

About Agilent's RF and Microwave
 Test Accessories Product Portfolio 2010

The Agilent Technologies 2010 RF and Microwave Test Accessories Product Portfolio allows you to quickly and conveniently research the highest quality RF and microwave test accessories in the industry. Our test accessories are the result of decades of innovation in creating the building blocks used in our test and measurement products and solutions. We've evolved these key technologies into a broad line of RF and microwave test accessories for use in your test and measurement solutions.

In addition to this, please refer to the MTA catalog 5968-4314EN for complete product specifications, and visit our Web Site (www.agilent.com/find/mta) for the latest news, product and support information. We encourage you to visit the site, where you can obtain updated technical information and download technical literature on Agilent's high-performance RF and microwave test accessories.
New RF and Microwave Test AccessoriesAgilent's RF and microwave test accessories complete your measurement solutions.
Choose from over 200 accessories that provide superior RF performance to optimize your equipment performance. Unmatched quality and reliability and ultra-broadband frequency help you meet the demands of today's devices
Find the newest products below:

RF Probes

High frequency active differential probes for in-circuit measurements.
U1818A Active Differential Probe, 100 kHz to 7 GHz page 54
U1818B Active Differential Probe, 100 kHz to 12 GHz page 54
Attenuation Control UnitsAttenuation control unit, DC to 6/18/26.5 GHz, 0 to 101/121 dB attenuation with 1 dB step size. Designed for WLAN and WiMAX ${ }^{\text {TM }}$ device manufacturing test,mobile handset base transceiver station (BTS) handover testing.
J7211A Attenuation Control Unit, 6 GHz, 121 dB, 1 dB step page 20
J7211B Attenuation Control Unit, 18 GHz, 121 dB, 1 dB step page 20
J7211C Attenuation Control Unit, 26.5 GHz, 101 dB, 1 dB step page 20
Attenuator/Switch Drivers
The attenuator/switch drivers are LXI-compatible instrument capable of controlling four programmable step attenuators and four microwave coaxial switches.
11713B Attenuator/Switch Driverpage 23
11713C LXI-Compliant Attenuator/Switch Driver page 23

Product Index 6
1 Amplifiers 10
Amplifiers 11
2 Attenuators 13
Coaxial Fixed Attenuators 14
Manual Step Attenuators 16
Programmable Step Attenuators 18
Attenuation Control Unit 20
3 Attenuators/Switch Drivers 22
Attenuators/ Switch Drivers 23
4 DC Blocks 25
DC Blocks 26
5 Detectors 28
Broadband Directional Detectors. 29
Low Barrier Schottky Diode Detectors 31
Planar Doped Barrier Diode Detectors 33
6 Couplers 35
Couplers 36
7 RF Bridges 38
RF Bridges 39
8 Frequency Meters 41
Frequency Meters 42
9 Power Limiters 44
Power Limiters 45
10 Power Dividers 47
Power Dividers 48
11 Power Splitters 50
Power Splitters 51
12 RF Probes 53
Active Differential Probes 54
13 Electro-Mechanical Switches 56
L-Series EM Switches 57
Low Cost SPDT Switches 59
High Performance Multiport Switches 61
High Performance SPDT Switches 63
Bypass Switches 65
High Perfomance Transfer Switches 67
High Perfomance Matrix Switches 69
14 Solid State Switches 71
Solid State Switches 72
15 Terminations (Loads) 74
Terminations (Loads) 75

11636A	DC-18 GHz power divider, Type $\mathrm{N}, 50 \mathrm{ohm}$	48
11636B	DC to 26.5 GHz power divider, APC-3.5	48
11636 C	DC to 50 GHz Power Divider, 2.4 mm connectors	48
11667A	DC-18 GHz power spliter, type $\mathrm{N}, 50 \mathrm{ohm}$	51
11667B	Power splitter, DC to 26.5 GHz , 3.5 mm female connectors	51
11667C	DC - 50 GHz power splitter, 50 ohm	51
11667L	Power spliter DC-2 GHz, BNC, 50 ohm	51
11713B	11713B Attenuator Switch Driver	23
11713C	11713C Attenuator Switch Driver	23
11742A	Blocking Capacitor, $45 \mathrm{MHz}-26.5 \mathrm{GHz}$	26
11867A	RF Limiter, DC to 1800 MHz	45
11930A	APC-7 limiter, DC-6 GHz	45
11930B	Type-N limiter, $5 \mathrm{MHz-6} \mathrm{GHz}$	45
33330B	Coaxial detector; 0.01 to 18 GHz	31
33330C	Coaxial Detector	31
423B	Low-barrier Schottky diode detector	31
537A	Direct-reading coaxial frequency meter	42
772D	Coupler, dual directional, 0.1 to 18 GHz	36
773D	Coupler, directional, 0.1 to 18 GHz	36
775D	Dual-directional coupler, $0.45-0.95 \mathrm{GHz}$	36
776D	Dual-directional coupler, 0.94-1.90 GHz	36
777D	Dual-directional coupler, 1.90-4.0 GHz	36
778D	Dual-directional coupler, 0.10-2.0 GHz	36
83006A	Amplifier, 0.01-26.5 GHz, 18 dB gain	36
83017A	Amplifier, 0.5-26.5 GHz; 25 dB gain	11
83018A	Microwave System AMP, 2-26 GHz, 22dBm	11
83020A	Power amplifier, 2-26.5 GHz, 27 dB gain	11
83036C	Detector, Directional, 3.5 mm Connectors	11
83050A	Amplifier; 2-50 GHz, 20 dBm at 40 GHz	29
83051A	Preamplifier; $0.045-50 \mathrm{GHz}, 23 \mathrm{~dB}$ gain	11
8470B	18 GHz LBHCD crystal detector	31
8471D	Detector, Coaxial; .0001-2 GHz	33
8471E	Detector, Coaxial, 0.01-12.4 GHz	33
8472B	18 GHz LBHCD crystal detector	31
8473B	Coaxial Crystal Detector	31
8473C	Coaxial Crystal Detector	31

8473D	Coaxial Detector	33
8474B	Detector, Coaxial, .01-18 GHz	33
8474C	Detector, Coaxial: .01-33 GHz	33
8474E	Detector, Coaxial; . 01 - 50 GHz	33
84904K	Programmable 1db-step atten, 11dB, 26GHz	18
84904L	Attn 11dB, 1dB Steps, 40GHz Programmable	18
84904M	Attenuator 0 to 11 dB steps	18
84905M	Attenuator 0 to 60 dB in 10 dB steps	18
84906K	Attn,90dB, 10dB Steps,26GHz, Programmable	18
84906L	Attn,90dB, 10dB Steps, 40GHz, Programmable	18
84907K	Attn, 70dB,10dB stps, 26GHz, Programmable	18
84907L	Attn, 70dB, 10dB stps, 40GHz, Programmable	18
84908M	Attenuator 0 to 65 dB in 5 dB steps	18
84900	Coaxial fixed attenuator, dc-50 GHz	14
8490G	Coaxial Fixed Attenuator, DC-67 GHz	14
8491A	Coaxial attenuator, dc-12.4 GHz, Type N	14
8491B	Coaxial attenuator, dc - 18 GHz , Type N	14
8493A	Coaxial attenuator, dc to 12.4 GHz , SMA	14
8493B	Coaxial attenuator, dc to 18 GHz , SMA	14
8493C	Coaxial fixed attenuator, dc to 26.5 GHz	14
8494A	Manual step attenuator, 0 to 11 dB in 1 dB steps, dc to 4 GHz	16
8494B	$0-11 \mathrm{~dB}$ manual step attenuator, $0-18 \mathrm{GHz}$	16
8494G	$0-11 \mathrm{~dB}$ programmable step ATTENUATOR., dc-4GHz	18
8494H	$0-11 \mathrm{~dB}$ programmable step ATTENUATOR., $0-18 \mathrm{GHz}$	18
8495A	$0-70 \mathrm{~dB}$ manual step attenuator, $\mathrm{dc}-4 \mathrm{GHz}$	16
8495B	$0-70 \mathrm{~dB}$ manual step attenuator, $0-18 \mathrm{GHz}$	16
8495D	$0-70 \mathrm{~dB}$ manual step attenuator, $0-26.5 \mathrm{GHz}$	16
8495G	$0-70 \mathrm{~dB}$ programmable step atten., dc-4GHz	18
8495H	$0-70 \mathrm{~dB}$ programmable step ATTENUATOR., $0-18 \mathrm{GHz}$	18
8495K	Programmable Step Attenuator,DC-26.5 GHz	18
8496A	$0-110 \mathrm{~dB}$ manual step attenuator, $0-4 \mathrm{GHz}$	16
8496B	$0-110 \mathrm{~dB}$ manual step attenuator, $0-18 \mathrm{GHz}$	16
8496G	$0-110 \mathrm{~dB}$ programmable step atten., $0-4 \mathrm{GHz}$	18
8496H	$0-110 \mathrm{~dB}$ programmable step ATTENUATOR, $0-18 \mathrm{GHz}$	18
8497K	Programmable Step Attenuator,DC-26.5 GHz	18
8498A	Coaxial fixed attenuator, 30 dB	14

85138A	2.4 mm 50 ohm termination. Male connector	75
85138B	2.4 mm 50 ohm termination. Female conn.	75
85331B	50 GHZ SP2T solid state switch	72
85332B	50GHZ SP4T solid state switch	72
86205A	50 Ohm RF bridge 300kHz to 6GHz	39
86207A	75 ohm RF bridge 300 kHz to 3 GHz	39
87104A	Switch, SP4T, dc-4 GHz, terminated	61
87104B	Switch, SP4T, dc-20 GHz, terminated	61
87104C	Switch, SP4T, DC-26.5 GHz, terminated	61
87104D	Switch, SP4T, DC-40 GHz, Terminated	61
87106A	Switch, SP6T, dc-4 GHz, terminated	61
87106B	Switch, SP6T, dc-20 GHz, terminated	61
87106C	Switch, SP6T, dc-26.5 Ghz, terminated	61
87106D	Switch, SP6T, DC-40 GHz, Terminated	61
87204A	Switch, SP4T, DC-4 GHz, terminated, 24VDC	61
87204B	Switch, SP4T, DC-20 GHz, terminated, 24VDC	61
87204 C	Switch, SP4T, DC-26.5 GHz, terminated, 24VDC	61
87206A	Switch, SP6T, DC-4 GHz, terminated, 24VDC	61
87206B	Switch, SP6T, DC-20 GHz, terminated, 24VDC	61
87206 C	Switch, SP6T, DC-26.5 GHz, terminated, 24VDC	67
87222C	Switch, transfer, DC-26.5 GHz, 4 port, 24 VDC	67
87222D	Switch, transfer, DC-40 GHz, 4-port, 24 VDC	67
87222E	Switch, transfer, DC-50 GHz, 4 port, 24 VDC	36
87300 B	Coaxial coupler, 1-20 GHz, SMA female connectors	36
87300C	10 dB coaxial coupler, 1-26.5 GHz, 3.5 mm female connectors	36
87300D	Coaxial coupler, 6-26.5 GHz, 3.5 mm female connectors	36
87301C	Directional coupler, $10-50 \mathrm{GHz}, 2.4 \mathrm{~mm}$ female connectors	36
87301D	Coupler, Coaxial, 1-40 GHz	36
87301 E	Directional coupler, 2-50 GHz, 2.4 mm female connectors	36
87302 C	Power divider, 0.5 to 26.5 GHz	48
87303 C	Power divider, 1-26.5 GHz	48
87304 C	Power Divider, 2-26.5 GHz	48
87310B	Coupler, coaxial, 1-18 GHz, SMA female connectors	36
87405B	Preamplifier, 0.01-4 GHz, 22dB Gain, Type $\mathrm{N}(\mathrm{m})$ Output to Type N (f)	11
87405 C	Pre-Amplifier, 0.1-18 GHz, TYPE N(M) output to TYPE N(F)	11
87406B	Switch, matrix, coax, DC-20 GHz, terminated, 24V DC	69

87415A	2-8 GHz Remote System Amplifier	69
87606B	Switch,matrix, coax, DC-20 GHz, terminated	63
8761A	Coaxial SPDT switch, dc-18 GHz, 12-15 V	59
8761B	Coaxial SPDT switch, dc-18 GHz, 24-30 V	59
8762A	Coaxial SPDT switch, dc-4 GHz; 50 ohm	59
8762B	Coaxial SPDT switch, dc-18 GHz; 50 ohm	59
8762C	Coaxial SPDT switch, dc-26.5 GHz; 50 ohm	59
8762F	Coaxial SPDT switch, dc-4GHz; 75 ohm	66
8763A	Switch, coaxial, DC-4 GHz; 4-Port	66
8763B	Switch, Coaxial, 4 Port, DC-18 GHz, SMA(female) connectors	66
8763C	Switch, coaxial, 4 port, DC-26.5 GHz, 3.5 mm (female) connectors	66
8764A	Switch, coaxial, 5 port, DC-4 GHz, SMA connectors	66
8764B	Switch, coaxial, 5 port, DC-18 GHz, SMA (female) connectors, signal reversal	66
8764C	Switch, coaxial, 5 port, DC-26.5 GHz, 3.5 mm (female) connectors, signal reversal	66
8765A	Coaxial, single pole, double throw switch, DC-4 GHz, SMA (female) connectors	59
8765B	Coaxial, single pole, double throw switch, DC-20 GHz, SMA (female) connectors	59
8765C	Coaxial, single pole, double throw switch, DC-26.5 GHz, 3.5 mm (female) connectors	59
8765D	Coaxial, single pole, double throw switch, DC-40 GHz, 2.4 mm (female) connectors	59
8765F	Coaxial, single pole, double throw switch, 75 ohm, DC-4 GHz, SMB connectors	59
8766K	Coaxial SP3T switch, dc-26.5 GHz	61
8767K	Coaxial switch, single pole, four throw, DC-26.5 GHz	61
8767M	Coaxial switch, single-pole, four-throw, DC-50 GHz	61
8768K	Coaxial switch, single pole, five throw, DC-26.5 GHz	61
8768M	Coaxial switch, single-pole, five-throw, DC-50 GHz	61
909A	Coaxial termination, APC-7, dc-18 GHz	75
909C	Coaxial 50 Ohm Termination	75
909D	Coaxial termination, DC-26.5 GHz, APC 3.5 mm connector	75
909E	Coaxial termination, dc-3 GHz	75
909F	Coaxial Termination, DC to 18 GHz	75
J7211A	$0-121 \mathrm{~dB}$ integrated attenuation control unit , DC to 6 GHz	20

8

J7211B	0-121 dB integrated attenuation control unit, DC to 18 GHz	20
J7211C	$0-101 \mathrm{~dB}$ integrated attenuation control unit, DC to 26.5 GHz	20
L7104A	Switch, SP4T, dc-4 GHz, terminated (L-SERIES)	57
L7104B	Switch, SP4T, dc-20 GHz, terminated (L-SERIES)	57
L7104C	Switch, SP4T, DC-26.5 GHz, terminated (L-SERIES)	57
L7106A	Switch, SP6T, dc-4 GHz, terminated (L-SERIES)	57
L7106B	Switch, SP6T, dc-20 GHz, terminated (L-SERIES)	57
L7106C	Switch, SP6T, dc-26.5 Ghz, terminated (L-SERIES)	57
L7204A	Switch, SP4T, DC-4 GHz, unterminated, 24VDC (L-SERIES)	57
L7204B	Switch, SP4T, DC-20 GHz, unterminated, 24VDC (L-SERIES)	57
L7204C	Switch, SP4T, DC-26.5 GHz, unterminated, 24VDC (L-SERIES)	57
L7206A	Switch, SP6T, DC-4 GHz, unterminated, 24VDC (L-SERIES)	57
L7206B	Switch, SP6T, DC-20 GHz, unterminated, 24VDC (L-SERIES)	57
L7206C	Switch, SP6T, DC-26.5 GHz, unterminated, 24VDC (L-SERIES)	57
N1810TL	SPDT terminated latching coax switch	63
N1810UL	SPDT unterminated latching coax switch	63
N1811TL	4 port terminated latching coax switch	65
N1812UL	5 port unterminated latching coax switch	65
N9355B	Limiter 0.01-18 GHz P1db of 10dBm	45
N9355C	Limiter 0.01-26.5 GHz P1db of 10dBm	45
N9355F	Limiter $0.01-50 \mathrm{GHz} \mathrm{P1db}$ of 10dBm	45
N9356B	Limiter 0.01-18 GHz P1db of 25 dBm	45
N9356C	Limiter 0.01 - $26.5 \mathrm{GHz} \mathrm{P1db}$ of 25 dBm	45
N9398C	3.5 mm DC Block 16V 50kHz-26.5GHz	26
N9398F	2.4mm DC Block 16V 50kHz-50GHz	26
N9398G	1.85 mm DC Block 16V 700kHz-67GHz	26
N9399C	3.5mm DC Block 50V 700kHz-26.5GHz	26
N9399F	$2.4 \mathrm{~mm} \mathrm{DC} \mathrm{Block} \mathrm{50V} \mathrm{700kHz-50GHz}$	26
P9400A	8 GHz Solid State PIN Transfer Switch	72
P9400C	18 GHz Solid State PIN Transfer Switch	72
P9402A	8GHZ SPDT PIN SWITCH	72
P9402C	18GHZ SPDT PIN SWITCH	72
P9404A	8 GHz SP4T PIN Switch	72
P9404C	18 GHz SP4T PIN Switch	72
U1818A	Active Differential Probe, 100 kHz to 7 GHz	54

U1818B	Active Differential Probe, 100 kHz to 12 GHz	54
U9397A	8 GHz Hi-Performance Solid State Switch	72
U9397C	18 GHz Hi-Performance Solid State Switch	72

Agilent RF \& Microwave Amplifiers

Agilent amplifiers offer ultra-broad bandwidths - such as 0.01 to $26.5 \mathrm{GHz}, 0.045$ to 50 GHz , and ranges in between. These high-performance amplifiers eliminate crossover networks and multi-
 ple power supplies from multiple narrow band amplifiers. Excellent noise figure and high gain, up to 30 dB , significantly reduces test system noise figure, thus increasing the dynamic range. High output power improves recovery of system losses and boost available power in ATE systems.

Preamplifier

Key Features:

- Broadband performance up to 50 GHz optimizes the operating range of your test systems
- Excellent noise figure and high gain significantly reduce overall test system noise figure
- High output power boosts available power for measurements

System Amplifier

Quick Fact Sheet

Agilent RF \& Microwave Amplifiers

Product Specifications

Model	Frequency range (GHz)	Output power at $\mathrm{P}_{\text {sat }}$ (dBm)	Output power at $\mathrm{P}_{1 \mathrm{~dB}}(\mathrm{dBm})$	Gain (dB) (min)	Noise figure (dB) (typical)	Bias (nom)	RF connectors (input/output)
Preamplifiers							
87405B	0.01 to 4 GHz	7 at 4 GHz	8 at 4 GHz	22	5 at 4 GHz	+15 V at 105 mA	Type N (m.f)
87405C	0.1 to 18 GHz	17 at 18 GHz	$\begin{aligned} & 15 \text { at } 4 \mathrm{GHz} \\ & 14 \text { at } 18 \mathrm{GHz} \end{aligned}$	25	$\begin{gathered} 6 \text { at } 4 \mathrm{GHz} \\ 4.5 \text { at } 18 \mathrm{GHz} \end{gathered}$	$\begin{gathered} +15 \mathrm{~V} \text { at } 140 \mathrm{~mA} \\ -15 \mathrm{~V} \text { at } 3 \mathrm{~mA} \end{gathered}$	Type N (m.f)
87415A	2 to 8 GHz	26 at 8 GHz	23 at 8 GHz	25	13 at 8 GHz	+12 V at 900 mA	SMA (f)
System amplifiers							
83006A	0.01 to 26.5 GHz	$\begin{gathered} 18 \text { at } 10 \mathrm{GHz} \\ 16 \text { at } 20 \mathrm{GHz} \\ 14 \text { at } 26.5 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 13 \text { at } 20 \mathrm{GHz} \\ & 10 \text { at } 26.5 \mathrm{GHz} \end{aligned}$	20	$\begin{aligned} & 13 \text { at } 0.1 \mathrm{GHz} \\ & 8 \text { at } 18 \mathrm{GHz} \\ & 13 \text { at } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +12 \mathrm{~V} \text { at } 450 \mathrm{~mA} \\ & -12 \mathrm{~V} \text { at } 50 \mathrm{~mA} \end{aligned}$	3.5 mm (f)
83017A ${ }^{1}$	0.5 to 26.5 GHz	20 at 20 GHz 15 at 26.5 GHz	$\begin{aligned} & 18 \text { at } 20 \mathrm{GHz}^{2} \\ & 13 \text { at } 26.5 \mathrm{GHz}^{2} \end{aligned}$	25	$\begin{gathered} 8 \text { at } 20 \mathrm{GHz} \\ 13 \text { at } 26.5 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & \hline+12 \mathrm{~V} \text { at } 700 \mathrm{~mA} \\ & -12 \mathrm{~V} \text { at } 50 \mathrm{~mA} \end{aligned}$	3.5 mm (f)
83018A ${ }^{1}$	2 to 26.5 GHz	24 at 20 GHz 21 at 26.5 GHz	22 at 20 GHz 17 at 26.5 GHz	27 dB at 20 GHz 23 dB at 26.5 GHz	$\begin{aligned} & 10 \text { at } 20 \mathrm{GHz} \\ & 13 \text { at } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +12 \mathrm{~V} \text { at } 2 \mathrm{~mA} \\ & -12 \mathrm{~V} \text { at } 50 \mathrm{~mA} \end{aligned}$	3.5 mm (f)
83020A ${ }^{1}$	2 to 26.5 GHz	$\begin{gathered} 30 \text { at } 20 \mathrm{GHz} \\ 25 \text { at } 26.5 \mathrm{GHz}^{2} \end{gathered}$	$\begin{aligned} & 27 \text { at } 20 \mathrm{GHz} \\ & 23 \text { at } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{gathered} 30 \mathrm{~dB} \text { at } 20 \mathrm{GHz} \\ 27 \mathrm{~dB} \text { at } 26.5 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 10 \text { at } 20 \mathrm{GHz} \\ & 13 \text { at } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +15 \mathrm{~V} \text { at } 3.2 \mathrm{~mA} \\ & -15 \mathrm{~V} \text { at } 50 \mathrm{~mA} \end{aligned}$	3.5 mm (f)
83050A	2 to 50 GHz	$\begin{aligned} & 20 \text { at } 40 \mathrm{GHz} \\ & 17 \text { at } 50 \mathrm{GHz}^{3} \end{aligned}$	$\begin{aligned} & 15 \text { at } 40 \mathrm{GHz} \\ & 13 \text { at } 50 \mathrm{GHz} \end{aligned}$	21	$\begin{aligned} & 6 \text { at } 26.5 \mathrm{GHz} \\ & 10 \text { at } 50 \mathrm{GHz} \end{aligned}$	$\begin{gathered} \hline+12 \mathrm{~V} \text { at } 830 \mathrm{~mA} \\ -12 \mathrm{~V} \text { at } 50 \mathrm{~mA} \\ \hline \end{gathered}$	2.4 mm (f)
83051A	0.045 to 50 GHz	$\begin{aligned} & 12 \text { at } 45 \mathrm{GHz} \\ & 10 \text { at } 50 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 8 \text { at } 45 \mathrm{GHz} \\ & 6 \text { at } 50 \mathrm{GHz} \end{aligned}$	23	12 at 2 GHz 6 at 26.5 GHz 10 at 50 GHz	$\begin{aligned} & +12 \mathrm{~V} \text { at } 425 \mathrm{~mA} \\ & -12 \mathrm{~V} \text { at } 50 \mathrm{~mA} \end{aligned}$	2.4 mm (f)

1. $83017 \mathrm{~A}, 83018 \mathrm{~A}$ and 83020 A include internal directional detectors with BNC (f) DC connectors for external leveling applications
2. $\Delta f=f(G H z)-20$
3. $\Delta f=f(G H z)-40$

For more details on Agilent amplifiers and ordering information see the "Agilent RF and Microwave Amplifiers", literature number 5989-6949EN
For more information on Agilent Amplifiers, please visit
www.agilent.com/find/amplifiers

Attenuators

Coaxial Fixed Attenuators
Manual Step Attenuators
Programmable Step Attenuators
Attenuation Control Unit

Agilent RF \& Microwave Coaxial Fixed Attenuators

Agilent coaxial fixed attenuators provide precise attenuation, flat frequency response and low SWR over broad frequency ranges. These attenuators are available in normal attenuations of $3,6,10,20,30,40,50$ and 60 dB that cater
 to various applications and setups.

Key Features

- High reliability and exceptional repeatability reduce downtime
- Excellent RF specifications optimize test system measurement capability
- Broad portfolio of attenuation and connector options provide configuration flexibility

Agilent RF \& Microwave Coaxial Fixed Attenuators

Product Specifications

Coaxial Fixed Attenuator													
	Frequency	Attenuation accuracy								$\begin{aligned} & \text { Maximum } \\ & \text { SWR } \end{aligned}$	Maximum input average power (W)	Maximum input peak power (W)	RF connectors
Model		3 dB	6 dB	10 dB	20 dB	30 dB	40 dB	50 dB	60 dB				
8491A	DC to 12.4 GHz	0.3	0.3	0.5	0.5	1.0	1.5	1.5	2.0	1.30	2	100	$N(m, f)$
8493A	DC to 12.4 GHz	0.3	0.3	0.5	0.5	1.0	-	-	-	1.30	2	100	SMA (m,f)
8491B	DC to 18 GHz	0.3	0.4	0.6	1.0	1.0	1.5	1.5	2.0	1.50	2	100	$N(m, f)$
8493B	DC to 18 GHz	0.3	0.4	0.6	1.0	1.0	-	-	-	1.50	2	100	SMA (m,f)
8498A	DC to 18 GHz	-	-	-	-	1.0	-	-	-	1.30	25	125	$N(m, f)$
8493C	DC to 26.5 GHz	1.0	0.6	0.5	0.6	1.0	1.3	-	-	1.25	2	100	$3.5 \mathrm{~mm}(\mathrm{~m}, \mathrm{f})$
8490D	DC to 50 GHz	4.8	7.8	11.3	21.7	31.7	42.5	-	-	1.45	1	100	$2.4 \mathrm{~mm}(\mathrm{~m}, \mathrm{f})$
8490G	DC to 67 GHz	4.8	7.8	11.3	21.5	31.7	42.5	-	-	1.45	1	100	$1.85 \mathrm{~mm}(\mathrm{~m}, \mathrm{f})$

Coaxial Fixed Attenuator Option

Models	Option	Option description ${ }^{2}$
8490D, 8491A,	001	3 dB attenuation
8491B, 8493A, 8493B, 8493C, 8498A	006	6 dB attenuation
	010	10 dB attenuation
020	20 dB attenuation	
030	30 dB attenuation	
040	40 dB attenuation ${ }^{1}$	
050	50 dB attenuation ${ }^{1}$	
060	60 dB attenuation ${ }^{1}$	
	UK6	Commercial calibration test data with certifications

[^0]2. Each order must specify an attenuation option.

For more details on Agilent attenuators and ordering information see "Agilent RF and Microwave Attenuators", literature number 5989-6948EN

For more information on Agilent attenuators, please visit: www.agilent.com/find/attenuators

Agilent RF \& Microwave Manual Step Attenuators

Agilent manual step attenuators offer fast, precise signal-level control up to 26.5 GHz . Unmatched attenuation repeatability of less than 0.03 dB up to 5 million cycles per section ensures low measurement uncertainty. Attenuation range of 121 dB in 1 dB
 step can be achieved by cascading 2 attenuators in series.

Key features

- High reliability and exceptional repeatability reduce downtime
- Excellent RF specifications optimize test system measurement capability
- Broad portfolio of attenuation and connector options provide configuration flexibility

Agilent RF \& Microwave Manual Step Attenuators

Product specifications

Manual step attenuator									
Model	Frequency (GHz)	Attenuation range (dB)	Attenuation step (dB)	Insertion loss (dB) at 0 dB	$\begin{aligned} & \text { Maximum } \\ & \text { SWR } \end{aligned}$	Maximum input average power (W)	Maximum input peak power (W)	Operating life (in million cycles/section)	Repeatability (5 million cycles per section)
8494A	DC to 4	0 to 11	1	0.96	1.50	1	100	5	$\pm 0.03 \mathrm{~dB}$ max
8495A	DC to 4	0 to 70	10	0.68	1.35	1	100	5	$\pm 0.03 \mathrm{~dB}$ max
8496A	DC to 4	0 to 110	10	0.96	1.50	1	100	5	$\pm 0.03 \mathrm{~dB}$ max
8494B	DC to 18	0 to 11	1	2.22	1.90	1	100	5	$\pm 0.03 \mathrm{~dB}$ max
8495B	DC to 18	0 to 70	10	1.66	1.70	1	100	5	$\pm 0.03 \mathrm{~dB}$ max
8496B	DC to 18	0 to 110	10	2.22	1.90	1	100	5	$\pm 0.03 \mathrm{~dB}$ max
8495D	DC to 26.5	0 to 70	10	3.95	2.22	1	100	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max to } 18 \mathrm{GHz} \\ & \pm 0.05 \mathrm{~dB} \text { max to } 26.5 \mathrm{GHz} \end{aligned}$

* All product models listed above offer RF connector options for $N(f) /$ SMA(f) / APC-7 except 8495D which only offers 3.5 mm (f) RF connectors.

Manual step attenuator option

Models	Option type	Option description
	001	N (f)
8494A/ 8495A/	002	SMA (f)
8496A/	004	$3.5 \mathrm{~mm}(\mathrm{f}){ }^{1}$
8494B/	024	24 Vdc
8495B/ 8496B/	011	5 Vdc
8495D	UK6	Commercial calibration test data with certifications

* Each order must include RF connector option

1. Available with Agilent 8495 only.

For more details on Agilent attenuators and ordering information see the "Agilent RF and Microwave Attenuators", literature number 5989-6948EN
For more information on Agilent amplifiers, please visit
www.agilent.com/find/attenuators

Agilent RF \& Microwave Programmable Step Attenuators

Agilent programmable step attenuators offer fast, precise signal-level control up to 50 GHz , with switching time of less than 20 ms .

Unmatched attenuation repeatability of less than 0.03 dB up to 5 million cycles per section ensures low measurement uncertainty and reduces calibration cycles when installed into test systems.

Automatic GPIB/USB/LAN drive control is achieved with the 11713B/C attenuator/switch driver.

Programmable Step Attenuators

- High reliability and exceptional repeatability reduce downtime
- Excellent RF specifications optimize test system measurement capability
- Broad portfolio of attenuation and connector options provide configuration flexibility

Agilent Technologies

Quick Fact Sheet

Product Specifications

Programmable step attenuator									
Model number	$\begin{aligned} & \text { Frequency } \\ & \text { (GHz) } \end{aligned}$	Attenuation range (dB)	Attenuation step (dB)	Insertion loss (dB) @ 0 dB	Maximum SWR	Maximum input average power (W)	Maximum input peak power (W)	Operating life (in million cycles/ section)	Repeatability
8494G	DC to 4	0 to 11	1	0.96	1.50	1	100	5	$\begin{gathered} \pm 0.03 \mathrm{~dB} \text { max } \\ \text { (5 million cycles per section) } \end{gathered}$
8495G	DC to 4	0 to 70	10	0.68	1.35	1	100	5	$\begin{gathered} \pm 0.03 \mathrm{~dB} \text { max } \\ \text { (5 million cycles per section) } \end{gathered}$
8496G	DC to 4	0 to 110	10	0.96	1.50	1	100	5	$\begin{gathered} \pm 0.03 \mathrm{~dB} \text { max } \\ \text { (5 million cycles per section) } \end{gathered}$
8494H	DC to 18	0 to 11	1	2.22	1.90	1	100	5	$\begin{gathered} \pm 0.03 \mathrm{~dB} \text { max } \\ \text { (5 million cycles per section) } \end{gathered}$
8495H	DC to 18	0 to 70	10	1.66	1.70	1	100	5	$\begin{gathered} \pm 0.03 \mathrm{~dB} \max \\ \text { (5 million cycles per section) } \end{gathered}$
8496H	DC to 18	0 to 110	10	2.22	1.90	1	100	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max } \\ & \text { (} 5 \text { million cycles per section) } \end{aligned}$
8495K	DC to 26.5	0 to 70	10	3.95	2.20	1	100	5	$\pm 0.03 \mathrm{~dB}$ max to 18 GHz , $\pm 0.05 \mathrm{~dB}$ max to 26.5 GHz (5 million cycles per section)
8497K	DC to 26.5	0 to 90	10	2.79	1.80	1	100	5	$\pm 0.03 \mathrm{~dB}$ max to 18 GHz , $\pm 0.05 \mathrm{~dB}$ max to 26.5 GHz (5 million cycles per section)
84904K	DC to 26.5	0 to 11	1	1.86	2.00	1	50	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max } \\ & \text { (} 5 \text { million cycles per section) } \end{aligned}$
84906K	DC to 26.5	0 to 90	10	1.86	2.00	1	50	5	$\begin{gathered} \pm 0.03 \mathrm{~dB} \text { max } \\ \text { (5 million cycles per section) } \end{gathered}$
84907K	DC to 26.5	0 to 70	10	1.40	1.90	1	50	5	$\begin{gathered} \pm 0.03 \mathrm{~dB} \max \\ \text { (5 million cycles per section) } \end{gathered}$
84904L	DC to 40	0 to 11	1	2.40	2.00	1	50	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max } \\ & \text { (} 5 \text { million cycles per section) } \end{aligned}$
84906L	DC to 40	0 to 90	10	2.40	2.00	1	50	5	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { max } \\ & \text { (} 5 \text { million cycles per section) } \end{aligned}$
84907L	DC to 40	0 to 70	10	1.80	1.90	1	50	5	$\begin{gathered} \pm 0.03 \mathrm{~dB} \text { max } \\ \text { (} 5 \text { million cycles per section) } \end{gathered}$
84904M	DC to 50	0 to 11	1	3.00	3.00	1	50	5	$\pm 0.03 \mathrm{~dB}$ max *
84905M	DC to 50	0 to 60	10	2.60	2.60	1	50	5	$\pm 0.03 \mathrm{~dB}$ max**
84908M	DC to 50	0 to 65	5	3.00	3.00	1	50	5	$\pm 0.03 \mathrm{~dB} \mathrm{max}$ *

RF connector options:

1) $849 \times G / H$ offers N (f) / SMA (f) / APC-7
2) $849 \times \mathrm{K}$ offers only 3.5 mm (f)
3) 8490 xK offers 3.5 mm (f) $/ 3.5 \mathrm{~mm}(\mathrm{f} / \mathrm{m})$
4) $8490 \times \mathrm{L}$ offers 2.4 mm (f), 2.92 mm (f) / 2.4 mm (f/m) / 2.92 mm (f/m) 5) $8490 \times \mathrm{M}$ offers $2.4 \mathrm{~mm}(\mathrm{f} / \mathrm{m}) / 2.4 \mathrm{~mm}(\mathrm{f} / \mathrm{f})$

Programmable Step Attenuator Option

Agilent 8494/95/96/97 series ordering example		
Models	Option type	Option description
8494G/ 8494H/ 8495G/ 8495H/ 8495K/ 8496G/ 8496H/ 8497K	001	$\mathrm{N}(\mathrm{f})^{\text {G. H }}$
	002	SMA (f) ${ }^{\text {G, H }}$
	004	$3.5 \mathrm{~mm}(\mathrm{f})^{2 . \mathrm{k}}$
	024	24 Vdc
	011	5 Vdc
	060	12-pin viking connector ${ }^{\text {G. }}$,, K
	016	16 -inch ribbon cable with 14 -pin DAP plug ${ }^{\text {6, }}$, K
	UK6	Commercial calibration test data with certifications
Agilent 84904/905/906/907/908 series ordering example *		
84904K/ 84904L/ 84904M/ 84905M 84906K/ 84906L/ 84907K/ 84907L/ 84908M	024	24 Vdc
	011	5 Vdc
	012	6 Vdc
	104	3.5 mm (f) drive cable end, $3.5 \mathrm{~mm}(\mathrm{~m})$ opposite end ${ }^{\mathrm{K}}$
	004	3.5 mm (f) both ends ${ }^{\text {K }}$
	006	2.92 mm (f) both ends ${ }^{\text {L }}$
	100	$2.4 \mathrm{~mm}(\mathrm{f})$ drive cable end, $2.4 \mathrm{~mm}(\mathrm{~m})$ opposite end ${ }^{\text {L.M }}$
	106	$2.92 \mathrm{~mm}(f)$ drive cable end, $2.92 \mathrm{~mm}(\mathrm{~m})$ opposite end
	101	2.4 mm (f) both ends ${ }^{\text {L.M }}$

1. Each order must include RF connector option * Drive cable not included
2. Available with $8495 / 97$ only
G. G-models
H. H -models
K. K-models
L. L-models
M. M-models

Agilent J7211A/B/C Attenuation Control Units

Every Step Counts....

Key features

- 0.03 dB RF repeatability per section for entire 5 million cycles
Minimize system uncertainty and system setup cost
- Excellent attenuation accuracy and flatness
Maximize measurement accuracy
- Agilent calibrated data correction value Allow accurate and precise measurement
- Application specific attenuation sweep function
Set your desired attenuation, step size, dwell time and number of cycles to suite your application requirement

1. Measurement relative to a specific attenuation value
2. 6 value-added features for applicationspecific purposes
3. Soft-keypad for easy attenuation value settings
4. Intensity rotary knob for easy navigation
5. Built-in half-rack (2U) with handle; high portability
6. RF connector options of SMA, Type-N and 3.5 mm (J7211C)

Complete connectivity-standard!

Powered by LXI class C compliance $\quad L_{/ / / I I}$

Agilent Technologies

Quick Fact Sheet

Agilent J7211A/B/C Attenuation Control Units

Product specification

Model	J7211A	J7211B	J7211C
Frequency range	DC to 6 GHz	DC to 18 GHz	DC to 26.5 GHz
Attenuation range	0 to 121 dB	0 to 121 dB	0 to 121 dB
Attenuation step size	1,5 and 10 dB	1,5 and 10 dB	1,5 and 10 dB
Insertion loss (at 0 dB$)$	$<2.5 \mathrm{~dB}$	$<5.00 \mathrm{~dB}$	$<5.00 \mathrm{~dB}$
Return loss (VSWR)	$<14 \mathrm{~dB}(1.50)$	$<10 \mathrm{~dB}(1.90)$	$<7 \mathrm{~dB}(2.61)$
RF repeatability	0.03 dB	0.03 dB	0.05 dB
Maximum power input	$1 \mathrm{~W}(+30 \mathrm{dBm})$	$1 \mathrm{~W}(+30 \mathrm{dBm})$	$1 \mathrm{~W}(+30 \mathrm{dBm})$
Switching speed	20 ms	20 ms	20 ms
Operating life	5 million cycles	5 million cycles	5 million cycles

For more detail information on Agilent attenuation control unit, please refer to product literature number 5989-8323EN

LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding membe of the LXI consortium www.lxistandard.org

Ordering information

Model	Option	Description
J7211A	001	Type-N (f) connector
	002	SMA (f) connector
	UK6	Commercial calibration certificate with test data
J7211B	001	Type-N (f) connector
	002	SMA (f) connector
	UK6	Commercial calibration certificate with test data
J7211C	UK6	Commercial calibration certificate with test data
$1.35 m m$	(f)	connectors anly

1.3.5 mm (f) connectors only

Agilent 11713B/C Attenuator Switch Driver

Designed for your ATE systems

Agilent attenuator/switch drivers provide remote or front panel drive control for programmable attenuators
 and electromechanical or solid state switches. These attenuator/switch drivers provide an intuitive user interface, a variety of switching options, software programmability, and remote control features for quick, easy design validation and automated testing.

Key features

- User-friendly interface

Quick setup, switching, and remote control of small scale ATE

- Multiple connectivity options

GPIB, USB or LAN for easy remote integration

- External VDC port connects

Compatible with any type of switch and provides forward compatibility with Agilent 11713A

- Built-in counter

Monitor the life cycle of attenuators and switches

Complete connectivity-standard!

Powered by LXI class C compliance $L / / / /$

Agilent Technologies

Quick Fact Sheet

Product specifications

Specifications describe warranted performance over the temperature range 0 to $+55^{\circ} \mathrm{C}$ after one hour of continuous operation, unless otherwise noted.

Model	11713B/C
Drive power supply	
Voltage	$+24 \pm 5 \%$
	+5 $\pm 5 \%$ (11713C only)
	+15 $\pm 5 \%$ (11713C only)
Current	1.7 A maximum continuous current Contact pairs 1 through $8,9,0$, maximum current of 0.7 A per contact
Remote programming	
Interface	GPIB interface operates to IEEE 488.2 and IEC65
	10/100 BaseT LAN interface
	USB 2.0 interface
Command language	SCPI standard interface commands, Agilent 11713A backward compatible
GPIB compatibility	SH0, AH1, T0, TE0, L2, LE0, SR0, RL1, PP0, DC0, DT0, C0
Supplemental specifications and characteristics	
Supplemental characteristics are intended to provide useful information. They are typical but non-warranted performance parameters.	
Line power	85 to 264 Vac , automatic selection, 47 to 63 Hz 100 VA maximum
Response time	100μ s maximum for contact pairs 1 through 8
	20 ms maximum for contact pairs 9 and 0
Driver life	$>2,000,000$ switchings at 0.7 A for contact pairs 9 and 0
Maximum load inductance	500 mH
Maximum load capacitance	$<0.01 \mu \mathrm{~F}$ for contact pairs 9 and 0

For more detail information on Agilent attenuator/switch driver, please refer to product literature number 5989-6696EN
Download or order from www.agilent.com/find/mta
To find a distributor in your area, go to www.agilent.com/find/distributors

www.lxistandard.org

```
LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.
```


Ordering information

Model Option	Description
STD ${ }^{1}$	Standard configuration, full compatibility to 11713A
LXI ${ }^{1}$	LXI class C configuration, additional USB/LAN connectivity
001	Viking connector to 10-pin DIP connector
101	Viking connector to viking connector
201	Viking connector to 12-pin conductor cable, bare wire
301	Viking connector to (4) ribbon cables
11713B/ 401	Dual-viking connector to 16-pin DIP connector
$11713 C 501$	Viking connector to (4) 9-pin Dsub connectors
502	Viking connector to (2) 9-pin Dsub connectors
601	Viking connector to 16-pin DIP connector
701	Viking connector to 14-pin DIP connector
801	Viking connector to (4) 10-pin DIP connectors
908	Rack mount kit for one instrument
909	Rack mount kit for two instruments
1. Only for 11713B	
$11713 \mathrm{~B} / \mathrm{C}$ Comparison chart	
Model	11713B 11713C
Drives up to	2 programmable attenuators 4 programmable attenuators and 2 electromechanical/solid state switches 4 electromechanical/solid state switches
Drives up to	10 SPDT switches ${ }^{1} \quad 20$ SPDT switches ${ }^{1}$
Voltage	24 V 5, $5,24 \mathrm{~V}$
Voltage drive	12 independent banks of outputs
Attenuators types	Any Agilent 8494/5/6/7, Any attenuator or switches ${ }^{2}$ Agilent 84904/6/7K/L/M
Switches types	Any Agilent 8761, 8762, 8765 Any attenuator or switches ${ }^{2}$ series, or U9397A/C
Connectivity	GPIB with option for USB, LAN GPIB, USB, LAN (LXI Class C) (LXI Class C)
Backwards compatibility with 11713A	Yes Yes
1. The amount of switches and attenuators that can be driven will depend on the type of switch configuration and the attenuator sections.	
2. Accepts most attenuators	s and switches available today.

11713B/C Comparison chart

Agilent DC Blocks

The Agilent DC blocks offer a new level of DC blocking with performance specified from 50 kHz all the way up to 67 GHz . Precision coaxial connector interfaces ensure an excellent impedance match across wide bandwidths and come in a variety of RF connectors to fit
 your application needs. Two choices of DC Voltage ratings make these suitable for a wide range of applications.

Key features

- Maximize your operating frequency range from 50 kHz up to 67 GHz
- Improve calibration accuracy with exceptional return loss $>15 \mathrm{~dB}$ at 67 GHz
- Maximum available power with $<0.9 \mathrm{~dB}$ insertion loss
- 2 choices of $D C$ voltage rating (16 V and 50 V) for a wide range of applications

Agilent Technologies

Agilent DC Blocks

Product specifications

Model	Frequency range	Insertion loss	Return loss	Rise time	Group delay	Max DC working voltage	Connector type
N9398C	50 kHz to 26.5 GHz	0.9 dB	$\begin{aligned} & 10 \mathrm{~dB}(50 \text { to } 300 \mathrm{kHz}) \\ & 17 \mathrm{~dB}(300 \mathrm{kHz} \text { to } 26.5 \mathrm{GHz}) \end{aligned}$	3 ps (typical)	118 ps (typical)	16 V	3.5 mm (m-f)
N9399C	700 kHz to 26.5 GHz	1.2 dB	10 dB (700 kHz to 2 MHz) $17 \mathrm{~dB}(2 \mathrm{MHz}$ to 26.5 GHz)	3 ps (typical)	118 ps (typical)	50 V	3.5 mm (m-f)
N9398F	50 kHz to 50 GHz	$\begin{aligned} & 0.9 \mathrm{~dB}(50 \mathrm{kHz} \text { to } 26.5 \mathrm{GHz}) \\ & 1.0 \mathrm{~dB}(26.5 \text { to } 50 \mathrm{GHz}) \end{aligned}$	$\begin{aligned} & 10 \mathrm{~dB}(50 \text { to } 300 \mathrm{kHz}) \\ & 15 \mathrm{~dB}(300 \mathrm{kHz} \text { to } 50 \mathrm{GHz}) \end{aligned}$	2 ps (typical)	78 ps (typical)	16 V	2.4 mm (m-f)
N9399F	700 kHz to 50 GHz	1.2 dB	$\begin{aligned} & 10 \mathrm{~dB}(700 \mathrm{kHz} \text { to } 2 \mathrm{MHz}) \\ & 15 \mathrm{~dB}(2 \mathrm{MHz} \text { to } 50 \mathrm{GHz}) \end{aligned}$	2 ps (typical)	78 ps (typical)	50 V	2.4 mm (m-f)
N9398G	700 kHz to 67 GHz	$\begin{aligned} & 0.9 \mathrm{~dB}(50 \mathrm{kHz} \text { to } 26.5 \mathrm{GHz}) \\ & 1.0 \mathrm{~dB}(26.5 \text { to } 67 \mathrm{GHz}) \end{aligned}$	10 dB (700 kHz to 2 MHz) $15 \mathrm{~dB}(2 \mathrm{MHz}$ to 67 GHz$)$	2 ps (typical)	76 ps (typical)	16 V	1.85 mm (m-f)
11742A	45 MHz to 26.5 GHz	1.2 dB	$\begin{aligned} & 26 \mathrm{~dB}(45 \mathrm{MHz} \text { to } 8 \mathrm{GHz}) \\ & 24 \mathrm{~dB}(8 \mathrm{GHz} \text { to } 12.4 \mathrm{GHz}) \\ & 19 \mathrm{~dB}(12.4 \mathrm{GHz} \text { to } 26.5 \mathrm{GHz}) \end{aligned}$	-	-	50 V	3.5 mm (m-f)

Agilent RF \& Microwave Broadband Directional Detectors

The Agilent 83036C is a broadband microwave power sampler which operates in the same fashion as a traditional coupler-detector combination, but with improved frequency response and
\qquad a much smaller size. The directional detector is designed to perform over 10 MHz to 26.5 GHz frequency band with $+/-1.0 \mathrm{~dB}$ of output voltage variation at room temperature. The directional detector is capable of operating with greater than one watt of input power when terminated with well-matched source and load impedance. An input power derating curve is provided for calculating the maximum input power for other source and load impedance.

Superior RF Performance

- Exceptional flatness +1 dB
- Extremely broadband 0.01 to 26.5 GHz
- Compact size
- Environmentally rugged

Agilent RF \& Microwave Broadband Directional Detectors

Product Specification

Broadband Directional Detectors								
Model	Frequency (GHz)	Frequency response	Max. SWR input/ output (50Ω nom)	Max. thru line loss (dB)	Low level sensitivity ($\mathrm{mV} / \mu \mathrm{W}$)	Max input power ${ }^{1}$ (into 50Ω load)	Max input power ${ }^{1}$ (into open)	Input/output connector
83036C	0.01 to 26.5	± 0.1	1.23 to 1 GHz	2.2	18	32 dBm	21 dBm	3.5 mm (f)

[^1]For more information on Agilent Detectors, please visit www.agilent.com/find/detectors

Ouick Fact Sheet

Agilent RF \& Microwave Low Barrier Schottky Diode Detectors

Agilent offers a complete family of high performance Low Barrier Schottky Diode Detectors which cover the 10 MHz to 26.5 GHz frequency range. These general purpose components are widely used for CW and pulsed power detection, leveling of sweepers,
 and frequency response testing of other microwave components. These detectors do not require a dc bias and can be used with common oscilloscopes, thus their simplicity of operation and excellent broadband performance make them useful measurement accessories.

Superior RF Performance

- Excellent broadband flatness
- Low broadband SWR
- High burnout protection
- Environmentally rugged
- Field replaceable diode elements

Low Barrier Schottky Diode Detectors

Agilent RF \& Microwave Low Barrier Schottky Diode Detectors

Product Specifications										
Model	Frequency (GHz)	Frequency response	Maximum SWR	Low level sensitivity (mV/ $\mu \mathrm{W}$)	Max operating input power	Typical short term maximum input power (<1 minute)	Video impedance	RF bypass capacitance (nom)	Input connector	Output connector
423B	0.01 to 12.4	± 0.3 to 12.4 GHz	$\begin{aligned} & 1.15 \text { to } 4 \mathrm{GHz} \\ & 1.3 \text { to } 12.4 \mathrm{GHz} \end{aligned}$	>0.5	200 mW	1 W	$1.3 \mathrm{k} \Omega$	50 pF	Type-N (m)	BNC (f)
8470	0.01 to 18	± 0.3 to 12.4 GHz	1.15 to 4 GHz	>0.5	200 mW	1 w	$1.3 \mathrm{k} \Omega$	50 pF	APC-7 (m)	BNC (f)
		± 0.5 to 15 GHz	1.3 to 15 GHz							
		± 0.6 to 18 GHz	1.7 to 18 GHz							
8472B	0.01 to 18	± 0.3 to 12.4 GHz	1.2 to 4.5 GHz	> 0.5	200 mW	1 w	$1.3 \mathrm{k} \Omega$	50 pF	SMA (m)	BNC (f)
		± 0.5 to 15 GHz	1.35 to 7 GHz							
		± 0.6 to 18 GHz	1.5 to 12.4 GHz							
			1.7 to 18 GHz							
8473B	0.01 to 18	± 0.3 to 12.4 GHz	1.2 to 4 GHz	>0.5	200 mW	1 W	$1.3 \mathrm{k} \Omega$	30 pF	$3.5 \mathrm{~mm}(\mathrm{~m})$	BNC (f)
		± 0.6 to 18 GHz	1.5 to 18 GHz							
33330в	0.01 to 18	± 0.3 to 12.4 GHz	1.2 to 4 GHz	> 0.5	200 mW	1 W	$1.3 \mathrm{k} \Omega$	30 pF	3.5 mm (m)	SMC (m)
		± 0.6 to 18 GHz	1.5 to 18 GHz							
8473C	0.01 to 26.5	± 0.3 to 12.4 GHz	1.2 to 40 GHz	>0.5 to 18 GHz		1 w	$1.3 \mathrm{k} \Omega$	30 pF	$3.5 \mathrm{~mm}(\mathrm{~m})$	BNC (f)
		± 0.6 to 20 GHz	1.5 to 18 GHz	>0.18 to 26.5 GHz	200 mW					
		± 1.5 to $26.5 \mathrm{GHz}^{1}$	2.2 to 26.5 GHz							
33330 C	0.01 to 26.5	± 0.3 to 12.4 GHz	1.2 to 40 GHz	>0.5 to 18 GHz	200 mW	1 W	$1.3 \mathrm{k} \Omega$	30 pF	$3.5 \mathrm{~mm}(\mathrm{~m})$	SMC (m)
		± 0.6 to 20 GHz	1.5 to 18 GHz	>0.18 to 26.5 GHz						
		± 1.5 to 26.5 GHz	2.2 to 26.5 GHz							

Ordering Examples		
Model	$\begin{aligned} & \text { Option } \\ & \text { type } \end{aligned}$	Option description
33330B/ 33330C	001	Matched response
	003	Positive polarity
$\begin{aligned} & \text { 423B/ 8470B/ } \\ & 8472 B / 8473 B / \\ & 8473 C \end{aligned}$	001	Matched response
	002	Optimum square law load
	003	Positive output polarity
	100	OSSM output connector ${ }^{1}$
	101	SAM connector ${ }^{1}$
	301	Negative polarity ${ }^{1}$
	401	No matched response ${ }^{1}$
	C21	Sealed to resist moisture and test data provided ${ }^{2}$
1. Only for $8472 B$ 2. Only for $8473 B$		

For more information on Agilent Detectors, please visit www.agilent.com/find/detectors

Agilent RF \& Microwave Planar Doped Barrier Diode Detectors

Agilent Planar-Doped Barrier (PDB) detectors, combines the best characteristics of point-contact and low barrier Schottky to provide performance never before achievable. This new PDB diode technology provides detectors with broadband-flatness,
 excellent square-law response, and low SWR.

Agilent 8471D/E

Agilent 8473D

Agilent 8474B/C/E

Superior RF Performance

- Exceptional flatness
- Broadband from 0.01 to 50 GHz
- Extremely temperature stable
- Environmentally rugged

Agilent RF \& Microwave Planar Doped Barrier Diode Detectors

Produc	pecifica									
Model	Frequency (GHz)	Frequency response	Maximum SWR	Low level sensitivity (mV/ $\mu \mathrm{W}$)	Max operating input power	Typical short term maximum input power (<1 minute)	Video impedance	RF bypass capacitance (nom)	Input connector	Output connector
8471D	0.01 to 2	$\begin{aligned} & \pm 0.2 \text { to } 1 \mathrm{GHz} \\ & \pm 0.4 \text { to } 2 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.23 \text { to } 1 \mathrm{GHz} \\ & 1.46 \text { to } 2 \mathrm{GHz} \end{aligned}$	> 0.5	100 mW	0.7 W	$1.5 \mathrm{k} \Omega$	6800 pF	BNC (m)	BNC (f)
8471E	0.01 to 12	$\begin{aligned} & \pm 0.23 \text { to } 4 \mathrm{GHz} \\ & \pm 0.6 \text { to } 8 \mathrm{GHz} \\ & \pm 0.85 \text { to } 12 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 4 \mathrm{GHz} \\ & 1.7 \text { to } 8 \mathrm{GHz} \\ & 2.4 \text { to } 12 \mathrm{GHz} \end{aligned}$	>0.4	200 mW	0.75 W	$1.5 \mathrm{k} \Omega$	30 pF	SMA (m)	SMC (m)
8473D	0.01 to 33	$\begin{aligned} & \pm 0.25 \text { to } 14 \mathrm{GHz} \\ & \pm 0.4 \text { to } 26.5 \mathrm{GHz} \\ & \pm 1.25 \text { to } 33 \mathrm{GHz} \\ & (\pm 2.0 \mathrm{~dB} \text { to } 40 \mathrm{GHz}) \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 14 \mathrm{GHz} \\ & 1.4 \text { to } 26.5 \mathrm{GHz} \\ & 2.0 \text { to } 33 \mathrm{GHz} \\ & \text { (} 3.0 \text { typical to } 40 \mathrm{GHz} \text {) } \end{aligned}$	> 0.4	200 mW	1 W	$1.5 \mathrm{k} \Omega$	30 pF	3.5 mm (m)	BNC (f)
8474B	0.01 to 18	± 0.35 to 18 GHz	1.3 to 18 GHz	>0.4	200 mW	0.75 W	$1.5 \mathrm{k} \Omega$	27 pF	Type-N (m)	BNC (f)
8474C	0.01 to 33	$\begin{aligned} & \pm 0.4 \text { to } 26.5 \mathrm{GHz} \\ & \pm 0.7 \text { to } 33 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.4 \text { to } 26.5 \mathrm{GHz} \\ & 2.2 \text { to } 33 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & >0.4 \\ & >0.34 \text { to } 50 \mathrm{GHz} \end{aligned}$	200 mW	0.75 W	$1.5 \mathrm{k} \Omega$	27 pF	3.5 mm (m)	SMC (m)
8474E	0.01 to 50	$\begin{aligned} & \pm 0.3 \text { to } 26.5 \mathrm{GHz} \\ & \pm 0.6 \text { to } 40 \mathrm{GHz} \\ & \pm 1.0 \text { to } 50 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.2 \text { to } 26.5 \mathrm{GHz} \\ & 1.6 \text { to } 40 \mathrm{GHz} \\ & 2.8 \text { to } 50 \mathrm{GHz} \end{aligned}$	>0.4 to 40 GHz	200 mW	0.75 W	$1.5 \mathrm{k} \Omega$	27 pF	2.4 mm (m)	SMC (m)

Ordering Examples		
Model	$\begin{aligned} & \text { Option } \\ & \text { type } \end{aligned}$	Option description
8471D	102	Square law load
	103	Positive polarity
8471 E	004	4 GHz operation
	103	Positive polarity
8473D	003	Positive output
8474B	002	0.01 to 2 GHz octave only
	004	2 to 4 GHz octave only
	008	4 to 8 GHz octave only
	102	Square law load
	103	Positive polarity
8474C	008	4 to 8 GHz octave only
	012	8 to 12.4 GHz octave only
	033	26.5 to 33 GHz octave only
	103	Positive polarity

For more information on Agilent Detectors, please visit www.agilent.com/find/detectors

Agilent Couplers

The Agilent couplers consists of hybrid coupler, broadband directional coupler, single directional coupler, and dual directional coupler. This is a complete line of coaxial single
 and dual port directional couplers, bridges for isolating, separating, and combining RF and microwave signals in applications such as power monitoring, source leveling, swept transmission, and reflection measurements.

Key features

- Broadband couplers maximize your operating frequency up to 50 GHz
- Excellent directivity of min 40 dB for higher measurement accuracy
- Low SWR ($<1.1 \mathrm{~dB}$) minimizes mismatch errors

Agilent Couplers

Product specifications

Model	Frequency range (GHz)	Coupling	Amp	ance	Phase imbalance	Isolation	Maximum SWR (dB)	Insertion loss (dB)	Power rating average, peak	Connectors	
Hybrid Coupler											
87310B	1 to 18	3 dB	$\pm 0.5 \mathrm{~dB}$ at each port, centered at -3 dB		± 10 Degrees	$>17 \mathrm{~dB}$	1.35	<2.0	$20 \mathrm{~W}, 3 \mathrm{~kW}$	SMA (f)	
Model	Frequency range (GHz)		Nominal variation pler	Dire	ity (dB)	Maximum SWR (dB)		Insertion loss (dB)		Power rating average, peak	
Broadhand Directional Coupler											
87300B	1 to 20			10 ± 0.5	>16		1.35		<1.5		$20 \mathrm{~W}, 3 \mathrm{~kW}$
87300C	1 to 26.5		10 ± 1.0	$\begin{aligned} & >14 \text { to } 12.4 \mathrm{GHz} \\ & >12 \text { to } 26.5 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 1.35 \text { to } 12.4 \mathrm{GHz} \\ & 1.5 \text { to } 26.5 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & <1.2 \text { to } 12.4 \mathrm{GHz} \\ & <1.7 \text { to } 26.5 \mathrm{GHz} \end{aligned}$		20 W, 3 kW	
87300D	6 to 26.5		0.5	>13		1.4		<1.3 2		$20 \mathrm{~W}, 3 \mathrm{~kW}$	
87301B	10 to 46		± 0.7	>10		1.8		<1.9 2		$20 \mathrm{~W}, 3 \mathrm{~kW}$	
87301C	10 to 50		0.7	>10		1.8		<1.9		$20 \mathrm{~W}, 3 \mathrm{~kW}$	
87301D	1 to 40		1.0		$\begin{aligned} & \text { o } 20 \mathrm{GHz} \\ & 040 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.5 \text { to } 20 \mathrm{GHz} \\ & 1.7 \text { to } 40 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & <1.2 \text { to } 20 \mathrm{GHz} \\ & <1.9 \text { to } 40 \mathrm{GHz} \end{aligned}$		$20 \mathrm{~W}, 3 \mathrm{~kW}$	
87301E	2 to 50		1.0		$\begin{aligned} & \text { o } 26.5 \text { GHz } \\ & 050 \text { GHz } \end{aligned}$	$\begin{aligned} & 1.5 \text { to } 26.5 \mathrm{GHz} \\ & 1.8 \text { to } 50 \mathrm{GHz} \end{aligned}$		<2.0	20 W, 3 kW		
Single Directional Coupler											
773D ${ }^{1}$	2 to 18	20 ± 0.9		$\begin{aligned} & >30 \text { to } 12.4 \mathrm{GHz} \\ & >27 \text { to } 18 \mathrm{GHz} \end{aligned}$		1.2		<0.9 50		$50 \mathrm{~W}, 250 \mathrm{~W}$	
Dual Directional Coupler											
$772 \mathrm{D}^{1}$	2 to 18	20 ± 0.9		$\begin{aligned} & >30 \text { to } 12.4 \mathrm{GHz} \\ & >27 \text { to } 18 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 1.28 \text { to } 12.4 \mathrm{GHz} \\ & 1.4 \text { to } 18 \mathrm{GHz} \end{aligned}$		<1.5		$50 \mathrm{~W}, 250 \mathrm{~W}$	
$775 \mathrm{D}^{2}$	0.45 to 0.94	420		>40		1.15		<0.40		$50 \mathrm{~W}, 500 \mathrm{~W}$	
$776 \mathrm{D}^{2}$	0.94 to 1.9	20		>40		1.15		<0.35		$50 \mathrm{~W}, 500 \mathrm{~W}$	
$777 D^{2}$	1.9 to 4		0.4	>30		1.2		<0.75		$50 \mathrm{~W}, 500 \mathrm{~W}$	
778D	0.1 to 2		1.5	$\begin{aligned} & >36 t \\ & >32 \end{aligned}$	$\begin{aligned} & 01 \mathrm{GHz}^{3} \\ & 02 \mathrm{GHz}^{3} \end{aligned}$	1.1		<0.60		$50 \mathrm{~W}, 500 \mathrm{~W}$	

[^2]
Ordering information

Model	Option	Standard connector	
		Primary line	Auxiliary arm
772D	STD	APC-7, APC-7	$\mathrm{N}(\mathrm{f})$
	001	$N(f), N(f)$	$\mathrm{N}(\mathrm{f})$
773D	STD/101	APC-7, APC-7	$N(f)$
	001	$N(f), N(f)$	$\mathrm{N}(\mathrm{f})$
	010	$N(m), N(f)$	$\mathrm{N}(\mathrm{f})$
	002	$N(f), N(m)$	$\mathrm{N}(\mathrm{f})$
$\begin{aligned} & \text { 775D/ } \\ & \text { 777D } \end{aligned}$	STD	$N(m), N(f)$	$\mathrm{N}(\mathrm{f})$
778D	STD	$N(f), N(m)$	$N(f), N(f)$
	011	APC-7, N(f)	$N(f), N(f)$
	012	$N(m), N(f)$	$\mathrm{N}(\mathrm{f})$
87301D	240	$2.4 \mathrm{~mm}(\mathrm{f}), 2.4 \mathrm{~mm}(\mathrm{f})$	2.4 mm(f)
	292	$2.92 \mathrm{~mm}(\mathrm{f}), 2.92 \mathrm{~mm}(\mathrm{f})$	$2.92 \mathrm{~mm}(\mathrm{f})$
87300B	-	SMA (f), SMA (f)	SMA (f)
87300C	-	$3.5 \mathrm{~mm}(\mathrm{f}), 3.5 \mathrm{~mm}(\mathrm{f})$	$3.5 \mathrm{~mm}(\mathrm{f})$
87300D	-	$3.5 \mathrm{~mm}(\mathrm{f}), 3.5 \mathrm{~mm}(\mathrm{f})$	$3.5 \mathrm{~mm}(\mathrm{f})$
87301B	-	$2.92 \mathrm{~mm}(\mathrm{f}), 2.92 \mathrm{~mm}(\mathrm{f})$	$2.92 \mathrm{~mm}(\mathrm{f})$
87301C	-	$2.4 \mathrm{~mm}(\mathrm{f}), 2.4 \mathrm{~mm}(\mathrm{f})$	$2.4 \mathrm{~mm}(\mathrm{f})$
87301E	-	$2.4 \mathrm{~mm}(\mathrm{f}), 2.4 \mathrm{~mm}(\mathrm{f})$	2.4 mm(f)
87310B	-	SMA (m), SMA (m)	SMA (m)

Agilent RF Bridges

The Agilent high directivity RF bridges offer unparalleled performance in a variety of general purpose applications. They are ideal for accurate reflection measurements and
 signal-leveling applications. They combine the directivity and broadband frequency range of directional bridges; the low insertion loss and flat coupling factor of directional couplers. This bridge can be use with the Agilent ENA Series RF network analyzers.

Key features

- Wide frequency range from 300 kHz to 6 GHz
- Excellent 40 dB directivity allows you to measure high return loss devices and good port match lets you measure low return loss devices
- Flat coupling factor of $\pm 0.2 \mathrm{~dB}$ for power leveling

Quick Fact Sheet

Agilent RF Bridges

Product specifications

Model	86205A	86207A
Frequency range	300 kHz to 6 GHz	300 kHz to 3 GHz
Impedance	50Ω	75Ω
Directivity (min)	$30 \mathrm{~dB}, 0.3 \mathrm{MHz}$ to 5 MHz	$30 \mathrm{~dB}, 0.3 \mathrm{MHz}$ to 5 MHz
	$40 \mathrm{~dB}, 5 \mathrm{MHz}$ to 2 GHz	$40 \mathrm{~dB}, 5 \mathrm{MHz}$ to 1.3 GHz
	$30 \mathrm{~dB}, 2 \mathrm{GHz}$ to 3 GHz	$35 \mathrm{~dB}, 1.3 \mathrm{GHz}$ to 2 GHz
	$20 \mathrm{~dB}, 3 \mathrm{GHz}$ to 5 GHz (typical)	$30 \mathrm{~dB}, 2 \mathrm{GHz}$ to 3 GHz (typical)
	$16 \mathrm{~dB}, 5 \mathrm{GHz}$ to 6 GHz (typical)	
Return loss (min)	$23 \mathrm{~dB}, 0.3 \mathrm{MHz}$ to 2 GHz	$20 \mathrm{~dB}, 0.3 \mathrm{MHz}$ to 1.3 GHz
	$20 \mathrm{~dB}, 2 \mathrm{GHz}$ to 3 GHz	$18 \mathrm{~dB}, 1.3 \mathrm{GHz}$ to 2 GHz
	$18 \mathrm{~dB}, 3 \mathrm{GHz}$ to 5 GHz (typical)	$18 \mathrm{~dB}, 2 \mathrm{GHz}$ to 3 GHz (typical)
	$16 \mathrm{~dB}, 5 \mathrm{GHz}$ to 6 GHz (typical)	
Insertion loss (max)	$1.5 \mathrm{~dB},+0.1 \mathrm{~dB} / \mathrm{GHz}$	$1.5 \mathrm{~dB},+0.1 \mathrm{~dB} / \mathrm{GHz}$
Coupling factor (nom)	(<3 GHz) $16.0 \mathrm{~dB},+0.15 \mathrm{~dB} / \mathrm{GHz}$	(<3 GHz) $16.0 \mathrm{~dB},+0.15 \mathrm{~dB} / \mathrm{GHz}$
	($>3 \mathrm{GHz}$) $16.5 \mathrm{~dB},-0.20 \mathrm{~dB} / \mathrm{GHz}$	

Agilent RF \& Microwave Frequency Meter

The Agilent 537A direct-reading frequency meter measures frequencies from 3.7 to 12.5 GHz quickly and accurately. Its long scale length and numerous calibration marks provide high resolution.
This is particularly useful when measuring frequency differences or small frequency changes.
Frequency is read directly in GHz so interpolation or charts are not required.

Key features

- Broadband from 3.7 to 12.5 GHz , suitable for military use
- Direct-reading, easy to use, reliable meter measurements with 0.17% accuracy
- High resolution (in calibrated increments of 10 MHz), easy to read dialBuilt-in counter
- No spurious resonances at any setting ensures accuracy
- Rugged design for ease-of-use in the field

Agilent 537A

Quick Fact Sheet

Agilent RF \& Microwave Frequency Meter

Product Specifications

Model	Frequency range	Reflection coefficient	Dial accuracy	Overall accuracy	Minimum dip at resonance	Calibration increment	Connector	Dimensions mm (in)
537A	3.7 to 12.5 GHz	0.33 (2.0 SWR, 9.5 dB return loss)	0.10\%	0.17\% *	1 dB	10 MHz	Type-N (f)	$\begin{aligned} & 118 \times 146 \times 89 \\ & (4.6 \times 5.8 \times 3.5) \end{aligned}$

* Includes allowance of +/- 0.02% for 0 to 100% relative humidity, $+/-0.0016 \%$ per ${ }^{\circ} \mathrm{C}$ from 13 to $33^{\circ} \mathrm{C}$ and 0.03% backlash.

For more detail information on Agilent Frequency Meter, please refer to product literature number 5952-1250

Agilent Power Limiter

Protect Your Investment from Excess RF Power, DC Transients, and ESD

Agilent power limiters are designed for input protection of electronic components for communica-
 tions, telemetry, radar systems and high frequency instrumentation technologies. Agilent power limiters provide customers with a choice of operating frequency range and limiting threshold to suit their applications. With the combination of excellent insertion loss and return loss, these limiters will safe-guard your customers investment from damage due to excess RF power, DC transients or Electro-Static-Discharge (ESD).

N9355B \& N9356B

N9355F

$11930 A$ \& $11930 B$

N9356C

Key features

- High power protection

Prevents damage by undesired ESD and excess RF power

- Exceptional return loss > $\mathbf{1 5} \mathbf{d B}$ at $\mathbf{5 0} \mathbf{~ G H z}$

Improved calibration accuracy

- Low insertion loss < 1.75 dB at $18 \mathbf{~ G H z}$ Maximizes available power
- Bi-directional

Utilization eliminates orientation errors

Agilent Power Limiter

Product specifications

Model	Impedance (Ω) (nominal)	Frequency range	Insertion loss	Return loss	Maximum continous RF input power (Watts)	Limited threshold (dBm) (typical)	Maximum DC voltage (V)	Input/output connectors
11867A	50	DC to 1.8 GHz	< 0.75	$>20 \mathrm{~dB}$	10	0	N/A	Type-N
11930A	50	DC to 6 GHz	$<1.0 \mathrm{~dB}$ DC to 3 GHz $<1.5 \mathrm{~dB} 3$ to 6 GHz	$\begin{gathered} >22 \mathrm{~dB} 30 \mathrm{kHz} \text { to } 3 \mathrm{GHz} \\ >20 \mathrm{~dB} 3 \text { to } 6 \mathrm{GHz} \end{gathered}$	3	30	30	APC-7 (7 mm)
11930B	50	5 MHz to $6.5 \mathrm{GHz}^{3}$	$\begin{aligned} & <1.0 \mathrm{~dB} \mathrm{DC} \text { to } 3 \mathrm{GHz}^{2} \\ & <1.5 \mathrm{~dB} 3 \text { to } 6.5 \mathrm{GHz} \end{aligned}$	$\begin{gathered} >21 \mathrm{~dB} 16 \mathrm{MHz} \text { to } 3 \mathrm{GHz}^{2} \\ >17 \mathrm{~dB} 3 \text { to } 6.5 \mathrm{GHz} \end{gathered}$	3	30	30	Type-N
N9355B	50	10 MHz to 18 GHz	$<1.75 \mathrm{~dB}$	$>15 \mathrm{~dB}^{1}$	1	10	30	Type-N
N9356B	50	10 MHz to 18 GHz	$<1.75 \mathrm{~dB}$	$>15 \mathrm{~dB}^{1}$	6	25	30	Type-N
N9355C	50	10 MHz to 26.5 GHz	$<2 \mathrm{~dB}$	$>15 \mathrm{~dB}^{1}$	1	10	30	3.5 mm
N9356C	50	10 MHz to 26.5 GHz	$<2.25 \mathrm{~dB}$	$>15 \mathrm{~dB}{ }^{1}$	4	25	30	3.5 mm
N9355F	50	10 MHz to 50 GHz	$\begin{gathered} <2 \mathrm{~dB} 10 \mathrm{MHz} \text { to } 26.5 \mathrm{GHz} \\ <2.75 \mathrm{~dB} 26.5 \text { to } 40 \mathrm{GHz} \\ <3.5 \mathrm{~dB} 40 \text { to } 50 \mathrm{GHz} \end{gathered}$	> $10 \mathrm{~dB}^{1}$	0.63	10	30	2.4 mm

Supplemental characteristics are intended to provide information useful in applying the instrument by giving typical, but non-warranted, performance parameters. These are denoted as "typical", or "nominal".

1. 10 to 30 MHz return loss specification is 8.5 dB .
2. 5 to 16 MHz insertion and return loss limited by internal blocking capacitor.
3. 6 to 6.5 GHz typical

Agilent Power Dividers

Agilent power dividers are an RF and microwave accessory construct by equivalent resistance of 50Ω, it's used to divide power equally in a uniform transmission line
 for comparison measurements. The power divider provides a good impedance match at both the output arms when the input is terminated in the system characteristic impedance (50 Ω). Once a good source match has been achieved, the power divider may be used to divide the output into equal signals for comparison measurements.

Key Measurements

- Broad operating frequency range up to 50 GHz eliminates the need for multiple dividers
- Excellent amplitude ($\pm 0.3 \mathrm{~dB}$) and phase tracking $\left(\pm 2^{\circ}\right)$ ensures highly accurate power division
- Low SWR 1.67 at 50 GHz minimizes measurement uncertainty

Quick Fact Sheet

Agilent Power Dividers

Product Specifications

Model	Frequency	Max SWR	Maximum insertion loss (dB)	Minimum isolation (dB)	Maximum amplitude tracking (dB) ${ }^{1}$	Maximum phase tracking ($\left.{ }^{\circ}\right)^{1}$
11636A	DC to 18 GHz	1.35	6.0 typ ${ }^{2}$	-	$0.5{ }^{3}$	$\pm 2^{\circ}$ typ
11636B	DC to 26.5 GHz	1.29	7.5	-	$0.25{ }^{3}$	$\pm 2^{\circ}$ typ
11636C	DC to 50 GHz	1.67	8.5	-	$0.30{ }^{4}$	$\pm 2^{\circ}$
87302C	0.5 to 18 GHz	1.45	1.5^{5}	19	0.3	6
	18 to 26.5 GHz	1.6	$1.9{ }^{5}$	19	0.5	10
87303C	1.0 to 18 GHz	1.45	$1.2{ }^{5}$	19	0.3	6
	18 to 26.5 GHz	1.6	$1.6{ }^{5}$	21	0.5	10
87304C	2.0 to 18 GHz	1.45	$1.1{ }^{5}$	19	0.3	6
	18 to 26.5 GHz	1.6	1.45	18	0.5	10

1. Amplitude and phase tracking are the ratio of one output to the other in dB or degrees, respectively
2. 5.8 to 7.2 dB up to $10 \mathrm{GHz} ; 5.8$ to 7.5 dB up to 18 GHz
3. at 18 GHz
4. at 50 GHz
5. Insertion loss is in addition to 3 dB coupling loss

For more detail information on Agilent Power Divider, please refer to product literature number 5989-6698EN

Agilent Power Splitters

Agilent power splitters feature excellent match and tracking between outputs, operating from DC to 50 GHz . These power splitters are recommended for external source leveling and ratio measurements.

11667A

11667B

11667C

116672

Key features

- Excellent output SWR 1.10 at the auxiliary arm when used for source leveling or ratio measurement applications
- Unmatched tracking between outputs as low as 0.20 dB from DC to 50 GHz ensures minimum measurement uncertainty

Quick Fact Sheet

Agilent Power Splitters

Product specifications

		Equivalent output SWR (norminal 50Ω)	Maximum input power	Nominal insertion loss (input to either output)	Tracking between any two ports	Connectors

Quick Fact Sheet

Agilent U1818A/B 7/12 GHz Active Differential Probes

The U1818A/B provides a high frequency probing solution for R\&D and quality assurance engineers performing RF/Microwave and high-speed digital design and validation in wireline, wireless communications and aerospace/defense industries while taking full advantage of Agilent's RF analyzers capability.

Key Application

- General Purpose RF
- Design, Test \& Validation
- Oscillator and PLL

The probe

can... measure both single ended and differential signals
probe RF traces without removing any components
be used with NA to perform
response calibration

High Frequency probing with Agilent's MXA signal analyzer

Key Features

- Broad bandwidth with flat frequency response, $\pm 1.5 \mathrm{~dB}$, which ensures excellent measurement accuracy and helps users achieve the best product specifications
- Low noise floor, <-130 dBm/Hz at 10 MHz to 12 GHz , which allows measurements to be made at low signal amplitude
- Convenient biasing from Agilent's RF and microwave instruments probe power port or bench top power supply for user flexibility

Agilent U1818A/B 7/12 GHz Active Differential Probes

Product Specifications (Typical)

		Input impedance at 1 MHz	Nominal probe attenuation	Maximum CW input power	Maximum DC input voltage	Common mode rejection
U1818A	100 kHz to 7 GHz	Single Ended: $25 \mathrm{~K} \Omega$ U1818B	100 kHz to 12 GHz	Differential: $50 \mathrm{~K} \Omega$	-10 dB	16 dBm

* The U1818A/B active differential probes comes with a selection of a probe power cable or a banana plug power cable

Check out the application note "High Frequency Probing Solutions for Time and Frequency Domain Applications", literature number 5989-4837EN

Probe Head Options	
Model	Description
N5380A	12 GHz differential SMA adapter
N5381A	12 GHz differential solder-In
N5382A	12 GHz differential browser
N5425/6A	12 GHz differential ZIF probe head/tip
E2695A	Differential SMA probe head
Related	Accessories
Model	Description
11582B	Minimum loss attenuator pad
N2880A	In-line attenuator kit
N2881A	DC blocking capacitor
N2784A	1-arm probe positioner
N2785A	2-arm probe positioner
N2787A	3D probe positioner
N5450A	Extreme temperature extension cable

Electro-Mechanical Switches

13

L-series EM Switches Low Cost SPDT Switches High Performance Multiport Switches High Performance SPDT Switches

Bypass Switches High Performance Transfer Switches High Performance Matrix Switches

Agilent L-Series EM Switches

Agilent's L-Series switches offer high-performance capability at a fraction of the cost. For example, 40% cheaper than Agilent's high-performance switches, the
 L- Series offers 0.03 dB insertion loss repeatability guaranteed up to 2 million cycles and exceptional isolation. Agilent's low-cost switches provide the performance you need from DC to 26.5 GHz .

L7104A/B/C, L7204A/B/C, L7106A/B/C, L7206A/B/C and L7222C

Superior performance with guaranteed specifications to 26.5 GHz

- Guaranteed performance: < 0.03 dB insertion loss repeatability guaranteed for 2 million cycles
- Long operating life: 5 million cycles (typical)
- High isolation: Typically $>85 \mathrm{~dB}$ at 26.5 GHz
- Unique design: Wiping action mechanism eliminates particle buildup to ensure reliable switching
- Broad frequency range: DC to 4,20 , or 26.5 GHz
- Economical price: Minimizes budgetary constraints

RF \& microwave coaxial fixed attenuators											
Model	Frequency	Termination	Average power	Peak power	Isolation	Insertion loss	SWR	Speed	Life cycle	Driving voltage	RF connectors
SP4T											
L7104A	DC to 4 GHz	Terminated	1 W	50 W	90 dB	0.36 dB	1.2	15 ms	2 million	24 Vdc	SMA (f)
L7204A	DC to 4 GHz	Unterminated	2 W	100 W	90 dB	0.36 dB	1.2	15 ms	2 million	24 Vdc	SMA (f)
L7104B	DC to 20 GHz	Terminated	1 W	50 W	90 dB	0.6 dB	1.45	15 ms	2 million	24 Vdc	SMA (f)
L7204B	DC to 20 GHz	Unterminated	2 W	100 W	90 dB	0.6 dB	1.45	15 ms	2 million	24 Vdc	SMA (f)
L7104C	DC to 26.5 GHz	Terminated	1 W	50 W	60 dB	0.7 dB	1.7	15 ms	2 million	24 Vdc	SMA (f)
L7204C	DC to 26.5 GHz	Unterminated	2 W	100 W	60 dB	0.7 dB	1.7	15 ms	2 million	24 Vdc	SMA (f)
SP6T											
L7106A	DC to 4 GHz	Terminated	1 W	50 W	90 dB	0.36 dB	1.2	15 ms	2 million	24 Vdc	SMA (f)
L7206A	DC to 4 GHz	Unterminated	2 W	100 W	90 dB	0.36 dB	1.2	15 ms	2 million	24 Vdc	SMA (f)
L7106B	DC to 20 GHz	Terminated	1 W	50 W	90 dB	0.6 dB	1.45	15 ms	2 million	24 Vdc	SMA (f)
L7206B	DC to 20 GHz	Unterminated	2 W	100 W	90 dB	0.6 dB	1.45	15 ms	2 million	24 Vdc	SMA (f)
L7106C	DC to 26.5 GHz	Terminated	1 W	50 W	60 dB	0.7 dB	1.7	15 ms	2 million	24 Vdc	SMA (f)
L7206C	DC to 26.5 GHz	Unterminated	2 W	100 W	60 dB	0.7 dB	1.7	15 ms	2 million	24 Vdc	SMA (f)
Transfer											
L7222C	DC to 26.5 GHz	Unterminated	1 W	60 W	57 dB	0.9 dB	1.65	15 ms	2 million	24 Vdc	SMA (f)

L-Series EM switch options

Model	Option type	Option	Option description
L7104A/ L7204A/ L7104B/ L7204B/ L7104C/ L7204C/	Control Logic	T24	TTL/5V CMOS compatible logic with 24 Vdc supply
L7106A/ L7206A/ L7106B/ L7206B/ L7106C/ L7206C		DC Connectors	161

For more details on the Agilent EM switches and ordering information see the "Agilent RF and Microwave Switch Selection Guide", literature number 5989-6031EN

For more information on Agilent switches, please visit www.agilent.com/find/switches

Agilent Low Cost Electromechanical SPDT Switches

Agilent's economical SPDT switches offer 50Ω and 75Ω high-performance capability at a fraction of the cost.

Agilent SPDT switches provide the performance you need from DC to 40 GHz .

Features

- Current interrupts
- Position indication capability

Superior performance with guaranteed specifications to 40 GHz

Superior RF Performance

• Insertion loss:	- Isolation:	Broad frequency range:
$<0.25 \mathrm{~dB}$ to 2 GHz	$>90 \mathrm{~dB}$ to 18 GHz	DC to $4,18,26.5$, and 40 GHz
$<0.5 \mathrm{~dB}$ to 18 GHz	$>50 \mathrm{~dB}$ to 26.5 GHz	
$<1.25 \mathrm{~dB}$ to 26.5 GHz		

Agilent Technologies

Agilent Low Cost Electromechanical SPDT Switches

Product specifications

Model	Frequency (GHz)	Termination	Average power (W)	Peak power (W)	Isolation (dB)	Insertion loss (dB)	SWR	$\begin{gathered} \text { Speed } \\ (\mathrm{ms}) \end{gathered}$		Driving voltage (Vdc)	RF connectors
Low Cost Electromechanical SPDT											
8762A	DC to 4	Terminated	1	100	90	0.25	1.2	30	1	5, 15, 24	SMA (f)
8762B	DC to 18	Terminated	1	100	90	0.5	1.3	30	1	5, 15, 24	SMA (f)
8762C	DC to 26.5	Terminated	1	100	50	1.25	1.8	30	1	5, 15, 24	3.5 mm
8762F ${ }^{1}$	DC to 4	Terminated	1	100	90	0.4	1.3	30	1	24	mini SMB (m)
8765A	DC to 4	Unterminated	2	100	100	0.3	1.7	15	5	5, 10, 15, 24	SMA (f)
8765B	DC to 20	Unterminated	2	100	54	0.7	1.7	15	5	5, 15, 24	SMA (f)
8765C	DC to 26.5	Unterminated	2	100	50	0.2	1.7	15	5	5, 10, 15, 24	3.5 mm
8765D	DC to 40	Unterminated	2	100	50	1.12	1.5	15	5	5, 10, 15, 24	2.4 mm
8765F ${ }^{1}$	DC to 4	Unterminated	2	100	90	0.4	1.2	15	5	5, 10, 15, 24	mini SMB (m)
High Power SPDT											
8761A	DC to 18	Unterminated	1	100	45	0.8	1.15	50	1	12	SMA (f) ${ }^{2}$
8761B	DC to 18	Unterminated	1	100	45	0.8	1.15	50	1	26	SMA (f) ${ }^{2}$

1. 75Ω impedance
2. See ordering information

For more details on the Agilent EM switches and ordering information see the "Agilent RF and Microwave Switch Selection Guide", literature number 5989-6031EN
For more information on Agilent switches, please visit www.agilent.com/find/switches

Ordering information

Model	Option type	Option	Option description
$\begin{aligned} & \text { 8761A/ } \\ & \text { 8761B } \end{aligned}$	Coil voltage	A	12 to 15 Vdc
		B	24 to 30 Vdc
	Connector code option Port 1 option 10x Port 2 option 20x Port C option 30x	0	N (f)
		1	N (m)
		2	APC-7 threaded sleeve
		3	APC-t coupling unit
		4	7 mm for UT-250 coax
		5	SMA (f)
		6	SMA (m)
		7	50Ω termination (for port 1 and port 2 only)
8762A 8762B/ 8762C	Coil voltage	024	24 Vdvc
		T24	TTL/5V CMOS compatible logic with 24 Vdc supply
		011	5 Vdc
		015	15 Vdc
		T15	TTL/5V CMOS compatible logic with 15 Vdc supply
8762F	Coil voltage	024	24 Vdvc
		011	5 Vdc
		015	15 Vdc
8765A/ 8765B/ 8765C/ 8765D/ 8765F	Coil voltage	005	5 Vdc with 3-inch ribbon cable
		305	5 Vdc with solder terminals
		010	10 Vdc with 3-inch ribbon cable
		310	10 Vdc with solder terminals
		015	15 Vdc with 3-inch ribbon cable
		315	15 Vdc with solder terminals
		024	24 Vdc with 3-inch ribbon cable
		324	24 Vdc with solder terminals
	RF connector	241	2.4 mm (f) (for 8765D only)
		292	2.92 mm (f)
	DC connector	108	8 -inch ribbon cable extension
		116	16 -inch ribbon cable extension

Agilent High Performance Multiport Switches

Agilent's high-performance electromechanical coaxial switches provide reliable switching in signal routing, switch matrices, and ATE systems. With 0.03 dB insertion loss repeatability guaranteed up
 to 5 million cycles (10 million typical) and exceptional isolation, Agilent high-performance switches provide the performance you need from DC to 50 GHz .

High Performance

Superior performance with guaranteed specifications to 50 GHz

- Guaranteed performance

$<0.03 \mathrm{~dB}$ insertion loss repeatability guaranteed for 5 million cycles

- Long operating life

10 million cycles (typical)

- High isolation

Typically $>85 \mathrm{~dB}$ at 26.5 GHz

- Low SWR

Minimize measurement uncertainty

- Unique design

Wiping action mechanism eliminates particle buildup to ensure reliable switching

- Broad frequency range

DC to 4, 20, 26.5, 40 or 50 GHz

Agilent Technologies

Agilent High Performance Multiport Switches

Model	Frequency (GHz)	Termination	Average power (W)	Peak power (W)	Isolation (dB)	Insertion loss (dB)	SWR	Speed (ms)	$\begin{gathered} \text { Life } \\ \text { cycle } \\ \text { (million) } \end{gathered}$	Driving voltage (Vdc)	RF connectors
SP3T											
8766K	DC to 26.5	Unterminated	1	100	60	1.5	1.8	20	5	5, 15, 24	3.5 mm (f)
SP4T											
87104A	DC to 4	Terminated	1	50	100	0.36	1.2	15	5	24	SMA (f)
87204A	DC to 4	Terminated	1	50	100	0.36	1.2	15	5	24	SMA (f)
87104B	DC to 20	Terminated	1	50	70	0.6	1.45	15	5	24	SMA (f)
87204B	DC to 20	Terminated	1	50	70	0.6	1.45	15	5	24	SMA (f)
87104C	DC to 26.5	Terminated	1	50	65	0.7	1.7	15	5	24	SMA (f)
87204C	DC to 26.5	Terminated	1	50	65	0.7	1.7	15	5	24	SMA (f)
87104D	DC to 40	Terminated	1	50	65	0.7	1.95	15	5	24	2.92 mm (f)
8767K	DC to 26.5	Unterminated	1	100	60	1.5	1.8	20	5	5, 15, 24	3.5 mm (f)
8767M	DC to 50	Unterminated	1	100	60	2.7	2.3	20	5	5, 15, 24	2.4 mm (f)
SP5T											
8768K	DC to 26.5	Unterminated	1	100	60	1.5	1.8	20	5	5, 15, 24	3.5 mm (f)
8768M	DC to 50	Unterminated	1	100	60	2.7	2.3	20	5	5, 15, 24	2.4 mm (f)
SP6T											
87106A	DC to 4	Terminated	1	50	100	0.36	1.2	15	5	24	SMA (f)
87206A	DC to 4	Terminated	1	50	100	0.36	1.2	15	5	24	SMA (f)
87106B	DC to 20	Terminated	1	50	70	0.6	1.45	15	5	24	SMA (f)
87206B	DC to 20	Terminated	1	50	70	0.6	1.45	15	5	24	SMA (f)
87106C	DC to 26.5	Terminated	1	50	65	0.7	1.7	15	5	24	SMA (f)
87206C	DC to 26.5	Terminated	1	50	65	0.7	1.7	15	5	24	SMA (f)
87106D	DC to 40	Terminated	1	50	65	0.7	1.95	15	5	24	2.92 mm (f)
8769K	DC to 26.5	Unterminated	1	100	60	1.5	2.05	20	5	24	3.5 mm (f)
8769M	DC to 50	Unterminated	1	100	60	2.7	2.3	20	5	5, 15, 24	2.4 mm (f/m)

For more details on Agilent EM Switches and ordering information see the "Agilent RF and Microwave Switch Selection Guide", literature number 5989-6031EN

For more information on Agilent switches, please visit: www.agilent.com/find/switches

High Performance Multiport Switch Option

Model	Option type	Option	Option description
87104A / 87104B / 87104C / 87104D / 87106A / 87106B / 87106C / 87106D	Control logic	T24	TTL/5V CMOS compatible logic with 24 Vdc supply
		024	24 Vdc
	DC connectors	161	Ribbon receptacle
		100	Solder Terminals
8766K / 8767K / 8768K /8769K	Coil voltage	024	24 Vdc
		011	5 Vdc
		015	15 Vdc
	RF connector	002	SMA (f) (Use to 18 GHz only)
		004	3.5 mm (f)
	DC connectors	060	5 feet DC control cable; 12-pin viking
		016	16-inch ribbon cable extension

Agilent High Performance Electromechanical SPDT Switches

Agilent's high-performance electromechanical coaxial switches provide reliable switching in signal routing, switch matrices and ATE systems.

With 0.03 dB insertion loss repeatability guaranteed up to 5 million cycles (10 million cycles typical) and exceptional isolation, Agilent high-performance switches provide the performance you need from DC to 26.5 GHz .

Superior performance with guaranteed specifications to 26.5 GHz

- Guaranteed performance

$<0.03 \mathrm{~dB}$ insertion loss repeatability guaranteed for 5 million cycles

- Long operating life

10 million cycles (typical)

- High isolation

Typically $>85 \mathrm{~dB}$ at 26.5 GHz

- Broad frequency range

DC to 4,20 , and 26.5 GHz

Agilent Technologies

Agilent High Performance Electromechanical SPDT Switches

Product specifications

Model	Frequency (GHz)	Termination	Average power (W)	Peak power (W)	Isolation (dB)	Insertion loss (dB)	SWR	$\begin{gathered} \text { Speed } \\ (\mathrm{ms}) \end{gathered}$	Life cycle (million)	Driving voltage (Vdc)	RF connectors
N1810TL	DC to 26.5	Terminated	1	50	60	0.8	1.6	15	5	5, 15, 24	SMA (f)
N1810UL	DC to 26.5	Unterminated	1	50	60	0.8	1.6	15	5	5, 15, 24	SMA (f)

High performance SPDT option

Model	Option type	Option	Option decription
N1810TL/ N1810UL	Frequency range	004	DC to 4 GHz
		020	DC to 20 GHz
		026	DC to 26.5 GHz
	Coil voltage	105	5 Vdc and includes Option 402
		115	15 Vdc
		124	24 Vdc
	DC connector	201	D-submini 9 pin (f)
		202	Solder lugs
	Performance	301	High isolation
		302	Low SWR \& insertion loss
		UK6	Calibration certificate with test data
	Drive	401	TTL/5V CMOS competible
		402	Position indicator

For more details on the Agilent EM switches and ordering information see the "Agilent RF and Microwave Switch Selection Guide", literature number 5989-6031EN

For more information on Agilent switches, please visit www.agilent.com/find/switches

Agilent Electromechanical Bypass Switches

Agilent's electromechanical bypass switches provide reliable switching in signal routing, switch matrices and ATE systems. With 0.03 dB insertion loss repeatability guaranteed up to 5 million cycles (10 million cycles typical) and exceptional isolation, Agilent bypass
 switches provide the performance you need from DC to 26.5 GHz .

High performance

- Guaranteed performance $<0.03 \mathrm{~dB}$ insertion loss repeatability guaranteed for 5 million cycles
- Long operating life 10 million cycles (typical)
- High isolation

Typically $>85 \mathrm{~dB}$ at 26.5 GHz

Product specifications

$\left.\begin{array}{ccccccccccc}\text { Model } & \begin{array}{c}\text { Frequency } \\ (\mathrm{GHz})\end{array} & \text { Termination } & \begin{array}{c}\text { Average } \\ \text { power (} \mathrm{W} \text {) }\end{array} & \begin{array}{c}\text { Peak power } \\ (\mathrm{W})\end{array} & \begin{array}{c}\text { Insertion loss } \\ (\mathrm{dB})\end{array} & \text { SWR } & \begin{array}{c}\text { Speed (ms) }\end{array} & \begin{array}{c}\text { Life cycle } \\ \text { (million) }\end{array} & \begin{array}{c}\text { Driving } \\ \text { voltage (Vdc) }\end{array} & \text { RF connectors }\end{array}\right)$

Agilent bypass switch option

Model	Option type	Option	Option description
N1811TL/ N1812UL	Frequency range	004	DC to 4 GHz
		020	DC to 20 GHz
		026	DC to 26.5 GHz
	Coil voltage	105	5 Vdc and includes option 402
		115	15 Vdc
		124	24 Vdc
	DC connector	201	D-submini 9 pin (f)
		202	Solder lugs
	Performance	301	High isolation
		302	Low SWR \& insertion loss
		UK6	Calibration certificate with test data
	Drive	401	TTL/5V CMOS compatible
		402	Position indicator
$\begin{aligned} & \text { 8763A/ } \\ & \text { 8763B/ } \\ & 8763 \mathrm{C} / \\ & 8764 \mathrm{~A} / \\ & 8764 \mathrm{~B} / \\ & 8764 \mathrm{C} \end{aligned}$	Drive	T15	TTL/5V CMOS compatible logic with 15 Vdc supply
		T24	TTL/5V CMOS compatible logic with 24 Vdc supply
	Coil voltage	024	24 Vdc
		011	5 Vdc
		015	15 Vdc

For more details on Agilent EM switches and ordering information see the "Agilent RF and Microwave Switch Selection Guide", literature number 5989-6031EN
For more information on Agilent Amplifiers, please visit
www.agilent.com/find/switches

Agilent High Performance Electromechanical Transfer Switches

Agilent 87222C/D/E

Agilent's electromechanical transfer switches provide reliable switching in signal routing, switch matrices and ATE systems. With 0.03 dB insertion loss repeatability guaranteed up to 5 million cycles and exceptional isolation, Agilent transfer switches provide the performance you need from DC to 50 GHz .

Superior performance with guaranteed specifications to 50 GHz

- Guaranteed performance - $<0.03 \mathrm{~dB}$ insertion loss repeatability guaranteed for

5 million cycles

- Long operating life - 5 million cycles
- Low SWR - Minimize measurement uncertainty
- Unique design - Wiping action mechanism eliminates particle buildup to ensure
reliable switching
- Broad frequency range - DC to $26.5,40$, and 50 GHz

Agilent High Performance Electromechanical Transfer Switches

Product specifications

Model	Frequency (GHz)	Termination	Average power	Peak power	Isolation	Insertion loss	SWR	Speed	Life cycle	Driving voltage	RF connectors
87222C	DC to 26.5	Unterminated	1 W	50 W	40 dB	0.9 dB	1.65	15 ms	5 million	24 Vdc	SMA (f)
87222D	DC to 40	Unterminated	1 W	50 W	60 dB	1.2 dB	1.7	15 ms	5 million	24 Vdc	2.92 mm (f)
87222E	DC to 50	Unterminated	1 W	50 W	60 dB	1.15 dB	1.7	15 ms	5 million	24 Vdc	2.4 mm (f)

Agilent transfer switch option

Model	Option type	Option	Option description
87222C/	DC Connectors	161	10-PIN DIP
87222D/ $87222 E$		100	Soler terminals and 10-PIN DIP
	Accessories	201	Mounting brackets; assembly required

For more details on the Agilent EM switches and ordering information see the "Agilent RF and Microwave Switch Selection Guide", literature number 5989-6031EN

For more information on Agilent switches, please visit www.agilent.com/find/switches

Agilent High Performance Electromechanical Matrix Switches

Agilent's electromechanical matrix switches provide reliable switching in signal routing, switch matrices and ATE systems.

With 0.03 dB insertion loss repeatability guaranteed up to 5 million cycles and exceptional isolation, Agilent matrix switches provide the performance you need from DC to 20 GHz .

- Guaranteed Performance

$<0.03 \mathrm{~dB}$ insertion loss repeatability guaranteed for 5 million cycles

- Long operating life

10 million cycles (typical)

- Low SWR

Minimize measurement uncertainty

- Unique design

Wiping action mechanism eliminates particle buildup to ensure reliable switching

Agilent High Performance Electromechanical Matrix Switches

Product Specifications

Model	Frequency (GHz)	Termination	Average power (W)	Peak power (W)	Isolation	Insertion loss (dB)	SWR	Speed (ms)	Life cycle (million)	Driving voltage (Vdc)	RF connectors
87406B	DC to 20	Terminated	1	50	70	1	1.9	15	5	24	SMA (f)
87606B	DC to 20	Terminated	1	50	70	1	1.9	15	5	24	SMA (f)

Agilent Matrix Switch Option

Model	Option type	Option	Option description
87406B	DC connectors	161	16-PIN DIP
		100	Soler terminals and 16-PIN DIP
	Control logic	T24	TTL/5V CMOS compatible logic with 24 Vdc supply
		024	24 Vdc
87606B	DC connectors	161	16-PIN DIP
		100	Soler terminals and 16-PIN DIP

For more details on Agilent EM switches and ordering information see the
"Agilent RF and Microwave Switch Selection Guide", literature number 5989-6031EN
For more information on Agilent Amplifiers, please visit www.agilent.com/find/switches

Agilent Solid State Switches

Superior performance with high isolation
Fast switching speed across a broad operating frequency range

Safe, accurate test for sensitive RFIC components
Exceptional long operating life

There are three types of solid state switches

- PIN diode switches
- Field-effect transistor (FET) switches
- Hybrid switches (FET and PIN diode)

Agilent Solid State Switches

Product specifications

Solid State Switches										
Model	Frequency	Termination	Isolation (dB)	Insertion loss (dB)	Return loss for ON port (dB)	Switching speed rise/fall (Typ)	Typical video leakage (mVpp)	Connector	Input power (average)	Driving voltage (V)
PIN SPDT										
P9402A	100 MHz to 8 GHz	Absortive	80	3.2	15	380 ns	3400	SMA (f)	23 dB	5
P9402C	100 MHz to 18 GHz	Absortive	80	4	10	380 ns	3400	SMA (f)	23 dB	5
85331B	45 MHz to 50 GHz	Absortive	75	15.5 at 26.5 GHz	4.5	$1.5 \mu \mathrm{~s}$	7000	2.4 mm (f)	27 dB	7
PIN SP4T										
P9404A	100 MHz to 8 GHz	Absortive	80	3.5	15	350 ns	2800	SMA (f)	27 dB	5
P9404C	100 MHz to 18 GHz	Absortive	80	4.5	10	350 ns	2800	SMA (f)	27 dB	5
85332B	45 MHz to 50 GHz	Absortive	75	15.5 at 26.5 GHz	4.5	$1.5 \mu \mathrm{~s}$	7000	2.4 mm (f)	27 dB	7
PIN transfer										
P9400A	100 MHz to 8 GHz	NA	80	3.5	15	200 ns	600	SMA (f)	23 dB	5
P9400C	100 MHz to 18 GHz	NA	80	4.2	10	200 ns	600	SMA (f)	23 dB	5
FET SPDT										
U9397A	300 kHz to 8 GHz	Absortive	100	3.5	15	5/0.51 $\mu \mathrm{s}$	10	SMA (f)	29 dB	12 to 24
U9397C	300 kHz to 18 GHz	Absortive	90	6.5	10	$5 / 0.51 \mu \mathrm{~s}$	10	SMA (f)	27 dB	12 to 24
FET transfer										
U9400A	300 kHz to 8 GHz	NA	100	3.5	15	4/0.51 $\mathrm{s}^{\text {s }}$	5	SMA (f)	29 dB	11 to 26
U9400C	300 kHz to 18 GHz	NA	90	6.5	10	$5 / 1 \mu \mathrm{~s}$	5	SMA (f)	27 dB	11 to 26

Solid state switches are standard and do not require option selection

For more details on the Agilent solid state switches and ordering information see the "Agilent RF and Microwave Switch Selection Guide", literature number 5989-6031EN

Agilent Termination(Loads)

The Agilent Termination/loads are widely used as accessories for both broadband and narrowband measurement instruments. Agilent's family of fixed and sliding loads includes
 both general purpose grade loads as well as loads intended for use as calibration standards.

Key features

- Low RF leakage and a clearly defined reference plane
- Tantalum nitride on sapphire thinfilm technology for exceptional long-term impedance stability
- Gold plated beryllium copper used for the connector contacts for the best possible wear resistance characteristics

Agilent Technologies

Agilent Termination(Loads)

Product specifications

Model	Impedance	Frequency range (GHz)	VSWR	Max power	Connectors type	Length mm (In)	Diameter mm (In)
909A	50Ω	DC to 18	DC to 4 GHz: 1.05 4 to $12.4 \mathrm{GHz}: 1.1$ 12.4 to 18 GHz: 1.25	2 W avg. 300 W peak	APC-7	51 (2)	23 (0.9)
909C	50Ω	DC to 2	1.005	1/2 W avg. 100 W peak	APC-7	51 (2)	22 (0.9)
909D	50Ω	DC to 26.5	DC to $3 \mathrm{GHz}: 1.02$ 3 to 6 GHz: 1.036 6 to $26.5 \mathrm{GHz}: 1.12$	2 W avg. 100 W peak	3.5 mm (m)	23 (0.9)	9 (0.4)
909E	75Ω	DC to 3	2 to 3 GHz 1. 02	1/2 W avg. 100 W peak	N (m)	51 (2)	21 (0.8)
909F	50Ω	DC to 18	DC to 5 GHz: 1.005 5 to 6 GHz: 1.01 6 to 18 GHz: 1.15		APC-7	51 (2)	22 (0.9)
85138A	50Ω	DC to 50	DC to $26.5 \mathrm{GHz}: 1.065$ 26.5 to $40 \mathrm{GHz}: 1.118$ 40 to $50 \mathrm{GHz}: 1.220$		2.4 mm (m)	-	-
85138B	50Ω				2.4 mm (m)	-	-

Ordering information

Model	Option	Description
909A	012	N Male Connector
	013	N Female Connector
909 C	012	N Male Connector
	013	N Female Connector
909D	011	3.5 mm female termination
	040	$3.5 ~ m m ~ m a l e ~ t e r m i n a t i o n ~ d c ~$ to -4 GHz 1.01 max SWR
909 E	011	Type-N female connector
909 F	012	N Male Connector
	013	N Female Connector

Agilent's Web Site:

Get News, Updated Product and Support Information, and More, 24 Hours a Day
www.agilent.com/find/mta

Online Resources

- Locate product and support information with simple navigation to technical overviews, manuals, news releases, education course descriptions and schedules, and much more
- Access customer support services
- Find information on recommended replacements for discontinued products
- Place an order or check your order status in the Agilent Direct Online Store
- Subscribe to Agilent's free email update service to stay current on the latest Agilent product, support, and application information - customized for your interests and preferences

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products
and applications you select.
WiMAX is a trademark of the WiMAX Forum.

LXI

www.lxistandard.org
LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

www.agilent.com
 www.agilent.com/find/mta

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus

To find a distributor in your area, go to: www.agilent.com/find/distributors
© Agilent Technologies, Inc. 2010
Printed in September 7, 2010
5990-5499EN

Agilent Technologies

[^0]: 1. Not available on all models, see specification table
[^1]: 1. with $2: 1$ source match
[^2]: See data sheet for typical out of band data from 0.1 to 2 GHz and 18 to 20 GHz
 2. Maximum auxiliary arm tracking: 0.3 dB for Agilent 776D; 0.5 dB for Agilent 777 D
 3. 30 dB to 2.0 GHz , input port.

