
H E W L E T T - P A C K A R D
C D

M A R C H 1 9 8 6

© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D

March 1986 Volume 37 â€¢ Number 3

Articles

4 A n I n t r o d u c t i o n t o H e w l e t t - P a c k a r d ' s A l W o r k s t a t i o n T e c h n o l o g y , b y M a r t i n R .
Cagan The HP Al Workstat ion is a col lect ive term for a number of symbol ic programming

software development efforts and â€” so far â€” one product.

7 HP's Universi ty Al Program

1C A De fec t T rack ing Sys tem fo r t he UNIX Env i ronmen t , by S teven R . B la i r DTS se rves
\J the defec t t rack ing and met r ics co l lec t ion needs o f p rere lease so f tware deve lopment .

4 Q A T o o l s e t f o r O b j e c t - O r i e n t e d P r o g r a m m i n g i n C , b y G r e g o r y D . B u r r o u g h s T h e
tools support object-wi th-methods data st ructur ing.

T o o l s f o r A u t o m a t i n g S o f t w a r e T e s t P a c k a g e E x e c u t i o n , b y C r a i g D . F u g e t a n d
Barbara run Scott One tool s imulates keyboard input. The other is used to create and run

test packages.

28 U s i n g Q u a l i t y M e t r i c s f o r C r i t i c a l A p p l i c a t i o n S o f t w a r e , b y W i l l i a m T . W a r d W h e n
is sof tware re l iable enough for cr i t ical pat ient care?

O O P - P O D S : A S o f t w a r e G r a p h i c a l D e s i g n T o o l , b y R o b e r t W . D e a a n d V i n c e n t J .
O Â¿- D' Angelo Dur ing design, P-PODS replaces pseudocoding or f lowchart ing. Later , i t he lps
document the f in ished code.

O C T r i g g e r s : A S o f t w a r e T e s t i n g T o o l , b y J o h n R . B u g a r i n T h e t e s t e r c a n f o r c e t h e
O O execu t ion o f spec i f i c pa ths i n the so f tware by th i s me thod .

O " 7 H i e r a r c h y C h a r t L a n g u a g e A i d s S o f t w a r e D e v e l o p m e n t , b y B r u c e A . T h o m p s o n a n d
O / Dav id code E l l i s H ie ra rchy cha r t s revea l a p rog ram 's b ind ing and coup l i ng be fo re code
is written.

A O Modu le Adds Data Logg ing Capab i l i t i es to the HP-71 B Computer , byJames A . Donne l l y
T O Th is p lug - in ROM adds new BASIC keywords and o the r capab i l i t i es .

45 System Moni tor Example

47 Authors

Editor, Richard Support Dolan â€¢ Associate Editor. Business Manager. Kenneth A Shaw â€¢ Assistant Editor. Nancy R. Teater â€¢ Art Director, Photographer. Arvid A Danielson â€¢ Support Supervisor. Susan E.Wright
I l l u s t r a t o r . â€¢ S Con t re ras . â€¢ Adm in i s t r a t i ve Se rv i ces , Typog raphy Anne S LoPres t i â€¢ Eu ropean P roduc t i on Supe rv i so r . M i chae l Zandw i j ken â€¢ Pub l i she r . Russe l l M . H . Be rg

2 H E W L E T T - P A C K A R D J O U R N A L M A R C H 1 9 8 6 Â© Hewlett-Packard Company 1986 Printed in U.S.A.

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
The software development process is being subjected to intense scrut iny

and a lo t o f f ine tun ing these days. In HP's Corporate Engineer ing Depar t
ment , i n So f tware Eng ineer ing Labora to ry leads companywide e f fo r t s in
software metrics, tools, productivity, and environments, and has been holding
an annual Software Productivi ty Conference. The papers presented at these
conferences are ful l of creative engineering and good ideas. Taken together,
they show that HP's software laboratories are investing an impressive portion
of their resources in efforts to improve every aspect of the process of software
development , an ind icat ion that the importance of sof tware is being recog

nized as never before.
The or ig inal versions of the papers on pages 4 through 36 of th is issue were presented at the

1 985 the page Productivi ty Conference, and the subject of the art ic le on page 37 was presented
in a paper a t the 1984 conference. Most o f the papers dea l w i th in te rna l des ign , tes t ing , and
measurement tools and methods. On page 4, Marty Cagan of HP Laboratories presents a summary
of HP's produced intell igence workstation research efforts, which have so far produced one product,
a Common This development env i ronment for the HP 9000 Ser ies 300 workstat ion fami ly . Th is
product, along with some experimental software and the hardware to run i t a l l , is being given, in
a major research in program descr ibed on page 7, to several universi t ies to aid their research in
ar t i f ic ia l in te l l igence and symbol ic programming. The cover photo shows the HP Fl ight Planner/
Flight technology. an application developed using HP Al workstation technology. The Flight Planner/
Fl ight Simulator is descr ibed on page 13.

On page the you' l l f ind a short ar t ic le about the design of a new plug- in ROM package for the
HP-71 B contro l Computer . The package makes i t easier to program the HP-71 B to contro l the
HP 3421 A acquisition Acquisition/Control Unit for low-cost, battery-powered, portable data acquisition
and control applications.

-P .P. Do/an

What's Ahead
Scheduled for March are six art icles on the design detai ls of the HP 54100A/D and HP 541 10D

Digi t iz ing Osci l loscopes. These general -purpose osci l loscopes are especia l ly usefu l for d ig i t ia l
des ign and h igh-speed data communica t ions app l ica t ions . A lso in the issue is an ar t i c le on a
sof tware package designed to teach the fundamentals of d ig i ta l microwave radio.

The HP Journal Letters technical discussion of the topics presented in recent articles and will publish letters expected to be of interest to our readers. Letters must be brief and are subject
to ed i t ing . U shou ld be addressed to : Ed i to r , Hewle t t -Packard Journa l , 3000 Hanover St ree t , Pa lo A l to , CA 94304, U S.A

MARCH 1986 HEWLETT-PACKARD JOURNAL 3

© Copr. 1949-1998 Hewlett-Packard Co.

An Introduction to Hewlett-Packard's Al
Workstation Technology
Here is an overview of HP artificial intelligence workstation
research ef for ts and their re lat ionship to HP's f i rst Al
product , a Common L isp Deve lopment Env i ronment .

by Mart in R. Cagan

HEWLETT-PACKARD RECENTLY ENTERED the
artificial intelligence (Al) arena with the announce
ment of its first symbolic programming product, the

Hewlett-Packard Development Environment for Common
Lisp. The technology underlying HP's initial product entry
is the result of more than five years of research and develop
ment on what has evolved into the Hewlett-Packard AÃ
Workstation. This article provides an overview of the Al
Workstation technology.

The Hewlett-Packard Al Workstation represents the
aggregate of the major symbolic programming software de
velopment efforts at Hewlett-Packard. (Previously, this re
search effort was internally referred to as the Prism pro
gram.) The term Al Workstation refers to the company-wide
internal research and development program in Al, rather
than to a particular product. In addition to the many HP
divisions whose efforts have contributed key system com
ponents, many important concepts are based on research
from the Massachusetts Institute of Technology (MIT), the
University of California at Berkeley, and the Xerox Palo
Alto Research Center (PARC). The University of Utah, in
particular, has contributed significantly. Currently, HP's
Al Workstation is actively used by well over two hundred
people at various HP divisions, as well as by students and
professors at major research universities across the United
States. HP recently announced a $50 million grant of hard
ware and software which will provide Hewlett-Packard Al
Workstations to selected major computer science univer
sities (see box, page 7).

The Al Workstation technology is both portable and scal
able, and can run on a variety of processors and operating
systems, including the new HP 9000 Series 300 workstation
family under the HP-UX operating system. The first and
primary product that is an offspring of the Al Workstation
technology is the Hewlett-Packard Development Environ
ment for Common Lisp, announced at the 1985 Interna
tional Joint Conference on Artificial Intelligence. Much of
the technology described in this article is experimental and
the reader should not assume the software discussed here
can be purchased. Those components that are part of the
Hewlett-Packard Development Environment for Common
Lisp or other products will be noted.

There has been a great deal written in the press recently
regarding symbolic programming technology and AL The
transition from numeric programming to symbolic pro
gramming is analogous to the "algebraization" of mathemat
ics that occurred a century ago. The axiomatic, abstract

algebraic viewpoint that was needed to simplify and clarify
so many puzzles then is likened to the need for symbolic
programming techniques to help solve today's difficult
computational problems. Al applications such as natural
language understanding, theorem proving, and artificial
vision all rely on symbolic programming techniques for
their flexibility and power in manipulating symbols, ma
nipulating relationships between symbols, and representing
large and complex data structures. The Al Workstation is
a software system designed to solve problems using sym
bolic programming techniques. This article explores the
Al Workstation by describing it from four perspectives: the
market, the technology, the environment, and the applica
tions.

The Market
There are many opinions concerning the future direction

of the software market, but most agree that software is
steadily becoming more complicated, powerful, and intel
ligent. Hewlett-Packard's Al Workstation provides the tech
nology for developing and executing intelligent and sophis
ticated applications.

At Hewlett-Packard, Al techniques are viewed as an en
abling technology. The Al Workstation provides tools and
facilities that enable the programmer to create applications
that were previously considered infeasible. These applica
tions include expert systems, artificial vision, natural lan
guage interfaces, robotics, and voice recognition systems.
Development and execution of these Al applications often
require capabilities not available or feasible in conven
tional computer systems. For example, consider an expert
tax advisor application. Such a system would need to em
body the relevant knowledge and reasoning strategies of
human tax advisors. AI-based techniques provide the
necessary mechanisms for this knowledge representation
and reasoning.

The Al Workstation's use need not be restricted to prob
lems requiring the direct employment of Al technology,
however. It has also been designed to foster improvements
in the conventional software development market. For
example, a typical tax accounting application may not need
Al techniques for its implementation, yet can be im
plemented and maintained more productively by employ
ing AI-based software development tools, such as tools that
intelligently help locate and diagnose errors in the program
code.

The Al Workstation is used by the software developer

4 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

to develop applications, and by end users to run AI-based
applications. One of the AI Workstation's primary contribu
tions to the AI market is that it provides both a development
environment and an execution environment for AI applica
tions, and it provides both on low-cost, conventional
hardware such as the HP 9000 Series 300.

The software developer sees the AI Workstation as an
environment tailored for the rapid development of software
systems. The languages provided are geared for high pro
ductivity. The environment allows multiple programs,
written in multiple languages, to be created, tested, and
documented concurrently. Interpreters and compilers
allow systems to be developed incrementally and interac
tively. The software developer can use the AI Workstation
for the development of knowledge-based systems, or sim
ply as a more productive means of generating conventional
software written in conventional languages. In general,
then, two reasons motivate the use of the AI Workstation
as a software development machine. Either the AI Worksta
tion technology is necessary to develop a particular AI
application, or the user has a need to develop conventional
applications in conventional languages more productively.

The end user of AI Workstation-based applications views
the AI Workstation as an execution environment for appli
cations that are highly interactive, intelligent, and cus
tomizable. The end user benefits from the total system,
with high-resolution graphics, color displays, local area
networks, multiple windows, and special-purpose input
devices. The AI Workstation is modular and scalable so
that a particular application can run with a minimum of
resources and therefore keep the delivery vehicle's cost as
low as possible. This is a major feature for many AI Work
station users who wish to both develop and distribute ap
plications using the AI Workstation. To these users, provid
ing a low-cost delivery vehicle is a major concern.

The AI Workstation also supports the notion of a server.
A server is a system that is located on a network, dedicated
to running a particular application. Other systems on the
network, possibly even other servers, can send requests to
the server to perform a function. The server performs the
task and when appropriate, responds to the sender. AI
Workstation-based servers and workstations make it easy
for applications to create and send programs back and forth.
A machine receiving a program is able to execute the pro
gram within the context of its local environment. Networks
of servers running AI Workstation-based applications may
prove to be a cost-effective solution for many users.

There has already been a great deal written about the
large potential for productivity and quality improvements
in software development, and given the rising cost of soft
ware development, there is a high demand for such im
provements. Traditionally, AI researchers have demanded
more productive and powerful software engineering tools
from their environments. This was necessary to manage
the scope and complexity of their software systems. Now
that a personal workstat ions are cost-effective, a
wide range of software engineering tools, previously feas
ible only on expensive mainframes or special-purpose
hardware, are now available for the design, development,
testing, and maintenance of software systems.

The Technology
The evolution of the technology underlying the AI Work

station began with a joint development effort by HP Labora
tories and the University of Utah.1 The goal of this effort
was to create a portable, high-performance implementation
of a modern Lisp system so that programmers could enjoy
efficiency and portability comparable to C and Fortran,
along with the interactive and incremental program de
velopment and debugging environment of Lisp. Previously,

Select any visual color problems seen.

FHIRLY LHRGE SPOTS OF COLOR

VES

Using (thlc

Sin the wafe shows color spots but the image Is poorer In these

Run test wafer through developer to verify the dripping

problem. Does the dripping developer problem still exist?

Dripping developer Is the most likelij cause of the observed symptoms.

Show the loafer to maintenance, who should increase the exhaust air

flow and lower the spray pressure for either the developer or the rin

epad for Case I:

F i g . 1 . 1 C P h o t o l i t h o g r a p h y A d
v isor sc reen showing symptoms,
analys is , and recommended t reat
ment. (See "Diagnost ic Systems,"
page 12 .)

MARCH 1986 HEWLETT-PACKARD JOURNALS

© Copr. 1949-1998 Hewlett-Packard Co.

to enjoy high performance from Lisp, special-purpose, ex
pensive hardware was required. A major contribution of
the resulting underlying Lisp technology is that it is effi
cient even on conventional, low-cost hardware.
Lisp. Lisp is the dominant programming language for arti
ficial intelligence research in the United States. But why
Lisp? From a historical standpoint, Lisp is second in endur
ance and longevity only to Fortran. The modern Lisp sys
tems, such as Hewlett-Packard's implementation of Com
mon Lisp,2 feature less cryptic alternatives to the basic Lisp
commands, as well as many of the control structures and
data types that have proven useful in conventional lan
guages. Although Lisp has evolved from its original form,
it is for the most part as it was designed in 1958 by John
McCarthy. Unlike Fortran, however, Lisp is attracting new
converts daily, and is more popular today than it has ever
been in its 28-year history. Unfortunately, many program
mers in the industry today have not yet had the opportunity
to work with Lisp as a production language, thus making
it difficult to compare Lisp with C, Pascal, Fortran, or
COBOL. A discussion of the primary features of Lisp fol
lows, so that programmers of conventional languages can
get an idea of what it is like to develop in a Lisp environ
ment.
â€¢ Lisp supports incremental development. In conventional

languages, when trying to build a program incrementally,
the programmer must perform a number of time-consum
ing tasks, such as writing procedure stubs, including
declarations, and constructing or simulating data. Each
iteration requires an edit/compile/link/test cycle. In con
trast, the Lisp programmer can simply write a function
in terms of other functions that may or may not have
been written yet and build either in a top-down fashion
or in a bottom-up fashion, creating and testing continu
ously. The function can be executed as soon as it has
been typed in.

â€¢ Lisp programs don't need declarations. Unlike C, Pascal,
COBOL and most other conventional languages in which
the programmer must specify the data structures and
variables before using them, Lisp allocates the right
amount of storage, when it is needed, automatically. This
allows the programmer to develop functions truly "on
the fly," without maintaining and propagating declara
tions throughout the program. Once a program has
stabilized, the programmer can add declarations to im
prove the efficiency.

â€¢ Lisp provides excellent debugging. The Lisp environ
ment supports an attitude towards error diagnosis that
is quite different from that induced by conventional pro
gramming languages. When a bug is encountered during
development of a Lisp program, the Lisp environment
invites the programmer to explore the environment in
which the exception was detected. The full power of
Lisp itself is available to the programmer when debug
ging. Data structures can be analyzed and functions re
defined. In fact, the programmer can even construct new
Lisp functions on the fly to help diagnose the problem.
In Lisp, a program error is less an error and more a break
point where the programmer can examine the system.

'Common Lisp, with the support of the U.S. Department ot Defense, has emerged as the
industry-standard Lisp dialect.

â€¢ Lisp manages memory automatically for the program
mer. Memory management and reclamation are taken
care of automatically in a Lisp environment. With con
ventional languages, memory management often ac
counts for a significant portion of the programmer's code.
In Lisp systems, however, Lisp itself tracks memory use
and reclaims unneeded storage automatically. This ser
vice allows the programmer to concentrate on the prob
lem at hand, without having to manage the resources
needed to implement the problem's solution.

â€¢ Lisp programs can easily create or manipulate other Lisp
programs. Lisp is unique among major languages in that
Lisp programs and data are represented with the same
data structure. The benefits that result from this charac
teristic are many and have proven to be among the major
contributions to the power of Lisp. This characteristic,
for example, makes it is easy to write Lisp programs that
create other Lisp programs, as well as to write Lisp pro
grams that can understand other Lisp programs. Pro
grams can be manipulated as data, and can be im
mediately executed or transferred to another Lisp
machine for execution.

s Lisp programs can run with a mix of compiled and inter
preted code. The AI Workstation provides both a Lisp
compiler and a Lisp interpreter. For development, the
interpreter allows enhanced debugging and quick incre
mental design. Once a program is ready to be put into
use, it can be compiled to increase its performance and
reduce its code size. During development, however, the
programmer often needs to run with a mix of compiled
and interpreted code. The AI Workstation's Lisp has the
feature of allowing an arbitrary combination of compiled
and interpreted code. It is not unusual for a programmer
to redefine compiled functions at run time to examine
and explore the behavior of the application.

â€¢ Lisp is comfortable with symbols. In conventional lan
guages, arbitrary symbols are treated as unstructured
data. The programmer coerces them into a character array
and analyzes the array byte by byte until some sense can
be made out of them in terms of the data types understood
by the language. Lisp, however, is a symbolic program
ming language. Arbitrary symbols are first-class objects,
and can be manipulated as symbols rather than by trying
to treat them as elements in an array. The programmer,
in turn, can give symbols properties and manipulate re
lationships between symbols.

â€¢ Lisp is easy to extend. Functions defined by the program
mer are treated in the same way as system-defined func
tions. When implementing complex systems, it is often
useful to develop a specific vocabulary of functions for
conversing in a particular problem domain. With Lisp,
these specific, problem-oriented languages can be de
veloped easily and quickly.
Because of its longevity and its many useful features, the

reader may wonder why conventional programmers have
not been using Lisp for years. There are three major reasons
for this. First, until very recently, the Lisp environments
described above were available only on large and expensive
machines, and even on these machines, Lisp was using
more than its share of resources. Only now, with the avail-
*"One person's data is another person's program." â€” Guy L. Steele, Jr.

6 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

HP's University AI Program

L i sp , l i ke mos t o f t he A l t echno log ies , was deve loped a t a
universi ty. John McCarthy was at the Massachusetts Inst i tute of
Technology with Marvin Minsky when he developed the f i rst L isp
version in 1958. Today, the universi t ies of the wor ld are st i l l the
pr imary source of bas ic research in Al .

To he lp un ive rs i t i es in the i r A l research p rograms, Hewle t t -
Packard has implemented the la rgest s ing le grants program in
i t s h is to ry . In ear ly 1985 we announced a program to grant up
to $50 United in equipment to selected universi t ies in the United
States. In October, after receiving over 50 proposals, we selected
15 schools.

Each university wi l l receive 20 to 60 engineering workstat ions,
o n e y e a r o f s u p p o r t , a n d e x p e r i m e n t a l A l s o f t w a r e f r o m H P
Laboratories.

The schools we have selected are Brown University, the Califor
nia Insti tute of Technology, Carnegie-Mellon University, Columbia
Un ive rs i t y , Corne l l Un ive rs i t y , t he Massachuse t t s Ins t i t u te o f
Technology, Stanford Univers i ty , the Univers i ty o f Cal i fo rn ia a t
Berkeley, the Universi ty of Cal i fornia at Los Angeles, the Univer
s i t y o f t h e a t B o u l d e r , t h e U n i v e r s i t y o f P e n n s y l v a n i a , t h e
University of Southern California, the University of Texas at Austin,
and the Universi ty of Utah.

The equipment wi l l be used by facul ty and graduate students
to conduct research, and in c lassrooms for inst ruct ion.

B y p r o v i d i n g t h e l a t e s t e q u i p m e n t a n d s o f t w a r e t o t h e s e
schoo ls , we hope to see great advances in the s ta te o f the ar t
in A l . In addi t ion, we expect the un ivers i t ies to be ab le to t ra in
more Al pract i t ioners, and t ra in them better on the same cal iber
of equipment they wi l l use on the job.

Al Research Configurat ion
The workstat ions granted to universit ies are ful ly configured to

suppor t advanced research. They inc lude:
â€¢ HP 9000 Model 320 CPU using the Motorola 68020 processor

wi th seven megabytes o f RAM
â€¢ High-resolution color monitor
â€¢ Mouse
â€¢ Expander box
â€¢ 1 1 0 megabytes of hard disc storage (2 HP 7945 disc drives)
â€¢ Cartr idge tape drive for system backup (HP 9144A)
â€¢ Local area network interface and software
â€¢ HP-UX operat ing system with windows and graphics ut i l i t ies

â€¢ HP LaserJet Plus Printer (1 for each 10 workstations on the net)
â€¢ Plotter (HP 7550A) (1 for each 10 workstations on the net)
â€¢ Five addit ional disc drives (5 HP 7945s for 20 workstations).

Some researchers plan to use the Al Workstat ions for graphics
research . They w i l l rece ive the above con f igu ra t ions w i th the
addit ion of the fol lowing:
â€¢ Graphics display stat ion with eight planes of color and a sec

ond high-resolut ion color d isplay
â€¢ Graphics accelerator.

Al Research at MIT
T h r e e y e a r s a g o H e w l e t t - P a c k a r d m a d e a g r a n t o f f i v e H P

9 0 0 0 M o d e l 2 3 6 P a s c a l w o r k s t a t i o n s t o P r o f e s s o r G e r a l d
Sussman a t the Massachuse t ts Ins t i tu te o f Techno logy . Us ing
these systems, Prof. Sussman developed his own dialect of Lisp,
called Scheme, which is oriented to the teaching of programming.

Today, s tudents tak ing MIT 's 6 .001 c lass , the f i rs t course in
the computer sc ience cur r icu lum, learn Scheme ins tead o f For
t ran or Pasca l o r C. Wi th h is co l league, Haro ld Abe lson, Pro f .
Sussman has wri t ten a book, The Structure and Interpretat ion of
Computer Programs. Tha t book i s now used to teach p rogram
ming skills at Hewlett-Packard and at campuses across the U.S. A.

With his new grant, Prof . Sussman plans to take advantage of
the ski l ls the students learned in 6.001 to improve the curr iculum
for S ignals and Systems, a requi red course for a l l e lect r ica l en
g ineer ing majors. He proposes to put sophist icated s imulat ions
of circuits at the students' disposal. With their programming ski l ls
t hey can exp lo re those s imu la t i ons , deve lop the i r own exper i
ments, and learn by doing. "For the first time," says Prof. Sussman,
"we can incorporate in to the curr icu lum expl ic i t theor ies of how
ski l led engineers analyze and design technological art i facts. Our
cha l lenge now is to learn how to descr ibe , exp la in , and teach
the process of engineer ing."

Prof . Sussman's work in computer-a ided- inst ruct ion is based
on theor ies deve loped by Marv in Minsky and Seymour Paper t .
H i s resea rch may l ead us to new mode ls o f l ea rn ing tha t w i l l
a l low students to learn and reta in more mater ia l more rapid ly .

Seth G. Fearey
Al University Grants Program Manager

Hewlet t -Packard Laborator ies

ability of inexpensive, high-performance workstations and
improved compiler technology, has Lisp become a cost-ef
fective solution for conventional software development.
Second, production languages were previously judged
largely on the efficiency of compiled code. Now that the
constrained resource is the software development cost
rather than the delivery machine hardware, languages are
being judged based on a different set of values.3

Third, while the features of Lisp described above are
valuable, they do not come without a cost. Most Lisp sys
tems remain ill-suited for such problems as real-time and
security-sensitive applications. Reducing these costs is a
major research topic at many university and industrial re
search laboratories. At HP, we have acknowledged the fact
that different languages are optimized to solve different
problems, and we have provided the ability for the Lisp
environment to access arbitrary C, Pascal, and Fortran
routines. This has important ramifications for HP and its

customers. It is not necessary to discard existing code and
data libraries to enjoy the benefits of Lisp. For example,
an intelligent front end that accesses Fortran code libraries
for instrument control can be written in Lisp. (The exten
sions to Common Lisp for foreign function calling are part
of the Hewlett-Packard Development Environment for Com
mon Lisp product.) Al Workstation-based applications are
often blends of Lisp and conventional language compo
nents.
Object-Oriented Programming. The Al Workstation pro
vides two higher-level languages, themselves implemented
in Lisp, which support alternative paradigms for software
development. The first of these language extensions sup
ports object-oriented programming while the second sup
ports rule-based programming.

HP provides a Lisp-based object-oriented programming
language. (The extensions to Common Lisp for object-
oriented programming are part of the Hewlett-Packard De-

MARCH 1986 HEWLETT-PACKARD JOURNAL 7

© Copr. 1949-1998 Hewlett-Packard Co.

velopment Environment for Common Lisp product.) Most
of the AI Workstation's environment itself is written using
this technology. Object-oriented programming is very
much on the rise throughout the entire industry, and for
good reason. Object-oriented programming brings to the
programmer a productive and powerful paradigm for soft
ware development. It is a paradigm that addresses head-on
the ser ious problems of code reusabi l i ty and software
maintainability by employing powerful techniques such as
inheritance, data abstraction, encapsulation, and generic
operations.4

Unlike most conventional languages, object-oriented
Lisp is a language designed to support a particular program
ming methodology. The methodology, with support from
the language, provides explicit facilities for code reusabil
ity, software maintainability, program extensibility, and
rapid development.

The essential idea in object-oriented programming is to
represent data by a collection of objects and to manipulate
data by performing operations on those objects. Each object
defines the operations that it can perform.5

The first facili ty I will describe is the notion of data
abstraction. Using the object-oriented style of program
ming, each object is regarded as an abstract entity, or "black
box," whose behavior is strictly determined by the opera
tions that can be performed on it. In other words, the only
way an object is accessed or modified is by performing the
operations explicitly defined on that object. In particular,
the internal data structure used to represent the object is
private, and is directly accessed only by the operations
defined on the object. Operations are invoked by sending
messages to the object.

One advantage of the object-oriented style of program
ming is that it encapsulates in the implementation of an
object the knowledge of how the object is represented. The
behavior of an object is determined by its external interface,
which is the set of operations defined on the object. If the
designer changes the representation of an object, and the
externally visible behavior of the operations is unchanged,
then no source code that uses the object need be changed.

For example, suppose we wish to define a type dog. Using

the object-oriented extensions to Common Lisp, our defini
tion might be:

(define-type dog
(: va r name)
(:var age)
(: va r owner)

This says that we are defining a new type of object dog,
with an internal representation consisting of a name, an age,
and an owner. For example:

(s e t f f i d o (m a k e - i n s t a n c e ' d o g : n a m e " F i d o "))
This sets the variable fido to an instance of the type dog,

with the name "Fido." If we wished, we could create one
hundred instances of the type dog, each unique, whether
or not they have the same name (just as there are many
dogs, with more than one named "Fido"). Note that exter
nally, nothing knows of our internal representation of the
type dog. We could be implementing the dog's internal
representation any number of ways.

We define operations on type dog by specifying the type
and the operation, any parameters required by the opera
tion, and the implementation of the operation. For example,
to define an operation that will let us change the dog's
owner:

(d e f i n e - m e t h o d (d o g : g i v e - n e w - o w n e r) (n e w - o w n e r)
(s e t f o w n e r n e w - o w n e r)

Note that the implementation of the operation is the only
place where the internals of type dog are referenced. The
value of this encapsulation is that if we decide to change
the implementation of type dog, then it is only the type
definit ion and the operations defined on that type that
need to be modified.

We can access and manipulate the object by sending
messages to it requesting it to perform specific operations.
For example, to change Fido's owner to "Mandy":

(â€” Â» f ido :give-new-owner "Mandy")
This statement reads, "Send the message to fido :give-new-
owner 'Mandy'." Typically, we would define a number of
operations for the type dog, such as sit, stay, come, and speak.
These could then be invoked:

Fig. on detai ls. s imulator screens. Also see cover photo. See text on page 13 for detai ls.

8 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

(-Â» fido :sit)
(â€” Â» fido :stay)
(â€” Â» fido :come)
(â€” Â» fido :speak)
The second facility I will describe addresses the problem

of code reusability. To a certain extent, the data abstraction
facilities described above help ease the reuse of code mod
ules in that the implementation is encapsulated, and the
external interface is well-defined. More directly applicable
to this problem is the concept of inheritance. A new type
of object can be defined that inherits from other types. All
of the operations that manipulate the types and the data
maintained by the types are inherited. A new type defini
tion the selectively override specific characteristics of the
types that it inherits from. Thus, to define a new type that
is only slightly different from some existing type, one might
simply have the new type inherit from the existing type
and override those aspects that differ in the new type. For
example, to define a new type of dog, golden-retriever:

(de f i ne - r ype go lden - re t r i eve r
(: i nhe r i t - f rom dog)
(: va r number -o f - t enn i s -ba l l s - re t r i eved)

)
This says that we want to define a new type golden-retriever,

which inherits the data and operations from the type dog.
In addition to the inherited attributes, we define golden-re
triever's to maintain the attribute number-of-tennis-balls-retrieved.
Note that when using an object, one cannot observe whether
or not that object's type was defined using inheritance.

We create an instance of the new type golden-retriever:
(s e t f m a c (m a k e - i n s t a n c e ' g o l d e n - r e t r i e v e r : n a m e " M a c "))
For this new type of dog, we would have our own im

plementation of the :speak operation, one that produces a
deeper bark than the inherited version. We would also have
some additional operations defined which are appropriate
only we objects of the type golden-retriever. For example, we
have the additional operation fetch, which of course is an
attribute of all retrievers, but not all dogs, as well as the
new operation :make-coffee (Mac is a very smart dog). These
could then be invoked:

(- > m a c : s p e a k)
(â€” > mac :fetch)
(-Â» mac :make-co f fee : t ime 0700)
Note that we could have made further use of inheritance

by first defining a type retriever that inherited from type dog,
and then defining the new types golden-retriever and labrador-
retriever which inherit from the type retriever.

Another facility provided by object-oriented Lisp is the
support of a powerful form of generic operations known
as poÃymorphism. When one performs an operation on an
object, one is not concerned with what kind of object it is,
but rather that an operation is defined on the object with
the specified name and the intended behavior. This ability
is lacking in languages like Pascal, where each procedure
can accept only arguments of the exact types that are de
clared in the procedure header. As an example of the value
of generic operations, suppose one day we attempt to re
place Man's Best Friend with a robot, presumably one
domesticated to the same extent as a dog is . We could
implement the new type robot as follows:

(de f i ne - t ype robo t
(: v a r n a m e)
(: va r mode l)
(:var owner)

)
To create an instance of type robot:
(s e t f r o b y (m a k e - i n s t a n c e , r o b o t : n a m e ' R o b y "))
Suppose that we have an existing library of applications

tha t in d i rec t ob jec t s o f the type go lden- re t r iever in
various tasks. If we were to implement the same functional
operations performed by objects of type golden-retriever for
the type robot, then all of our application code would work
unchanged:

(-Â» roby :sit)
(-Â» roby :stay)
(â€” Â» roby :come)
(â€” > roby :fetch)
(- > r o b y : s p e a k)
(â€” Â» roby :make-coffee :time 0700)
Note that while the implementations of these operations

differ, the functional specification and the external pro
tocol robot dealing with objects of type golden-retriever and robot
are defined to be the same, so our applications work un
changed, and we save on dog food, too.

The facilities of object-oriented programming described
here can go a long way towards improving program main
tainability, program extensibility, and code reusability. Ob
ject-oriented programming has been used to implement
operating systems, window managers, market simulations,
word processors, program editors, instrument controllers,
and games, to name jus t a few of i t s appl icat ions . I ts
paradigm has proven productive, powerful, and easy to
learn and use.
Rule-Based Programming. The second of the alternative
paradigms provided in the AI Workstation is the Hewlett-
Packard Representation Language (HP-RL), HP's experi
mental rule-based programming language. b HP-RL is in
tended to support the development of knowledge-based
software systems. Knowledge-based software systems,
which include expert systems, are systems that search a
knowledge base of information and attempt to make deduc
tions and draw conclusions using the rules of logical infer
ence. A knowledge base is a data base that embodies the
knowledge and problem-solving strategies of human ex
perts. In an expert system, there is rarely a procedural
description defined in advance for solving a problem. The
system must search the knowledge base and make infer
ences by using the rules and strategies defined by the de
veloper. Current knowledge-based software systems in
clude applications such as medical consultation systems,
integrated circuit diagnostic systems, tax advisors, and nat
ural language understanding systems.

The key to knowledge-based systems lies in representing
the vast amounts of knowledge in an organized and man
ageable structure. Without such organization, problems
quickly become intractable. An intractable problem is one
that cannot be solved in a reasonable amount of computa
tion time. HP-RL provides data structures and control struc
tures specifically for knowledge representation, knowledge
organization, and reasoning about that knowledge.

HP-RL allows knowledge to be represented as frames. A

MARCH 1986 HEWLETT-PACKARD JOURNAL 9

© Copr. 1949-1998 Hewlett-Packard Co.

frame is a data structure that groups together arbitrary
amounts of information that are related semantically.7 Typ
ically, a frame is used to store information specific to, or
about, a particular entity. HP-RL allows knowledge to be
organized into frames of related information. Like object-
oriented programming, HP-RL provides the ability for
frames to inherit information from other frames. For exam
ple, a frame that describes a specific entity such as a person,
Jane, might inherit characteristics from related entities such
as scientist and female. Therefore, the entity Jane automat
ically inherits all of the attributes of females and scientists.
Attributes specific to Jane can then be specified to differen
tiate Jane from other female scientists.

Frames can be grouped into domains of knowledge. This
sort of partitioning reduces problem complexity, and can
also improve the efficiency of searches through the knowl
edge base by helping the program avoid searching through
irrelevant knowledge. Searching through the knowledge
base is a sophisticated process performed by the HP-RL
inference engine. The inference engine is the facility that
scans the knowledge base trying to satisfy rules. Rules in
HP-RL are frames composed of a set of premises and con
clusions, similar to an if-then construct in conventional
languages. HP-RL provides both forward chaining and
backward chaining rules. The inference engine applies for
ward chaining, or data driven, rules to infer conclusions
given verified premises. The inference engine applies back
ward chaining, or goal driven, rules to find verifiable prem
ises, given a desired conclusion.

As an example, consider a rule that says: If a dog is a golden
retriever, then the dog likes tennis balls. If we define the rule to
be a forward chaining rule, then when the inference engine
is searching the knowledge base, if the current data sup
ports the assertion that the dog is a golden retriever, then
we can infer that the dog likes tennis balls. If we define

the rule to be a backward chaining rule, then when the
inference engine is searching the knowledge base, if the
desired goal is to find a dog that likes tennis balls, then
the inference engine will check to see if the current data
supports the assertion that the dog is a golden retriever.

One of the primary differences between rule-based ap
proaches and conventional programming is that in rule-
based programs , the program 's flow of control is not explicit
in the program. The process of deciding what to do next
is consciously separated from data organization and man
agement. The programmer can help direct searches by using
heuristics. A heuristic is a rule that guides us in our navi
gation and search through a knowledge base. Managing
searches through the knowledge base is a major research
topic, since an intelligent and selective search of a knowl
edge base can make the difference between a usable system
and an unusable system. Searching the knowledge base is
where most of the computing resources are spent when
using a knowledge-based system. To help with this prob
lem, HP-RL provides for the incorporation of heuristics
about dealing with other heuristics, which can be used to
govern the strategy of the program and therefore conduct
searches more intelligently.

HP-RL currently contains a number of experimental
facilities which are being studied and tested to discover
more effective mechanisms for performing the difficult task
of capturing and using knowledge.

The Environment
One of the primary differences between programming

with Lisp and programming with other languages is the
environment provided for the programmer. The AI Work
station provides access to all data and execution via an
integrated environment. The user environment is unusu
ally flexible and powerful. It contains a large and powerful

r r

1 1 u f 1 1 1 / 1 Ã Â¡i / n i f / / 1 i/i i HI in i IF i r i
| I I H I C H O F T H E l l f l N f l G E R S B R E M B H f l G E R S

O F M f l N f l G E R S O F D E P O R T M E N T S ?

I l l

5 : 9 1

H H O - 1 E E - L - 3 R D S G D E T : 6

T H E - 2 N :

N : 4 0

P P : 3 3

H D M I N I S T P f l T O R - 1 P : 1 0 N P

O F - 1 D i

F i g . 3 . N a t u r a l l a n g u a g e u n d e r
s tanding system screen, showing
a n E n g l i s h q u e r y , a p a r s e t r e e
s h o w i n g h o w t h e s y s t e m i n t e r
p r e t e d t h e s e n t e n c e , a n d t h e r e
sul ts of the query.

10 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

collection of text-manipulation functions and data struc
tures useful in constructing user interfaces, text and
graphics editors, and browsers. The following sections
explore these various components of the AI Workstation
user environment.
Editing. The AI Workstation environment contains a ver
sion of EMACS, an editor originally developed by Richard
Stallman at MIT. Hewlett-Packard's object-oriented Lisp
implementation of EMACS, like the original MIT EMACS,
is a customizable, extensible, self-documenting, screen-
oriented, display editor.8

CustomizabJe means that users can mold the AI Worksta
tion EMACS in subtle ways to fit personal style or editing
tasks. Many user-level commands exist to allow the user
to change the environment's behavior dynamically. Cus
tomization is not limited to programmers; anyone can eas
ily customize the environment.

Extensible means that the user can make major modifica
tions and extensions to the AI Workstation EMACS. New
editing commands can be added or old ones changed to fit
particular editing needs, while the user is editing. The user
has a full library of text-manipulation functions at hand
for the creation of new editing functions. This type of ex
tensibility makes EMACS editors more flexible than most
other editors. Users are not constrained to living with the
decisions made by the implementors of the AI Workstation
EMACS. If the user has a need for a new function, or a
reason to modify the behavior of an existing function, then
the user is able to make the modification quickly and easily.

Self-documenting means that the AI Workstation EMACS
provides powerful interactive self-documentation facilities
so that the user can make effective and efficient use of the
copious supply of features.

Screen-oriented means that the user edits in two dimen
sions, so the page on the screen is like a page in a book,
and the user has the ability to scroll forward or backward
at will through the book. As the user edits the page, the
screen is updated immediately to reflect the changes made.
Just as many books on a desk can be open and in use at
once, with the AI Workstation EMACS, many screens can
be visible and active simultaneously. In fact, one of HP's
extensions to MIT's EMACS is the ability not only to have
multiple screens active on a single physical display, but
also to have multiple screens on multiple physical displays.
(The EMACS-based editing environment described here is
part of the Hewlett-Packard Development Environment for
Common Lisp product.)
Browsing. Another feature of the AI Workstation user en
vironment is a large library of tools known as browsers.
Browsers are more than an integral component of the user
environment; they are a metaphor for using the environ
ment. A browser is a simple tool for the convenient perusal
and manipulation of a particular set of items.9 Experimental
browsers in the AI Workstation environment include
documentation browsers, file browsers, mail browsers,
source code browsers, and application browsers. These
browsers range from simple to very complex. Users can
list all the mail messages sent by a particular person regard
ing a particular subject, or can instantly retrieve the defini
tion of a particular Lisp function. The user can conduct
automated searches of the documentation, or can browse

and manipulate the contents of a complex data structure.
Browsers provide a simple, intuitive, integrated interface

that is useful for handling a wide range of problems. The
environment provides a library of browser construction
tools and functions to allow users to create their own brows
ers for their particular applications and needs.
Programming. On the AI development machine, a large
portion of the user environment is tuned to support the
programming task, which includes activities such as pro
gram editing, debugging, testing, version and configuration
management, and documentation. The AI Workstation sup
ports development in Lisp, C, Pascal, and Fortran. In addi
tion, a toolkit is provided to let users customize the envi
ronment for other languages. The AI Workstation provides
an integrated and uniform model of multilingual software
development.

One of the major features of the AI Workstation user
environment is the interface to the underlying Lisp system.
Lisp programmers enjoy direct access to the Lisp compiler
and interpreter without having to leave the environment.
This means that a program can be edited, tested, debugged,
and documented incrementally and interactively as the
program is developed. The editing is assisted by an editor
that understands the syntax of Lisp. Testing is assisted by
Lisp interface commands, which pass the text from the
program editor to the underlying Lisp system and return
the results back to the environment. Debugging is assisted
by an interactive debugger, function stepper, and data in
spector available directly from the environment. Program
documentation is assisted by documentation tools de
signed for the programmer which generate much of the
formatting details automatically.

Using the foreign function calling facilities of the AI
Workstation described earlier, non-Lisp programmers can
also enjoy many of the benefits of interactive, incremental
development. For example, the AI Workstation contains
full two- and three-dimensional vector and raster graphics
operations. (The graphics facilities referred to are provided
on the HP 9000 Series 300 running under the HP-UX operat
ing system.) While these operations are C routines, all are
directly accessible from the Lisp environment. Typically,
C programmers must iterate through the edit/compile/link/
test cycle as they develop a graphics application. In con
trast, using the AI Workstation, C programmers can step
through the development of their graphics applications
statement by statement, and enjoy immediate feedback sim
ply by observing the results on the screen. Once the pro
gram is functionally correct, the programmer can convert
the statements into a formal C program, and compile it
with the standard C compiler.
Managing. The AI Workstation user environment contains
a variety of optional service applications to support the
programmer in dealing with office and management func
tions. Experimental applications developed with this tech
nology include electronic mail, project management, docu
mentation preparation, slide editing, calendar, spreadsheet,
information management, and telephone services. Each of
these applications, once the user chooses to include it, be
comes an integral part of the environment. Because all of
these applications are written using the the AI Workstation
environment facilities, they are customizable, extensible,

MARCH 1986 HEWLETT-PACKARD JOURNAL 11

© Copr. 1949-1998 Hewlett-Packard Co.

and accessible from anywhere in the environment. For exam
ple, the user can move from creating a slide to reading a mail
message to testing Lisp code and back to creating the slide.
Interfacing. The AI Workstation's user environment con
tains tools that greatly simplify the incorporation of new
input and output devices such as tablets, touchscreens, or
voice synthesizers. In addition to supporting standard
keyboard and mouse input, experimental versions of the
AI Workstation environment also support joystick, tablet,
touchscreen, videodisc, voice input and output, and
touchtone telephone input. The user environment also sup
ports many user interface models, and provides a library
of environment functions to help users define their own
user interface model. Existing user interface models in
clude pop-up menus, softkeys, English commands, and
CONTROL-META key sequences.

The AI Workstation does not impose a particular inter
face model on the user. Default interfaces exist, but the
user is free to modify or add any user interface desired.
Delivery applications written to run under the AI Worksta
tion environment can choose to use one or more of the
supplied user interfaces, or the designer can define a new
interface.

The Appl icat ions
This section examines some of the primary types of ap

plications the AI Workstation technology was designed to
develop and run. Note that unless specified otherwise,
these applications are experimental and not available for
purchase.
Diagnostic Systems. Diagnostic systems are good examples
of expert system applications. Diagnostic systems retrieve
as much data as possible from instruments and/or users,
and attempt to determine the cause of the problem and/or
the remedy. Diagnostic system applications include medi

cal diagnostic systems, instrument diagnostic systems, and
intelligent computer-assisted instruction applications.

At HP Laboratories, we are experimenting with an 1C
photolithography diagnosis system (see Fig. 1, page 5). This
system, called the Photolithography Advisor, is an expert
system used to diagnose failures in the negative photolithog
raphy resist stage of 1C fabrication.10

Within Hewlett-Packard's computer support organiza
tion, a number of diagnostic expert systems are employed.
The Schooner expert system diagnoses and corrects data
communication problems between a terminal and an HP
3000. The AÃDA expert system provides an efficient tool
for analyzing HP 3000 core dump files. The Interactive Periph
eral Troubleshooter system diagnoses disc drive failures.
Instrument Control. A growing class of expert systems
deals with the intelligent control, monitoring, and testing
of instruments, as well as the interpretation of the data
gathered by these instruments. Instrument control and in
terpretation applications include network analysis, factory
floor monitoring, process control, and many robotics appli
cations.

At Hewlett-Packard, one experimental application helps
with the interpretation and classification of data collected
by a mass spectrometer. Another application analyzes data
from a patient monitoring system. Within the AI industry,
a number of intelligent instrument and process control ap
plications are being developed, such as a system that
monitors the operations of an oil refinery."
Simulations. Many complex software systems fall into the
category of simulations and modeling. Simulations play
major roles in nearly every aspect of a business. The object-
oriented programming facilities discussed earlier enable
engineers to program simulations rapidly. Simulation ap
plications include econometric modeling, flight simula
tion, chemical interaction modeling, and circuit simula-

Â « t h o d (a u d i o - b o : m i l > (p l i s t)
" / d e v / i h i l " O Â »

< H o Â « i 1 0 (f 1 1)) }
< (> i 3 0))
(c a l l - m e t h o d : p l a y - t o

e d c h a r b u f f c , - [1 5 3

f a u f f e r [t Ã] = 0 x 8 0 ;

i o c t l Ã f d , E F T 5 B P , & b u f f e r t O] > ;

L a s t R e a d : 5 - F e b - 8 6 0 3 : 1 3 : 2 1

Sub j e

(1 8) 3 - F e b
t i d i n g 1

3H-;

F i g . 4 . U n i f i e d p r o g r a m m i n g e n
v i ronment sc reen shows mu l t i l i n
g u a l s u p p o r t w i t h s i m u l t a n e o u s
deve lopmen t i n C and L i sp , i n te
gra ted mai l , and dynamic data in
spection.

12 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

tions.
At HP Laboratories, for example, we have implemented

VLSI logic simulators, which enable an engineer to design,
debug, test, and evaluate circuit designs before incurring
any actual manufacturing expense.3

The HP Flight Planner/Flight Simulator (see Fig. 2 and
cover) is an application designed by HP Laboratories to
illustrate a number of important features of the AI Worksta
tion technology: namely, that multilingual applications are
desirable and simple to develop, that complex applications
can be developed rapidly, that Lisp applications can be
designed to run without the interruption of garbage collec
tions, and that Lisp applications can run on conventional
hardware and operating systems at very high performance.

The Flight Planner module is a constraint-driven expert
system for planning a flight. The system presents a detailed
map of California stretching from San Francisco to Los
Angeles. The pilot is asked for an originating airport, a
final destination, and any intermediate stops desired. The
pilot then is allowed to specify specific constraints, such
as "Avoid oceans and mountain ranges," "Ensure no longer
than 3 hours between stops," or "Plan a lunch stop in Santa
Barbara." The system's knowledge base includes data on
the airports, the terrain, and the specifications and capabil
ities of a Cessna 172 airplane. With the constraints
specified, the Flight Planner attempts to find a viable flight
plan as satisfies the constraints specified by the pilot, as
well as the constraints implied by the limitations df the
terrain and aircraft.

Once a flight plan has been generated, the Flight Planner
passes the flight plan off to the Flight Simulator module,
which then flies the plan as specified. The flight plan
specifies the destination, route, and cruise altitude for each
leg of the flight. The flight simulator's autopilot module,
using these directions as well as the specific airport and

airplane data from the knowledge base, performs the take
off, flies the plane using ground-based navigational aids,
and executes an instrument landing. In addition to flying
predetermined flight plans via the autopilot, the Flight
Simulator can be flown manually. The pilot uses an HP-HIL
joystick, a 9-knob box, and a 32-button box as the controls.

The Flight Planner is implemented using HP-RL. The
Flight Simulator is implemented in Common Lisp and the
object-oriented extensions to Common Lisp. The graphical
transformations are performed by C routines accessed from
Lisp, using the 3D graphics facilities of the HP-UX operat
ing system. The model of flight, the autopilot component,
and the scene management are all written using the object-
oriented extensions to Common Lisp.

The Flight Simulator required two months for two people
to develop, while the Flight Planner required a month for
three people.
Natural Language. With the computational and reasoning
capabilities of systems such as the AI Workstation, compu
tational linguists are making headway into the difficult
field of natural language understanding. At HP Laboratories,
computational linguists have been using the AI Workstation
to develop an experimental, domain independent, natural
language understanding system (see Fig. 3). HP's natural
language system employs a hierarchically structured lexi
con, a set of lexical rules to create derived lexical items,
and a small set of context-free phrase structure rules as the
data structures used in parsing English sentences and ques
tions. Interpretations of these sentences are the result of
the meanings of the individual words together with the
semantic rules that are associated with each of the dozen
or so phrase structure rules. What the natural language
system produces is a set of unambiguous application inde
pendent expressions in first-order logic, each expression
corresponding to one possible interpretation of the original

^ - S U P P O R T [1] H D D - S U P P O R T [I] O H - T H B L E C 0 J F I N D - S F O T - O I - T f l B L E [0] B L O C K - P O S I T I O H - L E S S [0]

I N T E R V R L C 0 J L O T R T K i l - P I G H T - O F - B L O C K [0]

. I I H

* . ' T

G E T - R I D - O F C B J

N D - H I G H E S T v e L O O . C l] M f l K E - B L O C k C 0]

(d e f u n p l a c e (b l o c k s u p p o r t)
(u n l e s s (- b l o c k s u p p o r t)

b l o c k - l i s t (a d j o i n b l o c k b l o c k - l i s t Â »
r - t o p b l o c k)

- a t b l o c k (f i n d - s p a c e s u p p o r t b l o c k))

(s e t f Â « h i g h - b l o c k * (f i n d - h l g h e s t - b l o c k b l o c k - l i s t))))

(PLBCE VELLÃ“N GSEEN)

PLflCE
events :

reference variable

Terence variable:

b l o c k - l i s t = (U N I T E M f l d f H I H C Y f t H G R E E N V E L L O U R E D

F i g . 5 . A s c r e e n f r o m M i c r o -
S c o p e , a k n o w l e d g e - b a s e d p r o
gram analysis tool , showing a cal l
g raph mon i to r ing p rogram execu
t ion , the source code o f the h igh
l ighted module, evaluat ion history
b r o w s e r , a n d s y s t e m r e s o u r c e
monitors.

MARCH 1986 HEWLETT-PACKARD JOURNAL 13

© Copr. 1949-1998 Hewlett-Packard Co.

sentence. In test applications, these expressions are trans
duced into either data base queries or messages to objects,
making use of the domain-specific knowledge in each ap
plication to make precise those relations or pronoun bind
ings that were underspecified in the sentence itself.12'13'14
Software Engineering. While environments such as the AI
Workstation can significantly improve software productiv
ity, we are just beginning to reap the benefits of applying
AI to the software development process itself. There are a
number of projects throughout the industry working in this
area.

At HP Laboratories, we are working on intelligent pro
gramming environments that help the user assess the im
pact of potential modifications, determine which scenarios
could have caused a particular bug, systematically test an
application, coordinate development among teams of pro
grammers, and support multilingual development in a uni
form manner (see Fig. 4).15 Other significant software en
gineering applications include automatic programming,
syntax-directed editors, automatic program testing, and in
telligent language-based help facilities.

Applying AI to the software development process is a
major research topic.16 There is tremendous potential for
improving the productivity of the programmer, the quality
of the resulting code, and the ability to maintain and en
hance applications. One of HP's first projects of this type
is MicroScope, a tool to help software engineers understand
the structure and behavior of complex software systems
(see Fig. 5).

Conclusion
We have discussed the AI Workstation from the point of

view of the software market, the underlying technology,
the user environment, and the AI-based applications. Hav
ing studied the AI Workstation from each of these perspec
tives, we hope that the reader will assimilate this into a
coherent and accurate view of the HP AI Workstation tech
nology. Over the coming years, HP engineers and our part
ner universities will be using the AI Workstation as a plat
form for exploring increasingly intelligent and powerful
applications and technologies.

Acknowledgments
Since the AI Workstation is defined to be the aggregate

of HP's research in the AI area, the efforts of well over 100
people at Hewlett-Packard divisions and universities
around the United States are represented. Major contribu
tions came from Martin Griss and his Software Technology
Laboratory, the Knowledge Technology Laboratory, the In
terface Technology Laboratory, and the director of HP
Laboratories' Distributed Computing Center, Ira Goldstein.
The Fort Collins Systems Division, with teams led by Roger
Ison and John Nairn, provided an existence proof to the
computer industry of a high-performance, quality imple
mentation of Common Lisp on conventional hardware.
The Computer Languages Laboratory developed the ex
tensions to the AI Workstation for conventional languages.
The faculty and students of the University of Utah, Pro
fessor Robert Kessler in particular, contributed greatly
to the fundamental capabilities of the AI Workstation. A
number of consultants from Stanford University, the Uni

versity of Utah, the Rand Corporation, and the University
of California at Santa Cruz continue to help us improve
our technology. This article has benefited from the insights
of Ralph Hyver, Seth Fearey, Martin Griss, and Alan Snyder
of HP Laboratories, and Mike Bacco and Bill Follis of Fort
Collins. The author also thanks Cynthia Miller for her long
hours of editing.

References
1. M.L. Griss, E. Benson, and G.Q. Maquire, "PSL: A Portable

LISP System," 1982 ACM Symposium on LISP and Functional
Programming, August 1982.

2. G.L. Steele, Common Lisp: The Language, Digital Press, 1984.
3. J.S. Birnbaum, "Toward the Domestication of Microelec

tronics," Communications of the ACM, November 1985.
4. M. Stefik and D.G. Bobrow, "Object-Oriented Programming:

Themes and Variations," The AI Magazine, January 1986.
5. A. Snyder, Object-Oriented Programming for Common Lisp,

HP Laboratories Technical Report ATC-85-1, February 1985.
6. S. Rosenberg, "HP-RL: A Language for Building Expert Sys

tems," Proceedings of the Eighth international Joint Conference
on Artificial inteJIigence, August 1983.

7. R. Fikes and T. Kehler, "The Role of Frame-Based Represen
tation in Reasoning," Communications of the ACM, September
1985.
8. R.M. Stallman, "EMACS: The Extensible, Customizable, Self-

Documenting Display Editor," in Barstow, Shrobe, and Sandewall,
Interactive Programming Environments, McGraw-Hill, 1984.
9. A. 251, "Computer Software," Scientific American, Vol. 251,

no. 3, September 1984.
10. T. Cline, W. Fong, and S. Rosenberg, "An Expert Advisor for
Photolithography," Proceedings of the Ninth Internationa] Joint
Conference on Artificial Intelligence, August 1985.
11. R.L. Moore, L.B. Hawkinson, C.G. Knickerbocker, and L.M.
Churchman, "A Real-Time Expert System for Process Control,"
Proceedings of the 1984 Conference on Artificial Intelligence Ap
plications, December 1984.
12. C.J. Pollard and L.G. Creary, "A Computational Semantics for
Natural Language," Proceedings of the Association for Computa
tional Linguistics, July 1985.
13. D. Proudian, and C. Pollard, "Parsing Head-Driven Phrase
Structure Grammar," Proceedings of the Association for Computa
tional Linguistics, July 1985.
14. D. Flickenger, C. Pollard, and T. Wasow, "Structure-Sharing
in Lexical Representation," Proceedings of the Association for
Computational Linguistics, July 1985.
15. M.L. Griss and T.C. Miller, UPE: A Unified Programming
Environment, HP Laboratories Technical Report STL-85-07,
December 1985.
16. D.R. Barstow and H.E. Shrobe, "From Interactive to Intelligent
Programming Environments," in Barstow, Shrobe, and Sandewall,
Interactive Programming Environments, McGraw-Hill, 1984.

14 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

A Defect Tracking System for the UNIX
Environment
Created in response to a lack of e f fect ive defect t rack ing
and analys is tools for sof tware development , DTS is now
used by 24 HP Div is ions.

b y S t e v e n R . B l a i r

DTS IS A DISTRIBUTED defect tracking system that
simplifies the process of reporting, collecting, and
summarizing software defect data. It provides

utilities for submitting, receiving, resolving, and archiving
defect reports, and for generating detailed and summary
report listings.

DTS was designed to serve the defect tracking and met
rics collection needs of prerelease software development.
It is available only in HP software development laboratories.
It runs under versions of AT&T Bell Laboratories' UNIXâ„¢
operating system on networks of HP 9000 and Digital Equip
ment Corporation VAXâ„¢ computers.

DTS was created in response to a lack of defect tracking
and analysis tools in software development environments.
For example, when a defect report was submitted, it often
didn't describe the problem adequately or contain the infor
mation necessary to reproduce the problem. There was also
no easy way to tell if the defect report got to the person
who had to research and fix the problem, and it was a
difficult and tedious task for a manager to get an accurate
count of defects for a lab, a project, or a particular engineer.
Finally, data that managers needed for development pro
cess metrics wasn't always collected.

DTS solves these problems in a way that is easy to learn
and use. This paper presents the DTS solution first from
the project management perspective and then in terms of
user interaction. It describes the system's operational envi
ronment and shows the current status of DTS use at HP.

Average Time Between Fai lures (Days)
2 ' '

Oct Nov
Month

Dec A u g S e p t

Fig. 1 . Mean t ime between fa i lures graph.

Jan Feb

Managing Software Development wi th DTS
DTS supports software development management by col

lecting and organizing defect data, and by automating the
tracking of submitted and resolved defects. DTS collects
data that both lab and project managers can use to answer
questions about their software development processes.
Examples of this data are the submitter's name, the name
of the responsible project, the module that is defective, the
date the defect was found, the symptoms caused by the
defect, and the severity of the defect. See the Appendix for
a complete list of the data items kept for each defect. This
information can be grouped, summarized, and used for
evaluating a product's development.

Several graphical examples of summarized DTS data are
given in Figs. 1 through 4. Although DTS does not currently
generate graphs, it does provide the defect data that other
tools can use to generate graphs.

DTS provides defect information at the lab and program
level. Data from DTS general summary reports can be used
to generate a mean time between failures (MTBF) graph
(Fig. 1) and a defect arrival rate graph (Fig. 2) for either a
single project or a group of projects.

For project managers, DTS provides summaries and
synopses of project-level defect information. This data can
be used to generate a defect resolution rate graph (Fig. 3)
and a defect backlog graph (Fig. 4).

DTS also provides project and engineer summary defect

10T
Number of Defects

2/11 2 / 1 8 2 / 2 5
Week

3/4 3/11

F ig . 2 . De fec t a r r i va l r a te g raph , show ing t o ta l number o f
defects repor ted each week.

MARCH 1986 HEWLETT-PACKARD JOURNAL 15

© Copr. 1949-1998 Hewlett-Packard Co.

70

6 0

5 0

4 0

3 0

2 0

Number of Defects

10
2 /4 2 / 1 1 2/18 2/25 3/4 3/11

Week

F i g . 3 . D e f e c t r e s o l u t i o n r a t e g r a p h , s h o w i n g d e f e c t s r e
solved as a funct ion of t ime.

lists. These lists give a two-line synopsis for each resolved,
open, or unreceived (submitted to, but not yet accepted by
a project) defect. These synopses can be organized either
by project or by engineer assigned to fix the defect. Fig. 5
is an example of a project summary report for project dls.

Managers will probably want to view other defect data
relationships in addition to the examples shown above.
The DTS report generator, DTS administrator utilities, and
UNIX tools can be used to extract, organize, and summarize
defect data from the ASCII-text defect reports (see Appen
dix). This summarized data can then be formatted as de
sired for textual or graphical display.

Submitt ing Defects
Four DTS utilities allow a user to submit, receive, resolve,

and summarize defect reports. A common user interface
for all utilities makes DTS easy to learn and operate.

When a defect is found in a piece of software, the user
submits a defect report by using the dtssub command at the
user's workstation. DTS will then prompt the user for the
data necessary to create a defect report. This includes:
â€¢ The submitter's name, phone number, electronic mail

address, and project name
â€¢ The date the defect was found
â€¢ The name and version of the defective software
â€¢ The severity and urgency of the defect
â€¢ A one-line description of the problem
â€¢ The activity used in finding the defect
â€¢ The project responsible for fixing the defect.

The user may also attach up to twenty-six related text
files to describe the problem further, present a workaround,
document a fix, or provide other information.

After a defect report has been submitted, DTS moves it
through the network to the machine that the responsible
project has chosen to have its DTS defects sent to. When
the incoming defect report arrives, DTS sends an electronic
mail notification to the manager and engineers responsible
for the project.

Receiving Defects
New (unreceived) defects that have arrived for a project

are examined with the dtsrec command. The data for each
unreceived defect is displayed, and the user is able to either
(1) receive the defect report and accept responsibility for
fixing it, (2) forward the defect report to another responsible
project, or (3) push it back into the unreceived queue for
later viewing. If the defect report is received, DTS prompts
the user for:
â€¢ The priority assigned to the defect report
â€¢ The name of the engineer responsible for fixing it
â€¢ An estimated fix date.

After the defect is received, an acknowledgment is sent
back to the submitter, and the defect report is incorporated
into the DTS defect data base on the receiver's machine.

Updat ing and Marking Defects as Resolved
After a defect has been researched and resolved, dtsupd

is used to update and mark the defect report as resolved.
At that time the user needs to provide:
â€¢ The type of resolution (e.g., code change, design change)
â€¢ The name of the module that was fixed (when applicable)
â€¢ The amount of engineering time it took to fix the defect
â€¢ The development cycle phase in which the error was

introduced, found, and fixed.
DTS notifies the submitter by electronic mail when the

defect is resolved, and sends a copy of the defect report to
the machine designated as the DTS archive for the site.

Summariz ing v ia DTS Reports
The dtsrep command generates any of five different re

ports, each giving different levels of detail, and each aimed
at different types of users. They are:
â€¢ General summary. Shows global totals for unreceived,

open, resolved, and urgent defects for selected groups
of projects. One likely grouping of projects might be a
lab summary, listing totals for all the projects that make
up a particular lab.

â€¢ Manager summary. Shows a two-line description for
each of the defects belonging to a particular project,

Low
(0-3)

Outstanding Defects
(Severity of Defects)

Med ium
(4-6)

40 y
Number of Defects

2 / 1 1 2 / 1 8 2 2 5 3 / 4 3/11

Fig . 4 . Defec t back log p lo t .

16 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

Project Summary of Defect Informat ion for: dts

T o t a l S h o w s t o p p e r D e f e c t s : 0
T o t a l U n r e c e i v e d D e f e c t s : 0
T o t a l O p e n D e f e c t s : 1 0 2
T o t a l R e s o l v e d D e f e c t s : 3 1 2
T o t a l D e f e c t s : 4 1 4

Engineer Defect Information:

Steven Blair

C L L a b 0 0 1 6 0 S u b m i t N u m : 0 0 0 3 4 D S D s a O P E N S : 3 P : 6 R e c v d : 8 4 1 0 0 8
Dsc: on type control -D at " f inding act iv i ty" and dtssub quits on me

C L L a b 0 0 1 6 5 S u b m i t N u m : 0 0 0 3 1 D S D s a O P E N S : 2 P : 6 R e c v d : 8 4 1 0 0 8
Dsc: unchanges * D as response to resp_proj prompt in forwarding unchanges ui

D S D s a 0 0 0 3 2 S u b m i t N u m : O O O O S S E L b b O P E N S : 2 P : 4 R e c v d : 8 4 1 0 2 9
Dsc: "dtssub -q another" does only one defect and qui ts wi thout asking

F i g . 5 . A n e x a m p l e o f a p r o j e c t
manager summary repor t .

sorted by responsible engineer.
â€¢ Engineer summary. Shows a two-line description for

each of the defects assigned to a particular engineer to fix.
â€¢ Unreceived summary. Shows a two-line description for

each of the unreceived defects.
â€¢ Engineer details. Shows all of the available information

about a single defect report.
Each of these reports can be viewed interactively, or sent

to a file or printer to capture data for later analysis.

User Interface
Each of the four DTS utilities uses a common user inter

face that provides on-line help, three different modes for
novice, intermediate, and expert users, and easy-to-define
user default values.

The user interface makes DTS easy to learn and use. For
example, when a DTS utility is being run, two forms of
help are always available. One is a description of the field
the user is prompted for, and the other is what data is
appropriate for that field. While responding to a prompt,
the user can hit the ESC key to obtain the field description.
To determine what data is appropriate for that field (e.g.,
whether it is any string of characters or a specific selection
from a list of items), the user types CTRL G. These help
descriptions can be tailored for any specific site.

Since users vary in their familiarity with DTS from first-
time to accomplished users, and therefore vary in how
much detail they want in DTS prompts, there are three
levels of prompting detail that can be selected: verbose
(maximum information at each prompt), terse (minimum
information at each prompt), and medium verbosity (which
lies somewhere in between). All prompts in DTS are site
configurable.

Finally, any data field DTS prompts the user for can be
preset to a default value. For example, the user's name,
phone number, and electronic mail address can be de
faulted for the defect submission (dtssub) utility. This re
lieves the user of having to retype these items each time a
defect is submitted. More subtly, default values allow DTS
commands such as dtssub to be integrated into automated
test suites. This can provide reporting of defects discovered
during testing, without direct human intervention.

DTS Operat ional Environment
DTS is currently supported on HP 9000 Series 500 and

200 Computers running the HP-UX operating system, and
on DEC VAX Computers running the 4.2 BSD operating
system.

The DTS network is divided into sites, which are clusters
of machines running DTS software. Each site has a site hub
machine that acts as a gateway for information between
other site hubs and machines on the site (Fig. 6). This
network topology fits in with the network that has evolved
at HP consisting of machines running versions of the UNIX
operating system. A DTS site typically corresponds to a
divisional site in this network.

There are three kinds of information that flow between
DTS machines. The first kind is the defect report that travels
through the network as it moves from the submitter's
machine to the receiving project's machine. Next, project
summary data is collected from each machine's local defect
data base and is distributed to all other DTS machines.
Finally, transaction acknowledgments are sent via elec
tronic mail when the state of a defect report changes (e.g.,
when a defect report arrives, is received, or is resolved).

Occasionally there are data transmission problems and
a defect report isn't able to get through, or there are network
configuration problems and DTS doesn't know where to

Site 2
Hub

Site 1

Site 3

y R e p r e s e n t s a m a c h i n e r u n n i n g D T S s o f t w a r e

-â€¢â€¢ Shows the flow of
-Defect Reports
-Summary Data
-Transact ion Acknowledgment

Fig. 6. DTS network layout .

MARCH 1986 HEWLETT-PACKARD JOURNAL 17

© Copr. 1949-1998 Hewlett-Packard Co.

send a defect report. In these cases DTS moves the data
into a holding area and sends an electronic mail message
describing the problem to the DTS site administrator.

The DTS site administrator is a person who has been
identified as the DTS support person for a site. This person
defines the DTS intrasite network topology, handles DTS
installation, keeps DTS configuration files current, and
coordinates local site customizations to DTS. After the ini
tial setup time, the administrator can expect to spend 2 to
10 hours per month maintaining DTS.

The initial disc space required for DTS is three mega
bytes. This number will grow during use as defects are
submitted and received. For example, people submitting
and receiving five defect reports per day for two projects
on a machine can expect DTS disc space requirements to
grow an additional megabyte per month (assuming an av
erage defect report length of 4000 bytes). Off-line data ar
chiving can be used to cut this number in half.

DTS Today
DTS was released internally November 1, 1984 to soft

ware developers in three HP Divisions. Since then DTS
has spread to other HP Divisions that develop software in
the UNIX environment. Its user community has grown from
25 to over 200 users located at more than 24 HP Divisions.
Because of this growing level of acceptance, Corporate En
gineering's Software Engineering Laboratory has identified
DTS as an important software development and manage
ment tool, and has committed resources to its support,
promotion, and evolution.

Acknowledgments
Seven people from three different divisions made up the

initial DTS product team. Dave Decot did a tremendous
job developing an extensible user interface for DTS and
writing the defect packet manipulation library. Steve Banks
wrote the dtssub, dtsupd, and dtsrep user utilities and served
as technical project lead. The author developed the packet
transport software and the dtsrec user utility. Julie Banks
worked very closely with the DTS development engineers
and was key in keeping the fast-track DTS project on track.
Debra Martin, Bob Grady, and William Woo also contrib
uted management support. Thanks to Barbara Scott, Debbie
Caswell, and Jack Cooley for their contributions to the DTS
product design. Thanks also to Craig Fuget for his diligence
in product testing.

Appendix
Contents of a Defect Report

This each contains the length in bytes, name, and descr ipt ion of each data f ie ld in
a DTS defect report.

Length

10
1
10
20
20
20
20
20
6
20

10
1

20

20
8
1
f ;

4 0
1 0
{,

1

1

1

2
21
1
2

100

too

Name

Defect Number
Defect Status
Submitter Number
Submitter Name
Submitter Phone
Submitter Address
Test System
Submitter Project
Date Found
Software

Version
Severity

Showstopper

Descript ion
Activity Used
Fixing Time

Responsible Project

Responsible Engineer
Resolution
Priority
Resolve Date

Fixed Module
Related Defect
Date Received
Phase Introduced

Phase Found

Phase Fixed

Times Reported
Symptoms
Workaround
File Count

Reserved
Unused

Related Files

Descript ion

Assigned when a defect is received
New, open, or resolved
Assigned when the defect is submitted
Name of the person who submitted the defect
The submitter 's phone number
The submitter's electronic mall address
The machine the defect was found on
Name of the submitter's project
Date the defect was found
The name of the software that is suspected of
being defect ive
Version of the suspect software
The submitter's estimation of the defect
severity
"y" if this defect is keeping a project from
meet ing acr i t ical checkpoint
Seventy-two-character defect descript ion
How the submitter found the defect
How long It took to isolate, fix, unit test, and
document the defect f ix
The project that is responsible for fixing
the defect
The engineer assigned to fix the defect
How the defect report was resolved
This defect's fix priority
Estimated date of resolution, or datethe
defect was resolved
The module or documentat ion changed
The number of a duplicate or related defect
The date the defect report was received
The software development l i fecycle phase in
which the defect was introduced
The software development l i fecycle phase in
which the defect was found
The software development l i fecycle phase
in which the defect was fixed
The number of duplicates of this defect
The symptoms of the problem
"y" if a workaround to the defect exists
The number of related files attached to this
defect report
Data space reserved for DTS
Additional data space available for sites
to use
Up to 26 related files may be attached to any
defect report

18 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

A Toolset for Object-Oriented
Programming in C
Object-oriented programming seeks to encapsulate enti t ies
in a program in to ob jects , methods, and messages. I t is
useful for wr i t ing highly dynamic sof tware that is wel l -
structured and easily maintainable. This paper presents a
set of tools that support object-wi th-methods data
structuring.

by Gregory D. Burroughs

THE DATA STRUCTURES of a program are often com
posed of groupings of objects. For example, in de
scribing a map, one might have city as one class of

objects. Related to each city are groups of objects: residents,
natives, streets, parks, significant buildings, and so on. In
the design of algorithms that operate on the map, it would
be useful to be able to group natives of a city into a structure
without worrying about the details of the structure's im
plementation. One notation might be:

A c i t y i s {
N a m e
A G r o u p " s t r e e t " o f s t r e e t s
A G r o u p " r e s i d e n t s " o f p e r s o n s
A G r o u p " n a t i v e s " o f p e r s o n s

A p e r s o n i s {
S o c i a l S e c u r i t y N u m b e r
G r o u p e d b y c i t y o f r e s i d e n c e
G r o u p e d b y c i t y o f b i r t h

As the design of algorithms progresses, appropriate data
structures for implementing the groupings can be deter
mined. If reports that list a city's residents and natives
sorted by Social Security Number are required, some vari
ety of tree might be used to implement the resident and
native relationships. A convenient notation might be:

A c i t y i s {
N a m e
T r e e " r e s i d e n t s " o f p e r s o n s
T r e e " n a t i v e s " o f p e r s o n s

I

A p e r s o n i s {
S o c i a l S e c u r i t y N u m b e r
N o d e " r e s i d e n t s " i n a t r e e o f p e r s o n s
N o d e " n a t i v e s " i n a t r e e o f p e r s o n s

with the concepts of grouping and grouped in implicit in
the notations Tree and Node. By this point in the design,
the algorithms for manipulating persons relative to cities
would be well-defined and, given the proper set of software
tools, much of the program could be generated automati
cally. This paper describes a set of tools for generating
objects and methods from class relationships as described
above, and presents results of its use.

Objects
In an object-oriented program, data is organized into

classes. A class contains its members, called objects, and
operations for manipulating its members, called methods.
Objects can be thought of as the data record for the class
and methods as the functions that act on the data records.
Cities and persons are among the classes known to the
above example. Oakland is likely to be an object in the city
class, and city-add-new-resident is likely to be a method for
objects in the city class.

One advantage of object-oriented programming is the
ability of each class to hide its data representation from
other classes. Such separation is supported through the
concept of messaging. In traditional programming lan
guages, objects communicate by passing data structures to
functions. This allows and even encourages methods of
one object to use the structure of objects they reference. In
a message-based system, objects communicate by passing
messages to other objects, with the recipient object deter
mining which method is appropriate for performing the
requested action. One envisions the dynamics of a well-
coordinated, properly staffed and trained team; each
member performs assigned tasks, requesting assistance
from other team members when necessary, but not med
dling in the tasks of others.

Another advantage of object-oriented programming
comes from the independence of representation and action.
An object can ask for an action without worrying about the
particular type of the object that will do the action. Since
it is the recipient that determines how to respond to a
message, the requester can use the same message and the
same transmission mechanism to request a particular ac
tion (for example, print yourself) from objects of different
classes.

MARCH 1986 HEWLETT-PACKARD JOURNAL 19

© Copr. 1949-1998 Hewlett-Packard Co.

Finally, objects can be trained. Actions appropriate at
one stage in a program's execution might not be the same
actions that were appropriate at an earlier stage. An object
can change the method it will use for a given message to
re f lec t i t s cur ren t s ta te . The ob jec t -method-message
paradigm has been found to be effective not only within
an ind iv idua l p rogram, but a l so be tween concurren t ,
cooperating programs.1'2

In particular, the method paradigm is appropriate for
abstract data structures. Often, application programs find
that their jobs consist of creating and traversing data struc
tures. Most standard texts present data structures and their
methods (e.g., additions, deletions, merges, traversals) in
dependently of any particular source of data.3'4'5 That is,
most operations on a data structure can be viewed as a
method that manipulates just the structure and sends mes
sages to the objects grouped in the structure when applica
tion specific information or actions are required. For exam
ple, the report that lists all residents of Oakland could be
generated by the tree-traverse method walking the persons
tree for the Oakland object and sending print messages to each
person object it encounters.

When data groupings are viewed in this object-methods-
message framework, program generation can proceed au
tomatically from data structure design. In the example,
once a tree has been selected to implement a grouping, the
actions appropriate to creating and traversing the tree are
also known and, in an ideal environment, should require
little or no time or programming effort to implement.

Implementation
The following sections describe a toolset for automati

cally generating data records and methods from a descrip
tion at the grouping level as described above. An implemen
tation of the above example is used to explain the use of
the package. The resulting C program source appears in
the Appendix. Fig. 1 diagrams the use of the toolset.

The toolset is built on top of the C programming language
using C-preprocessor macros and UNIXâ„¢ utilities. There
UNIX is a t rademark of AT&T Bel l Laborator ies.

are two types of macros: macros that generate data structure
entries in a data record and macros that generate functions
to manipulate the data structures. The UNIX utility make(l)
is used to generate a template and rudimentary methods
for each data class. In the examples that follow, C program
syntax is loosely followed. The reader is directed to the
bibliography for references on C and the UNIX operating
system.6'7'8

A dispatch table is the mechanism that allows an object
to map a message to the appropriate method. When a mes
sage is received, the object receiving the message extracts
a method selector from the message, then uses the selector
as a key into the dispatch table to determine which method
to invoke. A dispatch table can support dynamism in three
places. First, the method returned for a given selector can
vary over the l ife of the object. Second, the number of
selectors and methods in the table can vary. Third, the
table can support various levels of indirection in the lookup
mechanism. The dispatch table for the toolset of this paper
supports the first level of dynamism by providing a static
number of run-time-modifiable selector-to-method map
pings for all classes of objects. Methods provided for each
object include self-identification, self-printing, and com
parison with another object in the same class. The object
class has two methods, object-new and object-free, for allocat
ing and deallocating objects in the class. The structure used
to implement an object's dispatch table is a record:

d e f i n e M E T H O D S s t r u c t m e t h o d s * m e t h o d s

Each object class is represented by a structure. The macro
METHODS provides each object in the class with a direct
link to its associated methods:

User provides
desired object

classes.

Skeletal Object
Generat ing

Makefi le

User adds
manipulat ion
and structure

C Program
Source

s t r u c t < o b j e c t > {
M E T H O D S ;
/ o b j e c t s p e c i f i c s l o t s * /

Object and
Methods

Templa tes

Data
Structures

and
Methods

Fig . 1 . Th is f igure d iagrams the use o f the ob jec t -o r ien ted
programming toolset . F i rst , the user interact ively def ines the
ob jec t c lasses des i red. The ske le ta l ob jec t generator gener
a tes ske le ta l ob jec ts and me thods . These cons is t o f c lass
init ial ization, object al location, skeletal manipulation methods,
and skeleta l s t ructure def in i t ions. The user then adds appro
pr iate manipulat ion and structure macros to the manipulat ion
methods and s t ruc tu re macros . The resu l t ing source i s p re
sented to the C compi ler .

The macros MESSAGE and MESSAGE2 are used to send a
message to an object:

M E S S A G E (s a l l y , p r i n t)

calls the print method associated with sally and provides sally
as the argument to print, while

M E S S A G E 2 (s a l l y , c o m p a r e , j o e)

calls sally's compare method with sally and joe as arguments.
Each object class is represented by a pair of files:

< o b j e c t > . h < o b j e c t > . c

The .h file contains the structure specification for the

20 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

object, while the .c file contains its methods.
Pseudoautomatic class generation is possible from this

well-defined specification. A script make-object creates a .h
file containing a skeletal structure description and a .c file
containing rudimentary methods. For each class, make-object
generates a function that initializes the method table and
a function that calls the initializers for all of the classes.

Data Structure Macros
Data structures consist of two parts. The first part de

scribes features required in the records making up the struc
ture. The second part consists of actions appropriate to the
data structure (insert, delete, traverse, union, ...). This toolset
addresses both aspects of data structure implementation.

The part of a data structure linking one data record to
another forms a skeleton. Typically, the skeleton consists
of two types of pointers: the head of the structure and
members of the structure. Skeletons are of two forms, en
dogenous and exogenous.4 Endogenous skeletons link ob
jects through fields inside the object's data record, while
exogenous skeletons have a separate structure which points
to objects from the outside. Endogenous skeletons tend to
be used in groups that are all the same data type, since the
data structure pointers are part of the data record definition.
Methods for endogenous skeletons can be associated with
the data structure itself, rather than with each object. Exo-
skeletal data structures are more suited to groupings span
ning several data types, since the data type need not know
the types with which it is grouped. In this case, methods
must be associated with the objects. The greater flexibility
of exoskeletal structures comes at a price of more declara
tions and somewhat larger data storage requirements. In
the example, while methods remain associated with the
objects, endoskeletal structures are used to reduce the
number of declarations.

Macros used to create data structures reside in files
named:

< d a t a s t r u c t u r e > . s . h

where the suffix .s.h stands for structural header. As an
example, the macros for creating an AVL tree9 are:

/ m a c r o t o g e n e r a t e a n A V L t r e e r o o t * /
d e t i n e A V L _ R O O T (r o o t _ t y p e , t r e e _ h e a d _ s l o t)

s t ruc t {
s t r u c t r o o U y p e * r o o t ;

} t r e e _ h e a d _ s l o t

/ m a c r o t o g e n e r a t e a n A V L t r e e n o d e * /
Â¿de f i ne AVL_NODE(t ree_ type , t r ee_ th read_s lo t)

s t ruc t {
s t ruct t ree_type * lch i ld ; Â«rchi ld ;
i n t b a l a n c e ;

} t r e e _ t h r e a d _ s l o t

an exoskeletal or an endoskeletal data structure. The decla
rations:

st ruc t

Â ¿ d e f i n e B A L A N C E D
Â ¿ d e f i n e B A L A N C E D J . E F T
Â ¿ d e f i n e B A L A N C E D _ R I G H T

s t ruc t

I

c i t y_ type
M E T H O D S :
s t r i n g n a m e :
A V L _ R O O T (p e r s o n _ t y p e . n a t i v e s _ h e a d) ;
A V L _ R O O T (p e r s o n _ t y p e , r e s i d e n t s _ h e a d) ;

p e r s o n _ t y p e
M E T H O D S ;
s t r i n g S S N ;
A V L _ N O D E (p e r s o n _ t y p e , n a t i v e s j h r e a d) ;
A V L _ N O D E (p e r s o n _ t y p e , r e s i d e n t s j h r e a d) ;

-1

In the example, these macros could be used to create either

would generate an endoskeletal AVL tree structure. Note
that the class declarations are not cluttered with the details
of the record structure needed to implement the tree.

Macros used to create methods reside in files named:

< d a t a s t r u c t u r e > . m . h

where the suffix .m.h stands for manipulation header. Some
of these macros manipulate the record structure required
by the data structure â€” for example, the macro to initialize
a node before insertion in an AVL tree:

Â ¿ d e f i n e A V L _ N O D E _ I N I T (n o d e _ o b j , t r e e j h r e a d)
node_objâ€” >tree_thread.lchi ld = NULL;
n o d e _ o b j - ^ t r e e _ t h r e a d . r c h i l d = N U L L ;
node_ob j -Â» t ree_ th read . ba lance = BALANCED

When information specific to the objects in the data struc
ture is needed, the macros use the methods associated with
the objects. For example, the following macro checks
whether a node is already present in an endoskeletal AVL
tree:

Â ¿ d e f i n e A V L C H E C K
(t ree_roo t_ob j , t ree_roo t ,
f o u n d _ o b j , f o u n d _ o b j _ t y p e , t r e e _ t h r e a d ,
found_ f lag)

{
s t r u c t f o u n d _ o b j _ t y p e Â « m a r k e r ;
/
* h e r e s h o u l d b e c h e c k s t o i n s u r e t h a t t h e t r e e
* r o o t e x i s t s a n d t h e l i k e
* /

found j lag = fa lse ;
marker = tree_root_objâ€” Â»tree_root.root;
w h i l e (m a r k e r E X I S T S) {

s w i t c h (M E S S A G E 2 (f o u n d _ o b j ,
c o m p a r e , m a r k e r)) {

c a s e E Q U A L :
f o u n d _ f l a g = t r u e ;
m a r k e r = N U L L ; / p l e a s e e x i t * /
b reak ;

c a s e L E F T :

MARCH 1986 HEWLETT-PACKARD JOURNAL 21

© Copr. 1949-1998 Hewlett-Packard Co.

m a r k e r = m a r k e r - Â »
t ree_ th read . l ch i ld ;

b reak ;
c a s e R I G H T

marker = marker â€” Â»
t ree_ th read . rch i l d ;

b reak ;
de fau l t :

FÃAULT;

In the example, the function city-has-resident? could be
generated as follows;

i n t c i t y -has - res i den t (c i t y , pe rson)
s t r u c t c i t y _ t y p e * c i t y ;
s t r u c t p e r s o n _ t y p e Â « p e r s o n ;

Â ¡ n t f o u n d ;
A V L _ C H E C K (c i t y , r e s i d e n t s j i e a d ,

p e r s o n , p e r s o n _ t y p e , r e s i d e n t s j h r e a d ,
found) ;

r e tu rn (f ound) ;

}

Consistent programming style relieves some of the clutter
resulting from inclusion of type names in the parameter
list, as does use of meaningful type and slot names.

Conclusion
The toolset provides a variety of data structures, most

having their origin in a particular application where the
toolset was used. Among the structures are basic data struc
tures (singly and doubly linked lists with methods for
stacks, queues, dequeues, and insertion sorted lists, binary
trees with traversals, iterators), height-balanced trees (AVL
trees),9 self-adjusting trees (splay trees),10 and k-d trees.11
New structures can often be created by modifying existing
ones.

Three programs represent the types of software developed
using the toolset. TEST-BED is a test bed for the investigation
of digital network -traversal algorithms. VFORMAT is a dis
crete-event simulation time queue. EXPANDER is a hierar
chical electrical circuit expansion program. Experience
suggests that the tools are most useful in programs where
the software author can naturally cast the application into
the object paradigm and where data organization and tra
versal account for most of the programming task.

TEST-BED was written as an environment for exploring
structural test generation algorithms for combinational cir
cuits.12 Initial object and data structure design required
two engineering days. Input data formats were borrowed
from the interactive logic simulator, ILS,13 and a naive
input reader. Rank ordering and signal propagation al
gorithms were quickly implemented. When it was realized
that the initial data structures would not support all the
traversals desired by some of the test generation algorithms,
new structures were easy to add to the skeleton. Use of
this toolset allowed implementation to proceed quickly

and directly from data organization with the benefit that
more investigation time was available to concentrate on
algorithm and data structure design and subsequent al
gorithm performance analysis.

VFORMAT was written as a specific niche design tool
for a specific Hewlett-Packard logic design team. With such
a narrow scope, the design goals of VFORMAT emphasize
functionality and speed of implementation rather than per
formance and enhancability. However, use of the toolset
allowed data organization design to proceed assuming that
efficient data structures could be developed as readily as
inefficient structures that merely worked. The result was
a quickly developed tool that performed considerably bet
ter than the minimum expectations.

EXPANDER manages an electrical circuit description
used to communicate information between several pro
grams. Most of EXPANDER's actions involve a traversal of
a hierarchy of blocks and instances that describe circuit
connectivity and parameters. The object-methods-message
implementation allows traversal control to be implemented
and debugged entirely independently of traversal actions.
Each traversal of the hierarchy is regarded as an instance
in the class of traversals whose actions are guided by a
control object. Before a traversal starts, a traversal object
is instantiated. This object is provided with a dispatch
table of methods it will use to perform its specific al
gorithm. Then, at each potentially interesting location in
the traversal, the control object sends a message to the
traversal object to perform the action appropriate for this
location in the hierarchy (e.g., process-a-child, return-from-pro-
cessing-subtree) or to obtain the next location for processing
(e.g., select-a-child, get-next-sibling).

EXPANDER demonstrates the toolset's utility on large,
complicated programs. There are twenty object classes
known to EXPANDER, some of these group or are grouped
in as many as ten other object classes. Structure-generating
macros make the organization and implementation more
readable. An objects-methods-messages implementation
allowed data, action, and control to be considered, im
plemented, and debugged separately. This separation eases
the tasks of adding and modifying functionality and in
creases confidence in the program.

Direct ions for Further Study
The toolset presented in this paper was started before

the general availability of commercial preprocessors and
languages that directly support object-method-messages
programming. Its primary goal was the support of quick
implementation of data-structure-intensive programs. While
it achieved its goals, initial writing and debugging of long
macros requires a bit more effort than general C program
ming. Special makefile entries and the like make the job a
bit less demanding, but the existence of commercially avail
able languages whose definitions support objects-methods-
messages (such as Common Lisp) suggest that program de
velopment should proceed in those languages.

This package has proved its usefulness in the rapid pro
totyping of data-structure-intensive programs. However,
the program designer still needs to determine which struc
tures are appropriate for the application at hand from either
training or experience. An expert system could be de-

22 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

veloped to assist selection of appropriate groupings given
the desired operations between object classes. When a
grouping is described, structure declarations for the objects
and method functions for the data structures could be gen
erated automatically. This could then be coupled with a
graphical interface for describing and documenting the ob
ject classes, their groupings and the operations.

Acknowledgments
I would like to acknowledge the team that worked on

the Interactive Logic Simulator project where this work
began â€” Ravi Apte, Antony Fan, G.A. Gordon, Jim Hsu,
Kathy Hsu, Greg Jordan, Mark Millard, Viggy Mokkarala,
and especially Bob Floyd â€” for their contributions.

References
1. T. Baker, "Tutorial in Objects and Modules in HP Pascal,"

Proceedings of the HP Software Productivity Conference, 1984.
2. G. Burroughs, "A Message-Based Methodology for Integrating

CAE Tools," Proceedings of the HP Software Productivity Confer

ence, 1984.
3 . A . Aho , e t a l , The Des ign and Analys i s o f Computer A l

gorithms. Addison-Wesley. 1974.
4. R. Tarjan, Data Structures and Network Algorithms. SIAM

Publications. 1983.
5. N. Wirth. Algorithms + Data Structures = Programs. Prentice-

Hall. 1976.
6. B. Kernighan and D. Ritchie. The C Programming Language,

Prentice-Hall. 1978.
YIX Programmer's Manual, Vol. 2ab, Bell Laboratories,

1979.
8. UNIX Programmer's Manual, Vol. 2c, University of California

at Berkeley, 1979.
9. G. Adelson-Velskii and Y. Landis, "An Algorithm for the Or

ganization of Information," Doklady Akademiya Xauk SSSfl. Vol.
146, pp. 263-266 (Russian).
10. R. Tarjan. "Amortized Computational Complexity," SIAM
Journal of Algebraic S- Discrete Methods, Vol. 6, no. 2, 1985, pp.
306-318.
11. J. Bentley, "Multidimensional Binary Search Trees Used for
Associative Searching," Communications of the ACM, Vol. 18, no.
9, 1975, pp. 509-517.
12. M. Breuer and A. Friedman, Diagnosis and Reliable Design
of Digital Systems, Computer Science Press, 1976.
13. G. Jordan, et al, "ILS â€” Interactive Logic Simulator," Proceed
ings of the Design Automation Conference, 1983.

Appendix

The fo l low ing program f ragment i s the example f rom the accompany ing paper as
i t would appear to the program des igner .

Â « i n c l u d e " c o n s t a n t s , h "
Â « i n c l u d e " m e t h o d s . h "
Â « i n c l u d e " A V L . m . h "

s t r u c t c i t y _ t y p e {
METHODS;
s t r i n g n a m e ;
A V L _ R O O T (p e r s o n j y p e , n a t i v e s - h e a d) ;
AVL_ROOT(person- type, res idents .head) ;

s t r u c t p e r s o n _ t y p e {
METHODS;
s t r i n g S S N ;
AVL_NODE (person-type, natives Jhread) ;
AVL_NODE(person _type. residentsJhread):

s t r u c t p e r s o n - t y p e {
m e t h o d Â « m e t h o d s ;
s t r i n g S S N ;
struct {

s t r u c t p e r s o n - t y p e
*rchiid;
i n t b a l a n c e ;

nat ives- thread;
struct {

s t r u c t p e r s o n _ t y p e
Â«rchild;
i n t b a l a n c e ;

r es i den t s j h read ;

int c i ty_has_resident (c i ty, person)
s t r u c t c i t y _ t y p e
s t r u c t p e r s o n - t y p e

â€¢city;
Â«person;

int found:
int c i ty-has-resident (c i ty, person)

s t r u c t c i t y j y p e
s t r u c t p e r s o n - t y p e

â€¢city;
Â«person;

i n t f o u n d ;
AVL-CHECK {c i t y , res iden ts .head , pe rson , pe rson- type ,

res iden ts jh read , found) ;

return (found);

T h e f o l l o w i n g i s t h e p r o g r a m f r a g m e n t a f t e r p r o c e s s i n g b y t h e p r e p r o c e s s o r . T y p i
c a l l y , t h e p r o g r a m d e s i g n e r w o u l d n e v e r l o o k a t t h i s f r a g m e n t .

s t r u c t c i t y _ t y p e {
m e t h o d Â « m e t h o d s ;
s t r i n g n a m e ;
struct {

s t r u c t p e r s o n - t y p e - r o o t ;

natives -head;
struct {

s t r u c t p e r s o n - t y p e Â « r o o t ;

res idents .head;

s t r u c t p e r s o n j y p e Â « m a r k e r ;
f o u n d = f a l s e ;
marker = city â€” * residents.head. root;
wh i le (marker EXISTS) {

switch ((Â«person -* methods).
compare(person, marker)) {

c a s e E Q U A L :
f o u n d = t r u e ;
m a r k e r = N U L L ;
break;

c a s e L E F T :
marker = marker â€” Â»

residentsjhread . Ichi Id ;
break;

c a s e R I G H T
marker = marker â€” Â»

residents-thread. rchi ld;
break;

default:

return (found);

M A R C H 1 9 8 6 H E W L E T T - P A C K A R D J O U R N A L 2 3

© Copr. 1949-1998 Hewlett-Packard Co.

Tools For Automat ing Sof tware Test
Package Execution
Developed by one HP Div is ion and now used by o thers ,
these two tools reduce the t ime i t takes to develop test
packages and make i t easy to reuse tes t packages in
regression test ing.

by Craig D. Fuget and Barbara J. Scott

TWO SOFTWARE TESTING TOOLS in use at HP's
Data Systems Division are the Virtual Terminal and
the Scaffold Test Package Automation Tool and Test

Package Standard.
The Virtual Terminal tool runs on the HP 125 Computer

and is used to automate interactive testing of HP 1000
Computers. It simulates keyboard input to the host system
and saves the input and output for comparison with master
result files. It is also useful for testing non-forms-mode
programs on HP 3000 Computers (the HP 125 hardware
doesn't support block mode).

The Scaffold Test Package Automation Tool and Test
Package Standard are used to create and run test packages.
The Scaffold provides tools for test package creation and
setup, and for running the tests and verifying the results.
The Test Package Standard consists of documentation stan
dards for test plans, test packages, and individual tests.
The Scaffold was originally developed using the HP-UX
operating system and has been ported to the HP 1000.

Virtual Terminal
The Virtual Terminal tool (VT) was created to allow au

tomated regression testing of the interactive features of HP
1000 Computers. It has been used in cases where normal

SUT
R e s p o n s e

SUT
R e s p o n s e

HP 1000
or

HP 3000
Sys tem Under

T e s t (S U T)

Command F i le

HP125

test automation is impossible (e.g., screen-oriented interac
tive programs). We have found that this improves regres
sion test accuracy because each replay of the test causes
exactly the same data to be entered. We have also found
this to be a great productivity aid because the test engineer
only needs to type the test data once.

Since all of the system's output is saved each time the
program is run, it is simple to track changes in the system
by using file comparison tools, thus automating result ver
ification. This improves test accuracy.

Test automation is broken into two parts: the initial run
where the engineer instructs the tool on how to test the
system, and succeeding runs where the tool repeats what
it was told. The two tasks are handled by the programs
XMS and XVT, respectively.

Before the initial run, the interactive tests are carefully
planned to ensure that all of the functions of the system
under test (SUT) are covered. Once this is done, the SUT
is prepared with the latest revision of the software to be
tested.

To set up for the run, the engineer attaches the HP 125
to the test system, and then runs XMS. Because XMS is
transparent to both the user and the SUT, the tests can be

System Under
T e s t (S U T)

C o m m a n d F i l e

HP125

Fig . 1 . XMS data f low. F ig . 2 . XVT data f low.

24 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

typed as if they were entered from a normal terminal. How
ever, all of the activities that occur are recorded (see Fig. 1).

As the test progresses, the engineer manually verifies the
responses. In the event that there are no defects, or that
any defects that exist are minor enough to allow completion
of the tests, the entire set is executed, and the engineer
presses the softkey LOCAL OP SYS on the HP 125 to signal
completion. In the event that the tests cannot be completed,
the software is sent back for correction and testing is begun
again with XMS.

The XVT portion of the virtual terminal is generally used
when a new software revision is introduced to the test
phase, when a new software release (e.g., a product change
order) occurs, or when a specific test should be rerun sev
eral times until it is passed. When such a need for regression
testing arises, the engineer simply reconnects the HP 125
to the system under test, finds the files created by the XMS
program, and invokes XVT.

XVT enters the keystrokes typed by the user in the initial
run to the system under test. All of the system's responses
(including character echoing) are sent both to the screen
and to a second log file (see Fig. 2).

XVT and XMS communicate with each other through a
command file. All of the user's keystrokes, along with ad
ditional information (e.g., some timing data), are stored in
this file.

All of the test system's responses are stored in log files
on each run, thus creating a history of the system's perfor
mance (see Fig. 3).

As stated above, the initial run must be verified manu
ally. However, this can be done after the test has concluded
(by listing the log file). Subsequent runs can be verified
semiautomatically by comparing the initial log with the
current one. Several programs are commercially available
for this. We have been using DIFF by Mark of the Unicorn.

In principle, once a product is ready for release, the tests
should be run one final time to obtain a baseline for com
parison with any future release.

Besides its use at Data Systems Division for testing HP
1000 operating systems, a special version of VT is being
used by HP's Information Networks Division. It uses both
the HP 125 and an HP block mode terminal (e.g., the HP
2624) to test forms-mode programs on the HP 3000. Over
1200 test scripts are currently maintained in a library for

this tool.

Scaffo ld Automat ion Tool and Test Package Standard
The Scaffold Automation Tool and the Test Package Stan

dard were developed jointly by software quality engineer
ing and the HP-UX validation project. They are currently
supported by the Software Engineering Laboratory of HP's
Information Technology Group. The HP 1000 version is
supported by the Data Systems Division. The motivation
behind their development was to provide tools that reduce
the time to develop test packages and the time to reuse
them in regression testing.

The Test Package Standard defines the physical organi
zation of the test package. This organization is required by
the Scaffold and takes advantage of the hierarchical file
system. It allows many test suites to be stored in one direc
tory structure and is easily adaptable to varying logical
organizations. The Standard also provides skeletons and
documentation for writing test plans, test programs, and
test package documentation.

The Scaffold provides tools for automating test creation,
and for setup, execution, verification, and archival of mul
tiple sets of test results. Verification is done by comparison
of the test results with master result files.

The Scaffold requires a physical directory structure as
shown in Fig. 4. The directories are divided into two
groups: 1) Scaffold tools and administration and 2) the
actual test directories.

The contents of the tools and administration directories
are:
â€¢ ADMIN
â€¢ DOC
â€¢ RESULTS
â€¢ BAD
â€¢ GOOD

Scaffold tools
Scaffold documentation
Record of which tests passed and failed
Output from tests that failed
Output from tests that passed.

Test directories are distinguished by names beginning
with lowercase letters.

Each test group directory contains a three-level directory
structure as shown in Fig. 5. These three levels are referred
to as group-level, section-level, and function-level direc
tories.

The DOC directory should contain the test plan, test pack-

'HP-UX operating HP's implementation ol AT&T Bell Laboratories UNIX" System Vâ„¢ operating
system.

Init ial Testing Regression Test ing

Keyboard

Original
Log Fi le

C o m m a n d
File

Fi le Comparison
Tool

Latest
Log F i le

or
HP 3000

F i g . 3 . C o m m u n i c a t i o n b e t w e e n
XMS and XVT.

MARCH 1986 HEWLETT-PACKARD JOURNAL 25

© Copr. 1949-1998 Hewlett-Packard Co.

F i g . 4 . S c a f f o l d d i r e c t o r y s t r u c
ture.

age documentation, and test catalog for all the tests in this
test section directory. Each function level directory con
tains all the test programs and scripts for a particular func
tion being tested. The structure of the function level direc
tory is shown in Fig. 6.

The only required file in each function level directory
is prog. Optional files are Build, std.out, std.err, std.fil, and std.in.
The purpose of each of these files is as follows:

p r o g E x e c u t a b l e t o r u n a l l t e s t s
B u i l d E x e c u t a b l e t o s e t u p t e s t e n v i r o n m e n t
s t d . o u t M a s t e r t e s t o u t p u t
s t d . e r r M a s t e r e r r o r o u t p u t
s t d . f i l M a s t e r o u t p u t t o a d d i t i o n a l f i l e
s t d . i n T e s t i n p u t f o r p r o g .

to select any subset of test directories for execution. Thus,
with an appropriate breakdown of the test directories, the
user can separate ly run any tes ts that need specia l re
sources. This also allows the user to combine all test pack
ages under a single scaffold structure and selectively run
any combination of the test packages.

Test Package Creat ion
The first step in creating a test package is to write the

test plan. This file is named TESTPLAN. The test plan should
define all the tests and tools needed, as well as any
hardware and software requirements. The test plan skele
ton shown in Fig. 7 defines the contents of the test plan.
The Standard also provides a skeleton with UNIX nroff docu-

Â¡nclude is an optional directory at both the group level and
the function level; it may contain files common to many
tests at that level.

The group/section/function directory scheme was origi
nally chosen to fit the organization of the HP-UX Reference
Manual. That is, the group level corresponds to different
HP-UX versions, the section level to sections of the Refer
ence Manual, and the function level to individual com
mands and system or library calls.

However, this organization easily adapts to various log
ical groupings. For example, a group-level directory might
contain all the compiler or data base test packages, broken
down into appropriate section and function-level direc
tories. Similarly, a section directory containing all tests for
a file management package might have separate function
directories for interactive tests, tests that require superuser
capabilities, tests that require a tape drive, error-producing
tests, and other general tests.

The Scaffold tools have an option that allows the user

F ig . 5 . Group- leve l and sec t ion -
level directory structure.

ment formatting commands.
The next step is to create the tests and tools defined in

the test plan. The Standard defines the header comment
section for each test program (see Fig. 8). The create script
automates this process. This script creates the file and in
serts the header comments, leaving the user in an editor
to complete the file.

To insert the header comments, the proper comment
character is determined from the file name and inserted
around the header, create can also be used to create source
files using the UNIX version control utilities SCCS or RCS.

In addition to the test programs, Build, std.out, std.err, std.fil,
and std.in should be created if necessary.

Once all the tests and tools in the package have been
completed, the test package documentation is written. This
file is named README. The purpose of this file is to docu
ment any special execution requirements or procedures.
The test package documentation skeleton shown in Fig. 9
defines the contents of this document. As with the test

test program f i les F i g . 6 . F u n c t i o n d i r e c t o r y s t r u c
ture.

26 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

1 . I N T R O D U C T I O N

1 . 1 F e a t u r e s
1 . 2 R e f e r e n c e D o c u m e n t s

2 . T E S T I N G R E Q U I R E M E N T S

2 . 1 H a r d w a r e R e q u i r e m e n t s
2 . 2 S o f t w a r e R e q u i r e m e n t s

3 . T H E T E S T S

3 . 1 (T e s t A r e a 1)
3 . 2 (T e s t A r e a 2)

3 . n (Tes t Area n)

4. AUTOMATION PLANS FOR THE TEST PACKAGE

4 . 1 M e t h o d s o f A u t o m a t i o n
4 . 2 E x t e n t o f A u t o m a t i o n

5 . T O O L S

Fig . 7 . fes i p lan ske le ton .

plan, a skeleton with UNIX document formatt ing com
mands is also provided.

As the tes ts are being developed, they should be or
ganized and put into a scaffold structure. The tests should
be grouped at the section level according to the sections
defined in Chapter 3 of the test plan. The TESTPLAN and
README files should be put in the section-level DOC direc
tory.

Test Package Execut ion
The execution of a test package is broken into four parts:

setup, execution, verification, and results archival. Each
of these steps is automated by the Scaffold tools.

There are two scripts for test setup: gettest and buildtest.
gettest is used to create a source scaffold from a scaffold

The name of th is f i le is ^ f i lename)

(c) Copyr igh t Hewle t t -Packard Company 1985 .
Al l r ights reserved. No part of this program
may be photocopied, reproduced or t ranslated to
another program language without the pr ior
wr i t ten consent of Hewlet t -Packard Company.

Created on <date> by <author 's name.>

Changes:
< include date, name, descript ion and reason.)

This file:
<0ne l ine descr ipt ion of what f i le tests or does.)

Calls tested:
< Names of the system cal ls or commands which are)
<tested by th is program, inc luding the manual ref)

Description of this test:
< Speci fy here using as many l ines as necessary-)

Input parameters:

Expected results:

Side effects of this test:

Support ing f i les and relat ionship:

< Test-source-code goes here.)

Fig . 8 . fes f p rogram header ske le ton .

containing version controlled sources in SCCS format, op
tionally specifying the revision level. The default is to get
the latest revision, gettest creates a copy of the SCCS scaffold
directory structure, copying directly any non-SCCS files
and copying the specified revision of any SCCS files.

buildtest does the actual setup work. Its basic operation is
to execute Build in each function-level directory. If Build
doesn't exist in a directory, buildtest compiles all C source
files in the directory, storing the executable code in prog.

Test execution, verification, and results archival are au
tomated via runtest. runtest executes each prog file in the test
function directories, redirecting the standard output and
error output to res.out and res.err respectively, and taking
input from std.in if it exists.

After prog completes, res.out and res.err are compared to
the files std.out and std.err. In addition, if prog created res.fil,
it is compared to std.fil. The test is considered to pass if
there are no differences, and to fail otherwise. The tests
will also pass if std.out or std.err doesn't exist and the corres
ponding res.out or res.err is empty. Note that although neither
std.out, std.err, nor std.fil is required, this is not recommended
since it may be impossible to tell if the test passed, such
as in the case of a program aborting unexpectedly.

At the start of runtest, a test ID is assigned, which is used
to identify the results from this test run, and allows the
results of multiple runs of the same tests to be archived,
runtest creates a file named test-id in the directory RESULTS.
This file contains the names of each function-level test
executed and whether each passed or failed.

For tests that fail, all the output is saved in BAD, identified
by the test ID and the function-level path name.

No output is saved for tests that pass, unless prog created
a directory called savedir in the current directory, savedir is
used for output that requires manual verification. If savedir
exists, its contents will be copied to GOOD, again identified

1 . I N T R O D U C T I O N

1 . 1 M o d i f i c a t i o n L o g
1 . 2 R e f e r e n c e D o c u m e n t s
1 . 3 M a n a g e m e n t I n f o r m a t i o n

2 . O R G A N I Z A T I O N O F T E S T P A C K A G E

3 . D E S C R I P T I O N S O F T E S T S

3 . 1 G e n e r a l I n s t r u c t i o n s

3 . 1 . 1 H W & S W R e q u i r e m e n t s
3 . 1 . 2 S e t U p I n s t r u c t i o n s
3 . 1 . 3 L o a d i n g
3 . 1 . 4 R u n n i n g
3 .1 .5 Ver i f y ing the Resu l ts
3 .1 .6 What i f i t doesn ' t work?
3 . 1 . 7 S i d e E f f e c t s

3 . 2 < T e s t a r e a n)

3 . 1 . 1 H / W & S W R e q u i r e m e n t s
3 . 1 . 2 S e t U p I n s t r u c t i o n s
3 . 1 . 3 L o a d i n g
3 . 1 . 4 R u n n i n g
3 .1 .5 Ver i f y ing the Resu l ts
3 .1 .6 What i f i t doesn ' t work?
3 . 1 . 7 S i d e E f f e c t s

Fig. 9. 7"esf package documentat ion skeleton.

MARCH 1986 HEWLETT-PACKARD JOURNAL 27

© Copr. 1949-1998 Hewlett-Packard Co.

by the test ID and the function-level path name.
There are two ways to specify a subset of tests to buildtest

and runtest â€” either by using a suffix or by specifying the
individual directory names.

A suffix has the form <.suffix> and is used to denote a
classification of tests that spans many different group, sec
tion, tests function directories, such as interactive tests or tests
requiring superuser capabilities. The suffix must be ap
pended to the names of the.files used by buildtest and runtest
(Build, prog, std.{out,err,fil,in}, *.c).

If a suffix is given, buildtest and runtest will execute only
on directories with files containing that suffix, i.e., Build<
.sutfix> or prog<.sutfix>. If no suffix is given, only files con

taining no suffix will be used in execution.
In addition, any number of individual directories can be

selected. If a group-level or section-level directory is
specified, buildtest and runtest will execute on all test sub
directories in each specified directory.

A suffix and directories can both be used. In this case,
buildtest and runtest will execute on the designated directories
where files with the specified suffix are found.

Acknowledgment
Dave Holt originally designed and developed the Virtual

Terminal tool.

Using Quality Metrics for Critical
Application Software
Software metrics have been used to evaluate the quality of
a compute r -based med ica l dev ice p roduced by a la rge-
scale sof tware development pro ject .

by Wi l l iam T. Ward

SOFTWARE QUALITY is not a precisely defined pa
rameter. There are several attributes that can be used
to measure the quality of software. A list of these

attributes might include reliability, maintainability, sim
plicity of use, testability, understandability of the program
code, upgradability, portability, and others.

The nature of the intended application frequently deter
mines how the quality of software will be judged. For exam
ple, simplicity of use would probably be a useful software
quality metric for a program designed as a word processor

S O S P R O B L E M D E S C R I P T I O N F O R M

P R O D U C T : .

DATE FOUND: .

Q A N U M B E R :

M U S T W A N T

R E P O R T E D B Y : .

PROBLEM DESCRIPT ION:

D A T E R E S O L V E D :

DESCRIPTION OF F IX:

F i g . 1 . S t a n d a r d d a t a e n t r y f o r m c o m p l e t e d b y t h e t e s t
engineer.

for inexperienced typists. Similarly, maintainability of the
code might be a useful metric for a large program that is
expected to be in use for several years and thus may require
modification by programmers not involved in the original
design effort.

Reliability of operation is a key aspect of software quality
in most applications. The software product discussed in
this article is required to provide continuous, accurate
monitoring of critically ill patients. The software must be
reliable, since unplanned system shutdowns or crashes
could jeopardize patient safety.

This article discusses the generation of several software
quality metrics from data collected during the system inte
gration stage of the patient monitor software development
cycle. The evaluation of these metrics has provided the
quantified estimates of software quality required for prod
uct release into a critical application environment.

Development Project Overview
The project under study involved the development of

the software and firmware for a computer-based EGG
monitoring system to be used for continuous cardiac pa
tient surveillance in a hospital coronary care unit.

Approximately four years transpired from the early proj
ect design stage to the completion of system testing and
resultant release of the product for customer shipment. A
total of ten to twelve engineers were involved at some point
with the project, and the average staff was seven to eight
at any one time. Approximately 85,000 lines of Pascal

28 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

source code, excluding comment or blank lines, and 50.000
lines of microprocessor assembler code form the software
and firmware basis of the product.

Software Test ing Overview
The development sequence for this project closely fol

lowed the model as outlined by Fagan.1 There were a design
stage, a coding stage, and a final testing stage. The coding
stage included unit and module testing as well as actual
implementation. The testing stage of the project included
both integration and system testing.

The software testing effort and resultant metrics dis
cussed in this article refer specifically to this final testing
phase of the product development cycle. Approximately
eight months were required for this effort, using the full-
time services of one test engineer and the part-time services
of other varied personnel. The total software test effort
required approximately 16 person-months.

Black-box functional testing was used extensively in
multiple test environments during the software testing
stage of this project. The functional testing that was per
formed can be categorized as either specifications testing,
random values testing, or special values testing.
Specifications testing. A free-form prose document, the
product External Specification, was created during the de
sign phase of the project. This document was maintained
during product development and then passed to the test
group at the beginning of the system testing stage.

The External Specification contains the operating specifi
cations for the product software. All functions the product
software is designed to perform are listed in the ES. This
document formed the basis of the majority of the functional
testing performed on the product.

In practice, a checklist of product functionality was gen
erated from the ES and this checklist was used as a test
script during system testing.
Random values testing. The intent of this testing technique
was to investigate product behavior when the software was
exposed to an unrealistic series of input values. Because
of the critical nature of the intended product application,
the software should respond in a predictable, well-defined
fashion, even when exposed to an undisciplined user assault.

S Q S W E E K L Y S T A T U S R E P O R T

P R O D U C T : .

D A T E :

S U M M A R Y O F W E E K L Y S T A T U S C H A N G E S :

3 i tems have been reported as NEW.
These are: 255 257 258

4 i tems have been RESOLVED.
These are: 127 133 249 250

T O T A L S F O R I T E M S O N P R O B L E M L I S T :

3 i tems are in status NEW.
0 i tems are in status LAB.
4 i tems are in status QTST.
12 i tems are in status NREP.
220 i tems are in status RES.

Fig . 2 . One o f severa l repor ts genera ted f rom the p rob lem
data base.

An example of a random values test is the input of a
series of keystrokes to request a nonconnected sequence
of system services. Altered, varying-length keystroke se
quences can form the basis for random values testing.
Special values testing. The application of input data that
was considered legal but not probable, or that stressed the
system, was termed special values testing. The intent of
this testing technique was to evaluate the ability of the
product code to respond to maximum-configuration condi
tions or to poorly defined, ambiguous conditions.

An example of special values testing is the evaluation
of the product in both the minimum and maximum config
urations. These minimum and maximum values can refer
to either supported hardware configurations or to various
software functions.
Multiple test environments. A major software test method
ology used in this project was to create and maintain mul
tiple environments for product testing. Four separate, con
current in-house test environments and a fully imple
mented, hospital-based field trial site were used during the
software testing stage of this project.

Each of the test environments was used to evaluate the
product code under different input conditions. For exam
ple, test environment 1 was used for the majority of the
specifications testing effort, while test environments 4 and
5 were used for special values testing. Test environment 3
was primarily the random values test station, while the
coronary care unit for a hospital served as test environment
2, or the field trial system.

The intent of using multiple test environments is to ex
pose the product to as wide a variety of input conditions
as possible. Of primary importance was the feedback pro
vided by the field trial. Failure of a product to perform
well in an actual user environment indicates that the design
and test efforts preceding the field trial have not been
adequate.

Collect ion and Presentat ion of Test Data
An Image/1000 data base was created to store information

about problems discovered in the product during the soft
ware testing effort. The Image utility program KEDIT was
used to enter information into the data base. Several Pascal
programs were created to retrieve the data from the data base
and to present that data in several useful report formats.

Fig. 1 illustrates a standard data entry form. When a

R E S U L T S O F M U L T I P L E T E S T E N V I R O N M E N T S

Fig. 3 . Resul ts o f the f ive separate, concurrent tes t env i ron
ments.

MARCH 1986 HEWLETT-PACKARD JOURNAL 29

© Copr. 1949-1998 Hewlett-Packard Co.

problem was found during product testing, the test engineer
completed the problem description form. This information
was then entered into the data base by means of the KEDIT
utility program.

Weekly meetings between the test group and the develop
ment group provided a forum for status updates concerning
product testing. Fig. 2 illustrates one of the several reports
generated from the Image data base by the test group. This
particular report indicates which problem items have
changed status since the last weekly status meeting. The
information in the Image/1000 data base was used to gen
erate each of the software quality metrics.

Software Quali ty Metr ics
Fig. 3 illustrates the results of the five separate, concur

rent test environments. Several conclusions can be drawn
based on this data:
1 . Specifications testing was clearly the most effective test

ing methodology, yielding an average of 14.73 test hours
to find a problem with the code.

2. The field trial results were somewhat surprising, with
only a single unique problem discovered after 2350
hours of clinical product use. The implication here is
that the in-house test environments together created a
superset of the input conditions encountered at the field
trial.

3. Although the random values testing was not very pro
ductive in terms of errors found per test hour, the prob
lems discovered in this environment tended to be se
vere, frequently causing system crashes or hangs.

Fig. 4 lists the additional software quality metrics gener
ated for this product at the time of customer release. These
values refer specifically to test environment 1, the specifi
cations testing environment. These metrics have been de
fined as follows:
Test hours logged. 3840 test hours were logged during the
software testing effort. This value includes only those times
during which active testing was in progress and input data
was present for the system.
Count of reported errors. 261 specific problems were found
in the product during the software testing effort. Of these
reported problems, a full 90% (234) required code changes
to fix. The remaining 27 items were classified as not repro
ducible (13) or as documentation issues needing clarifica
tion (12) or as requests for enhancements in a future release

S U M M A R Y O F S O F T W A R E Q U A L I T Y M E T R I C S

1) 3840 TEST HOURS LOGGED

2) 261 REPORTED ERRORS

3) 1 3 5 , 0 0 0 N O N C O M M E N T S O U R C E L I N E S O F C O D E

4) 1 .93 DETECTED ERRORS PER 1000 L INES OF CODE

5) 1 4 . 7 3 T E S T H O U R S P E R D E T E C T E D E R R O R

6) 28 .4 TEST HOURS PER 1000 L INES OF CODE

7) 4 . 3 W E E K S R E P A I R T I M E P E R E R R O R

8) PREDICTED POST RELEASE F IELD FA ILURES =
1 ERROR PER 6 .67 MONTHS

Fig. 4. Qual i ty metr ics generated for the pat ient moni tor sof t
ware product at the t ime of customer re lease.

of the product (2).
Number of lines of source code. The product software/
firmware line count was 135,000. The software consisted
of 85,000 noncomment, nonblank lines of Pascal source
code. The firmware consisted of 50,000 lines of noncom
ment microprocessor assembler source code.
Detected errors per 1000 lines of code. With 261 reported
errors and 135,000 lines of source code, a ratio of 1.93
errors per 1000 lines of code can be derived. This value
compares favorably with typical values reported across the
industry for similar software/firmware applications.2'3'4
Test hours per error and test hours per 1000 lines of code.
14.73 test hours were required, on the average, to find each
of the 261 reported problems. 28.4 test hours, on the aver
age, were spent on each 1000 lines of source code. These
values are difficult to interpret, but are useful in planning
the amount of time required for software testing of similar
products.
Repair time per error. During the software testing phase,
each error discovered required approximately 4.3 weeks
to repair and retest. The mechanism for reporting newly
discovered problems was a weekly status meeting between
the test group and the development group, and not all
reported problems were solved immediately. These factors
tended to inflate this value of 4.3 weeks/error for repair
and retest time.

This MTTR (mean time to repair) metric can be benefi
cially applied to the postrelease life of the product. For
example, an estimation of the support group requirements
after product release should be influenced by this metric.
A high MTTR value might be indicative of a complex prod
uct, requiring nontrivial and time-consuming repair efforts.
Conversely, a low MTTR could suggest that all the neces
sary support tools for the product are in place and that
future repair efforts will be uncomplicated.
Predicted postrelease field failures. The value of this met
ric was calculated from the test data using a modified ver
sion of a model developed by Simkins.5 The key inputs to
the model are the number and rate of error detection during
the testing phase of the project and the estimated effective-

Combined
Errors

"Must-Fix"
Errors Only

Weekly Error Count
25 T

2 0

Number o f Test Weeks

F ig . 5 . Ra fe o f e r ro r de tec t i on du r ing the so f tware tes t i ng
phase.

30 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

ness of the test environment relative to the field environ
ment. The predicted value for this metric of 1 error per
6.67 months of field exposure refers specifically to prob
lems of a serious nature that would impair the proper func
tioning of the system.
Rate of error detection. Fig. 5 illustrates the rate of error
detection experienced during the software testing phase.
Assuming a fairly constant testing effort, the graph of Fig.
5 indicates that further testing of the software in an un
changed environment would probably yield little produc
tive return.

Conclusions
Various techniques and metrics can be employed to as

sure and quantify the high level of quality required of crit
ical application software before release to customer use.
Several conclusions concerning these techniques and met
rics can be drawn, based on the product discussed in this
article.

Specifications testing can be very productive in terms of
problems discovered per test hour. The key requirement
for the successful application of specifications testing is
an accurate statement of product functionality â€” a docu
ment similar to the External Specification discussed in this
paper. This document can be the basis for the specifications
test script.

Multiple test environments can be used to good advan
tage during software testing activities. The greater the diver
sity of the input data applied to a product under test, the
higher the probability that problem areas of the code will
be discovered. Another potential advantage of multiple test
environments is that the use of different hardware sets to
coincide with each test environment can highlight possible
hardware/software interaction problems not readily appar
ent with a single hardware test set.

It is particularly important that the product be exposed
to a environment that closely approximates the intended
use environment before release of the product. A properly
implemented field trial is one method for achieving this
type of product exposure. Substantial testing must be per
formed on the product before its introduction to a live field
trial environment. This is necessary to ensure that unex
pected, severe problems in the code at the field trial do
not jeopardize the critical-application use of the product.

The release of software destined for a critical application
should be contingent on product metrics that satisfy a pre
cisely defined range of values. For example, one of the
strictures for product release might be the requirement that
a specific number of continuous test hours elapse without
the discovery of a problem in the code. One of the require
ments for the product discussed in this paper was a week-
long interval of test time without the appearance of any
serious problems.

A logical expression that relates the various release re
quirements for a software product based on metrics might
be as follows:

P r o d u c t R e l e a s e S t a t e : = S 1 A N D S 2 A N D S 3 A N D S 4 A N D S 5

where S1 through S5 represent test state conditions defined
as:

51 = Test hours >25 per 1000 lines of code
52 = Errors per 1000 lines of code in range of 0.5 to 10
53 = Rate of error detection decreasing for two weeks
54 = No serious errors found in last week of testing
55 = Field trial hours >V2 total in-house test hours.

References
1 . M.E. Fagan. "Design and Code Inspections to Reduce Errors in
Program Development," IBM Systems Journal, Vol. 15, no. 3, 1976,
pp. 182-211.
2. V.R. Basili and B.T. Perricone, "Software Errors and Complex
ity: An Empirical Investigation," Communications of the ACM,
Vol. 27, no. 1, January 1984.
3. P.N. Misra, "Software Reliability Analysis," IBM Systems Jour
nal, Vol. 22, no. 3, 1983, pp. 262-270.
4. M.L. Shooman, Software Engineering Design/Reliability Man
agement, McGraw-Hill, 1983, pp. 226, 326, 350-384, and 432.
5. D.J. Simkins, "Software Performance Modeling and Manage
ment," IEEE Transactions on Reliability, Vol. R-32, no. 3, August
1983, pp. 293-297.

CORRECTION

I n t h e F e b r u a r y 1 9 8 6 i s s u e , t h e s h a d e d a r e a i n F i g . 3 o n p a g e 1 2 w a s s h o w n
incorrect ly- The correct f igure is shown below.

Upper Sideband
H a r m o n i c = N + 1

Upper Sideband
H a r m o n i c = N

f L O + A f
Local Osci l lator Frequency

MARCH 1986 HEWLETT-PACKARD JOURNAL 31

© Copr. 1949-1998 Hewlett-Packard Co.

P-PODS: A Software Graphical Design Tool
P-PODS enforces formal sof tware design, a l lows designs
to be maintained on-l ine, and produces output suitable for
design walkthroughs.

by Robert W. Dea and Vincent J . D 'Angelo

P-PODS (Pictorial Procedure Oriented Design Sys
tem) is an interactive graphical software design and
documentation tool. Available for internal Hewlett-

Packard users only, its target users are software R&D en
gineers. As a design tool, P-PODS is used during the design
phase of a project to replace the pseudocoding or flowchart
ing of detailed logic structure that would normally be done.
The resulting diagrams supplement information available
in the finished code. As a documentation tool, P-PODS is
used to document existing code.

With P-PODS, an engineer interactively creates a design
diagram. These diagrams are kept on-line and are easily
changed. Hard-copy output of these diagrams can be pro
duced for formal design reviews or for internal mainte
nance purposes. Once the designs for the project have been
finalized, code templates can be generated to assist the
software engineer with the start of the coding phase.

The design phase is a critical point for eliminating de
fects. Finding and correcting defects in the design phase
results in a much lower cost compared to finding and cor
recting them during the testing phase. Finding elements of
complex design at an early point leads to better program
structure and reduced long-term maintenance costs.

P-PODS is a prototype product to address some of these
issues. It was created partly to obtain feedback for future
design tools. This feedback is being incorporated into fu
ture R&D efforts in the Software Engineering Laboratory of
HP's Corporate Engineering Department.

Phased Release
Originally, P-PODS was intended to be a design tool that

had the following features:
â€¢ Hierarchical graphical editor (to create charts similar to

the one shown in Fig. 4).
â€¢ Logic structure graphical editor
â€¢ Ability to handle data variables
â€¢ Partial code generation

P R O C E D U R E : c o u n t _ o p t i o n s Counts students in CS

W H I L E s t u d e n t r e c o r d s r e m a i n t o p r o c e s s

retr ieve student record

I F c o m p u t e r s c i e n c e m a j o r

THEN

C A S E C S o p t i o n

systems

add 1 to systems count

math

add 1 to math count

applications

add 1 to appl icat ion count

ELSE

add 1 to non-CS count

Fig. 2 . Example of a P-PODS design equiva lent to F ig . 1 .

â€¢ Code scanners to bring existing code into the design
system

â€¢ Limited design analysis.
â€¢ Calculation of complexity metrics.

It was decided that a phased release approach was appro
priate to get important user feedback. The project was par
titioned into six phases. The first phase developed the logic
structure graphical editor on the HP 3000 Computer. This
was the minimum core subset of functionality. The second
phase enhanced this version, adding partial code genera
tion capability. The third phase was a port of the phase
two release to the HP-UX operating system, with automatic
calculation of design complexity. The proposed fourth
through sixth phases were to add the remaining features
(the hierarchical editor, etc.) to the HP-UX version.

student records remain to process

Fig . 1 . A Nass i -Shne iderman de
s ign example.

32 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

P-PODS Development Terminals

Shared Data Base

Output Devices

Fig. 3. The P-PODS/3000 environ
ment.

P-PODS Diagrams and Features
P-PODS provides an interactive tool for structured flow

charting. The design diagrams created are combinations of
individual design constructs. These design constructs are
similar to Nassi-Shneiderman structure flowcharting con
structs.1 An example of a Nassi-Shneiderman diagram is
shown in Fig. 1.

Although P-PODS design constructs are based on the
Nassi-Shneiderman representations, alterations were made
to avoid the subdividing of the diagram into narrow vertical
columns for decision representations. These alterations
allow the terminal's screen space to be used more effec
tively. Fig. 2 shows the P-PODS equivalent of the example
shown in Fig. 1.

P - P O D S p r o v i d e s t h e f o l l o w i n g s t r u c t u r e d d e s i g n c o n
structs: SIMPLE, WHILE, FOR, PROCEDURE CALL, IF, ELSE, CASE,
CASE ELEMENT, DO UNTIL.

P-PODS prevents the user from producing incorrect de
sign structures. It rejects any attempt to combine sequences
of incompatible structures. For example, the user would
not be allowed to add a second ELSE construct to an IF
construct.

Mult iuser Environment
P-PODS is designed to be used by a project team. Each

project member's designs are stored in a single shared P-
PODS data base containing all of the designs for the whole
project. Each person on the team can interrogate the data
base at any time to view its contents. Fig. 3 shows the
P-PODS environment on the HP 3000 Computer.

The current underlying design data base is an Image data
base, and all Image-related support tools are available for
maintaining it.

In P-PODS, designs within a project are partitioned into
subgroups called modules. Modules are logical groupings
of P-PODS design diagrams. For example, a project team
might decide to define a module to contain graphics related
routines, while another module might contain user inter
face related routines, and so on. A module in P-PODS is a
lockable entity, preventing two project members from
changing the same design at the same time.

P-PODS can translate its designs into either Pascal or C
code templates. The user can then edit the generated file
with any favorite editor to fill in the missing pieces. This
feature relieves the user of the need to match BEGIN/ENDs,
etc. P-PODS also translates the design construct descrip
tions into comments, and places these comments in the
appropriate places in the generated code template.

IF Right Condit ion

THEN

ELSE

WHILE Not Done

Fig . 4 . Example o f a Jackson d iagram.
Fig. 5. Example of P-PODS constructs to represent h ierarchi
cal structure, equivalent to Fig. 4.

MARCH 1986 HEWLETT-PACKARD JOURNAL 33

© Copr. 1949-1998 Hewlett-Packard Co.

Several copies of P-PODS/3000 and P-PODS/UX have
been distributed to software engineers in the company.
Feedback has indicated that users would like design tools
containing interactive hierarchical and data flow diagram
ming capabilities. Future design tools also need to be im
plemented on workstations to overcome any performance
problems caused by host-to-terminal communications.
Also, some users prefer an enhanced editor to a lower-level
design tool.

Future Uses for P-PODS-Type Diagrams
P-PODS design constructs can also be used to represent

hierarchical structures. These constructs can show program
modules and their interrelationships. A program is rep
resented as a hierarchically ordered set of modules. The
modules that perform the higher-level functions are closer
to the left margin. Lower-level modules are indented, and
are lower in the diagram than their parent modules.

For example, the Jackson diagram2 shown in Fig. 4 has
the equivalent representation using P-PODS-type con
structs shown in Fig. 5.

P-PODS-type design constructs can also be used to rep
resent hierarchical data structures. This representation
shows a program-level view of the data. For example, a
Warnier-Orr diagram3 is shown in Fig. 6, and its equivalent
P-PODS-type representation is shown in Fig. 7.

Using the hierarchical data structure and detailed design
representations discussed so far, a method of design can
be derived that integrates these design techniques. Software
engineers can use any subset or all three of these design
representations in designing software. For example, the
software can first be designed in a hierarchical manner.
From there, detailed design can be performed for any of
the components in the hierarchical design. As the detailed
design is progressing, data structures can be defined using
the data structure representation. This type of environment
is shown in Fig. 8. A transfer from one design representa
tion to another exits back along the same path from which
it was invoked. In this way, three different kinds of design
representations using P-PODS-type constructs can be used
in the design of software.

F i g . 7 . E x a m p l e o f P - P O D S c o n s t r u c t s t o r e p r e s e n t d a t a
structure, equivalent to Fig. 6.

Conclusion
The design phase is a critical point of a project for pre

venting defects. Defects introduced during design increase
development costs, extend development schedules, and
frequently create large maintenance costs. The techniques
available through P-PODS and other tools currently under
exploration deal with some of the primary causes of defects,
and will lead to better software products.

Acknowledgments
We would like to give special acknowledgments to Debbie

Caswell for her contributions to P-PODS/UX, and to Bob
Grady for giving us the opportunity to develop P-PODS.

Employee
File
(1)

File
Header

Date of
Last Update

Number of
Employee
Records

â€¢ Employee F , l e B o d y J R e c P o r J J

Employee Name

Address

Employee Number

Salary

Employee
Category

Street

City

State

Z ip Code

Exempt

(+)

Non-Exempt

Fig . 6 . Example o f a Warn ier -Orr d iagram. F ig . 8 . Example of fu ture des ign env i ronments .

34 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

Refe rences
1. I. Nassi and B. Shneiderman. "Flowchart Techniques for Struc
tured Programming." ACM SIGPLA.V .Vertices, Vol. 8, no. 8, August
1973, pp. 12-26.

2. MA. Jackson, Principles of Program Design. Academic Press,
1975.
3. J. Warmer, Logical Construction of Systems. Van Nostrand
Reinhold Company. 1981. pp. 11-38.

Tr iggers: A Software Test ing Tool
Tr iggers as a sof tware test ing method focuses on test ing
the boundary condi t ions of the sof tware, and enables the
sof tware tester to be more product ive.

b y J o h n R . B u g a r i n

SOFTWARE TESTING is in the eyes of the world a
black art. This art contributes to the quality of the
software product and consumes a large amount of

effort in the software development life cycle.
Triggers is a software testing method to increase the pro

ductivity (efficiency and effectiveness) of testing. It allows
the tester to force the execution of specific paths in the
software by setting specific software conditions.

Software projects consist of several different partitions
called modules. Consider the number of execution paths
between these modules. If we assume ten modules, each
having only one interface, then there are potentially 72
different intermodule entry point paths. However, this
number includes only the number of module entry point
pairs, it does not include different combinations of module
entry point sequences. In most software projects, the
number of different combinations is quite large.

How can the writer of module X test X's interfaces with
modules A, B, C, and D? How can the writer of module X
increase the testing branch flow coverage of X? Triggers is
the answer.

This method can easily be implemented in most develop
ment languages. However, I will not address implementa
tion here. Like all methods, Triggers is better explained
through an example, and I will use the language MODCAL
for the Triggers example that follows.

MODCAL Example
This Triggers implementation is based on the exception

handling (TRY/RECOVER and ESCAPE) mechanism of MOD
CAL. The grammar of the MODCAL TRY/RECOVER and ES
CAPE statements is:

(s t a t e m e n t) : : = T R Y (s t a t e m e n t l i s t) R E C O V E R (s t a t e m e n t)
: : = E S C A P E Â « e x p r e s s i o n))

The ESCAPE statement's expression is integer-valued. If
during the execution of the (statement list) in the TRY/RECOVER
statement an ESCAPE statement is executed, the program
will continue execution at the (statement) following the RE

COVER. Hence, several levels of procedure calls could po
tentially be aborted. Consider the following example:

P R O C E D U R E X ;
B E G I N

statement 1 :
statement 2:
statements:
statement 4:

T R Y
Y;

R E C O V E R
W R I T E L N (" B I N G O ! ") ;

W R I T E L N (" B A N G O ! ") ;

E N D

P R O C E D U R E Y ;
BEGIN

s t a t e m e n t 1 : Z ;
E N D

PROCEDURE Z;
BEGIN

s ta tement 1 : IF ((an er ror cond i t ionÂ» THEN
s t a t e m e n t 2 : E S C A P E Â « t h e e r r o r c o n d i t i o n Â » ;

E N D

Upon entry of procedure X, the TRY/RECOVER statement
is entered (statement 1 of X). Procedure Y is called and
immediately procedure Z is called. At statement 1 in pro
cedure Z an error condition is encountered and an ESCAPE
statement is executed (statement 2 of Z). The run-time sys
tem then searches for the innermost TRY/RECOVER state
ment (procedure X in this example) and executes the re
cover statement (statement 4 of X). "BINGO!" is printed.
Execution continues after the TRY/RECOVER statement and
"BANGO!" is printed.

The above example is simplified because no recursion
of the TRY/RECOVER statement exists and no ESCAPE state
ments are executed in the recover statement. Both TRY/RE
COVER and ESCAPE recursion are supported in MODCAL.

MARCH 1986 HEWLETT-PACKARD JOURNAL 35

© Copr. 1949-1998 Hewlett-Packard Co.

Using the example on the preceding page, add a compiler
directive and a new procedure call Try_Trigger at the begin
ning of procedure Z:

P R O C E D U R E Z ;
B E G I N

$ I F T R I G G E R _ O N $
T ry_T r i gge r (. . .) ;

SENDS
s t a t e m e n t 1 : I F Â « a n e r r o r c o n d i t i o n)) T H E N
s t a t e m e n t 2 : E S C A P E Â « t h e e r r o r c o n d i t i o n)) ;

E N D ; (* Z *)

Upon entry of Z, Try_Trigger is called. It queries a trigger
data base. If an entry is found, Try_Trigger executes an ESCAPE
statement with the designated escape value. Otherwise,
Try_Trigger is a NO OP. With this mechanism a condition is
triggered; hence the name Triggers.

An instance of a trigger consists of two search keys (a
module name and a trigger number), a reference count
which is decremented when the trigger is called by Try_Trig-
ger, and an escape value which is used when the reference
count is equal to or less than zero.

All interfaces between modules in the project can be
identified and assigned trigger numbers which can made
public in a MODCAL definition file. These numbers are
negative values to allow individual testers to use positive
numbers for their own triggers. At every interface, the trig
ger is placed as follows:

P R O C E D U R E X X X (. . .) ;
B E G I N

$ I F T R I G G E R _ O N $
T r y _ T r i g g e r (M y _ M o d n a m e , T _ X X X) ;
T r y _ T r i g g e r (A N Y B O D Y , T _ X X X) ;

$ E N D $

E N D ; (P R O C E D U R E X X X *)

My_Modname is a function that returns the identifier of the
current module and T_XXX is a constant. ANYBODY is a con
stant modname that denotes any module. The first Try_T rig
ger call provides a testing interface. Any module can use
this interface to test specific interfaces to procedure XXX.
The second Try_T rigger call provides the ability to test the
general interface to procedure XXX.

With triggers in place at every interface, the writer of
module X can test the interfaces to all client modules. The
module writer identifies the sequence of intermodule in
teractions that need to be tested and uses triggers to force
the chosen execution paths. This same concept can be
applied to the internal interfaces of the module (intramod-
ule). Furthermore, triggers can be used to increase branch/
path flow coverage.

The implementation of Triggers consists of the data base
(with insertion and deletion operations) of records consist
ing of the two keys (module name and trigger number), the
reference count, and the escape value. Interactive and pro
grammatic interfaces for inserting and deleting triggers in
the data base should be implemented.

Triggers can be applied to several other testing needs by
using the general model below:

$ I F T R I G G E R _ O N $
T R Y

T r y _ T r i g g e r (M y _ M o d n a m e , T R I G G E R _ N U M B E R) ;
R E C O V E R

(spec ia l so f tware)
SENDS

If Try_Trigger escapes, the special software will be exe
cuted. Otherwise, the code is equivalent to a NO OP. This
model can be applied to test module interfaces that consist
of more than just escapes by executing special software to
trigger the software condition needed.

Problems
This trigger example exposes several problems. The Try_

Trigger procedure calls are manually identified and inserted
into the software. Hence, identifying and inserting all the
triggers required is a painful process. The module name
concept needs to be implemented across the total software
system. Resolution of a trigger in this example is at the
module level and not at the process level. Hence, only one
trigger test per module can be executing at a time.

Triggers Exper ience
The key question is "How productive (efficient/effective)

is Triggers?" We have used this MODCAL version of Trig
gers on a project of 15 modules written by 12 engineers.
We asked the engineers what percentage of defects found
were found using Triggers and their answers ranged from
40 to 80%. Our personal experience was around 95%, prob
ably because of our intimate knowledge of Triggers. During
the last month before manufacturing release, 31 major de
fects were found in the first week using specific and general
triggers (an investment of one engineer week).

Even without quantitative data, our organization has ac
cepted Triggers as an effective testing tool to be used on
future projects.

Acknowledgments
Triggers was developed during the Hammer Project

(LAN/500) and several people deserve recognition for their
roles. The project members were Tim DeLeon, Bill Mow-
son, Mike Robinson, Mike Shipley, Charlie Solomon, Dean
Thompson, and Mike Wenzel. I am grateful for their pa
tience during the evolution of the definition of Triggers.
Special thanks to Carl Dierschow for his active role in
Triggers and to the project managers, John Balza and Jim
Willits, for providing the support and environment to allow
the creation of Triggers.

36 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

Hierarchy Chart Language Aids Software
Development
HCL is used by sof tware des igners at severa l Hewlet t -
Packard Div is ions to speed up the process o f generat ing
hierarchy charts.

by Bruce A. Thompson and David J . El l is

TODAY, SOFTWARE DESIGNERS are using struc
tured methods that organize the development pro
cess from specification through final code into a

sequence of steps. The end of each step is marked by the
creation of part of the overall documentation. This docu
mentation greatly facilitates communication between de
signers and improves the maintainability of the product.

One of these pieces of documentation is a hierarchy chart,
which is a graphical representation of the structure of the
software. It depicts the organization of the modules. (A
module is a simple procedure, function, subroutine, or
similar atomic piece of code.) With this chart, engineers
can analyze the proposed design with a view to making
improvements.

A hierarchy chart allows careful examination of the pro
gram's binding and coupling before code is written. Bind
ing is a measure of the functionality of a module. At the
top of the binding scale are modules that do one and only
one task, while modules made of random blocks of code
are at the bottom of the scale. Coupling is a measure of the
traffic between modules. A module that modifies the code
of another has high coupling, whereas two modules that

pass little or no data have low coupling. A further discus
sion of coupling and binding can be found in references
\, 2, and 3.

This is where the designer can make the best effort to
wards ensuring program modularity and future reusability.
A program that is designed with high binding and low
coupling will be much easier to modify or repair. It will
also be much easier to reuse modules designed in this way.

Before this analysis can be performed, however, the chart
must be drawn.

Problems with Exist ing Methods
Traditionally, the software engineer draws hierarchy

charts in one of two ways: by hand or with a generic
graphics editor. There are problems with both methods.
Charts drawn by hand vary widely in style and are very
time-consuming to produce. General-purpose graphics
editors, although powerful, can be difficult to learn and
use. What these editors lack is the specific knowledge of
hierarchy charts needed so that changes can be made
quickly and easily. Both methods continually confront the
engineer with the topology problem â€” laying out the chart.

F i g . 1 . A n e x a m p l e o f a s i m p l e
hierarchy chart showing the di f fer
ent types o f modules. MAIN PRO
GRAM, B,C,D,E,F, and H (not called)
a re modu les . G i s a sys tem mod
ule. I is an external module. J is a
hardware module. K is a da(a mod
ule. L is a recurs ive module. Mod
ule names can be up to 32 charac
ters long. HCL draws each module
name on up to 3 l ines within a sym
bol.

MARCH 1986 HEWLETT-PACKARD JOURNAL 37

© Copr. 1949-1998 Hewlett-Packard Co.

As the number of modules on the chart increases, there
is an exponential increase in the difficulty of this problem.
The engineer must place the modules to make the chart
clear and understandable. Even minor modifications to the
chart can require starting over and redrawing the chart.
The time required for redrawing charts can make the de
signers feel that they are spending more time drawing
charts than designing, and tends to make the designers
reluctant to make modifications. This reluctance has often
caused designers to defend their original designs rather
than admit that they could be improved.

The solution to these problems is a graphics program,
aimed specifically at generating hierarchy charts, that re
quires little time to learn or operate. The Hierarchy Chart
Language (HCL) program is primarily a software engineer
ing tool used within several HP Divisions. It was developed
to facilitate the use of structured software design. HCL grew
out of the need to generate hierarchy charts quickly and
easily so the designers could concentrate on the design
rather than the representation of software. HCL automati
cally places modules and routes interconnections. This is
the most time-consuming aspect of chart generation for the
engineer to do by hand. This 100% placement and routing
is not restrictive, however. The designer is still allowed
the flexibility to alter the appearance of the hierarchy chart
to conform to a personal style.

In designing HCL, there were two choices for the input:
a text file or interactive graphics. The text file input was
chosen, mainly because it could look like a block-struc
tured language, something that most software engineers are
very familiar with. Also, if an engineer wants to make a
hierarchy chart for an existing piece of code, it is easier to
do if the input to HCL is text. To provide text input, the
user does not have to learn yet another editor, but simply
uses any familiar one. By building on the knowledge base
the software engineer probably already has (i.e., text

editors, block-structured languages, hierarchy charts), HCL
requires the engineer to learn only its very simple syntax.

Language Format
The primary goal in specifying the hierarchy chart lan

guage was to minimize the information needed to draw a
hierarchy chart. This can be summarized as a list of the
modules that appear on the chart and how these modules
fit together. This list is the basis for the overall language
structure.

The input is divided into three sections: options, decla
rations, and definitions. Most compilers of high-level lan
guages divide the input into similar sections, so again, this
is something that the user is familiar with.

The options section gives the engineer control over the
appearance of the hierarchy chart. There are options to
label the chart with a title, the author name(s), the date,
and a legend or key. The user can disable certain features
of HCL, such as the drawing of parameters and parameter
checking. In addition, this section provides control over
the operation of the program.

Before a module can be used in the definition section,
it must first be declared. This is similar to the type declar
ation of variables in many of the high-level languages.
Types and modules can be declared in any order.

HCL provides support for many different module types.
Each type is drawn differently on the chart and has different
uses.

The first module type is the simple module, which rep
resents common procedures, functions, subroutines, etc.
The recursive module is used to represent modules that
call themselves, either directly or indirectly. These mod
ules are generally more complex than the simple modules
and are therefore shown differently. The external module
is used to represent modules that are not defined on the
chart. These modules may be defined on another chart, or

HCL EXAMPLE
M O D U L E C M A D E A U T I L I T Y

Fig. 2 . A h ierarchy char t in which
m o d u l e C i s d r a w n a s a u t i l i t y
module.

38 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

may remain to be designed. An external module is one way
to show possible enhancements to a program on the chart.

The system module is used to represent operating system
calls, such as modules that read the system clock or open
a file. The data module was devised to show access to data
such as variables, data bases, files, etc. During design, it is
important to show which modules access the data so that
the interactions (coupling) of that data can be minimized.

The hardware module was added specifically to show
software interfaces to hardware registers. This allows the
assessment of coupling of not only the software-software
interface but the hardware-software interface as well. A
hardware module looks like the integrated circuit represen
tation used on schematic diagrams by digital designers.
Hardware interactions with software are especially impor
tant in microprocessor-based control software.

The invisible module is shown by simply drawing the
name of the module. This module can be used as a generic
module type, making HCL useful for applications other
than software hierarchy charts. Fig. 1 is an example of a
simple chart showing the various module types.

The limit on the length of a module name is 32 characters.
A name can contain nearly any printable character. To
make the module names easier to read, HCL draws the
name on up to three lines within the module shape. The
underbar character is used as a place for HCL to divide the
name into multiple lines if the name is too long. The under-
bars are not drawn on the chart.

The definition section is where the structure of the hierar
chy chart is specified. Modules are defined to call other
modules by listing subordinate modules in a Pascal-like
begin-end block. Parameters can be included each time a
module is used. These parameters are divided into two
types: those passed to a module and those returned from
the module. When using a module more than once, the
number of to and from parameters must be the same. How
ever, the parameter names do not have to match. Nearly
all printable characters can be used as parameters. This
allows the user to customize representations for the param
eters such as separating control and data parameters. For

example, the data parameters might be contained in brack
ets and the control parameters simply listed.

Conditional calls, case statements, and looping con
structs are supported. Each of these can have a begin-end
block to represent that more than one module is affected.

Nesting of loops can be done to show nested iterations
on the hierarchy chart. However, trying to nest case or
conditional calls will result in an error. This is because
there is no clear way to show this type of nesting on a chart.

The following code is the very simple textual definition
that produced the chart shown in Fig. 1.

M O D U L E M A I N P R O G R A M , B , C , D , E , F , H ;
S Y S T E M G ;
E X T E R N A L I ;
H A R D W A R E J ;
D A T A K ;
R E C U R S I V E L ;
M A I N P R O G R A M

B E G I N
B (T O _ P A R M) ;
C

B E G I N
D

B E G I N
I;
J;
E N D ;

E;
E N D ;

F (/ F R O M _ P A R M) ;
* L O O P

B E G I N
G;
K;
E N D ;

* C O N D L (T O _ P A R M / F R O M _ P A R M) ;
E N D ;

A problem arises in drawing a chart when a module is

E X A M P L E O F I N T E R C O N N E C T M O D U L E U S A G E
M O D U L E A C A L L S 2 5 O T H E R M O D U L E S

F ig . 3 . An examp le o f t he use o f
the in terconnect modu le . Modu le
A ca l ls 25 o ther modules . HCL a l
lows up to 51 2 modules per sheet
o f p a p e r . P r o g r a m s t h a t h a v e
m o r e t h a n 5 1 2 m o d u l e s c a n b e
drawn on two or more sheets.

MARCH 1986 HEWLETT-PACKARD JOURNAL 39

© Copr. 1949-1998 Hewlett-Packard Co.

called more than once. One approach is to use a circle with
a unique letter inside. Whenever the module is called, it
is replaced with its corresponding letter in a circle. The
module is then drawn off by itself with any module calls
it makes drawn underneath.

For a large chart it can become difficult to remember
which letter represents which module. Another approach
is to draw the module near the bottom of the paper and
draw lines to this module for every call. This results in a
chart of many lines and few modules.

When HCL detects a module's being called more than
once, it replaces the call with a circle but inserts the actual
name of the module in the circle. The circle is called a
utility module. The module is then drawn by itself as a
subchart along with any modules it may call. In this way,
the structure can be understood easily and the problem of
many lines bisecting the drawing is avoided. The following
code provides an example.

M O D U L E M A I N P R O G R A M , B , C , D , E , F , H ;
S Y S T E M G ;
E X T E R N A L I ;
H A R D W A R E J ;
D A T A K ;
R E C U R S I V E L ;
M A I N P R O G R A M

B E G I N
B (T O _ P A R M) ;
C

B E G I N
D

B E G I N
I;
J;
E N D ;

E;
E N D ;

F (/ F R O M _ P A R M) ;
' L O O P

B E G I N
G;
K;
E N D ;

* C O N D L (T O _ P A R M / F R O M _ P A R M) ;
E N D ;

C ; { M A K E S M O D U L E C A U T I L I T Y }

Fig. 2 shows the chart produced by this code. In this
example module C was made a utility module by listing it
again at the end of the file as shown. Module C is then
drawn separately as a subchart.

One problem that can occur when defining a hierarchy
chart is a module that eventually calls itself. This is known
as recursion. Sometimes this is desirable, but it can be
disastrous if unintentional. There are two types of recursion
that HCL checks for, direct and indirect. Direct recursion
is a module calling itself from itself. Indirect recursion is
a module calling itself through intermediate modules. Indi
rect recursion is the most difficult type of recursion to
detect manually.

When either type of recursion is identified and the mod
ule has not been previously declared a recursive type, a
warning is generated and the module type is changed to
recursive.

It is often necessary to define separate subcharts on a
single drawing. This is useful for showing functional par
titioning of the design as well as concurrent processing.
The user may achieve this effect by simply including the
definitions of these charts separately, one after another in
the file. HCL will draw each as a separate subchart on the
drawing.

A common nuisance in many block-structured languages
is the requirement that a symbol be completely defined
before it is used. In Pascal a procedure name must be fully
coded before it can be called. HCL allows a module to be
called anywhere in the file without reference to where the
module is defined. This permits easy reordering of the text
within the file.

A common cause of problems for hierarchy charts is a
module that calls a sequence of many modules. HCL will
draw the module calls all on the same level, creating a very
wide and short chart. The interconnect module can be used
to draw some of these modules at a lower level on the chart
and still maintain the structure. The interconnect module
was added to allow the user to make the chart easier to
read; it is ignored when the cross references are generated.
The following code and the resulting chart (Fig. 3) show
an example of the use of the interconnect module.

â € ¢ T I T L E ' E X A M P L E O F I N T E R C O N N E C T M O D U L E U S A G E ' ;
â € ¢ N A M E ' M O D U L E A C A L L S 2 5 O T H E R M O D U L E S ' ;
* M O D U L E _ D E F A U L T ;
* N O _ W A R N I N G ;
I N T E R C O N N E C T L I N K 1 , L I N K 2 , L I N K 3 , L I N K 4 ;
A

B E G I N
B;
C;
D;
E;
L I N K 4
B E G I N

LINK1
B E G I N

F;
G;
H;
I;

E N D ;
J;
K;
L;
M;
L I N K 2
B E G I N

N;
O;
P;
Q;

E N D ;
E N D ;

40 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

R;
S:
T ;
U:
L INK3
B E G I N

V;
W ;
X;
Y ;

END;
Z;

END;

The Topological Problem
The real power of HCL is its ability to draw any chart

specified by the language automatically. The user does not
have to perform any graphical operations to generate a
chart. The process HCL uses to draw a chart from the text
supplied consists of three steps.

The first step is to make a first-pass computation of the
chart. This step makes a rough estimate on how the modules
should be placed. It does not try to put the boxes as close
together as possible nor does it attempt to center the boxes.
It does, however, place the boxes and circles so that they
do not overlap and the associated parameters do not cross.

The second step, compacting, takes all the subcharts and
moves the boxes and circles as close together as possible.
Each module is centered above those that it calls to make
the chart look better.

The third step is to take all of the subcharts and organize
them to fit a specific paper size. All of the subcharts are
arranged in one long row, which is then chopped into
pieces and the pieces arranged to fit the length-width ratio
of the paper. The number of subcharts in each row depends
upon the size of the subcharts. The subcharts are ordered
from left to right and top to bottom, starting with the sub-
chart first defined in the input text. The order then follows
the sequence of the modules in the input text. Any utility
modules are located after all the subcharts.

After this three-step process is performed, the chart is
ready to be drawn. However, this does not limit modifying
the arrangement of the chart. There are several ways to
change the appearance of the chart. One method is to
change the order of the subcharts in the input file. This
will change the order of the subcharts on the drawing. An
alternative method is to draw just a portion of the input
text on the drawing. This technique relies on the fact that
comments can be nested in HCL. To draw just some of the
modules contained in the input text, the engineer includes
the modules that won't be shown in comments. HCL will
ignore the module definitions contained in comments.

A third method is to "pull apart" modules. One problem
that can occur with large charts is that some of the subcharts
may be large compared to other modules. The larger sub-
charts can be divided into multiple subcharts to provide a
better looking drawing. This is done by making a module
called within the larger subchart a utility module. A mod
ule can be made a utility module simply by listing it more
than once in the input text.

A d d i t i o n a l O u t p u t f r o m H C L
There are several features of HCL that general-purpose

graphics editors do not provide. These outputs are intended
to help the engineer during the design of the software.

The module call count gives an alphabetic listing of all
the declared modules, their types, and the number of times
each is called. If a module is declared but never called, it
is flagged to bring it to the attention of the engineer, who
may have forgotten to use the module after declaring it. At
the end of the listing is the total count for each type of
module as well as the total number of modules declared.
This output can be used to find the critical modules that
are called often in the designed software. This output may
also be used in the collection of certain software metrics.

The following is an example of a module call count table.

Module Cal l Count Table

(M)
(M)
(M)
(M)
(M)
(S)

called
called
called
called
called
called

1 t ime.
1 t ime.
1 t ime.
1 t ime.
1 t ime.

3 t imes.
(R) * * * * * * N o t c a l l e d * * * * * *

T o t a l M o d u l e s D e c l a r e d = 7

HCL produces two types of cross reference outputs. The
first is an alphabetic listing of all the modules and the
modules they call (see example below). Included with this
are the parameters that are used in each call, which is
especially helpful if the parameters on the chart become
too small to read.

M o d u l e

Module Cal l Cross Reference

Calls Modules

N u m b e r o f m o d u l e s d e c l a r e d = 7

MARCH 1986 HEWLETT-PACKARD JOURNAL 41

© Copr. 1949-1998 Hewlett-Packard Co.

The second cross reference, shown below, is the reverse
of the first one. It is also alphabetical, but shows all the
modules that call a given module. This comes in handy
when the designer wishes to change the interface of a mod
ule and needs to know which other modules will be af
fected.

Module Cal led by Cross Reference

M o d u l e C a l l e d b y M o d u l e s

Number o f modu les dec la red = 7

Uses of HCL
Although HCL was designed as a software engineering

tool, it is not restricted to this use. Other uses include:
â€¢ File system map . A hierarchical file system such as MS â„¢ -

DOS or the HP-UX operating system can be represented.
â€¢ Management organization chart. A company organiza

tion chart can easily be created and maintained.
â€¢ Process mapping. A process can be decomposed and

documented easily with HCL.
Other uses include specifying data structure composi

tion, documenting a command tree, and depicting Modula-

2 interdependÃ¨ncies. Basically, any hierarchically or
ganized structure can be documented using HCL.

Conclusion
HCL has been used successfully on a variety of software

products within HP. These projects have ranged from real
time microprocessor-based assembly language to the HCL
program itself. Two such projects were described in the
March 1985 issue of the HP Journalâ€” the HP 7978A and
HP 9144A Tape Drives.4 HCL was indispensable in the
execution and management of these projects.

HCL has proved to be very easy to learn. An engineer
who is familar with the text editor can be productively
generating hierarchy charts in less than a half a day. HCL
has vastly decreased the nonproductive tasks associated
with hierarchy charts, freeing the engineer to concentrate
on software design.

While HCL can be ordered inside of HP, it is an internal
tool and is not, at this time, available for customer sales.

Acknowledgments
We'd like to acknowledge Frances Cowan and Perry

Wells, who provided many hours of testing and supplied
useful enhancements that were incorporated into HCL. We
would also like to extend our thanks to Ellen Brigham and
Phiroze Petigura for arranging internal distribution of the
product.

References
1. W.P. Stevens, Using Structured Design, John Wiley and Sons,
1981.
2 . G.J . Meyers , Composi te/Structured Design, Van Nostrand
Reinhold Company, Inc., 1978.
3. H. Yourdon and L.L. Constantine, Structured Design, Prentice-
Hall, 1979.
4. HewJett-Packard Journal, Vol. 36, no. 3, March 1985.

42 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

Module Adds Data Logging Capabilities to
the HP-71B Computer
This 64K-byte p lug- in ROM of fers new BASIC language
keywords for control of a battery-powered data acquisit ion
and con t ro l un i t and n ine app l i ca t i on p rog rams fo r da ta
capture, presentation, and transmission to host computers.

by James A. Donnel ly

THE COMBINATION OF THE HANDHELD HP-71B
Computer1 and the HP 3421 A Data Acquisition/Con
trol Unit2 provides a low-cost hardware configura

tion for many engineering or production data acquisition
applications (Fig. 1). The computer and instrument are
connected via the Hewlett-Packard Interface Loop (HP-IL).3
To assist the engineer in performing data acquisition tasks,
a special plug-in ROM module was developed for the HP-
71B Computer. This 64K-byte ROM module, the HP 82479A
Data Acquisition Pac, contains a hybrid of BASIC and as
sembly language programs. Six general sets of capabilities
are provided:
â€¢ BASIC keywords for instrument control. The keyword

INIT3421 finds and initializes the specified HP 3421 A on
the interface loop. Keywords such as DCVOLTS and RANGE
provide convenient instrument control. Additional
keywords such as TCOUPLE and RTD provide rapid and

accurate assembly language linearizations for ther
mocouple, thermistor, and resistance-temperature detec
tor (RTD) probes.
Interactive control of the HP 3421A. A BASIC program
and keyboard overlay for the HP-71B create a virtual
front panel for the HP 3421A, which has no front-panel
controls.
Nine-trace stripchart output for the HP Thinkjet Printer.4
A BASIC program configures the system to produce strip
charts with optional data storage.
System monitoring and control. A BASIC program con
figures the system to monitor functions in a system, per
form limit tests and controls, and display the system
status on a video interface. An option allows periodic
storage of the system status to a data file.
Long-term data acquisition and control. Two BASIC pro
grams allow sophisticated data logging and control pro-

F ig . 1 . The HP 82479 A Da ta Ac
quis i t ion Pac for the HP-71B Com
p u t e r e n a b l e s t h e c o m p u t e r t o
contro l the HP 3421 A Data Acqui
sit ion/Control Unit via the Hewlett-
Packard In ter face Loop, a / lowing
an engineer to configure low-cost,
bat tery-powered systems for data
logging or instrument control .

MARCH 1986 HEWLETT-PACKARD JOURNAL 43

© Copr. 1949-1998 Hewlett-Packard Co.

cedures to be configured and executed without user in
tervention.

â€¢ Data analysis. A BASIC program provides printed
analysis of data col lected by the s t r ipchar t , system
monitor, .or logging programs. The data can be printed,
summary statistics can be calculated, or a strip chart can
be generated from stored data. Two additional programs
provide data transmission to MS '"-DOS-based comput
ers (via HPLink) or to HP 9000 Series 200 and Series
300 Computers.

New BASIC Keywords
The Data Acquisition Pac's capabilities are based on a

series of BASIC language keywords that combine conven
tional instrument control steps into one action. The con
ventional procedure for reading an instrument in HP BASIC
languages has been to use the OUTPUT statement to send a
command sequence to the ins t rument and then use an
ENTER statement to receive the data from the instrument.
The keywords provided in the HP 82479A ROM combine
these operations into one, which provides several benefits:
â€¢ Ease of programming: the engineer is no longer required

to refer to the instrument manual for cryptic commands.
For example , A = DCVOLTS rep laces OUTPUT :6
ENTER :6

'â€¢ Enhanced code maintainability: an engineer assigned to
take over responsibility for a test program using these
keywords will experience a shortened learning curve
while reviewing the code.

â€¢ Speed enhancement: the combined operations reduce
operating system overhead for the processing of the OUT
PUT and ENTER statements. The keywords TCOUPLE,
THMST2, and RTD provide rapid and more accurate con
versions from voltage or resistance measurements than
equivalent routines written in BASIC.

â€¢ Device location independence: unlike the HP-IB (IEEE
488), where the addresses of the instruments must be
set manually, the HP-IL assigns device addresses au
tomatically. The keywords in the Data Acquisition Pac
complement this by not requiring instrument address
information. If more than one HP 3421A is connected
to the HP-IL, a consistent device addressing scheme
makes selection of the first instrument on the loop the
default choice, but permits selection of additional HP
342lAs.
The new keywords provided by the ROM do not preclude

the use of ENTER and OUTPUT statements to control the HP
3421A, creating a possible conflict between commands is
sued through the new keywords and commands sent with
the OUTPUT statement. This potential for conflict is virtually
eliminated by assigning priority to the commands made
with the new keywords and keeping track of the intended
state of the HP 3421A in an internal buffer in the HP-71B.
The buffer records the current settings for:
â€¢ The HP 3421A device specifier (address)
â€¢ The degree mode for temperature conversions (C, F, K,

orR)
â€¢ The gate time for the counter (0.1, 1, or 10 seconds)
â€¢ The number of digits of resolution (3, 4, or 5)
â€¢ The range (- 1 through 7)
â€¢ The autozero status (on or off)

â€¢ The autorange status (on or off).
The entire instrument buffer is sent to the HP 3421A

before a new reading is taken, ensuring that the instrument
will be in the correct state. This way the settings requested
by the new keywords in the Data Acquisition Pac will be
enforced even if all the instrument settings have been al
tered by an OUTPUT statement in another program.

The HP 3421A can be ordered with various optional
plug-in cards, depending on the needs of an application.
This means that some commands will be correct for specific
configurations, but incorrect for others. To facilitate rapid
error detection, the instrument status is checked after each
command is sent, so that problems such as invalid channel
requests or ranges can be detected immediately. This saves
another check that would need to be done from a BASIC
program using ENTER and OUTPUT statements to talk to the
HP 3421A.

The keywords provided for conversions from voltage or
resistance to temperature are based on curve fits originally
wri t ten in BASIC for a desktop computer . The BASIC
routines provided accurate results, but with a significant
speed penalty. These routines were rewritten in assembly
language, providing a 20-to-l speed improvement while
minimizing the effect of round-off errors by using 15-digit
internal math routines.

To complement the calculator-like friendliness of the
HP-71B operating system, temperature unit conversion
routines are built into the keywords. The HP-71B has a
variety of system settings, such as OPTION BASE for array
declarations and OPTION ANGLE for trigonometric functions.
The OPTION statement was extended to include OPTION DE
GREES unit. The available temperature units are Celsius,
Fahrenheit, Kelvin, and Rankine. By declaring OPTION DE
GREES C, the programmer specifies that the results of future
temperature conversions will return Celsius degrees.

Binary Subprogram
A binary subprogram called SCAN was written to comple

ment the 30-reading data buffer in the HP 3421A. This
subprogram provides significant performance enhance
ments by replacing the entire command sequence and loop
structure normally used in BASIC for a burst measurement
into a single binary subprogram call. The subprogram re
quires a command string that specifies the measurement,
a vector to retain the collected readings, an index that
points into the vector to indicate the starting position for
the readings, and an error parameter.

BASIC Programs
The BASIC programs are designed to take full advantage

of the features in the HP-71B operating system, yet retain
the friendly personality of a calculator. To this end, the
front panel and data logging programs are designed to work
with or without peripheral devices such as printers or video
interfaces. The user interfaces of the various programs are
designed to be consistent, so that an operator familiar with
one program will feel at home with another. Many complex
operations requiring a number of commands on larger com
puters are reduced to a single keystroke. Error handling is
designed to reduce the impact of simple entry mistakes or
requests for impossible measurement or control functions.

44 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

System Monitor Example

The combinat ion of the HP-71 B Handheld Computer , the HP
3421 A Data Acquis i t ion/Cont ro l Un i t , and the HP 82479A Data
Acqu is i t ion Pac can be used to prov ide moni tor ing and cont ro l
funct ions in space-cr i t ical or budget-cr i t ical environments where
a la rge sys tem s imply may not f i t . The MONITOR program can
not only monitor a system, but can also control the system using
l im i t w i th Cons ide r a p roduc t ion pho tograph ic labora to ry w i th
a con t ro l l ed - tempera tu re ba th tha t mus t be ma in ta ined w i th in
one deg ree o f 25Â°C. Two t ype -T the rmocoup les a re used to
moni tor the temperatures. A room-temperature thermocouple is
connected to channel 3 of the HP 3421 A, and a bath-temperature
t h e r m o c o u p l e i s c o n n e c t e d t o c h a n n e l 4 . T h e b a t h h e a t e r i s
c o n t r o l l e d b y a r e l a y , w h i c h i n t u r n i s c o n t r o l l e d b y a c t u a t o r
channe l 0 o f t he HP 3421 A . The HP-71 B con ta i n i ng t he HP
824 79A p lug- in ROM is connected to the HP 3421 A and to an
80-column video interface and video monitor as shown in Fig. 1 .

In th is example, the MONITOR program cont inuously displays
the room temperature and bath temperature on the video monitor.
In addit ion, two sets of l imit tests are specif ied: the control l imits
and the a larm l imi ts . The lower and upper contro l l imi ts are set
at 24.5 and 25.5Â°C. When the temperature fal ls below 24.5Â°C,

M u m i u i

S e t u p :

P H O T O L A B T E M P E R A T U R E M O N I T O R

D a t e f i l e : T E S T D A T A : M A I N T i m e : 1 4 : 2 2

1 R o o m T e m p . 2 1 . 8 5
2 B a t h T e m p . 2 5 . 1 7

I X

Fig. 2 . V ideo d isp lay for system of F ig. 1 .

the actuator channel is c losed, turn ing on the heater by means
of a relay. When the temperature rises above 25.5Â°C, the actuator
channel is opened, turn ing the heater o f f . The lower and upper
alarm l imits are set at 24 and 26Â°C. I f the control system fai ls,
one of the alarm l imits wil l be reached and the HP-71 B wil l beep.
Addi t ional a larm l imi t act ions could log the event on a pr inter or
control addit ional actuators.

Fig. while illustrates the contents of the video monitor display while
the photographic laboratory moni tor is running.

Control led-Temperature Bath

F i g . 1 . P h o t o g r a p h i c l a b o r a t o r y
t e m p e r a t u r e m o n i t o r i n g s y s t e m
with actuator control .

Wherever possible, the user's working environment is pre
served to protect the value of working variables, files, and
other data.

Unlike larger desktop computers, the HP-71B is designed
to work under extremely low memory conditions while
managing mult iple data and program fi les in memory.
Hence, the data logging program options are designed to
work under low memory conditions. In the event of equip
ment failure, data is always preserved. The fi le update
procedures to external mass storage devices are designed
to protect the integrity of the file at the slight cost of pro
cessing speed. An HP-IL failure during disc access risks at
most one data scan, leaving the other records intact. The
data analysis and transfer programs are designed to accom
modate data files with partial data, such as data from an
experiment that terminated with an equipment failure or
upon receiving an abort command from the operator.

The BASIC programs in the HP 82479A Data Acquisition
Pac are described below:
â€¢ The FRONT program in conjunction with a keyboard over

lay redefines the HP-71B keyboard, mapping the HP
3421A functions to individual keys. Additional key redef
initions combine voltage or resistance measurements with

temperature linearization functions to provide complete
temperature measurement functions.
The STRIP program in conjunction with an HP Thinkjet
Printer produces up to nine traces on a 1% scale. The
measurement function and scale are specified for each
trace. The scales for each trace are printed at the top of
each page of output. Program options include measure
ment interval times and data storage options.
The MONITOR program in conjunction with an HP-IL video
interface provides a visual system monitor and control
capability. Up to 18 traces can be presented on the video
display. A trace consists of a horizontal line on the display
showing a label, an actual measurement, and a 32-point
scale indicating the position of the current measurement
relative to specified nominal bounds. The display is de
signed so that the system operator can assess the state of
the system at a glance, instead of having to interpret nu
merical readings one by one. Five limit tests can be applied
to the measurement of each trace. If a test fails, one of six
available limit actions can be taken.
The SETUP program is used to define a data logging proce
dure. Up to 20 groups can be specified for a single data
logging experiment. A group definition consists of the mea-

MARCH 1986 HEWLETT-PACKARD JOURNAL 45

© Copr. 1949-1998 Hewlett-Packard Co.

surement function specification, up to five limit tests, and
data storage and timing specifications. The LOG program
is used to execute the data logging setup. Options in the
LOG program include buffered data storage and device
power-down capability for extending the life of battery-
powered peripherals.

â€¢ The REPORT program provides printouts of collected data,
summary statistics about the data, and strip charts from
collected data. These options can examine the entire file
or a time segment within the file.

â€¢ The TRANSFER and MSDOSXFR programs are used to move
collected data to Series 200 and Series 300 Computers
or MS-DOS-based computers such as the HP 150, The
Portable, or the Vectra. Files transferred to the MS-DOS
computers are compatible with 1-2-3â„¢ from Lotusâ„¢.

â€¢ The STATUS program is used to read the status registers
in the HP 3421A and produce a comprehensive report
listing error conditions, option configurations, and the
current operating status.

â€¢ The VERIFY program provides an interactive diagnostic
procedure for verifying the proper operation of the HP
3421 A. The program prompts for the installation of a
diagnostic block on each option board installed, and
checks for proper operation with the diagnostic circuits.

Measurement Opt ions
Twenty-one measurement functions are offered among

the three main data acquisition programs. These functions
correspond to the main capabilities offered by the HP
3421A combined with the temperature linearization
keywords. The functions include dc volts, ac volts, direct
current, two- and four-wire resistance, frequency, six ther
mocouple types, 2-kii and 5-kil thermistors, RTD, digital
bit, and digital byte. The programs provide two- and four-
wire resistance measurement options for the thermistors
and the RTD.

Clearly, the BASIC programs cannot anticipate all possi
ble measurement applications involving the HP 3421 A. An
additional function is included that permits the user to
write a special BASIC subprogram to perform custom mea
surement procedures. This hook allows new measurement
procedures to be created that still take advantage of the
user interface and data storage facilities provided by the
programs in the Data Acquisition Pac.

In addition, each function can call a conversion program
for additional processing of a measurement. For instance,
there is no alternating current function in the HP 82479A
ROM. A simple conversion program that divides an ac
voltage by the shunt resistance can provide the equivalent
of an alternating current function.

Limit Tests
The MONITOR and LOG programs can perform limit tests

on data collected by each function. A simple negative feed
back loop can be created for temperature control by setting
a limit test that turns on a heater if a temperature falls
below a set level, or turns off the heater if the temperature
rises above a certain level. Limit actions include a simple
beep, the printing of a message, switching an actuator, en
abling or disabling another measurement group (in the case
of the LOG program), or the calling of a user-written pro

gram. As mentioned before, the programs cannot anticipate
all of the possible actions that might have to take place in
the event of an out-of-limit condition. A hook that allows
the user to write a custom limit action program provides
significant flexibility in system design.

Error Recovery
Most of the peripherals that are available on the HP-IL

are battery-powered and not subject to the misfortunes of
ac power line interruptions. Nevertheless, under some con
ditions a device may temporarily malfunction or cease to
operate, causing an error to be detected by the HP-71B. In
most instances, the execution of a RESTOREIO command is
sufficient to return the interface loop to working order.
Clearly, in either production or unattended long-term data
acquisition applications, some form of automatic error re
covery is desirable. Each of the programs in the Data Acqui
sition Pac calls a subprogram RECOVER when a loop prob
lem is encountered. The recovery subprogram is sufficient
to bring the system back to working order in many cases
without operator intervention. Some system configurations
may require different error recovery procedures than are
provided. By placing a new RECOVER subprogram in the
memory of the HP-71B, the user can effectively replace the
one in the HP 824 79 A module. This hook provides more
sophisticated system designs for error recovery. For exam
ple, if an HP 82402A Dual HP-IL Adapter is installed in
the HP-71B, the recovery subprogram might notify a host
computer connected to loop two that loop one is broken
and out of service.

Acknowledgments
Nathan Zelle wrote the assembly language routines and

provided invaluable contributions to the entire project.
Nathan Meyers assembled the data transfer programs from
pieces contributed by me and Bill Saltzstein. Many people
expressed interest and offered design suggestions, making
this a true "next bench" project. Notable for their contribu
tions are Bob Botos, Jerry Hamann, and Peter Vanderheiden
of the Loveland Instrument Division and Grant Garner, Dan
Rudolph, and Don Ouchida.

The review and testing of this project were large efforts.
Many thanks are due to Mark Banwarth, Dirk Bodily, Dave
Boggan, Chris Bunsen, Jennifer Burnett, Ron Henderson,
Tim Hubley, Michel Maupoux, Pat Megowan, Henry
Nielsen, Dan Parker, and Don Rodgers.

References
1. Complete issue, Hewlett-Packard Journal, Vol. 35, no. 7, July
1984.
2. }.}. Ressmeyer, "Low-Cost and Portability Come to Data Acqui
sition/Control Products," Hewlett-Packard Journal, Vol. 34, no. 2,
February 1983.
3. R.D. Quick and S.L. Harper, "HP-IL: A Low-Cost Digital Inter
face Vol. Portable Applications," Hewlett-Packard Journal, Vol. 34,
no. 1, January 1983.
4. C.V. Katen and T.R. Braun, "An Inexpensive, Portable Ink-Jet
Printer Family," Hewlett-Packard Journal, Vol. 36, no. 5, May
1985.

46 HEWLETT-PACKARD JOURNAL MARCH 1986

© Copr. 1949-1998 Hewlett-Packard Co.

Authors
March 1986

geometry and software for digital circuit design and
verif ication . He is currently involved with micropro
cessor des ign va l idat ion and test ing. Greg is the
author of three conference papers, one on function
recogni t ion in VLSI c i rcui ts and two on sof tware

a member of the Matheir =
Association of America and the Society for Indus-

d Applied Mathematics. Outside of work, he
e n j o y s s c h u r c h ' s c h o i r , p e r f o r m i n g
Renaissance music , and p lay ing vo l leybal l . Greg
l ives in Sunnyvale, California.

Universi ty of I l l inois in 1972 and an MS degree >n
computer science from Boston University in 1 984
A res ident of Brookl ine. Massachuset ts , he a lso
teaches graduate- level computer science courses
at Boston University. Jack is married, has ore
and has another on the way. He enjoys jogging and
keeps h imse l f busy by renovat ing a recent ly pur
chased 100-year-o ld Vic tor ian home

32 â€” P-PODS :

2 4 = S o f t w a r e T e s t A u t o m a t i o n :

4 = A l W o r k s t a t i o n T e c h n o l o g y :

Mart in R. Cagan
In terested in programming
environments, sof tware de
velopment methodologies,
and computer-ass is ted in-

Istruction, Marty Cagan isa
pro jec t leader in the Sof t
ware Technology Lab of HP
Laboratories. Joining HP in
1981, he has worked on
business appl icat ions for

the HP 3000 Computer and the implementation of
the HP Development Env i ronment for Common
L isp product . He ho lds BS degrees in computer
sc ience and economics awarded in 1981 by the
Univers i ty of Cal i forn ia at Santa Cruz. A member
o f the ACM, the AAAI , and the IEEE Computer
Society, Marty is a resident of Los Altos, California.

XÃ¡

tSZZIDefect Tracking SyÂ«tÂ«m

Steven R. Blair
A native of Seatt le,
Washington, Steve Blair at
t ended the nearby Un ive r
sity of Washington, earning
a BS degree in computer
sc ience in 1983. He then

' ; , jo ined HP and is now par t
& of the staf f of Corporate En

gineer ing. Amember of the
â€¢"â€¢'; ACM, he lives in Santa

Clara, California, and is interested in photography,
h ik ing, and compet i t ive sai l ing.

19 â€” Object-Oriented Toolset ;

Gregory D. Burroughs
A nat ive of San Francisco.
Greg Burroughs s tud ied
mathematics at the Univer
s i ty of Cal i forn ia at River
s ide (BS 1978 and MA
1979) and compu te r sc i
ence at the Univers i ty of
Wisconsin (MS 1981). With
HP s ince 1981, he has
worked on computat iona l

Craig D. Fuget
Craig Fuget was born in
Pi t tsburgh, Pennsylvania
and s tud ied computer sc i -

l ence and eng ineer ing a t
the Massachusetts Insti tute

Â» of Technology. He com-
p le ted work fo r h i s BS de
gree in 1 983. He joined HP
the same year and is a soft-

â€¢ ware quality engineer re
sponsible for metr ics, test ing, and tools, pr imar i ly
for the operating system for the HP 1 000 Computer
He is a member of the IEEE. Craig lives in Palo Alto,
Cal i forn ia and l ikes reading, t ravel ing, camping,
and other outdoor act iv i t ies.

Barbara J. Scott
I Barbara Scot t s tudied com

puter science at the Univer
si ty of Cal i fornia at Davis,
earn ing her BS degree in
1 979 and her MS degree in
1980. With HP since 1980,
she is a project manager for
HP-UX system testing. She
has a lso tested operat ing

I sys tems and has been the
technica l leader responsib le for the development
o f too ls , p rocesses, and t ra in ing des igned to im
prove HP programmer product iv i ty and sof tware
quality. Barbara was born in Denver, Colorado and
now l ives in Sunnyvale, Cal i forn ia wi th her hus
band. She l ikes racquetball , aerobics, sewing, and
camping.

28 ~ Sof tware Qua l i ty Met r ics :

Wi l l iam T. Ward
With HP's Waltham Division
since 1 982, Jack Ward is a
software quali ty assurance
engineer. He was responsi
ble for testing the software
for the HP 78720AECG Ar
rhythmia Moni tor . He has
also been a technical mar
keting engineer and was a
sof tware suppor t engineer

for Data General Corporat ion His academic back
ground includes a BS degree in l inguistics from the

:

Robert W. Dea
With HP s ince 1979, Bob
Dea was born in Pittsburg,
California and attended the
University of Cal i fornia at
Berke ley. He received h is
BS degree in electrical en-
g ineer ing and computer
sc ience in 1973. He has
contr ibuted to the develop
ment of software for the HP

3000 Computer and design tools such as P-PODS.
Before coming to HP, he worked in the aerospace
industry. He is the coauthor of an earlier HP Journal
article. Bob lives in Fremont, California, is married,
and is interested in meditation and martial arts. He
a lso en joys f ish ing, photography, and personal
computers.

Vincent J. D'Angelo
Vince D 'Angelo s tud ied
computer sc ience a t
Cal i fornia State Universi ty
a t Ch ico and rece ived the
BS degree in late 1978 He
then came to HP and has
worked on a number of ap
pl icat ions and tools for the

r HP 3000 and HP 9000 com
puters . He was the pro ject

leader for P-PODS and is currently working on soft
ware des ign suppor t too ls . V ince prev ious ly
worked for Burroughs Corporat ion on appl icat ion
development. He l ives in Sunnyvale, Cal i fornia,
plays the violin, and is involved in numerous church
activities.

3 5 ~ T r i g g e r s :

John R. Bugarin
With HP s ince 1981, John
Bugar in i s a so f tware p ro
duct iv i ty manager at HP's
Co lorado Networks Opera
t ion. He has a lso been a
p ro jec t manager respons i
b le for the development o f
local area networks for the
HP 9000 computer fami ly .
John was bo rn i n M i l

waukee, Wisconsin and attended the University of
Wisconsin at Madison. He completed work for his
BS degree in computer science and mathematics
in 1 979 and for his MS degree in computer science
in 1 980. He's a member of the ACM. He lives in Fort
Col l ins, Colorado and l ikes sk i ing and gol f .

MARCH 1986 HEWLETT-PACKARD JOURNAL 47

© Copr. 1949-1998 Hewlett-Packard Co.

37 := H ierarchy Char t Language : David J. Ell is

Bruce A. Thompson
i Born in Manchester , Iowa,

Bruce Thompson s tud ied
i computer engineer ing at

Iowa State Universi ty and
received a BS degree in
1981. He then jo ined HP's
Greeley Div is ion where he

Â¡ has worked on the software
design forthe HP 7974 and
HP 7978 Tape Dr ives and

the HP 88500 Disc/Tape Interface Card. He is the
coauthor o f two conference papers on h ierarchy
charts and paral le l processing using microcomput
ers . He a lso wrote one paper on s t ructured
analysis. A resident of Fort Collins, Colorado, Bruce
is an amateur radio operator (WBOQWS) and likes
sk i ing, photography, and watch ing footbal l .

A coauthor of two confer-
ence papers on h ierarchy
char ts and para l le l p ro
cess ing us ing m ic rocom
puters, David El l is has
worked on the software de
s ign for the HP 7978 Tape
Dr ive and the HP 88500
Disc/Tape In ter face Card
since jo ining HP in 1983.

Before that , he wrote compi lers, assemblers, and
l inkers for Tekt ronix , Inc. a f ter complet ing the re
quirements for a BS degree in computer engineer
ing at Iowa State University in 1 981 . David was born
on Scott Air Force Base in Illinois and now lives with
h is wi fe and two daughters in For t Col l ins , Col
orado. He enjoys l is tening, p lay ing, and s inging
numerous types of music and is involved in learning
how to ski without injur ing himself .

4 3 = H P - 7 1 B R O M ~
James A. Donnel ly

I With HP since 1981, J im
Donnel ly was born in
Ch icago, I l l ino is and a t
t ended Oregon S ta te Un i
versity. He completed work
for a BS degree in broad-

| casting in 1979 and did in
s t rumenta t ion p rogram
ming at the Universi ty of

I Oregon as wel l as running
h is own sof tware consu l t ing bus iness before jo in
ing HP. He is now an R&D engineer and contributed
to the design of the ROM for the HP 71 B Handheld
Computer. He is also the coauthor of three techni
cal papers. Jim lives in Corvallis, Oregon and is a
member of the Corvallis Art Guild. He likes to travel
in the American West and northern Europe and en
joys mus ic , photography, and cars .

Hewlet t -Packard Company, 3000 Hanover
Street, Palo Alto, Cal i fornia 94304

March 1986 Volume 37 â€¢ Number 3

T e c h n i c a l I n f o r m a t i o n f r o m t h e L a b o r a t o r i e s o f
H e w l e t t - P a c k a r d C o m p a n y

Hewlet t -Packard Company, 3000 Hanover St reet
Palo Alto. Cal i fornia 94304 U.S.A.

Hewlet t -Packard Centra l Mai l ing Department
P O. Box 529, Star tbaan 16

1 180 AM Amstelveen, The Nether lands
Yokogawa-Hewlet t -Packard L td . . Sug inami-Ku Tokyo 168 Japan

Hewlet t -Packard (Canada) Ltd.
6877 Goreway Dr ive. Miss issauga. Ontar io L4V 1MB Canada

N A S A A M E S
. i u u ÃM
M u r - h c Ã T t - A t Ã - D

Bulk Rate
U.S. Postage

Paid
Hewlett-Packard

Company

L A

/*> LJ A from f^ request Hewlett-Packard C A r\ r^ D Cl O O â€¢ To subscribe, change your address, or delete your name from our mailing list, send your request to Hewlett-Packard
\ - / I I r \ your labe l , C. \J I r \ L / LJ I I L_ O O . Journa l , 3000 Hanover St reet , Pa lo A l to . CA 94304 U.S A. Inc lude your o ld address labe l , i f any . A l low 60 days .

5953-8545

© Copr. 1949-1998 Hewlett-Packard Co.

	An Introduction to Hewlett-Packard's AI Workstation Technology
	HP's University AI Program
	A Defect Tracking System for the UNIX Environment
	Contents of a Defect Report
	A Toolset for Object-Oriented Programming in C
	APPENDIX
	Tools for Automating Software Test Package Execution
	Using Quality Metrics for Critical Application Software
	P-PODS: A Software Graphical Design Tool
	Triggers: A Software Testing Tool
	Hierarchy Chart Language Aids Software Development
	Module Adds Data Logging Capabilities to the HP-71B Computer
	System Monitor Example

