r s t  
g lance ,  i t  appears  tha t  t he  t rans la to r  wou ld  requ i re  comp le te  
knowledge o f  the HP 9835 and HP 9845 BASIC language gram 
mar .  A r i t hme t i c  exp ress ions  can  occu r  i n  a l l  so r t s  o f  s t range  
p laces  i n  BASIC  s ta temen ts ,  and  eve ry  one  o f  t hem mus t  be  
inspected for  poss ib le  changes.  

The most s igni f icant  s impl i fy ing assumpt ion is that  each input 
program is  a  syntact ica l ly  va l id  HP 9845 program as SAVEd by 
the HP 9845's  in terpreter .  Thus,  many statements may be t rans 
lated with no knowledge of their grammar. Each BASIC statement 
is  t reated as a sequence of  expressions (usual ly  del imi ted by a 
b lank or  a  comma) which can genera l ly  be inspected and t rans 
l a t e d  p r o  T h i s  m e a n s  t h a t  i s o l a t e d  k e y w o r d s  a r e  p r o  
cessed as  an express ion by  themselves.  Complex express ions 
may cause recursive calls on the expression evaluator to evaluate 
subexpressions such as parenthesized expressions,  funct ion or  
procedure parameters,  e tc .  

Of course,  th ings are not  qui te that  s imple everywhere.  Some 
sta tements  must  be unders tood in  greater  deta i l .  They are han 
dled in typical (nontable-driven) recursive descent fashion. When 
a keyword or expression type is detected at any level that requires 
more  de ta i led  ana lys is ,  a  hand l ing  p rocedure  i s  ca l led ,  wh ich  

may i tse l f  invoke the express ion evaluator  to  handle the subex 
press ions.  To suppor t  th is  detec t ion and subsequent  hand l ing,  
the expression evaluator always returns the type of the expression 
i t  found  and  i t s  s ta r t ing  and  end ing  charac te r  pos i t ions  in  the  
source s tatement .  Th is  in format ion must  be kept  unt i l  the s tate 
ment  i s  comple te ly  p rocessed,  s ince  some s ta tements  requ i re  
the rearrangement of many of their expressions. Which translated 
express ion  goes  where  depends  on  the  type  and /o r  ex is tence  
of  cer ta in other expressions in the or ig inal  s tatement.  This k ind 
of  suppor t  is  requi red for  s ta tements  such as the CAT example 
earlier. 

In  a l l  cases the t ranslator  t r ies to get  by wi th the least  under  
s tanding necessary to t ranslate a g iven statement .  Any pr imary 
keyword  tha t  requ i res  no  spec ia l  hand l ing  i s  p rocessed a t  the  
outermost level  by cal l ing the expression evaluator successively 
unt i l  the end of  the statement is  reached. 

The translator i tsel f  is wri t ten in Model 520 BASIC. I t  contains 
abou t  4500  s ta tements ,  and  was  des igned ,  coded,  and  tes ted  
by one person in  ten weeks.  There were two key factors  in  th is  
s h o r t  a c t i o n s  p e r i o d .  F i r s t ,  a l l  r e q u i r e d  t r a n s l a t o r  a c t i o n s  
were wel l  def ined in advance.  That  is ,  the problem to be solved 
was clearly stated. Second, the Model 520 provided an excel lent 
in teract ive development /debugging envi ronment .  
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in the static object code for the context that will set up the 
compiler to recompile the busy line and resume execution 
at the appropriate place in it. 

Summary  
Model 520 BASIC has the interactive friendliness of pre 

vious interpretive systems with the execution performance 
of a compiler. All of the interactive features of BASIC in 
HP's earlier desktop systems are supported. 

The extra overhead introduced by run-time compiling 
accounts for less than 5% of the execution time of most 
programs and it is less than 1% for many of them. The 
compiling that takes place at run time is very fast since 
syntax is checked as lines are entered and the intermediate 
code produced is optimized for compiling. 

For large programs, the intermediate code and object 
code are each about the same size as the source. (This does 
not include run-time support routines which are consid 
ered part of the system.) Because of the ability to throw 
away code when no more memory is available, a program 
can run (slowly) in just slightly more memory than is re 
quired for the intermediate code and variables. Further 
more, the system provides the ability to produce and exe 
cute compiled code without any associated intermediate 
code by using the COMPILE command. 
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A Local Area Network for the HP 9000 
Series 500 Computers 
by John J.  Balza,  H.  Michael  Wenzel ,  and James L.  Wi l l i ts  

HEWLETT-PACKARD'S Manufacturer's Productivity 
Network (MPN) divides the computing applications 
for a typical manufacturing company into four areas: 

accounting, manufacturing, factory control, and computer- 
aided design. Data is collected and stored in each area and 
access is provided to users via combinations of computing 
and networking. Data access by users in the same area is 
required frequently and to other areas more intermittently. 

In the computer-aided design area, scientific and en 
gineering workstations are connected into clusters for re 
source and information sharing. LAN 9000 provides the 
capability to cluster HP 9000 Series 500 Computers on a 
local area network. In the future, additional HP-UX work 
stations such as the HP 9000 Series 200 Computers will 
also be connected to this local area network. 

Communication between the four MPN areas occurs over 
a backbone network. The backbone may consist of various 
forms of communication technology such as a local area 
network, packet switching, and private branch exchange. 
LAN 9000 can also serve as a backbone network connecting 
HP computers from the other three MPN areas. 

Defini t ion of  LAN 9000 
LAN 9000 is a product composed of both hardware and 

software. Its structure follows the ISO (International Stan 
dards Organization) OSI (open system interconnect) model,1 
which divides network functionality into seven layers (see 
Fig. 1). In the LAN 9000 implementation, the physical and 
link layers are accomplished in hardware, and the remain 
ing upper layers are implemented in HP 9000 software. 
The physical layer provides access to the physical com 
munications media. The link layer defines the frame format 
â€¢HP-UX is HP's implementation of the UNIX" operating system. 
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R e m o t e  N e t w o r k  
F i l e  A c c e s s  I  F i l e  T r a n s f e r  

Transmission 
Control Protocol 

Internet 
Protocol 
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and the protocol for error detection. The internet layer 
provides the protocol for connecting multiple networks, 
multiplexing, and data segmentation and reassembly. The 
transport layer provides end-to-end reliability, multiplex 
ing and flow control. The session layer provides a common 
interface to the transport for the applications. The presen 
tation and application layers provide data translation and 
the actual network services visible to the user. 
Hardware. The LAN 9000 hardware implements the phys 
ical and link layers for the Ethernet local area network 
specification.2'3 The hardware consists of an HP-IB (IEEE 
488) interface card connected to an Ethernet interface unit, 
which in turn is connected by twisted-pair branch cable 
to the transceiver that taps the 50-ohm Ethernet coax cable 
(see Fig. 2). Ethernet is a bus configuration where conten 
tion between multiple stations is resolved by a technique 
called carrier-sense multiple-access and collision detect 
(CSMA/CD). The transceiver provides the driver electronics 
for the cable, and the Ethernet interface unit provides ad 
dress recognition, arbitration, and error detection. The 
Ethernet specification supports 10M-bit/s performance for 
up to 100 nodes on a 500-meter segment of Ethernet coax. 
Each branch cable can be up to 50 meters long. 
Software. The LAN 9000 software consists of the upper 
layers of protocol and a supporting network architecture 
(see Fig. 1), which will be discussed later. The transport 
and internet levels were originally defined by the U.S. Defense 
Advanced Research Projects Administration (DARPA)4'5 
and are currently used in a large functional network called 
ARPANET. The transport layer is called the transmission 
control protocol (TCP) and the internet layer is called the 
internet protocol (IP). The applications consist primarily 
of three functions: the ability to access remote files, the 
â€¢The and 9000 imp lementa t ion  is  a  subset  o f  the  DARPA pro toco ls  and has  no t  been 
tested for  use on ARPANET.  
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F ig .  1 .  LAN 9000  so f twa re  s t ruc  
ture and i ts  re la t ionship  to  the In  
t e r n a t i o n a l  S t a n d a r d s  O r g a n i z a  
t i o n  o p e n  s y s t e m  i n t e r c o n n e c t  
(OSI) model for computer network 
functions. 
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ability to achieve high-speed transfer of files, and a lower- 
level tool that enables users to initiate and communicate 
with remote processes programmatically. 

Accessing remote data is accomplished both by remote 
file access (RFA) and network file transfer (NFT). RFA is 
advantageous when accessing individual remote records 
and when using existing programs that access files. The 
method of access for RFA is a simple extension of the file 
path name with a remote specifier. For example, the differ 
ence in HP-UX commands between editing a local file and 
a remote file on node george is: 

Local :  v i  text f i le  

Remote: vi  /net/george/textf i le 

NFT is advantageous when the high-speed movement of 
a file from one system to another is desired. After transfer, 
the new file can be accessed for processing. NFT achieves 
about four times the throughput of RFA by using large 
blocks and a pipelined transfer technique. The topology 
for NFT is the three-node model, where the initiator, pro 
ducer, and consumer can all be on different nodes. NFT is 
accomplished with the dscopy command, which includes 
the source and destination file path names as parameters. 
File security is invoked for both RFA and NFT by the system 
containing the file. Security is applied to remote access 
consistent with the mechanisms used for local access. 

Interprocess communication (IPC) and remote process 
management (RPM) are lower-level tools that enable a user 
to write custom distributed applications. They consist of 
a number of procedures that can be called from the user 
program. RPM gives the program the ability to create and 
execute another program on a remote system and to termi 
nate it. IPC consists of procedures to establish a communi 
cation path, read and write data, and terminate the path. 
The communication path is called a virtual circuit and 
enables full-duplex communication between both process 
es. The rendezvous between the two processes is achieved 
through a name assignment by one process, a name lookup 
by the other process, and then a handshake to establish 
the virtual circuit. The IPC functionality was modeled after 
the IPC specified in the 4.2BSD version of UNIXâ„¢ de 
veloped by the University of California at Berkeley (UCB) . 

Design of  LAN 9000 
Early in the project we knew that there would be several 

major problems to be solved. It was our intention to select 
an architecture so that as our networking needs changed, 
the architecture would still support them. Several key prob 
lems were recognized. First, we knew that we would be 
UNIX is a U.S. t rademark of  Bel l  Laborator ies.  

â€¢Network Code 

Fig.  3 .  Layered iso la t ion of  por tab le  network code.  

dealing with several operating systems as well as several 
processor families. At the time we were considering at least 
two different operating systems and processors, one of 
which was the NMOS-III VLSI 32-bit system used in the 
HP 9000 Series 500 Computers. We wanted to build soft 
ware that could be used in any multitasking operating sys 
tem with any processor family. 

Second, we knew from experience that many protocols 
would need to be implemented within this architecture. 
While there are some industry standard protocols today, 
work in this area is just beginning. To meet HP customer 
needs in the future, we would have to support a variety 
of protocols at each of the seven levels of the OSI model. 
Even if we only implemented industry or international 
standards, there would still be a multitude of protocols, 
because many different physical configurations could be 
used to construct a network. While our initial product was 
only for local area networks, eventually we would need 
remote connections and connections over public data 
networks. 

Third, the system had to be robust and integrated. There 
were several computer scientists working on the original 
product and over time many more would contribute to the 
networking functionality. We needed to define an environ 
ment where these designers could work independently and 
still have the result appear to be one integrated product 
that would be free of errors. 

Because of these challenges, our first task was to define 
what we eventually called our data communications im 
plementation architecture. This architecture is a com 
prehensive specification of module interfaces. As shown 
in Fig. 3, these modules are successively layered in their 
isolation from the host operating system. For efficiency 
and portability, the network protocol modules assume a 
very high-level execution environment that is tuned for 
networking code. Similarly, the execution environment 

(cont inued on page 25}  
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F i g .  2 .  T h e  h a r d w a r e  d e s i g n  o f  
the LAN 9000 product implements 
t h e  E t h e r n e t  l o c a l  a r e a  n e t w o r k  
speci f icat ion as shown. 
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Data Communications for a 32-Bit Computer Workstation 

by Vincent  C.  Jones 

The HP 9000 Ser ies 500 Computers p lace heavy demands on 
data communicat ions. Aside from the local  networking capabi l i ty  
provided by LAN 9000, there are numerous other needs, because 
t h e  r e a l  w o r l d  d o e s  n o t  c o n s i s t  e x c l u s i v e l y  o f  H P  c o m p u t e r s  
runn ing  HP ne twork ing  so f tware .  The  range  o f  these  needs  i s  
even  w ide r  t han  no rma l ,  because  o f  t he  p i vo ta l  na tu re  o f  t he  
Series 500 i tself .  I t  needs not only the communications capabil i ty 
of a single-user workstation, but also those of a powerful multiuser 
machine. 

Single-user workstat ions,  even those as powerfu l  as the desk 
top vers ion of  the Ser ies 500,  the Model  520,  do not  funct ion in  
i so la t ion .  E f fec t i ve  p rob lem so lv ing  o f ten  requ i res  synergy  be  
t w e e n  T h i s  r e s o u r c e s  a n d  t h e  i n d i v i d u a l  w o r k s t a t i o n s .  T h i s  
r e q u i r e s  e a s y  c o m m u n i c a t i o n  b e t w e e n  w o r k s t a t i o n  a n d  m a i n  
f r a m e ,  r e l i  i n t e r a c t i v e  t e r m i n a l - o r i e n t e d  a c c e s s  a n d  r e l i  
ab le  f i le  t ransfer .  A typ ica l  app l ica t ion might  requ i re  the Model  
520  to  o f f l oad  some compu ta t i on - in tens i ve  tasks  f rom a  ma in  
f rame,  a l low ing  the  ma in f rame to  p rov ide  be t te r  response to  a  
larger number of  users.  

In  mul t iuser  mode,  the emphas is  tends to  be more a long the 
l ine of resource sharing among the di f ferent users. The communi 
cat ion l ink wi th other mainframes is a resource to be shared the 
same as a l ine pr in ter  or  data base.  The in teract ive l inkup f rom 
the user 's  terminal  to  mul t ip le  mainf rames is  not  as important  a 
need as the abi l i ty  to  get  requi red data to  the user 's  local  main 
f rame for  process ing,  to  communicate wi th  users on other  main 
frames, or to move programs and data to larger, more special ized 
mainf rames for  processing.  

A  s e c o n d  d i m e n s i o n  t o  t h e  m a t r i x  o f  d a t a  c o m m u n i c a t i o n s  
needs is  the network environment in which the mainframes oper 
ate. SNA (systems network architecture) and bisync are common 
wi th IBM host  computers whi le DecNetâ„¢ and UNIXâ„¢ predomi 
nate on host  computers made by Dig i ta l  Equipment  Corporat ion 
(DEC).  HP's DSN services are s imi lar ly tuned to take advantage 
o f  t h e  a n d  o f  H P  c o m p u t e r s ,  w h i l e  B u r r o u g h s ,  U n i v a c ,  a n d  
just about every other computer vendor offer their own networking 
so lu t i ons .  Un fo r t una te l y ,  t hey  a re  a l l  i ncompa t i b l e ,  mak ing  i t  
necessary  to  implement  a  number  o f  so lu t ions whi le  remain ing 
hopeless ly  incomplete .  However ,  IBM is  such a  dominant  force 
in the mainframe market that virtually al l  vendors offer connection 
to IBM using emulat ion techniques.  Indeed,  IBM 2780/3780 RJE 
(remote job entry) has become so prevalent among minicomputer 
vendors that i t  is considered a de facto communications standard 
for rel iable f i le transfer even in non-IBM environments. Simi lar ly,  
a lmos t  eve ryone  a l l ows  e f fec t i ve  on - l i ne  access  f rom "dumb"  
asynchronous ASCII  terminals.  

Th is  le ts  us  def ine a  min imal  set  o f  communicat ions ab i l i t ies  
to al low eff icient use of the Series 500 in most computing environ 
ments .  Retu rn ing  to  the  fundamenta l  needs  o f  users ,  we need 
in teract ive mainf rame access and re l iab le f i le  t ransfer .  An asyn 
chronous ASCII terminal emulat ion with programmable data rate, 
character size, pari ty, stop bits, end-of- l ine, start-of- l ine, prompt, 
and other  parameters can be conf igured to  access v i r tua l ly  any 
compu te r  t ha t  can  connec t  t o  ASCI I  t e rm ina ls .  By  mak ing  the  
e m u l a t o r  u s e r - m o d i f i a b l e  ( b y  p r o v i d i n g  s o u r c e  c o d e  o r  o t h e r  
t echn iques ) ,  access  can  be  ga ined  t o  any  hos t  t ha t  suppo r t s  
a s y n c h r o n o u s  t e r m i n a l s .  A d d i n g  t h e  c a p a b i l i t y  t o  d i v e r t  h o s t  
t ransmiss ion  to  a  f i l e  and  use  f i l e  inpu t  in  p lace  o f  keys t rokes  
UNIX is  a  U.S t rademark o f  Be l l  Laborator ies  
DecNet  is  a  U.S.  t rademark of  Dig i ta l  Equipment  Corporat ion 

provides a simple, low-cost f i le t ransfer capabi l i ty.  Where higher 
data integrity is required, IBM 2780 RJE provides a synchronous, 
error-control led l inking. 

This leaves only interact ive IBM access to provide,  more com 
monly  known as 3270 capabi l i ty .  Asynchronous termina l  emula  
t ion can be used with black boxes known as protocol converters, 
but typical ly these are useful  only under l imited condit ions. Most 
impor tan t ,  they  a re  no t  a  one- fo r -one  rep lacement  fo r  an  IBM 
3270 d isp lay  s ta t ion ,  wh ich  requ i res  users  to  memor ize  mu l t i -  
s t roke key sequences to  access the myr iad key funct ions ava i l  
ab le  on  ac tua l  3270  sys tems.  However ,  where  l im i ted  o r  occa  
sional access is required, especial ly i f  the user is also no longer 
us ing " the real  th ing,"  they can funct ion qui te wel l .  

Un fo r tuna te l y ,  IBM 3270  does  no t  spec i f y  a  un ique  access  
means. Instead, i t  is an entire family of products including cluster 
cont ro l lers ,  d isp lay s ta t ions,  pr in ters  and in tegrated cont ro l ler /  
d isp lay  s ta t ions .  For  example ,  to  meet  var ied  cus tomer  needs  
and  keep  up  w i th  techno logy  advances ,  the re  a re  over  twen ty  
d i f ferent  models of  3274 contro l lers (some are obsolete) .  There 
a re  more  than  ten  d i f f e ren t  mode ls  o f  3278  and  3279  d i sp lay  
stat ions, any of which can be used with current 3274 control lers. 
Desp i te  the p le thora  o f  opt ions,  however ,  there  are  rea l ly  on ly  
two approaches to 3270 emulat ion. The f irst (and unti l  late 1982, 
the only approach) is to emulate the ent ire cluster control ler and 
at tached d isp lay s ta t ions us ing b isync or  SNA protoco ls  to  con 
nec t  to  the  ma in f rame v ia  a  370x  f ron t  end .  Common ly  ca l led  
3 2 7 4  f o r  t h i s  a p p r o a c h  i s  p a r t i c u l a r l y  a t t r a c t i v e  f o r  m u l  
t iuser situations, where up to 32 users can simultaneously access 
the mainframe through the emulator whi le requir ing only a single 
l ink f rom the local  computer  to the IBM mainframe. 

The  second  approach ,  p ioneered  on  the  IBM Persona l  Com 
puter  by  Techn ica l  Ana lys is  Corporat ion (now Dig i ta l  Communi  
cat ions Associates,  Inc.) ,  is  to emulate only the display stat ion,  
leaving the ex is t ing IBM c luster  contro l ler  in  p lace and hooking 
in to  s ta  coax pro toco l  used between cont ro l le r  and d isp lay  s ta  
t ions .  Commonly  ca l led  3278 emula t ion ,  th is  approach is  most  
a t t rac t i ve  when rep lac ing  ind iv idua l  d isp lay  s ta t ions  w i th  com 
p u t e r  b e  E i t h e r  a p p r o a c h ,  h o w e v e r ,  c a n  t y p i c a l l y  b e  
used in the major i ty  of  appl icat ions,  a lbei t  not  a lways opt imal ly.  
Th is  work  tha t  the  c r i t i ca l  in te rconnec t ion  needs  o f  most  work  
s ta t ion  users  can  be  met  w i th  jus t  th ree  ne twork ing  p roduc ts :  
f lexible asynchronous terminal emulat ion, s imple IBM 2780/3780 
remote job entry emulation, and some form of IBM 3270 capability. 

In  add i t ion  to  these min imal  requ i rements ,  o ther  communica 
t ion  needs are  common enough to  demand spec i f i c  reso lu t ion ,  
part icular ly for ef f ic ient integrat ion into HP, DEC, and UNIX envi  
ronments as wel l  as IBM. 

Implementat ions 
T h e r e  a r e  p r o b a b l y  a s  m a n y  w a y s  t o  d e v e l o p  t h e  r e q u i r e d  

capabi l i t ies as there are opinions in what makes up an adequate 
se t  o f  capab i l i t i es .  We had  cho ices  rang ing  f rom "o f fe r  what ' s  
a l ready  ava i l ab le  o f f  t he  she l f "  t o  "des ign ,  deve lop  and  bu i l d  
from scratch." As wi l l  be seen, we tr ied to select whatever would 
provide a qual i ty product in the shortest t ime â€” typical ly taking 
an ex is t ing product  and modi fy ing i t  as  requi red.  

The f i r s t  communica t ions  p roduc ts  deve loped fo r  the  Ser ies  
500 were two general-purpose asynchronous terminal  emulators 
with file transfer capabilities â€” one for BASIC and one for HP-UX. 
Crucia l  to  both was provid ing enough f lex ib i l i ty  to  communicate 
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wi th  v i r t ua l l y  any  compu te r  t ha t  uses  ASCI I  cha rac te rs  on  an  
asynchronous l ine.  This means not  only support ing standard op 
t i ons  o r  l i ne  ra tes  f rom 50  to  19 ,200  b i t s  pe r  second ,  7 -b i t  o r  
8 - b i t  o p t i o n s  a n d  v a r i o u s  p a r i t i e s ,  b u t  a l s o  a l l o w i n g  o p t i o n s  
l ike def in ing what  characters to use for  new l ine and XONXOFF 
host prompts before transmit t ing the next l ine,  and l ine-or iented 
modes  comple te  w i th  s ta r t -o f - l i ne  and  end-o f - l i ne  sequences .  
A lso  requ i red  was the  ab i l i t y  to  func t ion  w i th  ex is t ing  pro toco l  
converters for  IBM 3270 and RJE. 

The BASIC asynchronous  te rmina l  emula to r  i s  based on  the  
HP 9845 Computer 's  h igh-speed terminal  emulator ,  mainta in ing 
the same human inter face so that  users moving up f rom the HP 
9845 would not  have to  learn a new emulator .  The HP-UX asyn 
chronous termina l  emula tor  (a term)  is  jus t  the oppos i te ,  a  new 
des ign f rom the bot tom up.  At  the moment ,  the implementat ion 
is only part  of  the total  design. Several  cr i t ical  features al lowing 
m o d u l a r  e x t e n s i o n s  a n d  u s e r  c u s t o m i z a t i o n  c a n n o t  b e  i m  
p lemen ted  un t i l  enhancemen ts  t o  HP-UX tha t  w i l l  pe rm i t  one  
process to re l iably react  to two concurrent  asynchronous inputs 
are in  p lace 

Once we were conf ident  our  minimal  needs were covered,  we 
could start  looking at  how to provide more speci f ic  connect ions.  
Primary cr i ter ia were t imel iness of the implementat ion and ut i l i ty 
t o  t he  HP Th is  l ed  to  t h ree  ma in  commun ica t i ons  th rus ts :  HP  
connect ion v ia Ethernet,  IBM connect ion v ia RJE, and UNIX con 
nect ion via cu (cal l  UNIX) and uucp (UNIX-to-UNIX copy). 

As mentioned earl ier, IBM communications consist of two major 
capabi l i t ies: 3270 interact ive access and remote job entry. While 
efforts are underway to provide buil t- in 3270 capabil i ty, our init ial 
e f f o r t  wen t  i n to  f i l e  t r ans fe r  v i a  RJE .  A t  t he  beg inn ing  o f  t he  
project,  we had to select from a number of potent ial  opt ions. For 
example,  d id  we want  to  do just  2780/3780 RJE or  d id  we want  
to  take advantage o f  the  mul t iuser  capab i l i t ies  o f  the  HP 9000 
Series 500 Computers and provide multi leaving RJE (MRJE)? Bell 
Laborator ies '  System I I I  UNIX,  which we were bu i ld ing on,  had 
an MRJE capabil i ty (the send command). However, that capabil i ty 
was bu i l t  us ing  a  v i r tua l  p ro toco l  mach ine runn ing on the  DEC 
KMC-11 communicat ions card .  In  add i t ion ,  the System I I I  pack 
a g e  w a s  b a s e d  o n  t h e  a s s u m p t i o n  t h a t  t h e  o n l y  u s e  f o r  R J E  
wou ld  be  t o  subm i t  j ob  s t r eams  t o  IBM and  Un i vac  hos t s ,  an  
unacceptable restr ict ion in v iew of our desire to use RJE also to 
exchange f i les wi th minicomputers.  

Our  so lu t ion  was to  t ry  to  take the  best  o f  bo th  approaches;  
keep ing  the  conven ien t  job  submi t ta l  fac i l i t y  o f  the  Sys tem I I I  
MRJE user  in ter face ( the send command) ,  but  put t ing i t  a top a  
2780 /3780  RJE  p rog ram ( r2780 )  wh i ch  cou ld  a l so  be  used  d i  
rectly by the user i f  only f i le transfer were required. Also required 
were two uti l i ty programs: a trace f i l ter to convert card trace data 
from the compressed binary form generated on-l ine to a readable 
l is t ing,  and a pr int  output  f i l ter  to expand IBM carr iage contro ls  
to HP-UX compat ible sequences. The HP-UX standard def in i t ion 
for  send is  l ink- independent  so that  a l though the current  Ser ies 
500  imp lemen ta t i on  i s  2780 /3780- l i nk -based ,  f u tu re  enhance  
ments such as MRJE or SNA l inks to IBM could be added without 
affect ing the user interface. 

Third on our l is t  of  required connect ions, af ter  HP and IBM, is 

DEC Interactive access is fairly easy on multiuser systems â€” the 
aterm asychronous terminal  emulator  can be made tota l ly  t rans 
parent,  a l lowing the user to take advantage of  the ANSI compat i  
bi l i ty mode offered on several HP terminals. The Model 520 work 
station user is restr icted, however, to "dumb terminal" only. While 
we consider the restr ict ion undesirable, we do not envision many 
users  in te res ted  in  ded ica t ing  a  32-b i t  works ta t ion  to  te rmina l  
emulat ion for  data ent ry  and edi t ing.  S imi lar ly ,  i t  would be n ice 
to hook in to DecNet  for  f i le  access and data t ransfer ,  but  again 
pr ior i t ies  have prevented immediate sat is fact ion.  For  now,  RJE 
suff ices for rel iable f i le transfer, even though it requires a second 
te rmina l  connect ion  to  the  DEC mach ine  to  cont ro l  tha t  end o f  
the connect ion.  

Last on our l is t  of  required connect ions is UNIX. Since HP-UX 
is  based on UNIX,  we fe l t  i t  v i ta l  that  we f i t  in to  the UNIX data  
communicat ions environment.  To s impl i fy  reta in ing compat ib i l i ty  
with evolving releases from both Bell  Laboratories and the Univer 
s i ty of  Cal i fornia at  Berkeley,  we at tempted to take the standard 
Sys tem I I I  UNIX- to -UNIX u t i l i t i es  and change them as  l i t t le  as  
poss ib le .  We star ted out  wi th  cu,  uucp,  and uux (UNIX- to-UNIX 
execu te ) .  A l t hough  ou r  goa l  was  to  l eave  them in tac t ,  we  d i s  
covered signi f icant design changes were required. Most cr i t ical ,  
o t h e r  t h a n  f i x i n g  n u m e r o u s  b u g s ,  w a s  r e m o v i n g  r e s t r i c t i o n s  
based on the Bel l  assumpt ion that  a l l  users  would have source 
code to modify. Because HP-UX does not include an AT&T source 
l icense,  features requ i r ing modi f ica t ion o f  the source code are  
not  acceptab le  un less that  source code can be prov ided to  the 
user by HP (i .e.,  was designed and writ ten by HP, not Bel l  Labs). 
Since links, these utilities are based on asynchronous dial-up links, 
smar t  modems are  normal ly  used.  Unfor tunate ly ,  each  modem 
manufacturer seems to use a di f ferent protocol  to tel l  i ts modem 
how to  d ia l  a  spec i f ic  phone number .  Our  so lu t ion was to  move 
dialing out of the main program and put it into a separate program 
modu le ,  wh ich  i s  ca l led  f rom the  ma in  p rogram and wr i t ten  by  
the user (no source l icense required).  Sample programs showing 
h o w  t o  d i a l  V e n  T e l  a n d  R a c a l  V a d i c  m o d e m s  a r e  s u p p l i e d .  
Similarly, in uux the l ist of programs that can be run from a remote 
machine was moved f rom a data array ins ide the program to an 
ex terna l  f i le .  V is ib le  changes f rom the System I I I  vers ion were 
min imized.  By reta in ing the or ig ina l  funct ional i ty  and in ter face,  
standard UNIX uti l i t ies that use uucp sti l l  work as expected, includ 
ing remote mai l  and the notes network.  
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modules build on other environment modules and rely on 
the services of the host system interface, which provides a 
machine-independent operating system interface. The host 
system interface code consists of small and partially port 
able modules that perform whatever actions are necessary 
to adapt the host machine's operating system for network 
use. For the Series 500 operating system, called SUN (see 

articles on pages 28, 34, and 38), many of the host system 
interface functions are null, that is, straight passthroughs 
to system intrinsics. Ultimately, the host system interface 
modules could grow to constitute a small operating system 
in themselves when less functionality is provided by the 
host machine. Notice that only these modules call the host 
operating system directly and, therefore, they contain the 
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only nonportable network code. 
Together, the execution environment and host system 

interface modules provide multitasking with process syn 
chronization, memory management and accounting, inter 
task message and queue management, nodal management 
(which controls and coordinates all the other modules in 
the network subsystem), utilities for manipulating the 
shared-memory protocol interface data structures, and a 
library of miscellaneous utilities (like hashing routines*) 
which are of general use for protocol modules. 

Fig. 4 shows the logical organization of a protocol build 
ing block. This block encapsulates the code for a given 
protocol. The main function of the network implementa 
tion architecture is to define the interfaces between a pro 
tocol building block and the blocks above it (which use its 
services), the blocks below it (on which it depends), and 
the execution environment. The upper and lower interfaces 
are represented by shared-memory data structures. The ac 
tions that take place at each interface are represented by 
specific message types. 

The lower interface for a protocol building block consists 
of one or more functional ports â€” usually one. A functional 
port can be visualized as a terminal strip of female electrical 
sockets. (The related OSI concept is called a service access 
point.) 

The upper interface to the protocol building block con 
sists of an endpoint for each of the protocol's instances of 
communication with a remote machine. An endpoint can 
be visualized as a male plug that attaches to a specific 
functional port of a higher (the using) protocol. (The OSI 
endpoint term refers to the following concept: Each pro 
tocol building block regards an endpoint just below it a 
the end of a data path "wire" that will carry its data tr 
peer protocol module in a specific remote machine.) 

The protocol building blocks are "plugged" together by 
nodal management for each instance of communication 
with a remote machine as shown in Fig. 5. This chain of 
protocol building blocks is referred to as a data path and 
is represented as a linked list of endpoint data structures. 
Data paths can join or branch to represent multiplexing or 
alternate routing. Fig. 5 shows the data path that supports 
an instance of network file transfer (NFT). All data and 
control information related to moving a file between the 
local and remote machines is carried by internal messages 
flowing along this data path. 

Note that in the current version of LAN 9000 there are 

'Rout ines used to  organize tab les for  rap id  search ing or  look-up.  

several alternative building blocks at the services level. In 
the future, there will also be alternative modules at all the 
other levels as well. The protocol building block structure 
will allow nodal management to plug together any combi 
nation of alternative modules that is appropriate for reach 
ing a particular remote machine. For example, the endpoint 
underneath the internet protocol could just as easily belong 
to the X.25 protocol block, which would then be served 
by an endpoint belonging to the LAPB (link access protocol, 
balanced mode) I/O card. Also, the NFT protocol could be 
supported by an entirely different set of transport protocols. 
We have already used the nodal management capability to 
replace protocol building blocks by arranging data paths 
through alternative modules. During development, we used 
alternate data paths to inject special test modules at various 
points above or below the code being developed. 

The architecture described above solved three primary 
problems. It isolated us from the operating system and 
processor set by providing a series of common function 
calls which we could create in any operating system. It 
defined a series of interfaces between protocol modules so 
that we could mix and match many protocols. These inter 
faces were based on proposals in the ANSI and ISO commit 
tees. de these interfaces allowed various protocol de 
signers to design with some degree of independence and 
still be sure that the system would be an integrated package. 

We were concerned at first that creating all these module 
interfaces would cause performance problems, but that was 
a price we were willing to pay for the flexibility the ar 
chitecture would give us. In the end, we were pleasantly 
surprised to find that with just a minimum of tuning, our 
performance was as good as or better than many other 
similar systems on the market. The code modularity and 
the architecture increased the productivity of our design 
group with no loss of performance. 

Qual i ty  Assurance 
It has long been a policy at our facility that the engineer 

who designed and implemented a module is responsible 
for the quality of that module. Following this policy, the 
designers wrote the test plans for their individual modules. 
This included both black-box and white-box testing. Here, 
black-box testing is based on the user manual or external 
specification of the module. White-box testing is based on 
knowing how the module was designed and stressing it at 
its weak points. Designers were responsible for doing their 
own white-box testing, and many also did their own black- 
box testing. The exception was when the module was de 
signed to be used by HP customers directly. At this point, 
an independent tester was assigned to do the black-box 
testing to give us an independent opinion on the usefulness 
of the module. 

The test plans formed the basis for determining when 
we were finished testing. They were also used for schedul 
ing this phase of the project. One of the best indicators of 
when the quality of the product is high enough to ship to 
customers has been "Did we complete the test plan?" This 
is one reason the test plan is reviewed by the quality assur 
ance department to ensure that it is rigorous and complete. 
'The networks. standard interface protocol for packet switching networks. This standard con 
s ists of  three protocol  layers that  conform to the lower three levels of  the OSI model  
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The other major indicator of quality is a measure of the 
mean time to failure. This time is the machine time spent 
stressing the code in new ways, plus a derated amount of 
machine time spent running old test programs, divided by 
the number of failures detected. 

Since completing the test plan usually takes some time, 
we used a completion estimate for scheduling this phase. 
Each designer estimated the hours necessary to design each 
of the tests in the test plan. We then calculated the amount 
of time necessary to find and fix code and design errors 
from our historical data. Finally, we allotted time for over 
head and unanticipated activities. After completing these 
estimates for each designer, we estimated that the test phase 
would take about 15 weeks. Since the test plan was actually 
completed in 16 weeks, we felt our estimate was quite 
good. But at this point we still had not met our goal for 
mean time to failure. 

In the course of doing testing, we came upon a new test 
method that we called triggers. Triggers is a method of 
triggering asynchronous events to occur at particular times. 
For example, if a routine asks for blocks of memory three 
times in its execution, we can trigger the system to reject 
the memory request at any of those three times. The trigger 
mechanism allowed us to test most of the paths in our 
code. It was this trigger mechanism that kept our measured 
failure rate so high in the beginning. Even though most of 
the events detected by the triggers were very improbable 
in real life, we continued to test for them until the triggers 
could not produce any more errors. Then we felt that we 
had a very solid system and we finally met our mean time 

to failure goal. This additional test time took another four 
weeks, but we felt the added code quality was worth the 
effort. Most of the problems we solved with this technique 
would have been very difficult to find and correct once 
the product was in a customer's hands. 

Future Directions 
The current version of LAN 9000 establishes the base to 

grow into additional topologies. The evolution will be in 
the directions of connectivity to more kinds of workstations 
and systems, additional links and gateways, and inclusion 
of more industry standard protocols. The architecture pro 
vides the flexibility to add protocols, and it facilitates the 
porting of the network software to other systems. 
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A General-Purpose Operating System 
Kernel for a 32-Bit Computer System 
by Dennis  D.  Georg,  Benjamin D.  Osecky,  and Stephan D.  Scheid 

THE OPERATING SYSTEM KERNEL for the HP 9000 
Series 500 Computers efficiently supports the real 
time requirements of the extended BASIC language 

environment as well as the multiuser requirements of 
HP-UX. The kernel provides efficient support for multiple 
processors, a process model that supports a large user pro 
cess virtual address space, a virtual memory system that 
supports both paged and segmented virtual memory, mem 
ory and buffer management, and a device-independent file 
system which has the capability of supporting multiple 
directory formats. The main objective of this operating sys 
tem kernel, called SUN, is to provide a clean interface 
between the underlying hardware and the application-level 
systems such as BASIC or HP-UX. 

The SUN operating system can be separated into two 
sets of major components, as follows: 

I/O 
Input/Output Switch 
Device Driver Modules 
Input/Output Primitives 

Non-l/O 
Process Manager 
Memory Manager 
Buffer Manager 
Message Manager 
Timer Manager 
Trap Manager 
Dispatcher 
Nonvolatile Memory Manager 
System Startup Manager 

The I/O components of SUN are described on page 38. 
The SUN operating system manages the allocation and 

deallocation of hardware resources. Memory and proces 
sors are the primary system resources. Other resources in 
clude buffers, message queues, file directories, input/out 
put channels, processors, and timers. The management of 
these resources supports: 
â€¢ The establishment of contexts (sets of code and data 

addresses) for the execution of sequences of instructions 
â€¢ The allocation of the processor to the execution of spe 

cific sequences of instructions 
â€¢ The dynamic allocation of resources required by the al 

gorithms being executed. 

Hardware and Operat ing Environment  
The Series 500 hardware provides a stack-oriented envi 

ronment for program execution.1 Segmentation and paging 
are used to facilitate memory management. A simplified 
diagram of the operating environment is shown in Fig. 1 
on page 35. 

There are two basic types of segments: code segments 
and data segments. Code execution on a Series 500 CPU is 
contained in one or more code segments and uses several 

data segments. One data segment is used as an execution 
stack segment and at least one other data segment is used 
as a global data segment. Each CPU contains hardware 
registers to define and bound the current code, stack, and 
global data segments. Other segments, called external data 
segments, can be accessed indirectly through pointers 
stored in the stack and global data segments. External data 
segments can be paged. 

Information to manage the segments is kept in tables â€” 
one system segment table and many user segment tables. 
However, only one user segment table can be active on a 
CPU at a given time. The system segment table and the 
currently active user segment table define the address range 
of the program running on a CPU at any time. 

A device reference table contains an entry for each I/O 
channel. This entry contains information to establish the 
code segment and global data segment for the interrupt 
service routine when the corresponding I/O device requests 
service. Each CPU has an interrupt control stack which 
serves as the execution stack for interrupt service routines 
and for the system dispatcher. 

The CPU hardware defines a task control block to de 
scribe the state of a task. This block contains a pointer to 
the user segment table for the task and to the task's stack 
and global data segments. The CPU microcode uses four 
words of memory for each CPU in the system. These CPU- 
dedicated locations point to the current user segment table, 
the currently executing task control block, and the interrupt 
control stack for the CPU. 

Contexts 
For this discussion, a context is a set of related addresses 

that define a scope of addressability, that is, limit the set 
of code and/or data addresses that are accessible. The SUN 
operating system supports program, process, and partition 
contexts. 
Program Context. The simplest context is a program, a set 
of one or more procedures. Each procedure is a collection 
of instructions, with a common entry name, which may or 
may not be parameterized. Instructions that make up a 
program are stored in code segments. A program may oc 
cupy one or more code segments or several programs may 
reside in one code segment. The address range (context) 
of a program is the set of code segments that it occupies. 

During program execution, procedure parameters and 
local variables and an execution stack are stored in a special 
data segment called the stack segment. Program variables 
that are not local to program procedures or parameters to 
those procedures can be stored in either the global data 
segment or in arbitrary additional data segments called 
external data segments. External data segments are only 
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allocated as a result of explicit requests and can be either 
paged or unpaged. 

The context of an executing program or process also in 
cludes the current values of the hardware registers, which 
define the current state of the hardware and the relative 
state of the process. The hardware state of a process can 
be established using information from the process' task 
control block and stack segment. 

While a program has a static context, a process is an 
active element with a dynamic context. In SUN, a process 
is defined to be a unique instance of a consecutively execut 
ing program, and more than one process can share a pro 
gram. The primary operational characteristic of a process 
is that the progress of any process in the system, as it 
executes its code body, is not guaranteed relative to the 
progress of other processes in the system. 
Process Context. The minimum context for a process con 
sists of the program context, stack and global data segments, 
and the current hardware state. Each process has its own 
stack segment. Process contexts can be expanded by the 
addition of an arbitrary number of external data segments. 
They also can be dynamically varied by allowing the 
executing program to switch global data segments dynam 
ically, create and delete external data segments, or extend 
or contract existing segments. 
Partition Context. A partition is a set of processes that 
share a common user segment table. This segment table 
has entries for the code and data segments that are local 
to the partition. Since the segment table entries contain 
the base address locations of the allocated segments as well 
as their current lengths, the segment table defines the seg 
ments the partition can address. 

Other than the availability of memory and segment table 
space, there is no limit to the number of processes that can 
e x i s t  a  i n  a  p a r t i t i o n .  A l l  p r o c e s s e s  w i t h i n  a  
partition can share the same global data segment. This seg 
ment represents the primary mechanism for sharing data 
among a set of processes within a partition. 

User partition contexts are created as a result of calls to 
the START_PARTITION procedure. The procedure parameters 
specify the information required to construct a partition 
context as well as the context of the inital process that is 
to be created and executed within the created partition 
context. The execution of START_PARTITION allocates the 
initial physical memory for the partition, initializes the 
segment table for the partition, allocates the global data 
segment for the partition, and establishes the context for 
the initial process in the created partition. The initial pro 
cess can request additional resources, or create additional 
process contexts. Like any other process in the system, the 
progress of the execution of the initial process in the created 
partition depends on its priority relative to other processes 
and the number of other processes in the system as a whole. 

A partition is deleted when the last process in that par 
tition terminates. The resources that make up the partition 
are then returned to the appropriate pools of available re 
sources. 
System Partition Context. The system partition is a special 
context defined by the system segment table. Segments 
described by the system segment table are addressable at 
all times. The union of the segments in the system segment 

table and the current user segment table defines the context 
of the machine at any time. The system segment table con 
tains the system global data segment and other segments 
that can be shared by all processes in all partitions because 
of their global addressability. 

Every process context is allocated from within a partition 
context. There are two classes of processes: user partition 
processes and system processes. The main distinction be 
tween user and system processes is the addressability of 
the stack for the process. The stack segments of system 
processes are allocated from the system segment table and 
are therefore always addressable. A system process can 
establish addressability to any partition context by chang 
ing its current user segment table, which together with the 
system segment table, defines the current address space. 
User processes cannot address any segments described in 
any user segment table other than their own. 

Process contexts can be deleted explicitly or implicitly. 
A call to the SUN procedure PTERMINATE causes explicit 
termination of the current process. Implicit deletion occurs 
when the program being executed completes execution and 
exits its initial procedure. Regardless of whether the dele 
tion occurs explicitly or implicitly, the effect is the same. 
The resources used to construct the process context are 
returned to the system for reallocation. 

Processes in the subsystems supported by SUN always 
execute within the context of a partition. Process contexts 
established in a partition context can be used to control 
asynchronous events or devices, simplify the solution to 
an otherwise more complex problem, provide execution 
environments that have special characteristics such as 
specialized trap handling procedures, or separate the 
execution of subsystem-supplied code from that of code 
developed by a user. 

An example of a process set provided by a language 
subsystem is the model developed by the BASIC language 
subsystem for the HP 9000 Model 520 Computer, an inte 
grated desktop workstation. Each BASIC partition has ac 
cess to a system human interface process and separate run 
and executive processes. The human interface process 
manages access to devices such as the Model 520's 
keyboard and CRT, which are controlled asynchronously 
by the user interacting with the machine. The executive 
process controls the state of the partition's run process, the 
parsing of language and command statements, and the com 
munications with the human interface process. The run 
process performs the run-time compilation and execution 
of BASIC programs written by a user. 

Resource Al locat ion and Addressabi l i ty  
In most cases, memory object resources are allocated 

from the partition containing the process making the re 
quest. For example, a request for the allocation of a data 
segment by a process within a user partition context results 
in the allocation of the segment from that partition's seg 
ment table. However, processes executing within user con 
texts also have an ability to allocate/deallocate memory 
object resources from the system context explicitly. Pro 
cesses executing within the context of one user partition 
cannot directly allocate/deallocate resources within another 
user partition context. 
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Parallel Development of Hardware and Software 

O n e  o f  t h e  e a r l i e s t  g o a l s  o f  t h e  M o d e l  5 2 0  C o m p u t e r  ( t h e  
desktop version of  the HP 9000 Series 500) project  was to br ing 
the  comple ted  sys tem to  the  marke tp lace  as  soon  as  poss ib le  
a f t e r  pa t t e rn  o f  t he  ha rdware .  The  t r ad i t i ona l  p ro jec t  pa t t e rn  
in  which development  of  the sof tware takes p lace af ter  the com 
plet ion of  the hardware was therefore inappropr iate.  

To increase both the product iv i ty  of  the sof tware development 
t e a m  a  t h e  r e s u l t a n t  q u a l i t y  o f  t h e  f i n a l  s y s t e m  s o f t w a r e ,  a  
h igh - l eve l  l anguage  was  des igned  to  be  used  fo r  a l l  sys tems  
programming.  This  language,  ca l led MODCAL,  is  based on Pas 
ca l ,  bu t  inc ludes  enhancements  to  a l low separa te  compi la t ion  
and to provide control led access to certain architectural features 
of  the HP 9000 Ser ies 500 Computers so that  the temptat ion to  
code  i n  assemb ly  l anguage  i s  g rea t l y  r educed .  S ince  t he  l an  
guage was used to implement the most fundamental  parts of  the 
SUN operat ing sys tem,  i t  was des igned in  such a  way as  to  be 
suppor t - f ree.  No suppor t ing l ib rar ies  and operat ing system are 
inherent ly assumed to exist  by the compi ler.  The match between 
the language and the underly ing archi tecture is further improved 
by  the add i t ion  o f  a  good compi le r  code opt imizer ,  resu l t ing  in  
even less temptat ion to resor t  to  assembly language.  

Wi th  th is  s t ra tegy i t  was poss ib le  to  develop most  o f  the sof t  
w a r e  m o d u l e s  w h i c h  m a k e  u p  t h e  s y s t e m .  A t  t h e  e n d  o f  t h e  
pro jec t  more than 96% of  the system sof tware had been coded 
in  MODCAL.  Th is  percentage inc luded the resu l ts  o f  ex tens ive  
tuning ef for ts in which modules found to be cr i t ical  to the perfor  
mance  o f  t he  mach ine  we re  r ecoded  i n  Se r i es  500  assemb l y  
language. This overal l  stategy not only improved the product ivi ty 
o f  t he  deve lopmen t  t eam,  bu t  a l so  resu l t ed  i n  a  p roduc t  w i t h  
much better  sof tware rel iabi l i ty  and maintainabi l i ty .  

Although it  was possible to test higher-level modules by execut 
ing them on another system with s imulated lower- level  rout ines,  
i t  became apparen t  tha t  the  on ly  accep tab le  way  to  check  ou t  
lower - leve l ,  a rch i tec tu ra l l y  dependent  so f tware  was to  run  the  
code in  an env i ronment  that  fu l ly  dupl icated the character is t ics  
o f  the f ina l  system.  This  requi rement  was espec ia l ly  cr i t ica l  for  
test ing I /O dr iver  code.  Not  only d id i t  require the dupl icat ion of  
the CPU and I /O processor  funct ions,  but  a lso the semant ics of  
an I /O device.  

To  a l low a l l  par ts  o f  the  sys tem to  comple te  tes t ing  and in te  
grat ion before the avai labi l i ty of funct ioning hardware, a detai led 
sof tware emulator  o f  the Model  520 was bu i l t .  Th is  emula tor  in  
c ludes deta i led model ing o f  a l l  par ts  o f  the CPU,1 memory con 
troller,2 and most significantly, the I/O processor3 and backplane. 

The HP 9845 Computer, configured with an assembly language 
development ROM, was selected as the engine for the emulator.  
The f r iendl iness of  the assembly language development environ 
ment al lowed high product iv i ty during the emulator development. 
The memory system of  the HP 9845 was suf f ic ient ly  large (500K 
b y t e s )  a n d  t h e  o v e r a l l  s y s t e m  c o s t  w a s  l o w  e n o u g h  t o  a l l o w  
several  systems to be purchased for the emulat ion funct ion. The 
last consideration was of extreme importance since the operation 
o f  the emulator  is  by  necess i ty  very  computat ion- in tens ive and 
one  o r  two  cop ies  o f  the  emu la to r  execu t ing  on  a  t imeshar ing  
sys tem wou ld  have  comple te ly  consumed the  sys tem's  p roces  
s o r .  F u r t h e r m o r e ,  t h e  H P  9 8 4 5  w a s  a l s o  u s e d  a s  a  M O D C A L  
deve lopment  s ta t ion ,  a l lowing a  comple te  deve lopment  s ta t ion  
to ex is t  on an engineer 's  desk.  

The emulator  was implemented in stages.  The funct ional i ty  of  
t h e  C P U  s e t  a n d  a  s u f f i c i e n t  f r a c t i o n  o f  t h e  i n s t r u c t i o n  s e t  
to  a l low the  lowest  leve ls  o f  the  opera t ing  sys tem to  be  coded 
and tested were provided f irst. This al lowed most of the operating 

system kernel  to be tested suf f ic ient ly to ready i t  for  integrat ion 
with part ia l ly tested higher- level  sof tware. Work on the emulator 
then cont inued to implement the instruct ion set more completely 
by including floating-point instructions and all instructions emitted 
by  the  MODCAL compi le r .  Most  o f  the  BASIC so f tware  sys tem 
could be tested with the exception of the I/O drivers, f i le system, 
and human interface. A temporary I /O interface was added which 
a l lowed s imple read and pr int  I /O to take p lace to the keyboard 
and d isp lay of  the HP 9845.  

Nex t ,  t he  comp le te  I /O  p rocessor  and  I /O  backp lane  emu la  
t ions were added.  This consisted of  sof tware to model  the state 
of  the I /O processor  connected to an external  dev ice which pro 
v ided the hardware s imula t ion  o f  the  new I /O backp lane o f  the  
Mode l  520 .  S imu la t i on  o f  I /O  dev ice  semant i cs  cou ld  then  be  
prov ided by  ac tua l  I /O dev ices .  Th is  approach worked we l l  fo r  
devices that were avai lable for use, but a number of  I /O devices 
we re  s t i l l  unde r  deve lopmen t .  A  capab i l i t y  was  added  tha t  a l  
lowed sof tware s imulat ion of  these unavai lable devices.  

Code was added to the emulator to capture dynamic measures 
o f  i n s t r u c t i o n  a n d  m e m o r y  a c c e s s  m o d e  u s e .  T h e  e x e c u t i o n  
moni tor  funct ion suppor ted by these add i t ions a l lowed the sof t  
ware  deve lopment  team to  eva luate  cod ing a l te rnat ives  and to  
beg in  t un ing  t he  sys tem be fo re  ha rdware  was  ava i l ab le .  The  
funct ional i ty  o f  the emulator  was tested dur ing i ts  development  
by  a  ba t te r y  o f  a r ch i t ec tu ra l  ve r i f i ca t i on  t es t s  wh i ch  we re  de  
veloped in paral lel with the emulator. These tests not only served 
as  a  c ross  check  on  the  cor rec tness  o f  the  emula to r ,  bu t  they  
were when used as verif ication tests for the NMOS-III chips when 
prel iminary vers ions became avai lable.  

The f in ished emulator a l lowed complete integrat ion of  a l l  com 
ponents of  the Model  520's BASIC system, inc luding the human 
interface and I/O drivers. The execution rate of the software was 
1000  t imes  s lower  t han  rea l  t ime ,  bu t  was  su f f i c i en t  t o  a l l ow  
BASIC s ta tements  to  be s tored a t  the ra te  o f  one every  20 sec 
onds. At this point some of the software modules were suff iciently 
stable to al low the start  of  qual i ty assurance test ing. 

Final ly  the hardware was ready.  The 350K-byte BASIC operat  
ing  sys tem was  loaded in to  the  p ro to type  and  the  sys tem was  
funct ional .  The paral le l  development st rategy was successfu l .  
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Other types of objects can be allocated by calls to the 
operating system. Buffers are contiguous sections of mem 
ory that are guaranteed never to be relocated and can there 
fore be referenced by using absolute addresses. Buffers are 
mainly used by the I/O part of SUN as temporary holders 
of data being transferred either to or from an I/O device. 

A message link is a queue receptacle to which messages 
can be sent and from which messages can be received. 
Message links are allocated by SUN from a segment that 
exists in the context of the system partition. 

Resources allocated from the system partition have global 
addressability since all partitions see the system address 
space as part of their address space. Resources allocated 
in partitions other than the system partition cannot be ad 
dressed from other user partitions. The ability to address 
user partitions is provided to system processes via the pro 
cedure CHANGE_TO_PARTITION, which establishes user ac 
cess to the specified partition. 

Virtual  Memory 
The operating system provides support for virtual mem 

ory used in HP-UX in the form of both segmentation and 
paging. Virtual segments are treated as indivisible entities 
of variable length that can be swapped to a storage device 
when not in use. Virtual objects can also be allocated in 
paged external data segments which are divided into equal 
pieces called pages. Each page can reside in physical mem 
ory independent of the other pages that make up the object. 
Virtual segmented objects can be up to 500K bytes in size, 
while virtual paged objects can be up to 500M bytes. 

The hardware provides indicators for each virtual object, 
allowing the operating system to determine if the object is 
currently in physical memory, and if it is, to determine 
whether the object has been referenced and/or modified. 
The operating system uses this information in its replace 
ment algorithms to choose segments or pages to be removed 
from physical memory when necessary. 

The operating system supports the sharing of virtual ob 
jects among several processes. It also supports the mapping 
of files into virtual objects, thus providing access to a mapped 
file at memory speeds. Virtual objects can also be locked 
in physical memory to prevent relocation during I/O trans 
fers to or from the object. 

Communicat ions 
SUN and the language and applications subsystems sup 

ported by it are sets of communicating processes. The initial 
process within the user context is free to develop an arbi 
trary set of processes. No structure is imposed on the pro 
cess set within user partition contexts. However, all pro 
cesses within a partition context share a global data seg 
ment and other segments that they can commonly address. 

The simplest form of communication occurs at process 
creation when a single-segment relative pointer is passed 
as a parameter to the program to be executed in the new 
process context. This pointer can have no value or can 
point to an arbitrary parameter structure. This level of com 
munication is similar to the parameter passing that occurs 
when one procedure calls another procedure within the 
same process context. 

Processes executing within the same partition context 

can share data in the global data segment or other external 
data segments defined in their common segment table. All 
processes can share data in segments defined in the system 
segment table. Pointers to shared data or the shared data 
itself are stored in global data segments that are common 
to the communicating processes. 

In addition to supporting communication via inter 
process parameter passing and shared data in global data 
segments, SUN supports communication via message pass 
ing. This support is provided by the message manager com 
ponent. The message manager supports interprocess global 
communication by allowing one process to construct a 
packet of information called a message, send that message 
to a mailbox, and have a different process at an later time 
receive the message from the same mailbox. Processes com 
municating via messages can exist either in the same or 
different partition contexts. All that is required to initiate 
the communication is knowledge of a common message 
mailbox name, which SUN refers to as a message link. 

Synchronizat ion and Schedul ing 
Semaphores and semaphore operations are used to syn 

chronize and coordinate processes. A semaphore is im 
plemented as a two-word data structure that can be allo 
cated anywhere that can be commonly addressed by the 
synchronizing processes. There is no limit on the number 
of semaphores that can exist in the system. They are used 
to protect and provide exclusive access to shared data and 
to block a process until signaled by another process. 

The semaphore operations are designed to be safe in a 
multiple-processor environment. By safe, it is meant that 
the operations on semaphore data objects are guaranteed 
to be indivisible and complete regardless of the number of 
processors in the system. A more complete description of 
the operation of the process synchronization primitives 
can be found in the article on page 34. 

SUN also provides procedures for synchronizing pro 
cesses with time. These procedures allow processes to wait 
for a specified time interval or to wait until a specified 
absolute time. Absolute times and intervals are specified 
as floating-point numbers in units of microseconds. 

At any time, all processes can be divided into two groups: 
runable and blocked. In addition, a subset of the runable 
processes is actually executing on the CPUs of the system. 
In a system with n CPUs, up to n processes can be executing 
at the same time. Processes become blocked by explicitly 
downing a semaphore, attempting to receive a message 
that has not yet arrived, or waiting on a timer. 

The SUN operating system supports sets of subsystems 
that, in general, have more processes to be run than proces 
sors. The dispatcher provided by the operating system is 
responsible for selecting runable processes to be executed 
by the CPUs based on process priority. Entry to the dis 
patcher occurs whenever a dispatch instruction (DISP) has 
been executed and the current state of the system allows 
the dispatcher to be entered. The DISP instruction is exe 
cuted by process synchronization and manipulation primi 
tives when the state of a process is modified. In particular, 
the dispatcher is entered whenever a currently executing 
process is blocked, when a process that is of higher priority 
than a currently running process is made runable, or when 
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A System Software Debugger 

For the VLSI chip set used in the HP 9000 Series 500 Comput 
e rs ,  two  ava i lab le  leve ls  o f  debugg ing  evo lved .  The  low- leve l  
capab i l i t y  uses a  separa te  HP 9845 runn ing a  huge BASIC pro  
gram, attached to another electronic tool,  which in turn connects 
to the NMOS-III CPU or I/O processor debug ports. The high-level 
d e b u g g e r  i s  a  l a r g e  s o f t w a r e  p a c k a g e  t h a t  i s  l i n k e d  w i t h  a n  
operat ing system. I t  uses debugging support  tools  bui l t  in to the 
mic rocode to  he lp  p rogrammers  debug tha t  sys tem.  

Major Features 
The  debugger  suppor t s  s tepp ing ,  b reak ing ,  and  p ro f i l i ng  a t  

t h e  p r o c e d u r e ,  s t a t e m e n t ,  a n d  m a c h i n e  i n s t r u c t i o n  l e v e l s ,  
exam ines  and  changes  memory  and  I /O  i n  a  va r i e t y  o f  ways ,  
d isassembles machine ins t ruc t ions,  dumps process s ta tus ,  pro  
cedure  cha ins ,  CPU reg is ters ,  s tacks ,  and var iab les ,  executes  
procedures,  pr in ts  hard-copy audi t  t ra i ls ,  and passes contro l  to  
user-def ined debugging sof tware.  

The  debugge r  i s  menu -d r i ven .  Mos t  command  p romp ts  a re  
l ess  i s  one  l i ne  l ong .  Each  command  i s  a  s ing le  l e t t e r  t ha t  i s  
accepted as soon as it is typed. Given the speed of the underlying 
hardware ,  th is  makes  fo r  a  respons ive ,  na tu ra l - fee l ing  human 
in ter face which combines the best  o f  both  menu and command 
l i ne  s t y l es .  Nov i ces  f i nd  t he  debugge r  easy  t o  use  f o r  qu i ck ,  
s imple in teract ions.  Exper ienced users  tend to  learn shor t  com 
mand sequences  tha t  accompl ish  common opera t ions .  

The menus  range in  leng th  f rom shor t  ( two op t ions)  to  qu i te  
long (twelve options at the top level).  Most functions are only two 
o r  t h ree  l eve l s  deep ,  and  eve ry  menu  bu t  t he  t op  one  can  be  
exi ted by typing O (opt ions).  

Mos t  menu l ines  a re  c leared  a f te r  the  user  responds ,  wh ich  
keeps the v isual  c lu t ter  to  a min imum. When mul t ip le-character  
i npu t  i s  requ i red ,  the  debugger  reques ts  i t  be tween  menus  in  

as  compact  a  form as poss ib le .  
The first four options â€” Pstep, Step, Focus, and Resume â€” on the 

top level  resume the current  process,  e i ther  s tepping at  the pro 
cedure ,  s ta tement ,  o r  mach ine  ins t ruc t ion  leve ls ,  o r  resuming  
execut ion wi th no change of  debug state.  The Break opt ion sup 
por ts  maintenance of  procedure,  source s ta tement ,  machine in  
s t ruc t ion ,  memory  locat ion ,  and ex terna l  p rocess  breakpo in ts .  
Machine instruct ion breakpoints can be local  (one process only)  
or global (al l  processes).  Clear sets the state of the debugger to 
free-run. 

The Exam opt ion leads to  a powerfu l  memory and I /O access 
capability. For examining memory, it f irst allows the user to specify 
the ini t ia l  memory locat ion in one of a number of  ways, ei ther as 
an absolute address,  re la t ive to  var ious data reg is ters  and seg 
ments, or by variable name or program location. Then i t  supports 
f o r w a r d  a n d  b a c k w a r d  s t e p p i n g  t h r o u g h  a n d  j u m p i n g  a r o u n d  
memory ,  go ing  i nd i rec t l y  t h rough  da ta  and  abso lu te  po in te r s  
(wi th a return stack) ,  modi fy ing locat ions,  and v iewing arb i t rary 
byte sequences. Meanwhi le,  the Exam lo opt ion supports s imple 
I /O requests and status displays.  

The Dump option capabi l i t ies include task status, accumulated 
CPU use by processes, procedure cal l ing chains, CPU registers, 
and stack and var iable dumps.  The eXec opt ion a l lows users to 
ca l l  any  procedure  in  memory ,  w i th  a  spec i f ied  parameter  l i s t ,  
under  debugger  con t ro l .  The  Togg le  op t ion  con t ro ls  debugger  
modes,  inc lud ing par t ia l  and fu l l  hard-copy aud i t  t ra i l  p r in t ing .  
The Meas opt ion  in terac ts  w i th  the  opt iona l  p rocedure ,  source 
s t a t e m e n t ,  a n d  m a c h i n e  i n s t r u c t i o n  e x e c u t i o n  a n d  c o v e r a g e  
monitor (profi ler). 

Finally, the twelfth option, Ud, leads to a user-defined debugger, 
i f  one  i s  p resen t .  So f tware  au thors  can  eas i l y  wr i te  the i r  own 
extensions and plug them in at  l ink t ime.  

the priority of a currently running process is changed. This 
ensures that the highest-priority process in the set of run- 
able processes is selected for execution. 

The dispatcher completes the state-saving operation in 
itiated by the DISP instruction, selects the highest-priority 
runable process, marks the selected process as running, 
restores a subset of the hardware registers based on values 
stored in the task control block associated with the selected 
process, and executes an interrupt exit (IXIT) instruction. 
The IXIT instruction causes the remainder of the hardware 
state to be restored and process execution to resume. 

Interrupt Handling 
The normal flow of the execution of the machine instruc 

tions can be modified by three mechanisms: external inter 
rupts, internal interrupts, and traps. External interrupts 
signal requests for service by I/O devices. Internal inter 
rupts signal abnormal conditions within the system that 
are not associated with the execution of a machine instruc 
tion. Traps differ from interrupts in that traps result from 
conditions detected by the hardware during the execution 
of an instruction. The detailed handling of interrupts and 
traps is done by the operating system. 

The hardware defines 16 priority levels that can be as 
signed to each I/O channel. The interrupt structure is such 
that a higher-priority device preempts a lower-priority de 

vice. Furthermore, a special hardware register, called the 
mask register, can be used for the purpose of masking off 
specific priority levels. The initial handling of external 
interrupts is done by the CPU microcode interrupt handler. 
The interrupt handler is executed on behalf of a particular 
device when all of the following conditions are met: 1) the 
device has requested an interrupt, 2) interrupts at the de 
vice's priority level are not masked, 3) the interrupt bit in 
the status register is enabled, and 4) no higher-priority 
device is requesting service. 

The interrupt handler initially saves the state of the 
machine by pushing a stack marker onto the stack segment 
for the currently executing process. The stack marker con 
tains the information necessary to restore the status of the 
interrupted process, and hence allow execution to resume 
later. The information includes the index register value, 
the address of the first instruction to be executed when the 
machine status is restored, the machine status indication 
register, and a pointer to the previous stack marker. 

External interrupts are handled on a special stack seg 
ment called the interrupt control stack. In this case, the 
CPU registers are modified to point to different stack and 
global data segments before the execution of the interrupt 
service routine. Before this register modification, the values 
of the registers associated with the interrupted process are 
saved in the process' task control block and stack segment 
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T h e  d e b u g g e r  c o n t a i n s  a  c o m p l e t e  u s e r  I / O  f a c i l i t y  f o r  
keyboard input  and d isp lay and opt ional  hard-copy output .  L ike 
m o s t  p a r t s  o f  t h e  d e b u g g e r ,  t h i s  c o d e  i s  a s  i n d e p e n d e n t  a s  
possib le of  any par t icu lar  operat ing system implementat ion.  

Mos t  o f  the  debugger  I /O  and  mode-con t ro l  rou t ines  (abou t  
34 in  is  are expor ted to the rest  o f  the system sof tware.  This  is  
especial ly  invaluable for  debugging system I /O sof tware and for  
support ing miscel laneous test  harnesses.  

The  debugger  inc ludes  two  op t iona l  packages  wh ich  can  be  
included at  l ink t ime. I f  the disassembler is present,  a l l  d isplays 
o f  code  a re  d i sassemb led  wh i l e  examin ing ,  dump ing ,  o r  s tep  
ping. option the execution monitor (profiler) is present, the Meas option 
comes a l ive,  adding a number of  features.  

The debugger  i s  par t  symbol ic .  Compi le - t ime opt ions  permi t  
each procedure to be fol lowed by a short symbol table, including 
a  procedure  name and poss ib ly  var iab le  names and loca t ions .  
I f  th is  in format ion is  present ,  the  debugger  uses i t  wherever  i t  
can. Debugging of  "nondebuggable" procedures is st i l l  possible,  
but procedure and var iable informat ion is entered and displayed 
str ic t ly  by numeric address.  

Implementation 
This debugger is Â¡ntraprocess, not interprocess. Rather than 

o c c u p y i n g  o n e  o r  m o r e  d e d i c a t e d  d e b u g g i n g  p r o c e s s e s  t h a t  
interact with others, the debugger is inact ive unt i l  invoked. I f  the 
debugger is present,  every process has a smal l  amount of space 
(about 240 bytes) set aside at the base of i ts stack for permanent 
debugger  va r iab les .  The  debugger  uses  a lmos t  no  o the r  da ta  
storage. 

When act ivated, the debugger runs on top of whatever process 
invokes i t .  To ensure a stable environment, i t  turns off interrupts, 
takes exclusive control  of  the machine (pausing al l  other CPUs), 
and is careful  not to rel inquish that control  unt i l  exi ted. 

T h e  o p e r a t i n g  s y s t e m s  s u p p l y  a  l i m i t e d  n u m b e r  o f  s p e c i a l  
suppor t  rout ines to  help the debugger  gather  in format ion about  
and  con t ro l  o the r  p rocesses  and  ope ra t i ng  sys tem da ta  s t ruc  
tu res .  These  rou t ines  he lp  i nsu la te  the  opera t ing  sys tem and  
debugger  f rom each o ther ,  max imiz ing  independence.  

The  VLSI  ch ip  m ic rocode  p rov ides  a  handy  se t  o f  debugger  
support features. There are a number of special assembly instruc 
t i ons  the  when enab led ,  cause  so f tware  t raps  tha t  lead  to  the  
debugger  ( i f  present) .  These inst ruct ions are p lanted in  debug-  
gab le  code by  the  compi le r  and enab led  by  the  debugger  on  a  
p rocess- loca l  bas is  as  needed  fo r  s imp le ,  e f f i c ien t  p rocedure  
and source s ta tement  s tepp ing.  S ince the s ta tus  reg is ter  does 
the  enab l ing /d i sab l i ng ,  the  debugger  s ta te  becomes  a  pa r t  o f  
the  p rocess  s ta te .  The  CPU mic rocode a lso  suppor ts  mach ine  
ins t ruc t ion s tepp ing and a s ing le  abso lu te-address break reg is  
ter ,  both o f  which operate through the t rap mechanism.  

The debugger  is  l inked wi th  one of  a  number  o f  low- leve l  I /O 
dr iver  modules ,  each o f  wh ich prov ides the same expor ted pro  
cedure names.  These modules a l low the debugger  to  run on an 
emu la to r ,  o r  on  rea l  ha rdware  w i th  the  Mode l  520 ' s  keyboard  
and i ts var ious display opt ions, or v ia an ASI or mult ip lexer card 
connected to  a  dedicated termina l .  
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so that they can be restored before the process resumes. 
The interrupt handler writes the device number of the 

device requesting service onto the interrupt control stack 
at a known location. The device number serves as an index 
into the device reference table, which contains an entry 
for each I/O channel. The device reference table entry for 
a requesting I/O device is chained by an I/O processor onto 
a queue corresponding to the priority of the device to await 
service by a CPU. Each device reference table entry contains 
a pointer to the interrupt service routine, and a pointer to 
the data relevant to that I/O channel. 

The SUN operating system contains a single main inter 
rupt service routine. Device driver procedures are executed 
by system and user processes as a result of input/output 
requests. When a device driver procedure wants to wait 
for an interrupt, the procedure calls a special operating 
system primitive which executes a DOWN operation on a 
semaphore associated with the device, thereby blocking 
the executing process. The interrupt service routine does 
an UP operation on a semaphore associated with the device 
driver procedure that handles interrupts for the interrupt 
ing device, and thus unblocks the process which had been 
waiting for the interrupt. The interrupt service routine exe 
cutes an IXIT instruction which may force the execution of 
the dispatcher if the freed process is of higher priority than 
the currently executing process. If the unblocked process 
is not dispatched, then the state of the interrupted process 
is restored and its execution continues. 

The hardware detects 45 different traps, or exception 
conditions. These traps are catagorized into seven classes 
by the operating system to make exception handling more 
manageable. The seven classes are system, address, pro 
gram, instruction, stack overflow, trace, and debug traps. 
System traps include absent segment and absent page traps, 
and other traps that support virtual memory. 

The trap manager component enables traps other than 
system traps to be handled by the higher-level subsystems 
in a hierarchical manner. Trap handling routines can be 
specified that apply to a specific process, to all processes 
in a given partition, or to all processes in the system. Trap 
handlers installed at the process level have the option of 
either handling the exception and returning to the inter 
rupted process or referring the trap to the partition level. 
Similarly, partition level trap handlers can optionally refer 
handling to the system level. 

Protection 
The subsystems supported by the SUN operating system 

benefit from the protection of system integrity supported 
by the hardware as well as the protection provided by SUN 
itself. The protection provided by the hardware falls into 
three categories: segment bounds checking, mode checking, 
and segment attribute checking. 

All segment (data or code) references are checked by the 
hardware to ensure that the references are within the 
bounds of the segment. Furthermore, any attempt to write 
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to a segment is checked to ensure that the segment is writ 
able. All segments also have an attribute that indicates if 
the segment can be accessed by code that is designated as 
unprivileged. This prevents user processes from directly 
executing code that is strictly for internal system use. Any 
violations are detected by the hardware and cause traps. 

The operating system provides protection beyond that 
provided by the hardware by providing an independent 
partition segment table for each user partition context. Seg 
ment accesses within a partition are limited to segments 
within the system segment table and to segments within 
the segment table local to the partition. In addition, SUN 

provides addressability checks at critical points in the 
execution of its procedures. 
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The Design of a General-Purpose Multiple- 
Processor System 
by Benjamin D.  Osecky,  Dennis  D.  Georg,  and Robert  J .  Bury 

ALTHOUGH A NUMBER of earlier Hewlett-Packard 
products have contained multiple-processor config 
urations, none has been able to bring the full power 

and flexibility of these processors to bear in solving user 
problems. For instance, the HP 9845B Computer contains 
an identical pair of 16-bit processors with shared memory. 
However, the system architecture constrains one processor 
to handle the computational parts of a user's program while 
the other processor, which accesses only the I/O bus, man 
ages the input/output and other operating system functions. 
Although this partitioning of functions provides a perfor 
mance advantage over a single processor for applications 
in which the requirements for I/O and computation are 
relatively balanced, the configuration does little to improve 
the performance of strictly computational or mostly I/O- 
oriented workloads. 

Many other multiple-processor systems exhibit forms of 
asymmetry between their computation and input/output 
functions which are a result of either their hardware or 
their software architecture. On some systems a particular 
I/O device can be accessed by only a subset of the proces 
sors. Communication with such a device requires either 
complex communication protocols between the asymmet 
ric processors or constrained execution of the user program 
on the processor subset. Other multiple-processor systems 
allow only a single processor at a time to execute operating 
system code. 

Hardware Design 
The hardware architecture of the HP 9000 Series 500 

Computers has been designed to provide for a fully symmet 
ric multiple-processor architecture. All CPUs, I/O proces 
sors, and memory controllers are interconnected by the 
memory processor bus. All I/O processors and memory are 

identically addressable by all CPUs. This implies that a 
program can execute on any of the system's processors 
without any changes to the way the system addresses either 
memory or I/O devices. Perhaps equally important is the 
fact that all I/O processors have an equally symmetric view 
of CPUs and memory. This makes it possible for a program 
to initiate an I/O operation on one processor, for the inter 
rupt service routine to execute on the same or a different 
processor, and for the user program to continue on a third 
processor, all with complete transparency. 

This symmetry is also exploited to improve system relia 
bility. When the system is turned on, the processor compo 
nents perform a self-test and report their results to one of 
the processors which is temporarily designated as a master. 
This master CPU begins the execution of operating system 
code that determines the number of system components 
that have passed their self-tests and configures the system 
based on these working components. Once the system has 
been configured, the distinction of the master CPU is can 
celed and the system begins normal operation, except for a 
possible loss of capacity caused by any failed components. 

For a multiple-processor system to be able to deliver a 
significant performance improvement over a single proces 
sor, each processor in the system must be provided with 
sufficient bandwidth to the system memory. In the HP 9000 
Series 500 Computers, the memory processor bus provides 
a bandwidth of 36M bytes per second. The memory con 
trollers are fully pipelined and are capable of responding 
to arbitrary reference strings at this maximum bandwidth. 
Measurements of the bandwidth consumed by a single 
Series 500 processor indicate that the average consumption 
is approximately 9M bytes/s. 

Another important hardware characteristic is a test-and- 
set operator that is atomic (indivisible) with respect to mul- 

34  HEWLETT-PACKARD JOURNAL MARCH 1984  

© Copr. 1949-1998 Hewlett-Packard Co.



S e g m e n t  T a b l e  Process Stack 

Task Control  Block 

User  Code 
Segment  Table  

User Data 
Segment  Table  

S t a c k  C D S  
S e g m e n t  S e g m e n t  
Number â€¢ Number 

SB 

Fig.  1  .  Process s tate as seen by 
the Ser ies 500 hardware. 

tiple-processor execution. This operator is provided by the 
memory controller to allow the execution of a special re 
quest that indivisibly reads and sets a selected word in 
main memory to a predetermined value. This operator 
serves as a building block for constructing more complex 
synchronization operators in software. This hardware 
operator is also used by the CPUs when accessing certain 
table structures known to the hardware, such as page tables. 
This allows synchronization of access among processors, 
and between processors and the operating system software, 
called SUN, when the table entries must be modified. 

Another important characteristic is the ability to share 
the same image of an executing program between two or 
more processors. This is done by providing an architecture 
in which all code is reentrant. Code is protected from mod 
ification by the hardware. This allows a single image of 
the operating system to be shared by all processors in the 
system and also allows several processors to be active in 
the operating system code simultaneously. 

Finally, since the SUN operating system was designed 
at the same time as the hardware, it was possible to make 
many hardware/software tradeoffs to improve the perfor 
mance of SUN. The processor instruction set provides con 
siderable assistance by saving and restoring process states 
during process switching. Fig. 1 illustrates the process state 
known by the hardware. The task control block is selected 
by a processor register. Information contained in this block 
identifies a process' address space, stack segment and 
global data segment through either system or user segment 
table entries. The process stack contains information at its 
base that allows setting the stack limits and the current 
frame pointer. Absorbing the topmost stack frame allows 
information about the process' code segment and register 
state to be established. This entire procedure is accom 
plished by the IXIT instruction. This instruction and the 

complementary state-saving operations combine to provide 
fast process context switching times. 

Software Design 
Each process in the system has its own task control block 

and stack segment. The information contained in the task 
control block includes process state information which is 
known to the hardware as well as an extended process 
state maintained by the system software. The state informa 
tion known to the hardware includes the specification of 
the user's address space, stack, and global data segment as 
described above. The software state includes the process 
priority, its dispatching state, fields to allow the process 
to be queued on a semaphore, a specification of action to 
be taken in the event of an exception condition, and a list 
of objects owned by the process. 

The process priority indicates the relative priority of 
execution of nonblocked processes. The highest-priority 
process not blocked on a semaphore is always allocated a 
processor. If a lower-priority process is running and a 
higher-priority process becomes ready because of some 
event such as the completion of an I/O operation, the lower- 
priority process is suspended and the higher-priority pro 
cess is given a processor. This mode of scheduling in which 
a higher-priority process can preempt a lower-priority pro 
cess is referred to as preemptive scheduling. The system 
software was designed to be preemptable in all but a few 
small code sections. 

The dispatching state indicates whether a process is wait 
ing on a semaphore or a timer, ready for execution, or 
already running on a processor. The address space indi 
cates which virtual address space contains the memory 
objects local to the process. System processes often coexist 
within the same address space and communicate directly 
using shared-memory techniques. User processes for both 
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HP-UX and BASIC systems each exist within their own 
address space, which can be up to 512 megabytes. Every 
process also has access to the system address space, which 
can also be as large as 512 megabytes. 

Three different mechanisms are provided to allow the 
synchronization of process activities: locks, semaphores 
and message passing. A lock provides the short-term ex 
clusion mechanism normally provided by disabling inter 
rupts while in a critical section on a single-processor sys 
tem. This same effect is accomplished on a multiple-proces 
sor system by performing a special code sequence on a 
memory word, referred to as a lock word, that is associated 
with the critical section in question. The exclusion opera 
tion is performed by executing the instruction read and set 
to -1 and testing the result. If the result is not equal to 
minus one, the lock has been obtained and the critical 
section can be executed. If the lock value is already minus 
one, the processor must retry the indivisible read and set to 
-1 instruction until a nonnegative value is read. It is then 
assured that no other processor is active in the critical 
section. When the processor has reached the end of the 
critical section, it stores a zero back into the lock word to 
indicate that the critical section can now be entered by 
another processor. This locking mechanism is used many 
places in the system where exclusion is required for a code 
sequence that is short and does not execute any operations 
that cause the process to be blocked. 

A more general process synchronization tool is provided 
by semaphore operations. The implementation of sema 
phores is similar to that proposed by Dijkstra.1 A semaphore 
is a two-word area in memory that contains a value and a 
pointer to a linked list of processes. Semaphores can be 
allocated in memory anywhere that other data structures 
can be allocated, and there is no limit on the number of 
semaphores. Two operators are provided for semaphores: 
DOWN and UP. A DOWN operator applied to a semaphore 
with a value greater than zero merely decrements the value 
associated with the semaphore. If the value is less than or 
equal to zero, the value is still decremented, but the process' 
state is marked blocked and the process' task control block 
is added to the queue of waiting processes associated with 
the semaphore in order of priority. The UP operator incre 
ments the value of the semaphore. If the initial value of 
the semaphore is less than zero and an UP operation occurs, 
the first process waiting on the queue is marked as ready. 
If the process marked ready is of higher priority than the 
process executing the UP operator, the processor is given 
to the higher-priority process. 

Serialization can be provided for a critical section by 
associating with it a semaphore initialized to a value of 
one and providing a DOWN operator at the beginning of the 
critical section followed by an UP operator at the end of 
the critical section. Synchronization with a server process 
is usually accomplished with a semaphore initialized to a 
value of zero. 

The word used as the head of the queue of tasks blocked 
on a semaphore also serves as a lock word to guarantee 
proper operation of the semaphore in a multiple-processor 
system. Since there is a separate lock word for every 
semaphore in the system, the probability of contention for 
the lock is very low. 

During development of the software, it was found that 
considerable simplification would result by including ad 
ditional semaphore operators. The first consisted of a con 
ditional UP operator which would free all processes waiting 
on a given semaphore and allow the passing of an error 
escape code. This operator is especially useful in recover 
ing from an error condition detected by another process. 
The second consisted of an indivisible DOWN and UP 
operator which would allow a process to block itself on a 
semaphore while releasing another semaphore in one indi 
visible operation. 

Message passing supports interprocess global communi 
cations by allowing a process to construct a packet of infor 
mation called a message, send that message to a mailbox, 
and have a different process at a later time receive the 
message from the same mailbox. Message passing and mail 
boxes are used by both BASIC and HP-UX system processes 
to coordinate user processes. Sending and receiving mes 
sages provides process synchronization similar to the 
semaphore UP and DOWN operations, coupled with an ad 
dress-space-independent data transferral. The message 
passing operations, in fact, are implemented using the 
semaphore operators, which in turn use the locking concept 
at the lowest level. 

Dispatcher 

â€¢ Save Rest of State 
â€¢ Move Task Control Block 

to Queue End 
â€¢ Unmark as Running 

Set  Up Dummy Low-  
Priority Task Control 

Block 

Search Queue for  Runable 
Task Control  Block 

Found 

Not 
Found Release DISP Lock 

Mark Task Control  Block 
Running, Restore State 

Release DISP Lock 

Fig.  2 .  D ispatcher  f low char t .  
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Granu la r i t y  
The duration of a typical process lifetime in HP-UX, 

which can last from a few tens of milliseconds to forever, 
is well matched to the granularity of the underlying process 
model. The BASIC system's process model similarly is of 
reasonably large granularity. The times for representative 
operations for the underlying process model are: 

Operation 
Process Creation 
Lock Type Synchronization 
Semaphore Operation 
Process Switch 
Assign Free Processor 

Time (/us) 
1000 

5 
35 
150 
100 

To illustrate how the overall process model is im 
plemented, consider the flowchart of the dispatcher shown 
in Fig. 2. When a DOWN synchronization operation dictates 
a process block, the process is marked blocked and the 
special instruction DISP is executed. This causes the pro 
cess state to be saved and control to be transferred to the 
beginning of the short-term scheduler routine at the dis 
patcher entry point. Upon entry, the dispatcher ensures 
that just one processor at a time is active within the critical 
section of the dispatcher by attempting to lock a word 

" I n  t h i s  a r t i c l e ,  g ranu la r i t y  i s  a  measu re  o f  t he  s i ze  o f  i ndependen t  ope ra t i ons  t ha t  a  
p rocess  o r  a  p rog ram can  be  b roken  up  in to  fo r  pa ra l l e l  p rocess ing .  In  each  case ,  the  
per formance benef i ts  ga ined by para l le l  process ing must  be weighed against  the system 
overhead required to break up the process or the program. That is, f iner granularity requires 
more overhead 
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associated with that critical section. Once inside the critical 
section, the dispatcher scans the linked list of available 
processes using a special hardware linked-list search in 
struction. The highest-priority process that is not blocked 
and is not currently running on another processor is 
selected for execution. The dispatcher's lock word is re 
leased and the process is launched by setting the the CPU's 
current task control block pointer to point at the selected 
process. The context switch is completed by executing an 
IXIT instruction as described earlier. This results in the 
restoration of the state of this task and its continued execu 
tion until it is either blocked or is preempted. 

If no tasks are found that are available for execution, the 
dispatcher's lock is released and the special instruction 
SLEP is executed. SLEP places the processor in a state where 
it is paused until the next interrupt or interprocessor mes 
sage. In this way processors that have no work to do con 
sume no bus bandwidth, yet are prepared to respond 
quickly when an event indicating the possible presence of 
a new runable task occurs. 

Performance 
The final test of the design of any multiple-processor 

system is in how much improvement in performance is 
provided by each additional processor. Fig. 3 shows the 
results of a number of benchmark runs which were made 
by running four copies of an identical benchmark on each 
of four processor configurations. The programs were 
selected to show the performance extremes that can be 
encountered in a multiple-processor system load. The pro 
grams showing the least improvement were STRING 16K 
and STRING BOB. These programs make use of the proces 
sor's block-move instructions, which are capable of moving 

data from one place in memory to another at the rate of 
9M bytes/s. Large and repeated block moves place a heavy 
load on the memory processor bus. 

The two-dimensional graphics benchmark is mostly I/O- 
bound on a single processor and adding additional proces 
sors does not produce a very dramatic result. The other 
benchmarks, 3D GRAPHICS, INTEGER, PCAL, and FLOAT 
ING, are respectively a three-dimensional graphics program 
with I/O, an integer matrix multiply program, a very heavily 
recursive program, and a floating-point matrix multiply 
program. All of these loads are significantly improved by 
having additional processors in the system. 

Fig. 4 shows the results of tests in which groups of 
nonidentical processes were run on systems containing a 
varying number of processors. The results from these runs 
are more uniformly clustered near the theoretical n-im- 
provement-for-n-processors asymptote. This indicates that 
a significant improvement is possible even for loads includ 
ing bandwidth-intensive programs such as STRING 16K as 
long as they are included with programs containing more 
typical instruction mixes. 
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An I /O Subsystem for  a  32-Bi t  Computer  
Operat ing System 
by Robert  M.  Lenk,  Char les E.  Mear ,  Jr . ,  and Marcel  E.  Meier  

MEETING THE DIVERSE NEEDS for input/output 
processing for both the BASIC and HP-UX subsys 
tems in the HP 9000 Series 500 Computers posed 

a significant challenge during the design of the operating 
system called SUN. The BASIC language system for the 
Model 520 Computer provides a rich I/O language with 
support for real-time device and instrument control. HP-UX 
is a multiuser system which relies very heavily on rapid 
access to disc storage for loading user programs, storing 
user data, and managing virtual memory. In addition, both 
systems provide users with a unified, device-independent 

I/O interface to all peripheral devices and mass storage 
files. SUN's I/O subsystem provides common code that 
fully supports the needs of both. 

The SUN I/O system consists of two primary software 
components â€” the file system and the device drivers. The 
device drivers provide a uniform high-performance inter 
face for managing peripherals while the file system pro 
vides file management, disc memory management, and de 
vice management services to other components of the 
operating system as well as to user environments such as 
HP-UX and BASIC. In general, the structure of the I/O sub- 
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system (Fig. 1) mirrors the functionality of the hardware. 

File System 
The basic unit of disc storage managed by the file system 

is called a volume. Each volume has a slave process that 
performs all the I/O to the volume. The creation of a sepa 
rate, transparent process allows physical I/O to be per 
formed concurrently with other tasks and provides a 
mechanism whereby I/O requests can be scheduled in the 
most efficient manner possible. Volumes have self-con 
tained data structures upon which files and directories are 
implemented. Directories, which map filenames into files, 
are managed solely by the file system while the interpreta 
tion of the contents of files is left to higher-level software. 
Multiple Disc Formats. The file system supports file man 
agement of three different disc formats: HP's Logical Inter 
change Format (LIF), the disc format used by the HP 9825, 
HP 9835, and HP 9845 family of computers, and the Struc 
tured Directory Format (SDF). The support for multiple 
disc formats was motivated by the desire to provide file 
interchange capability with other HP systems, to access 
discs initialized on earlier HP computers (backward com 
patibility), and to provide additional capability not sup 
ported by either the LIF or HP 9845 formats. The support 
for multiple disc formats does not introduce additional 
overhead to the file system. 

A distinct software module manages each of the three 
formats. A common interface hides the disc format differ 
ences from other file system software and the BASIC sub 
system. When a disc is first accessed, the file system iden 
tifies the disc by the contents of block 0 on the disc and 
installs the correct software module to manage its structure. 
The file system returns an error if the caller attempts to 
use a feature not supported by the particular disc format, 
but otherwise no distinction between formats can be made 
by the application. Because of its extended capability, HP- 
UX supports only SDF as its root file system. However, 
HP-UX applications can access LIF discs through standard 
utility programs. 

SDF supports capabilities beyond those of the other two 
disc formats. Among them are extensible files, hierarchical 
file naming, file links, extensible directories, mounted vol 
umes, device files, remote file access support, and HP-UX 
file protection mechanisms. 

Each file on an SDF volume is described by a 128-byte 
file control block (FCB), similar to the UNIXâ„¢ inode. The 
UNIX is  a  US t rademark  o f  Be l l  Labora tor ies  

File System 

Drivers 

F i g .  1 .  T h e  S U N  o p e r a t i n g  s y s  
tem's I /O subsystem. 

FCB contains information about where the file resides on 
the disc, when it was last created, accessed, and modified, 
and how its use should be restricted. Disc space is allocated 
to the by in contiguous areas called extents (identified by 
the address of the first block of the disc area and its size). 
This form of representation enables large, high-speed trans 
fers between the disc and the memory, supports large files 
efficiently, and allows the amount of disc space allocated 
to the file to change dynamically. 

To support the needs of both the BASIC and the HP-UX 
systems, a portion of the FCB is reserved for private use 
by the subsystem that created the file. HP-UX, for example, 
uses this private data area to implement device files and 
HP-UX-style file protection semantics. 
Caching for Improved Performance. The file system uses 
a pool of equal-size buffers (buffer cache) to improve disc 
access performance. When data is read from the disc, it is 
placed and kept in the buffer cache. When a subsequent 
request is made for the same data, it can be retrieved from 
the cache without requiring any physical I/O operation. 
Accessing data in the cache is more than an order of mag 
nitude faster than obtaining the same data from the disc. 

The number of buffers in the cache is determined when 
the system is initialized. Eventually the contents of one or 
more buffers has to be discarded to read new data from the 
disc (data not found in the cache). In this event, the cache 
buffer that has been least recently accessed is chosen. 

The cache is also used to improve performance in other 
ways. When sequential access to a file is detected, the file 
system prereads data from the file in anticipation of the 
next read request. The data is then kept in the cache until 
it is needed. The I/O required for the read is performed 
concurrently with the running of the application program. 
By prereading data, the file system overlaps CPU processing 
with I/O device time, thereby reducing the total time it 
takes to run an application. 

A large portion of the time needed to move data to and 
from the disc is spent waiting for the disc to prepare for 
the transfer. The actual transfer of data takes much less 
time. The file system transfers as much data as possible on 
each disc read/write. When prereading data, several buffers 
of data are read from the disc with one transfer. The cache 
also allows a file's dirty buffers (buffers that must be written 
back to the disc because their contents have been modified) 
to be gathered together and written to the disc in a single 
transfer. 
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Virtual Memory Support. Since many HP-UX systems are 
configured with only one disc, the file system must handle 
file management and virtual memory support together on 
a single volume. Each disc format module has entry points 
that the virtual memory system uses to allocate and deallo 
cate disc blocks. These same high-speed disc space manage 
ment routines are used by the file system to allocate disc 
space for directories and files. Disc storage is fully shared 
between the file system and the virtual memory system. 
The physical I/O generated by the virtual memory system 
as a result of paging and segment swapping does not move 
through the cache, because the virtual memory system does 
its own caching through sophisticated page and segment 
replacement algorithms. This I/O is sent directly to a vol 
ume's I/O process. The file system and virtual memory 
system together support the concept of a memory-mapped 
file. Files can be mapped onto a virtual segment and ac 
cessed through a pointer. Once mapped, the virtual seg 
ment contains an image of the file. Changes to the address 
space represent changes to the file and vice versa. This 
form of access is sometimes more convenient than standard 
file access routines and can, in certain applications, result 
in improved file access performance. 
Transparent Device I/O. Transparent device I/O for HP-UX 
is supported through device files, which contain informa 
tion about the location of a device (possibly logical) in the 
system, and the manner in which the device and system 
must communicate. These special files are opened and ac 
cessed in the same manner as other files. Their I/O, how 
ever, is directed to the appropriate device. 

Drivers 
The underlying philosophy behind the driver architec 

ture is that each piece of hardware is encapsulated by a 
separate module. A typical I/O operation involves three 
separate pieces of hardware: an I/O processor, an interface 
card, and a peripheral device.1 Thus, the driver implemen 
tation includes modules in three layers â€” I/O primitives, 
first-level drivers, and second-level drivers. This allows 
drivers to be mixed and matched for appropriate tasks with 
out duplicating functions. Thus, all peripherals, whether 
discs, tape drives, line printers, or voltmeters, can share 
the same HP-IB (IEEE 488) interface card first-level driver, 
while a single CS-80 protocol second-level driver can suf 
fice both for HP-IB-based discs and the internal discs on 
the Series 500's integrated workstation, the Model 520 (see 
Fig. 2). Because of this modularity, the potential also exists 
to move any first-level driver to other machines where the 
same interface cards are present on different I/O channels, 
or to move any second-level driver to other machines where 
the same peripherals use different interface cards. 

Each of the three layers invokes the one below it through 
a procedure call. This keeps the overhead of the modulari 
zation to a minimum. However, in special cases where 
even this overhead is considered excessive, an individual 
driver module crosses these conceptual layers to optimize 
performance. A primary example of such an optimization 
is a special driver to do fast reads and writes of CS-80 discs 
on the HP-IB interface. 

The modular driver organization allows software to be 
configured to match precisely the hardware on which it 

runs. A minimal software system contains only the I/O 
primitives and the drivers necessary for a minimal 
hardware configuration without wasting kernel code space 
on unnecessary modules. As more hardware is added, the 
corresponding drivers are added to the software. All global 
system tables of drivers and devices are built dynamically 
by the modules that are present at system boot, rather than 
being compiled into a central part of the code or requiring 
a complicated system generation activity. Hence, the addi 
tion of drivers does not require any recompilation or relink 
ing of the system; it is accomplished by simply merging 
the driver code into the system boot area in HP-UX and 
rebooting, or by executing the LOAD BIN command in BASIC. 
The same ability to configure modules into the system is 
used by the file system for the modules that manage differ 
ent disc formats, and by other subsystems outside of I/O. 
I/O Primitives. The primary purpose of the I/O primitives 
module is to encapsulate the interface to the I/O processor 
and the services it provides. These services include direct 
memory access (DMA) transfers across the backplane, pass 
ing interrupts to the CPU, and running channel programs 
(lists of I/O operations which are run by the I/O processor 
without CPU intervention). These services are presented 
to the drivers as routines that are independent of the nature 
of the I/O processor, such as setting up a DMA transfer or 
waiting for the interrupt at its completion. A few of these 
routines that are simple but frequently executed are im 
plemented with special compiler support by in-line expan 
sion in the calling driver's code. 

There are other tasks which, though not directly related 
to the I/O processor, are common to several drivers, and 
thus are also included at the primitives layer. For example, 
the primitives module examines all I/O slots at system in 
itialization to determine which interfaces are present. This 
is an essential part of the self-configuration process, be 
cause it allows each first-level driver to select which in 
terface cards are appropriate for it to address without 
any knowledge of the behavior of other cards that may 
be present. 

The primitives also provide for resource allocation 
among drivers to prevent multiple requests from interfering 
with one another. This is generally handled by providing 
mutual exclusion to each I/O slot, but it also involves the 
length of request. For shorter requests, interfaces such as 
terminal multiplexers allow multiple outstanding requests 
with certain restrictions, which are enforced by the primi 
tives. For longer requests, each I/O processor has 

Voltmeter Access User Disc Access 

CS-80 Disc Driver Chosen based on the I /O card 
â€” seen in the specified slot 

CIO HP- IB Dr iver  â€¢ Internal  Model  520 Disc Dr ive 

CIO HP-IB Card 

CS-80 Disc Drive 

Fig .  2 .  Dr iver  s t ruc ture  for  HP 9000 Model  520 Computer .  
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bandwidth limitations, and in rare instances it is possible 
for a high-speed device to lock out a synchronous device 
on a separate slot. The primitives provide mutual exclusion 
between such incompatible devices on the same I/O proces 
sor. 
HP-CIO. The HP 9000 Series 500 Computers are the first 
HP products to support HP's new family of interface cards, 
known as HP Channel I/O (HP-CIO). Each card in this family 
shares several levels of protocol, some of which communi 
cate fairly complex tasks between the host computer and 
a microprocessor on the card. The card's microprocessor 
can perform such tasks as searching input streams for a 
termination character, or editing lines of text input from a 
terminal. Much of this protocol is encapsulated at the 
primitives level, allowing not only a sharing of code among 
drivers, but also efficient implementation of the protocol 
by matching it carefully to the I/O processor's functionality. 

The I/O primitives level provides a useful layer to insu 
late the drivers from the I/O processor. Hence, all the inter 
face card and peripheral drivers can be written in MODCAL 
(HP's internal Pascal-like systems programming language) 
rather than being forced to use assembly language. This 
encapsulation of the assembly language in the I/O primi 
tives reduces the time required to design, code, test, and 
maintain the driver compared to programming in assembly 
language. The reliablity of the drivers is greatly improved, 
because it is easier to understand the code and its function 
when the code is in a high-level language. 
First-Level and Second-Level Drivers. The first-level and 
second-level drivers are designed to hide the anomalies of 
the peripherals and interface cards while providing all the 
functions that each device provides (e.g., full access to the 
instrumentation features of the HP-IB interface).  
Nonspecific device features are relegated to higher levels 
of the I/O hierarchy to prevent duplication of functions 
that would increase the overall size of the I/O subsystem, 
reduce performance, or possibly present inconsistent be 
havior for different drivers. In addition to encapsulating 
the specific peripheral or interface card characteristics to 
provide access to a generic device, the driver design pro 
vides access to rather dissimilar devices (e.g., discs and 
HP-IB interface cards) with the same parameters for either 
the first- or second-level driver procedures. This uniformity 
provides the first step in supplying the user with a totally 
device-independent I/O interface. 

The SUN operating system drivers also provide ex 
tremely resilient recovery from error conditions. They have 
been through a thorough set of tests to ensure that the 
drivers never leave the device they control or leave the 
system in a bad state (requiring a power cycling of the 
computer or device) as a result of any possible error condi 
tion. Extra effort was taken to provide a broad resolution 
of error conditions reported to the system rather than com 
bining many different errors into generic error values. The 
drivers also provide numerous different soft-error reports 
to inform the user of nonerror related data such as the 
occurrence of an automatic data record sparing (replace 
ment of a bad record with a good record) on a mass storage 
medium or a case where the system had to retry an access 
to a data record to obtain it without an error. This additional 
resolution and the soft-error concept provide the user with 

a more informed view of the operation of the system instead 
of requiring a guess as to what is going wrong. 

HP's earlier desktop computers have always provided 
access to the hardware registers on the I/O cards to provide 
customers with access to features not provided by the I/O 
language of their system. However, the new-generation HP- 
CIO cards are far more complex to program and in addition, 
do not have conventional registers. Thus, the SUN drivers 
provide a synthesized set of registers, called pseudoregis- 
ters. This provides the user with the same model as on the 
HP 9845 Computer for accessing features of an I/O card not 
normally provided by the system, but done in cooperation 
with the driver. Thus, the driver has the opportunity to 
provide additional functions in an isolated manner. This 
allows the same pseudoregisters to be used for different 
implementations of the same type of interface card, which 
increases the portability of user applications. 

The SUN drivers support the broad set of peripherals 
produced by Hewlett-Packard. Instead of initially supply 
ing a core set and then adding less-essential drivers at a 
later time, SUN provides support for all peripherals that 
make reasonable sense for the HP 9000 marketplace. One 
additional driver that is somewhat unusual is the mem 
ory driver. This driver uses the main memory of the running 
system to simulate a disc drive. The code required to pro 
vide this driver is a great deal simpler than if this function 
were provided at a higher level. The result is that a user 
can develop an application that accesses a disc file and 
then decide to store the data in main memory to gain the 
performance advantage of not having to spend the time to 
access a disc drive. The change is trivial using the memory 
driver; simply revise the reference to the specific mass 
storage device to be the memory driver rather than the 
original disc drive. 
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Viewpoints 

Coping with Prior Invention 
by Donald  L .  Hammond 

THIS MONTH, HEWLETT-PACKARD is introducing a new 
printer, the Thinkjet (HP 2225), which offers what we be 
lieve is an unprecedented combination of features: 150 

character-per-second printing speed, archival print on ordinary 
paper, small size, quiet operation, and low cost â€” both initial cost 
and total cost of ownership. Power requirements are so low that 
one model is available with a battery pack that provides more 
than three hours of printing, or about 200 pages. These advantages 
have been made possible by a new ink jet printing technology, 
which we have called thermal ink jet, or more picturesquely, 
"Thinkjet," to differentiate it clearly from the more common kind 
of thermal printing, which requires special paper. 
We think the story of this technology development is an interest 

ing example of what can happen in today's fast-moving technolog 
ical environment. In our HP Laboratories at Palo Alto, in the fall 
of 1978, John Vaught was looking for a new printing method that 
would have the advantage of inherent simplicity compared with 
the rather complex electrophotographic process used in the HP 
2680A Laser Printer, for which John had designed the optical 
scanning package. 

He started with the idea of turning ink into vapor by high-speed 
electrolysis and heating, using pressure to eject drops. When this 
was found to work but with serious failure rates, he conceived 
the idea of using a small resistor, which when heated for a few 
microseconds by a current pulse, created bubbles, thereby ejecting 
drops of ink from a nozzle. This was first demonstrated in March 
1979. 

We proceeded to develop this idea, amidst some skepticism that 
the necessary performance and reliability could ever be achieved. 
The Thinkjet printer is testimony that these concerns were dis 
persed by extensive development work in several HP organizations 
on the process and structure. One of the key concepts, originated 
at HP's Corvallis Division, was a totally disposable ink jet head 

with a self-contained ink supply. 
It is not uncommon, when an important problem such as quality 

printing receives the attention of many people, that independent 
conception occurs in isolated research centers. Such was the case 
with Thinkjet. In September 1981 we learned of the existence of 
the same concept under development at Canon, Inc., in Japan. 
Ichiro Endo had conceived the idea independently, with an earlier 
invention date. Canon referred to the technology as "Bubblejet." 

Since we in HP were convinced that this new technology had 
great promise, the arrival of a new player in this arena caused 
some concern as to our respective technical positions. There were 
a number of options but the most attractive for HP was to work 
with Canon. Excellent ties between the two companies had already 
been tech as a result of our acquisition from them of tech 
nology for electrophotographic printers several years earlier. 

Hewlett-Packard and Canon have agreed to cooperate in the 
technology development. Because this process started in 1983, the 
sharing of technical data has had no major impact on our first 
product release, but we can feel the positive effect that it is having 
on our continuing developments. Canon has reflected to us similar 
feelings. Working with a group that represents a combination of 
cooperation and competition has provided a valuable perspective, 
especially increased objectivity, for the technical and management 
teams of both companies. 

This experience has reinforced the principle that technology 
alone can rarely make a significant contribution in this complex, 
fast-moving world. There are equally valuable elements, some 
times of the resolution of relationships in the spiri t  of 
international competition and cooperation, that can have dramatic 
effects on our ability to bring that technology to the market. 

We will be reporting in a future issue on more details of these 
developments, including the Thinkjet printer. 

Hew le t t -Packa rd  Company ,  3000  Hanove r  
Street,  Palo Al to,  Cal i fornia 94304 

RCH 1984 Volume 35 â€¢ Numb 
I R N A L  

Technical  Informat ion from the Laborator ies of  
Hewlet t -Packard Company 

Hewlet t -Packard Company,  3000 Hanover  St reet  
Palo Al to,  Cal i fornia 94304 U.S.A. 

Hewlet t -Packard Central  Mai l ing Department 
Van Heuven Goedhart laan 121 

1181 KK Amste lveen.  The Nether lands 
Yokogawa-Hewlet t -Packard L td . .  Suginami-Ku Tokyo 168 Japan 

Hewlett-Packard (Canada) Ltd.  
6877 Goreway Dr ive,  Miss issauga,  Ontar io  L4V 1M8 Canada 

f * ^  L J  A  K  I  ( ^  T ~  / " \  C T  A  r \  T ~ \  I " )  C l  O  O  â € ¢  T  
\ S  F i  r \  I  N  V J  C .  \ J  I  f ~ \  L J  L J  I I  L _  O  O  .  c  

Bulk Rate 
U.S. Postage 

Paid 
Hewlett-Packard 

aC AGO 

J O H N S  H O P K I N S  
L A U R E L  

MD 20707  

nge your  address or  de lete your  name f rom our  mai l ing l is t  p lease send us your  o ld address label .  Send 
c h a n g e s  A l l o w  d a y s .  J o u r n a l ,  3 0 0 0  H a n o v e r  S t r e e t ,  P a l o  A l t o ,  C a l i f o r n i a  9 4 3 0 4  U . S . A .  A l l o w  6 0  d a y s .  

5953-8521 

© Copr. 1949-1998 Hewlett-Packard Co.


	A New 32-Bit VLSI Computer Family:  Part II - Software
	Contrasting Project Management
	The Development of a BASIC Language Subsystem
	HP-UX:  Implementation of UNIX on the HP 9000 Series 500 Computer Systems
	HP-UX:  A Corporate Strategy
	An Interactive Run-Time Complier for Enhanced BASIC Language Performance
	Preserving Programming Investment
	A Local Area Network for the HP 9000 Series 500 Computers
	Data Communications for a 32-Bit Computer Workstation
	A General-Purpose Operating System Kernel for a 32-Bit Computer System
	Parallel Development of Hardware and Software
	A System Software Debugger
	The Design of a General-Purpose Multiple-Processor System
	An I/O Subsystem for a 32-Bit Computer Operating System
	Viewpoints:  Coping with Prior Invention

