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In this Issue 
This software continues the series of papers on major hardware and software 

components of  HP's new generat ion of  computers,  products of  the HP Pre 
cision Architecture development program. Earl ier issues have presented the 
mot iva t ion  and f ramework  fo r  the  program (August  1985) ,  the  op t imiz ing  
compi le r  techno logy  (January  1986) ,  and the  processor  and input  ou tpu t  
archi tecture together wi th the measurement and s imulat ion methodologies 
which guided their  development (August 1986).  

Although the low-level processor and I/O architecture have been the focus 
o f  much  in te r  mos t  use rs  w i l l  see  the  sys tem th rough  h ighe r - l eve l  i n te r  

faces.  Th is  issue presents  two such fac i l i t ies :  the  HP-UX operat ing sys tem and the ALLBASE 
data  base management  subsystem.  Each represents  a  very  substant ia l  so f tware deve lopment  
e f fo r t ,  and each has been des igned to  make max imal  use o f  the  speed,  la rge address  space,  
and I /O capabi l i t ies provided by HP Precision Archi tecture. 

The first AT&T's (page 4) presents the implementation of HP-UX, a real-t ime extension of AT&T's 
UNIX System V.2 operat ing system for  the HP 9000 Ser ies 800 Model  840 processor.  The ways 
in which described, implementation exploits the capabilities of HP Precision Architecture are described, 
with particular attention given to real-time extensions, memory mapping, and the I/O subsystem. 

The second paper (page 33) descr ibes the mult i level  implementat ion of  ALLBASE, a new data 
b a s e  a c c e s s  s y s t e m  t h a t  f u l l y  s u p p o r t s  b o t h  a  r e l a t i o n a l  a c c e s s  m o d e l  a n d  t h e  m o r e  t r a  
d i t ional  network model  of  data access.  ALLBASE presents the same inter face and supports the 
same data representat ions on both HP-UX and MPE XL operat ing systems.  

Fu tu re  t he  i n  t h i s  se r i es  w i l l  t r ea t  ha rdware  rea l i za t i ons  o f  t he  a rch i t ec tu re ,  t he  MPE XL  
operat ing system, and other topics. 

Michael  J .  Mahon 
Manager ,  Computer  Language Labora to ry  

C o v e r  G u e s t  E d i t o r  
Origins of  the HP-UX operat ing system (Fig.  3,  page 5) sculpted in p last ic .  

What's Ahead 
The January  i ssue  beg ins  w i th  four  a r t i c les  about  the  HP 3562A,  a  low- f requency  dynamic  

s ignal  ar t ic les wi th bui l t - in  curve-f i t t ing and synthesis features.  The ar t ic les d iscuss the design 
of the capability. 3562A and its measurement modes, curve fitter, and synthesis capability. 

Conc lud ing  the  issue is  an  ar t i c le  de ta i l ing  how per fo rmance measurements  po in ted  to  the  
des ign  Bus iness  tha t  p rov ide  the  inc reased  per fo rmance o f  the  HP 3000 Ser ies  70  Bus iness  
Computer.  
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The HP-UX Operat ing System on HP 
Precision Architecture Computers 
HP-UX is the technical  operat ing system for  HP Precis ion 
Archi tecture processors.  I t 's  an extension of  AT&T's UNIX 
System V.2. 

by Freder ick W.  Clegg,  Gary Shiu-Fan Ho,  Steven R.  Kusmer,  and John R.  Sontag 

HP-UX IS HEWLETT-PACKARD'S standard version 
of AT&T's UNIX System V operating system.1"6 It 
is currently supported on the HP 9000 family of 

computers, including its most recent addition, the Series 
800 Model 840. HP-UX is one of the two operating systems 
offered on the HP Precision Architecture family of proces 
sors. The HP-UX implementation on the Model 840 pro 
vides all of the functionality needed for full support of 
both computer integrated manufacturing (CIM) and design 
automation (CAD/CAE). 

Earlier HP Journal articles have covered implementations 
of HP-UX on HP 9000 Series 300 and 500 Computers7'8 
and on the HP Integral Personal Computer.9'10'11 Compari 
son of those articles with this one will reveal a strong 
similarity between those implementations of HP-UX and 
the HP Precision Architecture implementation described 
in this article. This is not by accident. HP's corporate strat 
egy calls for the HP-UX operating system to appear the 
same from the user's point of view, no matter what under 
lying architecture is used.12'13 Therefore, after a quick sum 
mary of HP-UX, this article will stress the contributions to 
HP-UX made by the HP Information Technology Group 
project teams responsible for implementing HP-UX on HP 
Precision Architecture. These contributions include kernel 
preemption, job control, native language support, and real 
time enhancements. 

Hewlett-Packard has chosen to support a UNIX operating 
system because it has several assets: 

Existing standards and a means to standardize further 
Productive software development environment 
Portability of software 
Easy access to existing applications software 
Hardware and vendor independence 
Multivendor networking 
Ability to run on micros, minis, and mainframes. 
A UNIX operating system can offer these benefits because 

it is flexible and powerful. It is constructed of a collection 
of tool-like programs, each of which performs a general- 
purpose task. These programs can be combined in various 
ways so that myriad complicated tasks can easily be ac 
complished. In addition, new programs can be added with 
out affecting the existing operating system. 

One of the more powerful features in this system is that 
the output from one program can become the input for 
another without the user's creating an intervening tempo- 
"UNIX and Sys tem V are  reg is te red t rademarks  o f  AT&T Be l l  Labora tor ies  in  the  U.S.A.  
and other countr ies. 

rary file. This allows speedy, powerful commands to be 
constructed without the unwanted overhead necessary in 
other operating systems. 

Three major parts make up the core of a UNIX operating 
system (see Fig. I): the kernel, which controls the resources 
of the computer's hardware, the file system, which is the 
means for organizing the layout of data storage, and the 
shell, which is the command interpreter. 

A large number of tools are also available in a UNIX 
operating system, including programming languages, text 
processors, and many more. A traditional UNIX operating 
system is interactive, which means that the user's input is 
immediately responded to by the system. In addition, a 
UNIX system is multitasking, so the user can instruct the 
computer to run background tasks while continuing to 
work interactively. It is also multiuser in that many people 
can use it at once. 

The features of a UNIX operating system are traditionally 
explained in a large reference manual, which documents 
each core program, tool, and interface. This large tome is 
organized much like a dictionary and is available on-line 
for quick reference. It is divided into sections by type of 

File System 

Application 
Programs 

P A M  a n d  W i n d o w s  

Fig.  1 .  Organizat ion of  the HP-UX operat ing system. 
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program. For example, all utilities are in section 1 and all 
C libraries are in section 3c. 

History of  HP-UX 
The shape and contents of the HP-UX system result 

primarily from three historical forces: 
â€¢ Development and standardization efforts by AT&T 
â€¢ Enhancements added by the University of California at 

Berkeley 
â€¢ Development and standardization efforts by HP. 

The UNIX operating system was developed at Bell 
Laboratories in 1969 by programmers who wanted a simple, 
flexible, and powerful environment in which to write their 
programs. One of their first projects was to develop text 
processing and formatting tools for internal documentation 
needs at AT&T. Because of its power, flexibility, and ease 
of use, the UNIX operating system quickly found wide 
spread acceptance by computer scientists throughout the 
Bell Labs organization. In 1975 the first public version, 
Version 6, was released to universities. Divergence began 
as the university students and professors added features, 
while the AT&T engineers continued on their own path. 
By Version 7 in 1978 the portability of the system had been 
improved with the rewriting of most of the operating system 
in the high-level language C. In 1979 Berkeley's 3.0BSD 
(for "third Berkeley software distribution") added virtual 
memory. Meanwhile, HP purchased source code from 
AT&T in 1980 and began to enhance the operating system 
as well. 

In 1981 AT&T released System III, which incorporated 
many Version 7 features. Between 1980 and 1981, Berkeley 
added job control, tuning, long variable names, and differ 
ent hardware support. Because they had established them 
selves as a leader in development, Berkeley received a grant 
from the U.S. Department of Defense Advanced Research 
Projects Agency (DARPA), to provide support for network 
ing. By the next release in 1983, 4.2BSD, Berkeley had also 
added a faster file system and a means of interprocess com 
munication. 

In 1983 AT&T released System V, which improved per- 

AT&T's  
System V .2  

UC 
Berkeley 

Other 
Members  of  
the Industry 

formance and added semaphores and shared memory. By 
System Y. Release 2. Issue 2 in 1985. AT&T had added 
shell layers (permitting a single user to work on multiple 
jobs simultaneously), flexnames (accommodating longer 
names for identifiers), and virtual memory. 

To prevent various versions of the operating system from 
diverging any further. AT&T published the System V Inter 
face Definition, Issue 1, (called the SVID) in 1985. The 
SVID defines the de facto industry standard interfaces for 
System V, so that portability between similarly compliant 
UNLX operating systems is possible. The interfaces are de 
fined individually in the SVID, much as they are in the 
traditional UNIX operating system reference manual. The 
input needed and resultant output are explained, but the 
method of implementation is not. Therefore, each computer 
is free to implement the interfaces in its own way, yet it 
can still comply with the SVID and be compatible with 
other UNIX operating system implementations. 

While the SVID is the most important standard in the 
UNIX operating system community to date, standardization 
efforts have been spearheaded by the IEEE, /usr/group (an 
international UNIX users group), X/OPEN (a consortium of 
European and U.S. manufacturers), and others. HP has par 
ticipated heavily in these efforts and continues to be a leader. 

HP-UX Defined 
HP-UX complies with the SVID, Issue 1, and is a superset 

of it (see Fig. 2). In addition to SVID features, HP-UX in 
cludes some features from Berkeley versions and other ver 
sions in the industry. 

For example, virtual memory management and local-area 

Increasing 
Performance 

HP 9000 
Series 

800 

HP 9000 
Series 

500 

HP 9000 
Series 

300 

HP 9000 
Series 

200 

I  
C A E C A T  

Workstation 

Mul t i use r  
Graphics and 

C o m p u t a t i o n a l  
Engine 

Transpo r tab le ,  
Single-User 

System 

Graphics 
Workstations 

for 
CAD,  CAT,  A l  

Powerful 
Processing 

for CAE. 
Manufacturing, 

etc. 

Fig.  2 .  Or ig ins of  the HP-UX operat ing system. F ig .  3 .  The HP-UX computer  fami ly  and i ts  appl icat ions.  
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networking have been derived from the Berkeley 4.2BSD 
implementation. In other areas, such as those of real-time 
support and native language support (internationalization), 
new capabilities have originated at HP. HP is actively work 
ing with other UNIX system vendors and with standards 
organizations such as IEEE and X/OPEN toward the goal 
of having HP extensions to UNIX operating system capabil 
ities accepted as industry standards. 

Recognizing the importance of UNIX operating systems 
as an emerging standard, HP management convened the 
first meeting of a UNIX operating system working group 
in May of 1981. This working group, composed of represen 
tatives of all HP entities working on or contemplating a 
product based on a UNIX operating system, was formed to 
facilitate communication between implementors in differ 
ent locations in an effort to minimize differences at the 
user application interface level between their respective 
implementations. 

The working group identified three fundamental objec 
tives that have guided its efforts since its inception: 
â€¢ Effortless application and user migration from the latest 

AT&T UNIX system and easy migration from other popu 
lar UNIX system environments 

â€¢ Effortless application and user migration between any 
HP-UX systems 

â€¢ Added value without impairing ease of migration. 
"Effortless application migration" means that code can 

be recompiled and run without change on a new system. 
This level of compatibility is commonly referred to as 
source code compatibility. This encourages importation of 
applications from other vendors' machines, serves to pre 
serve the valued investments of our customers, and facili 
tates the leverage of HP's development efforts across HP-UX 
systems. Object code compatibility is supported across sys 
tems of the same architecture. For example, code for the 
Model 840 will run on other HP-UX members of the HP 
Precision Architecture family without recompilation. 

The UNIX operating system working group evolved into 
the HP-UX Steering Council and created several subcom 
mittees, which include the management council, technical 
working group, marketing working group, documentation 
working group, and support working group. The councils 
and working groups strive to develop a consistent approach 
to all aspects of the product, as well as a common operating 
system interface across multiple product families and cor 
porate divisions. 

Compl iance wi th  the HP-UX Standard 
The current focal point of the standardization effort at 

HP is the two-volume HP-UX Standard Speci/ication, Ver 
sion B.I, published in January 1986. The standard, as pre 
scribed by this specification, closely follows the SVID and 
documents all features in HP-UX. The reference manuals 
customers receive with their computers beginning in late 
1986 will be derived directly from the standard specifica 
tion. 

Hewlett-Packard computing products that wish to offer 
an operating system derived from, or similar to, AT&T's 
UNIX system must comply with this standard. Waivers for 
any deviation from the standard require approval by the 
HP-UX management council before the deviating product 

can be placed on the corporate price list. 
Compliance with the HP-UX standard is verified by run 

ning the HP-UX verification test suite on a system. This is 
a highly automated, extensive collection of "black box" 
tests that systematically verify that the behavior of each 
operating system service and library call matches that 
called for by the entries in the standard. The HP-UX verifi 
cation suite is the product of over twenty engineering years 
of effort in various HP organizations over the past five years 
to produce the yardsticks necessary to implement a solid 
standard. 

The HP-UX verification suite was recently com 
plemented by HP's purchase of the AT&T System V verifi 
cation suite (SVVS]. The HP-UX standard and the HP-UX 
verification suite have, of course, been carefully designed 
to be compatible. Availability of the SVVS is an important 
milestone, nonetheless, since it provides for an additional 
guarantee of SVID compatibility. HP intends to have all 
HP-UX products pass the SVVS. After January 1987, UNIX 
system implementations passing the SVVS will be eligible 
for certification by AT&T that the implementation is SVID 
compatible. 

One other factor helps ensure that HP-UX implementa 
tions on various HP computer products are compatible and 
conform to the HP-UX standard: most of the source code 
for these implementations at the commands and libraries 
level is shared across all implementations. A single shared 
source repository is accessed by the engineering staff work 
ing on all HP-UX products. To ensure that updates to this 
software are properly coordinated, they are supervised by 
a shared source administrator. Before a module may be 
modified by a member of any engineering team, that mod 
ule must be checked out from the shared source data base. 
No one else may access that module for the purpose of 
changing it while it is checked out. Needless to say, this 
approach not only helps keep different HP-UX products 
compatible, but also affords HP tremendous engineering 
leverage whereby the refinements of a single engineer on 

ALLBASE 
Data Base 

Network 
Services and 
LAN/HP-UX 

HP-UX Product  

â€¢ Kernel 
â€¢ Utilities 
> Libraries 
> C Compiler 
> Assembler 
â€¢ HP-UX Symbolic Debugger 
â€¢ Device I/O Library 
â€¢ Real-Time Features 
â€¢ Port/HP-UX 

Separate 
Products 

Starbase 
Graphics 

Development 
System 
Bundle 

DGL AGP 
Graphics 

Fig.  4.  Sof tware products avai lab le for  HP-UX systems.  
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one product team can be quickly shared across the entire 
HP-UX product line. 

Operat ing System Enhancements 
Because the original UNIX operating system was written 

by programmers for programmers, certain biases are appar 
ent in it. Most of them are of benefit, but some are perceived 
as drawbacks in certain circumstances. Early UNIX operat 
ing systems were designed for general-purpose, timeshared 
applications in an English-speaking environment. New 
needs and new markets have developed and HP-UX has 
had to address them. These have been accommodated by 
adding enhancements to HP-UX with the philosophy of 
adopting existing industry standard interfaces (e.g., SVID, 
System V.2, Berkeley 4.2BSD, /usr/group, and IEEE P1003) 
whenever possible. 

One apparent drawback of traditional UNIX operating 
systems has been the difficulty in learning them. The pro 
grammers who devised the user interface were interested 
in keeping their typing to a minimum and so created ex 
tremely terse and cryptic command names. For example, 
grep stands for global regular expression printer, which 
probably would not mean much to a novice. HP-UX has 
enhanced the operating system by adding interfaces that 
are menu-driven and provide for windowing on the screen. 

HP-UX on the HP 9000 Model 840 is implemented di 
rectly atop the new HP Precision Architecture hardware, 
that is, it is a native mode implementation, not a layered 
implementation. It combines the features necessary to sup 
port the design automation and computer integrated man 
ufacturing markets, but shares most features with the other 
members of the HP-UX family (see Fig. 3), which run on 
widely differing architectures.14 Examples of HP-UX family 
features (see Fig. 4) include support for graphics, local area 
networking, and native language support (internationaliza 
tion). 

Native Language Support  
Native language support (NLS) is an area in which HP 

has taken a leadership position in expanding the capability 
of UNIX operating systems (see Fig. 5). More than 50% of 
HP's sales are to international customers. In addition, the 
international community is demanding that computer sys 
tems have the capability to interact with users in their 
respective native languages. Much of the support for this 
capability lies within the operating system. HP's engineers 
began investigating how to extend the UNIX operating sys 
tem to make this possible over four years ago.15'16'17 The 
objective was to provide a satisfactory base for end users 
who want their application programs to run in languages 
other than "USASCII." Recently, the European standards 
group X/OPEN adopted HP's technology as their standard 
for NLS interfaces. 

The User Interface 
The user interface to any UNIX system is the shell. This 

is essentially a command interpreter program that accepts 
user inputs and turns them into requests to the underlying 
kernel, libraries, and other utilities to accomplish desired 
actions. Additionally, the shell performs housekeeping 
functions such as keeping track of the current working 

directory for a given user within the file system and other 
environment variables. A fundamental distinguishing 
characteristic of UNIX operating systems is that the shell 
is just another user program, that is. it is not embedded in 
the kernel, which is the heart of the operating system. A 
reasonably sophisticated user not happy with any of the 
shells provided can write a custom shell and use that in 
stead of the one provided by the system's manufacturer. 

Currently, HP 9000 systems (including the Model 840) 
are shipped with two shells. The more traditional Bourne 
shell, sh, is a direct descendant of the shells used with the 
earliest UNIX systems at Bell Laboratories. The C shell, 
csh. was developed at Berkeley and adds such capabilities 
as command substitution based on a stack of previously 
executed commands, a pushdown stack of file system direc 
tories currently being used, and commands to move mul 
tiple simultaneous jobs between background and fore 
ground modes in conjunction with the supported Berkeley 
job control functionality (see box, "A System V Compatible 
Implementation of 4.2BSD Job Control," page 9). Csh as 
currently supplied by HP has been enhanced with the ad 
dition of features (in the past found in the public domain 
program tcsh) originally found in Digital Equipment Corp.'s 
TENEX operating system, including command and file 
name completion. With this capability, a user can type 
only as many leading characters of a command or file name 
as needed to distinguish that command or file from the 
other valid ones in that context and then strike the ESC 
key to request the shell to fill in the missing keystrokes. 
Also adopted from tcsh is an autologout feature that auto 
matically logs users out of the system after they have been 
inactive for a specified period of time (as when a program 
mer goes home for the night having forgotten to log out). 

Other shells are available, as well. For example, the Korn 
shell, ksh, recently released by AT&T is available to those 
users who purchase a license for its use from AT&T. 

The ability to use arbitrary shells is one of the features 
contributing to the high degree of flexibility for which 
UNIX systems are so highly praised. As an example, in 

Fig .  5 .  Languages suppor ted  on  HP-UX sys tems.  
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1983, HP R&D engineers implementing HP-UX on a new 
processor wrote a simple shell to mimic the command in 
terpreter of HP's MPE V operating system on the HP 3000. 
Another special shell, rtesh, is part of the software migration 
aids package discussed later in this article. It provides a 
user command interpreter that looks and acts like that of 
the RTE operating system for HP 1000 Computers. 

In addition to serving as the interpreter of user commands: 
entered interactively, most UNIX operating system shells 
have the capability of executing scripts, which consist of 
files of commands. Shell scripts, in turn, can contain con 
ditional execution and looping constructs, permitting the 
user to write entire simple programs without the need to 
resort to C, BASIC, Pascal, or other more traditional pro 
gramming languages. The C shell, csh, purportedly derives 
its name from efforts to give its programming constructs a 
syntax as consistent as possible with the C language. 

The Program Development  Environment  
Traditional UNIX systems are generally acknowledged 

to be the most productive software development environ 
ment available on a widespread basis. Virtually every as 
pect of a software engineer's job is aided by one or more 
tools of the system. 

Ex, vi, and other editors (full-screen and otherwise), as 
well as numerous other text manipulation tools (grep, awk, 
sed â€” the list is very long], speed the entry of everything 
from design proposals to source code to maintenance 
documentation. Many of these tools "know" about the 
structure of specific programming languages so that a single 
keystroke can be used to move the cursor to the beginning 
of the next block, for example. 

Source code preprocessors such as lint, cpp, cxref, and cb 
are available to provide early screening of errors and to 
improve program readability. Compilers for C, Fortran, and 
Pascal are currently available on HP-UX products. Lisp, 
Ada, and BASIC will be available soon from HP. Third- 
party vendors offer a wealth of other languages, including 
Forth and COBOL, for HP-UX systems. 

For dealing with larger software systems, tools such as 
make are available to ensure that the proper version of each 
component is employed in the generation of a system. SCCS 
(the source code control system) and other utilities from 
AT&T's Programmer's Workbench are available to facilitate 
administration of multiple versions of a given software 
system. For engineers building software that must recog 
nize and/or translate commands or some other formal lan 
guage input, HP-UX includes lex (a lexical analyzer) and 
yace (yet another compiler compiler). For getting new pro 
grams to work well at run time, two very powerful debug 
gers are provided. The traditional adb (assembler-level de 
bugger) has been carefully tailored to HP Precision Ar 
chitecture on the Series 800 (a major challenge on a RISC 
architecture). Higher-level (source-level) debugging is 
facilitated by xdb, the latest in a lineage of symbolic debug 
gers including sdb and cdb in earlier UNIX systems. Xdb has 
been generalized to support Fortran and Pascal, as well as 
C programs. It is sufficiently powerful to tackle even such 
difficult jobs as analyzing a memory dump of the kernel 
after a crash. Finally, HP-UX offers tools such as prof and 
vmstat to aid in monitoring the run-time behavior of a pro 

gram and in performance tuning. 

Real-Time Commands and Librar ies 
The implementation of HP-UX on HP Precision Architec 

ture is noteworthy in its extensions and alterations that 
make it suitable for real-time applications.18 Most of the 
work to accomplish this was done within the kernel of the 
operating system. Command and library support for the 
real-time feature set consists of the datalock routine and the 
getprivgroup, setprivgroup, prealloc, and rtprio commands. 

Real-time privileges are the capabilities given to pro 
cesses to become real-time processes and/or lock them 
selves in memory. These privileges give users direct control 
over scarce system resources and must be controlled care 
fully. The approach chosen by HP-UX is an extension of 
the Berkeley access groups concept. Each real-time 
privilege is controlled by one or more real-time access 
groups, which are set up by the superuser. A process is 
given a real-time privilege only if it is a member of the 
corresponding real-time access group. This approach al 
lows dynamic revocation of real-time privileges by the 
superuser by redefining the real-time access groups. A user 
process can also remove a real-time privilege from its child 
process by deleting the corresponding real-time access 
group from its child process before it passes control to the 
child process. 

Process Management  
Process Scheduling. A typical UNIX system scheduling 
algorithm was designed to provide equitable access to the 
CPU and memory in a timeshared environment. Process 
scheduling priority is recalculated periodically and process 
execution is time-sliced to ensure a fair share of the CPU 
for each process. 

The concept of real-time priorities has been added to 
HP-UX to satisfy the real-time needs of the computer inte 
grated manufacturing market. All real-time priorities are 
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Fig.  6.  HP-UX real - t ime extensions achieve an order  of  mag 
n i tude  improvement  i n  p reempt ion  la tency  over  t rad i t i ona l  
UNIX systems. 
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of higher scheduling priorities and are not modified by the 
operating system. A process with the appropriate real-time 
privilege can set its own real-time priority and the real-time 
priorities of its offspring. In the extreme case, the process 
with the highest real-time priority can monopolize the pro 
cessor and have full control of the system. Real-time pro 
cesses with the same priority are executed under a round- 
robin, time-sliced policy. 
Time-Based Scheduling. Processes can be scheduled by 
firing an alarm clock in traditional UNIX systems. UNIX 
System V supports an alarm clock with a resolution of one 
second. That is sufficient for most timeshared applications 

but is too coarse for time-critical applications. HP-UX has 
adopted the Berkeley 4.2BSD timer interface, which sup 
ports microsecond resolution of three types: real time (wall 
clock time), virtual time (time spent in the user code) and 
prof time (time spent in both the kernel and user code). The 
timer is nondrifting in the sense that a process can schedule 
itself for execution at regular intervals independently of 
the dispatching and rescheduling overhead of the process. 
Preemption Latency. In a traditional UNIX system, a pro 
cess executing in user code can be preempted immediately. 
However, when executing in the kernel, the process gives 
up the CPU only voluntarily and explicitly, for example 

A UNIX System V Compatible Implementation of 4.2BSD Job Control 

The job control functionality first introduced into UNIX operating 
systems by J im Kulp of  I IASA and later  provided by the 4.2BSD 
version has become a de facto industry standard.1 2 It al lows the 
user to control mult iple simultaneous tasks from a single terminal 
e a s i l y .  H o w e v e r ,  t h i s  j o b  c o n t r o l  f a c i l i t y ,  a s  i m p l e m e n t e d  i n  
4.2BSD, is incompat ible in several  respects with System V. This 
is  typical  of  many cases where new features desired by custom 
ers  must  be carefu l ly  engineered to  f i t  comfor tab ly  in to  HP-UX 
without v io lat ing industry standards for  compat ib i l i ty .  

4 .2BSD job contro l  a l lows users to  s top (suspend)  the execu 
t ion any processes and cont inue (resume) their  execut ion at any 
later point. This only works easi ly for processes that are stopped 
and cont inued dur ing the same log in sess ion.  

The user almost always employs this faci l i ty via the interactive 
interface jointly supplied by the system tty driver and a job control 
she l l  sus  as  csh.  The t ty  d r iver  recogn izes  a  user -def ined sus  
pend character  which causes a l l  cur rent  foreground processes 
to stop and the user's job control shell to resume. The job control 
she l l  p rov ides  commands  tha t  con t inue  s topped  p rocesses  in  
e i ther the foreground or the background. The t ty dr iver wi l l  a lso 
s t op  a  backg round  p rocess  when  i t  a t t emp ts  t o  r ead  f r om  o r  
wr i te to the user 's terminal .  This al lows the user to f in ish or sus 
pend the foreground task wi thout  in ter rupt ion and cont inue the 
s topped background process a t  a  more convenient  t ime.  

Some of  the System V incompat ib i l i t ies of  4.2BSD job control  
tha t  a re  reso lved in  HP-UX are  d iscussed in  the  fo l low ing  sec  
tions.3 

SIGHUP Changes 
System V semant ics  s ta te  that  when a  process group leader  

d i e s ,  a l l  p r o c e s s e s  i n  t h e  s a m e  p r o c e s s  g r o u p  a r e  s e n t  t h e  
SIGHUP signal which, by default ,  ki l ls al l  the processes. Job con 
t ro l  she l l s  execute  a  command by  mak ing  a l l  p rocesses  in  the  
p ipe l ine belong to  the same (brand new) process group and by 
mak ing  the  f i r s t  p rogram in  the  p ipe l ine  be  the  p rocess  g roup 
leader. Typically, the f irst program in a pipeline terminates before 
the other programs. Under System V semantics, this would cause 
the premature death of  the remaining pipel ine.  Because of  th is,  
4 .2BSD does  no t  gene ra te  S IGHUP on  p rocess  g roup  l eade r  
death. To support  System V semantics and st i l l  a l low job control  
to funct ion proper ly,  HP-UX makes a dist inct ion between a "Sys 
tem V process  group leader"  and a  " job  cont ro l  p rocess  group 
l eade r . "  A  Sys tem V  p rocess  g roup  l eade r  i s  g i ven  Sys tem V  
semantics (SIGHUP is generated) and a job control process group 
leader is given 4.2BSD semantics (SIGHUP is not generated).  

s i G C L D  C h a n g e s  
U n d e r  S y s t e m  V ,  t h e  S I G C L D  s i g n a l  i s  s e n t  t o  a  p r o c e s s  

w h e n e v e r  o n e  o f  i t s  i m m e d i a t e  c h i l d  p r o c e s s e s  d i e s .  U n d e r  
4.2BSD, SIGCLD (or its variant, SIGCHLD) is also generated when 
a process changes state from running to stopped. Since a System 
V appl icat ion would not  expect  to  rece ive SIGCLD under  these 
new c i rcumstances  and s ince  a  job  con t ro l  she l l  wou ld  no t  be  
able to funct ion proper ly wi thout such not i f icat ion,  a compat ib le 
compromise  was  deve loped .  The  (pa ren t )  p rocess  w ish ing  to  
trap SIGCLD may set a flag when calling the HP-UX sigvector routine 
to establ ish a s ignal  handler .  This f lag wi l l  cause SIGCLD to be 
sent  for  s topped ch i ld ren,  in  add i t ion to  terminated ch i ld ren.  A 
System V application using signal will see the System V compatible 
SIGCLD semantics. 

Control l ing Terminal  Changes 
Under  System V,  whenever  a  process group leader  d ies ,  the 

contro l l ing terminal  associated wi th  that  process group ( i f  any)  
is  deal located (d isassociated f rom that  process group).  4.2BSD 
d o e s  n o t  d e a l l o c a t e  c o n t r o l l i n g  t e r m i n a l s  o n  p r o c e s s  g r o u p  
leader  death  fo r  the  fo l low ing  reason:  job  cont ro l  she l l s  make 
the lead process in every pipel ine a process group leader.  I f  the 
control l ing terminal for each pipel ine were deal located whenever 
the lead process terminated, then the remaining processes would 
ef fect ive ly  become background processes (assuming they were 
cur ren t ly  in  the  fo reground)  and wou ld  s top  when any  o f  them 
at tempted subsequent I /O to the terminal .  

To al low both semant ics,  control l ing terminals are only deal lo 
cated when a System V process group leader dies and not when 
a job contro l  process group leader  d ies.  (See the d iscussion of  
SIGHUP changes above.) 

tty Driver Considerations 
For System V compatibi l i ty,  the suspend and delayed suspend 

characters are defaul ted to a disabled value (0377).  This means 
that  job cont ro l  is  inact ive by defau l t  when a user  logs on.  The 
user must explicit ly activate job control by defining either or both 
of these characters via stty or some similar interface. 
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by blocking for some unavailable resource or by completing 
a system call. This may significantly delay the execution 
of a high-priority real-time process and is unacceptable to 
critical real-time applications. For a detailed description 
of how the HP-UX kernel on the Model 840 has been mod 
ified to allow preemption in the kernel, see the box "De 
creasing Real-Time Process Dispatch Latency Through Ker 
nel Preemption," on page 13. The effects of these modifica 
tions are shown in Fig. 6. 
Job Control. Job control allows users to suspend the execu 
tion of processes selectively and resume their execution at 
any later point. Job control, as implemented in Berkeley 
4.2BSD, is incompatible with the UNIX System V semantics 
in several areas: signaling mechanism, process group, and 
controlling terminal semantics. A job control interface that 
supports the Berkeley functionality and is compatible with 
the UNIX System V specification has been added to HP-UX 
and implemented on the Model 840. This interface has 
been accepted in the working draft of the IEEE P1003.1 
POSIX, the Portable Operating System interactive Execu 
tive standard. For a detailed description of the HP-UX im 
plementation of job control, see the box "A UNIX System 
V Compatible Implementation of 4.2BSD Job Control," on 
page 9. 

Process Synchronizat ion 
Reliable Signals. A signal is the software interrupt mech 
anism supported in a UNIX system to relate asynchronous 
events to user processes. Traditional UNIX systems includ 
ing System V suffer from the race condition, which is that 
a signal can be lost or the receiving process can be killed 
if the signal is sent to a process when the process is in the 
middle of processing another signal of the same type and 
has not rearmed its signal handler. The Berkeley system 
recognized this problem and defined a set of signal system 
calls to eliminate it. This interface has been adopted by 
HP-UX and implemented on the Model 840 with minor 
modifications so that it is compatible with System V. 
Shared Memory, Semaphores, and Messages. Shared mem 
ory, semaphores, and messages are interprocess communi 

cation mechanisms added to UNIX System V.2. The same 
mechanisms have also been added to HP-UX and imple 
mented on the Model 840. 
Memory Management 

For a process to have predictable response time, HP-UX 
allows a process to lock its text segment, data segment, or 
both in memory. When a process locks its data segment, 
its stack and heap segments are also locked in memory at 
the same time. A process can also reserve additional heap 
and stack space when it locks itself in memory to avoid 
future page faults. If it outgrows its reserved space, the 
additional page is locked in memory automatically. Shared 
segments can be locked in memory by using the shared 
memory system calls. The above capabilities (through the 
same interface) have been added to the SVID and are cur 
rently supported on UNIX System V.2. The only difference 
is that HP-UX allows a process to lock memory segments 
i n  memory  on ly  i f  i t  pos ses ses  t he  memory  lock ing  
privilege. This allows tight control of the memory locking 
capability. Naive or malicious users who do not have the 
memory locking capability cannot consume most of the 
system memory, either intentionally or unintentionally, by 
locking themselves in memory. When full UNIX System V 
compatibility is needed, it can be achieved by giving the 
memory locking pr ivi lege to  every process .  Berkeley 
4.2BSD does not support any of the above capabilities. 

The swapping policy of the HP-UX implementation on 
the Model 840 has been modified in such a way that i t  
favors real-time processes. In general, timeshared sleeping 
processes are swapped out first, then real-time sleeping 
processes, then timeshared runnable processes, and finally 
real-time runnable processes. This policy is transparent to 
the users. The only difference is that timeshared processes 
may be swapped out more frequently and thus run slower. 

File System 
Because a UNIX operating system uses its file system 

very heavily, the traditional UNIX file system is a perfor 
mance bot t leneck.  The HP-UX implementat ion on the 
Model 840 is based on the Berkeley fast file system, with 
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minor modifications for UNIX System V compatibility. File 
access rates up to ten times faster than a traditional UNIX 
file system have been achieved in the fast file system. 

The fast file system partitions the disc into one or more 
cylinder groups, each of which consists of one or more 
consecutive cylinders on a disc. Inodes. which store infor 
mation such as file types and locations, are allocated in 
each cylinder to reduce disc head movement, rather than 
at the beginning of a file system as in a traditional UNIX 
operating system. Large data blocks with small fragments 
are supported to maximize disc transfer rates and minimize 
file system fragmentation. New data blocks are allocated 
on the same cylinder as the previous block, whenever pos 
sible, with rotational latency taken into consideration. Files 
belonging to the same directory are placed in the same 
cylinder group whenever possible. The fast file system user 
interface is fully compatible with that of a traditional file 
system. 
File Locking. File locking has been added to HP-UX and 
implemented on the Model 840. Both advisory and enforce 
ment mode locks are supported. An advisory lock allows 
a process to lock a region of a file to achieve exclusive use 
of the region among cooperating processes. A process can 
still have access to an advisorily locked region if it chooses. 
Enforcement lock enforces exclusive access by the locking 
process. Other processes that attempt to access the locked 
resource either return an error or sleep until the resource 
becomes unlocked. The same interface has been accepted 
into the SVID and /usr/group standard. 
Scatter Read and Gather Write. Scatter read allows a user 
to read from a file and scatter the data into multiple buffers 
in one system call. Gather write allows a user to gather 
data from multiple buffers and write it to a file in one 
system call. It is extremely useful for data acquisition ap 
plications to minimize the system call overhead. The inter 
face was first defined in Berkeley 4.2BSD, added to HP-UX, 
and implemented on the Model 840. 
User Control of Buffering. In traditional UNIX operating 
systems, the file systems store the most recently used data 
in their buffer cache to reduce the file system access time 
and improve the file system bandwidth. The buffer cache 
is periodically flushed out to disc to ensure data integrity 
in a system crash. UNIX System V supports the capability 
of flushing out all of its buffer cache. The operation incurs 
significant overhead to the system and, therefore, is done 
infrequently. The Berkeley system added the capability of 
flushing out only the buffer cache of a specified file to 
allow users better control of the buffering. This interface 
has been adopted into HP-UX and implemented on the 
Model 840. In addition to flushing out the buffer cache of 
the specified file, HP-UX on the Model 840 also flushes 
out the inode and indirect blocks of the file so that data 
integrity of the file is guaranteed. 
Preallocation of Disc Space. In a traditional UNIX operat 
ing system, the disc space of a file is allocated as needed 
on write operations. This implies that performance on write 
is slower since time may be spent allocating space during 
the write operation. This may be unacceptable to some 
critical real-time applications. The capability of preallocat- 
ing file space has been added to HP-UX and implemented 
on the Model 840. 

Powerfail Recovery. The HP-UX operating system on the 
Model 840 also supports powerfail recovery. On a tempo 
rary power failure, the CPU state and data stored in the 
cache are flushed out to memory backed up by battery. If 
power is restored within a short time (15 minutes for a 
24M-byte system), all I/O devices are reset, I/O transactions 
ongoing at the time of the power failure are restarted, CPU 
and cache states are restored, and a signal is sent to each 
process informing it of the power failure. A process can 
then take appropriate recovery actions. 

Asynchronous I /O 
In a traditional UNIX operating system, a process cannot 

continue its execution until the completion of the requested 
I/O operation. The delayed write feature in a UNIX operat 
ing system is an attempt to gain more parallelism in the 
system. However, many applications in the computer inte 
grated manufacturing market want to start multiple I/O 
operations, continue their execution, and then wait for 
completion of all of the I/O transactions. Other applications 
may want to perform multiple asynchronous I/O operations 
and be signaled on the completion of any of the I/O trans 
actions. The Berkeley 4.2BSD system supports asynchro 
nous I/O activities of this type. This capability has been 
added to HP-UX and implemented on the Model 840. In 
particular, a process can request that it be signaled when 
a certain driver state occurs. Alternatively, it can poll a 
driver to determine if the driver is ready for reading or 
writing, or if it has an exceptional condition pending. It 
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can also make nonblocking requests to drivers. 

Custom I /O Drivers 
In the computer integrated manufacturing market, appli 

cation developers may want to write their own device driv 
ers to have direct control of their equipment. The HP-UX 
implementation on the Model 840 supports a configuration 
tool to allow users to add drivers to the system without 
requiring the acquisition of a UNIX system source license. 

Debugging tools used by the lab developers are also avail 
able to users for their driver development: a kernel debug 
ger for debugging the kernel on the hardware, an off-line 
driver debugging environment to allow logical debugging 
of software in a UNIX system user environment before test 
ing it on the hardware, and driver skeletons to help users 
in designing their own drivers. HP's Data Systems Division 
also plans to release the above tools as products shortly 
after the first release of the Model 840, together with an 
HP-UX source product with a technical specification of the 
internal operation of the HP-UX operating system. 

The device I/O library is a set of libraries in HP-UX that 
allows users to have direct control of I/O devices. It was 
first supported on the HP 9000 Series 500, then on the 
Series 300, and is now supported on the Model 840. With 
first release of the Model 840, users have, through this 
library, direct access to the HP-IB card, which is used for 
instrumentation, and the high-speed parallel I/O card from 
HP's Roseville Networks Division. 

Software Quali ty 
Extensive measures have been taken to ensure that the 

HP-UX software on the Model 840 meets the high quality 
standard of HP. In particular, the HP-UX software meets 
the defect density, breadth, and depth coverage require 
ments as discussed in reference 19. Two software tools 
have been developed to measure the test coverage of the 
software: the path flow analyzer (PFA) and the instruction 
coverage analyzer (ICA). The PFA operates by adding in 
structions to each path of a program to count the number 
of times a path has been executed. It was used on all soft 
ware in the system except the kernel to confirm the extent 
to which tests have been comprehensive. The ICA operates 
by replacing all of the instructions of a program at the very 
beginning of an execution with break instructions. A spe 
cial trap handler puts the original instruction back when 
a break instruction is encountered. The program runs very 
slowly at the beginning but soon runs at its normal speed 
when most of the break instructions have been replaced. 
The ICA tool has been used extensively in kernel testing 
since it does not alter the execution timing of the system. 
It has proven to be a very valuable tool. 

Software Migrat ion Aids 
HP's computer products strategy presently calls for a 

convergence upon three operating systems for all products. 
These are MS-DOS for personal computer products, MPE 
for commercial and business data processing markets, and 
HP-UX for most other computer markets to which HP ca 
ters. These include scientific and engineering computation, 
real-time process control, computer-integrated manufac 
turing, and general-purpose computing. 

HP's strategy calls for migrating the established base of 
RTE customers and application software, where appro 
priate, to HP-UX beginning with the advent of HP Precision 
Architecture (see Fig. 7) and continuing through the next 
decade as HP Precision Architecture systems become avail 
able for all types of applications. To facilitate this process, 
HP has developed an entire package of migration tools 
called Port/HP-UX, which is included in the base software 
package for the HP 9000 Series 800. 

Limited tools are provided for previous members of the 
HP 9000 family to facilitate migration of HP 1000 software 
to those machines. The Model 840, however, is the first 
HP-UX implementation to offer sufficiently complete real 
time functionality and sufficiently fast real-time perfor 
mance to accommodate the vast majority of HP 1000 appli 
cations. For this reason, a much more extensive set of mi 
gration tools was deemed appropriate for the Series 800 
than those offered for Series 200, 300, or 500 members of 
the HP 9000 family. Of course, no tools are needed for 
migration from Series 200, 300, or 500 systems to Series 
800 machines. This is because of the inherent portability 
of software based on UNIX operating systems. 

Port/HP-UX provides an extensive library of emulation 
(cont inued on page 15)  
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Decreasing Real-Time Process Dispatch Latency Through Kernel Preemption 

A key  measure  o f  a  rea l - t ime  sys tem is  how qu ick ly  a  wa i t i ng  
process can be dispatched in response to some event ( for exam 
ple,  I /O complet ion) .  One major  component  of  th is  is  the t ime i t  
takes to preempt the currently executing process. In a tradit ional 
UNIX opera t ing  sys tem,  a  p rocess  execut ing  in  user  code can 
be preempted immediate ly .  However,  when execut ing in  the ker  
nel ,  the process gives up the CPU only voluntar i ly and expl ic i t ly  
( fo r  example ,  by  b lock ing fo r  some unava i lab le  resource or  by  
complet ing a system cal l ) .  The kernel  can therefore execute for  
a  s ign i f i can t  pe r iod  o f  t ime  be fo re  g i v ing  up  the  p rocessor  to  
another process. This period of t ime is cal led preemption latency 
and,  when s igni f icant ,  i t  is  unacceptable in a real - t ime system. 

This  ar t ic le  descr ibes modi f icat ions to  the HP-UX kernel  that  
s u b s t a n t i a l l y  r e d u c e  t h i s  t i m e .  M e a s u r e m e n t  r e s u l t s  a r e  p r e  
sented that quanti fy these t imes and the improvements that have 
been made.  

Alternative Solutions 
The goal is to decrease the amount of t ime the kernel executes 

before i t  g ives up the processor to a wai t ing higher-pr ior i ty  real  
t ime process .  To  ach ieve  th is  goa l  there  a re  two bas ic  a l te rna  
t ives :  1)  the kerne l  can be made to  execute  a l l  o f  i ts  funct ions 
more quickly, or 2) the kernel can be made to tolerate interrupting 
i ts  execut ion in deference to the wai t ing process (preempt ion) .  

The former is  c lear ly  a super ior  approach,  because i t  has the 
s i d e  a n d  o f  c a u s i n g  t h e  e n t i r e  s y s t e m  t o  e x e c u t e  f a s t e r  a n d  
wi th  less  kerne l  overhead.  I t  can be ach ieved through a  combi  
nat ion o f  fas ter  hardware and a lgor i thmic  changes.  In  add i t ion 
to  a lgor i thm changes that  reduce to ta l  execut ion t ime,  one can 
sh i f t  code f rom the kerne l  in to  the user  program.  One example 
wou ld  be  to  imp lement  the  f i l e  sys tem man ipu la t ion  code  in  a  
use r  l i b ra ry  and  l eave  on l y  t he  code  suppor t i ng  bas i c  dev i ce  
access in the kernel.  This al lows more of the "kernel" to execute 
in user mode where i t  is readi ly preemptable. The problems with 
mov ing kerne l  a lgor i thms in to  user  mode are  a  loss  o f  re l iab le  
security checking and a loss of atomicity of operation with respect 
t o  o the r  p rocesses .  I n  add i t i on ,  t he re  i s  on l y  so  much  ke rne l  
code that  can be reasonably moved into user mode. In the f inal  
analysis,  preempt ion latency is  typical ly  lef t  unacceptably h igh.  
S o  t h e  t h e  a l t e r n a t i v e ,  i n c r e a s i n g  t h e  p r e e m p t a b i l i t y  o f  t h e  
kernel,  is explored. 

The problem with making the kernel  arbi t rar i ly  preemptable is  
a  l oss  o f  a t om ic i t y .  Ke rne l  da ta  s t r uc tu res  can  be  v i ewed  as  
memory  sha red  among  a l l  t he  use r  p rocesses .  Each  p rocess  
makes requests of the kernel that update this shared data. There 
must  be  a  mechan ism that  ensures  tha t  these updates  are  per  
fo rmed  a tomica l l y ;  o the rw ise ,  fau l t y  opera t ions  and  a  sys tem 
c r a s h  i n t e r  r e s u l t .  S i m u l t a n e o u s  ( m u l t i p r o c e s s o r )  a n d  i n t e r  
leaved (uniprocessor)  data st ructure access is  prevented ei ther  
th rough  one  o r  more  semaphores  (wh ich  reduces  the  p rob lem 
to updat ing shared semaphores)  or  by prevent ing even the pos 
s ib i l i ty  of  contending access.  The lat ter  approach is  usual ly  pro 
v ided the a tomic  hardware ins t ruc t ions  and/or  arch i tec t ing  the 
system so that  such co l l id ing accesses never  happen.  

The mechan ism used in  a  t rad i t iona l  UNIX opera t ing  sys tem 
i s  t h i s  i s  a p p r o a c h :  n o t h i n g  i n t e r r u p t s  a  p r o c e s s  w h i l e  i t  i s  
running in the kernel. (The exception to this, I/O interrupt process 
ing, wi l l  be discussed later.)  This implementat ion has too coarse 
a  granu lar i ty .  That  is ,  the data  s t ruc ture  lock  can be he ld  for  a  
long per iod of  t ime,  and th is  can prevent  o ther  processes f rom 
running even i f  they don't  access the same data structures being 

cu r ren t l y  upda ted .  Thus  the  lock  covers  more  da ta  s t ruc tu res  
and las ts  fo r  a  longer  per iod  o f  t ime than is  usua l ly  needed.  I t  
is  th is  drawback that  g ives r ise to  the poor  preempt ion la tency 
of  UNIX operat ing systems. 

Solution Implementation 
The preferred solut ion is to use mult iple semaphores and have 

each semaphore cont ro l  access to  an independent ly  used data 
s t ruc ture.  No other  process wi l l  access the data s t ruc tures the 
p r e e m p t e d  p r o c e s s  i s  u s i n g  s i n c e  n o  o t h e r  p r o c e s s  h a s  t h e  
n e c e s s a r y  s e m a p h o r e s  l o c k e d .  T h e  k e r n e l  c a n  t h e n  b e  i m  
mediate ly  preempted at  any po in t  in  i ts  execut ion.  Th is  resu l ts  
in the kernel  preemption t ime but requires that  the ent i re kernel  
be modif ied to adhere to semaphor ing convent ions.  Just  sort ing 
through the var ious data  s t ruc tures and ass ign ing semaphores 
can  be  a  la rge  amoun t  o f  work .  Th is  approach  i s  t yp ica l l y  em 
ployed in mult iprocessor systems. For a descr ipt ion of  one such 
implementat ion and the ef for t  required see Bach1 and Fel ton.2 

An  approach  tha t  i s  eas ie r  to  imp lement  i s  to  f ind  p laces  in  
the  ke rne l  where  i t  i s  a l ready  sa fe  to  p reempt  and  on ly  a l l ow  
preemption there. Such a safe place is a spot or region in kernel 
code  where  a l l  ke rne l  da ta  s t ruc tu res  a re  e i the r  upda ted  and  
consis tent  or  locked v ia  semaphore.  This  does not  requi re mod 
i f y i n g  t h e  e n t i r e  k e r n e l  t o  c o n f o r m  t o  a  n e w  d a t a  a c c e s s  
ph i losophy .  I t  does  have  severa l  d rawbacks ,  however .  Ra ther  
than occurr ing immediately,  preempt ion is held of f  unt i l  the next  
safe place. Also, our experience has shown that these safe places 
a r e  n o t  f o u n d  b u t  m a d e .  T h i s  a p p r o a c h  c a n  b e  v i e w e d  a s  a  
general ized extension of  a technique descr ibed by Ferr in .3 

Because implementat ion schedule was of  s t rong impor tance,  
our  so lu t ion combines both these preempt ion s ty les :  there is  a  
synchronous method, which al lows preemption at a specif ic point 
du r ing  ke rne l  execu t ion ,  and  an  asynchronous  method ,  wh ich  
allows preemption anywhere during a region of kernel execution. 

The synchronous  method is  use fu l  when p laces  can be  iden 
tif ied in the kernel where data structures are either in a consistent 
s t a t e  r e  b e t w e e n  a n  a c c e s s  t r a n s a c t i o n )  o r  a l l  r e q u i r e d  r e  
sources are locked v ia some semaphor ing mechanism. The syn 
c h r o n o u s  m e t h o d  i s  i n v o k e d  b y  p l a c i n g  a  c a l l  t o  t h e  m a c r o  
KPREEMPTPOINT at such a safe place in the kernel.  This macro 
mere ly  checks  a  g loba l  f lag ,  reqkpreempt ,  wh ich  ind ica tes  the  
presence of  a  h igher-pr ior i ty  rea l - t ime process that  is  ready to  
run and calls a function, kpreempt, to cause a swtch to the process. 
The reqkprempt flag is similar in function to the runrÃºn flag used in 
typical  UNIX operat ing systems to indicate that  a h igher-pr ior i ty  
t imeshare process is  ready to run.  

There  i s  a lso  a  func t ion  var ian t  o f  KPREEMPTPOINT ca l led  
IFKPREEMPTPOINT which returns t rue i f  a pending preempt ion 
was serviced; otherwise i t  returns false.  This is useful  i f  lengthy 
a lgor i thms need to  a l low preempt ion,  but  i f  preempt ion occurs,  
there are assumpt ions that  may have been inval idated and now 
must  be rechecked.  

The asynchronous method is  usefu l  when preempt ion can be 
tolerated over a region of execut ion and synchronous pol l ing via 
KPREEMPTPOINT would incur unacceptable overhead (for exam 
p le ,  la rge  memory  cop ies  dur ing  fo rk ,  exec ,  o r  user  I /O) .  Th is  
method is implemented via a software-generated interrupt which 
is  recognized by hardware.  Hardware causes an asynchronous 
transfer of  control  to the trap handl ing rout ine (s imi lar to a page 
faul t  taken inside the kernel  when accessing user pages),  which 
in turn calls kpreempt to preempt the kernel. 
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I n  to ta l ,  approx imate ly  180  synchronous  p reempt ion  po in ts  
and  20  asynch ronous  p reemp t i on  r eg i ons  we re  added  t o  t he  
HP-UX kernel. 

Overcoming Limitat ions 
There is  one overr id ing l imi ta t ion on what  kerne l  preempt ion 

can accompl ish.  Kernel  preempt ion can only  preempt  (suspend 
via swtch) an operation being executed within a process context. 
I t  cannot preempt interrupt processing code and al low a process 
to execute because the UNIX system does not  support  th is  type 
of  operat ion.  Therefore,  a l l  interrupt  processing is impl ic i t ly  con 
sidered to be of higher prior i ty than any (real-t ime) process. This 
means tha t  no  mat te r  how qu ick ly  p reemptab le  one makes the  
kerne l ,  i f  in ter rupt  process ing becomes unacceptab ly  t ime-con 
suming then t ime ly  kerne l  p reempt ion  cannot  be  ach ieved.  So 
the only opt ion is  to reduce interrupt  processing overhead to an 
acceptable level .  Note that,  even i f  a l l  indiv idual  interrupt servic 
ing operat ions are  shor t ,  kerne l  preempt ion can be he ld  o f f  fo r  
an arb i t rar i ly  long t ime by many quick ly  ar r iv ing (back- to-back)  
interrupts dur ing heavy I /O act iv i ty.  There is nothing that can be 
done in  th is  s i tuat ion s ince in ter rupt  process ing,  by  def in i t ion ,  
has pr ior i ty over al l  process execut ion. In addi t ion to the typical  
I / O  d r i v e r  c o d e ,  t h e  U N I X  s y s t e m  a l l o w s  n o n - l / O  c o d e  t o  b e  
executed in an interrupt  processing context .  This faci l i ty ,  cal led 
the cal lout  queue,  causes a kernel  procedure to be executed at  
a specif ied time offset. The procedure is invoked from an interrupt 
process ing context  dur ing c lock in ter rupt  serv ic ing.  This  is  usu 
ally done at a weaker interrupt priority than all other I/O interrupts. 
(See  S t raa tho f4  fo r  a  more  de ta i l ed  d i scuss ion  o f  t he  ca l l ou t  
queue mechanism.)  

To  m in im ize  ca l l ou t  queue  execu t i on  ove rhead ,  a  sepa ra te  
sys tem process was created to  prov ide a  preemptab le  process 
con tex t  in  wh ich  to  execute  some leng thy  ca l lou t  queue code.  
Th is  process,  the  s ta t  daemon,  is  a  l igh twe ight  kerne l  p rocess 
simi lar to the swapping daemon (sched) or the pageout daemon. 
I t  wai ts  for  the l ightn ing bol t  event  ( the l ightn ing bol t  event  is  a 
s tandard  UNIX opera t ing  sys tem event  tha t  occurs  f requent ly ,  
fo r  examp le ,  every  second)  and  then  execu tes  a  s tandard  se t  
o f  s ta t i s t i cs  ga the r ing  rou t ines .  These  rou t ines  rep resen t  the  
lengthy por t ion of  the schedcpu funct ion.  (Among other  th ings,  
s c h e d c p u  r e c o m p u t e s  p r o c e s s  p r i o r i t i e s  e v e r y  s e c o n d ;  s e e  
S t r a a t h o f 4  f o r  a  d i s c u s s i o n  o f  i t s  o p e r a t i o n . )  A  n e w  r o u t i n e ,  
send ibo i t ,  i s  now  schedu led  oh  t he  ca l l ou t  queue  i n  p l ace  o f  
schedcpu. Sendiboit performs the quick functions of schedcpu includ 
ing generat ing the l ightn ing bol t  event .  

General  Performance Improvements 
I n  add i t i on  to  the  p reempt ion  spec i f i c  mod i f i ca t ions ,  ke rne l  

preemption t imes were improved by several general performance 
improvemen ts .  These  i nc lude  mak ing  the  p rocess  tab le  mu l t i  
threaded and placing entr ies in di f ferent states on di f ferent l ists,  
and using hashing techniques to speed data structure searches. 
See  Feder5  o r  McKus ick6  fo r  a  d i scuss ion  o f  s im i la r  improve  
ments. 

Measurements 
T o  t e l l  h o w  l o n g  t h e  k e r n e l  e x e c u t e s  w i t h o u t  b l o c k i n g  o r  

preempt ing,  and where in the kernel  these long execut ion paths 
are, the kernel was instrumented to col lect t iming measurements. 
To obta in  suf f ic ient ly  accurate  t imes,  a  new kerne l  rout ine was 
in t roduced to  obta in  c lock t ime accurate  to  a  microsecond.  

To determine the improvement  made in  rea l - t ime process d is  
patch t ime,  two sets of  measurements were taken,  one set  wi th 
ke rne l  p reemp t i on  enab led  and  one  se t  w i t h  i t  d i sab led .  The  
same work load was run dur ing both  measurements .  

The  work load  cons is ted  o f  a  su i te  o f  tes ts  tha t  va l i da te  the  
correct working of al l  kernel functions. Because the instrumented 
kernel  precisely measures each sect ion of  the kernel  every t ime 
i t  is  executed,  i t  is  not  necessary to execute a kernel  code path 
more than once.  
The resul ts  are summarized in Table I .  

Table I  
Nonpreemptable Kernel  T ime 

90% kernel 
99% kernel 
Maximum kernel 

Preemption Off 
4 0 m s  

129ms  
1127ms  

Preempt ion On Improvement  
1 . 4 m s  x 2 8  
3 . 4 m s  x 3 7  

1 4 . 6 m s  x 7 7  

No te  tha t  these  resu l t s  a re  fo r  a  par t i cu la r  run  o f  a  pa r t i cu la r  
workload. Resul ts wi l l  vary f rom run to run and from workload to 
workload. 

Tab le  I  shows  t ha t  HP-UX  ke rne l  p reemp t i on  has  p rov i ded  
s ign i f icant  improvements in  rea l - t ime process d ispatch t ime.  In  
the  wors t  case  observed  w i th  ou r  work loads  the  improvement  
was wel l  over 50-fold. With preemption enabled i t  was found that 
nonpreemptab le  ke rne l  code  pa ths  were  s ign i f i can t l y  shor te r ,  
and  more  cons is ten t ly  so ,  than  in  the  t rad i t iona l  case .  Th is  re  
su l ted  in  be t te r  and  more  re l iab le  t ime ly  d ispa tch  o f  rea l - t ime 
processes regard less o f  background work load.  
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(cont inued f rom page 12)  

routines that permit most HP 1000 applications programs 
written in Fortran or Pascal to be moved to HP-UX on HP 
Precision Architecture with only a simple recompilation. 
To provide early assessment of the likely magnitude of a 
contemplated HP 1000-to-Series 800 port, Port/HP-UX in 
cludes a migration analysis utility (or MAU). 

The MAU reads the source code of HP 1000 applications 
programs and automatically identifies any constructs that 
may need to be changed to work properly in the Series 800 
environment. To assist current HP 1000 owners in antici 
pation of transitions of their own enterprises from HP 1000 
systems to the HP Precision Architecture family, the MAU 
is also available on HP 1000s. 

HP 1000 Programs on HP-UX 
HP 1000  p rograms  run  as  na t ive  HP-UX programs  

whenever they are in user application code. This gives the 
immediate benefit that application code runs significantly 
faster on the Series 9000 Model 840 than it does on an HP 
1000. Ported programs also can take advantage of features 
of HP Precision architecture,  including 32-bit  address 
space, paged virtual memory, and a rich set of registers. 

HP 1000 programs are recompiled to run on HP-UX using 
the standard HP-UX compilers. The Fortran compiler in 
particular includes a number of extensions to facilitate 
compiling HP 1000 programs. Programs are linked with 
the standard HP-UX linker and libraries containing essen 
tially all commonly used RTE entry points, such as EXEC, 
FMP, the RTE system library, Image, AGP, DGL, and F/1000. 

These libraries of RTE entry points make use of HP-UX 
facilities to provide an environment suitable for RTE pro 
grams. Key RTE tables such as the ID segment table, I/O 
tables, and resource tables are maintained in shared mem 
ory and are accessed by the EXEC and FMP calls. An FMP 
format file system is maintained using HP-UX facilities, 
and a set of utility programs is provided for manipulating 
the RTE environment. These programs include a command 
interpreter called rtesh that provides most of the commands 
available from CI on RTE, and an editor called edl 000, which 
simulates EDIT/1000 on RTE, including screen mode and 
regular expressions. 

The RTE libraries attempt to provide complete emulation 
of their RTE equivalents; differences are documented, and 
are identified by the MAU. Performance of the emulated 
RTE calls is such that most application programs will still 
see a net performance improvement when they are moved 
from an HP 1000 Model A900 to an HP 9000 Model 840. 
Exceptions are programs that are very operating system 
dependent.  Some of the calls,  such as resource number 
operations and HP-IB transfers, can take more time on the 
840 than they do on the A900. 

Implementation Highlights: The Kernel 

The implementation of the HP-UX operating system on 
the HP Precision Architecture HP 9000 Series 800 Comput 
ers is fully compatible with the AT&T UNIX System V 
Interface Definition (SVID) and with the HP-UX Standard 
Specification Version B.I, It is an operating system tuned 

for high system throughput in a multiuser environment 
and fast real-time response. 

Conforming to the SVID has many implications, among 
which is  the support  of  a  process model .  This  process 
model defines how processes are created, how they perform 
input and output, how they communicate with one another, 
and how they are destroyed. It also implies what compo 
nents make up a process, and how they may be accessed. 
The UNIX operating system process model assumes that 
each process has its own separate 32-bit address space, 
although certain components in that address space may be 
shared between processes. HP Precision Architecture has 
a 64-bit or 48-bit address space, but, as will be described 
later, it also has an addressing mode that allows support 
of the 32-bit addressing model. 

Each process is assumed to have the following compo 
nents (Fig. 8, page 11): 
â€¢ Text â€” the instructions of the program. Most UNIX sys 

tems separate instructions from data not only to enforce 
good programming practice, but also to allow for the 
nonwritable instructions to be shared among many pro 
cesses. The text must be not only executable, but also 
accessible as data because constants are often loaded 
here to increase memory sharing. 

â€¢ Data â€” the data of a program. This component is in 
itialized from the program file during an exec system call. 

â€¢ Bss â€” the data of a program that was not initialized in 
the program's source code. The SVID process model as 
sumes that bss is initialized to zero during the exec system 
call.  It  is kept separate from the data component and 
does not take up space in the program file. (By the way, 
bss is a time-worn mnemonic from a computer long since 
dead. It means "block started by symbol.") 

â€¢ Heap â€” a data area that is allocated at run time. The heap 
will  grow or contract when requested by the process 
through a brk or sbk system call. Many application pro 
grams assume that  heap starts  at  the end of the data 
component and grows toward higher-numbered address- 

Real Memory 
Layout 

Kernel Text 

Kernel Data 

Run-Time Al located 
Structures 

Memory 
Available 

for 
Processes 

End of  Memory 

Fig .  10 .  Th is  i s  how the  rea l  memory  o f  the  compute r  i s  o r  
gan ized .  F i rs t  i s  the  a rea  reserved  by  the  a rch i tec tu re ,  fo l  
lowed by the kernel  text ,  data,  and bss. Next are kernel  data 
s t ructures that  are s ized dur ing system in i t ia l izat ion.  The re 
maining memory of the computer is available for processes. 
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es, so this convention has become part of the process 
model. 

â€¢ Stack â€” the procedure stack. This stack automatically 
grows to suit the procedure nesting of the process. 

â€¢ Shared memory segments. Shared memory segments 
allow processes to share data quickly and easily, without 
system call overhead. Each process may have zero or 
more shared memory segments, and may control who 
may read or write them based on user and group num 
bers. 

Mapping the UNIX Process Model  onto HP Precis ion 
Architecture 

For any UNIX operating system implementation, the pro 
cess model must be mapped onto the underlying computer 
architecture. HP Precision Architecture is well-suited to 
support the SVID process model through its state-of-the-art 
virtual memory architecture. The architecture has two basic 
modes of memory access: real (physical] and virtual.20 
While running in real mode, the processor accesses mem 
ory using a 32-bit address generated from registers and 
displacements selected in the instruction. While running 
in virtual mode, the processor accesses memory using a 
64-bit address. (Actually, initial releases of HP Precision 
Architecture computers implement a 48-bit address. The 
upper 16 bits are not required to meet current market 
needs.) Only small portions of the operating system execute 
in real mode; most of the operating system and all processes 
execute in virtual mode. 

The 64-bit virtual address is also generated from registers 
and displacements selected in the instruction, but because 
the processor's general registers are 32 bits wide, more bits 
are needed. These bits are taken from separate registers 
called space registers, of which there are eight. The space 
registers must be loaded with the desired space number 
before the instruction that accesses memory is executed. 

There are two different ways by which a space register 
is selected, and these define the two basic virtual address 
ing modes of the architecture: long-pointer and short- 
pointer.20 Long-pointer addressing mode is selected when 
a two-bit field in the instruction is 1, 2, or 3. In this case, 
space register 1, 2, or 3 is selected, respectively. The con 
tents of this space register (called a space number) are 
concatenated with the 32-bit address generated from gen 
eral registers and displacements selected in the instruction 
to produce a 64-bit address. The 64-bit virtual address is 
then converted to a 32-bit real address through a combina 
tion of hardware and software. 

Previously it was mentioned that the process model im 
plies that a process is accessed using addresses that are 32 
bits wide. The short-pointer addressing mode provides this 
functionality, and is used exclusively to implement the 
process model for HP-UX. In this addressing mode, the 
lower 32 bits of the 64-bit address are generated (as usual) 
from general registers and displacements selected in the 
instruction. The upper two bits of the address contained 
in the register are used to select one of space registers 4, 
5, 6, or 7, whose contents are then concatenated with the 
lower 32 bits to form a complete 64-bit virtual address. 

To sum up so far, the short-pointer virtual addressing 
mode is used exclusively by processes in HP-UX. The long- 

pointer address mode is only used by the operating system, 
and only to a limited extent. All long-pointer addressing 
is limited to routines written in assembly language in the 
operating system. 

The components of a process are accessed by the process 
using the short-pointer addressing mode (see Fig. 9 on page 
12). The 32-bit address space is effectively broken into 
quadrants whose space numbers are determined by space 
registers 4, 5, 6, and 7. The text of the process is governed 
by space register 4, and it begins at the start of that quadrant. 
The data, bss, heap, and user stack of the process are gov 
erned by space register 5. Data, bss, and heap are contiguous 
and begin at the beginning of the quadrant. User stack 
begins in the middle of the quadrant. The shared memory 
segments are governed by space register 7, and are located 
throughout the quadrant. 

The quadrant governed by space register 6 is reserved 
for operating system use, and is currently used to contain 
the stack that the kernel uses when executing on behalf of 
the process. 

Memory Management  
HP-UX on the HP 9000 Series 800 has full virtual memory 

support for all process components, and the operating sys 
tem has been tuned for both multiuser and real-time envi 
ronments. Memory management is done through a combi 
nation of paging and swapping. Paging is implemented 
through a process called the pageout daemon, which scans 
through memory, pushes dirty pages to disc memory called 
the swap device, and tries to keep a reasonable amount of 
memory on a list of pages that are free. When the paging 
system becomes overloaded, a swapper process (sched) will 
push whole processes to the disc and keep them from 
executing until the overload has subsided. Swapping has 
two positive effects: 1) it frees up large amounts of memory 
very quickly, and 2) it prevents the swapped process from 
page faulting and keeping the paging system swamped. 
The paging system is overloaded when all of the processes 
cannot keep their working sets in memory. 

Trai l ing hand frees 
pages i f  page-referenced 

bit is clear. 

Hands are a f ixed 
8M bytes apart.  

Leading hand clears 
page-referenced bit.  

Fig.  1 1 .  The g lobal  c lock a lgor i thm is  used to approximate 
a  l eas t  recen t l y  used  page - rep lacemen t  a lgo r i t hm.  I n  t h i s  
algori thm, the pages of real memory are depicted as wrapped 
around the  edge o f  a  c lock .  A  pa i r  o f  hands sweeps around 
the clock, with the leading hand clearing the page-referenced 
b i t ,  and the  t ra i l ing  hand f ree ing  pages tha t  have not  been 
referenced. 
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The following are features of memory management on 
the HP 9000 Series 800: 
â€¢ Demand paging. A process may reside in memory or on 

disc with a granularity of the 2048-byte page of HP Pre 
cision Architecture. 

â€¢ Page reclaims. After pages have been unmapped and put 
on the free list, they can still be reclaimed when the 
process faults on that page. 

â€¢ Page clustering. When paging from the swap device, up 
to eight contiguous virtual pages around the faulted page 
may be brought in in one disc transfer. When paging to 
the swap device, up to eight contiguous dirty virtual 
pages will be pushed to the swap device in one transfer. 

â€¢ Paging from file. The text and data of the process will 
initially be paged directly from the program file. There 
after, it is paged to and from the swap device. This means 
that the whole program need not be brought into memory 
on exec, and pages will only be brought in as needed. 
Even though text is nonwritable, it is moved to the swap 
device to take advantage of page clustering later. 

â€¢ Zero fill on demand. Virtual pages in the bss, stack, heap, 
and shared memory segments will be allocated real mem 
ory and zeroed on first demand. 

â€¢ Multiple swap devices. The system supports more than 
one swap device through the swapon system call and the 
swapon system administration command. The swap area 
is considered to be interleaved among the swap devices, 
leading to increased bandwidth for swapping because 
there are multiple disc heads and spindles. This also 
means that virtual memory limits are unconstrained by 
the maximum disc size available. 

â€¢ Text page reattaches. Between executions of a program, 
the pages of text may be on the free list. Before the operat 
ing system decides to bring in text pages from disc, it 
checks to see if the page is in the free list by searching 
in a hashed list of pages sorted by text disc block number. 

Real  Memory Layout  
The real memory of the computer contains both the 

operating system and the application programs as shown 
in Fig. 10. A few pages are used at the beginning of real 
memory for the architecturally reserved functions. There 
after, the kernel text, data, and bss are placed. After that 
are data structures that are allocated at run time, such as 
the file system buffer cache, whose size is a fraction of the 
memory in the machine. Lastly comes memory that is avail 
able for applications programs and is controlled by the 
paging and swapping algorithms. 

The area available for paging and swapping is governed 
by an algorithm called the clock algorithm.21'22 This al 
gorithm approximates a least recently used algorithm. The 
only hardware assistance required are page-referenced and 
page-dirtied bits, which is why the algorithm has been 
ported to many architectures. 

The clock algorithm is implemented by the pageout 
daemon. In the clock algorithm, the real pages available 
for paging are represented as being wrapped around the 
edge of a clock (Fig. 11). The clock has two hands, and 
they are kept a fixed distance apart. The hands move around 
the clock at a speed that is dependent on the fraction of 
memory in the free list of pages. The lower the fraction of 

free memory, the faster the hands move around the clock. 
The pageoul daemon only bothers to run when less than a 
quarter of memory is free. 

The pageout daemon clears the page-referenced bit for the 
real page to which the leading hand points, and checks the 
page-referenced bit for the real page to which the trailing 
hand points. If the page has been referenced, then it is left 
alone. If the page has not been referenced, then the page-dir 
tied bit is checked. If the page is not dirty, it is unmapped 
and placed onto the free list where it can be used for a new 
purpose or reclaimed. If the page is dirty, then it is placed 
on a list of pages to be copied to the swap device and given 
to the swap device driver. After the page has been copied 
the pageout daemon will place it in the free list. 

Architectural  Accommodat ions 
Many of the innovations of HP Precision Architecture 

have implications for operating system designers. Two im 
portant ones are 1) delayed branches and signals and 2) 
the virtual caches. 

The architecture allows for a delayed branch concept of 
instruction execution that exposes a two-level pipeline to 
the compiler designers and the operating system designers. 
After an interrupt or trap, this pipeline can be restored 

I /O Software System 

Logical  Device Manager (LDM) 

Device Manager (DM) 

Device Adapter  Manager  (DAM) 

Channel  Adapter  Manager  (CAM) 

Computer  CPU and I /O Hardware 

M i d B u s  

CIO Channel 
Adapter 

CIO Bus 

Device Adapter 
Card 

Fig.  12.  The h ierarch ica l  HP-UX I /O system on the HP 9000 
M o d e l  8 4 0  C o m p u t e r  u s e s  t h e  H P  C I O  s y s t e m .  T h e r e  a r e  
th ree  the  o f  ha rdware .  The  so f tware  s t ruc tu re  re f l ec ts  the  
h a r d w a r e  s t r u c t u r e ;  t h e r e  i s  a  m a n a g e r  ( d r i v e r )  f o r  e a c h  
hardware element.  
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only by using a privileged instruction, and this impacts 
how the signal software interrupt mechanism of HP-UX is 
implemented. In other architectures, the signal stack is set 
up by the operating system, the signal function is executed, 
and then user-level code restores the state of the process 
at the time of the signal. Because the HP Precision Architec 
ture pipeline can only be restored by a privileged instruc 
tion, a special (hidden) system call has been added to im 
plement the signal return. 

Virtual  Cache 
One of the most unconventional aspects of HP Precision 

Architecture is the area of memory cache design. Several 
of the architecture's features require more work on the part 
of the operating system. These include:- 
â€¢ No requirement for a write-through data cache 
â€¢ Separate code and data caches 
â€¢ Virtually addressed caches. 

Because HP Precision Architecture does not require im 
plementations to have a write-through cache, physical 
memory will not always be consistent with the data cache. 
One effect of this is that I/O transactions, which access 
physical memory, must have data flushed from the cache 
before the transaction begins (more about this later). Also, 
separate code and data caches imply that when code is 
modified by the processor, it must write the data to the 
data cache, purge any oustanding cache lines in the instruc 
tion cache, and flush the data from the data cache to main 
memory, where it can then be accessed consistently from 
the instruction cache. One example of where this occurs 
is in the ptrace system call, which is used to set breakpoints 
in the text of a process. Although these innovations require 
more work on the part of the operating system, the overall 
performance improvement far outweighs the effort. 

HP Precision Architecture supports virtually addressed 
caches, which allows for parallelism in cache access and 
virtual translation. While the virtual addressing hardware 
is generating the physical address and checking page access 
rights, the cache is using the virtual address to select a 
cache line and present it to the processor. Cache misses 
are determined in parallel with the processor's acting on 
the data in the cache line. 

This feature leads to higher performance for the architec 
ture, but it also leads to interesting problems for the operat 
ing system. One rule of thumb is that the operating system 
is never able to point two different virtual addresses to the 
same physical address. This would lead to data inconsis 
tency, because the different virtual addresses might address 
different cache lines. Thus, HP Precision Architecture does 
not support a feature loosely termed address aliasing. 

One impact of this restriction is that the full SVID shared 
memory definition cannot be implemented. In UNIX Sys 
tem V, a process can attach a shared memory segment at 
an address it specifies in its virtual space. If two or more 
processes want to access the shared memory segment at 
addresses that they specify, the result is address aliasing. 
HP-UX on HP Precision Architecture only supports shared 
memory attaches at an address that the operating system 
chooses, which will be the same for all processes sharing 
that shared memory segment. This is the most often used 
method for attaching shared memory segments, so the lack 

of address aliasing is not critical. 

Implementation Highlights: 
The Input/Output System 

HP Precision Architecture supports a memory mapped 
I/O architecture. I/O devices are accessed by normal read 
and write operations. The I/O subsystem for the HP 9000 
Model 840, the first HP Precision Architecture computer 
that runs the HP-UX operating system, uses HP's channel 
I/O (CIO) system for its initial implementation. The choice 
of CIO allows device adapters designed for HP 9000 Series 
500 Computers to be used in the Model 840. The decision 
to leverage existing device adapter cards reduced the time 
required to design the I/O software, and allowed support 
of a large number of prototype systems. 

I /O Software Design Concepts 
The HP-UX I/O system is designed to provide an interface 

to the I/O hardware that conforms to the HP-UX Standard 
Specification Version B.I. The system is also designed to 
make use of common interface routines to handle driver 
requirements, and to be easily configured to adapt to a 
wide range of hardware configurations. The underlying 
structure of the I/O subsystem is designed to follow the 
natural hierarchy of the hardware. A manager (driver) exists 
for each piece of hardware in the system. A message-based 
protocol is used to communicate between layers in the 
hierarchy. Each manager in the software hierarchy is pre 
sented with a serial stream of messages. While the module 
is processing a message, it cannot be reentered. 

Manager 
Code 

â€¢â€¢â€¢â€¢^â€¢â€¢â€¢â€¢â€¢â€¢Â«â€¢â€¢â€¢â€¢H 

Local Data 
Stack: 
New Each 
Invocation 

Global Data: 
Shared by Al l  
Instances 

F ig .  13 .  An  ins tance  o f  a  manager  i s  made up  o f  fou r  da ta  
areas. 
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In addition to normal I O functionality, a uniform sup 
port interface for the system is provided. To make HP-UX 
more supportable in the field, an error logging interface 
and an interface for diagnostic programs were defined. The 
error logging interface allows system histories to be main 
tained. 

Hardware Hierarchy 
HP Precision Architecture supports a hierarchical I/O 

hardware subsystem.23 In the case of the CIO subsystem 
on the Model 840, there are three levels of hardware in the 
system. 

A CIO channel adapter, also called a bus adapter, resides 
on the midbus, where it converts midbus requests to CIO 
requests, and presents a memory mapped view of the CIO 
device adapter cards (see Fig. 12). On the CIO bus, up to 
12 device adapter cards are multiplexed by the CIO chan 
nel. Some device adapter cards, like the HP 27110B HP-IB 
card, can handle up to eight devices simultaneously. Each 
level imposes some constraints on the type, size, and 
number of operations that can be supported. HP Precision 
Architecture requires that DMA transactions be cache line 
aligned, up to a maximum cache line size of 64 bytes. On 
the Model 840, the midbus requires that DMA transfers be 
32-byte aligned, that caches be flushed by software before 
I/O starts, and that I/O buffers be a multiple of 32 bytes 
long. CIO requires that transaction starts be synchronized 
in a certain way, and each device adapter card has its own 
particular limitations. The I/O software is designed to re 
flect this hierarchy of hardware and solve the problems of 
each hardware level in the associated code. 

Software Hierarchy 
At the lowest level, the CIO channel adapter manager 

(CAM) handles the multiplexing of starts and completions 
on the CIO channel. Device adapter managers (DAMs), such 
as the HP-IB device adapter manager, send requests to and 
receive completion notification from the CAM. Above the 
DAMs, device managers (DMs) handle device specific pro 
tocols. Finally, logical device managers (LDMs) handle the 
interface. Any of these levels can be collapsed for simple 
devices or high performance. 

For each occurrence of a piece of hardware in the system, 
there exists an instance of a manager to control it. An in 
stance of a manager is made up of four parts (see Fig. 13): 
the manager code which is shared by all instances of the 
manager, global data which is shared by all instances of 
the manager, the port data area (PDA) which is private 
static storage for a single instance of the manager, and a 
local data stack which is new for each invocation of the 
manager. Each instance of a manager also has a port as 
sociated with it, which maintains the relationship between 
an instance of a manager and its PDA, and provides the 
connection to other managers. 

HP-UX Interface 
The HP-UX I/O system presents a traditional UNIX 

operating system interface to the user. The HP-UX I/O sys 
tem appears to the user as standard files which may be 
accessed through open, close, read, write, and ioctl calls. HP-UX 
provides security for the I/O system through the standard 

file ownership and protection mechanisms. 
An LDM has access to several HP-UX kernel functions 

to lock down memory and validate addresses, allocate and 
deallocate kernel buffers, set and reset timers, move data 
to and from user space, and sleep on an event. An LDM 
has the choice of doing DMA directly to or from user space, 
allocating a system buffer to cache data, or using a character 
list to manage byte FIFOs. 

When the T .DM is ready to touch the hardware, it uses 
I/O services to make a request to the next lower manager. 

I /O Services 
I/O services provide the functions needed to configure 

managers, communicate between managers, and log errors 
reported by managers. 

During the configuration process, I/O services build the 
software hierarchy to match the configuration, allocate port 
numbers to managers so that a parent or child manager in 
the hierarchy can invoke the correct instance of a manager, 
and provide memory allocation for managers so that pri 
vate, static data (PDA) can be allocated for an instance of 
a manager. I/O services also provide timer services for man 
agers to use, as well as an error logging facility. 

The major role of I/O services is to route requests and 
replies from one manager to another (see Fig. 14). Managers 
request service from other managers by sending a message. 
A reply is a message from a manager that has completed 
servicing a request. I/O services use a port number passed 
with each request or reply to invoke the correct instance 
of a manager. With each invocation, I/O services pass a 
message from a sending to a receiving manager, and guaran 
tee seriality of execution through an instance of a manager. 
This means that a particular instance of a manager that has 
been invoked cannot be reentered, but higher-priority inter 
rupts can be processed. If I/O services find that an instance 
of a manager is busy when a message is ready to be deliv 
ered, I/O services queue the message on the port for that 

I O  
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Configuration. 
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Ã 
Fig .  14.  I /O serv ices prov ide funct ions needed to  conf igure  
managers, log errors, and route messages from one manager 
to another. 
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instance of the manager, and deliver it when the manager 
returns. Managers save state and exit while they are waiting 
for a request to be serviced. The manager will be invoked 
again by the reply coming from the serving manager. 

Supported Interfaces 
At first release, the Model 840 supports a set of CIO 

device adapter cards that allows connection to most exist 
ing HP peripherals and to customer black boxes (see Fig. 
15). 

The HP-IB device adapter card supported on the Model 
840 is the HP 27110B. It is supported as a standard IEEE 
488 bus for instrumentation, as a high-speed bus for HP 
CIPER printers (HP 2563/64/65/66/67) and magnetic tape 
drives (HP 7974/78), and as a high-speed dedicated bus for 
HP CS-80 and SS-80 disc and tape drives. 

To optimize performance of the disc subsystem, a 
monolithic LDM, a manager that interfaces to the HP-UX 
kernel and the CIO CAM, was written to support an HP 
27110B device adapter with only CS-80 discs/tapes on it. 
The result is a very high-performance disc interface capable 
of supporting four discs simultaneously at full speed, or 
eight discs at a slightly lower rate. 

Instrument control is possible on the Model 840 through 
the use of the Device Independent Library (DIL), the HP-UX 
standard interface library for HP-IB instruments. This li 
brary gives the user complete control over the HP-IB device 
adapter, making it possible to talk directly to any device 
that can connect to the HP-IB. 

It is also possible for users migrating from the HP 1000 
Computer RTE operating system to use the RTE HP-IB li 
braries provided by Port/HP-UX for RTE programs that con 
trol instruments. 

The HP 2 7 140 A 6-channel terminal multiplexer is the 
supported RS-232-C interface on the Model 840. The HP 
27140A supports full modem control on all six ports, as 
well as XON/XOFF flow control. The HP 27140A provides 
the connection mechanism for terminals and for serial 
printers such as the HP LaserJet. Each multiplexer in the 
system is polled every 30 milliseconds to pick up any in 
coming characters and to send out any characters in the 
outbound queue. 

The HP 27125B interface allows the Model 840 to connect 
to either Ethernet or IEEE 802.3 local area networks. The 
Model 840 supports both AdvanceNet, HP's proprietary 
networking strategy, for communication with HP systems, 
and Berkeley/ ARPA services for communication with other 
machines using a UNIX operating system. The LAN card 
is armed to interrupt whenever a packet arrives, and is 
then polled to move the packets into the system. 

For users who need to connect to 16-bit general-purpose 
parallel devices, the HP 27114A is supported on the Model 
840. This card supports both single-ended and differential 
input/output lines and has three sense and three control 
lines. The DIL library is also supported for this interface, 
giving the user low-level control of the HP 27114A in a 
standard manner. 

Software Control  F low 
To show how the I/O system works on the Model 840, 

the process for generating, booting, and using the the I/O 

system will be described, along with an example of how a 
disc transaction would flow through the system. 

The I/O system for the Model 840 is configured with a 
simple kernel building process. A C-like description of the 
hardware and software hierarchy is entered as input to the 
build program, uxgen. The user includes all of the devices 
that may be connected, even though some of the devices 
may not be present at any given boot time. Uxgen creates a 
table which the boot process uses to configure the I/O sys 
tem. References to all the managers required are generated, 
and a kernel is linked containing all of the necessary soft 
ware, all in just a few minutes. The user moves the new 
kernel to the root partition, / directory and reboots the 
system. 

The system is brought into memory and begins to config 
ure the I/O system and perform other tasks required to 
make the system functional. The I/O configuration software 
creates the software hierarchy, calling each instance of a 
manager and allocating any PDA space that it needs. Man 
agers that cannot find their associated hardware log an 
error to the diagnostic system and then go into an idle state. 
The manager attempts to configure the hardware again on 
a user request for devices or on a powerfail recovery for 
device adapter cards. As soon as a path from the hardware 

Hardware  

Channel  Adapter  

CIO Bus 

Fig.  15.  HP-UX I /O system st ruc ture  for  the HP 9000 Model  
840 Computer .  
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to the kernel interface is configured, that path becomes 
available for I O transactions. 

Request Initiation 
A request is initiated by a user process. The LDM checks 

the validity of the user's request, locks down the affected 
pages in memory, and performs any queuing that may need 
to be done. 

In the case of the disc manager's performing a user re 
quest directly to the disc, the buffer address is checked for 
validity, the pages are locked in memory so that they cannot 
be paged out, the disc addresses are computed, and the 
request is inserted into the disc queue. When the request 
gets to the head of the queue, a message is sent to the CAM, 
giving a request chain and the address of the device adapter 
that the request is for. 

The CAM has four major tasks to perform for each re 
quest. It translates all of the virtual addresses to real 
addresses for the hardware, flushes all of the request buffers 
out of the cache, guarantees the alignment of buffers so 
that DMA does not affect data outside of the user request, 
and initiates the request on the hardware. 

The CAM builds a request chain paralleling that sent 
down by the calling driver. The requesting manager sends 
all of its requests down with virtual addresses. The CAM 
builds a similar list, but all of the addresses are in real 
mode, which the hardware understands. In the Model 840 
implementation, buffers must be 32-byte aligned, so if the 
buffer is not aligned, the CAM allocates a 32-byte buffer, 
called a buflet, for temporary storage. A separate request 
block is built for each page of the request, since virtually 
contiguous pages may be physically separated. Finally, a 
buflet is allocated to cover the last bytes of the transaction 
if the buffer does not end on a 32-byte boundary. On a read 
operation, the data is transferred by DMA into the buffer 
addresses in the real chain. Data in buflets must be copied 
back to the user's buffer after DMA is completed on reads, 
and copied to the buflets before DMA starts on writes. Data 
in the aligned buffers goes directly into the buffer. 

Finally, the CAM starts the transaction on the hardware 
and returns. The LDM returns to the kernel, the requesting 
user process is put into a sleeping state, and the kernel 
causes a switch to another process which will run. 

DMA Transact ion 
Fig. 16 shows an example of a DMA transaction and how 

the CAM changes it before it is started on the hardware. 
The first quad23 in the chain (the write) is already 32-byte 
aligned, so the CAM simply translates the DMA buffer ad 
dress to a real address. Note that the DMA will be done 
directly from the buffer passed down to the CAM. The 
second quad in the chain (the read) is not 32-byte aligned. 
The CAM must divide this quad into several new quads 
to ensure correct buffer alignment. The first quad the CAM 
allocates is 8 bytes long and will go into a CAM-allocated 
buflet. Effectively, this aligns the rest of the buffer on a 
32-byte boundary. The next buffer is 672 bytes long and 
accounts for the rest of this page. The next buffer is 2048 
bytes long (a page). The next buffer is 1344 bytes long and 
includes all of the remaining buffer until the last 32-byte 
boundary. The final buffer is 24 bytes long and points to 

a buflet. This preserves the end of the user's buffer. Finally, 
the last quad in the chain is processed: it is 32-byte aligned 
and therefore only an address translation is required. 

Interrupt Servicing 
When the hardware has finished processing a request, 

an interrupt is signaled and the CAM is called to complete 
the transaction processing. On request completion, the 
CAM copies any buflets that need to be copied back to user 
space, the real chain elements are returned to a pool, and 
a reply message is sent to the requesting manager. 

The LDM cleans up its resources, sends a wakeup to the 
process that requested the data, and wakes up its initiation 
section to start any queued requests. 

PowerfaN Recovery 
After power has returned, the I/O system begins to re 

cover by sending a message to the CAM notifying the low 
est-level manager of the power failure. The CAM in turn 
sends a message to each of the managers above it with the 
same notification. Each manager notifies the managers 
above it that power has failed, and replies to managers to 
acknowledge receipt of the powerfail message. Messages 
move up through the system, against the flow of normal 
requests. A lower manager will return every message it 
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Fig.  16.  An example of  a  DMA t ransact ion,  showing how the 
channe l  adapter  manager  changes i t  be fore  i t  i s  passed on 
to the hardware. 
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sees from a higher manager with a powerfailed status until 
it sees a powerfail reply. In that way, all queued messages 
are cleared out, and each manager can then reinitialize its 
piece of hardware. 

Error Logging and Diagnost ics 
In the case of hard or frequent soft errors, the manager 

sends a log message to a special diagnostic port. A user 
process reads the error messages from the diagnostic port 
and logs them to both the console and a file. 

To facilitate hardware fault diagnosis, special hooks were 
added to the Model 840 I/O managers. Unlike traditional 
systems, this design has a set of read, write, and ioctl calls 
built into a diagnostic section of each manager. When the 
manager is opened with a special mode bit set, controlled 
by file security, the diagnostic mode is enabled. In this 
mode, card status can be queried, cards can be reset, and 
special diagnostic sequences can be sent down to the de- 

Conclusions 
HP Precision Architecture is the foundation for a full 

product line of machines running the HP-UX operating 
system. Many features of the architecture, combined with 
accommodations by the operating system, have led to a 
high-performance system able to support the UNIX System 
V interface Definition and the HP-UX Standard Specifica 
tion. 
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E r r o r  l o g g i n g ,  H P - U X    D e c .  
E r r o r  m o n i t o r i n g ,  p r e d i c t i v e    N o v .  
Est imat ion,  system performance   Aug.  
E t h e r n e t  L A N s    O c t .  
E t h e r n e t  p r o t o c o l  a n a l y z e r    J u l y  
E v e n t s ,  f a i l u r e  p r e d i c t i o n    N o v .  
Execu t ion  mode l ,  HP Prec i s ion    Aug .  
E x p e r t  c o n f i g u r a t o r    N o v .  
E x p e r t  d u m p  r e a d e r    N o v .  
Exper t  t roubleshoot ing  sys tems   Nov.  
E x t e r n a l  f i l e  t r a n s f e r    S e p t .  
E y e  d i a g r a m    A p r .  

F a i l u r e s ,  p r e d i c t i o n  o f    N o v .  
Fast Fourier transform, Doppler 

d e t e c t i o n    J u n e  
F a u l t s    N o v .  
F F T ,  D o p p l e r  d e t e c t i o n    J u n e  
F i l e  l o c k i n g    D e c .  
F i l e  s y s t e m ,  H P - U X    D e c .  
Fi l t e r  e f f ec t s ,  m ic rowave  r ad io    Apr .  
F i l t e r  m e a s u r e m e n t s    F e b .  
F i l t e r s ,  L A N  f r a m e    J u l y  
F i l t e r s ,  w a l l  a n d  N y q u i s t    J u n e  
F l i g h t  p l a n n e r / s i m u l a t o r ,  A I    M a r .  
F l o a t i n g - p o i n t  c o p r o c e s s o r    A u g .  
F o r e i g n  s e r v i c e  c o n n e c t i o n    S e p t .  
F o r m a t t i n g ,  m e m o r y  d u m p    N o v .  
F o r w a r d  c h a i n i n g  r u l e s    N o v .  
F r a m e s ,  E t h e r n e t / I E E E  8 0 2 . 3    J u l y  

Oct. 
F r a m i n g    O c t .  

G 
GaAs dev ices ,  mi l l imete r -wave    Nov .  
G a l l i u m  a r s e n i d e  s a m p l e r    F e b .  
G a t h e r  w r i t e    D e c .  
G a t h e r e r    J a n .  
G r a p h i c s ,  a u t o m a t e d  t e s t i n g    M a y  

DECEMBER 1986  HEWLETT-PACKARD JOURNAL 25  

© Copr. 1949-1998 Hewlett-Packard Co.



Graphics, digital microwave 
r a d i o    A p r .  

Graphics, display subsystem   Sept.  
Graphics, interactive, instrument 

c o n t r o l    M a y  
Graphics ,  managing  objec ts    May 
G r a p h i c s ,  o s c i l l o s c o p e    A p r .  
Graphics  sof tware ,  measurement    Jan .  

H 
H a s h  i n d e x e s    D e c .  
H D L C    O c t .  
H e a p    D e c .  
H e t e r o j u n c t i o n  d e v i c e s    N o v .  
H e u r i s t i c  t e s t  s e l e c t i o n    N o v .  
H i e r a r c h i c a l  I / O  s y s t e m    D e c .  
H i e r a r c h i c a l  m o d e l ,  d a t a  b a s e    D e c .  
H i e r a r c h i e s    N o v .  
H i e r a r c h y  c h a r t  l a n g u a g e    M a r .  
H o l e ,  p r i n t e d - t h r o u g h    A p r .  
Hol low s tuds ,  package assembly    Ju ly  
H P  D e s k M a n a g e r ,  H P  s y s t e m    S e p t .  
H P - H I L ,  k e y b o a r d    S e p t .  
HP-IB, command library, MS-DOS ... May 
H P I M A G E    D e c .  
H P  J I T    J u n e  
H P  P r e c i s i o n  A r c h i t e c t u r e    J a n .  

Aug. 
Dec. 

H P - R L    M a r .  
H P S Q L    D e c .  
HP-UX operating system and DBMS Dec. 
HP-UX 5.0 operating system, 

S e r i e s  3 0 0    J u l y  
H P W i n d o w s / 9 0 0 0 ,  H P - U X  5 . 0    J u l y  
H Q M O S ,  b u s  i n t e r f a c e  1 C    M a y  
H y b r i d  c i r c u i t ,  L C D  c o n t r o l l e r    J u l y  
H y b r i d s ,  o s c i l l o s c o p e    A p r .  
H y d r o p h o n e ,  c a l i b r a t i o n    J u n e  

I 
1 C  a d v i s o r ,  A I    M a r .  
1 C ,  b u s  i n t e r f a c e    M a y  
ICPL, integrated circuit procedural 

l a n g u a g e    J u n e  
I d e a l i t y  f a c t o r ,  b a r r i e r  d i o d e s    N o v .  
I D  m o d u l e ,  S e r i e s  3 0 0    S e p t .  
I E E E  8 0 2 . 3  L A N s    O c t .  
I E E E  8 0 2 . 3  p r o t o c o l  a n a l y z e r    J u l y  
I E E E  P 1 0 0 3    D e c .  
IF  bandwidth ,  counter ,  opt imum   Feb .  
I m m e d i a t e s ,  H P  P r e c i s i o n    A u g .  
Industrial design, PC Instruments .... May 
Industrial design, soft front panels ... May 
I n f e r e n c e  e n g i n e    N o v .  
I n f i n i t e  p e r s i s t e n c e    A p r .  
I n - p h a s e  m o d u l a t i o n    A p r .  
Input /output  system,  HP-UX   July  

Dec. 
I n s t r u c t i o n  d i s t r i b u t i o n s    A u g .  
I n s t r u c t i o n s ,  H P  P r e c i s i o n    A u g .  
I n s t r u m e n t  c o n t r o l ,  A I    M a r .  
Ins t ruments ,  personal  computers    May 
Integrated Services Digital Network Oct. 
Intelligent Peripheral Troubleshooter 

( I P T )    N o v .  
Intensity measurement, Doppler 

u l t r a s o u n d    J u n e  
I n t e r f a c e  1 C    M a y  
I n t e r f a c e s ,  p o r t a b l e  c o m p u t e r    J u l y  
I n t e r f a c i n g ,  A I  W o r k s t a t i o n    M a r .  
I n t e r p o l a t o r ,  o s c i l l o s c o p e    A p r .  
I n t e r p r o c e s s  c o m m u n i c a t i o n    O c t .  
I n t e r r u p t  g r o u p s  h a r d w a r e    A u g .  
I n t e r r u p t  s e r v i c i n g ,  H P - U X    D e c .  
Interruptions, HP Precision 

A r c h i t e c t u r e    A u g .  
I n t e r v a l  a n a l y s i s    J a n .  
I n v e n t o r y  c o n t r o l ,  J I T    J u n e  
I /O  a r ch i t ec tu r e ,  HP  P rec i s ion    Aug .  
I / O  d e p e n d e n t  c o d e    A u g .  
I / O ,  d e v i c e ,  H P - U X  5 . 0    J u l y  
I / O ,  P C  I n s t r u m e n t s    M a y  
I / O ,  p o r t a b l e  c o m p u t e r s    J u l y  
I / O  s e r v i c e s ,  H P - U X    D e c .  
I P  ( i n t e r n e t  p r o t o c o l )    O c t .  
I ' Q  T u t o r    A p r .  
I Q U E R Y    D e c .  
I S D N    O c t .  
I S O  O S I  m o d e l  . .  . . .  O c t .  

J a b b e r i n g  f r a m e s    J u l y  
JIT (just-in-time) manufacturing 

s o f t w a r e    J u n e  
J o b  c o n t r o l ,  H P - U X    D e c .  

K 
K e r n e l ,  H P - U X    D e c .  
Keyboard compatibility, Series 200 

a n d  S e r i e s  3 0 0    S e p t .  
K n o w l e d g e - a s s i s t e d  d e s i g n    J u n e  
K n o w l e d g e  b a s e    N o v .  
K n o w l e d g e  r e p r e s e n t a t i o n    N o v .  

L a n g u a g e  c a p ,  P C  I n s t r u m e n t s    M a y  
L A N I C    O c t .  
L A N  p r o t o c o l  a n a l y z e r    J u l y  
L A N s    O c t .  
L A P - B    O c t .  
L A P - D    O c t .  
L C D  c o n t r o l l e r    J u l y  
L e a f  n o d e  a r c h i t e c t u r e    O c t .  
L E S S  m a c h i n e    A u g .  
L e v e l s ,  c o n s t r a i n t    N o v .  
L i m i t  t e s t i n g    F e b .  
L i n e a r  p r o g r a m m i n g  s o l u t i o n    F e b .  
L i n k a g e  r e g i s t e r s    J a n .  
L i n k - l e v e l  a c c e s s    O c t .  
Liquid-crystal display, portable 

c o m p u t e r    J u l y  
L i s p    M a r .  
L i s p ,  I C P L    J u n e  
L o c a l  a r e a  n e t w o r k s    O c t .  
L o c a l i z a t i o n ,  H P - U X    J u l y  

Dec. 
L o c a l i z a t i o n ,  P A M    J u l y  
L o c k  m o d e s ,  D B M S    D e c .  
LO frequencies, counter, optimum ... Feb. 
L o g ,  t r e n d    N o v .  
L o g a r i t h m i c  a m p l i f i e r    F e b .  
L o g g i n g ,  D B M S    D e c .  
L o n g - p o i n t e r  a d d r e s s i n g    A u g .  

L o w - p o w e r  m o d e s    J u l y  

M 
M / A - C O M    O c t .  
M a n a g e r s ,  I / O    D e c .  
M a n a g i n g ,  A I  W o r k s t a t i o n    M a r .  
Manufacturing software, 

j u s t - i n - t i m e    J u n e  
Material requirements planning, JIT June 
M B E ,  m o l e c u l a r  b e a m  e p i t a x y    N o v .  
Measurement graphics software 

( M G S )    J a n .  
Mechanical design, PC Instruments May 
Mechanical design, portable 

c o m p u t e r    J u l y  
M e d i a  a c c e s s  u n i t    J u l y  
Medical instruments, Doppler 

u l t r a s o u n d  i m a g i n g    J u n e  
M e d i c a l  s o f t w a r e ,  t e s t i n g    M a r .  
M e d i u m  a t t a c h m e n t  u n i t    O c t .  
M e m o r y  d u m p  r e a d e r    N o v .  
M e m o r y  m a n a g e m e n t ,  H P - U X    D e c .  
Memory management, portable 

c o m p u t e r    J u l y  
Memory management, Series 300 ... Sept. 
M e m o r y  m a p p e d  I / O    A u g .  

Dec. 
M e s s a g e s ,  H P - U X    D e c .  
M e t a l l i z a t i o n ,  1 C    M a y  
M e t r i c s ,  s o f t w a r e  q u a l i t y    M a r .  
M i c r o S c o p e    M a r .  
M i c r o w a v e  c o u n t e r s    F e b .  
Microwave radio tutorial program ... Apr. 
Migration analysis util i ty (MAU)   Dec. 
M i g r a t i o n ,  d a t a  b a s e    D e c .  
M i g r a t i o n ,  H P - U X    D e c .  
M i l l i c o d e    J a n .  
M i l l i m e t e r - w a v e  d e v i c e s    N o v .  
M I P S  c o m p u t a t i o n    A u g .  
M i x e r s ,  m i l l i m e t e r - w a v e    N o v .  
Model, addressing and protection ... Aug. 
Mode l ,  communica t ions  sys tem   Apr .  
M o d e l ,  c o n t r o l  f l o w    A u g .  
M o d e l ,  e x e c u t i o n    A u g .  
M o d e l ,  t h i c k - f i l m  r e s i s t o r    A p r .  
M o d e m s ,  p o r t a b l e  c o m p u t e r    J u l y  
M o d u l a r  c o m p u t e r s    S e p t .  
M o d u l e s ,  I / O    A u g .  
M P E  X L  D B M S    D e c .  
MS-DOS, HP-IB command library .... May 
M u l t i l e v e l  c o n s t r a i n t s    N o v .  
M u l t i m e t e r ,  s y s t e m s    F e b .  
M u l t i p a t h  i m p a i r m e n t s    A p r .  
M u l t i p l e  t e s t  e n v i r o n m e n t s    M a r .  
Mul t ip lexer ,  osc i l loscope  probe    Apr .  
M y c o n    N o v .  

N 
Native language support ,  HP-UX   Dec.  
Native language support, HP-UX 5.0 July 
Natural language understanding 

s y s t e m ,  A I    M a r .  
N e t w o r k  a n a l y z e r ,  s c a l a r    F e b .  
N e t w o r k  f i l e  t r a n s f e r    O c t .  
N e t w o r k ,  H P  e l e c t r o n i c  m a i l    S e p t .  
N e t w o r k  l a y e r ,  O S I    O c t .  
N e t w o r k  m o d e l ,  d a t a  b a s e  . . .  . . .  D e c .  
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N e t w o r k  p r o t o c o l  a n a l y z e r    J u l y  
Network  Sendees .  HP 1000    Oc t .  
N e t w o r k  S e r v i c e s ,  H P  3 0 0 0    O c t .  
N e t w o r k  S e r v i c e s ,  H P  9 0 0 0    O c t .  
N e t w o r k i n g  s t r a t e g y ' ,  H P    O c t .  
N e t w o r k s ,  l o c a l  a r e a    O c t .  
N e t w o r k s ,  w i d e  a r e a    O c t .  
N o d a l  m a n a g e m e n t    O c t .  
Noise degradation, microwave radio Apr. 
N o i s e  r e j e c t i o n ,  D M M    F e b .  
Nonlinear i t ies ,  microwave radio    Apr .  
N u l l i f i c a t i o n    A u g .  

O b j e c t - o r i e n t e d  p r o g r a m m i n g    M a r .  
Object-oriented programming 

t o o l s e t ,  C    M a r .  
O b s e r v a b l e s    N o v .  
O n e - s e r v e r  m o d e l    O c t .  
O p e n  s y s t e m s  i n t e r c o n n e c t i o n    O c t .  
O p e r a t i n g  s y s t e m ,  H P - U X    D e c .  
O p e r a t i o n s ,  H P  P r e c i s i o n    A u g .  
O p t i m i z i n g  c o m p i l e r s    J a n .  
O p t i m u m  I F  a n d  L O ,  c o u n t e r    F e b .  
O s c i l l o s c o p e ,  P C  I n s t r u m e n t s    M a y  
O s c i l l o s c o p e s ,  d i g i t i z i n g    A p r .  
O x y g e n  r e d i s t r i b u t i o n ,  T i S i 2    M a y  

P a c k e t  s w i t c h e d  n e t w o r k s    O c t .  
P a g i n g  m a n a g e m e n t    A u g .  
PAM, Personal Applications 

Manager, portable computer   July 
PANELS program, PC Instruments ... May 
Parallel communications channel, 

P C I B    M a y  
P a r e n t - c h i l d  r e l a t i o n s h i p s    D e c .  
P a t c h i n g    J a n .  
P a t h  r e p o r t s    O c t .  
P a t h s ,  D B M S    D e c .  
P a t h s ,  p r o t o c o l    O c t .  
Patient care software, testing   Mar. 
PBX-based  communica t ion    Oc t .  
P C  d e s i g n ,  t e s t i n g    J a n .  
P C I B    M a y  
P C  I n s t r u m e n t s    M a y  
Per fo rmance  ana ly s i s  me thods    Aug .  
Performance model, JIT software   June 
Peripheral processor unit (PPU), 

p o r t a b l e  c o m p u t e r    J u l y  
P e r i p h e r a l  t r o u b l e s h o o t e r    N o v .  
P e r s i s t e n c e ,  v a r i a b l e    A p r .  
Personal Applications Manager, 

p o r t a b l e  c o m p u t e r    J u l y  
P h a s e  f o r m a t i o n ,  T i S i 2    M a y  
P h y s i c a l  l a y e r ,  O S I    O c t .  
P l o t t i n g  a l g o r i t h m    A p r .  
Plotting system, measurement   Jan. 
P o r t a b l e  c o m p u t e r s    J u l y  
P o r t a b l e  P l u s    J u l y  
P o r t / H P - U X    D e c .  
P o r t s    O c t .  
P o s t a m p l i f i e r ,  o s c i l l o s c o p e    A p r .  
P o s t - d e d u c t  t r a n s a c t i o n    J u n e  
P o t e n t i o m e t e r  e l i m i n a t i o n    J a n .  
Power measurement, Doppler 

u l t r a s o u n d    J u n e  

Power modes, portable computer   July 
P o w e r  s u p p l y ,  o s c i l l o s c o p e    A p r .  
P o w e r  t r a n s f o r m e r    F e b .  
P o w e r f a i l  r e c o v e n '    D e c .  
P - P O D S    M a r .  
P r e a l l o c a t i o n  o f  d i s c  s p a c e    D e c .  
P r e a m p l i f i e r ,  o s c i l l o s c o p e    A p r .  
P r e c i s i o n  A r c h i t e c t u r e ,  H P    A u g .  
P r e d i c t i v e  s u p p o r t    N o v .  
Preemption la tency,  HP-UX   Dec.  
P r e s e n t a t i o n  l a y e r ,  O S I    O c t .  
Privileged groups, HP-UX system   July 
P r o b a b i l i t i e s ,  e x p e r t  s y s t e m s    N o v .  
P r o b e  h y b r i d s    A p r .  
P r o b e  s y s t e m ,  o s c i l l o s c o p e    A p r .  
P r o c e d u r e  c a l l s    J a n .  
P r o c e s s  m o d e l ,  U N I X    D e c .  
Process  schedul ing,  HP-UX   Dec.  
P r o c e s s  s t a t u s  w o r d    A u g .  
Process synchronization,  HP-UX   Dec.  
P r o c e s s i n g ,  G a A s  I C s    N o v .  
P r o c e s s i n g ,  1 C    M a y  
P r o c e s s o r  a r c h i t e c t u r e    A u g .  
Processor board, 10-MHz, 68010 .... Sept. 
Processor board, 16.67-MHz, 68020 Sept. 
P r o d u c t  d e s i g n ,  S e r i e s  3 0 0    S e p t .  
Production scheduling and 

r e p o r t i n g ,  J I T    J u n e  
P r o g r a m m i n g ,  A I  W o r k s t a t i o n    M a r .  
Programming environment, 

u n i f i e d ,  A I    M a r .  
P r o g r a m s ,  p r o t o c o l  a n a l y z e r    J u l y  
Program-to-program communication Oct. 
P r o p e r  i n t e r v a l    J a n .  
Pro tec t ion  model ,  HP Prec is ion    Aug.  
P r o t o c o l  a n a l y z e r    J u l y  
P r o t o c o l s ,  n e t w o r k    O c t .  
P r o t o t y p i n g ,  s o f t w a r e    J u n e  
P s e u d o i n s t r u c t i o n s    J a n .  
P S N s    O c t .  
P u l s e  w i d t h  m o d u l a t o r  c h i p    A p r .  
PXP (packet  exchange protocol)    Oct .  

Q 
Q u a d r a t u r e  m o d u l a t i o n    A p r .  
Q u a d r a t u r e  s a m p l e r    J u n e  
Q u a l i t y  m e t r i c s ,  s o f t w a r e    M a r .  
Q u e r i e s    N o v .  
Q u e r y  p r o c e s s i n g    D e c .  

R 
R A M  d i s c ,  p o r t a b l e  c o m p u t e r    J u l y  
R a n d o m  r e p e t i t i v e  s a m p l i n g    A p r .  
R a n d o m  v a l u e s  t e s t i n g    M a r .  
Rate-based production scheduling ... June 
R e a l - t i m e  e x t e n s i o n s ,  H P - U X    D e c .  
Real-t ime extensions,  HP-UX 5.0   July 
Reciprocal counting, firmware   May 
R e c o v e r y ,  D B M S    D e c .  
R e c o v e r y  t i m e    A p r .  
Reduced instruction set computers ... Jan. 

Aug. 
R e g i s t e r  a s s i g n m e n t    J a n .  
R e g i s t e r s ,  H P  P r e c i s i o n    A u g .  
Relat ional  model ,  data  base    Dec.  
R e l a t i o n s    D e c .  
R e l a t i o n s h i p s    D e c .  
R e m o t e  d a t a  b a s e  a c c e s s    O c t .  

R e m o t e  d e b u g g e r    A u g .  
R e m o t e  f i l e  a c c e s s    O c t .  
R e m o t e  p r o c e s s  m a n a g e m e n t    O c t .  
R e m o t e  s e r v e r s    O c t .  
Response tuning, thick-film hybrid Apr. 
R I S C    J a n .  

Aug. 
R o l l b a c k  r e c o v e r '    D e c .  
R o l l f o n v a r d  r e c o v e n '    D e c .  
R O M ,  d a t a  a c q u i s i t i o n    M a r .  
R O M  d i s c ,  p o r t a b l e  c o m p u t e r    J u l y  
ROM IMAGE Development Package, 

p o r t a b l e  c o m p u t e r    J u l y -  
R O M s ,  p l u g - i n    J u l y  
R T E  m i g r a t i o n  t o  H P - U X    D e c .  
R u l e - b a s e d  p r o g r a m m i n g    M a r .  
R u l e - b a s e d  s y s t e m s    N o v .  
R u n t  p a c k e t  f i l t e r    J u l y  

S 
S a l i c i d e ,  1 C  m e t a l l i z a t i o n    M a y  
S a m p l e r ,  G a A s    F e b .  
S a m p l e r ,  o s c i l l o s c o p e    A p r .  
S a m p l i n g ,  r a n d o m  r e p e t i t i v e    A p r .  
Scaffold test package 

t o o l / s t a n d a r d    M a r .  
S c a l a r  n e t w o r k  a n a l y z e r    F e b .  
Scanner, imaging, Doppler 

m e a s u r e m e n t s    J u n e  
S c a t t e r  r e a d    D e c .  
S c h e m a  f i l e    D e c .  
S c h o o n e r    N o v .  
S c h o t t k y  b a r r i e r  d i o d e s    N o v .  
S c r e e n  u p d a t e  r a t e    A p r .  
S e c u r i t y ,  d a t a b a s e    D e c .  
S e c u r i t y ,  e l e c t r o n i c  m a i l    S e p t .  
S e m a p h o r e s ,  H P - U X    D e c .  
S e q u e n c e  n u m b e r s    J a n .  
Serial communications channel, 

P C I B    M a y  
S e r i a l i z a b i l i t y    D e c .  
S e r i e s  3 0 0  C o m p u t e r s ,  d e s i g n    S e p t .  
Series 300 Computers, HP-UX 5.0 .... July 
S e r v o  d e s i g n ,  p l o t t i n g  s y s t e m    J a n .  
S e s s i o n  l a y e r ,  O S I    O c t .  
S h a r e d  m e m o r y ,  H P - U X    D e c .  
S h e l l ,  H P - U X    D e c .  
S h o r t - p o i n t e r  a d d r e s s i n g    A u g .  
S i g n a l s ,  H P - U X    D e c .  
S i l i c o n  c o m p i l a t i o n    J u n e  
Simulation, digital microwave radio Apr. 
S i m u l a t i o n s ,  A I    M a r .  
S i m u l a t o r ,  H P  P r e c i s i o n    A u g .  
S i n g l e - c y c l e  e x e c u t i o n    A u g .  
S k e l e t o n s ,  d a t a  s t r u c t u r e    M a r .  
S o c k e t  r e g i s t r y    O c t .  
S o f t  f r o n t  p a n e l    M a y  
Software compatibility, Series 200 

a n d  S e r i e s  3 0 0    S e p t .  
S o f t w a r e  d e v e l o p m e n t    M a r .  
S o f t w a r e  d e v e l o p m e n t ,  J I T    J u n e  
S o f t w a r e  e n g i n e e r i n g ,  A I    M a r .  
Sof tware  g raph ica l  des ign  too l    Mar .  
S o f t w a r e ,  o s c i l l o s c o p e    M a y  
S o f t w a r e  q u a l i t y  m e t r i c s    M a r .  
Software testing tool, Triggers   Mar. 
S p a c e  r e g i s t e r s    A u g .  
S p e c i a l  f u n c t i o n  u n i t s    A u g .  
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S p e c i a l  v a l u e s  t e s t i n g    
S p e c i f i c a t i o n s  t e s t i n g    
Spectral moment, calculations 
S p e c t r u m  p r o g r a m    

SRQ response times, HP 9000 Model 
3 1 0 ,  3 2 0 ,  a n d  5 5 0  C o m p u t e r s    

S t a b i l i t y ,  D M M    
S t a c k    
S t a n d a r d ,  t e s t  p a c k a g e    
S t a t i c  l i n k    
S t i t c h  b o n d i n g    
S t o c k  f l o w  m e t h o d s    
S t o r e d  q u e r i e s    
Structured Query Language (SQL) .... 
S u b s y s t e m  f o r m a t t i n g    
S u p e r v i s o r  m o d u l e    
S u p p o r t ,  c o m p u t e r    
S u p p o r t ,  e l e c t r o n i c  m a i l    
S V I D    
S y n c  c o m p a r a t o r  h y b r i d    
S y s t e m  m o n i t o r ,  e x a m p l e    
S y s t e m  V ,  U N I X    

Mar. 
Mar. 
June 

.. Jan. 
Aug. 
Dec. 

July 
Feb. 
Dec. 
Mar. 
. Jan. 
Apr. 
June 
Dec. 
Dec. 
Nov. 
Aug. 
Nov. 
Sept. 
Dec. 
Apr. 
Mar. 
Dec. 

T l  c a r r i e r    O c t .  
T a b l e  f o r m a t t i n g    N o v .  
T a k e n  b r a n c h  l i s t    A u g .  
TCP (transmission control protocol) Oct. 
Tempera ture  moni tor ,  darkroom   Mar .  
T e s t i n g ,  i n t e r a c t i v e  g r a p h i c s    M a y  
T e s t i n g ,  s o f t w a r e ,  a u t o m a t i o n    M a r .  

T e s t s    N o v .  
T h e  P o r t a b l e    J u l y  
Thick-f i lm hybrids ,  osci l loscope   Apr.  
T h r e a d    D e c .  
Time-based scheduling, HP-UX   Dec. 
T i m e  q u a l i f i c a t i o n ,  t r i g g e r    A p r .  
T i t a n i u m  s u i c i d e    M a y  
T o o l s ,  s o f t w a r e  t e s t i n g    M a r .  
Toolset, object oriented 

p r o g r a m m i n g  i n  C    M a r .  
T o p o l o g i c a l  p r o b l e m    M a r .  
T r a i n i n g ,  e l e c t r o n i c  m a i l    S e p t .  
Transaction management, data base Dec. 
T r a n s a c t i o n s ,  I / O    A u g .  
T r a n s i t i v e  c l o s u r e    J a n .  
T r a n s l a t i o n  l o o k a s i d e  b u f f e r    A u g .  
T r a n s p o r t  l a y e r ,  O S I    O c t .  
T r a p  m a c h i n e    J u l y  
T r e n d  d e t e c t i o n    N o v .  
T r e n d  l o g    N o v .  
T r i g g e r  h y b r i d s    A p r .  
Trigger system, oscil loscope   Apr.  
T r i g g e r s ,  s o f t w a r e  t e s t i n g    M a r .  
T u p l e s    D e c .  
Troubleshooting systems,  expert    Nov.  
T w o - s e r v e r  m o d e l    O c t .  

U 
U l t r a s o u n d ,  D o p p l e r  i m a g i n g    J u n e  
U n i v e r s i t y  A I  g r a n t s  p r o g r a m    M a r .  
U N I X  d e f e c t  t r a c k i n g  s y s t e m    M a r .  
U N I X  o p e r a t i n g  s y s t e m    D e c .  
U s a b i l i t y  t e s t i n g    J a n .  

/ u s r / g r o u p    D e c .  

Valvular stenosis, Doppler 
a n a l y s i s    J u n e  

V a r i a b l e  p e r s i s t e n c e    A p r .  
V e c t o r  d i a g r a m    A p r .  
V e c t o r  p r o f i l e r ,  a l g o r i t h m    J a n .  
V e r n i e r  g a i n  s t a g e    J a n .  
V i d e o  D A C  1 C    S e p t .  
V i r t u a l  c a c h e    D e c .  
V i r t u a l  m e m o r y  a d d r e s s i n g    A u g .  
Virtual memory management, HP-UX Dec. 
V i r t u a l  t e r m i n a l  p r o t o c o l    O c t .  
V i r t u a l  t e r m i n a l  t o o l    M a i .  

V L S I  d e s i g n  l a n g u a g e    J u n e  
V L S I  m e t a l l i z a t i o n    M a y  
VLSI ,  Ser ies  300  g raph ics    Sep t .  
Voltage-controlled device 

m e a s u r e m e n t s    F e b .  

W 
Waveform recorder, low-frequency ... Jan. 
W e d g e  b o n d i n g    A p r .  
W o r k l o a d  d a t a    A u g .  
W o r k s t a t i o n s ,  m o d u l a r    S e p t .  
W r i t e - a h e a d  l o g    D e c .  

X . 2 5  e x t e n s i o n s ,  H P - U X  5 . 0    J u l y  
X . 2 5  n e t w o r k i n g    O c t .  
X / O P E N    D e c .  
X - Y  r e c o r d e r    J a n .  

P A R T  3 :  P r o d u c t  I n d e x  
A L L B A S E  D a t a  B a s e  M a n a g e m e n t  S y s t e m    D e c .  
A L L B A S E / H P - U X    D e c .  
A L L B A S E / X L    D e c .  
D M I / 3 0 0 0    O c t .  
H P  D e s k M a n a g e r    S e p t .  
H P - I B  H P  1 5 0  C o m m a n d  L i b r a r y    M a y  
H P - I B  M S - D O S  C o m m a n d  L i b r a r y    M a y  
H P  J I T  ( J u s t - i n - t i m e  m a n u f a c t u r i n g  s o f t w a r e )    J u n e  
H P - U X    J u l y  

Dec. 
H P  V e c t r a / I B M  P C / A T  P C  I n s t r u m e n t s  S o f t w a r e    M a y  
I ' Q  T u t o r    A p r .  
L A N / 3 0 0 0    O c t .  
N e t w o r k  S e r v i c e s / 1 0 0 0    O c t .  
N e t w o r k  S e r v i c e s / 3 0 0 0    O c t .  
N e t w o r k  S e r v i c e s / 9 0 0 0    O c t .  
P C  I n s t r u m e n t s    M a y  
P o r t a b l e  P l u s  C o m p u t e r    J u l y  
T h e  P o r t a b l e  C o m p u t e r    J u l y  
H P - 7 1 B  C o m p u t e r    M a r .  
H P  1 5 0  P C  I n s t r u m e n t s  S o f t w a r e    M a y  
H P  3 0 0 0  C o m p u t e r    N o v .  
H P  3 0 0 0  S e r i e s  9 3 0  C o m p u t e r    J a n .  

Aug. 
Dec. 

3 4 2 1 A  D a t a  A c q u i s i t i o n / C o n t r o l  U n i t    M a r .  
3 4 5 7 A  D i g i t a l  M u l t i m e t e r    F e b .  
4 9 7 1 S  L A N  P r o t o c o l  A n a l y z e r    J u l y  
5 3 1 4 A  U n i v e r s a l  C o u n t e r    M a y  
5 3 5 0 A  M i c r o w a v e  C o u n t e r    F e b .  
5 3 5 1 A  M i c r o w a v e  C o u n t e r    F e b .  

5 3 5 2 A  M i c r o w a v e  C o u n t e r    F e b .  
7 0 9 0 A  M e a s u r e m e n t  P l o t t i n g  S y s t e m    J a n .  
8 7 5 7 A  S c a l a r  N e t w o r k  A n a l y z e r    F e b .  
H P  9 0 0 0  S e r i e s  2 0 0  C o m p u t e r    S e p t .  
H P  9 0 0 0  S e r i e s  3 0 0  C o m p u t e r s    J u l y  

Sept. 
H P  9 0 0 0  M o d e l  3 1 0  C o m p u t e r    J u l y  

Sept. 
H P  9 0 0 0  M o d e l  3 2 0  C o m p u t e r    J u l y  

Sept. 
H P  9 0 0 0  M o d e l  5 5 0  C o m p u t e r    J u l y  
H P  9 0 0 0  M o d e l  8 4 0  C o m p u t e r    A u g .  

Dec. 
1 1 6 6 4 D  D e t e c t o r    N o v .  
1 1 9 7 0 V / W  H a r m o n i c  M i x e r s    N o v .  
1 4 8 5 7 A  H P - I B  H P  1 5 0  C o m m a n d  L i b r a r y    M a y  
1 7 0 9 0 A  M e a s u r e m e n t  G r a p h i c s  S o f t w a r e    J a n .  
4 6 0 2 0 A  H P - H I L  K e y b o a r d    S e p t .  
4 6 0 8 4 A  I D  M o d u l e    S e p t .  
5 4 1 0 0 A / D  D i g i t i z i n g  O s c i l l o s c o p e    A p r .  
5 4 1 1 0 D  D i g i t i z i n g  O s c i l l o s c o p e    A p r .  
6 1 0 1 0 A  D i g i t a l  I / O  M o d u l e    M a y  
6 1 0 1 1 A  R e l a y  M u l t i p l e x e r  M o d u l e    M a y  
6 1 0 1 2 A  D u a l  V o l t a g e  D A C  M o d u l e    M a y  
6 1 0 1 3 A  D i g i t a l  M u l t i m e t e r  M o d u l e    M a y  
6 1 0 1 4 A  F u n c t i o n  G e n e r a t o r  M o d u l e    M a y  
6 1 0 1 5 A  U n i v e r s a l  C o u n t e r  M o d u l e    M a y  
6 1 0 1 6 A  D i g i t i z i n g  O s c i l l o s c o p e  M o d u l e    M a y  
6 1 0 1 7 A  R e l a y  A c t u a t o r  M o d u l e    M a y  
6 1 0 6 0 A A  H P  1 5 0  P C  I n s t r u m e n t s  S o f t w a r e    M a y  
61061BA HP Vectra/IBM- PC/AT PC Instruments Software May 
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6 1 0 6 2 A A  B A  H P - I B  M S - D O S  C o m m a n d  L i b r a r y    M a y  
77020A Phased Array Medical Ultrasound Imaging System June 
7 7 2 0 0 B  S c a n n e r    J u n e  
7 7 4 1 0 A  D o p p l e r  I m a g i n g  S u b s y s t e m    J u n e  

8 2 4 7 9 A  D a t a  A c q u i s i t i o n  P a c    M a r .  
9 8 2 0 3 A B  K e y b o a r d s    S e p t .  
9 8 2 0 4 B  V i d e o  B o a r d    S e p t .  
9 8 5 4 6 A  D i s p l a y  C o m p a t i b i l i t y  I n t e r f a c e    S e p t .  

PART 4:  Author  Index 

A d a m s ,  R o b e r t  A    S e p t .  
A d l e r .  G l e n n  J    J u l y  
A h a r t .  D i a n e  M    N o v .  
A m a n o ,  J u n    M a y  
A n d e r s o n ,  A n d r e w  G    J u l y  
A n d e r s o n ,  K e i t h  F    F e b .  
A n k l a m ,  W i l l i a m  J    N o v .  

B a r b o u r ,  M i c h a e l  J    J u l y  
B e a u d o i n ,  M i m i    M a y  
B e c k m a n ,  T o m    F e b .  
B e n d e r ,  D o u g l a s  C    F e b .  
B e r g e r ,  A r n o l d  S    A p r .  
B e r g m a n n ,  B r u c e  P    S e p t .  
B e r l i n ,  A n d r e w  A    J u n e  
B h a r g a v a ,  R a j  K    J u n e  
B l a i r ,  S t e v e n  R    M a r .  
B o c k m a n ,  F r a n c i s  E    J a n .  
B o s t i c k ,  D i a n a  G    M a y  
B o w e n ,  M i c h a e l  K    S e p t .  
B r o k i s h ,  J a m e s  A    S e p t .  
B r o w n ,  A l a n  S    D e c .  
B r y g ,  W i l l i a m  R    A u g .  
B u g a r i n ,  J o h n  R    M a r .  
B u r g e r ,  S t e p h e n  G    A u g .  
B u r r o u g h s ,  G r e g o r y  D    M a r .  
B u t t o n ,  B r i a n  T    N o v .  

C a g a n ,  M a r t i n  R    M a r .  
C a r l s o n ,  R o b e r t  J    O c t .  
C h a n ,  B u c k  H    M a y  
C h e n ,  J a m e s    J u n e  
C l e g g ,  F r e d e r i c k  W    D e c .  
C o l l i n s ,  D o u g l a s  M    N o v .  
C o r d y ,  C l i f f o r d  B . ,  J r    J u l y  
C o u t a n t ,  D e b o r a h  S    J a n .  

D a h l b e r g ,  R e b e c c a  A    S e p t .  
D ' A n g e l o ,  V i n c e n t  J    M a r .  
D a n i e l s ,  T h o m a s  H    J a n .  
D a v i d s o n ,  A n d r e w  W    J u l y  
D e  S o s t o a ,  C h a r l e s  J    O c t .  
D e a ,  R o b e r t  W    M a r .  
D e a n ,  R o n a l d  P    S e p t .  
D e L e o n ,  T i m    O c t .  
D e s a i ,  D e e p a k  V    O c t .  
D i e r s c h o w ,  C a r l    O c t .  
D o n n e l l y ,  J a m e s  A    M a r .  
D u n c o m b e ,  A l e s i a    J u l y  
D u y c k ,  E l l a  M    J u l y  

E a t o n ,  J o h n  T    J u l y  
E g b e r t ,  J a c o b  H    F e b .  
E h l e r s ,  E r i c  R    N o v .  
E l l i o t t ,  S c o t t  S    N o v .  
E l l i s ,  D a v i d  J    M a r .  

E s c o v i t z ,  W i l l i a m  H    A p r .  
E v e l ,  E d d i e  A    A p r .  

F a i c k ,  J o h n  C    F e b .  
F a u l k n e r ,  K e v i n  J    O c t .  
F e a r e y ,  S e t h  G    M a r .  
F e l p s ,  J i m m i e  D    A p r .  
F e n o g l i o ,  J o h n    J a n .  
F i g u e r e d o ,  D o m i n g o  A    N o v .  
F r o l i k ,  W i l l i a m  R    J u l y  
F r y d e n d a l l ,  D a v i d  L    J u l y  
F u g e t ,  C r a i g  D    M a r .  
F u g i t t ,  J .  C h r i s t o p h e r    O c t .  

G a r d n e r ,  R o b e r t  D    J u l y  
G a r g ,  A t u l    O c t .  
G a r r i s o n ,  B o    F e b .  
G e n t h e r ,  S c o t t  A    A p r .  
G i b s o n ,  S c o t t  R    F e b .  
G o o d m a n ,  S t e p h e n  D    J a n .  
G o t t s c h a l k ,  G e o r g e  R    N o v .  
G r a h a m ,  T o n i a  G    O c t .  
G r a y ,  D o u g l a s  A    N o v .  

H a l b e r g ,  L e s l i e  I    J u n e  
H a m m o n d ,  C a r o l  L    J a n .  
H a r r i n g t o n ,  D a n i e l  B    J a n .  
H a r r i s o n ,  K e i t h  A    N o v .  
H e m p s t e a d ,  D a v i d  C    J u n e  
H i r a t a ,  T h o m a s  M    D e c .  
H o ,  G a r y  S h i u - F a n    D e c .  
H o d g e ,  D a v i d  J    S e p t .  
H o w ,  M i c h a e l    J u n e  
H u c k ,  J e r o m e  C    A u g .  
H u g h e s ,  W i l l i a m  L    M a y  
H u n t ,  B a r r y  F    J u n e  
H u r t a d o - S Ã ¡ n c h e z ,  L u i s    S e p t .  

J a i n ,  S u n e e l    J a n .  
J a m e s ,  D a v i d  V    A u g .  
J e n s e n ,  G o r d o n  A    J u l y  
J o h n s e n ,  S i g u r d  W    N o v .  
J u n d a n i a n ,  R i c h    J u n e  

K a r p ,  S y d n e y  M    J u n e  
K e i t h ,  J o h n  C    S e p t .  
K e l l e y ,  J o n  W    J a n ,  
K n o b l o c k ,  D a r y l  E    S e p t .  
K n o u s e ,  C h a r l e s  W    O c t .  
K o e h l e r ,  A n n  M    D e c .  
K o n o n e n k o ,  G e o r g e    M a y  
K u c h i n s k y ,  A l l a n  J    J u n e  
K u s m e r ,  S t e v e n  R    D e c .  

L a c z y n s k i ,  E d w a r d    M a y  
L a n t z ,  C a r l  B    J u l y  

L e a v i t t ,  S t e v e n  C    J u n e  
L e e ,  R u b y  B e i - L o h    A u g .  
L e n k ,  R o b e r t  M    J u l y  
L e n n e r t ,  D a v i d  C    D e c .  
L e v i n e ,  A l l a n    M a y  
L e w i s ,  J e f f r e y  A    J u n e  
L o m b a r d s ,  T e n  L    J u n e  
L o o m i s ,  C o u r t n e y    J u l y  
L o u g h r y ,  D o n a l d  C    O c t .  
L u e h m a n ,  K e n t  W    M a y  
L u k e s ,  J o s e p h  A    A u g .  
L y n n ,  B r i a n  K    O c t .  
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Reader Forum 
The HP Journal  encourages technica l  d iscuss ion of  the top ics presented 
in recent  ar t ic les and wi l l  publ ish let ters expected 
to be of interest to our readers. 
Let ters must  be br ief  and are subject  to edi t ing.  
Let ters should be addressed to:  

Edi tor ,  Hewlet t -Packard Journa 
Palo Al to,  CA 94304, U.S.A. 

3200 Hi l lv iew Avenue, 

Editor: 
In the July 1986 issue of the HP Journal you refer to local 

customs ("New HP-UX Features for HP 9000 Series 300 Work 
stations," p. 38). You make no mention of international stan 
dards with to these points. I suggest that your Journal, with 
its world-wide circulation, is an ideal place to do this. 

Concerning large decimal numbers, the digits are grouped 
in threes on either side of the radix, without any separating 
character. The preferred symbol for the radix is a comma. So 
your example, written in accord with the International Organi 
zation for Standardization (ISO), is 1 432 679,09. For obvious 
reasons this convention is not always followed when sums of 
money are involved, in which case the numbers are regularly 
spaced. 

Concerning currency, there is at least one currency that is 
divided into two smaller units involving two decimal points. 
The Maltese pound comprises 100 cents of ten mills each. So 
three Maltese pounds may appear as Â£M 3.00.0. 

Concerning dates, ISO Standard 2014 Writing of Calendar 
Dates in All-Numeric Form requires that dates in the Gregorian 
calendar be written in the sequence of year, month, day in one 
of the following ways. Using your example: 

19861012 1986-10-12 
86-10-12 

1986 10 12 
86 10 12 

861012 

This standard was approved in 1976 by the U.S.A., Japan, the 
U.K., and 13 other' European countries, among others. Unless 
we all adopt this standard within about ten years we will have 
great confusion with dates such as 01-02-03 with three possible 
interpretations! 

For simple numbering of days, independent of calendar con 
ventions, ComitÃ© Consultatif International des Radiocommuni- 
cations Standard 457-1 recommends the use of the Modified 
Julian Date (MJD), a five-digit decimal day count originating 
on 17 November 1858. A more convenient reference is the 
author's fortieth birthday, 27 October 1984 with MJD 46000. 

Concerning time scales, in practice all world time scales (and 
time signals) are derived from Coordinated Universal Time 
(UTC), which can differ from Greenwich Mean Time (GMT) 
by up to 0.9 second either way. UTC has seconds of constant 
length, but not always 60 seconds in each minute. GMT always 
has 60 seconds in each minute, but the length of the second 
varies slowly. I suspect that your computer software does not 
provide for leap seconds so it is effectively, as you say, based 
on GMT although this is not generally accessible to the public. 

Contrary to the information given in your Journal the Cook 
Islands are currently 10 hours behind UTC/GMT and this 
changes seasonally on 86-10-26 to 9 hours, 30 minutes. Singa 
pore is now always 8 hours ahead of UTC/GMT. The only 
country with an offset not a multiple of 30 minutes is Nepal 
(5 hours, 45 minutes ahead). 

John  P .  Chambers  
Tadwor th ,  Sur rey ,  Un i ted K ingdom 

Thank you /or the information that you provided. 
The intent of the Native Language Support (NLSj section of 

the July 1986 HP-UX articJe was to provide an overview of 
native language support issues and indicate some of the so 
lutions already in place. The UNIX community is just begin 
ning to understand how many limiting assumptions are en 
countered in UNIX. Character set, local customs, and user 
messages were selected as three key limitations. There are 
others. Many people find staggering the total number of 
changes required to remove these limitations. The section was 
kept quite short to keep it from becoming overwhelming. How 
ever, to keep the information from being too removed from 
reality, several examples were added, some based on rather 
obscure facts. 

The selected examples reflect the existing Hewlett-Packard 
solution. Almost all of the information included in HP-UX 
Native Language Support products is selected to be compatible 
with the HP 3000 Computer NLS products. The information 
was derived from international standards as well as inputs 
from to sales force and customers. With specific reference to 
the ISO 2014 standard concerning numeric dates, while it was 
adopted in 1976, the de facto standard in the United States 
remains month, day, year. It is not clear to me how to effect 
a change. Witness the failure to convert to the metric system 
in the U.S.A. However, HP-UX Native Language Support pro 
vides the flexibility to accommodate such a change. Using the 
dumpmsg and gencat commands along with an editor of choice, 
a user can easily change or correct the format. No recoding or 
recompilation is required. 

Your point is well taken concerning world time scales. Orig 
inal AT&T documentation refers to Greenwich Mean Time 
(GMTJ. HP-UX has retained this reference. Also retained is the 
admittedly narrow interval of time that UNIX addresses. Dates 
before 1970 and after 1999 are not accommodated uniformly. 
There is discussion currently within the UNIX community con 
cerning dates before and after these limits but to report any 
conclusions would be premature. 

HP-UX maintains historical information about time zone 
adjustments for the time intervals from 1970 to 1999. The cur 
rent adjustments (10 hours behind GMT for the Cook Islands, 
8 hours ahead for Singapore] and those used as examples (10 
hours 38 minutes for the Cook Islands, 7 hours 30 minutes for 
Singapore] fall within the UNIX time interval and are equally 
valuable. The dates and times of each change in time zone 
adjustment are also required. 

Leap seconds have been an amusing issue to me. The cost 
of implementation and performance has made such a change 
unjustifiable for the moment. While UNIX claims to use GMT, 
all known hardware uses seconds of uniform interval. From 
what you say, UNIX could more correctly be said to run Coor 
dinated Universal Time (UTC] and be (I believe] thirteen sec 
onds off. 

Ronald G.  To l ley  
Member o f  the Technica l  Staf f  

Systems Software Operat ion 
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Data Base Management for  HP Precision 
Architecture Computers 
HP ALLBASE suppor ts  both network and re lat ional  data 
access and runs under  both  the MPE XL and the HP-UX 
operating systems. Migration of existing data bases to the 
new archi tecture has been carefu l ly  p lanned for .  

by Alan Michael  J .  Thomas M.  Hirata,  Ann M.  Koehler ,  Kr ishnan Vishwanath,  Jenny Ng,  Michael  J .  
Pechul is ,  Mark A.  Sikes,  David E.  Singleton,  and Judson E.  Veazey 

ONE OF THE MOST VALUABLE ASSETS of a busi 
ness is the data required to manage its daily opera 
tion. This data can include such information as a 

list of customers, the components required to build a prod 
uct, sales records, and organization charts â€” in other words, 
any information that helps the business operate efficiently 
and smoothly. A data base management system (DBMS) is 
a collection of programs and procedures intended to help 
a business control its data. Logically related data is stored 
together in a set of files called a data base. The DBMS 
software provides tools for defining these data bases and 
regulating access to them. 

The benefits of using a DBMS include: 
â€¢ Centralized control. All data essential to an organization 

resides in one place, and the responsibility for managing 
it can be well-defined. 

â€¢ Data consolidation. Because the same data can be easily 
shared by many application programs, duplicate copies 
of the data are not needed. Thus changes to the data can 
be made once and are available simultaneously to all 
programs with access to the data base. Since there is 
only one copy of the data, there is no risk that two pro 
grams will use different versions of the data and produce 
inconsistent results. 

â€¢ Program independence from physical storage. The 
DBMS, by providing a standard interface for retrieving 
and updating data, hides the physical storage represen 
tation and the file system dependencies from the appli 
cation programmer. It allows the programmer to concen 
trate on developing the functionality of the application 
rather than designing data file formats and access proce 
dures. 

â€¢ Flexibility. As new needs arise, data and access routes 
can be added to the data base to support new functions 
without affecting currently working programs. 

â€¢ Data security. When data is stored in standard files, a 
user can typically be given access to either all of the data 
or none of it. A DBMS can allow access rights to be 
regulated down to the data item level. That is, a user 
may be allowed to read one part of the data base and at 
the same time be denied access to another part. So it is 
possible, for example, to allow a personnel clerk to re 
trieve the name of an employee's manager but not the 
employee's salary. 

â€¢ Ad hoc data retrieval. Using a query program supplied 
with the DBMS, one-time requests for information can 
be satisfied when the need for the data arises. Special 
programs do not have to be written to retrieve the infor 
mation. 

Three Data Models 
Most data base management systems today model data 

in one of three ways: hierarchical, network, or relational 
(see Fig. 1). In the hierarchical model, data has a one-to- 
many relationship; the data is logically organized as a tree. 
A "parent" file can have several children, but a "child" 
file can have only one parent. The network model relaxes 
the restriction that a child can have only one parent. It 
supports a many-to-many relationship of data; the data 
organization is that of a graph. So the network model en 
compasses the hierarchical model. 

In both hierarchical and network models, all data re 
lationships are predefined by the data base designer. These 
relationships are typically embedded in the data. It is the 
user's responsibility to identify which path should be fol 
lowed to retrieve information from the data base. For this 
reason, the hierarchical and network models are often 
called navigational data base management systems. The 
application program navigates through the predefined re 
lationships to manipulate the data. 

The relational model, the third form of data base manage 
ment system, presents the user with a simpler view of the 
data. Data appears as a collection of tables, which do not 
contain any predefined relationships. The data relation 
ships are defined by the queries made against the data base. 
When a query is made, the DBMS, rather than the applica 
tion program, determines the route used to access the data. 

Navigational data base management systems typically 
offer better performance whenever processing is repetitive 
and there is a high volume of transactions. A characteristic 
of such applications is that they use stable data base struc 
tures. Performance considerations are more important than 
arbitrary access to the data. A navigational DBMS allows 
the programmer to specify exactly how the data is to be 
accessed. While this requires more planning, it allows the 
sophisticated user to design for optimum performance. 

Relational data base management systems, on the other 
hand, tend to be easier to use and more flexible. Since the 
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data base does not contain any fixed data relationships, 
the scope of a query is not restricted by the structure of 
the data base. Changes to the data base organization are 
also easier to make. Furthermore, because the DBMS rather 
than the programmer selects the access path, complex 
queries are no more difficult to code than simple ones. 

Historically, only one of these data base models has been 
available from any particular DBMS. With the introduction 
of HP Precision Architecture, HP offers its customers the 
choice of either a network or a relational interface from 
one DBMS. Customers are free to select the best data base 
model for each application. This new DBMS is called 
ALLBASE and is supported on both the MPE XL and the 
HP-UX operating systems. 

ALLBASE Overv iew 
ALLBASE has three major software components: HP- 

IMAGE, HPSQL, and DBCore. 
HPIMAGE is the network model interface that carries 

forward the Image tradition that began with HP's highly 
successful Image/3000 and Image/1000 products. HPIMAGE 
provides a migration path for current Image users and in 
troduces several new features. 

HPSQL is the relational interface based on Structured 
Query Language, an ANSI industry standard relational in 
terface developed by IBM. This interface is the same as the 
one supported by the HP SQL/V product recently intro 
duced on the MPE V operating system. 

DBCore is an internal set of data base definition and 
access services shared by the HPIMAGE and HPSQL com 
ponents of ALLBASE. 

In addition to ALLBASE, the data base management soft 
ware for HP Precision Architecture computers includes a 
migration package that helps customers move their existing 
data bases and applications to ALLBASE, and query prod- 

Hierarchical 

Relational 

ucts that allow users to access their HPIMAGE and HPSQL 
data bases without writing programs. Fig. 2 gives an over 
view of the product structure. 

DBCore 

DBCore is the heart of ALLBASE. It is the internal com 
ponent used by both HPIMAGE and HPSQL that defines 
and manipulates data. DBCore performs the basic DBMS 
functions of data definition, data access, transaction man 
agement, concurrency control, logging and recovery, and 
accounting. In addition, it hides operating system and file 
system dependencies from the higher levels of software. 

From the user's perspective, there are two major 
categories of DBMS functions: data definition and data 
manipulation. 

Data Definition 
Data in ALLBASE is stored in the form of relations (see 

"Data Storage in ALLBASE," page 46. A relation is a two- 
dimensional table composed of rows and columns. The 
rows of a relation are called tuples. A tuple consists of an 
ordered set of data values. The values that are in the same 
position in each tuple form a column. All the values in a 
particular column are the same type of data. The data types 
supported by DBCore are integer, character, binary, real, 
packed decimal, and zoned decimal. 

The tuples in a relation are often accessed according to 
the values in a certain set of columns. To avoid exhaustive 
searches for these values, DBCore allows data structures 
called indexes to be built on relations. The columns whose 
values are of interest form the key of the index. DBCore 
supports three types of indexes: b-tree indexes, parent- 
child relationships, and hash indexes. It also supports 
linked lists or threads that allow the higher levels of soft- 

Network 

Fig.  1  .  The three data base mod 
e l s  u s e d  b y  d a t a  b a s e  m a n a g e  
ment systems. 
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ware to define their own access order. It is this variety of 
access structures that enables DBCore to support both net 
work and relational data base models. 

A b-tree index defines a search tree on a relation that 
divides the tuples in the relation into groups based on the 
values of the key columns. The b-tree substantially reduces 
the number of tuples DBCore must examine to find all 
tuples containing a specific value. When a b-tree is created, 
it can be given the property of uniqueness; this means that 
DBCore will not allow more than one tuple with a given 
key value to be inserted into the relation. If the index is 
not unique, then any number of tuples with the same key 
value can be inserted into the relation. B-trees are the most 
flexible indexes supported by DBCore; they can be created 
or deleted at any time. 

A parent-child relationship (PCR) defines a relationship 
between the data of two relations. One relation is desig 
nated as the parent and one as the child. If a PCR is defined, 
DBCore will not allow a tuple to be inserted into the child 
relation unless the parent relation contains a tuple with 
the same key value. Likewise, a tuple cannot be deleted 
from a parent relation if there is a tuple in the child relation 
with the same key value. In addition to supporting this 
integrity constraint, a PCR provides a set of access methods. 
First, it can be used just like a b-tree to access the data in 
either the parent or the child. Second, given a parent tuple, 
the PCR enables DBCore to retrieve all its child tuples. And 
conversely, given a child tuple, DBCore can retrieve the 
related parent tuple. 

A hash index is defined on a relation by "hashing" one 
or more key columns into an address. Hashing is a mathe 
matical function that converts a key into an address. For 
example, say the first column of a relation contains the 
names of customers, and this column is the key to the hash 
index. Each name is put through the hash function and an 
exact address within the relation is returned. Whenever 
data concerning a customer is requested the data can be 

fetched by hashing the customer's name into the address 
of the tuple containing the data for that customer. Hash 
indexes, while providing fast random access to data, are 
basically static structures; a hash index can only be created 
on an empty relation, and the only way it can be deleted 
is to drop the relation. 

A thread is a linked list of pointers contained in one 
column of the relation. Each pointer points to another tuple 
in the relation. The maintenance of this list is the respon 
sibility of the DBCore user, that is, HPIMAGE or HPSQL. 
DBCore simply provides a fast access method for following 
the pointers. 

Collections of relations, and the indexes on them, form 
data bases. The relations in a data base have a user-defined, 
logical relationship to one another. Data bases, in turn, are 
grouped into data base environments (DBEnvironments). 
A DBEnvironment is represented by a physical structure. 
The objects that make up an ALLBASE DBEnvironment are: 
â€¢ A configuration file (DBECon) containing the DBEnvi 

ronment startup parameters. 
â€¢ A log file that contains a record of all changes made to 

the DBEnvironment. The DBEnvironment is the ALL- 
BASE unit of backup and recovery. 

â€¢ The files used to hold the data for the relations and 
indexes in the data bases belonging to the DBEnviron 
ment. These files are called DBEFiles. 
DBEFiles are grouped together into DBEFilesets. A DBE- 

Fileset is a mechanism to create a dynamic file system on 
top of a static file system. When a relation becomes full, 
new files can be associated with the DBEFileset that con 
tains the relation. Additional data inserted into the relation 
will then be stored in these new files. DBEFilesets can have 
up to 32,767 files associated with them. 

Data Manipulation 
The DBMS commands for adding data to a data base and 

modifying it are known as the data manipulation language 

User Appl icat ion 

HPSQL 

â€¢Â« 

HPIMAGE 

Preprocessors 

SQL Uti l i ty 

User Appl icat ion 

HPSQL Core  H P I M A G E  C o r e  C  i  H P I  U t i l i t y  

DBCore 

Command Executor  

Low-Level  Services 

SQL Data  Base  HPI  Data Base 

F i g .  2 .  H P  A L L B A S E  p r o d u c t  
structure.  HPSQL is the relat ional  
u s e r  i n t e r f a c e .  H P I M A G E  i s  t h e  
network user interface. DBCore is 
used by both in ter faces.  

DECEMBER 1986  HEWLETT-PACKARD JOURNAL 35  

© Copr. 1949-1998 Hewlett-Packard Co.



(DML). The following scenario describes how the DBCore 
DML is invoked by the ALLBASE interfaces in a typical 
data base application. 

As users run the HPIMAGE or HPSQL application, it 
connects to the data base environment and starts a DBCore 
user session. Within this session, the application proceeds 
to do its work on behalf of the user. This work can include 
such things as retrieving data, inserting new tuples, delet 
ing old ones, and updating existing data. All work is done 
in logical units called transactions. The work is recorded 
permanently in the data base as each transaction is commit 
ted (made permanent). A program commits work for the 
user by executing an explicit commit work command. At 
this time, ALLBASE makes all changes done in this trans 
action visible to other users. When a user exits the applica 
tion, the program terminates the DBCore session. Other 
users can run this same program or other programs that 
access the same data base simultaneously. When the last 
session is terminated, the data base can be brought down 
to back up the day's work. 

DBCore supports data access methods that take advan 
tage of the indexes defined on relations. DBCore opens 
scans on relations. The types of scans DBCore supports 
are: relations scans, b-tree index scans, hash index scans, 
parent-child scans, and thread scans. Data can be fetched 
one tuple at a time or in bulk quantities. In a bulk operation 
the user specifies the number of tuples to retrieve in a 
single fetch. 

In addition to retrieving data, DBCore also supports in 
serting tuples, deleting tuples, updating data in tuples, and 
sorting data. Again, these operations can be done one tuple 
at a time or in bulk. All data manipulation functions are 
invoked from HPIMAGE or HPSQL by issuing a request to 
DBCore. The language that defines these manipulations 
consists, basically, of four data structures: a request block, 
a predicate tree, a projection list, and a tuple buffer. The 
request block is initialized for each DBCore request, 
specifying the type and parameters of the request. The pa 
rameters of a request include the number of tuples to ma 
nipulate, from one to as many as requested, say five hun 
dred tuples for bulk manipulation. A predicate tree specifies 
which tuples of a relation are requested. For example, the 
user may only want to retrieve the tuples of customers who 
have a credit rating less than 5. A projection list specifies 
which columns of a tuple are requested. A tuple buffer is 
the structure to which DBCore writes the output or from 
which it reads the input of the request. 

Data is inserted into relations as tuples. Data is inserted 
by filling the tuple buffer with the tuples to be inserted 
and initializing the request block with the information 
needed to perform the insert. This information includes 
the identifier of the relation into which the data is to be 
inserted, the number of of tuples being inserted, and the 
number, lengths, and data types of the columns in the 
tuples. 

An update works similarly to an insert. If the new data 
is the same size as the existing data, it is written over the 
old data. If it is larger, a new tuple containing the updated 
columns is inserted into the relation and the old tuple is 
deleted. 

Data is deleted by specifying which tuples of a relation 

to delete. Whenever data is changed, inserted, updated, or 
deleted, DBCore automatically updates any indexes that 
are defined on the data in the relation. 

Transact ion Management  
A transaction is a logical unit of work bounded by a 

begin work statement and a commit work statement. 
DBCore guarantees that either all of the work in a transac 
tion is performed or that none of it is. The begin and commit 
work statements allow DBCore to maintain data integrity, 
transparency, concurrency control, and recoverability. The 
commit work statement tells DBCore that the user is satis 
fied with all the work and to commit the work (make it 
permanent). Changes to the data base are only made perma 
nent when a transaction is committed. Similarly, changes 
can be seen by other users only after work is committed. 

Transactions that are not committed at the time of a 
system crash are undone at the next startup of the data base. 

Concurrency Control  
Since the data in a data base is shared, the DBMS must 

prevent multiple users from altering the same data simul 
taneously. DBCore must ensure that no transactions are 
lost, that transactions are not partially committed, and that 
the changes made to data by a transaction are not seen 
prematurely by other users. DBCore also guarantees that 
all concurrent transactions are independent and serializa- 
ble. To be serializable, the results of concurrent transac 
tions must be equivalent to the results of the transactions 
if they were run one at a time. 

DBCore controls concurrent data base access with trans 
actions and locking. Transactions isolate concurrent users 
from each other. Each request within a transaction is 
stamped with a unique transaction ID number and locks 
the objects it touches. The requests are also marked with 
a unique time stamp that makes the transactions serializa 
ble. The requests are recorded in a log file. 

As DBCore touches objects, whether reading or writing, 
the objects are automatically locked to prevent concurrent 
users from changing the same data simultaneously. The 
objects in DBCore that can be locked are: relations, pages 
within a relation, and tuples within a page. In practice, 
only the special system relations that store the structure 
of the data base use tuple locks because of the high volume 
of access. For performance reasons, only page and relation 
locks are used on user data. The size of the object being 
locked is referred to as its granularity. Relations, since they 
are the largest, have the highest granularity, tuples the lowest. 

Objects are locked in different modes. There are five lock 
modes in DBCore. These lock modes constitute a lock com 
patibility matrix defining which lock combinations are 
compatible for a certain object. The exclusive lock mode 
prevents any access by other users. The share lock mode 
allows multiple users to read but not alter the same data. 
In addition to these two classic types of locks (exclusive 
and share), DBCore supports the notion of intent (sub) 
locks. It uses these to speed up its compatibility checking 
across the different granularities of locks. The share subex- 
clusive lock mode allows one user to alter parts of a relation 
while allowing other users to read the unaltered portions 
of the relation. The intention share lock mode indicates 
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that there are share locks at a lower granularity, that is. if 
there is an intention share lock on a relation, there is a 
share lock on one or more of the pages of the relation. The 
intention exclusive lock indicates that there are exclusive 
locks at lower granularities. 

When a lock is requested. DBCore checks to see what 
locks already exist for that object. If the existing locks on 
the object are compatible with the requested lock, the lock 
is granted: otherwise the transaction is suspended until 
the lock can be granted. DBCore checks to see if suspending 
the transaction will cause a deadlock; if so, one of the 
deadlocked transactions is picked by DBCore, usually the 
younger one that caused the deadlock, and that transaction 
is aborted, thus resolving the deadlock. A deadlock is de 
fined as two or more user transactions, each waiting for 
locks held by the other waiting user transactions. 

DBCore locks internal control blocks to prevent users 
from accessing the same control block at the same time. 
These internal locks are known as latches. Latches are simi 
lar to locks, but they are used only on internal data struc 
tures or control blocks. Another difference is that latches 
are never held across calls to DBCore. Since they are held 
for only a brief time, concurrent access to the data base is 
not reduced. Latches are acquired and released in a pre- 
specified order to prevent deadlocking on internal objects. 
When a transaction attempts to latch a control block, the 
operation is either successful or not. If the operation is 
successful, the transaction latches the control block and 
owns the control block. If it is not successful, the transac 
tion is suspended and placed in a queue of transactions 
waiting for that control block. When the control block is 
freed, the waiting processes are awakened and they again 
compete to latch the block. In practice, latches are usually 
available when transactions need them, so transactions are 
rarely suspended. 

Logging and Recovery 
DBCore logs all changes to the data in the DBEnviron- 

ment in its log file. If the system crashes, DBCore uses the 
information in the log file to restore the DBEnvironment 
to a consistent state. To DBCore, there are two types of 
system crashes: soft crashes and hard crashes. A soft crash 
is a system failure in which the machine goes down but 
the data on stable storage, usually disc, is still intact. A 
hard crash is a loss of data; a head crash on a disc is an 
example of a hard crash. After a soft crash the data in the 
data base is still in the state it was in when the system 
went down. After a hard crash, all or part of the data has 
been destroyed; it has been physically lost. 

Consistent data is a state in which all transactions of the 
data base have finished completely. There are no partial 
changes to data or partially executed transactions. If all 
transactions are in this state, the data in the data base is 
consistent. To ensure that data is consistent, DBCore pro 
vides the capability of rolling back, or undoing, uncommit 
ted transactions in the case of a soft crash. In the case of 
a hard crash, DBCore has the ability to roll forward, or 
redo, all transactions that were committed before the hard 
crash. 

To handle both rollforward and rollback recovery, 
DBCore has two logging modes: archive mode and nonar- 

chive mode. When DBCore is run in archive mode, all 
changes to the DBEnvironment are logged and the log space 
is never reused. When DBCore runs with archive mode 
turned off. all changes to the data base are logged, but space 
is periodically recovered and reused as transactions are com 
mitted. To perform rollforward recovery. DBCore must be 
run in archive mode. Rollback recovery is always available. 

DBCore uses a write-ahead log to ensure that transactions 
are not lost and that the transactions are recoverable. Trans 
action requests are written to the log in the form of log 
records. Log records contain before and after images of the 
data and information about the type of the operation per 
formed by DBCore. These log records are written to the log 
ahead of the data's being written to disc. This ensures that 
the transactions can be recovered from the log. If there is 
a system failure while data is being written to disc, the log 
will already have the log records, from which the transac 
tion can be redone or undone as necessary. 

Two transaction status tables are maintained at the begin 
ning of the log file: one for rollback recovery called the 
checkpoint transaction status table and one for rollforward 
recovery called the archive transaction status table. During 
rollback recovery, DBCore reads the checkpoint transaction 
status table to see which transactions were not committed 
at system failure time. DBCore reads the log records for the 
uncommitted transactions, undoing the operations as it 
goes. 

To perform rollforward recovery, an old copy of the 
DBEnvironment is restored from a backup or archive copy. 
The current log contains an image of the changes that have 
been made since the last backup. These changes can then 
be reapplied to the old data, rolling it forward to a consis 
tent state. The user tells DBCore the time to which to roll 
forward. DBCore reads the archive transaction status table 
and starts reading log records at the position indicated by 
the archive status table. Log records are read one at a time 
and redone as they are encountered until DBCore has read 
forward to the specified recovery time. Transactions that 
do not have an end transaction record at this point will be 
rolled back to their begin transaction record. 

DBCore supplies the fundamental services required by 
a data base management system, but it lacks the cohesive, 
user-oriented view of the data needed to be a complete 
DBMS. The interface components of ALLBASE, HPIMAGE 
and HPSQL, provide these remaining services. 

HPIMAGE 

The HPIMAGE component of ALLBASE supplies the 
user with a network model interface to the data managed 
by DBCore. Modeled after Image, the successful HP propri 
etary data base management system found on HP 1000s 
and MPE V-based HP 3000s, HPIMAGE is a combination 
of old and new. It supports an interface similar (although 
not identical) to the one already used by many programs 
and familiar to customers. At the same time, it has been 
updated to reflect some of the advances in data base man 
agement technology that have been made since Image was 
first designed 15 years ago. 

HPIMAGE consists of two components: 
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â€¢ A utility program called HPIUtil that provides com 
mands to create and delete data bases, back up and re 
cover data base environments, and perform other as 
sorted maintenance tasks. 

â€¢ A set of intrinsics, or system procedures, for use in ap 
plication programs. The intrinsics provide a well-de 
fined and structured procedural interface for fast access 
to the data in data bases. 
For ease of discussion, the intrinsics are divided into 

three categories. The data manipulation intrinsics include 
all of the procedures that are used to retrieve and modify 
data. These include HPIGET, HPIPUT, HPIDELETE, HPIUPDATE, 
HPIFIND, and HPIFINDSET. The intrinsics in the second 
group, for example HPIBEGIN and HPIEND, allow the user to 
define transactions. The final category of intrinsics in 
cludes those procedures needed to gain access to a data 
base (HPIOPEN) and to terminate it (HPICLOSE). 

User 's View of  Data 
An HPIMAGE data base consists of data items, data en 

tries, and data sets. A data item is the smallest accessible 
element in an HPIMAGE data base and corresponds to a 
column in a DBCore relation. A data entry is an ordered 
set of related items. It is one record of information and 
corresponds to a DBCore tuple. One or more data entries 
form a data set, which is the same as a DBCore relation. A 
data base is a named collection of related data sets. A col 
lection of data bases can be grouped together into a data 
base environment. 

Data Sets 
Data sets in HPIMAGE can be defined as one of three 

types: master, detail, or relation. A master data set can only 
be defined as a parent, that is, the first level in the network 
model. A detail set can only be defined as a child on the 
lowest level. A relation data set can have the properties of 
a master set, a detail set, or both at the same time, and 
therefore can be at any level in an HPIMAGE data base. 
This allows HPIMAGE data bases to be structured in mul 
tiple levels (removing the restriction of two levels found 
in earlier versions of Image). Master sets can also be further 
defined as either automatic or manual. In a manual master, 
all data entries must be manipulated explicitly by the user, 
as with the other data set types. In an automatic master, 
however, data entries are automatically inserted and de 
leted for the user by HPIMAGE. 

Parent sets, either master or relation data sets, serve as 
indexes to child sets (detail or relation sets). To represent 
data relationships, parent and child data sets are combined 
in a network of data sets that forms the entire data base. 
This network not only stores data but represents relation 
ships among pieces of data as well. The data can then be 
retrieved based on their relationships. 

Paths 
The primary data relationship supported by HPIMAGE 

is the parent-child relationship known as a path. One item 
in a parent set can be specified as a key item. A key item 
in a parent set serves as a unique index into a related child 
set. Each key item value points to a chain that links all 
entries in the child set that have a matching item value. 

The corresponding item in the child set is called a search 
item. The key and search item relationship is the basis of 
a path in HPIMAGE. If a path is defined, the user can 
retrieve all entries in a child set with a given search item 
value. 

Besides providing a data access method, a path also im 
poses an integrity constraint. An entry can be added to a 
child only if an entry with a matching key item value exists 
in each parent of the child. Furthermore, an entry cannot 
be deleted from a parent set until all child entries with the 
same search item value have been deleted. 

Fig. 3 shows how data items, data entries, and data sets 
relate to one another, using a sales application as an exam 
ple. 

Data Base Definit ion 
All data relationships are defined in HPIMAGE at the 

time the data base is created. The structure of an HPIMAGE 
data base is basically static, and the method of creating a 
data base reflects this assumption. The user creates a data 
base by defining its structure and characteristics in a 
schema file. A schema file is much like the data declaration 
section of a program. The data items, data entries, and data 
sets that make up the data base are described in a 
specialized HPIMAGE data definition language. Fig. 4 
shows part of the schema file used to define the data base 
shown in Fig. 3. Once the schema has been written, the 
user invokes the schema processor from the HPIUtil utility 
program to build the data base according to the description 
contained in the schema. 

Data Base Securi ty 
The schema also contains a description of the data base 

security. Data base security in HPIMAGE is implemented 
through the use of passwords and security classes. A se 
curity class is a number between 1 and 63, and one pass 
word can be assigned to each security class. When a data 
base is designed, the user specifies read and write class 
lists for each data item and set. These lists specify which 
security classes have read access, write access, or no access 
to all or part of the data base. Whenever a user accesses a 

STORE Data  Base  

CUSTOMERS 

INVENTORY 

ORDERS 

SHIPPING 

Fig. 3. An example of an HPIMAGE data base called STORE. 
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data base by opening it, a password is specified and sub 
sequent access to data in the data base is either granted or 
denied depending on the corresponding security class and 
the read and write class lists. 

Data Base Access 
Before any data in an HPIMAGE data base can be ac 

cessed, HPIOPEN must be called to initiate access to the 
data base. Opening a data base is like opening a file. It 
links the data base to the application program and estab 
lishes the dynamic information needed for the program to 
read from and write to the data base. Every time the program 
is executed, it must call HPIOPEN. 

A data base can be opened in one of four access modes. 
Each mode determines the types of operations that a user 
can perform on the data base as well as the types of oper 
ations other users can perform simultaneously. A data base 
can be opened for reading or reading and writing, and with 
shared or exclusive access. Sharing can be restricted to 
other readers only. 

The allowed access option combinations are: 

open mode 1: 
open mode 3: 

read/write, shared 
read/write, exclusive 

Begin Data  Base STORE;  

Passwords: 

Items: 

1 0  C l e r k ;  
2 0  C r e d i t ;  
3 0  S h i p p i n g ;  
4 0  M a n a g e r ;  

A c c o u n t ,  1 4  
A d d r e s s ,  X 2 6  
C i t y ,  X 1 2  
C r e d i t - r a t i n g ,  1 2  

(10,20,30/40); 
(10,20,30/40); 
(10,20,30/40); 
(20/40); 

open mode 8: read, shared with other readers only 
open mode 9: read, shared. 

Using HPIMAGE intrinsics, programs can access data in 
the data base in several ways. Serial access retrieves succes 
sive data entries from the data set, one entry at a time. 
Direct access retrieves a data entry based on its record 
location within the data base. Calculated access retrieves 
a data entry in a parent set based on its key item value. 
Chained access retrieves successively all the data entries 
in a child set that share a common search item value. Subset 
access retrieves data entries from a subset of records within 
a data set that satisfy a given set of conditions. Data entries 
can be retrieved in either a forward or a backward direction. 

For subset access, the HPIFINDSET intrinsic must be called 
first to establish a current subset for the data set to be 
accessed. HPIFINDSET allows a user to identify a subset of 
entries in a data set that meet a designated set of conditions. 
These conditions are specified in a predicate. A predicate 
can span several items within a data set and consists of a 
set of operators and operands. Generic search is also sup 
ported in HPIMAGE, that is, it is possible to retrieve entries 
based on the value of the first number of characters of an 
item of type character string. A generic search is indicated 
by following the character string used for the search by the 
character @. 
Example 1: A user can find all records in the CUSTOMERS 
data set for which ACCOUNT exceeds 500 and for which 
item number 8 is not 10 by passing the following predicate 
to HPIFINDSET: 

(ACCOUNT >500)  and (&8<> 10) ;  

Example 2: To find all records in CUSTOMERS for which 
LAST-NAME starts with the characters LU, the following pred 
icate can be used: 

zÂ¡P, X 5  

Sets: 
Name: 
Entry: 

Capacity: 

Name: 
Entry: 

Capacity: 

Customers, Relation 
Account(t). 
Last-Name, 
First-Name, 
Address, 
City, 
State, 
Zip, 
Credit-rating; 
200; 

Orders, Relation 
Account (Customers),  
Order -num(l ) ,  
Prod-num, 
Quantity,  
500; 

(10,20,30/40); 

(10,30/20,40); 

(30/10,40); 

End. 

Fig. 4. A port ion of the HPIMAGE schema defining the STORE 
data base of  Fig.  3.  

L A S T - N A M E  =  " L U " @ ;  

Implementat ion on DBCore 
The challenge of the HPIMAGE project was to map the 

well-defined external definition of existing Image products 
onto the new set of internal services provided by DBCore. 
Using DBCore offers several advantages. First, DBCore is 
designed to handle a high level of concurrent access, and 
therefore, as HP Precision Architecture processors become 
faster and faster, DBCore and HPIMAGE will be able to 
support the increased numbers of users and transactions. 
Second, it was only necessary to implement the DBMS 
services required by both HPIMAGE and HPSQL once. 
Traditional Image access methods do not support the rela 
tional model of data, whereas DBCore has the functionality 
required to support both the relational and network models. 
Third, because both HPIMAGE and HPSQL share a com 
mon set of internals, it is possible for the same data to be 
accessed through either interface. This will be realized in 
a future release of ALLBASE, which will allow an HPIMAGE 
data base to be accessed from both the HPIMAGE and 
HPSQL interfaces. 

The following discussion explains how the HPIMAGE 
data structures and intrinsics are implemented using 
DBCore. 
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Data Structures 
Because DBCore handles the physical storage of and ac 

cess to all data, HPIMAGE data structures must be mapped 
onto the DBCore structures. The key concepts behind the 
mapping are: 
â€¢ A data set in an HPIMAGE data base corresponds to a 

DBCore relation. One or more DBEFiles are created to 
hold each data set. 

â€¢ A data entry in the data set corresponds to a tuple in 
the DBCore relation, and a data item is a column within 
the relation. 

â€¢ Paths are represented by DBCore parent-child relation 
ship (PCR) indexes. One PCR is created for each child 
of a parent. A PCR supports both HPIMAGE chained 
reads and the parent-child integrity constraint. 

â€¢ A hash index is defined on each master data set for use 
in cases where fast random access is required. 
HPIMAGE also maintains a set of DBCore relations that 

contain a description of each data base. These relations are 
collectively known as the HPIMAGE catalog and are used 
by the HPIMAGE software to record the structure of a data 
base and generate the correct calls to DBCore needed to 
perform the operations requested by the user. The catalog 
is not accessed by the user. 

Opening and Closing a  Data  Base 
The intrinsic HPIOPEN is used to connect a user to a data 

base. When a user calls HPIOPEN to open a data base for 
the first time, a DBCore session is started for the user. (A 
program can open the same data base more than once. This 
work is done only on the first open.) All further operations 
on the same DBEnvironment will connect to this DBCore 
session. After the DBCore session is started, the information 
about the data base in the HPIMAGE catalog is read into 
shared memory. Subsequent intrinsic calls to access data 
in the data base obtain information about the data base 
from shared memory instead of having to go to the HPIMAGE 
catalog. The DBCore session is ended when the last open 
data base in the data base environment is closed. HPICLOSE 
disconnects a user from a data base. 

Transact ion Management  
DBCore guarantees data base integrity and consistency 

by requiring data base activity to be performed within a 
defined DBCore transaction. This is implemented at the 
user level through HP Image transaction management, 
which encompasses transaction definition, logging, and 
locking. In HP Image, a transaction is bracketed by an 
(HPIBEGIN, HPIEND) pair. All HP Image data manipulation 
intrinsics must be called from within a transaction. HP 
Image allows single and multiple data base transactions. 
A multiple data base transaction is a transaction that spans 
two or more data bases, as long as the data bases specified 
in the HPIBEGIN call belong to the same data base environ 
ment. 

There is a one-to-one mapping between HP Image trans 
actions and DBCore transactions. A DBCore transaction is 
started when HPIBEGIN is called. The DBCore transaction 
will be ended when HPIEND is called to commit the trans 
action. For multiple data base transactions, since all the 
data bases specified must be in the same data base environ 

ment, only one DBCore transaction needs to be started. 

Data Manipulation 
The insert, delete, and update data operations of HP 

Image map directly onto their corresponding DBCore func 
tions. The mapping of the various HP Image data retrieval 
methods is a little more complicated. 

Serial access is implemented by opening a DBCore rela 
tion scan on the data set specified by the user. Scan infor 
mation is stored in a local control block. Each subsequent 
HPIGET call will fetch one entry at a time in the forward or 
backward direction, until there are no more entries in the 
data set. 

Direct access is implemented by calling the DBCore fetch 
function to retrieve the desired entry based on the HP Image 
record number. Calculated access is implemented by open 
ing a DBCore index scan on the index defined for the parent 
data set. The entry is then fetched based on the key item 
value specified by the user. 

For chained access, the intrinsic HPIFIND must be called 
first to establish a current record chain based on a specific 
search item value. Subsequent HPIGET calls will retrieve 
entries from that chain. HPIFIND establishes information for 
the current chain by opening a DBCore index scan on the 
data set using the search item value as the key. 

For subset access, HPIFINDSET establishes a current subset 
by opening a DBCore index scan based on the predicate 
specified by the user. Before the HPIMAGE predicate can 
be passed to DBCore, it has to be translated into a form 
understandable to DBCore. Building the predicate is done 
in several steps. First, the HPIMAGE predicate is parsed 
by HPIFINDSET, which takes a character string and checks 
whether its syntax follows a given grammar. Its output is 
the predicate in tree format. 

DBCore does not directly support generic searches, so 
these predicates have to be converted to a form that is 
understood by DBCore. If the user submits the predicate 
NAMES = "CE"@ to find all names that begin with the letters 
CE, HPIMAGE translates this predicate into "find all names 
greater than or equal to CE and less than CF." From this 
predicate, the following parse tree is generated: 

A N D  

G E  L T  
/   /   

N A M E  " C E "  N A M E  " C F "  

The parse tree is then converted into DBCore linear for 
mat and used to open a DBCore scan. If an index exists on 
one of the items involved in the predicate, then an index 
scan is opened. Otherwise, a relation scan is used to search 
for all records that meet the specified conditions. Sub 
sequent HPIGET calls to access records in this subset will 
call the DBCore fetch function to retrieve one entry at a 
time. 

Generic search is a new feature not found in earlier ver 
sions of Image. It is an example of how the DBCore function 
ality is being exploited to add the more flexible access 
methods to HPIMAGE that are typically associated with 
relational data base management systems. However, for the 
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user who needs the total flexibility that a relational system 
can offer, ALLBASE provides HPSQL. 

HPSQL 

HPSQL, the third component of ALLBASE, gives the user 
a relational interface to the data managed by DBCore. Based 
on the ANSI industry standard Structured Query Language, 
HPSQL supports a nonprocedural command language for 
accessing data. The user only needs to specify the function 
to be performed, and HPSQL determines how to perform 
it. The interface is the same as that of HPSQL/V on MPE 
V systems, allowing users to develop relational applica 
tions on MPE V systems, and later move them to the HPSQL 
interface of ALLBASE. 

Unlike HPIMAGE, all access to HPSQL is through SQL 
commands. These commands can either be embedded in 
application programs where language preprocessors sup 
plied with HPSQL translate them into calls to the under 
lying HPSQL software, or they can be executed from ISQL, 
the interactive HPSQL subsystem. 

The basic HPSQL commands fal l  into the fol lowing 
categories: 
â€¢ Data definition 
â€¢ Data manipulation 
â€¢ Transaction management 
â€¢ Authorization control. 

HPSQL Data Definit ion 
HPSQL presents the user with a very simple view of 

data. An HPSQL data base is a collection of tables. Like 
the DBCore relation on which it is based, a table is com 
posed of rows and columns. To create a table, the user only 
needs to specify a unique name for it along with the names, 
types, and lengths of the columns in the table. 

Users may also create indexes on a table to reduce the 
time it takes to retrieve data from the table. An index is 
specified as an ordered set of columns in a table; these 
columns form the index key. The key values for each row 
in the table are stored in a b-tree, so the rows can be located 
quickly. Index data is never made visible to the user. This 
allows the user to add and delete indexes without having 
to modify previously written programs. Unlike HPIMAGE, 
where the existence of indexes (or paths) determines how 
the user accesses the data base, indexes in HPSQL are in 
visible to the user. If an index exists, HPSQL will use it to 
retrieve data; otherwise it will scan the entire table looking 
for the data to return. In either case, the user phrases the 
query in the same way. 

HPSQL allows tables and indexes to be added and de 
leted dynamically, so the user can easily change the data 
base to reflect changing needs. 

Data Manipulation 
Data access and update in HPSQL consist of the INSERT, 

UPDATE, DELETE, and SELECT commands. The INSERT and 
DELETE operations work at the row level while UPDATE and 
SELECT are column level operations (i.e., the user specifies 
which columns are UPDATEd or SELECTed). Furthermore, 
the SELECT operation supports computed arithmetic, sort 

ing, and aggregate functions (e.g., MIN. MAX. and AVG), and 
GROUP BY operations. 

The UPDATE. DELETE, and SELECT operations can be re- 
strictively applied to certain rows that satisfy a given set 
of conditions. These conditions are specified in terms of a 
WHERE clause. 
Example: 

S E L E C T  c o l u m n ! ,  c o l u m n 2  F R O M  t a b l e l  W H E R E  c o l u m n s  >  1 0 0 ;  

HPSQL supports the notion of null values as the absence 
of any value. Each column in a table can be specified as 
potentially NULL or NOT NULL. If a column is potentially 
NULL, then certain rows in that table may contain no value 
for that column. Columns in a table can also be updated 
to contain a null value (i.e., no value). 

Transact ion Management  
All HPSQL data definition and manipulation activities 

happen within transactions. A user can begin a transaction 
using the BEGIN WORK directive. (Optionally, if a transaction 
is not active when an operation is attempted, one will be 
started.) No changes will actually be written to disc until 
the user does an explicit COMMIT WORK command. The 
entire transaction can be annulled by using the ROLLBACK 
WORK command. 

Authorization Control  
HPSQL provides a flexible and dynamic security mech 

anism. The creator of an object, for example, a table or a 
stored query, automatically becomes its owner. To be able 
to access some object created by another user, you need 
explicit authorization from the owner. The owner of a table 
may grant SELECT, INSERT, DELETE, UPDATE, ALTER, and 
INDEX authorities, in any combination, to any user. Stored 
query owners can give other users RUN authority to execute 
the query. 

In addition, there are three special authorities controlla 
ble only by the data base administrator (DBA), the person 
who created the data base environment. To be able to access 
a data base environment, a user must have CONNECT author 
ity. RESOURCE authority enables the user to create data 
base objects. Finally, the user needs DBA authority to per 
form administrative functions like storage space manage 
ment, backup, and recovery. The DBA authority circum 
vents all other explicit authorization. 

Users can be combined together into groups for authori 
zation purposes. A user group relationship is flexible in 
that individual users or groups can be added to or removed 
from other groups. Any authority granted to a group is also 
implicitly granted to all its member users and groups. 

All authority can be rescinded through the REVOKE com 
mand in HPSQL. Thus the various authorities in HPSQL 
are completely dynamic. 

HPSQL Objects  and System Cata log 
HPSQL, like HPIMAGE and DBCore, stores information 

about its objects in a system catalog. This catalog is com 
posed of a set of tables, one table per object type. Examples 
of object types are tables, columns, indexes, authorization 
groups, stored queries, etc. When an object is created, a 

DECEMBER 1986 HEWLETT-PACKARD JOURNAL 41  

© Copr. 1949-1998 Hewlett-Packard Co.



record describing it is added to the appropriate table; when 
it is dropped, the corresponding record is deleted from the 
table. 

Query Processing 
One of the major differences between HPIMAGE and 

HPSQL is that the HPIMAGE user is responsible for iden 
tifying the access path to any data that is to be retrieved 
or modified. With HPSQL, the user only specifies what 
data is to be accessed and HPSQL determines how to locate 
it. The query processor in HPSQL determines the best ac 
cess path. The complete relational functionality of HPSQL 
is implemented in the query processor. The query processor 
accepts input query trees from the calling subsystem, and 
through a series of transformations, converts them into an 
executable form. 

The query processor can be invoked in a variety of ways. 
An interactive SQL subsystem, ISQL, is provided for the 
ad hoc user. ISQL supports complete SQL functionality 
with the exception of functions that need programmatic 
support (for example, host variables). In addition, ISQL 
has its own set of commands that allow the user to monitor 
the interactive environment, load and unload data from 
and into flat files, etc. 

The query processor can also be invoked programmati- 
cally through a variety of language preprocessors provided 
with HPSQL. Application programmers can embed SQL 
commands within their host language programs. Before 
compilation, an application program needs to go through 
the appropriate language preprocessor. HPSQL preproces 
sors generate stored queries for embedded SQL commands 
and replace those embedded statements by procedure calls 
to execute the corresponding stored queries. (Stored 
queries are explained in the next section.) 

Before an SQL query can be sent to the query processor, 
it has to be parsed and linearized. All subsystems that call 
the query processor have to call the SQL parser first. The 
parser converts an SQL command into an SQL parse tree. 
This parse tree is then sent to the SQL linearizer. Lineari 
zation consists of generating a query tree without any ad 
dress pointers. The concept of linearization addresses the 
issues of passing query trees between processes and writing 
query trees to disc. After linearization, the resultant linear 
tree is sent to the query processor where the query is either 
executed or stored for future use. 

Stored Queries 
Because it is common in many environments for the 

same query to be invoked repeatedly, HPSQL allows users 
to predefine queries and save the executable form in the 
data base environment. These stored queries are called sec 
tions. A section consists of the linearized input tree and 
the executable tree (also called the run tree) generated by 
the query processor. 

More often than not, a section will depend on the exis 
tence of certain other objects and authorizations. If all the 
dependencies of a section are met then the section is 
marked as a valid stored query; otherwise it is marked as 
invalid. For example, the following SQL command creates 
a section named S1 that adds data to a table: 

P R E P A R E  S 1  f r o m  ' I N S E R T  I N T O  U 1 . T 1  V a l u e s  ( 1 0 ) ' ;  

For this section to be valid, the table U1.T1 must exist, 
and further, the user must have INSERT authority on U1.T1. 
If either validation criterion is false, the section S1 cannot 
be completely defined. However, HPSQL will still store 
the input tree and mark the section as invalid. If the vali 
dation criteria are met, the query processor will generate 
a run tree from the input tree and store it along with a list 
of its dependencies. The section will remain valid as long 
as the objects on which it is dependent do not change. 

To execute this stored section, the user would issue the 
command: 

E X E C U T E  S 1  ;  

At run time, the query processor checks the section S1 
for validity. If it is valid, the query processor retrieves and 
executes the run tree. If the section is not valid, then the 
input tree will be loaded and the query processor will 
revalÃdate it. If all validation conditions are met at this 
time, the run tree will be generated and executed. In addi 
tion, the run tree will be restored and the section will be 
marked as valid. 

Query Processor Internals 
The query processor operates in two phases. It first pre 

pares the query for execution. This phase is also known as 
query compilation, query preprocessing, and query defini 
tion. Second, it stores the preprocessed query for future 
execution or executes it immediately. 

During the query preprocessing phase, the input linear 
tree is delinearized. Delinearization of a query tree consists 
of reestablishing pointers, between nodes of a tree. 

The delinearized tree then goes through a binding oper 
ation, which involves verifying the existence (or nonexis- 
tence) of data base objects. For example: 

SELECT C1  ,C2  f rom T1  ;  

requires that table T1 be already defined in the data base 
and that C1 and C2 be valid columns in table T1 , whereas 
the query: 

C R E A T E  T A B L E  T 2  ( C 1  i n t e g e r ,  C 2  c h a r ( 2 0 ) ) ;  

requires that table T2 not be already defined in the data 
base. Binding also consists of verifying that the user is 
indeed authorized to perform the function(s) implied by 
the SQL query. If either condition is not true at this stage, 
the query preprocessing goes no further, and an appropriate 
error message is issued. 

Query optimization follows the binding phase. HPSQL 
attempts to optimize all data manipulation commands (IN 
SERT, UPDATE, DELETE, and SELECT). 

First, the bound tree is transformed into an optimal form. 
Projects and filters are pushed as far down in the tree as 
possible. Boolean factors are resolved into a conjunctive 
normal form to the extent possible. View definitions are 

*A f i l ter  is  another name for  the WHERE clause.  A pro ject  is  a l is t  of  column names to be 
retrieved. 
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compressed and aggregation operations are transformed. 
The query tree is then converted into a set of query blocks. 
A bound tree thus transformed is called a preoptimized 
tree. 

In the second phase of optimization, the query cost is 
computed. The cost of a data manipulation query is given 
by the cost of scanning each table in the query. The op 
timizer generates a scan plan for each table in the query. 
This plan indicates the access method to be used for that 
table and the I/O cost. The I/O cost of a query is estimated 
in terms of the number of data and index pages likely to 
be read to perform the query. At present, HPSQL uses two 
types of DBCore scans. A relation scan will read all pages 
of the table once. An index scan will use a b-tree index 
selected by the optimizer to read tuples in the order of key 
value. The optimizer is guaranteed to generate a relation 
scan for a table that has no WHERE clause on it. If a WHERE 
clause is specified, then the optimizer will compute the 
index scan cost and compare it with the cost of a simple 
relation scan. 

In addition to the scan plans, the optimizer also generates 
join plans for multiple table retrievals. A join plan deter 
mines the scan order for a given pair of tables. Thus, for 
an n-table SELECT, n- 1 join plans are generated. The idea 
behind join optimization is to reduce the number of re 
trieved tuples as the query proceeds. The output of the cost 
computation phase is the optimized tree. 

After the optimization phase, the query processor is 
ready to generate the executable tree for data manipulation 
commands (for non-data-manipulation commands, the 
bound tree is the executable tree). Along with tree nodes 
specifying the kind of operation to be performed, the run 
tree contains pseudocode (assembly-like code) to perform 
a variety of HPSQL operations. These are: 
â€¢ Buffer transfer 
â€¢ Null evaluation 
â€¢ Arithmetic expression evaluation 
â€¢ Aggregate computation 
â€¢ Logical expression evaluation 
â€¢ Pattern matching. 

This code is embedded into the run tree as a binary 
constant string. 

Creation of the run tree marks the end of the query pre 
processing phase. 

Query Storage/Execution 
If the query is being defined (this could happen at prepro 

cessing time, or it could happen in ISQL through the PRE 
PARE command), then at the end of preprocessing, HPSQL 
causes the query to be stored in the system catalog. A stored 
query consists of the input tree and the executable tree, 
which may be a bound tree or a run tree. Temporary queries 
are held inside the local heaps of the query processor and 
are never flushed to disc. 

At run time (this could happen with the execution of a 
preprocessed application, through the EXECUTE command 
in ISQL, or through a direct SQL command in ISQL), the 
preprocessed query is executed. 

Interface with DBCore 
HPSQL, like HPIMAGE, depends on DBCore to manage 

data definition and access, to ensure data integrity, and to 
control concurrency. The query processor invokes DBCore 
for each query executed. 

ALLBASE on MPE XL and HP-UX 

Both commercial and technical customers use applica 
tions that need general-purpose data base management sys 
tems, so ALLBASE is supported on both the MPE XL and 
the HP-UX operating systems. Because the user interfaces 
are uniform, the user need not understand (or be confused 
by) the intricacies of how the data base management system 
uses the operating system. Making the interface between a 
DBMS and the operating system transparent to the user 
requires care because a DBMS is dependent on the operat 
ing system, particularly for accessing files. The importance 
of the operating system makes it difficult to conceal unless 
the DBMS is divided into layers as is ALLBASE. 

A uniform user interface was achieved rather simply, in 
spite of the inherent difficulties of making two operating 
systems transparent, because the ALLBASE products on 
MPE XL and HP-UX share the same source code. The code 
in ALLBASE that interfaces with one or the other of the 
operating systems is conditionally compiled, that is, it is 
compiled only for the operating system it accesses. But the 
high-level code, written in either Pascal or C, is nearly the 
same on both operating systems. Since project teams were 
developing ALLBASE on both MPE XL and HP-UX simul 
taneously, each with their own copy of the source code, 
coordination was required to maintain a complete version 
of ALLBASE. The HPIMAGE and HPSQL teams used a 
formal check-in, check-out system to maintain code integ 
rity. Only one team at a time could make changes to any 
given module. This solution was viable because these com 
ponents of ALLBASE rely on DBCore to perform most 
operating system dependent functions. The teams that de 
veloped DBCore used a resynchronization method. Each 
team could make changes to their own copies, but period 
ically the two teams would merge all changes into a new 
master copy. These mergers were simplified by the fact 
that the routines that access the operating system make up 
only about 10% of all procedures in DBCore. 

From a software development point of view, maintaining 
a single ALLBASE source program had several advantages. 
First, development of the product was accelerated because 
the teams developing ALLBASE on MPE XL and those 
developing it for HP-UX were able to work in parallel. 
Second, with two teams working on the same code, the 
quality of the product was enhanced â€” a bug that might be 
overlooked by one team is less likely to escape two. And 
last, a single program is easier to maintain and improve, 
since changes only need to be made once and they are 
available in both products. 

In software development, using existing code to perform 
new functions is called leverage. ALLBASE is a highly 
leveraged product. Not only is it leveraged across operating 
systems, but the HPSQL language preprocessors are also 
leveraged; they have very little code that is specific to the 
language being processed. Most of the code is the same no 
matter what language the user's program is written in. 
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In summary, ALLBASE hides both operating systems and 
presents a uniform interface to the user. The fact that the 
ALLBASE source code is the same for both operating sys 
tems resulted in an accelerated software development pro 
cess and a product that is more reliable and easier to main 
tain. 

Data Base Migration 

One of the main objectives in the HP Precision Architec 
ture program is to provide a high degree of compatibility 
as well as a smooth migration path between new and exist 
ing systems. This path should guarantee that the migration 
of applications and data bases is easily understood, while 
at the same time allowing flexibility, such as the capability 
to maximize performance in specified applications. The 
migration must be fast, and contingency options must exist. 

The HP Precision Architecture data base migration plan 
addresses all these needs and requirements. It involves a 
series of smaller migration steps which vary in complexity 
and performance/functionality improvements. The migra 
tion process has been designed to satisfy the needs of the 
small data base application, consisting of one data base 
and one program, as well as the large data base application 
system, consisting of multiple data bases on many disc 
volumes with multiple applications working together. 

The migration plan is separated into two complete mi 
gration paths, one for each market. The first, a commercial 
system migration path, supports migration between exist 
ing HP 3000 systems running MPE V with Turbolmage and 
the HP 3000 Series 930 and 950 running MPE XL with both 
Turbolmage and ALLBASE/XL. The second migration path 
addresses the technical market and provides a migration 
path between HP 1000 systems running RTE with Image/ 
1000 and HP Precision Architecture systems running HP- 
UX with ALLBASE. These migration directions are dis 
cussed separately in the following paragraphs. 

Commercial  Data Base Migrat ion 
Because commercial data bases tend to be large and cus 

tomers frequently have many of them, it is assumed that 
application and data base migration between traditional 
HP 3000 systems and the HP Precision Architecture sys 
tems will be done gradually. The MPE XL migration soft 
ware takes this assumption into account by allowing users 
to move applications and data bases individually, in a 
series of simple steps. It is not necessary to follow all of 
the steps. The migration software gives customers the 
flexibity to select the migration path best suited to their 
particular needs. 

Migration to Turbolmage on MPE XL is the first step 
along the migration path. Turbolmage on MPE XL is com 
pletely compatible with Turbolmage on MPE V, so data 
bases and applications can simply be stored from an HP 
3000 MPE V-based system and then restored onto an HP 
3000 MPE XL-based system and run in compatibility mode. 
The advantages of this migration step include its simplicity 
and the speed of migration. In addition, new applications 
can be developed in compatibility mode on an MPE XL- 
based system and then moved back to an MPE V-based 
system without change. 

The second migration step is to move applications to 
native mode. A performance gain can be realized for appli 
cations written in Pascal, Fortran, and COBOL by simply 
recompiling with the native mode compilers. No source 
code changes or data base conversions are required. Some 
languages do not have native mode compilers. Applications 
written in these languages can remain in compatibility 
mode or can be rewritten as time permits. 

An alternative second step is to move the Turbolmage 
data bases to HPIMAGE. By converting data bases to HP- 
IMAGE using a provided conversion utility, many of the 
features of HPIMAGE are made available immediately, 
while the existing Turbolmage application can be used in 
either compatibility mode or native mode. An "onion skin" 
layer of software on top of HPIMAGE, called TurboWin- 
dow, translates each Turbolmage call to HPIMAGE and 
translates the results back to Turbolmage format. Tur- 
boWindow reduces the migration effort by performing the 
syntax translations, error mapping, and transaction man 
agement on behalf of the application. However, for optimal 
use of HPIMAGE transaction management, some code mod 
ifications will be required. 

HPIMAGE features such as transaction consistency, auto 
matic rollback recovery, and dynamic restructuring can be 
used as soon as the data base is moved to HPIMAGE. HP- 
IMAGE is a native mode subsystem, so data base access 
will be able to take full advantage of the speed of the HP 
Precision Architecture. 

The last step in the migration, once all applications are 
in native mode and all data bases are HPIMAGE, is to 
replace the Turbolmage interface with the HPIMAGE inter 
face. At this point, the maximum performance benefits are 
attained, and the full HPIMAGE feature set is available. 

Each migration step is a stable position, so customers 
can operate indefinitely with a combination of compatibil 
ity and native mode applications, and a combination of 
Turbolmage and HPIMAGE data bases accessed from these 
applications. 

MPE XL Data Base Migrat ion Software 
The data base migration software consists of four mod 

ules and utilities: DBMigrate, the native mode locator/ 
switcher, the compatibility mode locator/switcher, and 
TurboWindow (see Fig. 5). 

The utility DBMigrate is provided to migrate data from 
Turbolmage to HPIMAGE. It unloads a Turbolmage data 
base to tape or disc in HPIMAGE load format, and option 
ally starts the HPIMAGE load process simultaneously. It 
can be used to check for conversion problems and require 
ments, such as disc space required and corrupted data sets, 
without the I/O time needed to unload. Because the unload/ 
load time is critical in conversion to HPIMAGE, and the 
quantity of data to unload is enormous for some Turbolm 
age data bases, DBMigrate runs in native mode and uses 
the MPE XL mapped file feature to access Turbolmage data 
sets. Bypassing the Turbolmage intrinsic interface and the 
MPE file system interface maximizes the performance of 
DBMigrate, both by reducing the number of software levels 
involved, and by ensuring that the execution path remains 
wholly in native mode. 

The native and compatibility locator/switcher modules 
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perform similar functions for each mode of execution. The 
native switcher mediates between a native mode applica 
tion and Turbolmage in compatibility mode. It handles 
parameter formatting for compatibility mode and maps 
compatibility specific information to more meaningful na 
tive mode information. Likewise, the compatibility 
switcher mediates between a compatibility mode applica 
tion and TurboWindow in native mode. The native and 
compatibility locators intercept Turbolmage intrinsic calls, 
detect the data base type, and then route data base requests 
to either the data base management system residing in that 
mode, or the associated switcher. Thus, both Turbolmage 
and HPIMAGE through TurboWindow can be accessed 
transparently from the same application from either mode. 

TurboWindow performs the translation of calls from Tur 
bolmage to HPIMAGE. It performs transaction management 
on behalf of the application, reformats and aligns parame 
ters, and maps status information from HPIMAGE back into 
Turbolmage form. With only a few exceptions, the full 
Turbolmage interface is supported. 

Technical  Data Base Migrat ion 
ALLBASE migration tools are available for Image/1000 

customers running the HP 1000 RTE operating system who 
want to port their applications to the HP-UX operating 
system. It is anticipated that HP 1000 customers who mi 
grate to the HP Precision Architecture machines will do 
so to HP-UX rather than MPE XL. Since a compatibility 
mode does not exist on HP-UX as it does for MPE XL, it 
is always necessary to recompile the migrated programs 
on HP-UX before they are executed. The transfer from one 
system to another involves moving application programs 
and data bases. ALLBASE provides a manual and software 
tools to aid in the transfer. Fig. 6 shows an overview of the 
technical data base migration process. 

Application 

Compatibi l i ty  Mode 

Application 
â € ¢ ^ ^ H  

MPE Emulat ion 

Native Mode 

Recompile  Appl icat ion 

HPIMAGE DB 

M P F  X L  

F i g .  5 .  C o m m e r c i a l  d a t a  b a s e  m i g r a t i o n  c o m p o n e n t s  a n d  
access paths.  

F ig .  6 .  Techn ica l  da ta  base migra t ion .  

Since the HPIMAGE data base structure differs from 
Image/1000, Image/1000 data bases must be transformed 
into HPIMAGE data bases. To accomplish this, the user 
must edit the Image/1000 schema and convert it to an HPIM 
AGE schema. If the data base is Image/1000-II, a root file 
decompiler is available that will do most, if not all, of the 
conversion. Once the new HPIMAGE data base has been 
created on the HP-UX system, the data itself can be migrated 
using a special unload utility, DBMUN, and reloaded onto 
the new system. 

Application programs are brought up on HP-UX in one 
of two ways: they can have all of their Image/1000 calls 
manually replaced by HPIMAGE calls and directly access 
the new HPIMAGE data base, or they can leave the Image/ 
1000 calls unaltered and access the HPIMAGE data base 
through a run-time call translator that converts Image/1000 
calls into HPIMAGE calls. However, the translator is not 
able to achieve 100% compatibility with Image/1000 func 
tionality. To help with source code conversion, another 
migration tool, the migration analysis utility (MAU) is pro 
vided. MAU scans through a source program, locates and 
flags Image/1000 calls as well as other HP 1000 system 
dependencies, provides information about each call such 
as whether or not it is fully emulated and whether a perfor 
mance degradation is expected, and summarizes with a 
statistical profile of the analysis. Where feasible, it is ex 
pected that a user will convert the software to HPIMAGE 
calls, but in the event that a more phased migration is 
desirable, the translator is available. 

Query Products 

No data base management offering would be complete 
without an ad hoc query interface. It is this level of software 
that gives users the ability to retrieve and report stored 
information without having to write a program. ALLBASE 
offers interfaces compatible with current offerings to pro 
vide a smooth migration to HP Precision Architecture 
machines. In addition, new tools that enhance the 
ALLBASE data base management system have been added. 

To solve the issue of a smooth migration, the current 
version of Query/3000 has been ported to the MPE XL 
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operating system where it is called Query/V. There have 
been no changes made to the externals of the product, so 
users who are using Query/3000 now will have no difficulty 
using Query/V. Query/V can access both Turbolmage and 
HPIMAGE data bases. This allows customers to move cur 
rent Turbolmage data bases from MPE V to MPE XL and 
begin using them immediately. If and when data bases are 
slowly migrated to HPIMAGE, Query will still be able to 
access them transparently, that is, the person using Query/V 
will not need to know that some of the data bases being 
accessed are Turbolmage and some are HPIMAGE. The 
differences will be handled automatically. Once all of a 
customer's data bases have been migrated to HPIMAGE, 
Query/V can still be used to perform ad hoc retrieval and 
reporting without the necessity of using a new interface. 

Query/V, then, is simply Query/3000 running on MPE 
XL. This is accomplished by running Query/3000 in com 
patibility mode on top of TurboWindow. TurboWindow 
handles the actual communication between an application 
and Turbolmage and/or HPIMAGE data bases. 

Since there have been no enhancements to Query/3000 
when moved to MPE XL, it will not support all the features 
of HPIMAGE such as HPIFINDSET or relation sets. Because 
of this, a query product is needed that in the long term 
will support HPIMAGE and will be very robust. To fill this 
need, there is IQUERY. 

IQUERY is very similar to Query/3000. The main differ 
ence is that it accesses only HPIMAGE data bases. It runs 
on the MPE XL and HP-UX operating systems and looks 

exactly the same on both. For MPE XL, IQUERY runs in 
native mode, so its performance is optimal. IQUERY will 
be the long-term solution for programmers and data base 
administrators to access HPIMAGE data bases. It will be 
enhanced as necessary to support the full feature set of 
HPIMAGE. 

For the relational side of ALLBASE, there is a different 
query product called ISQL. ISQL runs on both MPE XL 
and HP-UX and provides access to HPSQL data bases. This 
ISQL is exactly the same as ISQL/V, the interface released 
with HPSQL on MPE V. Again, customers will find no 
difficulty or surprises when migrating to HP Precision Ar 
chitecture. 

One of the keys to the successful movement of the various 
query products to the different operating systems lies in 
the code itself. During development, code sharing among 
operating systems is planned for at the early stages. This 
means that whenever possible, machine dependent 
routines and those nice features of Pascal that only certain 
compilers support are not used. References in the source 
code to file names (for INCLUDEd source) are isolated to 
minimize changes resulting from file system differences. 
Any operating system calls that are made are also isolated 
in their own routines. As a result, nearly 90% of the code 
can be shared among the different operating systems. ISQL, 
for example, is maintained as one set of source code even 
though there are slight differences for MPE V, MPE XL, 
and HP-UX. Conditional compile directives are used to 
help in some areas. 
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CUSTOMERS 

F i g .  2 .  T h e  
with data. 

CUSTOMERS relation 

the DBCore component of  ALLBASE f i rst  retr ieves the root node 
of the index. It scans the key values in the root node to determine 
w h i c h  t h e  t o  f o l l o w .  I f  t h e  s p e c i f i e d  v a l u e  i s  Â « 2 9 1  t h e n  t h e  
first pointer is used. If the value is in the range 291 < value Â«700 
"B- t rees are const ructed in  such a way that  i t  is  guaranteed that  a l l  key i tem values 
s291 along whatever value is contained in the node) wi l l  be found along this branch of 
the tree ( i f  the key value exists in the relat ion). 

the  second po in te r  i s  fo l lowed,  and  i f  i t  i s  >700 then  the  th i rd  
pointer is used. Since 205<291 , the first pointer is used to retrieve 
the nonleaf  node labe led A.  Th is  node is  searched in  the same 
way as the root  node and new nodes far ther  down the t ree are  
r e t r i e v e d  u n t i l  f i n a l l y  a  l e a f  n o d e  i s  f o u n d .  T h e  l e a f  n o d e  i s  
sea rched  f o r  t he  key  va l ue  t ha t  ma tches  t he  spec i f i ed  va l ue  

â€¢ Root Node 

^ ^ M ^ M ^ M *  D D I  

â€¢Lea, Nodes 

F i g .  3 .  A  b - t r e e  o n  t h e  C U S T O  
MERS relat ion. The key column is 
ACCOUNT 
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(205) .  The po in ter  assoc ia ted w i th  th is  key  va lue  po in ts  to  the  
tuple in the relat ion that  contains th is same value. Each tuple in 
the relat ion is pointed to by one and only one entry in a leaf page 
of the index. 

For  s imp l ic i ty ,  the  example  shows on ly  th ree  va lues  In  each 
node of  the t ree.  In  a more typ ica l  case,  a node would be l ike ly  
to have 100 or  more entr ies.  This keeps the number of  levels in 
the t ree smal l  and thus min imizes the number  o f  d isc  accesses 
required to retr ieve the tuple. 

A  P C R  t o  r e l a t i o n s h i p )  I s  v e r y  s i m i l a r  i n  s t r u c t u r e  t o  
a b- t ree.  The pr imary d i f ference between the two index types Is  

F i g .  4 .  A n  e x a m p l e  o f  a  p a r e n t -  
ch i l d  r e l a t i onsh ip  (PCR)  j o i n i ng  
t h e  r e l a t i o n s  C U S T O M E R S  a n d  
O R D E R S .  

tha t  a  b - t ree  con ta ins  key  va lues  fo r  on ly  one  re la t ion  wh i le  a  
PCR contains values for  two relat ions.  The leaf  nodes of  a PCR 
point to tuples in both the parent relation and the child relation. 

Fig. 4 shows an example of a PCR joining the relations CUSTOM 
ERS and ORDERS. Features of this PCR are: 
â€¢ An order cannot be placed for which a customer (ACCOUNT) 

does not exist.  
â€¢ The PCR can be used as a b-tree on either the CUSTOMERS 

or  the ORDERS re la t ion to  re t r ieve tup les wi th  par t icu lar  AC 
COUNT values. 
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