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In this Issue 
Our cover subjects th is month can barely be seen in the cover photograph. 
They're the two t iny specks in the middle of the f lat  plate in the foreground. 
They  a re  spheres  o f  bar ium fe r r i te  tha t  se rve  as  the  f requency-sens i t i ve  
e lements  o f  magnet ica l ly  tunable  bandpass f i l te rs  for  the mi l l imeter -wave 

K P ' ^ E l l j l l g  f r e q u e n c y  r a n g e .  ( T h e  m i l l i m e t e r - w a v e  r a n g e  i s  t h e  r e g i o n  o f  t h e  e l e c -  
r B l O I M  b e c o m i n g  s p e c t r u m  f r o m  a b o u t  3 0  t o  a b o u t  3 0 0  g i g a h e r t z .  I t ' s  b e c o m i n g  

more important as radar, communications, and other systems move to higher 
frequencies seeking higher performance or less crowding.) These f i l ters are 
u s e d  m i x e r s ,  a  f i l t e r s  i n  t h e  H P  1 1 9 7 4  S e r i e s  p r e s e l e c t e d  m i x e r s ,  a  

family from four mixers designed for down-convert ing mil l imeter-wave signals from the 26.5-to-75- 
GHz range into the frequency range of compatible HP spectrum analyzers. The preselect ion f i l ter 
removes unwanted image and mul t ip le responses,  natural  consequences of  the mix ing process,  
that  desired the spectrum analyzer d isplay and obscure the desired response.  In the microwave 
frequency range, below 30 GHz, yt tr ium iron garnet (YIG) spheres have been used as resonators 
in  such f i l ters ,  but  at  h igher  f requencies,  tun ing magnets for  YIG spheres begin to pose design 
problems, so a new material was needed. A new four-sphere fi l ter design was also found necessary 
t o  a c h i e v e  t h e  r e q u i r e d  p e r f o r m a n c e .  T h e  d e s i g n  a n d  p e r f o r m a n c e  o f  t h e  H P  1 1 9 7 4  S e r i e s  
p rese lec ted  mixers  a re  descr ibed  in  the  a r t i c le  on  page  49 .  The  a r t i c le  on  page  59  g ives  the  
reasons tel ls the choice of  scandium-doped, M-phase bar ium ferr i te for th is appl icat ion and tel ls 
how the spheres are made.  

Software for computer integrated manufacturing (CIM) is in great demand, and HP development 
laboratories are responding with a steady stream of new products. Two are featured in this issue. 
The f irst,  HP Interactive Visual Interface, or HP IVI, uses object-oriented design, the industry-stan 
dard X sof tware System, and widget  technology to help appl icat ion sof tware developers provide 
graphical user interfaces for industr ial  appl icat ions. (Widgets are standard pieces of software that 
p r o d u c e  u s e r s '  s c r o l l b a r s ,  a n d  t h e  l i k e  o n  c o m p u t e r  s c r e e n s . )  H P  I V I  i m p r o v e s  i t s  u s e r s '  
product iv i ty  in designing user inter faces because i t  is  interact ive,  fac i l i tates saving and reusing 
inter faces,  and doesn' t  demand that  users know the detai ls  of  the X Window System or widgets.  
The  a r t i c l e  on  page  6  g i ves  an  ove rv iew  o f  HP  IV I ,  wh i ch  cons i s t s  o f  two  ma in  pa r t s .  Use rs  
construct their interfaces using HP IVI's interactive editor, described on page 32, and then activate 
the ob jects  created wi th  the ed i tor  by  wr i t ing C- language programs us ing a too lk i t  o f  funct ions 
provided by HP IVI 's appl icat ion program interface. Detai ls of the appl icat ion program interface's 
object-or iented toolk i t  are in the ar t ic le on page 1 1 ,  and the design of  the appl icat ion program 
in ter face is  the subject  o f  the ar t ic le  on page 21 .  In  the ar t ic le  on page 39,  we' re to ld  how the 
H P  I V I  w i t h  o w n  u s e r  i n t e r f a c e  w a s  r e f i n e d  a n d  g i v e n  a  3 D  a p p e a r a n c e  w i t h  t h e  h e l p  o f  a  
team of industr ia l  designers. 

The  o the r  C IM so f tware  p roduc t  i n  th i s  i ssue  i s  HP Dev ice  In te r face  Sys tem,  o r  HP DIS .  I t  
addresses the problem of  ef f ic ient ly  developing inter faces between computers and factory- f loor  
devices because robots, programmable control lers, and machine tools. This is a problem because 
these different, typically come from many manufacturers and have different, proprietary interfaces. 
HP DIS is a between that helps application software developers create and test interfaces between 
HP 9000 prov ides and fac tory- f loor  dev ices .  I ts  deve lopment  fac i l i t y  p rov ides  a  h igh- leve l  lan  
guage  p rov ides  a  commun ica t i ons  p ro toco l s .  I t s  t es t i ng  fac i l i t y  p rov ides  a  tes t  gene ra to r ,  a  
test  exerc iser ,  and a dev ice s imulator  that  makes i t  unnecessary to  have actual  dev ices to  test  
in ter faces.  The HP DIS run- t ime fac i l i ty  executes protocols  in  rea l  t ime.  The des ign and per for  
mance of  HP DIS are descr ibed in  the ar t ic le  on page 62.  
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Simulation is an important part of many design processes because i t  makes i t  possible to ref ine 
a design simulation actually building anything, provided that the computer model used for simulation 
accu ra te l y  re f l ec t s  t he  behav io r  o f  t he  dev i ce  o r  sys tem be ing  des igned .  Eng inee rs  a t  HP 's  
C o l o r a d o  a  C i r c u i t s  D i v i s i o n  w a n t e d  t o  v e r i f y  t h e  a c c u r a c y  o f  t h e  e l e c t r i c a l  m o d e l s  o f  a  
408 - l ead  made  ce ram ic  package  f o r  a  l a rge  i n teg ra ted  c i r cu i t  ch ip .  The  mode l s  we re  made  
up of discrete inductances, capacitances, and resistances. To verify the models, these parameters 
had to measurement methods on a real package. When traditional high-frequency measurement methods 
p r o v e d  p a p e r  n e w  m e t h o d s  w e r e  d e v e l o p e d .  T h e s e  m e t h o d s  a r e  t h e  s u b j e c t  o f  t h e  p a p e r  
on page 73. 

In integrated c i rcui t  design,  the object ive of  s imulat ion is  somet imes to predict ,  in  the design 
phase, in stat is t ical  d ist r ibut ions of  a c i rcui t 's  performance parameters in product ion.  A problem 
i s  t ha t  1C  pa ramete r  va r i a t i ons  a ren ' t  a l l  comp le te l y  random,  as  they  a re  assumed  to  be  by  
commercially available circuit simulators. Those within a chip, such as side-by-side resistor values, 
are highly correlated, and fai lure to take this into account leads to inaccurate simulat ions. In the 
study reported in the paper on page 78, this problem was solved by applying principal component 
analysis,  a branch of  mul t ivar iate stat is t ics.  Each c i rcui t  parameter was expressed in terms of  a 
s e t  o f  t h e n  r a n d o m  v a r i a b l e s .  T h e  i n d e p e n d e n t  v a r i a b l e s  w e r e  t h e n  u s e d  a s  t h e  i n p u t s  
to the c i rcui t  s imulator program, and the resul ts were later  converted to c i rcui t  parameter data.  

Another application of simulation, this time to predict the pressure drop and air flow characteristics 
in  a  computer  system process ing uni t ,  is  descr ibed in  the paper  on page 82.  In  the past ,  these 
quanti t ies have been determined from measurements on prototype machines, which are avai lable 
on ly  a f te r  most  o f  the  des ign has been done.  I f  the  measured resu l ts  are  unacceptab le ,  major  
design f in i te  may be requi red.  The study showed that ,  us ing supercomputers and f in i te  e lement  
model ing,  i t  is  possible to s imulate the air  f low accurately enough to al low meaningful  decis ions 
ear ly in the design phase. 

P .P .  Do lan  
Editor 

Cover 
The f la t  p la te  in  the foreground is  the i r is  p la te  f rom a magnet ica l ly  tuned prese lect ion f i l te r  

used of  t iny HP 1 1974 Ser ies preselected mixers.  In the middle of  the plate are two t iny bar ium 
f e r r i t e  t h e  s p h e r e s .  A l s o  s h o w n  a r e  t h e  t o p  a n d  b o t t o m  h a l v e s  o f  t h e  t u n i n g  m a g n e t ,  t h e  
magnet  body,  and the two par ts  o f  the waveguide assembly.  

What's Ahead 
In  the December  issue,  we ' l l  have ar t ic les  on the autochanger  and servo des ign and system 

in tegrat ion o f  HP's  20-Gbyte rewr i tab le  opt ica l  d isk  l ib rary  system,  des igned for  d i rec t  access 
secondary storage. Error correct ion, software protect ion, and system integrat ion of HP's CD-ROM 
drive controller also be featured. The data communications and terminal controller for HP 3000 computers 
r u n n i n g  t h e  M P E  X L  o p e r a t i n g  s y s t e m  n o w  s u p p o r t s  X . 2 5  n e t w o r k  p a c k e t  a s s e m b l e r / d i s  
assemblers; two art ic les wi l l  deal with this capabi l i ty.  We' l l  a lso have a research report  on aniso- 
t ropic d imensional  changes in cold-drawn copper bery l l ium al loy as a resul t  of  aging.  
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An Overview of the HP Interactive Visual 
Interface 
The HP Interact ive Visual  Inter face (HP IVI)  product  uses 
ob jec t -or iented and window technolog ies  to  prov ide 
in teract ive  and programmat ic  too ls  for  bu i ld ing graph ica l  
user interfaces. 

by Roger  K.  Lau and Mark  E .  Thompson 

IN THIS AGE OF INFORMATION, creating effective user 
interfaces for industrial automation applications is a 
greater challenge than it has ever been. The right details 

from a vast array of information must be shown in the 
appropriate form to the intended group of viewers. In ad 
dition, the information that is communicated must be con 
veyed in such a manner as to enhance the decision making 
process. It often takes more time to develop the interface 
than it takes to develop any other part of an application. 
HP Interactive Visual Interface (HP IVI) is designed to help 
developers provide the type of user interface needed for 
industrial applications. 

HP IVI is a user-interface development tool built on the 
X Window System Version 11 and runs in the HP-UX 
operating system environment. It consists of two main 
parts: an interactive editor (HP IVIBuild) and an application 
program interface (API). Users construct their symbols and 
displays with HP IVIBuild (the builder) and write a C pro 
gram using the API calls to call up and activate the windows 
and other objects created with the builder. An application's 
user interface can be constructed without the assistance of 
HP IVIBuild, but with it productivity is greatly increased 
by the ability to create the interface interactively. HP IVI 
is also one of the few products to combine at the builder 
level the power of a graphical presentation with the flexi 
bility and interactivity of widgets (e.g., pushbuttons, 
scrollbars, and toggle buttons).1 

This article describes some of the market research and 
the target customers for HP IVI, and provides an overview 
of the two main components of HP IVI, HP IVIBuild and 
the application program interface. 

Market  Research 
The main customers of HP IVI are software engineers 

who build industrial applications. This includes system 
integrators, independent software suppliers, and end users 
with internal software engineering groups. These users 
benefit by being able to customize screens to their custom 
ers' applications and by being able to reuse the symbols 
they created and saved in previous applications. HP IVI 
also buffers its users from having to know the details of 
the intrinsics of both the X Window System and widgets. 
This is considered to be a benefit and a boost to productiv 
ity. 

Market research indicates that manufacturing applica 

tions require graphical user interfaces, and the use of 
graphics on the factory floor is growing and being applied 
to monitoring production processes and data gathering. 
The requirements are performance, reliability, and the in 
tegrity of data from a workcell. To satisfy these demands, 
the HP IVI product: 
â€¢ Minimizes the user's expense for the development of 

user interfaces 
â€¢ Provides a distributable user interface for improved cost, 

performance, and flexibility 
â€¢ Offers windowing functions and dynamic data config 

uration 
â€¢ Integrates graphics and widgets intelligently 
â€¢ Gives software engineers the productivity boost needed 

for them to remain competitive 
â€¢ Ensures top performance and reliability 
â€¢ Gives the user full control over data from the factory floor 
â€¢ Builds on standards. 

Early in the project, the HP IVI project team used a 
technique called quality function deployment (QFD) to 
help analyze customer needs in the industrial automation 
area. This research helped to define the features for HP 
IVI. The box on page 9 provides more information about 
QFD and its use by the HP IVI team. 

HP IVIBuild 
HP IVIBuild is the interactive window and symbol build- 

(cont inued on page 8)  

HP IVI Build 

Bui lder Code 

API  Funct ions 

User  In te r face  Ob jec ts  
( W i n d o w s ,  S y m b o l s ,  e t c . )  

Ob jec ts  C rea ted  
by HP IVI  

A p p l i c a t i o n  

API Funct ions 

API  =  Appl icat ion Program Inter face 

Fig.  1.  HP IV!  'Bui ld  is  used to create user  in ter face objects 
that  are saved in  a  f i le ,  and a user  appl icat ion uses the API  
funct ions to retr ieve and manipulate the objects.  
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HP IVI Project Management 

The HP In te rac t i ve  V isua l  In te r face  p ro jec t  was  a  re la t i ve ly  
la rge  so f tware  p ro jec t  (100  KNCSS)  and  as  such  i t  was  faced  
wi th  some in teres t ing  cha l lenges dur ing  product  deve lopment .  
Besides the normal  chal lenges associated wi th sof tware project  
management  (e .g . ,  ve rs ion  con t ro l ,  code  inspec t ions ,  p ro jec t  
standards, and schedule deadl ines), HP IVI was faced with three 
main chal lenges:  determin ing the exact  customer needs before 
des ign and implementat ion,  us ing ex is t ing sof tware,  and us ing 
new so f tware  deve lopment  techno log ies .  For  de te rmin ing  cus  
tomer needs, a process cal led qual i ty function deployment (QFD) 
was used.  Th is  process he lped us to  determine the feature  set  
f o r  H P  I V I  ( s e e  b o x  o n  p a g e  9 ) .  T h e  e x i s t i n g  s o f t w a r e  w a s  a  
combinat ion of  sof tware f rom other HP ent i t ies and from outside 
vendors. Finally, the new technologies included the use of objects 
and windows for  des ign and implementat ion.  

Existing Software 
One of  the pr imary  goa ls  o f  HP IVI  was to  leverage the work  

of others. The decision to use exist ing software resulted from the 
desire to decrease the t ime to market for the product by reducing 
the engineer ing t ime and ef for t  invo lved in  des ign,  implementa 
t i o n ,  a n d  s u p p o r t .  T h e r e  w a s  a l s o  a  n e e d  t o  b a s e  H P  I V I  o n  
components that  conform to s tandards (expl ic i t  or  de facto) .  To 
these ends,  the basic f ramework of  HP IVI  is  based on sof tware 
tha t  was  purchased  as  we l l  as  so f tware  tha t  was  p roduced  by  
other ent i t ies in Hewlett-Packard. 

The  HP IV I  p ro jec t  team rea l i zed  the  bene f i t s  tha t  cou ld  be  
o b t a i n e d  b y  l e v e r a g e  e a r l y  o n .  T h e  b a s i c  o b j e c t - o r i e n t e d  
framework, the error handling routines, the X1 1 cl ient l ibrary and 
server ,  the X too lk i t ,  and the HP X widget  set  were a l l  the work 
o f  o the rs .  Wh i l e  we  ce r ta in l y  ach ieved  ou r  goa l s  o f  r educ ing  
des ign,  implementat ion,  and suppor t  costs ,  we missed our  or ig  
inal t ime-to-market goals. 

Following are some of the lessons we learned about leveraging 
exist ing software. 
â€¢  The  I f  and  s tab i l i t y  o f  ex i s t i ng  code  i s  a  c r i t i ca l  fac to r .  I f  

there are many defects  in  th is  code,  much t ime wi l l  be spent  
i s o l a t i n g  t h e  p r o b l e m  a n d  n e g o t i a t i n g  w i t h  t h e  s o f t w a r e  
su pplier to have it repaired .This can wreak havoc with a project 
schedu le .  One way around th is  i s  to  ob ta in  the  source  code 
for  the under ly ing sof tware and make the repairs local ly .  This 
may  p rov ide  the  mos t  t ime ly  so lu t ion ,  bu t  a lso  ra ises  many  
supportabi l i ty quest ions. 

â€¢ Negot ia t ing enhancements to  the ex is t ing sof tware may be 
di f f icu l t .  Pr ior i ty  l is ts  may not  mesh wel l  between vendor and 
receiver .  Important  enhancements in  the under ly ing sof tware 
may be de layed because o f  th is .  

â€¢ Performance of a product may be adversely impacted by exist 
i ng  so f tware .  I f  th i s  i s  the  case ,  lobby ing  fo r  improvements  
may be t ime-consuming and marg ina l ly  successfu l .  

â€¢ Good documentat ion of  ex is t ing sof tware is  essent ia l  for  a  
product  to  be successfu l .  Inadequate or  inaccurate documen 
tat ion can a lso impact  schedules.  

â€¢ It is very important to establish a good l ine of communication 
and a  s t rong work ing  re la t ionsh ip  w i th  the  ex is t ing  so f tware  
supp l i e r .  Changes  made  t o  t he i r  p roduc t  may  have  d ras t i c  
e f f ec t s  on  t he  l oca l  p roduc t .  I t  i s  impo r t an t  t o  l ea rn  abou t  
changes as ear ly  as possib le ( i .e . ,  at  the invest igat ion phase 
rather than at  the release phase).  
Pro jec t  teams that  leverage a large amount  o f  sof tware f rom 

other sources should be very careful  not  to assume that leverag 

ing  means  tha t  less  a t ten t ion  can  be  pa id  to  p roduc ing  a  ve ry  
detai led design.  Leveraging sof tware does not  mean there is  no 
cost  associated wi th i t .  Engineers have to learn and understand 
the code,  des ign impacts  must  be assessed,  and the leveraged 
c o d e  m u s t  b e  s u p p o r t e d  o v e r  t h e  l i f e  o f  t h e  p r o d u c t .  A l s o ,  
leverag ing  product  components  does not  au tomat ica l l y  ensure  
a faster t ime to market.  

New Technologies 
HP IVI is an object-oriented system that is based on the widget 

techno log ies  and the  X  Window Sys tem.  Through the  QFD pro  
cess we found that  bu i ld ing on a  s tandard sof tware p la t fo rm is  
v iewed as an impor tant  requi rement  by our  target  market .  

At  the star t  o f  the HP IVI  pro ject  no one on the team had any 
exper ience  w i th  ob jec t -o r ien ted  p rog ramming  and  des ign  and  
on ly  one person was fami l ia r  w i th  w indow sys tems.  There fore ,  
we had to develop a process to disseminate technical information 
and  p romote  techn ica l  exper t i se  among the  p ro jec t  team very  
qu ick ly .  Th is  was accompl ished through t ra in ing,  the exchange 
o f  in format ion  dur ing  des ign and code rev iews,  and the s imple  
shar ing of  exper t ise among the pro ject  team. 

The  f o l l ow ing  obse rva t i ons  come  f r om ou r  expe r i ence  w i t h  
ob jec t -or ien ted programming and des ign:  
â€¢  Care fu l  cons ide ra t ion  shou ld  be  g i ven  to  mapp ing  ob jec t  

c lasses  to  source  code  f i l es .  The  consequences  can  be  f re  
quent  f i le  access conf l ic ts  when changes are made to  a  f i le .  

â€¢ The temptation to redo class hierarchies should be controlled. 
Developers must be careful to make practical choices on when 
the class hierarchies are suff ic ient.  

â€¢ First-time users should not expect magic. We believe that there 
was  a  s ign i f i can t  l ea rn ing  cu rve  invo lved  in  ou r  dec is ion  to  
use ob jec t -or ien ted programming and des ign.  

â€¢ Once the learning curve is overcome, the object paradigm is 
a  natura l  and product ive  one to  use fo r  deve lop ing so f tware  
products. 

â€¢ Object -or iented programming and des ign have a  techn ica l  
j a rgon  tha t  m igh t  mys t i f y  deve lopers  and  the i r  managers  a t  
f i rst .  Therefore, fami l iar i ty wi th and consistent use of terminol  
ogy must  be establ ished at  the star t  o f  the pro ject .  

â€¢ The object paradigm is not applicable to all software engineer 
ing pro jects .  Knowing when to re ject  th is  technology in  favor  
o f  a  procedure-based des ign is  impor tant .  
The  use  o f  mu l t i p l e  new  techno log ies  i n  a  p ro j ec t  w i t h  f ew  

team members  hav ing exper ience in  any o f  these techno log ies  
does  have  i t s  p rob lems and  can  be  a  s ign i f i can t  fac to r  on  the  
schedule because i t  is  d i f f icul t  to ant ic ipate problems and avoid 
p i t fa l ls .  However,  us ing new technologies on a pro ject  can be a 
s igni f icant  mot ivator  to the engineer ing staf f .  Benef i ts  and r isks 
o f  the inc lus ion o f  new techno logy in  any product  deve lopment  
ef for t  must  be weighed carefu l ly .  

Chuck Robinson 
Sect ion Manager  

Industr ia l  Appl icat ions Center  

Robin  Ching 
Project  Manager 

Industr ia l  Appl icat ions Center  
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er of HP IVI. It is an API application because it uses the 
HP IVI API library of C functions to handle both the visual 
and the nonvisual aspects of creating objects such as man 
aging object data structures and performing operations re 
quired to manipulate objects. Consequently, the windows 
and models created and saved by the builder can be restored 
by an API program and vice versa (see Fig. 1). For the most 
productive use of HP IVI, the user first creates the windows 
needed by an application using HP IVIBuild and then 
mobilizes the created windows using a C program contain 
ing API functions. Fig. 2 shows an application user inter 
face being created with HP IVIBuild. Although an entire 
HP IVI application could be written using just the API C 
functions, HP IVIBuild provides the following advantages 
over this method: 
â€¢ No initial programming is required. 
â€¢ The user can look at the user interface and manipulate 

it while creating it. 
â€¢ The interface can be altered very quickly. 
â€¢ Several graphical conveniences are available such as 

snapping to a grid and a simple method of creating ellipses. 
â€¢ An API program that uses HP IVIBuild-created objects 

is much simpler than one that creates the same objects 
from scratch. 

â€¢ Symbols created in an HP IVIBuild session can be saved 
and reused. 
The articles on pages 32 and 39 provide more information 

about HP IVIBuild. 

Objects and API  
Since HP IVI is an object-oriented system, all operations 

are done with objects, resulting in a system that is a hierar 
chy of objects. Building this hierarchy starts with creating 

window objects (windows on the display) and then placing 
graphics and widget objects into the windows. To activate 
the objects in the window (i.e., give them dynamic proper 
ties) some of the attributes of the objects can be changed 
(e.g., foreground or background color, visibility, or fill per 
centage for a rectangle). When an application uses objects 
to display data values, it can make calls to the API functions 
to update the data values in the objects displayed in the 
windows. 

The objects used in HP IVI are categorized into four 
hierarchical layers: 
â€¢ High-Level Objects. These objects specify global attri 

butes for the other levels of objects. This level includes 
the window and model objects mentioned earlier. 

â€¢ Composite Objects. These are organizational groupings 
of primitive objects. This includes menus and their com 
ponent menu panes, row-columns, and scroll lists. 

â€¢ Primitive Objects. These are basic widgets and graphics 
objects â€” the basic visual pieces that make up the display. 
Graphics primitives include items such as polylines, 
splines, arcs, rectangles, and circles. Widget primitives 
include pushbuttons, toggle buttons, text widgets, text- 
edit widgets, menu buttons, and scrollbars. Both types 
of primitive objects can receive input from the user. 

â€¢ Low-Level Objects. These are mostly nonvisual objects 
that are used to specify certain object attributes. Objects 
that handle object data structures and objects that handle 
events are examples of low-level objects. 
Because an object hierarchy is used, displays can be 

created from the top down (parent to child) or the bottom 
up (child to parent), giving the designer a lot of flexibility 
in implementation. Certain objects can be gathered and 
arranged by making them into children of composite ob- 

(cont inued on page 10)  

F ig .  2 .  An  app l i ca t i on  use r  i n te r  
f a c e  b e i n g  c r e a t e d  u s i n g  t h e  i n  
t e r a c t i v e  t o o l s  p r o v i d e d  b y  H P  
IVIBui ld.  The tool  box, ut i l i ty  box, 
a n d  l i n e  w i d t h  p a n e l s  a r e  H P  
IVIBui ld components.  
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jects. Composite objects can be used to organize and add 
extra control over their descendant objects. For example, 
a row-column object can be used to organize different 
widget primitives into rows and columns. 

All objects in the hierarchy have attributes (e.g., color, 
size, shading, etc.). It is through the control of these attri 
butes that the displays created with HP IVI get their 
dynamic quality. One can easily manipulate several attri 
butes on an object with a single API function call, changing 
location, color, visibility, or some other attribute. Other 
API function calls enable the developer to: 
â€¢ Create and free objects 
â€¢ Manipulate object attributes 
â€¢ Save and restore objects 
â€¢ Locate objects 
â€¢ Obtain user input from primitive objects 
â€¢ Perform visual updates of the display 
â€¢ Manipulate lists of objects. 

As an example, callback objects can be attached to any 
visual object and cause a callback function to be called 
whenever a predefined event (such as clicking on the 
mouse button or depressing a key on the keyboard) occurs. 
The callback function can be used to obtain and manipulate 
data from the shop floor and modify attributes of objects 

on the display (e.g., changing an object's color from green 
to red or changing the textual information displayed in an 
object). The API functions and the internal design of these 
functions are described in the articles on pages 1 1 and 21. 

Conclusion 
HP IVI facilitates the design and implementation of one 

of the most important parts of any manufacturing applica 
tion â€” its interface to the user. The benefits of the window 
ing technology of Xll are just beginning to be realized on 
the manufacturing floor. HP IVI is one of the first integrated 
applications to bring the X Windows technology to the 
factory floor. The combination of widgets and graphics 
gives the application designer more freedom to present the 
needed information in the fashion best suited for its in 
tended viewers. This design freedom promotes the kind of 
informed decision making needed in today's fast-paced 
and highly competitive industrial marketplace. 
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The HP IVI  Object-Oriented Toolki t  
Using ob ject -or iented des ign techniques,  a  min imum set  
of  funct ions is  prov ided wi th the HP IVI  product  for  
manipu la t ing  widgets  and graph ic  ob jec ts  to  c reate  a  
graphical  user interface. 

by Mydung Thi  Tran and David  G.  Wathen 

THE HP IVI APPLICATION PROGRAM INTERFACE 
[API] is an object-oriented toolkit of C functions that 
enable a software developer to create an interactive 

and informative graphical user interface programmatically. 
The API functions can be used for any application in which 
a highly interactive graphical user interface is required. 
The collection of API functions provides the ability to build 
different models of user interfaces that can be saved and 
used again in other user interfaces. High-level objects pro 
vide the control and organization necessary to support 
lower-level composite and primitive objects. All objects 
have configurable attributes or characteristics that make it 
possible to customize the look and feel of a particular ob 
ject. Color, size, and font are a few examples of these attri 
butes. The API functions allow a programmer to do things 
like create and free objects, query attributes, save and re 
store objects, get input, and find objects by location. 

This article describes the the API functions and the arti 
cle on page 21 describes the internal design supporting 
these functions. 

the display. There can only be one system object per appli 
cation. All other objects (except low-level objects) are de 
scendants of the system object. The direct descendant of a 
system object must be a server object. 

A server object is the interface to the display system. 
Information regarding the display and its physical charac 
teristics is stored in this object. The server object establishes 
the link between the display device (an XI 1 server) and 
the user application (the client). Just like the system object, 
there can only be one server object per application. Win 
dows are the only children of the server object. 

Window objects represent the drawable region of the 
display. A window is an area on a display that connects 
the world coordinate system (e.g., inches, mm, etc.) defined 
for a window to the device coordinates (i.e., pixels) of the 
display system. The window can be seen as a viewport 
into the world coordinate system. An application can have 
any number of windows. They can overlap one another 
and they can be manipulated using a window manager or 

The API  Object  Hierarchy 
All the components of an API application are separate 

objects that are combined together in a hierarchical arrange 
ment to form a working user interface. An example of this 
hierarchical relationship is shown in Fig. 1. This relation 
ship is described in terms of ancestry. For instance, Model 
12 in Fig. 1 is the parent of three children: Model 21, a rect 
angle, and a row-column object. Another way of saying 
this is that Model 12 is the ancestor of three descendants: 
Model 21, a rectangle, and a row-column object. 

Every API object belongs to one of four groups: high-level 
objects, composite objects, primitive objects, or low-level 
objects. Fig 2 lists the different API object groups. 
High-Level Objects. These objects control and organize 
groups of objects and hold global resources that help define 
other objects in the hierarchy. The high-level objects must 
be created in a specific order: system object, server object, 
window objects, and model objects. Before anything can 
be displayed, at least one of each of these objects must be 
available. Since these objects are required for every appli 
cation, the API will create default high-level objects if they 
are not explicitly created. 

The system object is the highest object in the API object 
hierarchy. This object stores global attributes that affect 
the input loop, the update pass, and global resources. The 
input loop is composed of the code that handles user input 
and an update pass is the process of flushing changes to 

Model 11 
(High-Level)  

Circle 
(Primitive) 

System 
(High-Level) 

Server 
(High-Level) 

Window 
(High-Level) 

Rectangle 
(Primitive) 

Model  12 
(High-Level) 

Model 21 
(High-Level) 

R o w - C o l u m n  â € ¢  T e x t  
(Composi te)  â€¢ (Pr imit ive)  

Toggle Button 
(Primitive) 

Row-Column 
(Composite)  

Text  
(Primitive) 

Pushbutton 
(Primitive) 

Fig.  1 .  The API object  h ierarchy of  a s imple appl icat ion.  
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the API functions. The last high-level object, the model 
object, is the only valid child of a window object. 

The model object allows an application to put composite, 
primitive, or other model objects into a single group or 
collection. When these objects are grouped together, func 
tions can be performed on them as if they were a single 
object. At the same time, each part will retain its individu 
ality. Models can represent a symbol or template that can 
be saved and restored as many times as desired. Models 
can have other models, composites, or primitive objects as 
children. 
Primitive Objects. These are basic visual objects that are 
part of one of two categories: graphic primitives or widget 
primitives. The graphic primitives are visual objects (e.g., 
circles, rectangles, and arcs) that can receive mouse input. 
An application can use these objects for graphically repre 
senting user-oriented objects that display crucial informa 
tion such as liquid levels and temperature. The widget 
primitives (e.g., pushbuttons, scrollbars, and text edits) are 
also visual objects. However, unlike the graphics primi 
tives, widget primitives can receive keyboard input as well 
as mouse input. The widget primitives are used for display, 
text editing and input, and selection capabilities. Primitive 
objects have no children. 
Composite Objects. These objects provide the means to 
organize and manage other objects. Specifically, composite 
objects make it possible to group primitive widget objects 
and other composite objects so that they can be manipu 
lated as a single object. A function or attribute specified 
for a composite object affects its children without actually 
changing them. For example, erasing or redrawing a row- 
column object will cause all its children to be erased or 
redrawn automatically. 
Low-Level Objects. These are objects that are not directly 
visible like primitive or composite objects. They are stand 
alone objects that are used to specify attribute values for 
primitive, composite, or high-level objects. Low-level ob 
jects are used to set attributes for the other three object 
groups, apply API functions to a list of objects, or deal with 
user input from the activated objects. 

Polymorphism and API  
One of the key features of object-based systems is the 

concept of polymorphism. Polymorphism allows different 
objects to share a common operational interface (operations 
with the same name). When an operation is invoked, the 
function dynamically determines the object type and exe 
cutes the appropriate code. Object-oriented programs are 
polymorphic because they can operate on many different 
object types with the same functional interface. This com 
mon interface provides a great deal of flexibility and ease 
of use to the API programmer. Common access reduces the 
number of functions and increases the power provided by 
the basic set of functions. 

The API functions provide the functionali ty of  
polymorphism through an identifier called Zlld. When an 
object is created via the ZtCreate function, a Ztld is returned 
from the call for use in further operations. The Ztld is a 
pointer to the object that was just created. This handle 
allows the programmer to reference the object when addi 
tional modifications are necessary. The API functions use 
this identifier to determine the type of object being manipu 
lated. 

A t t r i b u t e s  a n d  A r g l i s t s  
Associated with API objects are attributes that describe 

properties of these objects. Examples of object attributes 
include properties that define appearance characteristics 
such as colors and fill patterns for graphic objects, and 
font, highlight area, and 3D shadowing for widget objects. 
There are also coordinate system attributes that control the 
position and sizing of objects, including their point, height, 
width, scale, rotation, and translation. Table I lists the 
categories of API attributes. 

There is a specific list of attributes assigned to each API 
object type. Users can set these attributes to desired values 
or can query the values contained in them through a data 
structure called an Arglist. An Arglist is a variable-length array 
of attribute-value pairs. The following is the C structure 
declaration for an attribute-value pair. 

s t ruc t  Z tArgL is tS t ruc t  

{ 
Z tA t t r i bu teType  Z tA t t r i bu te ;  
Z t V a l u e T y p e  Z t V a l u e ;  

t ypede f  s t ruc t  Z tA rgL is tS t ruc t  Z tA rgL is t l t em;  

/ *whe re :  
/  Z t A t t r i b u t e  i s  t h e  d e f i n e d  a t t r i b u t e  
/  Z t V a l u e T y p e  i s  d e f i n e d  a s  a  p o i n t e r  t o  a  
/  v a r i a b l e  c o n t a i n i n g  t h e  a t t r i b u t e  v a l u e  

*/ 
*/ 

*/ 

Fig .  2 .  API  ob jec t  g roups .  

Arglists are used to define attributes of objects or functions. 
Some of the advantages of using Arglists include: 
â€¢ Arglists free users from fixed parameters in a function call. 

The number of attributes that the user can pass as param 
eters can vary. 

â€¢ The number of function calls can be minimized by in 
cluding multiple attributes in the Arglist as opposed to 
having to use one function call per attribute change. 

â€¢ Attributes can be initialized in the Arglist either statically 
or dynamically (at run time). 
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Table  I  
C a t e g o r i e s  o f  A P I  A t t r i b u t e s  

C a t e g o r y  D e s c r i p t i o n  

G e n e r a l  A t t r i b u t e s  t h a t  a r e  c o m m o n  t o  m o s t  
objects. For example, the object 
name (ZtNAME), an object's visibility 
status (ZtVISIBLE), and user data 
(ZtUSEFLDATA). 

Coordinate System 

Trickle-Down 

Color, Font, Raster 

Pattern and Line 

Widget Appearance 

Callback 

These are attributes that define: 
â€¢ Size and position such as 

an object's height and width 
(ZtHEIGHTandZtWIDTH) 

â€¢ Transformation, such as 
an object's rotation, scaling, and 
translation characteristics 
(ZtROTATE, ZtSCALE, ZtTRANSLATE) 

â€¢ Normalized device coor 
dinates for placing windows 
(ZtXMIN, ZtXMAX, ZtYMIN, ZtYMAX) 

â€¢ Aspect ratio of window 
device coordinates (ZtADJUST, 
ZtXADJUST, ZtYADJUST) 

â€¢ Aspect ratios of server objects 
(ZtXPIXELS, ZtYPIXELS). 

Attributes that affect the 
descendants of objects 
(ZtVISIBLE, ZtSENSITIVE). 

Attributes that specify the 
object's color, font, or raster. 
â€¢ Raster l ists (ZtRASTEFLLIST) 
â€¢ An object 's  co lor  (e .g. ,  Z tBACK- 

GROUND_COLOR, ZtFORE- 
GROUND_COLOR,e tc . )  

â€¢ An object's font (ZtFONT) 
â€¢ An ob ject 's  ras ter  (e .g . ,Z tFILL_ 

RASTER, ZtlCONLRASTER). 

Attributes that control the 
appearance of borders, lines, and 
fills (e.g., ZtFILLjriLE, ZtBACK- 
GROUND_TILE, ZtLINE_WIDTH). 

Attributes that define a widget's 
appearance (e.g., ZtSHADOW, 
ZtBOTTOM_SHADOW_COLOR, 
ZtTOP_SHADOW_ COLOR). 

Attributes used to attach user- 
defined functions to an object. 
These functions are used to 
respond to user input. For 
example, ZtREASON specifies 
when a callback function should 
be called, and ZtCALLBACK_FUNC- 
TION specifies a function for 
processing user input. 

Parenting 

Keyboard Traversal 

Function 

Attributes that affect or define 
the current API object hierarchy 
(e.g.,ZtCHILD_LIST,ZtCURRENT_ 
MODEL). 

Attributes that assign the input 
focus to an object (e.g., ZtTRA- 
VERSAL, ZtNEXT_TOP_WINDOW). 

Attributes that affect the capa 
bilities of functions (e.g., ZtRE- 
CURSIVE,ZtMERGE). 

API Functions 

Because of polymorphism a minimum number of API 
functions are required for manipulating API objects. 
Polymorphism allows the same API function to be used to 
handle more than one object. Table II shows the API func 
tions available for manipulating the object groups shown 
in Fig. 2. 

Table I I  
Categories of  API  Funct ions 

Function Use Function Names 

Create and Free Objects ZtClone, ZtCreate, ZtCreateList, 
ZtFree 

Manipulate Attributes ZtChange, ZtQuery 

Save and Restore Objects ZtSave, ZtRestore 

L o c a t e  O b j e c t s  Z t F i n d B y A t t r i b u t e ,  Z t F i n d B y L o c a t i o n  

R e c e i v e  I n p u t  Z t D o ( . . , Z t l N P U T , . . )  

P e r f o r m  V i s u a l  U p d a t e s  Z t D o ( . . , Z t D R A W , . . )  
ZtDo(..,ZtERASE,..) 
ZtDo(..,ZtFLASH,..) 
ZtDo(..,ZtLOWER,..) 
ZtDo(..,ZtRAISE,..) 
ZtDo(..,ZtREDRAW,..) 
ZtDo(..,ZtUPDATE,..) 

Manipulate Lists 

Manipulate Arglists 

ZtCheckListObject, ZtCountLisl, 
ZtGetListlndex, ZtGetustObject, 
ZtGetustTail, ZtlnsertListlndex, 
ZtlnsertListObject, ZtlnsertustTail, 
ZtMergeListlndex.ZtMergeListTail, 
ZtMergeListObject, ZtRemoveListlndex, 
ZtRemoveListObject, ZtRemoveListTail, 
ZtReplaceListlndex.ZtReplaceListObject, 
ZtReplaceListTail 

ZtFreeArgList 

OCTOBER 1990  HEWLETT-PACKARD JOURNAL 13  

© Copr. 1949-1998 Hewlett-Packard Co.



Create and Free Objects 
Objects are created using the function ZtCreate. Any attri 

butes that are required to be different from the defaults can 
be passed in the object ArgList when calling ZtCreate. For all 
the attributes not included in the object ArgList, the API will 
automatically set them to defaults. Once an object exists, 
multiple copies of this object can be made by cloning it 
with the function ZtClone. ZtClone also allows the users to 
alter some of the attributes of the newly cloned objects in 
the same call. 

The following example shows the creation of two text 
objects with one fixed size, different text strings, and differ 
ent positions on the display. Fig. 3 shows the data organi 
zation resulting from this example. 

i n t r e tu rn_va l ;  
Z t l d t e x t 1 _ l d , t e x t 2 _ l d ,  p o i n t l d ;  /  o b j e c t  i d e n t i f i e r s  * /  
/  a r g l i s t f o r t e x t o b j e c t ( c o n t a i n i n g a t t r i b u t e - v a l u e p a i r s )  * /  
s t a t i c  R E A L 6 4 h , w ;  
s t a t i c  Z t A r g L i s t l t e m  t e x t A r g l i s t  [ ]  =  

Text Objects (ZITEXT_OBJ) 

tex t1_ ld  

Point Objects 
( Z t P O I N T _ O B J )  

Z t H E I G H T ,  
Z t W I D T H ,  
Z t P O I N T ,  
Z t S T R I N G ,  

( Z t V a l u e T y p e ) & h ,  /  
( Z t V a l u e T y p e ) & w ,  /  
( Z t V a l u e T y p e ) N U L L ,  /  
( Z t V a l u e T y p e ) N U L L ,  /  

text height 
tex t  w id th  
Z t l d f o r p o i n t  
t e x t s t r i n g  

N U L L ,  ( Z t V a l u e T y p e ) N U L L  

a rg l i s t  f o r  po in t  ob jec t  
s t a t i c  R E A L 6 4  x ,  y ;  
s t a t i c  Z t A r g L i s t l t e m  p o i n t A r g l i s t  [  ]  =  
{ 

Z t X ,  ( Z t V a l u e T y p e ) & x ,  
Z t Y ,  ( Z t V a l u e T y p e ) & y ,  
N U L L ,  ( Z t V a l u e T y p e ) N U L L  ;  

} 
/  c r e a t e  r e f e r e n c e  p o i n t  f o r  o b j e c t s  

x  =  1 0 . 0  =  1 0 . 0 ;  
p o i n t l d  =  Z t C r e a t e ( Z t P O I N T J D B J , p o i n t A r g l i s t ,  N U L L ) ;  

/  s e t u p  t o  c r e a t e  f i r s t  t e x t  o b j e c t  w i t h  h e i g h t  =  2 0  a n d  
/  w i d t h  =  4 0  

h  =  2 0 . 0 ;  w  =  4 0 . 0 ;  
t e x t A r g l i s t [ 2 ] . Z t V a l u e  =  ( Z t V a l u e T y p e )  p o i n t l d ;  
t e x t A r g l i s t [ 3 ] . Z t V a l u e  =  ( Z t V a l u e T y p e )  " F i r s t t e x t  o b j e c t " ;  

/  c r e a t e  t h e  f i r s t  t e x t  o b j e c t  
t e x t U d  =  Z t C r e a t e  ( Z t T E X T . O B J ,  t e x t A r g l i s t ,  N U L L ) ;  

/  c h a n g e  p o i n t  c o m p o n e n t s  
y  =  6 0 . 0 ;  
r e tu rn_va l  =  Z tChange  (po in t l d ,  po in tA rg l i s t ,  NULL ) ;  

/  c r e a t e s e c o n d t e x t o b j e c t a t ( 1 0 .  0 , 6 0 . 0 )  * /  
t e x t A r g l i s t [ 3 ] . Z t V a l u e  =  ( Z t V a l u e T y p e )  " S e c o n d  t e x t  o b j e c t " ;  
t e x t 2 _ l d  =  Z t C r e a t e  ( Z t T E X T _ O B J ,  t e x t A r g l i s t ,  N U L L ) ;  

/  f r e e  p o i n t  o b j e c t  i f  i t  i s  n o  l o n g e r  n e e d e d  * /  
Z tF ree  (po in t l d ,  NULL) ;  

Instead of calling ZtCreate twice, the function ZtClone can be 
used to create the second text string object: 

t e x t 2  I d  

F ig .  3 .  Da ta  o rgan iza t i on  fo r  t ex t  ob jec ts  c rea ted  w i th  the  
function ZtCreate or ZtClone. 

i n t r e tu rn_va l ;  
Z t l d  t ex tUd ,  t ex t2_ ld ,  po in t l d ;  /  ob j ec t  i den t i f i e r s * /  
/  a r g l i s t f o r t e x t o b j e c t ( c o n t a i n i n g a t t r i b u t e - v a l u e p a i r s  * /  

The text  Arg l is t  and the po in t  
Arg l is t  are the same as in  the 
p rev ious  examp le .  

/  a r g l i s t  f o r  c l o n e d  t e x t  o b j e c t  * /  
s t a t i c  Z t A r g L i s t l t e m  c l o n e A r g l i s t  [ ]  =  

{ 
Z t P O I N T ,  ( Z t V a l u e T y p e ) N U L L ,  
Z t S T R I N G ,  ( Z t V a l u e T y p e ) N U L L ,  
N U L L ,  ( Z t V a l u e T y p e ) N U L L  

â€¢ The reference points and the first 
â€¢ text object are created the same as 
â€¢ in the previous example. 

create the second text  object  at  (1 0,60)  us ing the 
Z tC lone  func t i on  
y  =  6 0 . 0 ;  
re tu rn_va l  =  Z tChange (po in t ld ,  po in tArg l i s t ,  NULL) ;  
c l o n e A r g l i s t [ 0 ] . Z t V a l u e  =  ( Z t V a l u e  T y p e j p o i n t l d ;  
c l o n e A r g l i s t [ 1 ] . Z t V a l u e  =  ( Z t V a l u e T y p e )  " S e c o n d  t e x t  o b j e c t "  

t e x t 2 _ l d  =  Z t C l o n e  ( T e x t U d ,  c l o n e A r g l i s t ,  
N U L L ) ;  

/  f r e e  p o i n t  o b j e c t  i f  i t  i s  n o  l o n g e r  n e e d e d  * /  
Z tF ree  (po in t l d ,  NULL) ;  

ZtClone is particularly useful for models and composite 
objects. With one call, the model or the composite object 
and its descendants can be duplicated. A call to ZtClone can 
be modified to control the depth of cloning for a list of 
objects. In the following example there are two model oh 
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jects that have identical properties except for the back 
ground and foreground colors. The first model object has 
been created with the child list model! Id. Instead of repeating 
the same process for the second model mode!2ld, ZtClone is 
used with the function Arglisl containing the ZtRECURSIVE 
attribute set to TRUE. The call ZtChangeQ changes the colors. 

i n t r e U v a l ;  
Z t l d m o d e l l l d ,  m o d e l 2 l d ;  
/  o b j e c t A r g l i s t f o r c o l o r s  * /  
s t a t i c  Z t A r g L i s t l t e m  c o l o r A r g l i s t  [ ]  =  

{ 
Z t B A C K G R O U N D _ C O L O R , ( Z t V a l u e T y p e ) r e d ,  
Z t F O R E G R O U N D C O L O R , ( Z t V a l u e T y p e ) b l a c k ,  
N U L L , ( Z t V a l u e T y p e ) N U L L  

}; 
/  f u n c t i o n A r g l i s t f o r  r e c u r s i v e  a t t r i b u t e  * /  
s t a t i c  Z t A r g L i s t l t e m  r e c u r s i v e A r g l i s t  [ ]  =  

{ 
Z t R E C U R S I V E , ( Z t V a l u e T y p e ) T R U E ,  
N U L L , ( Z t V a l u e T y p e ) N U L L  

m o d e l 2 l d  =  Z t C l o n e ( m o d e l 1 l d ,  N U L L ,  r e c u r s i v e A r g l i s t ) ;  
r e U v a l  =  Z t C h a n g e ( m o d e l 2 l d ,  c o l o r A r g l i s t ,  

recurs iveArg l i s t ) ;  

Cloning nonrecursively (ZtRECURSIVE = FALSE) can be 
used in cases where objects need to be referenced but copies 
of these objects are not needed. Fig. 4 shows the data struc 
ture that would result after nonrecursively cloning the ob 
jects referenced by the linked list called Listl. Instead of 
copying the objects, a new linked list (List2) of pointers is 
created for referencing the objects. The original and newly 
cloned list will dereference the same objects. HP IVIBuild, 
the builder component of HP I VI, makes use of this option 
of ZtClone to duplicate lists of selected objects. The cloned 
lists are manipulated through the use of list functions to 
provide the undo and backup capabilities of HPIVIBuild (see 
page 36). 

When an object is no longer needed, the function ZtFree 
can be used to free all memory allocated for the object. 
Arglists can also be freed using the function ZtFreeArgList. This 
function will free all memory associated with the Arglist 
including the additional memory allocated for attributes. 

Manipulate Attr ibutes 
Most attributes of existing objects can be modified. For 

example, in an application in which a text object contains 
a string that indicates elapsed time, the time needs to be 
updated periodically. ZtChange can be called passing the 
new value of the elapsed time in the ZtSTRING attribute of 
the object Arglist. 

ZtChange also provides a way to modify several objects 
in  one cal l .  The user  s imply has to  put  al l  the desired 
objects into a list and issue a ZtChange call on the list object. 
The changes will be made to all objects that the list refer 
ences. In the following code fragment the foreground color 

is changed for all objects referenced by the identifier listld. 

*  a r g l i s t  f o r  f o r e g r o u n d  c o l o r  *  
s t a t i c  Z t A r g L i s t l t e m  f g c A r g l i s t  [  ]  =  

Z t F O R E G R O U N D . C O L O R ,  
N U L L ,  

( Z t V a l u e T y p e ) N U L L ,  
( Z t V a l u e T y p e ) N U L L  

in t  re tu rn_va l ;  
f g c A r g l i s t [ 0 ] . Z t V a l u e  =  ( Z t V a l u e T y p e )  s t e e l b l u e  

/  S tee lb lue  i s  t he  i ndex  i n to  t he  sys tem ob jec t ' s  co lo r  l i s t  
/  ( t h e  Z t C O L O R _ L I S T  a t t r i b u t e  o n  t h e  Z t S Y S T E M J D B J ) .  
/  c h a n g e  t h e  c o l o r  t o  s t e e l b l u e  

r e t u r n _ v a l  =  Z t C h a n g e  ( l i s t l d ,  f g c A r g l i s t ,  N U L L ) ;  

Default values can also be changed with the same call. 
To change the value of a default attribute, the object type 
and not the objectld must be sent to ZtChange. For instance, 
if at some point in the program it is desired to have all the 
windows have a red background instead of the default blue, 
a call could be made to ZtChange with the object type set 
to ZtWINDOWJDBJ instead of the objectld. 

Information about the current value of an object's attri 
butes or the default values can be obtained by making use 
of the ZtQuery call. If required, API will handle the space 
allocation for the queried values. The following code frag 
ment is requesting information on a pushbutton object. 

i n t  re tu rn_va l ;  
c h a r  ' q u e r y s t r ;  
/  a r g l i s t  f o r  q u e r y i n g  s t r i n g  
s t a t i c  Z t A r g L i s t l t e m  q s t r i n g A r g l i s t  [  ]  =  

Z t L A B E L _ S T R I N G ,  
N U L L ,  

( Z t V a l u e T y p e ) N U L L ,  
( Z t V a l u e T y p e ) N U L L  

r  
r  

A copy of  the pushbut tonld 's  label  s t r ing wi l l  be returned in querystr  * /  
a f ter  the ZtQuery cal l .  A return value of  FALSE indicates that  
memory cou ld  not  be a l located or  an inva l id  po in ter  is  
speci f ied in  pushbut ton Id.  

r e tu rn_va l  =  Z tQue ry  (pushbu t t on ld ,  qs t r i ngArg l i s t ,  NULL ) ;  
q u e r y s t r  =  ( c h a r * ) q s t r i n g A r g l i s t [ 0 ] . Z t V a l u e ;  

the fo l lowing cal l  f rees the memory a l located for  ZtLABEL_STRING */  
in the ZtQuery cal l .  

Z tF reeArgL i s t (qs t r i ngArg l i s t ) ;  

Save and Retr ieve Objects 
The ZtSave function allows users to save objects in a file. 

List 1 

List  2 G  H E  H  
Fig.  4.  Cloning l is ts  of  objects nonrecurs ive ly .  
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A filename can be specified by the user in the function 
Arglist. If the file exists, the user also has the option to 
overwrite the existing file. Objects or defaults of one appli 
cation can be retrieved easily in another application with 
the ZtRestore call. In the following example the window 
windowld is saved into a file named windfile.w. 

i n t  r e tu r ruva l ;  
Z t l d  w i n d o w l d  
/  f i l e n a m e  a r g l i s t  * /  
s t a t i c  Z t A r g L i s t l t e m  s a v e A r g l i s t [  ]  =  

Z t F I L E N A M E ,  
Z t O V E R W R I T E ,  
NULL ,  

( Z t V a l u e T y p e ) " w i n d f i l e . w " ,  
( Z t V a l u e T y p e ) T R U E ,  
( Z t V a l u e T y p e ) N U L L  

r e t u r r u v a l  =  Z t S a v e  ( w i n d o w l d ,  s a v e A r g l i s t )  

Locate Objects 
The capability of locating the closest object near a user- 

defined point  in a window is  provided by the function 
ZtFindByLocation. Users can control the aperture of the search 
(i.e., how close or how far from the point) and the depth 
of the search (i .e. ,  whether or not the action should be 
recursively applied down to primitive objects within any 
model or composite object]. For example, a row-column 
object contains a pushbutton object, a text object, and a 
scrollbar object. A mouse click (i.e., a button event) gener 
ated on the pushbutton will cause ZtFindByLocation to return 
the Ztld of the pushbutton if the function Arglist contains the 
value TRUE for the ZtRECURSIVE attribute. If ZtRECURSIVE is 
set to FALSE, the return value of ZtFindByLocation will be the 
Ztld of the row-column object instead of the pushbutton 
(see Fig. 5). 

ZtFindByAttribute also enables the user to match objects that 
have certain properties.  For example,  if  an application 
creates a large number of objects and some of them are 
invisible, to find all the invisible objects, the ZtFindByAttribute 
function is used on the window object, passing an object 
Arglist with the ZtVISIBLE attribute set to FALSE. 

Receive Input Functions 
Input events like button and key presses can be collected 

using the function ZtDo(Objectld, ZtlNPUT, NULL). Where object- 
Id is the Ztld of a system object and ZtlNPUT is the action for 
ZtDo to do. The input-handling ZtDo function retrieves the 
events and dispatches them to the appropriate callback 
function so that the user-defined action can be executed. 
User input can be collected continuously or in a single pass. 

Visual  Update Funct ions 
In addition to getting input, ZtDo provides several other 

actions. It  provides the capabili t ies to update,  draw, re 
draw, flash, erase, raise, and lower objects on the display. 
The following is a list of the different operations possible 
with the ZtDo function. 

/  r e d r a w  a l l  o b j e c t s  w h e t h e r  o r  n o t  t h e y  h a v e  b e e n  m o d i f i e d  
Z t D o ( s y s t e m l d ,  Z t R E D R A W ,  N U L L ) ;  
/  d r a w  a  w i n d o w  * /  
Z t D o ( w i n d o w l d ,  Z t U P D A T E ,  N U L L ) ;  
/  f  l a s h  a n  o b j e c t  o n  t h e  d i s p l a y  * /  
Z t D o ( p u s h b u t t o n l d , Z t F L A S H ,  N U L L ) ;  
/  f l a s h  t h e  o b j e c t s  o n  a  l i s t  * /  
ZtDo( l is t ld ,ZtFLASH,  NULL) ;  
/  e r a s e  a  r e c t a n g l e  o b j e c t  
Z t D o ( r e c t a n g l e l d ,  Z t E R A S E ,  N U L L ) ;  
/  e r a s e  a  l i s t  o f  o b j e c t s  * /  
Z tDo ( l i s t l d ,  Z tERASE,  NULL ) ;  
/  d r a w  a  t e x t  o b j e c t  w h e t h e r  o r  n o t  i t  h a s  b e e n  m o d i f i e d  * /  
Z t D o ( t e x t l d ,  Z t D R A W ,  N U L L ) ;  
/  d r a w  a  l i s t  o f  o b j e c t s  o t h e r  t h a n  l o w - l e v e l  o b j e c t s  * /  
ZtDo( l is t ld ,  ZtDRAW, NULL);  
/  r a i s e  a  w i n d o w  * /  
Z t D o ( w i n d o w l d ,  Z t R A I S E ,  N U L L ) ;  
/  l o w e r  a  w i n d o w  * /  
Z t D o f w i n d o w l d ,  Z t L O W E R ,  N U L L ) ;  

Two modes of updating or drawing objects on the display 
are possible: immediate update and deferred update. In 
immediate update mode the windows are redrawn anytime 
there is a visual change in the objects. In the deferred mode, 
the process of redrawing windows can be postponed until 
an explicit update is performed through ZtDo(... ZtUPDATE...), 
or a change in the update mode. This mode is useful if  
changes need to be made to many objects and it  is only 
necessary to refresh the window once.  Both modes are 
activated by setting the system object's update attribute to 
either immediate or deferred. The following code puts the 
system object in the deferred update mode. 

/  u p d a t e  m o d e  a r g l i s t  f o r  s y s t e m  o b j e c t  * /  
s t a t i c  Z t A r g L i s t l t e m  u p d a t e M o d e A r g l i s t  [  ]  =  

{ 
Z t D E F E R _ U P D A T E , ( Z t V a l u e T y p e ) T R U E ,  
N U L L ,  ( Z t V a l u e T y p e ) N U L L  

}; 
Z t l d  s y s t e m l d ,  w i n d o w l d ;  
in t  re tu rn_va l ;  

M o u s e  E v e n t  
( r o w c o l u m n l d )  

( p u s h b u t t o n l d )  

Z t R E C U R S I V E  

F A L S E  
T R U E  

( t e x t l d )  ( s c r o l l b a r l d )  

Zt ld Returned from ZtFindByLocat ion 

r o w c o l u m n l d  
p u s h b u t t o n l d  

F ig .  5 .  Loca t i ng  an  ob jec t  w i th  Z tF indByLoca t i on .  When  a  
mouse event happens overthe pushbutton, if the ZtRECURSIVE 
a t t r i bu te  i s  FALSE the  iden t i f i e r  fo r  the  row-co lumn ob jec t  
(rowcoiumnid,) is returned. If the ZtRECURSIVE attribute is TRUE, 
the funct ion searches for  the pr imit ive object  in the area and 
returns the identifier for the pushbutton (pushbutton idj. 
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at some point in the application, set update mode to deferred 
retum_val = ZtChange (systemld. updateModeArglist, NULL); 

*  now i t  is  necessary to  redraw one of  the windows *  
retum_val = ZtDo (windowld, ZtUPDATE, NULL); 

List  Manipulat ion Functions 
The API list manipulation functions allow programmers 

to create and manipulate lists of objects. 
Creating an Object List. The following example creates a 
list of two points using the function ZtCreateList (see Fig. 6). 

/  a r g l i s t  f o r  p o i n t  o b j e c t  * /  
static REAL64 x, y; 
static ZtArgListltem pointArglist[ ] = 
{ 

ZtX, (ZtValueType)&x; 
ZtY, (ZtValueType)&y, 
NULL, (ZtValueType)NULL 

}; 
/  I den t i f i e rs  fo r  po in te r  ob jec ts  * /  
Ztld pointi Id, point2ld, pointj ist; 
/ ' Ident i f iers for pointer objects */  
/  c rea te  a  po in t  a t  ( 50 .0 ,50 .0 )  * /  

x  =  50 .0 ,  y  =  50 .0 ;  
point! Id = ZtCreate (ZtPOINTJDBJ, pointArglist, NULL); 

/  c rea te  ano ther  po in t  a t  (60 .0 ,50 .0 )  * /  
x  =  60 .0 ;  
point2ld = ZtCreate (ZtPOINTJDBJ, pointArgl ist, NULL); 

/  c rea te  the  l i s t  fo r  these  two  po in ts  * /  
pointjist = ZtCreateList (ZtLIST_OBJ, pointi Id, point2ld, NULL); 

Freeing a List. When the list of objects is no longer needed, 
it can be freed. The application has the option to free the 
list along with all the objects it references, or to free the 
list but retain the objects. 

/  f ree  the  po in t  l i s t  (po in t j i s t )  in  the  example  above '  
int return_val; 
static ZtArgListltem recursiveArglist [ ] = 

ZtRECURSIVE, 
NULL, 

(ZtValueType)TRUE, 
(ZtValueType)NULL 

/  f ree the l is t  and i ts  re ferences,  the two point  ob jects  * /  
recursiveArglist[0].ZtValue = (ZtValueType)TRUE; 
return_val = ZtFree(point_list, recursiveArglist); 

/ *  f ree the l is t  but  leave the two point  objects a lone * /  
recursiveArgl ist[0].ZtValue = (ZtValueType)FALSE; 
return_val = ZtFree(point_list, recursiveArglist); 

Bookeeping. Three API functions are provided for retriev 
ing information about list objects. These functions include: 
â€¢ ZtCheckListObject for verifying the presence or absence of 

an object in a list. 
â€¢ ZtCountList for counting the number of objects in a list. 
â€¢ ZtGetListlndex for determining the position of an object 

in a list. 
Extraction. An object can be extracted from a list of objects 
by invoking ZtGetListObject and specifying the index of the 
object, or by using the function ZtGetListTail to extract the 
last object in a list. 
Insertion. Objects can be inserted into a list by using: 
â€¢ ZtlnsertListlndex to place the object at a specified index 
â€¢ ZtlnsertListObject to place the object before an object with 

a known identifier 
â€¢ ZtlnsertListTail to place the object at the end of a list. 

These functions can be used to add an object to the child 
lists of windows, models, or composite objects. The follow 
ing code fragments demonstrate using these functions. Figs. 
7a and 7b show the results of the ZtlnsertListlndex and the 
ZtlnsertListObject examples respectively. 

/  inser t  an object  a t  locat ion two in  l is t  po intL is t ld  '  
Ztld pointListld, pointi Id, newpointListld, insertpointld, refpointld, 

pointld; 
int ret; 

/  pointList ld :  the Zt ld of  a ZtLISTJDBJ to insert  the object into */  
/  point i  Id :  the Zt ld of the object to insert  into the l ist  
/  newpointList ld:  the Zt ld of the new l ist .  I f  the funct ion 
/  f a i l s ,  t h e  o r i g i n a l  p o i n t L i s t l d  i s  r e t u r n e d  
/  i n  n e w p o i n t L i s t l d .  I f  t h e  f u n c t i o n  s u c c e e d s ,  * /  
/  t h e  n e w  l i s t  i s  r e t u r n e d  i n  n e w p o i n t L i s t l d .  

objlndex = 2; 
ret = ZtlnsertListlndex(pointListld, objlndex, pointi Id, 

Â¿newpointListld); 

/  inser t  an object  ( inser tpo int ld)  in to a l is t  (po intL is t ld)  * /  
/  in f ront  of  another object  ( refpoint ld)  

ret = ZtlnsertListObject(pointListld, refpointld, 
insertpointld, & newpointListld); 

/  add a point  object  (point ld) to the end of a point  l is t  
/  ( p o i n t L i s t l d )  

ret = ZtlnsertListTail(pointListld, pointld, &newpointÃ¼stld); 

M e r g i n g  L i s t s .  A  l i s t  o f  o b j e c t s  c a n  b e  m e r g e d  i n t o  a n o t h e r  

pointi Id 

point_ l is t  

F i g .  6 .  D a t a  o r g a n i z a t i o n  i l l u s t r a t i n g  a  l i s t  o f  t w o  p o i n t s  
created with the function ZtCreateList. 
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list by using: 
â€¢ ZtMergeListlndex to place the list at a specified index 
â€¢ ZtMergeListObject to place the list before an object with a 

known identifier 
â€¢ ZtMergeListTail to place the list at the end of a list. 

In the following example three objects of type ZtLISTjDBJ 
are used to illustrate merging lists. Listld references three 
objects (objecti Id, object2ld, object3ld), Mergeld references two 
objects (objected and objectSId), and Newlistld is the list object 
obtained by merging Listld and Mergeld (see Fig. 8). 

/  U s i n g  Z t M e r g e L i s t l n d e x  t o  i n s e r t  a l l  o b j e c t s  o f  M e r g e l d  * /  
/  i n t o  L i s t l d  b e t w e e n  o b j e c t i  I d  a n d  o b j e c t 2 l d  * /  

Z t l d  L i s t l d ,  M e r g e l d ,  N e w l i s t l d ;  
in t  re t_val ;  
I N T 3 2  l i s U i n d e x  =  1  ;  

r e t _ v a l  =  Z t M e r g e L i s t l n d e x f L i s t l d ,  l i s U n d e x ,  M e r g e l d ,  
&New l i s t l d ) ;  

/  U s i n g  Z t M e r g e L i s t O b j e c t  t o  i n s e r t  a l l  o b j e c t s  o f  M e r g e l d  i n t o  * /  
/  L i s t l d  i n  f r o n t  o f  o b j e c t 2 l d  * /  

Z t l d  L i s t l d ,  M e r g e l d ,  N e w l i s t l d ,  o b j e c t 2 l d ;  i n t  r e t _ v a l ;  
r e L v a l  =  Z t M e r g e L i s t O b j e c t ( L i s t l d ,  o b j e c t 2 l d ,  M e r g e l d ,  

SNew l i s t l d ) ;  

Removing Lists.  Objects can be removed from a list by 
using: 
â€¢ ZtRemoveListlndex to remove an object at a specified index 
â€¢ ZtRemoveListObject to remove an object before an object 

with a known identifier 
â€¢ ZtRemoveListTail to remove an object at the end of a list. 

Children of windows, models, or composite objects can 
be deleted by invoking these functions on the list object 
specified in the ZtCHILDJJST attribute. 

Replacement. An object can replace another object using: 
â€¢ ZtReplaceListlndex to place the object at a specified index 
â€¢ ZtReplaceListObject to place the object before an object with 

a known identifier 
â€¢ ZtReplaceListTail to place the object at the end of a list. 

/  r e p l a c e  a  p o i n t  o b j e c t  a t  t h e  i n d e x  p o s i t i o n  o f  a  p o i n t  
/  l i s t  ( p o i n t L i s t l d )  w i t h  a  n e w  p o i n t  o b j e c t  ( n e w p o i n t I D )  

/  p o i n t L i s t l d  :  t h e  Z t l d  o f  a  Z t L I S T _ O B J  t o  r e p l a c e  t h e  
/  o b j e c t  i n  * /  
/  n e w p o i n t l d  :  t h e  Z t l d  o f  t h e  o b j e c t  t o  r e p l a c e  t h e  i n d e x e d  * /  

ob jec t  w i t h  
/  r e p l a c e d l d  :  t h e  Z t l d  o f  t h e  r e p l a c e d  o b j e c t .  T h i s  v a r i a b l e  

m a y  b e  g i v e n  a s  N U L L  i f  t h i s  r e t u r n  v a l u e  i s  
n o t  o f  i n t e r e s t .  * /  

pointListld 

Â¡nsertpointld 

(b) 

F i g .  7 .  ( a )  I n s e r t i n g  t h e  o b j e c t  
pointld in the list pointListld at index 
2. (b)  Insert ing the object  Â¡nsert  
pointld into the list pointListld in front 
of the object refpointld. 
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Z t l d  p o i n t L i s t l d ,  r e p l a c e d l d ,  n e w p o m t l d :  
I N T 3 2  o b j l n d e x  =  2 :  
in t  re l :  

r e t  =  Z t R e p l a c e L i s t l n d e x f p o i n t Ã ¼ s t l d ,  o b j l n d e x .  n e w p o i n t l d ,  
& r e p l a c e d l d ) :  

/  T h e  * /  c o d e  f r a g m e n t  i l l u s t r a t e s  u s i n g  Z t R e p l a c e Ã ¼ s t O b j e c t  * /  
/  T h e  o b j e c t  i d e n t i f i e r s  h a v e  t h e  f o l l o w i n g  m e a n i n g s :  
'  p o i n t L i s t l d  :  s a m e  a s  a b o v e  

/  p o i n t j n d e x j d :  t h e  Z t l d  o f  t h e  o b j e c t  t o  r e p l a c e  
*  n e w p o i n t l d  :  t h e  Z t l d  o f  t h e  o b j e c t  t o  r e p l a c e  p o i n t j n d e x j d  * /  

/  r e p l a c e d l d  :  s a m e  a s  a b o v e  

r e t  =  Z t R e p l a c e L i s t O b j e c t ( p o i n t L i s t l d ,  p o i n t j n d e x j d ,  
n e w p o i n t l d ,  r e p l a c e d l d ) ;  

/  r e p l a c e  t h e  t a i l  o b j e c t  o f  a  p o i n t  l i s t  ( p o i n t L i s t l d )  
/  w i t h  a  n e w  p o i n t  o b j e c t  ( n e w p o i n t l d )  

r e t  =  Z t R e p l a c e L i s t T a i l ( p o i n t L i s t l d ,  n e w p o i n t l d ,  S r e p l a c e d l d ) ;  

Grouping and Reparenting Objects 
Using the methods and techniques described so far, ob 

jects can be created and grouped together to form an object 
hierarchy like the one shown in Fig. 1 . This is accomplished 
using model objects or composite objects. Model objects 
allow an application to group together composite objects, 
primitive objects, and other model objects into one group. 
They are invisible container objects and they do not own 
any visual attributes. Composite objects have visual attri 
butes and they make it possible to group together primitive 
widget objects and other composite objects. Examples of 
composite objects include menus, menu panes, row-col 
umns, and scroll lists. There are two ways of creating model 
or composite objects in API: creating objects with the child 
list attribute (ZtCHILDJJST), or assigning a group of objects 
to another parent. 

Creating Composites with ztCHlLDJJST 
Using ZtCHILDJJST, model and composite objects and 

their descendants can be created either top down or bottom 
up. 
Top Down. The composite object is created with NULL as 
signed to the child list attribute ZtCHILDJJST. It then be 
comes the current composite object and all newly created 
primitive objects will automatically become the compos 
ite's children. For example, to create a menu system from 
the top to the bottom, start from the top of the menu hierar 
chy and work down creating children. This process is sum 
marized in the following steps: 
â€¢ Create the menu object ZtMENlLOBJ with the ZtCHILDJJST 

attribute set to NULL. This will make the menu the current 
composite object. 

â€¢ Create a menu pane object ZtMENUPANEjDBJ. This will 
make the menu pane a child of the menu object and also 
make it the current composite object. 

â€¢ Create the menu button objects. This will make the menu 
buttons children of the menu pane. 

â€¢ Change the attribute ZtCURRENT_COMPOSITE on the sys 
tem object (ZtSYSTEMJDBJ) to the menu object created in 
the first step. This will make the menu the parent of the 
next menu pane. 

â€¢ Repeat the last three steps until all the menu panes and 
menu buttons are created. 

Bottom Up. To create a composite object from the bottom 
up, create all primitive objects, put them in a list, and then 
create the composite object setting the ZtCHILDJJST attribute 
to the Ztld of the object list. For example, to create a menu 
system from the bottom up, start from the bottom of the 
menu object hierarchy, making the newly created objects 
children of objects higher in the menu hierarchy. This pro 
cess is summarized in the following steps. 
â€¢ Create a group of menu buttons and put them in a list 

object ZtLIST_OBJ. 
â€¢ Create a menu pane with the ZtCHILDJJST attribute set 

to the Ztld of the ZtLISTJDBJ created in the first step. 

Mergeld 

- H E  - H E  - I l  
:â€¢ 

objecti Id o b j e c t e d  objectSId 

Newiistld E  H E  H  
> ^ m  * m m  
>â€¢â€¢ >^Â· 

object i  Id  o b j e c t e d  objectSId objeett ld ob jec l3 ld  

Fig.  8 .  Merg ing l is ts .  The objects  
o n  l i s t  M e r g e l d  a r e  m e r g e d  b e  
tween the f irst and second objects 
of  l is t  L ist id resul t ing in a new l ist  
Newiistld. 
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â€¢ Repeat the first two steps until all the menu panes and 
menu buttons are created. 

â€¢ Put all the menu panes into a list object. 
â€¢ Create the menu object with the ZtCHILDJJST attribute 

set to the newly created ZtLIST_OBJ from the previous 
step. 

Reparenting 
In API it is not necessary to destroy all the objects created 

and start all over when the user wants to change the objects' 
relationships. Regrouping objects by changing relation 
ships is called reparenting. The ZtChange function makes 
the task of regrouping very easy. The new child list is 
simply passed to the desired parent object, and the API 
takes care of removing the targeted children from the old 
parent's child list and assigning them to the new parent. 
For example, the following code segment moves the 
pushbutton object PushButton 1 from Model 2 to Model 1 , and 
inserts PushButton 1 into the child list of Model 1. 

Zt ldpb l ld ;  
Ztld model! Id; 
Zt ldchi ldl ist l ld;  
INT32 ret; 

/  P u s h B u t t o n  1  I d  * /  
/  M o d e l  1  1 d  * /  
/  M o d e l  1  c h i l d l i s t  * /  
/  R e t u r n  V a l u e  * /  

static ZtArgListltem childlistArglist [ ] = 

ZtCHILD_LIST, (ZtValueType)NULL, 
NULL, (ZtValueType)NULL 

/* get the current chi ldl ist of Model 1 
ret = ZtQuery (modeli  Id, chi ldl istArgl ist,  NULL); 
if (ret) 
{ 

chi ldl ist l ld = (Zt ld) chi ldl istArgl ist [0].ZtValue; 

/  add pushbut ton pb1 Id to the end of  the chi ld l is t  of  model  1 * /  
ret  = Zt lnsertListTai l  (chi ld l ist l ld,  pbl ld,  

&childlist1ld); 
if (ret) 

/  Change model i  Id 's  ch i ld l is t  to  inc lude the pushbut ton pb l ld  * /  
/  T h e  A P I  a u t o m a t i c a l l y  u p d a t e s  t h e  c h i l d l i s t  o f  m o d e l  2  7  

ret = ZtChange (model! Id, childlistArglist, NULL); 

Freeing Model  or  Composite  Objects 
The counterpart of cloning model and composite objects 

recursively or nonrecursively is the ability to free these 
objects from the intermediate parent. Take the case of an 
application in which one of its model objects has a row- 
column object as one of its children. Suppose the applica 
tion requires that the row-column object be freed, but the 
children of the row-column object must remain. The API 
provides an option in the ZtFree function that allows the 
user to accomplish this task. Setting the ZtRECURSIVE attri 
bute in the function Arglist to FALSE, and calling ZtFree on 
the row-column object, destroys the row-column object, 
and its children become the children of the model object. 
In contrast, passing a function Arglist to ZtFree with ZtRECUR 
SIVE set to TRUE will free the row-column object and its 
children. 

Symbols  and Models  
Models can be created as children of other models. A 

model within another model is called a submodel. For 
example, in Fig. 1, Model 21 is a submodel of Model 12. The 
user can create a symbol library out of submodels. Cus 
tomized sets of commonly used symbols can be created, 
saved, and reused as submodels. 

Conclusion 
Based on an object-oriented framework, the API consists 

of a simplified yet powerful set of functions for creating 
and activating user interface components. The application 
developer can learn to use these routines within a short 
time. The developer is also able to combine the dynamic 
animation capabilities of graphics and the flexibility and 
interactive capabilities of widgets to enhance user inter 
faces for process control applications. Models of physical 
objects such as machinery and instrumentation can be 
created to provide context-specific information that the 
end user can react to more quickly than with a standard 
terminal-oriented interface. 
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HP IVI  Appl icat ion Program Interface 
Design 
To provide the features avai lable in HP IVI ,  the internal  
des ign and implementat ion o f  the app l ica t ion program 
in ter face leveraged concepts  and sof tware f rom graph ics  
packages,  w indow techno logy,  w idgets ,  X t  In t r ins ics ,  and 
object-or iented design.  

by Pamela  W.  Munsch,  Warren I .  Otsuka,  and Gary  D.  Thomsen 

ONE OF THE MAIN goals of the HP Interactive Vis 
ual Interface (HP IVI) project was to leverage fea 
tures from current user interface and software de 

sign technologies and blend the best of each into the feature 
set and design of the application program interface (API) 
functions. In doing so, the project team investigated win 
dowing, graphics, the X toolkit (Xt Intrinsics), widgets, and 
object-oriented design. This article discusses the features 
used from each of these technologies, and how these fea 
tures are incorporated into the internal design and im 
plementation of the API functions (see Fig. 1). 

Windowing 
To hide the complexities of the X Window System1'2 

from HP IVI application developers, the API provides a 
layer of simplifying software over X. The only X features 
left exposed are those that we thought the application de 
veloper must have access to, or that cannot be layered over. 
Even with this layer of software, the user still has access 
to X functions. For example, X provides an event called 
ConfigureNotify that tells the application that a window has 
been resized, moved, or changed in some way. The API 
handles resizing the window object when this event occurs 
but lets the application decide if all the objects in the win 
dow should be resized to match the new window's size, 
or if the objects should maintain their sizes and only the 
coordinate system of the window should be adjusted. The 
user still has direct access to the X functions if they are 
needed. 

The API also ensures that all X events (e.g., a mouse 
button press and release) that occur in a window object 
are sent to the application. This is done through callback 
techniques based on the Xt callback mechanism. There are 
also mechanisms and data structures to provide a linkage 
between X event data formats and API data formats. 

Graphics 
Most graphics packages, such as Hewlett-Packard's Star- 

base graphics package,3 provide coordinate systems that 
allow users to write device independent graphics programs. 
Since creating a user interface with the X Window System 
is currently done using pixels, the API project team decided 
to provide API functions that enable user-interface design 
ers the same type of device independent coordinate system 

features as offered by Starbase. 
Graphics packages provide coordinate systems that: 

â€¢ Communicate with a particular device (device coordi 
nates) 

â€¢ Provide display resolution independence (normalized 
or virtual device coordinates) 

â€¢ Allow the user to work in a system that reflects their 
world (world coordinates) 

â€¢ Allow users to move, scale, or rotate images easily with 
out recalculating the placement and size of the image 
(modeling transformations). 
Device coordinates (DCs) are the coordinates used to 

write to a device. For the X Window System, device coor 
dinates are defined in pixels. 

Virtual device or normalized device coordinates (NDCs) 
provide a means to gain independence from the resolution 
of the display. This coordinate system maps the width and 
height of a display to the coordinate range from 0.0 to 1.0. 
Normalized device coordinates define a viewport. A view 
port is a rectangular drawing region on the display surface. 
Specifying the viewport in NDCs maintains the ratio be 
tween the drawing area and the display size regardless of 
the display resolution. 

World coordinates provide a user-defined coordinate 
system. This system allows users to create pictures using 
the most appropriate coordinate system for the task. For 
example, if the world coordinates represent the physical 
dimensions of a factory, using the dimensions from a blue 
print of the factory to create a picture is straightforward. 
World coordinates define which area of the unbounded 

User Application 

API Functions 

API  Internal  Technologies 

â€¢ Graphics 
â€¢ Windows 
â€¢ Widgets 
â€¢ Xt Intrinsics 
â€¢ Object-Oriented Design 

Fig. 1 .  The software technologies incorporated into the inter 
na l  des ign and implementat ion of  the HP IVI  appl icat ion pro 
gram interface (API).  
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world coordinate space is visible in the viewport. This type 
of coordinate system also provides viewport-size indepen 
dence and display-resolution independence since the 
world coordinates remain the same regardless of the phys 
ical size or resolution of the display. 

Modeling transformations allow the user to define a 
slightly different view of the world coordinates for each 
piece of the picture. Modeling transformations are geomet 
ric transformations such as scaling, rotation, and transla 
tion (movement). This feature allows the user to draw an 
object and then reuse it in the picture by moving, scaling, 
and rotating it to fit the requirements of the picture. 

These three coordinate systems and the modeling trans 
formations are linked together when an object is drawn. 
First, the object is transformed by its modeling transforma 
tions to the desired orientation in the world coordinate 
system. The world coordinates are scaled and translated 
to fit into the viewport and converted to normalized device 
coordinates. Finally the normalized device coordinates are 
converted to device coordinates to draw the picture in the 
viewport. These transformations are shown in Fig. 2. 

Widgets and Xt  Intr insics 
The widgets (pushbuttons, scrollbars, etc.) and the Xt 

Intrinsics provide the basis for the API input model and 
for other API features. The API project team took the input 
loop from Xt Intrinsics and added processing to handle 
API graphics objects. Also leveraged from the Xt Intrinsics 
are the methods for getting file descriptor input and time 
outs. An extension of the Xt callback technique allows 
users to attach functions to window objects to handle X 
events and to API graphic objects, which include geometric 
figures such as circles, arcs, and rectangles, to handle 
mouse button events. 

To keep the number of API functions low, API parameter 
handling is patterned after Xt Intrinsic Arglists. The API 
Arglists are arrays of attribute and value pairs. This feature 
frees the application from having fixed parameter lists that 
force it to make many calls. The application also doesn't 
have to pass unnecessary parameters. Parameters that it 
doesn't pass are automatically defaulted. One deviation 
from the Xt Intrinsic Arglist is that the API uses a null-termi 
nated list instead of a counted list. The API also extends 

XtMainLoop 

XtNextEvent (& event) 

XtDispatchEvent (& event) 

Get Next  X Event  
(e.g.,  button press) 

Call  Event 
Processing Function 

F i g .  3 .  T h e  X t  I n t r i n s i c s  X t M a i n L o o p  f u n c t i o n .  

the attribute default concept so that the application can 
change the defaults of different classes of objects at run 
time. API Arglists are described in the article on page 11. 

Object-Oriented Design 
HP IVI is an object-oriented system. Object-oriented de 

sign and object-oriented programming are being increas 
ingly used at HP for software product development.4'5 The 
goals of object-oriented methods are very appealing be 
cause they encourage such practices as code reuse and 
functional cohesion of software components (objects). 
Also, once a stable and reliable library of objects is avail 
able, software development and maintenance costs should 
be reduced. In the API a special utility was used to create 
an object-oriented environment from C language programs. 
The box on page 29 describes some basic object-oriented 
concepts and an overview of the API object-oriented envi 
ronment. The special utility used for creating the object- 
oriented environment is described later in this article. 

Input Handling 

The input handling model for the API is based on X, Xt 
Intrinsics, and widgets. The Xt Intrinsics provide a way to 
call application functions when certain events occur. These 
functions are called callbacks and are attached to widgets. 
The Xt Intrinsics provide input handling capabilities for 
X events, time-outs, and file descriptor input through the 
XtMainLoop function. This function consists of an infinite 
loop calling XtNextEventQ to get the next event and XtDis- 
patchEvent() to send the event to the appropriate processing 
function (see Fig. 3). Because the API provides several spe- 

Modeling 
Transformat ions 

â€¢ Scaling 
â€¢ Translation 
â€¢ Rotation 

WC to  NDC 
Transformat ion 

NDC to  DC 
Transformat ion 

World 
Coordinate (WC) 

System 
(meters.grams, 

inches, etc.) 

Normalized 
Device 

Coordinate 
(NDC)  System 

0 ,0  

Device 
Coordinate (DC) 

System ( in Pixels)  

1023,767 

F i g .  2 .  T h e  c o o r d i n a t e  s y s t e m s  
and the  t rans format ions  invo lved 
i n  t r a n s f o r m i n g  a n  o b j e c t  f r o m  
wor ld  coord ina tes  to  dev ice  coor  
dinates. 
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cial input features the project team implemented its own 
version of XtMainLoop. 

The basic API input loop consists of an HP-UX selecto 
call to see if input exists on either the user's file descriptors 
or the API server object's file descriptors and a test to see 
what events came in (see Fig. 4). If input is pending on the 
file descriptor for the X server a message is sent to the API 
server object to process all X events queued. If input is 
pending on a user's file descriptor the user's callback func 
tion is invoked. 

The server object still does the XtNextEvent() and XtDis- 
patchEvent() looping but it has additional code to handle 
conversion of X callback information to API format, 
callbacks on graphic objects and window objects, Expose 
and ConfigureNotify events on window objects, global 
callbacks, and event grabbing (see Fig. 5). 

Callback Handling 
Callbacks are implemented as objects in the API. These 

objects contain a pointer to the user-written function to be 
called when an X event occurs, a pointer to callback-spe 
cific data, and the specific reason that will cause the 
callback to invoke the user function (see Fig. 6). The file 
descriptor that is checked during input processing is an 
example of callback-specific data. The reason for the invo 
cation of the callback is an integer value that indicates the 
type of input event such as a button press. These callback 
objects are put in a list called a callback list and are attached 
to the object requiring them. For the Xt Intrinsics, the 
callbacks are attached to specific-reason resources instead 
of one central callback list. The API method of handling 

Scan for Input 
File Descriptors 

(select (  ))  

Events 
Pending 

Yes 
handle_event 
Message to 

Server Object 
(Fig. 5) 

Input 
on User  

File 
Descriptor 

No 

Call  User 
Fi le Descriptor 

Callback 

callbacks eliminates having one attribute per callback for 
each object type and eliminates having to add and delete 
attributes when reasons change. Time-outs and file de 
scriptor callbacks are attached to the API system object, 
which stores global attributes and resources. X event 
callbacks are registered on the window objects. 

The API creates an identifier (Ztld) for each object that 
an application creates. However, the data returned to 
callbacks from a widget consists of a widget identifier and 
widget-specific data, which is unusable to API applica 
tions. This problem is solved by minifunctions that are 
registered with the widgets. These minifunctions are inter 
faces that convert widget-specific data into something that 
can be understood and used by the API. When a minifunc- 
tion is attached to a widget, the object identifier Ztld is also 
attached to the widget. This scheme allows widgets to be 
treated like other API objects when widget input is re 
ceived. 

G e t  N e x t  X  E v e n t  
(XtNextEvent) 

Dispatch Event 
to Xt Intrinsic 

XtDispatchlnput (  )  

Fig.  4 .  The API  input  loop.  F ig .  5 .  The API  server  ob ject  event  handl ing loop.  
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Cal lbacks on Graphics 
Graphic objects include shapes such as arcs, rectangles, 

and circles. Because graphic objects can be manipulated 
the same as windows and widgets in the HP IVI environ 
ment, we decided to have button press and button release 
events associated with them. Therefore, graphic objects 
need callback functions. For example, an octagon-shaped 
graphic object representing a stop sign may require a 
callback object with a method for stopping some operation. 
Callbacks on graphic objects are handled differently from 
widgets. Since the graphic objects are not widgets, the Xt 
Intrinsics cannot be relied on to call API functions when 
an event occurs on a graphic object. All widget and graphic 
objects have a corresponding extent object. The extent ob 
ject consists of two point objects that define a rectangular 
region. When associated with an object, the extent defines 
the smallest rectangle that encloses an object (see Fig. 7). 
When the minifunction for window events detects a button 
press or button release, it converts the x,y coordinate posi 
tion of the sprite to a point object. Since the window 
minifunction is called, this indicates that the button event 
did not occur over a widget (remember the widget mini- 
function converts widget data to API usable data). The 
button event results in a call to a function to find the object 
that is under the point. The function will search the hierar 
chy for an object that has the point in its extent. If a graphic 
object is found, the object list is searched to see if there is 
a corresponding callback function and if so, the event is 
dispatched to the function. 

Global  Cal lbacks 
A requirement of the API was to detect a function key 

press regardless of the location of the sprite in the window. 
This was a problem if the sprite was over a widget when 
a function key was pressed because widgets grab any input 
over them. The project team extended the callback process 
so that the window object could also receive the event even 
if it was over a widget. This type of callback is referred to 
as a global callback. 

Global callbacks are implemented by providing an addi 
tional check during the input processing in the server object 
(see Fig. 5). After the event is dispatched to the appropriate 
object, a check is made to see if global callbacks are enabled. 

Callback 
Object 

User 
Written 

Function 

Reason for 
Callback 

( Integer Value Representing 
Type of  Cal lback)  Callback-Specific 

Data (e.g.,  File Descriptors) 

If so, the event is dispatched again to the window object 
and any global callbacks attached to the window that match 
the event are called. For events that were originally over 
widgets, the x,y coordinates of the event are recalculated 
to be relative to the API window object before dispatching. 
Recalculation of widget points is done because the API 
understands points relative to the window object coordi 
nate system and not to the widget coordinate system. 

Event Grabbing 
For customers making their own user-interface builders 

and also for HP IVIBuild, a feature was needed to direct 
events only to the window. For example, the normal be 
havior for a widget pushbutton object is to flash when it 
is selected. However, in the builder, selecting the push 
button may be the start of a move operation on it. To sup 
press normal widget behavior and let the application deter 
mine the meaning of the event, a button press event over 
a widget has to be directed only to the window object. The 
event has to be grabbed. To solve this problem, input han 
dling at the server object level was modified so that if event 
grabbing is enabled, the event is only sent to the window 
object for processing. 

Window Expose and Resize  
When Expose and ConfigureNotify events occur on API win 

dow or graphics objects, special functions are called in the 
server object to handle these events. Since graphic objects 
are not in individual X windows as the widgets are (see 
Fig. 8), the window object has to redraw the graphic objects 
when an Expose event occurs and resize its children when 
a ConfigureNotify event occurs. 

For an Expose event, the window object removes all Expose 
events for this window from the queue and keeps two lists 
of corresponding extent objects. Remember that an extent 
object consists of two point objects that define a rectangular 

Graphic Object (a Circle)  

Window 

(a) 

Method for  Drawing 
a Circle 

(b) 

Fig .  6 .  A  ca l lback  ob jec t  in  the  API .  

Point 
Objects 

Fig.  7 .  An API  graphic  ob ject  wi th  an extent  for  def in ing the 
smal les t  rec tangle  around a graphic  ob ject ,  (a)  The graphic  
ob jec t  (a  c i rc le )  in  a  w indow and the ex tent  represented by  
P1 and P2. (b) internal  representat ion of  the graphic object .  

24  HEWLETT-PACKARD JOURNAL OCTOBER 1990  

© Copr. 1949-1998 Hewlett-Packard Co.



region. One list contains the extents of each Expose event 
in device coordinates. This list is used in the server object 
to create X clip rectangles when graphics objects in the 
exposed region are redrawn. The second list contains ex 
tents of each expose event in normalized device coordi 
nates. After constructing these two lists, the window object 
goes through a redraw pass of the objects in the window. 
When the graphics objects are told to display themselves, 
they check the previous normalized device coordinate clip 
list to see if they are in the exposed areas. If they are, they 
send a message to the server object to do the X drawing 
commands. This scheme ensures that only those objects 
that are actually exposed get redrawn by the server object 
and it significantly improves performance if exposed ob 
jects are only a small portion of the window. 

For ConfigureNotity events, the window object sets the new 
window placement and size values. Then during the next 
redraw of the window, the objects are redrawn to fit within 
the new window size. 

Coordinate Systems 

The coordinate system concepts and techniques found 
in various graphics packages are incorporated into the API 
functions for drawing graphics objects, windows, and 
widgets on the display. The user can define the viewing 
area in world coordinates (e.g., inches, feet, etc.) and the 
API functions transform these coordinates to a window in 
the X coordinate system pixels. 

A viewport is a rectangular portion of the display onto 
which window objects defined in world coordinates are 
mapped. Viewports are typically defined in a device inde 
pendent coordinate system called normalized device coor 
dinates, or NDCs. In X a viewport is represented by an X 
window, which is defined in device coordinates (DCs). The 
API allows users to define the position and size of a window 
object (viewport) with NDC coordinates. This allows a win 
dow to be defined as occupying a certain portion of the 
total display area independent of display resolution. Map 
ping a window object described in NDCs to the device 
coordinates of a display is straightforward. When an appli 
cation initiates drawing to a specific X server, the display 
resolution of the server is queried. The NDC values describ 
ing the viewport are multiplied by this display resolution 

to get pixel values. Since NDCs use the lower-left corner 
of the display as the origin and X uses the upper-left corner 
as the origin, the y values of the viewport must be sub 
tracted from the height of the display for compatibility 
with the X coordinate system. Since this calculation is 
done at run time, the application does not need to know 
the type of display the application is using. 

Consider a window that occupies the NDC region from 
(0.0,0.0) to (0.5,0.5) on a display that is 1024 pixels wide 
and 768 pixels high (see Fig. 9a). When converted to DCs 
as explained above, the window occupies the region of the 
display at pixel locations (0,767) to (511,384) (see Fig 9b). 

The transformation equations for converting from NDCs 
to DCs are: 

PXDC = PXNDC x (width of display in DCs/1 NDC) (1) 

PyDC = PyNDC x (height of display in DCs/1 NDC). (2) 

To take into consideration the upper-left origin of the X 
Window System: 

P'yDC = height of display in DCs - PyDc- (3) 

Substituting the values from Fig. 9a into equations 1 and 
3 and compensating for the starting pixel yields: 

1.0,1.0 

Display 
Resolution 

Window Object  

Graphic 
Objects 

Widgets 

J  =  W i d g e t  W i n d o w  

Fig.  8.  Widgets are in their  own indiv idual  windows and have 
their coordinates defined relat ive to these individual windows. 
Graphic objects have their  coordinates def ined relat ive to the 
window object  they are located in .  

oox~ Origin 

(1023,767) 

Fig.  9.  (a)  Window def ined in normal ized device coordinates 
(NDCs).  (b)  The same window def ined in device coordinates 
(DCs) in the X Window System. 
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PIXDC = 0-0 x 1024/1 = O 
PJyDC = 768 - (0.5 X 768/1) = 384 
P2xoc = (0.5 X 1024/1) - 1 = 511 

= 768 -  (0 .0  X 768/1)  -1  = 767.  

These coordinate values are shown in Fig. 9b. 
To define what is drawn within the window object, the 

user defines what portion of the world coordinate (WC) 

space is viewable in that area. This viewable area can be 
changed at run time to perform operations such as panning 
or zooming. To draw to the X window representing the 
user's window object, the API must convert all values in 
WCs into the device coordinates of the display. WCs are 
transformed to pixels in a two-step process. The first step 
transforms the WCs to NDCs and the second step transforms 
the NDCs to DCs. 

Viewable Area in WCs 

( 1 0 . 0 , 8 5 . 0 )  ( 1 1 0 . 0 , 8 5 . 0 )  

Display 
(0.5.1.0) (1.0,1.0) 

Viewport  for 
Window 

Defined in 
NDCs 

(0.5,0.5) 
(1.0,0.5) 

( 1 0 . 0 , 1 0 . 0 )  ( 6 0 . 0 , 1 0 . 0 )  ( 1 1 0 . 0 , 1 0 . 0 )  

(a )  

Window Window Window 

NDC 
Origin 

( 0 . 0 , 0 . 2 5 )  ( 0 . 2 5 , 0 . 2 5 )  

Pushbutton 

(0 .05 ,0 .067 )  (0 .3 ,0 .067 )  

(b) 

( 0 . 0 , 0 . 0 )  ( 0 . 2 5 , 0 . 0 )  ( 0 . 0 , 0 . 5 )  ( 0 . 2 5 , 0 . 5 )  

( c )  ( d )  

D i s p l a y  ( 0 0 )  W i n d o w  

(0 ,192)  (255 ,192)  

(0,383) 

512 Pixels 

384 Pixels 

Fig .  de f ined  (a )  The  v iewab le  a rea  o f  the  wor ld  coord ina te  w indow is  de f ined  to  occupy  the  
upper - r igh t  quadran t  o f  the  d isp lay ,  (b )  Resu l t s  o f  app ly ing  the  x  and  y  sca le  fac to rs  to  the  
pushbut ton  coord ina tes ,  (c )  Resu l ts  o f  app ly ing  t rans la t ion  fac tors  to  the  sca led  pushbut ton  
coordinates,  (d)  Resul ts  af ter  apply ing the f l ip  factor  tc  compensate for  the X window or ig in in 
the  upper - le f t  comer  o f  the  NDC space ,  (e )  Resu l t s  a f te r  t rans fo rm ing  the  pushbu t ton  f rom 

NDCs to  DCs.  
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Every window object contains a viewport-to-window 
transformation matrix (VTM). This matrix describes how 
to scale and translate the viewable WC region to fit within 
the window. A scale factor (SF) is calculated to scale the 
WC width and height to the width and height of the view 
port. This scale factor for the x coordinate is: 

SFX = width of the window in NDCs^-width of the 
viewable WC region in WCs 

and for the y coordinate is 

SFy = height of the window in NDCsn-height of the 
viewable WC region in WCs. 

For example, in Fig. 10a the viewable area of the world 
coordinate window is defined to occupy a viewport in the 
upper-right quadrant of a display. The scale factors for 
mapping the WC region to NDCs in this example are: 

SFX = (1 - 0.5)/(110 - 10) = 0.005 NDCs/WC 

and for the y coordinate 

SFy = (1 - 0.5)/(85 - 10) = 0.0067 NDCs/WC 

To transform the pushbutton coordinates shown in Fig. 
10a from WCs to NDCs: 

For the pushbutton example the translation factors are: 

Tx  =  -  0 .005  x  10  =  -  0 .05  NDCs 
Ty =  -  0 .0067 x  10  =  -  0 .067 NDCs.  

Adding the translation factor to the NDC points P! and P2 
results in: 

Plx = 0.05 - 0.05 = 0 NDCs 
P2x = 0.3 - 0.05 =0.25 NDCs 

Ply = 0.067 - 0.067 = 0 NDCs 
Pzy = 0.318 - 0.067 = 0.25 NDCs. 

Fig. lOc shows the results of the translation. 
Like most graphics packages, the API follows the conven 

tion of defining the origin in the lower-left corner of the 
drawing area. However,  because the X Window System 
defines the origin to be the upper-left corner, an additional 
translation factor (or flip factor) must be added in the y 
direction to move the origin from the lower-left  to the 
upper-left corner. 

The NDC height for the window in which the pushbutton 
in Fig. 10 resides is 0.5 NDCs. Compensating for the flip 
factor (F) results in: 

P '  =  F  -  P , v  =  0 . 5  -  0 . 2 5  =  0 . 2 5  N D C s  iy â€¢2y 
P ' 2 y  â € ”  F  -  P l y  = 0.5 -  0.0 = 0.5 NDCs 

Plx = 10 x SFX = 0.05 NDCs 
P2x = 60 x SFX = 0.3 NDCs 

Ply = 10 x SFy = 0.067 NDCs 
P2y = 47.5 x SFy = 0.318 NDCs. 

Fig. lOb shows the pushbutton scaled to NDC coordinates. 
The NDC system maps the coordinate (0.0,0.0) to the 

lower-left corner of a window. Therefore, if the viewable 
WC region does not map the coordinate (0.0,0.0) to the 
lower-left  corner of the window, a translation factor is 
added to the NDC coordinates. The translation factors are 
computed as: 

and 
P'ix = 0.0 
P'2x = 0.25. 

Fig. lOd shows the result of applying the flip factor. 
The scale factors, the translation factors, and the flip 

factor are incorporated into the viewport-to-window trans 
formation matrix VTM. Combining all the transformation 
factors in one matrix and performing the transformation 
operations looks like: 

Tx = - SFX x (WCX origin) 
Tv = - SFV x (WCV origin) 

â€¢Hi 

Original Widget 

Widget Scaled 
Larger 

Widget Scaled 
Smaller 

Fig .  1  1  .  The e f fec ts  o f  sca l ing  w idgets  la rger  and smal le r  
around characters.  

API Functions 

( Interface to User 
Code) 

API  Object  Layer 

(Process Attr ibutes and 
Update Objects) 

Server Object 

(Interface to X, 
Xt Intrinsics, and" 

Widgets)  

Device  
I ndependen t  
Layer  

Dev ice  
Dependen t  
Layer  

Widgets 
Xt Intrinsics 

X  Window System 

Fig.  12.  The layers of  the API  arch i tecture.  
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[ P  xNDC yNDC ~  [ ?  x W C  P y W C  SFX 
O 

O 
- SFV 

Tx (-T, + F) 

Fig. lOe shows the final transformation of the pushbutton 
NDCs to X window device coordinates. The coordinate 
points shown in Fig. lOe are derived by substituting the 
values from Fig. lOd into transformation equations 1 and 
2 and compensating for the starting pixel. 

PIXDC = 0.0 x 1024/1 = 0 
P l y D C  =  Â ° - 2 5  X  7 6 8 / 1  =  1 9 2  

P2xDC = (0.25 X 1024/1) -1 = 255 
P2yoc = (0-5 x 768/1) - 1 = 383. 

Model ing Coordinates 
The API provides modeling transformations that allow 

any object within the user interface hierarchy to be trans 
formed by scaling (enlarging or shrinking), rotation, and 
translation. This lets the user draw a symbol that can be 
reused by providing only the data that differentiates its 
position and size from another instance of the symbol. The 
API concatenates modeling transformations so that an ob 
ject is affected by the transformations on its ancestors. This 
allows an entire subhierarchy of objects to be transformed 
by one operation ona common ancestor instead of requiring 
transformations on every object in the subhierarchy. These 
transformations are used when an object is being drawn. 
The modeling transformation values are converted to WCs 
by multiplying the transformation on an object to its WC 
attributes. A current transformation matrix (CTM) is main 
tained during a drawing pass on the objects. Each object 
multiplies its transformation matrix with the CTM contain 
ing the transformations of its ancestors. In the API, the 
CTM is initialized to be the VTM. Doing this reduces the 
number of matrix multiplications and improves the perfor 
mance of the drawing operation. 

Adjustments and Scal ing 
Besides allowing the application developer to work in a 

display resolution independent manner when creating the 
windows for an application, the world coordinate system 
allows a user to resize the window interactively and the 
objects to be redrawn without the intervention of the appli 
cation. Changing the size of the window changes the NDC 
definition of the window. This change causes the scaling 
factors in the VTM to be recalculated at the next display 
pass. The objects are either enlarged or shrunk to fit within 
the new window size. When resizing a window, the user 
may change its aspect ratio. That is, the physical width-to- 
height ratio of the object may be different from the WC 
width-to-height ratio. When this happens, objects begin to 
look distorted. For instance, a circle begins to look like an 
oval. This may be an appropriate action for some applica 
tions, but for others, especially those where the objects on 
the display are meant to represent something in the phys 
ical world, the application developer wants the objects to 
maintain their width-to-height ratio. In graphics packages, 
these two modes of operation are referred to as anisotropic 
and isotropic scaling, respectively. The API window object 
provides the attribute ZtADJUST which the application can 

set to ensure that the aspect ratio is maintained. If this 
attribute is set and the window is resized, the WC height 
or width mapping to the window is adjusted to maintain 
the original aspect ratio. This process results in modifying 
the scale factors stored in the VTM. This also results in 
more viewable WC space in the window in either the x or 
the y direction. 

Applying the various coordinate systems to windows 
and widgets has worked successfully. Specifying their po 
sition and size in NDC or WC units allows the user to 
define them in the same manner as graphic objects. It also 
allows the application to be independent of the display 
and window size even as the user interactively resizes the 
window. 

Scaling and moving widgets works the same as for 
graphics objects. However, as the widgets scale smaller and 
larger, the font that they use does not scale because it is a 
bit-mapped font. The widget scales larger and leaves more 
space between the edge of the text and the edge of the 
widget or it scales smaller and closes in on the text, even 
tually clipping it (see Fig. 11). A few possible solutions to 
this problem exist. One solution is for the X Window Sys 
tem to support scalable fonts. This will allow the font to 
scale with the widget. Another solution is to switch be 
tween a set of fonts with different sizes as the object grows 
and shrinks. Widgets also cannot rotate from a horizontal 
base. In the API, when a widget is rotated, its defining 
point is rotated, and the widget is redrawn in the new 
position with a horizontal base. This allows the widgets 
to be rotated as part of a symbol and to move along with 
any associated graphic objects. Despite these differences 

(cont inued on page 30)  

T y p e s  o f  F i l e s :  

Class Header File (e.g., circle. h) 
Class Definition File (e.g., circle. c) 
Library Definition File (e.g., graphic. r) 
Run-Time Class Information File (e.g., circle.rtc) 
Glue File (e.g., classlibs.c) 

1. Run rtc on Library Definition File 

graphic. r 

~ ^  c i r c l e . r t c  

- >  g r a p h i c . h "  

- >  g r a p h i c . c  

2.  Compile the Class Definit ion Fi le 

circle.c -  

circle.h 

circle.rtc 

circle.o 

3 .  C o m p i l e  C  S o u r c e  F i l e  g r a p h i c . c  G e n e r a t e d  f r o m  r t c  T o o l  

4 .  G l u e  L i b r a r y  D e f i n i t i o n  O b j e c t  F i l e  

classlibs.c - 
->â€¢ classlibs.o 

graphic.h 

Fig. 13. The process of adding a new object to the API object 
hierarchy. 

28  HEWLETT-PACKARD JOURNAL OCTOBER 1990  

© Copr. 1949-1998 Hewlett-Packard Co.



Object-Oriented Design in HP IVI 

HP IVI  is  an object -or iented system. I t  uses a set  of  fac i l i t ies 
ca l led the HP IVI  object -or iented envi ronment  (OOE) to prov ide 
the f ramework for  i ts  implementat ion.  The OOE has two parts:  a 
messaging interface and a tool  for compi l ing an external  descr ip 
t i on  o f  t he  c lass  h ie ra rchy  i n to  C  l anguage  code .  The  C  code  
defines the dispatch tables used by the OOE's interface functions 
to  per fo rm messag ing (ob jec t  communica t ion) .  Presented here  
are some bas ic  concepts  o f  ob ject -or iented des ign and an over  
v iew o f  how the OOE implements  some of  these concepts .  

Object -or iented des ign and programming are prov ing to  be a  
na tu ra l  and  p roduc t i ve  parad igm fo r  so f tware  deve lopment  be  
cause they enable developers to represent  re lat ionships among 
s y s t e m  c o m p o n e n t s  a n d  t h e  t a s k s  t o  b e  p e r f o r m e d  o n  t h e s e  
componen ts  i n  a  more  na tu ra l  manne r .  The  ma in  concep ts  o f  
t h i s  me thodo logy  i nc lude  ob jec t s ,  messag ing ,  po l ymorph i sm,  
and inher i tance. 
Objects .  An object  is  the bas ic  un i t  in  ob ject -or iented methodol  
ogy. refer is a structure that contains local data structures and refer 
ences the local  procedures (cal led methods) that  operate on the 
data (see Fig.  1) .  The current values of  an object 's internal  data 
def ine the object 's  current  state.  The object 's  behavior  is  depen 
dent on and current state. The data inside an object is private and 
accessib le only through one of  the methods associated wi th the 
ob jec t .  An  ob jec t  ac t s  on  i t s  da ta  when  i t  r ece i ves  a  r eques t  
asking one of i ts methods to perform some operat ion. This mech 
anism is  ca l led messaging.  

Objects are created from a template cal led a c lass.  There can 
b e  m a n y  o b j e c t s  o f  e a c h  c l a s s .  T h e s e  o b j e c t s  a r e  c a l l e d  i n  
s tances  o f  t he  c lass .  Each  i ns tance  i s  an  i ndependen t  ob jec t  
with i ts own data and state.  However,  an object instance has the 
same data  s t ruc tures ,  shares  the  same methods,  and behaves 
t h e  s a m e  w a y  a s  a l l  o t h e r  i n s t a n c e s  o f  t h e  s a m e  c l a s s .  T h i s  
means that  ob jec ts  o f  the  same c lass  wi l l  respond to  the same 
messages â€” differences in object behavior depend on the current 
state ( the values of  the object  instance's data).  For example,  al l  
ob jec t  i ns tances  o f  an  ob jec t  c lass  tha t  d raws  rec tang les  w i l l  
respond in  the same way to a request  to  draw a rectangle.  How 
eve r ,  because  o f  d i f f e rences  i n  t he  s ta te  o f  t he  i n te rna l  da ta  
structures, the rectangles may be drawn in different sizes, colors, 
and posi t ions. 

The OOE tool mentioned above is cal led the rtc (run-t ime class 
in format ion)  too l .  The r tc  too l  compi les a symbol ic  external  rep 
resen ta t ion  o f  the  c lass  h ie ra rchy  in to  the  da ta  necessary  fo r  

Object 

Data Private 
to Object 

def in ing  c lasses  and methods fo r  those c lasses .  The symbol ic  
representat ion of  the c lass h ierarchy is  compi led by the r tc  tool  
to  produce s ta t ic  tab les ca l led d ispatch tab les which cons is t  o f  
two  p ieces :  a  ca tegory  tab le  and  method  tab les .  These  tab les  
contain informat ion necessary to d ispatch messages to objects.  
A unique key cal led the message selector  is  used tc  search the 
d i spa t ch  t ab les  f o r  a  po in te r  t o  a  f unc t i on  t ha t  w i l l  se r v i ce  a  
request .  The r tc tool  a lso generates a f i le  contain ing def in i t ions 
of  symbol ic names for the constants that represent the message 
se lec to rs .  Cod ing  us ing  the  symbo l i c  names  fo r  t he  message  
selectors provides independence from the structure of  the under 
l y i n g  r t c  t a b l e s  a n d  p r o v i d e s  m o r e  r e a d a b l e  c o d e .  T h e  r t c  
tool and the type of f i les i t  compiles and generates are described 
in more detai l  on page 31 .  
Messaging.  Objects  communicate  wi th  each o ther  through mes 
saging.  Sending a message to an object  requests that  object  to  
perform some act ion â€” usual ly  the manipulat ion of  i ts  internal  
da ta .  Messages  cons i s t  o f  a  m in imum o f  two  a rgumen ts :  t he  
receiver of the message ( i .e. ,  the object) and the message selec 
to r .  The  message  se lec to r  cons is t s  o f  a  ca tegory  name and  a  
method  name.  The  ob jec t  rece iv ing  the  message  looks  up  the  
ca tegory  se lec to r  i n  the  ca tegory  tab le  and  then  looks  up  the  
method in the corresponding method table.  This select ion mech 
anism is control led by a set of central messaging routines. These 
rou t i nes  a re  con ta ined  i n  t he  message  i n te r face  to  t he  OOE.  
Every  ob jec t  con t r i bu tes  a  d i spa tch  tab le  tha t  the  messag ing  
rout ines search to determine which object implements a funct ion 
f o r  a  a  s e l e c t o r .  A s s o c i a t e d  w i t h  e a c h  s e l e c t o r  i s  a  p o i n t e r  
t o  a  m e t h o d  t h a t  i s  c a l l e d  t o  i m p l e m e n t  t h e  r e s p o n s e  t o  t h e  
message (see Fig.  2) .  

T h i s  c o n n e c t i o n  o f  a  m e s s a g e  s e l e c t o r  t o  t h e  a p p r o p r i a t e  
method is cal led binding. Binding can take place at compi le t ime 
(early or stat ic binding), or at run t ime ( late or dynamic binding). 
The OOE current ly  implements s tat ic  b ind ing.  

In  the  OOE,  the  message se lec to r  i s  the  key  to  de te rmin ing  
which function gets cal led when a message is sent to a part icular 
ob jec t .  The message se lec tor  is  a  32-b i t  quant i ty  cons is t ing  o f  

O b j e c L a  

Fig. the An object. The internal data structure is private to the 
ob jec t  and the methods have so le  access to  the data .  

message (Object.a, selector) 

t 
R e c e i v e r  

Fig .  2 .  Connect ing  a  message to  a  method in  an  ob jec t .  
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message  (Object_a ,  D isp lay_T ime)  

O b j e c t _ a  

message (Object_b ,  D isp lay_Time)  

Ob jec t_b  

15:00:25 

F i g .  3 .  r e g a r d l e s s  a l l o w s  t h e  s a m e  m e s s a g e  t o  b e  s e n t  t o  d i f f e r e n t  o b j e c t s  r e g a r d l e s s  o f  
thei r  in ternal  data types and methods.  

two 16-b i t  f ie lds .  The upper  16  b i ts  o f  the  se lec tor  de f ines  the  
o f f s e t  o f  t h e  c a t e g o r y  t o  w h i c h  t h a t  m e s s a g e  b e l o n g s  i n  t h e  
class's category table. The lower 16 bits def ines the offset of the 
method funct ion pointer  in  the method table.  

I f  t he  va lue  o f  a  pa r t i cu la r  pos i t i on  i n  t he  d i spa tch  tab le  i s  
NULL,  the  messag ing  rou t ines  t raverse  up  the  c lass  h ie ra rchy  
searching for a method funct ion pointer.  When a funct ion pointer 
is found, i t  is  copied to the posi t ion in the dispatch tables where 
the upward t raversal  of  the c lass hierarchy began. This tends to 
imp rove  t he  pe r f o rmance  o f  t he  messag ing  sys tem ove r  t ime  
because the amount  o f  upward search ing is  s lowly  rep laced by 
d i rect  funct ion cal ls  and the NULL values in  the d ispatch tables 
gradua l ly  d isappear .  A lso ,  the  implementa t ion  o f  ca tegor ies  im 
proves memory  use by  e l iminat ing method tab les  when a  c lass  
does not  suppor t  that  category .  
Polymorphism.  The concept  o f  po lymorphism in  ob ject -or iented 
programming enables d i f fe rent  types o f  ob jec ts  to  share a  com 
mon opera t iona l  in te r face  and to  be  man ipu la ted  by  user  code 
independent  of  the actual  types of  ob jects .  This  means that  the 
app l i ca t i on  p rog ram does  no t  have  to  d i f f e ren t i a te  t he  ob jec t  
type at  run t ime.  This  d i f ferent ia t ion is  per formed automat ica l ly  
by  the  messag ing  sys tem.  For  examp le ,  a  message  to  a  c lock  
object  to display the t ime would redraw the hands in a part icular  
pos i t ion  i f  the  c lock  were  d rawn as  an  ana log  c lock ,  wh i le  the  
s a m e  m e s s a g e  w o u l d  c a u s e  t h e  t i m e  t o  b e  d i s p l a y e d  i n  t e x t  
format for a clock drawn as a digi tal  c lock (see Fig. 3).  The clock 
ob jec t  i s  po lymorph ic  because  the  same message can  be  sen t  
to di f ferent objects. The appl icat ion does not have to worry about 
how the  t ime is  d rawn.  That  i s  de termined when the  method to  
d raw  the  c lock  i n te rp re ts  t he  i ns tance  da ta  tha t  de f i nes  each  
c l o c k  i s  i n t e r n a l  s t a t e .  A  g o a l  o f  o b j e c t - o r i e n t e d  d e s i g n  i s  

Root Class 

Class A 

Class B 

message (classBObj,  method_2);  

Fig .  4 .  Inher i tance a l lows methods to  be reused.  

to maximize code generality, f lexibi l i ty, and reusabil i ty by defining 
c o m m o n  i n t e r f a c e s  t h a t  c a n  b e  s u p p o r t e d  b y  m a n y  d i f f e r e n t  
k inds of  objects.  

The  mechan ism o f  sea rch ing  the  c lass  h ie ra rchy  desc r ibed  
above is how the OOE implements the concept of polymorphism. 
Inher i tance.  Inher i tance prov ides the abi l i ty  to  create incremen 
ta l  def in i t ions of  objects ( i .e. ,  one k ind of  object  can be def ined 
incrementa l ly  in  te rms o f  p rev ious ly  def ined ob jec ts ) .  The new 
def in i t ion extends the ex is t ing def in i t ions by adding data to  the 
object representat ion, by adding new methods, and by extending 
the definit ion of exist ing methods. Using the update t ime example 
f rom above,  the  ana log  c lock  ob jec t  tha t  p roduces  the  graph ic  
representat ion of  the t ime might only implement the method that 
draws the representat ion of  the c lock and inher i t  the more basic 
func t ions  (e .g . ,  aud ib le  a la rms)  f rom the  more  genera l  d ig i ta l  
c lock  c lass .  Inher i tance a l lows ob jec t  de f in i t ions  to  be  shared 
( ra ther  than cop ied)  and cus tomized by  ex tens ion ( ra ther  than 
by modi f icat ion) .  A goal  of  object-or iented design is  to organize 
object def ini t ions so that common behavior is specif ied in shared 
def in i t ions and object  def in i t ions can be extended.  

The external  representat ion of  the c lass h ierarchy that  is  pro 
c e s s e d  b y  t h e  O O E  c l a s s  c o m p i l e r  ( r t c  t o o l )  b u i l d s  t a b l e s  o f  
function pointers. Entries that are not NULL in these tables indicate 
tha t  a  pa r t i cu la r  c lass  imp lemen ts  a  pa r t i cu la r  me thod .  NULL  
entries indicate that a particular class inherits a particular method. 
The c lass compi ler  a lso declares a pointer  to the c lass 's  parent  
in  the h ierarchy (see F ig .  4) .  The OOE messaging rout ines use 
th is  in format ion to  t raverse upward in  the c lass h ierarchy when 
searching for  a method.  

In  ob jec t -o r ien ted  sys tems,  c lasses  may have one parent  o r  
many. Single inheri tance al lows a class to have only one parent.  
This  is  the model  implemented by the OOE. Object-or iented lan 
guages such as  Smal l ta lk  and C++ a l low c lasses to  have more 
than one parent .  This is  cal led mul t ip le inher i tance.  

Pam Munsch  
Project  Manager 

Industr ia l  Appl icat ions Center 

Steve Witten 
Development  Engineer  

Industr ia l  Appl icat ions Center 

between the operation of the widgets and the graphic and 
window objects, the coordinate system feature of the API 

still provides a large productivity gain for the application 
developer. 
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Object-Oriented Architecture 

Without using an object-oriented programming language. 
the API encompasses features provided by an object- 
oriented language through conventional C language fea 
tures. The API's architecture is divided into three layers: 
the API function layer, the API object layer, and the device 
dependent layer (see Fig. 12). The API function layer pro 
vides the communication interface between a user applica 
tion and the objects created by the application. It is a thin 
layer of code that validates the user's parameters and sends 
messages to the objects to perform the tasks requested. The 
functions provided in this layer are described in the article 
on page 11. In the API object layer, an object is created and 
destroyed and all manipulation of an object's data occurs. 
In the device dependent layer, all the function calls to 
underlying subsystems are made to draw an object to the 
display. 

Messaging in the API  
The API consists of a number of function calls that pro 

vide the communication path between an application and 
the underlying objects manipulated by the application. 
Most of the API functions require objects as parameters. It 
is through this interface that an object's specific data and 
the functions that manipulate the data are accessed. In 
essence, the API hides from the user as much as possible 
the details of using objects. 

To provide the interface between an application and its 
objects, a preprocessor tool called rtc (run time class infor 
mation) is used to define the API object messaging facility 
and class interitance hierarchy based on information from 
a group of description files. Every API class consists of a 
class header file and a class definition file. The class header 
file defines the data storage for each instance of an object 
of that class. This file identifies the object as a member of 
a class or classes and provides the connection to the set of 
methods that manipulate that object's internal data. The 
class definition file is a C program module that contains 
the methods that are specific to a particular class. The class 
header file must be included in the C program module so 
that the data structure of this object and the class definition 
pointer can be accessed. Once an object's data structure, 
class, and specific functions are defined, it needs to be 
positioned within the class hierarchy. The positioning of 
the class in the class hierarchy is determined by the nature 
of the class and the methods to be inherited. The simpler 
a class is, the higher up in the class hierarchy it is 
positioned. Conversely, a more complex class is positioned 
further down in the class hierarchy. The positioning of a 
class within the class hierarchy is defined within the library 
definition file. This file defines the methods that are avail 
able for messaging to a class and the methods that can be 
inherited by that class. 

Adding an API  Object  
Adding a new class to the API class hierarchy is a four- 

step process. This process is illustrated for the circle class 
in Fig. 13. First, the library definition file (graphic.r) is used 
as the input to the rtc tool. The rtc tool takes the library 
definition file and produces several files as output. One of 

these output files (circle.rtc in Fig. 13) is the run-time class 
information file, or .rtc file. A .rtc file is created for every 
class defined in the library definition file. It contains the 
class definition structure and the method dispatch tables 
for that specific class. The .rtc file is included at the end 
of the class definition file for that class when the class 
definition file is compiled (step 2). In the third step the 
new library definition files (graphic.h and graphic.c) are com 
piled. Finally, the pointer to the new class must be added 
to the file that defines the class hierarchy. This file is called 
the glue file (classlibs.c). In step four, classlibs.c is compiled 
with the class header file (graphic.h) to produce the object 
file classlibs.o.) When these object files (circle.o, graphic.o, and 
classlibs.o) are linked into an application, the addresses to 
the methods supported by the various classes are resolved. 

By using object-oriented technologies, the API is able to 
create graphic objects. One problem users have with soft 
ware systems such as the X library is that graphic primitives 
are not objects. The X library provides many graphic func 
tions that operate on the individual pixels of a graphic 
display but the parameters describing the object are not 
kept. For example, if a circle is drawn and the application 
simply wants to change its color from blue to red, all the 
parameters (location, size, line width, etc.) to draw the 
circle must be passed to the X library function again. The 
API solves this problem by providing graphic objects using 
the rtc tool. This allows the user to describe the parameters 
of the object once and then make simple modifications 
only to the parameters that are changing. The application 
is freed from maintaining all of the data necessary to redraw 
all of the graphical objects in the window. 

Conclusion 
The HP IVI project was successful in blending graphics, 

windowing, X toolkit, widget, and object-oriented tech 
nologies in the internal design of the API. Because most 
of these technologies were developed separately, it was not 
always clear how to integrate them. The API solved most 
of the problems encountered and as a result of this effort 
a high-level user interface toolkit was created that reduces 
the complexity of building a sophisticated graphical user 
interface for an application. 

Acknowledgments  
Besides the three authors, the other members of the API 

development team were Scott Anderson, Hai-Wen Bienz, 
Mark Thompson, and Mydung Tran. 

References 
1. F. E. Hall and J. B. Byers, "X: A Window System Standard for 
Distributed Computing Environments," Hewlett-Packard Journal, 
October 1988, Vol. 39, no. 5, pp. 46-50. 
2.  K. H. Bronstein,  D. J .  Sweetser,  and W. R. Yoder,  "System 
Design for Compatibility of a High-Performance Graphics Library 
and the X Window System," Hewlett-Packard Journal, December 
1989, Vol. 40, no. 6, pp. 6-12. 
3. Ibid, p. 7. 
4.  J.  A. Dysart,  "The NewWave Object Management Facili ty," 
Hewlett-Packard Journal, Vol. 40, no. 4, August 1989, pp. 17-23. 
5. T. F. Kraemer, "Product Development Using Object-Oriented 
Software Technology," Hewlett-Packard Journal, Vol. 40, no. 4, 
August 1989, pp. 87-100. 

OCTOBER 1990 HEWLETT-PACKARD JOURNAL 31  

© Copr. 1949-1998 Hewlett-Packard Co.



HP IVIBuild: Interactive User Interface 
Builder for HP IVI 
Using the facil i t ies provided by HP IVI's application program 
inter face,  HP IVIBui ld  a l lows developers to create and 
exper iment  wi th d i f ferent  types of  appl icat ion user  
in ter faces,  save them in f i les,  and b ind them to the 
funct ional i ty of  the appl icat ion at  run t ime. 

by Steven P.  Wi t ten and Hai -Wen L.  Bienz 

THE EDITOR/BUILDER COMPONENT of the HP In 
teractive Visual Interface product is HP IVIBuild. As 
its name implies, HP IVIBuild is a tool that is used 

to build user interfaces interactively. The windows and 
objects that make up the user interface can be saved in a 
file and reused later by other applications using the API 
functions (see Fig. 1). HP IVIBuild is itself an HP IVI appli 
cation program because it uses the API functions described 
on page 11 as a platform. Fig. 2 shows the architecture of 
HPIVIBuild. 

Early in the design of HP IVIBuild we realized that al 
though the HPIVI application program interface (API) func 
tions are several orders of magnitude easier to use than 

HP IVIBuild-  
Created 
User 
Interfaces 

Application Application 

F i les  Conta in ing f  
Saved User (  

Interfaces L 

Applications 
Restoring User (  
Interfaces and 

Adding Functional i ty 

F ig .  1 .  HP  IV IBu i l d  a l l ows  use rs  t o  c rea te  and  expe r imen t  
w i t h  d i f f e ren t  use r  i n te r f aces  and  save  them in  f i l es  t o  be  
reused by other API appl icat ions.  (API = appl icat ion program 
interface of HP IVI.)  

Xlib, the X toolkit, and widgets, they are still very complex 
to many users. Therefore, an interactive user interface de 
sign tool, HP IVIBuild, was developed to complement the 
API functions. 

HP IVIBuild helps promote software development pro 
ductivity in areas such as rapid prototyping and the design 
and modification of user interfaces. For rapid prototyping, 
HP IVIBuild allows developers to create complex prototype 
user interfaces. The user can interactively place and size 
all of the primitive graphics and widget objects in a win 
dow. Once the objects are placed and sized, many of their 
physical attributes such as colors, shadows, strings, and 
fonts can be changed easily within HP IVIBuild. Even some 
one who does not have any software background, such as 
a human factors expert, can use HP IVIBuild to design a 

Display 
Output 

Processing States 

Interstate Transit ion 

State Machine 

â€¢ API Functions 
â€¢ HP IVI Object-Oriented 

Environment 
H P  I V I  W i d g e t s  

Graphics 
D r i v e r  x t  I n t r i n s i c s  

X  Window System 

User 
Input 

Workstation 
To Display 
Hardware 

F i g .  2 .  T h e  c o m p o n e n t s  t h a t  m a k e  u p  t h e  H P  I V I B u i l d  a r  
chitecture. 
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complex user interface. This means that an application's 
user interface can be prototyped and evaluated separately 
from the operations performed in the application. 

Besides restoring the user interfaces created with HP 
IVIBuild, the API functions in the application also make 
the objects in the interface react to user input. Callback 
functions, which are invoked in response to user input to 
the application, can be attached to those objects that should 
respond to user input. If the application requires changes 
to the user interface in response to application or customer 
needs, the previously saved user interface can be modified 
with HP IVIBuild. If the changes involve adding new ob 
jects, callbacks can be added to the new objects using the 
API functions in the application program. However, if 
changes are made to existing objects, no changes need to 
be made to the application program. 

Fig. 3 shows the interface areas provided by HP IVIBuild. 
The functions of these areas are: 
â€¢ Utility Box. This area displays current object information 

and the menus for object manipulation. 
â€¢ Tool Box. This is the area in which the user selects the 

objects to be manipulated. 
â€¢ Workspace. This area displays the windows being 

created. 

Object-Oriented Design in HP IVIBui ld 
HP IVIBuild uses the API functions and the facilities 

provided by the HP IVI object-oriented environment to 
build its own object-oriented system. The object-oriented 

concepts of objects, polymorphism, and inheritance are 
incorporated into the design of HP IVIBuild. 
Objects. In HP IVIBuild objects are very simple data struc 
tures called states. A state is the context of user input (i.e., 
the operation in progress) at any particular point in time. 
All states are static (bound at compile time) and have the 
same structure. Only one field in the structure, called a 
message selector, is filled in at run time. This field is used 
to bind HP IVIBuild's user interface presentation to its 
functionality. User interface binding and functionality are 
discussed later in this article. The following is the C lan 
guage structure of a typical state object. 

C L A S S V A R S ( C l a s s V a r s )  

ex te rn  s t r uc t  C lassDe f_DzRec t ;  

/  Th i s  mac ro  i s  i nc l uded  f o r  
/â€¢ compatibility with the HP I VI 
, ' *  ob j ec t - o r i en ted  env i r onmen t  and  * /  
/  i s  no t  used  by  HP IV IBu i ld .  

/  S t r u c t u r e  c o n t a i n i n g  p o i n t e r s t o  * /  
/  t h i s  s t a t e ' s  me thod  d i spa t ch  
/  t ab les .  Th is  s t ruc tu re  i s  
/  c r ea ted  by  t he  AP I  r t c t oo l .  

s t a t i c  I N T 3 2 g r o u p m e m b e r s h i p [ ]  {  / ' A r r a y  c o n t a i n i n g  a  s t a t e ' s  
=  N U L L  /  g r o u p  m e m b e r s h i p  i n f o r m a t i o n .  

} ;  / ' T h e p u r p o s e o f t h i s a r r a y i s t o  
/  he lp  l im i t  s ta te  t rans i t i ons  
/  a t  ce r ta i n  t imes .  Cu r ren t l y  
/  th is  fea ture  is  no t  used in  
/ " H P  I V I B u i l d .  

d J .  

O  G r a p h i c s  

File Edit Selec 

Prompt: Select s menu iteÂ« or Tool box button. 

C u r r e n t  M o d e l :  

Utility Box 

Tool  Box 

Workspace Area 

F i g .  3 .  .  I n t e r f a c e  a r e a s  o f  H P  
IVIBuild. 
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s t a t i c  c h a r  o b j e c t n a m e [  )  =  " s j e c t " ;  /  t h i s  s t a t e ' s  n a m e  * /  

/  A l l  s t a t e  o b j e c t s  h a v e  t h e  f o l l o w i n g  s t r u c t u r e .  * /  

s ta t i c  s t ruc t  DzRec t {  
s t r u c t  C l a s s D e P c l a s s ;  
cha r  * s ta tename ;  
I N T 3 2 c l s i n d e x ;  
I N T S a u t o t e r m ;  

INT32 se lec to r ;  

I N T 3 2  ' g r o u p ;  

/  Po in te r  to  the  d i spa tch  tab les .  
/  Po in te r  t o  t he  s ta te ' s  name.  
/  A  un ique  i d  ass igned  to  t h i s  s ta te .  * /  
/  T h i s  s t a t e ' s  a u t o t e r m i n a t i o n  * /  
/ * f l a g  ( i f  T R U E t h e s t a t e  m a c h i n e  * /  
/  t e r m i n a t e s  t h e  s t a t e  a n d  i f  F A L S E  * /  
/  a n  a c t i o n  b y  t h e  u s e r  m u s t  * /  
/  t e r m i n a t e  t h e  s t a t e ) .  * /  
/  M e s s a g e  s e n t  t o  t h e  c u r r e n t  s t a t e  * /  
/ " t o  c a u s e  a  t r a n s i t i o n  t o  t h i s  * /  
/  s t a t e .  * /  
/  P o i n t e r  t o  t h i s  s t a t e ' s  g r o u p  * /  
/  m e m b e r s h i p  i n f o r m a t i o n .  * /  

/  D a t a  v a l u e s  a s s i g n e d  t o  t h e  f i e l d s  d e f i n e d  a b o v e  

j t a t e _ r e c t  =  {  
& _ D z R e c t ,  
o b j e c t n a m e ,  
27, 
F A L S E ,  
_s_rect ,  

g r o u p m e m b e r s h i p  

/  I n i t i a l i za t i on .  
/  Po in te r  t o  d i spa tch  tab les .  
/  P o i n t e r  t o  n a m e .  
/  S t a t e ' s  i d  n u m b e r .  
/  S t a t e  i s  N O T  a u t o t e r m i n a t i n g .  
/  M e s s a g e  s e l e c t o r  t h a t  c a u s e s  
/  t rans i t ion  to  th is  s ta te .  
/  P o i n t e r  t o  g r o u p  m e m b e r s h i p  
/  i n f o r m a t i o n .  

i d S t a t e  s _ r e c t  =  ( i d S t a t e ) & _ s t a t e _ r e c t ;  / ' A p o i n t e r t o t h i s s t a t e  
/ " t ha t  i s  used  by  HP IV IBu i l d  * /  
/ *  t o  a c c e s s  a n d  m a n i p u l a t e  * /  
/  d a t a  I n  t h i s  s t r u c t u r e .  * /  

Inheritance. In HP IVIBuild, as in most object-oriented 
systems, state objects are arranged in a hierarchy. At the 
root of the hierarchy is a special state known as the root 
state (see Fig. 4). The root state in HP IVIBuild manages 
interstate transitions. Since the root state is at the top of 
the object hierarchy, it implements many more methods 
than the other states in HP IVIBuild. Using inheritance, 
the lower-level objects inherit all the methods from the 
root state. This inheritance mechanism is used to imple 

ment state transitions in HP IVIBuild. 
Polymorphism. HP IVIBuild's central input handling facil 
ity, which is called the state machine, depends on the 
concept of polymorphism. All states in HP IVIBuild have 
the same operational interface (i.e., the state object is 
polymorphic). Therefore to the state machine, all states 
look the same and are able to respond to the same set of 
messages. The state machine does not know or care which 
state is currently active. It only knows that the current state 
either implements or inherits all the methods that are the 
targets of messages being sent to it. 

The box on page 29 provides a brief review of object- 
oriented concepts and the HP IVI object-oriented environ 
ment. 

Input Handling 

Messages sent by the state machine to a particular state 
can result in either an interstate transition or an intrastate 
transition depending on the message that is sent. Interstate 
transitions are transitions among the various state objects 
of HP IVIBuild, and intrastate transitions are transitions 
within a particular state object. 

A new state becomes current by an interstate transition. 
Interstate transitions are handled by the state machine. All 
input in HP IVIBuild goes through the state machine. The 
state machine is an API callback function that is attached 
to all the components of HP IVIBuild's user interface and 
all of the workspace windows created by the user. The 
objects in the HP IVIBuild user interface are called user- 
interface objects, and the objects created by the user during 
an HP IVIBuild session are called user-workspace objects. 
Using this mechanism, HP IVIBuild is able to control the 
context of the user's input. This is an important require 
ment of any interactive design tool. 

The state machine performs the following functions: 
â€¢ It changes the active workspace windows when the user 

requests it. 
â€¢ It interprets the meanings (context) of the mouse buttons 

when they are pressed in the active workspace window 
according to a user-definable mouse button map. 

â€¢ It sends messages to the current state. 
â€¢ It manages the state stack. The state stack is an array of 

message selectors for the state objects. 
â€¢ It makes new states current and terminates others that 

have completed. 

The Current  State 
There is always a state that is active. This state is called 

Fig .  4 .  A  por t ion  o f  the  HP IVIBu i ld  ob jec t  h ie rarchy.  

R o o t  S t a t e    

Fig.  5 .  The s tate s tack.  
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the current state. The current state is always the state to 
which the state machine sends any messages. It is up to 
the current state to provide a target method for any mes 
sages that the state machine may send it. The target method 
is located either by implementation or by inheritance. If 
no operation is in progress (i.e., only one state on the stack), 
the current state is the root state. If an operation is in 
progress, the current state is the state that implements that 
operation (e.g., creation of an object such as a polyline or 
widget). 

No state knows which state was current before it became 
current and no state knows which state will become current 
after it ceases being current. These rules were strictly en 
forced to ensure the black-box nature of each state's 
methods during design and testing. 

Once current, a state controls the context of the user's 
input according to a state transition mechanism of its own. 
These state transition mechanisms are called intrastate 
transitions and are controlled entirely by the state itself 
using a local variable called a subsidie. For example, mov 
ing forward or backward in a sequence of actions that are 
part of one particular operation, such as creating a polyline, 
is controlled entirely by the state itself. The substate mech 
anism is described later in this article. 

State Stack Management  
During the execution of HP IVIBuild the states that are 

activated by the user are organized in a LIFO (last-in, first- 
out) stack (see Fig. 5). The state machine provides a mech 
anism to suspend operations in progress to do another op 
eration and then resume the suspended operation when 
the new operation finishes. The state at the top of the stack 
represents the current context of the user's input and is 
the current state. Only the current state can receive any 
messages. The maximum depth of the state stack is defined 
to be ten states. This is an adequate depth because there 
are other mechanisms in HP IVIBuild that prevent the state 
stack from growing to a depth of more than three or four 
states. The root state enters the state stack first and remains 
there during the entire execution of HP IVIBuild. Therefore, 
the root state is always in the stack regardless of the depth 
of the stack. 

At each interstate transition, the state machine checks 
the autotermination flags of each state in the state stack. If 
the autotermination flag is TRUE, that state is terminated 
immediately by the state machine and removed from the 
state stack. The state stack is then compacted and the state 
ending up at the top of the stack is started. If the autotermi 
nation flag is FALSE, only an action by the user can terminate 
the state. 

State Transit ion and Inheri tance 
As mentioned earlier, an interstate transition is the pro 

cess of making a new state (a state not currently on the 
state stack) the current state. The new state is placed at the 
top of the state stack and started by the state machine. The 
state transition process begins when an event occurs such 
as a button release over an object on the display. The first 
thing to happen is that the state machine function is called 
as part of the normal API callback processing (see page 23). 
The state machine function is passed a pointer to the 

ZtUSEFLDATA attribute of the object that received the event, 
which has a pointer to the message selector that, when sent 
to the a state, will cause an interstate transition to a 
new state. The state machine sends the message to the 
current state. This process works the same way for HP 
IVIBuild user-interface objects and user-workspace objects. 
except that user-workspace objects always send a hit mes 
sage to the current state. A window created by the user is 
the only user-workspace object that functions like a user-in 
terface object. A hit message results when a user presses a 
mouse button in a workspace window. 

If the current state can handle the message, the method 
that is called will either return a pointer to the current 
state or a NULL. This pointer is returned to the state machine 
as part of the normal message sending mechanism of the 
HP IVI object-oriented environment. States return pointers 
to themselves when they want to remain current. This will 
cause an intrastate transition. States return NULL when they 
receive an exit message and want to cease being the current 
state. This will cause an interstate transition. Fig. 6 shows 
a portion of the state transition process. 

Since the root state is the parent of all other states, the 
interstate transition process depends heavily on inheri 
tance. Each state inherits all the methods from the root 
state. When a state receives a message for which it does 
not have a method, the HP IVI object-oriented environment 
will search the current state's lineage (object hierarchy) 
until it finds the target method for the message. In the case 
of an interstate transition, the target method will always 
be found in the root state. The target method in the root 
state returns a pointer via the object-oriented environ 
ment's messaging system to the state object that is to be 
made the current state. This is the pointer that the state 
machine compares to the value of the pointer for the current 
state. When it sees that the two pointers are different, it 

Button 
Release 
Event 

DzSta te  Mach ine  ( . . . ,  msg .se lec to r )  

1 
Send Message to  

Current State 

Make  New 
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Send start 
Message to  the 

Current State 

Cont inue Looking 
for  Events 

Fig.  6.  The state t ransi t ion process.  
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places the new pointer at the top of the state stack (making 
the state current) and sends a start message to the new state. 
Thus, by inheritance, every state object has the ability to 
activate any other state object. 

When an intrastate transition occurs, there is no change 
to the current state (i.e., the pointers are equal). The current 
state handles the incoming message itself. 

State Protocol 
All states follow a specific protocol that is implemented 

in the state machine of HP IVIBuild. Fig. 7 illustrates this 
protocol. An interstate transition (Fig. 7a) occurs when the 
current state receives an exit message and it returns a NULL 
to the state machine indicating that it wants to cease being 
the current state. The state machine makes the new state 
the current state and sends a start message to the new state. 
The new state remains the current state as long as it con 
tinues to return a pointer to itself to the state machine (e.g., 
CurrenUState in Fig. 7b). Following this protocol allows a 
state to control the meaning of user input within its own 
context. Each state implements or inherits five standard 
methods that constitute its operational interface: start, hit, 
backup, undo, and exit. 
Start. As shown in Fig. 7, the start message is the first message 
a state receives before any other message is sent to the state 
(except exit). 
Hit. A state gets a hit message when the user presses a mouse 
button in the workspace window that is currently active. 
HP IVIBuild allows the user to construct and edit as many 
windows as desired but only one can be active at a time. 
To activate another window, the user only has to press a 
mouse button over the window that is to become active. 
Depending on their hit methods, states are classified as 
either multiaction or single-action states. 

A multiaction state requires the user to select multiple 
points in the active window to perform the operation im- 

Interstate 
Transit ion 

return (NULL) 

start 

(a) 
return (Current_State)  

I n t r a s t a t e  
T r a n s i t i o n  
( I n p u t  o v e r  b a c k u p  

U s e r  
W o r k s p a c e )  

(b) 

return (Current_State)  

start 

return (Current_State)  

plemented by the state. An example of a multiaction state 
is one that allows the user to create polylines or splines. 
When the user presses a mouse button in the active window 
and a multiaction state is the current state, the action of 
the state is said to go forward. Fig. 8 shows the intrastate 
transition diagram for a multiaction state that translates 
objects. 

A single-action state does not require a hit in the active 
window to go forward. Single-action states can only do 
one thing. An example of this are selections (i.e., states 
that select certain kinds of objects for further operations). 
Once the class of objects that are to be selected is known, 
the objects are selected and no further input from the user 
is required. Any single-action state that receives a hit mes 
sage is terminated and removed from the state stack. The 
hit message is sent to the the new current state. Fig. 9 
shows the intrastate transition diagram for all single-action 
states. 
Backup. All multiaction states implement backup. This is 
the reverse operation of a hit message because it allows the 
user to cause the action of the state to go backward over a 
previously sent hit. No single-action states implement back 
up. 
Undo. All states implement undo. Undo allows the user to 
back a state up to the point right after it received its first 
start. This has the effect of undoing any actions that had 
been performed by the state. Undo may also be sent im 
mediately after a previous undo to effect a redo operation. 
Exit. A state is sent an exit immediately before its removal 
from the state stack. This allows the state to reinitialize 

Interstate 
Transit ion return (Current_State)  

C u r r e n t  S t a t e  

backup 

Fig. 7. HP IVIBui ld state protocol,  (a) An interstate transit ion, 
(b) Intrastate transit ion. 

backup 

Fig .  8 .  In t ras ta te  t rans i t ion  d iagram fo r  a  mu l t iac t ion  s ta te  
t h a t  c u r  o b j e c t s .  T h e s e  s t a t e s  a r e  s u b s t a t e s  o f  t h e  c u r  
rent state shown in Fig.  7b. 
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itself for its next activation. 

The Substate 
Once current, a state controls its own actions using a 

local variable called the substate. During a sequence of 
operations, the messages start, backup, hit, and undo may be 
sent repeatedly to the current state. These actions do not 
cause interstate transitions. Rather, they cause intrastate 
transitions. The current state does not change but the mean 
ing of the next input event may have to be interpreted 
differently depending on the sequence of messages the state 
has received since it was made current. The value of the 
substate is changed to reflect the context of the next hit, 
backup, or undo. Note that start is always sent after every 
action whether the action causes an intrastate or interstate 
transition. This is part of the protocol established for a 
state by the state machine. 

Uniformity 
Great care was taken to ensure that the same actions have 

uniform behavior no matter which state is current. The HP 
IVIBuild team developed guidelines for developing states, 
and intrastate transition diagrams were developed before 
the development of a particular state so that the uniformity 
of actions could be assessed by the whole team. The result 
is a tool with very modular units of functionality that all 
behave in a consistent and intuitive manner. 

The HP IVIBuild User Interface 

HP IVIBuild's user interface was designed as a collabora 
tive effort between the HP IVIBuild team members and the 
industrial design department at HP Software Engineering 
Systems Division (see the article on page 39). The objective 
of the collaboration was to design a user interface for HP 

Interstate 
T r a n s i t i o n  r e t u r n  ( N U L L )  

r e t u rn  (Cu r ren t_S ta te )  

Current State 

IVIBuild that was both attractive and intuitive to the user. 
Besides the appearance. HP IVIBuild is structured to han 

dle native language support and user customization. One 
other interesting feature is that the HP IVIBuild user inter 
face presentation is not bound to the functionality until 
run time. 

Native Language Support  and Customizat ion 
HP IVIBuild's user interface conforms to HP standards 

regarding support for native languages and cultures. All 
text that is presented to the user such as labels, prompts, 
and error messages is contained in message catalogs and 
is retrieved by HP IVIBuild at run time. To localize HP 
IVIBuild, the user only needs to change the contents of the 
catalogs. In general, these tasks are performed by HP per 
sonnel in the country whose native language is the target 
language. This way, text can be presented with as much 
context sensitivity as possible. Idiomatic nuances of text 
presentation are not lost (as they sometimes are with 
straight translations). 

Another feature of HP IVIBuild's user interface presenta 
tion is that colors, tiles, fonts, mouse button bindings and 
icons can be customized for individual users by modifying 
the X Window System configuration file .Xdefaults. This 
mechanism allows individual users to customize the pres 
entation of IVIBuild's user interface to suit their own needs 
(e.g., left-handedness, black-and-white display). 

Presentation and Functionali ty Binding 
The presentation of the components that make up the 

user interface of HP IVIBuild (i.e., the buttons, menus, win 
dows, with and the functionality (the states) associated with 
these components are bound together at run time. The func 
tionality of HP IVIBuild, that is, the result of pressing a 
certain sequence of buttons, is not dependent on the user 
interface presentation. For example, in one user interface 
presentation, drawing a rectangle might be accomplished 
by selecting buttons labeled P1 and P2 for the lower-left 
and upper-right corners of a rectangle and typing the coor 
dinates into a pop-up dialog box. In another user interface, 

Message 
Selector 

( Z t U S E H _ D A T A )  

Parameter 

State 
Machine 

Csllbsck 
Function Zt lnpu t  

C a l l s . . .  

Fig.  9.  Int rastate t ransi t ion d iagram for  s ingle-act ion states.  
These states are substates of the current state shown in Fig. 
7b. 

F ig .  10 .  B ind ing  HP IV IBu i ld  user  in te r face  presenta t ion  to  
functionali ty at run t ime. 
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drawing a rectangle might be a three-button sequence in 
which the user presses the Rectangle button and then clicks 
on the desired coordinates with the mouse. In either inter 
face, the state operations result in a rectangle. 

The binding of functionality to user interface presenta 
tion is done when HP IVIBuild starts up. At this time the 
objects (windows, menus, buttons, etc.) that make up the 
HP IVIBuild user interface are restored from a file. Pointers 
to objects (Ztlds) that activate states or send messages to the 
state machine are looked up using the name of the object 
that was assigned when the object was created with the 
API functions. This lookup is accomplished using an API 
function. When the Ztld for an object is returned, the mes 
sage selector for the state to be activated is retrieved. At 
this point a callback object (ZtCALLBACK_OBJ), which will 
call the state machine whenever an event occurs on the 
user interface object, is created for the user interface object. 
Also, the message selector from the state object is made an 
attribute (ZtUSEFLDATA) of the user interface object. Once 
the callback object is attached to the user interface object, 
the binding is complete (see Fig. 10). When a specified 
event occurs on a particular user interface object, the in 
terstate transitions described earlier occur. This scheme 
makes the state machine a callback for every IVIBuild user 
interface object and for every workspace window the user 
creates. 

Separating the user interface presentation from function 
ality means that the presentation can be developed inde 
pendent of functionality and the same functionality can be 
easily given a new presentation. New functionality can be 
added and tested in a straightforward way without worry 
ing about its presentation. 

Conclusion 
HP IVIBuild was conceived with two objectives in mind: 

to be a powerful, easy-to-use tool to complement the HP 
IVI application program interface functions and to be the 
first API application and as such to provide feedback to 
the API development team. Both of these objectives have 
been accomplished. We believe that HP IVIBuild's func 
tionality and designed-in extensibility based on an object- 
oriented architecture are among the first for tools of this 
type. 
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Creating an Effective User Interface 
for HP IVIBuild 
The HP IVIBui ld user inter face was a col laborat ive ef for t  
between the sof tware eng ineers  deve lop ing the code for  
the product  and a  group of  indust r ia l  des igners  who 
understand the requirements of an effective graphical user 
interface. 

by Steven R.  Anderson and Jennifer  Chaffee 

AMONG THE PRESENT and potential customers for 
HP's computer systems are companies that are in 
creasingly integrating computers into their manu 

facturing processes. However, the computer focus of these 
companies is more on solutions than on hardware and 
software development. To help provide these solutions on 
HP computer systems there are efforts within the company 
to encourage or enable independent software vendors 
(ISVs) to develop these software solutions. HP IVI from 
HP's Industrial Applications Center (IAC) is one such effort. 
Its purpose is to help ISVs build graphical user interfaces 
for their applications used in industrial applications. 

Why the need for a graphical user interface? Many of the 
operators and users of computer-based systems in an indus 
trial environment are not computer literate. They typically 
perform tasks like controlling an automated spray paint 
line, and the interfaces to the tools they use are typically 
knobs, dials, buttons and other physical and visual objects. 
A command line interface is a totally foreign approach for 
these people, and many of them refuse to deal with it. 
Whatever can be done to enable the interfaces to come 
closer to the users' current way of doing things is seen as 
having value. A graphical user interface is seen as having 
the greatest potential in making the interface familiar. Re 
cent developments in user interface technologies1 are very 
suitable for graphical user interfaces in industrial automa 
tion applications. 

Background 
HP IVIBuild is a tool that enables users to develop graphi 

cal user interfaces interactively. Therefore, it seemed 
appropriate that it should have a graphical user interface. 
For this capability the HP IVIBuild developers decided to 
use the graphical user interface components that were 
under development at HP's Interface Technology Operation 
(ITO) in Corvallis, Oregon. These components are com 
monly called widgets.2 They include things like menus, 
scrollbars, pushbuttons, text-edit boxes, and radio buttons. 
They are the raw materials from which a graphical user 
interface is assembled. The HP IVIBuild team had no idea 
that using widgets would lead to collaborating with visual 
design professionals. 

Neither did we, the visual design professionals, know 
about the HP IVI team. We are the usability design and 

engineering group of HP's Software Engineering Systems 
Division (SESD). We are former industrial designers who 
switched our design focus from designing hardware enclo 
sures to the area of user interfaces, plus one graphic design 
er. At the time our division was developing what would 
become the HP SoftBench environment,3 and we were also 
looking to ITO for the necessary widgets. Rather than pas 
sively waiting to see what they might provide, we were 
encouraged by our management to lend our professional 
expertise to the widget development, and ITO was open- 
minded enough to listen to some of our ideas. 

We didn't begin with any proven graphic user interface 
expertise. We had done some design analyses of the leading 
graphical user interfaces. Also, coming from a background 
in which our experience and training forces us to process 
information visually gave us some ideas about how an ef 
fective graphical interface should look. And because our 
experience with software and computers was limited to 
being application users, we had some first-hand knowledge 
about the user interface requirements for users who are not 
software literate. 

Basic Principles 
Three principles have established the foundation for 

graphical user interfaces in recent years, notably in office- 
oriented applications. The first principle is that it is easier 
for most people to have their alternatives presented to them 
in a manner that allows them to make choices rather than 
having to remember all of the alternatives. Choosing a com 
mand from a menu is often easier than remembering it. 
The second fundamental principle is that making these 
choices by some means of direct manipulation is often 
preferred over typing in text commands. Pushing a button 
or dragging a file icon into a folder icon or a trash can are 
two examples of direct manipulation. Finally, the third 
principle is to use metaphors from the real world. For exam 
ple, we know what to do with a pushbutton. 

In our analyses of the many graphical interfaces existing 
today, one of the impressions we formed was how confus 
ing they could be because of the flat and bland graphics. 
This is especially true in multiwindow environments in 
which there is a high degree of overlapping and the simi 
larity of the graphic images seems to blend all the images 
together into one confusing mass. We thought that creating 
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greater visual distinctiveness between objects would signif 
icantly enhance a user's ability to keep things sorted out. 

3D Appearance of  Widgets  
Our first attempts to express widgets graphically were 

with the traditional black lines on a white background. To 
get away from the sameness mentioned above, some of the 
widgets were drawn to look three-dimensional and to look 
and act like pushbuttons. It soon became apparent that the 
displays of the future would not be constrained to simple 
black and white, and that larger areas of solid color could 
be used. This was a significant breakthrough. 

With the capability to use color, we added three colors 
to the black and white. By using light, middle, and dark 
versions of a color, we could make a button look very 
three-dimensional. This was achieved by making the top 
and left edges light, the flat surfaces the middle value, and 
the bottom and right edges dark. This technique makes it 
appear as though a light is shining on the button from the 
upper left. Another nice by-product of this technique is 
that by momentarily switching the light and dark colors 
when a button is selected, it actually appears to be pushed 
in. It was so effective that people got a little silly pushing 
buttons the first time they saw a working prototype. 

People intuitively grasp the notion that if something ap 
pears to protrude, it can be pushed or selected to generate 
some action. Widgets that accept or display inputs appear 
to be recessed. Noninteractive things like labels are flat. 

Scrollbars are hybrids, with a recessed groove containing 
raised controls. Menu bars look like large buttons with 
several labels on them. When the mouse drags over a menu 
item, it appears to raise, transforming itself into a button. 
When a menu item is selected by releasing the mouse but 
ton, the feedback mechanism is the same shadow reversal 
the pushbutton uses to appear recessed. Fig. 1 shows the 
transition from a total 2D appearance to a full 3D appear 
ance. 

Most people found this 3D appearance appealing. It be 
came a key factor in the subsequent adoption of the HP 
widgets by the Open Software Foundation (OSF) for their 
OSF/Motif standard user interface.4 

A New Principle 
The 3D appearance ends up creating a new fundamental 

graphical user interface principle: the visual separation 
and distinction of what we call user space and interface 
space. User space is where the user's inputs go, or where 
the user performs work. Examples are the space provided 
in a word processor for entering text, or the space provided 
in a paint program for creating images. It also includes 
those areas where the user is asked to input data like the 
name of a file. 

The rest of the screen is the interface space, or the visual 
manifestations of the applications and/or the operating sys 
tem. Included in this category are items like window 
frames, dialog boxes, tool panels, menus, and the metaphor- 
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ical desktop. The interface space, whether controlled by 
the application or the operating system, is where all of the 
3D effect is found. 

In office-oriented applications, which have been driving 
the graphical user interface movement to date, the 2D user 
space is usually dominant in terms of screen area. The 
main focus of these applications is generally to provide a 
tool that allows the user to create different forms of docu 
ments such as mail messages, memos, charts, spreadsheets, 
overhead slides, and newsletters. Based on these applica 
tions, the user space is perceived to be the WYSIWYG 
equivalent of some sort of paper document, whether a small 
notepad or a large drawing. It is predominantly two-dimen 
sional, which is appropriate because the resulting docu 
ments are also two-dimensional. 

There is an emergence of graphical user interfaces in 
which the interface space dominates because the main 
function of the applications is not document creation but 
some form of process setup and control. Examples include 
things like configuring and running a set of test instru 
ments, or monitoring and controlling a complex tempera 
ture control system or an assembly line. HP IVIBuild is 
geared to create interfaces of this latter type. The 3D widgets 
(or OSF/Motif widgets) are particularly well-suited to this 
type of interface because the physical reality they convey 
is much closer to the mental model most people have of 
activities that are control-panel oriented. Fig. 2 shows one 
window for an office-oriented application and another for 
an instrument control panel. 

HP IVIBui ld before Redesign 
In the early stages of development, the HP IVI team used 

the initial version of the widget code from HP's Information 
Technology Operation. The early results of their using this 
code produced the 3D appearance shown in Fig 3. Unfor 
tunately the 3D effect was largely lost and the user interface 
was hard to understand. This early result was not a surprise 
because the HP IVIBuild team had not yet had enough 
experience with widgets and consequently had little notion 
of how to achieve and use the 3D effect. They were also 
unfamiliar with many of the standard techniques and prac 
tices for creating graphical user interfaces. 

Our group had concurrently been using the 3D widgets 
with our own HP SoftBench tools. That successful experi 
ence plus the acceptance of HP widgets for OSF/Motif gave 
us a certain amount of credibility. As a result we soon 
found ourselves in contact with the HP IVIBuild team. Like 
our experiences with the ITO team in the development of 
widgets, the HP IVIBuild people were very open-minded 
in letting us get involved with their product. 

HP IVIBuild was different for us in that it not only uses 
conventional widgets to create a graphical user interface, 
but it can also create graphic objects that behave like 
widgets. What this means is that buttons and scrollbars 
can be supplemented with graphic representations of ob 
jects that can change to reflect current status. For example, 
a graphic image of a storage tank can change to show the 
current level of the liquid it contains, or an assembly line 
schematic can be changed to reflect the status of each work 
cell. The output of HP IVIBuild can range from simple 
windows with menu bars and dialog boxes to very complex 

control-panel-like layouts with animated graphics and 
numerous controls. These capabilities were not obvious in 
the original interface shown in Fig. 3. 

The Structure of  HP IVIBui ld 
The HP IVIBuild user interface is divided into three parts: 

a utility box, a tool box, and a workspace. 
The Utility Box. This area holds the menu bar, a prompt 
window, several status indicators, and some commonly 
used commands in the form of pushbuttons. 
The Tool Box. This area is like a palette of various graphic 
or widget creation tools. It has three modes: graphics, 
widgets, and models. The graphics mode functions like a 
typical paint program, displaying numerous drawing tool 
buttons as well as mechanisms for displaying and selecting 
items such as colors, patterns, and line weights. The widget 
mode is used for creating and specifying the widgets. The 
models mode is used to get access to models, which are 
templates or libraries of previously created work. Fig. 4 
shows the utility box and tool boxes at an early point in 
the design stage of HP IVIBuild. 
The Workspace. This is the area in which the user does 
the work of building a user interface. In this area graphic 
or widget objects are put together on a kind of three-dimen 
sional sheet of paper. After assembly, they are stored away 
for use as finished products or as models for reuse or mod 
ification. For example, a simple dialog box might be used 
as a template for other dialog boxes, eliminating the need 
to start each one from scratch. 

Collaboration 
The early efforts by the industrial designers focused on 

sorting out the functionality found in each of the HP 
IVIBuild areas and then finding reasonable ways of present 
ing each area. The utility box and the tool box visual layouts 
received the most attention. One of the first steps was de 
termining the menu structure in the utility box. Certain 
conventions and many examples exist in industry showing 
how applications organize and perform activities like edit 
ing and filing â€” for example, the locations of commands 
like cut, copy, paste, and quit in a word-processing package. 
And certain conventions exist in terms of dialog box layout, 
like where the OK, cancel, and help buttons should go. We 
followed accepted general practices wherever possible, and 
tried to develop acceptable solutions where no previous 
models existed. 

The tool box with its various modes was probably the 
most complex job. The final layout chosen for the tool box 
owes many of its approaches to showing status and offering 
choices or functions to existing de facto standards for paint 
programs. There were instances where we were forced by 
technical limitations to deviate from these standards. For 
example, a simple draw tool like the one used to draw a 
rectangle typically requires a decision about whether the 
rectangle is to be filled in or left as an outline. A typical 
solution is to have one button with a rectangle on it, with 
the left half hollow and the right half filled (what looks 
like one button is in fact two buttons). In our case the 
widgets wouldn't allow that approach, so we ended up 
with a separate button to turn the fill function on or off. 
Fig. 5 shows the design recommendation for the utility and 

OCTOBER 1990 HEWLETT-PACKARD JOURNAL 41  

© Copr. 1949-1998 Hewlett-Packard Co.



This case simple typical Office-oriented application window, in this case a simple woid planning 
document. Olher types of applications which would be similar to this are spreadsheets, 
chartingand graphing programs, various drawing and paint programs, desktop publishing 
applications, as well as CAD programs. All of these share certain characteristics: they want to 
be of most WYSYWYG character, and the final product of using them is most often a two 
dimensional piece of paper, 

It is the entirely appropriate that the User Space in which the user does the document 
creation resembles the final productâ€”a sheet of paper. It is large, white, fiat, uses black "ink," 
etc. Unless of course, it is an application that creates colored documents, The main point is 
that two dimensional User Space tends to dominate the user interface. 

The other window shows a different sort of application. Here the focus is on doing tasks 
like is up and running tests or making measurements, It is applications like this that 
IVlBuild is designed to create. Because the User Space is so limited, the three dimensional 
Interface Space dominates, This ends up being a good feature, as the applications can end up 
looking very much like the older hardware products their users are familiar with. 

tool boxes at a later stage in the development. 
Colors were another area where the designers had some 

thing to contribute. We had some color schemes in hand 
from our earlier work on widgets as well as from our work 
with HP's SoftBench product. This greatly simplified the 
tricky decisions required to convey the 3D quality of 
widgets. We provided the color names and RGB values that 
had to be assigned to each widget component to make the 
3D effect work and provide a pleasant overall interface. 

Fig.  2.  One window wi th a typ ica l  
2D off ice-or iented appl icat ion and 
t h e  o t h e r  w i n d o w  s h o w i n g  a  3 D  
instrument control  panel.  

Fonts were also important. Graphical user interfaces in 
general, and the 3D widgets in particular, are very much 
dependent on good fonts to be successful. While the popu 
lar notion of a graphical interface centers on icons, most 
of the work is still done with words, and good pro 
portionally spaced fonts make words work better. The HP 
IVlBuild team decided to use some display fonts that had 
been created by HP expressly for 3D widgets. These fonts 
provided both behavioral benefits (text properly centered 

Fig .  3 .  A  very  ear ly  vers ion  o f  
HP IVlBui ld when the design team 
f i rs t  began to use widgets.  
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in widgets, text baselines lined up, etc.) and a consistent, 
high-quality look. 

The designers also created all of the bit maps and icons 
associated with the tool boxes and other aspects of the 
product. One challenge with many of the tool box buttons, 
especially for those in the widgets mode, was to express 
the 3D nature on a small scale and with only two colors. 
The illusion of using three colors was achieved by using 
a light and a dark color and then introducing a dithered 
pattern that the eye blends together to form a third color 
(see Fig. 6). 

The final area of collaboration was to do something visual 
and graphical to help explain and sell HP IVIBuild. Some 
sample screens were created that express how HP IVIBuild 
can actually be used. With just a little prompting on how 

Fig.  4 .  The v isual  des igners '  f i rs t  
proposal  for  the HP IVIBui ld  user  
interface. 

to use the 3D effect, a designer used HP IVIBuild to create 
two sample screens for each of seven potential application 
areas. These compelling images, achieved through the use 
of the actual tool, have done more to explain HP IVIBuild 
and its capabilities than a volume of marketing brochures. 
One of these sample screens is shown in Fig. 2 on page 8. 

Conclusion 
We learned a few things as a result of this collaborative 

exercise. One is that experts often have problems com 
municating their concepts and ideas to nonexperts. In this 
case we had two groups of experts. We found that it was 
important to have a main conduit or interpreter between 
the user interface designer and the rest of the software 
team. Without someone to answer all of the questions the 

Fig.  5 .  A la ter  vers ion of  the user  
inter lace af ter incorporat ing some 
of the implementat ion l imitat ions. 
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user interface designer asks, and interpret the various 
dialogs with the team members, the communication pro 
cess really breaks down. One designer interfacing with a 
half-dozen individual team members means a half-dozen 
different interfacing styles. 

Another lesson we learned is how important it can be 
to have an early vision of what you are trying to do. Tools 
exist that enable designers to create this vision and user 
scenarios quite quickly. The power and usefulness of these 
visuals should not be underestimated. They are powerful 
catalysts for people's thinking and communication. Once 
these are analyzed, discussed, and modified, the product 
is better understood by all concerned. Only at this point 
should the interface coding begin. The mistake should not 
be made of bringing the visual design help in at the very 
end to fix up the icons. Chances are the flaws go far beyond 
cosmetic graphics, and at this point the investment has 
been so great that significant changes are nearly impossible. 
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Irene earned a BS degree (1981 ) in industrial en 
gineering from the University of Wisconsin, and an 
MS degree (1987)  in  e lect r ica l  engineer ing f rom 
Carnegie-Mellon University Â¡n Pittsburgh. Before 
jo in ing HP,  she worked wi th  Unimat ion/West ing-  
house Â¡n Pittsburgh to develop robotic systems. 
Born in Racine, Wisconsin, Irene lives in Cupertino, 
Ca l i fo rn ia .  For  many years ,  she has  been a  "d ie  
hard" runner and enjoys meeting other HP people 
through her membership in the HP Running Club. 

John U. Frohlich 
As a member of  the sof t -  
ware development team at 
HP s  Indust r ia l  App l ica  
tions Center. John Frohlich 
helped develop the HP DIS 
product .  He jo ined HP in  

[  1976 at the company s Op 
toelectronics Div is ion,  and 
he lped deve lop  mach ine  
language programs for  cal  

culator-based systems to test LED display devices 
He also has worked on several versions of the RTE 
operat ing  sys tem for  HP 1000 computers  and on 
ATS/1000  so f tware  John  rece ived  h is  BSEE de  
gree in 1 963 at the Lucerne State College of Tech 
nology in Switzerland He is a member of the IEEE 
Born in Switzerland, he lives Â¡n Cupertino, Califor 
nia, and enjoys mountain hiking, biking, and l isten 
ing to o ld jazz record ings 

7 3    R ,  L ,  C  M e a s u r e m e n t s  

Asad Aziz  
^ ^ ^ ^ ^  N o w  a  m a r k e t i n g  a c c o u n t  

J ^ H  ^ ^ ^  m a n a g e r  f o r  H P ' s  C i r c u i t  
^ 1  T e c h n o l o g y  G r o u p ,  A s a d  

Aziz was previously in R&D, 
^ â € ¢ n f l M l  w h e r e  h e  w o r k e d  o n  t h e  d e  

sign, layout, modeling, and 
V y  e l e c t r i c a l  m o d e l  v e r i f i c a t i o n  

o f  the  PCX CPU package 
^ ^ ^ ^ ^ ^ ^ ^  B e f o r e  t h a t ,  h e  w o r k e d  o n  

. ^ â € ¢ I H I H H B k k  p a c k a g i n g  R & D  f o r  H P  P A -  
RISC computers, and on TAB design and electrical 
model ing.  Asad jo ined HP's  Colorado In tegrated 
Circuits Division in 1 985, shortly after he graduated 
from Brigham Young University with a BSEE degree 
in 1 984. He received an MBA degree Â¡n 1 990 from 
the University of Denver. A member of the IEEF. he 
has coauthored two technical  papers on packag 
ing. Born in Lahore, Pakistan, Asad is married and 
l ives Â¡n Fort Coll ins, Colorado. He enjoys squash, 
b icyc l ing,  and windsur f ing 

Ravi  Kaw 
I  Rav i  Kaw deve loped a  

methodology to measure R, 
L ,  and C parameters in  
VLSI  packages us ing coax 
ia l  probes rather than cus- 

I  torn-designed boards.  
|  S ince jo in ing HPin  1982,  he 

I has served as a product 
eng ineer  for  DRAM and 

  m a t h  c h i p s  a n d  a s  a  
semiconductor process engineer,  and has worked 
on  package  measu remen ts  and  mode l i ng  re  
search.  Before jo in ing HP, Ravi  was a lecturer  at  
Kashmir University and an engineer at the Jet Pro 
pulsion Laboratories and Fairchi ld Semiconductor 
Corp.  He is  the author  of  14 technical  ar t ic les on 
dev ice  phys ics ,  dev ice  mode l ing ,  packages  and 
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systems, and measurement methods. His work has 
resu l ted  in  two pend ing patents  on packag ing 
structures and systems and measurement methods. 
Ravi is a member of the IEEE and the International 
Packaging Society. He received his BE degree in 
1966 in  e lect ronics and te lecommunicat ions f rom 
Jabalpur  Univers i ty ,  h is  MSEE degree in  1972 in  
microwave sol id-state devices from Marquette Uni 
versity, and his PhD degree in 1 978 in solid-state 
electronics, quantum electronics, and microwaves 
f rom the Universi ty of  Cal i fornia at  Los Angeles.  
Ravi is a member of the board of directors of a local 
Hindu community and cultural center,  and a Sun 
day school  teacher .  Born in  Sr inagar ,  Kashmir ,  
India, he is married, has two children, and resides 
Â¡n San Jose, California. He enjoys jogging, garden 
ing,  h ik ing,  and reading.  

.' 

David W. Quint  
Before Dave Quint  jo ined 
HP's Desktop Computer  Di  
v is ion in 1979,  he helped 
des ign nuc lear  reactor  
control systems for Westing- 
house-Bett is Atomic Power 
Laborator ies.  As an HP 
R&D des ign eng ineer ,  he 
developed tape automated 
bonding (TAB) and pin-gr id 

array (PGA) packaging for VLSI circuits. He is now 
an R&D engineer  work ing on in tegrated c i rcu i t  
packaging at HP's Colorado Integrated Circui ts Di 
vision. Dave's work has resulted in two patents, one 
describing a method of sampling a 1 00-GHz opti  
cal pulse stream, and another for a method of de 
pos i t ing tungsten for  in tegrated c i rcu i t  in tercon 
nects. His professional interests include integrated 
c i rcu i t  process engineer ing,  e lect romagnet ic  
f ields, circuit analysis, and optical electronics. He 
published a paper in the Journal of Applied Physics 
while at MIT, and has coauthored three conference 
papers  on e lec t ron ic  packag ing.  He rece ived h is  
BSEE degree in 1972 and MSEE degree Â¡n 1976 
f rom the Univers i ty  of  Wisconsin at  Madison,  and 
earned a PhD degree Â¡n 1979 f rom the Massa 
chuset ts  Ins t i tu te  o f  Technology.  Dave served as 
a weather observer Â¡n the U.S. Air Force from 1 963 
to 1 967, attaining the rank of sergeant. Born in Bar- 
ran, Wisconsin, he is married, has two boys and a 
girl, and resides Â¡n Fort Collins, Colorado. His hob 
bies include weight l i ft ing and taking karate lessons 
wi th  h is  ch i ld ren.  Dave says they ho ld  advanced 
belts Â¡n the martial arts, but he's still working on the 
basics. 

Frank J.  Perezalonso 
Frank Perezalonso 
special izes in hardware de- 
s ign engineer ing and 
analog c i rcu i t  des ign and 
measurements.  He jo ined 
HP Laboratories in 1 984 as 
a  semiconductor  p rocess  
technic ian,  and is  now a 
member of  the technica l  
s ta f f  o f  HP 's  C i rcu i t  Tech 

nology Group. He worked on the electr ical charac 
ter izat ion of  the h igh-per formance HP 408C PGA 
integrated circuit package. In the past, Frank was 
invo lved  in  E-beam l i thography  p rocess  deve lop  
ment, evaluation and test of HP's membrane probe 
card, and test methods for the electr ical characteri  
zat ion of  1C packages.  Before he jo ined HP, he 
worked on semiconductor processing for Fairchi ld 
Semiconductor Corp. and as an instructor Â¡n math, 
physics, and semiconductor processing at Foothi l l  
Col lege in Los Al tos,  Cal i fornia.  He studied 
semiconductor  process ing a t  Footh i l l  Co l lege,  re  
ceived a BSEE degree in 1 985 from the University 
of  Santa Clara,  and expects to  receive h is  MSEE 
degree in  December .  Born  in  Managua,  
Nicaragua, Frank is married, has a daughter, and 
lives in San Jose, California. He enjoys sports and 
teaching. 

8 2  _  A i r  F l o w  A n a l y s i s  :  

78 â€” Statistical Simulation 

Chee K.  Chow 
Manu fac tu r i ng  deve lop  
ment engineer Chee Chow 
specializes Â¡n computer- 
integrated manufactur ing,  
manufacturing data bases, 
and analog and microwave 
c i rcui ts.  He jo ined HP's 
Santa Clara Technology 

I Center Â¡n 1984 and has 
n done research in stat ist ical 

c i rcui t  s imulat ions for  c i rcui t  designs.  He recent ly  
t ransfer red to  HP's  Microwave Semiconductor  
Division. In the past, Chee worked on bipolar high 
speed circui ts at  HP, and researched coal conver 
sions and materials at Washington State University, 
where he received his PhD degree in 1 974 Â¡n phys 
ical  chemistry.  He also earned an MS degree Â¡n 
1984 Â¡n electr ical engineering from Oregon State 
University. Chee is the author of 1 5 technical arti 
c les  on fue l  process ing,  phys ica l  chemis t ry ,  and 
electronics. 

As  manager  o f  compute r  
f lu id dynamics appl icat ions 
at  Cray Research, Inc. ,  
Ken t  M isegades  co l l abo  
rated wi th HP on ai r f low 
simulat ion in the HP 9000 
Mode l  850  computer .  A t  
Cray  Research ,  he  i s  re  
sponsible for al l  f lu id 

I  dynamics - re la ted  app l i ca  
t ions in  the aerospace,  automot ive,  meta ls ,  e lec 
t ron ics,  and chemical  indust r ies.  His  exper ience 
a lso inc ludes work as an aerodynamic is t  for  Dor-  
nier GmbH Â¡n West Germany from 1980 to 1984. 
A  member  o f  the  A IAA,  Kent ' s  p ro fess iona l  in  
terests include aircraft design and fluid mechanics. 
He is  a  graduate of  Auburn Univers i ty  wi th  a BSc 
degree (1 979) in mechanical engineering, and has 
an ME degree (1 980) in fluid dynamics from the von 
Karman Institute Â¡n West Germany. Born Â¡n Los 
Angeles, California, Kent is married, has three chil 
dren,  and resides Â¡n Eagan, Minnesota.  His hob 
b ies inc lude a i rcraf t  des ign and radio-contro l led 
sailplanes. 

Vivek Mansingh 
Â¡Since joining HP's Systems 

Technology Div is ion in  
1987,  Vivek Mansingh has 
per formed research and 

I  development in thermal  
i  management  of  e lect ron ic  
I  equipment  in  the com- 
I  pany's mainl ine systems 

^ ^ ^  j  l a b .  U s i n g  f i n i t e - e l e m e n t  
model ing,  he analyzed 

three-dimensional  a i r  f low in the HP 9000 Model  
850 computer .  Before jo in ing HP,  V ivek taught  a t  
Lehigh University from 1 986 to 1 987. A member of 
the  ASME,  the  IEPS,  and the  CHMT,  he  has  au  
thored or coauthored 1 2 technical publications on 
thermal f luids, and is named an inventor on a pend 
ing patent. He earned his MS and PhD degrees in 
1 986 from Queen's University in Canada, studying 
mechanical  engineer ing and special iz ing Â¡n ther 
mal fluids. Born in Fatehpur, India, Vivek is married, 
has two children, and lives in Santa Clara, Califor 
nia. He enjoys traveling with his family and singing 
Indian music wi th a profess ional  group.  His 
hobbies inc lude jogg ing,  tenn is ,  and badminton.  
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26.5-to-75-GHz Preselected Mixers 
Based on Magnet ical ly  Tunable Bar ium 
Ferrite Filters 
A new resonator material â€” barium ferrite â€” and a new four- 
sphere design are featured in  a ser ies of  magnet ica l ly  
tunable preselect ion f i l ters for the mi l l imeter-wave 
f requency range. 

by Dean B.  Nicholson,  Robert  J .  Matreci ,  and Michael  J .  Levernier  

THE NEED FOR HIGHER PERFORMANCE has driven 
the frequency ranges of systems and components 
from the microwave range (under 30 GHz] into the 

millimeter wavelengths (30 to 100 GHz). Moving to higher 
frequencies makes it possible, for example, to increase the 
antenna gain of small reflectors and to improve the spatial 
resolution of imagers. The benefits of the move to milli 
meter-wave bands are being felt in many fields, especially 
communications, remote sensing, and defense.1 

The spectrum analyzer, a calibrated receiver with vari 
able resolution, is an important basic tool for testing and 
troubleshooting such systems. Microwave spectrum 
analyzers use advanced technology to provide accurate, 
unambiguous frequency-domain measurements. Hewlett- 
Packard has extended these measurements into the mil 
limeter-wave bands. 

A new series of preselected spectrum analyzer RF sec 
tions, the HP11974 Series preselected mixers, makes milli 
meter-wave spectrum analyzer measurements faster and 
easier by removing image and multiple responses from the 
spectrum analyzer display, thereby eliminating the need 
for complicated signal identification routines. Each RF sec 
tion consists of a mixer to down-convert millimeter-wave 
signals into the intermediate frequency range of HP micro 
wave spectrum analyzers, and a magnetically tuned pre 
selection filter to remove unwanted signals. The preselec 
tion filter uses barium ferrite resonator material, doped so 
that it starts resonating at the beginning of the waveguide 
band (see article, page 59). 

Table I lists the four preselected RF sections and their 
frequency ranges. Each RF section covers a full waveguide 
band (Â±20% bandwidth), one of the four standard bands 
from 26.5 to 75 GHz. 

The HP 11974 Series preselected mixers are compatible 
with the HP 8566B spectrum analyzer, the HP8563A port 
able spectrum analyzer, the HP 70000 modular measure 
ment system with the HP 70907B external mixer interface 
module, and other HP microwave spectrum analyzers. 
They provide a displayed average noise level at 10-Hz 
bandwidth that is lower than -106 dBm in the A, Q, and 
U bands and lower than -95 dBm in the V band. Image 
rejection is better than 55 dB in all four bands. 

Table I  
HP Mil l imeter-Wave Preselected 
Spectrum Analyzer  RF Sect ions 

(HP 11974 Series Preselected Mixers)  

Methods of  Extending the Frequency Range 
There are three principal ways to extend the frequency 

range of a microwave spectrum analyzer. The first method, 
shown in Fig. la, uses a classic superheterodyne receiver 
front end. A tracking preselector and a local oscillator (LO) 
both sweep the same frequency span, separated by the in 
termediate frequency (IF). The preselector prevents spuri 
ous responses, such as images or intermodulation products, 
from being displayed. The LO must be phase-locked and 
have reasonably low phase noise. To use this method, high- 
Q resonators and active devices maintaining negative resis 
tance across the full waveguide bands would have had to 
be developed. The design would have been intricate and 
expensive. These technological difficulties eliminated this 
method from consideration for the HP 11974 Series. Fig. 
2 shows where this type of millimeter-wave extender 
would interface with the mainframe microwave spectrum 
analyzer. 

A block down-converter, shown in Fig. Ib, eases the 
local-oscillator problem by using one fixed oscillator per 
band instead of the swept LO of the superheterodyne re 
ceiver. With this down-converter, input RF frequencies are 
converted to an identical but lower frequency span (swept 
IF). The swept IF can be arranged to be within the range 
of the microwave spectrum analyzer. Even though the res 
onator and the active devices are operated at a single fre 
quency, designing for performance and cost still poses a 
formidable problem. Also, this method lacks a tracking 
preselector, so the first mixer is subject to distortion caused 
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Tracking 
Preselector 

Fundamental  
Mixer 

RF In 
50 to 75 GHz Â®â€” (S 

Tune 
Ramp In 

Sweep 

(a) 

RF In 
50 to  75 GHz 

Phase 
Detector 

Ref 

(c) 

S w e p t  L O  
50.32 to 75.32 GHz 

(Swept) 
D) IF Out 

1  to 26 GHz 
Wideband 

Preamplifier 

(b) 

Harmonic Mixer 
n = 1 4  

R F I n  
50 to  75 GHz 

LO In  
3 .54 to 5 .33 GHz 

Tune  Ramp 

Fig. 1 . Three types of RF sections for extending the frequency 
range of a spectrum analyzer. The letters A, B, C, and D refer 
to  F ig .  2 ,  wh ich  shows where  these RF sec t ions  connect  to  
the spect rum analyzer ,  (a)  The superheterodyne RF sect ion 
uses a  swept  prese lec tor  and a  swept  loca l  osc i l la tor  (LO) .  
The phase-locked loop is used to set the beginning of the LO 
sweep accurate ly ,  (b)  The b lock down-conver ter  has a  f ixed 
LO and a swept intermediate frequency (IF), (c) The harmonic 
mixer  vers ion of  the superheterodyne RF sect ion.  

by multiple signals and even single input signals. The wide 
span of the IF can cause another problem. It requires a very 
wide-bandwidth IF amplifier to improve the sensitivity of 
the microwave analyzer, which is used as a variable IF strip. 

The preselected harmonic mixer version of the super 
heterodyne front end, shown in Fig. Ic, provides a reason 
able compromise. The preselector protects the mixer from 
spurious responses. The mixer, a harmonic type, uses a 
millimeter-wave harmonic of the existing microwave LO 
in the analyzer. The conversion loss of such a harmonic 
mixer exceeds that of the fundamental harmonic mixer 
shown in Fig. la, but the design effort goes into the preselec 
tor, which is a passive component and therefore somewhat 
easier to design than a millimeter-wave LO. (Of course, 
once the resonators for such a preselector are available, a 
wideband oscillator may be possible if the active devices 
can be obtained.) 

Block Diagram 
The method of Fig. Ic was chosen for the HP 11974 

Series preselected mixers. Fig. 3 shows the HP 11974 block 
diagram. The RF signal that is to be down-converted to IF 
enters the waveguide flange of the tunable preselector 
shown in Fig. 3, then goes to the isolator and the HP 11970 
Series harmonic mixer. Electromagnets in the preselector 
develop a magnetic field, which tunes the preselector. The 
scaling electronics transforms the tune ramp voltage of the 
spectrum analyzer into magnet current. 

The unbiased harmonic mixer was developed previ 
ously2 to extend spectrum analysis into the millimeter- 
wave range. If used without a preselector, the mixer con 
verts the RF signal to an IF whenever an LO harmonic 
sweeps past the RF. However, the horizontal frequency 
scale is only calibrated for a single harmonic of the LO, 
the 14th for the V-band example shown in Fig. 4a. The 
desired response, the 14 + signal in Fig. 4a, appears as a 
result, as do several unwanted responses resulting, for 
example, from the 12th, 16th, and higher harmonics. 

In the spectrum shown in Fig. 4a, the RF input consists 
of several signals from the frequency comb of a multiplier 
with outputs every 5.1 GHz. The unpreselected harmonic 
mixer shows several unwanted responses to each comb 

Harmonic 
Mixer 

n = 1,2,3,4 

RF Input 
2  to  26 GHz 

LO 

Sweep 
Ramp 
Generator 

F ig .  2 .  M ic rowave  spec t rum ana  
lyzer block diagram, showing inter 
face  po in ts  (A ,  B ,  C ,  D)  w i th  the  
mill imeter-wave RF sections shown 
in Fig. 1 . 
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RF In 

IF Output 
(310 or 321 

.  L O  I n p u t  
S  ( 3  t o  6  G H z )  

F i g .  3 .  H P  1 1 9 7 4  S e r i e s  p r e s e  
lected mil l imeter-wave RF sect ion 
b lock d iagram. 

REF 0. 0 dB 

UNPRESELECTED 

HARMONIC 14L 

PRESELECTED 

HARMONIC 14L 

START 50. 0 GHz 

RES BW 300 KHz 

(b) 

VBW 30 KH= 

STOP 75. 0 GHz 

SWP 7. 50 oÂ«s = 

Fig. 4. ("aj X\n unpreselected spec 
t r um ana l yze r  sweep  f r om 50  t o  
75 GHz for an input signal consist 
ing of comb lines from a multipl ier. 
T h e r e  a r e  s e v e r a l  u n w a n t e d  r e  
sponses  to  each  comb  l i ne .  The  
h a r m o n i c  r e s p o n s e s  t o  t h e  5 1 -  
GHz comb l ine are  labe led,  (b)  A 
p r e s e l e c t e d  s p e c t r u m  a n a l y z e r  
sweep for  the same input  s igna l .  
The mul t ip le  responses are e l imi  
n a t e d  a n d  t h e  m u l t i p l i e r  c o m b  
l ines every 5. 1 GHz are clearly 
displayed. 
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line, thereby producing many responses, most of which 
are unwanted and severely hamper measurements. 

The HP 11974 preselected mixers add a waveguide track 
ing preselector to the harmonic mixer. The resulting V-band 
display is shown in Fig. 4b. Here, only one response occurs 
for each of the five comb lines. 

Hexagonal Ferri te Fi l ter Design 
Having decided to design the HP 11974 Series by adding 

tunable bandpass filters as preselectors to the HP 11970 
Series unpreselected harmonic mixers, we looked for the 
easiest way of doing things to make the best use of our 
resources. At the outset, we had decided to use doped 
hexagonal ferrite spheres as filter resonator elements. Their 
built-in frequency offset (see article, page 59) allowed 
us to employ existing YIG tuning magnet designs to cover 
waveguide bandwidths. Because the HP 11970 mixers have 
TE10 waveguide inputs, and because it seemed extremely 
difficult to reduce typical YIG filter loop coupling struc 
tures (Fig. 5) to the small sizes that would be required to 
make filters for the highest-frequency band (50 to 75 GHz), 
we decided to use TE10 waveguide as the transmission 
medium in our filter. 

The high-frequency (53 to 80 GHz) barium ferrite filter 
work done by Lemke and Hoppe3 served as a starting point 
for our filter design. Their two-sphere, iris-coupled filter 
used crossed input and output waveguides (Fig. 6) and 
produced RF magnetic fields in the two waveguides that 
were perpendicular to each other at the iris to reduce out-of- 
band leakage. A linear taper was used to reduce the height 
of the waveguide to allow a smaller gap between the magnet 
pole tips. 

A two-sphere filter was built in U band (40 to 60 GHz) 
to demonstrate the feasibility of the crossed waveguide 
filter approach.4 This filter had typical insertion loss of 4.5 
dB, a 3-dB bandwidth of 325 MHz, and off-resonance iso 
lation greater than 30 dB. The spheres were aligned on 
beryllia rods, which were slipped into holders that allowed 
Â±0.1 mm of sphere adjustment from side to side and up 
and down in relation to the iris. The sphere rods were 
inserted through the reduced-height sidewall of the 
waveguide so that it was possible to center the spheres 
exactly over the iris and to move them closer together or 
farther apart to change the sphere-to-sphere coupling. In 
Fig. 7, the response of this filter is shown centered at ap 
proximately 48.5 GHz and moved up by 4.5 dB so the 
off-resonance isolation can be read easily off the plot. 

The low-frequency side of the filter's response cuts off 
more quickly than the high-frequency side, and 650 MHz 
away from the peak of the passband the rejection is about 

Magnet Pole 

RF In 
YIG Sphere 

RF Out 

Magnetic 
Field Lines 

Fig .  6 .  Two-sphere  wavegu ide  bandpass  f i l te r .  

35 dB. The rejection of a filter 650 MHz away from the 
peak is important for preselection applications because the 
IFs used in the HP instruments are approximately 310 MHz 
and 321 MHz. An unpreselected mixer will display an 
image signal at the same amplitude as the true signal at 
two times the IF away from the true signal. Therefore, much 
of a filter's usefulness depends on its image rejection, 
which is a measure of how much this unwanted trace is 
suppressed. By adjusting the spheres farther apart or closer 
together, and by changing the iris diameter and the sphere 
size, the best compromise between filter insertion loss, image 
rejection, and off-resonance isolation can be achieved. 

Two-sphere filters were built in the other millimeter- 
wave bands using the information obtained from the U- 
band filter and applying appropriate scaling factors. The 
results for insertion loss and off-resonance isolation for the 
family of two-sphere waveguide filters5 are shown in Figs. 
8 and 9, respectively. The 3-dB bandwidths of these filters 
were 200 to 350 MHz. Although the insertion loss results 
were acceptable, the image rejection and off-resonance iso 
lation of these filters were not sufficient for instrument 
applications. The goal was then changed to design a filter 
with off-resonance isolation and image rejection greater 
than 55 dB. 

A literature search showed three-sphere and four-sphere 

Fig.  5 .  A s ing le  s tage of  a  typ ica l  YIG f i l ter .  

50 
Frequency (GHz) 

Fig.  7 .  Two-sphere U-band f i l te r  response.  
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Fig.  8.  Insert ion loss of  two-sphere f i l ters.  

waveguide filter designs, but none of them would give the 
required off-resonance isolation at millimeter-wave fre 
quencies. Our next design consisted of two of the above 
two-sphere filters under one set of magnet pole tips, con 
nected by a very short transverse waveguide (Fig. 10). This 
four-sphere filter configuration does not increase the mag 
net pole tip separation, but in theory should double (in 
dB) the insertion loss, off-resonance isolation, and image 
rejection of the two-sphere filters previously built. To 
simplify the mechanical design, sphere mounts were 
machined from low-dielectric-constant plastic and epoxied 
over the irises. Resonator spheres were then placed on the 
sphere mounts, aligned and epoxied in place (Fig. 10). This 
sphere mounting technique allows accurate measurement 
of the sphere separation after mounting to determine 
sphere-to-sphere coupling. 

The one significant difference that was expected in going 
to the four-sphere design was the possibility of the two 
irises and the short transverse guide (one wavelength long 
at approximately 80% of band) forming a coupled-cavity 
bandpass filter that might give a fixed-frequency spurious 

- 7 0  

4 0  5 0  6 0  
% of  Band 

90 100 

Fig.  9.  Off - resonance isolat ion of  two-sphere f i l ters.  

response. When the first four-sphere filters were turned 
on, they gave the expected double (in dB) off-resonance 
isolation, insertion loss, and image rejection, as well as the 
cavity-mode response (Fig. 11). By narrowing the width of 
the input and output waveguides and moving the spheres 
off-center towards the center of the filter, the one- 
wavelength cavity mode can be pushed 5 to 6 GHz above 
the top frequency in the band. The one-wavelength cavity 
mode can thus be eliminated by shortening the transverse 
guide. However, this brings the one-half-wavelength cavity 
mode in-band at about 15% of the band. The one-half- 
wavelength cavity mode is not as strong as the one- 
wavelength mode, and can be suppressed very well (Fig. 
12) by introduction of a distributed loss in the transverse 
guide to detune the cavity. This loss is effected by a thin 
sheet of Kapton (plastic) between the sides of the transverse 
guide and the iris plate to allow some energy to leak out. 
The Kapton sheet is shown in Fig. 13, which also shows 
the four-sphere filter assembly. 

Four-sphere filters using scandium-doped barium fer- 
rites as resonators are presently being built in A, Q, U, and 

Fig. 1 0. Four-sphere fi l ter design. 
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Frequency (GHz) 

Fig.  11.  F i rs t  four-sphere f i l ter  response shows cav i ty  mode 
resonance. 

V bands. They typically have insertion loss of 8 to 12 dB, 
3-dB bandwidth of 120 to 200 MHz, image rejection greater 
than 55 dB, and off-resonance isolation greater than 70 dB. 
These performance figures represent trade-offs that were 
made between the different parameters. For instance, by 
mounting the spheres closer together (top to bottom) a four- 
sphere V-band filter was made having 4 to 6 dB insertion 
loss across the band. Unfortunately, because of the tighter 
sphere-to-sphere coupling, the filter skirts were wider and 
the image rejection was degraded. 

Filter Drive Circuitry 
For proper system operation, the barium ferrite filter 

must track the input frequency of the spectrum analyzer. 
The HP 11974 Series preselected mixer receives a tune- 
ramp voltage from the spectrum analyzer that is propor 
tional to the frequency of the spectrum analyzer's first local 
oscillator. For any given band, assuming a certain harmonic 
number, mixing sense, and mixer IF, this voltage is suffi- 

Ref 0.0 dB, 10.0 dB/ 

cient to determine the millimeter-wave frequency to which 
the spectrum analyzer is tuned. This voltage is then con 
verted to a coil current that will tune the filter to the appro 
priate frequency. 

To provide the correct current to the filter, the frequency- 
versus-coil current characteristics of the filter must be taken 
into account. The frequency of the barium ferrite filters 
varies linearly with current, and a straight-line approxima 
tion is sufficient. For example, a V-band filter typically 
deviates from a straight-line tuning equation by no more 
than Â±90 MHz over the entire range from 50 to 75 GHz. 
Small tuning nonlinearities are compensated by using the 
preselector peak function of the spectrum analyzer. This 
function provides a small offset to the tune voltage to peak 
the filter on the signal being measured. 

Because of the internal anisotropic field of the barium 
ferrite spheres, very little current is required to tune the 
filters to the lowest frequency of the band. For all four 
bands, from 26.5 GHz to 75 GHz, the coil current required 
at the lowest frequency is approximately 70 milliamperes. 
The filters then tune to higher frequencies at a rate of 60 
to 70 GHz/ampere. As a result, the widest frequency bands 
require the most current. The A band, with a span of 13.5 

Thermistor 
Assembly 

Frequency (GHz)  

F ig .  12 .  Fou r - sphe re  f i l t e r  r esponse  w i t h  cav i t y  mode  sup  
pression. 

Magnet 

Input/Output 
Waveguide 

Iris Plate 
Barium Ferrite 
Resonator Spheres 

Kapton Sheet 

Transverse 
Waveguide 

Magnetic Center 
Body 

Magnet 

Fig.  13.  Four-sphere f i l ter  assembly.  
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GHz, typically requires 270 milliamperes of coil current to 
tune to 40 GHz. V band, with a span of 25 GHz. typically 
requires 425 milliamperes of coil current to tune to 75 GHz. 
Coil current is provided by a 50-volt power supply. The 
coil current flows through the filter coil, a transistor that 
controls the amount of current flow, and a 3.1O resistor 
that is used to monitor the current flow, as shown in Fig. 
14. To minimize the temperature dependent tracking er 
rors, the 3. 1Ã1 resistor has a low temperature coefficient, 5 
ppm/Â°C, as do resistors in other critical locations. The 
power supply was chosen to be 50 volts to accommodate 
the voltage drops across all of the above items. The capaci 
tor across the coil shunts unwanted high-frequency cur 
rents away from the coil. The Zener diode across the coil 
provides a discharge path for the coil at the end of a sweep, 
when the current through the transistor goes to zero. 

The effect of temperature on the filter's frequency is 
another consideration in filter tuning. Some filters, such 
as the Q-band filter, have very little frequency drift with 
temperature, while others, such as the V-band filter, are 
very sensitive to temperature. With a constant coil current, 
a V-band filter drifts at a rate of +11.4 MHz/Â°C. For a tem 
perature increase of 50Â°C, the center frequency of the filter 
would increase by nearly 600 MHz. Compensation for the 
temperature drift had to be considered because the 3-dB 
bandwidth of the filter is typically between 120 and 200 
MHz, and this would mean that an input signal would no 
longer be within the passband of the filter. 

Temperature  and Delay  Compensat ion 
Temperature drift is compensated by monitoring the tem 

perature at the filter and modifying the coil current. A 
thermistor network is used to monitor the temperature of 
the filter. The thermistor network consists of a thermistor 
composite composed of two thermistors encapsulated in 
epoxy and two linearizing resistors. The thermistor com 

posite is located in the waveguide portion of the filter as 
sembly (Fig. 13) and tracks the temperature at the barium 
ferrite filter. The network has a temperature dependent 
resistance that is linear from 0 to 1 00Â°C. The thermistor net 
work is connected as the feedback portion of an amplifier 
that generates a voltage equivalent to the amount of filter 
frequency correction required. This voltage is then summed 
into the voltage that generates the filter coil current. 

Although the temperature compensation required varies 
from band to band, the filters of each band are very consis 
tent from unit to unit and across the frequency band. This 
consistency allows the correction to be based on tempera 
ture only. In the A and Q bands, the filter drifts lower in 
frequency with increasing temperature, while in the U and 
V bands, the filter drifts higher in frequency with increasing 
temperature. 

Fig. 15 shows the frequency tracking errors of a V-band 
filter at 0Â°C, 25Â°C, and 75Â°C with no temperature compen 
sation applied. The frequency tracking errors of the 25Â°C 
trace represent the deviations from a linear relationship 
between the filter coil current and the filter frequency. The 
spacing between the three traces represents the temperature 
drift of the filter with no temperature compensation ap 
plied. 

Fig. 16 shows the frequency tracking errors of the same 
V-band filter with the temperature compensation circuitry 
enabled. The remaining frequency tracking errors fall 
within a range approximately equal to the 3-dB bandwidth 
of the filter. The preselector peak function of the spectrum 
analyzer removes these errors at a particular frequency. 

In addition to temperature effects, compensation must be 
provided for the effect of filter tuning delay. When the 
spectrum analyzer sweeps at a fast rate, the filter, tuned 
by the current through a coil with inductance of about 0.8 
henry, tends to lag behind. This effect is compensated by 
placing a differentiator in the HP 11974 tune voltage path. 

Differential 
Amplifier 

High-Frequency 
Reference Voltage 

Tune Vol tage 
Error Indicator 

Low-Frequency 
Reference Voltage 

Spectrum 
Analyzer 

Dependent 
Gain and 

Offset 

Adjustable 
Gain and 

Offset 

Delay 
Compensat ion 

Capacitor 

Tune In 

3.1ÃÃ 

Fig. 1 4. Simplif ied HP 11 974 fi lter 
dr ive circuitry.  
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Filter Frequency (GHz) 

Fig. com 5. V-band filter tracking error without temperature com 
pensation. 

At slow sweep rates, this circuit has no effect. At fast sweep 
rates, additional coil current is provided to help the filter 
keep up with the spectrum analyzer. With this compensa 
tion applied, the spectrum analyzer can be swept at a 
maximum sweep rate of 40 GHz/second. 

Spectrum Analyzer  Compatibi l i ty  
The HP 11974 Series preselected mixers are designed to 

operate with three families of Hewlett-Packard spectrum 
analyzers: the HP 70000 modular spectrum analyzer family 
with the HP 70907B external mixer interface module, the 
rugged, portable spectrum analyzer family including the 
HP 8560A, HP 8561B, HP 8562A, and HP 8563A, and the 
HP 8566B, a high-performance R&D bench spectrum 
analyzer. Fig 17 shows the HP 11974 Series and the spec 
trum analyzers. Older models of these spectrum analyzer 
families can be made compatible by installing a retrofit kit. 

To be compatible with the HP 11974, the spectrum 
analyzer must meet certain requirements. First, the spec 
trum analyzer must have a first LO frequency range of 3 
to 6 GHz at the proper power level. The nominal power 
level of the first LO output is +14.5 dBm to +16 dBm. 
Second, the first IF of the spectrum analyzer must be com 
patible with the HP 11974. Each spectrum analyzer men 
tioned above has a first IF of either 310.7 MHz or 321.4 
MHz. Finally, the spectrum analyzer must provide a voltage 
output that is proportional to the frequency of the first LO 

Filter Frequency (GHz) 

Fig. 1 6. V-band f i l ter tracking error with temperature compen 
sation. 

of the spectrum analyzer. Each of the three spectrum 
analyzer families has a different definition for the tuning 
voltage provided. Because of this, the HP 11974 has 
switches that are used to identify the spectrum analyzer 
with which it is to be used. For each switch setting, a 
specific gain and offset are applied to the tune voltage so 
that the filter will be properly tuned. 

Another requirement for the tune voltage of the spectrum 
analyzer is that it have a variable offset summed in. The 
correct amount of offset to apply at any given frequency is 
determined by the preselector peak function. 

Before operating the HP 11974 with the spectrum 
analyzer for the first time, two potentiometer adjustments 
must be made. These adjustments match the tuning volt 
ages provided by the spectrum analyzer to the reference 
voltages in the HP 11974. After these adjustments are made, 
the preselector filter will track very well the input fre 
quency of the spectrum analyzer. The preselector peak 
function is used to eliminate the remaining frequency track 
ing errors at any given frequency. When executed, this 
function causes the spectrum analyzer to vary its tune volt 
age to the HP 11974 and monitor the signal level of the 
marked response on the screen. At the maximum response 
level, the filter has been peaked. The frequency range of 
the preselector peak function is proportional to the har 
monic number on which the mixer operates. For most of 
the analyzers, the preselector peak range is Â±260 MHz in 

F i g .  1 7 .  H P  1 1 9 7 4 A / Q / U / V  p r e  
se lec ted  mi l l imeter -wave RF sec  
t i ons  w i th  ma in f rame m ic rowave  
spec t rum ana l yze rs  (HP  8563A ,  
HP 85668,  HP 70000) .  
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11974V CALIBRATION 

SN: 3001A00104 17 Apr 1990 

n= 14+ IF=321.4 MHz LO Power=16dBm 

5 5  6 0  6 5  
F R E Q U E N C Y  ( G H z )  

7 0  7 5  

Fig. RF 8. Conversion loss calibration chart is supplied with each RF section. The data is entered 
in to the mainf rame spectrum analyzer .  
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A band and Â±450 MHz in V band. 
Conversion loss data for each instrument is required to 

make accurate amplitude measurements. Each HP 11974 
is shipped with a graph and a tabular listing of its conver 
sion loss as a function of frequency, as shown in Fig. 18. 
The conversion loss measurements are traceable to the 
United States National Institute of Standards and Technol 
ogy. Data from the conversion loss table can be entered 
into the spectrum analyzer so that amplitude readings will 
automatically be referenced to the input of the HP 11974. 
In addition to the conversion loss table and graph, a conver 
sion loss label is permanently attached to the HP 11974 
for reference. 
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Hexagonal Ferrites for Mi 1 1 Â¡meter- Wave 
Applications 
Scandium-doped,  M-phase bar ium fer r i te  has the 
necessary properties. Crystals are grown and spheres are 
processed and tes ted in-house.  

by Dean B.  Nicholson 

Ferrite spheres are commonly used as resonator ele 
ments in magnetically tunable bandpass filters. At 
frequencies below approximately 30 GHz, yttrium 

iron garnet spheres (abbreviated YIG, chemical formula 
Y3Fe5O12) are used extensively in this role. At frequencies 
above about 30 GHz (the millimeter-wave region) problems 
become apparent with the magnetic components used to 
tune the YIG spheres. These problems include electromag 
net heating, tuning nonlinearities, and hysteresis. 

The tuning equation of a YIG sphere,1 applicable with 
Ha parallel to H0, is: 

f, r e sonance  = (2.8 MHz/Oe)(H0 + Ha (1) 

where H0 is the applied dc magnetic field and Ha is the 
internal anisotropy field (70 Oe for YIG). Using this equa 
tion, the maximum usable frequency of a YIG sphere can 
be calculated to be about 64 GHz, assuming that the material 
used in the tuning magnet pole tip has the highest satura 
tion flux density available (approximately 23 kilogauss for 
a cobalt-iron alloy).2 The anisotropy field Ha can be thought 
of as a built-in magnetic field that acts along a crystal axis, 
or in some cases a crystal plane. When the anisotropy field 
is parallel to the applied field, it gives a frequency offset 
that reduces the applied dc magnetic field needed for reso 
nance at a given frequency. 

It was obvious that a new resonator material would be 

Ha=25.5 kOe 

H ,  -0 .01  kOe  

5  1 0  1 5  2 0  
Applied DC Magnetic Field H,,  (kOe) 

Fig.  1 .  Ferr i te resonance f requency as a funct ion of  dc mag 
net ic f ie ld for var ious values of  the anisotropy f ie ld.  

required to make tunable bandpass filters to serve as pre 
selectors for the HP 11970 Series harmonic mixers covering 
from A band (26.5 to 40 GHz) up to V band (50 to 75 GHz). 
Using equation 1, it can be seen that if ferrite materials 
similar to YIG but with higher Ha could be found, then it 
would be possible to build magnetically tunable bandpass 
filters that cover waveguide bands in the millimeter-wave 
region using moderate magnetic tuning fields (Fig. 1). A 
class of material with this property is the hexagonal fer- 
rites.3 

Propert ies of  Hexagonal Ferr i tes 
Hexagonal ferrites are so named because this class of 

materials has a hexagonal crystal lattice, which produces 
crystals that have distinctly hexagonal shapes (Fig. 2). The 
hexagonal ferrites have a large number of phases. Fig. 3 
compares the parameters of the most important phases 
(there are many more!) to YIG parameters.4'5'6'7'8 The most 
useful hexagonal ferrites have a property called uniaxial 
anisotropy (Fig. 4), which means that the anisotropy field 
lies along only one axis, which is the C axis for the hexag 
onal crystal. Hexagonal ferrites are commonly referred to 
by their phase and composition. For example, M-phase 
barium ferrite is BaFe12O19. 

The minimum useful frequencies listed in Fig. 3 come 
from three constraints. First, with the anisotropy field 
aligned with the applied field, equation 1 shows that the 
lowest frequency of resonance is (2.8 MHz/Oe)(HJ with 
negligible applied field. Second, the magnetic dipoles in 

Fig. 2. Hexagonal ferr i te crystals. 
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Notes:  1 .  Sc  and Al  dopings can be var ied cont inuously .  
2 .  Y phase has planar  anisotropy.  f r  =  (2 .8  MHz/Oe)(H0(H0+Ha))1 /2  

when the anisotropy plane is  a l igned with both dc and RF f ie lds.  

Fig.  3 .  Summary of  hexagonal  fer r i te  and YIG parameters .  

a ferrite sphere with the applied magnetic field aligned 
with Ha will not all line up or "saturate" until a field of 
at least 4-77Ms/3 has been applied. Third, for very high-Qu 
(unloaded QJ ferrites at low frequencies, such as YIG, with 
fields between one and two times 47rMs/3, the effect known 
as coincidence limiting8 limits the amount of power that 
a ferrite device can handle to much less than 0 dBm. There 
fore, YIG spheres are generally used with applied fields 
above two times 4-n-Ms/3. For hexagonal-ferrite-sphere- 
tuned devices, this power-limiting effect has not been seen 
at power levels up to 20 dBm for our bandpass filter con 
figurations and thus should not present a problem for this 
application. 

As Fig. 5 shows, scandium and aluminum dopings can 
be varied arbitrarily in M-phase hexagonal ferrites to give 
the desired Ha.4 The scandium-doped M-phase barium fer 
rite will satisfy the frequency range requirements at the 
lower frequencies while the aluminum-doped M-phase 
strontium ferrite will satisfy the requirements at the higher 
frequencies. Although it is possible to dope M-phase 
barium ferrite with aluminum to raise its resonant fre 
quency and dope M-phase strontium ferrite with scandium 
to lower its resonant frequency, in general, the higher the 
doping level the more the Qu of the resonator is degraded. 
Therefore, dopants and materials are chosen so that the 

least amount of dopant is used to cover a given frequency 
range. 

Other desirable properties of M-phase hexagonal ferrites 
are that they have high 47rMs/3 for good coupling to the 
RF fields, high Curie temperatures for low sensitivity to 
temperature change, and fairly high Qu. 

Fig.  4.  Uniaxia l  anisotropy in hexagonal  ferr i tes.  
F ig .  5 .  An iso t ropy  f ie ld  changes  w i th  dop ing .  Adapted  w i th  
permission f rom reference 4.  
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S p h e r e  P r o d u c t i o n  a n d  T e s t  
Once the selection of the M-phase hexagonal f errites was 

made and it was found that crystals were unavailable com 
mercially, a crystal growth program was begun at the HP 
Microwave Technology Division. In the literature, hexag 
onal ferrite crystals are typically grown from a BaO/B2O3 
flux using slow cooling. We used a slow cooling furnace 
with multiple small crucibles per run and free nucleation 
(no seed crystals) for quick optimization of charge compo 
sition and temperature profiles. Now that growth condi 
tions have been optimized, a single larger crucible is used 
for each growth run with a larger charge so that larger 
crystals can be grown. The total volume of liquid charge 
in the crucible at the start of crystal growth is approximately 
320 ml. The total weight of crystals obtained from the 
growth is about 70 grams. 

The processing of hexagonal ferrites to spheres is concep 
tually very similar to YIG sphere processing. Because of 
the brittle nature of hexagonal ferrites, proprietary grinding 
and polishing techniques had to be developed to avoid 
chipping the sphere poles. In addition, a separate sphere 
testing system was developed to test the Qu of the hexagonal 
ferrite spheres, which must be tested at the millimeter wave 
frequencies at which they will be used. 

Summary  
Because of their high magnetic anisotropy fields, spheres 

made of suitably doped M-phase hexagonal ferrites were 
chosen as resonator elements in magnetically tunable 
bandpass filters. These bandpass filters cover waveguide 
bands above 26.5 GHz and are used as preselectors in the 
HP 11974 Series of millimeter preselected RF sections. 
When no outside supplier of hexagonal ferrite spheres 
could be found, crystal growth and sphere processing and 

test capabilities were developed in-house. 
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HP DIS:  A  Development  Tool  for  
Factory-Floor Device Interfaces 
The HP Dev ice In ter face System prov ides a  deve lopment  
faci l i ty  that  includes a high- level  Protocol  Speci f icat ion 
Language, a testing facil ity, and a run-time facil ity for device 
in ter faces that  run in  an HP-UX envi ronment  on HP 9000 
computers.  

by Kent Fulton Garliepp, Irene Skupniewicz, John U. Frolich, and Kathleen A. Fulton 

EFFICIENT DEVELOPMENT OF INTERFACES be 
tween computers and factory-floor devices can be a 
serious challenge in factory automation projects.1 

These factory-floor devices consist of programmable logic 
controllers (PLCs), robots, numerically controlled ma 
chines, gauges, scales, and other devices. The problem is 
that they may come from many manufacturers and may 
have different, proprietary interfaces. 

For a few major brands of programmable controllers, 
there are off-the-shelf communications packages that can 
be purchased. This solution has limited applicability if the 
needs vary from what is implemented in the package. 

If flexibility is needed, a customized interface can be 
written. At present, development of specific device inter 
faces is a time-consuming, exacting, and expensive process 
requiring a fairly high level of expertise. The process gen 
erally consists of characterizing the device's communica 
tion protocol and then writing, changing, or enhancing 
programs, subroutines, and test suites. This process is well- 
known to all interface developers and creates a slow re 
sponse to market needs. 

In the long run, the use of communications standards, 
such as the Manufacturing Automation Protocol2 (MAP), 
will eliminate many of the device connectivity problems 
and the response to market needs will improve significant 
ly. In the meantime, many factory-floor devices exist and 
have long useful lives remaining. Many are simple devices, 
such as gauges with simple interfaces, that may never con 
form to a standard. 

To reduce the cost of developing customized interfaces 
for devices that need them and to shorten the time required 
for such efforts, tools are needed to simplify the develop 
ment and testing of the interfaces. This is the objective of 
the HP Device Interface System (HP DIS). HP DIS is a toolset 
that helps developers create and test interfaces between 
computer applications and RS-232-compatible factory- 
floor devices in less time than before. The resulting inter 
faces run in an HP-UX environment on HP 9000 Series 300 
or 800 computers. 

HP DIS offers three facilities to make the development 
and implementation of device interfaces more efficient. A 
development facility provides a high-level Protocol 
Specification Language3 for defining the communications 
logic. A testing facility provides a test generator, a test 

exerciser, and a device simulator. A run-time facility exe 
cutes the protocol in real time. Fig. 1 shows a typical pro 
tocol development cycle and the use of the HP DIS toolset. 

HP DIS:  the  Tools  Approach 
A diagram of the HP DIS system is shown in Fig. 2. The 

three bubbles correspond to the above-mentioned three 
facilities provided by HP DIS. These allow the system de 
veloper to develop, test, and run device interfaces. 

The development facility is simply a compiler that gen 
erates a protocol interface. The protocol interface is an 
executable process that forms the central component of an 

Standard Process Corresponding Steps Using HP DIS 

Understand applicat ion needs.  

Understand device communicat ion 
protocol  and message formats.  

Design protocol interface 
architecture, functionality,  and 
modularity. 

Write application calls to protocol 
interface. Create protocol interface 
using the Protocol Specif ication 
Language. 

Create tests using the HP-DIS test  
facility. 

Execute tests using the HP-DIS test  
facility. 

Define the configuration and 
execute the protocol  interface modules.  

Fig.  1 .  The process of  creat ing a device in ter face.  
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Step 1 : Describe 
the Interface 

Executable Protocol 
Interfaces and 
State Tables 

Fig.  2.  HP DIS fac i l i t ies 

HP DIS system. The input to the compiler is a description 
of the device protocol, written in Protocol Specification 
Language (PSL). PSL allows the user to describe a state 
graph and its associated state table in a high-level format 
(see "Finite State Machine," page 65). 

Other inputs to the development facility are subroutines 
that can be linked to the protocol interface. In HP DIS these 
are called action routines (see "Action Routines," page 69) . 

The run-time facility provides the execution environ 
ment for the protocol interfaces. When the protocol inter 
face runs, it communicates with ports, other protocol inter 
faces, and other C programs through HP-UX message 
queues. Using a description of the protocol interface's as 
sociated I/O ports, the run-time facility manages the ports, 
message queues, process startup, and process shutdown. 

Represents an HP-UX 
Message Queue 

Fig. 4. Steps in protocol interface development using HP DIS. 

The development and run-time facilities also provide 
the following features: 
â€¢ A contributed library of example protocol interfaces, 

tutorial protocol interfaces, and other helpful tools 
â€¢ The ability to implement user-defined lookup tables 
1 Eight-bit native language support 
â€¢ Access between multiple devices and multiple interfaces 
â€¢ The ability to add and delete protocol interfaces dynam 

ically in a running system. 
A diagram of the HP DIS testing facility is shown in Fig. 

3. This facility consists of a test generator and a test exer 
ciser. 

The test generator takes the state table and creates test 
cases. The test cases are fed to the test exerciser, which 
executes each test case by sending messages to the protocol 
interface under test. The test exerciser attempts to achieve 
each state listed in the state table, for up to 100% coverage. 

Optional inputs to the test exerciser are user-written test 
cases. The test exerciser executes a sequence of test cases 
and compares expected results to the results of the protocol 
interface under test. Actual devices or I/O ports are not 
necessary for testing; factory-floor devices can be simulated 
by describing their messages. 

The output of the testing facility includes test case 
documentation and test results. The testing facility also 
provides the following features: 
â€¢ Full or partial data tracing 
â€¢ Either menu-driven execution or script execution of test 

cases 
â€¢ Protocol filters to simulate garbled messages, time-outs, 

and expression matching 
â€¢ Notification of percentage covered. 

Fig.  3.  HP DIS test ing fac i l i ty .  
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An HP DIS  Example  
There are three steps in developing an interface (see Fig. 

4). The first step is to describe the interaction between the 
application and the factory-floor device interface. The sec 
ond step is to specify the device protocol in a language 
that HP DIS can compile. The third step after successful 
compilation is to generate the test scripts and test the logic 
of the developed interface. These steps are illustrated by 
the following example. 
Describing the Interface. A block diagram of the system 
interfaces for this example is shown in Fig. 5. The interface 
between the application and the device interface is an HP- 
UX message queue. Read and write subroutines are avail 
able for the application program developer to send buffers 
to the device interface and receive buffers from it. These 
subroutines allow referencing either the HP-UX message 
queue name or the device application name. The links 
between the HP-UX message queues and the device inter 
face are established by the run-time facility through a con 
figuration file (Fig. 6). The configuration file is used by the 
run-time facility to establish the queues, start the defined 
interfaces, create the links, and configure the ports from 
the port definitions. The configuration process eliminates 
the need for a detailed understanding of HP-UX inter 
process communication and RS-232 serial port initializa 
tion. 

The buffers passed through the queues must be designed 
to carry the information needed by the device interface. 
The device interface can require the application to pass 
device-specific data directly or can translate generic func 
tions into device-specific data. Device interfaces can range 
from very device dependent to completely device indepen 
dent. In the latter case more logic will be required in the 
device interface. 

For the sake of simplicity, this example uses the device 
dependent approach. The application outbound buffer con 
tains a six-byte header and a variable-length data string. 
The application inbound buffer contains a status byte and 
a variable-length data string. 
Specifying the Protocol. One of the methods of specifying 
the protocol is a transition diagram translated into a state 
diagram. This is particularly convenient for translating the 
protocol into a language HP DIS can compile. Figs. 7a and 
7b describe a transition diagram and a state diagram for a 
nontrivial protocol. This example protocol is based on the 
Allen-Bradley Data Highway I protocol, but only exempli 
fies the major features. This example assumes synchronous 
communication. No new request is sent from the computer 
to the factory-floor device until a previous request is satis 
fied. 

The computer sends a message (MSG) to the device (Fig. 
7a) and waits for an acknowledgment from the device (ACK). 
The computer then waits for a reply message (Fig. 7b). Each 
message consists of block control characters, a header, and 
data. In the case of a read request, the data field from the 
computer contains the address and the length of the re 
quest. The reply data from the device consists of the values 
requested. In the case of a write request, the data field from 
the computer contains the address and the values for the 
request. The reply data from the device consists of an inter 
nal status for the request. 

In the event of a communication failure, either the com 
puter or the device can reply with a failure message (NAK). 
The protocol interface must also recognize that no response 
(TO) is a failure. Other failure mechanisms are not taken 
into account in this example. 

PLDEFINIT IONS 

F I F O  -  
Q u e u e s  Q 5  

Factor-Floor 
Device Interface I d l e  ( W a i t )  

FIFO 
Queues  

Write 
Process 

Read 
Process 

M I M ^ H B H  â € ¢ ^ â € ¢ â € ¢ ^ ^ â € ¢ i  

 7  
Factory-Floor 

Device 

Fig .  5 .  Sys tem in te r faces  fo r  HP DIS example .  The  queues  
are  HP-UX message queues.  

Runt ime_Name 
Runtime_File_Name 
Runtime_Type 
Runtime_Priority 
Por t -Name 

PORT_DEFINITIONS 

-  Dev ice_xx ;  
= /users/test/Device_xx; 
=  P ;  
= 51; 
=  A B ;  

QUEUE_DEFINITIONS 

Q u e u e _ N a m e  =  Q 2 , Q 3 , Q 4 , Q 5 ;  

Q u e u e J J n k  
Q5> Dev ice_xx;  
Device_xx > Q3; 
Q4> Device_xx; 
Dev ice_xx<Q2;  

Fig.  6.  Device inter face conf igurat ion f i le .  
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Finite State Machine 

The f in i te state machine model has been used in such diverse 
disc ip l ines as computer  design,  neurophysio logy,  l inguist ics,  au 
tomata  theory ,  and communica t ions .1  The f in i te  s ta te  mach ine  
model is a natural way to describe systems that process signals. 
Th i s  mode l  i s  pa r t i cu la r l y  conven ien t  f o r  spec i f y i ng  how mes  
sages are  processed in  dev ice pro toco ls .  

Two  s tandard  rep resen ta t ions  used  to  desc r ibe  a  pa r t i cu la r  
f in i te  s tate machine are the state table and the state d iagram.2 
A  s ta te  tab le  uses  one  row fo r  each  s ta te  and  one  co lumn fo r  
each input. In each box are writ ten the next state and the output. 
The f i rs t  row of  the s tate tab le is  usual ly  ass igned to  the in i t ia l  
state of  the machine. 

A state diagram is a directed graph in which each arc is labeled 
w i th  i s  i npu t  t ha t  causes  the  t rans i t i on  and  the  ou tpu t  t ha t  i s  
generated when the t ransi t ion is  t r iggered.  

A c lass ic  example is  a  par i ty  checker .  This  machine takes an 
inpu t  s t ream o f  b i t s  o f  ones  and  ze ros .  Fo r  each  inpu t  b i t  t he  
machine produces an output  ind icat ing whether  the ent i re  input  
s e q u e n c e  s o  f a r  h a s  e v e n  o r  o d d  p a r i t y .  T h e  s t a t e  t a b l e  a n d  
d iagram are shown in F ig.  1.  

The HP DIS s ta te  tab le ,  wr i t ten  in  PSL,  is  shown be low.  The 
init ial, or home, state is have.even. When an event is tr iggered by 
the receipt  o f  a  0 or  1  ,  the protocol  in ter face pr in ts  a message 
using the user act ion rout ine cal led U1. 

Events 
zero_recd : response : 0; 
one_recd : response : 1 ; 

States 
h a v e _ e v e n  :  H o m e ;  

State.Table 
have_even :  zero jecd :  

U1 ("print even") 
: have_even; 

have_even : one_recd : 
U1 ("print odd") 
: have_odd; 

h a v e _ o d d  :  z e r o _ r e c d  :  
U1 ("print odd") 
:  have_odd;  

h a v e _ o d d  :  o n e _ r e c d  :  
U1 ("pr int  even")  
:  have_even;  

S t a t e  T a b l e  

have_even  

h a v e _ o d d  

zero^recd  

State Diagram 

zero   reed, "print  even" zero reed,  "print  odd" 

one   reed, "print even" 

Fig .  1 .  S ia fe  tab le  and s ta te  d iagram for  a  par i ty  checker .  

References 
1 .  P .  a n d  J .  D e n n i s ,  a n d  J .  Q u a l i t z ,  M a c h i n e s ,  L a n g u a g e s ,  a n d  C o m p u t a t i o n ,  
Prentice-Hall, 1978. 
2 .  A . S .  1 9 8 8 .  C o m p u t e r  N e t w o r k s ,  S e c o n d  E d i t i o n ,  P r e n t i c e - H a l l ,  1 9 8 8 .  

Figs. 7a and 7b show state diagrams derived from the 
transition diagrams. The states and events form the logic 
of the protocol interface. Actions (or functions) are per 
formed at each state-event pair. Fig. 7 a also shows an event 
(retry exceeded) that is not supported by the transition 
diagram. This event is added to prevent endless looping, 

A message from the device to the computer (Fig. 7b) will 
cause a reply message event, which would normally return 
directly to the IDLE state. This example will check the integ 
rity of the byte stream by checking the BCC (block control 

character) count and branching to an extra state (CHECK). 
If the BCC count was incorrect, the original message will 
be sent back to the device. If the BCC count was correct 
the message from the device will be returned to the appli 
cation. The combination of the IDLE state and the reply 
message event is included in case the device sends a mes 
sage after time-out processing. If this were not included, 
the wrong message would be extracted from the HP-UX 
message queue during the next transaction. The message 
from the device is simply acknowledged and ignored. 
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Table I  
Actions List 

State Diagram 

State Event Actions 
IDLE Send message Read message from application 

Build outgoing buffer from 
incoming buffer. 

Send message to device. 
Clear retry count. 
Increment message number. 
Start timer. 

Next 
W A I T  

Time-Out 

Transit ion Diagram 

C o m p u t e r  D e v i c e  

TO 

M S G  

A C  K  

IDLE Reply message 

W A I T  A C K  

W A I T  N A K  

WAIT Reply message 

WAIT Time-out 

WAIT Retry exceeded 

C H E C K  M e s s a g e  O K  

CHECK Message not 
OK 

Read message from device. 
Send acknowledgment (ACK) 

to device. 

Stop timer. 
Read message from device. 
Start timer. 

Stop timer. 
Read message from device. 
Resend message to device. 
Increment retry count. 
Start timer. 

Stop timer. 
Read message from device. 
Check block control character 

(BCC) 

Stop timer. 
Send no response message to 

application. 

Stop timer. 
Send communications error 

message to application. 

Send acknowledgment (ACK) 
to device. 

Send reply data to 
application. 

Send acknowledgment (NAK) 
to device. 

Increment retry count. 
Set timer. 

IDLE 

W A I T  

W A I T  

Retry Exceeded 

(a) 

State Diagram 

R e p l y  M e s s a g e  T i m e - O u t  

A C K  

M S G  

TO =  T ime-Out  
or  No Response 

Transit ion Diagram 
C o m p u t e r  D e v i c e  

C H E C K  

W A I T  

I D L E  

I D L E  

TO 

Reply Message 

M S G  

A C K  

N A K  

M S G  

TO =  T ime-Out  
or  No Response 

Fig. 7. Transit ion and state diagrams for a nontr ivial protocol, 
( a )  M e s s a g e  f r o m  c o m p u t e r  t o  d e v i c e ,  ( b )  M e s s a g e  f r o m  
dev ice to  computer .  

W A I T  

The state diagrams of Figs. 7a and 7b are combined into 
one state diagram in Fig. 8. 

The actions to be performed at each state transition are 
listed in Table I. With some additional declarations this 
table can be transformed into a Protocol Specification Lan 
guage (PSL) program that can be compiled. Previous deci 
sions about the form of the messages from the application 
can be incorporated into the data structures. 

Fig. 9 shows the PSL program ready for compiling and 
testing. The compiler not only checks the program syntax, 
but also tests the reachability of all states from/to the home 
(IDLE) state. This check ensures that there are no incomplete 
paths. 

Reply Message Send Message Time-Out 

ACK 

)  
NAK 

Reply Message 

Message OK 

F ig .  8 .  P ro toco l  s f a f e  mach ine  s f a fe  d i ag ram ob ta i ned  by  
combin ing F/gs.  7a and 7b.  
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Matching Messages 

One of  the most  power fu l  features of  HP DIS is  the match ing 
process. I t  Â¡s used for three purposes: for determining whether 
a  message  ma tches  a  reques t  even t  o r  a  response  even t ,  f o r  
pars ing a  message in to  a  s t ruc ture ,  and for  de l imi t ing  s t reams 
of  characters f rom a port .  Each use is  s l ight ly  d i f ferent  f rom the 
others,  but  they a l l  have the same matching character is t ics.  

Through the PSL struct descr ipt ion, the user def ines the f ie lds 
in  a  s t ruc tu re  tha t  a re  to  be  matched.  A l l  va r iab les  descr ibe  a  
leng th  o f  da ta .  When a  s t ruc tu re  con ta ins  a  var iab le ,  the  da ta  
f rom the message Â¡s p laced into the structure according to the 
length of  the var iable.  Byte and Boolean var iables are one byte 
l ong .  I n tege r  va r i ab les  a re  two  by tes  l ong ,  and  rea l  and  l ong  
var iab les  are  four  by tes  long.  S t r ing  var iab les  can be  NULL or  
up  to  4K by tes  long.  Data  f rom the message is  parsed in to  the  
st ructure 's  f ie lds according to the var iable lengths.  

Cons tan ts  and  l i t e ra l s  a re  ma tched  exac t l y .  The  l eng ths  o f  
da ta  types are  the  same as  above,  but  the  message data  must  
conta in  the b i t  pat tern that  matches the constant .  Constants  or  
l i te ra ls  ad jacent  to  s t r ing  var iab les  are  used fo r  de l im i t ing  the  
strings. 

The HP DIS compi ler  bui lds a table for  each structure descr ib 
i ng  da ta  i n  each  f i e l d .  The  ma tch ing  p rocess  t hen  wa l ks  t h i s  
t a b l e  a  e a c h  s t r u c t u r e .  I f  t h e r e  a r e  n o  s t r i n g  v a r i a b l e s  i n  a  
st ructure,  then each byte is  easi ly  assigned to a st ructure f ie ld.  
There is no ambigui ty.  However,  i f  there are any str ing var iables 
in the structure, then ambiguity branching begins, because str ing 
va r i ab les  can  be  NULL  o r  up  t o  4K  by tes  l ong .  The  ma tch ing  
process branches, assigning this byte to both the str ing var iable 

and  to  the  nex t  f i e ld .  Th is  amb igu i t y  i s  reso lved  e i the r  by  the  
next  constant  or  by the end of  the message.  

HP DIS makes the f irst shortest match, unlike the HP-UX editor 
v i .  which makes a f i rs t  longest  match.  For example,  i f  the f ie lds 
in a structure are: 

variable string str! 
constant  byte bt l  =  B 
variable string str2 

and the message rece ived is :  

aabbBddBd 

HP DIS uses a f i rs t  shortest  match algor i thm to parse th is as:  

s t r l  =  aabb  
bt1 = B 
str2 = ddBd 

vi  uses a f i rs t  longest  a lgor i thm. The v i  command typed in as:  

s / \ ( . * \ )B \ (A) /s t r1= \1  s t r2=2 /  

would resul t  in str l  and str2 matches as: 

str1=aabbBdd 
str2 =d 

Testing. The tests, test scripts, and results files can be gen 
erated automatically at compile time with a PSL compiler 
option. The tests are executed from a test script and the 
results appear in several data files: 
â€¢ The action command file contains the test actions to be 

performed. 
â€¢ The comparison results file contains a summary of the 

test paths. 
â€¢ The trace data output file contains detailed test flows 

and variables. 
The test generator walks the state table and generates the 

actions command file (Fig. 10). The test generator starts 
with the first state-event pair in the PSL program and gen 
erates commands to trigger the event. The test terminates 
at the state and event in the ECASE statement (last state, 
next state, event of last state). The data following the WURA 
(write to upper-level read area) statement is the equivalent 
of a message from the application. The data following the 
WLRA (write to lower-level read area) statement is the equiv 
alent of a message from the device. A test case is generated 
for each subsequent state-event pair. The test cases (CASE 
1 ; and CASE 2 marked Good and commented out in Fig. 10 
were already successfully executed. Test cases three and 
four were created by a second pass of the test generator 
based on the previous tests. 

The test generator generates cases to trigger external 
events (messages from the application or device) by creat 

ing a message from the values involved. State-event pairs 
WAIT-ACK and WAIT-NAK (Fig. 9) were successfully generated 
because the test generator was able to use the structures 
ReplyAck and ReplyNak as the basis for triggering the events. 

The test generator generates cases for internal events 
based on the associated values of the constants or variables 
involved. If the values will satisfy the event, the case is 
generated. If not, the case cannot be generated. Each case 
is rechecked on every pass to see if the variables involved 
have been changed in previous test runs. For more complete 
automatic test coverage, the PSL program variables can be 
set to values favorable for test case generation. In some 
cases, the contents of the messages in the actions command 
file must be altered to affect subsequent cases. 

The test exerciser (Fig. 11) starts the interface under con 
trol file the run-time facility using the test configuration file 
(Fig. 12) and executes the test actions. At the conclusion 
of the test, the interface is terminated and the results are 
stored for examination. 

Fig. 13 shows the comparison results file. The expected 
state-event pairs for the expected results and the actual 
results are always shown. 

If the actual results differ from the expected results, the 
trace data output file (Fig. 14) can be examined to determine 
the cause. The trace data output file contains a detailed 
description of the data flow through the state table for each 
case executed by the test exerciser. It shows all incoming 
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TimeOutVal  

Variables 
byte 
byte 
byte 
byte 
byte 
byte 
byte 
integer 
string 
byte 
boolean 
long 
string 

RetryCount 
bcc; 
status 
dst 
src 
cmd 
sts 
tns 
data 
Result; 
BccFlag 
TimePeriod 
Tex t  

=  30000 / '1000 ' / ;  

=  0 ;  

=  0 ;  
=  1 0 ;  
=  0 ;  
=  0 ;  
=  0 ;  
=  1 ;  

=  T R U E ;  
= 0; 

/  Max number of  ret r ies 
/  T ime-out  re turn s tatus 
/  Dev ice  ident i fe r  
/  Re t r y  exceeded  
/â€¢ Message sent OK; 
/"  return status 
/ '  TO va lue  =  1  s ;  
/  t e s t  =  3 0 s  

/â€¢ Retry counter 
/  P r o t o c o l  b l o c k  c h e c k  c h a r a c t e r  * /  
/  P r o t o c o l  s t a t u s  * /  
/  P r o t o c o l  d e s t i n a t i o n  d e v i c e  * /  
/  P r o t o c o l  s o u r c e  d e v i c e  * /  
/  P r o t o c o l  c o m m a n d  * t  
/ "  P r o t o c o l  s t a t u s  * /  
/  P r o t o c o l  m e s s a g e  n u m b e r  * /  
/ â € ¢  D a t a  b l o c k  V  
r  Dummy fo r  Dc IO  
/  F u n c t i o n  f o r  B C C  c h e c k  * /  
/ "  T i m e r v a l u e  V  
/ â € ¢  B i t  b u c k e t  V  

/  s t ruc tu res  used  to  ma tch  messages  * /  
s t r u c t  R e p l y A c k  =  
s t r u c t  R e p l y N a k  =  
s t r u c t  D a t a P a c k e t  =  
s t r u c t  R e q P a c k e t  =  
s t r u c t  R e p l y P a c k e t  =  

Events 
/ "  Event :  Event  Type,  Event  def in i t ion 

s e n d _ m e s s a g e :  r e q u e s t ,  R e q P a c k e t ;  
rep ly_message:  response,  DataPacket ;  
A C K :  r e s p o n s e ,  R e p l y A c k ;  
N A K :  r e s p o n s e  
t i m e o u t :  i n t e r n a l ,  
retry_exceeded: internal,  
m s g _ o k :  i n t e r n a l ,  
m s g _ _ n o k :  i n t e r n a l ,  

States 
I D L E :  H O M E ;  

(OLE ACK); 
(OLE NAK); 
(OLE STX dst src cmd sts tns data OLE ETX bcc); 
(ds tcmddata) ;  
(status data); 

ReplyNak; 
T imePer iod  >= T imeOutVa l ;  
Re t ryCoun t>=  MaxRet ry ;  
BccFlag = = TRUE; 
BccFlag = = FALSE; 

/ "  Home s ta te  * /  

S t a t e j a b l e  

IDLE:  send jnessage :  
DclO(Read, Appl ic_read_Q, ReqPacket,  ,  ,  Result) /  
/  S T A R T  B u i l d  o u t g o i n g  b u f f e r  ' I  
DcMove(ReqPacket.dst ,  DataPacket.dst) /  
DcMove(HP_id, DataPacket.src)/  
DcMove(ReqPacket .cmd, DataPacket .cmd)/  
DcMove(StatusOK, DataPacket.sts) /  
DcMove(tns, DataPacket. tns)/  
DcMove(ReqPacket.data,  DataPacket.data) /  
DcCksum(Calculate,  DataPacket .data,  "BCC_AB",  DataPacket .bcc) /  
/ '  END Bui ld  outgoing buf fer  V 
DclO(Write, Devlce_Write_Q, DataPacket,  ,  ,  Result) /  
DcMove(0,  RetryCount) /  
DcCntrf lncrement,  tns, By_one)/ 
DcClock(StarLt lmer,  T imePer iod,  T imeOutVal)  
:WAIT; 

IDLE: reply_message: 
Dc lO(Read,  Dev ice jead_Q,  Text ,  ,  ,  Resu l t ) /  
DclO(Write, Device_Write_Q, ReplyAck, ,  ,  Result)  
:IDLE; 

WAIT :  ACK:  
DcClock(Stop_t imer,  TimePeriod)/  
DclO(Read,  Device_read_Q, Text ,  ,  ,  Resul t ) /  
DcClock(StarLt imer,  T imePer iod,  T imeOutVal)  
:WAIT; 

WAIT :  NAK:  
DcClock(StopJ lmer ,  T imePer iod) /  
Dc lO(Read,  Dev ice jead^Q,  Text ,  ,  ,  Resu l t ) /  
DclO(Write, Device_Write_Q, DataPacket,  ,  ,  Result) /  
DcCntr( lncrement,  RetryCount,  By_one)/  
DcClock(Start_t lmer,  TimePeriod, TimeOutVal)  
:WAIT; 

WAIT :  r ep l y j nessage :  
DcClock(Stop_t imer,  TimePeriod)/  
DclOfRead, Device_read_Q, DataPacket,  ,  ,  Result) /  
DcCksum(Check,  DataPacket .dst ,  "BCC_AB",  DataPacket .bcc,  BccFlag) 
:CHECK; 

WAIT:  t imeout :  
DcClock(Stop_t imer,  TimePeriod)/  
DcMove(NoResponse, ReplyPacket .status) /  
DclO(Write, Appl ic_write_Q, ReplyPacket, ,  ,  Result)  
:IDLE; 

WAIT: retry^exceeded: 
DcClock(Stop_t imer,  TimePeriod)/  
DcMove(ComError,  ReplyPacket .status) /  
DclO(Write, Appl ic_write_Q, ReplyPacket, ,  ,  Result)  
:IDLE; 

CHECK: msg_ok: 
DclO(Wri te,  Device_Wri te ja,  ReplyAck,  ,  ,  Resul t ) /  
DcMove(StatusOK, ReplyPacket.status)/  
DcMove(DataPacket.data,  ReplyPacket.data)/  
DclOfWrite, Appl ic_wri te_Q, ReplyPacket,  ,  ,  Result)  
:IDLE; 

CHECK: msg_nok: 
DclO(Write,  Device_Write_Q, ReplyNak, ,  ,  Result) /  
DcCntr( lncrement,  RetryCount,  By_one)/  
DcClock(Start_t imer,  TimePeriod, TimeOutVal)  
:WAIT; 

Fig.  9 .  PSL (Protoco l  Spec i f ica t ion Language)  pro toco l  program.  

68  HEWLETT-PACKARD JOURNAL OCTOBER 1990  

© Copr. 1949-1998 Hewlett-Packard Co.



Action Routines 

HP DIS is  sh ipped wi th a wide var ie ty  of  rout ines to  ease the 
creation of protocol interfaces. I f  a required action routine cannot 
be found in the HP DIS act ion rout ine l ibrary,  the user can wr i te 
a user act ion rout ine. 

A protocol  interface consists of  two components:  a f in i te state 
mach ine and i ts  cor respond ing in terna l  tab les .  The f in i te  s ta te  
machine is  customized for  the HP DIS and user act ion rout ines.  
The in terna l  tab les  are :  1 )  an ident i f ie r  tab le  cons is t ing  o f  con 
s tants  and var iab les ,  2 )  an event  tab le  cons is t ing  o f  event  IDs 
and event expressions, and 3) a state table consist ing of current 
state ID, event ID, act ion l is t ,  and next state ID tuples.  

In the state table, the action list specifies HP DIS action routines 
or user act ion rout ines.  Act ion rout ines operate on the var iables 
in the ident i f ier table. HP DIS provides a header f i le,  DcTypes.h, 
wh ich  can be used by  user  ac t ion  rout ines  wr i t ten  in  the  C pro  
gramming language to  s impl i fy  parameter  pass ing.  

The HP DIS-suppl ied act ion rout ines are l is ted below.  

DcBufMod 
DcCksum 
DcClock 
DcCntr 
DcConvert 
DcDelay 
DcEncode 
DcExit 
DcFlag 
DcIO 
DcLogAdJVB 
DcMove 
DcScan 
DcTablnit  

Buffer modification 
Checksumming 
Timer 
Counter 
Data conversion 
Delay 
Data encoding 
Terminating the protocol interface 
Flag setting 
Input/output 
Address bui lder 
Move 
Data scanning 
Table initialization 

DcTabScan 
DcBufMod 

Table scanning 
Buffer modif ication 

An Example  
The HP DIS act ion rout ine DcClock act ivates or  deact ivates a 

t i m e  H P  f a c i l i t y .  T i m e r  c o u n t e r s  a r e  c a l l e r - s u p p l i e d  H P  D I S  
variables. The HP-UX system interval t imer ITIMEFLREAL is used 
to  update  the  t ime counte rs  in  rea l  t ime.  A  S IGALRM s igna l  i s  
del ivered when the system interval  t imer ITIMEFLREAL expires,  
a n d  a l l  a c t i v e  t i m e r  c o u n t e r s  a r e  u p d a t e d .  U p d a t i n g  a  t i m e  
c o u n t e r  c a n  t r i g g e r  a n  e v e n t  i f  t h e  t i m e r  c o u n t e r  e x c e e d s  a  
specif ied t ime-out value. In the fol lowing example the event Time- 
Out is tr iggered when t ime_counter is greater than 60000 (60 sec 
onds). 

Variables 
long time_counter; 

Events 
TimeOut : internal, t ime_counter > 60000; 

StateJTable 

DcClock(1 , time_counter, 1 000) 

Idle: TimeOut: 
DcClock(2, time_counter) 

/  S t a r t t i m e c o u n t i n g  * /  

/  T ime-ou t  de tec ted  * /  
/  Stop t ime count ing * /  

messages, state-event pairs, and values of all variables after 
every action associated with each state-event pair. The vari 
able values are useful for checking the results of actions 
even when the correct path is executed. 

This example has shown that by using tools and a subsys 
tem approach, a factory-floor device protocol can be mod 
eled and produced. 

Configurations 
Fig. 15 shows various configurations for HP DIS-built 

interfaces. Interface schemes can use a single protocol in 
terface or multiple protocol interfaces. These protocol in 
terfaces can be stacked in series or configured in parallel. 
When multiple devices are serviced, even more choices 
can be made: each device can be serviced by its own dedi 
cated protocol interface, or multiple devices can be ser 
viced by a generalized protocol interface. 

Fig. 15a shows the simplest configuration. Here, one pro 
tocol interface handles one port and one device. 

Fig. 15b shows three protocol interfaces that work to 
gether. Message processing that is common to all ports is 
done in the lower-level PIl. The message is passed to the 
upper-level PI2 and PI3 for device-specific processing. For 
example, PIl can collect all messages from multiple de- 

S t a t e  T a b l e  F i l e  N a m e  * /  
/users/ test /Devicej ix .st ;  

/  T i m e _ S t a m p :  6 0 8 5 0 6 3 1 2  * /  
/  R u n - T i m e  N a m e  
R u n t i m e . N a m e  D e v i c e j a  

/  C A S E 1 ;  V  
/ '  G o o d  ' /  
/  S t a t e  C o m m a n d  ' /  
/ '  I D L E  W U R A  \ 0 1 2 V O O O ' ;  * /  
/ "  E n d  o f  c a s e  ' /  
/â€¢ ECASE IDLE WAIT sendjnessage; * /  

/â€¢ CASE 2; '/ 
/ â€¢  Good * /  
/ â € ¢  s t a t e  C o m m a n d  7  
- / â € ¢  I D L E  W L R A  ' 0 2 0 0 0 2 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0  * /  
/ â € ¢  0 0 1 0 2 0 0 0 3 0 0 0 ' ;  7  
/  E n d  o f  c a s e  7  
/  E C A S E  I D L E  I D L E  r e p l y j n e s s a g e ;  7  

CASE 3;  
/ "  S t a t e  C o m m a n d  * /  
I D L E  W U R A  ' \ 0 1 2 \ 0 0 0 1 ;  
W A I T  W L R A   
/  E n d  o f  c a s e  7  
ECASE WAIT  WAIT  ACK;  

CASE 4;  
/  S t a t e  C o m m a n d  7  
I D L E  W U R A  ' 0 1 2 0 0 0 ' ;  
W A I T  W L R A  \ 0 2 0 \ 0 2 5 ' ;  
/ "  E n d  o f  c a s e  7  
ECASE WAIT  WAIT  NAK;  

Fig .  10 .  Ac t ion  command f i le .  
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Test  
Exerciser 

Q5 

HP-UX Message 
Queues m Q4 

Factory-Floor 
Device Interface 

Q1 

Device 
Simulator 

MP-UX Message 
Queues 

Fig. 1 1 . Testing interfaces. 

vices, perform checksums, and pass them to the next level. 
This ensures that all messages are acknowledged promptly 
by a dedicated protocol interface, while less time-critical 
functions are handled by separate protocol interfaces. 

Fig. 15c shows three protocol interfaces, each dedicated 
to a port. Device-specific message processing is done for 
each port. The upper-level PI4 directs and organizes mes 
sages before passing them up to the application. 

A developer can choose where to put common functions. 
The performance will be slightly better when the number 
of protocol interfaces in serial is smaller, since fewer mes 
sages are passed between processes. On the other hand, a 
centralized function may be desirable because it simplifies 
the system design. 

Performance 
An HP DIS system is easier to construct than a similar 

application in C code, but this is achieved with some loss 
of performance compared to C code. In an HP DIS system, 
functionality is split across five (or more) separate HP-UX 
processes. In C code, all the functionality could reside in 
a single process. For example, HP DIS port management is 
handled by separate read and write port processes with 

PLDEFINIT IONS 

Runt ime^Name =  Dev ice joc ;  
Run t ime_Type  -  T ;  

Run t ime_Name =  PMDPSS;  
Runt ime_F i le_Name =  /us r /b in /PMDPSS;  / *  Dev ice  S imu la to r  ' /  
Run t ime .Type  =  T ;  

QUEUE_DEFINITIONS 
Queue_Name =  Q1,Q2,Q3,Q4,Q5;  
Queue.L ink  
Q5 > Dev ice_xx;  
Device_xx > Q3;  
Q4 < Dev ice_xx;  
Device_xx < Q2;  
P M D P S S  <  Q 3 ;  
P M D P S S  >  Q 2 ;  
Q 1  >  P M D P S S ;  

Fig.  12.  Test  conf igurat ion f i le .  

Runt ime_Name: Device_xx 

Execution_Number: 1 Case_Number: 1 

Status: Cases ident ical  in f i le Devicejcx.tr  and f i le 
Device j<x. da 

Event Path taken and Case Status in f i le Device_xx.tr :  
[ I D L E : s e n d _ m e s s a g e , D C I O  
D C M O V E  
Case.Status:  0 

Event  Path taken and Case Status in f i le  Devicejcx.da:  
[ I D L E : s e n d _ m e s s a g e , D C I O  
D C M O V E  
Case.Status:  0 

Execut ion_Number:  1 Case_Number:  2 

Status: Cases ident ical  in f i le Devicejcx.tr  and f i le 
Device_xx.da 

Event Path taken and Case Status in f i le Device_xx.tr :  
[ IDLE:reply_message,DCIO;DCIO;IDLE] 
Case_Status: 0 

Event Path taken and Case Status in f i le Device_xx.da: 
[ IDLE:reply_message,DCIO;DCIO;IDLE] 
Case_Status: 0 

Fig.  13.  Compar ison resul ts  f i le .  

Execution_Number: 1 
Case_Number: 1 
Runt ime.Name: Device_xx 
Trace_Data_Available 
ActÂ¡on_Command: WURA 
ProtocoLMessage_Transmission_Elapsed_Time: Thu Apr 13 14:33:30 1989 
ProtocoLMessage_Data_Packet :  ' \000\012\000 '  
Status: Triggered 
State: IDLE 
Event :  send.message 
Var iable_Retr ievaLEIapsed_Time: Thu Apr 13 14:33:30 1989 
State_Table_ Variables: 
ReplyPacket .data = '  '  
ReplyPacket .s ta tus = 0 
ReqPacket .data  =  '  '  
ReqPacke t .cmd =  0  
ReqPacket .ds t  =  10 
DataPacket .bcc  =  0  
DataPacket .data  = '  '  
DataPacket . tns = 1 
DataPacket .s ts  =  0  
DataPacket .cmd =  0  
DataPacket .s rc  =  0  
DataPacket .ds t  =  10 
Tex t  =  '  '  
T imePer iod  =  0  
B c c F l a g  -  T r u e  
Resu l t  =  0  
da ta  =  '  '  
t ns  =  1  
s t s  =  0  
c m d  =  0  
s r c  =  0  
d s t  =  1 0  
s ta tus  =  0  
b c c  =  0  
SYS_ERR =  0  
Status: Triggered 
State: IDLE 
Event :  send.message 
Act ion:  DCIO 
Variable_Retr ieval_Elapsed_Time: Thu Apr 13 14:33:30 1989 
State_Table_Variables: 
ReplyPacket .data = '  '  
ReplyPacket .s ta tus = 0  

Fig.  14.  Trace data output  f i le .  
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(a) 

Application^Â» Application 

6-Channe l  
Mu l t i p lexe r  

Fig.  15.  Conf igurat ions for  HP DIS-bu i l t  in ter faces,  (a)  One 
protocol interface handles one port and one device, (b) Three 
p ro toco l  i n te r faces  work  toge the r ,  ( c )  Th ree  p ro toco l  i n te r  
faces, each dedicated to a port ,  with an upper- level interface 
(PI4)  d i rect ing and organiz ing messages.  

connected HP-UX message queues. HP DIS handles the 
message buffering. This decreases development time since 
port configuration and buffer management code does not 
have to be written. However, the performance of this port 
interface will fall short of a similar interface with integrated 
port management functions. 

It is also relevant that HP DIS is an HP-UX application. 
An HP-UX cell controller, whether written in HP DIS or 
in C, is subject to normal HP-UX timesharing policies, and 
will have nondeterministic response times. With HP-UX 
on HP 9000 Series 800 computers, processes can be run 
under a real-time priority to decrease the chance that a 

Mul t i p lexe r  

Loopback Ports -  

Fig .  16 .  HP DIS per fo rmance tes t  mode l  fo r  mu l t ip le  por ts .  
PModel  is  a s imulated HP DIS appl icat ion.  

process will be preempted. HP DIS uses this HP-UX exten 
sion. With real-time HP DIS processes, response time vari 
ability can be decreased. 

Performance Test  Results 
HP DIS performance studies were conducted to answer 

these questions: 
â€¢ What is the performance on HP 9000 Series 300 and 

Series 800 computers? 
â€¢ What is the throughput of an HP DIS interface? 

The flexibility of HP DIS allows device interface modules 
to be configured and combined in an infinite number of 
ways. A simple model was chosen that gives representative 
data involving the major items contributing to performance. 
Fig. 16 depicts a typical configuration. An application 
(PModel) is connected to a device interface module (PIl), 
which is connected to an HP-UX RS-232 multiplexer port. 
The port has a physical loopback connection and all data 
written to the port is immediately read back from the port. 
Each port has one PModel. A fixed-length message is sent 
to the port by a PModel and returned unchanged. Because 
the application program waits for each message to return 
before sending another, only one message is in the loop at 
a time per PModel. Throughput data is averaged over 20 
transmissions for various message lengths using one, then 

3000 

2 Ports 

1 Port 

1 0 0 0  2 0 0 0  
Message Length (Bytes)  

2 Ports 

3000 

1 Port 

(b )  

1 0 0 0  2 0 0 0  
Message Length (Bytes)  

3000 

Fig. 1 7. Loopback response t ime for performance tests using 
the  HP DIS  app l i ca t ion  PMode l  on  (a )  HP 9000  Mode l  375  
and (b) HP 9000 Model 832 computers (HP DIS 2.2 on HP-UX 
7.0). 
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two PModels. 
Fig. 17 shows the data throughput of an HP 9000 Model 

375 and an HP 9000 Model 832, both with 16M bytes of 
memory, under the HP-UX 7.0 operating system. The 
throughput in Fig. 17 reflects the transfer of data one-way. 
The curves show the data throughput for one PModel and 
the sum of the data throughputs for two PModels. 

The throughput decreases with message sizes above 1000 
to 1500 bytes because HP DIS is performing message match 
ing (see "Matching Messages," page 67). HP DIS matches 
raw byte streams to the user's definition of the message. 

Summary  
The Hewlett-Packard Device Interface System, HP DIS, 

is a tool that eases the development of communication 
links between computers and factory-floor devices. Inter 
faces can be developed more quickly than with conven 
tional code. Devices can be simulated, and testing is mostly 
automated. Communication links can be scaled, using only 
the routines needed for the application at hand. Through 
the use of this tool , factory-floor devices from many vendors 
can be mixed and matched. 

HP DIS can improve productivity, reliability, develop 
ment costs, and market response and reduce support costs 
for device interfaces. 
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Measurement of R, L, and C Parameters in 
VLSI  Packages 
Developed to  ver i fy  the e lect r ica l  models  of  a  408- lead 
mul t i layer  ceramic  package,  th is  measurement  technique 
can measure the very  smal l  inductances,  capac i tances,  
and res is tances that  are typ ica l  o f  h igh-per formance 
packages. It does not require extraction of RLC parameters 
f rom t ime-domain ref lectometer  measurements.  

b y  D a v i d  W .  Q u i n t ,  A s a d  A z i z ,  R a v i  K a w ,  a n d  F r a n k  J .  P e r e z a l o n s o  

THE NEED FOR HIGH-PERFORMANCE, high-pin- 
count 1C packaging with a large number of I/O con 
nections has brought about a project to design and 

characterize a multilayer ceramic PGA {pin-grid array) ca 
pable of providing up to 320 I/O lines at an operational 
frequency in excess of 60 MHz. Our challenge is to produce 
a package that brings the performance advantages of mul 
tilayer cofired ceramic technology to high-lead-count, high- 
power VLSI circuits. The package currently in development 
will mount a 14-mm-square CMOS chip. 

Fig. 1 is a cross-sectional drawing of the package. The 
package contains 12 metallization layers, which are used 
for signal, power, and ground routing, and uses three-tier 
bonding from the chip to the bonding pads on the package. 
The top two bonding tiers on the package are exclusively 
for signal or I/O connections. The bottom bonding tier is 
reserved for power supply and ground connections. The 
signal routing layers provide a stripline environment and 
there is a ground plane adjacent to each of the power supply 
planes. 

The pads on the chip are spaced at an effective pitch of 
approximately 110 micrometers (0.00433 inch). We have 
been able to match this pitch on the package by using two 
signal bonding tiers. Power supply connections are divided 
into eight groups for flexibility and noise isolation. The 

chip mounts directly on a copper-tungsten heat spreader 
that is used for heat dissipation. The heat spreader is also 
connected to ground. 

E lec t r i ca l  Mode l i ng  
The designers of system processing units put considera 

ble effort into system simulations. One of their main con 
cerns is the amount of noise induced on logic VDD (logic 
VDD powers the internal circuitry of the 1C) and logic GND 
(ground). Another concern is noise on signal lines. Noise 
is caused by power and ground bounce and by coupling 
of signals from one line to another. The main source of this 
noise is the familiar Ldi/dt term, which arises from logic 
and I/O driver currents flowing in the inductance of the 
package and circuit board conductors. To produce mean 
ingful simulations, it is necessary to include models of all 
these components in the circuits. The simulations are par 
ticularly sensitive to the 1C package model, since the pack 
age lead inductance accounts for most of the inductance L 
in the Ldi/dt term for computing power supply bounce. 
The values of the power supply inductances that need to 
be added in the simulations range from about 70 picohen- 
ries to about 0.5 nanohenry. In addition, ground models 
" "Bounce"  in  gro jnd and power suppl ies re fers  to  a temporary droop or  r ise in  the supply  
vo l tage caused by large cur rents  drawn by dev ices us ing the suppl ies-  

B o t t o m  B o n d i n g  T i e r  

M i d d l e  B o n d i n g  T i e r  

T o p  B o n d i n g  T i e r  

D i e l e c t r i c  L a y e r  1  ( T L - 1 )  
D i e l e c t r i c  L a y e r  2  ( T L - 2 )  
D i e l e c t r i c  L a y e r  3  ( T L - 3 )  
D i e l e c t r i c  L a y e r  4  ( T L - 4 )  
D i e l e c t r i c  L a y e r  5  ( T L - 5 )  
D i e l e c t r i c  L a y e r  6  ( T L - 6 )  
D i e l e c t r i c  L a y e r  7  ( T L - 7 )  
D i e l e c t r i c  L a y e r  8  ( T L - 8 )  
D i e l e c t r i c  L a y e r  9  ( T L - 9 )  
D i e l e c t r i c  L a y e r  1 0  ( T L - 1 0 )  
D i e l e c t r i c  L a y e r  1 1  ( T L - 1 1 )  

B y p a s s  
C a p a c i t o r  

B y p a s s  
C a p a c i t o r  

Fig .  1  .  PGA (p in -g r id  a r ray )  con  
s t ruc t ion deta i l  (not  to  sca le) .  A l l  
d i e l e c t r i c  l a y e r s  a r e  0 . 0 0 8  i n c h  
thick. 
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and signal trace models including cross coupling need to 
be included in the system simulations. 

Model Verif ication 
Creation of electrical models for the PGA was facilitated 

by various software tools and by leveraging previous work 
done on the subject. Verifying that these models were cor 
rect was much more challenging and is the main topic of 
this paper. Models were verified by comparing package 
parameters calculated from the models with measurements 
on an actual PGA package. 

Most high-frequency measurements are done using a net 
work analyzer or a time-domain reflectometer (TDK). Both 
instruments measure reflections from discontinuities. The 
problem with using a TDK lies in the interpretation of the 
results when the time delay through a discontinuity is short 
compared with the rise time of the propagating pulse. The 
PGA package signal leads consist of stripline transmission 
lines with a signal propagation time between 100 and 200 
picoseconds and a characteristic impedance of approxi 
mately 37 ohms. Considering the time delay through the 
package, a TDK pulse with a rise time of about 20 pico 
seconds is necessary to give good resolution. Using such 
a fast rise time, skin effect, dielectric losses, and reflections 
from the test fixture and interconnections distort the reflec 
tion test signals to such a degree that it is virtually impos 
sible to extract an RLC circuit for the package itself. A TDR 
measurement also does not give numbers for first-order 
and second-order mutual inductances and capacitances be 
tween signal lines. TDRs are especially unsuitable for the 
power supply planes because of the extremely low charac 
teristic impedances of these planes (5Ã1 or less). A TDR 
does not have the ability to drive such a low-impedance load. 

Since simulations are done with the HP Spice software 
package using models made up of discrete R, L, and C 
elements, these are the parameters that need to be verified. 
Because TDR or direct measurements with an impedance 
analyzer cannot give this kind of detail, it was deemed 
necessary to develop another measurement technique, 
which is described in the following sections. 

Capaci tance Measurement  
A typical PGA signal trace structure, including the signal 

wirebond and the PGA pin, is modeled in the passive cir 
cuit of Fig. 2. This is a useful model for HP Spice simula 
tions. It can also be approximated in the form of transmis 

sion lines with Z0 = VE^7c7 and propagation time 
t = VLjCj. The transmission line approach is more dif 
ficult to apply when the mutual coupling and resistive 
losses are important. This is the case in any 1C package 
where a number of I/O lines and internal circuits are 
switching simultaneously. The RLC equivalent is applica 
ble to any circuit where the time delay of the element is 
less than about half the shortest rise time of the propagating 
signal. In the case of pin-grid array packages, the odd 
geometry gives the device non-TEM properties; for exam 
ple, the capacitive and inductive coupling coefficients are 
not equal. 

To overcome the shortcomings of traditional measure 
ment techniques, the following method is used. The R, L, 
and C values in Fig. 2 are measured using slightly different 
electrical circuits. The only source used is a ramp generator 
and the only detector used is an oscilloscope with a 
matched 50Ã1 input impedance. Fig. 3 illustrates the mea 
surement of a capacitance such as the coupling capacitance 
between the two traces. The use of a ramped input signal 
cancels effects of circuit elements that are not under test 
and aids in the interpretation of results. The charging cur 
rent i(t) defines the voltage across the oscilloscope's chan 
nel 2 inputs and the unknown capacitance Cx can be calcu 
lated from 

= Vmax/(Rscope2dVin/dt) (1) 

where voltage is measured at the center time of the Vgen 
ramp. 

The voltage Vou, is small, but its accurate measurement 
is important to the determination of the parameter values. 
The measurements that must be taken on the oscilloscope 
screen are the slope of the Vin ramp (dVin/dt) and Vmax, 
the plateau voltage on Vout. Matched coaxial cables be 
tween the instruments and the device under test introduce 
time delays, but do not introduce any additional factors in 
the equation for Cx above. For example, losses in the coaxial 
cables from the sample to the oscilloscope will introduce 
no error if they are the same length for both channels, since 
the measurement depends on the quotient of the measured 
voltages. The voltage drops across the series resistance and 
inductance in the trace are small, since they are in series 
with the capacitive impedance. The capacitive impedance 
dominates the current, so the resistive and inductive volt- 

W i r e b o n d  

P G A  3 . 2  n H  5 0  m i l  
Pad 

Node T1 

PGA Trace 

0.30 pF Node T4  
GND 3  

Fig.  2 .  Passive c i rcu i t  model  of  a  
typical PGA signal trace structure, 
showing typical  t race parameters. 
Nodes T3 and T4 are  cor respond 
ing  nodes  on  the  ad jacent  s igna l  
t r ace  fo r  capac i t i ve  coup l i ng .  I n  
duc t i ve  coup l i ng  i s  no t  i nc l uded  
in this model.  
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ages can be ignored. In addition, the capacitive loading on 
the Vout side is of little consequence, because the voltage 
being measured (the plateau top) is essentially constant. 
The capacitance on the Vout side will drop out of the mea 
surement equation if the time constant Cou,RSCOpe2 is much 
less than the test pulse rise time. 

Cx can be measured quite easily at several pulse rise 
times, and the calculated values of Cx can be compared for 
the different measurements. The longest pulses will give 
smaller plateau voltages, increasing the importance of the 
signal-to-noise ratio of the equipment, while the shorter 
pulses will cause the measurement to depart from its true 
value in a systematic way as the parasitics in the test jig 
become more dominant. In the PGA and other common 
packages, there is usually a wide range of pulse rise times 
that give the same answer for the value of the tested ele 
ment. 

In this and all the other test situations, the test jig param 
eters must be measured without the package and subtracted 
from the values obtained with the package in place. The 
design of the test jig is important and must include 
matched-impedance lines with connections as close as pos 
sible to the PGA to minimize the parasitics of the test jig. 
Good ground integrity is important, since large parasitics 
can be introduced quite easily. Poor connections are easily 
found using the real-time display of the oscilloscope. Move 
ment of a poor connection will produce corresponding 
wiggling of the oscilloscope trace and a poor connection 
can usually be located quickly and corrected. Once the test 
jig and cabling are connected properly, movement of the 
cables should produce no noticeable movement of the os 
cilloscope traces. This troubleshooting ability is another 
benefit of this technique. 

Inductance Measurement  
Inductances are measured by applying ramped currents 

instead of ramped voltages to the traces under test. This is 
arranged by shorting the wirebonds of the PGA traces to 
the PGA ground circuit. This circuit is shown in Fig. 4. 

F U n  

c, 

R , c o p e ,  
(Channel 1) 

Time (ns) 

Fig .  3 .  Capac i tance measurement  c i rcu i t  and vo l tage wave 
forms. 

The input impedance of the signal trace, represented by 
Lx in series with Rx, is low compared with the effective 
source impedance of the generator and the oscilloscope in 
parallel (RgeJRscope). so the inPut current is determined 
solely by the test equipment connected to the circuit. Thus, 
current I(t) = Vgen(t)/Rgen, since the package under test is 
virtually a short circuit. Virtually all of the current from 
the ramp generator flows through the package trace, so the 
voltage Vout is determined solely by the trace inductance 
and resistance. Again, if the rise time of Vgen is much greater 
than the time constant of the generator and package induc 
tance, the voltage across the package quickly becomes 
Voul = Lxdl/dt + RXI. The output pulse consists of the sum 
of two components: (1) a flat-topped pulse like the one in 
the capacitance measurement, and (2) a ramp proportional 
to the input current. If we separate the two voltages in Fig. 
4, call the inductive voltage Vlx, represented by the plateau 
voltage, and call the resistive voltage Vrx, the final voltages 
after the ramp can be found from: 

L x  =  

n/ * 

(2) 

(3) 

where dVgen/dt is the slope of the ramp voltage and Vgenmax 
is the final voltage of the Vgen step (see Fig. 4). 

The bounce caused by the partial inductance of the PGA 
ground net can be canceled by driving a third (uncoupled) 
signal trace, grounded to the shield at the inner lead bond, 
with a negative-going ramp of the same magnitude. The 
third lead must be uncoupled so that mutual inductance 
does not contribute unwanted voltages to the measurement. 

Test Fixture and Parasit ics 
For each of the parameters that we measured (inductance, 

capacitance, mutual inductance, and mutual capacitance) 
we had to build a different set of probes. The parasitics of 

F ig .  4 .  I nduc tance  measu remen t  c i r cu i t  and  vo l t age  wave  
forms. 
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these probes were zeroed out before and after each measure 
ment to make sure that the characteristics of the probes 
did not change during the measurements. This was espe 
cially important in the case of the power supply inductance 
measurements because the characteristics of the probes 
were comparable in magnitude to those of the package. 

Signal  Models 
Signal trace models were calculated using Stripcal1 to 

calculate the lumped elements in the trace model between 
the PGA bond pad and the base of the pin. Ind32 was used 
to calculate the inductances (both self and mutual) for the 
wirebonds. The measurements were done on a 408-pin 
PGA that had a test chip mounted and bonded in it. For 
the inductance measurements, all the wirebonds were 
shorted together on the chip. For the capacitance measure 
ments, all the signal wirebonds were isolated. 

Resistance measurements are not discussed in detail be 
cause they are straightforward and because the measured 
values of the tungsten metallization sheet resistance were 
between 5 and 7 milliohms/square, well below the maxi 
mum specification of 13 milliohms/square. In addition, the 
resistance of the ground and power supply routing was 
less than 5 milliohms, which was not considered signifi 
cant. 

The inductance measurement results were as follows: 

Parameter 

SelfLofVDD 
Self L of VDL (group 1} 
Self L of VDL (group 2) 
SelfCofVDD 
Self C of VDL (group 1) 
Self C of VDL (group 2) 

Measured Calculated Difference 

7 9  p H  1 9 %  
0 . 7 7 n H  1 4 %  

97 pH 
0.88nH 
1.18nH 
4.96nF 
0.66 nF 
0.5 nF 

1.06nH 
4.92 nF 
0.62nF 
0.47 nF 

11% 
1% 
6% 
6% 

Note: VDD is the logic power supply voltage and VDL is the 
I/O driver supply voltage. 

VDD Measurement Errors 
In the VDD inductance measurements, the topology forced 

us to put all eight ground wirebonds on the same side of 
the VDD wirebonds instead of four on each side as the chips 
are actually bonded. Moving all the ground wirebonds to 
one side of the VDD wirebonds may increase the inductance 
of the wirebonds by up to 50%. This effect accounts for 
most of the difference between the calculated and measured 
values of the VDD inductance. Fig. 5 compares the measure 
ment bonding pattern and the pattern the package was 
designed to use in actual operation. Another source of error 
is the shape (loop height, length, etc.) of the wirebonds. 
The wirebond shape may be turn out to be different from 
the one that was analyzed. 

P a r a m e t e r  M e a s u r e d  C a l c u l a t e d  D i f f e r e n c e  

S e l f  L  ( u p p e r  t i e r )  I S . l n H  1 5 . 2 n H  1 %  
S e l f  L  ( m i d d l e  t i e r )  1 4 . 9 n H  1 4 . 6 n H  2 %  
Mutua l  L  (midd le  t i e r )  3 .64nH 3 .21nH 12% 
M u t u a l  L  ( u p p e r  t i e r )  4 . 7 n H  4 . 5 n H  4 %  
W B  c o u p l i n g  ( 1 s t  o r d e r )  2 . 0 n H  2 . 1 n H  5 %  
W B  c o u p l i n g  ( 2 n d  o r d e r )  1 . 4 n H  1 . 5 n H  7 %  

Note: WB = wirebond. 

The sources of error for the signal inductance parameters 
are: (1) the routing on the chip, (2) variations in the length 
and the shape of the wirebonds and traces, and (3) imper 
fections in the ground planes. 

The capacitance measurement results were as follows: 

Parameter 

Self C (upper tier) 
Self C (middle tier) 
Mutual C (upper tier) 
Mutual C (middle tier) 

Measured Calculated Difference 

lO.lpF 
6.5pF 
0.7 pF 
O.GpF 

9.5pF 
6.3pF 
O.SpF 
O.SpF 

6% 
3% 

29% 
17% 

The sources of error in the signal capacitance measure 
ments are: (1) the capacitance of the pin braze pads, and 
(2) the capacitance of the vias and the associated cover 
dots. The capacitance between the wirebonds and between 
the pins was found to be less than 0.1 pF and has been 
ignored. 

Power Supply  Models  
The measurements were done in the same way as for the 

signal traces. The results were as follows: 

n  
4 G N D 8 P o w e r 4 G N D  Chip 

Package 

(a) 

4  G N D  

D 
Chip 

Package 

(b) 

Fig.  5 .  To measure VDD inductance,  i t  was necessary to  put  
a l l  e i g h t  G N D  w i r e b o n d s  o n  t h e  s a m e  s i d e  o f  t h e  V D D  
wi rebonds,  as  shown in  (b) .  In  ac tua l  serv ice ,  the  wi rebond 
p a t t e r n  i s  a s  s h o w n  i n  ( a ) .  T h i s  a c c o u n t s  f o r  m o s t  o f  t h e  
d i f ference between the measured and ca lcu la ted va lues.  
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VDL Measurement Errors 
The wirebonding pattern may vary in the VDL bonds. In 

the calculations for the VDL inductance, we also did not 
take into account the inductance of the epoxy routing on 
the chip. 

The power trace capacitance measurements were done 
without the bypass capacitors because the 0.1-/xF nominal 
value of the bypass capacitor is very large compared to the 
capacitance parameter that we were trying to measure. A 
very high degree of correlation was obtained between mea 
surements and calculations. 

Conclusions 
It is important to be able to verify electrical models of 

packages used in high-performance systems. Time-domain 
reflectometry cannot give the kind of detail needed for 
model verification, and it is very difficult to derive an RLC 
circuit from the results. 

The measurement technique described in this paper3 
overcomes the problems associated with TDR measure 
ments. Inductance is measured while capacitance is 
shorted out, and capacitance is measured on open-circuit 
traces so inductive effects are negligible. Slow rise times 
of input voltage pulses make it possible to avoid transmis 
sion line effects. A feature of this method is that the mea 
surements can be made with readily available digital oscil 
loscopes and pulse generators. 

Good correlation between the calculated and measured 
results for the PGA package was obtained. This measure 
ment technique has also been used to measure parameters 
of TAB [tape automated bonding) packages, printed circuit 
PGAs, and printed circuit board connectors with good re 
sults, and could also be useful in other electrical model 
verification experiments. 
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Statistical Circuit Simulation of a 
Wideband Amplifier: A Case Study in 
Design for Manufacturability 
Stat ist ical  var iat ions of  integrated circui t  parameters are 
of ten corre la ted,  not  independent .  Examples are s ide-by-  
s ide res is tor  values and matched t ransistor  gains.  
Account ing for  these corre la t ions us ing pr inc ipa l  
component  analys is  can make stat is t ica l  s imulat ion an 
accurate predic tor  o f  manufactur ing data.  

by Chee  K.  Chow 

IN INTEGRATED CIRCUIT DESIGN, there is a need for 
statistical circuit simulation that can accurately project 
circuit performance distributions in manufacturing. 

There are two reasons for this need. First, being able to 
project the performance distributions precisely in the de 
sign phase enhances the chance of a first-pass success. 
Thus, the cycle time from the design phase to manufactur 
ing release can be significantly reduced. Second, simula 
tion can serve as a diagnostic tool to identify hidden process 
problems. For example, large discrepancies between the 
simulated and manufactured distributions frequently indi 
cate process anomalies not previously discovered. 

A simple approach to statistical circuit simulation is to 
perform a large number of Monte Carlo simulations.1 The 
inputs to these simulations are computer-generated ran 
dom circuit parameters based on the means and standard 
deviations of the circuit elements extracted from the man 
ufacturing data. A significant drawback of this approach 
is that it does not account for the highly correlated nature 
of the device parameters within an integrated circuit die 
and also among dice. Consequently, it rarely gives accurate 
predictions. 

In integrated circuits, device parameter variations are 
separable into two types. Variations across many dice, waf 
ers, or fabrication lots are random in nature, while those 
within a die are highly correlated. Examples of the latter 
type are the side-by-side layouts of resistors and matched 
transistor pairs. At present, commercially available circuit 
simulators do not address these intercorrelations, so they 
do not provide the information needed. 

This article describes a circuit simulator study that ac 
counts for both the intradie device correlations and the 
lot-to-lot random variations. The technique used is based 
on principal component analysis, a branch of multivariate 
statistics. Examples are presented showing the application 
of this technique to a custom wideband bipolar amplifier 
1C used in the HP 54503A digitizing oscilloscope. The tech 
nique was used to set an accurate specification early in the 
design stage and to identify a process problem affecting 
the circuit performance. 

Principal  Component  Analysis 
Consider an integrated circuit having n parameters such 

as resistor values and transistor gains. These parameters 
vary statistically from lot to lot, from wafer to wafer, and 
from die to die because of the time and spatial variations 
of the fabrication process. The manufacturing distributions 
for this 1C can be simulated if an ensemble of n-variable 
vectors can be generated having the same statistical vari 
ation as the circuit parameters. The accuracy of these simu 
lations depends to a large extent on how accurately the 
intercorrelations of the n variables are accounted for. 

The n-variable vectors can be generated by multivariate 
statistical techniques,2'3 starting from the correlation ma 
trix of the n variables. Multivariate statistics analyzes the 
structure of complex statistical variables to identify latent 
factors (factor analysis) or the principal components (prin 
cipal component analysis). A comprehensive treatment of 
this subject can be found in the literature.2'3 Multivariate 
statistics has been used extensively by behavioral scientists 
to analyze latent factors responsible for certain behavior 
traits. Its applications to manufacturing problems, based 
on our literature survey, have been very limited.4'5'6'7 

One method of solving for the ensemble of n-variable 
vectors is based on principal component analysis tech 
niques. Briefly, principal component analysis describes the 
variances of the n random variables in terms of a set of 
mutually orthogonal or statistically independent (uncorre- 
lated) variables known as principal components. Each prin 
cipal component accounts for a portion of the total variance 
larger than the succeeding components. Statistical ensem 
bles of the n variables can be readily generated from random 
numbers after the transformation to the principal compo 
nents because of the statistical independence of the princi 
pal components. 

The ensemble of n-variable vectors is generated in a 
closed-form solution starting from the n-variable correla 
tion matrix R, provided that the eigenvalues of R are all 
positive and the variables are normally distributed. For a 
set of n circuit variables, ya, y2, ..., yn having a correlation 
matrix R, it can be shown that the ith statistical variable 

78  HEWLETT-PACKARD JOURNAL OCTOBER 1990  

© Copr. 1949-1998 Hewlett-Packard Co.



yÂ¡ is given by the expression: 

yÂ¡ = 

2'3 

( D  

High -F requency  
O u t p u t  

Output  Stage 

where Xj, x2   xn are normally and independently distrib 
uted random variables (the principal components). The 
values for the xÂ¡ in equation 1 are chosen randomly and 
independently. This is possible because the xÂ¡ are statisti 
cally independent. 

The \Â¡ in equation 1 are the eigenvalues of R. The Â¿tÂ¡ and 
aÂ¡ are the mean and standard deviation of the ith variable. 
â€¢Yij is the jth component of the ith eigenvector of R. The 
statistical measures for these variables are obtained from 
volume manufacturing data. 

Circuit  Simulat ion Algorithm 
A circuit simulator6 was written in C and HP-UX scripts. 

It runs on an HP 9000 Series 370 workstation. The algorithm 
of this program is shown in Fig. 1. It consists of three 
modules: 
â€¢ A statistical analysis package performs all the computa 

tions according to equation 1. 
â€¢ A parser retrieves these correlated vectors and generates 

the HP Spice text files. 
â€¢ HP Spice performs the simulations. 

The user is required to input three pieces of information: 
(1) the HP Spice text file, (2) the correlation matrix of the 
circuit variables, and (3) the means and standard deviations 
of the circuit variables. Data for (2) and (3) has been com 
piled from volume production measurements for many HP 
fabrication processes. 

The confidence limits of the simulated distributions vary 
as the square root of the number of simulations.1 Based on 
numerous case studies, about 100 simulations are adequate 
to project a 95% confidence limit, even for a fairly complex 
system. Although these Monte Carlo simulations are com 
putationally intensive, with the emergence of widely avail 
able high-performance workstation-class computers, they 
can be routinely performed. A typical 200-sample simula- 

User Input (Circuit  
Element Correlat ion 

Matrix) 

Statistical 
Packageâ€” 

Main Program 
Principal  Component 
Analysis Correlated 
Vector  Generat ion 

HP Spice  Text  
Fi le Generation 

â € ¢ ^ H i  

HP Spice 
Text  Fi les 

HP Spice 
Simulation HP Spice 

Simulator 

T  
Parameter  
Extraction I Statistical 

Package 

Data Analysis 

Control 
Register 

Variable Gain Cel l  
â€¢x4 

x4 Gi lbert  Gain 
Cell 

T  T  
Input 

Voltage 

Transconductance 
Stage 

Gain 

Fig.  2 .  S imulat ion was used to set  the min imum gain speci f i  
ca t ion  fo r  th is  p rogrammable  ga in  c i rcu i t  por t ion  o f  an  in te  
grated amplif ier 1C. 

tion takes 149 seconds on an HP 9000 Model 370 worksta 
tion. 

Case Study 
The merits of this statistical circuit simulator are illus 

trated by two applications during the manufacturing re 
lease of a custom high-speed integrated circuit. 

The circuit is an integrated amplifier fabricated using 
the HP5 process, a 5-GHz fT oxide isolation process. The 
1C is used in the HP 54503A low-cost, high-performance 
digitizing oscilloscope. This custom 1C is the heart of an 
amplifier/attenuator assembly that accurately reproduces 
signals from dc to 500 MHz and from 40 mV to 40V with 
ac or dc coupling and a constant output dynamic range of 
500 mV. The 1C consists of nine functional blocks. On-chip 

3 5  - r -  

3 0  - -  

2 5  - -  

2 0  - -  

15 - -  

1 0  - -  

1.30 1.35 1 . 4 0  1 . 4 5  
Minimum Ampli f ier  Gain 

1.50 1.55 

Fig.  1.  Stat ist ical  c i rcui t  s imulat ion algor i thm. 

F ig .  3 .  The d is t r ibu t ion o f  the min imum ga in  f rom 220 cor re  
lated simulations has a mean of 1.44 and a standard deviation 
o f  0 .04 .  I t  p red ic ts  a  min imum ga in  spec i f i ca t ion  o f  1 .33  to  
1.57. 
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registers can program the gain from 1.5 to 12.5 in 3% incre 
ments. 

Projection of  Manufacturing Specif icat ions 
In the manufacturing release of this 1C, no reliable data 

was available to set the minimum gain specification (1.5 
nominal) of the programmable gain circuitry shown in Fig. 
2. This gain cell can be programmed to amplify small sig 
nals with a nominal gain of 1.5 to 12.5. 

An inaccurate specification on the minimum gain would 
cause high parametric yield loss. The statistical simulation 
techniques described previously were carried out to project 
the gain distribution in a real-life manufacturing environ 
ment. For these simulations, 36 circuit elements were iden 
tified as random variables. The correlation coefficients of 
these variables were compiled from production data for 
the HP5 process. Specifically, the following intradie device 
correlations were accounted for: 
â€¢ Correlations between resistors 
â€¢ Correlations between transistor model parameters 
â€¢ Correlations between resistors and transistor model pa 

rameters. 
A 200-sample Monte Carlo simulation was carried out. 

The simulated minimum gain distribution is shown in Fig. 
3. It projects a Â±3cr specification of 1.33 to 1.57. Measured 
production data for six months shows a distribution with 
a mean of 1.43 and a standard deviation of 0.034 (Fig. 4). 
The measured data projects a specification of 1.33 to 1.53. 
The simulated and manufacturing statistics are compared 
in Table I. 

Stat ist ical  Simulat ion as a Diagnostic Tool  
A second example of the power of this simulation 

technique illustrates its role as a diagnostic tool. The por 
tion of the 1C under study is the dc restore circuit, which 
level shifts the complementary high-frequency outputs to 
the ground level. A block diagram is shown in Fig. 5. From 

High-Frequency 
Inverting 

Output 

High-Frequency 
Noninverting 
Output 

Level-Shifted 
Output 

Fig .  5 .  A  por t ion  o f  the  in tegra ted ampl i f ie r  1C showing the  
operat ional  ampl i f ier  and resistor  br idge of  the level  shi f t ing 
subc i rcu i t .  The op amp in  th is  dc restore c i rcu i t  had a large 
l ow - f r equency  ou tpu t  o f f se t  f o r  wh i ch  t he  s imu la t i on  da ta  
d i d  n o t  m a t c h  t h e  p r o d u c t i o n  d a t a ,  s u g g e s t i n g  a  p r o c e s s  
anomaly.  

Table I  
Comparison of  Simulated and 

Measured Minimum Gain Distr ibut ions 

Simulated Measured 

Mean 
Standard Deviation 
Specification 

1.44 
0.04 

1.33-1.57 

1.43 
0.034 

1.33-1.53 

6 0 0  T  

5 0 0  

4 0 0  - -  

3 0 0  - -  

2 0 0  - -  

100 -- 

1.30 1.35 1 . 4 0  1 . 4 5  1 . 5 0  
Minimum Ampl i f ier  Gain 

1.55 1.60 

Fig .  4 .  S ix -month  p roduc t ion  da ta  has  a  d is t r ibu t ion  w i th  a  
mean of 1.43 and a standard deviat ion of 0.034. The minimum 
gain specif icat ion is 1 .33 to 1.53. 

1400 T 

1 2 0 0  - -  

1000 --  

8 0 0  - -  

6 0 0  - -  

4 0 0  - -  

2 0 0  - -  

- 1 0 0  - 8 0  - 6 0  - 4 0  
Output  Offset  (mV) 

- 2 0  

Fig .  6 .  D is t r ibu t ion  o f  the  ou tpu t  o f fse t  o f  the  op  amp f rom 
p roduc t ion  da ta .  The  mean  i s  -49  mV and  the  s tandard  de  
v iat ion is 11 mV. 
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production data, the low-frequency output offset voltage 
of the op amp had been observed to be large. The op amp 
output offset voltage is defined as the output voltage of the 
op amp when the two high-frequency outputs (inverting 
and noninverting) are equal. Under balanced conditions, 
the output offset should be close to zero. It was not known 
what the standard deviation caused by process latitudes 
should be. Fig. 6 shows a typical distribution of this param 
eter from six months of production data. It has a mean of 
-49 mV and a standard deviation of 11 mV. 

The op amp circuitry has 22 random variables, of which 
12 are highly matched resistors and 10 are the transistor 
model parameters. Correlated simulations were carried out 
as for the first example. A 200-sample simulation revealed 
the distribution of the offset voltage to have a mean of 11 
mV and a standard deviation of 3.4 mV. Such a large dis 
crepancy between the manufactured and simulated distri 
butions suggests some hidden process anomaly that has 
not been discovered. 

Subsequently, the process defect that caused this wide 
distribution of the output was identified. The circuit was 
redesigned to desensitize it to the process defect. The dis 
tribution from one wafer after redesign is compared to the 
simulated distribution in Fig. 7. The redesigned circuit 
shows a mean of 6 mV and a standard deviation of 4.8 mV. 
The simulated values are close to the initial production 
data. The slight discrepancies of the standard deviations 
can be accounted for by a variety of second-order effects 
that were not included in these simulations, most notably 
variations in metal resistivity and metal-to-metal contact 
resistance. 

2 0  - -  

15 -- 

1 0 - -  

5  - -  

0  - -  

Conclusions 
This statistical circuit simulation study has demonstrated 

the accuracy of this technique in projecting circuit perfor 
mance distributions in manufacturing. The technique also 
has a valuable role as a diagnostic tool for troubleshooting 
process problems. Despite some assumptions used both in 
the underlying principal component analysis theory and 
the device modeling, these simulations are accurate enough 
to be a practical CAD tool in product development. 

It is hoped that this approach to design for manufactura- 
bility, through synergism of volume production data with 
design simulation tooling as exemplified by this simulation 
study, will be a significant contribution to manufacturing 
technology. 
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Fig. the (a) The distr ibut ion of the output offset voltage of the 
op  amp f rom 200  co r re la ted  s imu la t i ons  has  a  mean  o f  11  
mV and a  s tandard  dev ia t ion  o f  3 .4  mV,  very  d i f fe ren t  f rom 
the product ion data shown in Fig.  6.  (b) The distr ibut ion from 
one product ion wafer af ter  redesign has a mean of  6 mV and 
a  s tandard  dev ia t ion  o f  4 .8  mV,  more  c lose ly  match ing  the  
simulat ion data. 

OCTOBER 1990  HEWLETT-PACKARD JOURNAL 81  

© Copr. 1949-1998 Hewlett-Packard Co.



System Level Air Flow Analysis for a 
Computer System Processing Unit 
Numerical simulation of particle traces using finite element 
mode l ing  and supercomputers  g ives  a  good qua l i ta t i ve  
picture of air f low features. Computed velocity profiles and 
p ressure  d rops  have  reasonab ly  good accuracy .  

by Vivek  Mansingh and Kent  P .  Misegades 

STEADY, VISCOUS, THREE-DIMENSIONAL AIR 
FLOW within a computer system processing unit 
has been analyzed using finite element modeling. 

The objective of the study was to investigate the effective 
ness of finite element modeling in predicting the air flow 
characteristics within a computer. A full-scale three-dimen 
sional finite element model of an HP 9000 Model 850 com 
puter was created using FIDAP, the finite element code 
from Fluid Dynamics International. This model consisted 
of over 60,000 nodes and over 40,000 8-node brick ele 
ments. Extensive computations were carried out using 
CRAY Y-MP supercomputers. General flow characteristics, 

including velocity profiles and pressure drop across the 
system, were computed. Numerically calculated particle 
traces were recorded using video equipment. It was found 
that numerical simulation of particle traces can show good 
qualitative features of the flow through the system and the 
modeling results of velocity profiles through the boards 
and the system pressure drop have reasonably good accu 
racy. 

Project Objective 
For the thermal management of air-cooled computers, 

the key air flow parameters to be determined are the air 

O  Fan Location 

I/O 
Side 

CPU 
Side 

71 
cm 

Top  V iew 

- 65 cm - 

92 cm 

Side View 

Fig.  1 .  HP 9000 Model 850 computer system processing uni t  
( r ight  s ide of  computer  in  photo) .  There are s ix  fans.  

Front View 
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velocities in the computer cabinet and the pressure drop 
across the system. The air velocity flow characteristics in 
the system help in designing the system layout at the board 
and component level while the system pressure drop forms 
the basis for selecting air movers. Thermal management at 
the component level also requires the knowledge of board 
and component level air flow characteristics. 

Traditionally, pressure drop and flow characteristics 
within a computer cabinet have been experimentally mea 
sured on prototypes of the machines. Unfortunately, an 
accurate prototype can only be available when all the com 
ponents of a system have been designed. This typically 
happens only towards the end of a design effort. Therefore, 
the flow characteristics and the system pressure drop can 
be accurately measured only after almost all the compo 
nents of the system have already been designed. If for some 
reason the pressure drop is found to be excessive or the 
air flow characteristics are found to be different than ex 
pected, major design changes may have to be made at the 
end of the design cycle, resulting in serious product mod 
ifications and delays. Furthermore, experimental measure 
ments in a prototype are both difficult and expensive in 
terms of human effort. 

It would be advantageous to have modeling tools that 
can predict these air flow characteristics early in the design 
process. A model could also easily simulate effects of high 
altitude, zero gravity, and other conditions. The objective 
of this study was to investigate the effectiveness of finite 
element modeling in predicting the air flow and pressure 
drop characteristics within a computer. 

Model  Development  
As mentioned earlier, a full-scale model of an air-cooled 

HP 9000 Model 850 computer system processing unit (SPU) 
was created. A photograph and a drawing of a Model 850 
SPU are shown in Fig. 1. A Model 850 SPU is approximately 
1 m high, 0.7 m wide, and 0.7 m deep. It has four processor 
boards and several other memory and I/O boards. The back 
plane essentially divides the cabinet into two halves: the 
CPU (central processing unit) side and the I/O side. It has 
six tube axial fans for cooling, which operate in the suction 
mode. Four of these fans are for the CPU side and two are 
for the I/O side. The air inlet is at the top and the outlet is 
at the bottom. Detailed mechanical drawings showing loca 
tions and dimensions of the structural components, printed 
circuit boards, suction fans, flow inlets, and flow outlets 
were used to create the full-scale model of the system using 
FIDAP's preprocessor FIPREP and mesh generator FIMESH. 
The full model was divided into smaller finite elements 
using 8-node brick elements. Fig. 2 gives a view of the final 
mesh, consisting of 60,507 nodes and 48,600 elements. 

From the outset, it was recognized that detailed three- 
dimensional modeling from the system level to the compo 
nent level, that is, from the overall dimensions of the 
cabinet down to the smallest component on a board, was 
impossible, both from a modeling standpoint and because 
of computation time requirements. For instance, we esti 
mated that simulating the flow through just one of the CPU 
boards having a number of RAM chips, PGAs, CPU chips 
and multifinned heat sinks would require a mesh of ap 
proximately 60,000 to 100,000 elements and a run time of 
more than 10 CPU hours. Therefore, it was not possible to 
model every single component in the system. Since the 
main focus for this project was on system level characteris 
tics, a component level simplification in the geometry was 
made. To model the components on the boards, it was 

Fig. 2. A view of the f ini te element 
mesh for simulat ion of the air  f low 
i n  a n  H P  9 0 0 0  M o d e l  8 5 0  S P U .  
T h e  c o m p l e t e  m e s h  c o n s i s t s  o f  
60,507 nodes and 48,600 8-node 
br ick elements.  
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C O M P U T E R  A I R F L O W  A T  A S S E M B L Y  L E V E L  -  C R A Y  S I M U L A T I O N  V E L O C I T Y  
V E C T O R  P L O T  

S C A L E  F A C T O R  
0 . 1 0 0 0 E + 0 3  

M A X .  V E C T O R  
PLOTTED 

0.5064E+01 

AT NODE 61127 

PLANE COEFF.S 

A O.OOOE+00 
B 0.100E+01 
C O.OOOE+00 
D -.450E+00 

VIEW DIRECTION 

VX -.100E+01 
VY 0.300E+00 
VZ 0.800E+00 
ANG -. lOOE+03 

F I D A P  4 . 5 1  
l O - N o v - 8 9  
17 :  48 :  02  

F ig .  3 .  Computed  f low ve loc i t i es  
in the X-Z plane at the entrance to 
the pr inted c i rcui t  boards.  

assumed that between any two printed circuit boards, a 
certain percentage of the flow passage was blocked by com 
ponents. Based on good engineering judgment, for the four 
CPU printed circuit boards the blockage was assumed to 
represent 30% of the volume between two adjacent boards, 
whereas for all the other boards the blockage was assumed 
to represent 50% of the volume between adjacent boards. 
Flow deflection vanes at the air inlet of the cabinet were 

included in the model as infinitely thin plates at the same 
angle as the actual vanes. 

Although the computational effort required to generate 
this three-dimensional model was moderate, it took ap 
proximately IVz engineer-months to create the model be 
ginning from mechanical drawings. It is also important to 
note that the use of computer graphics was essential to the 
successful creation of this mesh, visual analysis of the mesh 

C O M P U T E R  A I R F L O W  A T  A S S E M B L Y  L E V E L  -  C R A Y  S I M U L A T I O N  V E L O C I T Y  
V E C T O R  P L O T  

S C A L E  F A C T O R  
0 . 1 0 0 0 E + 0 3  

M A X .  V E C T O R  
PLOTTED 

0.2831E+01 

AT NODE 61143 

PLANE COEFF.S 

A 0.100E+01 
B O.OOOE+00 
C O.OOOE+00 
D -.400E+00 

VIEW DIRECTION 

VX -.100E+01 
VY 0.300E+00 
VZ 0.800E+00 
ANG -.100E+03 

FIDAP 4.51 
lO-Nov-89 
17: 40: 56 

Fig .  4 .  Computed  f low ve loc i t i es  
i n  t h e  Y - Z  p l a n e  t h r o u g h  t h e  
pr in ted c i rcu i t  boards.  
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C O M P U T E R  A I R F L O W  A T  A S S E M B L Y  L E V E L  -  C R A Y  S I M U L A T I O N  VELOCITY 
V E C T O R  P L O T  

S C A L E  F A C T O R  
0 . 1 0 0 0 E + 0 3  

M A X .  V E C T O R  
P L O T T E D  

0 . 8 6 6 a E + 0 1  

A T  N O D E  6 0 5 4 8  

E+01 

Â¡Ã8i 
l+oo 

CORNER 
SURFACE CUT 

VIEW DIRECTION 

VX -.100E+01 
VY 0.300E+00 
VZ 0.800E+00 
ANG -.100E+03 

F I D A P  4 . 5 1  
l O - N o v - 8 9  
1 7 :  3 7 :  0 7  

F ig .  5 .  Computed  f l ow  ve loc i t i es  
through the system. 

generator's results being the only good means of checking 
progress. For this, both FIDAP's postprocessor FDPOST 
and Cray's Multi-Purpose Graphics System MPGS were 
used. All computations, including graphics, were per 
formed on CRAY Y-MP supercomputer systems. 

Boundary Condit ions 
The physical problem modeled was three-dimensional, 

steady, viscous, laminar, isothermal flow. Because the ve 
locity through the system was of the order of 2 m/s and 
the length scales of the components were small, the flow 
was assumed to be laminar. The flow was assumed to be 
isothermal because the main focus of the problem was the 

F i g .  6 .  A n i m a t i o n  o f  s i m u l a t e d  
part icle traces representing the air 
flow. 
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fluid flow characteristics. 
On all solid surfaces of both physical and blocked re 

gions, a no-slip velocity boundary condition was specified. 
At the two air flow entrances on the top front and back of 
the cabinet, no boundary conditions were set. For the air 
outlet at the bottom of the cabinet, a constant-velocity bound 
ary condition was defined. However, for the outlet bound 
ary condition, not enough information was available ini 
tially. The flow rate produced by a fan is dependent on 
the pressure drop it experiences. Flow rates are given in 
tabular or graphical form as a function of pressure drop. 
The data used in this work was for the fans running at 60 
Hz at sea level. Since we did not know the pressure drop 
of the system at the outset, it was not possible to know the 
fan flow rate that would define the air exit boundary con 
dition. To get around this problem, the following iterative 
procedure was used: 
1. An initial fan flow rate was guessed. 
2. For this given fan flow rate, the flow field including the 
pressure drop was calculated based on the uniform exit 
velocity across the exit area that would result in the same 
volumetric flow rate as produced by six fans. 
3. For this computed pressure drop, the corresponding 
flow rate from the fan manufacturer's performance curve 
was found. 
4. An average of this new flow rate and the previously 
guessed flow rate was used to calculate the exit velocities, 
which were used as new boundary conditions for the next 
computation. 
5. This procedure was repeated until the guessed flow rate 
produced the corresponding pressure drop according to 
the fan curves. 

Computat ions 
The three-dimensional Navier-Stokes equations of mo 

tion1 were solved in the nondimensional form. The solution 
technique used was the segregated method.2 A separate 
linear system was solved for each of the four degrees of 
freedom â€” three velocity components and pressure. Relaxa 
tion factors2 used for the four degrees of freedom were 0.8, 
0.8, 0.8 for the three velocity components and 0.0 for pres 
sure. To improve the accuracy and stability of the solution, 
an up winding factor2 of 1.0 was used for all degrees of 
freedom for all computations because high velocity gra 
dients were expected in the coarse mesh regions. 

Starting from an initial linear Stokes flow solution, the 
problem was run for five iterations using the segregated 
solver, resulting in the following solution or convergence 
errors for the four degrees of freedom: 
â€¢ X Velocity: 0.0084 
â€¢ Y Velocity: 0.0074 
â€¢ Z Velocity: 0.0038 
Â» Pressure:  0.021.  

The FÃDAP User's Manual recommends that these values 
be driven to 0.001 when using the segregated solver. How 
ever, we were not able to converge to values lower than 
these even though several other values of relaxation and 
upwinding parameters were tried. 

After the initial five-iteration solution, a new fan flow 
rate was guessed and a second run was made. The solution 
was said to have converged when the pressure error was 

less than or equal to that of the first run, 0.021. The results 
of this iterative procedure are given below: 

Typica l  F IDAP Run 

R u n  N u m b e r  o f  F a n c f m  P r e s s u r e  P r e s s u r e  D r o p  F a n c f m  
I t e r a t i o n s  G u e s s e d  E r r o r  C o m p u t e d  A c t u a l  

1  5  1 0 0  0 . 0 2 1  0 . 4 6 i n H 2 O  7 0  
2 7  8 5  0 . 0 1 6  0 . 4 0 i n H 2 O  9 0  

In this typical example, 12 iterations were required to 
find a value of fan flow rate within 10% of that actually 
supplied by the fan. Given that other simplifications in the 
model had been made, it was felt that this level of con 
vergence and accuracy was adequate. 

On the CRAY Y-MP supercomputer, 10 hours of CPU 
time were required to perform the 12 solution iterations 
needed. Memory needed was 4.0M words of main memory 
and 87M words of secondary memory or scratch memory. 
For scratch memory, a CRAY SSD (solid-state storage de 
vice) was used. This reduced an otherwise substantial I/O 
wait time penalty for disc memory devices to a small frac 
tion of the total run time. 

Numerical  Results 
As mentioned earlier, general flow characteristics in 

cluding the velocity profile and the pressure drop across 
the system were computed. Some typical pictures of the 
flow velocities through the system are shown in Figs. 3, 4, 
and 5. These illustrate well the qualitative features of the 
flow entering the CPU side and the I/O side at the top 
section, turning and going through the printed circuit 
boards, and exiting the fan outlet region. An interesting 
aspect of the results is that a substantial portion of the flow 
entering the I/O side or the rear of the cabinet actually 
passes over the backplane obstruction in the top section 
and flows to the CPU side at the front of the cabinet. It can 
also be seen that" the velocities are low at the entrance, 
increase between board slots and then decrease again at 
the exit of the board slots. The air velocities are higher in 
the four CPU board slots than in the memory and I/O board 
slots and are in the range of about 1 to 2.75 m/s. 

As mentioned earlier, simulated particle paths or traces 
were recorded on video. The traces represent the path that 
a massless particle would take through the computer cab 
inet if released at various locations along the inlet planes. 
Such traces are very useful in giving a qualitative represen 
tation of the three-dimensional complex flow field. Using 
MFCS, the Multi-Purpose Graphics System from Cray Re 
search, these traces were animated to show the details of 
the flow. The animation very clearly shows the cross flow 
of air from the I/O side of the cabinet to the CPU side and 
other complex features of the flow. A typical picture of 
particle simulation is shown in Fig. 6. 

Experimental  Results 
Experimental measurements of the air velocities were 

carried out on an actual system with the help of a hot-wire 
anemometer. The cabinet walls and some of the boards 
were modified so that the hot wire could be inserted into 
the cabinet at the desired locations. Velocity profiles were 
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board s lo t  0  a t  the middle of  the board.  

measured in the CPU and I/O board region across the 
boards. A typical velocity profile measured in CPU board 
slot 0 at the middle of the board is shown in Fig. 7. The 
slot depth (X in Fig. 3), is plotted on the x axis while the 
respective velocities are shown on the y axis. It can be seen 
that the air velocities are in the range of 1.25 m/s to 2.25 
m/s. The velocities are about 1.5 m/s at both ends of the 
board, with the highest velocities of about 2.25 m/s in the 
middle of the board. One of the reasons for the nonunifor- 
mity in the velocity profile is the presence of various com 
ponents (chips, heat sinks, etc.) on the board. 

A comparison of the numerical results with the experi 
mental results is also shown in Fig. 7. The numerical results 
predict higher velocities in the center and lower velocities 
near the ends than were actually measured. However, the 
range of velocities is about 1.5 m/s to 2.75 m/s, which is 
relatively close to that measured experimentally. It should 
be noted that in the numerical simulations, the board com 
ponents were modeled as blockage to the flow, whereas in 
the experiments, the boards had actual components on 
them. 

Conclusions 
Steady, viscous, three-dimensional air flow within a 

computer SPU has been analyzed using finite element model 
ing. General flow characteristics including velocity profiles 
and pressure drop across the system were computed. Nu 
merically simulated particle traces were recorded using 
video equipment. It was found that numerical simulation 
of particle traces can show good qualitative features of the 
flow through the system. The particle traces show some 
extremely interesting flow characteristics that could not 
have been known easily otherwise. The computed velocity 
profiles through the boards and the computed system pres 
sure drop have reasonably good accuracy. Modeling pre 
dicted the air velocities through the CPU board slots to be 
about 1.5 m/s to 2.75 m/s whereas the experimental mea 
surements showed about 1.25 m/s to 2.25 m/s. However, 
finite element modeling can be relatively expensive in 
terms of computation time. 
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